The Am8052 CRT
Controller

Technical Manual

S3DIA3A OUDIW AIDNVAAY

&

Advanced Micro Devices

Am8052
Alphanumeric
-~ CRT |
Controller

Technical Manual

~ © 1986 Advanced Micro Devices, Inc.

- Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The company
assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
~ (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Author :

Contributors :

Copyeditor.

\

Jurgen Stelbrink

Ka Waileung
Olivier Garbe
Robert Earley
Mark Young

“Joe Brcich

Hans Joachim Riihl

: HarrylLau

Ch.3
Ch.5.1;5.2
Ch.5.3
Ch.6.3
Ch.8.5
Ch.6.6

Table of Contents

1. CRT DISPLAY PRODUCTS

1.0 Introduction
1.1 Alphanumeric Dlsplay Products
1.2 Advanced Display Features
Linked-List Data Structure
Windows ...
Virtual Windows or Splnt Screens
Smooth-Scrolling
Attributes .
Proportional Spacmg
Cursors
Host Bus Interface

2. Am8052 ARCHITECTURE

2.1 Overview .

2.2 Interface Signals

2.3 Register Descriptions
CRTC Slave Transfers
Register Test
Video Timing Programmlng Example

2.4 DMA Operations .
DMA Signals and Protocol
Buffering/BRQ
DMA Transfer Operation
DMA Read and Write Operatlons
Wait Operation

. Idle DMA Cycles

DMA Burst Control

2.5 Row Management Unit Operatlons
Background Information Management
Window Information Management ...

2.6 Attributes .

26.1 Character Attributes ...

26.2 Field Attributes ...

2.6.3 Row Attributes

264 Frame Attributes

265 Cursor Display

2.6.6 Fill Code Attributés

2.7 Interrupt Operations

2.8 Smooth Scroll Mechanisms

2.9 Synchronization .

2.10 RFland Interface Vldeo

5

3. Am8052 SOFTWARE COOKBOOK

3.1 Introduction
3.2 Register Initialization
Mode Register 1
Mode Register 2

-y
0
e

[N QP [S T T S S A e Y
v
ONNOAOADRADAMNN = -

33

3.4

3.5

3.6

3.7

&

Attribute Port Enable Register
Attribute Redefinition Register
Top of Page Hard Register “...
- Top of Window Hard Register ...
"Top of Page Soft Register
Top of Window Soft Register
Attribute Flag Register
Burst Register . .
Vertical Interrupt Row Reglster
Timing Register
Background and Window text
Main Definition Block and Window Defmmon Blocks
Main Definition Block .
Window Definition Block - -
Background Row Control Block and
Window Row Control Block - .
Background Row Redefinition Block and
Window Row Redefinition Block
Background and Windows
Non-aligned Windows .
‘Background/Window Strategles
Attributes . .
Attribute Invoking ...
Latched and Unlatched Attrlbutes
The FAT-bit
Vertical Smooth Scroll .
Smooth Scrolling Up and Down .
Background and Window Smooth-scroll
Polling
Non-Vectored Interrupt
Vectored Interrupt
Edltmg the Linked List
Row Control Block Memory
Row Insertion
Row Deletion
Character Code and Attnbute Pomters

. VIDEO SYSTEM APPLICATIONS

4.0 Introduction
~ 41 Typical Applications
4.2 Multiplexing the Data Inputs
4.3 Character Pipelining
4.4 Character/System Clock Synchromzatlon
4.5 Crystal Oscillator Layout
4.6 Half Dot Shift
. GENERAL APPLICATIONS
5.1 = Loadable Character Font Generator
" foran Am8052 System
5.2 Horizontal Smooth Scroll
5.3 Bit-Mapped Graphics with Am8052

. Am8052 BUS INTERFACE GUIDE

6.0
6.1

lntroductlon

Performance Decasnons
Single/Dual Bus Architecture
System Clock Rate -

3-1
3-2

- 32

3-2
32
3-2
3-2
3-2
3:2
32
3-2
3-2
3-2
33

3-3

3-4
3-4
3-5
3-6
3-6
39
3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-11
3-12
3-13
3-13
3-13

41

4-1
41
41
4-4
4-4
4-6
47

51
5-5
58

6-1

© 61

6-1
6-2
6-2

Wait States ..

DMA Burst Length .

Ful/Reduced Attribute Fetches
6.2 General System Bus Application Hints

Upper Address Writes .

“Slave Transfers

Clock Input Requirements

Interrupt Acknowledge

Wait Synchronization

Bus Turn-around

6.3k Am8052 and an 8-bit Mrcroprocessor Interface

6.4 Am8052 and 8086 Interface in MIN Mode
6.5 Am8052 and 68000 Interface
6.6 Am8052 and 80188 Interface with

Dual Bus Architecture

. LOW-COST SMART TERMINAL DEMO SYSTEM ..
7.1 Introduction .
7.2 Demo Set-Up
7.3 Building Procedure
7.4 Hardware Description
System Interface
Video Interface
7.5 USER’S MANUAL FOR THE
LOW-COST, SMART TERMINAL
Displays
Controls .) .
Normal C0O Control Characters
Backspace ..
Carriage Retum
New Line
Escape
Escape Sequences ...
Reset to Initial State ...
Control Sequence Introducer
Extended Control Characters ...
Extended Control Sequences -
Cursor Backward
Cursor Down
Cursor Forward
Cursor Position
CursorUp ...
Delete Line
Erase in Display
EraseinLine -
- InsertLine ...
Reset Mode
Scroll Down
Select Graphic Rendmon
SetMode ...
Scroll Right
Scroll Up
Private Control Sequences
Character Blink Rate .
Load Font Cell
Select Active Display
Select Cursor Appearance
Smooth Scroli Rate
Select Window Visibility
Select Message Visibility

6-2
6-2
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-5
6-6
6-14
6-16

6-19

7-1
7-1
7-1
7-2
7-2
7-3
7-5

7-7

7-7
7-7
7-7
7-7
77
7-7
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-9
7-9
7-9
7-9
7-9

7-10

7-10
7-10
7-10
7-10
7-11
7-11
7-11

“7-1

711
7-12
712
7-12

76 LOW-COST TERMINAL COMPARISONS B 7-12

Appendices

A. M/xmg Data Paths Expand Options In System. Des:gn)

Mark S. Young and James R. Williamson i A-1
B. Chip SetGives A Smooth Scioll In CRT Disp/a)7

Steven Dines and Mohammad Maniar B-1
C. CRT Controllers Can Enhance Test D/splay And S:mpl:fy Ed/t/ng '

Jurgen Stelbrink - C-1
D. Source Code For The Low-Cost Smart Terminal Board e .. DA

CHAPTER 1
CRT DISPLAY PRODUCTS

1.0 INTRODUCTION

, Raster-scan CRT (Cathode Ray Tube) displays
form the principle communication link between
computers and users in business, science and
educational applications. The trend toward using
high-resolution displays to enhance information
transfers between man and machine is
accelerating.

As CRT terminals become increasingly sophis-
ticated, the designer is faced ‘with many new
problems in areas of data manipulation and display.
The high-resolution screen necessary to display a
full-size typewriter page results in pixel rates
exceeding 50 MHz. Additionally, the use of
microprocessor technology in modern terminal
- .designs has transferred the editing tasks from the
host systemto the termmal itself.

CRT terminal designs can be divided into two
categories. Alphanumeric terminals are used in
office workstations. They incorporate features
such as flexible attribute handling, proportional
spacing. of characters, split-screens or multiple
window display, smooth-scrolling of windows, and
variable character width and height in full-page,

132x60 screen formats. The video subsystem of a -

CRT terminal with these sophisticated features can
be implemented with as few as three devices. This
significantly reduces IC and system development
cost and board space without sacrificing perform-
ance. The three devices consist of the Am8052 Al-
phanumeric CRT Controller (CRTC), the Am8152A
Video System Controller (VSC), and a character
font generator. This subsystem talks to the system
bus on one side and generates a high-speed pixel
stream on the other. This chip set is subject of this
handbook.

Terminals of the second category employ a bit- A

mapped graphic display. The main application area
for these terminals are engineering workstations in
CAD/CAM systems. In bit-mapped displays, each
pixel can be set or reset independently. A graphic
controller with a high processing power is needed
to update a high-resolution screen containing
more than one million pixels in a reasonable time.

of the flexibility. However, because of the high
processing power needed to generate the display
and the large display memory storing the, bit-map,
an alphanumeric terminal based on bit-mapped
graphic is more expensive and takes up more
board space than a dedicated, alphanumeric CRT
subsystem based on the CRT Controller chip set.
On the other side, a CRTC-based system can
handle limited bit-mapped graphics to display pie

.charts or bar graphs in business-type applications.

1.1 ALPHANUMERIC DISPLAY PRODUCTS

Figure 1.1 shows a typical proportional-spacing
application based on the CRT Controller chip set.
The distinctive characteristics of thls subsystem
are as follownng

¢ Up to 80 MHz video dot rate for hngh -resolution,
flicker-free displays.

o Linked-list display data structure in system
memory simplifying text-editing tasks.

e Background or window smooth-scroll capability
without external MSI or software overhead.

. o User-friendly, 16-bit CPU interface. Compatible

The Am815x. family supports this kind of -

application.

New designs of high-end alphanumeric CRT
systems tend to use bit- mapped displays because

* simplifies text-editing tasks.

with 8086, Z8000, and 68000 CPUs. 16-Mbyte
memory addressing capability.

The -chip set capabilities are contributed to the
CRTC and VSC as described below:

Am8052. The CRT Controller (CRTC), is a
general-purpose interface device for raster scan
CRT displays. The on-chip DMA controller inter-
prets a linked-list data structure in system memory
defining the text displayed on the screen. This
It supports attributes
such as subscript, superscript, underline, multiple
cursors and blinking. User-definable attributes
provide flexibility. Windows and background can
basmooth- scrolled at user-definable rates.

The CRTC is register-oriented and fully user-
programmable. The frame timing and operating
mode are initialized by the host CPU.

Am8152A. The Video System Controller is ba-
sically a programmable (2- to 17-bit) shift register.

1-1

HosT Am8052

CPU

Figure 1-1 Typical Applrica‘tion

CHARACTER AND ~ CRT
ATTRIBUTE ROM MONITOR -
3 ,.‘..[.... .-.]....
1] L]
H H
COLOR .
AmB152A —* PALETTE H
. L]
Laseemnansmnnsnd

~

050988 1-1

It serializes the: character slices supplied by the
character font generator. Attributes such as
highlight and reverse video are incorporated in the
serial pixel stream put out. The VSC provides two
video outputs: a two-bit digital output and a four-
level analog (composite). video output. An on-
chip, crystal-driven oscillator provides the pixel
shift clock (dot clock), the character clock, and the
system clock.

/

1.2 ADVANCED DISPLAY FEATURES

State-of-the-art,
fancy text display features such as proportional
spacing with block justification and double print.
Workstations for word processing should be able
to display edited text on the screen that looks like
the -print-out of these letter-quality - printers, in
order to make the word processing task more
ergonomical for the operator. For example, it is
intolerable that some workstations display the
beginning and end of an underline with a special
character sequence instead of simply underlining
the string. Additionally, it should support features
like highlighting, which is- equivalent to double
print in case of a printer, blinking of characters and
multiple cursors to emphasize parts of the text.

Vertical smooth-scroll will become a standard
feature of future designs. Smooth-scrolling is
much more ergonomical for the user. Also helpful
are windows (overlaid on the displayed page) to
provide temporary information about issued
commands. o .

Addifionally, a CRT cohtroller should supply a

display data structure organized as a linked-list in- -

Iettér-quality printefs support*

1.2, 13).

i The

system memory. However, the editing response
time is shorter compared to a system using linear.
data structures.

The features expected of a state-of-the-art CRT
controller will now be discussed in more detail.
The CRT controller chip set implements all these
features in'silicon.

Linked-List Data Stljuct'ure

In standard CRT subsystems the display data is
organized as contiguous memory blocks. These -
blocks are associated with video frames and stored
in special memory called video refresh memory.
When editing tasks like character or line insertion
or deletion are to be executed, the CPU has to
move blocks of the display data. This time-
consuming operation slows down the editing
process.

Text editing becomes much more elegant and
faster when operating on a linked-list data structure
where the display data is organized in small strings,
usually rows; glued together by pointers (Figures
The advantage of the linked-list data
structure becomes obvious when looking at the
execution speed of editing tasks. A line can be
inserted or deleted by modifying one pointer
_instead of moving half the screen down, thereby
increasing the execution speed significantly.
Pages can be swapped simply by altering ene
pointer.

linked-list data. structure has a second
advantage: If the display data is stored in the main
system memory the CRT controller can directly
fetch the data from the list the word processor is

-
' 1
1 CHARACTERS | |
y > MAIN > ROW ‘ '
TOP OF PAGE t'| pEFINITION CONTROL '
REGISTER | i BLOCK) BLOCK #1 '
T 17 ATTRIBUTES | !
o ' ']
1 ' ! 1
] 1]
[1 [}
; : CHARACTERS | |
Am8052 ' ! Row !
______________ i ! CONTROL !
: i BLOCK #2 !
' e ATTRIBUTES | !
: ‘ i
H 1]
: : '
! g.L. ROW ‘ CHARACTERS | !
H CONTROL !
i BLOCK #3 !
' ‘ ATTRIBUTES | !
i H
1]
1 [}
Ll ' '
bag MAN === 1
: DEFINITION e
! BLOCK :
: SYSTEM MEMORY !
e e o o e e o o e e e e e e e G o - - - - -4
050988 1-2
Figure 1-2 Linked-List Display Data Management: Background
{————— T — — T — 1
! ! ! ‘ CHARACTERS | |
1 T —» WINDOW » wiNDow !
V| TORORTASE [1 DEFINITION ROW CONTROL =
1 1 ! BLOCK BLOCK H
1 : e ATTRIBUTES 1
: P ' E
] 1 ! . '
: L '
' ! ! CHARACTERS | |
i b WINDOW |
L fmee . N ROWCONTROL :
! BLOCK !
! : ATTRBUTES | |
: 1
1 1
']
!]
i wINDOW WINDOW CHARACTERS | 1
: DEFINITION ROWCONTROL !
' BLOCK BLOCK |
' \ ATTRBUTES | |
! : o
])
s]
! i
! WINDOW CHARACTERS | 1
1 ROW CONTROL :
i BLOCK ‘
! ° ATTRBUTES | |
!]
! |
- S S SYSTEMMEMORY 4

050988 1-3

Figure 1-3 Linked-List Display Data Management: Windows

1-3

'operatmé on. This ehmlnales the need of ‘setting
upa specnal list of display dala)

_ In an Am8052-based video system the « dlsplay

data is stored in system memory and is easily- ac-

- cessible by the host CPU when executing display-
~ editing tasks. The display data consisting of char-
acters and. their attributes is grouped into strings
called segments. One or more segments build un

ground Row Control Block. The row segmentation
feature i |s also available forwmdows

Virtual_Win‘dows or Split Screens

Although the rules of window positioning do not
permit overlapping or adjacent windows, the
background and window data structures can be
used to implement virtual horizontally or vertically

a row. These segments are tied together by a \ahgned windows. This can be best described

linear list of pointers containing in Row Control
Blocks. Each Row Control Block holds all
information relevant to describe an entire character
row on the screen. Row Control Blocks again are
chained via -pointers; - each block points to its
successor.

One block Iocated at the top of the linked-list
defines screen attributes such as cursor type, blink
rate, and positioning. This Main Definition Block is
pointed to by a pointer stored inside the CRTC.

The CRTC interprets the linked-list and transfers
the character code strings and ‘attributes
sequentially to the character font generator. The
character slice output of the character font
~generator is then serialized by the companion part

of the Am8052, the Video System Controller
"~ (VSC), and sent to the monitor. .

Windows

Windows “are text blocks ‘overlaying the
background to provide temporary information for
. the viewer. Windows can be displayed or removed
without corrupting the background. Wlndows are
defined by a linked-list data structure similar to the
background data structure. The Am8052 can
support any number of windows as long-as they
are vertically separated by at least two character
rows. Any number of windows or the background
may be scrolled

The Top of Window register inside the Am8052
points to the beginning of the window linked-list,
“the Window Definition Block for the top-most
window. The Window Definition logically is similar
to the Main Definition Block of the background; it
contains the general characteristics of this parti-
cular window (for example, size and positioning).

"Each Window Definition Block links to the next Win-
dow Definition Block. Window Definition Blocks
need to be arranged in the sequence the windows
are supposed to appear on the display (the top-
~ mostwindow first, the bottom window last).

The Window Row Control Block pointer located in
the Window Definition Block links to the first Win-
dow Row Control Block which is similar to the back-

using the |Iluslral|on in Figure 1.4. This sample
display consists 'of two rows with each two
segments: “ONE” and “TWO,” “THREE” -and
“FOUR.” The user wishes to be able to scroll any
of these segments at a given time. The window
positioning rules do not permit assignment of all
four segments as windows. However, any of these
four segments can be dynamically assigned to be a
window; anyone of these windows can be scrolled
independently from the other three. This gives
the viewer the illusion of aligned windows.

Smooth-Scrolling

Vertical smooth-scrolling is the gradual
replacement of a character row on a scan line by.
scan line basis. The visual effect is more eye-
pleasing to the viewer and will become an
ergonomical requirement for future terminal
designs. The smooth- scroll of the entire screen is
arelatively easy task and can be accomplished with
a minimum of hardware. However, smooth-scrol-
ling an overlaid window or smooth-scrolling the
background when displaying windows is a much
more sophisticated task. If a window is smooth-

scrolled, text seems to appear and disappear with- .

in the window while the background stays abso-
lutely stable (Figure 1.5). If, on the other hand, the
background is scrolled, then the background text

‘will appear to pass under the window.

Vertical smooth-scrolling of the background or of
windows is executed requiring very few
interactions of the host CPU. Only when a row is
totally scrolled in or out does the CRTC interrupt -
the CPU to relink the data structure. The scroll rate’
being programmable covers the range from very .
low-speed scrolling, where the eye can identify the

scan line stepping, to high-speed scrolling, where -
the text moves too fast to be readable. The

medium speed gives the smoothest effect. -

Attributes

There are three kinds of attributes which are dis-
tinguished by the number of characters to ‘which
they correspond. The screen attributes, such as
smooth-scroll rate, cursor style, and blink rate, |
effect the text display of the entire sereen.: Row

1-4

ROWCONTROL

WINDOW CONTROL
RCB
A A
ONE ™o
THREE FOUR
y §
1
]
1
1
1
\—» RCB 1
L - WRCB
RCB L
ONE ™WO
_THREE FOUR
7 3 1
1
1
:
WRCB

RCB

050988 1-4

R

Figure 1-4 Virtual Window or Split Screens

attributes, such as scan line count and character
positioning within the character cell, are valid for
entire character rows. The third kind of attribute is
directly associated with particular characters or
character strings. Examples of character attributes
are: highlight, underline, blinking; subscript and
superscript.

Many CRT controllers treat characters and
attributes in the same fashion; they fetch one
attribute per character. | This straightforward
relation is also the easiest to handle by software.

However, the price for this scheme is the
increased bus occupancy of the: CRT controller to
fetch 24 bits per character compared to 8 bits per
character' in applications requiring no attribute
fetches at all. Especially in high-end alphanumeric
applications asking for maximum system
performance, the system designers goal is to
keep bus occupancy as low as possible. This
application asks for a more flexible and less bus
time consuming attribute architecture.

Characters are ‘typically uncorrelated along a

. character string.--Attributes, on the other hand, are
highly correlated; features such as reverse video
- affect a character string.rather than individual char-
acters. For this reason, a flexible correspondence
between characters and attributes can save mem-
" ory space and can reduce the bus occupancy.

In demand attribute mode, an attribute is loaded
only if the attribute characteristics should be
changed. A flag is inserted in the character list to
instruct the CRT controller to fetch a new attribute
word. This attribute word may apply either to the
next character (unlatched attribute) or to all
" following characters not invoking- attributes
* (latched attribute). This flag could either be a

specific character which is not displayed on the

screen or it could be any bit of the character code

(usually the most significant bit). The first option

appears kwhite on a black background the reversed
character will appear black on a white background. -

Superscript. The character is shifted up a de—
fined number of scan lines.

Subscript. The character is shifted down a de-
fined number of scan lines.

- Underline. The character is underlined, the posi-

allows a 255-character set with the trade-off that a

flag character has to be inserted when the attribute
characteristics are to be changed. The second
option does not require this character string
modification, but it halves the available character
set (128 character codes).

The CRTC has been designed to allow a great
versatility in attribute options. Ten attribute bits are
predefined, four attribute bits are user-definable. If
the number of user-definable attributes is not suf-

ficient to satisfy the specific requirements of the ap-

plication any predefined attributes may be rede-
fined to increase the set of user-definable attri-
butes. The predefined attributes are listed below:

Highlight. It causes the VSC to switch to the
highest intensity level when displaying the
characters.

Reverse. The color of the background and the
foreground are exchanged. If the normal character

tion of the underline is programmable.

Strike. Through. The affected character is
struck through; sometimes this attribute is called
shifted underline.

Blink. The affected character blinks at a program-
mable rate and duty cycle.

The internal processing of the attribute bits
superscript and subscript may be disabled to
access a special character font generator for
displaying smaller subscript or ‘superscript
characters. The two attributes listed below cannot
be redefined as user-definable attribute bits, since
they do not correspond to an attribute port pin;
they effect only the internal attribute processing.

Ignore. The character is not loaded into the line
buffer; a character can be erased by setting this bit.

Latched. This attribute word applies to all
following characters; it gets latched inthe CRTC.

Proportional Spacing

Proportional spacing has become a standard fea-
ture of higher performance, letter-quality printers.
In order to display a text on the screen similar to the
printed text on paper, the CRT system should be

TT—CrTT

U q

x o D O 1]

© g

WINDOW

Q

WINDOW

WINDOW

q

WINDOW

LA AN

b o o ®» O
q

L 3% 3 3 3
p © O ©

Yo Do

uP
4 BACKGROUND
‘ Back [""" | GROUND

Back | """ | GROUND
BACK | """ | GROUND
BACK | " | GROUND

v BACKGROUND ‘

DOWN o

05098B 1-5

Figure 1-5 Smooth Scrolling

1-6

able to support proportional spacing.

Proportional spacing means that narrow characters
such as “i” use less space in a character row than
wider characters such as “W” (Figure 1.6).. The
screen is no longer divided into a raster. of

character fields. The number of characters which -

can be put into one line becomes a function of the
characters itself. Summarized, it provides a type-
setlook of the text. .

Text right-justification in proportional-spacing appli-
cations requires a user-definable number of blank
pixels to be tailored to characters to get a straight
right border of the text (Figure 1.7). Trailing blanks
allow
unnoticeably.

In proportional-spacing applications, the character
font generator also stores, in parallel to the
character font, the width of the individual character
and passes this 4-bit value (2...17 pixels) to the
Video System Controller which uses it to
determine the divide ratio for the character clock.
The character clock is modulated along the width
of the characters in the string.

The system clock times the DMA transfers when
the CRTC is bus master. In proportional-spacing
applications, this clock is also used to determine
the screen timing (screen blanking, horizontal and

lines to be stretched smoothly and

vertical sync timing), because the character clock
rate no longer provides a constant clock for the
counters. i

Both the character and the system clock are
divided from the dot clock. A crystal directly
connected to the VSC controls the dot clock
frequency. Internal PLL logic multiplies the crystal
frequency by five to generate.the dot clock. This
allows the designer to use inexpensive crystals
oscillating in fundamental mode even when
generating dot clocks of 80 MHz.

Cursors

The Am8052 supports two kinds of cursors. The

+ X-Y cursor appears on a programmable X-Y coor-

dinate. This cursor is tied to this position on the
screen. When a scroll occurs the cursor will still
appear on the same location, but will apply to a new
character. The second cursor type is specified via
the character attribute word. ‘The cursor is attach-
ed to a particular character and will move with the
character when the text is scrolled. Due to the way
the two cursors are specified, a screen may have
only one X-Y cursor (the Main Definition Block can
store only one pair of coordinates) and as many
attribute cursors as there characters on the screen.

The cursor style is very flexible. Examples of
cursor styles are as follows: .

L LI L O I B | LU
| = L= .
L | n []
[= n .
= n] [] [N]
[=] n] N N []]
L D N I |] [] [N]
R [] [] -, = u "
B] = u n] [N]
~ AA—ey——\ v /- v -
9 4 6 6
050988 1-6)
Figure 1-6 Proportional Spacing
L L 1) LI 1 LI
| =]
= n =
= n :
" =]] [I | [N]
=] | |m EE n [I |
a m = = [] [[] []
B u]] . = u
B] | 3 m| |m [] [N]
= — —
. 2 1 2
050988 1-7
Figure 1-7 Trailing Blanks

Static or blinking underline.

and blank

¢ Blinking by switching between normal display
and reverse’)

* Reverse character

The X-Y cursor and the attribute cursor may have
~ different styles to be able to distinguish them. For
example, the X-Y cursor may be a blinking under-
line whereas the attribute cursor may reverse the
character. Lo

Blinking by switching between normal display

Host Bus Interface

The CRTC can ‘easily be interfaced to most 16-bit
system buses. In slave mode the CPU-initializes
the CRTC by programming the registers for the
timing parameters. After being activated, the
CRTC tries to gain the bus mastership to fill the line
buffers and then starts displaying. The CRTC bus
interface supports 24-bit linear address buses
(68000, 8086) and 23-bit segmented address
buses (Z8000).

CHAPTER 2
Am8052 ARCHITECTURE

2.1. OVERVIEW

The Am8052 can be used together with the
Am8152A Video System Controller, which is
specially designed to complement the Am8052
and enhance its displaying capabilities.

The AmB8052, after initialization by' the host
processor, acts as a ‘stand-alone device in- the
following manner:

o |t fetches the data to be displayed from the main
. memory using its internal DMA controller.

« It manipulates the displayable character codes
along with their attributes.

o |t provides all the timing signals to synchronize
beam-scanning with the character-pixel stream.

o It provides useful features such as size-pro-
- grammable windows and vertical smooth-scroll.

The Am8052 is a real-time raster scan display
controller that keeps track of updating the display
screen on a character-row basis by toggling its
internal row-buffers; one being displayed by the
Display Control Unit while the other two are loaded
through the DMA interface under control of the
Row Management Unit.

All the above operations are synchronized by the
Video Timing Control Unit and initialized by the
host processor through bus interface logic. The
Am8052 block diagram (Figure 2.1) shows the
functional units and how they interface with each
other.

Following reset, the Am8052 remains in Slave

Mode and waits for the host processor to initialize «
the timing and control registers. It also waits for the

host CPU to load a single register address,

pointing to the start of the display data list in the

host memory.

While in the idle state,.the device holds both
HSYNC and VSYNC signals inactive (LOW) to pre-
-vent undefined synchronization to the CRT which
might damage high bandwidth tubes. It also holds
the Blank signal active to inhibit the CRT beam.

Once the device hés been initialized, and upon a
command from the CPU, the DMA enters a bus

request sequence to update the three internal row
buffers whenever possible. A row buffer cannot
be loaded at the same time that it.is bemg
displayed. .

The Row Management Unit governs the. loading of
the characters to be displayed, as well as their
attributes (whenever they are invoked), into the
row buffers. This logic also updates the Display
Control Registers (not accessible to the user), on a
row by row basis, as specified by the Row
Definition Blocks located in main memory.

With the beginning of Vertical Blank (VBLANK
going High), the Am8052 terminates any process-
es/active from the current frame, and starts loading
the information defining the next frame. It takes
the Top Of Page Pointer stored in an internal regis-
ter, and begins loading the Main Definition Block,
the Window Definition Block (if present) and the -
first Row Control Block including character and attri-
bute strings. By the end of vertical blank (VBLANK
going Low) the Am8052 must have the first inter-
nal raw buffer filled to ensure a flicker-free screen.

The Display Control Unit combines the character
stream from one of the three row buffers with the
row- or character-dependent display characteristics
of these characters. As a result, the Display
Control Unit provides, on Rg-Ry4, the scan line
address of the one currently being displayed, and
outputs the sequence of character codes contain-
ed in this row, on CCy—CC7. These two values
form the address sent to the Character Font Gener-
ator. The character code (most significant part of
the address) points to the matrix of pixels synthe-
sizing the character on the screen, while the scan
line number (least significant part of the address)
indicates which line of the matrix.isto be displayed
on the screen. The Character Font Generator pro-
vides the resultant line of pixels, which subsequen-
tly is serialized by the Video System Controller and
processed according to the various attributes.

2.2. INTERFACE SIGNALS

With the'exception of CLK14 and CLK inputs, all
inputs and outputs of the CRTC are TTL-
compatible. Figure 2.2 shows the device pin-out.

Vssi1, Vssz (Ground)
Veei, Ve (+5V Power Supply)

2-1

(For tolerance specification, refer to the DC char-
acteristics)

CLKj (System Clock, Input)

The system clock controls the DMA and peripheral
portion of the CRTC and times all memory
accesses. It requires a timing duty cycle of about
50% at its highest frequency and is driven by an
external timing source, usually the system/CPU
clock.
the character clock (CLK>) is variable, the system
clock should be used to time the horizontal and
vertical sync rates. CLKj{ is not TTL-compatible (for
specifications refer to the DC characteristics).
Figure 2.3 shows a CLK{/CLK, driver generating a
clock signal with the required High and Low levels.

CLKj (Character Clock, Input)

The character clock times the Character Code and

In propartional spacing applications, where

’

Attribute outpﬁts of the CRTC. In applications not
using proportional spacing, CLKp is fixed in
frequency -and can, therefore, time horizontal and
vertical sync (HSYNC and VSYNC). This allows
CLKjy, the system clock, to be unrelated and
asynchronous to the display timing. CLKj is not
TTL-compatible.

ADg —AD
(Address/DataBus, Input/Output)

The Address/Data Bus is a time-multiplexed,
bidirectional, active-High, three-state bus. The
presence of addresses is indicated by Address
Strobe (AS); presence of data is indicated by Data
Strobe (DS). When the CRTC is in control of the
system bus (Bus Master), it dominates the AD Bus.
Whenthe CRTC is idle (Bus Slave), the CPU or oth-

" er external devices can control the AD Bus.and

may use it to access the internal registers of the
CRTC. In upper address update cycles (Bus Mas-
ter Write) the CRTC strobes out the new, most sig-

CLK1 e
5 €=——p \
RIW] i Ro-Rs
: - ROW [
WATY —— BUS - | cooMA L |e—>| managEMENT |le—] DISPLAY L, cymsor
- CONTROL CONTROL
INTERFACE UNIT ,
8 —> Loaic , \ aroapis
/D ——p .
‘DTEN e B 1;
=T
R#1
ST —»] _ BUFFE|
A A
|) mux BUFFER 2 Mux) cco-cer
|4 ‘ . 14
BRG ¢— w—
— BUFFER #3
BA| = | .
BAC +— BUS i i« [4— CLK2
w ACCESS [¢ ~ : ‘
NT ¢ AND
| INTERRUPT | R HEYNGI
INTACK ——»| ' LOGIC > —
1El ——————pp] VIDEO VSYNC
- TIMING
IEQ i N conTRoL
14 —> BLANK
1 R J ‘\L F'ESYNC
ADDRESS/DATA ,
ADo-AD15 <:> BUS — ST
03901A 02

Figure 2-1 Am8052 Block Diagram

2-2

nificant part- of the memory address (upper 7 or 8
bits). For both Linear and Segmented Addressing
Mode, this address is output on ADg-ADy; the
. interrupt vector is also strobed out on ADg-AD7.

AS (Address Strobe, Input/Output,
Active Low)

Address Strobe is a bidirectional, three-state sig-
nal. In Slave Mode, this input controls the internal
transparent latches at the C/D -and CS inputs. In
multiplexed address/data bus systems, the rising
edge of AS latches C/D and CS. In demultiplexed
address/data bus systems, AS may be held Low to
make the above-mentioned latches transparent.

When the CRTC is the bus master, AS is an output
indicating a valid address on the AD bus. The
address may be latched with the rising edge of AS.
During Upper Address Update Cycles, AS and
R/W are both driven Low. Refer to the Section 6
for application hints.

' DS (Data Strobe, Input/Output, Active Low)

Data Strobe is a bidirectional, three-state signal.
When the CRTC is in the Slave Mode and the host
CPU is accessing internal registers of the CRTC,
DS is the input timing the transfer. DS may be
asynchronous to CLK1. When the CRTC is bus
master, DS is an output, timing the Memory Read
. operation.

CS (Chip Select, Input, Active Low)

The CS input is used by the host CPU to access
the CRTC's internal registers. CS may be latched
internally by a transparent latch controlled by the
AS input.

WAIT (Wait, Input, Active Low)

The WAIT input is used to stretch the DS strobe
whenever the CRTC accesses slow system
memory. The status of the WAIT signal is sampled
only on the faling edge of CLKq, in T2 of Bus
Master Read Cycles. WAIT is ignored during Bus
Master Writes or Slave Mode register accesses.

R/W (Read/Write, Input/Output)

Read/Write is a bidirectional, three-state signal.
R/W indicates the data flow dikection for the bus
transaction under way, and in Master Mode
remains stable for the length of the bus cycle.
During Idle DMA Cycles, R/W is driven High.

C/D (Command/Data, Input)

In Slave Mode, C/D determines whether the host
CPU transfers a pointer or data information. In
Master Mode, C/D is disregarded; _C/D flows
through a transparent latch controlled by AS.

16 i
<z> AD(g—15) CCo-7

I

B 1
U APy_10 i>
- R/W N
—_— S

RST

m amsosz VSYNC =

CLK} CRTC HSYNC
-—— iNT o BLANK
= INTACK CURSOR

IEl

IEO CLKy
U

BRG
BAI
BAO
DTEN
DREN

ESYNC

Lso001211

$3§333§§§§5555552

CD005191

. Figure 2-2 Am8052 Pinout

DTEN DREN (Data Transmit Enable, Data -
Receive Enable, Open Dram Output)

Data Transmlt Enable and Data Recelye Enable
~control external address/data bus transceivers,
when required. When DTEN is Low, the trans-
ceivers should be _driven out from the CRTC onto
the bus. When DREN is Low, the transceivers
should be driven from the ‘bus into the CRTC.
DTEN and DREN are never Low simultaneously.

‘BRQ (Bus Request, Input/Open Drain Output)

When the CRTC asserts BRQ Low to gain bus
mastership, it remains Low until the CRTC has
released the bus. A bus release will occur; when
the programmed DMA burst length is counted out
(see Burst Register programming), when an entire
Internal Row Buffer has been filled, or when DMA
preemption is being requested (BAI High). This
pin is also_an input pin which allows the CRTC to
sense the BRQ ling.

BAI (Bus Acknowledge In, Input)’

Bus Acknowledge In is; an actie-Low input. When
the CRTC requires host bus access and has

successfully pulled its BRQ -pin.Low, a BAI Low

input flags the CRTC .that it can obtain bus
‘mastership.. ‘BAl is internally synchronized for two

periods of CLK1 to alleviate metastable problems.
When the CRTC does not require host bus
access, the BAl input ripples to the. BAO output.

DMA_p_reer‘nption may be implemented by remov-
ing BAI during a DMA burst, forcing the CRTC to
finish the current DMA cycle and to release BRQ. .If
the. DMA burst- is - not -completed and no' other
device requests the bus (BRQ is High), the CRTC
reasserts BRQ. The CRTC releases the bus for a

: mlnlmum of three bus clock (CLKj) cycles

BAO (Bus Acknowledge Out, Output

Actlve Low)

BAO output is forced Inactive High when the
CRTC has obtained bus mastership; otherwise,
the BAI input ripples out of the CRTC via the BAO
output.

INT (Interrupt Request, Output, Open
Drain, Active Low)

This line is used to indicate an interrupt request to

Mode Description

. cD RW Data Bus
Slave Mode Pointer Write H L Pointef input
- Slave Mode (not defined) H H (undefined)
‘Slave Mode Data write L L Data input
Slave Mode Data Read L H Dataoutput
Master Mode Memory Read. X H Data input
Master Mode Upper addr.update X L Address output
120
. j_ -0 +5V
2N3546 g“ uF
22pF = 2
: CLK1/CLK2
1L TO Am8052
COMPATIBLE (Vou < 0.3V)
OSCILLA (ou =200,
TOR o 2F o

[
2N3646.

06178A-4

" Figure 23 CLK;/CLK Driver

the host processor. It is driven Low by the CRTC
until an Interrupt Acknowledge is received on the
INTACK pin or until the host-CPU :acknowledges
the interrupt by updating Mode Register2. -

INTACK (Interrupt Acknowledge, Input,
Active Low)

When this line is driven Low, the CRTC examines
its IEl line to-determine if it has been granted an

acknowledge by the CPU. _INTACK must be High ‘

for normal operations. If INTACK is kept Low or
floating, the CRTC will not respond to ‘any slave
accesses nor will it execute DMA transfers.

IEI (Interrupt Enable-In, Input, Active High)

A Low on IEl during Interrupt Acknowledge
signifies that a higher priority interrupt on the daisy-
chain is being acknowledged. IEl being. High
indicates that the CRTC has highest interrupt
priority. If the CRTC is not requesting an interrupt,
|IEl ripples to |EO.

IEO (Interrupt Enable-Out, Output,
Active High)

IEO follows IEI during Interrupt Acknowledge if the
CRTC has not made an interrupt request. IEO Low
disables lower priority devices from issuing
interrupt requests. Refer to the Interrupt Section
for adetailed description of the interrupt protocol.

HSYNC (Hpﬁrizontal Syngc, Output, Active High)

HSYNC is an active High output which controls the
horizontal retrace of the CRT's electron beam.
This output is held inactive (LOW) when the CRTC
‘is reset to prevent unknown synchronization of the
CRT which might cause damage to high bandwidth
tubes.

VSYNC (Vertical Sync, Output, Active High)

composite of horizontal and vertical blank. This
output is held High when the CRTC is reset.

ESYNC (External Sync, Input, Active High)

This pin is the external synchronization input and
should be used exclusively for power line
synchronization. The ESYNC input cannot
synchronize two video systems since HSYNC is
not altered by this signal. This input is enabled by
setting the External Sync Enable (ES) bit in Mode
Register 1.

RSTT (Test Reset, Input, Active Low)

RSTT resets the horizontal and vertical internal
counters,. and therefore can be activated to
synchronize multiple CRTCs. Whenever RSTT
input goes Low, the following takes effect:

HSYNC Low

VSYNC Low

BLANK High)
Mode Register 2: Dg.g resetto “0”
* Horizontal counter reset

¢ Vertical counter reset

For synchronizing two CRTCs, RSTT should be
driven synchronously to the Video Timing Clock

(CLK4 orCLK»).

VSYNC is an active High output which controls the:

vertical retrace of the CRT's electron beam. This
output is held Low when the CRTC is reset to
prevent damage to the CRT.

BLANK (Blank Video, Output, Active High)

BLANK is an active High output. It serves to blank
out inactive display areas of the CRT. It is a

RST (Reset, Input, Active Low)

A Low on this input for at least 5 clock cycles is
interpreted by the CRTC as a Reset signal. The
effect of Reset is to drive all CRTC bus signals into
the high-impedance state and initialize Mode
Registers 1 and 2. Any Bus Master transaction is
terminated and the CRTC will switch to Slave
Mode.

CCg_7 (Character Code, Outputs, Active
High) ~

This character port outputs 8 bits of character data
stored in the Character Code Section of the row
buffer currently being displayed. The character
code output can be delayed by 1 or 2 clock
periods (CLKy) in order to allow the attribute bits
associated with the particular character code to be
masked and decoded and to generate suitable
synchronized atiribute control (refer to Character
Period Skew Programming in Mode Register 1).

2.5

i

Ro—s (Scan Line Address, Outputs,
Active High)

These outputs provide the binary address of the
character slice being displayed. Usually, Rg.4 form
the least significant address portion of a character
font generator. All outputs are High (1Fy) for scan
lines outside the range specified by Character
Start and End (refer Row Redefinition Block
programming). o

APg_1o (Attribute Port, Outputs)

These 11 lines output the attribute information

associated with the characters. During HSYNC the

Row Attribute Word contained in the Row

Redefinition Block is output on APg_4 and APg_1g. ~
This word can be stored externally by the falling

edge of HSYNC. o

. CURSOR (Cursor, Output)

This pin is the cursor output indicator. Refer to the
Cursor Section for further information.

2.3 REGISTER DESCRIPTIONS

This section provides a brief description of the
Command, Status, and Display Timing registers in
the CRTC. Each register description includes the
register -address, the operation of the individual
register fields and the state of the register after a
reset (hardware or software).

Table 1-is a summary of the CRTC's 22 registers.
The registers are addressed by an internal pointer
which is 5 bits wide. The pointer is loaded via
ADg_4 on the external AD bus in Slave Mode write
cycles with C/D being High.

After power-up, the registers should be initialized
in the following sequence:

o Clear the DE bit of Mode Register.1 by hardwaré
reset or by Ioadlng the registers

. Inmallze all regrsters starting with Mode Register
2 (except Mode Regrster 1) with the appropnate
values

o Load Mode Register 1, with the DE-bit set, to
enable the display

e Load Mode Register2

Addressing the CRTC. with non-specified pointers
(0D-O0Fy, 19-1Fy)-causes no problems. The
registers can be loaded using a simple software
loop,; starting at 00y and ending at 1Fy.

Register Addressing

The registers can be accéssed only when the
CRTC is inthe Slave Mode. They are addressed in
a two-step sequence, to simplify slave accesses

" viaa demultrplexed address/data bus

e First load the internal pointer register by
asserting CS Low and C/D High to indicate a
command-type cycle. The subsequent Data
Strobe latches the register address provided by
the low part of the address/data bus (AD0-AD4).
This latched register address remains valid until a
subsequent slave write cycle with C/D High
changesit.

¢ Reaccess the CRTC with CS Low and C/D Low
to read or write the register pointed by the
latched address. The data is strobed in or out by
the DS signal.

The CRTC is in Slave Mode if it has not been
granted control of the bus. After the CRTC has
asserted BRQ, it is remains in _Slave Mode until it
receives an bus acknowledge (BAl Low). The CPU
can access the CRTC registers any time; the CRTC
places no restrictions on slave accesses.

CRTC Slave Transfers

All slave transfers with the CRTC can be carried out
asynchronously with respect to the CRTC CLKj
input. Only AS and DS are used to transfer the
information .

The slave transaction typically starts with a pointer
write, although repetitive accesses to the same -
CRTC register can be made without any inter-
vening pointer_modification. The transaction is
timed off the DS signal, since AS may not be pre-
sent in certain systems. The read transaction com-
mences from the low going edge of DS. The write
transaction takes place on the rising edge of DS.

The AS input is used to drive a transparent latch on
the CRTC, which is used to capture C/D and CS in
amultiplexed address/data system. If the systemis
demultiplexed, then AS should be driven Low
when the CRTC is in the Slave Mode. This drives .
the latch permanently transparent, allowing the

26

Table 1 AmB8052 Registers

Pointer Address:(AD4-ADO0)

HEX TYPE ACTIVE BITS REGISTER NAME

00 RW 16 Mode 1

01 RW 16 Mode 2

02 RW 12 Attribute Enable

03 . w 5 Attribute Redifinition

04 RW 8 Top of page soft (High Order)
05 RW 16 Top of page soft (Low Order)
06 RW 8 Top of window soft (High Order)
07 RW 16 Top of window soft (Low Order)
08 w 16 Attribute Flag

09 RW 8 Top of page hard (High)

0A RW 16 Top of page hard (Low)

0B RW 8 “Top of window hard (High)
oC RW 16 Top of window hard (Low)

10 w 16 DMA Burst

11 w 12 *VSYNC Width/Scan Delay
12 w 12 *Vertical Active Lines

13 W 12 *Vertical Total Lines

14 w 16 *HSYNC/VERTINT

15 w 9 *HDRIVE

16 W 9 *H Scan Delay

17 w 10 *H Total Count

18 w 10 *H Total Display

*These registers should be only accessed when display enable (“DE” bit in
mode1) is reset, since they control the video timing signals

demultiplexed CS and C/D to pass into the CRTC.
When the DS goes Low and a read transaction is in
progress, the CRTC drives the read data onto its
ADg-ADq5 lines and also drives DTEN Low. This
enables any off-chip bus transceivers, allowing the
data to be transmitted to the bus master. When
the bus master captures the data, it drives the DS
signal High. This causes the CRTC to cease
driving its ADg—AD{5 lines and also causes DTEN
to return High, switching off the bus transceivers.

Register Test

When designing register test routine the software
designer must consider the following points:

. o The Attribute Enable, the Attribute Redefinition,

‘the DMA Burst, and all video timing registers are
write only.

o All reserved fields in the registers should be set
to zero, however, the state of these fields when
reading the programmed value back is undefin--
ed. For verification purposes these fields must
be masked out (logical AND) before comparing
the value read back with the value programmed.

The TOP hard register and the TOP soft register
use the same internal register. Therefore,
writing to one register also changes the value of
the other register. (The CRTC uses internal
flags to differentiate between write accesses to
either register).

If the CRTC is programmed for segmented
mode, all upper address registers are loaded via
the upper half of the 16-bit address/data bus (for
linear mode via the lower half of the address/data
bus). However, the value read back appears on
the lower half of the address/data bus (for both
segmented and linear mode).

Mode Register 1

Mode Regiéter 1 contains display and DMA control
bits (Figure 2.4). On reset, all Mode Register 1 bits
setto “0”.

Video Timing Clock—CLK1/2 (D45)

This bit indicates whether CLK¢ or CLKj drives the
video timing logic to time the HSYNC (or HDRIVE),
VSYNC and BLANK outputs. In non-proportional
spacing applications CLK{ is selected, whereas in
proportional spacing applications CLK5 usually
times the sync signal, since the frequency of CLK»
is modulated by the character width.

CLKq;p =0: Selects CLK;for clockmg the sync
counters
CLKq2 =1: Selects CLK; for clocking the sync

counters

Character Shift—CSHIFT (Dq4)

This bit affects the relative order assigned to the
two bytes (character codes) fetched from memory
in aword access (Figure 2.5).

CSHIFT=0. The LOW byte is displayed first. This
mode is compatible with' iAPX
MiCroprocessors.

CSHIFT=1
mode is compatible with 68000
microprocessors.

CSHIFT does not affect 16-bit word data, such as
addresses, pointers, control information, and
attributes.

Invisible Attribute Flag—IAF (Dq3)
IAF=0: The charaéter that invoked an attribute is
loaded into the row buffer, and
subsequently displayed. The character is
affected by the attribute word (see option
1 or 2in Figure 2.39). .
IAF=1: The characters that invoked an attribute
are not loaded into the row buffer. The
‘invoked -attribute applies to the next
~character. One character word (two
characters) should contain only one
Attribute Flag. The second Attribute flag
within one character word will be
disregarded. If two Attribute Flags are

The HIGH byte is displayed first. This

separated by a word boundary (within two
character words), both will be processed.

Screen Width Limit—SLIM (D43)

The SLIM bit controls the number of characters
loaded in each row buffer to either 132 or 96. This
can reduce bus overhead when the CRTC row
length is 96 characters or less. |f the CRTC
reaches the limit of the row buffer (132 characters),
and more characters are requested, the last,
132nd, character is repeated. In the 96-character
mode, the CRTC continues with the random data
of the row buffers.

The row buffer size is set to 132

SLIM=0:
characters.
SLIM=1: The row buffer size is set to 96

characters.

Linear/Segmented Mode—L/S (D14)

This bit indicates whether the system/dlsplay
memory access is accomplished by addressmg itin
alinear or segmented mode.

L/S=0: The CRTC is set for segmented
addressing. The linked-list address
pointers are two words long. Seven bits
(Dg.14) of the first word define the
segment address. The second 16-bit
word is. the offset address within the
segment. Any overflow, of the 16-bit
offset address does not carry into the
upper 7-bit segment address.

The CRTC is set up for a linear addres-
sing scheme. The most significant byte
of the 24-bit linear address is stored in
the lower half of the first word (Dg.7).
The second word holds the remaining
16 bits. Any overflow of the 16-bit offset
increments the 8-bit upper address.

L/S=1:

" During page update cycles the CRTC puts out the

upper part of the 23/24-bit address on ADgy-AD7.
The user may latch the 7/8-bit address (refer to
Section 6).

Video Blank—VB (D4gp)

This bit allows the user to blank the screen while
‘making changes in the displayed text or when
switching the context. = The linked-list must,

.-however, be valid before VB is reset.

2-8

VIDEO TIMING CLOCK (CLK 1/2)
CHARACTER SHIFT (csujrr)
INVISIBLE ATTRIBUTE FLAG (IAF)
SCREEN«WIbTH LIMIT (SLIM)
LINEAR/SEGMENTED (L/S)

VIDEO BLANK (VB)

CHARACTER PERIOD
SKEW (SK1, SKo)

ADDRESS: 000008, 001 (READ/WRITE)

ES[DE

18

D15 . ’
|§LK1I2ICSHIFTI IAF lSLIM LLI§ |>VB I SK1 I SKo |HOS l WSy I WSoI DH I] Llo I

_—

r

Figure 2-4 Mode Register 1

DISPLAY ENABLE (DE)

EXTERNAL SYNC
ENABLE (ES)

.

INTERLACE (h, lp)

DISPLAY HIDDEN (DH)

WAIT STATE (WS1, WSo)

HORIZONTAL OUTPUT
SELECT (HOS)

03901A-05

DISPLAY

FETCHED CHARACTER WORD
D15’ Do
: A B I A B e CSHIFT =1
| | | . o e e
A B | BA o . CSHIFT=0
I | I . e e e !
: 03901A-06

F-igilre 2-5 Character Shift -

to character code: output. The attributes and
cursor outputs can also be selectively delayed by

SKo and SKy. The following combinations are ~
programmable:
Bit Settings Signal Skew (# of CLK2 Cycles)

HSYNC,VSYNC APO-AP10 CC0-CC7

SK1 SKO &BLANK ~° -&CURSOR & RO-R4
0o o 0 0 0
0 1 1 0 0
1 0 2 1 0
1 1 1 1 0

VB=0: Normal Operation
VB=1: The horizontal and vertical sync circuitry

BLANK output is forced High.. DMA
operation is suspended--normal operation

resumes when VB=0 and the next vertical

blanking period occurs.

Do not use Video Blank (VB-bit in Mode Register -

1) to blank the display while the linked-list is being
- modified. - Instead, synchronize the CPU to the
Am8052 linked-list scanning via Vertical Interrupts
(“working on a busy railroad”), or use double-
buffered linked-lists (the Am8052 interprets one
while the CPU updates the other).

If Video Blank is used, first switch to a linked-list
defining a blank screen, wait until the Am8052 has
completely loaded the three top-most rows (all
three internal row buffers are filled with blanks),
and then set the Video Blank bit in Mode Register
1. This procedure ensures that, when the VB-bit is
reset, no random characters are displayed from VB
being reset to the beginning of the next frame.
During this time interval, the Am8052 will display
the contents of the internal row buffers which were

preloaded with Blanks. No DMA activity will occur

until the beginning of the next frame, when normal
operation is resumed.

Character Period Skew—SK4, SKo (Dg, Dg)

The skew bits compensate externally introduced
clock skew between, character code, attribute
word, and/or video control signals, e.g. pipelined
character code path to the Video System
Controller (Am8152A) to relax the required access
time of the character font generator (see Section
4). . The skew bits program various delays in
number of character clock cycles applied to the

VSYNC, HSYNC, and BLANK signals with respect

and outputs operate normally and the -

DH=1: Those

Horizontal output Select-HOS (D7)

HOS=0: The HSYNC/HDRIVE output pin outputs
the horizontal sync timing as programmed |n the
HSYNC Register (8 -bit counter).

HOS=1: The HSYNC/HDRIVE output pin outputs ‘
the horizontal drive timing as programmed in the
HDRIVE Register (9-bit counter).

Wait State—WS,, WSg (Dg, Ds)

These bits indicate the number of Wait states
inserted for each DMA cycle. These Wait states
are in addition to any externally applied Wait states.
When the CRTC is in Slave Mode, these bits are
ignored.

WAIT STATE

ws1 wso
0 -0 No Wait State

0 1 DS stretched by one clock
1 0 DS stretched by two clocks
1 1 Reserved

" Display Hidden—DH (Dg4)

Applies only to characters which have the Ignore
attribute bit set (“1”) in the attribute word
associated with this character.

. DH=0: The Ignore attribute ‘is active; characters

with the Ignore attribute set (“1”) are not
loaded into'the row- buffer.

characters are treated as
displayable information (see Section 2.6).

Interlace—ly, lg (D3, Do)

Control th'ek timing . of non-interlaced, interlaced,
repeat field interface videa to support different

210

CRTs (see Section 2.10).

MODE OF OPERATION
0 0 Non-Interlaced Video
0 1 Reserved
1 0 Repeat Field Interlace (RFI)
1 1 Interlaced'Video

External Sync Enable—ES (D)

Enables the ESYNC
synchronization.

input for power line

ES=0: ESYNC inputisignored.

ES=1: A rising edge at the ESYNC input during a
vertical-retrace active period (even frame
only in interlaced mode) causes the
HSYNC output to go (or remain) active for a
full horizontal retrace period. The VSYNC
active period is stretched, even when
register timing signifies an end to vertical
retrace, until an ESYNC falling edge
occurs.

Display Enable—DE (Dg)

DE=0: VSYNC, HSYNC outputs are inactive
(LOW) and the BLANK “output is held
active (HIGH). DMA operation is disabled.
The DE bit is reset by a hardware reset
(RST=Low) or may be reset by the host
processor (software reset). DE=0 resets

- the scroll logic to the non-scrolling state.

DE=1: The CRTC display operation is enabled.

DE can be set only by a host processor

" access of Mode Register 1. Setting the -

DE=1 causes the VSYNC, HSYNC, and
BLANK outputs to become active and the
DMA controller on board the CRTC event-
ually requests access to the system bus.

Mode Register 2:

Mode Register 2 contains the primary control bits
for the interrupt control logic and cursor definition
(Figure 2.6).

Upon reset, all Mode Register 2 bits are reset to
zero. .

Cursor Enable—CUE (D45)

CUE=0: The CRTC does notoutput any XY
cursor information.

- -0

CUE=1: The XY Cursor Register is enabled.
CRTC outputs cursor at the character
position defined by the XY Cursor

‘Register (see Main Definition Block).

Attribute Cursor Mask—ACM;, ACMg (D43, D12)
Cursor Mask—XYCM4, XYCMy (D4q, Dg)

The cursor mask field (Dy3, Dy, D1g, Dg) defines
the type of cursor that is generated when a cursor
is required. This field is divided into two parts:

D13 Dq2 CURSOR ATTRIBUTE
DEFINITION
0 0 Cursor Pin Whole
0 1 Cursor Pin Part
1 0 Underline
1 1 Reverse
D10 Dg XY CURSOR DEFINITION
0 ‘Cursor Pin Whole
1 Cursor Pin Part
0 Underline
1 Reverse

“Cursor Pin Whole” means that the cursor signal
will appear on the cursor pin for every scan line of
that character position (TSLC). CURS and CURE
of the Row Redefinition Block aré ignored.

“Cursor Pin Part” means that the cursor signal will
appear on the cursor pin for those scan lines
specified in the Row Redefinition Block (CURS
and CURE).

“Underline” (BLOB) means that the cursor signal
will appear on the underline pin (AP1) for the scan
lines specified in the Row Redefinition Block
(CURS and CURE).

“Reverse” (part) means that the cursor signal will
appear on the reverse pin (AP5) for the scan lines
specified in the Row Redefinition Block (CURS
and CURE).

Scroll In Progress—SIP (Dg)

SIP is a status bit that is set/reset by the CRTC
smooth scroll control logic.

SIP=0; The CRTC is not currently scrolling.

SIP=1: The CRTC is scrolling either window or

" background. :

~

2-11

Disable Lower Chain—DLC (D7)

DLC=0: IEO operates hormally.

DLC=1: The Interrupt Enable Out (IEO) output of
the device is forced Low, disabling
interrupts from all lower priority devices on
the daisy-chain.

No Vector—NV (Dg)

 NV=0:

The CRTC outputs the interrupt vector
programmed in.the Main Definition Block.
(See the section on Main Definition Block
and Interrupt.)

During an 'lnterrupt Acknowledge cycle,

NV=1:
: the interrupt vector is inhibited. The
.vector can, therefore, be provided by
external hardware if necessary. It has no
effect on the setting of the Interrupt
Under Service bits.

Interrupt Under Service Vertical
Event—IUSV (Ds) ,

This status bit is automatically set if IPV (Interrupt
Pending Vertical Event) is the highest priority
interrupt request pending - when an Interrupt
Acknowledge sequence takes place. It can also
be set-or cleared directly by CPU command. While
the IUSV is set, internal and external daisy-chains
prevent the same and lower priority sources of
interrupt from requesting interrupts. The IUSV can
be cleared to “0” only by CPU command. For
details of Interrupt Operation, see Section 2.7..

_Interrupt Enable Vertical Event—IEV (Dg)

This bit enables or disables the vertical event
interrupt logic.

The Vertical Interrupt is disabled. The
CRTC does not request an interrypt at
vertical event nor respond to an mterrupt
acknowledge.

IEV=0:

IEV =1: The Vertical Interrupt is enabled.

Interrupt Enable (IEV) does not affect the -normal
operation of Interrupt Pending (IPV) and Interrupt
Under Service (IUSV). If IEV disables the interrupt
(IEV=0), then setting the: Interrupt Pending Bit
(IPV) does not activate the Interrupt Request Line.
If IEV=0, then a “1”in-IUSV affects the interrupt
daisy-chain; all lower priority devices are disabled.

Interrupt Pending Vertical Event—IPV (D3)

IPV is a status bit which, when set to “1,” indicates
that a vertical event-has occurred and CPU service
is required. A vertical event occurs when the
CRTC internal load row counter matches the

. VERTINT value loaded in the HSYNC/VERTINT

Register. This interrupt provides = real-time
positional information. This is the lowest priority IP

bit in the CRTC. The PV can be cleared only by a
. CPUcommand.

Interrupt Under Service-

Smooth-Scroll—IUSS (D2)

Same as vertical event but applies for smdoth-
scroll event.

Interrupt Enable Smooth-Scroll—IES (D4)

This bit enables or disables the smooth-scroll's
interrupt logic. Same as vertical event.

Interrupt Pending Smooth-Scroll—IPS (Dg)

IPS is a status bit which, when set, indicates that a

‘smooth-scroll event requires CPU. intervention.

This is the highest priority IP bit.

Attribute Port Enable Regiéter

Bits Dg through Dyq in the Attribute Port Enable
Register allow = the cormesponding attribute

- information to be output on the matching attribute

pin (Figure 2.7). When reset (“0"), the
corresponding attribute pin is driven Low. When
set, the corresponding pin outputs attribute
information. Bits Dg and D4 of this word affect the
subscript and superscript attribute pin operation. If
these bits are enabled for subscript or superscript,
the corresponding pins will be active. These
attributes are independent of the Rg-R4 outputs.
The user can thus address a. separate character
font generator for subscript or superscript display,
e.g. a smaller font. The CURSOR PIN ENABLE
(CPE, D4g) bit of .this register enables/disables

’ .only the cursor pin. When disabled, neither the X-
Y cursor nor the attribute cursor is output through |
_ the cursor pin (CURSOR Low) .

Attribute Cursor Enable—ACE (Dq4)

The Attribute Cursor Enable Register enables/

disables the path between atiribute cursor and

1

o , ’ 2-12

€2

D ADDRESS: 000018, 014 (READ/WRITE)
15

Do

CURSOR . _I

ENABLE (CUE)

RESERVED

ATTRIBUTE
CURSOR MASK

RESERVED

X-Y CURSOR
MASK

I CUE W ACM1 l ACMo W XYCM1IXYCMq siP DLC I NV l lusv l IEV I PV I luss I IES I IPS |

INTERRUPT PENDING SOFTSCROLL (IPS) -

INTERRUPT ENABLE SOFTSCROLL (IES)

INTERRUPT UNDER SERVICE SOFTSCROL .. (IUSS)

INTERRUPT PENDING VERTICAL (IPV)

INTERRUPT ENABLE VERTICAL (IEV)

INTERRUPT UNDER SERVICE VERTICAL (IUSV)

SCROLLIN

NO VECTOR (NV)

PROGRESS (SIP)

Figure 2-6 Mode Register 2

Z WRITE: 0
/% READ: X

DISABLE LOWER CHAIN (DLC)

03901A-07

~

cursor output pin.

N -

_ Attribute Redefinition Register

The Attribute Redefinition Register allows the user'

to redefine some of the internally processed

attributes, which can, therefore, be treated as user-
definables (Figure 2.8). A “0” keeps normal
-attribute operation; a “1” directly outputs the
attribute state to its corresponding pin without any
internal processing of the attributes. .

Top of Page/Top of Window Registers

.Figurés 2.9 and 2.10 show the format of these
registers.

The Top Of Page and Top Of Window Registers
point to the Main Definition Block and Window
Definition Block respectively; these blocks contain
the primary information concerning = the
background display and the window display.

Two different forms of Top of Page/Window
Register writes are available: hard and soft. “Top of
Page/Window Soft” is used to trigger the smooth-
scroll and to interact with the smooth-scroll
controller (see section on smooth-scroll). “Top of
Page/Window Hard” has no effect on the smooth-
scroll procedure and should be used for link
manipulations that do not involve smooth-scroll. If
the Top of Window Register contains “0,” no
window is displayed on the screen. :

Top Of Page/Window Hard and Top Of
Page/Window Soft access the same internal
register. When loading Top Of Page/Window Hard
the information the value gets strobed into the
visible register and, in addition, gets immediately
transferred to the DMA unit. When loading the
Top Of Page/Window Soft register the value gets
only loaded into this visible register. The transfer
to the DMA unit is delayed until the CRTC re-loads
the hard register with the value stored in the soft

register (only for smooth scrollihg being activated). ’
This means, that loading the hard register

. overwrites 'the contents of the soft register, but

loading the soft register does not over-write the
contents of the hard register.

Attribute Flag Register

The Attribute Flag Register defines the bit pattern

* that will invoke an attribute word from the attribute

segment (Figure 2.11).

This 16-bit register is divided into two séctions,
Mask and Value.. Each 8-bit character code loaded
from memory, is.analyzed, to determine whether
this character is ‘an attribute invoking character.
Any binary group of character can be defined as
attribute invoking characters. The analysis is
based on a mask operation (using Mask) and a
comparison of the remaining pattern with Value. If
the remaining pattern and the Value are equal, this
character is an attribute word invoking character. In
this manner, it is possible to define a group of 1, 2,
4, 8, ..., 256 character codes as attribute invoking
character codes.

The attribute fetch mechanism can be completely
turned off (0 attribute invoking character codes) by
setting the least significant Mask-bit (D8) to “0”,
and the corresponding value-bit (Dg to “1”, e:qg.
loading 0001H into the Aftribute Flag Register.
(This feature is only available on devices with
copyright date of 1985 or later).

Mask (7-0) (D45-Dg)

The Mask Register defines which bits of the 8-bit
character field will be compared against the Value
Register to determine if the character invokes an
attribute word. - A “0” in bit position N of the mask
indicates that character bit N is a “don't care” in the
value comparison. A “1” in bit position N of the
Mask Register indicates that character bit N should
be compared against value bit N.

Page And Window Registers

Of Active Bits Address
Register LINEAR SEG. . BINARY = HEX TYPE

Top Of Page Soft (Hl) - 8 7 - 00100 04 RW
Top Of Page Soft (LO) 16 . 16 00101 05 RW
Top Of Window Soft (HI) 8 7 , 00110 06 R/W
Top Of Window Soft (LO) 16 16 00111 07 RW
Top Of Page Hard (HI) 8 7 . 01001 09 RW
Top Of Page Hard (LO) 16 16 © 01010 ~ O0A RW
Top Of Window Hard (HI) 8 7 01011 0B RW

‘ 16 . 01100 -~ oC RW

Top Of Window Hard (LO) 16

2-14

Si-¢

ADDRESS: 00010g, 02 (WRITE ONLY)

Dis ‘ Do
W% ACE L CPE W% up TUD | up | uD | HL | REV I SUPS I SUBS] SUND—rUND—[;l
ATTRIBUTE CURSOR ENABLE (ACE) _ 1 ’ ’ BLINK (BL)
CURSOR PIN ENABLE (CPE) =] ’ . e UNDERLINE (UND)
USER DEFINED (UD) b SHIFTED UNDERLINE (SUND)
USER DEFINED (UD) ' SUBSCRIPT (SUBS)
USER DEFINED (UD) : : SUPERSCRIPT (SUPS)
,USER DEFINED (UD) — \ — REVERSE (REV)
HIGHLIGHT (HL)

03901A-08

. . _ Figure 2-7 Attribute Port Enable Register

WRITE: 0 . . -
READ: X

9i-¢

ADDRESS: 000118, 03H (WRITE ONLY) Do

10 1 00 W W 0 Y 0 1 A B R B

- : Figure 2-8 Attribute Redefinition Register

) weor

DISABLE BLINK (DBLK)

DISABLE UNDERLIN’E (DUND)

DISABLE SHIFTED UNDERLINE (DSUND)
DISABLE SUBSCRIPT (DSB)

DISABLE SUPERSCRIPT (DSP)

03901A-09

Value (7-0) (D7-Dg)

The Value Register holds up to eight bits of
information for comparison with the fetched
character, to determine if an attribute should be
invoked. Note that only those bits of the Value
Register which have the corresponding bits of the
Mask Register set to “1” are compared against the
character code. Value-bits with corresponding
Mask bits set to “0” should be set also to “0,”
unless the attribute fetch mechanism is disabled.

Example 1:

All control characters (character code within 00y
and 1Fy) invoke an attribute. To display these
control ‘characters |AF=0; not to display these
characters IAF=1 (see Mode Register 1). All
control characters are of the form:

Control Characters:

000 X X X X X
So the mask is: 1 1100 000
and the value is: 0 0 00O OOUOW

(Xis “Don't Care”)

So the Attribute Flag Register contents are:
1110000000000000 (EOOOH).

Example 2

One specific flag (7Fy) invokes an attribute. In this

case, all bits of the character code are compared to
the Value.

Flagcharacter:

o1 1 1 11 11 (7Fy)
. Sothemaskis: 1 1 1 1 11 1
andthevalueis: 0 1 1 1 1 1 1 1 (7Fy)

Hence the Attribute Flag Register contains:

1111111101111111(FF7Fy).

Burst Register

The Burst Register (Figure 2.12) specifies the bus
occupancy of the CRTC DMA unit. Burst Count
determines the maximum burst length in Number

D1s

D1s

Ds D7

Do

L ’ LOWER ADDRESS j

03901A-9
Figure 2-9 Top of Page‘and Top'of Window Pointer Formats with L/S = 0
D1s Do
D15 ! Do
, - l kLOWERADDRESS
03901A-10
Figure 2-10 Top of Page and Top of Window Pointer Formats with L/S = 1
ADDRESS: 010008, 08H (WRITE ONLY)
D45 Dg D7 Do’
[MASK (7-0) | I VALUE (7-0) | |
i I l|_| . ATTRIBUTE FETCH
03901A-11 " 0 0 NORMALOPERATION
0 1 ATTRIBUTE FETCH DISABLE
1 NORMAL OPERATION

Figure 2-11 Attribute Flag Register

2-17

of DMA transfer cycles. Burst Space determines
the minimum release time between two bursts.
This guarantees real-time responses of the CPU to
other peripherals. Burst Count and Burst Space
must be programmed with reasonable values that
allow the CRTC to fetch all data needed for aflicker-
free screen.

Burst Space—BS7_g (D15-Dg)

This 8-bit value specifies the number of 15 system
clock cycle (CLK4) periods before another bus
request will be issued, after the CRTC has
released the bus due to burst count out. If this
value is set to “0” the CRTC occupies the bus as
long as necessary to accomplish its DMA activity,
e.g. fetching all information related to a particular
character row. If a DMA burst is interrupted due to
DMA preemption or “end of row”, the next burst
completes the remaining burst count. This means,

that the first DMA burst loading a row usually is

shorter than programmed.

Burst Count—BCq_y (D7-Dy)

The CRTC executes Burst Count-1 DMA transfer
cycles per burst. If BCg_7 is set to “0,” no DMA
activity will occur. If BCo_7 is set to “1,” the CRTC
only requests the bus and after granting the bus,
immediately releases the bus, because the first
cycle is an Idle DMA Cycle (no bus activity for three
clocks). So, the minimum value for normal
operation is “2.”

Video Timing Registers:

These registers are initialized before setting the
DE-bit in Mode Register 1. They hold the

parameters needed to generate vertical and’

horizontal sync and blank (VSYNC, HSYNC, and

BLANK). These signals are put out on the like-

named pins of the CRTC and are used by the

‘Am8152A.. BLANK combines horizontal and
vertical blank (HBLANK and VBLANK).

Horizontal timing parameters are expressed in
number of bus or character clock cycles (CLK4» bit

of Mode Register 1). Vertical timing parameters are
expressed in number of scan hnes (HSYNC
cycles). / . o

HSYNC (8-bit counter) and HDRIVE (9-bit counter)
represent two ways of spec'rfying the signal
waveform on the HSYNC output pin. With the
exception of the width, these two counters are
functionally identical.

In the following discussion a frame consists of one
field in non-interlaced mode ‘and two fields (even -
and odd) in RFl and Video Interlace modes.
Figures 2.13 and 2.14 show the vertical timing.

Vertical Sync Width/Vertical Scan Delay
Register

- Figure 2.15 shows the register format.

Dis-Dq2 NOT USED
Dy1-Dg". VERTICAL SCAN DELAY (VSD)
Ds-Dg VERTICAL SYNC WIDTH (VSW)

Vertical Scan Delay—VSD (D14-Dg)

The Vertical Scan Delay field specifies the vertical
blank time -after the falling edge of VSYNC, thus
defining the top border width, or vertical back
porch, of the screen. VSD is expressed in scan-
line units. When in- non-interlaced mode, the
actual vertical scan delay is equal to VSD + 1 scan
lines. When in video interlace mode or Repeat
Field Interlace (RFI) mode, the actual vertical scan
delay is equal to [(VSD + 1) / 2 lines]. In this case, ‘
VSD must be odd.

.Vertical Sync Width—VSW (D5~-Dg)

The Vertical Sync Width determines the width of
the active-High pulse 'signal which is sent through
VSYNC output to the CRT monitor in order to
synchronize it vertically.

VSW is eicpressed in scan line units. In non-
interlaced mode, the actual vertical sync width is

ADDRESS: 100008, 104 (WRITE ONLY)

Dis

Dg D7° Do

BURST SPACE (7-0)

BURST COUNT (7-0)

S

3
* 03901A-13

Figure 2-12 Burst Register o \

2-18

equalto VSW+ 1 scanlines. Vertical Active Lines Register

In interlaced and RFI mode, the actual vertical sync

is equal to [(VSW+1)/2 lines]. In this case, VSW Dy5-Dq2 NOTUSED -

must be odd. Dy1-Dg - VERTICAL ACTIVE LINES (VAL)
—»‘ VSW+1 VTOT +1
VSYNC
(EXTERNAL)

—| VSD + 1 |=—

VBLANK — |
(INTERNAL) |

VAL +1

03901A-17
' . Figure 2-13 Non-Interlaced Video Vertical Sync Timing
VSW +1 VTOT +1 VSW+1 VTOT +1
. 2 2 2 2
(mé':,mﬁ _j_ (EVEN FIELD) (ODD FIELD)
— [+-—VSD — [~—VSD+1
VBLANK 2 : 2
(INTERNAL)
VAL VAL +1
2 2
VSD, VSW, VAL MUST BE ODD
VTOT MUST BE EVEN
03901A-18
Figure 2-14 RFI and Video Interlace Vertical Sync Timing
HTC+1 |
HSYNC +1 }
~ HDRIVE+1
HSYNC - r_|
(EXTERNAL)
[«—HSD +1—>]
HBLANK |
(INTERNAL)
HTD N :
Hsoms +1 MIN 17 CLK2 —|
INTERLACED VIDEO: HTC MUST BE EVEN :
03901A-19
Figure 2-14a Horizontal Sync Timing
ADDRESS: 100018, 114 (WRITE.ONLY)
D1s D12 D11 . Dg Ds) Do
03901A-14

Figure 2-15 Vertical Sync Width/Vertical Scan Delay Register

2-19

This 12-bit field defines the. number of scan lines
between the .end of a vertical sync pulse and the
start of vertical blanking (Figure 2.16).

When in non-interlaced mode, the actual scan-line
number between the falling edge of VSYNC and
the rising edge of VBLANK is equal to VAL+1.
The active video area height on the screen is then
(VAL+1) — (VSD+1) = VAL-VSD scan lines.

When in video interlace or RFl mode, the actual
scan-line number between VSYNC and VBLANK
‘is equalto [(VAL + 1) / 2]. Inthis case VAL must be
odd. The active video area height.on the screen is
then given by [(VAL + 1)/ 2] - [(VSD +1)/2] =
[(VAL — VSD) / 2 scan lines]. This is true for the
odd and even field.

Vertical Total Lines Register

NOT USED
VERTICAL TOTAL LINES (VTOT)

Di5-D12.
D11-Do

The. Vertical Total Lines Register defines the total
number of scan lines per field minus the vertical
syncwidth{Figure 2.17).

'(VTOT+ 1).

!

In non-interlaced mode, the actual scan line

number between VSYNC and next VSYNC is
In interlaced or RFI mode, this tlmnng' is [(VTOT+

1)/2], and VTOT must be even (half scan line
between even and odd fields).

"Horizohtal Sync and Vertical lntefrupt

Row Registgr

Figure 2.18 shows the register format.

D15-Dg
D7-Dg

VERTICAL INTERRUPT ROW (VERTINT)
HORIZONTAL SYNC WIDTH (HSYNC)

‘Vertical Interrupt Row—VERTINT (Dg-Dy5)

This field determines the row number which, after
being completely loaded by DMA, causes an
interrupt. If VERTINT is set to “0,” the vertical
interrupt occurs after the rising edge of VBLANK,

before the CRTC starts loading the Main Definition - -

Block. If VERTINT is set to “1” (“n"), the vertical
interrupt is generated right after the first (nth) row
has been loaded.

’

ADDRESS: 10010g, 12H (WRITE ONLY)

Dis D12 Dyy

Do

VAL

]

03901A-15
Figure 2-16 Vertical Active Lines Register
' \
ADDRESS: 10011g, 134 (WRITE ONLY) . '
Dis D12 D11 Do
2
) . 03901A-16
Figure 2-17 Vertical Total Lines Register
ADDRESS: 101008, 141 (WRITE ONLY) R
Dis { Dg D7 . Do
VERTINT HSYNC ~ —I .
P : 03901A-20

Figure 2-18 Horizontal Sync Width/Vertical Interrupt Row Register

L

2.20

Horizontal Sync Width—HSYNC (Dg-D7)

This field determines the width of the horizontal
sync (active High) pulse in video clock units (CLKy
or CLKy depending upon CLKip bit in Mode
Register 1), provided that HSYNC is selected
(HOS=0 in Mode Register 1). These pulses are
output on the HSYNC pin. The actual width of the
signalis HSYNC + 1 clock periods.

Horizontal Drive Register

Reserved
HORIZONTAL DRIVE (HDRV)

D15-Dg
Dg-Do

This register determines the width of HSYNC if
horizontal drive is selected (HOS=1 in Mode
Register 1). The actual width of HSYNC is HDRV +
1 clock periods. This is also an output on the
HSYNC pin. (See Figure 2.19.)

Horizontal Scan Delay Register

Reserved
HORIZONTAL SCAN DELAY (HSD)

D15-Dg
Dg-Do

The Horizontal Scan Delay Register determines
the interval from rising edge of HSYNC to the
falling edge of HBLANK, which. defines the left
border (back porch) on the screen. The actual

“interval value is HSD + 1 clock periods.

(See
Figure 2.20.)

Horizontal Total Count Register

Reserved
'HORIZONTAL TOTAL COUNT (HTC)

D15-D1g
Dg-Do

This register determines the period of the HSYNC
waveform. The period is HTC + 1 clock periods. In
Interlaced mode, HTC must be even. (See Figure
2.21)

Horizontal Total Display Register

Reserved
HORIZONTAL TOTAL DISPLAY (HTD)

D15-D1o
Dg-D0g

This register determines the interval from the rising
edge of HSYNC to the rising edge of HBLANK.
HTD must be odd in interlaced mode. The actual
interval value is HTD + 1 clock periods. (See
Figure 2.22.)

' Video Timing Programming Example

The following example outlines the computation of
the display timing parameters for a 30 row by 80
character display, each character embedded in a 8

ADDRESS: 101018, 154 (WRITE ONLY)

Dis Dg Dg

HDRV

Figure 2-20 Horizontal

Scan Delay Register

2-21

x 17 (H x V) matrix, with a refresh rate of 50 Hz in
non-interlaced mode using a CRT monitor with the

~ following characteristics:

Display Resolution: 720 pixels horizontal
512lines vertical
Scanning frequency: 28-36 kHz horizontal .
45-65 Hz vertical
~ Horizontal retrace time: 6 microseconds’
Vertical retrace time: 600 microseconds
Horizontal SYNC width: 3 microseconds

Computation:

The appropriate character clock and the timing
parameters for the video timing registers must be
calculated.

The active display size is given by:

Horizontal: 80 characters « 8 pixels/char.
=640 pixels
Vertical:- 30 rows * 17 scan lines/row

=510scanlines

Assuming a 20% blank border vertically, the 510

scan lines occupy 80% of frame time. At a frame

rate of 50 Hz, the horizontal frequency can be
- calculated as:

510scanlines/0.80
=637 scanlines
637 « 50 Hz.; 31.85 kHz

Total Scan Lines/frame:

Horizontal Frequency:

Assuming a 20% blank horizontally, the 80
characters occupy 80% of row time. Character

clock is therefore 100 times the horizontal
frequency (3.185 MHz). Each character occupies
1/100 of the row. : :

Let us use a more convenient frequency, 3.00
MHz, as character clock and re-calculate the

parameters: /

Character clock 3.00 MHz

Horizontal frequency 30 kHz

Scanlinetime 33.3 microseconds

Frame time 637 * 33.3 microseconds
=21.2ms)

Frame rate 47 Hz

Now the registers' contents can be calculated:

Mode Register 1

The character clock is 3 MHz; the CLKj 5 bit is set
to “0” to select CLK, for the frame timing
generation.

With only 80 characters/row, we select “SLIM=1"
which reduces the row buffer length to 96
characters.

The monitor accepts an HSYNC signal: “HOS=0"
Non-interlaced made yields in: “I1=b,” “lo=0.”

External Sync Enable is set to “0,” since we do not
need to be synchronized to another signal.

Display Enable should be set to “1,” once the
otherregisters are setto the proper values.

Vertical sync width: The vertical sync width is equal
to the specified horizontal retrace time of the
monitor.

VSW+1 = 600 miicroseconds
VSW+1 = 600/33.3 =18 scanlines

ADDRESS: 10111g, 17 (WRITE ONLY) ¢

Dis D10 Dy

03901A-23

~ Figure 2-21 Horizontal Total Count Register

ADDRESS: 110008, 184 (WRITE ONLY)

Dis Dio Do

HTD I

03901A-24

Figure 2-22 Horizontal Total Display Register

2-22

VswW =1740=114
Vertical Total Line Register (VTOT): The number of
vertical total lines equals to the number of scan
lines (637) minus the Vertical Sync Width (VSW).
. (see Figure 2.13)

VTOT +1 = 637—-(VSW+1)=619
VTOT = 61849=26Aq
Vertical Active Line Register

This value is the total scan line number of the
screen minus the number of scan lines contained

in the bottom border area (10% of the ‘screen

height):
VAL+1 =09+ (VTOT +1)
= 0.9+ 619 =557 scanlines
VAL = 556409 =22CH

Vertical Total Line Register:

VTOT +1= 637-(VSW+1) =619
VTOT = 61849 =26AH

Vertical Syhé Width/Vertical Scan Delay
Register

Vertical Sync Width (VSW)=11} (as computed
above)

‘Vertical Scan Delay (VSD): (see Figure 2.13)

VSD+1 = (VAL +1)-510
VSD = 4649 =2Ey
VSD shifted six bits left to fit the field in the
register.
VSDghift = B80H
VSW/VSD Register = VSD gt + VSW
= 0B80Y +11|.| =0B91y

Horizontal Sync and Vertical Interrupt
Row Register

VERTINT is set to “0” in this example.
HSYNC +1 = 3microseconds = 3+3
= 9 character clocks
HSYNC = 84p = 8y

Horizontal Drive Register

This is a “don't care” since HOS=0.
selected)

(HSYNC

Horizontal Scan Delay Register

HSD+1 = (HSYNC+1)+ (HSYNC to HBLANK
delay)
HSD+1 = (HSYNC+1)+ [HTC +1—=(HSYNC +1)
— number of displayed characters)/2
HSD+1 = (100-9-80)/2+9 =15 character
clocks
HSD = 1449 =0Eq

Horizontal Total Count Register "
HTC +1 = 100 character clocks
HTC = 9949 =63K

v

Horizontal Total Display Register:

HTD+1 = number of characters displayed +
(HSD +1)
=80+15

HTD +1
- HTD = 9449 =5E}

2.4 DMA OPERATIONS

Once the CRTC has been initialized and the
various registers programmed to meet the
application's needs, the CRTC is responsible for
initiating System Bus Requests to fetch Control
Data and Display Data from memory and to transfer
them into its on-board registers and row buffers,
respectively. The CRTC requests the bus after the
DE-bit in Mode Register 1 hasbeensettoa“1.”

DMA Signals and Protocol

Before the CRTC can-perform a DMA operation, it
must gain control of the System Bus. The BRQ,
BAI and BAO interface pins constitute the basic
interface between the CRTC and other devices
capable of bus arbitration (e.g. microprocessors
and other DMA devices). Whenever the CRTC
requests bus control, the operation is executed
according to the flowchart in Figure 2.23. The
DMA sequence can described as the following:

1. If the CRTC needs to perform a DMA access, it
triggers the bus request operation.

2. First, it checks whether the bus is being used
by another peripheral device by polling the
BRAQ line.until it is High. Then, it waits for the
CPU to gain bus control. This is indicated
through the daisy-chain (BAl=High).

‘3. At that time the bus is under control of the

2-23

NORMAL DAISY | ‘

CHAIN OPERATION
(BAO = BA))

_NO CRTC

DMA ACTIVATED

»

DMA REQUEST
) 2 - START OF BUS REQUEST OPERATION

4

POLLING FOR BUS
RELEASE FROM BUS-MASTER (IF PRESENT)
AND FOR BUS RELEASE ACKNOWLEDGE

n

FROM CPU
BRA=LOW ACTIVATING BUS REQUEST LINE
BAO = HIGH AND DAISY CHAIN LOCK

WAITING FOR BUS REQUEST
ACKNOWLEDGE FROM CPU

DMA TRANSFER DMA TRANSFER OPERATION

B7\‘|=9 LOW DMA TRANSFER INTERRUPTION?

TRANSFER

COMPLETE .
? BUS RELEASE AT END
. OF DMA TRANSFER
YES)
BRA=HIGH

. BAO = BAI

S 4
BRA=HIGH
- BAO = BAI

T TEMPORARY
BUS RELEASE
WAIT
3 CLK1 PERIODS

S

Figure 2-23 DMA Bus Request Flow Chart

03901A-25

2-24

CPU, and the CRTC can issue its request by

puling BRQ Low. It also inhibits Bus
Acknowledge from propagating to lower priority
devices (in the lower part of the daisy-chain) by
pulling BAO High; this avoids granting the Bus

to lower priority devices which may have issued .

BRQatthe same time as the CRTC.

Before initiating any DMA transfer, the CRTC
waits for bus request acknowledge from the
CPU by polling its BAl input.

The CRTC now acts as Bus Master and
_ performs the required transfers.

The CRTC DMA transfer can be temporarily
" interrupted by removing Bus Acknowledge In
(BAl=High)—external bus preemption. The
CRTC requires that BAl is active for a minimum
of four clocks. If the CRTC is preempted within
the first four clocks, the CRTC might not detect
the bus acknowledge causing the CRTC to
keep waiting for BAl Low. The result is that the
bus arbitration locks up. To overcome this lock

condition either the minimum width of BAI must .

be guaranteed or the external arbiter must be
able to recover from this lock condition (detect
of lock, then temporary release the preempting
signal). ‘

.- The CRTC terminates the transfer when it has
filled the internal row buffers or when the burst
count reaches zero. The bus is released
(BRQ=High) and bus acknowledge ripples
through (BAO=BAI). Then either the CPU or a
lower priority device on the daisy chain can gain

control of the bus._ The lower priority device
might have pulled BRQ Low concurrently with
the CRTC and is wamng for BAI Low to start its
activity. .

. The CRTC_DMA transfer is mterrupted by
removing BAI. The CRTC finishes the current
bus cycle and_ releases the bus for three
system clocks (BRQ=High, BAO=BAI). Then it
tries to resume DMA activity -and. continues
DMA operations and burst count from where it
was interrupted.

Buffering BRQ

When BRQ needs to be buffered (for example, to
drive a system backplane), a specific bidirectional
interface buffer must be used. Such an interface
and its implementation is described below:

Detail “A” in Figure 2.24 shows the BRQ buffer
logic. .Note that the “buffer” and the “OR gate” are
both open collector (OC) devices. When the
backplane BRQ is High, and no DMA AA_device
requested the bus, then all BAl's and BAO's are
High, hence X3 and X2 are High and X1 is driven

* High.

If device X requests the bus, it locks BAO High and
pulls X1 Low to initiate a bus request, which in turn
pulls X3 Low since X2 is High (BAO=High). The
detail “A” logic is then locked into this state
through the open collector buffer, as the CPU and
the other detail “A” interfaces on the bus. All
these interfaces are locked the same:way as the

s

DETAIL “A”

BACKPLANE

BRQ

\ A4S

N1

BRQ BRG BRG
BAT BAOC »| BAI BAO +| BAI BAO
, CRTC ' DTC DTC
DEVICE X DEVICE Z

DEVICEY

’

03901A-26

Flghre 2-24 System with Multiple DMA Devices

2-25

requesting one. A few: cycles later, the CPU
acknowledges the bus request by pulling
BUSACK Low, the CRTC (device X) then executes
its transfers. When the CRTC finishes its transfers,
it releases BRQ and relinks its BAI input to BAO
-output, hence driving BAO Low. The Low
propagates. thr _oggh the daisy-chain, and _as long
as one of the'BAQ is High, the backplane BRQ line
and the devices BRQ signals will be held Low due
to detail “A” logic structure.

Once all the BAO's have gone High, the backplane
BRQ goes High, and the CPU gains control over
the bus.

DMA Transfer Operation

The DMA transfer itself consists of data moves
from memory into the CRTC, controlled by the
CRTC's DMA unit.

If a control block is fetched, the words loaded are
steered toward the internal control registers. If
display data (characters or attributes) are fetched
from memory, it is steered toward an internal row
buffer. .

In both cases the CRTC must: ,

1. Output the address of the data location.

2. Sample the WAIT input and stretch the read

cycle if needed. WAIT is sampled only at the
falling edge of the system clock in T2 of a Bus
Master Read cycle. : .

3. Re'ad'thé data and transfer it to the proper
destination (buffer or internal register).

The Am8052 can address up to 16-Mbyte
addresses as 256 pages of 64K bytes each. The
upper address is updated ona demand basis, as
outhned below:

There is a upper address change between the
previous fetch cycle and the current one, or this is
the first fetch of a new frame. In either case,
succeeding read cycles are preceded by a single
write cycle to latch the new upper address

address. (See Figure 2.25)

There is no upper address change since the
previous fetch cycle and it is not the first fetch of a
new frame. In this case the succeeding fetches
are not preceded by a upper address write cycle.
A new burst does not necessarily begin wnh a

page address update.

'

DMA Read and Write Operations

The start of a DMA cycle is initiated by AS being

T | T2 |

CLK1 /

T3

T2 | T3

NS

as
,

ADo-AD15

G

PAGE ADDR OFFSET
> N/
RIW -/

DREN

/[

DTEN

T\
(Cpace aoor)

N

N/

|«—————————————DMA READ CYCLE WITH PAGE CHANGE ————————— >

«——— DMA READ CYCLEWITH .|
' NO PAGE CHANGE

03901A-27

- < v Figure 2-25 DMA Transfer Operation

" 2-26

driven Low, which indicates a valid address on the
AD(-ADy5 address/data lines. At that time DTEN
is also driven Low and allows the valid address to
be buffered on the system bus through external
buffers. The valid address may be latched on the
systembus on the rising edge of AS.

During the first portion of a DMA read cycle with a
page change, R/W is pulled Low.by the CRTC for
three complete clock cycles,” and the address
present on the ADg-AD7 bus during T1 is the
updated page address which should be latched
externally on the rising edge of AS. Refer to
section 6 on interfacing the upper address latch.
The CRTC never outputs an active DS during a
write cycle. The next three clock cycles represent
a normal DMA read cycle.

During T2 the CRTC ceases driving the ADg-ADq5
bus with the address information, and DTEN goes
inactive (HIGH). DS is driven Low as an indication
to the memory system that it may drive the bus with
the read data. Half of a clock cycle later, DREN is
driven Low to enable the receiving bufférs local to
the CRTC.

Data is captured by.the CRTC on the falling edge

of the T3 clock cycle; then both DS and DREN
return High. The system might turn off the data

-~'with either DS or DREN. In both cases the data
hold time required by the CRTC is satisfied.

Wait Operation !

During T2 of the read cycle, the WAIT signal is
sampled by the falling edge of CLK{. If Low, the
cycle is stretched by one CLI4 cycle. However,
the WAIT input can be operaté®as a READY input,
by taking Low as the default level. In both cases,
the input signal must satisfy the setup and hold
time requirements of the CRTC, to avoid
metastable conditions (see Section 6).

The CRTC also has a software Wait state capability:
zero, one or two wait states can be specified in
Mode Register 1 and are automatically inserted in
each Bus Master Read cycle independently of the
WAIT input line.

When both hardware and software Wait states are

requested, they occur consecutively and not
concurrently: The hardware Wait States are
honored first, immediately followed by software
wait states if so programmed.)

Idle DMA Cycles

An Idle DMA cycle is a bus cycle (three clocks)

Window segment filled with Fill Code

during which the CRTC executes internal
‘operations (e.g., row linkage and window overlay).
Since Idle DMA cycles are single bus cycles, the
CRTC does not release the bus; otherwise, bus -
overhead - would be increased. The CRTC
releases the bus (burst of Idle DMA Cycles) only if a
window or the background row needs to be filled
with Fill Code characters.

Each DMA burst executes in the following
sequence:

1. The CRTC asserts BRQ to arbitrate the bus.

2. The CRTC waits for BAI to be asserted by the
external bus arbiter (usually a CPU).

3. BAl.is sampled with the next rising edge of

CLKj. If the set-up time (parameter 75) is not
satisfied, the CRTC may perhaps not catch BAI
with that edge, but definitely catches it with the
next edge (metastable conditions cannot
occur). ’ ‘

4. Then BAl'is internally synchronized to T2 of the
running state machine. After synchronization
the CRTC executes the first DMA cycle, which
externally starts on the next T1 state. The time
elapsed from receiving BAl is between six and
eight clocks depending on when BAl comes
relative to the free running internal state
machine.

Table of Idle DMA Cycles:

The table below lists conditions were the CRTC
inserts Idle DMA cycles (this list might not be

complete).

Event # of ldle

DMA Cycles

Begining of DMA burst if previous burst
was preempted or counted out
Begining of the first burst of a frame
Begining of first burst for a new row
Loading the Window Definition Block
Loading a Row Redefinition Block
Loading a Window Row Control Block
Endof arow (background)

) (window)

End of preempted burst

Fill Code segment (segment with _
character pointer equal zero)

L ON -t a2) - O

3clks/2char

2-27

DMA Burst Control

During DMA action, the CPU-is denied access to
.the bus and therefore cannot execute programs.
This situation can lead to problems in the interrupt
response time of the CPU, since the CPU can only
recognize and service an interrupt request while in
control of the bus. Note that at the beginning of
every frame, immediately after the vertical blanking
interval, the CRTC tries to request the bus.
1

To allow the CPU control of the bus within certain
limits, a Burst Register is provided inside the CRTC
and is programmable by the CPU. This Burst
Regisler specifies a time slot during which the
CRTC is allowed to request the bus. Both the time
slot duration and its cycle time are programmable.
For further information, refer to Section 2.3.

2.5 ROW MANAGEMENT UNIT
. OPERATIONS

The Row- Management Unit controls the system for
fetching, interpreting, and steering the information
contained .in memory; loading the three row-
buffers with displayable information; and updating
internal registers to redefine some of the screen
characteristics.

Listed below isv the information that the Row
Management Unit may steer for updating.

Steer into the row-buffers:
o characters
o attributes

Steer into the internal registers:

alterable on a frame basis:
¢ absolute cursorcoordinates (CUX, CUY)
o fill character code

« blink control and parameters (for cursors and
characters)

o scroll control and parameters

« interrupt vectors (for vemcal event and smooth-
scroll event

alterable on a rowbasis:

o total scan line count per row (TSLC)

o normal character start and end line numbers
(NCS, NCE)

superscript character start and end scan-line
numbers (SBCS, SBCE)

subscript character'start and end scan- lrne
numbers(SBCS, SBCE)

cursor pattern start and end scan-line numbers
(CURS, CURE)

residing in memo
the background

o -underline position (UND)
« shifted underline position (SUND)

The information to be fetched by the Row
Management Unit is addressed by linked-list
pointers, and the Row Management Unit keeps
track of the addresses of the information present in
memory. The Row Management Unit also inter-
prets window information when itis present.

The final task performed by the Row Management
Unit is the selection of displayable characters
(which are-the only ones loaded into the row
buffers) depending upon the “ignore” and “invis-
ible attribute flag” bits settings.

Windows

The CRTC is capable of controlling and displaying
a text file on the screen (known as background)
concurrently with other text files embedded in .
rectangles (known - as windows) positioned
anywhere inside the active display area of the
screen. With conventional CRT .controllers, this
feature can only be implemented if the CPU is
aware of the position and size of the window, with
all the inconvenience and software complexity this
implies. One of the important features of the
CRTC is that it allows the CPU to process a -
background file and a window file independently
without being continuously concerned with size
and position of the window.)

- The CRTC holds two pointer registers; each

contarnlng the starlrng address of a linked-list

: one pointer corresponds to
rnformatron while. the other
corresponds to the first window's information. The
first window is the first one encountered when
scanning the screen from top to bottom. The user
is able to define an arbitrary number of windows on
the screen, as long as two background character
rows (three for interlaced video) separate the
windows vertically. Virtual windows, however, may
occur side by side (horizontal split-screen).

Each window links to the following ‘one (ranging

“from top to bottom of the screen) with a link

pointer. There are no more windows when the link
pointer of the last window contains zero.

Two main linked-lists reside in system memory
holding the entire information dehnrng a particular
display:

The backgrodnd list pointed to by Top of Page
(TOP) Register, containing the parameters of the
backgrou nd display.

2-28

The wmdow(s)' list pointed to by Top of Window
(TOW) Register, contalnlng the parameters of the
window(s) display.

Depending upon the memory addressing scheme,
the user can choose either of two addressing
" modes: segmented mode or linear mode.

Segmented Mode

The segmented mode divides the memory into
pages containing 64K bytes each. The CRTC can
address 128 pages. In this case, the pointer is 23
bits wide arranged in two 16-bit words with the
following configuration:

" Seven bits pointing to one page among the 128
addressable pages. These seven bits are right
justified in the most significant byte of the first 16-
bit word.

16 bits pointing to the address within the selected
page. These 16 bits constitute the second word.

When operating in the segmented mode, crossing
a page boundary does not increment the page
number. It results in wrap-around operation within
the same page.

Linear Mode'

In the linear mode the CRTC addresses memory as
one 16-megabyte block, with a 24-bit-wide pointer
arranged in two 16-bit words with the following
configuration:

Eight bits representing the most significant part of

the address embedded in the least significant byte
of the first word.

16 bits representing the least significant part of the
address in the second word.

In this mode, when the second word crosses a
64K boundary, the first word is incremented by
one.

The selection between these two modes is
accomplished through the L/S bit in Mode
Register 1.

L/S=0 segmented mode enabled'
. L/S=1 linear mode enabled

Consistent with the byte addressing method used
by all 16-bit microprocessors, ADg always outputs a
“0” at address time. This means that the CRTC
actually addresses 32K 16-bit words instead of
64K bytes. This applies for both linear and
segmented addressing modes. This implies that
all character strings must start at an even address
— they have to be word boundary aligned.

Background Information Management

The TOP (Top Of Page) Register points to the first
data word of a block called “Main Definition Block.”

_ This block is unique for each background list, and

the information it contains is fetched on a frame
basis and stored into the applicable internal
registers of the CRTC.. Simply by changing the
pointer in the TOP register entire pages can be
swapped at an instant without any flickering.

Main ‘Deﬁnition Block (MDB) Overview
The Main Definition Block contains seven data

words (MDg—-MDg) defined as follows (Figures 2.26
and 2.27):

" bis . Dg D7

f"n"% ROW CONTROL BLOCK POINTER (PAGE)

M

=]
&

FILL CHARACTER CODE

MDsf CHD | CHBy | CHBo | CATBE | CXYBE| CUD | CUBj¢

l SR2 [SR|T SRo | swB l SubD I SSE

MDs .) INT VECTOR (VERTICAL)

w2

03901A-28

TSLC

INT VECTOR (SOFT SCROLL)

V0000

Figure 2-26 Main Definition Block (L/S = 0)

2-29

'MDg,MD4. Pointer to first Row Control Block

MD,. "Absolute cursor coordinates (“X” coordinate
byte-and “Y” coordinate byte)

MD3. Fill character code (one flag bit + one byte
code)

MDy. Blink control/scroll control |

MDs. Interrupt vectors: vertical event/scroll event
MDg.. Total scan line count per row.

MDB Detailed Description:

MDg,MD4. The Row Control Block pointer points
to the block defining the first row's control
information. -

MDs.

this row where the absolute cursor is displayed.
The topmost row is row “0” the. leftmost character
position is “0”.

MD3. The fill character code is a user-defined 8-bit
code. This is used as a filler in the row buffer if all
the characters for that row have been loaded and
did not fill the programmed buffer size. Segments
with a character code pointer of “0”are also filled
with the fill code. The number of visible characters
(visible #) specifies the length of these segments.
Windows, where the window segments do not fill
up the window size, are filled by the fill code too.

The flag bit (flag attribute), when set, causes the

CRTC to load an extra attribute word from the
attribute list and use it as a latched attribute
(immediately active) for the fill character. The extra
attribute word must invoke a latched attribute.

MDy4: The blink- control/scroll control is composed
of 15 bits.
Smooth-Scroll Enable (SSE). enables the

smooth-scroll operation for either the background

The absolute cursor coordinates indicate.
the row number and the character ‘position within .

or awindow.

0 Smooth-scroll disabled
1 Smoolh-scroll enabled

Scroll Up/Down (SUD) indicates the dlrectlon
of the scroll.

0 Smooth-scrolldown
1 Smooth-scrollup

Scroll Window/Background (SWB) indicates
whether the background or a window will be
scrolled.

0 Smooth-scroll background
1 Smoolh-scrollwindow\

Scroll Rate (SR3-SRp) is a 4-bit word
specifying, the smooth-scroll rate according to the
following table:

SR; SR, SRy SRy Scroll Rate

D15

i

ROW CONTROL BLOCK POINTER (LO)

0 0 0 0 1 Scan Line/Frame
0 0 0 1 2 Scan Lines/Frame
0 0 1 0 3'Scanlines /Frame
0 0 1 1 4 Scan Lines/Frame
0 1 0 0 5 Scan Lines/Frame
0 1 0 1 6 Scan Lines/Frame
0 1 1 0 7 Scan Lines/Frame

.0 1 1 1 8 Scan Lines/Frame

(fastest)

1 0 0 0 1 Scan Line/Frame

-1 0 0 1 1 Scan Line/2 Frames
1 0 1 0 1 Scan Line/3 Frames
1 0 1 1 1 Scan Line/4 Frames
1 1 0 o] 1 Scan Line/5 Frames
1 1 0 1 1 Scan Line/6 Frames
1 1 1 0 1 Scan Line/7 Frames
1 1 1 1 1 Scan Line/8 Frames

' (slowest)
Dg D7 . Do’

ROW CONTROL BLOCK POINTER (HI)

x-CURSOR (CUX)

y-CURSOR (CUY)

FILL CHARACTER CODE

INT VECTOR (VERTICAL)

MDs C
MDs TSLC

.~ INT VECTOR (SOFT SCROLL)

03901A-29

Figure 2-27 - Main Definition Block (L/S = 1)

2.30

i

Cursor Blink Rate (CUB1,CUBO0) defines the
blinking rate for both attribute and absolute
cursors: -

Blink Frequency

CUBy CUBg Blink Period (at 60 Hz Frame
Rate)
0 0 16 Frames 3.75Hz
0 1 32 Frames 1.85Hz
1 0 64 Frames 0.93Hz
1 1 128 Frames 0.46 Hz

Cursor Blink Duty Cycle (CUD)

CUD Cursor Blink Duty Cycle

0 Blink Output 75% Inactive, 25% Active
1 Blink Output 50% Inactive, 50% Active

Character Blink Duty Cycle (CHD)

CHD Character Blink Duty Cycle

0 Blink Output 75% inactive, 25% Active
1 Blink Output 50% Inactive, 50% Active

Absolute Cursor Blink Enable (CXYBE)

0 Cursor Blink Disable
1 Cursor Blink Enable

Attribute Cursor Blink Enable (CATBE)

0 Cursor Blink Disable
1 Cursor Blink Disable

Character Blink Rate (CHB4, CHBg)

Blink Frequency

CHB4 CHBg Blink Period = (at 60 Hz Frame
Rate)
0 0 16 Frames . 8.75Hz
0 1 32 Frames 1.85Hz
1 0 64 Frames 0.93 Hz
1 1 128 Frames

0.46 Hz

The character and the cursor can have different

blink rates and different duty cycles. |

MDs. The Interrupt Vector Register contains the
smooth-scroll and vertical -event interrupt vectors.
When one of these interrupts is activated, the

corresponding 8-bit vector is output on AD7;ADO
at Interrupt Acknowledge time, if the NV-bit in
Mode Register 2 is reset.

The vertical event interrupt vector is totally user-
programmable.

The smooth-scroll interrupt vector is partially user-
programmable: Bits 0 and 2 through 7 are user-
definable, while Bit 1 reflects the state of the SIP
(Scroll Interrupt Pending) bit. This feature allows
the user to steer the smooth-scroll interrupts into
two different routines.

SIP=1 The CRT s informing the CPU to execute a
relink during scrolling operation.

SIP=0 The CRT does not need CPU intervention
but signals the CPU that the scroll
operation is completed.

MDg. TSLC is a 5-bit value defining the number
of total scan lines per row minus one. This value is
reprogrammable on a row basis via the Row
Deflnmon Block

This TSLC must be equal to the TSLC of the first
row in the linked-list.

In video interlace or RFl mode, the TSLCs of all.
rows displayed must be even or the TSLCs of all
rows must be odd. " In non-interlaced video, rows
with odd and even TSLCs may be mixed.
However, this is restricted when _displaying
windows (refer to Section 2.5.4). Figure 2.28
shows the values of the total number of scan lines

for all video modes.

" Row Control Block (RCB)

Once the CRTC has loaded the Main Definition
Block into its internal registers, it fetches the first
Row Control Block (Figures 2.29 and 2.30). To
ease text-editing procedures, the CRTC allows the
user to split each row into segments. This
partitioning is necessary when dealing with window
positioning within the screen. The “window”
section provides detailed information.. Each
segment may contain up to 255 visible characters
and up to 255 hidden characters limited by the 8-
bit counter.

Hidden characters are characters that the CRTC
fetches from system memory but that are not
loaded into the internal.row buffers. They are
identified by the Ignore Bit of the attribute word
when DH in Mode Register 1 is reset. An attribute
flag character is also a hidden’ character if the

2-31

\

Inws.lble Attribute Flag (IAF) of Mode Regnster 1is
set. .- .

The CRTC pre-fetches two rows to keep all thrée,

_internal row buffers filled. This results in fetching
two redundant rows at the bottom of the screen.
To minimize bus occupancy of the CRTC these last
two rows can be “termination Row Control Blocks.”
This block consists of a Row Control Block Pointer
pointing to itself, a Character Code Pointer set to
“0,” and C-flag=0 (a single, empty character
segment).

RCB Overview

RAq,RA.
next Row Control Block.

RAp_g. The first segment's block composed of
five data words:

The numbers of visible and hidden
characters inthe segmem consmute the

first data word,

The segment's character-hst pointer (next two
data words),

The segment’s attribute-list pomter

(two words),

Successive segments are identical to the furst
An optional “Row Redefinition Block” pointer
(two data words).

The user must set at least one Row Redefinition
Block after power-up. "A Row Redefinition Block
contains characteristics applicable to a row. This
information stays latched until another Row
Redefinition Block is encountered. If no Row
Redefinition Block is fetched after power up,
information such as character start and end scan
lines is undefined. If N segments are present in a
Row Control Block, its lengthiis either:

N+5+2 if no Row Redefinition Block is present,
N+54+4 ifa Row Redefinition Block is present.

RCB Detailed Description:

RAg,RA¢{. The most significant bit in the first
word indicates if a Row Definition Block has to be
_loaded for the current row. When this flag (LNK) is
“1,” the Row Definition Block is loaded. The
remainder of the first two words contain the link
pointer to next Row Control Block.

RAg; Thé sum of ‘hidden and visible characters
must be at least “1”. The number of hidden
characters and the number of visible characters are

i

A tw'o-word'li_nk pofnter pointing to the’

interpreted by the CRTC inthe foliowing way:
No window within the current row ¢

The DMA uses the sum of the hidden and visible
character numbers to determine the number of
characters to be fetched. In this case the CRTC
does not distinguish between those two numbers;
it uses only the sum. Note, that the segment
length is not determined by # Visible. The
segment length is only determined by the number
of visible characters the CRTC extracts out of the
characters loaded in by DMA.

L]
Window within the current row

In,a window, both the number of hidden and visible
characters in background, and the number of
window segments have to be specified correctly.
The total number of hidden and visible characters
determmes the number of characters fetched from
memory.” The CRTC takes the number of visible

" characters in the segment and the window

coordinates of the Window Block in order to place
the window. The specified number of visible
characters for a particular segment has to match -
the number the CRTC extracts from the characters
loaded by DMA.

TOTAL NUMBER OF SCAN LINES

TSLC NON-INTERLACED INTERLACED

OR RFI MODE MODE
00000 1 1+1=2
00001 2 1+2=3
00010 3 2+2=4
00011 4 2+3=5
00100 5 3+3=6
00101 6 ©8+4=7
00110 7 4+4=8
00111 8 44+5=9
01000) 5+5=10
01001 10 _ 5+6=11
01010 ' 1 6+6=12
01011 12 6+7=13
01100 13 7+7=14
01101 14 7+8=15
01110 15 8+8=16
01111 16 8+9=17
11111 32

16+17=33

léighre 2-28 Total Number Of Scan Lines As
A Function Of TSLC

e 2-32

e ™~

z
— o
£

2 2 2 F 2B

¥ P FPEERE
g;??g<e
s 5 5 5 5 5 3
L oL L L oL L L
I O+ ¥ ¥ ¥ ¥ ¥
MR
-
F]
<
£
o
3 » i
3 K
HE
=
] S
z m
2 g
z v
2 7 [}
3 3
£

ION BLOCK POINTER (OFFSET)

03901A-30

Figure 2-29 Row Control Block (L/S =0) -

DDDD

ROW CONTROL BLOCK POINTER (LO)

;.

RAg ATTRIBUTE POINTER (LO)

::::j — _ o

Figure 2-30 Row Control Block (L/S = 1)

2-33

RA3,RA4. These two words contain the
character code address pointing to the beginning
of the character code string of this segment and
the continue bit (C).

C=0 This isthe last segment of this row.
C=1 The segment list continues.

If thié pointer is “0,” then the space specified by
the visible number of characters for this segment is
filled with the fill code. ’

RA5,RAg. The pointer links to the attribute string
of this segment.

The segment header (RAz—-RAg) must be
repeated for each additional segment. If the LNK-
bit in RAg is set, the two words following the last
segment header must contain the pointer. to the
Row Redefinition Block. i

Row Redefinition Block
The Row Redefinition Block is composed of five

words. These words hold information relevant to
the display characteristics of the row (Figure 2.31).

Al

' RRg

All this information is captured by the CRTC. It acts
on the invoking character row and succeeding
ones untii a new ‘Row Redefinition Block is
invoked.

The Total Scan Line Count (TSLC) defines the
total number of scan lines per row minus one.

Normal Character Start (NCS) and End (NCE)
define the vertical position and height of normal
characters within the row.

The same definition applies to superscript and
subscript characters with SPCS, SPCE, SBCS,
SBCE. : :

When the scan line count is less than the character

“start scan line value (NCS, SPCS, or SBCS) or lar-
ger than the character end scan line value (NCE,
SPCE, or SBCE), Ro-R4 puts out 1Fy. Figure
2.32 shows an example. Normally the character
slice with the address 1Fy is programmed to be
blank.

More details concerning these parameters . are
included in Section 2.6, Attributes.

There are ten user-definable row attribute. bits
which are output on the APg—AP4 and APg-AP4g

Total Scan Line Count (TSLC) 5 Bits pins during the horizontal retrace time. Bits Dq4
Normal Character Start (NCS) 5Bits through Dig in RRy are output on AP1o-APg,
Normal Character End (NCE) 5 Bits while bits Dy4 through Dy in RR> are output on

AP4—APo. This row attribute can be registered

RRy Row Attributes 5Bits externally to the CRTC with the falling edge of
Superscript Character Start (SPCS) 5Bits HSYNC. This feature can be used for a set of user-
Superscript Character End (SPCE) 5Bits definable attributes or to implement functions

- - " which are not directly supported by the CRTC; for

RRz Row Attributes 5Bits oxample, loadable character font generator or

, gﬁg:g::p: g:z::gz:gﬁn((ss;cc;) g g::z " horizontal smooth-scroll. Cursor start and cursor
P - _ end applies to partial, reverse and underline
st 5 Bit cursors, and defines the position and height of the

RRs gﬁ::g: Enadn .5 Bit: corresponding cursor. (See Section 2.6.5, Cursor

Display.)

RRg Double Row (DR) 2 Bits . S
Underline(UND) 5 Bits The Double Row bits (DR4,DRg) allow the user to.
Shifted Underline(SUND) 5 Bits insert double row characters in the text on a row

D15, D1a B D10 Do Ds Ds Do
RRo TSLC NCS) " NCE
RR1 ROW ATTRIBUTES (AP10-APg) SPCS ‘ SPCE_ s
RR2 % ROW AﬂRIBUTES (AP;;APa) SBCS SBCE
77 ,
’ 03901A-32
Row Redefinition Block

Figure 2-31

2-34

SCAN LINE

COUNT CHARACTER CELL Ro-Rs4
0 1FH
1. 1FH
2 LB
3 1
4 2
5 3
6 4
7 5
8 6
9 1FH

10 1FH
TSLC=10 NCE=8

NCS=2

v

03901A-33

Figure 2-32 Character Placement

" basis. The code is interpreted as follows:

DRy DRg
0 0 Normal Character Row
0 1 Reserved
1 0 Top Half of a Double Row
1 1 Bottom Half of a Double Row

s

The linked-list for a double size row consists of two
Row Control Blocks, one for the top half of the row
and one for the bottom half. The data accessed by
these row control blocks should be identical, apart
fromthe DR bits in the Row Redefinition Blocks.

Underline specifies the scan line number on which
the underline attribute acts.

Shiftéd underline acts the same way as underline
except that it applies to the shifted underline
attribute.

‘Row Redefinition Block Loading Process

if RCB, initiates loading of a Row Redefinition
Block (LNK=1), the CRTC will load the same Row
Redefinition Block also for Rowp, 1 (LNK=0) and
Rowp,2 (LNK=0) to get the new parameters also
for the two remaining row buffers. Note, that for
these two rows the-CRTC only loads the Row
Redefinition Block (5 words) and not the Row
Redefinition Block ‘Pointer (last two words of the
RCB). This means, that the Row Redefinition

Block should not be modified, until the CRTC has

fetched these two rows.

Window Information Management

The Top Of Window Register (TOW) points to the
first word of a Window Definition Block (WDB),
which specifies the window characteristics. There
is one Window Definition Block per window, and
they are linked together starting with the topmost
window on the screen (whose WDB is pointed by
TOW). If TOW=0, no window is displayed on the
screen.

The Window Definition Block defines the following
parameters (see Figures 2.33 and 2.34):

WD,WD4.. First Window Control
pointer (two words)

Block link-

W02 ;WD3. Next Window Definition Block link-
pointer (two words)

WD4. The start and end window row numbers
(one word)

WDg. The start. and -end window character
numbers (one word)

The Window Row Control Block Point points to the
Window Row Control Block specifying the first row
of the window. The most significant bit of WDq
(Smooth-Scroll Window, SCW) indicates if this
particular window should be scrolled:

sew Smooth-ScrolI Window

0 Window Smooth-Scroll Disabled
1 Window Smooth-Scroll Enabled

é

Note, that smooth-scrolling does not occur until
conditions specified in the Main Definition Block
are satisfied.

When the pointer to the next Window Definition
Block is equal to zero, there are no more windows
on the screen. Otherwise, the pointer indicates
the address of next Window Definition Block.

The start and end window row numbers are two
bytes which indicate the vertical position of the first
and last window rows on the screen expressed in
row number.

2-35

D1s D1

WDg| SCw | WINDOW ROW CONTROL BLOCK POINTER (PAGE)

WDy

WD2 o | .+ WINDOW DEFINITION BLOCK POINTER (PAGE)

WD3

" Ds D7

WINDOW ROW CONTROL BLOCK POINTER (OFFSET)

WINDOW DEFINITION BLOCK POINTER (OFFSET) .

WDs START WINDOW ROW #

END WINDOW ROW #

WDs START WINDOW CHAR #

- END WINDOW CHAR #

\’ Flguré é-33 " Window Definition Block (L/S = 0) o
w7 m T oo]
wor R e—r—pm——

Figure 2-34 Window Definition Block (Ls=1)

03901A-35

The most significant bit of WD2 must be “0”'when

L/S=0. v

The start and end window character numbers ére

two bytes which indicate the horizontal position of
" thefirst and last window characters on the screen.

As mentioned above, the Window Control Block is
identical to the Row Control Block (Figure 2.35 and
2.36). However, some restrictions should be
observed when dealing with windows: '

The number of visible characters of overwritten
background segment is effectively .interpreted by
-the row management unit whenever a window is
present within the row. When no window is
present, the CRTC needs only the sum of hidden
and visible characters of the loading segment to
know the length of the segment in memory.

The start and end positions of the window have to
match segment boundaries in the background
display. A window may span multiple segments
(see Figure 2.37). . .

~ Only one window can exist between the row .

numbers specified by start wnndow row # and end
window row #.

When the contents ofa wmdow row's linked- Ilst do
not fill the window's row, the fill code is used to fill
the remaining character posmons of that-window's
row. During that time, the bus is not released and
dummy DMA cycles are executed.

The Window Redefinition Block (Figure 2.38) is
structured similar to the Row Redefinition Block.
TSLC is left out, since a window row has to have
the same number of scan lines as the background
row it overlays.

2.6 ATTRIBUTES

This section focuses on the Character Attribute
architecture and the various' character display
options handled by the CRTC. Since the user may
have very specific display requirements that match
his own design, the CRTC has been designed to
provide great versatility in'the attribute options.

In the character stream two pieces of information

2-36

03901A-37

Figure 2-35 Window Row Control Block (L/S = 0)

DDDDDD

WINDOW ROW CONTROL BLOCK ®OINTER (LO)

|||||||| T
nnnnnnnnnnnnnnnnnn (H)
(Lo
T E POINTER (HI)
Lo)
(H)
RO | SEGMENT
ATTRI (HY)
Loy
WINDOW REDEFINITION BLOCK POINTER (Hi)
(LO)

" 03901A-38
Figure 2-36 Window Row Contro] Block (L/S = 1)

2-37

are present:
1. Theactual character code.

2. An attribute invoking flag that may be part of the
character code, or a specific code by itself. This
option is programmed via that Attribute Flag
Register internal to the CRTC. The function of
this register is described in 'Section 2.3
(Register Description). ‘

‘Once the choice of attribute-invoking flag(s) has
been made it is possible to either display or inhibit
the display of the flag by using the Invisible
Attribute Flag (IAF) bit contained in Mode Register
1. If IAF=0, each code invoking an attribute is
displayed, meaning that this specific code not only
invokes an attribute, but is also output on
CCp—-CCy7 to address the character font generator.
This_character is affected by the invoked attribute.
If IAF=1, any code invoking an attribute is not
loaded into the row-buffer and the invoked
attribute then affects the following character. If two
or more successive flags are present in the stream,
only the last one (and the attribute it invokes)

 encountered (see Figure 2.39).

affects the first displayable character code
Figure 2.40 -
shows the Attribute Flag detect mechanism.

A character attribute is a code which affects the
display characteristics of a character or set of
characters onthe screen.

The CRTC distinguishes four levels of attributes:

o Character attributes
« Field attributes

¢ Row attributes

o Frame attributes

2.6.1 Demand Attribute Fetch

The CRTC supports a flexible relationship
between character .code fetches and associated
attribute fetches. Since attributes usually do not
change on a character basis, the bus occupancy of
the CRTC can be reduced (increasing -system
performance), by invoking attributes only " at
attribute transitions, i.e., demand attribute fetch.

BACKGROUND: SEGMENT 1 SEGMENT 2’

SEGMENT 3 SEGMENT 4

- WINDOW t: ’ SEGMENT 1

WINDOW 2: SEGMENT 1

SEGMENT 2

SEGMENT 3

WINDOW 3: SEGMENT 1

|

. © 03901A-36
Figure 2-37 - Window Overlay
Dis D10 Dg Ds Ds ; Do
NeS . NCE
SPCS ’ .) SPCE
SBCS R SBCE
CURS B CURE
UND SUND
03901A-38

Figure 2-38 Window Redefintion Block

2-38

After power-ﬁp, at least one latched attribute must
be specified to set (initialize) the default attribute
word. ’

The CRTC supports various options; the three
most common implementations are outlined

below. All three options have similar implications:

on text editing. They differ, however, when
analyzing bus utilization and attribute editing.

Option 1

Each character code invokes an attribute. This is
the most straightforward implementation, and
editing is very easy. However, it puts the highest
burden on the bus (low performance system). For
this mode IAF=0 and the Attribute Flag Register
contains 0000y. ‘

Characters

Attributes

8 Bits 12 Bits
Option 1 One-For-One
1 7 Bits
0 128 Character Codes,
1 ‘Change of Attribute
Option 2
1 /
o
1
FLAG
8 Bits 255 Character Codes,
. Change of Attribute
Option 3 .
. FLAG
03684B-6
Figure 2-39 Attribute Fetch Options
BIT7
MASK |
BIT7
VALUE
BIT7
CHAR.
BIT7
BIT6
BIT5 | |
==
BIT4 FETCH
:)—— ATTRIBUTE
BIT3 _]———I ENABLE
BIT 2 [
BIT1
BITO
* 03901A-41

Figure 2-40 Attribute Flag Defect Mechanism

2-39

Option 2

A single bit within the character code specifies

whether an attribute should be invoked. Adding or .

deleting attributes involves two actions:
Set or reset bit in.character code
Update the attribute list (block move)

This options reduces the required bus bandwidth
by about 50% (permanent savings), with the cost
of a single data block move, to update the attribute
list. Segmentation can reduce the editing
overhead. However, it.increases the required bus
bandwidth (larger RCBs). The editing impact to the
character list is relatively low, but the character set
is reduced to 128 characters.

Option 3

This option implements a demand attribute
scheme with a character set of 255 characters and
a single attribute flag character. Adding and
deleting attributes involves two actions.

Insertion or deletion of the flag character (block
move) .

Update of the attribute list (block move)

This option, similar to the previous option, reduces
the required bus bandwidth by approximately
50%, but demands more CPU effort when editing
the attribute list.

Character Attributes

Character attributes are word quantities which
affect various CRTC output signals and other
operations on a character-by-character basis.
These words reside in memory and are accessed
via the attribute-segment pointers associated with
the character-segment pointers in the Row Control
Blocks.
parallel with the corresponding character code in

The character attributes are stored in |,

each row buffer.. The bits in the attribute word are
discussed below:

The Attribute Port Enable and Attribute Re-
definition Register affect the attribute processing.
Referto Section 2.3 (Register Description). . -

Blink

When this bit is set in the attribute word, the APq
pin outputs a periodic signal whose rate and duty
cycle are specified in the Main Definition Block.
When this bit is reset, APy outputs a Low level.
Blink may be programmed to be a user-definable
attribute. In this case, no internal blink attribute
processing is done.

Underline

When this bit is set in the attribute word, the AP4
pin outputs a High for one scan line 'in the
character cell. The scan line on which the
underline is active is specified in the Row
Redefinition Block and can, therefore, be changed
on a row-by-row basis. If this attribute is made user-
definable (see Attribute Redefinition Register), the
pin is active for all scan lines of the character cell.
Underline is active for two scan lines when
displaying double-height rows.

Shifted Underline

This bit acts like Underline except that the signal is
output on AP, and the scan line number is
specified by an independent 5-bit word also
contained in the Row Redefinition Block. Shifted
Underline also may be Overbar or Strike Through.

Subscript
When this bit is set, the affected character is

displayed on a set of scan lines specified by
subscript character start line number and subscript

Attribute Word Organization

Bit 15: Latched/Unlatched
Bit 14: Cursor
Bit 13: Ignore Character

) Bit 12: Reserved

| Bit11: Reserved
Bit 10: User-Definable
Bit9: User-Definable
Bit8: User-Definable

. Bit7: User-Definable
Bit6: Highlight
Bit5: Reverse
Bit4: Superscript
Bit3: Subscript
Bit2; Shifted Underline/Strike Through
Bit1: Underline
Bit0: Blink

2-40

character end line number in the Row Redefinition
Block. This bit is generally used to display
subscript characters. In addition to this internal
process, a High level is output on'AP3 indicating a
subscript character. This feature may be used to
switch to a different character font generator. The
subscript attribute pin is active for all scan lines
between start line number and end line number. If
it is programmed to be a user-definable attribute,
the pin is active for all scan lines of the character
cell.

Superscript

Similar to subscript. The set of scan lines is speci-
fied by superscript character start line # and super-
script character end line # in the Row Redefinition
Block. The attribute is output on APy4. It can also
be programmed to be a user-definable attribute.

Reverse

When this bit is set, a High level is output on APg.
This bit may be used to reverse the invoking
character on the screen. No internal attribute
processing is done, so this attribute can be treated
as a user-definable .one. Reverse is exclusive
ORed with the reverse cursor.

Highlight

When this bit is set, a High level is output on APg.
This bit may be used to highlight the invoking
character on the screen. No internal attribute
processing is done, so it can be treated as user
definable if desired.

User-Definable

These four bits have their state output on the
‘matching pins (AP7—APq0) and can be used as
desired to affect the invoking characters. .

Ignore Character

When the Ignore Bit is set to “1,” and the Display
Hidden (DH) bit in Mode Register 1 is reset (“0”),

neither the affected character nor its attribute code ‘.

are ‘loaded into the row buffer and thus are not
displayed. When DH is set, the ignore characters
(those having ‘invoked the ignore attribute) are
loaded along with their attribute code. The ignore
bit is not put out on the attribute port.

Cursor

If this bit is set, an attribute cursor is displayed at
the affected character position, dependent upon
the mode of the cursor display logic. See section
on cursordisplay.

Latched/Unlatched

When this bit of the attribute word is set (“latched”)
the attribute information applies to all characters
following the character that invoked the attribute
word. This is described in more detail in the
section on field attributes. This bit is not put out on
the attribute port.) :

Character Attribute Timing

The attribute information present on the attribute
port is output coincident to, or one character clock
after the invoking character, depending upon the
skew-bits in Mode Register 1. This compensates
skew between character codes and attributes, if
external character code pipelining is required.

Attribute Port Enable Register

The function of this register is described in Section
2.3, Register Description. The superscript and
subscript effect are not cancelled by resetting the
corresponding bits in this register; in fact, this only
drives the corresponding attribute port pins Low.
The internal attribute processing still takes place.
To disable subscript and superscript action, the
Attribute Redefinition Register must be used.

The subscript and superscript, when enabled, may
be-used to choose between a standard character
generator and a specific character generator for
subscript and/or superscript. However, in most
applications, one standard font generator can be
used for all three.

Attribute Redefinition Register

Four user-definable attributes are provided for
optional external attribute processing. If this
number is not sufficient, then the highlight and
reverse attributes may be used as user-definable
without any modification:. .

If this is still not enough, the user can disable the
normal effect of other attributes and turn them into
user-definable attributes. These attributes are:

2-41

superscript

subscript

shifted underline
" underline

blink

This yields 11 user-definable attributes. The
function of the Attribute Redefinition Register is
described in the Register Description Section.

If a user-definable attribute is directely mixed with
the serial video signal put out by thenAm8152A,
the attribute must. be delayed by one character
clock plus one dot clock. This.compensates for
the internal delay in the Am8152A.

2.6.2 Field Attributes’

A field attribute affects a set of successive
characters. This feature
consumption and software complexity compared
‘to character attributes when dealing with character
strings. Field attributes are similar to character
attributes and. are implemented by setting the
latched attribute bit.

When a character does not invoke an attribute, it
implicitly invokes the default attribute. Therefore,
every character appearing on the screen is
associated with an attnbute in one of the following
manners:

- The character invokes either a latched or
unlatched attribute. This attribute affects that
specific character (if it is a displayable character).

« The character does not invoke an attribute. The
default attribute affects this character.

Additionally, invoking, a latched attribute -also
reloads the default attribute, As specified earlier,
when an Ignore attribute is invoked and Display
Hidden is reset, the attribute word and the
character are not loaded in the Row buffers.
However, if the invoked attribute is a latched
attribute, then the Ignore attribute is latched and
succeeding characters are not loaded. On the
other hand, if they invoke an attribute with Ignore
reset, the ignore function is cancelled for all
succeeding characters as soon as a latched
attribute w%th ignore bit reset is invoked.

A latched attribute affects all subsequent
characters not involving atiributes, whether they
are in windows or background, until a new latched
attribute is encountered.- As a result, a latched
attribute wraps around the screen, ripples through

reduces memory .

rows, . background-window - and window-back-
ground etc.

2.6.3 Row Attributes

The Row attributes are 10 bits that are output on
APy-AP, and APg-APqq, .at horizontal retrace
time. This is a CRTC feature that enables the user
to modify display characteristics on a row-by-row
basis.

The Row attributes are specified in the Row
Redefinition Block and may be latched by external
logic at HSYNC fall-time. Some examples in the
applications of Row attributes will follow.-- The
shape of the modified area(s) is always a horizontal
screen slice(s): .

reverse row(s)

highlight row(s)

blink row(s)

color palette addressing

row(s) underline .

change character set

switch to semi-graphic generator
switch video output to a graphic
display unit to mix graphic and text
blank row(s) (secret prompts)

The row attributes are internally latched and do not
need to be rewritten on each row. Therefore, the
internal Row Attribute Register is updated each
time a Row Redefinition Block is invoked (see
Figure 2-48 Row Attribute Timing).

The row attribute word is output seven clocks after
BLANK goes High and is removed one clock
before BLANK goes Low.- However, a . pro-
grammed skew between BLANK and the attribute
output still applies. The horizontal timing para-
meters must be chosén in such a way that the
edge of HSYNC falls in the interval where the
attribute port provides valid data.

2.6.4’ Frame Attributes

Frame attributes affect the character display
characteristics of the entire screen. These
attributes are stored in the Mam Definition Block
and define:

X-y cursor positioning

fill charactercode

x-y cursor blink rate and duty cycle
smooth-scroll of window or background
smooth-scroll rate and direction e

f

2-42

2,6.5 Cursor Displays

Cursors are used to locate specific points in the
text that need particular attention. Two types of
cursors are supported by the CRTC:

single absolute cursor (x-y cursor)
multiple attribute cursors

The Absolute Cursor

This cursor is positioned on the screen according
" to its “X” (horizontal) and “Y” (vertical) coordinates
specified in the Main Definition Block, and fetched
by the CRTC during the vertical retrace time.

“X" is expressed in character units. “X=0" indicates
the first character column. “Y” is expressed in row
units. “Y=0" indicates the first row on the screen.
This cursor is called absolute because it refers to
the screen boundaries and is not dependent upon

the text displayed on the screen. When the text is -

scrolled, the cursor position stays stationary
relative to the screen. However, while the screen
is smooth scrolling, this cursor stays with row “Y,”
until the topmost row is relinked. At that time, the
absolute cursor jumps to the new row “Y.” This
behavior can cause the absolute cursor to move
temporarily across background/window bound-

aries. Therefore, while smooth scrolling mixed
screens, absolute cursor display should be -
disabled.

When the CRT monitor beam matches the cursor
position, a CRTC internal cursor signal is activated
to indicate the match. This signal may be steered
internally to one of three output pins: cursor pin,
reverse pin, and underline pin.

The choice of the output pin is made through the
cursor mask contained in Mode Register 2. - In the
same register, a cursor enable bit, when reset,
controls disabling the Absolute Cursor. Further-
more, it is possible to partially affect the character
position on the screen by specifying the scan line
boundaries in which the output signal will be
active. These boundaries are specified in the Row
Redefinition Blocks by CURS and CURE.
4
The Attribute Cursor

This cursor is positioned with the visible character
that invoked an attribute with Cursor Bit=1. A
display can therefore contain as many attribute
cursors as there are character positions.

An dttribute cursor is implicitly linked to the text in
which it is contained. If the text scrolls up, the

attribute cursor scrolls with the text, whereas the
absolute cursor would remain steady.

When an attribute cursor is encountered, the same
operation as with the absolute cursor occurs.
However, a different set of bits in the cursor Mask
Register steers the attribute cursor signal to one of
the three outputs. This allows the user to distin-
guish the attribute cursor from the.absolute cursor
on the screen. The same scan line boundaries are
used for both cursors.

Cursor Characteristics

One out of‘ four shapes may be chosen for each of
the two cursors described earlier:

Cursor Whole. The cursor signalis output on
the cursor pin for each scan line of the character

_position.

Cursor Part. The cursor signal is output on the
cursor pin for the specific scan lines contained
between cursor start and cursor end boundaries
specified in the Row Redefinition Block.

Reverse. Same operation as cursor part except
that the signal is output on the reverse attribute pin .
after being exclusive ORed with the internal

reverse attribute signal.

Underline. Same operation as cursor part
except that the signal is output on the underline
attribute pin. - :

2.6.6 Fill-Code Attributes

When the Row Management Unit reaches the end
of the last segment of a row, and the row-buffer is
not full (96 characters or 132 depending upon
“slim” setting), the Row Management Unit fills the
remaining space in the row buffer with a specific

code specified by the user in the Main Definition . .

Block. This code is the fill code, and needs special
attention when it appears in text. Each time the
row buffer is not filled by the contents of the linked-

list, the fill code is loaded into the row buffer.

If the fill code is an attribute invoking code, the
Row Management unit may not invoke an attribute,
depending on the “FAT” bit in the Main Definition
Block. If the user needs to display the fill code
associated with an attribute, he should then set
the “FAT” flag (Fill .Code Attribute in the Main
Definition Block) to one and add the desired
attribute in the attribute list of the last segment
invoked. Only one attribute word is fetched for the
fill characters, so this attribute must be a latched

e

2-43

\

attribute to affect’ aII fill characters loaded into the
row buffer. i

The ignore attribute is discarded when associated
with the fill code. ,

N

2.7 INTERRU>PT OPERATIONS

An interrupt may occur whenever the CPU needs
to be notified of various events internal to the

CRTC or that an operation has just been

completed. There are two sources of CRTC
interrupts: oo :

Vertical Interrupt

The vettical interrupt, if enabled, can be used as a
real-time interrupt by the CPU or it can be used as
an indication that certain CRT updates should take
place. The vertical interrupt is issued when the “n:
th” character row has been loaded by the CRTC
into its internal row buffers. The value of “n” is
determined by the 8-bit VERTINT field in the
HSYNC Register. When“n”is set to “1,” the CRTC
issues a vertical interrupt after the last segment of
~ the first row is completely loaded. (See -also
section on register programming.)

Smooth-scroll Interrupt

The smooth-scroll interrupt is used to inform the
CPU when to update the display linked-lists during
_smooth-scrolling. See Section 2.8, smooth-scroll
mechanism, for more details. . .

\

Intefrupt Protocol

A complete interrupt cycle consists of an interrupt
~ request by the CRTC followed by an Interrupt

Acknowledge of the CPU (Figure 2.41). The
request, which consists of INT being pulled Low by
the CRTC, notifies the CPU that an interrupt is
pending.. The Interrupt: Acknowledge cycle
notifies the peripheral that its interrupt has been
recognized. In return, the peripheral may provide
an interrupt vector to the CPU to identify itself (see
the section on Row Management Unit).

The CRTC has two sources of interrupt and each
interrupt source has ‘three bits that control the
issuance of an interrupt. These bits are the
Interrupt Pending bit (IP), the Interrupt Enable bit
(IE), and the Interrupt Under Service bit {IUS). In
addition to the control bits, two further bits control
the interrupt behavior of the CRTC. These are the
Disable Lower Chain bit (DLC) and the No Vector
bit (NV) in Mode Reguster2

- Interrupt Acknowledge bus cycle.

Peripherals are connected together via -an
interrupt daisy-chain formed with their IEI (Interrupt
Enable In) 'and IEO (Interrupt Enable Out) pins.
The daisy-chain resolves the interrupt priority.

For the purpose of this description, the CRTC may
be considered as having two interrupt sources:
Smooth-scroll, and Vertical Interrupt, The Smooth-
scroll Interrupt has higher priority.

Figure 2.41 is a state diagram of interrupt
processing for an interrupt source (assuming its I1E
bit is “1”). An interrupt source with an interrupt
pending (IP=1) makes an interrupt request (by
pulling INT Low) only if it does not have an interrupt
under service (lUS=Low), no higher priority
interrupt is being serviced (IEl=High), and no
Interrupt Acknowledge transaction is .in progress.
IEO is not pulled down by the interrupt source at
this time. IEO continues to follow IEl until an
Interrupt Acknowledge occurs. Some time after
INT has been pulled Low, the. CPU initiates an
Between the
falling edge of INTACK and the falling edge of DS,
the IEVIEO daisy-chain settles. ASis optional. Any
interrupt source with an interrupt pending (IP=1)
holds its IEQ line Low- during Interrupt Acknow-
ledge. All other interrupt sources make IEO follow
IEI (transparent). When'DS falls, only the highest
priority interrupt source with a pending interrupt
(IP=1) has its IEl input High and its lUS bit set at “0.”
This is the interrupt source being acknowledged,
and at this point it sets its IUS bit to “1.” If the
peripheral's NV bit is “0,” the interrupt source
identifies itself by placing_the interrupt vector on
ADy-AD7. Each time DS is activated during
Interrupt Acknowledge cycles, the vector is put .
out. The upper byte is driven Low. If the. NV bit is
“1,” the peripheral's ADg-ADy5 pins remain

,ﬂoatlng, thus allowing external circuitry to supply

the vector.

While .an interrupt source has an Interrupt Under
Service (IUS=1), it prevents all ‘lower priority
devices from requesting interrupts by forcing IEO
Low. When interrupt servicing is complete, the
CPU must reset the IUS and the IP bits.

A peripheral's Interrupt Enable bit (IE) modifies the
peripheral's behavior in the following manner—if
the IE bit is “0,” the effect is as if all interrupts from
the peripheral are disabled. However, the

peripheral can still set its IP bit if an interrupt is

required. [f-the IE bit is cleared while the source is
driving INT Low, INT returns High until IE is set. To

prevent race conditions, the CPU 'should mask out

interrupts from the peripheral before clearing IE.
Note that IE, when cleared, also prevents the
CRTC from responding to an Interrupt Acknqw-

244

03901A-40

HIGH

—> LOW

HIGH

IP_1US IE

IP_IUS IE

Transition Legend

The peripheral detects an interrupt condition and sets
Interrupt Pending.

All higher priority peripherals finish interrupt service,
thus allowing IEI to go High.

An interrupt-acknowledge transaction starts, and the
IEI/IEO daisy chain settles.

The interrupt i with
the peripheral selected. Interrupt Under Service (IUS) is

set to 1, and Interrupt Pending (IP) may or may not be
reset.

e interrupt. " .
higher priority device having been selected.

The Interrupt Pending bit in the peripheral is reset by an
1/0 operation.

with a

A new interrupt condition is detected by the peripheral,
causing IP to be set again.

Interrupt service is terminated for the peripheral by
resetting IUS.

IE is reset to zero, causing interrupts to be disabled.

IE is set to one, re-enabling interrupts.

8888800 ggagd

IEl IEO
HIGH LOW | . 4 HIGH LOW
(F |
IP_IUS_IE AR \ IP_IUS IE — |
o|1]1 —) B E
STATE 5 STATE 6
W any ANY Ly Low
IEl T 139
HIGH HIGH LOW
IP_IUS_IE E> E> P_1US_IE |I>
STATE 7 STATE 8

State Legend

E No interrupts are pending or under service for this

peripheral.
An interrupt is pending, and an interrupt request has
been made by pulling INT Low.

E An interrupt is pending, but no interrupt request has been -

made because a higher priority peripheral has an
. interrupt under service, and this has forced IEI Low.
An interrupt-acknowledge sequence is in progress, and
no higher priority peripheral has a pending interrupt.

E An interrupt-acknowledge sequence is in progress, but a

higher priority peripheral has a pending interrupt, forcing
IEI Low.

E The peripheral has an interrupt under service. Service

may be temporarily suspended (indicated by IE! going
Low) if a higher priority device generates an interrupt.

This is the same as State 5 except that an interrupt is

also pending in the peripheral.
Interrupts are disabled from this source because IE=0.

Interrupts are disabled from this source and lower -
priority sources because IE=0and IUS=1.

This diagram assumes MIE = 1. The effect of MIE=0 is
the same as that of setting IE=0.

The DLC bit does not affect the states of individual
interrupt sources. Its only effect is on the IEO output of
awhole peripheral.

»

w

>

Transition | to state 6 or 7 can occur from any state

except 3 or 4 (which only occur during interrupt
acknowledge).

Transition J from state 6 or 7 can be to any state except
3 or 4, depending on the value of IEI, IP, and IUS.

Figure 2-41 State Diagram for an Interrupt Source

2-45

ledge. While IE is cleared, IEOQ follows "IEIl
The peripheral's IEO line can be foreed
unconditionally into the Low state by setting the
- DLCbitto“1.”

2.8 SMOOTH-SCROLL MECHANISMS

The Am8052 provides very powerful smooth-scroll
. capability with minimum interaction by the CPU.
Window(s) or background can be smooth-scrolled
either up or down at a rate that is programmable via
the scroll parameters field in the Main Definition
Block. Since the CRTC is designed to work with a
linked-list structure, some precautions should be
taken when relinking the text after each scrolled
row.

General Smooth-Scrolling Rules

Either windows or background can be scrolled at
one time; they cannot be scrolled at the same time.

When a window splitting the screen vertically
(sharing the row buffer with background
- characters) is intended to be smooth-scrolled,

then all of its rows must have the same total scan

line counts (TSLC).

Double Buffering Technique

Smooth-scrolling operation is achieved by moving
the appropriate data up or down on a scan line
basis. Therefore, the CRTC adds an offset to the
internal row's scan line count and outputs the
result on Rg—R4. This results in a displacement of
the data on the screen by the number of scan lines
equal to the offset. As soon as the last scan line
(top or bottom depending on the scroll direction)
of the first row of text has reached the top
extremity of the screen, a text.relink has to be
made. This relink serves to push the disappearing
row off the screen or to link a new row onto the top
of the screen.

In order to maintain a smooth relink transaction and
allow for CPU time constraints, the Am8052
controls the- relink timing through interrupts and
double buffering' of pointer register. As soon as
the CRTC has begun smooth-scrolling a character
row, it generates an interrupt. The CPU which

maintains the linked-lists responds by writing to.

“Top of Page (Window) Soft” a pointer value that
provides the correct linked-list for the display after
“it has completed the scroll of the current row. The
CRTC uses this new value as the active “Top of
Page (Window)” only after the row scroll in

progress is completed;f This double buffering of

the “Top of Page' (Window)” values allows
maximum time (one character row scroll time) for
the CPU to relink and respond to the interrupt.

According to the preceding, when the user wants
to smooth-scroll a portion of the display
(background or window), he should define two
Main/Window Definition Blocks, and flip between
those two blocks each time a smooth-scroll
interrupt occurs. This technique allows the user to
execute the link modifications. on the unused
definition block while the other is being processed
by the CRTC. .

Detailed Interlock Mechanism:

The Top of Page/Window Soft is the key interface
between the CPU and the CRTC when deahng
with smooth-scrolling.

When the CPU writes a pointer value into this
register, it does not modify the actual Top of
Page/Window Register (Hard Register) used by
the CRTC to fetch the Main/Window Definition
Block. In fact, the transfer between this temporaty
register to the actual register takes place according
to the smooth-scroll algorithm internal to the
CRTC. Therefore, if the smooth-scroll process has
not been enabled, writing to Top of Page/Window
Soft does not change anything in the link
architecture and this register should be used only
if smooth-scroll operation is (or will be) performed.
If the user wants to change the link in a non-

.smooth-scroll condition he should use the “Top of

Page/Window Hard” Register.

The smooth-scroll mechanism is enabled by
setting the Smooth- Scroll Enable bit (SSE) in the
Main Definition Block. Two other bits in the Main
Definition Block are used to select Window/
Background scrolling and -Up/Down scrolling
directions. Additionally, when scrolling ‘windows,
the Smooth-Scroll Window bit (SCW) in the
corresponding Window Definition Blocks must be
set. All windows which have SCW set are scrolled
simultaneously. Windows WhICh have SCW reset

. remain steady.

Smooth scrolling is stopped by resetting the
enable bit (SSE-Bit) in the Main Definition Block.

When the backgreund is scrolled only Top Of
Page Soft needs to be updated; loading Top of
Window Soft has no effect. Similarly, when
scrolling windows only ‘Top Of Window Soft is
relevant. .

2-46

Scroll Down

The Top -of Page/Window Hard Register links to
the Main/Window Definition Block of the currently
displayed text. When a down scroll is initiated, the
current text is moved down a fraction of a row. The
empty space at the top of the screen is filled with a
fraction of the scrolled-in row. Therefore, the
CRTC has to know the pointer to the new
Main/Window Definition Block before it can start
scrolling. The pointer is loaded into the Top of
Page/Window Soft Register.

The programming sequence shown in Figure 2.42
refers to both scrolling background or windows.

The example shows two rows scrolling in a
background or window consisting of a total of four
rows. When scrolling the background the TOP
Soft Register is reloaded and two Main Definition
Blocks are used to implement the “Double Buffer”
technique. If a window is scrolled, the TOW Soft
Register and two Window Definition Blocks are
involved. The numbers in the programming
sequence below correspond to Figure 2.42.

1. The CRT system displays a steady screen. The
TOP/TOW Hard Register links to a MDB/WDB
with smooth-scroll disabled. The smooth-scroll
process is initiated from this steady state.

sP=1

SIP=1 SIP=0
V)] (&) 3 \: INT @ : INT (5) \‘ INT
© CRTC TOP/TOW TOP/ITOW TOP/ITOW TOP/TOW TOP/TOW'
REGISTERS HARD SOFT HARD SOFT SOFT
MDBs, SSE=0 SSE=1 SSE=1 SSE=1 SSE=0
WDBs (_ SuUD=0 D=0 SuD=0 Sub=0

-

" RCBs,

AFTER SCROLLING DOWN
TWO ROWS (5)

WRCBs

ORIGINAL 1STROW -

.
H

1

: I

. o

|
\;__ |
|

I

I;

|

I

ORIGINAL 2ND ROW

ORIGINAL 3RD ROW

BEFORE SCROLLING (1)

ORIGINAL 4TH ROW ‘

03901A-42

Figure 2-42 N-Scrqll Down Sequence

2-47

2. The CPU prepares another MDB/WDB with
smooth-scroll enabled. This MDB/WDB con-
tains a pointer to the RDB/WRCB for the
scrolled-in row which in turn points onto the first
row currently displayed on the screen. The
CPU loads the pointer to this MDB/WDB into
TOP/TOW Soft Register.

3. The CPU then enables smooth-scrolling by
setting the smooth- scroll bit in the MDB/WDB
described in Step 1. The CRTC detects this
change when it fetches this block during the
next vertical retrace period. The first frame after
this change still reflects the same unscrolled
display. Scrolling begins with the following
frame. If the TOP/TOW Soft Register was not
initialized, the start of scrolling waits for the
initialization. At this time the CRTC transfers
the contents of the TOP/TOW Soft Register to
the TOP/TOW Hard Register to allow scrolling
to the new row. It issues an interrupt on
smooth-scroll event to notify the CPU that the
TOP/TOW Soft Register can be updated. The
update can take place at any time until the new
row is entirely scrolled-in. If the update was not
performed at that time, the displayed text

scrolls up (hard-scroll) one row and this same .

row is smooth-scrolled in again.

4. The TOP/TOW Soft Register is relinked to the
MDB/WDB pointing to the RDB/WRCB of the
next row to be scrolled-in. If only one row
should be scrolled, Step 4 is left out. For
scrolling “n” rows, Step 4 is repeated after each
interrupt issued by the CRTC “n—1"times.

5. To stop the smooth-scroll process, the new
: pointer in the TOP/TOW Soft Register points to
a copy of the previous MDB/WDB in which the
SSE-bit is cleared. Scrolling of both
background and windows is stopped by
resetting SSE. The CRTC notifies the host
CPU that smooth scrolling is completed by

issuing a last smooth scroll interrupt with SIP -

(Smooth Scrollin Progress) being reset.

Scroll Up

The numbers in the programming sequence below -

correspond to Figure 2.43.

1. The TOP/TOW Hard Register links to the-

MDB/WDB of the currently displayed text.
" Smooth-scroll is disabled.

2. The scroll process is initiated by enabling
smooth-scrolling in the MDB/WDB. The
- TOP/TOW Soft Register does not need to be

-

loaded at that time. The last row displayed links
to the row to be scrolled-in. . The CRTC detects
the change of the scroll ‘enable bit when it
fetches the block during the next vertical
retrace period. After it has started smooth-
scrolling it issues an interrupt on smooth-scrall
event to make the CPU update the TOP/TOW
Soft Register.

3. The TOP/TOW Soft Register links to the
MDB/WDB pointing to the RCB/WRCB of the
row following the scrolled-out row. If only one.
row should be scrolled, Step 3 is left out. For
scrolling “n” rows, Step 3 is repeated “n—1"
times. .

4. To stop the smooth-scroll process, the
TOP/TOW Soft Register points to'a MDB/WDB
with scroll disabled (SSE=0). '

Smooth Scroll in Progress Bit (SIP-Bit)

The SIP-bit is a status bit in the Mode Register 2
indicating to the CPU that the CRTC is actually

- scrolling either window or background while the

SSE bit (Smooth-Scroll Enable) is set. The SIP bit
is set as soon as the CRTC has loaded the Main -
Definition Block with SSE=1. Nevertheless, once
the CPU resets SSE to “0,” the CRTC waits until
the entire smooth-scroll is finished before
resetting SIP to “0.” Furthermore, when using
vectored interrupt, the SIP bit appears in Bit 1 of
the interrupt vector and, therefore, allows the user
the ability to vector to two different programs
depending on the status of smooth-scroll without
polling the SIP bit.

The CRTC scans the SSE-bit in the Main Definition
Block only at the top of the frame (not scrolling)

. and after transferring TOP/TOW soft register to

TOP/TOW hard register (previous frame was
smooth scrolled). After scanning the MDB, and a
relink took place, and the previous frame was
scrolled, then the CRTC sets the interrupt pending
bit for smooth scroll. At that time the SIP-bit
reflects exactly the state of the SSE-bit in the

* scanned MDB. ‘

If at that time SSE=1 the CRTC issues an interrupt
with SIP=1 asking the host CPU to load a new
pointer into the soft register; a pointer required for
the subsequent relink. In this case scrolling
continues. .

If at that time SSE=0 the CRTC issues an interrupt
with SIP=0 notifying the host CPU that scrolling
has been terminated.

2-48

“Smooth-Scroll Parameters

IUSS. |Interrupt Under Service for Smooth-Scroll
operation (Bit 2 in Mode Register 2) is set either by
a hardware interrupt acknowledge (INTACK Low)
or by a software interrupt acknowledge (host CPU
sets IUSS).

IES.. Interrupt Enable Smooth-Scroll Bit 1 in
Mode Register 2. enables smooth scroll interrupts.

Alternatively, the host CPU can poll the interrupt -

This bit can only be set and reset by the host CPU.

IPS. Interrupt Pending for Smooth-Scroll event.
Bit 0 in Mode Register 2. This bit indicates that the
smooth scroll logic requires service by the host
CPU. This bit is set by the CRTC or the CPU, and
reset only by the CPU. It it independent of the
state of IES.

SIP. Scroll in Progress, Bit 8 in Mode Regls(er 2,

- Setand reset by the CRTC.

pending bit to perform the smooth scroll relinks.

CRTC
REGISTERS

MDBs,
WDBs

RCBs,
WRCBs

03901A-43

(W)

SIP=1 SIP=1

SIP=0

TOP/TOW
HARD

@ \‘ INT (&)
TOP/TOW TOPITOW

HARD SOFT

@ \‘ INT
TOP/ITOW

SOFT

SSE=0
SuUD=1

SSE=1
SUD =1

SSE=1
SubD=1

(

SSE=0
sup=1

r

;

~

- I ORIGINAL 1ST ROW I

L} ORIGINAL 2ND ROW J

ORIGINAL 3RD ROW

ORIGINAL 4TH ROW

___._.-}___.___I

1ST SCROLLED IN ROW

2ND SCROLLED IN ROW

Figure 2-43 Scroll Up Sequence

BEFORE SCROLLING (1)

1

| AFTER SCROLLING UP
TWO ROWS (4)

2-49

29 SYNQHRONIZATION

The CRTC has ‘two built-in = synchronization
mechanisms: External SYNC (ESYNC) and Reset
for Test (RSTT). These mechanisms are activated
by applying signals to the synchronization input
pins (ESYNC and RSTT). The. ESYNC input
synchronizes the CRTC to an external frame
" frequency. In most applications this input locks the
vertical timing to the power-line frequency to avoid
screen swimming. RSTT synchronizes multiple
CRT controllers.

Multiple CRT Controller Synchronization

The Reset for Test (RSTT) input synchronizes two
or more CRTCs. This synchronization sequence is
executed only upon system initialization. Figure
2.44 shows the timing .diagram. RSTT can
synchronize multiple CRTCs only once after power-
on, -because applying RSTT would corrupt the
display. It cannot be used to synohronize multiple
CRTCs on a frame basis. This means, that all
CRTCs have to programmed in a way that they
operate synchronously forever (e.g. same clock
and same timing parameters). ' The sequence of
operation for RSTT is:

Reset all CRTC's by pulling Reset (RST) Low for at .

least five clock cycles (CLKy or CLK», whnchever is
slower).

After RST becomes inactive, initialize all CRTC
registers including Mode Register 1 and 2 with
DE=0.

Activate RSTT synchronous to CLKy or CLK»
depending on the CLK1/2 bit in Mode Register 1.
It must be synchronous to the clock determining
the frame timing. It must meet the set-up time tg to

avoid metastabie problems.

Reload Mode Register 1 and 2.. Set DE=1 (Mode
Register 1).

Deactivate RSTT synchronous to CLKy or CLKj.
RSTT must be active for a minimum of five clock
cycles and its rising-edge must meet the hold time
requirement. The rising edge of RSTT triggers all
CRTC's to $tart display synchronously. - Detailed
Reset for Test Timing is shown in Figure 2.44.

External Sync Operation

The ESYNC:input allows synchronization of the
CRT display vertical frame rate to the power line
frequency to eliminate waviness and other effects.
The ES bit in Mode Register 1 defines whether
ESYNC controls the Vertical Sync rate.

ESYNC is recognized by the CRTC for every field
or frame. It causes the VSYNC signal to become
active at-the occurrence of HSYNC. " In non-
interlaced mode, VSYNC becomes active at the
first rising edge of HSYNC following ESYNC's
rising edge (Figure 2.46). In interlaced mode,
VSYNC comes active at the next HSYNC active
when in the even frame, or in the middle between
two HSYNC's in the odd frame (Figure 2.47).

The VSYNC and HSYNC are inactive (BLANK is
active) before, during, and after reset. When the
display is enabled via mode bit DE, HSYNC output
becomes active, while VSYNC waits for ESYNC
active. The display is delayed up to one ESYNC
period.

ESYNC cannot be used to synchronize multiple
CRTCs, since it synchronizes only VSYNC, but not

curion _/__/—h_/__,_/__/_\ﬁ_/__/

RSTT

‘115 [«————MIN 5 CLK ———> le—

03901A-44

Figure 2-44 Reset for Test Timing

2-50 o

HSYNC. (5nly RSTT can synchronize multiple
CRTCs.

2.10 RFland INTERLACED VIDEO .

There are two types of interlace, Repeat Field
Interlace (RFI) and Interlaced Video (IV). Both

types use the same vertical and horizontal timing -

as described in the Vertical and Horizontal Timing
Section. Both schemes offset the vertical position
of the scan lines of the odd numbered fields so
that they are physically interleaved with the scan
lines of the even fields. For RFI, the same video
information is displayed on both odd and even
fields. The slight offset of the odd field eliminates
the horizontal stripes that sometimes occur

between scan lines on non-interlaced displays. -

_ (See Figure 2.48)

Interlaced Video is used to increase the amount of
information . displayed on a monitor .without
increasing the horizontal or vertical scan rates. IV
takes advantage of the odd field scan line offset by
displaying half the video in the even field
(alternating lines) and half in the odd field. The
effect is to essentially double the vertical character
density with respect to RFI or non-interlaced video.
One problem with 1V is the potential imbalance of

CRT beam current between the odd and even
fields and the resulting loss of perfect video
interleave. This. imbalance is greatest if the
character rows consist of an even number of scan
lines (adding up the scan lines in the even field
and the odd field).

Restrictions for Interlace Video

The restrictions mentioned below apply only to
Interlace Video. They do not apply to RFI or non-
interlace video:

If smooth scrolling is disabled, any mixture of
background and windows can be displayed, as
long as windows are horizontally separated by
three or more character rows (not scan' lines).
Windows should not overlap horizontally.

The Am8052 does not support split-screen

smooth-scrolling in Video Interlace mode. "Also, in

Video Interlace mode, a screen containing-only

background and no windows can only be smooth- .
scrolled if all rows have an even scan count (TSLC

even) and the number of scan lines scrolled per

frame is also even (scroll rates: 2, 4, 6, 8 scan

lines/frame. No scrolling restriction applies to non-

interlace or RFl video.

c12® TAMNMMN
S
RssT | ,—b]‘ircu |<— .
—p} HTC+1
—! 701K fe— —'t HSYNC+1
HSYNC n__rn_ ., fri I I 1
ol —h - o ovsw
VSYNC : He oo 1 v L v [T -
L= HTD+1 — 1CLK —b|<—1cu<
HSD+1 =)
HBLANK @ - J SN oy NNy 'SR NN Uy NN SNNPRUNN g SN SN o B
VBLANK @

L
(§——— VSD+1 —’l

[—————— VAL+1

() CLK1 OR CLK2 DEPENDING ON CLK1/2 IN MODE REGISTER 1

) BLANK = HBLANK + VBLANK

03901A-43

Figure 2-45 Detailed Reset for Test Timing Diagram

2-51

HSYNC

VSYNC

03901A-45

Figure 2-46 Non-Interlaced ESYNC Operation
3
ESYNC I |
HSYNC | n I | ﬂ rl '
: eee—————
VSYNC ‘ j .
ODD FRAME ————————————»{<—EVEN FRAME
03901A-46
Figure 2-47 Interlaced ESYNC Operation
5/CLK + SKEW 5 CLK + SKEW @
BLANK et S D s —
HSYNC I 1
APo 4 ROW ATTRIBUTES)
APg.10
12CLKy +SKEW® 4CLK, + skEW !
(1) "CLK IS CLK , OR CLK ,, DEPENDING ON PROGRAMMING OF
MODE REGISTER 1 (Dys). SKEW IS CLK; OR CLK, CYCLES;
VALUE SPECIFIED IN MODE REGISTER 1 (Dg,Dg)
(2) SKEW IS CLK, CYCLES; VALUE SPECIFIED IN MODE
REGISTER1 (Dg ,Dg)
05098B 2-48

Figure 2-48 “ Row Attribute Timing

2-52

Ro-Ra Ro-Ra Ro-Rsa Ro-Rsa
0 —66066066— 0—0606060—
000 0—0 1
1 © 2 ©
—-—1 00— 3
2 —6 4 ©
—-— 2 -——————5
3I—66606—— 6 —66060606—
00— 3 7
4 —O— 8
. 4 | o0 00e0—0
5§ —O 1 ©—
——————5 -— 2
6 —6-66060— 3 -0
—-0000——6 4
7 5—©
7 000 0—6
8 7
8 c 8
0—666060— 0—O060606—
-—-0000—0 1
1 O— 2 o—
-1 o006 —3
-—2 -———5
3—660—— 6 —0-00060—
—-—o00—— ——3 , : 7
. 4—O 8 o
—o————14 —-o0000 — 0
5 —©O- 1 O
——————5 -2
6 —O0 6006060 — 3 ©0-0©
-00000— 6 e
7 5 o—
7 0000 —56
8 7
8 8
0—ooo660— 0—ooo000——
00060 —0 -1
1—O—— 2—e
o1 -ooo— —3
2 © . 4 S
—o— 2 5
3 006 6
00— 3 7
4 © 8
EVEN oDD l ! EVEN oDD

" 03901A-47

" RFI

FIELD FIELD

INTERLACED VIDE_O

FIELD FIELD

Figure 2-49 Scan Line Addressing

NON-INTERLACED VIDEO
Ro-Ra

0—eo0o60—
1—o
2—o—— =
3—ooo0—
1—o

5—o

6 —o00606—
)

8
0—eoeo060—
1—o

2 O—

3 —O00—m
4—o—

5§ —o6—

6 —oo000—
7

8
0—ooo00—
1—©

2—6
i—eo0——
4—o

ODD FIELD
EVEN FIELD

2-53

BN

CHAPTER 3
SOFTWARE COOKBOOK

3.1 INTRODUCTION

The previous chapter discussed the capabilities
and features of the CRTC in detail.
the hardware and software design engineer,
supplying all the information about the Am8052
needed to design a CRTC based CRT subsystem.

This chapter addresses the software design
engineer in particular. It accesses all the related
topics, when programming the CRTC. The first
section (3.2) describes how the CRTC internal
control registers are to be programmed. For frame-
timing-register programming, refer to Chapter
2.3.4. The second section (3.3) guides the reader
in setting up the linked-list display data structure in
memory. Section ‘3.4 covers window and
background strategies and what happens when
windows are not aligned correctly. The fourth lists
hints on attributé incorporation. Smooth-scrolling
is described in Section 3.6. Several diagrams and
flowcharts aid the reader in understanding the
appropriate programming sequence. Section 3.7
shows how easy -text editing becomes when
operating on a linked-list data structure. The last
section contains three sample programs written in
28002 assembly language.

The user must perform the six steps listed below to
set up a display consisting of background and
- windows:

« Initialize the 22 control and timing registers of
the CRTC.

o Prepare the character strings (segments) for the

It addressed

background and window text. These segments

can be placed'in any order in memory.

e Prepare matching ~attribute word strings
(segments) for the background and window text.
The rules for invoking attributes are-described in
Sections 2.6 and 3.5.

o Define a. Main Definition Block ' for the
-background, and a Window Definition Block for
_each window present on the screen.

e Set up a Row Control Blocks linked-list for the
background text and a Window Row Control
Block linked-list for each -of the windows
present. Each Control Block defines one row by
linking. the. appropriate character and attribute

segments together.

o Define a set of ‘Row Redefinition Blocks and
Window Row Redefinition Blocks. The CRTC
must encounter at least one Redefinition Block
after power-up to initialize the internal registers
storing the row attributes.

3.2 REGISTER INITIALIZATION

The CRTC contains 22 control and timing
registers. To prevent damages to' monitors all
timing registers should be loaded with the desired
values before the display is enabled by setting the
DE-bit in Mode Register 1. Section 2.3.2
describes how the CRTC: registers can be
accessed in Slave Mode.. The following para-
graphs suggest valles to be programmed in the
control registers. |

Mode Register 1. A hardware reset (RST input
pulled Low) or a software reset (DE-bit in Mode
Register 1) clears it initially. After the linked-list in
memory is set up and after all other register are
initialized, Mode Register 1 is reloaded with the DE-
bit set to one. The Display Hidden feature (DH-bit
in Mode Register 1) is intended as a debugging
tool for the system programmer. If the DH-bit is set,
characters with the invisible-attribute set are
displayed. Also, when the DH-bit is set, the rows
of displayed windows may not be aligned.

Mode Register 2. The CUE-bit enables the X-
Y cursor. The two cursor mask fields (ACMO0,1 and
XYCMO,1) define the layout of the attribute and X-Y
cursor. For example, to specify the attribute cursor
as a blinking underline, the attribute cursor defini-
tion “Cursor Pin Part” is selected, the Attribute
Cursor Blink Enable bit (CATBE) in the Main Defini-
tion Block is set, and Cursor Start and End scan

-line numbers in the Redefinition Block are equal.

IES and IEV enable the interrupts on smooth scroll
or vertical event (refer to Section 2.7).

Attribute Port Enable Register. Unless the
user wants to disable any existing attribute
features, a value of 67FFy in the Attribute Port
Disable - Register is recommended (refer to
Sections 2.6 and 4.5). Subscript and Superscript

.can only be disabled by programmmg the Attribute

Redefinition Register below.

3-1

Attribute Redefinition Register.
ter should be set to 0000y unless the user wants
to redefine the attribute bits for other purposes.

Top of Page Hard Register & Top of
Window Hard Register. These four registers
link to the Main Definition Block and the first
Window Definition Block. In non-soft-scrolling
applications the CPU reloads the “hard" register
when altering pages orwmdows

Top of Page Soft Register & Top of
Window Soft Register. These four registers
hold temporarily the updated pointers to the Main
Definition Block and the first Window Definition
Block. After soft-scrolling an entire row, the CRTC
updates the “hard” pointer with the pointer stored
in the “soft" register. This double-buffering tech-
nique keeps the CPU response time constrains as
low as possible. If smooth-scroll is disabled, any
write to the TOP Soft Register or the TOW Soft
Register will be disregarded by the CRTC.

Attribute Flag Register.
for programmmg hints.

0

Refer to Section 3.5

Burst Reguster. The values for the burst count
and burst space specified -in this register
determine the ratio the CRTC is allowed to gain
mastership of the system bus. The reader must
keep in mind that bus bandwidth for the CRTC
must be sufficient enough the fetch the dnsplay
information. If the allocated bus\bandwndth is too
low, the screen may only show partial rows,
repeated rows, or may be garbage. The burst
count and burst space should be programmed to
fulfill this requirement in worst case.

Vertical Interrupt Row Register. This regis-
ter determines the row number which (after being
completely loaded) causes the vertical interrupt.
The vertical interrupt can be used either to drive a
real time clock or to notify the CPU that a certain
row just has been loaded. This guarantees that
the CRTC does not scan this part of the linked list
for about one frame time. The CPU can update
this row.

Timing registers.
,2.3.4 for description.

3.3 BACKGROUND AND WINDOW TEXT

The background and the window text is stored in
the system memory as character strings called
_character segments. The characters are byte quan-
tities usually encoded in ASCII (American Standard
Code for Information Interchange). However,
there is no restriction to the ASCIl codé. The

This regis- -

CRTC only compares the characters against the at-
tribute flag mask to decide whether this character is
an attribute invoking character. The character font

is stored in the external character font generator.

The .16-bit attribute words are stored in attribute
strings, called attribute- segments, corresponding
to the character segments.” The character and
attribute segments of each row are bound toge-

“ther by the Row Control Blocks (window or back-

Refer to Sections 2.3.3 and *

ground). In the Main Definition Block are the head-
ers of background linked list consisting of Row
Control Blocks. The Window Definition Blocks are
the headers of the window linked-lists consisting
of Window Row Control Blocks. For details refer to
Section2.5.

Main Definition Block and Window
Definition Blocks

The following paragraphs list some suggestions
how to set up the Definition Blocks. X and Y.are
zero-origin.

Main Definition Block:

MDo-MD4. Contains the pomter to the first
background Row Control Block.

MDj. If an X-Y cursor is desnred, the user must set
the CUE-bit. in Mode Register 2 and load MD5 with
the cursor's x and y coordinates. If an X-Y cursor is
noLt desired, the user should reset the CUE-bit.

MD3. The CRTC will put the fill character code'in)to
the portions ‘of the line buffer not filled by visible

characters. For example, if the fill character code is

a blank character and the text segments occupy
100 of the 132 characters of the line buffer then
the CRTC will assign blanks to the. remalmng 32
characters of the line buffer.

Settlng the FAT-bit will cause the CRTC to load
one attribute word for the first fill character of the fill
character string. This attribute should be a latched
attribute to effect the entire fill character string. -

MD4. The cursor or character blink rate can be

programmed from 0.46-3.5 Hz assuming a 60 Hz

frame rate. A 75% output inactive duty cycle will

make the character visible 75% of the time while a

50% output inactive duty cycle wnII make it visible
50% of the time.

The slowest: programmable smooth scroll rate is

one scan line per eight frames and the fastest is
elght scan lines per frame.

MDs. When an interrupt is issued by the CRTC to
the ‘host processor, the CRTC returns a vector
number stored in MDg (soft scroll or vertical inte-
rrupt) if the NV bit in Mode Register 1 is set to zero.

MDg. The TSLC value in MDg is applicable only
"when the CRTC is scrolling rows with variable
TSLCs (refer to Section 3.6). The TSLC in MDg is
set equalto the TSLC of the first displayable row.

Window Definition Block:

WDo-WD4. Points to the first Window Row
Control Block (the first displayable row in the
window). The SCW bit should be set if the window
is going to scroll.

WD2-WD3. If another window exists after this
one, then- WD, and WDg3 contain the pointer
address of that window's Window Definition Block.
If no further window exists then WD, and WDg3
contain zeros.

WD4. Specifies the vertical positioning of the
current window in terms of the position of the first
row of the window (“0” for the topmost row) and
the last row of the window.

WDs. Specifies the horizontal positioning of the
currentwindow (“0” for the leftmost character).

.

Background Row Control Block and
Window Row Control Block

A Row Control Block describing a row containing
only one segment has a length of seven words
(nine .words including the pointer to the optional
Row Redefinition Block if LNK is set). If the row is
partitioned into segments, each segment adds five
words to the standard length. Segmented rows
are desirable because they simplify editing tasks.
Segmentation is required when displaying win-
. dows (referto Chapter 3.4).

Example of Row Control Block (one segment)

RAp 8000y Linkbit (LNK) is set to make the
CRTC fetch the Row Redefinition
Blockpointer. The upper address is
set to zero assuming less than 64
kbytes of memory is used. .

RA{ . XXXXy Address of next Row Control Block

RA> 00104 Nohidden characters and 16
displayable characters in this row.

RA3 0000H Upper address set to zero assuming
less than 64 kbytes of memory.

RA4 XXXXH Address of character string

0000H Upper address set to zero
RAg XXXXH Address of matching attribute string
RA7 0000H Upperaddress set to zero
RAg XXXXH Address of Row Redefinition Block

Example of a RCB wiﬂ{ 3 segments

RAg 0000H Most significant bit is reset to
specify that this RCB has no Row
) Redefinition Block
RA{ XXXXy Address of the next RCB
RAp 00104 - Nohiddencharacters and 16
- \ displayable characters in segment 1
RA3 8000H Most significant bit to signify that
more segments follow
RA4 XXXXy Address of character string of first
segment
RAg 0000y Upper address set to zero
RAg XXXXy Address of attribute stringfor first
segment
RA7 00204 No hidden characters and 32
. displayable characters in segment 2
RAg 8000y Signifies more segments to follow
RAg XXXXy . Address of character string for
second segment
RA{p 0000y '
RA{{ XXXXy Address of attribute string for
second segment
RA{p 00144 Nohiddencharactersand 20 -
displayable characters in third
. segment
RAq3 0000y :Mostsignificant bit reset to signify
’ that the following segment is the
last one
RA{4 XXXXy Address of character string for third
segment
RA4{5 . 0000y
RA1g XXXXH Address of attribute string for third

segment

Background Row Redefinition Block and
Window Row Redefinition Block:

After power-up the CRTC requires at least one
Background Row Redefinition Block to initialize
internal CRTC registers storing the character
positioning. Additionally, when displaying win-
dows, at least one Window Row Redefinition Block
has to be provided after power-up. The CRTC
does not reset these registers when displaying a
new page; it overrides the contents only when it
encounters a new Row Redefinition Block. How-
ever, itis a good practice to add a Row Redefinition
Block to the first Row Control Block of both,
window and background. .

The maximum number of scan lines (TSLC + 1) is
32 since the CRTC provides a 5-bit scan line
address. The minimum value for the Total Scan
Line Count (TSLC) is determined by the height of

e

3-3

the character font. In order not to truncate a part of
the displayed character TSLC should be at least
equal to NCE (Normal Character End). NCE minus
NCS plus 1 (NCE —'NCS + 1) equals the actual
height of the character but it does not stan on the
first scan-lineunless NCS =0."

Example of a Row Redefinition Block

“data structure.

Windows are rectangular blocks of text that overlay
the background without altering the background
-The background remains intact
when the overlaying window is removed. When
compared to a software implementation of
windows, this hardware approach eliminates the
modification of the display linked-list when display-
ing or removing windows. Window boundaries can
be defined as large as the entire display screen, or
as small as .one character in width. When
displaying windows, the user must take into consi- -
deration that the window boundaries fall on
segment boundaries of the background. Conse-
quently, a heavily segmented background row -

“increases the number of choices of window

placements and sizes. If the sum of the number of
visible characters for a row is less than the window
size specified in the Window Definition Block, the
window row will be filled by the fill character code.

The rule for placing. multlple windows on the

screenis:

TSLC = 0D Row heightis 14 scanlines
NCS - = 02y Characters are displayed onthe NCE
© = 0AH 3rdthrough1ithscanlines ~
SPCS = 00y . Superscripts are displayed on the
SPCE = 084 . 1stthrough9thscanlines
SBCS = 04y Subscripts are displayed on the:
SBCE = 0Cy Sththrough 13th scanlines
CURS= 0By Cursorisdisplayed onthe 12th
’ and 13th scanline
CURE= 0C} - v ' :
DR = 004 Normalcharacterrow
UND =0CH Underline is displayed on 13th
scan line
SUND= 01y Shifted Underline on 2nd scan
line (over bar)

.

The two Row Attributes (10 bits) are not processed
internally; this word is output during horizontal
retrace to extend the attribute capabllmes of the
CRTC.

Attribute Processing

If a row displayet does not contain any attributes
then the CRTC.will not examine the attribute
addresses in that row's RCB. Otherwise, these
attribute, addresses contain the starting location of
the attributes list for that row. The attribute codes
accessed by the attribute address should appear
in the order the attributes are referenced. For ex-

ample, if the 1st character on a particular row is a su--

perscripted, the 2nd character is a subscripted,
and the 3rd character underlined then the attribute
string should be 0010y (superscript), 0008y (sub-
script) and 0002y (underline) respectively. Note
that the attribute string might be shorter than the
_character string since attribute can be fetched on a
demand basis. Referto Chapter 3.5 for details.

-
3.4 BACKGROUND AND WINDOWS

There are two. independent linked-list data
structures that describe background and windows.

» Windows must be separated vertically by at least
two background rows for non-interlaced mode,
and three background rows for interlaced or RFI
modes.

Figure 3.1 shows the linked-list structure for a multi-
window display. The Top Of Window Hard Regis-
ter (TOWH) points to the Window Definition Block
(WDB) of the first (topmost) window. Each WDB
links to the WDB describing the window below.
The WDB for the window on the bottom of the
screen (here: the third WDB) contains a pointer set -
to zero, specifying that the current window is the
last displayed window. If no window is to be display-
ed, TOWH is set to zero. Additionally, each WDB
contains the pointer to the first Window Row
Control Block (WRCB). AWRCB has a similar struc-
ture as a background Row Control Block (RCB). To
add or delete a window, the user simply changes
the next WDB pointer in the desured Window
Definition Block.

Non-Alighed Windows

If a window is not aligned to the segment boun-
daries of the background, a forced alignment will
occur after each re-link. This forced alignment
affects the background segments overlayed by
the window. Some example for forced alignment
areillustrated in Figures 3.2t03.6. ¢ ¢

3-4

S-€

/

o Figure 3-1 Window Linked-List Architecture
e REGISTER ‘ 05098B 3-1
CRTC REGISTER g
MEMORY
WINDOW WINDOW f———— — — — — — — ———————# wiNDOW
DEFINITION DEFINITION DEFINITION 1
BLOCK BLOCK BLOCK
— — —
DOW WINDOW WINDOW _
Rowr ROW #1 ROW #1
»
(" | winoow | . CHARSEQ#N ~ (| winoow CHAR SEQ#N 71 winoow CHAR SEQ #N
ROW | - ROW oo -
conTRoL| CoNTRoL BlooK -
BLOCK —[ATTRSEQ #1 | aTrRsEQ# | s ATTRSEQ#1 |
OPTIONAL ;- OPTIONAL _| : OPTIONAL _| :
ro = = = # o TTRSEQ #N
rimoow ATTR SEQ #N r voow ‘ |—-_ romoow] ATTR SEQ
REDEFINTON 1 REDEFINITON § REDEFINITON |
[) BLock hd L o - —
-~ WINDOW . WINDOW WINDOW
ROW #2 ROW #2 “ROW #2
A :] : (. :
(| vnoow) . CHAR SEQ#N (| winoow (| winoow
w | ROW N ROW
conTROL! . CONTROL CONTROL
0c -] ATTR SEQH1 BLOCK +— aTTRSEQ#1 | B BLock ATTRSEQ #1
OPTIONAL _| | I : OPTIONAL] l . i OPTIONAL :
T winoow ! ATTR SEQ #N T wivoow 1 ATTRSEQ#N T vaoow !
REDEFINITON | REDEFINITON | REDEFINITON |
N BLOCK N
L= L—=-4 WINDOW L= WINDOW
WINDOW
ROW #3 ROW #3 ROW #3
! : o ’ o A H
wivpow | | winoow woow
ROW ROW CoNTROL
CoagR: CLoeR" BLooK
BLOCK [ATTRSEQ#] aTTRSEQ# | —[ATRSEQ#1 |
(OPTIONAL) : OPTIONAL : OPTIONAL H
™ iaoow 1 L—‘_ T noow 1 |—’_ T oow 1 ‘—'_ (AR sEaan |
REDEFINITON | REDEFINITON { REDEFRITON .
L Bo i Brock L Box)
- . winoow# : WINDOW #2 WINDOW #L

Background/Window Strategies

The flexibility of the window linked-list structure
allows the placement of a window anywhere on the
screen, provided that the constraints mentioned
earlier in the chapter are met. The user can use
the flexibility: of the window placements to
implement a split screen format, or a display
containing virtual side by side windows.

A split screen format can place two equal-size texts

~on the screen, simultaneously, one in the window
and one in the background. This feature is useful
for character searching, comparing, and other text
processing purposes. Flgure 3-7 shows examples
of split screens.

The window placement rules specify that -two
windows must be separated vertically by two or
three background rows. However, virtual windows
can be placed side by side. Figure 3-8 shows an
example where the screen is divided into four
quarters. Any one of these four windows can be
scrolled independently. Virtual side-by-side
windows give the illusion that windows can be
adjacent to each other by redefining background
and windows via the control block structure.

' Examples of virtual side by side windows

The screen in Figure 3-8 is composed of two rows,
consnstmg of a total of four strings: ONE, TWO,
THREE and FOUR. These strings (segments) can
be placed anywhere in the system memory.. Two
Row Control Blocks (RCBs) link the segments
together.
Each segment is also pointed to by a Window Row
Control Block (WRCB). To be able to scroll a
particular segment, this segment must first be
defined as a window. Figure 3-9 shows the linked
list configuration for scrolling the segment ONE.
- Window display is enabled by changing the Top Of
Window Register (TOW) from “0” to the address of

the Window Definition Block (WDB). The WDB °

links to the segment to be scrolled.

To enable scrolling of the segment FOUR, the
pointer in the WDB linking to the WRCB linked list

needs to be modified (Figure 3-10).

3.5 ATTRIBUTES

The CRTC supports nine character attributes such
as: Cursor, Blink, Underline, Shifted Under-
line/Strike ' Through, Subscript, Superscript, Re-
verse, Highlight, and Ignore Character. Four
additional attribute bits are user definable. One
attribute bit specifies whether this attribute is
latched or unlatched. The total number -of four-
teen attribute bits are stored in the sixteen-bit
attribute word fetched on a character basis. The
four user-definable attributes are predefined
attributes; except for the Ignore Character and:
Cursor attribute (Dg—D1q of the attribute word)
which may be put out on the Altnbute Port lines
APo—AP4q respectively.

To maximize the flexibility of attribute processing,
the internal attribute processing of the CRTC can

" be disabled. This gives the user up to 11 user-

definable attributes. The internal processing of
the five attributes (Blink, Underline, Shifted
Underline/Strike Through, Subscript, and Super-
script) is controlled by the Attribute Redefinition
Register. The Attribute Port lines themselves are
controlled by the Attribute Enable Register. This
register allows the disabling of the output of -
particular attributes; the line becomes Low.

A character may ‘have any combination of these
attributes. The only exception is that one char-
acter cannot have both the superscript and sub-
script attribute.

" The number of hidden characters (Hidden #) in the

Row Control Block or Window Row Control Block -

SEGMENT 1

SEGMENT 2

SEGMENT 3

WINDOW 1

|
|

050988 3-2

Figure 3-2 The Original Aligned Structure

SEGMENT 1 SEGMENT 2

SEGMENT 3

WINDOW 1

050088 33

Flgure 3-3 The left boundary of the window is drawn Iinward. The front portion of Segment 2’s
data will appear in the gap not covered by the window.

T T
SEGMENT1- | SEGMENT2 | - SEGMENT3
[I
I |
" — S
I'sea-
WINDOW 1 | MENT
I 4
- L——
' I
05098B 3-4 . 1 1

Figure 3-4 The right boundary of the window is drawn inward. The data from Segment 3 starts
immediately after the window and part of the previously invisible Segment 4 becomes visible.

I . I
SEGMENT 1 | SEGMENT 2 | SEGMENT 3
| |)
| |
I e ,
WINDOW 1 SEGMENT 4
| | SEGMENT 3
05098B 3-5 | |

Figure 3-5 The right boundary of the window is extended outward. The extended portion of
the window will inhibit the loading of Segment 3 into the line buffer and.?

SEGMENT 1 SEGMENT 2.

SEGMENT 3

WINDOW 1

|
050988 3-6 1

Figure 3-6 The left boundary of the window is extended outward. The extended portion of the
window will overlay some of the right portion of Segment 1’s data.

3.7

!

| must account for the characters in the segment

 with the Ignore Character attribute set. The CRTC
needs this information in order to overlay windows
correctly. For debugging purposes, the ignored
characters can be displayed by setting the DH-bit
(Display Hidden DH=1) in Mode. Register 1.
Displaying ignored characters in a segment will
increase the number of displayable characters in
the segment. This may cause windows to overlay
incorrectly. ~

Attribute Invoking
The CRTC supports a demand attribute fetch to

save memory space and to reduce the bus
occupancy of the CRTC. The CRTC scans the

fetched characters_ for attribute invoking char-

_ acters. A character is an attribute invoking charac-

ter when it matches the Value programmed in the

_ Attribute Flag Register. Each time a match occurs

an attribute word is fetched from the attribute
string. Certain bits of the character code can be
masked off by the Mask, programmed in the same
register. The CRTC supports three basic options
as shownin Figure 3.11. -

In the straightforward Option 1, each character
invokes an attribute. In this case, the Latch-
ed/Unlatched attribute is ignored since latched

. attributes apply only to characters not invoking

attributes. To enable this scheme; the Attribute
Flag Register is programmed with 00xxy where “x”
isa“don'tcare.”

WINDOW BACKGROUND

WINDOW

BACKGROUND

050988 3-7

Figure 3-7 Horizontal and Vertical Split Screens

MDB

TOW

WDB

RCB X | WRcB A |—»f ONE]
ONE TWO
| wrcB B |— TwWO
] | WrcB ¢ |—»] THREE
UR

THREE FOUR — | WRCB D —{ FOUR

! : 050988 3-8
Figure 3-8 Split Screen with four Windows
o ‘ DB e — woB__|—#{wrcB A — onE |
TWO : . _

[wrce g —* two |
- \ [wres ¢ > ThRee |
THREE | FOUR .~ [wrcepo > rour |

Figure 3-9 Scrolling Window “ONE”

050988 3-9

3-8

In Option 2, only the characters with the most
significant bit of character code set invoke an
attribute. Therefore, the Attribute Flag Register is

programmed with 80804. A Mask of 80y specifies -

that only the most significant bit of the character
code must match the most significant bit of the
Value (here: “1”). The attribute invoking character
is displayed if the Invisible Attribute Flag in Mode
Register 1 is not set. If the Invisible Attribute Flag
is set, the attribute invoking character is not
displayed and the fetched attribute applies to the
next character.

In Option 3, only one specific character code (the
Flag) invokes an attribute. The Invisible Attribute
Flag is set to disable the display of these
characters. The Mask of the Attribute Flag
Register is loaded with FFy to specify that the
character code must match exactly the Value to
invoke an attribute. To program the character code

10y to 'be the Flag, the Attribute Flag Register is
loaded with.FF10y. :

Certain attribute port lines may be disabled (they
stay Low) by loading a pattern into the Attribute
Port Enable Register. For example, a value of
607Fy in the Attribute Port Disable Register will
enable all the predefined attributes and disable all
the user-definable attributes. The internal

-processing of the predefined attributes may be

disabled by using the Attribute Redefinition
Register. This yields up to 11 user-definable
attributes. The predefined attributes Reverse and
Highlight are not processed internally, so they can
be treated as user-definable attributes. . The

- processing of these attributes takes place in the

Video System Controller (Am8152A). To display
the attribute invoking character, the |AF-bit in
Mode Register 1 must be reset.

MDB

ONE ‘Two

FOUR
THREE T

T

WDB [WRcB A —o ONE |
Lwrce B —#f WO |

. |_LWRCB C |—®{_ THREE |

WRCB D |—#{ FOUR .|

05098B 3-10
Figure 3-10 Scrolling Window “FOUR”
Characters Attributes
8 Bits 12 Bits
Option 1 One-For-One
1 7 Bits -
0 128 Character Codes,
1 / Change of Attribute
Option 2 N §
ption p /
] /
1
C 1
FLAG
8 Bits 255 Character Codes,
Change of Attribute
Option 3 -
FLAG
03684B -6

Figure 3-11 Attribute I’=etch Options

_Latched and Unlatched Attributes

A latched attribute applies to the attribute invoking
character and all subsequent characters . not
invoking attributes. Latched attributes are not
affected by - window/background boundaries or
screen boundaries. ' This means that the latched
attributes in: windows carried over to the back-
ground will carry over.to the next frame. To avoid
strange results in processing attributes, it is a good;
practice to have a latched attribute for the first
character of each segment.

Examples of attribute processiné
The charaoters A and B mvoke attnbutes

The displayisACCCBDDD.

"A and B both

invoke unlatched underline
attributes-(0002p) : .
ACCCBDDD

" A invokes a latched underline attribute (8002;), B

invokes -an unlatched superscript attribute
(00104). ' ,
- AcccBpDD

A invokes a latched underline attribute (8002y), B
invokes a latched superscript attribute (8010y).

AcccBDDD

{

A invokes a latched underline attribute (8002), B

invokes a latched null attribute (80004).

ACCCBDDD

A invokes a latched underline attribute (8002y), C
invokes a latched null attribute (8000y), B invokes
a latched underline attribute (80024), and D
invokes latched null attribute (80004).

ACCCBDDD

The FAT-Bit

Setting the FAT-bit (Fill Code Attribute bit in the
Main Definition Block) will cause the CRTC to fetch
an attribute for the first Fill Code character in a Fill
Cdde string. If the Fill Code attribute is unlat¢hed,
then it only applies to the first Fill Code character. If
the Fill Code attribute is latched, then it applies to
the whole Fill Code segment. The first valid

character after the Fill 'Code segment should

unlatch the ‘previously latched attribute; this pre-
vents the attribute from bemg carried past . the
Fill Code segment '

The CRTC Ioads Fill 6ode characters into its
internal row buffer if either one of the three
conditions below is true:

« The character code pointer of a segment is zero;
the CRTC will fill the current segment with Fill -
Code. The size of the segment is defined by
Visible #. The Fill Code Attribute is fetched from
the address defined by the Attribute Pointer.

The. total number of characters fetched for a
window is less than the horizontal width of the
window (End Window Character #-Start Window
Character #). The remaining part is filled with the
Fill Code. The CRTC increments the current
attribute pointer to fetch the Fill Code attribute;
this means, the Fill Code attribute follows the last
fetched character attribute.

®

¢ The total number of characters fetched for a row
is less than that defined by the SLIM-bit in Mode
Register 1 (96 or 132 characters). The remain-
-ing part is filled with the Fill Code. The Fill Code.
attribute is fetched from the location following
the last fetched character attribute.

3.6 VERTICAL SMOOTH SCROLL

Vertical Smooth Scroll moves the text in fraction of
rows up or down; the effect is more eye-pleasing
than hard scrolling. The number of scan lines the
text is moved per frame is programmable in 16
steps. The programmable rate ranges from very
slow motion, where the viewer sees the text
jumping in steps of scan lines (lowest rate), to a
scroll rate where the text moves faster than the
eyes of the viewer can follow (highest rate).

The CRTC performs smooth scrolling by adding a
variable offset to the initial scan line count of the
top most row. . The -offset is. decremented or
incremented, on a frame basis, for scrolling up or
down, respectively. For example, if the scroll rate
is one scan line per four frames, then the CRTC will
scroll the text one scan line in one frame and waits
for three frames before scrolling another scan line.
In this manner, each character row appears to
move upward smoothly, as opposed to the jerky
motion of hard scrolling. The CRTC controls the
smooth scroll process with minimum CPU
intervention. The CPU only needs to update the
linked list each time an entire row is scrolled in or
out. All other operations that take place are

transpar entto the user.

3-10

The - background and windows can each scroll

“independently, but not simuttaneously. Either the

background or window(s) can scroll at any given
time. When multiple windows are to be scrolled
simultaneously they do so synchronously, with thé
. same rate, and in the same direction. The infor-
mation on this type of scrolling is defined in the
Main Definition Block. Windows can be scrolled
independently by ‘enabling window smooth

scrolling in the Main Definition Block and setting

the . Smooth Scroll Window bits..in; the Window
Definition Blocks of the windows to be scrolled.

Smooth Scrolling Up and Down

Flipping between two Main Definition Blocks
(MDBs) or two Window Definition Blocks (WDBs),
when scrolling background or windows, avoids
screen flickering caused by scanning partially
updated definition blocks. The Top of Page/Win-
dow Smooth Register alternately points to two
. different definition blocks. The CPU always up-
dates the definition currently not processed by the
CRTC. On relink request, the CPU toggles the
pointer in the Top Of Page/Window Smooth Regis-
ter. |Initially, the TOPS/TOWS Register points to
the definition block linking to the Row Control
Block (RCB) of the topmost row. Figure 3.12
illustrates this process.

Background and Window Smooth-Scroll

To smooth-scroll the background, only the scroll

bits in MDy4 of the Main Definition Block need to be

set. To smooth-scroll a window, the scroll bits in
MD,4 and the SCW bit in' the scrolling window's
definition block must be set. When a background
text is scrolled past a window text, a common TSLC
must exist between the window. row and the
background row that it overlays (Figure 3.13). If a
background row is scrolled past a window row with
their TSLC being unequal then distortion to the
display will occur.

It is essential that for any scrolling activity, the
TSLC in-MDg of the MDB must be equal to the
TSLC of the first RCB. To scroll a background-only
dis-| play with variable TSLCs on each row, the
TSLC in MDg of the MDB must be equal to the
TSLC of the top-most row. Consequently, MDg
must be constantly updated while the background
is scrolling. The update of MDg must occur before
the new pointer is written to the Top of Page
Register.

The interaction between the CPU and the CRTC
may be coordinated using one of three tech-
niques: polling, non-vectored mterrupt or vec-
tored interrupt.

" that it is done.

Polling

"The CPU may test the IPS-bit (Interrupt Pending

Smooth-Scroll bit in Mode Register 2) frequently to
verify the time when the CRTC requires CPU
intervention. The CRTC issues two types of inter-
rupts (setting the interrupt pending bit) distin-
guished by the Scroll In Progress bit (SIP—bit in
Mode Register 2). When the SIP-bit is set on
interrupt the ‘CRTC likes to have the Top Of
PageNVnndow Smooth Register updated. When
the smooth-scrolling is finished, the CRTC issues
an interrupt with the SIP-bit reset to notify the CPU
After servicing the requested
action, the CPU must reset the interrupt pendlng
by software.

Non-Vectored Interrupt ’

A less time-consuming and more efficient way of
requesting CPU interventions is to use hardware
interrupts. If the Interrupt.Enable Smooth-Scroll bit
(IES-bit in Mode Register 2) is set the CRTC will al-
so activate the INT line each time the IPS-bit is set.
The INT life may be connected to the non-vector-
ed interrupt input of the CPU or to a dedicated
interrupt controller such as the 8259A or Am9519.
In the end of the interrupt service routine the IPS-
bit must be reset to enable further interrupts.

Vectored Interrupt

The most elegant way of synchronizing CPU inter-
ventions is to use vectored interrupts. Therefore
the No Vector bit (NV of Mode Register 2) must be
reset. Similar to non-vectored interrupts the CRTC
also activates the INT line when IPS-bit is set.
When the CPU acknowledges the interrupt by as-
serting the INTACK line the CRTC strobes out an 8-
bit interrupt vector. Usually, this pointer addresses

- indirectly via a vector table the interrupt service

routine. Bit 1 of the interrupt vector reflects the
status of the SIP-bit so that testing the SIP-bit in

" the interrupt service routine becomes obsolete.

The CPU may execute different interrupt service
routines for both types of interrupts. Asserting the
INTACK line also sets the Interrupt Under Service
Smooth Scroll bit (IUSS-bit in Mode Register 2).
Note, that unlike the implementation in some
Z8000-type peripherals the interrupt acknowledge
does not reset the interrupt pending bit. Both the
IPS-bit and the 1USS-bit must be reset by software

Jinthe end of the mterrupt setvice routine. ©

3.7 'EDlTiNG THE LINKED-LIST

All text data is organized in a linked-list struéture -

3-11

simplifying editing tasks. The host CPU only
needs to modify the pointers in order to swap
pages, insert. lines, delete lines, or display
windows. Pages can be swapped simply by
reloading either the Top of Page Register pointer
or the pointer in the Main Definition Block linking to
the top most row. . Since the pointers have both an
upper and a lower part (two 16-bit values), a
. problem arises when the host CPU has to update

‘both for a new pointer value; the CRTC might use
a partially updated pointer in the case where the
CPU has loaded only either the upper or lower
pointer, and the CRTC gains the bus mastership
right after this load. This problem occurs when

updating both p6inters in Top of Page/Window

Register or the pointers in Main Definition Block. -

i

Row Control Block Memory

The user can prevent the problem by
synchronizing the host CPU updates with the
CRTC linked-list scanning, via the vertical interrupt

. feature. For example, the vertical interrupt may be

set to occur after loading the first row to signal that
the Main Definition Block may be modified without
any risk of running into the above mentioned
problems. If only the lower part of the pointers is to

| Tops }—» wMDBO |—® RCB1

| Tops |—»{ MDB1 |—# RCB2

SCROLLING UP ONE LINE

>
>

| Tops |—»{ mDBO |—® RCB3

SCROLLING UP ANOTHER LINE

»

050988 3-12

| TOoPS |—» MDBO |—»{ RCB3

RCB 4

- [Tops }— woB1 }—{ RoB 2 |

SCROLLING DOWN ONE LINE

Figure 3-12 MDB Swapping Simplifies Scrolling

312

‘be modified, the problem does not occur; pointers
can be modified at any time.

Row Insertion ,

First, link the new row to the subsequent row (Step
1 in Figure 3.20), then link the previous row to the
new row (Step 2 in Figure 3.20). When operating
only with the lower half of the pointers, this type of
modification can be done, at any time, without any
concern of synchronizaton to the CRTC
operation. .

Row Deletion
A row is deleted simpiy by linking the pointer in the

previous Row Control Block to the next Row
. Control Block (Step 1 in Figure 3.21).

Character Code and Attribute Pointers

The least significant bit of the linked-list pointers in

.registers or memories is “don't care.” The CRTC

resets this bit when operating with ‘the pointer.
Consequently, all addresses put out by the CRTC
are even. Since characters are 8-bit quantities
which can be located at either odd or even
addresses, the user has to take into consideration
that character code strings always start at even -
addresses. This might become a restriction if the
background characters are stored in a linear list and
this.list has to be split up into segments in order to
overlay windows. Since the character code
pointers are always even, the background list can
be split only at even addresses. The number of
choices can be increased by interleaving
characters with the Ignore Attribute Set.

BACKGROUND
BACKGROUND TLSC
MAY VARY
. BACKGROUND TLSC
WINDOW } =WINDOW TLSC . .
l BACKGROUND TLSC
J MAY VARY
SOFT SCROLLING WINDOWS
BACKGROUND)
S BACKGROUND TLSC
WINDOW | L = WINDOW TLSC

./

SOFT SCROLLING BACKGROUND

050988 3-13

Figure 3-13 Background rows overlayed by window
must have the same TSLC than the window rows.

3-13

SOFT SCROLL INTIALIZATION SUBROUTINE

MEMORY on i |
MAIN FLAG 0 ,
PROGRAM .
CALL SOFT l
INTIALZATION
MDS OF MDB¢—
TOSTART THE SCROLL VECTOR
SCROLL ADDRESS
‘ ENABLE VECTOR
CONTINUE INTERRUPT IN CPU
NORMAL :
EXECUTION

INTERRUPT ENABL!
BIT IN MODE2¢— 1

SET SSEBIT IN \
MDBO AND MDB1 '

I RETURN

SCROLL

TERMINATE

INTERRUPT

FROM CRTC SOFT SCROLL INTERRUPT HANDLING ROUTINE
(SIP=1)

CLEAR IPS AND
INSS BIT
FLAG 0 FLAG¢ 1

SSE IN)
STOP SCROLL MDBO— 0 STOP SCROLL uoseN,
MODIFY LINK MODIFY LINK
IN MDBO . IN MDB1
TOPS— MDBO “»{ RETURN FROM INTERRUPT J&— TOPS¢ MDB1
SCROLL TERMINATE
INTERRUPT (SIP = 0)
FROM CRTC
SCROLL TERMINATE
HANDLING ROUTINE
RETURN FROM INTERRUPT]
05098B 3-14

Figure 3-14 Flowcﬁart for scrolling up thevbacl‘(ground using vectored Iinterrupts

3-14

MEMORY

MAIN ’
PROGRAM Coe
SMOOTH SCROLL INTIALIZATION SUBROUTINE
CALL SOFT
SCROLL)
INTIALIZATION
TOSTART THE
SCROLL FLAG 0
CONTINUE ENABLE
NORMAL
phonuaL INTERRUPT IN CPU
INTERRUPT ENABLE
BITIN MODE 2¢ 1
SETSSEBITIN
MDBO AND MDB1
INTERRUPT
FROM CRTC RETURN
SMOOTH SCROLL INTERRUPT HANDLING ROUTINE
VERTICAL
INTERRUPT
TERMINATE
SCROLLING
ROUTINE
CLEARIPSAND INSS
BIT IN MODE2
FLAG 0 NO YES FLAGC 1
SSEIN SSE IN
STOP SCROLL MoSEN STOP SCROLL MDBO«— 0
MODIFY LINK MODIFY LINK
IN MDBO) IN MDB1
TOPSe— MDBO TOPSc— MDB1
050988 3-15

Figure 3-15 Flowchart for scrolling up the background using non-vectored interrupts

3-15

it |

SCROLL INTIALIZATION

CLEARIPSBIT IN
MODE 2

!

FLAG« 0

'

NO SCROLL& 0

;

LINE#¢ 0

:

SET SUD IN
MDBO, MDB1

:

RESET SWB IN
MDBO, MDB1

FLAG¢« 0

I

LINE#¢ LINE# +1

MODIFY LINK MDBO

:

TOPS¢« MDBO

START SCROLL

SET SSE BIT INMDB

READ MODE 2

CLEARIPSBIT

EXIT ROUTINE

FLAG¢« 1

!

LINE#¢— LINE# +1

RESET SSE IN
MDBO

|

NO SCROLL¢— 1

MODIFY LINK MDB1

!

TOPS «— MDB1

Figure 3-16 Stop scrolling up of the background after N lines

RESET SSE IN
MDB

'

NO SCROLL& 1

050988 3-16

3-16

SCROLL INTIALIZATION

CLEARIPSBIT IN- |
" MODE 2

!

FLAG« 0

'

NO SCROLLc— 0

!

LINE # 0

ET SWB AND RESE
SUD INMDB

SET/RESET SCW
BITS IN WINDOW
WDBS TO SELECT
SCROLLING/
NON-SCROLLING
WINDOWS

L

MODIFY LINK WDB1

START SCROLL

SET SSE INMDB

READ MODE 2

CLEARIPSBIT

NO _

NO SCROLL™ _YES
=1

NO

FLAG=0

RESET SSE IN
" MDB

!

NO SCROLL« 1

TOWS¢« WDB1

050988 3-17

Figure 3-17 “Stop-scrolling up of a window after N lines

EXIT ROUTINE

FLAG« 1

¥

LINE#¢— LINE# + 1

LINE=N

NO

YES

MODIFY LINK WDBO

RESET SSE IN
MDB

'

NO SCROLL¢— 1

TOWS ¢ WDBO

3-17

SCROLL INTIALIZATION

CLEAR IPSBIT IN
MODE 2

Iy

FLAG«0

:

NO SCROLL¢e 0

'

LINE #¢-0

b

RESET SUD AND
SWB INMDBO AND
M

FLAG« 1

v

LINE#¢- LINE# + 1

MODIFY LINK
IN MDB1

TOPS ¢ MDB1

T

START SCROLL
-
|
|
| MDB1¢~ADR OF
| NEXT TOP RCB
1
! !
1
! TOPS¢ MDB1
i
1
1
1
l
: SET SSE IN MDBO
| .
|
1
1 - .
| READ MODE 2
| .
1
1
I
| ‘
|
—d
: i
CLEAR IPS BIT
,
NO s:;1nou. YES EXIT ROUTINE
NO
NO « FLaG=0 YES FLAGe 1
LINE# ¢ LINE# + 1
RESET SSE IN YES 'RESET SSE IN
MDB1 MDBO -
! No !
NOSCROLL¢ 1 MODIEY LINK NO SCROLL¢ 1
T IN MDBO ‘ .
MODIFY LINK IN MODIFY LINK IN
MDB1 TO BE SAME MDBO TO BE SAME
AS MDBO AS MDB1
{
TOPS ¢« MDBO
050988 3-18

Figure 3-18 Stop scrolling down of the bgckgrbund after N lines

3-18

SCROLL INTIALIZATION

CLEARIPSBITIN
MODE 2

v

FLAG¢0

!

NO SCROLL& 0

‘

LINE #¢0

v

SET SWB AND
RESET SUD INMDB

'

SET SCWBIT IN
SCROLLING
WINDOW'S WDB

FLAG«0

v

LINE#¢—LINE# + 1

YES

NO

USIN& BACKWARD
LINK UPDATE WDB1

" TOWS«<—WwDB1

Figure 3-19 Stop scrolling down of a window after N lines

START SCROLL

WDB1¢~ADR OF
NEXT TOP WRCB

v

TOWS¢-MDB1

SET SSE INMDB

READ MODE 2

CLEARIPSBIT

RESETSSE IN
MDB

!

NO SCROLL¢ 1

'

MODIFY LINK IN
| WDB1TO BE SAME
AS WDBO

EXIT ROUTINE

FLAG& 1

!

LINE#— LINE#+1

YES ‘
NO

RESETSSEIN
MDB

!

USING BACKWARD
LINK UPDATE MDBO

NO SCROLL¢ 1

!

MODIFY LINK IN
WDBO TO BE SAME
ASWDB1

TOWS«— MDBO

05098B 3-19

3-19

ROW 1

6RIGINALCONFIGU RATION ROW INSERTION

CY .
=]

050988 3-20
Figure 3-20 Pointer manipulation inserts ROW -
L
ORIGINAL CONFIGURATION ROW DELETION
C : 050988 3-21

Figure 3-21 Pointer‘manipulatlon deletes ROW

© 320

CHAPTER 4
- VIDEO SYSTEM APPLICATIONS

\

.

4.0 INTRODUCTION

This chapter outlines three system applications of
the .Am8052 and the Am8152A. = The first
application describes a typical design with 8 pixels
per character.and a 40 MHz pixel rate. In the
second application, the character width is increas-
ed to 12 pixels and it will be shown how the 9-bit-
wide input of the Am8152A is multiplexed-to load
the wider character slice. The third application,
proportional-spacing, discusses pipelining of the
data flow, which becomes necessary at high
character clock rates.

4.1 TYPICAL APPLICATIONS

Figure 4.1 shows a non-proportional spacing-

application operating the video system at 40-MHz
- pixel rate. The character matrix is 7 x 9 pixels in a
character cell of 8 x 14 pixels. The rightmost pixel
is blanked. The Character Clock defining the rate
of characters being shifted out can be determined
by dividing the pixel rate by the horizontal width of
the character cell:

40 MHz /8 =5MHz.

Since this video system employs only a single
Video System Controller (VSC), which does not
need to be synchronized to an external dot clock,
the.internal crystal oscillator can be used. The
crystal frequency can be determined as

"40 MHz/5 =8 MHz.

Since the CLKj frequency is constant, the Clockp
Divide Ratio inputs (CLKyDR<3:0>) may be
hardwired to High or Low, respectively, instead of
generating new values on a character-by- character
basis as in the case of proportional spacing. Sincé
" no trailing blanks are used, TB<1:0> are tied Low.

The formula for calculating the appropriate Clock»
Divide Ratio is shown below: :

N=n+TB+2

Number of pixels/character

CLK»DR programming

Number of Trailing Blanks

adjust range to 2..17 pixels/character

Wwononn

N
n
B8
2

In this example, “n” becomes 8 — 0 — 2 = 6. Since -

" (MCLKy).

the character matrix is 7-bits wide horizontally,
inputs DD7 and DD8 can be grounded. The 256
different characters are addressed by the 8-bit
Character Code (usually an ASCIl code). The 14
scan lines, per character cell, are addressed by the
4-bit Scan Line Address. Altogether 12 bits are
used to select a particular character slice, which
implies using an 8K x 8(7)-bit Character Font
Generator (usually ROM, PROM, or EPROM).

A 5-MHz CLK; translates to a 200 ns character
clock period. The following calculation shows how
the maximum allowable data access time for the
Character Font Generator is determined. The
Am8052 strobes out the Character Code
(CC<7:0>), and Scan Line Addresses (R<4:0>)
with a propagation delay to the Character Clock
The character slice data addressed
needs to-be valid before the next rising edge of
the Character Clock to allow the VSC to latch it.
Therefore, the propagation delay of the Am8052
plus the maximum access time of the Character
Font Generator plus the set-up time required by
the VSC must be less than one character clock
period. Assuming the Am8052 propagation delay .
from MCLK, to CC and R is 55 ns (6-MHz spec),
and TCLK> to MCLKj delay is 8 ns, and the set-up
time required for the data to TCLKj is 20 ns, the
maximum access time becomes:

200ns-55ns-8ns-20ns=117ns.

Am27843 (4K x 8) PROMs satlsfy this requirement
(55 ns maximum).

4.2 MULTIPLEXING THE DATA INPUTS

This application features a system of 12-bit-wide,
non- proportional spaced characters at 60-MHz dot
rate. ltis illustrated in Figure 4.2. Similar to Figure
4.1, the on-chip crystal generator can be used to
generate the Dot Clock. The crystal frequency is
60 MHz/5 = 12 MHz: The inputs specifying the
number of Trailing Blanks to 'be added are
grounded (no Trailing Blanks). Having a non-
propomonal spaced set of characters means that
there is no use for the Tralllng Blanks; therefore,
their mputs are grounded..

The CLK> Divide Ratio mputs are hardwired to |

‘High and Low to provide a constant divide ratio.

The Dot Clock is divided by 12 to generate the

Character Clock. The inputs are programmed as:
12-0-2=10(1010p).

Given the 60-MHz dot rate and the 12-pixel-wide
character cells the CLKy frequency can be
calculated as

CLKp=60MHz/12=5MHz.

The character clock Period becomes 200 ns.
Since the character cell is wider than the data input
path of the VSC, the data must be pipelined. With
the rising edge of the clock, the right 9 pixels are

loaded. DDO is the rightmost pixel. With the next
falling edge of the clock, the VSC latches the left 8
pixels. In this application, only 3 bits are loaded
with the second clock edge. '

The CRTC outputs the Character Code' (CCp—7)
and Scan Line Addresses (Rg—4) with a propaga-
tion delay of 55 ns to the rising edge of MCLKo.
The maximum skew between TCLK{ and MCLKj
are 8 ns and 12 ns for rising and falling edges
respectively. Similar to the application shown in
Figure 4.1, the maximum allowable access time is:

200ns-8ns-20ns—-55ns=117ns.

_ SYSTEMCLOCK
i v
MCLK; MCLK, MCLK, MCLK,
VSYNC VSYNC 1 5 pF
HSYNC + HSYNC X, :|='_
BLANK BLANK T 8MHz
APy CBLANK X2 AP
56 pF
AP, »| FORE - P
AP, »l BS
8 .
Amg052 Am8152A
CRTC AP, REV .
AP FS Xg [
. —1 18 =
Ros Coz GND [¢
Vee o)
T T71° cikpr EXTDCLK [e—
. 2
12 S AADJ
~50Q
Am27543 > oo
7 - .
axs : 0-6 V- 1
— DD,
. +— oD,
DIGITAL GROUND ANALOG GROUND v
GNB, oNDy HSDLD VSDLD VID1,2
N A
CRT
MONITOR
050988 4-1

Figure 4-1 Non-proportional Spacing System

42

Since PROM B has to present the data at the
inputs of the register with a set-up time of 2 ns
(Am29821 parameter), the access time of PROM B
canbe calculated as:

200ns—55ns-8ns—-2ns=135ns.
The multiplexing of the data is as follows:
The CRTC outputs the character and scan line
information for the characters synchronously to

MCLK». The Character Code and the Scan Line
Address select a particular character slice. Since

the VSC expects 9 bits of data on the rising edge
of TCLK,, and PROM A supplies only 8 bits,
PROM B provides the 9th bit; it is connected to
DDg. Enabling PROM A with TCLK» ensures that
the first 8 bits are present at the VSC data inputs
prior to the rising edge of TCLK>. PROM B is
permanently enabled, therefore, the 9th bit is
available at the rising edge of TCLKj but is ignored
on the falling edge. The remaining 3 bits (12-bit
character width) are loaded on the falling edge of
TCLKy at which time the Am8052 has already
selected the next character. Therefore, the output
of PROM B has to be registered (Figure 4.3).

~

SYSTEM CLOCK
MCLK; MCLKp MCLK; MCLK;
VSYNC »| VSYNC L 56 pF
HSYNC HSYNC X; fe I
BLANK | BLANK T 12MHz
X2
AP, CBLANK WAL e
AP FORE T
AP, BS
Amg0s2 Am8152A
CRTC APy REV)
AP, » Fs X3
— TBg.1 - —= 0.47pF
CCoz7 Ro-s Veo GND, |
8 4
|___J 0 EXTDCLK |«
. . L
CLK,DR
2 *20R
12 3 AADJ
DATA 5
@ ADDR Dy_7 8 v g ~500
Am27843 v
aKxs8 OE TCLK,
. ' DDo-7
8
@ | —V} DDg .
= HSDLD VSDLD VID
(8 AD0R DATAB 1 G DATA| 1,2
Do-7 | 30 aQ 3
Am27841 o Am20821
4K x4 oF cp ‘

05098B 4-2

Figure 4-2 Multiplexed data path to load wider character sliges

43

43 CHARACTER PIPELINING.

At h;gh character clock rates or in propomonal-
-spacing appllcatlons the. character data path
needs to be pipelined to relax, as much as
possible, the access ‘time requirements for the
Character Font Generator. Assuming a 8-MHz
clock rate and taking the approach of the examples
in Figure 4.1 and Figure 4.2 would require an
access time of:

125 ns—8 ns — 45 ns — 20 ns =52 ns.

~ The following analysis points out how this access
time can be relaxed (Figure 4.4).

The clock to output delay of the Amé9821 register

is specified at 12 ns. The set-up time is 2 ns. This

calculates a worst case access time of:
 125ns-12ns-2ns=111ns.

Pipelining both input and output data gains about
50 ns (Figure 4.5).

If only the input data is pipelined than the
requirement becomes:

125ns-12ns—-20 ns='93 ns.

This approach still gains 41 ns.

The CRTC allows programmlng the skew between -
Character Code and Attribute output .or Control
Signal' (HSYNC, VSYNC, and BLANK) output.
(See Mode Register 1 description in Chapter 2)
This skew can be used advantageously in this case
by advancing the Character Code. and Scan Line
Address by one or two CLK; cycles so that the rest
of the signals do not need to be plpehned
externally. '

4.4 CHARACTER/SYSTEM CLOCK
SYNCHRONIZATION

In proportional-spacing applications, the Cf\aracter

~ Clock-defining the Character Output Rate and the

System Clock defining video timing (VSYNC,
HSYNC, BLANK) must be synchronized at the left
edge of the display in order to avoid a. jagged
edge. The VSC synchronizes both clocks when
the SSEL (Synchronization Select) is tied High. If
SSEL is Low, no synchronization occurs.

Synchronization ensures that HSYNC and BLANK
change synchronously to CLKj, resulting in a
straight and smooth'left border of the display. The
right edge of the screen also is straight and

‘ e ’ 300 nsec : s |
CC,R | X ATH CHARACTER . X (N+1)Aa 6HARACTga
DATA, XXX ’nTH CHARACTER YOOOXK ‘
~DATAg —XOONXX ‘ nTH CHARACTER ‘ XXXXX‘, ‘ ‘
DATA,_ ‘ X (a-1)Ts CHARACTER X nTH CHARACTERS ’
DDg.7 _ X L X X Doz X Dg.11
. . vl

~
nTH CHARACTERS

050088 4-3

Figure 4-3 . Multiplexed character data timing’

3

4-4

smooth since the width of the display is a multiple
of the fixed-rate' System Clock (CLK1). Note, that it
is the system designer's responsibility to ensure
that the last characters in any line are blank, so a
valid character is not truncated due to the
asynchronism of CLK4 and CLKj at the end of a
scan line.

The synchronization process of CLKy and CLK»
takes place in the beginning of HBLANK. The
VSC holds CLK» Low.for several CLK; cycles then
toggles in phase to CLK¢ until it recognizes
“HBLANK going Low (inactive). From then on

CLK> is generated as. controlled by the divide ratio
inputs.

Additionally, the VSC delays HSYNC and VSYNC
so that they change synchronous with the. Video
Data (VIDy and VIDp). The internal delay buffers
are clocked by GLK».when SSEL is Low, and by
CLK4 when SSELsis High. Since these delays
match the video delay when SSEL is Low, these
buffers can be used to latch any other video
attribute the user might chose to use, in addition to
the given attributes (FS, BS, REV, etc.).

SYSTEMCLOCK
MCLK, MCLK; | | MCLK, MCLK,
VSYNG VSYNG L oF
HSYNC HSYNC Xy, I
BLANK BLANK T 6.4MHz
. Xz
APy CBLANK o
AP, FORE I
Amaosz P2 8S
APy Fs AmBi52A
CRTC
AP REV ‘
. X3
8o ' aJ: 0.47pF
84 _ GND2

Am27S21

256 x4

3 Hg’ CLK,DRy » =
CLK,DR,

EXTDCLK

! AADJ >
4 .
: ~50Q

<iI

- Tow,

_ a> DDg7 -

DDy i
J HSOLD VSOLD VD12

05098B 4-4

L1

- Figure 4-4 "Character pipelining in proportional spacing systems

45

4. 5 CRYSTAL OSCILLATOR LAYOUT

The VSC has two power supplies: a digital power
supply (Vg1 and GND4) and an analog” power
supply (Vooz 'and GNDo). This split enables the
‘system designer to keep the analog supply as
clean as possible. A low-noise analog supply is
essential for a reliable operation of the crystal
oscillator and the phase lock-loop (PLL)
multiplying the crystal frequency, especially if the
operatnon of the PLL is a direct funcuon of the
noise-level on the supply.

The PG-board should be laid out in such a way that .

the lines from the pins of the VSC to the external
capacitors, resistors and crystal are as short as
possible. These passive circuits are connected to
the analog ground (GND5).

4.6 HALF DOT SHIFT WITH THE
Am8152A

Toincrease the display quality, character slices can -

be shifted half a dot as shown in Figure 4-6. One
character font bit enables or disables this feature.
This bit is delayed by two D-flip-flops to compen-

HDS I 1 1 111

%

At dA A a0 -0

Figure 4-6 Half Dot Shift

sate for the delay in the Am8152A (Figure
4-7). . The AND-gates route the output of the
Am8152A (VID2) either triggered flip-flop or to the
negative edge triggered flip-flop. If Half Dot Shift is
activated, the appropriate character slice is shifted
half a dot to the left. .

l‘—-} 125 nseck—b|

CC/R nTHCHARACTER X .. (n+1)CHARACTl%Fl X] X
- 1ST LATCH X nTHCHARACTER X (n+1)AS CHARACTER X
PROMOUTPUT ‘ ’ i X nTHCHARACTER ~ X (n+1)CHARACTER X
,2ND LATCH, DD X X nTHCHARACTER X (n+1) CHARACTER X:

050988 4-5

- Figure 4-5 Pipelining Timing Diagram

i

46

LYy

o

D —D_—_. VIDEO

» HDS
D a D a
TCLK, —| Hbs
MCLK, D , D @ l
Am8052 " MCLK, , .
' 7 .
ATTR > .
Am8152A —]
’ .
CHAR SLICE VID]
FONT 2J el
I 4 -

0 EXT . 050988 4-7

Figure 4-7 Half Dot Shift Diagram

DOT CLOCK

CHAPTER 5
GENERAL APPLICATIONS

Some applications for alphanumeric CRT systems
require a dynamically programmable character-set
to be able to modify the character font, to add
special characters used in some foreign langua-
ges, or to provide semi-graphic characters. In this
chapter, three application notes for the CRTC are
introduced. These applications examples by no
mean imply to cover solutions for all types of appli-
cations; however, they serve to motivate desig-
ners to use their imagination and creativeness in
finding the ideal solution for his or her particular
application design.

5.1 LOADABLE CHARACTER GENERATOR
FOR AN Am8052 SYSTEM

This application note describes a Loadable
Character Generator for an Am8052 based alpha-
numeric -CRT system, implementing the unique
approach when the Am8052 itself loads the
characterfont. It assumes that the reader is familiar
with the Am8052. For background information,
refer to Section 2. An alternate approach is descri-
bed inthe chapter on low cost, smart terminals.

There are two basic approaches to the design of a
Loadable Character Generator:)

(i) The “usual” way of designing a Loadable
Character Font Generator (RAM) is to
implement it as a dual-port memory where the
CPU has direct access. An address multiplexer
is then inserted at the Address Bus of the Char-
acter Generator (CCq-7 and Rg_4), connect the
output via a bus driver to the System Data Bus,
and control both the multiplexer and the driver
by arbitration logic. To prevent screen flicker-
ing, the Character Generator should only be
accessed during horizontal or vertical retrace.

The advantage of this approach is that the char-
acter RAM can be read and written directly by the
CPU. Also, the Font RAM can be altered rapidly.

The dlsadvantage is that a large number of TTL
support parts is required to bunld the two-port RAM
control logic.

(i) The second approach utilizes the Am8052 for
loading the Character Generator. Most of the
pins of the Character Generator are already
connected to the Am8052. Only a path to the

data bus of the Character Generator must be
set up; a few additional TTL devices are need-
ed to implement this feature. The Character
Generator information is stored in the linked list.

Advantage of this approach is the small amount of
support logic required.

The disadvantage is that more sophiéticated
software is required to control the loading process,
and the characterfont cannot be read back.

~ This application note focuses on the second

approach, utilizing the Am8052 (Figure 5-1).

A blank part of the screen is utilized to load the
Character Font Generator. In the initialization
phase, this space can be the entire screen; during
display time, it may be a blank space at the bottom
of the screen. The number of characters per frame
which can' be reloaded is directly proportional to
the space allocated.

The screen is divided into two parts (Figure 5-2):
the visible part of the screen displays the normal
text; the invisible, lower part hides the rows used
to load the Character Font Generator. In this
example, there are 18 scan lines at the bottom of
the screen that are used to load a character box of
7 X9 pixels. These scan lines are located between
normal-vertical-blank active and vertical-sync
active. The rows are hidden by setting a user-
definable Row Attribute Bit that externally blanks
the video. Each character of the rows invokes an
attribute word. As in the usual display mode, the
character code addresses a character box in the
Character Generator.. However, the purpose of the
attribute word changes; now, it contains the data of
the character slice to be loaded.

Detailed Description

The Am8052 provides user definable data during
horizontal retrace. This data is stored as a row
attribute word in the Row Redefinition Block. It can
be latched with the falling edge of HSYNC. In this
design, two bits are used to control the load
operation. One bit blanks the screen to hide the
rows containing the Character Generator data; the
second bit disables the Read input of ‘the
Character Generator and enables the attribute bus
driver. The bus driver connects the attribute port

.5-1

CLK2

<

CLK1
A A
CURSOR
UND LOAD ch
APO-10 LATCH’
HSYNC 1 L\—\
BLANK) 4 BLANK
EN [«
DRIVER
Amg052 _—> . :> _ AmB152A
RD
A
DATA
RO-4 «—
CHARACTER WR
JAaobR FONT
. GENERATOR
CCo-7 > .
= ,

05098B 5-1

Figure 5-1 Using the Am8052 to Load the Character Generator

FIRST HIDDEN ROW
(3 SCAN LINES)

TO LOAD UPPER -
PART OF CHARACTER

SECOND HIDDEN ROW

(6 SCAN LINES) J

THIRD HIDDEN ROW
(9 SCAN LINES)

VISIBLE PART OF
THE SCREEN

ATTRIBUTE BLANKED

™ (USED TO LOAD CHARACTER GENERATOR)]

——

<4——18 SCANLINES

Figure 5-2 Screen Layout

to the data bus of Character Generator. Since this
design assumes a 7 X 9 character box, only 7 bits
of the attribute are connected. to the Character
Generator; the 8th bit is grounded at the input of
the driver. Any character fonts size can be suppor-
ted in order to accommodate design changes.)

Two bits of the attribute port and the cursor output
are used to enable the loading of specific character
slices. These 3 bits have a common feature. The
character part where these attributes are active is
programmble on-a character row basis. “Underline"
and “Shifted Underline” are active during one scan
line in the character cell. The scan line number,
where these two attributes are active, is specified
in the Row Redefinition Block. The values can be
changed on a row basis by specifying a Row
Redefinition Block for each row. "“Cursor”, is an
attribute which is active during part of a character.
“Start” and “End” values for this attribute is speci-
fied in the Row Redefinition Block. If these values
are identical, the attribute is active only during one
programmed scan line (see Tables 1 and 2).

The 3 attributes determine which slice of the
selected character is loaded. The attribute string
layout of Figure 5-4 assumes that the Row
Redefinition Blocks contain the values of Tables 1
and 2. Each attribute word activates one of these
3 attribute bits to select a specific character slice.
The character slice is loaded with' the 7 bit value
contained in the attribute word. Three consec-
utive aftribute words in which each activates a
different attribute bit (Figure 5-4) so that the upper
3 slices are reloaded in the end. In the next row,
the row attributes are redefined to enable loading
of the middle part of the characters. A third row
loads the remaining lower part.

When one of the 3 attribute output pins is
activated by the attribute word, and when a latched
row attribute bit disables Read, then the Character

Generator receives a Write pulse to Strobe in the
character slice (Figure 5-3) '

Seven attribute bits must be programmed in the
Attribute Redefinition Register as user-definable
attributes. In this design, a maximum of 44
characters-per-frame can be reprogrammed. This
number is determined by:

¢ The length of the row buffers (1'32 characters)

* 18 scan lines are used for loading the Character
Generator

e Each character has 9 slices (9 character pos-
itions in the row buffer).

Modifications to support character font generators
wider than 7 bits:

Loading can be done in steps. A character box
which is' 12 pixels wide can be loaded ip two steps,
each loading 6 pixels. The 7th bit of the attribute
now selects the left or right part. An alternative is
to use a latched attribute bit (an output of the latch
i Figure 5-1) to select the parts. Note that these
attributes are constant in the entire row, therefore,
different parts cannot be loaded if a latched
attribute is used.

Scan line count can be reduced when less
attributes are used to select character slices. Note
that the minimum scan line count of a row is
determined by the time the CRTC needs to fill the
row buffer.

An arbitrary number of attributes (“n”) are utilized to

select slices. The first row loads the upper “n” char-
acter slices and has a minimum scan line count of
“n.” The second row loads the next “n” slices and
has a scan line count of 2 » n. A third row loads

CLK2 /T \—/ \ \ /F __/ \
.
RD /) U
ALSO: APO-10, CCO-7,
{ RO-4 STABLE
LOAD
WR \ /

05098B 5-3

subsequent “n” slices and has 3 « n scan lines. In
this example of a 7 X 9 character box and 3 slice
attribytes, 2 rows are needed to load all 10 slices.
The first row loads the upper 3 slices and contains
3 scan lines, the second row has 4 scan lines and
loads the middle 3 slices. The third row has 9 scan
lines and loads the lower 3 slices.

The “old” vertical blank active time must be repro-
grammed to allocate space for the character-load
rows. An attribute bit will blank this part of the
screen so that there is no visually detectable differ-

ence on screen. ; ‘
Figure 5-5 shows. two 7 X 9 character cells con-
taining an “A” and a “F”. Figure 5-6 shows parts of
the linked list data strings specifying the data to
load the character fonts of these characters.

A 7 X 9 character set of 256 characters fits into an

8K X 8 RAM. The maximum access time depends

on the resolution of the display (high resolution =>
about 60 ns)

CURSOR

1JoJloJi1]oJo]1]o]lo .
UND [0 [17Jololilolol1]o)
SUND [0 Jo[1Jolol1]o]lol1 .
S[S[S|[S|S|S[s[s[s
tjefofefefefefege
ATTRIBUTE [I [L[pr g1l
grsjcjcjcjecfc|jcjcic|c
E|E|E|E|[E|E|E|E|E
#|#la|ala]|s 8|2
12|31]2]s8]1]2]s
‘ clecleclcfc]clclicic
, H|H|H|H|H]|H|H]|H|H
CHARACTER | Al Al A|A|A|A|A|lA]A
copE [R|R|R|R|R|R|R|R|R
AlAalAalalalalalala
1clclclclclc|lclc|c
#|alalalals]la|s)s
1]1l1]l2]l2]2]3]|s]s
05098B 5-4
Figure 5-4 Character and Attribute List
7 BIT CHARACTER SLICE 7 BIT CHARACTER SLICE
SLICE 1 ‘ o
SLICE 2
SLICE 3
SLICE 4
SLICE'5
SLICE 6
SLICE 7
SLICE 8
SLICE 9 :
05098B 5-5°

Figure 5-5 7 x 9 Character Box

5-4

Table 1 Parameters for Row Redefinition
Block of 1st Row

" controller (CRTC) can achieve this effect by

TSLC = 4 Thefirstrow loadsonlythe
upper five character slices

NCS = 0 Normalcharacterstartonscanl
! ine0

NCE 4 Normalcharacter end onscan
. line 4

CURS = 0 Cursorstart

CURE = 0 Cursorend

UND = 1 Underline active online 1

SUND = 2 Shiftedunderline active online 2

Table 2 Parameters of Row Redefinition
Block of 2nd Row

TSLC = 9 Thesecond row loads the lower

five character slices (scanning
the first five lines a second time is an
unavoidable overhead)
NCS = 0 Characterposition startsat0and
NCE = 9 endsat9 ’
CURS = 5 Allothervalues are incremented
by 5to
CURE = 5 accesslower5scanlines
. UND = 6
SUND = 7

5.2 HORIZONTAL SMOOTH SCROLL

Vertical screen scrolling on standard terminals is
done by replacing the text line by line; the text
appears to jump up or down the screen. A more
desirable and ergonomic approach is to smooth
_scroll the text. The Am8052 alphanumeric CRT

replacing the scrolled line on a scan line basis. The
text moves in steps of line partitions (scan lines).
This produce smaller jumps and is almost
unnoticeable to the viewer; it appears to be a con-
tinuous, smooth, upward or downward movement
of the text on screen. The scrolling itself is exe-
cuted without CPU interventions.-

In applications that involve displaying text running
off the screen horizontally requires scrolling the
text accordingly. Once the user has experienced
‘vertical smooth scroll, the demand for horizontal
smooth scroll will come naturally. Similar to vertical
smooth scroll, horizontal smooth scroll can be
done by replacing characters on a pixel basis. Al-
though the CRTC does not have a built-in mechan-
ism to control horizontal smooth scrolling, this appli-
cation note provides some ideas for a practical im-
plementation. External MSI logic and CPU interven-
tions are required to control the scrolling process.

The basic idea behind this scrolling technique is to
place a dummy character in front of the line. This
character is made invisible by delaying the
horizontal BLANK with external logic. The entire
line is then moved by modifying the width of this
dummy character, utilizing the proportional
character capability of the Am8152A Video System
Controller (VSC). The blank delay covers the en-
tire dummy character when it is programmed for full
width. By reducing the width of this character, the
first visible character moves left and gets partially
covered. Characters seem to enter the screen on
the right side and leave on the left side. Figure 5-7
diagrams the process.

1ST ROW

2ND ROW. : 3RD ROW
CURSOR 1JoJofJiToTo 1iJolof1]o]lo 1iJolofJi1]o0Jo
UND Oo[1]lofof[1]o0 o[1loJo[i1]o Oj1jlofol 1|0
SUND 0jlo]1Jol o1 0 1foflol1 ol 1 01
R REE 1Tl1]1]0fl0]0 BEIE K
olo[t1]ofjofo o|l1{o]jo]1]o oJojJojo|o|o}]
SLICE - |o|t1|lofo| 1]1 ol1{of1}1]1 ojolof1f 1]
DATA 1|ojlo]1]o]o o|1]ojof1]o0 ojlofojo|ofo
o|l1lo]o]1{o ol1|lojojolfo ojlofojo|ofo
ojol1}ojo}o o|j1]ojojo}o o|ojlojJo]o]jo
ojofojojo}fo 1/1/1]ojo]fo 1]ojojo]o]o
CHARACTER 44l a6 6]6 414l 4)6|6]6 414 4I6| sls‘
CODES 111} 1]6]6]6 1]1]1}6] 6|6 1|1]1}6] 6]6
SLICE # 1t 2 3 1 2 3 4 5 6 4 5 6 7 8 9 7 8 9
: UPPER UPPER MIDDLE ~ MIDDLE LOWER MIDDLE
PARTOF PART OF PARTOF PARTOF PARTOF PART OF
e P A e A o

05098B 5-6

Figure 5-6 Character Code and Attribute sequence to load “A” and “f”

Detailed Description:

Here it assumes a non-proportional spacing
environment with a character width of 8 pixels, and
a dummy character width of 10 pixels; there is no
restriction to these values. External logic hides the
dummy character and the first visible character by
delaying BLANK (10 pixels). The delayed BLANK
masks off the serial video stream. put out by the
- VSC (Figure 5-8).

By reducing the character width of the dummy
character from 10 to 2 pixels in 8 steps, the
leftmost character is moved out. The dummy
character has to be wider than the widest visible
character in order to hide a dummy character (2
pixels minimum- width) as well as the' leftmost
character in the blanked space (Step 9 of Figure 5-
7). The width of the dummy character can be
controlled by using several methods described in
the following paragraphs. Step 9 of Figure 5-7 is
optional, it is shown to clarify the entire process.

full size (10 pixels) when only one pixel of the
leftmost character is left visible (Step 8 to Step 10).

Horizontal smooth-scrolling can be made frame-

~ synchronous by incorporating the Vertical Interrupt

of the CRTC. This interrupt is issued once per
frame. The scroll rate can range from as low as one
pixel per several frames to several pixels per frame. ’
This is similar to the programmable scroll rate for
vertical smooth scrolling. For additional.i mformanon
refer to Section 2 of this handbook

External Blanking

One of the criterion for this application is to find a
simple way of delaying BLANK to the appropriate
number of pixels (example 10) to hide the dummy
character.

A practical approach is to delay BLANK by feeding
it through two D-flip-flops clocked by the system

The user can expand the dummy character to its ~ clock CLK1. This requires CLK1 period to be
BLANKED PART| VISIBLE PART OF THE SCREEN
TEP 1. DUMMY 18T 2ND 3RD
STEP 1: cHARACTER | cHAR. | cHAR. | cHar.
TOPIXELS | 8PIXELS
. " DUMMY 2ND 3RD
STEP 2. cHAR. ||cHar. | crar. | cHar.
SPIXELS [8PIXELS
. o.| 1sT 2ND 3RD 4TH
STEP & c.| cHar || cHar | cHar. | cHar.
3P, BPIXELS
[}
. pj tsT 2ND. 3RD 4TH
STEP 9: c] car. | chHar. | cHAR | cHar.
2P. BPIXELS
. pummy | 2nD 3RD | 4TH
STEP 10: cHARACTER| cHAR. | cHAR | cHar.
TOPIXELS | 8 PIXELS
arop 14 DUMMY 3RD 4TH ~
STEP 11: cHAR. || cHAR. | cHAR. | cHAR.
9PIXELS
LEFT BORDER
OF THE SCREEN 05098B 5-7
Figure 5-7

larger than the>charac1er clock period (CLK2) and
that CLK1 has the appropriate pixel width (Figures
5-8 and 5-9).

Another approach is to use a counter to delay the ’

BLANK for the appropriate number of pixels. The
counter is to be clocked by the DOT Clock and
enabled by the first edge of CLK1 or CLK2, after
BLANK active. The problem with this approach is
that an external DOT Clock must be available. Most

applications make use of the built-in PLL of the
VSC and consequently an external DOT Clock in
unavailable.

Width Control

The width of the dummy character can be modified
by using the proportional character display cap-
abilities of the VSC. In proportional character

D a D a DELAYED BLANK
‘ CLK — cLK
BLANK l‘ \
CLK1 -
Am8052
CLK1 VIDy _D_
BLANK VID, _D_
Am8152
050988 5-8
Figure 5-8 Delaying BLANK
CLK1 2 N N 2 N 2
BLANK (Am8052) ———\
DELAYED BLANK
CLK2 /D U
I
| .
X DUMMY
CHARACTERROW W Q B}
STEP 1 CHAR.
CLK2 I\ M\
| | |
|, | I
CHARACTER ROW D. \/\/ Q ‘
STEP 2 :
INVISIBLE | VISIBLE PART
PART
05098B 5-9

-

Figure 5-9 Delayed BLANK Timing

57

applications, where the character font generator
already contains a set .of characters with widths
between 2 and 10, no special hardware is neces-
sary (Figure 5-10). The CPU:-changes the dummy
character for each scrolling step. The new char-
acter has either a decreased or increased width,
depending. on the scrolling direction. Decreasing
the width causes a left scroll; increasing the width
causes a right scroll.. The row data list has to be
updated after scrolling an entire character.

- In proportional character applications, the user has

to keep track of the width of the,character inserted

or deleted when updating the row data list. The

modification of the width of the dummy character is

a function of the width of the inserted or deleted
character.

In applications with a fixed character-width, it might
be practical to add a character-font width generator.
to implement a character set of different widths for
the dummy character.

Another approach in controlling the width of the
dummy character is to include the bias of the row in
the Row Attribute Word. This attribute word is put
out during horizontal retrace, and can be latched
by HSYNC (Figure 5-11). The character attribute
AP9 is only activated during scanning the dummy
character to switch the multiplexer. The multi-
plexer normally guides the Character Font Gen-
erator output to the VSC CLK2-Divider inputs.
Only during scanning the dummy character the 4-
bit width stored in the Row Attribute Word is used.
This approach is advantageous when the linked-
list contains only one Row Redefinition Block
common to all rows. Inthat case, the CPU only has
to update one word to move the screen hori-
zontally. In the other approaches the CPU has to

update one character per row.

5t

5.3 BIT-MAPPED GRAPHICS WITH
Am8052

This section-outlines a second approach in using
the Am8052 for bit-mapped graphic. The design
discussed in the reprints of magazine articles in the
appendices dealt with graphic information stored in
a special x-y addressed display memory. The
linked-list interpreted by the Am8052 provides
only the address information and not the display
information itself. The approach presented in this
section involves linked-list providing all display
information including the pixel data. The software-
oriented implementation requires only one
external 8-bit multiplexer (minimum configuration)
whereas the hardware oriented implementation of
the design outlined in the magazine article
requires multiplexers, a separate display memory
including refresh circuitry, and bus arbitration logic
to let either the host CPU or the CRTC access the
display memory. The advantages of this scheme -
over the design shown in the magazine articles can
be summarized as follows:

o less external circuitry

¢ no dual-ported display memory, puxel and text
data is stored in system memory

However, this approach has some trade-off and
limitations compared to the design in the ‘last
chapter.

» mixed text and graphics only on horizontally split
screens (entire scan lines are allocated for enher
text or graphics)

CC/R FONT

DD

——

AmB052

Am8152A

[——

CLK,

05098B 5-10

Figure 5-10 . Variable Character Widths

58

¢ heavily increased system bus" utilization (up to
100%) when displaying graphics, therefore dual-
bus architécture appropriate

Both designs provide the same resolution for text
and graphics (same dot clock). Both designs take
advantage of the linked-list architecture of the
CRTC system and thereby allow easy and fast
page swapping, ‘block moves. Further: on, the
graphic page can be vertically smooth scrolled in
both designs.

Pixel Generation

A standard CRT controller strobes out the
character code (usually the ASCIl-code for the
character to be displayed) on a character clock ba-
sis. This character code and the scan line address
select. a particular character slice address in the
character font generator. The character font
generator then provides the character slice data
which is serialized by the video shift register.

In this bit-mapped graphic approach the character
font generator is bypassed and the character code
is shifted out directly. Since the character code
can have any 8-bit pattern, it can define any slice of
8 pixels. Since subsequent scan lines on bit-
graphic displays are usually unique bit patterns,
each scan line is described by its own sequence of
character codes. This means that, in bit-mapped
graphic mode, character rows contain only one
scan line compared to a scan line count of 8..16 in
text mode. Consequently, the bus utilization of
the CRTC increases drastically. Infact, the screen
resolution is limited by the data transfer capability
of the system bus.

In bit-mapped graphic' mode the Total Scan Line
Count (TSLC) is set to 00y in the Row Redefinition
Block (RRB) for the first graphic scan line.
Additionally, one bit of the 10-bit row attribute
switches the multiplexers to graphic mode. This
row and all succeeding rows will maintain that
attribute until another RRB is invoked by the linked-
list of Row Control Blocks. In this fashion
alphanumeric and bit-mapped presentations can
be intermixed on the display device.

Figure 5-12 shows the linked-list data structure
upon which this application is based. For the

‘rows/scan lines defined to be bit-mapped, the

hardware will be made to display the 8 pixels per
character slice directly out of the CRTC instead of
using a character font memory as an indirect look-
up mechanism. This switching mechanism is
implemented with the row attribute information
normally outputted by the CRTC during horizontal
retrace. In this application only one bit is used to
differentiate between text and bit-mapped graphic
mode. The other bits can be used for other purpo-
ses such as implementing a soft loadable character
font generator.

The major design consideration is that the CRTC’s
on-chip DMA controller is given enough bus time
to complete loading the row buffers contained in
the chip before the information is displayed. The
CRTC must be able to load one character row in
less than a horizontal SYNC cycle (one scan line).
In the limit, this can take all of the available bus time
and would, therefore, lock out the host CPU from
processing. For this reason, it is expected that
only small portions of the total display will be bit-
mapped such as in business applications to display
small charts or graphs. -

CC/R FONT

E—

DD

Amg052

HSYNC
)

3

LATCH |

AP

050988 5-11

Am8152

21 CLK,DIV

Figure 5-11

5-9

To minimize the bhs utilization of the CRTC the
linked-list ‘describing the graphic should be
straightforward: no windows and no segmentation.

System Performance

To improve thé system performance -a dual-bus
architecture may be implemented. The display
information is stored in local memory shared by the
host CPU and the CRTC. .Additionally, the CPU
has system memory to perform the other tasks. In
this scheme the host CPU is only slowed down
when it actually accesses the display data while the.
CRTC still uses nearly the entire bus bandwidth
provided by the local memory.

To calculate the DMA time for a row four factors
must be considered. The performance data is
based on the 8-MHz CRTC.

o Each DMA cycle takes 3 ticks of the CLK1 clock
-assuming operating without Wait states. A bus
cycle therefore will be 3/8 Mhz or 375 ns. This
implies, using a transparent address latch, that a
total of Parameter 4 + Parameter 42 =30 + 185 =
215 ns is the maximum access time to sys-
tem/local memory that will be used for bit-
mapped data.

Each row's data consists of:

¢ Row Control Block (RCB) information (7 words or
bus cycles)

e The data to be dlsplayed (Two bytes per bus
cycle)

e Any attributes that the data invokes' (one
attribute per bus cycle)

The performance calculations consider three
different resolutions for the bit-mapped portion of
the display: 512, 768, and 1024 dots horizontally.
The former and latter represent low and high end
applications; the middle resolution is typical for
many present CRT systems and fits into the hard-
ware of the CRTC in a particularly convenient way.

For all of these screen resolutions many common
considerations will first-be discussed. To simplify
both the software which generates the bit-map
data and to optimize the bus utilization, it is
desirable to place all of the data within one
contiguous 64K segment of CPU address space.
In terms of the CRTC this means that the upper
address does not need to be updated, eliminating
Am8052 -Bus Master Write cycles and thereby
saving bus time. For this same reason it is desir-

{

able to have all of the RCB's for the rows of the bit-
map in this same address space. :

To minimize the bus request and bus release .
overhead due to handshaking involved it is desir-
able to have the DMA burst as long as possible.
The maximum length for a DMA burst is one
character row. It is programmed when the Burst
Space value inthe Burst Registeris set to 00y.

Since character attributes are not,used in graphic
mode it is desirable to turn the attribute fetches off.
(see Attribute Flag Register).

A word of explanation is appropriate at this point
concerning the values to be put into the Row
Control Block word RA,. The “HIDDEN #"and the
“VISIBLE #” are used by the DMA to ascertain the
maximum number of characters to be fetched into
the internal row buffers. For each segment of a
row, the DMA will fetch a number of characters
equivalent to the sum of these two parameters. In
graphic mode “HIDDEN #” should be set to zero
and “VISIBLE # to 64, 96, or 128 for screen
resolutions of 512, 768, or 1024, respectively.
The remaining row buffer entries are filled with the
programmed fill code.

Timing Calculations

The DMA must fetch the control information and
character data for graphic row in less than the
horizontal scan time. The number of DMA cycles
per row can be determined as:

R/16+C+B

number of DMA cycles per row

screen resolution in pixels

7 words for Row Control Block

7bus cycles for bus exchange and Idle
DMA Cycles

WODZZ
wononowon

The data (character string) must be word aligned.
The CRTC takes additional time internally to fill in
the row buffer with the default data byte specified
by the MDB's character fill code. Internally each
row buffer has 132 entries. However, for screen
size equal to or less than 96 characters per row,

- the SLIM bit in Mode Register 1 may be set to

reduce the time taken to do the fill operation. This-
“‘magic number” was used as the basis for the
medium resolution selection to reduce the
required fill time to zero. The time to fill the
remaining part of a row it takes a system clock
(CLK4) cycles perfill character.

The Maximum horizontal frequency supported by
each of the three resolutions is as follows
(Am8052 at 8 MHz):

5-10

512 pixels/line

[512/16 + 14] * 3 + (96— (512/8))

[32 +14]+3 +(96-64) =138 + 32
170 ticks of CLK1 = 0.021 ms
Fmax =47 kHz ’

768 pixels/line

[768/16+i4]-3+0=[48+14]'3
= 186ticks of CLK1=0.023 ms
Fmax = 43 kHZ

1024 pixels/line

[1024/16 + 14]+ 3 + (132 —(1024/8))

= [64 +14]+3+(132-128) =234+ 4
= 238ticks of CLK1=0.029 ms

Fmax = 34 kHZ

Hardware Implementation

A latch (Figure 5-11) stores the row attribute data
the CRTC outputs during horizontal retrace. The
Am29841 latch is ideal for this purpose as it con-
tains 10 bits worth of storage in the convenient 24-
pin slim package and has the correct polarity of
clock. s

A multiplexer feeds either the 8-bit character code
(graphic mode) or the character slice data provided
by the character font generator (text mode) to the
parallel input of the Video Shift Register.

Another Multiplexer selects the character width
from the character font generator (as for propor-
tionally-spaced characters) or is set to 0110g to
indicate eight pixels per character clock when in
graphic mode.

*IMDB 151 c-X

RCB

RCB RprBPNTR
, RCB LNk =0)
RCB RRB PNTR

|

050988 5-12

i

MAIN DEFINTION BLOCK
X=8TO 16 FOR TYPICAL TEXT DATA

NORMAL TEXT AND ATTRIBUTE POINTERS
(NO RRB NECESSARY)

(LNK =

0)

FIRST ROW OF BIT-MAP

(LNK =

1) INVOKES RRB

={RRB TSLG =0, POW ATT = BITMAP

LAST ROW OF BIT-MAP

NEXT ROW OF TEXT

(LNK =

1)

Figure 5-12

=|l RRB 151.c =X, ROWATT = TEXT

“Linked List”

5-11

v

» CHAPTER 6
Am8052 BUS INTERFACE GUIDE

6.0 INTRODUCTION .
The Am8052 is a general-purpose. controller for
raster scan CRT displays. Its link-oriented data
manipulation provides sophisticated text display
without imposing undue overhead on the host
CPU. The versatility of this device covers a wide
range of applications from medium performance up
to very-high performance displays.

A wide variety of systems will be able to take
advantage of its features, turning them-into power-
ful display controllers with a minimum of chip count.
This application note covers the area in a system
outlined in Figure 6-1. It should provide designers
with application hints and information on how to
interface the device to some of the popular CPUs.

6.1 PERFORMANCE DECISIONS

When designing a display subsystem, the system
designer makes multiple decisions to acheive the

most cost-effective design. The designer finds
the best compromise between performance and
cost; the cost mainly consists of hardware/software
development and manufacturing. The following
shows the trade-off between software develop-
ment cost and hardware cost.

The basic factors that influence the performance of
adisplay system are:

1. Single/dual bus architecture
2. Systemclockrate

3. Number of wait states

4. DMAburstlength

5. Fullreduced attribute fetches

The hardware designer defines the first three
factors. The fourth factor is determined by system
constraints such as real-time response time or multi-
master bus sharing. The fifth is set by the software -
designer. The demand attribute fetch feature of
the Am8052 can be used to reduce bus traffic by
about 50%.

o]
[8052 BUS |
| INTERFACE |
I I'
MEMORY I
@ |
I I R) Ams152a > CRT
’ I l
| :_Jl> | Amsos2 7
I I ﬁ f
(It |
| I :> CHARACTER
: I FONT
cPU | GENERATOR
| I
L d

06178A 61

Figure 6-1 8052 Bus Interface

6-1

How is system performance measured? First of all,
system performance is defined here as the
response time of tasks executed by the local
intelligence. Itis assumed, also, that this response
time is directly proportional to the remaining bus
‘bandwidth in the CPU. Therefore, parameters
such as Wait States can be very important in the
determination of system performance. -

The various factors affecting system performance
are analyzed in the following.

¢

Single/Dual Bué Architecture

The single most important decision the system
designer makes is to implement either a single or
dual bus architecture.

In the single bus architecture, (Figure 6-1) the
CPU, the system memory, and. the peripheral
devices are interfaced via a single bus, the System
Bus. With the Am8052, all display information are
stored in the system memory and the Am8052 self-

loads this data via the system bus. Consequently,
the more data the Am8052 transfers, the smaller
the CPU bus bandwidth and lower performance.
However, this is the simplest approach and re-
quires no additional hardware.

The the dual bus architecture (Figure 6-2) is
implemented in higher performance systems
where peripheral devices do not claim a share of
the bus bandwidth. Each peripheral device has'its
local memory and interfaces via its local bus. The
AmB8052 stores all display data in this local memory.
Thus, the self-load no longer burdens the System
Bus and Am8052 bus traffic becomes insignificant.
This set-up does not affect the overall system
performance.)

When interfacing the Am8052 to synchronous
buses, performance can be increased if the on-.
chip (Am8052) bus arbitration logic is not used.
Instead, an external, synchronous arbitration logic
is used to arbitrate the System Bus on a cycle-by-
cycle basis. In this mode, BAI is tied Low to allow
the Am8052 to perform its transaction at any time.

MEMORY

SYSTEM BUS

LOCAL BUS :> Am8152A
MEMORY Am8052 CRT
. { \|§ MONITOR

CHAR.
::" > Font

GEN.

BUFFER
cPU

05008B 6-2

Figdre 6-2 Dual-Bus Architecture

6-2

An active DS (Data Strobe) is treated as an cycle
request. WAIT is pulled Low for as long as it is
necessary to hold the -Am8052. Upon release of
WAIT, the actual bus cycle is performed.

System Clock Rate

The Ah8052 was originally designed as a Z8000
peripheral, one that has three clocks per machine
cycle; this means, performance-wise, a 6MHz

Am8052 can cope with an 8MHz 8086, or 68000, -

or one of the MOS microprocessors that operates
on four clock cycles per machine cycle. It is
obvious, therefore, that, if the clock rate of the
Am8052 is high, the Am8052 requires less of the
System Bus bandwndth and gives a higher
performance.

In order to optimize the system performance with
the Am8052, the CPU should be operated
asynchronous to the Am8052. However, since
some dynamic memory controller operate
synchronously to the System Clock, the design
should be simplified to operate both the CPU and

the Am8052 synchronously. The disadvantage of -

this approach is that it requires a faster Am8052.

Wait States

A single Wait State increases, by 33%, the bus
bandwidth ‘used by the: Am8052. The two
examples in the following show cases in which
whether or not Wait States are inserted made an
important difference.

In the first example, the Am8052 occupies 6% of
the bus bandwidth. ‘Inserting a single Wait State
raises it to 8%, two Wait States raises it to 10%.
The overall system performance is basically not
affected.

Example 1

Am8052 DMA CPU Relative
Performance
no Wait - '
State 6% - 94% 1.00
1 Wait
State 8% - 92% -+ 0.98
2 Wait : :
States 10% - 90% 0.96

The difference would be drastically increased if the
AmB8052 occupies a more significant share of the
bus bandwidth and other DMA devices are also -
taking their share of it. The following table shows
the difference in relative performance when DMA
devices are involved. ‘

Example 2
Am8052 DMA CPU Relative
: Performance

no Wait .
State 45% 15% 40% 1.00
1 Wait
State 60% 15% 25% 0.625
2 Wait
States 75% 15% 10% . 0.250

Here, the insertion of two Wait States reduces the
relative system performance to a quarter of the one
with no Wait State.

DMA Burst Length

- The purpose -of performing bus transactions in

burst is, on one hand, to minimize the effect of bus

exchange overhead (burst as long as possible) -
and, on the other hand, to limit the time the

Am8052 occupies the bus to allow real-time

responses of the CPU or other peripherals.

The DMA burst length is another factor which
affects the system performance. This is due to.bus
arbitration and bus release overhead. After the
Am8052 has asserted Bus Request (BRQ Low),
the system will acknowledgé the bus request by
asserting BAI Low. However, in most systems this
exchange involves a bus dead time of a few clock
cycles (overhead). Furthermore, it takes the
Am8052 about eight clock cycles to perform the
first bus cycle after receiving bus acknowledge.

Considering these facts, the bus exchange
overhead decreases if the burst length is
increased (less bus exchanges). In the best case
Burst Space is set to zero. Here, the bus is
exchanged only once per character row being
loaded. In the worst case Burst Count is set to “2".
Here, smgle bus cycle DMA bursts are performed
which maximize the bus exchange overhead.

An analysis has shown the overhead mvolved due
to bus exchanges is neglectable if the burst length
exceeds 64.

6-3

Full/Reduced Attribute Fetch

. The amount of attribute fetches also directly affect
the system performance. In lower performance
systems the software designer can choose to
employ the full attribute fetch mode. This means
the Am8052 fetches an attribute for each character
being loaded. The advantage is that this is the
most simple software scheme which can be
implemented. There is a fixed relationship be-
tween characters and their attributes.

" The required bus bandwidth can be reduced by
about a factor of two when implementing the
reduced or demand attribute fetch- mode. Here,
attributes are loaded when required. However, this
scheme involves a more sophisticated software
since the relationship of characters’ and their
attributes becomes variable.

6.2 GENERAL SYSTEM BUS
APPLICATION HINTS

The following outlines the unique observations of
the Am8052 bus interface.

Upper Address Writes

The Am8052 updates the upper address on a
demand basis to minimize bus overhead. In upper
address write cycles (Bus Master Writes), AS and
RW are both Low. This is the only time the
Am8052 pulls the R/W Low. In both segmented
and linear mode, the upper address (7 or 8-bit,
respectively) are strobed out on the lower half of
the address/data bus (ADg_7). Note, that it is not
possible to OR AS and R/ﬁ in order to enable a

transparent latch (Figure 6-3). Since R/W ‘pro-
pagates into the Bus Master Read cycle followin
the write cycle (timing parameter 10), ORing R/W%
and AS may generate a glitch. Therefore, it is pref-
erable to take an approach similar to Figure 6-4.

The upper address is stored inva register such as
the Am29823. The register is enabled when the
CRTC .is bus master (BAl=Low, and BAO=High)
and R/W is Low. The register is strobed by the
trailing edge of AS. The CRTC timing guarantees
that R/W settles before that edge.

Slave Transfers

The CRTC supports two slave data transfer modes:
the latched and the unlatched mode. The latched
mode may be selected for systems with a
multiplexed address/data bus such as the 8086
and Z8000. The CRTC latches Chip Select (CS)
and Control/Data (C/D) with the trailing edge of
address strobe. C/D indicates to the CRTC that
the CPU is going to address one of the internal
registers (C/D=High), or that the CPU is going to
transfer data to or from a previously addressed
register (C/D=Low). With the subsequent data
strobe, either the pointer or the data word is
transferred._ The leading edge of data strobe
latches R/W. The entire cycle may be asynch-
ronous to CLK{ or CLK».

The unlatched mode may be chosen for systems
with demultiplexed address/data bus such as the
68000. Address strobe being Low enables an
internal transparent latch to pass CS and C/D.
through to slave select logic. Therefore, both CS
and C/D must be stable for the entire cycle. AS is
connected to a flag that signals the bus has
stabilized, that is, the address is valid. CS is the

06178A 6-3

Am8052-BUS SYSTEM-BUS

. 7418373
ADg.;). 1] Q > Ae.23

BUSMASTER;s, I
' ASs0s2 BUSMASTERg0s2
R/Waos2)

Figure 6-3 Incorrect Implementation—
Latch Stores Upper Address

06178A 6-2

v Am29823 '
ADo.7 1D Q > Ar6.23

O'TE

zi

L

ASGOSZ
BUSMASTERGs,
R/WUDS2

BUSMASTERgs,

Figure 6-4 Correct Implementation—
Register Stores Upper Address

64

decoded I/O address. C/D usually connects to A4
of the system bus. (Aq is the least significant
address in 16-bit microprocessor systems; Ag is
“don't care”.) Similar to the latched mode, data
strobe latches R/W, and transfers either the
pointer orthe data.

Clock Input Requirements

All inputs except the two clock inputs (CLKj,
CLKp) have the normal TTL input voltage/
capacitance specification. The two clock inputs
require a lower Input Low Voltage, a higher Input
High Voltage; and they have an increased input
capacitance. The companion part, Am8152A,
provides clock signals satisfying these require-
ments. Applications not employing the Am8152A
can either use CMOS clock drivers or the discrete
circuit in Figure 6-5. To increase output drive
capability and improve rise and fall times, CMOS
drivers can be connected in parallel.

Interrupt Acknowledge

The Am8052 provides an interrupt acknowledge
input to support vectored interrupts. For normal
operation this input has to be tied high. Note that,
as long as INTACK is Low or floating the device will
not respond to any slave transactions, or will not
execute any master transfers.

Wait Synchronization

It is very important, that WAIT is synchronized to

the clock (CLK4), especially when software Walit
States are enabled. When the number of software

Wait States is set to zero, and the setup and hold

times of WAIT to CLK; are violated, the Am8052
either misses WAIT going High and inserts an
additional Wait State (not a problem), or it goes

meta-stable (a seldom case, but a real problem,

since meta-stable consequences are not predict-

able). If the WAIT setup and hold timing is violated

and the number of software Wait States is 1, 2, or
3, an additional problem occurs. In that case the

Am8052 does not insert th_p_ogrammed software

Wait States, and scans the WAIT input in the subse-

quent T1 cycle. If WAIT is Low in this T1 state, the -
Am8052 will hang up this T1 state, characterized

by AS toggling with the frequency of CLK.

Bus Turn-Around
The bus turnaround times when going from the

address output (DTEN Low) to data input (DREN
Low) should be analyzed carefully. Slow driver

- turn-off times in conjunction with fast turn-on de-

lays might cause bus contention on the multiplex-
ed address/data bus. Therefore, combinatorial
delays between the transceiver control outputs of
the Am8052 (DREN, DTEN) and the transceiver
inputs should be avoided (use transceivers with

COMPATIBLE
CLOCK
OSCILLA-
TOR . 22pF

06178A 6-4

120

T 0 +5V
2N3546 g 0-1uF
CLK1/CLK2

- TO Am8052

(VoL < 0.3V)
(Von > 4.0V)

2N3646

Figure 6-5 CLK1/CLK2 Driver

6-5

receive/transmit control such as Am2949). Note
that, in Master Read cycles, the Am8052 does not
require a data hold time to DREN or DS, whichever
goes inactive first. So either DREN or DS may be
used to enable/disable the data. S

6.3 Am8052 AND AN 8-Bit _
MICROPROCESSOR INTERFACE -

There are two fundamental issues associated with
mixing devices that. communicate over different-
sized buses. The first problem is allowing the two
devices to communicate on a “common” data bus.
Considet, for example, a 16-bit system utilizing 8-
and 16-bit peripherals. Overcoming the mis-
matched data'paths requires some form of control-

led multiplexing/demultiplexing -of the different
data paths. In addition, extra control signals: for -
partitioning the 16-bit word into 8; and 16-bit units
may be required. . Today, most of the 16-bit CPU
based systems that use. 8-bit peripherals usually
use just the lower half of the data bus. to transfer
data to and from the peripheral. However, this
scheme does not work when interfacing 16-bit
peripherals to 8-bit CPUs, especially when these
peripherals have bus master capability.

Data Funnelling

When a 16-bit peripheral attempts to transfer data
over, an 8-bit bus (memory write cycle or slave read
cycle), the 16-bit data has to be broken down into
two bytes and transferred sequentially. First, the .

& YA
3 e > san
. ,_., 7 SYSTEM
16 BIT
a DEVICE
o
w
2
o
[=]
& / \
5 2 DS > 8 BIT
: & i y/] svstem
68T foi
b) DEVICE | ' -
/16
& N
=
4
[=]
ADDRESS
Asp, — Do
Ao \ /

o e L T B S G TR S
DATA BUS]
WRAD - __ 7/ \ /

DAT:\G-B?.:; — D< 150> r—
’ MEM/IO
ACKNOWLEDGE N/ \/
06178A 69
Figure 6-6 . Bus Master or Slave Read Operation BN

i

6-6

lower 8-bits are transferred out on the bus (Figure the middle of a two-cycle transaction. Similar, slave
6-6a), and then in the next transfer cycle the upper accesses must not be interrupted by master
8-bits of the 16-bit word are sent out (Figure 6-6b). transfers. While the interfacing funnels the data,
The generalized bus timing for such an operation the current bus cycle needs to be stretched.
is shown in Figure 6-6¢. Figures 6-7a, 6-7b,and 6- When the peripheral is bus master, as shown in
7¢ show the opposite case; a bus read operation Figures 6-6a, 6-6b, and 6-6¢, the 16-bit peripheral
from an 8-bit bus to a 16-bit peripheral. Here, the is holding its data available for what would normally
first byte read from the system must be latched. be two complete bus transfer cycles. This stretch
Once the second byte has been fetched, the 16- can be achieved by delaying the transfer
bit peripheral reads in the assembled 16-bit (2- acknowledge signal to the peripheral, causing it to
byte) word. Additionally, provisions may need to wait (WAIT asserted).
be made for the case when the 16-bit peripheral
accesses single bytes. ’ In slave mode, the 8-bit CPU would have to make
two consecutive read operations to examine a 16-
Interruptions of the two cycle transfer must be bit peripheral status register. The peripheral must
analyzed very carefully. Master transfers must not not become bus master in between the first and
be interrupted by slave accesses while being in . second read operations since this invalidates the

5 8 BIT
-3 SYSTEM
3
16 BIT.
* DEVICE
[: 4
w
2
[
[=]
5 8BIT
2 SYSTEM,
-
b) 16 BIT
DEVICE
[+
w
2.
9
=]
ADDRESS ()
A!s-A\
A \ : /-
BT '
) BUS D < 15:8 > D<7:0>
‘WR,RD : \ /) \\ /
BUS D < 15:0 >
¢ MEM/IO _— /
ACKNOWLEDGE ’ \.__/

06178A 6-10 . N
Figure 6-7 Bus Master Read or Slave Write Operation

6-7

results of the first read operation.
can be handled in two different ways: if the CPU
has a bus lock instruction (for example, like the
iAPX family of CPUs), then the programmer uses
one of these before the CPU accesses the
peripheral. Alternately, the CPU can disable the
arbitration logic while it is performing the critical
uninterruptible slave transfer.

Developing the Control and Data Transfer
Interface

Designing the control interface to allow mixing 8
and 16-bit peripherals requires an analysis of the
data and control flow. The data flow automatically
defines the data path design (see Figures 6-6 & 6-
7). The bus master operation by the peripheral is
relatively straightforward. During a write operation,
the data is written out sequentially: the lower byte
first and then the upper byte (or vice-versa).
During a read operation, the data is fetched
sequentially. The byte fetched first is’ latched, to
hold the data until the peripheral can read.it. In the
second byte read cycle, the remaining byte is
fetched, the 16-bit word is assembled from the two
- bytes, and the 16-bit_word is loaded into the
peripheral. Similarly, WAIT is asserted until the
second byte read cycle can be terminated.

The slave’ mode of operation works almost
identically to the peripheral bus master mode. The
master read cycle is Similar to the slave write cycle,
and the master write cycle is similar to the slave
read cycle. In general, if the peripheral puts data
on the narrower system bus, the peripheral can
keep the data active in both sequential system bus
cycles. On the other hand, if data is loaded into
the peripheral, the interface logic has to latch the
data of the first fetch cycle, whereas the data of the
second cycle can be loaded directly into the
peripheral (no latching required).

When defining the interface, the designer must
make' a conscious choice about which byte (upper
or lower) to latch during peripheral read operations
(or conversely, slave peripheral write operations).
Once this decision has been made, the CPU must
always access the latched data byte first (during a
slave write) and then access the non-latched byte
to complete the transfer. This restriction is a minor
one with. no extra software overhead; yet it could
affect-the ease of the programmer's coding if not
handled properly. For example, if the programmer
uses a compiler to generate the software for the
system, extra care may be necessary to ensure the
compiler generates the ‘correct addressing
sequence. An alternative to this solution would be
to latch both the upper and lower data bytes. In
that case, the cost of the interface would be

This function

increased, as would the complexnty, with no gain in
performance .

The state dlagram (Figure 6-8) illustrates the
control sequence implemented in the 8/16-bit bus
control logic. It also depicts how uninterrupted
word transfers will occur and how the addresses for
upper and lower bytes are generated. In addition,
the specific bus timing of the peripheral and the
data bus must be examined to quantify the state
control flow and provide . information on data
latching, read/write control. strobes, = and
addressing to and from the peripheral. The state
control flow is broken down into three parts: bus
master read, slave read, and slave write operations.

. The three control signals that must be be

generated by the 8/16-bit control unit are: Address
bit 0 (Ag), peripheral hold (WAIT), and bus read
(RD). The Ay line is generated by the control logic
to indicate which byte is to be transferred in bus
master modes only. Otherwise, the Ag generated
by the system is used to_indicate which byte is
being accessed. The WAIT line holds up the-
peripheral during transfers. The RD line is required
to indicate successive transfer cycles on the bus:

~The peripheral's control signals will only strobe

active once, because the two cycle transfer should
be kept hidden fromthe peripheral.

The slave transfer flows are almest identical,
except the CPU is generating the bus signals and
the transfer directions are reversed, that is, a bus
write goes into the peripheral.

The conceptual logic for the 16-to 8-bit data flow
example is shown in Figure 6-9. The data on the
upper byte is latched when data is being read (as
bus master) and read or written (as a bus slave)
Although this interface must latch data coming
from the 8-bit data bus into the peripheral, it also
needs to act as transceiver when the peripheral is
sending data out to the system. The ideal part.to
accomplish such an interface would be one that
has a three-stated output, with an 8-bit wide latch,
in one direction and a three-stated driver in the
other direction. The Am2952 8-bit bidirectional I1/0O
port provides a close match to the targeted logic
and allows the combining of the upper data bus
latch and upper data driver chips into one IC. It
provides two 8-bit clocked /O ports, each with
three-state output controls and individual clocks
and clock enables. An Am2949 bidirectional bus
transceiver completes the logic required to buffer
the data path.

The state flow control requires Iogic capable of
sequentially moving from state to state, holding in
a particular state, and being reset or initialized back

to a predefined state. This design integrates the
state machine generator into the
Programmable Array Logic device (PAL) as the
control signal logic.

The bus control logic required to generate the data-
path flow logic and the bus control signals is
considerable. This is especially true if the
peripherals and CPUs have different signal
conventions (for example, AS, DS, and R/W
versus ALE, RD, and WR). Conversion between
different signal conventions, signal polarity
changes, and extra functions (such as generating
Ag) requires quite a bit of logic-synthesis ability. If
the peripheral has bus master capability, additional
information, such as bus arbitration controls, must
be fed into the next state determination logic to
decide what control sequence to follow.

Assembling a 8-bit CPU/16-bit peripheral interface
combines all the individual components discussed
above. Figure 6-10 shows a typical 8/16-bit control

same -

interface. The state machine and the bus and latch
controls have to be tightly coupled in order to
transfer data between the 8-bit and 16-bit buses:
The generalized machine ‘is designed under the
assumption that the peripheral has bus master
capability. If this is not the case, the design can be
vastly simplified.

Since the CRTC does not modify system memory,
no provision for a bus master write operation

‘needs to be provided. This provision is important

because it eliminates the need to generate a
system write control signal (WR). In addition, the
control and display information has to be aligned
on word boundaries. This additional requirement
relieves the 8/16-bit control logic from worrying
about funneling the bytes and performing
odd/even byte transfers. It also saves control
inputs from the Am8052 because all transfers are
words; there is no need for upper and lower data

. strobes orbyte high enable inputs/outputs.

AS=1+
CS=1+
MRDY=1

7

AS=0+RW=1+MRDY=0

D'MRDY=0

MRDY =1

! D MRDY =1

MRDY =0

D MRDY=0

MRDY =1

DS=1

06178A 6-11

COMMENTS

WAIT TILL PERIPHERAL TAKES BUS;
MAKE SURE MEMORY ACKNOWLEDGE IS
NOT ASSERTED.

READ IN UPPER BYTE; Ap=1;-
WAIT FOR MEMORY ACKNOWLEDGE;
ISSUE RD STROBE. .

WAIT FOR MEMORY ACKNOWLEDGE
TO GO AWAY. :

READ IN THE LOWER BYTE; A,=0;
WAIT FOR MEMORY ACKNOWLEDGE;
ISSUE RD STROBE,

STROBE IN DATA TO PERIPHERAL;
DEASSERT WAIT;
WAIT FOR SUCCESSFUL READ.

Figure 6-8 Bus Master Read State Flow Control

6-9

STATE

Am2949

Figure 6-10 Data Funnel Logic

MACHINE
DS -———>] BUS | —i Ao
. CONTROL : _
RW TRANSLATION |- RD.
LoGIC . .
— & > WR
WAIT «———————— FUNNEL LOGIC
CONTROL J«—————— MEM ACK
CONTROL
LINES
16 8
DATA
PERIPHERAL cPU
DATA BUS FUNNEL
06178A 6-12
Figure 6-9 Conceptual 16/8-Bit Conversion Logic
[Ama9s2 .
CLK |
CLKEN ‘ I
oF |
. [+ 4
/ g o i /
D < 15:8 > \l 3 8 BIT CPU BUS
, 75 8 i VAN
— 1 |
* T AT
N
w
>
e -
[=]
| d
L A
TEN
Ren
v
[:4
1.
/ I\ o
D<70> 1/ (g
/s 2
£
- 06178A 6-13

6-10

The slave accesses by the CPU are either pointer
writes (to select the desired control/status register)
or 16-bit data read/write operations. The pointer
write operation is really an 8-bit operation because
only the lower 8 bits of the data form the register

address. This is illustrated in the flow diagram by .
the path that bypasses half the slave read/write -

states if the command/data (C/D) line is High.
These state flow diagrams are derived directly from
the timing diagrams of the Am8052. The three
different transfer timings are shown in Flgures 6-
11, 6-12,and 6-13.

Two special conditions "have been incorporated
into the state flow diagrams whenever a transfer is
first initiated. Before a new transfer cycle is at-
tempted (that is, the state machine is waiting in

S0), the memory acknowledge must be inactive.
This prevents any interference from the last
transfer. The second special condition occurs
when the Am8052 asserts the R/W line to indicate
a write operation. Whenever the Am8052 updates
the upper 8 bits of the 24-bit address latch, the
R/W line indicates a write operation (in conjunction’
with AS). The Am8052 is not actually performing a
system data write, only an address latch update.
Hence, the state flow reflects this fact by not
starting a sequence if the R/W line is actlve Low .
fromthe Am8052.

These simplifications allow the Am8052 to 8-bit
CPU control interface to be synthesized in a single
AmPAL22V10 device (Figure 6-14). In addition,
the bus control signals are converted from AS, DS,

l Ty T, Tw

Tw Tw Tw T,

' ct.k._] 1 | l

——

ansz

L
'ﬁwsz _—1\

UPPER BYTE
TRANSFER

LOWER BYTE
TRANSFER

\ 7 3\

MEMACK \ \\ / /i R

WAIT - |

/

Ao. I

SYSTEM
DATA

06178A 6-14

HIGH BYTE

LOW BYTE

i

Figure 6-11 Bus Master Read _Timing Diagram

611

al

{,ﬁs,c'ssvs_\' | TN\ . /-_A

~ T\ I AN

y b)
ESOSZ \ / N

R/W{‘ﬁ/ \ (\(\ X“X\ \ A\

OEgn v | [

sviﬁr: LOWBYTE = el (" HIGH BYTE N—

Figure 6-12 Slave Read Timing Diagram oerreR &8

g

ANNNSNN7;/////,

)

CSgos2 ; " \ /

RW ' N\ SAOVNNN / /

CPs _—\ F A

svs;sr; —_(HIGH BYTE r—— LOW BYTE —
) a—

AD, s 2 - LOW AND HIGH BYTE

06178A 6-16
Figure 6-13 Slave Write Timing Diagram

6-12

and R/W to RD and WR. Figure 6-14 shows the
assembled control and data transfer logic for this
interface. The minimum Am8052 and bus control
signals that have to be generated are RD, Ag, DS,

R/W. Although DS and R/W are used as inputs -

during a bus master operation by the Am8052, the
AmPAL22V10 must convert the CPU RD and WR
signals to DS and R/W for slave I/O operations.
The signals Ag and RD are generated by the
control logic when the Am8052 is performing a
read access to the system. The WAIT (or not
READY) signal to the Am8052 also needs to be
generated by the control logic. Additionally, the
four control signals of the bidirectional port and
transceiver are generated.

" display

Trade-offs and Limitations

In a design dramatically affecting the 1/O of the
system, a number of trade-offs and limitations
should be noted. The most obvious limitation in
using 16-bit peripherals on an 8-bit bus is that the
16-bit peripheral will be under-utilized. The speed
of all I/O operations will be cut by 50%.
Consequently, the bus utilization will go up if the
16-bit peripheral represents a significant factor of
the bus usage. A CRT controller like the Am8052
might use 5% to 10% of the bus bandwidth for
information when using 16-bit 1/O.
Converting to 8-bit 1/0 would double bus usage to

10% to 20%, or more. :

cib A,
cs
BAI ; < BUSAK
\
BRQ <«——————> RD
BA > -« WR
<——————————> A0
~¢————————— MEMACK (READY)
AmPAL
. J— 22V10
CS |= I
RW | TESPs
Amsosz2 DS CE,
: WAIT | »| ..
CPg
OE s

L
ADg-+s
/8

| Amaes2 y: ,
> A B < DATA BUS >
/8

DREN

/
|

Am2949
=)

<7 1
AD,_,
/8

A 6-17 .
081784 &-17 Figure 6-14

Am8052 8-Bit Interface

6-13

Ariother factor that might affect the bus usage ‘is
the efficiency of the 8- to 16-bit conversion control
logic. If the state machine designed to perform the
8/16-bit conversion (or 16/32-bit) is improperly
designed, then extra transfer overhead may be,
introduced. . This could mean a sequential transfer
of two 8-bit values takes longer than two single 16-
bit transfers. The system designer must weigh the
cost of thé extra overhead on’a case-by-Case
basis. However, -as :previously mentioned, the
benefits may well justify these limitations; the bus
is self-limiting, but the device characteristics allow
for value-added designs. In addition to bus*
degradation for certain. configurations, extra logic
and design effort are involved. However, most

interfaces outside a system's immediate family
require some Kind of extra. interface logic anyway.
Therefore, by optimizing the control signals . and
incorporating them into - programmable logic
devices such as the AmPAL22V10, the IC count
can be dramatically reduced.

6.4 THE Am8052 AND 8086 INTERFACE
IN MIN MODE - -

The 16-bit multiplexed address/data bus of the
8086 is directly connected to the multiplexed
address/data lines of the Am8052, Figure 6-15.
The.upper address (7 bit for segmented mode or 8

4

A|9—|6 AD'S—O
M0 AS DS RW
Ivcc \
At9-16 ::
—] <
Am29823 @
D OE EN CP '
l/\[.
: AD,_r,-o < X > AD'|5—u
CHIP AD,
SELECT cio
] DECODER ‘

M0 »| Am29809 fo— —=1Cs
8086-2 — Am8052
ALE - Dc »>1 AS
e > 5

WR 7415244
DTR - >° N > RW
- o)
HLDA Dc »| BAI
HOLD °<} BRQ
: CLK: _
CLK f= T "} Loaic CLK
8284
06178A 6-7

Figure 6-15 8086-Am8052 Interface

6-14 ‘ ;

bit for linear mode) is strobed out on the lower half
of the bus (ADg_g or ADg_7) and is stored in a
register (Am29823). The Am8052 may be pro-
grammed for segmented or linear mode depend-
ing on whether address roll-over is desired. The
register output is enabled (OE=Low) when the
Am8052 is bus master. = Clocking is enabled
(EN=Low) when R/W is Low while the Am8052 is
bus master (upper address update cycle). The
trailing edge of Address Strobe clocks the register.

RD and WR from the 8086 are logically ORed to
generate DS. ALE is inverted and connected to
AS of the Am8052. DT/R is also inverted to form
R/W. All three signals are passed through a three-
state buffer which is enabled when the 8086 is bus
master. Memory/IO (M/IO) is pulled High when the
Am8052 is bus master since the Am8052 only
addresses memory.

Bus Clock

The Bus Master timing is synchronized to the bus
clock (CLK4) of the Am8052. In order to get a
similar and synchronous bus timing when the 8086
or the Am8052 are driving the bus, the Am8052
bus clock can be connected to the 8086 bus
clock. However, in proportional spacing appli-
cations, the video timing must be derived from the
bus clock and therefore the bus clock must be
synchronized to the character clock (CLK>).

For these applications the Am8152A provides the
synchronized clocks (CLK1,CLK2) with the- right
timing and DC specification.

In non-proportional spacing applications, the
Am8052 can operate with the 8086 bus clock if the
duty cycle is adjusted. In this case, the Am8152A

cannot be used as the clock driver, and a separate '

clock driver needs to be provided. This clock
driver must provide a clock satisfying the special
clock input specification (MOS specification) such
as clock High and Low width and voltage, and input
capacitance. Most CMOS drivers or a discrete
clock driver shown in Figure 6-5 satisfies these

specifications. This design must be changed for
different frequencies. Figure 6-16 shows circuitry
which adjusts the duty cycle for the Am8052. The
required delay time needs to be adjusted for the
chosen bus clock frequency.

At high bus clock frequencies (e.g., = 8 MHz) Bus
Request of the Am8052 must be synchronized to
the clock, to generate a synchronized HOLD for
the 8086. .

Detailed Timing Analysis

The following timing analysis is based on an 8-MHz
8086-2 and an 8-MHz Am8052. At this frequency
the minimum clock High (TCHCL) and Low .
(TCLCH) times for the 8086-2 become 43 ns and
68 ns, respectively. Some of the subsequent
calculations are based on these values for TCHCL
and TCLCH.

Slave Reads and Writes

#21 CS set-up time to the trailing edge of AS

" (minimum 0 ns). The 8086-2 provides a set-

up time of 28 ns of ADy_q5 before the trail-

ing edge of ALE. Let us assume 0 ns of min-

imum propagation delay since neither the

inverter nor the driver specifies one. The

maximum propagation delay allowed for the

decoder is, therefore, 28 ns (68 ns—40 ns).

The decode time for the Am29806/809
decodersis 13 ns.

#22 . TS hold time after the trailing edge of AS
~ (minimum 25 ns). The 8086-2 provides a
minimum address hold time of 33 ns.

#23 C/D sét-up time before the trailing edge of
AS (minimum 0 ns). The 8086-2 provides
an address set-up time of 28 ns.

#24 . C/D hold time after the trailing edge of AS
(minimum 25 ns). The 8086-2 provides a
minimum address hold time of 33 ns.

#25 Delay from CS to DS (minimum 30 ns). The

S [I [I

CLK 1 -

T

DELAY-LINE

JUre .

06178A 6-8

I

’

- Figure 6-16 Duty Cycle Adjusthent'for the Am8052

oo . e15

worst case (shortest delay) can be . cal-
culated as: :

. (TCLCH-TCHLL) + TCLRL
+(28ns—-13ns)
=(68ns-55ns)+10ns +(28 ns—-13ns)

=37ns.

#26 Access tlme (max1mum150 ns). The 8086-
2 expects an /O access time no longer
than:

2+ TCLCL-TCLRL-TDVCL
=2+125ns-100ns-20ns
=130ns.

This means that one Wait State must be inserted.

#27 Data hold time (minimum 10 ns). The 8086-
2 requires a max. data hold time of 0 ns, i.e.,
no hold time.

#28+ R/Wto DS. Since DT/Riis connected to the
29 R/ input of the CRTC, this llmlng is not
guaranteed by design.

#32 Data hold time during slave writes (minimum
20 ns). The 8086-2 provides at least 38 ns.

#33 Data set-up time in slave writes (minimum 90
*ns). The 8086-2 provides more than one
clock period (125 ns) data set-up time.

#34 The Am8052 requires a minimum Data
Strobe pulse width of 100 ns. The 8086-2
~ provides

TWLWH
=2+TCLCL-40ns
=210ns. .

#35 Recovery time (minimum 330 ns). The
8086-2 provides more than 3 clock periods
=375ns.

6.5 Am8052 AND 68000 INTERFACE

One of the designer's most challenging tasks is to
interface two generically different Bus Masters.
Such as the 68000 microprocessor and the
Am8052 CRT Controller. Both Bus Masters sup-
port a 16-bit-wide data bus and a 24-bit linear ad-
- dressing space (if the Linear/Segmented bit in the
- Am8052 Mode Register 1 is set to “1”). The con-
trol bus signals. of the Am8052, however, differ
from that of the 68000's and need to be translated
bidirectionally. Figure 6-17 shows the mterface
schematics.

 (C/D) transparent.

Slave Mode

The Am8052 provides two basic slave modes: the
latched mode for systems with: multiplexed
address/data buses and the unlatched mode for
systems with demultiplexed address/data. buses.
In this interface application, the Am8052 operates
in the unlatched mode because the address and
data buses of the 68000 are demultiplexed. In this
mode, Address Strobe (AS) is kept asserted
throughout the entire bus cycle, making the inter-
nal latches for Chip Select (CS) and Control/Data
AS is driven_Low by an.open
collector inverter connected to BAI. This forces
AS to go Low whenever the Am8052 is not in
control of the bus.

Slave Access Timing Analysis:

The Am8052 timing parameters are analyzed in
ascending numerical order.

#25 The set-up time of Chip Select (CS) to Data
Strobe (DS) must be at least 30 ns in order
to" guarantee the minimum access time
(#26). Violation of this specification could
happen if Parameter 26 is lengthened, as
shown below. .

#26 When CS and DS are asserted simultan-
eously, the access time increases from 150
ns (#26) to 180 ns (150 ns + 30 ns). The
68000 requires an access time of 175 ns

. (25125 ns — 60 ns — 15 ns) to operate
without Wait States. No such Wait States
are necessary for slave reads.

‘#27 The data hold time requirement of 0 ns

(68000 read operation) -is easily met; the
Am8052 provides a minimum of 10 ns.

#28 The RW setup trme requirement of 0 ns
before DS (Am8052) is is guaranteed by the
68000 (1 clock cycle).

#32 The data hold time (20 ns) in slave write is
provided by the 10-MHz or slower 68000s.

#33 The data set-up time before the trailing
edge of data strobe (80 ns) is provided by
the 8-MHz 68000 (145 ns min).

#34 The minimum guaranteed write pulse width
of the 8-MHz 68000 is 115ns. The Am8052
requires at least a 100 ns pulse. Similar to
#26, smaller values for #25 cause the DS
pulse width (#34) to be widened. In order to
satisfy this parameter, either the set-up time

6-16

#24 must be at least 15 ns or one ' Wait State
(68000) must be inserted. The 15 ns set-
up time demands a fast chip select decoder.

#36 The CSto DS hold time (5 ns) is satisfied by
the address hold time of the 68000 (30 ns
min). E

#37 Same as#36.

Data Strobe

The Am8052 in slave mode can only be accessed
as a 16-bit peripheral (word transfers only). This
means that both Data Strobes of the 68000 (LDS
and UDS) must be active simultaneously. It is only
then that the OR gate asserts DS for the Am8052.

~ The driver is enabled when the 68000 is Bus

Master (BAI High). In Master Mode, both data
strobes are driven by the Am8052 because it does
only word transfers. ’

ADDRESS BUS
—— DATA BUS
/}, _ /\/ >
A 4 |8 . 1 |'® DREN DTEN
T A .
> ! >1 C/D
Az—Ase Am29823 K
JL OEEN P '
CHIP _ A | ,
SELECT
DECODER - o
T RW]
. AD,s
Ao, Am29841 <) > AD,
o Le| - Vee
= ; AS
D|5_Do. <
I—DO—Ioc : -
BGACK * - BAI
VCC
Vee 2 : Am8052
BR a~ o .
cp 94 BREQ
68000 Vec | FF1) l > Cs
o R
ﬁo v a [s RW
PL . cc >
IPL, FF2 CcP g
__ R _
As | »| DS
LDS >_E_
—— V, y
ubs - -~) cc
_ 74LS32
RW | -
PL, - INTRQ
FC, >lc ——|>o——> WAIT
FC, B 74LS138 1 INTACK
FCo >lA Vee
DTACK |- 5y &
LDS UDS RW DTACK
06178A 6:5 Figure 6-17 68000-Am8052 Interface

6-17

Master Mode

After the Am8052 .is initialized and the display is
enabled, the Am8052 asserts Bus Request
(BREQ Low) to request the system bus. The bus
arbitration scheme between the Am8052 and the
68000 is discussed in the paragraph below. To
avoid bus contention- at the end of Bus Master
read cycle, the data bus transceiver (not shown)
must be turned .off before the Am8052 starts
driving the address for the next cycle. Timing
Parameter 11 allows a turn-off time of 25 ns which
is sufficient for the Am29863 transceiver.

Bus Arbitration

The 68000 CPU supports a three-wire bus
arbitration mechanism. A peripheral requesting
bus mastership asserts a Bus Request (BR Low),
see Figure 6-18. The CPU, in response, asserts a
Bus Grant (BG Low). Atthe end of the current bus
cycle, the requesting peripheral goes on the bus.
The end of the current CPU bus cycle is signaled
by the Address Strobe going inactive. The
combination of Bus Grant active and Address

Strobe inactive asynchronously resets FF2 (see -

Figure 6-17), thereby asserting BAI for the
Am8052 and Bus Grant Acknowledge (BGACK).

Resetting FF2 also resets FF1 asynchronously,

which deactivates BR. In- response to BR
becoming inactive, the 68000 deactivates BG.

Note that BR must be Low for at least 20 ns after
BGACK to prevent rearbitration. The inverters and
the delay- through FF1 must meet this
requirement. BGACK and BAI stay asserted until
the Am8052 terminates its DMA burst and releases
BREQ. At that time FF2 is asynchronously set and
BGACK and BAI are deactivated, and the 68000
resumes operation.

The bus arbitration mechanism does not yet
support DMA preemption. However, Am8052
DMA preemption by external devices can simply
be supported by setting FF2 on preemption. The
preemption DMA can grant the bus after the
Am8052 has released the bus by deactlvatlng
BREQ. In this case, BAI being Low is no longer
sufficient to flag that the Am8052 has been
granted the system bus. For proper DMA
preemption support, the data strobe drivers and
the open collector driver for AS must be controlled
by a signal which flags that the Am8052 is on the
bus. (Note: For the time between preemption (BAI
ngh) and bus release (BREQ High), the Am8052
is stillin control of the system bus).

Interrupt Acknowledge

The Am8052 supports vectored interrupts if the
No Vector bit in Mode Register 2 is disabled
(NV=0). The vector is put out in Interrupt Acknow-
ledge cycles (INTACK Low, IEI High, and DS Low).

BRQs0s: ‘\\)

Y

B_RSWOO)
A
)L

BGesooo

. \)
/

)

o \ ,(\

‘)
/ﬁ“ |)
/

g

—

1

BGACK, BA " NN)
. r S
ASgos2) /
149 .
PROCESSOR AmB052 l PROCESSOR
06178A 66

Figure 6-18 Bus Exchange Timing

6-18

6.6 AmB8052 AND 80188 INTERFACE
WITH DUAL BUS ARCHITECTURE

With today's predominantly 16-bit systems, some
new designs still evolve around the 8-bit structure.
The underlying reason is cost. Systems designed
for specific control operations can usually be satis-
fied with state-of-the-art 8-bit CPUs such as the
80188. They do not require the slightly higher per-
formance 16-bit CPUs such as the 80186. The 8-
bit system design requires less memory deévices

(EPROMs, RAMs) and less MSI-devices (address .

latches, data bus drivers). Board layout is simpler
aswell.

Vv 7 0
With all the attractiveness of an 8-bit system
design, interfacing such a system with the
Am8052 must maintain the low cost level. The
additional cost of designing an 8-bit system
interfacing with a 16-bit device must be kept as low
as possible.

The interface design outlined below contains only
low cost,
AmPAL16L8, byte-wide registers, drivers and
transceivers (Am2947, Am2956, and Am2959)
and a few standard TTL devices.

Data Path (Figure 6-19)

The previous section analyzed the strategy and
general problems associated with designing .the
-Am8052 into an 8-bit system. There the Am8052
interfaces with the byte-wide memory and micro-
processor via a 16-bit to 8-bit data funneling logic.
The drawback of that design is a significant system
performance degradation due to the Am8052
DMA activity. .

The design discussed here avoids this drawback
by implementing a dual bus architecture. The
Am8052" fetches the display information from a
local memory, without affecting the operation of
the microprocessor. This local memory is
implemented in two static memory devices (e.g. 8K
* 8 static CMOS RAMSs). The bus arbitration logic
controls CPU accesses to the local bus, pre-
empting the Am8052 whenever necessary.
Depending on whether the Am8052 is bus master
or bus slave, the bus arbitration logic has to take
actions listed in the following, in order to grant the
local bus to the CPU.

If the Am8052 is in slave mode, the arbitration logic
prevents the Am8052-from granting the local bus
by blocking Bus Acknowledge (BAI stays High).
The CPU then accesses the local memory without
asserting any Wait States. Since the Am8052

off-the-shelf devices such as the -

typically uses about 5 to 20% of the bus bandwidth
(80 to 95% of the time the Am8052 is off the bus),
this can be considered to be the normal case.

If the Am8052 is bus master, the CPU transfer
cycle is stopped temporarily by inserting Wait
States (ARDY Low). To minimize the wait time, the
Am8052 DMA is immediately preempted (BAI
High). As soon as the Am8052 releases the bus
(BRQ High) the CPU transfer cycle is terminated

" (ARDY High).

Control Logic

The control logic consists of three separate units:
The “Master” unit (Detall A in Figure 6-20), the
“Bus Arbiter” (Detail B in Figure 6-20) and the PAL
device (Figure 6-22), convemng the CPU-Am8052
signals and generating the various control signals
for the data path logic (Figure 6-19).

The “Master” Unit

The “Master” unit generates a signal MASTER,
which indicates if the Am8052 has granted bus
mastershlp on the local bus (MASTER Low).
MASTER- is the output of a flip-flop built out of
OR/AND gates. Master is asserted when the
Am8052 receives a bus acknowledge (BAI Low),
after it has requested the bus (BRQ Low).
MASTER then stays active until the Am8052
releases the bus (BRQ High). In applications not
involving DMA preemption, MASTER can be
generated simply by OR'ing BRQ and BAI. This
simplified logic does not generate a correct
MASTER signal in case of DMA preemption,
because the Am8052 is bus master while BRQ is
Low and BAI is High (time between preemption
and bus release).

The “Bus Arbiter”

This simple logic arbitrates between the CPU and
the Am8052 where the CPU has higher priority.
When the Am8052 is in slave mode and the CPU
accesses the local bus (MCS Low or PCS Low),
ARDY becomes High and BAI is blocked from
going Low, in order to prevent granting the Bus to
the Am8052. When the Am8052 is bus master
and the CPU accesses the local bus, ARDY is
asserted and DMA preemption is initiated. This
forces the Am8052 off the bus. To avoid glitches
on BA|, and satisfy the minimum width requirement
for BAI, DMA preemption is delayed until the next
address strobe (AS Low).

619

R
Am2949
Avies > A B UPPER LOCAL ADDRESS BUS
T
b wasren
]G
Am2956 Am2956

LOWER LOCAL DATA BUS

T asren
MASTER

g3

—
-

DTR ‘ oS ﬁ ’
[< UPPER LOCAL DATA BUS
e |,)
. — -)

> ADy.y

> AD,.o

—=ltR .
AD,., ‘ AAm’Ws <; LOWER LOCAL ADDRESS BUS
o .
T,

06178A 6-18

Figure 6-19 80188-Am8052 Interface
ARDY
80188 Am8052
MCs
PCS,
06178A 6-19

Figure 620 Bus Arbitration Logic

6-20

® ®

_/

BAI \ \

Bl s Y

' / !) / /

Feare U/ U
- T

oFF \/ (r | A
L =

AmB8052 requests bus (BRQ |)

guarantee min width of BAI (> 4 CLK, cycles)

1
2 AmB052 receives bus acknowledge (BAT |) 5 Am8052 gets off the bus (BRQ 1)
3 80188 requests Am8052 DMA preemption (MCS | or PCS, |) 6 AmB8052 requests bus again
4 Preemption request to Am8052 is delayed until AScarc | to 7 Am8052 receives bus acknowledge after CPU finishes access
06178A 6-20
Figure 6-21 Bus Arbitration Timing Diagram
Ap —f A, DS, f—> DSu
MASTER ———| MASTER DS, DS, ¢
DEN »] DEN AS |- »| As
ALE 1 ALE DS |- : -»{ DS
sotes DTR =1 DTR 4618 ' [‘“" WE _ . Amsos2
WR »1 WR WE |- »{ RW
RD »| RD OE, }— OE,
mCs > MCS - OE, |— OE,
PCS, »] PCS OE, ——» OE,
Ts
06178A 6-21

Figure 6-22 Control Logic

6-21

Slave Access Sequence -

The CPU loads internal registers of the Am8052 in
two ‘cycles. First, it strobes the upper data byte
into a latch by asserting PCS,. Next, both data
bytes are loaded into the Am8052 by asserting
PCS1. AR

To minimize interface logic, this application does

not support read accesses of the upper byte of the .

internal registers. Only the lower byte can be read.
Contents of control registers can be tracked by

‘software in memory, therefore it is not necessary to

be able to read these registers. All status bits
except the “Scroll In Progress” (SIP) bit are located
in the lower byte and can be read. However, the
SIP-bit can be scanned while using vectored
interrupts, because it is mcluded in the interruptr
vector.

When the Am8052 is in slave mode, the least
significant CPU address line (Ag) selects the .
memory device for the upper (Ag Low) or lower
byte (Ag High) and the appropriate transceivers.

PAL Design Specification

AMPAL16L8
PAT007
Interface 80188 — Am8052

PAL DESIGN SPECIFICATION
H.-J. Ruehl 1/15/85

Advanced Micro Dev:.ces, Stuttgart, West Germany

/pcsl /McS A0 /DEN ALE /RD /WR DIR/ MASTER GND
RW /DSH /DSL /AS /DS /WE /OE2 /OE3 /OE4 vee
DSH = MCS*DS*AO*/MASTER + DS*/WEXMASTER

DSL = MCS*DS*/A0*/MASTER - + DS*/WE*MASTER

IF (/MASTER) THEN AS = ALE '
IF (/MASTER) THEN DS = RD + WR

IF (/MASTER) THEN WE = DIR

OE3 = /MASTER*PCS1*DTR

OE4 = MCS*DEN*AQ*/MASTER

OE2 = ’

A\

MCS*DEN*/AQ*/MASTER + /MASTER*PCS1*DEN

6-22

CHAPTER 7
LOW-COST SMART TERMINAL DEMO SYSTEM

‘7.1 INTRODUCTION

This project was initiated to demonstrate that a low-
cost, but high performance terminal can be built
based on the Am8052/Am8152A CRT controller
chip'set. It shows that it is possible to design a high-
performance display system with limited amount of
memory (just 16 kBytes) and a low-cost CPU (the
Am8051) (Figures 7.1, 7.2, and 7.3). The arch-
itecture of the Am8052 allows display updates and
editing tasks to be performed with a minimum load
on the local CPU (mostly pointer changes rather
than block moves). However, by providing more
memory or a faster CPU, the overall system
performance can be furtherimproved.

Note. The hardware design and the corre-
sponding software package are the property of
Advanced Micro Devices Inc., Sunnyvale. Howev-
er, since this project is intended to be a promotion
tool for the Am8052, the complete (or ariy part of
the) hardware or software may be copied and used
in other designs. Soucre code and listing files are
made available on IBM PC compatible floppy-disks.

The complete demo set consists of:

Hardware description (Section 7.4)

Software users manual (Section 7.5)

Comparison to other terminals (Section 7.6)
*Source files (2 floppy-disks)

Listing files (2 floppy-disks)

Demo program (1 floppy-disk)
o Am8052 Terminal Board (IBM PC formfactor)
¢ Cable for async communication port

The following items are required, but not provided:
o Powersupply: IBM PC or ext. power supply

¢ |IBM PC monochrome monitor plus AC power
cable

o IBM PC/XT/AT with async port (COM1)

7.2 DEMO SET-UP
Take the following steps to set up the demo:

o Turn -off the power to the IBM PC/XT/AT or
compatable

. Open chassis by removing five screws Iocated
onthe back side of the system

o Insert the Am8052 Terminal board into one of
the empty slots

« Connect the bottom 9-pin D-Connector (J4) to
the async port of the PC (COM1). The cable is
supplied.

Connect the upper 9-pin D-Connector (J3) to
the monochrome monitor. The cable is attached
to the monitor.

Connect the monitor to AC power. A special
cable is required, but not supplied. A spare IBM
PC power cable can be used.

Turn on the PC power. After a few seconds a
cursor should show up at the top left corner of
the display. Also, the PC should boot up. If
either item does not happen ,turn oﬂ power and
re-check the connections.

e Insert demo disk into the PC and execute demo
by typing the following command sequence:

BASICA (to load basic interpreter)
* LOAD “DEMQ” (to load source of demo)
RUN (to execute demo)

o Ifthe demo disk contains the compiled (faster)
version of the demo called “DEMO.EXE”, it may
be executed by typing:

DEMO (to load and execute
demo)

o Various parts of the demo may be executed by
selecting items of the main demo menu.

Speed

The terminal board operates at 9600 baud. The
baud rate may be changed by reprogramming
EPROM addresses 3FFOH and 3FF1H. -For
example, to set the baud rate to 19200 the value at
3FFOH (DblBaudOpt) should be set to -80H, and
the value at 3FF1H (BaudRatCnt) to FDH.

)

The demo program written in BASIC supplies
characters at a lower rate than equivalent to 9600
baud. To show higher screen update rates, the fol-
lowing command may be executed:

COPY A:DEMO.BAS COM1:

. This command copies the source file of the demo
program to the terminal board. The font loading per-
formance may be shown by down-loading the file
-“8052FONT.DOC” to the terminal board. It will
define the 120-character-per-line font.

COPY A:8052FONT.DOC COM1:

The Am8052 can currently load one new character

font matrix (7*12 pixel) per frame (about 60°

cha;rs/sec) Defining the characters using the ANSI
standard it takes about 50 bytes to describe a
single character. At 9600, baud about 1000
bytes/sec.can be down loaded. This results in an
update rate of 20 characters/sec which is hmlted by
the data rate of the async line.

The terminal has been speed optimized. The
character placement and CR/LF routine have been
speeded up as much as possible. The result is,
_that this board can'operate at 19200 baud without
interface handshake (no control signal, no
XON/XOFF) as long as no escape sequences are
sent to the terminal board.

7.3 BUILDING PROCEDURE

There are nine assembly source files supplied on
two IBM PC compatible disks. The files are listed
below:

“Interrupt Handlers

C_BASE

C_INIT Initialization

C_SWITCH Dispatch Control

C_TABLES Control Tables (easy expandable)
C_WORK Control Routines .
C_UTIL System Utilities

C_FONT 80 Character-Per-Line Font
C_CONFIG Configuration

C_MemMap

Included Definitions

Each of these files is down loaded to the HP
64110A Logic Developement System. The first
eight files are assembled with the Am8051 Cross
Assembler. The resulting object files must then be
linked together. Both C_BASE and C_CONFIG
- contain absolute addresses. C_BASE also
- contains relocatable program memory as do the
remaining six modules. All eight modules should
be specified together in the link with the base of

the relocatable prografn segment set to 0040H.

The absolute file produced ‘by the linker can than
be uploaded to a PROM programmer. The baud

- rate is defined in the C_CONFIG module. the

locations “DblBaudOpt” and “BaudRatCnt” corre-
spond to the special function registers PCON and
TH1, respectively. The Am8051 timer 1 is used to
generate the serial communications clock descri-
bed in the 8051's users manual. Only the most
significant bit of “DblBaudOpt” (corresponds to
SMOD) is relevant.

Keyboard Interface

The keyboard logic is copied from the IBM PC/XT
Technical Manual. It is provided as an example
only. The hardware is not tested. In fact, if U15 is
installed the system will not operate. The current
software does not support the keyboard interface.

7.4 HARDWARE DESCRIPTION

While the the ‘cost for VLSI is decreasing, the so
called “dumb” terminals take over more and more
features of their smart companions. Performance,
features, and ergonomics are the important consid-
erations for todays generation of low cost term-
inals. Large eye-saving, operator friendly non-glare
screens, which can be tilted or swiveled to suit the
user, combined with high resolution smooth
scrolling displays highlight the ergonomic features.
Functional enhancements include user program-
mble function keys, programmble screen formats
(80 or 132 columns), a stationary 25th status line
with the time of day. High screen update rates, and
text editing speed are characteristic of these high
performance terminals.

First generation alphanumeric CRT controllers
such as the 6845 (Motorola) or the 8275 (Intel)
became the standard for low cost systems.
However, as the demand for enhanced features
increases, these very low cost controllers lose their
attractiveness. Implementing additional features
with external logic would raise the cost.” Second
generation controllers such as the Am8052 are
becoming more cost effective since these control- -
lers integrate enhanced functions in a single
device. Furthermore, drastic price reductions
made possible by die shrinks and cost saving pack-
aging techniques (i.e. PLCC—Plastic Leaded Chip
Carrier) now match the requirements of this very

- costsensitive market.

An Am8051/8751 micro-controller is chosenv as

7-2

the local intelligence. It receives display commands
from the host system via an asynchronous
communication channel and interprets them,
eventually generating the display list for the
Am8052. Both the CRT controller and the micro-
controller share a 16kbyte static RAM array which
stores this display data. The Am8051 controller
views this memory as 16kbytes (8-bit interface)
while the Am8052 views it as 8k words (16-bit
interface). Four standard latches (74LS373) and a
PAL device demultiplex the address buses and
implement the data funneling logic to interface the
8-bit and 16-bit bus masters.

‘Since the Am8052 off-loads display and editing
tasks from the processor, little CPU activity is
required. With the Am8052, editing tasks such as
swapping pages, inserting/deleting lines or charac-
ters are implemented via pointer manipulation
rather than data block moves. The simple, inexpen-

sive Am8051/8751 micro-controller is, therefore,

capable of executing all display fast and efficiently.
The distinctive characteristics are listed below:
¢ two display formats (selected by software) -

80 « 24 characters with 9 « 14 pixels/charcell
120 + 30 characters with 6 « 10 pixels/char cell

o optionally up to three trailing blanks may be
appended to simplify text right justification

¢ windowing and vertical smooth scrolling

proportional spacing

o highlight, superscript, subscript, reverse, under-
line, overscore, blinking, multiple cursors

Additional features requiring extra hardware:

« soft loadable character font generator
(single port RAM)

« horizontal smooth scroll
o italic characters generated by hardware

o Kanji/Chinese character set

System Interface
Addressing
Two transparent address latches (74LS373) de-

multiplex the 16-bit address/data bus of the
Am8052 and, in addition, the 8-bit address/data

bus on Port 0. Both latches are_énabled if either
ALE of the Am8051 (gated with BAI) or AS of the
CRTC are active. The output of the lower latch is
always enabled, the output of the upper latch is
only enabled if the CRTC is bus master (BAI Low).
Otherwise, the upper address is directly driven by
the Am8051. Port 2 (upper address byte of the
Am8051) cannot be connected to the inputs of
the upper address latch, because this would result
in bus contention, when the Am8051 reads the
upper RAM.

Am8051 Address Map

The Am8051 addresses data memory (IC3 and
IC4), the internal registers of the Am8052, and the
keyboard logic. These cycles are flagged by BAI
being inactive, and by either RD or WR being
active. The PAL device perform the decoding task.
The address map is listed below:

00004-3FFF keyboard logic (odd addresses
only!)

Am8052 internal registers
data memory (IC3 and IC4)
reserved :

4000H—7FFFy’
80004-BFFFy
C000-FFFFy

Note, that reading even addresses activates the
output of IC1. The keyboard logic must, therefore,
be accessed by odd addresses only. The I/O ad-
dress space is defined as follows:

0001y keyboard latch (IC21) (read only)

40004 AmB8052 register data access
(high byte, R/W)

4001y - Am8052 register data access
(low byte, R/W)

4003y Am8052 register pointer

(low byte, write only)

The proper sequence of accessing both halves of
the Am8052 registers is crucial. Before performing
any register access the pointer must be loaded.
When writing a register first the high byte is latched
(even address), then the low byte (odd address) is
provided. In the second cycle, the interface
controller supplies' both bytes to the Am8052.
When reading a register the two cycles are per-
formed in the reverse order. First, the low byte is
read (odd address), then the high byte (even
address) is read.

Bus Arbitration

The Am8051 performs the bus arbitration in

" software. The bus request of the- Am8052' (BRQ)

interrupts the Am8051. In the following interrupt
service routine the Am8051 three-states Port 2

(upper address bus) and Port: 0 (lower address/
data bus). Then it acknowledges bus request by
_granting the bus to the Am8052 by pulling P1.2

Low (BAI Low) and P1.3 High (AS High). P1.2
controls the bus acknowledge input (BAI) directly.

P1.3 pulls the address strobe line of the Am8052-

(AS) Low whenever a slave access is planned. For
Am8051 memory accesses P1.3 must be High to
allow ALE to propagate to the address latch (AST
Low). A High on any port 3 pins is equivalent.to a
floating output since each of these pins has an
open-drain driver with internal pull-up resistors.

The Am8051 scans the level on the interrupt input
frequently to determine when the CRTC releases
the bus. In response, the Am8051 removes Bus
Acknowledge " (P1.2 High and P1.3 High). This
design can support DMA preemption, since the
Am8051 can preempt the Am8052 whenever ap-
propriate by removing BAI. The Am8051 program
loop executed while the Am8052 controls the bus,
must be located within program memory internal to
the Am8051.

Am8051 Memory Access

The 8-bit Am8051 accesses the 16-bit RAM in
byte mode. For even addresses (Ag Low) IC16 is
selected, for odd addresses (Ag High) IC24 is
selected. IC14 latches the lower address byte.

Reglster Write

The Am8052 registers are accessed in two cycles.
The first write cycle latches a pointer to the register -
to be accessed (C/D High). In subsequent write
cycles the actual data transfer to the register can
take place (C/D Low). C/D is connected to A1 of
the Am8051. Otherwise, control or data wtite
cycles are identical.

How does the Am8051 load the 16-bit register via

its 8-bit data bus? To accomplish this task, the
AmB051 _first latches the upper byte in IC5 (Ag
Low, OE2 High, G2 High pulsed). In the next cycle,

the Am8051 accesses the CRTC and loads both

Port 2 provides the upper address byte directly.-

IC5 and IC13 are both disabled, since data will go
directly to Port 0. The lower RAM (IC16) is selected
(CS4 Low) IC24 is disabled. In read cycles the
output is enabled (OE Low). Write is enabled (WE
Low) during a write cycle.

In read cycles when A0 is Low IC13 is enabled (OE
Low, G High) to pass the data from the upper RAM
(IC24) to the data port of the Am8051 (Port 0). In
“write cycles IC5 is enabled (OE Low, G High) to
pass the data in the opposide direction from the
Am8051 to the RAM. IC5 and IC13 can be
replaced by a single, bidirectional latch (such as
the 74LS646). For memory accesses only the
transparent. (driver) function is required.. However,
the latching function is required when the Am8051
~ accesses the 16-bit reglsters of the Am8052 (see
below). i

Am8052 Memory Access

The Am8052 performs only word read accesses.
This means WE stays inactive High. Also, both
RAMs are selected, and Ag is disregarded. IC5 and
1C13 are disabled.)

bytes into the Am8052 (A High, OE2 Low, G2
Low). The upper byte is supplied by IC5, the lower
byte is supplied by Port 0.

Register Read

The Am8051 reads a 16-bit register in the reverse
sequence. First it accesses the CRTC, to read
both bytes. The lower byte is loaded into the
Am8051 |mmed|ate|y, the upper byte is temporarily
latched in IC13 (Ag Low, OE1 High, G1 High
pulsed). In a subsequent cycle the Am8051 can
read the upper byte from IC13 (Ao ngh OE1 Low,
G1Low).

Port 1 Allocation

P12 and P1.3 are High when the Am8051
controls the system bus. P1.4 and P1.5 control
the keyboard logic. For normal operation these
lines should be Low. OEN is active once per active
scan line and may be used to determine the beam
position. Therefore, it is connected to the counter/
timer input of the Am8051 (T0).

Control Logic

Most of the control logic is integrated in a single
PAL device, a PAL16L8, which controls the mem-
ory selection, write enable, and output enable, the
control for the data funneling (IC5 and IC13), and -
the bidirectional data strobe (DS) for the Am8052.

Timing

The- Am8051 and the CRTC operate asyn-
chronously. . The Am8051 should be operated at
its maximum frequency to. achieve maximum
performance. The CRTC is driven by the clocks

~

7-4

provided by the Am8152A (Video System
Controller). -CLK{ specifies the bus:clock (DMA.
operation). CLK, determines the character clock
rate. To support various screen formats -and,
optionally, proportional spacing CLK1 controls the
video timing. Both clocks are derived from the dot
clock, and digitally synchronized during HBLANK
to avoid screen jitter. The dot clock is 16 MHz.
CLK1 is 4MHz (divide ratio of four). CLK2 cycle
width varies from 4 to 12 dots, thus also resulting in
a maximum frequency of 4AMHz.

Video Interface

Basic Configuration

The basic configuration consists of the Am8052
(IC3), the Am8152A (IC12), a JEDEC pin-

compatible character forit generator ROM (IC1),

- the dot clock oscillator (Y2), and the video cable

driver (IC19). All' the remaining logic shown is
optional and implements the special functions
outlined below.

Horizontal Smooth Scroll

The Am8052 only supports vertical smooth scroll
directly. Horizontal smooth scroll can however be
implemented quite easily. A dummy character is
placed at the start of each character row. This
dummy character is made invisible by blanking it -
externally. The actual smooth scrolling is
performed by modulating the width of this
character. By shortening it, the character row
moves left. Eventually, the leftmost character will
disappear. At that time the first character is linked

PAL SPECIFICATION PROGRAM

PAL16L8

PAT020

8051-Am8052 INTERFACE CONTROLLER
ADVANCED MICRO DEVICES, SUNNYVALE CA

PAL DESIGN SPECIFICATION
6/21/85
JUERGEN STELBRINK

A0 /RD /BAI MEM . I0 NC /WR NC NC GND
NC /CS3 /CS4 /OE2 Gl G2 /DS /OE /CS VvCC
OE = RD + DS*BAI . ; OUTPUT ENABLE OF RAMS
CSs3 = /AO*RD*MEM*/IO*/BAI + ; UPPER (EVEN) RAM
/AO*WR*MEM* /I0*/BAI + . .
DS*BAI : .
Cs4 = AO*RD*MEM*/IO*/BAI + ; LOWER (ODD) RAM
AO*WR*MEM*/IO*/BAI + . :
DS*BAI
OE2 = /AO*WR*MEM*/IO + ; IC2, CPU WRITES EVEN RAM
AQ*WR*/MEM* IO ; IC2, CPU WRITES AM8052
/Gl = /MEM*/A0 + MEM*AOQ0 + - ;3 ICl
' /IO*/MEM + IO*MEM +
/AO*I0 + AO0*/IO +
/RD
/G2 = /MEM*IO + MEM*IO + ; IC2
/WR + AO L Co
CsS = /MEM*IO*AQ ; AM8052 CHIP SELECT

IF (/BAI) DS = RD + WR

DESCRIPTION:

The non-inverted equations for

Gl = /AO*RD*MEM*/IO +
AO*RD*/MEM*IO

G2 = /AO*WR*MEM*/IO +
/AO0*WR*/MEM*I0

~

BIDIRECTIONAL DATA STROBE

Gl and G2 are listed below:)

CPU READS EVEN RAM
CPU READS AM8052
CPU WRITES EVEN RAM
CPU WRITES AM8052

e e e Ne

75

out, and the width of the dummy character is

increased to it's original -size. Then the smooth.

scroll process is continued: until the second
character is scrolled out completely, etc.

The digital delay line consisting of four D-Flip-Flops
(IC22) delays BLANK to mask off the video stream
(IC23). The delay is set to four CLK1 cycles (16 dot
clocks). This covers the maximum length of the
~ dummy character (12 dots) plus a delay of one
CLK2 cycle (the first CLK2 cycle is 4 dot clocks).

Since the Am8152A involves one further dot clock
propagation delay, the rightmost pixel of the
dummy character is not masked off by the delayed
BLANK: This pixel is blanked by loading a blank
pixel (“1”) into the 12th position of the video shift
register.

The upper half of the video shift register is loaded
with the falling edge of CLK2. While CLK2 is High,
the character font generator output is three-stated
(IC1). So, the pull-up resistors supply a High to the
parallel input port, causing the Am8152A to always
latch “1”s with the falling edge of CLK2. Since the
character font is implemented in negative logic (for
normal video REVERSE is active), “1"s are
represented as blank pixels.

Horizontal smooth scroll is discussed in more deiail
in a separate application note.
Soft Loadable Character Font Generator

Once horizontal smooth scroll is implemented, it
takes only one additional latch (IC7) to integrate a

in the Row_ Redefinition Block provides the pixel

pattern of the character slice to be loaded. The.

cursor attribute selects the scan-line to be loaded.
Therefore, the Row: Redefinition Block defines the
scan-line number to be loaded (the cursor position

within the character cell). The values for cursor start -

and end must be equal to activate this. attnbute for
asingle scan lineonly.

Finally, the cursor attribuie bit within the character
attribute word of the dummy character enables the
loading process itself.

Character Code Graphic

An alphanumeric display system can implement bit-
mapped graphic- directly. One graphic
implementation in an alphanumeric system treats
the character code directly as bit-map. Each cha-
racter code specifies eight consecutive pixels with-

in a scan line. Therefore, the character code-

bypasses the character font generator via IC2 and
supplies the pixel pattern to the parallel input of
the shift register. Since each character row now
consists of only one scan line, the Am8052 bus
traffic is increased significantly and must be

_analyzed carefully.

;

Row attribute bit 1 enables/disables this mode. For
normal operation this bit is set to “0.”

Italic Characters

ltalic type characters could obviously be supported

‘by an additional (or larger) character font ROM or by

soft loadable character font generator. Note, that"

this implementation differs from the method
discussed in an earlier AMD application note. This
implementation requires less hardware and also
boosts the loading performance. Here, one slice of
one character may be loaded per character row
resulting in a loading rate of about two to three full
character cells per frame (100 to 200 characters
cells per second) assuming that 24 character rows
are diplayed and that a cell contains between 8 and
12slices.

In this implementation, the dummy character at the
start of each character row performs one more task.
It enables the loading process as well as providing
all necessary information to perform the process
itself.

The character code_Of the dummy character
specifies the character to be loaded. The upper
eight bits of the 10-bit row attribute word contained

reloading the character font RAM. But a small
amount of special hardware can change straight
characters to slanted characters.

The italic mode is turned on by placing a unique
shaped blank character into the character string.
This character is wide on the top and narrow on the
bottom. Once this character is placed in a character
string all following characters will be tilted according
the programmed shape of the “ltalic On” character.
The italic mode is turned off by placing a blank
character with the reversed shape into the
character string.

IC11, a 256-8 bit PROM implements this feature.
The 8-bit address is assembled from the 4-bit scan
line address and the 4-bit CLK2 divide ratio
supplied by the Am8052. For the standard divide

ratios from 4 to 12 the PROM just passes the

supplied ratio through to the Am8152A (normal
character mode). For four other ratios this device

7-6

becomes active. There, it modulates the width of
the character with the scan line address to build
the uniquely shaped characters. The following
table lists the width values and shows how they
affectthe character diplay.

Value Function

0000 ltalic On (9 pixels/character)
0000 ltalic Off (9 pixels/character)

0010 normal character (4 pixels wide)

1010 normal character (4 pixels wide)

1110
1111

ltalic On (6 pixels/character)
ltalic Off (6 pixels/character)normal

The italic mode is automatically reset at the end of a
character row. Both characters controlling. italic
mode have the same width as the standard
characters. So, no width computations like in
proportional spacing applications are required.

ltalic mode is turned on by placing a blank (20p) in
the string. This blank has the width value: 0000 or
1110 depending on the chosen screen format.
The italic mode is terminated by inserting a blank
with a width value: 0001 or 1111. :

7.5 USER'S MANUAL FOR THE
LOW-COST, SMART TERMINAL

Displays

Background Display

-30 usable rows stored in memory
128 characters/row stored in memory
8024 charactersin “normal” mode
12030 characters in “compressed” mode

Scrolls vertically and horizontally

Mes#age Display

1
128

row (visible only when selected)
~ characters/row

Scrolls only horizontally

Window Display

14 usable rows (7 visible when
selected)

40 characters/row (40 visible when
selected)

~ Scrolls only vertically

There is only one cursor in the terminal; it is always
in the active display. It may not be visible (e.g.
beyond the currently visible bounds, or under the
(visible) window while in the background display).
The active position (i.e. cursor) indicates where the
next graphic character which this system receives
will be stored.

Controls

There are five classes of controls normal ASCII
control characters, escape sequences, extended
control characters, standard control sequences,
and private control sequences.

Normal CO Control Characters

These are the subset of the ASCIl X3.4 control
characters which we have implemented.

Backspace (BS)

Moves the active position one column left in the
active row, except when the cursor is already in the
leftmost column in the display. ' This control does
not cause scrolling.

Carriage Return (CR)

Moves the active position to the first column in the
active row. This control does not cause scrolling.

New Line (NL)

Moves the active.position to the first column in the
next row downward from the active row. If the
active row is the bottom row of the display then a
blank row is inserted at the bottom of the display
and the top row is deleted. This has the
appearance of scrolling the entire display upward
one row. The next row, to which the active
position is moved, is the new bottom row.

This control has no effect when the ‘message
display is active.
Escape (ESC) »

Introduces escape sequences defined in the ANSI
X3.64 extension.

7-7

Escape Sequences

These are seqences defnned |n ANSI X3.64 that

parameter, without ‘altering its vertical pos,ition. An
attempt to .move.the active position beyond the

~leftmost column in the. display leaves it at the

consist of an escape character followed by a final

character They are parameterless controls.
. \ N

Reset to Inital State (RIS)—ESC ¢

Resets the terminal to a blank background display,
in small display mode, scrolled all the way up and to
the right, with the active position at the first column
in the 'seventh row (top row on the monitor
screen). The graphic rendition, character blink
rate, smooth scroll rate and cursor appearance are

given their initial values. The Vertical Editing Mode

(VEM), Display Width Mode (AMDDWM), Scroll
Mode (AMDSCM) and Screen Polarity Mode
(AMDSPM) are all reset. The message and window
displays are also blanked as well as being made
invisible. The background display is active and the

character generator is reloaded ‘with its initial

patterns,

7

Control Sequence Introducer
(CShH—ESC]|

Introduces control sequences defined in the ANSI
. X3.64 extension. It also introduces the private
control sequences that are implemented in accor-
=dance with that standard.

Extended Control Charag:ters

leftmost ‘column. . A -default parameter causes
movement one column leftward, except from the -
leftmost column. This control does not cause
scrolling. It may move the cursor to a position
where itis invisible.

Cursor Down (CUD)-—CSI PnB

Moves the active posmon downward the number
of rows specified by the single numeric parameter,
without altering its horizontal position. An attempt
to move the active position beyord the bottom row
of the display leaves it at the bottom row. A default.
paraméter causes movement one row downward,
except from the bottom row. This control does not
cause scrolling. It may move the cursor to a
position where it is invisible.

; qusor Forward (CUF)—CSIPnC

The Control Sequence Introducer (CSl) is also

. available as a single, 8-bit control character (x'9B").
It performs the same function as the escape
sequence described above.

Extended Control ‘Se'quenc,es

These are sequences introduced with the Control
Sequence Introducer (CSI) described above.
They may contain parameters and intermediate
characters and end with a final character.

Parameters may be interpreted either as decimal

numbers or as special selectors that depend on
the particular control for their meaning. A default
‘parameter is one that is missing or is specified with
avalue of zero.

Cursor Backward (CUB)—CSl Pn D

Moves the active posmon left by.the number of
columns specified” by the single numeric

Moves the active position the number of columns .
rightward specified by the single numeric para-
meter, without altering its vertical position. An
attempt to move the active position beyond the
rightmost column in the display leaves it at the
rightmost column. A default parameter causes
movement one column rightward, except from the
rightmost column. This control does not cause
scrolling. It may move the cursor to a position
where it is invisible.

Cursor Position (CUP)—CSI Pn ; Pn H

Moves the active position to the row and coluﬁm
specified by the two numeric parameters. The first
parameter specifies the row; a default causes
movement to the top row. An attempt to move the
active position beyond the bottom row in the
display leaves it at the bottom row. The-second
parameter specifies the column; a default causes
movement to the leftmost column. An attempt to
move the active position beyond the rightmost
column in the display leaves it at the rightmost col-
umn. This control does not cause scrolling. It may
move the cursor to a position where it is invisible.

Cursor Up (CUU)—CSI Pn A -
Moves the ‘active position upward the number of

rows specified by the single numeric parameter,
wnthout altering its horizontal posmon An attempt

78

to move the active position beyond the top row of
the display leaves it at the top row. A default
parameter causes movement one row upward,
except from the top row. This control does not
cause scrolling. It may move the cursor to a
position where it is invisible.

Delete Line (DL)—CSI Pn M

Deletes the number of rows specified by the single
numeric parameter. If the Vertical Editing Mode is
reset then the active row and rows below it are
discarded and any remaining rows at the bottom of
the display are shifted upward with blank rows
being shifted into the display below them. The
active position remains in the same horizontal pos-
ition within the highest row that was shifted (which
may be blank). If VEM is set then the active row
and rows above it are discarded and any re-maining
rows at the top of the display are shifted downward
with blank rows being shifted into the display
above them. The active position remains in the
same horizontal position within the lowest row that
was shifted (which may be blank). An attempt to de-
lete more rows than is possible blanks the display
from, and including, the active row through the bot-
tom or top row, depending on the state of VEM. A
default parameter causes one row to be deleted.

Erase In Display (ED)—CSI Ps J

Blanks a region, of the display, specified by the
selective parameter. A default parameter causes
the region from, and including, the active position
through the end of the display to be blanked. The
active position does not change.

Parameter Meaning
0 Blanks the active'position and all
positions to the end of the display
1 Blanks from the beginning of the
display up to, and including, the
active position
2 Blanks the entire display

"Parameters other than those listed above are ignored.

Erase In Line (EL)—CSI Ps K

Blanks a region of the active row specified by the
selective parameter. A default parameter causes
the region from, and including, the active position
through the end of the row to be blanked. The

- Parameter

active position does not change.

Parameter Meaning
0 Blanks the active position and all
posttions to the end of the row
1 Blanks from the beginning of the row
up to, and including, the active
position
2 Blanks the entire row

Parameters other than those listed above are ignored.

Insert Line (IL)—CSIPn L

Inserts the number of blank rows specified by the
single numeric parameter. If the Vertical Editing
Mode (VEM) is reset then the active row and all
rows below it are shifted downward. The active
position remains in the ‘'same horizontal position
within the first (highest) blank row. If VEM is set
then the active row and all rows above it are shifted
upward. The active position remains in the same
horizontal position in the last (lowest) blank row.
An attempt to insert more rows than are being
shifted blanks the display from, and including, the
active row through the "bottom or top row,
depending on the state of VEM. Rows shifted out
of the display are discarded. A default parameter
causes one blank row to be inserted.

Reset Mode (RM)—CSI Ps |

Resets the modes ‘indicated by the selective
parameters to their initial states. Four modes have
been implemented. When Vertical Editing Mode
(VEM) is reset the Insert Line (IL) and Delete Line
(DL) controls operate below the active row. When
Display Width Mode (AMDDWM) is reset the normal
display mode (80 characters per row and only 24
rows displayed) is in effect. When Scroll Mode
(AMDSCM) is reset then jump (i.e. non-smooth)
scrolling is affected. When Screen Polarity Mode
(AMDSPM) is reset then normal characters are
shown as-light on dark. A sequence with no
parameters has no effect. :

Meaning .
7 VEM (insert/delete below active row) =
73 AMDDWNM (normal display mode)
%4 . AMDSCM (jump scrolling)
?%5 AMDSPM (light on dark characters)

Parameters other than those listed above are ignored.

Scroll Down (SD)—CSIPn T

Scrolls the display downward the number of rows
specified by the single numeric parameter. An
attempt to scroll the top row of the display
downward beyond the top row on the screen
leaves it at the top row. A default parameter
causes the display to scroll down one row, unless
the top row of the display is already at the top row
onthe screen.

This control has no effect when the message -

display is active.

Select Graphic Rendition
(SGR)——CSI Psm

Selects the attributes, with which subsequent
characters will be displayed, as specified by the
selective parameters. A choice between two fonts
is also selectable. A sequence with no parameters

does not change attributes.
Parameters Meaning
0 Initial rendition: steady, normal

intensity, not underlined, not
crossed out, normally aligned,
positive image, primary font

1 Bold or increased intensity
4 Underlined
5 Blinking
7 Negative image
9 Crossed out (legible but marked as
to be deleted)
-10 Primary font
11 Secondary font
22 Normal intensity
24 Not underlined
25 Steady (not blinking)
27 Positive image
29 Not crossed out
791 Superscript alignment
792 Subscript alignment
793 Normal alignment

Parameters other than those listed above are ignored.

Scroll Left (SL)—CSI Pn SP @

-Scrolls the display leftward the number of columns
specified by the single numeric parameter. An
attempt to scroll the rightmost column of the
display leftward beyond the rightmost column on
the monitor screen leaves it at the rightmest
column. A default parameter causes the display to
scroll left one column, unless the rightmost column

of the display is already at the rightmost column on
the monitor screen.

This control has no effect when the window display
is active.

Set Mode (SM)—CSI Ps h

Sets the- mode indicated bs(the selected
parameters to their alternate states. Two modes
have been implemented. When Vertical Editing
Mode (VEM) is set the Insert Line (IL) and Delete
Line (DL) controls operate above the active row.
When the Display Width Mode (AMDDWM) is set
the compressed display mode (120 characters per
row and all 30 rows displayed) is in effect. When
the Scroll Mode (AMDSCM) is set then smooth
scrolling is used. When the Screen Polarity Mode
(AMDSPM) is set then normal characters are
shown dark on-light. A sequence with no

parameters has no effect.
Parameters Meaning
7 VEM (insert/delete above active row)
723 AMDDWM (compressed display
~mode)
?4 AMDSCM (smooth scrolling)
?5 AMDSPM (dark on light characters)

Parameters other than those listed above are ignored.

Scroll Right (SR)—CSI Pn SP A

Scrolls the display rightward the number of
columns specified by the single numeric para-
meter. An attempt to scroll the leftmost column of
the display rightward beyond the leftmost column
on the monitor screen leaves it at the leftmost
column.. A default parameter causes the display to

- scroll right one column, unless the leftmost column

of the display is already at the leftmost column on
the monitor screen.

This control has no effect when the window display
is active. - : ’

Scroll Up (SU)—CSIPn S

Scrolls the display upward the number of rows
specified by the single numeric parameter. - An
attempt to scroll the bottom row of the display
upward beyond the bottom row on the monitor
screen leaves it at the bottom row. A default
parameter causes the display to scroll up one row,

- 7-10

unless the bottom row of the display is already at
the bottom on the monitor screen.

This control has no effect when the window display
|s actlve

Private Control Sequences

These are sequences that are introduced by the
Control Sequence Introducer (CSl). They may
contain parameters just like the standard sequen-
ces, but their final characters are in the set which
the standard has reserved for private use.

Character Blink Rate (AMDCBR)—CSI Psu

Selects the rate and duty cycle, for characters
displayed with the blink attribute, as specified by
the selective parameters. Currently blinking charac-
ters, as well as those subsequently displayed, will
reflect the selection made by this control. A de-

“fault parameter selects the fastest blink rate and a
25%—75% duty cycle.

Parameters Meaning
0 Initial character blink: fastest,

25%~75% cycle

11 Blink with 50% active, 50% inactive
cycle

12 Blink with 25% active, 75% inactive
cycle

20 Fastest blink rate

21 Fast blink rate

22 _Slow blink rate

23 . Slowestblink rate

Parameters other than those listed above are ignored.

Load Font.Cell (AMDLFC)—CSI Pn ... Pn~

Programs one cell of the character generator with
the pattern specified by the numeric parameters.
When in “normal” display mode- the 79 display
cells are programmed, otherwise the small display
cells (5x7) are programmed. The first parameter
specifies which character cell is to be programmed.
There are 256 chracter cells specified in the range
0 through 255, inclusive. All cells except that at
location 32 can be programmed; this is always a

blank and cannot be changed. A default for this

parameter will cause this control to be ignored.
The second parameter specifies at which character
cell slice programming is to begin. Slices are

numbered downward beginning with zero. Slices

" above the first slice are automatically blanked. A

default for this parameter causes the programmed
pattern to begin at the top slice in the character
cell. The rest of the numeric parameters each
represent a slice of the character pattern. They are
decimally encoded byte values for the desired
eight-bit slices, with the most significant bit at the
left side of the character and the least significant bit
at the other side of the character cell. In small
display mode, the entire slice- (all eight bits) are
shown with an additional blank pixél after each
character. In large display mode, only the most sig-
nificant six bits are shown and there is no additional
blank pixel. A default for a pattern parameter
causes the slice to be blanked. As many slices are
programmed as there are parameters supplied,
down to the bottom of the character cell. Any un-
programmed slices below the last programmed
slice are automatically blanked.

Select Active Display (AMDSAD)—CSI Psp

Makes one of the background, message or
window displays the active display. The active dis-
play is’ where the characters being received are
stored and where the controls being received per-
form their functions. The displays each have their
own active position and current graphic rendition.
The cursor is shown at the active position of the ac-
tive display, provided that active position is visible.
A default parameter makes the background display
the active display. This control does not affect
message and window display visibility.

Parameter Meaning
0 Makes the background display active
(default)
1 Makes the message display active

Makes the window display active

Parameters other than those listed above are ignored.

Select Cursor Appearance ‘
(AMDSCA)—CSI Ps v

Selects the appearance of the cursor, which marks
the active position, as specified by the selective
parameters. The fundamental form of the cursor,
as well as whether or not it blinks and at what rate,
can be changed. A default parameter selects a
steady, reversed block covering: the entire
character cell.

711

Parameters ‘Meaning '
0 Initial cursor: steady, reversed, full
block
1 Reversed block covering entire -
character cell
2 Reversed block covering lower half
of character
3 Solid block covering lower half of
) character
4 Underscore
5 Thick underscore
10 * Steady, non-blinking :
1 Blink with 50% active, 50% inactive
) cycle ’ .
12 Blink with 25% active, 75% inactive
cycle)
20 * Fastest blink rate
21 Fast blink rate
22 Slow blink rate
23 Slowest blink rate

Parameters other than those listed above are ignored.

Smooth Scroll Rate (AMDSSR)—CSI Ps t

Selects the rate -at- which' both vertical and
horizontal smooth scrolling occurs as- specified by
the selective parameters. If more than one
parameter is specified then the last one has
precedence.: A default parameter selects one
scanline/pixel per frame. o

Select Window Visibility
(AMDSWV)—CSI Ps ¥

Makes the window display either visible or invisible
as specified by the selective parameter. A default
parameter makes the window display invisible.
This control does not affect which display is active.

Parameter 'Meaning
0 Makes the window display invisible
(default)
1 Makes the window display visible

Parameters other than ‘those listed above are ignored.
Select Message Visibility (AMDSMV)—CSI Ps q

Makes the message display either visible or
invisible as specified by the selective parameter. A
default parameter makes the message display
invisible. This control does not affect which display
is active.

Parameter Meaning
0 Makes the message display invisible
(default)
1 Makes the message display visible

Parameter Meaning
0 Initial scroll rate: one scan line/pixel
per frame - ’
-1 One scan line/pixel per frame
2 Two scan lines/pixels per frame
3 Three scan lines/pixels per frame
4 Four scan lines/pixels per frame
5 Five scan lines/pixels per frame
6 Six scan lines/pixels per frame
7 Seven scan lines/pixels per frame
8 Eight scan lines/pixels per frame
12 One scan line/pixel every two frames
13 One scan line/pixel every three
frames)
14 One scan line/pixel every four frames
15 One scan line/pixel every five frames
16 One scan line/pixel every six frames
17 One scan line/pixel every seven
frames
18 One scan line/pixel every eight
frames

Parameters other than those listed above are ignored.

Parameters other than those listed above are ignored.

7.6 LOW-COST TERMINAL COMPARISONS

This document contains two tables comparing the
features of four terminals with the implemented
Low-Cost, Smart Terminal based on the Am8052/
Am8152A chip set. The purpose is to clarify the

“relationship of this terminal to other well known
alphanumeric terminals.

The tables include the
DEC VT100 and VT220 and the IBM 3101. All but
the IBM terminal are ANSI X3.64 compatible term-
inals. The IBM terminal claims to adhere to an ear-
lier ANSI and ISO specification; it is similar in some
respects to the ADDS Viewpoint or the DEC VT52.

It is very important to understand that the ANSI
specification does not define the characteristics of
any specific terminal, nor does it require any
minimum implementation. Rather, it defines the
method of encoding control information which may

7-12

be sent to, or received from, a terminal
Consequently, a terminal may conform to ANSI
X3.64 whether or not it has the ability, for example,
to insert a line in a display. If an ANSI X3.64
compatible terminal does have the ability to insert a
line in a display, however, then the control which is
sent to perform a line insertion must be encoded
as specified in the ANSI standard.

In .a practical sense, a user of ANSI terminals can
write software which performs the most elementary
operations (such as cursor positioning) with
confidence that they will work on any conforming
terminal. There are some slightly more advanced
operations (such as insertion and deletion) which
may or may not be included in a given terminal, but
if present will always be encoded in the standard
manner. The user may write “portable” programs
which make use of these functions only if he
checks carefully for their support on any terminals
he wishes to use. Finally, there will be many
unique operations for a given terminal (such as
window support) which will be represented by
“private” extensions that conform to the ANSI
standard. User programs which make use of such
operations become bound to a particular terminal
orits emulators.

From the user's viewpoint, it would be better if
there were some truly standard specification of a
terminal, for which he could write programs with the
expectation that such programs would then be
completely “portable” among ANSI compatible
terminals. Unfortunately, this is not the situation.

Only the method of encoding control information is -

standardized, not the characteristics or capabilities
of a terminal. Still, this is better than the complete
absence of standardization. Programs can be
written which are reasonably portable and standard
modules for sending controls to a terminal can be
developed. Furthermore, high-level software
simulations of more advanced features, which may
be missing in some terminals, can be written to.use
the simpler features which are present. For these
reasons, it is appropriate for developers of new

terminals to conform to the ANSI X3.64 standard.

The Low-Cost Smart Terminal, implemented with
the Am8052/Am8152A chip set on an IBM-PC
board, does have ANSI X3.64 compatible control
definitions. lts relationship to other terminals can
only be determined by detailed analysis of the .
characteristics of these terminals. The two tables
which form the bulk of this document provide a first
level analysis. The first table is a.summary of
groups of features. The second is a detailed listing
of individual controls.

In viewing this comparison, certain general
statements can be made. These are:

1. The implemented terminal handles the most
common forms of cursor positioning and
character display as do all the other terminals.

2. The implemented terminal includes advanced,
\yet fairly common features such as character
assigned attributes, row insertion and deletion,
smooth scrolling and a window. The criteria for
including these features was that they should
relate directly to capabilities of the Am8052. No
advanced features have been included *“for
their own sake” ‘or for compatibility with any
other terminal. Such features, since they do
not relate to the Am8052, would be primarily a
software exercise.

3. The implemented terminal includes some
“private” controls .for the purpose of
demonstrating unique hardware capabilities
such as varying the rate of smooth scrolling,
smooth scrolling either window or background
without affecting the other and horizontal
smooth scrolling.

The comparison reveals the original design intent,
that it should demonstrate the applicability of the
AmB8052 to a low-cost terminal while also revealing
the advanced features that the use of an Am8052
could bring to such a product.

7-13

SUMMARY TABLE

Am8052 © VT100 VT220 IBM
1. Simple cursor movement YES YES YES YES
and positioning . .
2. Additional cursor - IND &Rl IND &Rl within a row
movement only only
3. Cursortabulation - fore hrz fore hrz fore &
movements only . only : back hrz
4. Tabulation - hard setup simple set & simple set &
control only clear clear
5. Insert and Deletes YES - YES - - YES
by Row
6. Insertand - - YES YES
Deletes
by Character
7. Unconditional display & line display &line - display & line display line &
Erasures &chr &chr field
8. Conditional - - display display
Erasures &line
9. Vertical smooth smooth smooth jump
Scrolling only & jump & jump only
+10. Horizontal smooth - - -
Scrolling only
1. Superséripts YES - - -
and Subscripts
12. Modes some well stocked well stocked -
‘but most hardware but most hardware
dependent dependent
18. Character Display YES YES YES YES
Attributes
14, Selectable Fonts YES YES YES YES
15. Alterable Fonts YES - YES -
16. Windows single fixed simple scrolling simple scrolling -
. region region
17. Am8052 Dependent special controls - - -
Features defined
18. Double Height/ Double Width - YES YES -
Characters
19. Diagnostics and Reports - YES YES cursor pos
only
20. Miscellaneous reset resetcomm & reset comm & comm
specials specials

7-14

DETAILED TABL\E

Am8052 VT100 VT220 IBM
1. Simple cursor moveinent and positioning
Cursor Back YES YES YES YES
Cursor Down YES YES YES YES
Cursor Forward YES YES YES YES
Cursor Position YES YES "YES YES
Cursor Up YES YES YES YES
Backspace YES YES YES YES
Carriage Return YES YES YES YES
New Line YES YES YES YES
Line Feed . YES YES YES YES
Horz Vert Pos 1) YES YES -
2. Additional cursor movement
Horz Pos Abs 1) - - YES
Index 1) YES YES -
Reverse Index 1) YES YES -
3. Cursortabulation movements
Horizontal Tab , 1) YES YES YES
Cursor Backward Tab 1) - - _YES
4. Tabulation control
Clear Tab 1) - YES YES
Set Horz Tab 1) - -YES YES
5. Insert and Deletes by Row
Delete Line YES - YES YES
Insert Line YES - YES YES
6. Insert and Deletes by Character
Insert Character 1) - YES YES
Delete Character 1) - YES YES
7. Unconditional Erasures
Erase Display YES YES YES YES
Erase Line YES YES YES YES
Erase Field 1) - - YES
Erase Character 1) - - YES -
8. Conditional Erasures
Erase Display 1) - YES YES
Erase Line 1) - YES -
9. Vertical Scrolling
Scroll Down YES YES YES -
Scroll Up YES YES YES YES

-10. Horizontal Scrolling

Scroll Left YES - - -

VT100

VT220

;

) Am8052 - IBM
Scroll Right YES - - -
1. Superscripts and Subscripts
Partial Line Down YES - - -
Panial Line Up YES - - -
12. Modes “
" ResetMode YES YES YES -
Set Mode YES YES YES -
Send-Receive 1) - YES -
LineFeed/NewLine 1) YES YES -
Insert/Replace 1) - YES -
ANSINT52 1) YES YES -
Auto Repeat 1) YES YES . -
Cursor Key Usage 1) YES YES -
Keypad usage 1) YES YES -
Origin Location 1) " YES YES -
Normal/Reverse Display 1) YES YES -
Interlace Display 1) YES - - -
80/132 Column Display (120) YES YES YES -
Jump/Smooth Scroll YES YES YES -
 AutoWrap 1) YES YES -
Print Form Feed 1) - YES -
Print Extent 1) - YES -
Text Cursor 1) - YES -.
13. Character Display Attributes
Select Grph Ren YES YES YES’ -
Start Field) 1) - - YES
14. Selectable Fonts
Shift Out YES YES YES YES
Shift In YES YES YES YES
Single Shift Two 1) - YES -
Single Shift Three 1) - YES -
Select Character Set 2) YES YES -
15. Alterable Fonts
Load Font YES - YES -
16. Windows
Write to Window YES - - -
Make Window Visible YES - - -
Make Window Invisible YES - - -
'17. AmB8052 Dependent Features
Character Blink Rate YES - - -
Select Cursor Style " YES - - -
Smooth Scroll Rate YES - - -
18. Double Height/Double Width Characters.
Double-Width Line 1) YES YES -
Double-Height Line 1) YES YES -

7-16

Am8052 VT100 VT220 ’ IBM

19. Diagnostics and Reports

Screen Alignment 1) YES YES -
Identify Terminal 1) - YES YES -
Confidence Test 1) YES YES -
Cursor Position 1) YES YES YES
Report Term Params 1) YES YES - -
Request Term Params 1) YES " YES -

20. Miscellaneous

- Reset Init State YES YES YES -

Bell 2) YES YES YES
Enquiry 1) YES . YES -
Xon 1) YES .YES YES
Xoff 1) YES YES : YES
Cancel 1) YES YES YES
Substitute 1) YES YES -
Device Attribute 1) YES YES -
Restore Cursor 1) YES YES -
Save Cursor ' 1) YES YES -
Load LEDs : 1) YES - -

Notes: 1) software driver not implemented, but can be easily added '
2) requires additional hardware support
-) not supported

Low-Cost Smart Terminal Demo Board

7-17

w g © o - =3
addaddad s
28114) < €« €« < < € < <
19 !
D7 g
0o |2
17
Ds
16 ,
D4 T
15
D3
13
D2
12
D4
11
Do
) 8 [14]4]a]ss]17]7]13 2[5 {6 |9 [12 |15 [19 |16
Vee 1| — i Y
o8, o GE u13 OE;o— OF us
Gio— G 74LS373. Goo— G 74LS373
2814 . Q D
o, | 9 (15|52 [19]16]6 |12 3 |4 [7 {8 |13 |14 [17 |18
7
18 A
De
u24 o 17
6264 °* 16
D4
15
D3
13
D2
12
Dy
1
Do
SHEET 1,3 U16 Vce Vce
—_—— wi2 Tzo
2N - 2 o 9o 6264
<< << << 2 1 2]Q Dl s
. l——o
26 26 | Wit 16 17 B
CS |- CcSs u2s ———o0
Atz | PO L *1 7aLs373 |2
12 12 ——0
23 23 9 8
AH A|1 —o°
21 21 12 13
Ato Ato = v ——0
A 12 As 14 .
25 5
As a As ——o
3 B 19 18
A7 A7 — ——o [
G DE
ADyq AST E_T
(SHEET 1,2) T ce
SHEET 3
—_ Q
~ e 0 ¥ o & -
< < <« <« < < <
4T 9 . s uia |, .
As As 74LS373
5 5 6 7
As As . : i
Yy A
7 7 2 3
A3 A3 s
8 s 19 1
Az JA2
9 9 16 17
A A 14
10 15
Ao |2 Ao
12 13
— — AD, 0— _
CS DE WE CS DE WE (SHEET 3) G DE
20 22[27 20 2227 l _I_
= §88388a8 8
—_— < <« €« €« <« « < <
! AST
CS; DE WR Css SHEET3 |

Figure 7-1 Am8052 Terminal Board System Interface
] . .

7-18

Vee

Vee
Ri 62
8.2K 2
Vee
— 24 ___ 8
RESET RST oD
43
10pF
c4 u3
Am8052
| 52 v
| 1 v
1 cc
] AD14
I S0} ADis TNTACK 2= Vee .
—_— cc
49 ADy2 & 2 R10 T
— 20
8] on, = |12 2.2K
— 11 71 —
473 Ao 58 |2 id
— 19] —
461 ape o AL cs
45 . 7| —
ADg RW WR yog
= |22 —
C/D f+——o0 A¢ —o0 WR 5 AmPAL16L8 1
Ay o—— 10 l———o T35,
Vee — — 13 —
— MEM o—— MEM |—o TS,
44 — |16 | BAI) ’ 15
AD7 WAIT , F—o0 G
42 3| —
ADg BAI AL Gz
M 2| — 18 —
ADs RD |—o OE
40 — | —
ADs 7S, Ao A | 4 e,
39 ADs a4 GND
38 10
AD2 7
37 .
ADy .
. 36] .. — |13 .
ADo _ BRQ :_1D£—o OE,
Vee 2 u27 .
2.2k 18
Re
13 Pia FUNCTION
(SHEET 1,3) 28 INT 12 [8052 SLAVE MODE
MEM o———— P27 ' T - -
27 , 3 1 | . 8052 MASTER MODE
ADy4 O———— P2¢ P12 :
MEMORY ACH
ADys R O U MO CESS
4
ADi2 "'—-—2-i P24 Pis
ADyy 00— 5y, wa |
AD1o o— B P22
22 — |7
ADg 0————1 P24 RD
: 21 1
ADg o] P20 To 4 BLANK (ACTIVE ONCE PER CHARACTER ROW)
Vee (SHEET 2)
ci1) ua 5
104F 9 8751 pis|- Py4 (SHEET3)
RS
8.2K .
30pF
32 Po.7 'XTALz cl14
33
” Pos
Pos MHZ CR1 '
35
Po.a XTAL4 ci2
36 c
Pos ° 30pF
37,
{ Po2 a1
B —
Po.1 EA
3N oo PN o
(SHEET 3)
FETT
.
P11 Pis
(SHEET 3)
. !
Figure 7-1 Am8052 Terminal Board System Interface (Continued)

7-19

Ry
Rz
Rs

CCy
cc,
cCs
cCq
" CCs
CCe
CC7

us
Am8052

" HSYNC
APyo
APy
APs
AP7
APs
APs
AP,
AP;
APz
APy
APy
CLK;
CLK2

" BLANK

VSYNC

CURSOR

vee . WEOEN TS (FROMU20)
R; Rz Ry Ro we we
12)
35 10
34 9
33 8
32 7
. §28
Vee
60 6 A o 19
4 7
59 5 U1 18
As 6264 De
58 4 17
I Ds |—
57 3 16
Az D4
56 25 15
As D3
55 24) 13
As Dz
54 21 Dy |12
Ao !
53 23 Do | 11
> An
Az
8], .8
11
5 s}
13
6 712
6], w2 2118
2| ° 7aLs24a 2
2 3
1 7
cl 6
17 9
8 5
L e ‘
&N 192 [1e[s [15]e |12]e
i lao :_J1%4;o OEN 1| 8 1 7 2 6 3 5 4 2oi
o]
Vee , 11 U9 .
4 5 36 27 1 8 |10 '
8 (137 [14{a |17]3 |18
1
67
" .
65
64
63
2
61 :
U22 74LS175
2 5 7 1,16-Vce)
= 8-GND /
25 l
BLANK' .
(TO 8051) OEN (TOU1)
WE

vig T

Figure 7-2 Am8052 Terminal Board Video Interface

7-20

Vee Vee
[To
Vee 37
) GND;
"1 oo, . % Vee
21 oo, T1a v2
3
DD, 16.MHZ
- 41 oo, exToeLk HE 8
- 51 oo, - OSCILLATOR 0SC20
5 DDs ‘;
L4 VS % |8
13 :
8 DD7 . X2
[——? DD anp, 1
Vee V
14
Lol eon x
28] cik, DRy 37
27} ¢Lk: DRz >
Vee
v u12
. Vee Am8152A
R T olo| W8
0
3] seeL 12 J3 VIDEO CONNECTOR
Ry 21f - GRLVL . (9-PIN FEMALE
TBo NC-NOT CONNECTED
Rz 2] . 1l wa 1
) -
Rs ' 2
$———————0 2
Vee 10 | .
pW o—— ow . NC ———— 3
3
2 HSYNC v 38 NC —————o 4
. |s |6 |7 |4 |16 . Ne .
. . —_
Ao A1 Az As
LN P 0s 12 198 ¢k, DR, u19
26 18 HS
21 as Ut o Ht 18] Clk.DRy HSDLD —sbou . 03
12 17
|Ae 27521 O, CLK2.DRg U1e _
25 . 3 Vs
A7 os P2 21 ClK2DRs HSDLD 17 |8~ VS
l14|13|s & C
, v, |42 3 4 18 20QR8]
= ' 2 : cw_L120pF
4 4
B ks vio |22 6 15
% T— 1 H—] 5 20Q R9
REV 5 TW————O 7
u23 c20
120pF
5 74LS00 T A4
u27
74LS32
46 | __
—,___D— FORE
.5 ‘
98 47
:) >————] cBlANK Vee
j 1°U2 .
N ' [s |
30 MLk,
3t yoike 1 2
31 sLank
21 vsyne
cr——i‘t— BS
Py
MCLK; (8051)
| (SHEET 3)

Figure 7-2 Am8052 Terminal Board Video Interface (Continued)

7-21

Vee

28
o, 2 AD;)
Do |2 ADg
0s |2 ADs
iy AL AD4
0, |5 AD, [(SHEETD
0, |2 — o AD,
o, |2 ADy
Q‘L?N 0o [ADo
u28 CONNECTOR &2
1488 (MALE) 47
XD ———4:1” : 2 YT .4 2”7‘59; oE |2 PSEN (SHEET 1)
10 27128 .
2 1 113 PGM, | 27 :
10 W2lel2 3 —1 N A o
RxD (] 5 w W
—_— A A
Pi7 %—SOGL&—O 6 A2 2 As2
21 U1é 3 . Ay z:: An
1489 8 : Ao Ao
Ao 124 ons
As |2 As } (SHEET1)
= Az 3 Az i
) As 4 As
» As 5 As
As & Aq
As 7 As
Az 8 - Az
At 9 At
o e oA
GND

&4

Figure 7-3 Am8052 Terminal Board EPROM and Keyboard Interface

7-22 N

APPENDIX A

Mixing Data Paths Expand Options In System Design
-Mark S. Young and James R. Williamson

SYSTEM DESIGN, ([TTZERATED BRGNS

© Copyright Computer Design Publishing Co., January 1985.
All rights reserved. Reprinted by permission.

MIXING DATA PATHS
EXPANDS OPTIONS IN
SYSTEM DESIGN

Chip designers are creating powerful CPUs and penpherals
with 16- and 32-bit parts. Mixing these with 8-bit parts ~
overcomes limitations imposed by established designs,
incomplete families, and software incompatibility.

by Mark S. Young and
James R. Williamson

Integrating 16- and 32-bit peripherals:and CPUs
into 8-bit designs, at the simplest level, means
separating the control and data paths from new
peripherals and the systems. Mixing different data
path widths and control protocols, however, makes
possible major improvements in function, perfor-
mance, and cost.

The price/performance curve of VLSI chips, for
example, allows designers to obtain more and bet-
ter functions for the same amount of money every
year. Alternately, the functionality of a'device can
remain constant while the price falls.

Moreover, these new devices with wider data paths
can extend the life of older designs. For example,
many of the most popular personal computers today
use the 8088 microprocessor and, therefore, are con-
strained to an 8-bit data path. Designers of add-on

accessories for these personal computers prefer the-

Mark S. Young is a product planning engineer at
Advanced Micro Devices, Inc (Sunnyvale, Calif). He
holds a BA in computer science from the University
of California at Berkeley.

James R. Williamson is an applications engineer at
AMD. He holds a BS in electrical engineering from
the California State Polytechnic University, Pomona.

newer 16-bit peripherals. These peripherals will let
users preserve their software investments, improve
performance, and stave off obsolescence.

Mixing different data path widths can also enhance
new designs. For example, it is less expensive to use
an 8-bit bus in a new design because the memory
requirements are generally cheaper. Only half as
many dynamic RAMs are necessary for the same
number of kilobytes of memory. In addition, an
8-bit bus needs much less control and support logic.
Designers can mix smaller data path peripherals with
wider data-path CPUs. This allows them to introduce
systems based on the newer, more powerful 32-bit
CPUs even before 32-bit peripherals are available.

Designers can use this mixing method to obtain
wider data paths from existing designs until a new
system design is warranted. They can also use parts
in unexpected applications. For example, cost-
conscious terminal manufacturers might want to use
the Am8052/8152A chip set (the 8052 is an advanced
CRT controller and the 8152A is a video system con-
troller) in new terminals based on the relatively
inexpensive 8051 microprocessor. Mixing the 8-bit,
single-chip microprocessor with the 16-bit CRT con-
troller allows designers to maximize the cost/ perfor~
mance ratio of the terminal.

. Mixed data path widths can improve bus utiliza-
tion as well. A 16-bit peripheral in a 32-bit system
only occupies half the data bus for data transfers.
If the designer mixes the data paths correctly, how-
ever, the 16-bit peripheral could transfer data as

A-1

COMMENTS ”
MAS =14 -
HS =1+

HRDY = WAIT UNTIL PERIPLRHAL TAKES BUS

MAKE SURE MEMORY ACKNOWLEDGE (S
NOT ASSERTED

/AS:B‘RN:[JMRDVfD

ROY =0 READ IN UPPER BYIE. AD = |

WALT FOR MEMORY ACKNOWLEDGE

MROY = 1 ISSUE RD STROBE.

’3“0(=!

B WAIT FOR"MEMORY ACKNOWLEDGE
MRDY = 0

10 GO AWAY

MROY = 0 READ IN THE LOWER BYIE AD = 0,

WAL FOR MEMORY ACKNOWLEDGE
1SSUE RO STROBE

o5 =0 STROBE (N DATA 10 PERIPHERAL
DEASSERT WA
WAIT £OR SUCCESSFUL READ (DS)

The state flow control diagram for a bus master read
operation illustrates the control sequence employed
by the 8/16-bit bus control logic.

32-bit chunks and improve bus ef ﬁc1ency by 100 per-
cent for that peripheral.

Two central concerns stem from mixing devices
that communicate over different-sized buses. The
first problem results when two devices communicate
on a ‘‘common’’ data bus. Consider, for example,
a 32-bit system utilizing 8--and 16-bit peripherals.
Overcoming the mismatched data paths requires
some form of controlled multiplexing/demultiplexing
of the different data paths. In addition, extra con-
trol signals for partitioning the 32-bit word into 8-,
16-, and 32-bit chunks may be required.

Many 16-bit CPU-based systems that use 8-bit
peripherals normally use just the lower 8 bits of the
data bus to transfer data to and from the peripheral.
This method does not work in systems using 16-bit
peripherals and 8-bit CPUs, however, and it tends
to break down in systems with 8-bit peripherals hav-
ing bus master capability.

A bus multipléxing method involves multiple
transfers when taking data from or adding data to
a mismatched data bus. For example, before a 16-bit
peripheral can transfer data over an 8-bit bus, the
16-bit data must be divided into two 8-bit chunks.
It is then transferred sequentially. First, the lower
8 bits are transferred out on the bus. Then, in the
next transfer cycle, the upper 8 bits of the 16-bit
word are sent out. The major difference in the oppo-

. site case—a bus read operation from an 8-bit bus
to a 16-bit device—is that the first byte read from

the system must be latched. Once the second byte

has been fetched, the 16-bit peripheral reads in the
assembled 16-bit (2-byte) word. Additional provi-
sions may be needed when the 16-bit peripheral only
wants to access a.single byte.

The other major problem in mixed data: path
transfers is the actual data read/write operation. The
nature of the multiple transfer forces designers to
guarantee-that the stretched transfer will occur and
that it will not be interrupted. Two aspects of stretch-
ing the transfer cycle from or to the peripheral illus-
trate the complexity of this problem.

The first case, when the peripheral is the bus
master, is the simplest.. A 16-bit peripheral holds its
data available for what normally would be two com-
plete bus transfer cycles. This function can be per-
formed when the transfer acknowledge signal to the
peripheral is delayed. If the data was latched instead
of holding the peripheral in a multiple word transfer,
however, the device could try to send the next 16-bit
data word and its ‘‘new’’ address. The procedure

" of latching the data and releasing the peripheral

should not be used, therefore, because it may inter-
fere with the addressmg of the remaining (pending)
8-bit .transfer.

Whenever a device acts.as a bus slave to a CPU
that cannot access-the device’s natural word width
in a single operation, a different constraint appears.
The sequence must be set up so the peripheral cannot
obtain the bus while the CPU is in the middle of a

slave read/write operation. In a typical system, the

CPU is the last device in the interrupt queue. It is
possible for the peripheral to become bus master
between the first and second read operations and in-
validate the results of the first read operation in a
realtime system. This is because an 8-bit CPU would
have to perform two consecutive read operations to
examine a 16-bit peripheral control register.

This function can be handled two different ways.
If the CPU has a bus lock instruction, as in the iAPX .
family of CPUs, the programmer must use one of
these instructions before the CPU accesses the
peripheral. Alternately, the CPU needs to disable
the arbitration logic while it is performing the unin-
terruptible access with the 16-bit peripheral.

Crucial cycte

The uninterruptible word transfer cycle is crucial
for maintaining the integrity of the data transferred.
When either the CPU or a peripheral on the bus
makes an access using the 8/16-bit control logic, it
must complete the larger device’s word access before
relinquishing the bus. If this requirement is not met,
a transfer’s integrity can be violated easily by some
other device. This interrupts the transfer, and cor-
rupts or aborts the multiplexing sequence.

To illustrate this point, consider a system consist- -
ing of an 8-bit CPU and several 8- and 16-bit periph-
erals. Assume one of the peripherals is executing a
block transfer of 16-bit data onto the 8-bit bus. If
the CPU interrupted the transfer in order to poll the
peripheral during a half-word transfer, two undesir-
able events would occur. Either the multiplexing

A-2

sequence would be damaged irreparably when the
CPU polled the peripheral, or the CPU would read
garbage from the peripheral.

Designing the control interface to allow mixing
of 8- and 16-bit peripherals requires attention to the
data and control flow. During a write operation, the
data is written out sequentially: the lower byte comes
before the upper byte (or vice versa). The read oper-
ation differs only because the data bus is 8 bits and
because it forgéts the last byte transferred; it knows
the current byte only. Hence, the interface requires
that one of the bytes be latched until the full 16-bit
‘word has been assembled.

The slave mode of operation works almost the
same as the peripheral bus master mode. The single
exception is the slave write operation. When the
interface is defined, the designer must make a con-
scious choice about Which byte (upper or lower) to
latch during peripheral read operations (or con-
versely, slave peripheral write operations). Once this
decision has been made, the CPU must always access
the latched data byte first (during a slave wrnte) and
then access the non-latched byte to complete the
transfer. This restriction is minor, requiring no extra
software overhead. It could affect the ease of the
programmer’s coding if not handled properly, how-
ever. For example, if the programmer used a com-
piler to generate the software for the system, extra
care may be necessary to ensure the compiler gener-
ates the correct addressing sequence.

An alternative solution would be to latch both the
upper and lower data bytes. In this case, however,
the cost of the interface would-increase, as would
the complexity, with no appreciable gain. The con-
trol flow in these designs derives from two differ-

ent sources: the state control flow itself and the 16-bit
peripheral interfacing with the 8-bit bus. A state dia-
gram can be used to specify how uninterrupted word
transfers will occur and how the upper and lower
byte address is generated.

In addition, the specific bus timing of the periph-
eral and the data bus must be examined to quantify
the state control flow. These timing, specifics also
provide information on data latching, read/write
control strobes, and addressing to and from the
peripheral. The state control flow is divided into four
operations: bus master read, bus master write, slave
read, and slave write.

For a bus master read/write operation from a
16-bit peripheral device operating on an 8-bit bus,
four control signals must be generated by the
8/16-bit control unit: address bit 0 (A0), peripheral
hold (WAIT), bus read (RD), and bus write (WR).
The AO line is generated by the 8/16-bit control logic
to indicate which byte is to .be transferred in bus
master modes only. Otherwise, the A0 generated by
the system is used to indicate which byte is being
accessed. The WAIT line holds up the peripheral
during transfers. The RD and WR lines are required
to indicate successive transfer cycles on the bus.

Hidden transfers
. The peripheral’s signals will only strobe active
once because it does not know that two transfers are
being executed. The slave transfer flows are almost
identical, except the CPU is generating the bus sig-
nals and the transfer directions are reversed (ie, a
bus write goes into the peripheral).
For this 16- to 8-bit data flow example, the data
on the upper byte only needs to be latched when data

" STATE FLOW EQUIVALENTS SO sl s1 s2 3] s3 S4
I nl o n b wl ow low L w T
CLYy i |]
' i
Aswss . L] : !
1 1 -~
1 1
DSg051 1 E E |
1 1
UPPER BYTE TRANSFER ——————— i
H) In addition to a state flow
LOWER BYTE TRANSFER : l—i._.____l'—' diagram, a timing diagram
; H T can be used to describe such
1 i i data read/write operations as
MEMACK \1/7X /N a master bus read.
WA 1 f
hZ 7 L
SYSTEM Y
DATA HIGH sm C_LOW BYTE
CPs — T
w1 I —

A3

The 16- to 32-bit conversation logic diagram indicates
the complexity of bus and funnel togic control. It
must convert hetween different signal conventions
and polarities as well as generate extra functions and
bus arbitration control signals.

is being read (as bus master) or written (as a bus
slave). An interface to handle this operation needs
to latch data coming from the 8-bit data bus into
the peripheral, it also needs to act as transceiver
when the peripheral is sending data out to the system.
A device with a clocked, tri-state output that has an
8-bit wide latch in one direction and a tri-state trans-
ceiver in the other direction would be ideal for
accomplishing such an interface.

The Am2952 8-bit bidirectional I/0 port provides
a good enough match to the logic and allows the
upper data bus latch and upper data transceiver chips
to be combined on one IC. It provides two 8-bit

- clocked 1/0 ports, each with tri-state output con-
trols and individual clocks and latch enables. An
Am2949 bidirectional bus transceiver completes the
logic required for the data path function.

The state flow control requires logic that can move
sequentially from state to state, hold in a particular
state, and be reset or initialized back to a predefined
state. Depending on the number of states required

- (generally less than 16 distinct states for a design of
this complexity), a 3- or 4-bit counter should be able
to solve the problem nicely.

Considerable bus control logic is required to gen-
erate the data path flow logic and the bus control
signals. This is especially true if the peripherals and
CPUs use different signal conventions (eg, when AS,
DS, and R/W use address latch enable, RD, and
WR). Conversion from one signal convention to

another, changes in signal polarity, and provision
for extra functions (such as generating A0) require
a lot of logic synthesis ability. If the peripheral has
bus master capability, such additional information
as bus arbitration controls must be fed into the next
state determination logic in order to decide what con-
trol sequence to follow.

_ Customized interface minimizes cost

An 8/16-bit control interface between the Am8052

' CRT controler and an 8-bit CPU provides a good

example of how customizing a general interface can
reduce costs. (The CRT controller is designed with
a 16-bit data interface.) The onboard DMA unit
fetches data from system memory and the CPU polls
the CRT-controller’s internal status and control

_registers. Because the CRT controller does not

modify system memory, however, a bus master write
operation is unnecessary. Thus, there is no reason
to generate a system write control signal (WR).
In addition, the control and display information
must be aligned on word boundaries. This require-
ment relieves the 8/16-bit control logic from funneling
the bytes and performing odd/even byte transfers.
It also saves control inputs from the CRT controller
because all transfers are words; that is, no.- need
exists for upper and lower data strobes or byte high
enable inputs. ‘
The bus master read operations are standard 16-bit
data transfers divided into two 8-bit transfers. The
CPU’s slave accesses are either pointer writes (to
select the desired control/status register) or 16-bit
data read/write operations. (Pointer write operations

PERIPHERAL

SIE

The state machine and the bus and latch controls
have to be coupled in order to transfer data between
the 8- and 16-bit buses. This generalized machine is
designed with the assumption that the peripheral has
bus master capability. If this is not the case, the
design can be greatly simplified. pe

Am8052

Am2948 WRDY AO

Am2952
48

8-B1T DATA BUS

RESET WR RO

The logic for control and
data transfer between an
Am8052 and 8-bit CPU has *
the control interface
' implemented in an
AmPAL22V10.

CSs0s2 Al

are actually 8-bit operations because only the lower
8 bits of the data form the register address.) The bus
master read operation can be represented by a state
flow diagram or a timing diagram. Conceptually,
state flow diagrams are easier to understand, but tim-
ing diagrams usually convey more information.
Other state flow diagrams can.be derived directly
from the timing diagrams of the CRT controller to
8-bit interface.

Simplifications allow synthesis on one device

Two special conditions must be met in the state
machine implemented in the 8/16 interface. First,
before a new transfer cycle is attempted (when the
state machine is waiting in the initial state, S0),
memory acknowledge (MRDY) must be inactive.
This prevents interference from the last transfer.

The second special condition occurs when the
CRT controller asserts the R/W line to indicate a
write operation. Although the CRT controller does
not write data into system memory, when it updates
the upper 8 bits of the 24-bit address latch the R/W
line indicates a write operation (in conjunction with
AS). The CRT controller is not actually performing
a system data write, only an address latch update.
The state machine, therefore, must not start a bus
sequence if the R/W line is held active low by the
CRT controller during a bus master operation.

These simplifications in design allow the CRT con-

troller to 8-bit CPU control interface to be synthe-
sized in a single AmPAL22V10 programmable logic
array device. In addition, the bus control signals are
converted from AS, DS, and R/W to RD and WR.
The minimum CRT controller and bus control sig-
nals that must be generated are RD, A0, DS, and
R/W. Although the CRT controller uses DS and
R/W as inputs during a bus master operation, the

PAL device must convert the CPU RD and WR sig-
nals to DS and t/W for slave 1/0 operations.
The signals A0 and RD are generated by -the con- .
trol logic when the CRT controller is performing a
read access to system. The WAIT (or not READY)
signal to the CRT controller must also be generated
by the control logic. The data flow controls require
six additional controls to load and strobe the latch,
and to enable transceivers to pass data to and from
the 8-bit bus. Theoretically, 4 more bits (outputs)
are required to represent all the control states needed
to manipulate the 8/16-bit control logic. This. means
the design appears to need 14 output logic units in
a PAL device to perform the required task.
Reducing the 14 output cells to the 10 cells avail-
able in the PAL device requires a closer look at the
timing and output switching functions. The A0 and
RD control lines are in effect part of the system bus
control and, therefore, cannot be multiplexed easily.
The DS and R/W lines to the CRT controller are

also fixed because they must be valid throughout the

entire transfer cycle as well. v

This leaves 6 of the 10 output logic cells of the
PAL device to represent the remaining 10 identified
control lines. This method of minimization involves
careful state synthesis, analysis of the signal switch-
ing functions during the transfers, and utilization
of several control pins on the CRT controller. By
using the BREQ, BACKI, BACKO, CS, and C/D
inputs to the PAL device, we can reduce the num-
ber of unique states required to 8 instead of 15. This
reduces the number of logic cells required for the
state machine from 4 to 3 bits.

At this stage, the design requires seven control sig-
nals t6 manipulate the data transfer registers and
WAIT line. The two latch enables (CEg and CDg)
on the Am2952 bidirectional 1/O port can be

A-5

~.

permanently enabled. By controlling the clock signal
to the latches, the controls required for three pins
can be reduced to one. The interface control state
" machine will only use the correct side of the dual
latches on the bidirectional 170 port.

The Am8052 CRT controller helps con51derably
with its own control bus interface. Two signals
provided by the CRT controller, TBEN and RBEN,
switch the data transceivers in the correct direction
regardless of the type of data transfer (as a bus
master or bus slave). When the controller is a bus
master performing a read operation, or when it is
a bus slave undergoing a write operation, therefore,
the RBEN signal is strobed to obtain the correct
polarity.” By using this line, two of the. remaining
six control lines can be eliminated (REN on the
Am2949 and OEAg on the Am2952). Although the
TBEN line performs a similar function, it does not
function correctly in a 16- to 8-bit multiplexed
bus environment.

Two of the remaining control lines (OEas on the
Am2952 and 10 on the bidirectional bus transceiver)
must be generated by individual cells in the PAL
device. The two clock enables on the Am2952 are
permanently enabled. The two Am2952 clocks are
tied together to minimize the amount of logic re-
quired in the PAL device used to generate clock
strobes to the latches.

This leaves the design with three logic cells and
four output functions (the WAIT line to the CRT
controller and the 3 state bits). Careful analysis of

the state flows and timing diagrams indicates that

the WAIT line is only asserted in 4 of the 8 states.
A clever assignment of state numbers to the state
flow sequence allows the WAIT line to be absorbed
into the 3 state encoding bits. The logic equations
for the AmPAL22V 10 devicescan be derived directly
from the timing diagrams.

An unusual problem might occur when a periph-
eral device operates as a bus slave on a smaller data
bus, such as a 16-bit peripheral to 8-bit CPU. During
the first slave write operation, the chip select CS is
enabled by the bus master making the access. No
actual data—just the data latch—is strobed’into the
peripheral, however. After the first byte of data has
‘been written, the second access causes the full 16-bit
data to be strobed into the peripheral.

If the designer is using a common CS function to
both the peripheral and the 8/16-bit control logic,
the controller logic must be designed not to glitch
or strobe any of the control lines to the peripheral
(it must prevent DS, R/W from being enabled, for
example). For some peripheral devices, glitches on
the control lines might cause the register to be written
accidentally onto a register that will be overwritten
in the next write cycle anyway. With other periph-
erals this might be a catastrophic event. Many
devices acting as bus slaves have write recovery time
requirements (ie, a certain minimum interval between
corisecutive write operations). Glitches on the con-
trol lines might force the next (and final) write oper-
ation to be delayed—or cause a violation of the

Ve

%0}\

~

RESET
Ao

NC

The data bus and control
interface between an 8-bit
8088 CPU and a 16-bit
Am9516 DMA controller uses
an AmPAL22V10 for
control, and a 74LS161 for
state sequencing along with

a bidirectional 170 port

and transceiver.”

device specifications. Glitches might evade any spe- PIN
cial addressing/register accessing scheme used in the ek =1 /R =23
peripheral. This might occur, for example, if the :g’:’] .= g:t ag‘ = gf
slave device requires the user to write the address JSEL =6 /DS =20
of the register that was accessed immediately before . ME =7 /RW =19
the register was written. In this case, glitches or use- i
less control strobes could wreck the sequence. READY =10 /B =16
The problem can also be solved by using two lines. RESET =11 /€ =15
In this solution, one of the lines would go to the BECIN n =14
penph.eral device and the ther would connect to the IF (RESET) THEN ARESET(); v
8/16-bit controller. The chip select to the peripheral | This section defines the wiggles when the Am516 is bus master
is activated each time a slave read occurs (for both If (HLDA) THEN ENABLE();
upper and lower byte accesses), or when a slave write IF/s(2] * HLOA THEN BEGIN
operation occurs and the unlatched 8-bit data is I ‘smuo/ smzr/uczxqa BN+ /BN * AD*
being written. The chip select function to the 8/16-bit ALE + / BW * LAD * /ALE ;
controller is chosen each time the peripheral is ELSE e
selected normally (for slave read/writes on both O N e
upper and lower 8-bit data transfers). This problem "END; '
is bypassed completely when two separate chip select IF (HLDA) THEN
functions are used: one for loading up the Am2952 : (CASE) (S]2:0])
. . BEGIN
latch during a slave write/read and one to strobe the 1) BEGIN
Am8052 controller into action when it is needed by ' RD, = /RW * DS ;
_hi : i A = /BW* /RW* /CK ;
the 8-bit CPU. , . CWR = /BN * RN ® DS ;
. - - C =/BN*RW i
Bus conversion maximizes flexibility WAIT = 1 :
A data bus and control interface to an 8088 8-bit ENZI));BEGIN
microprocessor and Am9516 16-bit DMA controller RD = /RW * DS :
can be created using four devices: an AmPAL22V10 | - B =BW ;
for the control block, a 741.S161 counter for the state oo i
e . = /BN * RW * DS ;
sequencer, an Am2952 bidirectional 1/0 port, and C = /BN *RW
an Am2949 bidirectional transceiver. . WAIT = /BW
This design incorporates certain simplifications. END;
L 3) BEGIN
The DMA controller requires word accesses only RD = /RW *DS* B .
during command chaining and for slave register ac- B =BW*CK ;
cesses. The 8/16-bit data transfer interface for bus cm - f:ﬁ . :34 08 ;
master operations (ie, DMA data transfer functions) : C = /BW*RW
- is handled automatically as a programmable option. WAIT = BW ;
During slave write operations, the first byte output ms‘));aecm
to the DMA controller must have an odd address RD = /RW * DS .
and the following second byte an even address. Con- A = /BN * /K ;
versely, during a slave read cycle, the first byte read :m" =BW . ;
from the DMA controller must be at an even address 6) BEGIN
and the second at the next higher odd address. RD = /RW * DS ;
Furthermore, for bus master operations, the sys- EN‘D. = /BN . ;
tem must use the latched address line A0 (LAO) from 7) BEGIN
the AmPAL22V10 as its sole A0. Because the logic RD = /RW * DS ;
is already available, the system does not have to pro- m‘n' =/RD ;
vide this function. LAO now becomes the system ad- END; ’
dress bit 0 with full 24-mA drive capability. This section defines the wiggels when the 8088 is bus master”
Deciding on a means for controlling the funneling . f,‘,‘,‘l".o * ALE * SEL + LAO * /ALE * SEL
of the data stream—that is, transforming 16-bit data v B oo A0 * WR e SEL
into 8-bit data and vice versa—was the first step in , A = /LAD * WR * SEL
deriving this example. As mentioned earlier, simply D§-= A + /LAO * RD * SEL
: . . C = /LAO * RD * SEL
- dividing each 16-bit access into two 8-bit data trans- D = LAO * RD * SEL
fer cycles presents one way of doing this. On out- END;
going accesses (16-bit path from the DMA controller) END.
during the first cycle, the upper half of the 16-bit Thi's PLPL file implemgnts an interface between the
path is latched while the lower half passes through 8-bit 8088.and the 16-bit- Am9516. :

In writing the Programming Language for Program-
mable Logic (PLPL) file to control the operation of
the AmPAL22V10 and the 74LS161 counter, the
inputs to the PAL device from the counter are as-
signed SO, S1, and S2, respectively. Then, it is pos-
sible to apply a “sculptured design’ technique to
the entire timing diagram (see figure in Panel, “A
matter of timing”’) by using the Case statement from
PLPL. By assigning combinatorial equations to only
one binary partition or column at a time (Case), the
designer can ignore all other aspects of the design
for the time being and generate simple-equations
directly from the timing waveforms.

During clock time T1 of the Am9516’s word read
cycle the state of the 74LS161 (S0, S1, S2) is cleared
to 000 by the assertion of address latch enable
(ALE). LAQ is' the only output control signal from the
CRT controller asserted during this period. This sig-
nal is handled as a special case, however. During
time T2 of the DMA controller’s word read cycle,
the RD and WAIT outputs from the CRT controller
must be asserted. This time partition corresponds
to the state inputs S2, S1, SO =001. Therefore, the
first Case equations are

CASE (s[2:0))
BEGIN
1) BEGIN
RD= /RW*DS ; Transform Control
; Signals /RW and DS
; into. Intel /RD
WAIT =1 ; Assert Wait
; unconditionally
END;

During time T2 of the DMA controller’s byte read
cycle, A is the only additional output not already

Programming the PAL and the counter

‘ necessafy. The number exceeded the upper limit

accounted for in the Case statement.. This signal
allows a byte of data to flow through the bidirec-
tional bus transceiver into the DMA controller
during byte read operations.-Some additional con-
straints are placed on this signal, however: it must
only be asserted in time T2 on byte read operations
(the B/W input) and it must be delayed by a half
clock period from the rising edge of T2 (CK signal).
Thus the Case statement becomes)

CASE (S[2:0))
BEGIN
1) - BEGIN
RD= /RW*DS ;
A= [BW*/RW*/CK ; enable the
; receiver

WAIT=1
END;

_ Finally, by examining the last time T2 elements
(WR and C) during the DMA controller’s byte write
cycle, the remaining terms in Case 1 are derived.
With the exception of LAQ, the remainingiequations
were developed in the same fashion. Clearly, this
‘“sculptured” technique is a very simple and
methodical means for arriving at the Boolean re-
quirements for a logic block.

As the PLPL listing shows, the signal LAO was
handled slightly differently from the previously dis-
cussed method. The number of product terms gen-
erated via the Case statement made this approach

(16 terms) for a programmable logic array. As a prac-
tical matter, therefore, it was necessary to optimize
this signal manually. However, it should be noted
that this step will not be necessary once the fully
optimized version of PLPL becomes available.

a tri-state buffer onto the 8-bit bus. During the sec-
ond cycle, the tri-state buffer is turned off and the
previously latched half of the data is driven onto the
bus. On incoming accesses (8-bit path to 16-bit path),
the process is reversed.

The control mechanisms that perform this cycling
depend on the WAIT and R/W signals passing to
and from the DMA controller, and on the ability
to enable or disable the latches and transceivers selec-
tively. The Am2952 bidirectional 1/0" port was
chosen because of its dual registers and its flexible

- control. The AmPAL22V10 device was chosen to
match the required number of control pins and func-
tions. Since the complexity of this design requires
the use of all of the PAL’s 1/0 pins for control func-
tions, however, it was necessary to use a 74L.S161
counter to provide the state sequencer function.

Programming with PLPL

It has long been the logic designer’s ‘‘art”’ to merge
the often very different concepts and notations of tim-
ing information with Boolean logic. Yet, the evolu-

tion of a syntax to fully express this art has taken

a long time. AMD recently developed such a.language

for programming the AmPAL22V10, however.
“Programming Language for Programmable

. Logic,” or PLPL, allows the designer to specify a

design using multiple input formats. This specifica-
tion flexibility supports the variety of design
approaches necessary to express different design
problems efficiently. These formats range from sim-
ple sum-of-products Boolean equations to high level

constructs. PLPL also supports the input specifica-

tions for many types of AND/OR based devices, in-
cluding all of the current AMD programmable logic
array and PROM devices,

PLPL is block structured, and includes the high
level language constructs If-Then-Else, Case, and
For; all familiar to many programmers of the C and
Pascal languages. Macros, functions, constants, and
variables may also be used in PLPL. The language
also facilitates use, clarity, and self-documentation.

Such current programmable logic technology and
associated programming languages as PLPL allow

A-8

The complex AmPAL22V10 design used the accom-
panying timing diagram to correspond to the
desired waveforms. They are partitioned by the
. respective binary state (or count) from the counter.
. The' desired timing requirements during the
period when the DMA controller is bus master
appears below. During time T1, address latch
enable (ALE) is asserted by the DMA controller to
denote the beginning of the cycle; a short time later,
an address is driven onto the bus. This address is
valid at the falling edge of ALE. The control signal
LAO (latched A0), therefore, must be valid at this
time, as well. In this phase of the cycle, it must also
be high to enable the odd byte from memory to be
loaded into the bidirectional I/O port. In addition,
the assertion of ALE performs the function of rese(-
ting the 74LS161 counter to 0000 in order to syn-
chronize the cycle.
__During time T2, the DMA controller will assert its
DS signal. The timing for this signal, in conjunction
with the R/W signal (asserted in T1) must be trans-

A matter of timing

formed into an 8088-equivalent RD signal. During
aword read cycle, this RD signal also must be arti-
ficially negated and then reasserted to accomplish
adouble byte read. At the same time, the DMA con-
troller must be “parked” in order to multiplex or
assemble a word. Thus, the WAIT signal is also
asserted at time T2. During time TW (S2, S1,
$0=010), the receiver clock enable control sngnal
B must be asserted in order to allow the next sys-
tem clock’s rising edge to strobe the upper byte into
the bidirectional /O port. This is accomplished dur-
ing the next TW period (S2, S1, S0=011).

During the remainder of the word read cycle, RD
is negated and then reasserted after LAQ has been
forced low to address the even byte. A is then
asserted to allow both the previously latched upper
byte and the current lower byte to be driven onto
the DMA controller’s pins. And finally, the WAIT sig-
nal is negated, allowing the DMA controller to finish
its read cycle by strobing.in the 16 bits of command
data on its data pins.

Am3516
WORD READ CYCLE

Am9516
BYTE READ CYCLE |

Am9516
CLOCK

T1-+-Tz—+- _.|._Tw_.|<_1w_.|._rw_.f‘_1w_>|._r3_.|._1,—.|-_72——|<.7w_.|-_13 <—11_>|¢—72-.‘.-Tw—.|<—r3

Am!
BYTE WRITE CYCLE —_—:.I

ALE—-—I I 1 T - M1 .
o D15
Ao to A5 ——_ADDRESS)———(um urcu@—nnmL—(oatn N) aooRess }— oaw N »—(hooRessX Aot)—
" | | AXX LATCHED Ao XXX LATCHED Ag
RD
S 1 1 [
BW
A\ /

.

highly organized application-oriented control blocks
to be formed easily. These tools can conceptually
raise the designer above the details of the design at
the logic level and directly translate the necessary
response characteristics from a timing diagram.
This approach can be referred to as a “‘sculptured
design”’ technique because it is analogous to the way
solid stone is formed according to an artist’s image.
Raw logic can be transformed directly into useful con-
trol functions from the desired timing information.

The AmPAL22V10is, in essence, a fuse-program-
mable gate containing up to 22 inputs.and 10 out-
puts. It can define and program that architecture of
each output on a pin by pin basis. Thus, the designer
is free to optimize the design mix between registered
and combinatorial functions as needed.

The AmPAL22V10 is programmed by opening fus-
able links in any or all of its 10 output macrocells,
as well as in its AND gate array. The AND gate struc-
ture is very similar to other PAL devices; therefore

A9 S

IGNORE CHARACTER

USER DEFINED IMAGE (4 -
HIGHLIGHT

Fig4 A 16-bit character attribute

affects each individual character as it is
output from the CRT controller (). In
memory, however, each new character

UNDERLINE
SHIFTED UNDERLINE
SUBSCRIPT

REVERSE VIDEG
)

)

SUPERSCRIFT peed not invoke & new attribute. In

example (b), the latch attribute, in
conjunction with the réverse attribute,
allows a string of characters to be
displayed in reverse video without each
character having to be individually
reversed.

displayed white on black. Proportional spacing is
achieved by altering the CLK2 input to the Ams8052.
The CLK2 spacing can be made to be as narrow as 2
pixels, or as wide as 17, assigning each character a
width value that can be used to program the CLK2
output of the Amsi153. Proportionally spaced video

&

ADVANCED

MICRO

DEVICES, INC.

907 Thompson Place
P.O. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

COMPUTER DESIGN/September 1983

characters allow the screen to be formatted similar
to the output of a proportionally spaced printer.
Thus, proportionally spaced text can be composed,

.accurately on the screen, prior to printing.

The CLK2 output of the Ams153 can be further
modified by trailing blanks. Any number of blank
pixels, between 0 and 3, can be inserted after the
visible character. This allows the user to implement
a smooth right justification of text, without insert-
ing blank characters between consecutive words.

In addition to handling characters, the controller

chip applies innovative techniques to the raster

scan. It provides programmable horizontal syn-
chronous (HSYNC), vertical synchronous (VSYNC),
and BLANK signals, and accepts an external syn-
chronization input. This input allows the frame to
be synchronized to some external source such as
line frequency, which prevents annoying in-
terference display patterns known as ‘‘swimming.”’

Beyond supporting the more common noninter-
laced and interlaced modes of operation, the chip
also has a repeat field interlace feature that has
each character row effectively repeated and offset
by the scan line. This has the effect of making a -
vertical stroke on the screen look more solid, to
match the horizontal strokes.

Reprinted with permission from COMPUTER DESIGN

A-10

APPENDIX B

Chip Set Gives A Smooth Scroll In CRT Displays
-Steven Dines and Mohammad Maniar

SPECIAL HEPORT ON TERMIIIAL AND PRINTER TECHNOLOGV

CHIP SET GIVES A
SMOOTH SCROLL IN
CRT DISPLAYS

Two large scale integration chips and a read only memory

font generator interface 16-bit
-to control scrolling in multiple
characters proportionally.

by Steven Dines and
‘Mohammad Maniar

Marrying state-of-the-art display technology and
computational capability in today’s terminal re-
quires a large data handling capability. Features
such as a noninterlace flicker-free frame refresh
and a full-page graphics representation dictate high
dot update rates in the 100-MHz range. This speed
can only be handled by emitter coupled logic chips
with all of their attendant problems. Similarly,
embedded local editing intelligence places severe
constraints on a terminal’s microprocessor sub-
system, which must efficiently handle such inter-
active tasks as insertions and deletions.

Steven Dines is currently a department manager at
Advanced Micro Devices Inc, 901 Thompson P,
Sunnyvale, CA 94086, where he is responsible for
microprocessor peripheral product planning. He holds
a BSEE from the University of Leeds and an MSEE
from the University of Manchester, England.

Mohammad Maniar is supervisor of MOS
microprocessor design engineering at Advanced-Micro
Devices. He holds a BS in electrical engineering from
NED Engineering College, Pakistan, and an MSEE
Jfrom the University of California, Berkeley.

processors with CRTs directly
windows and to space

These and many other obstacles have been solved
by a 2-chip cathode ray tube: (CRT) controller set
that combines the advantages of N-channel metal
oxide semiconductor and bipolar technologies. The
two chips, together with an offchip font generation
circuit, form a complete CRT interface between the
microprocessor bus and the monitor (Fig 1). In this
application, the Am8052 CRT controller is used as a
direct memory access (DMA) controller. This has
two advantages: first, it eliminates a separate DMA
controller, thereby keeping costs down and saving
space in the CRT terminal. Second and more signifi-
cant, the DMA channel on the CRT controller can be
customized to facilitate the controller’s editing func-
tions. Thus, a font-control read only memory allows
a full video subsystem to be built that matches
display data formats with printed information.

COMPUTER DESIGN/September 1983

The DMA channel is configured as a linked-list

processor, which sets up the display data with

minimal editing overhead. This channel fetches
data into onboard buffers that store three rows of
character information. Incorporating triple row.
buffers onchip solves a major impediment to a
pleasant-looking display: it allows the user to scroll
smoothly in a split-screen application, which has
always been a major problem in screen formatting.

Parallel pixel data emerge from the font gen-
erator and are serialized by the CRT controller set’s
second chip, the Amsi53. All clocks for the system
are also generated here. These consist of a
100-MHz pixel or dot clock, and two subclocks,
the Ams80s2 CLK1 bus clock and CLK2 character
clock. Emitter coupled logic (ECL) outputs in the
Ams8153 obviate the need for peripheral ECL output
devices. Thus, both analog and ECL video are out-
put from the Amsi53.)

Smooth scrolling

Scroll has always been one of the main require-
ments of any display terminal. Usually data are
moved on the screen on a character row by character
row basis, which makes for poor viewing. In addi-

tion, using ‘‘hard’’ scroll to rapidly scan a document
is prohibitive to use because the eye has a hard time
following the staccato movement of the text. - .

Smooth scrolling allows the text to be-scrolled
gradually, scan line by scan line. Not only is this
much more pleasing to the eye, but it also allows
documents to be visually scanned very rapidly, in a
manner similar to the'way one scans a phone book -
for a particular entry. Implementing this scan line
by scan line offset is fairly easy. The difficulty lies
in holding part of the screen stationary while scroll- -
ing the remainder. The Ams8os2 supports both split
screens (horizontal and vertical) and smooth scroll
of a subscreen—a combination that has previously
been impossible to implement economically. Win-
dow screens also create data structure problems
since each scroll involves juggling large amounts of
data. While this may be a difficult task for a local
central processing unit (CPU), the Am80s2 CRT con-
troller integrated circuit (IC) fetches all its refresh
data by means of a linked-list data structure.

In this structure, a top-of-page register contains
the 24-bit memory address of the first component
in the list, called the main definition block (MDB).
The MDB, in turn, points to a sequence of row

WMICROPROCI SSOR ~
8Us

8 ot 1 fu e
7 1 FONT GENERATOR

L

A]

Mgy CURSOR
DBgrosf
oK 2l
£ ANALOG DIVIDER
T
VLN
v \j v A\ v

Fig 1 Two large scale integration chips and a font-generation read only memory form the interface between a 16-bit
mlcroprocessor bus and the CRT. Using three row buffers instead of the usual two ensures smooth scrolling in a split-screen

The DMA ch

] fetches rows of characters into the three row buffers and outputs multiplexed data for

attnbute and cursor generation. The video processor chip serializes data for a video cutput and synchronizes the display
with all the appropriate timing signals. The font generator can format the characters for proportional spacing.to match the

typical proportionally spaced characters of a printer output.

COMPUTER DESIGN/September 1983

B-2

Fig 2 Windowing requires manipulation of a large amount
of data. By using a linked-list data structure, the CRT
controller chip can perform the windowing task at the CRT
refresh rate. The chip maintains parallel control over the
characters for both the full screen and the window. In this
example, the three row control blocks keep track of their
row entries in the background of the Screen, while at the
same time the window control block is used to insert the
word “cow” in the appropriate window.

control blocks (RCBs). These blocks hold pointers to
character and attribute lists for the appropriate
row. The controller IC scans this complete list once
per frame. Furthermore, the Ams8052 keeps an eye
on a second parallel list—the window data struc-
ture. This window linked list is used to overlay win-
dows onto the screen. As the controller fetches
screen data, it jumps from the screen to the win-
dow and vice versa to format the display (Fig 2).
After setting the display and one or more win-
dows, the user can now issue a ‘‘scroll window”’
command to set the scroll in motion. When scroll-
ing the screen, the user must ensure that the data
structure js updated fo reflect the new screen by
modifying a pointer. Likewise, when scrolling one
of multiple windows, the user must then update the
window list in a similar fashion. In both cases, no
complex data movements need occur. The Am80s2
can scroll as slowly as one scan line every eight
frames, and as fast as eight scan lines per frame—a
significant spread in scroll rates. A system of in-
terlocks protects the data from corruption during
this scrolling.
A split-screen smooth scroll mandates three row
_ buffers; a 2-row buffer configuration [Fig 3(a)] is
acceptable for a single screen. Each of the rows is
swapped or toggled with the other. Thus, while one

COMPUTER DESIGN/September 1983

row is being loaded, the other can be displayed. As
long as each row buffer (ie, character row) is
displayed for multiple scan lines, enough time is
available to reload. However, for a'split-screen
smooth scroll, a character row can only be present
in the frame for one scan line. This does not permit
the alternate row buffer to be loaded and causes
the screen to flicker. With three row buffers,
however [Fig 3(b)], the problems of single scan line
rows are averaged out, eliminating annoying screen
flicker.

Character display generation

The Am8052 gives a flexible character capability
to a video display terminal. Once the size (in scan
lines) of a given character row is determined, the
characters can then be placed in any position on the
row. Further, row size can be varied on a row-by- .
row basis, and characters can be displayed as
normal, superscripted, or subscripted, to allow
flexible text. .

Each character can be modified by an attribute
word [Fig 4(a)] that is stored along with the
character in the row buffers. Attribute words are
fetched from memory, at the time the display is on,
in a fashion similar to characters. The number of
attributes fetched, however, can be programmed to
be much smaller than the number of characters,
thus reducing bus overhead. As in Fig 4(b), the
string -“CHANGED” is to be displayed in reverse
video. By fetching a reverse attribute on the first
““C’’ and a nonreverse attribute on the first ‘“‘N’’ of
‘““NORMAL,”’ only two attributes are required to
reverse the 7-character string.

The Am80s2 attribute word on APO-AP10 can be
used by the Ams153 to produce gray-level video
from the font generator. For example, normal
characters are displayed gray on white. If the
highlight bit is set, however, the character will be

Fig 3 For split-screen scrolling applications, a character
row could be displayed for only a single scan line. With two
row buffers (a), this does not leave enough time for the
reloading of the alternate row buffer, which results in a
flashing screen. With three row buffers operating in a
rotating fill-display mode (b), any single row buffer can be
displayed for one scan line without any danger of scréen
flashing.

B-3

it allows the same powerful, yet familiar features.
However, it is the AmPAL22V10’s 10 output logic
macrocells that give the designer substantial new
design freedom. Moreover, at each macrocell out-
put is a tri-state output buffer controlled by a
separate output-enable AND gate."

These macrocells provide the AmPAL22V10’s key
features. They can be configured to make any or all
of the 1/0 pins act either in sequence or in combi-
nation and have either active-high or active-low char-
acteristics. Furthermore, the output enables can
individually control the direction of the pins so they
act as outputs, inputs, or bidirectional ports.

A number of trade-offs and limitations are appar-
ent in a design that so dramatically affects the input
and output of the system. The most obvious limita-
tion stems from under utilization of 16-bit periph-
erals on an 8-bit bus—the speed of all 1/0 operations
are-cut in half. As a result, bus utilization will
increase if the 16-bit peripheral represents a signifi-
cant factor of the bus use. A CRT controller such
as the Am8052 might use 5 to 10 percent of the bus
bandwidth for display information when using 16-bit
170. Converting to 8-bit I/O would double bus use
to 10.to 20 percent. Another factor that might affect
the bus usage is the efficiency of the 8- to 16-bit con-

V

version control logic. If the state machine designed |
to perform the 8/16-bit (or 16/ 32-bit) conversion is
improperly designed, extra transfer overhead might
be introduced. This might mean a sequential transfer
of two 8-bit values would take twice as long a single

. 16-bit transfer.

., The design constraints might limit the use of the

_peripheral to byte-only operations during data trans-

fers (as in the design using the DMA Am9516 con-
troller), and slow it down by a factor of two during
command operations. For such a DMA device as the
Am9516, the extra time required for command fetch-
ing is not usually a significant portion of bus time.

System designers will have to weigh the cost of
the extra overhead on a case-by-case basis. The ben-
fits may well justify these limitations-—particularly
when the bus is self-limiting, but the device charac-
teristics allow for value-added designs. In addition
to bus degradation for certain configurations, extra
logic and design effort are involved. Most interfaces
outside a system’s immediate family require some
kind of extra interface logic, however. By manipulat-
ing the signals and incorporating them into program-
mable logic devices such as the AmPALZ2V10 device,
therefore, most of this logic is free.

APPENDIX C

CRT Controllers Can Enhance Test Display And Simpiify Editing
- Juergen Stelbrink

Computer Technology Review

Winter 1983

CRT Controllers Can
Enhance Text Display
And Simplify Editing

For screen editing the CPU normally has to move blocks of display data. This time-
consuming task can be speeded up by use of a CRT controller.

T I
" by Juergen Stelbrink,
Advanced Micro Devices Inc.

Reprinted by permission of the publisher from the Winter 1983
edition of COMPUTER TECHNOLOGY REVIEW

s termi-
nals become increasingly sophisticat-
ed, the designer is faced with many
new problems in the areas of data ma-
nipulation and display. The high-
resolution screen necessary to display
a full-size 8%z X 11-in. page results in
pixel rates exceeding 50 MHz. Addi-
tionally, the use of microprocessor
technology in modern terminal de-
signs has transferred the editing tasks
from the host system to the terminal
itself. Support for the latest text-
display features available from letter-
quality printers can be provided by
CRT controllers.

Today's printers can support
such text-display features as propor-
tional spacing with block justification
and double print. To adapt the
word-processing task more fully to
the human operator, workstations for
word processing should be able to dis-
play edited text that looks like the
printout of these letter-quality
printers. .

For example, instead of 'display-
ing the beginning and end of an un-
derline with a special character se-
quence, the workstation should under-
line the string just as the printer
does. Additionally, it should support
features like highlighting (which is
equivalent to double print in the case
of a printer), character blinking, and
multiple cursors to emphasize parts
of the text. -

Vertical smooth scroll will be-
come a standard feature of future de-
signs. Also helpful would be windows
(overlaid on the displayed page) to

provide temporary information about
issued commands.

LINKED-LIST DATA STRUCTURE

In standard CRT subsystems, display
data is organized as contiguous mem-
ory blocks associated with video
frames and stored in video-refresh
memory. To execute editing tasks like
character or line insertion or dele-
tion, the CPU has to move blocks of
this data—a time-consuming opera-
tion that slows down the editing
process.

Text editing would be faster and
more elegant if a linked-list data struc-
ture were used. In a linked-list struc-
ture, display data is organized in
small strings—usually rows—held to--
gether by pointers. The advantage be-
comes obvious when you consider ex-
ecution speed: you can insert or de-
lete a line by modifying one pointerin-
stead of moving half the screen down
(Fig 1). And you can swap pages sim-
ply by altering a pointer.

A second advantage is that when
the display data is stored in the main
system memory, the CRT controller
can fetch the data directly from the
list on which the word processoris op-
erating, and there’s no need to set up
a special list of display data.

WINDOWS

Windows are text blocks overlaid in
the background. Usually they're used
to display temporary information. A

Computer Technology Review

Winter 1983

ROW DELETION ORIGINAL CONFIGURATION ROW INSERTION
.
" ToP ToP TOP
OF OF OF
PAGE PAGE PAGE
| |

18T HOWJ

1ST ROW J

18T ROW

NEW ROW]

F_T 2 nowJ 2N0 ROW J 2N0 ROW

|
1

|
L - -

——% 3RD ROW J = sroRow r 3RO ROW

r~ | I

Fig 1 In a linked-list structure, data is organized in small strings held together by pointers. A line
can be inserted or deleted by modification of a single pointer.

word processor, for example, might
use the windows to display com-
mand tables while the background
still shows the edited text. After the
user has chosen a command from the
table, the window is removed to make
the overlaid text visible again.

Multitasking systems might use a
window for each task currently ac-
tive. In order to keep the window-
processing overhead small, the data -
structure ofthe window should be sim-
ilar to the background data structure
so that you can display or remove win-
dows without modifying the back-
ground data structure.

SOFT SCROLLING AND ATTRIBUTES

Vertical soft scrolling is the gradual re-
placement of a character row on a
scan-line by scan-line basis. The dis-
played effect is more eye-pleasing
than hard scrolling (where entire
rows are replaced) and will become a
key feature in future terminal de-
signs. The smooth scroll of the entire
screen is a relatively easy task and
can be accomplished with a mini-
mum of hardware.

However, soft scrolling of an
overlaid window or soft scrolling of
the background while windows are
displayed is a much more sophisticat-
ed task. If a window is smooth-
scrolled, text seems to appear and dis-

appear within it while the back-
ground remains stable. If, on the
other hand, the background is
scrolled, background text will appear
to pass under the window.

There are three kinds of attrib-
utes, distinguished by the number of
characters they correspond to:
® Screen attributes affect the

text display of the entire screen

and represent screen informa-
tion that might vary from page to
page. Smooth-scroll rate, cursor
blink rate, and cursor layout are
all attributes of this kind.

® Row attributes modify text on a
row basis. The height of a row
and the positioning of normal,
subscripted, and superscripted
characters are some examples.

® Character attributes modify
certain characters or strings. Ex-
amples are highlight, underline,
blinking, subscript, and super-
script.

Many CRT controllers treat char-
acters and attributes in the same fash-
ion. They fetch one’ attribute word
per character. To minimize the bus oc-
cupancy of the CRT controller, the
number of attribute fetches should be
minimized. A fundamental difference
between the changing rate of charac-
ters and attributes is that characters

M[a]a[i[c

Fig 2 In proportional spacing, letters vary in
the amount of line space they occupy. An “M",
for example, is wider than an “I".

are typically uncorrelated along a
character string and attributes are
highly correlated, since features like
reverse video affect a character string
rather than individual characters. For
this reason, a flexible correspon- .
dence between characters and attrib-
utes saves memory space and re-
duces the bus occupancy.

In a demand-attribute mode, an
attribute is only loaded when the at-
tribute characteristics need to be
changed. A flag is positioned in the
character string to make the CRT con-
troller fetch a new attribute word,

which could apply either to the next
character or to all following charac-
ters. This flag could be a specific char-
acter that is not displayed on the
screen, or it could be any bit of the
character code. The first option
would allow a 255-character set with
a small bus overhead when attributes
are fetched. The second option
would halve the character set but elim-
inates overhead for attribute incor-
poration.

PROPORTIONAL SPACING AND

. CURSOR

Proportional spacing is now a stan-
dard feature of high-performance let-
ter-quality printers. The CRT system
should be able to support propor-
tional spacing in order to display a
text on the screen similar to the print-
ed text on paper.

Proportional spacing means that
narrow characters like “I” use less
space in a character row than wider
characters like “M” (Fig 2). The screen
is no longer divided into a raster of
character fields. The number of char-
acters that can be put into one line is
now a function of the characters
themselves. Right justification in pro-
portional-spacing applications re-
quires a user-definable number of
blank pixels to follow each character
so that the text will have a straight -
right-hand edge.

Two kinds of cursors are imagin-
able. A cursor could' be programmed
to appear on an X-Y coordinate. This
type of cursor would be tied to the
screen. When scrolling, the cursor
still appears on the same location but
applies to a new character. The sec-

c-2

Computer Technoiogy Review

Winter 1983

HSYNC
> BLANK
> VSN

DMA
CHANNEL
SYSTEM, CCor
BUS >
! APo.10
II CURSOR |I 3~ CURSOR
5
ROW [- Ro.e

Fig 3 A cathode-ray tube controller (CRTC) uses three line buffers for smooth scrolling of win-

dows and provides the character code and scan-li

ond way to specify cursors is to use
the attribute word. In this case, the
cursor would be fixed to a character,
so any scrolling of the screen would
move the cursor and character both. A
system usually has only one XY cur-
sor, since edach X-Y cursor needs a
- pair of coordinates. There is no restric-
tion in the number of attribute cur-
sors because this information is a
part of the attribute word.)
The cursor layout should be very
flexible. Examples of cursor styles are:
® Static or blinking underline.
® Blinking by switching between
normal display and blank.
® Blinking by switching between
normal display and reverse.
® Reverse character.
The X-Y cursor and the attribute

ne address for the character-font generator.

cursor can have different styles to dis-
tinguish them. For example, the X-Y
cursor could be a blinking underline
and the attribute cursor could re-
verse the character.

SILICON IMPLEMENTATION
]

.These features are all supported by

the Am8052 and Am8152/53 CRT con-
troller (CRTC) chip set. To make edit-
ing tasks simpler and faster, the set

supports a display data structure or-
ganized as alinked list in system mem-
-ory. By adding an external character-
font generator to these chips, you can
build a complete subsystem that talks
to the system bus on one side and gen-
erates a high-speed analog or digital

CHARACTER (9)

RV

8-BIT SR

et

9-BIT SR

ATTRIBUTES (5)

1
)

- {
DIGITAL

DA

4-LEVEL ANALOG VIDEO

—ﬂ .

CLK1 DIVIDE RATIO

= CLK1 (SYSTEM)

CLK1 DIVIDER

CHARACTER WIDTH

EXTERNAL
DOT CLOCK

3

N IEIE

CLK2 DIVIDER ‘l—————’ CLK2 (CHARACTER)

.

Fig 4 A parallel-to-serial video-shift register generates a high-speed pixel stream from data sup-

plied by the character generator and the CRTC.

video signal on the other. Other fea-
tures, such-as horizontal soft scroll
and a loadable character-font genera-
tor, can be implemented by the addi-
tion of a few more medium-scale inte-
gration (MSI) devices and 'support
software.

The first element of this design,
the CRT controller (Am 8052, CRTC)
(Fig 3), fetches the display data via the
built-in DMA controller, interprets
the linkedlist, and handles attrib-
utes, windows, and soft scrolling. It
has three line buffers to support
flicker-free smooth scrolling of win-
dows and provides the character
code and scan-line address for the
character-font generator. Its maxi-
mum character-output rate is 14 MHz.

The second element in the chip
set, the Video System Controller
(VSC), is basically a parallel-to-serial
video-shift register (Fig 4). It accepts
the character font from the character
generator, and the attribute words
supplied by the CRTC, and generates

. a high-speed pixel stream. The video

output provides a 4-level analog sig-
nal that can directly drive a 75 load

- or a 2-bit digital signal. The video sys-

tem controller (VSC) can handle video
rates of 40 MHz (TTL outputs) or 100
MHz (ECL outputs), allowing high-
resolution flicker-free displays.

The CRTC handles the linked-list
management, the windows, soft
scrolling, cursor, and attribute proc-
essing. The display data is stored in
system memory to be easily accessi-
ble by the host CPU during its execu-
tion of display-editing tasks. The dis-
play data consists of characters and
their attributes, both of which are
grouped into segments. One or more
segments are tied together by a list of
pointers—the-row-control block—to
form a row. Row-control blocks are
connected via a linked list, each block
pointing to its successor. The CRTC in-
terprets the linked list and transfers
the character strings and attributes se- |
quentially to the character generator.

The terminal processor loads the
top-of-page register (Fig 5) to notify
the CRT controller of the beginning of
the linked list The main definition
block at the beginning of the linked
list contains screen attributes like
cursor style and cursor blink rate,
and a pointer to the first row-control
block. The row-control block holds in-
formation relevant to one row dis-
played on the screen. It contains
pointers to the succeeding row-
control block and pointers to seg-

_ ments containing characterand attrib-

Computer Technology Review

Winter 1983

' CRTC REGISTERS

- TOP-OF-PAGE
: POINTER

MEMORY

ROW 0 CHAR SEG 1
L]
L]
.

- CHAR SEG N

" Row-

ATTR SEG 1

l—‘ ATTR SEG N
ROW 1

CHAR SEG 1
=l .
L]
o
CHAR SEG M

ATTR SEG 1

ATTR SEG M

BLOCK

L ~ ROW-
REDEFINITION
BLOCK

ROW-
CONTROL
BLOCK

OPTIONAL

i
. ROW-
Lt Repermimion
BLOCK

ROW |

[
CHAR SEG K
OPTIONAL ATTR SEG 1

=== e
I

.
.
ATTRSEG K

ROW- |®
CONTROL
BLOCK -

Lol
 REDEFINITION:
- "BLOCK

.

Fig 5 The top-of-page register points to the be-
gin of the linked list. The main definition block
contains screen attributes and the row-control
block holds information for one row of the
display.

"ute strings. Positioning of subscript,
superscript, and normal characters
in the row and the number of scan
lines per row is optionally redefin-
able on a row-by-row basis.

The display data structure repre-
senting the layout of windows is simi-
lar to the data structure of the back-
ground. Vertical soft scrolling
of the background or of windows re-

quires little interaction with the CPU.

The CRTC only interrupts the CPU

when a row is totally scrolled in or
out, to make it relink the data struc-
ture. The scroll rate is programmable
and can range from onée scan line per

eight frames (low-speed scroll) to
eight scan lines per frame (high-
speed scroll).

ATTRIBUTE PROCESSING

|

The CRTC allows flexible attribute

processing. Attributes are handled in

16-bit quantities and fetched on de-

mand, in order to reduce bus occupa-

tion for direct memory access (DMA).

Seven attribute bits are predefined

and four are user-definable. However,

the internal attribute processing can

be partially or totally deactivated to

satisfy specific application require-

ments so that the designer can inter-

face external attribute-processing log-

ic. The predefined attributes are:

® Highlight. Characters are made
brighter.

® Reverse. The colors of the back-
ground and the foreground are
exchanged.

® Superscript. The character is
shifted up a defined number of
scan lines.

®° Subscript. The character is shift-
ed down a defined number of
scan lines.

® Underline. The character is un-
derlined; the position of the un-
derline is programmable.

® Strike through (shifted under-
line). The affected character is
struck through.

® Blink. The affected character
blinks at a programmable rate
and duty cycle.
The attributes mentioned above

control an attribute port of the CRTC.
A special character-font generator
can be used to display smaller sub-
script or superscript characters. Two
attributes are used for internal proc-
essing only. They are:
® Ignore. The character is not load-
ed into the line buffer and, conse-
quently, not displayed. You can
erase a character by setting
this attribute bit.
® Latched. This attribute word is
latched by the CRTC and there-
fore applies to a character string.
The VSC serializes the character
stream, processes the attributes, han-
dles proportional spacing, and gener-
ates the system timing. In propor
tional-spacing applications, the char-
acter generator consists of two parts:
one part stores the font of the charac-
ters; the other holds the character
width—a 4-bit value. The character
width is passed to the VSC to deter-
mine the divide factor for the charac-
~ ter clock, which is connected to the
CRTC to specify the character-output
rate. In addition, the VSC has logic to
allow you to justify text by the inser
tion of up to three blank pixels be-
tween characters. This technique al-
lows smooth, virtually unnotlceable
line stretching.
The CRTC can easily be mterfaced to
16-bit system buses. In.slave mode,
the CPU initializes the CRTC by pro-
gramming the registers for the timing
parameters. After the CRTC is activat- .
ed, it tries to gain mastery of the bus
to fill the line buffers, and then starts
displaying. The CRTC bus-interface

CLKz { I

CLKy }
BLNK 3| CBLANK .
i DIFF ;),\Nme
u | FORE o ST
VIDEO
REV REV yse -
: TTUECL) DIGITAL
CRTC . HL | £S5 p
HSYNC | HSYNC VSYNG
SYSBUS VSYNG VSYNG HSYNG
. DDo.g CLKaDV
CCo- |
i ROM
Ro-a

Fig 6 In a standard proportional-character application, the CRTC's 8-bit character-code (CC,
through CC;) and the 5-bit scan-line count (R, through R.) address the character-font generator.
The VSC can serialize character slices up to 17 bits wide.

C4

Computer Technology Review

Winter 1983

architecture supports 24-bit linear ad-
dress buses (68000, 8086) and 23-bit
segmented address buses (Z8000). To
make sure that the system still can re-
spond to interrupts in real time, the
CRTC has a burst-length register that
controls the maximum length of a
DMA block read and aburst-space reg-
ister to have a minimum delay be-
tween two DMA cycles.

Fig6 shows a standard propor-
tional-character application-employ-

uses a significant part of the bus band-
width. For each frame, it fetches the
control, character, and attribute
blocks. The bus overhead caused by
the video refresh is a function of the
number of displayed characters and
invoked attributes.

In systems where the CPU is in-
volved in editing tasks, it might be in-
tolerable for the CRTC to use a major
part of the bus bandwidth. This prob-
lem can be solved by utilizing a dual

used to access the CRTC directly to
alter register contents.

The structure of the CRTC allows
you to add special features that aren't
directly supported. The implementa-
tion of horizontal soft scroll is a good
example of the flexibility of the con-
troller's design (see Box). Horizontal
scroll moves the entire page left or
right in order to display characters
that are hidden because the text row
is wider than the row that can be dis-

ing the CRTC, the VSC, and a charac-
ter-font generator. The 8-bit character
eode, usually ASCII code, allows a set
of up to 256 characters. The 5-bit scan-
line address can distinguish 32 scan
lines. The VSC can serialize up to 17-
bit-wide character slices, so that the
maximum achievable character box is
17 X 32 pixels.

Since the CRTC fetches all the
data needed for the display refresh
from system memory, the controller

controller.

bus system. The main memory where
the display data is stored has two
ports. One is connected to the main
system bus; the other passes the
data via a local bus to the CRT

played on the screen. Similar to verti-
cal soft scroll, horizontal soft scroll
moves text on a pixel basis rather
than on a character basis, so the
viewer notices very smooth move-
ments. [l

In this configuration, the CRT
DMA transfer doesn’t slow the system
down. Instead, an arbitration logic
controls system and CRT access to
the display memory. The data path
from the main bus to the local bus is

Juergen Stelbrink, applications
engineer for Advanced Micro

Devices, has his MS degree in com- <
puter engineering from the RWTH
Aachen, West Germany.

Implementation of Horizontal Soft Scroll

’)
The basic idea behind this implementation is to place in
the front of the line a dummy character that's rendered
invisible by external logic that delays the horizontal
BLANK. You move the entire line by using the VSC’s pro-
portional-spacing capability to modify the width of this
dummy character.

When the dummy character is programmed for full
width, the delayed BLANK covers it. When you reduce
the width of this character, the first visible character
moves left and gets partially covered. Characters seem to
enter the screen on the right side and seem to leave it on
the left.

The detailed description that follows assumes a’
nonproportional-spacing application, a character width
of 8 pixels, and a dummy character width of 10 pixels.
There is no restriction on these values, but reference to a
specific environment makes the description easier.

By reducing the width of the dummy character
from 10 to 3 (steps 1 through 7 in Fig 1) and a modifica-
tion of the character-segment pointer in the row-control
block (step 8), the left-most character is moved out. Each
scroll step the CPU modifies the width of the dummy
character one pixel. Decreasing the width causes a left
scroll; increasing the width causes a right scroll. The
horizontal soft-scroll speed can be similar to the vertical
soft-scroll speed (scrolling one pixel per 8 frames to 8
pixels per frame). It is supported by the CRTC interrupt
on a vertical event issued once per frame.

The width of the dummy character is controlled by
providing an appropriate value at the character-clock di-
vider inputs of the VSC. This value can be supplied in sev-
eral ways:

® The width can be controlled by the four user-
definable attribute bits of the attribute word corre-
sponding to the dummy character.

® Bits of the row-attribute word can determine the

width. This attribute word is put out during horizon-

NORMAL BLANK
—_ o —
- - —
DELAYED BLANK 1 n
sTER 1 DUMMY CHAR 1ST CHAR l 2D CHAR
sTEP 2 DUMMY CHAR I 1ST CHAR [2ND CHAR
T 15
STEP 3 DUMMY CHAR I 18T CHAR J 2ND CHAR l
I - Ly
STEP4 | OUMMY CHAR | 1STCHAR I “2ND CHAR l
¢
STEPS | DUMMY CHAR{ 157 | cHaR I 2ND CHAR l .
oMY T o &
steps | MY 15T cHAR | 2vD CHAR
| ChaR. | " 4
UMMy | ’ v
siepr OO isTomaR I 2ND CHAR I B
seps DM | 1sTowa ‘ ND CHAR I
STEPS DUMMY CHAR 2ND CHAR |) .
£t R
STEPID | OUMMYCHIR | | aNDCHAR I
| 10 PixeLs — s pixcLs]
o vistoL — o visiste —————]

Fig 1 In horizontal soft-scroll, the proportional-character capability is
used to reduce the width of an invisible dummy character placed at
the front of each line. As the width changes, the first visible character
moves left and gets partially covered.

tal retrace and can be latched by HSYNC. .w

In proportional-spacing applications, the charac-
ter-font generator can be programmed to contain a
set of characters with widths from 3 to 10.

The second task the designer is canfronted with is
to find a simple solution to delay BLANK. If the system-
clock cycle is wider than the character-clock cycle,
BLANK can be delayed by being fed through two D-
flipflops clocked by the system clock (CLK1) (Fig 2).

Another approach is to use a counter to delay

BLANK the appropriate number of pixels. The counter is
clocked by the dot clock and enabled by the first edge of
CLK1 or CLK2 after BLANK inactive. ll

C-5

APPENDIX D

Source Code For The Low-Cost Smart Terminal Board

ug0s 1M

TITLE " CALEB 0.00 ‘Interrupt Handlers"

CALEB 0.00

This file contains the reset and interrupt entrypoints as well as the

r

H

H

; - .

; ’ Copyright 1985 Advanced Micro Devices, Inc.
;) :
;

; interrupt handlers.

NAME "Interrupt Handlers" R

T EXT Reset ; in C_Init
EXT PlcCsr,Shwind ; in c_util
EXT ScrlR;One,ScrlLtOne,SetForScrlUp,SetForSCran ; in C_Util
EXT SetAftScriDn,SetWndPos- ; in C_UtilL

_EXT WrAm8052Reg,RdAM8052Reg ; in C_Util

.

SKIP
INCLUDE C_MemMap

sKip N

~e S0 e s s

This is the base of the Am8052/8152 Low Cost Terminal demonstration firmware.
The entrypoints for the reset and five interrupt sources ‘are defined here.
There are ‘only eight bytes between interrupt entrypoints, so when a larger
handler than that is required the entrypoint must transfer control ‘elseuhere.
This .is the case for most of the interrupt handlers we have implemented.

’
’
'
.
'

ORG 00000H ; Reset entrypoint

The 8751 reset condition begins execution here. This entrypoint will only
be entered once, immediately after power is supplied to the board.

LJmp) ; Go to the reset procedure

~

ORG - 00003H ; External interrupt 0 entrypoint
The external interr;.‘pt 0 entrypoint is defined below. The 8751's INTO*
input is connected to the Am8052's bus request (BRQ*) output. Therefore,
this interrupt occurs when the Am8052 desires con;rol of the display
memory bus for performing video refresh.

~e we we oW

PUSH P2
MOV P2,#OFFH
LJMP BusReqgHdl

Save port 2 contents and keep
it from interfering w/Am8052
Go to actual” handler

e ws s

ORG ~ 0000BH ; Timer O interrupt entrypoint

The timer 0 interrupt entrypoint is defined below. The 8751's TO input

is connected to the Am8052's BLANK output. This has the affect of counting
visible scan lines. The counter is reloaded during vertical retrace so
that the interrupt occurs twenty-eight (28) scan lines before the vertical
blanking period begins at the bottom of the monitor screen.

PUSH PSW ‘ Save normal flags
SETB RSO Change register bank for
SETB RSt

AJMP EndFrmHdl Go to actual handler (which

H

H

H high priority interrupt

i

; must be in first 2K of code)

-a

" ORG 00013H

.; External interrupt 1 entrypoint

The external interrupt 1 entrypoint is defined below. The 8751's INT1*
input is connected to the AmB052's INT* output. This interrupt occurs
for the vertical event or when the soft-scroll (smooth scroll) process
in the Am8052 requirgs attention.

~e sr se ome

PUSH PSW

Save normal flags
SETB RSO Change register bank for
SETB. RST high priority interrupt

Go to actual handler (which

AJMP AmB052HdL
: ' must be in first 2K of code)

S S s s s

ORG 0001BH ; Timer 1 interrupt entrypoint
Timer 1 is used to provide the clock for serial communications with the
host; therefore, the timer 1 interrupt is disabled and this entrypoint
should never be executed. As a precaution, we put a jump-to-self here
for use while debugging. We also included other code, as if this were
a valid interrupt, so that it would be possible to continue.

Ne se s s s

PUSH PSW

; Save normal flags
LiMP $; Stick right here
POP PSW ~ . ; Restore normal flags
RETI ; ; Exit from interrupt .
P smmmmmmsosososefessossoses STt ToTTTTTmTTTRmmmmmeeet
ORG 00023H ; Serial port interrupt entrypoint

The serial port interrupt entrypoint is defined below. The 8751's serial
port capability_is used for communications with the host. Currently, only
reception is implemented since CALEB does not generate output. The addition
of ANSI X3.64 report capabilities or the inclusion of a keyboard will make
transmission necessary. ‘ -

L

PUSH PSW ; Save normal flags
SETB RSO .; Reg bank for low priority intr
AJMP HstComhHdl ' "; Go to actual handler (which

’ ' ; must be in first 2K of code)

v

D R

; PERTETTT P b+ +

PROG .

CopyrightMsg:

DB " Copyright 1985 Advanced Micro Devices, Inc. "

+

BusReqHdl:

; Handles the bus request interrupt from the Am8052. The bus acknowledge

; signal_is output until the Am8052 no longer desires the bus then it is

; returned to its inactive state. The contents of port 2 are saved and

; restored so that the port can be configured as all inputs during Am8052

; bus transactions (any pins configured as outputs will interfere with the

; signals on the bus). Port 2 reconfiguration has already been done by .
; this time. - :

Acknouledge the bus request

«CLR Am8052BusAckFlg ;
JNB AmB052BusReqFlg,$ i . ; Stay here 'til BRQ* is released
SETB Am8052BusAckFlg ; then remove bus acknowledge
POP . P2 ; Restore port 2 contents
RETI . ; Exit from interrupt
lA v v T T
SKIP
. v - M ++
EndFrmHidl:

Handles the timer 0 interrupt which occurs near the end of the frame (at
the 28th visible scan line from the bottom of the monitor screen). It
sets a flag (which is reset by the Am8052 interrupt handler) to signal
the start of this end-of-frame processing time. This handler also does
all changes to display memory to support horizontal smooth scrolling.

SETB
JNB
DJNZ
PUSH
PUSH
PUSH
MOV
JNB
LY
SJMP

EFH1:
© Mov

EFH2:
JB

Jz

CLR
MoV
susB
MoV
MOV
SuBB
Jc
MOV
LCALL
SJIMP

EFH3:
MOV
ADD
SJIMP

- EFH4:
CLR
MoV
suBB
JNC

EndFrmFlg
HrzScriFlg,EFHO
HrzFrmCnt,EFHO

ACC

DPH

DPL
HrzFrmCnt,HrzFrmSet
AMDDWMBIi t,EFH1

RO, #6

EFH2

RO,#9

HrzDirFlg,EFH4
A, HrzScriCnt

EFH6

Cc

A,RO

A, HrzCurPxl
RT,A

A, HrzPxlShf
A,R1

EFH3

HrzCurPxl,A

ScrlLtOne
EFH5

"R, HrzCurPxl

)\,Hrszlshf
EFH7

c

A, HrzCurPxl

A, HrzPxlShf
EFHT7 "

D T L R B T R T T

~

~ s o

e we me me o wme S om0 we wa oW

~e se o=

; Right

~e e we we

Set end-of-frame flag and
get out if not horz. scroll
Get-out if no update for hz scr
Save)
special function
registers)
Reset update count
Jump if in normal mode
Char width in compressed mode
"~ and continue '

Char width in normal mode

Jump if scrolling right
Check char scroll count and
jump if already at end

Clear carry for below
Char width
minus horz pixet offset is)
amount to scroll in this chr
Amount shifted each time
minus amount left this chr
skip if this char is enough
Else store new pixel offset
and go to next character
Go check for end of scroll

Current pixel offset
plus amount to shift gives
new pixel offset; continue

scroll

Clear carry for below

Current pixel offset ‘in char
minus # shifted each time

Continue if still in char

MoV
MOV
Jz
LCALL

EFH5:
DJNZ

JB

MoV
MoV
SJMP

EFH6:
MoV
CLR
LCALL
48
LCALL
JINB
LCALL

" sJmp

EFH10:
MOVX
ANL
ORL
MOVX
INC
MOVX
ANL
ORL
MOVX
POP
POP
POP

EFHO:
POP
RETI

A,RO
HrzCurPxl,A
A,HrzScrlcnt
EFH6
ScrlRtOne

HrzScriCnt,EFH8
HrzDirFlg,EFH8

HrzCurPxl,#0

_ HrzFrmCnt, #1

EFH8

HrzCurPxl,#0 .
HrzScrlFlg
PlcCsr
MsgActFlg,EFH8
SetWndPos
WndVisFlg,EFH8
ShwWnd

EFH8

A,@DPTR
A, #OF8H
A,RO
aDPTR, A
DPL
A,@DPTR
A, #OTFH
AR1
DPTR,A
DPL
DPH
ACC

PSW

; Readjust to be in character
; and store new pixel offset
; Check char scroll count

; and jump if already at end
; Else, get next character

; Check for end of scroll

; Continue if more to scroll
; Finish last char for scroll rgt |
For left, set.to char boundary

and wait one more frame time
to actually finish

~e we s

; Actual finish of horizontal scroll

; Set

; Fina

Set pixel offset to char bound
Indicate no longer scrolling
Place cursor (if possible)

Get out if in message display
Set window position if in bgd
Get out if window not visible
Show window if it should be
Get out

D T

function char width and exit
Get function attr (high byte)
Mask off old width bits and
put in new width
Write new high byte of attr
Point to low byte
Get low byte of function attr
Mask off old width bit and
put in new one .
Write new low byte of attr
Restore
special function
registers
exit
Restore flags and reg bank
Exit from interrupt .

M~ S5 NI i Na Ns S Ne Se wa we e s

~ we

7-a

EFH7:

MOV HrzCurPxl,A
EFH8:

SETB C

MOV . A,#12

SUBB A, HrzCurPxl
DEC A _

MOV . RO,A
SWAP A

ANL A, #080H
MOV R1,A
MOV A,#007H
ANL A,RO
MOV RO,A

MOV DPTR,#BgdFncAtr0

JNB MsgActFlg,EFH10

MOV DPTR,#MsgFncAtr
SJMP EFH10

In middle of character

'

Keep new pixel offset

Set up for function character width

L T T TR T

Full
maximum width
minus pixel offset
minus two (for Am8152)
Keep new width
Most sig bit of width to bit 7
and all else masked off
then keep for low attr byte
Mask off all but 3 low bits
of new width -
then keep for high attr byte
Point to bgd function attribute
and use it unless in message

Point to msg function attribute
and use it

SKIP

Am8052HdL :

L

Handles the vertical event and smooth scrolling interrupts from the Am8052.
The vertical event.is set to occur during vertical retrace and is used to
We also use this time to synchronize

reset the visible scan line counter.
The smooth scrolling interrupt also occurs during
vertical retrace and is fully discussed in Am8052 technical documents.

turning the cursor on.

PUSH- ACC
PUSH DPH

PUSH - DPL

MOV R1,#ModReg2Ind
LCALL RdAm8052Reg
MOV A,R3

JNB- - ACC.3,AH1

P T

Save
special function
registers

Read interrupt pending
status from Am8052

Check vertical event pending
and jump if not '

CLR
MoV
CLR
MOV
MoV
JNB
CLR
SETB
SJMP

AHO:
JNB
CLR
XCH
SETB

AH1:
JB.

AH2:
LCALL
pPoP
POP
POP
POP
RETI

AH3:
CLR
MoV
MoV
MoV
CLR
JB
JB

Jz
INC
SJMP

ACC.3

R3,A

EndFrmFlg

THO, #END_FRM_CNT_HI
TLO,#END_FRM_CNT_LO
CsrShwFlg,AHO .
CsrShwFlg

CsrSetFlg

AH1

CsrSetFlg,AH1
CsrSetFlg
A,R2

ACC.7

A,R2

ACC.0, AH3

WrAm8052Reg

DPL \
DPH

ACC

PSW

ACC.0

R7,A

AR2 .

R6,A
vrtScriNewFlg
ACC.0,AH6
SudBit,AH5
A, VrtScriCnt
A4
vrtScricnt
AH7

T T N

-~ e s oS s s

D TR TR T

Clear the condition
and keep it
Reset end-of-frame flag
Reload
end-of-frame counter
Skip if not requesting cursor
Reset cursor request and
defer actual action
until -next frame

skip if no deferred cursor req
Reset deferred request flag
Get bytg with enable bit and
set it (shows cursor)
then put that byte back

Jump if a smooth scroll intr

Update Am8052 status
Restore
special function
registers
Restore flags and reg bank
Exit from interrupt

Clear smooth scroll condition
Keep Low '
and high
bytes of status
Signal extra row now available
Jump if scrolling continues
Jump if scrolling up
Chéck for late continuation of
up scroll, jump if not
Allow for extra call when -
scrolling up and continue

AH4:
LCALL

AH5:
CLR
LCALL
SJMP

AH6:
JNB
MoV
MoV
MOV
JB
SETB
MoV
SJMP

AHT7:
CLR
MoV

AH8:
JNB
MOV
SJMP

AH9:
MoV
SJMP

AH10:
MoV
MOV

b
SETB
MOV
MOV
MoV
SIMP

SetAftScribn

vrtScrlFlg
PlcCsr
AH16

WndActFlg,AH10

RO, #WndWDBO. AN .OFST+WDB_RowPag
R1,#TOWSftLolnd

R3, #WndWDBO . AN .OFST

CurWDBF Lg,AH7

CurWDBFlg

R2, #WndWDB1 . SR . PAGE

AH8

CurWDBFlg
R2, #ndWDBO. SR . PAGE

CurMDBFLg, AHO
RS, #8gdMDB1 .AN.OFST+MDB_Scrl
AH12

RS, #BgdMDBO . AN .OFST+MDB_Scrl
AH12

R1,#70PSftLolnd

R2,#BgdMDBO. SR .PAGE

CurMDBF Lg,AH1 1

CurMDBFlg

RO, #BgdMDB1.AN.OFST+MDB_RowPag

-R3,#BgdMDB1.AN.OFST

RS, #BgdMDB1.AN.OFST4MDB:_Scrl
a2 O ’

; Clean up after scroll up

; Indicate no longer scrolling
7 Place cursor (if possible)
; Go restore status for exit

; Continue scrolling

; Jump ifvin background
; Set up for window scrolling

;Set up for Background scrolling

AH11:
CLR
Mov
Mov
Mov

AH12:
JB
JINB

CurMDBFlg

RO, #8gdMDBO.AN.OF ST+MDB_RowPag
-R3,#BgdMDBO.AN.OFST

RS, #BgdMDBO.AN.OFST+MDB_Scrl

SudBit,AH14
vrtScrlFlg,AH12a

LCALL SetAftScribn

AH12a:
SETB VrtScriflg
DJINZ VrtScriCnt,AH13
MOV DPH,R2
MOV DPL,RO
MOV A, TopRow
MOVX aDPTR,A
MOV A,ScrlByt
CLR ACC.O
SJMP AH15

AH13:
LCALL SetForScribDn
MOV DPH,R2
MOV DPL,RO
MOV “A,R4
MOVX @DPTR,A
MOV A,ScrlByt

' SJMP AH15

AH14:
SETB VrtScrlFlg
LCALL SetForScrlUp
MOV DPH,R2
MOV DPL,RO
MOV A,R4
MOVX @DPTR,A
‘MOV A,ScrlByt
DJNZ VrtScriCnt,AH15
CLR ACC.0

10

~e se e

D T T DT T T T

DI T TR

Jump if 'scrolling up
skip if first row in down scr
Clean up after a scroll down

Indicate scroll in progress
Jump if more after this
Point to row pointer
in appropriate block
and make it point to top
visible row
Get scroll control byte
and set up to stop
after this last row

Set up to scroll another row
Point to row pointer
in appropriate block
_and make it point to top
visible row
Get scroll control byte
and continue scrolling

Indicate scroll in progress
Set up to scroll another row
Point to row pointer

in appropriate block

and make it point to top

visible row

.Get scroll control byte

Jump if more after this
Else set Up to stop scrotl

9-a

AH15:

© MOV DPH,#BgdMDBO.SR.PAGE ; Point to
MOV DPL,RS H appropriate MDB and put
MOVX . QDPTR,A H in new scroll control byte
LCALL WrAm8052Reg ; Write new block (MDB or WDB)

AH16:
MOV R1,#ModReg2Ind ; Ready
Mov A,R6 H to restore status
MOV R2,A
MOV A,R7
MOV R3,A

“ AJMP AH2 ; Go restore status

; 44 P ++
SKIP

T4+

HstComHdl:

’
.
'

Handles host communications using the 8751's on-chip asynchronous serial

port -feature.

transmission can be easily added.

PUSH
PUSH
PUSH
JNB

CLR

_ Mov

MOV
CLR
MoV
SuBB
JNC

- JNC

SETB

ACC

DPH

DPL
RI, HCH

RI .+

DPH, #HistRcvBuf.SR.PAGE
DPL, HstRcvInsOff

c

A, HstRevCnt

A, #80

HCH3

A, #NEAR_FULL_CNT
HCH1

HstRcvBsyFlg =

11

we Ss ome me wa we

.~ = ~

~

Currently, only reception from the host is supported, but

Preserve accumulator
and
data pointer
Jump (to xmt) if no rcv intr

> Reset receiver intr condition

Point to ring buffer
insertion location
Ensure no interference w/SUBB
Current number of chars in ring
compared with maximum
Jump (to exit) if ring is full

Check for nearly full ring
Jump if plenty of room

Signal busy if nearly full

HCH1:
MoV
MOVX
MoV
INC
JINZ

MoV
HCH2:
MoV
INC
HCH3:
POP
‘POP
POP
POP
RETI

SJMP

A, SBUF

ADPTR,A

A, HstRevInsOf f
A

HCH2

A,#HstRcvBuf .AN.OFST

HstRevInsOff ,A
HstRevCnt

DPL
DPH
Acc
PSW

11

.

Reéad and store character

; Get character from host

; and store it in ring buffer
; Insertion location now
H
’

incremented to next location

Jump if still in buffer range

; Reset to start if past end
Finish receiver interrupt

; Keep new insertion location

; New number of chars in ring
Common interrupt exit (rcv and xmt)
; Restore data pointer
; and
H accumulator
; Restore flags and reg- bank
; Exit from interrupt

Transmitter interrﬁpt handler
; ‘Reset transmit intr condition

There is currently no software support for transmission.to the host.
This part of the handler merely shows where actual code to support
this capability would be placed.

HCH3

; Go to exit

; end of C_Base

12

ngo51
TITLE » CALEB 0.00 Initialization®
C_Init CALEB 0.00

D T TR

"Initialization"

Copyright 1985 Advanced Micro Devices, Inc.

" This file contains the reset, memory test and initialization code.

EXT DisCon

EXT WrFntCel,HidCsr,ShuCsr
EXT DlyTilEndFrm,WrAm8052Reg,RdAmMB052Reg

EXT HalfSwap
EXT Fnt_7x9,Fnt_5x7

EXT DblBaudOpt,BaudRatCnt

"; in C_Switch

in C_Util
in C_Util
in c_util

in C_Font

in C_Config

SKIP
INCLUDE C_MemMap

SKIP

Reset:
This is

control from the host.

; the beginning of the reset procedure.
; power-on condition (i.e. chip reset) or a Reset To Initial State (RIS)
H

; Reset procedure

We get here either from a

. MOV

MoV

MOV

MOV
MoV
MoV
Mov
LCALL
Mov

MoV

MoV
MOV

MoV
CLR
MovC
MoV
Mov
CLR
MovC
MOV
MOV
Mov
MoV

IE, #0
P1,#0EDH

P3,#OFFH

PSW, #0

SP, #067H
R1,#ModReg1Ind
R2,#0

R3,#0
WrAm8052Reg
1P, #007H

TMOD , #025H

TCON, #055H
SCON, #050H

DPTR, #0blBaudOpt
A ;
A,@A+DPTR

PCON, A

DPTR, #BaudRatCnt
A
A,AA+DPTR

TH1,A

L,A

THO, #END_FRM_CNT_HI
TLO, #END_FRM_CNT. LO

.
’
'
’
G
’
'
.
.
'
O
’
.
'
G
’
.
.
.
1
s
’
’
’
’
’
’
.
’
.
.
'
.

Disable all interrupts
Ensure 7: HstXmtBsyFlg->input
6: HstRcvBsyFlg->busy
5: KbdRcvRdyFlg->input
~'4: KeybrdeEnbFlg->disable
3: Am8052XfrBit->high
2: Am8052BusAck->high
“1: AMDSPMBit ->low
0: (unused) ->input
Ensure special functions and
marking output to host
Ensure normal register bank
Base of 24-byte stack
Mode Register 1
gets zeroes
to
disable the display
Bus request (INT0), end-of-
frame (TO) and Am8052 (INT1)
are high priority; serial
and unimplemented (T1) low
Timer 1 (mode 2) for baud rate;
timer 0 (counter, mode 1)
for end-of-frame interrupt
Both timers on;
edge triggered interrupts
Serial mode 1 (8-bit, variable
baud rate); receiver enabled
Load double baud option for
PCON contents
O0H for normal speed
80H for doubled
Load baud rate count

End-of-frame interrupt occurs
28 scan lines from bottom

; ALL of display memory will now be tested.
; performed followed by an address test.

An alternating bit test is
Here we begin to write the first

pattern set for the alternating bit test.

MoV
MoV
MoV
MoV
MoV

MT1:
MoV

MT2:
MOV

MT3:
MOVX
INC
DJNZ

cPL
DINZ

INC
DJINZ

P2, #DspMemBas. SR . PAGE
RO, #DspMemBas . AN .OFST
A, #0AAH

MemTstTmp,A
R7,#DSP_MEM_SIZ.SR.PAGE

R6, #4
R5,#PAG_SIZ/4

aR0,A
RO
R5,MT3

A
R6,MT2

P2
R7,MT1

; Start at first byte of
; display memory
; Initial test pattern also
; saved for verification
; Number of pages to test
For each page

; Number of groups per page

For each group in a page
; Number of bytes per group

For each byte in a group

Write test pattern to memory
then address next byte

Loop until end of group

Change pattern for next group
Loop until end of page.

; Address next page
; Loop until end of memory

Next, the patterns are verified. As each byte is checked the complemented

H
; pattern is written back.
; is tested with both a one and a zero.

MT6:
MoV

P2, #DspMemBas . SR . PAGE
R7,#DSP_MEM_SIZ.SR.PAGE

R6, #4

RS, #PAG_S1Z/4

'

'

This section is performed twice so that each bit

Verification (done twice)

; Start at first page (RO is 0)
; Number of pages to test
For each page

; Number of groups per page

For each group in a.page
; Number of bytes per group

P T

MT7:
MOVX A,aRO
CJNE A,MemTstTmp,RstErr

CPL A
MOVX @RO,A
INC RO

DJINZ R5,MT7

MOV MemTstTmp,A
DJINZ - R6,MT6

INC P2
DJINZ R7,MT5
CPL A :

MOV MemTstTmp,A
CJNE A, #OAAH,MT4

offset in different pages.
MOV R2,#DspMemBas.SR.PAGE
MOV R7,#DSP_MEM_SIZ.SR.PAGE

MT8:
MOV P2,R2
MT9:
MOV A,RO
XRL A,R2 -
MOVX @RO,A

DJNZ RO,MT9

INC R2
DJINZ R7,MT8

; For

each byte in a group
; Read memory, check expected
H pattern and quit on an error

Change pattern and
write it to memory
then address next byte
Loop' untit end of group

~ Se oS ow

Save next verification pattern
Loop until end of page

s~ s

Address next page ¥
Loop until end of memory

~ o~

Verify again, if first time

The display memory has passed the alternating bit test; now the initial
address test patterns will be written.

Each byte's offset address (within

it's page) is exclusive-or'ed with it's page address.
different pattern for each byte in a page and for each byte at the s’gme

; For

This ensures a

; Start at first page (RO is 0)
; Number of pages to test

each page
; Address page

each byte in a page

Make pattern from offset and
page address

Write test pattern to memory

Loop until page is finished

~e Si owe ow

; Prepare for next page
; Loop until end of memory

Next, the address patterns are verified.

As each byte is checked a zero

; is written back. -This aids the verification process as well as providing
; a basis (all zero memory) for subsequent display memory initialization.

MOV R2,#DspMemBas.SR.PAGE
MOV R7,#DSP_MEM_SIZ.SR.PAGE

MT10:
MOV P2,R2

MT11:
MOV A,RO
XRL A,R2 . -
MOV MemTstTmp,A
MOVX " A,@R0 ~ -~

CJNE A,MenTstTmp,RStErr
CLR A

MOVX @RO,A

DINZ RO,MT11

INC R2
DJINZ R7,MT10

’
’

testing the. Am8052.

SIMP AT1

; For

; For

; Start at first page (RO is 0)
; Number of pages to test

each page
; Address page

each byte in a page

; Make pattern. from offset and

H page address then

; save for verification check
; Read memory, check expected

r’

pattern and quit on an error :

; Write zero -
; to memory
; Loop until page is finished

Prepare for next pagé

H
-; Loop until end of memory

Display memory is now tested and initialized to all zeroes. We proceed with

RstErr:

executed.

’
’

SIMP $

If some initialization error occurs then the following procedure is

; Currently we just stick here

AT1:

EYRE TR TR

ETRE TR T Y

NOTE:

There is currently no test of the Am8052. A ‘simple accessibility
test, which writes and verifies patterns in the read/write registers

of the Am8052 could be added here.
AmB8052 DISABLED AT ALL TIMES.

THIS TEST SHOULD LEAVE -THE

The AmB052 is now known to be accessible. We assume it works and begin
it's initialization. The display is already disabled; all other registers

will be written except Mode Register 2.
the display is enabled.

Mov
MoV
Mov
LCALL
Mov
MoV
MoV.
LCALL
Mov
LCALL
Mov
LCALL

LCALL
MoV
LCALL
MOV,
LCALL
MoV
LCALL
MOV’
LCALL

MoV
MOV

R1,#AtrEnbind
R2,#067H
R3,#0FFH
WrAm8052Reg
R1,#AtrRdfInd
R2,#000H
R3,#000H
WrAm8052Reg
R1,#TOPSftHilnd
WrAm8052Reg
R1,#TOPSftLolnd
WrAm8052Reg
R1,#TOWSFtHiInd
WrAm8052Reg
R1,#TOWSftLoInd
WrAm8052Reg
R1,#AtrFlglind
WrAmB052Reg
R1,#TOPHrdHi Ind
WrAm8052Reg
R1,#TOWHrdHi Ind
WrAm8052Reg
R1,#TOPHrdLolnd

R2,#CLrFntMDB. SR.PAGE - -
R3,#CLrENtMDB. AN .OFST

This latter is deferred until after

;Attr.ibute Por§ Enable
;Att;-ibute kédefinitim ‘
;Top of nge Soff Pointer
;Top> of Hi.ndou Soft Pointer‘

;Attribute Flag
;Top of Page & Wind Hard Pointers

H high word = 0

;Top of Page & Wind Hard ready
; for font load

01-a

LCALL
MoV
MoV
MoV
LCALL
MoV
MoV
MoV
LCALL
MoV
MoV
MOV
LCALL
MoV
MOV
MOV
LCALL
MoV
MoV
MoV
LCALL
MoV
MoV
MoV
LCALL
MoV
MoV
MOV
LCALL
MoV
MoV
MoV
LCALL

. Mov

MOV
MoV

. LCALL
MoV

MoV
Mov
LCALL

WrAm8052Reg
R1,#TOWHrdLoInd
R?,#Cl antUD\B .SR.PAGE
R3,#CLrFntWDB.AN.OFST
WrAm8052Reg '
R1,#DMABstInd
R2,#010H

R3, #040H

WrAm8052Reg -
R1,#VrtWthInd

R2, #002H

R3, #04FH

WrAm8052Reg
R1,#VrtActLnelnd

- R2,#001H

R3,#067H
WrAm8052Reg
R1,#vrtTotLnelnd
R2,#001H

‘R3, #06CH

WrAm8052Reg -
R1,#HsyncVIntInd
R2,#001H
R3,#020H
WrAmB8052Reg
R1,#HDrvInd

R2, #000H
R3,#020H
WrAm8052Reg
R1,#HScnDlyInd
R2,#000H

R3, #0224
WrAm8052Reg
R1,#HTotCntInd
R2,#000H
R3,#0DBH
WrAm8052Reg
R1,#HTotDspInd
R2,#000H
R3,#0D9H
WrAm8052Reg

;DMA Buf‘st and Space

;Vertical Sync Width .
; and Vertical Scan Delay

’

;Vertical Active Lines
;Vertical Total Lines

;Horizontal Synch Width
" and Vertical Event Row

'

;Horizontal Drive
;Horizontal Scan Delay
;Horizontal Total Count

;Horizontal Total Display

D

'
’

We next initialize a portion of display memory. in a special way which

is used only for initially blanking the character generator RAM. This
clear font display requires only a single main definition block, sixteen
row control blocks (each with its own single character), and two attribute
words and a row redefinition block which all RCBs use in common. There is
also a termination window definition block. :

First, the main definition block is written. . Since memory is known to -
contain all zeroes, only those parts of the MDB with non-zero values will
be written.

MOV P2,#CLrFntMDB.SR.PAGE

; Address page of the MDB at
MOV RO, #CLrFntMDB.AN.OFST+MDB_RowPag ; offset of top row pointer
MOV A,#CLrFntRCBBas.SR.PAGE ; Point to page
MOVX @RO,A ; of top row
INC RO . ; and
MOV A, #ClLrFntRCBBas.AN.OFST ; its offset
MOVX @RO,A ;
INC RO) :
MOV A, #-1 2 ; Impossible cursor position
MOVX aRO,A ; entered for x
INC RO ’ ; and
MOVX @RO,A) : fory
INC RO A
MOV A,#001H ; Set the FAT bit to fetch
MOVX @RO,A ; an attribute for fill chars
MOV RO,#CLrFntMDB.AN.OFST+MDB_Tslc ; Set MDB's TSLC field to
MOV A,#15.SL.2 ; 15 (which means 16 scan
MOVX aRO,A ; lines per character rpw)l

Next, each of the sixteen row control blocks is initialized. Again, only
non-zero bytes are written.

MOV R2,#ClLrFntRCBBas.SR.PAGE
MOV R3,#CLrFntChrBas.AN.OFST
MOV R4, #CLrFntAtr.SR.PAGE
MOV RS5,#CLrFntAtr.AN.OFST
MOV R6,#CLrFntRRB.SR.PAGE
MOV R7,#CLrFntRRB.AN.OFST
MOV R1,#16

Address page of first RCB
Address offset of character
Address page and
offset of attributes
Address page and ~
offset of row redef block
Number of RCBs to be made

D T

11-d

CF1: -

~u we e

MoV
MoV
MoV
MOVX
MoV
MoV
MOVX
MOV
MoV
MOVX
MoV
MoV
MOVX
INC
MoV
_MOVX
MoV
MoV
MOVX
“INC
MoV
MOVX

- MoV

MoV
MOVX
INC
MoV
MOVX
INC
MOV
MOV
MOVX
DINZ
DEC
MOVX

P2,R2

RO, #CLrFntRCBBas.AN.OFST+RCB_RdfLnk

A, #080H
aR0,A_

" A,RO
RO, #CLrFntRCBBas . AN.OFST+RCB_RoWOff

aR0,A

RO, #CLrFntRCBBas .AN.OFST+RCB_1St+SEG

A#
ARO,A

A,R2
aR0, A
RO

A,R3
aR0, A

H
H
H
H
H
H
i
N

H
i
H
H
H
A

Address RCB at

Link bit offset (1st byte)
Set redef block link bit '
to indicate RRB ptr present
offset of RCB to be written
as offset of next RCB
(all RCBs at same offset)
umVis _
; One character specified per row
; (rest are filled with null)
RO, #ClLrFntRCBBas.AN .OFST*RCB_V‘I st+SEG_ChrPag
Put in page address ’
of char (same as its RCB) -

‘and then
its offset

RO,#ClantRCBBas.AN.0FST+RCB_1st+SEG_ trPag

ARG
aRO,A° -
RO

A,R5
3RO, A

aRO,A
RO
A,R7
aRO,A
R2

A,R2
aR0, A
R1,CF1
A -
R0, A

'R0, #CLrFntRCBBas . AN.OFST+RCB_CLrRdfPag
“A,R6 o

RO, #CLrFntRCBBas.AN.OFST+RCB_RowPag ;

’
.
I
.

Then, we initialize the attribute words. The

a load of character ‘generator RAM.

Put in page address

of attributes
and then

their beginning offset

Put in page ‘address
of row redef block

and then
) its offset

‘Prepare for next page
Put ‘next page address
into- page address -

for next. RCB

Loop until all RCBs are written

Make the last RCB
point to itself

first one is set to force
The 'second is a latched but otherwise

innocuous attribute which is fetched for the fill characters.

9

MoV
MoV
MoV
MOvX
INC
MoV
MOVX
INC

MOV

MOVX

Address page and

P2,R4 i

RO, #ClrFntAtr.AN.OFST ; offset of first attribute
A, #O4TH ; Set cursor bit and width to
aro,A . H load data for 7x9 chars
RO ; initially, also

A,#010H ; set required superscript
aRO,A ; attribute

RO H

A, #087H ; Second word is latched,
@RO,A ;

nothing special attribute .

; And now, the rc;u redefinition block is initialized to load zeroes into each
; slice of each character. This is done by leaving the row attribute fields
; all zeroes and forcing all slices of a character to be loaded with each row.

MoV

MoV

MoV
MOVX
MoV
MoV
MOVX
Mov
MoV
MOvX

P2,R6 ; Address page and

RO, #C{rFNtRRB.AN.OFST ; offset of RRB

A,#15.8L.2° : ; Set 16 scan lines per row into
3RO, A ; RRB's TSLC field (1st byte)
RO, #CLrFntRRB.AN.OFST+RRB_SpcsLo_Spce; Set superscript start/end lines
A#15 ; to 0 and 15 so that it spans
ar0,A . H the entire character row

RO, #CLrFntRRB.AN.OFST+RRB_CursLo_Cure; Set cursor start and end lines -
A,#15 - H to 0 and 15 so that it spans
aRO,A ; the entire character row

3 Finally, a window definition block is defined with its positioned near the
; bottom of the display. It will be fetched by the Am8052 and show the first
;. of the. blanked character rows.

MoV
MOV
MoV
MOVX
INC
MOV
‘MOVX

- A, #CLrFntRCBBas.AN.OFST

P2, #CLrFNtWDB. SR.PAGE ; Address WDB at
RO, #CLrFntWDB.AN.OFST+WDB_RowPag ; offset to top row pointer
‘A, #CLrFAtRCBBas . SR. PAGE ; Point to first RCB (just in
aRO,A ° H case)
RO ;

;

;

arR0,A

‘10

71-a

* MOV

MOVX
INC
MoV

“MOVX
INC

MOV
MOVX
INC
MoV
MOVX

~e N s

MoV
MoV
MoV
MoV
LCALL

MoV
MoV
LCALL
LCALL

Now we

.
'
v

CF2:
CLR

CF3:
MOV
MoV
MoV
LCALL

We next set things in motion.
is enabled.
generator RAM.

RO, #CLrFntWDB.AN.OFST+WDB_NxtPag
A, #CLrFntWDB.SR.PAGE

ar0,A -

RO

A, #CLrFntWDB.AN.OFST

aR0,A
RO

A,#20
aR0,A
RO

A, #21
aRO,A

’

I1E,#087H
R1,#ModReg1Ind
R2,#0C8H
R3,#001H
WrAm8052Reg
R1,#ModReg2Ind
R2,#096H
R3,#0D2H
WrAm8052Reg
DlyTilEndFrm

will zero the entire character generator.
twice; first for the 7x9 characters and then for the 5x7 characters.
Sixteen character cells are cleared in each frame.

.

" p2,#CLrFntChrBas.SR.PAGE

RO, #CLrFntChrBas.AN.OFST
R7,#16
DLlyTilEndFrm

11

make it point to itself

Set second from bottom row
for start .
and
bottom partial row
for end

Interrupts are enabled and the display
We need the Am8052 operatmg in order to load the character

; Enable interrupts (not serial)

Enable the Am8052 display
operations

~e s

Enable Am8052 vertical
«interrupt

~

; Be sure that all is working

This section is done

For-each set of chars (7x9 & 5x7)
; Start with null (char code 0)

For each frame (group of 16 chars)
Address page and ‘

offset of first character
Number of characters to load
Wait for an auspicious omen

.
v
B
1

Address pointer to next WDB and

CF4:

.
.

- MOVX
INC
INC
DJNZ

JINZ

LCALL

MOV
MOVX

CINE

Mov
MOVX
SJMP

aR0, A
P2
A
R7,CF4

CF3

DLlyTilEndFrm
DPTR,#ClrFntAtr
A,aDPTR

A, #047H,CF5.

A, #044H
aDPTR,A
cF2

N

.
.
.
G
2

.

’
'
’
’

~e S oW

»

; For each character (row) in the frame

Store code of char to be loaded

Next page (next character) and
next cell to be loaded

Loop until frame is set up

Loop until back to null char

Ensure that we are finished

Check first attribute for ~
width of load character

skip if just loaded 5x7 chars |

Else, set up to load
5x7 set and
godo it

Now that the character generator RAM is cleared we need to disable the
Am8052 in preparation for initializing memory for actual operation.

CF5:

'
’

Mov
MOV
MoV
Mov

IE, #0
R1,#ModReg1Ind
R2, #0CCH
R3,#001H

LCALL WrAm8052Reg

I

'
'
’
‘
.

The following code initializes all of memory,
for normal operation.

MemInt:

Mov
MoV
MoV

IntVar:

Mov
INC
DJNZ

R1,#126

A #OOH
RO, #02H

3RO, A

RO
R1, Intvar

; Finished clearing character generator

Disable all interrupts
Using Mode 1 Register
blank display (vB=1)
but leave Am8052 enabled

both internal and external,

; Clear all but RO-and R1

; Loop point for ctearing Variables

12

€1-a

- MOV

MoV
MoV
Mov
MOV -
MoV
MoV
MoV
MoV

- MOV

Mov

"MoV

MoV
MoV
MoV
LCALL
MoV
MoV
MoV
MoV
MOV.
MoV
MoV
MoV
MoV

MoV
MOV
MoV
MoV
‘LCALL
MOV
MoV
MoV
MOV
MOV
MOV
MoV
MOV
MOV

* MOV

CurAtr,#00H

ActCol ,#00H

ActRow, #07H

CurRow, #WndRCB7 . SR . PAGE
VisCol ,#00H

Vi sRow,#iﬂH

BgnRow, #INdRCBO. SR . PAGE
TopRow, #WndRCB7 . SR. PAGE
BtmRow, #WndRCB13.SR .PAGE
RemRow, #WndRCB13.SR.PAGE
EndRow, #WndRCB13. SR.PAGE
ExtRow, #WndRCB14.SR.PAGE

'R3,#WndvarBuf . SR.PAGE
- R4, #indvVarBuf .AN.OFST

HalfSwap

CurAtr,#00H
ActCol,#00H

ActRow, #00H

CurRow, #MsgRCB. SR.PAGE
VisCol ,#GOH .
VisRow, #00H

* BgnRow, #MsgRCB . SR . PAGE

TopRowW, #MsgRCB. SR. PAGE
BtmRow, #MsgRCB. SR . PAGE

- RemRow, #MsgRCB. SR. PAGE

EndRow, #MsgRCB. SR. PAGE
ExtRow, #MsgRCB-. SR.PAGE

‘R3,#MsgVarBuf.SR.PAGE

Ré4,#MsgVarBuf .AN.OFST
Hal fSwap

CurAtr,#00H

ActCol ,#00H

ActRow, #06H

‘CurRow, #BgdRCB6. SR . PAGE
VisCol ,#00H

VisRow, #06H

BgnRow, #BgdRCBO: SR . PAGE
TopRow, #BgdRCB6. SR . PAGE
BtmRow, #BgdRCB29.SR . PAGE
RemRow, #8gdRCB29.SR.PAGE

13

L

Ne Se o Ne owe oNe s

T T T

~e se sE N s s

D T

.~ v om0 owa

Initial attribute is 00
Initialize to leftmost col -
First window row is 7th in list
Page value to active row
Always 0 in window

f’age value to beginning of list
Page value to Am8052 bgn of (st
Page value to last visible row -
Page value to rows below dsp
Page value of last row in list
Page value of extra

Initial attribute is 00
Initialize to leftmost col
First msg row.is first in list
Page value to active row
Start left aligned

Page value to beginning of list
Page value to Am8052 bgn of lst
Page value to last visible row
Page value to rows below dsp
Page value of last row in list
Page value of extra

Initial attribute is 00
Initialize to leftmost col
First bgrd row is 6th in list
Page value to active row
Start left aligned

Page value to bgn of list
Page value to Am8052 bgn Lst

‘Page value to last visible row

Page value to rows below dsp

Mov
Mov
MoV
MoV

EndRow, #8gdRCB29. SR . PAGE ; Page value of last row in list
ExtRow, #8gdRCB30.SR.PAGE ; Page value of extra
R3,#BgdvarBuf.SR.PAGE

‘Ré4 ,#BgdvarBuf .AN.OFST

LCALL HalfSwap

MOV
MoV
MoV
Mov
MoV
MoV
MoV
~SETB
Mov
MoV

MoV -

. DspWid, #80 ;Set parameters used in program
Dsphgt, #24 ; Many -are offsets into pages
‘ColAdd, #1
RowAdd, #0

Rcboff, #8gdRCBO.AN.OFST .
Chroff,#B8gdChrBuf0.AN.OFST
: AtrOff,#BgdAtrBufO.AN .OFST
tndcol , #28

CsrZonflg

CsrSiz, #00FH

HstRcvInsOff, #istRcvBuf .AN.OFST
HstRevExtOff, #HistRcvBuf .AN.OFST

; Initialize characters and attributes for the background and the message row.

;Eackground Row 0 page

MOV P2,#BgdRCBO.SR.PAGE

MOV R2,#32 ;count of rows (includes msg)

MOV A#' ¢ ;blank all characters
FilRow: . ;row loop point

MOV RO, #BgdChrBuf0.AN.OFST ;offset of first character

MOV R1,#128 ’ ;128 characters per row
FilChr: ;character loop point

MOVX @aRr0,A .

INC RO :) ;next character

DJNZ R1,FilChr)

;end of row
INC P2 - ;next row
DJNZ R2,FilRow
. ;P2 now points to attributes

MOV R2,#32 ;32 rows.again

MOV R6,#000H :

MOV R7,#007H
FilAtrRow: ;row loop point

MOV - RO,#BgdAtrBuf0.AN.OFST ;offset of attributes

MOV R1,#128 ;128 per row

1y -

71-a

FilAtr:
MOV
MovX
INC
Mov
MOVX
INC
DJNZ

.INC
DJNZ

;attribute loop point
A,R7 iset two bytes
aro,A
RO
A,R6
@RO,A
RO ;next attribute
R1,FilAtr :

- ;end of row

P2 inext row
R2,FilAtrRow

; Initialize the background row control blocks.

~ MOV
MoV~

IntBgd:
Mov
Mov
Mov
MovX
MoV
MovX
Mov

MOVX

MOV
MOVX
MoV

MoV
MOVX
MoV
MOVX
MoV
Mov
MOVX
MoV
MOV,
MOVX
MOV
MoV

R2,#BgdRCBO.SR.PAGE 4 ;page for row 0 control block

R1,#31 ‘ ;only initializing background
;background RCB init loop: point

P2,R2 : " ;set page of RCB

RO, #BgdRCBO.AN.OFST+RCB_RdfLnk ;set flag to show row follows

"A, #080H)

aRO,A

RO, #BgdRCBO.AN.OFST+RCB_1st+SEG_Cont ;1st is not last seg

aRO,A) :

RO, #BgdRCBO.AN.OFST+RCB_2nd+SEG_Cont ;2nd is not last seg

aRO,A .

RO, #BgdRCBO.AN.OFST+RCB_3rd+SEG_Cont ;3rd is not last seg
RO, A

A,#BngncChrO.SR.PAGE © ;page for function character
RO, #BgdRCBO.AN.OFST+RCB_1st+SEG_ChrPag ;all func chars in 1 page
aR0,A -

RO, #BgdRCBO.AN.OFST+RCB_1st+SEG_AtrPag ;same for attributes
aR0,A - - .)

A#1 R

RO, #BgdRCBO.AN.OFST+RCB_1st+SEG_NumVis ;1 function character (vis)
arRO,A -

A, #28 : ;28 characters in 2n9 segment

RO, #BgdRCBO.AN.OFST+RCB_2nd+SEG_NumVis

JAR0,A

RO, #BgdRCBO.AN.OFST+RCB_1st+SEG_Chroff ;function char pos
A, #BgdFncChr0.AN.OFST

15

MOVX
Mov
MOV
MOVX

MoV

MoV
MOVX
MoV
MOVX
MoV
MoVX
Mov
MoV
MOVX
MoV
MoV
ORL
MOVX
MoV
MOVX
MoV
MOVX
Mov
MoV
MOVX

-Mov

MoV
MOVX
MoV
MoV
MOVX
MOV
MoV
MOVX
MoV
MoV
MOVX
MoV
Mov
MOVX

aro,A

RO, #BgdRCBO.AN.OFST+RCB_1st+SEG_AtrOff
A, #BgdFncAtr0.AN.OFST

aR0,A)

RO, #BgdRCBO.AN .OFST+RCB_2nd+SEG_ChrPag
A,R2

aRO,A

RO, #8gdRCBO.AN.OFST+RCB_3rd+SEG_ChrPag
R0, A

RO, #BgdRCBO.AN.OFST+RCB_4th+SEG_ChrPag
aR0,A

RO, #BgdRCBO.AN .OFST+RCB_2nd+SEG_Chroff
A,#BgdChrBuf0.AN.OFST

aR0,A

RO, #BgdRCBO.AN .OFST+RCB_2nd+SEG_AtrPag
A,R2

A, #20H

ar0,A

RO, #8gdRCBO.AN .OFST+RCB_3rd+SEG_AtrPag
aR0,A

RO, #BgdRCBO.AN.OFST+RCB_4th+SEG_AtrPag
aRr0,A

RO, #8gdRCBO.AN.OFST+RCB_3rd+SEG_NumVis
A, #40

@R0,A

RO, #BgdRCBO.AN.OFST+RCB_3rd+SEG_ChrOf f
A, #BgdChrBuf0.AN.OFST+28

aR0,A

RO, #BgdRCBO.AN.OFST+RCB_3rd+SEG_Atroff
A,#BgdAtrBuf0.AN.OFST+2*28

aRO, A

RO, #BgdRCBO.AN.OFST+RCB_4th+SEG_NumVis
A, #60

@RO,A

RO, #8gdRCBO.AN.OFST+RCB_4th+SEG_Chroff
A,#BgdChrBuf0.AN.OFST+28+40

&R0, A

RO, #8gdRCBO.AN.OFST+RCB_4th+SEG_AtrOff

‘A, #BgdAtrBuf0.AN.OFST+2*(28+40)

aRr0,A

16

; and attributes

;R2 has page for this row

;set offset for char start’

A; and attrib start

;set the attribute pages

;40 visible in 3rd seg

;starting 28 past first char

;attrib start 28%2 after 1st

;60 visible in 3rd seg

“;starting 28+40 after 1st

- ;attrib at 2%(28+40)

S1-a

MoV
MoV
MOVX
MoV
MoV
MOVX
Mov
INC
MoV~
MOVX
MoV
DJNZ

MOV
MoV
MoV
MoV
MOVX
MOV

MOV .

MOVX
INC
MOV
MOVX
MOV
MOV -
MOVX
Mov
MoV
Mavx
MoV
MoV
MOVX

- INC .
MOV
MOVX
MoV
MOV

RO, #BgdRCBO.AN.OFST+RCB_BgdRdfPag
A, #NFURRB . SR . PAGE
aR0,A

- RO, #8gdRCBO.AN.OF ST+RCB_BgdRdfOff
A, #NrmRRB.AN.OFST

aR0,A

A,R2

A

RO, #BngC§0 .AN.OFST+RCB_RowPag
aR0,A -

R2,A

R1, IntBgd

; Initialize message Row Control Block

R2, #MsgRCB.SR. PAG

P2,R2 ’ !

RO, #MsgRCB.AN.OFST+RCB_RdfLnk
A, #080H

@RO,A

RO, #MsgRCB.AN.OFST+RCB_RowPag
A,#4ndRCB14 . SR . PAGE

aR0;A '

RO . -

A, #ndRCB14.AN.OFST

aRr0,A -

RO, #MsgRCB.AN.OFST+RCB_1st+SEG_NumVis
A#

ar0,A

RO, #MsQRCB.AN.OFST+RCB_1st+SEG_Cont

A, #080H

aRO,A .

RO, #MsgRCB.AN.OFST+RCB_1st+SEG_ChrPag
A,#MsgFncChr.SR.PAGE

aR0,A '

RO

A,#MsgFncChr .AN.OFST

aRrO,A

‘RO, #MsgRCB.AN.OFST+RCB_1st+SEG_AtrPag

A,#MsgFncAtr.SR.PAGE

17

;all point to same
; row redef block

shext pége

;is page in "next" link

;and next. for loop
;continue for 31 rows

"next" is last wnd RCB

;1 visible in function
:1st seg is not last
;char is in function page

;char is function char

;attrib is func attrib

MOVX -aRO,A

INC RO

MOV A,#MsgFncAtr.AN.OFST

MOVX @RO,A

MOV RO,#MsgRCB.AN.OFST+RCB_2nd+SEG_NumVis ;128 visible in next segment
MOV A,#080H

MOVX aRO,A

MOV RO,#MsgRCB.AN.OFST+RCB_2nd+SEG_ChrPag ;characters in RCB page
MOV A,R2 '

MOVX @RrO,A

INC RO .

MOV A,#MsgChrBuf.AN.OFST ; at msg buffer offset
MOVX aRO,A ‘
MOV RO,#MsgRCB.AN.OFST+RCB_2nd+SEG_AtrPag ;attrib page calculated
MOV A,R2 ; from RCB page

ORL A,#020H

MOVX @aRO,A =

INC RO

MOV A,#MsgAtrBuf.AN.OFST ;attrib offset

MOVX @RO,A

INC RO * ;then set row redef ptr
INC RO : ; to std location

INC RO ’

MOV A,#NrmRRB.SR.PAGE

MOVX @aRrO,A

INC RO

MOV A,#NrmRRB.AN.OFST

MOVX @aRO,A

; We now initialize the Window memory.

MOV P2,#ndChrBuf0.SR.PAGE ;P2 points to first wnd row

MOV R2,#15 ;R2 has count of ‘window rows

MOV _A,# ! ;A has blank character
FilWndRow: ;window row loop point

MOV RO,#WndChrBuf0.AN.OFST ;set character offset

MOV R1,#40 A ;R1 = character count
FilWndChr: ;window character loop point

MOVX @aRO,A ’ ;blank the character

INC RO ;next character

‘DINZ R1,FilWndChr
18

91-a

INC P2 : ;next row
DJNZ R2,FilWwndRow
B . . ;done with window characters
MOV P2, #indAtrBuf0.SR.PAGE ;P2 = first wnd attrib page
MOV R2,#15 ;R2 = count of rows
MOV A,#07 : : . ;A = initial attrib
Fi lWndAtrRow: ‘ swindow- row Loop point
MOV RO, #indAtrBuf0.AN.OFST ;RO = ptr to attrib
MOV R, #40 ;R1 = attrib count
FilWndAtr: o ;window attribute loop point
MOVX aRO,A ;set attrib
INC ROT ‘ ;next attrib
INC RO s
_DJNZ R1,FilWndAtr —
INC P2 ;next row
DJINZ . R2,FilWndAtrRow
: o ;done with window attributes
MOV R2,#WndRCBO.SR.PAGE i iR2 = window row 0 page
MOV R1,#15 ‘ :R1 = window row count
IntWnd: - ‘
MOV P2,R2 R ;point to wnd page
MOV RO,#WndRCBO.AN.OFST+RCB_RAfLnk ;indicate row follows
MOV A, #080H .)
MOVX @RO,A
MOV RO, #WndRCBO.AN.OFST+RCB_Seg+SEG_NumVis ;one seg with 40 visible
MOV A, #40 ’
MOVX aRO,A
MOV RO,#WndRCBO.AN.OFST+RCB_Seg+SEG_ChrPag ;char§ on same page
MOV A,R2
MOVX @RO,A
MOV RO,#indRCBO.AN.OFST+RCB_Seg+SEG_ChrOff ; at buffer offset
MOV A,#indChrBuf0.AN.OFST
MOVX @RO,A)
MOV RO,#UndRCBO.AN.OFST+RCB_Seg+SEG_AtrPag ;attrib page calculated
MOV A,R2 X ; from char page
ORL A,#010H-
‘MOVX @RO,A)
MOV RO, #WndRCBO.AN.OFST+RCB_Seg+SEG_AtrOff. ;attributé offset const
MOV A, #WndAtrBuf0.AN.OFST

19

MoV

MOVX

MOvX
MoV

MoV

MOVX
Mov
INC
Mov
MOVX

- MOV

DJINZ

aR0,A ,
RO, #WndRCBO.AN.OF ST+RCB_WndRdfPag

. A, #NrmRRB. SR .PAGE

aro,A

" ‘RO, #WndRCBO.AN.OFST+RCB_WndRdfOff

A, #NrmRRB.AN.OFST

aRO0,A

RO, #WndRCBO. AN .OFST+RCB_RowOf f
A, #IndRCBO.AN.OFST

aR0,A

A,R2

A .

RO, #4ndRCBO. AN .OFST+RCB_RowPag
aR0,A

R2,A

R1, Intind

;use the std row redef

;next row at std offset

; on next page

- jnext row

Initialize Termination Row Control block in last window row

MOV -
Mov
Mov
MoV
MOVX
INC
MOV

MOV .

MOVX

MOV
MoV
MoV
MOV
MOVX
MoV
INC
MOVX
INC
CLR

A, #WndRCB14 . SR.PAGE

TrmRow,A :

P2, #BgdRCB29.SR.PAGE

RO, #BgdRCB29.AN.OFST+RCB_RowPag
@RO,A

RO .

A, #UndRCB14 .AN.OFST

Trmoff,A

aRO,A

R2, TFIROW

P2,R2)

RO, #WndRCB14 . AN .OFST+RCB_RowPag
A,R2

aRO,A

A, Temof f

RO

aRO,A

RO

A

20

ipage of last window row
H ‘is page of termination row
;make row 29 last in brgd

;also set termination offset

;R2 =.P2 = termination row

;term row points to itself

;term row has no hidden chars

AG

MOvX
INC
MoV
MOvX
MOV
Mov
MOVX
INC
Mov
MOVX

aR0,A

RO

A,#1 ; and one visible char
ARO,A

RO, #WndRCB14 . AN .OF ST+RCB_Seg+SEG_AtrPag

A, #TrmAtr.SR.PAGE ;term attrib page

a@RO,A :

RO :

A, #TrmAtr.AN.OFST ;term attrib offset

aR0,A

; Initialize Function Character and Attribute

MOV
Mov
MOVX
INC
MOVX
INC
MOV
MOVX
INC
MOV
MOVX
INC
MOV
MOVX
INC
CLR
MOVX

~

MOV
MoV
MOVX
INC
CLR
MOVX

Injtialize Termination Attribute

DPTR, #BgdFncChr0 ;function characters are blank

A#

aDPTR,A

DPTR

@DPTR,A

DPTR i
A,#002H ;1st function attrib
@DPTR,A
DPTR

A, #090H
@DPTR,A
DPTR

A, #004H ;2nd function attrib
aDPTR,A .

DPTR .

A

ADPTR,A

DPTR,#TrmAtr ' ;termination attrib
A, #087H

@DPTR,A

DPTR™ -

A

ADPTR,A '

21

MoV
MoV
MOVX
INC
INC
MoV
MOVX
INC
MoV
MOVX

MOV
MOV
MoV

InitMDB:
MOV
MOVX

INC
INC
MoV
MOVX
INC
MOV
MOVX
INC
MoV
MOVX
INC
MoV
-MOVX
MoV
ADD
MoV
MoV
MOVX

DJINZ

DPTR,#MsgFncChr
A'#I [

@DPTR,A

DPTR

DPTR

A, #002H

aDPTR,A

DPTR

A, #080H

@DPTR,A

P2,#8gdMDBO . SR .PAGE
RO, #BgdMDBO.AN.OFST+MDB_RowPag
R1,#2

A,TopRou
aro,A
RO

RO
A,#001H
aRrO,A
RO

A, #000H
arRoO,A
RO

A, #001H
aRr0,A
RO

A'#I]
aR0,A
A,RO

A, #5
RO,A

A, #034H
RO, A
RO, #BgdMDB1.AN.OFST+MDB_RowPag

R1,InitMDB
22

;main

_; Initialize Message Function Character and Attribute

;function character is blank

;function. attribute

; Initialize Background Main Definition Blocks

;P2 = 1st bgrd main def
;RO = MDB 1st row page ptr
;R2 is count of main defs
def loop point

;1st row is Top Row

jeursor in 1st visible col

scursor on first row

;set FAT bit

;fill char is blank

;scanline count for top visible

;next main def 1st row page

81-d

; ‘Initialize Window Definition blocks

MoV

P2, #ndWDBO. SR. PAGE
MOV- R2,#2
InitWndDefBlk:
MOV RO, #WndWDBO.AN.OFST
MOV A,#080H
MOVX- @RO,A
INC RO
INC RO
MOV A, #WndRCB7.SR.PAGE
MOVX @RO,A
INC RO
MOV A,#4ndRCB7.AN.OFST
MOVX @RO,A
INC RO
CINC RO i
INC RO
MOV A, #TrmWDB.SR.PAGE
MOVX @RO,A
INC RO
MOV A, #TrmWDB.AN.OFST
MOVX @RO,A
INC RO
MOV A, #6
MOVX @RO,A
INC RO .
MOV A, #12
MOVX aRO,A
INC RO
MOV A,#29
MOVX @RO,A
INC RO
MOV A, #68
MOVX -aRO,A
MOV RO, #WndWDB1.AN.OEST
MOV P2,#indWDB1.SR.PAGE
DJNZ

R2, Ini tWndDefBLk

23

;P2 = window def page
;R2 = window def count

;window def loop point

;scroll window flag

;page of first row

;offset of first row

;page of term wind def ’
;offset of term wind def

;window begins in row 6

;window ends in row 12

;u.indou begins in column 29

;window ends in column 68

;ready for next def block

Initialize the Message Window Definition Block

MOV
MoV
MoV
MOVX
INC

JINC

INC
ING
MoV
MOVX
INC
MoV
MOVX
INC
MoV
MOVX
INC
MoV
MOVX
INC

- CLR

MOVX
INC
MoV
MOVX

;P2 is page of msg wnd block
;Set row page (offset is 0)

P2,#MsgWDB.SR.PAGE

RO, #MsgWDB.AN.OFST+WDB_RowPag
A, #MsgRCB.SR.PAGE :
@RO,A

RO

RO

RO

RO

A,#TrmWDB.SR.PAGE

aRO,A

RO

A, #TrmWDB.AN.OFST

aR0,A

RO

A, #24

ar0,A

RO

A, #24

aRr0,A

RO

A .
ar0,A

RO

A,#128

aRO,A

;next window is term wind
;also set term offsc‘et
;msg begins at row 24

‘ ;mg ends at rouAZVIo
,;uusg starts in col 0’

';msg ends in column 80

: Initialize Termination Window Definition Block

MOV
MoV

- Mov

MOVX
INC
MoV
MOVX
Mov
MoV
MOVX

;P2 = page of term wind block
;Its row is the term row

P2, #TrmDB. SR.PAGE

RO, #TrmWDB . AN .OF ST+WDB_RowPag

A, TrmRow .

aR0,A . Y,
RO

A, Trmoff

aRO,A -

RO, #TrmDB . AN .OF ST+WDB_BgnRow

A, #24

aR0,A

; Start and end on bottom row

24

61—

INC RO , , MOVX @&RO,A
MOV A, #24 - INC RO
MOVX @RO,A) MOV A,R2 .
INC RO . MOV R3,A
MOV A, #0 } : ANL A, #OTH
MOVX aRO,A SWAP A
INC RO - RL A g
MOV A,#131 ORL A,R3
MOVX aRO,A . MOVX @RO,A
) INC RO
; Initialize the Row Redefinition blocks (one normal, 15 for font loading) MOV A, #001H ;double height and underline
_ MOVX @RO,A } .
MOV P2,#NrmRRB.SR.PAGE ;start with the normal one -INC RO
MOV RO,#NrmRRB.AN.OFST ' MOV A,#086H
MOV R2,#OOFH ' ;cursor start, end MOVX aRO,A
MOV R1,#16 ;16 redef blocks total INC P2
InitRdfBLk: o ' INC R2
MOV A,#034H s ;scan line, char start and end - CJNE R1,#16,IRB1
MOVX aRO;A) ' . . :
INC RO . MOV P2,#FntRRBO.SR.PAGE ;switch to font redefs
MOV A,#04DH - - MOV~ R2,#0 ;no cursor
MOVX aRO,A IRB1: :
INC RO - MOV RO,#FntRRBO.AN.OFST . ~ ;offset of font redef
MOV A,#OOOH ;row attr, super start and end DJINZ Rf,lnithfBlk © ;continue with font redefs
MOVX @RO,A - : . v ' :
INC RO . ; Initialize 8052 Registers
MOV A, #O0ODH) : ’ : . .
MOVX @aRO,A . . MOV R1,#TOPHrdLolnd ;Top of Page Hard points to
“INC. RO : MOV R2,#BgdMDBO.SR.PAGE - ; main definition
MOV A, #000H ;;‘OH attr, sub start and end MOV R3,#BgdMDBO.AN.OFST :
,MOVX @RO,A N ‘ LCALL WrAm3052Reg - —
INC RO . o . MoV R1,#TOWHrdLoInd = | _iTop of Window Hard points to
MOV A,#08DH . ’ MOV . R2,#TrmwWDB.SR.PAGE ; termination window
MOVX &R0, A : : - MOV ~ R3,#TrmDB.AN.OFST
INC RO) LCALL HI‘AmBOSZReg
MOV A,R2 : i ;cursor start, end (5 bits ea.) MoV R1,#MddReg1Ind ;Mode register 1
ANL A, #OF8H) " MOV R2,#0C8H :
RR A E MOV R3,#001H ‘
RR A . LCALL WrAm8052Reg
RR. A - . ’ MOV R1,#ModReg2Ind ;Mode register 2
25) 26

0z-a

MOV R2,#016H PUSH DPL ‘
MOV R3,#0D2H MOV A,DisStt \ ; Indicate font type being loaded
LCALL WrAm8052Reg LCALL WrFntCel ; and write to one cell
POP DPL '
; Now ready to enable interrupts and load font ’ POP DPH
' o : SJMP IFO
MOV" IE,#097H ;enable interrupts
MOV DPTR,#Fnt_5x7 ;point to 5x7 font 1F2: ; Finished loading a font
MOV DisStt,#1 ; and set up to-load it MOV A,DisStt ; Check font that was just loaded
1FO: - : Jz C_Int1 ; Jump if just finished 7x9
CLR A ; initialize font ram
MOVC A,QA+DPTR MOV DPTR,#Fnt_7x9 ; Point to 7x9 font and
MOV RO, #PrmBuf ' ; each character font in turn is MOV DisStt,#0 ; .set up to load it
MOV @RO,A . ; loaded into the char gen SJMP IFO ; Go load font
CLR A '
" INC DPTR C_Int1:
INC RO LCALL ShwCsr : . ;make cursor visible
MOVC A,@A+DPTR CLR HstRcvBsyFlg _ ;ready for host data
MOV " @RO,A . LJMP DisCon ;wait for host data
CLR A ’
INC DPTR) . A asasaans St
INC RO ‘
MOVC A,QA+DPTR . ; end of C_Init
Jz 1F2
INC DPTR
MOV R2,A
IF1:
CLR A
MOVC A,QA+DPTR
INC DPIR
MOV aRO,A
“INC RO
DJINZ R2,IF1
MOV A;RO
CLR- C : -
SUBB_ A, #PrmBuf
MOV PrmCnt,A
PUSH DPH
27) 28

12—

"go51" DirChrsttHdl:
TITLE » CALEB 0.00 Dispatch Control" :

Handles all direct character graphics and controls. It uses two, 128-entry
tables, indexed by the received character, to dispatch control quickly.

C_Switch : CALEB 0.00
NOTE: THIS PART OF THE PROCEDURE MUST BE LOCATED DIRECTLY BEFORE "DisCon".

~e Ss w0 e

Copyright 1985 Advanced Micro Devices, Inc. P
v Use the character as an index

MOV A,R2 ;
MOV PrmBuf,A ; Save for use in. repeat case
This file contains the central input stream decoder and control dispatcher. JBC ACC.7,DCSH1 ; High bit selects table (and is
It is a simple state machine which parses single characters (graphics and H cleared in the process)
controls), escape sequences and control sequences. These typeé of controls MOV DPTR,#LoDirChrTbl ; Select low table (00-7F) and
are defined in ANSI X3.4-1977, ANSI X3.41-1974 and ANSI X3.64-1979 documents. SJMP DCSH2 H go use it
The parameters included in control sequences are also decoded and stored as
a sequence of 8-bit unsigned binary values. DCSH1:
MOV DPTR,#HiDirChrTbl ; Select high table (80-FF)
NAME "Dispatch Control" DCSH2: . :
PROG LCALL DowWrk ; General address table handler

NOTE: Instead of jumping back to "DisCon", this part of the procedure is
located directly before it; therefore, we can simply fall through.

.~ o~

GLB DisCon ; Dispatch control procedure
GLB UnImpCtl ; Unimplemented control (common) AR b b b AR o---
GLB Escape ; Escape
GLB CtlSeqlIntro ; Control Sequence Introducer DisCon: - ; Dispatch control procedure
GLB PutMap0 ; Checks for font remaping of lower 32
GLB PutMap1 ; Checks for font remaping of 3FH & OBFH ; Waits for a character to be available in the host reception buffer then
GLB PutChr ; Write cell address and attribute, ; extracts it and processes it according to the current state.
oot iee e eeceieiseasssesesseeeeeeeennanaaaazaas MOV DPH,#HstRcvBuf.SR.PAGE : Address (page and
. MOV DPL,HstRcvExtOff H offset) of next character
EXT LoDirChrTbl,HiDirChrTbl,DirEscSeqTbl,X3_64DirSeqTbl ; in C_Tables DC1: . ; Idle while waiting for a character
EXT ScrollLeft,ScrollRight ; in C_Work - MOV A, HstRcvCnt ; Check number of chars in buffer
EXT PlcCsr ; in C_UtiL Jz pc1 ; Loop if none
- MOVX A,@DPTR) ; Get character from buffer
; At +H+++ + +H++ MOV RZ,K ; and keep it safe -
SKIP DEC HstRcvCnt ; Reduce buffer contents count
INCLUDE C_MemMap . MOV A, #NEAR_EMPTY_CNT ; Check for
' SUBB A, HstRcvCnt ; nearly empty buffer
SKIP i i Jc Dpc2 ; Jump if still pl.enty to do
JHEH R L AR A + ++4 CLR HstRcvBsyFlg ; Ready to accept more

22

P T T T

pC2: . . ’ s -

MOV A, HstRcvExtOff ; Pointer to next character

INC A H advanced

JNZ DC3 5 Jump if still in buffer

MOV A,#HstRcvBuf.AN.OFST ; Reset to start if went past end
DC3: '

MOV HstRCVEXtOff,A
MOV A,DisStt
JZ DirchrsttHdl

Keep new next char pointer
' Get current state
and jump directly if direct

D

CLR C . Clear carry for other parts

MOV * DPTR,#SttJmpTbl Use jump table to continue with

JMP @A+DPTR correct part of procedure
Ay
SttdmpTbl:

This jump table and the state constants defined in "C_MemMap" must’
correspond. The state constants represent offsets into this table
rather than indices (i.e. they increase by three's, not by one's).

NOTE: The first entry in the table is for'direct character state,
‘ as it must be to ensure proper offsets for the other Jumps,
but direct state is always handled specially rather than
through this table. : . N

LJMP DirChrsttHdl ; Direct character state
LJMP BgnEscSttHdl ; Beginning escape state
LJMP ExtEscSttHdl ; Extended escape state
LJMP ~BgnCSISttHdl ; Beginning control sequence state
LJMP PrmCSISttHdL . ; Parameter string (in ctl seq) state
.~ LJMP - ExtCSISttHdl ; Extended control sequence state
;

LJMP UnlmpCS’ISEtHdl Unimplemented control sequence state

BgnEscSttHdl:

Processes the character immediately following an ESC. It may be a final
character, in which case the corresponding control routine is executed
using the direct escape sequence table. If an intermediate character is
encountered then the state changes ‘to handle extended escape sequences.
An invalid character ends the escape sequence and causes both characters
(this one and the ESC) to be disregarded; the state is set back to handle
direct-characters and-controls.

s

DI P R TR Y

3=

MOV A,R2 ; Get character and check
SUBB A, #' ! ; for a CO control character
JNC BESH2 ; Jump if not a control char
BESH1: ; Invalid escape sequence
CLR A ; Clear
MOV . CtlPtrHi,A- ; controt routine address
MOV CtlPtrLo,A ; (makes it unrepeatable)
SJMP BESH4 ; Finish escape sequence
BESH2: ; Check for intermediate character
SUBB A,#('0'-' 1) ; Reduce by intermediate range
JNC BESH3 ; Jump if not an intermediate _
MOV DisStt,#EXT_ESC_STT ; Set state for extended escape
LJMP DisCon ; sequences and continue

BESH3: ' ; Check for final characvter

MOV R7,A ; Save index temporarily

SUBB A,#(DEL-'0') ; Check for invalid character

JNC BESH1 : ; Jump if invalid sequence

MOV. A,R7’ ; Restore control routine index

MOV DPTR,#DirEscSeqTbl ; Use direct escape sequence

LCALL DoMrk H table and do control routine
BESH4: ; Completed escape sequence

MOV DisStt,#DIR_CHR_STT ; Set state for 'single, direct
LJMP DisCon H characters and continue

1

ExtEscSttHdl:

Processes the characters in an extended escape séquence. Currently, no

such controls are implemented, so this part only passes over intermediates
until either a final character or an invalid.character is encountered. At
that time the state is set back to handle direct characters and controls.

’

H

7

’

H

; NOTE: Further implementations could be accomplished with the addition of
H other tables of control routine addresses. When a final character
H is found, the corresponding control routine would be executed using -
H the appropriate table. Which table is appropriate would depend on
H the sequence of intermediate characters, which could be interpreted
; by changing to additional states, or using another state variable.

Get character and check

MOV - A,R2 H
SUBB A, #' ' H for a CO control character
Jc EESH1 - ; Jump if it is a control char

|

€c-a

’

L

Comp

1
.
’
’

’

Reduce by intermediate range
Jump if it is an intermediate
eted escape sequence
Clear
control routine address
(makes it unrepeatable)
Set state for direct chars

Continue

SUBB A, #('0'-' ')
Jc EESH2
EESH1:
CLR A
MOV CtlPtrHi,A
MOV CtlPtrLo,A
MOV DisStt,#DIR_CHR_STT
EESH2:) -
LJMP DisCon
;
BgnCSISttHdL:

Se Na oSa w1 S S5 oSe o Se oSe oss owe

MoV
SUBB
JNC

BCSH1:
CLR
MoV
MOV
LdMP

BCSH2:
suBB
INC
CJNE
CLR

"Mov
MoV

“CLR
MoV
Lamp

parameter accumulation.
the CSI as well.

indicating a null parameter string.
the state is changed to handle extended control sequences, if it is a space,
and unimplemented control sequences for any other intermediate. Thi$ case
also indicates a null parameter. Any parameter character is decoded and

changes state to decode the rest of the parameter string after initializing
An invalid character ends the sequence and discards

A,R2
A# 0
BCSH2

A
CtlPtrHi,A
CtiPtrio,A
BCSH13

A#CO-r 1)

BCSH4

R2,#' ',BCSH3
PrmBadFlg
PrmPvt,#0
PrmCnt, #0
PrmMaxFlg
DisStt,#EXT_CSI_STT
DisCon

Processes the character immediately following a Control Sequence -Introducer,
whether the CSI is a single, 8-bit character or an "ESC [" escape sequence.
It may be a final character, in which case the corresponding control routine
is executed using the X3.64 direct sequence table, with the parameter state

If an intermediate is encountered then

’

.

Inval

H
H
H
H
k

Checl

P T R TR TR T

Get character and check
for a CO control character

; Jump if not a control character

id sequence
Clear
control routine address
(makes it unrepeatable)
Finish sequence
for intermediate character
Reduce by intermediate range:
“Jump if not an intermediate
Jump if unimplemented
Indicate no error
not a private parameter,
null parameter string, and
not too many
Change state for extended CSI
sequences and continue

BCSH3:
Mov
LJMP

BCSH4:
SUBB
JNC
ADD
Jc
MoV
ADD
Mov
SETB

BCSH5:
MOV
LJMP

BCSH6:
CJNE
CLR

BCSH7:
Mov

MoV
MoV

BCSH8:
MoV
CLR
CLR
SJMP

BCSH9:
CJNE
SETB
SJMP

BCSH10:
CLR
Mov
Mov
SJMP

BCSH11:
MoV
SuBB
JNC
CJINE

_DisStt,#UNIMP_CSI_STT

DisCon

A #('@'-'0")
BCSH11
A#(121-190)
BCSH6
PrmPvt,#0
A,#10
PrmAcc,A
PrmBgnFlg

DisStt,#PRM_CSI_STT
DisCon

R2,#';',BCSH9
PrmBadFlg

PrmPvt, #0
PrmCnt, #1
PrmBuf, #0

PrmAcc, #0
‘PrmBgnFlg
PraMaxF lg
BCSH5

R2,#':',BCSH10
PrmBadFlg
BCSH7

PrmBadFlg
PrmPvt,R2
PrmCnt, #0
BCSH8

R7,A
A, #(DEL-'a')

-BCSH1

R2,#'b',BCSH12

; Unimplemented intermediate characters

.

~

~

~

~

Set state for unimplemented
csI sequences and continue
for parameter character
Reduce by parameter range
Jump if not a parameter
Check for special param char
Jump if not a digit parameter
Indicate not private params
Readjust decoded param digit
and start accumulator
Indicate start of param string

Peform parameter decoding

’
’

Change state to decode CSI
parameters and continue

Special parameters

.

Jump if not good separator
Indicate no errors if good

Initial default parameter

.
’
’

Indicate not private params
One parameter so far and
it is zero (default)

Set up for parameter accumulation

)

Clear accumulator

Indicate start of parameter
string and not too many

Continue with new state

Special parameters (not semi-colon)

'
’

‘

Jump if not unused separator
Indicate an error if found
Treat as initial default

Special private parameters

B
H
i
;
k

’
'
.
.

Indicate no error and.

save special parameter
Indicate empty param buffer
Get ready to accumulate params
for final character
Save index temporarily
Check for invalid character
Jump if invalid sequence
Jump if not REP sequence

44__J.

72-a

Se se w1 e w0 s

BCSH12:

—

MOV PrmRep,#1 ; Set default parameter and do
LCALL Repeat H special repeat (if possible)
SJMP BCSH13 - . o ; Finish sequence

; Normal final. character
' Indicate no error
not a private parameter,
MOV PrmCnt,#0 null parameter string, and

CLR PrmMaxFlg not too many

CLR PrmBadFlg H
H
H
H .
MOV A,R7 ; Restore control routine index
H
H
L

MOV * PrmPvt,#0

MOV - DPTR,#X3_64DirSeqTbl Use CSI direct sequence table
LCALL DoWrk and do the control routine

BCSH13: ' ; Completed CSI sequence

MOV DisStt,#DIR_CHR_STT ; Set state for single, direct

LJMP DisCon ; characters and continue
g e eeeesseceseccmeccesccssscseccecscmscssacasetoanccsocssancanncoans
PrmCSISttHdl:

Decodes the parameters in a control sequence until a non-parameter character
is encountered. If it is a final character then the corresponding control
routifie is executed using the X3.64 direct sequence table. An intermediate
changes state to handle extended control sequences, if it is a space, and to
uhimplemented control sequences for any other intermediate. An invalid
character ends the sequence and discards the entire control sequence.

Get character and check

MOV A,R2 . i H

SUBB A,#' ! ; for a CO control character

JNC ~ PCSH2 ; Jump if not a control character -
PCSH1: . . ; Invalid control sequence

CLR A Clear

MoV CélPtrHi,A H control routine address
MOV CtlPtrLo,A ; (makes it unrepeatable)
SJMP PCSH12 ; Finish sequence
k

PCSH2: L ; Check for intermediate character
SUBB A,#('0'-' ') ’ Reduce by intermediate range
INC PCSHé Jump if not an intermediate
CJNE R2,#' ',PCSH3 Jump if unimplemented

Set state for extended CSI seqs
Jump if not first parameter
initialize param cnt

Go handle parameter

MOV DisStt,#EXT_CSI_STT

JNB PrmBgnFlg,PCSH5

MOV PrmCnt,#0

SJMP PCSHS '

N

PCSH3:
. MoV
SJMp

PCSH4: -
suBB
JINC
ADD
INC
CJNE

PCSH5:
LCALL
LdMp

PCSH6:
SETB
SIMP

PCSHT:
ADD
MoV
MoV
Mov
MUL
JB
ADD
Jc
MoV
LJmp

PCSH8:
MoV
LJMP

PCSHY:

" Mov
suBB
JNC
CJNE

“Mov
LCALL
SIMP

PCSH10:
LCALL
MoV
MoV
LCALL

DisStt,#UNIMP_CSI_STT
PCSH5 N

A'#(Ial.'lol)
PCSHY
‘A'#(I?I.l9l)
PCSH7
R2,#';',PCSH6

SavPrm
DisCon

PrmBadFlg
PCSHS

A,#10
R7,A
B,#10
A,PrmAcc
AB
0V,PCSH8
AR7
PCSH8
PrmAcc,A
DisCon

PrmAcc, #255
DisCon

R7,A
A,#(DEL-'2")
PCSH1
R2,#'b',PCSH10
PrmRep, PrmAcc
Repeat

PCSH12

SavPrm

A,R7
DPTR,#X3_64DirseqTbt
DoWrk

; Check

.
.
.
v
‘

; Unimplemented intermediate characters

Set state-for unimplemented
CSI sequences and continue

for parameter character
Reduce by parameter range
Jump if not a parameter
Check for special param char
Jump if a digit parameter
Jump if not a valid separator

; Parameter separator

.
.
’

'

Save latest parameter
and continue

; Invalid special parameter-character

Signal bad parameters
Treat as a separator & continue

; Parameter digit

’
'
0
.
.
'
.
'
’
'

Readjust decoded param digit
and save it temporarily
Multiply (by 10)
current parameter value
to account for another digit
Jump if param greater than 255
Accumulate latest digit
Jump if param greater than 255
Save accumulated param value
and continue '

; Parameter too large

H
i
3 Check

'
'
.
'

save largest possible value
and continue '

for final character

Save index temporarily

Check for invalid character

Jump if invalid sequence -

Jump if not REP sequence

Do special repeat (if possible)
Finish sequence

; Normal final character

’
.
.
.

Save latest parameter

Restore control routine index

Use CSI direct sequéﬁce table
and do the control routine

[rA!

PCSH12: ; Completed CSI sequence
MOV DisStt,#DIR_CHR_STT ; Set state for single, direct
LJMP DisCon ; -characters and continue
e iieeiocaaaaaas
ExtCSISttHdl: '4

Processes the character immediately following the first space intermediate
in a control sequence; no other intermediates are implemented. It does a
special check for the two acceptable final characters which are implemented
and executes their control routines directly if found. Any other valid final
character or, an invalid character ends the sequence with the entire sequence
being discarded. If an intermediate character is encountered then the state
is changed to handle unimplemented control sequences.

NOTE: Further implementations could be accomplished with the addition of
other tables of control routine addresses. When a final character
is found, the corresponding control routine would be executed using
the appropriate table. Which table is appropriate would depend on
the sequence of intermediate characters, which could be interpreted
by changing to additional states, or using another state variable.

Ne Ne Se Ss o Se SEoSe S o Se Se owp s owe e

CJNE R2,#'a",ECSH1

3 Jump if not SL final character
LCALL ScrollLeft

Do scroll left control then

SJMP ECSH4 continue with direct state
ECSH1:

CJINE R2,#'A',ECSH2 ; Jump if not SR final character

LCALL ScrollRight ; Do scroll right control then

SJMP ECSH4 ; continue with direct state
ECSH2: : ; Unimplemented or invalid character

; Get character and check

for a CO control character
Jc ECSH3 Jump-if it is a control char
SUBB A, #('0'-' ') Reduce by intermediate range

MOV - A,R2 H
H
H
H

JNC ECSH3 ; Jump if not an intermediate
H
H
L

SUBB A,#! !

MOV DisStt,#UNIMP_CSI_STT Change state for unimplemented

‘LJMP DisCon . CSI sequences and continue
ECSH3: ‘ ; Invalid CSI sequence
. CLR A ' ; Clear
MOV CtlPtrHi,A H control routine address
MOV CtlPtrio,A ; (makes' it unrepeatable)

ECSH4: ; Completed extended CSI sequence
MOV DisStt,#DIR_CHR_STT ©; Set state for single, direct
LJMP DisCon ' H characters and continue

UnImpCSISttHdl:

Processes unimplemented CSI sequences with intermediate characters by passing
over intermediates until either a final character or an invalid character is
encountered. It then changes the state back to handle direct characters.

NOTE: Further implementations could be accomplished with the addition of
other tables of control routine addresses. When a final character
is found, the corresponding control routine would be executed using
the appropriate table. Which table is appropriate would depend on
the sequence of intermediate characters, which could be interpreted
by changing to additional states, or using another state variable.

MOV A,R2 ; Get character and check

SUBB A,#' ! H for a CO control character
Jc UCSH1 ; Jump if it is a control char
SUBB A, #('0'-*) ; Reduce by intermediate range

JC UCsH2 Jump if it is an intermediate
UCSH1: ; Completed CSI sequence
CLR A B Clear

MOV CtlPtrHi,A

MOV CtlPtrLo,A

MOV DisStt,#DIR_CHR_STT
UCSH2:

LJMP DisCon : . ; Continue

" (makes it unrepeatable)

H

; control routine address

H

; Set state for direct characters

SavPrm:

Saves the current contents of the parameter accumulator in the parameter
buffer and increments the parameter count, provided the parameter buffer
is not futl. If this is a first parameter then.the parameter accumulator-
is saved as the special repeat parameter; otherwise, the special repeat
parameter is checked and, if present (i.e. this is the second parameter),
it is saved before the parameter accumulator and then cleared. Finally,
the parameter buffer is checked to see if it has become full.

D

10

9¢-d

In:

'
.
.
'
'

MOV
MoV
RL

MoV

MoV
MOV
INC
MovC
MOV
Mov
MOV

MovC:

; NOTE: -

A
DPTR

RO,CtLPtrHi
R1,CtlPtrLo
A

R7,A

A, A+DPTR
CtlPtrHi,A
A,R7

A

A,3A+DPTR
CtlPtrLo,A
DPH,CtLPtrHi
DPL,A

; Bad: A,RO
JB PrmMaxFlg, SP3 ; Jump if param buffer is full
JNB PrmBgnFlg,SP1
MOV PrmCnt,#0
[sP1:
CLR- PrmBgnFlg
MOV A,PrmCnt - ; Check count and
CJNE A, #PRM_CNT_MAX,SP3 ; jump .if maximum not reached
SETB PrmMaxFlg ; Indicate full if max is reached
SJMP SP4 ; and discard parameter
SP3: ; Reset for more parameters
MOV A, #PrmBuf ; Point into parameter buffer
ADD A,PrmCnt ; at location where next
MOV RO,A H parameter is to be stored
MOV @RO,PrmAcc ; Store latest parameter
INC PrmCnt ; Account for latest parameter
SP4: ; Get ready for next parameter
MOV PrmAcc,#0 | ; Clear parameter accumulator
RET ; and exit
FERee ++ + ++++ + +
DoWrk:

Transfers control to the subroutine ‘indicated by the index into the given
address table. The address is also saved for possible repetition.

control routine index
base of control routine address table

Save previous control routine
so ESC and CSI can restore
Turn ‘index into offset into tbl
and save it temporarily

Get high byte of address and
save it

Restore offset and
adjust for next location

Get low byte of address and
save it

Set indirect pointer's high and
low bytes ’

St Se NE NE SE o NE me s ss oss e s

This routine falls through to 1the next
1

DoIndRtn:

Provides an entrypoint for indirect subroutine calls.

address of indirect subroutine

H
: In: DPTR
; (and whatever the indirect subroutine needs)
; Out: (whatever the indirect subroutine returns)
; Bad: A (and whatever the indirect subroutine affects)
H
; NOTE:. This may not be used to call a subroutine which. requires either
HE: the accumulator (A) or the data pointer (DPTR) as input.
CLR A "7 Clear indirect-offset and
JMP QA+DPTR H transfer control
; + + " + - + +
UnImpCtl: N

; Catch all for unimplemented controls.

v
’
'
’

Clear
control routine address
(makes it unrepeatable)
and exit

CLR A
MOV CtlPtrHi,A
MOV CtlPtrLo,A
RET

i

Escape:

'
.

Control routine for ESC control character--changes state to handle escape

sequences. .
MOV CtlPtrHi,RO ; Restore previous
MOV CtlPtrLo,R1 H control routine pointer
MOV DisStt,#BGN_ESC_STT ; Set state for escape sequences
RET ; and exit

Ha +Httt bbbt + ++++

CtlSeqintro:

’
.

Control routine for CSI control character or escape sequence--changes state’
to handle control sequences.

12

L2-a

MOV CtlPtrHi,RO ; Restore previous
MOV - CtiPtrLo,R1 ; control routine pointer
MOV DisStt,#BGN_CSI_STT ; Set state for CSI sequences
DEC SP ; Remove return address
DEC SP H from stack and
LJMP DisCon ; continue
H + T+ ++ +r+ + -+ e ++ rr+
PutMap1:
7 .
JNB FntMapFlg,PutChr
MOV A,PrmBuf
ADD A, #040H
" SJMP PCO
; PP + + -
PutMap0:
H .
JNB - FntMapFlg,PutChr
MOV A,PrmBuf
CLlR ¢ ’
SUBB A, #040H
SJMP PCO .
A 4 b+ R e

PutChr:

.
'
.
'
’
.

In:
MoV
PCO:
MoV
MOV

ADD
MOV

PrmBuf

A,PrmBuf

R2,A
P2, CurRow
A,Chroff
A,ActCol
RO,A

Writes a character generator cell address and the current attribute to.the
appropriate locations in display memory indicated by the active position.

It advances the active position provided it is not at the rightmost column.
The cursor position is also updated using the cursor zone information.

cell address (i.e. character code)

Get the unmapped character c_ode

; Common character placement entrypoint

’
’
'
’
v

13

Save cell address
Page of active. row and
offset to base of characters
Add active column to determine
offset for location to write

Mov
MOVX
Mov
ADD
ADD
INC
Mov
JNB
SETB
SJMP

PC1:
SETB

pc2:
MoV
MOvX
MoV
JNB
MoV
SJMP

PC3:
JNB
MoV
ANL
ADD
SJMP

PC4:
MoV
ANL
ADD

PC5:
MoV

. MOvX
INC
SUBB
MoV
JNC
MovX

PC6:

* JNB
CJNE
DEC
RET

A,R2

aR0,A

A, Atroff
A,ActCol
A,ActCol

A

RO, A
wndActFlg,PC1
P2.4

pc2

P2.5

A,CurAtr

aRrO,A

P2,#MsgActCnt .SR.PAGE
MsgActFlg,PC3)
A,#MsgActCnt .AN.OFST
PC5

WndActFlg,PCé

A,CurRow

A, #00FH

A, #indActCntBuf .AN.OFST
PC5

A,CurRow
A, #01FH
A, #BgdActCntBuf .AN.OFST

RO,A
A,aRO
ActCol
A,ActCol
A,ActCol
PC6

aR0, A

WndActFlg,PC7
A,#40,PC8
ActCol

T T T

; Write

~e e e e se s

I T

~e ~o s

Get cell address and

write it to display memory
Offset to base of attributes
Add active column

twice and

adjust for attribute byte to

get offset for loc to write
Jump if window disp not active
Adjust page for window display

and go on

Adjust page for bgd/msg display

current attribute)

Get current attribute and
write it

Page containing active counts

Jump if message disp not active

Offset of message active count
and go use it

Jump if window disp not active
Page of current row converted
to physical number and
_added to base of window
active count buffer

Page of current row converted
to physical number and added
to base of bgd act cnt buf

; Update active count

i
H
i
H
H
H
i
k

; Chec|

.
’
'
.

1y

Offset of this row's active cnt
Get current active count,

new active count and

compare them
Get new active colum for later
Jump if old active cnt is OK
Write new active cnt if greater
for end of row (rightmost col)
Jump if window disp not active
Jump if not at right of window
Restore active column if at end

and exit

8-

PC7: -
CJINE A,#128,PC8 . ; Jump if not at right of bgd/msg
DEC ActCol -7 Restore active column if at end
RET ; and exit
PC8: ; Advance cursor location
DINZ CsrzonCnt,PC9 ; Jump if still in same zone
¢ LCALL PlcCsr ; Place cursor in new zone
RET ; and exit
PC9: ; Speedy update of cursor location
JNB CsrZonflg,PC10 ; Jump if cursor is invisible
MOV P2,#BgdMDBO.SR.PAGE ; Page of MDBs and
MOV RO, #BgdMDBO.AN.OFST+MDB_Cux ; offset to cursor location
MOVX - A,@RO ' ; Current location (both MDBs)
INC A ;* advanced rightward and
MOVX @RO,A H put back then
MOV RO,#BgdMDB1.AN.OFST+MDB_Cux H other MDB
MOVX- @RO,A ; gets same location
PC10:
RET ; Exit
H + + +++ + ++ + +++++++
Repeat:

L Y

parameters.

PrmBgnFlg, Rp2

JNB

MOV A,CtlPtrHi

ORL A,CtlPtrLo

JZ Rp3

MOV A,PrmRep

INZ Rpl

MOV - PrmRep,#1
Rp1: .

MOV DPH,CtLPtrHi

MOV DPL,CtlPtrLo

LCALL DoIndRtn

DJINZ PrmRep,Rp1

15

.
'
.

Repeats the previous control routine if it is repeatable. The parameter
decoding part of the state machine is careful to preserve the previous
parameter buffer and provides a. special repeat parameter for this control
routine, which is checked for and executed directly. ‘This is necessary to
prevent this control's sequence from interfering with the previous control's
If the special repeat parameter is zero then the previous
information has been lost and this sequence is ignored.

Check previous

control routine address

Jump if not repeatable.

; For each repetition

.
.
I
’

Get previous control routine

address into indirect ptr

Execute the control routine -
Loop specified number of times

Rp2: .
CLR A.

MOV CtlPtrHi,A

MOV CtlPtrLo,A
Rp3:

RET

~ o~ s

Clear
control routine address
(may only be REP'd once)

Exit !

; End of C_Switch

16

6¢-a

“ngo51n

TITLE ® _ CALEB 0.00 Control Tables"

C_Tables CALEB 0.00
Copyright ‘1985 Advanced Micro Devices, Inc.

This file contains the address tables used by the state machine to dispatch
control to the various control routines.

D I L L I VTR

NAME *“"Control TabLes"

PROG
. i+ ++ + +4++4+++
GLB LoDirChrTbl ; First 128 entries for direct state
GLB HiDirChrTbl ; Second 128 entries for direct state
GLB DirEscSeqTbl ; Non-intermediate escape sequences
GLB X3_64DirSeqTbl ; Non-intermediate control sequences
T L L CEEETTTTCTPRERT
EXT UnImpCtl,Escape,CtlSeqlntro,PutMap0,PutMap1,PutChr ; in C_Switch
EXT Backspace,CarriageReturn,NewLine ; in C_Mork
EXT ResetInitState ; im C_Work
EXT CursorBackward,CursorDown,CursorForward ; in C_Work
EXT CursorPosition,CursorUp,DeleteLine,EraselnDisplay ; in C_Mork
EXT EraselnLine, InsertLine,ResetMode,Scrol (Down ; in C_Work
EXT SelGrfRendition,SetMode,Scrol lUp ; in C_Work
EXT CharBlinkRate,LoadFontCell,SelActiveDisp ; in C_Work
EXT SelCursorAppear, SmoothScrlRate, SelWindowVis ; in C_Mork
EXT SelMessageVis ' ; in C_Work
Hadas b+ bR -
SKIP
LoDirChrTbl: ; First 128 entries for direct state

bW
DW
oW

bW
oM
o™
oM
oW
oW
oy
oW
oW
oW

DW

DW
DW

bW
DW
DW
oW
bW
DW

. DW
bW

DW
DW
oW
DW
DW
DW
oW
DW

DW-

DW
DW

oW

oW
DW
DW
DW

UnImpCtl
UnimpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
Backspace
UnlmpCtl
NewLine
UnlmpCtl
UnimpCtl
CarriageReturn-
UnImpCtl
UnImpCtl
UnImpCtl
UnimpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnlImpCtl
UnlmpCtl
Escape
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl

PutChr

PutChr
PutChr
PutChr
PutChr
PutChr

- PutChr

PutChr
PutChr
PutChr

SE NS Ne Me NI R mE N3 Ma SE NE NI SR SE NE NI N Ns S N3 NI Se NI S5 Ss S0 S Su ME NE Se NE Sa S me Ne N a5 N0 Se se W

O0H
0tH
024

O3H -

04H
O5H
06H
o7H
08H
O9H
0AH
0BH
OCH
ODH
OEH
OFH

108"

1
12H

A3H

14H
154
16H
174
18H

1AH
1BH
1CH
1DH
1EH
1FH
20H
21H

23H
24H
25H
26H
27H
28H
29H

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF/NL

CR

SI

DLE
DC1
bpC2
DC3
DC4
NAK
SYN
ETB
CAN

suB
ESC

Null .
Start of Heading
Start of Text

End of Text

End of Transmission
Enquiry

Acknowledge

Betl

Backspace

Horizontal Tabulation.
Line Feed (New Line)
Vertical Tabulation
Form Feed

Carriage Return
shift out

shift In

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control &
Negative Acknowledge
Synchronous Idle
End of Transmission Block .
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator
Unit Sepértor

Space

Start of GO Characters

oe-a

DW
DW
bW
DW
DW
bW
bW
DW
DW
DW
DW
bW
DW
DW
bW
DW
DW

" DW
DuW

DW
bW
DW
DW
bW
DW
DW
bW
bW
DW
DW
DW
DW
DW
bW
DW
bW
DW
bW
bW

DW-

bW
bW

. DW

PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutMap1
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0

PutMapd

PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PufMapO
PutMap0
PutMap0

, PutMap0

Ne SE e NG N5 Ne NE N3 s o me Se Ss o Ss S5 NS o ws Ss o Sa S S wa S5 o Saome o Se owi o Se S5 o NE o SE Ns oS4 N1 S5 oS5 Se o Ss o w Se o SsoSe ss se

2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H

39H

3DH

51H

N0 XNV -0 N

A e

- W X O VO ZTEXIMr R T OTMMOO® > DV

DW
bW
DW
DW
DW
bW
DW
DW
DW
DW
bW
bW

oW
oW

bW
bW
DW
DW

DW.

oW
oW
oW
DW
W
W
oW
DW
DW
DW
oW
oW
DW
DW
oW
DW
DW
DW
oW
DW
oW
DW
oW
oW

PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutChr

PutChr

PutChr

PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr _
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
UnimpCtL

Na i ma e Se Se Ne Se oS5 o NE NE s S ST SE SE o SE o Se NE NE.NE Na S SE S5 o we Se o ma o Sa o Ns Ss S5 w5 ws s Ne o Se N e

55H
56H
57H
58H
S59H
SAH

5CH
5DH
SEH
SFH

61H
62H
63H

65H
66H
67H

69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
T4H
75H
76H
774
78H
79H
7AH
78H
7CH
7DH
TEH
TFH

> S MmN <X X E<C

W= A NX X T < C " ®»® 709T 03 3 —X = =T@ 00000 =-|

DEL

End of GO Characters
Delete
4

1€-a

DT R LR R L LR EEEERE DW PutChr ; A6H
SKIP » DW PutChr ; A7H
jrmmesesesssccccedecccccceccocsosens ST-esesccsscccccccccccoccccecnnssenosoroe. bW PutChr ; ABH
“HiDirChrTbl: ; Second 128 entries for direct state DW PutChr ; A9H
_ DW PutChr : AAH
DW UnImpCtl ; 80H fut. std. - DW PutChr ; ABH
DW . UnImpCtl ; 8MH fut. std. DW PutChr ; ACH
DW UnImpCtl ; 82H fut. std. DW PutChr ; ADH
© DWW UnImpCtl ; 83H - fut. std. DW PutChr ; AEH
DW UnImpCtl ; 84H IND Index DW PutChr ; AFH
bW UnImpCtl ; 85H NEL Next Line : DW PutChr ; BOH
DW UnImpCtl ; 8H SSA Start of Select Area DW PutChr : BIH
DW UnImpCtl ; 87H ESA End of Selected Area . bW PutChr ; B2H
DW UnImpCtl ; 88H HTS Horizontal Tabulation Set . oW PutChr s B3H
DW UnImpCtl ; 89H HTJ Horizontal Tab with Justify . DW PutChr ; B4H
DW UnImpCtl ; 8AH VTS Vertical Tabulation Set DW PutChr ; B5H
DW UnImpCtl ; 88H PLD Partial Line Down ’ bW PutChr : B6H
DM UnImpCtl ; 8CH PLU Partial Line Up DW PutChr ; B7H
DW UnImpCtl ; 8H RI Reverse Index -~ DW PutChr + B8H
DW UnImpCtl ; 8EH SS2 Single shift Two DW PutChr ; B9H
DW UnImpCtl ; 8FH SS3 Single shift Three DW PutChr ; BAH
DW UnImpCtl ; 90H DCS Device Control String DW PutChr ; BBH
DW UnImpCtl ; 91H PU1 Private Use One bW PutChr ; BCH
DW UnImpCtl : 92H PU2 Private Use Two DW PutChr ; BDH
bW UnImpCtl ; 93H STS -Set Transmit State DW PutChr ; BEH
DW UnImpCtl ; 94H CCH Cancel Character ’ . DW PutMap1 ; BFH
bW UnImpCtl ; 95H MW Message Waiting DW PutMap0 ; COH
DW UnImpCtl ; 96H SPA Start of Protected Area DW PutMap0 ; CH
DW UnImpCtl ; 97H EPA End of Protected Area DW PutMap0 ; C2H
DW UnImpCt1 ; 98H fut. std. - DW PutMap0 ; C3H
DW UnImpCtl ; 99H fut. std. DW PutMap0 ; C4H
DW UnImpCtl ; 9AH fut. std. : DW PutMap0 ; CSH
bW CtlSegintro ; 9BH CSI Control Sequence Introducer DW PutMap0 ; C6H
oW UnImpCtl ; 9CH ST String Terminator . DW PutMap0 ; CTH
DwW UnImpCtl ; 90H 0SC Operating System Command DW PutMap0 ; C8H
DW UnImpCtl : 9EH PM Privacy Message " DW PutMap0 : COH
DW UnImpCtl ; 9FH APC Application Program Command DW PutMap0 ; CAH
DW PutChr ; AOH) * DW PutMap0 ; CBH
DW PutChr ; A Start of G1 Characters DW PutMap0 ; CCH
DW PutChr ; A2H DwW PutMap0 ; CDH
DW PutChr ; A3H DW PutMap0d ; CEH
bW PutChr ; A4H DW PutMap0 ; CFH
DW PutChr ; ASH
s

ce=a

PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0

PutMap0

PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
PutMap0
. PutChr
PutChr
PutChr
putChr
PutChr

© putChr
PutChr

PutChr
PutChr
putChr
PutChr
PutChr
PutChr
“putChr
PutChr
- PutChr
PutChr
PutChr
PutChr
PutChr
PutChr
putChr
PutChr
PutChr
PutChr
PutChr

L e N T T T T T T T T T e T N T L T T T T T e e

DOH
D
D2H
D3H

D&H

D5H
D6H
D7H
D8H
D9H
DAH
DBH
DCH
DDH
DEH

DFH

EOH
EMH
E2H
E3H
E4H
ESH
E6H
E7H
E8H
E9H
EAH
EBH
ECH
EDH
EEH
EFH
FOH
FIH

F2H

F3H
F4H
F5H
F6H
F7H
F8H
FOH

DW PutChr ; FAH

DU PutChr ; FBH

DW PutChr : FCH

DuW PutChr ; FDH

DW PutChr ; FEH End of G1 Characters -
DW UnlmpCtl ; FFH)

SKIP

H + ++
DirEscSeqTbl: ; Non-intermediate escape sequences

DW UnImpCtl ; 30H priv. use

DW- UnImpCtl ; 3 pri\). use

DW - UnImpCtl ;320 priv. use

DW UnImpCtl ; 33H priv. use

DW UnImpCtl ; 344 priv. use

DW ‘Unlantl/ ; 35H priv. use

DW UnImpCtl ; 36H priv.. use

DW UnimpCtl ; 37H priv. use

DW UnimpCtl ; 38H priv. use

DN UnImpCtl ; 394 priv. use

DW UnImpCtl ; 3AH priv. use
.DW UnImpCtl ; 3BH " priv. use

DW UnImpCtl ; 3CH priv. use R
DW UnlmpCtl - ; 3DH priv. use

DW UnImpCtl ; 3EH ‘priv. use

DW UniImpCtl ; 3FH priv. use

DW UnlmpCtl ; 4OH fut. std.

DW UnImpCtl ; 4MH fut. std. .
DuW UnImpCtl HEYL] ° fut. std.

DW UnImpCtl ; 43H fut. std.

DW UnImpCtl ; 44H IND Index

DN UnImpCtl ; 45H NEL Next Line

DW UnImpCtl ; 46H SSA Start of Select Area

DW UnImpCtl ; 47TH ESA End of Selected Area

DW UnImpCtl ; 481 HTS Horizontal Tabulation Set
DW UnImpCtl , 49H HTJ Horizontal Tab with Justify -
DW UnImpCtl i GAH VTS Vertical Tabulation Set
DW UnImpCtl ; 4BH PLD Partial Line Down

bW UnlimpCtl ; 4CH PLU -Partial Line Up

DW UnImpCtl ; 4DH RI Reverse Index

DW UnimpCtl ;. 4EH sS2 Single Shift Two

DW UnlmpCtl ; 4FH SS3 single shift Three

€e-a

bW
DW
DW
DW
DW

oW

bW
DW

oM

oW
oW
W
oW
oW
]
oW
oW
oW
oW
DW
oW

oW

DW
DW
DW
DW
W
oW
DW
DW
DW
DW
DW
DW
oW
DW
DW
DW
DW
DW
DW
oW
bW

UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
CtlSeqgintro
UnImpCtL
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl

_UnImpCtl

UnImpCtlL
ResetInitState

UnImpCtl

“UnImpCtl

UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtL
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl .
UnImpCtl
UnImpCtl
UnImpCtl,
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl

Se NI SE SE S SE NI SE SE e ST o Ne NS Se SE SE N6 SE Ne Se Se e Se S5 Se Sp o Se Ne Se Se o Si o Ne o Se Se SE o Ne Ne Se o Ss o Se Se Seoose

63H

ési

DCS
PU1

. PU2

STS
CCH
MW

SPA
EPA

csl
ST

osc
PM

APC
DMI
INT
EMI
RIS

67TH

68H
69H
6AH
6BH
écH

6EH
6FH
70H
71H
724
73H
744
75H

764

77H
78H
79H
7AH

Device Control String
Private Use One

Private Use Two

Set Transmit State
Cancel Character .
Message Waiting

Start of Protected Area
End of Protected Area
fut. std.

fut. std.

fut. std.

Control Sequence Introducer
String Terminator
Operating System Command
Privacy Message
Application Program Command
Disable Manual Input
.lnterrubt

Enable Manual Input
Reset to Initial State
fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std. .

fut. std.

fut. std.

fut. std.

‘fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

7BH

DW UnImpCtl ; fut. std.
bW UnImpCtl ; TCH fut. std. -
DW UnImpCtl ; 7OH " fut. std.
DW UnImpCtl ; TEH fut. std.
SKIP
; +4+
X3_64Dirseqibl: ; Non-intermediate control sequences
DW UnImpCtl ; 4O0H ICH Insert Character
bW CursorUp ; 414 CUW Cursor Up
bW CursorDown ; 424 CUD Cursor Down
DW CursorForward ; 434 CUF Cursor Forward
bW CursorBackward ; 44H CUB Cursor Backward
bW UnImpCtl ; 45H CNL Cursor Next Line
DW UnImpCtl ; 461 CPL Cursor Preceding Line
DW UnImpCtl ; 47TH CHA Cursor Horizontal Absolute
DW CursorPosition ; 484 CUP Cursor Position
DW UnImpCtl ; 49H CHT Cursor Horizontal Tabulation
bW EraselnDisplay ; 4AH ED Erase in Display
DW EraselnLine ; 4BH EL Erase in Line
DW InsertLine ; 4CH IL Insert Line
DW DeleteLine ; 4DH DL Delete Line
DW UnImpCtl ; GEW EF Erase in Field
bW UnImpCtl ; 4FH EA Erase in Area
DW UnImpCtl ; 50H DCH Delete Character
bW UnImpCtl ; 51H SEM Select Editing Extend Mode
DW UnImpCtl ; 524 CPR Cursor Position Report -
DW Scrol lUp ; 534 suU Scroll Up
bW Scrol LDown ; 54H SD Scroll Down
DW UnImpCtl ; 55H NP Next Page
DW UnImpCtL ; 56H PP Preceding Page
bW UnImpCtl ; 57H CTC Cursor Tabulation Control
DW - UnImpCtl ; 584 ECH Erase Character
bW UnImpCtl ; 59 CVT Cursor Vertical Tabulation
bW UnImpCtl ; SAH CBT Cursor Backward Tabulation
DW UnImpCtl ; 5BH fut. std.
DW UnImpCtl ; SCH fut. std.
DW UnImpCtl ; 5DH fut. std.
DW UnImpCtl ; SEH fut. std.
DW UnImpCtl ; 5FH fut. std.
10

7e-a

bW
DW
DW
oW
DW

DW -~

DW
bW

oW’

bW
bW
bW
bW
DW
DW
bW

DM

DW
bW
DW
bW
bW
DW
bW
bW
DW
DW
bW
DW
DW
bW

UnImpCtl
UnImpCtl
UnImpCtl
UnimpCtl
UnImpCtl
UnImpCtl
UnImpCtl
UnImpCtl
SetMode

*UnImpCtl

UnImpCtl
UnImpCtl

ResetMode
SelGrfRendition

UnImpCtl
UnImpCtl

SelActiveDisp
SelMessageVis
SelWindowVis

UnImpCtl

smoothScrlRate
CharBlinkRate
SelCursorAppear

UnImpCtl
UnImpCtl
UnImpCtl
UnimpCtl
UnlmpCtl
UnImpCtl
UnImpCtl

LoadFontCell

D T TR L LI LT T T S T T T R)

60H
61H
62H

64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
7
724
73H
T4H

75H-
76H

77
78H
oH
TAH
78BH
7CH
oM

HPA
HPR
REP

-DA

VPA
VPR
HVP
TBC
SM
MC

RM

SGR
DSR
DAQ

AmSMV
AmSWV

AmSSR

AmSCA

Horizontal Position Absolute
Horizontal Position Relative -
Repeat

Device Attributes

Vertical Position Absolute
Vertical Position Relative

"Horizontal and Vertical Position

Tabulation Clear

Set Mode

Media Copy

fut. std.

fut. std.

Reset Mode

Select Graphic Rendition
Device Status Report
Define Area Qualification
Select Active Display
Select Message Visibility
Select Window Visibility
priv. use

Smooth Scroll Rate
Character Blink Rate:
Select Cursor Appearance
priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

7EH AmLFC Load Font Cell

end of C_Tables

ngps51 ‘ . GLB

\

ge-a

ANSI Standard Control Routines

GLB
GLB
GLB
GLB
6LB
GLB
GLB
6LB
GLB
GLB
GLB
GLB
GLB
GLB
GLB

GLB
GLB
GLB
GLB
GLB

Backspace
CarriageReturn
NewLine
ResetInitState
CursorBackward
CursorDown
CursorForward
CursorPosition
CursorUp
DeleteLine
EraselnDisplay
EraselnLine
InsertLine
ResetMode
Scrol lDown
selGrfRendition
ScrollLeft
SetMode
ScrollRight
Scrollup

P T T T T T T TR R T T

; AMD Private Control Routines

GLB

GLB

CharBlinkRate
LoadFontCel L

Backspace

Carriage Return

New Line

Reset to Initial State
Cursor Backward

Cursor Down

Cursor Forward

Cursor Position

Cursor Up

Delete Line

Erase in Display
Erase in Line

Insert Line

Reset Mode

Scroll Down

Select Graphic Rendition
Scroll Left

Set Mode

Scroll Right

Scroll Up

Character Blink Rate
Load Font Cell

INCLUDE C_MemMap

SKIP

SelActiveDisp ; Select Active Display
TITLE " CALEB 0.00 Control Routines" GLB SelCursorAppear ; Select CursoE-Appearance
; : + : ' T 6LB- SmoothScrlRate ; Smooth Scroll Rate
s) GLB ' SelWindowVis ; Select Window Visibility
; C_Work CALEB 0.00 .GLB SelMessageVis ; Select Message Visibility
H : ‘
; Copyright 1985 Advanced Micro Devices, Inc.) bbb R Rt L L LR LR P PP TR P PP PP Db
; . EXT Reset ; in C_Init
;)) . EXT EraActEnd,EraBgnAct,ChgBlnkSpd, SwpVar,ChgCsrSiz,ChgCsrTyp
; This file contains all of the control routines supported by CALEB. Both EXT HidCsr,NewCsr,PlcCsr,WrAm8052Reg, BT rmRcb
; ANSI standard and AMD private controls are included. ‘ ’ EXT FrcEraRow,EraRow,DelRow_MovDn, InsRow_MovDn,DelRow_MovUp
EXT InsRow_MowvUp,ScrlUpNewRow,ScrlUpDsp, ScriDnDsp, ScriRtDsp, ScriLtDsp
NAME "Control Routines" EXT DlyTilEndFrm, HidwWnd, Shwind '
PROG EXT shwCsr,SetCelWid,WrFntCel,SetWndPos
H + +++ H +4+4
H SKIP

'

Backspace:

’
'
.
'
'
.
’
.
.

Moves the active position left one position on the screen. Backspace does
not support auto wrap therefore the active position can be moved left only
until it reaches the first memory location of the active row.

inp
out
bad

none
ActCol
A

updated

Mov
Jz
DEC

BS1:
LCALL PlcCsr

RET

A,ActCol
BS1
ActCol

.
.
G
'

Get the current active col
decrement its value and

test for 0, if 0 do nothing

else decrement ActCol

9¢-a

—

CarriageReturn:

; Forces a movement of the active position to the first location on the

; current ro;l.

H

; Inp ActCol

; Out ActCol loaded to 0

; bad none

. R ceteccssecncaccaasosassannsncnasesatnnnnonesnssasnane treeeseaaaans
MOV ActCol ,#00H
LCALL PlcCsr
RET

; ++ ++ ++ ++ + +++ +- +++

Newline:-

2 ereaan heeessssseecaasanne

; Moves the active position to move down one row. If the current row is-the

; at the bottom of the screen then a scroll of the screen is .done.

; .

; Inp CurRow

H BtmRow

; Out ActRow incremented to next row page

; BtmRow changed if a scroll has occurred

; bad A,RO,P2

P e ettt s e LR essasemansnassasnanssanssennnnne
JB MsgActFlg,NL4 ; Newline has no action in msg
MOV ActCol,#0 ; In all cases ActCol goes to 0
MOV . A,CurRow ; If we are not at the end of the
CJNE A,EndRow,NL1 ; linked. list just move to
. . H next row
MOV CurRow, ExtRow ; else make the extra row our
LCALL ScrlUpNewRow ; current row and scroll
RET)

NL1:
INC ActRow. ; Inc ActRow and test which row
CJNE = A,BtmRow,NL2 ; ' next row pointer to use
MOV - A,RemRow ; if bottom of screen use RemRow
SJMP NL3

NL2:
MOV . . P2,CurRow ; else use next row in list
MOV A,#RCB_RowPag

ADD A,Rcboff

MOV . RO,A

MOVX A,3RO . ; Acc now has next row page ptr
NL3:

MOV CurRow,A . ; ‘Update CurRow and cursor pos

LCALL PlcCsr :
NL4:

RET : ; and leave
H ARAARSA ++++ ++++++ +
ResetInitState:

feesscceana “resessemcnacacsatsaceansnannana “eseccsessascsennnns cesasssscssanens

Blanks the Am8052.(Mode Register 1--VB=1) without disabling it and waits
until vertical retrace:time. Then it jumps to the power-up procedure.

;

H

; inp
H

;

;

none
out none
bad A,RO,R1,R2,R3,

LCALL DLyTilEndFrm ; Wait until near end of frame
MOV R1,#ModReg1ind ; In Mode Register. 1
MOV R2,#0CCH ; set normal bits plus VB~
MOV R3,#001H H and leave Am8052 enabled
LCALL WrAm8052Reg N
MOV RO, #4 ; Wait for approximately
CLR A ; two milliseconds
RIS1:
DJNZ ACC,RIST
DJNZ RO,RIS1T
LJMP Reset ; Go do power-up procedure
CursorBackward:

Moves the active position backward on the screen the indicated number
of positions. If no count is suppplied then one position is moved. Also
if the amount moved is beyond 0 then movement stops at 0.

PrmCnt
PrmBuf
ActCol
Outputs: ActCol

bad A

H

H

H

i

; Inputs:
H

H

H altered by the appropriate amount
H

A

Le-a

N ms o Ns oSV Na s se owe we

If a bad parameter buffer is present
get with an error return
Test if no parameters

JB PrmBadFlg,CBW2

MOV . A,PrmCnt

S~ Ns Se N s

JNZ .CBW_00 if none then the default is move
one_coloumn left
CBW_99:
MOV A, #1
MOV PrmBuf,A
SJMP CBW_O1
CBW_00: -
DEC A Then test for only one parametér
JINZ CBW2 any more parameters is considered

T

an error return
MOV A,PrmBuf ’

Jz CBW 99
CBW_01:
CLR C ; We must subtract the requested
+ XCH A,ActCol ; amount from ActCol and then test
SUBB A,ActCol H that we have not moved the
JNC CBW1 ; cursor below 0
MOV A,#OOH ; If so make ActCol 0
CBW1:
MOV ActCol A ; Otherwise restore adjusted ActCol
SJMP CBW3
cBW2: . .
MOV A, #0OH - ; On an error return remove all traces
MOV - CtlPtrHi,A ; of this control
MOV CtlPtrLo,A .
CBW3:
* LCALL PleCsr ; Set new cursor position and zone
RET '
o+ ST it R N
CursorDown:

Moves the active position down on the screen the indicated number
of rows. If no count is suppplied then one row is moved. Also
if the amount moved is beyond the bottom row then movement ‘stops.

Inputs: PrmCnt
© PrmBuf
ActRow

Outputs: ActRow 5 altered by the appropriate amount

JB

MoV
JINZ
cDno:
MoV
SJMP
cp1:

JNZ
MoV
Jz
cn2:
JNB
MoV
SJMP
cD3:
MoV

CDé4:
CLR
SUBB
Mov -
SuBB
Jc
MoV

cD5:

ADD
MOV
MoV
LCALL

SMp

CD6:
MoV
MoV
Mov

cD7:
RET

A,R2,R3
‘PrmBadFlg,CD6

A,PrmCnt
cD1

PrmBuf, #1
02

A

cDé6 -

A, PrmBuf
cDo

WndActFlg,CD3
A, #13
cD4

A, #29 .

c

A,ActRow

R2,A

A,PrmBuf

cD5

R2,PrmBuf ’

A,ActRow
A,R2
R2;A
R3,ActCol
NewCsr
cD7

A, #0OH
CtlPtrHi,A
CtlPtrio,A

If a bad parameter buffer is indicate
T error return
Test for zero parameters indicating
a default value of 1

1f more then 1 parameter this is an
error return

; If window is active limit of
H movement is 14

1f background is active limit
of movement is 30

~ s

Set input values for NewCsr

Setup new cursor variables
(CurRou,Acthu,ActCol)
and place cursor

~e Ne owe s

On error remove all traces
of control

~ =

8€-a

CursorForward:

-Moves the active position forward on the screen the indicated number
of positions. If no count is suppplied then one position is moved. Also
if the amount moved is beyond the last column then movement stops.

D I T TR T PR PR

Inputs: PrmCnt
o PrmBuf
ActCol
Outputs: ActCol altered by the appropriate amount
bad A,R3 ’
Indicates ‘a bad parameter buffer

4B PrmBadFlg,CFW6 .
' H

error. return
MOV A,PrmCnt

JINZ CFW1
CFWO: .
- MOV PrmBuf,#1 ; No parameters indicate a
SJMP CFW2 ; movement of 1 - -
| CRW1: . .)
.DEC A : ; If more than 1 parameter
JNZ CFW6] error return
MOV A,PrmBuf
R ¥ 4 CFWO0
CFW2:
JNB WndActFlg,CFW3 ; If window is currently active
MOV A,#39) ; Limit is 40 character pos.
SIMP CFW4 ’ ~
CFW3:) 7
MOV A,#127 ; Else if either Bgd. or Msg
CFW4: ; is active limit is 128
CLR C
susB A,ActCol 7; The maximum amount we may move
MOV R3,A ; is Limit-ActCol = MAX
SUBB A, PrmBuf ; To determine whether to use Max
Jc CFW5 ; or requested is Max-Req, if
;

Max > Req then move Req
MOV R3,PrmBuf :
CFW5:
MOV A,R3
ADD A,ActCol
MOV . ActCol,A

else move Max
Add our relative movement to
our current position

~e me e

SJMP CFW7 ; and we're done
CFW6:
MOV A,#OOH ; If an error is discovered
MOV CtlPtrHi,A ; remove all traces of this
MOV CtlPtrLo,A H control
CFW7: }
LCALL PlcCsr ; Relocate our cursor before we
RET) H Leave
Ha +++ ++ +H+t +++4
CursorPosition:

Moves the active position to the position on the screen as specified

If no valus are suppplied then the active position is moved to the home
position. Also if aither of the parameters are lacking hte the.value
of 0 is defaulted to.

PrmCnt
PrmBuf
ActCol
ActRow
ActCol
ActRow
bad A,R2,R3,R4 '

Outputs: - altered by the appropriate amount

H

i

i

i

;

;

; Inputs:
; .
H

H

H

i

H

H

Indicates a bad param buffer

JB .PrmBadFlg,CP9 ;
; error return

CLR A ; Establish default values

MOV R2,A

MOV R3,A

MOV A,PrmCnt ; Determine default case

Jz cP8 H default if jump»taken .
; Set buffer pointer for next prm

DEC A ; Test if first param is default

iz CcP4 H jump if true

CP1:
MOV A,PrmCnt ; Last test for only 2 parameters
CJINE A, #02H,CP9] error if jump taken
" MOV A,PrmBuf+i :
Jz, P91 B

DEC A -~

6€-a

cPo1:
MOV R3,A
JB WndActFlg,CP2
MOV A,#127
SJMP CP3
cp2:
MOV A,#39
cP3:
CLR C |
MOV R4,A
SUBB A,R3
INC P4
MOV A,R&
MOV: R3,A
~CP4:
© MOV. A,PrmBuf
Jz P92
DEC, A - _
cP92:
© MOV R2,A

JB WndActFlg,CP5
JB MsgActFlg,CP6

MOV A, #29

SJMP CP7
CP5:

MOV A, #13

SJMP _CP7
CpP6:

MOV A, #0
CP7: ’
: CLR :.C

MOV R4,A

SUBB A,R2

JNC CP8

MOV A,R4

MOV R2,A
cP8:

LCALL NewCsr

SJMP CP10
CP9:

CLR A

MOV CtlPtrHi,A

~e e ow.

Se ne s

Limit for window is 40 cols.
Limit for bgd and msg is
128 columns

i Decide if maximum value or

requested value is used
for the new cursor column

Calculate new row position

Limit for Window is 15 rows
Limit for Message is 1 row
Limit for Background is 30 rows

Decide -if maximum value or
requested value is used
for the new cursor row

Establish new cursor variables
and we're finished

If an error has been detected
remove all traces of this

MOV CtlPtrlLo,A ; control
cP10: R :
RET

;
CursorUp:

Moves the active position up on the screen the indicated number
of rows. If no count is suppplied then one row is moved. Also
if the amount moved is beyond the top row then movement stops.

PrmBuf
. ActRow
Outputs: ActRow altered by the appropriate amount

H

H

H

H

H

: Inputs: PrmCnt
;

;

H

; bad A,R2,R3

JB PrmBadFlg,CU4 ; Indicates bad param buffer
; error return

MOV A,PrmCnt

JINZ cut ; If not zero test if more then 1 param
Cuo: E

MOV PrmBuf,#1 ; Default (no Parameters)

SJMP CU2 ; Move cursor up 1 row
cut:

DEC A

JNZ Cu4 . ; If not zero too many parameters error

MOV A,PrmBuf

Jz cuo
cu2:

MOV A,ActRow ; Insure that requested-cursor

R ©

SUBB A,PrmBuf ; movement doesn't move cusor

JNC CU3 ; below 0

CLR A ; Absolute minimum cursor vert.
cu3: H position

MOV R2,A ; Set new cursor vert. position

MOV R3,ActCol ; Maintain current horz. position

LCALL NewCsr ; Establish new cursor variables

SIMP CUS

10

o7=a

Se Ne S0 we e N0 Se Ns me we e Cwe s

CU4: .
CLR A
MOV CtlPtrHi,A
MOV CtlPtrlLo,A
Cu5: -
RET

If an error occurs remove
all traces of this control

.
’

H
DeleteLine:

Deletes the number of rows specified by the single allowed parameter. The
Vertical Editing Mode (VEM) determines whether blank rows are shifted into
the bottom or the top of the display. If more rows are specified than can
be deleted then the maximum amount is deleted. After ensuring parameter
‘validity t‘his routine waits for vertical smooth scrol!.ing to finish before
beginning its work. This control is not allowed when the message display
is active.

inp none

out Display dependent variables may change
bad A,R2 :

--.i--.-..---....---.--...........-.-h----------------------'--’.'-----------....

JB MsgActFlg,DL9
JB PrmBadFlg,DL9
MOV A,PrmCnt

JNZ DL2
DL1:)

MOV PrmBuf,#1. ; _

SJMP DL3 N
pL2: v

DEC A

JNZ DL9

MOV A,PrmBuf

Jz DL1
DL3:

JB . VrtScrlFlg,$
- JB VEMBit,DL7

JNB WndActFlg,DL4

MOV A, #14

SJMP DL5

11

DL4:

MOV A,#30
DL5:
ClR C
SUBB A,ActRow
MOV R2,A
SUBB A,PrmBuf .
JC DL6 : ' -
MOV R2,PrmBuf
DL6:

LCALL DelRow_Movip
DJNZ R2,DL6) . o

RET
DL7:
ClR ¢ » ‘
MOV A,ActRow
INC A '
MOV R2,A
SUBB- A,PrmBuf .
i L8 ’
MOV R2,PrmBuf
DL8: .
LCALL DelRow Movdn .
DINZ R2,DL8
RET
DL9:
CLR A

MOV CtlPtrHi,A
MOV CtlPtrio,A
RET

H
EraselnDisplay:

; Depending on the parameter sent this control erases from the top of the
; display to the-active postion, the active postion to the bottom of the
; dispplay, or the entire display. :

H

; inp PrmCnt the count of parameters

H PrmBuf buffer containing parameters

i

; out none

H

bad A,RO,R1,RS5,P2
12

v-a

JB
JB

MoV
MoV
INZ
MOV
INC

EIDO:
MOV

EID1:
CJNE

LCALL
MoV
EID2:
CJNE
LJMP
EID3:
CJINE

MoV
SJMP
EID4:
MoV
MoV
ADD
MoV
MOVX
EID5:
MoV
LCALL
MoV
SJMp
EID6:
CJNE

MoV

PrmBadFlg,EID17
PrmMaxFlg,EID17

R1,#PrmBuf
A,PrmCnt
EIDO
aRr1,A

A

R2,A
aR1,#00H,EID6
EraActEnd
A,CurRow

A,EndRow,EID3
EID16a

A,BtmRow,EID4

A,RemRow
EID5

P2,A

A,Rcboff

A, #RCB_RowPag
RO,A

A,aR0

R5,A
FrcEraRow
A,RS

EID2
ar1,#01H,EID11

A,BgnRow

13

Se w1 ome w0 se s

P

~

.~ =

~

e we ose e

.~ S0 s

Indicates a bad param buffer
error return

Indicates too many parameters
error return’
parameter buffer

Prepare for progression thru

If 0 (default) then erase from
active pos to last position
in display

First erasethe remainder of
this row and get pointer

If ptr is last row quit

If ptr is last row in visible
dsp start erasing rows below

Otherwise get next row ptr to
erase

Save row pointer
Erase row

Restore pointer
Prepare for next row

If 1 then erase from beginning
of display.thru active pos
Start at the beginning of the

EID7:
CJNE

LCALL
SIMP
EID8:
MoV
LCALL
MoV
CJNE
MoV
SIMP
EIDY:
Mov
MoV
ADD
MoV
MovX
SIMP
EID11:
CINE

MoV
EID12:
MoV
LCALL
Mov
CJNE
SJMP
EID13:
CJNE

MOV
SJMP
EID14:
MOV
MoV
ADD
MoV
MOVX
SJMP

A,CurRoq,EIDB

EraBgnAct
EID16a

R5,A
FrcEraRow
A,RS
A,BtmRow,EID9
A,RemRow

EID7

P2,A

A,Rcboff
A,#RCB_RowPag
RO,A)

A, R0

EID7
aR1,#02H,EID16
A,BgnRow

R5,A
FrcEraRow

A,R5
A,EndRow,EID13
EID16a

A,BtmRow,EID14

A,RemRow
EID12

P2,A
A,Rcboff
A,#RCB_RowPag
RO,A

A,aRO0

EID12

1y

D TR TR

~ = ~e we

~

.~

~e se se s ~e w0 s

~e we e

Linked list
If not at top get erase first
first row :
Finally erase current row to
active pos. and get next pitm

Preserve erased page ptr
erase this row

Test for bottom of display
if true, next row is RemRow

Otherwise get next row in list

Proceed to erase it

1f 2 then erase from top to
bottom
Start at the beginning

Erase this row then proceed
to the next appropriate
Continue til last row is done
then procedd with next param

When we reach the bottom of the
dsp start with RemRow and
continue

Otherwise just continue with
the next row

cr-a

EID16a:
MOV A,ExtRow
LCALL FrcEraRow

EID16: ; done with this parameter
INC R1 ; Point to next parameter
DJINZ. R2,EID1 ; 1f more parameters proceed
LCALL PlcCsr ; . else return

~ RET .

EID17:

CLR A

MOV CtlPtrHi,A

MOV CtlPtrlo,A
EID18:
RET

’

EraselnLine:

Denpending on the parameter sent this control erases from the beginning
of the row to the active position, the active position to the end of
the row, or the entire row.

;
;
’
H
H
; inp Pr;g.‘nt the count of parameters
H Prmbuf buffer containing control params
: out none
; bad A,R1,R2
Jesascsessasscssssccsnasscessenansssssncen eesecacessencccsascsasarsasssacanane
JB PrmBadFlg,EIL5 ; Indicates a bad param buffer
: ' H error return
JB | PrmMaxFlg,EILS ; Indicates too many parameters
; error return
MOV R1,#PrmBuf ; Point to first parameter value

MOV A,PrmCnt

JNZ EILO .

‘MOV . @R1,A ; and function to 0-

INC A ; If default, set count to 1
EILO:

MOV R2,A
EIL1: . ; Test for each of the allowed params

CJNE aR1,#00H,EIL2 ; Each in turn

15

LCALL EraActEnd 1f 0 (default) then erase from '

~ e

SJMP . EIL4 active pos to end of row
EIL2: - .
CJNE aR1,#01H,EIL3 ; 1f 1 then erase from beginning
o ; of row until the active pos
LCALL EraBgnAct
SJMP EIL4
EIL3: . .
CJINE @R1,#02H,EIL4 ; If 2 then erase the whole line

MOV A,CurRow
LCALL FrcEraRow

EIL4:
INC R1 ;_Update our pointer into PrmBuf
DJINZ R2,EIL1 H and get all the parameters
SJMP EIL6

EILS:
CLR A ; If an error was detected. remove
MOV CtlPtrHi,A ; all traces of this control

MOV CtlPtrLo,A -~
EIL6:
RET

’

InsertLine:

Inserts the number of rows specified by the single allowed parameter. The
Vertical Editing Mode (VEM) determines whether blank rows are shifted into
the bottom or the top of the display. If more rows are specified than can
be inserted then the maximum amount is inserted. After ensuring parameter
validity this routine waits for vertical smooth scrolling to finish before
beginning its work. This control is not allowed when the message display
is active.

R R T R R T R T R TR T T

inp PrmCnt parameter count
PrmBuf - buffer containing parameter(s)
.out none :
bad A,R2
16

gv-a

JB MsgActFlg,IL9 '; Insert line is not functional IL8:
' . H in message window) LCALL InsRow_MovUp ; Insert count rows
J8 PruBadFlg,IL9 ; Bad parameter buffer DJNZ R2,IL8
MOV A,PraCnt ; Test for default parameter RET .
JNZ IL2 H jump if not default ’ IL9:

e CLR A ; If an error was indicated
MOV PrmBuf,#1- ; Else setup variables for MOV CtlPtrHi,A : H remove all traces of this
SJMP IL3 ; default MOV CtlPtrLo,A ; controll

S IL2: ' ! RET
DEC A ; Test for only one parameter
INZ 19 ; if not zero too many prms R 4+ R o bbb
MOV A,PrmBuf ; 0 is handled as: a prm of 1 ResetMode:
Jz 1 Meesesesacassanssesesassstsascsesttts st anssssessascsastsceancctsnsansannE.
IL3: Reset the modes indicated by the selective parameters to their initial

JB vrtScriFlg,$
wait til finished to cont.

H
H

If a scroll is in progress ; states.
H

Decide which way to move rows ;

JB VEMBit,IL7 Parameters Meaning

L

JNB WndActFlg,ILé Bgd is active if taken R R S e
MOV A, #14 Limit of insert in window i 7 o VEM (insert/delete above active row) .
SJMP IL5 is fourteen ; 73 . ’ AMDDWM (compressed)

IL4: ; % AMDSCM (smooth scrolling)
MOV A, #30 ; Limit for background is thirty ;75 : ‘ AMDSPM (reversed screen)

IL5: : : ;
CLR- C ;- Maximum amount able to move , inp PrmCnt count of parameters sent)
SUBB A,ActRow ; Max=Limit-Current ; PrmBuf buffer containing parameters -
MOV RZ2,A ; Preserve maximum ; out none
SUBB A,PrmBuf ; ‘bad A,RO,R1,R2,R3,R6,DPTR
Jc ILé 1f taken move maximum Jeeesecsnsisaasbsnecatensaaseensatennascestesacsstesnttasateseasacnnanannanntnn

. MOV R2,PrmBuf else move requested _
1L6: - JB PrmBadFlg,RSTMD7
LCALL InsRow_MovDn Insert rows

Indicates a bad param buffer
error return

'
v
'
'

DINZ R2,1L6 Count times JB PrmMaxFlg,RSTMD7 Indicates too many parameters
RET error return
IL7: : MOV A,PrmCnt
ClR ¢ . ‘ JZ RSTMDS
MOV - A,ActRow ; With VEM bit set we just check MOV R6,A
INC A ; how far it is to the top MOV. RO, #PrmBuf
MOV - R2,A ; -and use the smaller value RSTMD1:
SUBB A,PrmBuf MOV A,PrmPvt
Jc L8) ’ Jz RSTMD5

MOV ' R2,PrmBuf

17 o 18

79—

RSTMD2:
‘CJNE
“JNB
LCALL
. SJMP
RSTMD3:
CJNE
“CLR
. SJMP
RSTMD4 :
CJNE
CLR
SJIMP
RSTMDS:
CJNE

CLR
RSTMD6:
INC
DJINZ
SJMP
RSTMD7:
CLR
MOV

-JB
MOV -

- MoV
LCALL"
MoV
MOV
MoV

- LCALL
CLR
MOV .

R0, #03H,RSTMD3
AMDDWMBi t,RSTMDS
RMdSup

RSTMD6"

RO, #04,RSTMD4
AMDSCMBi t
RSTMD6

RO, #O5H,RSTMDG
AMDSPMBi t
RSTMDG

. ARO, #O7H, RSTMD6

VEMBi t

RO

" R6,RSTMD1

RSTMD8

A
CtlPtrHi, A
CctlPtrLo,A

, VrtscriFlg,$

HrzScrlFlg,$
HrzFrmSet,RO
HrzPxLshf,R6
DlyTilEndFrm
R1,#ModReg1Ind
R2,#0CCH
R3,#001H
WrAm8052Reg’
AMDDWMBi t

A, #007TH

19

12

2

s owe s

AMDDWM (normal mode)

* AMDSCM. (jump scrolling)
AMDSPM (normal screen)
VEM (insert/delete below active

row)

If an error is indicated
remove all traces of
this control

LCALL
MOV
LCALL
JB
JB
MOV
SJIMP
RMdO:
MoV
MOVX
RMd1:
Mov
MoV
MoV
RMd2:
- MOVX
MOV
DJINZ
MOV
CLR
MOVX

- MOVX

CLR

SetCelWid
VisCol,#0
SetWndPos
MsgActFlg,RMdO
WndActFlg,RMdO
A,BgnRow

RMd1

DPTR, #BgdVarBuf+(BgnRow-CurAtr)
A,@DPTR

DPH,A
DPL,#BgdRCBO.AN. OFST+RCB_RowPag
R1,#6

A,aDPTR

DPH,A

R1,RMd2)
DPTR, #8gdVarBuf+(TopRow-CurAtr)
EXO0

aDPTR,A -

DPTR, #BgdMDBO+MDB_RowPag *
@DPTR,A

DPTR, #8gdMDB1+MDB_RowPag
@DPTR,A

MsgActFlg,RMd3

WndActFlg,RMd4

TopRow,A

VisRow, #6 .

DspHgt,#24

DspWid, #30

DPTR,#BgdvarBuf+(VisCol -CurAtr)
A

. @DPTR,A

DPL

A,#6

aDPTR,A

DPTR,#MsgVarBuf+(VisCol -CurAtr)
A

20

S7-a

MOVX @DPTR,A - MOV DPTR,#MsgWDB+WDB_BgnRow -
MOV A, #034H . MOVX @DPTR,A
MOV DPTR,#BgdMDBO+MDB_Tslc : INC DPL
MOVX QDPTR,A. MOVX @DPTR,A
MOV DPTR,#BgdMDB1+MDB_Tslc ’ ' SETB EX0
'MOVX @DPTR,A JNB MsgActFlg,RMd11
MOV DPTR,#NrmRRB+RRB_Tslc_NcsHi MOV RowAdd,#24
MOVX &DPTR,A .) RMd11:)
INC DPL ') MOV A,CsrSiz
MOV . A, #04DH - ' . CJINE A,#09AH,RMdS
MOVX @DPTR,A . MOV CsrSiz,#0BCH
INC DPL SJMP RMd8
CLR A RMd5:
MOVX aDPTR,A ' CINE A, #OAAH,RMd6
INC DPL ’ MOV CsrSiz,#0CCH
MOV A,#OODH) : ' SIMP RMd8
MOVX @DPTR,A) RMd6:
INC DPL o CJINE A, #058H,RMd7
CLR A MOV CsrSiz,#06AH
MOVX @DPTR,A R SJMP RMd8)
CINC DPL - RMd7:
MOV A, #08DH . - . MOV CsrSiz,#00DH
MOVX @DPTR,A) C RMd8:
INC DPL - LCALL ChgCsrSiz
INC DPL MOV R1,#ModReg1Ind
INC DPL ’ MOV R2,#0C8H
MOV . A,#001H : . MOV R3,#001H
MOVX @DPTR,A . LCALL WrAm8052Reg
‘INC DPL LCALL PlcCsr
MOV A,#086H) MOV RO,HrzFrmSet’
MOVX @DPTR,A MOV Ré,HrzPxlShf
INB MsgVisFlg,RMd9 RET
MOV A,#26 -
©.SJMP RMd10 . : C gt +
RMd9: Scrol LDown: ’
MOV A, #24 i . e eeececnenenaccctataatontnetatnenntsttetnttnntnatacetstesatantananntnttnannonn
RMd10: ; Scrolls number of rows specified by the single allowed parameter.
Mov DPTR,#TrﬁWB+wB_BgnRou ; If more rows are specified than can be scrolled then the maximum amount is
MOVX @DPTR,A ; scrolled.)
INC DPL ;
MOVX @DPTR,A ; inp PrmCnt parameter count -
MOV . A,#24 ; PrmBuf - buffer containing parameter(s)
21 . 22

97—

~e Se e s

out = none

bad A,R2

JB PrmBadFlg, SD5

CLR C
JB MsgActFlg,SD6

MOV A,PrmCnt .

JINZ SD1
MOV® PrmBuf,#1
SJMP SD2
SD1:
DEC A
JNZ SD5
sp2:

MoV A, PrmBuf
SUBB A,VisRow

Jc sp3
MOV A, VisRow
Jz sbé
'SIMP SD4
SD3:
MOV A,PrmBuf
SD4:
LCALL ScrlDnDsp
SIMP D6
SD5:
CLR A

MOV CtlPtrHi,A
MOV CtlPtrLo,A
SD6: '
* RET

; Indicates a bad param buffer.
H error return

; Message window cannot scroll
; vertically

; If count = O default to 1 row
; If more then one parameter

; error return

; Amount to scroll is the smaller
; requested rows Vs. VisRow

; Scroll in progress
H and we're finished

; On-an error remove all -traces
; of this control

23

of

SelGrfRendition: ‘

D IR TR T

Parameters

29

91

292

293

any other parameter is igr?ored

inp PrmCnt
PrmBuf

out none

bad A,R1,R3

After checking parameter validity tests this control changes the folloumg
character attributes depending on the selective parameter(s) sent.

nréaning

‘Steady, initial attributes
Bold, hi intensity
Underlined
Blinking

Negative image
Crossed out
Primary Font
Secondary Font
Normal intensity
Not undertined

- Steady (not blinking)

Positive image

Not crossed out
Superscript alignment
Subscript alignment
Normal alignment

_number of parameters to work on’

buffer ‘containing the parameter(s)

cWme mE WmE ME N Me ME N NI % e %e wE %e Ne NE ME N % N3 m N N N
n
~N

JNB PrmBadFlg, SGRO1
LIMP SGR16

SGROT:
JNB PrmMaxF lg, SGR0O2

LIMP SGR16
SGRO2: ’

MOV A,Prmcnt

UNZ SGRXX

LIMP " SGR16

H !ndlcates a bad param buffer
; error return

; Indicates too many parameters
; error return

2y

Ly-a

SGRXX:
MOV
MoV

SGR1:
MOV
Jz
CJNE
SETB
CLR
SJMP

SGR2:
CJNE
SETB
CLR
SJMP

SGR3:
CJNE
CLR
CLR
SJMP

SGR4:
CJNE
MoV
SJMP

SGRS
CJINE

. SETB
SJMP

SGR6:.
CJNE
SETB
SJMP

SGR7:
CJNE
SETB
SJMP

SGR8:
CJNE
SETB

SJMpP

R3,A
R1,#PrmBuf

A,PrmPvt
SGR4
ar1,#91,SGR2
SpsBit
SbsBit

SGR15

aR1,#92,SGR3
SbsBit
SpsBit
SGR15 -

@R1,#93,SGR4
SpsBit
SbsBit

SGR15

aR1,#00, SGRS
CurAtr, #00
SGR15

“aR1,#01,56R6

LitBit
SGR15

\

aR1,#04,SGR7 .

UndBit
SGR15

aRr1,#05,SGR3
BLnkBit
SGR15

@R1,#07,SGRY
RevBit
SGR15.

25

; Test if AMD private control

; Superscript alignment

; Subscript alignment

; Normal alignment

; Steady binitiail‘ attribute
; Bold

; qhderlined

; Blinking)

; Negative image

SGR9:
CJNE
SETB
SJMP

SGR_09:
CJNE

- CLR
SJMP

SGR_010:
CJINE
SETB

- SJMP

SGR10:
CJNE
CLR
SJMP

SGR11:
CJNE
CLR
SJMP

SGR12:
CJINE
CLR
SJMP

SGR13:
CJNE
CLR
SJMP

SGR14:
CJNE

" CLR

SGR15:
INC
DJNZ
RET

SGR16:
CLR
MoV
Mov
RET

aR1,#09,SGR_09
SundBit
SGR15

ar1,#10,SGR_010
FntMapFlg
SGR15

arR1,#11,SGR10
FntMapFlg
SGR15

arR1,#22,S6R11
LitBit
SGR15

arR1,#24,SGR12
UndBit
SGR15

aRr1,#25,SGR13
BlnkBit '
SGR15 -

aR1,#27,SGR14
RevBit
SGR15

aR1,#29,SGR15
SundBit

R1
R3,SGR1

A
CtlPtrHi,A
CtlPtrLo,A

26

~

-~

~

~

~

~

Crossed out

Primary font

Secondary font

Normal intensi ty

Not underlined

Steady (not blinking)

positive image

Not crossed out

If an error was indicated

remove all traces of
this routine

87—-a

ScrollLeft: N

Scrolls the display leftward the number of columns specified by the single

numeric parameter. An attempt to scroll the rightmost column of the display
leftward beyond the rightmost column on the monitor leaves it at the right-
most column. -)

s

inp PrmCnt count of parameters

PrmBuf buffer containing the parameters
out none ’

bad , A,R1,R2

eeeesusieiscesensssensteces et auant ettt it etesesncasesess e sesannanane

L

JB - PrmBadFlg,SL7 ; Indicates -a bad param buffer
) ; error return
JB WndActFlg,SL8

; If Window Horz. scrolling is not
;- allowed
MOV A,Prmcnt . '
INZ- ST ; :
MOV PrmBuf,#1 ; If no parameters default to 1 column
SIMP SL2 '

SL1:)
DEC A ; If more then one parameter error rtn
JNZ SL7

sL2: :

If compressed mode maximum number

CdNB AMDDWMBi t,SL3 ;
HS of columns to be scrolled is 48

MOV R2,#8 Else columns = 8
SJMP SL4 .
sL3:
MOV R2,#48
SL4: . :
ClR ¢ : '
MOV A,VisCol ; Number of columns available for
XCH A,R2 H scrolling = Maximum - VisCol
SUBB A,R2 ;
Jz si8 ;
MOV R7;A 14 ; smaller of Available Vs. requested
“MOV A,PrmBuf)
ClR C '
SUBB A,R7
JNC SLS

MOV R7,PrmBuf
' 27

i
_ SetMode:

SL5:

MOV A,R7
LCALL ScrlLtDsp
RET
SL7:
CLR A . If error remove all traces of

;
MOV CtlPtrHi,A : control routine
MOV ctlptrlo,A ’
SL8:
RET : o ‘ -

H

; Set the modes indicated by the selective parameters to their alternate
; states.
H
H

Pa rame‘ters Meaning
P S e .
;7 VEM (insert/delete above active row)
;3 AMDDWM (compressed)
; % AMDSCM (smooth scrolling)
HE) ' AMDSPM (reversed screen)
H ! .
; inp PrmCnt count of parameters sent
; PrmBuf . buffer containing parameters
i
; out none
H
; bad A,RO,R1,R2,R3,R6,DPTR - ' .
Jesccccaseasanann B T Ty T P

JB PrnBadFlg,STMW Indicates a bad param buffer
error return

i
H
; Indicates too many parameters
i
i

JB ProMaxFlg, STMD7
- error return :

MOV A,PrmCnt If zero no action just return

Jz STMD8 .

MOV R6,A ; Establish loop count from PrmCnt]

MoV ROV,#PrnBuf‘ ; Establish pointer for param
STMD1: H comparisons

MOV A,PrmPvt ; Test if private selective

Jz sTMDS ; parameter

28.

6%-a

7 STMD2:

. CINE
8
LCALL
SJMP

STMD3:
CINE

- SETB
SJMP

STMD4 =
CINE
SETB
SJIMP

STMDS:
CINE
SETB

STMD6:
INC
DJINZ
SJIMP

STMD7:
CLR
MoV
MoV

STMD8:
RET

SMdSup:

B
JB
MoV
MoV
LCALL
MOV
MoV
Mov
LCALL
SETB
MOV

@RO,#03H,STMD3
AMDDWMBi t, STMD6
SMdSup,

STMD6

"@RO,#04H,STMD4 -

AMDSCMBI t

.STMD6 Co

@RO, #05H,STMD6
AMDSPMBi t
STMD6 -

aRO,#07H, STMDG
VEMBit

RO
R6,STMD1
STMD8

A
CtlPtrHi A
CtlPtrLo,A

vrtscriflg,$
HrzScriFlg,$
HrzFrmSet,RO
HrzPxLShf,R6
DLyTilEndFrm
R1,#ModReg11Ind
R2, #OCCH a

" R3,#001H .

WrAm8052Reg
AMDDWMBi t
A, #004H

29

. ; AMDDWM Compressed mode

; AMDSCM Smooth scrolling
; AMDSPM revgrsed screen
; VEM mode

If an error is indicated

H
H remove all traces of
H this control ~

LCALL
MOV
LCALL
JB
JB
MOV
MoV
MoV
MoV
SJMP
SMd1:
MoV
CLR

MOovX

MOV
MOVX
MoV
MOV
MOVX
DEC
MoV
MOVX
MoV
MoV
MOVX

SetCelWid
VisCol,#0
SetWndPos . '

. MsgActFlg,SMd1

WndActFlg, SMd1
R4 ,BgnRow
R1,BtmRow
R2,RemRow
R3,EndRow
SMd2

DPTR, #BgdVarBuf+(BgnRow-CurAtr)
EXO0
A,@DPTR
R4, A

DPL

DPL
A,30PTR
DPL

R1,A
A,3PTR ~
DPL

R2,A
A,30PTR
R3,A

DPH,R1 ‘ _
DPL , #8gdRCBO.AN .OFST+RCB_RowPag
A,R2

aDPTR,A

DPL ’

A, #BgdRCBO.AN.OFST

aDPTR, A

DPH,R3,

A, Trmoff

aDPTR,A

pPL

A, TrmRow

aDPTR,A

DPTR, #8gdvarBuf+(TopRow-CurAtr)
ARG

aDPTR,A

06-a

MOVX
Mov
MOVX
JB
JB

MOV
“Mov

Mov
SMd3:
MoV

MoV
CLR
MOVX
INC
‘MOVX
‘INC
INC
MoV
MOVX
INC
~ Mov
MOVX
INC
MOVX
- MOV
CLR
HovX

MOVX

* MOV
MOVX
MoV
MOVX
INC

MOVX
INC

DPTR, #8gdMDBO+MDB_RowPag
QDPTR,A .
DPTR, #BgdMDB1+MDB_RowPag
QDPTR,A

MsgActFlg,SMd3
WndActFlg, SMd4

- TopRow,A

VisRow, #0
BtmRow;R3
RemRow, R3
DspHgt, #30

Dspwid, #120

DPTR, #BgdVarBuf+(VisCol -CurAtr)
A

@DPTR,A

DPL

aDPTR,A

pPL

DPL

ARG

aDPTR,A

DPL

A,R3

aDPTR,A

DPL

aDPTR,A

DPTR, #MsgVarBuf+(VisCol-CurAtr)
A

@DPTR,A

A, #028H

DPTR, #BgdMDBO+MDB_Tslc
aDPTR,A)
DPTR, #8gdMDB1+MDB_Tslc
F0PTR,A
DPTR,#NrmRRB+RRB_Tslc_NcsHi
DPTR,A

DPL

A, HO4AH

DPTR;A .

DPL

31

CLR
MOVX

INC
MOV
MOVX
INC
CLR
MOVX
INC
MoV
MOVX
INC
INC
INC
MoV
MOVX
INC

‘MOVX
JNB
MoV

. SJMP
SMd9:
Mov
SMd10:
MOV
MOVX
INC
MOVX
MoV
MoV

MOVX
INC
MOVX
SETB
JNB
MoV

SMd11:
MOV
CJNE

Mov

SJMP

A
SDPTR,A
DPL

A, #OOAH

@DPTR,A
DPL

A
@DPTR,A
DPL

A, #0BAH

aDPTR,A
DPL

DPL

DPL

A, #001H
ADPTR,A

DPL

A, #045H
aDPTR,A
MsgVisFlg, SMd9
A, #32

sMd10

A,#30

DPTR,#TrmWDB+WDB_BgnRow
aDPTR,A

DPL

aDPTR,A

A, #30

'DPTR, #MsgWDB+WDB_BgnRow
aDPTR,A

DPL

aDPTR,A

EX0

MsgActFlg, SMd11

RowAdd, #30

A,CsrSiz
A, #0BCH, SMd5
CsrSiz, #09AH
SMd8 .

32

16-a

.SMd5: .

CJNE A, #OCCH, SMd6 .) ‘
MOV CsrSiz,#0AAH
SJMP SMd8
SMd6:
CINE A,#06AH, SMA7
MOV CsrSiz,#058H

SJMP SMd8
SMd7:

MOV CsrSiz,#00AH '
SMd8:

LCALL ChgCsrSiz -
MOV R1,#ModReg1Ind

MOV . R2,#0CBH -
MOV R3,#001H

LCALL WrAm8052Reg

LCALL P{cCsr T,

MOV RO,HrzFrmSet

MOV R6,HrzPxlShf

" RET

'

ScrollRight:
Jeeeetmstesattecteaaneneeeanaasesatetsanssacasancstenasetsanaasacs aasnasanTans
Scrolls the display rightward the number of columns specified by the single
numeric parameter. An attempt to scroll the leftmost column of the display
rightward beyond the leftmost column on the monitor leaves it at the left-
most column.

inp PrmCnt count of parameters

PrmBuf - buffer containing the parameters
out none
bad A

v
'
’
.
‘
'
’
.
’
.

R L L T LR L E PPy

JB PrmBadFlg, SRS ; Indicates a bad param buffer
' ; error return ’
: CLR C

JB WndActFlg, SR6 ;Window cannot scroll horz.
MOV ~ A,PrmCnt

INZSRT -

. 1Zero Parameters default to

33

MOV PrmBuf,#1 ;one row
SIMP SR2 i
SR1: .
DEC A ;1f more then one parameter this
JNZ SRS ; is an error return ¢
SR2:
MOV A,PrmBuf ;Amount scrolled is equal to the
SUBB A,VisCol H 'small of requested columns
JC SR3 ’ L2 Vs.Vis.Col
MOV A,VisCol
Jz SR6
“MOV R7,A
SJMP SR4
~ SR3:
- MOV -R7,PrmBuf
SR4: ’
MOV A,R7 .
LCALL ScrlRtDsp ;Scroll “in Progtess
RET
. SR5: .
CLR A ;1f-error remove all traces of
MOV CtlPtrHi,A ; of control
MOV CtlPtrLo,A
SR6:
RET
; - -
Scrol lup:

scrolls the display upward the number of columns specified by the single’
numeric parameter. An attempt to scroll the bottom row of the display
upward beyond the bottom row-on the monitor leaves it at.the bottom of the
display.

inp Prmcnt count of parameters

. PrmBuf buffer containing the parameters
out none :

bad A,R1,R2

D T I T L T T

JB PrmBadFlg, SU6 Indicates a bad param buffer

H
; error return

34

z5-a

JB
MoV
JNZ-
Mov
SJmp

sUt:

JINZ
Suo1:
JB

MOV
4B
SJMP

su2:

© oMoV

‘SU3:

CLR
MoV
XCH
—SUBB’
Jz
MoV
MOV
CLR
"SUBB"
Jc
MoV
SJMP
SU4:
MoV

SuU5:
LCALL
SJMP

SU6: -
CLR
MOV
MoV

Su7:

RET

MsgActFlg,Su7

"A,PrmCnt
“sut

PrmBuf, #1
Suo1

A
Sué

WndActFlg, SU2

R2,#6
AMDDWMBI t, SU7
su3 -

R2,#7

C
A,VisRow
A,R2
A,R2

su7

R1,A
A,PrmBuf
c.

A,R1

Su4

A,RY

Su5

A, PrmBuf

ScrlupDsp -

su7

A
CtlPtrii,A
ctlPtrLo,A

35

;1f message active vert scroll

not al lowed
1f no paraméter, default the
one row

~e w0 w

;1f more than one parameter this

; is an error return

If window is active maximum
scroll value is 7
or background max is 6

If in compressed mode scroll is
not al lowed

Ne Ne we we s

;The current allowed is maximum
; _VisCut

H save max to move for later

;Request amount to scroll -
;Move either requested amount or

i maximum al lowed

1

;If requested is less then
; allowed do that many

;- Scroll in progress
H we're done

;1f an error clear history ptr

. ;Done

CBR2:

CharBlinkRate:

out
bad

PrmCnt
PrmBuf
none
A,R1,R2

‘Selects the rate and duty cycle for characters dispalyed with the blink
attribute

Meaning |

Initial blink, fastest,25/75 cycle
Blink 50/50 cycle +
Blink 25/75 cycle

_ Fastest-blink rate

Fast blink rate
Slow blink rate
Slowest blink rate

count of parameters

buffer containing the parameters |/

eeeeemsvecscsessseccennncesuncteastencnasananasanosenannn sersescsasannmnancanes

JB
JB

MoV
MoV
INZ

INC

CBRO:
MoV

CBR1:
CJNE
SETB
CLR
CLR
SIMP

CINE
SETB
SJmP

PrmBadFlg,CBRY

PrmMaxF lg,CBRY

R1, #PrmBuf
A,PriCnt
CBRO

ar1,A

A

R2,A

aR1,#00,CBR2
ChdBit
ChbBit1
ChbBit0
CBR8

-@R1,#11,CBR3

ChdBit

-CBR8

; .Indicates a bad param buffer‘
; error return
; Indicates too many parameters
; error return

; initial type

; Blink 50/50

36 .) | » 144__J |

€6—-a

P

CBR3:
CJNE
CLR -
SJMP

CBR4:
CJNE
CLR-

_CLR
SJIMP

CBR5:
CJNE
CLR
SETB

© SJMP

CBR6:
CJINE
SETB
CLR
SJMP

CBR7:
CJNE
SETB
SETB

CBR8:
INC

. DJNZ
LCALL
SJMP

CBR9:

CLR
MoV
MoV

CBR10:

aR1,#12, CBRA _ : Blink 25/75
ChdBit -
CBR8

ar1 ,#20,C§R5 ; Fastest rate
ChbBit1

ChbBit0

CBR8.

aR1,#21,CBR6 - ; Fast rate
ChbBit1 . -
ChbBi t0 : ‘

CBR8

aRr1,#22,CBR7 ; Slow rate
ChbBit1

ChbBit0

CBR8

aR1,#23,CBR8 ; Slowest‘rate
ChbBit1
ChbBit0

- R1

R2,CBR1
ChgBlnkSpd
CBR10

If an error is detected remove
all traces of this control

A
CtlPtrHi,A

‘CtlPtrLo,A

RET * .

bbb+ }

LoadFontCell:

~

seemeeseieseetsmsassssettsaaanreasetaanonstctnarnnnennn esessncinanncanean eee

Loads a cell of the character generator RAM at the location, and with the
pattern, specified in the parameters. The first parameter is the cell

address (0-255), the second is the starting slice (counting downward from
zero) and the remaining parameters are the patterns for each slice working

- © 37

; downward. Unspecified slices are loaded with zeroes. After checking fo

; parameter validity this routine waits until all smooth scrolling is finished
; before beginning its work. The Display Width Mode (AMDDWM) determines which
; type of font (normal or compressed) is to be. loaded.

JB PrmBadFlg,LFC5 Indicates a bad param buffer

error return

.~ .

MOV A,PrmCnt
Nz LFCT
MOV PrmBuf,#0
SIMP LFC2
LFC1:
DEC A
INZ LFC3
"LFC2:

MOV PrmBuf+1,#0
MOV PrmCnt,#2

SIMP LFC4 ’ .
LFC3: ’ :
ClR ¢
SUBB A,#17
NG LFC5
LFC4:
CINE A,#' ',LFC6
LFC5:
" CIR A

MOV CtlPtrHi,A
MOV CtlPtrLo,A
RET
LFC6:
" MOV A,PrmBuf+1
ADD A,PrmCnt

CR C
SUBB A,#18
NG LFC5

LCALL HidCsr
J8 vrtScrlFlg,$
JB HrzScrlFlg,$

CLR A)
JNB AMDDWMBit,LFC7 -
INC A ’

38

76-d

LFC7: .
LCALL WrFntCel
LCALL ShwCsr
RET .

’
SelActiveDisp:

Selects the currently active display, background, window, or message.

H
H
; attribute
H
H

Parameters

; 0

HI|

HEE

; inp PrmCnt

H © PrmBuf

; out none

; bad A,R1,R2,R4,R5

JNB PrmBadFlg,SAD1
SAD19

JNB PrmMaxFlg, SAD2
SAD19 i
SAD2:
JB vrtScriFlg,$
JB HrzScrlFlg,$

MOV R1,#PrmBuf -
MOV A,PrmCnt
JNZ. SAD2a
MOV @R1,A .
INC A

SAD2a:
MOV - R2,A

SAD3:

" CJINE @R1,#00H,SAD3a
SJMP. SAD3b

SAD3a: :
LJMP SAD9

Meaning

makes the background display active
makes - the message display active-
makes the window display active

count of parameters
buffer containing the parameters.

Indicates a bad param buffer

H
i error return

'

.

39

Indicates too many parameters
error return

SAD3b:
MoV
MoV
JB
JB

LJMP
SAD4:
MoV
MoV -
LCALL
SJMP
SAD5:
Mov
Mov
SAD6:
LCALL
CLR
CLR
JB
Mov
MoV
SJMP
SAD7:
Mov
Mov
SAD8:
MoV
Mov
MoV
MoV
Mov
Mov
MoV
ADD
Mov
MoV
MOVX
INC
MOV
MOVX

R5,#BgdVarBuf.SR.PAGE
R6,#BgdVarBuf.AN.OFST
MsgActFlg, SADS

WndActFlg, SAD4

SAD18

R3,#WndVarBuf.SR.PAGE
R&4,#indVarBuf .AN.OFST
BldTrmRcb

SAD6

R3,#MsgVarBuf.SR.PAGE
R4, #MsgVarBuf .AN.OFST

SwpVar
WndActFlg
MsgActFlg.
AMDDWMBi t, SAD7
DspWid, #80
Dsphgt, #24
SAD8

DspHid, #120
DspHgt, #30

ColAdd, #01

RowAdd, #00
RcbOff,#BgdRCBO.AN.OFST
Chroff,#BgdChrBuf0.AN.OFST _
AtrOff,#BgdAtrBuf0.AN.OFST
P2,ExtRow

A,Rcboff

A, #RCB_RowPag

RO,A

A, ExtRow

aro,A

RO

A,RcbOff

aR0,A

40

~ o~

~ s

. e

.~ o~

~ o~

~

Se Ne o Ne Se Ne o Se Se s s

Make ‘the background display -
active

If Background is already active
do nothing further

If the wnd window was active
move its dsp. vars. out

If the msg window was active
move its-dsp. vars. out

Indicate current active state
with internal. flags

Update non-moving display vars

Set page address to extra row

Build offset into RCB at
next row pointer

Use RO as index pointer

Next row pointer = EXtRow

Store it in RCB

Get index to offset

Move current rcb offset

Store it

G6—-a

INC
CLR
MOvX
INC
INC
MOvX
INC

MOVX
INC
CLR
MOVX
INC
MoV
MOVX
INC
MoV
MOVX
INC
CLR
MOVX
INC
MOVX
INC
MoV
MOVX
INC
MoV
MOVX
INC
MoV
MovX
INC
SETB
SuUBB
cpL

MOVX

INC
MoV
MOvX
INC

RO

A

aR0,A

RO

A

@RO,A

RO

A, #080H
aR0,A

RO .
A

aro0,A

RO

A, #8gdFncChr0.SR.PAGE
aR0,A

RO
A,#BgdFncChr0.AN.OFST
ar0,A

RO

A

@RO,A
RO’
ARrRO,A

RO
A,#BgdFncAtr0.SR.PAGE
QRO,A

RO
A,#BgdFncAtr0.AN.OFST
ar0,A
RO
A,VisCol
aro,A

RO

[
A,uWndCol
A

a@R0,A

RO

A, #80H
@RO,A

RO

41

S ose ose s

~

Si s ose oss sE owe sa s

~e we owa o

P T T T

Set hidden count

Store hidden count
Index to visible count.
Set visible count to 1
Store it

Continue bit set

Store always zero byte

Index to chr ptr page

Set to current function char
Store it in RCB

Index to chr ptr offset
Offset of function character
Stored

Store empty word in RCB

Index to atr page
Build Attribute page
Store page to atr
Index to atr offset

Store it

Length of hidden 2nd seg=VisCol
Store it «
Index to visible 2nd segment

Visible count = WndCol-VisCol
We get negative so complement
Store it ‘

Index to continue bit

Set continue bit 0 rest of byte
Store it

and 1 empty byte

CLR
MOvX
LJMp

' SAD9:
CJNE
Mov
MoV
JB
JNB

LJMP
SAD10:
Mov
Mov
SJMP
SAD11:
Mov
MOV
SAD12:
LCALL
Mov
MOV
MOV
SuBB
INC
MOV
MOV
MOV
MoV
MOV
LCALL
CLR
SETB
MoV
Mov
ADD
MoV

MOVX.
INC
MOV -

aro,A
SAD18

aR1,#02,SAD13
R5,#WndvarBuf.SR.PAGE
R6, #indvarBuf .AN.OFST
MsgActFlg,SAD11
WndActFlg,SAD10

SAD18

R3,#BgdvarBuf.SR.PAGE
R4, #BgdvarBuf .AN.OFST
SAD12

R3,#MsgVarBuf.SR.PAGE
R4, #MsgvarBuf .AN.OFST

BldTrmRcb

DspWid, #40

DspHgt, #7

A, WndCol

A,VisCol

A

ColAdd,A

RowAdd, #6

RcbOff, #WndRCBO . AN.OFST
Chroff, #WndChrBuf0.AN.OFST
Atroff,#indAtrBuf0.AN.OFST
SwpVar

MsgActFlg

WndActFlg

P2,ExtRow

A,Rcboff

A,#RCB_RowPag

RO,A

A,ExtRow

@ro,A

RO

A,Rcboff

42

~

~ = ~

.~ . ~ o~

Se St Se SE NE Ne S s s s

Extra RCB is now rebuilt

Make the wnd window active

If wnd window is already active
do nothing further

If the background was active
move its dsp. vars. out

If the msg window was active
move its dsp. vars. out

Update non-moving display vars

Indicate current active state
by internal flags
Set page address to extra row
Build offset into RCB at
next row pointer
Use RO as index pointer
Next row pointer = ExtRow
‘Store it in RCB
Get index to offset
Move current rcb offset

|

' 96-d

MOovX
INC
CLR

. MOVX

INC
MoV
MOVX
INC
CLR
MOVX
INC
CLR
MOVX
INC
MoV
MOVX
INC
MoV
MOVX
INC
CLR
MOVX
INC
MOVX
INC
MoV
SETB
MOVX
INC
MOV
MOVX

CLR
MovX
INC
MOVX
INC
Mov.
MOVX
INC
MoV
MOVX
SJMP

aR0,A
RO

A
aRO,A

RO

A, #40
ar0,A

RO

A

aR0,A

RO

A

@RO,A

RO
A,ExtRow
ar0,A

RO

A, #WndChrBuf0.AN.OFST
@RO,A

RO

A

ar0,A
RO
ar0,A

RO)
A,ExtRow

'ACC.4

aR0,A
RO
A, #indAtrBuf0.AN.OFST
aR0,A
RO
A
aR0,A
RO
aRO,A-
RO
A, #NrmRRB. SR. PAGE
aR0,A
RO
A,#NrmRRB.AN.OFST
aR0,A
SAD18
43

~e ~e

~e we w0 s

D N Y I

.o ne ow ~ .~ = ~e o~ ~ ~~

e o~

Store it
Set hidden count

Store hidden count

Index to visible count
Visible count is wnd width
Store it

No continue bit

Store always zero byte
Index to chr ptr page

Set to char buffer

Store it in RCB

Index to chr ptr offset
Offset of character buffer
Stored

Store empty word in RCB
Index to atr page

Build Attribute page

Store page to atr
Index to atr offset

Store it
Store empty word in RCB

Index to atr page
Page -of normal RRB
Store it

Offset .of normal RRB
Extra RCB is now rebuilt

SAD13:
CJNE
MoV
MoV
JB
JB

MoV
MoV,
SJMP
SAD14:
Mov
‘MOV
LCALL
SAD15:
JB
MoV
SJMP
SAD16:
MoV
SAD17:
MoV

JNB
Mov.
SJMP
SAD17a:
MoV
SAD17b:
MoV
. MoV
Mov
LCALL
CLR
SETB
SAD18:
INC
DEC
Mov
Jz
LJMP

aR1,#01H,SAD18
R5,#MsgVarBuf .SR.PAGE

. R6,#MsgVarBuf .AN.OFST

WndActFlg,SAD14
‘MsgActFlg,SAD18

R3,#BgdvarBuf.SR.PAGE
R4, #BgdvarBuf .AN.OFST
SAD15

- R3,#WndVarBuf.SR.PAGE

R4, #indvarBuf .AN.OFST
BldTrmRcb

AMDDWMBi t,SAD16
DspHid, #30
SAD17

DspHid, #120

DspHgt,#01
ColAdd, #01
AMDDWMBi t, SAD17a
RowAdd, #30
SAD17b

RowAdd, #24

Rcboff, #8gdRCBO.AN.OFST
Chroff,#8gdChrBuf0.AN.OFST
Atroff,#BgdAtrBuf0.AN.OFST
SwpVar

WndActFlg

MsgActFlg

R1

R2
A,R2
SAD20
SAD3

by

~e we w0 s

.~ e

.~ =

Make the Msg window active

1f Msg window already active
do nothing further

1f background was active ‘
move its dsp. vars. out

If Wnd window was active
move its dsp. vars. out
will be updated

Update non-moving display vars

Indicate current active state
with internal flags

Test if we are at the end
of our parameters

If true get out
Else proceed with the next

LS-A

SAD19:
CLlR A ; If an error was detected
MOV CtlPtrHi,A - ; remove all traces of this
MOV CtlPtrLo,A ’ ; control
SAD20: ’
LCALL PlcCsr - ; Relocate our cursor
RET :
°
; + +++4 +
SelCursorAppear:

Parameters

‘inp ~ PrmCnt
PrmBuf
out none
bad A,RO,R2,R4,R5,R6

Nt N Ne Se NE Ne Ne SE S Na Me S Ss S0 we W me we oSe owe
n
o

‘JNB PrmBadFlg,SCA1
LJMP SCA20

SCAT:
JNB PrmMaxFlg,SCA2
. LUMP. SCA20

Selects the type and appearance of the cursor.

Meaning
_ Steady reversed full block, initial -
Reversed full block
Reversed block half of character cell
Solid block half character cell
Underscore
Thick underscore
Steady, non-blinking
Blink 50/50 cycle
Blink 25/74 cycle
Fastest blink
Fast blink
Slow blink
Slowest blink

count of parameters
buffer containing the parameters

Indicates a bad param buffer
error return .

'
’

Indicates too many parameters
error return

’
‘

4.5

SCA2:
© MoV
MOV
JINZ
MoV
‘INC
SCA2a:
Mov
SCA3:
CJNE
CLR
LCALL
MoV
Mov
JNB
MoV
SJMP
SCA4:
CJINE
MoV
MoV
JNB
Mov
Samp
SCA5:
CJNE
MoV
Mov
JNB
Mov
SJMP
SCA6:
" CJNE
MoV

_INB
MoV
SJMP

SCA7:
CJNE
MoV
MOV
JNB

RO, #PrmBuf
A,PrmCnt
SCA2a
ar0,A

A

R6,A

RO, #00,SCA4
CxybeBit
ChgBlnkSpd
R5,#06H
CsrSiz,#00DH
AMDDWMBi t, SCA9
CsrSiz, #00AH
SCA9

RO, #01, SCAS
R5,#006H
CsrSiz,#00DH
AMDDWMBIi t, SCA9
CsrSiz,#00AH
SCA9

aRO, #02,SCA6
R5,#06H
CsrSiz,#06AH
AMDDWMBi t, SCA9
CsrSiz,#058H
SCA9

ARO,#03,SCA7
R5,#04H
CsrSiz, #06AH
AMDDWMBi t, SCA9

‘CsrSiz, #058H

SCA9

aR0, #04, SCA8
R5,#04H
CsrSiz,#0CCH

" AMDDWMBI t, SCA9

46

; Initial cursor

; Reversed full block

; Solid half block -

; Underscore

; Reversed half block

85-C

SCA9:

MOV
SJIMP

SCA8:
CJNE
‘MOV
MOV
JNB

LCALL
LCALL
SIMP
SCA10:
CJNE
 CLR
SJMP
SCA11:
CJNE
SETB
SETB
SIMP
SCA12:
CJNE
SETB
CLR
SJMP
SCA13:
CJNE
CLR
CLR
SETB
SJMP
SCA14:
CJNE
CLR
‘SETB
SETB
SaMp
SCA15:
CJNE
SETB

csrsiz,#QAAH
SCA9

RO, #05,SCA10
R5,#04H
CsrSiz,#0BCH
AMDDWMBit,SCA9 *
CsrSiz, #09AH

ChgCsrSiz
ChgCsrTyp
SCA18

aRO,#10,SCA11
CxybeBit
SCA17

RO, #11,SCA12
CxybeBit
CudBit

SCA17

aRO,#12,SCA13
CxybeBit
CudBit

SCA17

RO, #20,SCA14
CubBit1
CubBit0
CxybeBit
SCA17

ar0,#21,SCA15
CubBit1
CubBit0
CxybeBit
SCA17

ar0,#22,SCA16
CubBit1

47

; Thick underscore

; Steady non-blinking

; Blink 50/50 cycle
; Blink 25/75 cycle

; Fastest rate

; Fast rate

; Slow rate

CLR CubBit0
SETB CxybeBit -
SJIMP SCA17

SCA16:

CJNE -QRO,#23,SCA18
SETB - CubBit1

; Slowest rate

SETB CubBit0
SETB CxybeBit
SCA17: ‘
LCALL ChgBlnkSpd
SCA18:
INC RO .
DEC - R6 N
MOV ARG
Jz sca21
LJMP SCA3
SCA20:
CLR A

MOV CtlPtrHi,A
MOV CtlPtrio,A

SCA21: -
RET

SmoothScriRate: .

; Selects the rate at which smooth scrolling occurs.

H

+ Parameters Meaning

;i 0 1 scan line / pixel / frame

HE 1 scan line / pixel / frame

i 2 2 scan line / pixel / frame

i 3 3 scan line / pixel / frame

HER 4 scan line / pixel / frame

HE-2 5 scan line / pixel / frame

; 6 6 scan line / pixel / frame

N 7 scan line / pixel / frame

;8 8 scan line / pixel / frame

;12 - 1 scan line / pixel / 2 frames

H 1 scan line / pixel / 3 frames

-
W

48

66—

I I L B T B TR TR T

14
15
16
17
18

inp

out
bad

B
8

Mov
MoV
JNZ
MoV
INC
SSRO:
MoV

- SSR1: -

Jz

CLR
SUBB
JNC
MoV
DEC
SJIMP

. SSR3:

CLR
SUBB
Jc
MoV
SUBB

SSR4:
SWAP
RR

PrmCnt
PrmBuf.
none
A,R1,R2,R3

PrmBadFlg, SSR6
PrmMaxFlg,SSR6

R1,#PrmBuf
A,Prmcnt
SSRO
ar1,A

A

R2,A

A,aR1
SSR4
R3,A
c

A, #09
SSR3
A,R3
N
SSR4 -

A,R3
c

A, #12
SSR5
A,R3
Al #3 .

A
A

- ad o -

49

scan
scan
scan
scan
scan

line / pixel /7 4 frames
line / pixel /5 frames
line / pixel / 6 -frames
line / pixel / 7 frames
line / pixel / 8 frames

~ .

count of parameters
buffer containing the parameters

; Indicates a bad param buffer
H error return

; Indicates too many parameters
H error return

work on current parameter

-

test if in first group of
parameters
If true adjust for calculation

~e w1 s

Test if between groubs 9-11

e

If true exit
else adjust for calculation

work on hi nibble first
isolate hi byte

MOV R3,A ; Store for future use
ANL A, #.NT.SCRL_RAT_MASK ; Mask off unused bits
JINZ' SSRS
MOV A,ScriByt ; bring in scroll byte
ANL A, #.NT.SCRL_RAT_MASK ; Mask balance of byte to write'
ORL A,R3 ' ; generate combine Scrlbyt parts
MOV scriByt,A # return new value

SSR5:
INC R
DJINZ R2,SSR1 ; Continue until last parameter -
SJMP SSR7

SSR6:
CLR A ; If an error was indicated
MOV CtlPtrHi,A H remove all traces of
MOV CtlPtrLo,A ; control

SSR7:
RET

SelWindowvis:

; Selects window visibliity.

;

H

; Parameters Meaning
0 make window invisible

1 " make window visible

PrmBuf ’ buffer containing the parameters
out none
bad R1,R&

mesecsusvrsecaseseestsate sttt sasesasesssesaeatenatsatssanseanannoan

r

H

H

H

; inp PrmCnt count of parameters
H

H

;

H

JB PrmBadFlg,SWv8 ; Indicates a bad param buffer
- ; error return
JB PrmMaxFlg, SWv8 ; Indicates too many parameters
H error return
JB vrtScriflg,$
JB HrzScrlFlg,$

MOV RO,#PrmBuf

50

09-a

MOV - A,PrmCnt

JINZ . SWVO0
MOV @RO,A
INC A
SWV0:
MOV * -R4,A
SWV1: .
CJNE @RO,#00, SWV3 :
JNB WndVisFlg,SWV7
LCALL Hidwnd
CLR WndvisFlg
SIMP SWV7
SWV3:
CJINE @RO,#01,SWV7

JB . . WndVisFlg,SWv7
LCALL ShwWnd ~

SETB WndVisFlg
SWV7:
INC RO
DJNZ R4,SWV1
LCALL PlcCsr
RET
SWv8:
CLR A

’

MOV CtlPtrHi,A
MOV CtlPtrLo,A
RET

Make window invisible if not taken

; Make window visible

if an error was indicated
remove all traces of - -
this control

.~ = w

SelMessageVis:

Ne we owe s s

e s i w w we w ow

Selects message window visibliity.

Parameters

0

1

inp = PrmCnt
PrmBuf

- out none

bad' A,R1,R2,R3,Ré4

Meaning

make message window invisible
make message window visible

count of parameters
buffer containing the parameters

51

JB
JB

JB
JB
MOV
MoV
JINZ
“MOV
INC
SMV1:
MoV
SMV2:
. CLR
CJINE

JNB
MOV
JB
MoV
SJMP
SMV3:
MOV
SMV4: -
MOVX
INC
MOVX,
CLR
MOV
JB
MOV
SJMp
SMV5:
CJNE
JB

MoV
JB
MoV
SJMP
SMV6:
Mov

PrmBadFlg,SMV11
PrmMaxFlg, SMV11

vrtScriFlg,$
HrzScrlFlg,$
R1,#PrmBuf
A,Prmcnt
sMv1’

ar1,A

A

R4, A

EXO0 ,
aR1,#00, SMVS

MsgVisFlg,SMV10

DPTR, #TrmWDB+WDB_BgnRow
AMDDWMBi t, SMV3

A, #24

SMV4

A,#30

aDPTR, A

DPTR

aDPTR,A

MsgVisFlg

R2, #TrmWDB. SR.PAGE
WndVisFlg, SMV9

R3, #TrmWDB.AN.OFST
SMvV8

ar1,#01,SMV10
MsgVisFlg,SMV10

DPTR, #TrmWDB+WDB_BgnRow
AMDDWMBIi t, SMV6

A,#26

SMV7

A, #32

52

s
1
‘

~ o~ ~e e

~

~e o~

e w0

~ =

Indicates a bad param buffer
Indicates too many parameters
error return

Make message window invisible
if not taken

Adjust Termination start and
end row count

if compressed mode

Termination Def. Blk. Ptr
Window is visible if taken

Make message window visible
If msg window "is already
showing just return

In both normal and compressed
mode rows-are just after

Msg row in display

19-a

SMV7:

MOVX @DPTR,A
INC DPTR
MOVX @DPTR,A
SETB MsgVisFlg
MOV R2,#MsgWDB..SR.PAGE
JB wndVisFlg, SMV9
MOV' R3,#MsgWDB.AN.OFST.
SMV8:
MOV R1,#TOWHrdLoInd ; Write new TOWHrdLo Ptr
LCALL WrAm8052Reg
SJMP SMV10
SMV9:
MOV DPTR,#WndWDBO+WDB_NxtPag
MOV A,R2
MOVX @DPTR,A
INC DPH
MOVX @DPTR,A
SMV10:
SETB EXO0
INC R1
DJINZ Ré&4,SMV2
LCALL PlcCsr
RET
SMV11:
CLR A ; If an error was indicated
MOV CtlPtrHi,A : remove all traces of this
MOV CtlPtrLo,A H control
RET
’ . bttt v + + v h M
; end of C_Work

53.

79-a

“g8051"

TITLE * CALEB 0.00 System Utilities"

c_util ’ CALEB 0.00

r

;
H
i

. Copyright 1985 Advanced Micro Devices, Inc.
: .
;
;

This file contains the various system utilities used by the control routines.

NAME “System Utilities"
PROG.

GLB DlyTilEndFrm,PlcCsr,EraActEnd, EraBgnAct, CthlnkSpd,SupVar ChgCsrsiz
GLB SetCelWid,ChgCsrTyp

GLB DelRow_MovDn,DelRow MovUp,HidCsr, ShuCsr

GLB- InsRow_MovDn, InsRow_MovUp

GLB WrAm8052Reg,RdAmB052Reg,WrFntCel

GLB EraRow,ScrlUpDsp,ScriDnDsp, ScrlUpNewRow, ScriRtDsp,ScriLtDsp .

GLB SetForScriDn,SetForScrlUp,ScrlLtOne,ScriRtOne, FrcEraRow

GLB setaftscrlbn

GLB SetWndPos,NewCsr, Hal fSwap, BLdTrmRcb, Hidnd, Shwhind

_SKIP
INCLUDE C_MemMap
SKIP :

DLlyTilEndFrm: ; Delay until end-of-frame time starts

Ensures two character row times of nearly unimpeded processing time. This
routine works with the timer O interrupt to wait until near the end of the
frame (28 scan lines from the bottom). During this end-of-frame time the
Am8052 is-displaying information it has already fetched and needs the bus
only twice, each time to fetch only the termination row control block with
its single character and single latched attribute. Changes accomplished
during this time will not be visible until the next frame starts (at blank
time at the bottom of the screen). Thus, thére will be no distracting
interference with the Am8052.

P R N O LR TR Y]

In: none
‘Out:- _ hone

~ w

JB EndFrmflg,$.

; Ensure we're in middle of frame

JNB EndFrmFlg,$; Wait for end-of-frame interrupt
RET ; Exit

; .

FndCsrZon:
;....A......................................'....................................
Determines the type of zone (visible or invisible) containing the active
position. It also calculates the number of columns to the first column
of the next zone to the right. This value is used to-speed advancing the
cursor following a simple character input. .
In: ActCol active position's column within display’
ActRow active position's row within display
Out: CsrZonflg set if cursor is visible, cleared-if invisible
CsrZonCnt distance to next zone rightward)
Bad: A,RO,PSW

Me me N M e N NE % Se we s

JB MsgActFlg, FC23
CLR C

MOV . A,ActRow

SUBB A, VisRow

Jc FCz5

JB WndActFlg,FCz2
JNB WndVisFlg,FCz2

;skip if in message

= # rows down from top
of screen
skip if "above" top of screen
skip if in window
;skip if window not visible -
;in background, window visible

~e we w0 3

MOV RO,A) ;RO = # screen row
SUBB- A,#WND_TOP_MRG = # rows down in window
Jc FCZ3 ;skip if above top of window
SUBB A, #WND_VIS_HGT = # rows down below window
JNC FCZ1 ;skip if below window

;in background, in window row range
CLR C
MOV RO,ActCol ;RO = current. column
MOV A,RO ;A = # columns right of visible

SUBB A, VisCol H left side -
Jc Fcz8 ;done if left of screen

€9-a

XCH

suBB
Jc
susB
Jc
MoV
SJMP

FCcz1:
MoV

FCZ2:

" susB
JINC

FCz23:
CLR

SuBB
Jc
FC24:
suBB
Jc
FCZ5:
CLR
FC26:
Mov
JNB

* SUBB

SJMP
FCz7:

SuBB

‘FCz8:

CLR

- SJMP
FC29:

JNB

JNB

FCz10:
JNB
JNB

A,RO
A,WndCol

FCz9

A, #ND_VIS_WID
Fcz8)
A,RO

FCZ4

A,RO
A,Dsphgt

FC26

c
A,ActCol
A,VisCol
Fcz8

A,DspWid
FC29

A,ActCol)
WndActFlg, FCZ7

A,#IND_BUF_WID
Fcz8

A,#BGD_BUF_WID

CsrZonFlg
FCcz12

MsgActFlg,FCZ10

MsgVisFlg, FC28

wWndActFlg, FCZ11
WndvisFlg,FCz8

;hold visible col in RO
;A = # cols into window
;done if left of window
;A = # cols right of window
;done if beneath window
;A = visible column
;skip to check vs screen right
;reset A for linkage
;A = screen row
;check if beneath screen
;A = # rows beneath screen
;skip if beneath screen
;row is visible background or message
;check if left of screen

+A = visible column

;done if left of screen
;check if right of screen

;A = # cols right of screen

;done if visible on screen
;not in visible screen row

;buffer widths bound zones

;A = current column

;skip if window is not active
;window is active

;zone extends to window end

;window is not active
;zone extends to buffer end
;eursor is not visible

if msg is active check if

visible, adjust CsrZonFlg
accordingly

’
’
’

; do the same for the window

FCzZ11:

SETB CsrZonFlg scursor is visible
FCz212:
CPL A ;A is zone remaining count
INC A
MOV CsrZonCnt,A
RET
N rr ++4+4+4 + +
NewCsr:

Assigns the new active position from the given location and updates the

current row page address.

In:

H
H
H
;
H
H
; Out:
H
H
H
H
;
H

JNZ
Mov
SJMP
NC1:
SUBB
2z
JNC
MOV
MoV
SJMP
NC2:
MoV
NC3:
MoV
MOV
ADD
Mov

R2

R3

ActCol

ActRow

CurRow
A,P2,RO,R1,PSW

A,BgnRow
NC7

A,ActRow
NC8

NC2
P2,BgnRow
A,R2

NC3

P2,CurRow

R1,A

A, Rcboff

A, #RCB_RowPag
RO,A

new active row position
new active column position
active column position
active row position

active row page address

’
’
’
’

; Determine direction of movement
Compare new row to old

Jump if they are the same
Jump if new is below old
Start at first row if new is

D R TR

.

Ready for comparison below
Check new active row

Jump if not at first row

Get page address of first row

and go assign new position

above old and count down to

new row

; Set up for search

.
.
’
1

Save number of rows to skip
Get offset into active RCBs

Count difference from old row

of next RCB's page address

ready for search

|

%79-a

NC4:. T ; For each row skipped
CJINE A,BtmRow,NC5 =~ Jump if row is not bottom vis
MOV- A,RemRow Set .for remaining rows

SJMP NC6 and continue search
NC5: ’
MOVX A,Q@RO ; Get next row page address
NC6:
MOV P2,A ; Point to row
DJINZ R1,NC4 ; Loop if more to skip
NC7:- ; Assign new position
MOV CurRow,A ’ ; New current row page address
MOV ActRow,R2 : ; New &ctive row position
NC8: ; New row same as old

MOV ActCol,R3 ; New active column position

; NOTE: This routine falls through to "PlcCsr" below.

PlcCsr:

R A
; Sets the cursor in the main definition block. The cursor is shown (enabled)
; or hidden (disabled) dependiné on the type of zone (visible or invisible)

; containing the active position. However, nothing is done if a smooth scroll
; operation is in progress.

H .

; In: ActCol active position's column within display

; " ActRow active position's row within display

; Out: BgdMDBO main definition blocks modified

: BgdMDB1

H (see also FndCsrzZon)

: Bad: A,DPTR,RO,R1,R2,R3,PSW

H

; NOTE: This routine must immediately follow "NewCsr" and immediately

; precede "ShwCsr*, with "HidCsr* immediately after that.
Jetensassacsscaccncnas

JB vrtScrlFlg,PC1 ;exit if vert smooth scroll
JNB - HrzScrlFlg,PC2 ;skip if not horz smooth scroll
PC1: ' N
RET
Pc2:
LCALL FndCsrZon
JNB CsrZonFlg,HidCsr

;need to recalculate zone
;jump if cursor not visible -

MOV DPH,#BgdMDBO. SR.PAGE

MOV RO,#BgdMDBO.AN.OFST+MDB_Cux
MOV R1,#BgdMDB1.AN.OFST+MDB_Cux
CLR €

;set page for main blocks
;RO -> cursor x, block 0
;R1 -> cursor x, block 1

MOV -A,ActCol ;A = # columns right of visible
SUBB A,VisCol H left margin

ADD A,ColAdd ;A = screen column

MOV DPL,RO .

MOVX @DPTR,A " ;set the x position of cursor
MOV DPL,R1 ' '

MOVX . @DPTR,A .

INC RO ;advance ptrs to cursor y

INC R1 _

MOV A,ActRow ;A = # rows down from top
SUBB A,VisRow ' H of screen

ADD A,RowAdd

MOV DPL,RO

MOVX @DPTR,A ;set the y position of cursor
MOV DPL,R1

MOVX @DPTR,A

; NOTE: This routine falls through to "ShuCsr" below.

ShwCsr:

Jececrecnccacecstcaasansarasnnsanas ceeseeesressessesnscancaasassasnnncennassten
; ‘Sets up for, but defers, enabling the Am8052 X-Y cursor.

; In: (none)

; Out: (none)

; Bad: (none)

; NOTE: _This routine must immediately follow "PlcCsr".

feaccascucsssosssa e cescescsceaaacanssenssoncse [

JB vrtScrlFlg,SsC1 ; Exit if vertical or
JB HrzScrlFlg,SC1 H horz smooth scroll going on
SETB CsrShwFlg ; Defer until vertical retrace
SC1: ~
RET ; Exit
] Pt

S9-a

HidCsr: ; Remove cursor for hidden positions

Disables the AmB052 X-Y cursor so tﬁat the active position is not marked.
In:~ (none)
Out: (none)

Bad: A,DPTR,R1,R2,R3

NOTE: This routine must immediately follow "ShwCsr".

P L R TR TR T

CLR . CsrsShwFlg ; Ensure no cursor
CLR CsrSetflg®
MOV R1,#ModReg2Ind
LCALL RdAmB052Reg

Need Mode Register 2
read from Am8052

H
MOV. A,R2 ; Get high byte and
CLR ACC.7 : reset CUE bit to disable the
MOV R2,A ; X-Y cursor then put it back
LCALL WrAm8052Reg H and write it to Am8052
RET ; Exit
; # + e+t ++ 4444 + +
EraActEnd:

Erases from, and including, the active position through the end of the
active row. The erased positions will contain spaces with the current
attribute.

~e w0 w0 e e

MOV A, CurRow
MOV P2,A .

JNB - WndActFlg,EAE1 Test if in window or Background

~e s

SETB ACC.4 Build window attribute page ptr
MOV R5,A
MOV A, #40 ; max count for window row
SIMP EAE2 :
EAE1:) '
SETB ACC.5 : ; Build Bgd attribute page ptr
MOV RS,A
MOV A,#128 ; Max count for background row -
- EAE2:
CLR C

SUBB
MoV
MoV
MoV
ADD
MoV
Mov
EAE3:
MOVX
INC
DJNZ
MoV
MOV

ADD
INC
Mov

EAE4:
MOVX
INC
INC
DJNZ

Mov
JNB

SJIMP
EAES:
JNB
MoV
ANL '
SJMP
EAE6:
MoV
ANL
EAE7:
ADD
MoV
EAE8:
MOVX
CLR
SUBB

A,ActCol
R6,A
R7,A
A,Chroff
A,ActCol
RO,A
A'#l '

ar0,A

RO
R6,EAE3
P2,RS
A,Atroff
A,ActCol
A,ActCol
A

RO,A
A,CurAtr

aR0,A

RO

RO .

R7,EAE4
P2,#B8gdActCntBuf.SR.PAGE
A,RS

MsgActFlg,EAES

RO, #MsgActCnt .AN.OFST
EAES

WndActFlg,EAES

RO, #WndActCntBuf .AN.OFST
A, #00FH

EAE7

RO, #8gdActCntBuf .AN.OFST
A,#01FH

A,RO
RO,A

A,aRO
c
A,ActCol

99-a

Jc EAE9

MOV A,ActCol
"MOVX 8RO,A
EAES:
RET
r A i -
‘EraBgnAct:

Erase from, and including, the first position in the active row through the
active position. The erased positions will coptain spaces with the current
attribute. ’

MOV A,CurRow

". MOV P2,A
JNB “WridActFlg,EBA1
SETB ACC.4
SJMP EBA2

EBA1:
'SETB ACC.5

EBA2:
MOV RS5,A
MOV A,ActCol
INC A °
MOV R6,A
MOV R7,A

- MOV- -RO,Chroff
MOV A #' ¢

EBA3: .
MOVX &RO,A
INC RO
DJINZ -R6,EBA3 .
MOV P2,RS5
MOV RO,AtrOff
INC RO
MOV A, CurAtr

EBE4:
MOVX &R0, A ’ ~
INC RO
INC- - RO

DJNZ - R7,EBE4

MOV P2,#BgdActCntBuf.SR.PAGE
MOV A,RS
JNB MsgActFlg,EBES
MOV RO, #MsgActCnt.AN.OFST
SJMP EBE8
EBES: R
JNB © WndActFlg,EBE6
MOV RO, #indActCntBuf.AN.OFST

ANL A,#OOFH
SIMP EBE7
EBEG:
MOV RO,#BgdActCntBuf.AN.OFST
ANL A, #O1FH
EBE7:
ADD A,RO
MOV RO,A
EBES:
MOVX A,aRO
SETB €
SUBB A,ActCol
- INC EBE9
CIR A
MOVX &R0, A
| EBE9:
RET .
; Sttt

FrcEraRow:

D L L L L L L L R R PR

MOV R6,A

MOV DPH,#BgdActCntBuf.SR.PAGE
JNB MsgActFlg,FER1

MOV DPL,#MsgActCnt.AN.OFST

MOV R7,#128
SIMP FER4
FER1:

JNB WndActFlg, FER2
MOV DPL,#WndActCntBuf.AN.OFST

10

L9-d

This routine falls through to "EraRow" below.

MOV R7,#40
SJMP FER3
FER2: . ‘
MOV DPL,#BgdActCntBuf.AN.OFST
MOV R7,#128
FER3:
ANL A, #01FH
ADD A,DPL
MOV DPL,A
FERG:
MOV A,R7 .
MOVX aDPTR,A
MOV A,R6
; NOTE:
H
EraRow:
Jeeenenanan
H
; attributes).
H
; In: A
; Out:
; Bad: A,DPTR,P2,RO,R4,R6,R7
Jecacscsccscensos cascisescencsanas
MOV P2,A
JNB MsgActFlg,ER1
SETB ACC.5
MOV Ré4,A
MOV DPTR,#MsgActCnt
. SJMP ER4
ER1:
MOV R4,A
JNB° WndActFlg,ER2
SETB ACC.4
MOV DPTR,#WndActCntBuf
SJMP ER3

11

Erases the given row to a blank condition (i.e. all spaces with the current

page address of row
active count update

‘;put page address in ptr

;skip if not msg row
;message row

;R2 = attribute page

;ptr to active char count
;do the erase
;check for window
;put character page in R2
;skip if not in window
;window row
;A = attribute page
;ptr to active character counts

ER2:

;must be background

SETB ACC.5 ;A = attribute page
MOV DPTR,#BgdActCntBuf ;ptr to active character counts
ER3:
XCH A,R4 ;put attrib page in R2
CLR ACC.7 ;get row number in A
ADD. A,DPL ;index DPTR to correct count
MOV DPL,A H for this row
ER4:
MOVX A,aDPTR ;fetch the active character cnt
Jz ER7 ;skip if none
MOV R6,A ;R6 = R7 = Active count
MOV R7,A ;(one for char and one for attr)
CLR A ;Active count set to 0
MOVX @DPTR,A
MOV RO,Chroff ;RO = offset of first char
MOV A, #n ;A = blank character
ER5: ;blank characters Lloop
MOVX @aR0,A ;blank one character
INC RO ;next character
DJNZ R6,ERS
;done with character blanking
MOV P2,Ré4 ;attribute page selected
MOV RO, Atroff ;attribute offset in RO
INC RO ;select lower attribute byte
MOV A,CurAtr ;current attributes
ER6: i
MOVX- @RO,A ;set lower attribute byte
INC RO ;next attribute
INC RO
DJINZ R7,ER6 .
;done with attribute clear
ERT7: ’
RET
H + ++: ++ + + ++ ++ +
HidWnd:

Hides the window if window is visible, if the message window is visible

’
H
; it maintains its visibliity.
.) .
H R1,R2,R3

H

89-0-

JB MsgVisFlg, HW1 MOV R3,#ndWDBO.AN.OFST

MOV R2,#TrmWDB.SR.PAGE . SJMP SW4

MOV R3,#TrmWDB.AN.OFST - SW3:

SJMP HW2 : . MOV R2,#WndWDB1.SR.PAGE
HW1: MOV R3,#WndWDB1.AN.OFST

MOV R2,#MsgWDB.SR.PAGE SWh:

MOV R3,#MsgWDB.AN.OFST) . MOV R1,#TOWHrdLoInd
HW2: : . LCALL WrAm8052Reg .

MOV R1,#TOWHrdLolInd K SW5:]

LCALL WrAm8052Reg RET

RET

. T SARRH
: 3 ' ' BldTrmRcb:
ShwWnd: i R P teeeeesssacescasessatansannns feeenaeane
cesescesseecnn ceeeann Ceneannenn P - Writes a-new termination row control block when activating a different

JB MsgVisFlg,SW1 JNB MsgActFlg,BTR1
MOV R2,#TrmWDB.SR.PAGE MOV DPTR,#BgdVarBuf+(ExtRow-CurAtr)
MOV R3,#TrmWDB.AN.OFST . MOVX A,aDPTR
SJMP SW2 . : MOV TrmRow,A)
SWi:) SJMP BTR2 -
MOV R2,#MsgWDB.SR.PAGE : BTR1:
MOV R3,#MsgWDB.AN.OFST, ’ MOV TrmRow,ExtRow
SW2: : BTR2:
MOV DPTR, #WndWDBO+WDB_NxtPag ' MOV TrmOff,RcbOff ,
MOV A,R2 . MOV P2, TrmRow ; When the background is to be
CLR EXO0 ’ - MOV RO,RcbOff ; active it must have a
MOVX ~@DPTR,A : MOV A,#80H
<INC DPTR MOVX @RO,A H properly initialized Term.
MOV A,R3 § : INC RO . ; this will be the Window dsp-
MOVX @DPTR,A INC- RO : EXtRow.
INC. DPH MOV A, TrmRow H Termination RCBs point to
MOVX @DPTR,A R MOVX aRO,A H themselves, with a segment '
DEC DPL i H count of one, a hidden
MOV A,R2 . INC RO . H count of zero, and a visible }
MOVX @DPTR,A : MOV - A, TrmOff : count of one.
SETB EXO0 ' MOVX @RO,A
JB CurWDBFlg, SW3 - INC RO . -

MOV R2,#WndWDBO.SR.PAGE CLR A)

13 14

69-0

MOVX
INC
INC
MOVX
INC

MOVX
INC
INC
MOVX
INC
MOVX
INC
INC
INC
Mov

‘INC

‘MOV

MOVX

INC -

CLR
MOvX
INC
MOVX

CINC

Mov
MOVX
INC
MOV
MOvX
Mov
Mov
CLR
MOVX
INC
Mov
MOvX
SETB
Mov
CLR
MOVX
DEC

aR0,A
RO

aRO,A
RO

ar0,A
RO

‘RO

aR0,A

RO

aR0,A

RO

RO

RO
A,#TrmAtr.SR.PAGE
aRO,A

RO

A, #TrmAtr.AN.OFST
ar0,A

RO

A

aRr0, A

RO

arR0,A

RO
A,#NrmRRB.SR.PAGE
aRro,A

RO i

A, #NrmRRB.AN.OFST
aRO,A

DPTR, #TrmWDB+WDB_RowPag
A, TrmRow

EXO0

aDPTR,A

DPTR

A, Trmoff
aDPTR,A | -
EX0 ‘
DPTR,#MsgRCB+RCB_RowOf f
EXO0 :
aDPTR,A

- DPL

15

MoV
MovX
SETB
JB
JB
MoV
SJMP
BTR3:
MoV
MOVX
BTR4:
MoV
MoV
MOV
CLR
MOVX
INC
MoV
MovX
SETB
JB
JNB
MoV
SJMP
BTR5:
Mov
MOVX
BTR6:
Mov
MoV
MoV
CLR
MOVX
INC

MoV -

Movx

SETB -

RET

A, TrmRow
aDPTR,A

EXO0
WndActFlg,BTR3
MsgActFlg,BTR3
A,BtmRow

BTR4

DPTR, #BgdVarBuf+(BtmRow-CurAtr)
A,aDPTR

DPH,A -
DPL, #BgdRCBO.AN.OFST+RCB_RowPag
A, TrmRow ’
EX0

aDPTR,A

DPTR

A, Trmoff

aDPTR,A

EXO0

MsgActFlg,BTRS

WndActFlg,BTRS

A,BtmRow

BTR6

DPTR, #WndVarBuf+(BtmRow-CurAtr)
A,@DPTR

DPH,A
DPL,#WndRCBO.AN.OFST+RCB_RowPag
A, TrmRow

EX0

aDPTR,A

DPTR

A, Trmoff

aDPTR,A

EXO0

0L-Q

;
HalfSwap:

; Copies display dependent variables to external memory

; .

; In: R3 Out going pointer page

: R4) ™ Out going pointer offset
; Out: = external memory at R3:R4 '

; Bad: P2,A,RO,R1,R2 :

MOV - P2,R3 ;set page register
MOV A,R4 ;set external offset
MOV RO,A
MoV R1,#CurAtr ;set internal pointer
MOV R2,#(DspWid-CurAtr) . icount of dependent var

HS1:
MOV A,aR1 ;move one byte .
MOVX @RO,A
INC RO ;next byte
INC R

© DINZ R2,HS1
RET

. o o o + +

SwpVar:

Moves a set of display dependent variables to external storage
then moves in a new set of dependent variables from a another
external location.)

In: R3 Out going pointer hi
R4 - Out going pointer lo
RS In coming pointer hi
R6 . In coming pointer lo

out: internal display dependent variables
external memory at R3:Ré4
Bad: P2,RO,R7

.
'
’
.
’
0
.
,
.
’
'
’
'

NOTE: R1 is preserved

MOV ~ A,R1 ;save R1

PUSH ACC

MOV P2,R3 ;set ouput page.
MOV A,R4 ;set output offset
MOV RO,A

17

;set internal address
;count of variables

MOV R1,#CurAtr
MOV R7,#(DspWid-CurAtr)

sv1: ;move out loop
MOV A,aR1 ;move one byte
MOVX @RO,A
INC RO ;next byte
INC R

DJINZ R7,SV1 .
;done with move out

MOV P2,R5 ;set input page
MOV A,R6 ;set input offset
MOV RO,A :

MOV R1,#CurAtr
MOV R7,#(DspWid-CurAtr)

;set internal address
;count of variables

sv2:) ;move in loop

MOVX A,aRO ;move one byte

MOV aR1,A

INC RO ;next byte

INC R1

DJNZ R7,SV2

;done

POP ACC ;restore R1

MOV R1,A

RET
; PN N
SetCelWid:
Jectneesenaavecrtaenatenanananns [feeeseenaaan cheassessecassenanaenann
; Sets the upper attribute byte for all positions thus changing the character
; widths uniformly. .) ~
; ° .
; In: A upper attribute byte
; Out: all attributes (upper byte only)
; R1 set to this byte
; Bad: P2,RO,R2,R3

MOV R1,A ;set R1 to attribute byte

MOV P2,#BgdAtrBuf0.SR.PAGE ;bacground start page

MOV R2,#32 ;31 backgrd + msg rows
SCW1: ;bgrd and msg row loop point

Mov RO, #BgdAtrBuf0.AN.OFST
MOV .R3,#128

;attribute offset
;character count

.-G

SCW4:

ar0,A

;bgrd and msg char loop point

MOVX _iset attribute byte
INC RO ;next attribute
INC RO
DJINZ R3,SCWé
;done with row
INC P2
DJINZ R2,SCW1 ;next row
;done with bgrd and msg
MOV P2,#WndAtrBuf0.SR.PAGE ;window start page
MOV R2,#15 ;window row count
SCW2: Ewindou row loop point
- MOV RO, #indAtrBuf0.AN.OFST ;attribute offset
MOV R3,#40 ;character count
SCW3: . ;window character loop point
MOVX @RO,A ;set-attribute byte
INC RO ;next attribute
INC RO
DJNZ R3,SCW3
. ;done with row
INC P2
‘DINZ R2,SCW2 ;néxt row
o ;done with window
RET
" ++ + rr + i+
ChgBlnkSpd:

Mov
Mov
MOVX
MOV
MOVX
RET

BlnkByt
(none)
P2,R0,R1,A

A,BlnkByt
DPTR, #BgdMDBO+MDB_BLnk
aDPTR,A

DPTR, #BgdMDB1+MDB_BLnk
20PTR, A :

new blink control byte

;replace blink control

ChgCsrSiz:

Jeasanscsasesssnsscusecscssacsnnanaas tesacscassnsesseanassensaes esscerecaenanean
; Translates the internal cursor size representation (in the form of 2

; nibbles) to the row redefinition block representation of two five-bit

; fields stored in a 16-bit word;

H

; In: CsrSiz variable defining new sfze

; Out: normal row redefinition block cursor bytes

; Bad: A,P2,RO,R1,R2

;set rwo redef location
;R2 = cursor end

MOV DPTR,#NrmRRB+RRB_CursHi
MOV A,CsrSiz

ANL A, #OFH
MOV R2,A
MOV A,CsrSiz ;R1 = CsrSiz rotated left 1
JRL A :
MOV R1,A
ANL A, #001H ;most sig cursor start bit
MOVX @DPTR,A ;written in high byte
INC DPL . ;next byte - .
MOV - A,R1 ;upper three bits of start in A
ANL A,#OEOH
ORL A,R2 ;eursor end joined in
MOVX @QDPTR,A ;write lower byte
RET
’ + + + + ++++ ++++
ChgCsrTyp:
Jeseecasacscacsansentaansaassanaaneesessaas e nesatReeREsNERRRAR RN aRERET S Py
; Changes the cursor type bits in mode register 2
; .
; In: RS cursor ‘type bits (bits 1 and 2)
; Out: Mode Register 2- bits 9 and 10 modified
; Bad: A,R1,R2,R3
P teecerasteseieannesesactaanaanaen feeseeseanaensaananans

MOV R1,#ModReg2Ind
LCALL RdAm8052Reg

;mode register 2 index

MOV: A,R2 ;high byte of mode register 2
ANL A, #OF9H skeep all but bits 1 and 2
ORL A,R5 ;get these from RS

MOV. R2,A © ;write it back

\ 20

cL-a

LCALL WrAm8052Reg
RET

'

@
DelRow_MovUp:

MOV A,ExtRow
LCALL FrcEraRow

. MOV A,Rcboff
ADD A,#RCB_RowPag

MOV DPL,A
MOV A,ExtRow
MOV DPH,A
CLR EXO0
MOVX @DPTR,A
INC DPL

MOV - A,RcbOff
MOVX @DPTR,A -
MOV DPH,EndRow
MOVX @DPTR,A
DEC DPL

MOV’ A,ExtRow

N
MOVX - @DPTR,A .

SETB .EXO0

MOV. EndRow,A

MOV A,DPH

CJNE A,BtmRow,DRMU1

MOV.- A,EndRow

MOV RemRow,A
DRMUT: |

MOV A,BgnRow
CJNE A, CurRow,DRMU2

MOV ExtRow,A
MOV DPH,A
MOVX A,aDPTR

MOV BgnRow,A
MOV CurRow,A
MOV A,ExtRow
CINE A, TopRow,DRMUS
SJMP DRMU7
DRMU2: ’
MOV DPH,A
/MOVX A,30PTR

21

; Erase extra row

; Make extra row point to itself

Make end row point to extra row
thereby adding extra row to
end of display

~e = ow

Extra row becomes new end row
Compare old end row to bottom
visible row, jump if differ
New end row
is also new remaining rows

P TR TR

; Bottom row not at end of display

; Start at first row of display
; Jump if not currently at begin
; New extra row is old begin row
; Point to it

; and get row following it
H as new first row of display
; and new current row

; Compare old begin row to top

; visible row, jump if differ
; Else handle non-critical cases

i Current row not at top of display

; Point to row
H and find row following it

CJNE

MoV
CJNE
MoV
MoV
MoV
CLR
MOVX
MoV
‘MOVX
MoV
MoV
MOVX
INC
MOV -
MOVX
SETB
RET

DRMU3:

MOV
MOVX

MOvX
MoV

. suMp

DRMU4:
CJINE
MOV
CJNE
MOV
MOV
MOVX
MOV
RET

DRMUS:

DRMU6:
MoV
CJNE

A,CurRow,DRMU4

ExtRow,A
A,BtmRow,DRMU3
A,RemRow
BtmRow, A
CurRow,A
EXO0
@DPTR,A
DPH,A
A,@DPTR
RemRow,A
A, TrmRow
aDPTR,A
DPL

A, Trmoff
aDPTR,A
EX0

R6,DPH
DPH,A
A,@DPTR
DPH,R6
@DPTR,A
CurRow,A
A,ExtRow
DRMU6

A,BtmRow, DRMU2
A,RemRow

A, CurRow, DRMU2
EXtRow,A
DPH,A

A,3DPTR
RemRow, A

A,@DPTR

DPH,A
A, TopRow,DRMU10

B TR T T

e e w0 wd w o

Jump if not current row

old curr row is new extra row

Jump if not at btm visible row

Special case at bottom, old

remaining row to new bottom
and new current rows

Make row before bottom point
to new bottom (i.e. old .
remaining row) and following
“row becomes new rem row

Make new bottom row point
to termination row

;. Exit

; Current row found, not at bottom

; Following row is
; new current row

Change linked list to delete
Assign new current row)
Set up to’

scan rest of list

~e we we

; Current row not found yet

; Jump if not at bottom visible
; Compare old remaining row

; to current, jump if differ
; Old curr row is new extra row
; Point to it -

H and following row

; is.new remaining row

; Exit after special case

; Adjust rest of linked list

22

: Get following row

Point to following row
Jump if not top visible row

€L-a

DRMU7:
MOV
MOVX
MoV
JNB
Mov
MOVX
MoV
MOVX
SJMP

DRMUS:
Mov
MOVX
MoV

. MOVX

DRMU9:
MoV
Mov

. SJMP
DRMU10:
CJINE
“Mov
MOV
' CLR
MOVX
INC
MoV
MovX
MoV
Mov
MavxX
DEC
MOVX
MOV

MOvX*

SETB
RET

DRMU11:
CJNE

RET

R7,DPL

A,@DPTR

TopRow,A
WndActFlg,DRMUB
DPTR, #¥ndWDBO+WDB_RowPag
a@DPTR,A

DPTR, #WNAWDB1+WDB_RowPag
@DPTR,A

DRMU9

DPTR, #BgdMDBO+MDB_RowPag
abPTR,A

DPTR, #BgdMDB 1+MDB_RowPag
aDPTR,A

DPH,A
DPL,R7
DRMUS

A,BtmRow,DRMU11
A,RemRow
BtmRow,A

EX0

ADPTR,A

DPL

A,Rcboff
QDPTR,A

_ DPH,RemRow

A, Trmof f
‘aDPTR,A
DPL.
A,@0PTR
RemRow, A
A, TrmRow
ADPTR, A
EX0

_A,EndRow, DRMUS

23

.~ we ow

H

H

i
; Scanni

~e w0 ow

; Scanni

Adjust new top visible row
., and make appropriate block
(MDB or WDB) point to it -

Set up to

scan through and

adjust rest of linked list
ng, not at top
Jump if not bottom visible row
old remaining row is

new bottom visible row

Make old bottom row point to

old remaining row

Make new bottom row point to
termination row

Row following old remaining row
is new remaining row

Exit

ng, not at top or bottom
Jump if not at end row -

Exit when we get to the end

.

DelRow_MovDn:

.
'
'
1
.
’
’
'
I

Deletes the current active row from the display and moves rows above it
downward. An erased row is inserted at the top of the display.

In:

CurRow, BgnRow, TopRow,

- BtmRow, RemRow, EndRow,

Out:

Bad:

Mov
LCALL
MoV
MoV
ADD

- MOV

MoV
MOVX
INC
MoV
MOVX
DEC
MoV
MoV

DBMM :

MoV
MOVX

" CJNE

MoV
MoV
MOV
Mov

. JNB
Mov
MovX
Mov
MOVX
SJMP

ExtRow

row variables

updated row variables

A,DPTR,R6,R7,PSW._ .

A,ExtRow
FrcEraRow
DPH,ExtRow
A,Rcboff

" A,#RCB_RowPag

DPL,A
A,BgnRow
aDPTR,A
DPL
A,RcbOff
aDPTR,A
DPL
A,DPH
BgnRow,A
’
DPH,A
A,3DPTR
A, TopRow,DRMD4
TopRow,DPH
R6,A
R7,DPL

- A,DPH

WndActF g, DRMD2

DPTR, #WndWDBO+WDB_RowPag
DPTR, A

DPTR, #WncWDB 1+WDB_RowPag
aDPTR,A ’
DRMD3

21

H
v
7
'
’
.
s
.

.
v

Extra row is
erased and
then its
RCB next
row field
is set so the
old beginning row
follows it

Old extra row .
becomes new beginning row

each row above top visible row

Ne me ma Ne Ne S e e S % we Se S

Point to the row

Get page of next row

Jump if next is not top row

New top row is preceding row

Save next row page address and
display's offset to next row

This row is new top row

Jump if not in window

Point into first window block
and set new top row

Point into second window block
and set new top row

Continue

.-

DRMD2:
MoV
MOVX
MOV
MOVX

' DRMD3:

MoV
MoV
MoV
SJMP

DRMD4 :
CJNE

_ SJMp

DRMD5:
MoV
MOVX
CJNE

© MoV
CJNE
MOV
Mov
CJNE
MOV
MOV

DRMD6:
MoV
CLR
MOVX

INC
MOV
MOVX
SETB
RET

DRMD7:
MoV
MoV
CLR
MOVX

INC
MoV
MOVX
MOV

DPTR, #B8gdMDBO+MDB_RowPag
ADPTR,A
DPTR, #8gdMDB1+MDB_RowPag

‘@PTR,A

DPH, A
DPL,R7
A,R6
DRMD8

A,CurRow,DRMD1
DRMD11

DPH,A

A,9DPTR
A,BtmRow, DRMD8
BtmRow,DPH
A,CurRow,DRMD7
CurRow,DPH
ExtRow,A
A,EndRow,DRMD6
EndRow,DPH .
RemRow, DPH

A, TrmRow
EX0
aDPTR,A
DPL

A, Trmoff
ADPTR,A
EX0

DPH,A
A,RemRow
EX0
a0PTR,A
DPL
A,Rcboff
aADPTR,A
RemRow, DPH

25

; Stil

; For

Point into first bgd block
and set new top row

Point into second bgd block
and set new top row -

Y

Point to this row's next

row pointer again
Restore page of next row
Go check for row to delete
above top visible row
Loop if not row to delete
Go delete row)
each row between top and btm vis
Point to the row
Get page of next row
Jump if next is not bottom row
New bottom row is preceding row
Jump if next is not row to del
New current row is preceding
New extra row is one to delete
Jump if next is not end row
New end row is preceding.row
New remaining row is set same

— S s s s

DI N LR LTI

; Delete old bottom row

; Make new,

bottom row
point to
display's
termination row

P T

; Exit

; New btm row (haven't found del rowl)

; Make
; old -bottom

; row point
; to old

; remaining
; row

; New rem row follows new btm row

MoV
MoV
MOVX
DEC
MoV
MOVX
SETB

" Mov
SJMP

DRMD8:_
CJNE
SJMP

DRMD9:
MOV
MOVX
CJNE
MoV
MOV
MOV
MOV
MOVX
RET

DRMD10:
CJNE
DRMD11:
MOV
MOV
MOV
MOVX
MoV
MOVX
- RET

\

DPH,BtmRow
A, Trmoff
aDPTR,A
DPL .
A, TrmRow
QDPTR,A
EX0
A,RemRow
DRMD9

A CurRow,DRMD5
DRMD11

DPH,A
A,@DPTR

‘A, EndRow,DRMD10

CurRow,DPH
EndRow,DPH
ExtRow,A
A,DPH
@DPTR,A

A,CurRow,DRMDS

CurRow,DPH
ExtRow,A
DPH,A
A,30PTR
DPH, CurRow
aDPTR,A

Nt Ne Se setwe e

'

Make new
bottom row
point to
-display's
termination
row

Resume with new remaining row .
and go check for row to del
between top and btm vis' rows
Loop ‘if not row to delete
Go delete row
bottom visible row
Point to the row
Get page of next row
Jump if next is not end row
New current row is preceding
New end row is preceding row
New extra row is one to delete
Make end row
point to itself
Exit

not to end row
Loop if not row to delete

Delete row (no special updates) -

'
'
'
.
’
.
'

New current row is preceding
New extra row is one to delete
Get
page of following row
New current row points to row
after old current (deleted)
Exit

'

InsRow_MowUp:

MoV
LCALL
MoV
MoV
ADD
MoV

A,ExtRow
FrcEraRow
DPH, CurRow
A,RcbOff

A, #RCB_RowPag
DPL,A

26

SL-Q

MOVX
MoV
INC
MOVX
MoV
MOVX

MoV
MovX

MoV
MoV
CJNE
MoV
MOV
CJNE
MOV
MoV
JNB
MoV
MOVX
Mov
MOVX
RET

IRMU1:
MoV
MOVX

- Mov
MOVX

IRMU2:

. RET

IRMU3:

- MOVX
MoV
MoV
CJNE
MoV
MoV
SJMP
IRMU4:
_ MovX

A,@DPTR

R6,A

DPL

A,@0PTR
DPH,ExtRow
aDPTR,A

DPL

A,R6

aDPTR,A

R5,ExtRow
A,BgnRow

ExtRow,A
A,CurRow, IRMU3
CurRow,R5
BgnRow,R5

A, TopRow, IRMU2
TopRow, RS

A,R5 N
WndActFlg, IRMUT
DPTR, #IndwDBO+WDB_RowPag
ADPTR,A
DPTR,#WndWDB1+WDB_RowPag
aDPTR,A

DPTR, #8gdMDBO+MDB_RowPag
@DPTR,A
DPTR, #BgdMDB1+MDB_RowPag
@DPTR,A

DPH,A

A,QDPTR
BgnRow,A

A,DPH

A, TopRow, IRMU4
R6,A

R7,DPL

IRMUS

A,@DPTR
27

Mov
CJNE
MoV
MoV
CJNE
MoV
SJMP
IRMUS:
MOVX
IRMU6:
Mov
JNB

- MoV
MOVX
MOV
MOVX
SJMP

IRMUT:

MoV
“MovX
MOV
MOVX
IRMU8:
MoV
MoV
MOV
SJMP

"IRMU9:

CJINE
SJMP
IRMU10:
MOVX

MoV

CJNE
CJNE
MoV
CJNE
MOV
SJMP
IRMU11:
MoV
MoV
CLR

DPH,A
A, TopRow, IRMU9
R6,A

R7,DPL
A,CurRow, IRMU5S
A,R5

IRMUG

A,@DPTR

TopRow,A

WndActFlg, IRMU7

DPTR, #ndWDBO+WDB_RowPag
@DPTR,A
DPTR,#IndWDB1+WDB_RowPag
@DPTR,A

IRMUS

DPTR, #8gdMDBO+MDB_RowPag
@DPTR,A
DPTR, #8gdMDB1+MDB_RowPag
ADPTR,A

DPH,R6
DPL,R7
A,R6

IRMU13

A, CurRow, IRMU4
IRMU17

A,3DPTR

DPH,A

A,BtmRow, IRMU13
A, CurRow, IRMU11

_ BtmRow,RS

A,EndRow, IRMU17
RemRow,R5
IRMU15a

A,RemRow
BtmRow,A
EX0

28 .

9.-a

MOVX
INC
MoV
MOVX
MoV
MoV
MOVX
DEC
MOVX
MoV
MoV
MOVX
SETB
Mov
CJNE
MoV
Mov

-RET

IRMU12:
MoV
MOV
MoV
SJMP

IRMU13:
CJNE -
SJMP

IRMU14:
MOVX
MOV

IRMU15:
CJNE

IRMU15a:
MoV
SJMP

IRMU16:
CINE

IRMU17:

MoV
MOV
CLR
MOVX:
INC

@DPTR,A
DPL
A,Rcboff
@DPTR,;A
DPH,RemRow
A, TrmOoff
@DPTR,A
DPL
A,QDPTR
R6,A

A, TrmRow
@DPTR,A
EXO0
A,RemRow
A,CurRow, IRMU12
RemRow, RS
CurRow,R5

RemRow,R6
DPH,R6
ARG
IRMU15

A,CurRow, IRMU10
IRMU17

A,aDPTR
DPH,A

A,EndRow, IRMU16

EndRow, RS
IRMU17

A,CurRow, IRMU14

A,RS
CurRow,A
EXO0
ADPTR,A
DPTR
29

MOV A,RcbOff
MOVX @DPTR,A
SETB EXO0

RET

.

InsRow_MovDn:

MOV A, ExtRow
LCALL FrcEraRow
MOV 'R5,ExtRow

MOV DPH,R5
MOV A,Rcboff
MOV R7,A
"ADD A,#RCB_RowPag
MOV DPL,A
MOV _ A,CurRow
MOVX @DPTR,A
INC DPL
MOV - A,R7
MOVX . @DPTR,A
DEC DPL

MOV A,BgnRow
CJINE A, CurRow, IRMD1
MOV - BgnRow,R5
SJMP IRMD4

IRMD1:
MOV DPH,A
MOVX A,@DPTR
CJNE A, CurRow, IRMD3
MOV R6,A
MOV A,RS
MOVX @DPTR,A
SIMP IRMD4

IRMD3:
CJNE A,BtmRow, IRMD1
MOV A,RemRow
CJINE A, CurRow, IRMD1

MOV RemRow,RS

- IRMD4:
MOV CurRow,R5
MOV A,RS5

30

IRMD5:
MoV
-~ MOVX
CJINE
MoV
Mov
Mov
MoV
JNB
Mov
MOvX
Mov
MOVX
SJMP
IRMD6:
MoV
MOvX
> Mov
MovX
" IRMD7:
Mov
Mov
MoV
SJMP
IRMD8:
CJNE
IRMD9:
MoV
CJNE
IRMD10:
MoV
Mov
MoV
MoV
CLR
MOVX
INC
MOV
MOVX
SETB
RET

DPH,A

A,aDPTR

A, TopRow, IRMD8

TopRow, DPH

R6,A

R7,DPL *

A,DPH

WndActFlg, IRMD6
DPTR,#WndWDBO+WDB_RowPag
aDPTR, A
DPTR,#WndWDB1+WDB_RowPag
aDPTR,A

IRMD7

DPTR ,#Bs/deDBOi—MDB_RowPag
@DPTR,A
DPTR,#BgdMDB1+MDB_RowPag
aDPTR,A

DPH,A
DPL,R7
A,R6
IRMD5

A,BtmRow, IRMD12
BtmRow, DPH
A,EndRow, IRMD11

RemRow,DPH
EndRow,DPH
ExtRow,A
A, TrmRow
EX0
ADPTR,A
DPL’

A, Trmoff
ADPTR,A
EXO0

IRMD11:
MOV DPH,A
MOV A,RerRow
CLR ~EXO0
MOVX @DPTR,A
INC DPL
MOV A,RcbOff
MOVX @DPTR,A

MOV RemRow,DPH

MOV 'DPH,BtmRow

MOV A, TrmOff

MOVX @DPTR,A

DEC DPL

MOV A, TrmRow

MOVX @DPTR,A

SETB EX0

MOV DPH,RemRow

MOVX A,&DPTR
IRMD12:

CJINE A, EndRow, IRMD5
IRMD13:

MOV EndRow,DPH

MOV ExtRow,A

‘main and window def blocks
Bad: DPTR,P2,A,RO,R4,R7

top row page and smooth scroll ctrl

MOV A,DPH

MOVX @DPTR,A

RET
ScrlUpDsp:
; Scrall the display upward the given number of rows.
; In: A number of rows to scroll
; Out: vrtScrlFlg vertical scroll flag
; SwbBit window/bgrd scroll flag
; SudBit up/down scroll flag
; vrtScriCnt smooth scroll row count
H

JNB MsgActFlg,sup1
RET

;message area does not scroll

32

8L-a

SuD1:
Mov
JB

8
LCALL

sup2:
LCALL
DINZ
LCALL
MoV
JINB

MOV
MOVX
INC
MOVX
RET
SuD3:
MoV
MOVX
MOV
MOVX
RET
SUD4:
JNB
JB
JB
SETB
SJMP
SUD5:
JNB
JB
CLR
SJIMP
SUD6:
JB
JB
SUD7:
SETB
SuD8:
LCALL
" MoV

R7,A
AMDSCMBi t, SUD4

vrtScriflg,$
HidCsr

SetForScriUp
R7,SUD2

PlcCsr)

ARG
wndActFlg,Sup3

DPTR, #4ndWDBO+WDB_RowPag
aDPTR,A

DPH

aDPTR,A

'DPTR, #BgdMDBO+MDB_RowPag

ADPTR,A

DPL,#BgdMDB1.AN.OFST+MDB_RowPag

aDPTR,A

WndActFlg, SUD5
SwbBit,SUD6
vrtScriflg,$
SwbBit

sup7

SwbBit;SUD6
vrtscrlFlg,$
SwbBit

Sub7

SudBit,Sup8
vrtScriflg,$

sudBit -

HidCsr
A,R7

;save scroll count
;skip if smooth scrool

7Jump scroll

;wait for scroll in progress
;eursor hidden while scrolling
;call SetForScrlUp R7 times

;put the cursor back
;A = top visible row
;skip if not window

- ;scrolling in window

33

;set DPTR to point to one WDB
;row page is top visible
;now the other WDB

;scrolling in background
;set DPTR to main def first row
;set this to top visible page
;repeat for 'second main def

;smooth scrolling
;skip if not in window
;skip if scrolling in window now
;wait for scroll in progress
;set flag for scroll in wnd
;initiate scroll

ssmooth scrolling in background
;skip if scrolling in bgrd
;wait for scroll in progress
;clear flag for scroll in bgrd
;initiate scroll '

;scroll in progress)
;skip if scrolling up in pro
;wait for scroll down in prog

;initiate scroll
;indicate scrolling up

;add to scroll count
;eursor hidden while scrolling
;restore requested scroll count

A,vrtScricnt

ADD ;get new total vert scrl count
MOV vrtScrlCnt,A. .
JB vrtsScriFlg,sup1t ;skip if scroll -in progress
JNB CurMDBFlg,SUD9 ;skip to select current MDB
MOV RO,#BgdMDB1.AN.OFST+MDB_Scrl ;MDB1 if flag was set
SJMP SUD10 . .
SUD9:
MOV RO,#BgdMDBO.AN.OFST+MDB_Scrl ;MDBO if flag was clear
SuD10: . -
MOV P2,#BgdMDBO.SR.PAGE ;background MDB page’in P2
MOV A,ScriByt ;set the scroll byte in MDB
SETB ACC.0
MOVX @aRrO,A
JNB vrtScrlFlg,$;wait here for scroll to start
SuD11: ;exit
RET
SetForScrlUp:

In:
Out:

Bad:

L T S T

INC
MoV
ADD
MoV
MoV
MoV
CLR
_MOVX
DEC
MoV

(none)

R4

VisRow

row control blocks
TopRow

BtmRow

RemRow

DPTR,A

VisRow
A,Rcboff

A, #RCB_RowOff
DPL,A
DPH,BtmRow
A,Rcboff

EXO0

@OPTR,A

DPL

A,RemRow

Sets the vertical scroll row variables for a scroll up.
be called from an interrupt handler.

This routine may

top visible row

incremented

threading changed

advanced via. thread \
changed to old RemRow

advanced via thread

;move the top visible down

;DPL = offset of the field in the
; row control block which

H points to offset of next RCB
;DPH = bottom row page

;A = offset of row control block
;no, 8052 access for a moment
;set offset of next RCB

;now point to page of next RCB
;set page to rows remaining

34

6L-

MOVX @&DPTR,A ; beneath bottom

MOV - BtmRow,A ;first of old rem is new bot

MOV DPH,A ;set DPTR to new bottom

CJINE A,EndRow,SFSU1

SJMP SFSU2
SFSU1: .

MOVX A,aDPTR ;fetch page of following row
SFSU2:

MOV RemRow,A ;this is new remaining row start

MOV A, TrmRow :set bottom RCB ptr to

MOVX @DPTR,A ; termination RCB

INC DPL

MOV A, Trmoff

MOVX.- DPTR,A

SETB EXO0 ;can allow 8052 access now

DEC DPL ;set DPTR to top row RCB

MOV DPH, TopRow .

MOVX A,aDPTR ;old next row is new top row

MOV TopRow,A

MOV R4,A jreturn new ‘top row

RET)
e +
ScrlUpNewRow:

Scrolls the entire display up one row, inserting a blank row at the bottom

is done, depending on the Scroll Mode.

JNB -

SUNR1;
MoV

LCALL

MoV
ADD
MoV

CJINE
MoV
MoV

MsgActFlg, SUNR1T

A,ExtRow
EraRow
A,Rcboff
A,#RCB_RowPag
RO,A

A,EndRow

A,BtmRow, SUNR2

A,ExtRow
EndRow,A

H
; and deleting the row at the top. Either a jump scroll or a smooth scroll

35

;no scrolling in message row

.

;erase the extra row

;RO = offset of next RCB offset

;check if last RCB is bottom
;skip if not

;if so, make the extra

H the new last row

'

MoV
SMp

SUNR2:
MoV
MOV
INC
CLR
MOVX

-DEC

MoV
MOVX
SETB
MoV

SUNR3:
DEC
8
J8
LeALL.

LCALL

LCALL
MoV
INB

MoV
MOVX
INC
MOVX
SJIMP
SUNR4:
Mov
MOvX
MOV
MOVX
SJMp
SUNRS:
JNB

JB
JB
SETB
SJMP
SUNR6:
JNB

RemRow, A
SUNR3

-P2,EndRow
A,Rcboff
RO
EX0
ar0,A
RO |
A,ExtRow
aR0,A
EX0
EndRow,A

VisRow

AMDSCMBi t, SUNRS
vrtScrlFlg,$
HidCsr
SetForScrlUp
PlcCsr

ARG

WndActFlg, SUNRG

DPTR, #IndWDBO+WDB_RowPag

_@DPTR,A

DPH
ADPTR, A
SUNR12

DPTR, #BgdMDBO+MDB_RowPag
@DPTR,A

DPL,#BgdMDB1.AN.OFST+MDB_RowPag

A0PTR,A
SUNR12

WndActFlg, SUNRS
SwbBit, SUNR7
vrtScriflg,$
SwbBit

SUNRS

SwbBit, SUNR?

; and thus a remaining row

;last RCB is not bottom
;P2 is current end row
;A = row control block offset

;no 8052 access for a moment
;set offset in old end row
;set page in old end row

; to point to extra row

;8052 access OK now
;extra row is new end row

;skip if smooth scroll

;wait for scroll in progress

;cursor hidden while scrolling

;can now set for scroll up

;and replace curser

;A = top row page

;skip if in background
;Jump scrolling in window

;set top row in one window

; definition block 0 _

;now other WDB

;make new extra row

; jump scrolling in background
;set top row in main
; definition block 0
;repeat for main definition
H block 1
;make new extra row

~ ;skip if scrolling in background

;smooth scrolling in window
;skip if window scroll in prog
;wait for scroll in progress
;set scrolling in window flag

;smooth scrolling in backgi‘ound
;skip if bgrd scroll in prog
36 '

08-d

JB vrtScriFlg,$ ') ;wait for scroll in prog MOV BgnRow,A V 4 H beginning row
CLR SwbBit - » ;clear to indicate bgrd scrotll . RET C . .
SJMP SUNR8
SUNR7: . . ;same area scroll in progress s+ R . .
JB SudBit,SUNRY . ;skip if same type of scroll ScribnDsp:
48 - VrtscriFlg,$;wait for scroll in progress Teeesemreerieeeanes . eetereceeianaaas ceeereeees
SUNRS8:) ;initiate scrotl o ; scrolls the display downward the given number of rows.
SETB SudBit ;mark scroll up in progress H ‘ . : .
SUNR:) ;Int A number of rows to scrotl
) LCALL HidCsr) . ;cursor hidden while scrolling ; Out: VrtScrlFlg . vertical scroll flag
INC VrtScriCnt ;one more row to scroll ; SwbBit window/bgrd scroll flag
JNB CurMDBFlg,SUNR10 ‘ ;skip to correct main def H SudBit up/down scroll flag ,
MOV = RO,#BgdMDB1.AN.OFST+MDB_Scrl .~ ;RO = main def offset ; vrtScriCnt smooth scroll row count
" SJMP SUNR11 S H main and window def blocks top row page and smooth 'scroll ctrl
SUNR10: ; Bad: DPTR,P2,A,RO,R4,R7 E ‘ .
MOV RO,#BgdMDBO.AN.OFST+MDB_Scrl ;RO = main def offset S etesesesesasenenensestcceatesanannansnananaTancatsaseenensaseonunnnuunenananannn
SUNR11: ‘ ‘ : JNB MsgActFlg,SDD1 ;message area does not scroll
MOV P2,#BgdMDBO.SR.PAGE ;P2 = main def page . RET
MOV A,ScriByt . . ;set scroll byte in main def SDD1:
SETB ACC.0 MOV R7,A i ;save scroll count
MOVX @RO,A . : : _.JB AMDSCMBit,SDD4 : ;skip if smooth scroll
JNB VvrtScrlFlg,$;wait for scroll to start ; jump scrotl
©JB vrtScriNewFlg,$;wait for beginning row free . JB vrtScriFlg,$ ’ ;wait for scroll in progress
SETB VrtScriNewFlg ;mark beginning row not free LCALL HidCsr e ;cursor hidden while scrolling
SUNRT2: ~ ') SDD2: scall SetForScrdn R7 times ‘ '
MOV A,Rcboff ;RO = offset of nex row page LCALL SetForScriDn '
ADD A, #RCB_RowPag LCALL SetAftScriDn
MOV 'RO,A .) DJINZ R7,SDD2 .
MOV A,EndRow - . LCALL PlcCsr i ;put the cursor back
CJNE A,BtmRow,SUNR13 : MOV - A,R4 ;A = top visible row
SIMP SUNR14) . } JNB WndActFlg,SDD3 ;skip if not in window
SUNR13: .)) _) ; jump scrolling in window
MOV PZ,A .) : MOV DPTR,#WndWDBO+WDB_RowPag ’ ;set DPTR to point to one WDB
MOVX QROV,A‘ ’ ’) ‘ MOVX QDPTR,A ;row page is top visible
INC RO . Co. . INC DPH ;now other WDB -) ,
MOV A,RcbOff MOVX @DPTR,A) > : o
MOVX- RO, A ‘ : i RET ,
" DEC RO : o - SDD3:) ; jump scrolling in background
SUD{R14: - . ’) - MOV DPTR,#BgdMDBO+MDB_RowPag ;set DPTR to main'def first row
MOV A,BgnRow ;old beginning row becomes MOVX @DPTR,A ;set this to top visible
MOV ExtRow,A o : the extra row MOV DPL,#BgdMDB1.AN.OFST+MDB_RowPag ~ ;repeat for second main def
MOV - P2,A . ;P2 = new extra row MOVX @DPTR,A
MOVX A,aRO ;following row becomes new RET
37 - ‘38

18-

SDD4:
JNB

J8
JB
SETB
SJMP

SDD5:
JNB
JB
CLR
SJMP

SDD6:
JNB
JB

SDD7:
CLR

SDD8:
LCALL
MoV
ADD
MOV
JB
LCALL
JNB
MoV
MOV
JB
SETB
MoV
SJMP

SDD9:
CLR
Moy
SJIMP

SDD10: .

" MoV
MoV
B
SETB
MoV
SJMP

WndActFlg,SDD5

SwbBit,SDD6

vrtScriflg,$

SwbBit

sbD7 .

SwbBit,SDD6
vrtScriflg,$
SwbBit

SDD7

SudBit,SDD8
vrtScriFlg,$

;smooth scrolling
;skip if not in window
;smooth scrolling in window

:skip if scrolling in window now

jwait for scroll in progress
;set flag fro scroll in wnd
;initiate scroll

;smooth scrolling in background
;skip if scrolling in bgrd now
;wait for scroll in progress
;set flag for scroll in bgrd
;initiate scroll

;scroll in progress

;skip if scrolling down in prog

;wait for scroll in progress

" ;initiate scroll

SudBit

HidCsr

A,R7

A,VrtScriCnt
vrtScrlCnt,A
vrtScrlFlg,SDD13
SetForScr(Dn
WndActFlg,SDD10
R1,#TOWSftLoInd
R3,#WndWDBO. AN .OFST+WDB_RowPag
CurWDBFlg, SDD9)
CurWDBFlg
R2,#WndWDB1. SR . PAGE
SDD12

CurWDBFlg = -
R2, #WndWDBO. SR. PAGE
sbD12

R1,#TOPSftLolnd
R2,#BgAMDBO . SR . PAGE
CurMDBF Lg, SDD11

CurMDBFlg .
R3,#BgdMDB1.AN.OFST+MDB_RowPag
sop12 ’

39

;indicate scrolling down
;add to scroll count
seursor hidden while scrolling

;restore requested scroll count

;get new total vert scrl count

;skip if scroll in progress
;prepare new top row

*;jump if not in window
;setup for write to Am8052 reg
;offset into WDB top row ptr
;select alternate WDB page

;setup for write to Am8052
;backgrd MDB page in P2

;select alternate MDB top row off

;MDB1 if flag was set

SDD11:
CLR CurMDBFlg
MOV R3,#BgdMDBO.AN.OFST+MDB_RowPag

;MDB2 if flag was clear

sbD12:
MOV A,R4 ;new top visible row
MOV DPH,R2 :
MOV DPL,R3
MOVX a@DPTR,A
DEC R3
DEC R3

LCALL WrAm8052Reg
MOV P2,#BgdMDBO.SR.PAGE
MOV A,ScrlByt
SETB ACC.0 H MDB's
MOV RO, #BgdMDBO.AN.OFST+MDB_Scrl
MOV R1,#BgdMDB1.AN.OFST+MDB_Scrl
CLR EX0
MOVX @RO,A
MOVX - @R1,A
SETB EXO0
JNB VrtScriFlg,$

SDD13:
RET .

;MDB page in P2

;no 8052 access

;update scroll byte in both

while doing this

SetForScriDn:

Sets the vertical scroll row-variables for a scroll down.
be.called from an interrupt handler.

In: (none)

This routine may

the field in the

’
; Out: R4 top visible row
; VisRow decremented
H row control blocks threading changed
H TopRow moved up via thread
; BtmRow moved up via thread
; RemRow - changed to old reamining row
; Bad: DPTR,A A ’
DEC VisRow ;move the top visible up
MOV A,Rcboff ;DPL = offset of
block which

ADD A, #RCB_RowPag ; row control
. 40

8-

T

MOV DPL,A
MOV A,BgnRow
SFsD1:
MOV DPH,A
MOVX A,@DPTR

CJINE A, TopRow, SFSD1
MOV . R4,DPH -
MoV TopRou,R(o .
RET - '

; points to offset of next RCB
;A = beginning row page

;DPH = row page

;fetch’ the next row page

;cont until the top row is next
;make row before top

H the new top row

; ++
SetAftScriDn:

be called from an interrupt routine.

7

MOV A,Rchoff
ADD A,#RCB_RowPag

MOV DPL,A

MOV A,TopRow °
SASD1:

MOV DPH,A

MOVX A,@DPTR

CINE A,BtmRow, SASD1
MOV BtmRow,DPH
XCH A, TrmRow
CLR EXO0

MOVX a&DPTR,A
INC DPL

XCH A, Trmoff
MOVX @DPTR,A
SETB EXO

XCH A, TrmOff
XCH A, TrmRow

MOV DPH,A
MOV A,RcbOff
MOVX @DPTR,A
DEC DPL

MOV A,RemRow
MOVX @DPTR,A
MOV RemRow,DPH
RET

‘1

Sets the vertical scroll variables after a scroll down. This routine may -

'

ScriLtDsp:

R cetetenesessseanannnn sevosensanamsas .
; Scrolls the active display (background or message) left the given number of
; columns.

H ‘ e

;Int A number of columns to scroll

; Out: HrzScrlflg

H HrzDirFlg

; HrzDspFlg

H HrzPxLShf

; HrzFrmCnt °

H HrzFrmSet

; HrzScrlCnt ’

H (see also ScrlLtOne)

; Bad: A,RO,R1,R2,R3,R4,R5,R7

JNB WndActFlg,SLD1
RET
SLD1:
MOV R7,A
JB AMDSCMBit,SLD3
JB HrzScrlFlg,$
LCALL HidCsr
JB MsgActFlg,SLD2
JNB WndVisFlg,SLD2
LCALL HidwWnd
LCALL DLyTilEndFrm . -
SLD2: ;call ScrlLtOne R7 times
LCALL ScrlLtOne
DJNZ R7,SLD2
JB ~ MsgActFlg,SLD2a
LCALL SetWndPos)
JNB WndVisFlg,SLD2a

;can't scroll horz in window

;save scroll count in R7
;skip if smooth scroll

;wait for scroll in progress
;hide cursor while scrolling

LCALL ShwWnd .
SLD2a:)
LCALL PlcCsr ;replace the cursor
RET o
SLD3: ;smooth scroli

JNB MsgActFlg,SLD4. ;skip if not message area
;message area is active
JB HrzDspFlg,SLD5 ;skip if scrolling message area

2

£8-a

JB
SETB
- SUMP
SLD4:
JNB
JB
CLR
SJMP
SLD5:
JNB
B
SLD6:
CLR
SLD7:
LCALL
JB
JNB
LCALL
SLD7a:
MOV
ANL
RL
SWAP
JBC

MoV
INC
JNB

_CLR
susB
i
MoV
sLD8:
“ADD
SLD9:
MoV
SJHp
sLo10:
INC
MoV
MoV

;wait for scroll in progress

HrzScrlFlg,$

HrzDspFlg ;mark scrolling in message

SLD6 ;set scroll rates
;background is active

HrzDspFlg,SLD5 ;skip if scrolling in bgrd

HrzScrlFlg,$;wait for scroll in‘progress

HrzDspFlg ;mark now scrollin in bgrd

SLD6 ¢ ;set scroll rates °

HrzDirFlg,SLD7 ;skip if now scrolling left

HrzScrlFlg,$;wait for scroll in progress

HrzDirFlg ;mark scrolling left now

HidCsr

MsgActFlg,SLD7a

wndvisFlg,SLD7a

Hidwnd

A,ScriByt ;A = old scroll byte

A, #SCRL_RAT_MASK) ;extract scroll rate bits

A : ;move rate to upper nibble

A ;move rate to lower nibble

ACC.3,SLD10 ;skip if pixel every n frames

;scrolling n -pixels per frame
HrzFrmSet, #1 ' ;mark num-frames to next move
A ;convert to number per frame

AMDDWMBi t,SLD9 ;skip if normal width
»compressed display
4 ;check for 7 or 8 per frame
AH#T
sLb8 ;skip if 6 or fewer
A #-1 ;limit to 6 for frame
A #7 sconvert back to pixels per ‘frame
HrzPxIShf,A -;set this in the variable
SLD11 ;initiate the scroll

;scrolling 1 pixel every n frames
A ;A = number of frames
HrzFrmSet,A ;mark num frames to next move
HrzPxlshf,#1 ;mark single pixel shift

43

SLD11:

CLR ETO
JB HrzsScrlFlg,SLD12

;ensure no interruptions
;skip if scroll in progress
;now starting a scroll

MOV HrzFrmCnt,#1 ;initiate on next frame

SETB HrzScrlflg ;mark scroll in progress
SLD12:
MOV A,R7 ;add new request to old count

ADD - A, HrzScriCnt i
MOV~ HrzScrlCnt,A

SETB ETO

RET

;allow horz smooth scroll intr

ScriLtOne:

’
'
’
v
'
'
’
'
’
'

ssessssesrssscsncascssannsacseenranssasenanne cecescecsscscascssnasssncsereenns

Scrolls the active display (background or message) left one character
position. This routine may be called from an interrupt handler.

In: (none)

Out: VisCol incremented
row control. blocks
attribute of old leftmost visibles

Bad: DPTR,A,RO,R1,R2,R3,R4,R5

;skip if scrolling bgrd
;scroll the message

JNB MsgActFlg,SLO1

MOV DPTR,#MsgRCB+RCB_2nc+SEG_NumHid ;A = 2nd seg, number hidden
MOVX A,3DPTR * H in message area

MOV R1,A ;save old number hidden in R1
RL A ;double old number hidden

XCH A,R1 ;old number back in A

INC A ;one more hidden column

CLR EX0 -;no 8052 access while changing
MOVX @DPTR,A H to new hidden col count
INC DPL ;now decrement number visible
MOVX A,aDPTR ; in this segment

DEC A

MOVX @DPTR,A

MOV DPH,#MsgAtrBuf.SR.PAGE ;now set the ignore bit

MOV DPL,R1 . ; in the attribute of the
MOVX A,@DPTR H previously leftmost visible

By

78-a

SETB ACC.5 H character INC VisCol- N ;update horz scroll position
MOVX @DPTR,A - RET
SETB EXO0 ;now allow 8052 access
INC VisCol ;update horz scroll position : N RS e S ++
.RET) - . ScrlRtDsp:
SLO1: . i ;scroll the background | I TP eeeaeean et eeteeeeneeeeeeneeeeeeearaeeiaaaan
MOV DPH,CurRow ;use current row ; Scrolls the active display. (background or message) right the given number of
-MOV DPL,#&ngCBO.AN.0FST+RCB_2nd+SEG_'NunV|'s ; columns. : : .
MOVX A,aDPTR p ;get number visible in 2nd seg H .
JNZ sLo2 : iskip if not zero ;Int A number of columns to scroll
MOV DPL,#BgARCBO.AN.OFST+RCB_3rc+SEG_NumVis ; out: HrzScrlflg
MOVX ‘ A,@DPTR . ; ;get number visible in 3rd seg ; " HrzDirFlg
SLO2: g ; HrzDspFlg
DEC A - : ;reduce number visible H HrzPxLShf
MOV R5,A ;keep number visible in RS H HrzFrmCnt
DEC DPL . ;point back to number hidden ; HrzFrmSet
MOV . RO,DPL" ;save this ptr in RO ; HrzScrlCnt .
MOVX A,aDPTR : ;A = old number hidden ; (see also ScrlRtOne)
MOV R4,A ;R4 = old number hidden ; Bad: A,RO,R1,R2,R3,R4,R5,R7
INC R4 ;R4 = new number hidden Jesenccaannatannas sesetecasssunesessesasesnensatsenssesenanansanne
MOV A,VisCol : ;horz scroll position)
RL A « ;A = double above for attr offset JNB WndActFlg,SRD1) ;can't scroll horz in window
MOV R1,A. ;save old attrib offset in R1 _ RET
MOV R2,#BgdRCBO.SR.PAGE ;R2 is ptr to first RCB SRD1:
MOV R3,#BgdAtrBuf0.SR.PAGE ;R3 is ptr to first attribute MOV R7,A ;save scroll count in R7 ~
SLO3: ;row Loop point JB AMDSCMBi t,SRD3 ;skip if smooth scrotl
MOV DPH,R2 ;DPTR points to number hidden | JB HrzScrlFlg,$: : swait for scroll .in progress
MOV DPL,RO ; in this row. LCALL HidCsr
MOV A,RG , ;A = new number hidden ' -~ "JB MsgActFlg, SRD2 3 .
" CLR EXO . :no 8052 access while changing JNB WndVisFlg,SRD2 ‘ , } ’ :
MOVX @DPTR,A . ;set new number hidden LCALL HidwWnd ‘ :
INC DPL “;point to number visible LCALL DLyTilEndFrm
MOV A,R5 . ;set new number visible . SRD2: . ;call ScrlRtOne R7 times o
MOVX @DPTR,A . LCALL ScrlRtOne S P
MOV DPH,R3) ;DPTR points to attribute of DINZ R7,SRD2-. ‘
MOV DPL,R1 o ;' old leftmost visible JB. MsgActFlg,SRD2a
MOVX A,@DPTR . . ;change to ignore this character . LCALL SetWndPos ' . . - :
SETB -ACC.5 , .) JNB WndVisFlg,SRD2a i : L.
MOVX aDPTR,A ' ‘ LCALL Shwknd -
SETB. EXO0 " ;0K for 8052 access now SRD2a: . S :
INC R3 : .- inext row control block - LCALL PlcCsr . : . ‘;replace the currsor .
INC .R2 . “;next block of attributes RET * « R
CJINE R2,#BgdRCB30.SR.PAGE+1,SLO3 ' " ;continue until al 31 are done .
L5) .46

G8-a

SRD3:

JNB MsgActFlg,SRD4
“JB HrzDspFlg,SRDS
4B HrzScriFlg,$
SETB _HrzDspFlg ..
SJMP - SRD6
SRD4:
JNB- HrzDspFlg,SRD5
JB HrzScrlFlg,$
CLR HrzDspFlg ‘
SJMP SRD6
SRD5: -
JB HrzDirFlg,SRD7
~JB Hrzscrlflg,$.
SRD6: .
SETB HrzDirFlg
SRD7:. .
LCALL HidCsr
JB MsgActFlg,SRD7a
JNB WndVisFlg,SRD7a
LCALL. Hidwnd
SRD7a: -
MOV A,ScrlByt
ANL A, #SCRL_RAT_MASK
RL A
SWAP A
JBC ACC.3,SRD10
MOV HrzFrmSet,#1
INC A
JNB AMDDWMBit,SRD9
CLR C°
SUBB A, #7
Jc SRD8 -
MOV A,#-1
SRD8: K
ADD A, #7
SRD9: }
MOV HrzPxlshf,A
SJMP SRD11

;skip if background active
;scrotling in message
;skip if scrolling in msg
;wait for scroll in progress
,smark scrolling in msg
;set scroll rates
;scrolling in background
i ;skip if scrolling in background
;uait‘for scroltl in‘progress -
;mark scrolling in bgrd
;set scroll rates '
;now scrolling .
© ;skip if now scrolling right
;wait for scrott in progress
;initiate scrolling:
;mark scrolling right

;fetch scroll byte
;get rate in lower nibble

;skip if -1 pixel. per n frames
;scrolling n pixels per frame
;1 frame per scroll
;A = number of pixels per frame
;skip if normal
;compressed
;check for rate of 7 or 8

;limit rate to 6

;convert back to rate

;set pixels per frame
;initiate scroll

SRD10: ;scrolling 1 pixel per n frames
INC A ;A = frames per pixel
MOV HrzFrmSet,A ;set number of frames per scrl
MOV HrzPxlShf,#1 ;always one pixel shifted
SRD11: ;start scrolling ~
CLR ETO ;ensure no interruptions
JB HrzScrlFlg,SRD12 ;skip if scroll. in progress
. ;now starting a scroll *
MOV HrzFrmCnt,#1 ;initiate on next frame -
SETB HrzScrlFlg ;mark scroll in progress
SRD12: : .
MOV A,R7 ;add new request to old count
ADD A, HrzScrlCnt .
" MOV HrzSerlCnt,A
SETB ETO ;allow horz smooth scroll intr
RET X i
ScriRtOne:
; Scrolls the active display (background or message) right one character
;.position.. This routine may be called from an interrupt handler.
H -
; In: (none)
; Out: VisCol decremented
; row control bladcks
; attribute of old rightmost ignored
; Bad: DPTR,A,RO,R1,R2,R3,R4,R5
DEC VisCol ;visible column decremented
JNB~ MsgActFlg,SRO1 ;skip if not in msg '
;scrolling message
MOV DPTR,#MsgRCB+RCB_2nd+SEG_NumHid ;ptr to number hidden,. 2nd seg
MOVX A,@DPTR ;A = old number hidden
DEC- A ;reduce number hidden
MOV R1,A ;R1 = old number hidden
RL A ‘;double for attr offset
XCH A,R1 ;save attribute offset in R1
CLR EXO ;no 8052 access while changing
MOVX @DPTR,A
INC DPL ;increment number visible
MOVX- A,aDPTR

48

98-a

INC
MOVX
MOV
Mov
MOVX
CLR
MOVX
SETB
RET
SRO1:
Mov
MoV
MOVX
JINZ
MoV
MOVX
SRO2:
MoV
DEC
MoV
Mov
RL
Mov
INC
MOVX

Mov
MoV
Mov
SRO3:
Mov
Mov
MoV
CLR
MovX

Mov

MOVX-

MoV
_Mov
MOVX
CLR
MOVX

A
ADPTR, A

DPH, #MsgAtrBuf .SR.PAGE
DPL,R1

A,@DPTR

ACC.5

ADPTR; A

EXO

DPH, CurRow

7 NOoW poini: to attribute
; of old rightmost hidden

;make it visible

;0K for 8052 access now

;scrolling in background
;use current row (any would do)

DPL,#BgdRCBO.AN.OFST+RCB_3rd+SEG_NumHid

A,@DPTR.
SRO2

;check for hidden in 3rd seg
;skip if some hidden there

DPL, #BgdRCBO. AN .OF ST+RCB_2nd+SEG_NumHid .

A,@DPTR

RO,DPL

A

Ré,A

A,VisCol

A

R1,A

DPL

A,aDPTR

o

R5,A
R2,#BgdRCBO. SR. PAGE
R3,#BgdAtrBuf0.SR.PAGE

DPH,R2
DPL,RO
ARG
EX0
@DPTR,A
DPL
AR5
@DPTR,A
'DPH,R3
DPL,R1.
A,3DPTR
ACC.5
ADPTR,A

;else use 2nd segment

;save the pointer to hidden J
;decrement the number hidden
;save number in R4

shorz scroll position

;R1 = offset of attribute

H for new first visible
;point to number visible

;R5 = new number. visible

;R2 = first RCB
;R3 = first attribute vlock

;scroll row loop

;DPTR->number hidden in RCB

;A = new number hidden

;no 8052 access while changing
;update: number hidden

;point ‘to number visible

;set that from RS

;point to attribute of new 1st
; visible
;mark it visible

SETB - EX0 ;0K for 8052 access now

INC R3 ;next attribute block

INC R2 ;next RCB

CJINE R2,#BgdRCB30.SR.PAGE+1,SR03 ;continue through 31st row

RET)
H H++ ++ttttttd LB R A RIS A S e +
SetWndPos: : ; Set new window position

In:
Out:

.
.
0
'
.
’
'
'

Bad:

Mov
MOvX
JB
JB
Mov
SWPO:
MoV
JNB:
Mov
SJMP
SWP1:
Mov
SWP2:

CLR
Mov
SUBB
MoV .
INC
Mov
MOVX
Mov
MOVX
JNB
_Mov

Determines the current window position and sets the background's row control
block segments accordingly.

VisCol. background horizontal scroll position
BgdRCBO-BgdRCB30 segments updated .
wWndCol window position relative to background
Coloff updated when window is active
A,DPTR,RO,R1,R2,R3,R4,R5,R6,R7,PSW N

DPTR,#BgdvarBuf+(VisCol -CurAtr)

A,@DPTR ;

MsgActFlg, SWPO

WndActFlg, SWPO

A,VisCol R

RO,A

AMDDWMBi t, SWP1 ; Jump if normal mode

A, #68 ; Compressed window position
SWP2 ; and continue

A, #28 ; Normal window position
A,RO ;. Compute actual total offset
ACC.0 ‘ - ; aligned on word boundary
WndCol ,A H and keep it

A,RO ; Compute actual visible offset
R1,A - H and keep it ;

A ; Add one for invisible function
DPTR, #WndWDBO+WDB_BgnCol

DPTR,A

DPTR, #WndWDB1+WDB_BgnCol

aDPTR,A

WndActFlg,SWP3 * ; Jump if window. not active
ColAdd,A ; else save offset '

50

L8-A

* SWP3: i .
MOV R2,#40 ; Set visible width of window
ADD A,R2
DEC A
MOV DPTR,#WndWDBO+WDB_EndCol
MOVX Q@DPTR,A .
MOV DPTR,#ndWDB1+WDB_EndCol
MOVX @DPTR,A .
MOV A,#BgdChrBuf0.AN.OFST ; Start of bgd chr buffer -
"ADD. A, WndCol ; plus total offset is
MOV R4,A : 3rd seg chr ptr offset;»
ADD A,R2 H plus 3rd seg width is
MOV R6,A ; 4th seg chr ptr offset
MOV A, #BgdAtrBuf0.AN.OFST ; Start of bgd atr buffer
ADD A,WndCol ; plus twice
ADD A, WndCol ; total offset is
MOV R5,A " 2nd seg atr ptr offset;
ADD A,R2 ; plus twice
ADD A,R2 ; 3rd seg width is
MOV R7,A ; 4th seg atr ptr offset
ClR C ; Clear for below
MOV A,#128 g ; Width of background buffer
SUBB A, WndCol H minus total offset to window
SUBB A,R2 H minus width of window is
MOV R3,A H width of 4th segment
MOV DPH,#BgdRCBO.SR.PAGE ; Start at first RCB in memory

SWP4: ; For each background row control block

CLR EXO0 ; No interference from Am8052

MOV . DPL,#BgdRCBO.AN.OFST+RCB_2nd+SEG_NumHid

MOV A,RO) ; Horizontal scroll offset into

MOVX -@DPTR,A ’ ; 2nd seg hidden count

INC " DPL

MOV A,R1 ; Offset to window boundary into
© MOVX QDPTR,A ; 2nd seg visible count

; The second segment's character and attribute pointers never change.

MOV DPL,#BGdRCBO.AN.OFST+RCB_3rd+SEG_Numiid

CLR A ; -Zero into

‘MOVX @DPTR,A H 3rd seg hidden count
INC DPL

MOV A,R2 ; Width of window into
MOVX @OPTR,A ‘ ; 3rd seg visible count

51

MOV DPL,#BgdRCBO.AN.OFST+RCB_3rd+SEG_Chroff

MOV A,R4 ; Even boundary offset .into

- MOVX @DPTR,A . H 3rd seg character pointer
MOV DPL,#BgdRCBO.AN .OFST+RCB_3rd+SEG_Atroff
MOV AR5 . ; Corresponding offset into
MOVX Q@DPTR,A ;- 3rd seg attribute pointer
MOV DPL,#BngCBO.AN.OFSI*RCB_Ioth*SEG_NunVis
MOV A,R3 ; Remaining character count into
MOVX @DPTR,A ; 4th seg visible count

; The fourth segment's hidden count is zero and never changed.

MOV DPL,#BgdRCBO.AN.OFST+RCB_4th+SEG_ChrOff

MOV A,R6 ; Next boundary offset into
MOVX @DPTR,A ; 4th seg character pointer
MOV DPL,#BngCBO.AN.0FST4RCB_4th+SEG__Atr0ff
MOV A,R7 ; Corresponding offset into
MOVX @DPTR,A ; 4th seg attribute pointer
SETB EXO0 ; Allow Am8052 bus requests
-INC DPH . ; Next row control block
MOV A,DPH ; Check it and

H

CJNE A,#BgdRCB30.SR.PAGE+1, SWP4 jump if not finished

RET ; Exit

H
. RdAm8052Reg: N

Am8052 register number
high byte of value read
R3 low byte of value read

CLR EX1 ;ensure no Am8052 interruptions
CLR EXO0
CLR AmB052XfrFlg
MOV D.PTR ,#AmB052Ptr
MOV AR
MOVX a@DPTR,A
MOV DPTR,#Am8052RegLo

;give Am8052 address strobe
;point to Am8052 control reg
;indicate register to be read

;point to low data byte
52

88-Q -

MOVX - A,DPTR ;read low data byte
MOV R3,A : :
DEC DPL ;point to high data byte
MOVX A,20PTR ~;read high data byte
. MOV R2,A

SETB AmB0S2Xfrflg ;remove Am8052 address strobe
SETB EXO0 ;allow Am8052 interrupts
SETB EX1
RET

JH+ ++ + ++

sssssacsses seesecccccss cescsssscacsscnse eessssascscssnsas cecscasscscs

: Writes the given value to the specified register in the Am8052.

In: R1 AmB052 register number
R2 high byte of value to.be written
R3 low byte of ‘value to be written

Out: (none) : .

Bad: A,DPTR

CLR EX1 ;ensure no Am8052 interruptions

CLR -EXO

CLR Am8052XfrfFlg ;give address strobe to 8052

MOV DPTR,#AmBOS2Ptr :set pointer to 8052 control

MOV A,R1 ;select register '

MOVX @DPTR,A)

MOV DPTR,#AmB052RegHi ;set ptr to 8052 data

MOV A,R2 ;set high byte

MOVX @DPTR,A ,

INC DPL ;set ptr to low data

MOV A,R3 ;set low byte

MOVX a@DPTR,A

SETB Am8052XfrFlg ;remove 8052 address strobe

SETB EXO0 ;allow Am80S2 -interrupts

"SETB EX1

RET -

53~

ceseasssnscssas secsene ssssessasccssssns

‘SetRowFntRdfPtr:
; Sets the first-15 visible row redefinition block pointers to the
; font loading redifinition blocks
H
; inputs none
; outputs none
Jeecsressnsenennsassscsssesisnann g

MOV P2, TopRow

MOV R2,#FntRRBO.AN.OFST -

MOV R3,#FntRRBO.SR.PAGE .

MOV RO,#Bgd'(CBO.AN.OFSTORCB_BngdfPag g

MOV R1,#BgdRCBO.AN.OFST+RCB_RowPag

MOV R4, #15
SRFRP1:

MOV A,R3

MOVX @RO,A ; Change page pointer in RCB

INC RO '

INC R3

MOV A,R2

MOVX @RO,A ; Change offset of pointer in RCB

‘DEC RO

_MOVX A,aR1

MOV P2,A

DJINZ R4,SRFRP1

RET
T +* + * TreT +v +
SetRowNmlRdfPtr:

Sets the first 15 visible row redefinition block pointers to the

normal redifinition blocks

inputs none
outputs none

-

MOV P2, TopRow -

MOV RO,#BgdRCBO.AN .OFST*RFB_BgcRdfPagM
MOV R1,#BgdRCBO.AN .OFST+RCB_RowPag

MOV R2,#15

;" Number of rows to update

68-Q

Mov
MOVX
INC
MoV
MOV
* DEC
MOVX
MoV
DINZ
RET

)

SRNRP1: ‘

A, #NrmRRB . SR . PAGE
_@RO,A

RO

A, #NroRRB . AN.OFST
aRO,A

RO

A,@R1

P2,A

R2, SRNRP1

; Change page pointer in RCB

; Change offset of pointer in RCB

H
WrFntCel:

Sesseeascnecesnsenne ceseessstactennaen
; Writes to a single character generator cell the pattern specified in the
; parameter buffer.

; In: A

; PrmCnt

; PrmBuf
MOV R4,A
MOV R6,CsrSiz
‘Mov CsrSiz,#OFFH
LCALL ChgCsrSiz
MOV ~ CsrSiz,R6
MOV P2,H#FntRRBO.SR.PAGE
MOV R6,#15 :
MOV R1,#PrmBuf
MOV - R2,PrmCnt
MOV A,aR1
INC R1
DEC- R2
MOV R3,A
MOV A,aR1
INC R1
DEC R2

C o9z WFC2
MOV R5,A

WEC1:

MOV

font select (=0 normal, <>0 compressed)
parameter count
list of parameters

RO, #FNtRRBO.AN.OFST+RRB_ApHi_SpcsHi

55

CLR

CLR
MOVX
INC
DEC
DJNZ
WFC2:

9z

WFC3:
MoV
INC
MOV
ANL

DJNZ

WFC4:
CLR
MOV
MOVX
CLR
MOV
MOVX
"INC
DJINZ
MOV
MOV
MOVX
MOV .
Jz
MOV
MoV
SJMP

A

@RO,A

RO, #FntRRBO.AN.OFST+RRB_AplLo_SbcsHi
A

aRO,A

P2

R6)

RS,WFC1 .

AR2
WFC4 -

A,aR1 .
R1

R7,A

A, #OF8H

A

RO, #FntRRBO.AN.OFST+RRB_ApHi_SpcsHi
aR0,A :
AR?

A, #OTH

A .

RO, #FNtRRBO.AN.OFST+RRB_ApLo_SbcsHi
aR0,A

P2

R6

R2,WFC3

A

RO, #FntRRBO.AN.OFST+RRB_ApHi_SpcsHi
aR0,A

A

RO, #FntRRBO.AN.OFST+RRB_ApLo_SbcsHi
aR0, A

P2

R6,WFC4

DPTR, #8gdFncChr0

AR3

P0PTR,A

ARG

WFCS

R6, #044H

R7,#010H

WFC6 56

; Set character cell value in
H dummy character

06-a

WFC5:
MOV
MOV

WFC6:
MOV
MOVX
MoV
LCALL
LCALL
MOV
MOV
CLR
MOVX
INC
MoV
MOVX
SETB
LCALL
CJNE
MoV
SJMP

WFC7:
MOV

WFC8:
CLR
MOVX
DEC
MOV
MoVX
SETB
LCALL
LCALL
RET

R6, #0421
R7,#090H -

DPTR,#8gdFncAtr0
A,20PTR

RS,A
DlyTilEndFrm
SetRowFntRdfPtr
DPTk,#BngncAtrO
A,R6

EX0

QDPTR,A

DPL |

AR7

a0PTR,A

EXO0

DLlyTilEndFrm

RS, #004H,WFC7

A, #010H

WFC8

A, #O90H
EXO0

P0PTR, A
DPL

AR5 S

QDPTR,A

EXO0
SetRowNmlRdfPtr
ChgCsrsiz’

; Wait until ready
; Reset RDFptrs to font RDF's

H it's thing, when known to

.

; Clean up"after ourselves

.

; end of

c_util -

57

16-Q

'

Copyright 1985 Advanced Micro Devices, Inc.

. "8051"
TITLE CALEB 0.00 Initial Font" .
; C_Font CALEB 0.00

This is the compact, binary representation for the default font to be loaded

; during initialization.)
NAME "Initiak Font"
PROG -
GLB Fnt_5x7 ; Initial compressed mode font
GLB. Fnt_7x9 ; Initial normal mode font
SKIP

Fnt_5x7: ; Initial compressed mode font
DB - 041H,000H,007H,070H,088H,088H,088H, 0F8H,088H , 088H ;A
DB 042H, 000K, 007H, OFOH, 088H , 088H , OFOH , 088H,, 088H , OFOH ; B
DB 000H, 000H, 000H ; end
SKIP

Fnt_7x9: -; Initial normal mode font
‘DB 021H,000H,009H,010H,010H,010H,010H,010H, 000H, 000H, 010,010 ; !
DB 022H,000H, 003H, 048H,048H, 048H A
DB 023H, 000H, 009H, 038H, 044H, 040H,040H, OEOH, 040H, 040H, 042H, OFCH ; #
DB 024H,000H, 009H, 010K, 07EH, 090H, 090H, 07CH, 012H, 012H, OFCH, 010H ;8
DB 025H,000H,009H, 040H, 0A2H, 044H,008H, 010H, 020H, 044H, 08AH, 004H %
‘DB~ ;&

'026H,000H,009H,070H,088H, 088H, 050, 020H, 052H, 08CH, 08CH, 072H

DB
bB
DB
DB
DB
DB
DB

DB .

DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
]
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

027H,000H , 004H , 0184, 018H, 010H, 020H
028H,000H , 009, 008H, 010H, 020K, 020H , 020H, 020H , 020H , 010H,, 008H
029H, 000, 009H, 020, 010K, 008H, 008H , 008H , 008H, 008H , 010H, 020H
02AH,001H,007H, 010H, 092H, 054H, 038H, 054H, 092H, 010H
028H,001H,007H,010H, 010K, 010H, OFEH, 010K, 010K, 010H

02CH, 004H, 004K, 030H, 030H, 020H, 040K

02DH, 004H, 001H, OFEH

02EH, 006H, 002H, 030H,, 030H

02FH, 001H, 007H, 002H, 004H, 008H,, 010H, 020H, 040H, 08O0H

030H,000H, 0094, 07CH, 082, 086H, 08AH, 092H , 0A2H, OC2H , 082H, 07CH
031H,000H, 0094, 010H, 030H,, 050H, 010H, 010H, 010H, 010H,, 010H, O7CH
032H,000H, 009H, 07CH, 082H, 082H,, 004H, 038H, 040H, 080H, 080H, OFEH
033H,000H, 009H, 07CH, 082H, 002H, 002H, 03CH, 002H, 002H, 082H, 07CH
034H,000H, 009H, 004H,, 00CH, 014H, 024H, 044H, 084H, OFEH, 004H, 004H
035H,000H, 009H, OFEH, 080H, 080H, OF8H, 004H, 002H, 002H, 084H, 078H
036H, 000H, 009H, 03CH, 040H,, 080H, 080H, OFCH, 082H, 082H,, 082H, 07CH
037H,000H, 009H, OFEH, 082H, 004H, 008H, 010H, 020H,, 020H, 020H, 020H
038H,000H, 009H, 07CH, 082H, 082H, 082K, 07CH, 082H , 082H, 082H, 07CH
039H, 000H, 009H, 07CH, 082H, 082H, 082H, O7EH, 002H, 002H, 004H, 078H
03AH,003H,, 006H, 030H, 030H , 000H , 000H, 030H, 030H

03BH,000H, 008H, 030H,, 030H, 000H, 000H, 030H , 030H , 020H , 040K
03CH,000H , 009H , 608H, 010H, 020H , 040K, 080K, 040H, 020H, 010K, 008H
03DH, 003H, 003H, 07CH, 000H, 07CH

03EH, 000H, 009H, 020K, 010H, 008H , 004H, 002H,, 004H, 008K, 010H, 020H
03FH,000H, 009H, 03CH, 042H, 042H, 042H, 002H, 00CH, 010H, 000H, 010H

040H, 000H, 009H, 03CH, 042H, 09AH, OAAH, OAAH, OBCH , 080H, 040H , 03CH
041H,000H, 009H, 038H, 044H, 082H, 082H, 082K, OFEH, 082H, 082H , 082H
042H,000H, 009H, OFCH, 042H, 042H, 042H, 07CH, 042H,, 042H, 042H , OFCH
043H,000H, 009H, 03CH, 042H, 08OH, 08OH, 080H , 080H, 080H , 042H, 03CH
044H,000H, 009H, OF8H , 044H, 042H, 042H, 042H , 042H , 0421, 044H, OF8H
045H,000H, 009H, OFEH, 080H, 080H , 080H, OFOH, 080H , 080H, 080H , OFEH

-046H,000H,009H, OFEH, 080H, 080H, 080H, OFOH, 080H,, 080H, 080H,, 080H

047H, 000H, 009H, 03CH, 042H, 080H, 080H, 080H, 09EH, 082H , 042H,, 03CH
048H, 000H, 009H, 082H, 082H, 082H, 082H, OFEH , 082H , 082H, 082H, 082H
049H, 000H, 009H, 07CH, 010H, 010H, 010H, 010K, 010H, 010K, 010H, O7CH
04AH, 000H, 009H, O3EH, 008H, 008H, 008K, 008H,, 008H , 008H , 088H, 070H
04BH, 000H, 009H, 082H , 084H, 088H , 09QH, OAOH, 0DOH ; 088H , 084H, 082H

D R TR TR TR TR

S St @e Ne Se o Ne owE oSe s w0

s s s

~ Vv

.~ =

D R TR

R e =T O TMMOO® >0

VO NOVSWN = O

~ ~

*

A

¢6-d

¢

DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
D8
DB,
DB

DB"

DB
‘DB

DB .

DB
DB
DB

b8
08
0B
0B
DB
DB
08
DB
DB
0B
0B

DB

DB
-DB
DB

04CH, DOOH; 009H, 080H, 080H,, 080H , 080H, 080H, 080H, 080H, 080H, OFEH
04DH, 000H, 009H, 082H, OCGH , OAAH, 092H, 092H, 082H, 082H, 082H, 082H
O4EH, 000H, 009K, 082H,0C2H, 0A2H, 092H, 0BAH, 086H, 082H, 082H, 082H
04FH,000H, 009H, 038H,,044H , 082H, 082H, 082H, 082H, 082H, 044H, 038H

050H, 000H, 009H ;0FCH, 082H,, 082H, 082H , OF CH/, 080H , 080H,, 080H , 080H
051H, 000H; 009K, 038H, 044H , 082H, 082H, 082H, 092H, 0BAH, 044H , 03AH
052H, 000H, 009H ; OFCH, 082H , 082H, 082H , OFCH, 090H , 088H, 084H , 082H
053H, GOOH, 009H, 07CH, 082H, 080H, 080H , 07CH, 002H, 002H, 082H,, 07CH
054H,000H, 009H, OFEH, 010H, 010H, 010H, 010H, 010H, 0104, 010H, 010H
055H, 000H, 009H, 082H, 082H, 082H , 082H, 082H , 082H, 082H, 082H, O7CH
056H,000H, 009H, 082H ,082H , 082H , 044H , 044H ,028H,,028H ,010H, 010H
057H, 000H, 009H, 082H, 082H, 082H,, 082H, 092H, 092H, OAAH, OC6H, 082H
058H, 000H, 0094, 082H, 082H, 044H, 028H , 010H, 028H , 044H , 082H , 082H
059H, 000H, 009H, 082H, 082H, 044H , 028H, 010H, 010K, 010H, 010K, 010H
05AH, 000K, 009H, OFEH, 002H, 004H , 008H , 010H, 020H, 040H, 080H , OFEH
05BH, 000H, 009H, 078H, 040H, 040H , 040H , 040H , 040H, 040H,, 040K, O78H
05CH, 001H, 007H, 080H, 040H, 020H, 010H , 008H, 004H , 002H

05DH, 000H, 009H, 078H, 008H , 008H, 008H , 008H, 008H , 008H,, 008H ; 078H
05EH, 000H, 003H, 010K, 028H, 044H -

05FH,008H,001H, OFEH

060H, 000H, 004H, 030H, 030K, 010H, 008H

061H, 003H, 006H, 078H, 004H, O7CH, 084H, 084H, O7AH

062H,000H, 009H, 080H, 080H, 080H , OB8H, 0C4H , 084H, 084H, 0C4H, 0BBH
063H,003H, 006H, O78H, 084H, 080H , 080H, 084H, 078H -
064H;,000H, 009H, 004H, 004H, 004H, 074K, 08CH, 084H , 084H , 08CH , 074H
065H, 003H, 006H, 078H, 084H, OFCH, 080H,, 080H , 078H

066H,000H;, 009H, 018H, 024H, 020H, 020H, OF8H, 020H, 020H, 020H, 020K
067H,003H, 009K, 074H, 08CH, 084H , 08CH, 074H, 004H, 004H, 084H, 078H
068H, 000H, 009H, 080H ; 080H, 080H , 0BBH, 0C4H , 084H, 084H , 084H, 084H
069H,001H, 008H, 010H, 000H, 030, 010H, 010H, 010H, 010H, 038H
06AH, 003H, 009K, 00CH, 004H, 004H, 004H, 004H, 004H, 004H,, 044H,, 038H
06BH, 000H, 009H, 080H, 080H, 080H , 088H, 090H , OAOH, ODOH , 088H, 084H
06CH, 000H, 009H, 030H, 010K, 010H, 010H, 010H; 010K, 0104, 010K, 038H
06DH, 003H,,006H , 0ECH, 0924, 092H, 092H,, 092H, 092H

OGEH, 003H, 006H , 0BBH, 0C4H, 084H, 084H , 084H, 084H
O06FH,003H,006H, 078H, 0B4H, 084H , 084H, 084H, O78H -

S = wa s we

Ne N3 NE Se NE NS S e N5 ME o Se o SE o Ss osa e s

D T T T

>= 'V M N =< X T <C -0 >®O T

oz=r

03B ~mxe wT@ -0 00T

DB
DB
DB

0B

DB
DB
DB
DB
DB
DB

DB

DB

- DB

DB
DB
DB
DB

070H, 003H, 009H , 0B8H, 0C4H , 084H',084H , OC4H, OBBH , 080H, 080H , 080H
071H,003H,009H, 074H, 08CH,, 084H , 084H , 08CH, 074H, 004H,, 004H, 004H
072H,003H, 006H, 0B8H , 0C4H , 080H, 080H, 080H , 0B0H

073H,003H, 006H, 078H,, 084H , 060H , 018K, 084H, 078H

074H,001H, 008H, 020H, 020H, OF8H, 020, 020H, 020H, 024H, 018H
075H,003H, 006H, 084H, 084H , 084H, 084H , 08CH , 074H _

076H, 003H, 006H, 082H, 082H, 082H, 044H, 028H, 010H

077H,003H, 006H, 082H, 092H,, 092H ; 092H, 092H , 06CH

078H, 003H,, 006H , 084H,, 048H,, 030H, 030H, 048H, 084H

079H, 003H, 009H, 084H, 0B4H, 084H, 084H, OBCH, 074H, 004K, 084H , 078H
O7AH, 003H, 006H, OFCH , 008H, 010H, 020H, 040H, OFCH

07BH, 000H, 009, 018H, 020H, 020H , 020H , 040H, 020H, 020H, 020H, 018H
07CH, 000H, 008H, 010H, 010H, 010H, 000H, 000H, 010H, 010H, 010K .
07DH, 000H , 009H, 030H,, 008H, 008H, 008H, 004H, 008H, 008H, 008H, 030H
O7EH, 001H,003H, 060K, 092H, 00CH N

O7FH,001H, 007H, OFEH, O7EH, 006H, 046H , 0C6H, OF6H, OE2H

000H, 000H,, 000K

e Ne Su o mE o se Ne o SE SE o Ne Ne Ne o Ne me we ws s owe

W AN X E<Cer®n 30T

Logo
end

; end of C_Font

€6-a

ugos5in

TITLE ¢ CALEB 0.00 Configuration"
;v +++4+ +
H
; C_Config - CALEB 0.00 .
H
; Copyright 1985 Advanced Micro Devices, Inc.
i N
; This file contains the extra EEPROM copyright claim-as well as the
; serial port configuration data. Thg locations defined in this module
; currently assume that the extra EEPROM is a 27128 (i.e. 16 Kbytes).
NAME "Configuration"
GLB Ex‘trannghtMsg‘ ; Resident claim in extra EEPROM
GLB DblBaudOpt ; PCON contents
GLB BaudRatCnt ; Timer one. value
ORG - O3FCOH
Extracpykghthg: ; Resident claim in extra EEPROM
DB " Copyright 1985 Advanced Micro Devices, Inc. "
ORG. 03FFOH
DblBaudOpt: DB 000H -
BaudRatCnt: DB OFDH

Hannasss ++

- ; end of C_Config

76-a

C_MemMap CALEB 0.00

Copyright 1985 Advanced Micro Devices, Inc.

This file, which is included in the other source files, defines several
constants of use in this implementation. It also defines the addresses
of all internal RAM variables, all external data struttures required by
the Am8052 and other external data control information. N

Ne Ne Se Ne Se me Se we s se s

+ TR ¥

; These are a few constants representing fundamental parameter‘s of the system.

DBL_BAUD_OPTION EQU OOOH
RATE_9600_BAUD - EQU OFDH

END_FRM_CNT_HI =~ EQU OFEH
END_FRM_CNT_LO ‘EQU - OBEH

; Some miscellaneous constants

.

‘DEL EQU O7FH

SKIP

The following define the structures used by the Am8052. The elemént symbol
is added to the address of the desired structure to obtain the address of
the particular byte to be processed.

; Main Definition Block

MDB_x0 EQU 0 ; Unused in linear address mode
MDB_RowAdrHi EQU 1 ; Unused high byte of 24-bit address
MDB_RowPag EQU 2 ; Page.of top visible background row
MDB_RowOf f EQU 3 ; Offset of top visible background row
MDB_Cux EQU 4 ; Horizontal position of cursor:
MDB_Cuy EQU 5 ; Vertical position of cursor
MDB_Fat EQU 6 ; Fetch fill attribute flag
MDB_FilChr EQU 7 ; Fill character code

MDB_Blnk EQU 8 ; Blink control fields

MDB_Scri EQU 9 ; Smooth scroll control fields
MDB_VrtVec EQU 10 ; Vertical interrupt vector
MDB_Scrivec EQU 11 ; Smooth scroll interrupt vector
MDB_Tslc ’ EQU 12 . ; Scan line count for top visible row
MDB_x13. EQU 13 ; Unused

; Window Definition Block

WDB_Scw EQU

0 ; Scroll window flag
WDB_RowAdrHi EQU 1 ; Unused high byte of. 24-bit address
WDB_RowPag EQU 2 ; Page of top visible window row
WDB_RowOff EQU 3 ; Offset of top visible window row
WDB_x4 EQU 4 ; Unused in linear address modé -
WDB_NxtAdrHi EQU 5 ; Unused high byte of 24-bit address
WDB_NxtPag EQU 6 ; Page of next window definition block
WDB_NxtOff EQU 7 ; Offset of next window definition blk
WDB_BgnRow EQU 8 ; Window placement first row
WDB_EndRow EQU 9 ; Window placement last row:
WDB_BgnCol EQU 10 ; Window placement first column
WDB_EndCol EQU 11 ; Window placement last column
greeeseeetaeeononns e eceseseeceeacasssccecaccaceaccccmescecancencancesescaanas
; Row Control Block
RCB_RdfLnk EQU 0 ; Link to row redefiniton block flag
RCB_RowAdrHi EQU 1 ; Unused high byte of 24-bit address
RCB_RowPag EQU 2 ; Page of next row control block
RCB_RowOff | EQU 3 ; Offset of next row control block
RCB_Seg EQU 4 ; Start of segments ’

G6-0a

RCB_1st
RCB_2nd
RCB.3rd
RCB_4th

NOTE:

.

SEG_NumHid

SEG_NumVis

SEG_Cont
SEG_ChrAdrHi
SEG_ChrPag
SEG_Chroff
SEG_x6
SEG_AtrAdrHi
SEG_AtrPag
SEG_AtrOff

NOTE:

~ S s s

RCB_x4é

* RCB_BgdRdfAdrHi

RCB_BgdRdfPag
RCB_BgdRdfOff

RCB_X26
RCB_MsgRdfAdrHi
RCB_MsgRdfPag
RCB_MsgRfOff

RCB_x16

RCB_WndRdfAdrHi

RCB_WndRdfPag
RCB_WndRdfOff

block.’

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

‘EQU

EQU

EQU
EQU
EQU
EQu

EQU
EQU
EQU

EQU

EQU
" EQU

EQU
EQU

4

1%

2

34 “

VOO NV SN = O

The element symbol for the row
end of each row control block) depends on the type of row control
Each display has a different size row control block (i.e.
they have different numbers of segments).

44
45,

46
47

24
25
26
27

14
15

16

17

CIRETRETRE TS

Se sa ows owe

Start of first segment (= RCB_Seg)
Start of second segment (if present)
Start of third segment (if present)

7
7
.
’

The segment element symbol (defined below) is added to the element
symbol defining the start of the desired segment (defined above).

Number of hidden chars in this seg
Number of visible chars in this seg
Continue flag (set if a seg folious)
Unused high byte of 24-bit address
Page of this seg's character buffer
oOffset of this seg's character buffer
Unused in linear address mode

Unused high byte of 24-bit address
Page of this seg's attribute buffer -
offset of this seg's attribute buffer

Ne wE Se Ne o NE e SE me s s

redefinition block pointer (at the

Unused in linear address mode
Unused high byte of 24-bit address
Page of redef block for bgd RCBs
Offset of redef block for bgd RCBs

S w0 s s

Unused in linear address mode

Unused high byte of 24-bit address
Page of redef block for message RCB
Offset of redef block for message RCB

Unused in linear address mode

Unused high byte of 24-bit address
-Page of redef block for window RCBs
‘Offset of redef block for window RCBs

Start of fourth segment (if present)

$RCB_x16

RCB_CLrRAfAdrHi

RCB_ClrRdfPag
RCB_CLrRAfOff

(already defined)

EQU 15
EQU 16
EQU 17

; Row Redefinition Block

; Unused in linear address mode

; Unused high byte of 24-bit address

; Page of redef blk for clr font RCBs

; Offset of redef blk for clr font RCBs

RRB_Tslc_NcsHi EQU © ; Scan line count/part of normal char start
RRB_NcsLo_Nce EQU 1 ; Rest of normal char start/normal char end
RRB_ApHi_SpcsHi EQU 2 ; Part of row attrs/part of superscript start
RRB_SpcsLo_Spce EQU 3 ; Rest of ‘superscript start/superscript end
RRB_ApLo_SbesHi EQU 4 ; Rest of row attrs/part of subscript start
RRB_SbcsLo_Sbce EQU 5 ; Rest of subscript start/subscript end
RRB_CursHi EU 6 ; Part of cursor start -
RRB_CursiLo Cure EQU . 7- ; Rest of cursor start/cursor end
RRB_Dr -UndHi EQU 8 ; Double height flags/part of underline
RRB_UndLo_Sund EQU 9 ; Rest of underline/shifted underline
R +

SKIP

.

StkBas
EndFrmFlg

AmB052BusReqFlg
AmB052BusAckFlg

; Internal RAM Variables

DATA 067H
BIT 0OCH
BIT P3.2
BIT P12

The definitions of the internal RAM variables are given below.
used for all control values during normal operations on the active dlsplay
and also for all system wide controls.

These are

; Variables used for fundamental system operations are defined here.

; Base of stack

; Set by timer 0 (end-of-frame) intr

Low when Am8052 wants bus (INTO*)
Cleared to give bus to Am8052

e ow

96-a

MemTstTmp

.
.
.
.

DATA O010H ; Used only during memory tests

The variables that are used for dispatching control to the various control
routines and special purpose routines (e.g. graphic character pl'acement)
are defined below. The dispatcher is also responsible for parsing control
sequences and decoding parameters. . -

DisStt DATA 010H ; Current state of dispatcher

o ; (the states are defined below)
DIR_CHR_STT EQU 000H ‘ - ; Direct (singl‘e;char level)
BGN_ESC_STT" - EQU 0O3H ; Escape sequencé (after ESC)
EXT_ESC_STT EQU 006H ; Extend ESC seq (w/intermediate)
BGN_CSI_STT EQU 0O09H ; Contrpi Sequence (after CSI)
PRM_CSI_STT EQU = 0OCH ; Sequence (params in CSI seq)
EXT_CSI_STT EQU OOFH ; Extend CSI seq (w/intermediate)
UNIMP_CSI_STT EQU - 012H ; Unimplemented (but valid) seq
PrmAcc DATA O11H ; Temporary parameter accumulator
PrmPvt DATA 012H ; Private parameter string introducer
PrmRep DATA 0134 ; Special repeat (first) parameter
"Prmcnt DATA 014H ; Number of parameters in sequence
PrmMaxFlg BIT OOFH ; ‘Set when parameter buffer overflows
PrmBadFlg BIT OOEH ; Set when a bad parameter is decoded
PrmBgnFlg- BIT OODH ; Set when beginning parameter string
PrmBuf DATA O4EH ; Decoded parameters
PRM_CNT_MAX EQU 18 ; Maximum number of parameters allowed
CtlPtrHi ' DATA O016H ; Address of control ‘or special
ctlPtrio DATA O17H ; routine last executed (for REP)
jémmmmmmeemecmecccaeaaas T

SKIP

These variables maintaifi the communications ring buffers. Three buffers
are defined: a host reception buffer for characters from the host, a host
transmission buffer for characters being sent to the host, and a keyboard
reception buffer for characters from the keyboard.

»

HstRevCnt DATA 04BH ; Number of chars received from-host
HstRcvInsOff DATA 04CH - ; Place to insert next char into ring -
HstRcvEXtOff DATA 04DH ; Place to extract next char from ring
NEAR_FULL_CNT EQU 3 ; Stop if less space remaining .
NEAR_EMPTY_CNT EQU 12 ; Start if fewer characters available
; NOTE: The actual host reception buffer is too large to place in internal ~

; RAM, so it is defined (later in this file) in external data meémory.

HstRcvBsyFlg BIT P1.6 ;-Set if too busy to rcv, clear if rdy -
: ; NOTE: This signal is inverted by

; the RS232 drivers so‘tha‘t

; a positive level indicates

H ready, negative level means

; don't send chars from host

There is currently no software support for the following variables.

; NOTE:
’
H They have only been defined for possible extensions. The affect
; these new capabitities would have on existing operations, and any
; necessary restrictions on their use, will need to be considered.
HstXmtFlg BIT. 0174 , Semaphore to lock out keyboard source
; characters while a software source
R ; sequence is being transmitted
HstXmtCnt DATA - 025H ; Number of ‘chars to send to host
HstXmtInsOf f DATA 026H ;-Place to insert next char into ring
HstXmtExtOff DATA 027H ; Place to extract next char from ring
HstXmtBuf 'DATA 064H ; Host transmission ring buffer-
I:lstthBsyFlg' BIT P17 ; Set when host is too busy to recei;/e
; NOTE: This signal is inverted by
; the RS232 drivers so that .
; . a positive level indicates
; ready, negative level means
; don't send chars to host
. .

L6-0

KbdRcvCnt DATA 028H Number of cha}-s received from keybrd The remaining display dependent variables are not copied. They are set

; H

KbdRcvInsOff DATA 029H ; Place to insert next char into ring ; after each change of active display.
KbdRcvExtoff - DATA 02AH ; Place to extract next char from ring . .
KbdRcvBuf DATA 060H ; Keyboard reception ring buffer DspWid DATA 038R ; Visible width of display (count)
KbdRcvRdyFlg BIT P1.5 ; Set when char ready from keyboard DspHgt - DATA 03CH ; Visible height of display (count)
R R R T R P P R ColAdd DATA O3DH ; Aids horz. cursor placement (index)

SKIP RowAdd DATA 03EH ; Aids vert. cursor placement (index)
R L ELRRL R R R e .

. . . RcbOff . DATA O3FH ; Offset of display's RCBs (offset)

; These are the display dependent variables. The first twelve are those which Chroff DATA 040H ; Offset of character buffer (offset)
; must be copied out to and in from external data memory with each change of Atroff DATA 041H ; Offset of attribute buffer (offset)
; the active display. An index variable is one which represents a zero origin ~ . .
; count from the beginning of something, a page variable contains a page TrmRow DATA 042H ; Termination RCB (page)
; address, an offset variable contains an offset into a page and acount Trmof f . DATA 043H ; Termination RCB (offset)
; variable represents a quantity (counting from one).

CurAtr . " DATA O2FH ; Attribute byte written to memory SKIP
: ; (composed of the following bits) R AL LR LD LIELEEEELILIEEEE LR semeeeened Ceie e

LitBit BIT O7EH : Highlight . . .

RevBit ‘BIT O7DH ; Reverse) ‘ ; The following variables are used to control various special features. The
SpsBit BIT O7CH ; Superscript ; first two are used to switch between two definition blocks in support of
SbsBit BIT * O7BH ; Subseript ; the Am8052 vertical smooth scroll feature. -

SundBi't © . BIT O7AH < ; strike-out (shifted underline) . :

UndBit . BIT 079 ; Underscore CurMDBFlg BIT 000H ; Set when alternate MDB is current
BlnkBit BIT - O78H ; Blink CurWDBFlg BIT O001TH ; Set when alternate WDB-is current
ActCol DATA 030H ; Active position horizontal (index) ; This group supports the message and window displays.

ActRow DATA- 031H ; Active position vertical (index)

CurRow DATA" 032H ; Active row control block (page) MsgActFlg BIT ~ 004H ; Set when message display is active
VisCol DATA 033H ; Horizontal 'scroll position (index) MsgVisFlg BIT 005H i Set when message display is visible
VisRow DATA 034H ; Vertical scroll position (index) : ' -

" BgnRow . DATA 035H ; First RCB in display (page) WndActFlg BIT 006H ; Set when window display is active
TopRow DATA 036H ; First visible RCB (page) . WndvisFlg BIT 007H ; Set when window display is visible

" BtmRow DATA 037H ; Last visible RCB (page) ‘ ‘
RemRow DATA 038H ; Remaining RCBs below. BtmRow (page) WndCol ‘DATA 044H ; Current bgd col of left window bound
EndRow DATA 039H ; Last RCB in display. (page)
ExtRow DATA 03AH ; Extra row (page)

86—

; The next group supports vertical and horizontal smooth scrolling.

vrtscricnt DATA 045H Number of rows to scroll

vrtScriNewFlg -~ BIT 0O0BH ; Used for new-line scrolling
ScriByt DATA 02DH ; Image of byte written to the MDBs

H (composed of the following bits)
Sr3Bit BIT O6EH ; Four bit field holding -current
Sr2Bit BIT 06DH ; smooth scroll rate (normally
SriBit BIT - 06CH H the rate ‘is changed by mask
SrOBit BIT 06BH ; and these names are unused)
SwbBit BIT O06AH ; Wnd/bgd vert smooth scroll
SudBit BIT 06%9H ; Up/down vertical smooth scroll
vrtScriFlg BIT 068H ; Set during vert smooth scroll
SCRL_RAT_MASK EQU O78H ; Mask for manipulating scroll rate
HrzScrlCnt DATA 046H ; Number of characters to scroll
_HrzFrmSet DATA 047H " ; Number of frames per scroll
HrzFrmCnt DATA 048H ; Number of frames until next scroll
HrzPxlShf - DATA 049H ; Number of pixels each scroll
HrzCurPxl DATA O4AH ; Current pixel shift
HrzDspFlg BIT O0O0AH ; Set when scrolling message display
HrzDirFlg BIT O009H ; Set when scrolling right :
HrzS¢:rl~Flg BIT 008H ; Set while doing horz smooth scroll

The following flag is used to indicate the current font selection for
remapping character codes to character font cell addresses.

‘
'

FntMapFlg BIT 014H ; Set when alternate font selected

SKIP

; The next two variables support the alterable cursor appearance and character
; blink features. :
CsrSiz DATA 02BH ; Cursor start/end lines (in nibbles)
BlnkByt DATA 02EH ; Image of byte written to the MDBs

; (composed of the following bits)

ChdBit . BIT O77H ; Character blink duty cycle
ChbBit1 BIT O76H ; Character blink rate high and:
' ; low bits (two-bit field)

ChbBit0 BIT O75H

CatbeBit
CxybeBit
CudBit
CubBit1

- CubBit0

BIT
BIT
BIT
BIT
BIT

074K
073H
0721
071H
070H

; Attribute cursor blink enable
; X-Y cursor blink enable

; Cursor blink duty cycle

; Cursor blink rate high and

; low bits (two-bit field)

; These aid in cursor placement in the special advance cursor code used
; after placing a character/attribute in display memory.

CsrZonFlg
CsrZonCnt

CsrShwFlg
CsrSetFlg

; The following support

BIT
DATA

BIT
BIT

010K
015H

011H
012H

the modes which

’
'
.
'
'

Set when cursor is in a visible zone

Amount cursor may be advanced until
it moves into the next zone

Defers showing the cursor until
second vertical retrace time.

are software selectable.

ModByt DATA 02CH ; Provides byte access to modes
VEMBit BIT 067H ; Vertical editing (downward/upward)
AMDDWMBi t BIT 066H ; Display width (normal/compressed)
AMDSCMBi t BIT 065H ;/scroll (normal jump/smooth)
AMDSPMBit BIT P1.1 ; Screen polarity (normal/reversed)
i (not part of regular mode byte)
SKIP ‘

; The following address
; possible to read from the keyboard.

Keybrd

XDATA 00001H

is used when accessing the keyboard. It is only

" ; Read character from keyboard

; The keyboard is enabled by holding a high Level on-a port 1 pin. When

; there is a character available from the keyboard, this fact is signalled
; by a high level on another port 1 pin (configured for input). The two

; pins are defined below. :

KeybrdEnbFlg

BIT

P1.4

10

.

High level enables the keyboard

66-0

D TR TR

The following addresses are used in accessing the Am8052 registers. The

order of operations is critical.

First,
register number should be written to .the AmB052 register pointer.

regardless of access type, the
Then

to write to.a register, the high byte of the 16-bit register value must

be written first followed by the low byte.

To read from a register, the

low byte must be read first followed by the high byte.

Am8052Ptr XDATA 04003H ;
Am8052RegH i XDATA 04000H . H
AmB052RegLo XDATA 04001H ;

'
’
.

AmMB052XfrFlg BIT

.
'

ModReg1Ind EQU 0O0OH ;
ModReg21nd EQU O001H :
AtrEnbInd EQU 002H ;
AtrRdfInd EQU 003H ;
TOPSftHiInd EQU" O004H ;
TOPSftLoInd EQU OO5H ;
TOWSftHiInd EQU OO6H :
ToWSftLolnd EQU O007H ;
AtrFlgind . EQU 008H ;
TOPHrdHi Ind EQU OO%H ;
TOPHrdLoInd EQU OOAH ;
TOWHrdHi Ind EQU - "0OBH ;
TOWHrdLoInd EQU OOCH :
DMABstInd EQU O10H ;
VrtWthind EQU O11H ;
VrtActlnelnd = EQU 012H ;

When reading or writing the Am8052, its

Address of pointer register
Address of high byte of data register
Address of low byte of data register

address strobe (AS*) must be held

low. This is accomplished by clearing the port 1 pin which is connected
to it before beginning the access and setting this pin when finished.

P1.3 ;

Connected to Am8052 pin AS*

The register numbers which are written to the Am8052 pointer register are

defined below.

Mode Register 1

Mode Register 2

Attribute Port Enable

Attribute Redefinition

Top of Page Soft Pointer (hi word)
Top of Page Soft Pointer (lo word)
Top of Window Soft Pointer (hi word)
Top of Window Soft Pointer (lo word)
Attribute Flag

Top of Page Hard Pointer (hi. word)
Top of Page Hard Pointer (lo word).
Top of Window Hard Pointer (hi word)
Top of Window Hard Pointer (lo word)
DMA Burst and Space

Vert Sync Width/Vert Scan Delay Reg
Vertical Active Lines

s Ne Na SE NE SE SE SE NI SIS S S NI S S N Se Se sa Sa S Se S s

013H

VrtTotLnelnd . EQU ; Vertical Total Lines
HsyncVintind EQU 014H ; Horz Sync Width/Vertical Event Row
HDrvInd EQU 0154 ; Horizontal Drive
HScnDlyInd EQU 016H ; Horizontal Scan Delay
HTotCntInd EQU O17H ; Horizontal Total Count
_HTotDspInd EQU 018H ; Horizontal Total Display
H + +4 Y
SKIP

The following are the locations of the structures used during normal Am8052
operations. There are three displays: background, message and window. The
background display is implemented as the Am8052 background and the others
are implemented as Am8052 windows. The latter can be enabled (made visible)
or disabled (made invisible). Structures to support these displays, as well
as others to support vertical smooth scrolling, horizontal smooth scrolling
and a loadable character font are all allocated at fixed locations and
initialized following the reset/self-test proceduré and after the character
generator RAM has been initially cleared. .)

The background display contains 30 rows of 128 characters each. In normal
mode, only 24 rows of 80 characters each are displayed. In compressed mode
all 30 rows, but only 120 characters, are shown. The undisplayed characters
are stored in display memory and can be viewed by scrolling. The background
display can be scrolled both vertically and horizontally. There is also an
extra row to support vertical smooth scrolling. '

The message display has a single row of 128 characters. Like the background
display, 80 characters are shown in normal mode (provided the message display
is enabled) and 120 characters are visible in compressed mode. The message
display can be scrolled horizontally to view all of its characters. Since

it is not vertically scrollable it has no need for an extra row. The message
display is implemented as an AmB052 window placed at the lowest row on the
monitor screen.

12

001-a

P N T

et Se Se NP ws NP SE o wa o Me Ss o Se Se e NE Se o Se SE NS Ss o SE N5 Ne Sa Si Sh o Ss o Ss o Se Se o Ne Spows ws s

The window display has 14 rows of 40 characters each. Regardless of mode, ; #eocemimm- R R #ocmmcmeens o e ceeecaen L +
only 7 rows and all 40 characters are shown. It can be scrolled vertically ; 80BO-> | | | | wWwBO |
to view all of its rows. It cannot be scrolled horizontally. Wwhen enabled, ; | | | e +
it is shown near the upper right corner of the monitor screen with portions ; 81B0-> | | | | wwpB1 |
of the background-display surrounding it. ; | | | Femmmmmnaaa +
; 8280-> | | | | mwB |
SKIP H | | | Hmmmemeenan +
; 8380-> | [I [TwoB |
Memory allocation is shown diagramatically in the figures below. ; | | | R ++
’ ; 84B0-> | | | | NRRB - |#|
oeeemeean T Ty O + : | | | e ot
8000-> | I | I ; 8580-> | | | | DNRRB" |x|
: : : : H | | | Heeeemenns -+
|] | | ; 86B0-> | | | | SURRB |x|
| BRCBO | BCHRO | - | ; | FRRBO | WRCBO | WCHRO Hoeveeeann ot
| : | : | (see next figure) | ; 8780-> | : | : : r : | SLRRB |x|
| BRCB30 | BCHR30 |- | ; | FRRB14 | WRCB14 | _ WCHR14. EERTRRPPS o
| I | I ; 8880-> | | I | -DURRB |x| ~
: : : : ; | | | LRERTEE R
[[I I ; 8980-> | l l | DLRRB - [x]
9E00°> | | I | P I | deceneanes
4eenee Aot + | ; 8ABO-> | | | | BTL |
9F00-> | MRCB |*|**] MCHR | | : | | | P
' 4eneees T RCEETTTEETTE Hommmeeesnecnees + ; 88B0-> | | | |BTR|xx| WTB|
A000-> | | F | | | s Y e SRR
I | ; 8CBO-> | | | . | BGDVARS |
| | P l | #riemeceenes
| BATRO | ; 8DBO-> | I I | MSGVARS |
| % | ; | | | dcennnens
| BATR30 | ; 8EBO-> | | | | WNDVARS - |
: H H $occeenn- LARRRR S bbb Focmmresese o - ssecceee LR AR ERS SEEE +
| | ; 8FBO-> | HRCV 1
BE0O-> | | HE R e e Rt R LR LR R +
R R LR R + ; 90B0-> | WATRO N
BFOD-> | . MATR ~ | : I , : [
e + ; | WATR14 2
* - message function character (1 byte), ; 9EBO-> | |-
message active count (1 byte), H Foomememe bt SR i LAk it SEEL LI R AR e+
message function attribute (2 bytes) ; 9FBO-> | BMDBO | BMDB1 |*|** | BACT | WACT |
** - message tab table (16 bytes)- H #ommmommeooen A LA i Db Bt SRR R R LR + ‘
' ’ H * - two background function-characters (2 bytes) <
: ** - two background function attributes (4 bytes)
H # - one termination blank .attribute (2 bytes)
; x - unused (13 bytes total)
13 i . , - 14

101-d

D R T T TR TR PR

D

D
P

OFST

’
.
’

BgdMDBO
BgdMDB1

P N TR T

These are the definitions used for all display memory. They are related to
-the actual, physical p‘érameter‘s of our external data RAM (i.e. amount and
location). .In this -implmentation, display memory is organized as 64 pages ~
of 256 Bytes each. This is the easiest way for the Am8751 processor to
treat external data. Each byte has an address consisting of two components,
its page and its offset within that page. By allocating similar structures
at the same offset jn different pages, and guaranteeing that none of them
cross a page boundary, we are able to manipulate addresses one byte at a
time. This is important since the processor has no 16-bit arithmetic
operations.

XDATA 08000H ; Base of external (display) memory

spMemBas

SP_MEM_SIZ EQU

AG_SIZ EQU

04000H ' ; Number of bytes of external memory:
Pi ;

00100H Number of bytes in a page of memory

; Shift right by this value extracts a
. H page address from a 16-bit addr
EQU OOOFFH ; Mask (and) with this value extracts
’ ; an offset from a 16-bit address

AGE - - EQU 8

. Here we define the main definition blocks. These control operations that
can be changed from one frame to the next. We need two of them to switch
‘between when doing a vertical smooth scroll of the background display.
Parameterizes the background display
(and supports smooth scrolling)

XOATA. 09FBOH ;
XDATA 09FBEH ;

Next we define the four window definition blocks in the system. These
control Am8052 window operations. There are two of them to switch between
when doing a vertical smooth scroll of the window display. Another is used
for the message display.. The last one is used to terminate the linked list
of window definition blocks (as required by the Am8052).

15

WndwDBO

Parameterizes the window display

XDATA O80F4H ; ’
WndwDB1. XDATA 081F4H ; (and supports smooth scrolling)
MsgWDB XDATA 082F4H ; Parameterizes the message display’
TrmWDB XDATA 083F4H ; Terminates the list of WDBs
e iieeeeeeeeecccieaosemeeeaeeaaeaaaas
SKIP -

'
r
v

These are the row control blocks for the l?ackgrbund display. There-are 31
of them, one for each displayable row and an extra one for use with the
insert and delete line controls and bottom-of-display scrolling.

NOTE:

BgdRCBO XDATA 08000H ; Each row control block
BgdRCB1 XDATA 08100H ; is at the same offset in
BgdRCB2 XDATA 08200H ; different pages. They are
BgdRCB3 XDATA 08300H ; named for their order in
BgdRCB4 XDATA 08400H ; memory. Their apparent
-BgdRCB5 XDATA 08500H ; order (i.e. as they are
BgdRCB6 XDATA G8600H ; shown on the monitor) will
BgdRCB7 XDATA 08700H H depend on the linked list
BgdRCB8 XDATA 08800H . ; pointers they contain.
BgdRCB9 XDATA 08900H ; This order will change
BgdRCB10 XDATA O8AQGOH H during normal operations
BgdRCB11 XDATA 08BOOH ; as a result of inserting
BgdRCB12 XDATA 08COOH H and deleting rows. The
BgdRCB13 XDATA 08DOOH ; order will also be changed
BgdRCB14 XDATA 08EOOH ; by bottom-of-display
BgdRCB15 XDATA O8FOOH H scrolling.

BgdRCB16 XDATA" 09000H ;

BgdRCB17 XDATA 09100H ; There is a correspondence
BgdRCB18 XDATA 09200H ; between a particular row
BgdRCB19 XDATA 09300H H .control block and the same
BgdRCB20 XDATA 09400H ; numbered character and
BgdRCB21 XDATA 09500H ; attribute buffers. This
BgdRCB22 XDATA 09600H ; correspondence is kept in
BgdRCB23 : spite of any logical order.

XDATA 09700H

c01-a

BgdRCB24

~ BgdRCB25

BgdRCB26
BgdRCB27
BgdRCB28
BgdRCB29
BgdRCB30
BGD_BUF_WID

; These are the character buffers for the background display.
; for each row control block and each contains 128 characters.

BgdChrBuf0
BgdChrBuf1
BgdChrBuf2
BgdChrBuf3
BgdChrBufé
BgdChrBuf5
BgdChrBufé
BgdChrBuf7
BgdchrBuf8
BgdChrBuf9
BgdChrBuf10
BgdChrBuf11
BgdChrBuf12
BgdChrBuf13
BgdChrBuf14

| Bodchraufts

BgdChrBuf16
BgdChrBuf17
BgdChrBuf18
BgdChrBuf19
BgdChrBuf20
BgdChrBuf21
BgdChrBuf22
BgdChrBuf23
BgdChrBuf24

BgdChrBuf25

BgdChrBuf26
BgdChrBuf27
BgdChrBuf28

~BgdChrBuf29

BgdChrBuf30

f

XDATA 09800H

XDATA 09900H
XDATA 09AQ00H
XDATA 09BOCH
XDATA 09COOH
XDATA 09DOOH
XDATA G9EOOH
EQU 128

XDATA 08030H
XDATA 08130H
XDATA- 08230H
XDATA 08330H
XDATA 08430H
XDATA 08530H
XDATA 08630H
XDATA 08730H
XDATA 08830H
XDATA 08930H
XDATA 08A30H
XDATA 08B30H
XDATA 08C30H
XDATA 08D30H
XDATA OB8E30H
XDATA O8F30H
XDATA 09030H
XDATA 09130H

~ XDATA 09230H

XDATA 09330H
XDATA 09430H
XDATA 09530H
XDATA 09630H
XDATA 09730H
XDATA .09830H
XDATA .09930H
XDATA O9A30H
XDATA 09B30H

" XDATA 09C30H

XDATA 09D30H
XDATA O9E30H

D

’

1

Se oo S0 ose s

17

Tﬁerefore, the characters
and attributes which are
refered to by a particular
row control block can be
easily determined at any
time.

Width of background (and message)
display buffers :

NOTE:

There is one

Each buffer is at the same

offset in different pages.

Each is in the same page as
the row control block which
refers to it.

2
.

BgdAtrBuf0
BgdAtrBuf1

BgdAtrBuf2 ’

BgdAtrBuf3

BgdAtrBufé

BgdAtrBuf5

BgdAtrBufé

BgdAtrBuf7

BgdAtrBuf8

BgdAtrBuf9

BgdAtrBuf10
BgdAtrBufi1
BgdAtrBuf12
BgdAtrBuf13
BgdAtrBufi4
BgdAtrBuf15
BgdAtrBuf1é
BgdAtrBuf17
BgdAtrBﬁf18
BgdAtrBuf19
BgdAtrauf20
BgdAtrBuf21
BgdAtrBuf22
BgdAtrBuf23
BgdAtrBuf24
BgdAtrBuf25
BgdAtrBuf2é
BgdAtrBuf27
BgdAtrBuf28

.BgdAtrBuf29

BgdAtrBuf30

XDATA OACOOH

XDATA OA100H °

XDATA 0A200H
XDATA O0A300H
XDATA OA400H
XDATA OAS00H
XDATA OA600H
XDATA OA700H
XDATA OA800H
XDATA OA90O0H
XDATA OAAQOH
XDATA OABOOH
XDATA OACOOH

XDATA OADQOH -

XDATA GAEQCH
XDATA OAFOOH
XDATA 0BOOOH
XDATA 0B100H
XDATA 0B200H
XDATA 0B300H
XDATA 0B40OH
XDATA 0B500H
XDATA 0B60CH
XDATA 0B700H
XDATA 0B80OH
XDATA 0B00H
XDATA OBAQOH
XDATA 0BBOOH
XDATA OBCOOH
XDATA 0BDOOH
XDATA OBEOOH

D TR TR

18

NOTE:

These are the attribute buffers for the background display. There is one
for each row control block and each contains 128 attributes.

Each buffer is at the same
offset in different pages.
Each is/in a page which is
32 pages beyond the page
containing the row control
block which refers to it.

€01-a

M
H
H
H
M

.
.
.

MsgAtrBuf

1
'
.

This is the row control block for the message display.

Only one is needed

since the insert and delete line controls and vertical scrolling are not
allowed in this display.

SgRCB

XDATA O9FOOH

This is the character buffer for the message display. It is at the same
offset as the background display character buffers and is in the same page
as its row control block.

sgChrBuf XDATA

This is the attribute buffer for the message display.

09F30H

It bears the same

relationship to its row control block as the background attribute buffers
bear to their row control blocks (i.e. 32 pages beyond it).

XDATA

O0BFOOH

These are the row control blocks for the window display. There are 15
of them, one for each displayable row and an extra one for use with the
insert and delete line controls and bottom-of-display scrolling.

WndRCBO XDATA
WndRCB1 XDATA
WndRCB2 XDATA
WndRCB3 XDATA
WndRCB4 XDATA
WndRCB5 XDATA
WndRCB6 XDATA
WndRCB7 XDATA
WndRCB8 XDATA
WndRCB9 XDATA
WndRCB10 XDATA
WndRCB11 XDATA
WndRCB12 XDATA
WndRCB13 XDATA
WndRCB14 XDATA

080BAH ~

081BAH
082BAH
083BAH
084BAH
085BAH
086BAH
0878AH
088BAH
089BAH
08ABAH
08BBAH
08CBAH
08DBAH
08EBAH

19

L R B TR TR PR

NOTE:

Each row control block

* is at the same offset in

different pages. They are
named for their order in
memory. Their apparent
order (i.e. as they are
shown on the monitor) will
depend on the linked list
pointers they contain.
This order will change
during normal operations
as a result of inserting
and deleting rows and by
bottom-of-display scrolling.

P

WND_BUF_WID
WND_VIS_WID
WND_VIS_HGT
WND_TOP_MRG

SKIP
i

WndChrBufQ
WndChrBuf1
WndChrBuf2
WndChrBuf3
WndChrBufé
WndChrBuf5

wndChrBufé

wWndChrBuf7
WndChrBuf8
WndChrBuf9
WndChrBuf10
WndChrBuf11
WndChrBuf12
WndChrBuf13
WndChrBuf14

v
’

WndAtrBufO

WndAtrBuf1
WndAtrBuf2
WndAtrBuf3
WndAtrBufé
WndAtrBufS
WndAtrBufé
WndAtrBuf7
WndAtrBuf8
WndAtrBuf9
WndAtrBuf10
WndAtrBuf11
WndAtrBuf12
WndAtrBuf13
WndAtrBufié

\

EQU 40
EQU 40
EQU 7
EQU 6

XDATA 080CCH
XDATA 081CCH
XDATA 082CCH

XDATA 083CCH _

XDATA 084CCH
XDATA 085CCH
XDATA 086CCH
XDATA 087CCH
XDATA 088CCH
XDATA 089CCH
XDATA OBACCH
XDATA 08BCCH
XDATA 08CCCH
XDATA 08DCCH
XDATA O8ECCH

XDATA 090BOH
XDATA 091BOH
XDATA 092BOH
XDATA 093BOH
XDATA 094BOH
XDATA 095BOH

XDATA 096BOH

XDATA 09780H
XDATA 098BOH
XDATA 099BOH
XDATA O9ABOH
XDATA 09BBOH
XDATA 09CBOH
XDATA 09DBOH
XDATA O9EBOH

’
.
’
.

Se Se Ne owe o=

D R)

20

Width of window display buffers
Width of visible window display
Height of visible window display
Backgroynd rows above window display

These are the character buffers for the wnidow display.
for each row control. block and each contains 40 characters.

NOTE:

NOTE:

There is one

Each buffer is at the same
offset in different pages.
Each is in the same page as
the row control block which
refers to it.

These are the attribute buffers for the uindou display. There is one
for each row control block and each contains 40 attributes.

Each buffer is at the same
offset in different pages.
Each is in a page which is
16 pages beyond the page
containing the row control
block which refers to it.

701-A

FntRRB14

" These are the row redefinition blocks used during normal operations. They
control the vertical placement of characters and attributes within the
character row. In particular, a change of cursor appearance requires a
change of the cursor start and end lines.)

XDATA 084F4H

NrmRRB ~; Normal row redefinition block

; NOTE: 0nfy the pre/ceding definition has current software support. The

; following definitions are for; possible extensions to support rows

- of double width and/or double height characters. How these extra

H capabilities would affect existing operations, and any necessary

H restrictions on their use, will need to be considered.

DwWNhRRB XDATA O085F4H ; Double width/normal height

SWUhRRB XDATA 086F4H ; Single width/upper half of dbl height
SWLhRRB XDATA 087F4H ; Single width/lower half of dbl height
DwUhRRB i XDATA 088F4H ; Double width/upper half of dbl height
DWLhRRB XDATA 089F4H ; Double width/lower half of dbl height
P R R
; These are the row redefiniton blocks used for loading the character

; generator (font) RAM during normal operations. There is one for each

; slice of a character cell which can be programmed by a user.

FNtRRBO XDATA 080BOH ; NOTE: A user is only allowed to
FntRRB1 XDATA 081BOH ; change the first fifteen
FNtRRB2 XDATA 082BOH o slices of a character cell.
FntRRB3 XDATA 083BOH ; This is because the Am8052
FNtRRB4 XDATA 084BOH ; requires that the last slice
‘FNtRRB5 XDATA 085BOH ; be cleared for use above and
FNtRRB6 XDATA 086BOH ; below the lines specified
FntRRB7 XDATA 087BOH ; in the row redefinition
.FNtRRB8 XDATA 088BOH" ; block. Actually, in this
.FntRRBY XDATA 089BOH H implementation, only the
FNtRRB10: XDATA O8ABOH ; first fourteen can be
FntRRB11 ~ XDATA. 08BBOH H changed in normal mode,
FntRRB12 XDATA OBCBOH ; and only: the first eleven
FntRRB13 XDATA O8DBOH ; in compressed mode.

XDATA O8EBOH

21

D TR T R T T L R L T TR TR TR s

; s :
; These are the special characters which support the featrues of this

; implementation. They support horizontal smooth scrolling, the loadable

7 font and ensure maximal processfng time by reducing unnecessary DMA -

; activity by the Am8052. ' .

; First, the background function character which supports horizontal smooth

; scrolling in the background and the loadable font. There are two of them,

; and two associated attributes, to allow font loading of both normal and

; compressed mode characters. - :

BgdFncChr0 XDATA O9FCCH
BgdFncChr1 XDATA 09FCDH
BgdFncAtr0 XDATA O9FCEH
BgdFncAtr1 XDATA O9FDOH

Next, the message function character character which supports horizontal

smooth scrolling in the message display and its associated attribute.
MsgFncChr XDATA O9FICH ‘))
MsgFncAtr XDATA O9F1EH

. o~

Next, a latched attribute for use with the termination row control block is
defined. This is the extra row control bleck in the window display when it
is not otherwise being used. If the window display is active then the extra
row control block in the background is used as the termination row control
block. It is pointed to by the last visible row in the background display,
the last visible row in the window display, the message display row and the
termination window definition block. The termination row control block is
set to point to itself. By setting the character pointer to zero we force
the Am8052 to use the fill code (defined in the main definition block) for
the entire row.
set, the termination attribute is fetched. Since this attribute is latched
(the only latched attribute in the system), it forces all fill characters to
have the same, blank attribute. By using this ‘terfnination row we avoid DMA
activity by the Am8052 almost entirely during the time that the last two
character rows are being displayed. (DMA occurs when the Am8052 pre-fetchs
up to two extra rows.) Therefore, the processor has a nearly uninterrupted
one-and-a-half milliseconds just prior to the time when the main definition
block is fetched to begin the next frame. Any accesses made to display
memory during this end-of-frame time cannot interfere with video refresh.
The timer O interrupt has been set to tell us when this time .begins.

TrmAtr O084FEH

22 o .

Because the FAT bit (also in the main definition bloeck) is | :

S01-a

H These are the active counts associated with each row in the system. They
; tell us where the farthest right, non-blank character is in each row (i.e.
; how much of the row we may need to erase).

XDATA O9FD2H

BgdActCntBuf ; One byte for each background row
_ WndActCntBuf XDATA O9FF1H ; One byte for each window row
MsgActCnt XDATA O9F1DH ; One byte for the one message row

These are the bit tables for tab position storage. There is one table for
each display, although the background table is actually in two parts. Each’
bit in a table corresponds to a column in the display. If the bit is set,
then that column is a tab location.

Se se s owe

NOTE: The following definitions are not supported by current software.
They .are for possible extensions to support horizontal tabulation.
Vertical tabulation could also be supported by using an unused I:;it
in each row control block (addressed in their physical memory order
rather than their logical display order). The affect of these new
capabilites on existing operations, and any necessary restrictions
on their use, will need to be considered.

L

XDATA O8AF4H For left 96 columns of background

BgdTabTblLt . ;

BgdTabTblRt XDATA 08BF4H ; For right 32 columns of background
MsgTabTbl XDATA O09F20H ; For all 128 columns of message
WndTabTbl XDATA 08BFBH ; For all 40 columns of window

These are the display depéndent variable buffers. wWhile a particular display
is active its variables are kept in intérnal RAM. When a different display
becomes active the old display's variables are copied out to their external
RAM location anfi the new display's variables are copied in.

.
.
.
.

BgdvarBuf XDATA 08CF4H R
MsgVarBuf XDATA 08DF4H
WndVarBuf XDATA O8EF4H

23

This is the serial communications ring buffer fdr receiving characters from
the host computer.

HstRcvBuf XDATA O8FBOH

These are the locations of the’various structures used in the initial
clearing of the character generator RAM. They are in the same memory
area where the background character buffers are located. When these
buffers are initialized, the font clearing information (which will no
longer be needed) will be overwritten with spaces. '

.
.
'
'
0

ClLrFntMDB XDATA 09030H ; Main definition block
ClLrFntRCBBas XDATA 08030H ; First row control block
ClrFntChrBas’ XDATA 08080H ; First character -

; NOTE: The remaining fifteen RCBs and characters are at the same.
H offsets in subsequent pages.

ClLrFntAtr XDATA 09080H ; Common attributes
CLrFntRRB XDATA 09130H ; Common row redefinition block
CLrFntWDB XDATA 09230H ; Termination window definition block
; end of C_MemMap '
-
2y

05098-B

b

ADVANCED

MICRO

DEVICES, INC.

901 Thompson Place
P.O. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

IH-RRD- * 5M-7/86-0

