
Am79C401
Integrated Data Protocol Controller
Technical Manual

Advanced
Micro

Devices

Am79C401
Integrated Data Protocol Controller

Technical Manual

© 1988 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or
performance characteristics.

This technical manual neither states nor implies any warranty of any kind, including but not limited to implied warranties of
merchantability or fitness for a particular application. AMD assumes no responsiblity for the use of any circuitry other than
the circuitry embodied in an A~D product.

This information in this publication is believed to be accurate in all respects at the time of publication, but is subject to
change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any
consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for
the functioning of undescribed features or parameters.

901 Thompson Place, P. O. Box 3453; Sunnyvale, California 94088-3000
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION
INTRODUCTION TO THE Am79C401 IDPC

Data Link Controller .. .
USART
Dual-Port Memory Controller
Applications .. .

Terminal Adaptor
Embedded Communication Processor

CHAPTER2. HARDWARE

1-1
1-2
1-3
1-3
1-4
1-4
1-4

DATA LINK CONTROLLER .. 2-1
OVERVIEW ... 2-1

Overview Of Bit-Oriented Protocol Processing .. 2-1
General Terminology 2-1

TRANSMITTER ... 2-3
Transmitter Operation 2-3
Transmitter Block Description 2-6

FIFO .. 2-6
8-Bit Parallel-to-Serial Shift Register .. 2-7
CRC Generator .. 2-7
2-to-l Multiplexor 2-7
Zero-Bit Inertion Unit 2-7
Serial Bus Port 2-7

RECEIVER 2-8
Receiver Operation 2-8
Receiver Block Description .. 2-11

Serial Bus Port 2-11
Flag/Abort Detection Unit ... 2-11
Zero-Bit Deletion Unit ... 2-12
Short Frame Byte Counter .. 2-12
CRC Checker ... 2-12
Serial-to-Parallel Shift Register .. 2-12
Address Detection Unit ... 2-12
Receive FIFO ... 2-12

USART .. 2-13
OVERVIEW ... 2-13

Features .. 2-13
Interrupts ... 2-14
FIFOs .. 2-14
Special Character Recognition ... 2-14

OPERATIONAL MODES .. 2-14
Asynchronous Operation .. 2-14
Synchronous/Transparent Operation 2-14

USART FUNCTIONAL DESCRIPTION ... 2-14
Receiver .. 2-14

Receiver Enable ... 2-14
Shift Register ... 2-14
Receive FIFO ... 2-15
Special Character Recogniton .. 2-15
Parity ... 2-16
Frame Errors .. 2-16
Break Detection ... 2-16

Transmitter ... 2-17
Shift Register ... 2-17
Transmit FIFO .. 2-17
Frame Generation .. 2-17
Break Generation ... 2-17

Modem Control And Status Registers ... 2-17
Interrupt Cointroller 2-17
Data Clocks ... 2-17

Baud Rate Generator ... 2-17
Clock Selection .. 2-18

DUAL-PORT MEMORY CONTROLLER ... 2-18
MEMORY CYCLE ARBITRATION AND CONTROL ... 2-18

Operational Sequences .. 2-18
MemoryCycleTiming ... 2-19

Conflicting Request Resolution .. 2-19
INTERPROCESSOR INTERRUPTS .. 2-20

Operational Sequences 2-20
Interrupt Generation 2-20

CHAPTER 3. APPLICATIONS
HARDWARE INTERFACING .. 3-1

IDPC/80188lnterface .. 3-1
IDPC/68000 Interface .. 3-2
IDPC/DMA Interface .. 3-4
IDPC/ Am79C30A Interface .. 3-5

. DPMC/SRAM Interface 3-5
SYSTEM APPLICATIONS 3-5

HARDWARE SYSTEM ARCHITECTURE 3-5
Embedded Communication Controllers 3-6
Terminal Adaptors 3-8

ISDN SYSTEM ARCHITECTURE ... 3-8
B-Channel Protocols 3-8
Software Requirements For a Voice/Data PC Plug-In Board 3-8
Software Layers 3-10

Software running on the PC CPU: .. :................ 3-10
Software running on the Communications Co-Processor ... 3-10

Software Considerations .. 3-10
ISDN Software Glossary ... 3-11

SOFTWARE AVAILABLE FROM AMD ... 3-11
Am79LLD401 Low-Level Device Driver ... 3-11
AmLink LAPD/LAPB .. 3-12
AmLink3~ Layer 3 ... 3-13

CHAPTER 4. PROGRAMMING THE IOPC
DATA LINK CONTROLLER PROGRAMMING .. 4-1

Transmitter Programmable Features ... 4-1
Receiver Programmable Features .. 4-1
Transmit/Receive Programmable Features ... 4-2
DLC Register Map 4-2

DLC PROGRAMMABLE OPERATIONS ... 4-2
Address Recognition•.... 4-2
DMA Operation .. 4-3
Non-DMA Operation 4-4
Receive Packet Status Stacking Mechanism 4-4
Receive Packet Status Processing 4-4
Packet Transmission Sequence .. 4-5

DLC OPERATIONAL SEQUENCES ... 4-5
Link Initialization 4-6
Transmit Packet(s) 4-8
Receive Packet-Normal.... 4-9
Receive Packet-Exception 4-9

USART PROGRAMMING ... 4-10
USARTPROGRAMMABLE FEATURES ... 4-10

General USART Features ... 4-10
USART Register Map ... 4-11

USART PROGRAMMABLE OPERATIONS ... 4-11
Baud Rate Generation ... 4-11
Clocking Options .. 4-12
Special Character Recognition ... 4-12
Modem Handshake Signals .. 4-12
Receive FIFO Operation .. 4-12

USART OPERATIONAL SEQUENCES .. 4-12
Initialization ... 4-14
Transmit Character(s)-Initiate USARTTransmission .. 4-14
Transmit Character(s)-Transmit Threshold Reached Interrupt .. 4-15
Service Routine ... 4-15
Receive Character(s)-Receive FIFO Threshold Reached .. 4-15
Receive Character(s)-Special Character Received .. 4-15
Receive Character(s)-Parity Error ... 4-16
Receive Character(s)-Break Received .. 4-16
Receive Character(s)-Framing Error ... 4-16
Receive Character(s)-Overrun Error ... 4-17

ii

DPMC-INTERPROCESSOR INTERRUPT PROGRAMMING .. 4-17
DPMC/INTERPROCESSOR INTERRUPT PROGRAMMABLE FEATURES .. 4-17

DPMC Register Map .. 4-17
DPMC/INTERPROCESSOR INTERRUPT PROGRAMMABLE OPERATIONS ... 4-17
DPMC/INTERPROCESSOR INTERRUPT PROGRAMMABLE SEQUENCES .. 4-18

Host CPU Interrupts Local 80188 4-18
Local 80188 Interrupts Host CPU .. 4-18

CHAPTER 5. Am79LLD401 LOW-LEVEL DEVICE DRIVER
DISTINCTIVE CHARACTERISTICS ... 5-1
GENERAL DESCRIPTION ... 5-1

PURPOSE ... 5-1
SYSTEM REQUIREMENTS ... 5-1
ARCHITECTURE ... 5-2
TARGET ENVIRONMENT .. 5-2
DEVELOPMENT ENVIRONMENT 5-2

FUNCTIONAL DESCRIPTION .. 5-2
POR Configuration and Initialization 5-2

Address of the IDPC DLC Private Data RAM ... 5-3
Address of IDPC DLC LLD RAM Interface Block 5-3
Address of the LAYER 2 Interrupt Generator Routine 5-3
Address of the MANAGEMENT ENTITIY Interrupt Generator Routine ... 5-3
Address of IDPC DLC Device Hardware 5-3
Address of 80188/86 DMA Device Hardware 5-3
LAYER 2 to LLD Command Mailbox 5-3
LLD to LAYER 2 Event Mailbox 5-3
Management Entity to LLD Command Mailbox 5-3
LLD to Management Entity Event Mailbox 5-4
DLC Initialization Parameter Block ... 5-4

MAILBOX INTERFACES 5-4
Command/Event Code .. 5-4
Receipt Code 5-5
Parameters 5-5

COMMAND SEQUENCES 5-5
EVENT SEQUENCES .. 5-6
PROGRAMMING .. 5-7
PRIMITIVE:UP -.ADDFLRECOGNITION .. 5-9
PRIMITIVE:TRANSMIT ABORT ... 5-10
PRIMITIVE:LOAD_EVENLENABLES ... 5-10
PRIMITIVE:BEGIN_REMOTE-.LOOP .. 5-11
PRIMITIVE: END_REMOTE-.LOOP ... 5-11
PRIMITIVE:BEGIN_LOCAL.LOOP .. 5-11
PRIMITIVE:END_LOCAL.LOOP ... 5-12
PRIMITIVE:XMITDONE ... 5-12
PRIMITIVE:PACKET_RCVD .. 5-12
PRIMITIVE:ERROR STATUS ... 5-13
PRIMITIVE:IDPC DLC LLD Initialization ... 5-13
PRIMITIVE:BUFF _SERVICE ... 5-14

APPENDIX
CONNECTION DIAGRAM ... A-I
LOGIC SYMBOL ... A-I
PIN DESCRIPTION .. A-2
REGISTER DESCRIPTION .. A-4

Data Link Controller A-5
USART .. A-15
Dual-Port Memory Controller ... A-19

iii

Chapter 1

INTRODUCTION

The Am79C401 Technical Manual provides information to
the user concerning the operation and programming of the
major functional modules contained in the Am79C401
Integrated Data Protocol Controller (IDPC). This manual is
divided into five chapters plus an appendix.

Introductlon-This chapter provides an overview of the
IDPC, concentrating on how it fits into various system
architectures.

Hardware-The Hardware chapter covers the specifics
of each major functional block, emphasizing how each
block is controlled, and the operation and generation of
external interface signals.

Applications-This chapter provides detailed design
examples, concentrating on the IDPC's external inter­
faces.

Programming the IDPC-The Programming chapter
contains three sections. The first section introduces the
programmable features of the IDPC. The second section
provides a series of tutorials on system-level operation.
The final section provides detailed programming exam­
ples for the major functional blocks.

Low-Level Device Driver-This chapler contains the
Reference Guide for the Am79LLD401 Low-Level Device
Driver. This software interfaces the IDPC to the AmLink"
LAPD/LAPB software package. The source code, with an
unlimited binary distribution license for both software
packages, may be purchased from AMD for a nominal
one-time fee.

Appendix-The Appendix contains pin definitions and
user accessible register descriptions for the Am79C401
IDPC.

INTRODUCTION TO THE Am79C401 IDPC

When designing equipment for packet data networks,
designers are concerned with performance, flexibility and
cost. The Am79C401 Integrated Data Protocol Controller
(IDPC) from Advanced Micro Devices addresses these
three concerns by integrating three key building blocks
into a single integrated circuit. As shown in Figure 1-1, the
Am79C401 IDPC consists of three major blocks: the Data
Link Controller (DLC), the Universal Synchronous/Asyn­
chronous ReceiveriTransmitter (USART), and the Dual­
Port Memory Controller (DPMC). The DLC is the heart of
the Am79C401 IDPC, responsible for processing bit

,...-----------------_ DRaI

.------------------------------+ DRao

ADDRESS
DATA

i:S
~
WR"
CLK

DACK

ADDR
DATA
CTRL
CLK

1lO---Hf----+-+--Hf----+I
RESET ----++------I--++-t----+I

,....--------------------------+ DLCINT

DATA UNK CONTROLLER (DLe)

BAUD RATE GENERATOR

SERIAL
BUS

PORT
/IF

USART
/IF

SBIN
SCLK
SFSlXMITCLK
SBOUT

USARTINT
USARTCLK
RxCLK
RxD
TxD
m'S
CTS
DTR
iiSR

L-________ ~~~~ ______ ~====!:::~~-BDCLKOUT
mEa

LOT-If
tRDY

LlNTOUT
LPORTCTRL

RAMCTRL

DUAL-PORT
MEMORY CONTROLLER

(DPMC)

HREQ
HDT-R
HRDY
HINTOUT
HINTIN
HINTACK
HPORTCTRL

Figure 1-1. IDPC Block Diagram

1-1 AmLink is a trade mark of Advanced Micro Devices, Inc.

oriented protocols such as the HDLC and its derivatives
SDLC, LAPB, and LAPD. The USART block is a super-set
of the industry standard 8250 UART. The USART is useful
in building terminal adaptor devices that connect existing
terminals to Bit-Oriented Protocol based networks such as
X.25, ISDN, and SNA. The Dual-Port Memory Controller
(DPMC) provides the circuitry required to convert inexpen­
sive static RAM into dual-port memory. Dual-port memory
is required whenever the communications processor
shares the system bus with a host processor. The dual­
port memory allows messages and data to be passed
between the two processors. An example of this type of
application is an X.25 network interface, installed in a per­
sonal computer. By integrating these basic building blocks
into a single integrated circuit, the cost of building data
communications products is significantly reduced.

Data Link Controller

Designers of data communication equipment supporting
bit-oriented protocols such as HDLC, SDLC, LAPB, and
LAPD have had to choose between performance and flexi­
bility. The protocol controller integrated circuits currently
on the market offer either performance or flexibility, but not
both. The reason for this is that in order for one protocol
controller IC to have the flexibility to handle all of the vari­
ous protocols, the higher layers of the protocols must be
handled by software running on an associated micropro­
cessor. Handling part of the protocol processing in
software can substantially degrade performance, as mea­
sured by over-all throughput. In an attempt to increase per­
formance, some IC manufacturers have designed IC's that
are dedicated to one specific protocol, performing most, if
not all, of the protocol processing in hardware. While this
improves throughput, the flexibility to handle multiple
protocols, or even slight variations in the target protocol, is
sacrificed. In the development of the Am79C401 IDPC,
Advanced Micro Devices has taken a different approach to
the problem. Three key elements of this approach are the
careful partitioning of the tasks to be performed in
hardware versus software, separating the movement of
data from the processing of packets, and the optimization
of the hardware/software interface.

The Hardware/Software Boundary-Careful consid­
eration is required in determining which of the bit-oriented
protocol functions to perform in hardware versus software.
Many of the functions, such as flag and abort detection,
zero bit insertion, and CRC generation and checking, are
best performed in hardware. Other functions are best left
to the software, including: sequence number checking,
transmission of acknowledgment packets, and re-trans­
mission of non-acknowledged packets. There are two
reasons for handling these functions in software: 1) each
of the various protocols handles these functions in a
slightly different manner, and 2) the amount of hardware
required increases prohibitively as the window size
increases. (Window size refers to the number of packets
one transmitter can send out b,efore an acknowledgment
is received regarding the first packet sent. For example, if
the window size is four, the transmitter can send four pack­
ets, then it must stop transmitting until an acknowledg­
ment is received for the first packet. This requires the
transmitter to provide hardware to store a history of all out­
standing packets-an expensive proposition considering
window sizes of eight or more are not uncommon.) Most
protocol controlle(s that are designed to process multiple

1-2

protocols divide the above mentioned tasks between
hardware and software in a similar fashion. The DLC in the
Am79C401 IDPC pro\,lides hardware support for several
additional functions that are often delegated to software.
Two examples of these are: minimum packet size check­
ing and maximum packet size checking. By handling
these tasks in hardware, the software does not need to
perform a bounds check every time a new byte of data is
received. Aside from the obvious advantage of reduced
software overhead, this also allows the software to be par­
titioned into two separate functions: data movement, and
packet processing. As you will see later, this is the key to
providing high performance, while retaining the flexibility
to handle multiple protocols.

Separating Data Movement From Packet Proces­
sing-The key factor in determining overall throughput is
the rate at which packets can be processed. For reasons
of flexibility, this processing takes place in software (dedi­
cated hardware is faster, but expensive and inflexible). In
the International Standards Organization's Open Systems
Interconnection (ISO-OSI) seven layer model, the bit­
oriented protocol resides at layer 2. Layer 2 is given
unpacketed data from layer 3, which it packets and trans­
mits, via layer 1. On the receive side, packets are
received, verified, then returned to a non-paCket format,
and passed up to layer 3. While this is an over simplified
view of a fairly complex process, it does point out a key
fact: the layer 2 software deals with packets, not the move­
ment of individual bytes of data. If the software can be par­
titioned such that it deals only with completely received
packets of data, not ,bits and pieces of packets, the time
spent processing the packet can be substantially reduced.

The DLC in the IDPC has been designed to completely
separate the software involved in data movement from the
software responsible for packet processing. One piece of
software is responsible for the movement of data, often via
DMA, while a separate software module processes the
status information regarding complete packets. In the
IDPC, a special status reporting mechanism has been
designed that stores the status information concerning a
packet, and reports it to the packet processing software
after the entire packet has been received, moved through
the 32 byte receive FIFO, and stored in an off-chip buffer.
Up until the time that an entire packet has been received,
moved from the receiVe FIFO, and placed in buffer mem­
ory, the packet processing software is uninvolved. In fact,
the DLC does not notify the software about the packet until
the last byte of the received packet has been placed in off­
chip memory. At this time, the DLC notifies the software
that a packet has been received, and provides the appro­
priate status information concerning the packet. In this
manner, the packet processing software is presented with
a complete packet of data and status information pertain­
ing to that packet at the same time. If the status informa­
tion indicates that the packet has been received without
errors, it is acknowledged, and the data are passed to the
user. If the packet contained errors, or was aborted, all
that is required is to re-assign the buffer location in mem­
ory. The DLC can store status information for up to four
previously received packets before the microprocessor
has to read the status from the first packet. This greatly
increases the maximum allowed interrupt latency.

Optimization Of The Hardware/Software Interface­
The percentage of the processor's time that must be spent
interfacing to the DLC is critical to performance. Three

major factors affect this overhead: time spent identifying
which register contains the pertinent information, time
spent accessing that register, and time spent locating the
desired information within the register. The time required
to identify the register containing the condition that
caused the interrupt is based on the efficiency of the inter­
rupt reporting structure. In the OLC, the source of an inter­
rupt is reported via the Interrupt Source Register. This
register contains bits that directly point to status registers
that can generate interrupts. Additionally, the actual status
information for the two most common interrupt generating
events is reported directly in the interrupt source register.
These two conditions, which comprise 95% of all inter­
rupts, are the valid packet received and valid packet trans­
mitted indicators. Once the source of an interrupt has
been identified, the appropriate status register must be
read. The time required to read the register can be cut in
half if the register is directly mapped into the processor's
address space, as opposed to indirectly accessed via a
pointer register. In the OLC, all registers are directly mem­
ory mapped. The third factor contributing to the efficiency
of the software interface is the time required to find infor­
mation once a register has been read. The key to reducing
this time is to organize the individual registers such that
the most often required information is in either the least
significant or most significant bit locations. Once a status
register is read, the software typically performs a test,
shift, test routine until it finds a bit that is set. The time
spent finding the set bit depends on the number of shift!
tests required. If the most frequent conditions are indi­
cated by bits closest to one end of the register, the perfor­
mance can be more than doubled.

Both flexibility and performance are attained by optimizing
the partition between software and hardware, separating
the movement of data from the processing of packet
status, and optimizing the interface between software and
hardware resident status registers.

USART

The function served by the USART depends on the appli­
cation of the IOPC. If the IOPC is embedded in a terminal
or host computer (such as a PC), the USART provides a
second serial channel, separate from the OLC. In terminal
adaptor applications, existing terminals that are not "net­
work-ready" are interfaced to networks such as SNA,
X.25, or ISON. In this case, the USART provides the con­
nection to the terminal, while the OLC provides the net­
work interface.

The USART is a super-set of the industry standard 8250
UART. The 8250 UART provides basic asynchronous RS-
232 serial data communication service including baud
rate generation, and is the standard UART used in the IBM
PC and its compatibles. The IOPC USART starts with this
base, and adds three features:

• Four-Byte Transmit and Receive FIFO Buffers­
The FIFOs increase software performance by reducing
the number of interrupts that must be serviced, and
increasing the time allowed to respond to an interrupt.

• Special Character Recognition-It is normal prac­
tice to embed control characters into the serial data
stream between a computer and a terminal or printer.
This requires the software to inspect each received
character to determine if it is a control character, result-

1-3

ing in substantial overhead. The special character rec­
ognition hardware in the USART performs this function
automatically, eliminating the software overhead. The
user can designate up to 128 separate characters as
being "special." Whenever a designated character is
received, a maskable interrupt is generated to notify the
user.

• SynchronouslTransparent Mode-In terminal adap­
tor applications, it is often desirable to place data onto
the network exactly as they are received from the termi­
nal, with all framing bits included. This is referred to as a
transparent channel. The USART synchronousltranspa­
rent mode provides this transparent channel by blindly
receiving data in eight bit portions. On every cycle of
the receive clock, a data bit is received into the USART,
including framing bits and idle bits. When eight bits
have been received, they are loaded into the FIFO.
After several of these eight bit portions of data have
been received, they can be combined into a packet and
transmitted over a network via the OLC. On the other
side of the network, the receiving OLC processes the
packet and places the field containing the data into
memory. The USART on the receiving end can then re­
transmit the eight bit blocks of data, without the addition
of framing bits. The result is a data stream that is identi­
cal to that received by the original USART, allowing any
protocol to be transmitted over the network.

Dual-Port Memory Controller

When packet network hardware is built into a computer,
such as a card installed in a PC, it is desirable to use a
dedicated microprocessor to perform the communication
tasks. This reduces the overhead placed on the host sys­
tem's microprocessor by the communication functions.
Normally, layers 1, 2, and 3 of the ISO-OS I model will run
on the communication processor, while layers 4 and
above will be handled by the host processor.

With the software functions divided between two proces­
sors, a communication mechanism is required that allows
commands and data to be passed back and forth. The
most straightforward vehicle is a shared memory inter­
face, with a means for each processor to alert the other. To
implement the shared memory, a section of each proces­
sor's memory must be common, and thus accessible by
both processors, for example a dual-port RAM. A means is
required to allow one processor to indicate to the other
that a message (command or data) is available. A system
of interprocessor interrupts provides this function. The
shared memory is divided into buffer spaces and a set of
mailboxes. The buffers are used to pass data to be trans­
mitted and data that have been received back and forth
between the host and the communications processor. The
mailboxes are used for passing commands and status.
When one processor has either a command or some
status information for the other processor, it is placed in
the appropriate mailbox. The sending processor then gen­
erates an interrupt to the other processor. The receiving
processor responds by reading the mailbox and clearing
the interrupt.

The IOPC's Oual-Port Memory Controller (OPMC) pro­
vides the support hardware to build a low-cost shared
memory interface. The OPMC's bus arbitration unit allows
low-cost static RAM to be used as dual-port memory.

Hardware is provided for implementation of the interpro­
cessor interrupt system.

The OPMC performs the memory bus access arbitration
between the communications and the host processors.
Each processor accesses the RAM as if it were the RAM's
sole owner transparent to software. The OPMC generates
the RAM cycle timing, and outputs the appropriate chip
select, output enable and write enable signals. In the
event of conflicting access requests, the OPMC holds off
one of the processors for one memory cycle time, by deac­
tivating that processor's Ready signal. The interconnec­
tion between the RAM, the host's system bus, and the
communication processor's address/data bus, is made via
the bus interface blocks, (see Figure 1-2). These blocks
consist of buffers and latches that control the flow of
addresses and data between the two processors' address
and data busses and the RAM. The OPMC generates the
control signals for the bus interface blocks.

The OPMC also provides hardware support for the inter­
processor Interrupt structure. The communications pro­
cessor can generate an interrupt to the host processor by
setting a bit in a register located in the IOPC. The setting
of this bit drives an IOPC pin (HINTOUT), which is con­
nected to an interrupt request line to the host processor.
The host processor can clear the interrupt request by puls­
ing a pin on the IOPC. The host can generate an interrupt
request to the communications processor by pulsing
another pin on the IOPC. The communications processor
clears this interrupt request by writing to a register in the
IOPC.

Applications

The IOPC provides the building blocks necessary to build
terminal adaptors and embedded communications proces­
sors. Additionally, the IOPC can be used in applications

LDCALBUS Am79C401
IDPC

LOCAL
II DPMC COMMUNI-

INTERRl!~ CATION

I I PROCESSOR REQUEST
4-'

! ..
LOCAL I- ADDRESS

BUS
INTERFACE

'--

requiring separate synchronous and asynchronous com­
munication channels. Whether the network is SNA, X.25,
ISON, or any other bit-oriented protocol based network,
two types of devices are needed: terminal adaptors that
allow non-network compatible equipment to be interfaced
to the network, and second, embedded communications
processors which integrate the network interface directly
into the computer or terminal.

Terminal Adaptor

The terminal adaptor is a self-contained device that allows
non-network equipped terminals, or computers, to be con­
nected to a network. Figure 1-3 shows the block diagram
of a terminal adaptor, including: a transceiver, providing
the physical layer 1 connection to the network; an HOLC
protocol controller; a USART, providing the terminal inter­
face; and a microprocessor, with RAM and ROM, to pro­
cess both user data, and call control. The HOLC protocol
controller and the USART are provided by the Am79C401
IOPC. In this example, an 80188 microprocessor provides
the processing power.

Embedded Communication Processor

When the network interface is built into the computer or
terminal, the communication processor is connected
directly to the host's system bus. Figure1-4 shows the
block diagram of an embedded communication processor.
The OLC in the Am79C401 IOPC provides HOLC packet
protocol processing for the network. The Dual-Port Mem­
ory Controller supports a shared memory interface to the
host processor. In this example, the network software runs
on the 80188 microprocessor.

INTERRUPT ACKNOWlEDGE

INTERRUPT REQUEST

4 ,
1

HOST
BUS

INTERFACE

i

HOST
'-- PROCESSOR
r--

I- fir-I-

I
~

SRAM I
Figure 1·2. DPMC Memory System Interconnection

1-4

'R'

I
I M

i

Non- ! C
.... 1 ..

ISDN !
r

Terminal Am79C401 0

: IDPC P

I
r
0

i(;ddress Bus
C
e
s

1< r=> s
Data Bus 0

r

'S' 1! i

I 1< Data Bus

! ROM

Am79C32A ~ Add", .. Bus ~ IDC

~
V RAM

~ -v

Figure 1-3. ISDN Term Adaptor Application

Data 4 RS-232
Or ~NNSDLC

80188 V.35

Micro- Address Am79C401 Line

Processor IDPC Drivers

Local Bus Timing Host Bus
Control Control Control

Local • Data. Data Host
Bus Shared ~} HostBus Memory Address RAM Bus
IIF Address IIF

Figure 1-4. lYplcal SNA Application

1·5

Chapter 2

HARDWARE

DATA LINK CONTROLLER

OVERVIEW

The OLC portion of the IOPC has the task of providing a full­
duplex interface, simultaneous transmit and receive,
between the Serial Bus Port (SBP) and the internal parallel
bus of the IOPC. Through the use of a 32-byte receive
FIFO, a 16-byte transmit FIFO and optionally, two external
OMA channels, the OLC provides transparent movement of
data to and from external memory and the SBP. The OLC
performs low-level (ISO Layer 2-) bit oriented protocol pro­
cessing on this data. The major protocols supported are
SOLC, HOLC, LAPB (X.25), and LAPO. Figure 2-1 shows
the major functional blocks of the OLC in relation to the rest
of the IOPC. The OLC and FIFOs sit on the Main Internal
Bus. All programmable registers and the FIFO data regis­
ters can be accessed via the bus. These registers are map­
ped directly into the CPU's memory space.

The next section provides an overview of bit-oriented
protocols. It is recommended that the reader at least scan
over this section to insure a common vocabulary. Follow­
ing this overview, the OLC Transmitter and Receiver will
be discussed in detail. The FIFOs and Serial Bus Port will
also be discussed in the transmitter and receiver sections
since they share a common control structure.

Overview Of Bit-Oriented Protocol Processing

This discussion deals with the general characteristics of
Bit-Oriented Protocols (BOP) as well as identifying the
specific variations between the major BOPs that the OLC
is designed to handle. The major BOPs are SOLC, HOLC,
LAPB (X.25), and LAPO.

Bit-oriented protocols provide a set of rules and techniques
that facilitate the transfer of data over a communications
network. For the purposes of this discussion we will not be
concerned with the workings of the upper level of the proto-

cols-sequence numbers, acknowledges, and the like­
since these are the responsibility of the software that runs
on the local CPU. We will concentrate on the aspects of the
protocols that affect the hardware of the OLC.

The BOPs transmit data in chunks called packets. These
packets are delimited by unique flag characters and con­
tain an address, some control information, the data itself,
and an error detection code. The address identifies the
sender or the receiver of the data. The control information
is used by higher levels of the protocol to manage the flow
of data. The data, which are contained in the information
field, are user information. Packets that are used for proto­
col control often omit the information field; this is the only
optional field. The error detection code is a Cyclical
Redundancy Check (CRC). (The OLC uses the CCITT­
CRC code.) In addition to addresses, control, data, and
error checking, the BOPs employ such mechanisms as
flags, bit stuffing, and abort characters. The following sec­
tion is a glossary of BOP terms and functions. These items
will be used throughout the description of the OLC.

General Terminology

Frame-In the bit-oriented protocol environment, data
are transmitted in frames. Protocols such as SOLC,
HOLC, LAPB (X.25), and LAPO share the same basic
frame format, shown below.

OPENING FRAME CLOSING
FLAG ADDRESS CONTROL INFO CHECK FLAG

01111110 (lor2 (lor 2 (OPTIONAL) SEQUENCE 01111110
bytes) bytes) (16 bits)

Flag (General)-The eight-bit flag character is identical
for all of the above mentioned protocols. It is exactly

~ ________________________ ~OR~ OMA

M
i
c

ADDRESS r
0 OATA

P CS
r FO
0 IIIofl
c ciJ<
e OACK s
S PO
0 RESET
r

B
u
s

,..-------------... ORQO Controls

Data Unk Controller (OLC)

Figure 2-1. OLe Block Diagram

2-1

Serial
Bus
Port

IIF

SBIN
SCLK
SFS/MITCLK
SBOUT

OLC
L..... ___ ... OLCINT Interrupt

01111110. Its bit pattern is unique within a packet because
the zero-bit insertion technique used, described later,
does not allow six contiguous ONEs to be present In the
packet portion of a frame. The flag character can perform
three functions: opening flag, closing flag, and inter­
packet fill character.

Opening Flag-The opening flag is defined as the last,
perhaps only, flag prior to a non-flag, non-abort character.
(The abort character is defined below.) All valid packets
must begin with a flag. The opening flag indicates the
beginning of a packet. When flags are being used as inter­
frame fill characters, a non-flag, non-abort character must
be received before the preceding flag can be identified as
an opening flag.

Address-The principal difference between the lower
levels of the various BOPs is the address field. All addres­
ses are of an integer number of bytes in length. In general,
an address can be one, two, or N bytes long.

7 6 5 4 3 2 1 0
C/R· EA· BYTE 1
011 0

7 6 5 4 3 2 1 0
EA· BYTE 2
0

7 6 5 4 3 2 1 0
EA· BYTEN

1

• C/R, EA bits, described below, are not used In all BOPs (SOLC for
example). These bit positions are treated as normal address bits for
these protocols.

The length of an N byte long address is determined by the
value of the least significant bit in each byte of the
address. This bit, called the Extended Address (EA) bit,
identifies the last byte of the address. All of the bytes of an
N byte long address will have the EA bit cleared to a ZERO
except the last byte of the address. The presence of an EA
bit set to a ONE indicates that that byte is the last byte of
the address. The length of the Address field affects the
detection of a short frame (refer to short frame definition).

In some protocols the second bit (bit 1) of the first byte of
the address is used to indicate whether the frame is a
command or a response. This bit, called the Commandl
Response bit (C/R), can be either a ONE or a ZERO with­
out invalidating the address.

Control Field-The control field immediately follows the
address field. The OLC treats the control field as packet
data. That is, the OLC does not take any action in response
to the contents of the control field. The control field can be
either one or two bytes long. The length of the control field
has an impact on the detection of a short frame.

Information Field-When present, the Information field,
follows the control field and precedes the frame check
sequence. The information field contains the data that are
being transmitted between users. The information field
can be up to 64K bytes long (minus address and control
field lengths) in the IOPC.

Frame Check Sequence-The Frame Check Sequence
(FCS) is a 16-bit word that is produced by the CRC

2-2

generator and checked by the CRC checker. Mathemati­
cally, it is the ONEs complement of the sum [modulo 2] of
the following:

The remainder of

XK [X" + X14 + X" + ... + X2 + X + 1]

divided [modulo 2] by the generator polynomial

X'6 + X12 + X' + 1,

where K is the number of bits in the frame existing
between, but not including, the final bit of the opening flag
and the first bit of the FCS, excluding bits inserted for
transparency.

-ANO-

The remainder after multiplication by X'6 and then division
[modulo 2] by the generator polynomial

X'6 + X12 +X' + 1,

of the content of the frame, between but not including the
last bit of the opening flag and the first bit of the FCS,
excluding bits inserted for transparency.

Refer to CCITT Recommendation X.25, paragraph 2.2.7 .

Closing Flag-The closing flag is the last field in the
frame. It indicates the end of the frame and signals that
the FCS should be checked.

Packet-A packet is a frame minus the opening and clos­
ingflags.

Mark Idle-When frames are not being transmitted over
the link, the link is said to be Idle. When the link is idle, the
transmitter can be programmed to send an all ONEs pat­
tern (refer to the "OLC Programming" section in Chapter
4). This is referred to as a Mark Idle (MI) condition. Specifi­
cally, an MI is defined as being at least 15 contiguous
ONEs.

Flag Idle-Prior to and between frames, back to back
flags can be transmitted over the link. This is referred to as
a Flag Idle (FI) condition and is selected by program con­
trol (refer to the "OLC Programming" section in Chapter 4).

In-Frame-The OLC receiver is said to be in-frame when
the first non-flag, non-abort character is received after the
receipt of at least one flag. In-frame is valid until the clos­
ing flag is detected, an abort character is received or an
error is detected. The OLC transmitter is said to be in­
frame from the time that it starts to send an opening flag
until the last bit of the closing flag has been transmitted,
assuming that the transmitter is not commanded to send
an abort sequence.

Out-Of-Frame-The OLC receiver or transmitter is said
to be out-of-frame any time it is not in-frame.

Abort Character-Any pattern of at least seven contigu­
ous ONE bits is said to be an abort character. An abort

character is a physical entity, not to be confused with the
abort condition, which is an action. The abort condition,
simply called an abort, is described below. It is important
to note that there is a subtle difference between an abort
character and a mark idle condition. Back to back, abort
characters do not necessarily constitute a mark idle condi­
tion. A repeating pattern of seven ONEs followed by a
ZERO (011111110111111101111111 ...) is a series of abort
characters, but not a mark idle. The OLC sends at least
one "01111111" when commanded to send an abort.

Abort-The abort condition is an action that takes place
in response to the detection of an abort character while
the OLC receiver is in-frame. An abort causes the termina­
tion and discarding of the packet being received. Aborts
are asynchronous events in that they can be detected on
bit boundaries as well as byte boundaries.

lransparency (Zero-Bit Insertlon/Deletlon)-Zero-bit
insertion/deletion, often referred to as bit stuffing, is a
technique used to provide data transparency. By this we
mean a method by which packet data patterns are pre­
vented from appearing as flags, aborts, or mark idles
when they appear in the received data stream. Flags,
aborts, and the mark idle condition all consist of six or
more contiguous ONE bits. The bit stuffing technique
examines the contents of a packet to be transmitted, on a
bit by bit basis, from the first bit after the opening flag to
the last bit of the FCS, and inserts a ZERO in the bit
stream after any pattern of five contiguous ONEs, thus
insuring that six or more ONEs do not appear in the data
stream. The receiver, in turn, examines the data stream
and removes the inserted ZEROs that follow five contigu­
ous ONE bits. The implication of this is that flag, abort,
and mark idle generation and detection must take place
on the network side of the zero insertion and deletion
units.

Short Frame-The BOPs specify minimum lengths for
valid packets. This is usually four, five, or six bytes. Any
frame that is received with fewer than this legal minimum
number of bytes in its packet is called a short frame and is
considered an error which should be discarded.

Long Frame-On a theoretical basis, a frame can be any
length greater than the specified minimum. As a practical
matter, however, a maximum packet length must be set to
prevent buffer overrun. This length is dynamic and can
vary on a data call-by-data-call basis. Any received frame
whose packet exceeds this maximum length is referred to
as a long frame, and is considered an error. Note that the
detection of a long frame error takes place as soon as the
maximum legal number of bytes has been exceeded, not
when the entire frame has been received.

Non-Integer Number of Bytes Received-If a closing
flag is detected and a Non-Integer Number of Bytes has
been received, that is to say that the character preceding
the flag contained fewer than eight bits, a non-integer
number of bytes condition exists. Some protocols allow
this condition as a normal mode of operation-it is refer­
red to as bit residue. Other protocols consider this condi­
tion an error.

Order of Bit lransmisslon-The bytes are transmitted
in ascending numerical order; inside a byte, the least sig­
nificant bit (bit 0) is transmitted first. (NOTE: The FCS is
numbered and transmitted in reverse to this convention.)

2-3

li'ansmltter

The transmitter portion of the OLC resides between the
off-chip memory and the data communications network
(the transmitter includes the FIFO and Serial Bus Port).
The CPU, under software control, builds a data block in
memory that contains the address, control, and informa­
tion fields of a packet. This block of data is moved, byte at
a time, into the Transmit FIFO via OMA or programmed
I/O. The transmitter sends the opening flag, transmits the
block of data, generates and sends the FCS (if selected)
and transmits the closing flag. If desired, the polarity of the
data stream can be inverted as it is being transmitted.
Between packets, the transmitter can be programmed to
output an all ONEs pattern, mark idle, or back to back
flags (flag Idle). The transmission of a packet can be termi­
nated by sending an abort sequence in response to the
send abort bit being set in the Command/Control Register
(bit 0). Transmission of packets containing a non-integer
number of bytes is supported by programming the
Residual Bit Control/Status Register.

The remainder of this section is divided into two parts. The
first part is a description of the transmitter's operation,
including exception conditions-Figure 2-2 shows a state
diagram of this operation. This is followed by a detailed
description of the hardware blocks. See Figure 2-3.

Transmitter. Operation

We will start the discussion of the transmitter operation by
covering the normal flow of events. This will be followed by
a section covering exceptions and error conditions.

NORMAL OPERATION-When the IOPC comes out of
hardware reset, or is reset by the CPU (bit 6 of the OLC
Command/Control Register), the transmitter is disabled,
and is in state Oa-sending mark idle.

NOTE: When the transmitter is disabled the only action
taken is to remove all drive from the SBOUT pin
(open-drain). All other operations proceed in a
normal fashion.

Initialization-The CPU initializes the transmitter by
selecting data inversion or non-inversion (bit 0 of the
Serial Bus Port (SBP) Control Register), selecting the
SBP channel configuration (bits 5-1 in the SBP Control
Register), selecting whether CRC generation is to be
used, and selecting either flag or mark idle (bit 3 of the
OLC Command/Control Register; the default is mark idle).
The initialization sequence is detailed in the "OLC opera­
tional sequences· section of Chapter 4. The Transmit Byte
Count Register is used to specify the length of the packet
to be transmitted, excluding FCS bytes, and is program­
med only when the packet length to be transmitted is dif­
ferent from the previous packet transmitted, or following
an abort. Bytes are counted by a counter in the FIFO as
they are placed into the FIFO's buffer (transmit byte
counter). When the count equals the value programmed
into the Transmit Byte Count Register, that byte is tagged
as the last non-FCS byte in the packet. A more detailed
description of this operation is presented in "OLC Pro­
grammable Operations" section of Chapter 4. Data inver­
sion/non-inversion and SBP channel configuration do not
affect the operational sequence of the transmitter. The
SBP is described later in this chapter. The flag Idle/mark

Stal. Action

Oa MI (Mark Idle)
Ob R (Flag Ide)
1 Send Opening Rag
2 Send Data
3 Send CRC
4 Send Closing Rag
5 Aba!
6 Send Aba!

CRC
Generator

Flag/Abort
Generator

Shift Register

16-Byte
FIFO

Data

Figure 2-2. DLC Transmitter State Diagram

2:1
MUX Insertion

Unit

Figure 2-3. DLC 'n'ansmltter

2-4

Serial Bus
Port

1--. Data

idle selection does affect the operational sequence and is
described below.

Operational Sequence-After the transmitter is reset
(bit 6 of the OLC Command/Control Register, or hardware
reset), the transmitter goes to state Oa. The transmitter will
remain in state 0 until data have been placed in the FIFO.
At that time the transmitter will go to state 1.

With the transition to state 1, the transmitter is said to be
in-frame. In state 1 the transmitter sends the opening flag.
When this flag has been sent, state 2 is entered.

While in state 2, data are unloaded from the FIFO into an
eight-bit parallel-to-serial shift register. Serial data are
clocked out of the shift register, through a 2-to-1 multip­
lexor, and into the zero-bit insertion unit. The zero-bit
insertion unit inserts a ZERO bit into the data stream after
any pattern of five contiguous ONE bits. The data are then
fed into the Serial Bus Port (SBP) where they are option­
ally inverted and transmitted to the data communications
network. The SBP can be programmed to transmit data on
one of 31 multiplexed time slots, or to transmit data non­
multiplexed. The transmitter leaves state 2 when the last
byte of the packet up to the first FCS byte has been shifted
out of the parallel-to-serial shift register.

If CRC generation has been selected (bit 5 of the OLC
Command/Control Register) the transmitter will enter
state 3. If CRC generation is disabled, state 4 is entered
directly from state 2. In state 3, the contents of the CRC
generator is fed to the zero-bit insertion unit following the
original packet, now completed, data stream. After the 16
bits of the FCS have been transmitted, the valid packet
sent bit is set (bit 4 in the Interrupt Source Register) and
state 4 is entered. The valid packet sent indication can
generate a maskable interrupt.

While in state 4, one flag character, the closing flag, is
transmitted. The transmitter will transition to either state
Oa or Ob when the transmission of the closing flag com­
pletes. If data are present in the FIFO, a new packet,
state 1 is entered. If no data are present in the FIFO, state
o is entered. The selection of the flag idle or mark idle
inter-frame fill (bit 3 of' the OLC Command/Control Regis­
ter) selects between states Oa and Ob.

EXCEPTION TO NORMAL OPERATION-There are six
exceptions to the normal flow of events described above:
abort, local loop back, remote loop back, transmitter dis­
abled while in-frame, FIFO Underrun, and Residual bit
operation. Of these, only FIFO Underrun is an error condi­
tion.

1) Abort-The user can terminate the transmission of a
packet by requesting that an abort be sent (bit 0 of the
OLC Command/Control Register). When a send abort
request is received the transmitter enters state 5 where
the transmitter will begin transmitting abort characters
(01111111 with 1 being the first bit sent). This action takes
place on the next bit boundary after the Send abort bit is
set by software; the Transmit FIFO, transmit byte counter,
and Transmit Byte Count Register will be cleared. Abort
characters will continue to be sent until this bit is cleared.
The transmitter will go out of frame when transmission of
the abort begins. When the Send abort bit is cleared the
transmitter will enter state Ob if flag Idle is selected or data
are present in the FIFO (8 new packet); state Oa is entered

2-5

otherwise. In all cases at least one abort character will be
transmitted, even if the Send abort bit is set and cleared
by consecutive CPU instructions. (The abort is used to tell
the receiver on the other end of the link that the packet cur­
rently being received is to be terminated and discarded.)
While sending an abort has no meaning when the trans­
mitter is out of frame (not sending a packet), the request
will be honored. It will have no meaning at the receive end
if the receiver is out of frame.

2) Local Loop Back-For test purposes the OLC can be
placed in a local loop back mode of operation (bit 6 of the
SBP Control Register). In this mode the output of the
transmitter is routed directly to the receiver. The receiver is
disconnected from the SBIN pin to prevent incoming data
from interfering with the Loop Back; the receiver enable bit
must still be set. The transmit clock is used as the timing
reference for both the transmitter and the receiver. Pack­
ets can then be transmitted normally. The receiver
receives the packet just as if it were originating from out­
side the IOPC.

3) Remote Loop Back-Remote loop back, selected by
setting bit 7 of the SBP Control Register, causes any activ­
ity on the SBIN input to the receiver to be echoed on the
SBOUT output pin. The OLC transmitter is disconnected
from the SBOUT pin. When the SBP is operating in mUltip­
lexed channel mode, each received bit, conditioned by
SFS/XMITCLK, is transmitted on the next falling edge of
the receive clock, i.e., data received at the SBIN pin on the
rising edge of SCLK is clocked out of the SBOUT pin by
the subsequent falling edge of SCLK. When the SSP is
operating in the non-multiplexed mode, data bits received
via SBIN (clocked in by the positive going edge of the
receiver clock, SCLK), are clocked out on a bit-by-bit basis
using the negative edge of the same clock (SCLK). The
receiver can still receive data while in this state.

If an attempt is made to use the transmitter while in
remote loop back mode, the transmitter will function nor­
mally, but no data will leave the IOPC.

4) Transmitter Disabled While In-Frame-This is a
legal operatio,;-The transmitter will continue to process
the frame normally and will disable the SBOUT pin as
soon as the closing flag has been sent. Once the closing
flag is transmitted, the transmitter returns to state 0 and
disconnects the SBOUT pin (places it in an open-drain
condition with no ability to be driven Low).

5) FIFO Underrun-This is an error condition-A FIFO
Underrun occurs when the transmitter attempts to unload
a byte of data from an empty FIFO while in frame. This
condition is reported via bit 4 of the FIFO Status Register
and a maskable interrupt is generated. This causes the
FIFO Status Register bit to be set in the Interrupt Source
Register, if the underrun interrupt has been enabled in the
FIFO Status Interrupt Enable Register. When the FIFO
underrun is detected the transmitter enters state 6 where
one abort character (01111111) is transmitted and the trans­
mitter reenters state O. The transmit byte counter and
Transmit Syte Count Register are also cleared.

6) Transmission of Residual Bits-Some protocols
require the transmission of packets containing a non-inte­
ger number of bytes (the number of bits in the Information
field of the packet is not evenly divisible by eight). The
OLC supports Bit Residue operation by allowing the user

to specify the number of valid bits in the last byte of the
packet (prior to the FCS field). When the DlC transmits
the last byte of the packet, only the specified number of
bits is sent. The number of residual bits is specified in the
Residual Bit Control/Status Register.

1i'ansmitter BlOck Description

The hardware blocks of the transmitter will be discussed in
the order that data flow through the unit, from FIFO to
Serial Bus Port (refer to Figure 2-3). The transmitter sup­
ports data rates from DC to ClK divided by 5 (this is the
theoretical maximum data rate; data rates in excess of
those specified in the Am79C401 Data Sheet are not
guaranteed).

FIFO

The Transmit FIFO consists of the FIFO buffer, the Trans­
mit Byte Count Register, the transmit byte counter, and the
DMA data request generation logic.

Buffer-The buffer is 16 bytes deep and nine bits wide
(eight data bits plus one tag bit, the tag indicating the last
byte of a transmit packet). Data are loaded into the buffer,
FIFO Data Register, by the local processor, via PIO (Pro­
grammed 110), or DMA. Data are unloaded from the buffer
into the parallel-to-serial shift register. The buffer is
cleared on reset, when an abort is transmitted, or when a
Transmit FIFO underrun occurs. The tag is set by
hardware and is used for internal housekeeping.

Threshold-Associated with the buffer is a Threshold
reached signal. This signal is active whenever the number
of bytes in the buffer is at or below the threshold level (pro­
grammed into the FIFO Threshold Register. The Threshold
reached signal is used by the data request generation
logic (DMA control), described below, as an indication that
the buffer should be reloaded. The Threshold reached sig­
nal is reported in the FIFO Status Register, bit 2. A maska­
ble interrupt is generated when the level in the FIFO falls
to the threshold level. This is useful for program controlled
transfers.

Data Register-The user addressable location of the
FIFO is termed the Data Register. The buffer generates a
status signal that reflects whether or not the Data Register
is empty or available. This signal, buffer available, is
reported in bit 3 of the FIFO Status Register. The bit is set
anytime the Data Register is empty and the last byte of a
packet is not in the FIFO. BA is cleared when the FIFO is
full.

Underrun-If the parallel-to-serial shift register attempts
to unload a byte from an empty buffer, an underrun condi­
tion exists. This causes an error to be reported via bit 4 of
the FiFO Status Register. A maskable interrupt is gener­
ated by the setting of this bit. In response to the underrun,
an abort is genlllrated. This causes the Transmit Byte
Count Register and the transmit byte counter to be reset
to ZERO, as well as the FIFO to be cleared.

Transmit Byte Count Register-The Transmit Byte
Count Register (TBCR) holds the length of the packet to
be transmitted (exclusive of the opening flag, FCS, and
closing flag). This value is loaded into the TBCR by
software. The TBCR is cleared when the DlC is reset, an
abort is transmitted, or a transmit FIFO underrun occurs.

2-6

When the transmitter is out-of-frame, the content of the
TBCR is loaded into the transmit byte counter at the same
time it is written into the TBCR. The contents of the TBCR
are automatically loaded into the transmit byte counter
when the last byte of a packet (tagged as such) is
removed from the FIFO buffer. (This also insures that the
correct value is loaded into the TBC if the TBCR is
updated while the transmitter is in-frame). This load Is
delayed if the TBCR is being written at this time as an
internal reload.

Transmit Byte Counter-The Transmit Byte Counter
(TBC) is used to count the number of bytes loaded into the
buffer for a given packet. The TBC is loaded from the
Transmit Byte Count Register, and decremented once for
each byte loaded into the buffer. When the TBC reaches
ZERO, the byte that caused the TBC to reach ZERO is tag­
ged by hardware as the last byte of the packet. This tag is
created by setting the ninth FIFO bit position of that byte to
a ONE. The ninth bit position holds this tag, which travels
with the last data byte through the buffer. The tag is used
to load the TBC from the TBCR and indicate the end of a
packet to the DlC.

DMA Request-The data request generation logic is
used to generate the Data Request (ORal) signal. When
active, ORal indicates to the DMA that the buffer is avail­
able for the loading of data. The ORal signal is activated
when the TBC is not ZERO -AND- the FIFO does not con­
tain a tagged byte -AND- the level in the buffer is at or
below the programmed threshold (bits 3-0 of the FIFO
Threshold Register). ORal remains active until the
TBC=O -OR- the buffer becomes full. When the level in
the buffer falls to the threshold and there is more data in
the packet to be loaded into the buffer, ORal will go
active. OR01 will remain active until the buffer is com­
pletely full or the last byte of the packet is loaded into the
buffer. This insures that there can never be data from more
than one packet in the buffer at anyone time since even if
the TBCR is written before the last byte of the packet has
been transmitted, ORal will remain inactive until the tag­
ged byte is removed from the buffer. ORal is indirectly
made inactive by reset, abort, and transmit FIFO under­
run, since the TBC is cleared to ZERO by these condi­
tions. ORal will become active as soon as the TBCR is
written (becomes non-ZERO).

NOTE: Care must be taken to insure that ORal, the trans­
mitter OMA request line, is deactivated early enough to
prevent the transfer of one to many bytes of data. This can
occur because the OMA controller does not write the last
byte of data into the transmit FIFO until the second half of
the DMA cycle. Data are read from RAM during the first
half cycle, and deposited into the Transmit FiFO during the
second half cycle, leaving little time for the Ole to deacti­
vate ORal. This problem can be prevented in two ways:
1) use of the DMA acknowledge output from the DMA con­
troller-connected to the OACKI pin on the lOpe, the
OMA acknowledge signal is activated at the beginning of
the DMA cycle, allowing time for the DlC to deactivate
ORal. 2) adding a wait-state to the DMA cycle. If the OMA
controller does not provide an acknowledge output, or one
cannot be generated, a wait-state can be inserted to pro­
vide more time prior to the OMA controller sampling ORal.

The DLC will deactivate DRO, during the last cycle when
either the DACK/ pin is activated. or when the WR/ and
CS/ pins become active.

The receiver does not have this problem since data are
read from the receive FIFO during the first half of the DMA
cycle. In this case. the Receive DMA request line. DROo•
is deactivated during the last cycle when the RD/ and CS/
become active.

8-Blt Parallel-to-Serlal Shift Register

Data to be transmitted are moved out of the FIFO and
loaded into an 8-bit shift register. one byte at a time. This
byte is shifted out of the shift register serially. The shift
register output is fed to the CRC generator and to a 2-to-l
multiplexor.

If the FIFO buffer becomes empty before the last byte of
the packet has been loaded into the shift register. an
underrun error is reported. (see FIFO description for error
handling details). An underrun causes an abort to be
transmitted. the FIFO to be flushed. and the TBCR and
TBC to be set to zero.

CRC Generator

The CRC generator produces a 16-bit word referred to as
the Frame Check Sequence (FCS). The mathematical
equation describing this operation is provided in the
review of BOPs at the beginning of this chapter.

CRC generation can be disabled by clearing bit 5 of the
DLC Command/Control Register. The FCS field is trans­
mitted after the Information (I) field and just prior to the
closing flag.

2-to-l Multiplexor

The outputs of the parallel-to-serial shift register and the
CRC generator are fed into the zero insertion unit via a 2-
to-l multiplexor. During the data portion of a packet. (we
will refer to the address. control. and information fields as
the "data"). the multiplexor is passing data from the shift

SCLl<

S80UT
(Dataout)

register. After the last bit of the data portion of the packet
has been shifted out of the shift register. the FCS is
passed out of the CRC generator. if the CRC generator is
enabled.

Zero-Bit Insertion Unit

To maintain data transparency. the transmitter examines
the frame content between the opening and closing flag.
including the address. control. information. and FCS
fields. and inserts a 0 bit after all sequences of five con­
tiguous ONEs. This prevents the data stream from simulat­
ing flags and aborts.

Serial Bus Port

The Serial Bus Port (SBP) sits at the output of the trans­
mitter. The SBP performs several functions related to time
slot assignment. clock selection. data inversion. enabling
the transmitter. and loop back testing.

Time Slot Multiplexor (TSM)-The output of the zero­
bit insertion logic is routed through the TSM where it is
assigned one of 31 time slots. or transmitted as is. refer­
red to as the non-multiplexed mode. The SBP is designed
to connect directly to the SBP of the Am79C30A DSC. Up
to 31 time slots combine to form a frame. where data are
transmitted during one of the 8-bit time long windows (see
Figure 2-4). The Serial Frame Sync (SFS) input provides a
reference indicating the location of the first eight bits of the
frame. (The SFS/XMITCLK pin serves as either the SFS
input in multiplexed mode. or the transmit clock input in
non-multiplexed mode.) The transmitter can be program­
med to place data on anyone of up to 31 time slots via bits
0-4 of the SBP Control Register. The TSM is re-syn­
chronized by each frame syncronization pulse. allowing
frames of from 1 to 31 channels to be used. In the multip­
lexed mode. the SCLK pin provides the transmit clock
source. This clock source is gated with the selected time
slot to provide the transmit clock. If time slot 0 is selected.
data are transmitted for as long as the SFS signal is
active. instead of for eight bits at a time. If the SFS input is
held active for 16-bit times instead of 8 each frame. the
transmitter will send out 16 bits per frame. as opposed

r-----\ r-----....· ~
Sffi -' \~--------------------~/~--~\----~S~ L-----

Time Slot 0 Time Slot 1))Time Slot N Time Slot 0

• 16 Bit Channel Concatenation

Figure 2-4. Transmit SSP Tlmeslot Channel Multiplexing

2-7

to 8. By doing this the DSC can place the data on both of
the two B channels, on an every-other-byte basis, effec­
tively doubling the data rate. In the non.multiplexed mode,
bits 1-5 all set to ONEs in the SBP Control Register, data
are transmitted continuously. In this mode, the transmit
clock is input on the SFS/XMITCLK pin. When the DLC is
used in the DSC or DEC, the TSM must be hard-wired into
the non-multiplexed mode.

Data are always transmitted on the falling edge of the
transmit clock.

Inversion-before data have passed through the TSM
they are fed through a programmable inverter. If bit 5 of
the SBP Control Register is set to I, the data will be
inverted.

Mark Idle Insertion-Whenever the transmitter is ena­
bled (bit 1 of the DLC Command/Control Register) and Is
out of frame (and the closing flag or abort has been sent)
with mark idle selected (bit 3 of the DLC Command/Con­
trol Register), the transmitter's output will be forced High.
This takes place before the programmable data Inverter.

Transmitter Enable-The transmitter is enabled and dis­
abled via bit 1 in the DLC Command/Control Register.
Whenever the transmitter is disabled, the SBOUT pin,
which is an open-drain pin, is forced High.

Local Loop Back-The DLC can be placed in a local
loop back configuration for test purposes. This is done by
setting bit 6 to a 1 in the SBP Control Register. Local loop
back disconnects the SBIN and SBOUT pins, (SBOUT is
driven High - SBOUT is an open drain pin), and connects
the transmitter output and receiver input together. The
selected transmitter clock (see above) is used as the
receive clock.

Remote Loop Back-The DLC can be placed in a
remote loop back configuration for test purposes. This Is
done by setting bit 7 to a 1 of the SBP Control Register.
Remote loop back disables the transmitter and echoes

Flag

whatever is received at the SBIN pin out the SBOUT pin.

NOTE: The receiver can be either enabled or disabled
without affecting operation. Data are transmitted on the
falling edge of SCLK. SCLK performs both transmit and
receive functions.

Receiver

The receive portion of the DLC takes serial data from the
Serial Bus Port (SBP), processes them, and allows them
to be moved to off-chip memory (the receiver includes the
SBP and the FIFO). Dedicated hardware modules are
used to perform the bit-level operations on each frame of
data as it is received (mark idle detection, data inversion,
flag/abort recognition, zero-bit deletion, CRC checking,
and address recognition). A 32-byte deep FIFO is used as
a buffer between this bit rate dependent processing and
the packet at a time processing performed by the CPU.
Data can be moved from the FIFO to memory either by
DMA, or programmed I/O.

This portion of the document is divided into two parts: a
description of receiver operation-including normal oper­
ation as well as exceptions (see Figure 2-5) and a detailed
discussion of the hardware functional blocks (see Figure
2-6). Throughout the discussions of the receiver, reference
will be made to bits in control, status, and command regis­
ters; these registers are described in the data sheet. If you
have not already reviewed the section on bit-oriented
protocols, it is recommended that you do this before pro­
ceeding.

Receiver Operation

This section will begin with a discussion of the normal flow
of events, from the time that the receiver is reset through
the receipt of a frame of data. This will be followed by a
discussion of the exceptions to this operational flow.

NORMAL RECEIVER OPERATION-When the receiver
comes out of hardware reset, or is reset by software (bit 6

Short Frame, CAC Error,

Non-Flag,
Non-Abort

Long Frame Error, Abort
Slale Action

o Hunt for Flag (No Aag Sync)
1 Hunt for Non-Flag, Non-Abort
2 In-frame (Look for Flag)

Figure 2·5. DLe Receiver State Diagram

2-8

OMA
Control
(ORoo)

OMA Control
and Threshold
Reached Logic

32-Byte
FIFO

Serial
Bus
Port

Figure 2-6. OLe Receiver Block Diagram

of the OLC Command/Control Register). the receiver is
disabled and is in state O. .

NOTE: When the receiver is disabled (by clearing bit 2 of
the OLC Command/Control Register). the connection
between the SBIN pin and the receiver is severed. This is
the only effect that disabling the receiver has on the
remainder of the OLC logic. All other receiver functions
work In the same manner as they do when the receiver is
on.

Initialization-The user. via software running on the
external CPU. initializes the receiver prior to operation by
selecting data inversion/non-inversion (bit 0 of the SBP
Control Register). specifying SBP channel configuration
(bits 1-5. of the SSP Control Register). enabling CRC
check if desired (bit 4 in the OLC Command/Control
Register). selecting the desired address mode (Address
Control Register). loading the address(es) to be recog­
nized (Address Register(s)). specifying the minimum
packet size (Minimum Packet Size Register). specifying
the maximum packet size (Maximum Packet Size Regis­
ter). and finally enabling the receiver (bit 2 in the OLC
Command/Control Register). The initialization sequence
is described in the "OLC Operational Sequences" section
of Chapter 4.

Operational Sequence-The receiver starts operation
in state O. In state 0 the receiver examines the incoming
data stream. clocked in from the SSIN pin on the rising
edge of SCLK (SCLK pin). on a bit-by-bit basis for the pre­
sence of a flag character. No data are passed beyond the
flag/abort detection unit in state O. The detection of a flag
causes a transition to state 1.

2-9

In state 1 the data stream is inspected on a character-by­
character basis for the presence of a non-flag. non-abort
character. (character boundaries are established by the
receipt of a flag). If the character following the flag is
another flag. the receiver remains in state 1. If the charac­
ter is an abort. the receiver re-enters state O. If the charac­
ter is not a flag or an abort. the receiver is said to be in­
frame. and state 2 is entered.

In state 2. data are passed beyond the flag/abort detector
to the zero-bit deletion unit. Here. the next bit following
any five contiguous ONEs is deleted. This bit should
always be a ZERO and was inserted by the transmitter to
prevent data patterns from being detected as flag or abort
characters. which have six and seven contiguous ONE
bits respectively. The first one or two characters following
the opening flag of the packet are normally the address
field. While the address field can be more than two bytes
long. the receiver can examine only the first two bytes of
any address; any remaining bytes are treated as data. If
address recognition is enabled (bits 0-4 of the Address
Control Register). these characters are tested by the
address recognition unit for a match with one of the five
enabled preprogrammed addresses. f~ur programmable
addresses and the broadcast address. If there is not a
match. the receiver returns to state O. looking for flags.
The packet currently being transmitted is ignored and no
status is reported on it. However. if there was an address
match. or address detection was disabled. in which case
all frames are accepted. the frame is received and is
placed into the FIFO. one byte at a time. including the
address. control. information. and FCS fields). Each
received character is loaded' into the FIFO when it reaches
the last eight bits of the serial-to-parallel shift register. with
the exception of the last character. discussed below.

State 2 is exited normally whenever the flag/abort detec­
tor receives a flag character. If a flag is detected the
receiver enters state 1. Back-to-back packets can share
opening and closing flags. At the time the flag is detected,
the three previous characters still in the shift register are
immediately loaded into the FIFO, assuming FCS pass
through has been selected, (bit 7 of the DLC Command/
Control Register). If FCS pass-through has not been
selected, only the first of these three bytes is moved into
the FIFO. In either case, the last byte placed in the FIFO is
tagged as the end of the packet. The tag takes the form of
a ninth bit appended to each word in the FIFO. If the
character preceding the two byte FCS field contained less
than eight bits, the actual number of bits received is
reported in bit positions 0-2 of the Residual Bit Status/
Control Register. If CRC checking has been enabled, the
output of the CRC comparator is valid at this time, and its
status (error or not) is recorded. These last two characters
loaded into the FIFO are the Frame Check Sequence
(FCS), if CRC check is enabled.

When a packet has been received with either a closing
flag, an abort, or a long frame error, its length and status
are latched. This information is presented to the user
when the last byte of the packet, tagged as such, is read
from the FIFO by OMA or programmed I/O. A maskable
interrupt indicating the receipt of a packet, and its status,
is generated at this time. The delay in status reporting is
required since the user's software operates at a packet
level and has not received the complete packet until the
last byte has been moved from the FIFO to memory. In nor­
mal operation, the FIFO is automatically unloaded by the
OMA and the user is not interested in the status of a
packet until it has been completely transferred to memory.
The discussion of the FIFO/OMA interaction is presented
in the "OMA Operation" part of the "OLC Programmable
Operations" section of Chapter 4.

EXCEPTIONS TO NORMAL OPERATION-During the
course of normal operation, six error or exception condi­
tions can occur. These are: the receipt of an abort charac­
ter while in-frame, a CRC error, a short frame error, a long
frame error, a non-integer number of bytes error (if
residual bit operation is not allowed by the protocol in­
use), and a FIFO overrun error. In addition to these six
cases, the receiver can be placed in two test modes: local
loop back, and remote loop back.

It should be noted that any packet received with 24 or
fewer bits (whether an error exists or not) is discarded
from the serial-to-parallel shift register without the report­
ing of status.

Abort-When an abort is received while the receiver is
in-frame (state 2), the packet is terminated. The abort
takes precedence over all receive errors. As a result of this
termination several actions are taken:

1. The contents of the shift register are moved to the
FIFO. The last byte is tagged as such as it is placed
into the FIFO.

2. The receiver returns to state O.

3. The status, including the abort received bit in the
Receive Link Status Register, and byte count are
latched (see the "OLC Programmable Operations"
section of Chapter 4 for a discussion of the three stage

2-10

delayed reporting mechanism).

4. When the last byte of the aborted packet is read
from the FIFO, a maskable interrupt is generated.

CRC Error-When the closing flag of a packet is
detected, the CRC checker has finished its work. If CRC
checking is enabled (bit 4 in the OLC Command/Control
Register), the output of the CRC checker is tested at this
time. If an error has occurred, this error condition is
latched for delayed reporting.

Short Frame Error-When a packet is terminated with a
flag, and the packet has fewer characters (exclusive of
flags) than is programmed into the Minimum Receive
Packet Size Register, and more than 24 bits, a short frame
error is reported. If the packet had 24 or fewer bits it is dis­
carded without notification to the user. This is possible
since no data have been placed into the FIFO at this time.
If the short frame contained more than 24 bits, it is termi­
nated the same way that a normal packet is, with the
exception that the short frame error is latched for delayed
reporting. The receiver returns to state 1.

Long Frame Error-The receiver contains a Maximum
Receive Packet Size Register which is programmed to
specify the maximum acceptable packet length. If the
number of bytes received equals this count and a flag or
an abort is not detected at this time, a long frame error
exists and the packet is terminated. This termination is the
same as for a normal frame with the exception that the
long frame error status condition is latched for delayed
reporting.

Non-Integer Number of Bytes Error-If the protocol
being used allows for bit residue, this is not an error. Other­
wise, if a flag is detected on a non-byte boundary (when
from 1 to 7 bits of a character have been received), a non­
integer number of bytes error exists. The packet is termi­
nated as normal with the exception that the short charac­
ter is loaded into the FIFO as is, it is tagged as the last
byte, and the non-integer number of bytes error status is
latched for delayed reporting. Note that if this error occurs
in a short frame, the rules governing the handling of short
frames (above) take precedence and only the short frame
error is reported.

FIFO Overrun-When a byte has been shifted into the
last 8 bit positions of the shift register it is moved into the
FIFO buffer. If only the last location in the FIFO buffer is
available when this load is attempted, a FIFO overrun con­
dition exists. When this happens the packet is terminated,
the byte in the shift register is placed into the FIFO and
tagged as the last byte in the packet, and status is latched,
including the overrun condition indicator, for delayed
reporting. The receiver then returns to state 0; if a flag is
detected at the same time as the overrun, then state 1 is
entered.

Local Loop Back-For test purposes the output of the
DLC transmitter can be looped back to the receiver. This
mode is selected by setting bit 6 in the SBP Control Regis­
ter. When in the local loop back mode, the receiver is iso­
lated from its input (SBIN pin). Refer to "Serial Bus Port"
part of the "Transmitter Block Description" section for
details concerning data clocks.

NOTE: The receiver must be enabled for local loop back to
work.

Remote Loop Back-For test purposes, the input to the
receiver can be fed directly to the output pin of the trans­
mitter (SBOUT). This mode is entered when bit 7 of the
SBP Control Register is set. The operation of the receiver
is unaffected by this action. Refer to the "Serial Bus Port"
part of the "Transmitter Block Description" section for
details concerning data clocks.

Receiver Block Description

The hardware blocks of the receiver will be discussed in
the order that data flow through the unit, from the Serial
Bus Port to the FIFO (refer to Figure 2-6).

Serial Bus Port

The Serial Bus Port (SBP) receives serial data from the
SBIN pin, processes them and sends them to the flagl
abort detection Unit and the zero-bit deletion unit. The
SBP performs three operations on the data: mark idle
detection, programmable data inversion, and time slot
demultiplexing. Data are clocked into the SBP by the ris­
ing edge of SCLK (SBIN pin).

Mark Idle Oetection-The mark idle detector examines
the incoming data stream for the presence of 15 or more
contiguous ONE bits, whenever the receiver is out of
frame. The detection of a mark idle condition sets bit 0 in
the Receive Link Status Register. If enabled, a maskable
interrupt is generated in response to a negative to positive
transition of this bit.

Data Inversion-The Programmable data inverter sim­
ply inverts the received data on a bit by bit basis. Setting
bit 5 in the SBP Control Register causes this inversion.

Time Slot Demultiplexor-The Time Slot Demultiplexor
(TSD) operates in one of two modes: multiplexed or non­
multiplexed. When in the multiplexed mode (selected by
bits 0-4 of the SBP Control Register), the incoming data
are valid during one of up to 31 eight bit long time slots
(see Figure 2-7). The Serial Frame SynclTransmit Clock
(SFS/XMITCLK) pin provides a frame sync pulse which is
active at the beginning of the frame. This defines the
frame boundaries. The active time slot is selected by bits

SCLK

SBOUT
(Dataout)

0-4 of the SBP Control Register. Time slot 0 is treated as a
special case in which data can be received more than
eight bits at a time. When time slot 0 is selected, SFS is
sampled at the beginning of the ninth bit time. If SFS is
sampled active, another eight bits of data will be received.
This allows 16 bits of data to be received each frame. In an
ISDN application, this allows the concatenation of both 64
kbps B-channels, thus doubling the data rate.

In the non-multiplexed mode, data are received as a con­
tinuous stream, clocked by SCLK. Non-multiplexed opera­
tion is selected by setting bits 0-4 of the SBP Control
Register. In this mode, the SFS/XMITCLK input is not
used by the receiver. It is used as the transmit clock input
by the transmitter, thus giving separate receive and trans­
mit clocks.

Flag/Abort Detection Unit

Receive data are fed from the SBP to the flag/abort detec­
tion unit and to the zero-bit deletion unit. The flag/abort
detection unit is built around an eight-bit shift register into
which the serial receive data are shifted on the riSing edge
of SCLK. The contents of the shift register are tested for
the presence of either a flag or an abort character. This
test takes place every time a bit is shifted into the shift
register. In the case of abort detection, only the first seven
bits are tested.

The detection of a flag is not directly reported in a status
register. It serves several functions:

1. When the receiver is in state 0 (looking for a flag),
the receipt of a flag causes a transition to state 1 (look­
ing for a non-flag, non-abort character).

2. When the receiver is in-frame (state 2), the receipt
of a flag causes the frame to end and the receiver to
go to state 1. The packet is checked for short frame
errors and, if enabled, CRC errors.

The receipt of an abort character causes the receiver to
enter state 0 (looking for a flag). If the abort character is

r-\ ,---------.* _ 1\
S~ ~ \~--------------------~/--~\----~S~ L----

Time Slot 0 Time Slot 1~~Time Slot N Time Slot 0

• 16 Bit Channel Concatenation

Figure 2-7. Receive SBP Timeslot Channel Multiplexing

2-11

received while the receiver is in state 2 (in-frame), an
abort condition exists. This causes the frame to be termi­
nated. Assuming at least 24 bits preceded the abort, bit 0
in the Receive Frame Status Register is set. (Abort is a
delayed status condition and is not reported until the last
byte of the aborted packet is read from the FIFO.)

Zero-Bit Deletion Unit

In order to prevent valid data patterns from being detected
as either flags or aborts, a technique called bit stuffing Is
used. The transmitter examines the data stream between
the opening and closing flags, exclusively. If five consecu­
tive ONE bits are detected, a ZERO is Inserted after the
fifth ONE. The zero-bit deletion unit in the receiver
removes this added ZERO.

The received data are fed from the SBP to the zero-bit
deletion unit. A three bit counter monitors the data stream
for the presence of five consecutive ONEs. If this event
occurs, the next bit is deleted from the data stream, nor­
mallyaZERO.

Short Frame Byte Counter

The Short Frame Byte Counter (SFBC) is a four-bit
counter that counts the number of characters received
after the opening flag. If a frame ends in a flag, -AND- the
number of bytes received is less than the value program­
med in the Minimum Packet Size Register, -AND- data
have been placed in the FIFO (receive byte counter> 0), a
short frame error is reported. Bit 3 of the Receive Frame
Status Register is set when the last byte of the packet is
read from the FIFO. If for some reason the software
reloads the Minimum Packet Size Register while the
receiver is in-frame, the previously loaded value will still
be used for the packet that is being received. The new
value will be used for the next packet. This Is a delayed­
stacked status condition and is not reported to the user
until the last byte of the packet has been removed from the
receive FIFO.

CRCChecker

The CRC checker is virtually identical to the CRC
Generator in the DLC transmitter. As data are received
they are fed through the zero-bit deletion logic, and Into
the checker. When the cloSing flag of the frame is detected
the 16-blt Frame Check Sequence (FCS) has just been
shifted into the checker. At this time the content of the
CRC checker is tested. If an error exists, bit 2 of the
Receive Frame Status Register is set. CRC checking is
enabled by setting bit 4 in the DLC CommandlControl
Register. This is a delayed-stacked status condition and is
not reported to the user until the last byte of the packet
has been removed from the Receive FIFO.

Serial-to-Parallel Shift Register

The output of the zero-bit deletion unit is fed into a 32-bit
shift register which converts the serial bit stream into bytes.
The first 16 bits of the shift register are presented in parallel
to the address detection unit for comparison. For one byte
addresses, either the first or the second eight bits of the
shift register are compared. The parallel output of the shift
register is fed to the Receive FIFO a byte at a time.

Any packet that terminates, with a flag or an abort, before
any data have been loaded into the FIFO buffer (receive

2-12

byte counter is ZERO), is handled specially. In this case,
no data are allowed to be placed into the FIFO, and no
status Is reported.

Address Detection Unit
The address detection unit is used to identify packets that
are addressed to the receiver. Depending on program­
ming, the first one or two bytes of each received packet Is
compared against up to five address registers: four user
programmable and one broadcast. If the incoming
packet's address field matches one of the address regis­
ters (if enabled - see below) the packet is received. If no
match occurs the packet is discarded and the receiver re­
enters state 0, looking for a flag.

Each of the five comparison units consists of a two byte
comparator and an address register. The broadcast detec­
tor is hard-wired to look for a 111111 XO, 11111111 address In
two byte mode, a 111111X1 address in one bytelfirst byte
mode, and a 11111111 address in one bytelsecond byte
mode. (X= 1 if the address detection unit is programmed
to include the CIR bit in the comparison, otherwise it is a
don't care; the right-most bit is the least significant.) Asso­
ciated with each comparison unit is an enable bit that
turns that particular recognition unit on or off. These bits
reside in the Address Control Register. If all five enable
bits are cleared (disabled) the receiver will accept all
packets. Bit 5 of the Address Control Register selects
whether the address is one or two bytes long. If one byte
addressing is selected, the comparison is made on either
the first or second eights, as indicated by Bit 7 of the
Address Control Register. Also, bit 6 of the Address Con­
trol Register causes the second bit (Bit 1) of the first byte
of all addresses to be ignored. This is required since some
BOPs use this bit position to indicate whether the packet
is a Command or a Response (C/R). When this ignore CIR
bit control bit is set, bit 1 of the first byte of all addresses is
considered a don't care.

Address comparison takes place when the serial-to-paral­
lei shift register has received 16 bits following the opening
flag. The Identity of the particular comparator that makes
the match with the incoming address is reported In bits 0-2
of the Interrupt Source Register. This is a delayed-stacked
status condition and is not reported to the user until the
last byte of the packet has been removed from the
Receive FIFO.

Receive FIFO

The Receive FIFO sits between the serial-to-parallel shift
register and the microprocessor interface and consists of
the FIFO buffer, the receive byte counter, and the data
request control logic.

FIFO Buffer-The FIFO buffer is 32 bytes deep and is
loaded by the serial-to-parallel shift register and unloaded
at the receive FIFO Data Register by the CPU or the DMA.

Data Available-The presence of data in the Data Regis­
ter is indicated by the setting of the data available bit
(bit 1) in the FIFO Status Register. This bit is cleared by
two conditions: 1) The FIFO buffer becoming empty, and
2) the last byte of a packet being read from the FIFO. In
the latter, data available remains cleared until the user
reads the least significant byte of the Receive Byte Count
Register. This provides an indication to the user, operating
in Programmend 1/0 (PIO) mode (instead of using DMA),
that the last byte of a packet has been read, and it is time

to process that packet's status information. Data available
generate a maskable interrupt.

End of Packet (EOP) Tag-When the receiver termi­
nates the receipt of a packet, normally or abnormally, and
data from that packet have been placed in the FIFO, the
last byte of the packet is tagged when it is placed into the
buffer. Each buffer location contains a ninth bit to accom­
modate this tag. The presence of a tagged bit in the buffer
forces data request (described below) active.

Threshold Reached-Associated with the FIFO buffer is
a threshold reached signal. This signal is active whenever
the number of bytes of data in the buffer is equal to or
greater-than the threshold level programmed in the FIFO
Threshold Register. When threshold reached is active, bit
o in the Receive FIFO Status Register is set to 1. A maska­
ble interrupt is generated when the threshold reached bit
transitions from ZERO to ONE. The threshold reached sig­
nal is also used in the generation of Data Request to the
DMA.

Overrun-An overrun condition occurs if the shift register
to FIFO buffer transfer does not take place before the first
bit of the next character is shifted into the shift register.
Under no circumstances is data in the FIFO buffer over
written, i.e., no data are lost.

End Of Packet In FIFO Indication-In non-DMA opera­
tion, it is important to tell the user when the end of a
packet has been detected, or declared in the case of an
error. This indication is provided by the EOP bit in the FIFO
Status Register, bit 5. The EOP bit is set when the last
byte of a packet is loaded into the FIFO from the serial-to­
parallel shift register (tagged as such). It is cleared when
the tagged byte is read from the FIFO and there are no
other tagged bytes present. The EOP bit causes a maska­
ble interrupt to be generated.

DMA Request Control-The FIFO is responsible for the
generation of a DMA Request signal (DROa) that controls
the operation of the DMA (when used). DMA request
active informs the DMA that it should unload the buffer.
DMA request goes active when the threshold reached sig­
nal becomes active, -ORo, a byte tagged as the end of a
packet is present in the buffer. DMA Request remains
active until the buffer becomes empty, -ORo, when the tag­
ged byte has been removed. In the case where the DMA
request signal becomes inactive because the last byte of a
packet has been read from the FIFO, it will remain inactive
until the user reads the status information for that packet.
Specifically, the DMA Request signal is prevented from
going active until the least significant byte of the Receive
Byte Count Register is read-independent of the presence
of data from subsequent packets being in the FIFO. This
mechanism insures synchronization between packet data
and status.

Receive Byte Counter-A 16-bit counter is provided in
the FIFO to maintain a count of the number of bytes that
have been placed in the buffer from the packet that is cur­
rently being received. When the last byte of the packet
(tagged as such) is removed from the FIFO buffer, the con­
tent of the counter is loaded into the Receive Byte Count
Register (see below). This is a delayed-stacked status
condition and is not reported to the user until the last byte
of the packet has been removed from the Receive FIFO.

2-13

The Receive Byte Count is used in the identification of
long frames and frames that have been terminated prior to
any data being placed in the buffer, and for software to
determine the length of a received frame.

Long Frame Error-A long frame is defined as a frame
that has not been terminated when the number of received
bytes equals the value programmed into the Maximum
Packet Size Register. (Note that the numeric value pro­
grammed into the RBCR is three smaller than the maxi­
mum packet size; i.e., if the RBCR is loaded with the
number 17, the actual maximum packet size will be 20.)
The user will never be able to receive more bytes in a
packet than the number specified in the Maximum Packet
Size Register. The byte that caused the long frame error is
the last byte in the packet. The long frame error is reported
by setting bit 4 in the Receive Frame Status Register. This
is a delayed-stacked status condition and is not reported
to the user until the last byte of the packet has been
removed from the Receive FIFO.

Packets Shorter Than 24 Bits-There is no reporting of
error and status conditions for any packet'that is termi­
nated before data have been placed in the FIFO buffer.
When a packet is terminated the receive byte counter is
inspected. If it is ZERO, indicating that no data have been
placed in the FIFO, status is not reported for that packet.

Receive Byte Count Register-The Receive Byte
Count Register reports the length of the received packet to
software. This is a delayed-stacked status condition and is
not reported to the user until the last byte of the packet
has been removed from the receive FIFO.

USART

This section provides an overview of the USART features.
Subsequent sections describe the hardware modules and
operating modes.

Overview

The USART is similar to an 8250 with several added fea­
tures. The additions include a Synchronous/transparent
mode, a special character recognition unit, and transmit
and receive FIFOs.

The 8250 features that are not supported in the IDPC are
the ring indicate and receive line signal detect inputs, as
well as the general purpose Output 1 and 2 lines.

Features

The USART has the following features:

• 5-,6-,7-, or 8-bit characters
• Even, odd, or no parity
• 1, lV., or 2 stop bits
• RTS, CTS, DSR, and DTR handshake lines
• Synchronous/transparent operation
• Special character recognition
• Four-byte transmit and receive FIFOs
• Software reset
• Break generation

Interrupts

An interrupt is generated in response to the following
conditions:

• Change in CTS
• Change in DSR
• Parity error
• Receive FIFO threshold reached
• Receive FIFO time-out
• Transmit FIFO threshold reached
• Transmit shift register empty
• Break detection
• Special character detected
• Framing error
• Buffer overrun

FIFOs

The USART receiver and transmitter each have a 4-byte
deep FIFO. Each FIFO has a programmable threshold
level, which can generate a maskable interrupt. The
receive FIFO has a time-out which generates an interrupt
if the level in the FIFO remains above zero, and below the
programmed threshold, for more than a specified time.

Special Character Recognition

A unique feature of the USART is its ability to detect spe­
cial characters. Up to 128 user defined characters can be
detected on the fly. As characters are received, they are
tested against a table of special characters. If the charac­
ter received has been flagged as special, bit 5 of the
USART Status Register is set, and a maskable interrupt is
generated.

Operational Modes

The USART has two primary modes of operation: asyn­
chronous and synchronous/transparent.

Asynchronous Operation

In the asynchronous mode the receive and transmit shift
registers are clocked at a rate that is 16 limes the baud
rate. Asynchronous operation is selected by clearing bit 2
of the USART Control Register to ZERO. The source of
the clock can be either the internal baud rate generator or
an external input (receive clock input, RXCLK). The
receive clock select is bit 0 of the USART Control Register,
the transmit clock select is bit 1 of the USART Control
Register.

SynchronouslTransparent Operation

In synchronous/transparent operation the receive shift
register is clocked at the same rate as the data. This
means that the data and clock must be in sync with each
other. Data are latched into the receive shift register on the
rising edge of the clock. The source of the receive clock
can be programmed to be either the internal baud rate
generator or the external receive clock input (RXCLK).
Normally, for synchronous/transparent operation the
receive clock source will be the external RxCLK because
the data must be synchonous to the clock. Synchronous
mode is selected by setting bit 2 of the USART Control
Register.

2-14

Data Clocking-The clock used by the transmit shift
register is also 1 X the data rate.· Data is shifted out of the
shift register on the falling edge of the clock. The transmit
clock can be provided by either the baud rate generator or
the external receive clock input (RXCLK).

Data Transmission-Data are transmitted as a steady
stream of bits with no framing start and stop bits involved.
When the transmit shift register is loaded, its contents are
transmitted directly. The next data byte is concatenated
onto the previous one. When the shift register and FIFO are
empty the line is placed in a marking (ONEs) condition.

Data Reception-Data are received as a steady stream
of bits with no framing involved and therefore no character
boundaries. As eight bits are received into the shift regis­
ter, they are loaded into the FIFO. When the line is idle,
marking, the receiver is receiving and moving to the FIFO
bytes containing all ONEs. This mode is useful in low
speed synchronous applications since the end to end
link-IDPC USART, to packet network, to IDPC USART­
appears as a piece of wire to the two end users. Data are
sampled and transferreq as long as receive clock pulses
are received and the receiver is enabled.

USART Functional Description

Figure 2-8 shows the functional block diagram of the
USART. The major blocks are the receiver (with special
character recognizer), the transmitter, the modem control,
the interrupt controller, and the baud rate generator.

Receiver

The receiver performs a serial to parallel conversion on the
incoming data, verifies framing, buffers the data in a FIFO,
and detects break conditions and special characters.

Receiver Enable

The receiver can be enabled and disabled via bit 7 in the
USART Control Register.

Shift Register

The shift register does a serial data to parallel data conver­
sion. The serial data are clocked into the shift register by
either the data sample strobe in asynchronous mode or
the rising edge of the receive clock in synchronous/trans­
parent mode.

Framing Error-Asynchronous mode only. If RXD is
sampled Low on the next bit time after the last bit of a
character is received, a framing error exists and is
reported via bit 3 of the Line Status Register. The charac­
ter with the framing error is not loaded into the FIFO.

Fill Bits-Asynchronous mode only. When the USART
receives characters containing less than eight data bits,
the additional high order bits in the 8-bit byte that is to be
loaded into the receive FIFO are set to ZERO.

Synchronous/Transparent Operation-In the syn­
chronous/transparent mode, the RXD input is sampled on
every rising edge of the 1 X receive clock. Data are shifted
into the shift register on every clock cycle. In this mode,
there are no start or stop bits. One byte of data is received
and loaded into the FIFO every eight clock times.

Parity, Special
Control Character,

Frame, Break
Checker

I Receive I.... J Recei~e Shift I" Control

FIFO I Register Control Receive
""QI" t t Data

(;IOCK¥~ J Receive
I Mux I Clock

I Transmit
Transmit

~ Transmit Shift Data
FIFO Register Control

1 Parity, Frame, Control

r-JI L
Break Generation I

~ Clock Control
Mux

BDCLKOUT

Baud Rate USARTCLK J
Generator I. (entrol

U Status and
Control

Registers

Interrupt I i RTS,DTR
CTS,DSR

I Controller USARTINT

Figure 2-8. USART Block Diagram

Receive FIFO Overrun-If the FIFO is full when a newly received
character is to be loaded into the FIFO, an overrun error is

Received data are loaded into a four byte FIFO. reported via bit 1 in the Line Status Register.

Threshold Interrupt-An interrupt condition flag is set in
the Interrupt Identification Register (bits 1-3) when the
number of characters in the FIFO has reached the level
designated in the receive FIFO threshold field of the
USART Control Register (bits 3 and 4). This maskable
interrupt takes the place of the receiver data available
interrupt in the 8250. Bit 3 in the USART Status Register is
set when the FIFO threshold is reached, and cleared when
the FIFO level falls back below the threshold.

Tlme-out-A time-out is generated internally if the level
in the receive FIFO is non-zero and less than the pro­
grammed threshold, and no characters have been
received for 2048 receive clock cycles in the asynchron­
ous mode. There is no time-out in the synchronous/trans­
parent mode. The time-out sets bit 0 in the USART Status
Register and generates a maskable interrupt.

Data Register-Data are read out of the FIFO, from the
Receive FIFO Data Register, by the external CPU. The
Receive FIFO Data Register is the equivalent of the
Receiver Buffer Register in a conventional 8250. The pres­
ence of valid data in the Receive FIFO Data Register is
indicated by (receive data available bit 0) in the Line
Status Register.

2-15

Special Character Received and Parity Error Flags­
The FIFO is ten bits wide: eight data bits, one special
character flag, and one parity error flag. Parity, framing,
and special character conditions are checked when the
data are loaded into the FIFO. The presence of a charac­
ter that has a parity error or is a special character is
reported in the Line Status Register. If enabled, interrupts
are generated when the condition is detected. Only the
eight data bits can be read by the user. While special
character and parity error interrupts are generated when
the character is loaded into the FIFO, the parity error
present and special character available status bits in the
USART Status Register are not set until the character is at
the FIFO output (see Figure 2-9). This allows the user to
identify which character caused the interrupt.

Special Character Recognition

When a valid character has been received, the lower
seven bits of its bit pattern are used as a pointer into a
128-bit RAM. If the RAM bit addressed by the data is set,
the character is flagged as "special" by setting bit 7
(special character in FIFO) in the Line Status Register
when the character is loaded into the FIFO. An interrupt is
generated only if the special character enable bit is set

Bit 2, Line
Status Register

....

/128X1 RAM ~ I
t

Parity ~ Receive Checker
Shift

Register

t
Received Character ~

Bit 7, Line
Status Register

.... Special Character I

RT To USA
Status R egister

Special
Character

Character with
Panty Error

-.
Flag

....

r
Flag 7 Data 0

7 0

7 0

7 0

Receive FIFO
Data Register

Figure 2·9. Parity Error and Special Character Reporting

(bit 5 in the Interrupt Enable Register). A second bit, bit 2
In the USART Status Register, is used to identify which
character In the FIFO is special. This bit is not set until the
special character is at the output of the FIFO. Bits in the
128-bit RAM are set and cleared by the external CPU.

Parity

Parity is checked on all received characters as they are
loaded into the receive FIFO in asynchronous mode only.
If a violation has occurred, parity is enabled (bit 3 of the
Line Control Register), and the parity error bit is set (bit 2
of the Line Status Register). If the receiver line status
interrupt is enabled (bit 2 of the Interrupt Enable Register),
an interrupt will be generated. A second status bit, bit 1 in
the USART Status Register, is set when the character con­
taining the parity error reaches the output of the FIFO.
This allows the user to identify which character in the
FIFO contains the parity error. The selection of even or
odd parity is made via bit 4 of the Line Control Register.

Stick Parity-The USART can be placed in a test mode
that forces the parity bit to be generated as follows when
parity is enabled:

If even parity is selected, the parity bit is always
transmitted as a O. The receiver expects the parity

2-16

bit received to be a 0 (i.e., if a 1 is received, an
error is generated). For odd parity, the reverse con­
ditions apply.

Frame Errors

Framing is valid only in the asynchronous mode of oper­
ation. Framing is not checked in the synchronous!
transparent mode.

Bit 3 of the Line Status Register is set if the received
character does not have a valid stop bit, and it is not a
break condition. A character with a frame error is not
loaded into the receive FIFO. An interrupt is generated if
the line status interrupt enable bit is set (bit 2 of the Inter­
rupt Enable Register).

Break Detection

Break detection is valid only in asynchronous mode.
Break detection does not take place in synchronous!
transparent mode.

Bit 4 in the Line Status Register is set if the receive data
input is held spacing (0) for more than a full character time
(start bit + data bits + parity bit + stop bits). The receive
line statul! interrupt enable bit (bit 2 of the Interrupt Enable
Register), must be set to generate an interrupt.

Transmitter

Data that have been placed into the transmit FIFO are
loaded into a parallel-to-serial shift register and shifted out
by the programmed transmit clock. Parity can be gener­
ated and appended to the data. The character length and
number of stop bits are programmable. Break indications
can be generated by the transmitter.

Shift Register

The shift register clock can come from either the baud rate
generator or from the transmit clock input pin. The input
source for the shift register clock is 16 times the data rate
in asynchronous mode, and 1 times the data rate in syn­
chronous/transparent mode. Synchronous/transparent
operation is selected via bit 2 of the USART Control Regis­
ter. In asynchronous mode, the transmit logic automati­
cally divides the clock by 16. Data are shifted out, LSB
first, on the falling edge of the clock. Clock source selec­
tion is made via the transmit clock selection (bit 1) in the
USART Control Register.

Bit 6 of the Line Status Register is set when the FIFO is
empty and the last bit has been shifted out of the shift
register. An interrupt is generated by this condition if bit 6
(transmit shift register empty) of the Interrupt Enable
Register is set.

Transmit FIFO

Data Movement-Data to be transmitted are loaded into
the transmit FIFO by the CPU. As the shift register
becomes empty it is reloaded from the FIFO.

Threshold-When the number of bytes in the FIFO is
equal to or less than a programmable threshold, the trans­
mit FIFO threshold reached bit is set in the Line Status
Register. An Interrupt is generated if bit 1, transmit FIFO
threshold reached, of the Interrupt Enable Register is set
when the FIFO level falls to the programmed threshold
level. The transition causes the interrupt, not the level in
the FIFO being at or below the threshold. The threshold is
programmed via bits 5 and 6 of the USART Control Regis­
ter. Line Status Register bit 5 is the equivalent of the trans­
mitter holding register empty bit in the 8250.

Parity-if selected, parity is generated as the data are
moved from the FIFO to the shift register.

Frame Generation

Frame generation takes place only in the asynchronous
mode of operation. The number of stop bits and character
length is programmed into the transmitter. These paramet­
ers also hold for the receiver. The number of stop bits is
programmed in the Line Control Register bit 2. The
character length is programmed by bits 0 and 1 of the Line
Control Register.

Break Generation

When the send break bit (bit 6 of the Line Control Regis­
ter) is set by the CPU, the USART will transmit an all
ZEROs pattern until the send break bit is reset by the
CPU. The USART will finish transmitting the current
character when the send break request is received.
(A minimum of ten contiguous ZERO bits will always be

2-17

sent when a break is requested.) The transmitter will
return High for at least one bit time following the transmis­
sion of a break before a new character will be sent. This
allows the start bit of the new character to be detected.
Break generation causes the transmit FIFO to be cleared.

Modem Control And Status Registers

The Modem Control Register provides handshake signals
for use in controlling communications between the IDPC
and the terminal. These signals are: RTS/, CTS/, DSR/,
and DTR/. RTS/ and DTR/ are outputs. They are controlled
by the CPU via bits 1 and 0 in the Modem Control Register,
respectively. CTS/ and DSR/ are inputs. Their status can
be read at Modem Status Register bits 4 and 5, respec­
tively. The CTS/ and DSR/ inputs can generate a modem
status interrupt if they have changed since the Modem
Status Register was last read. This interrupt is enabled via
Interrupt Enable Register bit 3. The change in CTS and
change in DSR bits in the Modem Status Register (0,1)
reflect the fact that the status of CTS/ or DSR/ has
changed since the Modem Status Register was last read.
Reading the Modem Status Register clears these bits.

Interrupt Controller

The USART generates one interrupt request to the CPU.
The Interrupt Enable Register is used to mask individual
interrupt sources. The interrupt request will be active until
the source of the interrupt is cleared. Bits 1, 2, and 3 of the
Interrupt Identification Register define the source of the
interrupt. When cleared, bit 0 indicates that an interrupt is
pending.

BIT SOURCE PRIORITY
321

000 MODEM STATUS FOURTH
001 XMIT FIFO THRESH. RCHD. THIRD
010 RECEIVE FIFO THRESH. RCHD. SECOND
011 RECEIVE LINE STATUS FIRST
100 RECEIVE FIFO TIME-OUT FIFTH
101 LAST CHARACTER SENT SIXTH

Data Clocks

The clock(s) used to transmit and receive data can come
from one of two sources, either the receive clock input
(RXCLK pin), or the baud rate generator. Clock selection
is made via bits 0 and 1 in the USART Control Register.

Baud Rate Generator

The baud rate generator is a programmable divider that
receives its input from the UASRTCLK pin and provides
the clock to the USART receiver and transmitter. The input
clock is divided by a programmable 16-bit (1-65535)·
divider. The programmable divider is configured by loading
the Divisor Latch LSB and Divisor Latch MSB registers.
These registers are accessed by setting the Divisor Latch
Access Bit (DLAB) (bit 7 in the Line Control Register), and
then writing to USART addresses 0 and 1. These are the
Data Registers and Interrupt Enable Register addresses
when the DLAB bit is cleared.

There is no enable/disable control for the baud rate
generator.

In the asynchronous mode, the baud rate generator must
be programmed to a value 16 times the data rate.

The output of the baud rate generator is fed to the
receiver, the transmitter, and the BDCLKOUT pin.

If the baud rate generator is programmed to divide by one,
the input signal (USARTCLK) is passed straight through
unaltered to the receiver and transmitter via the clock
selection multiplexors.

Clock Selection

The sources of the transmitter and receiver clocks are
independently selectable. For example, when bit 0 is set
in the USART Control Register, the receiver uses the out­
put of the baud rate generator for its clock. When bit 0 is
cleared, the RXCLK input is used. The same options apply
for the transmitter, except that in this case bit 1 in the
USART Control Register specifies the clock source.

DUAL-PORT MEMORY CONTROLLER

When the IDPC is used in host-based systems, the local
CPU and any external host communicate with one another
via shared memory (dual-port RAM). This memory is an
external SRAM that can be accessed by either the local
processor or the host CPU. The Dual-Port Memory Con­
troller (DPMC) provides the control functions necessary to
allow an ordinary SRAM to function as a dual-port device.
These functions include the memory cycle timing genera­
tion, control of the buffers and latches required to isolate
the host's system bus from the local processor's bus, and

LREQ

HREQ

Clock

LOT-A

HOT-A

- --+ISYNC ~~ Cycle
Arbitrator t

generation of the ready control signals back to the host
and the local processor (see Figure 2-10).

In addition to arbitrating accesses to the shared RAM, the
DPMC provides a semaphore mechanism (bidirectional
interprocessor interrupts) thaUs used to coordinate the
passing of high-level messages to and from the local pro­
cessor and the host.

Memory Cycle Arbitration and Control

The discussion of the RAM cycle arbitration and control is
divided into three parts: operational sequences, cycle tim­
ing and generation, and resolution of conflicting requests.

Operational Sequences

The DPMC generates the cycle timing for all accesses to
the shared RAM. The length of each cycle is fixed and is
independent of the cycle times of either the Local (L) pro­
cessor or the Host (H). Memory cycles are generated in
response to a request from either the local processor or
the host. In the case of conflicting requests, the DPMC
arbitrates the conflict, granting the first cycle to one
requester while holding off the other via the appropriate
ready line. The DPMC will arbitrate in favor of the local pro­
cessor, referred to as the L-port, if the memory was idle in
the prior cycle. This means that if the L-port has a request
pending (via the LREQ/ input) at the time when the arbitra­
tion mechanism is ready to start the next memory cycle
following a period of inactivity, the L-port will be granted
the cycle regardless of a request from the host (H-port). If

RAM
- Cycle

Timer

......
Local
Cycle

Control

--+
Host r---+ Cycle

Control

~ Local
Ready
Control

~ Host
Ready
Control

3

/

~

+-.}
~}

RAM
Interface

Local
BUS
Interface

Host BUS
Interface

LROY

HROY

Figure 2·10. Dual·Port Memory Controller Block Diagram

2-18

a request from the host (HREQ input pin) is present. or
becomes present during the existing cycle (L-cycle). the
next cycle will be granted to the host (H-cycle). If an
L-cycle request is received in the middle of an H-cyc1e the
local processor is held off. via its ready line. until the
H-cycle has completed.

L-cycle requests must be synchronous to the IOPC clock.
This is not a problem since the IOPC clock is the same as
the local processor clock and the memory cycle timing is
generated from the IOPC clock. H-cycle requests are
assumed to be asynchronous to the IOPC clock and are
synchronized internally.

Memory Cycle Timing

The memory cycle is two IOPC clock times in length. with
at least one clock time dead space inbetween any two
cycles. The OPMC is designed to operate within the timing
constraints of a 100 nanosecond SRAM. having the follow­
ing timing specifications in nanoseconds.

Read cycle time
Address access time
Chip select to output
Output enable to output valid
Write cycle time
Chip select to end of write
Address valid to end of write
Write pulse width

100Min
100 Max
100 Max
50 Max

100Min
80 Min
80Min
60 Min

Figure 2-11 shows the basic cycle timing.

Starting a Cycle-While the memory is idle the OPMC
samples the LREQI and HREQ inputs on the falling edge
of every IOPC clock cycle. If a request is present a cycle is
started. The starting of a cycle causes the following
actions to take place:

1. RAMCSI is driven active (Low).

2. Either LABEl or HABEl is driven active (Low).

RAMCSI provides the chip select control output to the
RAM. The chip select is provided to take advantage of the
power down mode available in most SRAMs. LABEl and
HABEl are the address buffer enable controls that place
the appropriate address on the memory bus. RAMCSI and
the address buffer enable signals (LABEl or HABEl)
remain active until the end of the memory cycle.

Determining Direction-On the next falling edge of the
IOPC clock the active port's direction control input line

IDPC Clotk

~ 1 (ClK)

t t
Sample LREQ/and Sample ReadIWrite
HREQ inputs - if active. direction input.
start a memory cycle ... output direction

controls ...

(LOT-RI or HOT-R/) is sampled. This determines whether
the cycle is a read or write cycle.

Write Cycle-If the direction control is sampled High
(write) the following actions are taken:

1. RAMWEI is driven active (Low).

2. LOBEl or HOBEI is driven active (Low).

RAMWEI is the RAM write strobe. It returns to its inactive
(High) state at the end of the cycle. LOBEl and HOBEI are
the data buffer enable controls that place the data to be
written into the RAM on the memory bus. They also return
to their inactive (High) state at the end of the cycle.

Read Cycle-If the direction control line is sampled Low
(read). the following happens:

1. RAMOEI is driven active (LOW).

2. LOLE or HOLE is driven active (High).

3. LOLOEI or HOLOEI is driven active (Low).

RAMOEI enables the RAM output drivers. LOLE and
HOLE place the appropriate data bus latch in its transpa­
rent state. LOLOEI and HOLOEI enable the data bus latch
outputs back to the local or host system bus. RAMOE/.
LOLE, and HOLE are cleared at the end of the cycle.
LOLOEI and HOLOEI are cleared when the cycle request
(LREQI or HREQ) is removed.

Ending the Cycle-The memory cycle ends on the next
falling edge of the IOPC clock. Note that the end of the
cycle is independent of the state of the LREQI and HREQ
inputs. These inputs will remain active until the end of the
local or host system bus cycle. The fact that they remain
active will not cause a new cycle to be started.

The LREQI and HREQ inputs are sampled on each suc­
cessive falling edge of the IOPC clock to determine if a
new cycle is to be started.

Conflicting Request Resolution

A conflict will occur in the event that the L-port requests a
cycle while an H-cycle is in progress. or the H-port
requests a cycle while either an L-cycle is in progress or
an L-port request is present.

If LREQI becomes active while an H-cycle is in progress
LROY is immediately driven inactive (Low). LROY is

1
t

End memory cycle

L
t

Sample LREQ/ and
HREQ ...

Figure 2-11. DPMC Cycle Timing

2-19

returned active at the start of the next memory cycle
(which will be an L-cycle).

NOTE: For an 80188, LRDY is connected to the 80188's
SRDY input (synchronous ready). SRDY is sampled on the
falling edge of the 80188's clock. Therefore, LRDY does
not return active until after the falling edge of the IDPC
clock that starts the memory cycle. LRDY meets the setup
time to the next falling edge of the 80188's clock in order to
be sampled active and end the 80188's cycle.

:h~ case in whi~h HREQ becomes active while an L-cycle
IS In progress IS handled exactly the same as above,
except that HRDY is used as the control signal instead of
LRDYand is held inactive until the end of the H-cycle.

The case where HREQ is active prior to the start of a cycle
and LREQ/ also becomes active, causes HRDY to be
driven inactive (Low) as soon as LREQ/ becomes active
assuming that the immediately previous cycle was an idl~
cycle. (If LREQ/ is already active-before the L-cycle
starts-HRDY is driven inactive as soon as HREQ
becomes active.) HRDY is returned active althe end olthe
H-cycle.

Interprocessor Interrupts

All communication between the local processor and the
host takes place through mailboxes located in shared
RAM. A mechanism is required to inform the recipient that
there is a message in his mailbox. Interrupts are used for
this task.

Operational Sequences
Message passing takes on two forms: local processor
sending to the host, and host sending to the local proces­
sor. When the local processor wishes to send a message

to the host, it first places the message in the host's mail­
box and then generates an interrupt request to the host.
The m~ilbox is located in t~e shared RAM-the message
can either ~e placed directly in the predefined, by
software, mailbox location, or a pointer to the message
can be placed in the mailbox. The host reads the message
and clears the interrupt request. Conversely, when the
host wishes to send a message to the local processor, it
places the message in the local processor's mailbox and
generates an Interrupt request to the local processor. The
local processor reads the message and clears the inter­
rupt request. The DPMC provides the hardware to facili­
tate the generation and clearing of these interrupt
requests.

Interrupt Generation

Figure 2-12 shows the interconnection of the interproces­
sor interrupt mechanism to the host and local processors.

Local Processor 10 Hoal Inlerrupl-The local proces­
s?r g.enerates an interrupt to the host by writing a ONE to
bit 0 In the Semaphore Register. The setting of this bit acti­
vates the host interrupt output (HINTOUT pin). The host
clears th~ bit, and therefore the HINTOUT pin, by pulsing
the host Interrupt acknowledge input (HINTACK pin). The
Semaphore Register can be read and written by the local
processor, but not by the host.

Hosl 10 Local Processor Inlerrupl-The host gener­
~tes an in~errupt to the local processor by pulsing the host
Interrupt Input (HINTIN pin). This sets bit 1 in the
Semaphore Register and activates the local interrupt out­
put (LiNTOUT pin). The local processor clears the inter­
rupt request (generated by the LlNTOUT line) by clearing
bit 1 in the Semaphore Register.

r-------
I SEMAPHORE I

LOCAL
CPU

I REGISTER I
I

,
HOSTINTREQ I I

I BIT 0
LOCAL INT CLR I ITHP I

I
I

I

LOCAL lNT OUT I BIT 1
I
I

ITLP I
I

I
I

I

I IOPC I -------,

HOSTINTACK

HOST1NTOUT

HOST1NTIN

NOTES: Local Interrupt Clear and Host Processor
Request are writes to the Semaphore Register
by the local processor.

ITLP • Interrupt to Local Processor
ITHP • Interrupt to Host Processor

Figure 2-12. DPMC Inter-Processor Interrupt Structure

2-20

HOST
CPU

Chapter 3

APPLICATIONS

The applications chapter is divided into three sections:
hardware interfacing, system applications, and AMO-pro­
vided software. The hardware interfacing section provides
details of interfacing with IOPC's Microprocessor Interface
(MPI), Serial Bus Port (SBP), and Oual-Port Memory Con­
troller (OPMC). The system architecture section presents
system examples of IOPC based embedded communica­
tion processors and terminal adaptors, as well as an intro­
duction to ISON software. The AMO provided software
section is a brief overview of the software packages avail­
able from AMO to support the IOPC.

HARDWARE INTERFACING

This section provides examples of how to interface to the
MPI including OMA, the SBP, and the OPMC. For refer­
ence, the IOPC pin descriptions are provided in the appen­
dix.

S!l 63

DlCINT 65

USARTINT 30 I RS-232 I Il§ .2A

DRIVER f CLK 20

AD :23
WIt 22

Am79C401

I RS-232 [--'" 6
RCVR

~ ADDR L ...

~ DATA ~
SBP l.-

S

~ t-
V'-I 'S'IIF ~ ...1'0. DATA

Am79C30A
...

.... ... A
DSC ADDR

""3
AD

WI!i'
Il§

XTAl1 Ia
XTAL2 ~

I
I

IDPC/80188 Interface

The IOPC has been designed to interface cleanly with the
80188/801886 processor. Figure 3-1 shows the intercon­
nection of the IOPC, 80188, and Am79C30A OSC.

Microprocessor Bus-The 80188 has a multiplexed
address/data bus, which must be de-multiplexed in order
to connect to the non-multiplexed bus of the IOPC, mem­
ory, etc. This is accomplished with an octal transparent
latch (74LS373); the 80188 ALE Signal provides the latch
control. The 80188 RO/ and WR/ signals are directly con­
nected to the IOPC signals of the same name. The IOPC
CS/ input is generated by the 80188 internal programma­
ble chip select generation logic; the lope is mapped
directly into either the 80188's I/O or memory address
space.

Clock-The 80188 has an on-chip oscillator that uses a
2X crystal to generate a master clock. This master clock is

DRO .n

DRO, • 1
INTO

~
ClK

~ AD
WI!i' ~
~
I.m§
INT2

80188

E ALE

.A. -'"

I
'373

f".r rv ADO-7

f= AS-15

r MCS

4 ~ ROM

~ DATA

II I
~ ADDR

ADDR DATA

~ c:5E RAM

:::r DATA

ADDR

~
WI!!

Figure 3-1. Am79C401, 80188, Am79C30A Interconnection Diagram

3-1

From OS
68008 R-W -----/ ":>c-+-t---ci y----.-.. RD

~-------.-. lOT-R

Q

'-----t>ClK Qb--. WR

CLR
Pull Up

Figure 3-2. 68008, Am79C401 Read, Write, DPMC-Directlon Control Signal Generation

provided as an output (ClKOUT), with all 80188 bus tim­
ing being related to it ClKOUT is used as the IOPC ClK
input. It is important to use this clock as the IOPC's master
clock if the OPMC is used, because the OPMC assumes
that requests to shared memory from the 80188 (lREQ/)
are synchronous to the ClK input.

DPMC 8ignals-Three OPMC signals connect to the
80188: lREO/, lDT-R/, and lRDY. lREQI is the local
request input and is generated by the 80188 whenever the
80188 is accessing shared memory. One of the 80188's
programmable address decode signals can be used for
this purpose. lDT-RI js the local bus direction input (Write
= T, Read = R). The 80188 generates a bus status signal
(51/) which indicates early in the bus cycle whether a read
or write is to be performed; 511 is connected directly to
lDT-Ri. The last DPMC signal to be connected to the
80188 is the lRDY output. lRDY indicates to the 80188
that its request for a shared memory cycle cannot be ser­
viced immediately, and that wait-states should be gener­
ated. lRDY is connected to the 80188 SRDY input, SRDY
is the synchronous ready input. lRDY meets the setup
and hold time requirements of the SROY input since it is
generated synchronously to ClK; which is connected to
the 80188 ClKOUT output. Note: lRDY is an open-drain
output and must be pulled-up to the. + 5V supply.

DMA Control 8lgnals-The IOPC's DMA request out­
puts (DRQO = DlC receiver, DR01 = DlC transmitter)
connect directly to the 80188 DMA controller's OMA
request inputs (DRQO, DRQ1). The DACKI input is more of
a problem, since the 80188 DMA controller does not gener­
ate an acknowledge signal. In some cases, the 80188
clock is operated at a slow enough speed that the DACK/
signal is not required. If this is not the case, a wait-state
can be added to the DMA cycle, or a OACK/ signal can be
constructed from other 80188 signals. Details of the
DACK/ signals operation and timing requirements are pre­
sented in the DMA interface section, later in this chapter.

An interrupt acknowledge signal can be generated for the
80188 by building a signal that is active only when the
80188's DMA controller is reading RAM memory space
(assuming that the only time the DMA controller reads the
RAM is when It Is loading the DlC Transmit FIFO). Such a
signal can be built by ANDing the 80188's RD/, DEN/, and

3-2

56 with one of the 80188's chip select outputs. RDI indi­
cates a read cycle, 56 indicates a OMA cycle, and the
80188 chip select output is programmed to indicate an
access to RAM. The DENI signal is active only while the
RO/, 56, and chip select signals are stable, providing a
clean DACK/ strobe.

IDPC/68000 Interface

Microprocessor Bus-The 68000 microprocessor bus
is significantly different from the 80188 bus. Aside from the
timing differences, the interface signals are different.
Specifically, the 80188 has separate read and write
strobes which provide direction and timing, while the
68000 has a single combined readlwrite signal indicating
direction, piUS a data strobe providing cycle timing. In
order to interface the IDPC to the 68000, read and write
strobes must be built. The example above shows an inter­
facefora 10 MHZ 68008.

Figure 3-2 shows a simple circuit for generating the read
(RD/) and write (WR/) strobes. The RDI strobe is built by
ANDing the data strobe (DS/) with the direction signal (R­
WI). Figure 3-3 shows the timing diagram. The RDI strobe
is brought lOW (active) by the falling edge of DSI qualified
by R-WI being HIGH, and returned HIGH by the rising
edge of DS/. The critical parameter is the deactivation of
RD/. DSI is guaranteed to return inactive (HIGH) 20 ns
(MIN) prior to the address bus becoming invalid. The IDPC
requires an address hold time of 15 ns (MAX). This means
that the maximum allowed propagation delay of the AND
gate (AND of lOWs) is 5 ns plus the minimum propagation
delay of the address bus buffer (if a buffer is present).

The WRI strobe is slightly more complicated since the
68008 outputs the DSI signal late in the write cycle, and
the IDPC initiates its write cycle from the leading edge (fai­
ling) of WR/. The solution is to use the R-WI signal which
is generated sufficiently early to create the leading edge of
WR/. The 01 output (WR/) of a D-flip-f1op is pre-set by the
falling edge or R-W/, which is inverted and NANDed with
DS/. The combination of R-WI with the absence of 051 is
required to prevent the Flip-Flop from being held in pre-set
since R-WI is active longer than DS/. WRI is returned inac­
tive by the rising edge of DS/. The deactivation ofWRI has
the same timing constraint that the deactivation of RDI

has (see above). WRI must be deactivated quickly when
OSI returns HIGH in order to meet the IOPC's 15 ns
address hold time.

DPMC Interface-The OPMC/68008 interface requires
the generation of two signals: lREO/, and lOT-R/. The
local access request (lREO/) is built by decoding the
address space of the shared memory, gated with the
68008's address strobe (AS/). The local direction control
lOT-RI is simply the inverted form of the R-WI signal (the
inverted R-WI signal is available as a by-product of the
generation of ROI and WRI - see Figure 3-2). The only
complication is in guaranteeing that lREOI will meet the

the set-up time to the falling edge of ClK, start of S3,
assuming that the IOPC clock and the 68008 clock are the
same. The ASI strobe, which is the gating factor in the
generation of lREO/, is generated too late to insure
proper operation. The solution is to latch the address
decode-ASI combination with the rising edge of ClK, start
of S4, insuring that lREOI will be stable prior to the sub­
sequent falling edge of ClK - see Figure 3-4. As a conse­
quence of this, one full clock cycle wait-state must be
added to the 68008 bus cycle. The wait-state is required
since the OPMC generates a 2-clock memory cycle, which
must end at or before the falling edge of S7.

Address ~<~------------~(~-----

R-W
FD

cs

Data

os

R-W

Data

20n8 !
~.~~------------------~~~

--------------~~ I
i :
~Onsi

Figure 3-3_ Read, Write timing

3-3

. .
l

)>---

Pull Up

Address PR
Decode

eLK elK Q LREQ

ClR

Pull Up

50 51 52 53 54/W 54/W 54 55 56 57 50

elK

LREQ

Address Decode·
AS ////

Figure 3·4. 68008, DPMC Local Access Request Generation

IDPC/DMA Interface

The IOPC can be connected directly to most OMA control­
lers that support source and destination synchronized
transfers. Care must be taken to insure that the deactiva­
tion of the ORQ1 (transmitter OMA request line) occurs
early enough to stop the OMA controller in time to prevent
the transfer of one too many bytes of data. This can occur
because the OMA controller does not write the last byte of
data into the transmit FIFO until the second half of the
OMA cycle. Data are read from RAM during the first half
cycle and deposited into the transmit FIFO during the sec­
ond half cycle, leaving little time for the OLC to deactivate
ORQ1 prior to the OMA controller sampling the request
input. This problem can be prevented in two ways:

1) Use of the DMA acknowledge output from the OMA con­
troller - connected to the OACKI pin on the IOPC. The
OMA acknowledge signal is activated at the beginning of
the OMA cycle, allowing time for the OLC to deactivate
ORQ1.

2) Adding a wait-state to the OMA cycle. If the OMA con­
troller does not provide an acknowledge output, or one

3-4

cannot be generated, a wait-state can be Inserted to pro­
vide more time prior to the OMA controller sampling
ORQ1.

The OLC will deactivate ORQ1 during the last cycle when
either the OACKI pin is activated, or when the WRI and
CSt pins become active, whichever occurs first. (Refer to
the ORQ timing specifications in the IOPC Data Sheet for
the ORQ inactive delay time. Refer to the Data Sheet of
the specific OMA controller used in your design to deter­
mine how much time is available prior to the OMA control­
ler falsely sampling ORQ1 and starting an unwanted OMA
cycle.)

The OMA channel that loads the OLe receive FIFO does
not have this problem since data are read from the receive
FIFO during the first half of the OMA cycle. In this case the
receive OMA request line (ORQO) is deactivated during
the last read cycle at the time that RO! and CSt become
active.

IDPC/Am79C30A Interface

In ISON applications, the IOPC's OLC is connected to the
Serial Bus Port (SBP) on the Am79C30A OSC, or
Am79C32A IOC. This provides the connection between
the OLC and the'S' Interface transceiver on the OSC. Tne
Serial Bus Ports on the IOPC's OLC and the OSC are time
slot multiplexed busses, with data input, data output,
clock, and frame synchronization signals (the IOPC's SBP
is operated in multiplexed mode). The IOPC's SBP is a
slave to the OSC's SBP in that the OSC provides the clock
and frame synchronization signals. The connection
between the IOPC and OSC is shown in Figure 3-5. (Note:
The IOPC's SBOUT pin, data output, is open-drain, and
must be pulled-up to the + 5V supply.)

DPMC/SRAM Interface

The OPMC has complete control of the timing of the
shared memory bus cycles. The OPMC generates signals
that control the RAM, the host bus interface logic, and the
local bus interface logic. Figure 3-6 shows the details of
the RAM/local bus/host bus interface.

RAM Control Signals-The OPMC generates three sig­
nals that control the RAM chip select - RAMCS/, write ena­
ble - RAM WEI, and output enable - RAMOE/. RAMCSI is
generated at the start of a memory access. RAM WEI and
RAMOEI are generated mid-cycle depending on whether
a write or read cycle is in progress. All three signals are
deactivated at the end of the cycle.

SBIN ..
SBOUT

Am79C30A
DSC SCLK

SFS

Local and Hoat Bu. Interface Control Signal.-The
local and host bus interfaces are identical and consist of
three-state buffers that connect the host (or local) address
bus to the RAM, a three-state buffer that connects the host
(or local) data bus to the RAM (write cycle), and a three­
state latch that connects the RAM to the host (or local)
data bus (read cycle). Refer to the OPMC section in Chap­
ter 2 for a description of the generation and timing of these
signals.

SYSTEM APPLICATIONS

This section is divided into two parts, the first provides an
introduction to the hardware architectures of terminal
adaptors and embedded communication controllers, and
the second covers ISON system applications.

Hardware System Architecture

The principle application for the IOPC is the connection of
equipment to a packet network. In this application, the net­
work interface can be either integrated into a host system,
or built as a stand-alone package, which is used to con­
nect non-network ready equipment to the network. The
two basic differences between these applications are: 1)
the integrated, or embedded, application has a system
processor (host) and a communication processor, while
the stand-alone device has only a single processor; 2) in
the integrated application, the communication between
the host system and the communication system takes
place over the parallel system bus, while in the stand-

~ +5V

~Pull-uP
"\ 62

SBOur

66 .. SBIN

67 • SCLK

2 •
SFS/XMIT/CLK

Am79C401
lope

Figure 3-5_ Am79C401, Am79C30A/32A Serial Bus Port Connection

3-5

80188 Data Bus 80188 Address Bus

t ~ ~
G

Read
{ LDLE

'373 Latch '244 Buffer '244 Buffer Local Bus Interface

LDLOE/~ OEI OEI OEI

Write~LDBEI tl .. 1 f
R/W ~LABEI Data RAMCSI

I"
~

~ - SRAMi4- RAMWEI

t -.-
AcidreSs ""--~ RAMOEI

~
G

Read
{ HOLE

'373 Latch '244 Buffer '244 Buffer Host Bus Interface
HDLOE/.-. OEI OEI OEI

Write ~HDBEI ~
f t ~ t

AMI ~HABEI

Host System Bus

Figure 3-6. DPMC RAM Interface

alone case, a serial communications channel is used. In
integrated applications, the Dual-Port Memory Controller
(DPMC) provides support for building a shared memory
Interface between the host system and the communica­
tions system. In stand-alone applications, the USART sup­
ports the serial channel between the non-network ready
device and the communications controller.

Embedded Communication Controllers

When the communication controller is built into the com­
puter or terminal, two interfaces are required: a network
interface for connecting to the packet network, and a
shared memory interface between the host system's pro­
cessor and the communications controller's local proces­
sor. The network interface is provided by the DLe in the
IDPC, and a physical interface transceiver. The IDPC's
Dual-Port Memory Controller (DPMC) supports the
shared memory interface, allowing messages and data to
be passed between the processors.

SNA Example-Figure 3-7 shows the block diagram of
an embedded communication processor for an SDLC
based SNA network.

Network Interface-The DLC in the IDPC provides
SDLC protocol support for data rates up to 2.048 Mbps. A

3-6

physical layer transceiver is used to connect the DLC's
Serial Bus Port to the network wiring. The SNA network
software runs on an 80188 microprocessor and associated
RAM and ROM.

Shared Memory Interface-Shared memory interfaces
consist of two parts, a block of shared memory, and a
mechanism for generating and acknowledging interrupts
between the processors.

The most common means of sharing a block of memory is
to use dual-port memory. If the size of the shared memory
block is small (approximately 2K bytes), a dual-port RAM
device can be used. If the required block of shared mem­
ory is large (8K bytes or more), as is typically the case in
communications systems, the use of true dual-port RAM
becomes prohibitive because of cost and required board
space. The alternative is to use a standard single-port
RAM and arbitrate accesses between the local and host
processors. The IDPC's DPMC performs this task by per­
forming the arbitration function and generating memory
cycles to the RAM. The interface between the host system
bus and the local processor's bus is provided by buffers
and latches. (Refer to the preceding DPMC interface sec­
tion for details of the bus interfaces.)

Typically, the shared memory space will be partitioned into
buffers and mailboxes. The buffers are used to transfer

Microprocessor r--- IDPC -r-
80188 . .r;:::::] Driver

Bus S -u::;;.,I

Micro- MPI OLCB
processor P ..J:;;l Receiver

~
L;;;:oI.I

-====:-------===~-.------- -----1
I DPMC

I
I r r I

I. Local Host
I

r-sharod I ROM I Bus RAM Bus Memory

r
Inter- Inter- System
face face I

I L ____________________________ _ __ .J

L J

I Host System Bus

Figure 3-7. SNA Embedded Communication Controller

Am79C401 IDPC

~
Serial
Bus t-

Terminal Port

I

SNA
Network

ISDN D€~ (Non-ISDN

41- USART 1\ (DLC/ .. Am79C32A S' Interface
'4 IDC

D~:
Driver/

Receiver

~

I MPI I ,.

Microprocessor Bus

t
RAM ROM

80188
Microprocessor

Figure 3-8. Terminal Adaptor

3-7

data, while the mailboxes are used to exchange com­
mands. When one processor places a message into the
other's mailbox, an Interrupt needs to be generated alert­
ing the recipient of Its presence. The DPMC contains an
interproeessor interrupt mechanism that allows both pro­
cessors to generate and acknowledge interrupt requests.

Terminal Adaptors

The terminal adaptor is a self-contained device that allows
non-network equipped terminals, or computers, to be con­
nected to a network. Figure 3-8 shows the block diagram
of a terminal adaptor for the ISDN. (A glossary of ISDN ter­
minology is provided at the end of the ISDN System Archi­
tecture section.) The basic building blocks include: An
ISDN'S' Interface transceiver, providing the physical layer
1 connection to the ISDN; a protocol controller for proces­
sing the ISDN D-channel (the D-channel is used to for net­
work call control); a B-channel protocol controller (the B­
channel carries user data over the ISDN); a USART, pro­
viding the terminal interface; and a microprocessor (with
RAM and ROM) to process both user data, and call con­
trol.

'S' Interface Transceiver and D-Channel Control­
ler-The'S' Interface transceiver and D-channel protocol
controller are provided by the Am79C32A ISDN Data Con­
troller (IDC). The'S' Interface transceiver provides the
physical layer connection to the ISDN network. The 0-
channel protocol controller provides support for the LAPD
packet protocol used over the D-channel. The ISDN 0-
channel is used for call control functions such as setting
up and tearing down the connection. (Refer to the
Software Application section for a discussion of the ISDN
software structure and D-channel functions.)

If voice facilities are desired in the terminal adaptor, the
Am79C30A Digital Subscriber Controller (DSC) would be
used in place of the Am79C32A IDC-This will be com­
mon, since the ISDN basic rate interface provides two
separate 64 kbps channels (in this case one would be
used for voice, the other for data). The Am79C30A DSC
and Am79C32A are software and pin compatible.

B-Channel Controller and Terminal Interface-The B­
channel protocol controller and terminal interface are pro­
vided by the IOPC. The IOPC's DLC serves as the B-chan­
nel controller. The DLC supports the three major packet
protocols commonly used over the ISDN B-channel; these
are X.25 (LAPB), V.120 (LAPD), and DMI (a slight variant
of LAPD). The DLC connects directly to the serial port on
the Am79C32A IDC (or Am79C30A DSC) via the IDPC
and IDC/DSC Serial Bus Ports.

The IDPC's USART provides the terminal interface. Asyn­
chronous terminals use the basic 8250 UART functions of
the USART block, while synchronous terminals use the
USART's synchronous/transparent mode.

Processor and Software-An 80188 microprocessor,
with associated RAM and ROM, provides the processing
power necessary to process the three separate data
streams (terminal to USART, ISDN B-channel, and ISDN
O-channel). The 80188 also provides a dual-channel DMA
controller, three programmable timers, an interrupt control­
ler, and chip select generation logic. The DMA controller is
used to support B-channel data movement between the
IDPC's DLC and memory. The programmable timers pro-

3-8

vide time bases required by the ISDN B- and D-channel
software. The interrupt controller and chip select
generator reduce the glue logic required to tie the system
together.

AMD provides various software packages that support ter­
minal adaptor applications, including: low-level drivers for
the IOPC and OSC (or IDC), AmLink LAPD/LAPB layer 2
software, and AmLink31ayer 3 code.

ISDN System Architecture

The ISDN provides a framework for voice and data com­
munication on a global scale. One application of the IDPC
in the ISDN Is the support of the transmission of user data
over the ISDN B-channels. In this application, the IDPC
performs protocol processing for the transmission of pack­
etized data. (A glossary of ISDN terminology is provided
at the end of this section.)

B-Channel Protocols

Data on the B-channel can take any form, so long as the
data rate is 64 kbps, but most applications will use exist­
ing protocols to take advantage of available software.

Layer 2-The 'major layer 2 packet protocols include:
SDLC, LAPB, and LAPD. SDLC is the protocol used over
IBM's System Network Architecture (SNA). LAPB is used
for X.25 networks. LAPD is used for the ISDN D-channel,
AT&T's Digital Multiplexed Interface protocol (DMI), and
the V.120 protocol. V.120 is significant for two reasons: first,
USing LAPD for both D-channel and B-channel, only one
layer 2 protocol is required, second, V.120 allows the
statistical multiplexing of multiple logical channels over a
single physical channel. While statistical multiplexing is
not new, V.120 represents the first international statistical
multiplexing standard.

Layer 3-Each layer 2 protocol has an associated layer 3
protocol. X.25 (LAPB) and DMI (LAP D) use the X.25
Packet Layer Protocol (PLP), while SNA (SDLC) and V.120
have their own specific layer 3 protocols.

Software Requirements For a Voice/Data PC
Plug-In Board

The following sections describe the layered structure of
communications software, using a PC-based ISDN VOice/
data application as an example. An IBM-PC running MS­
DOS is used as the host environment for this example;
however, the basic software structure is applicable to any
embedded processor environment.

Figure 3-9 shows the layering (partitioning) of ISDN
software In a personal computer (PC) running MS-DOS.

The fOllowing basic mechanisms characterize each of the
interfaces between software layers:

1. SET OF WELL-DEFINED PRIMITIVES (commands)
and associated parameters that each layer uses to com­
municate with an adjacent layer.

2. MAILBOX in RAM where a layer writes a primitive com­
mand code (and associated parameters) to be read by an
adjacent layer and where the adjacent layer writes any
responses.

Data Voice

1 L
Application Layer 7

MS-DOS Device Driver Layers 4-6

r!, r!!.nmns.. o.!l. th.e fC_CfU ______ ----------------!.a~e
Laye
Co-p

rs running on the Communications
rocessor

,
D-Channel

Layer 3
(Signalling)

~

,
D-Channel

Layer 2
(LAPD)

•

•
Am79C30A
Low-Level

Driver

~

,
Am79C30A
Hardware

,
..

Coordinating Entity
..

..

.. Management
Entity

..

Figure 3·9. Software Layering for ISDN PC Application

3·9

H

B-Channel
Layer 3

(X.25 PLP)
~

,
B-Channel

Layer 2
(LAPD/LAPB)

•
Am79C401
Low-Level

Driver

~

"
Am79C401
Hardware

3. INTERLAYER NOTIFICATION MECHANISM invoked
by a requesting layer to Cause an adjacent layer to read a
mailbox and execute the primitive previously written there
by the requesting layer. This notification mechanism can
be a subroutine call, a software interrupt, or a hardware
interrupt, depending on the individual interface.

Software Layers

The following is a general description.of each of the layers
depicted in Figure 3-9, from the top down.

Software running on the PC CPU:

The Application Layer (Layer 7)-interacts with the PC
user to get the telephone number to dial and the data to be
transferred across the ISDN network. These data may
take the form of a disk file or data typed interactively on
the PC keyboard.

The MS-DOS Device Driver (Layers 4-6)-converts
system call requests from the application layer (e.g.,
OPEN, WRITE) into primitives for the coordinating entity
to execute. Similarly, the MS-DOS device driver receives
primitives from the coordinating entity (e.g., containing
user data from the far end of the telephone connection) for
transfer to the application via a READ system call.

Software running on the Communications Co-Pro­
cessor:

The Coordinating Entity (CE)-coordinates the activi­
ties of the D-channel and the B-channel. For example, the
CE ensures that an ISDN call has been set up (other end
has answered the phone) before allowing any user data to
be transferred on the B-channel. When stimulated by the
MS-DOS device driver to initiate a data call, the coordinat­
ing entity exchanges primitives with the D-channellayer 3,
the management entity, and the B-channel layer 3 to
accomplish call setup. Once a call has been set up, the
CE transfers user data between the MS-DOS device
driver and the B-channellayer 3.

D-Channel Layer 3 (Slgnalling)-exchanges mes­
sages with the ISDN network to set up and tear down
voice and data calls. These messages contain information
such as the number to dial and information about call
progress such as dial tone, ringing or busy, and answered.
The CCITT 0.931 speCification describes the signalling
protocol.

D-Channel Layer 2-provides a reliable, error-controlled
data transport service for carrying layer 3 messages to
and from the ISDN network. The CCITT 0.921 (LAPD)
specification describes the protocol used at layer 2 of the
D-channel.

Am79C30A DSC Low-Level Driver (Am79LLD30A)­
provides hardware independence to layer 2 by handling all
details of programming the Am79C30A DSC registers.

B-Channel Layer 3-provides reliable, error-controlled
transfer of user data, independent of the layer 2 protocol
in use. An example of the B-channellayer 3 protocol is the
X.25 Packet Layer Protocol (X.25 PLP), which is used for
both X.25 and the Digital Multiplexed Interface (DMI).

3-10

B-Channel Layer 2-provides a reliable, error-controlled
data transport service for carrying layer 3 messages to
and from the next link. Examples of layer 2 protocols that
may run on the S-channel include LAPS, LAPD, or SDLC.

Am79C401 IDPC Low-Level Driver (Am79LLD401)­
provides hardware independence to layer 2 by handling all
details of programming the Am79C401 IDPC registers.

The Manegement Entity (ME)-provides the glue
necessary to make all the other layers running on the com­
munications co-processor work together smoothly. Among
the functions performed by the ME are:

• Provide real-time executive services such as task
scheduling, timer services, buffer allocation and inter­
layer primitive queuing.

• Collect error statistics such as CRC errors per second
and notify other layers if errors exceed pre-selected
thresholds.

• Control LLD functions which are not handled by layer 2
such as Am79C30A DSC tone generation to the voice
handset (e.g., dial tone).

Software Considerations

In general, each layer "hides" complexity from the adja­
cent higher layer. In other words, a relatively simple primi­
tive command transmitted from a higher layer may result
in a series of complex actions by the lower layer. For
example, when a layer 3 entity sends the "transmit user
data" primitive to layer 2, the layer 2 entity performs sev­
eral actions such as transmitting a frame, receiving an
acknowledgment frame, and possibly retransmitting the
frame if it was not received successfully. The layer 3 entity
is never aware of whether a retransmission is required or
not; layer 3 assumes that layer 2 takes care of these
details.

An advantage of proper software layering is that it allows
several different protocols in one layer to share the
facilities provided by a single protocol in an adjacent layer.
For example, the CCITT layer 2 0.921 protocol can carry
(multiplex) the messages of both of the following layer 3
protocols:

• The D-channel layer 3 signalling protocol (CCITT
0.931) for call setup.

• X.25 layer 3 for transferring user data (e.g., contents of
a user disk file) on the D-channel.

Similarly, the Am79C30A DSC and Am79C401 IDPC low­
level drivers present a common, hardware-independent
interface to layer 2 such that the same layer 2 code may
be shared by both D-channel and S-channel.

One of the significant features of ISDN is that different B­
channel protocols may be used on different calls made
from the same terminal. In addition, there is another set of
layered protocols running on the D-channel at the same
time that a given set of layers is running on the S-channel.

This multiplicity of protocols running on one communica­
tions interface is quite different from the traditional inter-

face running a single integrated protocol (e.g., running
X.25 or SNAlSDLC, but not both). At present, some com­
puters have more than one communications protocol avail­
able, but each protocol has its own dedicated interface
software and hardware.

This potential for different protocols running on the same
hardware on a phone call by call basis has implications
such as the need for disciplined layering and sufficient
processing horsepower and memory in ISDN terminals.

ISDN Software Glossary

B-CHANNEL-ISDN "Bearer" channel on which digitized
voice or user data is transported. The B-channel data rate
is 64 kbps.

BRI-Basic Rate Interface. ISDN terminal interface con­
sisting of two B-channels and one D-channel (2B+D).
Either voice or data may be transported on either B-chan­
nel.

CCITT -International Telegraph and Telephone Consulta­
tive Committee developing ISDN protocol standards.

COORDINATING ENTITY-ISDN software layer which
coordinates the activities of the D-channel and B-chan­
nel(s).

D-CHANNEL-ISDN channel on which messages are
exchanged between terminal and network to establish
voice and data calls on the B-channel(s). Optionally, the
D-channel may be used to transport user data. The 0-
channel data rate is 64 kbps.

DMI-Digital Multiplexed Interface. A set of D-channel
and B-channel protocols for the PBX-to-ISDN primary rate
interface. Of interest to the BRI terminal world are the DMI
B-channel protocols referred to as "Mode 2" and "Mode 3"
which BRI terminals may use to communicate with BRI
host computers via ISDN and/or PBXs.

HDLC-High-Level Data Link Control. Prototype bit­
oriented layer 2 protocol.

ISO-International Standards Organization.

LAPB-Link Access Protocol Balanced. Layer 2 of X.25.
Derived from HDLC.

LAPD-Link Access Protocol on the D-Channel. LAPD is
also used as the V.120 layer 2 protocol, and is defined by
CCITT 0.921 specification. Derived from HDLC.

MANAGEMENT ENTITY-ISDN software entity that pro­
vides operating system services and overall coordination
to all software layers.

OSI MODEL-Seven-Iayered Open Systems Interconnec­
tion model developed by the ISO describing hierarchy for
organizing communications software.

0.921-CCITT protocol standard describing LAPD. Pri­
mary application is as D-channel layer 2 but may also be
used on the B-channel. Also referred to as CCITT Recom­
mendation 1.441.

3-11

0.931-CCITT protocol standard describing D-channel
layer 3 signalling. Also referred to as CCITT Recommen­
dation 1.451.

Signalling-D-Channel layer 3 message exchange
be1ween terminal and ne1work to set up and tear down
voice and data calls. Signalling messages convey such
information as RINGING or BUSY and ANSWERED. See
0.931.

V.120-A statistical multiplexing protocol based on LAPD,
for terminal adaptation. V.120 also specifies the terminal
interface and the layer 3 and 4 protocols.

X.25 PLP-X.25 Packet Layer Protocol. Layer 3 of X.25
(also used as layer 3 of the DMI protocol).

SOFTWARE AVAILABLE FROM AMD

In order to reduce the development cost and time to mar­
ket of products using the IDPC, Advanced Micro Devices
has designed a series of software packages. These pack­
ages are available from AMD for a one time license fee,
and include source code, documentation, and unlimited
binary distribution rights. The packages are:

Am79LLD401 Low Level Device Driver-The Low­
Level Driver provides initialization and full control of the
IDPC DLC, creating a clean hardware independent inter­
face to the higher layer software.

Am Link LAPD/LAPB-The AmLink LAPD/LAPB
software package works with the IDPC and the
Am79LLD401 Low-Level Driver to provide a complete
LAPD and LAPB solution. AmLink supports the concurrent
operation of multiple channels, using multiple data link
controllers.

AmLlnk3'· Layer 3-The AmLink3 package network
layer support for both the ISDN D-channel and the X.25
Packet Layer Protocol (PLP).

Am79LLD401 Low-Level Device Driver

The Low-Level Driver isolates higher layer software from
the hardware details of the IDPC. The code is written
primarily in 'c' (Microsoft 'c' Compiler version 4.0 or
higher), with approximately 5% written in 8088 assembly
language (Microsoft Macro Assembler version 5.0 or
higher). The LLD is primitive driven, interfacing to the
layer 2 software (L2) and the operating system (Manage­
ment Entity - ME) via mailbox structures. These primitives
and mailboxes are described in detail in Chapter 5.

The LLD provides Command primitives that:

• Transmit a Buffer
• Initialize the DLC
• DLC Control
• Update Address Recognition
• Abort the Current Transmit
• Load a New Event Enables
• Begin Remote Loopback
• End Remote Loopback
• Begin Local Loopback
• End Local Loopback

In response to hardware conditions, the LLD generates
the following Event primitives:

• Transmission Complete
• Packet Received
• Error Status
• Buffer Allocation Request

AmLink LAPD/LAPB

The AmLink LAPD/LAPB software package combines with
the IDPC and the Am79LLD401 Low-Level Driver (LLD) to
provide a complete solution for layer 2 of the ISO-OSI
seven layer communications model (data link layer). The
software is written in 'C' (Microsoft 'C' Compiler version
4.0 or higher) and provides complete operating system
independence.

D-Channel

M
a
n
a
9
e
m
e
n
t

E
n
t
i
t
Y

E = Event Mailbox
C = Command Mailbox

Interfaces-As can be seen In Figure 3-10, the AmLink
LAPD/LAPB software Interfaces to the LLD, the Manage­
ment Entity (ME), and the layer 3 software via a set of
mailboxes. Command and event primitives are passed
between software entitles via these mailboxes. The mail­
box structure and primitives are described in detail in the
AmLink Reference Guide (PID #09529).

Flexibility-One of the key features of the AmLink LAPDI
LAPB package is the flexibility to handle multiple logical
connections over multiple physical channels, with unli­
mited window sizes. The re-entrant nature of the software
and the configurable nature of the link parameters allows
a single body of code to simultaneously support multiple
physical devices, as well as multiple logical channels over
a single physical channel. This allows the statistical multi­
plexing of multiple separate conversations over a single
physical channel.

AmLink
LAPO/LAPB

B-Channel

Am79C401
IOPC

Layer 3

Layer 2

Layer 1

Figure 3-10. Am Link Software Layer Diagram

3-12

Layer 3 Drivers Management Entity (ME)

11
Input Routine

State Machine
Handler

CCITTQ.921
Table

Layer 3

Output
Processor

Drivers ME

Figure 3-11. AmLlnk Code Structure

Code Structure-AmLink LAPD/LAPB software uses a
state table structure (see Figure 3·11), providing flexibility
and maintainability. Inputs can be received from the LLD,
ME, or layer 3 entities (via mailboxes). These are proces­
sed and fed to the state machine handler. The state
machine handler uses these inputs along with the LAPDI
LAPB state tables to generate outputs to the output pro­
cessor. The output processor connects to the LLD, ME,
and layer 3 entities via mailboxes.

AmLink3™ Layer 3

The AmLink3 package supports two layer 3 standards,
X.25 and Q.931. X.25 is used in both X.25 networks and
ISDN (both B- and D-channels). 0.931 is the ISDN call
control standard. While the X.25 standard is fairly stable,
0.931 is not. There are significant variations depending on

3-13

the ISDN switch (PABX or Central Office) in use. For this
reason, several versions of the AmLink3 package are
available for specific switches.

The software is designed to interface directly to the
AmLink LAPD/LAPB primitives using the mailbox structure
mentioned above. A similar set of mailboxes and primi­
tives is provided for interfacing to layer 4 software. The
mailbox structure and primitives are described in detail in
the AmLink3 Reference Guide (PID #10812).

Chapter 4

PROGRAMMING THE IOPC

The IOPC is comprised of three basic modules: the OLC,
USART, and OPMC. Each module operates independently
of the other modules, and is programmed independently.
The following sections cover each module in turn. Each
section contains three parts: a discussion of the module's
programmable features, a programmable options section
discussing their use, and finally, a set of operational
sequences providing programming details,including
initialization, normal operation, and exception handling.

The IOPC is controlled via internal registers that are writ­
ten and read by software running on the external "local"
processor connected to the IOPC external bus. These
internal registers may be mapped into either memory or 1/
o space, but typically are memory mapped.

The internal registers occupy a 64-byte block located in
the local processor's memory address space. The starting
address of the memory block is determined by address
decode logic (external to the IOPC) that is used to gener­
ate the IOPC Chip Select signal (CS/). The registers and
their respective memory offset values are listed in Tables
4-1,4-2,4-4, and 4-5.

In systems containing more than one microprocessor
(e.g., a workstation application with host processor and
local processor), normally only the local processor can
access the IOPC registers. The host processor, however,
can control IOPC operations indirectly by issuing requests
to the local processor via shared memory supported by
the Oual-Port Memory Controller.

The programmable registers are used for establishing
modes of operation, configuring the IOPC, and monitor­
ing/reporting status.

Table 4-1.IDPC Address Map

Offset (Hex)
0O-IF
20-3E

3F

DATA LINK CONTROLLER
PROGRAMMING

Block
OLC
USART
OPMC

OLe PROGRAMMABLE FEATURES

The OLC is comprised of two sub-blocks: the transmitter
and the receiver.

"n"ansmltter Programmable Features

The OLC programmable features include:

• Transmit Enable-the transmitter may be discon­
nected from the output pin, leaving other transmit func­
tions intact (OLC Command/Control Register).

• Abort-interrupts a frame by sending at least one Abort
character and places the transmitter in the abort condi-

4·1

tion (OLC Command/Control Register).

• Flag Idle/Mark Idle-may be selected as an idle condi­
tion between frames (OLC Command/Control Register).

• CRC Generation-may be enabled or disabled inde­
pendent of CRC checking being enabled (OLC Com­
mand/Control Register).

• FIFO Threshold-user can select threshold of 0 to 15
bytes. When the level of the transmit FIFO falls to this
level or below, status is set and a OMA request is gener­
ated, unless the last byte of the packet is still in the FIFO
(FIFO Threshold Register).

• Interrupts-the following transmitter-related interrupts
can be selectively enabled and disabled:

• Valid packet sent
• FIFO buffer available
• Transmit threshold reached
• Transmit underrun

Receiver Programmable Features

The OLC receiver programmable features include:

• Receiver Enable-when disabled, the receiver is dis­
connected from the receive data input pin, leaving other
receiver functions intact (OLC Command/Control Regis­
ter).

• CRC Check-selectively enables or disables the inter­
nal CRC compare operation, independent of CRC gener­
ation being enabled (OLC Command/Control Register).

• CRC Pass Through-the FCS Field can optionally be
placed into the FIFO with the data (OLC Command/Con­
trol Register).

• Address Recognition-program any combination of
four programmable one- or two-byte addresses plus the
broadcast address. In the I-byte mode, either the first or
second byte can be selected. The command/response
bit (bit 1 of the first byte) can be ignored (optional) (Ad­
dress Control Register).

• Minimum Packet Size-defines the minimum packet
size in use. A short frame error is indicated if a packet is
received containing fewer than the programmed number
of bytes (1-15) (Minimum Receive Packet Size Regis­
ter).

• Maximum Packet Slze...:...defines the maximum packet
size in use. This prevents buffer overruns in the event of
lost flags or protocol violations (3-65,538) (Maximum
Receive Packet Size Register) .

• FIFO Threshold-select threshold of 2 to 32 bytes.
When the level of the Receive FIFO reaches this level or
above, status is set and a OMA request is generated (un­
less the last byte of a packet has already been read from

the FIFO and status for that packet has not yet been
read by the user - this forms an interlock that maintains
synchronization between packet status and data) (FIFO
Threshold Register).

• Interrupts-the following DLC receiver interrupts may
be selectively enabled or disabled:

• Valid packet received
• Abort received
• Non-integer number of bytes received
• CRCerror
• Short frame error
• Long Frame Error
• FIFO buffer overrun error
• Receive threshold reached
• Receive data available
• Change in mark idle
• Change in flag idle
• Change in in-frame
• End-of-packet in receive FIFO

Transmit/Receive Programmable Features

The following programmable features affect both the DLC
transmitter and receiver:

• Inversion-the output of the transmitter and the input
of the receiver will be inverted if this option is selected
(Serial Bus Port Control Register).

• Channel Selection-up to thirty-one 8-bit time slots for
multiplexing transmitted serial data and demultiplexing
received serial data may be chosen. In the non-multip­
lexed mode, received serial data are continuous, not
gated, and the SFS/XMITCLK pin is used as a transmit
clock input separate from the receive clock input (Serial
Bus Port Control Register).

• Local Loopback-the DLC can be programmed to
route transmitted data to the receiver for diagnostic pur­
poses (Serial Bus Port Control Register).

• Remote Loopback-The DLC can be programmed to
route received data to the transmit data output for
remote testing capabilities (Serial Bus Port Control
Register).

• Reset-a software reset can be generated to stop all
functions, clear the FIFOs, and set all registers to their
default values (Command/Control Register).

DLe Register Map

The DLC contains 23 registers, as shown in Table 4-2.

OLe Programmable Operations

The following section provides an introduction to program­
ming the DLC to perform basic operations, including:

• Address recognition
• OMA operation
• Non-DMA operation
• Receive packet status stacking mechanism
• Receive packet status processing

Address Recognition

The OLC receiver can be programmed to inspect the addres­
ses of incoming packets. If an address match occurs, the
DLC will receive the packet, if no match occurs, the packet is
ignored. The following programmable options are available:

First Byte Address Oetectlon-The first byte after the
opening flag is inspected.

Table 4-2. OLC Registers

Offset Size
(Hex) Register Name (Bytes) Type

00 Command/Control Register 1 Read/Write
01 Address Control Register 1 ReadlWrlte
02 Link Address Recognition Register 0 2 ReadlWrlte
04 Link Address Recognition Register 1 2 ReadlWrlte
06 Link Address Recognition Register 2 2 Read/Write
08 Link Address Recognition Register 3 2 ReadlWrite
OA Serial Bus Port Control Register 1 ReadlWrite
OB Minimum Receive Packet Size Register 1 ReadlWrite
OC Maximum Receive Packet Size Register 2 Read/Write
OE Interrupt Source Interrupt Enable Register 1 Read/Write
OF Receive Frame Interrupt Enable Register 1 ReadlWrite
10 Receive Link Interrupt Enable Register 1 ReadlWrite
11 FIFO Status Interrupt Enable Register 1 ReadlWrite
12 Transmit Byte Count Register 2 ReadlWrite
14 FIFO Threshold Register 1 ReadlWrite
15 Interrupt Source Register 1 Read Only
16 Receive Byte Count Register 2 Read Only
18 Receive Frame Status Register 1 Read Only
19 Receive Link Status Register 1 Read Only
1A FIFO Status Register 1 Read Only
1B Receive FIFO Data Register 1 Read Only
1C Transmit FIFO Data Register 1 Write Only
10 Residual Bit Control Status Register 1 ReadlWrite

1E-1F Reserved 2 -

4-2

Second Byte Address Detection-The second byte after
the opening flag is inspected.

First lWo Byte Address Detection-Both the first and
second bytes alter the opening flag is inspected.

Ignore Command/Response Bit-In some protocols, the
second bit in the first address byte (Bit 1) is used to indicate
both whether the packet is a command or a response. The
command/response bit is not considered as part of the
address lield. The DLC can be programmed to optionally
ignore the command/response bit when making address
comparisons.

The DLC has live address detectors. Four of these are user
programmable, the fifth is hard-wired to an all ones value
(broadcast). The command/response bit (Bit 1) of the broad­
cast address detector can optionally be ignored. Addition­
ally, in two byte mode, Bit a of the first broadcast address
byte (extended address bit) is expected to be zero. Each
address detector can be enabled or disabled. Additionally, if
address recognition is disabled, all packets are received
regardless of their address.

Programming-Table 4-3 lists the various addressing
options, and the registers/bits that are used to program
them.

Table 4-3. Addressing Options

One/two byte addressing Bit 5, DLC Address Control
Register

First/Second byte Bit 7, DLC Address Control
(one byte mode) Register

Command/Response bit Bit 6, DLC Address Control
checking Register

Address detector #0 Bit 0, DLC Address Control
enable Register

Address detector #1 Bit 1, DLC Address Control
enable Register

Address detector #2 Bit 2, DLC Address Control
enable Register

Address detector #3 Bit 3, DLC Address Control
enable Register

Broadcast address Bit 4, DLC Address Control
detector enable Register

Addresses are programmed into the four address detectors
via the four Link Address Registers (two bytes each).

Address Reporting-When a packet is received, the iden­
tification of the address detector that matched the packets
address is reported via a three-bit field in the Interrupt
Source Register.

000 Address Detector a
001 Address Detector 1
010 Address Detector 2
011 Address Detector 3
100 Broadcast Detector
101 NotUsed
110 No Packet Received
111 Packet Received, All Address Detectors Disabled

DMA Operation

DMA can be used to move data in and out of the DLC

4-3

FIFOs. Each FIFO generates an output signal that indi­
cates to a DMA controller that data need to be moved. The
receive FIFO generates DRQo, the transmit FIFO gener­
atesORQ1'

Receiver DMA Operatlon-The DRQo signal is acti­
vated by two conditions, the level in the Receive FIFO ris­
ing to the programmed threshold, or the last byte of a
packet being placed in the FIFO. In the case where the
FIFO threshold caused the activation, DRQo will remain
active until the FIFO is empty. In the case of an end of
packet (EOP), ORQo will be active only until the last byte
of the packet has been read from the FIFO- regardless of
the level of data in the FIFO, or of the presence of addi­
tional EOP indicators in the FIFO. In the case where DRQo
was activated by an EOP condition, it will remain inactive
until the least significant byte of the Receive Byte Count
Register is read, preventing data from the next packet
from being read out of the FIFO until the status of the cur­
rent packet is read from the stacked status registers (refer
to the description of delayed-stacked status reporting).
This insures that the status information for a given packet
stays in synchronization with that packet's data.

The OLC receiver does not require an acknowledge signal
from the DMA. This is because the OMA reads the
Receive FIFO at the beginning of the OMA cycle, and then
writes the data to memory in the second half of the OMA
cycle. This gives the FIFO sufficient time to deactivate
ORQo when the last byte of data (or EOP byte) is read
from the FIFO, preventing the OMA from attempting a fol­
low-on read of the now empty FIFO.

Transmitter DMA Operation-Unlike the receive FIFO,
the transmit FIFO is set up to allow data from only one
packet to be in the FIFO at one time. This greatly simplifies
operation in the event of an abort or underrun condition.
This does not prevent the DMA controller from being set
up to transfer several packets at a time. The ORQl signal
will automatically control the loading of the FIFO such that
data from only one packet at a time will be moved into the
FIFO.

The ORQl signal is activated when the transmit byte
counter is not zero, and the level in the FIFO is at or below
the programmed threshold value. DRQl is de-activated
when-either the TBC reaches zero (the last byte of the
packet is placed into the FIFO), or the FIFO becomes full.
If DRQl was de-activated by the loading of the last byte of
a packet (TBC = 0), it will be reactivated as soon as this
last byte is moved out of the FIFO Into the parallel-to­
serial shift register. Assuming CRC operation, this gives
four character times to load the first byte of a new packet
into the FIFO to insure the transmission of back-to-back
packets.

Unlike the receive FIFO, an acknowledge signal may be
required from the transmit DMA Controller. This Is because
the transmit FIFO is loaded at the end of a OMA cycle (the
receive FIFO is serviced at the start of a OMA cycle).
Insufficient time Is available, once the last Write operation
to the FIFO is started, to deactivate ORQl before an addi­
tional (unwanted) DMA cycle is started. If the DMA Con­
troller provides an acknowledge Signal, this can be con­
nected to the IOPC's OACKI pin. (OMA acknowledge sig­
nals are generated at the beginning of the DMA cycle, pro­
viding time to deactivate ORQ1') If an acknowledge signal
is not available, or cannot be constructed, a wait-state can

be added to the DMA cycle. This will provide sufficient
time for the FIFO to detect that a byte is being written into
the FIFO Data Register, and deactivate DRQ1'

Non-OMA Operation

In systems where DMA is not used to move data in and out
01 the DLC FIFOs, the microprocessor must transfer the
data.

Receive FIFO-Data is moved out of the receive FIFO in
response to two interrupts: FIFO threshold reached, and
end-ol-packet in receive FIFO. Both of these interrupts are
reported via the FIFO Status Register. In response to a
FIFO threshold reached interrupt, the number of bytes to
be read is known, the value programmed into the receive
FIFO threshold field in the FIFO Threshold Register. In this
case, the microprocessor can execute a string move
instruction, moving that number of bytes. In the case of an
end-of-packet in receive FIFO interrupt, the number of
bytes to be moved is not known (it will always be less than
or equal to the threshold value). The procedure for unload­
ing the receive FIFO is as follows: the microprocessor
reads the Receive FIFO Data Register and stores the byte
in memory. Then the data available bit in the FIFO Status
Register is tested. Data is moved from the receive FIFO as
long as the data available bit is set. The receive FIFO is
designed to de-activate the data available bit when the
last byte of the packet is read from the receive FIFO, even
if there are additional data in the FIFO (these data would
belong to a new packet.) The de-activation of the data
available bit identifies the packet boundary, indicating that
it is time to service the packet status information. When
the packet status is serviced, the receive byte counter is
always read last. (Reading the least significant byte of the
receive byte counter clears the status registers of the data
for the packet). When the least significant byte of the
receive byte counter is read, the data available bit will
return active if there are data from a new packet in the
receive FIFO. This mechanism insures that packet data
and status are synchronized. A description of the delayed­
stacked status mechanism is provided below.

Transmit FIFO-The transmit FIFO is serviced in
response to a transmit FIFO threshold reached interrupt. If
the number of bytes yet to be loaded into the transmit
FIFO exceeds the programmed threshold level (FIFO
Threshold Register), a string move can be used to move
the data. For example, if the threshold is programmed at
2, a threshold reached interrupt indicates that 14 bytes
can be loaded into the transmit FIFO. If the number of
bytes remaining to be loaded is fewer than 16 minus the
programmed threshold value, or if the number of bytes to
be loaded is unknown, a polled procedure is required. In
this case, a byte is loaded into the transmit FIFO and then
the buffer available bit in the FIFO Status Register is
tested. If it is active, another byte can be loaded into the
transmit FIFO. The buffer available bit will remain active
as long as the transmit FIFO is not full -AND- the transmit
byte counter is not zero. (The TBC counts down to zero
when all of the data for a given packet have been loaded.)
The buffer available bit becoming inactive indicates that
the transmit FIFO is full, or that the last byte of the packet
has been loaded into the transmit FIFO. If the buffet avail­
able bit became inactive because of the TBC reaching
zero, it will remain inactive until the last byte of the packet
has moved from the transmit FIFO into the serial-to-paral­
lei shift register. This prevents data from more than one
packet at a time from being placed into the transmit FIFO.

4-4

Receive Packet Status Stacking Mechanism

The DLC receiver contains a mechanism that allows multi­
ple packets to be received without losing the unprocessed
status information for previously received packets. Up to
four packets can be received before the status of the first
packet must be processed. If the status for the first packet
has not been processed by the time the closing flag of the
fourth packet is detected, the receiver will be prevented
from receiving additional packets. The receiver will be re­
enabled when the status for the first packet is processed.
This status log is referred to as the status stack. All regis­
ters or portions of registers that report status information
on received packets are stacked registers; these include:
The Receive Byte Count Register, the Receive Frame
Status Register, the link address and valid packet received
bit fields of the Interrupt Source Register, and the received
bit residue count field of the Residual Bit Status Control
Register.

These registers and bit fields are cleared when they are
read. Additionally, they are cleared when the least signifi­
cant byte of the Receive Byte Count Register is read. In
most cases, the receive packet processing software will
need to read only the Interrupt Source Register and the
Receive Byte Count Register-the Receive Frame Status
Register contains error conditions, and needs only to be
read if the receive frame status bit (and, therefore, not the
valid packet received bit) is set in the Interrupt Source
Register, and the received bit residue count field needs
only to be read if the protocol in use allows packets to con­
tain a non-integer number of bytes. By clearing out any
unread status for the packet when the least significant
byte of the Receive Byte Count Register is read, syn­
chronization is maintained between the various status
registers.

Receive Packet Status Processing

The receiver presents the status of a received packet to
the microprocessor after the packet has been completely
received and all of the packet data have been stored in
memory. The movement of the last byte of packet data out
of the FIFO is the trigger that allows the packet status to
be presented to the microprocessor. Interrupts, if enabled,
are generated at this time.

Sequence Of Events-In response to a DLC Interrupt,
the microprocessor will read the Interrupt Source Register.
The ISR contains the following packet status information:

• The identification of the address detector that matched
the address of the received packet.

• Two bits indicating whether the packet is valid or not.

If the valid packet received bit is set, all that remains for
the user to do is to read the Receive Byte Count Register
pair. Even in cases where the size of the received packet
is known, the least significant byte of the RBCR must be
read-reading the LSB of the RBCR clears any unread
receive packet status registers.

If the received packet contains an exception condition
(CRC error, short frame error, long frame error, abort, non­
interger number of bytes [not always an error] or receive
FIFO overrun error [causes the packet to be terminated]),
the valid packet received bit will not be set; instead, the

receive frame status bit will beset-The Receive Frame
Status Register contains only exception conditions.

If the software, upon reading the Interrupt Source Regis­
ter, finds the receive frame status bit set, the Receive
Frame Status Register should be read to determine the
exception condition.

After determining the status of the packet, the Receive
Byte Count Register is read to determine the size of the
received packet. Even if the size is known, the least signifi­
cant byte of the Receive Byte Count Register must be
read in order to clear-out unread status from any of the
registers.

Packet Transmission Sequence

The OLC transmitter is designed to work both with and
without OMA support. When OMA is used, there are two
possible modes of operation: 1) transmitting one packet at
a time, 2) transmitting a queue of packets. From the trans­
mitter's point of view, there is no difference between the
two modes, the only difference is in how the OMA control­
ler is programmed.

Transmitter Operation-Independent of how data are
loaded into the transmit FIFO (OMA or processor control­
led I/O) a series of basic operations takes place within the
transmitter. The first step in transmission of a packet is to
program the length of the packet into the Transmit Byte
Count Register-TBCR (the length includes the address,
control, and information fields, but not flags or the FCS
field). Writing to the TBCR causes the contents of the
TBCR to be loaded into a counter, the Transmit Byte
Counter - TBC. As soon as the TBC becomes non-zero,
the OMA Request 1 (ORO,) pin is activated, indicating that
the transmit FIFO is ready to receive data. When the first
byte of data (typically the first address byte) is loaded into
the transmit FIFO, the transmitter starts sending the open­
ing flag. As soon as the opening flag leaves the parallel-to­
serial shift register, the first byte of data loaded into the
FIFO is moved into the shift register. The TBC is
decremented each time a byte is loaded into the transmit
FIFO. The ORO, signal will remain active until the transmit
FIFO becomes full, or the TBC counts down to zero.
Assuming that the length of the packet exceeds the 16
byte depth of the transmit FIFO, ORO, will be reactivated
when the level in the transmit FIFO falls to the program­
med threshold level, programmed in the FIFO Threshold
Register. Once the last byte of the packet is loaded into
the transmit FIFO, causing the TBC to be zero, ORO, is
de-activated, preventing the OMA from loading additional
data into the FIFO. ORO, will remain inactive until the last
byte of the packet is loaded into the serial-to-parallel shift
register - this prevents data from more than one packet
from being in the transmit FIFO at anyone time. When the
last byte is moved into the shift register, the TBCR
automatically reloads the TBC, allowing ORO, to return
active since the TBC will no longer contain a zero value. If
the user loads a new value into TBCR while the transmitter
is transmitting a packet, the TBCR will hold off loading this
value into the TBC until the last byte of the packet leaves
the transmit FIFO. If the transmit FIFO is empty, the TBCR
will automatically load the TBC any time the TBCR is writ­
ten to by the user.

Transmitting One Packet At A Time Using DMA-To
transmit packets one at a time, the OMA controller is pro­
grammed to move only the number of bytes in the packet.

4-5

The TBCR is programmed with this same value; the trans­
mitter needs to know when to end the pack!!t. If the user
desires, the OMA controller can be programmed to gener­
ate an interrupt when the last byte of the packet is moved
into the transmit FIFO. The DMA controller can then be set
up to send a new packet, and the TBCR can be reloaded
with the length of the new packet. When the last byte of
the packet leaves the transmit FIFO, ORO, will be reacti­
vated, and the OMA controller will start loading the trans­
mit FIFO with the new packet.

Transmitting A Queue Of Packets-This can be done
only if all of the individual packets in the queue are the
same length. The OMA controller is programmed with the
total number of bytes in the queue. The TBCR is then pro­
grammed with the length of a packet. The transmit FIFO
will control the movement of data via ORO,. When the last
byte of the last packet is loaded into the transmit FIFO, the
OMA controller will have counted to the total number of
bytes it had been programmed with, and will stop the
movement of data. In this way, a queue of packets can be
constructed in memory (complete with address and con­
trol fields). These packets can then be transmitted without
intervention by the microprocessor.

NOTE: The number of packets in the queue is limited by
the window size of the protocol in use. Window size refers
to the maximum number of packets that can be transmit­
ted before the first packet is acknowledged.

OLe Operational Sequences

The IOPC operational sequences in the sections that fol­
low provide detailed examples of programming the major
functional components of the IOPC.

All of the operational sequences except the host part of
the interprocessor interrupts sequences are assumed to
be executed on an 80188 processor (local processor). The
local processor software consists of a set of Interrupt Ser­
vice Routines (ISVRs) and main loop code that executes
when the ISVRs are not.

The operational sequences described below illustrate in
detail the programming of the IOPC Oata Link Controller
(OLC) hardware by an 80188 local processor in a typical
application scenario. This scenario assumes:

A) The OLC is used to perform bit-oriented protocol pro­
cessing.

B) OMA used for both OLC frame reception and transmis­
sion. 80188 OMA Channel 0 is used for OLC reception;
80188 OMA Channell is used for OLC transmission.

C) The IOPC OLCINT output pin is connected to one of
the local 80188 INTX (INTO-INT3) maskable interrupt
input pins to form the OLC interrupt.

0) The local processor has initiali:l:ed its interrupt control­
ler hardware and interrupt vectors during reset,
enabling the external OLC interrupt and internal 80188
OMA Channell interrupts in the process.

E) 80188 OMA Channel 0 interrupt NOT used to indicate
packet received; OLC interrupt (valid or receive frame
status exception packet received) used for this pur­
pose. This is because only the OLC interrupt can indi-

cate reception of variable length packets and/or pack­
ets received with errors.

F) .Either the DLC Interrupt (valid packet sent), or 80188
DMA Channell interrupt may be used to notify the pro­
cessor of successful packet transmission. The DMA
interrupt is more general in that it allows more than one
packet to be transmitted per interrupt. For this reason,
the DMA interrupt is used for DLC transmission in this
scenario. (If multiple packets are to be transmitted per
interrupt, all packets must be the same length and con­
tiguous in memory.)

NOTE: For scenarios in which the DLC interrupt is used
for BOTH packet reception and transmission, the DLC
interrupt service routine must check both receive and
transmit status in the same read of the DLC Interrupt
Source Register since one read of that register clears it.

G) Several interrupts that are useful for non-DMA pro­
grammed 110 or diagnostic testing are not enabled for
regular operation in this scenario.

Refer to the iAPX 86/88,186/188 User Manual Volume
1: Programmer's Reference for descriptions of 80188
DMA and interrupt controller operation.

The DLC operational sequences for this scenario are:

Operational Sequences
DLC Link Initialization (after call setup)
DLCTransmit Packet(s)
DLC Receive Packet-Normal
DLC Receive Packet-Exception

These operational sequences are interdependent. For
example, the OLC link initialization sequence must be exe­
cuted before the DLC transmit packet(s) or receive packet
sequences can be executed.

Protocol processing performed by software (e.g., packet
sequence number checking, acknowledge (ack) packet
transmission) is not described in the DLC operational
sequences. Only hardware level processing is described.

Link Initialization

DLC register bits that are flagged in the steps below with
an asterisk (*) are configuration dependent. In this opera­
tional sequence, these bits are set to values that are arbi­
trary for this example. Setting such bits to values other
than those indicated does not change the validity of this
operational sequence.

1. Write the DLC Command/Control Register with the fol­
lowing contents to reset the DLC:

Sit Value Function

0 Don'teare
1 Don't care
2 Don't care
3 Don't care
4 Don'tcare
5 Don'tcare
6 1 Enable DLC Reset
7 Don't care

4-6

2. Write DLC Link Address Recognition Register 0 with
the 16-bit B-Channel Layer 2 link address negotiated
during call setup.

3. Write the DLC Address Control Register with the follOW­
ing contents:

Bit Value Function

0 1 Enable Logical Link 0 Address
Recognition

1 0 Disable Logical Link 1 Address
Recognition

2 0 Disable Logical Link 2 Address
Recognition

3 0 Disable Logical Link 3 Address
Recognition

4 0 Disable Broadcast Address Recognition
5 0' Enable Two-Byte Address Recognition
6 0' Ignore Command/Response bit
7 0' First/second byte selection-ignored

for two byte add ress

4. Write the DLC Serial Bus Port Control Register with the
following contents:

Bit Value Function

0 0'
1 I' Select channel 2
2 0'
3 0'
4 0'
5 I' Invertdata
6 0 Disable Local Loop back
7 0 Disable Remote Loop back

5. Write hex E2 (*) (receive FIFO threshold = 28 and
transmit FIFO threshold = 2) to the DLC FIFO
Threshold Register.

6. Write six (*) to the DLC Minimum Receive Packet Size
Register. This value was negotiated during call setup or
by local administration.

7. Write 135 (*) to the DLC Maximum Receive Packet Size
Register. (Four bytes L2 header, four bytes L3 header,
128 bytes L3 I-field,and two bytes CRC, minus 3 bytes
[the DLC Maximum Receive Packet Size Register is
always programmed with a value that is 3 less than the
desired maximum packet size].) This value was negoti­
ated during call setup or by local administration.

8. Write theDLC Interrupt Source Interrupt Enable Regis­
ter with the following contents:

Bit Value Function

0-2 Don't Care Spare
3 1 Enable interrupt on Valid Packet

Received
4 0 Disable interrupt on Valid Packet Send
5 1 Enable interrupt on Receive Frame

Status Error
6 1 Enable interrupt on FIFO Status

Register bit set
7 0 Disable interrupt on Receive Link

Status bit set

9. Write the DLC Receive Frame Interrupt Enable Regis­
ter with the following contents:

Bit Value Function

0 1 Enable interrupt on Abort Received
1 1 Enable interrupt on Non-Integer

Number of Bytes Received error
2 1 Enable interrupt on Received CRC error
3 1 Enable interrupt on received byte count

less than DLC Minimum Receive Packet
Size Register error (Short Frame error)

4 1 Enable interrupt on received byte count
greater than DLC Maximum Receive
Packet Size Register error (Long Frame
error)

5 1 Enable interrupt on receive Overrun
error

6-7 Don't Care Spare

10. Write the DLC Receive Link Status Interrupt Enable
Register with the following contents:

Bit Value Function

0 0 Disable interrupt on Mark Idle detection
1 0 Disable interrupt on Flag Idle detection
2 0 Disable interrupt on In-frame detection

3-7 Don't care Spare

11. Write the DLC FIFO Status Interrupt Enable Register
with the following contents:

Bit Value Function

0 0 Disable Interrupt on Receive FIFO
Threshold Reached

1 0 Disable Interrupt on Receive FIFO Data
Available

2 0 Disable Interrupt on Transmit FIFO
Threshold Reached

3 0 Disable Interrupt on Transmit FIFO
Buffer Available

4 1 Enable Interrupt on Transmitter
Underrun

5 0 Disable Interrupt on EOP in Receive
FIFO

6-7 Don't care Spare

4-7

12. Set up the 80188 DMA channel (channel 0) dedicated
to receiving frames by initializing the DMA Channel 0
Control Word with the following:

Bit Value Function

0 0 Byte Transfer
1 1 StariDMA
2 1 Change bit
3 1 Don't care
4 0 Disable DMA requests from 80188

timer 2
5 1 Receive DMA has higher priority than

transmit DMA
6 1 Source Synchronized
7 0
8 0 Don't interrupt CPU on Transfer Count

termination
9 1 Terminate DMA if Transfer Count

reaches zero
10 1 Don't change source pointer after each

transfer
11 1
12 1 Source pOinter is in memory space
13 1 Increment destination pOinter after

each transfer
14 0 Do not decrement destination pointer
15 1 Destination pointer is in memory space

13. Allocate from a queue of empty buffers in RAM (or a
stack, etc.) a B-Channel receive buffer big enough to
hold at least one maximum length packet for the
protocol in use, 138 bytes in this example.

14. Load the 80188 DMA Channel 0 Transfer Count Regis­
ter with the size of the allocated receive buffer.
Although the DMA Channel 0 interrupt is not used, the
Channel 0 DMA operation is halted in the exceptional
event that the Transfer Count reaches zero. This pro­
vides a fail-safe mechanism to prevent received frame
bytes from overwriting memory past the allocated
receive buffer boundary.

15. Load the 80188 DMA Channel 0 Destination Pointer
Register with the starting RAM address of the allo­
cated receive buffer.

16. Write the IDPC DLC Receive FIFO Data Register
address to the 80188 DMA Channel 0 Source Pointer
Register. This address never changes during IDPC
operation. This step is thus an example of a DLC
initialization step that can be performed once at 80188
reset instead of during every call as in this scenario.

17. Write the IDPC DLC Transmit FIFO Data Register
address to the 80188 DMA Channel 1 Destination
Pointer Register.

18. Write the DLC Command/Control Register with the fol­
lowing contents:

Bit Value Function

0 0 Do not Send Abort
1 1 Transmitter Enable
2 1 Receiver Enabled
3 l' Flag Idle
4 l' Enable CRC Check
5 l' Enable CRC Generate
6 0 Disable DLC Reset
7 0' Do not pass FCS through to the

Receive FIFO

At this point, packets may be transmitted and received.

19. Continuously poll the DLC Receive Link Status Regis­
ter detected by the DLC receiver. Do this as a precon­
dition for transmitting since the destination end point
probably is not yet ready to receive if it is not yet trans­
mitting the proper Idle pattern. The destination end
point may be slightly slower than the originating call
end pOint, or vice versa, in starting up the channel.

Transmit Packet(s)

NOTE: Multiple packets may be transmitted in one execu­
tion of the following steps with the restrictions that the
packets must be contiguous in memory and each packet
must be of identical length. If successive packets are
either not contiguous or are of different lengths, then the
following processing steps must be repeated for each
packet.

1. Format packet(s), including headers, somewhere in the
local processor's addressable memory.

2. Write the first packet's starting memory address in the
80188 DMA Channel 1 Source Pointer Register.

3. Write the SUM of the lengths of the packets to be trans­
mitted (not including FCS bytes or flags) into the 80188
DMA Channel 1 Transmit Count Register.

4. If the size of each packet to be transmitted is different
from the last packet transmitted, write the packet size
(not including FCS bytes or flags) to the DLC Transmit
Byte Count Register. Note that this size is not the sum
of all packets to be transmitted as in step 3, above, but
rather the individual packet size.

4-8

5. Start 80188 DMA channel 1 by writing the DMA 1 con­
trol word with the following:

Bit Value Function

0 0 Byte Transfer
1 1 StartDMA
2 1 Change bit
3 1 Don't care
4 0 Disable DMA requests from 80188

timer 2
5 0 Transmit DMA has lower priority than

receiveDMA
6 0 Destination Synchronized
7 1
8 1 Interrupt CPU on Transfer Count

termination
9 1 Terminate DMA when Transfer Count

reaches zero
10 1 Increment source pointer after each

transfer
11 0
12 1 Source pOinter is in memory space
13 1 Don't change destination pOinter after

each transfer
14 1
15 1 Destination pointer is in memory space

6. The DLC transmits the packets without further local
processor intervention. When all packets have been
moved via DMA to the DLC, the 80188 DMA Channel 1
interrupt occurs. The interrupt service routine pointed
to by the 80188 DMA Channel 1 interrupt vector is
invoked.

7. The 80188 DMA Channel 1 interrupt service routine
writes a non-specific end-of-interrupt command (hex
8000) to the 80188 interrupt controller EOI Register.

8. (Optional) If additional data are available for transmis­
sion, repeat steps 1-5. These steps may be performed
immediately at this point in the 80188 DMA Channel 1
interrupt service routine if the DLC is running at a low
data rate (e.g., 64 Kbps), or if relatively little processing
is required. For example, only steps 2-5 need to be
executed if additional packets have already been for­
matted (packet headers set up) during main loop
execution.

For an alternative to this, the interrupt service routine
may not perform any of steps 1-5 at this point. Rather,
the interrupt service routine may simply set a global
flag in RAM indicating that the 80188 DMA Channel 1 is
idle. The local processor main loop, during a periodic
poll of this global flag, detects that the flag is set and
initiates the next DLC transmission.

9. The interrupt service routine executes an Interrupt
Return (IRET) 80188 instruction to exit.

Receive Packet-Normal

1. When the DLC receive logic detects that a packet has
been received (closing flag detected), with no errors,
the valid packet received bit is set in the DLC Interrupt
Source Register. Since this interrupt was enabled in the
DLC Interrupt Source Interrupt Enable Register during
DLC initialization, the 80188 is interrupted and vectors
to the DLC interrupt service routine (DLC ISVR).

2. The DLC ISVR reads the DLC Interrupt Source Regis­
ter to determine the specific reason for the interrupt.
Since this read clears the receive status in the Interrupt
Source Register, the ISVR saves this value temporarily
in scratch pad RAM so that the receive link address
field in the register can be used during packet header
processing later.

3. The DLC ISVR determines that the valid packet
received bit is set in the DLC Interrupt Source Register.
DLC design insures that if this bit is set, no DLC receive
exception status bits are set. Thus, no further DLC
receive status checking is required.

4. The DLC ISVR immediately stops 80188 DMA Channel
o by writing the DMA Channel 0 control word with the
following:

Bit Value Function

0 Don't care
1 0 StopDMA
2 1 Change bit 1

3-15 Don't care

This stops DMA Channel 0 from activating its data
request signal and thus forces the DLC receive FIFO to
buffer the next incoming packet until the DMA channel
is reinitialized in steps 7-10 below.

5. The ISVR reads the DLC Receive Byte Count Register
and temporarily saves in RAM this count of bytes
received in the current packet.

6. At this point, some implementations will process the
received packet in its entirety before continuing with
step 7. This processing includes making sure frame
headers and lengths are valid, formatting and transmit­
ting any ack packet, and moving any user data out of
the receive frame buffer.

Other implementations (e.g., at high DLC bit rates)
would not perform Layer 2 and above processing dur­
ing interrupt service routine execution. Rather, these
implementations would place the received packet in a
queue of unprocessed packets. This queue would be
unloaded by receive packet processing software that is
not part of the ISVR. This receive packet processing
software would be called periodically from the local
processor main software loop.

7. The DLC ISVR allocates from a queue of empty buffers
in RAM (or a stack, etc.) a B-Channel receive buffer big
enough to hold at least one maximum length packet for
the protocol in use.

8. The DLC ISVR loads the 80188 DMA Channel 0 Trans­
fer Count Register with the size of the allocated receive
buffer. Although the DMA Channel 0 interrupt is not

4-9

used, the Channel 0 DMA operation will be halted in
the exceptional event that the transfer count reaches
zero. This provides a fail-safe mechanism to prevent
received frame bytes from overwriting memory past the
allocated receive buffer boundary.

9. The DLC ISVR loads the 80188 DMA Channel 0 Desti­
nation POinter Register with the starting RAM address
of the allocated receive buffer.

10.The DLC ISVR restarts 80188 DMA Channel 0 by writ­
ing the DMA Channel 0 Control Word with the following:

Bit Value Function

0 0 Byte Transfer
1 1 StartDMA
2 1 Change bit
3 1 Don't care
4 0 Disable DMA requests from 80188

timer 2
5 1 Receive DMA has higher priority than

transmit DMA
6 1 Source Synchronized
7 0
8 0 Don't interrupt CPU on Transfer Count

termination
9 1 Terminate DMA if Transfer Count

reaches zero
10 1 Don't change source pOinter after each

transfer
11 1
12 1 Source pOinter is in memory space
13 1 Increment destination pOinter after

each transfer
14 0 Do not decrement destination pOinter
15 1 Destination pOinter is in memory space

11. The DLC ISVR writes a non-specific end-of-interrupt
command (hex 8000) to the 80188 interrupt controller
EOI Register and executes an 80188 IRET instruction
to exit.

Receive Packet-Exception

The operational sequence described in this section may
be used to handle each of the following DLC receiver
exceptional conditions:

• Abort Received

• Non-Integer Number
of Bytes Received

• CRCError

• Short Frame Error

• Long Frame Error

• Overrun Error

(DLC Receive Frame Status
Register bit 0)

(DLC Receive Frame Status
Register bit 1)

(DLC Receive Frame Status
Register bit 2)

(DLC Receive Frame Status
Register bit 3)

(DLC Receive Frame Status
Register bit 4)

(DLC Receive Frame Status
Register bit 5)

The only difference in how these exceptions are handled
is that IDPC software may wish to increment a separate
counter in RAM for each exception type for maintenance/
diagnostic purposes (see step 10 below).

1. When the DLC receive logic detects that one of the
exception conditions has occurred, the corresponding
bit is set in the DLC Receive Frame Status Register
and the receive frame status bit is set in the DLC Inter­
rupt Source Register. Since DLC interrupt generation
on occurrence of each of these exception conditions
was enabled during DLC initialization, the 80188 is
interrupted and vectors to the DLC interrupt service
routine (DLC ISVR).

2. The DLC ISVR reads the DLC Interrupt Source Regis­
ter to determine the specific reason for the interrupt.

3. The DLC ISVR determines that the receive frame
status bit is set in the DLC Interrupt Source Register.
This causes the ISVR to read the Receive Frame
Status Register.

4. The DLC ISVR immediately stops 80188 DMA Channel
o by writing the DMA Channel 0 control word with the
following:

Bit Value Function

0 Don't care
1 0 StopDMA
2 1 Change bit 1

3-15 Don't care

This stops DMA Channel 0 from activating its data
request signal and thus forces the DLe receive FIFO to
buffer the next incoming packet until the DMA channel
is reinitialized in steps 6-9 below. Some data may
already have been moved via DMA from the DLC to
memory when the exceptional condition occurs. In this
scenario, the DLC ISVR assumes that the current
receive buffer pOinted to by the 80188 DMA Channel 0
Destination Pointer Register has been corrupted when
a receive frame status exception occurs. For this
reason, the DLC ISVR reinitializes the 80188 DMA
ChannelO.

Since there is nothing meaningful that can be done
with the corrupted buffer, the buffer is returned to
empty status by the DLC ISVR (i.e., the buffer is placed
on a free list of available buffers). This effectively dis­
cards the partially received packet it contains.

5. The ISVR reads the DLC Receive Byte Count Register
to clear it.

6. The DLC ISVR allocates from a queue of empty buffers
in RAM (or a stack, etc.) a receive buffer big enough to
hold at least one maximum length packet for the proto­
col in use.

7. The DLC ISVR loads the 80188 DMA Channel 0 Trans­
fer Count Register with the size of the allocated receive
buffer. Although the DMA Channel 0 interrupt is not
used, the Channel 0 DMA operation wiii be halted in
the unlikely event that the count decrements to zero to
prevent received frame bytes from overwriting memory
past the allocated receive buffer boundary.

4-10

8. The DLC ISVR loads the 80188 DMA Channel 0 Desti­
nation Pointer Register with the starting RAM address
of the allocated receive buffer.

9. The DLC ISVR restarts 80188 DMA Channel 0 by writ­
ing the DMA Channel 0 control word with the following:

Bit Value Function

0 0 Byte Transfer
1 1 StartDMA
2 1 Change bit
3 1 Don't care
4 0 Disable DMA requests from 80188

timer 2
5 1 Receive DMA has higher priority than

transmit DMA
6 1 Source Synchronized
7 0
8 0 Don't interrupt CPU on Transfer Count

termination
9 1 Terminate DMA if Transfer Count

reaches zero
10 1 Don't change source pointer after

each transfer
11 1
12 1 Source pointer is in memory space
13 1 Increment destination pointer after

each transfer
14 0 Do not decrement destination pointer
15 1 Destination painter is in memory space

10. (Optional) The DLC ISVR increments a counter in
RAM for the exception that occurred. If this counter
reaches a certain threshold, the IDPC software may
notify a higher level of software that a certain excep­
tion is occurring too frequently.

11. The DLC ISVR writes a non-specific end-of-interrupt
command (hex 8000) to the 80188 interrupt controller
EOI Register and executes an 80188 IRET instruction
to exit.

USART PROGRAMMING

USART Programmable Features

General USART Features

The programmable features of the USART include:

• Character Length...,...5-, 6-, 7-, or 8-bit character sizes
may be selected.

• Parity-even, odd, and no parity modes may be
selected. Additionally, a "stick" parity test mode is avail­
able (Line Control Register).

• Stop 81ts-1 or 2 stop bits may be selected for 6-,7-, or
8-bit characters; 1 or 1-1/2 stop bits may be selected for
use with 5-bit characters (Line Control Register).

• Handshake Lines-the USART provides RTS and
DTR assertion through software control and allows for
status checking of ers and DSR. The signal names
have been assigned the Data Terminal Equipment (DTE)
designations in order to be compatible with Ihe 8250
UART. This is simply a naming convention, and does nol

prevent the USART from functioning as Data Communi­
cation Equipment (DCE).

• Operational Modes-the USART may be programmed
for asynchronous or synchronous/transparent operation
(USART Control Register). The asynchronous mode is
similar to that of any UART. The synchronous/transpa­
rent mode allows data to be transmitted and received
without respect to framing or protocol. In this mode, the
USART appears as a simple shift register that transmits
eight-bit characters back-to-back from the transmit
FIFO, without start or stop bits. Similarly, the data are
received eight bits at a time and placed into the receive
FIFO. Any framing bits present in the data stream are
treated as data and placed into the receive FIFO.

• Baud Rate Generator-a programmable internal baud
rate generator is provided. The output of the baud rate
generator can be used by either the transmitter or
receiver, or both (Divisor Latch Register pair). In asyn­
chronous mode, the baud rate generator is programmed
to provide a clock that is 16 times the data rate. The
receiver uses this 16X clock directly. The transmitter
divides this clock by 16 internally. If the baud rate
generator is programmed to divide by one, the input
clock (USARTCLK) is passed to the output of the baud
rate generator unaffected. This allows USARTCLK to be
used as second external clock input.

• Clock Selection-both the receiver and the transmitter
can be clocked from either the output of the baud rate
generator or directly from the RxCLK input (USART Con­
trol Register).

• Break Generation-a register selection is available to
permit interruption of data transmission in the asyn­
chronous mode with the break character (Line Control
Register).

• FIFO Thresholds-each 4-byte transmit and receive
FIFO has a selectable threshold value up to 4 by1es
(USART Control Register). Upon reaching the threshold
value, the USART may be programmed to interrupt the
external processor or signify this by setting a status
register bit.

• Break Generatlon-a register selection is available to
permit interruption of data transmission in the asyn­
chronous mode with the break character (Line Control
Register).

• FIFO Thesholds-each 4-byte transmit and receive
FIFO has a selectable threshold value up to 4 bytes
(USART Control Register). Upon reaching the threshold
value, the USART may be programmed to interrupt the
external processor or signify this by setting a status
register bit.

• Special Character Recognition-the user may select
a set of one or more characters and define them as spe­
cial characters. The USART can be programmed to inter­
rupt the local processor when a special charcter is
detected or to set a status register bit. Up to 128 charac­
ters can be selected as special. If 5-,6-, or 7-bit charac­
ter lengths are selected, any combination of characters
may be selected as special. If an 8-bit character length
is used, characters with bit patterns of 0-127 may be
selected as special. SpeCial characters are designated

4-11

by setting bits in a 128-bit map via the Special Character
Bit-Map Address Pointer Register, and the Special
Character Bit-Map Command Register.

• Interrupts-any of the following interrupts may be
selectively enabled or disabled:

• Change in CTS
• Change in DSR
• Parity error
• Receive FIFO threshold reached
• Receive FIFO time-out
• Transmit FIFO threshold reached
• Transmit shift register empty
• Break detect
• Special character detected
• Framing error
• Buffer overrun

USART Register Map

Table 4-4. USART register map.

Offset Size
(Hex) Register Name (Bytes) Type

20 Receive FIFO Data
Register (DLAB = 0)' 1 Read Only
Transmit FIFO Data
Register (DLAB = 0) 1 Write Only
Baud Rate Divisor LSB
Register (DLAB = 1) 1 Read/Write

21 Interrupt Enable Register
(DLAB=O) 1 Read/Write
Baud Rate Divisor MSB
Register (DLAB = 1) 1 Read/Write

22 Interrupt Identification
Register 1 Read Only

23 Line Control Register 1 Read/Write
24 Modem Control Register 1 ReadlWrite
25 Line Status Register 1 Read Only
26 Modem Status Register 1 Read Only
27 Control Register 1 Read/Write
28 Status Register 1 ReadlWrite
29 Special Character Bit-

Map ADDR Pointer
Register 1 Read/Write

2A Special Character Bit
Map Command Register 1 Read/Write

2B-3E Reserved 6 -
'Divisor Latch Access Bit (DLAB) in the Line Control
Register.

USART Programmable Operations

The following section provides an introduction to program­
ming the USARTbasic operations/functions, including:

• Baud rate generation
• Clocking options
• SpeCial character recognition
• Modem handshake signals
• Receive FIFO operation

Baud Rate Generation

The baud rate generator divides the USARTCLK input fre­
quency (user defined) by a programmable value. For asyn­
chronous operation, the result of this division must be 16

times the data rate. For example, If the frequency of the
USARTCLK input is 12.288 MHz, and the data rate is
19200 bps, the baud rate generator would be programmed
to divide by 40. The output of the baud rate generator
would be 307,200 Hz, or 16 times 19200 bps. In synchron­
ous/transparent mode, the output of the baud rate
generator is programmed to be equal to the data rate. In
the example above, the 12.288 MHz input would need to
be divided by 640 to produce the desired 19200 Hz clock.

Programming The Baud Rate Generator-The divisor
is programmed into the baud rate generator by loading
two eight-bit registers, the Baud Rate Divisor LSB and
MSB Registers. These registers can be accessed only by
first setting the divisor Latch Access Bit (DLAB) in the Line
Control Register (Bit 7).

Divide By One Option-It is sometimes desirable to
supply both the transmitter and the receiver clocks from
separate external sources. The RxCLK input provides one
of these clock inputs. The other is provided by program­
ming the baud rate generator to divide by one. In this
case, the input to the baud rate generator (USARTCLK) is
fed directly to the output of the generator, providing a sec­
ond clock input.

Clocking Options

The USART transmitter and receiver can be clocked from
the RxCLK pin, the USARTCLK pin divided by the baud
rate generator, or the non-divided output of the baud rate
generator (USARTCLK pin direct). The selection of the
clock source is made independently for the transmitter
and the receiver. Two bits in the USART Control Register
are used to select between the output of the baud rate
generator and the RxCLK pin.

Special Character Recognition

As characters are received they are checked against a
user programmed list of up to 128 "Special Characters." If
a designated character is received, an interrupt is gener­
ated (maskable). Characters are designated as special by
first loading the character into the Special Character Bit­
Map Command Register (for eight-bit characters, the least
significant seven bits are used). Once a character has
been designated, it can be returned to non-designated
status by loading the character into the Special Character
Bit-Map Command Register. When a special character is
detected, a flag is set in the FIFO. This flag travels with the
character as the character moves through the FIFO and is
used to identify the character as it is read from the FIFO.
(Refer to the discussion of FIFO programming below.)

Modem Handshake Signals

The USART has four general purpose handshake lines.
RTSI and DTRI are outputs while CTSI and DSRI are
inputs. Those familiar with UART conventions will recog­
nize that these are Data Terminal Equipment (DTE) desig­
nations as opposed to Data Communication Equipment
(DCE) designations. This is because the 8250 UART, of
which the IDPC USART is a functional super-set, uses
these naming designations. In practice, the USART can
be either a DTE or DCE since the handshake lines do not
directly control the operation of the USART -the lines are
used only as input and ouputs under software control. The
RTSI and DTRI outputs are controlled by setting and clear-

4-12

ing the corresponding bits in the Modem Control register.
The ersl and DSRI inputs are monitored via four bits in
the Modem Status Register. The change in CTSI and
change in DSR/ bits indicate whether the respective input
has changed state, in either direction, since the register
was last read. A maskable interrupt is generated when
either of the bits is set. The actual state of the CTSI and
DSRI bits can be read via the ersl and DSRI status bits in
the Modem Status Register.

Receive FIFO Operation

Special Character and Parity Error Handllng-The
receive FIFO is 10 bits wide, with eight bits for the
received character, and the remaining two bits containing
special character and parity error Flags. Only the eight
received data bits are directly accessible to the user. The
two flag bits are indirectly accessed via bits in the USART
Status Register. When a character with a special charac­
ter or a parity error is detected, it is placed into the FI FO
and one, or both, of the flags is set. At this time an inter­
rupt is generated, if enabled. When the interrupt is
detected, the user becomes aware that a parity error, for
example, has been detected. What the user does not
know is which character in the FIFO has the error. To iden­
tify the character, the user polls the character with the par­
ity error available bit in the Modem Status Register, as fol­
lows: prior to reading a byte of data from the Receive FIFO
Data Register, the character with parity error available Bit
is polled. If it is not set, the Receive FIFO Data Register is
read to remove an error-free character. Again the charac­
ter with parity error available bit is polled. This cycle is
repeated until the character with parity error available bit
is set The bit being set indicates that the character in the
Receive FIFO Data Register contains the parity error.
Note that the data available bit (line Status Register) was
not polled in this operation. This is possible since we know
that there is still data in the receive FIFO until the charac­
ter with the parity error is read.

Using The Data Available Bit-In normal operation, the
data available bit is used only when the number of charac­
ters in the receive FIFO is not known, and a special
character or parity error interrupt has not been detected.
The number of characters available in the receive FIFO is
known if a threshold reached interrupt is received. In
cases where the data available bit is required, it is polled
prior to each read from the Receive FIFO Data Register.
When it is no longer polled active, the receive FIFO is
empty.

Receive FIFO Time-out-Since, in asynchronous com­
munication, there is no explicit indication of the end of a
transmission, one or more of the last characters in a mes­
sage can be received into the receive FIFO without the
user being aware of their existence. This happens only
when the level in the receive FIFO remains below the pro­
grammed threshold level when the last character is
received. For this reason, a time-out interrupt is provided.
This maskable interrupt is generated any time a character
remains in the receive FIFO for more than 2048 receive
clock cycles. Note that the receive clock is 16 times the
data rate.

USART Operational Sequences

The operational sequences described below illustrate in
detail the programming of the IDPC Universal Synchron-

ous/Asynchronous Receiver Transmitter (IOPC USART)
hardware by an 80188 local processor in a typical applica­
tion scenario.

An asterisk (*) beside various parameters indicates that
these are options, chosen arbitrarily for the sake of exam­
ple.

This scenario assumes:

A) Asynchronous operation with the following parameters:

* 9600 baud, 7 -bit character, even parity, one stop bit,
USARTCLK = 12.288MHz.

B) IOPC USART serial interface is attached to a "dumb"
ASCII terminal. Since no modem is involved, IOPC
USART modem input signals are ignored. IOPC
USART modem output signals OTR and RTS are per­
manently set active.

C) The IOPC USARTINT output pin is connected to one
of the local 80188 INTX (INTO-INT3) maskable inter­
rupt input pins to form the "USART interrupt." Both
USART receive and transmit operations will be inter­
rupt driven in this example scenario.

0) The local processor has initialized its 80188 interrupt
controller hardware and interrupt vectors during reset,
enabling the USART interrupt in the process.

E) Several interrupts that are useful for diagnostic testing
are not enabled for regular operation in this scenario.

F) When a USART receiver interrupt occurs (e.g., receive
FIFO threshold reached or parity error), the local pro­
cessor USART interrupt service routine (USART
ISVR) will unload the USART receive FIFO before
another charact~r can be received, e.g., within 520
microseconds at 19.2 Kbps.

If this interrupt processing performance can be
guaranteed, then USART ISVR processing time is sig­
nificantly reduced, since the USART ISVR does not
have to check the parity error and special character
received bits in the UART Status Register as each
character is read from the receive FIFO (unless the
interrupt cause was parity error or special character
received).

If this interrupt processing performance cannot be
guaranteed, then the USART receive character(s)
operational sequences in this section could miss a
parity error or special character received indication.
This would occur if a character with a parity error or a
special character is received after a USART receiver
interrupt is generated but before the FIFO can be
unloaded. These operational sequences would fail to
check the parity error or special character status bits
for the character received after the interrupt was gen­
erated. The solution to this problem would be to check
the USART Status Register for parity error and special
character status for every character that is ever
unloaded from the Receive FIFO Oata Register.

Refer to the iAPX 86/88,186/188 User Manual Volume
1: Programmer's Reference for a description of 80188
interrupt controller operation.

4-13

The USART operational sequences for this scenario are
listed below:

Operational Sequences

Initialization

Transmit Character(s)-Initiate USARTTransmission

Transmit Character(s)-Transmit FIFO Threshold
Reached Interrupt Service
Routine

Receive Character(s)-Receive FIFO Threshold
Reached

Receive Character(s)-Receive FIFO Time-out

Receive Character(s)-Special Character Received

Receive Character(s)-Parity Error

Receive Character(s)-Break Received

Receive Character(s)-Framing Error

Receive Character(s)-Overrun Error

These operational sequences are interdependent. For
example, the USART initialization sequence must be exe­
cuted before the USART transmit character(s) or receive
character(s) sequences.

The two USART transmit operational sequences-Initiate
USART transmission and transmit FIFO threshold
reached interrupt service routine (ISVR)-are intended to
work together. (The transmit FIFO threshold reached
ISVR is a particular execution path through the more gen­
eral USART ISVR.) The initiate USART transmission
sequence would be executed when the USART transmit­
ter is idle to begin transmission (prime the pump). Once
transmission starts, the transmit FIFO threshold reached
ISVR would continue placing characters in the transmit
FIFO as long as there are characters to transmit (keep the
pump going). At the point that there are no characters left
to transmit, the transmit FIFO threshold reached ISVR
would exit without writing any characters to the FIFO (no
more to pump). When more characters become available
for transmission, the initiate USART transmission
sequence would be invoked, starting the USART transmit
cycle again.

The seven USART receive operational sequences also
work together. Each of the seven sequences would be
executed as a different path through the USART interrupt
service routine. It is likely that these sequences would
share much of the same code, arriving at a common code
section by different control paths. The receive FIFO
threshold reached and receive FIFO time-out operational
sequences would be the most frequently executed paths
in most applications.

Initialization

1. Write the USART Interrupt Enable Register with the fol­
lowing contents:

Bit Value Function

0 1 Enable interrupt on Receive FIFO
Threshold Reached

1 1 Enable interrupt on Transmit FIFO
Threshold Reached

2 1 Enable Receive Line Status interrupt
3 0 Disable Modem Status interrupt
4 1 Enable interrupt on Receive FIFO

Time-out
5 1 Enable interrupt on Special Character

Received
6 0 Disable interrupt on Transmit Shift

Register Empty
7 0 Not used

2. Write the USART Line Control Register with the follow­
ing contents to prepare to load the USART divisor
latches:

Bit Value Function

0-6 Don't care N.A.
7 1 Access Divisor Latches

To determine the value X to load into the divisor latches
for 9600 baud operation, the following equation is
used:

X = 12,288,000/ (9600 x 16) = 80 decimal = 50 hex

12,288,000 is the local processor clock rate per second
and 16 is a constant independent of the clock rate.

Write the derived value of 50 hex to the USART Divisor
Latch Least Significant Byte Register and 0 hex to the
USART Divisor Latch Most Significant Byte Register.

3. Write the USART Line Control Register with the follow­
ing contents:

Bit Value Function

0 0 7-bit character
1 1
2 0 One Stop Bit
3 1 Enable parity
4 1 Even parity
5 0 No Stick Parity
6 0 Do not send Break (during initialization)
7 0 Do not access Divisor Latches

4. Write the USART Modem Control Register with the fol­
lowing contents:

Bit Value Function

0 1 DTRactive
1 1 RTSactive
2 0 Not used
3 0 Not used
4 0 No loop back
5 0 Not used
6 0 Not used
7 0 Not used

4-14

5. Write the USART Control Register with the following
contents:

Bit Value Function

0 1 Use internal Baud Rate Generator for
Receive Clock

1 1 Use internal Baud Rate Generator for
Transmit Clock

2 0 Asynchronous operation
3 1 Receive FIFO Threshold = 3
4 1
5 1 Transmit FIFO Threshold = 1
6 0
7 0 Do not reset USART

FIFO threshold settings are arbitrary for this scenario.

6. Initialize the 128-bit USART special character bit map.

Write the character into the Special Character Bit-Map
Address Pointer Register, using only the seven least
significant bits, then write a "1" to bit 0 of the Special
Character Bit-Map Command Register. Repeat for all
characters to be deSignated as special.

7. Enable the USART receiver by writing the USART
Status Register with the following contents:

Bit Value Function

0-6 Don't care
7 1 Enable Receiver

Transmit Character(s)­
Initiate USART Transmission

This operational sequence is executed by the local pro­
cessor main software loop when a request (transmit
request) for. USART transmission of an arbitrary number
of characters is received f~om higher level software.

1. When the request to transmit characters is received by
the main loop, it checks a temporary temp queue of
characters (in RAM) waiting to be transmitted. If there
are any characters in this (temp) queue, then the last
time the transmit FIFO was filled, there were additional
characters available for transmission that could not fit
into the full FIFO. This implies that a transmit FIFO
threshold reached interrupt is going to occur eventually,
at which time characters from the temp queue will be
loaded into the FIFO. In this situation (characters
already in temp queue when a request for transmission
of additional characters is received), the main loop
places the additional characters at the end of the temp
queue of characters awaiting transmission and exits
this operational sequence, moving on to other main
loop duties.

If, on the other hand, there are no characters in the
temp queue when the transmit request is received, pro­
ceed with step 2.

2. The main loop polls the transmit buffer available bit (bit
4) in the USART Status Register. If this bit is zero, the
FIFO is full so the main loop places the characters of
this transmit request in the temp queue (of characters
awaiting transmission) and exits this operational
sequence. Otherwise, continue with step 3.

3. The main loop writes the next character to be transmit­
ted to the USARTTransmit FIFO Data Register.

4. If there are additional characters to transmit, go to step
2. Otherwise, exit this operational sequence.

Transmit Character(s)-Transmit Threshold
Reached Interrupt Service Routine

This operational sequence is executed by the local pro­
cessor USART interrupt service routine when a USART
transmit threshold reached interrupt occurs.

1. When the number of characters in the USARTtransmit
FIFO decrements to equal the transmit FIFO threshold
programmed in the USART Control Register, the trans­
mit threshold reached bit is set in the USART Line
Status Register. Since this interrupt was enabled dur­
ing USART initialization, the 80188 is interrupted and
vectors to the USART Interrupt Service Routine
(USART ISVR).

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is transmit FIFO
threshold reached.

3. If there are no characters awaiting transmission on the
USART (i.e., no characters in the temp queue), the
USART ISVR goes to step 7. Otherwise the ISVR con­
tinues with step 4.

4. The main loop polls the transmit buffer available bit (bit
4) in the USART Status Register. If this bit is zero, the
FIFO is full so the USART ISVR goes to step 7. Other­
wise, continue with step 5.

5. The USART ISVR writes the next character from the
temp queue of characters awaiting transmission to the
USARTTransmit FIFO Data Register.

6. If there are additional characters in the temp queue, go
to step 4. Otherwise, continue with step 7.

7. The USART ISVR writes a non-specific end-of-inter­
rupt command (hex 8000) to the 80188 interrupt con­
troller EOI Register and executes an 80188 IRET
instruction to exit.

Receive Character(s)-Receive FIFO
Threshold Reached

1. When the USART receive logic detects that the USART
receive FIFO threshold has been reached (i.e., the
number of characters in the FIFO equals or exceeds
the threshold programmed in the USART Control
Register), the receive FIFO threshold reached bit is set
in the USART Status Register. Since this interrupt was
enabled during USART initialization, the 80188 is inter­
rupted and vectors to the USART interrupt service
routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive FIFO
threshold reached.

4-15

3. The USART ISVR reads the USART Line Status Regis­
ter. If the receive data available bit (bit 0) is set, con­
tinue with step 4. Otherwise go to step 6.

4. The USART ISVR reads a received character from the
USART receive FIFO data register and processes the
character as appropriate for the application. For a ter­
minal adaptor, this usually means placing the character
in a RAM buffer that will eventually be transmitted over
the network via the Data Link Controller (DLC). This
character does not require special character proces­
sing or error processing (e.g., parity error) since these
exception conditions generate a different interrupt
IDcode from receive FIFO threshold reached.

5. Go to step 3.

6. The USART ISVR writes a non-specific end-of-interrupt
command (hex 8000) to the 80188 interrupt controller
EOI Register and executes an 80188 IRET instruction
to exit.

Receive Character(s)-Receive FIFO Time-out

1. When the USART receive logiC detects that a USART
receive FIFO time-out has occurred (i.e., about ten
character times have elapsed with at least one charac­
ter in the receive FIFO), the receive FIFO time-out bit is
set in the USART Status Register. Since this interrupt
was enabled during USART Initialization, the 80188 is
interrupted and vectors to the USART interrupt service
routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive FIFO
time-out.

3. Execute steps 3 through 6 of the USART Receive
Character(s) Operational Sequence 1-receive FIFO
threshold reached (above) to finish processing this
operational sequence.

Receive Character(s)-Special
Character Received

1. When the USART receive logiC detects that a special
character has been received (i.e., character received
with corresponding bit set in the USARTspecial charac­
ter recognition bit map), the special character received
bit is set in the USART Line Status Register. Since this
interrupt was enabled during USART initialization, the
80188 is interrupted and vectors to the USART interrupt
service routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive line
status.

3. The USART ISVR reads the USART Line Status Regis­
ter. The USART ISVR determines that the special
character received bit is set in the Line Status Register.

4. The USART ISVR checks the receive data available bit
(bit 0) in the USART Line Status Register. If this bit is

set, continue with step 5. Otherwise go to step 9.

5. The USART ISVR reads the USART Status Register. If
the special character available bit (bit 2) is set, go to
step 8. Otherwise continue with step 6.

6. The USART ISVR reads a received non-special
character from the USART Receive FIFO Data Regis­
ter and processes the character as appropriate for the
application. For a terminal adaptor, this usually means
placing the character in a RAM buffer that will eventu­
ally be transmitted on the B-Channel via the IOPC
OLC. This character does not require special character
processing since the special character available bit
was not set in the USART Status Register.

7. Go to step 4.

8. The USART ISVR reads the received special character
from the USART Receive FIFO Data Register. The
ISVR performs the application-dependent "special"
processing for the character. For example, in a terminal
adaptor application, receipt of the special character
line feed may cause the terminal adaptor software to
packetize a buffer of characters previously received
from the USART and transmit the packet(s) using the
OLC.

9. The USART ISVR writes a non-specific end-of-interrupt
command (hex 8000) to the 80188 interrupt controller
EOI Register and executes an 80188 IRET instruction
to exit.

Receive Character(s)-Parity Error

1. When the USART receive logic detects that a character
has been received with a parity error, the parity error bit
is set in the USART Line Status Register. Since this
interrupt was enabled during USART initialization, the
80188 is interrupted and vectors to the USART interrupt
service routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive line
status.

3. The USART ISVR reads the USART Line Status Regis­
ter. The USART ISVR determines that the parity error
bit is set in the Line Status Register.

4. The USART ISVR checks the receive data available bit
(bit 0) in the USART Line Status Register. If this bit is
set, continue with step 5. Otherwise go to step 10.

5. The USART ISVR reads the USART Status Register. If
the character with parity error available bit (bit 1) is set,
go to step 8. Otherwise continue with step 6.

6. The USART ISVR reads a received character with no
parity error from the USART Receive FIFO Data Regis­
ter and processes the character as appropriate for the
application .. For a terminal adaptor, this usually means
placing the character in a RAM buffer that will eventu­
ally be transmitted via the OLC.

7. Goto step 4.

4-16

8. The USART ISVR reads the received character with
parity error from the USART Receive FIFO Data Regis­
ter. The ISVR performs the application-dependent par­
ity error processing for the character. For example,
receipt of a character with parity error may result in the
character being thrown away.

9. (Optional) The USART ISVR increments a parity error
counter in RAM. If this counter reaches a certain
threshold, the IOPC software may notify a higher level of
software that parity errors are occurring too frequently.

10. The USART ISVR writes a non-specific end-of-interrupt
command (hex 8000) to the 80188 interrupt controller
EOI Register and executes an 80188 IRET instruction
to exit.

Receive Character(s)-Break Received

1. When the USART receive logic detects that a receive
break condition has occurred, the Break Interrupt bit is
set in the USART Line Status Register. Since this inter­
rupt was enabled during USART Initialization, the
80188 is interrupted and vectors to the USART interrupt
service routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive line
status.

3. The USART ISVR reads the USART Line Status Regis­
ter. The USART ISVR determines that the break inter­
rupt bit is set in the Line Status Register.

4. The USART ISVR performs application-dependent
break processing. For example, in a terminal adaptor
application, receipt of break may cause the terminal
adaptor software to transmit a Layer 3 interrupt-type
packet over the network via the OLC. Depending on the
application, the USART ISVR may also unload the
receive FIFO, packetize and transmit all received
USART characters over the network before sending
the interrupt-type packet.

5. The USART ISVR writes a non-specific end-of-inter­
rupt command (hex 8000) to the 80188 interrupt con­
troller EOI Register and executes an 80188 IRET
instruction to exit.

Receive Character(s)-Framing Error

1. When the USART receive logic detects that a framing
error (i.e., no stop bit) has occurred, the framing error
bit is set in the USART Line Status Register. Since this
interrupt was enabled during USART initialization, the
80188 is interrupted and vectors to the USART interrupt
service routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IDcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive line
status.

3. The USART ISVR reads the USART Line Status Regis­
ter. The USART ISVR determines that the framing error
bit is set in the Line Status Register.

4. Since the IOPC USART (unlike the 8250 UART) dis­
cards a character with a framing error, no further
USART processing is necessary, although some imple­
mentations may take this opportunity to unload the
receive FIFO.

5. (Optional) The USART ISVR increments a framing
error counter in RAM. If this counter reaches a certain
threshold, the IOPC software may notify a higher level
of software that framing errors are occurring too
frequently.

6. The USART ISVR writes a non-specific end-of-inter­
rupt command (hex 8000) to the 80188 interrupt con­
troller EOI Register and executes an 80188 IRET
instruction to exit.

Receive Character(s)-Overrun Error

1. When the USART receive logic detects that a character
has been received with the receive FIFO full, the over­
run error bit is set in the USART Line Status Register.
Since this interrupt was enabled during USART initiali­
zation, the 80188 is interrupted and vectors to the
USART interrupt service routine.

2. The USART ISVR reads the USART Interrupt Identifi­
cation Register to determine the cause of the interrupt.
The interrupt IOcode (bits 1-3) indicates that the high­
est priority USART interrupt pending is receive line
status.

3. The USART ISVR reads the USART Line Status Regis­
ter. The USART ISVR determines that the overrun error
bit is set in the Line Status Register. Since no excep­
tion (e.g., special character or parity error) has
occurred up until the time of overrun (exception status
would still be pending in the Line Status Register, pre­
venting the overrun error bit from being set), all charac­
ters in the receive FIFO are error free. Therefore, the
receive FIFO is unloaded in steps 4-6 below without
checking for exception status.

4. The USART ISVR reads the USART Line Status Regis­
ter. If the receive Oata available bit (bit 0) is set, con­
tinue with step 5. Otherwise go to step 7.

5. The USART ISVR reads a received character from the
USART Receive FIFO Oata Register and processes
the character as appropriate for the application. For a
terminal adaptor, this usually means placing the
character in a RAM buffer that will eventually be trans­
mitted via the IOPC OLC.

6. Go to step 4.

7. (Optional) The USART ISVR increments an overrun
error counter in RAM. If this counter reaches a certain
threshold, the IOPC software may notify a higher level
of software that overrun errors are occurring too fre­
quently.

8. The USART ISVR writes a non-specific end-of-inter­
rupt command (hex 8000) to the 80188 interrupt con­
troller EOI Register and executes an 80188 IRET
instruction to exit.

4-17

DPMC/INTERPROCESSOR INTERRUPT
PROGRAMMING

For a multi-processor application, a common message
area in RAM (mailbox) is often used for inter-processor
communications. Since this mailbox must be accessed by
both processors, dual-port RAM is normally used. The
IOPC provides a hardware mechanism, the OPMC, that
allows standard single port static RAM to be used as dual­
port RAM. When mailbox structures are used, a means is
also required for each processor to indicate to its counter­
part that there is a message to be read from the mailbox.
The OPMC contains hardware for implementing such an
interprocessor interrupt structure. The hardware for creat­
ing the dual-port RAM function does not have any associ­
ated programmable options. The interprocessor interrupt
mechanism is programmable. This programming is
described below.

DPMC/lnterprocessor Interrupt
Programmable Features

The OPMC's interprocessor interrupt mechanism contains
one programmable register, the Semaphore Register,
which is used by the local processor to generate interrupt
requests to the host processor, and to clear interrupt
requests from the host processor. Additionally, the local
processor can poll the Semaphore Register to see
whether the host has responded to an interrupt request
from the local processor.

DPMC Register Map

Table 4-5 shows the OPMC register map.

Offset
(Hex)

3F

Table 4·5
DPMC Register Map

Size
Register Name (Bytes)

Semaphore Register 2

DPMC/lnterprocessor Interrupt
Programmable Operations

Type

Read/Write

When Bit 0 of the Semaphore Register is set by the local
processor, an interrupt request is generated to the host
processor (HINTOUT) indicating it has a message in the
mailbox area of RAM. Bit 0 of the Semaphore Register is
cleared when the host processor acknowledges the inter­
rupt (HINTACK line is pulsed).

When the local processor has a message from the host
processor to read, the host processor generates Host­
Interrupt-In (HINTIN), which sets bit 1 in the Semaphore
Register and activates the LlNTOUT pin. LlNTOUT is
deactivated when the local processor clears bit 1 of the
Semaphore Register.

DPMC/lnterprocessor Interrupt
Programmable Sequences

The following IOPC interprocessor interrupt operational
sequences are described below:

Operational Sequences

Host CPU Interrupts Local 80188

Local 80188 Interrupts Host CPU

These operational sequences are interdependent. The fol­
lowing assumptions apply to these sequences:

A) The host CPU can perform a write (memory-mapped
or I/O), that is decoded by hardware external to the
IOPC such that a strobe is generated on the IOPC
HINTIN pin.

B) The IOPC HINTOUT output pin is connected to a host
CPU chip interrupt input pin or to a host system inter­
rupt controller.

C) The host CPU can perform a write (memory-mapped
or I/O) that is decoded by hardware external to the
IOPC such that a strobe is generated on the IOPC
HINTACK pin.

0) The IOPC LlNTOUT output pin is connected to one of
the local 80188 INTX (INTO-INT3) maskable interrupt
input pins.

E) Both host CPU and local processor have initialized
their respective interrupt controller hardware and inter­
rupt vectors during reset, enabling Interprocessor
Interrupts in the process.

Refer to the iAPX 86/88, 186/188 User Manual Volume 1:
Programmer's Reference for a description of 80188 inter­
rupt controller operation.

Host CPU Interrupts Local 80188

HOST:

1. The host writes a command and associated paramet­
ers to an interprocessor mailbox in RAM on the IOPC
external bus. The host also clears an interrupt ack mail­
box in RAM on the IOPC external bus that the local pro­
cessor will write in step 4 below to ackowledge being
interrupted.

2. In order to notify the local 80188 processor of the com­
mand, the host CPU performs a write that is decoded
to strobe the IOPC HINTIN pin. This causes the IOPC
to set bit 1 in the IOPC Semaphore Register and acti­
vates the IOPC LlNTOUT pin.

LOCAL 80188:

3. The 80188 is interrupted since the local 80188 INTX
used for incoming interprocessor interrupt was ena­
bled during initialization of the 80188 interrupt control­
ler (see assumptions above). The 80188 vectors to its
IOPC Interprocessor interrupt service routine (local
interprocessor ISVR).

4-18

4. In order to deactivate the IOPC LlNTOUT pin, the local
interprocessor ISVR clears bit 1 in the IOPC
Semaphore Register. The Local Interprocessor ISVR
then writes an ack code to the IOPC external bus RAM
interrupt ack mailbox. The local 80188 then proceeds to
process the command from the host.

HOST:

5. The host CPU polls this ack mailbox until it sees the
ackcode.

Local 80188 Interrupts Host CPU

LOCAL 80188:

1. The local 80188 writes a command and associated
parameters to an interprocessor mailbox in RAM on the
IOPC external bus.

2. In order to notify the host CPU of the command, the
local 80188 sets bit 0 in the IOPC Semaphore Register.
This causes the IOPC to strobe its HINTOUT output
pin.

HOST:

3. The host CPU is interrupted since the host interrupt
input used for incoming interprocessor interrupt was
enabled during initialization of the host interrupt con­
troller (see assumptions above). The host CPU vectors
to its IOPC Interprocessor interrupt service routine
(host interprocessor ISVR).

4. Through either hardware or software means, the host
activates the IOPC HINTACK input pin to acknowledge
the interrupt. This causes the IOPC to clear bit 0 in the
IOPC Semaphore Register. The host then proceeds to
process the command from the local 80188.

LOCAL 80188:

5. To detect that the host CPU has acknowledged the
interrupt, the local 80188 polls bit 0 of the IOPC
Semaphore Register until it is zero.

ChapterS

Am79LLD401 LOW-LEVEL DEVICE DRIVER

DISTINCTIVE CHARACTERISTICS

This document describes the user interface to the Low­
Level Device Driver (LLO) for the Am79C401 Integrated
Data Protocol Controller (IOPC) Data Link Controller
(OLC). The IOPC OLC LLO has been implemented using
the 'C' programming language to maximize portability and
readability with a minimum effect upon performance.

Table 5-1. Summary of IDPC DLC LLD Features

• Written primarily in ANSI 'C'.
• Less than 5% written in Microsoft 8088 Macro

Assembler.
• Minimum operating system and processor

dependencies.
• Uses 80188/80186 OMA.
• Supports optional logging to a file.
• Interrupt-driven mailbox interface tolfrom Layer 2 (L2)

and Management Entity (ME) routines.
• Compatible with AmLink'· (LAPO/LAPB) Layer 2

software.

GENERAL DESCRIPTION

This document describes the user interface to the Low­
Level Device Driver (LLO) for the Am79C401 Integrated
Data Protocol Controller (lOPC) Data Link Controller
(OLC).

PURPOSE

The IOPC OLC LLO is intended to be used as a general
purpose example of IOPC OLC programming. The IOPC

M
A
N
A
G
E
M
E
N
T

E
N
T
I
T
Y

OLC LLO source code contains examples illustrating how
to use and access the many features of the Am79C401
IOPC OLC hardware.

The IOPC OLC LLO can be used with any Bit-Oriented
Protocol (BOP) including AmLink~, LAPO/LAPB imple­
mentation from Advanced Micro Devices. In Integrated
Services Digital Network (ISDN) applications, the IOPC
OLC LLO is used to support the packet protocol for the B­
Channel. (The Am79C30A Digital Subscriber Controller
(OSC) LLO provides the same services for the O-Channel.)
The interfaces provided by the OSC and IOPC OLC LLOs
use the same primitives so that both O-Channel and B­
Channel can use the same Layer 2 software. The OSC
and IOPC OLC LLOs provide a hardware independent
interface to upper layer protocols such as LAPO.

SYSTEM REQUIREMENTS

The IOPC OLC LLO places relatively few requirements on
the target system. The IOPC OLC LLO requires that the
Operating System (OS) provide a method for requesting
and returning memory buffers. No other OS services are
required. The system requirements are summarized below:

• 4 kBytes of RAM/ROM for object code.
o 64 bytes of shared RAM for the configuration table.
o 256 bytes of shared RAM for mailboxes and initialization

parameter blocks.
o One or more shared memory buffers of MAXPACKSZ

(Maximum Packet Size) for data transfers.
o 128 bytes of stack RAM.
o Memory allocation service from the OS.
o Event interrupt generation routines. 80188/80186 OMA

hardware (both channels).

LAYER 3

LAYER 2

LAYER 1

E = EVENT MAILBOX
C=COMMANOMAILBOX

Figure 5-1. Inter-Layer Mailbox Interface

5-1

ARCHITECTURE

Communications with the IOPC OLC LLO by Layer 2 (L2) or
Management Entity (ME) routines are performed via mail­
boxes and interrupts. As shown in Figure 5-1, the IOPC OLC
LLO includes four mailboxes. One pair of mailboxes is
required for the L2 interface and a second pair is required
for the ME interface. Each interface pair includes a com­
mand and an event mailbox. The mailbox structure is
described in a later section.

The ME is a set of routines which are provided by the user
to perform connection and layer management functions.
These are generally system-dependent functions that are
used to tie the various O-Channel and B-Channel protocol
layers together in the user's system drivers.

Command mailboxes are used to allow commands to be
sent from the L2 or ME routines to the IOPC OLC LLO.
Commands are loaded into the mailbox by the calling
routine. An interrupt is then generated to inform the IOPC
OLC LLO that a command is available for processing. The
IOPC OLC LLO acknowledges the receipt of the command
through the same mailbox.

Event mailboxes are used to send status information from
the IOPC OLC LLO to the L2 or ME routines. The IOPC OLC
LLO loads the event information into the proper mailbox
then generates an interrupt which alerts the L2 or ME layer
that an event has occurred and is available. The receiving
routine, L2 or ME, acknowledges the event in the same
mailbox.

The L2-0LC LLO interface (mailbox pair) is used primarily
for data transfer primitives. The ME-OLC LLO interface is
used to pass control and status information.

TARGET ENVIRONMENT

The IOPC OLC LLO can be used in either a single proces­
sor environment or a multi-processor system. In the single
processor system, inter-layer communications are signaled
using software interrupts. In a multi-processing system,
hardware interrupts are used. In either case, the operation
of the IOPC OLC LLO is the same. The interrupt handler
used to process the mailbox message (command or event)
is the same for both software- and hardware-based sys­
tems.

The IOPC LLO is initially implemented on an 80188/86 pro­
cessor, using the 'c' programming language to enhance
portability. The two primary processor dependencies are:

• Word (16-bits) and long word (32-bits) byte order
• Address segmentation

DEVELOPMENT ENVIRONMENT

The IOPC OLC LLD is implemented using Microsoft 'c'
Compiler Version 4.0 and the Microsoft Macro Assembler
Version 5.0. Note that the byte order for all addresses
specified in this document are in Microsoft 'c' "FAR" formal:

Lowest Address Byte: Low-Order Byte
High-Order Byte
Low-Order Byte

Highest Address Byte: High-Order Byte

OFFSET
OFFSET
SEGMENT
SEGMENT

5-2

FUNCTIONAL DESCRIPTION

This section shows the IOPC OLC LLO interfaces and ser­
vices accessible to the user and describes how to use the
IOPC OLC LLD.

POR CONFIGURATION
AND INITIALIZATION

Prior to using the IOPC OLC LLO, several initialization
tasks must be performed. These are generally executed
during the system Power-On Reset (POR) initialization
sequence. In order to perform these tasks, the user must
know the following information about the IOPC OLC LLO:

• Address of IOPC OLC LLO code.
• Offset of POR initialization routine.
• Offset of IOPC OLC hardware interrupt handler.
• Offset of 80188 OMA hardware interrupt handler.
• Offset of Layer 2 command input handler.
• Offset of Management Entity command input handler.
• Structure of RAM Interface Block (RIB).

The IOPC OLC LLO code base address depends upon the
user's system design. It may be located in firmware or in
RAM. The IOPC OLC LLO is position independent.

The lOP POR initialization routine, referred to as iIIdinitO
is located at offset TBO from the base address of the IOPC
OLC LLO code. This routine must be called to initialize the
IOPC OLC LLO.

The IOPC OLC hardware interrupt handler is located at
offset TBO from the IOPC OLC LLO code base address.
This address must be installed in the processor vector
table prior to calling the IOPC POR initialization routine.

The 80188 OMA hardware interrupt handler is located at
offset TBO from the IOPC OLC LLO code base address.
This address of this routine must be installed in the
processor vector table prior to calling the IOPC POR
initialization routine.

The Layer 2 command input handler is located at offset
TBO from the IOPC OLC LLO code base address. This
address of this routine must be installed in the processor
vector table prior to calling the IOPC POR initialization
routine.

The Management Entity input command handler is
located at offset TBO from the IOPC OLC LLO code base
address. This address of this routine must be installed in
the processor vector table prior to calling the IOPC POR
initialization routine .

The RAM Interface Block (RIB) is the structure through
which the IOPC OLC LLOjs accessed by either Layer 2 or
the Management Entity. The IOPC POR initialization
routine installs default values into the RIB when it is
called.

Using the above information, the user must perform or
provide the following functions: .
• Install the interrupt vectors for the IOPC OLC LLO.
• Provide routines to generate L2 and ME event

interrupts.
• Build or provide the IOPC OLC LLO configuration table.
• Execute the iIIdinit() routine.

The user must install interrupt vectors for the IOPC OLC
hardware interrupt handler, the 80188/86 OMA hardware
interrupt handler, L2 & ME command input handlers, and
L2 and ME event handlers. The L2/ME event handlers
reside in the L2 (AmLink or other user-written Layer 2)
code and the user-written ME code.

The user is required to provide routines which will be
called by the OLC LLO to generate the interrupts (software
or hardware) for L2 or ME events. Each routine should be
in the form of a subroutine which passes no parameters.
This allows the IOPC OLC LLO to be independent of the
type of interrupt used to generate the event interrupt.

The user is also required to service requests for memory
allocation by the IOPC OLC LLD. The IOPC OLC LLO
requests memory of size specified by the Maximum
Packet Size field (in the OLC Initialization Parameter
Block (lPB)) to support data reception. When a packet is
received without an error, the IOPC OLC LLO passes the
buffer to Layer 2; if a packet is received with error, the LLO
reuses the buffer for the next packet reception.

The IOPC OLC LLO accesses the configuration table (see
Table 5-2) via a pOinter to the configuration table located
at the known address TBO. The configuration table itself
can be located in RAM or in firmware.

The 'illdinitO' routine uses information from the 64 byte
user-supplied configuration table (see Table 5-2) to
initialize the IOPC hardware, install default values into the
IOPC OLC Initialization Parameter Block, and initialize the
IOPC OLC LLO Private RAM area.

After the 'ilidinitO' routine is executed, the IOPC OLC LLO
is in an idle state. Before transmitting or receiving any
packets, the user must execute the OLC In it and OLC Con­
trol ME Command primitives.

Table 5·2. IOPC OLC LLO Configuration Table For­
mat

Size
Offset Description (bytes)

00 Addr of IOPC OLC LLO Private RAM 4
04 Addr of OLC LLO RAM Interface Block 4
08 Addr of L2 Event Generator 4
OC Addr of ME Event Generator 4
10 Addr of IOPC OLC Hardware Registers 4
14 Addr of 80188/86 OMA 4

Hardware Registers
18 Reserved 40

Address of the IDPC DLC Private Data RAM

This RAM is 64 by1es in length. This area is not required to
reside in shared memory.

Address of IDPC DLC LLO RAM
Interface Block

This field contains the address of the shared RAM where
the mailboxes and OLC Initialization Parameter Block are
located. This area must be at least 256 bytes in length.
The structure of the RAM Interface Block (RIB) is
described in Table 5-3.

5-3

Address of the LAYER 2
Interrupt Generator Routine

This field contains a pointer to a user-supplied routine
which is called by the IOPC OLC LLO to generate an L2
event interrupt. No parameters are passed; the routine
should return via a return from subroutine instruction. It is
required that this routine return with all processor registers
in the same state as when the routine was called.

Address of the MANAGEMENT ENTITY
Interrupt Generator Routine

This field contains a pOinter to a user-supplied routine
which is called by the IOPC OLC LLO to generate an ME
event interrupt. No parameters are passed; the routine
should return via a return from subroutine instruction. It is
required that this routine return with all processor registers
in the same state as when the routine was called.

Address of IOPC OLC Device Hardware

This field contains the base address of the Am79C401
IOPC OLC hardware registers. The IOPC OLC LLO uses
this pointer to access the Am79C401 device.

Address of 80188/86 OMA Device Hardware

This field contains the base address of the 80188/86 OMA
hardware registers. The IOPC OLC LLO uses this pointer
to access the OMA device.

Table 5-3. RAM Interface Block Structure

Offset Description

00 L2-0LC LLO Command Mailbox
12 OLC LLO -L2 Event Mailbox
24 ME-OLC LLO Command Mailbox
36 OLC LLO -ME Event Mailbox
48 Reserved
50 OLC Initialization Parameter Block
5E Reserved

LAYER 2 to LLO Command Mailbox

Size
(Bytes)

18
18
18
18
8
14
162

This block of RAM is used as the L2-0LC LLO mailbox to
pass commands from the Layer 2 protocol to the IOPC
OLC LLO. This mailbox is primarily used for B-Channel
data transmissions. The IOPC OLC LLO L2 command input
handler services the commands passed in this mailbox.

LLO to LAYER 2 Event Mailbox

This block of RAM is used as the OLC LLO L2 event mail­
box to pass event information from the IOPC OLC LLO to
Layer 2. Mailbox structures are described in Table 5-5. This
mailbox is used primarily for receiving B-Channel data.

Management Entity to LLO Command Mail­
box

This block of RAM is used as the ME-OLC LLO mailbox to
pass commands from the Management Entity to the IOPC
OLC LLO. Commands are passed for IOPC OLC LLO setup
and initialization. The IOPC OLC LLO ME command input
handler services the commands passed in this mailbox.

LLO to Management Entity Event Mailbox

This block of RAM is used as the DLC LLD-ME mailbox
which is used to pass event information from the IDPC DLC
LLD to the management entity. This mailbox is used primar­
ily to pass IDPC DLC LLD status information back to the
management routines.

OLC Initialization Parameter Block

The data in this block (see Table 5-4) provide control infor­
mation for the IDPC DLC module. Default values are loaded
and installed by the 'illdinitO' routine. The user may modify
the values in the IPB; however, these are not installed until
the user executes the DLC Init Command.

The L2 Address Length, L2 Address Select and CIR
Address Bit Ignore Enable fields are also used by the LLD
during execution of the Update Address Recognition Com­
mand.

Table 5·4, OLe Initialization Parameter Block
Structure

Offset
00
02
03
04
05
06
07
OS
09
OA
OB
OC
00

Description
Maximum Packet Size
L2 Address Length
L2 Address Select
CRC Check Enable
CRC Pass-Through Enable
CRC Generator Enable
Mark or Flag Idle Select
CIA Address Bit Ignore Enable
B-Channel Select
Invert Enable
Minimum Packet Size
Transmit FIFO Threshold
Receive FIFO Threshold

Size
(Bytes)

2
1
1
1
1
1
1
1
1
1
1
1
1

MAXIMUM PACKET SIZE - Maximum length packet,
(including CRC bytes, if any), that Is legal for the Layer 2 +
protocol in use.

LAYER 2 ADDRESS LENGTH - Number of bytes in the
packet address field for the Layer 2 + protocol in use.

SINGLE ADDRESS BYTE SELECT - Selects which packet
address byte to compare during address recognition when
the Layer 2 Address Length is equal to one. Set this
parameter to 1 for first packet address byte select, 2 for
second byte select.

CRe CHECK ENABLE - Set to 1 to enable CRC checking
during packet reception, 0 for CRe Check Disable.

CRC PASS-THROUGH ENABLE - Set to 1 for pass CRC
bytes to Layer 2 + as last two bytes of each received pack­
et. Set to 0 to disable passing any CRe bytes.

CRe GENERATOR ENABLE - Set to 1 to enable CRC
Generation during packet transmission, 0 for CRC Gener­
ate Disable.

MARK IDLEIFLAG IDLE SELECT - Set to 1 to generate
mark idle pattern (all 1 bits) when not transmitting a pack­
et, 0 to generate flag idle pattern.

5-4

IGNORE CIR ADDRESS BIT ENABLE - Set to 1 to ignore
the CIR bit in the Layer 2 packet address during address
recognition. Set to 0 to also compare the CIR bit during
address recognition.

B-CHANNEL SELECT - Set to a value from 0 to 30 (decimal)
to select multiplexed B-Channel 0 through 30 respectively.
Set to 31 (decimal) to select non-multiplexed operation
(e.g.,SNA).

INVERT ENABLE - Set to 1 to enable inversion of the
transmitted and received serial bit streams. Set to 0 to dis­
able inversion.

MINIMUM PACKET SIZE - Minimum length packet (includ­
ing CRC bytes, if any) that is legal for the Layer 2 + proto­
col in use.

TRANSMIT FIFO THRESHOLD - Set to a value from 0 to
15 (deCimal) to set the fullness threshold (0 to 15 bytes) at
which the DLC Transmitter requests service from the LLD
software or DMA for additional bytes to be loaded into the
transmit FIFO.

RECEIVE FIFO THRESHOLD - Set to a value 0, 1, 2 ...
15 (deCimal) to set the fullness threshold (32, 2, 4 ... 30
bytes) at which the DLC Receiver requests service from
the LLD software or DMA for bytes to be unloaded from
the receive FIFO.

MAILBOX INTERFACES

As described earlier, the primary interface to the IOPC
OLC LLO services is implemented using mailboxes. This
section describes the procedure for using the mailboxes
which consist of an 1S-byte structure containing the format
shown in Table 5-5.

A mailbox is used to tran~er commands and event infor­
mation between the IDPC DLC LLD and either the L2
protocols or the ME routines. These routines may be in
separate tasks or processes when using a multi-tasking
operating system. This means that the mailboxes must be
accessible to both the IOPC DLC LLD and L2/ME. This is
generally no problem in a single processor implementa­
tion; however, in a multi-processing system or a system
with memory-management, the mailboxes must be placed
in shared-memory.

Table 5-5. Mailbox Structure

Offset
o
1
2

Component
CommandlEvent Code
Receipt Code
Parameters

Command/Event Code

Size
(Bytes)

1
1
16

The first byte in a mailbox is the CommandlEvent Code.
This byte determines what command is to be performed or
what event has occurred. Each IDPC DLC LLD primitive is
assigned a unique Command/Event Code. Table 5-7 lists
the IDPC DLC LLD command codes and Table 5-8 pro­
vides a summary of the IDPC DLC LLD event codes.

Receipt Code

The second byte in a mailbox is the receipt code. This byte
indicates to the routine issuing the command that com­
mand has been received and validated.

Upon issuing a command/event, the routine places the
value OxFF into the Receipt Code. The issuing routine
then monitors the Receipt Code to determine if the com­
mand/event has been received. A value of '00' indicates
that the command/event has been received or, for some
commands, executed. Any other value indicates an error
condition.

Table 5-6. Valid Mailbox Receipt Codes

Code
00
01
02

03-FE
FF

Description
Command/event received or complete.
Illegal command/event.
Illegal parameter(s).
Reserved.
Command/event not received or complete.

Parameters

The last 16 bytes of a mailbox are reserved for param­
eters. The contents of these bytes are dependent upon the
actual command or event issued.

COMMAND SEQUENCES

Commands are passed from either the Management
Entity (ME) or the Layer 2 (L2) protocol to the IDPC DLC
LLD. Figure 5-2 shows a typical command sequence.
Note that the Receipt Code returned by the IDPC DLC
LLD may indicate that the command has simply been
received or that execution is complete. This depends upon
the particular command issued.

Table 5-7 lists the valid command codes to which the IDPC
DLC LLD will respond. Each command is described in
detail in a later section.

Figure 5-2. lYpical Command Sequence

• Write an oxFF to the Receipt Code in the command
mailbox.

• Write the Command Code to the command mailbox.

• Write any command parameters to the command
mailbox.

• Generate a command interrupt to the IDPC DLC LLD.

---,INTERRUPT---·

• When the Receipt Code in the command mailbox is not
OxFF, the sequence is complete.

5-5

Read the Command Code from the command mailbox.

Process the command using the Parameters from the
command mailbox.

Write the appropriate Receipt Code to the command
mailbox.

Execute a return from interrupt instruction.

Table 5-7. IOPC OLC LLO Command Codes Summary

Code (Hex) Description MBI/F ~

00 Transmit a Buffer L2 OLC

01 Initialize the OLC ME OLC

02 OLCControl ME OLC

9.3 ypdate Address Recognition ME OLC

04 Abort the Current Transmit ME OLC

05 Load a New Event Enables ME OLC

06 Begin Remote Loopback ME OLC

07 End Remote Loopback ME OLC

08 Begin Local Loopback ME OLC

09 End Local Loopback ME OLC

EVENT SEQUENCES

Events are messages passed from the IOPC OLC LLO back to either the L2 protocol or the ME. Figure 5-3 shows a
typical event sequence. Note that the Receipt Code returned by the L2 or ME may indicate that the command has
simply been received or that some data are available. This depends upon the particular event issued.

Table 5-8 lists the valid event codes which the IOPC OLC LLO will generate. Each event is described in detail in a later
section.

Figure 5-3. Typical Event Sequence

,---INTERRUPT ,---

Read the Event Code from the event mailbox.

• Process the event using the Parameters from the event
mailbox.

• Write the appropriate Receipt Code to the event
mailbox.

• Execute a return from interrupt instruction.

LLD

Write an OxFF to the Receipt Code in the event mailbox.

Write the Event Code to the event mailbox.

Write any event parameters to the event mailbox.

Call the Event Generator routine for the target mailbox.

When the Receipt Code in the event mailbox is not OxFF,
the sequence is complete.

Table 5-8. IOPC OLC LLO Event Codes Summary

Code (Hex) Description MBI/F Module

0 Transmission Complete L2 DLC

1 Packet Received L2 DLC

B Error Status ME OLC

C Buffer Allocation Request ME OLC

5-6

PROGRAMMING

This section describes the command and event primitives used with the IDPC DLC LLD. These primitives are compatible
with those used by AmLink LAPD/LAPB and those provided by the DSC LLD.

Each primitive description contains the following information:

PRIMITIVE CODE: Command or event code for the primitive.

MAILBOX: Mailbox to be used with this primitive.

INPUTS: Input parameters for this primitive. These are identified as mailbox parameter bytes 0 to 15.

OUTPUTS: Output parameters for this primitive. These are identified as mailbox parameter bytes 0 to 15.

RECEIPT CODES: Possible Receive Codes for this primitive.

DESCRIPTION: Describes the functions and services provided by this primitive.

NOTES: Describes any special considerations related to this primitive.

The command primitives are:

Commands

XMITBUF

DLC_INIT

DLC _CONTROL

UPDATE ADDR _ RECOGO

XMIT_ABORT

LOAD EVENT ENABLES

BEG IN-REMOTE _LOOP

END_REMOTE_LOOP

BEGIN_LOCAL_LOOP

END_LOCAL_LOOP

The event primitives are:

PACKET _ RCVD

XMIT_DONE

ERROR STATUS

BUFFER SERVICE

Description

Transmit a buffer.

Initialize the OLe.

Enable/disable DLC transmitter and/or receiver.

Update address recognition parameters.

Abort the current buffer transmission.

Load event reporting enable/disable bit array.

Begin remote Loop back.

End remote Loop back.

Begin local Loop back.

End local Loop back.

Description

Packet received without error.

Buffer transmitted without error.

A valid address or an end-of address has been received.

Buffer allocation/deallocation service.

5-7

PRIMITIVE: XMITBUF

COMMAND CODE: 0

MAILBOX: L2

INPUTS: Buffer Address (parameter bytes 0-3)

Packet Length (parameter bytes 4-5)

Buffer Length (parameter bytes 6-7)

Buffer Reference Number (parameter bytes 8-9)

OUTPUTS: None

RECEIPT CODES: 00 = Command was received.

DESCRIPTION:

NOTES:

PRIMITIVE:

COMMAND CODE:

01 = Illegal command.

02 = Illegal parameter.

03 = Transmitter busy.

FF = Command not yet received.

This primitive initiates a buffer transmission via the IDPC DLC. If the buffer size is larger than the
packet size, the IDPC DLC LLD will automatically send multiple packets until the entire buffer is
sent. The buffer size MUST be an integral multiple of the packet size or an illegal parameter receipt
code will be returned.

This primitive is equivalent to the PH-DATA request primitive.

If this primitive is issued while the transmitter is busy from a previously issued, but unfinished,
XMITBUF, a Transmitter Busy receipt code is returned. The user may re-issue the primitive alter
the current transmission is complete as indicated by an XMITDONE event.

DLCJNIT

MAILBOX: ME

INPUTS: None, uses the DLC Initialization Parameter Block (IPB) in the LLD RAM Interface Block.

OUTPUTS: None.

RECEIPT CODES: 00 = Initialization is complete.

DESCRIPTION:

NOTES:

01 = Illegal command.

FF = Command not yet complete.

This primitive places the IDPC DLC into a known state. The primitive installs the DLC IPB
parameters, disables address recognition, gets a buffer for the DLC receiver, enables 80188/86
receive DMA Channel 0, and enables all DLC interrupts.

5-8

PRIMITIVE: OLC Control

COMMAND CODE: Ox02

MAILBOX: ME

INPUTS: DLC Transmitter Enable/Disable (parameter byte 0) Enable = 1; Disable = 0

DLC Receiver Enable/Disable (parameter byte 1) Enable = 1; Disable = 0

OUTPUTS: None

RECEIPT CODES: 00 = Command is complete.

01 = Illegal command.

02 = Illegal parameter.

FF = Command not yet complete.

DESCRIPTION: This primitive allows the user to enable or disable the DLC transmitter and/or receiver.

NOTES:

PRIMITIVE: UP AOOR RECOGNITION - -
COMMAND CODE: Ox03

MAILBOX: ME

INPUTS: Parameter byte 0 - Enable (= 1)/Disable (= 0) address recognition for the specified Address
Register Number (parameter byte 1).

Parameter byte 1 - Address Register Number. Parameter byte 1 = 0, 1,2,3 for Address
Recognition Register 0, 1,2, or 3. Parameter byte 1 = 4 for Broadcast Address Recognition.
Parameter bytes 2-3 - Address. Contents to be loaded into the specified address recognition
register. If single byte addresses are enabled in the DLC IPB, parameter byte 2 contains that
address regardless of which address byte (1 st or 2nd) is enabled. Parameter bytes 2-3 are ignored
if parameter byte 1 = 4 (Broadcast Address Recognition).

OUTPUTS: None

RECEIPT CODES: 00 = Command is complete.

DESCRIPTION:

NOTES:

01 = Illegal command.

02 = Illegal parameter.

FF = Command not yet complete.

This primitive allows the DLC address recognition services to be used. Address recognition can be
used as a bandpass filter, allowing only. packets with the specified addresses to be received.

The IDPC DLC supports up to four programmable addresses plus a fixed Broadcast Address (all
1 's address).

The DLC IPB contains the following fields which condition address recognition:

Address length (single byte or two bytes)

Single byte address select (1 st or 2nd)

Ignore C/R address bit

See section on DLC IPB for further information.

5-9

PRIMITIVE: TRANSMIT ABORT

COMMAND CODE: 4

MAILBOX: ME

INPUTS: None

OUTPUTS: None

RECEIPTCODES: 00 = Command is complete.

01 = Illegal command.

FF = Command not yet complete.

DESCRIPTION: This primitive causes any buffer transmission that was previously issued to be aborted.

Execution of this primitive causes the IDPC DLC LLD to issue an XMITDONE event primitive to the
Layer 2.

NOTES:

PRIMITIVE: LOAD EVENT ENABLES - -
COMMAND CODE: 5

MAILBOX: ME

INPUTS: Event Enables. This is an eight byte array. Each bit in the array represents one of 64 events. The
bit position for a particular event mask corresponds to the event code for the event. A ONE in a bit
position enables the corresponding event to be reported via interrupt to the layer (L2 or ME)
appropriate for the particular event. A ZERO in a bit position disables that event from being
reported. For instance, the event mask bit for the "Error Status" event (Event Code OxOB) is
byte #1, bit #3.

OUTPUTS: None.

RECEIPT CODES: 00 = Update is complete.

DESCRIPTION:

NOTES:

01 = Illegal command.

02 = Illegal parameter.

FF = Command not yet complete.

This primitive causes a new event mask to be used by the IDPC DLC LLD. The event mask allows
event reporting to be individually enabled or disabled.

Events may still occur even though they are not reported if event reporting is disabled.

5-10

PRIMITIVE: BEGIN_REMOTE_LOOP

COMMAND CODE: 6

MAILBOX: ME

INPUTS: None

OUTPUTS: None

RECEIPT CODES: 00 = Command is complete.

01 = Illegal command.

FF = Command not yet complete.

DESCRIPTION: This primitive places the IDPC DLC in Remote Loopback. While Remote Loopback is enabled, all
received packets will be looped back to the far end transmitter. Received packets will also be
received by the local DLC if the DLC Receiver is enabled. Any packets transmitted by the local DLC
Transmitter will not be transmitted but will be thrown in the bit bucket.

NOTES:

PRIMITIVE: END_REMOTE_LOOP

COMMAND CODE: 7

MAILBOX: ME

INPUTS: None

OUTPUTS: None

RECEIPT CODES: 00 = Command is complete.

01 = Illegal command.

FF = Command not yet complete.

DESCRIPTION: This primitive disables IDPC DLC Remote Loopback. If the Remote Loopback is not enabled, the
command does nothing.

NOTES:

PRIMITIVE: BEGIN_LOCALLOOP

COMMAND CODE: 8

MAILBOX: ME

INPUTS: None

OUTPUTS: None

RECEIPT CODES: 00 = Command is complete.

01 = Illegal command.

FF = Command not yet complete.

DESCRIPTION: This primitive places the IDPC DLC into a Local Loopback mode. In this mode, data transmitted by
the IDPC DLC is looped back to the IDPC DLC receiver.

NOTES:

5-11

PRIMlnVE: END LOCAL LOOP - -
COMMAND CODE: 9

MAILBOX: ME

INPUTS: None

OUTPUTS: None

RECEIPT CODES: 00 = Command is complete.

01 = Illegal command.

FF = Command not yet complete.

DESCRIPTION: This primitive disables IDPC DLC Local Loopback, if enabled.

NOTES:

PRIMITIVE: XMITDONE
EVENT CODE: 0

MAILBOX: L2

INPUTS: None

OUTPUTS: None

RECEIPT CODES: 00 = Event has been received.

DESCRIPTION:

NOTES:

PRIMlnVE:

EVENT CODE:

MAILBOX:

INPUTS:

01 = Illegal event.

FF = Event not yet recognized.

This primitive is used to notify the L2 code that the last Transmit Buffer LLD Command issued has
been completed and the IDPC DLC transmitter is ready to transmit another buffer.

This event is issued when normal buffer transmission is finished, when the Transmit Underrun
event occurs or when the Transmit Abort command is executed.

PACKET RCVD

L2

Buffer Address (parameter bytes 0-3)

Packet Length (parameter bytes 4-5)

Buffer Reference Number (parameter bytes 6-7)

OUTPUTS: None

RECEIPT CODES: 00 = Event has been received.

01 = Illegal command.

DESCRIPTION:

NOTES:

02 = Illegal parameter.

FF = Event not yet received.

This primitive is used to notify the L2 code that a packet has been successfully received.

The user should acknowledge this primitive with as little delay as possible. This routine will request
a new receiver buffer immediately after the event is acknowledged. If acknowledgment is delayed
too long, a receiver overrun error may occur.

5-12

PRIMITIVE:

EVENT CODE:

MAILBOX:

INPUTS:

OUTPUTS:

ERROR STATUS

OxOB

ME

None

Parameter byte 0 -

Bit 0 - Receiver abort condition.
1 - Receiver non-integer # of bytes.
2 - Reserved.
3 - Receiver CRC error.
4 - Receiver Long Packet error.
5 - Receiver Short Packet error.
6 - Receiver overrun error.
7 - Transmitter Underrun error.

RECEIPT CODES: 00 = Event has been received.

DESCRIPTION:

NOTES:

01 = Illegal event.

FF = Event not yet received.

This primitive is used to notify the ME that one or more DLC error or exceptional conditions has
occurred.

All of the receiver error/exceptions are mutually exclusive for the IDPC DLC receiver. In other
words, only one of bits 0-6 of parameter byte 0 may be set in any single occurrence of this event.
However, the Transmitter Underrun error bit may be set simultaneously with one of the receive
error/exception bits.

When one of the received error/exception conditions occurs, Layer 2 is not notified. If the
Transmitter Underrun condition occurs, a Transmit Done event to Layer 2 is executed in addition to
the Error Status event.

The Non-Integer Number of Bytes condition indicates that the last byte of a received packet
contains less than 8 bits.

The Long Packet error occurs when the number of bytes in a received packet exceeds the
Maximum Packet Size field of the DLC IPB.

The Short Packet error occurs when the number of bytes in a received packet is less than the
Minimum Packet Size field of the DLC IPB.

PRIMITIVE: IOPC OLC LLO Initialization

COMMAND CODE: Not Applicable

MAILBOX: Not Applicable

INPUTS: None, uses Configuration Table information.

OUTPUTS: None

RECEIPT CODES: 00 = Initialization is complete.

DESCRIPTION: This routine 'ilidinitO' is used to initialize the IDPC DLC Initialization Parameter Block (IPB) and
IDPC DLC LLD Private RAM area. This routine must be called prior to using any IDPC DLC LLD
mailbox services. Normally, the routine should be part of the system POR initialization sequence.

NOTES: The user should issue the DLC IN IT command primitive to install the DLC IPB into the IOPC OLC
hardware. The user may modify the IPB fields prior to issuing the DLC Init command. Once the
DLC Init command has been executed, the DLC CONTROL command must be executed to enable
the IOPC transmitter and receiver.

5-13

PRIMITIVE:

EVENT CODE: OxOC

MAILBOX: ME

INPUTS: MODE (parameter byte 0) - A ZERO indicates that an allocation is requested.

SIZE (parameter byte 1 and 2) - The size in bytes of the buffer requested_

OUTPUTS: ADDR (parameter bytes 3-6) - Contains the base address of the buffer requested.

REFNO (parameter byte 7-8) - Contains the reference number of the buffer provided.

RECEIPT CODES: 00 = Initialization is complete.

DESCRIPTION:

NOTES:

01 = Illegal command.

02 = Illegal parameter.

FF = Command not yet complete.

This primitive is used to request that a buffer be allocated to the IDPC OLC LLD. This primitive is
used to obtain a buffer for the DLC receiver. The deallocate option is not used by the IDPC DLC
LLD. The REFNO is an arbitrary integer associated with the buffer by the ME when the buffer is
allocated.

The ME must be able to supply a buffer of at least the size programmed in the Maximum Packet
Size field in the IDPC DLC Initialization Parameter Block.

5-14

APPENDIX

CONNECTION DIAGRAM

~

i I
....

I~ a z § ~ 0" i > ill
>8 c

0 < '" ~ ill 2i 2i 5 < < < < < .,

°0 lOT-R

°1 i:AeQ

°2 iliBE

°3 LDlOE

°4 LDLE

°5 LASe

°6 UNTOUT

°7 'Iss
Vee Vee

Vss iiAMCs
ClK iiAMWE
RST RAMOE

WR HDLE

Ri5 H1iiiE

CS HAiiE

PO ii6LOE
Vss HINTOUT

c
I~ I~

....
I~ I~

c
~ ! >< ~ Ilf Ii! >< z >

~ ~ ~ d ::l

~ 1= c

~
I! a: a:

~ c :I: ~ :I: a: :I: i!i r1i r1i :I: alllOCt'l·1
::l

'" ::l
_.

LOGIC SYMBOL

Ri'i
RST

w;;

ffi
i5SFi
",eLK

"'0
T,O

USARTClK

SBIN

SCLK
SFSlXMITClK

HOT-A

HINTACK

HINTlN

HRDY

HREQ

LOT-A

LAEQ

A-1

PIN DESCRIPTION
The interface pins of the 58-pin 10PC chip can be classi­
fied into six major groups which include:
• Processor Bus Interface (25 pins)
• USART Interface (9 pins)
• Serial Bus Port Interface (4 pins)
• Bus Arbitration Control (21 pins)
• Power/Ground (7 pins)

Processor Bus Interface

Ao-As Address Lines (Input)
These six address lines are generated by the external pro­
cessor to select internal registers of the 10PC. The
address lines are valid only when C"S is active (LOW).

CLK Master Clock (Input)
The Master Clock is an input that provides synchroniza­
tion and timing for internal 10PC logic functions. CLK is
normally the same clock used by the CPU.

CS Chip Select (Input; Active LOW)
cg is an externally developed signal used to indicate that
the 10PC has been selected for a read or write cycle
(viewed as memory by the external processor).

00-07 Data Lines (Input/Output; Three State)
00-07 are bidirectional data lines used to transfer data
between the locally attached processor and the 10PC. The
direction of the data transfer is controlled by the read (RO)
and write (WR) control lines. When CS is invalid (HIGH),
the data lines remain in a high-impedance state.

J)ACj(DMA Acknowledge (Input; Active LOW)
The OACK signal is an indication that the OMA controller
is executing a OMA cycle to the OLC Transmit FIFO. This
indication occurs early in the OMA cycle, allowing the
Transmit FIFO to de-activate the ORa1 signal when the
last data transfer takes place (before an unwanted OMA
cycle is initiated). An equivalent Signal is not required for
the OLC Receive FIFO operation.

DLCINT DLC Interrupt (Output; Active HIGH)
OLCINT goes active (HIGH) any time the Oata Link Con­
troller (OLC) portion of the 10PC sets a status bit and the
associated interrupt enable bit is active.

DRQo Receive DMA Request (Output; Active HIGH)
ORao is an active-HIGH output used by the receive FIFO
portion of the OLC to begin a OMA cycle for the receive
data. ORao goes active (HIGH) when the receiver portion
of the OLC loads the number of data bytes into the receive
FIFO specified by the receive FIFO threshold in the FIFO
Threshold Register, or an "end of packet" is loaded into
the FIFO.

ORao is de-activated at reset, when the receive FIFO is
emptied, or when the last byte of a packet is transferred
from the receive FIFO to external memory.

DRQ1 Transmit DMA Request (Output;
Active HIGH)
ORa1 is an active-HIGH signal used by the transmit FIFO
of the OLC to request the start of a OMA cycle for the
Transmit Oata.

ORa1 goes HIGH when ALL of 'the following conditions
are mel:
1) Transmit byte count is not equal to zero,
2) Last byte of the packet has not been loaded into the

FIFO,and
3) The number of bytes in the FIFO is equal to or less

than the value programmed into the transmit FIFO
threshold.

A-2

ORa1 is de-activated (LOW) at reset when the FIFO buffer
is full, or when the last byte of the packet is loaded into the
FIFO.

PD Power bown (Input; Active LOW)
When active, this signal disables all internal clocks and
places all three-state signals in high-impedance state.
HROYand LROY are driven active (HIGH) and all interrupt
outputs are de-activated. Status and data may be lost but
programming is retained.

1m JreiCI (Input; Active LOW)
This input is used internally by the 10PC to indicate when
read data (output data from the 10PC) is to be latched by
the external host (negative to positive transition of AD).
AD is qualified internally with an active CS input (LOW).

RST Reset (Input; Active HIGH)
When active (HIGH), the reset line forces all functions to
terminate and places the 10PC in a default state (described
later in this data sheet). HROYand LROYare driven active
(HIGH) and all three-state outputs are placed in high­
impedance state.

USARTINT USART Interrupt (Output; Active HIGH)
USARTINT goes active (HIGH) any time the USART sec­
tion of the 10PC sets a status bit and the associated inter­
rupt enable bit is active.

WR WrIii (Input; Active LOW)
WR is used internally by the 10PC to latch incoming data
(00-07) during a write cycle. WR is qualified internally
with an active CS input (LOW).

USART Interface
BDCLKOUT Baud Rate Generator Clock Out (Output)
This signal is the output of the final stage of the 10PC's
internal baud rate generator. This signal is used as a
common clocking source for a modem or other similar
application.

eTI .,.C"'le:-:a:":'''''I1''"o S'''e-=n-:;-d (Input; Active LOW)
This signal is a TTL-level input to the 10PC. Activity on
C'fS generates a maskable interrupt but does not directly
control the USART.

~ bata Set Ready (Input; Active LOW)
DSR is a TTL-level input to the 10PC. Activity on i5SR
generates a maskable interrupt but does not directly con­
trol the USART.

bTJf Data Terminal Ready (Output; Active LOW)
D'm is a TTL-level output from the the 10PC. This signal
is user-controlled and does not directly affect USART
operation.

Fm "R"'"eq=u"'e=-=s""t '"'To""'S'"'e=-=n'""d (Output; Active LOW)
FITS is a TTL-level status output from the 10PC. This sig­
nal is user-controlled and does not directly affect USART
operation.

RxCLK Receive Clock (Input)
RxCLK is an input to the USART portion of the 10PC used
in synchronous and asynchronous operation. In asyn­
chronous mode, the RxCLK is 15 times the data rate. In
synchronous mode, the RxCLK is synchronized to the
incoming data, and the positive-going edge is used to
latch the incoming Receive Oata (RxO).

RxD Receive Data (Input; Active HIGH)
RxO is the TTL-level serial data input to the 10PC's internal
USART. The data are clocked into the 10PC on the posi­
tive-going edge of the selected clock source.

TxD Transmit Data (Output; Active HIGH)
TxO is the TTL-level serial data output of the IOPC's inter-

nal USART. The data are clocked out of the IOPC on the
negative edge of the selected clock source.

USARTCLK USART Clock (Input)
This pin is the input for the internal baud rate generator.
The frequency of this clock source must be integer multi­
ples of the desired baud rate (output of the baud rate
generator is the same as the data rate for synchronous
operation and 16 times the data rate for asynchronous
operation). If the baud rate generator is programmed to
divide by one, USARTCLK operates as a direct input to
the USART. When the IOPC is used in conjunction with the
Am79C30 (OSC), the 12.288 MHz clock output can be
used as the USART clock source.

Serial Bus Port Interface

SBIN Serial Data In (Input; Active HIGH)
SBIN is the serial data input to the OLC portion of the
IOPC and is clocked into the OLC LSB (bit 0) first on the
positive edge of the Serial Clock In (SCLK).

Serial data may be input as free-running data or gated
data using the SFS/XMITCLK pin (described in greater
detail later in this document). The data will range in speed
from 0 to 2.048 Mbps. In applications where an
Am79C30A (OSC) is used, SBIN of the IOPC is tied to
SBOUT of the OSC.

SBOUT Serial Data Out (Output; Active HIGH,
Open Drain)
SBOUT is the serial data output of the OLC portion of the
IOPC. The serial data is clocked out, LSB (bit 0) first, on
the negative edge of either SCLK or SFS/XMITCLK.
SBOUT data will range in speed from 0 to 2.048 Mbps. In
applications where an Am79C30A (OSC) is used, SBOUT
of the IPOC is tied to SBIN of the OSC.

SCLK Serial Clock In (Input)
SCLK is an input to the IOPC that is used as the clocking
source for the OLC.

In one mode of operation, SCLK acts as both the transmit
and receive clock synchronized to SFS/XMITCLK. In a
second mode of operation, SCLK is used only as the
receive clock and is not synchronized to SFS/XMITCLK.
The positive edge of SCLK is used to latch receive data on
SBIN and the negative edge is used to shift transmit data
out on SBOUT.

SFS/XMITCLK Serial Frame SynciTransmlt
Clock (Input)
This input clock signal has two different functions depend­
ing on the mode of operation selected by bits 0-4 of the
SBP Control Register. In the gated mode, this input func­
tions as SFS, the synchronization pulse used to indicate
the first of up to 31 independent 8-bit time slots on SBIN
andSBOUT.

In the second mode, SFS/XMITCLK is used by the OLC as
the input for an independent transmit clock. SFSI
XMITCLK is used by the OLC to shift data out on SBOUT
(Serial Bus Out), LSB (bit 0) first, on the negative edge.
This clock operates from 0 to 2.048 Mbps.

Bus Arbitration Control

HDBE Host Data Bus Enable (Output; Active LOW)
HOBE Is an active-LOW output used to enable the data
lines from the host processor to the shared RAM data bus.
HOBE is driven active as a result of HOT-R being driven
HIGH (write cycle). It remains HIGH until the end of the
memory cycle.

A-3

HABE Host Address Bus Enable (Output;
Active LOW)
HABE is driven active LOW by the IOPC as a result of
receiving an HREQ from the host processor and is used to
enable the address lines from the host processor. HABE
remains active until the end of the memory cycle.

HOLE Host Data Latch Enable (Output;
Active HIGH)
This active-HIGH output is used to latch data from the
RAM to the host processor. HOLE is driven HIGH (the
latch is made transparent) as a result of HOT-R going LOW
(read cycle). It returns LOW at the end of the memory
cycle.

HDLOE Host Data Latch Output Enable (Output;
Active LOW)
HOLOE is an active-LOW output from the IOPC used by
the host processor to enable the output of the data bus
latches back to the host processor. HOLOE is driven active
(LOW) when HOT-R is driven LOW (read cycle). It is
cleared (HIGH) when HREQ goes inactive (LOW).

HOT-Ii Host Data Transmit-Receive (Input)
HOT-A indicates the direction of host processor accesses
to shared memory. When the signal goes HIGH, it indi­
cates that a RAM write cycle is in progress. As a result,
RAMWE and HOBE are driven active (LOW).

When HOT-A goes LOW, it indicates that a RAM read cycle
is in progress. At this time RAMOE and HOLOE are driven
active (LOW), and HOLE is driven active (HIGH).

HINTACK Host Interrupt Acknowledge (Input;
Active HIGH)
HINTACK is generated by the host processor in response
to a Host Interrupt Out (HINTOUT) signal from the IOPC.
HINTACK is used in the IOPC to clear bit 0 of the
Semaphore Register, dropping HINTOUT.

HINTIN Host Interrupt In (Input; Active HIGH)
This signal is used by the host processor to generate an
interrupt to the local processor (LINTOUT). When HINTIN
is pulsed active (HIGH), it causes bit 1 of the Semaphore
Register to be set to a '1' which generates LiNTOUT.

HINTOUT Host Interrupt Out (Output; Active HIGH)
When activated, HINTOUT generates an interrupt to the
host processor. This signal goes active (HIGH) when the
local processor writes a '1' to bit 0 of the Semaphore
Register. HINTOUT is de-activated by a pulse on the
HINTACK pin. HINTOUT is intended to be connected to an
interrupt input on the host processor. HINTOUT is de-acti­
vated by reset.

HRDY Host Ready (Output; Active HIGH)
Open Drain
HROY is an active-HIGH output from the IOPC used by the
host processor to complete a shared RAM memory cycle.
HROY is normally HIGH. It is driven LOW when a request
for the RAM is received from the host processor (HREQ).
HROY is returned HIGH at the end of the memory cycle, or
by reset.

HREQ Host Processor Bus Request (Input;
Active HIGH)
The HREQ is an active-HIGH input to the IOPC from the
host processor requesting access to the shared RAM.
HREQ is sampled on the negative edge of every IOPC
clock cycle. When sampled active, HREQ drives ~
and IJ\BE active (LOW), and HROY inactive (HIGH).
HREQ is an asynchronous input with respect to the master
clock and is synchronized internally.

i.:AB"E Local Address Bus Enable (Output;
Active LOW)
This signal is driven LOW by the IOPC to enable the
address lines from the local processor bus onto the mem­
ory bus when a Local Processor Sus Request (moo) is
received from the local processor. LASE remains active­
LOW until the end of the memory cycle.

DlBE Local Data Bus Enable (Output; Active LOW)
This signal is used to place the data from the local proces­
sor onto the shared RAM data bus. D5B"I: is driven active
as a result of LOT-R being driven HIGH (write cycle). The
local data bus enable remains HIGH until the end of a
memory cycle.

LDLE Local Data Latch Enable (Output; Active HIGH)
This signal goes HIGH to latch data from the RAM onto the
local processor data bus. LOLE is driven HIGH (latch
made transparent) as a result of LOT-R going LOW (read
cycle). LOLE returns LOW at the end of a memory cycle.

[I)[OE Local Data Latch Output Enable (Output;
Active LOW)
This signal is an active-LOW output from the IOPC that
enables the output of the data bus latch onto the local pro­
cessor. [i)[(5E is driven active (LOW) when LOT-R is dri­
ven LOW (read cycle) and is cleared when LRl:Q goes
inactive (HIGH).

LDT-R Local Data Transmit-Receive (Input)
LOT-R indicates the direction of local processor accesses
to shared memory. When the signal goes HIGH it indicates
that a RAM write cycle is in progress. As a result, RAfiiiWE
and LOBE are driven active (LOW).

When LOT-A goes LOW it indicates that a RAM read cycle
is in progress. At this time ~ and LI5U5I: are driven
active (LOW), and LOLE is driven active (HIGH).

LlNTOUT Local Interrupt Out (Output; Active HIGH)
When activated, LlNTOUT generates an interrupt to the
local processor. This signal goes active (HIGH) when bit 1
in the Semaphore Register is set to a logic '1' when a
pulse from the host is applied to the HINTIN pin. LlNTOUT

Register Description

goes LOW when the register bit is cleared to '0' by
software (writing a '0' to bit 1 of the Semaphore Register),
or after a reset.

LRDY Local Ready (Output; Active HIGH)
Open Drain
LROY is an active-HIGH output from the IOPC used by the
local processor to complete a shared RAM memory cycle.
LROY is normally HIGH, and is driven LOW when a
request for RAM is received from the local processor
(LREQ) and the host processor is currently accessing
shared RAM.

~ Local Processor Bus Request (Input;
Active LOW)
This active-LOW signal is generated as an input to the
IOPC by the local processor when it requests access to
the shared RAM. LRl:Q is sampled on the negative edge
of every IOPC master clock cycle. l:FiEO must be syn­
chronous to CLK.

~ RAM Chip Select (Output; Active LOW)
This signal is an active-LOW output from the IOPC used by
the shared RAM as its chip select. RAMCS is driven LOW
when either CREQ or HREQ is sampled active. RAMCS
remains active until the end of a memory cycle.

RAMOE RAM Output Enable (Output; Active LOW)
This signal is an active-LOW output signal from the IOPC
used by the shared RAM to enable its output drivers.
RAMOE is driven active LOW when either LOT-R or HOT-A
is driven LOW (read cycle). ~ is cleared (HIGH) at
the end of the memory cycle.

RAMWE RAM write Enable (Output; Active LOW)
This signal is an active-LOW output from the IOPC used by
the shared RAM as a write strobe. RAMWE is driven LOW
when either LOT-R or HOT-R goes HIGH (write cycle).
RAMWE remains active until the end of a memory cycle.

Power/Ground
vee + 5-V Power Supply
VssGround

The IOPC is controlled via internal registers that are written and read by software running on the external "local" processor
connected to the IOPC external bus. Tllese internal registers may be mapped into either memory or 1/0 space, but typically are
memory mapped.

The internal registers occupy a 64-byte block located in the local processor's memory address space. The starting address of the
memory block is determined by address decode logic (external to the IOPC) that is used to generate the IOPC Chip Select signal
(~). The registers and their respective memory offset values are provided in Tables 1-4.

In systems containing more than one microprocessor (e.g., a workstation application with host processor and local processor),
only the local processor can access the IOPC registers. The host processor, however, can control IOPC operations indirectly by
issuing requests to the local processor via shared memory supported by the Oua~Port Memory Controller.

The programmable registers are used for establishing modes of operation, configuring the IOPC, and monitoringlreporting status.

Table 1. IDPC Address Map

Offset (Hex)

00-1F
20-3E

3F

Detailed Description of User-Visible DLC Registers
The OLC contains 23 registers, as shown in Table 2.

A-4

Block

OLC
USART
OPMC

Thble 2. OLC Registers

Offset (Hex) Register Name Size (Bytes) lYpe

00 Command/Control Register 1 Read/Write
01 Address Control Register 1 Read/Write
02 Link Address Recognition Register 0 2 Read/Write
04 Link Address Recognition Register 1 2 Read/Write
06 Link Address Recognition Register 2 2 Read/Write
08 Link Address Recognition Register 3 2 Read/Write
OA Serial Bus Port Control Register 1 Read/Write
OB Minimum Receive Packet Size Register 1 Read/Write
OC Maximum Receive Packet Size Register 2 Read/Write
OE Interrupt Source Interrupt Enable Register 1 Read/Write
OF Receive Frame Interrupt Enable Register 1 Read/Write
10 Receive Link Interrupt Enable Register 1 Read/Write
11 FIFO Status Interrupt Enable Register 1 Read/Write
12 Transmit Byte Count Register 2 Read/Write
14 FIFO Threshold Register 1 Read/Write
15 Interrupt Source Register 1 Read Only
16 Receive Byte Count Register 2 Read Only
18 Receive Frame Status Register 1 Read Only
19 Receive Link Status Register 1 Read Only
1A FIFO Status Register 1 Read Only
1B Receive FIFO Data Register 1 Read Only
1C Transmit FIFO Data Register 1 Write Only
10 Residual Bit Control Status Register 1 Read/Write

1E-1F Reserved 2 0

OLC Command/Control Register (00 Hex)

7 6 5 4 3 2 1 0

ENABLE OLC ENABLE ENABLE FLAG/ RECVER XMIT SENO
FCS RESET CRC CRC MARK ENABLE ENABLE ABORT

PASS- GENERATE CHECK IOLE
THRU SELECT

This register is used to set up and control basic transmitter and receiver functions.

Bit 0: Send Abort (Default=O)-When set to a '1' the OLC transmitter abort generator transmits abort characters (01111111,
LSB on right). If this bit is set and cleared on two successive writes, the OLC will transmit one abort character. The transmitter
continues to send aborts as long as this bit is set. Aborts are always sent in whole bytes. Setting and clearing this bit on
successive CPU writes will cause one complete abort to be sent.

When this bit is set the OLC transmit FIFO, OLC byte counter, and the DLC Transmit Byte Count Register are cleared.

Bit 1: Transmitter Enable (Default = OJ-When set to a '1', this bit allows data from the OLC to be shifted out to the SBOUT pin
under control of SCLK or SFS/XMITCLK.

When this bit is cleared, the SBOUT pin is placed in an open-drain condition. If this bit is cleared and the OLC is transmitting data,
the OLC waits until the current frame is complete before disabling the SBOUT pin.

Bit 2: Receiver Enable (Default = 0)-This bit is set to a '1' to allow data from the SBIN pin to be clocked onto the Serial Bus
Port.

When cleared to a '0', the OLC receiver is disabled. If the bit is cleared while the OLC receiver is in the middle of a receive frame,
the receiver will finish processing the frame before shutting down.

Bit 3: Flag/Mark Idle (Default = OJ-When set to a '1', the OLC transmitter continuously transmits the flag idle pattern when not
in frame.

When this bit is cleared to a '0', the OLC transmitter continuously transmits the mark idle pattern when not in frame.

Bit 4: CRC Check Enable (Default= 1)-When this bit is set to a '1', the result of the CRC check is transferred to the CRC error
bit (bit 2) in the Receive Frame Status Register.

When this bit is cleared, the CRC error bit in the Receive Frame Status Register is never set.

Bit 5: CRC Generate Enable (Default = 1)-When set, this bit causes the transmit CRC (which is always being calculated) to
be transmitted following the byte tagged as EOP in the transmit FIFO.

If this bit is cleared, a closing flag is transmitted immediately following the EOP-tagged byte.

A-5

Bit 6: DLC Reset (Detault=O)-When this bit is set to a '1', all DLC FIFOs, latches and statuslcontrol bits are forced to their
default values. A delay of eleven master clock (CLK) cycles is required before the DLC registers can be accessed.

Bit 7: FCS Pass-Thru Enable (Detsult= ~)-When set to a '1', this bit allows the frame check sequence (CRC) bytes to be
loaded into the FIFO as data (receive side).

When cleared, the frame check sequence is discarded.

DLC Address Control Register (01 Hex)

7 6 5 4 3 2 1 0

FIRSTI ENABLE 1-2 ENABLE ENABLE ENABLE ENABLE ENABLE
SECOND CIR BYTE BRDCST ADDR ADDR ADDR ADDR

BYTE BIT ADDR ADDR DETECT DETECT DETECT DETECT
SELECT CMPARE SELECT DETECT 3 2 1 0

All bits in the DLC Address Control Register are set and cleared by software except when initialized to default values as the result
of a reset.

The DLC Address Control Register can be written and read by the local processor. When all link address enable bits (bits 0-3) and
the broadcast enable bit (bit 4) are cleared to '0', the DLC does not perform address detection, and passes all received frame
bytes to the DLC receive FIFO. In this case, bits 5-7 are ignored.

If one or more of the link address enable bits (bits 0-4) are set, then a successful link address compare must occur before any
frame bytes can be transferred to the DLC receive FIFO.

Bit 0: Address Register 0 Enable (Default =)-Link address 0 enable.

Bit 1: Address Register 1 Enable (Detault=)-Link address 1 enable.

Bit 2: Address Register 2 Enable (Detault= O)-Link address 2 enable.

Bit 3: Address Register 3 Enable (Default = O)-Link address 3 enable.

NOTE: When set to a '1', bits 0-3 enable comparison of a received frame address with the contents of the DLC Link Address
Recognition Registers 0 through 3, respectively.

The comparison of a received frame address with the contents of all enabled Address Recognition Registers is
conditioned by bits 5-7 of this register.

Bit 4: Broadcast Address Enable (Default = 1)-When set to a '1', this bit enables comparison of a receive frame address
with an all '1's (broadcast address) register. The comparison is conditioned by bits 5-7 of this register. When bits 0-4 are cleared,
address detection by the DLC is inhibited. If bit 4 is cleared to a zero and one or more of the enable bits (0-3) is set, then the all '1's
pattern is ignored.

Bit 5: Address Size 1-2 (Default = O)-At least one of the enable bits (0-4) must be set for this bit to have any effect on DLC
operation.

If any of the enable bits are set and bit 5 is cleared, then the first two address bytes of each received frame will be compared.

If bit 5 is setto a '1', only one byte is compared (bit 7 specifies whetherthe first or second byte is compared).

Bit 6: CIR Address Enable (Default = O)-At least one of the enable bits (0-4) must be set for this bit to have any effect on DLC
operation.

If any of the enable bits are set, and the C/R address enable bit is cleared, then bit 1 of the first address byte of each received
frame will be ignored.

If this bit is set, then bit 1 of the first received frame address byte must compare successfully along with the other address bits for
address recognition to occur.

Bit 7: First/Second Byte Selection (Default = 0)-This bit is effective only when one-byte addressing is selected. When this
bit is set, only the second byte is monitored by the address recognizers (first eight bits are don't cares). When this bit is cleared,
the first byte only is examined.

DLC LINK Address Recognition Registers
The four registers are each two bytes long with the LSB having the lower address. The LSB of each pair corresponds to the
second byte following the flag. The MSB corresponds to the first byte following the flag.

All of the bits in the four Link Address Recognition Registers are set and cleared by software except when initialized to 'O's by a
DLC reset or IDPC reset.

Each of these four registers has a corresponding enable bit in the DLC Address Control Register (bits 0-3). If the corresponding
enable bit is set, then the value in the Link Address Recognition Register is conditioned by bits 5-7 of the DLC Address Control
Register. Default = Hex 0000.

A-6

OLC Serial Bus Port Control Register (OA Hex)

7 6 5 4 3 2 1 0

ENABLE ENABLE INVERT CHAN CHAN CHAN CHAN CHAN
REMOTE LOCAL DATA SELECT SELECT SELECT SELECT SELECT

LOOP LOOP MSB - - - LSB
BACK BACK

All bit:; in the Serial Bus Port Control Register are set and cleared by software, except when initialized to default values by a DLC
reset or IDPC reset. This register can be written and read by the local processor.

Bits 0-4: Channel Select-These five bits select Serial Bus Port time slots for multiplexing transmitted serial bit streamside­
multiplexing received serial bit streams.

Bits
4 3 2 1 0 Selection

0 0 0 0 0 Channel 0
0 0 0 0 1 Channel 1
0 0 0 1 0 Channel 2

..
1 1 1 1 0 Channel 30
1 1 1 1 1 Non-Multiplex

In non-multiplexed mode, a single channel is available with the receiver clocked by the SCLK pin and the transmitter clocked by
the SFS/XMITCLK pin. For all settings except non-multiplexed, both the transmitter and the receiver are clocked by the SCLK pin.

In multiplexed mode with channel 0 programmed, data from channel 0 and 1 can be concatenated, transmitted, and received 16
bits at a time. This is done automatically by holding SFS/XMITactive during the first bit time of time slot 1.

Bit 5: Data Invert (Default = O)-When this bit is set to a '1', the transmitted serial bit stream is inverted.

When this bit is set, the receive data stream is inverted. If this bit is cleared to '0', no inversion takes place in either direction.

Bit 6: Local Loop back Enable (Default = 0)-This bit is set to enable loop back for diagnostic purposes. When set, the
transmit data path (SBOUT) is connected internally to the receive data path (SBIN is disconnected). The selected transmit clock
(either SCLK or SFS/XMITCLK) is used for both the transmit and receive clocks. Clearing this bit restores the system to normal
operation.

Bit 7: Remote Loop back Enable (Default = 0)-This bit is set to enable loop back for diagnostic purposes. When set, the
SBIN pin is connected directly to SBOUT. In this manner, receive data is presented to SBOUT as transmitted data. In this mode,
the appropriate receive clock is SCLK. Receive data may be presented to the DLC receiver depending on the setting of the
receive enable bit. However, data from the transmit section is prevented from entering SBOUT in this mode.

OLC Minimum Receive Packet Size Register (DB Hex)

7 6 5 4 3 2 1 0

NOT NOT NOT NOT MINPKT MINPKT MIN PKT MINPKT
USED USED USED USED SIZE SIZE SIZE SIZE

MSB - - LSB

This register specifies the Minimum Receive Packet Size Register.

Bits 0-3: Minimum Receive Packet Size (Default= Hex 5)-Bits 0-3 of this register are set and cleared by software except
when initialized to a default value by a DLC reset or IDPC hardware reset. This register indicates the minimum packet length
(exclusive of opening and closing flags) that can be received without generating a short frame error in the Receive Frame Status
Register.

At the time that the short frame interrupt is generated, the Receive Byte Count Register reflects the number of bytes in the short
frame.

Bits
3 2 1 0 Selection

0 0 0 1 1 Byte
0 0 1 0 2 Bytes
0 0 1 1 3 Bytes

... . ..
1 1 1 1 15 Bytes
0 0 0 0 Not Used

NOTE: Although reception of packets containing only 1, 2, or 3 bytes can be programmed, a minimum of 3 bytes must be
received before data are moved into the FIFO and the packet is reported.

A-7

OLe Maximum Receive Packet Size Register

LSB 7 6 5 4 3 2 o
MSB 15 14 13 12 11 10 9 8

This register specifies the Maximum Receive Packet Size Register.

Bits 0-15: Maximum Receive Packet Size Register (Default = Hex OOOO)-Bits 0-15 of this register are set and cleared by
software except when initialized to a default value by a OLC reset or IOPC hardware reset. This register indicates the maximum
packet length (exclusive of opening and closing flags) that can be received without generating a long frame error in the Receive
Frame Status Register. The value programmed into the register is equal to the desired packet size minus three.

As each packet by1e is received, the contents of the Maximum Receive Packet Size Register are compared with the receive by1e
counter. A long frame error is generated in the Receive Frame Status Register if the value is exceeded. The received byte that
caused the receive by1e counter to exceed the maximum length is tagged as the End-of-Packet (EOP) byte, and the OLC receiver
looks for the next opening flag. The LSB has the lower order address.

OLe Interrupt Source Interrupt Enable Register (DE Hex)

7 6 5 4 3 2 1 0

ENABLE ENABLE ENABLE ENABLE ENABLE NOT NOT NOT
RECVR FIFO RECV VALID VALID USED USED USED

LINK STATUS FRAME PACKET PACKET
STATUS STATUS SENT RECVO

Bits 3 and 4 provide single-level interrupt enable/disable control for valid packet received and valid packet sent status conditions.
For bits 5-7, the Interrupt Source Interrupt Enable Register contains the first-level enable of a two-level interrupt enable structure.
Bits 5-7 enable three corresponding Interrupt Enable Registers:
• Receive Frame Interrupt Enable Register
• Receive Link Interrupt Enable Register
• FIFO Status Interrupt Enable Register

The valid packet received and valid packet sent interrupts have a single-level interrupt enable structure (bits 3 and 4 of the
Interrupt Source Interrupt Enable Register).

When an event occurs that causes a bit to be set in one of the three status registers (Receive Frame, Receive Link, and FIFO
Status Registers), and both levels of status interrupt enable are set to a '1', the OLC interrupt is generated and the bit corres­
ponding to that register is set in the OLC Interrupt Source Register. Unless both levels of interrupt enable are set, no interrupt is
generated.

Bits 0-2-Unassigned

Bit 3: Enable Valid Packet Received Interrupt (Default=O)-lf this bit is set and the valid packet received bit is set in the
Interrupt Source Register, a OLC interrupt is generated. If this bit is cleared, setting of the valid packet received bit in the Interrupt
Source Register does not result in the generation of an interrupt.

Bit 4: Enable Valid Packet Sent Interrupt (Default=O)-1f this bit is set and the valid packet sent bit is set in the Interrupt
Source Register, a OLC interrupt is generated. If this bit is cleared, setting of the valid packet sent bit in the Interrupt Source
Register does not result in the generation of an interrupt.

Bit 5: Enable Receive Frame Status Interrupt (Default = 0)-This bit is set as the first level of enable for the Receive Frame
Interrupt Enable Register. If a status bit is set in the Receive Frame Status Register, and the corresponding bit is set in the
Receive Frame Interrupt Enable Register, and bit 5 of this register is set, an interrupt is generated and bit 5 of the Interrupt Source
Register is set to indicate the interrupt originated in the Receive Frame Status Register.

Bit 6: Enable FIFO Status Interrupt (Default= 0)-This bit is set as the first level of enable for the FIFO Status ,Interrupt
Enable Register. If a status bit is set in the FIFO Status Register, and the corresponding bit is set in the FIFO Status Interrupt
Enable Register, and bit 6 of this register is set, an interrupt is generated and bit 6 of the Interrupt Source Register is set to
indicate the interrupt originated in the FIFO Status Register.

Bit 7: Enable Receive Link Status (Default = 0)-This bit is set as the first level of enable for the Receive Link Status Enable
Register. If a status bit is set in the Receive Link Status Register, and the corresponding bit is set in the Receive Link Status
Interrupt Enable Register, and bit 7 of this register is set, an interrupt is generated and bit 7 of the Interrupt Source Register is set
to indicate the interrupt originated in the Receive Link Status Register,

OLe Receive Frame Interrupt Enable Register (OF Hex)

7 6 5 4 3 2 1 0

NOT NOT ENABLE ENABLE ENABLE ENABLE ENABLE ENABLE
USED USED OVERRUN LONG SHORT CRC NON-INT ABORT

ERROR FRAME FRAME ERROR # BYTES RECVO
ERROR ERROR ERROR

A-a

The Receive Frame Interrupt Enable Register contains a bit-for-bit image of the Receive Frame-Status Register. If a status bit is
set in the Receive Frame Status Register corresponding to a set bit in the Receive Frame Interrupt Enable Register, and bit 5 of
the first-level enable register (Interrupt Source Interrupt Enable Register) is set, a DLC interrupt is generated and bit 5 of the
Interrupt Source Register is set indicating the interrupt originated in the Receive Frame Status Register.

Bit 0: Enable Abort Received Interrupt (Default=O)-1I the first level of interrupt (Interrupt Source Interrupt Enable Register,
bit 5) is set, setting this bit enables a DLC interrupt if the abort received bit (bit 0) is set in the Receive Frame Status Register.

Bit 1: Enable Non-Integer Number Bytes Received Interrupt (Default=O)-1f the first level of interrupt (Interrupt Source
Interrupt Enable Register, bit 5) is set, setting this bit enables a DLC interrupt if the non-integer number bytes received bit (bit 1) is
set in the Receive Frame Status Register.

Bit 2: Enable CRC Error Interrupt (Default= 0)-11 the first level of interrupt (Interrupt Source Interrupt Enable Register, bit 5)
is set, setting this bit enables a DLC interrupt if the CRC error bit (bit 2) is set in the Receive Frame Status Register.

Bit 3: Enable Short Frame Error Interrupt (Default=O)-1f the first level of interrupt (Interrupt Source Interrupt Enable
Register, bit 5) is set, setting this bit enables a DLC interrupt if the short frame error bit (bit 3) is set in the Receive Frame Status
Register.

Bit 4: Enable Long Frame Error Interrupt (Default=O)-1f the first level of interrupt (Interrupt Source Interrupt Enable
Register, bit 5) is set, setting this bit enables a DLC interrupt if the long frame error bit (bit 4) is set in the Receive Frame Status
Register.

Bit 5: Enable Overrun Error Interrupt (Default=O)-1f the first level of interrupt (Interrupt Source Interrupt Enable Register,
bit 5) is set, setting this bit enables a DLC interrupt if the overrun error bit (bit 5) is set in the Receive Frame Status Register.

Bits 6-7-Not Used

OLC Receive Link Interrupt Enable Register (10 Hex)

7 6 5 4 3 2 1 0

NOT NOT NOT NOT NOT ENABLE ENABLE ENABLE
USED USED USED USED USED IN-FRAME FLAG MARK

ERROR IDLE IDLE
RECVD RECVD

This register is used to enable/disable interrupts from the Receive Link Status Register (Default = 0).

Bit 0: Enable Change In Mark Idle Received Interrupt (Default= O)-If the first level of interrupt (Interrupt Source Interrupt
Enable Register, bit 7) is set, setting this bit enables a DLC interrupt if the change in mark idle received bit (bit 0) is set in the
Receive Link Status Register.

Bit 1: Enable Change In Flag Idle Received Interrupt (Default= O)-If the first level of interrupt (Interrupt Source Interrupt
Enable Register, bit 7) is set, setting this bit enables a DLC interrupt if the change in flag idle received bit (bit 1) is set in the
Receive Link Status Register.

Bit 2: Enable Change In In-Frame Interrupt (Default= O)-If the first level of interrupt (Interrupt Source Interrupt Enable
Register, bit 7) is set, setting this bit enables a DLC interrupt if the change in in-frame bit (bit 2) is set in the Receive Link Status
Register.

Bits 3-7-Not Used

OLC FIFO Status Interrupt Enable Register (11 Hex)

7 6 5 4 3 2 1 0

NOT NOT ENABLE ENABLE ENABLE ENABLE ENABLE ENABLE
USED USED EOP XMIT XMIT XMIT RECV RECV

RECV UNDRUN BUFFER TRSHLD DATA TRSHLD
FIFO REACHD AVAIL REACHD AVAIL REACHD

This register is used to enable/disable interrupts from the FIFO Status Register (Default = 0).

Bit 0: Enable Receive Threshold Reached Interrupt (Default=O)-lf the first level of interrupt (Interrupt Source Interrupt
Enable Register, bit 6) is set, setting this bit enables a DLC interrupt if the receive threshold reached bit (bit 0) is set in the FIFO
Status Register.

Bit 1: Enable Receive FIFO Data Available Interrupt (Default = O)-If the first level of interrupt (Interrupt Source Interrupt
Enable Register, bit 6) is set, setting this bit enables a DLC interrupt if the receive FIFO data available bit (bit 1) is set in the FIFO
Status Register.

Bit 2: Enable Transmit ThreShold Reached Interrupt (Default = 0)-11 the first level of interrupt (Interrupt Source Interrupt
Enable Register, bit 6) is set, setting this bit enables a DLC interrupt if the transmit threshOld reached bit (bit 2) is set in the FIFO
Status Register.

Bit 3: Enable Transmit Buffer Available Interrupt (Default=O)-lf the first level of interrupt (Interrupt Source Interrupt
Enable Register, bit 6) is set, setting this bit enables a DLC interrupt if the transmit buffer available bit (bit 3) is set in the FIFO
Status Register.

A-9

Bit 4: Enable Transmit Underrun Interrupt (Default=O)-lf the first level of interrupt (Interrupt Source Interrupt Enable
Register, bit 6) is set, setting this bit enables a OLC Interrupt If the transmit underrun bit (bit 4) is set in the FIFO Status Register.

Bit 5: Enable EOP In Receive FIFO Interrupt (Default=O)-lf the first level of interrupt (Interrupt Source Interrupt Enable
Register, bit 6) is set, setting this bit enables a OLC interrupt if the EOP in receive FIFO bit (bit 5) is set in the FIFO Status
Register.

Bits 6-7-Not Used

DLC Transmit Byte Count Register

LSB 7 6 5 4 3 2 o
MSB 15 14 13 12 11 10 9 8

This register is used to specify the length of the packet to be transmitted.

Bits 0-15: Transmit Packet Size (Default= OJ-Bits 0-15 of this register are set and cleared by software except when initialized
to a default value by a OLC reset or IOPC hardware reset. This register is written by software when the number of bytes to be
transmitted is different from the current value stored in the Transmit Byte Count Register (exclusive of opening and closing flags
and FCS bytes).

The contents of this register are written to the transmit byte counter whenever software writes the least significant byte of this
register pair (if the transmitter is out of frame), or when an end-of-packet-tagged byte is loaded from the transmit FIFO into the
Parallel-to-Serial Shift Register. If software is writing to this register when the EOP-tagged byte is loaded, the transfer to the
transmit byte counter is delayed until the software write is complete. The loading of the transmit byte counter takes place when
the LSB is written; i.e., write the MSB first. The LSB has the lower address. A transmit FIFO underrun error clears this register.

Transmit Byte Count Decode:

Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Value Selected

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Byte
...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65.535K Bytes
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Not Assigned

DLC FIFO Threshold Register (14 Hex)

7 6 5 4 3 2 1 0

RECV RECV RECV RECV XMIT XMIT XMIT XMIT
TRSHLO TRSHLO TRSHLO TRSHLO TRSHLO TRSHLO TRSHLO TRSHLO

MSB - - LSB - MSB - LSB

'This register is used to specify the transmit and receive FIFO threshold levels.

Bits 0-3: Transmit Threshold Value (Default = Hex 8)-The contents of this register are set and reset under software control
except when initialized by OLC reset or IOPC reset or when an abort is issued.

Bits
3 2 1 0 Value Selected

0 0 0 1 1 Byte
0 0 1 0 2 Bytes
0 0 1 1 3 Bytes

..
1 1 1 1 15 Bytes
0 0 0 0 16 Bytes

Bits 4-7: Receive FIFO Threshold (Default = Hex 8)-The receive FIFO threshold counts by two since the receive FIFO buffer
is 32 bytes deep.

Bits
7 6 5 4 Value Selected

0 0 0 1 2 Bytes
0 0 1 0 4 Bytes
0 0 1 1 SBytes

... . ..
1 1 1 1 30 Bytes
0 0 0 0 32 Bytes

A-10

OLC Interrupt Source Register (15 Hex)

7 6 5 4 3 2 1 0

RECV FIFO RECV VALlO VAllO RECV RECV RECV
LINK STATUS FRAME PACKET PACKET AOOR AOOR AOOR

STATUS - STATUS SENT RECVO MSB - LSB

This register is used to identify the source of interrupting conditions and to report valid-packet-transmitted, valid-packet-received,
and valid-packet address conditions.

Bits 0-2: Receive Link Address Field (Default = 110 (0= LSB))-The receive link address field is written by hardware
whenever a packet is received (with or without errors). This field is a delayed-stacked field.

The link address for up to four received packets can be stored at any given time. The link address field for any packet is not
presented to the user until the last byte of that packet is read from the FIFO.

Bits
2 1 0 Definition

0 0 0 Contents of Link Address 0 Recognized
0 0 1 Contents of Link Address 1 Recognized
0 1 0 Contents of Link Address 2 Recognized
0 1 1 Contents of Link Address 3 Recognized
1 0 0 Broadcast Link Address (All '1 's) Recognized
1 0 1 Not Used
1 1 0 Oefault Value-No Packet Received
1 1 1 Packet Received with no Address Recognized enabled (Bits 0-4 of OLC Address Control Register

cleared to ·Os")

Bit 3: Valid Packet Received (Default= 0)-This bit is reset to its default value when OLC reset is executed or an IOPC reset is
received. This bit is set to a '1' when the End-of-Packet-tagged byte is read from the receive FIFO buffer and no receive error has
been detected for that packet. This bit is cleared when software reads this register, or a OLC reset or IOPC reset occurs.

Bit 4: Valid Packet Sent (Default = 0)-This bit is set to a '1' when the last bit before the closing flag has been transmitted by
the OLC transmitter (transmit byte counter = 0 and no underrun and transmitter out of frame). This bit is cleared when the trans­
mitter goes in-frame, this register is read, a OLC reset is executed, or an IOPC reset occurs.

Bit 5: Receive Frame Status (Default = 0)-This bit is set to a '1' when any bit in the Receive Frame Status Register and both
of the corresponding bits in the Receive Frame Interrupt Enable Register and enable receiver frame interrupt bit (bit 5) are set in
the Interrupt Source Interrupt Enable Register.

This bit is gated when stage 3 status is actually transferred to stage 4. (See description of delayed status reporting.)

Bit 5 is cleared to 0 when the Receive Frame Status Register is read by software, a OLC reset is executed, or an IOPC reset is
received from the processor.

Bit 6: FIFO Status (Default = 0)-This bit is set to a '1' when any bit in the FIFO Status Register is set and both of the corres­
ponding bits in the Receive Frame Interrupt Enable Register and enable FIFO status interrupt (bit 6) are set to a '1' in the Interrupt
Source Interrupt Enable Register.

This bit is cleared to '0' when the FIFO Status Register is read by software, a OLC reset is executed, or an IOPC reset is received
from the processor.

Bit 7: Receive Link Status (Default=O)-This bit is set to a '1' when any bit-in the Receive Link Status Register is set and both
of the corresponding bits in the Receive Frame Interrupt Enable Register and bit 7 (enable received link status interrupt bit) are
set in the Interrupt Source Interrupt Enable Register.

This bit is cleared to '0' when the Receive Link Status Register is read by software, a OLC reset is executed, or an IOPC reset is
received from the processor.

OLC Receive Byte Count Register

LSB 7 6 5 4 3 2 o
MSB 15 14 13 12 11 10 9 8

This register reports the length of the received packet.

Bits 0-15: Receive Byte Count Register (Default = 0)-This 16-bit register indicates the number of bytes received in a packet,
not including the opening and closing flags, whether the packet was received in error or not. The actual counter is incremented
each time a byte is loaded into the FIFO.

This register is a "read-only" register in respect to the local processor. This register is cleared to '0' when a OLC reset is executed
or an IOPC reset is received from the processor.

A-11

This register presents information in a delayed fashion. When the last byte of a packet is read from the receive FIFO, the receive
byte count is made available to the user. If a new packet is received before the status from the previous packet is read by the user,
the status for the new packet is stacked up behind the previous packet. Status for up to four packets can be stacked up at any
given time. When the four-deep stack is full, the OLC receiver ignores new packets until the status from at least one packet is read
by the user.

There are two mechanisms that ensure synchronization between packet data and status: 1) data from one packet cannot be read
from the FIFO until status from the previous packet is read; and 2) when the least-significant byte of the Receive Byte Count
Register is read, all of the delayed stacked registers for that packet are cleared (Receive Byte Count Register, Receive Frame
Status Register, Residual Bit Register, and the received address field of the Interrupt Source Register). For this reason, the LSB
of the Receive Byte Count Register should always be read last. The LSB has the lower address.

Bit Definitions

Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Value Selected

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Byte
...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65.535K Bytes
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Not Assigned

OLe Receive Frame Status Register (18 Hex)

7 6 5 4 3 2 1 0

NOT NOT OVERUN LONG SHORT CRC NON-INT ABORT
USEO US EO ERROR FRAME FRAME ERROR # BYTES RECVO

ERROR ERROR RECVO

This is a "read-only" register with the bits being set by hardware. The setting of any bit in this register will result in the setting of bit
5 in the Interrupt Source Register if the corresponding bit is set in the Receive Frame Interrupt Enable Register and the receive
frame status bit is set in the Interrupt Source Interrupt Enable Register.

This register is a delayed-stacked register. Status is not reported until the last byte of the packet is read from the FIFO. At that
time maskable interrupts are generated. Status for up to four packets can be stacked at any given time.

The bits of this register are cleared to '0' (default setting) when a OLC reset is executed, the IOPC reset pin is activated, or when
the register or the LSB of the Receive Byte Count Register is read.

It is possible that more than one receive error may occur simultaneously on the same receive bit. However, only one bit in this
register may be set to a '1' at any time. The following table indicates the precedence of the various errors and exception condi­
tions flagged by this register (listed in descending order of precedence):

Bit Name

0 Abort Received
5 Overrun
3 Short Frame
4 Long Frame
2 CRCError
1 Non-Integer Number of Bytes

If the Receive Frame Status Register is nqt read (not normally read for a valid packet) before the LSB of the Receive Byte Count
Register, reading the Receive Byte Count Register will clear the Receive Frame Status Register to keep the register in sync (i.e.,
read Receive Byte Count Register LSB last).

Bit 0: Abort Received (Default=O)-This bit is set to a '1' as a result of the OLC receiver abort detector detecting an abort
character (seven '1 's while in-frame) while the OLC receiver is in-frame and at least three bytes have been received.

Bit 1 : Non-Integer Number Bytes Received (Default = 0)-This bit is set to a '1' as a result of the OLC receiver flag detector
recognizing a closing flag character with at least three bytes received when a non-integer number of bytes has been received in a
non-short frame (i.e., at least one but less than eight bits were received after zero bit deletion in the byte immediately preceding
the closing flag).

Bit 2: CRC Error (Default = 0)-This bit is set to a '1' as a result of the OLC CRC checker detecting an error when CRC check is
enabled in the OLC Command/Control Register.

Bit 3: Short Frame Error (Default = 0)-This bit is set to a '1' as a result of the OLC receiver detecting a short frame error.

Bit 4: Long Frame Error (Default = 0)-This bit is set to a '1' as a result of the OLC receiver detecting a long frame error.

Bit 5: Overrun Error (Default=O)-This bit is set to a '1' as a result of the OLC receive FIFO detecting an overrun condition
(i.e., the receive FIFO contains 32 bytes when receive data needs to be moved into the FIFO from the Parallel-to-Serial Shift
Register).

Bits 6-7-Unused
A-12

OLC Receive Link Status Register (19 Hex)

7 6 5 4 3 2 1 0

NOT NOT INFRAME FLAG MARK CHANGE CHANGE CHANGE
USED USED RECVO IDLE IDLE IN IN IN

RECVO RECVO INFRAME FLAG MARK
IDLE IDLE

The Receive Link Status Register reflects the status of the link at the receiver input. Three conditions are monitored: mark idle,
flag idle, and in-frame. Bits 5-3 reflect the current status of the link and do not generate interrupts. Bits 2-0 reflect changes in the
link since the register was last read; maskable interrupts are associated with these bits. At reset, bits 2-0 are cleared directly and
bits 5-3 are cleared defacto by the hardware that sets them.

Bit 0: Change in Mark Idle (Default = 0)-This bit, when set, indicates that the mark idle bit (bit 3) has changed (either set or
cleared) since the last time that the register was read. This bit is cleared by reading the register, a OLC reset, or an IOPC reset.

Bit 1: Change In Flag Idle (Default = 0)-This bit, when set, indicates that the flag idle bit (bit 4) has changed (either set or
cleared) since the last time that the register was read. This bit is cleared by reading the register, a OLC reset, or an IOPC reset.

Bit 2: Change In In-Frame (Default = 0)-This bit, when set, indicates that the in-frame bit (bit 5) has changed (either set or
cleared) since the last time that the register was read. This bit is cleared by reading the register, a OLC reset, or an IOPC reset.

Bit 3: Mark Idle Received (Default= 0)-This bit, when set, indicates that mark idle is currently being received. When cleared,
mark idle is not being received.

Bit 4: Flag Idle Received (Default= 0)-This bit, when set, indicates that flag idle is currently being received. When cleared,
flag idle is not being received.

Bit 5: In-Frame Received (Default= 0)-This bit, when set, indicates that in-frame is currently being received. When cleared,
the receiver is not in-frame.

Bits 6-7-Unused

OLC FIFO Status Register (1 A Hex)

7 6 5 4 3 2 1 0

NOT NOT EOP XMIT XMIT XMIT RECV RECV
USED USED IN UNORUN BUFFER TRSHLO DATA TRSHLO

RECV AVAIL REACHO AVAIL REACHO
FIFO

Each of the bits of the FIFO Status Register is set and cleared by OLC hardware to indicate the real-time state of the various
status conditions that it represents. Bits 6-7 are not assigned.

Upon completion of OLe reset or IOPC reset external input, the bits of this register will be sel/cleared to their default values.

There is a FIFO Status Interrupt Enable Register that is a bit-for-bit image of this register. Selling any bit in this register will set bit
6 of the Interrupt Source Register if the corresponding enable bit is set in the FIFO Status Interrupt Enable Register and the
enable FIFO status interrupt bit 6 is set in the Interrupt Source Interrupt Enable Register.

Bit 0: Receive Threshold Reached (Default = 0)-This bit is set to a '1' when the number of bytes in the OLC receive FIFO
increments to a value equal to or greater than the value in the receive FIFO threshold bit field of the OLC FIFO Threshold Register.

This bit is cleared to '0' when the count of bytes in the receive FIFO byte counter decrements to a value less than the receive
threshold value stored in the OLC FIFO Threshold Register.

This status bit is used to condition the OLC receive OMA data request signal.

Bit 1: Receive FIFO Data Available (Default = 1)-This bit is set to a 'I' whenever there is a byte available to be read for the
OLC Receive FIFO Data Register.

This bit is cleared to a '0' when a byte is read and the receive FIFO is empty. Receive FIFO data available is disabled (cleared)
when the last byte of a packet is read from the FIFO. It is not re-enabled until the user reads the LSB of the Receive Byte Count
Register. This, in conjunction with the packet received interrupt, provides the non-DMA user with an indication of when the last
byte of the packet has been read.

Bit 2: Transmit Threshold Reached (Default = 0)-This bit is set to a '1' when the number of bytes in the OLC transmit FIFO is
less than or equal to the count in the transmit FIFO threshold bit field (bits 0-3 of the FIFO Threshold Register).

This bit is cleared to a '0' when the count of bytes in the transmit FIFO increments to a value greater than the transmit FIFO
threshold bit field value. This status bit is used to condition the OLC transmit OMA data request signal.

Bit 3: Transmit FIFO Buffer Available (Default= 0)-This bit is set to a 'I' whenever the OLC FIFO Data Register is empty,
and the transmit byte counter is not equal to zero (i.e., available to be written into). On a write, this bit remains active if the FIFO
buffer is not full. This bit is cleared when the last byte of a packet is in the FIFO. This prevents multiple packets from existing in the
FIFO at the same time (non-OMA users).

A-13

Bit 4: Transmit Underrun (Default = 0)-This bit is set to a 'I' if the output location of the transmit FIFO buffer (opposite end of
the FIFO from tlie FIFO Data Register) is empty when a transmitter serial-to-parallelload is attempted. The transmit byte counter
is implicitly non-zero for this load to be attempted. This bit is cleared when the FIFO Status Register is read.

An abort is automatically transmitted in response to an underrun.

Bit 5: EOP In Receive FIFO (Default = 0)-This bit. when set to a '1', indicates that the last byte of a packet has been loaded
into the receive FIFO. The bit remains set until no EOP tags remain in the FIFO. This is the packet received indication. and is
normally used only for non-DMA applications to indicate that the FIFO should be serviced.

Bits 6-7-Not Used

DLC FIFO Data Registers
The Receive FIFO and Transmit FIFO Data Registers are each eight bits in length.

The Receive FIFO Data Register is read by DMA or software to remove one byte at a time from the receive FIFO. If read by
software, the user should first poll the receive FIFO data available status bit (bit 1 in the FIFO Status Register), unless data is
being read in response to a threshold reached indication in which the number of bytes to be read is known.

The Transmit FIFO Data Register is written by DMA or software to load one byte to the transmit FIFO. If written by software, the
user should first poll the transmit FIFO buffer available status bit (bit 3 in the FIFO Status Register) to ensure that a byte slot is
available in the FIFO (unless the field is being loaded in response to a threshold reached indication, in which case the number of
bytes that can .be loaded is known).

DLC Residual Bit Status/Control Register (1 D Hex)

7 6 5 4 3 2 1 0

NOT NOT XMIT XMIT RECVD RECVD RECVD RECVD
USED USED RESIDUE RESIDUE RESIDUE RESIDUE RESIDUE RESIDUE

COUNT COUNT COUNT COUNT COUNT COUNT
MSB - LSB MSB - LSB

Bit residue is the number of bits remaining after the information field is divided into S-bit bytes. Since microprocessors handle
data on S-bit boundaries, data is moved to and from the IDPC FIFOs and external RAM in S-bit quantities. Most data communi­
cation protocols, however, contain characters 5 to S bits in length (extra bit positions contain garbage). In order to use the
bandwidth of the data communication network, protocols such as X.25 allow the characters to be stripped of unnecessary bits
and concatenated into a "packed" bit stream for transmission.

At the receiving end, the bit stream is unpacked and the characters are once more stored as portions of bytes. The packed infor­
mation field is no longer aligned on S-bit boundaries. Since the transmitted and received data are no longer stored in S-bit chunks,
the end of the information field may not end in S bits. The leftover bits are referred to as residue bits; however. they represent valid
data. The Residual Bit Status/Control Register contains two count fields (receive and transmit) which are used to report the
number of residue bits prior to the sending/receiving of the closing flag.

Bits 0-2: Received Bit Residue Count (Oefault= 000)-These three bits form a "read-only" field displaying the number of
residue bits received. This field is cleared to 'O's upon reset or by a read of the register or·a read of the LSB of the receive byte
counter. This field is a delayed-stacked field. Up to four packets may be stacked at anyone time.

Bits
2 1 0 Indicated Value

0 0 0 BBits
0 0 1 1 Bit
0 1 0 2 Bits
1 1 1 7 Bits

Bits 3-5: Transmitter Bit Residue Count (Default = 000)-These three bits allow the user to specify the number of residue
bits to be transmitted in the last byte of the packet (data is loaded into the transmit FIFO in byte quantities). This is a read/write
field that is cleared under software control.
Bits 6-7 not used.

Bits
5 4 3 Indicated Value

0 0 0 SBits
0 0 1 1 Bit
0 1 0 2 Bits
1 1 1 7 Bits

A-14

Detailed Description of User-Visible USART Registers

The USART contains 14 registers, as shown in Table 3.

18ble 3. USART Registers

Offset (Hex) Register Name

20 Receive FIFO Data Register (DLAB = 0)"
Transmit FIFO Data Register (DLAB = 0)
Baud Rate Divisor LSB Register (DLAB = 1)

21 Interrupt Enable Register (DLAB = 0)
Baud Rate Divisor MSB Register (DLAB = 1)

22 Interrupt Identification Register
23 Line Control Register
24 Modem Control Register
25 Line Status Register
26 Modem Status Register
27 Control Register
28 Status Register
29 Special Character Bit-Map Address Pointer Register
2A Special Character Bit Map Command Register

2B-3E Reserved

"Divisor Latch Access Bit (DLAB) in the Line Control Register.

USART Receive FIFO Data Register (Default = 0)

MSB 7 6 5 4 3

Size (Bytes) "TYpe

1 Read Only
1 Write Only
1 Read/Write
1 Read/Write
1 Read/Write
1 Read Only
1 ReadlWrite
1 ReadlWrite
1 Read Only
1 Read Only
1 ReadlWrite
1 ReadlWrite
1 Read/Write
1 ReadlWrite
6 -

2 o LSB

The Receive FIFO Data Register is a "read-only' register output side of the receive FIFO. Data received by the USART are read
from the FIFO by the CPU at this address.

USART Transmit FIFO Data Register (Default = 0)

MSB 7 6 5 4 3 2 o LSB

The Transmit FIFO Register is a "write-only" input to the transmit FIFO. Data placed in this 8-bit register are transmitted out of the
FIFO LSB first.

USART Baud Rate Divisor LSB Register (Default = 0)

MSB 7 6 5 4 3 2 o LSB

The Baud Rate Divisor LSB Register is an 8-bit register used to hold the low-order bits of the number by which the USART clock
input (USARTCLK) is to be divided. Bit 0 is the LSB and bit 7 is the MSB.

USART Baud Rate Divisor MSB Register (Default = 0)

MSB 7 6 5 4 3 2 o LSB

The Baud Rate Divisor MSB Register is an 8-bit register used to hold the high-order bits of the number by which the USART clock
input (USARTCLK) is to be divided. Bit 0 is the LSB and bit 7 is the MSB.

NOTE: When reset, the register pair is cleared to all zeros, but the baud rate generator will actually divide by 64 until
programmed.

Bit Definitions
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Divide By:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 One
...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65,535
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reserved

NOTE: Divide-by-one passes through the USARTCLK unaffected. This allows the receiver and transmitter to operate from
separate clocks in synchronous mode. A write to either the MSB or LSB divisor causes the baud rate generator to be
loaded with a 16-blt value.

A-15

USART Interrupt Enable Register (21 Hex, DLAB = 0)

7 6 5 4 3 2 1 0

NOT XMIT USART USART MODEM RECV XMIT RECV
USED LINE STATUS: STATUS: STATUS: LINE FIFO FIFO

STATUS: SPCL RECV CTS,DSR STATUS TRSHLD TRSHLD
SHFTREG CHAR FIFO

EMPTY TIMEOUT

The Interrupt Enable Register is an a-bit read/write register used to enable specific interrupt sources (Default=O). Setting a
specific bit enables its corresponding interrupt. Clearing a bit disables the interrupt and resets the interrupt pin if the corres­
ponding condition is present.

USART Interrupt Identification Register (22 Hex)

7 6 5 4 3 2 1 0

NOT NOT NOT NOT INTER INTER INTER INTER
USED USED USED USED SOURCE SOURCE SOURCE PEND

MSB - LSB

The Interrupt Identification Register is an a-bit read-only register used to identify which status register contains an interrupt condi­
tion. Unused bit positions (bits 4-7) return 'O's when this register is read.

Bit 0: Interrupt Pending (Default= 1)-This bit is cleared to a '0' if any interrupt is pending.

Bits 1-3: Interrupt Source (Default= 000)-This 3-bit field identifies the highest priority source of ali existing interrupts.

Interrupt Source Decode

Bits
3 2 1 Priority Souree ResetBy*

0 0 0 4th CTSorDSR Reading the Modem Status Register
0 0 1 3rd Transmit FIFO Threshold Reached Reading this Register and Interrupt Source = 001
0 1 0 2nd Receive FIFO Threshold Reached Reading this Register and Interrupt Source = 010
0 1 1 lst*' Overrun, Parity, Special Character Received, Reading Line Status Register

Framing, or Break
1 0 0 5th Receive FIFOTimeout Reading USART Status Register
1 0 1 6th Transmit Shift Register Reading this Register and Interrupt Source = 101

Empty

'Ali bits are reset by a USART reset or an IDPC reset.

"Simultaneous receipt of a special character or a character with a parity error, and a threshold reached condition, causes the
interrupt request to be generated for the speCial character or parity error prior to the generation of the threshold reached interrupt.

Bits 4-7-Not Used (cleared to 'O's)

USART Line Control Register (23 Hex)

7 6 5 4 3 2

DIV BREAK STICK EVEN/ ENABLE NUMBER

LATCH PARITY ODD PARITY STOP
ACCESS PARITY BITS

BIT

Bit 0-1 : Character Length-Bits 0 and 1 define the character length:

Bits
1 0 Length

0 0 5 Bits
0 1 6 Bits
1 0 7 Bits
1 1 a Bits

Bit 2: Number of Stop Bits-This bit selects the number of stop bits used in serial data transfers:
0= 1 Stop Bit
1 = 1.5 Stop Bits (5-bit characters) OR 2 Stop Bits (6-, 7-, or a-bit characters)

A-16

1 0

CHAR CHAR
LENGTH LENGTH

MSB LSB

Bit 3: Parity Enable-When this bit is set to a '1', parity generation and checking is enabled. When the bit is cleared, parity
generation and checking is disabled.

Bit 4: Even Parity Set-This bit is set to select even parity. The bit is cleared to select odd parity.

Bit 5: Stick Parity-If parity is enabled (bit 3 set) and this bit is set, parity is expected to be received opposite to that indicated
by bit4. Parity is transmitted with a value opposite that of bit 4.

Bit 6: Break-This bit is set to request that a break condition be transmitted. The USARTwilltransmit the break pattern immedi­
ately after completing any character transmission in progress when this bit is set. The Shift Register and transmit FIFO contents
are discarded. The line returns to normal operation when the bit is cleared. Breaks are transmitted only in asynchronous mode.

Bit 7: Divisor Latch Access Bit-This bit is set to access the Baud Rate Divisor Registers and is cleared to access the
Receive and Transmit FIFO Data Registers and the Interrupt Enable Register.

USART Modem Control Register (24 Hex)

7 6 5 4

NOT NOT NOT LOCAL
USED USED USED LOOPBK

This register specifies modem control parameters (Default = 0).

Bit 0: DTR-When this bit is set, OTR goes active-LOW.

Bit 1: FiTS-When this bit is set to a '1', RTS goes active-LOW.

Bits 2-3-Reserved

3 2 1 0

RESRVD RESRVD Fm DTR

Bit 4: Local Loop back-Setting this bit to a '1' places the USART in a local loop back condition lor diagnostic purposes.

Bits 5-7-Not Used

USART Line Status Register (25 Hex)

7 6 5 4 3 2 1 0

SPCHl XMIT XMIT BREAK FRAMNG PARITY RECV RECV
CHAR SHIFT TRSHLD DETECT ERROR ERROR BUFFER DATA

IN REG REACHD IN OVERUN AVAIL
FIFO EMPTY FIFO

The line Status Register contains flag bits that are set to indicate the presence of a condition that can generate an interrupt if the
appropriate interrupt enable bits are set in the Interrupt Enable Register. Bits 1 through 4 and 7 are cleared by reading the line
Status Register. Bit 5 is cleared when the condition goes away, but the interrupt is cleared by reading the Interrupt Identilication
Register (when the Interrupt Identification Register is reporting this interrupt). Bits 0 and 6 are cleared when the associated condi­
tions are no longer present.

Bit 0: Receive Data Available (Default= 0)-This bit is set to a '1' when receive data is available in the Receive FIFO Data
Register.

Bit 1: Receive Buffer Overrun Error (Default = 0)-This bit is set to a '1' when an overrun error results in lost receive data.

Bit 2: Character With Parity Error Loaded Into FIFO (Default=O)-This bit is set when a parity error is detected and the
character is loaded into the FIFO.

Bit 3: Framing Error (Default = 0)-This bit is set to a '1' when an invalid stop bit is detected. A character with a framing error is
not loaded into the FIFO.

Bit4: Break Condition Detected (Default = 0)-This bit is set to a '1' when a break condition is detected.

Bit 5: Transmit FIFO Threshold Reached (Default = 1)-This bit is cleared when the number of bytes in the transmit FIFO
rises above the programmed threshold. The bit is reset to a '1' when the FIFO level falls to the threshold.

Bit 6: Transmit FIFO Shift Register Empty (Default= 1)-This bit is set to a '1' when the Transmit Shift Register is empty (last
character transmitted) and cleared when the Transmit Shift Register and FIFO are no longer empty.

Bit 7: Special Character Loaded Into Receive FIFO (Default = 0)-This bit is set when a special character is loaded into the
receive FIFO and cleared when the line Status Register is read.

USART Modem Status Register (26 Hex)

7 6 5 4 3 2 1 0

RESRVD RESRVD DSR (;fS RESRVD RESRVD CHANGE CHANGE
STATUS STATUS INDSR INCTS

The 8-bit Modem Status Register is used to indicate the condition of the link handshake input signals and any change in their
status. Bits 0 and 1 default 10 '0' on reset; bits 4 and 5 reflect the input status.

A-17

Bit 0: Change In C'B (Default = 0)-This bit is set if the "CiS line has changed since this register was last read.

Bit 1: Change In ~ (Default = 0)-This bit is set to a '1' when a change in DS"R has occurred since this register was last read.

Bits 2-3-Reserved

Bit 4: ~ Line Status-This bit is set to a '1' if "CiS is active-LOW and cleared to a '0' if "CiS is inactive.

Bit 5:"DSFi Line Status-This bit is set to a '1' ifDID'! is active-LOW and cleared to a '0' if DID'! is inactive.

Bits 6-7-Reserved

USART Control Register (27 Hex)

7 6 5 4 3 2 1

RESET XMIT XMIT RECV RECV SYNC/ XMIT
FIFO FIFO FIFO FIFO ASYNC CLK

TRSHLD TRSHLD TRSHLD TRSHLD SELECT SOURCE
MSB LSB MSB LSB

0

RECV
CLK

SOURCE

The 8-bit USART Control Register is used to control all non-8250-UART functions. Additionally, this register contains the USART
software reset bit.

Bit 0: Receive Clock Source (Default = 0)-This bit is set to a '1' to select the internal baud rate generator. The bit is cleared to
'0' to select the external clock (RxCLK).

Bit 1 : Transmit Clock Source (Default = 0)-This bit is set to a 'I' to select the internal baud rate generator. The bit is cleared
to '0' to select the external clock (RxCLK).

Bit 2: Sync Select (Default=O)-This bit is set to a '1' to select synchronous mode and cleared to a '0' to select asynchronous
mode.

Bits 3-4: Receive FIFO Threshold (Default = 11)-These two bits are used to select the receive FIFO threshold. When the
number of bytes in the FIFO is greater than or equal to this value, receive FIFO threshold reached status is generated.

Bit
4 3 Value

0 1 1 Byte
1 0 2 Bytes
1 1 3 Bytes
0 0 4 Bytes

Bits 5-6: Transmit FIFO Threshold (Default = 00)-This field is used to hold a 2-bit count that reflects the transmit FIFO
threshold. When the number of bytes remaining in the transmit FIFO is less than or equal to this level, transmit FIFO threshold
reached status is reported.

Bit
6 5 Value

0 0 o Bytes
0 1 1 Byte
1 0 2 Bytes
1 1 3 Bytes

Bit 7: Reset (Default=O)-This bit is set by software to initiate a USART reset operation (identical to a reset initiated by
hardware via the RSi' pin, except only the USART is affected).

USART Status Register (28 Hex)

7 6 5 4 3 2 1 0

RECVR NOT NOT XMIT RECV SPCHL CHAR WI RECV
ENABLE USED USED BUFFER FIFO CHAR PARITY FIFO

AVAIL TRSHLD AVAIL ERROR TIME-
REACHD AVAIL OUT

The USART Status Register reports status conditions that do not occur in an 8250 UART. This register also contains the
"character with parity error available" status bit. The default = 00010000. Bits 1-4 are cleared when the corresponding condition
no longer exists.

Bit 0: Receive FIFO Timeout Has Occurred (Default = 0)-This bit is set to a 'I' when a receive FIFO timeout has occurred.
The bit is cleared when this register is read. The timeout occurs when the level in the receive FIFO is below the threshold and no
characters are received in at least 2048 receiver clocks.

A-18

Bit 1: Character with Parity Error Available (Default = 0)-This bit is set when a character with a parity error reaches the
output of the receive FIFO. This bit is cleared when the character is read from the FIFO.

Bit 2: Special Character Available (Default= 0)-This bit is set when a special character reaches the output of the receive
FIFO. This bit is cleared when the character is read from the FIFO.

Bit 3: Receive FIFO Threshold (Default = 0)-This bit is set to a '1' when the level of the receive FIFO reaches the selected
receive FIFO threshold. The bit is cleared when the number of bytes in the receive FIFO falls below the threshold value.

Bit 4: Transmit Buffer Available (Default = 1)-This bit is set whenever the FIFO Data Register is empty, and is cleared when
the FIFO is full.

Bits 5-6-Not Used

Bit 7: Receiver Enable/Disable (Default = 0)-This bit is set to enable the USART receiver, and is cleared to disable the
receiver.

USART Special Character Bit-Map Address Pointer Register (29 Hex)

7 6 5 4 3 2 1 0

NOT SPCHL SPCHL SPCHL SPCHL SPCHL SPCHL SPCHL
USED CHAR CHAR CHAR CHAR CHAR CHAR CHAR

BIT6 BIT5 BIT4 BIT3 BIT2 BITl BITO

This register is used to set a pointer into the 128-bit special character bit map (Default=O).

The character field is the address pointer into the bit map. A character is deSignated as a special character by first writing the
address (which is the character itself) into bits 0-7 of the Special Character Bit-Map Address Pointer Register, and then by setting
bit 0 of the Special Character Bit-Map Command Register. Once designated, a special character can be returned to normal status
by clearing bit 0 of the Special Character Bit-Map Command Register (after the pointer is set).

NOTE: When the receiver enable bit is set (bit 7 of USART Status Register), reading the Special Character Command Register
returns all '1 's regardless of the actual state of the special character addressed. This is done to prevent simultaneous
read/writes between the MPI and the internal logic.

A special character can be read or written to on/ywhen the receiver enable bit (USART Status Register bit 7) is cleared.

USART Special Character Bit-Map Command Register (2A Hex)

7 6 5 4 3 2 1 0

NOT NOT NOT NOT NOT NOT NOT SET/
USED USED USED USED USED USED USED CLEAR

BITMAP

This register sets and clears the bit pointed to by the Special Character Bit-Map Address Pointer Register (Default = 0).

The register that deSignates a special character is set using the special characer bit-map pOinter. When this register is read by the
user, the state of the bit in the bit map (pointed to by the Special Character Bit-Map Pointer Register) is returned in bit location O.

NOTE: All special characters are cleared on reset.
Detailed Description of User-Visible DPMC Register
The DPMC contains one user-visible register (the Semaphore Register) used to control inter-processor communications.

Table 4. DPMC Registers

Offset (Hex) Register Name Size (Bytes) 'TYpe

3F Semaphore Register Read/Write

A-19

DPMC Semaphore Register (3F Hex)

7 6 5 4 3 2 1 0

NOT NOT NOT NOT NOT NOT INTRPT INTRPT
USED USED USED USED USED USED TO TO

LOCAL HOST
PROC PROC

The Semaphore Register controls interrupt requests between the host processor and the local processor in a multi-processor
application. These interrupts coordinate processor-to-processor communication via shared memory. This register is cleared to
'D's by a hardware reset.

Bit 0: Interrupt to Host Processor (Default = 0)-This bit is set to a '1' by the local processor to initiate communications with
the host processor. When set, the HINTOUT pin goes active-HIGH. The bit is cleared by the HINTACK pin (from the host) going
HIGH (pulse). This bit can be read by the local processor.

Bit 1: Interrupt to Local Processor (Default = 0)-This bit is set to a '1' when the HINTIN pin from the host processor goes
active (pulse). When this bit is set, the LlNTOUT pin goes active-HIGH. This bit is cleared by the local processor by writing a '0' to
it. LlNTOUT goes inactive when this bit is cleared. .

Bits 2-7-Not Used

A-20

8250 UART, 2-13

Abort, 2-2, 2-5, 2-10, 4-1
Address, 2-2

Command/response, 2-12, 4-3
Command/response bit, 2-2
Detection unit, 2-12
Extended address, 2-2

Address detection, 4-2
First byte only, 4-2
Reporting, 4-3
Second byte only, 4-3
Two byte mode, 4-3

Address detection unit, 4-1
Address map, 4-1

Baud Rate Generator, USART, 2-17, 4-11
Divide by one option, 4-12

Bit oriented protocols, 2-1
Break detection, 2-16

Clock selection, USART, 2-18
Control field, 2-2
CRC checker, 2-12, 4-1
CRCerror, 2-10
CRC generator, 2-7, 4-1
CRC pass through, 4-1

Data Link Controller, 1-2, 2-1
DLC initialization, 4-6
DLC receiver

Initialization, 2-9
Operational sequence, 2-9

DLC transmitter
Initialization, 2-3
Operational sequence, 2-5,4-5

DMAacknowledge, 3-4
DMAoperation, 4-3

Receiver, 4-3
Transmitter, 4-3

DMArequest
DLC receiver, 2-13
DLC transmitter, 2-6

DMA/80188 interface, 3-2
DPMC bus interfaces, 2-18, 3-5
DPMC conflict resolution, 2-19
DPMC memory cycle generation, 2-18
DPMC memory cycle timing, 2-19

Read cycle, 2-19
Write Cycle, 2-19

INDEX

DPMC operation, 2-18
Dual-Port Memory Controller, 1-3, 2-18

FIFO
Buffer, DLC receiver, 2-12
Buffer, DLC transmit, 2-6
Data available bit, DLC receiver, 2-12
DLC receiver, 2-12
DLC tramsmit, 2-6
End of Packettag, OLe receiver, 2-13
Overrun, DLC receive FIFO, 2-10, 2-13
Threshold, DLC receiver, 2-13, 4-1
Threshold, DLC transmit, 2-6,4-1
Underrun, DLC transmit, 2-6
USART,2-14

Fill bits, USART Receiver, 2-14
Flag, 2-1

Closing flag, 2-2
Opening flag, 2-2

Flag idle, 2-2, 4-1
Flag/abort detection, 2-11
Frame, 2-1
Frame check sequence, 2-2
Framing error checking, USART, 2-16
Framing error, USART, 2-14

In-frame, 2-2
Information field, 2-2
Interprocessor interrupt, 2-20

Host to local interrupt, 2-20, 4-18
Local to host interrupt, 2-20, 4-18
Programming, 4-17

Interrupt priority, USART, 2-17
Interrupts

DLC receiver, 4-2
DLC transmitter, 4-1
USART,4-11

ISDN software, 3-8

Local loop back, 2-5, 2-8, 2-10, 4-2
Long frame, 2-3
Long frame error, 2-10, 2-13

Mark idle, 2-2, 4-1
Maximum packet size, 4-1
Microprocessor interface

68000,3-2
80188,3-1

Minimum packet size, 4-1

Non-integer number of bytes, 2-3
Non-integer number of bytes error, 2-10
Out-of-frame, 2-2

Packet, 2-2
Packet status reporting, 4-4
Parity checking, 2-16

Stick parity, 2-16

Receive byte count register, OLC, 2-13
Receive byte counter, 2-13
Receiver enable, OLC, 4-1
Receiver enable, USART, 2-14
Receiving packets,

Exceptions, 4-9
Normal,4-9

Register map, 4-1
OLC, 4-2
OPMC, 4-17
USART,4-11

Remote loop back, 2-5, 2-8, 2-11, 4-2
Reset, OLC software, 4-2
Residual bits, transmission, 2-5

Serial Bus Port
Oata inversion, 2-8, 2-11, 4-2
Mark idle detection, 2·11
Mark idle insertion, 2-8
Time slot demultiplexor, 2-11
Time slot multiplexor, 2-7, 4-2
Transmitter Enable, 2-8

Shift register
OLC receiver, 2-12
OLC transmit, 2-7
USART receiver, 2-14
USARTtransmitter, 2-17

Short frame, 2-3
Short frame byte counter, 2-12
Short frame error, 2-10
Special character recognition, 1-3,2-14,2-15,4-11
Synchronous/transparent mode, 1-3,2-14

Transmit Byte Count Register, 2-6
Transmit byte counter, 2-6
Transmiting packets

One at a time, with OMA, 4-5
Transmitter enable, OLC, 2-8, 4-1
Transmitting packets, 4-5, 4-8

Queue of packets, with OMA, 4-5
Transparency, 2-3

Underrun, OLC FIFO, 2-5, 2-6
USART, 1-3,2-13
USART asynchronous operation, 2-14
USART break generation, 2-17
USART clocking options, 4-12
USART data clocks, 2-18
USARTfeatures, 2-13

Baud rate generator, 4-11
Break generation, 4-11
Character length, 4-10
Clock selection, 4-11
FIFO thresholds, 4-11
Modem controls, 4-10
Operational modes, 4-11
Parity, 4-10
Special character recognition, 4-11
Stop bits, 4-10

USART FIFOs, 1-3
Polling the data available bit, 4-12
Receive FIFO time-out, 4-12
Special character / parity error
handling, 4-12

USART Initialization, 4-14
USARTinterrupts, 2-14
USARTmodem control signals, 2-17, 4-12
USARTreceive FIFO, 2-15

Oata register, 2-15
Overrun, 2-15
Parity error flag, 2-15
Special character flag, 2-15
Threshold interrupt, 2-15
Time-out, 2-15

USART reception
Break reception, 4-16
FIFO overrun, 4-17
FIFO threshold reached, 4-15
FIFO time-out, 4-15
Framing errors, 4-16
Parity error reception, 4-16
Special character reception, 4-15

USARTtransmission
FIFO threshold reached, 4-15
Initiate transmission, 4-14

USARTtransmit FIFO, 2-17
Threshold,2-17

USARTtransmitter, 2-17

Zero-bit deletion unit, 2-12
Zero-bit insertion unit, 2-7

Notes

North American _________ _
ALABAMA .. (205) 882-9122
ARIZONA ... (602) 242-4400
CALIFORNIA.

Newport Beach ... 714 752-6262
Culver City .. \213! 645-1524

San Diego ... 619 560-7030
San Jose : ... (408) 452-0500
Woodland Hllls ... (818) 992-4155

CANADA. Ontario.
Kanata ... (613) 592-0060
Willowdale .. (416) 224-5193

COLORADO .. (303) 741-2900
CONNECTICUT .. (203) 264-7800
FLORIDA.

Clearwater .. (813) 530-9971
Ft Lauderdale ... (305) 776-2001
Melbourne ... (305) 729-0496
Orlando ... (305) 859-0831

GEORGIA .. (404) 449-7920
ILLINOIS.

Chicago ... (312) 773-4422
Napervllle .. (312) 505-9517

INDIANA ... (317) 244-7207
KANSAS ... (913) 451-3115
MARYLAND ... \301! 796-9310
MASSACHUSETTS .. 617 273-3970
MINNESOTA ... 612 938-0001
MISSOURI ... (913) 451-3115
NEW JERSEY ... (201) 299-0002
NEW YORK.

Poughkeepsie .. 914 471-8180
Liverpool ... \315! 457-5400

Woodbury .. 516 364-8020
NORTH CAROLINA .. (919) 878-8111
OHIO.

Columbus .. (614) 891-6455
Dayton ... (513) 439-0470

OREGON ... (503) 245-0080
PENNSYLVANIA.

Allentown .. (215) 398-8006
Willow Grove .. (609) 662-2900

SOUTH CAROLlNA .. (803) 772-6760
TEXAS.

AUstin .. (512! 346-7830
Dallas .. (214 934-9099
Houston ... (713 785-9001

WASHINGTON .. (206) 455-3600
WISCONSIN .. (414) 792-0590
International __________ _
BELG IUM. Bruxelles TEL. (02) 771-91-42

FAX (02) 762-37-12
TLX ... 61028

FRANCE. PariS TEL (1) 49-75-10-10
FAX (l) 49-75-10-13
TLX ... 263282

WEST GERMANY.
Hannover area TEL (0511) 736085

FAX (0511) 721254
TLX ... 922850

Miinchen TEL (089) 4114170
FAX (089) 406490
TLX ... 523883

Stuttgart TEL (0711) 62 3377
FAX (0711) 625187
TLX ... 721882

HONG KONG TEL 852-5-8654525
FAX 852-5-8654335
TLX 67955AMDAPHX

ITALY. Mllan TEL (02) 3390541
................................ (02) 3533241

FAX (02) 3498000
TLX ... 315286

JAPAN.
Kanagawa TEL. 462-47-2911

FAX 462-47-1729

International (Conrinued) _______ _
Tokyo TEL (03) 345-8241

FAX (03) 342-5196
TLX J24064AMDTKOJ

Osaka TEL. 06-243-3250
FAX 06-243-3253

KOREA. Seoul TEL 82-2-784-7598
FAX 82-2-784-8014

LATIN AMERICA.
Ft. Lauderdale TEL (305) 484-8600

FAX (305) 485-9736
TEL.. 5109554261 AMDFTL

NORWAY. HOvik TEL (02) 537810
FAX (02) 591959
TLX ... 79079

SINGAPORE TEL 65-2257544
FAX 65-2246113
TLX RS55650 MMI RS

SWEDEN.
Stockholm TEL (08) 733 03 50

FAX (08) 733 22 85
TLX ... 11602

TAIWAN TLX 886-2-7122066
FAX 886-2-712201 7

UNITED KINGDOM.
Manchester area TEL (0925) 828008

FAX (0925) 827693
TLX ... 628524

London area TEL (04862) 22121
FAX (0483) 756196
TLX ... 8591 03

North American Representatives __ _
CANADA
Burnaby. B.C.

DAVETEK MARKETING (604) 430-3680
Calgary. Alberta

VITEL ELECTRONICS (403) 278-5833
Kanata. Ontario

VITEL ELECTRONICS (613) 592-0090
Mississauga. Ontario

VITEL ELECTRONICS (416) 676-9720
Quebec

VITEL ELECTRONICS (514) 636-5951
IDAHO

INTERMOUNTAIN TECH MKGT (208) 888-6071
INDIANA

ELECTRONIC MARKETING
CONSULTANTS. INC (317) 253-1668

IOWA
LORENZ SALES .. (319) 377-4666

KANSAS
Merriam

LORENZ SALES .. (913) 384-6556
Wichita

LORENZ SALES .. (316) 721-0500
KENTUCKY

ELECTRONIC MARKETING
CONSULTANTS. INC (317) 253-1668

MICHIGAN
MIKE RAICK ASSOCIATES (313) 644-5040

MISSOURI
LORENZ SALES .. (314) 997-4558

NEBRASKA
LORENZ SALES .. (402) 475-4660

NEW MEXICO
THORSON DESERT STATES (505) 293-8555

NEW YORK
NYCOM. INC .. (315) 437-8343

OHIO
Centerville

DOL FUSS ROOT & CO (513) 433-6776
Columbus

DOLFUSS ROOT & CO (614) 885-4844
Strongsville

DOLFUSS ROOT & CO (216) 238-0300
PENNSYLVANIA

DOLFUSS ROOT & CO (412) 221-4420
UTAl'

R MARKETING ... (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product w~hout nolice in order 10 improve design or performance characteristics. The performance
characterislics listed in Ihis document are guaranteed by specWic lesls. guard banding. design and other practices common to the industry. For specWic lesling details.
contact your local AMD sales representative. The company assumes no responsibil~y lor lhe use 01 any circuits described herein.

~ Advanced Micro Devices, Inc. 901 Thompson Place. P.O. Box 3453. Sunnyvale. CA 94088, UllA
~ Tel: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450
... APPLICATIONS HOTUNE TOLL FREE: (800) 222-9323 • (408) 749-5703

~ 1988 Advanced Micro Devices, Inc.

WCP-7S00-8/88-0 Printed In USA

