
Hard Disk Controller
Technical Manual

Advanced
Micro

Devices

Advanced Micro Devices

Hard Disk Controller
Am9580A/90

Technical Manual

© 1988 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products w~hout notice in order to
improve design or performance characteristics.

This technical manual neither states nor implies any warranty of any kind, including but not lim~ed to
implied warranties of merchantability or fitness for a particular application. AMD assumes no responsibility
for the use of any circuitry other than the circuitry embodied in an AMD product.

This information in this publication is believed to be accurate in all respects at the time of publication,
but is subject to change without notice. AMD assumes no responsibility for any errors or omissions,
and disclaims responsibility for any consequences resulting from the use of the information included
herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or
parameters.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

TABLE OF CONTENTS

CHAPTER I

1.0 Introduction
1 .1 Generallnformation
1.2 Data SheeJ Information
1.3 Functional Description

CHAPTER 2

2.0 Software
2.1 The 10PBGENerator
2.2 The DOS Driver
2.3 The BIOS Driver

CHAPTER 3

3.0 Applications
3.1 Am9580Al90 Bus Interfaces

3.1.1 General System Bus Application Hints
3.2 Bus Interfaces

3.2.1 VME Bus Interface
3.2.2 IBM PC/XT Bus Interface

3.3 Microprocessor Interfaces
3.3.1 8086-Am9580Al90 Interface
3.3.2 8088-Am9580Al90 Interface
3.3.3 80186-Am9580Al90 Interface
3.3.4 80286-Am9580Al90 Interface
3.3.5 6800Q-Am9580Al90 Interface
3.3.6 NS32016 Interface

3.4 Disk Interfaces

CHAPTER 4

3.4.1 The ST5061412 Am9580Al90 Interface
3.4.2 The ST5061412 and Floppy Disk Interface
3.4.3 The ESDI Interface
3.4.4 The ESDI and ST506 Interface
3.4.5 The ESDI, ST506 and Floppy Disk Interface
3.4.6 A Storage Module Device (SMD) Interface
3.4.7 RLL Encoder-Decoder for the Am9580Al90

4.0 Board Level Products
4.1 Am9580A/82 Disk Controller Board for IBM-PC/AT
4.2 SCSI Board

APPENDIX
Am9590 Improvement
DOS Devices Driver Header
Am9580A Hard Disk Controller Header
DOS Device Driver for the Am9580A
Using Am26LS31132 in High Speed Transmission Line

Environments
"Constant-Density Recording Comes Alive with New Chips·
"Controllers Wring Peak Performance Out of Disk Drives·
·PLDs Implement Encoder/Decoder for Disk Drives·

1-1
1-7

1-11
1-19

2-1
2-1
2-6
2-6

3-1
3-1
3-1
3-5
3-5
3-8

3-18
3-18
3-18
3-18
3-22
3-22
3-25
3-28
3-28
3-29
3-30
3-30
3-32
3-32
3-52

4-1
4-1
4-4

A-1
B-1
C-1
D-1

E-1
F-1
G-1
H-1

ZBO Is a registered trademark of Zilog, Inc.

PAL and PALASM are registered trademarks of Monolithic Memories, Inc., a wholly-owned subsidiary
of Advanced Micro Devices, Inc.

IBM PC, XT, AT are registered trademarks of Intemational Business Machines, Inc.

Contributors to the Am9580Al90 Technical Manual are Jochen Polster, Joe Brclch, Patrick Soheili,
David Stoenner, Sherman Lee, and T. Kaneko.

Edited by Sue Louie Thilking.

CHAPTER 1

1.0 INTRODUCTION

Disk Controller Products

The magnetic disk drive market today is split into
two major groups: Rigid disks and Flexible disks.
Usually, the rigid, or hard disk is implemented in a
disk drive device as a non-removable medium;
whereas the flexible, or floppy disk is the common
removable medium. Historically there are several
different physical disk sizes available.

The hard-disk drive market started off with 14"
diameter disks. This format is mostly used in
mainframe applications. Common to all hard-disk
drives is that several platters are mounted on one
single spindle. Both surfaces of each platter have
a separate magnetic reacllwrite head. All heads are
moved together to a certain cylinder (Figure 1-1).
Other disk sizes are 8", 5.25", and 3.5" in
diameter. The data storage capacities of these
drives vary widely from 1-2 GByte for 14" down to
20 MByte for 3.5" disk drives.

Floppy disks are also available in 8", 5.25" and
3.5". Normally, both surfaces of the disk are used
to store data. Storage capacities range from 360
KByte to 2 MByte.

Spindle

Surface 0

Surface 1
Surface 2 -~---l

Surface 3

Spindle Motor

9480A 1-1

How Data Is Stored onto a Magnetic Disk

In order to store data onto a disk, the parallel data
stream (8- or 16-bit) of the processor's bus must be
serialized. The resulting NRZ (Non-Return to Zero)
serial data stream is not suitable for magnetic
recording. Magnetic flux transitions are required to
magnetize the disk material in one out of two
different directions. Only those direction changes
can be detected during reading. Therefore,
different methods are used to encode the NRZ
data into a format suitable for the disk.

The encoding schemes use mixed data and clock
pulses so that there is a fixed-time base (the clock)
when reading. The oldest and simplest one is FM
encoding. This scheme only looks at one bit at a
time and encodes it into a maximum of two flux
transition per data bit (Figure 1-2). FM encoding
adds a clock pulse for each data bit. MFM encod­
ing, on the other hand, only inserts clock pulses in
strings of Os; therefore, the data density is
doubled compared with FM encoding (Figure 1-3).

Recently, a new encoding scheme that further
increases the data density has become more
popular. The RLL (Run Length Limited) coding

RlWHead
Logic

RlWHead
Positioning Mechanism

Drive

Control

Logic
Disk
Drive

Interface

Figure1-1 Simplified Block Diagram of a Winchester Disk Drive

1-1

rules allow many different encoding schemes by
modifying their parameters. For example, FM and
MFM coding schemes are special forms of RLL
code. A RLL code that is widely used is the 2,7
Code. The two numbers indicate the minimum (2)
and maximum (7) number of Os in between 1 s
(Figure 1-4). The 2,7 Code increases the data
density on the disk by SO%, compared to MFM.

Interfaces

Historically, two disk interfaces have emerged as a
standard for most of today's hard-disk drives. The
SMD (Storage Module Device) interface is popular
in the high end (14" and 8'1 market. For S.2S" and
3.S" disks, the STS06l412 interface is the de facto
standard.

The STS06l412 (Figures 1-Sa,b) interfaces define
all the control and data signals connecting up to
four disk drives. The data transfer is defined as
using MFM encoding scheme. The data rate for
STS06l412 is fixed at S Mbitls. The disk drive
usually does not embed higher functions; seeks to
various tracks, for example, are done by sending
an appropriate number of step pulses to the drive.
Recently, there are some approaches towards
improving the performance of this standard; the
data rate is being Increased (up to 10 Mbitls) and a
different coding scheme is used (RLL).

A new standard has been introduced recently for
hard-disk drive interfaces. This standard, called
ESDI (Enhanced Small Device Interface) (Figures
1-6 a, b), allows for a more flexible and faster
interface between the hard-disk controller and
drive. It is specifiCally designed to interface new,
high-capacity hard-disk drives (S.2S") better than
the older standard (STS06).

There are two major differences between
STS06/412 and ESDI:

FM
Encoding

-NRZ_DoIa---tl ;, .1 .. __ 0,j

FMDoIa n __ L..--_-----l

FMFlux

The data transfer mode between controller and
hard-disk drive is no longer MFM but NRZ. Thus,
the Disk Data Separator (DDS) is implemented on
the drive and the data encoding and decoding are
handled by the ESDI drive. This leaves the choice
of an appropriate encoding scheme to the hard­
disk drive manufacturer. The typical choice for
ESDI drives is some form of Run Length Limited
(RLL) encoding scheme. Another advantage of
implementing the DDS on the disk drive is the very
close coupling between DDS logic and drive elec­
tronic. This will increase the reliability because
cables and additional line drivers are no longer re­
quired. The data rates are now determined by the
disk drive (Data Clock is generated by the drive).

The ESDI interface defines a serial command!
status link between controller and disk drive.
Commands such as SEEK and RESTORE allow a
much faster seek timing than with step pulses in
STS06 (e.g., to a step from track 0 to track 1000,
the STS06 standard requires 1000 step pulses),
the ESDI standard, however, needs only one 17-
bit command word. This also frees the controller
from the need to know drive characteristics such as
step-width, etc.

The command/status interface also adds
functionality. The controller can request status
information from the disk drive to get detailed
information on error conditions. Another feature of
ESDI is the ability to request information about the
drive configuration from the disk drive. Until now
the host computer needed to know the kind of
drive to which it is connected. This was usually
realized in the form of drive parameter tables
containing information about the number of heads,
cylinders, etc., of a particular drive. With the new
ESDI feature, these tables are not needed. The
CPU can request all necessary parameters directly
from the disk drive and initialize the controller
accordingly.

~ __ o _______ o _______ o __ ~r---

'---____ --IIfl

Flgure1-2 FM Encoding IM80A 1·2

1-2

MFM
Encoding

9480A 1·3

9480A 1-4

MFMData n n n n _----I L--______ I L-.J 1 _______ 1 L

MFMClod< n n
--------------------~I ~ I~ __ _
MFMFlux I I L
FM Encoding Rule. MFM Encoding

1. Insert clock pulse for each cell 1. Insert clock pulse only if NRZ data. 0 for 2 bits
2. Insert data pulse when NRZ data is "I" 2. Insert data pulse when NRZ data is "I"

Flgure1-3 MFM Encoding

The RLL 2,7 coding rules are listed below.

NRZ 2,7 decoded data length

10 100 2
11 0100 2
000 100100 3
010 001000 3
011 000100 3
0010 00001000 4
0011 00100100 4

Figure 1-4 RLL 2,7 Coding Rules

Host System ST506 - DRIVE SELECTED 1

2-
RESERVED 3

4_
SPARE 5

6----.
RESERVED (TOJI PIN 16) 7

8-
SPARE 9
SPARE 10

11_

12 ---
+ MFMWRITE DATA ... 13
-MFMWRITEDATA 14

GND
15-

16-
+ MFM READ DATA .. 17
- MFM READ DATA

18
GND

19 ~

20~

.............

-=-=-

9480A 1·Sa Flgure1-Sa Data Signals

1-3

Host System ST506

1-
-Reduced Write Current 2

3-
Reserved (Head 22j 4

5-
-Write Gate .. 6

7-
..... -Seek Comolete 8

9-
-Track.Jl. 10

11-... -Write Fault 12
13-

-Head Select 20 _JIO 14
15-

Reserved ITo J2 Pin 7\
16 J1/P

17-
-Head Select 21 _JIO 18

19-
-Index

20
21-

-Ready
22 I""'"

23-<
-Step .. 24

25-
-Drive Select 1 26

27-
-Drive Select 2 ---. 28

29-
-Drive Select 3 30

31-<
-Drive Select 4 32

33-~
-Direction In _JIO 34

-:::!:::-

- +SVDC --.J 4 r +SVReturn
3

"
+12VDC 2

J... +12VDC
1 -

-,.!:-

DCGND 6 Twisted pair (20 GA or larger) CH~D CHASS~D J4/P

Figure 1-5b 51506 Drive Interface J1
9480A 1-58

1-4

Controller
150 ohm termination

Drive

\ 1-
-Haad Sall!ct 21 ~ . 2

I \
3 --Head Select -1-_ \ 1 .. 4

"
5 -

-WritaGa\9 .. 6

7-... -Confia -Status Data 8

9 -... -Transfer Ack - 10
11

_AllAndnn 12 -
-Head Select 23 13 """" .. 14

15
.... -Sector -By\9 Clock -Address Mark Found

16
17 -I

-Head Select 24 .. 18

1/P

19 -.... -Index 20
21 -... -Raadv 22

23 ~
-Transfar Rao 24

25 -
-Drive Select 1 .. 26

27-
-Drive Select 2 28

-Drive Select 3 29 -.. 30 ...
31 -'

-ReadGa19 ..
32

33
-Command Data .. 34

-=..,::::-

..... +SVDC .. 4
I +SVReturn

3 -
"

+12VDC .. 2
I +12VDC

1 v

---DCGND

CH~D C~~ND ~ Twisted pair (20 GA or larger)

J4/P

Flgura1-6a Enhanced Small Device Interface
9480A 1-6.4

1-5

Controller Drive

... -Drive Selected
1

... -Sector/-Byte Clock/-Address Mark Found
2

... -Command Complete
3

-Address Mark Enable .. 4

.... -Reserved For Step Mode' 5

6-
+WrlteClock .. 7
-Write Clock ... 8

.... -Reserved For Step Mode'
9 - +Read Reference Clock 10

.... -Read Reference Clock - 11

12 -1

+NRZWriteData .. 13
-NRZWrlteData .. - 14

15_

16-

.... +NRZReadData
17

.... -NRZReadData
18

19-

.... -Index
20

";;::" -;;:-
• Must be at a logic zero level

9480A 10118

Flgure1-6b Enhanced Small Device Interface

1-6

Building Blocks of a Disk Controller

A Disk Controller can typically be divided into five
logical blocks (Figure 1-7): The Serializerl
Deserializer, the Data Formatter, the Error­
Detection-and-Correction Logic (EDAC), the Drive
Control Logic, and Buffer Logic.

The Serializer/Deserializer converts the parallel
data stream from the host CPU into a serial data
stream suitable for the disk drive.

The Data Formatter partitions these data into sec­
tors and adds all the necessary control information
to each data block. This control information allows
the later retrieval of an individual sector from the
disk.

The EDAC generates certain control bytes when
writing information onto the disk that are used to
verify the data when they are being reread.

The fourth function a disk controller has to perform
is the control of the disk drive functions, such as
stepping to the desired track and selecting the
readlwrite head. In addition, ST506 and floppy­
disk controllers need to perform NRZlMFM data
encoding and decoding on board.

The problems that occur when implementing
these different functional blocks are mainly
complexity and large speed differences. The
control functions of a disk drive, for example, are
rather slow operations, whereas the disk data
interface has data rates of up to 20 Mbitls or
higher. Also, it is desirable to fully decouple host
CPU and disk data interface.

•
~ System

h • Interface
• • • • • Data

• Buffering

• Logic

•
Error
Dotoction
&
Correction
Logic

Data

Formatler
~

• •

Today, these functions are usually implemented
on board-level disk controllers using separate LSI
elements and local CPUs or microcontrollers.
Because there are considerable differences be­
tween the individual disk interfaces (ST506/412,
ESDI, SMD and Floppy Disk), most boards are able
to handle only one of those.

1.1 GENERAL INFORMATION

The Am9580Al90 Hard Disk Controller (HDC) is
the single-chip solution to the problems encoun­
tered in designing Data Formatters and Disk Sys­
tem Controllers. Together with its companion part,
the Am9582 Disk Data Separator (DDS), the
Am9580Al90 provide all the functions which, until
now, have been found only on sophisticated
board-level products.

The HDC controller supports rigid and flexible disk
drives and their respective data formats. The
Am9580Al90 can control up to four drives,
allowing any mix of rigid and flexible drives.. The
characteristics of each drive are independently
user-programmable.

A sophisticated on-chip DMA Controller fetches
commands, writes status information, fetches data
to be written on disk and writes data that has been
read from disk. The DMA operation is program­
mable to adjust the bus occupancy, data bus width
(8-bit or 16-bit), and Wait State insertion. Two
sector buffers allow zero-sector interleaving to
access data on physically adjacent sectors,
improving both file access time and system
throughput. Sector sizes of 128, 256 and 512
bytes are programmable.

• Drive • Control
& • Status • •
~ • • • • • • I DataSOparalor • Serial to I Logic & • ParaHoI

Logic
I Data Decoder • I Logic •
I • • • •

Parallollo I Data •
Serial I Encoder •
Logic I logic • • I • •

9480A 1-7

Figure 1-7 Disk Controller Block Diagram

1-7

The Am9580Al90 insure data integrity by select­
ing one of two methods: either by selecting an
error detecting code (CRC-CCITT), or one of two
error correcting codes (Single- or Double-Burst
Reed-Solomon). Additionally, the HOCs provide
handshake signals to control external ECC circuitry
to implement any user-definable ECC algorithm.

The disk controllers provide signals that are neces­
sary to control external Encode/Decode and
Address Mark circuitry, e.g., the Am9582. By parti­
tioning the disk control system this way, future de­
velopments in the field of data encoding (e.g., RLL
codes) will be able to take advantage of the HOC's
advanced data formatting and control capabilities.

The Am9580A and the Am9590 both handle the
ST506/412 and standard double-density floppy­
disk data format. They also provide all the control
signals required by those interfaces. Track format
and control interface timing are independently
switchable, which keeps the disk interface
adaptable to other standards.

The Am9590 also directly supports the ESDI hard­
and soft-sectored disk interface. The Am9590 is a
superset of the Am9580A. It is pin-compatible and
the software is fully backward-compatible.

The Am9580Al90 provides a comprehensive,
high-level command set for multi-sector disk I/O,
marginal data recovery, diagnostics, and error
recovery. Commands may be linked together to
be executed sequentially by the disk controller
without any host intervention. This linked-list
command structure also simplifies command
insertion, deletion, or rearrangement.

How to Read this Technical Manual

This manual describes both the Am9580A and the
Am9590. The two devices have most of the
functions in common. Therefore, if not mentioned
otherwise, all the descriptions in this manual are
valid for both disk controllers.

ADDRIDATA Drive Control

8J18-bft
CPU Control

8116
System
Memory

IS8 Far Am9590 only

9480A HI

Hard
Disk

Controller

Am9580AI9O

Disk
0018

~ __ "Sspara1or

DDS Control
Am9582

MUX

Figura 1-8 Disk Controller System

1-8

Floppy

ST506

BREQ

A3

A2

A,
AO

m
m:i
OTilI

GNO

1m
WI!
as

ALE

ALEN

RESET

CLK

mliY

.... .. ,.
AD ..

AD,z .. "
AD,.

AD.

Vee
AD.

AD7

AD.

AD.

AD.

AD.

ADz

AD,

AD.

HLDlHDSEL2

HOSEL,

HOSELO

013•

01 0•

01,.

012•

~~!§lGNO

Figura 1-98 LCC

PLCC

li~a~iitri

·_10 Pin OooorlpllonNCllon foroptlona.

Flgure1-9b PLCC

1-9

SClCSO

FAULT

WRPROT/ATT

iiliEA5Y
TRKOITACK

ORSEL,

ORSELO

SELEN

...... ... IN

.... ...
FMot 11ECC1

• """'0
..... EFCLK

vee

WllDAT

... ... T

ICCEM

"DEX

Ni
INTR

- ------_. -------

LOGIC SYMBOL

~ AD 1)..15 SEiIN

A 1)..3 ORSEl O•1 :z

ALE

ALEN 01 3

Ri5 OREAOY

WR WRPROT/ATT

BHE FAULT

AEADv SCICSD

OT.R 01 2

DEN 011

BREQ 01 0

BACK TRKOITACK

CS RWCIHOSEl3

INTR HlDIHOSEl2

8M HDSElO•1

~ WRClK

INDEX

AMC/AMEN

AMFISECT

RG

WG

ROIREFClK

ROOAT

WROAT

ClK ECCERR

RESET FAM l lECC 1

FAMolECC o

VCC VSS

Figure 1-9c

1-10

2
:z

2
:z

>

>

w
()

1t. a:

~
~ o

1.2 DATA SHEET INFORMATION

Interface Signals

VCC1, VCC2 - +5 V Power Supply (both lines must
be connected)

GND1, GND2 - Ground (both lines must be connected)

System Interface LInes

CLK System Clock (Input)

CLK is a TTL-compatible clock input to time
DMA transfers and disk control operations
(e.g., Seeks). The system clock drives all
except the Disk Data Section of the HOC.

RD Read (Input/Output, Active LOW)

A LOW on this line indicates that the CPU or
HOC is performing an I/O or memory read cycle.
When the HOC is in Slave Mode, this is an input
signal used by the CPU to read the internal
registers of the HOC (slave access). When the
HOC is the bus master, this signal is an HOC
output to access data from memory.

In Slave Mode, the transfer control signals, RD
and WR, must not be active simultaneously,
but may be asynchronous to the clock. In
Master Mode, the HOC drives this line syn­
chronously by using a 4-clock-cycle transfer.

WR Write (Input/Output, Active LOW)

A LOW indicates that the CPU or HOC is
performing an I/O or memory write cycle. When
the HOC is in Slave Mode, it is an input signal
used by the CPU to load the intemal registers
of the HOC. When the HOC is the bus master,
this signal is a HOC output to write data to the
system memory. In Slave Mode, RD and WR
must not be active simultaneously.

BHE Byte High Enable (Input/Output, Active
LOW)

BHE enables data on the most significant byte
of the data bus (AD15-ADs). The data bus is
allocated as follows:

1-11

BHE AO Data LInes Type

0 0 AD1S-ADO Word Transfer
0 1 AD1S-ADS Byte Transfer on

upper byte
0 AD/ADO Byte Transfer on

lower byte
none (reserved)

When the HOC is the bus master, this pin is an
output. When the HOC is the bus slave, it is an
input and must be stable for the entire cycle.
BHE is ignored when the HOC is strapped to a
byte interface.

READY Ready (Input/Output, Active LOW,
Open Drain)

When the HOC is in control of the system bus,
this is an input to allow slow memories and
peripheral devices to extend the bus cycle.
When the HOC is in Slave Mode, this is an
output indicating that the HOC is ready to
complete the current bus transfer. The CPU
READYIWAIT input must be connected to the
READY output of the Am9S90 (in Slave Mode),
because slave cycle length varies between 1
and 16 system clocks.

ADc15:0> Address/Data Bus (Input/Output,
Active HIGH, Three-state)

The Address/Data Bus is a time-multiplexed, bi­
directional, three-state, 16-bit bus used for all
system transactions. A HIGH represents a "1"
on the bus and a LOW represents a "0". ADo is
the least Significant bit. The presence of an
address is indicated by either ALE or ALEN.
When ALE is HIGH, the bus contains lower
address bits (Ao-A15). When ALEN is HIGH,
the bus contains upper address bits (A1S-A31)'
The 32-bit address allows the HOC to directly
access a linear (non-segmented) memory
address space of up to 4 Gbytes.

The presence of data is indicated by the RD,
WR, and READY signals. The HOC drives data
out onto the AD-bus (lines are configured as
outputs) when RD is asserted in Slave Mode, or
when WR is asserted in Master Mode. The

HDC reads data in from the AD-bus (lines are
configured as inputs) when WR is asserted in
Slave Mode, or when RD is asserted in Master
Mode.

Mode RD WR AD1S-ADo

Slave L H Output
Slave H L Input
Master L H Input
Master H L Output

Ao Address Line 0 (Input, Active HIGH)

When the HDC is in Slave Mode, a HIGH on this
address line selects the upper byte of internal
registers, a LOW selects the lower byte of
internal registers. For word accesses, this line
must be LOW. Ao-A3 must be valid through
the Read or Write cycle. In Master Mode, this
line is ignored.

A1-A 3 Address Lines 1-3 (Inputs, Active
HIGH)

When the HDC is in Slave Mode, these lines
select one of the internal registers (see Figure
1-16). In Master Mode, these lines are ignored.

ALE Address Latch Enable (Output, Active
HIGH)

ALE latches the lower address word (Ao-A1S)
onto the external address latch. This output is
never floating.

ALEN Upper Address Latch Enable
(Output, Active HIGH)

ALEN latches the upper address word
(As-A31) onto the external address latch. This
signal is active whenever the upper address is
to be updated. The upper address is not
updated at the beginning of each DMA burst;
therefore, the upper address latch must not be
shared with the CPU or other DMA devices.
This output is never floating. (See also
"System Interface" Section)

DT/R Data TransmHlRecelve
(Output, Three-State)

In Master Mode. this output indicates the
direction of data flow. A HIGH indicates that the
data is being transmitted from the HDC to

1-12

memory (master write cycle). A LOW indicates
that the data is being transferred from memory
to the HDC (master read cycle). This output is
floating when the HDC is not in control of the
system bus.

DEN Data Enable (Output, Active LOW,
Three-State)

When the HDC is bus master, a LOW on this
output enables an external data bus transceiver
(DT/R specifies the direction). DEN is active
when data is driven onto the Address/Data bus
(master write cycle), or the bus is three-stated
when receiving the data (Master Read cycle).
This output is three-stated when the HDC is not
in control of the system bus.

BREQ Bus Request (Output, Active HIGH)

The HDC activates BREQ to request control of
the system bus. BREQ timing is specified by
the DMA Burst Length and DMA Dwell Time
parameters in the Mode Register.

BACK Bus Acknowledge (Input, Active
HIGH)

BACK acknowledges the HDC bus request,
indicating that the CPU has relinquished the
system bus to the HDC. Since BACK is
internally synchronized, transitions on BACK
do not have to be synchronous with the system
clock (CLK). BACK may be removed, at any
time, to make the HDC release the bus (bus
preemption). If the HDC DMA is preempted by
removing BACK, HDC completes the current
bus transaction and releases BREQ for the
programmed dwell time so that external devices
may gain system bus masterShip. BACK must
be active for at least one clock

INTR Interrupt Request (Output, Active
HIGH)

INTR is activated when the HDC requires CPU
service. Interrupt Request is reset whenever
the upper byte (Status Byte) of the
Status/Command Register (SCR) is accessed.
The HDC asserts INTR after a hardware or
software reset to indicate that the internal reset
process has been completed. This interrupt
cannot be disabled. Further interrupts are
issued whenever the HDC enters the IDLE
state (e.g., terminating a command chain).
These interrupts may be disabled by resetting
the Interrupt Mask in the Mode Register. The
INTR output is never floating.

CS Chip Select (Input, Active LOW)

The host processor activates CS to enable a
Slave Mode access to read or write HDC
internal registers. CS may be asynchronous to
the system clock (ClK). This pin is ignored
when the HDC is in Master Mode.

BiW BytelWord Strap (Input)

This pin selects either a byte (8-bit) (B/W HIGH)
or word (16-bit) (B/W LOW) interface. When a
byte interface is selected, only ADo-AD7 are
used for data transfers, making all operations
byte operations. When word interface is
selected, AD1S-ADo are used for data
transfers. The HDC always uses a 32-bit
address. This input may be altered only while
the HDC is in IDLE state.

HIGH = byte interface
LOW = word interface

Afs Asynchronous/Synchronous (Input)

This input selects whether the READY input is
synchronous or asynchronous to the system
clock (ClK). When Afs is HIGH, the HDC
internally synchronizes the READY input.
When AlS is LOW, READY must be
synchronized externally. This input may only
change state while the HDC is in IDLE state.
Normally it is tied to +5V or GND.

RESET Reset (Input, Active HIGH)

When RESET is active, all outputs lines are
inactive, all three-state outputs are floating, and
all inputs other than RESET are ignored. With
the falling edge of RESET, the chip enters the
initialization procedure. A RESET pulse is
required after power-up. Upon completion of
initialization, an interrupt request will be issued
and INTR will go HIGH. If the user attempts to
read from or write to the HDC prior to
completion of initialization, the READY output
will remain inactive until initialization has been
completed; this causes the CPU to wait. After
an initial hardware reset, a software reset
(loading the Command Status field of the
Status/Command Register with RESET) is
equivalent to a hardware reset (pulse on the
RESET input).

1-13

Power-up reset must be active after Vcc has
been stable for a certain period (see AC
specification). This can be achieved by a long
reset pulse generated by a RC circuit during
power-up, or by a short pulse after power-up.
The HDC must capture the Reset input being
HIGH for two rising edges ofthe system clock (2
plus system clocks pulse width).

Disk Interface Lines

Some of the pins described in this section have
different functions depending on the interface
type selected. The cross reference list page1-
18 shows the relationship between interface
and pin functions.

SELEN Select Enable (Output, Active LOW)

SElEN = lOW enables the drive specified by
DRSElO,1. When SElEN = HIGH, no drive is
selected. The disk drive must respond to
SEI:EN lOW by bringing DREADY lOW. See
DREADY and MON descriptions below.

DRSELO,1 (Outputs, Active HIGH)

DRSElo,1 designates which of the four
possible drives is expected to respond to the
assertion of SElEN .

DRSEL1 DRSELo Drive Selected

o
o
1
1

o
1
o
1

Drive 0
Drive 1
Drive 2
Drive 3

DRSElO and DRSEL1 are the two least­
significant bits of the drive number specified in
the IOPB.

DI3 Disk Interface Control 3 (Output, Active
HIGH)

(PCEN) Precompensatlon Enable-This
output indicates whether the data write
encoder should initiate precompensation on
the encoded disk-write data pulse stream.
PCEN will be valid for at least four system clocks

prior to any disk-write operation (WG LOW), and
will remain valid for at least four system clocks
after the disk-write operation (WG HIGH).
PCEN is asserted if the current track number is
greater than, or equal to, the Precompensation
Track Parameter specified in the Drive
Parameter Block for the selected drive. No
other internal processing takes place.

HIGH-Precompensation enabled
LOW-Precompensation disabled

PCEN should be connected to PCEN/S(O) of
the Am9582, even if precompensation is not
used. When SELEN is asserted, this output is
pulsed LOW to select Double-Density Floppy
Mode.

(TCLK) Track , Clock-In Restricted Seek
Mode and Special Mode, this output provides
the shift clock for the serial track information
provided on TDATA. See the following
description on D12.

DREADY Drive Ready (Input, Active LOW)

Drive Ready indicates that the currently
selected drive is ready to Read, Write, or Seek.
This signal should be connected to the
DRSELected signal of the drive. It must
become LOW within 100,000 system clock
after SELEN is asserted by the HDC (see Motor­
on Description for Floppy Mode). Once
asserted by the selected drive, any negation of
this line causes the current IOPB to be aborted.
DREADY is ignored while SELEN is HIGH.
DREADY must be deasserted before
reaccessing the drive.

FAULT Fault (Input, Active HIGH)

For ST506, floppy, and SMD operation, this
indicates a fault in the selection of the current
drive, or a fault within the selected drive. For
normal operations, FAULT must be inactive
(LOW) as long as DREADY is active (LOW).
FAULT is considered valid after DREADY is
asserted. If it is asserted by the selected drive,
the HDC will immediately abort the current IOPB
and deselects the drive. This signal should be
connected to the READY pin of the drive.

9590 -------------,
For ESDI interface, this pin has to be inactive
during a read, write, or seek. operation. If it is
asserted during a read, write, or seek, the HDC
will immediately abort the current IOPB and de­
selects the drive. It is disregarded during a
serial communication.

WRPROT/ATT Write Protect/Attention
(Input, Active HIGH)

(WRPROT) Write Protected-Before the
HDC attempts to write data to the currently
selected drive, the HDC samples WRPROT to
determine whether the drive is write protected
(WRPROT HIGH). If it is, the current IOPB is
immediately aborted. Typically, in Hard-disk
Mode, this input should be tied LOW (inactive),
and is considered valid after DREADY is
asserted. It is ignored during "Read-Only"-type
commands. When SELEN is inactive (HIGH),
this input is also ignored.

9590---------------------------,
(ATT) Attention-For ESDI interface, this line
has to be valid after DREADY becomes active.
With this Signal, an ESDI drive indicates to the
controller that status information can be read
from the drive (usually this is an error condition).
If Attention becomes active when the HDC
attempts a read or write operation, the HDC will
abort immediately and deselects the drive.

SC/CSD Seek Complete/Configuration
Status Data (Input, Active HIGH)

(SC) Seek Complete--The drive asserts SC
to indicate to the HDC that the head is loaded
(only for Floppy Mode) and the drive is ready for
another Seek operation. This line is sampled
and verified HIGH before starting any seek
operation.

(CSD) Configuration Status Data-lf the
ESDI interface (Serial Mode) is selected, this
line is the serial data input for configuration!
status information from the drive.

DI2 Disk Interface Control 2 (Output, Active
HIGH)

STEP-The HDC pulses the STEP line to
move the head from one track to the next. The
width and spacing of pulses are programmable,
allowing an easy upgrade path to higher

1-14

performance drives. The disk drive should initi­
ate the head movement with the rising edge of
STEP. SC (Seek Complete) must go inactive
after the HOC has issued the first step-pulse.

9~-----------------------,
(TRQ) Transfer Request-For ESOI
interface, the HOC uses this pin to request a
data transfer (one bit at a time) to or from the
drive. If data are transferred to the drive, the pin
is activated when a command bit is present on
the Command/Oata line. It is deasserted after
the ESOI disk drive responds with TACK
(Transfer Acknowledge). If data are received
from the drive, TRO indicates that the HOC is
ready to receive a bit from the drive. Again,
TRO is deasserted with the reception of TACK.

(TDATA) Track Data-In Restricted Seek
Mode, and Special Mode, TOATA provides the
current track number (16-bit) each time the
track number needs to be updated. A shift
clock is available on the 013 output.

011 Disk Interface Control 1 (Output, Active
HIGH)

(DIRIN) .Dlrectlon In-DiRIN indicates the
direction the head should move on STEP
pulses. When HIGH, the head should move
towards higher track numbers (in or towards the
disk spindle). When LOW, it should move
towards lower track numbers (Out). OIRIN will
be asserted at least .four clock cycles before
any seek pulses are issued. It remains stable
during the entire stepping operation until at
least four clock cycles after the last step-pulse.

9590
, Command Data-For the ESOI interface, the
Am9590 uses this pin to send serial ESDI
command words, plus parity, to the disk drive.

(HDSELS) Head select 5-For the Special
interface, this is the most-significant bit of the
head number.

010 Disk Interface Control 0

(Input/Output, Active HIGH)

(RTZ) Return To Zero-ln Hard-disk Mode, a
pulse on the RTZ output should recalibrate the
head to Track O. The HOC may also recalibrate

the drive by issuing STEP pulses until Track 0
is reached (TRKO becomes active). The RTZ
pulse has the same width as the STEP pulse.
The drive should assert SC (Seek Complete) as
an indication of the completion of the
requested recalibration. If the drive asserts SC
(LOW), and TRKO is LOW, the Am9590 will
assume that recalibration has failed. In this
case, the HOC continues to recalibrate the
drive by issuing STEP pulses until Track 0 is
reached (TRKO becomes HIGH).

(MON) Motor On-In Floppy Mode, this
output provides Motor-On signal for the floppy­
disk drive. Whenever a floppy-disk drive is
selected and MON is asserted HIGH, this turns
on the spindle motor of the selected drivels).
The HOC waits for a programmed period before
attempting any read or write access to the drive
(see Orive Parameter Block description).

9S90--------------------------~

Command Complet8--'-ln ESOI Mode, this
input indicates to the HOC whether the drive
has coinpleted a command or if a new
command may be issued. Command Complete
goes inactive upon the reception of the first
Command Oata bit. It stays inactive until the
command has been executed. Command
Complete is also monitored after a head
change during disk-data transfers. This allows
the drive to have any head-settle time that is
required.

(HDSEL,v Head Select 4-For Special
interface this is the second-most significant bit
of the head number.

TRKOITACK TrackOlTransfer Acknowledge
(Input, Active HIGH)

(TRKO) Track 0-The selected drive must
assert TRKO whenever the head is positioned
over the outer-most track (Track 0). This is the
only hardware indicator that the head is
positioned over a specific track. This input is
sampled only when the HOC is performing a
drive restore operation. Here, the HOC
provides single STEP-pulses (OIRIN LOW),
waits for SC to go inactive (LOW), returns to
active (HIGH), and then samples TRKO.
Whenever TRKO is asserted, the HOC assumes
that the heads have restored to Track o.

1-15

9590 ---------------,
(TACK) Transfer Acknowledg~For the
ESDI interface, this pin, with TRQ (Transfer
Request), handles the asynchronous hand­
shake for the serial command transfer between
Am9590 and ESDI hard-disk drive.

RWC/HDSEL3 Reduced Write Current!
Head Select 3 (Output, Active HIGH)

(RWC) Reduced Write Current-RWC
indicates that the head is over an inner track
where the write current should be reduced.
RWC is activated whenever the current track
number is greater than, or equal to, the RWC
track parameter, specified in the Drive
Parameter Block for each drive. No internal
processing of RWC takes place in the HOC.
RWC operation is similar to that of Pre­
compensation Enable (PCEN). If RWC is used
to control the write current, the write current
should be reduced when RWC goes active
(HIGH). A programmable option bit within the
Drive Parameter Block configures this output.

(HESEL3) Head Select 3-This pin provides
Bit 3 of the head number.

HLD/HDSEL2 Head Load/Head Select 2
(Output, Active HIGH)

(HLD) Head Load-For floppy drives, this pin
provides the Head Load signal. SC (Seek
Complete) is sampled eight clocks after the
assertion of HLD. If SC is LOW, the HOC waits
for it to go HIGH. If SC is HIGH, the HOC
assumes that the heads are already loaded.

(HDSEL2) Head Select 2-For hard-disk
drives, this pin provides Bit 2 of the head
number.

HDSEL<1 :0 Head Select (Output, Active
HIGH)

These are the two lower-order bits of the head
number selected.

INDEX Index (Input, Active HIGH)

INDEX marks each revolution of the disk.
INDEX should be valid as long as DREADY is
asserted. The HOC uses INDEX to keep track

of the number of complete disk revolutions
encountered during disk I/O operations and/or
to indicate the physical beginning of the track.
Only the leading (rising) edge of INDEX is
significant. Depending on the drive parameters
programmed, the first sector might begin
before INDEX has gone inactive (LOW).

AMC/AMEN Address Mark Controll
Address Mark Enable (Output, Active
HIGH)

(AMC) Address Mark Control-The HOC
asserts AMC in conjunction with RG or WG, to
command the external data separator to gener­
ate address marks (write operation), or to
search for address marks (read operation). In ei­
ther operation the data separator acknowl­
edges the completion of the requested
operation by asserting AMF. In write cycles,
this signal indicates that the address mark has
been generated. The type and length of the
address mark is completely transparent to the
HOC. The data separator may, therefore, gener­
ate any address mark. In read cycles, AMF
indicates that an address mark has been found.

9590 --------------,
(AMEN) Address Mark Enable-For ESDI
interface, this pin causes the ESDI drive to
either write an address mark (in conjunction
with WG) or to search for an address mark (no
RG activated).

AMF/SECT Address Mark Found/Sector
(Input, Active HIGH)

(AMF) Address Mark Found-In ST506, or
floppy mode the data separator asserts AMF, in
response to AMC, to acknowledge that an
address mark has been generated (write cycle)
or found (read cycle). In ESDI mode (soft­
sectored) the disk drive generates AMF. The
AMF signal must be asserted in the
RD/REFCLK cycle after the data separator has
put out the last address mark bit (write cycle), or
in the RD/REFCLK cycle when the data
separator provides the first data bit after the
address mark (read cycle).

9590-------------~
(SECT) Sector-For hard-sectored ESDI
drives this signal indicates to the Am9590 the
start of a new sector.

1-16

RG Read Gate (Output, Active HIGH)

RG indicates that a disk-read operation is in
progress. It commands the Phase-Locked
Loop (PLL) of the data separator to lock the
RD/REFCLK to the serial read data from disk.
This output changes synchronously with
RD/REFCLK.

WG Write Gate (Output, Active HIGH)

WG indicates that a disk-write operation is in
progress. It commands the data separator to
lock the RD/REFCLK to a constant frequency
source (e.g., crystal OSCillator) to provide a
stable reference clock for the write operation.
This output changes synchronously with
RD/REFCLK.

RD/REFCLK
(Input)

Read/Reference Clock

RD/REFCLK is a TTL-compatible clock input
that controls the operation of the data section
of the HOC. This clock samples the read data
(read clock) and strobes out write data
(reference clock). It is assumed to be valid 16
system clocks (CLK) after drive selection
acknowledge (DREADY) is received, and must
remain valid until SELEN is deasserted. While
valid, this clock should be free from any glitches
(the specified clock HIGH and LOW widths must
not be Violated).

WRCLK Write Clock (Output)

This is the reference clock output for ESDI write
operations. It is inverted from, and synchro­
nous to, the reference clock input
(RD/REFCLK). WRCLK must not be con­
nected to the Am9582 write clock input.

ECC Controls
ECC1,ECCo State

008 Idle

01 8 Reset

118 Generate

108 Check

1-17

RDDAT Read Data (Input, Active HIGH)

RDDAT is the NRZ (Non-Return to Zero) disk
data input. The HOC samples ROOATwith the
rising edges of RD/REFCLK.

WRDAT Write Data (Output,Actlve HIGH)

WRDAT is the NRZ disk data output. Transi­
tions occur on the rising edge of RO/REFCLK.

ECCERR External ECC Error (Input,
Active HIGH)

When using the external ECC option, this input
is asserted when the external ECC logic finds
an error. During a read operation, the Am9590
samples ECCERR at the end of Postamble 2 to
determine if an error has been detected by the
external ECC logic. This input should be
always grounded except for a data field read
operation.

FAMO 1ECCO Floppy Address Mark 01
External ECC Control 0
(Output, Active HIGH)

FAM1 1ECC1 Floppy Address Mark 11
External ECC Control 1
(Output, Active HIGH)

When using the external ECC option, the
outputs ECCo and ECC1, in conjunction,
provide status control for the external ECC
logic. These dual-function lines either control
external ECC (hard-disk format, external ECC
enabled) or indicate the type of address mark to
be used (double-density floppy format, AMC
HIGH). The four states are encoded as follows:

Comment

No operation in the external ECC.

External ECC should reset and
prepares itself for an operation.

Whether reading or writing, the
external ECC should strobe data in
and generates a check-sum.

When reading, this state indicates
that the ECC should accept the
check-sum from the disk. When
writing, it should gate the check­
sum to the disk.

These states always proceed in the Gray code Address Mark (IXAM) rather than a normal address
progression shown above, i.e., 00-01-11-,10-00, mark. The two states that can be encoded are as
which can be decoded without glitches.
nominal state of these lines is 00 (Idle).

The follows:

00 - Index Address Mark (IXAM)
In Double-Density Floppy Mode, the Floppy 10 - Data Field or Header Address Mark (DAM, lOAM)
Address Mark outputs (FAM 0, FAM 1), in conjunc- In S1506 and ESDI, these will be 10.
tion, tell the data separator to generate an Index

DRIVE INTERFACE PIN CROSS REFERENCES

9590
'Pin Name Pin' Floppy ST506 ESDI (Serial) SMD

SEI:EN 68 "SE[ER "SE[ER "SE[ER "SEr:ER

DRSEL1 66 DRSEL1 DRSEL1 DRSEL1 DRSEL1
DRSELo 67 DRSELo DRSELo DRSElo DRSElo

DREADY 64 DREMW DREADY DREADY DREADY
WRPROT/ATT 63 WRPROT WRPROT ATT WRPROT

• FAULT. 62 FAULT FAULT FAULT FAULT
SC/cSD 61 SC SC CSD, SC
TRKOITACK 65 TRKO TRKO TACK

0(3 56 PCEN PCEN TCLK
012 59 STEP STEP TAQ TDATA
011 58 DIRIN DIRIN CD HDSEL5
010 57 MON RTZ cc HDSEL..J

RWCIHDS,EL3 51 RWC RWCIHDSEL3 HDSEL3 HDSEL3
HLDIHDSEL2 53 HLD HDSEL2 HDSEL2 HDSEL2
HDSEL1 54 HDSEL1 HDSEL1 HDSEL1
HDSElo 55 SIDE HDSElo HDSELo HDSElo

INDEX 39 INDEX INDEX INDEX INDEX

, AMC/AMEN 49 AMC AMC AMEN AMC/AMEN
AMFISECT 50 AMF AMF AMF/SECT AMFISECT

RG 47 RG RG RG RG
WG 48 WG WG WG WG

RDIREFCLK 44 RDIREFCLK RDIREFCLK RDIREFCLK RDIREFCLK
WRCLK 52 ' WRCLK WRCLK

WRDAT 42' WRDAT WRDAT WRDAT WRDAT
RDDAT 41 RDDAT RDDAT RDDAT RDDAT

ECCERR 40 ECCERR ECCERR ECCERR

FAM1IECC1 46 FAM1 FAM1IECC1 ECC1 ECC1
FAMoIECCo 45 FAMo ECCo ECCe ECCo

1-18

1.3 FUNCTIONAL DESCRIPTION

The HDC supports two interfaces as shown in the
block diagram. The system interface (see Figure 1-
8) communicates with the host CPU and system
memory. The disk interface controls the data
separator and the disk drives.

System Interface

The HDC is designed for easy interfacing to most 8-
bit or 16-bit, multiplexed or demultiplexed,
synchronous or asynchronous, microprocessor
buses. A strap pin programs the system interface
for either byte (8-bit) or word (16-bit) mode. In
Slave Mode the host CPU can access the internal
registers of the HDC. In Master Mode, the on-chip
DMA controller controls the system bus.

DMA Controller

The on-chip DMA controller provides the HDC with
the ability to execute complex disk 110 operations
without host CPU intervention. The DMA con­
troller scans the command chain stored in system
memory, updates the Status Result Area when
errors occur, and transfers the data between the
internal sector buffers and system memory. Data
may be stored in non-contiguous memory, for
example, to support linked-list data storage in word
processing systems.

The DMA controller generates 32-bit linear
addresses to directly access up to 4 GBytes of
system memory. For multiple bus-master systems,
DMA transfers can be throttled to dedicate only a
certain portion of the system bus bandwidth to the
HDC. The Mode Register (Figure 1-17) specifies
DMA burst length and dwell. DMA bursts can be
preempted by removing Bus Acknowledge
(BACK). The HDC can insert a programmable
number of software Wait States into DMA bus
cycles. Additionally, hardware Wait States can be
added via the READY input. The HDC updates the
upper address word (A16-A31) when there is a
carry out of the lower 16 address bits.

User Registers

The Mode Register defines the operation of the
DMA controller. The Status/Command Register
controls the basic operation of the HDC itself. The
Next Block Pointer (NBP) Register links to the first
Input/Output Parameter Block (IOPB) of the
command chain. The Status Result Pointer
Register and the Status ResuH Length Register
define the Status ResuH Area where the HDC
stores the status for each 10PB.

Main Sequencer

The Main Sequencer translates the high-level
system commands into the control signals for the
various independent functional sections of the
HDC. This 16-bit processor relieves the system
CPU of complex data manipulations.

Drive Parameter RAMs

The Drive Parameter RAMs store the specification
parameters for drives that adapt the HDC to any
combination of disk recording schemes. The
contents can be altered anytime with a single
10PB. Once loaded these parameters allow disk
commands to be independent of the drive type or
track format. For example, the write command is
the same whether it is for a double-density floppy­
disk drive or a Winchester hard-disk drive.

Error Checking

The HDC features two powerful Reed-Solomon
error correcting codes, as well as the industry
standard error detection code, CRC-CCITT. It also
supports a user-definable, external error correction
scheme. Along with programmable retry and
correction attempt policy, the HDC allows maximum
control of data integrity.

Sector Buffers

The HDC transfers data to or from disk without add­
ing time constraints on the system bus bandwidth.
The two internal sector buffers (Figure 1-10) can
be filled or emptied at any speed w/o interfering
with data transfers between sector buffers and the
disk. The two internal sector buffers are toggled
for zero-sector interleave disk data operations.

While one sector buffer is filled with data from disk,
the other buffer is emptied by the DMA controller.
Physically, contiguous sectors on a track can thus
be read or written on the fly (during one revolution
of the disk).

Disk Control Interface

I ~~:0~m9580A ha;-adisk ~ntr~i;;erfa~ which1
I provides all the control lines to directly handle the I
I ST506/412 and double-density floppy-disk inter-I
I face. Other drive interface standards can be sup- I
I ported using external circuitry. The controller can I
I support any combination of floppy-disk and hard-I
I disk drives. The drive parameters can be individu-I
I ally specified in one out of four drive parameter I
blocks. ~ _________________ J

1-19

9590
The Am9590 has a disk control interface which
provides all the control lines to directly handle the
ESDI, ST5061412 and double density floppy-disk
interface. Other drive interface standards can be
supported using external circuitry. By using the
ST506/412 and Floppy options, the Am9590
issues step pulses to position the heads to the
desired cylinder. Step width and dwell times, as
well as head settling times, are programmable. If
the ESDI interface is selected, the HDC will

automatically generate SEEK and RESTORE
commands to the ESDI drive using the serial
communication link (Figure 1-11). Other ESDI
commands like REQUEST STATUS, REQUEST
CONFIGURATION, can be issued by the CPU
using the ESDI CHANNEL IOPB of the Am9590.
The controller can support any combination of
floppy-disk, ESDI and ST506 hard-disk drives.
The drive parameters can be individually specified
in one out of four drive parameter blocks.

Memory
Am9580Al90 Disk

Sector Buffer 1

~
Sector

n+1

Sector Buffer 2

Sector Buffer 1

Sector Buffer 2

9480A 1·10
Figure 1-10 Dual On-Chip Sector Buffers

1-20

The HOC can perform implied and overlapped
seeks. When the implied seek option is selected,
the HOC automatically causes the appropriate
seeks when issuing a read or write command. If
this option is disabled, the seek operation has to
be performed externally.

When the overlapped seek option is selected,
several drives can seek in parallel, thus minimizing
the seek overhead in multiple disk-drive systems.
After the HOC has issued a seek command to one
drive, and while this drive performs the seek, the
HOC scans subsequent IOPBs for commands
requiring seeks on other drives. If the HOC finds
such commands, it issues seek commands to
these drives to make them seek in parallel. After
the first drive has finished the seek operation, the
HOC resumes execution of the command chain.

Disk Data Interface

9580A ---------------,
'The Disk Data Interface of the Am9580A handles
'the serial data input and output to the disk drive. It
,controls the Address Mark handshake with the
, data separator as well as the optional external ECC
,logiC. Operating asynchronously to the other
I blocks of the device, the Disk Data Interface is driv­
,en by the Read/Reference Clock (RD/REFCLK)

'

generated by the data separator. The Disk Data
Interface converts the data stored in the sector

'buffer into a serial bit-stream for the disk or it de-
I serializes the incoming bit-stream to be loaded into
lone of the sector buffers. Non-data-information
,such as the header (sector 10 field), pads, gaps,
,preambles, and postambles, is conditioned accord­
,Ing to the parameters stored in the Drive Parameter I
LRAMs !Q..lllilet the define.Q.r~ordi!!J..§!andard...:... _.J

Drive 1
Hard
Diu
Drive

Olive 0
Floppy
Disk
Drive

HOC

9590
The Disk Data Interface of the Am9590 handles
the serial data input and output to the disk drive. It
controls the Address Mark handshake for soft­
sectored ESDI drives as well as hard-sectored
drives. In ST506/412 and Double-Density Floppy
Mode it also controls the data separator. Operating
asynchronously to the other blocks of the device,
the Disk Data Interface is driven by the
Read/Reference Clock (RD/REFCLK). This clock
is either driven by the disk drive (ESDI) or by the
data separator (ST506, Floppy Disk). In ESDI
mode the device provides a synchronous Write
Clock output. The Disk Data Interface converts the
data stored in the sector buffer into a serial bit­
stream for the disk or it deserializes the incoming
bit-stream to be loaded into one of the sector
buffers. Non-data information such as the header
(sector 10 field), pads, gaps, preambles, and
postambles, is conditioned according to the
parameters stored in the Drive Parameter RAMs to
meet the defined recording standard.

IOPB Command Structure

The HOC features a high-level data and command
structure (Figure 1-12). The basic unit of this
command structure is the InpuVOutput Parameter
Block (IOPB). The host CPU creates IOPSs in
system memory to pass control and status
information to the HOC. The HOC fetches these
IOPSs by using the on-chip DMA controller. Each
lOPS specifies one disk command and contains all
parameters needed to execute it (Figure 1-13). To
start execution of an lOPS, the host CPU loads the
address of the lOPS into the· Next Block Pointer
Register and writes the "Start Chain" command by
programming the Status/Command Register. After
the lOPS is executed, the HOC reports the status

Format
Drive 0

F1rs1
lOPS

of
Next
Job

Figure 1-12 Command Chaining Example 948DA 1-12

1-21

information and waits for further instructions. The
host CPU can examine the Status/Command
Register for information about the command
termination. The CPU can also get status from the
Status Result Block in memory if an error occurs.

As an option, 10PBs may be put together in a
linked-list format which the HOC can interpret
sequentially. With this structure, a complex list of
disk commands can be set up and then executed
by the HOC without CPU intervention. The CPU is
then totally free from any disk control processing.
For example, the host CPU might set up a list of
commands for the HOC to copy an entire floppy
disk to a hard disk and verify that the data has been
copied correctly. Upon verification, the HOC refor­
mats the floppy disk, all without host CPU
intervention.

An 10PB command chain is basically a queue of
jobs waiting for HOC execution. This offers a pre­
defined and efficient structure for the operating
system to handle its disk I/O. The 10 field of the
10PB provides the linkage between a particular
disk command and the user process that made the
disk request. The jobs can thus be placed in the
HOC job queue and then ignored by the operating
system unless an error occurs. All the information

required to retrace an error is provided by the HOC
Status Result Block.

Since the HOC manages the disk job queue, it can
look ahead in the queue to overlap several time­
consuming operations. Head movement (seeking)
can require a major portion of the disk access.
Since the HOC controls up to four drives, it can
perform an 10PB operation on one drive, while it is
executing seeks for future 10PBs on the other
drives. ThiS eliminates the seek-time overhead
when those subsequent 10PBs are finally
executed (Figure 1-14).

Data Mapping

Sector data to be transferred to or from the disk
may be stored in non-contiguous system memory
using the data mapping option (Figure 1-15).
Definable portions of a disk file can be written or
read from separate areas of memory on a byte-by­
byte basis. The Data Map defines the linked-list
data structure. The Data Map option is processed
by the HOC, while the disk is in operation, so that
data maps can be handled without affecting data
transfer rate. Virtual memory systems can employ
this feature to arrange memory pages directly with
the HOC and eliminate the time-consuming task of
moving data blocks to the appropriate locations.

Next IOPB Pointer (Ll

94SOA 1-13

Next
Block

Pointer

Next IOPB Pointer (HI Memory

Option

Drive

TRACK

Head Sector

Data Mark Record Cnt.

Source/Dest. Addr. (Ll

Source/Dest Addr. (HI

[NextlOPB J
-------~-----------

Figure 1-13 IOPB Address Sequence

1-22

ConsecuUve Seek Tin1ing

Drive 0 I Move Head to Track XX Read
Track

Send Seek
Pulses

DME - Data Map Enable
LE -LDad Enable

Drive 1

Overlapped Seek Tin1ing

Figure 1-14 Seek Mode.

Flgur.1-15 Data Mapping

1-23

Reduced Disk

Access Time

SyaIom
Memooy

9480A 1·14

II480A 1·15

Status Result Blocks

When the HOC finds that an 10PB has caused an
error, it writes a Status Result Block (SRB). Errors
might be caused by invalid command codes, disk
read and write errors, and seek or memory time­
outs. Since the SRB contains the 10 number for
the 10PB which caused the error, the operating
system can .determine which disk I/O job caused
the error and report this to the user. Oepending
upon the type of error and what policy has been
selected, the HOC may continue with the 10PB
chain automatically, or wait for the host processor
to tell it whether to start over or continue. The
SRBs contain all the specific information required
to find the exact location of the error and to make
recovery as complete as possible.

Registers

When the 10PB command chain has been set up,
the Next Block Pointer Register of the HOC is set

to point to the first 10PB in the chain. Writing a
Start Chain command to the Status/Command
Register causes the HOC to copy the first 10PB
into its internal memory. The Next Block Pointer
always point to the current command in the 10PB
chain. Status/Command Register also reports
HOC error and status codes (such as memory time­
outs, 10PB option results, and other information
related to the internal operation of the HOC).

The Status Result Pointer points to an area of
contiguous memory (Status Result Area) reserved
for Status Result Blocks (SRBs). The length of this
memory block is defined by the Status Result
Length Register, which specifies the number of
SRBs (each SRB is 10 bytes). The error handling
scheme of the operating system can manipulate
this as needed to coordinate disk use.

The Mode Register controls how much shareof the
system bus bandwidth is allocated to the HOC, and
how much is left to meet other system
requirements.

Memory Am9580Al90 Hard Disk Controller

Mode Register

Status/Command Reg.

Next Block Pointer

Status Result Pointer

Status Result Length

1I4SOA1-9

Figure 1-16 Software Interface

1-24

Register Description

Four registers control the operation of the HOC.
These registers can directly be accessed by the
host CPU in byte or word mode. The addresses
are shown in Figure 1-16a.

Mode Register

Bit assignments of this 16-bit reacllwrite register
are shown in Figure 1-17. This register may be
reacllwritten at any time. A hardware or software

CS A3 A2 A1 Register Accessed

L L L L Status/Command Register
L L L H Mode Register

L L H L Next Block Pointer (low word)
L L H H Next Block Pointer (high word)
L H L L Status Result Pointer (low word)

L H L H Status Result Pointer (high Word)

L H H L Status result Length

L H H H Reserved

H X X X No Register Accessed

9480A 1·18

Flgure1-16a Register Address

IlIA DwIII Tillll (18 • n) ~
= =~~=.. 0010 -;-32 Clock CYcle.

1111 -240 Clock Cyclil

iliA lulll Llngth (2 n) -------' = =~~~..':l
0010 -;-4 sytasl8urst

1001 1111 -512 Bytas/8u18l

Lockout

~ =~;'=181~ Regls18rl

reset clears all bits in this register. During normal
operation, the HOC only reads this register.

Burst Programming

The upper haH of this register controls the bus
occupancy of the HOC. The OMA Burst Length
specifies the maximum number of bytes the HOC is
allowed to transfer per OMA burst. After the burst
is completed the HOC stays off the bus (BREQ
stays inactive) for a number of programmable clock
cycles (OMA Owell Time). After this time interval
has expired the HOC may request the bus again.
The maximum OMA burst length is equal to the
programmed sector size (maximum 512 bytes). If
the burst length is set to one byte, the HOC will
only transfer bytes, independent of whether it is
programmed for a byte or word interface. The
programmed Owell time is the minimum time. Burst
length is specified in powers of two:
1,2,4,8, ... 512. Owell time is specified in multiples
of 16 clock pulses.

OMA
Owell Time: 16· N (where N is 4-bit OMA

OMA
Burst Length: 2N

OweliTime)

(where N is 4-bit OMA
Burst Length)

L Saloct Modo

8V _ ImpI~ ~appad Soaks
10 - 8d Modo
11 - Modo

Will Sl_

OG -NoWaits
01 -1 WaitStata
10 -2WaltStato.
11 -3 Wal Stata.

'---+-'--------lnI8rrupi _
8V =~""'" .. ond of lOPS Chsln

l~ =1::~=End
'---------Tillll Out

o -TimoOut
1 -NoTimo.ut

Figure 1-17 Mode Register 9480A 1·17

1-25

Walt States

The Wait State field determines the number of
software Wait States to be inserted into the normal
four clock cycle bus transfer. First, the HOC inserts
the programmed number of Wait States, then waits
until the REAOY input is activated (hardware Wait
States). If no acknowledgement is received within
512 clock cycles the memory cycle is aborted and a
memory time-out error is generated by setting the
Controller Fault bit. The Controller Fault Type
indicates whether the time-out occurred when
fetching an 10PB ("IOPB Time-Out"), when
transferring a SRB ("SRB Time-Out"), or when
transferring data ("Oata Time-Out"). On a data time­
out, the HOC also generates an "Oata Time-Out"
SRB, which indicates exactly where the time-out
occurred. All time-outs are resumable; however,
the HOC reexecutes the entire block memory
transfer, e.g., the entire 10PB or SRB, or the data
block (max. size: one sector) with the start address
and length indicated in the "Oata Time-Out" SRB.

Lockout

Some registers require multiple CPU accesses to
be completely reloaded (e.g., two-word pointer
registers). Lockout ensures that the HOC does
not access a partially updated register. Once the
Lockout bit is set, the register set is frozen. If the
Lockout bit is set while the HOC is executing a
command, the HOC will stop when it tries to access
one of the users accessible registers (e.g., the
HOC tries to access the Status Result Pointer
register to issue a SRB). The latest point where
the HOC stops is when it tries to access the Next
Block POinter register to load the next 10PB. The
Lockout bit is set to zero on a hardware or software
reset. It needs to be set only if the HOC is not IOLE
when changing registers.

Interrupt Mask

The Interrupt Mask bit enables/disables the
interrupt output. The HOC always interrupts the
CPU after it has completed the initialization
procedure, executed after Reset. This interrupt
cannot be disabled. Loading the Mode Register,
subsequently with the Interrupt Mask bit set High,
disables all further interrupts. The CPU is
expected to poll the upper-haH of the
Status/Command register to determine when the

HOC stops. The CF-bit is set when the HOC stops.
If the Interrupt Mask bit is reset Low, the HOC will
interrupt the CPU every time it enters the "Idle"
state (see Status/Command Register description).
The Interrupt Mask bit is set to zero on a hardware
or software reset (Interrupts are enabled).

seek Modes

The Seek Mode bits select the disk interface
mode: Implied and Overlapped Seeks, Only
Implied Seeks, Restricted Mode, or Buffered
Mode.

Implied and OVerlapped Seeks

In this mode the HOC uses all disk control inputs
and outputs. Implied Seeks are seek operations
which are automatically performed if a track change
is required to execute the requested command.
This means that commands do not need to be
preceded by the SEEK 10PB. Overlapped Seeks
are seek operations where the HOC scans
subsequent 10PBs to identify 10PBs requiring
seeks. The HOC will initiate these seek operations
in . advance, to seek multiple drives in parallel,
thereby improving the overall system performance.
These overlapped seeks are performed wherever
possible.

The HOC scans the 10PB chain until it finds an
10PB with the ''Wait" option bit set, until all four
drives are busy seeking, or until it reaches the end
of the 10PB chain. If not all four drives are actively
used, the HOC will not necessarily find an 10PB for
a particular drive, and therefore, will scan to the
end of the 10PB chain. To limit the bus overhead,
which is involved every time the HOC scans the
10PB chain, the user should set the "WAlr' option
bit when operating with long 10PB chains. If the
HOC encounters an 10PB with the ''WAIT'' option
bit set, it will terminate executing the 10PB chain at
this 10PB, and generates a CFT "WAIT STOP". If
overlapped seeks are enabled, the HOC will re­
scan the 10PB chain when it starts a new 10PB.

Only Implied Seeks

In this mode the HOC uses all disk interface inputs
and outputs; however, it does not perform
overlapped seeks.

1-26

Restricted Mode

The HDC controls all disk interface inputs and
outputs except STEP, DIRIN, and RTZ. Neither
implied nor overlapped seeks are performed. All
head positionings are done extemal to the HDC.
The disk status lines are still being monitored. The
HDC waits for SC to be asserted (similar to above
modes).

It is only in restricted mode that the HDC strobes
out the current track number serially on the STEP
output (see Figure 1-52). The STEP output
becomes the serial data output port. The most
significant bit of the 16-bit track number is put out
first. The PCEN output provides the shift clock.
STEP should be sampled with the rising edge of
PCEN, which is pulsed 16 times. The HDC
provides a new track number while SELEN is active
or inactive. To flag the external logic that the track
number has updated, the HDC generates a falling
edge on SELEN. The HDC then samples
SC and waits until the heads are positioned on the
new track. After SC is asserted, the HDC performs
the disk data access (read or write operation).

Buffered Mode

In Buffered Mode, the HDC is only a data buffer or
data formatter. It does not perform any drive
selection, head positioning, head selection or
drive status control. No operations on the drive
control bus will be performed. However, the HDC
still monitors the FAULT input to allow abortion of
the current disk data transfer. In this mode, the
HDC controls the data transfer (RDDAT, WRDAT,
RD/REFCLK, WRCLK, RG and WG), the data
separator and ECC operation (AMC, AMF, INDEX,
FAM1/ECC1, FAMoIECCo and ECCERR).

Time Out Mode

If the Time Out bit in the mode register is reset, the
HDC will perform a Bus Time Out whenever the
system bus does not activate the READY line
within 512 system clocks after the HDC starts a

memory transfer. If this bit is set, no Time Out will
be performed. The device will wait for READY
indefinitely.

The usual choice for this mode should be to tum
the Time Out function on. Switching this function
off can cause the HDC to hang up waiting for
READY to become active. This mode should only
be used if the answering device (e.g., a SCSI
interface) is known to be slow.

The Mode Register may be altered at any time and
any changes will take effect on the next DMA
transaction. (Note: A DMA transaction may consist
of several burst and dwell sequences.)

STATUS/COMMAND REGISTER

The Status/Command Register (Figure 1-18) is the
main control register of the HDC; it may be
accessed anytime. The lower byte contains the 2-
bit command field which controls the basic
operation of the HDC. With this control field, the
IOPB chain operation can be started, resumed, or
stopped. The upper byte of this register is the
status half; here the HDC reports when it has
finished or aborted the IOPB chain. The execution
of commands modifies the content of this register.
A hardware or software reset initializes all bits of the
Status/Command Register to zero.

The lower half of this register is readable and
writable. The upper haH is only readable. A write
access to the upper half is allowed, but it will not
alter the status. To ensure compatibility to future
revisions, all reserved or "read only" fields should
be set to zero when loading the register. The state
of reserved bits when reading the register is not
defined.

Command

When the command field is written by the host
CPU, it causes the HDC to enter the programmed
state. By reading this field, the host CPU can
determine the current state of the HDC. (Note that
there is a certain latency (up to 20 system clocks) in

1-27

updating the command field: If the CPU writes a
new command to the Status/Command Register, it
might not be able to immediately read the new
value back. However, eventually the HOC will up-

date this field, which acknowledges that the HOC
has accepted the new command. The user must
be aware of this behavior of the command field,
especially when performing register diagnostics.

D-j Do 1m ltlB. Command Status

0 0 L H Idle
1 X L H Busy
0 1 L H (HOC does not allow access)
0 0 H L Forced Idle
0 1 H L Software Reset
1 0 H L Resume Chain
1 1 H L Start Chain

Idle Resume Chain

The HOC is not performing any function. The HOC
sets the CF-bit (Controller Fault) when it enters the
Idle state. At this time, the CFT field (Controller
Fault Type) gives the result of the action
performed; any command (Reset, Start Chain, or
Resume Chain) can be written to this command
field while the HOC is idle. A Forced Idle command
aborts the 10PB chain currently being executed.
The device will finish the current 10PB and stops
further executions of the command chain. A
Resume Chain command allows the operation to
continue.

The HOC resumes execution of the 10PB chain
where it was interrupted, H the HOC was forced to
abort due to certain conditions in an 10PB and the
error was not fatal (i.e., unrecoverable). It allows
the HOC to continue, cleanly, in the middle of a
command which was interrupted by disk errors,
user options, or interface time-outs. The HOC
does not reexecute the beginning of the 10PB.
Issuing a Start Chain command instead of a
Resume Chain command forces execution of the
interrupted 10PB from the beginning. If a Resume
Chain command is issued illegally (without a
preceding 10PB chain abort), the HOC will abort
the command, enter the Idle state and CFT will
indicate an "Illegal Resume Command". If the HOC
receives an Idle command while being in the
Resume Chain (Busy) state, the HOC cleanly
aborts the command chain. The forced Idle will
take affect after the current 10PB has been
completed. The HOC completes the current
command and then enters the Idle State.

Reset

The software reset is executed immediately. On
completion of a software reset, the HOC enters the
Idle state. Any access of a register while in the
Reset state holds READY inactive until reset is
completed, which causes the CPU to wait. When
the initialization procedure is completed, the HOC
enters the Idle State. CF is set and CFT indicates
"Reset Complete". A software reset is equivalent
to a hardware reset.

Controller F-..n J
1-CFTVoBd(EncloIIOPB Intorru",)
O-CFT NclvaId (_I upt)

~~---x-__ •

!I48IA 1·18

eFT DI

L ~ F_ 1YJIe
0000 - Normal Convnand Complollon
0001-Null
0010 -S1atUl Reaul Area. Full
0011 - Walt Slap
0100 - Forced Idle
0101 - Slap on Error
0110- UlogaIlOPB
0111 - Stop on Statue Raub Block
1000-Oata Transfe,,,,,. Out
1001 -lOPS Time Out
1010-DotaMop TIme Out
1011 - Statu. Re8u1t Block 11me Out
1100 - ReMrved
1101 - ReHrved
1110-lIIogal_umoCommond
11"-_CoIrf>lelo

Flgure1-18 Status/Command Register

1-28

00_ 81_
OO-Idle
01-_
10-R88Uma
11 - Stort ChalnlBuay

DevI .. _

00000 - AmIIlSBO
00001 - AmIISBOA
00010 - Am9590

Start Chain

The Start Chain command is the normal "Go"
command of the HOC. It starts executing the IOPB
chain pointed to by the Next Block Pointer. If the
HOC receives the Idle command while being in the
Start Chain (Busy) state, the HOC completes the
current IOPB and then enters the Idle state.

Busy

This status indicates that the HOC is currently
executing an IOPB chain. The Next Block Pointer
points to the IOPB which is currently being
executed (not affected by overlapped seek
operation-IOPB look-ahead). A Reset command
will force the HOC to abort the command chain
immediately and to transit into the Idle state.

Controller Fault

When this bit is set, the Controller Fault Type field
is valid. The CF-bit is set by the HOC when
entering the Idle state and reset when the CPU
reads the upper haW of the Status/Command
Register. When CF is set and Interrupt is enabled
(Interrupt Mask is reset) the HOC asserts the
Interrupt output (INTR). This bit can be polled to
determine a command completion.

Controller Fault Type

The Controller Fault Type indicates the status of
the HOC upon entering the Idle state. The HOC
updates this field only when it enters this state. It is
valid while the CF flag is set and the HOC is idle. It
is not valid while the CF flag is reset (zero).

The following is a list of Controller Fault Types:

Normal Complete-The IOPB command chain
was completed successfully from the last Start
Chain or Resume Chain command, however, an
individual IOPB in the command chain might have
terminated with a fatal error. The user must
examine the SRBs generated.

Null NBP-A resume or start chain command was
given with a Next Block Pointer equals to zero.

SRA Full-The Status Result Area (SRA)
allocated for SRBs has been filled; the Status
Result Length register has decremented to zero.
The Status Result POinter register and the Status
Result Length register should be updated and the
chain execution may be resumed.

Walt Stop-The HOC stopped execution of the
IOPB chain after it has finished an IOPB with the
W(ait) option bit set.

Forced Idle-The execution was terminated at the
end of the current IOPB due to an Idle command
which was issued while the HOC was executing the
current IOPB.

Stop on Error-Non-recoverable disk error(s) in
conjunction with the SE-bit set caused the HOC to
terminate chain execution.

Illegal IOPB-The HOC attempted to execute an
illegal IOPB (e.g., an IOPB with an undefined
command code).

SRB Error-An Status Result Block (SRB) was
written when executing an IOPB with the Stop on
SRB (SSRB) option set.

Data Time Out-Memory Time Out when
transferring (reading/writing) data (such as sector
data, Oata Map Entries, sector map, drive
parameter blocks). The SRB issued ("Oata Time­
Out") lists the parameter for the data block during
which the time-out occurred. If the operation is
resumed, the HOC will retransmit the entire data
block.

IOPB Time Out-Memory Time Out when loading
the current IOPB, or an IOPB Read during Seek
Look-Ahead. If the operation is resumed, the HOC
will re-read the entire IOPB.

OM Time Out-Memory Time Out while reading
Oata Map Entries. If the operation is resumed, the
HOC will reread the entire Oata Map Entry.

SRB Time Out-Memory Time Out when writing a
Status Result Block (SRB). If the operation is
resumed, the HOC will rewrite the entire SRB.

Illegal Resume-An attempt was made to resume
a command which is not resumable.

Reset Complete-Hardware or software reset
has been completed.

Any Read operation from the status registers
clears a pending Interrupt (Interrupt pin is reset).

The following three registers define where the
HOC is to fetch commands and where to store
status feedback.

1-29

NEXT BLOCK POINTER REGISTER

The Next Block Pointer Register is a 32-bit register
which points to the 10PB currently being
executed, or that will be executed on a Start Chain
or Resume Chain command. The HOC updates it
upon 10PB completion pointing to the next 10PB
in the chain, or to zero if it has reached the end of
the chain. This pointer does not reflect any 10PB
look-a-heads while the HOC performs overlapped
seeks. If the 10PB chain execution is interrupted
(e.g., Wait Stop, see options bits of 10PB), then
this register points to the 10PB which caused the
interruption. If the 10PB chain terminates without
interruptions, this register is zero.

When the HOC is given a Start Chain or Resume
Chain command, the pointer loaded into this
register must link to the first 10PB in the command
chain. It can be assigned any 32-bit value except
"0", because "0" indicates the end of the
command chain. No 10PB chain can start from
address "0" in system memory. This register may
only be written while the HOC is in the "Idle" State.

STATUS RESULT POINTER REGISTER

The 32-bit Status Result Pointer register points to
the system memory location where the next Status
Result Block can be written. It is updated after
adding a new Status Result Block to the Status
Result Area. It points to the location in the Status
Result Area where the next SRB should be
loaded. Initially, this register may be set to any 32-
bit value including "0". This register may only be
written while the HOC is in the "Idle" State.

STATUS RESULT LENGTH REGISTER

The 16-bit Status Result Length register defines
the size of the Status Result Area in terms of
number of Status Result Blocks. Each SRB is 5
words or 10 bytes. This register thus allocates a
block of 10*N bytes for the Status Result Area
where N is the 16-bit value loaded into this
register. The HOC updates the Status Result
Pointer and Status Result Length after a SRB has
been loaded into the Status Result Area. For each
SRB written this register is decremented by one.
When this register is decremented to zero, the
HOC will abort the 10PB chain, set the CF flag in
the Status/Command Register, and the CFT field
will indicate a Status Result Area overflow ("SRA
Overflow"). Because this register is post­
decremented, 216 (65536) blocks are allocated if
this register is initially set to zero. This register may
only be written while the HOC is in the "Idle" State.

COMMAND DESCRIPTION

All operations of the HOC result from commands
which are set up in system memory in 10PBs (I/O
Parameter Blocks). The HOC starts interpreting
the command list after receiving the "Resume
Chain" or "Start Chain" command from the host
CPU (see Status/Command Register description).
Errors and warnings on command execution are
reported by adding Status Result Blocks (SRB) to
the Status Result Area. Figure 1-32 cross
references the error types (SRBs) and commands
(IOPBs).

Each 10PB consists of ten 16-bit words which
reside in system memory (Figure 1-19). The HOC
always fetches all 10 10PB words, sequentially. It
does not skip "Don't Care" fields. For Seek-Look­
Ahead fetches only the first six words are read.

Byte D Byte H

0 Next IOPB P. <7:07>

Next IOPB P. <15:1>

2 2 Next IOPB P. <23:16>

3 3 Next IOPB P. <31 :24>

4 4 10<7:0>

5 10<15:6>

6 6 Option

7 7 Command Code (1)

8 8 Byte 8

9 Byte 9

10 A Byte 10

11 B Byte 11

12 C Byte 12

13 0 Byte 13

14 E Byte 14

15 F Byte 15

16 10 Byte 16

17 11 Byte 17

18 12 Byte 18

19 13 Byte 19

Ward Ward
D H

0 0 Next IOPB Pointer <15:0>

2 2 Next IOPB Pointer <31:16>

4 4 to

6 6 Command Code (1) Option

8 8 Byte 9 Byte 8

10 A Byte 11 Byte 10

12 C Byte 13 Byte 12

14 E Byte 15 Byte 14

16 10 Byte 17 Byte 16

18 12 Byte 19 Byte 18

9480A 1·19
(1) see IOPB parameter table

Figure 1-19 IOPB Structure

1-30

After one lOPS has been loaded completely, the
HOC starts execution. The first two words form a
32-bit linear address (Next lOPS Pointer), that links
to the next lOPS in the chain. Set this pointer to
zero to terminate the chain (the last or the only
lOPS in the chain).

The third word is called the "lOPS Identification"
field (10). This 16-bit integer number is supplied by
the user and should be unique to this lOPS. If the
HOC issues SRSs for this command, it copies the
identification number onto the 10 field of the SRS,
to identify which SRSs belong to which IOPSs
within a command chain. An lOPS may generate
any number of SRSs.

The fourth word is broken into two distinct fields:
the lOPS command code and the lOPS options
byte. The lOPS command code is an 8-bit value
which defines the type of lOPS. It is valid for
values from 0 to 10H. All other values are illegal. If
the HOC encounters an lOPS with an illegal com­
mand code, it terminates execution of the lOPS
chain. The Controller FauH bit will be set and the
Controller FauH Type indicates "Illegal lOPS". The
lOPS option byte contains control bits which select
between various, conditional lOPS execution
policies (see section "Option Sits").

Options Byte Byte
Command Code 7 6 5 4 3 2 1 0 9 8

Read OC WSE SSRB 0 DME DM . RD Flag Drive

Write 00 WSE SSRB FW DME DM . RD Flag Drive

Verify OF WSE SSRB a DME OM a RD Flag Drive

Format 07 WSE SSRB a DME a a a 00 Drive

Relocate OB WSE SSRB a a a a a 00 Drive
Track

Load Driver 00 WSE SSRB a a a 00 Drive Para Block a a

~~PB~~~e 03 WSE SSRB a a a a a a Drive

Read PhY5i~
OA WSE SSRB a TV DM a a 00 Drive

cal Sector

Read 10 09 WSE SSRB a AS a a a 00 Drive

Load Buffer 01 WSE SSRB a DME a a TB 00 Drive

Dump
02 WSE SSRB a DME a a TB 00 Drive Buffer

Load 04 WSE SSRB a a 0 0 a 00 Drive
Svndrome
Dump 05 WSE SSRB a a a a a 00 Drive
Svndrome
Correct 06 WSE SSRB LD a a a 00 Drive
Buffer a

Seek OE WSE SSRB a TV a a a 00 Drive

Restore 08 WSE SSRB a TV a a HP 00 Drive

ESDI 10 WSE SSRB a a a SR wec 00 Drive Channel
Move 01 W SE SSRB a Dala DME OM a TB 00 Drive

• RmL: a - Normal Read! Write
1 _ Read LonglWrite Long

In the fifth word, only the lower byte is defined
consistently for all IOPSs. This byte specifies the
number of the disk drive to be accessed. The full
byte specifies a value between 0 and 3, to select
one of four disk drives. The values 4 to 255 are
illegal and should not be used. The remaining
byte of this word and all subsequent words carry
command specific parameters (see Figure 1-20).

OPTION BITS

One byte in each lOPS contains a set of options
applicable to the particular command. Any
combination of options may be set.

W-WAIT

O=Dlsabled: After execution of current lOPS,
the HOC continues with the next lOPS.

1 =Enabled: After execution of current lOPS the
HOC terminates lOPS chain execution. It flags the
termination by a "Wait Stop" Controller FauH (see
Status/Command Register description). Seek­
look-ahead operations will not be performed past
any lOPS with this option bit set. A stop on this
option is resumable.

BytelByte Byte Byte Byte Byte BytelBYte Byte I Byte
11 10 13 12 15 14 17 16 19 18

Track Head Sector Data Record Destination Destination
Mark Count <15·· -0> <31 •• ·16>

Track Head Sector uata I Hecor Source _ O)(]urce
Mark Count <15···0> <31 •• '16>

Track Heae Sector Data Record Source Source
Mark Count <15···0> <31 •• ·16>

Track Head Pattern Track Count Map Pointer Map Pointer
<15·· .. 0::- <31 .. ·16>

Track Head 00 Alternate Alternat,oo 0000
Track Head

0000 00 00 00 00 Source Source
<15 0> <31 "·16>

0000 00 00 00 00 Destination Destination
<15 ·0> <31 -16>

Track Head Physical Data Destination Destination
Sector Mark 00 <15 ···0> <31 •• ·16>

Track Head Physical
00 00

Destination Destination
Sector <15·· ·0> <31 ... t6>

0000 00 00 00 00 Source Source
<15··· 0> <31 • ··16>

0000 00 00 00 00 Destination Destination
<15·· ·0> <31 •• ·16>

0000 00 00 00 00 Source Source
<15··' 0> <31 • "16>

0000 00 00 00 00 Destination Destination
<15 .. ·0> <31 •• '16>

0000 00 00 00 00 Destination Destination
<15 .. ·0> <3t •• ·16>

Track Head 00 00 00 0000 0000

0000 00 00 00 00 0000 0000

Command 00 00 00 00 Destination Destination
<15 • .. 0> <31 .. '16>

#ofSet Destination Destination Source Source
<15··· 0> <31"'16> <15···0> <31···16>

Figure 1-20 lOPS Parameters 9480A 1·20

1-31

SE-STOP ON ERROR

O=Dlsabled: After execution of current 10PB the
HDC continues with next 10PB.

1=Enabled: The HDC stops the execution of the
current 10PB chain if the current 10PB terminates
with a fatal error (e.g., Fatal Seek Error, Record Not
Found, or Drive Selection Fault). A stop on this
option is not resumable.

SSRB-5TOP ON STATUS RESULT BLOCK

O=Disabled: After execution of current 10PB the
HDC continues with next 10PB.

1=Enabled: The HDC stops the execution of the
current 10PB chain if the current 10PB causes a
Status Result Block (of any kind) to be written.
SSRB is a superset of SE. This means, the HDC
will also stop for all cases it would stop if SE is set.
So, the stop is only resumable if the SRB was
caused by a non- fatal error. The HDC terminates
the command chain immediately after issuing the
SRB. This may be in the middle of executing the
current 10PB.

DME-DATA MAP ENABLE

O=Data Mapping disabled: The Source!
Destination pointer links directly to the data block
in system memory. This block is addressed in a
linear manner.

1=Data Mapping enabled: The Source!
Destination Pointer links to the first Data Map
Entry. The data block is pOinted to by the pointer
contained in the Data Map Entry. The data may be
stored in non-contiguous memory.

DM-DATA MARK

O=Dlsabled: The HDC uses the default data
mark which is F8H for Hard-disk ST506 Mode, FEH
for ESDI, and FBH for Floppy-disk Mode. The
FORMAT command writes the default data mark.
The HDC cannot ignore data marks.

1=Enabled: Any type Data Mark may be used.

TV-TRACK VERIFY

O=Dlsabled: The HDC does not attempt to read
a sector ID field to verify whether the heads are
positioned correctly.

1=Enabled: The HDC attempts to read a sector
ID field to verify that the heads are positioned
correctly. If it detects that the heads are mis­
positioned, it issues a Seek Error SRB. However,
it does not restore and reseek the heads
automatically. The normal disk I/O commands
perform an implied Track Verify. These commands
always verify the track before any read or write
access to the drive is attempted.

TB-TOGGLE BUFFER

O=Dlsabled

1 = The H DC toggles to the other sector buffer
after the current sector buffer has been completely
loaded or dumped.

RD-RELOCATE DISABLED

O=lf this Bit is reset and the Auto Relocate Bit in
the drive parameter block is set, the HDC will
automatically handle relocated tracks

1=lf this bit is set, auto-relocating is switched off.
Therefore, the HDC does not check for a relocated
track when starting to read or write. This feature
allows higher performance by decreasing the
sector skew at the beginning of each track to one.

FW-FLOPPY WAIT

O=Floppy Wait disabled

1 =After writing the physically last sector to a track,
the HDC wait for 1 ms (assuring 10 MHz clock)
before it attempts any seek operation.

AS-ARBITRARY SECTOR

O=Dlsabled

The Data Mark is specified in the data mark field of 1=Enabled (see Read ID command description)
the 10PB. This function is available only for normal
disk I/O commands (read, write, and verify) and
Read Physical Sector.

1-32

LD-LOCATOR DUMP

O=Disabled

1=Enabled (see Correct Buffer command
description)

HP-HEAD PARK

0= The Am9590 will try to RESTORE the heads
starting at the current track.

1 = The Am9590 will step in 5 tracks before
attempting to restore. Therefore, even if the
heads were parked at a track number lower than 0,
the RESTORE command will work properly. The
method to move the head to the park position is
drive dependent.

9590--------------------------~

WCe-WAIT for COMMAND COMPLETE

O=When sending an ESDI command (ESDI
channellOPB) to the drive the HDC will not wait for
COMMAND COMPLETE to go active before
executing the next command

1=The Am9590 will wait for COMMAND
COMPLETE after sending an ESDI command
(ESDI channel 10PB) before it executes the next
10PB.

SR-STATUS RETURNED

O=lf an ESDI command is being sent with this bit
reset, the HDC will not expect status information to
be retumed by the disk drive.

1 = The Am9590 will wait for status information to
be returned by the disk drive. The status informa­
tion will be transferred into the memory location

i n P in r f h I PB.

TYPICAL COMBINATIONS

Unconditional Stop

If WAIT is enabled (SE and SSRB are disabled),
the HDC will stop execution of the current 10PB
chain after the current 10PB has been terminated
with or without errors (fatal or non-fatal). The
Controller Fault bit in the Status/Command
Register is set and the Controller Fault Type
indicates a 'Wait Stop". The chain execution may
be resumed by issuing the Resume Command to
the Status/Command Register.

Conditional Stop on Non-Fatal or Fatal Errors

If Wait is disabled and SSRB is enabled (SE may be
enabled or disabled), the HDC will stop execution
of the current 10PB chain only If the current 10PB
has been terminated with fatal or non- fatal errors
(one or more SRBs have been generated). The
Controller Fault bit in the Status/Command
Register is set and the Controller Fault Type
indicates a "SRB Error". The chain execution may
be resumed by issuing the Resume command to
the Status/Command Register.

Conditional Stop on Fatal Errors

If Wait and SSRB are disabled, and SE is enabled,
the HDC will stop execution of the current 10PB
chain only if the current 10PB has been terminated
with a fatal error (e.g .• Fatal Seek Error, Record Not
Found. or Restore Fault). The Controller Fault bit
in the Status/Command Register is set and the
Controller Fault Type indicates a "Stop On Error".
The chain execution may be resumed by issuing
the Resume command to the Status/Command
Register.

If one of the above "Conditional Stop" options is
selected. but the HDC does not encounter errors
(no SRBs are written). it will only stop after
executing an 10PB which has a "Next 10PB
Pointer" set to zero (first four bytes of 10PB are
OOH). In this case the Controller Fault bit is set and
the Controller Fault Type indicates a "Normal
Command Completion".

Unconditional Continue

If none of the options (W. SE, or SSRB) is
enabled, then the HOC will continue the execution
of the 10PB chain independent of whether the
current 10PB terminates with or without errors (fatal
or non-fatal). The HDC terminates the execution of
the 10PB chain after it has executed an 10PB with
the "Next 10PB Pointer" set to zero (first four bytes
of the 10PB are OOH). In this case the Controller
Fault bit is set and the Controller Fault Type
indicates a "Normal Command Completion".

A "Normal Command Completion" does not
Indicate that all IOPBs have been executed
successfully; It only Indicates that the IOPB
chain execution was not Interrupted. The
HDC might still have encountered fatal errors which
caused it to terminate individual commands. The
user must still examine the SRBs. If no SRBs have
been generated. then all 10PBs have been
executed successfully (without errors). If only

1-33

SRBs for non-fatal errors have been generated,
that means the HOC has encountered errors and
has recovered. The SRBs list keeps a log of how
the HOC could recover from the non-fatal error.

NORMAL DISK 1/0 COMMANDS

The HOC supports three normal disk I/O
commands. The multi-sector operation is
performed on the drive designated by DRIVE in
the 10PB and starting at the desired TRACK,
HEAD and SECTOR. The sector numbering may
start at 0 or 1 (see Drive Parameter Block
description). The commands use the virtual
identification of the sectors, i.e., the logical sector
number rather than the physical location on the
track. RECORD COUNT defines the number of
sectors to be transferred. The General Select Byte
in the Drive Parameter Block specifies the
track/head overflow policy. Optionally, track/head
overflow may be disabled, or the track number or
the head number may be incremented on sector
overflow.

9~0--------~--------------~
For the ESDI track format the FLAG byte specifies
the ID Flag used in the sector header field (Figure
1-36). The Am9590 will compare this parameter to
the ID Flag actually read from the desired sector
header. If there is a mismatch, the HOC will issue a
Flag Mismatch SRB.

SOURCE/DESTINATION ADDRESS is the
starting address of the data block in system
memory (OM E lOW) or the address of the first Data
Map Entry (DME HIGH). These commands verify
the the head position before attempting the data
transfer and hence verify seeks implicitly. If the
head position verificatiQn fails (Seek Error SRB),
the HOC automatically initiates a RESTORE com­
mand and a new Seek to the specified track. If this
seek fails again, the HOC will abort (Fatal Seek
Error SRB). The Data Mark option allows the DATA
MARK parameter to be used instead of the default
values F8H (Hard-disk Mode) or FBH (Floppy-disk
Mode).

READ

READ performs a multi-sector data transfer from
disk to system memory.

WRITE

WRITE performs a multi-sector data transfer from
system memory to disk.

VERIFY

VERIFY compares multi-sector data on disk with
data stored in system memory and reports any
mismatches (Data Non-Verify SRB).

INITIALIZATION COMMANDS

FORMAT TRACK

The HOC formats the number of tracks specified by
TRACK COUNT starting at HEAD and TRACK.
The head and track numbers are incremented ac­
cording to the General Select Byte in the Drive Pa­
rameter Block. The sectors are numbered as per
order given on the sector map, which is sequen­
tially loaded from system memory starting at MAP
POINTER. The HOC does not verify whether the
sector map is complete or consistent. The sector
map may start at any sector number. However, to
support automatic traCk/head overflow on multi­
sector commands, the sector numbers must be in
the 0 to N-1, or 1 to N range (see drive Parameter
Block description, Start Sector Option bit in Data
Select Byte). All numbers in the selected range
must be present in the first N bytes of the system
memory, starting at the MAP Pointer; however, the
requirement is arbitrary. Any sector-interleaving
factor is supported by arranging the sector map
appropriately. The number of sectors/track is
specified in the Drive Parameter Block of this
DRIVE. The data field of each sector is filled with
PATTERN. The data default mark is F8H (Hard-disk
Mode) or FBH (Floppy-disk Mode). Since Read,
Write, and Verify can specify data marks other than
the default, the Format command does not need
to write data marks other than the default.

9590
The Am9590 allows the formatting of a track with
the ESDI/SMD track format. The ESDI header
contains a FLAG byte which can be individually
programmed for each sector. A FLAG byte list
which is appended to the sector map list in memory
allows to specify these bytes during the format
procedure. The Am9590 requires each sector
map entry to have an accompanying FLAG byte
entry (Figure 1-21).

The HOC can format the track with spare sectors
(Figure 1-22) or can mask out bad sectors
automatically. Here, the spare or bad sector is
allocated a large sector number (e.g., FFH). After
the Format Track has been performed, the Drive
Parameter Block should be updated to reflect the
new sector count, which is the number of sectors
formatted minus the number of spare or bad
sectors. When performing subsequent multi­
record Normal Disk I/O Commands, the HOC will

1-34

automatically skip any sectors with large sector
numbers ("FF").

A good way to improve the performance of a disk
drive is to skew the sectors from track to track.
Whenever the HOC switches heads or cylinders,
executing a multi-sector command that crosses a
track boundary, it needs to verify if the newly
selected track is relocated or not. Therefore, the
device reads the first available header and makes a
decision based on the information retrieved. ThiS

causes the first sector on the new track to pass
without being read or written to. In a zero interleave
system, the result is that the HOC has to wait an
entire revolution before it can access the next
desired sector.

Skewing the sector start from track to track by one
or two sectors allows a continues read or write
operation of the HOC. An example for a sector
skew of two sectors for a disk drive with four heads
and 17 sectors/track is shown below

HEAD 0: 0001 0203040506070809 OA OB OC 00 OE OF 10
HEAD 1: OF 10 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE
HEAD 2: 00 OE OF 10 00 01 0203040506070809 OA OB OC
HEAD 3: OB OC 00 OE OF 10 00 010203040506070809 OA

The list for a 32 sector ESDI format should look as follows
assuming a FLAG-BYTE of 55H for all sectors

00,01,02,03,04,05,06,07,08,09,Oa,Ob,Oc,Od,Oe,Of,
10,11,12,13,14,15,16,17,18,19, 1a, 1b, 1c, 1d, 1e, 1f,
55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,
55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55

Figure 1-21

Bad Sector Relocation

Formatting with Spare Sector Bad Sector Relocation

FORMAT:

(1) Each Track has a spare sector. This sector typically Is the last sector of the !rack.

So, the sector map for a track which has no bad sectors Is as follows: 00,01,02,03,04,05,06

(2) If the tracks contain a bad sector, the map Is changed appropriately: 00,01,02,03,FF,04,05,06

READIWRITENERIFY :

The Drive Pwameter Block specifies 7 nctoraltrack. The HOC will perform normal zero.interleaved
disk accea •. "It encounters aector "p'. It will just skip it.

Figure 1-22

1-35

9480A 1-22

94_ 1·21

RELOCATE TRACK

This command will relocate the track/head
specified by TRACK and HEAD by reformatting
this tracklhead. The data mark of the ID field is
changed from the default FEH to FDH' The sector
number is always O. The data mark of the data field
is F8H (default value). For subsequent Normal Disk
1/0 commands the HDC automatically vectors to
the specified altemate tracklhead (ALTERNATE
TRACK and ALTERNATE HEAD) if the Auto
Vector Enable bit in the Drive Parameter Block is
set. The HDC flags the encountering of a
relocated track by issuing a "Relocate Track" SRB.

A relocation vector is written to all data fields of a
relocated (bad) track. The relocation vector
consists of the new track number (ALTERNATE
TRACK) and the new head number (ALTERNATE
HEAD) (i.e., the track's relocated location). Also,
the address data mark of the sector ID fields is
changed from FEH to FDH to mark that this track
has been relocated. Thus, when the HDC
encounters three consecutive sector headers with
a FDH data mark, it assumes the track has been
relocated. The data mark of the data field is F8H
(Hard-disk Mode) or FBH (Fioppy-disk Mode). The
logical sector number is set to zero for all sector ID
fields. When executing this command the HDC
does not reformat or write to the altemate track.

LOAD DRIVE PARAMETER BLOCK

This command loads a Drive Parameter Block
(DPB) for the selected DRIVE into the intemal
Drive Parameter RAM (see Drive Parameter Block
description). This command must be performed
once for each drive connected to the HDC. The
Drive Parameter Block may be reloaded at any time
within the 10PB chain to dynamically alter drive
parameters. However, to ensure correct disk read
or write operation, the current values defining the
sector format (such as DELAY, GAP, PAD,
PREAMBLE, and POSTAMBLE length) should be
the same as when this track was formatted. If these
values are altered, the HDC might not be able to
find sector ID fields or data fields. This causes the
HDC to issue SRBs such as Data Sync Fault or
Index Error.

DUMP DRIVE PARAMETER BLOCK

The Drive Parameter Block for the selected DRIVE
is transferred from the internal Drive Parameter
RAM to system memory pointed to by
DESTINATION ADDRESS. This command may be
used for power-on diagnostics.

MARGINAL DATA RECOVERY COMMANDS

The marginal data recovery commands allow the
user to retrieve data from the disk, in case
significant portions of the track (such as the sector
ID field) are damaged so that normal disk 1/0
command cannot retrieve the data. The user must
realize that these commands can lead to false
results if not used properly.

READ PHYSICAL SECTOR

This command allows the user to recover a
marginal data field which is unrecoverable by
normal disk error recovery procedures. First it
seeks to the desired track. If the TRACK VERIFY
option is enabled, the HDC reads a number of ID
fields until it can verify whether it is on the right
track or not (it examines the first sector ID field
without CRC error). Beginning with the next index
mark, the HDC starts counting the PHYSICAL
SECTOR number of IDs to locate the desired
sector. If PHYSICAL SECTOR is set to "1", it
searches for the first sector.

Using the ST506 or double-density Floppy Disk
Format, the HDC approximates the location of the
next sector ID field or data field based on the
sector format parameters specified by the Drive
Parameter Block,. If it does not find an address
mark in the approximated window, the HDC
assumes that this particular field is damaged to an
extent where the data separator cannot even find
an address mark. The HDC then approximates the
position of the next address mark (sector ID field or
data field) and tries to find this address mark.

9590 --------------.
For the ESDI interface the Am9590 counts either
address marks (soft-sectoring) or sector pulses
(hard-sectoring). Since those occur only once per
sector at the beginning of the header, the HDC will
always try to read the header. However, if the
header information is damaged, the device will
calculate the approximate start of the data field and
try to recover it.

This sophisticated algorithm allows the HDC to find
a data field even if the corresponding sector ID
field is damaged, or missing, or if other sector ID
fields and/or data fields are damaged or missing.
However, this algorithm only operates successfully
if the sector format parameters reflect the sector
format exactly. When retrieving the data field, the
HDC disregards the sector ID field and no retries
are performed.

1-36

Regardless of any CRC/ECC errors, the HOC will
dump the data field read into the system memory
starting at Destination Address. In case of
CRC/ECC errors, which is indicated by the appropri­
ate SRB, the data field should be examined and a
user-supported data recovery procedure should
be initiated.

For extensive disk diagnostics, this command may
be used to examine the information on the disk
which follows the address mark of the sector 10
field. By altering the sector format parameters
appropriately, the HOC can be tricked into reading
a sector 10 field instead of a data field. Here, the
HOC will most likely report a CRC/ECC error. In this
case, the memory contains 128 to 512 bytes of
data read sequentially from the disk starting with
the address mark of the sector 10 field.

READID

READ 10 attempts to recover the header 10
Information of a marginal sector. If the ARBITRARY
SECTOR option is enabled, then an arbitrary

o
Word

2

4

8

8

HARD-DISK
MODE

Byte Dr-'7'--,-..,...,-__ D...,0

o

2

3

4

5

,8

7

8

9

HARD-DISK MODE

Address
Data Mark
TRACK.

(MSB)
TRACK.

(LSB)

HEAD.

SECTOR.

sector 10 field (the first valid one the HOC
encounters) including the address data mark (FDH
or FEH) is transferred to the system memory
starting at DESTINATION ADDRESS (see Figure
1-23). If the ARBITRARY SECTOR option is
disabled, the sector 10 field of the absolute sector
specified by PHYSICAL SECTOR is transferred to
DESTINATION ADDRESS. The PHYSICAL
SECTOR number can be any number between 1
and N. If it is set to "1," the first sector 10 field is
read. If this command is successfully executed, it
updates the HDC's track position. If the HOC finds
the specified sector 10, but with a CRC error, it will
monitor this by issuing an "10 CRC Error" SRB. In
this case the 10 field can only be (partially)
recovered by using the 'rick" described in the
"Read Physical Sector" command description.

LOAD BUFFER

The data pointed to by the SOURCE ADDRESS is
transferred to the internal sector buffer. The
number of bytes transferred is determined by the
sector size for the selected DRIVE (see Drive

FLOPPY·DISK
MODE

FLOPPY·DISK MODE

Address
Data Mark

TRACK.

HEAD.

SECTOR.

Do

SECTOR SIZE

9480A 1-23

Figure 1-23

1-37

Parameter Block description). This command may
be used for device diagnostics and/or marginal
data recovery.

DUMP BUFFER

The data in the internal sector buffer is transferred
to system memory starting at DESTINATION
ADDRESS. The number of bytes transferred is
specified by the sector size for the selected DRIVE
(see Drive Parameter Block description). This
command may be used for device diagnostics
and/or marginal data recovery.

LOAD ECC SYNDROMES

This command transfers the Reed-Solomon
syndrome bytes from system memory starting at
SOURCE ADDRESS to the internal syndrome
RAM of the HDC. This command generates an
error if the Drive Parameter Block of the selected
DRIVE specifies CRC or external ECC error
checking. The number of bytes loaded depends
on the sector size and type of Reed-Solomon
mode (6 .. 15 bytes) (see Disk Data Protection
Section). This command may be used for device
diagnostics and/or marginal data recovery.

DUMP ECC SYNDROMES

This command transfers the Reed-Solomon
syndrome bytes from the internal syndrome RAM
to system memory starting at DESTINATION
ADDRESS. This command generates an error if
the Drive Parameter Block of the selected DRIVE
specifies CRC or external ECC error checking.
The number of bytes transferred depends on the
sector size and type of Reed-Solomon mode
(6 .. 15 bytes). This command may be used for
device diagnostics and/or marginal data recovery.

CORRECT BUFFER

This command uses the contents of the Reed­
Solomon Syndrome RAM and attempts to correct
the sector data in the internal sector buffer. The
Error Detection and Correction Policy Field
specifies whether to use Single- or Double-Burst
Reed-Solomon code. If CRC or External ECC is
selected, this command generates an error ("ECC
Not Selected" SRB). If the LOCATOR DUMP
option is enabled, then, in addition to correcting
the data, the locations and values of the errors will
be written sequentially to system memory, starting
at DESTINATION ADDRESS. The Locators are
stored sequentially starting with the Locator Group
for interleave 0, then the Locator Group for
interleave 1, etc.

Each Locator Group contains one (Single-Burst
Reed-Solomon) (Figure 1-24) or two (Double­
Burst Reed-Solomon) Locators (Figure 1-25). A
Locator is defined as follows:

Buffer Address (2 bytes)
Error Pattern (2 bytes)

Only the lower byte of the Error Pattern is relevant.
The upper byte is set to zero. The result of the
correction can be interpreted in several different
ways:

If the Buffer Address is larger than the sector size
and the error pattern is non-zero, the error found
for this locator is not correctable.

If the Buffer Address and the Error Pattern are
both zero, no error is detected for this locator.

If the Buffer Address is larger than the sector size
and the Error Pattern is zero, the error occurred in
the check bytes themselves.

HEAD MOVEMENT COMMANDS

SEEK

The HEAD of the selected DRIVE is moved to the
desired TRACK. If TRACK VERIFY is selected, the
HDC reads the first encountered header to verify
that it is on the right track. If the track numbers do
not match, the HDC reports an error ("Seek Error"
SRB). The HDC does not attempt an automatic
restore. In ST506 Mode (Implied or Overlapped
Seek Mode), the HDC issues the first step pulse,
waits for SC to go inactive (LOW), issues the
remaining step pulses, and then waits for
SC to go active (HIGH). In Restricted Mode, the
HDC provides the actual track number by shifting
out a 16-bit value on STEP. PCEN provides the
shift clock (see Figure 1-53). In Floppy Mode
SC is expected to be always active.

9590--------------------------~
In ESDI mode the Am9590 will issue a SEEK
command to the appropriate track using the serial
command/status interface to the disk drive. Before
sending the command, the COMMAND
COMPLETE line must be active. It is expected to
go inactive after sending the first command bit. In
Overlapped Seek mode, the HDC will not wait for
this line to go active again if it can start a seek on
another drive (independent of the drive type).

1-38

Word
D

0

2

4

6

Word
D

0

2

4

6

8

10

Word
D

0

2

4

6

8

10

12

14

Word
D

0

2

4

6

8

10

12

14

16

18

20

22

Word
H

0

2

4

6

Word
H

0

2

4

6

8

A

Buffer Address

OOH 1 Error Pattern

Buffer Address

OOH I Error Pattern

128 and 256 Byte Sector

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

512 Byte Sector

Locator Group for
Interleave 0

Locator Group for
Interleave 1

Locator Group for
Interleave 0

Locator Group for
Interleave 1

Locator Group for
Interleave 2

Figure 1-24 Locator Dump for Correct Buffer Command
(Single-Burst Reed-Solomon)

Word

0

2

4

6

8

A

C

E

Word

0

2

4

6

8

A

C

E

10

12

14

16

H

H

D
15

D
15

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

128 and 256 Byte Sector

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

Buffer Address

OOH I Error Pattern

512 Byte Sector

D o

Locator Group for
Interleave 0

Locator Group for
Interleave 1

Locator Group for
Interleave 0

Locator Group for
Interleave 1

Locator Group for
Interleave 2

Figure 1-25 Locator Dump for Correct Buffer Command
(Double-Burst Reed-Solomon)

1-39

9480A 1-24

9480A 1-25

RESTORE

The RESTORE command moves the heads of the
selected DRIVE back to track O. This command
synchronizes the HDC and the drives after power­
up, or recovers the system from seek errors. The
HDC supports two restore options for the ST506
and Floppy interface. It can restore drives by
issuing step-out pulses until the drive
acknowledges reaching track 0 by asserting TRKO.
The maximum number of step pulses issued is
twice the Tracks/Surface parameter of the
corresponding Drive Parameter Block, or 2 16,
whichever is less. "the drive does not return a
TRKO after the maximum number of step pulses
has been issued, the HDC reports an error
("Restore Fault" SRB). In Hard-disk Mode, The
HDC waits, after each step pulse, for SC to be
deasserted and then reasserted. It then checks
the TRKO input to verify whether it has reached
track O. Since the HDC waits for SC in-between
step pulses, the restore operation is typically
executed considerably slower than a seek to track
o operation. In Floppy-disk Mode, SC has to be
HIGH.

As an option, drives with build-in restore logic may
be restored by a pulse on the RTZ (Return To
Zero) line see also Pin Description). The RTZ
pulse has the same timing as the STEP pulse. "
TRACK VERIFY is selected, the HDC will also verify
a successful restore by reading one sector ID field.

An option bit in the RESTORE IOPB allows the
slight modifying of the restore sequence. "this bit
is set, the HDC steps in five tracks before starting
to restore the heads to track O. This allows to
operate disk drives with a "head parking zone" on a
track number smaller then O.

9590--------------------------~
" the ESDI interface is selected, the Am9590 will
issue a RESTORE command to the disk drive.
Before sending the command, the COMMAND
COMPLETE line must be active. It is expected to
go inactive after sending the first command bit and
become active again after reaching track O.

ESDI CHANNEL

This command send ESDI command words (Bytes
10 & 11) to the ESDI drive and receives status
information from the drive. Status information will
be dumped into the· destination memory location.
The command generates and checks the parity bit
automatically.

DATA MAPPING OPTIONS

The Data Mapping option lets the HOC process
data to be stored in non-contiguous system
memory. This option is available on five
commands: Read, Write, Verify, Load Buffer, and
Dump Buffer. It is enabled by setting the Data Map
Enable bit (DME-bit) in the IOPB.

The last two words of the IOPB (Source/
Destination Address) link to the first Data Map
Entry (Figure 1-26). "this pointer is zero, then the
Data Map does not exist and the HDC does not
transfer data. Data Map Entries are linked together
via the Data Map Pointer. The Data Map linked-list
is terminated if the Data Map Pointer is set to zero.
Each Data Map Entry defines a data buffer in
system memory, starting at the address defined by
the Data Source/Destination Address. The size of
this buffer is defined by Byte Count. For Read
operations, the HDC will skip a data block of the
specified size, if LE = 0, (Figures 1-27 ... 1-29). For
Write operations, the HDC will write a data block of
random data to the disk. When the Load Enable
(LE) bit is reset to zero, the HDC masks off a data
block with the size specified by Byte Count.

STATUS BLOCK REGISTER (SRB)

The host CPU reserves a Status Result Area de­
fined by the 32-bit Status Result Pointer register
and the 16-bit Status Result Length register.
Whenever the HDC terminates a command and an
error occurs, it adds one or more Status Result
Blocks (Figures 1-31,32) to the Status Result
Area. Each Status Result Block carries the ID num­
ber of the IOPB where the error occurred, to pro­
vide a unique cross-reference between IOPBs and

SRBs. The SRBs generated are divided into two
groups: fatal and non-fatal errors. Non-fatal errors
let the HOC continue with the current command.
Fatal errors cause an immediate termination of the
current command. Furthermore, the IOPB options
specify whether the HDC is allowed to proceed
with the next command after encountering a fatal
or non-fatal error with the current command. A
cross reference between SRBs and IOPBs is
given in Figure 1-32. The following status codes
appear in Byte #3 of the SRBs.

11480 1.28

Figure 1·26 Data Entry Map

1-40

• • •

• • •

9480A 1-26

_IOPB

Data

Data

Memory

Figure 1-27 Disk Write with Data Mapping

Memory

Flgure1-28 Disk Read with Data Mapping

1-41

T Write Sector 1

• Data

t
Sectar2

t
Sector 3

Data t
~ Sector 4

1
Write

....

Disk

9480A 1-27A

T
Sec10r 1

i.
: __ t

1------1+
Sec1or4

... _1
9480A 1-27

94BOA 1·30

Word

o
2

Memory

Figure 1-29 Disk Verify with Data Mapping

D
15

Byte D

o
1

6

7

S

9

7

Byte 1

Byte 3

Byte 5

Byte 7

Byte 9

D

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Bytes

Byte S

Byte 7

ByteS

Byte 9

D

Byte 0

Byte 2

Byte 4

ByteS

Byte 8

Figure 1-30 Layout of Status Result Blocks

1-42

STATUS RESIU BLOCK By" 1

Index Error

No IDs Found on Track 10 Track

Seek Error 10 Current Track

Data Recovarad with ECC 10 Track

Data Sync Fault 10 Track

Relocated Track Found 10 Current Track

Relocated Track, No Vector
10 Track Recovetad

Record Not Found with 10 10 Track Errors

Fatal Seek Error 10 Current Track

Record Not Found 10 Track

Data Recovetad with 10 Track Retries

Data Non-Verily 10 Track

Data Tlme-Oul 10 Byte Counl

MuHi-Record OVerilow 10 Track

Data Mark Error 10 Track

Sector Size Mismatch 10

ECC Not Selected 10

Drive Selection Fault 10

Fault While Seeking 10

Fault While Haed Select 10

Drive Trap Status 10

End 01 Data Map 10

Restore Fault 10

Data Not Recovarad 10

Multi Record Command 10 Terminated

ID CRC Error 10

ESDI Channel Error 10

ESDIID Flag Mismalch 10

Data Not Correclod 10

Drive Deselect Fault 10

9480A 1-31

Figure 1-31

1-43

Conmands
Status Result Blocks (SRBs)

01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 10 1E 1A 1B

Read V V V V V V V V V V - V V V V - V V V V V V V V - - V V V

Write V V - - V V V V V - - V V - V - V V V V V V - V - - V V V

Verify V - - V V V V V V V V V V V V - V V V V V V V V - - V V V

Format V - - - - - - - - - - V V - - - V V V V - - - - - - V V

Relocate Track V - - - - - - - - - - - - - - - V V V V - - - - - - V V

Load Parameter - - - - - - - - - - - V

Dump Parameter - - - - - - - - - - V

Read Physical Sector V V V V - - - - - - V - - - V V V V -1-lvl-I-I-IVIV

ReadlD - V - - V - - - - V - - - - V V V V - - - - V - V Viv

Load Buffer - - - - - - - - - - - V - - - - - - - - V
.....

I Dump Buffer V V t - - - - - - - - - - - - - - - - -
Load Syndrome - - - - - - - - - - V - - - V

Dump Syndrome - - - - - - - - - - V - - - V

Correct Buffer - - - V - - - - - - V - - - V - - - - - - - - - V

Seek - V V - - - - - - - - - - - - V V V V - - - - - - V vlV

Restore - V V - - - - - - - - - - - - V V - V - - - - - - y V V

ESDI Channel - V

Key: V = SRB can be generated
- = SRB Is never generated

Figure 1-32

Index Error (OOH)

While performing a data access to the disk, the disk
drive has issued an INDEX pulse at an incorrect
time relative to the operation performed. For a
FORMAT or RELOCATE TRACK command, an
INDEX pulse is received before all sectors,
including the GAP after the last data field, have
been formatted. READ, WRITE, and VERIFY issue
an Index Error if an INDEX pulse is encountered
while reading a header or while accessing a data
field. READ SECTOR generates an INDEX Error if
the physical sector number is larger than the
number of sectors on disk.

No IDs Found on Track (01 H)

A data access to the disk drive was performed and
the HOC could not find any valid sector 10 field
(header) on the specified track. This could be
caused by the data separator if it never returned an
Address Mark Found (AMF) (e.g., the track is not
formatted).

Seek Error (02H)

The HDC has read a valid sector ID field from the
current track but it contains a head or track number
that is different from the expected values. For the
RESTORE and SEEK commands, the track verify
option must be enabled to see this SRB. For
READ, WRITE, and VERIFY, the HOC retries the
seek operation by performing an automatic
RESTORE and a subsequent SEEK. If the SEEK
operation fails again, the HOC issues a Fatal Seek
Error.

Data Recovered with ECC (03H)

The requested sector data was recovered using
Reed-Solomon error correction. The Retry Count
parameter of this SRB indicates the number of
repeated read retries, before the ECC unit corrects
the errors found in the data field.

Data Sync Fault (04H)

The HOC found the requested sector 10 field
successfully, but could not find the data field of the
sector. Based on the drive parameters such as the
length of Postambles, Pads, and Preambles, the
HOC computes a window within which it must find
the address mark for the requested data field. If
AMF is not returned within this window, the HOC
will time-out and issue a Data Sync FauH. For the
READ 10 command, this SRB is generated if the

Arbitrary Sector option is enabled and the
requested sector 10 field could not be found.

Relocated Track Found (OSH)

During a normal read, write, or verify operation on a
track, a specially flagged track, i.e., a track that has
be physically relocated elsewhere on disk was
found and if Auto Vector Enable bit in the Drive
Parameter Block is set, the HOC automatically
moves the RJW heads to the new, relocated track
to continue normal, uninterrupted disk 1/0.

Relocated Track, No Vector Recovered (06H)

During a normal read, write, or verify operation, a
specially flagged track, i.e., a track that has been
physically relocated elsewhere on the disk, was
found, but the HOC could not recover a good data
field on the track (same condition as Data Sync
Error). Since the relocation vector is contained in
the data fields on the specially flagged track, no
relocation vector was found and the H DC could not
successfully relocate the RlW heads.

Record Not Found with ID Error(s) (07H)

The sector requested (logical sector number)
could not be found on the desired track after at
least two complete revolutions of the disk (three
INDEX pulses). However, some (one or more) 10
fields found were damaged and could not be
successfully checked.

Fatal Seek Error (08H)

After encountering a Seek Error during a normal
track access operation, and after performing a
restore and reseek, the first valid sector 10 field still
indicates that the current track/head differs from
the desired track/head.

Record Not Found (09H)

The sector requested (logical sector number)
could not be found on the desired track, after at
least two complete revolutions of the disk (three
INDEX pulses). However, no sector 10 errors were
encountered. This means that the RIW heads are
positioned correctly (track and head values have
been verified), but the desired sector number is
not located on this track. Possibly, this sector was
not part of the sector map when formatting this
track.

1-45

Data Recovered with Retries (DAH>

The indicated sector was recovered using
repeated read attempts. The number of attempted
reads required to recover the sector is indicated by
the retry count parameter of this SRB.

Data Non-Verify (DBH>

The sector read from the disk does not match
when compared to the data block in memory. Only
the VERIFY command issues this SRB.

Data Time Out (DCH>

A memory time-out occurred while the on-chip
DMA controller attempted to access data in the
system memory. Here, everything except IOPBs
and SRBs is considered to be data. The Block
Address parameter in the SRB indicates the start­
ing location of this data block transfer. Byte Count
shows the size of the data block the HOC
attempted to transfer. The time-out occurred
anywhere within this data block. After the memory
error is corrected, the transfer may be resumed by
issuing a RESUME command. The HOC then re­
transmits the entire data block during the time-out.

Multi-Record Overflow (DDH>

A multi-reCOrd command has been terminated due
to a headllrack overflow. This SRB Is only issued if
the Multi-Record Policy (MRP) option, which is
selected by the corresponding Drive Parameter
Block, does not allow automatic track changes.

Data Mark Error (DEH>

The data mark of the indicated sector did not match
the selected data mark. If the Data Mark option in
the option field of the IOPB Is disabled the
selected data mark is F8H (Hard-disk Mode) or FBH
(Floppy Mode). If this option is enabled the data
mark is specified in the data mark field of the IOPB.

Sector Size Mismatch (DFH>

The sector size value read from the sector 10 field
does not match the sector size specified in the
Drive Parameter Block. This SRB is only issued in
Floppy-disk Mode.

00H""128 byte sector
01 H - 256 byte sector
02H - 512 byte sector

ECC Not Selected (1DH>

This SRB is generated if Reed-Solomon error
correction is not selected and a Correct Buffer or
Load command is not attempted (see Drive
Parameter Block description).

Drive Selection Fault (11 H>

A fault occurred on the drive control interface
when the HOC attempts to select the deSignated
disk drive. The drive status field shows the status
of the drive control inputs at the time the fault
occurred:

D4 = OREAOY-The disk drive does not
acknowledge the drive selection within 1 ms (at 10
MHz system clock) or if OREADY is deasserted.

D3 = Se-The HOC does not time-out on SC.
This fault is generated if the disk drive deasserts
SC at a time when it should stay active (e.g., after
the head is positioned over the requested track
and SC has been asserted).

D2 = FAULT-The disk drive asserted Fault.

D1 = WRPROT-The HOC monitors the
WRPROT input when it attempts to write the first
time to a (new) track. This input must be valid in
Floppy- and Hard-disk Modes.

Do = TRKG-This bit indicates the latched state of
the TRKO input. The HOC does not monitor TRKO
for correctness. It does not detect if TRKO is
asserted at the wrong time or if TRKO is not
asserted when the head is positioned on track O.
The HDC checks TRKO only when it performs a
restore operation.

Fault While Seeking (12H>

This occurs during a seek operation if the drive
control interface flags a fault condition and the
HDC terminates the Seek operation. The Drive
Status field indicates which line (FAULT, DREADY,
SC) caused the error.

1-46

Fault While Head Select (13H)

This fault occurs if, while changing the head
address, the drive control interface indicates a fault
condition. The Drive Status field indicates which
line (FAULT, DREADY, SC) caused the error.

Drive Status Trap (14H)

This fault occurs if, during a normal disk I/O
operation, the disk control interface indicates a
fault condition (fault input asserted). A normal disk
I/O operation is a read (RG active) or a write (WG
active) operation. Here, the HDC does not attempt
to change heads or tracks.

End Of Data Map (15H)

The data map provided by the 10PB was
insufficient to account for the proper transfer of all
the requested disk data.

Restore Fault (16H)

The HDC could not reset the disk drive to track O.
A "Fault While Seeking" type of error condition
occurred during a Restore command or the HDC
tried to restore after a Seek error. However, after
issuing twice the number of step pulses
programmed in the Tracks/Surface parameter in
the Drive Parameter Block or 2 10 step pulses,
whichever is less, the drive still did not assert
TRKO.

Data Not Recovered (17H)

The indicated sector data was not recovered by
the HDC despite retries and/or ECC. For multi­
record commands the HDC continues to read/write
the remaining records (non-fatal error).

Multl·Record Command Terminated (18H)

command) has been terminated due to an error
condition at the specified track, head and sector.
Record Count specifies the number of
unprocessed sectors.

ID CRC Error (19H)

The desired sector ID field for a READ ID command
with Arbitrary Sector option enabled; or, any sector
ID fields for other commands on the current
track/head have CRC errors and could not be
successfully recovered.

9590--------------------------~
ESDI Channel Error (1AH)

This error indicates a fault condition on the serial
command/status interface. The error can either be
a parity error or a time out (100,000 system clocks)
on the command or status line. The BIT COUNT in
the SRB shows how many bits have been
transferred before the error occurred.

ESDIID Flag Mismatch (1 BH)

The ID Flag in the sector header does not match
the ID Flag programmed in the 10PB executed.

RESERVED (ICH)

Data Not Corrected (IDH)

The "Correct Buffer" command could not correct
the data in the buffer.

Drive Deselect Fault (IEH)

While trying to deselect the drive, a fault condition
occurred, or the drive did not deselect within
10,000 system clocks of deasserting SELEN.

The current multi-record 10PB (read, write, or verify RESERVED (IFH)

1-47

DISK DATA I/O

Sector Fonnats

Data is stored on the disk in sectors. Each sector
consists of two fundamental parts: the header or
sector ID field and the data field. The sizes of all
pads, gaps, preambles, postambles and data fields
are programmable in the Drive Parameter Block.
The Double-Density Floppy-Disk Format also has
an Index field at the beginning of each track.

9590 ----------------,
Figures 1-35 and 1-36 show the sector layout for
ESDI hard- and soft-sector format.

Header

The header of the ST506 and Double-Density
Floppy Format contains the Address Mark, the
track number, the head number, and sector
number (Figure 1-33). Two trailing CRC check
bytes protect the header. The beginning of the
header is marked by an ID Address Mark (IDAM).
The Double-Density Floppy Format and the ST506
Hard-disk Format use a two-part address mark. The
first part of the address mark is a unique clock/data
pattern written and detected by the data separator.
Since the unique clock/data pattern is written by
the disk data separator, its length and layout are
transparent to the HDC (see also section on "Disk
Data Protection", "CRC/CCIITl The second part,
which is processed by the HDC, specifies that this
is a normal (FEH or a relocated (FDH) track.

Hard Disk
-f1

-f

Double
-f Density

Floppy

-f

9590 --------------,
The header of the ESDI hard sector format
(Figure 1-35) consists of a PLO synchronization
field followed by a byte synchronization pattern.
The following bytes of the header indicate the
track, head and sector number as well as a flag sta­
tus byte. Two CRC check bytes protect the
header information.

The start of a header looks different for the ESDI
soft sectored format (Figure 1-36). It starts with a
three byte address mark. This address mark is a
unique clock/data pattern written and detected by
the control logic implemented on the disk drive.
The address mark is followed by the PLO SYNC
FIELD. The rest of the header is similar to the hard
sector format.

Data Field

The ST506 format starts the data field with an
address mark similar to the header's address mark
(Figure 1-34). The data field is protected by one of
three different user selectable EDC/ECC codes
appended to the data: CRC-CCln (error
detection), Single- or Double-Burst Reed­
Solomon (error detection and correction). For
external ECC processing this code field is ignored.
The data field has a user-programmable length of
128, 256, or 512 bytes. For external ECC, the
number of ECC bytes attached may vary from 1 to
256 bytes depending on the ECC option, the data
field size, and the drive type.

1-
Postamble 1

1-

1-
Postamble 1

1-

II4BOA 1-33 Figure 1-33 Sector Header Formats

1-48

Index!
SOOlDr

Write
Gal.

Add
Mark
Enable

ISG
16 Bytes
00

HardDlsk ~r0stamble 1 I PAD I Preamble 21 lOAM 10M I Da~: IEeel Postamble 2 I Gap ~~
Double
Density
Floppy

~f0stamble 1 I PAD I Preamble 21 lOAM 10M I Dat{: ~t IEeel Postamble 2 I Gap

9480A 1-34

Figure 1-34 Sector Data Fields Format

1&

~~---------------~
Trailing edge of address mark enable signifies the slrat of hearder PLO
sync field. Drive wlH not write an add mark on the disk media

Transition required only If the disk II read after a format and prtorto a
data field write updalo

Controller must relnltlallze timing wbh each sector pulse (need not deactivate write gate)

Format speed toleranoe gap Is required If ref.rence clock Is not tied to rotailonal speed

Figure 1-35 Hard Sector Formats and Address Mark, Write Gate Timing

14------ Add",ss Area

.&. Thesa areas are example. only and may be structured
to suit individual customer requirements

.£. The number of check. bytes are us.r defined

.&. PLO sync field is O!! 11 bytes

.&. Format speed tolerance gap is required jf r.f.rence clock is not tied to rotational speed

Figure 1-36 Soft Sector Format (Step Mode)

1-49

9480A 1-35

9480A 1-36

The Hard-disk Format has a two-byte address mark
consisting of the same unique pattern as the
header address mark and a user-programmable
Data Mark. For the Double-Density Floppy Format,
the address mark has three bytes of the unique
pattern and one Data Mark.

9590--------------------------~
The ESDI format does not have any address mark
or sector pulse leading the data field.. A PLO
synchrohization field separates the header from
the data field. This SYNC field is filled with Os. The

• HDC determines the start of a data field by waiting
for the first logical "1" in the data stream indicating
the first bit of the "BYTE SYNC pattern.

Data Separator and Disk Interface Signals

The data lines (RDDAT and WRDAT) transfer the
data to and from disk. The transfer is controlled by
five signals (INDEX, AMC, AMF, RG, and WG).
Three ECC lines interface with extemal ECC
hardware to allow user-definable· error
detection/correction. .

9590--------------------~----~
The Am9590 uses the AMF input also as the
Address Mark· Found input for the soft-sectored
ESDI interface and the SECT pulse of the hard­
sectored ESDI interface

Header Search Mechanism

When the HOC attempts to read a header or to
access a data field, it asserts Address Mark Control
(AMC). In Floppy-disk Mode, FAM1/ECC1
differentiates between the index address mark and
the other address marks."

If the ST506 or Double-Density Floppy Format is
selected, the HOC asserts Read Gate (RG) and
waits for the data separator to acknowledge. The
data separator should assert Address·Mark Found
(AMF) when it detects an address mark. "The rising
edge of AMF indicates that valid data will be on the
RDDAT input, starting on the next rising edge of
RD/REFCLK (see Figures 31 and 32). For Double­
Density Floppy and ST506 Hard-disk Formats, the

"HOC checks the first eight bits (the data mark) for
a FDH or FEH. If the check fails, then it assumes it
did not really find an 10 address mark and
deactivates AMC and· RG.· . After AMF becomes
inactive, AMC is reasserted, followed by RG, and
the whole procedure is repeated until either a
sector 10 field is found, or it has been determined·
that no sector 10 field can be found. .

9590 ---------------,
If the ESDI or SMD soft-sectored track format is
selected the Am9590 asserts AMEN (Address
Mark Enable) and waits for the disk drive to activate
AMF (Address Mark Found). After the disk drive
finds an address mark, the HOC will wait for the
PAD and PLO synchronization field to pass. The
first logical "1" indicates the start of the Byte Sync
pattern. The HDC will then read this pattem and
compare it: The header and data byte sync
pattems are FEH by default. The data Byte Sync
pattem can be programmed to a different pattem.
If the header Byte Sync pattem is different from
FEH the Am9590 will.assume a reloCated track and
read the information in the data field as a relocation
vector. If the programming option of the data Byte
Sync pattem is used, the user must ensure that
the first bit is a logical "1" (~ BOH).

In hard-.sectored mode AMEN is not used during a
read operation. The HOC just waits for the
SECT or INDEX pulse. These signals are basi-cally
treated like the AMF signal in soft-sectored mode,
so that the following procedure is similar.

After finding an ID address mark, the HOC com­
pares the next 32 bits (4 bytes) of serial data with
the track, head, and sector number (and sector
size for the floppy format) to determine if the right
sector 10 field has been found. ACRC check in­
sures the correct header information .. If the track or
head numbers of the sector 10 field do not match
the desired track and head numbers, an error is
flagged and the command is aborted. In the
Froppy-disk Mode, the sector size is also checked
against the sector size defined for the current
drive ..

After confirming the correct head position, the
sector number is checked to see if this is the
sector being searched. If the correct sector
numb~r is found, the search for the data address
mark begins. If the correct sector number is not
found, the process is repeated until either the
desired sector is found or the HOC determines the

. "sector cannot be found on the current track. If
three index pulses are detected (indicating at least .
two full disk revolutions), the HOC aborts the
command and flags an error.

Data Reads

In ST506 and Double-Density Floppy Mode the
HOC uses the same handshake procedure to
search· for the address mark of the data field
(Figure 1-37). The HOC then compares the byte
following the address mark to the programmed

1-50

Data Mark for a match. If they match, the subse­
quent data field will be transferred. Based on the
drive parameters specified in the drive parameter
block, the HDC computes a window within which
the address mark of the data field must fall. If the
HDC does not find an address mark within this win­
dow, it aborts the command and flags an error.
This procedure forces the HDC to search for the
data field corresponding to the desired sector ID
field.

9590--------------------------~
The ESDI and SMD sector formats do not have any
address mark or sector pulse to indicate the begin­
ning of a data field, Figures 1-35, 36. The Am9590
will activate RG within the PLO SYNC field leading
the data field. The first logical "1" indicates the
start of the Data Sync pattern. The HDC will then
compare this pattern to the value programmed. If it
matches, the data field will be read into one of the
toggle buffers; if not, the HDC will flag a data mark
error.

Following the data field the ECC check bytes are
read. At the end of the data field, RG is turned off
and sector read operation is completed. When ex­
ternal ECC is enabled, the HDC ignores the check
bytes. The external ECC logic should scan the
check bytes to verify the integrity of the data field.

Data Writes

While searching for the desired sector, write
commands proceed similar to sector reads. After
finding the desired sector ID field, the subsequent
data field, including Pad, Preamble 2, Data Mark,
and Postamble 2 are overwritten (Figure 1-38).
The HDC activates Write Gate (WG) at the
beginning of the pad. Write Data on the WRDAT
output is valid starting with the next rising edge of
the clock (RD/REFCLK). The HDC then writes the
new Pad and Preamble 2 fields. Upon completion
of the Preamble 2 field, AMC is activated if the
ST506 or Double-Density Floppy Format is
selected. The data separator asserts AMF while it
writes the last Address Mark bit. The HDC resumes
data output with the next clock and writes the Data
Mark byte (either the programmed pattern or the
default values F8H for Hard-disk or FBH for Floppy­
disk Mode. WG is turned off immediately after the
Postamble 2 field is written. This completes the
write sector sequence.

9590--------------------------.

I Using the ESDI data format, the header search
mechanism is similar to read operation. If a valid
header has been found, WG is switched on at the

1-51

beginning of the WRITE SPLICE. The
subsequent information, including WRITE
SPLICE, PLO SYNC and BYTE SYNC pattern are
overwritten. WG is switched off after writing the
DATA PAD 2 field.

Format Track

Format Track always formats entire tracks. Only this
command and "Relocate Track" will write the sector
header. Beginning with the rising edge of the
INDEX pulse, the HDC asserts WG and outputs the
pattern for the delay field (Figure 1-41). For floppy
formats, an Index Address Mark (lAM) field follows
the Delay field, and the HDC starts writing sectors.

For writing the headers, the HDC uses the track,
head and sector size information supplied by the
drive parameter block. A sector map in system
memory supplies the logical sector number
sequence (Figure 1-42).

The first byte of the sector map is written in the
sector number field of the first physical sector on
track. The second byte is written in the second
physical sector. This sequence continues until the
required number of sectors have been formatted.
For multiple track format commands, the HDC uses
the same sector map repetitively. The Map Pointer
of the Format IOPB points to the beginning of this
sector map. Skewing sectors are implemented by
changing the Sector Map for each track
individually.

For writing address/data marks in ST506 and
Double-Density Floppy Format, the HDC proceeds
as described in the "Data Field Write" section. The
data field is initialized with the user-supplied
pattern byte that is specified in the Format IOPB.
The gap between the end of the last sector (end of
the Intersector Gap - ISG) and the rising edge of
the index pulse is filled by the gap pattern. It is
different from the Intersector Gap that has a user­
definable length. The patterns for all fields are
shown in the following table:

Field Pattern

Delay 4EH
Preamble 1 OOH
Postamble 1 4EH
Pad OOH
Preamble 2 OOH
Postamble 2 4EH
Gap 4EH

AMC

AMF

RO

RDDAT

9480A 1-37

-i ~---r--~--~---r---r--~--~--~~~~~--~~~.~

~--~--~------~--~--~--~--~--~~--~--~--~.~ -i

J

______ ~~~~~--------~rl~--~--------

~
, ,

v v X:.~---~X ______ JA Valid Da'~ ""'-'-________ --J. . Valid Da.a '-______ _

Figure 1-37 Read Sector Control Sequence (ST506)

-i~--~--~~--~~~--'---~--r-'-~~~--~~~~

-i ~

AMC ~ l~ ___ ~_~ _____ ~~~ ______ ~r ___ ___

AMF

RG

WG , ,
------.... '

RDDAT _____ --J),(Valid Dam~~------------------~---------,

WRDAT ______ -. _____ ~..J~'"-----V-.I-'d-D-~-.-------J~'"--__

9480A 1-38 Figure 1-38 Wrhe Sector Control Sequence (ST506)

1-52

RD/REFCLK

AMC

AMF

RG ____________ J/~----~L~!------------------------

RDDAT ______________________________________ --J)(~ _____ D_AT_A __ V_A_U_D ______ _

9480A 1-39

RD/REFCLK

WRDAT

AMC

AMF

WG

94IlOA 1-40

Figure 1·39 Address Mark ControVAddress Mark Found
(Read Data, ST506)

______________________________ ~{J-----------------------------H-IG-H

Figure 1·40 Address Mark ControVAddress Mark Found Handshake
(Write Data, ST506)

1-53

AMC

AMF

RG

WG

RDDAT

WRDAT

94S0A 1-41

94BOA 1-42

""t n---~--r-~--~~-T--'---'---r-~~~~--~~~r­

~--~~--~--~--~~--~--~~~--~--~~~.r -t , ,
:11

L-------~--~--------_r, ,~------------~~------

______ ~~~~~--~--~~rl~-----------

Valid Data

Figure 1-41 Format Sector Control Sequence

Byte 0 7 DO Physical Sector #

0 Sector # 1

Sector # 2 2

2 Sector # 3 3

3 Sector#4 4

n-2 Sector # n-1 n-1

n-1 Sector # n n

Word ° 15 DO Physical Sector #

0 Sector # 2 Sector # 2,1

2 Sector # 4 Sector # 3 4,3
'-"-0

n lSector# n-1 T Sector # n-1 f n,n-1

Physical sector," GAP Deiay

Figure 1-42 Sector Map for Format Commands

1-54

9590
Formatting an ESDIISMD type track the Am9590
uses patterns according to the following table:

Field Pattern

Delay 4EH
PLOSYNC 1 OOH
ADDRESS PAD OOH
WRITE SPLICE OOH
DATA PAD OOH
ISG 4EH

For the hard-sectored track format the HDC starts
writing right after the INDEX pulse. It will format the
first sector according to the drive parameter block.
If the sum of all fields programmed is shorter than
the sector defined by the disk drive·, the H DC will fill
the gap with the ISG pattern. If the sum of all fields
programmed is longer than the sector defined by
the disk drive, the HDC will fill flag a format error and
abort the command.

The format procedure for the soft -secto red
ESDIISMD track format is similar to the procedure
in ST506, except that there is no data address
mark written. Table 1-1 shows how the track format
parameters for ST506 (DD Floppy) and ESDI
(SMD) relate to each other.

Table 1-1 Am9590 Parameter Cross
Reference Chart

(ST506/ESDI)

HOC Drlv8 ESDI ESDI
Parameters (Soft Sector) (Hard Sector)

Delay ISG (After Index ISG (After All
Pulse Only) Index & Sector

Pulses)

Preamble 1 IDPLOSync 10 PLO Sync

Postamble 1 Address Pad Address Pad

Pad Write Splice Write Splice

Preamble 2 Data PLO Sync Data PLO Sync

ECC ECC ECC

Postamble 2 Data Pad Data Pad

Gap ISG(ForAII ISG (Before All
Sectors Except Index & Sector
Index) Pulses)

DRIVE PARAMETER PROGRAMMING

The HDC contains one set of Drive Parameter
Registers for each drive. The system can only
indirectly access this register set by the following
commands: Load Drive Parameter Block and Dump
Drive Parameter Block. The block (Figure 1-44) is
set up in contiguous system memory. The
numeric byte values specified in the Drive
Parameter Block should not be set to zero.

General Select Byte (FIgures 1-44, 45)

The General Select Byte has five distinct fields:
Auto Vector Enable, Return to Zero Enable, Error
Detection and Correction Type, Multi-Record
Policy, and Track Format.

Auto Vector Enable (AVE~This bit selects
whether the HDC is allowed to automatically seek
to the new track if the current track has been relo­
cated. If the bit is set, the HDC will issue the SRB
"Relocated Track" and contiriues automatically
seeking to the new track. If the bit is reset, the
HDC . issues a "Relocated Track" SRB and
terminates the current IOPB.

Return To Zero Enable (RTZE)-If RTZE is
reset, a restore operation will be performed by
issuing Step pulses until TRKO. is asserted (see
Restore command description). If this bit is set, the
HDC just pulses the RTZ output once to restore
the heads. The RTZ option is only available in Hard­
disk Mode.

Error Detection and CorrectIon Type
(EDCT)-This field selects the type of. error detec­
tion and correction code (EDC) that is used to pro­
tect the data in each sector. Four options are avail­
able: CRC/CCITT, Single-Burst Reed-Solomon,
Double-Burst Reed-Solomon, and External ECC
(see Disk Data Protection).

Multl-.Record . Polley (MRP)-This field
determines how the HDC will respond when it must
select a new· track to continue a multi-record IOPB
(Format, Read, Write, and Verify). A new track is
selected if the last processed sector is the last
sector as indicated by the the Sector/Track
Parameter (see also Start Sector Option in Data
Select Byte). When this occurs, and the multi­
record command still has to process more sectors,
the HDC selects a new track according to one of
the three methods described in the following:

1-55

BYTEO BYTEH

0 0 General Select Byte

Data Select Byte

2 2 Tracks/Surface <7:0>

3 3 Tracks/Surface <15:8>

4 4 HEADSiORIVE

5 5 SactorsfTrack

6 6 RWC Track <7:0>

7 7 RWC Track <15:8>

8 8 Seek Dwell <7:0>

9 9 Seek Dwell <15:8>

10 A STEP WIDTH

11 B HEADSETILE

12 C PRECOMPENSATIONTRACK<7:0>

13 D PRE COMPENSATION TRACK <15:8>

14 E Retry Policy Byte

15 F Motor-On Delay

16 10 Deley Length

17 11 Preamble 1 Length

18 12 Postamble 1 Length

19 13 Pad Length

20 14 Preamble 2 Length

21 15 ECCLength

22 16 Postamble 2 Length

23 17 GAP Length

WORDO WORDH
0 0 Data Select Byte General Select Byte

2 2 TrackS/Surface

4 4 SectorlTrack HEADS/DRIVE

6 6 RWCTrack

8 8 SaekDweil

10 A HEADSETILE STEP WIDTH

12 C PRECOMPENSATIONTRACK

14 E Motor-On Delay Retry Policy Byte

16 10 Preamble 1 Length Delay Length

18 12 Pad Length Postamble 1 Length

20 14 ECCLength Preamble 2 Length

22 16 GAP Length Postamble 2 Length

94BOA 144

Figure 1-44 Drive Parameter Block

1-56

o X The HOC will not change tracks. If a
change is required. it will abort the current
10PB and issue a "Multi-Record Overflow·
SRB.

o The HOC increments the head number
first. If the head number overflows. the
HOC resets the head number to zero and
then increments the track number and
steps one track further. If the track
number overflows. the HOC resets it to
zero.

The HOC increments the track number
first. If the track number overflows. it
resets the track number to zero and it
increments the head number. If the head
number overflows the HOC resets it to
zero.

Auto Vector Enable ____ ... 1
1-Enabled
0- Disabled

RTZE~e----------------~
1 - Recallbrallon by Asserting the RTZ Pin
0- Recalibralion by Step Pulses

EDCT ,

Error Detection and Correction Type -------'
00 -16 Bit CRC-CCITT
01 - External ECC
10 - Slngl&-Burst Reed-Solomon
11 - DoulJle.Burst Reed-Solomon

Tracks/Surface and Heads/Drive specify the maxi­
mum values. On track change. the HOC incre­
ments these values and compares them against
the maximum values specified (Tracks/Surface and
Heads/Drive). If the current and maximum value
are equal. an overflow is detected and the HOC
reacts as described above.

When the HOC executes a multi-record command.
initially it does not check the specified starting val­
ues for head and track with the values allowed by
the Drive Parameter Block. However. on the first
track change. these values will automatically be set
to zero. This means. if the track number requested
is larger than the maximum value specified in the
Drive Parameter Block. the HOC will reset the track
number to zero on the first track change.

Whenever the HOC starts accessing a new track
after a track overflow. it starts with Sector 0 or 1.
depending on the option selected in the Data
Select byte.

MRP
I

FMT ,

L Track Fonnat
00 - Reserved
01 - Doubl&-DensHy IBM Floppy Fonnat
10- ST506I412
11 - ReselVed

L..-_________ Muhl Record Polley

ox -Do Not Change TIaCks
10- Increment Heed Number Firs!
11 - Increment Track Number First

II480A 1-44

Figure 1-44 General Select Byte (Am9580A)

D;-

AVE

Auto Vector Enable ------'
1- Enable
O-Dlsable

Oe

I RTZE I

I RTZ Enable -----------'
1 - Recalibrate by RTZ
o -Recalibrate by Step Pulses

06

EDCT
I

Error Detection and Correction --------'
00 -16 BH CRC-CCITT
01 - External ECC
10 - Slngle-Burst Reed-8olomon
11 - Double-Burst Reed-Solomon

04 03 0 1

MRP FMT
I , L Track Format

00 - ESDI (Soft Sectored)ISMD
01 - Double-Density Floppy
10-ST506I412
11 - ESDI (Hard Sectored)

Multi Record Policy
OX - Do Nol Change Tracks
10 - Increment Head Number First
11 - Increment Track Number First

Figure 1-45 General Select Byte (Am9590) II480A 1-45

1-57

9580A ---------------, I Track Format (FMT) I

II This 2-bit field indicates the track format to be II
used; two formats are available. The IBM-compati­

I ble Double Density Floppy (DDF) Soft Sector I
I fonnat should only be used in conjunction with I
I Floppy-disk Mode (see Disk Control Interface Type I
I specified in the General Select Byte). The I
I ST50S/412 Soft Sector format should only be I
I used in conjunction with Hard-disk Mode. I
I I
I 01 00 Track Format Type I
I I
I 0 0 (reserved) I
I 0 1 IBM-compatible DDF Soft-Sector I
I (DCIT 1,0 = 01 B) I
11 0 ST5061412 Soft-Sector I
I (DCIT 1,0 = 10 B) I
L~_~_J!~e~ed) _________ J

9590--------------------------~
Track Format (FMT)

This 2-bit field indicates the track format to be
used; four formats are available. The IBM-

DISKCONTROL----~ INTERFACE TYPE
00 - Reserved
01 - Double-Density Floppy
10 - ST506I412
11 - Reserved

Reduced Write Current Enable
0- RWC/HDSELs pin is HDSEL3
1 - RWC/HDSELS pin is RWC

Floppy Motor-On Delay -------------'
o - i5REAi5Y Time out
1 - Motor-on Delay

compatible Double-Density Floppy (DDF) Soft
Sector format should only be used in conjunction
with Floppy-disk Mode (see Disk Control Interface
Type specified in the General Select Byte). The
ST5061412 Soft-Sector format should only be
used in conjunction with Hard-disk Mode. The
SMD as well as the ESDI sector fonnats can be
used with either the hard- or the soft-sectored
mode.

o 0
o 1

o

Track Format Type

SMD
IBM-compatible DDF Soft-Sector
(DCIT 1,0 = 01 B)
ST5061412 Soft-Sector
(DCIT 1,0 = 10 B)
ESDI

Data Select Byte (Figure 1·4Sal46b)

The Data Select Byte contains four distinct fields.
They determine sector size, the RWC (Reduced
Write Current) option, and the Floppy Motor-On
Delay option.

0, Do

OS
I L DataSize

00 - 128 Bytes
01 - 258 Bytes
10-5'2 Bytes
11 - Reserved

Start Sector Option
o -Sector # starts with "1"
1 - Sector II starts with "0.

9480A 1-48& Figure 1-46a Data Select Byte (Am9580A)

DISKCONTROL----~ INTERFACE TYPE
OO-SMD
01 - Double-Density Floppy
10 - ST5061412
II-ESDI

Reduced Write Current Enable
0- RWC/HDSELs pin is HDSEL3
1 - RWClHDSELS pin is RWe

Aoppy Motor-On Delay -------------'
0- i5REAi5Y Time out
1 - Motor-on Delay

0, Do

OS
I L DataSize

00 - 128 Bytes
01 - 256 Bytes
10 - 512 Bytes
11 - Reserved

Start Sector Option
0- Sector # starts with "1"
1 - Sector # starts with "0·

9480A 146b Figure 1-46b Data Select Byte (Am9590)

1-58

• 9580A ---------------,
I Disk Control Interface (DCIT) I

I This 2-bit field selects the disk control interface. II
I Two modes are supported:
I I
I I
I 07 Os Disk Control Interface I
I I I 0 0 (reserved) I
I 0 1 Floppy-Disk Mode I
11 0 ST506/412 Hard-Disk Mode I
1 1 (reserved) L _________________ J

9590--------------------------~

Disk Control Interface (DCIT)

This 2-bit field selects the disk control interface.
Four modes are supported:

D7 Os Disk Control Interface

0 0 ESDIISMD Soft-Sector
0 1 Floppy-Disk Mode
1 0 ST506/412 Hard-Disk Mode
1 1 ESDIISMD Hard-Sector

Reduced Write Current Enable (RWCE)

The HDC multiplexes the Reduced Write Current
(RWC) option with the fourth Head Select line
(HDSEL3)' If RWCE is set, this output provides
RWC. If RWCE is reset, this output provides the
fourth Head Select line.

Floppy Motor-On Delay (FMOTD)

FMOTD-bit set: The HDC expects DREADY to be
asserted within 10,000 clocks after the drive is
selected (SELEN LOW). After the HDC received
DREAOY it waits up to the time delay (50,000 x N
clocks) specified by the MaN Delay parameter
before attempting any seek, read, or write
operation. This gives the motor time to bring the
disk up to speed.

FMOTD-bit reset: When a drive is selected, the
HDC asserts MaN, and waits up to the delay
(50,000 x N clocks) defined by the MaN Delay
parameter in the Drive Parameter Block before
OREADY is timed out. If DREADY is asserted within
this time interval, the HDC proceeds. If DREADY is
not asserted within this interval, the HDC
generates a Drive Selection Fault SRB.

Start Sector Option (SSO)

SSO bit set: On a headltrack overflow for a multi­
sector read/write command, the HDC will start
searching for Sector "0" on the new track, there­
fore, sectors should be numbered from 0 to N-1.

SSO bit reset: On a head/track overflow for a multi­
sector read/write command, the HDC starts search­
ing for Sector "1" on the new track, therefore,
sectors should be numbered from 1 to N.

Data Size (OS)

This two-bit field specifies the size of the data field
in each sector on the disk (sector size). The field is
encoded as follows:

01 Do Sector Size

0 0 128 Bytes/Sector
0 1 256 Bytes/Sector
1 0 512 Bytes/Sector
1 1 (reserved)

Retry Polley Byte (Figure 1-47)

The Retry Policy Byte contains five distinct fields
that allows the user to choose between different
error recovery procedures using ECC and/or
repetitive rereads.

Pre ECC Enable (PRE)-- If this bit is set, the HOC
first uses ECC to recover the data before a reread
attempt. If the ECC fails, data is reread. If the
reread data still contain errors, another ECC is
used before yet another re-read.

ECC Enable (ECC)--If this bit is set, the HOC
uses ECC to recover the data after a reread. If ECC
fails, the HDC will reread again.

Post ECC Enable (POST)-If this bit is set, the
HOC rereads the data up to a specified number of
times. ECC is only used if the final reread still
contains errors.

The allowed combinations of these lists are:

PRE ECC POST
X X
X X
X

X
X

1-59

Retry Enable (RE)-If this bit is set, retries are
enabled. The maximum number of retry attempts
is specified by the RC (Retry Count) field. If this bit
is reset, the HDC will not attempt any retry.

Retry Count (RC)-This 4-bit value specifies the
number of retries allowed if retries are enabled. If
this field is set to zero, the HDC will perform up to
16 retry attempts.

TRACK FORMAT PARAMETERS

The following parameters specify the individual
length of the various fields found on the track. The
value programmed indicates the field size in bytes
(eight bits). The allowed range is from 1 to 255
unless otherwise specified.

Delay Length

After the HDC has detected the INDEX pulse, it
waits for the specified Delay Length, until it starts
searching for an Address Mark.

9590--------------------------~
For the ESDI format this parameter defines the
len th of the ISG after each sector.

Preamble 1 Length

Preamble 1 is the synchronization field for the PLL
of the data separator for the header field. The
length is a function of the lock-up performance of
the data separator (see data separator specifica­
tion). The HDC accepts a length of 2 to 255 bytes.

Os Os

9590--------------------------~
This parameter represents the header PAD and
PLO SYNC field forthe ESDI/SMD track format.

Postamble 1 Length

Postamble 1 gives the Disk Controller time to
process the sector ID field it has read (CRC check,
and parameter comparison). The HDC accepts a
field length of 2 to 255 bytes. For the highest
efficiency this value should be small, but
compatibility to standard track formats may require
larger values.

9590--------------------------~
This parameter represents the header ADDRESS
PAD field for the ESDI/SMD track format.

Pad Length

This is the readlwrite splice area between the
sector ID field and the data field. It is designed to
allow for glitches while turning on the disk write
circuitry. This value ranges from 1 to 255.

9590--------------------------~
This parameter represents the WRITE SPLICE for
the ESDIISMD track format.

Preamble 2

Preamble 2 (like Preamble 1) is the synchroni­
zation field for the PLL of the data separator to
allow it to lock on to the data frequency of the data
field. The length is a function of the lock-up

DO

PRE I ECC I POST I RE RC
I

Pre ECC Enable -----------1
0- Disabled
1 - EGG Before Any Retry Attempts

EGG Enable _______________ ---l

0- Disabled
1 -EGG After Each Retry Attempt

Retry Count (RE = 1)
0000 - 16 Attempts
0001 - 1 Attempt
0010- 2 Attempts .
1111-15Attempts

Post EGG Enable _________________ ---l
1--_________ Retry Enable

o -No Retries
0- Disabled
1 - EGG After Last Retry Attempt

1 - Retry Enabled

94BOA 1-47 Figure 1-47 Retry Policy Byte

performance of the data separator (see data
separator specification). The HDC accepts a
length of 2 to 255 bytes.

9~0--------------------------,
This parameter represents the data PLO SYNC
field for the ESDI/SM D track format.

Postamble2

Postamble 2 gives the Disk Controller time to
process the sector data field it has read (CRC
check, error detection with ECC, and data mark
comparison). The HDC accepts a field length of 2
to 255 bytes. For the highest efficiency, this value
should be small, but compatibility to standard track
formats may require larger values.

9~0--------------------------~

This parameter represents the DATA PAD field for
the ESDI/SMD track format.

Gap Length

The Gap is the inter-sector gap to separate a data
field and the following sector ID field. It accounts
for motor speed variations in the disk-drive (see
drive specification published by disk drive
manufacturer) .

9590--------------------------~
This parameter represents the SPEED
TOLERANCE GAP for ESDI/SMD.

ECCLength

When external ECC is enabled, this parameter
specifies the number of check bytes appended to
the data field. This parameter is invalid when the
floppy format is selected. The Dump Drive
Parameter Block command transfers the actual
length of the ECC field. This is not necessarily the
loaded value. For CRC/CCITT this parameter is
automatically set to 2. For Reed Solomon this
parameter is either 6, 9, 10, or 15.

DRIVE PARAMETERS

Heads/Drive

This parameter specifies the number of moving
readlwrite heads. All values from 1 to 255 are
allowed. For the ST506 and Double-Density
Floppy Format, the HDC has four Head Select lines
so that it can only address 16 heads. Internally, it
processes the full 8-bit number. The

head number written into the header field ranges
from 0 to N-1.

9590 -----------------------------,
The SMD interface option of the Am9590 directly
addresses 64 heads. Two new Head Select lines
(Dlo and D11) are activated for this interface.

Tracks/Surface

This 16-bit parameter specifies the number of
tracks per surface. All values from 0 to FFFFH
(65535) are allowed. If it is set to zero, the HOC
addresses 65536 tracks. If the value is set to N,
the track addresses range from 0 to N-1. The outer­
most track is track o.

SectorslTrack

This parameter specifies the number of sectors per
track. All values from 1 to 255 are allowed. If the
value is set to N and Start Sector Option (SSO) bit
in Data Select Byte is set, the logical sector
addresses range from 0 to N-1. If the value is set to
N and Start Sector Option (SSO) bit in Data Select
Byte is reset, the logical sector addresses range
from 1 to N. When performing multi-sector
commands, the HDC overflows the track after
reaching N-1 (SSO is set) or N (SSO is reset)
according to the multi record policy selected. For
single-sector commands the logical sector number
may be larger than N as long as there is a sector
located on the track that carries this specific sector
number (see sector map of Format command).

RWCTrack

This 16-bit field determines on which tracks the
Reduced Write Current output will be asserted. If
the current track value is greater or equal to the
RWC Track, then RWC is HIGH.

Precompensation Track

This 16-bit field determines for which tracks the
Precompensation Enable (PCEN) output will be as­
serted. If the current track value is greater or equal
to the Precompensation track, then PC EN is HIGH.

Step Width

This parameter determines the width of the STEP
and RTZ pulse in system clocks (Fig. 1-48-50). If
this parameter's set to one & mode is ST506, then

1-61

_1
Figura 1-48 Saak Timing (Hard Disk Moda)

''---------.jA2.
----\ 1--iiii'EAi5Y

~----------~

sc

--Iwj4-

STEP n r1 0 fl'--__ _
_ 1-48

Figura 1-49 Saak or Restore nmlng (Floppy Disk Moda)

sc

STEP

~ /
-----------~ _1-80

Flgura1-50 Rastora Timing (Hard Disk Moda)

1-62

the step pulse width and Dwell time length is nine
system clocks. This overrides any value in Seek
Dwell parameter. If the value ranges from 2 to 255,
the step pulse width can be calculated via the
following formula (the first step width and dwell
time is slightly larger than specified):

5 + (8 • N) System Clocks

where N is the 8-bit integer value of Step width. N
can be one in floppy mode. If N= 0, it is equivalent
to 256.

Seek Dwell

This 16-bit value determines the Dwell time (the
period from the falling edge of Step to the next
riSing edge of Step or the period between two
step pulses). If this parameter is set to one, the
seek Dwell time (after the first pulse) will be nine
system clocks. If this parameter is set to zero, the
value becomes 65536. The formula for the Dwell
time is as follows:

21 + (8 • N) System Clocks

where N is the 16-bit integer value of Seek Dwell.

Head Settle

This parameter specifies a time period to allow the
head of the selected drive to settle after the head
select lines have changed. The formula is as
follows:

a + (8 • N) System Clocks

where N is the 8-bit integer value of Head Settle.
This value should not be set to zero.

• For floppy drives, this formula must be multiplied by
256.

Motor-On Delay

For Hard-disk Mode, this byte is reserved. For
Floppy-disk Mode, this parameter specifies Floppy
Motor-on Delay (see FMOTD-bit of Data Select
Byte). The formula is as follows:

(50,000 • N) System Clocks

where N is the 8-bit Motor-On Delay value. This
value should not be set to zero. At 10 MHz, the

\~----------------------~/
\~--------------------~/

~ \\\\\\\\\\\\\\ / \\\\\\\
~wl+-

Rn Il~ ______________________________ _
Flgure1-51 Restore Timing (Option In Hard Disk Mode)

15 14 13 12 11 10

HOC sets up new track address

Figure 1-52 Serial Track Address In Restricted Mode

1-63

HOC
READ!

performs WRITE

94_ 1·51

seek OPERATION

94_ 1·52

Motor-on Delay may be specified in increments of
5ms.

SECTOR INTERLEAVING

The HDC supports any sector interleaving factor
because the Format command numbers the sector
according to the sector map. Sample sector maps
are given in the following table (for 16 sectors/
track):

Zero-Sector
Interleaving: 0,1,2,3,4,5,6,7, e, 9,A,B, C, D,E,F

Interleaving
Factor 1: 0, e, 1, 9, 2,A, 3, B, 4 ,C, 5, D, 6, E, 7, F

Interleaving
Factor 2: 0, B, 6, 1, C, 7, 2,D, e, 3,E, 9, 4,F ,A,S

Interleaving
Factor 3: 0,4 ,e,c, 1, 5, 9,D,2, 6,A,E,3, 7,B,F

The following formula gives the minimum length of
the GAP and Preamble 1 to allow the HDC to
ReadlWrite consecutive sectors (zero-sector
interleaving).

P = (3 + 6 • D/S) bytes

P = Delay
D = Disk Clock Freq.
S = System Clock Freq.

P specifies the delay from the end of Postamble 2
to the time the HDC activates RG, and AMC is
asserted one byte time later (eight RD/REFCLK
cycles). Note that the Data Separator requires a
certain Sync Field (Preamble 1) length to
synchronize correctly to the data read off the disk
(see Data Separator specification).

The following table lists the sample values of "P"
for various HDC clock combinations:

System Clock

6 MHz
8 MHz
10 MHz

Data Rate

5MHz 10 MHz

8 13
6.75 10.5
6 9

15 MHz

18 Bytes
14.25* Bytes
12 Bytes

• These numbers must be rounded up to the nearest
integers.

DISK DATA PROTECTION

The HDC employs one Error Detection Code
(EDC) and two Error Correcting Codes (ECC)
schemes to ensure data integrity when transferring
data to and from disk. Furthermore, it actively
supports off-chip data protection schemes
(External ECC). One of these four options must
be selected during any disk data transfer. Also,
the same code must be used for both read and
write operations. The four modes are as follows:

• 16-bit CRC-CCITI (error detection only)
• Single-Burst Reed-Solomon

(single-burst correction)
• Double-Burst Reed-Solomon

(single- and double-burst correction)
• External ECC

The error checking scheme for each drive is
defined by the EDCT field in the General Select
Byte of the Drive Parameter Block. Typically, one
EDC/ECC code is used for the entire disk.
However, it is possible to select different
EDC/ECC codes for individual disk platters, tracks,
or even sectors, provided that the additional
overhead for the dynamic reload of the Drive
Parameter Block is taken into account. However,
this is not a recommended procedure.

CRC-CCITI is mandatory for the protection of the
sector ID field, but the data may be protected by
any of the four codes mentioned above.

CRe-CCITI

The CRC-CCITI code is a cycliC based error
detecting/non-correcting code. It is the standard
code used by floppy-disk systems in the industry
today. The HDC is completely compatible with the
industry standard. The generator polynomial is:

X16 + X12 + X5 + 1

The guaranteed capabilities of the CRC code are
listed below:

• Detects all odd number bit errors
• Detects all single-burst errors of 16-bit or less
• Detects all single-, double-, and triple-bit errors

The CRC bytes are preset to 1 s (IBM standard) .
The CRC check bytes cover the entire sector ID

1-64

field or data field, the data mark, and the address
mark. The processing of the address mark Is com­
pletely off-loaded from the HDC (see AMC/AMF
handshake). Therefore, the HDC is unaware of the
specific address mark that the data separator
generates and detects. To ensure compatibility to
IBM's Double-Density Floppy-<lisk Format, the
CRC check bytes are preset for a three byte A1 H
address mark. (Initially, the CRC bytes are FFFFH.
After shifting three bytes A1H, the CRC bytes
become CDB4H. So, the HDC effectively presets
its CRC logic for floppy- and hard-disk modes to
CDB4H and the CRC bytes do not cover the
address mark. The HDC does not require explicit
CRC coverage for the address mark because the
data separator will ensure the correctness of the
address mark by asserting AMF).

For Hard-<lisk Mode, the CRC bytes are also preset
for the three byte A1 H address mark. Since hard
disks are not used as an interchangeable media,
there are no restrictions.

Error COrrection Codes

The HDC supports two error correction codes,
Single-Burst Reed-Solomon and Double Burst
Reed-Solomon. A single burst of errors (Figure 1-
53) is defined as any number of bit errors
(contiguous or non-contiguous) where the dis­
tance between the first and the last bit error does
not exceed the burst length given in the table
below. The code protects the check bytes as well
as the data Including the data mark.

Unlike many other error detection/correction
codes, such as the CRC/CCITT or the IBM 3330 56-

SactorSlze
(#of bytes)

128
256
512

Bad Bit ----,

@ (I

Detection Capability
Single- Double·
Burst Burst

33 9
33 9
57 17

..

bit Fire code, the total number of check bytes
employed by the Reed-Solomon code varies
depending on factors such as interleave size and
the record (data field) size. Since the record size is
variable (128, 256, and 512 bytes) and more errors
are likely to occur when the transfer to or from the
disk is longer, the amount of protection by the on­
chip Reed-Solomon logic is actually increased for
longer data fields.

Both Reed-Solomon codes use a basic protect
field size and then interleave these fields. Every
Nth byte of a record belongs to the same protect
field. For example, if the number of interleaves is
3, then bytes 0, 3, 6, g, ... are protected by the first
protect field; bytes 1, 4, 7, 10, ... are protected by
the second protect field; and bytes 2, 5, 8,
11, ... are protected by the third protect field.
However, this scheme does not alter or rearrange
the data record in any way. Also, the term
"interleave" used is not related in any way to the
term "Sector Interleaving".

SINGLE·BURST REED·SOLOMON

This code detects single-, double- and some triple­
burst errors and corrects single-burst errors. The
size of the Reed-Solomon code varies relative to
the data field it protects. The basic protect field
size for Single-Burst Reed-Solomon is three
bytes. The number of interleaves is two (128 or
256 byte sectors) or three (512 byte sectors). So,
between six and nine check bytes are generated.
The guaranteed performance of this code is
shown below (see also Figures 1-54, 55, and 56):

Correction Capability #of
Single- Double· Check
Burst Burst Bytes

9 0 6
9 0 6
17 0 9

I)
or

Oouble Burst Error of 6 Bits

..
Single Burst Error 0113 Bits

II480A 1·53

Flgure1·53 Burst Errors

1-65

w e.
oj;

8'
!l
il
dl

II480A 1-54

II480A 1-55

80 -

70 -

60

50

40

30

20

10

0

A = 3330 56-Bit Fire Code

B _ Slngle·Burst Reed-Solomon

C - Double·Burst Reed-Solomon

49

33

22

o
A

128 and 256 Bytes

81

57

25

Sector Size

177'1 Double·Burst
u..I Error Detection

Figure 1-54 Burst Error Detection Comparison

00 .---~

40

30

20

10

A = 3330 56-Bit Fire Code
B = Single-Burst Reed-Solomon
C = Double-Burst Reed-Solomon

25

11
9

41

17

11

o ~ ________ ~ __ ~ __ ~~~ ____ ~ __ ~ __ _U~"_ ________ ~

A B CAB C
128 and 256 Bytes

D Single-Burst
Error Correction

Sector Size

512 Bytes

Double-Burst
Error Correction

Figure 1-55 Burst Error Correction Comparison

1-66

As the table shows, in a sector of 256 bytes, any
single-burst errors with a length of up to 33 bits will
be detected. Note that two single-bit errors sepa­
rated by more than 32 bits will count as a double­
burst error. Alternatively, any two random single­
bursts (double-burst) of up to 9 bits each will be
detected also. This code can correct single-burst
errors of up to 9 bits and cannot correct any double­
burst errors. The table presents the guaranteed
capabilities under worst case conditions. Under
certain circumstances, the code is capable of
detecting longer bursts or even triple bursts.

SectorSlza Detection CapabU"y
('of bytes) Single- Double-

Burst Burst

128 49 17
256 49 17
512 81 25

5

4 3.9

J 3 2.7

"0
C

I 2

DOUBLE-BURST REED-SOLOMON

Double-Burst Reed-Solomon is an enhanced
version of the Single-Burst Reed-Solomon. This
code can detect and correct single- and double­
burst errors. The size of the protect field is five
bytes. So, 10 and 15 check bytes are generated
(two or three interleaves). The lable below lists the
guaranteed capabilities of this code under worst
case conditions:

Correction CapabU"y 'of
Single- Double- Check
Burst Burst Bytes

25 9 10
25 9 10
41 17 15

5acIor Size

[S] Double·Bursl Reed·SoIoman Code

I'2ZI Single·Bursl Reed·SoIoman Code

D 3330 56-Bit Fire Code (IBM) 9480A 1·56

Figure 1-56 ECC Overhead Comparison

1-67

EXTERNAL ECC

The fourth option available to protect the disk data
is External ECC. This option disables all internal
error detection/correction mechanisms on the data
field. The sector ID field is still protected by the
internal CRC/CCITT. The HDC provides the
appropriate command/status protocol to simplify
the connection of external ECC logic (Figures 1-57
and 58). The contrOlling state machine is
contained inside the HDC.

Three lines (ECCl 0, and ECCERR) implement this
controVstatus interface. ECC1,0 present the
status of the HDC to allow the external ECC to run
synchronously. The status is coded in Gray code;
only one bit changes when going from one state to
the next.

In the IDLE (OOB) state no data field of a sector is
written or read. The external ECC should be
inactive.

DATA PREAMBLE 2 FIELD

RG~

ECC,.03 01=RESET X

RESET (01 B) should reset the external ECC to
prepare itself for a ECC process. The ECC
syndrome bits should be preset to the appropriate
value. At the end of the data mark, while reading or
writing the last bit, the status lines change into the
GENERATE (lOB) state.

On the next rising edge of the RD/REFCLK the
external ECC must be prepared to receive valid
data on either the RDDAT or WTDAT lines
(depending on whether RG or WG is asserted).
The external ECC should generate the check
bytes. When reading or writing the last bit of the
data field, the lines change to the CHECK state.

CHECK (11 B) enables the external ECC either to
multiplex the check bytes on WRDAT (WG active)
or to compare the generated check bytes with the
bytes read from RDDAT (RG active). With the
external ECC, a programmable number of check
bytes can be added to the data field of a sector (1-
256 bytes).

DATA

11=GENERATE X 10=CHECK X OO=IDLE

9480A '·57 Figure 1-57 External ECC Handshake (Read Data)

DATA

WG~

X ECC,. ° ~,--__ O_1=_R_ES_E_T_--,X,-___ 1_1_=G_E_NE_R_AT_E ___ -, 10=CHECK X OO=IDLE

WRDAT ~ ________ V_AL_ID_D_AT_A _______ --, '__ _________ _ X
X VALID DATA X EXTERNAL

ECCOUTPUT ____________________ --'

9480A 1·58 Figure 1-58 External ECC Handshake (Write Data)

1-68

On completion of the check byte field, at the last
bit of the last check byte, the status lines change
back to the IDLE state. On the next rising edge of
the RD/REF ClK, the IDLE state will be in effect.
During the last byte of the Postamble 2 field,
following the check bytes, the ECCERR pin will be
sampled by the HDC for an error signal from the
external ECC. If the ECCERR pin is not asserted,
then the HDC assumes the data is valid. If the
ECCERR line is asserted, then the HDC assumes
an error has occurred in the data field.

When operating the HDC in zero-sector interleave
mode together with the external ECC option, the
track format parameters must be chosen carefully,
to allow the HDC to transfer the contiguous
sectors. In the read case, the results of the data
read are not available until the end of the
Postamble 2. Due to this extra waiting period, the
HDC must prepare itseif for the next disk data
operation within the gap. However, the gap is
typically configured to compensate any speed
variations. So, under worst case conditions, this
field can have a length of zero. In order to allow the
HDC to perform zero-sector interleaving, the gap
length (intersector gap) should be extended. The
number of extra bytes, beyond the amount
normally allocated for speed tolerances, is a
function of the system clock and the
read/reference clock (disk clock). This value can
be determined from the formula or the table given
in the "Sector Interleaving" section (value "P").

SYSTEM INTERFACE

For both Slave Mode and Master Mode the system
bus interface can be programmed for byte (BIW
HIGH) or word (BiW lOW) transfers.

Slave Mode

In Slave Mode, the host CPU can access the five
internal registers of the HDC. Ao-A3 indicate the
address of the internal registers. In Byte Mode,
the High byte is accessed if Ao is HIGH and the
low byte is accessed if Ao is lOW. In Byte Mode,
BHE is ignored and the HDC asserts READY to
indicate that it is ready to complete the access.

Master Mode

The HDC is in Master Mode when it controls the
system bus. To request the mastership on the
system bus, the HDC asserts Bus Request
(BREQ). The bus is granted to the HDC when Bus

Acknowledge (BACK) is active. The HDC keeps
BREQ asserted until it releases the bus, after
finishing a DMA burst of programmable length or
when the burst is preempted by removing BACK.

A byte transfer occurs in Word Mode when only
one byte remains to be transferred or when the
system address is odd. The throttling of DMA
transfers on the system bus is controlled by the
Mode Register. The HDC inserts a programmable
number of software Wait States into the DMA bus
cycle. Additionally, it inserts hardware Wait States
until the memory asserts READY.

Upper Address latch Enable (AlEN) may latch the
upper address word (A16 thru A31) in an external
address latch. The upper address is only updated
if a change demands this update, or if the internal
DMA controller starts a new block transfer. If the
DMA burst length is set to the maximum (sector
size) then the HDC updates the upper address at
the beginning of every DMA burst. The upper
address latch may be shared between multiple
DMA devices. If the DMA burst length is less than
the sector size, the HDC splits data block transfers
into several bursts. The upper address is only
updated for the first burst, and in this case, the
upper address latch should not be shared
between multiple DMA devices.

Interrupts

The HDC interrupts the host CPU when it has
completed the initialization procedure executed
after a hardware or software reset or when it has
completed a command chain (CF-bit is set). An
initialization interrupt cannot be disabled. The
interrupt on command chain completion can be
enabled or disabled by the Interrupt Mask bit in the
Mode Register. The interrupt is reset when the
upper half of the Status/Command Register is
accessed.

DISK CONTROL INTERFACE

The Disk Control Interface selects drives and
heads, and controls the head positioning. It is
programmable to provide a floppy-disk type of
interface or to conform with the ST506/412 drive
interface standard.

9590--------------------------~
For the Am9590, the disk control interface can be
also programmed to accommodate the ESDI
standard. With some external logic SMD can be
easily implemented.

1-69

PAUSE

Drive Selection

Drives are deselected when SELEN is HIGH. The
two bits DRSEL1 0 select one of up to four drives.
DRSEL1 0 are v~lid when SELEN is LOW. SELEN
remains low as long as the drive is selected. The
selected drive must acknowledge the selection by
activating DREADY. If SELEN is not acknowledged
within 2 16 clocks, then the HDC assumes that the
selected drive is not present and generates a time­
out error ("Drive Selection Fault" SRB). If FAULT is
asserted after activating DREADY, then the HDC
de-selects the drive and generates a fault error
("Drive Selection Fault" SRB).

For floppy-disk drives, the Motor-On Delay
parameter determines when the HDC will time out
on DREADY. This gives sufficient time to the drive
motor to come up to speed.

Head PosHlonlng

The ST506 and Double-Density Floppy-Disk
format performs Seek operations via the lines
STEP, DIRIN, SC, RTZ, and TRKO. Normal Seeks
pulse the STEP line to move the head to the
desired track. Restore may pulse the STEP line or
RTZ line to move the head to Track O. DIRIN
specifies the direction in which the head should
move on Seek pulses. In Hard-disk Mode, the
HDC pulses the STEP output once, waits for
SC to go inactive (LOW), issues the remaining
STEP pulses at the specified rate (See Step Width
and Seek Dwell), and finally waits for SC to go
active (HIGH), which indicates that the drive has
completed the Seek operation.

SC is asserted by the drive to indicate that the
head has moved to the desired track. Once the
drive has acknowledged the completion of a seek
by activating SC, it must keep SC active as long as
it is selected, or until it receives another Seek
command; otherwise, the HDC issues a drive fault
error. When executing the Restore or Seek
commands, the drive must acknowledge the first
STEP pulse or the RTZ pulse (SC pulsed LOW)
within 2 16 clocks or the HDC will generate a Seek
error.

9590 -------------,
The ESDI interface uses the serial command
interface to transmit Seek and Restore commands.
Before sending a command to the drive, the
Am9590 waits for the COMMAND COMPLETE line
to become active. It then transfers the 16-bit com­
mand word (Table 1-1). A TRANSFER
REQUEST-TRANSFER ACKNOWLEDGE hand­
shake for each bit makes this transfer independent
of drive and controller speed. After sending the
command, the HDC will wait for the drive to
execute the Seek command (implied seek) or
search the IOPB chain for a seek operation on
another drive. COMMAND COMPLETE indicates
that the heads are positioned over the desired
tracks. The HDC will then select the particular head
and wait for the time programmed as HEAD
SETTLE TIME. The data transfer will be started
after COMMAND COMPLETE becomes active.

Write Protect

The Write Protect line is sampled just prior to
execution of a WRITE or FORMAT command. If
the line is HIGH, the command is aborted. This
input is sampled for both hard-disk and floppy-disk
modes. For normal operation in Hard-disk Mode,
this input should be LOW.

1-70

CHAPTER 2

2.0 SOFTWARE

Software Description

Three different software packages have been
written for the Am9580Al90. The 10PB develop­
ment program is designed to introduce the user to
the Am9580A functions. An IBM/PC-DOS driver is
used to give a typical example for an application
program. It is written in "C" and allows most
programs written for the IBM/PC to run. The third
software example involves a BIOS driver that
implements full compatibility to all PC programs.
This software package is written in assembler
language.

All software packages (source and object codes)
are available from AMD and run on the
Am9580Al90 disk controller board for the IBM/PC­
AT.

2.1 The IOPBGENerator

The 'IOPBGENerator' is a software tool that assists
the user in developing Input Output Parameter
Blocks (IOPBs) commands for the Am9580A Hard
Disk Controller. It allows the user to create and
modify commands for the Am9580A on a high­
level basis. No knowledge of the actual "layout" of
the different commands and parameters is
required. A series of menus guides the user
through the various programming steps and in the
assembly of commands and drive specifications.

AHhough 10PBGEN is a high-level programming
tool, the user is assumed to have some knowledge
about disk drives and disk controller operations,
specifically the Am9580A. 10PBGEN familiarizes
the user with the Am9580A by eliminating difficult
bit manipulations.

How to Use IOPBGEN

The software is written for the IBM Disk Operating
System (DOS). It is invoked by the command
"IOPBGEN". ~er initializing the controller board,
the main menu will show up on the screen. To
select single functions from the menu, the cursor
keys move a highlighted rectangle to the desired
function. Upon entering the "CR" key, the
selected function will be executed. This function
can either be a command or a sub-menu indicated

2-1

by a description appearing below the menu line
when it is highlighted. The "ESC" key recalls the
next higher menu level.

Commands such as EDIT generate a form on the
screen which can be filled or modified. The cursor
key allows skipping from item to item on these
forms. Items either must be filled with decimal or
hexadecimal values, or they can be chosen from a
number of options which can be scrolled by using
"+" and "-" keys. All form modifications are done
on the screen, as long as the "CR" key has not
been entered. "ESC" leaves the form without
saving the modifications.

It is possible to store information on or retrieve
information from disk. The "FILE" command stores
and retrieves 10PB chains including drive
parameter blocks. The "MEMORY" sub-menu
provides two functions to save and load portions of
the system memory onto the disk.

Example for an Am9580A/90 Test Program

The following example shows the functionality of
the 10PBGENerator software. It connects a 10
Mbyte hard-disk drive to the Am9580Al90 and
runs a simple test program which includes Format,
Read and Write commands.

First, the drive parameter block for the specific hard­
disk drive has to be set up. Starting from the main
menu of 10PBGEN, the "IOPB", followed by the
"DRIVES" function will generate a form for the
drive parameter block on screen. Assuming that
the physical drive number will be "0·, Figure 2-1
shows a typical layout for a hard-clisk drive with
ST506 interface. The parameters used in this
example may vary for different drives.

A "CR" saves this form and shows an empty form
for Drive #1. "ESC" leaves the form and retums to
the "IOPB" menu.

The next step is to generate some 10PBs (the
actual Am9580A commands) to see if the chosen
drive parameters are correct. The "EDIT"
command calls an empty form for the first 10PB.
After filling one of the 10PB forms, the "CR" key
saves the contents and calls another empty form.
All 10PBs are automatically linked together as long
as no insert (Function Key F1) or delete (Function
Key F2) has been invoked. In this case, the 10PBs

need to be ordered wHh the "RELOCATE"
command. The PG UP and PG ON keys scroll
through the chain of IOPBs. Using the "+" and "_a
keys, an appropriate command for the hard-disk
controller may be chosen. Each command will
show Hs own individual set of possible parameters.

print the lOPB chain
BANK: 0001BOOO-0002AAOO

The Load Parameter function (Figure 2-2) allows
the selection of WAIT, STOP ON ERROR, and
STOP ON SRB options. This function wlll display a
drive number and the source address of the drive
parameter block which may be modified by the
user.

Dr! va Parameters for Dr! va .0

Delay[~ Trk/srfl 01321 RIIC Trk 1 00501 MRP 1 Head 1st I MTR/ISG
G

GAPG sec/TrkG RIiCEnb~ Format I ST5061 FMD B
PADG HD/DvrG EDCP I CRC I Data Size 0 lnt Face I ST5061

prelG Step lid G ECC~ Rtry Cnt G
post1G HeadseG preECC~ Rtry Enb ~
pre2G Seek OW I 0010 I postECC~ Auto Vee ~

post2G RTZEnb~ ECC Len G PC Trk
10050 I

Figure 2-1

Total rOPB' s 8 Filename:dacsamp

Command I Load Parameter I I.D·I 0000 I Address I 0001 B100 I Number 0

Wait I Disabled I

Stop on Error I Disabled I

Stop on SRB I Disabled I

DriveG

Source I 0001 B080 I

L-------------Load Drive Parameter Block------------....I

Figure 2·2

2-2

The next seven IOPBs (Figures 2-3 to 2-9) show
the rest of the small test-program which will format

two different tracks, write two different blocks of
data to the disk, and read them back.

Total rops' 5 8 Filename:dacsamp

commandL.I ___ R_e_s_t_o_r el 1.D·looosl Address 1 0001 B1141 Number 0

Wait 1 Disabledl

Stop on Error I DiSabledl

Stop on SRB 1 Disab1edl

Track Verify 1 DiSabledl

DriveG

L-------------------Restore-----------------~

Figure 2-3

Total IOPB's 8 Filename:dacsamp

Command LI ____ FO_rnta __ t.J1 I. D.I OOOA I Address 1 0001 B128 1 Number 0

Wait 1 Disabledl DriveG patternG

Stop on Error I Disabledl Track 1 0000 I Track Count I 000 11
Stop on SRB I Disabledl HeadG Map Pointer I 0001 B300 I

'--------------------Format.--------------------.J

Figure 2-4

2-3

Total lOPB's 8 Filename:dacsamp

command .. I ____ F_o_rma_ tl I.D.I OOOFI Addressl 0001 B13C 1 NumberD

Wait 1 Disabled I DriveG patternG

Stop on Error I Disabled I Track I 0020 I Track Count I 0001 1

Stop on SRB I Disabled I Head~ Map Pointer I 0001 8300 I

L---------------------~-----------Format:--------------------------------~

Figure 2-5

Total lOPB' s 8 Filename:dacsarnp

command .. I _____ W_r_i_te 1 I .D·I 00141 Address I 0001 B1S0 I Number 0

Wait DiSabledl DriveG Data Mark G

Stop on Error DiSabledl Track I 0000 I RecordCount G
Stop on SRB DiSab1edi HeadG Source I 0001 B400 I

Data Map DiSabledl sectorG

Data Mark DiSabledl

Write Virtual

Figure 2-6

2-4

Total IOPB' s 8 Filename:dacsamp

command!L _____ W_r_i_t_eJ! LD. B Address! 0001 B164 1 NUmberG

Wait DiSabledl DriVeG DataMarkG

Stop on Error Disabledl Track I 0020 I RecordCount G
Stop on SRB Disabledl HeadG Destinationl 0001 B800 I

Data Map Disabledl sectorG

Data Mark Disabledl

Write Virtual

Figure 2·7

Total lOPB' s 8 Filename:dacsamp

commandLI _____ R_e_a_dJI 1.D.1001EI Address I 0001 B1781 NUmberD

Wait DiSabledl DriveG Data Mark G

Stop on Error Disabledl TrackB Record Count G
Stop on SRB Disabledl HeadG Destinationl 0002 0000 !

Data Map Disabled! sectorG

Data Mark I DiSabled!

Read Virtual

Figure 2·8

2·5

Total rOPB' s 8 F11ename:dacsamp

commandL../ ____ R_e_a...Jd/ 1.D./0023/ Address/ 0001 B18C I NUmberD

Wait Disabledl DriveG Data Mark G

Stop on Error Disabledl Track I 0020 I RecordCount G
Stop on SRB DiSabledl HeadG Destinationl 0002 0400 I

Data Map Disabledl sectorG

Data Mark Disabledl

Read Virtual

Figure 2-9

The FORMAT command used in this test program
uses a mapping-list located at memory location
1 AOOH. This list can be generated by using the
"MEMORY" - "MODIFY" command.

The main menu provides an "EXECUTE"
command to execute the assembled hard-disk
controller program. This command calls a sub­
menu that allows the program to be dumped to the
system memory and executed with the "GO" -
"ALL REG" command. Upon completion, a status
line shows if the program was correctly executed.
The status line is an interpretation of the status
register of the Am9580A. In case of an error,
Status Result Blocks (SRBs) are written to
memory. These SRBs can be interpreted by using
the "SRBINT" command; it shows the user which
error has occurred and for which 10PB.

2.2 The DOS Driver

The Disk Operating System allows special
hardware drivers that are loaded during power up.
These drivers can be used by all application
programs that call DOS to do file transfers. Since it
is uncommon for application programs to directly
call the BIOS routines, a DOS driver will work in
almost all cases.

2-6

The advantage of a DOS driver over a BIOS driver
is readability. It is possible to write DOS drivers in a
high-level language such as "C". DOS drivers are
also software loadable, whereas BIOS drivers must
be in system PROM.

The DOS driver written for the Am9580Al90
supports up to two hard-disk drives. When loaded,
the driver will automatically locate the new drives
above the device identifiers (e.g., A, B, C) already
used by the system. In the standard configuration,
the DOS driver automatically assumes a 10 MByte
disk drive with four heads and 306 cylinders. This
can be easily changed in a table in the source
code.

In order to start the DOS driver during power up,
the hard-disk drive must be physically formatted; a
separate program (drvrtest) can be used. The
program also allows the hardware to be exercised
and the basic software routines to be tested.

2.3 The BIOS Driver

The BIOS driver allows all IBM/PC programs to run
on a hard-disk drive using the Arn9580A controller
board. This software is written in assembly
language and supports ST506 and ESDI disk

drives. Therefore, the original list of disk drives
used by the IBM-PC/AT has been modified. The
entry FH is now reserved for ESDI disk drives. Only
one entry for all ESDI drives is required since the
BIOS Driver configures the Am9590 automatically
according to the drive specifications. This is done
by requesting all the necessary information from
the ESDI drive during initialization.

A BIOS driver usually resides in system ROM.
Since it is not desirable to exchange the system
software for the HOC emulation board, there is a
loadable version of the BIOS driver available. In the
load able version of the driver software, the drive
type entry cannot be located in the CMOS
configuration RAM of the IBM-PC/AT. A "setup"
procedure allows a configuration entry that
emulates the boot-up diskette. This program writes
a setup-configuration file onto the diskette from
where it is running. The same diskette must be
used when installing the BIOS driver in RAM.

The procedure will ask for the number of disk
drives (1 or 2) and the type of disk drive. All entries
are similar to the original IBM/AT entries. The
reserved entry FH is used to indicate an ESDI
drive.

Please note that the maximum usable drive capac­
ity is 33 MByte independent of the actual drive
capacity. This is due to a DOS limitation and can be
avoided using special drive partitioning software.

TYPE CYLINDERS HEADS

1 306 4
2 615 4

3 615 6
4 940 8
5 940 6
6 615 4
7 462 8
8 733 5
9 900 15

10 820 3
11 855 5
12 855 7
13 306 8
14 733 7

The BIOS driver itself must be started after system
boot up. The procedure "hdcinstl.exe" installs the
driver and reboots the system. The BIOS driver is
then installed and the hard-disk drive(s) will get the
next available drive identifier(s).

Running the BIOS driver for the first time

If the hard-disk drive used is not formatted at all or
was formatted with a different controller, the BIOS
driver cannot be installed. In order for BIOS to
recognize a hard-disk drive, it must be physically
formatted. In this case, the program "IOPBGEN"
can be used to initially format the disk drive making
it possible to install the BIOS driver.

In any case, it is necessary to format the drive with
the same parameters that the BIOS driver uses.
A physicall format program as provided by IBM
(Service Manual) can, therefore, substitute the
"IOPBGEN" program for ST506 drives. Such a
program also allows the flagging of defects on the
drive media.

After physically formatting the drive, the DOS
procedure ''fdisk'' partitions the drive into different
sections (see DOS manual) and initializes the file
allocation table. After a new warm reset
(CTRL-ALT-DEL), the DOS function, ''format'',
logically formats the disk drive and makes it
available for BIOS.

WRITE LANDING
PRE-COMP ZONE

128 305
300 615
300 615
512 940
512 940

na 615
256 511

na 733
na8 901

na 820
na 855
na 855

128 319
na 733

15 RESERVED-SET TO ZEROS

Table 2-1

2-7

2-8

CHAPTER 3

3.0 APPLICATIONS

3.1 Am9580AI90 Bus Interfaces

The Am9580Al90 Hard Oisk Controller (HOC) is an
intelligent peripheral controller. Its universal bus
interface allows easy interfacing to various bus
types:

• 8-bit and 16-bit data bus width
• up to 32-bit address space
• muhiplexedldemuhiplexed address/data buses
• synchronous/asynchronous buses

A large variety of systems can take advantage of its
advanced features. This applies to minicomputer
systems as well as microcomputer systems based
on popularCPUs, such asthe 8051, Z80, iAPXfamily
of microprocessors (8088, 8086, 80188, 80186,
80286), 680XX, and 320XX microprocessors.

In this chapter, the first section discusses the general
considerations in interfacing with the HOC. It is
followed by a number of specific implementations.

Am9580AI9O
BUS INTERFACE

MEMORY
, , ,
: ,
/lme580AI9O , · · · · cPU · , , _ -

_3-1

3.1.1 General System Bus Application Hints

The following lists the specific functions that need to
be taken into consideration when using the HOC.

Reset

After power-up the HOC requires a positive pulse on
the RESET input to start the initialization procedure.
The minimum width of the reset pulse is 2 clock
cycles. Operating at 10 MHz bus clock, the HOC
takes approximately 200 rns to execute this initializa­
tion procedure. After initialization, the HOC issues
an interrupt request. This interrupt cannot be
masked off by programming the HOC. It is the
responsibility of the system to either respond to or
disregard the interrupt. The interrupt request stays
actiVe until the CPU accesses the Status/Command
Register.

Ifthe CPU attempts to access the HOC registers prior
to the completion of reset, the REAOY line remains
inactive until reset is completed;this causes the CPU
to wait.

~
ESOI

~
Am9582 S1506

[j]
flOPPY DISK

Figure 3-1 Am9580A Bualnterface

3-1

--_. ;-~-., ~-" ~--~--~ -

Interrupts

The HOC interrupts the CPU upon entering the IOLE
state (see Status/Command Register description).
Interrupts except hardware reset interrupt may be
disabled by setting the Interrupt Mask bit (1M-bit) in
the Mode Register. However, the hardware reset
interrupt cannot be disabled this way. The interrupt
request line then either connects to the non-vectored
interrupt input of the CPU or to the input of an
interrupt controller such as the 8259A or Am9519A to
support vectored interrupts. The 80188 and 80186
have on-Chip interrupt controllers.

The interrupt controller must also resolve the inter­
rupt priority in systems with multiple interrupt
sources. Systems employing Active Low interrupt
request bus, driven by open collector gates, can be
supported by interfacing an inverter with open
collector output to the INTR output (Active High,
totem-pole output).

Byte/Word Strap

The Byte/Word (B/W) strap pin selects either a byte
(8-bit) orword (16-bit) interface. Typically, this pin will
be strapped to either Ground (word mode) or Vcc
(byte mode). However, this pin may also be dynami­
cally controlled. For instance, the HOC may interface
to an 8-bit CPU in slave mode, but to 16-bit memory
in master mode; in which case the pin would be
driven to Low (V1L) in slave mode and High (V1H)

in master mode.

Ready is a bidirectional signal. When the CPU ac­
cesses the HOC in slave mode, this signal indicates
that the current transfer cycle may be terminated. It
is essential that this output is connected to the Wait
or Ready input of the CPU because the access time
is variable. It can vary from 2 to 16 HOC bus clock
cycles (timing parameter 106) because the slave
access is internally synchronized to the operation
of the microsequencer.

Note: REAOY has the opposite polarity from that
of the ready input of iAPX Ilprocessors.
Ready must always be connected to the
ReadyIWait input of the CPU.

In master mode this input allows the bus cycle to be
extended for slow memories or peripheral devices.
However, in master mode it may be tied Low perma­
nently either to insert no wait states orto control wait

3-2

state insertion by programming the Mode Register.
The later allows automatic insertion of up to three
wait states in each HOC bus cycle.

Slave Transfers

After reset, the CPU initializes the internal registers
of the HOC to activate command processing. The
register set is kept small (only five registers) to
support a very flexible and transparent, memory
based communication between the CPU and HOC.

The CPU initiates a Slave transfer cycle by asserting
chip select (CS). The slave address bus (!'-a-A.), in
combination with Byte High Enable (BHE), selects
the appropriate register. In byte mode, BHE is disre­
garded and Aa specifies which half of the 16-bit
register is to be accessed. In word mode, BHE and
Aa indicate whether the CPU is performing a word
transfer (both are Low), or a byte transfer to the high
byte (BHE Low, Ao High) or Low byte (BHE High, Ao
Low).

Note: iAPX microprocessors do not provide a
latched BHE.

Upper Address Latch

The upper 16-bit of the 32-bit linear address is
multiplexed on the 16-bit address/data bus. The
HOC updates the upper address when starting the
execution of a new IOPB, and on a demand basis
while executing the IOPB; this minimizes the over­
head of upper address updates.

Each upper address cycle consists of four clock
cycles where the upper address is strobed out during
the first clock cycle (T1). The Upper Address Strobe
(ALEN) indicates that the upper address is stable.
The address may be latched by a standard transpar­
ent latch such as the Am29841 (10-bit latch, ALEN
connected to LE) or a 74LS373 (8-bit latch, ALEN
connected to G).

Note: The upper address latch must not be shared
between devices. The HOC must have its
own upper address latch.

However, the lower address latch may be shared
between devices because the lower address is
updated at the start of each bus cycle. A common
address latch enable can be generated by ORing the
various address latch enables and/or inverted
address strobes.

Clock Requirements

The system clock input is TTL compatible, therefore,
the HOC does not require special clock drivers. At its
highest frequency the HOC demands a 50% duty
cycle. At a lowerfrequency the duty cycle is irrelevant
if the minimum width of both clock High and Low are
satisfied. The system clock must not stop.

Memory Organization of Various CPUs

The Am9580A has a memory interface that adapts to
the memory organization of CPUs such as 8086,
80186, etc. However, it is possible to connect the
Am9580A to other CPUs, such as a 68000, without
problems despite the difference in byte organiza­
tions of the two processors.

For both types of CPU, word boundaries are on even
addresses, the low-order byte is transferred on the
lower part of the data bus and the high order byte on
the upper lines. Therefore, there is no difference
between the two types of CPU when only transferring
data words starting on an even address. However,
when accessing data bytes, there is a difference
between memory organizations, as shown in
Figure 3-2.

015 o
AO=O AORO

WOROOOOO

68000 LOW BYTE I HIGH BYTE

CHAR 1 I CHAR 2

015
AO.1 AO.O

WOROOO02

Am9580A LOW BYTE I HIGH BYTE

CHAR 2 I CHAR 1

948OA3-2

Figure 3-2 Motorola-Intel Byte Order

2

4

3-3

In the following example the CPU is assumed to be
a 68000 processor; the Am9580A is the device with
the Intel memory interface. Assuming the 68000 has
written a byte string into the system memory, the
Am9580A will try to read these data starting with an
even address. It expects the low-order byte on the
lower haH of the data bus corresponding to this
address, and the system memory will put the high­
order byte on the upper data bus. As a result, the disk
controller will fetch invalid data for each byte access.
The same problem occurs for write accesses.

There are several solutions. The most common way
is to use only data word transfers. In most cases this
will be sufficient because only this mode can the
HOC take full advantage ofthe higher speed of a 16-
bit bus. As shown in Figure 3-3, even when using
word transfers, bytes will be written in a reversed
order to the disk media; the HOC always puts out the
low-order byte first.

There are two ways to implement a data byte transfer
when required. Figure 3-4 shows an application that
swaps data bytes by using two transceivers. This
approach works for all applications using only byte
mode. The Am9580A, however, accesses command
words as 16-bit words and not as bytes. As a result
command words are swapped and must be written
by the CPU into memory in a reverse order. This can
be easily done by software.

A

C

E

9480A3·3

68000
MEMORY

B

D

ADR1

NOT SUPPORTED

Figure 3-3 Word Transfers

Figure 3-5 shows a fully adapted interface. Four
transceivers allow differentiation between word and
byte accesses and provide two data paths. One of
them transfers the data straight to the Am9580A
(word transfers), the other one swaps the data bytes
(byte transfers). Control logic enables the different
drivers according to the state ofthe signals BHE and
AO, as shown in the following diagram. AMD has a

new part, the Am29C923, that can accomplish all the
combinations shown in Figure 3-5.

,,_~S~Y~STE~MDrAT~A~1~~~8 __ ~

HDCDATA1~

SE1

BHE AO

L L
L H
H L
H H

Size

word
upper byte
lower byte
reserved

I----<:J:== :EN

L-__________ +-______ -(~==::
HDCDATA7·0

Figura 3-4 SWapping Data Byta.

'v-__ ~SY!.!S~TE!:!iM D~AC!.:TA:w7~.O"-_-,/

HOC DATA 7'()

WORD
TRANS.

SE1

SE2

~~~--, ~-~--, SE3 

SE4 

Figura 3-5 Swapping Data Byta. 

3-4 

CONTROl 
LOGIC 

BACK 

AD 

iii£ 
DEN 

9480A:J.5 



3.2 BUS INTERFACES 

3.2.1 VME Bus Interface 

Meeting DC Requirements For VME 

The VME specification puts some rather stringent 
DC requirements on bus signals. AMD makes a 
family of bus interface parts that satisfy the require­
ment of most of the VM E bus signals. The following 
is a summary of devices that could be used as bus 
drivers/receivers. 

The Bus Grant and the Interrupt Acknowledge daisy­
chain signals need not be buffered because their 
drive requirement is moderate. Other signals, such 
as AS and DS, are buffered by a 74S244. 

As a bus slave, the HDC card must receive an 
address from the VME bus and decodes it to gener­
ate a Chip Select to the Am9580A. AM D's Am29809 
and Am29806 equal-to-comparators are ideal for 
this purpose. In slave mode, the AmPAL22V10 
receives all necessary control signals from the VM E 
bus to initiate the required bus cycle at the Am9580A. 
To complete the cycle, DT ACK is generated by 
buffering the Am9580A READY signal through the 
address decoder, and ACK is output to meet the 
drive requirements of DT ACK on VM E. The Am2947 
provides data transceiver functions necessary to 
drive the VME bus or the Am9580A. The Am29863 
or Am29C9821983 can also be used. 

Two signals must go through a 74LS38 open-collec­
tor AND gate to provide the drive capability and 
proper output type, Bus Request (VBRX), and Bus 
Busy (VBBSY) out of the PAL device. The interrupt 
out of the Am9580A (INT) should be connected to a 
VME compatible interrupt controller. 

VME Address Modifier Lines 

These lines, as specified by VME, allow the master 
presently on the bus to pass additional information to 
the slave it is addressing. Some of the address 
modifier codes are defined by VME to perform cer­
tain functions, while others are user-definable. 
These address modifier codes allow such advanced 
features as system partitioning (Le., privileged or 
non-privileged accesses), memory mapping, or 
sequential access cycles that allow the accessing of 

3-5 

several locations without providing a separate ad­
dress each time. This design shows the address 
modifier lines used that only 15 additional address 
lines need to be decoded. This allows accesses 
such as "short supervisory 110 access". The user can 
easily modify this example according to the require­
ments. 

Handling Bus Exceptions 

The VME speCification provides for a bus time-out 
module that can detect system errors or problems. 
This module monitors DTACK, Bus Error (BERR), 
and also the rising edge on either Data Strobe. If 
DTACK was not asserted, the time-out module will 
drive DTACK and BERR low. The transfer is then 
completed and the CPU is informed of a problem. 

The Am9580A can also use a portion of this feature 
to abort a DMA in progress if a bus exception is 
detected. The PAL device moniotrs the Bus Error 
signal (BERR). If the Am9580A is bus master and 
BERR becomes active at any time, the PAL device 
will suppress any READY signalto the HDC. This will 
force the HDC to time out on a bus cycle. The CPU 
will be notified of this bus time-out error by an 
interrupt and/or a Status Result Block. 

Design of the VME Bus to 9580A 
Interface PAL Device 

In this design, a single AmPAL22V10 provides the 
bus arbitration handshake and most of the control 
signal translation necessary to allow the Am9580A 
HDC to perform both as master and slave on the 
VME bus. The arbitration handshake uses three 
VME signals and two Am9580A signals. To initiate 
the bus arbitration phase to gain bus mastership, the 
Am9580Aasserts its bus request line (BREQ). Once 
the PAL device detects this Signal, it generates the 
VME bus request (VBRX) if there is currently no 
active VME bus grant (VBGXIN). This conditioning 
of the VME bus request is necessary in order to 
prevent the Am9580A from improperly usurping the 
bus from a lower priority device on the bus grant 
daisy-chain. 

After the bus request (VBRX) has been issued, the 
Am9580A bus acknowledge signal (BACK) is gener­
ated upon receipt of the next active VM E bus grant in 



(VBGXIN). SimuHaneously, the VME bus busy line 
(VBBSy) is asserted. This indicates to the rest of the 
VME system that the data transfer section of the bus 
is in use. Also, upon receipt of the bus grant 
(VBGXIN), the bus grant daisy-chain is severed if 
there is a current Arn9580A bus request (BACK). 
This prevents passing the grant down the daisy­
chain and captures the bus for the Am9580A. 

The AmPAL22V1 0 also generates the VM E address 
strobe and data strobes (VAS, VDSO, VDS1) combi­
natorially from the Am9580A read, write, and byte 

AmPAL22V10 

XIN iii'iGxiN IDTiii 
XOUT 

o@t-
VBGXOUT BREO 
VBRX BACK 

USY~ VBBUSY M -
VWRITE BHE RITE 
V;;;S WR 
VDSO AD 
VDS1 

ODTIR 
Cs 

U 

LtoJ 
r-o<l 

C 
I CS 

Am29806/ 

745244 
'--

~-= 
1""7 

~ 
A(1-14) AM(O-5) 

high enable control lines; and the least significant 
address bit (RD, WR, BHE, AO) when the Am9580A 
is in master mode. When in slave mode, the 
AmPAL22V10 generates the read and write strobes 
(RD, WR) from the decoded chip select (CS from the 
Am29S0S/S09) and the VME bus write signal 
(VWRITE). The AmPAL22V10 also generates the 
control for the Am2947 bus transceivers from the 
chip select, bus acknowledge and data transmiU 
receive signals (CS, BACK, IDTiR). The equations 
for this PAL device are shown in Figure 3-6b. 

Am9580AI90 HOC 

DTIR 
BREO 
BACK 

SHE 
WR 
AD NJ 

~ 
Cs A(1-3) -
ALEN 
ALE READY -r c 
AD(0-15) 

~ 2xLE 2X 
Am2947 -Am29845 

2xLE 

I 
A(1·31) 0(0-15) 

94BOA3-6a 

Figure 3--6a Am9580Al90 to VME Bus Interface 

3-S 



DEVICE VME_bus_to-Am9580_interface (AmPAL22V10) : 

"This device performs all of the signal translation necessary to interface the Am9580A Hard 
Disk Controller to the VME bus. It also implements the handshake necessary for an option ONE 
Priority Arbiter. This file can be assembled on AMD's PLPL Assembler." 

PIN 

"Inputs from Am9580A" 
Ics = 1 
breq = 4 

"Inputs from VME bus" 
/vbgxin = 5 

"Outputs to Am9580A" 
back - 14 

"Outputs to VME bus" 
/vas = 15 
/vbrx = 18 

aO = 2 
idtr 7 

/vwrite - 6 

odtr 23 

/vdsO = 16 
/vbbsy = 19 

"Bidirectional Am9580A signals" 
/rd = 21 /wr - 22; 

BEGIN 

"VME arbitration signals" 

/bhe 3 

/vdsl = 17 
vdgxout = 20 

vbrx = breq • /back • /vbgxin • /vbbsy; 

vbgxout = vbgxin • /breq • /vbbsy 
+ vbgxin • vbgxout • /vbbsy; 

vbbsy = back; 

"Bus acknowledge to Am9580A" 
back breq vbgxin' /vbgxout 

+ breq • vbbsy • back; 

"Slave mode signals" 
IF (/back) THEN ENABLE (/rd); 
rd = cs • Ivwrite; 

IF (/back) THEN ENABLE (/wr); 
wr - cs • Ivwrite; 

odtr - Ivwrite • cs; 

"Master ITOde signals" 
vas = (rd + wr); 

vdsO /bhe • (rd + wr); 

vds1 laO • (rd + wr); 

odtr idtr • back; 

END 

Figure 3·6b 

3·7 



3.2.2 IBM PCIXT Bus Interface 

Introduction 

This section describes the interface of the Am9580Al 
82 to the I BM PC bus while maintaining compatibility 
with both the Xebec command set and the IBM PC 
Advanced Diagnostics. This interface is partitioned 
into three sections, starting with the control nucleus 
and branching out to both the PC bus and the hard 
drive interfaces. 

Design 

805119580A Interface 

The function of the 8051 is threefold: 

1. Initialize and handle the boundary and excep­
tion conditions of Am9580A operations. 

2. Provide the Xebec to Am9580A command set 
translation. 

3. Arbitrate and monitor the transfer of data 
between the Am9580A and the IBM PC bus. 

The Am9580A operates in byte-wide and asynchro­
nous READY mode. The 80511 Am9580A interface 
is divided into two sub- sections: the slave mode 
interface and the master mode interface. Both 
modes of operation utilize the same address, data 
and control signals which simply are made up of 
8051 1/0 port control lines (A3-AO, AD07-ADOO, CS, 
BREQ, BACK, RD, WR, READY, INTR). See 
Figure 3-7. 

Slave Mode 

Slave mode operations provide the 8051 access to 
the sixteen byte-wide internal registers of the 
Am9580A. These accesses permit the 8051 to 
initialize and interrogate the state of the 9580A and 
initialize master mode operations for both parameter 
and data transfers. The transfer protocol and timing 
diagram are as follows: 

1. Deassert BACK. 
2. Wait for BREQ to be negated. 
3. Assert CS and A3-AO. 
4. Assert RD or WR and AD7-AO. 
5. Wait for READY to be activated. 
6. Sample AD7-ADO if RD is asserted. 
7. Deassert RD or WR and AD7-ADO. 
8. Deassert CS and A3-AO. 
9. Wait for BREQ to be activated. 
10. Assert BACK. 

o 

2 

3 

3-8 

Master Mode 

Master mode operations are initialized by com­
mands sent from the 8051 to the Am9580A internal 
registers during slave mode operations. There are 
essentially four types of master mode operations that 
are predetermined by the latched high order bits 
(A31 and A30) of the Am9580A master mode trans­
fer address. 

A310R A300R TRANSFER 
MODEl MODE 0 TYPE 

0 0 DATA READIWRITE 

0 1 lOPE READ/SRB WRITE 

1 0 IBM 1/0 DATA READIWRITE 

1 1 IBM DMA DATA READIWRITE 

Table 3-1 

The first two transfer types allow the 8051 to "spoon 
feed" 10PBs to the Am9580A and receive SRBs from 
the Am9580A. With the capability of loading 10PBs, 
the 8051 can initialize DPBs loading, disk data trans­
fer and various diagnostic functions on the 
Am9580A. The second two transfer types are used 
to transfer data from the Am9580A to the IBM PC bus 
and vice versa. These last two operations will be 
described more in the IBM PC interface subsection. 

The transfer protocol and timing diagram for master 
mode operations are as follows: 

1. WAITfor BREQ to be activated. 
2. Assert BACK and Deassert READY. 
3. Wait for RD or WR to be activated. 
4. Sample MODE1 and MODEO. 
5a. Sample ADD-AD7 if RD active and correct 

mode. 
5b. Assert ADD-AD7 if WR active and correct 

mode. 
6. Assert READY. 
7. Wait for RD or WR to be negated. 
8. Deassert READY. 
9. Wait for BREQ to be negated. 
10. Deassert BACK. 



I 
~ 

Co) 

r.b 

.... .... 
iii;; 
iOii 

r--"_-

= -::::: -
~ - 741.S244 = 27&IA -
~ -

...... ,. 
~ 

19! 
r---

III ~--1!-

~ 

;=t.. 
::3:1• 

All 
_A_' --., .. :~ AI. 

AI 'r:3=>-
.. dr-

DD-7 

I~ 

B~ 

.~ 

~TI 

..... 
lOB 

KlW 
AD 

DADO -iQ!i 
m 
AD SB.~ 
AI ACK 

RESET 

AmPAL16l8 
~ 

:~ 

I-- """"'" 
~,.,. 
I-- RESET 

r--
r--

RESET 

74LS 
74 

- 1M 
8M 
OM 
eM 

74AlS652 .... -"---

I--r--" 
f-
I--

74LS257 I---
f-r-
f-Tr-

r*-* 
~ 74LS125hl 

~ 

~ 74 

1AOQ 

DADO 

iOii 
AS 

IT'Tl 
TT 

~ 

i 1 in ... ~ B IIU in .. ...... f-
CM AmPAL22V10 
-It 

I Ii U~U 
-. 

I ... ~ " II l 
u I 

l 11~ U LL .... DTIii 
11051 ~1._ '-- ...... 

iiO .... 11 L-- ADM ..., - ..". 
P2.7 -.... BAal .... BOm 

PIS ... 0-0.7 --Pl4 I -.... 03.1 RESET 
P3.O D1ft .om; 

P2.O P2A .... .---- 1'2.1 .... 11! .... "" ACIC- PU P1~1.3 A ..... 

sa .. T - P3.2 Mi IIIi1I 
RESET - RESET 

1 1 

j-
INrr I8OaO 1IE5ET 

RESET" 

Figure 3-7IBM-PCIXT Interface 



IBM PC Interface 

BIOS ROM 

The BIOS ROM provides the necessary firmware for 
the host IBM PC to initialize, "boot" and perfonn data 
transfer and diagnostic operations to disk drive via 
the disk controller. The code residing in the EPROM 
is mapped into an 8K byte block starting at Segment 
OC800H. The EPROM decode logic, consisting of 
the 1/2 74LS260 and 1/2 74LS13, is connected to 
both the EPROM's and 74LS244's DE signal. The 
74LS244 buffers the EPROM's data onto the IBM PC 
VO expansion bus. 

1/0 

The 1/0 peripheral interface emulates that ofthe IBM 
PC-XT disk controller. The 1/0 addresses are 
mapped into a block of four points starting at either 
300H or 320H, and are comprised of 1/2 74LS260, 

BREQ 

1/2 74LS13 and the AmPAL 16L8 decode PAL. (See 
Figure 3-7 and Figure 3-13.) The breakdown of the 
1/0 ports are as follows: 

The 1/0 read ports, Status and Drive types, are 
comprised of the 74LS257 and the 1/2 74LS125. 
The source of these VO port originates either from 
the 8051 or user selectable jumpers. The data in 
read port is located in the 74ALS652's intemal A-side 
storage register. 

VOPORT READ WRITE 

3XO DATA IN DATA OUT 

3X1 STATUS RESET 

3X2 DRIVElYPE SELECT 

3X3 NOT USED ENABLE 

Table 3-2 

~CK ~~ ____________________________ ~ ______ _ 

A3-AO VALID 

AD7-ADO VALID 

9480"3-8 

Figure 3-8 Transfer Protocol and Timing Diagram for Slave Operations 

3-10 



The 1/0 Data Out write port is also located in the 
74ALS652 but is in the B-side internal storage regis­
ter. A write to the reset 1/0 port causes a strobe to the 
9602 one-shot to subsequently resetting the whole 
disk controller. The select 1/0 port generates an 
interrupt to the 8051 which in turn sets the Busy 
output. The last 1/0 port enables the interrupt and 
DMA requests onto the IBM PC expansion bus. 

DMA 

This subsection shows how the Am9580A, in bus 
master mode, transfers its data that is stored in its 

BREQ .J 
BACK ~ 

CS 

internal RAM directly onto the IBM PC expansion bus 
during an IBM DMA operation. The goals for using 
the following technique are: 

i) To eliminate the counters and MUXs required 
to sequence through the RAM, and 

ii) Reduce the latency of the data transfer. 

Both objectives are accomplished by playing a timing 
trick with the Am9580A's bus interface unit, thereby, 
fully utilizing it on a buffer RAM and DMA counters. 
This in turn reduces the time required to move the 
data from on-chip RAM to on-board RAM to the IBM 
PC bus. 

LJ 

A'J.-AO DONTCARE 

RD or WR 

AD7-ADO ADDRESS DATA 
VALID VALID 

ALEN n 
A3l-A30 ox 
MODEl 
MODE 0 

9480A 3-9 

Figure 3-9 Transfer Protocol and Timing Diagram for Mode Operations 

3-11 



A2 

SAB 

IBMA12-O ~ .-

CAB 

GAB 

12 
IBM A12-{) Am2764A 

L.S240 

SAB SBA 

ALS652 
A B 

CAB CBH 

GAB GBA 

T 1 
Figure 3-11 

SMeMR 
L.S260 

A17 
A16 
A14 A19 
A13 Ala 

A15 

A7 
A6 
A4 
A3 

Figure 3-10 

SBA 

~ .- HDCAD7-O 

CBA 

GBA 
9480A3-11 

3-12 

a 
L.S244 

L.S13 

DADo 

INIT----­
RESET IN --q,_'. 

a 
IBM D7-{) 

9480A 3-10 

+5V 

10k 

Q RESET 

9602 

Q 

9480A3-12 

Figure 3-12 



AmPAL22V10 Equation 

/AEN - DADD· SA01· SAOO ·/IeM • /IOR 

9480A3-14 

CAB - /AEN· DADD· /SAOl • /SAOO· IeM 

RESETIN - /AEN. DADD· /SA01· SAOO • IeM 

SEIECT - /AEN· DADD· SAOl • /SAOO· IeM 

WR - X3 - /AEN· DADD· SAOl • SAOO • IeM 

RDX - /AEN· DADD. /SA01· SAOO • lOR 
+ /AEN· DADD • SAOl • /SAOO· lOR 

ACK - /AEN· DADD. /SA01· /SAOO· IeM 
+ /AEN· DADD· /SA01· /SAOO· IeM 

Figure 3-13 

1 
IBM D3 0 

RESeT 1 
IBM D2 0 

LS257 
1 

iROeiii IBM 01 0 

1 
DRciEiii IBM 00 _0 

OE S 

WR3X3 
RDx SA01 

IBM 05 OE OE 

+5V IBM 04 LS125 

~.~ oRQ3 

IRQ 5 

oRQEN 

Figure 3-14 

3-13 

SW3 
BUSY 

SW2 
CMDlDATA 

SW1 
IwoliT 

SWO 
REQUEST 

oRQ 

IRQ 

iROeiii 



The conceptual flow is as follows: 

1. The S051 accepts an IBM PC command for a 
sector transfer. 

2. The S051 spoon feeds the proper IOPB to the 
Am95S0A. 

3. The Am95S0A internal state controller seeks 
the proper track and reads from it, if so 
desired. 

4. The S051 checks for errors. 
5. If no errors, the S051 signals the IBM PC to 

start data transfer. 

BREQ ~ 
BACK 

READY 

Fii5 

WR 

AD7-ADo 

6. The S051 spoon feeds another IOPB to the 
Am95S0A to start the 512-byte data transfer. 

7. The S051 generates the DREQ to IBM PC. 
S. Transfer begins with the S051 only monitoring 

for errors. The real-time transfer interface is 
handled by the AmPAL22V1 O. 

VALID 

9. After transfer is completed, the S051 checks 
and resolves Am95S0A error conditions, if 
any. 

10. Reports to the IBM PC the complete code of 
the requested operation. 

VALID 

ALE n ~ __________ ~n~ ________ _ 
A31---A30 VALID VALID 
MOOE1 
MODE 0 

DACK 

lOR 

ION 

IBMPe VALID 
07-00 

9480A3-15 

Figure 3-1Slnterface Timing 

3-14 



9480A3-l6a 

IOR--~ ..... 
DACK-....... ~' 

r;)W--~' 
IOR--~ .... 

CLKFF 
C 

HOC BACK· HOC MODEl 

KlSEL-....... ~' 

r;)W--...... " 

HOC MOOEO 
HOCDTR 

HDALE 

LE 
HOCAD15 D Q HOC MOOEl 

HOCAD14 D Q HOC MOOEO 

Figure 3-168 

/AEN DADD SAO 1 SAOO /IOR /IOW /DACK 

HDCBACK HDCDTR /HDCRD /HDCWR /HDCCS HDCA15 HDCA14 

HDCALE 

CEH /HDCBACK /HDCCS· HDCWR 

SAB = /HDCBACK /HDCCS 

SBA = /DACK 
+ /AEN • DADD • /SAOl • /SAOO • MODEl • /MODEO 

GSA = HDCBACK • HDCDTR • DACK • lOR • MODEl • MODEO 

+ /AEN • DADD • /SAOl • /SAOO • lOR 

GAB /HDCBACK • /HDCCS HDCRD 

+ HDCBACK • /HDCDTR HDCRD MODEl • MODEO 

+ HDCBACK • /HDCDTR HDCRD 

DACK 

/AEN DADD • /SAOl • /SAOO 

MODEl • /MODEO 

MODEl - HDCALE • HDCA15 
+ /HDCALE • MODEl 

MODEO = HDCALE • HDCA14 

+ /HDCALE • MODEO 

CKFF = /HDCMODEO • /HDCDTR • lOW • /AEN DADD 

+ /HDCMODEO • HDCDTR • /IOR • /AEN DADD 

+ HDCMODEO /HDCDTR· lOW DACK 
+ HDCMODEO • HDCDTR • /IOR • DACK 

HDCRDY:=VCC 
IF (HDCALE) THEN ARE SET (HDCRDY) , 

IF (HDCBACK • HDCMODE1) THEN ENABLE (HDCRDY): 

Figure 3-16b 

3-15 

/SAOl 

/SAOl 

ISAOO 

ISAOO 



The AmPAL22V1 0 provides the real-time handshak­
ing between the IBM PC and the Am95S0A by 
monitoring both bus control signals and generating 
the READY signal to the Am95S0A. The IBM PC bus 
transfers never have wait states inserted, thereby 
guaranteeing maximum utilization. The transfer 
control protocol and timing are as follows: 

1. The S051 gives the bus to Am95S0A and 
generates DREQ. 

2. The ALE output negates the READY signal. 
3. The RD signal is activated holding data valid 

on the AD7-ADO bus. 
4. IBM PC DACK asserted. 
5. IBM PC lOR asserted. 

6. Data valid on IBM PC data bus. 
7. Rising edge of lOR generates a READY signal 

to the Am9580A. 
S. The Am9580A completes the bus cycle. 
9. The procedure repeats from step 2. 

The difference between DMA read and write cycles 
is that the falling edge of the lOW signal generates 
READY to the Am95S0A in order to guarantee data 
hold time. The logic is quite simple (See Figure 
3-16a) and is realized in the AmPAL22V10 (See 
Figure 3-16b). The remaining terms and outputs of 
the PAL are used as steering control of the 
74ALS652 in order to connect the appropriate 
source and destination buses (See Figure 3-17). 

IBM CMO WRITE ALS652 8051 CMD READ 

HOCBACK.X 
HOCDTR.X 
Hi'iCCS.X 
HDCwR.X 
HDCRo.X 

DAcK.1 
iOW.o 
IOR.1 
MODE1.X 
MODEO_X 
AEN.O 
SA01 =0 
SAOO=O 

IBM CMD WRITE 

DAcK.1 
iOW.1 
iOR.o 
MODE1=X 
MODEO.X 
AEN_O 
SA01.0 
SAOO.O 

ALS652 

ALS652 

Al..S652 

Figure 3-17 Data Flow 

3-16 

HDCBACK=O 
HDCDTR.X 
Hi'iCCS.1 
HDCwR.1 
Hi5CRi5.0 

DAcK=X 
iOW.x 
iOR.x 
MODE1-X 
MODEO=X 
AEN-X 
SA01_X 
SAOO.X 

8051 CMD READ 

DAcK.X 
iOW.x 
iOR.x 
MODE1-X 
MODEO.X 
AEN.X 
SA01.X 
SAOO.X 

IBM DMA WRITE 

DAcK=O 
iOW.o 
iOR=l 
MODE1.1 
MODEO.1 
AEN_1 
SA01-X 
SAOO.X 

IBMDMAREAD 

HDCBACK.1 
HDCDTR.1 
Hi'iCCS.1 
HDCwR=O 
HDCRo.1 

DAcK.O 
iOW.1 
IOR.O 
MODE1.1 
MODEO_1 
AEN-1 
SA01_X 
SAOO.X 

9480A3-17 



ST506/412HP Interface 

The rigid disk interface chosen for this application 
note is the ST506l412HP standard. This interface 
was selected for its popularity, familiarity and low 
system cost but any other back-end drive interface 
may be easily attached (i.e., ESDI, SMD) to the 
Arn9580A. 

Control 

The ST506l412HP Control Interface is very straight­
forward. It consists of two 74LS240 inverting drivers, 
one 220/330 resistor termination package, and one 
34-pin, 0.1" spacing, dual row header plug. The 
connections from the Arn9580A to the header plug 
are virtually one-to-one through the inverting drivers. 
(See Figure 3-18.) 

Data 

The ST506l412HP Data Interface consists of an 
Am9582 DDS that provides the required precom­
pensation and PLUVCO recovery circuitry needed 
to read and write MFM data. The M FM write data is 
buffered by an Am26LS31 RS-422 differential driver 
to the two 20-pin data connectors, one for drive 0 and 
one for drive 1. The MFM read data is taken from the 
two 20-pin connectors, separately terminated with a 
100 ohm resistor and transmitted to the Am9582 via 
an Am26LS32133 RS-422 differential receiver. The 
Am26LS32133's output enable controls are con­
nected to the Arn9580A's DRVO and DRV1 select 
lines to operate in a MUX configuration. This con­
nection eliminates another package for a MUX, but 
restricts the numberof disk drives to two. Lastly, the 
5 MHz nominal ST506 data transfer clock is selected 
as a divide-by-two of the Arn9580A's 10 MHz system 
clock input. The 10 MHz nominal ST412HP data 
transfer clock is taken directly from the Am9580A's 
system clock input. 

74LS240 

9480A 3-18 

DRVO 

DRVI 

HDO 

HDI 

HD2 

HD3JRWC 

STEP 

DIRIN 

WG 

Am9580A 

DREADY 

FAULT 

SEEKCOM 

TRKO 

INDEX 

WRPROT 

RTZ 

I---t-~-WF 

I---t--&-- sc 

I---t-~- TKOOO +5V 

INDEX f-220£1 

~= 

330£1 

GND 

Figure 3-18 

3-17 



Summary 

The concepts of connecting a bus master peripher­
als device to the slave-only IBM PC bus have been 
explored and detailed. The feasibility and simplicity 
of the design minimize both Ie chip count and data 
transfer latency. The design described has not been 
built, but would easily fit on a 5" long IBM PC-XT 
height 1/0 card. The 8051 operation code is beyond 
the scope of this application note. But the hardware 
design does not preclude the implementation of a full 
Xebec command set compatible zero-interleave 
rigid-disk controller using the AmS580A and 
Arn9582 Hard Disk Controller chip set. 

3.3. Microprocessor Interfaces 

3.3.1 8086-Am9580Al90 Interface 

The AmS580AlSO is designed to be iAPX bus com­
patible. Consequently, interfacing the AmS580AlSO 
to the 8086 is straightforward. Figure 3-1S shows the 
basic interface; the 8086 is operated in Minimum 
Mode (MN/MX High). The following list summarizes 
the specific considerations: 

The lower address latches and the data bus 
transceiver may be shared between the 8086 
and the AmS580AlSO. However, the upper ad­
dress latches must be separate. 

• ALE is not three-stated by the 8086 or AmS580Al 
SO. Therefore, the ALE is ORed to control the latch 
enable of the shared lower address latch. 

• The slave interface of the AmS580Al90 requires 
demultiplexed addresses and control signals. CS 
is decoded from the latched address. A ... is con­
nected to the latched address bus. 

• The interrupt request is connected to an interrupt 
controller because the 8086 does not support non­
vectored interrupts directly. Interrupt request must 
not be connected to the NMI input of the 8086 
because the Am9580Al90 generates an interrupt 
which cannot be disabled immediately after reset 

• READY is bidirectional. In slave mode, it must be 
connected to the ready input of the CPU to be able 
to stretch the slave access cycles. 

• The 8086 and the Am9580AlSO are driven by the 
same clock. It is suggested that the supplied clock 

3-18 

should be verified to satisfy the frequency specifi­
cation and the High and Low width. With the 8086 
this may not be the case because the 8086 de­
mands a clock with approximately a 33% duty 
cycle. 

3.3.2 8088-Am9580A/90 Interface 

Figure 3-20 shows the 8088 to Am9580A/90 inter­
face operating the 8088 in Minimum Mode. This 
interface is almost identical to the 8086 to AmS580Al 
90 interface outlined in Section 3.2. The only differ­
ences between the 8086 and 8088 are: 

• The 8088 has an 8-bit data bus, therefore, the data 
bus transceiver is now 8 bits, and the AmS580AlSO 
is strapped to byte mode (BIW High). 

• The memoryllO line has the reversed polarity. A 
NAND generates a memory request while the 
Am9580Al90 is bus master. 

3.3.3 80186-Am9580A/90 Interface 

Figure 3-21 shows the 80186 to AmS580Al90 inter­
face. This interface is similar to the 8086 to 
Am9580A/90 interface outlined in Section 3.2. Since 
the 80186 incorporates control logic, such as a clock 
generator, chip select decoders, and an interrupt 
controller, it is possible to lower the interface device 
count. The differences are as follows: 

• The 80186 has on-Chip memory address decod­
ers. However, this internal logic must be comple­
mented by external logic to cover the case when 
the AmS580A/90 is bus master. 

• An on-chip peripheral select decoder(PCS output) 
provides the chip select (CS) forthe Arn9580AlSO. 

• The interrupt request of the Am9580Al90 may be 
connected directly to one of the interrupt inputs of 
the 80186; the 80186 has an on-Chip interrupt 
controller. 

• The on-Chip crystal oscillator provides a TTL com­
patible clock for the Arn9580A/90. Since the pro­
vided clock (CLKOUT) has approximately a 50% 
duty cycle, the timing is relaxed when compared to 
the clock provided by the 8284. 

• Since the 80186 has a reset-out output, it is used 
to reset the Am9580Al90. 



A 16-19153-6 LATCH Al6-19 

" -BWE/87 LE OE -
VCCl 

MNIMX f I 

.. 
AOO-15 --V LATCH ~ 

8086 
lE OE 

AO-15 

ALE :...u + V 

8284A 
READY -to READY --J-.. TRANS- ~ ~ '- RES WR - ----v CEIVER 

~ 
RESET r-- H RESET AD - VCC 

ClK .... ClK DEN .,. J -=c DI'IR > ROY ~ 
r+ MliO 

00-15 

HOLD HlDA 

BREQ BACK 

RD =: 4 RESET WR 
VCC ALE 

SHE -< i5Eiii 
DT/R 

'-----< --- ClK 

Am9580A 
A ---" ~ 

ReAoY READY AOO-15 LATCH I 
(FROM MEMORY) 

lE OE 

ALEN t r 
INTR INTERRUPT CONTROLLER 

A 

A~ ... 
VCCl A 

,.;s 
DE- .. 

Biii Cs CODER 

.¢. 

9480A3-19 

Figura 3-19 8086-Am9580A/90 Intarface 

3-19 



"- "-
A16-191S:Hl LATCH A16-19 

~v 

BWE/S7 LE OE f-----
vccL 

MN/MX 
~ I 

... "- "-
A6-151AOO-15 r--v' LATCH =.> 

8088 " 
LE OE 

AQ-15 

ALE "-U ' ~ 
8284A 

~ A 

:::) READY f---o READY VCC TRANS-
T- RES '!YB t-- r--v' CEIVER ... 

~ 
RESET I--~ RESET RD I--

CLK f--. CLK DEN 
, 

T -=c RDY DT/R 

00-7 

101M ;=D 
HOLD HLDA 

wiD 

r 
I 
1 

BREQ BACK 

RD 
~ 4 RESET WR 

=[ ALE 
BHE f.--
DEt:! 

--. CLK DT/R 

Am 9580A 
4 

READY READY ADQ-15 
~ LATCH 

(FROM MEMORY) 

LE OE 

ALEN 
, 

i 4> 
INTR INTERRUPT CONTROLLER 

AQ-3 

VCCL A 

AlS DE- ... 
BJW cs CODER 

VCC! 

9480A 3-20 

Figure 3-20 8088-Am9580Al90 Interface 

3-20 



A 16-191S3-e LATCH A16-19 

~ BWE/s7 OE I---lE 

T -. f 
80186 

... 
AOO-15 

r-v' 
LATCH ;:::::) .... 

A0-15 

r----- PCS lE OE 

VCC~ 
ALE :..v + V 

~ RESET ~ TRANS- Vt- ~ WR - ~ CEIVER r'-r-
RES AD -

00-15 

....... 
+ f ~ ClKOUT DEN 

DT/R 

???? 

HOLD INT HlDA 

BREQ INTR BACK 

RD 
I : -- RESET WR 

VCC ALE 

~ 
---I ClK BHE 1---+ 

DEt::! 
? DT/R 
'---

Am9580A 
4 

READY 
-- L-...J\, 

LATCH READY AOO-15 
(FROMM EMORY) 

------t Cs 
.... v 

lE OE 

ALEN + r 
.A 

A<l-a ... 
VCCL 

AiS 

BiW 

.!. 
9480A3·21 

Figure 3-21 8086-Am9580A/90 Interface 

3-21 



3.3.4 80286-Am9580Al90 Interface 

Figure 3-22 shows the 80286 to Am9580Al90 inter­
face. The major difference to the previous applica­
tions is the demultiplexed address and data bus of 
the 80286. Three latches extend the 80286 address 
timing to meet the 8086 bus specifications, the other 
three latches are used to demuHiplex the AD-bus of 
the Am9580N90. Other specific considerations are 
listed in the following: 

• The 82284 clock generator provides two different 
clocks. One of them is used to drive the 80286. The 
other clock (half the frequency (PCLK)) is con­
nected to the Arn9580N90. 

• The RDY line of the Arn9580N90 is a bidirectional 
signal which must be connected directly to the 
system READY. 

• In master mode the RD and WR signals of the 
Am9580Al90 drive the system bus signals MRD 
and MWR. The 80286 is disabled during this time. 
In slave mode, the two bus drivers for these signals 
are disabled; the HDC signals, RD and WR, which 
are now inputs for the Am9580Al90, are driven by 
the system bus signals lORD and IOWT. 

• ALE is not three-stated by the Am9580N90 nor by 
the 80286; therefore, both are ORed to generate 
the system ALE. 

3-22 

3.3.5 68000-Am9580A Interface 

Figure 3-23 shows the 68000 to Am9580A interface. 
Some external control logic is necessary to adapt 
both devices. The 68000 has a demultiplexed data 
and address bus ,whereas, the Am9580A needs a 
multiplexed bus interface. Three latches demultiplex 
the Am9580A data bus. Two Am29841s store the 
lower 16 bits of the address and are controlled by the 
ALE (Address Latch Enable) signal, another 
Am29841 latches the upper 8 bits of the address and 
is controlled by the ALEN (Address Latch Enable N) 
signal. 

In slave mode, a CS (Chip Select) signal is generated 
by an address decoder. The address inputs, A 1 to A3 
of the Am9580A, are directly connected to the 68000 
addresses A, to A. and allow to access the internal 
registers of the disk controller. The input AO is 
grounded because the slave mode uses only word 
accesses. 

A single PAL device (AmPAL22V10) generates all 
the necessary control signals in slave and master 
modes. In slave mode-indicated by BGACK (Bus 
Grant Acknowledge) Inactive-the 68000 signals 
RIW (ReadlWrite), LDS (Lower Data Strobe) and 
UDS (Upper Data Strobe) are translated into RD and 
WR signals for the Am9580A. The line BHE is kept 
LOW in slave mode because slave accesses are 
always word transfers. 



+ 
ARDY 

,..------1 PCLK 82284 
.--------1 RESET 

dl~liiillil 
82288 

,..-----il-+++-I MliO MRDCr-----------~----~MRD 

MWTC MWT 
MIlO IORC lORD -

§9 1+-1-+++--1 §9 IORW IOWT 
S1 S1 

~ RESET READY 1+1-+_1_+-1 REAoY ~~~ _ ALE 

DTii'i 

80286 

HOLD 

CLK eLK 
AEN 

> 
~~--4--VC-C~~_r----_+_I_+_-----~--_+--------_+_r--------.BHE 

LE 

AD-23I--____ .----.-__ ,..,-r_---,..11 ~TCH 
"--~OE 

.----+---1---l-~-~ TRANS-
1/.11''--'--'-__ -'----'-__ -'--___ )-..." CEIVER 

00-15 "\.r"T'"'""T--' 
HLDA " I~I~ v 

+1 

I ~ADDR. 
24 

'"Ir--,...-r--I-l-r-1r, v/) DATA 

16 

... B-REJ.....Q---BA.JI~:..K., l --
I 

I 

4 RESET 

--. CLK 

Am9580A 

-

ALEI--++-~ 
~ >-

Ri51--++-~ 
WRr--++-l 

DEN I-­
DT/Rf--

.11_ 

OE LE 

~ LATCH I 

ADO-7 AO-7 

L 
RDY ---+----f RDY ADD-15 H 

OE LE 

LATCH -::/= SYSTEM 

T 

9480A3-22 

16 

INT r------ INTERRUPT 
CONTROLLER 

AO-3 

4 

ALEN I---------~ 

AD6-15 
L-...,----I 

DE :t=:> LATCH 

ADO-7 LE 

r 
CS l~ I 

DECODER~ 

Figure 3-22 8086-Am9580Al90 Interface 

3-23 

A6-15 

A16-23 



ADDRESS BUS DATA BUS 
;.. /' ;.. 

cs 

- 2X ~ 
.. 

Al6-23 AOO-15 - {} " 
Am29841 

" 
OE lE I CHIP SELECT L- ALEN 

DECODER .--- ALE 

lE 

- 1t .. 2X 

A 
AO-15 Am29841 

68000 OE Am9580A 

A. 
015-00 

BACK 

A3 

> A2 
A1 

r. AO 
5'i'iiCK 

.~ 
REAi3Y 

AmPAl22V10 
iiii BR BREQ BREQ 

iiGACK ~CK Ri5 Ri5 
iiG BG WR WR 
As As BHE BHE 

LDs LDs ALE 
Ui5S Ui5S 
RiW RiW DTR OTR 

- ... BGAcKi 

Vee 
IPLO 
iPli 
ru INTR 

BiWAiS 

0 .¢. ! Vee 

I~ I~ I§ I§ I~ 
9480A3-23 

FIgure 3-23 6800G-Am9580Al90 Interface 

3-24 



The two-wire bus exchange protocol of the 
Arn9580A (BREa, BACK) must be translated into 
the three-wire protocol (BR, BG, BGACK) of the 
68000 processor. The timing diagram in Figure 3-24 
shows the sequence of the bus exchange. The 
Arn9580A requests the processor bus by activating 
its BREa (Bus Request) line. The control logic 
immediately asserts a BR (Bus Request) signal to 
the 68000. It then waits for the CPU to answer with 
the signal BG (Bus Grant) that indicates that the 
processor will finish the current operation with the 
next rising edge of the AS (Address Strobe) line. This 
event causes the control logic to generate a BGACK 
(Bus Grant Acknowledge) signal to notify the 68000 
that the HOC is the new bus master. The same 
inverted signal also indicates to the Am9580A that 
the bus has been released (BACK, Bus Acknowl­
edge). The BGACK line is fed back into the PAL 
device to provide the BR 20 ns of hold time required 
by the 68000. The Am9580A then becomes the new 
bus master. 

In master mode, the timing of the disk controller 
signal (ALE) must be adapted to the AS timing that a 
68000 system requires. If the system memory disre­
gards the AS signal, or uses it to latch the address 
internally, AS can be connected to ALE in master 
mode. If, on the other hand. the memory uses the AS 
line for timing purposes, such as "start memory 

BREa 

BR 

cycle", the timing of the ALE Signal must be modified. 
This modification prevents the AS line to go LOW 
before the first ALE pulse and during an upper 
address update (ALEN). The following timing dia­
gram shows the relationship. 

After finishing the OMA transfer, the Am9580A re­
leases the bus by deasserting the BREa line. This 
causes the PAL device to drop the BGACK line and 
the 68000 regains control of the system bus. 

3.3.6 NS32016 Interface 

The following application note shows the interface 
between the Am9580Al90 and the NS32016 CPU 
(Figure 3-25). The NS32016 processor has a multi­
plexed address-data bus like the HOC. Therefore, 
the Am9580A or Am9590 can be directly connected 
to the CPU bus. In order to generate the upper eight 
bit of the address, the HOC requires a latch, used 
exclusively by the Am9580N90. This latch is con­
trolled by ALEN and will be enabled if the HOC is in 
control of the system bus (BACK active). 

One PAL device AmPAL16L8 generates all the 
necessary timing signals in slave and master modes. 
(See Figure 3-26.) 

\-------

--..... ----,.." 

'-+--f .... -----II 
9580 I 68000 

BACK 

Figura 3-24 Bus Requast Timing 

3-25 



w 

~ 

I 
~ 

rno~ 

PSi, 

~= CWAiT ,em II , 

~rnl "~F==========4 
~ i I~ ; I~I! 

NS32082MMU .... 
d PH12 

lilll~ ~ ~I~I! I~ 
Pml ...g 

TIR 

:=:::I bU=====+========n=~T'1_T 
-- I 

C8ICU 

8= 
m~ Ii 

~ '~ 

wm:~~~~~~~~~JL __ ~ PIlI ..... 
~.... Ci 

4lk 
4::J-o 

Figure 3-25 NS32016-Am9580AI9O Interface 

M ADDAE88 BUS 

AD 
Wii 
AIlS . 

HIE 
lID 
IISf 
em. 
CW.iiiT 
WAlft .... "iiER 



Slave Mode 

In slave mode, the CPU addresses the HOC regis­
ters using the address inputs Aa.3. Since the HOC 
interface is selected as a word interface, these 
accesses will be 16 bits wide. Register accesses to 
the HOC can have different length, depending on 
when the HOC presents the selected register onto 
the bus. In order to adapt the speed, the REAOY 
signal (output of the HOC in slave mode) is con­
nected to the CWAIT line of the NS32201 TCU. 

PAL-Equations: 

/* 
/* 
/* 

PAL AM95BO - NS32016 

£device 16LB; 

*/ 
*/ 
*/ 

Master Mode 

In master mode, all timings are generated by the 
Am9580Al90. Both the NS32016 and the HOC have 
a four-clock bus cycle. The timings ofthe RO and WR 
cycles are only slightly different between the two 
processors. If the memory shared between the 
devices is running asynchronously, the RO and WR 
signals can be directly interconnected. 

£pin /PAV - 1 , /CS95BO = 2, 

ROY - 3 , /ROTCU - 4, 
/WRTCU - 5 , /HIDAO = 6, 
ALE = 7, 

/* INPUTS */ 

/ADSOUT - 12 , !RDOUT - 13, 
/WROUT - 14 , /CWAIT - 19, 
/READY - 15 , /WRBO - 16, 
/ROBO - 17, 
GND - 10 , VCC - 20; 

equations 0 
a 

enable (/ADSOUT) ; 
ADSOUT - PAV + ALE; 

enable (/ROOUT) ; 

ROOUT - RTCU + 
ROBO * HIDAO 

enable (/WROUT) ; 

WROUT - WRTCU + 
WRBO * HIDAO 

enable (/CWAIT) ; 

CWAIT - CS95BO * /READY * ROBO + 
CS95BO * /READY * WRBO; 

if (HIJ\DO) enable (/READY) ; 
READY = /ROY; 

if (HLADO) enable (/WRBO) ; 
READY = /WRTCU; 

if (HIJlDO) enable (/ROBO); 
ROBO = /ROTCU; 

/* OUTPUTS * / 

/* BIDIRECTIONAL */ 

/* POWERSUPPLY */ 

PAV VCC 

Cs9s8O CWAiT 
ROY nc 

RDTCU Ri580 
WRi'Cu WRiiO 

HLDAO READY 
ALE WROUT 

nc Ri5Qij'f 

nc ADSOUT 
GND nc 

9480A3-26 

Figure 3-26 

3-27 



The READY signal is an input for the HOC in master 
mode. The PAL device switches the ROY output of 
the NS32201 TCU onto this signal so that wait states 
will be inserted by the Am9580N90 whenever nec­
essary. 

The BREQ signal is being inverted and connected to 
the .!:!.Q1l2 input of the CPU (open collector). The 
HOLDAO output of the NS32082 is used to generate 
the BACK signal for the HOC. This application 
assumes no further OMA devices. 

Am9580Al90 PCEN 
WGt---1 
RGI---~ 

AMCt---t 
WRDATt---r AMF 14----1 
RDDATi4---l 

RDiREF 1--_--1 

Am9582 

3.4 Interfaces 

3.4.1 The ST506/412 Am9580A190 Interface 

The Am9580A and the Am9590 connect to the 
various types of disk drives in a very straightforward 
way. Figure 3-27 shows a typical interface for four 
ST506 disk drives. The interface consists of two 
connecters: The control cable carries all the control 
signals from and to up to four disk drives; the radial 
cable is exclusive for each drive and carries the data 
Signals driven differentially. 

Drive 1 

Drive 2 

~~~~~f=======~~~~========~J 

STEP~~~~~~~~~~~~~~~fC;:~~
DIRIN

WG
RWC
HSO
HSl
HS2

FA~~~~:~:::::.t~=a=Y=OIi=::::::::::::::::::::::1
~ ~ YlI-:7""'4L"::"S1-39~---------t
TRKO

WRPROT INDEX
SEEKC

Figure 3-27 Typical ST506 Interface

3-28

9480 ... 3·27

All the control'lines to the disk are directly generated
by the HOC. Only 48 rnA drivers are required to drive
the lines. The signal lines coming from the disk drive
need to be inverted by hysteresis receivers like the
74LS14 or equivalent.

The HOC generates two Drive-Select (DRSELo. ,)

lines and a Select-Enable (SELEN) signal. Those
can be used to generate the individual select lines for
the four possible drives. Note that the Drive-Select
lines are static signals and must be qualified with
SELEN. In Figure 3-27 a 74LS139 generates the
select signals for the drives.

For an ST506 only application (Figure 3-28), only the
Read-Data signals coming from the disk drive must
be multiplexed before connecting to the Am9582.
This can be done either by using two separate
Am26LS32 line receivers or by using two three-state
gates as shown.

Am9580Al90

PC EN PC EN
WG WG PCDLY1
RG RG

AMC AMC PCDLY2
WRDAT WRDAT CFIL AMF AMF
RDDAT RDDAT

RD/REF ~Jf{§Et< MFMRDD
S"rrm ~ MFMWRD

9480A3-28

3.4.2 The ST506/412 and Floppy Disk Interface

If an additional floppy interface is desired, Figure
3-29 shows a possible configuration. Even though
different data rates are required for hard disk and
floppy mode, a single Am9582 can accommodate
both frequencies. The data separator locks onto a
new frequency within less than 1 ms. This allows the
switching between the two different drive types with­
out adding any delay. This allows the using of a
simple multiplexer to select the appropriate clock
rate depending on the drive selected.

The same multiplexer (74LS153) can be used to
select the Read Data input from the drive. If the
floppy drive does not have a DREADY output, this
signal must be activated whenever a floppy drive is
selected. A 74LS38 open collector gate do this task
as shown assuming that the floppy drives are located

Figure 3-28 Controlling 4 Hard Disks

3-29

at drive addresses 2 and 3. The same design can
activate SC in floppy mode, if there is nowappropri­
ate signal coming from the drive.

3.4.3. The ESDI Interface

Figure 3-30 shows a typical ESDI interface using the
Am9590 HOC. All the signals required on the control
cable are logically and directly connected to the
controller; only buffering is necessary. No special
attention needs to be paid to the serial command!
status interface since it is handled by the Am9590.

There are some signals coming from the disk drive
that need to be multiplexed. Those signals are: Read
Data, Read Reference Clock and Command Com­
plete. Two dual 4-to-1 multiplexers (74LS153) can
switch these signals using the Drive Select lines as
select signals.

Set-up and hold time requirements on the ESDI
Interface force the RD/REFCLK to be inverted.

Am9580AI9O Disk ControllStalus

Am9582

3.4.4 The ESDI and ST506 Interface

The basic effort in combining the ST506 with the
ESDI interface is multiplexing different signals. As
shown in Figure 3-31 the control connectors in
ST506 and ESDI are layed out so that the signals
which are common to both interfaces have the same
location on the cable. The remaining signals have
different meaning depending on the interface. The
Am9590 switches these signals the same way, the
interface defines them, e.g., the STEP output in
ST506 becomes the TRANSFER REQUEST output
inESDI.

The only exception is the RG signal in ESDI. If the
ST506 interface is selected, this line carries the Drive
Select #4. The easiest way to solve this problem is
using the jumper option as shown in Figure 3-31.

The radial cable carries signals that must be multi­
plexed, as described under the ESDI interface de­
scription above. In addition there is some circuitry
required to select either the Am9582 as a signal

MFMRDD 1+---+---1-1
MFMWRD~--+-~

Figure 3-29 ContrOlling 2 Hard Disks and 2 Floppy Disks

3-30

source for the HDC or the ESDI drive. Signals that
need to be switched are: NRZ (MFM) Read Data,
NRZ Write Data, AM F (Sector), Reference Clock and
Command Complete. The fact that the Am9582
three-states all its output signals, when not selected,
helps to implement this logic. The multiplexers used
(74LS253) can also be three-stated.

A PAL device (AmPAL16L8) uses the inputs DSO,
DS1 to decide what drive is selected. Four selectable
jumper blocks allow to configure each drive for
ST506 or ESDI.

For an ST506 drive, the ESDIEN output will stay
inactive, thus enabling the Am9582. The multiplexer
outputs REFCLK, COMCOMP and NRZRDDATwili
be three-stated as well as the PAL outputs AMF and
NRZWRDAT. Therefore, the Am9582 drives all
these signals as required in a standard
ST506 application.

If an ESDI drive is selected, the Am9582 three-states
its outputs since the ESDIEN signal is driven active

Am9590
WRCLOCK

WRDATA

Command Complete

Read'REF/clock

Read Data

... ~

by the PAL device. All the ESDI signals are active
now and directly connect to the Am9590. Please
note that the RDDAT lines coming from the disk
drives are inverted before the multiplexer. This has
been done to use the three-state feature of the
74LS253. The easiest way to achieve the inversion
is to swap the inputs of the Am26LS32 differential
line receivers.

The application shown in Figure 3-31 also allows the
CPU to request the drive type (ST506 or ESDI). This
allows the driver software to automatically adapt to
the different drives. A Request Drive Type signal­
usually a decoded 1/0 address-enables the Drive
Type output. Depending on the status of DSO and
DS1, the Drive Type line will carry the status of one
of the jumper inputs. This is possible because the
Drive Select lines of the HDC are static signals
independent of a disk access. In order to retrieve the
correct status, the software has to do a dummy
access to the desired drive (e.g., a RESTORE
command) and a subsequent read from the Drive
Type port.

-

I ~ - t--
~r-

===
~ ~ - I--

74LS I r-- r-
153

~
I ~ ~ - I---

~
..r2

74LS= ~ - t--
153 r--

-

r---I DSELO-1 [> .. r--
Command Unes

r

<J

Figura 3-30 ESDllntarfaca

3-31

3.4.5 The ESDI, ST506 and Floppy Disk
Interlace

This interface (Figure 3-32) works essentially similar
to the ESDI + ST50S application; however, there are
two modifications required. First, disk drive #3 is
designated as a floppy-disk drive and, secondly, the
input frequency for the Am9582 must be switched
between floppy (4 MHz) and hard disk (5 MHz)
speed. Replacing the PAL device AmPAL 1SL8 with
an AmPAL 1SR4 allows the two clock rates to be
generated by dividing an input clock of 20 MHz down.
This is possible because the Arn9582 does not
require a 50% duty cycle clock input as long as the
minimum high-and low-time of the clock is
not violated

3.4.6. A Storage Module Device (SMD)
Interlace

This section describes the Arn9590 drive interface
adapted to a Storage Module Device type of drive
(SMD). The Storage Module Device (SMD) interface

is one of the oldest standardized Winchester disk
drive interfaces available. Because of its larger size
(8" and 14"), the Winchester drive has two Significant
advantages over other types of drives. They are:

1. Larger storage capacity, e.g., in terms of number
of bytes. Some 14" drives now boast greater
than one Gigabyte of storage capacity.

2. Fasttrack-to-track access and short average ac­
cess time.SMDs normally have1.5 milliseconds
track-to-track access time, with average seek
times of 20 milliseconds or less.

Both factors have led to a migration of SM D drives
from large mainframe computers to minicomputers,
and, in some cases, high-end microcomputers.
When manipulating large data bases such as busi­
ness transaction files, the fast drive characteristics of
the SMD disk drives allow faster system response.
This has led disk drive manufacturers to increase
SM D performance from 9.S MHz all the way up to the
new HSMD and ESMD interfaces, 19.2 MHz and 24
MHz respectively.

AmPAL ~~ ~tt saECT 16L8
RG

~
WROATA- WRCLOCK ...

DATA 0-3 ,...--
050.051 ---"054

~ ESDI EN n I - H I-
Am9590 ~

G ~ 74LS
COMMAND -- 253 ~ COMPLETE saENO --I I-

Am9582 I == - MFMlREAD r-

~ r-- DATA --I I-
2

+
-

X1 -
€) G ~~ ~ I-r 74LS

RD/REFCLK 253 '--

NRZlRead Data -
DsaD-1 I> - ~

COMMAND LINES ~r <1
054

'---

9480A3-31

Figura 3-31 ESDI-ST506 Intarface

3-32

PAL Equation AmPAL16L8
RG - (input combinatorial)
S[3:0] - (input combinatorial)
SELECT - (input combinatorial)
OSEL[1: 0] = (input combinatorial)
/SELENI- (input combinatorial)
/SELENO- (output combinatorial,
OATA[3:0] = (output combinatorial, three-state)
ESOIEN - (output combinatorial)
OS4 - (output combinatorial)

IF (S[0]0/OS[O]0/OS[1]oSELENI) THEN SELENO - TRUE:
IF (S[1]00S[0]0/OS[1]oSELENI) THEN SELENO - TRUE:
IF (S[2]0/OS[0]00S[1]oSELENI) THEN SELENO - TRUE:
IF (S[3]oOS[0]00S[1]oSELENI) THEN SELENO - TRUE:
IF (/S[0]0/OS[O]0/OS[1]) THEN ESOIEN - TRUE:
IF (/S[1]oOS[O]0/OS[1]) THEN ESOIEN - TRUE:
IF (/S[2]0/OS[0]oOS[1]) THEN ESOIEN - TRUE:
IF (/S[3]00S[O]oOS[1]) THEN ESOIEN - TRUE:
IF (SELECT) THEN ENABLE OATA[3:0]
OATA[3:0] = S[3:0]:
IF (ESOIEN) THEN OS4 - OS[0]00S[1]:
IF (SELENO) THEN OS4 - RG:

Figure 3-31a. ESDI-ST506lnterface PAL Equation

Am PAL ~~~~ SELECT
20R4

~ DATA 0-3

.~ 20MHz
ESDIEN f1 DSO,DSl

Am9590 SEmi G

74LS
COMMAND 253
COMPLETE

t
Xl

.....--- Am9582
I--

I- I-

r--

2f
G

74LS
RD/REFCLK 253

t
READ DATA

DSELO·l ...
~

COMMAND LINES

9480A3-32

Figure 3-32 ESDI-ST506 Floppy Interface

3-33

WRDATA - r-WRCLOCK

.--
~[4: r- I-r-¢ r-

"--

II
~-
r- [4: I- l-r-¢

'"--.--.....

~
~

r--
t- t-

L.-..-

~

I>
<I

I-- I--

'---

,..-

I> .. I-- -...
<I

""---

AMO started the development of the Am9580A Hard
Disk Controller (HOC) a few years ago. The Original
Am9580A was meant to address the Iow-perform­
ance, high-volume ST506 and floppy drive markets
(both were soft-sectored). Several early design
choices, however, easily made the Am9580A a natu­
ral to handle the SMO and newer ESDI markets.

Those design choices were:

1. The ,Am9580A neither generates nor detects
Address Mark (AM) but used Address Mark Con­
trol (AMC) and Address Mark Found (AM F)
handshakes to synchronize Its internal data
state machine.

2. Read and Write data are not encoded but Non­
Retum to Zero (NRZ) form is used.

PAL Equation AmPAL20R4
OSC - (input clock)
S[3:0] - (input conbinatorial)
SELECT - (input conbinatorial)

Those two design choices allowed the Am9580A to
address new SMD and ESDI markets, both of which
require the foregoing capabilities. The Am9580A is
for the soft-sector, double-density floppy drives,
ST506, and limited SMD drive Interfaces. The
Am9590 is meant to maintain support for double­
density floppy drives and ST506 but adds ESDI, and
full SMD support In both soft-sector and hard-sector
environments. This section addresses the Am9590
and Its interface to SMD drives. The Am9580A was
originally designed to support the ST506, which uses
the STEP and DIRECTION pins to move the head
assembly in and out. SMD, however, uses a parallel
address to change its head position; therefore, some
changes in the Am9580A were needed. When
parallel addressing is selected, the ST506 STEP and
DIRECTION pins are disabled and PCEN and STEP
pins change their functions to Clock and Data re­
spectively, and the intemal cylinder address is
clocked out serially in 16 clock cycles.

OSEL[l:O] - (input conbinatorial)
/SELENI- (input combinatorial)
/SELENO- (output combinatorial)
DATA[3:0] - (output combinatorial)
ESOIEN - (output combinatorial)
CLK2 - (output registemd)
CLK4 - (output registemd)
CLKS - (output reqiaterecl)
CLK16 - (output registered)
Xl - (output combinatorial)

IF (S[O]./OS[O]./DS[l].SELENI) THEN SELENO - TRUE;
IF (S[l].OS[O]./OS[l].SELENI) THEN SELENO - TRUE;
IF (S[2]·/DS[0]·OS[l]·SELENI) THEN SELENO - TRUE;
IF (S[3]·OS[0]·OS[1]·SELENI) THEN SELENO - TRUE;
IF (lS[O]./DSO·/OS[l]) THEN ESDIEN - TRUE;
IF (lS[l].OS[O]./DS[lJ) THEN ESOIEN - TRUE;
IF (/S[2].OS[0].OS[1]) THEN ESDIEN - TRUE;
IF (SELECT) THEN ENABLE DATA[3:0]
DATA[3:0] - S[3:0];
CLK2 - /C'IJ.{2,;
CLK4 - C'IJ.{2, ·/CLK4 + /CLK2 ·CLK4
CLKS - CLKS·/C'IJ.{2, + CLKS·/CLK4 + /CLKS·CLK4·CLK2;
CLK16 - CLK16·C'IJ.{2, + CLKl6·/CLK4 + CLK16·/CLKS

+ /CLK16·CLKS·CLK4·CLK2;
IF (/S[3]·OS[0].OS[1]) THEN Xl - CLKl6;
IF (S[3].OS[0].OS[1] + S[2]./DS[0]·DS[1] + S[l]·OS[O]·/OS[l])

THEN Xl - CLK4;

Figure 3-32a ESDI-ST506 Floppy Interface PAL Equation

3-34

SMD Drive Interface

Before looking at the Am9590, the basic SMD Inter­
face is examined. The discussion that follows is not
meant to be a tutorial on SMD but to introduce the
reader to the basics of operation. Each manufac­
turer has slight variance in some areas, and, in each
drive to be interfaced to the Arn9590, these basics
should be verified.

The SMD drive interface was originally designed with
the idea that Intelligence, at least In the form of

Am26LS32
Receivers ..

Input
PREP
PAL r--

AmPAL

registers, was located on the drive side. Thus,
commands are issued to the drive via parallel lines
and not serial lines as with floppy drives and ST506.
This type of parallel data input is separated into three
groups: Cylinder Address, Head Address and
General State Lines. Each group is given a name as
TAG information and fed to the drive one group at a
time, In any order. TAG 1 is Cylinder Address, TAG
2 is Head Address and TAG 3 is General State Lines
(e.g., Read Gate, Write Gate, etc.).

Cylinder
Address
Control

r+
r-r- AmPAL

~ 18P8

18P8 Am9580AI90

Am26LS32
ReceIvers •

(Drive Interface Cylinder

r-- Signals Only) Address
-"- Register

r- AmPAL
r-- 22V10

TAG 21
TAG 3 - r--

AmPAL
18P8

Master
Sequencer

27S25 Control
PAL

AmPAL
18P8 .,.

Master Sequencer

Figure 3-33 SMD OVerview

3-35

--.. Am26LS31
drivers

I-

J
.. Am26LS31

drivers

I

In orderto read and write data on the drive, the drive
must be addressed by its Drive Select (DRSEl) and
must be in TAG 3 mode with SC from Drive Valid.
These signals pass through a cable called "A" (or the
"daisy-chain" cable). The 60-pin cable (30 pair of
signal lines, differentially driven) run from the control­
ler to each drive and then terminate at the end. This
cable, however, does not carry high-speed data.
High-speed data is carried on the "B" cable (or the
"radial" cable). This cable carries the WRITE
CLOCK, READ CLOCK (normally derived from the
recovered Read data), READ DATA, WRITE DATA
and returns the WRITE CLOCK. This is on a 26-pin
cable (13 pair of signal lines, differentially driven).

Controller

A cable Unit Select TAG
Unit Select 2 D
Unit Salect 2 1
Unit Select 2 2
Unit Select 2 3
TAG 1
TAG 2
TAG 3
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
BIT 8
BIT 9
ODen cable Datactar
Index
Sector
Faun
Seek Error
OnCvllnder
Unit Reedv
Addre .. Mark Found
Write Protected

Figures 3-34a and 3-34b show the standard pinouts
for a typical SMD interface. Figure 3-35 shows the
timings for TAG 1, TAG 2, and TAG 3 operations.
Some vendors have TAGs.4 and 5 but these are
beyond the scope of this application note.

Am9590 Register Set-up

This section discusses how to set up the registers on
the Am9590 and implement SMD using the attached
hardware described here.

The register set-up forthe SM D driver to the Am9590
requires two registers to be programmed (General
Select Byte Register and Data Select Byte Register).

La HI , Drive
2252 A cable
23,53
24114
26 S6
27117
1 31
2 32
3, 33
4 34
~ 35

6 36
7 37
8 38
9 39
10 40
11 41
12 42
13 43
14 44
18 48
25 H

--"' .. ~
16 48
17 47
19 49
20 90
28 58

Power Sequence Pick (lIDwar all) 29
Power Saouanc8 Hold (DOwer anI

.Busy.
Ground

/}.

_:_1Ion
28 AWO.8h101ded Coble.

MAX Length .'00 PI.
A Dual.ch 1 Un ... an.,.
A-bJUnl_.

59
21 51
30 60

Figure 3-348 Cable 'A" Pinout

3-36

Am9590

The Am9590 does not restrict drive usage in the
Mode Register as does the Am9580A. Drive type
and format type are programmed in the Drive Pa­
rameter Block only. The drive type is selected in the
General Select Byte bits D1 and DO, and must be set
to 0 for Parallel Modes. Whether the drive is hard­
sectored or soft-sectored, it is selected in the next
byte, bits D7 and D6; and this affects how the AMC
and AMF lines are handled. In hard-sectored mode,
AMC/AMF is replaced with the sector pulse coming
from the drive and synchronizes the data state
machine. Since the restricted mode is not required
with the Am9590, as with the Am9580A, full over­
lapped seeks, as well as mixed drive types, are easily
handled. Additionally, the Data Mark in the IOPB
must be 80H or higher.

Theory of Operation

This section breaks the design into smaller entities
and describes the interaction of these circuits with
the HDC and the SMD drive. Refer to the schematic
at the end of this application note in order to see how
all the circuits fiI together. See Figure 3-36.

Controller
Wrlle Dala

Ground
Write Clock

Ground
Servo Clock
Ground
Read Dala
Ground
Read Clock
Ground

Seek End
Unll Selected
Ground

Index
Ground
Seclor

Ground

"A" Connector Set-up

The "AM connector consists of only input and output
signals. There are no bidirectional signals on the "AM
cable. The input-only signals go to an Am26LS32
whose inputs are each terminated with a 56 ohm
resistor to ground. The output section of the cable is
driven by an Am26LS31. (Refer to the Appendix for
design considerations using the Am26LS31.) The
Am26LS32's pin 12 is grounded at all times to
provide continuous drive to the cable. Besides the
normally required disk signals, Reset is provided
down the cable, as well as the power sequencing
signals. The power sequencing relay would be
driven by an output port on the local processor
attached to the HDC if this feature is used. Pins B8
and B9, on the interface, are driven inverted from
their normal conversion while the input is pulled up
with a 10K resistor. These signals are only driven
during TAG 1 from the Cylinder Address register PAL
device where they are inverted before driving B8 and
B9. When the Cylinder Address PAL device is three­
stated, these signals are forced to a logical "0" on the
interface during TAG 2 and TAG 3

Lo HI Drive
8 20

7
6 19

18
2 14

1
3 16

15
5 17

4
10 23
22 9

21
12 24

11
13 26

25

Note: 1. 28-oonductor, Ihlelcled Clble.

MAX Length = 10 Ft.

2. No 81gnlls gated by unn selectlCl.

94I!OA 3-34b

Figure 3-34b Cable "8" Pinout

3-37

Input Preparation PAL Device

Not all the signals received at the input side of the "A"
connector can go straight into the HDC. The signals
that are received and qualified are: DRIVE READY,
SEEK COMPLETE, and FAULT. These are qualified
because a drive has been selected on the "B"cable.
Additionally, two Fault lines are provided onthe SM D
interface and these are "OR'd" together to provide
the Fault signal to the HDC. The SC term is set false
if, upon select, the Cylinder Address Register was
updated on the previous select cycle, or there is a
head mismatch. This keeps the HDC from starting
an operation too soon before the Master Sequencer
can issue TAG 1, TAG 2, and TAG 3 to the drive.

Figure 3-37 shows the PAL device pin assignments
and Figure 3-38 shows the PAL device equation in
PLPL.

Master Sequencer

The master sequencer consists of two parts. A PAL
device that prepares the inputs for the counter and
decodes the states of the counter in order to se­
quence the enabling of speCific tags onto the Bus and
then the clocks for that tag. The second part is the
counter itself. The entire circuit for the master
sequencer is shown in Figure 3-39.

Tag 1 (Low Cylinder
selecQ

___ ----'n Move to Track 100

94BOA3-35

Tag 2 (Head & HI
Cylinder Select)

Sat2 8

Sat2 7

Set2 6

Set2 5

Set2 4

Sat2 3

Set2 2

Sat2 1

Set2 0

On Cyllndar
& SaekEnd

Tag 3 (Control Select)

Bits 2 or 3

On Cyllndar
& Seek End

~

..... 1

I

J

I

I" r.

~ ~ ~
I

I

~ I-f- 120 ns MAX

LJ

I I

L
L

120 ns MAX ~ I-f- 120 ns MAX -+I I+-
----~il.~==~~--------IL

T1 = 2.75 ms Nominel
16.8 ms Maximum

Figure 3-35 SMD Interface Timing

3-38

'" ~

I
;

"A" cabl. Input Side
Only 0.,. Required

:====::; 3'
U ~ • l' 8'

U ~~:
17 Input

" Prep a ~ a
.1-----11----_
u----
11----_

AmPAL
"PI

II ~
36-+....,.-_

TypIc.1 for .11
"A- Cobia I"""

!NT SELECTED

.!!-.. NSELEN "- i= ilWRPROT .. HDSElO
'SKCMP ItDO " HDSEL1 R DRIVERDY ! 53 HOSEU
. FAULT 51 HDSEU

3 Ii7 HDSEU
AmI5lO 4 58

I

Drlv.
Int.rf.ce

SIgn ... Only

IIIF

PCEN
STEP

AMC1HOCAMC
RDDATA

.!!-HDC RQ

.!!....-HDCWQ
B-HDCWRCLK
42 HOC WRDATA

NSELEN
TAG2

PRDATA I I PRCLK

AmPAL
.. PI

"A" CIIble Output SIde On" Ona Sol Roqulrad

NSELEN~!V
HEW_ADDRESS ~ U
ALLOW_TAG1 DSO~ :It

DS1~:

.IV
NC--U __ 28

&800

.IV---~

NRESET~"
~'.

31
1

3.
2

HI" C.bI.
(1 for every drive .ttached)

E7

HOC WRDATAj XEi-IWRDATA

HDCAJIE

80
81
8.
83 ..
81
81
87
NBI

~NBI

33
3

~!"
~:5
~:I

~;r
~:.

:: 26LS33g
3 26LS32 74

:: 26LS33§ . ,-.~-

TypIc.1 for.n
..... C.bl. Inputs

HDC WRCLK~1'
~I

IWRDATA~:O
2&Ui31

RDCLK

WRCLK

HDCWQ

CLK Transfer ClrcuH

HDC RDiREFCLK
311Hz
CLK

Figure 3-36 Am9590 SMD Interface

14
I 11

HDSELO
HDSEL1
HDSEU
HDSEL3
HDSELO
HDCRQ
HDCWQ

80
81
8.
83 ..
81
81
87

~:I

~:
+5V ~41

i 18 r 17 MENTAQ3

i 17 Seq. Cml. ~~I=~AQ:=~:!J ' Pal 15 ,.
~
7K~11

+1iV 12

•• 4.7K In ..
13

••

..... .,.Sequenc ...

~'I
0--- II

PWR SEO

1
Sian Control from Pracnsot

Note: All Drlv.,. 26LS31. with
PIN 12 GND for Perm.n.nt Enable

NSELEN 1

IlEADY 2

SEEK ERROR 3

FAULT 4

UNT 0 SEL 5

UNT1SEL 8

UNTZSEL 7

UNT3SEL 8

ISEEKCO ... •
ALLOW-TAG 1 11

,.
18

17

18

Input 15

Am"':t. 14

18P8 13

12

SKCOMP.

NDRIVE READY

FAULT

UNT SELECTED

HDMISMATCH

Figure 3-37 Input Preparation PAL Device Block Diagram

DEVICE INPUT]REP]AL (AMPALl8P8)

PIN

BEGIN

END.

/SELEN=l
UNITOSEL-S
ALLOW TAGl=l1
ISEEKCOMP=9

IREADY=2
UNITISEL-6
SKCOMP=19
UNITSEL=16

SEEKERROR-3
UNIT2SEL-7
/DRIVEREADY=18
HDMISMATCH=12;

SKCOMP = /ALLOW _ TAG 1 *ISEEKCOMP*UNITSEL*SELEN* /HDMISMATCH;

DRIVEREADY = SELEN*IREADY*UNITSEL;

HDCFAULT = IFAULT*SELEN*UNITSEL + SEEKERROR*SELEN*UNITSEL;

IFAULT=4
UNIT3SEL=8
HDCFAULT=17

UNITSEL = SELEN * (UNITOSEL +UNITISEL + UNIT2SEL + UNIT3SEL);

Figure 3-38 Input Preparation PAL Equation

2_Clock 18
J:V

po ~AII QO
All 8 All
A1 7 01 ~ A1
AI Q2 11 AI

8 AI
A3 03 13 A3

5 A3
A4 27S25 Q4 14 STO 1 ,.

NENTAG1 4 A4 r--
05 15 ST1 2 18 NEHI'AG2 3 AI r--
08 18 ST2 3 t1!- NENTAQ3 2 AI
07 17 SI'3 4 1L-TAG1 1 A7

23
2_eLK 2- Master .!!.- TAG2

AI
HDMISMATCH!.... Sequencer .!L- TAQ3

E Control -"; ISEEKCOMP ...L 13 A4

CSEL1: -J: Am PAL
NSELEN!.... 18P8 ~ CSELEN

UNR'SELECTED!....
ALLOW-TAG 1 ..!.!....

Figure 3-39 Master Sequencer Circuit Diagram

3-40

The counter is a registered 512 x S PROM
(Am27S25). Only 32 of the 512 addresses are used.
The eight outputs are divided into four address bits
and four state control bits. The four address bits go
to the AO - A3 of the PROM; this accounts for the 16
addresses used. The PROM sits in Reset mode
(Address = 0) when a drive is deselected (SELEN
False). When a drive is selected and the drive
returns Interface SC True, the Am27S25 reset term
is released, and on each clock the PROM selects the
next state. Figure 3-40 shows the actual PROM
program and Figure 3-41 is a state flow diagram. The
clock is 2 MHz, meeting the drive requirement speci­
fication of set-up and hold of TAG data with respect
to TAG clock. Basically, the PROM steps to the next

address until address F, where the PROM stays until
either RESET or A4 is set to a logical True. A4 is set
to a logical True by the Head Mismatch PAL device
when the HDC changes a Head Address from that
issued under TAG 2. When this happens, A4 is set
to 1 and the PROM goes to address 1 Fwhere a "jump
to 1S" is found and it reissues TAG 2 to the drive. At
address 1 C, A4 goes to a logical False and the
PROM moves to address OD onthe next clock pulse,
and will stay at OF when it steps to that address.

The companion part to the Am27S25 is the
Am PAL 1SPS. This PAL device preconditions the
two control lines, CSELEN 'Am27S25 Reset pin' and
A4 so that they are clocked by the 2 MHz clock.

SELEN FALSE

.. SELEN TRUE. Seek Complete. Unit Selected

SELEN
FALSE

SELENTRUE
HDMISMATCH FALSE

Figure 3-40 Am27S25 State Flow Diagram

3-41

9480A 3-40

Addnionally, the PAL device decodes the state lines
from the Am27S25 to the required TAG 1, 2, and 3
output enables and TAG 1, 2, and 3 clocks. Figure
3-42 shows the pinout and Figure 3-43 shows the
PAL device equations in PLPL. The equations are
straightforward, the CSELEN starts the state ma­
chine and it does not become true until a drive is
selected (SELEN True) and a drive has acknowl­
edged (Unit-selected True) and the drive is on cylin­
der (I SC). One other note is that TAG 1 will only be
issued if the Cylinder Address Register PAL device
has been updated wnh a new value and, hence,
ALLOW_TAG 1 is True.

PROM 04-07 DO D3

Address Slala Nexi Address

0 0 1

1 1 2

2 2 3

3 2 4

4 2 5

5 2 6

6 3 7

7 4 8

8 5 9

9 5 A

A 5 B

B 5 C

C 6 D

D 7 E

E 8 F

F 8 F

1I48OA3-41

II Goes to 1F
HDMlSMA TCH

Cylinder Address Register

The Cylinder Address Register is contained in two
PAL devices. One is the shift register nself. This PAL
device is nothing more than a 1 O-bn shift register with
the last two bns inverted. These are inverted so that
when the PAL device is three-stated (NENTAG1
False), B8 and B9 are driven to logical False Dn the
interface for TAG 2 and TAG 3 operations.· This PAL
device is enabled onto the local Bx Bus by NENT AG
1 True. Figure 3-44 shows the pinout and Figure
3-45 shows the PAL device equation.

AllloCIIllons "0" eXCllpl:

Address S_ NexlAddre ..

18+ 5 9

19 5 A

1A 5 B

1B 5 C

1C 6 D

1D 7 E

1E 8 F

1F - 4 8

Goa.toOD
II A4 goes
to 81ogl"'"
FaI ...

Figura 3-41 Am27S25 Program

3-42

STU 1. NENTAG1

ST1 2 18 NENTAG2

ST2 3 17 NENTAG3

ST3 4 18 TAG1

2MHzCLK 5 Master 15 TAG2

HDMISMATCH 8 Sequencer 14 TAG3

ISEEKCCMP 7 Control
Am PAL

13 A4

NSELEN 8 18P8 12 CSELEN

UNIT SELECTED •
ALLOWTAG1 11

FIgure 3-42 Master Sequencer Control PAL DevIce PInout

DEVICE MASTER_SEQllENCER (AMPAL18P8)

PIN

STO-l
CLK-5
UNITSEL-9
/ENTAG3-17
A4-13

STl-2
HDMISMATCH-6
ALLOWrAG1-1l
TAGl-16
CSELEN-12;

ST2-3
ISEEKCOMP-7
/ENTAGl-19
TAG2-15

BEGIN

CSELEN - SELEN*CLK*UNITSEL*ISEEKCOMP +
CSELEN*SELEN;

A4 - HDMISMATCH*ST3*/ST2*/ST1*/STO;

ENTAGl - /ST3*/ST2*(/ST1*STO + ST1*/STO + ST1*STO);

ENTAG2 - /ST3*ST2*(/ST1*/STO + /ST1*STO + ST1*/STO);

ENTAG3 - /ST3*ST2*ST1*STO + ST3*/ST2*/ST1*/STO;

TAGl - ALLOWTAG1*/ST3*/ST2*ST1*/STO;

TAG2 - /ST3*ST2*/ST1*/STO;

TAG3 - ST3*/ST2*/ST1*/STO;

ST3-4
/SELEN-8
/ENTAG2-18
TAG3-14

FIgure 3-43 Master Sequencer Control PAL DevIce EquatIon

3-43

9480A 3-42

PRCLK 23 10

PRDATA 2 22 B1

3 21 B2
4 20 B3

5 19 B4

6 18 as
7 Cylinder 17 B6

8 Address 16 B7
9 AmPAL

22V10
15 NB6

10 14 NBI

11

NENTAQ1 13

9480A3-44

Figure 3-44 Cylinder Addre .. Register Pinout

PIN

PRCLK-1PRDATA-2
Bl-22 B2-21
B5-18 B6-17
!B9-14;

BEGIN

/ENTAGl-13
B3-20
B7-16

BO-23
B4-19
/B8-15

IF (ENTAG1) THEN ENlIBLE (BO,B1,B2,B3,B4,B5,B6,B7 ,B8,B9);

BO - PRDATA;

B1 - BO;

B2 - B1;

B3 - B2;

B4 - B3;

B5 = B4;

B6 - B5;

B7 = B6;

B8 - B7;

B9 - B8;

END.

Figure 3-45 Cylinder Addre .. Register Equation

3-44

TAG2ITAG3 The other PAL device is forthe control ofthe Cylinder
Address Register. It monitors the PRCLK line and,
H a PRCLK is received with SELEM True, then the
Set/Reset flip-flop NEW_ADDRESS is set. The new
address is then transferred to the ALLOW_TAG 1
latch when SELEN goes False. This is to keep the
ALLOW_TAG 1 synchronized before Drive reselec­
tion. This output goes to both the Master Sequencer
Control PAL device and the Input Preparation PAL
device. Both flip-flops are reset by the TAG 2 input.
Figure 3-46 shows the pinout and Figure 3-47 gives
the PAL device equations.

The TAG 2ITAG 3 PAL device muHiplexes the cor­
rect information to indicate a TAG 2 or TAG 3
operation onto the correct Bx signal pins. With TAG
2, the Head Address lines are used, and with TAG 3,
the RGlWG lines are driven onto the disk drive. The
Fault Clear input is from the local microprocessor
and is used for abnormal drive conditions to clear
either a Seek error or a FauH. This will be driven to
a logical True by the microprocessor and then the
HOC would be given an IOPB that was a Seek to

NSELEN 19 New Address

TAQ2 2 18 Allow Tag1

PRCLI< 3 17

4 16

5 Cylinder 15

6
Address

14 Control
7 Am PAL 13

8 18P8 12

9

10

11

Figure 3-46 Cylinder Register Control PAL Device Pinout

DEVICE CYLINDER_CONTROL (AMPAL1BPB)

PIN
/SELEN-l TAG2-2
ALLOWTAG1-1B;

BEGIN

NEWADD - PRCLK + NEWADD*/TAG2;

ALLOWTAGl - NEWADD* /SELEN* /TAG2 +
ALLOWTAG1*SELEN*/TAG2 +
ALLOWTAG1*NEWADD*/TAG2;

END.

Figure 3-47 Cylinder Register Control PAL Device Equation

3-45

NEWADD-19

"8" Connector Set-up Track Zero command. When the IOPB is completed,
the Fault condition will be altered and the drive
returns to Track O. The PAL device is enabled onto
the Bx lines when the ENT AG 1 signal is False and
the Cylinder Address register PAL device is not
enabled. ENTAG 2 is the signal that qualifies the
multiplexing of the actual data onto the Bx lines.
Figure 3-48 shows the TAG PAL device (TAG 2J
TAG 3) pinout and Figure 3-49 shows the TAG PAL
device equations.

The "B" connector connects the Radial cable and
carries the high-speed clocks and data. Again,
Am26LS32s are used to receive data from the cable
with each input terminated into an 82 ohm resistor,
and hail of the Am26LS31 s are used to transmit the
WRCLK and WRDAT A information to the disk drive.

HDSELD
19

BO

HDSEL1 2 18 B1

HDSEL2 3 17 B2

HDSEL3 4 16 B3

HDSEIA II TAG2ITAG3 15 B4
AmPAL

HDCAG 6 18P8 14 as
HDCWG 7 13 B6

NENTAG1 8 12 B7

NENTAGZ 9

11

Figure 3-48 TAG PAL Device Pinout

DEVICE TAG2_TAG3 (AMI?AL18P8)

PIN

HDSELO-l HDSELl-2 HDSEL2-3
HDSEL4-5 HDCRG-6 HDCWG-7
/ENTAG2-9 Bo-19 Bl-18
B3-16 B4-15 B5-14
B7-12 FLTCLR-ll;

BEGIN

IF (/ENTAG1) THEN ENABLE (BO,Bl,B2,B3,B4,B5,B6,B7);

BO - ENTAG2*HDSELO +/ENTAG2*HDCWG;

Bl - ENTAG2*HDSELl + /ENTAG2*HDCRG;

B2 - ENTAG2*HDSEL2;

B3 - ENTAG2*HDSEL3;

B4 - ENTAG2*HDSEL4 + /ENTAG2*FLTCLR;

B5 - ENTAG1;

B6 - /ENTAG2*FLTCLR ;

B7 - ENTAG1;

END.
Figure 3-49 TAG PAL Device Equation

3-46

HDSEL3-4
/ENTAG1-8
B2-17
B6-13

The 74LS126 provides a common bus for RDCLK,
RDDATA and WRCLK on the board so that only one
clock transfer circuit is required. The disk drive that
returns an Unit Selected signal back down the "B"
cable is the one that drives the Read Clock, Read
Data, and WR Clock bus; the Unit Select Signal
enables the 74LS126 onto the Write Bus.

Clock Transfer CircuHry

The Am9580Al90 has only one clock input (RDt
REFCLK) pin for the data sequencer. However,

HDCWG

RotLK

WRtLIC T 1..:'------'

SMD drives provide two separate clocks: Read and
Write (See Figure 3-50). The RDtREFCLK input on
the Am9590 cannot be glitched when changing from
READ clock to WRITE clock. The four 74AS74s
perform the glitchless crossover as the RDtREFCLK
output from the 74AS02 stays High for one whole
Read clock and one whole Write Clock before tog­
gling. Theclockswitchoccursonthe HDCIWG rising
edge, and the clock will be High on the falling edge
for two Read clocks; glitchless in both cases. At the
beginning of Interface Select, RDtREFCLK input is
ignored for about 12 clock times so that glitches
during this time are acceptable.

HOC RD/REFCLK

948OA3-50

Figure 3-50 CLK Transfer Circuit

HanI
Disk CRe Check Byt ..

~r' __ ~_.n_b_~_1~_~_~~I_p-_m_~ __ Z~_I~_M __ .I_~~I ____ ~~u
Figure 3-51 a STS06 Sector Format

Figure 3-51 b SMD Hard Disk Sector Format

3-47

9480A 3-51 •• b

3.4.7 RLL Encoder-Decoder for the
Arn9580Al9O

In recent years, the need for more storage capacity
on disk drives has become more and more relevant.
There are several ways to increase the storage
capacity on magnetic disks: The number of surfaces
can be increased; a higher bit density and therefore
higher data rate; or a different encoding scheme; are
some of the possible ways to achieve this goal.
Where It requires efforts from the disk drive manufac­
turer to increase the number of surfaces or the bit
density (improved media), advances in the encoding
scheme falls on the disk controller.

This section shows a new approach to implement the
RLL (Run Length Limited) 2,7 Code. The emphasis
in this design is to use a method of encoding and
decoding the data so that the commonly used and
complicated state machines become obsolete. The
result is a single PAL device (AmPAL23S8) that
implements both the encoder and decoder. A sec·

!...li. FAMl

~
Am9582

FAMO
SELEN AMC2F

8 13 1 12

H>J
~

kl RDREF/cLK 14-

1
Am9580Al9O 6

CLKl

WRDAT 4 NWRDAT TOG 7

RDOAT I+- kl 19
NRO AMCP

8

AmPAL23S8
NRl

16

AMC
9 AMC MATCH

18

AMF AMFO
12

WG
3 WG

RG 2 RG AMF 11

RRDDAT
5

RRO 13

9480A3051

ond PAL device (AmPAL16R8) generates and de­
tects the address marks at the beginning of each
sector.

TheRLLCode

In order to record data onto a magnetic media, NRZ
data coming from the disk controller needs to be
encoded, so that they translate into flux transitions
on the disk drive. Furthermore, clock pulses need to
be mixed with data to allow a synchronous retrieval
of data from the disk. Figure 3-52 shows the method
used for the MFM encoding scheme.

The MFM coding rules are: Insert Clock Pulse only if
two consecutive NRZ Os.

It appears thatthe output data (mix of data and clock)
of the encoder are running at twice the clock speed
of the input data.

RDDAT '0 Rll READ-DATA

RDOAT

1

17

~ coo
18 COl
16 AMCP
7

NRZO
8

NRZl
2 MATCH
6 AMFl SEl ..L-

---L AMC WG +3
12 AMF

AmPAL16R8

Rll WRITE-DATA

Figure 3-52

3-48

The RLL encoding scheme is a very general method
to encode data. Basically, "RLL" just defines a
minimum and a maximum nu mber of Os between two
1s in the output data stream. Again, the ouput is
running at twice the speed of the input. There are
several different RLL codes in use today. They differ
in their maximum and minimum numbers and in the
actual bit-pattern used to encode a certain input­
pattern.

There are certain technical and physical limitation to
the values in use for these codes. The maximum
number of Os is limited by the quality of the PLL
synchronizing onto the data stream while reading.
The minimum number of Os, on the other hand, is
limited by the possible bit density on the magnetic
media. The goal is to use a given bit density and
increase the number of possible Os as much as
possible. It becomes obvious that this definition of
RLL code makes the older M FM coding scheme just
a special case of RLL.

The most common RLL code used today is the so
called 2,7 Code. These numbers indicate that the
minimum number of Os between two 1s is ''two'' and
the maximum nu mber is "seven". Figure 3-53 shows
the possible patterns on both sides of the encoder.
The following application implements the RLL 2,7
Code.

Usually a RLL encoder/decoder is realized by a
state machine. This state machine clocks the data
stream to be encoded or decoded into a shift register.
Assuming the encoder is running synchronously, it

CODING RULES

NRZ RLL

10 1000

11 0100

000 100100

010 001000

011 000100

0010 00001000

0011 00100100

would clock in the first two bits of NRZ data, and
compares them to the two possible values. If there
is no match, the logic will shift in one more bit,
compare again and perhaps shift in another bit. At
this time a match condition must be found, otherwise
the state machine is not in sync and must be resyn­
chronized. All these different modes require a rather
complicated state machine just to encode the data.
If the decoding function is added, even more states
are needed, since the shift steps for decoding are
different from encoding.

The Implementation

The scheme used in this application does not need
any state machine. It uses two shift registers, one 4-
bit register for the N RZ data and an 8-bit register for
the RLL data. These shift registers are preset with a
certain value before clocking data in. The preset
value is chosen so that there is an unique stop
pattern for each of the bit patterns to be recognized
(Figure 3-54). Without a preset, it is not possible to
recognize the different input patterns, because some
parts are repetetive and the encoder/decoder would
not be able to stop at the right point. The scheme
works similar for encoding and decoding.

The shift registers and the entire control logic are
implemented in one PAL device (AmPAL23S8). The
second PAL device AmPAL16R8 provides a clock
divider (COO and C01) and logic to generate and
detect an address mark.

WHY2.7?

1111 000 0100 1100100 I
T T
2 2

I 010 I 0010 => 001000 I 00001000 I
-r-

7

9480A3-53

Figura 3-53

3-49

There is no read or write operation performed on the
disk drive, both NRZ and RLLshift register are preset
with the appropriate values. An inverted .s.&LEN
signal is used to assert AMC for the Am95S2. The
rising edge of this signal clocks the status of the FAM.
and FAM, input into the ~OS. For simplicity reasons
the following describes only a write operation. As
soon as the WG signal becomes active, the NRZshift
register starts shifting in data. This operation is done
with half the clock speed olthe PAL device. The shift
operation continues until a defined NRZ pattern is
recognized. At this point the MATCH output of the
encoder goes active. This MATCH condition, to­
gether with the status of the four NRZ register bits,
will cause the output (RLL) shift register to be loaded
with the appropriate RLL pattern. At the same time,
the input register will be preset with the start value
again. There will be no preset on the output register.
This process will repeat as long as WG is active.

Before any information is written to a sector, a PLO
SYNC field is written to the disk. This synchroniza­
tion field is required by the PLL (Phase-Locked Loop)
during reading. For MFM encoding, a pattern of
several Os is used for this purpose. However, this
pattem is not suitable for the RLL 2,7 Code. Figure
3-53 shows that the data "000" are encoded into
"100100". Since this is a symmetric pattern, it cannot
be used to synchronize properly. Therefore, this
application uses the data "11" instead, which

translates into the RLL data "0100". The Am95S0Al
90 sends out a PLO SYNC field of Os. In order to
avoid a special treatment of the sync field in the
encoder, all data coming from the HOC are inverted.
During a read operation, NRZ data are inverted
again before being sent to the HOC.

Whenever an address mark needs to be written, the
HOC will assert the signal AMC (Address Mark
Control). The AmPAL16RS generates an AMCP
signal of one clock length. This causes the encoder
PAL device to write the address mark pattern
"00000100". This does not violate the RLL 2,7
encoding scheme, but it is an unique pattern.

The HOC, when starting a read operation, will always
asserts AMC to search for an address mark. The
decoder will start looking for the sync pattern "01 00".
This pattern has to occur at least five times before the
AmPAL23SS starts looking for the address mark.
The counter for the sync patterns is implemented in
the second PAL device. This method insures syn­
chronization at the beginning of a sector.

After an address mark has been recognized, the
device waits until the first four bits of NRZ data are
available in the NRZ shift register and asserts AMF
(Address Mark Found). This causes the HOC to use
the data bit at the next rising edge of RO/REFCLK as
the first bit of valid data.

DATA IN -ls71S61 s51S4183ls2Is11 sol
10

w
11 ::l

-'

000 ~
Q.

010 ~
011 w

::l

0010
Q
z
::l

0011

9480A3·54

1000

0100

100100

001000

000100

00001000

00100100

Figure 3-54

3-50

w
3
~
Q.

~
W
::l
0
Z
::l

DEVICE lU.LENCOEC (P23S8)

THIS PAL-DEVICE ENCODES AND DECODES RLL 2.7 CODE
IT USES THE Am9582 AS A PLL WHEN READING FROM DISK
EXPECTED ARE THE 2f CLOCK FROM THE DDS AND TWO CLOCK INPUTS
WHICH ARE 2f/2 AND 2f/4.
THE COUNTER FOR CLK1 AND TOG NEEDS TO BE RESET
WITH /RG * /WG OR IF MATCH IS ACTIVE.
THE SIGNAL AMCP GIVES A PULSE OF 2 CLOCKS TO WRITE AN ADDRESS
MARK. THIS SIGNAL IS ALSO ACTIVATED IF THE DEVICE MUST LOOK
FOR AN ADDRESS MARK.

ADVANCED MICRO DEVICES
VERSION 1.0

JOCIIEN POLSTER

PIN
CLK - 1 (Clock)
RG - 2 (INPUT combinatorial)
we; - 3 (INPUT combinatorial)
!NWRDAT - 4 (INPUT combinatorial)
RRDDAT - 5 (INPUT combinatorial)
CLK1 - 6 (INPUT combinatorial)
ITOG - 7 (INPUT combinatorial)
IAMCP - 8 (INPUT cOJ1i:>inatorial)
AMC - 9 (INPUT combinatorial)
AMI' - 11 (INPUT combinatorial)
AMFO - 12 (IO enable_high active_high registered reg_feedback)
/RRO - 13 (IO enal:>le_high active_low registered r&IJ_f_dback)
NR3 - 14 (IO enal:>le high active high registered)
/NRl - 15 (IO enab1;_high acti";_low registered)
MATCH - 16 (IO enable_high active_high registered)
RRS - 17 (IO enal:>le_high active_high registered)
NR2 - 18 (IO enal:>le_high active_high registered reg_f_dback)
NRO - 19 (IO enal:>le_high active_high registered ~feedback)
/RR4 - 25 (BREG registered active low)
/RR2 - 22 (BREG registered active-low)
/RR3 - 23 (BREG registered active-low)
/RR1 - 24 (BREG registered active-low)
/RR7 - 21 (BREG registered active-low)
/RR6 - 26 (BREG registered active=:low)

BEGIN

ENABLE (NRO,NR3,NR1,NR2,RRS,MATCH,RRO,AMFO) - tB11111111;

NR3 :- WG * NNRDAT * CLK1
NR3 * ICLK1 * /MATCH
WG * MATCH
RG * RR7 * RR6 * RRS * RR4 • 1RR3 •
/RR2 * RR1 • RRO
RG * RR7 • RR6 * RRS * RR4

• RR3 •
RR2 • IRR1 • /RRO
RG * RR7 • RR6 • RRS * RR4 * RR3 •
/RR2 • RR1 • RRO
IRG • /WG;

FIgure 3-55

3-51

3/4/1987

+ "SHIFT DATA IN"
+ "HOLD"
+

+ "READ CASE 2"

+ "READ CASE 5"

+ "READ CASE 7"
"RESET"

NR2 :-

NRl :-

NRO :-

:-

RG * NR3 * CLK1 * /MATCH
WG * NR3 * CLK1 * /MATCH
NR2 * /CLK1 * /MATCH
RG * MATCH * /M!ICI! *
/ (RR5 * RR4 * RR3 *
/RR2 * /RR1 * /RRO);

/NR2 * CLK1 * /MATCH
WG * NRl * /CLK1 * /MATCH
RG * NRl * /CLK1 * /MATCH
RG * NR1 * /CLK1 * MATCH * /RR3 * /RR2
WG * MATCH
RG * RR7 * RR6 * RRS * RR4 * RR3 *
/RR2 * /RRl * /RRO
RG * RR7 * RR6 * /RRS * /RR4 * RR3 *
RR2 * /RR1 * /RRO
RG * RR7 * RR6 * RRS * RR4 * RR3 *
RR2 * /RR1 * /RRO
RG * RR7 * RR6 * /RRS * /RR4 * RR3 *
RR2 * RRl * RRO
RG * RR7 * RR6 * RRS * RR4 * RR3 *
/RR2 * RR1 * RRO
/WG * /RG;

/NRl * CLK1 * /MATCH
RG * NRO * /CLK1 * /MATCH
WG * NRO * /CLK1 * /MATCH
RG * NRO * /CLK1 * MATCH *
RR7 * RR6 * RRS * RR4 * RR3 *
/RR2 * /RRl * /RRO
RG * NRO * /CLK1 * MATCH *
RR7 * RR6 * /RRS * /RR4 * RR3 *
RR2 * /RRl * /RRO
RG * NRO * /CLK1 * MATCH *
RR7 * RR6 * RRS * RR4 * RR3 *
RR2 * /RRl * /RRO

RG * NRO * /CLK1 * MATCH *
RR7 * RR6 * /RRS * /RR4 * /RR3 *
/RR2 * RR1 * RRO
RG * NRO * /CLK1 * MATCH *
RR7 * RR6 * RRS * RR4 * /RR3 *
/RR2 * RR1 * RRO;

+ "SHIFT DATA"
+ "SHIFT DATA"
+ "HOLD"

+
+
+
+
+

"READ CASE 3"

"SHIFT DATA"
"HOLD"
"HOLD"
"READ CASE 1 AND 2"
"RESET AFTER MATCH"

+ "READ CASE 3"

+ uREAD CASE 4"

+ "READ CASE 5"

+ "READ CASE 6"

+ "READ CASE 7"
"RESET"

+
+

"SHIFT DATA"
"HOLD"

+ "HOLD"

+ "READ CASE 3"

+ "READ CASE 4"

+ "READ CASE 5"

+ "READ CASE 1"

"READ CASE 2"

WG * CLK1 * NR3 * /NWRDAT * NR2 * NR1 * /TOG +
WG * CLK1 * NR3 * NWRDAT * NR2 * NRl * /TOG +
WG * CLK1 * /NR3 * /NWRDAT * /NR2 * /NRl * TOG +
WG * CLK1 * NR3 * /NWRDAT * /NR2 * /NRl * TOG +
WG * CLK1 * NR3 * NWRDAT * /NR2 * /NR1 * TOG +
WG * CLK1 * NR3 * /NWRDAT * /NR2 * NR1 * /TOG +

"WRITE CASE 1"
"WRITE CASE 2"
"WRITE CASE 3"
"WRITE CASE 4"
"WRITE CASE 5"
"WRITE CASE 6"

Figure 3·55 Continued

3-52

WG * CLK1 * NR3 * NWRDAT * /NR2 * NR1 * /TOG + "WRITE CASE 7"
RG * /'Pi1!CP * RR7 * RR6 * RR5 * /RR4 * /RR3 *
RR2 * RR1 * /!UIDDAT * /AMC * /MATCH + "READ CASE 1"
RG * /'Pi1!CP * RR7 * RR6 * RR5 * /RR4 * /RR3 *
RR2 * RR1 * /!UIDDAT * AM: * lIMF * /MATCH + "REAI) CASE 1"
RG * /'Pi1!CP * RR7 * /RR6 * /RR5 * /RR4 * /RR3 *
RR2 * RR1 * /!UIDDAT * /MATCH + "READ CASE 2"
RG * /'Pi1!CP * RR7 * /RR6 * /RR5 * RR4 * /RR3 *
/RR2 * /RR1 * /!UIDDAT * /MATCH + "READ CASE 3"
RG * /'Pi1!CP * RR7 * RR6 * RR5 * RR4 * RR3 *
/RR2 * /RR1 * /!UIDDAT * /MATCH + "READ CASE 4"
RG* /'Pi1!CP * RR7 * /RR6 * /RR5 * RR4 * RR3 *
/RR2 * /RR1 * /!UIDDAT * /MATCH + "READ CASE 5"
RG * /'Pi1!CP * RR7 * RR6 * RR5 * RR4 * RR3 *
RR2 * RR1 * /!UIDDAT * /MATCH + "READ CASE 6"
RG * /'Pi1!CP * RR7 * /RR6 * /RR5 * RR4 * /RR3 *
RR2 * RR1 * /!UIDDAT * /MATCH + "READ CASE 7"
RG * AMCI? * RR7 * /RR6 * /RR5 * RR4 * RR3 *
RR2 * RR1 * /!UIDDAT * /MATCH + "ADDRMARK FOUND"
WG * AMCP * /lIMFO;

RR7 :- RG * /!UIDDAT + "SHIFT DATA IN"
WG; "ALL WRITE CASES"

RR6 :- WG * RR7 * /MATCH + "SHIFT DATA WRITE"
WG * MATCH + "WG MATCH"

RG * RR7 * /MATCH; "SHIFT DATA READ"

:- WG * /RR6 * /MATCH + "SHIFT DATA WRITE"
RG * /RR6 * /MATCH + "SHIFT DATA READ"
WG * MATCH * NR3 * NR2 * /NR1 * /NRO + "WRITE CASE 2"
WG * MATCH * /NR3 * /NR2 * NR1 * NRO + "WRITE CASE 3"
WG * MATCH * NR3 * NR2 * NR1 + "WRITE CASE 5,7"
RG * MATCH +
WG * AMCI? * MATCH; "WRITE ADDR. MARK"

RR4 :- WG * /RR5 * /MATCH + "SHIFT DATA WRITE"
WG * AMCP * MATCH + "WRITE AM"
RG* /RR5 + "SHIFT DATA READ"
RG * MATCH +
WG * MATCH *
/ (/NR3 * NR2 * /NRO) * "WRITE CASE 1,6"

/(/NR3 * NR2 * NR1 * NRO) + "WRITE CASE 4"
/RG * /WG;

:- WG * RR4 * /MATCH + "SHIFT DATA WRITE"
WG * MATCH * RR4 *
«/NR3 * NR2 * /NR1 * /NRO) + "WRITE CASE 1"
(NR3 * NR2 * /NRl * /NRO» + "WRITE CASE 2"

WG * MATCH *
/ (/NR3 * NR2 * /NR1 * /NRO) * "WRITE CASE 1"

/ (NR3 * NR2 * /NR1 * /NRO) + "WRITE CASE 2"
RG * RR4 + "SHIFT DATA READ"

RG * MATCH +
/RG * /WG +
WG * AMCI? * MATCH;

Figure 3-55 Continued

3-53

RR2 := WG * RR3 * /MATCH + "SHIFT DATA WRITE"
WG * AMCP * MATCH + "WRITE AM"
WG * MATCH * RR3 *
«(/NR3 * NR2 * /NRI * /NRO) + "WRITE CASE I"
(NR3 * NR2 * /NRI * /NRO)) + "WRITE CASE 2"

RG * RR3 + "SHIFT DATA READ"
RG * MATCH +
WG * MATCH * /NR3 * NR2 * NRI + "WRITE CASE 4,6"
WG * MATCH * NR3 * NR2 * NRI * NRO + "WRITE CASE 5"
/RG * /WG;

RRI := WG * RR2 * /MATCH + "SHIFT DATA WRITE"
WG * AMCP * MATCH + "WRITE AM"
WG * MATCH * RR2 *
«(/NR3 * NR2 * /NRI * /NRO) + "WRITE CASE I"
(NR3 * NR2 * /NRI * /NRO) + "WRITE CASE 2"
(/NR3 * /NR2 * NRI * NRO) + "WRITE CASE 3"
(/NR3 * NR2 * NRI * NRO + "WRITE CASE 4"
(NR3 * NR2 * NRI * NRO)) + "WRITE CASE 5"

RG * RR2 + "SHIFT DATA READ"
RG * MATCH +
WG * MATCH * NR2 * NRI * /NRO + "WRITE CASE 6,7 11

/RG * /WG;

RRO := WG * RRI * /MATCH + "SHIFT DATA WRITE"
WG * MATCH * RRI *
«(/NR3 * NR2 * /NRI * /NRO) + "WRITE CASE I"
(NR3 * NR2 * /NRI * /NRO) + "WRITE CASE 2"
(/NR3 * /NR2 * NRI * NRO) + "WRITE CASE 3"
(/NR3 * NR2 * NRI * NRO) + "WRITE CASE 4"
(NR3 * NR2 * NRI * NRO)) + "WRITE CASE 5"

RG * RRI + "SHIFT DATA READ"
RG * MATCH +
WG * MATCH * NR2 * NRI * /NRO + "WRITE CASE 6,7"

/RG * /WG +

WG * AMCP * MATCH;

AMFO := RG * AMCP * MATCH + "ADDRESS MARK FOUND"
RG * AMFO * AMC * /AMF + "HOLD"
WG * AMCP * /AMFO + "SET FOR WRITE"
WG * AMFO * AMC; "HOLD"

END.

Figure 3-55 Continued

3-54

DEVICE RLLEXT (P16R8)

THIS PAL DEVICE GENERATES THE ADDITIONAL SIGNAL REQUIRED FOR THE
RLLENCDEC PAL.
THE COUNTER FOR CLK1 AND TOG NEEDS TO BE RESET WITH /SELEN
OR IF MATCH IS ACTIVE.

ADVANCED MICRO DEVICES
VERSION 1.0

JOCHEN POLSTER

PIN
CLK - 1 (Clock)
MATCH - 2 (INPUT combinatorial)
WG - 3 (INPUT combinatorial)
/SELEN = 4 (INPUT combinatorial)
AME'I - 6 (INPUT combinatorial)
WRDAT - 5 (INPUT combinatorial)
NRZ[1:0] = 8,7 (INPUT combinatorial)
AMC = 9 (INPUT combinatorial)
/AME' = 12 (OUTPUT registered active_low)
/CNT[2:0] = 15,14,13 (OUTPUT registered active_low)
/AMCP - 16 (OUTPUT registered active_low)
/CO[1:0] - 18,17 (OUTPUT registered active_low)
/AME'INT = 19 (OUTPUT registered active_low)

BEGIN

IF (/MATCH * SELEN) THEN BEGIN
CASE(/CO[1:0])
BEGIN tBOO) /CO[1:0] :- iB01;
iB01) /CO[1:0] :- iB10;
iB10) /CO[1:0] :- iBl1;
tB11) /CO[1:0] :- iBOO;
END;
END;

ELSE /CO[1:0] :- iBOO;

IF(SELEN * AMC * /AMCP * MATCH * NRZ[1:0]) THEN BEGIN
CASE (/CNT[2: 0])
BEGIN iBOOO) /CNT[2:0] :- iB001;
iB001) /CNT[2:0] := iBOI0;
iBOI0) /CNT[2:0] :- *B011;
iB011) /CNT[2:0] := iB100;
#B100) /CNT[2:0] := iB101;

END;
END;

tBI01) /CNT[2:0] :- iBI10;
IB110) /CNT[2:0] := iBl11;

Figure 3·56

3·55

3/4/1987

ELSE BEGIN
IF(SELEN * AMC * /AMCP * /MATCH) THEN
/CNT[2:0] := /CNT[2:0];

ELSE
/CNT[2:0] := *BOOO;

END;

AMCP := WG * AMC * AMF * /AMFI * /AMCP
WG * AMC * AMCP * MATCH

+ "ONE PULSE FOR WRITE"
+ "SECOND PULSE"

SELEN * /WG * AMC * /CNT[2] * CNT[l] * /CNT[O]
SELEN * /WG * AMCP * /MATCH;

+ "SET AFTER 00000 DETECT"

/AMF:= WG * AMC
SELEN * /WG * AMC * AMFINT * /AMCP * MATCH
SELEN * /WG * /AMF * AMC;

AMFINT := SELEN * /WG * AMCP * MATCH
AMFINT * AMC * AMF;

END.

Figure 3-56 Continued

3-56

"HOLD UNTIL AM DETECT"

+ "WRITE AM"
+ "READ AMF DELAY"

+

"HOLD"

CHAPTER 4

4.0 BOARD-LEVEL PRODUCTS

4.1 Am9580Al82 DiSk COntroller Board for
the IBM-PC/AT

ObJective of the Board

The disk controller board described below shows
that it is possible to build a highly intelligent and
compact controller board that supports ST506 as
well as ESDI standard. Furthermore. the board also
handles the IBM standard double-density floppy­
disk format.

Two VLSI chips make it possible to keep the
hardware design surprisingly compact for a board
of such functionality and performance. Advanced
Micro Devices' Hard Disk Controllers (HOC).
Am9580A or Am9590. are highly integrated
devices that off-load the CPU from handling the
disk drives.

The key charactericties of the disk controller are:

• Supports ST5061412 and IBM double-density
floPPy-disk drives

• Controls up to four drives. any mix of interfaces

• Two on-chip sector buffers of up to 512 bytes.
support zero-sector interleaving

• Error checking algorithms supported include
-CRC/CCITT
- Single-Burst Reed-Solomon
- Double-Burst Reed-Solomon
- Extemal ECC (Error Correction Code)

• Linked-list command and data structure

• On-chip DMA controller supports 32-bit
addressing. 8116-bit data buses and Data
Mapping

The difference between the Am9580A and the
Am9590 is in the disk interface. As a functional

4-1

subset of the Am9580A. the Am9590 supports
the ESDI standard. in addition to ST506/412 and
double-density floppy-disk drives. Both devices
are fully hardware and software compatible.

The companion part. Am9582. is a highly
integrated Disk Data Separator (DDS). It requires a
minimum number of external components. The
frequency of the on-Chip PLL (Phase-Locked
Loop) can be changed dynamically. One DDS can
support hard- as well as floppy-disks. Constant
linear recording density can be aChieved by
changing the reference frequency as a function of
the track number.

The IBM PC/AT has been chosen as a system
interface example because it is the most popular
microcomputer with a 16-bit data bus and an open
architecture. Furthermore. it differs from the PC
and XT. it allows other devices to request the host
bus. whieh is a requirement of all high performance
peripheral controllers. The bus exchange and
decode logic described here can. however. be
easily adapted to any other bus standard.

Hardware Description

The Am9580Al90 provides an independent host
and disk interface. The host interface accesses the
internal registers of the Am9580Al90 via I/O
operations. For all command and data transfers.
the HOC requests the host bus and performs the
transfers with its internal DMA controller. Two PAL
deviees adapt the bus Signals of the Am9580Al90
to the IBM PC/AT bus.

The disk interface can be configured in two
different ways. One mode uses the Am9580A and
Am9582 to support two ST506/412 hard-disk
drives and two double-density floppy-disk drives
(Figure 4-1). The clock frequency of the Am9582
is switched according to the requirements of the
selected drive. The DDS generates and detects
the address marks on either media. The only
external hardware required are a few line drivers
and a decoder to select the individual drives.

r---------~~~A~

Am9580A

046JP·001

Bus I~mm~~--~~~ ArbIter rl cs

4
r---------~-+_M A~

Am9590

MFM Data

NRZ Data
(ST506)

DSO

FIgure 4·1

Serial CommandlStatus Link

4

NRZ Data

(ESDI)

FIgure 4·2

4-2

Control

Data 1

Data 2

Floppy Disk

375·1

Control

Data 1

Data 2

375·2

In the other configuration, the new Arn9590 Hard
Disk Controller replaces the Arn9580A (Figure 4-
2). The same board, without any hardware
changes, is now able to also support the new ESDI
interface. The Am9590 fully supports the ESDI
standard for soft- and hard-sectored disk drives.
The serial command/status link required by ESDI is
implemented on-chip. The part automatically
generates the ESDI commands (SEEK and
RESTORE), necessary for normal disk operations.
Therefore, the disk Interface is fully transparent to
the CPU. Once the Initialization has been
completed, the processor has no need to know
the characteristics and the type of disk media it
accesses.

The Arn9590 also allows the user to send or
receive any other command or status information
under CPU control. Thus, the board is fully upward
compatible for future ESDI features.

Software Description

Three software packages have been written for
this disk controller board. A menu-driven
developement software tool helps to debug the
disk interface and to adapt different drives to the
board. It is also a good tool to get familiar with the
various high-level functions of the Arn95S0Al90.

The other two programs are application examples.
A DOS-Driver (Ch.2.2) runs all major programs
available for the IBM PC/AT. It is a typical example
of an Arn95S0Al90 software interface to a
micro/minicomputer operating system and is
written in ·C". A BIOS Driver (Ch.2.3) assures full
compatibility with all application programs that
directly call the ROM BIOS functions. This program
is written in assembly language.

Performance

The disk controller described above offers a
substantial improvement in speed and software
interface compared to conventional controller
boards. Zero-sector interleaving and on-Chip DMA
increase the performance to a point where it is only
limited by the physical characteristics of the disk
drive itself, its access time, and data rate.
Furthermore, a high-level command structure
helps to minimize the usually required CPU
overhead.

4-3

Detailed Hardware Description

The Host Interface

The disk controller board allows two different
modes to interface to the IBM-AT. In Slave mode,
the host can access the intemal registers of the
Am95S0A. This mode uses the AT IQ-addresses
from 100H to 110H. The Master mode allows the
Am95S0A to access the AT bus directly. It is used
to transfer commands and data between the HOC
and the host.

The interface between the Arn95S0A and the IBM­
AT bus requires the HOC address-data bus (AD­
bus) to be de-multiplexed. Three Am2956 latches
generate the AT address in master mode. An
Am2947 and a 74LS646 buffer the 16-bit data-bus
of the IBM-AT. The 74LS646 in this application is
used only as a bus driver; however, a small
modification of the board would allow byte
transfers. In the current configuration the board
works with word accesses only.

The IBM-AT addresses SAO-SA9 are decoded in
U24 (Am PAL 16LS)(see Figure 4-6) to generate an
Am95S0A CS signal in slave mode. AO-A3 select
the individual registers inside the HOC. Two PAL
devices (U20 and U12) generate all the control
signals in master-and slave modes (see Figure 4-7
and Figure 4-S for the PAL equations). They also
convert the two-wire bus exchange interface of the
HOC into the three-wire handshake of the IBM-AT.

Jumpers on the controller boards configure the
hardware to use different DMA channels and
interrupts of the IBM-AT (see the following table).

Jumper Signal

W10 DREQ7
W11 DACK7
W12 DREQ6
W13 DACK6
W14 DREQ5
W15 DACKS
W16 IRQ14
W17 IRQ6

The default setup is DREQ7-DACK7 for the DMA
channel and no interrupt.

The Disk Interface

The disk interface of this board allows two
configurations. The Am9580A, together with the
Am9582, can support up to two hard-disk drives
(ST506) and two floppy-disk drives. If the Am9582
is replaced by two PAL devices (U5 and U6), the
board can support up to two ESDI hard-disk drives.

In the standard configuration (ST506 and floppy)
the Am9582 does the encoding and decoding of
the MFM data. One data separator serves both, the
hard-disk and the floppy drives. The device is
switched between the two modes using the DS1
(Drive Select 1) signal. Furthermore, the clock
frequency of the DDS has to be switched between
5MHz (ST506) and 4MHz (Floppy mode 4MHzl16
= 250kHz). The PAL device U7 uses either the
5MHz clock input or the 8MHz clock input devided
by two, as a device clock for the Am9582. The
AmPAL22V10 also multiplexes the three MFM
Read Data inputs (2 hard-disk, 1 floppy) for the
DDS. Two line drivers (Am29828) and a 2 to 4
decoder (74LS139) for the individual drive select
signals complete the disk interface.

The second configuration (Figure 4-2) of the board
supports up to two ESDI hard-disk drives. The
Am9582 is removed because the ESDI interface
transfers NRZ data between drive and controller.
The Am9580A needs only be replaced by the
Am9590 to do ESDI.

Jumper description:

Jumper Function ST506 ESDI

W1 Analog VCC DDS Y Y
W2 DIRIN Y N
W3 STEP Y N
W4 9580Al90
W5 Rd/Rdf. Clock N Y

• This Jumper was used to allow the Am9580A
some extra logic to do ESDI. When using the
Am9590 to do ESDI, this jumper is not used.

The Disk Connectors on the board have the
following functions:

Connector

Jl
J2
J3
J4

Function

Hard Disk Control Cable
Floppy Disk Cable
Radial Cable HD Drive 2
Radial Drive HD Cable 1

4-4

The hard-disk drives have to be set up for either
DS1 (Hard-disk Drive Select 1) or DS2 (Hard-disk
Drive Select 2). This corresponds to Drive 0 and
Drive 1 for the HDC parameters. Floppy disk drives
have to be configured for DSO (Floppy-disk Drive
Select 0) or DS1 (Floppy-disk Drive Select 1). This
corresponds to Drive 2 and Drive 3 for the HDC
parameters.

4.2 SCSI Board

Introduction

The Small Computer System Interface (SCSI) is an
increasingly popular peripheral communication
standard defined by the ANSI X3T9.2 Committee.
This standard provides a sophisticated approach to
interfacing host systems to intelligent peripheral
devices and can significantly improve the overall
performance of a computer system.

Although a SCSI device driver is readily available
for most commercial operating systems, the most
popular hard-disk interface today is either the
simple ST506 interface or the high performance
ESDI interface. A bridge controller is required to
convert between the device-level protocols and
the system-level SCSI protocol. Furthermore, a
bridge controller allows disk control electronics to
be shared by multiple disk drives, and is more cost­
effective than providing built-in SCSI electronics
for each individual drive.

The availability of off-the-shelf VLSI devices has
made it possible to construct a high performance
SCSI disk formatter that addresses the need of a
new generation of computer systems; yet small
enough to be mounted on a 3 1/2" micro hard-disk
drive. Further performance enhancement is
realized through an on-board 256 kbyle disk cache
and hardware features that can drastically reduce
file transfer time and system latency .

Objective of the SCSI Disk Formatter Board

The SCSI disk formatter board serves as an
example of a highly integrated design that uses
state-of-the-art VLSI components to their full
advantage. With these VLSI devices, a high­
performance application-specific board can be
built; even when most of the control software is
written in a high-level programming language such
asC.

The features of the SCSI board are:

• A 10 MHz 80188 CPU that provides the
computing power for SCSI command
interpretation, cache memory management, and
control of the Am9590 disk controller.

• An Am9590 disk controller that interfaces to two
hard-disk drives. Any combination of ST506
IST412 or ESDI hard-disks are allowed. The
Am9590 implements all the control functions
required by these industry-standard interfaces
and can be customized for different data
formats. On-chip dual data buffers permit zero­
sector interleaving.

• The Am9582 provides all the data separator
functions such as data encoding, decoding, and
address mark generation and detection for the
ST506 interface.

• The SCSI interface is realized with the Am5380
SCSI controller. It provides hardware support for
handling the SCSI protocol and allows an
asynchronous data transfer rate of up to 1.25
Mbytes per second for the board.

• 256 Kbytes of dynamic RAM with parity check
provide the disk cache memory as well as
memory storage required by the operating
system. An EPROM of up to 64 kbytes carries
the control program for the board.

General Hardware Description

The SCSI board can be logically partitioned into
three functional sections (Figure 4-3):

1. The Dynamic RAM (DRAM) interface
2. The SCSI port interface
3. The disk control interface

The activities of these three functional sections are
coordinated by the 80188, a highly integrated
microprocessor with buill-in DMA channels,
programmable timers, and an interrupt controller.

The 10 MHz system timing is provided by the
CLKOUT signal of the 80188 microprocessor. It
drives Am9590 disk controller clock input and is
divided by two to provide the clock frequency for
the ST506 interface.

The system memory is comprised of a program
memory of 64 kbytes in EPROM and a data
memory of 256 kbytes in DRAM. The contents of
the DRAM are refreshed continuously by the
80188 DMA Channel O. The integrity of the DRAM
storage is maintained through the use of the
Am29833 parity transceiver that alerts the CPU of a
memory error during a data memory read
operation. The DRAM interface consists of two
address latches and a programmable logic device
that generates the RAS and CAS control signals to
the DRAMs.

SCSI Disk FormaHer Board ST506I
ESDI

I rI nta ace
Am29828

Add 80188
Control •

--[>0- Conlrol
DRAM

DRAM WE
...

Cache ~

wHh ~
Am9582 74LS14

Control
Parity CPU -«:l-logic RAS
Check

CAS Data
Separator

~ l 4l r--t
r-

Am26LS31 ,
~ ~ l

DalaO
MFM
Data p Am26LS32 ... , ,

" -¢
Am53BO Am27512 Am9590

SCSI BUS ... • MUX ... Data - ~ ... Hard - p
Control ...

SCSI Disk Logic
Control EPROM Control NRZ

Am26LS31
... Data

~ Dalal
5-3 p Am26LS32 37

-¢
FI ure 4-3 9

4-5

The SCSI interface lines are connected directly to
the Am5380 SCSI controller. This device has built­
in 48 mA open-drain drivers required for the SCSI
protocol. The CPU addresses the internal
registers of the Am5380 by activating the PCS1
line. Data transfers over the SCSI bus are
controlled by the 80188 DMA channel 1. When
there is a SCSI bus condition that needs the
attention of the CPU, the Am5380 will activate the
80188 INT1 line.

The Am9590 disk controller is selected by the
80188 PCSO line. The BIW input is strapped HIGH
to configure the Am9590 in the 8-bit interface
mode. The Am9590 will output the A16-A31
value on its ADQ-AD15 lines with the ALEN signal
enabled and will only update these upper
addresses when necessary; therefore, a
programmable logic device is used to provide the
current A 16 and A 17 values to the DRAM interface
when the Am9590 is accessing the DRAMs.

The board is designed to interface to any
combination of ST506 or ESDI hard-disk drives
using the same connectors. The software senses
the jumper settings and configures the drive
parameter blocks accordingly. If the selected drive
is an ST506 hard-disk drive, the Am9590 receives
the Read Data and its Reference Clock signals
from the Am9582 DDS. If the selected drive is an
ESDI disk drive, the Read Data and its Reference
Clock signals is supplied directly through the ESDI
data interface. An Am29828 buffer provides the
48 rnA drivers for the disk control signals.

An optional Am9582 provides the ST506 support
for the board. The Am9582 receives the Write
Data from the Am9590 disk controller and formats it
as MFM data for the hard-disk drive. When reading
data from the disk, the Am9582 retrieve the NRZ
data and its Reference Clock from the serial MFM
Read Data stream. The Am9582 also provides
Address Mark generation and detection functions
and the Precompensation function for the MFM
Write Data.

General Software Description

The software for the SCSI board can be divided
into three functional blocks:

1. SCSI protocol control
2. Am9590 control
3. Disk cache management

Only a small portion of the software is written in
assembly language, the majority of the program is

4-6

written in C. This makes the code easy to
understand and modify, so that performance
enhancements can be made simply by replacing
the various software modules.

The SCSI protocol control software initializes the
Am5380 for responding to selection by an initiator.
It manages receiving of command bytes from the
initiator and initializes DMA Channel 1 for the SCSI
data transfer phase. It is also responsible for
sending out the status information after a data
transfer.

The software is developed for a small system
environment similar to the IBM PC-DOS or the
Apple Macintosh operating system. The system
will wait until the requested sectors of the hard-disk
is in the memory before proceeding with another
process; therefore, reselection is not supported in
this software. The SCSI target, once selected, will
continue to control the SCSI bus until the
transaction is finished.

The interrupt output of the Arn5380 is connected
to the 80188 INTO input. Interrupt service routines
support various time-critical activities at the SCSI
port such as selection, bus reset, and bus error
handling.

The SCSI Common Command Set (CCS) is
supported by the software. This allows any host
adapter that implements the CCS to communicate
with the board. In the case of formatting a ST506
disk drive, extension to the CCS were necessary
to pass the drive parameters to the board.

Since the Am9590 accesses memory through its
on-chip DMA controller; memory areas have to be
allocated for its Input/Output Parameter Blocks
(IOPBs), Data Map entries, and Status Result
Blocks (SRBs). The software control scheme
allows SCSI bus operation, CPU operation, and
Am9590 operation to occur simultaneously. The
software translates the SCSI commands into the
corresponding IOPBs for the Am9590 and puts
them in the allocated IOPB area before issuing
commands to the Am9590 to initiate the disk
access operation. Only one IOPB will be
assembled each time because commands are not
chained together.

The cache management scheme for the SCSI
target is simple. The intention is to provide the
benefit of a disk cache without assuming any
special feature or any specific environment that a
disk drive may have. A user can significantly boost
the performance of the SCSI board simply by
replacing the cacheing scheme with one suitable
for a particular environment.

The cache management software takes advantage
of the zero-sector interleaving capability of the
Am9590. During a muHi-record access, after the
Am9590 has accessed the last sector of a track, it
will automatically switch to the next head to access
the next record. This is called a "head first" access
rather than a "track first" access. In this way the
drive controller is able to fetch large amount of
sequential data from the disk efficiently.

Caching is performed on a track-by-track basis and
look-ahead read is performed automatically for any
read from the disk. Therefore, significant per­
formance increase resuHs in applications that do
not involve a great deal of random data base
accesses. Such applications include most per­
sonal computer software and time-shared multi­
user systems where performance is dependent on
the speed of sequential file accesses and
repeated access to disk allocation tables and
directory information.

The software also makes use of the sector pulse
generated by hardware to determine if the first
requested sector has been fetched by the
Am9590. This allows the software to set up the
Am5380 to start transferring data to the initiator,
before the total number of logical blocks is read by
the Am9590. This drastically reduces the data
transaction latency.

A typical application, such as text editing or
program compilation will require approximately
eight buffers. With caching, based on a whole
track and the "look ahead" reading, the software
only needs to manage a relatively small number of
track buffers to provide a drastic boost in
performance for a personal computer
environment.

Design Considerations

The design goal for the SCSI board is to provide a
low-cost, high-performance system with off-the­
sheH components in a small form-factor. The use
of various types of AMD programmable logic
devices contributed to the small chip count
required for the board (Figure 4-4).

The design is based on an 8-bit system bus
because of the board space constraint. The
DRAMs used are the 256k by 1 bit ZIP type
DRAMs because of the small package size. Also
an 8-bit design reduces the number of trans­
ceivers and buffers required for the data bus.

Performance studies shows that, since the SCSI
bus is byte oriented, the extension of the system
bus to 16-bit does not improve performance
enough to justify the added cost and board space.
If the application requires more cache memory and
faster intemal data rate, the design can easily be
modified to a 16-bit system by using the 80186
with the Am9590 strapped in Word Mode.
However, the board space constraint will require
most DIP packages to be replaced by PLCC or
other surface-mounted packages; cost-effective
only in a mass production environment.

Although the Am9590's interrupt signal is
connected to the 80188, the software does not
provide service interrupt for the disk controller.
The CPU polls the Am9590 status register while
running in a loop that coordinates the various
board activities. This scheme simplifies the control
logic for the board.

The Am9590 is designed to control up to four disk
drives. Because of board space constraint, only

r--:~~~;-------------------------~==:;~==~-'I~~
~ I Power I

~ ~ [-=:JBrn~~
: =. .. 11 i 1 rn rn 00 0000 ~ '"

...,AL, I • I _AU .. I EJ i
256K DRAM Arrey I I I L-___________ --I 74LS14

1414--------5314 .. -----------""~ -"
375-4

Figure 4-4
OII7HDC>OOI

4-7

two data cable connectors are put on the board.
The only modifications that would be required to
control the extra drives are the multiplexers,
drivers, and receivers for the additional channels.

Since the Am9590 and the Am9582 are also
designed to support floppy disk drives, a multi­
function disk controller board can be implemented
with little added logic. Floppy disk is not supported
by the board because of the extra connector
requirement and that the SCSI commands for
floppy disk drives have not been standardized.

The DMA controller on the 80188 is able to do a
SCSI data read at a source-synchronous rate of
1.25 Mbytes/s; however, writing data to the SCSI
port can only be done at 0.8 Mbytes/s because of
the limitation of the 80188 source-synchronous
DMA transfer. Hardware is provided on board to
allow the Am5380 to perform a Block Mode DMA
transfer; this way, a SCSI data write operation can
be sustained at 1.25 Mbytesls, using the 80188's
string-move operation instead of a DMA write.

User's Guide for the SCSI Disk Formatter

Several jumpers are located on the SCSI board to
allow for different configurations. Since the
software will read the configurations upon system
reset, these jumpers settings should not be
modified while the SCSI board is in operation. A
system reset is automatically initiated upon power­
up, a miniature push-button switch (SW1) on the
board allows the user to reset the system after
power-up. The descriptions for the jumper
function are as follows:

Jumper Description

WI Jumper in: Drive 0 = ESDI; out: ST506
W2 Jumper in: Drive 1 = ESDI; out: ST506
W3 Reserved, no jumper inserted
W4 Reserved, no jumper inserted
W5 SCSI Target 10 bit 0: Jumper in =1; out = 0
W6 SCSI Target 10 bit 1: Jumper in =1; out = 0
W7 SCSI Target 10 bit 2: Jumper in =1; out = 0
W8 Jumper in: SCSI Parity Enable; out: disable
W9 Jumper in: Drive 1 = ESDI
Wl0 Jumper in: Drive 1 = ESDI
Wll Jumper in: Drive 1 = ESDI
W12 Jumper in: Drive 0 = ESDI
W13 Jumper in: Drive 0 = ESDI
W14 Jumper in: Drive 0 = ESDI

Upon system reset, the control software read the
values of W1 and W2 to set up the default drive
parameter blocks for Drive 0 and Drive 1. The ID
bits determine which SCSI selection the SCSI
board will respond to, and the Parity Enable bit
determines if the Am5380 will generate and check
parity on the SCSI bus.

The two drives that can be connected to the SCSI
board share the same control signals on connector
J2. The drive with its data cable connected to J4 is
referred to as Drive 0 (DRO), and the drive with its
data cable connected to J3 is referred to as Drive 1
(DR1). The SCSI protocol will refer to DRO and
DR1 as logical unit numbers (LUN) 0 and 1,
respectively (Figure 4-5).

The Data Cable Jumpers W9 through W14 are
used to prevent contention between an ESDI
drive and an ST506 drive. Some ST506 drives in
the market use pins 4, 7, and 8 on the data cable
instead of leaving them open. Since the same
cable is used for ESDI as well as ST506 drives, the
connection of these jumpers can cause un­
desirable signals to be driven into the ESDI
interface logic, and may cause the Am9590 to
report a fault condition. Jumpers W9 throught
W14 should be installed for ST506 drives and left
out for ESDI drives. The following table shows the
allowable combinations.

The recommended installation for these Data
Cable Jumpers are:

4-8

ORO DR1 Install Jumpers

ST506 ST506 None
ST506 ESDI W12, W13, W14
ESDI ST506 W9, Wl0, Wll
ESDI ESDI W9, Wl0, Wll, W12, W13, W14

There are four double-row header connectors on
the SCSI board. The functions of these
connectors are:

Connector Function

Jl 50-pin SCSI port
J2 34-pin ESDI/ST506 Control Cable
J3 20-pin Data Cable for Drive 1
J4 20-pin Data Cable for Drive 0

The 50-pin connector J1 is a standard single­
ended SCSI port that is terminated by the SIP type
resistor packages (RN1, RN2, and RN3). If the
SCSI cable is already fully terminated extemally,
RN1 and RN3 should be unplugged from the
board and pin 2 and 4 of RN2 should be removed
to avoid overloading the SCSI bus.

The SCSI single-ended cable signal pin
assignments are shown in the following:

Pin Number

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

SCSI Signal

DBO
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DBP
GND
GND
GND
No Connection
GND
GND
ATN
GND
BSY
ACK
RST
MSG
SEl
C/O
REO
110

All odd pins, except pin 25, on the SCSI connector
J1 are connected to ground. Pin 25 is not used by
the SCSI board. The standard SCSI cable
connection is to terminate the active SCSI signals
externally with 220 ohms to +5V and 330 ohms to
ground at the initiator end of the cable, with RN1,
RN2, and RN3 installed on the board.

The same 34-pin connector J2 is used for ESDI or
ST506 disk control signals. All odd pins on the
connector are connected to ground. The pin
assignments for the drive control cable are shown
in the following:

4-9

Pin Number Disk Control Signal

2 Reduced Write Current
4 Head Select 2
6 Write Gate
8 Seek Complete

10 TraCkO
12 Write Fauk
14 Head Select 0
16 ESDI Sector
18 Head Select 1
20 Index
22 Ready
24 Step
26 ';:'D':"'riv"-e'S'e"le-:-ct
28 Drive Select 2
30 No Connection
32 No Connection
34 Direction In

J3 and J4 are the 20-pin connectors for the data
cables for the two disk drives that can be
connected to the SCSI board. J4 is used for Drive
o (DRO) and J3 is used for Drive 1 (DR1). Because
the pin assignments for the ESDI and ST506 data
cable are slightly different, jumpers W9 through
W14 are provided to prevent signal contentions.
Some signals are defined only for the ESDI drives.
The pin assignments for these connectors are:

Pin Number Data Cable Signals

1 Drive Selected
2 No Connection
3 Command Completed (ESDI)
4 Address Mark (ESDI)
5 No Connection
6 GND
7 + Write Clock (ESDI)
8 - Write Clock (ESDI)
9 No Connection

10 + Reference Clock
11 - Reference Clock
12 GND
13 + Write Data
14 - Write Data
15 GND
16 GND
17 + Read Data (MFM ST 506)

(NR2 ESDI)
18 - Read Data (MFM ST 506)

(NR2ESDI)
19 GND
20 No Connection

P1 is a 4-pin power connector that can be hooked
up to the same cable that supplies current to the
disk drive. The SCSI board only requires a +5 V
power supply; the +12 V power input is not used.
Pin 3 is the only ground return line for the board.
The board requires about 2 Amps on the +5 V
supply. The pin assignments for P1 are:

Pin Number Voltage

1 Not Used: can be connected to +12 V
2 Not Used: can be connected to GND
3 GND
4 +5V

System Interface

The 80188 high-integration 8-bit microprocessor
(U3) provides the functions that are necessary to
control the hardware resources on the SCSI board
(Figure 4-5). The 80188 features that are utilized
on the board are:

• An enhanced 10 MHz 8088-2 CPU for the
computing power required for the board.

• A clock generator that provides the 10 MHz
system clock for the Am9590 (U4) and the
DRAM control logic. The 5 MHz ST506
frequency for the Am9582 (U18) is derived from
the system clock.

• Timer 0 is used to provide a real-time clock for
the software, useful for computing time-out
intervals.

• Timer 1 is a counter for sector pulses when data
is read from the hard disk. By reading this
counter, the software can determine the number
of sectors being transferred by the Arn9590.

Other SCSI Devices
(e.g •• LaserWrlter)

SCSI Bus J1

This reduces the latency time for a SCSI bus
transaction.

• Timer 2 is used to generate refresh requests to
DMA Channel O. A DMA data transfer will be
initiated by the 80188 when a OM'" request is
received. The timer is initialized to provide the
proper refresh time interval for the DRAM.

• DMA Channel 0 is used to refresh the DRAM
(U19-U27). Each DMA cycle refreshes two row
addresses of the 256 kbyte DRAMs.

• DMA Channel 1 allows DMA transfer between
the Am5380 (U1) and the DRAM.

• The programmable Interrupt Controller also
handles interrupt requests for memory error
detection and SCSI bus conditions that require
the attention of the CPU. It will also service the
DMA 0 interrupt, which allows the DMA refresh
procedure to be reinitialized.

• The Chip-Select unit activates the proper
selection lines for the EPROM, DRAMs,
Am9590, and the Am5380. Some select lines
are also used to activate hardware on the board.

The 80188 is driven by a 20 MHz crystal (Y1)
connected between its X1 and X2 inputs. This
frequency is divided by the internal Clock
Generator to provide the synchronous 10 MHz
CLKOUT output for the system.

When the board is powered-up, or when the
system reset button (SW1) is activated, the RES
input to the 80188 is driven LOW momentarily.
This resets the 80188 and causes the RESET
output of the 80188 to go HIGH for an integral
number of system clock cycles corresponding to
RES. The RESET output will generate a system

SCSI Disk
Formatter

375·5

Figure 4-5

4-10

reset which resets the Am9590 and the Am5380
and clears the parity flag of the Am29833 Parity
Transceiver (U2).

The firmware for the 80188 is contained in an
Am27512 EPROM (U9). The EPROM contents
are enabled on the data bus only when the UCS
and RD lines of the 80188 are activated. Upon
reset, the CPU starts the execution of instructions
at address OFFFFOH, which will cause a jump to the
beginning of the EPROM space at location
OFOOOOH. The EPROM occupies a memory
address from OFOOOOH through OFFFFFH. The
control program at the present time requires less
than 32 kbytes, therefore plenty of program space
is left for development of enchanced features.

The system RAM storage is comprised of nine
256k by 1 bit ZIP type DRAMs (Ul9-U27),
providing 256 kbytes of system memory with parity
check. The ZIP type package is chosen because
of its small form factor. To provide a zero wait state
data transfer, the DRAM's must have an access
time of 150 ns or less.

Parity checking is important for the cache memory
because the DRAM contents may be retained for
an indefinite period of time, kept refreshed
continuously by the DMA Channel 0 of the 80188.

Parity checking will prevent corrupted data caused
by soft errors on the DRAMs to be transferred to
the Initiator. The Am29833 Parity Transceiver (U2)
generates or checks parity on-the-fly during a
DRAM access. It also provides buffering between
the data bus and the DRAMs.

The DRAMs occupy an address area from 0 to
3FFFFH, activated by the LCS signal of the 80188.
The address Signals output by the 80188 is
latched inside U7 (Am29C841) and U8 (Am2956)
when the ALE signal becomes active. Since 18
bits of address lines are necessary to access all the
DRAM memory locations, these address bits must
be multiplexed into a 9-bit row address and a 9-bit
column address for the DRAMs.

The DRAM address control logic is controlled by
U16 (Am16R4) which generates the Row Address
Strobe (RAS) and Column Address Strobe (CAS)
inputs to the DRAMs. The row addresses latched
in U16 are provided to the DRAMs when RAS is
active; the column addresses latched in U14 are
provided to the DRAMs when CAS is active. U16,
together with U12 (AmPAL16L8), also generates
the control signals for the Am29833 parity
transceiver.

The Am9590 (U4) has a 16-bit multiplexed
address/data bus (ADO-AD15). The Am9590 can
access a 32-bit physical memory space. During a
memory access by the Am9590, the address lines
will contain the lower 16 bits of the physical
address when ALE is active and the upper 16 bits
of the physical address when ALEN is active. The
upper address bits are only put out by the Am9590
when it is necessary to access a memory area
outside the 64 kbyte window, currently
addressable by the 16-bit address lines. These
upper address bits are expected to be latched
externally when ALEN is active.

Since the Am9590 needs only access 256 kbytes
of data, only the upper address signals, A16 and
A17, need to be latched when ALEN is active.
U15 (AmPAL16L8) is used to latch the A16 and
A17 signals put out either by the 80188 or the
Am9590. These latched address bits are provided
to the DRAMs when CAS is active.

A DMA data transfer for the 80188 consists a fetch
cycle and a deposit cycle. Since DMA Channel 0 is
used to refresh the DRAMs, the deposit cycle that
initiate a write to memory must be suppressed.
Instead, logic implemented in Ul0 and U16 are
used to provide the DRAMs with RAS-only
accesses on two row addresses when a DMA
Channel 0 byte transfer is initiated. In this way, the
number of DMA cycles per second required for
refreshing the DRAMs will be reduced, allowing
most of the system bus bandwidth to be used by
the CPU or the Am9590.

The Am29833 parity transceiver (U2) generates
the parity check bit during a write to the DRAMs
and check the returned data during a read from the
DRAMs. All DRAM locations are written once upon
system reset to guarantee valid parity bits in
DRAMs on power-up. The detection of a parity
error will activate the NMI input of the 80188, so
that the software can inspect the data content or
load the data again from the disk.

The Am29833 has to generate a non-maskable
interrupt on memory error because DMA activities
have higher priority than the Interrupt Controller on
the 80188.

The ARDY input to the 80188 is controlled by Ul0
(AmPAL16L8). This device provides the 80188
with the Am9590 ready signal while the CPU
access the internal registers of the disk controller
in Slave Mode. During Am5380 Block Mode DMA
transfer, the device will provide the 80188 with the
Am5380 ready signal in order to control the
transfer rate.

4-11

The system bus on the board is comprised of the
16-bit Address/Data lines, the latch enable signals,
the readlwrite control signals, and the data control
signals. There are five different types of access to
the system bus:

1. A DMA refresh cycle is initiated by a DMA
Channel 0 transfer. This consists of two RAS
only access to the DRAMs. Two row
addresses, separated by 256 rows, are
refreshed once every 4 ms required by the
DRAMs. Since each DMA read or write
operation requires four system clock cycles,
the total memory bus bandwidth that will be
used for memory refreshing will only be
approximately 3%. There is a small additional
overhead aSSOCiated with the execution of the
interrupt service routine.

2. The CPU access to the Am5380 registers. The
80188 enables the PCS1 chip select line and
the register address is provided by the
Am29C841 latch. No wait state is necessary to
read or write to the registers.

3. The DMA access to the Am5380 data register.
The 80188 activates the PCS2 chip select line
in response to a DMA request by the Am5380.
This causes the DACK input of the Am5380,
controlled by U12, to be asserted. No wait
state is necessary for a DMA transfer to the
SCSI bus.

4. The CPU access to the Am9590 registers. The
Am80188 activates the PCSO chip select line
to access the Am9590 registers. The register
addresses are provided by the Am29C841
latch. Since the Slave Mode access for the
Am9590 can vary between one to sixteen
system clock cycles, the READY output of the
disk controller is used to control the access
time for the registers.

5. The DMA transfer between the Am9590 and
the DRAMs. When the Arn9590 is ready to
start a data transfer, it asserts the BREQ signal
that is tied to the HOLD input of the 80188. In
response, the 80188 gives up control of the
system bus and asserts its HLDA line that is
connected to the Arn9590's BACK input. The
Am9590 takes control of the system bus after it
receives the BACK signal. The memory access
is the same as an 80188 access; no wait states
are required.

SCSI Interface

The SCSI bus interface is provided by the Am5380
SCSI protocol controller (U1). This device has on-

chip 48 mA open-drain drivers and is designed to
be connected directly to all the SCSI bus signals.
The Am5380 is controlled by reading and writing to
several intemal registers that are addressed as 1/0
Ports by the 80188.

The Am5380 has built-in hardware that supports
the SCSI protocol such as arbitration, parity
generation and verification, and SCSI bus reset.
The Am5380 will interrupt the 80188 when it
detects a SCSI bus condition that requires CPU's
attention; the control software will then identify the
cause of the interrupt and service it. The SCSI
board supports data transfer between the Am5380
and the memory bus in three methods:
programmed 1/0, normal DMA, and Block Mode
DMA.

The 80188 accesses the intemal registers of the
Am5380 by asserting the PCS1 chip select line.
The register addresses Ao-A2 are provided by the
Am29C841 latch (U7). The data lines 00-07 of
the Am5380 are connected directly to the system
data bus, but the lOR and lOW lines to the Am5380
are controlled by U10 (Am16L8), which is used to
qualify the RD and WR signals coming from the
80188. In this way, we can set the Am5380 in
Block Mode DMA transfer mode, and use the
80188 string-move instruction to transfer data.

The Am5380 registers are mapped into the 1/0
Port addresses starting at 80H. Bits A3-A6 of the
address lines are ignored by the Am5380. The
following shows the port addresses of the
Am5380 registers:

110 Port AmS380 Register on
Address ReadlnglWrltlng

80 Current SCSI Data/Output Data
81 Initiator Command
82 Mode
83 Target Command
84 Current SCSI Bus Status/Select Enable
85 Bus and Status/Start DMA Send
86 Input Data/Start DMA Target Receive
87 Reset Parity/Interrupt

Upon system reset, the 80188 RESET signal will
become HIGH for an integral number of system
clock cycles. However, the RESET input of the
Am5380 is active LOW, therefore, a Schmitt­
trigger inverter (U28) is used to invert the RESET
signal to the Am5380. A reset on the Am5380
clears all its internal registers.

The Am5380 supports all SCSI bus signals. The
SCSI bus is terminated at the board by the SIP-

4-12

type resistor packages, RN1, RN2, and RN3. The
SCSI RST signal must be terminated, otherwise
the Am5380 will continuously generate SCSI bus
reset interrupts.

The configuration switches, W1-W8, are buffered
by U11 (AmPAL 16L8), which enables the logic
values onto the data bus when the 80188 reads
from 1/0 Port address 200H. The returned value is
used by the control program to initialize the various
parameters for the configuration of the SCSI
board.

Upon system reset, the Am5380 is initialized to be
used as a target SCSI device. The software also
reads the configuration jumpers, W5, W6, and W7
to determine the SCSI Identification Number (10)
that the SCSI board corresponds to and initialize
the Am5380 Select Enable Register accordingly.
The software also reads W7 to determine if SCSI
parity should be supported by the Am5380.

When normal mode DMA is used for SCSI transfer,
the Am5380 will be programmed to assert its ORO
output whenever a byte is ready to be transferred
over the SCSI bus. The 80188 will also be set up
such that a DMA byte transfer will be initiated when
ORO goes active and the SCSI data will be
transferred through the 1/0 Port address 100H.

Whenever the 80188 accesses 1/0 Port address
100H, the PCS2 chip select line connected to the
Arn5380 DMA acknowledge input (DACK) of the
Arn5380 is activated. The DACK line resets the
ORO signal and selects the Am5380 Data Register
for data transfers. The End of Process (EOP) signal
on the Am5380 is not used and is tied HIGH,
therefore, the 80188 has to reset the DMA Mode
bit of the Am5380 Mode Register to terminate a
DMA transfer. The DMA Channel 1 of the 80188 is
used for DMA transfers between the memory and
the SCSI bus.

For a DMA Write operation of N bytes to the SCSI
bus, the software first sets up the 80188 for a DMA
transfer of N bytes from memory to the 1/0 Port
Address 100H. The software then writes to the
Start DMA Send Register to initiate the transfer.
The Am5380 will then transfer N bytes of data to
the SCSI host. However, the Am5380 is still in the
DMA mode at this point. Therefore when the byte
counter of the 80188 DMA controller reaches
zero, the software will wait until the DMA Request
bit of the Am5380 Bus and Status Register
becomes a one, indicating the the the last byte is
transferred. When this occurs, the software then
resets the DMA Mode bit of the Arn5380 Mode
Register to terminate the data transfer process.

For a DMA Read operation of N bytes from the
SCSI bus, the software first sets up the 80188 for a
DMA transfer of (N-1) bytes from the 1/0 Port
address 100H to memory. The software then
writes to the Start DMA Receive Register to initiate
the transfer. When the DMA byte counter of the
80188 reaches zero, DMA will stop; the software
will then wait until the DMA Request bit of the
Am5380 Bus and Status Register becomes a one,
indicating the last byte is accepted by the
Am5380. When this occurs, the software then
resets the DMA Mode bit of the Am5380 Mode
Register to terminate the DMA process. The last
byte of the read operation is then obtained by
reading the Am5380 Input Data Register and
transferring the content to the memory location,
pointed to by the 80188's Destination Pointer ..

The hardware on the board also supports Am5380
Block Mode DMA operation. The software first
sets the Block Mode and the DMA Mode bits of the
Am5380 Mode Register. The software then waits
until the DMA Request bit of the Am5380
becomes a one. When this occurs, the software
then writes a one to the memory address location
60000H to assert DACK. Data transfer can now
proceed using the 80188 String Move
instructions. The rate of transfer is controlled by
the Arn5380 READY signal. When the transfer is
done, the software needs to write a zero to
address location 60000H, in addition to resetting
the Block Mode and DMA Mode bits of the
Am5380 Mode Register.

Disk Drive Interface

The disk drive interface is comprised of the
Am9590 disk controller (U4), the Am9582 disk
data separator (U18), and the drive interface logic.
Two hard-disk drives, in either the ST506 or ESDI
format, can be connected to the SCSI board. The
Am9582 is optional and is required only if a
ST506 disk drive is attached to the board.

The Am9590 provides the hard-disk control
functions for the SCSI board. The BIW input of the
Am9590 is strapped HIGH so that the device
operates in Byte Mode. All Address/Data lines and
data control signals are directly connected to the
system bus. When the 80188 HLDA output is
HIGH, the Am9590 takes full control over the
system bus.

When the 80188 asserts the peso chip select
line, the Am9590 operates in the Slave Mode. In
this mode, the CPU can read or write to the eight
16-bit internal registers. Writing the Am9590
Command Register causes a hard-disk control
operation.

4-13

-------------._----_. -~~~~-

The Am9590 internal registers are selected by
addresses AO-A3 provided by the Am29C841
latch. Address line AO is used to select the High or
Low byte of a 16-bit register. Since the bus
transfer time for the Am9590 can take as long as
16 system cycles, the READY output of the device
is used to generate the 80188 Asynchronous
Ready (ARDY) input to control the data transfer
rate.

The Am9590 registers are mapped into the I/O
Port addresses starting at O. Bits A3-A6 of the
address lines are ignored by the Am9590. All
internal registers are 16 bits long. Since the
Am9590 can address a 32-bit memory space, two
registers are required to address the Low and High
word of a 32-bit pOinter. The following shows the
I/O Port addresses of the Am9590 registers:

1/0 Port Am9590 Registers
Address ReadlnglWriting

o Status/Command
2 Mode
4 Next Block Pointer (Low word)
6 Next Block Pointer (High word)
8 Status Result Pointer (Low word)
A Status Result Pointer (High word)
C Status Result Length

The Am9590 clock input is provided by the 80188
CLKOUT line. The 80188 RESET output is
connected to the Am9590 RESET input. Upon
system reset, the Am9590 will perform an internal
initialization procedure and allows its READY
output to go inactive. This causes the CPU to wait
until the initialization is completed and the READY
Signal becomes LOW, before accessing the
content of any Am9590 registers.

When the Am9590 needs to access the system
memory, it asserts its BREQ output which is
connected to the 80188 HOLD input. The 80188
will then release all the system bus signals and
assert its HLDA signal, allowing the Am9590 to
take control of the system bus. When the Am9590
is the bus master, it uses its built-in DMA Controller
to access the contents of the DRAM.

Because the DRAMs need to be refreshed by the
80188 DMA Channel 0, the Am9590 must be
programmed such that the 80188 is allowed
access to the memory within the refresh timing
limits. This is done by setting the Am9590 DMA
dwell time to 16 clock cycles and its DMA burst
length to 16 bytes per DMA burst. This will force
the Am9590 to release the bus from time to time
so that the DMA refresh cycles can proceed.

The Am9590 can control up to four disk drives.
Because of board space constraint, the SCSI
board can only be connected to two hard-disk
drives, DRO and DR1. Upon reset, the software
reads the configuration switches WO and W1 to
determine the type of drives that is connected to
the SCSI board. After finding out the drive types,
the software puts the default values for the Drive
Parameter Block (DRB) of each drives into the
DRAM's. A Load Drive Parameter Block command
can then be executed to load these drive
parameters inside the Am9590.

The hard-disk drive interface consists of one 34-
pin drive control connector and two 20-pin drive
data connectors. Because of the 48 rnA drive
requirement for the disk drive interface, an
Am29828 buffer (U14) and a 74LS38 open­
collector driver (U12) are used to invert the control
signals coming out of the Am9590.

The status signals from the disk drives are
terminated by resistor package RN7. These
signals are then inverted by the 74LS14 (U28)
Schmitt-Trigger inverters, before going to the
Am9590.

Although the same connector is provided to an
ST506 or ESDI disk drive, there are differences in
the signal aSSignments for the two interfaces. The
ESDI interface requires more control and data
signals than the ST506 interface, therefore, some
of the lines not commonly used in an ST506
interface are aSSigned as ESDI interface signals.

Jumpers W9-W14 are used to prevent contention
between the ESDI signal lines used by the SCSI
board and the lines that a particular ST506 drive
may use. In particular, Pin 4 of the data cable
connector, if connected to an ST506 disk drive,
should be left open when the other data cable
connector is connected to an ESDI disk drive. In
addition, Pin 7 and Pin 8 of a data cable connector
must be left open if they are connected to an
ST506 drive.

The Am9590 asserts SELEN and sets its DRSELO
output LOW or HIGH to select Drive 0 or Drive 1
respectively. The Am9590 controls the drive
interface lines either as ST506 signals or ESDI
signals, according to the Drive Parameter Block
(DPB) for the selected drive. The software will
identify the attached drive as either ST506 or ESDI
by checking the jumper settings W1 and W2, then
the proper drive parameters are set up in the Drive
Parameter Block (DPB) for each drive.

The multiplexer functions implemented in U13
(AmPAL22V10) and U17 (Am16L8) control the

4-14

routing of data and control signals from the disk
drives. If the selected drive is an ST506 drive,
MFM signals are used in the drive interface and the
Am9582 data separator must be used to convert
the signals. If the selected drive is an ESDI drive,
Non-Return to Zero (NRZ) signals are used in the
drive interface, and these signals can be used
directly with the Am9590.

The Am9582 data separator provides encoding
and decoding functions for the MFM data if an
ST506 disk drive is selected. The 10 MHz system
clock is divided by two, using U13, to provide the
5 MHz clock frequency for the Am9582. The
Am9582 generates a 5 MHz Reference Clock
signal, and is connected to the WRClK input to
provide the frequency for the encoding of MFM
data. When the Am9590 selects an ESDI drive,
the Am9582 3-states all its output lines so that the
Am9590 can communicate directly with the drive
interface.

The Am9582 can support hard disk and floppy disk
encoding and decoding functions. Since the
SCSI board allows hard disk control only, the FiR
line of the Am9582 is tied to ground. In addition,
both the FAMO and FAM1 inputs are connected to
ground to select ST506 operations.

When data is written to an ST506 drive, the
Arn9590 reads data from system memory and
produces the NRZ data that is synchronized to the
Reference Clock input from the RD/REF ClK line.
The Arn9582 then encodes the NRZ data input
with WRClK and generates the MFM data output.
The Am9582 also pre-compensates the MFM data
output when its PCEN line is driven HIGH by the
Am9590. Resistors R5 and R6 are used to set the
pre-compensation delay timing when PCEN is
activated. The disk tracks that require pre­
compensation during a write are determined by the
DPB for the selected drive.

When data is received from an ST506 drive, the
Am9582 decodes the MFM data with its internal
Phase-locked loop (Pll) and produces the NRZ
data output and the Read Clock. During a Read
operation, the RD/REF ClK line of the Am9582 is
switched to the Read Clock signal generated by
the PlL. This Read Clock is used by the Am9590
to sample the NRZ data on its RDDAT input.

When an ESDI drive is selected, NRZ data are
used directly in the drive interface. The Am9590
generates WRClK that is used by the disk drive to
sample the WRDAT output during a write
operation. When reading data from the disk, the
ESDI drive provides both the NRZ Read Data and
the Reference Clock to the Am9590. The

Am9590 uses the Reference Clock signal on the
RD/REF ClK line to sample the NRZ data on its
RDDAT input.

When an ST506 drive is selected, the Am9582
generates the AMF signal to acknowledge to the
Am9590 that an Address Mark has been
generated during a write operation. During a read
operation, the Am9582 also generates AMF to
indicate that an Address Mark has been found.
However, the ESDI interface generates the AMF
signal directly and this signal is buffered by U15
and is supplied to the Am9590.

In this design, the software always reads two tracks
from the disk and puts them inside the cache
buffer whenever the required data is not already
inside the cache. To reduce the latency in
accessing the disk contents, logic in U17, in
conjunction with a software trick, is used to
implement a "sector pulse" feature.

The control program sets up the Am9590 such
that it has to read the Data Map information every
time the contents of a sector buffer is ready to be
transferred to system memory. The Data Map
pointer is also arranged to be in a memory space
such that address bit 18 is always a one. Since this
memory space is outside the 256 kbyte DRAM
area, the DRAM interface masks out address bit 18
and provides the Am9590 with valid data that are
inside the DRAMs. The Am9590 has only a 16-bit
address bus, therefore, a one on the address bit
18 corresponds to the address line AD2 being set
to HIGH when AlEN is asserted.

The Am9590 updates the upper 16-bit addresses
A31-A 16 every time a data map entry is accessed.
Therefore, when address line AD2 and AlEN are
both HIGH, the Am9590 indicates that a disk sector
will be transferred from its internal buffer to the
main memory. The logic in U17 makes use of this
information to generate a pulse to the 80188 Timer
1 every time a sector transfer begins.

The software resets the 80188 Timer 1 before the
Am9590 reads data from the disk. Timer 1 will then
be incremented every time the Am9590 begins to
transfer a disk sector. In this way, the software only
needs to read the content of Timer 1 to find out
how many disk sectors have already been
transferred. When the Timer 1 count reaches the
value two, the software knows that the first
requested disk sector has already been
transferred to memory, and the 80188 DMA
controller can be set up to transfer this information
to the SCSI bus. This scheme reduces data
access latency drastically and increases the overall
performance of the host.

4-15

An Am26LS31 differential line driver and an
Am26LS32 differential line receiver are used to
transfer data signals for the disk drive interface.
For the ST506 interface, only one driver for the
Write Data output and one receiver for the Read
Data input are necessary. For the ESDI interface,
an extra driver is required for the Write Clock signal
and an extra receiver is required for the Reference
Clock signal.

The Am26LS31 and the Am26LS32 are always
enabled, therefore, the Write Clock signals
destinated for an ESDI drive must be
disconnected from the data connector of an
ST506 drive to prevent contention. Jumpers W9
and W10 on data connector J3 and W12 and W13
on data connector J4 are used to disconnect the
ESDI Write Clock signals.

The status signals from the disk drives are
terminated with resistor package RN7 and are then
buffered by a 74LS14 Schmitt- to the Am9590 to
provide the necessary drive information to the
controller.

Because ESDI drives do not support the Reduced
Write Current control, bit 5 of the Data Select Byte
in the DPB of an ESDI drive must be set to zero.
This indicates to the Am9590 that the RWC output
is used to represent the Head Select 3 signal, to
allow selection of 16 heads in an ESDI drive. In
addition, this will prevent the RWC output from
being active when a smaller head number is
selected.

Memory Organization and Initialization

The 256 kbytes system memory is organized in the
following categories:

1. Code and Initialization Data

All program code will be stored inside the
EPROM which will be in high address space.
This allows the control program to handle the
reset condition. Also included in the EPROM
will be a copy of the initialization data. The
system reset routine will move this data to the
DRAM. This is a requirement for the C
compiler.

2. Vectors

The interrupt vectors of the 80188 will be
stored in low memory. The first 32 vectors are
reserved by the CPU. No others will be

required, therefore the vector area will reserve
128 bytes of DRAM.

3. Assembler Data

Data that is required by the routines written in
8088 assembly language is stored just above
the interrupt vectors.

4. Compiler Data

The initialized and uninitialized (global and
static) data generated by the C compiler will be
stored following the data area for the assembly
language routines.

5. Stack

The stack will be maintained just above the
compiler data.

6. Buffer Control Blocks

The buffer control block area will be allocated
by the initialization routine just above the stack.

7. Buffer Area

The track buffers will be stored in the memory
area which remains above the stack.

This memory allocation scheme permits all the
system memory, with the exception of the track
buffers, to lie within a single segment. Therefore
only a "small data" compiler model is required. This
allows efficient storage and access to the system
data. This also minimizes the amount of assembly
language programming required because all
system data, including the interrupt vectors, are
accessible by the compiled programs.

Upon system reset, an assembly language routine
will initialize the 80188 registers to have the code
segment set at the base of the 64 kbyte EPROM
area. The data and the stack segment registers are
set to zero. The stack pointer will then be
initialized to point to the stack area. The interrupt
vectors are then initialized to point to the interrupt
service routines, which will call C routines to handle
the interrupts. In this way, only minimal assembly
language codes are required.

The track buffers can not be accessed directly by
the compiled code. However, this is not a
constraint because data transfer that involves the
track buffers are handled by the DMA Controllers in
the 80188 or the Am9590.

4-16

Drive Initialization and Format

Upon system reset, the SCSI disk controller will try
to obtain the characteristics of the attached drive.
If the attached disk drive has already been
initialized by the controller, specific drive
information will be found on the first track of the
first disk cylinder. The stored information includes
the dlf the attached disk drive has already been
initialized by the controller, specific drive
information will be found on the first track of the
first disk cylinder. The stored information includes
the drive parameter block for the drive and the
defect lists.

If the required information is on track 0, the
controller will store this information in system
memory and initialize the Am9590 accordingly.

If the drive characteristics are not on track 0, and
the attached drive is a ST506 drive, then the SCSI
controller will not accept any SCSI command
except for the Initialize Drive command.

The Initialize Disk command is a private command
which allows the SCSI Initiator to pass drive
parameters and the manufacturer defect list to the
disk controller. The Initialize Disk command is a
6-byte (Group 0) SCSI command which should be
issued only for an un-initialized ST506 drive. The
format for the Initialize Disk command is:

Command Byte Content

o OEH: Vendor unique operation code
1 0 n Drive 0 is selected

20H if Drive 1 is selected
2-5 0

Upon reception of the Initialize Disk command, the
SCSI controller will switch to a SCSI Data Out
phase, and obtain the Disk Parameter List from the
Initiator. The Disk Parameter List format is:

Byte

D-17H
18H-1BH
1CH-

Description

<Drive Parameter Block for the Drive>
<Primary Defect List Header>
<Primary Defect Descriptors>

The format of the Drive Parameter Block is:

Byte Description

o <General Select Byte>
1 <Data Select Byte>
2 Track per Surface (Low Byte)
3 Track per Surface (High Byte)

Number of Heads
5 Sectors per Track
6 Reduced Write Current Track (Low Byte)

Reduced Write Current Track (High Byte)
8 Seek Dwell (Low Byte)
9 Seek Dwell (High Byte)
A Step Width
B Head Settle
C Pre-compensation Track (Low Byte)
D Pre-compensation Track (High Byte)
E Retry Policy
F Motor On Delay

10 Delay Length
11 Preamble 1 Length
12 Postamble 1 Length
13 Pad Length
14 Preamble 2 Length
15 Error Correction Code Length
16 Postamble 2 Length
17 Gap Length

The recommended value for the General Select
Byte is OAAH, which uses Single-Burst Reed­
Solomon Code and the head-first multi-record
policy. For a 512-byte sector size, the
recommended value for the Data Select Byte is
OAAH when the Reduced Write Current option is
used.

The format of the Defect List Header is as follows:

4-17

Byte

o
1
2
3

o
o

Description

Defect List Length (High Byte)
Defect List Length (Low Byte)

The Defect List Length specifies the total length in
bytes of the Defect Descriptors that follow the
Defect List Header. The format of the Defect
Descriptor is:

Byte Description

o Cylinder number of Defect (Highest Byte)
1 Cylinder number of Defect (Middle Byte)
2 Cylinder number of Defect (Low Byte)
3 Head number
4 Sector number (High Word, High Byte)
5 Sector number (High Word, Low Byte)
6 Sector number (Low Word, High Byte)
7 Sector number (Low Word, Low Byte)

Since a Defect Descriptor is eight bytes long, the
Defect List Length specified should be equal to
eight times the total number of defects on the disk.
Whenever there is a defect on a track, the whole
track will be relocated after physical formatting is
done.

After the SCSI controller receives the Initialize Disk
command, it will format track 0 of head 0 using the
Drive Parameters it had received. This track is
reserved as the Disk Information Track, and will
contain information specific to the disk drive. The
Disk Information Track is not accessible directly by
the Initiator. The SCSI Controller performs the
appropriate mapping such that the Disk Information
Track is hidden from the Initiator; SCSI logical block
zero actually corresponds to sector zero of track
zero, head one on the drive.

The controller will then write the Identification,
Format Mark, and the Drive Parameter Block into
sector zero of the Disk Information Track. The
contents of this ID Sector is:

Byte Description

o 21 H (Special Identification)
1 43H (Special Identification)

1 if the drive has already been formatted
o if the drive has not been formatted

3 0
4-1 BH <Drive Parameter Block>

Byte 2 of the ID Sector is initialized to zero when
the drive is initialized. After the disk has been
formatted by the Initiator using the SCSI Format
command, this byte will be set to a one to identify
the disk as a formatted disk. When the disk is
identified as a formatted disk, the Initiator is able to
access the SCSI logical blocks on the drive.

After the ID Sector is written to the disk, the SCSI
Controller will then write the primary defect
information to the disk starting with sector 1 of the
Disk Information Track. The first four bytes of the
sector will contain the Primary Defect List Header,
followed by the Primary Defect Descriptors. When
the last primary defect descriptor is recorded, the
SCSI Controller will write the Secondary Defect List
Header with a zero Defect List Length; this marks
the end of the disk defect information.

Any additional defects that are found later on the
disk will have to be added to the Secondary defect
list. The secondary defect information will be
appended to the primary defect list and can grow
or shrink with time. The last sector on the Disk
Information Track is reserved for system
diagnostics only, and will not contain any defect
information. The format for the sectors that will
contain the defect list is:

Byte Description

Q-3 <Primary Defect List Header>
4- [<Primary Defect Descriptors»

<Secondary Defect List Header>
[<Secondary Defect Descriptors»

For an ESDI drive, the disk initialization process is
simpler, because the physical characteristics can
be obtained from the drive itself. The SCSI
Controller accomplishes this by using the ESDI
Channel command of the Am9590. If the Disk
Information Track does not contain the correct
formatted information, the SCSI Controller will
automatically send a Request Configuration
command to the drive to obtain the drive
parameters.

The SCSI Controller will then read the disk's defect
list from sector zero of the maximum cylinder for
each individual head, as specified in the ESDI
specification. If the data on the maximum cylinder
is corrupted, the SCSI Controller automatically read
sector zero of maximum cylinder minus eight. The
defect information will be put into the correct
format and written into the Disk Information Track.

To prevent the Initiator from accidentally
destroying the defect information on an ESDI
drive, the SCSI controller prevents access to any
cylinder beyond maximum cylinder minus seven.

4-18

DEVICE HDC1 (AmPAL16L8);

.. U20
ADVANCED MICRO DEVICES
IBM PC AT HOC BUS CONTROLLER
VERSION 1.3 MARCH 10, 1986

PIN /AEN = 1
/DEN = 12

/CSHDC - 2 MAS - 3 /PORTS - /IOR = 7 /IOW - 8
DIR = 13 /MEMW - 14 MASOUT = 15 /MEMR = 16

/WR = 17 /RD = 18;

BEGIN

MEMR RD;

MEMW WR;

IF (AEN) THEN ENABLE(MEMR,MEMW);

RD lOR;

WR lOW;

/DIR /IOR;

DEN /AEN * CSHDC * (lOR + lOW) +
/AEN * PORTS * (lOR + lOW);

IF (/AEN) THEN ENABLE (RD,WR,DIR,DEN);

/MASOUT - MAS;

IF (MAS) THEN ENABLE (MASOUT);

END.

Figure 4-6

4-19

-----.--.~---,.-~.--~-~~-- ~

DEVICE HDC2 (AMPAL16R4);

" U12
ADVANCED MICRO DEVICES
IBM PC AT HDC BUS ARBITER
VERSION 1.3 MARCH 10, 1986

PIN CK ~ 1
RESET

/DACK ~ 2
/EN

BREQ ~ 3
11 /lORDY

/CSHDC ~ 4 /DEN ~ 8
12 /BHE ~ 13 /AEN

DRQ ~ 15 BACK ~ 16 MAS ~ 17 /SBHE ~ 18 /READY

BEGIN

/DRQ := /BREQ
RESET;

/MAS := /BREQ
/DACK
RESET;

/BACK /BREQ
/DACK
RESET;

AEN BREQ * BACK *

BHE SBHE;

IF (/AEN) THEN ENABLE (BHE) ;

SBHE BHE;

READY AEN;

IF (AEN) THEN ENABLE (SBHE,READY);

/RESET;

+

+
+

+
+

lORDY /AEN * CSHDC * DEN * /READY * /RESET;

IF (DEN) THEN ENABLE (lORDY);

END.

Figure 4·7

4-20

14
19;

DEVICE HDC3 (AMPAL16L8);

.. U24

ADVANCED MICRO DEVICES
IBM PC AT HDC I/O DECODER AND DRIVE SELECT MUX
VERSION 1.3 MARCH 10, 1986

PIN

BEGIN

SA[4:9] ~ 1:6 /SEEKC ~ 7 AO ~ 8
DS1 ~ 13 /PORTS ~ 14 /STRQ ~ 15

AENC ~
/CSHDC

STAT ~ 17 SEEKCO ~ 18 /IOCS16 ~ 19;

/SEEK1
16

CSHDC /AENC * /SA[9]* SA[8]*/SA[7)*/SA[6)*/SA[5]*/SA[4];

11

PORTS /AENC * /SA[9]* SA[8]*/SA[7]*/SA[6)*/SA[5)* SA[4) * /AO;

STRQ /AENC * /SA[9)* SA[8]*/SA[7]*/SA[6]*/SA[5]* SA[4) * AO;

IOCS16 CSHDC + PORTS + STRQ;

IF (/AENC * /SA[9]* SA[8]*/SA[7]*/SA[6]*/SA[5]) THEN ENABLE(IOCS16);

/SEEKCO ~ /SEEKC * /DS1 * /SEEK1;

/STAT /SEEKC;

END.

Figure 4-8

4-21

APPENDIX

The Am9590 has been Improved

The new device number is Am9590-15. The
following list five Improvements to the device.
One of them (Zero Latency) will improve the
performance of the device considerably. The
others are functional Improvements that will make
the Am9590-15 well-suited for applications that
require some disk caching memory.

1. Implementation of Interrupt Features
(rlgure 1)

Two different Interrupts and their combinations
have been Implemented:

Interrupt on IOPB Chain END
Interrupt on Sector END

The MODE Register can be used to program the
device. There are two bits available to indicate
which interrupt Is selected.

The Status Register is used to distinguish
between the two interrupts. Whenever an
interrupt occurs, the host CPU must read the
Status Register. By examining the CF bit, it can
determine if the interrupt was a Sector Interrupt
(CF = 0) or an End of Chain Interrupt (CF .. 1).

2. ReadiWrlte Long (Figure 2)

To implement the ReadlWrite Long Commands,
an Option Bit in the READ or WRITE VIRTUAL
commands is used.

Mode Register
Bit 15

DWELL
I I I

BURST

I I I

Bit 0

+ o o. Interrupt on IOPB Chain End
o 1-Both
1 o. No IntellUpt
1 1. Interrupt on Sector End

Status/Command Register

o • SecIor Intrmupt 0000 • Am9580
0001 • Am9580A
0010 • Am9590
0011 • Am9590-15

1 • End of IOPB Chain InterTUpl

Figure 1

Option Byte

SE ,SSRB , FW ,DME , OM ,RIWL, AD

+ 0= Nonna! ReadlWrite
1 = ReadlWrite Long

Figure 2

A-1

This feature allows the user to readlwrite the ECC
bytes in or out of the SYNDROME RAM. The
Read procedure will be:

1 . Read single sector with R/WL bit = 1 -->
Sector Data will be dumped to memory.

2. Read SYNDROME -> Syndrome RAM
with ECC bytes dumped to memory.

The Write procedure will be:

1 . Load SYNDROME with desired ECC bytes.
2. Write single sector with RlWL bit = 1 -->

Sector Data and ECC bytes written to disk.

3. ISG Field Fix

The Am9590-15 implements a programmable
recovery time between WG going inactive and
AMC going active. This parameter is located in
the Drive Parameter Block of the particular ESDI
drive. It shares the location with the RWC
parameter for ST506 drives (Bytes 6 and 7).

ISG = 60+(No8) System Clocks

4. Zero Latency (Figure 3)

To enable the Zero Latency feature of the
Am9590-15, the host CPU must enable the ZL
bit in the READ or WRITE IOPB. The ZL bit is
located in the uppermost bit location of the drive
number byte. Therefore, if reading or writing to
drive #2 with Zero Latency, the actual drive #
written to Byte 8 of the IOPB will be 82H'

o - Normal Operation
1 - Zero Latency

Figure 3

In order to READ or WRITE with Zero Latency,
the Am9590-15 will first do a READ ID to
determine the current sector the head is passing
over. Subsequently the device will issue a READ
or WRITE command for the next sector. It will also
update the address pointers so that the data is
moved to or from the right location. This
procedure ensures that the Zero Latency
operation is fully transparent to the host. Start
address for the buffer will be always where the
address that Sector I is located in memory.
Please note that Zero Latency can only
be done on a single and entire track
base. Therefore, the sector count in the IOPB
should always be equal to the number of sectors
per track.

Please note, that in order to do Zero Latency
WRITE, the entire track must be present in
memory before starting the operation. The
Am9590-15 has no means to recognize if data in
a particular memory location is valid or not.

5. Data Move IOPB (Figure 4)

The Am9590-15 has a feature to move data from
one memory location to another without involving
any disk transactions. This command is an option
of the Load Buffer command (by setting the Data
Move, OM bit) as shown in Figure 4.

Data moves can only be done in multiples of a
sector.

SOURCE

<15 ... 0> <31...16>

o - Normal Load Buffer
1 -MC71/eData

of Sectors Destination Pointer

Figure 4

A-2

DOS Device Driver Header
1**
dosdrvr.h DOS Device Driver Header vO.OO

Copyright 1985 Advanced Micro Devices, Inc.
Written by Gibbons and Associates, Inc.

This file contains declarations of structures and constant data values which are
used in DOS device drivers. It is assumed that the compiler will allocate
double words for pointers in the structures that follow. It is also assumed that
the compiler will not insert any padding to align words on even boundaries.

The linkage to DOS device drivers is defined in the IBM document titled "Disk
Operating System Version 3.10 Technical Reference" (IBM document number
6138536). It is not intended that the contents of this header file should in
any way modify or expand upon the linkages defined by IBM. IBM's document
should be considered the primary reference for these linkages.

NOTE:

The device header is not included in this file. There are two reasons for this.
First, the device header contains three pointers, one of which is a double word
and two of which are single words. This is difficult to represent accurately in
C. Second, the device header is assumed to be in the same segment as the driver
code. This is also uncommon in C. For these reasons, the device header itself
and the declarations pertinent to it are left to the assembly language "front
end" of the device driver.
**/

struct BPB
1*
This structure defines the parameter block which DOS requires as a description
of the media on a block device.
*1
{

unsigned
SectSize;

char
AllocSz;

unsigned
RsvdSect;

char
FATCnt;

unsigned
RootCnt,

char
MediaDsc;

unsigned
SctPrFAT;

I*bytes per sector*1

I*sectors per allocation unit*1

I*reserved sectors*1

I*number of file allocation tables*1

I*number of root directory entries*1 SectCnt;
I*total number of sectors*1

I*the media descriptor*1

I*sectors per FAT*I

8-1

unsigned
SctPrTrk,
/*heads per cylinder*/
sectors*/ };

/*

/*sectors per track*/ HdsPrCyl,
HdnSect; /*number of hidden

The #define's below define fields withing the media descriptor. The media
descriptor is useful in distinghishing types of floppy disks and in
distinguishing floppy disks from fixed disks. All fixed disks have the
descriptor OxFB.
*/
'define
MED_REM
« 1)

MED_UPR OxFB /*upper bits must all be set*/ #define
(1 « 2) /*set for removable media*/ #define MED_BSCT
/*set for B sectors per track*/ #define MED_2SID 1

/*set for 2-sided media*/

#define

struct BootForm
/*

11 /*offset of BPB in boot sector*/

This structure defines the format of a (512 byte) boot sector. */
{

char
JmpInst [3), /*jump to the bootstrap code*/ OEMName [B);

/*name of vendor and version*/

struct BPB
BootBPB;

char
BootCode [4BO);

unsigned
BootSig;

/*BPB for this media*/

/*bootstrap code and data*/

/*indentifier for valid boot sector*/ };

(1

/**
Request header format and values:

The declarations below define the format of the header area of a request (which
is common among all types of DOS requests) and values which may be found in the
header.
******************************~***/

struct ReqHdr
/*
This header defines the static request header which is common to all DOS
requests. It is always at the beginning of a DOS request. The format of the
remainder of the request will vary with different command codes. */

char

8-2

ReqLen, /*the length of the request in bytes*/ UnitCode,
/*the sub-unit for the operation*/ ReqCode;

/*the request code for the operation*/

unsigned
ReqStat;

char
*DosRsvrd [2];

/*
Request code values.
*/

/*the returned status for the operation*/

/*reserved by DOS for future use*/ };

fdefine INIT
fdefine MED_CHK
fdefine BLD_BPB

0
1
2

/*initialization (called only once}*/
/*media check - for removable media*/
/*build parameter block */ fdefine IOCT_INP

3 /*I/O control input*/ fdefine INPUT 4 /*I/O
read operation*/ 'define ND_INP 5 /*non-destructive input, no
wait*/ 'define INP_STAT 6 /*input status inquiry*/ 'define
INP FLSH 7 /*input flush*/
'define OUTPUT 8 /*I/O write operation*/ 'define OUT_VRFY
9 /*I/O write operation with verification*/ 'define OUT_STAT 10

/*output status inquiry*/ 'define OUT_FLSH 11
/*output flush*/ 'define IOCT_OUT 12 /*I/O control output*/
'define DEV_OPN 13 /*device open - for removable media*/
'define DEV_CLS 14 /*device close - for removable media*/
'define REM MEDIA 15 /*removable media*/

/*
Status bits and fields.
*/

'define
« 9)

'define

/*

Oxff

DONE (1 « 8)
/*device busy*/

ERROR (1 « 15)

Status error values.
*/

/*error code mask*/

/*operation done*/ 'define BUSY

/*error in operation*/

'define WRT_PRT 0 /*write protection violation*/ 'define
UNK_UNIT 1 /*unknown unit*/ 'define NOT_ROY 2
/*device not ready*/ 'define UNK_CMND 3 /*unknown command

(1

code*/ 'define CRC ERR 4 /*CRC (data) error*/ 'define BAD LEN
5 /*bad request structure length*/ 'define SK_ERR 6

/*seek error*/
'define UNK_MED 7 /*unknown media*/ 'define NT FND 8

B-3

not found*1 *define I*sector
paper*1 *define
*define RD FLT
*define GEN_FAIL

NO_PAPER 9 I*printer out of
WRT FLT 10 I*write fault*1

I*read fault*1 11
12 I*general failure*1 *define

I*invalid disk change*1

OxFF I*special value for no error*1

1*
File allocation table constants.
*1

OxFFF7
allocation chain*1 *define
entry*1 *define CLUST_SH

I*indicates bad sector*1 I*not part of the
CLUST_MS OxFFF I*mask for 12-bit FAT

4 1*12-bit FAT shift factor*1

1**
Request formats:

The structures below define the formats for specific requests DOS may make.
**1

struct InitReq
1*
This structure defines the format of data in a DOS INIT request. *1
{

struct ReqHdr
InitHdr;

char
UnitCnt;

char
*DrvrEnd;

unsigned
*InitBPBs;
string from CONFIG.SYS*I

char
UnitNum;

struct MdChkReq
1*

I*static request header*1

I*number of sub-units for this device*1

I*ending address of the driver*1

I*pointer to initial BPB array*1 I*on input pts to

I*unit number of the first sUb-unit*1 };

This structure defines the format of a media check request. Since this driver
is for non-removable media, it does not use the last field which might pose a
problem to some compilers.
*1
{

struct ReqHdr
MdChkHdr; I*static request header*1

8-4

char
MdChkDsc,

/*change status*/

char
*PrevVol;
removable media*/ };

struct B1BPBReq
/*

/*DOS media descriptor*/ ChgStat;

/*pointer to prev vol name*/ /*only used for

This structure defines the format of data in a build parameter block request.
*/
{

struct ReqHdr
B1BPBHdr;

char
B1BPBDsc;

char
*B1BPBBuf;

struct BPB
*BPBPtr;

struct XfrReq
/*

/*static request header*/

/*DOS media descriptor*/

/*pointer to buffer*/

/*pointer to the BPB*/ };

This structure defines the format of all of the following requests:

I/O control input IOCT_INP
INPUT
OUTPUT
OUT VFRY
IOCT_OUT

read operation
write operation

*/
{

struct ReqHdr
XfrHdr;

char
XfrMdDsc;

char
*XfrAddr;

unsigned
XfrSiz,

char
*ErrVolPt;

write operation with verification
I/O control output

/*static request header*/

/*media descriptor*/

/*transfer address*/

/*sector or byte count for transfer*/ StartSct;
/*starting sector for transfer*/

/*pointer .to volume ID error 15 returned*/ };

struct NDInpReq
/*

8-5

This structure defines the format of a non-destructive input request */
{

struct ReqHdr
NDlnpHdr;

char
NextChar;

/*end of dosdrvr.h*/

/*static request header*/

/*next character from the device*/ };

8-6

Am9580 Hard Disk Controller Header
1**
Am9580.h Am9580 Hard Disk Controller Header vO.OO

Copyright 1985 Advanced Micro Devices, Inc.
written by Gibbons and Associates, Inc.

This file contains declarations of structures and constants which are useful in
writing drivers for the Am9580 hard disk controller in the C language on 8086
class CPUs. If other CPUs are used, there may be problems related to the
ordering of bytes within 16-bit and 32-bit words. 8086 class CPUs and the
Am9580 are in agreement about these orderings, but other CPUs may have
different conventions.

It should also be noted that the packing of bytes within these structures is
important. The compiler should not add any "padding." Since all words are
aligned on even offsets and all longs are aligned on offsets which are even
multiples of four, this should not be too great a burden upon the compiler.

The Am9580's control registers as well as its IOPB and Status formats for
memory are defined in its data sheet. This header is not intended to modify or
extend that information in any way.

Some of the vocabulary used in this file may be different from that of the
Am9580 data sheet. For example, the concentric circles on a disk surface where
information is recorded are called tracks. A group of corresponding tracks on
all surfaces of a disk drive is called a cylinder. And each track is divided
into records, which are called sectors. The Am9580 data sheet uses the terms
"sector" and "record" interchangably and mostly uses the word "track" to refer
to what is here called a "cylinder."
**/

/**
Register Definitions:

The declarations below are intended to simplify the use of the 9580's internal
registers. The register addresses are defined relative to the base address of

·the chip.

The fields within the mode register are defined via shift factors and (where
appropriate) unshifted value declarations. This allows a mode register's
actual value to be defined by a single constant expression. The specific mode
register value used in this example is also defined.

The command register's command field has defined constant values for the
various possible values.

Word addressing of the Am9580 is assumed to be feasible.
**1

1*
Register Addresses:
*1

C-1

ide fine HDC_ADDR OxlOO

idefine CMN'D_REG (HDC_ADDR + 0) /*status/command register*/ idefine
MODE_REG (HDC ADDR + 2) /*mode register*/ idefine NBP_LO (HDC_ADDR + 4)
/*next block poi~ter (low word)*/ idefine NBP HI (HDC ADDR + 6) /*next
block pointer (high word)*/ idefine SRP LO - (HDC'ADDR + 8) /*status result
pointer (low word)*/ idefine SRP_HI -(HDC_ADDR +-10) /*status result
pointer (high word)*/ idefine SRP_LEN (HDC_ADDR + 12) /*status result
length*/

/*
Command/Status Register Fields and values.
*/

.idefine CFT_VALID (1 « 15) /*controller fault type field is

idefine CFT_MAX 16 /*number of different controller
types*/

valid*/

fault

idefine CFT_SH 8 /*shift factor for controller fault type*/
idefine

idefine
NULL_FLT
SRA OVFL

3

CFT_MS

NML CPLT
1
2

(OxF «

o

CFT_SH)/*mask for controller fault type*/

/*normal command completion*/ idefine
/*NBP was zero at start or resume time*/ idefine
/*overflow of status result area*/ idefine WAIT_STP

/*IOPB completed with Wait stop set*/ fdefine FRC_IDLE 4
/*idle command while executing chain*/ idefine ERR_STP 5

/*non-reoveralbe error with SE set*/ idefine ILG_IOPB 6
/*illegal IOPB encountered*/ idefine SRB_STP 7 /*SRB written
with stop on SRB set*/ idefine DATA_TIM 8 /*memory timeout on

/*memory timeout on IOPB
/*memory timeout on data map read*/

/*memory timeout on SRB write*/ idefine
/*write protect violation*/ idefine RST_CPLT

operation complete*/

data transfer*/ idefine IOPB_TIM 9
read*/ idefine MAP_TIM 10
idefine SRB_TIM 11
WRT_PROT 12 15

/*reset

idefine CMST MS 3

idefine IDLE o
/*reset command*/ idefine

fdefine START 3

/*
Mode Register Fields and values.
*/

/*command/status field mask*/

/*idle command*/ idefine RESET 1
RESUME 2 /*resume chain*/
/*start chain*/

fdefine DWELL_SH
idefine DWELL_MS

12 /*shift factor for DMA Dwell clocks*/
(OxF « DWELL_SH)/*mask for DMA Dwell clocks*/

C-2

idefine BURST_SH 8 /*shift factor for DMA Burst length*/
#define BURST_MS (OxF « BURST_SH)/*mask for DMA Burst length*/

#define WAIT_SH 2 /*shift factor for wait states*/ idefine
WAIT_MS (Ox3 « WAIT_SH)/*mask for wait states*/

LOCKOUT (1 « 7) /*HDC cannot become bus master*/ idefine
(1 « 6) /*HDC interrupts disabled*/

3 /*mask for seek mode*/

idefine IM_OV_SK 0 /*implied and overlapped seeks*/ idefine
IM_SK 1 /*implied seeks only*/ idefine RSTR_SK 2

/*restricted mode*/ idefine BUF_SK 3 /*buffered mode*/

1**
Drive Parameter Block.

The structure and constants below are intended to simplify the construction of
a drive parameter block.
**/

struct DPB
/*
This structure defines format of the drive parameter block. */
{

char
GnrlSlct, /*General Select Byte*/ DataSlct;

/*Data Select Byte*/

unsigned
C1PerDsk;

char
HdPerCyl,

/*cylinders per disk*/

/*heads per cylinder*/ ScPerTrk;
/*sectors per track*/

unsigned
RWCCyl,

char
StepWid,

unsigned
PreCmpCl;

/*Reduced Write Current cylinder*/ SkDwell;
/*seek dwell timing control*/

/*step width timing control*/ HdSettle;
/*head settle time control*/

/*precompensation beginning cylinder*/

C-3

char
. RetryPol, /*retry policy byte*/ DlyLen,

/*index to first sector delay length*/ Pram1Len,
/*preamble 1 length*/ Ptam1Len, /*postamble 1 length*/
PadLen, /*pad length*/
Pram2Len, /*preamble 2 length*/ ECCLen,

/*ECC length*/
Ptam2Len, /*postamble 2 length*/ GapLen,

/*gap length*/
DPBRes;
} ;

/*

/*not defined*/

General select byte fields and values.
*/

fdefine
(1 « 6)

AUTO_VEC (1 « 7) /*auto vector enable*/ fdefine
/*RTZ used for recalibration*/

RTZ

fdefine ERPOL_SH 4 /*error policy shift factor*/ fdefine
ERPOL_MS (3 « ERPOL_SH)/*error policy mask*/

ide fine MRPOL_SH
fdefine MRPOL_MS

2 /*multi record policy shift factor*/
(3 « MRPOL_SH)/*multi record policy mask*/

fdefine FORMT_MS 3

idefine CRC_16 0
/*external ECC*/ .define

Reed-Solomon ECC*/ fdefine DBL_ECC
Reed-Solomon ECC*/

/*
Data select byte values.
*/

/*format mask*/

/*16-bit CRC-CCITT*/ fdefine EXT ECC 1
SGL_ECC 2

3
/*si~qle-burst

/*double-burst

fdefine SECT_128 0 /*128 byte sector size*/ idefine SECT_256
1 /*256 byte sector size*/ tdefine SECT_512 2

/*512 byte sector size*/

./*
Retry policy byte fields and values.
*/

fdefine PRE ECC (1 « 7) /*ECC before any retries*/ 'define ALL_ECC
(1 « 6) /*ECC after all retries*/ 'define POST_ECC (1 « 5)

/*ECC after last retry attempt*/ fdefine RTRY_ENB (1 « 4) /*retries
enabled*/

tdefine RETRY_MS OxF /*retry count mask*/

C4

/**
IOPB Formats:

The declarations below are intended to simplify the process of constructing and
IOPB. The layout of bytes and words within the IOPB are defined as structures.
Bit fields are defined via idefine's for ease in combining them into single
values.
**/

struct IOPBHdr
/*
This structure defines the format of the first fourteen bytes of an I/O
parameter block. This header has the same format for all commands. */
{

long
Next IOPB;

unsigned
IOPBID;

char

/*absolute address of next IOPB*/

/*ID for this parameter block*/

Options, /*byte holding option bits*/ CmndCode,
/*1/0 command code*/ Drive, /*drive number*/

Dummy; /*dummy byte*/

unsigned
Cylinder;

char
Sector,
/*depending on cmnd*/ Head;
};

/*
Command Code values.
*/

idefine READ OxOC
idefine WRITE OxOD
idefine VERIFY OxOF
idefine FORMAT Ox07

/*(called track in data sheet)*/

/*logical or physical or format pattern*/

idefine RLCT TRK OxOB /*relocate track*/ idefine LD_DPB
OxOO /*load drive parameter block*/ idefine DMP_DPB Ox03

/*dump drive parameter block*/ idefine RD_PHYS OxOA /*read
physical sector*/ idefine RD ID Ox09 /*read ID*/
idefine LD BUF OxOl - /*load buffer*/
idefine DMP_BUF Ox02 /*dump buffer*/
idefine LD_SYND Ox04 /*load syndrome*/ idefine DMP_SYND OxOS

/*dump syndrome*/ idefine CRCT BUF Ox06 /*correct
buffer*/ idefine SEEK OxOE
idefine RESTORE OxOS /*resotre heads to cylinder 0*/

C-5

/*
Options bits.
*/

#define W
(1 « 6)

if SRB written*/
#define TV
#define LD
#define DM

/*
Data mark.
*/

#define DATA MRK

/*
Misc.
*/

#define 1N1T SEC

/*

(1 « 7) /*stop after current 10PB*/ #define SE
/*stop on error*/ #define SSRB (1 « 5) /*stop

#define DME (1 « 3) /*data mapping enabled*/
(1 « 3) /*track verify enabled (Rd Phys and Seek)*/
(1 « 3) /*locator dump enabled (Cr Buf and Rd 1D)*/
(1 « 2) /*data mark (normal disk commands)*/

OxFE /*data mark*/

OxO /*starting sector number*/

Specific 10PB Formats.
*/

struct Std10PB
/*
This structure defines the format a standard 10PB. Not all commands use all of
the fields defined. A few special commands depart from this format. */
{

struct 10PBHdr
StdHdr;

char
SectCnt,

long
MemAddr;

struct Fmt10PB
/*

/*the standard 10PB header*/

/*number of sectors for operation*/ DataMark;
/*for normal operations*/

/*absolute memory address*/ };

This stucture defines the format of the 10PB for a format operation. */
{

struct 10PBHdr
FmtHdr;

unsigned
TrkCount;

/*the standard 10PB header*/

/*the number of tracks to be formatted*/

C-6

long
MapAddr;

struct RlctIOPB
/*

/*absolute address of sector map*/);

This structure defines the format of a relocate track IOPB. */

struct IOPBHdr
RlctHdr;

unsigned
AltCyl;

char
RlctResl,
AltHead,

/*unused*/
) ;

/*the standard IOPB header*/

/*the alternate cylinder*/

/*unused*/
/*the alternate head*/ RlctRes2 [2];

/**
Status/Results Block Definitions:

The declarations below are intended to ease access to the status/results block
and to simplify its interpretation. The layout of the bytes and words in the
status/results block are defined via structures. The specific values which may
be found are declared with #define's
**1

struct SRBHdr
/*
This structure defines the format of the first three bytes of the
status/results block. This header has the same format for all SRBs. */
{

unsigned
SRBID;

char
RsltCode;

struct SRBLoc
/*

/*ID field for correlation to IOPB*/

/*identifier for result type*/);

This structure defines the format of the tail of a status/result block which
specifies a disk location. It is used in several SRBs. */
{

unsigned
RsltCyl; /*cylinder of SRB location*/

C-7

char
RsltHead,

/*reserved*/
RsltRes2,
RsltSect;

/*head of SRB location*/ RsltRes1,

/*reserved*/
/*sector of SRB location*/ };

/*
Status/Result Code values.
*/

fdefine SRER_MAX 31 /*number of different code va1ues*/

tdefine
tdefine

OxOO

Ox19 /*77*/ /*multi-sector command error termination*/
Ox01 /*no IDs found on track*/ fdefine FMT_ERR

/*unexpected index pulse encountered*/ fdefine SEEK_ERR
Ox02 /*ID found, but not as expected*/ fdefine FTL_SEEK Ox08

/*seek error after restore and re-seek*/ fdefine RLC_TRK OxOS
/*track read as relocated*/ fdefine RLC_NOVEC Ox06 /*relocation
failure - no vector*/ fdefine NOT_FND Ox09 /*sector not found on
track*/ fdefine NTFND_ER OxO? /*sector not found, IDs had CRC
errors*/ fdefine MSC_OVFL OxOD /*multi-sector not allowed across
track*/ tdefine NOT_RCVR Ox1? /*HDC could not recover data
requested*/ tdefine RCVR_RTR OxOA /*data recovered via retries*/
fdefine RCVR_ECC Ox03 /*data recovered via ECC*/ fdefine
SYNC_FLT Ox04 /*ID OK, but no address mark for data*/ tdefine
DM ERR OxOE /*data mark error*/ tdefine SCT_SIZE OxOF

/*sector size mismatch*/ fdefine VRFY_ERR OxOB /*data did not
verify on verify command*/ fdefine PHS_RCVR Ox1A /*77*/ /*physical data
recovered via ECC*/ fdefine PHS_UNCR Ox1B /*77*/ /*physical contained
uncorrected errors*/ fdefine ECC NTSEL Ox10 /*ECC attempted, but
not selected*/ fdefine DATA_ECC Ox18 /*an ECC error was detected
in the data*/ fdefine DM_PHYS OxIC /*77*/ /*data mark error read phys*/
fdefine ID_CRC Ox1D /*77*/ /*CRC error in ID fie1d*/ fdefine SEEK_FLT

Ox12 /*FAULT line asserted while seeking*/ fdefine RSTR_FLT
.Ox16 /*HDC could not restore the drive*/ fdefine HDSL_FLT Ox13

/*HDC could not select specified head*/ fdefine DRSL_FLT Ox11
/*HDC could not select the specified drive*/ tdefine DRST_TRP Ox1E /*77*/
/*unexpected drive status change*/ fdefine MEM_TIM OxOC

/*memory time-out*/ fdefine NO_RLCT Ox14 /*relocate track
illegal on sgl dens flpy*/ fdefine END MAP Ox1S /*unexpected end
of data map*/

/*
Drive Status bits
*/

tdefine DREADY (1 « 9) /*the drive
FAULT (1 « 10) /*the hardware fault
« 11) /*the seek complete line*/ fdefine
/*the write protect line*/ fdefine TRKO
status line*/

C-8

ready status line*/ fdefine
line*/ fdefine SEEKCOM (1
WRTPROT (1 « 12)
(1 « 13) /*the track 0

1*
Specific SRB formats
*1

struct MTrmSRB
1*
This structure defines the format of the status result block indicating that a
multi-record command has been terminated at the specified location and count.
*1
{

struct SRBHdr
MTrmHdr;

char
MTrmCnt;

struct SRBLoc
MTrmLoc;

struct StdSRB
1*

I*the standard SRB header*1

I*count of sectors processed???*1

I*location of the termination*1 };

This structure defines a format which encompasses several actual SRBs. Not all
of the fields will always containvaild information. Consult the Am9580 data
sheet for details.
*1
{

struct SRBHdr
StdHdr;

char
StdRes;

struct SRBLoc

I*the standard SRB header*1

l*reserved*1

StdLoc; I*the standard SRB location fields*1

I*add two more bytes here??? so that it can be used with sizeof()?? *1

} ;

struct SeekSRB
1*
This structure defines the format of the SRBs which are generated when seek
errors occur.
*1
{

struct SRBHdr
SeekHdr;

char
SeekRes;

I*the standard SRB header*1

l*reserved*1

C-9

unsigned
CurCyl,
/*desired cylinder*/

char
DsrdHead,
/*current head*/ };

struct RlctSRB
/*

)*current cylinder*/ DsrdCyl;

/*desired head*/ CurHead;

'This structure defines the format of the SRB which is generated when a track is
read as relocated and the HDC auto-vectors to the new track.
*/
{

struct SRBHdr
RlctHdr;

char
RlctRes3;

/*the standard SRB header*/

/*reserved*/

unsigned
RlctCyl, /*cylinder which was relocated*/ NewCyl;

/*new cylinder to be used*/

char
NewHead, /*head which was relocated*/ RlctHead;

/*new head to be used*/ };

struct RcvrSRB
/*
This structure defines the format of the SRBs which are generated when data is
recovered either via retries or via the ECC. */
{
struct SRBHdr
RcvrHdr;

char
RetryCnt;

struct SRBLoc
RcvrLoc;

struct MarkSRB
/*

/*the standard SRB header*/

/*the retry count*/

/*location of data recovered*/ };

This structure defines the, format of the SRBs which are generated when a data
mark error occurs. The location fields are not valid in the case of a data
mark physical e~ror.
*/
{

struct SRBHdr
MarkHdr; /*the standard SRB header*/

C·10

char
MarkFnd;

struct SRBLoc
MarkLoc;

struct SizeSRB
/*

/*the data mark found*/

/*the location of the error*/ };

This structure defines the format of the SRB which is generated if a sector
size mismatch is occurs between the header actually found and the DPB.
*/
{

struct SRBHdr
SizeHdr;

char
SizeFnd;

struct FltSRB
/*

/*the standard SRB header*/

/*the sector size code found*/ };

This structure defines the formats of SRBs which are generated when a hardware
fault or an unexpected change in drive status occurs. The location fields
indicate the cylinder sought if the fault occured during a seek or the head
desired if the fault occured during a head select.

???Is it true that status is not included in fault while head select??? */
{

struct SRBHdr
FltHdr;

char
DrvStat;

struct SRBLoc
FltLoc;

struct TimeSRB
/*

/*the standard SRB header*/

/*the drive status lines*/

/*location sought when fault occured*/ };

This structure defines the format of the SRB which is generated when a data
timeout occurs.
*/
{

struct SRBHdr
TimeHdr;

char
TimeRes;

unsigned
BlkCnt;

long
BlkAddr;

/*the standard SRB header*/

/*reserved*/

/*size of block where error occured*/

/*physical address of block start*/ };

/*end of Am9580.h*/ ________________________ __

C-11

C-12

DOS Device Driver for the Am9580
/**
drvr9580.c DOS Device Driver for the Am9580 vO.oo

This file contains the C programs which constitute the bulk of the loadable DOS
device driver for the Am9580. A small amount of assembly language is required
for interface to DOS. There are also external files containing DEBUG routines.

Upon initialization, 1 of n pre-defined DPB's may be selected by specifying a
DPB selection number (0 to n-1) in the "device" statement of the CONFIG.SYS
file. For instance,

device = Am9580.exe 2

selects DPB parameter set 2. If no parameter selection is included, the default
is o.

This driver assumes that only one drive, which is non-removable, is attached to
the Am9580.
**/

'include "dosdrvr.h"
'include nAm9580.hn

tifdef DEBUG

tinclude ndbg.hn

tendif

/*
Error translation codes
*/

/*declarations for DOS device drivers*/
/*declarations for Am9580 use*/

/*declarations for debug use*/

tdefine
'define
16

CHK_SRB OxFE /*look into SRB for details on error*/
RW_ERROR OxFD /*read/write error*/ tdefine SRB_MAX

/*number of SRB in SRA*/

/*
Initial value of mode register
*/

tdefine MODE_VAL
«WAIT_SH) I IM_SK)

extern
EndDrvr ();

unsigned
DPBIndex;

«Ox1 «DWELL_SH) I (OxF« BURST_SH)
/* Ox1f41 */

/*to get end of the driver*/

0-1

INT_DSB \ I (OxO

struct DPB
DPBArea[8)

2,

/*drive parameter block array*/ {Ox3A,
/*general select byte*/

/*data select byte*/ Ox140,
/*cylinders per disk*/ 4,

/*heads per cylinder*/ Ox11, /*sectors per
/*reduced write current cylinder*/ Ox10,

/*seek dwell timing control*/ Ox10,
track*/ Ox50,

/*step width
control*/ Ox45,

Ox5f,

timing control*/ Ox20, /*head settle time
/*precompensation biginning cylinder*/

/*retry policy byte*/ OxfO,
/*index to
/*preamble

length*/ Ox10,
Ox10,

first sector dalay length*/ Ox10,
1 length*/ 3,

/*pad length*/
/*preamble 2 length*/ 9,

/*ECC length*/
3,

OxfO};

/*porstamble 2 length*/ 8,
/*gap length*/

/*not defined*/

/*postamble 1

struct StdSRB
SRBArea[SRB_MAX)

/*storage for Am9580 status/results*/

= {4096, 4, 0, 3, 3, 0, 0, 1}; /*for simulation only*/

'\ struct BPB
BPBParm /*disk BIOS parameter block*/ (Ox200, 4, 1,
2, Ox200, Ox110, OxF8, 1, Ox11, 4, O};

#else

struct StdSRB
SRBArea[SRB_MAX);

/*storage for Am9580 status/results*/

struct BPB
BPBParm;

#endif

unsigned
BPBAddr;

/*

/*disk BIOS parameter block*/

/*word offset of BPB*/

This table translates controller fault type values to DOS error codes. */

unsigned
XlatCFT[CFT_MAX)
{NO_ERROR,
GEN_FAIL,

/*NML_CPLT*/
/*NULL_FLT*/

0-2

GEN_FAIL,
NO_ERROR,
GEN_FAIL,
CHK_SRB,
GEN_FAIL,
CHK_SRB,
GEN_FAIL,
GEN_FAIL,
GEN_FAIL,
GEN_FA~L,

WRT_PRT,
GEN_FAIL,
GEN_FAIL,
NO_ERROR},

/*

/*SRA_OVFL*/
/*WAIT_STP*/
/*FRC_IDLE*/
/*ER~STP*/
/*ILG_IOPB*/
/*SRB_STP*/
/*DATA_TIM*/
/*IOPB_TIM*/
/*MAP_TIM*/
/*SRB_TIM*/
/*WRT_PROT*/
/*reserved*/
/*reserved*/
/*RST_CPLT*/

*This table translates status result block codes to DOS error codes. */

XlatSRB[SRER_MAXl
{RW_ERROR,
RW_ERROR,
NO_ERROR,
NO_ERROR,
RW_ERROR,
RW_ERROR,
RW_ERROR,
NT_FND,
SK_ERR,
NT_FND,
NO_ERROR,
WRT_FLT,
GEN_FAIL,
RW_ERROR,
RW_ERROR,
UNK_MED,
GEN_FAIL,
GEN_FAIL,
SK_ERR,
SK_ERR,
GEN_FAIL,
GEN_FAIL,
SK_ERR,
CRC_ERR,
CRC_ERR,
RW_ERROR,
NO_ERROR,
CRC_ERR,
RW_ERROR,
RW_ERROR,
GEN_FAIL} ;

/*FMT_ERR*/
/*NO_IDS*/
/*SEEK_ERR*/
/*RCVR_ECC*/
/*SYNC_FLT*/
/*RLC_TRK*/
/*RLC_NOVEC*/
/*NTFND_ER*/
/*FTL_SEEK*/
/*NOT_FND*/
/*RC~RTR*/

/*VRFY_ERR*/
/*MEM_TIM*/
/*MSC_OVFL*/
/*DM_ERR*/
/*SCT_SIZE*/
/*ECC_NTSEL*/
/*DRSL_FLT*/
/*SEEK_FLT*/
/*HDSL_FLT*/
/*NO_RLCT*/
/*END_MAP*/
/*RSTR_FLT*/
/*NOT_RCVR*/
/*DATA_ECC*/
/*MSC_TERM*/
/*PHS_RCVR*/
/*PHS_UNCR*/
/*DM_PHYS*/
/*ID_CRC*/
/*DRST_TRP*/

0-3

MoveMem (Src, Dest, Cnt)
/*
This routine copies Cnt bytes from Src to Dest. It doesn't perform correctly in
the event of overlap.

Normally, a library routine would be used for this function. It is included
here to avoid dependence on a particular library'S linkage convention.
*/

char
*Src,
*Dest;

unsigned
Cnt;

for (; Cnt > 0; *Dest++ ~ *Src++, Cnt--)

return;
}

long
PhysAddr (MemAddr)
/*
This routine converts segmented address into absolute physical address.

It definitely needs to be recoded if some other compiler is used!!! */

char
*MemAddr;

{

/* return «(MemAddr & OxFFFFOOOOI) » 12) + (MemAddr & OxOFFFFI»; */ return
«long)MemAddr);
}

unsigned
LogSect (Cylinder, Head, Sector)
/*
This routine converts cylinder, head, sector into logical sector number. */

unsigned
Cylinder,
Head,
Sector;

unsigned
LogSec; /*storage for the logical sector number*1

0-4

LogSec = «Cylinder * BPBParm.HdsPrCyl + Head) * BPBParm.SctPrTrk) + Sector -
lNlT_SEC - BPBParm.HdnSect); return (LogSec);
}

unsigned
GetRmSec (ReqPtr, SRBPtr)
/*
This routine checks on which sector the error has occurred, and figures out the
remaining sector count for the DOS return status. */

struct XfrReq
*Reqptr;

struct StdSRB
*SRBPtr;

unsigned
CrntPos, /*current position where error occurred*/ RmCnt;

/*remaining sector count*/

switch (SRBPtr->StdHdr.RsltCode)
{

case MSC_TERM:
NOT_FND:

/*the calculations will be done only for*/ case
/*those with disk location information*/ case NTFND_ER:

case MSC_OVFL:
case NOT_RCVR:
case RCVR RTR:
case RCVR_ECC:
case SYNC_FLT:
case DM ERR:
case VRFY ERR:

CrntPos = LogSect (SRBPtr->StdLoc.RsltCyl, SRBPtr->StdLoc.RsltHead,
SRBPtr->StdLoc.RsltSect); RmCnt = ReqPtr->XfrSiz - (CrntPos - ReqPtr->StartSct);
break;
}

default: /*for others, assume none were transfered*/ {
RmCnt = ReqPtr->XfrSiz;
break;
}
}

/* return (RmCnt); */
return (ReqPtr->XfrSiz);
}

SetlOPB (ReqPtr, lOPBPtr, Command)
/*
This routine converts the parameters from MSDOS request block to a format that
fits into the lOPB required by the Am9580. This includes translating logical
sector number to the cylinder, track, and sector form, and converting segmented
address to absolute physical address.

0-5

It is usually called from disk transfer routines, e.g. read, write, verify. *1

struct XfrReq
*Reqptr;

struct StdIOPB
*IOPBPtr;

unsigned
Command;

unsigned
Cylinder,
Head,
Sector;

I*temporary variables*1 Track,

Sector = (ReqPtr->StartSct + BPBParm.HdnSect) % BPBParm.SctPrTrk + INIT_SEC;
Track - (ReqPtr->StartSct + BPBParm.HdnSect) 1 BPBParm.SctPrTrk; Cylinder =
Track 1 BPBParm.HdsPrCyl;
Head - Track % BPBParm.HdsPrCyl;

IOPBPtr->StdHdr.NextIOPB = 0;
IOPBPtr->StdHdr.IOPBID = 4096; 1*777*1
IOPBPtr->StdHdr.Options - SSRB;
IOPBPtr->StdHdr.CmndCode = Command;
IOPBPtr->StdHdr.Dummy - 0;
IOPBPtr->StdHdr.Drive - 0;
IOPBPtr->StdHdr.Cylinder - Cylinder;
IOPBPtr->StdHdr.Sector = Sector;
IOPBPtr->StdHdr.Head - Head;
IOPBPtr->SectCnt - ReqPtr->XfrSiz;
IOPBPtr->DataMark - DATA_MRK;
IOPBPtr->MemAddr - PhysAddr (ReqPtr->XfrAddr);
return;

RtnStat (ReqPtr, Code, SecCnt)
1*
This routine sets the return status for MSDOS. It will always set the done bit.
If an error has occurred, the error code, error bit, and the remaining count
will be set accordingly.
*1

struct XfrReq
*ReqPtr;

unsigned
Code,

I*remaining count*1

I*pointer to a request block*1

I*error code, OxFF for none*1 SecCnt;

0-6

ReqPtr->XfrHdr.ReqStat = DONE;
ReqPtr->XfrSiz -= SecCnt;
if (Code != NO_ERROR)
{

ReqPtr->XfrHdr.ReqStat 1= (ERROR 1 (Code & ERR_MS»;
return;

unsigned
XlatErr (CFTErr, RWErr, ReqPtr)
/*
This routine translates the error returned by Am95BO into MSDOS error code.
This includes translating from controller fault type directly, or looking into
the SRB for more details.

RWErr is the DOS error code to be returned if RW_ERROR is found. This routine
also calls the RtnStat() to prepare the return status for MSDOS.
*/

unsigned
CFTErr, /*fault type in status register*/ RWErr;

/*value to be returned if RW_ERROR*/

struct XfrReq
*Reqptr;

unsigned
DOSErr,
RemSect;

DOSErr - XlatCFT[CFTErr];
RemSect = ReqPtr->XfrSiz;
(DOSErr CHK_SRB)
{

fifdef
GetStat (&SRBArea[O]);
fendif

/*number of remaining sectors*/

/*assume error, and none were transfered*/ if

/*need to look into SRB*/

DOSErr = XlatSRB[SRBArea[O] .StdHdr.RsltCode];
if (DOSErr != NO_ERROR)
{ /*check return location*/ RemSect = GetRmSec (ReqPtr,
&SRBArea[O]);
}

fifdef DEBUG
if (DbgCtrl & SHOW_STA)
{

ShowSRB (&SRBArea[O]);
}

fendif

0-7

if (DOSErr -- RW_ERROR)
{

DOSErr - RWErr;
I
if (DOSErr -- NO_ERROR)
{

RamSect - 0;
else

/*correct'remaininq sectors if no error*/ I

{

switch (ReqPtr->XfrHdr.ReqCode)
{

case INPUT:
case OUTPUT:
case OUT_VRFY:
{
break;
I
default:
{

RamSect - 0; /*remaininq sectors is only meaninqful*/ break;
/* for transfer requests*/ I

RtnStat (ReqPtr, DOSErr, RamSect);
return (DOSErr);
I

unsiqned
ExCmnd (Command, IOPBPtr)
/*
This routine executes a 9580 command. It then waits for the controller to
become idle and reads the resultinq command/status word. It returns controller
fault type in the status reqister.

This routine will always updates the value of status result pointer reqister. */

unsiqned
Command;

struct IOPBHdr
*IOPBPtr;

{
lonq
Addr;

unsiqned
Cnt,
Status,
CFType;

/*the command word*/

/*for debuq purpose*/

0-8

Hfdef DEBUG
if (DbgCtrl & SHOW_CMD)
{

PutStr ("IOPB command:\n");
ShowIOPB (IOPBPtr);
}

*endif

if (IOPBPtr->Cylinder >= DPBArea[DPBIndex].CIPerDsk) return (OxOE);
/*for sector not found*/ Addr = PhysAddr (IOPBPtr);

/*initialize next block reg*/ OutWord (NBP_LO, (unsigned)Addr);
OutWord (NBP_HI, (unsigned) (Addr » 16»;
Addr = PhysAddr (&SRBArea[O]); /*initialize SRB reg*/ OutWord (SRP_LO,
(unsigned)Addr);
OutWord (SRP_HI, (unsigned) (Addr » 16»;
OutWord (SRP_LEN, SRB_MAX); /*size of area in terms of blocks*/ OutWord
(CMND_REG, Command);
/* some delay may be needed */
Status = InWord (CMND_REG);
while «Status & CMST_MS) != IDLE)
{

/*wait till it becomes id1e*/
Status = InWord (CMND_REG);
}

CFType

Hfdef DEBUG
if (DbgCtrl & SHOW_STA)
{

sprintf (DbgStr, "Status register: %4x\n", Status); PutStr (DbgStr);
}

*endif

return (CFType);

RVCmnd (ReqPtr, Command)
/*

/*error code is returned*/ }

/ *TEMPORARY! ! * /

This routine's operation is very similar to that of the ExCmnd() 's except that
it is specially designed to handle the data_recovered_with_ECC error. When the
controller stops on a data_recovered_with_ECC error, this routine will send out
a correct buffer command, and then send out another read/verify request starting
at the next sector. */

struct XfrReq
*Reqptr;

unsigned
Command;

struct StdIOPB
XferIOPB;

/*dos request block pointer*/

/*the command word*/

0·9

unsigned
FaultTyp, /*fault in stats register*/ RWErr,

/*code to be returned if RW_ERROR*/ CrntSct, /*sector
where RC~ECC occurred*/ XfrCnt,
transfered*/ TotalXfr;
requested*/

/*number of sectors
/*total number of sectors

ReqPtr->XfrHdr.ReqStat
WRT_FLT;

0; /*initial status to be no error*/ RWErr =
/*value to be returned if RW_ERROR*/ if (Command ==

READ)
{

RWErr = RD_FLT;
XfrCnt = 0;

/*return read fault if input request*/ }

TotalXfr = ReqPtr->XfrSiz;

/*loop until all sectors are transfered unless error occurred*/

while (XfrCnt < TotalXfr && (ReqPtr->XfrHdr.ReqStat & ERROR) == 0) {
SetIOPB (ReqPtr, &XferIOPB, Command);
FaultTyp = ExCmnd (START, &XferIOPB);
if (XlatCFT[FaultTyp] == CHK_SRB)
{

#ifdef NO HDWR
GetStat (&SRBArea[O]);
#endif

if (SRBArea[O] .StdHdr.RsltCode == RCVR_ECC) {
CrntSct = LogSect (SRBArea[O] .StdLoc.RsltCyl, SRBArea[O] .StdLoc.RsltHead,
SRBArea[O] .StdLoc.RsltSect); XfrCnt += (CrntSct - ReqPtr->StartSct); /*sectors
transfered*/ XferIOPB.StdHdr.NextIOPB 0; /*do correct buffer*/
XferIOPB.StdHdr.IOPBID = 4096;
XferIOPB.StdHdr.Options = SSRB; XferIOPB.StdHdr.CmndCode = CRCT_BUF;
XferIOPB.StdHdr.Drive = 0;
XferIOPB.MemAddr = 0; /*????*/
FaultTyp = ExCmnd (START, &XferIOPB);
XlatErr (FaultTyp, RWErr, ReqPtr);
if «ReqPtr->XfrHdr.ReqStat & ERROR) == 0) {
XfrCnt++; /*include the recovered one*/ while
(ReqPtr->StartSct <= CrntSct)
(

ReqPtr->XfrAddr += BPBParm.SectSize;
ReqPtr->XfrSiz--;
)
)

)

else

XlatErr (FaultTyp, RWErr, ReqPtr);
XfrCnt += ReqPtr->XfrSiz;
)

else

XlatErr (FaultTyp, RWErr, ReqPtr);
XfrCnt += ReqPtr->XfrSiz;

ReqPtr->StartSct++;

/*add up all xfr sectors*/)

/*add up all xfr sectors*/)

0-10

ReqPtr->XfrSiz = XfrCnt;
}

/*use total sectors xfered*/ return;

Init (ReqPtr)
/*
This routine is called only once. It does the following:

1. Initialize the hardware Am9580, e.g. setting the status result pointer
register, status result length register, mode register, etc. It also scans a
number from the invocation line which is an index to a list of DPB structures
and the chosen DPB is used as the initial value.

2. Read the BPB from the boot sector of the disk and return a pointer to the
BPB.

3. Return the number of units (1).

4. Return the first available byte of memory above the resident driver. */

struct InitReq
*ReqPtr;

struct StdIOPB
XfrIOPB;

unsigned
Cnt,
Rtn;

char
*Ptr;

struct PtrAddr
{

unsigned
Ofst,
Seg;
} EndAddr, *EndPtr;

/*query initial value for DbgCtrl*/

Ufdef DEBUG
sprintf (DbgStr, "Address of DbgCtrl: %081x\n", &DbgCtrl); PutStr (DbgStr);
sprintf (DbgStr, "Enter the initial DbgCtrl value (hex): "); PutStr (DbgStr);
GetStr ();
sscanf (DbgStr, "%x", &DbgCtrl);
*endif

/*initialize the Am9580*/

0·11

/*init DMA*/ OutByte (Oxd6, Oxc2);
OutByte (Oxd4, Ox02);
OutWord (CMND_REG, RESET);
MODE_VAL) ;

/*reset the chip first*/ OutWord (MODE_REG,

sscanf (ReqPtr->InitBPBs, "Am9580.exe%d", &DPBlndex); for
(Cnt=sizeof(XfrIOPB),Ptr = (char *)&XfrIOPB; Cnt >0; Cnt--) *Ptr++ 0;
XfrIOPB.StdHdr.NextIOPB = 0;
XfrIOPB.StdHdr.IOPBID = 2000;
XfrIOPB.StdHdr.Options = SSRB;
XfrIOPB.StdHdr.CmndCode = LD_DPB;
XfrIOPB.StdHdr.Drive = 0;
XfrIOPB.MemAddr = PhysAddr (&DPBArea[DPBlndex);
if «Rtn = XlatErr (ExCmnd (START, &XfrIOPB), GEN_FAIL, ReqPtr»
/*read the BPB from the boot sector*/

XfrIOPB.StdHdr.NextIOPB = 0;
XfrIOPB.StdHdr.IOPBID = 2002;
XfrIOPB.StdHdr.Options = SSRB;
XfrIOPB.StdHdr.CmndCode = RESTORE;
XfrIOPB.StdHdr.Drive = 0;
if «Rtn = XlatErr (ExCmnd (START, &XfrIOPB), GEN_FAIL, ReqPtr» != NO_ERROR)
sprintf (DbgStr, "REAL BAD WHEN RESTORE! ! ! ! ! \n") ; PutStr (DbgStr); return;
}

XfrIOPB.StdHdr.NextIOPB = 0;
XfrIOPB.StdHdr.IOPBID = 2001;
XfrIOPB.StdHdr.Options = SSRB;
XfrIOPB.StdHdr.CmndCode = READ;
XfrIOPB.StdHdr.Drive = 0;
XfrIOPB.StdHdr.Cylinder = 0;
XfrIOPB.StdHdr.Sector = INIT_SEC;
XfrIOPB.StdHdr.Head = 0;
XfrIOPB.SectCnt = 1;
EndDrvr (&EndAddr);
XfrIOPB.MemAddr = PhysAddr (EndAddr.Ofst, EndAddr.Seg); if «Rtn
(ExCmnd (START, &XfrIOPB), GEN_FAIL, ReqPtr» == NO_ERROR) (
/*make a copy of BPB and return a pointer to it*/

Ufndef NO HDWR

XlatErr

MoveMem (EndAddr.Ofst+BPB_OFST, EndAddr.Seg, &BPBParm, sizeof (struct BPB»;
#endif
BPBAddr = (unsigned)&BPBParm;
ReqPtr->InitBPBs = &BPBAddr;
/*return dword end address by assigning offset and segment*/ EndPtr = (struct
PtrAddr *)&ReqPtr->DrvrEnd; EndPtr->Ofst = EndAddr.Ofst; EndPtr->Seg
EndAddr.Seg; ReqPtr->UnitCnt = 1; /*only one unit is supported*/
ReqPtr->UnitNum = OxF8; /*media descriptor byte*/ }
}

return;

MediaChk (ReqPtr)
/*
It is always assumed that the media has not changed. */

struct MdChkReq
*ReqPtr;

0-12

ReqPtr->ChgStat - 1;
RtnStat (ReqPtr, NO_ERROR, 0);
return;
}

BldBPB (ReqPtr)
/*
This routine is called whenever that a preceeding media check call indicates
that the disk has been changed.

It returns a pointer to a BPB.
*/

struct BlBPBReq
*ReqPtr;

ReqPtr->BPBPtr - &BPBParm;
RtnStat (ReqPtr, NO_ERROR, 0);
return;
}

IoctlInp (ReqPtr)
/*
This routine will return the contents of the status/command register and
possibly a status result block at the transfer address. */

struct XfrReq
*ReqPtr;

unsigned
Status,
*Bufptr;

/* while «(Status = InWord (CMND_REG» & CFT_VALID) == 0) */ /* some delay may
be needed */
while «(Status = InWord (CMND REG» & CMST_MS) != IDLE) /*TEMPORARY!!*/ {
/*wait till it becomes id1e*/ -
}

BufPtr = (unsigned *)ReqPtr->XfrAddr;
*BufPtr++ = Status;
MoveMem (&SRBArea[O], BufPtr, sizeof(struct StdSRB»; RtnStat (ReqPtr, NO_ERROR,
0) ;

tifdef DEBUG
if (DbgCtrl & SHOW_STA)
{
sprintf (DbgStr, "Status register: %4x\n", Status); PutStr (DbgStr);
ShowSRB (&SRBArea[O]);
}

fendif
return;

0-13

Intrpt (ReqPtr)
1*
This routine performa according to the specifications of an "interrupt" routine
for a DOS device driver. The assembly language interface routine provides it
with its input parameter.
*1

struct ReqHdr
*ReqPtr;

struct StdIOPB
XferIOPB;

Ufdef DEBUG
if (DbqCtrl & SHOW_REO)
{

PutStr ("Driver entry:\n");
ShowReq (ReqPtr);
}

tendif

I*pointer to the request from DOS*I

I*IOPB for the HDC transfer operations*1

«struct XfrReq *)ReqPtr)->XfrSiz &= OxOOff; I*only handle byte xfr count*1
switch (ReqPtr->ReqCode)
{

case INIT:

Init (ReqPtr);
break;
}

case MED_CHK:

MediaChk (ReqPtr);
break;
}

case BLD_BPB:

BldBPB (ReqPtr);
break;
}

case INPUT:

RVCmnd (ReqPtr, READ);
break;
}

case OUTPUT:
(

SetIOPB (ReqPtr, &XferIOPB, WRITE);
XlatErr (ExCmnd (START, &XferIOPB), WRT_FLT, ReqPtr); break;
}

case OUT_VRFY:
{

SetIOPB (ReqPtr, &XferIOPB, WRITE);
XlatErr (ExCmnd (START, &XferIOPB), WRT_FLT, ReqPtr); if (ReqPtr->ReqStat &
ERROR)
{

break;
}

0-14

RVCmnd (ReqPtr, VERIFY);
break;
}

case IOCT_INP: /*I/O control input*/
/*return status register*/ IoctlInp (ReqPtr);
break;

/*and possibly a SRB*/

}

case IOCT_OUT: /*I/O control output*/ {
I*used to write an IOPB*/ struct XfrReq
*XfrPtr;

unsigned
Rtn;

XfrPtr - (struct XfrReq *)ReqPtr;
XlatErr (ExCmnd (START, XfrPtr->XfrAddr), GEN_FAIL, ReqPtr); break;
)
case ND_INP: I*requests not supported*1
INP_STAT:
case INP_FLSH:
case OUT STAT:
case OUT_FLSH:
case DEV_OPN:
case DEV_CLS:
case REM_MEDIA:
{

case

RtnStat (ReqPtr, NO ERROR, 0);
XfrReq *)ReqPtr)->XfrHdr.ReqStat
break;

I*just return OK status*/ ((struct

}

default:
{

RtnStat (ReqPtr, UNK_CMND, 0);
}

}

itifdef DEBUG
if (DbgCtrl & SHOW_REQ)
{

ShowReq (ReqPtr);
PutStr ("Driver exit:\n\n");
}

*endif
return;

/*end of drvr9580.c*/

1= BUSY; I*and show non-removable*/

I*unknown command*1 break;

0-15

D-16

Using Am26LS31/32 in High Speed
Transmission Line Environments
Application Note

April 1988 ~

APPLICATION NOTE By: David Stoenner

ABSTRACT

This article presents the use of high speed serial data
communications in a transmission line environment using
Am26LS31 and Am26LS32 differential drivers and receiv­
ers. The first section describes how a transmission line
works and how to properly drive a terminated transmission
line, and how to arrive at the proper circuit for an Am26LS31
driver. The final section solves a real world problem of how
to drive the serial clock and data at speeds of 15 to 20 MHz
using the Am26LS31 and the Am26LS32 with additional
support circuitry.

INTRODUCTION

What do a telephone line 10,000 feet long, a coaxial cable
100 feet long, and a PC trace one foot long have in
common? First, all of these can transmit voltage and current
to an end point. In most cases involving the transmission of
voltage and current, dynamic information is present, and the
desired result from a system's standpoint is that this infor­
mation be transmitted with as little distortion, hence error, as
possible to the receiving end. Therefore, if the frequency of
interest is such that information from the first cell of informa­
tion can corrupt the second cell, the above three instances
are treated as transmission lines.

If in all cases the transit time of the incident wavefront (that
is, the wavefront moving away from the transmitter and
going towards the receiver) is equal to or greater than 1/20
the time from the first to the second cell of information, then

careful attention must be given to how energy is absorbed
at the receiver. In free space, electromagnetic energy
travels at roughly 1 ns per foot. In a transmission line this
value slows down due to the constriction of the EM
wavefront (a good rule of thumb is 1.5 ns per foot). In the
first example, the voiceband of the telephone is 300 Hz to 3
KHz, thereby, making the time from the first to the second
packet of information 33311S; 1/20 of 333115 at 1.5 ns per foot
causes a telephone cable of 11,100 feet to have problems
if it is not terminated properly.

Maximum power transfer also has an effect on the signal to
noise ratio of the receiving end, and hence the ability to
extract reliable information from all the incident and re­
flected waves on the line. Maximum power transfer by
definition is accomplished when the impedance of the
receiver exactly matches the impedance of the transmitter.

The following is a review of the ideal transmission line and
its characteristics. The intent is to give the reader a working
knowledge and fuel for "If I vary this cause, this effect might
happen", rather than a strict mathematical derivation of
transmission line theory.

TRANSMISSION LINE BASICS

The ideal transmission line is a differential pair of lines that
connect a source (transmitter) with a receiver. Figure 1
shows a schematic of a system assuming that the transmis­
sion lines are a pair of wires that exist in free space and that
the transmitter is a step function generator Uo(t).

j4-- Transmission Line ~

Figure 1

E-1

APPLICATION NOTE
Using Am26LS31/1n High Speed Transmission LIne Environments

Since the line is made up of real components, the wire will
exhibit an inductance in its length and a capacitance across
itself as it goes along. By long derivation, the line will
have a characteristic impedance given by the formula in
Equation 1:

L (inductance per unit length)
C (capacitance per unit length)

equation 1

The transit time constant is given in Equation 2:

Time/unit length. ~ L (per unit length) • C (per unit length)

equation 2

The two equations above exclude the idea of series resis­
tance and shunt resistance as loss factors from the equation
making the 20 of the transmission line a pure resistance.
Series resistance and shunt resistance enter into the equa­
tion and cause a phase shift, i.e., 20 is a complex impedance
in real life and serves to attenuate the Signal at the receiving
end. This attenuation is normally specified in a value called
neperslmeter and is given as a db value.

In reference to the schematic example in Figure 1, what
happens when the step function generator steps? The step
is impressed across R, and enters the line at the input. The
signal starts to propagate down the cable at approximately
1.5 ns per foot until it reaches R,.. If this step were made
infinitely long, the final value of the voHage on R. would be
given by Equation 3:

Equation 3

Equation 4 shows R1=R2 needed for maximum power
transfer:

V Vstep • R 1 Vstep • R 1 Vstep
final = = =--

R1 + R1 2R 1 2

Equation 4

The incident wave charging the transmission line must now
be considered, as the transmission line is active at the
beginning but not active in the final value. Looking at the line
as the step function generator stepped, it can be seen that
aHhough there is a voHage at the input, there is no voltage
at R2; therefore, the voltage impressed on the input of the
transmission line is given by Equation 5:

Vstep • 20

20 + R1

Equation 5

Again for maximum power transfer 20 should be equalto R,;
therefore, Vin = VSTEP/2. When the wavefront moves to R.,
it is at its final value and hence is fully absorbed, and in one
transit time of the cable, the cable has reached its steady
state final value. This means that for an Ideal case, the
generator output impedance (R,) is equal to the cable
characteristic impedance (Z.l which is equal to the termina­
tion impedance (R,.), and hence no distortion of the received
signal.

In contrast to the preceding theoretical example, the follow­
ing discussion of a real world consIderation will be limited to
resistive values and changing R.. It can be seen that if R,
equals Z. but does not equal R,., then the cable must assume
the final value by hit and miss, which it does by reflections.
When the incident wave gets to the termination and it isn't
correct, it turns around (reflected) and goes back towards
the transmitter. ThIs bouncing back and forth goes on until
it reaches the final value and it takes an increment on that
final value at a rate of two times the transit time of the cable.
This works for one pulse of infinite length, but the situation
deteriorates when the pulses become repetitious. The
longer the line, the worse it gets and H's previous information
past determinate.

In R.F. transmitters which only deal in sine waves, this value
Is defined as Voltage Standing Wave Ratio (VSWR) and is
a measure of how much power is transmitted to and how
much actually gets out of the antenna, hence a VSWR of 1 :1
is Ideal. A VSWR of 1 :2 indicates transmission of 100 watts
with 50 watts getting out the antenna. In digital signal
transmission and reception, this is called p(rho), and p can
be a value from +1 to -1 with p .. O being perfect. The
equation for p is (assuming R,=Z.l given in Equation 6:

E-2

APPLICATION NOTE
Using Am26LS31/1n High Speed Transmission Line Environments

R2 - 1

P
Zo

R2 + 1
Zo

Equation 6

This is a measure of the ratio of the value of the reflected
wave value to the incident wave voltage. From this it can be

seen that if R2 is greater than Zo then p> 0, or if R2 is less
than Zo then p < O.

Plotting these reflections, it can be seen that if R2> ZO' the
line steps from 0 to .5, and then incrementally to a higher
value. Since this looks similar to a charging capacitor, the
line is said to look as an excess capacitor whose value is
given by Equation 7:

Z2

~ C = Length of cable • transit time/unit length (1 --+)
Zo R2

Equation 7

Conversely, if R2 < ZO, then the line looks like an inductor
spike and hence is said to look like an excess inductor
whose value is Equation 8:

~L= Length of cable' transit timelunitiength.ZO' (1- :i)
Equation 8

In some unusual cases, these characteristics can be used
to an advantage. It should also be noted that the previous
discussion was for a differential transmission line such as a
twisted pair or a coaxial cable. The same discussions are
also valid for a single ended transmission like a 10ne wire
above a ground plane (e.g., a PC trace), except that the
return path is the ground plane itseHwhich has an extremely
low inductance. The Appendix gives equations for Zo
for various phYSical conditions of wires and PC traces.

A SPECIFIC LOOK AT TWISTED PAIR TRANSMIS­
SION LINES

The predominant usage of the Am26LS31 and Am26LS32
is in the twisted pair type of transmission lines. A transmis­
sion line of two wires running parallel to each other has an

impedance which can be calculated as shown in Appendix
Figure B. However, the field coupling is not perfect as it is
in a coaxial cable. If two signals run close, then the parallel
line can cross talk. By twisting the cable over its distance,
then the fields are more loosely linked and the cable cross
talk is much reduced. This twisting has another effect in that
the actual distance is longer and the impedance is con­
trolled by the insulation of the conductors.

The mechanical distances are smaller and yet they still vary.
This means that the impedance of the cable varies slightly
from point to point but so does its velocity factor. The
velocity factor amounts to a cable skew which is a percent­
age of the cable length times the nominal velocity per unit
length and is proportional to the impedance variation. A
good rule of thumb seems to be 5%. For example, two
cables each 100 feet long would have a skew of 100 x 1.5
x .05 = 7.5 ns of uncertainity as to which wavefront would get
there first. For the rest of this discussion, this 5% number
will be used in the calculations.

An additional factor is that the actual wire length of a cable
is longer than the physical cable length of twisting. For
example, if a 28 gauge twisted pair cable is constructed
using 12 twists per foot, then the actual wire length is not one
foot but one foot plus 12 times the one wire diameter or 12.4
inches. This represents a 3% growth in the cable.

Am26LS31/Am26LS32 INTRODUCTION

The Am26LS31 and Am26LS32 were developed by AM D in
1978 in order to meet the requirements of a then new
engineering standard RS-422. During that time, RS-232
was the prevailing standard forterminal communications. It
was an old standard and therefore, a single-ended interface
and as such was limited to 50 feet per the original RS-232
specification. Terminals were mostly 1200 baud with a few
at 9600 baud so a new standard at 1 megabits and 1000 feet
was a fantastic idea. RS-422 found plenty of places to
operate and work but it never did replace the RS-232, since
9600 and 19.2K band seemed all the market really needed.
The disk world was another story. Disks have an insatiable
appetite for frequency and what was 5 to 9.2 MHz in 1978
is now 9.2 to 20 MHz today. However, the first law of
thermodynamics cannot be violated and what was satisfac­
tory in 1978 at 9.2 MHz cannot be tolerated today in a design
for 15-20 MHz.

The rest of this discussion will consider how to make the
Am26LS31 and Am26LS32 work reliably in an area that
they were not designed to work. (The deSign max for the
Am26LS31 132 was 10 MHz, that is, 10 times the max RS-

E-3

APPLICATION NOTE
Using Am26LS31/1n High Speed Transmission Line Environments

422 spec). Concentration will be on the Storage Module
Device (SMD) interface although the discussion can easily
be extended to any application of high frequency data with
a separate clock signal or where data and clock are com­
bined such as in Manchester encoding.

APPLYING Am26LS31 AND Am26LS32 TO THE
TRANSMISSION LINES

Before applying the previous transmission line theory to
make the Am26LS31/32 work correctly, both devices will be
considered and characteristics reviewed - the Am26LS31
as a driver and the Am26LS32 as a receiver.

The Am26LS32 is basically a differential voltage amplifier
with a front end attenuator (voltage divider) which can
tolerate a common mode voltage of + or -7 volts and still
amplify adifferential signal of 100 millivolts and produce and
logic 1 or 0 depending on which direction the + and - inputs
are with respect to each other. With an input impedance
guaranteed to be above 6.8K n, it will not load any

Logic In

Am26LS31

transmission's line termination of the usable 100-200 n. It
is basically a very passive device that needs no relative
ground reference.

The Am26LS31 , on the other hand, is a much more compli­
cated device from the analog standpoint which takes an
input logiC level of 1 or 0 and has two outputs that work out
of phase of each other. When a 1 is placed at the input, the
+ output is at a high TTL level and the other is at a low TTL
level. When a 0 is at the input, then the reverse is true at the
output. The output stages of the Am26LS31 are the baSic
TTL totem pole outputs which although good for logic, is a
poor transmission line driver. The reason is that when the
output is going from a 0 to a 1 level, it is being driven by an
emitter follower whose output impedance is on the order of
50 n, while the driver going from 1 to a 0 is about 5 n, that
of a saturated switch. This discontinuity in impedance
makes driving the transmission line a problem. It should
also be noted that the rise time is slower than the fall time.
An equivalent circuit concept is shown in Figure 2, the real
life circuit and Figure 3, the equivalent circuit in standard
voltage generator concepts.

/+- Transmission Line ---+I
#10716A'()()2

Figure 2

son

sn

Logic In
son

Logic Out

~ Transmission Line ~
sn

Figure 3

E-4

APPLICATION NOTE
Using Am26LS31/ln High Speed Transmission Line Environments

From the preceding discussions, an R2 could easily be
selected that would terminate the line in its proper Zo' but
how can the driver be made to conform to the proper value
for maxium power transfer and minimum reflections? First,
it should be noted that most transmissions lines in use, that
is, twisted lines, are in a range of 100 to 130 0 for their Zoo
In order to match the cable, maximum power transfer
indicates that source impedance is needed to be equal to
the transmission line impedance. Since the output imped­
ance is less than all the Zos , a series resistor can be added
to each leg to balance the value. The Thevenin Theorem
states that the lumped resistor to both legs can be split and
achieve the same effect. The equation for that series
resistor would be as given in Equation 9:

R Zo - R low to high + R high to lOW)
series = ------'--'-''''--...:.....::'--'---'--

2

Equation 9

Therefore, if a ZO of 100 is assumed, a series resistor of 22.5
or 22, the nearest 5% 1/4 watt resistor value in each leg
would be added, thus making the new circuit look as follows
in Figure 4.

This solves the reflection problem and allows the cable to be
driven so that the limiting factors are now the drivers and
receivers themselves; however, this has been done at the
expense of signal attenuation. What used to be a 3 volt
differential Signal is now been reduced to a 2.0 volt Signal,
that is, if the cable is 0 feet. As the cable is extended in
length, this attenuation gets worse. It should also be noted
that a twisted pair cable over about 10 feet long starts
appearing capacitative regardless of how it is terminated, so
the 22 Os and capacitance entered into a theoretical maxi­
mum upper limit is due to the cable alone, as shown in
Equation 10.

220

LogiC In
10 = 1000

Am26LS31
220

F max 160K (Hz)
2 x 22 x Capacitance (in microfarads)

Equation 10

For example, ifthe cable reached as high as 100 picofarads,
Fmax would be 36 MHz. Although this sounds high, it
represents a significant phase shift at 20 MHz and this
phase shift value will be needed in the next section.

Another effect of the series resistors should be noted. As
discussed before, the rise and fall time of the Am26LS31
driver is different because of the two different types of
drivers, emitter follower versus saturated switch. This rise
and fall time is exaggerated even more if the output of the
driver is connected directly to the transmission line resulting
in a difference in skew althe receiver called an "eye" pattern.
The series resistors help in giving a more uniform rise and
fall time at the cable input and thereby closing up the eye
which in effect gives a better signal to noise ratio on the line.

USING THE Am26LS31 AND Am26LS32 IN CLOCK
AND DATA APPLICATIONS

The previous discussion was for one signal. If that signal
was data only, then the clock would have to be extracted
from that signal and regenerated at the receiver end. In
many applications and SMD in particular, clock and data are
sent over separate sets Of wires. In this case, a method of
eliminating time skew from the system is needed. The best
method is to clock data onto the transmission line with one
edge of the clock and clock data off the transmission line
with the other edge of the clock. The scheme is shown in
Figure 5.

Logic Out
1000

Figure 4

E-5

APPLICATION NOTE
Using Am26LS31/1n High Speed Transmission LIne Environments

Dalaln DalaOut
D Q/----/ :;;-----1 D Q

Clock In
C Q C Q

Am26LS31s Am26LS32s

>-..... --- CiOCii Out

clock Out

,"0716A-005

Figura 5

At the transmitter, the rising edge of the clock moves data
from D to Q on the flip-flop. Clock and data then propagate
across the Am26lS31 down the transmission line and are
received by the Am26LS32s at the other end. Note that the
clock receiver is inverted in polarity at the Arn26LS32 from
that of the data receiver which effects clocking the data on
theclock-in'sfalllng edge Into the receiver flip-flop. Forthis
system to work, the set-up time requirement of the receiver
flip-flop must be met. However, skew Is Introduced by each
stage along the way, thus reducing the 112 clock time by
significant values. There Is a clock to Q time of the flip-flop,
a skew of the driver, a cable skew, a receiver skew, and
finally the set-up of the flip-flop. These must all add up to or
be less than the minimum 1/2 clock high time. The maxi­
mum delay is given in Equation 11:

CLKPerIod Mn :e{c1k to Ql {'tskew}+{'tSkaW}+{'tskew }+{'t 881Up 1
2 FUp Flap/ + Driver C8bIe ReceIver Flip FIOpJ

Equation 11

To examine the following equation,let's assume a 74AS74
flip-flop at each end and that a 10 MHz clock Is used. A
7 4AS74 ClK to Q is 9 ns and set up is 4.5 ns. A 1 0 MHz clock
period is 100 ns, its 1/2 period is 50 ns and its minimum is
usually 10%, thereby making it 45 ns. This now makes
Equation 11 reduce to Equation 12:

{'t skew} {'t Skew} {'t skew } 45 Ot 9 ns + Driver + Cable + Receiver 4.5 ns

31.5Ot {'t skew} + {'t SkeW} {'t skew }
Driver Cable + Receiver

Equation 12

The AMD data sheet sets the skew time of the driver and the
receiver to be 6 ns each if they are in the same package
leaving the skew time of the cable to be 19.5 ns. This 19.5
ns is divided between the Impedance difference between
two pairs of lines and the previously calculated pole fre­
quency of the 22 n source termination resistors and the
cable capacitor. If It is assumed that the impedance
variation between lines is 5%, then the transmit time varies
5% also, so that delta Is a function of length as shown in
Equation 13:

'tskew. Length of Cable. Transit Time. Impedance Tolerance
Cable

Equaillm 13

The second factor is the capacitance phase shift. In this
example with a pole at 34 MHz, the phase shift at 10 MHz
is a 16 degree phase shift which represents 1.4 ns skew,
thereby making the maximum cable length at 10 MHz to be
240 feet at 5%, or 120 feet at 10% cable variations.

A similar calculation could be done at 20 MHz showing that
the parts are marginal with the skew time of the drivers and
receivers as the predominant contributor. By careful
screening ofthis parameter, the Am26LS31 and Arn26lS32
could be used up to 20 MHz. Beyond 20 MHz no driver or
receiver will really handle the job in TTL, and ECl should be
considered as the method of choice. However, an improve­
ment can be made on the previous circuit. In examining the
circuit it can be noted that the clock drives the cable before
the flipflop's output has had a chance to reach its own driver.
The 9 ns is a significant value at 10 to 20 MHz as a
compensation series of gates could be added in the clock
line to balance the clock to Q time of the flip-flop. This would
take the form shown in Figure 6.

E-6

APPLICATION NOTE
Using Am26LS31/1n High Speed Transmission Line Environments

Dalaln DalaOut
D Ot-----i »-_---1 D 0 --

AS74 AS74
Clock In

c c o

Am26LS31s Am26LS32s

AS04

Figure 6

Now the original equation is modified by the fastest time of
the series gates allowing a longer cable at a higher fre­
quency. The 74AS04's minimum time is 3 ns each, allowing
that the maximum cable skew be 25.5 ns, and allowing
reliable operations of the circuit at 20 MHz with a 56 foot
cable. Without the 74AS04s, it would not work at all in the
worst case.

GREEN WIRE CONSIDERATIONS IN A SYSTEM

All the above examples deal with one driver driving one or
more receivers over a twisted pair cable. Due to FCC
requirements, if that cable leaves the cabinet and goes to
another cabinet, it will more than likely have to be shielded
to reduce any radiated EMI. Because of UL, the cabinets
must be tied directly to the green wire of the incoming power
cable. That green wire represents earth ground. If the
cabinets are in close proximity, there is a good chance that
the green wire in both cabinets are on the same power circuit
and hence at the same potential Voltage. But if they are
separated by too great a distance, then a good possibility
exists that they are not on the same power circuit and hence
may have a potential different voltage between them. When
this happens, a fault current flows between the two cabinets
down the shield and this can be a fairly large value, for
example exceeding 1/2 amp. However there is a simple
matter of just breaking the DC path and adding a series
capacitor of .1 microfared in series with the shield. This
eliminates the 60 Hz fault current but provides termination
for the high frequency AC shield needed for FCC.

However, deSigners should be aware of another path. UL
requires also that the circuitry of a computer system be
returned to green wire ground which is normally accom­
plished by connecting in the power supply green wire

ground with logic ground. This is fine in most cases, but in
reviewing the schematic in Figures 4 and 5, the signal is sent
over differentially and not referenced to logic ground. The
green wire fault voltage now appears as a common mode
voltage to the Am26LS32 receivers, and since its input
impedance is at least 6 Kil, nothing really happens.

There are cases where multiple Am26LS31s are 3-stated
onto a cable from various sources to one or more receivers.
In such cases, care must be taken since there is no special
isolation. At about 5 volts RMS green wire fault voltage, the
Am26LS31 s break down. Current again is only limited by
series resistance of the cable except now it is not flowing
harmlessly down a braided shield, but down the semicon­
ductor itself in a manner current was never meant to flow.

Figure 7 shows the breakdown path. Any series resistors
added as shown in Figures 4, 5 or 6 would limit the current
below harmful limits. It must also be pointed out that
Electrostatic Discharge (ESO) can also cause the same
problem on a single driver situation alone. The best system
solution in this environment is to have only one green wire
to logic ground connection in the system and all logic
grounds tied together by a single wire in the distributed
cable. This eliminates any fault current in the Am26LS31 s.
ESO can then be handled by adding a balun transformer as
necessary.

CONCLUSION

In summary, this article has shown that by applying a few
simple rules and careful worst casing in the use of lines
between devices, a reliable system can be produced using
readily available technology. One must take advantage of
the laws of physics and not ignore them.

E-7

APPENDICES
Using Am26LS31132 In High Speed Transmission Line Environments

Transmission Cable

Am26LS31

:" Thisdlade
: in Breakdown
l =9V

L...-_-+_~

,

,
,

r--·

Am26LS31

~
: Thlsdlade
: forward
1 biased

'----+--~·i·

,
,
,

Chassis ,
:
: L __________________________ _

Figura 6 has s : Ground Fault
: Current

.____________________________________ ..J

REFERENCES

Green Wire Ground
(Earth)

Potential Difference

Figura 7

1. Pulse Digital And Switching Waveform, Millman and
Tabb, McGraw Hill, 1965, Chapter 3, Sections 12
through 19.

2. Electronics, March 6,1967, pp. 165·168.

3. Electronic Design, May 24, 1976, ''Technology, Wiring
For High Speed Circuits".

4. EON, June 14, 1984, ''Transmission Line Effects Influ­
ence High Speed CMOS".

5. Electronics Engineers Handbook, Donald Finic,
McGraw Hill, 1975 pp. 6-35

E-8

Green Wire Ground
(Earth)

APPENDICES
Using Am26LS31 132 In High Speed Transmission Line Environments

Physical Constraints of Free Space

INDUCTANCE
-7

MO _ 4·7t"10 HENRIES/METER

CAPACITANCE EO = 8.85'10-12 FARADS/METER

Transmission Line Equations

where L = Inductance/Unit length
where C= Capacitance/Unit length

1/2
T = 3.3' Er • E-9

where T = Time in meters/seconds

E r = Relative dielectric constant
E r= Actual dielectric constant

Eo

E r for various materials

#1071SA-008

FR4 glass pc board
Mica
Glass
Polypropylene
Nybn
Polyslrene

4.7
5.4-8.7

7.2
2.2
3.5
1.2

Figure A

E-9

APPENDICES
Using Am26LS31/32 in High Speed Transmission Line Environments

Parallel Wires Wires above ground

#10716A-009

#10716A-Ol0

rP'
h

t
138 (4dh) Zo = Th In

Figura B

PC trace above a ground or Vee plane (STRIP LINE)

~ W I~ -r 1-1 __ -,I Tt
•

Zo::: --=8=7=====- In [5_98h J
_ i _8w + t
V Er+ 1-414

Coaxial Cable

~D

Zo ::: 138 E!/2. log ~

Figure C

E-10

DESIGN APPLICATIONS

ELECTRONIC DESIGN EXCLUSIVE

Constant-density recording
comes alive with new chips
Mark S. Young
Advanced llllicro Devices nc .. 901 Thorr4:>son PI., SlI'lnyvde. CA 94086; (408) 749·3409.

Designers of computer systems keep shooting for
the highest possible disk capacity. Engineers are ex­
ploring various recarding techniques, such as data
encoding schemes and special disk-track formats.
Constant-density recording, one type of disk-track
formatting, can boost raw disk capacity, or capacity
minus overhead, by 15 to 35%. More important,
this gain is on top of any other techniques applied,
like run-length-limited encoding.

Until now, constant-density recording has been

With fresh chips on
the scene, disk data­
recording capacity
increases over 25%.
It takes just one
peripheral card and
a handful of parts.

little used because of its
high cost and the dif­
ficulty of pu tting it to
work. Among those dif­
ficulties are the require­
ment for a phase-locked
loop (PLL) capable of
operating at anyone of
several different fre­
quencies, the need to
change the disk's rota-
tion speed, the narrow

frequency range of read-channel circuits, and the
ability to use a disk controller with disk drives that
do not have a built-in data separator.

Those difficulties are overcome through use of
the Am9582 disk data separator (DDS) chip. With
that chip, plus the Am2971 digital frequency­
generator circuit, designers can add constant­
density recording to disk controllers at minimal
cost, while boosting data capacity by over 25%.

Most disk controllers apply constant-angular ve­
locity recording. For that type of recording, the disk
controller writes data to the disk at a constant fre­
quency, giving each data-bit cell the same angular
velocity. Although each cell has the same angular
displacement, they have different linear velocities
on each track to make up for the physical size dif­
ferences in the individual bit cells.

As a result of its particular physical position,
each track holds data bits of different sizes (Fig. I).
The data on the disk is read or written at a fixed fre-

quency and all tracks store the same amount of
data. In constant-angular velocity recording, the
minimum distance must be calculated for the inner­
most track, where the data-bit cells will be closest
together. As the read-write heads move toward the
outer tracks, the data bits move farther apart, re­
ducing the average bit density. Constant-angular
velocity recording is popular because it simplifies
the disk drive and controller electronics, as well as
.the system software.

Constant-density recording, on the other hand,
varies the recording frequency on each track to
maintain a constant physical-data density. This is
done by varying either the recording frequency or
the disk platter rotation speed. The physics of mag­
netic recording, however, dictate the maximum flux
transition rate, or rather, the minimum distance be­
tween adjacent data bit-cell transitions.

With constant-density recording, the distance
between data-bit cells is the same for all tracks,
maintaining denser, more efficient data packing
than constant-angular velocity recording. The
amount of data on each track is therefore different,
with the outer tracks containing the most data and
the inner tracks containing the least. This technique
is more efficient than constant-angular velocity
recording because it comes closer to recording to
the maximum capacity of the disk. With constant­
density recording, 15 to 35% increases over the ca­
pacity of standard constant-angular velocity
recording can be achieved.

PROBLEMS OF CONSTANT DENSITY

While it uses the disk more efficiently than
constant-angular velocity recording, constant­
density recording creates a number of problems
that can dramatically complicate the design and.
cost of the disk controller. The largest obstacle is
the creation of either a variable-frequency PLL or
one that operates at several discrete frequencies.
The most common technique calls for the designer
to multiplex separate PLLs operating at the re-

Reprinted from Electronic Design, Nov. 13, 1986.
Copyright 1986.

F-1

DESIGN APPLICATIONS. Constant-density recording chips

quired frequencies.
Because the data frequencies in floppy disks are so low,

designers sometimes build digital PLL circuits that are
tunable to different frequencies. Another technique is to
change the disk's rotation speed and to operate the PLL at
one frequency. Unfortunately, since it takes so long for
the rotation speed to change, the disk I/O rate is affected.

Head-flying characteristics make it undesirable to alter
the motor speed of Winchester disk drives. In addition,
with constant-speed ST -506 drives (the specification for
most of the new 51/4 in. Winchester disks), this technique
cannot be used. As a result, constant-density recording
has been used more extensively in floppy drives than in
Winchesters.

Constant-density recording can be included only in a
disk controller with disk drives that do not have a built-in
data separator. Unless that type of recording is installed
by the drive manufacturer, it is not easily applied to en­
hanced small device interface (ESDI) or storage module
device (SM D) disks. Accordingly, only ST-506 interface­
compatible Winchester and floppy drives can easily use
such a circuit, because the disk controllers on those drives
include the data separator circuit. SCSI-compatible disk
drives with the entire disk controller built onto the drive,
including the data separator, can also take advantage of
this circuit.

The read-channel circuits, with their narrow frequency
range, may not have the bandwidth necessary to handle
the higher frequency requirements of constant-density
recording. For example, the ST-506 interface requires
operation at only 5 MHz, and constant-density recording
may push the data frequency up to 8 MHz or more. For­
tunately, the technology being used in many Winchester
disks today is sufficiently advanced to support those fre­
quencies.

Since the flying heads in Winchester drives are opti­
mized for a particular height of operation, using constant­
density recording with them may pose a problem. Toward

the outer edge of the disk, the data density is higher than
with constant-angular velocity recording. When
constant-density recording is employed, the read-write
heads tend to fly higher because of the design of the air
bearing, reducing their data recording density capability.
Moreover, the manner in which the oxide magnetic
medium is sputtered onto the disks causes the coating to
be thinner at the outer tracks. This also may affect the
ability of the disk to store the higher data density.

CONSTANT-DENSITY CLOCK GENERATOR

A complete disk controller circuit for constant-density
recording requires only a few chips, with the Am9580A
hard disk controller (HDC) and the data disk separator
forming the controller's core (Fig. 2). Fewer than 12 ICs
are required to build a complete Winchester controller
that fits onto a half-size IBM PC AT peripheral card. The
system interface requires eight additional ICs at most,
mostly data and address transceivers.

To overcome the limitations of previous techniques, the
data-separator circuit must operate at the various record­
ing frequencies needed for constant-density recording.
The first critical element in such a design is the PLL syn­
chronizing the data read from the disk. It must operate at
several different frequencies without a complex set of ex­
ternal analog components. Since most PLLs operate at
one frequency with those analog components, the
multiple-frequency requirement calls for some form of
analog multiplexer to connect those different components
to the PLL. The separator chip includes a PLL that oper­
ates at different frequencies without using any external
analog components.

The PLL in the separator operates at any frequency be­
tween 4 and 16 MHz for Winchester disks, and from 125
kHz to I M Hz for floppy-disk drives, with no external
components that depend on frequency. The user supplies
only a reference input clock and must wait less than 3 ms
to allow the PLL to stabilize at the new frequency.

Outer
track

Equa11ength

~lnner
fIl(-

(b)

Instead of requiring a com-
plex and expensive variable­

1. In constant-angular velocity recording, the physical size of the data bits on
the inner tracks is smaller than those on the outer tracks (a). With constant­
density recording. data on all tracks has the same density (b). Overall.
constant-density recording boosts dis!< capacity by up to 35"10.

frequency analog reference
clock generator, this constant­
density recording circuit in­
cludes a digital clock-generator
circuit, the Am297l pro­
grammable event generator
(PEG) chip (Fig. 3). The chip,
a general-purpose timing de­
vice, acts as a programmable
timing and waveform gener­
ator. It digitally synthesizes
multiple waveforms, with up to
32 10-ns segments. A total of 12
programmable output pins are
available. Even with such a ver-

F-2

satile clock generator, the number of clock frequencies
must be reduced to a manageable number.

Rather than each track having a slightly different
recording frequency, the disk surface is divided into
recording zones. Each zone consists of a group of tracks,
with every track in that zone recorded at the same fre­
quency. Although the density of each track is extended as
its track radius increases, the change in physical data
space as the read-write heads move from one track to the
next is relatively small. The change is only about 0.1 to 1 %
ofthe track capacity.

Disk controllers and computers organize data on a disk
track in data blocks, or sectors, each containing 256 bytes
or more of data. Any gain in stored data that is less than a
full sector cannot be used. A useful simplification is to di­
vide the disk surface into zones (groups of contiguous
tracks). That supplies enough additional space to let the
disk controller add one or more new sectors to each track
in the zone. This zoning technique dramatically reduces
the number of required frequencies to only a few (usually
eight or less).

In this application, the surface of the disk is divided into
four equal zones. Assuming that the innermost zone (zone
0) operates at 5 MHz, all other zones will be changed in
frequency according to the greater recording space avail­
able in the outer zones. The highest allowable frequency
for each zone is proportional to its radius. This design op­
timizes the density improvement by approaching the
highest allowable zone data-recording frequencies as
closely as possible.

Several restrictions were imposed on this design to sim­
plify the circuit and to limit costs. One limits the max­
imum operating frequency of the clock-generator circuit.
Although the frequency-generator chip operates
internally at frequencies up to 100 MHz, the external
crystal frequency was limited to 20 MHz. A clock multi­
plier in the chip allows internal operation to reach 100
MHz. The problems of high-frequency operation are
solved within the PEG chip, including timing skew prob­
lems between signals.

In this application, a 7-MHz crystal frequency creates
a 35-MHz operating frequency in the frequency­
generator chip. Correctly programming the chip's out­
puts generates clock waveforms at frequencies that closely
approach the theoretical maximums for each recording
zone. The large frequency range of the frequency­
generator chip gives the user great flexibility in choosing
an operating frequency up to 70 MHz.

Within the maximum 32-step sequence of the fre­
quency-generator chip, four different waveforms can be
programmed into the TO output (Fig. 4). From this pin,
depending on the zone selected, one of the four waveforms
can be selected. Those waveforms are generated by a
PROM sequencer with up to 12 programmable outputs
that can be set at either a I or a O. In this application, four

different sequences are programmed into the address se­
quencer of the PEG. Once the PEG chip is locked into one
of the four sequences, it will continue until interrupted or
halted. Accordingly, as the PEG chip steps through one of
the four sequences, it supplies a constant-frequency clock

Hard-disk
controller

(Am9580A)

Read and
write clock signals

Status signals

Control signals

2. When using the Am9580A hard disk controller
and the Am9582 disk data separator as a core, all
the chips required for a Winchester drive fit on a
hall-size IBM PC peripheral card.

Enable

Z.

Z,

Trigger Variable-
frequency

To clock

Ao (to Am9582)

T1-T11 Unused
A,

Am2971
A2

t-~I.-+ F(crystal) - 7 MHz Ie -68pF C - 68pF I .. :'

3. A variable-frequency generator chip (Am2971)
supplies programmable output frequencies. Those
outputs are digitally synthesized and referenced
to a crystal oscillator. They are programmed by
selecting the appropriate input lines.

F-3

DESIGN APPUCATIONS • Constant-density recording chips

signal output.
This design automatically allows a choice for either

floppy disks or Winchester devices. When the disk con­
troller tells the disk data separator that a floppy drive has
been selected, an internal clock divider changes the refer­
ence input frequency to meet the operating frequencies of
the floppy drive. Some changes, however, may be re­
quired to the frequency generator chip's internal pro­
gramming because individual floppy drives operate at dif­
ferent frequencies.

Besides the Am2971 chip, the user must supply three
bits of a parallel output port. Three signals, Enable, ZO,
and Zl operate the constant-density recording circuit.
The ZO and Z I pins select the correct zone frequency, and
the Enable signal shows when the zone selection signals
are valid and enable the clock generator logic.

SOFTWARE CONSIDERATIONS

Dividing the disk surface into several zones does im­
pose some restrictions on the normal operation of the disk
drives. The computer operating system must be made
aware of the various storage capacities of the different
tracks. As a result, before performing a disk I/O oper­
ation, the disk device driver software must set up the
proper zone value on the zone-selection port and adjust
the disk controller parameters to the proper sector count
per track in the disk controller.

Moreover, the disk operation must be checked to en­
sure that it does not change zones. Disk controllers such as
the Am9580A can process up to 256 sectors in one com­
mand, spanning multiple tracks and heads. If the disk I/O
operation crosses a zone boundary, the disk command
must be broken into two separate commands. This allows
the system microprocessor to change the zone values be­
tween the commands. The likelihood of that occurrence
can be reduced by modifying the computer's file system to
avoid creating files that straddle the zone boundaries.

Several other restrictions occur in a constant-density
system, including zone changes that require PLL sta­
bilizing time, and continuous alteration of the disk con­
troller operating parameters. Changing zones and, there­
fore, the operating frequency in a constant-density
recording design requires that the PLL in the data sepa­
rator be stabilized at the zone frequency. This usually
takes about I to 5 ms.

The greater the difference between the previous oper­
ating frequency and the new zone frequency, the greater
the stabilizing time. In many disk controller systems the
amount of time required to continuously update the pa­
rameters is insignificant. All that is required is some addi­
tional software.

The PLL in the Am9582 requires substantially less
than 3 ms (worst case) to change frequencies. To prevent
the disk I/O time from being affected by this switching
time, the control software should always set the new zone
operating frequency prior to performing a "seek" (or
read-write head movement) to a new zone track. Since the
mechanical seek time on most disk drives is much longer
than 3 ms, the PLL stabilization time should not actually
affect the disk I/O functions of the controller. The con­
troller designer should check that this PLL stabilization
time requirement is met for the drive's different uses. 0

Mark S. Young is a product planning section manager
at AMD. His responsibilities include preparing speci­
fications for and designing microprocessor peripheral
chips. Young received a BA in computer science from
the University ofCahfornia, Berkeley.

35·MHz
internal
clock

2 3 4 7 9 10 11 12 13 14 15 16 17 18 19 20 21

Zone 1
clock

Zone 2
clock

Zone 3
clock

Zone 4
clock

I
I
I

I
I
I
I

J

I

~
I

LJ
I
I
I

I

L

-t-L-

Unused

4. The digital clock synthesizer generates four different clock waveforms. Each waveform is repeated
within each zone. The 35-MHz clock frequency comes from the crystal oscillator.

F-4

Reprinted by permission."

CONTROLLERS WRING
PEAK PERFORMANCE
OUT OF DISK DRIVES
Elevator sorting, disk cache, and random data storage
techniques, implemented with the help of advanced disk
controllers, minimize performance limitations due to head
positioning time.

by Mark S. Young

Today's disk subsystems provide large amounts of
memory and fast access with minimal cost, at levels
designers could only dream about a few years ago.
Continual increases in track and linear bit density­
and, as a result, in transfer speeds-combine with
decreases in access times to improve performance of
disk products. Disk controllers and operating systems
have also enjoyed steady gains that increase speed.
Improvements in processor speeds, however, have led
system integrators to demand still higher throughputs.

Yet, several design techniques can still yield better
overall data throughput. Typical disk drives require
between 90 and 30 ms for a seek operation. Since
the read/write head positioning, or seek, consumes
the most time in a disk 110 operation, controller and
operating system designers have focused their efforts
there.

In a multidrive system, controller design can
change the sequential series of disk access operations
into parallel ones. A typical 5 'l4-in. Winchester, using
the ST506 interface, can accept head movement
pulses about once every 10 ms (1 pulse means to move

Mark S. Young is a product planning engineer at
Advanced Micro Devices (Sunnyvale, Calif). He
holds a BA in computer science from the University
of California at Berkeley.

the read/write heads from one track to the next}. A
read/write head requires up to 3 ms to move from
track to track, depending on how far it has to move.
Most small Winchester disks do not require selection
while read/write head positioning is taking place.
After the controller issues a complete head movement
command, therefore, it can turn its attention to
another drive while the positioning operation occurs.

Optimizing seek operations
To execute disk operations on different drives

more or less in parallel, the controller looks at mul­
tiple disk commands from the system and isolates
the commands to the different drives. After deter­
mining the operations that are required, the con­
troller issues necessary commands to the drive. It

G-1

then processes another drive's seek operations while
waiting for the current drive's command to be com­
pleted. Average access time to all the disks is substan­
tially improved. In a four-drive system, this could
be a gain of as much as 400 percent.

The success of seek-overlap operations, as these
parallel seek operations are called, depends on ran­
dom disk file request. If the computer's operating
system tends to access files on a single disk consis­
tently (in a multidrive system), then seek-overlap has
little advantage. Maximum benefit is gained when
files are stored on a randomly chosen disk. In some
Unix operating systems, for example, the disk file
manager randomly selects a disk on which to store
a newly created file. This ensures the disk controller
will receive 110 access requests that are distributed
among the various drives.

Since files are not usually accessed in a truly ran­
dom manner, the randomizing technique may re­
quire adjustments. By keeping track of all file
accesses over a certain period, the operating system
can redistribute the files among different disks.
Although extra disk accesses and additional compu­
tation overhead are required, access time improve­
ment can be significant in a heavily loaded system.

Another technique, called el$!vator accessing, can
also reduce the average seek time. This technique
sorts track access operations into two groups: seeks

that move steadily toward the disk spindle (towards
the inner tracks) and those that move steadily away
from the spindle (towards the outer tracks). In this
grouping, each successive access is in the same direc­
tion. The read/write heads move first in one direc­
tion and then the other, accessing requested data as
they go. This eliminates back and forth motions of
the head. The sorting function generally is handled
by either the disk file controller or the computer's
operating system.

A typical series of disk seek requests, if executed
as received, might require a total seek distance of
some 556 tracks. Sorting the incoming requests
numerically could reduce this to about 283 tracks-a
50 percent reduction in seek distance and time.

File dependencies, however, mean full perfor­
mance benefits cannot always be gained from opti­
mal elevator sorting. If one request requires a write
operation on a track and a later operation requires
a read, the elevator sort must maintain the correct
sequence of events. Such file dependencies can be
controlled by designating which accesses must occur
first in multiple data requests from the same file.
One method is to time stamp disk access requests
and always give priority to the request with the
earliest time.

The elevator sorting algorithm, like seek-overlap
operations, will only work if the controller can queue

G-2

commands long before they will be needed. The
stacked command structure is a commonly used tech­
nique that supports these functions. An area in sys­
tem memory is used to store disk I/O commands,
usually one command per drive. The controller can
easily initiate a primitive seek-overlap algorithm by
allowing up to four disks to have commands pend­
ing. Elevator sorting must be performed in the file
manager or a separate disk 110 processor. To guaran­
tee continuous use of the controller, the file manager
must also update the command structure whenever
a disk is free. A disadvantage of the stacked com­
mand structure is that operating system intervention
is required each time a disk 110 command is com­
pleted. Thus the controller would introduce extra
CPU overhead.

The linked list command chain offers a more flex­
ible command structure. A disk command chain, cre­
ated using disk command blocks (110 parameter
blocks), is placed either in consecutive memory loca­
tions or is strung together as a linked-list data struc­
ture. Although this structure imposes some extra
overhead, such as pointers to commands in the list,
it maximizes system flexibility when integrating the
disk controller with the operating system.

Zero-interleaved data transfers
improve data I/O operations, as
well as speed disk access times.

The operating system creates the command struc­
ture and the disk controller executes it. The linked­
list structure allows 10PBs to be placed in the
command chain well before execution without impos­
ing size limitations. Since a queue of disk 110 com­
mands is available to the disk controller, it simplifies
the implementation of a seek-overlap function in the
disk controller.

Moreover, it allows the disk controller to start
searching the command list for the command that
starts the next seek as soon as one 110 operation
finishes. This keeps the drive constantly busy with­
out system intervention. The linked-list structure also
speeds execution of the elevator access algorithm.
Because the operating system can create the com­
mands and then sort the seeks without moving com­
mands around in system memory, only the link
pointers have to be altered.

Disk 110 operations can also be improved by con­
tinuously transfering data to and from a track. This
method, called zero-interleaved data transfers, se­
quentially accesses physical sectors on the disk.
Many controller designs require sectors on a track
to be interleaved. Interleaving calls for specific

amounts of physical space between logically adjacent
track sectors. It also provides time between process­
ing of the data to (or from) the disk and the arrival
of the next desired sector on the track.

Data buffering and high speed control capability
can eliminate the need for interleaving. One method
uses first in, first out buffers to allow zero-inter­
leaved operations. FIFOs, howevet, are limited in
size and allow underflow/overflow. A number of
simple, low performance system FIFOs in various
sizes (8, 32, or 128 bytes) are used in VLSI controllers
to minimize hardware costs, while still allowing zero­
interleaved transfers.

Alternate data transfer methods
Another method uses a pair of sector or toggle

buffers. This allows disk data to fill or empty one
buffer while the system empties or fills the other.
Continuous data transfer is provided by switching
buffers at the correct time. System memory can be
completely decoupled from the disk drives, since all
disk data from one transfer is contained in one of
two buffers. Toggle buffers also prevent data under­
flows/overflows and allow on-controller correction
of data errors.

A dual-ported RAM can also implement the buf­
fering needed to perform zero-interleaved operation.
These RAMs are expensive, and require close coordi­
nation of timing control and addressing. A track
buffer can hold all data from a single disk track.
This RAM, however, should be designed as a vari­
ation of the dual-ported RAM to ensure continuous
throughput between the disk and the system.

Whatever method is used, the zero-interleaved
operation significantly improves disk access times.
A typical Winchester disk rotates at 3600 rpm, re­
quiring about 16.6 ms per revolution. With a con­
troller interleaving of degree five on each track
(logically adjacent sectors are physically separated
by five sectors), at least six revolutions (or 100 ms)
are required to read or write data to an entire track.
This actual data transfer time, when added to the
time required to move the read/write heads to a track
(80 to 90 ms), results in a total 110 access time that
is twice that using zero interleaving.

A variation of zero-interleaved transfers, a tech­
nique called "nonsequential" sector access, further
boosts overall performance. Data is stored on the
disk tracks in blocks called sectors. These sectors are
logically accessed in a sequential manner for all multi­
sector operations (ie, a controller first accesses the
sector numbered A, then A + 1, A + 2, etc). A nor­
mal controller logically accesses several consecutive
sectors on a track, by searching for the first desired
logical sector and reading or writing data from (and
to) subsequent sequential sectors.

G-3

Statistically, however, the controller will miss the
desired first sector half of the time. This means that
about half the amount of time a rotation takes must
be added to the "access" time of every new track
operation. This delay, about 8 ms on 5 1I4-in. Win­
chesters, is called "rotational latency" time. On fast
disk drives (with average access time of 30 ms), rota­
tionallatency can increase the average access time
of the disk by about 15 percent (ie, 30 ms for seeking,
16 ms for read/write, and 8 ms for rotational latency).

The nonsequential sector access method minimizes
rotational latency by accessing the requested sectors
in whatever order they are found. As soon as any
desired sector (A, A + 1, A + 2, etc) is located, the
disk controller performs the necessary I/O operation
on that sector. Thus, the maximum time necessary
to access any amount of data is no more than that
required for one rotation of the disk plus one sector.
The nonsequential access method is implemented by
using a track buffer to hold the contents of the track
during I/O operations. The controller, however, re­
quires extra hardware for the logic necessary to
recognize when a desired sector passes under the
read/write heads.

Boosting disk performance
A disk data cache provides an increasingly com­

mon method of boosting disk performance. Disk
cache functions are much like those of caches used
for CPUs. As data is read or written from or to the
disks, copies are stored in the cache. If the operating
system later requests the same data, the data can be
taken from cache instead of from disk. Disk caching
boosts disk I/O performance from two to nine times
because head positioning delays are not involved.
Since cache is not disk dependent, slow, low cost
disks can be used with a cache controller to give per­
formance approaching that of expensive, high perfor­
mance drives.

Disk caching can be done either by using the oper­
ating system, or by building a dedicated cache con­
troller. Having the operating system handle cache
requires cache management software and reduces
system memory space (since it must be allocated to
the cache buffers). The other popular method of
implementing disk caching is through dedicated
cache controller hardware. This involves adding
RAM, a cache manager (usually a microprocessor
and ROM), software, some form of interface to the
operating system, and the disk controller.

With this method, whenever a disk I/O request
is initiated by the operating system, it is sent to the
cache controller instead of to the disk controller. If
the requested data is in the cache, it is passed to the
system without disk controller intervention. If the
data is not in the cache, the cache controller passes

the command to the disk controller. When the data
is returned from the disk, the cache controller makes
a copy of the data and puts it in cache as it is sent
to the system.

Organization of files on a disk can also affect the
access time. Normally, all read/write heads on a
head assembly are positioned on the same track,

G-4

Certain file organiJadons . can Improve disk ac:eess
times. ColltigllOllsailoeati(lll· ~Iowsflle data to. be
storedcompadlyand reti'leved quiddyon the.disk.
but suffersf.rom space alloeaticln II!ld garbage
collection problems (a). Llnked.Jlst illloeatiOll

... overeollttS eomigllOllsBllOIlIltiOIl'1I disadvautltJeS, bll~
iutrocluCA eJtn oyerhead, IIPftdpro~'llnd
yulnerabiUt)'to ·fII, 4amage.M~vet,ltAoesiICI.
allowrantiomflledata~ <b);n'"'''ed .
aUOllll_sdII!mI!,~tllYIl~ln tJub sys~,
Ov~oDltlS mOstot~.pmblems.bI·.a .. ntl.,bnt .~.
sum, lIPftd.tr()l\ble. ·· .. eJtra·· elJlD"'exi~.lUltiean
ilyI,*fIIe~ .• ..uts(c).· .

although they are on different surfaces. Operating
systems can allocate mUltiple tracks for file storage
on either the same or multiple surfaces. A preferred
strategy is to switch read/write heads until a partic­
ular track on all surfaces is used before moving the
read/write heads to another track. This is the fastest
method, since the time required to switch from one

read/write head to another usually requires only
microseconds, while changing tracks requires sev­
eral milliseconds.

A recurring problem with many disk-based operat­
ing systems is file fragmentation, which occurs when
files are updated (ie, increased or decreased in size).
One reason for the popularity of the Berkeley ver­
sion of Unix (4.2 BSD) is its use of an improved file
management system to increase file access speed and
reduce fragmentation.

Files are stored on disks using either linear (con­
tinuous), linked-list allocation, or indexed allocation.
The linear method stores files in single, contiguous
blocks on the disk, minimizing the time needed to
read the files. To increase or decrease file size, data
must be moved to another area on the disk that is
equal to or greater than the new file. Because files
are allocated randomly, free space is broken into a
large number of pieces. Frequent compaction is re­
quired to maximize the disk's storage capacity,
usually at a great cost in disk processing time.

The linked-list file structure incorporates a pointer
in each sector to indicate the next sector belonging
to the file. Fragmentation is avoided because every
sector on the disk can be used in disk files. Despite
the advantages of using complete disk space and the
flexibility in allocating space, the linked structure re­
quires extra overhead in each sector for the pointers.
The structure is also more vulnerable to damage; if
the link in one sector is damaged, the rest of the file
is lost. The operating system's inability to make
direct accesses into the file is also a shortcoming.

The indexed allocation method uses a pointer table
built into the beginning of the sector to define all sec­
tors in the file. This method, like the linked list,
minimizes fragmentation on the disk because all sec­
tors can be used and direct access is allowed. The
space required for the file pointer table, however, is
usually fixed at file creation and must serve for the
life of the file. Since estimating the table size is usually
difficult, overestimation is the rule, costing storage
space. The space required for the table frequently ex­
ceeds that used for the linked-list method. And unless
the index tables are kept in the controller, the ele­
vator sort algorithm cannot be properly exploited.

Programmable features in modern disk controllers
combine the best features of all three file storage
methods while minimizing their disadvantages. Keep­
ing the different file techniques distinct from one
another presents the biggest problem when methods
are combined. An advanced controller, such as the
Am9580, provides ability to flag individual sectors,
allowing the sectors to determine how they are being
used. For example, a combination of the linear
method with the linked-list file allows allocation of
a single block of memory when the file is created.

G-5

But it still allows sectors to be added without result­
ing in fragmentation or excessive file movement.

Ondisk file caching also boosts overall disk/system
throughput. This method stores frequently used files

in the most rapidly accessible part of the disk. Nor­
mally. files are stored on the disk randomly (based
on such things as space requirements and partition­
ing of the disk data space).

Second-generation VLSI disk controllers

A primary requirement of second generation VLSI
disk controllers is maximum disk and system per­
formance_ The Am9580 hard disk controller's dual­
buffer architecture with integrated DMA controller
boosts disk system performance in two ways_ First,
it fully decouples the disk serial interface (up to 16
Mbits/s) from the system bus_ This allows the system
to operate without being tied into the peculiarities
of the disk timings. Second, it provides efficient
data transfers and cuts software overhead. The
DMA controller can transfer data at rates up to 5
Mbytes/s and supports 8- or 16-bit interfaces. Pro­
grammable bus throttling regulates bus activity of
the hard disk controller on the system bus.

Another facet of second generation disk con­
trollers is the large amount of integrated software.
The Am9580 has two different microengines operat­
ing in parallel and executing specialized disk data
control algorithms. One of the microengines, the
data format controller, handles all the serial transfer
of data to and from the disk.

In addition to performing track formatting and
sector reads and writes, it handles speCial data
recovery algorithms, and floppy or Winchester disk
formats. The second microcontroller, the command
sequencer, is responsible for interpreting the 16
different disk commands, coordinating DMA activ­
ity, and handling the disk control interface. Com·
mand, status, and data transfers are handled by the

controller with minimal CPU intervention. The hard
disk controller uses a linked-list command struc­
ture. Command blocks (called I/O parameter blocks)
are set up as a linked list in system memory. The
disk controller automatically fetches and executes
the commands without additional CPU overhead.
Data transfers between the disk and system are
handled by the onboard DMA controller. An addi­
tional control structure, called data map. allows the
Am9580 to break up or combine data scattered
throughout system memory and collect it into con­
tiguous blocks.

Status result information is stored in a specially
deSignated area of system memory called the sta­
tus result area. Errors resulting from abnormal disk
behavior are reported to the system in the status
result area along with an identification code that
describes which command caused the error. Users
can program how the controller will handle errors
and when it will abort a command.

Finally, the Am9580 supports several different
disk drive control interfaces. The industry standard
ST506 Winchester interface is fully implemented.
For floppy drives, a floppy-like control interface is
supported. To accommodate custom disk inter­
faces, a special programmable option allows differ­
ent portions of the disk control interface to be
selectively disabled. This allows the user to imple­
ment (externally) any desired control interface.

G-6

Optimal disk access is achieved, however, by cen­
tering read/write heads around the middle tracks on
the platter because the average distance to any loca­
tion (assuming random disk I/O requests) is mini­
mized. To ensure this happens, the disk file manager
must keep track of how frequently different files on
the disk are accessed. Then the file manager must
rearrange the files so those most frequently accessed
are located on the center tracks. In paged virtual
memory systems, spare data blocks allocated on the
center tracks should be used to accommodate data
that is constantly being swapped in and out of sys­
tem memory.

Ondisk caching can be put into the operating sys­
tem's normal disk I/O routines without degrading
system throughput. During medium and high system
load periods, the operating system should only sta­
tistically track disk I/O. Periods of low use (about
25 percent or less) can then be used by the disk sort­
ing routines to move files around (based on current
statistics) and to clean up fragmented files and put
them into linear blocks. These routines would move
least recently used files to outer or inner tracks, and
migrate more frequently used files to center tracks.

Special options would allow the operating system
designer to force certain files to middle tracks or pre-

G-7

vent the ondisk caching routines from moving them.
Since many systems have long periods of low load­
ing, daily updates of the ondisk cache would not de­
grade users' response time. Thus, overall throughput
of the disk drives would increase without any system
overhead that is visible to the user.

Disk controllers employing these techniques are
not simple systems based on one or two VLSI chips.
Instead, the disk controller is built up around power­
fu� disk controller Ies, such as the Am9580 con­
troller and the Am9582 disk data separator, and
supported by a microprocessor, random logic, RAM
(large amounts for caching), and ROM to contain
all the necessary software algorithms. Although
single-user, single-tasking microcomputers do use
these techniques, newer machines and Unix-based
systems require very high performance disk systems
to perform adequately in most multi-user, multi­
tasking environments.

G-8

Reprint by permission from EDN. Vol.31 ,No. 19.
Copyright 1986 Cahners Publ ishing Co ..

PLDs implement
encoder/decoder
for disl(drives

By using software to define programmable
logic devices as run-length-limited encode/
decode systems) you can design disk-drive
systems that have 50% more data-storage
capacity than drives that implement the
MFMcode.

Arthur Khu and Rudy Sterner,
Advanced Micro Devices Inc

When you're designing a disk-drive system, you can
implement run-length-limited (RLL) 2,7 encoding/de­
coding circuitry in your design by using only three
programmable-logic devices (PLDs) and two shift reg­
isters. You design the encoder and decoder as state
machines and use the timing diagrams to determine
what the timing and control signals must be.

To create a disk controller with encoding/decoding
features, you can use three AmPAL22VlO PLDs and a
disk controller such as the Am9580/Am9582 chip set
(Fig 1). The Am9580 hard-disk controller and. the
Am9582 disk-data separator perform all the general
disk-control functions. The PLDs have appropriate
architectures for implementing the encoding and decod­
ing state machines. Further, you can reprogram the
PLDs to implement higher density ratios for data
encoding, and you can increase your system's speed
simply by using faster PLDs.

An RLL code is a code in which the number of zeros
between ones--the run length-is definite. The "2,7"

designation means that the code for the binary data
string has at least two and at most seven zeros separat­
ing the ones. RLL codes increase the density of data
stored on a disk by reducing the number of recorded
pulses (ones) necessary to represent a given amount of
data. This reduction allows the disk-drive circuitry to
pack the ones closer together, increasing the amount of
data on the disk.

In comparison with the (de facto) industry-standard
approach, MFM, the RLL 2,7 code increases by 50%
the amount of data you can store on a disk drive (see
box, "RLL 2,7 code vs MFM code"). In addition, RLL

DRIVE
CONTROL

Fig I-A complete disk controller requires only two VLSl IGs, a
PLD-based encoding/decoding system, and a drive interface. The
Iwrd-disk controller and the disk-data separator provide generic
disk-drive control, and the PLDs provide RLL 2,7 encoding and
decoding, which increases disk storage capacity.

H-1

TABLE 1 - RLL 2,7 CODING RULES

DATA 2,7 CODE

10 1000
11 0100
000 100100
010 001000
011 000100
0010 00001000
0011 00100100

2,7 decoding circuitry recovers quickly from code-de­
tection errors.

As Table 1 shows, RLL 2,7 encoding circuitry trans­
lates seven data strings into 2,7 code. You can break
any binary non-return-to-zero (NRZ) data string into
combinations of the seven data strings. To obtain the

decoded data string, the circuitry matches the 2,7 code
patterns with the seven 2,7 code strings in Table 1.

Because 2,7 code strings have variable lengths (they
can be 2, 3, or 4 bits long), your design will need control
logic that controls the output from the encoder/decoder
as translation takes place. Encoding and decoding state
machines (Figs 2 and 3) implement this control logic
from the code in Table 1 (see box, "Convert RLL 2,7
code to a state machine"). The encoding state machine

Fill 2-The encoder .tate machine (a) desCTibe8 the translation of input data into RLL 2,7 code. The first two cycles in the encoding of the
data string 00101100 (6) demonstrate Iww the encoder determines the correct code by examining both the bit to be encoded and the next two
(look-ahead) bits.

H-2

produces two 2,7 code bits for each data bit received.
The decoding state machine, on the other hand, pro­
duces one data bit for every two bits of 2,7 code. The
clocking scheme in these encoding/decoding state ma­
clrlnes is simpler than the familiar table-look-up meth-

During decoding~ circuitry matches the
RLL 2~7 code patterns with the seven RLL
2~7 code strings to obtain the corresponding
decoded data string.

od, which requires suspended operation during encod­
ing and decoding.

You can implement both of these encoding/decoding
2,7 state machines with one PLD device (lei) and two
shift registers (INREG and OUTREG) (Fig 4). To

3

a cooe lIlTS TO DEcODE··

~···~·"·!·'iJ.o';"· •. :-····t .
2-CODE·BIt LOOK.AHEAD

Fig 3-TIaiB decoder state lRIIt:laine (a) repre8ents the translation of RLL 2,7 code into an output data stream. 7b determine the correct output
data, the decoder ezamines four code bits-two bits to be decoded and two look·ahead bits, as shown in the e:x:ample in b.

H-3

Because the RLL 2,7 code contains two bits
for every one bit of data, the timing cir­
cuitry divides the dock signal for the coded
data, producing a data clock.

synchronize the encoder/decoder with the hard-disk
controller, you use two other PLDs (IC2 and ICa) to
provide clock-generation and address-mark-control
logic. IC I is a AmPAL22VI0, which has sufficient
capacity to implement the two state machines. IC2, also
an AmPAL22VI0, utilizes the PLD's large capacity and
programmable output cells to implement the address­
mark-control circuitry. An AmPAL16HD8 (ICa), which
is sufficient for implementing the clock circuitry and the
random logic, completes the design.

2. The encoding state machine begins in state zero; the
first four bits of the data to be encoded are in the shift
register INREG. For the data stream in the figure, the
encoder, beginning in the first cycle (To) reads the first
bit in the stream as 0 and sees that the next two bits
(the look-ahead bits) in INREG are 0 and 1, respective­
ly. According to the state diagram, the encoder pro­
duces a 00 output because, as Table 1 shows, input data
starting with 001 translates to a character string that
starts with 00. The encoder then enters state 2, shifts
the encoded 0 out of INREG, and shifts in the next
(fifth) bit of the data to be encoded.

To understand the state-machine implementation of
the RLL 2,7 encoder, consider the state machine in Fig

RLL 2,7 code vs MFM code
Although the RLL 2,7 and MFM r----------------------------,

. coding methods can both in­
crease a disk drive's capacity,
RLL 2,7 code is more compact.
A disk drive that implements
the RLL 2, 7 code can, therefore,
store 50% more data than can a
drive that implements the MFM
code.

On the magnetic medium in
the disk·drive (hard-disk or flop­
py-disk drives), binary data ap­
pears as a change in flux (repre­
senting a one) or as no change in
flux (representing a zero). Be­
cause the disk density is limited
by the minimum distance be­
tween flux transitions, the maxi­
mum data density depends on
how the data is en~ded.

MFM is an RLL code with the
designation 1,3;1,2;1. RLL 2,7
code (its full designation is
2,7;1,2;3) allows a minimum of
two zeros between each one, and
MFM code allows a minimum of
one zero. RLL 2,7 code can
store as much as 50% more data
in .. given number of flux
changes than can MFM code;
therefore, RLL 2,7 code can
store as much as 50% more data
on a given $eCtion of magnetic

DATA: 1100110011

MFM

.1 rI 0 r-1 I
L.J c::::J c::::J LJ

1
1 lOCO 1 1 oeo 1 1

I

C=CLOCK PULSE MINIMUM FLUX­
TRANSITION SPACING

DATA: 11 0011 0011 RLL2,7
CODE: 0100 00100100 00100100

10 1000010010000

::J I I
o 0 1

I
o 0

I

1/ ./ ~ ~LL2'7 ~~ ~T150%DENSITYOFMFM
J L...J L...J
I •

Fig A-Data Bt9mge that'.5Q% more de1l8e ia the principal advantage of RLL $,7 code
over the de facto standard MFM code. Because it need8 fewer tramitionB to describe
data, the RLL $,7 code takes up only 67% o/the diak 8Wrage 8ptJC6 tJwt MFM code
occupies.

medium.
Consider the example in Fig

A. The data stream 1100110011
is represented by eight transi­
tions in MFM code, and by five
transitions in RLL 2,7 code.
When the disk drive uses the
minimum distance between tran­
sitions to record the RLL 2,7

H-4

code, the RLL 2,7 cOde takes
67% of the space that the MFM
code takes, so it has space avail­
able to store 50% more data. In
most applications, the actual
storage increase is between 36%
and 40%, because some disk
space is reserved for sector and
data-field markers ..

In the second cycle (T,) of the encoding process, the
encoder sees that the data bit is 0 and the two look­
ahead bits are 1 and 0, respectively. According to the
state diagram, when the encoder is in state 2 and sees
010, its output is 00. As before, the encoder then moves
to the next state (in this case, state 0) and shifts a new
bit into INREG. The rest of the encoding process
proceeds similarly.

The decoding process is similar to the encoding
process. The decoder, which is described as a state
machine (Fig 3), accepts two input bits in RLL 2,7
format and sees the next two coded bits as look-ahead
bits. In contrast to the encoder, the decoder produces
one output bit for every two input bits.

To implement this encoder and decoder circuitry with

PLDs, you can use PLD-design tools such as CUPL
from Personal CAD Systems Inc (San Jose, CA) and
Abel from Data I/O Corp (Redmond, WA). These
software tools include syntaxes that you can use to
describe state machines as well as general logic equa­
tions.

To control the rate at which IC, (in Fig 4) receives
data and code, IC2 and ICs implement the timing signals
shown in Fig 5. Three signals (Read, Write, and
CodELClock) from the hard-disk controller and disk­
data separator form the basis of the timing signals.

First, the timing circuitry produces a clock signal,
RILClk, from the CodELClock signal that originates at
the disk-data separator's FDDAM output. Because the
RLL 2,7 code contains two bits for every one bit of

r--
Am9582 I'.. DRIVE CONTROL

DISK-DIO"A DRIVE P SEPARATOR
READ

INTERFACE DRIVE

WRITE

FDDAM ~ LOAD ---RG WG

+ OUTREG ~)
COOEIDATA 4-BIT SHIFT REGISTER I A

SHIFT~

2
~ l

IC, AMC AMC
ICz

AmPAL22Vl0 AmPAL22Vl0
RLL2.7 COMPLT ADDRESS-MARK

ENCODER! RD_CLK GENERATOR!
READ WRITE

AMF DECODER DETECTOR

i

f4 4
I 4-BIT SHIFT REGISTERj--

AMF
INREG

'-- SHIFLIN

Am9580
DATA/CODE -HARD-DISK

CONTROLLER ICo
RD_CLK

ArnPALl6HD8 AILLATCH
GLUE LOGIC <:!ODE...<:!LO<:!K

CONTROL SIGNALS

CODE...CLOCK

2.7 CODE TO/FROM DRIVE INTERFACE
BINARY DIO"A '" I AMC

Fig 4-The eneodlngldeeoding circuitry include8 three PLD8. IG, implements the encoding and decoding state machines. IG. monitors IG,
and provides 8pecial timing and input signals. IG. implements glue logic and timing signal8.

H-5

Before the disk-drive system can decode data
on the disk) it must synchronize itself with
the disH data clock to find out when the
data bits begin.

data, the timing circuitry divides the clock signal for
the coded data (Code-Clock), producing a data clock
signal, RcLClk. The timing circuitry then uses Code_
Clock and RcLClk to control the timing of shift­
register control signals ShifLOut and ShifLln.

Because the timing circuitry loads and shifts data
produced by IC I at the points indicated on the timing
diagram in Fig 5, the only clock signal that IC I requires
to code or decode data in INREG is the RcLClk signal.

To obtain the equations you need to program the
PLDs, examine the timing diagrams. The timing dia­
grams show that the state-machine design requires
only a few timing signals to implement the controller.

To control the transfer of data and code, the ShifLln
signal latches data or code into INREG, and the
ShifLOut signal controls the output of OUTREG. For
example, when encoding data, the encoder produces
two bits of code on each rising edge of RcLClk. Because

Convert RLL 2,7 code to a state machine
You can use a simple algorithmic ,--------------------------"1
procedure to convert a code
table to an encoding state ma­
chine. For each row of the code
table, you create a simple 2-
state expression for the conver­
sion of the data into the code.
Then you combine the expres­
sions into one state machine for
the entire table.

For the code in Table 1 of the
accompanying article, you con­
sider each data bit and the asso­
ciated pair of bits of RLL 2,7
code •. For example, the first row
of the table contains two data
bits: one, which is associated
with the code 10, and zero,
which is associated with the
code 00. The state machine for
this row begins in state zero
(which is arbitrarily assigned)
and changes state when it sees
that the first data bit is a one
and the next bit (the look-ahead
bit) is a zero. This change of
state, which appears graphically
in. Fig Aa, results in the out­
put 10.

Note that the state machine
must evaluate the look-ahead
bit. If this bit is a one instead of
a zero, the input data will bell,
corresponding to the second row
of the table, so your state ma­
chine must generate a 01. For

START

DATA TO LOOK·
CODE AHEAD

\ BIT
!1Ql'"
10

t
RLL 2,7 CODE

(s) STATE TRANSITION FOR
2,7 DATA ROW 10

(b) DATA ROW 10 IS
COMPLETELY CODED
BY THIS STATE
MACHINE

1
00

(d) COMBINE THE STATE
MACHINES FOR DATA
ROWS 10 AND 11

Fig A-Creating a state machine from a code table i8 a 2-part proce8s. Fir8t, you
create a simple state machine for each row in the table, and then you combine the state
machine8 into one state machine for the whole table,

this code table, no more than
two look-ahead bits are neces­
sary for encoding any data bit.

If the state machine is in state
one, and the input data is zero,
the state machine produces a 00
output and returns to state zero
(Fig Ab.) Note that the data bit
encoded in this state is the look­
ahead bit from the previous
state and that no look-ahead bit
is necessary for encoding be­
cause the zero is the last bit in
data row 10.

H-6

You use this procedure to cre­
ate state machines for the other
table rows as well. Fig Ac, for
example, contains the state ma­
chine for data row 11. Because
all the state'machines have the
same beginning state (state
zero), you can combine them to
form the complete encoding
state machine. Furthermore, the
state machines may share other
states, as shown in the combina­
tion of the two data rows
(Fig Ad).

the Load signal is high at the same time that Rd.-Clk is
high, the bits are loaded into the shift register. Because
the frequency of ShifLOut is twice that of Rd.-Clk,
ShifLOut shifts both encoded bits out before the next
encoded bits are loaded. ShifLln presents the next
data bit to the encoder at the same time that the second
encoded bit is shifted out, starting the next encode
cycle.

Before the disk-drive system can decode data on the
disk, it must synchronize itself with the data clock from
the disk and find out when the data bits begin. To assist
the circuitry in synchronization and initialization, you
can place synchronization signals, as well as a marker
indicating the beginning of data, at the beginning of the
RLL code. When the RLL circuitry reads these pat­
terns, it's ready to decode RLL data.

READIDECODE

CODE-CLOCK CODE-CLOCK

LOAD J (
LOAD

SHIFLOUT SHIFT_OUT

LOAD ONE DECODED DATA BIT

READ J WRITE ...J
/iHIFT IN TWO NEW CODE BITS

SHIFLIN

INREG AND OUTREG LOAD WHEN LOAD AND SHIFT ARE HIGH;
THEY SHIFT WHEN LOAD IS LOW AND SHIFT IS HIGH

LOGIC EQUATIONS:
AD_CLK := IRD_CLK (A REGISTERED SIGNAL FROM ICo)
SHIFT_IN = READ'tCODE-CLOCK+WA!TE'RD_CLK
SHIFT_OLIT = REAO'/RD_CLK+WRITE'CODE-CLOCK
LOAD = READ+WRITE'AD_CLK
CODE_CLOCK: CODE-RATE CLOCK SIGNAL FROM FOOAM PIN
ON Am9582 DISK·DATA SEPARATOR

READ.WRITE : REAOIWRITE MODE SIGNALS FROM Am9580
HAAO-OISK CONTROLLER
RO...CLK : DATA-RATE CLOCK DERIVED FROM CODE-CLOCK
SHil'T ~IN : COMBINATORIAL SIGNAL FROM \Co
SHIFLOLIT. LOAD : COMBINATORIAL SIGNALS FROM \Co

WRITE/ENCODE

~
SHIFT 0lJT SECOND BIT

Fig 5-The timing sigMIa (rom IC. and IC, control tlw loading and shifting of COO£ and rklta in tlw INREG and OUTREG registers. Note
that tlw clock and shifting signals f(YT' tlw coded bite have twice tlw frequency of those f(YT' tlw rkIta bits, a situation that C(YT'r68ponds to th£ 2:1
density ratio between code and rkIta.

H-7

If the decoder detects any pattern before it
detects the address marker) the circuit resets
itself and begins the initialization sequence
anew.

E.
DATA ...

0
. CODE 00

CoDE I
DETECTED 00
DECODED

. DATA 0

CU.F\RENT. 0

NE'0' 3
, ~-~

o DETECTED

AS1]

E, E, E.
0 1 0

00 10 00

00 1m 00

0 0 ·0

3 0 0
0 0 3

E.
1

10

10

1

3
2

CODE RECOVE.RS
COMPLETELY

l
Es E. E7
0 0 0

00 00 10

00 00 10

0 0 0
2 0 3
0 3 0

DeCODING
LSTART

ERROR
RECOVERY MACHINE

E. E.
1 1

01 00

01 00

1 1

0 4

4 0

Fig 6-The ability to recover from an error is a useful feature of
RLL 2,7 code. An error at cycle E. results in incorrectly translated
data until the machine recovers fully.

The synchronization field comprises a series of pat­
terns that allow the phase-locked loop in the disk-data
separator to synchronize to the frequency of the incom­
ing data. These patterns represent the maximum fre­
quency input. For RLL 2,7 code, that input is 100100,
because this code has the fewest permissible zeros
between ones. Using the highest possible frequencies
minimizes the synchronization time, so the patterns are
completed quickly.

A marker that follows the synchronization field indi­
cates the beginning of data. This marker, the address
mark, must be distinct from all other code words. Fbr
example, you can use a pattern that violates the code
rule.s, such as a string of zeros (this string is called "dc
erase" because it removes all flux transitions from the
recording medium). Alternatively, you can use a pat­
tern that obeys the code rules but is not a defined code
pattern. In the examples in this article, the pattern
00000100 identifies the beginning of data. Although this
pattern is not a defined code word, it doesn't violate the
RLL 2,7 code rules as long as it's preceded by no more
than two zeros in a row.

When the 100100 pattern is synchronizing the circuit­
ry, the circuitry produces the Rd.-Clk signal, which is
in phase with the pattern. In order for the decoder to
operate properly, the Rd.-Clk signal must rise with the
first one in the pattern and fall with the second one.
However, because of the repetitive nature of the pat­
tern, the circuitry could produce a falling edge of
Rd.-Clk on the first one in the pattern and a rising edge
on the second one, in which case the circuitry would not

be in synchronization with the beginning of the data.
The encoding circuitry resolves this synchronization

problem by inserting the pattern "0100" eight times
between the synchronization field and the address
mark. The phase-locked-loop system locks onto the
0100 pattern, and the Rd.-Clk control circuitry in IC2

sets itself to decode the data correctly.
To put the synchronization and marker data into the

RLL 2,7 code on the disk, you must design the RLL 2,7
encoder to produce the signals. When the signal WG
(from the hard-disk controller ICa) goes high, the data is
encoded to all zeros. The encoder translates the zeros
as the synchronization pattern 100100, which is then
stored on disk.

Next, the address-mark-control (AMC) signal from
the hard-disk controller sets an internal latch in IC2,

producing the output AlILLatch, which forces ICa to
put ones in the INREG register. The encoding circuitry
codes the ones as the string 0100. Mter the eighth 0100
pattern, IC2 sets the Complt signal high. On sensing
Complt, IC I writes the address mark.

The encoding circuitry must have the first four data
bits in INREG by the time the address mark is written.
IC I writes two patterns for the address mark. At the
start of the second address-mark pattern, IC I sets AMF
(Address Mark Fbund) High and resets AIILLatch low.
The assertion of AMF signals the hard-disk controller
to begin shifting data into INREG for encoding. Be­
cause four Rd.-Clk cycles occur while the address-mark
pattern is being written, the first four bits are shifted
into INREG by the time the second address mark is
written.

The decoder circuit has two safeguards that prevent
it from identifying the address-mark pattern incorrect­
ly. First, the decoder must detect at least five 0100
patterns before it acknowledges the address-mark pat­
terns. Second, if it detects any pattern before it detects
the address mark, the circuit resets itself and begins
the initialization sequence.

IC2 implements these two safeguards by monitoring
the RLL code that IC I decodes. When the hard-disk
controller asserts the RG and AMC signals, IC2 sets
Complt and AIILLatch low. IC2 sets Complt high when
it detects the fifth consecutive 0100 pattern, enabling
IC I to detect the address mark. If the input to IC I is
anything other than a 0100 pattern or an address mark,
IC2 sets Complt low, and the initialization begins anew.

If IC I successfully detects the address-mark pattern,
it sets AMF high. The assertion of AMF causes IC2 to
set AIILLatch high, thus enabling the output of OUT-

H-8

REG to send decoded data to the hard-disk controller.
AI1LLatch remains high as long as RG is high.

RLL 2,7 encoding also provides for error recovery.
Whenever a disk-drive system reads code from a disk,
the read/write heads or the transmission cables can
cause transmission errors. One of the properties of
RLL 2,7 code is that any single-bit error (for example, a
coded one detected as a zero) will correct itself after a
run of at most 16 correctly detected bits.

In short, whenever a 2-bit pattern doesn't match any
of the expected patterns for a particular state of the
decoding circuitry, the decoding state machine returns
to state zero and generates a zero as a translation for
the erroneous code bits. Then the decoder shifts the
next two code bits into the INREG register and contin­
ues decoding from state zero.

In such cases, the decoding state machine can cor­
rectly decode coded data, but it may not recover
immediately upon returning to state zero. As Fig 6
shows, although the code bits that the decoder detects
may be valid, the decoded data is incorrect because the
error has forced that state machine into the wrong
state. In this example, the decoder doesn't recover until
6 code bits later (in cycle E6), when it again falls into
the correct state and accurately decodes the data. EDN

Authors' biographies
Arthur Khu is a product planning en­
gineer at Advanced Micro Devices Inc
(Sunnyvale, CAY. He is involved in the
research and development of architec­
tures for advanced programmable-logic
devices, and he has developed a gener­
al logic compiler for advanced PLDs.
Art holds a BS in Math/Computer Sci­
ence and an MS in Computer Science
from Santa Clara University. He lists
racquetball and astronomy among his
interests.

Rudolph J Sterner, an engineer at Ad­
vanced Micro Devices Inc (Sunnyvale,
CAY, is engaged in the development of
disk-drive-related products. Prior to
his two years at AMD, Rudy worked
at IMI Corp and Sperry Corp. He
holds a BSEE from San Jose State
University, and in his spare time he
enjoys photography.

H-9

NOTES

NOTES

ADVANCED MICRO DEVICES' NORTH AMERICAN SALES OFFICES

ALABAMA
ARIZONA .. .
CALIFORNIA,

Culver City
Newport Beach
San Diego
San Jose
Woodland Hills ..

CANADA, Ontario,
Kanata
Willowdale .

COLORADO.
CONNECTICUT
FLORIDA,

Clearwater
Ft Lauderdale
Melbourne
Orlando.

GEORGIA
ILLINOIS,

Chicago.
Naperville

INDIANA.
KANSAS

(205) 882-9t 22
(602) 242-4400

(2t3) 645-t524
(714) 752-6262
(619) 560-7030
(408) 452-0500
(818) 992-4155

(613) 592-0060
(416) 224-5193
(303) 741-2900
(203) 264-7800

(813) 530-9971
(305) 776-2001
(305) 729-0496
(407) 830-8100
(404) 449-7920

(312) 773-4422
(312) 505-9517
(317) 244-7207
(913) 451-3115

MARyLAND
MASSACHUSETTS
MICHIGAN ..
MINNESOTA
MiSSOURI
NEW JERSEY.
NEW YORK,

Liverpool
Poughkeepsie
Woodbury

NORTH CAROLINA .'
OHIO

Columbus.
Dayton.

OREGON
PENNSYLVANIA,

Allentown
Cherry Hill

TEXAS,
Austin
Dallas
Houston

WASHINGTON
WISCONSIN ..

(301) 796-9310
(617) 273-3970
(513) 549-7174
(612) 938-0001
(913) 451-3115
(201) 299-0002

1
315) 457-5400
914) 471-8180
516) 364-8020

(919) 878-8111
(614) 891-6455
(614) 891-6455
(513) 439-0470
(503) 245-0080

(215) 398-8006
(609) 662-2900

(512) 346-7830
(214) 934-9099
(713) 785-9001
(206) 455-3600
(414) 792-0590

ADVANCED MICRO DEVICES' INTERNATIONAL SALES OFFICES

BELGIUM,
Bruxelles TEL .. . (02) 771 91 42

.. (02) 762 3712
61028

FRANCE,
Paris

WEST GERMANY,
Hannover area

MOnchen

Stuttgart .

HONG KONG.

ITALY, Milano

JAPAN,
Kanagawa .

FAX
TLX

............ TEL (1) 49-75-10-10
FAX.. . (1) 49-75-10-13
TLX 263282

........ .. TEL (05143) 50 55
FAX (05143) 55 53
TLX 925287

.. TEL (089) 41 14-0
FAX (089) 406490
TLX 523883

.......... TEL (0711) 62 33 77
FAX (0711) 625187
TLX 721882

. TEL 852-5-8654525
FAX .. 852-5-8654335
TLX .. 67955AMDAPHX

. TEL ... (02) 3390541
(02) 3533241

FAX (02) 3498000
TLX . .. 315286

. ... TEL ... 462-47-2911
FAX 462-47-1729

Tokyo TEL (03) 345-8241
FAX.. . .. (03) 342-5196
TLX . J24064AMDTKOJ

Osaka TEL ... 06-243-3250
FAX 06-243-3253

KOREA, Seoul

LATIN AMERICA,
Ft. Lauderdale .

NORWAY,
Hovik.

SINGAPORE .

..... TEL ..
FAX ..

... 82-2-784-7598
82-2-784-8014

.... TEL . (305) 484-8600
FAX (305) 485-9736
TLX .. 5109554261 AMDFTL

...... TEL
FAX
TLX .

· .. (02) 537810
.. (02) 591959

... 79079

... TEL ... 65-2257544
FAX 65-2246113
TLX RS55650 MMI RS

SWEDEN, Stockholm TEL (08) 73303 50
FAX (08) 733 22 85
TLX. 11602

TAIWAN .. TLX 886-2-7122066
FAX 886-2-7122017

UNITED KINGDOM,
Manchester area .. TEL .. · (0925) 828008

FAX.
TLX

London area TEL .
FAX
TLX

· (0925) 827693
....... 628524
· (04862) 22121
· (0483) 756196
....... 859103

NORTH AMERICAN REPRESENTATIVES

CANADA KENTUCKY
Burnaby, B.C. ELECTRONIC MARKETING

DAVETEK MARKETING (604) 430-3680 CONSULTANTS. INC. (317) 253-1668

ca~~f~L ~~E~~RONICS MISSOURI
(403) 278-5833 LORENZ SALES . (314) 997-4558

Kanata, Ontario NEBRASKA
VITEL ELECTRONICS (613) 592-0090 LORENZ SALES (402) 475-4660

Mississauga, Ontario NEW MEXICO
VITAL ELECTRONICS. (416) 676-9720 THORSON DESERT STATES (505) 293-8555

Quebec NEW YORK
VITEL ELECTRONICS (514) 636-5951 NYCOM, INC. (315) 437-8343

IDAHO OHIO
INTERMOUNTAIN TECH MKGT . (208) 888-6071 Centerville

INDIANA DOLFUSS ROOT & CO (513) 433-6776
ELECTRONIC MARKETING Columbus
CONSULTANTS, INC. (317) 253-1668 DOLFUSS ROOT & CO (614) 885-4844

IOWA Strongsville
LORENZ SALES (319) 377-4666 DOLFUSS ROOT & CO (216) 238-0300

KANSAS PENNSYLVANIA
LORENZ SALES . (913) 384-6556 DOLFUSS ROOT & CO (412) 221-4420

UTAH
R' MARKETING (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, deSign and
other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company
assumes no responsibility for the use of any circuits described herein.

-,..' ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA
"'~ TEL: (408) 732-2400. TWX: 910-339-9280. TELEX: 34-6306 • TOLL FREE: (800) 538-8450
... APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323. (408) 749-5703

© 1988 Advanced Micro Devices, Inc.
Printed in the U S.A TDC-CP-5M-5/88-0

