
Quad Pixel Dataflow 
Manager (QPDM) 
Arn95C60 

Technical Manual 
Revision B 



Advanced Micro Devices 

Quad Pixel Dataflow 
Manager (QPOM) 

Am95C60 

Technical Manual 
REVISION B 

© 1987 Advanced Micro Devices, Inc. 

Advanced Micro Devices reserves the right to make changes in its products without 
notice in order to improve design or performance characteristics. The performance 

characteristics listed in this technical manual are guaranteed by specific tests, correlated 
testing, guard banding, design and other practices common to the industry. For specific 
testing details contact your local AMD sales representative. The company assumes no 

responsibility for the use of any circuits described herein. 

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088 
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306 



Written by: 

Edited by: 

Tom Crawford 
Senior Applications Engineer 
Sue Louie Thilking 
Technical Editor 



Please Register for Product Updates 

The Am95C60 CPOM Technical Manual is a "Preliminary Release". It is an accurate 
description of the device as originally designed and built. However, we anticipate 
some changes in the device as data is collected from the many systems now being 
designed with it. To be kept up-to-date on the status of the Am95C60 CPOM, and 
to receive new issues of the documentation as it becomes available, we ask that you 
submit your name and address to: 

Advanced Micro Devices, Inc. 
Mr. Steve Crane (MS-30) 
CPOM Updates 
P. O. Box 3453 
Sunnyvale, CA 94088-3453 

Last minute additions for this manual: 
Page 3-5, VBLKllnterrupt: Change last sentence to: 
The condition is true for one VIDCLK period at the beginning of Vertical Blank. 

Page 14-58, Point: Add sentence to Performance: 
The time for intermediate points (neither the first nor the last) in a list is 62 SYSCLK cyles. 

Page 14-77, Set Scale Factor: Add sentence to Comments: 
The ratio of the scale factors must not exceed 16 to 1 (either way). 

Page B-1, LS: This is a 1-bit field, not 2-bit as stated. 





TABLE OF CONTENTS 

1. INTRODUCTION 1-1 

1.1 Overview 1-1 
1.2 Description ... 1-2 
1.3 Am95C60 Functions 1-2 

1.3.1 Display Refresh ... 1-2 
1.3.2 Display Memory Update 1-2 
1.3.3 Dynamic VRAM Update 1-2 

1.4 Am95C60 Speed 1-2 
1.5 Am95C60 Windows ... 1-2 
1.6 Am95C60 Display Memory Support 1-4 
1.7 Up to 64 Am95C60s Can Be Cascaded For 256 Bit Planes 1-4 
1.8 Am95C60 Scaling 1-4 

2. HARDWARE INTERFACE 2-1 

2.1 Interface Buses 2-1 
2.1.1 System Bus 2-1 

System Bus Pinouts 2-1 
2.1.2 Display Memory Bus 2-4 

Display Memory Bus Pinouts 2-4 
2.1.3 Video Control Bus 2-5 

Video Control Bus Pinouts 2-5 
2.1.4 Power Bus 2-6 

3. HOST-Am95C60 COMMUNICATIONS 3-1 

3.1 Reset Function 3-1 
3.2 I/O Ports 3-1 

3.2.1 Write Instruction FIFO 3-1 
3.2.2 Read Status Register 3-1 
3.2.3 Write Block In FIFO (BIF) ... 3-2 
3.2.4 Read Block Out FIFO (BOF) 3-2 
3.2.5 Write Address Register 3-2 
3.2.6 Read Address Register 3-2 
3.2.7 Write Register 3-2 
3.2.8 Read Register ... 3-2 

3.3 DMA Facilities .. 3-3 
3.4 Interrupt Facilities 3-3 
3.5 Considerations Involving Multiple Am95C60s 3-4 
3.6 Eight-Bit Interface 3-4 

4. REGISTER SET ... 4-1 

4.1 Visible Screen Coordinate Registers 4-1 
4.2 Window Control Registers 4-1 
4.3 Video Timing Control Registers 4-2 

4.3.1 Horizontal Timing Registers 4-2 
4.3.2 Vertical Timing Registers ... 4-2 

4.4 Video Control Registers 4-4 
4.4.1 Video Mode Register 4-4 
4.4.2 Video Timing Enable Register 4-4 
4.4.3 Video Refresh Enable 4-4 



4.5 Display RAM Control Registers 4-4 
4.5.1 Memory Mode Register ... 4-5 

. 4.5.2 Dynamic Memory Refresh Rate Register 4-6 
4.6 Host-Am95C60 Communications Registers 4-6 

4.6.1 Interrupt Enable Register... 4-6 
4.6.2 Interrupt Acknowledge Register 4-6 
4.6.3 System Bus Width Register 4-6 
4.6.4 Eight-Bit Bus Byte Order ... 4-6 
4.6.5 Reset Register ... ... 4-6 

4.7 Pictorial Representation of All Registers 4-6 

5. ADDRESSING MODES AND SCALING 5-1 

5.1 Standard Operand Address Pair 5-1 
5.2 Address Translation ... 5-1 

5.2.1 Absolute Addressing Mode 5-2 
5.2.2 Viewport Addressing Mode 5-2 
5.2.3 Relative Addressing Mode 5-2 
5.2.4 Indirect Addressing Mode 5-2 
5.2.5 Round-off Errors 5-2 

6. LINE TEXTURE ... 6-1 

6.1 Line Styles .. . 6-1 
6.1.1 Basic Line Styles 6-1 
6.1.2 Complex Line Styles 6-2 
6.1.3 Line Styles with Diagonal Lines 6-3 
6.1.4 Line Styles with Scaling ... 6-3 

6.2 End-point Options 6-3 
6.3 Logical PEL ... 6-3 

6.3.1 Using the Logical PEL for Points 6-4 
6.3.2 Using the Logical PEL for Lines 6-4 
6.3.3 Using the Logical PEL for Arcs and Circles 6-5 

7. CLIPPING AND PICKING 7-1 

7.1 Clipping 7-1 
7.2 Picking 7-2 

7.2.1 Example of Picking 7-2 

8. GRAPHICAL OPERATIONS 8-1 

8.1 SOAXZ Field ... 8-1 
8.1.1 SOAXZ Field in Instructions Involving a Source Operand 8-1 

8.1.1.1 Logical SET 8-1 
8.1.1.2 Logical OR 8-1 
8.1.1.3 Logical AND 8-1 
8.1.1.4 Logical XOR 8-1 
8.1.1.5 Logical ZERO 8-1 
8.1.1.6 Graphical SET 8-1 
8.1.1.7 Graphical OR 8-3 
8.1.1.8 Graphical XOR 8-3 

8.1.2 Source Field in Instructions Not Involving a Source Operand 8-3 
8.1.2.1 Logical SET 8-3 
8.1.2.2 Logical OR 8-3 
8.1.2.3 Logical AND 8-3 
8.1.2.4 Logical XOR 8-3 
8.1.2.5 Logical ZERO 8-3 
8.1.2.6 Graphical SET 8-5 

ii 



8.1.2.7 Graphical OR 8-5 
8.1.2.8 Graphical XOR 8-5 

8.1.3 Color Strategy 8-5 
8.2 The M Bit 8-5 
8.3 The SI Bit 8-5 
8.4 The SP Bit 8-5 

9. ANTI-ALIASING ... 9-1 

9.1 Selection of Candidate Pixels ... 9-1 
9.2 Comparator Anti-aliasing 9-2 

9.2.1 Comparator Anti-aliasing Without a Look-up Table 9-2 
9.2.2 Comparator Anti-aliasing With a Look-up Table 9-2 

9.3 Inverse Distance Anti-aliasing ... 9-5 
9.4 Anti-aliasing In a Color System 9-5 

10. STRING OPERATIONS 10-1 

10.1 Overview of String Operations 10-1 
10.2 The Character Font ... 10-1 

10.2.1 The Attribute Word 10-1 
10.2.1.1 Horizontally Ordered Characters 10-1 
10.2.1.2 Vertically Ordered Characters 10-3 

10.3 Establishing the Character Font 10-4 
10.4 Moving Characters From the Character 

Font (String Instruction) 10-5 
10.5 Nonprlntlng Characters 10-5 
10.6 An Example 10-6 

10.6.1 Set Character Font Base Instruction 10-6 
10.6.2 String Instruction 10-6 
10.6.3 Character Processing 10-6 

10.7 Building and Using Very Large Fonts 10-6 
10.8 Text with Colored Background 10-8 
10.9 Optimizing String Performance 10-8 

11. WINDOWS 11-1 

11.1 Hardware Requirements 11-1 
11.2 How Does the Hardware Window Appear 

to the User? 11-2 
11.3 Window Control Registers ... 11-2 
11.4 Tutorial on How to Use the Window 11-3 

11.4.1 Dragging an Object 11-3 
11.4.2 Pop-up Menus 11-3 
11.4.3 ScrOlling in a Window ... 11-3 

11.5 Software Windows ... 11-3 

12. DISPLAY MEMORY CONFIGURATIONS 12-1 

12.1 Overview of Diagrams 12-1 
12.2 Summary of Configurations ... 12-1 

13. MISCELLANEA 13-1 

13.1 How to Crash the Am95C60 ... 13-1 
13.1.1 Jump to Same Address 13-1 
13.1.2 Indirect Addressing Loops 13-1 
13.1.3 Invalid Copy Block 13-1 
13.1.4 Illegal Seed Fill 13-1 

iii 



13.2 The Relationship Between Data Bits and Pixels 
13.2.1 Relationship Between DM Lines and Pixel Addresses 
13.2.2 Relationship Between D Bits and DM Bits 
13.2.3 Block I/O by Pixel 
13.2.4 Operands in the Set Bit Instructions 

13.3 The Stack 
13.4 FIFO Size 
13.5 Transfer Cycle Timing 

14. INSTRUCTION SET 

14.1 Instruction Set Grouped by Classification 
14.2 Alphabetical Listing of Instruction Set 

Arc (Drawing Primitive) 
Arc Current (Drawing Primitive) 
Call (System Control) 
Circle (Drawing Primitive) 
Circle Current (Drawing Primitive) 
Control Clipping (System Control) 
Control Picking (System Control) 
Copy Block (Block Manipulation) 
Copy Block Current (Block Manipulation) 
Define Logical PEL (System Control) 
Fill Bounded Region (Fill Instruction) 
Fill Bounded Region Current (Fill Instruction) 
Fill Connected Region (Fill Instruction) ... 
Fill Connected Region Current (Fill Instruction) 
Filled Rectangle (Fill Instruction) 
Filled Rectangle Current (Fill Instruction) 
Filled Triangle (Fill Instruction) ... 
Filled Triangle Current (Fill Instruction) '" 
Input Block (Block Manipulation) 
Input Block Current (Block Manipulation) 
Inquire (System Control) 
Jump (System Control) 
Line (Drawing Primitive) 
Line Current (Drawing Primitive) 
Move Pen (Drawing Primitive) ... 
No Operation (System Control) 
Output Block (Block Manipulation) 
Output Block Current (Block Manipulation) 
Output Current Pen Position (System Control) 
Point (Drawing Primitive) 
Point Current (Drawing Primitive) 
Pop Current Pen Position (System Control) 
Push Current Pen Position (System Control) 
Return (System Control) 
Set Activity Bits (System Control) 
Set Anti-aliasing Distance (System Control) 
Set Block Size (Display Control) 
Set Character Font Base (Display Control) 
Set Character Font Base Current (Display Control) 
Set Clipping Boundary (Display Control) 
Set Clipping Boundary Current (Display Control) ... 
Set Color Bits (Display Control) 
Set Line Style (Display Control) 
Set Line Style Phase (Drawing Control) 
Set Listen Bits (System Control) 
Set Picking Region (Display Control) 

iv 

13-1 
13-1 
13-1 
13-2 
13-2 
13-2 
13-2 
13-2 

14-1 

14-1 
14-3 
14-4 
14-6 
14-8 

14-10 
14-12 
14-14 
14-15 
14-16 
14-18 
14-20 
14-21 
14-23 
14-24 
14-26 
14-27 
14-29 
14-30 
14-32 
14-33 
14-40 
14-41 
14-42 
14-43 
14-45 
14-47 
14-48 
14-49 
14-56 
14-57 
14-58 
14-59 
14-60 
14-61 
14-62 
14-63 
14-64 
14-65 
14-66 
14-67 
14-68 
14-69 
14-70 
14-71 
14-72 
14-73 
14-74 



Set Picking Region Current (Display Control) 
Set CPDM Position (System Control) ... 
Set Scale Factor (Drawing Control) 
Set Search Color (Display Control) 
Set Stack Boundaries (System Control) 
Set Viewport Location (Display Control) 
Set Viewport Location Current (Display Control) ... 
Signal (System Control) 
Store Current Pen Position (System Control) 
Store Immediate (Display Control) 
Store Immediate Current (Display Control) 
String (Drawing Primitive) 
String Current (Drawing Primitive) 
Transform Block (Block Manipulation) ... 
Transform Block Current (Bolck Manipulation) 

Appendix A Further Reading 

Appendix B Glossary/Revision History 

v 

14-75 
14-76 
14-77 
14-78 
14-79 
14-81 
14-82 
14-83 
14-84 
14-85 
14-86 
14-87 
14-88 
14-89 
14-92 

A-1 

B-1 





CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

The Am95C60 is a graphics processor that 
manages one to four bit planes, each up to 4 K by 
4 K pixels. It is a CMOS microprogrammed 
machine with a powerful instruction set designed 
for fast and efficient graphics processing. 

This manual consists of 14 chapters and two 
appendixes. 

Chapter 1 introduces the manual and contains a 
deliberately simplified description of the Am95C60 
itself. 

Chapter 2 discusses the hardware interface. The 
pinouts are also covered. For more information on 
I/O timing, refer to the Am95C60 data sheet. 

Chapter 3 discusses the host-Am95C60 com­
munications. It describes how to talk to the 
Am95C60 at the very lowest level. 

Chapter 4 describes the Am95C60 register set. 

Chapter 5 discusses addressing modes and 
scaling. 

Chapter 6 describes the end-point and line style 

Data 

options available in drawing lines, arcs and circles. 
This chapter also covers the logical PEL. 

Chapter 7 describes clipping and picking. 

Chapter 8 covers graphical operations. Using 
block transfers or when drawing figures, the new 
data may be combined with the old. 

Chapter 9 describes how pixels are processed to 
smooth out the steps in diagonal vectors. This is 
called anti-aliasing. 

Chapter 10 explains how text can be placed in with 
the graphics by using the String instruction. 

Chapter 11 describes both hardware and software 
windows. Windows can be used for dragging an 
object, pop-up menus, and scrolling. 

Chapter 12 explains display memory configur­
ations (how much memory is needed and where it 
is needed). 

Chapter 13 contains items that didn't seem to fit 
anywhere else. 

Chapter 14 describes the extensive instruction set 
of the Am95C60. 

x-v Translators 

~~:::-~~---<~MEMREa 
~~~--,- MEMA~ 

Extml.Data 
Drvr. Enable 

Read 
Wrii9 

Chip Select 
Port (AO 

Addr \A1 
DMAAck. 
Instr.Req. 
Data Req. 

Interrupt 

Am95C60 QPDM 

1-t---t----<---1 Match In 
t-t--i-__ --t~ Match Out 

I-t---i-+--t:::~ Buses 
Block Out . ~ ... 

FIFO ''''; L_J"II-r--6;2J 
} ~~~~4 

Video Refresh and 
Window Control Block 

Video-Timing t---;rl-C Display Control 
L.-__ Co_n_tr_ol_B_lo_c_k _...J Signals 

1-1 



1.2 DESCRIPTION 

Figure 1-1 shows the Am95CSO in a minimum color 
system. There are a total of four bit planes, called 
Red, Green, Blue and Intensify. Each bit plane is 
made up of four VRAM chips, providing a 1 K x 1 K 
map. Each bit plane has a shift register to provide 
parallel-to-serial conversion. The Am95CSO pro­
vides a 1S-bit data path to each of the four bit 
planes. Address and control terms are provided to 
the four bit planes in parallel. The host interface 
consists of a 1S-bit data bus and the normal lines 
necessary to address a peripheral chip. 

Figure 1-2 shows the Am95CSO in a large video 
system. This system includes six Am95CSOs 
allowing 24 bit planes. Each bit plane has a 
serializer. Eight of the bit planes are used for Red, 
eight for Green and eight for Blue. The outputs of 
the serializers go directly to digital-to-analog 
converters (DACs); there is no requirement for a 
look-up table in this system. The six Am95CSOs 
are connected to a common host interface; only 
the chip selects are decoded. 

1.3 Am95C60 FUNCTIONS 

The Am95CSO performs the three basic functions 
required In a graphics application: display refresh, 
display memory update, and dynamic RAM refresh. 
These functions are discussed in more detail in the 
following sections. 

1.3.1 Display Refresh 

The Am95CSO is intended to be used with Video 
RAMs (VRAMs). During each horizontal blanking 
time, the Am95CSO generates a transfer cycle. 
This cycle moves a scan line of display information 
from the dynamic portion of the VRAM into the 
shifter portion of the VRAM. The scan line 
information is then shifted out of the VRAM for 
presentation on the display. 

If a hardware window has been selected, then 
three transfer cycles take place for each scan line. 
The first transfer cycle accesses the background 
information that appears before (to the left of) the 
window, the second transfer cycle accesses the 
information in the window and the third transfer 
cycle accesses the information that appears after 
(to the right of) the window. External hardware is 
required to concatenate and buffer the data from 
the VRAMs to properly accomplish windows. 
Windows are discussed in detail in Chapter 11 of 
this manual. 

1.3.2 Display Memory Update 

The second major task accomplished by the 
Am95CSO is the updating of display memory. The 
Am95CSO is a microprogrammed graphics pro­
cessor that can directly execute high-level graph­
ics operations such as drawing lines and circles or 
filling an arbitrary bounded area. These instruc­
tions and capabilities are discussed throughout 
this manual. The detailed descriptions of the 
instructions are in Chapter 14. 

1.3.3 Dynamic VRAM Refresh 

The third major task accomplished by the 
Am95CSO is the refresh of the VRAMs that make 
~e display memory. The Am95CSO generates 
CAS-before-RAS refresh cycles at a programmable 
rate. A refresh address is supplied with each CAS­
before-RAS refresh cycle to allow easy conversion 
to RAS-only cycles. 

1.4 THE Am95C60 SPEED 

Working with VRAMs, the Am95CSO can easily 
manage high-resolution screen formats requiring 
dot clock rates up to 320 MHz (1S0 MHz if the 
hardware window is being used). Moreover, it per­
forms the display memory update functions very 
quickly as indicated in Table 1-1. 

The numbers in this table are in microseconds, 
assume a 20 MHz SYSCLK and are independent 
of the number of bit planes involved. Three 
columns are given for each operation. The first col­
umn in the instruction overhead; this time is 
incurred once per instruction. The second col­
umn, intermediate overhead, is incurred once per 
major iteration as indicated. The third column is 
incurred every pixel or scan line as indicated. 

These numbers assume absolute addressing and 
no scaling. 

1.5 Am95C60 WINDOWS 

1-2 

The Am95CSO provides the timing and control 
required to support a single (nondestructive) 
hardware window. External hardware (Am8171172 
VDAF or equivalent) is required to decode the 
timing and control to actually implement the 
window. The size and position of the window is 
programmed into a set of registers on the 
Am95CSO. The image to appear in the window is 



HOST ~ 

onS5A 1·1 

HOST BUS 

onS5A 1·2 

ADDRESS AND 
CONTROLS ) 

SERIALIZERS 

I 
Am95C60 

QUAD 
PIXEL 

DATAFLOW 
MANAGER 

I 

6 EACH 
Am95C60s 

1 1 
~ RED 

... _ .. GREEN ~ 

... BLUE .. 

... INTENSIFY .. 
t 

DATA(4e16) 

Figure 1-1 Am95C60 In a Minimum System 

24 EACH 
BIT PLANES 

24 EACH 
SERIALIZERS 

Figure 1-2 Large Am95C60 System 

1-3 

3 EACH 
DACs 

.. 

~ } TO MONITOR 

HSYNC, 
VSYNC, 
BLANK 

1---"" RED 

1---"" GREEN 

1---.... BLUE 



located in some area of display memory other than 
that normally visible on the screen. Since the 
window parameters (position and size) are 
dynamically programmable, it is easy to drag a 
rectangular area containing an object. It is also 
easy to perform smooth scrolling and panning of 
either the background or the window. Windows 
are discussed in detail in Chapter 11. 

1.6 Am95C60 DISPLAY MEMORY SUPPORT 

The Am95C60 supports display memory sizes 
ranging from 1024 x 1024 pixels up to 4096 x 
4096 pixels in each of four planes. The chart 
below shows some examples of display memory 
sizes and RAM sizes. 

Display RAM RAMsl RAMsl 
Memory Size Size Plane Am95C60 

1024 x 1024 64Kx4 4 16 
1024 x 2048 64Kx4 8 32 
2048 x 2048 64Kx4 16 64 
4096 x 4096 64Kx4 64 256 
4096 x 4096 256 Kx 4 16 64 

1.7 UP TO 64 Am95C60s CAN BE 
CASCADED FOR 256 BIT PLANES 

Am95C60s can be cascaded to support up to 256 
bit planes. No performance degradation occurs in 
a cascaded system except for some block I/O 
operations. Line drawing (or BitBLT), for example, 
takes the same amount of time regardless of the 
number of bit planes involved. 

1.8 Am95C60 SCALING 

The Am95C60 can scale addresses using 
multiplication. Independent scale factors can be 
set for X and Y. This facility is used with some' 
address modes so that the user can think of the 
display memory (or some portion of the display 
memory) as representing a unit square. Scaling is 
covered in detail in Chapter 5 of this manual. 

Table 1·1 Display Memory Update Time 

Instruction Instruction Intermediate Execution Comments 
Overhead Overhead Time 

Line 12.9 ).1s (n/a) 300 ns/pixel 
Line 12.91.1s (n/a) 4750 ns/pixel Anti-Aliased 
Polyline 10.61.1s 4.8 I.1s/segment 300 ns/pixel Connected Segments 

Arc 28.2).1s 2.7 I.1s/octant 750 ns/pixel 
Arc 28.21.1s 2.7 I.1s/octant 4750 ns/pixel Anti-Aliased 

Circle 9.91.1s 2.7 I.1s/octant 750 ns/pixel 
Circle 9.91.1s 2.7 I.1s/octant 4750 ns/pixel Anti-Aliased 

Copy Block 10.91.1s 1.8 I.1s/scan line 60 ns/pixel BitBLT 

Transform Block 11.01.1s (included) 1280 ns/pixel 3XZoom 

Seed Fill 10.01.1s 12.1 I.1s/scan line 280 ns/pixel Intermediate Overhead 
varies with shape 

Filled Rectangle 11.91.1s 2.2 I.1s/scan line 19 ns/pixel Graphical SET 

Filled Triangle 54.91.1s 8.0 I.1s/scan line 19 ns/pixel Intermediate Overhead 
varies with shape 

String 6.3).1s 9.4 I.1s/character 2000 ns/scan 
line 

1_A 



CHAPTER 2 

HARDWARE INTERFACE 

2.1 INTERFACE BUSES 

This chapter explains what the user has to do in 
order to put an Am95CSO onto a Printed Wiring 
Board (PWB). The discussion begins with a 
description of the four interface buses. This is fol­
lowed by descriptions of the pins for each of the 
buses. The timing diagrams can be found in the 
data sheet. 

Figure 2-1 is a logic diagram of the Am95CSO show­
ing the four buses. Table 2-1 is the pinout table. 

2.1.1 System Bus 

The Am95CSO system bus interface is easy to use 
in most systems. It is always a slave on the bus. 
There is a 1S-bit bidirectional data bus (that can be 
operated in a-bit mode). Two address bits select 
one of four 110 ports while CS and RD and WR 
control normal transfers. 

Three lines are used to implement DMA opera­
tions. The instruction FIFO can use only flow­
through DMA while the Block Input FIFO and Block 
Output FIFO can use either flow-through or fly-by 
DMA. 

One signal is used to control data buffers between 
the data pins and the system data bus. There is an 
interrupt request and a reset input. A clock input 
line and a match control pair complete the system 
bus of the Am95CSO. 

The following paragraphs are the formal English­
language descriptions of the system bus pins on 
the Am95CSO. The pin numbers are in Table 2-1. 
All signal pins on the Am95CSO have TIL 110 
levels. 

SYSTEM BUS PINS 

00-015 System Data Bus (Bidirectional) 

These 1S lines are used for transferring 
information between the host and the Am95CSO. 
The nature of the transaction is controlled by the 
two address bits and the RD and WR lines. Bit 15 
is the most significant bit. 

2-1 

RD Read (Input) 

This line, when made active with CS, indicates that 
the host is executing a read operation from the 
Am95CSO. The 110 port to be read is determined 
by the two address bits. In fly-by DMA operations 
(when ACKD is active) an active level on this pin will 
cause a write to the Block Input FIFO (BIF). 

WR Write (Input) 

This line, when made active with CS, indicates that 
the host is executing a write operation to the 
Am95CSO. The lID port that will be written into is 
determined by the two address bits. In fly-by DMA 
operations (when ACKD is active) an active level 
on this pin will cause a read from the Block Output 
FIFO (BOF). 

CS Chip Select (Input) 

This line is used in conjunction with RD and WR to 
select the Am95CSO for an 110 operation. 

AO-A1 Address 0, Address 1 (Input) 

These two lines are used with CS to specify the 110 
port to be written or read in an 110 operation. See 
Chapter 3, Section 3.2 for port assignments. 

FREQ Instruction FIFO Request 
(Output, Open Drain) 

This is used by the Am95CSO to request 
instructions in a system with a DMA controller. This 
is an open drain signal. The Am95CSO can pull this 
down but not up. An external resistor must be 
provided in the system to pull this up. This signal is 
pulled down when the Am95CSO is NOT making a 
request. In a system with multiple Am95CSOs, 
these pins are tied together. As long as any 
Am95CSO is not ready to request more 
instructions the node will be LOW. When the last 
Am95CSO becomes ready the node will go HIGH 
(due to the reSistor). 

If FREQ is active, there is room in the FIFO for at 
least one word. 



DREQ Data FIFO Request (Output, Open Drain) 

This is used by the Am95C60 to request that an 
Input Block or Output Block instruction continue. 
This is an open drain signal. The Am95C60 can 
pull this down but not up. An external resistor 
must be provided in the system to pull this up. 
This signal is pulled down when the Am95C60 is 
NOT making a request. In a system with multiple 
Am95C60s, these pins are tied together. As long 
as any Am95C60 is not ready to continue with the 
I/O Block the node will be LOW. When the last 
Am95C60 becomes ready the node will go HIGH 
(due to the resistor). 

If DREQ is active for an Input Block, there is room in 
the FIFO for at least one word. If DREQ is active for 
an Output Block, there is at least one word 
available in the FIFO. 

.A 1\ 

0 0-15 
'I I' 

AO 
A1 

cs ... 

RD 
\VA 

FREO 
SYSTEM DREO .. 

BUS ACKD 

EDE 

INT 

ACKD Acknowledge DMA (Input) 

This line may be driven LOW by a DMA controller 
that is capable of fly-by operation. When this line 
is LOW, the Am95C60 will either write to the Block 
Input FIFO or read from the Block Output FIFO 
regardless of AO and A 1. CS and ACKD must not 
be made active simultaneously. A read will take 
place if WR is active; a write will take place if RD is 
active. There is no analogous pin for instruction 
FIFO operations. 

EDE External Driver Enable (Output) 

This line is used to enable an external data buffer. 
That will be required in most systems (See the DC 
characteristics in the data sheet for current drive 
capability of the Am95C60). 

::E¢ ADDR 

• RAS 

• C'As 
• XFiG 

~ DMO 

.A '" K 0-15 DM1 
'I I' 

~ DM2 DISPLAY 
MEMORYBUS 

~ DM3 

WE ::E) 
Am95C60 MEMREO 

QPDM ... MEMAVL 
SYSCLK 

RESET TSYNOUT 
TSYNIN 

MATOUT ... VSTB MATIN 
DSTB 

=4 COAT 

1\ 

5 
I' 

1\ 
8 

y 

FULL 

BLANK 
VIDEO 

CONTROL BUS 
HSYNC 
VSYNC 
HRESET 

POWER 1 VCC 

GND 

VRESET 
VODD/EVEN 
VIDCLK 

onS5A 2-1 

Figure 2-1 Am95C60 Logic Diagram 

2-2 



The logic equation for EDE is: 

EDE=CS·AO·A1 
+ CS • A 1 • AO • ABR 
+ CS· A1 • AO 
+ CS· A1 • AO 
+ACKD·ABR 

;Status Register 
;Block I/O FIFO 
;Register Pointer 
;Register 
;Fly-by DMA 

Where ABR is the "OR" of the four activity bits. 

In most systems. EDE cannot be used by itself to 
enable the data buffers as this will result in a bus 
crash. The system designer will have to combine 
EDE with appropriate timing to avoid the crash. 

INT Interrupt Request (Output) 

This line is used by the Am95C60 to notify the 
host that an interrupt is pending. The nature of the 
interrupt can be determined by examining the 
contents of the status register. Interrupts are 
discussed in detail in Chapter 3. 

SYSCLK System Clock (Input) 

This input is the main clock to the Am95C60. All 
internal timing in the Am95C60 is controlled by this 
clock. Instruction timing is given in terms of this 

Table 2-1 Am95C60 Pinouts (Pin-side View) 

A B C 0 E F G H J K L M N P R 

1 DM314 DN313 DM311 OM310 DM307 DM305 DM303 DM301 TEST DM012 OM010 OM009 DMOO7 DM005 DMOOl 1 

2 DM200 DM315 DM312 DM308 DM304 DM302 DM300 MATOUT DM014 DM013 DMOll DM008 DMOO2 OM003 OMOOO 2 

3 DM202 DM204 DM201 DM309 GND DM306 vee MATIN VCC DM015 GND OM006 OMOO4 DM104 DM100 3 

4 DM206 DM207 DM205 NC DM10l DM103 DM102 4 

5 DM209 DM211 DM203 DM107 OM106 OM105 5 

6 DM213 DM208 GNO GND OM108 DM109 6 

7 DM215 DM212 DM210 DMl14 DMll0 DMlll 7 

8 DM214 ADDR10 ADORll DMl12 DM113 OMl15 8 

9 ADOR8 ADDR9 GND GNO 014 015 9 

10 ADDR6 ADDR5 vee 013 012 011 10 

11 ADOR4 AOORl ADORl GNO 010 09 11 

12 ADDR3 ADDR2 GNO 08 01 06 12 

13 FULL ADORO RAS WEO CAS XF/G VCC VODDIEVEN DREO INT vee WR OS 03 04 13 

14 VSTB COAT2 CDATO WEl TSYNIN MEMVAL VSYNC BLANK HRESET SYSCKL RESET RD ACKD 01 02 14 

15 OSTB CDAT1 WE3 WE2 TSYNOUT MEMREO HSYNC VRESET VIDCLK FREO NJ Al CS EDE DO 15 

A B C 0 E F G H J K L M N P R 

2-3 



clock. The maximum frequency for the system 
clock is 20 MHz and will be less for slower parts. 

The microengine as well as the RAM interface is 
driven by SYSCLK. SYSCLK, VIDCLK and trans­
actions at the system interface are all asyn­
chronous with respect to each other. 

SYSCLK should be as close to a square wave as 
possible. We recommend SYSCLK be generated 
by dividing a 2x clock with a flip-flop. In any case, 
parameters 108 and 109 must be met. 

RESET Reset (Input) 

This input unconditionally suspends any activity in 
the Am95C60 and forces it to a known state. The 
specifics are listed in Chapter 3. 

MATOUT Match Out (Output) 

This pin is used in multiple Am95C60 systems to 
exchange color matching information. Whenever 
an Am95C60 is not reporting a match, it will drive 
this pin LOW. When a match is found it will drive 
this pin HIGH. These pins must all be ANDed exter­
nally with the result driving all the MATIN pins. In 
addition to color matching, these pins are used to 
maintain instruction sychronization. The operation 
of the MATOUT lines is transparent to the user. 

MATIN Match In (Input) 

This pin must be driven by the ANDed MATOUT 
lines. In the case of a single Am95C60 system, 
this pin may be driven directly with MATOUT. 

TEST 

Test Input must be grounded. 

2.1.2 Display Memory Bus 

The display memory bus includes signals to 
completely control four bit planes. In a minimum 
system, very little other than buffers must be 
provided externally; in a larger system it will be 
necessary to decode RAS and CAS to implement 
bank selection. 

There is a 12-bit multiplexed address bus. 
Typically eight or nine of these bits are buffered 
into the array while one to three bits are decoded 
to steer RAS and CAS to the correct bank within 
the array. 

RAS, CAS, and XF/G can be buffered into the 
array in a minimum system and would be steered 
with high order address bits in a large system 
where bank selection is required. 

One of the most distinguishing features of the 
Am95C60 is the memory data bus. There are 16 
data lines for each of the four bit planes. This large 
degree of parallelism allows for a very fast BitBL T 
as well as some other inherently parallel opera­
tions. There are four write enables, one for each 
bit plane. 

Two lines, MEMREQ and MEMAVL, are used to 
allow an external device to gain control of the 
memory array. The external device has to be able 
to generate all the control and timing into the array. 

Two additional lines, TSYNOUT and TSYNIN, in the 
display memory bus group are used to synchro­
nize Am95C60s to each other in a multiple 
Am95C60 system. 

The following paragraphs are the formal English­
language descriptions of the display memory bus 
pins on the Am95C60. The pin numbers are in 
Table 2-1. All signal pins on the Am95C60 have 
TIL 110 levels. 

DISPLAY MEMORY BUS PINS 

ADDRO-ADDR11 Address O-Address 11 
(Output) 

These 12 lines contain the multiplexed address 
used for accessing the display memory. They con­
tain row and column addresses and bank select 
bits. See Chapter 12 for information regarding the 
specific meaning of each bit for various memory 
configurations. These lines must be buffered. 

RAS Row Address Strobe (Output) 

This line is used to strobe the row address into the 
array. This line will have to be buffered. In a large 
system the high order ADDR bits are decoded to 
steer RAS to the correct bank of RAMs. 

CAS Column Address Strobe (Output) 

.This line is used to strobe the column address into 
the array. This line will have to be buffered. In a 
large system the high order ADDR bits are de­
coded to steer CAS to the correct bank of RAMs. 

2-4 



XF/G Transfer/Output Enable (Output) 

This line is used to indicate a transfer cycle and to 
enable the output buffers of the appropriate RAMs 
during a read cycle. This line must be buffered. 

DMOOO-DM315 Display Memory Data Bus 
(Bidirectional) 

These 64 lines are connected directly to the data 
I/O pins of the dynamic port of the VRAM chips. 
There are 16 lines for each of the four bit planes. 
The naming convention for these lines is DMzxx 
where z is the plane number (0-3) and xx is the 
data line number (0-15). The relationship 
between data line numbers and the actual x 
addresses of pixels is: 

DMz15 is connected to the pixels whose x 
addresses end in 0000. DMz14 is connected to 
the pixels whose x addresses end in 0001. And 
so on, until DMzOO is connected to the pixels 
whose x addresses end in 111. 

Therefore, the serializer should be arranged so 
that DMz15 is displayed to the left of DMz14. That 
is, in a raster where the scan is from left-to-right, 
DMz15 should come out of the serializer first. 

WEO-WE3 Write Enable 0 - Write Enable 3 
(Output) 

These four lines indicate whether a random RAM 
cycle is a read or a write. There is one line for each 
of the four bit planes. These lines must be 
buffered. 

MEMREQ Memory Request (Input) 

This line is used by an external controller to 
request access to the display memory bus. When 
the Am95C60 can relinquish control of the bus, it 
will respond by making MEMAVL active. The 
external controller must be capable of generating a 
multiplexed address and the necessary control 
signals. 

MEMAVL Memory Available (Output) 

This line is used to indicate to an external controller 
that the Am95C60 has relinquished control of the 
memory bus. It does so by making the data lines 
inputs. The Am95C60 continues to drive its 
address and control lines; the external buffers 
must be three-stated. The Am95C60 can make 
MEMAVL not active and regain control of the bus 
even if MEMREQ does not go inactive. 

2-5 

TSYNOUT Timing Synchronization Output 
(Output) 

This line is used to synchronize display memory 
activities. The TSYNOUT lines of all Am95C60s in 
a system must be externally ANDed. The result of 
the AND must be tied to all the TSYNIN pins. In a 
single Am95C60 system, TSYNOUT may be 
connected directly to TSYNIN. 

TSYNIN Timing Synchronization In (Input) 

This pin must be connected to the AND of all 
TSYNOUT pins. In a single Am95C60 system, 
TSYNIN may be connected directly to TSYNOUT. 

2.1.3 Video Control Bus 

The signals in this group are related to video timing 
and to VRAMIVDAF control. 

BLANK, HSYNC and VSYNC are used to control 
the CRT monitor. HRESET and VRESET are bi­
directional signals used to synchronize Am95C60s 
in a multiple Am95C60 system or to slave an 
Am95C60 to an external raster. VODD/EVEN is 
used in an interlaced system to force slave 
Am95C60s to generate the correct field. VIDCLK 
is the clock signal from which the video timing 
Signals are generated. 

The remaining Signals in this group are used in a 
system with hardware windows to control the 
VDAFs. VSTB is used to clock data out of the 
VRAMs, and DSTB is used to strobe data into the 
VDAFs.. The CDAT lines are used to control data 
assembly in the VDAFs, and FULL is used to stop 
the data assembly process when the FIFOs in the 
VDAFs are full. 

The following paragraphs are the formal English­
language descriptions of the video control bus 
pins on the Am95C60. The pin numbers are in 
TABLE 2-1. All signal pins on the Am95C60 have 
TTL I/O levels. 

VIDEO CONTROL BUS PINS 

VSTB Video Strobe (Output) 

This Signal is used to shift the video data out of the 
VRAMs in a system that uses VDAFs. The 
Am95C60 expects that 16 bits of data per bit plane 
will be shifted with each positive going edge of this 
clock. VSTB also indicates which half of the 16-bit 
word is to be clocked into the a-bit VDAF when 
DSTB rises. A LOW selects bits 0-7, a HIGH 



selects 8-15. This signal must be buffered. In a 
system that does not use VDAFs, this signal is not 
used. 

DSTB Data Strobe (Output) 

This signal is used to clock the video data into the 
VDAFs. The Am95C60 expects that 8 bits will be 
clocked into each VDAF with each positive going 
edge of the clock. This signal is not used in a 
system that does not use VDAFs. This signal 
must be buffered. DSTB normally toggles twice as 
fast as VSTB. 

CDATO-CDAT2 Control Data 0 - Control 
Data 2 (Output) 

These three lines are used to control the assembly 
process in the VDAFs. During a transfer cycle 
these lines contain the bit number of the first bit 
that is to be displayed. At each rising edge of 
DSTB they will contain the number of valid bits in 
the byte being loaded. These lines must be 
buffered. 

FULL FIFO Full (Input) 

This line signals the Am95C60 that the VDAF FI FO 
is full and that the data assembly process must 
temporarily cease. The Am95C60 will respond by 
transferring up to three more bytes and then 
stopping. When FULL returns to the nonactive 
state the Am95C60 will begin transferring data 
within three SYSCLK cycles. 

BLANK Video Blank (Output) 

This signal indicates that the video is to be blanked 
on the screen. BLANK must be synchronized to 
the Dot Clock in order to insure proper timing. This 
signal is forced active when the Am95C60 is reset. 

HSYNC Horizontal Synchronization (Output) 

This signal is intended to initiate horizontal retrace 
of the CRT electron beam. The timing of this signal 
is programmable. This signal is forced inactive 
when the Am95C60 is reset. 

VSYNC Vertical Synchronization (Output) 

This signal is intended to initiate vertical retrace of 
the CRT electron beam. The timing of this signal is 
programmable. This signal is forced inactive when 
the Am95C60 is reset. 

HRESET Horizontal Reset (Bidirectional) 

This signal is an output for horizontal video masters 
and an input for horizontal video slaves. It is used 
to force horizontal synchronization. 

VRESET Vertical Reset (Bidirectional) 

This signal is an output for vertical video masters 
and an input for vertical video slaves. It is used to 
force vertical synchronization. 

VODD/EVEN Vertical Odd/Even (Input) 

This signal may be used in an interlaced display 
system to indicate whether an even field or odd 
field should be generated. 

VIDCLK Video Clock (Input) 

This clock is used for generating video timing. This 
is counted to generate the horizontal timing; 
HSYNC is counted to generate vertical timing. The 
maximum frequency of this clock is 15 MHz and will 
be less for slower parts. 

2-6 

2.1.4 Power Bus 

The Am95C60 uses +5 V and ground only. There 
are five +5 pins and eight ground pins. 

POWER BUS PINS 

vce Power (Input) 

There are five VCC pins. These must all be 
connected to a +5 V ±5% supply. Power must be 
adequately bypassed to ground as close to the 
pins as possible. 

GND Ground (Input) 

There are eight GND pins. These must all be 
connected to the power return. Ground must be 
distributed throughout the system with a solid layer 
in the PWB to obtain best results. 



CHAPTER 3 

HOST -Am95C60 COMMUNICATIONS 

This chapter discusses the very lowest level 
software interface between the Am95C60 and the 
host. This chapter should be of interest to the 
person building the software interface at the 
device driver level. 

3.1 RESET FUNCTION 

The Am95C60 is reset to a known state when the 
RESET pin is made active. RESET should be 
activated as part of the system power-on 
sequence; this insures that indeterminate sync 
pulses are not sent to the monitor. 

Table 3-1 lists the functions affected by a reset. 
Any function not mentioned in this list is 
indeterminate following a reset. 

Table 3·1 Functions Affected by a Reset 

Function 

Video Timing Enable 
Video Refresh Enable 
Display Memory Refresh 
8- or 16-bit System Bus 
Program Mode 
Instruction FIFO 
Block Input FIFO 
Block Output FIFO 

Condition Following 
Reset' 

Disabled 
Disabled 
Disabled 
16-bit System Bus 
Not in Program Mode 
Empty 
Empty 
Empty 

The reset that results from a write to the reset 
register (address 27) is the same except that Video 
Timing is not altered or disabled. 

No instructions should be sent to the Am95C60 
for at least 100 SYSCLK cycles following any reset. 

3.2 I/O PORTS 

The Am95C60 is intended to operate as a slave 
peripheral on the system bus. Typically, but not 
necessarily, it is placed in the 1/0 address space 
since it occupies only four locations. 

When the host accesses the Am95C60 as a slave 
peripheral, the two address lines and RD and WR 
are decoded to select one of eight functions. 
These are indicated in Table 3-2. 

~-1 

Table 3·2 110 Port Functions 

A1 AO Write Function Read Function 

0 0 Write Instruction Read Status Register 
FIFO 

0 Write Block In Read Block Out 
FIFO (BIF) FIFO (BOF) 

0 Write Address Read Address 
Register Register 
Write Register Read Register 

3.2.1 Write Instruction FIFO 

Whenever a write is performed to the Am95C60 
and A1,AO are (0,0), the word on the system data 
bus is written into the instruction FIFO. . If the 
instruction FIFO is already full, the word will be 
ignored with no notification and some words 
already in the FIFO may be lost. If the instruction 
FI FO is not full, the instruction word will be queued 
in the FIFO following the last one that was written. 

Writes to the instruction FIFO may be safely 
synchronized by using the FREQ (bit 14) status 
bit. If this bit is a one, there is room in the FIFO for 
at least one word. In the case where DMA is being 
used, the FREQ pin provides synchronization to 
the DMA controller. 

It is worth observing that the instruction word will 
not usually be taken from the FIFO immediately; it 
has to wait its turn. Short of forCing a reset, there is 
no way to unconditionally clear the instruction 
FIFO. 

3.2.2 Read Status Register 

Whenever a read is issued to the Am95C60 and 
A1,AO are (0,0), the status register will be read out 
onto the system data bus. This operation may be 
performed at any time without affecting the 
Am95C60 operating state. Since the internal 
microengine is not involved, a status read will not 
cause any performance degradation. 

The status register bits are defined in Table 3-3. 
(See the discussion of interrupts in this chapter for 
definitions of the interrupt requests.) 



3.2.3 Write Block In FIFO (BIF) 

When a write is issued to the Am95C60 and A 1,AO 
are (0,1), the word on the data bus enters the 
Block Input FIFO. If the FIFO is full, the word is lost 
with no notification being given to the host. These 
writes may be safely synchronized using the 
DREQ (bit 15) status bit. If this bit is a one, there is 
room for at least two words in the FIFO. In the case 
where DMA is being used, the DREQ pin provides 
synchronization to the DMA controller. 

3.2.4 Read Block Out FIFO (BOF) - (4 words) 

When a read is issued to the Am95C60 and A 1,AO 
are (0,1), the next word in the Block Output FIFO is 
placed on the data bus. If the FIFO is empty, 
indeterminate data will be placed on the bus with 
no notification being given to the host. These 
reads may be safely synchronized using the DREQ 
(bit 15) status bit. If this bit is a one, there are at 
least two words in the FIFO. In the case where 
DMA is being used, the DREQ pin provides 
synchronization to the DMA controller. 

3.2.5 Write Address Register 

When a write is issued to the Am95C60 and A 1,AO 
are (1,0), the contents of the data bus are written 
into the address register. This address is used dur­
ing subsequent Write Register or Read Register 

-operations to select the actual internal register that 

is to be involved in the transfer. The register 
addresses are given in Chapter 4. The address 
register may be written at any time without affecting 
the operation of the Am95C60. 

3.2.6 Read Address Register 

When a read is issued to the Am95C60 and A 1,AO 
are (1,0), the contents of the address register are 
placed on the data bus. This is the value that was 
last loaded with a Write Address Register 
operation. The address register may be read at 
any time without affecting the operation of the 
Am95C60. 

Interrupt handling is simplified somewhat by this 
ability to read the address register. The interrupt 
service routine can read and save the contents of 
the address register. It can then set the address 
register as required to process the interruption and 
finally restore the address register before it exits. 
The interruption is thereby made invisible regard· 
ing the contents of the address register. When 8-
bit bus mode has been selected, this is compli­
cated by the requirement that register accesses 
must not be split. 

3.2.7 Write Register 

When a write is issued to the Am95C60 and A 1,AO 
are (1,1), the contents of the data bus are written 
into the register selected by the last Write Address 

Table 3·3 Status Register Bit Definition 

BIT 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 

14 
15 

Mnemonic 

INT 

IDLEI 
SOFI 
DMXI 
CLIPI 
FRAMEI 
FREQI 
DREQI 
VBLKI 
SWI 
IDLE 

HRESET 
SPARE 
PCKD 

FREQ 
DREQ 

Description (A "1" has the following meaning:) 

Any interrupt request is active and the corresponding 
enable bit is set. 
The IDLE Interrupt request is set. 
The Stack Overflow Interrupt request is set. 
The DMX Interrupt request is set. 
The Clipping Interrupt request is set. 
The Frame Interrupt request is set. 
The FIFO Request Interrupt request is set. 
The Block 1/0 Request Interrupt request is set. 
The Vertical Blank Interrupt request is set. 
The Software Interrupt request is set. 
The Am95C60 actually is idle. This status bit is cleared 
by the Am95C60 automatically when it becomes not idle. 
The HRESET pin is HIGH. 
This bit is indeterminate. 
The Am95C60 has been instructed to write within the 
picking region and picking was enabled. If picking was 
not enabled at the time the write took place, this bit 
would not have been set. This status bit is cleared with 
an Interrupt Acknowledge with bit 9 set. 
The FREQ pin is HIGH. 
The DREQ pin is HIGH. 

3·2 



Register operation. Each register in the Am95C60 
is described in Chapter 4, including any restrictions 
regarding the timing of this operation for that 
register. 

3.2.8 Read Register 

When a read is issued to the Am95C60 and A 1 ,AO 
are (1,1), the contents of the selected register 
appear on the data bus if the register has read­
back capability. The register will have been 
selected by the last Write Address Register 
operation. If the register does not have read-back 
capability or it is not implemented, indeterminate 
data will be placed on the bus. 

3.3 DMA FACILITIES 

The Am95C60 can be used with a DMA controller. 
This minimizes the load on the host when large 
amounts of data are being transferred with Block 
110 instructions or where long strings of instruc­
tions are being sent to the Am95C60. 

When DMA operations are being done to the 
instruction FIFO, flow-through mode must be 
used. The DMA controller logic must generate the 
same signals and timing as the CPU. The 
Am95C60 does not know whether the operation 
was initiated from the CPU or from the DMA 
controller. 

When DMA operations are being done to the 
Block Input FIFO or the Block Output FIFO, either 
flow-through mode or fly-by mode may be 
implemented. If flow-through mode is chosen, the 
DMA controller logic must generate the same sig­
nals and timing as the CPU. 

CONDITION 

REQUEST,STATUS -_ ....... 

ENABLE 

INT------::; .... 

If fly-by mode is used, then the DMA controller 
makes ACKD active rather than chip select. The 
address bits will not be used and the meanings of 
RD and WR will be interchanged. 

3.4 INTERRUPT FACILITIES 

The Am95C60 provides an interrupt capability. 
This provides a method of reducing the load on 
the host by avoiding time consuming polling 
operations. 

There are nine conditions in the Am95C60 that 
can cause interruptions. Each condition has a 
specific bit in the Interrupt Enable Register and the 
Interrupt Acknowledge Register, as well as the 
Status Register. 

The Interrupt Enable Register is used to 
individually enable each of the conditions. The 
enable bit must be a 1 to allow the condition or to 
cause an interrupt. 

Writes to the Interrupt Acknowledge Register are 
used to clear interrupt requests. A 1 must be 
programmed in the word for each interrupt that is to 
be cleared. A 0 bit has no affect. 

Figure 3-1 and Figure 3-2 illustrate the interrupt 
scheme. When a specific condition occurs (e.g., 
the Am95C60 becomes idle), a latch is set that 
remembers the condition. The details of the 
condition vary from interrupt to interrupt; they are 
discussed in Table 3-4. The output of this latch is 
called the interrupt request. This is what goes to 
the status register. The interrupt enable need not 
be active for the request to appear in the status 
register. 

ACKNOWLEDGE-----------------------------......... 
07785A 3·1 

Figure 3-1 Interrupt Timing 



The setting of the latch takes place regardless of 
whether the corresponding enable bit is set. The 
latch remains set-even if the condition becomes 
no longer true-until explicitly cleared with an 
interrupt acknowledge. If the enable bit had been 
set prior to the latch being set, the interrupt 
request to host (INT) becomes active immediately. 
If the enable bit is not set, the condition cannot 
generate INT until the enable bit is set. 

When a write is directed to the Interrupt 
Acknowledge Register with the appropriate bit set, 
the latch is cleared if the condition is no longer 
active. If the condition is still active, the Interrupt 
Acknowledge does nothing. If the Interrupt 
Acknowledge does not clear a" the requests that 
are enabled, INT will remain active. 

Table 3-4 describes the interrupt conditions that 
can occur in the Am9SC60. The BIT number is the 
bit position within the registers. 

3.5 CONSIDERATIONS INVOLVING MULTIPLE 
Am95C60s 

Many systems require more than four bit planes. 
Multiple Am9SC60s can be easily cascaded. 
There are two major considerations. 

It is necessary to provide Chip Select (CS) 
decoding so that Am9SC60s can be selected both 
individually and as a group. When the Am9SC60s 
are addressed as a group, this is called broad­
casting. Table 3-S summarizes the cases. 

Table 3-5 Chip Select Decoding 

Operation Individual Broadcast 

Write Register Video Mode All other 
registers 

Read Status Register Always Never 
Send Instructions Set QPDM All other 

Position instructions 
Transfer Data Images Fonts 
Interrupt Acknowledge Never Always 

When multiple Am9SC60s are controlling the bit 
planes of a display, it is necessary to insure that 
they remain in synchronization (that is, all 
Am9SC60s are executing the same instruction). 
This is accomplished using the MATOUT and 
MATIN pins and the TSYNOUT and TSYNIN pins. 

The MATOUT and MATIN pins are used to 
exchange color match status and are also used to 
guarantee that the Am9SC60s all begin execution 
of each instruction simultaneously. The TSYNOUT 

and TSYNIN pins are used to synchronize display 
memory activities. The actual operation of these 
pins is invisible to the user. 

3.6 EIGHT-BIT INTERFACE 

The Am9SC60 can be used in a system with an 8-
bit data bus. When the Am9SC60 is reset it enters 
16-bit mode. It will remain in 16-bit mode until (and 
unless) a write is directed to the System Bus Width 
Register. When the write has ~aken place, the 
Am9SC60 enters 8-bit bus mode and remains 
there until a reset takes place. 

When the Am9SC60 is in 8-bit mode, system data 
bus bits 7-0 are used and data bits 1S-8 are not 
used. In the case of a write, the data on bits 1S-8 
are ignored. In the case of a read, the data placed 
on bits 15-8 are indeterminate. 

When the Am9SC60 is in 8-bit mode, each read or 
write toa register requires two transfers (even if the 
register actually contains eight or fewer bits), not 
counting the write to the address register. If the 
data written to the 8-Bit Bus Byte Order Register 
was a 0, the high order byte (register bits 15-8) is 
transferred during the first operation and the low 
order byte (register bits 7-0) is transferred during 
the second operation. If the data written to the 8-
Bit Bus Byte Order Register was a 1 , the low byte is 
transferred first and the high byte is transferred 
second. In either case both bytes are transferred 
on system data bus lines 7-0. 

Care must be taken to insure that the two transfers 
are not split by another access. Suppose, for 
example, an interrupt takes place after the high 
byte is written and the interrupt service routine 
writes to a register. The high byte written in the 
interrupt service routine will be taken by the 
Am9SC60 to be the low byte of the interrupted 
sequence, and matters will just get worse from 
then on. In general, it will be necessary to disable 
interrupts while transferring the two bytes in a 
complete register transfer. This consideration 
applies to register reads as well as writes. It is also 
necessary to assure that the transfer does not get 
split by a DMA operation. Suppressing interrupts 
and DMA request is generally handled in hardware. 

When using DMA in an 8-bit system, it is necessary 
to program the DMA counts to twice the value that 
would be used in a 16-bit system. The bytes must 
be ordered in memory consistently with the high 
byte first or low byte first programming. 

Observe the data hold time for write cycles is 
dissimilar between 8-bit and 16-bit modes. 



r-----.~ STATUS REGISTER 

CONDITION ---.-----1S 

ACKNOWLEDGE R INT 

INTENABLE 

INDIVIDUAL ENABLE ------------' 

Figure 3-2 Interrupt Logic 

Table 3-4 Am95C60 Interrupt Conditions 

BIT Mnemonic Description of Condition 

o INTI The logical "OR" of the nine status bits. 

2 

3 

4 

5 

6 

7 

8 

9 

IDLEI The Am95C60 has attempted to fetch an instruction and found the instruction FIFO empty. 

SOFI 

DMXI 

CLIP I 

FRAMEI 

FREQI 

DREQI 

VBLKI 

SWI 

The request remains active until cleared with an interrupt acknowledge. The condition 
remains true until the Am95C60 is no longer idle. 

The stack has overflowed. The instruction whose execution led to the overflow was not 
completed. The Am95C60 continues to fetch and execute instructions. The request 
remains active until cleared with an interrupt acknowledge. The condition remains true 
until the stack boundaries are loaded again (see Set Stack Boundaries in the Instruction 
Set of Chapter 14). 

The Am95C60 was instructed to calculate an address outside the maximum (4096 x 4096) 
memory size when drawing. The instruction was terminated. The Am95C60 continues to 
fetch and execute instructions. The request remains active until cleared with an interrupt 
acknowledge. The condition remains active until a write takes place that is inside the 
maximum (4096 x 4096) display memory. 

The Am95C60 was instructed to draw a pixel outside the clipping region with clipping 
enabled. The instruction was not terminated but the write did not take place. The request 
remains active until cleared with an interrupt acknowledge. The condition remains active 
until a write takes place that is inside the clipping region. 

The registers describing the screen and window parameters can be safely reloaded 
(without disrupting the screen). The request is raised after the register contents have 
been transferred into internal counters for the next frame and remains active until cleared 
with an interrupt acknowledge. 

The FREQ pin has changed from inactive to active (because the instruction FIFO has 
become half empty). The request remains active until cleared with an interrupt 
acknowledge. This condition is active when the Am95C60 is reset and remains active until 
the instruction FIFO is completely filled for the first time. Thereafter, this condition will 
be active whenever the instruction FIFO is less than half full. Observe the condition is latched. 

The DREQ pin has changed from inactive to active. The request remains active until 
cleared with an interrupt acknowledge. The condition is true whenever there are at least 
two words in the output FIFO and an Output Block is in progress or whenever there is room 
for at least two words in the input FIFO and an Input Block instruction is in progress. 

Vertical Blank has gone active in the Am95C60. The request remains active until cleared 
with an interrupt acknowledge. The condition is true whenever Vertical Blank is active. 

A SIGNAL instruction has been executed. The request remains active until cleared with 
an interrupt acknowledge. The condition is a pulse generated by the execution of the 
instruction. 





CHAPTER 4 

REGISTER SET 

The Am95C60 contains a number of registers that 
must be programmed by the host. These registers 
are described in the following sections. In the 
tables that follow, the address of each register is 
presented with the number of bits that are 
implemented. The address is given in decimal. 
The register name is preceded by a mnemonic. 
Unused bits in all registers must be programmed to 
zeroes as shown in Section 4.7. 

4.1 VISIBLE SCREEN COORDINATE 
REGISTERS 

These four registers specify the rectangular area of 
display memory that is to appear on the screen. 
Two X,V pairs are required. The Start pair defines 
the upper-left corner of the screen. The Terminate 
pair defines the lower-right corner of the screen, . 
and is one pixel past the end of the screen, in both 
"X" & "V". These are absolute addresses with 
respect to the display memory origin (0,0). The 
pixels defined by the Start address will be visible 
on the screen. If the values do not make sense 
(e.g., Terminate is less than Start), the results are 
indeterminate. 

The entire display can be scrolled and panned by 
changing the contents of these registers. These 
registers should be changed only at FRAMEI time. 
These registers are readable. 

The relationship between this set of registers and 
the display memory is shown in Figure 4-1. 

Screen X Start and Screen X Terminate must be 
integer multiples of 16 in a system without VDAFs. 

The number of scan lines specified in the Visible 
Screen Coordinate Registers (SVT-SVS) must 
equal the number of scan lines specified in the 
Vertical Active Registers. 

Table 4-1 Visible Screen Coordinate Registers 

Register Name 

SXS 
SYS 
SXT 
SYT 

Screen X Start 
Screen Y Start 
Screen X Terminate 
Screen Y Terminate 

Address Bits 

1 
2 
3 
4 

12 
12 
12 
12 

4.2 WINDOW CONTROL REGISTERS 

The six Window Control Registers specify the 
position and size of the hardware window. Four of 
these registers are called Window Apparent 
Registers, and the other two registers are called 
the Window Real Registers. See Chapter 11 for 
more information on the use of, and restrictions 
regarding, the window. 

The four Window Apparent Registers specify the 
Start and Termination of the window as it appears 
on the screen. These are X,V pairs and are 
referenced to the upper-left corner of the display 
memory. The two Window Real Registers specify 
the upper-left corner of the area of display memory 
which is to appear in the window. It is unnecessary 
to specify a Window Real Terminate since the size 
of the window is set by the Window Apparent 
Registers. 

The relationship between this set of registers and 
the display memory is shown in Figure 4-1. 

The position (and size) of the window on the 
screen can be modified by changing the contents 
of the Window Apparent Registers. This would be 
done, for example, to drag an object on the 
screen. The origin of the image which appears in 
the window can be changed by modifying the 
contents of the Window Real Registers. This 
would be done, for example, to scroll or pan within 
the window. 

These six registers should be changed only at 
FRAMEI time. They are readable. If the contents 
of these registers do not make any sense (e.g., 
the window terminates before it begins), the 
results are indeterminate. 

If no hardware window is desired, the Window 
Apparent Start Registers should be programmed 
to a pOint outside the visible screen. 

Table 4-2 Window Control Registers 

Register Name Address Bits 

WAXS 
WAYS 
WAXT 
WAYT 
WRX 
WRY 

Window Apparent X Start 14 
Window Apparent Y Start 15 
Window Apparent X Terminate 16 
Window Apparent YTerminate 17 
Window Real X 18 
Window Real Y 19 

12 
12 
12 
12 
12 
12 



4.3 VIDEO TIMING CONTROL REGISTERS 

The contents of this group of nine registers define 
the raster. These values are chosen according to 
the requirements of the monitor. Normally, these 
registers are programmed when the Am95C60 is 
initialized and not changed thereafter. It is safest 
to disable video timing prior to changing these 
registers. This precaution prevents sending incor­
rect sync pulses to the monitor. This group of 
registers is not readable. 

4.3.1 Horizontal Timing Registers 

The horizontal timing parameters are programmed 
in terms of VIDCLK cycles. Depending on how the 
system designer implements the timing, there are 
8,16, or 32 pixels for each VIDCLK cycle. 

Figure 4-2 may be used as an aid to understanding 
the relationship between the register values and 
the actual timing. The top waveform conforms to 
RS-343A and shows composite video. The bot­
tom traces show HBLANK (that exists only inside 
the Am95C60) and HSYNC. The following terms 
are those that monitor manufacturers often use: 

Monitor Parameters Description 

HFP Horizontal HBLANK rises to 
Front Porch HSYNC rises 

HSYNC Horizontal HSYNC rises to 
Sync Width HSYNCfalis 

HBP Horizontal HSYNC falls to 
Back Porch HBLANKfalis 

HAV Horizontal HBLANK falls to 
Active Video HBLANK rises 

The following are the terms (Le., registers) used in 
the Am95C60. They are defined using the 
preceding monitor terms. 

Register Name 

HSYNC Horizontal Sync Width 
HDEL Horizontal Scan Delay 
HACT Horizontal Active 
HTOT Horizontal Total 

Description 

= HSYNC 
= HSYNC+ HBP 
= HAV 
= HFP + HSYNC 
+ HBP+HAV 

Table 4-3 Horizontal Timing Registers 

Register Name Address Bits 

HSYNC Horizontal Sync Width 10 8 
HDEL Horizontal Scan Delay 11 7 
HACT Horizontal Active 12 8 
HTOT Horizontal Total Count 13 9 

When the Am95C60 is programmed to be a 
horizontal video slave HTOT is unused. HSYNC 
must be programmed to produce a pulse width 
greater than the (active LOW) incoming signal on 
HRESET. 

If HDEL is programmed to less than HSYNC, the 
sync signal will persist longer than blanking. This 
results in a negative horizontal back porch that is 
required for some monitors. 

4.3.2 Vertical Timing Registers 

The vertical timing registers, with the exception of 
VACT, are programmed in terms of half scan lines. 
VACT is programmed in terms of scan lines. Figure 
4-3 may be used as an aid to understanding the 
relationship between the register values and the 
actual timing. The traces show VBLANK (that 
exists only inside the Am95C60) and VSYNC. The 
following are the terms that monitor manufacturers 
often use: 

Monitor Parameters Description 

VFP Vertical VBLANK rises to 
Front Porch VSYNC rises 

VSYNC Vertical VSYNC rises to 
Sync Width VSYNCfalis 

VBP Vertical VSYNC falls to 
Back Porch VBLANKfalls 

VAV Vertical VBLANK falls to 
Active Video VBLANK rises 

The following are the terms (Le., registers) used in 
the Am95C60. They are defined using the 
preceding monitor terms. 

Register Name 

VSYNC Vertical Sync Width 
VDELODD Vertical Scan 

Delay Odd 
VDELEVEN Vertical Scan 

Delay Even 
VACT Vertical Active 
VTOT Vertical Total 

Description 

=VSYNC 

=VSYNC+ VBP 

=VSYNC+ VBP 
=VAV 
= VFP + VSYNC 
+ VBP+ VAV 

Table 4-4 Vertical Timing Registers 

Register Name 

VSYNC 
VDELODD 
VDELEVEN 
VACT 
VTOT 

Vertical Sync Width 
Vertical Scan Delay Odd 
Vertical Scan Delay Even 
Vertical Active 
Vertical Total 

Address Bits 

5 
6 
7 
8 
9 

10 
10 
10 
11 
13 



on85A 4·1 

SCREEN START 

0,0 

1 
Y 

FRONT 
PORCH 

HBLANK --1 
HSYNC ---1----1 

HFP 

HSYNC 

HSYNC 

APPARENTWINDOWSTART 

REAL WINDOW START 

SCREEN TERM I NATE 

Figure 4-1 Screen and Window Registers 

BACK 
PORCH 

HBP 

14------ HAV -ll:-----~ 

HDEL 

14------ HACT ---ll:-----~ 

• CRT MONITOR 

14--------- HTOT -l~--------~ 
07785A 4·2 

Figure 4-2 Horizontal Timing Nomenclature 



When the Am95C60 is programmed to be a vertical 
video slave VTOT is unused. In addition, VSYNC 
must be programmed to produce a pulse width 
greater than the (active LOW) incoming signal on 
VRESET. 

If VDEL is programmed to less than VSYNC, the 
sync signal will persist longer than blanking. This 
results in a negative vertical back porch that is 
required by some monitors. 

The vertical timing register must be programmed 
with even or odd values according to the following 
chart. All vertical timing registers are programmed 
in terms of half scan lines except VACT which is 
programmed in terms of full scan lines. 

Register Interlaced Noninterlaced 

VSYNC Even Even 
VDElODD Even Even 
VDElEVEN Odd Don't Care 
VACT SYT-SYS SYT-SYS 
VTOT Don't Care Don't Care 

VDELEVEN is not used when the Am95C60 is 
programmed for noninterlaced operation. If the 
Am95C60 is programmed for interlaced operation, 
VDELEVEN must be programmed with an odd 
number. 

4.4 VIDEO CONTROL REGISTERS 

The vid~o control group comprises three registers. 
These registers are normally programmed once 
during initialization. These registers cannot be 
read back. 

Register Name Address Bits 

VMR Video Mode Register 
VTE Video Timing Enable 
VRE Video Refresh Enable 

4.4.1 Video Mode Register 

22 
28 
29 

16 
1 
1 

The format of the video mode register is shown in 
Figure 4-4. 

In a system containing multiple Am95C60s, one 
will be the timing master and the others will be 
timing slaves. If Horizontal Master is programmed 
to a 1, this Am95C60 is the Horizontal Timing 
Master; if it is a 0, this Am95C60 is a Horizontal 
Timing Slave. 

The Vertical Master bit is analogous to the 
Horizontal Master bit. If it is a 1, the Am95C60 is 
the master; if it is a 0, the Am95C60 is a slave. 

Bits 3 and 2 of the Video Mode Register define the 
display mode, as shown in the chart below: 

Bit 3 Bit 2 Display Mode 

o 
o 
1 
1 

o 
1 
o 
1 

Reserved, do not use 
Interlaced (Odd/Even) 
Noninterlaced 
Repeat Field Interlaced 

Bit 4 (VODD/EVEN Pin Enable) is used for inter­
laced mode only; if noninterlaced mode is 
selected, bit 4 must be programmed to O. If 
interlaced operation is programmed VODD/EVEN 
Pin Enable establishes how the Am95C60 is to 
determine whether to generate an odd field or an 
even field. If VODD/EVEN Pin Enable is pro­
grammed to a 0, the Am95C60 will use an internal 
flip-flop; if VODD/EVEN Pin Enable is programmed 
to a 1, the Am95C60 will sample the VODD/EVEN 
pin prior to generating each frame. If VODD/EVEN 
Pin is a 0, the Am95C60 will generate an odd field 
first. 

4.4.2 Video Timing Enable Register 

The Video Timing Enable Register is used to 
enable or suppress the generation of sync and 
video. If bit 0 of this register is a 0, the Am95C60 
will not generate sync or blank. If bit 0 is 
programmed to a 1, the Am95C60 will generate 
sync and blank pulses. This bit should not be 
programmed to a 1 until the timing registers have 
all been programmed. 

When bit 0 of this register is programmed from a 1 
to a 0, the Am95C60 will continue to generate 
sync and blank until the end of the current frame. 

4.4.3 Video Refresh Enable 

The Video Refresh Enable is used to enable or 
suppress transfer cycles. If bit 0 is programmed to 
a 0, transfer cycles will be suppressed allowing 
nearly exclusive use of the display memory bus for 
other purposes. If bit 0 is programmed from a 1 to a 
0, the Am95C60 will complete the current frame. 

VRE must be programmed from 0 to 1 during 
Vertical Blanking Time. This time can be deter­
mined by monitoring the VBLKI bit in the status 
register or by monitoring the VSYNC pin. If you 
use the VBLKI bit, you must first ensure it is reset 
by writing to the interrupt acknowledge register a 
value with bit 8 set. After you write to the interrupt 
acknowledge, make sure VBLKI is actually a zero. 

4.5 DISPLAY RAM CONTROL REGISTERS 

The display RAM control group has two members. 
They are programmed once during initialization. 



These registers cannot be read back. 

Register Name 

MMR 
DMMR 

Memory Mode 
Dynamic Memory 
Refresh Rate 

Address 

23 
24 

Bits 

16 
10 

Bits 7 through 4 of the memory mode register 
indicate both the depth of the memory chips and 
the width of the display memory. The following 
chart lists the combinations. See Chapter 12 for 
Memory Configuration diagrams. 

RAM Display 
7654 Chip Memory 

4.5.1 Memory Mode Register 

The format of the memory mode register is shown 
in Figure 4-5. 

Bit 3 of the memory mode register is used to 
indicate the relative priority of dynamic RAM 
refresh and external access to the display memory 
bus. External access is what happens when 
MEMAVL is active. If bit 3 is programmed to a 0, 
dynamic RAM refresh will have higher priority than 
external access to the display memory bus. If bit 3 
is programmed to a 1, external access will have 
priority over dynamic RAM refresh. In this case, the 
external device must be able to guarantee that the 
VRAMs are refreshed. 

VFP 

VBP 

0000 
0001 
0010 
001 1 
0100 
01 01 
011 0 
01 11 
1000 
1 001 
1 01 0 
1 01 1 
1 1 00 
1 1 01 
1 1 1 0 
1 1 1 1 

Depth 

1 M 
256 K 
64 K 
256 K 
64 K 

256 K 
64 K 

64K 

14------ VAV ------... 

14----VDELODD 
VDELEVEN 

(OrVDELODD 
If Noninterlaced) 

14------ VACT-----~ 
~----------~OT---------~ 

onS5A 4·3 
Figure 4-3 Vertical Timing Nomenclature 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I o I 

Width 

4K 
4K 
4K 
2K 
2K 

1 K 
1 K 

512 

I '---.r---' 

I 
VODD/EVEN PIN ENABLE 

DISPLAY MODE 

VERTICALMASTER ----------------.....1 

o 

HORIZONTAL MASTER -------------------' 

onS5A 4·4 
Figure 4-4 Video Mode Register 

4-5 

Comments 

Configuration A 
Configuration B 
Configuration C 
Configuration D 
Configuration E 

Reserved 
Configuration F 
Configuration G 

Reserved 
Reserved 

Configuration H 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 



4.5.2 Dynamic Memory Refresh Rate Register 

The Dynamic Memory Refresh Rate Register is pro­
grammed with the number of SYSCLK cycles 
between dynamic RAM refresh cycles. The 
following equation may be used to calculate the 
value to be written into this register: 

x= Refresh Period I SYSCLK period 

If the refresh period is 16 J.ls (that is typical) and the 
SYSCLK period is 50 ns (20 MHz), the value for X 
is 320. Alternatively, if the SYSCLK period is 67 ns 
(15 MHz), the result is 240. Bit 9 must be 
programmed (a) to a 1 in order to enable refresh. If 
bit 9 is programmed to a 0, refresh is suppressed. 

4.6 HOST-Am95C60 COMMUNICATIONS 
REGISTERS 

The Host-Am95C60 Communications Registers 
group comprises five registers. These registers 
have all been described in Chapter 3. 

Register Name Address Bits 

IE Interrupt Enable 26 16 
IA Interrupt Acknowledge 30 16 
SWB System Bus Width 59 0 
RESET Reset 27 0 
BBO 8-Bit Bus Byte Order 31 1 

4.6.1 Interrupt Enable Register 

The Interrupt Enable Register is used to 
individually allow or disallow conditions to generate 
interrupt requests. The bits of this register are 
described in Chapter 3, Section 3.4 (Interrupt 
Facilities). 

A 1 enables the corresponding condition; a 0 
disables it. This register may be written at any time. 
This register cannot be read. 

4.6.2 Interrupt Acknowledge Register 

The Interrupt Acknowledge Register is used to 

15 14 13 12 11 10 9 8 

individually indicate to the Am95CSO that a 
condition has been handled by the host and that 
the latch (Request) associated with the condition 
may be reset. The bits of this register are enum­
erated in Section 3.4 (Interrupt Facilities). This reg­
ister may be written at any time. This register 
cannot be read. 

4.6.3 System Bus Width Register 

The System Bus Width Register is used to put the 
Am95CSO into 8-bit data bus mode. When the 
Am95C60 is reset, it is put into 1S-bit data bus 
mode. When a write to this register is executed, 
the Am95C60 enters 8-bit mode and remains in 8-
bit mode until it is reset. This register is used in 
conjunction with the 8-Bit Bus Byte Order 
Register. 

4.6.4 Eight-Bit Bus Byte Order 

This register is used to determine the order in 
which bytes must be written and read in 8-bit data 
bus mode. This register must be loaded before 
the write is directed to the System Bus Width 
Register. If this register is loaded with 00, the high 
order byte is transferred first. If the register is 
loaded with 01, the low order byte is transferred 
first. 

4.6.5 Reset Register 

Whenever a write is executed to this register the 
Am95C60 will be reset. The details of this 
operation are covered in Chapter 3, Section 3.1. 

4.7 PICTORIAL REPRESENTATION OF ALL 
REGISTERS 

Figures 4-6 through Figure 4-17 show all the 
registers. The addresses are given in decimal. 

7 6 5 4 3 2 0 
1010101010101 o I o I I' I o I o I o I 

L--.y-J 

I 
MEMORY CONFIGURATION I 

MEMORY PRIORITY CHANGE 
on85A 4·1 

Figure 4-5 Memory Mode Register 

4-6 



MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

SXY 1 0 0 0 0 SCREEN X START 

SYS 2 0 0 0 0 SCREEN Y START 

SXT 3 0 0 0 0 SCREEN X TERMINATE 

SYT 4 0 0 0 0 SCREEN Y TERMINATE 

07785A 4-1 

Figure 4·6 Visible Screen Coordinate Registers 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

WAXS 14 0 0 0 0 WINDOW APPARENT X START 

WAYS 15 0 0 0 0 WINDOW APPARENT Y START 

WAXT 16 0 0 0 0 WINDOW APPARENT X TERMINATE 

WAYT 17 0 0 0 0 WINDOW APPARENT Y TERMINATE 

WRX 18 0 0 0 0 WINDOW REAL X START 

WRY 19 0 0 0 0 WINDOW REAL Y START 

07785A 4-7 
Figure 4-7 Window Control Registers 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

HSYNC 10 . 0 0 0 0 0 0 0 0 HOR.SYNCWIDTH (S BITS) 

HDEl 11 0 0 0 0 0 0 0 0 o I HOR.SCANDElAY (7 BITS) 

HACT 12 0 0 0 0 0 0 0 0 HOR.ACTIVE (SBITS) 

HTOT 13 0 0 0 0 0 0 0 HOR. TOTAL COUNT (9 BITS) 

VSYNC 5 0 0 0 0 0 0 VERT. SYNC WIDTH (10 BITS) 

VDElOD 6 0 0 0 0 0 0 VERT.SCANDElAYODD (10 BITS) 

VDElEVEN 7 0 0 0 0 0 0 VERT.SCANDElAYEVEN (10 BITS) 

VACT 8 0 0 0 0 0 VERT. ACTIVE (11 BITS) 

VTOT 9 0 0 0 VERT. TOTAL COUNT (13 BITS) 

07785A 4-8 
Figure 4·8 Video Timing Control Registers 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

VMR 22 101010101010 1 0 01 0 1 0 1 0 1 1 I 1 1 

I ~ 

I 
I 

VODD/EVEN PIN ENABLE 

I DISPLAY MODE 

VERTICAL MASTER 

HORIZONTAL MASTER 

07785A 4-9 

Figure 4-9 Video Mode Register 



MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VIE 28 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 

ENABLE VIDEO TIMING -----------------' 

onS5A 4-10 

Figure 4-10 Video Timing Enable 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VRE I 29 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I ,0 I 0 I 

ENABLE VIDEO REFRESH ---------------..1 
onS5A 4-11 

Figure 4-11 Video Refresh Enable 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

MMR 23 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I I I I I I 0 I 0 I 0 I 
'----y-----J 

MEMORY CONFIGURATION ______ ....J1 

MEMORY PRIORITY CHANGE ----------' 

onS5A 4-12 

Figure 4-12 Memory Mode Register 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 3 2 

DMMR 24 I 0 I 0 I 0 I 0 I 0 I 0 I 
REFRESHENABLE ----I 
REFRESH RATE --------------' 

onS5A 4-13 

Figure 4-13 Dynamic Memory Refresh Rate Register 

4-8 



MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 2 o 

FREQI -------------' 

FRAMEI----------------' 

CUPI-----------------~ 

DMXI -------------------------1 
SFOI-------------------' 

ID~I------------------~ 

INTI -------------------~ 

onS5A 4-14 

Figure 4-14 Interrupt Enable/Acknowledge Registers 

MNEMONIC ADRS 15 14 13 12 11 10 9 S 7 6 5 4 3 2 0 

SWB 159101010101010101010101010101010101 

onS5A 4-15 

Figure 4-15 System Bus Width Register 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

BBO 1 31 1 0 1 0 1 0 1 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 

FIRST BYTE CODE --------------------' 
onS5A 4-16 

Figure 4-16 8-Bit Bus Byte Order 

MNEMONIC ADRS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

RESET 27 1 0 1 0 I 0 1 0 1 0 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

onS5A 4-17 

Figure 4-17 Reset Register 

.,LO 





CHAPTERS 

ADDRESSING MODES AND SCALING 

The purpose of this chapter is to discuss 
addressing modes and scaling. All Am95CSO in­
structions that operate on the contents of display 
memory addresses in a consistent manner. 

S.1 STANDARD OPERAND ADDRESS PAIR 

Figure S-1 shows the format of a Standard 
Operand Address Pair (SOAP) as it appears in any 
instruction. All Standard Operand Address Pairs 
have this format. 

AM is the 2-bit address mode field. This field 
chooses one of four addressing modes for both X 
and Y. The four values of AM are enumerated 
below. 

Addressing Offset 
AM Mode By: 

o 0 Absolute Zero 
o 1 Viewport Viewport Location 
1 0 Relative Current Pen Position 
1 1 Indirect Zero 

XldX is a 14-bit 2's complement number that 
specifies an absolute address or a relative value to 
be added to an offset. If the X scale factor was set 
to any value other than 0, the XldX field will be 
multiplied by the X scale factor. 

Y/dY is a 14-bit 2's complement number that 
specifies an absolute address or a relative value to 
be added to an offset. If the Y scale factor was set 
to any value other than 0, the Y/dY field will be 
multiplied by the Y scale factor. The two high order 
bits of this word must be Os. 

S.2 ADDRESS TRANSLATION 

The following sections describe how the SOAP is 
evaluated for each of the four address modes. 
This process takes place twice for each operand 
address pair, once for the X address and once for 
the Y address. 

Some operands must be on 1S-bit boundaries in 
the X dimension. Stack entries and instructions in 
display memory are examples. The user is respon­
sible for making certain the low order four address 
bits resolve to zeroes. If not, strange things may 
happen with no warning or notification. 

Scale factors will be mentioned frequently in this 
section. The scale factors are specified using the 
instruction "Set Scale Factor". In general, scaling 
is independent for the two dimensions (X and V). 
For each dimension, scaling will take place for 
every addressing mode (except absolute and 
indirect) unless the scale factor for that dimension 
was set to O. If the scale factor for a dimension was 
set to 0, then scaling will not occur for that dimen­
sion. In any case, scaling is never performed for 
absolute or indirect addressing. 

When the multiply takes place, the Am95CSO 
produces a 29-bit real number as shown in Figure 
5-2. There is a 14-bit integer part and a 15-bit frac­
tional part. By integer part we mean that a change 
of value of 1 will change the address by one pixel. 
The Am95CSO does not make any assumptions 
about the position of radix points in either the 
address field or the scale factor. 

One may assume the presence of radix points 
anywhere one wishes as long as there are a total of 
15 bits of fraction. Two especially useful combi­
nations are shown in Figure 5-3. The first com­
bination assumes an integer address field and a 
fractional scale factor. The second combination 
assumes a fractional address field and a mostly 
integer scale factor (there is a single bit of fraction). 

In the case where we assume an integer address 
and fractional scale factor, scale factors will be 
interpreted as follows: 

x7FFF 
x4000 
x2000 

unity _2-14 

.5 

.25 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
WORD1 ~ __ A~M __ +-_______________________ ~_dX __________________ ~ 

WORD2 0 I 0 Y/dY 
~~--~------------------------------------------~ 

on85A 5-·1 

Figure 5-1 Standard Operand Address Pair 



5.2.1 Absolute Addressing Mode 

When Absolute Addressing is specified, the 14-bit 
address field is taken as the effective address in 
the range -8192, +8191 regardless of the scale 
factors. The Fractional Error is unchanged. See 
Figure 5-4. 

In Absolute Addressing mode, higher V values will 
be lower on the screen. The origin is at the upper­
left corner of display memory. This is shown in 
Figure 5-4. 

5.2.2 Viewport Addressing Mode 

When Viewport Addressing mode is specified and 
the scale factor was set to 0, the 14-bit address 
field is taken as an integer to which is added the 
Viewport Location (also taken as an integer). The 
sum is the effective address in the range -8192, 
+8191. The Fractional Error is unchanged. See 
Figure 5-5. 

When Viewport Addressing mode is specified and 
the scale factor was set to some value other than 0, 
then the address field is multiplied by the scale 
factor producing a 29-bit real number. The 
Viewport Location (taken as an integer) is added to 
the integer part. The sum is taken as the effective 
address in the range -8192, +8191. The fractional 
part is stored as the new Fractional Error. While 
this address mode can modify the Fractional Error, 
it does not use it. See Figure 5-6. When the 
truncation takes place, the pixel is displaced UP on 
the screen. This is away from the viewport 
location; that is perhaps not what one might have 
expected. 

In Viewport Addressing, with or without scaling, 
positive V values will appear above the viewport 
location: This is shown in Figures 5-5 and 5-6. 

5.2.3 Relative Addressing Mode 

When Relative Addressing mode is specified and 
the scale factor was set to 0, the 14-bit address 
field is taken as an integer to which is added the 
Current Pen Position. The sum is the effective 
address in the range -8192, +8191. The Fractional 
Error is unchanged. See Figure 5-7. 

When Relative Addressing mode is specified and 
the scale factor was set to some value other than 0, 

then the address field is multiplied by the scale 
factor producing a 29-bit real number. The Current 
Pen Position is added to the integer part and the 
Fractional Error is added to the fractional part 
(possibly causing a carry into the integer part). The 
integer part of the result is the effective address in 
the range -8192, +8191. The fractional part is 
stored as the new Fractional Error. This is the only 
addressing mode which actually uses the 
Fractional Error. See Figure 5-8. When the 
truncation takes place, the pixel is displaced UP on 
the screen. This is away from the Current Pen 
Position; that is perhaps not what one might have 
expected. 

In Relative Addressing, with or without scaling, 
positive V addresses will appear above the Current 
Pen Position. This is shown in Figures 5-7 and 
5-8. 

5.2.4 Indirect Addressing Mode 

When Indirect Addressing mode is specified, the 
address fields are taken as an integer address of a 
standard operand address pair. The pair is at X,V 
and X,V + 1 of bit plane O. The four low order bits of 
the X address field must be O. 

Two words assumed to be a standard operand 
address pair (see Figure 5-9) are fetched from the 
indicated locations in display memory. It is eval­
uated in the normal manner. It may specify any 
addressing mode including indirect. 

5.2.5 Round-off Errors 

The purpose of maintaining the Fractional Error is 
to prevent the accumulation of errors when using a 
series of relative addresses. The Fractional Error 
resulting from each operand address evaluation is 
added into the fractional part of the real number 
resulting from the next scaling operation. The 
fractional part resulting from that operation is 
stored as the new Fractional Error for the next 
address calculation. 

In Viewport Addressing mode with scaling the 
Fractional Error is not added into the real number 
resulting from the scaling operation. However, the 
fractional part is still stored as the new Fractional 
Error. 



r-14 -----1 r- 15 ----1 
ADDRESS FIELD SCALE FACTOR 

r-14----~·1·4-----15----~' 
I 
• 

07785A 5-2 

Figure 5-2 Scaling Multiply 

ADDRESS FIELD 

1 
EFFECTIVEADDRESS 

0,0 

I • 

I 
y 

• -X~. 

07785A 5-4 

ADDRESS FIELD I I 
• • SCALE FACTOR 

ADDRESS FIELD SCALE FACTOR • • 
07785A 5·3 

Figure 5-3 Example of Binary Point Assignments 

OLD FRACTIONAL ERROR 

NEW FRACTIONAL ERROR 

N,N 

Figure 5-4 Absolute Addressing 



ADDRESS FIELD I 
• 

I VIEWPORT LOCATION I 
.) . 

c±) 
1 

I OLD FRACTIONAL ERROR 

• + 
NEW FRACTIONAL ERROR 

EFFECTIVE ADDRESS 

0,0 

f--------------, 
y ! 
!- X--J 

VIEWPORT 

N,N 

onS5A 5-6 

Figure 5-5 Viewport Addressing Without Scaling 



07785A 5-6 

ADDRESS FIELD 

I 

I VIEWPORT LOCATION I ) . 
ED 
1 

i • 

SCALE FACTOR 

EFFECTIVEADDRESS NEW FRACTIONAL ERROR 

0,0 

f----------1 
Y·Sy : 

I ! 
.~·Sx~ 

VIEWPORT 

N,N 

I 

Figure 5-6 Viewport Addressing With Scaling 

5-5 



ADDRESS FIELD I 
• 

CURRENT PEN POSITON 
• !) 

CB 
1 

I 

~ • 

EFFECTIVEADDRESS 

0,0 

f-----------r 
y I 

I 

I : 
.--X~ 

CPP 

OLD FRACTIONAL ERROR 

+ 
NEW FRACTIONAL ERROR 

N,N 

Figure 5-7 Relative Addressing Without Scaling 

5-6 

07785A 5-7 



ADD RESS FI ELD SCALE FACTOR 

I ! 
I CURRENT PEN POSTION I ! . 

rJ 
! 

~ OLD FAACTLL ERROR: 

CARRY ~t+'t 
PROPAGATION '-.:.SJ 

01 
EFFECTIVEADDRESS NEW FRACTIONAL ERROR 

0,0 

f···························T 
Y·Sy + FEy ! 
I ! 
• -~·Sx+FEx~ 

CPP 

N,N 
07785A 5-9 

Figure 5·8 Relative Addressing With Scaling 

x, Y --+f AM I X/dx 

07785A 5-10 
X,Y+1 --.f 00 I Y/dy 

Figure 5-9 Indirect Addressing 

5-7 





CHAPTER 6 

LINE TEXTURE 

Three related topics are covered in this chapter. 
The first is Line Styles, dealing with plain and fancy 
lines. The second topic is End-point Options, deal­
ing with how the ends of lines (and arcs) are drawn. 
The third topic of this chapter is line thickness, 
dealing with the concept and implementation of 
the logical Picture Element (PEL). Throughout the 
remainder of this chapter, only lines will be 
discussed explicitly, but arcs and circles are treated 
similarly. 

6.1 LINE STYLES 

The Am95C60 allows for various line styles for 
drawing lines, arcs and circles. 

6.1.1 Basic Line Styles 

The two basic line styles are solid and dashed­
dotted. Line styles "dashed" and "dotted" can be 
generated as special cases using the dashed­
dotted line style. The information required by the 
Am95C60 to draw a specific line comes from three 
sources. These sources are the Set Line Style 
instruction, the Set Line Style Phase instruction 
and the Drawing instruction itself. 

Each of the three drawing instructions, Line, 
Circle, and Arc (and their Current analogs) includes 
a LS bit (bit position 12) that specifies whether the 
line style is solid or dashed-dotted. If the LS bit is a 
zero, the line style is solid and any previous Set 
Line Style or Set Line Style Phase instructions are 
don't cares. If the LS bit is a one, the line style is 
dashed-dotted and the information from previous 
Set Line Style and Set Line Style Phase instruc­
tions is used. 

The Set Line Style instruction is used to indicate 
the length of each of the three elements of a 
dashed-dotted line. These three elements are the 
dash length, dot length, and space length. If a 
dashed-dotted line is required, the dash length 
would be programmed to a value different from the 
dot length. If a simple dashed or dotted line is 
required, the dash length and dot length would be 
programmed to identical values. It is worth noting 
that the terms dash and dot do not imply any 
restrictions on the relative values that may be 
specified, even for dashed-dotted lines. 

Figure 6-1 shows the four basic line styles. 
Observe that the dashed line style and dotted line 
style are special cases of the dashed-dotted line 
style. 

LINE STYLE PICTORIAL 

SOLID 

DASH-DOTTED 

t,----t--+-f t---L-t _t -+---f t _ ~~~~E 
- - DOT 

DASHED 

tL-t~-f-f-L. _t---=-1 ---=::=...t --=:=-f -== ~~~~E 
~--------------~--- DOT 

tL...--...t -I-f t --1...-1 t-+--f t_ ~~~~E 
- - DOT 

DOTTED 

07785A 6-1 

Figure 6-1 Basic Line Styles 

6-1 



The Set Line Style Phase instruction provides the 
third piece of information needed by the 
Am95C60, namely where within the line style cycle 
to begin. The LSS field specifies the element with 
which the line is to begin and the LSC field 
specifies the number of pixels that remains in that 
element. The Set Line Style Phase instruction 
must proceed every drawing instruction unless the 
line style is solid or the line, style is to be continued 
from the previous instruction. 

Note that the space elements are not drawn with a 
color or logical operation different from the dash or 
dot elements; the Am95C60 simply does not 
execute any writes to the bit map. 

6.1.2 Complex Line Styles 

It is possible to draw with line styles more complex 
than dashed-dotted. This involves drawing the 
line (or arc or circle) more than once. Figure 6-2 
illustrates a line with two dots between dashes. 
The lengths of each of the elements are indicated 
in the figure. 

This particular complex line style is formed by 
drawing the same line three times (as indicated in 
the figure). The first iteration produces the 
dashes, the second produces the leftmost dots 
and the third produces the rightmost dots. The 
step-by-step procedure is: 

20 - 25 
STEP 2 

STEP 5 • 25 • I-

STEP 7 • 35 • 

1. Set Line Styles: 
Dash=Dot=20, Space=25, 

2. Set Line Style Phase: 
LSS=01 (Dash), LSC=20 (full length dash) 

3. Draw the Line: 
LS=Dashed-dotted, EP=conditional 

4. Set Line Style: 
Dash=Dot=5, Space=40 

5. Set Line Style Phase: 
LSS=OO (Space before dash), 
LSC=25 (25 space pixels) 

6. Draw the Line: 
LS=Dashed-dotted, EP=conditional 

7. Set Line Style Phase: 
LSS=OO (Space before dash), 
LSC=35 (35 space pixels) 

8. Draw the Line: 
LS=Dashed-dotted, EP=conditional 

The first three steps draw the first iteration of the 
line. This is a dashed-dotted line with 20 pixel 
dashes and dots and 25 pixel spaces. The line 
style phase is set to begin with a full-length dash. 

Steps four through six draw the second iteration of 
the line. The line style is set to five pixel dashes 
and dots and 40 space elements. The line style 
phase is set to begin with a space element with 25 
pixels remaining. Thus, we skip over the first 25 
pixels before beginning a dash. 

• 20 

40 ~_I -

4 40 • 

20 5 5 5 5 5 20 5 5 5 5 5 
LINE 

~~--------45--------~~ 

onS5A 6·2 

Figure 6·2 Complex Line Style 

6-2 



Steps seven and eight draw the third iteration of 
the line. The line style is still correct from the 
second iteration (we still want five pixel dash-dots 
with 40 pixel spaces). The line style phase is set to 
begin with a space element with 35 pixels remain­
ing. Thus, we skip over the first 35 pixels before 
beginning a dash. 

Steps five and seven (the second and third Set 
Line Style Phase instructions) could just as well 
have specified LSS of 10 (space before dot) rather 
than 00. Since the dash length and dot length are 
set the same, the result would have been iden­
tical. Furthermore, step two could have begun 
with a dot region with identical results. 

It is possible to draw arcs and circles with complex 
line styles using the same approach. 

6.1.3 Line Styles with Diagonal Lines 

The line drawing algorithms used in the Am95C60 
normally count pixels along either the X or Y axis, 
never along the diagonal. This will result in the 
elements of nonsolid lines drawn near the diagonal 
appearing to be longer than the elements of lines 
drawn near the X or Y axis. This can be observed 
by drawing a series of dashed-dotted lines 
radiating out from a common point. 

This can be compensated for, in part, by using the 
Pixel Length Diagonal (PLD) option in the Set 
Scale Factor instruction. This would be done 
regardless of whether your application would 
otherwise call for scaling. 

When the Am95C60 is choosing the next pixel of a 
line, it has two basic choices: it can choose the 
next pixel that is adjacent along the X or Y axis or it 
can choose the next pixel that is diagonally away 
from the current pixel. When it chooses a pixel 
adjacent along an axis, it always subtracts one from 
the remaining length of the current line style 
element. When it chooses a pixel that is diagonal, 
it subtracts the value programmed with the PLD 
option. If this value is the Square Root of 2 
("1.414), elements at the diagonal will have the 
same physical length (not the number of pixels) as 
elements along the axis. In addition, lines at 
intermediate angles will be adjusted by an 
intermediate amount (they will be generated with a 
mixture of orthogonal and diagonal moves). 

The PLD option is programmed in terms of 
sixteenths of a pixel. The default value that is 
programmed when the Am95C60 is reset is 16. 
Thus, the default if ONE. The values that are 
closest to Square Root of 2 are 23/16 (1.4375) 
and 22116 (1.375). 

6-3 

6.1.4 Line Styles with Scaling 

If scaling is used and the X and y scale factors are 
set differently (to compensate for a pixel aspect 
ration of non-unity, for example), another cor­
rection will take place. This is because the number 
of pixels per inch is different from X to Y; The 
length of lines is adjusted to compensate for this; 
the length of line style elements must be adjusted 
as well. 

The correction that is performed for Line when the 
dashed-dotted line style is chosen (LS=1) involves 
the use of three different pixel lengths; one for 
each possible incremental direction of movement: 
X, Y, and D(iagonal). The increment in X is always 
unity. The increment in Y is calculated in the Line 
setup (if LS=1) as the ratio of the scale factors 
SXlSY. The increment for diagonal movement is 
chosen in the Set Scale Factor instruction as 
described above. 

The Set Line Style and Set Line Style Phase 
instructions should always be executed whenever 
the scale factors are changed. 

6.2 END-POINT OPTIONS 

The user can control whether the end-points (that 
is, the first and last points) of lines and arcs are 
drawn. 

The first pOint is always drawn for a Line or Arc 
instruction, even if the line style and line style 
phase are such that it falls within a space element. 
The first point is never drawn for a Line Current or 
Arc Current even if the line style and line style 
phase are such that it falls within a dash or dot 
element. 

The last point of a Line or Arc is controlled by the 
EP bit (bit pOSition 11). If EP is zero, the last point 
is drawn only if it falls within a dash or dot element. 
If EP is a one, the last point is drawn even if it falls 
within a space element. If the line style is solid, the 
last point is always drawn. 

The line style phase is never reset at the 
beginning of a drawing instruction, but rather 
continues from where the previous instruction left 
off. This is useful for continuing lines around an 
inflection point. If you wish to force the phase, you 
must execute a Set Line Style Phase instruction. 

6.3 LOGICAL PEL 

The logical PEL provides a means of drawing 
pOints, lines, arcs, and circles using a rectangular 



brush containing an arbitrary pattern. The pattern 
may vary from plane to plane or it may be stored 
only in a single plane and replicated into the other 
planes. 

For lines, arcs and circles, the PEL is useful for 
drawing with various line width parameters; for 
points, it is useful for drawing with various marker 
types. 

The logical PEL is controlled with the Define 
Logical PEL instruction, the Set Block Size instruc­
tion, and three bits of the drawing instruction itself. 

The Define Logical PEL instruction enables or 
disables the logical PEL and defines where in 
display memory it is located. The addresses 
derived from the Define Logical PEL instruction 
pOint to the upper-left corner of the PEL. There is 
only a single current PEL, although many may be 
stored in memory for subsequent use. Set Block 
specifies the size of the PEL; there is no limit to 
the size of the PEL. 

The AA, SI, and M bits of the drawing instructions 
control how the PEL is used. 

If the logical PEL is enabled and the AA bit is a 
zero, the PEL is taken from all planes. If the AA bit 
is a one, the PEL is taken from the bit plane that 
was speCified in the FP field of the last Set 
Character Font Position instruction. In this case, 
the PEL is replicated into all those planes whose 
activity bits are set. The replication does not span 
OPDMs. If the logical PEL is not enabled,the AA 
bit is used to control anti-aliasing. 

If the SI bit is a one, the PEL is inverted (1's 
complement) before being used. If it is a zero, the 
PEL is used as it appears in the display memory. If 
the logical PEL is not enabled, the SI bit is ignored. 

If the M bit is a one, the PEL is stored only where 
the destination matches, on a pixel-by-pixel basis, 
the search color. This allows clipping with irregular 
regions. Observe that the PEL could be a single 
bit. If the M bit is a zero, the PEL is stored without 
matching. The SOAXZ field still applies in all these 
cases. If the logical PEL is not enabled, the M bit is 
ignored. 

When the Set Block Size instruction is executed, 
offsets for each of the two dimensions (X and Y) 
are calculated by dividing the block size by two 
(using truncation). These offsets are stored 
whenever a Set Block Size is executed and are 
used with the logical PEL as described below. 

6.3.1 Using the Logical PEL with the 
Point Instruction 

The logical PEL is especially useful for drawing 
markers with the Point Instruction. 

When the logical PEL has been enabled, the Point 
instruction (and its Current analog) proceed as 
follows (see Figure 6-3). The standard operand 
address pair is evaulated in the normal manner, 
producing an X, Y address. The offsets described 
above are SUBTRACTED from the X, Y address 
and the resultant address is used as the upper-left 
corner of an area into which the PEL is written. 

6-4 

When the logical PEL is being used with the Point 
instruction, the center of the logical PEL is 
deposited on the point and the remainder is 
deposited around the point. If the size of the PEL 
is even in either of both dimensions, then it does 
not contain a pixel that occupies the center. In this 
case, the PEL cannot be deposited symmetrically 
about the point but rather will be displaced up or to 
the left 1/2 pixel. 

6.3.2 Using the Logical PEL with the 
Line Instruction 

When the logical PEL has been enabled, the Line 
instruction (and its Current analog) proceed as 
follows (see Figure 6-4). The start and end pOints 
are each modified by SUBTRACTING the offsets 
described above. Then the line is interpolated and 
the PEL is deposited at its upper-left corner at 
each pixel. The effect is that "the PEL is dragged 
by its center". 

Depending on the pattern contained in the logical 
PEL, this will draw a wide line regardless of the 
vector direction. A filled circle whose diameter is 
equal to the desired line width works especially 
well. If the SOAXZ field specifies graphical SET, 
and the PEL is drawn into all bit planes, the line will 
be the color specified with the current drawing 
color. 

USing the logical PEL with Line instructions may 
lead to unexpected results if the SOAXZ field 
specifies XOR since the PEL will cancel itself in 
some cases. 

The logical PEL cannot be used with anti-aliased 
lines but can be used with dashed-dotted line 
style. 



6.3.3 Using the logical PEL with Arc and 
Circle Instructions 

When the logical PEL has been enabled, the Arc 
and Circle instructions proceed as follows (see 
Figure 6-4). The center is modified by 
SUBTRACTING the offsets described above. 
Then the arc is interpolated and the PEL is 
deposited at its upper-left corner at each pixel. 
The effect is that "the PEL is dragged by its 
center". 

Depending on the pattern contained in the logical 
PEL, this will draw a wide figure regardless of the 
vector direction. A filled circle whose diameter is 

SET LOGICAL PEL 

onaSA 6-3 

OFFSETx =2 

OFFSETy =2 

~ x 
x 

x x x x x 
x 
x 

(X-OFFSETx,Y-OFFSETy) 

J-x--, 
POINT (X,V) ----:--.. x : 

:XXXXXI 

I x : 
I x I 1 ______ _ 

Figure 6-3 Logical PEL and Point 

6-5 

equal to the desired line width works especially 
well. If the SOAXZ field specifies graphical SET, 
and the PEL is drawn into all bit planes, the figure 
will be the color specified with the current drawing 
color. 

Using the logical PEL with Arc and Circle 
instructions any lead to unexpected results if the 
SOAXZ field specifies XOR since the PEL will 
cancel itself in some cases. 

The logical PEL cannot be used with anti-aliased 
arcs and circles but can be used with dashed­
dotted line style. 

SET LOGICAL PEL 

~ X X X 
OFFSETx =2 X X 

X X 
OFFSETy =2 X X 

X X X 

b 
b 

b @ 
b @ 

b @ 
b X X X @ 

b X X X @ X @.POINTSONSPECIFIEDLINE 

X X @ X X b. POINTS ON OFFSET LINE 

X X @ X X X.RESULTANTTHICKLINE 

X X X X 
X X X 

onaSA 6-4 

Figure 6-4 Logical PEL and Line 





CHAPTER 7 

CLIPPING AND PICKING 

Two related topics are covered in this chapter. 
These are clipping that involves altering only a 
certain .area of display memory, and picking that 
allows the host to determine what operations affect 
a certain area of display memory. 

7.1 CLIPPING 

The Am95C60 provides a clipping facility. If 
clipping is enabled, operations that draw into 
display memory will actually write only within the 
Clipping window. This is illustrated in Figure 7-1 
where the solid figures indicate writes that take 
place and the dotted figures indicate writes that do 
not take place. Note that there is no particular 
relationship between the screen boundaries and 
the clipping boundaries. 

The instructions Input Block and Store Immediate 
always ignore clipping. The writes to display 
memory take place as though clipping were 
disabled. 

0,0 

BEGIN 

... c. 

END 

The clipping window is established using the Set 
Clipping Boundary instruction. This instruction 
takes as its operands two sets of X,V pOints that 
define the Clipping window (always a rectangle). 
The pixels that lie on the boundaries are taken to 
be within the window. 

If clipping is enabled (see Chapter 14, Control 
Clipping instruction), instructions that alter pixels in 
display memory operate precisely as they normally 
would except that no writes will take place outside 
the clipping window. In addition, whenever an 
instruction generates an address that would result 
in a write outside the clipping window, the CLIPI 
condition is raised (see Chapter 3 for a description 
of the interrupt system). Once raised, this 
condition will remain active until a write takes place 
within the clipping window. The CLIPI request 
remains active until cleared with an acknowledge. 

The Am95C60 calculates all the pOints (of a circle 
for example) it would otherwise have calculated; 
only the actual writes to display memory are 

.... , .. .. , , , , , ....... , 
-----.-~~ 

DISPLAY MEMORY 

07785A 7-1 N,N 

Figure 7-1 Clipping 

7-1 



suppressed. This implies that drawing time cannot 
be reduced by clipping. If a point is outside 
maximum display memory, DMXI will be set even if 
the pOint is clipped. 

For the purposes of write enable control, the 
clipping boundaries may be on any pixel address. 
For correct operation of the CLiPI condition for 
operations other than Arc, Circle, Point and Line, 
the X coordinate of the clipping boundary must be 
word aligned. 

7.2 PICKING 

The Am95C60 provides a picking facility. If picking 
is enabled, operations that would otherwise write 
into display memory do not actually perform writes 
at all. Rather, the addresses are calculated and a 
decision is made to raise the Pick Detect (PCKD) 
status bit based on whether the write would have 
taken place within the picking region. 

The picking region is established using the Set 
Picking Region instruction. This instruction takes 
as its operands two sets of X,V pOints that define 
the picking region (always a rectangle). The pixels 
that lie on the boundaries are taken to be within 
the picking region. 

If picking is enabled (see Chapter 14, Control 
Picking instruction), instructions that alter pixels in 
display memory operate precisely as they normally 
would except that no writes will take place. In 
addition, whenever an instruction would write into 
the picking region, the PCKD status bit is set. 
After the PCKD status bit has been set and 
cleared, you must draw something outside the 
picking region in order to clear the pick condition. 
This will "arm" the PCKD status bit. 

For the Arc, Circle, Line, and Point instructions 
(and their Current analogs), if the logical PEL is 
disabled, the picking boundary may be set to any 

7-2 

pixel boundary. The writes will be suppressed and 
the pick detect condition will be set correctly. 

For most other operations, the picking boundary 
must be word aligned (in the X dimension). Exam­
ples of such operations are Copy Block, Fill 
Bounded Region, Fill Connected Region, Filled 
Rectangle, Filled Triangle (and their Current ana­
logs) as well as Arc, Circle, Line, and Point if the 
logical PEL is enabled. The writes will be sup­
pressed but pick detect mayor may not be set 
correctly if this restriction is not met. 

If a Copy Block with match is executed, and a write 
that would otherwise set picking detect is sup­
pressed because of no match, pick detect mayor 
may not be set. 

7.2.1 Example of Picking 

The host needs to determine whether a particular 
drawing instruction would cause any writes within 
the picking region. The step-by-step method is 
given below: 

1. Set the picking region and enable picking, 
using the Set Picking Region instruction. 

2. Enable interrupts. 

3. Issue the drawing instruction in question. 

4. When an interruption occurs, the state of 
PCKD and IDLE may be evaluated as follows: 

PCKD IDLE 

o 0 
o 1 
1 X 

Condition 

Some other interrupt occurred 
No pick took place 
A pick took place 



CHAPTER 8 

GRAPHICAL OPERATIONS 

This chapter discusses four related fields that 
appear in most drawing instructions. The fields are 
the SOAXZ field, the M bit field, the SI bit field and 
the SP field. 

This discussion will refer to color bits and search 
color. There is one color bit per plane that is 
specified with Set Color Bits. There is one bit per 
plane in the search color; it is specified with Set 
Search Color. 

8.1 SOAXZ FIELD 

When blocks are being copied or when images 
(e.g., lines) are being written into display memory, 
it is possible to perform graphical operations 
combining the data being written with the current 
contents of display memory. These operations are 
done on a pixel-by-pixel basis and are done 
independently for each bit plane in the system. 
The SOAXZ field contains three bits and specifies 
which graphical operation is used. The acronym is 
derived from ,S.et, ,Qr, And, Xor, Zero. 

8.1.1 SOAXZ Field in Instructions 
Involving a Source Operand 

The instructions that involve a source operand are 
Copy Block, String, and Transform Block (and their 
Current analogs). If the logical PEL is enabled, 
then Arc, Circle, Line and Point behave as if the 
logical PEL were the source operand. The source 
operand is combined with the destination operand 
under control of the SOAXZ, the color bit for the 
particular bit plane and the SI field. See Figure 8-1. 

8.1.1.1 Logical SET 

If a SOAXZ field of 000 is specified, the destination 
operand is simply replaced with the source 
operand. This mode ignores the color bit. This 
SOAXZ field should be used to accomplish a 
simple hit-by-bit copy. The activity bits can be 
used to selectively suppress the transfer of 
planes, allowing a transparent effect. 

8-1 

8.1.1.2 Logical OR 

If a SOAXZ field of 001 is specified, the destination 
operand is replaced with the logical OR of the 
destination operand and the source operand. This 
logical operation is done independently for each 
bit plane. This mode ignores the color bit. 

8.1.1.3 Logical AND 

If a SOAXZ field of 010 is specified, the destination 
operand is replaced with the logical AND of the 
destination operand and the source operand. This 
logical operation is done independently for each 
bit plane. This mode ignores the color bit. 

8.1.1.4 Logical XOR 

If a SOAXZ field of 011 is specified, the destination 
operand is replaced with the logical XOR of the 
destination operand and the source operand. This 
logical operation is done independently for each 
bit plane. This mode ignores the color bit. 

8.1.1.5 Logical ZERO 

If a SOAXZ field of 100 is specified, the destination 
operand is replaced with the logical AND of the 
destination operand and the 1 's complement of 
the source operand. This is done regardless of 
the color bit. This is done independently for each 
bit plane. 

A 1 in the source field forces a 0 in the destination, 
and a 0 in the source field results in no change in 
the destination. This mode ignores the color bits. 

8.1.1.6 Graphical SET 

If a SOAXZ field of 101 is specified and the color bit 
for a given bit plane is a 1, the destination operand 
is replaced with the logical OR of the destination 
operand and the source operand. If a SOAXZ field 
of 101 is specified, and the color bit for a given bit 



SIBIT 

AXZ SO 
MA 

COLOR 
TCH 
BIT 

on85A 8-1 

. 

3 
I 

I 

SOAXZ SOURCE 

000 0 
0 
1 
1 

001 0 
0 
1 
1 

010 0 
0 
1 
1 

011 0 
0 
1 
1 

SOURCE SOAXZ Label Color Bit = 1 Color Bit = 0 

! 000 Logical SET O+-S O+-S 

001 Logical OR O+-SORO O+-SOR 0 

INVERT DESTINATIO N 010 Logical ANO O+-SANOO O+- SAND D 

01 1 Logical XOR O+-SXORO D+-SXOR D 

100 Logical ZERO o +- IS AND 0 D +- IS AND D 

1 01 Graphical SET O+-SORO D+-IS ANDO , 11 0 Graphical OR D +-SOR D D+-O (n/c) 

.. 1 1 1 Graphical XOR O+-SXORO o +- 0 (n/c) 
D destination operand .. +- is replaced by 
S source operand 
IS ones complement of source operand 

OR logical OR operation 
AND logical ANO operation 
XOR logical exclusive OR operation 

nlc No Change DESTINATION 

DESTINATION RESULT SOAXZ SOURCE DESTINATION RESULT 

0 0 100 0 0 0 
1 0 0 1 1 
0 1 1 0 0 
1 1 1 1 0 

0 0 101 0 0 0 
1 1 0 1 1 
0 1 1 0 Color Bit 
1 1 1 1 Color Bit 

0 0 110 0 0 0 
1 0 0 1 1 
0 0 1 0 Color Bit 
1 1 1 1 1 

0 0 111 0 0 0 
1 1 0 1 1 
0 1 1 0 Color Bit 
1 0 1 1 IColor Bit 

Figure 8·1 Instructions With a Source Operand 

8-2 



plane is a 0, the destination operand is replaced 
with the logical AND of the destination operand 
and the 1's complement of the source operand. 
This is done independently for each bit plane. 

If the color bit is a 1, a 1 in the source field forces a 
1 in the destination, and a 0 in the source field 
causes no change. If the color bit is a 0, a 1 in the 
source field forces a 0 in the destination, and a 0 in 
the source field causes no change. The other way 
to view this is: a 0 in the source field places the 
color bit in the destination, and a 0 in the source 
field causes no change in the destination. 

8.1.1.7 Graphical OR 

If a SOAXZ field of 110 is specified and the color bit 
for a given bit plane is a 1, the destination operand 
is replaced with the logical OR of the destination 
operand and the source operand. If a SOAXZ field 
of 110 is specified, and the color bit for a given bit 
plane is a 0, the destination operand is 
unchanged. This is done independently for each 
bit plane. 

If the color bit is a 1, a 1 in the source field forces a 
1 in the destination, and a 0 in the source field 
causes no change. If the color bit is a 0, the 
destination is unchanged regardless of the source 
field. The other way to view this is: a 1 in the 
source field ORs the color bit into the destination, 
and a 0 in the source field causes no change in the 
destination. 

8.1.1.8 Graphical XOR 

If a SOAXZ field of 111 is specified, and the color 
bit for a given bit plane isa 1, the destination 
operand is replaced with the logical XOR of the 
destination operand and the source operand. If a 
SOAXZ field of 111 is specified, and the color bit 
for a given bit plane is a 0, the destination operand 
is unchanged. This is done independently for 
each bit plane. 

If the color bit is a 1, a 1 in the source field inverts 
the destination and a 0 in the source field causes 
no change. If the color bit is a 0, the destination is 
unchanged regardless of the source field. The 
other way to view this is: a 1 in the source field 
XORs the color bit into the destination, and a 0 in 
the source field causes no change in the 
destination. 

8-3 

8.1.2 SOAXZ Field in Instructions Not 
Involving a Source Operand 

The instructions that do not involve a source 
operand are Arc, Circle, the Fills, Line, and Point 
(and their Current analogs). In these instructions, 
the Am95C60 calculates where a point or series of 
points should be placed. In this case there is no 
source operand (or rather, the interpolation mask is 
the source operand). If the logical PEL is enabled, 
then Arc, Circle, Line and Point behave as if there 
were a source operand (the image of the logical 
PEL). See Figure 8-2. 

8.1.2.1 Logical SET 

A SOAXZ field of 000 should not be used with 
instructions not involving a source operand. Since 
the interpolation mask is used, fifteen bits of each 
word will be forced to zero. This is almost certainly 
not the intended result. But you should try it once 
just to satisfy your curiousity. 

8.1.2.2 Logical OR 

If a SOAXZ field of 001 is specified, 1s are forced 
regardless of the color bit. 

8.1.2.3 Logical AND 

A SOAXZ field of 010 should not be used with 
instructions not involving a source operand. Since 
the interpolation mask is used, fifteen bits of each 
word will be forced to zero. This is almost certainly 
not the intended result. 

8.1.2.4 Logical XOR 

If a SOAXZ field of 011 is specified, the destination 
data is inverted regardless of the color bit. 

8.1.2.5 Logical ZERO 

If the SOAXZ field is 100, a 0 is written regardless 
of the color bit. This is done independently for 
each bit plane. 



INTERPOLATION SOAXZ Label Color Bit = 1 Color Bit = 0 
DESTINATION MASK 

000 Logical SET D~1 D~1 

001 Logical OR D~1 D~1 , 010 Logical AND o ~ 0 (n/c) o ~ 0 (n/c) 

3 011 Logical XOR D~ID D~ID 

SOAXZ I 
I 

100 Logical ZERO Of- 0 D~O 

101 Graphical SET D~1 D~O 

110 Graphical OR D~1 o ~ 0 (n/c) 

111 Graphical XOR D~ID o ~ 0 (n/c) 

" 
0 destination operand 

f- is replaced by 
1 binary one 

DESTINATION 

07785A 8·2 0 binary zero 
10 ones complement of destination operand 

n/c No change 

SOAXZ DESTINATION COLOR RESULT SOAXZ DESTINATION COLOR RESULT 

000 0 0 100 0 0 0 
0 1 0 1 0 
1 0 1 0 0 
1 1 1 1 0 

001 0 0 101 0 0 0 
0 1 0 1 1 
1 0 1 0 0 
1 1 1 1 1 

010 0 0 0 110 0 0 0 
0 1 0 0 1 1 
1 0 1 1 0 1 
1 1 1 1 1 1 

011 0 0 1 111 0 0 0 
0 1 1 0 1 1 
1 0 0 1 0 1 
1 1 0 1 1 0 

Figure 8-2 Instructions Without a Source Operand 

8-4 



8.1.2.6 Graphical SET 

If the SOAXZ field is 101, the destination operand 
is simply replaced with the color bit of the particular 
bit plane. This is the correct SOAXZ field for draw­
ing lines, etc., with the current drawing color. 

8.1.2.7 Graphical OR 

If the SOAXZ field is 110, the destination field is 
read and ORed with the color bit for the particular 
bit plane. If the color bit for a plane is a 1, the 
destination is replaced with a 1. If the color bit for a 
plane is a 0, the destination is not changed. This is 
done independently for each bit plane. 

8.1.2.8 Graphical XOR 

If the SOAXZ field is 111, the destination field is 
read and XORed with the color bit for the particular 
bit plane. If the color bit is a 1, the destination is 
inverted (1's complement). If the color bit is a 0, 
the destination is unchanged. This is done inde­
pendently for each bit plane. 

8.1.3 Color Strategy 

Essentially nothing can be said about a general 
color strategy without making some assumptions 
about the relationship of bit planes and colors on 
the screen. Since a typical system will include a 
color look-up table, there is no definitive or typical 
relationship. Thus, we will say nothing further 
about color strategy except to reiterate that each 
pixel of each plane is dealt with independently. 
We have enumerated the rules; the rules go by bit 
plane. 

8.2 THEM BIT 

Some instructions include a single-bit field called 
the M bit. These instructions are Copy Block and 
String (and their Current analogs) as well as the 
drawing instructions Point, Line, Arc, and Circle 
(and their Current analogs). In the case of Point, 
Line, Arc, and Circle, this bit is effective only if the 
logical PEL is enabled. 

If the M bit is set, the instruction will write only into 
those pixels whose color matches the search color 
(see instruction Set Search Color). This match is 
done on a pixel-by-pixel basis and include those 
planes whose listen bits are zeroes. 

The M bit can be used to implement a fill with a 
pattern. If it is necessary to fill an arbitrary closed 
polygonal area with a pattern, one may proceed as 
follows. There must be a copy of the pattern in 
memory. 

First, fill the polygon with some otherwise unused 
color using Fill Bounded Region or Fill Connected 
Region. Then set the search color to the unused 
color with which the polygon was filled. Finally 
copy the pattern into an area that encloses the 
polygon using Copy Block with the M bit set. 
Everywhere the color matches the pattern will be 
copied, thus filling the polygonal area. Figure 8-3 
illustrates this where a small pattern is copied 
repetitively. 

The M bit can be used with the logical PEL to im­
plement clipping using an irregular region (as 
opposed to the normal clipping rectangle). This 
might involve assigning an otherwise unused color 
(pixel combination) to the bits that are to be 
matched. 

8.3 THE SI BIT 

Some instructions include a single-bit field called 
the SI bit. These instructions are Copy Block and 
String (and their Current analogs) as well as the 
drawing instructions Point, Line, Arc, and Circle 
(and their Current analogs). 

If this bit is set in a Copy Block, the contents of the 
source field are inverted (1's complement) prior to 
the SOAXZ operation. 

If this bit is set in a String, the contents of the font 
pattern words (but not the attribute word) are 
inverted (1's complement) prior to the SOAXZ 
operation. This can be used to fill in the character 
cells with a background color. 

If this bit is set in a Point, Line, Arc, or Circle 
instruction AND the logical PEL is enabled, the 
contents of the logical PEL are inverted (one's 
complement) prior to the SOAXZ operation. 

8.4 THE SP BIT 

Some instructions include a single-bit field called 
the SP bit. These instructions are Copy Block and 
String (and their Current analogs) as well as the 
drawing instructions Point, Line, Arc, and Circle 
(and their Current analogs). 



If this bit is set in a Copy Block, the source is taken 
from a single plane (specified in the FP of Set 
Character Font Base) and replicated for each plane 
whose activity bit is set. 

If this bit is set in a String, the attribute word and 
the font pattern is taken from a single plane 
(specified in the FP field of Set Character Font 

UNUSED COLOR 

Base). The pattern words are replicated for each 
plane whose activity bits are set. 

If this bit is set in a Point, Line, Arc, or Circle 
instruction AND the logical PEL is enabled, the 
logical PEL is taken from a single plane (as 
specified in the FP field of Set Character Font 
Base) and replicated for each plane whose activity 
bits are set. 

07785A 8-3 

Figure 8-3 The "M" Bit 



CHAPTER 9 

ANTI-ALIASING 

The Line, Arc and Circle instructions (and their 
Current analogs) may invoke anti-aliasing. The 
host specifies this by setting the anti-aliasing (AA) 
bit to a 1. Anti-aliasing produces the appearance 
of smoothing the steps that are the inevitable 
result of drawing a slanted line into a quantized 
medium such as a bit map. 

examples in this chapter assume that the SOAXZ 
field is 101 (graphical SET), that the color bits are 
1 s and that the figure is being drawn into a blank 
(BLACK) background. 

9.1 SELECTION OF CANDIDATE PIXELS 

Anti-aliasing on the Am95C60 works by selectively 
suppressing write enables to the bit planes. The 
value that is written into a bit plane depends on the 
color bit and SOAXZ field as normal. All the 

Figure 9-1 a shows the candidate pixels for arcs 
and circles. Figure 9-1b illustrates how the candi­
date pixels are chosen and their distances calcu­
lated. This applies to both the Comparator Method 

07785A 9-1A 

07785A 9-1 

CANDIDATE 
PIXELS 

ASINGLE X.-- CANDIDATE 
AT 450

, 0 0
, & 900 

Figure 9-1a Candidate Pixels for Circles and Arcs 

REAL PIXEL LOCATIONS 

10/16 

.............. J .... 
PERPENDICULAR 

AXIS 
r J. ............. \.0 ... ······· ~ 

1 
12116 .t .. ········· 

! .................. t IDEAL LINE 

••••• 10/16 

···r ~ .. ' 4/16 

o · 0 0 
... ----- AXIS OF GREATEST MOVEMENT ----.-.. 

(MAJOR AXIS OF INTERPOLATION) 

o PIXELS CHOSEN 

o PIXELS NOT CHOSEN 

Figure 9-1b Selection of Candidate Pixels 

0_1 



and the Inverse-Distance Method. The line­
drawing algorithm used in the Am95C60 first 
determines the axis along which there is the 
greatest movement. In the case of a straight line, 
this is the axis whose difference between 
beginning and end is the greatest. In the case of 
an arc or circle, this depends on which octant the 
Am95C60 is currently interpolating. For every 
pixel along this axis, it finds where the ideal pixel 
would lie on the perpendicular axis. The location 
of this ideal pixel is calculated in increments of 1/16 
pixel. 

The two real pixels lying closest to this ideal pixel 
along the perpendicular axis are two candidate 
pixels and are the only two that might be changed 
(anti-aliasing never affects pixels farther than 15/16 
from the ideal pixel). If the ideal pixel exactly corre­
sponds to a real pixel, then only one candidate is 
chosen. This always occurs for 45 degree and 
orthogonal lines and for arcs and circles at the 0, 
45, and 90 degree pOints. 

9.2 COMPARATOR ANTI-ALIASING 

For each of the two candidate pixels, the absolute 
distance (expressed in 1116 pixel) is compared t? 
the anti-aliasing distances for each of the four bit 
planes. These distances will have been previously 
set using instruction Set Anti-aliasing Distance. If 
the distance is less than the minimum or greater 
than the maximum, the plane is not written into. If 
the distance is equal to or greater than the 
minimum and equal to or less than the maximum, 
the bit plane will be written into (if the activity bit is 
set). The value written into the plane depends on 
the color bit and SOAXZ field as usual. 

Comparator Anti-aliasing is selected by program­
ming all the min values less than their max values. 

9.2.1 Comparator Anti-aliasing Without a 
Look-up Table 

Consider a system with four bit planes that drive a 
4-bit digital-to-analog converter as shown in Figure 
9-2. This example does not use a look-up table 
(LUT); the bits drive the DAC inputs directly. 

In this system (Comparator Anti-aliasing without a 
LUT), one cannot generate more levels of gr~y 
than there are bit planes and still have a monotonic 
decrease in illumination as one gets further from 
the ideal pixel. 

Bit DAC lIIumi-
Plane Weight nation Minimum Maximum 

0 MSB 8/15 0000 0111 
1 2nd MSB 4/15 0000 1011 
2 3rd MSB 2/15 0000 1101 
3 LSB 1/15 0000 1111 

If the distance between the candidate pixel and 
the ideal pixel is equal to or less than 7/16, then no 
write enables will be suppressed. This will result in 
all1's that will yield 15115 output from the DAC. 

If the distance is in the range 8/16 through 11/16 
inclusive, the write enable to plane 0 will be sup­
pressed. This results in 7115 output from the DAC. 

If the distance is in the range 12116 or 13/16, the 
write enables to planes 0 and 1 will be suppressed. 
This results in 3115 output from the DAC. 

If the distance is in the range 14/16 or 15/16, the 
write enables to planes 0, 1, and 2 will be sup­
pressed. This results in 1115 output from the DAC. 

This method can be expanded to more levels of 
grey by adding more Am95C60s and bit planes. In 
general, the number of unique levels that can be 
written is 4 • n, where n is the number of 
Am95C60s. 

Figures 9-6, 9-7, and 9-8 show the actual pixels 
resulting from a number of anti-aliasing distances. 
These are shown as examples of what can be 
obtained. 

9.2.2 Comparator Anti-aliasing With a 
Look-up Table 

If one uses a look-up table to correct for the 
nonmonotonic decrease in grey level, it is possible 
to generate more levels of grey. The Am95C60 
will write data that is not monotonic into the planes 
and the look-up table is programmed to 
compensate. This is shown in Figure 9-3. 

The distance registers are programmed as indi­
cated in the following chart: 

Plane Minimum Maximum 

0 0000 1001 
1 0010 1011 
2 0101 1110 
3 0111 1111 



07785A 9-2 

15 15 15 15 15 15 15 15 7 7 7 7 3 3 1 1 

1 3 3 7 7 7 7 15 15 15 15 15 15 15 15 15 

aad 0 

inst 

PLANE a 
PLANE 1 
PLANE2 
PLANE 3 

PLANE 

15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 

INTENSITY 4 

a 
1 
2 
3 

{ 0 < 15 , 0 < 13 , 0 < 11 , 0 < 7 } 

0037 OB07 OFOD 

MSB 

I > DAC 
LSB 

>-------..,.~ TO MONITOR 

MIN MAX 

0000 0111 
0000 1 011 
0000 11 01 
0000 11 1 1 

(1/15ths) ; ~ 

1 ~ ___________________________ ~ ____ ~ 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

DISTANCE (1/16ths) • 

Figure 9-2 Comparator Anti-aliasing Without a LUT 



3 3 3 7 7 15 15 15 14 14 12 12 12 8 

12 12 12 8 8 15 15 15 7 7 3 3 3 

8 12 

aad 0 { 0 < 9 , 2 < 11 , 5 < 14 , 7 < 15 } 

inst 0037 SE7F 092B 

PLANEO 

I I > PLANE 1 LOOK-
UP ~ DAC .. 

PLANE2 7 
TABLE 

PLANE3 n TO MONITOR 

PLANE MIN MAX 

0 0000 1001 
1 0010 1 01 1 
2 0101 1110 
3 0111 1 1 1 1 

o 1 23 I 

1 1 1 1 -I I --1 1 1 0 I 
I 

1 1 0 1 I -1 1 0 0 
1 0 1 1 
1 0 1 0 
1 0 0 1 -VALUE 1 000 -STORED o 1 1 1 

I 
o 1 1 0 
o 1 0 1 
o 1 00 
o 0 1 1 
001 0 -o 0 0 1 I 

0000 

0 2 3 5 6 7 9 10 11 12 13 14 15 

DISTANCE (1/16ths) • 

07785A 9-3 

Figure 9-3 Comparator Anti-aliasing With a LUT 

Q_.d. 



This results in seven zones as shown in the Figure 
9-3. Observe that these values cannot be directed 
to a DAC without correction; zone 4 would be more 
illuminated than zone 1. Through the nonlinear 
response of a LUT, this problem can be corrected. 

The number of levels of grey can be increased by 
adding more Am95C60s and bit planes. In 
general, the number of grey levels that can be 
written is (8 • n) - 1 where n is the number of 
Am95C60s. Observe that for n = 3, the number of 
grey levels obtained in this manner exceeds the 
number of grey levels available using the Inverse 
Distance Method. 

9.3 Inverse Distance Anti-aliasing 

The candidate pixels are chosen as described in 
Section 9.1. For each of the two pixels, the 
distance from the ideal pixels is calculated (in 1/16 
of a pixel). This value is inverted (1's complement) 
forming a value in the range 0 (15116) to 15 (0/16). 

The value is taken as four binary digits d3, d2, d1 
and dO where d3 is the most significant. The write 
enables to the bit planes are enabled according to 
these four digits and the distance register pro­
gramming as shown in Figure 9-4. 

MIN MAX 

, v \ 

I 1 I 0 I 0 I 0 I 0 I PL I 
'---y---J 

This is illustrated in Figure 9-5. The four bit planes 
are connected directly to the inputs of a DAC. 
While there is no look-up table in this example, 
most applications would require one because a 
linear decrease in intensity produces the "barber 
pole effect". Plane 0 is programmed to respond to 
the MSB and plane 3 is programmed as the LSB. 
There are 15 levels of grey possible using this 
method (not counting blaCk). 

Using more than one QPDM per color doesn't 
increase the number of intensities using the 
Inverse Distance Method. 

Inverse Distance Anti-aliasing is selected by pro­
gramming the most significant bit of each min 
register to 1 and programming the most significant 
bit of each max register to O. 

9.4 Anti-aliasing In a Color System 

Anti-aliasing in a color system works best when 
there is an Am95C60 available for each of the 
three colors (red, green and blue). In this case, the 
concepts previously discussed hold; there are just 
three colors rather than one. 

I WRITE ENABLE 
'------- 0 0 0 dO (LEAST SIGNIFICANT) 

00 1 d1 

onS5A 14-1A 

o 1 0 d2 
o 1 1 d3 (MOST SIGNIFICANT) 
1 X XALWAYSENABLED 

Figure 9-4 Inverse Distance Anti-aliasing Programming 

9-5 



INTENSITY 
(1/15 ths) 

15 14 13 12 

1 2 3 

aad " 

inst 

PLANEO 
PLANE 1 
PLANE2 
PLANE3 

PLANE 

0 
1 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

11 10 9 8 7 6 5 4 3 2 1 

4 5 6 7 8 9 10 11 12 13 14 15 15 14 

1 

{ 0 < 9 , 2< 11 , 5 < 14 , 7 < 15 } 

0037 SE7F 

DAC 

MIN MAX 

1XXX 0011 
1XXX 0010 
1XXX 0001 
1XXX 0000 

092B 

').-----I~~ TO MONITOR > 
DISTANCE BIT 

03 
02 
01 
DO 

WEIGHT 

8 
4 
2 
1 

O~ ____________________________________ -L-

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

DISTANCE (1/16 ths) • 

Figure 9-5 Inverse Distance Anti-aliasing 

07785A 9-5 



15 14 13 12 

9 10 11 

onS5A 9A 

aad 0 

inst 

15 15 15 15 

8 8 8 

onS5A 9B 

aad 0 

inst 

15 15 15 15 

onS5A 9C 

aad 0 

inst 

15 14 13 12 15 10 9 8 11 10 9 8 

8 9 10 15 12 13 14 15 12 13 14 15 15 

8 

{ 8 < 0 , 8 < 1 , 0 < 8 , 0 < 15 } 

0037 

14 14 14 

12 12 12 

080F 

Figure 9·6 

14 12 12 

12 14 14 

12 

14 

8081 

12 8 8 8 8 

14 15 15 15 15 15 

8 

{ 0 < 3 , 0 < 7 , 0 < 11 , 0 < 15 } 

0037 

14 14 12 

8 

OBOF 

Figure 9·7 

12 8 8 

8 12 12 

0307 

14 14 15 15 15 15 15 

{0<3,0<5,0<7,0<9} 

0037 0709 0305 

Figure 9·8 

9·7 

15 

8 

15 





CHAPTER 10 

STRING OPERATIONS 

The purpose of this chapter is to discuss the string 
capability of the Am95C60. The Am95C60 is 
capable of creating the image of a text string in 
display memory very quickly and with a minimum of 
CPU intervention. 

10.1 OVERVIEW OF STRING OPERATIONS 

Since the string operations offer a large number of 
options, this discussion will begin with an 
overview. Detailed explanations and descriptions 
will appear later in this chapter. 

Two things need to be done to use string 
operations in the Am95C60. First, the character 
font has to be stored in some otherwise unused 
area of the display memory and the Am95C60 
must be informed. The character font describes 
the size of each character and contains its bit 
pattern. Second, a String instruction is used to 
specify where a string is to be written into display 
memory and which characters are to be used. The 
String instruction copies the patterns from the font 
to where they are to appear, modifying the Current 
Pen Position (CPP) following each character. 

The characters are not rotated or scaled by the 
String instruction, but they can be ordered in 
display memory in any of four directions. If 
characters must be rotated or scaled, one may 
make use of subroutines that generate characters 
using strokes. 

10.2 THE CHARACTER FONT 

Any number of character fonts can be stored in the 
display memory and two character fonts can be 
used concurrently, providing the capability of 
accessing 8192 characters from a single String 
instruction. Each character font describes up to 
4096 characters and each character can be as 
large as 63 pixels wide by 60 scan lines high. 

A character font may be stored in any single-bit 
plane. This will result in the same pattern being 
replicated into all planes whose activity bits are set. 
Alternatively, a font may be stored in all four planes 
allowing the pattern to vary from plane to plane. 
This could be used, for example, to implement anti­
aliased characters. The String instructions operate 
somewhat faster if the font is stored in all planes. 

The font(s) must be stored in display memory (by 
the host) in the format shown in Figure 10-1. The 
entry for each character consists of an attribute 
word followed by a list of pattern words. The 
number of pattern words may vary from character to 
character within the same font. The Input Block 
instruction (by plane) with a Y dimension equal to 1 
may be conveniently used to store fonts one 
character at a time. 

10.2.1 The Attribute Word 

The first word for each character is called the 
attribute word. Because the two-bit D field has a 
major influence on the interpretation of the rest of 
the fields, the attribute word will be described 
twice. The first description assumes the most 
significant bit of the D field is a 0 so that the String 
instruction orders characters horizontally in display 
memory. The second explanation will assume the 
most significant bit of the D field is a 1 so that the 
String instruction orders characters vertically in 
display memory. 

10.2.1.1 Horizontally Ordered Characters 

The Figure 10-2 illustrates string operations when 
the first bit of the D field is a O. 

The format of the attribute word is shown in Figure 
10-3. 

H is a 4-bit field that specifies the height (number 
of active scan lines) of the character. H is multiplied 
by the cell scale factor (either 2 or 4) so that the 
effective range is 2 through 60. If H is specified as 
zero, this is a nonprinting character and the S field 
becomes the ES/RD field that is explained in 
Section 10.5. 

S is a 4-bit field that specifies the number of scan 
lines that are to be skipped above the character. S 
is multiplied by the cell scale factor (either 2 or 4) so 
that the effective range is 2 through 60. 

D is a 2-bit field that controls the direction and 
sense of the H, Sand ICO fields. In this descrip­
tion, the most significant bit of the D field is zero. 
The least significant bit of the D field indicates 
whether characters are to be written from left-to­
right in display memory (0=00) or from right-to-Ieft 

1 n_1 



X+16,Y X+(N·16),Y 

~ , J · ~ CHARACT 
X,Y ATIRIBUTE WORD PATIERNWORD PATIERNWORD PATIERNWORD 

ER1 CHARACT 
X,Y+1 ~ 

,:, 

~ CHARACTER 4 
X,Y+4094 

095 CHARACTER 4 
X,Y+4095 ~ 

ATIRIBUTE WORD 

ATIRIBUTE WORD 

ATIRIBUTE WORD 

H s 

CPPBEFORE 

t 
S·CS 

+ 

r 
XXXXX 

X X 
X X 
X X 

H·CS XXXXXXX 

1 
X X 
X X 
X X 
X X 

ICO 

D=OO 

, 
· 
, 
· 
, 
· 
, 

, 

Figure 10-1 Character Font 

CPPAFTER CPPAFTER 

tl.!. 
S·CS 

+ 

r 
XXXXX 

X X 
X X 
X X 

H·CS XXXXXXX 

1 
X X 
X X 
X X 
X X 

• 4 ICO 

D=01 

Figure 10-2 Horizontally Ordered Characters 

CPPBEFORE 
/ 

l.! 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

H s I 0 D ICO 

ES 0 RD 

Figure 10-3 Format of the Attribute Word When D = ox 

1 

07785A 10-1 

07785A 10-2 

07785A 10-3 



in display memory (D=01). The D field has no influ- pattern down (for example for lower case letters). 
ence on how individual characters appear in Then words are copied from the pattern portion of 
display memory; it affects only where they are the font. As many pattern words are copied from 
written. the font as is necessary for one scan line (ICO 

pixels). Pixels are discarded from the right of the 
ICO is a 6-bit field that is added to or subtracted last pattern word if ICO is not an integer multiple of 
from the X component of the Current Pen Position 16 (that is, pattern words do not span scan lines). 
after each character has been copied from the font This process continues for H • cell scale scan lines. 
area. If D=OO, ICO will be added after each Finally, CPP is added to or subtracted from the X 
character (so that characters are arranged from left- component of the CPP. The area in display 
to-right). If D=01, ICO will be subtracted (so that memory that is written is below and either to the left 
characters are arranged from right-to-Ieft). Figure or the right of CPP according to the low order bit of 
10-4 shows the results of some combinations of S, the D field. 
Hand ICO fields. 

'10.2.1.2 Vertically Ordered Characters 
The character is copied from the font area in the 
following manner. First, S cell scan lines are The Figure 10-5 illustrates string operations when 
skipped. This provides a means of moving the the first bit of the D field is a 1. 

cpp 
BEFORE AFTERCPP , 

~ III 

X X IX 
IX 
IX IX IX IX IXIXIX IX IX X 

IXIX XIXX IX X IX X IX IXIX X 
X IX X IX X XXX X X X 
IX IX IX X IX X 

X IX XX X IX X X X X 
IX X IX IX IX XIX IXIX IXIX IX IXIXIX IX X 

I" 
IX 
IX 

LEITER SoCS HoCS ICO 

S 0 10 8 
P 4 10 7 
A 4 6 8 
I 2 8 4 

07785A 10-4 N 4 6 7 

Figure 10-4 Example Using 0 = 00 

cpp 
CPP AFTER 

BEFORE .S·CS.~HoCS • .... ·• .. ·:~rCS •• HoCS • 
...... 

~ I XXXXX XXXXX 
X X X X 
X X X X 
X X X X 
XXXXXXX ICO XXXXXXX ICO 
X X 

1 
X X 

X X X X 
X X X X 
X X X X 

07785A 10-5 
til 

~ I 

0=01 
CPP 

0= 11 cpp BEFORE 
AFTER 

Figure 10-5 Vertically Ordered Characters 



The format of the attribute word is shown in Figure 
10-6. 

H is a 4-bit field that specifies the width (in pixels) of 
the character. H is multiplied by the cell scale factor 
(either 2 or 4) so that the effective range is 2 
through 60. If H is specified as zero, this is a 
nonprinting character and the S field becomes the 
ES/RD field. This is explained in Section 10.5. 

S is a 4-bit field that specifies the number of pixels 
that are skipped to the left of the character. S is 
multiplied by the cell scale factor (either 2 or 4) so 
that the effective range is 2 through 60. 

D is a 2-bit field that controls the direction and 
sense of the H, Sand ICO fields. In this descrip­
tion, the most significant bit of the D field is one. 
The least significant bit of the D field indicates 
whether characters are to be written from top-to­
bottom in display memory (D=1 0) orfrom bottom-to­
top in display memory (D=11). The D field has no 
influence on how individual characters appear in 
display memory; it affects only where they are 
written. 

ICO is a 6-bit field that is added to or subtracted 
from the Y component of the Current Pen Position 
after each character has been copied from the font 
area. If D=10, ICO will be added after each 
character (so that characters are arranged from top­
to-bottom). If D=11, ICO will be subtracted (so that 
characters are arranged from bottom-to-top). 

The character is copied from the font area in the 
following manner. First, S • cell scale pixels are 
skipped. Then words are copied from the pattern 
portion of the font. As many pattern words are 
copied from the font as is necessary for one scan 
line (H • Cell Scale pixels). Pixels are discarded 
from the right of the last pattern word if H • Cell 
Scale is not an integer multiple of 16 (that is, 
pattern words do not span scan lines). This 
process continues for ICO scan lines. Finally, ICO 
is added to or subtracted from the Y component of 
the CPP. The area in display memory that is written 
is to the right of and either above or below the CPP 
according to the low order bit of the D field. 

10.3 ESTABLISHING THE CHARACTER FONT 

The Am95C60 is given the location in display 
memory of the character font with the Set Char­
acter Font Base instruction. This instruction esta­
blishes a number of additional parameters. The 
format of this instruction is shown in Chapter 14. 

FP is a 2-bit field that indicates which bit plane 
contains the font if it is a single-plane font (which in 
turn is specified in the String instruction). If the 
font is a multiple-plane font, FP indicates from 
which plane the attribute words are to be fetched. 
One multiple-plane font may have several sets of 
attribute words associated with it. 

CS is a 1-bit field that controls the cell scale. This 
effects the interpretation of the Hand S fields as 
shown in the following chart: 

H or S Value Cs=o CS=1 Commentary 

0000 0 0 (Nonprinting Char) 
0001 2 4 
0010 4 8 
0011 6 12 
0100 8 16 
0101 10 20 
0110 12 24 
0111 14 28 
1000 16 32 
1001 18 36 
1010 20 40 
1011 22 44 
1100 24 48 
1101 26 52 
1110 28 56 
1111 30 60 

RC is a 1-bit field that specifies which of the 
components of the return address will actually be 
stored. If RC=O, the X component will be stored; if 
RC=1, the Y component will be stored. This 
information is used for the Carriage Return 
characters; see Section 10.5. 

RETURN is specified using a standard operand 
address pair. This specifies either the X or Y 
address to be used for the Carriage Return 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

H S I 1 D ICO 

ES 0 RD 
07785A 10-6 

Figure 10-6 Format of the Attribute Word When D = 1X 



character; see Section 10.5. If relative addressing 
is used, RETURN is calculated relative to the Cur­
rent Pen Position. This MUST be a complete stan­
dard operand address pair even though it will not 
all be used. 

FPOx and FPOy specify the address of the attribute 
word for character 000 of font O. These are each 8-
bit fields; they are multiplied by 16 to form 12-bit 
absolute addresses. This means that both addres­
ses will have zeroes as the four LSBs. 

FP1x and FP1y specify the address of the attribute 
word for character 000 of font 1. These are each 8-
bit fields; they are multiplied by 16 to form 12-bit 
absolute addresses. This means that both addres­
ses will have zeroes as the four LSBs. 

It is not necessary that all 4096 entries of the 
font(s) be actually implemented, only those entries 
that will be used. 

10.4 MOVING CHARACTERS FROM THE 
CHARACTER FONT (STRING 
INSTRUCTION) 

Characters are actually copied from the font area 
with the String or String Current instruction. String 
specifies the beginning CPP; String Current uses 
CPP as the beginning CPP. The format of the 
String instruction is shown in Chapter 14. 

SP is a 1-bit field that indicates whether the font is 
stored in one plane only or is stored on all planes. 
If SP is a 0, the font is assumed to be stored in all 
planes whose activity bits are set. The attribute 
words will be taken from the plane that was 
specified in the FP field of the Set Character Font 
Position instruction. If SP is a 1, the font is stored 
only in the plane that was specified in the FP field 
of the Set Character Font Position instruction. In 
this case, the font will be replicated into all planes 
whose activity bits are set. 

SI is a 1-bit field that indicates whether the pattern 
read from the font area is to be inverted before 
being applied to the destination. 

SOAXZ is a 3-bit field that indicates how the 
pattern read from the font area is to be applied to 
the destination. 

BEGIN is specified with a standard operand 
address pair. This is the location to which the CPP 
will be set before the first character is processed. If 
relative addressing is specified, BEGIN will be 

calculated with respect to CPP. In the case of 
String Current, BEGIN is not present and CPP is 
used. 

LIST is a variable-length string of 13-bit integer 
operands. Twelve of the bits are an index into one 
of the two fonts currently in use and the other (the 
P bit) selects which of the two fonts to use. These 
operands are processed in the order in which they 
appear in the instruction stream. Each operand is 
used as an index into the appropriate font to obtain 
the attribute word and pattern words. The leftmost 
bit of each entry in the LIST is a continuation bit. If 
it is not set, the String instruction terminates after 
that character has been processed. The String 
instruction will also terminate if it encounters a non­
printing character (H=O) whose ES bit in the 
attribute word is set. 

10.5 NONPRINTING CHARACTERS 

If the H field of the attribute word for any character 
contains zero, the character is a nonprinting 
character. In this case, the S field becomes the 
ES/RD field. If ES is set, this is a termination 
character. Observe that this bit has the opposite 
sense as the continue bit in the character list. The 
least significant two bits are the RD field and are 
interpreted as indicated below. The return location 
was specified in the Set Character Font Base 
instruction. 

R D Effect on CPP 

o 0 No change. This character is an effective NOP. 
o 1 The X component of CPP is loaded with the 

return location. 
1 0 The Y component of CPP is loaded with the 

return location. 
1 1 Both X and Yare loaded with the (same) return 

location. 

This provides a carriage return facility. 'If the host is 
positioning characters from left-to-right, the RD 
field would be 01 and the return position would be 
set to the leftmost pixel in the printing area. The 
CPP is returned to the left of the current line, not 
the next line. 

A "line feed" character can be implemented by 
specifying a D field of 10 and an ICO field of the 
standard character height. 

Any character code or codes can be used for 
carriage return. The Am95C60 looks at the Hand 
RD fields of the attribute word, not at the character 
code. 



10.6 AN EXAMPLE 

Figure 10-7 can be used to help tie all this 
together. This assumes that a font has been down­
loaded into bit plane 0 beginning at 1536, 1024. 
The font has 256 fixed sized entries each of which 
are 14 scan lines by 12 pixels. 

In this example the character values are the same 
as ASCII 77. This is arbitrary; it could just as well 
have been EBCDIC or any other character code. 

10.6.1 Set Character Font Base Instruction 

The FP field is 00. This means that the font is 
stored in bit plane O. The CS field is a 0, meaning 
that the Hand S fields of the attribute words will be 
multiplied by two (rather than four). The RC field is 
a 0, meaning that the X component of the return 
address will be stored. 

The Return field is all Os. This is an absolute 
address and X is O. The return address is 0 (that is 
also the left edge of the screen). 

The FONTO address is 60H,40H. In decimal this is 
96,64. Both components are multiplied by 16 in 
the Am95C60; the result is 1536,1024. This is the 
leftmost bit of the attribute word for character O. 

The FONT1 address is set to 0,0 because in this 
example only one font is being used. 

10.6.2 String Instruction 

SP is set to a 1 indicating that the font is stored 
only in one bit plane. Since the FP field of the the 
Set Character Font Base is 00, the font is 
expected to be in bit plane O. 

SI is a 0 so that the pattern words will not be 
inverted before being written into the display 
memory. 

The SOAX field is 101 for graphical SET. The color 
bit of each plane whose activity bit· is set will be 
written everywhere when there is a 1 in the font. 
This means that the character will be written in the 
chosen color without changing the background. 

If it is necessary to set the background color as 
well, the procedure is to change the color bits (and 
perhaps the activity bits) and then reissue the 
String instruction with the SI bit set. Now the color 
will be forced everywhere when there is a 0 in the 
font. 

BEGIN specifies absolute addressing mode. The 
values are 200H,300H. This translates to 512,768 
in decimal. CPP will be set to this value before the 
first character is processed. 

10.6.3 Character Processing 

The character value for the first character is 41 H. 
This is 65 in decimal. The Am95C60 fetches the 
attribute word for the first character from 1536, 
1089 (1024+65). 

Since the H field of the attribute word is not 0, this 
is a printing character. The D field of the attribute 
word is 00; the character will be placed below and 
to the right of CPP. 

The S field value is 1. Since the CS field of the Set 
Font Base is 0, the values in the Sand H fields are 
multiplied by two. Two scan lines are skipped. 
Now the pattern words are copied into the desti­
nation area. Since ICO is 12, one pattern word is 
needed to define the pattern for each scan line. 
The four rightmost bits of each pattern word are 
discarded. A total of 14 pattern words are required 
for the character. 

The font will be written into each bit plane whose 
activity bit is set. If there are bit planes whose 
activity bits are not set, they will not be changed at 
all. This allows for transparent characters. It is not 
required that the activity bit for the plane 
containing the font bit be set. 

After the character is processed, the X component 
of the CPP is incremented by ICO (leaving CPP at 
524,768). The continue bit is checked and since it 
is set, the Am95C60 fetches the next character 
code from the FIFO. 

The operation continues until the last character 
has been processed. In this case, the string 
"Am95C60" will be written into display memory. 
The CPP will be left at 596,768. 

10.7 BUILDING AND USING VERY LARGE 
FONTS 

The Am95C60 can support two concurrent fonts 
of up to 4096 entries each (this restriction is due to 
the maximum Y dimension of display memory). A 
24 x 24 (typical for Kanji) font will require two 
pattern words for each scan line with 8 bits 
unused. This is a total of 49 words for each font 
entry or 784 pixels. Since (at least part of) two 
fonts are required, this could use nearly half of a 

10-R 



-L 

o 
~ 

SET 
CHARACTER 10 01010 10 00 010 1 1 0 0 0 1 11 
FONT BASE 

STRING 

10 - - - - - - - - - - - - - - Ol} 
10 -------------- 0 1 

i_~ _____ , 

101 10 000 0IU 1 U U U U U U I 

10 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 I 
11101010 0110 11011 000 100 

10000001000000000 } 

10000001100000000 

11000000001000001 A 

11 1 10 1 101 m 

11 0 1 1 1 00 1 9 

11 0 1 1 0 1 0 1 5 

11 1000011 C 

11 0 11 0 1 1 0 6 

10 0 11 0 00 0 0 

RETURN 

FONT 0 

FONT 1 

BEGIN = 512,768 

CPPBEFORE CPPAFTER 

I I .. '. 'I .. 
2 S 

1 
x x xx x x T x x 

x x 
x x 
xx xx xxx 

14 -~ H 
X 

~ 
~ 
X 

12 • 

0,0 2K 

t 1280 

VISIBLE SCREEN 

1024 

596,768 j 
512,768 

'\ I 
Am95C60 1536,1024 

J 
2K U 

-------------------------------- ', ............ . 

AlT .... 

01111 h 1~~:~-I~~:;:i:~-~i~i~iO I 
I I I I 

H : S : D: ICO ! 
2048,2048 

07785A 10-7 

Figure 10-7 String Example 



maximum sized display memory. A method of 
using inexpensive ROMs to contain these fonts is 
given in the Applications Manual. 

10.8 TEXT WITH COLORED BACKGROUND 

Some applications require writing text in which the 
background is forced to a specific color (as well as 
the characters themselves). By background, we 
mean that portion of the character cell that is not 
the character itself. There are two basic 
approaches that may be used. 

The first method is to color the background (using 
Filled Rectangle) and then writing the text on top 
with String. This works best if you are dealing with 
a string of characters in which the character cell 
size is uniform. 

The second method is to execute the string 
instruction twice. The first iteration, with the 
drawing color set to the desired background color 
and with the SI bit set, draws the background of 
the string. Then, with the drawing color set to the 
desired character color, the characters themselves 
are drawn. This works best with strings in which 
the character cell size is not uniform. It may also be 
faster than the first method for very short strings. 

10.9 OPTIMIZING STRING PERFORMANCE 

One can optimize the performance of the String 

instruction in two ways. These are discussed 
below .. 

The first way to minimize the cycles taken by a 
String instruction is to minimize the number of scan 
lines per character. A font with a fixed cell size will 
include characters with some scan lines of all 
zeroes (consider the lower case vowels and the 
space character). By using the Sand H fields of 
the attribute word, one can take advantage of 
these blank scan lines. 

Advanced Micro Devices will make available a font 
that takes these empty scan lines into account. 
The font is 7*9 + 2 descenders. The table below 
shows the average number of scan lines per 
character for three source documents when this 
font is used. 

Document 

U.S. Constitution 
C Program 
BASIC Program 

Average Scan Lines/Character 

6.74 
4.91 
7.26 

The second way to optimize String performance is 
to avoid allowing characters to overlap word 
boundaries. Each scan line of a character that 
overlaps word boundaries requires two writes into 
display memory rather than one. An ICO of 8 or 16, 
in conjunction with beginning strings on word 
boundaries, will accomplish this. 

10-8 



CHAPTER 11 

WINDOWS 

The Am95CSO supports a single hardware window 
and an arbitrary number of software windows. 

The Figure 11-1 illustrates the concept of a 
hardware window. Normally the image on the 
screen comes from a rectangular, contiguous area 
of display memory. The hardware window cap­
ability allows a rectangle of arbitrary size and 
location to be replaced dynamically on the screen 
with an image from another portion of display 
memory. The contents of display memory are not 
changed. 

The hardware window may be any size and may be 
positioned on any bit boundary but is always a 
rectangle. 

o.o~x 

1 
Y 

DlSPLAYMEMORY 

07785A 11-2 

Software windows are implemented by moving the 
image to be displayed into the appropriate area of 
display memory. This is a destructive operation in 
the sense that the image overwrites the data it 
replaces. Software windows are discussed later in 
this section. 

11.1 HARDWARE REQUIREMENTS 

There are some hardware requirements that must 
be met in order to have a hardware window. In 
general, the display memory of the Am95CSO is 
organized in 1S-bit words. As long as no window is 
being used, this does not present a problem. The 
image is shifted out of the VRAM in 1S-bit words 

4K.4K 

Figure 11·1 Hardware Window 

11-1 



and serialized for presentation on the screen. A 
single transfer cycle prior to the beginning of the 
scan line accesses all the information necessary. 

Figure 11-2 illustrates one problem that arises 
when an arbitrarily positioned hardware window is 
present. The regular vertical lines represent word 
(1S-bit) boundaries in display memory. If the sys­
tem is implemented using a 1S-bit shift register, 
then 1S bits is the best resolution that can be 
accomplished for any boundary (whether it be 
screen or window). Consequently, both the appar­
ent and real window positions would be restricted 
to 1S-bit boundaries. 

There is also a timing problem. A transfer cycle has 
to be executed at the beginning of the window (to 
access the window image), and another transfer 
cycle must be executed at the end of the window 
(to access the background image to the right of the 
window). Alternatively, it is possible to perform the 
accesses early and buffer words in a FIFO. The 
logic that accesses the image gets ahead of the 
logic that actually puts the image on the screen. 

I 

BACKGROUND -H-WINDOW 

j j WORD FROM 
BACKGROUND 

onS5A 11-2 

WORD SPLIT 
BETWEENBACKGROUND 

ANDWINDOW 

.. .. 

WORD FROM 
WINDOW 

Figure 11-2 Concatenation In the Window 

The Am8171 Video Data Assembly FIFO is 
designed to solve both of these problems. During 
a transfer cycle, the Am95CSO indicates (on CDAT 
output pins) the position of the first bit that is to be 
used. Then, as each byte is tranferred from the 
VRAMs to the VDAF, the Am95CSO indicates 
(again using the CDAT pins) the number of bits in 
the byte. This will be 8 (indicating a complete byte) 
until the very last byte before the window. When 
the very last byte before the window is transferred 
to the VDAF, the Am95CSO will indicate how many 
bits of it are to be used. 

When the transfer cycle that accesses the window 
is done, the Am95CSO again indicates the number 
of the first bit and as each word is transferred into 
the VDAF, the Am95CSO indicates how many bits 
are to be used. Thus the VDAF has sufficient 
information to pick out the valid bits. These groups 
of bits are concatenated into bytes and are placed 
into the VDAF FIFO. 

The FIFO in the VDAF makes it possible for the 
Am95CSO to get ahead of the video stream far 
enough to allow transfer cycles within the scan 
line. 

11.2 HOW DOES THE HARDWARE WINDOW 
APPEAR TO THE USER? 

Figure 11-1 illustrates the appearance of the 
hardware window, a rectangular area that can be 
programmed to appear anywhere on the screen. 
The image that would otherwise appear in this area 
does not appear on the screen; it is dynamically 
replaced with an equal-sized image that can come 
from any place in display memory. Using the 
hardware window does not cause any changes 
whatsoever in the display memory. 

For some applications it is desirable to replace only 
selected bit planes in the window. In a system with 
a single Am95CSO, this is impossible since all four 
planes are replaced. In a system with multiple 
Am95CSOs, it is possible to program some 
Am95CSOs so that the real window has the same 
origin as the apparent window. Am95CSOs pro­
grammed in this manner would have no effective 
window. In a system with multiple Am95C60s, all 
must have their apparent window programmed to 
the same location and size. 

11.3 WINDOW CONTROL REGISTERS 

The Window Control Registers are adequately 
described in Chapter 4 of this manual. These 
registers should be changed only at FRAMEI time. 

11-2 



11.4 TUTORIAL ON HOW TO USE THE 
WINDOW 

The following paragraphs describe some of the 
ways that the hardware window may be used in an 
application. There are certainly other ways that are 
not described here. 

11.4.1 Dragging an Object 

In design automation systems it is often desirable 
to drag an object across the screen. Suppose, for 
example, the user is laying out a circuit diagram and 
wishes to position an element such as a gate or 
resistor. The real window would contain the image 
of the circuit element, and the apparent window 
would be moved around the screen in response to 
the user input (joystick or trackball). In this case, 
two of the apparent window registers would be 
changed to move the object in one dimension; all 
four apparent window registers would be changed 
to move the object simultaneously in both 
dimensions. 

11.4.2 Pop-up Menus 

A pop-up menu (or help display) can be easily 
implemented. The real window would contain the 
menu that is to appear. The image would be made 
to appear by programming the apparent window 
registers to the area in which the menu is to 
appear. When the user indicates the menu is no 
longer required, it would be made to disappear by 
programming the apparent window registers to an 
area that does not appear on the screen. 

11.4.3 Scrolling in a Window 

It is easy to scroll the contents of the window by 
merely changing the real window pointers. Figure 
11-1 shows the real window contained within a 
region labeled "Image to scroll and pan". 

The apparent window is positioned on the screen, 
and the real window is positioned within the image. 
As the real window is moved, the data within the 
apparent window appears to move while the 
background display around it remains still. 

11.5 SOFTWARE WINDOWS 

Any number of software windows can be 
supported by the Am95C60. Software windows 
are destructive in the sense that the overlayed 
area in display memory is overwritten. 

In the most general case, using a software window 
is a three-step operation. First, the contents of the 
apparent window are saved in some unused area 
of display memory ("Save Area" in Figure 11-3). 
Second, the contents of the real window are 
copied into the apparent window. Third, when it is 
time for the software window to be removed, the 
contents of the save area are copied back into the 
apparent window. All of these copy operations are 
performed using the Copy Block instruction. 

It is possible to copy only selected bit planes by 
programming the active planes. This does not 
save time, but it does provide for transparent 
overlays. 

In the case where an object is being dragged, the 
three-step operation described above is done 
repetitively. If the save area is larger than the 
apparent window, it is possible to save time by not 
copying the entire window to the save area and 
back each iteration. Suppose the object is being 
moved to the right. When the save area is restored 
the first time, it is necessary to restore only the 
vertical strip on the left that will be uncovered by 
the window. Then to save the new apparent 
window, it is necessary to save only the vertical 
strip on the right that is about to be covered. The 
save area will have moved to the right. 

11-3 



APPARENT 
WINDOW 

/1. 
I "", , , , , 

I , 
I , 

I , 
I , 

REAL WINDOW 

I 
:", : , 
I , 
I , , , , , , 

I 
I 

I 
I 

" , , , , , 
SCREEN " 

DISPLAYMEMORY 

, , , , 
" " 

Figure 11-3 Software (BITBLT) Window 

11-4 

onS5A 11-3 



CHAPTER 12 

DISPLAY MEMORY CONFIGURATIONS 

The purpose of this chapter is to exhaustively 
enumerate every possible memory configuration 
that can be built using the Am95C60. Frequent 
references will be made to the set of figures called 
"Memory Configuration A through H". There is 
one figure for every valid configuration. 

The maximum possible size of display memory is 
4096 x 4096. This means that twelve address bits 
are required in each dimension (X and Y) to 
uniquely specify a pixel (there are up to four bits 
associated with each pixel). These address bits 
are named X11, X10 ... XO and Y11, Y10 ... YO. 
Since the Am95C60 accesses display a 16-bit 
word at a time, the four low order bits of the X 
address never actually appear on the address bus. 

Observe that the Am95C60 doesn't distinguish 
between memory devices configured as bit-wide 
and those configured as nibble-wide. It is up to the 
system designer to guarantee that 16 data bits are 
available for each plane. In the case of bit-wide 
devices, this will require 16 devices per bank per 
plane; in the case of nibble-wide devices, this will 
require four devices per bank per plane. 

12.1 OVERVIEW OF DIAGRAMS 

This explanation will use Figure E as an example. 
This figure is chosen as being especially descrip­
tive as well as applicable. 

The top diagram in each of the eight figures 
indicates which address bit appears on which line 
of the address bus during row address time (RAD) 
and column address time (CAD). Diagram E shows 
that A11 is indeterminate during both row and 
column time. It also shows that A10, A9 and AS 
contain Y11, Y10 and Y9, respectively, during both 
row and column time. The remaining eight address 
bus lines contain Y addresses during row address 
time and X and Y information during column 
address time. 

Address bus lines A10, A9 and AS may be used 
for bank selection and A7-AO are buffered to the 
array (64 K x n devices have eight multiplexed 
address inputs). 

The center diagram in each figure depicts a 4 K x 4 
K memory array. The area that is hatched in each 
figure cannot be addressed using the particular 
configuration. In Figure E, the memory width is 2 K 

12-1 

and the area from 2 K to 4 K (in the X dimension) is 
hatched. The dimension lines above the center 
diagram indicate what X addresses are used to 
access the memory that is available. This is X10-0 
in the figure being discussed, allowing 11 address 
bits for access to 2 K. 

The table to the right of the center diagram shows 
how the bank select bits are encoded for each 
bank. In Figure E, there are three bank select bits 
Y11, Y10 and Y9. There are a maximum of eight 
banks for this configuration. It is not necessary to 
implement the maximum number of banks. One 
could build a 2 K x 2 K memory with this 
configuration using four banks of memory chips. 

THERE ARE ALWAYS SIXTEEN BIT-WIDE CHIPS 
OR FOUR NIBBLE-WIDE CHIPS IN EACH BANK 
REGARDLESS OF THE WIDTH OF DISPLAY 
MEMORY AND REGARDLESS OF THE CHIP 
SIZE. 

The dimension lines on the left of the center 
diagram indicate which Y address bits are used to 
select a Y address in each bank. 

The table immediately below the center diagram 
allows the user to puzzle out what happens if a 
scan line goes past the right edge of addressable 
memory. This would occur if the screen X 
terminate register were programmed to a value 
outside memory (in this case 2K). 

Shifter size is the number of bits transferred into 
the shifter during a transfer cycle for each of the 16 
data bits (256 in this instance). Multiplying by 16 
yields the total number of bits transferred, and 
dividing by the memory width yields the number of 
scan lines transferred (two in this case). 

These scan lines are not adjacent in memory but 
rather are evenly distributed over the extent of 
each block. Therefore (in this instance), the 
screen wiIJ''wrap" to a scan line offset by 256. 

The Mem_Config_Value is the bit pattern that is 
written into bits 7 through 4 of the Memory Mode 
Register (see Chapter 4, Section 4.5.1). The table 
at the bottom of each figure shows the RAM size 
(for each of the cases X1 and X4), the display 
memory width and the maximum number of 
memory devices that a single Am95C60 can 
control in this configuration. 



12.2 SUMMARY OF CONFIGURATIONS 

Table 12-1 exhaustively lists every possible configuration using every possible memory size. 

Table 12-1 Memory Configurations 

Memory Size 
Wide Deep RAM Size Banks RAMs/Plana Figura Practicality 

4K 4K 1 M - 1 16 A Yas 
4K 4K 1 M - 4 4 A Prima 

4K 1 K 256 K-1 1 16 B Yas 
4K 1 K 256 K - 4 1 4 B Yas 
4K 2K 256 K-1 2 32 B Barely 
4K 2K 256 K - 4 2 8 B Yes 
4K 3K 256 K-1 3 48 B No 
4K 3K 256 K - 4 3 12 B Yes 
4K 4K 256 K-1 4 64 B No 
4K 4K 256 K - 4 4 16 B Yes 

4K 1 K 64 K-1 4 64 C No 
4K 1 K 64 K- 4 4 16 C Yes 
4K 2K 64 K-1 8 128 C No 
4K 2K 64 K-4 8 32 C Barely 
4K 3K 64 K-1 12 192 C No 
4K 3K 64 K-4 12 48 C Probably No 
4K 4K 64 K-1 16 256 C No 
4K 4K 64 K-4 16 64 C No 

2K 2K 256 K-1 1 16 D Yes 
2K 2K 256 K - 4 1 4 D Prima 
2K 4K 256 K-1 2 32 D Barely 
2K 4K 256 K - 4 2 8 D Yes 

2K 1 K 64 K-1 2 32 E Barely 
2K 1 K 64 K-4 2 8 E Yes 
2K 2K 64 K-1 4 64 E No 
2K 2K 64 K-4 4 16 E Yes 
2K 3K 64 K-1 6 48 E No 
2K 3K 64 K-4 6 24 E Barely 
2K 4K 64 K-1 8 64 E No 
2K 4K 64 K-4 8 32 E Barely 

1 K 4K 256 K-1 16 F Yes 
1 K 4K 256 K - 4 4 F Yes 

1 K 1 K 64 K-1 1 16 G Yes 
1 K 1 K 64 K-4 1 4 G Prime 
1 K 2K 64 K-1 2 32 G Barely 
1 K 2K 64 K- 4 2 8 G Yes 
1 K 3K 64 K-1 3 48 G No 
1 K 3K 64 K-4 3 12 G Yes 
1 K 4K 64 K-1 4 64 G No 
1 K 4K 64 K-1 4 16 G Yes 

512 2K 64 K-1 1 16 H Yes 
512 2K 64 K- 4 1 4 H Yes 
512 4K 64 K-1 2 32 H Barely 
512 4K 64 K-4 2 8 H Yes 

12-2 



A11 A10 A9 A8 A7 A6 AS A4 A3 A2 A1 AO A11 A10 A9 A8 A7 A6 AS A4 A3 A2 A1 AO 

RAD Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO RAD Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 
X X X Y11 Y10 

CAD Y11 Y10 X11 X10 X9 X8 X7 X6 X5 X4 (X3-XO) CAD Y9 X11 X10 X9 X8 X7 X6 X5 X4 (X3-XO) 

I~ X11-O ·1 I~ X11-O ~I Y11 Y10 

-.- 0 
512 1K 2K 4K 0 

512 1K 2K 4K 
I I I T I I I - f-

- Y9-0 f- 0 0 
- ~ I-

1K - - 1K 
f- -
l- I- 0 
l- I-

Y11-O 2K I- - 2K 
l- t-..... 

J\) l- t- 0 
w l- t-

3K I-- - 3K 
l- I-

l- t-

l- t-

-'-- 4K 4K 

SHIFTER SIZE 1024 SHIFTER SIZE 512 
TOTAL BITS TRANSFERRED 16384 TOTAL BITS TRANSFERRED 8192 
NUMBER OF ROWS 4 NUMBER OF ROWS 2 

MEM_CONFIG_VALUE : 0000 MEM_CONFIG_VALUE : 0001 

RAM SIZE 1M -1 1M-4 RAM SIZE 256K -1 256K-4 
MEMORY WIDTH 4K 4K MEMORY WIDTH 4K 4K 
MAX DEVICES/PLANE 16 4 07785A 12-1 MAX DEVICES/PLANE 64 16 07785A 12-2 

Figure 12-1 Memory Configuration A Figure 12-2 Memory Configuration 8 



RAD 

CAD 

Y7-O 

--L 
-r 

..... 
I\) 

,J:.. 

M1MO M M ~ M M M ~ ~ M M 

Yll 

0 

lK 

2K 

3K 

4K 

V7 Y6 V5 Y4 Y3 Y2 
Yl0 Y9 Y8 

14 

Xll Xl0 X9 X8 X7 X6 

Xll-O ·1 Yl1 

512 lK 2K 4K 
I I 1 0 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

SHIFTER SIZE 256 
TOTAL BITS TRANSFERRED 4096 
NUMBER OF ROWS 1 

MEM_CONFIG_VALUE : 0010 

RAM SIZE 
MEMORY WIDTH 
MAX DEVICES/PLANE 

64K-l 
4K 
256 

64K-4 
4K 
64 

Figure 12-3 Memory Configuration C 

Yl YO 

X5 X4 (X3-XO) 

Yl0 Y9 Y8 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

07785A 12-3 

All A 10 A9 M A7 AS AS A4 ~ ~ A 1 AO 

RAD Y8 Y7 Y6 Y5 Y4 V3 Y2 Yl YO I 

X X Yl1 
Yl0 Y9 Xl0 X9 X8 X7 X6 X5 X4J (X3-XO) CAD 

r- Xl0-0--4 Yll 

J:;:i? ill ')\ 

T 
0 

Yl0-0 lK I-- "-'\..'\..'\..'\..'\..'\..'\..'\..'\..~ 0 

1 2K 

3K 

4K 

SHIFTER SIZE 512 
TOTAL BrrS TRANSFERRED 8192 
NUMBER OF ROWS 4 

MEM_CONFIG_VALUE : 0011 

RAM SIZE 256K -1 256K-4 
MEMORY WIDTH 2K 2K 07785A 12-4 
MAX DEVICESIPLANE 32 8 

Figure 12-4 Memory Configuration D 



M1 MO ~ M ~ M ~ M ~ ~ M M A11 A10 A9 A8 A7 A6 AS A4 A3 ~ A1 AO 

RAD Y7 Y6 YS Y4 Y3 Y2 Y1 YO RAD Y8 Y7 Y6 YS Y4 Y3 Y2 Y1 YO 
X Y11 Y10 Y9 X X X 

CAD Y8 X10 X9 X8 X7 X6 XS X4 (X3-XO) CAD Y11 Y10 Y9 X9 X8 X7 X6 XS X4 (X3-XO) 
----

Figure 12·5 Memory Configuration E Figure 12·6 Memory Configuration F 



M1MO M M ~ M ~ M M ~ M M A11 A10 A9 AS A7 AS AS A4 A3 A2 A1 AO 

RAD Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO RAD Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 

X X Y11 Y10 X X X Y11 
CAD Y9 Ya X9 xa X7 X6 X5 X4 (X3-XO) CAD Y10 Y9 xa xa X7 X6 X5 X4 (X3-XO) 

--
- --- --- --- --- -- --

r- X9-0-1 Y11 Y10 ~ r- xa-Q Y11 

T 
0 

T 
0 

Y9-0 0 0 

-.L 1K Y1~ 1K I-
r, " " " " " " " " " " " " " " " " ,,~ 0 

0 1 2K I ~~~~~~~~~~~~~~~~~I 2K 

-L 

:: ! - I 

I\) 0 
m 

3K 

4K 

SHIFTER SIZE 256 SHIFTER SIZE 256 
TOTAL BITS TRANSFERRED 4096 TOTAL BITS TRANSFERRED 4096 
NUMBER OF ROWS 4 NUMBER OF ROWS a 

MEM_CONFIG_VALUE : 0111 MEM_CONFIG_VALUE : 1010 

RAM SIZE 64K-1 64K -4 RAM SIZE 64K-1 64K-4 
MEMORY WIDTH 1K 1K MEMORY WIDTH 512 512 

on85A 12-8 
MAX DEVICES/PLANE 64 16 on85A 12-7 MAX DEVICES/PLANE 32 8 

Figure 12-7 Memory Configuration G Figure 12-8 Memory Configuration H 



CHAPTER 13 

MISCELLANEA 

13.1 HOW TO CRASH THE Am95C60 

The Am95C60 is a microprogrammed processor, 
and it is possible to force it into an endless loop. 
The known ways to force the Am95C60 into an 
endless loop are listed below so that the user may 
more easily determine into which trap he has fallen. 

13.1.1 Jump to Same Address 

If the address in a Jump instruction resolves to that 
of the Jump instruction itself, the Am95C60 will 
execute that Jump forever. There are obvious 
variations on this theme such as two Jump 
instructions that point to each other. 

13.1.2 Indirect Addressing Loops 

If a standard operand address pair specifies in­
direct addressing mode and points to itself, the 
Am95C60 will spend forever repetitively resolving 
the address. 

13.1.3 Invalid Copy Block 

If the Block Size is 0,0, the following instructions 
that use the block size will never terminate. Copy 
Block, Transform Block, Input Block, and anything 
that uses the logical PEL. 

13.1.4 Illegal Seed Fill 

If a Fill Bounded Region or Fill Connected Region 
(or their Current analogs) is executed with incorrect 
activity or listen bits, the instruction will never 
complete. For every plane, the activity bit must be 
set or the listen bit must be set or both. If any 
plane is not physically implemented, the 
corresponding listen bit must be set. 

13.2 THE RELATIONSHIP BETWEEN 
DATA BITS AND PIXELS 

The relationship between system data bits (D15-
DO) and display memory bus data bits (DMOOO­
DM315) is not explained anywhere else in this 
manual. It is intended that this section will help 
clarify this topiC. 

13-1 

13.2.1 Relationship Between DM Lines 
and Pixel Addresses 

The naming convention for the DM (Display 
Memory) data bits is DMzxx where z is the plane 
number and xx is the data line number. The 
relationship between these lines and the x 
addresses of pixels is important because it 
determines the order in which bits must be 
serialized to appear on the screen properly. 
DMz15 is associated with those pixels whose x 
addresses end in 0000, and OMzOO is associated 
with those pixels whose x addresses end in 1111. 
Pixels with larger x addresses must appear further 
to the right on the screen. OMz15 must be 
serialized first. 

13.2.2 Relationship Between D Bits 
and OM Bits 

The system data bus bits are named D15-DO. The 
convention adopted in this manual (in the 
instruction formats, for example) is to show data bit 
15 (015) to the left of data bit 0 (~O). This mayor 
may not be the convention your host processor 
uses. 

There are six instructions that move information 
between the system data bus and the display 
memory. These instructions are listed below: 

Input Block (by plane) 
Input Block Current (by plane) 
Output Block (by plane) 
Output Block Current (by plane) 
Store Immediate 
Store Immediate Current 

When the above instructions are executed, higher 
numbered 0 bits are connected to higher 
numbered DM bits. In the simplest case, 015 is 
connected to DMz15, D14 is connected to DMz14 
and so on. In the cases of Block I/O by plane, this 
may be complicated by the ability to begin the 
operation on a pixel boundary that is not a word 
boundary. In the case of Store Immediate 
(Current), this is not a problem since the low order 
four bits of the x address must resolve to Os. 



13.2.3 Block I/O by Pixel 

The relationship between system bus data bits 
(015-00) and display memory bits is shown in the 
following diagram. This is the data that is read or 

O-line 15 14 13 12 11 10 9 
OM-line 15 15 15 15 14 14 14 
X-Adrs 0 0 0 0 1 1 
Plane 0 1 2 3 0 1 

13.2.4 Operands In the Set Bit Instructions 

The Am95C60s extract bit-wise information from 
four instructions. These instructions are: 

Set Activity Bits 
Set Color Bits 
Set Listen Bits 
Set Search Color 

The format of each of these instructions is in 
Figure 13-1. 

The operand word is broken into four fields, one 
for each of the four Am95C60s that may· respond. 
See the description of Set apOM Position in 
Chapter 14. Each field contains four bits, one for 
each plane controlled by the Am95C60. The 
arrangement of bits within this field is: 

PO I P1 I P2 I P3 

That is, the highest numbered bit controls plane 0 
while the lowest numbered bit controls plane 3. 
This is consistent with the ordering of bits in Block 
110 by pixel. 

13.3 THE STACK 

The Am95C60 maintains a push-down stack in 
display memory. This is used to contain return 

1 
2 

written during the first cycle of an Input Block or 
Output Block whose x address ends in 0000. The 
data will be shifted left for subsequent cycles 
according to the BIS bits. 

8 7 6 5 4 3 2 1 0 
14 13 13 13 13 12 12 12 12 
1 2 2 2 2 3 3 3 3 
3 0 1 2 3 0 1 2 3 

addresses for subroutines and is used for 
temporary storage by Fill Bounded Region and Fill 
Connected Region (and their Current analogs). 

The stack location is specified by the user with Set 
Stack Boundaries instruction. Normally, the stack 
would be allocated when display memory is laid out 
and set when the system is initialized. 

The stack is a column in display memory, is exactly 
one word wide, and is word aligned. It grows from 
lower Y addresses to higher Y addresses. If the 
stack grows to above the YT address, stack 
overflow has occurred and is signaled. 

It is safest to allocate as much stack area as 
possible (one full column). 

13.4 FIFO SIZE 

The instruction FIFO is 16 words in depth. The 
Block Input FIFO and the Block Output are four 
words each. 

13.5 TRANSFER CYCLE TIMING 

The (first) transfer cycle for each scan line begins 
between 10 and 24 SYSCLK cycles after the rising 
edge of HSYNC. 

15 14 13 12 11 10 9 8 7 6 5 2 o 
PPRH 0 0 0 0 

Am95C60 3 Am95C60 2 Am95C60 0 

onS5A 13-1 

Flgure13-1 Set Bit Instructions Format 

13-2 



Chapter 14 

INSTRUCTION SET 

The Am95C60 is a microprogrammed engine with 
a rich instruction set oriented toward graphics 

14.1 INSTRUCTION SET GROUPED BY 
CLASSIFICATION 

Drawing Primitives 

Arc 
Arc Current 
Circle 
Circle Current 
Line 
Line Current 
Move Pen 
Point 
Point Current 
String 
String Current 

Fill Instructions 

Fill Bounded Region 
Fill Bounded Region Current 
Fill Connected Region 
Fill Connected Region Current 
Filled Rectangle 
Filled Rectangle Current 
Filled Triangle 
Filled Triangle Current 

Block Manipulation 

Copy Block 
Copy Block Current 
Input Block 
Input Block Current 
Output Block 
Output Block Current 
Transform Block 
Transform Block Current 

14-1 

processing. These instructions are described in 
detail in the following pages. 

System Control 

Call 
Control Clipping 
Control Picking 
Define Logical PEL 
Inquire 
Jump 
No Operation 
Output Current Pen Position 
Pop Current Pen Position 
Push Current Pen Position 
Return 
Set Activity Bits 
Set Anti-aliasing Distance 
Set Listen Bits 
Set aPDM Position 
Set Stack Boundaries 
Signal 
Store Current Pen Position 

Display Control 

Set Block Size 
Set Character Font Base 
Set Character Font Base Current 
Set Clipping Boundary 
Set Clipping Boundary Current 
Set Color Bits 
Set Search Color 
Set Line Style 
Set Line Style Phase 
Set Picking Region 
Set Picking Region Current 
Set Scale Factor 
Set Viewport Location 
Set Viewport Location Current 
Store Immediate 
Store Immediate Current 



Table 14·1 Instruction Set Ordered by Operation Code 

00 No Operation 20 Set Color Bits 40 Move Pen 60 Reserved 
01 Reserved 21 Set Search Color 41 Reserved 61 Reserved 
02 Reserved 22 Set Block Size 42 Reserved 62 Reserved 
03 Reserved 23 Set Character Font Base Current 43 Reserved 63 Set Chararacter Font Base 
04 String Current 24 Set Clipping Boundary Current 44 String 64 Set Clipping Boundary 
05 Reserved 25 Set Line Style 45 Reserved 65 Reserved 
06 Reserved 26 Set Line Style Phase 46 Reserved 66 Reserved 
07 Reserved 27 Set Viewport Location Current 47 Reserved 67 Set Viewport Location 
08 Arc Current 28 Set Picking Region Current 48 Arc 68 Set Picking Region 
09 Reserved 29 Set Scale Factor 49 Reserved 69 Reserved 
OA Circle Current 2A Output Current Pen Position 4A Circle 6A Reserved 
OB Reserved 2B Store Current Pen Position 4B Reserved 6B Reserved 
OC Line Current 2C Push Current Pen Position 4C Line 6C Reserved 

.... 
1::0-
\) 

OD Reserved 2D Pop Current Pen Position 4D Reserved 6D Reserved 
OE Point Current 2E Reserved 4E Point 6E Reserved 
OF Reserved 2F Reserved 4F Reserved 6F Reserved 
10 Filled Rectangle Current 30 Set Activity Bits 50 Filled Rectangle 70 Reserved 
11 Reserved 31 Set Listen Bits 51 Reserved 71 Reserved 
12 Filled Triangle Current 32 Call 52 Filled Triangle 72 Reserved 
13 Reserved 33 Return 53 Reserved 73 Reserved 
14 Fill Bounded Region Current 34 Control Clipping 54 Fill Bounded Region 74 Reserved 
15 Reserved 35 Control Picking 55 Reserved 75 Reserved 
16 Fill Connected Region Current 36 Define Logical PEL 56 Fill Connected Region 76 Reserved 
17 Reserved 37 Set Anti-aliasing Distance 57 Reserved 77 Reserved 
18 Input Block Current 38 Set QPDM Position 58 Input Block 78 Reserved 
19 Reserved 39 Set Stack Boundaries 59 Reserved 79 Reserved 
1A Output Block Current 3A Signal 5A Output Block 7A Reserved 
1B Reserved 3B Store Immediate Current 5B Reserved 7B Store Immediate 
1C Copy Block Current 3C Jump 5C Copy Block 7C Reserved 
1D Reserved 3D Reserved 5D Reserved 7D Reserved 
1 E Transform Block Current 3E Reserved 5E Transform Block 7E Reserved 
1F Reserved 3F Inquire 5F Reserved 7F Reserved 



14.2 ALPHABETICAL LISTING OF 
INSTRUCTION SET 

The instructions are ordered alphabetically; this is 
the only ordering that is not in some sense sub­
jective. Each instruction begins on a new page. 

The format of the instruction definition is the same 
for all instructions. The items that are covered are: 

DESCRIPTION 

What does this instruction do? 

PARAMETERS 

What operands are required for this instruction? 

Cpp 

Where does this instruction leave the pen? 

PERFORMANCE 

How many SYSCLK cycles are required for this 
instruction? 

The intent is to provide sufficient data for the user 
to predict the time that will be required for any 
operation. The Am95C60 is, however, a 
microprogrammed machine. While it is possible to 
predict the states it will enter for any given 
instruction, it is difficult and tedious to enumerate 
all the possible cases. 

For some instructions, it is possible to specify a 
definite number; Set Color Bits always requires 
112 SYSCLK cycles. 

For some other instructions, it is possible to spec­
ify an overhead, and a number of cycles per 
instruction iteration. Arc requires 573 cycles over­
head, 54 cycles per octant, and 15 cycles per pixel 
(for a solid line style with no anti-aliasing and no 
logical PEL). 

For some other instructions, it is possible to 
specify an overhead, but nearly impossible to 

14-3 

specify the number of cycles per iteration. An 
example is Fill Bounded Region; the time per pixel 
is strongly dependent on the size and shape of 
the region. In the cases where general prediction 
is impractical, we give examples. 

All the performance numbers are given for abso­
lute addressing. To correct these for other 
addreSSing modes, you may use the following 
adders: 

Address Mode Approximate Overhead 

Viewport Unscaled 15 cycles for each address 
pair 

Viewport Scaled 296 cycles for each address 
pair 

Relative Unscaled 20 cycles for each address 
pair 

Relative Scaled 284 cycles for each address 
pair 

Indirect Addressing 34 cycles for each level of 
indirection 

In the case of program mode, add 11 cycles per 
instruction word. 

These numbers are all empirical and were 
measured on Revision B silicon (5.81) in January 
1987. 

EXAMPLES 

How could one use this instruction? 

CROSS-REFERENCES 

Where to look in this book for further information. 

COMMENTS 

Anything that doesn't seem to fit anywhere else. 

FORMAT 

How does this instruction appear? 



Arc 
(Drawing Primitive) 

Arc creates the image of a circular arc in display 
memory. Line styles, anti-aliasing, and logical PEL 
may be specified. 

Arc requires 10 parameters: 

AA is a 1-bit field that controls anti-aliasing if the 
Logical PEL is not enabled and controls the PEL 
source if the logical PEL is enabled. 

81 is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the logi­
cal PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical ~EL is enabled. 

LS is a 1-bit field that specifies whether the line 
style is to be solid or dashed-dotted. 

EP is a 1-bit field that specifies whether the 
termination end point is to be drawn uncondi­
tionally or only if it falls within a dash or dot ele­
ment. The first point (at START) is always drawn. 

SOAXZ is a 3-bit field that specifies how the arc is 
to be drawn over the current contents of the 
display memory. 

START specifies the address of the first pixel in 
the arc. START is specified with a standard oper­
and address pair. If relative addressing is speci­
fied, START is calculated relative to the CPP. The 
arc Is drawn counterclockwise from START to END. 

CENTER is specified with a standard operand 
address pair. If relative addressing is specified, 
CENTER is calculated with relative to START. The 
center may lie outside display memory. 

RADIUS is specified with a standard operand 
address pair and is defined as upper-right corner of 
the square that bounds the circle that contains the 
arc. This is shown in Figure 14-1. If relative ad­
dressing is specified, RADIUS is calculated relative 
to CENTER. An easy way to specify the radius is to 
use relative addressing mode, where the X and Y 
offset are both equal to the desired radius. 

END is specified with a standard operand address 
pair. If relative addressing is specified, END is 
calculated relative to CENTER. The arc is drawn 
counterclockwise from START to END. 

The Current Pen Position following this instruction 
is the END point. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Overhead (PEL disabled) 
Instruction Overhead (PEL enabled) 

Octant Overhead 

Cycles/Pixel (Plain vanilla arc) 
Cycles/Pixel (Anti-aliased) 
Cycles/Pixel (Dashed-Dotted) 
Cycles/Pixel (1x1 PEL) 
Cycles/Pixel (2x2 PEL) 
Cycles/Pixel (4x4 PEL) 

EXAMPLE 

573 
641 

54 cycles 

15/pixel 
77/pixel 
15/pixel 
195/pixel 
241/pixel 
328/pixel 

This examples draws an arc with the parameters 
listed below. This example uses absolute 
addresses for Start, Center, and End. It uses 
relative addressing for the radius. The line style is 
solid and the SOAXZ field specifies Graphical Set. 

Start: 
Center: 
Radius: 
End: 

534,594 
500,500 
100 
575,566 

0548 
0216 
0252 
01F4 
01F4 
8064 
0064 
023F 
0236 

* Arc with SOAXZ=5 
*Start is 534,594 

*Center is 500,500 

*Relative Radius 100,100 

*End at 575,556 

14-4 



CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
Chapter 6: Line Texture 
Chapter 7: Clipping and Picking 
Chapter 8: Graphical Operations 

COMMENTS 

Arc assumes a pixel aspect ratio of 1 (square 
pixels). If this is not the case, the appearance on 
the display surface will be that of an elliptical arc. 

More information must be supplied to the 
Am95C60 than is strictly required to define an arc. 
Since there is redundant information, it must be 
self-consistent. The end pOints may be calculated 
using the following equations: 

x = Center + Radius • COS Theta 
Y = Center + Radius • SIN Theta 

A function called ANG is provided in QASM to 
make it easier to draw arcs when you know the 
center, radius, and angles. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AAI SI 

AM 

010 

AM 

010 

AM 

01 0 

AM 

01 0 

onS5A 14-1 

onS5A 14-2 

M ILS I EP I SOAXZ I 0 I 1 0 0 1 0 0 

CONTAINING 
CIRCLE 

BOUNDING 
BOX 

XldX 

Y/dY 

XldX 

Y/dY 

XldX 

Y/dY 

XldX 

Y/dY 

Arc Format 

RADIUSSPECIFICATION 
500,400 

START = 
534,594 

DISPLAY MEMORY 

Figure 14-1 Arc 

END= 
575,566 

0 

(STARl) 

(CENTER) 

(RADIUS) 

(END) 



Arc Current 
(Drawing Primitive) 

Arc Current creates the image of a circular arc in 
display memory. Line styles, anti-aliasing, and logi­
cal PEL may be specified. The start point is the 
Current Pen Position. 

Arc Current requires 9 parameters: 

AA is a 1-bit field that controls anti-aliasing if the 
Logical PEL is not enabled and controls the PEL 
source if the logical PEL is enabled. 

SI is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the 
logical PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. 

LS is a 1-bit field that specifies whether the line 
style is to be solid or dashed-dotted. 

EP is a 1-bit field that specifies whether the 
termination end point is to be drawn 
unconditionally or only if it falls within a dash or dot 
element. The first point (at START) is always 
drawn. 

SOAXZ is a 3-bit field that specifies how the arc is 
to be drawn over the current contents of the 
display memory. 

CENTER is specified with a standard operand 
address pair. If relative addressing is specified, 
CENTER is calculated with relative to the Current 

Pen Position. The center may lie outside display 
memory. 

RADIUS is specified with a standard operand 
address pair and is defined as the upper-right 
corner of the square that bounds the circle that 
contains the arc. This is shown in Figure 14-1. If 
relative addressing is specified, RADIUS is 
calculated relative to CENTER. An easy way to 
specify the radius is to use relative addressing 
mode, where the X and Y offset are both equal to 
the desired radius. 

END is specified with a standard operand address 
pair. If relative addressing is specified, END is 
calculated relative to CENTER. The arc is drawn 
counterclockwise from START to END. 

The Current Pen Position following this instruction 
is the END pOint. 

. PERFORMANCE (in SYSCLK cycles) 

Instruction Overhead (PEL disabled) 
Instruction Overhead (PEL enabled) 

Octant Overhead 

Cycles/Pixel (Plain vanilla arc) 
Cycles/Pixel (Anti-aliased) 
Cycles/Pixel (DaShed-Dotted) 
Cycles/Pixel (1x1 PEL) 
Cycles/Pixel (2x2 PEL) 
Cycles/Pixel (4x4 PEL) 

516 
561 

54 cycles 

15/pixel 
77/pixel 
15/pixel 
195/pixel 
241/pixel 
328/pixel 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AAI Sl MILS I EP 1 SOAXZ 1 0 J 0 0 0 1 0 0 0 

AM XldX (CENTER) 

010 Y/dY 

AM XldX (RADIUS) 

o 1 0 Y/dY 

AM XldX (END) 

01 0 Y/dY 

07785A 14-4a 

Arc Current Format 



EXAMPLE 

This example draws an arc with the parameters 
listed below. This example uses absolute 
addresses for Center and End. It uses relative 
addressing for the radius. The Current Pen 
Position is assumed to be 534,594. The line style 
is solid and the SOAXZ field specifies Graphical 
Set. 

Start: 
Center: 
Radius: 
End: 

534,594 
500,500 
100 
575,566 

0508 
01F4 
01F4 
8064 
0064 
023F 
0236 

* Arc Current with SOAXZ=5 
*Center is 500,500 

*Relative Radius 100,100 

*End at 575,556 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
Chapter 6: Line Texture 
Chapter 7: Clipping and Picking 
Chapter 8: Graphical Operations 

COMMENTS 

Arc Current assumes a pixel aspect ratio of 1 
(square pixels). If this is not the case, the 
appearance on the display surface will be that of an 
elliptical arc. 

More information is available to the Am95C60 than 
is strictly required to define an arc. Since there is 
redundant information, it must be self-consistent. 
The end points may be calculated using the 
following equations: 

x = Center + Radius • COS Theta 
Y = Center + Radius • SIN Theta 



Call 
(System Control) 

Call causes the Am95C60 to enter Program mode, 
if it is not currently in Program mode, and pushes a 
return address of all 1 s onto the stack. If the 
Am95C60 is already in Program mode, a sub­
routine is called; a return address (the address of 
the instruction following the call) with bit 12 not set 
is pushed onto the stack. 

In Program mode, the Am95C60 fetches 
instructions from display memory rather than from 
the instruction FIFO. This allows the Am95C60 to 
execute stored programs, thus relieving the host 
of some burden. Figure 4-2 illustrates a program 
being called that in turn calls a subprogram. 

Program mode is exited using a Return instruction 
(if not currently within a nested subroutine). 

Call requires four parameters, plus an optional list 
of indices. 

PP is a 2-bit field that specifies the bit plane num­
ber from which instructions are to be fetched. 

I is a one-bit field that indicates whether a list of 
indices is present. If I is a one, then LOCATION is 
taken to be the top of a dispatch table, and the 
indices are pOinters into the table. The dispatch 
table must be in plane zero. 

Each index is processed as follows: The index (i) is 
multiplied by 2 and an X,V address pair is fetched 
from LOCATION, LOCATION + W2). Execution 
begins at this X,Y address in the bit plane specified 
in PP. When an unnested Return is executed, bit 
15 (the C bit) of the index is tested. If it is a one, 
another index is fetched, otherwise the Call 
terminates. 

If I is a zero, LOCATION specifies the address in 
display memory from which instructions will be 
fetched and no index list is permitted. 

PO is a 1-bit field that makes the execution of the 
Call conditional. If PO is a one, the Call is executed 
only if bit 13 of the Y component of the Current 
Pen Position is a zero (implying CPPY is positive). 
If PO is a zero, the Call is executed uncon­
ditionally. If I is a one, the PO bit is ignored and 
the instruction is executed unconditionally. 

LOCATION is specified as a standard operand 
address pair. This is the address of the 
subroutine if I is a zero, or the address of the 
dispatch table if I is a one. If relative addressing is 
used, LOCATION is calculated with respect to the 
Current Pen Position. The four low order bits of 
the X component of must resolve to all zeroes. 

The Current Pen Position is unchanged by the 
execution of this instruction. 

C is present in the list of indices. When each 
index has been used as a pointer into the dispatch 
table and an unnested Return has been executed, 
this bit is tested. If it is a one, the Am95C60 uses 
the next entry in the index list. If C is a zero, the 
Call instruction terminates. 

INDX is the index into the dispatch table. Only the 
low order 10 bits are used. Bits 10 through 14 
must be zeroes. Bit 15 is the C bit. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

pp I Jpo I 0 J 0 0 01 0 I 0 1 1 0 0 1 0 

AM XldX (LOCATION) 

0 0 Y/dY 

C 0 0 0 0 o I INDX 

C 0 0 0 0 o I INDX 

101000001 INDX 
07785A 14-5 

Call Format 



PERFORMANCE CROSS-REFERENCES 

Call requires 140 SYSCLK cycles Return (Instruction) 
Set Stack Boundaries (Instruction) 

EXAMPLE 
COMMENTS 

This example calls a program, the first instruction of 
which is located at 512,500 in bit plane zero. If the 
Am95C60 is not in Program mode when this 
instruction is executed, a return of all 1 s is pushed. 
If the Am95C60 is already in Program mode, the 
address of the instruction following the Call 
Program is pushed. 

The Y component of the stack pointer is 
incremented by 2 following the push. Any 
instruction may be executed in Program mode. 

0032 ·Plane Zero 
0200 • Address to call 
01F4 

onS5A 14-6 

CALL 

INSTRUCTION 
FIFO 

DISPLA YMEMORY 

Figure 14-2 Program Mode 

TABLE r---+ ROUTINEO 

XO~ RETURN 
YO 
X1 • ROUTINE 1 
Y1 
X2 RETURN 
Y2 
Xn • ROUTINE n 
Yn 

RETURN 

Figure 14-2b Call Table 

14-9 



Circle 
(Drawing Primitive) 

Circle creates the image of a circle in display 
memory. Line style, logical PEL and anti-aliasing 
may be specified. 

Circle requires 8 parameters: 

AA is a 1-bit field that controls anti-aliasing if the 
Logical PEL is not enabled and controls the PEL 
source if the logical PEL is enabled. 

SI is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the 
logical PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. 

LS is a 1-bit field that specifies whether the line 
style is to be solid or dashed-dotted. 

EP is a 1-bit field that specifies whether the 
termination end point is to be drawn 
unconditionally or only if it falls within a dash or dot 
element. The first point (at the bottom of the 
circle) is always drawn. 

SOAXZ is a 3-bit field that specifies how the arc is 
to be drawn over the current contents of the 
display memory. 

CENTER is specified with a standard operand 
address pair. If relative addressing is specified, 
CENTER is calculated with relative to Current Pen 
Position. The center may lie outside display 
memory. 

RADIUS is specified with a standard operand 
address pair and is defined as the upper-right 

corner of the box that bounds the circle. This is 
shown in figure 14-3. If relative addressing is 
used, the radius is calculated with respect to 
CENTER. The easiest way to specify the radius 
is with relative addressing where both the X and Y 
offsets are equal to the desired radius. 

The Current Pen Position following this instruction 
is the CENTER point. 

PERFORMANCE 

Instruction Overhead (PEL disabled 
Instruction Overhead (PEL enabled) 

Octant Overhead 

Cycles/Pixel (Plain vanilla circle) 
Cycles/Pixel (Anti-aliased) 
Cycles/Pixel (Dashed-Dotted) 
Cycles/Pixel (1x1 PEL) 
Cycles/Pixel (2x2 PEL) 
Cycles/Pixel (4x4 PEL) 

EXAMPLE 

198 
306 

54 cycles 

15/pixel 
77/pixel 
15/pixel 
193/pixel 
279/pixel 
324/pixel 

This example draws a circle with the center at 
500,500 and a radius of 100. The example uses 
absolute addressing for the center and relative 
addressing for the radius. The line style is solid 
without anti-aliasing. The SOAXZ field is set to 5 
to obtain Graphical SET. 

054A *Circle 
01 F4 *Center at 500,500 
01F4 
8064 *Relative Radius of 100 
0064 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

MI SI MILS I EP I SOAXZ I 0 I 1 0 0 1 0 1 0 

AM XldX (CENTER) 

01 0 Y/dY 

AM XldX (RADIUS) 

010 Y/dY 

onS5A 14-6 

Circle Format 

14-10 



CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
Chapter 6: Line Texture 
Chapter 7: Clipping and Picking 
Chapter 8: Graphical Operations 

COMMENTS 

ance on the display surface will be that of an 
ellipse. The X and Y scale factors apply only to the 
center (and possibly to the radius). 

Any addressing mode may be used for either 
operand. Viewport addressing will probably not 
produce useful results for the radius. 

. Circle assumes pixels with an aspect ratio of 1 
(square pixels). If this is not the case, the appear-

The circle is drawn beginning at the bottom with a 
full-length dot or dash going counterclockwise. 
The last point is immediately to the left of the first 
point. 

RADIUS SPECIFICATION 

DISPLAY MEMORY 

onS5A 14-11 

Figure 14-3 Circle 

14-11 



Circle Current 
(Drawing Primitive) 

Circle Current creates the image of a circle in 
display memory. Line style, logical PEL and anti­
aliasing may be specified. 

Circle Current requires 7 parameters: 

AA is a 1-bit field that controls anti-aliasing if the 
Logical PEL is not enabled and controls the PEL 
source if the logical PEL is enabled. 

81 is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the 
logical PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. 

LS is a 1-bit field that specifies whether the line 
style is to be solid or dashed-dotted. 

EP is a 1-bit field. that specifies whether the 
termination end point is to be drawn 
unconditionally or only if it falls within a dash or dot 
element. The first point (at the bottom of the 
circle) is always drawn. 

SOAXZ is a 3-bit field that specifies how the arc is 
to be drawn over the current contents of the 
display memory. 

RADIUS is specified with a standard operand 
address pair and is defined as the upper-right 
corner of the box which bounds the circle. This is 
shown in figure 14-3. If relative addressing is 

used, the radius is calculated with respect to 
Current Pen Position. The easiest way to specify 
the radius is with relative addressing where both 
the X and Y offsets are equal to the desired radius. 

The Current Pen Position following this instruction 
is unchanged. 

PERFORMANCE 

Instruction Overhead (PEL disabled) 132 
Instruction Overhead (PEL enabled) 234 

Octant Overhead 

Cycles/Pixel (Plain vanilla circle) 
Cycles/Pixel (Anti-aliased) 
Cycles/Pixel (Dashed-Dotted) 
Cycles/Pixel (1x1 PEL) 
Cycles/Pixel (2x2 PEL) 
Cycles/Pixel (4x4 PEL) 

EXAMPLE 

54 cycles 

15/pixel 
77/pixel 
15/pixel 
193/pixel 
279/pixel 
324/pixel 

This example draws a circle with the center at the 
Current Pen Position and a radius of 100. The 
example uses relative addressing for the radius. 
The line style is solid without anti-aliasing. The 
80AXZ field is set to 5 to obtain Graphical SET. 

050A 
8064 
0064 

*Circle 
*Relative Radius of 100 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AA I SI MILS I EP I SOAXZ I 0 I 0 0 0 1 0 1 0 

AM XldX (RADIUS) 

01 0 Y/dY 

onS5A 14·9 

Circle Current Format 

14-12 



CROSS·REFERENCES 

Chapter 5: 
Chapter 6: 
Chapter 7: 
Chapter 8: 

Addressing Modes and Scaling 
Line Texture 
Clipping and Picking 
Graphical Operations 

COMMENTS 

Circle Current assumes pixels with an aspect ratio 
of 1 (square pixels). If this in not the case, the 
appearance on the display surface will be that of an 
ellipse. Only the radius will be scaled. 

Viewport addressing will probably not produce 
useful results for the radius. 

14-13 



Control Clipping 
(System Control) 

EXAMPLES Control Clipping turns the clipping feature on or off 
according to the Clipping Enable (CE) bit of the 
instruction. The first example enables clipping; the second 

example disables clipping. 
Control Clipping requires a single parameter: 

CE specifies whether clipping is to be enabled or 
disabled. If CE is a 1, clipping is enabled. If CE is 
a 0, clipping is disabled. 

The Current Pen Position is not affected by this 

00B4 
0034 

*Enable Clipping 
*Disable Clipping 

CROSS-REFERENCES 

instruction. Chapter 7: Clipping and Picking 
Set Clipping Boundary (Instruction) 

PERFORMANCE 
COMMENTS 

Control Clipping requires 45 SYSCLK cycles. 
The clipping boundary is unaffected by the 
execution of this instruction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
10 0 0 0 0 0 0 o I CE I 0 1 o o 0 I 

Control Clipping Format 07785A 14-10 

14-14 



Control Picking 
(System Control) 

Control Picking turns picking on or off according to EXAMPLES 
the Picking Enable (PE) bit of the instruction. 

Two examples are shown. The first example 
Control Picking requires a single parameter: enables picking, and the second example disables 

picking. 
PE specifies whether picking is to be enabled or 
disabled. If PE is a 1, picking will be enabled. If 
PE is a 0, picking will be disabled. 

The Current Pen Position is not affected by this 

00B5 
0035 

*Enable Picking 
*Disable Picking 

instruction. CROSS-REFERENCE 

Chapter 7: Clipping and Picking 
PERFORMANCE Set Picking Region (Instruction) 

Control Picking re~uires 40 SYSCLK cycles. 

15 14 13 12 11 10 9 

10 0 0 0 0 0 0 

onS5A 14-11 

Signal (Instruction) 

COMMENTS 

When picking is enabled, writes to display memory 
are disabled. The picking boundary is unaffected 
by the execution of this instruction. 

8 7 6 5 4 3 2 1 0 

o I PE I 0 1 o o 1 I 

Control Picking Format 

14-15 



Copy Block 
(Block Manipulation) 

Copy Block copies a block of data from the source 
image to the destination area. The source image 
is applied to the destination area under control of 
the SI, SOAXZ, and M fields. 

Copy Block requires six parameters: 

Single Plane (SP) controls whether one or all 
planes are taken to contain the source. If SP is a 
1, then a single plane is taken to contain the 
source image that is replicated for all planes whose 
activity bits are set. The source plane is specified 
by the FP field in the Set Character Font Base 
instruction. If SP is a 0, then all planes whose 
activity bits are set contain the source image. 

Source Invert (SI) controls whether the source 
image is inverted (1's complement) before 
processing. If SI is a 1, the image will be inverted. 
If SI is a 0, the image will not be inverted. 

Match (M) controls whether color matching is to 
take place. If M is a 1, then bits in the destination 
operand will be modified only if the current 
destination color matches the search color. 

SOAXZ controls the manner in which the source 
operand is applied to the destination operand. 

SOURCE is specified using a standard operand 
address pair. This specifies the upper-left corner 
of the source image. Any addressing mode may 
be used. If relative addressing is specified, 
SOURCE is calculated with respect to the Current 
Pen Position. The size of the operands will have 
been previously specified using Set Block Size. 

DESTINATION is specified using a standard 
operand address pair. This specifies the upper­
left corner of the destination area. Any addressing 
mode may be used. If relative addressing is 
specified, DESTINATION is calculated with respect 
to the SOURCE. 

Current Pen Position is moved to SOURCE. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup 

Scan Line Setup 
(No invert, no match) 

Scan Line Setup 
(Single Plane Source) 

Scan Line Setup (Source Invert) 
Scan Line Setup (Match Enable) 
Per Destination Word (Logical SET) 
Per Destination Word 

(Single Plane Source) 
Per Destination Word 

(Source Invert) 
Per Destination Word 

218 Cycles 

36 Cycles 

42 Cycles 
40 Cycles 
40 Cycles 
19 Cycles 

25 Cycles 

30 Cycles 

(Match Enable) 276 Cycles 
(Partial Words at the ends of scan lines require a 
full word time) 

EXAMPLES 

The first example illustrates a simple copy. The M 
bit is not set and SOAXZ field specifies a logical 
SET. The source image is at 500,500, and the 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

5P 151 M I 0 o I 50AXZ I 0 I 1 0 1 1 1 0 0 

AM XldX (SOURCE) 

0 0 Y/dY 

AM XldX (DESTINATION) 

0 0 Y/dY 

07785A 14-12 

Copy Block Format 

14-1R 



destination area is at 1000,1000. The size of the 
operands have been set with Set Block Size. The 
operands may overlap arbitrarily. 

005C 
01 F4 *Source operand address pair 
01F4 
03E8 *Destination operand address pair 
03E8 

The second example illustrates a more complex 
copy. The M bit is set resulting in destination 
locations being altered only if the current content 
matches the search color. The source image is at 
500,500, and the destination area is at 
1000,1000. The size of the operands have been 
set with Set Block Size. 

205C *M bit set 
01 F4 *Source operand address pair 
01F4 
03E8 *Destination operand address pair 
03E8 

SOURCE 

I'l6. 

Jf 

DESTINATION / 

onS5A 14·13 

CROSS-REFERENCES 

Chapter 8: Graphical Operations 
Set Block Size (Instruction) 

COMMENTS 

Performance is not affected by the relative 
alignment of the operands. 

The M bit may be used to confine the activity of 
Copy Block to a region that may be irregular. The 
pixels that are to be modified must first be set to 
some color and the search color set to the same 
value. If the M bit is a one, only those pixels that 
are the same as the search color will be affected. 

Figure 14·4 Copy Block 

14-17 



Copy Block Current 
(Block Manipulation) 

Copy Block Current copies a block of data from the 
source image to the destination area. The source 
image is applied to the destination operand under 
control of the SI, SOAXZ, and M fields. The 
Current Pen Position is the upper-left corner of the 
source operand. 

Copy Block Current requires five operands: 

SP controls whether one or all planes are taken to 
contain the source. If SP is a 1, then a single 
plane is taken to contain the source image. The 
plane is specified by the FP field in the Set 
Character Font Base instruction. If SP is a 0, then 
all planes whose activity bits are set contain the 
source image. 

SI controls whether the source image is inverted 
(1's complement) before processing. If SI is a 1 
the image will be inverted. If SI is a 0, the image 
will not be inverted. 

M controls whether color matching is to take place. 
If M is a 1, then bits in the destination operand will 
be modified only if the current destination color 
matches the search color. 

SOAXZ is a 3-bit field that controls how the source 
operand is applied to the current contents of 
display memory. 

DESTINATION is specified using a standard 
operand address pair that specifies the upper-left 
corner of the destination area. Any addressing 
mode may be used. If relative addressing is 
specified, DESTINATION is calculated with respect 
to the Current Pen Position. 

Current Pen Position is not affected by this 
instruction. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup 

Scan Line Setup (No invert, match) 
Scan Line Setup 

(Single Plane Source) 
Scan Line Setup (Source Invert) 
Scan Line Setup (Match Enable) 

166 Cycles 

36 Cycles 

42 Cycles 
40 Cycles 
40 Cycles 

Per Destination Word (Logical SET) 19 Cycles 
Per Destination Word 

(Single Plane Source) 25 Cycles 
Per Destination Word 

(Source Invert) 30 Cycles 
Per Destination Word 

(Match Enable) 276 Cycles 
(Partial Words at the ends of scan lines require a 
full word time) 

EXAMPLES 

The first example illustrates a Simple copy. The M 
bit is not set and SOAXZ field specifies a logical 
SET. The source image is at the Current Pen 
Position, and the destination area is at 1000,1000. 
The size of the block to be copied will have been 
set with Set Block Size. The operands may 
overlap arbitrarily. 

001C 
03E8 *Destination operand address pair 
03E8 

The second example illustrates a more complex 
copy. The M bit· is set, resulting in destination 
locations being altered only if the current content 
matches the search color. The source image is at 
the Current Pen Position, and the destination area 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Sp lSI Mlo o I SOAXZ 101 0 0 1 1 1 0 0 

AM XldX (DESTINATION) 

0 0 Y/dY 

07785A 14-1 

Copy Block Current Format 

14-18 



is at 1000,1000. The size of the block to be 
copied will have been set with Set Block Size. 

201 C *M bit set 
03E8 *Destination operand address pair 
03E8 

CROSS-REFERENCES 

Chapter 8: Graphical Operations 
Set Block Size (Instruction) 

COMMENTS 

Performance is not affected by the relative align­
ment of the operands. 

The M bit may be used to confine the activity of 
Copy Block Current to a region which may be 
irregular. The pixels that are to be modified must 
first be set to some color and the search color set 
to the same value. If the M bit is a one, only those 
pixels that are the same as the search color will be 
affected. 



Define Logical PEL 
(System Control) 

Define Logical PEL specifies the pattern to be 
used in the drawing instructions that can use a 
logical PEL. These instructions are Arc, Circle, 
Line and Point. The logical PEL may be any 
pattern and is stored in display memory. 

Two parameters are required: 

E is a 1-bit field that indicates whether the logical 
PEL is to be enabled. A 1 enables the logical 
PEL; a 0 disables it. 

PEL is specified with a nonstandard address pair. 
This pOints to the upper-left corner of the area in 
display memory that contains the logical PEL. The 
values will be multiplied by 16 prior to being used. 
This means that the logical PEL must start on a 16 
pixel boundary in both dimensions. 

The Current Pen Position is not affected by the 
execution of this instruction. 

PERFORMANCE 

Define Logical PEL requires 56 SYSCLK cycles. 

15 14 13 12 11 10 9 

I 0 
0 0 0 0 0 0 

Xl16 

8 

01 

EXAMPLES 

This example disables the logical PEL. 

0036 "Disable Logical PEL 
xxxx "Ignored 

This example enables the logical PEL and sets the 
logical PEL address to 1024,1024. 

00B6 *Enable 
4040 * 40 hex = 64 dec 

CROSS-REFERENCES 

Chapter 6: Line Texture 
Arc (Instruction) 
Circle (Instruction) 
Line (Instruction) 
Point (Instruction) 
Set Block Size (Instruction) 

COMMENTS 

Logical PEL cannot be used with anti-aliasing. 

7 6 5 4 3 2 0 

E I 0 0 
o 1 

Y/16 

07785A 14-15 

Define Logic PEL Format 



Fill Bounded Region 
(Fill Instruction) 

Fill Bounded Region writes the current drawing 
color into every pixel in the region. The region is 
defined as that collection of points contained 
within a boundary. The boundary is a group of 
pixels, all of the same color that completely 
surround the region. The boundary color is 
established using the Set Search Color 
instruction. The drawing color MUST be set the 
same as the search color. 

One parameter is required by Fill Bounded 
Region: 

SEED is specified with a standard operand 
address pair. If relative addressing is specified, 
SEED will be calculated with respect to the Current 
Pen Position. SEED is the location at which the 
search begins. Its color is ignored. 

CPP is left at SEED. 

PERFORMANCE 

Instruction Setup Time 200 SYSCLK Cycles 

Rectangular Region 

Cycles/Pixel: The actual execution timing of Filled 
Connected Region is very strongly dependent on 
the size, shape, and alignment of the region as 
well as alignment of the seed. The time 
approaches 5.56 cycles/pixel assuming an 
infinitely large region. The following table shows 
some actual measurements. As always, the times 
are given in SYSCLKS/pixel. 

EXAMPLE 

This example is illustrated in Figure 14-5. The 
connected pattern of Xs is the boundary of an 
area. This pattern could have been drawn using 
Line instructions for example. 

Fill Bounded Region with SEED anywhere inside 
the pattern will fill the area up to but not including 
the boundary itself (but since the fill color MUST be 
the same as the boundary color, this is moot). 

0054 
0100 ·SEED anywhere inside the 

boundary 
0200 

Corner Corner Area Seed C/Pixel Comment 
15,100 992,400 291824 480,200 5.9 
16,100 992,400 291525 480,200 6.7 Edge Alignment 
14,100 992,400 292123 480,200 5.9 
15,100 992,400 291824 479,200 7.2 Seed Alignment 
15,100 992,400 291824 481,200 7.2 

Circular Region 
Center Radius Area Seed C/Pixel Comment 
480,480 400 500145 480,480 8.6 
481,480 400 500145 480,480 8.6 
479,480 400 500145 480,480 8.6 
480,480 400 500145 479,480 10.4 Seed Alignment 
480,480 400 500145 481,480 10.4 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I >M: 
0 0 0 0 0 0 o I 1 0 1 0 0 0 

XldX (SEED) 

Y/dY 

onS5A 14-16 
Fill Bounded Region Format 



CROSS-REFERENCES 

Set Search Color (Instruction) 
Set Col9r Bits (Instruction) 
Fill Connected Region (Instruction) 

COMMENTS 

A single-pixel wide diagonal line will behave as a 
boundary. 

If clipping is enabled, no pixels outside the clipping 
region will be affected. 

Multiple Am95C60s compare colors over the entire 
system (assuming MATIN and MATOUT are 
properly connected). 

x 
x x x x x x x 
x x x x 
x x x x x 
x x 
x x I'" 
x x 
x x 
x x 
x x 
x x x x x x 

onS5A 14-71 

Planes whose listen bits are a 1 do not participate 
in color comparisons but may be written into. 

Planes whose activity bits are a 0 may participate in 
color comparisons but will not be written into. 

The stack usage can be estimated as follows. A 
simple convex polygon will require four entries 
total. If the polygon is concave, two entries will be 
required per concavity. Four entries will be 
required per island. 

The activity bits and listen bits MUST be such that 
every plane in the system is either active or 
ignored (or both). This means that the activity bit 
or the listen bit must be set. If this condition is not 
met, Fill Connected Region will never complete. 

x 
xx 

x 
x. NOT IN REGION 

BOUNDARY 

r--,. ....... 

The pixels contained in the diagonal area to the right of 
the main area are not in the Bounded Region. There is a 
boundary as indicated. 

xx x x x x x x x x x x 
x x x x x x x x x x 
x x x x 

x x x x 
x x x x 

x x 
x x 

x x 
x x x x x 
x x x x 
x xx x x x 
x x 
x x 
x x x x x x x x xx x x xx xx x x 

onS5A 14-17 

Figure 14-5 Fill Bounded Region 

1.il_?? 



Fill Bounded Region Current 
(Fill Instruction) 

Fill Bounded Region Current writes the current 
drawing color into every pixel in the region. The 
region is defined as that collection of pOints 
contained within a boundary. The boundary is a 
group of pixels, all of the same color, that 
completely surrounds the region. The boundary 
color is established using the Set Search Color 
instruction. The drawing color MUST be set the 
same as the search color. 

No parameters are required by Fill Bounded 
Region Current. 

CPP is unchanged. 

PERFORMANCE 

Instruction Setup 140 SYSCLK Cycles 

Cycles/Pixel: See the timing notes under Fill 
Bounded Region for time per pixel numbers. 

EXAMPLES 

This example is illustrated in Figure 14-5. The 
connected pattern of Xs is the boundary of an 
area. This pattern could have been drawn using 
Line instructions for example. 

Fill Bounded Region Current with the CPP 
anywhere inside the pattern will fill the area up to 
but not including the boundary (but since the fill 
color MUST be the same as the boundary color, 
this is moot). 

0014 

15 14 13 12 11 10 9 8 

10 0 0 0 0 0 0 0 

on85A 14-18 

CROSS-REFERENCES 

Set Search Color (Instruction) 
Set Color Bits (Instruction) 
Fill Connected Region (Instruction) 

COMMENTS 

A single-pixel wide diagonal line will behave as a 
boundary. 

If clipping is enabled, no pixels outside the clipping 
region will be affected. 

Multiple Am95C60s compare colors over the entire 
system (assuming MATIN and MATOUT are 
properly connected). 

Planes whose listen bits are a 1 do not participate 
in color comparisons but may be written into. 

Planes whose activity bits are a 0 do participate in 
color comparisons but will not be written into. 

The activity bits and listen bits MUST be such that 
every plane in the system is either active or 
ignored (or both). This means that the activity bit 
or the listen bit must be set. If this condition is not 
met, Fill Bounded Region Current will never 
complete. 

765 4 3 2 o 
o I 0 0 o o 0 I 

Fill Bounded Region Current Format 



Fill Connected Region 
(Fill Instruction) 

Fill Connected Region fills a region with the current 
drawing color. The region is defined as any 
connected group of pixels that are the same color 
as the seed point. 

A single parameter is required by Fill Connected 
Region: 

SEED is specified with a standard operand 
address pair. If relative addressing is used, SEED 
is calculated with respect to CPP. SEED is the 
address of a pixel anywhere within the connected 
region. 

CPP is left at the SEED point. 

PERFORMANCE 

Instruction Setup Time 200 SYSCLK Cycles 

The actual execution timing of Filled Connected 
Region is very strongly dependent on the size, 
shape, and alignment of the region as well as 
alignment of the seed. The time approaches 5.56 
cycles/pixel assuming an infinitely large region. 
The following table shows some actual 
measurements. As always, the times are given in 
SYSCLKS/pixel. 

Rectangular Region 

EXAMPLE 

Fill Connected Region is illustrated in Figure 14-6. 
The irregular shape marked with Xs is two groups 
of pixels that are all the same color. If Fill 
Connected Region is executed and the SEED 
point is any of the pixels marked with a X, all of the 
pixels in that group will be filled with the current 
drawing color. 

0056 
0100 ·SEED 
0200 

CROSS-REFERENCES 

Fill Bounded Region (Instruction) 
Set Color Bits (Instruction) 

COMMENTS 

The search color is changed to the same color as 
the SEED pixel (that is, the drawing color) following 
the execution of this instruction. 

Corner Corner Area Seed C/Pixel Comment 
15,100 992,400 294378 480,200 6.1 
16,100 992,400 294077 480,200 6.1 
14,100 992,400 294679 480,200 6.1 
15,100 992,400 294378 479,200 7.3 Seed Alignment 
15,100 992,400 294378 481,200 7.3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I >M: 
0 0 0 0 0 0 o I 1 0 1 0 1 

o I XldX (SEED) 

Y/dY 

07785A 14-24 
Fill Connected Region Format 



If clipping is enabled, no pixels outside the clipping 
region will be written into. 

Planes whose listen bits are a 1 do not participate 
in color matches but may be written into. 

Planes whose activity bits are a 0 may participate in 
color matches but will not be written into. 

Connectivity is 4-way only. Pixels that are dis­
placed in both X and Yare not connected to each 
other (but may be both connected to a common 
pixel). 

x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x 

ISLAND - 1"1" X X X 
X X X X X X X 
X X X X X X X 

-!-' ~ X X X X X 
NO CONNECT ION -:::::::r- x x x x x 

x x x x x 

07785A 14·20 

Stack usage may be estimated as follows. A 
simple convex polygon will require four entries. If 
the polygon is concave, two entries will be 
required for each concavity. Four entries will be 
required for each island. 

The activity bits and listen bits MUST be such that 
every plane in the system is either active or 
ignored (or both). This means that the activity bit 
or the listen bit must be set. If this condition is not 
met, Fill Connected Region will never complete. 

Figure 14-6 Fill Connected Region 

14-25 



Fill Connected Region Current 
(Fill Instruction) 

Fill Connected Region Current fills a region with 
the current drawing color. The region is defined 
as any connected group of pixels that are the same 
color as the SEED point. 

No parameters are required by Fill Connected 
Region Current. 

CPP is unchanged. 

PERFORMANCE 

Instruction Setup 140 SYSCLK Cycles 

For time/pixel measurements, see Fill Connected 
Region. 

EXAMPLE 

Fill Connected Region Current is illustrated in 
Figure 14-6. The irregular shape marked with Xs 
is two groups of pixels that are all the same color. If 
Fill Connected Region is executed and the CPP is 
any of the pixels marked with a X, all of the pixels in 
that group will be filled with the current drawing 
color. 

0016 

CROSS-REFERENCES 

Fill Bounded Region (Instruction) 
Set Color Bits (Instruction) 

COMMENTS 

The search color is changed to the same color as 
the SEED pixel (the drawing color) following the 
execution of this instruction. 

If Clipping is enabled, no pixels outside the clipping 
region will be written into. 

Planes whose listen bits are a 1 do not participate 
in color matches but may be written into. 

Planes whose activity bits are a 0 may participate in 
color matches but will not be written into. 

Connectivty is 4-way only. Pixels that are 
displaced in both X and Yare not connected to 
each other (but may be both connected to a pixel). 

Stack usage may be estimated as follows. A simple 
convex polygon will require four entries. If the 
polygon is concave two entries will be required for 
each concavity. Four entries will be required for 
each island. 

The activity bits and listen bits MUST be such that 
every plane in the system is either active or 
ignored (or both). This means that the activity bit 
or the listen bit must be set. If this condition is not 
met, Fill Connected Region Current will never 
complete. 

15 14 13 12 11 10 9 B 765432 o 
1 0 000000 o 0 I 0 0 0 o 

07785A 14-21 
Fill Connected RegIon Current Format 



Filled Rectangle 
(Fill Instruction) 

Filled Rectangle creates the image of a rectangle in 
display memory and fills it using the current draw­
ing color. The current drawing color is applied to 
the background under control of the SOAXZ field. 

Three parameters are required by this instruction: 

SOAXZ is a 3-bit field that indicates how the 
drawing color is to be applied to the current 
contents of the region. 

START is specified with a standard operand 
address pair. This is the upper-left corner of the 
rectangle. If relative addressing is used, START 
will be calculated with respect to CPP. 

END is specified with a standard operand address 
pair. This is the lower-right corner of the rectangle. 
If relative addressing is specified, END will be cal­
culated with respect to START. 

The CPP is set to START. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup Time 238 SYSCLK Cycles 

The time per pixel very strongly depends on the 
size and horizontal alignment of the rectangle 
being filled. It also depends on the SOAXZ opera­
tion. For an infinitely large rectangle, the time 
approaches 0.375 SYSCLK cycles per pixel. The 
following table shows some measured numbers. 

SOAXZ Corner Corner Area C/Pixel 
SET 16,100 96,200 8181 1.01 
SET 15,100 96,200 8282 1.09 
SET 17,100 96,200 8080 1.02 
SET 16,100 496,200 48682 0.49 
XOR 16,100 496,200 48682 0.89 

EXAMPLE 

The following example creates a filled rectangle 
with opposite corners at 500,500 and 1000,1000. 
Since the SOAXZ field is zero, the current drawing 
color is used to fill the rectangle without regard to 
the current contents of the area affected. 

0050 
01 F4 * Start 
01F4 
03E8 *End 
03E8 

CROSS-REFERENCES 

Chapter 8: Graphical Operations 

COMMENTS 

Both the X and Y components of the END address 
must resolve to a value greater than the respective 
components of the START address. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 o I SOAXZ I 0 I 1 0 1 0 0 0 0 

AM XldX (START) 

0 0 Y/dY 

AM XldX (END) 

0 0 Y/dY 

07785A 14·22 

Filled Rectangle Format 

14-27 



START 

\ 

, 
END 

DISPLAYMEMORY 

07785A 14-23 

Figure 14-7 Filled Rectangle 

1A.?R 



Filled Rectangle Current 
(Fill Instruction) 

Filled Rectangle Current creates the image of a 
rectangle in display memory and fills it using the 
current drawing color. The current drawing color is 
applied to the background under control of the 
SOAXZ field. The upper-left corner of the 
rectangle is the Current Pen Position. 

Two parameters are required by this instruction: 

SOAXZ is a 3-bit field that indicates how the 
drawing color is to be applied to the current 
contents of the region. 

END is specified with a standard operand address 

EXAMPLE 

The following example creates a filled rectangle 
with one corner at CPP and the other corner 
displaced by 100,100. Relative addressing is 
used. Since the SOAXZ field is five, the current 
drawing color is used to fill the rectangle without 
regard to the current color of the area affected. 

0510 
8064 
3F9C 

*END 
*Observe negative relative Y 
component 

pair. This is the lower-right corner of the rectangle. CROSS-REFERENCES 
If relative addressing is specified, END will be cal-
culated with respect to the Current Pen Position. Chapter 8: Graphical Operations 

The CPP is unchanged. 
COMMENTS 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup Time 135 SYSCLK Cycles 

The END address must resolve to greater than the 
Current Pen Position in both components. If not, 
nothing useful will happen. 

For time per pixel measurements, see Filled 
Rectangle. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 o I SOAXZ 101 0 0 1 0 0 0 0 

AM I XldX 

0 o I Y/dY 

07785A 14-1 

Filled Rectangle Current Format 

1A.?Q 

(END) 



Filled Triangle 
(Fill Instruction) 

Filled Triangle creates the image of a triangle in 
display memory and fills it with the current drawing 
color. The SOAXZ field is used to determine how 
the present contents of the area are combined 
with the current color. 

Four parameters are required by Filled Triangle: 

SOAXZ is a 3-bit field that indicates how the 
drawing color is to be applied to the current 
contents of the region. 

START is specified with a standard operand 
address pair. This is the first vertex of the triangle. 
If relative addressing is used, START will be 
calculated with respect to CPP. 

MID is specified with a standard operand address 
pair. This is the second vertex of the triangle. If 
relative addressing is used, MID will be calculated 
with respect to START. 

END is .specified with a standard operand address 
pair. This is the third vertex of the triangle. If 
relative addressing is used, END will be calculated 
with respect to START. 

cpp is set to START following this instruction. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Set-up Time 1021 SYSCLK Cycles 

The time per pixel depends very strongly on the 
size and shape of the Triangle being filled. Since 
Filled Triangle proceeds one scan line at a time, 

wide triangles are filled more quickly than tall, 
narrow triangles of the same area. The table below 
shows some typical measurements. 

SOAXZ V1 V2 V3 Area C/Pixel 
SET 0,50 0,497 447,497 100K 1.26 
SET 0,50 0,497 447,50 100K 1.26 
SET 250,50 0,497 447,50 100K 1.40 
SET 0,50 447,50 250,447 100K 1.15 
SET 0,50 0,250 0,1050 100K 0.85 
SET 0,50 0,1050 200,50 100K 2.34 

SET 0,50 1020,50 500,1020 500K 0.91 
SET 0,220 447,50 447,497 100K 1.28 
SET 0,50 0,497 447,250 100K 1.29 
SET 0,50 0,250 1000,1000 100K 2.34 
SET 0,50 0,250 1000,800 100K 2.34 
SET 0,50 0,250 1000,600 100K 1.60 
SET 0,50 0,250 1000,400 100K 1.22 
SET 0,50 0,250 1000,200 100K 0.94 

EXAMPLE 

The following example draws a filled triangle with 
vertices at 500,500 and 1000,500 and 800,900. 
Since the SOAXZ field is five, the current drawing 
color is applied without regard to the original 
contents of the field. 

0052 
01F4 *Start 
01F4 
03E8 *Mid 
01F4 
0320 *End 
0385 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 o I SOAXZ I 0 I 1 0 1 0 0 1 0 

AM XldX (START) 

0 0 Y/dY 

AM XldX (MID) 

0 0 Y/dY 

AM XldX (END) 

0 0 Y/dY 

07785A 14-30 

Filled Triangle Format 



CROSS-REFERENCES Any polygon can be decomposed into some 
number of triangular regions. The notion is that 

Chapter 8: Graphical Operations the user would break the polygon into triangles 
and then issue the required number of Filled 

COMMENTS Triangle instructions to complete the polygon. 

The purpose of Filled Triangle is to provide an The vertices may have any relationship. 
analytical means of filling arbitrary regions (as op-
posed to Fill Connected Region and Fill. Bounded 
Region that rely on the contents of display memory 
prior to the execution of the instruction). 

IF ANY TWO VERTICES ARE THE SAME, 
THE TRIANGLE WILL BE A STRAIGHT LINE. 

START, MID --.- x 
x 

x 
x 

x END 

IFTHE VERTICES ARE COLINEAR, IF ALL THREE VERTICES ARE THE SAME, 
THE TRIANGLE WILL BE A SINGLE POINT. THE TRIANGLE WILL BE A STRAIGHT LINE. 

START --.- x 
x 

x x 
x 

x END 
x 

x 
x~ MID 

I 
07785A 14-87 

SOO,500 1000,500 

800,900 

07785A 14-26 

Figure 14-8 Filled Triangle 



Filled Triangle Current 
(Fill Instruction) 

Filled Triangle Current creates the image of a 
triangle in display memory and fills it with the 
current drawing color. The SOAXZ field is used to 
determine how the present contents of the area 
are combined with the current color. The Current 
Pen Position is the first vertex. 

Three parameters are required by Filled Triangle 
Current: 

SOAXZ is a 3-bit field that indicates how the 
drawing color is to be applied to the current 
contents of the region. 

MID is specified with a standard operand address 
pair. This is the second vertex of the triangle. If 
relative addressing is used, MID will be calculated 
with respect to the Current Pen Position. 

END is specified with a standard operand address 
pair. This is the third vertex of the triangle. If 
relative addressing is used, END will be calculated 
with respect to Current Pen Position. 

CPP is unaffected by this instruction. 

PERFORMANCE 

Instruction Setup 970 SYSCLK Cycles 

For per pixel timing, see Filled Triangle. 

EXAMPLE 

The following example draws a filled triangle with 
vertices at the Current Pen Position and 1000,500 
and 800,900. Since the SOAXZ field is five, the 
current drawing color is applied without regard to 
the original contents of the field. 

0512 
03E8 
01F4 
0320 
0384 

*Mid 

*End 

CROSS-REFERENCES 

Chapter 8: Graphic Operations 

COMMENTS 

The purpose of Filled Triangle Current is to provide 
an analytical means of filling arbitrary regions (as 
opposed to Fill Connected Region and Fill 
Bounded Region that rely on the contents of 
display memory prior to the execution of the 
instruction). 

Any polygon can be decomposed into some num­
ber of triangular regions. The notion is that the 
user would break the polygon into triangles and 
then issue the required number of Filled Triangle 
Current instructions to complete the polygon. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 o I SOAXZ I 0 J 0 0 1 0 0 1 0 

AM XldX (MID) 

0 0 Y/dY 

AM XldX (END) 

0 0 Y/dY 

07785A 14-27 

Filled Triangle Current Format 



Input Block 
(Block Manipulation) 

Input Block transfers information from the host 
directly into display memory. The size of the 
(rectangular) block will have been previously 
specified with a Set Block Size instruction. The 
host is expected to write the data to be transferred 
into the Block Input FIFO (BIF). 

Three parameters are required by Input Block: 

BIS is a 3-bit field that indicates to the Am95C60 
how the X portion of the address is to be 
incremented following each input word. BIS is 
determined by the number of Am95C60s in the 
system and will always be the same for a given 
system. 

Number of 
Am95C60s 

1 
2 

3 or more 

Required Value 
of BIS 

4 (100) 
2 (010) 
1 (001) 

The Z bit indicates whether the data transferred are 
to be stored by plane (Z=O) or by pixel (Z=1). 

BEGIN is specified with a standard operand 
address pair. This is the upper-left corner of the 
rectangular area into which data is to be 
transferred. If relative addressing is used, BEGIN 
is calculated with respect to the Current Pen 
Position. 

CPP is not affected by this instruction. 

PERFORMANCE (In SYSCLK cycles) 

Input By Plane Input By Pixel 

Overhead: 63 69 
Per Pixel: -0.31 per plane -5 (BIS =4) 

-9 (BIS =2) 
-17 (BIS =1 

Per Scan Line: 24 107 

Note: The numbers for Input Block and Output Block 
are predictions. 

EXAMPLE 

The following example starts the Am95C60 
accepting data from the host. The data will be 
stored by pixel beginning at location 500,500. 
This example is for a single-Am95C60 system. 
The size of the block will have been specified by 
Set Block Size. 

40D8 *BIS=4, Z=1 
01 F4 * Address of destination 
01F4 

CROSS-REFERENCES 

Set Block Size (Instruction) 
Input Block (Instruction) 

15 14 13 12 11 10 9 876 5 4 3 2 o I 0 IBIS 
o 

XldX 

I 0 o o I z I 1 o 

Y/dY 

WORD SENT TO BLOCK IN FIFO 

WORD SENT TO BLOCK IN FIFO 

WORD SENT TO BLOCK IN FIFO 

07785A 14-28 
Input Block Format 

14-33 

o o 
(BEGIN) 

(FIRST) 

(SECOND) 

(LAST) 



COMMENTS 

Clipping is ignored. 

Data will be written to all planes whose activity bits 
are set. 

The data words to be stored in display memory are 
transmitted to the Block Input FIFO (rather than the 
instruction FIFO). 

An integer number of operand words must be 
transferred for each scan line in the block. 

Figure 14-9 illustrates how words from the FIFO are 
used for input by plane. The block size has been 
set to 17 pixels by two scan lines. The first word 
into the FIFO is entered into the leftmost 16 bits of 
the first scan line. The leftmost bit of the second 
word is entered into the 17th pixel of the first scan 
line and the remaining 15 bits are discarded. The 
third and fourth words are entered into the second 
scan line in a similar manner. 

Figure 14-10A shows how bits from the FIFO are 
used for input by pixel where BIS is set to 1. This 
is appropriate for 9 to 16 bit planes. The informa­
tion transmitted on D15-012 is used for each 
pixel; the information on 011-00 is discarded. For 
a block size of 17 pixels by two scan lines, 34 
writes are required, one for each pixel. The data 
transferred on the first write are entered into the 
leftmost pixels of the first scan line. The first scan 
line is filled from left-to-right and then the second 
scan line is filled from left-to-right. 

Figure 14-108 shows the recommended 
connection for a four-Am95C60 system. Each 
Am95C60 has its own (16-bit) data buffer. The 
fifth data buffer is used for Block I/O by pixel. The 
16 bits from the host data bus are distributed to the 
four Am95C60s as indicated in the table in Figure 
14-10B. The system interface must make pro­
visions to enable this extra buffer; it usually has its 
own I/O address. 

Figure 14-11A shows how bits from the FIFO are 
used for input by pixel where 81S is set to 2. This 
is correct for five to eight bit planes. The informa­
tion is transferred on 015-08. The leftmost pixel is 
transmitted on D15-012, and the rightmost pixel is 
transmitted on 011-08. For a block size of 17 
pixels by two scan lines, 18 writes are required. 
Two pixels are transmitted on each write except 
the 9th and 18th. Only one pixel is transmitted on 
each of these two writes. 

Figure 14-118 shows the recommended 
connection for a two-Am95C60 system. Each 
Am95C60 has its own (16-bit) data buffer. The 
third data buffer is used for Block I/O by pixel. The 
16 bits from the host data bus are distributed to the 
two Am95C60s as indicated in the table in the 
figure. Each pixel is transferred in one byte, two 
pixels per word. If the buffer is connected as 
recommended, the bits in the pixel will be con­
sistent with the bits in the Set Activity Bits 
operand. The system interface must make provi­
sions to enable this extra buffer; it usually has its 
own I/O address. 

.1.�144----16----..-t-l 

2 I~--------~~~~~~~g~!---------+I:t==~ ~~~g! 
T 114 .. -----17----~ .. 1 

T n T 

~--------16----------~" 4 

WORD 1 
WORD2 
WORD3 
WORD 4 

DE==:JDQIIS~C~A~RQD§EDE===a ~ FIRST SCAN LINE 
SECOND 

D~CARDED SCAN LINE 

D15 DO 
07785A 14·74 

Figure 14-9 Input Block by Plane 



Figure 14-12 shows how bits from the FIFO are 
used in input by pixel where BIS is set to 4. This is 
correct for one to four bit planes. The information 
is transmitted on all 16 data lines. The leftmost 
pixel is transmitted on 015-012 and the rightmost 
pixel is transmitted on 03-00. For a block size of 
17 pixels by two scan lines, ten writes are required. 

Am95C60 DATA BIT 15 14 13 12 11 10 9 

PLANE NUMBER Lo 2 
3 l,x x x 

.. ... ... , 
.... , 

\ .... , 
" " 

, 
.... \ ... ... \ 

.... \ .... \ .... .... \ 
.... \ .... .... \ 

.... \ ... \ .... 
PIXEL TRANSFERRED 1 0 

1 

2 

3 

13 

14 

15 

16 

0 

2 

13 

14 

15 

16 

~ 

I 

Four pixels are transmitted on each of the writes 
except the fifth and tenth. Only one pixel is 
transmitted on each of these. The ordering of 
pixels within the nibbles is consistent with the 
ordering of plane information in the Set Color Bits 
operand. No special buffer is required. 

8 7 6 5 4 3 2 1 0 

x x x x x) x x x xJ 
, , 

I , 
I .-

I " , 
" , ,. , , " , , , , 

I , , 
I , , , 

I , , 
I , 

I , 
t. .-

x x I x r 1STWRITE T X X X 2ND WRITE 

X X X 3RDWRITE 

X X X 4TH WRITE 

1ST 
SCAN 

X X X 14TH WRITE 
LINE 

X X X 15TH WRITE 

X X X 16TH WRITE 

X X X 17TH WRITE 

X X X 18TH WRITE 

X X X 19TH WRITE 

X X X 20TH WRITE 

2ND 
SCAN 

X X X 31 ST WRITE LINE 
X X X 32NDWRITE 

~ 
X X X 33RDWRITE 

X X X 34TH WRITE 

X=DONTCARE 

onS5A 14·35 

Figure 14-10A Input Block by Pixel for BIS=1 As Seen by Each Am95C60 

14-35 



HOST -
BUS / .. Am95C60 0 

/16 
i--

r---

" .. .. Am95C60 1 

I......-

~ 

" _ .. Am95C602 

i--

-
"- _ .. .. Am95C603 

-

-
,f 

/ 

" '4 
po 

/ 
/4 

/ 

i--
/4 

t 
BY PIXEL BUFFER 

HOST BUS Am95C60 PLANE Am95C60BUS 

15 3 0 15 
14 3 1 14 
13 3 2 13 
12 3 3 12 

11 2 0 15 
10 2 1 14 
9 2 2 13 
8 2 3 12 

7 0 15 
6 1 14 
5 2 13 
4 3 12 

3 0 0 15 
2 0 1 14 
1 0 2 13 
0 0 3 12 

07785A 14·36 

Figure 14·10B Input Block by Pixel for B15=1 Connections 

14-36 



Am95C60 DATA BIT 15 14 13 12 11 10 9 B 7 6 5 4 3 2 0 

PLANE NUMBER Co 1 2 3 
(,0 

1 2 3 X X X 
X) 

X X X X,1 .. 
"- .; 

, 
"-

, , .; 
"-

, , .; 
..... , 

\ 
, 

" ..... , 
" ..... \ , 

" "-
"-

\ , 
.; '" "- \ I 

'" "- \ I '" ..... 
..... 

\ I 

'" '" ..... \ I 

'" ..... \ I '" ..... ..... \ I 

'" '" ..... \ I 
'" ..... \ I '" ..... 

" ~ l. '" 
PIXELS TRANSFERRED I 0 I 1 X I X 1STWRITE t 2 3 X X 2ND WRITE 

4 5 X X 3RDWRITE 1ST 
SCAN 
LINE 

14 15 X X BTHWRITE 

16 X X X 9TH WRITE r 
0 X X 10TH WRITE ~ 

2 3 X X 11TH WRITE 
2ND 

SCAN 

17TH WRITE 
LINE 

14 15 X X 
16 X X X 1BTHWRITE t 07785A 14-37 

Figure 14-11A Input Block by Pixel for BIS=2 As Seen by Each Am95C60 

14-37 



HOST 
BUS 

16 
Am95C60 0 

Am95C60 1 

i 
BY PIXEL BUFFER 

HOST BUS Am95C60 PLANE Am95C60 BUS 

15 0 15 
14 1 14 
13 2 13 
12 3 12 

11 0 0 15 
10 0 1 14 
9 0 2 13 
8 0 3 12 
7 0 11 
6 1 10 
5 2 9 
4 3 8 
3 0 0 11 
2 0 1 10 
1 0 2 9 
0 0 3 8 07785A 14-78 

Figure 14·11B Input Block by Pixel for B15=2 Connections 



Am95C60 DATA BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

PLANE NUMBER 1.0 2 3 l 0 2 3 0 2 3) 0 2 3 
. . ... , 

... . , ... . , .. . , .. . . , .. . , , .. .. , , ... , .. .. , , ... .. , , .. " 
, , .. , .. " 
, , .. .. , , ... , I , ... , .. , I , ... , I , .. ~ l • 
, 

PIXELS TRANSFERRED 1 0 I 2 I 3 I 1ST WRITE f 
4 5 6 7 2ND WRITE 1ST 
8 9 10 11 3RDWRITE SCAN 

LINE 
12 13 14 15 4TH WRITE 

16 X X X 5TH WRITE + 
0 2 3 6TH WRITE t 
4 5 6 7 7TH WRITE 2ND 

8 9 10 11 8TH WRITE SCAN 
LINE 

12 13 14 15 9TH WRITE 
t 16 X X X 10TH WRITE 

07785A 14-79 

Figure 14-12 Input Block by Pixel for BIS=4 As Seen by Each Am95C60 

14-39 



Input Block Current 
(Block Manipulation) 

Input Block Current transfers information from the 
host directly into display memory. The size of the 
(rectangular) block will have been previously 
specified with a Set Block Size instruction. The 
host is expected to write the data to be transferred 
into the Block Input FIFO (BIF). The upper-left 
corner of the destination operand is the Current 
Pen Position. 

Two parameters are required by Input Block 
Current: 

BIS is a 3-bit field that indicates to the Am95C60 
how the X portion of the address is to be 
incremented following each input word. BIS is 
determined by the number of Am95C60s in the 
system and will always be the same for a given 
system. 

Number of 
Am95C60s 

1 
2 

3 or more 

Required Value 
of BIS 

4 (100) 
2 (010) 
1 (001) 

The Z bit indicates whether the data transferred are 
to be stored by plane (Z=O) or by pixel (Z=1). 

CPP is not affected by this instruction. 

PERFORMANCE (in SYSCLK cycles) 

Input By Plane Input By Pixel 

Overhead: 63 69 
Per Pixel: "'0.31 per plane ... 5 (BIS=4) 

"'9 (8IS=2) 
...17 (BIS=1) 

Per Scan Line: 24 107 

Note: The numbers for Input Block and Output Block 
are predictions. 

EXAMPLE 

The following example starts the Am95C60 
accepting data from the host. The data will be 
stored by pixel beginning at the Current Pen 
Position. This example is for a single-Am95C60 
system. The size of the block will have been 
specified by Set Block Size. 

4098 *81S = 4, Z=1 

CROSS-REFERENCES 

Set Block Size (Instruction) 
Input Block (Instruction) 

COMMENTS 

See Input Block. 

15 14 13 12 11 10 9 876 5 4 3 2 o 
I 0 IBIS I 0 o o o I z I 0 o 

WORD SENT TO BLOCK IN FIFO 

WORD SENT TO BLOCK IN FIFO 

WORD SENT TO BLOCK IN FIFO 

Input Block Current Format 

14-40 

o o o I 

(FIRST) 

(SECOND) 

(LAST) 

07785A 14-40 



Inquire 
(System Control) 

EXAMPLE: Inquire causes the Am95C60 to write the 
microcode version into the Block Output FIFO 
(BOF). If the BOF is full, the Am95C60 waits until 
there is room. 

This example causes the Am95C60 to write the 
microcode version number into the BOF. 

No parameters are required by Inquire. 003F 

PERFORMANCE: CROSS-REFERENCES: 

Inquire requires 60 SYSCLK cycles plus any time 
spent waiting for room in the BOF. COMMENTS: 

FORMAT OF THE INFORMATION WRITTEN TO BOF: 

15 14 13 12 11 10 9 8 7 6 5 4 

I 0 0 0 0 0 0 0 0 0 0 0 0 

INSTRUCTION FORMAT: 

15 14 13 12 11 10 9 8 7 6 5 4 

I 0 0 0 0 0 0 0 0 o I 0 1 1 

onS5A 14·90 
Inquire Format 

14-41 

3 2 

0 0 

3 2 

1 

0 

0 o I 

0 

1 I 



Jump 
(System Control) 

Jump causes a transfer to a new location in display 
memory when the Am95C60 is in Program mode. 
This instruction must not be executed from the 
FIFO. 

Jump requires four parameters, plus an optional 
index: 

PP is a 2-bit field that specifies the bit plane 
number from which instructions are to be fetched. 

I is a 1-bit field that indicates whether an index is 
present. If I is a one, then LOCATION is taken to 
be the top of a dispatch table, and the index is a 
pOinter into the table. The dispatch table is 
assumed to be in plane zero. The index (i) is multi­
plied by 2 and a X,V address pair is fetched from 
LOCATION, LOCATION + (i *2). Execution begins 
at this X,V address in the plane specified in PP. 

If I is a ·zero, LOCATION specifies the address in 
display memory from which instructions will be 
fetched and no index is permitted. 

PO is a 1-bit field that makes the execution of the 
Call conditional. If PO is a one, the Jump is 
executed only if bit 13 of the V component of the 
Current Pen Position is a zero (implying CPPV is 
positive). If PO is a zero, the Jump is executed 
unconditionally. If I is a one, the PO bit is ignored 
and the instruction is executed unconditionally. 

LOCATION is specified as a standard operand 
address pair. This is the address of the subroutine 
if I is a zero, or the address of the dispatch table if I 
is aone. If relative addressing is used, LOCATION 
is calculated with respect to the Current Pen 

Position. The four low order bits of the X com­
ponent must resolve to all zeroes. 

The Current Pen Position is unchanged by the 
execution of this instruction. 

INDX is the index into the dispatch table. Only the 
low order 10 bits are used. Bits 10 through 15 
must be zeroes. 

PERFORMANCE 

Jump requires 96 SVSCLK cycles. 

EXAMPLE 

The following example will cause a transfer to 
location 512,256 of bit plane 3. Absolute 
addressing mode is used. No scaling is assumed. 

C03C 
0200 * Address 
0100 

CROSS-REFERENCES 

Call (Instruction) 
Return (Instruction) 

COMMENTS 

Jump may be used to connect fragments of 
programs. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

PP I I PO I 0 I 0 0 01 0 I 0 1 1 1 1 0 0 

AM XldX (LOCATION) 

01 0 Y/dY 

0 0 0 0 0 o I INDX 

07785A 14-30 

Jump Format 

14-42 



Line 
(Drawing Primitives) 

Line creates the image of a vector in display mem­
ory. Line style, logical PEL and anti-aliasing may 
be specified. 

Line requires 9 parameters: 

AA is a 1-bit field that controls anti-aliasing if the 
Logical PEL is not enabled and controls the PEL 
source if the logical PEL is enabled. 

SI is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the 
logical PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. 

LS is a 1-bit field that specifies whether the line 
style is to be solid or dashed-dotted. 

EP is a 1-bit field that specifies whether the termi­
nation end point is to be drawn unconditionally or 
only if it falls within a dash or dot element. The first 
pOint (at START) is always drawn. 

SOAXZ is a 3-bit field that specifies how the vector 
is to be drawn over the current contents of the 
display memory. 

START is specified with a standard operand 
address pair. If relative addressing is specified, 
START is calculated with relative to the Current 
Pen Position. 

END is specified with a standard operand address 
pair. If relative addressing is specified, END is 
calculated with respect to START. 

C (bit 15 of the second word of the second stan­
dard operand address pair) is a continuation bit. If 
this bit is a one, the Am95C60 will fetch another 
two standard operand address pairs and draw 
another line. The option bits from the opcode 
word will not be changed. 

The Current Pen Position following this instruction 
is END. 

PERFORMANCE 

Instruction Overhead 
(Single Segment) 

Instruction Overhead 
(First Segment) 

Instruction Overhead 
(Middle Segments) 

Instruction Overhead 
(Last Segment) 

Drawing Time (Per Pixel) 
SOAXZ=5 (Graphical SET) 
SOAXZ=7 (Graphical XOR) 
Anti-aliased 
Dashed-Dotted 
Logical PEL (1 x1) 
Logical PEL (2x2) 
Logical PEL (4x4) 
Dashed-dotted Line (SET) 

259 Cycles 

249 Cycles 

159 Cycles 

179 Cycles 

6 Cycles/Pixel 
12 Cycles/Pixel 
95 Cycles/Pixel 
14 Cycles/Pixel 
200 Cycles/Pixel 
240 Cycles/Pixel 
329 Cycles/Pixel 

In some cases, a horizontal line is drawn 16 pixels 
per write (rather than the normal 1). The line must 
have a solid line style, the logical PEL must not be 
enabled and the line must not be anti-aliased. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AA I Sl MILS I EP I SOAXZ I 0 I 1 0 0 1 1 0 0 

AM XldX (START) 

010 Y/dY 

AM XldX (END) 

C I 0 Y/dY 

onS5A 14-31 
Line Format 

14-43 



EXAMPLES 

This example is a non-anti-aliased solid line from 
500,500 to 507,510. The SOAXZ field is set to 
five to obtain a graphical SET. 

054C 
01F4 *Begin 
01F4 
01FB *End 
01FE 

This example draws two disjunct lines. The first 
line is from 0,0 to 100,100 and the second is from 
200,200 to 200,400. The attributes of the two 
lines are identical. Neither is anti-aliased or uses a 
PEL. Each is drawn with a solid line style. 

054C 
0000 
0000 
0064 
8064 
00C8 
00C8 
00C8 
0190 

*Line with Graphical SET 
* Address of 0,0 

*Address of 100,100 
*With Continue bit set 
* Address of 200,200 
* 
"'Address of 200,400 
"'Without Continue bit 

500----+ 

510 ----+ 

500 

~ 
x 

x 
x 

x 
x 

x 
x 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
Chapter 6: Line Texture 
Chapter 7: Clipping and Picking 
Chapter 8: Graphical Operations 
Chapter 9: Anti-aliasing 

COMMENTS: 

QASM provides a construct called DPL that makes 
it somewhat more natural to generate multiple­
segment lines. 

The drawing time of 6 SYSCLK cycles per pixel 
requires that the QPDM have been programmed to 
enable masked writes. See the Set QPDM 
Position instruction. 

507 

~ 

x 
x 
x 

x 

07785A 14-32 

Flgure14-13 Line Example 

14-44 



Li ne Cu rre nt 
(Drawing Primitives) 

Line Current creates the image of a vector in 
display memory. Line style, logical PEL and anti­
aliasing may be specified. 

Line Current requires 8 parameters: 

AA is a 1-bit field that controls anti-aliasing if the 
Logical PEL is not enabled and controls the PEL 
source if the logical PEL is enabled. 

SI is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the 
logical PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. 

LS is a 1-bit field that specifies whether the line 
style is to be solid or dashed-dotted. 

EP is a 1-bit field that specifies whether the termi­
nation end point is to be drawn unconditionally or 
only if it falls within a dash or dot element. The first 
pOint (at the Current Pen Position) is never drawn. 

SOAXZ is a 3-bit field that specifies how the vector 
is to be drawn over the current contents of the 
display memory. 

END is specified with a standard operand address 
pair. If relative addressing is specified, END is cal­
culated with respect to the Current Pen Position. 

C (bit 15 of the second word of the standard 

operand address pair) is a continuation bit. If this 
bit is a one, the Am95C60 will fetch another stan­
dard operand address pair and draw another line 
beginning at the END of the last line. The option 
bits from the opcode word will not be changed. 

The Current Pen Position following this instruction 
is END. 

PERFORMANCE: 

Instruction Overhead 
(Single Segment) 

Instruction Overhead 
(First Segment) 

Instruction Overhead 
(Middle Segments) 

Instruction Overhead 
(Last Segment) 

Drawing Time (Per Pixel) 

SOAXZ=5 (Graphical SET) 
SOAXZ=7 (Graphical XOR) 
Anti-aliased 
Dashed-Dotted 
Logical PEL (1 x1) 
Logical PEL (2x2) 
Logical PEL (4x4) 
Dashed-dotted Line (SET) 

202 Cycles 

191 Cycles 

96 Cycles 

119 Cycles 

6 Cycles/Pixel 
12 Cycles/Pixel 
95 Cycles/Pixel 
14 Cycles/Pixel 
200 Cycles/Pixel 
240 Cycles/Pixel 
329 Cycles/Pixel 

In some cases, a horizontal line is drawn 16 pixels 
per write (rather than the normal 1). The line must 
have a solid line style, the logical PEL must not be 
enabled and the line must not be anti-aliased. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AA\ SI M \ LS \ EP \ SOAXZ \ 0 I 0 0 0 1 1 0 0 

AM XldX (END) 

C I 0 Y/dY 

07785A 14-33 

Line Current Format 

14-45 



EXAMPLES 

This example draws a non-anti-aliased line from the 
Current Pen Position to the Current Pen Position 
offset by + 10,+ 10. The operand address pair spec­
ifies relative addressing mode. The scale factors 
should have been set to Os to prevent scaling. 
The SOAXZ field is set to five for graphical SET. 

050C 
800A 
OOOA 

*Relative address, dX=10 
*dY=10 

This example draws a box 10 pixels square. The 
upper-left corner is at the Current Pen Position. 
The pen (as it turns out) is unchanged by this 
example. The line is drawn using a solid line style. 

050C *Line Current with Graphical SET 
8000 *Relative: 0,-10 
BFF6 *Continue bit is set 
800A *Relative: +10,0 
8000 *Continue bit is set 
8000 *Relative: 0,10 
800A *Continue 
BFF6 *Relative: -10,0 
0000 *No continue bit 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
Chapter 6: Line Texture 
Chapter 7: Clipping and Picking 
Chapter 8: Graphical Operations 
Chapter 9: Anti-aliasing 

COMMENTS 

QASM includes a construct called CPL (Con­
nected Polyline) to help with drawing continuous 
lines. 



Move Pen 
(Drawing Primitive) 

Move Pen sets the Current Pen Position. 

One parameter is required by Move Pen: 

LOCATION is specified with a standard operand 
address pair. If relative addressing mode is used, 
LOCATION will be calculated with respect to the 
Current Pen Position. 

CPP is set to the operand address. 

PERFORMANCE 

Move Pen requires 84 SYSCLK cycles. 

EXAMPLES 

This example sets the Current Pen Position to 
500,500. Absolute addressing is used. 

0040 
01 F4 *Location 
01F4 

15 14 13 12 11 10 9 6 7 

This example moves the Current Pen Position with 
an offset of +10,+10. Relative addressing is used. 
This assumes that the scale factors have been set 
to O. 

0040 
800A 
OOOA 

*Relative, dX=1 0 
*dY=10 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 

COMMENTS 

Move Pen doesn't draw anything. 

6 5 4 3 2 1 0 

I: AM 

0 0 0 0 0 0 0 o I 1 0 0 0 0 0 0 

XldX (LOCATION) 

0 Y/dY 

onS5A 14-34 
Move Pen Format 



No Operation 
(System Control) 

No Operation ensures that no operation is EXAMPLE 
performed. 

This example does nothing. 
No parameters are required. 

0000 
Cpp is not affected by this instruction. 

CROSS-REFERENCES 
PERFORMANCE 

No Operation requires 34 SYSCLK cycles. COMMENTS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

10 0 00000001 0 00 0 0 

No Operation Format 

o 
o 0 I 

07785A 14-21 



Output Block 
(Block Manipulation) 

Output Block sets up the Am95CSO to transfer a 
rectangular block of display memory to the Block 
Output FIFO (BOF). The Am95CSO will transfer 
the contents of the block to the BOF. The size of 
the block will have been set by Set Block Size. 

Three parameters are required by Output Block: 

BOS is a 3-bit field that specifies to the Am95CSO 
how to increment the X address following each 
output operation. This value is selected according 
to the number of Am95CSOs in the system and will 
always be the same for any given system. 

Number of 
Am95CSOs 

1 
2 

3 or more 

Required 
BOS Value 

4 (100) 
2 (010) 
1 (001) 

Z is a 1-bit field that specifies whether the output is 
to be done by plane (Z=O) orby pixel (Z=1). 

LOCATION is specified as a standard operand 
address pair. Any addressing mode may be 
specified. If relative addressing is specified, 
LOCATION will be calculated with respect to the 
Current Pen Position. This is the address of the 
upper-left corner in display memory of the block to 
be transferred to the BOF. The size of the block to 
be transferred will have been set by Set Block 
Size. 

The Current Pen Position is not affected by this 
instruction. 

PERFORMANCE (in SYSCLK cycles) 

Output By Plane Output By Pixel 

Overhead: 71 74 
Per Pixel: -O.S per bit plane -2 (BOS=4) 

-4 (BOS=2) 
-S (BOS=1) 

Per Scan Line: 28 34 

Note: These numbers are predictions. 

EXAMPLE 

The following example sets the Am95CSO up to 
transfer a block of data from 500,500. The transfer 
will be by pixel and assumes a single-Am95CSO 
system. The size of the block to be transferred will 
have been set using Set Block Size. 

40DA 
01F4 
01F4 

CROSS·REFERENCES 

Set Block Size (Instruction) 
Input Block (Instruction) 

15 14 13 0 

WORD TO BE REMOVED FROM BOF 

onS5A 14-36 Output Block Format 

(FIRST) 

(SECOND) 

(LAST) 



COMMENTS 

If Z=O (output by plane), only a single plane will be 
read. Only one activity bit may be set. If no plane 
is active, 1 s will be returned. In a system with multi­
ple Am95C60s, only one Am95C60 should have 
activity bits set. If multiple Am95C60s try to trans­
mit, bus contention will result. 

If Z=1 (output by pixel), 1s will be returned for any 
planes that are not active. 

Figure 14-14 shows how the data are placed on 
the system bus data lines (D15-DO) for output by 
plane. The leftmost pixel is placed on D15. To 
transmit a block of 17 pixels by two scan lines 
requires four reads. The leftmost 16 pixels of the 
first scan line are transmitted in the first word. The 
17th pixel of the first scan line is transmitted on 
D15 of the second word; the other 15 bits are 
indeterminate. The 17 pixels of the second scan 
line are transmitted in the third and fourth words. 

Figure 14-15A shows how the data are placed on 
the system bus data lines for output by pixel when 
BOS is set to 1. This is appropriate for a system 
with 9 to 16 bit planes. The leftmost pixel is 
transmitted on D15-D12. If the recommended 
connection is used, the information on D11-DO will 
be ignored by the system. After each word is read 

from the Block Output FIFO, the next pixel is 
shifted into the leftmost nibble of the data bus. On 
the 15th read, pixel number 14 has shifted to the 
left and the rightmost nibble is indeterminate. By 
the 17th read, all but the leftmost nibble is 
indeterminate. The first pixel of the second scan 
line appears on D15-D12 of the 18th read, and the 
last pixel of the second scan line comes out on the 
34th read. 

Figure 14-15B shows the recommended system 
bus connection for Block I/O by pixel in a four­
Am95C60 system. Each Am95C60 has its own 
data buffer. The fifth buffer is for Block 1/0 by pixel. 
It takes four bits from each Am95C60 and concate­
nates them into a 16-bit word. The table in the fig­
ure shows how the data bus bits should be con­
nected. This buffer needs to have a separate 
enable, usually decoded from a separate address. 

Figure 14-16A shows how the data are placed on 
the system bus data lines for output by pixel when 
BOS is set to 2. This is appropriate for a system 
with five to eight bit planes. The leftmost pixel is 
transmitted on D15-D12, and the adjacent pixel is 
transmitted on D11-D8. The system should 
ignore the data on D7-DO. For a block size of 17 
pixels by two scan lines, 18 reads are required. 
Each read transmits two pixels except for the 9th 
and 18th reads. Observe that the data are shifted 

.i.114-4----16 ----~_i 
2 1 WORD 1 I:t- WORD2 

. WORD3 .~ WORD4 

T 14 17-----.t_i 

T u T 

• ~---------16----------~ • 
WORD 1 
WORD 2 
WORD 3 
WORD4 

PE=::JIN~D2]ET[§jER~M1!iIN~AITT[E ===a} SCAN LINE 1 

INDETERMINATE } SCAN L1NE2 

07785A 14·80 

Figure 14-14 Output Block by Plane 



by two pixels rather than one as is the case for 
808=1. Figure 14-168 shows the recommended 
connection for a two-Am95C60 system. The third 
data buffer takes four bits of each of two pixels 
from each of the two Am95C60s and concatenates 
them into two, a-bit pixels. One pixel appears as 
the left byte and the other appears as the right 
byte. This buffer needs to have its own enable; 
this is usually decoded from a separate I/O 
address. 

Am95C60 DATA BIT 15 14 13 12 11 10 9 

PLANE NUMBER Co 1 2 3 l 0 1 2 

.. ... \ ... \ ... \ ... \ ... \ ... \ ... , ... ... , 
"-

, 
"- , 

"- ... , 
"-

, 
"- ... , 

"- \ 
"- \ 

"- ~ 

1 I PIXELS TRANSFERRED 0 

1 

2 

3 

13 

14 

15 

16 

0 

2 

3 

13 

14 

15 

16 

OnS5A 14·81 

Figure 14-17 shows how the data are transmitted 
for 808=4. This is appropriate for a single­
Am95C60 system. Leftmost pixels are transmitted 
on higher-order D lines. For a block size of 17 
pixels by two scan lines, ten reads are required. 
Each read transmits four pixels except the fifth and 
tenth that move one pixel each. No special buffer 
is required. 

8 7 6 5 4 3 2 0 

3 0 1 2 3) 0 2 3,1 
, ., 

I , 
I , 

I " , 
" , 

" , , , 
I , 

I , 
I , , , , 

I , , , , , , , , 
t. 

, 
1 2 I 3 r 1ST READ T 2 3 4 2ND READ 

3 4 5 3RDREAD 

4 5 6 4TH READ 1ST 
SCAN 
LINE 

14 15 16 14TH READ 

15 16 X 15TH READ 

16 X X 16TH READ 

X X X 17TH READ 

2 3 18TH READ • 
3 4 5 19TH READ 

4 5 6 20TH READ 

2ND 
SCAN 
LINE 

14 15 16 31ST READ 

15 16 X 32NDREAD 

~ 16 X X 33RDREAD 

X X X 34TH READ 

X=INDETERMINATE 

Figure 14-15A Output Block by Pixel for BOS=1 As Seen by Each Am95C60 

14-51 



HOST -
BUS / 

Am95C600 ....-
/16 "" 

~ / 

'---

r---

\... Am95C60 1 """ 7 

L.--

r---

..... / Am95C602 

I-

r-

\... ... Am95C603 

L.--

r---~ 
/ ~ 

\... .... 4 

/ ~ 

.... 4 

/ ~ 

L.--
""'74 

i 
BYPIXELBUFFER 

HOST BUS Am95C60 PLANE Am95C60BUS 

15 3 0 15 
14 3 1 14 
13 3 2 13 
12 3 3 12 

11 2 0 15 
10 2 1 14 
9 2 2 13 
8 2 3 12 

7 0 15 
6 1 14 
5 2 13 
4 3 12 
3 0 0 15 
2 0 1 14 
1 0 2 13 
0 0 3 12 

on85A 14·82 

Figure 14-15B Output Block by Pixel for B05=1 Connections 

14-52 



Am95C60 DATA BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
PLANE NUMBER t.O 1 2 3 l 0 1 2 3 0 1 2 3) 0 2 3 . ... , ... . , ... . , ... . . , ... . . , ... ... . , , 

... .. I , 
... .. , , , ... .. , , ... ... .. , , , ... .. , 

... .. , , , ... ... \. , , , ... \. , , ... \. , , ... 

01 r 
, 

PIXELS TRANSFERRED 1 1 2 3 r 1ST READ f 2 3 4 5 2ND READ 
4 5 6 7 3RD READ 1ST 

SCAN 
LINE 

14 15 16 X 8TH READ 

f 
16 X X X 9TH READ 
0 1 2 3 10TH READ 
2 3 4 5 11TH READ 

2ND 
SCAN 

14 15 16 X 17TH READ LINE 

16 X X X 18TH READ + 

07785A 14-21 

Figure 14-16A Output Block by Pixel for BOS=2 As Seen by Each Am95C60 

14-53 



HOST .....--
BUS / 

""'" Am95C60 0 
/16 

~ / 

L....--

-
I\. L.. Am95C60 1 

/ 

-

-
/ ~ 

74 
~ / ~ , /4 

""'" / ~ 
..... 74 

~ / ~ 

'---- /4 

i 
BYPIXELBUFFER 

HOSTBUS Am95C60 PLANE Am95C60 BUS 

15 1 0 15 
14 1 1 14 
13 1 2 13 
12 1 3 12 

11 0 0 15 
10 0 1 14 
9 0 2 13 
8 0 3 12 

7 0 11 
6 1 10 
5 2 9 
4 3 8 

3 0 0 11 
2 0 1 10 
1 0 2 9 
0 0 3 8 

07785A 14-83 

Figure 14-16B Output Block by Pixel for B05=2 Connections 

14-54 



Am95C60 DATA BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

PLANENUMBER l .. 0 2 3 l 0 1 2 3 0 1 2 
3) 

0 2 3 1 , .. ... \ 

'" 
, 

... \ , , ... \ , 
'" " \ , ,-

" 
, , ,-

" 
, , ,-... ... \ , ,. '" " 

\ , 
'" ... \ I '" ... 

" 
\ I ,- ,-

" 
\ I ,-... \ I '" ... ... \ I 

'" '" ... \ I 
'" ... \ I ,-... .. ~ l. ,-

PIXELS TRANSFERRED I 0 I 2 I 3 I 1STREAD f 
4 5 6 7 2NDREAD 1ST 
8 9 10 11 3RDREAD SCAN 

12 13 14 15 4TH READ 
LINE 

16 X X X 5TH READ , 
0 2 3 6TH READ 

4 5 6 7 7TH READ 2ND 
8 9 10 11 8TH READ SCAN 

12 13 14 15 9TH READ 
LINE 

16 X X X 10TH READ + 
07785A 14·84 

Figure 14-17 Output Block by Pixel for BOS=4 As Seen by Each Am95C60 

14-55 



Output Block Current 
(Block Manipulation) 

Output Block Current sets up the Am95C60 to 
transfer a rectangular block of display memory to 
the Block Output FIFO (BOF). The Am95C60 will 
transfer the contents of the block to the BOF. The 
size of the block will have been set by Set Block 
Size. The upper-left corner of the block will be the 
Current Pen Position. 

PERFORMANCE (in SYSCLK cycles) 

Two parameters are required by Output Block 
Current: 

Output By Plane 

Overhead: 71 
Per Pixel: "'0.6 per bit plane 

Per Scan Line: 28 

Note: These numbers are predictions. 

EXAMPLE 

Output By Pixel 

74 
... 2 (Bos=4) 
... 4 (Bos=2) 
"'6 (Bos=1) 

34 

BOS is a 3-bit field that specifies to the Am95C60 
how to increment the X address following each 
output operation. This value is selected according 
to the number of Am95C60s in the system and will 
always be the same for any given system. 

Number of 
Am95C60s 

1 
2 

Required 
BOS Value 

4 (100) 
2 (010) 
1 (001) 

The following example sets the Am95C60 up to 
transfer a block of data from the Current Pen Posi­
tion. The transfer will be by pixel and assumes a 
single-Am95C60 system. The size of the block to 
be transferred will have been set using Set Block 
Size. 

3 or more 409A 

Z is a 1-bit field that specifies whether the output is 
to be done by plane (Z=O) or by pixel (Z=1). 

CROSS-REFERENCES 

The Current Pen Position is not affected by this 
instruction. 

Set Block Size (Instruction) 
Output Block (Instruction) 
Input Block (Instruction) 

COMMENTS 

See Output Block. 

15 14 13 12 11 10 9 876 5 4 3 2 

I 0 I 80S I 0 o o o I z I 0 o o 

WORDT08EREMOVEDFROM80F 

WORDT08EREMOVEDFROM80F 

WORD TO 8E REMOVED FROM 80F 

Output Block Current Format 

14-56 

o 
o I 

(FIRSl) 

(SECOND) 

(LASl) 

07785A 14-37 



Output Current Pen Position 
(System Control) 

Output Current Pen Position may be used to read EXAMPLE 
the CPP from the Am95C60. When the Am95C60 
encounters this instruction, the CPP is written into The following example will cause the CPP to be 
the Block Output FIFO (BOF). written to the BOF. 

No parameters are required. 002A 

The Current Pen Position is unchanged by the 
execution of this instruction. CROSS-REFERENCES 

Chapter 7: Clipping and Picking 
PERFORMANCE 

Output Current Pen Posiion requires 60 SYSCLK COMMENTS 
cycles. 

Format of information written to BOF: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

I 0
0 00 I X PEN ?OSITlON I (FIRST WORD) 

~. =====.~=================Y=P=E=N=P=O=SI=T1=O=N=============~ (SECOND WORD) 
on85A 14·89 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
10 0 0 0 0 0 0 o 0 I 0 o o o I 

on85A 14-38 

Output Current Pen Position Format 

14-57 



Point 
(Drawing Primitive) 

Point creates the image of the logical PEL in 
display memory. The image of the logical PEL is 
applied to the current contents of display memory 
under control of the AA, SI, M, and SOAXZ fields. 
If the logical PEL is disabled, a single point will be 
drawn. 

Point requires 6 parameters: 

AA is a 1-bit field that is unused if the Logical PEL 
is not enabled and controls the PEL source if the 
logical PEL is enabled. 

Sl is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the 
logical PEL is enabled. 

M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. 

SOAXZ is a 3-bit field that specifies how the PEL is 
to be drawn over the current contents of the 
display memory. 

LOCATION is specified with a standard operand 
address pair. Location indicates the address at 
which the point is to be written. 

C is the continue bit. If this bit is set, the Am95C60 

and will draw another point. The attributes of the 
next point will be identical to those of the first 
point. If this bit is a zero, the instruction will 
terminate. 

The Current Pen Position following this instruction 
is LOCATION. 

PERFORMANCE 

Logical PEL Disabled 
(1x1) PEL 
(2x2) PEL 
(4x4) PEL 

EXAMPLE 

99 SYSCLK Cycles 
350 SYSCLK Cycles 
393 SYSCLK Cycles 
488 SYSCLK Cycles 

This example draws the logical PEL at 500,500. 
The SOAXZ field is five (graphical SET), so the 
PEL is deposited without regard to the current 
contents of display memory. 

054E 
01 F4 *500,500 
01F4 

CROSS-REFERENCES 

will fetch another standard operand address pair Chapter 6: Line Texture and Logical PEL 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

AAI SI MILS I EP I SOAXZ I 0 I 1 0 0 1 1 1 0 

AM X/dX (LOCATION) 

C I 0 Y/dY 

07785A 14-39 

Point Format 

14-58 



Point Current 
(Drawing Primitive) 

Point Current creates the image of the logical PEL 
in display memory at the Current Pen Position. 
The image of the logical PEL is applied to the 
current contents of display memory under control 
of the AA, SI, M, and SOAXZ fields. If the logical 
PEL is disabled, a single point will be drawn. 

Point Current requires 4 parameters: 

PERFORMANCE 

Logical PEL Disabled 
(1x1) PEL 
(2x2) PEL 
(4x4) PEL 

EXAMPLE 

49 SYSCLK Cycles 
256 SYSCLK Cycles 
334 SYSCLK Cycles 
421 SYSCLK Cycles 

AA is a 1-bit field that is unused if the Logical PEL 
is not enabled and controls the PEL source if the 
logical PEL is enabled. 

SI is a 1-bit field that specifies whether the logical 
PEL is to be inverted. This applies only if the logi­
cal PEL is enabled. 

This example draws the logical PEL at the Current 
Pen Position. The SOAXZ field is five (graphical 
SET), so the PEL is deposited without regard to 
the current contents of display memory. 

050E 

CROSS-REFERENCES 
M is a 1-bit field that specifies whether the logical 
PEL is to be stored only where the destination 
matches the search color. This applies only if the 
logical PEL is enabled. Chapter 6: Line Texture and Logical PEL 

SOAXZ is a 3-bit field that specifies how the PEL is 
to be drawn over the current contents of the dis­
play memory. 

The Current Pen Position is unchanged following 
this instruction. 

15 14 13 12 11 10 9 8 7 6 

I AA I SI I M I LS I EP I SOAXZ I 0 I 0 

07785A 14-40 

Point Current Format 

14-59 

5 4 3 2 o 
o o o I 



Pop Current Pen Position 
(System Control) 

EXAMPLE Pop Current Pen Position causes the Current Pen 
Position and the fractional error to be retrieved 
from the stack. The Y component of the stack 
address is decremented by four. 

This example pops the Current Pen Position and 
fractional error terms from the stack. The stack 
address is decremented by four. 

The four words that are loaded from the stack are 
CPP (Y), CPP (X), FERR (Y), and FERR (X). 

This is the opposite of Push Current Pen Position. 

002D 

CROSS-REFERENCES 
CPP is loaded to the value from the stack. 

Push Current Pen Position 

PERFORMANCE 

Pop Current Pen Position requires 114 SYSCLK 
cycles. 

15 14 13 12 11 10 9 8 7 6 5 

I 0 0 0 0 0 0 0 o 0 I 0 

Pop Current Pen Position 

14-60 

4 3 2 

o 1 0 

o 
1 I 

07785A 14-91 



Push Current Pen Position 
(System Control) 

Push Current Pen Position causes the Current CROSS·REFERENCES 
Pen Position and the fractional error terms to be 
stored onto the stack. The Y component of the Pop Current Pen Position 
stack pointer is incremented by four after the push 
takes place. The quantities that are stored are (in 
order of increasing Y addresses). FERR (X). FERR EXAMPLE 
(Y). CPP (X) and CPP (Y). 

The following example pushes the CPP and 
The Current Pen Position is unchanged by the Fractional Error. 
execution of this instruction. 

2C 

PERFORMANCE 
COMMENTS 

Push Current Pen Position requires 114 SYSCLK 
Cycles. The words on the stack look like: 

07785A 14·92 

15 14 13 12 11 10 9 

I 0 000 000 

FERR (X) 
FERR (Y) 
CPP (X) 
CPP (Y) 

8 7 6 5 4 

o 0 I 0 1 o 

Push Current Pen Position 

14-61 

3 2 o 
o o I 



Return 
(System Control) 

Return causes the Am95CSO to fetch a two-word 
return address from the stack. If bit 12 of the first 
word is a 1, Program mode is exited and the 
Am95CSO resumes executing instructions from 
the FIFO. If bit 12 is a 0, the two words from the 
stack are loaded into the Program Counter. The 
stack pointer is decremented by 2 before the 
return address is fetched. 

No parameters are required. 

CPP is not changed by this instruction. 

PERFORMANCE 

Return requires 88 SYSCLK cycles. 

15 14 13 12 11 10 9 8 

10 0 0 0 0 0 0 0 

EXAMPLE 

The following example fetches two words from the 
top of the stack. If bit 12 of the first word is a 1, 
program execution is continued by fetching 
instructions from the FIFO. If bit 12 of the first word 
is a 0, program execution continues from the 
location specified by the stack entry. 

0033 

CROSS-REFERENCES 

Call (Instruction) 
Jump (Instruction) 

7 6 5 4 3 

o I 0 o 
2 

o 
o 

Return Format 0778SA 14·41 

14-S2 



Set Activity Bits 
(System Control) 

Set Activity Bits indicates which of the bit planes 
connected to an Am95C60 are to be treated as 
active. This instruction can be directed to up to 
four Am95C60s at once. 

Two parameters are required: 

PPRH is a 4-bit integer that selects a group of four 
Am95C60s in a multiple-Am95C60 system. Each 
Am95C60 will have had specified to it a certain 
Am95C60 number. If PPRH doesn't match, this is 
an effective NOP. 

BITS is a 16-bit binary field that contains activity bits 
for up to four Am95C60s. This is broken into four 
subfields, one for each of the four Am95C60s. 
Each of the four subfields contain one bit for each 
bit plane. The high order bit in the field controls bit 
plane 0; the low order bit in the field controls bit 
plane 3. 

CPP is not changed by this instruction. 

PERFORMANCE 

Set Activity Bits requires 112 SYSCLK cycles. 

EXAMPLES 

This example sets the planes of the Am95C60 in a 
four-plane system to all active. The QPDM position 
of the Am95C60 must have been set to 000000 
by a Set QPDM Position instruction. 

0030 
XXXF 

07785A 14-42 

*PPRH is 0 
*12 don't care bits 

15 14 13 12 11 10 9 8 

PPRH 0 0 0 0 

Am95C603 Am95C60 2 

This example sets the active planes of a group of 
four Am95C60s as indicated in the chart below. A 
1 implies the plane will be active; a 0 implies the 
plane will be not active. The four Am95C60s must 
have had their QPDM positions set to 000100, 
000101, 000110 and 000111 with Set QPDM 
Position instructions. 

Am95C60: Three Two Ona Zero 

Plane 3: 1 1 0 1 
Plane 2: 0 0 0 1 
Plane 1: 1 1 1 0 
Plane 0: 1 0 0 0 

1030 ·PPRH is 0001 
0543 

CROSS-REFERENCES 

Chapter 13, Section 13.2 
Set QPDM Position (Instruction) 

COMMENTS 

If the activity bit for a plane is set to a 1, the plane 
will operate normally. Write operations will con­
ditionally write into the plane. 

If the activity bit for a plane is set to a 0, the plane 
will not be written into (the Am95C60 will suppress 
the WE pin to that plane). If an Am95C60 is 
supporting less than four planes, the activity bits of 
the missing planes MUST be reset. 

The high order bit in the field controls bit plane 0; 
the low order bit in the field controls bit plane 3. 

3 2 0 

o 000 

Am95C60 0 (BITS) 

Set Activity Bits Format 

14-63 



Set Anti-aliasing Distance 
(System Control) 

Set Anti-aliasing Distance is used to program the 
minimum and maximum anti-aliasing distances for 
each of the four bit planes. If the CPOM POSITION 
does not match the value programmed with Set 
CPOM Position, this will be an effective NOP. 

Nine Parameters are required: 

CPOM POSITION specifies which Am95C60 
should respond to this instruction. If this value 
does not match the value programmed, the 
Am95C60 will ignore this instruction. In a system 
containing multiple Am95C60s, this instruction will 
have to be issued for each Am95C60 even if the 
minimum and maximum values programmed are to 
be the same. 

Px MIN and MAX are used to indicate whether the 
Comparator Method or Inverse-Distance Method is 
to be used. In addition, the MINs and MAXs are 
used to specify the distances or data bits for each 
of the four planes. The four PXs must specify the 
same method for all four planes or the results will 
be indeterminate. 

If the high order bit of the MIN value is a 0, the 
Comparator Method is chosen. If the high order bit 
of the MIN value is a 1, the Inverse-Distance 
Method is chosen. These methods are described 
in detail in Chapter 9. 

CPP is not affected. 

PERFORMANCE 

Set Anti-aliasing Distance requires 64 SYSCLK 
cycles. 

EXAMPLES 

This example programs the Am95C60 for com­
parator anti-aliasing as described in Section 9.2.1. 

The MINs and MAXs of CPOM zero are pro­
grammed as indicated below. 

Bit Plane Minimum Maximum 

a 
1 
2 
3 

0000 
0000 
0000 
0000 

0111 
1011 
1101 
1111 

0037 *QPDM Position Zero 
OB07 *Plane 1 and Plane a 
OFOD *Plane 3 and Plane 2 

This example programs the Am95C60 for inverse 
distance anti-aliasing as described in Section 9.3. 
The digits of CPOM zero are assigned as indicated 
below. 

Bit Plane Digit 

a 3 
1 2 
2 1 
3 a 

0037 
8283 
8180 

*QPDM Position Zero 
*Plane 1 and Plane a 
*Plane 3 and Plane 2 

CROSS-REFERENCES 

Chapter 9: Anti-aliasing 

COMMENTS 

All planes of the Am95C60 must be programmed 
for the same method of anti-aliasing. If not, the 
results will be indeterminate and may not be 
consistent or repeatable. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

QPOM POSITION I 0 0 01 0 1 1 0 1 1 1 

P1 MIN I P1 MAX I PO MIN I PO MAX 

P3MIN I P2 MAX I P2 MIN I P2 MAX 

07785A 14-43 

Set Anti-aliasing Distance Format 

14-64 



Set Block Size 
(Display Control) 

EXAMPLE Set Block Size is used to specify the size of the 
rectangle to be used by Input Block, Output Block, 
Copy Block, and Transform Block. It is also used to 
set the size of the logical PEL. 

This example sets the block size to 1 00 (X) by 200 
(V). Absolute addressing is used. No scaling is 
assumed. 

One parameter is required by Set Block Size: 

SIZE is specified using a standard operand 
address pair. This pair is evaluated in the normal 
manner. The resultant X,V pair is the block size 
rather than the address of an operand. Any ad­
dressing mode may be used. If relative addressing 
is specified SIZE is calculated with respect to the 
Current· Pen Position. 

CPP in not changed by this instruction. 

PERFORMANCE 

Set Block Size requires 82 SYSCLK cycles. 

0022 
0064 ·X Size 
OOC8 ·V Size 

CROSS-REFERENCES 

Chapter 6: Line Texture 
Input Block (Instruction) 
Output Block (Instruction) 
Copy Block (Instruction) 
Transform Block (Instruction) 

15 14 13 12 11 10 9 876 5 4 3 2 

o 0 o o o 0 I 0 o o o 
XldX 

Y/dY 

07785A 14·44 

Set Block Size Format 

14-65 

o 

(SIZE) 



Set Character Font Base 
(Display Control) 

Set Character Font Base specifies the base 
addresses of the two character fonts and the 
address to be used for carriage return operations. 
It also sets three miscellaneous flags that control 
how the String instruction works. 

Six parameters are required by Set Character Font 
Base: 

FP is a 2-bit field that indicates which bit plane con­
tains the font when the String instruction specifies 
that it. the font, is to be treated as a single plane. 
For a multiple-plane font, FP indicates from which 
plane the attribute words are to be fetched. 

CS is a 1-bit field that controls the cell scale. This 
modifies the interpretation of the Hand S fields in 
attribute words as discussed in Chapter 10, Sec­
tion 10.3. The table is not repeated here. 

RC is a 1-bit field that specifies which of the 
components of the return address will actually be 
kept. If RC=O, the X component will be kept; if 
RC=1, the Y component will be kept. This infor­
mation is used for the carriage return character; 
see Chapter 10, Section 10.5. 

RETURN is specified using a standard operand 
address pair. This specifies either the X or Y 
address to be used for the Carriage Return 
character; see Chapter 10, Section 10.5. If relative 
addressing is used, RETURN is calculated relative 
to the Current Pen Position. This MUST be a 

complete standard operand address pair even 
though it will not all be used. 

FPOx and FPOy specify the address of the attribute 
word for character 000 of font O. These are each 8-
bit fields; they are multiplied by 16 to form 12-bit 
absolute addresses. Consequently, both 
addresses will have Os as the four LSBs. 

FP1x and FP1y specify the address of the attribute 
word for character 000 of font 1. These are each 8-
bit fields; they are multiplied by 16 to form 12-bit 
absolute addresses. As a result, both addresses 
will have Os as the four LSBs. 

CPP is not affected by this instruction. 

PERFORMANCE 

Set Character Font Base requires 136 SYSCLK 
cycles. 

EXAMPLES 

See Chapter 10, Section 6. 

CROSS-REFERENCES 

Chapter 10: String Operations 
String (Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

FP cs I RC I 0 0 0 0 o I 1 1 0 0 0 1 1 

AM XldX (RETURN) 

0 0 Y/dY 

FPOx I FPOy 

FP1x I FP1y 

07785A 14·45 

Set Character Font Base Format 

14-66 



Set Character Font Base Current 
(Display Control) 

Set Character Font Base Current specifies the 
base addresses of the two character fonts and the 
address to be used for carriage return operations. 
It also sets three miscellaneous flags that affect 
how the String instruction works. The Current Pen 
Position is used for the return address. 

Five parameters are required by Set Character 
Font Base Current: 

FP is a 2-bit field that indicates which bit plane 
contains the font if it is a Single-plane font (which in 
tum is specified in the String instruction). If the 
font is a multiple-plane font, FP indicates from 
which plane the attribute words are to be fetched. 

CS is a 1-bit field that controls the cell scale. This 
modifies the interpretation of the Hand S fields of 
attribute words as discussed in Chapter 10, 
Section 10.3. The table is not repeated here. 

RC is a 1-bit field that specifies which of the 
components of the return address will actually be 
kept. If RC=O, the X component will be kept; if 
RC=1, the Y component will be kept. This 
information is used for the carriage return 
operation; see Chapter 10, Section 10.5. CPP is 
taken to be the return address. 

FPOx and FPOy specify the address of the attribute 
word for character 000 of font O. These are each 8-

bit fields; they are multiplied by 16 to form 12-bit 
absolute addresses. Therefore, both addresses 
will have Os as the four LSBs. 

FP1x and FP1y specify the address of the attribute 
word for character 000 of font 1. These are each 8-
bit fields; they are multiplied by 16 to form 12-bit 
absolute addresses. Hence, both addresses will 
have Os as the four LSBs. 

CPP is not affected by this instruction. 

PERFORMANCE 

Set Character Font Base Current requires 86 
SYSCLK cycles. 

EXAMPLES 

See Chapter 10, Section 6. 

CROSS-REFERENCES 

Chapter 10: String Operations 
String (Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

FP I cs I RC I 0 0 0 0 010 1 0 0 0 1 1 

FPOx I FPOy 

FP1x I FP1y 

onS5A 14·46 
Set Character Font Base Current Format 



Set Clipping Boundary 
(Display Control) 

Set Clipping Boundary establishes the clipping 
window., If clipping is enabled, then drawing 
instructions will perform writes only inside the 
clipping window. The window is rectangular and is 
defined by two opposite comers. The pixels that 
lie on the boundary are considered to be within the 
clipping window. Clipping may also be enabled or 
disabled with this instruction. 

Three parameters are required by Set Clipping 
Boundary: 

CE may be used to enable or disable clipping. If 
CE is a 1, clipping will be enabled. If CE is a 0, 
clipping will be disabled. 

BEGIN is specified using a standard operand 
address pair. Any addressing mode may be 
specified. If relative addressing is used, BEGIN will 
be calculated with respect to the Current Pen 
Position. The relative values of BEGIN and END 
are important; BEGIN must be the upper-left corner 
of the window. 

END is specified using a standard operand 
address pair. Any addressing mode may be 
specified. If relative addressing is used, END will 
be calculated with respect to BEGIN. The relative 
values of BEGIN and END are important; END must 
be the lower-right corner of the window. 

CPP is changed to BEGIN. 

PERFORMANCE 

Set Clipping Boundary requires 146 SYSCLK 
cycles. 

EXAMPLES 

This example sets the clipping boundaries to 
500,500 and 1000,1000. Absolute addressing is 
used. The CE bit is set so that clipping is enabled. 

00E4 
01F4 *Begin 
01F4 
03E8 *End 
03E8 

This example (incorrectly) sets the Clipping 
boundaries to 1000,1000 and 500,500. In this 
example, the Am95C60 will treat all of display 
memory as being OUTSIDE the clipping window. 
The CE bit is set so that clipping is enabled. 

00E4 
03E8 
03E8 
01F4 
01F4 

*Begin (is bigger than End) 

*End 

CROSS-REFERENCES 

Chapter 7: Clipping and Picking 
Control Clipping (Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 0 o I CE I 1 1 0 0 1 0 0 

AM XldX (BEGIN) 

0 0 Y/dY 

AM XldX (END) 

0 0 Y/dY 

07785A 14-47 
Set Clipping Boundary Format 

14-68 



Set Clipping Boundary Current 
(Display Control) 

Set Clipping Boundary Current establishes the 
clipping window. If clipping is enabled, then draw­
ing instructions will perform writes only inside the 
clipping window. The window is rectangular and is 
defined by two opposite corners. The pixels that 
lie on the boundary are considered to be within the 
clipping window. The upper-left corner of the 
clipping window is CPP. 

Two parameters are required: 

CE may be used to enable or disable clipping. If 
CE is a 1, clipping will be enabled. If CE is a 0, 
clipping will be disabled. 

END is specified using a standard operand ad­
dress pair. Any addressing mode may be speci­
fied. If relative addressing is used, END will be 
calculated with respect to CPP. The relative values 
of CPP and END are important; END must be the 
lower-right corner of the window. 

CPP is unchanged by this instruction. 

PERFORMANCE 

Set Clipping Boundary Current requires 96 
SYSCLK cycles. 

EXAMPLE 

This example sets the clipping boundaries to Cur­
rent Pen Position and CPP +10,10. Relative ad­
dressing mode is used. 

00A4 
800A 
3FF6 

*Opcode for current 
*End 

CROSS-REFERENCES 

Chapter 7: Clipping and Picking 
Control Clipping (Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 0 o I CE I 0 1 0 0 1 0 0 

AM I XldX (END) 

0 o I Y/dY 

on85A 14-48 
Set Clipping Boundary Current Format 



Set Color Bits 
(Display Control) 

Set Color Bits indicates-by bit plane-whether a 
1 or a 0 is to be written. This instruction can be 
directed to up to four Am95C60s at once. 

Two parameters are required: 

PPRH is a 4-bit integer that selects a group of four 
Am95C60s in a multiple-Am95C60 system. Each 
Am95C60 will have had specified to it its CPOM 
position. 

BITS is a 16-bit binary field that contains drawing 
color bits for up to four each Am95C60s. This is 
broken into four subfields, one for each of the four 
Am95C60s. Each of the four subfields contain 
one bit for each bit plane. The high order bit in the 
field controls bit plane 0; the low order bit in the 
field controls bit plane 3. 

CPP is unaffected by this instruction. 

PERFORMANCE 

Set Color Bits requires 112 SYSCLK cycles. 

EXAMPLES 

This example sets the· drawing color in a single­
Am95C60 system to all 1 s. The QPOM position of 
the Am95C60 must have been set to 000000 by a 
Set QPDM Position instruction. 

0020 
XXXF *12 don't care bits 

15 14 13 12 11 10 9 8 

PPRH o 0 0 0 

Am95C603 Am95C60 2 

This example sets the drawing color in a four­
Am95C60 system as indicated in the following 
chart. The Am95C60s must previously have had 
their QPOM position numbers set to 000100, 

. 000101, 000110 and 000111 with Set QPDM 
Position instructions. 

Am95C60: Three Two One Zero 

Plane 3: 1 
Plane 2: 0 
Plane 1: 1 
Plane 0: 1 

1 
o 
1 
o 

o 
o 
1 
o 

1 
1 
o 
o 

1020 
0543 ·Color Bits 

CROSS-REFERENCES 

Chapter 8: Graphical Operations 
Chapter 13, Section 13.2 
Set CPOM Position (Instruction) 

COMMENTS 

This instruction determines the sense of the bits 
that are written into the bit planes (by plane). 
These bits are used in conjunction with the 
SOAXZ field to determine precisely what is to hap­
pen when a pixel is written into display memory. 

3 2 o 
000 0 

Am95C600 (BITS) 

07785A 14-49 

Set Color Bits Format 



Set Line Style 
(Display Control) 

Set Line Style specifies the lengths of the CROSS-REFERENCES 
elements for use in nonsolid lines, circles and arcs. 

Three parameters are required by Set Line Style: 

DASH specifies the length of the dash element. 
This field is a 12-bit positive integer. 

SPACE specifies the length of the space element. 
This field is a 12-bit positive integer. 

DOT specifies the length of the dot element. This 
field is a 12-bit positive integer. 

CPP is not affected by this instruction. 

PERFORMANCE 

Set Line Style requires 126 SYSCLK cycles. 

EXAMPLE 

This example sets the line style elements as 
follows: 

DASH is set to 10; 
SPACE is set to 5; 
DOT is set to 2. 

0025 *Opcode 
OOOA *Oash 
0005 *Space 
0002 *Oot 

Chapter 6: Line Texture 
Set Line Style Phase (Instruction) 

COMMENTS 

The INTEGERS are all multiplied by the X scale 
factor prior to being stored. If the X scale factor is 
zero the INTEGERS are stored as they appear in 
the instruction. 

If scaling is going to be used, it should be set prior 
to executing the Set Line Style instruction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

onS5A 14·50 

0 0 01 0 1 

INTEGER 

INTEGER 

INTEGER 

Set LIne Style Format 

0 0 1 0 1 

(DASH) 

(SPACE) 

(DOT) 



Set Line Style Phase 
(Drawing Control) 

Set Line Style Phase sets the Line Style State and 
the Line Style Counter. This allows lines and arcs 
to begin at arbitrary places in the line style. 

Three input parameters are required by Set Line 
Style Phase: 

LSS is a 2-bit field that specifies the Line Style 
State (which element is to be drawn next). 

LSS BEGINNING ELEMENT 

o 0 
o 1 
1 0 
1 1 

Space preceding a DASH 
DASH 
Space preceding a DOT 
DOT 

LSC specifies the Line Style Counter. This field is 
a 12-bit number that specifies the number of pixels 
remaining in the current element. 

CPP is unaffected by this instruction. 

PERFORMANCE 

This instruction requires 71 SYSCLK cycles. 

EXAMPLE 

This example sets the Line Style Phase to 2 and 
the Line Style Counter to 25. The next drawing 
instruction will begin with a space preceding a DOT 
with 25 pixels remaining. 

2026 
0019 

*LSS = 10 
* = 25 D 

CROSS-REFERENCES 

Chapter 6: Line Textures 
Set Line Style (Instruction) 

COMMENTS 

If the scaling factor is not set to zero, the integer is 
multiplied by the scale factor prior to being stored. 
If scaling is to be used, the scale factor should be 
set prior to executing Set Line Style Phase. 

If LSC is greater than the number of pixels, the line 
will be drawn entirely in the beginning element. 

If LSC is set to 0, a maximum length element will be 
drawn. 

15 14 13 12 11 10 9 876 5 4 3 2 o 
o o o 0 I 0 o o 

INTEGER (lSe) 

07785A 14·51 
Set Line Style Phase Format 

1.l1._7'J 



Set Listen Bits 
(System Control) 

Set Listen Bits indicates-by bit plane-whether 
or not the bit plane is to participate in color 
matches. This instruction can be directed to up to 
four Am95CSOs at once. 

Two parameters are required: 

PPRH is a 4-bit integer that selects a group of four 
Am95CSOs in a multiple-Am95CSO system. Each 
Am95CSO will have had specified to it its aPDM 
Position. 

BITS is a 1S-bit binary field that contains listen bits 
for up to four Am95CSOs. This is broken into four 
subfields, one for each of the four Am95CSOs. 
Each of the four subfields contain one bit for each 
bit plane. The high order bit in the field controls bit 

This example sets the listen bits in a four­
Am95CSO system as indicated in the following 
table. The aPDM position numbers must have 
been set to 000000, 000001, 000010, and 
000011 using Set aPDM Position instructions. 

Am95CSO:fhree Two One Zero 

Plane 3: 1 1 0 1 
Plane 2: 0 0 0 1 
Plane 1: 1 1 1 0 
Plane 0: 1 0 0 0 

0031 
D543 

plane 0; the low order bit in the field controls bit CROSS-REFERENCES 
plane 3. 

Chapter 13, Section 13.2 
CPP is unaffected by this instruction. Set aPDM Position (Instruction) 

Fill Bounded Region (Instruction) 

PERFORMANCE 

Set Listen Bits requires 112 SYSCLK cycles. 

EXAMPLES 

This example sets the listen bits in a single 
Am95CSO system to all Os. The aPDM position of 
the Am95CSO must have been set to 000000 by a 
Set aPDM Position instruction. 

0031 
XXXO *12 don't care bits 

15 14 13 12 11 10 9 8 

PPRH 0 0 0 0 

Am95C603 Am95C60 2 

onS5A 14-52 

COMMENTS 

The listen bits (one per bit plane) are used to 
indicate whether the contents of a bit plane are to 
be considered in operations involving color 
matching. Examples of such operations are Copy 
Block (with the M bit set) and Fill Bounded Region. 

If the listen bit for a plane is a 0, the sense of the 
pixel at a given location must match the search 
color in order for that plane to report a match. If the 
listen bit for a plane is a 1, that plane will always 
report a match. 

If a plane is not physically implemented, the listen 
bit must be a 1. 

3 2 1 0 

o 0 0 1 

Am95C600 (BITS) 

Set Listen Bits Format 

14-73 



Set Picking Region 
(Display Control) 

Set Picking Region establishes the picking region. 
If picking is enabled, any drawing instruction that 
would generate a write into this region will cause 
the Pick Detect (PCKD) bit in the status register to 
be set. The region is rectangular and is defined by 
two corners. The pixels that lie on the boundary 
are considered to be within the picking region. 

Three parameters are required: 

PE is used to enable or disable picking. If PE is a 
1, picking is enabled. If PE is a 0, picking is 
disabled. 

BEGIN is specified using a standard operand 
address pair. Any addressing mode may be used. 
If relative addressing is specified, BEGIN is calcu­
lated with respect to the Current Pen Position. 
BEGIN must specify the upper-left corner of the 
picking region. 

END. is specified using a standard operand ad­
dress pair. Any addressing mode may be used. If 
relative addressing is specified, END is calculated 
with respect to BEGIN. END must specify the 
lower-right corner of the picking region. 

CPP is set to BEGIN. 

PERFORMANCE 

Set Picking Region requires 138 SYSCLK cycles. 

EXAMPLES 

This example sets the picking region corners to 
500,500 and 1000,1000. Absolute addressing is 
used. 

00E8 
01F4 *Begin 
01F4 
03E8 *End 
03E8 

This example (incorrectly) sets the picking region 
corners to 1000,1000 and 500,500. In this 
example, the Am95C60 will treat all of display 
memory as being OUTSIDE the picking region. 

00E8 
03E8 *Begin (is bigger than End) 
03E8 
01F4 *End 
01F4 

CROSS-REFERENCES 

Chapter 7: Clipping and Picking 
Control Picking (Instruction) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 0 o I PE I 1 1 0 1 0 0 0 

AM XldX (BEGIN) 

0 0 Y/dY 

AM XldX (END) 

0 0 Y/dY 

07785A 14-53 

Set Picking Region Format 

14-74 



Set Picking Region Current 
(Display Control) 

Set Picking Region Current establishes the 
picking region. If picking is enabled, any drawing 
instruction that would generate a write into this 
region will cause the Pick Detect (PCKD) bit in the 
status register to be set. The region is rectangular 
and is defined by two corners. The pixels that lie 
on the boundary are considered to be within the 
picking region. 

Two parameters are required: 

PE is used to enable or disable picking. If PE is a 
1, picking is enabled. If PE is a 0, picking is 
disabled. 

END is specified using a standard operand 
address pair. Any addressing mode may be used. 
If relative addressing is specified, END is calculated 
with respect to CPP. END must specify the lower­
right corner of the picking region. The Current 
Pen Position is the upper-left corner. 

CPP is unchanged. 

15 14 13 12 11 10 9 8 7 

PERFORMANCE 

Set Picking Region Current requires 88 SYSCLK 
cycles. 

EXAMPLE 

This example sets the picking region to the 
Current Pen Position and CPP +10,10. Relative 
addressing is used. 

0028 
800A 
3FF6 

*Relative, 10 

CROSS-REFERENCES 

Chapter 7: Clipping and Picking 
Control Picking (Instruction) 

6 5 4 3 2 0 

I: AM: 
0 0 0 0 0 o I PE I 0 1 0 1 0 0 

o I XldX (END) 

Y/dY 

onS5A 14-54 
Set Picking Region Current Format 

1~-7F; 



Set QPOM Position 
(System Control) 

Set apOM Position is used to specify to an 
Am95C60 its position. This instruction must be 
issued to each Am95C60 indiyidually. 

Two parameters are required: 

PPR is a 6-bit integer that assigns the position of a 
particular Am95C60. This instruction limits the 
number of Am95C60s in a system to 64; this limits 
the number of planes in a system to 256. 

ME is a 1-bit field that enables or disables masked 
writes to VRAMs. A 1 enables masked writes; a 0 
disables masked writes. 

CPP is unaffected by Set apOM position. 

PERFORMANCE 

Set apOM Position requires 36 SYSCLK cycles. 

EXAMPLE 

This example sets the apOM position of an 
Am95C60 to 000000. 

0038 

CROSS-REFERENCES 

Set Activity Bits (Instruction) 
Set Color Bits (Instruction) 
Set Search Color (Instruction) 
Set Listen Bits (Instruction) 

COMMENTS 

Set apOM Position is used to condition a specific 
Am95C60 as to which bit-wise instructions it is to 
recognize and which bits it is to extract from bit­
wise instruction operands. 

The QPOM position is a 6-bit field that can be 
divided into two fields as shown below. 

The Am95C60 will execute the bit-wise instruc­
tions only if the PPRH bits match the group bits 
that the Am95C60 was programmed to during the 
Set QPOM Position instruction. If the bits do not 
match, the Am95C60 will ignore that bit-wise 
instruction. 

If the Am95C60 does recognize the PPRH bits, it 
will extract four bits from the operand according to 
the low order two bits of its QPOM position. The 
bits are indicated in the chart below. 

Position Bits Extracted 

o 0 
o 1 
1 0 
1 1 

3-0 
7-4 

11-8 
15-12 

This instruction unconditionally disables picking. 

Line and Line Current are the only instructions that 
take advantage of Masked Writes. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
I PPR I 0 o I ME I 0 1 o o o I 

15 14 13 12 11 10 07785A 14-55 

L POSITION WITHIN GROUP 

L--______ GROUP(PPRH) 
07785A 14·56 

Set QPOM Position Format 

1A_7~ 



Set Scale Factor 
(Drawing Control) 

Set Scale Factor specifies the X and Y scale factors 
that are used in absolute, viewport and relative 
addressing modes. If the scale factor for an axis is 
0, then scaling for that axis is inhibited. 

Four parameters are required: 

SFX is a 15-bit number that is used as the X scale 
factor. The high order bit must be zero. If the 
address is taken as an integer, 7FFF yields scaling 
of unity _2-15. 

SFY is a 15-bit number that is used as the Y scale 
factor. The high order bit must be zero. If the 
address is taken as an integer, 7FFF yields scaling 
of unity _2-15. 

EXAMPLES 

This example sets both scale factors to unity (no 
scaling is done). 

0029 
0000 
0000 

This example sets the X scale factor to 0.5 and the 
Y scale factor 0.75. These numbers assume the 
user thinks of the addresses as being integers. 

0029 
4000 
6000 

*1/2 
*1/2 + 1/4 

P indicates whether the PLD is present. A one This example sets the scale factors to 0.5 and sets 
indicates it is present; a zero indicates it is not the PLD to 22/16. 
present. 

PLD is optional. If it is present, it modifies the 
diagonal count for element lengths as discussed in 
Section 6.1.3. 

PERFORMANCE 

Set Scale Factor requires 57 SYSCLK cycles. 

00A9 
4000 
4000 
0016 

*PLD is present 
*.5 
*.5 
*22 decimal = 16 hex 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
Chapter 6: Line Styles 

COMMENTS 

Setting the scale factors differently will compen­
sate for nonsquare pixels except that circles will 
appear as ellipses. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 0 o 1 P 1 0 1 0 1 0 0 1 

o 1 SFX 

01 SFY 

0 0 0 o 1 PLD 

07785A 14-57 
Set Scale Factor Format 

14-77 



Set Search Color 
(Display Control) 

Set Search Color indicates-by bit plane-whether 
the search color is to be a 1 or a O. This instruction 
can be directed to up to four Am95C60s at once. 

Two parameters are required: 

PPRH is a 4-bit integer that selects a group of four 
Am95C60s in a multiple-Am95C60 system. Each 
Am95C60 will have had specified to it its QPDM 
position. 

BITS is. a 16-bit binary field that contains search 
color bits for up to four Am95C60s. This is broken 
into four subfields, one for each of the four 
Am95C60s. Each of the four subfields contain 
one bit for each bit plane. The high order bit in the 
field controls bit plane 0; the low order bit in the 
field controls bit plane 3. 

CPP is unaffected by this instruction. 

PERFORMANCE 

Set Search Color requires 112 SYSCLK cycles. 

EXAMPLES 

This example sets the search color bits in a single­
Am95C60 system to all 1 s. The QPDM position of 
the Am95C60 must have been set to 000000 by a 
Set aPDM Position instruction. 

0021 
XXXF *12 don't care bits 

15 14 13 12 11 10 9 8 

PPRH 0 0 0 0 

Am95C603 Am95C60 2 

This example sets the search color in a four­
Am95C60 system as indicated in the following 
chart. The aPDM positions must have been set to 
000100,000101,000110 and 000111 using Set 
aPDM Position instructions. 

Am95C60: Three Two One Zero 

Plane 3: 1 1 0 
Plane 2: 0 0 0 
Plane 1: 1 1 1 
Plane 0: 1 0 0 

1021 ·PPRH is 0001 
0543 

CROSS-REFERENCES 

Chapter 13, Section 13.2 
Set QPDM Position (Instruction) 
Fill Bounded Region (Instruction) 
Copy Block (Instruction) 

COMMENTS 

1 
1 
0 
0 

The search color is used for two purposes: 

One use of the search color is as the "boundary" in 
a Fill Bounded Region. 

Another use of the search color is as the color to 
search for in Copy Block (M bit). 

3 2 1 0 

o 0 0 1 

Am95C600 

07785A 14-58 
Set Search Color Format 

14-7R 



Set Stack Sou ndaries 
(System Control) 

Set Stack Boundaries is used to specify the upper 
and lower boundaries of the stack in display 
memory. The stack is stored in plane 0 of each 
Am95C60 (implying that bit plane 0 must be 
implemented) . 

Three parameters are required: 

X is the X coordinate of the stack. This is a 12-bit 
integer and the four low order bits are required to 
be Os (the stack is word aligned). 

VS is the lowest V address of the region set aside 
for the stack. This is a 12-bit integer. This is the 
top of the stack. 

VT is the highest V address of the region set aside 
for the stack. This is a 12-bit integer. This is the 
bottom of the stack. 

Cpp is unaffected by this instruction. 

PERFORMANCE 

Set Stack Boundaries requires 90 SVSCLK cycles. 

EXAMPLE 

This example sets the stack boundaries to 3FO, 0, 
3FC. 

0039 
03FO *X address 
o *VS 
03FC *VT 

CROSS-REFERENCES 

Chapter 13, Section 13.2 
Call (Instruction) 
Fill Bounded Region (Instruction) 
Fill Connected Region (Instruction) 
Jump (Instruction) 
Return (Instruction) 

COMMENTS 

The stack begins at VS and grows upward in 
memory. If the stack pointer passes VT, stack over­
flow has occurred. When elements are removed 
from the stack, the pointer moves toward VS. 
Stack underflow cannot occur. 

Stack is depicted in Figure 14-18. 

We recommend that the stack be as large as 
possible. This will minimize the likelihood of stack 
overflow. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0778SA 14·59 

0 01 0 1 1 1 

x I 0 

YS 

YT 

Set Stack Boundaries Format 

0 0 

0 0 

1 

0 X COORDINATE 

(STACKSTARl) 

(STACK TERMINATE) 



x 
t 

./ 
YS=O 

VT=MAX 

DISPLAYMEMORY ~ 

onS5A 14-60 
Figure 14·18 Set Stack Boundaries 



Set Viewport Location 
(Display Control) 

EXAMPLE Set Viewport Location is used to specify the loca­
tion in display memory to be treated as the base for 
viewport addressing. This example places the viewport base at 500,500. 

Absolute addressing mode is used. 
One parameter is required: 

BASE is specified using a standard operand ad­
dress pair. BASE specifies the base address for 
viewport addressing. Any addressing mode may 
be specified. If relative addressing is used, BASE 
is calculated with respect to the Current Pen 
Position. 

0067 
01F4 *Begin 
01F4 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 
CPP is left at BASE 

PERFORMANCE 

Set Viewport Location requires 85 SYSCLK 
cycles. 

15 14 13 12 11 10 9 876 
000 o o o 0 I 1 

XldX 

Y/dY 

on85A 14-61 

5 4 

o 

Set Viewport Location Format 

14-81 

3 2 o 
o 

(BASE) 



Set Viewport Location Current 
(Display Control) 

Set Viewport Location Current is used to specify EXAMPLE 
the location in display to be treated as the base 
address for viewport address calculations. This example programs the viewport base to the 

Current Pen Position. 
No parameters are required. 

0027 
CPP is not changed by this instruction. 

CROSS-REFERENCES 
PERFORMANCE 

Chapter 5: Addressing Modes and Scaling 
Set Viewport Location Current requires 35 
SYSCLK cycles. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

100000000010 00 11 

Set Viewport LocatIon Current Format 

14-82 

07785A 14-53 



Signal 
(System Control) 

Signal may be used to indicate when a particular PERFORMANCE 
point in the instruction stream has been reached. 
It is also used in conjunction with picking. SIGNAL requires 120 SYSCLK cycles. 

Two parameters are required: 

VALUE is a 8-bit integer that identifies the Signal 
instruction. It is ignored by the Am95C60 but may 
be returned to the host. 

C is a 1 bit field that controls the exact operation of 
Signal. If C=1 or if Pick Enable is set, then the 
Signal instruction is written to the BOF and SWI is 
set. The Am95C60 pauses until a word is available 
in BIF. It removes and discards the word and 
continues with the next instruction. If C=O and 
Pick Enable is not set, Signal is an effective NOP. 

CPP is unaffected by the execution of Signal. 

EXAMPLE 

CROSS-REFERENCES 

Chapter 7: Clipping and Picking 
Output Current Pen Position (Instruction) 

COMMENTS 

The format of the word written to the BOF is shown 
in Figure 14-19. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I VALUE C 0 1 1 1 0 0 I 
onS5A 14-64 

Figure 14-19 Word Written by the Signal Instruction 

15 14 13 12 11 10 9 876 5 4 3 2 o 
I VALUE c I 0 1 1 0 o I 

onS5A 14-63 

Signal Format 

14-83 



Store Current Pen Position 
(System Control) 

PERFORMANCE: Store Current Pen Position causes the Am95C60 
to write the integer part of the Current Pen Posi­
tion into display memory. Store Current Pen Position requires 102 SYSCLK 

Cycles. 
A single parameter is required by this instruction: 

EXAMPLE 
LOCATION is specified with a standard operand 
address pair. LOCATION indicates the address at 
which tne CPP is to be written. If relative 
addressing is specified, LOCATION is calculated 
with respect to CPP. The low order four bits of the 
X address must evaluate to zeroes. 

This example stores the CPP at 256,256. 

CPP is unchanged by the execution of this 
instruction. 

0028 *Store CPP 
0100 *256,256 
0100 

COMMENT 

The fractional error is not stored. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I-_:_A_M_:-t-_O __ O __ O __ O __ 0 __ O_~_/:_~_1_0 ___ O __ 1_0 ___ 1~I (LOCATION) 

07785A 14·93 

Store Current Pen Position Format 

14-84 



Store Immediate 
(Display Control) 

EXAMPLE Store Immediate is used to store up to 128 words 
from the instruction stream into display memory. 
The words are stored beginning with the location 
specified in the instruction and increasing Y 
addresses. 

This example writes the values 0,1,2,3,4 
beginning at 400,500. In particular the following 
values are written into the indicated locations. 

Three parameters plus a variable length list are 
required: 

COUNT is a 7-bit field that specifies the number of 
words that follow in the instruction stream and are 
to be stored. The actual number of words is 
COUNT+1. 

Z indicates the planes into which the data will be 
stored. If Z=O, the data will be stored only into 
plane 0, regardless of the activity bits. If Z=1, the 
data will be stored into all planes whose activity bits 
are set. 

BEGIN is specified with a standard operand 
address pair. This specifies the address into which 
the first word will be stored. Any addressing mode 
may be .used. If relative addressing mode is used, 
BEGIN will be calculated with respect to the 
Current Pen Position. The low order four bits of 
the X address must resolve to Os. 

Current Pen Position in X is left at BEGIN. Current 

Value 

0000 
0001 
0002 
0003 
0004 

047B 
0190 
01F4 
0000 
0001 
0002 
0003 
0004 

CROSS-REFERENCES 

COMMENTS 

Pen Position in Y is left at the last word stored + 1. Clipping is ignored. 

PERFORMANCE 

Store Immediate requires 71 SYSCLK cycles plus 
39 SYSCLK cycles per word stored. 

Location 

400,500 
400,501 
400,502 
400,503 
400,504 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

o I COUNT I z I 1 1 1 1 0 1 1 

AM I XldX (BEGIN) 

0 o I Y/dY 

DATA WORD 1 

DATA WORD 2 

DATA WORD COUNT+1 

onS5A 14-65 

Store Immediate Format 

14-85 



Store Immediate Current 
(Display Control) ~ 

EXAMPLE Store Immediate Current is used to store up to 128 
words from the instruction stream into display 
memory. The words are stored beginning at the 
Current Pen Position and increasing Y addresses. 

Two parameters plus a variable length list be 
required: 

This example writes the values 0,1,2,3,4 
beginning at the Current Pen Position. In 
particular the following values are written into the 
indicated locations. 

Value Location 
COUNT is a 7-bit field that specifies the number of 
words that follow in the instruction stream and are 
to be stored. The actual number of words is 
COUNT+1. 

Z indicates the planes into which the data will be 
stored. If Z=O, the data will be stored only into 
plane 0, regardless of the activity bits. If Z=1, the 
data will be stored into all planes whose activity bits 
are set. 

Current Pen Position in X is unchanged. Current 
Pen Position in Y is left at the last word stored + 1. 

0000 
0001 
0002 
0003 
0004 

0438 
0000 
0001 
0002 
0003 
0004 

PERFORMANCE CROSS-REFERENCES 

Store Immediate Current requires 21 SYSCLK 
cycles plus 39 SYSCLK cycle per word stored. COMMENTS 

Clipping is ignored. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

o I COUNT I z I 0 o 
DATA WORD 1 

DATA WORD 2 

DATAWORDCOUNT+1 

Store Immediate Current Format 

14-86 

CPP 
cPP,CPP+1 
CPP,CPP+2 
CPP,CPP+3 
CPP,CPP+4 

o 

07785A 14-93 



String 
(Drawing Primitive) 

String is used to write text or other character­
oriented patterns into display memory. 

Six parameters are required by String: 

SP is a 1-bit field that is used to indicate whether 
the font is stored in one plane only or is stored on 
all planes. If SP is a 0, the font is assumed to be 
stored in all planes whose activity bits are set. The 
attribute words will be taken from the plane that 
was specified in the FP field of the Set Character 
Font Position instruction. If SP is a 1, the font is 
stored only in the plane that was specified in the 
FP field of the Set Character Font Position instruc­
tion. In this case, the character will be replicated 
into all planes whose activity bits are set. 

SI is a 1-bit field that is used to indicate whether the 
pattern words from the font area is to be inverted 
before being applied to the destination. 

M is a 1-bit field that determines whether matching 
is to take place. If M is a 1, only pixels that match 
the search color will be changed. 

SOAXZ is a 3-bit field that is used to indicate how 
the pattern words from the font area is to be 
applied to the destination. 

BEGIN is specified with a standard operand 
address pair. This is the location to which CPP will 
be set before the first character is processed. If 
relative addressing is specified, BEGIN will be 
calculated with respect to CPP. 

LIST is a variable-length string of 13-bit integer 
operands. Twelve of the bits are an index into one 
of the two fonts currently in use, and the 13th bit 

(the P bit) selects which of the two fonts to use. 
The C field, the leftmost bit of each entry in the 
LIST, is a continue bit. If it is set, the String instruc­
tion fetches another LIST entry. If it is a zero, the 
String instruction terminates after the entry has 
been processed. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup 100 
Per Character Setup 198 
Per Scan Line (One Word) 44 
Per Scan Line (Two Words) 74 
Per Scan Line (Three Words) 100 

EXAMPLE 

See the example in Chapter 10, Section 10.3. 

CROSS-REFERENCES 

Chapter 8: Graphics Operations 
Chapter 10: String Operations 
Set Character Font Base (Instruction) 

COMMENTS 

While the examples given in this manual assume 
that the characters are encoded according to ASCII 
77, the Am95C60 has no such restriction. 

Observe that the weighting of the Character Code 
bits is not monotonic with bit position. In particular, 
bit 12 has the weight 128, while bit 8 has the 
weight 256. The character code weighting is 
indicated under the character code in the format 
diagram. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

5P 151 Mlo o I 50AXZ I 0 I 1 0 0 0 1 0 0 

AM XldX (BEGIN) 

0 0 Y/dY 

C I 0 o I CHARACTER CODE I P I CHARACTER CODE 

C I 0 o I CHARACTER CODE I P I CHARACTER CODE 

07785A 14-67 

C I 0 0 I CHARACTER CODE I p CHARACTER CODE 

C7 C11 C10 C9 C8 P C6 C5 C4 C3 C2 C1 CO 

String Format 

14-87 



String Current 
(Drawing Primitive) 

String Current is used to write text or other 
character-oriented patterns into display memory. 
The text is written beginning at the Current Pen 
Position. 

Five parameters are required by String Current: 

SP is a 1-bit field that is used to indicate whether 
the font is stored in one plane only or is stored on 
all planes. If SP is a 0, the font is assumed to be 
stored in all planes whose activity bits are set. The 
attribute words will be taken from the plane that 
was specified in the FP field of the Set Character 
Font Position instruction. If SP is a 1, the font is 
stored only in the plane that was specified in the 
FP field of the Set Character Font Position 
instruction. In this case, the character will be 
replicated into all planes whose activity bits are set. 

SI is a 1-bit field that is used to indicate whether the 
pattern words from the font area is to be inverted 
before being applied to the destination. 

M is a 1-bit field that determines whether matching 
is to take place. If M is a 1, only pixels that match 
the search color will be changed. 

SOAXZ is a 3-bit field that is used to indicate how 
the pattern read from the font area is to be applied 
to the destination. 

LIST is a variable-length string of 13-bit integer 
operands. Twelve of the bits are an index into one 
of the two fonts currently in use, and the 13th bit 
(the P bit) selects which of the two fonts to use. 

The C field, the leftmost bit of each entry in the 
LIST, is a continue bit. If it is set, the String Current 
instruction fetches another LIST entry. If it is a 
zero, the String Current instruction terminates after 
the entry has bee processed. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup 50 
Per Character Setup 198 
Per Scan Line (One Word) 44 
Per Scan Line (Two Words) 74 
Per Scan Line (Three Words) 100 

EXAMPLES 

See the example in Chapter 10, Section 10.3. 

CROSS-REFERENCES 

Chapter 8: Graphic Operations 
Chapter 10: String Operations 
Set Character Font Base (Instruction) 

COMMENTS 

Observe that the weighting of the Character Code 
bits is not monotonic with bit position. In particular, 
bit 12 has the weight 128, while bit 8 has the 
weight 256. The character code weighting is 
indicated under the character code in the format 
diagram. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a 
SP SI 1M 0 o I SOAXZ 0 0 0 0 0 1 a a 
c 0 0 CHARACTER CODE P CHARACTER CODE 

C 0 0 CHARACTER CODE P CHARACTER CODE 

I c I 0 0 I CHARACTER CODE I P CHARACTER CODE 

C7 C11 C10 C9 C8 P C6 C5 C4 C3 C2 C1 CO 

07785A 14·68 

String Current Format 

14-88 



Transform Block 
(Block Manipulation) 

Transform Block is used to copy a rectangular 
block of data from one portion of display memory to 
another. Certain operations (rotate, zoom and 
mirror) can be performed on the image operand 
before it is stored into the destination operand 
area. The source image (after the operations) will 
be applied to the destination area under control of 
the SOAXZ field. The size of the source image 
prior to rotation and zooming will have been 
specified with Set Block Size. 

Six parameters are required: 

ROT is a 2-bit field that specifies whether the 
source operand is to be rotated before being 
stored. ROT is interpreted according to the 
following chart: 

ROT Rotation that is applied 

o 0 None 
o 1 90 degrees Counterclockwise 
1 0 180 degrees 
1 1 270 degrees Counterclockwise 

M I is a 1-bit field that indicates whether the source 
image is to be mirrored before being stored. A 0 
specifies the image is not to be mirrored; a 1 
specifies the operand is to be mirrored. The 
source image is mirrored vertically about the left 
edge. Mirroring takes place before rotation and 
zooming. 

SOAXZ is a 3-bit field that specifies how the image 
is to be applied to the current contents of the 
display memory. 

SOURCE is specified with a standard operand 
address pair. This operand specifies the upper-left 
corner of the source image. Any addressing mode 
may be used. If relative addressing is used, 
SOURCE is calculated with respect to the Current 
Pen Position. 

DESTINATION is specified with a standard 
operand address pair. This operand specifies the 
upper-left corner of the rectangular region into 
which the operand is to be stored. Any addressing 
mode may be specified. If relative addressing is 
specified, DESTINATION is calculated with respect 
to SOURCE. 

ZOOM is specified as two 16-bit unsigned 
integers, allowing a zoom factor of 1 to 65,536. X 
is the first word, Y is the second. A value of 1 
results in a zoom factor of 1. 

The CPP is left at the DESTINATION. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup 153 
Per Destination Pixel (Copy) 37 
Per Destination Pixel (Mirror) 37 
Per Destination Pixel (No Zoom) 37 
Per Destination Pixel (4x4 Zoom) 24 

EXAMPLE 

This example transforms a block at 500,500 and 
writes it into a block at 1000,1000. The source 
operand is rotated 90 degrees counterclockwise 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ROT MI I 0 o I SOAXZ I 0 I 1 0 1 1 1 1 0 

AM XldX (SOURCE) 

0 0 Y/dY 

AM XldX (DESTINATION) 

0 0 Y/dY 

ZOOMx 

ZOOMy 

07785A 14-69 
Transform Block Format 

14-89 



and is zoomed by a factor of 2 in the X dimension CROSS-REFERENCES 
and 3 in the Y dimension. 

405E 
01F4 
01F4 
03E8 
03E8 
0002 
0003 

*Rotated by 90 degrees 
*Source Operand 

*Destination Operand 

*ZOOOOOOOOOOOOOOOOM 

Chapter 5: Addressing Modes and Scaling 
Chapter 8: Graphical Operations 

TRANSFORM BLOCK EXAMPLE 

SOURCE '\.114~---11 --~·I 

T 
1 

• 

DESTINATION 
ADDRESS 

IXIX X 

IXIX 

xlxx x x Ixlx Ix x x x X 
XIX'X X x IXIX IX x x x X 

07785A 14-73 

14-90 



on85A 14-85 

on85A 14-86 

TRANSFORM BLOCK: ROTATION WITHOUT MIRRORING 

SOURCE 
ADDRESS 

ROT=10 

I 
.1- ROT=01 

~ 
~ ________ ~r~ ~h~ __ ~ 

DESTINATION --------,-K~ 
ADDRESS .-----r1~,(~~----___, 

L. .J 

ROT=11 --+ F...-- ROTdlO 
'---------1 

MIRROR=O 

TRANSFORM BLOCK: ROTATION WITH MIRRORING 

ROT=11 

I 
~ 

r 
[ l~ ROT=10 

ROMoll ] ~ ... - ROT=01 

f"I 

MIRROR=1 

14-91 



Transform Block Current 
(Block Manipulation) 

Transform Block Current is used to copy a 
rectangular block of data from one portion of 
display memory to another. Certain operations 
(rotate, zoom and mirror) can be performed on the 
source image before it is stored into the 
destination operand area. The source image (after 
the operations) will be applied to the destination 
area under control of the SOAXZ field. The size of 
the source image prior to rotation and zooming will 
have been specified with Set Block Size. 

Five parameters are required: 

ROT is a 2-bit field that specifies whether the 
source image is to be rotated before being stored. 
ROT is interpreted according to the following chart: 

ROT Rotation that is applied 

o 0 None 
o 1 90 degrees Counterclockwise 
1 0 180 degrees 
1 1 270 degrees Counterclockwise 

MI is a 1-bit field that indicates whether the source 
image is to be mirrored before being stored. A 0 
specifies the image is not to be mirrored; a 1 . 
specifies the operand is to be mirrored. The 
source image is mirrored vertically about the left 
edge. Mirroring takes place before rotation and 
zooming. 

SOAXZ is a 3-bit field that specifies how the image 
is to be applied to the current contents of the 
display memory. 

DESTINATION is specified with a standard 
operand address pair. This operand specifies the 
upper-left corner of the rectangular region into 
which the operand is to be stored. Any addressing 
mode may be specified. If relative addressing is 

specified, DESTINATION is calculated with respect 
to the Current Pen Position. 

ZOOM is specified as two 16-bit unsigned 
integers, allowing a zoom factor of 1 to 65,536. X 
is the first word, Y is the second. A value of 1 
results in a zoom factor of 1. 

The CPP is left at the DESTINATION. 

PERFORMANCE (in SYSCLK cycles) 

Instruction Setup 103 
Per Destination Pixel (Mirror) 37 
Per Destination Pixel (No Zoom) 37 
Per Destination Pixel (4x4 Zoom) 24 

EXAMPLE 

This example transforms a block at the Current Pen 
Position and writes it into a block at 1000,1000. 
The source image is rotated 90 degrees 
counterclockwise and is zoomed by a factor of 3 in 
the X dimension and 5 in the Y dimension. 

401 E *Rotated by 90 degrees 
03E8 *Destination Operand 
03E8 
0003 
0005 *ZOOOOOOOOOOOOOOOOOM 

CROSS-REFERENCES 

Chapter 5: Addressing Modes and Scaling 

COMMENTS 

See Transform Block. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ROT MI I 0 o I SOAXZ 101 0 0 1 1 1 1 0 

AM XldX (DESTINATION) 

0 0 Y/dY 

ZOOM x 

ZOOMy 

07785A 14-70 

Transform Block Current Format 

14-92 



Appendix A 

FURTHER READING 

This list of titles of books may be of interest to the 
user of this manual. 

Conrac Division/Conrac Corporation, Raster 
Graphics Handbood, 2nd Edition. New York: Van 
Nostrand Reinhold Company, 1985. ISBN 0-442-
21608-4 

Enderle, G., et ai, Computer Graphics 
Programming GKS. New York: Springer-Verlag, 
1984. ISNB 0-387-11525-0 

Foley, J. D., and A. Van Dam, Fundamentals of 
Interactive Computer Graphics. Menlo Park: 
Addison-Wesley, 1983. ISBN 0-201-14468-9 

Hopgood, F.R.A., et ai, Introduction to the 
Graphical Kernel System (GKS). London: 
Adademic Press, 1983. 0-12-355570-1 

A-1 

Newman, W. M., and R. F. Sproull, Principles of 
Interactive Computer Graphics, 2nd Edition. New 
York: McGraw-Hili, 1979. ISBN 0-07-046338-7 

Van Deusen, Edmund, Graphics Standards 
Handbook. Laguna Beach: CC Exchange, 1985. 
ISBN 0-939078-01-5 

ANSI X3.124-1985 
American National Standards Institute, Inc. 
1430 Broadway 
New York, NY 10018 

GAWAIN Document 

QASM Document 
AMD Order No. 08737B 
January 1987 

Am95C60 Data Sheet 
AMD Order No. 07013B 
April 1987 



Appendix B 

GLOSSARY 

The glossary comes in two parts. The first part is a second part is a list of words and how they are 
list of abbreviations and what they mean; the used in this manual. 

ABBREVIATIONS 

AA 
AM 
BIF 
BIS 
BOF 
BOS 
C 
CE 
CPP 
CRT 
CS 
D 
DAC 
E 
EP 
FIFO 
FP 
H 
I 
ICO 
LS 
LSB 
LSS 
M 
ME 

Anti-alias Anti-aliasing Anti-aliased 
Address Mode - 2-bit field 
Block Input FIFO 
Block Input Step - 2-bit field 
Block Output FIFO 
Block Output Step - 2-bit field 
Continuation - 1-bit field 
Clipping Enable - 1-bit field 
Current Pen Position 
Cathode Ray Tube 
Cell Scale - 1-bit field 
Direction (Char. Path) - 2-bit field 
Digital-to-Analog Converter 
Enable Logical PEL - 1-bit field 
End-Point Option - 3-bit field 
First-In First-Out 
Font Plane - 2-bit field 
Height - 4-bit field 
Index Present - 1-bit field 
Inter-Character Space - 6-bit field 
Line Style - 2-bit field 
Least Significant Bit 
Line Style State - 2-bit field 
Match - 1-bit field 
Masked write Enable - 1-bit field 

MI 
MSB 
NOP 
PE 
PO 
PP 
PPR 
PPRH 
CPDM 

RC 
RD 
RGB 
ROT 
S 
SI 
SOAP 
SOAXZ 
SP 
VDAF 
VRAM 
XldX 
V/dV 
Z 

Mirror -1-bit field 
Most Significant Bit 
No OPeration 
Picking Enable - 1-bit field 
Positive - 1-bit field 
Program Plane - 2-bit field 
Plane Position Register - 6-bit field 
PlanePosition Reg HI - 4-bit field 
Quad Pixel Dataflow Manager 
(Am95C60) 
Return Code - 1-bit field 
Return Direction - 2-bit field 
Red Green Blue 
ROTation - 2-bit field 
Skip - 4-bit field 
Source Invert -1-bit field 
Standard Operand Address Pair 
SetOrAndXorZero - 3-bit field 
Single Plane - 1-bit field 
Video Data Assembly FIFO (Am8171) 
Video Random Access Memory 
XAddress or X Displacement field 
V Address or V Displacement field 
Block 110 in depth - 1-bit field 

TERMS 

Addressing Mode (AM) - One of the four possible 
ways an operand address pair may be translated. 

Back Porch - The portion of a composite video 
signal which occupies the time between the trailing 
edge of the sync pulse and the trailing edge of the 
corresponding blanking pulse. 

Black Level- The video signal level which causes 
zero beam intensity at the CRT. 

Blank Level- The video signal level which is more 
negative than black. The blank level is used in 
monitors with AC video signals to establish the 
proper DC levels. 

Blanking - The process of decreasing the video 
signal level so that the screen is blank outside the 
active region. 

Clipping - Not drawing parts of display elements 
that lie outside an area called the clipping region. 

Column - Vertical groupings of pixels. Orthogonal 
with rows. 

Current Pen Position (CPP) - An X,V coordinate 
pair which "remembers" the drawing position 
between instructions. The Current Pen Position is 
used with some instructions and some addressing 
modes. 



Display Element - A graphic element or primitive 
that can be used to construct a display image. 
Examples of display elements are lines, arcs and 
circles. 

Display Memory - The memory used to contain 
images. This memory is organized into an array 
with X and Y coordinates with the origin at the 
upper-left corner. In addition to the area which is 
reproduced on the screen, the display memory 
contains invisible portions. 

Display Surface - The portion of a graphics system 
upon which images actually appear. The term 
"screen" is used interchangeably. 

Field - One of two equal parts into which a display 
frame is divided in an interlaced system. 

Flicker - A perceivable periodic variation in the 
amount of light from the screen. Flicker is no 
longer perceived when the frequency of the 
variation exceeds a rate called the critical flicker 
frequency. 

Fractional Error (FE) - The fractional part resulting 
from the last address translation. This is added into 
the real number following scaling in some address 
modes. 

Frame - The total amount of information (as 
perceived by the viewer) presented on the screen. 
In an interlaced display, there are two fields (called 
even field and odd field) per frame. 

Front Porch - The portion of a composite video 
signal which occupies the time between the 
leading edge of a blanking pulse and the leading 
edge of the corresponding sync pulse. 

Horizontal Resolution - The number of address­
able locations in the X (horizontal) dimension. The 
Am95C60 can support display memories with up to 
4096 locations. The actual horizontal resolution in 
a real system is typically determined by the CRT 
monitor. 

Horizontal Frequency - The rate at which scan 
lines are written onto the CRT monitor. 

Image - A pattern written into display memory, 
typically for the purpose of being displayed on the 
screen. This word is often used in this book in the 
phrase "create the image". 

Interlaced Scanning- A raster-scanning process in 
which two fields (the odd field and the even field) 
are combined on the screen to form a single frame. 

B-2 

Line Style (LS) - The fashion in which a line or arc 
is drawn. Examples of line styles are solid, dashed, 
and dotted. 

Logical PEL - A multiplane "paint brush" which 
can be used for points, lines, arcs, and circles. 

Pan - To move the image on the screen 
horizontally. 

PEL - See Picture Element. 

Picture Element (PEL) - The smallest unit of 
display memory which can be individually 
controlled. Often called pixel or pel. 

Pixel- See Picture Element. 

Pixel Aspect Ratio - The ratio of width to height of 
pixels as they appear on the screen. By providing 
nonuniform numbers of rows and columns of 
pixels, it is possible to compensate for screen 
aspect ratios other than 1 :1. 

Raster Graphics - A graphics system in which a 
display image is made up of an array of pixels 
arranged in rows and columns. 

Row - Horizontal grouping of pixels. Orthogonal 
to columns. 

Scaling - Enlarging or reducing all or part of a 
display image by multiplying the coordinates of 
display elements by a constant value. 

Scroll- Moving an image vertically on the screen. 

Scan Lines - See Vertical Resolution. 

Screen - The portion of a graphics system upon 
which the image actually appears. 

Screen Aspect Ratio - The ratio of width to height 
of a display. Typical landscape CRTs have an 
aspect ratio of 4:3 while page CRTs have an aspect 
ratio of 3:4. 

Standard Operand Address Pair (SOAP) - Two 
words in the instruction stream which are translated 
into the absolute X-V address of an operand in 
display memory. 

Vertical Resolution - The number of pixels in the 
vertical direction. The Am95C60 can support verti­
cal resolutions of up to 4096 pixels. Typically, sys­
tem vertical resolution is determined by the CRT. 

Vertical Frequency - The rate at which fields (not 
necessarily frames) are written onto the screen. 



REVISION HISTORY 

The following is a list of the changes that were made to the Am95C60 QPDM (Rev. A) Technical Manual 
(#07785A) to produce the Rev. 8 version of the technical manual (#077858). This is not a formal delta 
document, but is rather a list of places where changes were made and the nature of the changes. 

Table of Contents 
The TOC was updated (mostly page number changes) to reflect the revised document. The format and 
outline of the document itself is unchanged except where necessary. 

Chapter 1 Introduction 
A block diagram of the QPDM was added. Table 1-1 (Display Memory Update Time) was completely revised 
to reflect the Rev. 8 timing. 

Chapter 2 Hardware Interface 
Table 2-1 (pinouts) was made somewhat easier to use and understand by making it correspond closer to the 
physical pinouts. The pin names and assignments have not changed. 

The device characteristics, timing diagrams, and A.C. Parameters were removed. The data sheet (#070138, 
April 87) contains this information. If you did not receive a copy of the data sheet with this manual and would 
like a copy, please contact Advanced Micro Devices. Please observe that some of the A.C. Parameters were 

I changed; both functionally and parametrically. 

Chapter 3 Host-Am95C60 Communications 
The description of RESET was changed. 

Chapter 4 Register Set 
The Mnemonics and Addresses were added to the pictorial representation of the registers in Section 4.7. 

Chapter 5 Addressing Modes and Scaling 
Material was added and changed in the definition of the scale factors. 
All references to scaling in the description of Absolute Addressing were removed. 

Chapter 6 Line Texture 
This chapter was completely rewritten. Line Styles and End Points are defined differently in Rev. 8. 

Chapter 7 Clipping and Picking 
No changes. 

Chapter 8 Graphical Operations 
The operation that was called Graphical ZERO is now called Logical ZERO. 
New material was added to Figures 8-1 and 8-2. 

The explanations of the SI and SP bits were rewritten. 

Chapter 9 Anti-aliasing 
New material was added to almost every diagram in this chapter. 
In addition, several examples of Comparator Anti-aliasing were added. 

Chapter 10 String Operations 
The chapter reflects the inverted sense of the high order bit of the LIST. 

Chapter 11 Windows 
No changes. 

Chapter 12 Display Memory Configurations 
Fixed a couple of typos. 

8-3 



Chapter 13 Miscellanea 
Some changes to Section 13.1. Added two new sections. 

Chapter 14 Instruction Set 
This chapter was revised to reflect the instructions that were modified as well as the new instructions: 

Arc Current: 
The instruction word is different. 
The operands are reordered. 
The definition of RADIUS was changed. 

Call: 
Added the I and PO fields (and capability). 
Added the index list. 

Circle Current: 
The instruction word is different. 
The definition of RADIUS was changed. 

Inquire: 
This is a new instruction. 

Jump: 
Added the I and PO fields (and capability). 

Line Current: 
The instruction word is different. 
Added the C field to the second operand pair. 

Point: 
The instruction word is different. 
Added the C field to the address. 

Point Current: 
The instruction word is different. 

Pop Current Pen Position: 
New instruction 

Push Current Pen Position: 
New instruction 

Set Line Style Phase: 
Removed X bit. 

Set Scale Factor: 
Added fourth word and P bit. 

Signal: 
Changed Description. 

Store Current Pen Position: 
New instruction 

String Current: 
Changed Sense of continue bit. 

8-4 



Appendix A Further Reading 
Added a couple of AMD documents. 

Appendix B Glossary 
Minor changes and corrections. 

8-5 





Order No. 077858 

ADVANCED 
MICRO 

DEVICES, INC. 
901 Thompson Place 

p. 0. Box 3453 
Sunnyvale, 

California 94088 
(408) 732-2400 

TWX: 910-339-9280 
TELEX: 34-6306 

TOLL FREE 
(800) 538-8450 

IH-CP-10M-6/87-0 


