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Introduction

This QPDM Applications Handbook is the third in a series of documents describing the Am35C60
Quad Pixel Data Manager (QPDM) device and its use in graphics systems.

The first, most basic document is the QPDM data sheet (Order Number 07013B) which gives a terse
functional description plus a very detailed listing of the electrical and timing parameters, as well as
package, pin-out, and ordering information. This data sheet will be updated for any parametric
changes, e.g. speed enhancements, made as the device matures.

The second document is the QPDM Technical Manual (Order Number 07785B). It provides a more
complete functional description and explains each of the 61 instructions in detail.

The third document, this QPDM Applications Handbook, describes a wide variety of interfaces to the
QPDM. The System Bus is covered in Chapters 2 and 5, the Display Memory Bus is covered in
Chapters 3 and 5, the Memory Bus in Chapters 4 and 5.

Chapter 6 contains some programming hints and a complete initialization program.
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easier. Moreover, its
bus interface is a
snap to implement.

DESIGN APPLICATIONS

Interface helps controller
boost graphics performance

Stuart Tindall and Achim Strupat

Advanced Micro Devices Inc., 901 Thompson PI., P.O. Box 3453, Sunnyvale, CA 94088; (408) 732-2400.

A new generation of graphics processors is hiking
the performance of graphic systems by more than
an order of magnitude. These devices work their
wonders by taking over tasks formerly performed
by the system’s CPU: frame updating, video re-
freshing, and memory refreshing. The dedicated
processors offload the system CPU of unnecessary
tasks while they manipulate image data faster than

the original controllers ever could.
The price to pay for the extra speed and the easier
overall system design is

I (1 odded complexity of
A dedicated graph ics conn;cting one or more

. graphics processors to
processor sP eeds, m- . system bus. The task
age Pandllng Whlle need not be daunting,
maklng the CPU’s jOb however. In fact, with

the Am95C60 Quad
Pixel Dataflow Manag-
er, the connection to the
system bus is very

straightforward.

The Am95C60 CMOS device is aimed at mini-
computers and workstations built around the
68020 microprocessor. The device manages bit
maps of up to 4096 by 4096 pixels and pixel rates of
up to 400 MHz, which translates into screen sizes of
up to 2000 by 2000 pixels. For reference purposes,
today’s high-resolution CAD and desktop publish-
ing workstations have 1280-by-1024-pixel displays.

The graphics processor can draw up to 110,000
lines, averaging 10 pixels long, per second; place
text at 50,000 characters per second; fill polygons at
20 ns per pixel; and perform bit-block transfers at
60 ns per pixel. One device manages and drives up
to four bit-mapped memory planes, and designers
can cascade up to 64 devices without slowing per-
formance. As a result, a system based on the
Am95C60 processor can support 256 display mem-
ory planes.

Moreover, the graphics processor connects di-
rectly to video dynamic RAMs and supplies all the
signals to drive them. Video dynamic RAMs are

dual-port memories that make possible simulta-
neous display refresh from a serial port and display
update through a random-access port. In a high-
resolution system with video dynamic RAMs, the
update bandwidth exceeds 90%, almost triple that
with conventional dynamic RAMs.

In a typical graphics subsystem, one or more
graphics processors connect tothe system bus. Oth-
er major components include video dynamic
RAMs, one serializer per memory plane, a high-
frequency dot clock generator, and a color palette
(Fig. 1).

Note that the 68020 is a bus master, and the
Am95C60 is addressed as a bus slave. If the system
did not have a DMA controller, the CPU would be
the only bus master, and it would never have to per-
form bus-arbitration cycles or give away the system
bus. The optional DMA controller helps the CPU
load instructions into or exchange data with the
graphics processor, but the controller must request
the bus and use the standard bus-arbitration
handshake.

Because the graphics processor is always a sys-
tem bus slave, the transactions on its interface do
not have to be synchronized to a clock. As a result,
bus-interface connections are relatively simple, and
the graphics processor needs only a small amount
of additional logic to work with all common 8-, 16-,
or 32-bit microprocessors.

8- OR 46-BIT MODES POSSIBLE

After a reset, the designer can configure the data
bus to work in an 8-bit mode with programmable
byte order or in a 16-bit mode. In a 68020 system,
the 16-bit mode offers the highest throughput. In
this case, the device’s 16 data lines connect to bits
16 through 31 of the processor’s 32-bit data bus.

The 68020 accommodates both virtual and di-
rect addressing. Because the processor does niot dis-
tinguish between memory and 1/0 addresses, peri-
pherals are memory mapped. Virtual memory
management is better when the 68020 is the kernel
CPU running a high-level operating system. Then

Reprinted with permission from Electronic Design, Vol 35, No. 17; July 23, 1987. © Copyright Hayden Publishing Co., Inc.
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any execution process can access the CPU’s total address
space—4 Gbytes for the 68020.

Direct addressing is preferred when the 68020 controls
peripheral devices or when the peripherals have unique
addresses because only one user can access the quad pixel
data-flow manager in an interactive graphics system.
Even if this user displays results from a multitasking pro-
cess, the I/O accesses run sequentially through an operat-
ing system driver. Ideally, a PAL device contains the ad-
dress decoding logic needed to generate the relevant Chip
Enable signals to the graphics processor. As a result, the
following discussion assumes a direct-addressing
scheme.

To interface a processor to a peripheral with an inde-
pendent system bus cycle, as the graphics processor has,
several control and response signals must be translated
Also, each device must operate at its own highest clock
rate, and therefore, asynchronously.

The interface to the Am95C60 includes a 16-bit bidir-
ectional, three-state data bus (lines Dy to D), Read and
Write strobe inputs (RD and WR), a Chip Select input
(CS), two address line inputs (A, and A,), an interrupt
output, three DM A handshake signals, an output that en-
ables an external driver, a reset, and a system clock input.
The system clock, which runs at up to 20 MHz, times the
internal microengine and controls the display-memory
timing, but not the system-bus and video timing. The two
address lines connect to four ports within the device.

A typical application has a 68020 connected to two
Am95C60s that form an eight-plane system (Fig. 2). A
PAL device decodes the 68020 address and outputs two
Chip Select (CS, and CS,) signals to the graphics proces-
sors. A third signal, CSQPDM, which shows an access to
either graphics processor, combines with the 68020’s
Read/Write signal to form the read and write inputs for
the Am95C60. The timing of the Chip Select signal and
the read and write inputs follows the timing of the 68020’s

Address Strobe, with the addition of the decode logic’s
propagation delay.

Because all resources within the graphics processor are
16 bits wide, any write cycle to the device results in the 16-
bit quantity on the bus being loaded into the appropriate
register. But the data word must be aligned, because the
least significant address line is not used in addressing the
resources within the device. Connecting the 68020’s ad-
dress lines, A| and A,, to the graphics processor’s address
pins, Agand A, allows data to be transferred one word at
a time. Consequently, the quad pixel data-flow manager
does not need any transfer-size information; the request-
ed 16 bits are always fulfilled. The 68020’s address bits A |
and A, connect to the graphics processor’s two address
inputs, Agand A, to select the internal resource for a bus
access.

Depending on the speed difference between the two
processors, none, one, Or more wait states extend the pro-
cessor’s bus cycle. Two lines—Data Transfer and Size
Acknowledge (DSACK)—cause wait states in the bus
cycle if they are not asserted. To avoid this, the designer
can generate DSACK responses that are synchronous to
the 68020 clock by using a fixed-delay logic sequence that
defines the length of any access to the graphics processor
after Address Strobe is asserted.

This delay can be modulated by a registered PAL de-
vice, timed by the processor’s clock. The PAL device’s
DSACK outputs are put in a three-state mode because a
multiperipheral system may have several sources of
DSACK signals. A pull-up resistor on the three-stated
outputs defines the logical state when the PAL device is
not driving the lines.

The 68020 communicates with the graphics processor
over two types of bus cycles: word read and word write.
At the beginning of a system bus cycle, the 68020 as the
bus master asserts the R/W signal to indicate the direc-
tion of data flow. A word read cycle moves data from the

graphics processor to the CPU,

System bus

then presents the address and
function code to distinguish be-
tween user and supervisory ad-
dress space.

System DMA

memory controller

To transfer 16 bits with a
word-transfer instruction, the
CPU’s transfer size outputs,

SI1Z, and SIZ,, are set to two
bytes (that is, 10H). As noted,

Red
Shifter 1 however, the Am95C60 does
Green Color falize P . .
. B'lu: palette (eeritizer) not need this information, if the
. —7T CPU’s address lines and the

graphics processor’s address

CRT

pins are properly connected.

1. The AM95C60 Quad Pixel Dataflow Manager can accommodate four bit-
mapped memory planes. A graphics subsystem can include up to 64 de-

vices, for 256 memory planes.

Because all transactions are
word aligned and word wide,
address bit A, is always low,
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and the information is read in on the data-bus lines Dy
through D;,. The 68020 then asserts Address Strobe to
show that the address is valid, and activates Data Strobe
to indicate that the graphics processor should drive the
data bus.

After the CPU produces Chip Select and asserts the
read input, the graphics processor needs a specified mini-
mum time to complete the word read bus cycle, depend-
ing on the device’s speed version. For a 20-MHz device,
for instance, the read data on the system bus is valid after
a maximum of 110 ns.

Depending on the 68020’s clock speed, this time may
or may not be fast enough to ensure access without a wait
state. To cover the general case, the example assumes that
after a certain delay, the graphics processor creates a wait
state by asserting the DSACK lines to the CPU. The de-
lay, produced by external logic, is a multiple of the
68020’s clock cycle.

Once valid data is on the data bus and the DSACK sig-
nals are asserted, the CPU latches the data and termi-
nates the bus cycle by deasserting Data Strobe and Ad-
dress Strobe. This negates the graphics processor’s Read
Strobe and lets the device enter the three-state mode on its
data bus. To conclude the bus cycle, the PAL device that
generates the DSACK signals goes into a three-state
mode also.

The pull-up resistor brings the outputs to an inactive
state. As soon as the CPU receives the deasserted
DSACK signals, it knows the

Write pulse, which is formed from the 68020’s Data
Strobe pulse. Negation of the DSACK signals by the
PAL device after the rising edge of Address Strobe con-
cludes the bus cycle.

ADDRESS LINES CONTROL 1/O PORTS

The Am95C60 has four I/0 ports addressed by lines
Agand A,. Through these ports, the CPU, using its own
A, and A, lines, directly addresses the instruction FIFO
buffer and status register, the block I/0 FIFO buffer, the
1/0-pointer register, and the data registers indicated by
that register (see the table, p.100).

Access to the other registers within the device employs
a two-tier process. The operator first loads the address of
the desired resource into the I/O-pointer register,
through which the resource can be accessed. Then, any
subsequent access to the 1/0-data register transfers data
between the bus master and the register.

In a multiple data-manager system, the processors can
be addressed either individually or as a single peripheral.
The broadcast mode, in which the CPU transmits data to
all quad pixel data managers simultaneously, offers the
fastest overall system speed.

In broadcast mode, a global address enables all Chip
Select lines. The CPU sends most of the register data dur-
ing the initialization phase and all but one drawing in-
struction to the quad pixel data managers. All the graph-
ics processors then execute the same instruction

word read cycleis complete and 3.1t data bus
starts another cycle.
The transactions are similar
for a write cycle, except that the To CS of device 2
R/W signal shows a transt.‘er = I Buﬁa o T
from the CPU to the graphics (68020) | selectiogic  |CS: Data Manager 1
processor. In this case the CPU FC~FC, (PAL device)  [TE] o mesCe)
places valid data on the system AgAay CSQPDM A
bus before activating the Data Do-Ds1 ¥ —l — WR
; R/W s

Strobe. Because t.he Write SizsiZ, RUW and DSACK roa,
Strobe to the graphics proces- = logic
sor may be as short as 70 ns, o5 (PAL device)
fewer wait states are needed DSACK, -
than in a Word Read cycle. If IPL-PL, - INT
any are inserted, the PAL de- AVEC ":"n;";"rgo'"‘?g” L—

7 . . BR [e—— FREQ
vice’s DSACK signals again 56— decoder

(PAL device) DREQ
handle them. BGACK [+ ACKD
Assertion of the two BERR [~
DSACK lines tells the CPU LY M —
that the graphics processor is ———{ Resat
O ———{ SYSCLK

ready to latch the data. The o o
68020 then negates its Address *Three-state output with pull-up resistor Interrupts from other sources in the system

and Data strobes and removes
the data from the bus. The
graphics processor latches the
data with the rising edge of its

2. In the straightforward system bus connection between the Am95C60
graphics processor and the 68020 microprocessor, three PAL devices create
the logic needed for the connection. The CPU’s clock and the graphics con-
troller's clock are asynchronous, easing the interface.
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simultaneously. The 68020’s address bits A; and A, cre-
ate the required Chip Select signals in a two-data-manag-
er system (see the table again).

The one instruction executed can affect different dis-
play memory planes differently, depending on what data
is in the display memory and on certain parameters in the
quad pixel data manager. Those parameters include ac-
tivity bits, which define the active planes; color bits,
which pick the color the graphics processor draws with;
and search bits and listen bits, which show what color is
needed in certain planes for fill area instructions.

The instructions that set these parameters include a
field denoting which quad pixel data manager is being ad-
dressed. Each device compares its plane position with this
field to determine whether the device is a target. Thus in-
structions that change only one quad pixel data manager
within an array can be broadcast to all devices.

Initialization of individual Am95C60s is important be-
cause the multiple graphics processors in a system may be
initialized differently. One graphics processor may be the
video master, while the others are video slaves. Each de-
vice’s position in an array is determined by the Set QPDM
Position instruction, which must be sent to each chip
individually.

A user activates the Am95C60 graphics engine by ini-
tializing several registers that define its environment. For
instance, these registers specify the type and size of the
connected display memory, the video timing, the dynam-

32-bit-wide data bus

D(15,11,7.3,
14,1062,
13,951,
12, 8,4,0)

16

DD_D|5
Device 2
(Am85C60)
A(6,5,4,3)
Broadoast- & D(15,11,7,3,
) | S sel 14,10,6,2,
Driver- 13,951,
select | plane-access select 12, 8,4,0)
pa , 8,4,
Pixel-access select

3. Adding driver select logic and extra buffers lets
the operator of this two-controller system choose a
data-transfer scheme from among a 16-bit broad-
cast technique, a 32-bit by-plane transfer, and a 32-
bit by-pixel transfer.

ic memory refresh frequency, and the screen and window
size and position within the display memory.

After initialization, the CPU transmits drawing in-
structions to the graphics processor. The 60 instructions
in the set include drawing lines, moving rectangular
blocks, filling triangles, and writing character strings.
The selection allows users to create many different types
of drawings and to mix graphics and text efficiently.

The graphics processor accepts instructions in three
ways: programmed 1/0 loading, fast loading with an ex-
ternal DMA controller, and program mode. Pro-
grammed I/0 is the most straightforward method. The
host processor directly addresses the instruction FIFO
buffer, supplying instructions as long as the buffer has
space.

The CPU checks whether the buffer needs service by
polling the internal status register or the open-drain
FIFO Request (FREQ) output pins, because the FREQ
signal is asserted whenever the buffer has room for at least
one instruction word.

In a system with multiple graphics processors, all the
FREQ pins are tied together and their open-drain struc-
ture is connected to an external pull-up resistor that per-
forms a logical AND function. Therefore, only when ev-
ery device has room in its instruction FIFO buffer will the
FREQ node be asserted. The FREQ signal can also be
tied into the interrupt structure to request immediate ser-
vice from the CPU.

Or a DMA channel can load the instruction FIFO
buffer directly from system memory. This method also
employs the FREQ signal for handshaking with the
DMA controller. In effect, the graphics processor re-
quests additional instructions under control of the previ-
ously initialized DMA channel.

Finally, the program mode uses the Call instruction to
cause the graphics processor to read instructions from the
nonvisible part of the display memory, instead of access-
ing the instruction FIFO buffer. Basically, the program
mode switches the device from a Harvard to a von Neu-
mann architecture because the display memory bus both
delivers instructions and transports manipulated data.

Essentially, the CPU writes a group of instructions into
the display memory. Then a Call instruction is executed,
meaning that subsequent instructions are fetched from
the display memory. Embedded Calls allow nesting of
subroutines within the display memory. A Return in-
struction restores control to the instruction FIFO buffer.

Users employ Block input and Output instructions to
transfer data between the display and system memories.
These commands move image, or font, and control data
over the Data Input and Output FIFO buffer. Several ac-
cess methods exist.

Programmed 1/0 loading is the simplest technique.
The data request, DREQ, bit in the status register or the
DREQ pin signals when the BLOCK FIFO buffer needs
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service. As with the FREQ bit, this condition can be test-
ed by polling, by letting it generate an interrupt, or by the
AND structure of the open-drain DREQ node.

In addition, a dedicated DMA channel can service the
Block FIFO buffer. The Acknowledge Data, ACKD, line
allows the DMA channel to accommodate a two-bus-cy-
cle DMA transfer (Flow-Thru Mode) or a single-bus-cy-
cle transfer (Fly-By Mode).

When transferring data between system bus and dis-
play memory, the user can access the data by plane or
pixel. A by-plane access transfers 16 bits from one plane.
On the other hand, a by-pixel access transfers a complete
pixel, meaning one-bit from each plane.

For best efficiency, a designer should choose a transfer
scheme that fills the 68020’s 32-bit-wide data word. For
example, in a two-graphics processor system, a by-plane
access transfers 16 bits from each of two planes to the 32-
bit bus. Or a by-pixel access allows four 8-bit deep pixels
to be transferred to the CPU’s bus.

The example application of a two-graphics processor
system needs additional data buffers between the system
bus and the graphic processors’ data lines. These buffers
multiplex the relevant data lines to the correct data bits
on the bus (Fig. 3).

The 68020 uses the Chip Select lines to enable the buff-
ers and chooses between the additional or the standard
access buffers. The choice is implemented by the CPU’s
address bits A and A, which enable the relevant data
bus driver. They select either a 16-bit-wide broadcast ac-
cess using bits 16 through 31, a 32-bit by-plane access of
two planes, or a 32-bit by-pixel access of four 8-bit pixels.

Addressing the Am95C60’s

internal resources
68020 address lines

Function desired A A AL A A A
Access instruction FIFO register for

wiite access and access status

register for read access X X X X 0 0
Access block infout FIFO register X X X X 0 1
Access /O pointer X X X X 17 0
Access register pointed to by

1/O pointer X X X X 1 1
Both Quad Pixel Data Managers

are accessed (broadcast) X X 0 0 X X

Device 1is accessed X x 0 1 X X
Device 2is accessed X X 1 0 X X
Reserved X X 1 1 X X
16-bit wide broadcast 0 0 X X X X
Double 16-bit data transfer 0 1 X X X X
Four pixel with 8 bits each 1 o] X X X X
Reserved 1 1 X X X X

*A, through A, are undefinable.

Ten maskable conditions in the Am95C60 can signal
interrupts to the CPU over the INT output. Typically,
this signal connects to a priority encoder that arranges
the interrupts for servicing in preferred order. The encod-
er then asserts the relevant interrupt levels on the CPU’s
Interrupt Level Priority lines, ILP, to ILP,.

When the CPU detects an interrupt level greater than
the current one, it waits until the end of the current in-
struction, saves its state, and generates an interrupt ac-
knowledge bus cycle to find out which device has raised
the interrupt. The device responds with either a vector
number or by asserting AVEC, which requests an inter-
nally generated vector. The Am95C60 employs the auto-
vector method to handle interrupt acknowledge. Both
methods point to an interrupt service routine.

On entering the interrupt service routine, the CPU
software reads the graphics processor’s status register to
find out which interrupts are outstanding. The CPU
clears the bits for the interrupt it will service by writing to
the graphics controller’s interrupt acknowledge register
and then it re-enables its interrupt system. Writing the
register not only tells the graphics chip that the CPU has
serviced the interrupt, but it also clears the relevant inter-
rupt bits, which, when set, assert the interrupt line.

Because all Am95C60 controllers in a multi-unit sys-
tem execute the same instruction simultaneously, any in-
terrupt will be detected by all the devices, and flagged in
their status registers. The 68020 reads the status register
of one quad pixel data-flow manager, using its individual
Chip Select address, to avoid having several chips drive
the data bus at the same time. A Write signal to the inter-
rupt acknowledge register of all the Am95C60s clears the
interrupt on all the chips.(J

Stuart Tindall is a field applications engineer specializing
in graphics products. He works out of AMD’s UK office in
Warrington. Tindall received his electronic engineering
degree from Liverpool University, UK.

Achim Strupat, a field application engineer in AMD’s
Southern California office, previously was a member of the
Quad Pixel Dataflow Manager product- planning group in
Sunnyvale, Calif: Strupat earned his MSEE at the Rhein-
isch Westfaelisch Technische Hochscule in Aachen, West
Germany.
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vention is program mode, which lets
you store program data, pointer, and
stack values alongside the displayable

The display-memory controller also
has a data-plane controller, which
contains four 16-bit data-logic units

" and four 16-bit bidirectional barrel-

The last main functional block is the
video-timing controller, which gener-
ates timing signals to control the
video monitor and data transmis:
on the video bus. Twelve vi
trol registers define horizontal tim-
ings, vertical timings, and operating

mode. You can program the 95C60 to
be the horizontal master or slave(s)
and the vertical master or slave(s) of
another video source in the system.

One of the 95C60’s most useful ca-

s is block copy. Operating at

the chip moves large
blocks of data within the bit map,
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The four main functional blocks of the Am95C60 are the micro engine, system
interface, display-memory controller. and video timing controlier

Graphics controller
draws 110,000 lines/sec

Controls four bit-mapped
memory planes

KA WAI LEUNG

Advanced Micro Deviees
To meet the drawing-speed demands
of bit-mapped graphics
AMD's AmY5C60 quad pixel dataflow
manager (QPDM) draws as many as
110,000 vectorsisec. The chip also
places text at 45,000 ¢ps and fills

16-bit-wide address-generation unit.
These units equip the chip to control

one to four bit-mapped memory
planes for a screen r utmn ax fine
as 2000x2000 pixels.

h display-

memory plane contains as many

s four 16-bit data units
work in parallel, obeying instructions
that are decoded and executed in a
16-bit micro engine with a : C
instruction time. In addition, parallvl
architecture lets you cascade as many
as 64 95C60s to support memory-
plane systems with no degradation in
performance.

Graphics primitives

To speed execution, the device uses
hard-wired graphics algorithms to re-
duce the number of instructions asso-
ciated with each operation. In con-
trast, a programmable graphics
processor requires the user to have a
detailed knowledge of its internal ar-
chitecture and to spend time develop-
ing software.

The 95C60’'s instruction set sup-
ports the implementation of such
i standards as Computer
Graphics Interface (CGD), Graphical
Kernel System (GKS), and Graphics
Device Interface (GDI). A micro en-
gine handles instruction execution.

Functional blocks
The micro engine, one of four main
functional blocks on the chip, uses a

ROM with microcode wide enough for
parallel control of all the execution
un! In addition, the engine has a
branch sequencer.

The second functional block is a

bu
Alwa; slave to the bus, the inter-
face provides a 16-bit rectional
data path that can be reconfigure
& bits for connection to an 8- or 16-bit
host processor. To minimize the load
on the host, a dedicated DMA control-
ler can be used to manage data move-
ment.

During DMA operations, the %
uses a 64-word-deep instruction
FIFO buffer operating in flow-
through mode to minimize CPU waits
during instruction transfers. In addi-
tion, block-in and block-out buffers
speed data transfer from system
memory to the display memory.
These block buffers use either flow-
through or fly-by DMA.

The third functional block—the dis-
play-memory  controller—generates
display-memory timing and arbitrates
video refreshes, memory refreshes,
and update accesses. To avoid ndeo
and update contentions for the dis-
play memories, the 95C60 supports
dual-port video RAMs.

Video RAMs

Video RAMs improve the updating
of graphics memory by more than five
times over standard dynamic RAMs.
Using video RAMs lets the chip re-
fresh a 1280x1024-pixel screen at 60
Hz noninterlaced, which translates
into a 120-MHz pixel rate with more
than 90% of the time available for
display update.

Another part of the display-memo-
ry controller is a translator that lets
the CPU use X/Y coordinates for
background and window locations.
This frees the CPU from having to
convert X/Y screen coordinates to
display-memory locations. An addi-
tional feature that reduces CPU inter-

allowing source and destination over-
laps without contention or loss of
data.

During block copy, source data can
be rotated in 90° increments, mir-
rored, and zoomed independently in
X and Y directions. You can perform
logical operations to the source pixel
before it is written to the destination.
Because the 95C60 supports mask
write in video RAMs, the user can
preserve data integrity in selected
memory planes during memory ac-
cesses,

The block-copy feature also sup-
ports one hardware window and many
software windows. Unlike software

BEHIND THE DESIGN

Bit-map design
called for video
RAMs

AMD started designing the
Am95C60 at the beginning of 1982-
in response to increasing demand
for bit-mapped, high-resolution
text and graphics displays. The
objective was to build a high-per-
formance graphics controller
based on the company’s bit-slice
architecture.

The bit-slice approach lets the
designer increase data width by
cascading multiple bit-slice pro-
cessors. In the 95C60, the pixel
width (color resolution) can be in-
creased by cascading 95C60s—one
for every four bit planes—without
sacrificing drawing performance.

One of the biggest design chal-
lenges was keeping the die size
<200k mil%. This task was compli-
cated by the chip’s amount of par-
allelism and its high degree of in-
tegration. Because the initial
design called for a display memo-
ry that supported dynamic
RAMs, the chip needed to incor-
porate a large video-stream FIFO
buffer. However, the emergence
of video RAMs as the preferred
type of bit-map memory lead to a
decision to drop dynamic-RAM
support and substitute on-chip
support for video RAMs.

windows, the hardware window does
not overwrite the image it replaces.

When using multiple windows, you
can designate the most frequently
used window as the hardware window
and all remaining windows as soft-
ware windows. The 95C60 responds
rapidly to window movements by al-
tering pointers instead of bit-map
contents.

In addition to windowing, the chip
supports panning, scrolling, and
zooming of graphics primitives drawn
in various line styles. The 95C60 uses
an antialiasing scheme that smooths
out the jagged edges of lines, ares,
and circles by illuminating adjacent
pixels.

Other 95C60 capabilities include
support of proportional spacing and
fonts as large as 63x60 pixels—30
times larger than the 9x 14-pixel char-
acter font of an IBM PC. This large
font capability allows the chip to sup-
port such foreign-language character
sets as Kanji, which requires 24x24
pixels to produce Japanese charac-
ters.

The 95C60 comes in a 144-pin pin-
grid-array package. Prices are
$198.57 for the 12-MHz version, $250
for the 16-MHz unit, and $278.57 for a
20-MHz device (100). Production
quantities are available now:; delivery,
four to six weeks ARO. )

For more information on
Am95C60 graphics controller,

the

Ka Wai Leung is senior strategic-
development engineer at Advanced
Micro Devices Inc, Box 3453, Sunny-
vale, CA 94088. Phone (408) 749-3412.

Reprinted with permission from EDN News, April 23, 1987.
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CHAPTER 2
System Bus Interface

In this section , detailed descriptions of the System Bus
Connections for three popular buses are presented.
These are the 80186 microprocessor bus, the VME bus,
and the 68020 microprocessor bus. We also inciude
schematic diagrams and PAL device equations. While
these designs have not actually been built and tested,
they have undergone substantial “paper testing”.

For a detailed analysis of a demonstration/evaluation
boardthat has already been built and tested, please refer
to Section 5.

2.1 Am9560 - 80186 INTERFACE DESIGN

In this section, two designs employing the Am95C60 are
discussed in detail. A single Am95C60 system (i.e., four
bit planes) will first be discussed and then a four
Am95C60 system (i.e., 16 bit planes) will conclude this
section. The majorthemeinthese designsis to keep chip
count and cost to a minimum. The designs use a 10 MHz

80186 and a 20 MHz Am95C60. The features of both the
AmM95C60 and the 80186 help to achieve these goals.

2.1.1 Single QPDM Design

Figure 2.1-1, “Single QPDM Schematic ", shows sche-
matically how to connect a single QPDM.

Read Cycle

Figure 2.1-2a, “Single QPDM Read Cycle Timing”,
shows the QPDM read cycle when using a 10 MHz
80186. In this design the PCS, and PCS; output pins
have been programmed to reflect the state of the A, and
A, address lines and PCS, is used to select the QPDM.

These outputs (A, and A,) are latched throughout the
cycle. The address bits and PCS, become valid simulta-
neously so that the address lines are not guaranteed
stable at the Am95C60 when chip select goes active.
This means that the QPDM chip select must be delayed

‘Isra
8 g
Voo 20 MHz : | ° >
[I Program Address AO-A15
sT8
— T o I >
RESET RESET
16
frive < 16 Data » Datatus ADO-AD1S
ARDY
ADDRESS READY 80186-1 aE
DECODES GENERATION| 10 MHz
DR & DTR
—p{ LOGIC SRDY RESET]
DR | DREQ
DR | FREQ
ALE CLKOUT INTO[< INT
j t (10 MHz) T > TO
Vee Wa » TR
PCS0
a a2 >
—_— PCS5/A1 » A1
TEST CLKOUT| 1 ___ —_—
TCSIRS PCST-PCS2  BER » QPDMCS
- TPOOE
! ! ! ! >
8
& - RESET
TO MEMORY 10 >
CONTROL  PERIPHERAL
LOGIC  CHIPS CONTROL
LoGIC
BE
>
68
L 9682A2.1-1
X

Figure 2.1-1 Single QPDM Schematic
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Figure 2.1-2a Single QPDM Read Cycle Timing

as a result of having to be qualified by ALE. This canbe
made more apparent by examining the PAL equations.
The PAL device “QPDMCS” solves two problems: the
set-up time of addresses to chip select, and the qualifica-
tion of addresses with ALE. Figure 2.1-2a, “Single
QPDM Read Cycle Timing”, illustrates that after PCS,
goes active and addresses A, and A, are latched (via
PCS5 and PCS6), the PCS; to the QPDM is delayed by
waiting for the falling edge of ALE. The RD signal gener-
ated by the 80186 is guaranteed active t ; ns after the
falling edge of T2. Inthe worst case, thisis 56 ns . The
data from the QPDM is guaranteed valid 80 ns after RD
becomes active. The allowable read access time is

200 ns - (tcLRLmax + tDVCLmin)
=200 - (55 + 15)
=130 ns.

The 80186 samples data on the falling edge of T,. This
means that data from the QPDM is presented to the
80186 in plenty of time to meet the 80186 set-up times of
tDVCLmin (15 ns). The QPDM also guarantees that the
read data will be held a minimum of 10 ns from the rising

edge of RD. This provides more than adequate hold time
(teLoxmin = 3 NS) for the processor. Figure 2.1-2a, “Single
QPDM Read Cycle Timing”, illustrates this quite clearly.

The only other parameter of concern during a read cycle
is ty,,y (NOt shownin the diagrams). This parameter is the
minimum time from RD inactive until addresses are
active for the next bus cycle. If memory or peripheral
devices cannot disable their output drivers in this time,
data buffers will be required to prevent both the 80186
and the peripheral or memory device from driving the
data/address lines concurrently. In most designs a data
transceiveris required due to the dc characteristics of the
QPDM. This can be attributed to the CMOS 1/O struc-
tures of the QPDM. To guarantee the design, a data
transceiver is used. This will be the case in a multiple
AmM95C60 design as well.

With this in mind, we must now examine the implications
of using a data transceiver. The parameter of interest
here is the minimum time from RD inactive until the
addresses become active for the next cycle, which has a
minimum value of 60 ns fora 10 MHz 80186. This means
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Single QPDM Read Cycle Timing If we add to this set of parameters the maximumt,,,
Parameter List (tovoexmax ~ totrrmin) + teiz
=56-10 +15
MIN (ns) MAX (ns) =61ns;
touen (80186-1) 30 this already exceeds the t,,,, spec of 60 ns.
t... (80186-1) 30
toverv (80186-1) 5 56 The solution is to synthesize a signal from the existing
tovoex (80186-1) 10 56 processor signals that will allow us to turn off the trans-
tocev (80186-1) 45 ceivers after the falling edge of T, more quickly. The
tonosx (80186-1) 5 32 small state machine PAL device “XCVR” accomplishes
t., (B-Speed PAL) 15 this goal. Figure 2.1-3, “Transceiver Enable/Disable
t.. (80186-1) 10 56 Timing”, illustrates how the circuit works. An inverted
tcm" (80186-1) 10 44 CLKM clocks the entire state machine. The purpose of
torou (95C60-20) 10 this state machine is to output a signal T, at the beginning
tooron (95C60-20) 80 of state T, of the 80186. ALE informs the circuit when
teucry (80186-1) 10 44 state T, has occurred. This signal counts through until we

that the data and the associated driving data transceiver
must be off the bus 60 ns after RD goes inactive. The
EDE pin provided on the Am95C60 to control the output
enable pin of the data transceivers goes inactive far too
late inthe read cycle to disable the transceiver and meet
the tRHAV specification. The DEN signal of the 80186
cango inactive at,,,., maximum of 56 ns after the falling
edge of T,. The minimumt,, ., .- inactive delay is 10 ns.

getto state T, Thisis a wait state that is automatically
inserted by the 80186 when we read from or write to the
Am95C60. The reason for a wait state will become clear
when the topic of DMA is discussed.

When the cycle reaches T, T, is also qualified by the
signal RD. If we are not readingthe Am95C60, we do not
generate signal T,. Inthe case of a write cycle, we have
no t,,,.y specification, and the CPU signal DEN is al-
lowedto disable the data transceivers. More onthis later.
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Transcelver Enable/Disable Timing

MIN (ns) MAX (ns)
t, (B-Speed PAL) 15
., (80186-1) 30
.., (80186-1) 30
1., (80186-1) 10 56

Thebottomlineis thatif aread cycleis occurring, the data
transceivers are disabled within
3ot

PDmax

+ toizmay = 3(15) + 15 = 60 ns.

This meets the t,,,, specification. The PAL equations
are given in the listing XCVR for closer examination.
Since the CPU data hold time t,, ,, (8 ns min) and the T,
transceiver turn off delay are relative to the same clock
edge (falling edge of T,), and if we factor in the trans-
ceiver delay, the hold time at the processor is guaran-
teed. The DEN turn-on delay allows:

2t + tonimin = tovervma ™ tover
=200+44-44-15
=185ns

transceiver enable time prior to valid data required at the
CPU. The PAL outputs, QPDMCS and QPDMOE, use
15 ns maximum of this time to enable the transceiver, and
since the Am95C60 places data in the bus a maximum of
80 ns fromthe active edge of RD, the data will be present
in plenty of time to meet the processor set-up time.

The DT/R signalis used to control the direction of the flow
of the transceiver. The timing of this signal is no cause
for concern.

Write Cycle

The write cycle of the 80186 is very similar. The timing
is shown in Figure 2.1-4, “Single QPDM Write Cycle
Timing". The WR signal is guaranteed active t, ., NS
from the falling edge of T, and inactivated t;,., ns from
the falling edge of T,. The QPDM requires a minimum
WR pulse width of 70 ns, the data written to the QPDM
must be valid at least 50 ns from the rising edge of WR,
and the data must have afinite holdtime. The chip select
timing is identical to a RD bus cycle. The worst case
pulse width of the WR is

3*tere - teverxmn
=300- (44 + 5)
=251ns

2-4



CHAPTER 2
System Bus Interface

I T4 T1 T2 T3 TW T4
ALE {CHLH = =9} tCHU €=
oER -] tevorv| €= _.' lcvc‘l'xIQ-
|
PCS tcLesv —.hcucsxld—
A1,A2 I
GPOMCS e "l wof
w —;[ teverv I" —ltcverx
T4
Voo
N S S tPD
(GPDMCTS + T4} "4 _.I
* I
pT/R
o

Figure 2.1-4 Single QPDM Write Cycle Timing

Single QPDM Write Cycle Timing

Parameter List

MIN (ns) MAX (ns)
1., (80186-1) 30
t,. (80186-1) 30
toen (80186-1) 10 44
tovery (80186-1) 5 44
t,ce, (80186-1) 45
toues (80186-1) 5 32
t., (B-Speed PAL) 15
toor (80186-1) 5 56
tocr (80186-1) 5 44
tyoron (95C60-20) 70
trom (95C60-20) 0

(95C60-20) 50

tSOPDM

This substantially exceeds the minimal 70 ns required by
the QPDM. The write data is driven by the 80186 a
maximum of 40 ns after the falling edge of T,. The data
transceivers are enabled a maximum of

tetimax + 2topmax
=30 +2(15)
=60ns

from the rising edge of T,. Therefore, the data will be
presented to the QPDM in plenty of time to meet the set-
up time of 50 ns to the rising edge of WR (which occurs
toverx NS fromthe falling edge of T,). The 80186 guaran-
tees a data hold time of t,,,,., .. after the rising edge of

WRt,, - 34
=100 - 34
=66 ns.

Another point to examine is that in this case we allow the
DEN signalto disable the datatransceivers by itself. This
is because we don't have the tight t_ ., specification
presentinthe read cycles. Examiningthe PAL equations
in QPDMCS makes this point clearer. DEN is disabled
a minimum of

torchmin + toverxmin = tovetxmax
=44 +5-44

=5ns

after WR inactive. This, in combination with the delay to
turn off the transceivers, ensures that we meet the hold
time of the QPDM in relation to the rising edge of WR.
Also, since this last equation uses a minimum ty,.., with
a maximum t..., the hold time will be longer.
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DMA

QPDM DMA requests pose no special problem to the
80186. In fact, since the 80186 built-in DMA controller
looks to the QPDM as a flow-through type, the interfacing
is quite simple. The 80186 DMA cycles appear as normal
processor read orwrite cycles to the QPDM. These types
of read and write cycles have been covered in the
preceding paragraphs. The only issue left to be consid-
eredis the choice of source or destination synchronized
DMA transfers.

Whenthe QPDM requires that large quantities of data be
down loaded, destination synchronized transfers must
be issued. In destination synchronized DMA transfers,
the destination of the DMA data requests the DMA
transfer. In this type of transfer, the QPDM is written to
during the deposit cycle of the DMA transfer. The only
parameter requiring special concern is the DMA request
signal inactive time. To prevent unwanted DMA transfer
cycles, the DMA requesting device must drop its DMA
request at least two clock cycles before the end of the
deposit cycle, regardless of the number of wait states
inserted into the bus cycle. With a 10 MHz processor
clock, the value for DRQ inactive from the start of T,
(assuming no wait states) is

teret ™ tiwvetmin

=80 ns.

Examining the QPDM specifications, DREQ and FREQ
become inactive 50 ns maximum after WR to the QPDM.
We have seen previously thatthe WR goes inactive 56
ns maximum after the falling edge of T,. Thisis atotal of
56 + 50 = 106 ns maximum after the falling edge of T,,
which means that in order to avoid unwanted DMA
cycles, we must insert a single wait state into the cycle.
The wait state provides an additional 100 ns so that the
DRQ inactive time becomes 100 + 80 = 180 ns. Since
DREQ or FREQ goes inactive a maximum of 106 ns, the
180 ns DRQ inactive time is more than adequate, and a
single wait state is all that is required. No extra circuitry
is requiredto insert this wait state, as we shall cover more
fully in a later section.

Whenthe QPDM has data to be transferred out via DMA,
the DMA can be programmed to source synchronized
mode. In a source-synchronized DMA transfer, the
QPDM requests DMA transfer, and the QPDM is read
during the fetch cycle of the DMA transfer. Please note
that the source or destination synchronized transfer
modes are selected by programming bits in the periph-
eral control register block internal to the 80186. This
allows the user to change the mode of the DMA controller
via software oronthe fly. This means thatwe can edit the
appropriate transfer mode for the QPDM depending on
the transfer direction required. To ensure that DMA

transfers do not occur when it is not desired, the DRQ
signal must be driven inactive before the falling edge of
T, in the deposit cycle. This does not pose a problem
because the QPDM will de-activate DREQ or FREQ
50 ns maximum after RD to the QPDM. This occurs

tolrimex + 50 NS
=56 +50
=106 ns

after the falling edge of T,, well before the falling edge of
T, in the deposit cycle.

There are three other considerations regarding DMA in
general. First, the DREQ and FREQ DMA request pins
are open-drain and must be pulled up to V_ with resistors.
Second, ACKD is not used in this design and must also
be pulled up. Third, the 20-bit source and destination
pointers allow access to the complete 1M byte address
space of the 80186, but when addressing I/O space, the
upper four bits of the DMA pointer registers should be
programmed to be 0. Otherwise, the programmed value
(greater than 64K in 1/0 space) will be driven onto the
address bus (an area of I/O space not seen by the
processor). This could cause chip selection problemsin
any external logic that the user may wish to add to the
design.

Interrupts

The 80186 contains an integrated interrupt controller.
Four external interrupt pins are available for use. If no
more than four externalinterrupt sources are required, no
external interrupt controller is needed. When using the
internal interrupt controller, the interrupt types are fixed
and cannot be changed. In response to aninterrupt, the
processor will jump to the vector address associated with
theinterrupttype. The addresses of the interrupt routines
are stored in the interrupt vector table in low memory.
These addresses are user supplied and controlled. On
the 80186, the interrupt vector address is the interrupt
type (or number) multiplied by four. This speeds up the
interrupt response greatly, because no external bus
cycles are required to fetch the interrupt types. Consult
the 80186 data sheet for the vector types associated with
the four externalinterrupt pins. The usercanconnectthe
QPDM INT pin to any of the four external INT pins of the
80186 according to the design requirements; INT, was
chosen arbitrarily in this design. Please note that the
execution of writes to the Interrupt Acknowledge register
of the QPDM is used to clear interrupt requests. These
steps should be an integral part of all QPDM interrupt
service routines. A “1” must be programmed in the word
for each interrupt that is to be cleared. A “0” bit has no
effect. When all enabled interrupt requests have been
acknowledged and cleared, the INT signal goes inactive.
Consult the QPDM Technical Manual for further details.
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Miscellaneous

The peripheral chip select lines PCS; and PCS; have
been programmed to provide latched address lines A,
and A,. Thisis accomplished by programming the PACS
‘and MPCS registers in the peripheral control block.
These two latched address pins are connected to pins A,
and A, of the QPDM and are used to access the internal
registers of the QPDM. All the internal QPDM registers
will appear at even addresses to the 80186.

In this design, PCS, is used to control CS of the QPDM.
Each PSC, line is active for one of seven contiguous 128
byte areas in memory space or /O space above a
programmed base address. Consult the PCS Address
Ranges Table in the 80186 data sheet for the details
regarding address partitioning. As stated earlier, the
peripheral chip selects are controlled by two registers in
the internal-peripheral control block of the 80186. These
registers allow the base address of the peripherals to be
set and allow the user to determine whether the ad-
dresses will be in memory space or I/0 space. Both
registers must be programmed by the user before the
chip selects become active.

The 80186 includes a ready generation unit. This unit
generates an integral ready signal for all accesses to
memory or /0O addresses to which the internal chip select
circuitry responds. For each chip select, 0-3 wait states
may be inserted by the internal unit. Also, the ready
generation circuits can be programmed to ignore the
state of the external ready pins. In this case, only the
internal ready state will be used by the processor. The
ready generation circuit can also be programmed to
respond tothe external ready signal. This meansthatthe
ready circuitry will perform a logical AND function of the
external and internal ready states and a ready will be
provided only after both are true. In this QPDM design,
the user may programthe R-R, bits in the PACS register
for one wait state with no external ready required. Bits R-
R, of the MPCS register control the ready generation for
P'&Sw Bits R;-R, of the PACS register specify the ready
mode for PCS,,. Bit 7 of the MPCS register is used to
select whether the peripheral chip select lines are
mapped into memory or I/O space. After reset, the
contents of both the MPCS and PACS registers are
undefined; however, none of the PCS lines will be active
until boththe MPCS and PACS registers are accessed.
Also on reset, only UCS (upper chip select) is active. It
is programmed by reset to be active for the top 1K
memory block, to insert 3 wait states to all memory
fetches, and to factor external ready for every memory

access. Therefore, some kind of circuit must be included
to generate an external ready until the ready generation
logic is reprogrammed not to factor in external ready.

In this design, the lower 16 address lines are latched.
This is done because the integrated chip selects perform
the selection between the various memories and periph-
erals. Therefore, the upper four address bits can be
ignored. The usage of these upper four bits will probably
vary from design to design.

2.1.2 Multiple QPDM Design

In this section, an extension of the previous design is
discussed. A 16 bit plane, four QPDM system design is
illustrated (Figure 2.1-5). First, a discussion on multiple
QPDM operation is in order.

Multiple QPDM Design Considerations
Initialization and Broadcast

Since each QPDM handles up to four bit planes, a 16
plane systemwili require four QPDM devices. Ingeneral,
all QPDMs are given each instruction simultaneously
with identical parameters, so that the instruction can
update each plane. In some cases, however, ameansto
differentiate between QPDMs and some planes within a
single QPDMis necessary. Tofacilitate individual QPDM
plane operation, each QPDM is assigned a QPDM
number. This number is loaded into each QPDM using
the “Set QPDM Position” instruction. Each QPDM must
be assigned a unique number, via four separate set
QPDM position instructions; one instruction is executed
per QPDM. This means that it is necessary to provide
chip select (CS) decoding for eachindividual QPDM and
for allQPDMs as a group. In this design we would need
five separate CS signals. The “Quad QPDM Chip Se-
lects” shows the relationship between PCS, and the
QPDM table chip selects in this example.

Quad QPDM Chip Selects
Peripheral QPDM(s)
Chip Select Selected
PCS, QPDM1
PCs, QPDM2
PCs, QPDM3
PCSs, QPDM4
pcs, ALL (QPDM1-QPDM4)
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Figure 2.1-5 Quad QPDM Schematic
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Figure 2.1-5 Quad QPDM Schematic (continued)
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Figure 2.1-5 Quad QPDM Schematic (continued)
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Figure 2.1-5 Quad QPDM Schematic (continued)
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QPDM instructions are sent to each QPDM simultane-
ously. This is called broadcasting. Broadcasting of
instructions is accomplished by chip selecting all QPDMs
and writing to Port 0. Further details can be found in the
QPDM Technical Manual. The hardware requirements
for QPDM initialization and for broadcasting are a
mechanism for individual chip selection as well as a
global chip select.

DMA Requests

DMA with a multiple QPDM system is fairly straightfor-
ward. Both FREQ and DREQ are open-drain outputs.
Each QPDM in a system will release its FREQ or DREQ
when it is ready so that a DMA request will be presented
tothe 80186. The FREQ controls DMA to the Instruction
FIFO and DREQ controls DMAto and fromthe Data FIFO
of the QPDM. In a multiple QPDM system, all the FREQ
lines of the QPDMs are tied together through a pull-up
resistor to DRQ, of the 80186. Similarly, all the DREQ
lines are tied together through a pull-up resistor to the
DRQO input of the CPU. In the case of a data transfer
(DREQ), as long as any QPDM is not ready to continue
with the transfer, the node will be pulled LOW. When the
last QPDM becomes ready, the node goes HIGH and a
DMA request will be seen at the 80186. The same is true
of the instruction FIFO and the FREQ pins. As long as
any QPDM is not ready to request more instructions, the
node goes LOW. When the last QPDM becomes ready,
the node will be pulled HIGH through the pull-up resistor
and aninstruction DMA request will be seen at the DRQ,
pin of the CPU.

To summarize, one can see that all DMA to and from
multiple QPDMs are synchronized by the open-drain
AND connection. The open-drain AND ensures that all
DREQ and FREQ requests of the QPDMs are active
before the DMA request is seen at the processor. Above
and beyond the previous discussion, the DMA cycles are
the same as outlines in the single QPDM design.

Block Transfer to and from Display Memory

In the multiple QPDM design, provisions have been
made for display memory accesses by plane (horizontal
on a selected bit plane) and by pixel (reading all bits in all
planes per pixel). In aby plane Block I/O instruction, only
one planein asingle QPDM s selectedforaread orwrite.
In the read case, a provision must be made to keep all
QPDMs in synchronization. To do this, the processor
fakes a read operation on all the QPDMs. The inactive
QPDMs (do not contain the bit plane accessed) leave
EDE not active, so as not to cause contention with the
dataofthe only active QPDM. The active QPDM, the one
with a plane active for the instruction, places data on the
bus asinanormalreadcycle. Inlarge systems, however,

we need external data transceivers. This is where the
EDE (External Driver Enable) pin comes in handy. For
the inactive QPDMs, the EDE pin does not go active to
their corresponding bus transceivers. Only the active
QPDM drives its EDE signal valid to its bus transceiverto
allow its data onto the bus. Therefore, by adding a little
more intelligence to the QPDM interface, synchroniza-
tion is achieved and maintained even when only one bit
plane in a single QPDM is to be accessed.

In a by pixel Block I/0, the user wishes to access all bits
in all planes per pixel. This implies that all QPDMs
contribute the bits of the planes that they control for that
particular pixel. Synchronization, therefore, is not a
problem, as all QPDMs will be active. In amultiple QPDM
system, an extra set of transceivers must be provided to
route the pixels from each QPDM to a single 16-bit data
bus. These are shown on Sheet 8 of the Quad QPDM
Schematic. For example, in this design each QPDM
contributes four bits for each individual pixel. A mecha-
nism has been provided in the QPDM to program the
number of shifts necessary for the proper assembly of
pixels. This is done by specifying the correct number (1,
2or4)dependentonthe numberof QPDMsinthe system
in the BOS field of the Input or Output Block instructions.
To see how this works examine Figure 2.1-6, “By Pixel
Read". Onthefirstpixel's readcycle, each QPDM places
16 bits on its respective data bus, only four of which will
be used. A 16-bit transceiver concatenates four bits from
each QPDM to form a 16-bit data value. Following each
cycle, each QPDM shifts its data four bits to the left. In
this way the next pixel's four bits of data are positioned
correctly in the data bus to be assembled into the 16-bit
value at the transceiver. This process continues until all
16-bit values for the selected number of pixels have been
read. From a hardware standpoint, all that is requiredis
an extra transceiver and extra decoding logic to selec-
tively enable or disable the set of transceivers depending
upon the type of access (by plane or by pixel).

From a software point of view it is best if planes appear
in consistent bit positions. What this means in hardware
terms is that some consideration must be given to how
the data bits of the ‘by pixel” transceiver are connected.
The relationship between data bits and planes is fixed by
the organization of operands in the Set Activity Bits
instruction. Each of four QPDMs extract four bits as
shown below:

15 12 11 87 43 0

QPDM3 QPDM2 | QPDM1 | QPDMO

Po Py P, Py
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Figure 2.1-6a By Pixel (Output Block) Read - First Cycle

There is no reasonable way to change this relationship;
everything else will have to match. To make 1/0 by-pixel
conform, one must wire the by-pixel data transceiver as
shownin Figure 2.1-6, “By Pixel Read". Also see Chapter
13 of the QPDM Technical Manual, "The Relationship
Between Data Bits and Pixels. It should be noted here
that only pixels that are 16 planes or less can be proc-
essed in one pass; deeper bit planes would require
multiple passes.

Other Synchronization Concerns

The synchronization of getting new words out of the
instruction FIFO and reading and writing the data ex-
change FIFOs use the MAT, and MAT; pins. The
MAT,;; pins of allthe QPDMs are ANDed together. This
composite signal goes HIGH only when all the QPDMs
are ready to begin the next instruction. All QPDMs

sample the composite MAT, . signal at the MAT,, input.
Fromaninterface standpoint, allthatis requiredisto AND
the MAT, ; pins and connect the composite signal to the
MAT, pins. The AND is done in PAL device QPDM2.

In a similar fashion, the TSYN,,;; and TSYN,, pin combi-
nationis usedto synchronize the bit map display memory
bus activities. The same hardware considerations dis-
cussed in the preceding paragraphs apply. The AND is
done in PAL device QPDM1. Please note thatevenina
single QPDM system MAT, and MAT . must be tied
together, as are TSYN,; and TSYN,,.

2.1.3 Hardware Overview

Read Cycles

The multiple QPDM read is shownin Figure 2.1-7, “Quad
QPDM Read Timing". The situation is sightly more
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Figure 2.1-6b By Pixel (Output Block) Read - Second Cycle

complex thanin the single QPDM case. We must modify
the transceiver PAL device logic to factor in the EDE
signal discussed previously. The EDE signal from the
selected QPDM is guaranteed active amaximumof 50 ns
after CS to the selected QPDM goes active. This EDE
signal can be active a maximum of

terimax + teomax + toumax
=70+15+50

=135ns

fromthe rising edge of T,. DEN can go active a minimum
of 5 ns from the rising edge of T,. This means that
factoring in the EDE signal into the PAL equations can
delay OE to the transceiver a maximum of 30 ns. Note
that again we are mixing minimum and maximum para-
meters of the 80186. In practice, the delay will be less
than the calculated 30 ns . Remember from the single

QPDM design that we had 185 ns transceiver enable
time prior to valid data required at the CPU. With the
factoring in of the QPDM EDE signal, we have reduced
thisfigureto a minimumof 155 ns. The PAL device circuit
uses 15 ns maximum of this time, so that 140 ns still
remains to enable the transceivers. Since the QPDM
places data onits bus a maximum of 80 ns fromthefalling
edge of read, we can see that the factoring in of the EDE
signal really does not change things allthat much. We still
usethe T, signal to disable the transceivers and meet the
tauay SPecification of 60 ns. Examination of the PAL
equations, QPDM1 and QPDM2, will clarify these points.

Write Cycles

The write cycles remain the same as in the single QPDM
design. Once the QPDM(s) have been chip selected, the
write cycles are identical to the single QPDM case.
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Figure 2.1-7 Quad QPDM Read Timing
Quad QPDM Read Cycle Chip Select Logic
Parameter List _
MIN (ns) MAX (ns) This design uses PCS_, to enable one or all of the chip
i (801861) 30 selects of the individual QPDMs. Note thatin this design
o (80186-1) 30 the address pins A, and A, are not latched via PCS; and
o (80186-1) 5 56 PCS,. This means that PCS, and PCS; are free to
tcvcw (80186-1) 10 56 selectother peripheral devices. The address information
tcvw (80186-1) 45 required by the QPDM is now latched in the Am74LS373
tcw (80186-1) 5 22 latches and connected directly to the A, and A, inputs.
e (95C60-20) 50 Note again that the A, and A, CPU address pins have
e (95C60-20) 65 been connected to the Ajand A, pins of the QPDM such
t"w"?éo 186-1) 10 56 that the internal registers appear at even address
CLRL i
oo (80186-1) 10 44 multiples.
Lo (80186-1) 5 50 The PCS, pins still need to be qualified by ALE to ensure
tou, (80186-1) L 30 that valid address data is present at the A, and A, pins of
tooceou (95C60-20) 80 the QPDMs before a chip select goes active. ALE is
tapou (95C60-20) 10 inactive 30 ns maximum from the rising edge of T,, which
t., (B-Speed PAL) 15 means that the qualified QPDM chip selects are active a
toucry (80186-1) 10 44 t.o Maximum of 15 ns later. This ensures valid ad-
tocry (80186-1) 10 44
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dresses at the QPDM, as addresses are guaranteed
valid by the CPU at least 20 ns before the falling edge of
ALE.

To implement a global chip select to the QPDMs, PCS,
was chosen. Whenever the user's code wishes to
broadcast to all QPDMs, the 1/0 or memory addresses
used will correspond to the fifth 128-byte area above the
programmed base address (PBA) inthe PACS register of
the 80186. The logic to generate both single and global
chip selects is easily implemented in a PAL device.
Examine the QPDM1 PAL device listing. Whenever
PCS, and ALE are active, all the chip selects from the
QPDMs will be active.

When the userwishes to access only a single QPDM, the
address block assigned to the chip select for that particu-
lar QPDM is used.

Block 1/0 “By Pixel” Control

In this design, two extra transceivers are included to
allow the user to read all 16-bit planes controlled by all
four QPDMs on a pixel-by-pixel basis. This means that
some differentiation is necessary between the regular
I/0 transceiver and the “By Pixel” transceivers. This is
accomplished by using address line A, to enable the
extra transceivers. To read data on a “By Pixel” basis
using a block I/0 QPDM instruction, the user addresses
the global bank of addresses (PCS,), with address line A,
active HIGH. This chip select enables all the QPDMs so
that each can contribute up to four bits to the 16-bit word
to be read by the CPU. The assembly of these 4-bit
nibbles occurs at the “By Pixel” data transceivers. These
two transceivers are only enabled when address line A,
is active.

The same holds true for CPU writes on a “By Pixel” basis.
In this case the 16 bits written by the CPU are disas-
sembled by the “By Pixel” transceivers and four bits are
presented to each QPDM to be inserted into the bit-map
for the selected pixel.

Individual QPDM accesses with address line A, LOW
only enable the transceivers associated with the selected
QPDM. Giobal QPDM accesses with address line A,
LOW enable only the eight transceivers associated with
regular QPDM accesses. The “By Pixel”transceivers are

not enabled. Therefore, with a little extra decoding logic,

the user is given the capability to examine all the bit
planes of one pixel in a single CPU access cycle.

One further point must be made clear. The Input and
Output Block instructions of the QPDM are provided to
allow the CPU to access directly into display memory. As
discussed earlier, the CPU may access the display
memory “By Plane” or “By Pixel”. This brings up the point

of activity bits. Each QPDM has four activity bits, one for
each plane it controls. With the Set Activity Bits instruc-
tion the user can set or clear these bits in each QPDM in
the design. If the activity bit for a plane is set to “1”, the
plane will operate normally. Write operations will condi-
tionally write into the plane. If the activity bit for a plane
is setto a “0”, the plane will not be writtento. The activity
bits of a QPDM also affect the generation of the EDE
(external driver enable) signal. During accesses to the
Block I/0 FIFO of the QPDM, the following equation
determines whether or not an EDE signal is generated:

EDE=CS A, A, (AB, +AB, +AB, + AB,)

where AB, - AB, are the activity bits for each plane the
QPDM controls. What are the ramifications of the activity
bits? During an Input Block instruction, data from the
CPU will only be written to the planes whose activity bits
are set. During an Output Block instruction, where the
QPDM outputs display map data to the CPU, two cases
arise. Inthe case of aby-plane read of display data, only
one activity bitin one QPDM may be set. To repeat,ina
system with muitiple QPDMS, when executing a by-
plane Output Block instruction, make sure that only one
QPDM has one activity bit set. If multiple QPDMs have
their activity bits set, then their EDE pins will go active,
enabling their data transceivers and bus contention will
result. In the case of an output block by pixel, the
software must be consistentto interpret the data bits from
alithe QPDMS. For aby pixel output, “1"s will be returned
for all inactive planes. Therefore, the software must be
consistent and keep track of all active planes so thatitcan
interpret the data for the individual pixels.

DMA

The DMAissues remain the same as in the single QPDM
design.

Interrupts

Inthis design an external interrupt controller is added. In
the case of an external interrupt controller, several of the
internal 80186 peripheral control registers must be repro-
grammed. The internal interrupt controller must be in
master mode. The cascade bit of the INT, control register
must also be set. In this mode, whenever the interrupt
presented to the INT, is acknowledged, the integrated
interrupt controller will not provide the interrupt type for
the interrupt. Instead, two interrupt-acknowledge bus
cycles will be run, with the INT, pin of the 80186 now
providing the interrupt-acknowledge pulses for the INT,
requests. The 80186 will read the interrupt type from the
lower eight bits of the address/data bus on the second
interrupt-acknowledge cycle. In this design the INT, and
INT, pins have been reconfigured to hook up to the
external 8259A interrupt controller. The INT, and INT,
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lines are still used as direct interrupt inputs, identical to
the single QPDM design. The 8259A can handle up to
eight externalinterrupt requests. These eight, combined
with the two direct input interrupt pins provide a total of 10
external interrupt requests. Also note that an interrupt-
ready signal must be retumedto the CPU to prevent wait
state generation during the interrupt-acknowledge
cycles. This is provided via the PAL devices. We have
also used PCS; to provide the chip-select logic to the
external interrupt controller. The four INT pins of the
QPDMs have been connected to the external 8259A.
Software must be written to initialize the external 8259A
and to set up the actual external interrupt vector num-
bers. More details can be found inthe 8259A data sheet.

Miscellaneous

The comments on peripheral chip selects in the single
QPDM case also apply in this case. Remember to

program the PACS and MPC; registers for the correct
(one) number of wait states with no external ready.
Consult the 80186 data sheet for bit patterns. The base
address for the PCS, pins are programmed into the
PACS register and each PCS, pinis assigned a 128 byte
block relative to this base address. The PCS, pins
respond only to the addresses in their individually as-
signed blocks. This means that each QPDM in the
multiple QPDM design is assigned a 128-byte block of
addresses. The global chip select takes up another 128-
byte block.

One last statement: in any QPDM design, a few extra
moments ensuring that the hardware bit organizations
are consistent with the software interpretationis time well
spent.

The PAL Equations are listed on the next ten pages.
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CUPL Version 2.10a Serial# 2-00001-066
Copyright© 1983,84,85,86 Personal CAD Systems, Inc.

CREATED Fri Dec 12 12:45:19 1986

LISTING FOR LOGIC DESCRIPTION FILE: XCVR.pld

1:Name XCVR ;
2:Partno 95C60-2 ;
3:Date 12/12/86;

4:Revision 02;
5:Designer Ed Dupuis ;
6 :Company
7:Device
8:

P16R6;

Advanced Micro Devices Canada

9:/*************************************************************************/

10:/* This PAL generates a signal T4 which signifies to the data

11:/* transceivers when the CPU enters T state 4.

During a QPDM

12:/* read cycle, this signal T4 turns off the transceivers so that

13:/* the CPU specification tHRAV is not violated.

During a QPDM

14:/* write cycle, this T4 signal is not generated, and /DEN is
15:/* allowed to turn off the data transceivers.

16:

*/
*/
*/
*/
*/
*/

17:/*************************************************************************/

18:/* Allowable Target Device Types:

19:/* least five free registers.

16R6, 16RB, anything with at

*/
*/

20:/*************************************************************************/

21:
22: /%%
23:
24:Pin 1 = CLOCK
25:Pin 2 = ALE ;
26:

27:

28:Pin 3 =
29:

30:

31:Pin 4 = RESET
32:
33:Pinll
34:

35:
36:/**%
37:
38:Pinl8
39:

40:
41:Pinl7
42:Pinlé
43:Pinl5
44:Pinl4
45:

46:

47:
48:/**
49:

50:

Inputs **/

~

~

'OE ;

Outputs **/

T4

~

W
T3
T2
T1

Ne Ne e N

/*
/*
/*

/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

Inverted CPU clock from chip select PAL */

Address Latch Enable from CPU.

this signal tells us when CPU reaches

state T1

CPU read strobe. Only when this
signal is active do we generate
output signal T4.

CPU reset signal out

Output Enable for PAL. Grounded
permanently

This signal is generated when
the CPU reaches state T4 during
a QPDM read.

Wait State

CPU State T3

CPU State T2

Appearance of ALE signifies the
onset of CPU state T1

Declarations and Intermediate Variable Definitions *x/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
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51:

54:

55:/*%* TLogic Equations **/
56:

57:T1.D = ALE 7 !'RESET ;
58:T2.D Tl & !'RESET ;
59:T3.D = T2 & !'RESET ;
60:TW.D = T3 & READ & !RESET ;
61:T4,D = TW & !RESET ;

62:

63:

64:

65:

66:

[0022ca] Please note: missing header item(s)

Jedec Fuse Checksum (2AAD)
Jedec Transmit Checksum (AF91)
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CUPL Version 2.10a Serial# 2-00001-066
Copyright© 1983,84,85,86 Personal CAD Systems, Inc.
CREATED Fri Dec 12 16:59:56 1986

LISTING FOR LOGIC DESCRIPTION FILE: cupl\gpdmcs.pld

1:Name QPDMCS ;
2:Partno 95C60-1 ;
3:Date 12/11/86;
4:Revision 01;

5:Designer

Ed Dupuis ;

6 : Company Advanced Micro Devices Canada
7:Device P18P8;

8:

9:

10:/*************************************************************************/

This PAL generates a qualified chip select to the Am95C60.
It also provides an inverted CLKOUT from the 80186 to the

11:/*
12:/%
13 /%
14:/%
15:/%

processor state monitor PAL.

This PAL also generates the output enable signal to the

data transceivers.

*/
*/
*/
*/
*/

16:/********k*******************************************************k********/

17:/* Allowable Target Device Types: Aml6L8B, Aml8P8B
18:/*************************************************************************/

*/

19:

20:/** Inputs **/

21:

22:Pin 1 = CLKOUT ; /* CPU clock signal from 80186 */
23:Pin 2 = RESET H /* RESET signal from 80186 *x/
24:Pin 3 = ALE ; /* Address Latch Enable from 80186 *x/
25:Pin 4 = 'PCSO ; /* Peripheral chip select from CPU */
26:Pin 5 = !DEN ; /* Data ENable from CPU */
27:Pin 6 = T4 ; /* CPU state T4 from state monitor PAL *x/
28:

29:/** Outputs **/

30:

31:Pinl9 = ! QPDMCS : /* Qualified chip select for QPDM *x/
32:Pinl8 = ! QPDMOE ; /* Output enable for QPDM data transceivers*/
33:Pinl7 = !RESETOUT ; /* Inverted CPU reset to system */
34:Pinl6 = !CLK ; /* Inverted CPU clock */
35:

36:/** Declarations and Intermediate Variable Definitions *x/

37: :

38:

39:

40:

41:

42:

43:/** Logic Equations **/

44:CLK = CLKOUT ; /* Inverted clock to state monitor PAL */
45:RESETOUT = RESET ; /* Inverted CPU reset to system */
46:

47:QPDMCS = PSCO & !'ALE & !RESET; /* Qualify address to QPDM by */
48: /* delaying chip select until ALE x/
49: /* ensures valid addresses. */
50:
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51:QPDMOE = DEN & !T4 & QPDMCS ; /* Turn off data transceivers when x/
52: /* either DEN goes inactive or */
53: /* T4 goes active, whichever event */
54: /* occurs first. */
55:

56:

[0022ca] Please note: missing header item(s)

Jedec Fuse Checksum (2362)

Jedec Transmit Checksum (B64F)
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CUPL Version 2.10a Serial# 2-00001-066
Copyright© 1983,84,85,86 Personal CAD Systems, Inc.

CREATED Wed Dec 17 11:06:28 1986

LISTING FOR LOGIC DESCRIPTION FILE: XCVRl.pld

1:Name XCVR1 ;
2:Partno 95C60-3 ;
3:Date 12/16/86;

4:Revision 02;
5:Designer Ed Dupuis ;

6 : Company Advanced Micro Devices Canada
7:Device P16R6;
8:

9:/*************************************************************************/
10:/* This PAL generates a signal T4 which signifies to the data
11:/* transceivers when the CPU enters T state 4. During a QPDM
12:/* read cycle, this signal T4 turns off the transceivers so that
13:/* the CPU specification tHRAV is not violated. During a QPDM
14:/* write cycle, this T4 signal is not generated, and /DEN is
15:/* allowed to turn off the data transceivers.

16:/* This PAL also generated QPDM and system reset, and also
17:/* provides the correct polarity ready signal to the CPU from the
18:/* interrupt acknowledge pulse output from the CPU.

19:

*/
*/
*/
*/
*/
*/
*/
*/
*/

20:**************************************************************************/
21:/* Allowable Target Device Types: 16R6, 16R8, anything with at

22:/* least five free registers.

*/
*/

23:/*************************************************************************[

24:
25:/** Inputs *x*/
26:
27:Pin 1
28:Pin 2
29:
30:
31:Pin 3
32:
33:
34:Pin 4
35:
36:Pinll
37:
38:
39:Pin 5
40:
41:
42:
43:
44:/** Qutputs **/
45:
46:Pinl9
47:Pinl8
48:
49:
50:Pinl7

CLOCK ;
ALE ;

[

2
&

RESET

~

!OE

[

~

! INTAO ;

!{RESETOUT
T4

[

S Se

[}

™

~

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

Inverted CPU clock from chip select PAL */

Address Latch Enable from CPU.

This signal tells us when CPU reaches

state T1.

CPU read strobe. Only when this
signal is active do we generate
output signal T4.

CPU reset signal out

Output Enable for PAL. Grounded
permanently.

Interrupt acknowledge pulses
from CPU to external 8259A-2
these pulses are necessary to
the CPU to finish the interrupt
vector fetching process.

System and QPDM reset from CPU

This signal is generated when
the CPU reaches state T4 during
a QPDM read.

Wait State

*/
*/
*/
*/
*/

*/
*/

*/
*/
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51:Pinlé = T3 ; /* CPU State T3 */
52:Pinl5 = T2 ; /* CPU State T2 */
53:Pinl4 = Tl ; /* Appearance of ALE signifies the *x/
54: /* onset of CPU state T1. */
55:Pinl2 = INTREADY ; /* Inverted interrupt acknowledge */
56: /* pulse to the ARDY input of the */
57: /* CPU. *x/
58:

59:/** Declarations and Intermediate Variable Definitions **/

60:

61:

62:

63:

64:

65:

66:/** Logic Equations **/

67:

68:T1.D = ALE & !RESET ;
69:T2.D Tl & !'RESET ;
70:T3.D T2 & !'RESET ;
71:TW.D = T3 & READ & !RESET ;
72:T4.D = TW & !RESET ;

73:

74 :INTREADY = INTAO ;
75:RESETOUT = RESET H

76:

77:

78:

[0022ca] Please note: missing header item(s)

Jedec Fuse Checksum (3A8C)
Jedec Transmit Checksum (CDF6)
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CUPL Version 2.10a Serial# 2-00001-066
Copyright© 1983,84,85,86 Personal CAD Systems, Inc.
CREATED Wed Dec 17 11:02:24 1986

LISTING FOR LOGIC DESCRIPTION FILE: QPDMl.pld

1:Name QPDM1 ;
2:Partno 18pP8-1 ;
3:Date 12/16/86;

4:Revision 03;
5:Designer Ed Dupuis ;

6 : Company Advanced Micro Devices Canada

7:Device P18P8;

8:

9:
10:/*************************************************************************/
11:/* This PAL generates qualified chip selects to the 4 Am95C60s. *x/
12:/* It also provides an inverted CLKOUT from the 80186 to the */
13:/* processor state monitor PAL. */
14:/* This PAL also generates the signal TSYNOUT. This signal is used *x/
15:/* by the QPDMs to synchronize display memory activities. *x/
16:/*************************************************************************/
17:/* Allowable Target Device Types: Amlé6L8B, Am8P8B */

18:/*************************************************************************/

19:
20:/** Inputs **/

21:

22:Pin 1 = CLKOUT ; /* CPU clock signal from 80186 */
23:Pin 2 RESET ; /* RESET signal from 80186 */
24:Pin 3 = ALE H /* Address Latch Enable from 80186 *x/
25:Pin 4 = 'PSCO ; /* QPDM #1 chip select from CPU *x/
26:Pin 5 = 'PCS1 ; /* QPDM #2 chip select from CPU */
27:Pin 6 = 'PCS2 ; /* QPDM #3 chip select from CPU */
28:Pin 7 = 'PCS3 ; /* QPDM #4 chip select from CPU */
29:Pin 8 = 'PCS4 ; /* Global chip select which selects *x/
30: /* all QPDMs for broadcasting */
31:Pin 9 = TSYN1OUT ; /* These are the four signals output */
32:Pinll = TSYN2OUT ; /* by the individual QPDMs and are used */
33:Pinl2 = TSYN3OUT ; /* to synchronize display memory *x/
34:Pinl3 = TSYN4OUT ; /* activities. x/
35:

36:/** OQutputs **/

37:

38:Pinl9 = 'QPDMCS1 ; /* Qualified chip select for QPDM1 */
39:Pinl8 = !'QPDMCS2 ; /* Qualified chip select for QPDM2 */
40:Pinl7 = !QPDMCS3 ; /* Qualified chip select for QPDM3 *x/
41:Pinl6 = !QPDMCS 4 ; /* Qualified chip select for QPDM4 *x/
42:Pinl5 = 'CLK ; /* Inverted CPU clock to state */
43: /* monitor PAL. *x/
44:

45:Pinl4 = TSYNOUT ; /* Global signal to TSYNIN inputs */
46: /* of all the QPDMs. */
47:

48:/** Delcarations and Intermediate Variable Definitions *x*/
49: :
50:
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51:

52:

53:

54:

55:/** Logic Equations **/

56 :CLK = CLKOUT ; /* Inverted clock to state monitor PAL */
57:RESETOUT = RESET ; /* Inverted CPU reset to system *x/
58:

59:QPDMCS1 = PCS0O & !ALE & !'RESET /* Qualify addresses to QPDM1 by */
60: # PCS4 & !ALE & 'RESET; /* delaying chip select until ALE x/
61: /* ensures valid addresses */
62:

63:QPDMCS2 = PCS1 & !'ALE & !RESET /* Qualify addresses to QPDM2 by *x/
64: # PCS4 & 'ALE & !RESET; /* delaying chip select until ALE */
65: /* ensures valid addresses *x/
66:

67:QPDMCS3 = PCS2 & !ALE & !RESET /* Qualify addresses to QPDM3 by */
68: # PCS4 & 'ALE & !RESET; /* delaying chip select until ALE x/
69: /* ensures valid addresses */
70:

71:QPDMCS4 = PCS3 & !ALE & !'RESET /* Qualify addresses to QPDM4 by */
72: # PCS4 & !'ALE & !RESET; /* delaying chip select until ALE */
73: /* ensures valid addresses */
74:

75:TSYNOUT = TSYN1OUT & TSY20UT & TSYN3OUT & TSYN4OUT ; /* All QPDMs */
76: /* must be in synch for this signal */
77: /* to be active x/
78:

79:

[0022ca]l] Please note: missing header item(s)

Jedec Fuse Checksum (456C)
Jedec Transmit Checksum (04E7)
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CUPL Version 2.10a Serial# 2-00001-066
Copyright© 1983,84,85,86 Personal CAD Systems, Inc.
CREATED Wed Dec 17 11:04:33 1986

LISTING FOR LOGIC DESCRIPTION FILE: QPDM2.pld

1:Name QPDM2 ;
2:Partno 18P8-2 ;
3:Date 12/16/86;

4:Revision 03;
5:Designer Ed Dupuis ;

6 : Company Advanced Micro Devices Canada

7:Device P18P8;

8:

9:
10:**************************************************************************/
11:/* This PAL generates qualified output enables to the data xcvrs x/
12:/* associated with each individual QPDM. When the selected QPDM’s */
13:/* chip select goes active this will cause the QPDM'’s /EDE output */
14:/* pin to go active. This signal is then factored in to generate *x/
15:/* an output enable signal. As in the single QPDM design, the *x/
16:/* signal T4 from the state monitor PAL will disable the xcvrs on */
17:/* a read of the selected QPDM by the CPU. In the event of a CPU */
18:/* write cycle, T4 is not generated by the state PAL and /DEN *x/
19:/* going inactive disables the xcvrs. */
20:/* This PAL also generates the output enable for the “by pixel” *x/
21:/* data transceiver. *x/
22:/* This PAL also generates the MATOUT signal to all the QPDMs. */
23:

24:
25:/*************************************************************************/
26:/* Allowable Target Device Types: Aml6L8B, Aml18P8B */

27:/*************************************************************************/

28:
29:/** Inputs *x/

30:

31:Pin 1 = T4 ; /* CPU state T4 signal from state */
32: /* PAL. */
33:Pin 2 RESET ; /* RESET signal from 80186 x/
34:Pin 3 = !DEN ; /* Data ENable from CPU *x/
35:Pin 4 = {EDEO ; /* QPDM #1 external driver enable */
36:Pin 5 = 'EDE1 ; /* QPDM #2 external driver enable */
37:Pin 6 = 'EDE2 H /* QPDM #3 external driver enable */
38:Pin 7 = 'EDE3 H /* QPDM #4 external driver enable x/
39:Pin 8 = A3 ; /* Address bit A3 which differentiates *x/
40: /* between the regular data xcvrs and */
41: /* the “by pixel” data xcvr. */
42:Pin 9 = MAT1O0UT ; /* Color match/syncronization signals */
43:Pinll = MAT20UT ; /* from the four QPDMs. These signals */
44:Pinl2 = MAT30UT ; /* must be ANDed together to ensure *x/
45:Pinl3 = MAT40UT ; /* that all QPDMs execute together */
46:

47:/** Outputs **/

48:

49:Pinl9 = 'OE1 ; /* Qualified output enable for */
50: /* QPDM1’s xcvrs */
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51:Pinl8 = 'OE2 ; /* Qualified output enable for */
52: /* QPDM2’s xcvrs */
53:Pinl7 = 'OE3 ; /* Qualified output enable for *x/
S4: /* QPDM3’s xcvrs */
55:Pinl6 = 'OE4 ; /* Qualified output enable for */
56: /* QPDM4’s =xcvrs */
57:Pinl5 = !PIXELOE ; /* Qualified output enable for */
58: /* “by pixel” xcvr x/
59:

60:Pinl4 = MATOUT ; /* Synchronization signal for QPDMs */
61:

62:/** Declarations and Intermediate Variable Definitions *x/

63:

64:

65:

66:

67:/**x Logic Equations **x/

68:

69:0E1 = EDEO & !A3 & DEN & !T4 & !RESET ; /* enable gpdml’s xcvr */
70:

71:0E2 = EDE1 & 'A3 & DEN & !TA & !RESET ; /* enable gqpdm2’s xcvr */
72:

73:0E3 = EDE2 & !A3 & DEN & !TA & !RESET ; /* enable gpdm3’s xcvr */
74:

75:0E4 = EDE3 & !A3 & DEN & !T4 & !RESET ; /* enable gpdm4’s xcvr *x/
76:

77:PIXELOE = EDEO & A3 & DEN & !T4 & !RESET /* enable the “by pixel” */
78: # EDE1 & A3 & DEN & !T4 & !RESET /* data xcvr. */
79: # EDE2 & A3 & DEN & !T4 & 'RESET

80: # EDE3 7 A3 & DEN & !T4 & !'RESET ;

81:

82:

83:

84:

85:MATOUT = MAT1OUT & MAT20UT & MAT3OUT & MAT40UT; /* Determine if all QPDMs*/
86: /* are matched and in synch */
87:

88:

[0022ca] Please note: missing header item(s)

Jedec Fuse Checksum (3DFE)

Jedec Transmit Checksum (04CE)

2-27



CHAPTER 2
System Bus Interface

2.2 VME BUS

The QPDM, as a fast graphic display controller, can be
adapted to nearly any system bus structure.

This application note describes the adaption to the VME
Bus. The term VME Bus, in this case, does not include
the other busses such as VMX and VMS Bus. Only a
small amount of hardware must be developed to adapt
the QPDM to the VME Bus in a simple way.

In the following chapters, only the system bus of the
QPDM is described. The other busses are not of interest
when discussing the system bus interface.

The QPDM has a normal operation and a DMA-driven
operation. Two approaches have thus been made for an
adaption logic. The first approach uses only the CPU to
do all tasks for the QPDM. The second approach uses a
DMA controller to do high-speed transters between the

2.2.1 Simple Approach

Circuit diagram 2.2-1 shows the simple approach. The
circuit only needs an address decoder, a QPDM, Data
drivers, and a PAL device that does the interfacing
between the VME Bus and the QPDM.

Address Decoder

The address decoder contains an 8-input NAND gate
and an Am25LS521 Comparator. So, the QPDM ad-
dress space begins at an address with the eight most-
significant address bits = 1. The next eight bits are
selected by the comparator. The lowest bits are not fully
decoded.

Interface PAL

The VME Bus is an asynchronous bus. The QPDM is a
synchronous device, so the PAL device has to generate

QPDM and the Main Memory. an asynchronous signal DTACK for the VME bus. All
QPDM
Al-A2 1 :‘1’
7
23 , r t €S
N\ N 1 FTG
VME A23-A16 A15-A8 .04
Address 4 V } WR
Add A A —| FREQ
1530 7] Am25LS2521 — DREQ
EN —{ ACKD
N a0 B——o EDE
- 4 a1 Bil>—o — INT
- € a2 B}L—o —— svscLk
N b R{ns B> (1 mEseT
N ‘13— A4 B2 o —} maTout
- 443_- A5 BY15—o — MATIN
= ‘a A6 B —° — DO
N A7 Bl—o |, —— D1
EOUT —— D2
) AmPAL16RAL 3 [— b3
[ DTACK —1 D4
8, DS0 AD |4 1%
e 7 S WA - o
Control [ AS csSh H q | 08
Bus oF INTACK —
RW —1 >
SYSRES —1 D10
16 ALsz45 5 SYSCLK oc. L —— D11
- L — p12
VME ) 2, — D13
Dat — # D14
DIR — D15
L
7/ 09682A-2.2.1
7

16

Figure 2.2-1 Circult Diagram: Design without DMA
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2

RESET =0

Intern 2

EN=0

09862A-2.2.2

Figure 2.2-2 States of Machine

terms concerning the VME Bus are not described in
detail, therefore, the VME Bus specification has to be
studied. Anothertask of the PAL device isto generate the
necessary control signals for the QPDM.

The following describes the generation of all signals in
detail.

Generation of DTACK

The DTACK signal is generated to show the Bus Master
that the QPDM is ready with the Data transfer. The
QPDM itself is not generating this signal. The signal is
generated in the following way.

When a normal Read or Write to the QPDM is done, the
PAL device generates three cycles after the DTACK
signal. The clock is the normal system clock. The
DTACK signal is generated until the Read or Write cycle
is finished.

The criterion for a normal Read or Write cycle atthe VME
Bus is:

1. CS for the device is LOW.
2. Eitherb_so or D_s1 is LOW.

3. INTACK is HIGH. (The cycle is not an interrupt
acknowledge cycle.)

The logical form is:

EN=CS + (DS,+ DS, )+ INTACK

To generate DTACK, a little state machine has to be
developed. The states of the machine are shown in
Figure 2.2-2.

Because the machine has four states, two flip-flops are
needed to realize the state machine. Figure 2.2-3 shows
the state change of the machine. With this form, the
combinational logic could be easily computed. The
simplification of the logic is shown inthe two KV diagrams
(Figure 2.2-4)

Figure 2.2-3 Change Table

EN |[D1|DO| 1 | IO
0 oo |oO 1
0 0|1 1 0
0 110 1 1
0 111 1 1
1 0j0 |0 0
1 0|1 0 0
1 110 |0 0
1 111 0 0
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As another point the state machine has to be set to state
0 after asystemreset. The Input formula for flip-flop 1 is:

lg=EN- Eo - RESET + EN + D, » RESET

with the equation of EN:

lo= (CS + D?o - DS, + INTACK) » 50 - RESET
+(CS + DSy + DS, + INTACK) D, * RESET
= DS,+CS-INTACK- 50 « RESET

+DS, +CS + INTACK - 50 « RESET

+ DSO *CS « INTACK- D1 * RESET

+ DS1 *CS *INTACK » D,’ * RESET

The input formula for flip-flop 2 is:
I1 =EN- Do *RESET +EN - D1 * RESET

with the equation of EN:

I, = (CS+ DS+ DS, + INTACK) -Do-w
+(CS + DS+ DS, + INTACK) - D, + RESET
= DS+ CS+INTACK - D, » RESET
+DS, + CS - INTACK- D, RESET

0
+ DSO *«CS*INTACK « D, +RESET

+ DS1 *CSINTACK - D1 * RESET

DTACK signal is generated in the following way:

DTACK = DO . D1

Other Control Signals
The other control signals for the QPDM are:
°RD: RD is generated when either DS or DS, is
LOW and RW is HIGH.
°WR: WR is generated when either b—So orD_‘S1 is
LOW and R/W is LOW.

°CSD: QPDM Chip Select, CSD, is generated when
AS is LOW and CS is LOW and no interrupt ac-
knowledge cycle is performed (INTACK = High).

Do
1 o |1 |fo
P\l 1
o [0 o |lo)
EN

0= N-DO+EN°DO°D1

KV-Diagram for |,

KV-Diagram for I,

Figure 2.2-4 KV-Diagrams
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The formulas are:
RD = DS,- DS, + RIW
WR=DS,- DS, + RIW
CSD =AS +CS +INTACK
The timing of the PAL device is shown in Figure 2.2-5.

2.2.2 DMA Approach

To use all the features of the QPDM, the QPDM must
couple with a DMA controller; thus an Am9516 two-
channel DMA controller was used. The interface for that
device to the VME-Bus is described in the Am9516 DMA
Contoller Technical Manual starting on page 6-20. The
QPDM is adapted to the VME-Bus with the same PAL
device discussed in Section 2.2.1 of this handbook. This
PAL device also performs bus-driver steering. Address
decoding is discussed in the same section. Only the
lower addresses are decoded with a multiplexer.

0 1 3 3 0
SYSCLK /- \/ \_/ \ _ / \ \
T3 —  \ /
6\ /1
55T~ \ /1
INTACK
N T\ /T
RESET [
DTACK \ S
Figure 2.2-5a Timing of DTACK
bso \__/ Dso \/
55 \__/ S /
RW RW
T\ T\
Timing of RD Timing of WR

AT/

INTACK _/

® N/
w T/

Timing of CSD

Figure 2.2-5b Other Timings
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Figure 2.2-8 Circuit Diagram: Interrupt Logic
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Figure 2.2-9 Circuit Diagram: QPDM Interface
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2.3 68020 BUS

A graphics engine utilizing a new graphics controller can
provide a real boost to minicomputers based on the
68020. The Am95C60 Quad Pixel Dataflow Manager
(QPDM) combines four major functions previously re-
quiring many integrated circuits: video refresh of the
display; memory refresh; update of the bit map; and
arbitration between the memory update, video refresh,
and dynamic memory refresh.

Not only can the Am95C60 support a bit map size of up
to 4K x 4K pixels and screen size of up to 2K x 2K, but it
also has the high- performance drawing capabilities that
are necessary in today’s advanced graphic systems.

e.g. Block Move - 60 ns/pixel,
Vector Draw - 300 ns/pixel
Polygon Fill - 280 ns/pixel

Advanced features such as Anti-Aliasing, Hardware and
Software Windowing, Clipping, Picking, Text and Poly-
gon Fill are supported directly on chip.

A minimum system consists of one Am95C60 plus Video
DRAM frame buffer, one serializer per plane (Am8172 or
Am8177) and clock generator (Am8158), together with a
color palette (Am8159 OR Am8151). Such a systemiis
easily expandable to support up to 256 color planes.

A small amount of “glue” logic allows the Am95C60 to
interface with all of the common 8-, 16- and 32-bit
microprocessors.

2.3.1 Overview of Graphics Engine and
Display System

The Tasks Required of a Graphics Engine

Key features in today’s workstation are the ability to offer
a high-resolution graphic display and a rapid response to
prompts by the user to manipulate images onthe screen.

As many of the applications of graphic workstations
involve the manipulation of “visual information” stored
within the system, there is an obvious need not only for
a significant amount of memory to hold this visual infor-
mation, but also for dedicated hardware to manipulate
suchdata and supply it at the required data rate and inthe
correct format to the workstation display system (typi-
cally a high-resolution color CRT).

The Advantages of Single Chip, Dedicated
Graphics Controller

The AmA5C60 is a graphics processing chip capable of
handling all the necessary tasks for supporting a bit-

mapped display memory graphics scheme, where the
display memory is constructed from Video DRAMs. As
such, much of the work load in supporting the graphics
sub-system is taken from the host CPU and handled
directly by this dedicated graphics processor. These
features include dynamic memory refresh control, video
display refresh control, line drawing and other graphic
function support, and arbitration to allow other parts of
the system access to the video display memory.

The Frame Buffer

The frame buffer consists of a number of memory de-
vices which hold the current picture information to be
supplied to the video display device (CRT).

Video DRAMs are used as the memory device for such
a frame buffer. This special type of DRAM is similar to
standard DRAMSs, but has additional features which
include a second port, ideal for supporting the interface
to a video system.

In a special access cycle, called a Transfer Cycle, 1024
pixels of data can be read from the DRAM array into an
on-chip shift mechanism. This shift mechanism canthen
be drivenindependently of, and concurrently with, further
accesses to the DRAM array from the normal (host) port,
providing serial pixel data at rates of up to 100 MHz. For
example, by banking four Video DRAMs in parallel to
provide a 16-bit data path, pixel rates of up to 400 MHz
are achievable, with the real limiting factor being the
maximum clock rate of the shift registers being used
(Am8177 and Am8172 - 200 MHz max).

The advantage of this scheme over a system with video
memory constructed from standard DRAMs is that typi-
cally the host or Am95C60 can access the video memory
of Video DRAMs for update in excess of 95% of the time,
compared with less than 40% of the time for a video
memory of standard DRAMs. This will offer a greater
drawing and BLITing capability, an essential feature in
supporting animation and quick drawing and data trans-

“fer responses, key features in today’s workstations.

The Am95C60 generates all the necessary signals to
control such a Video DRAM array.

2.3.2 How to Address Peripheral Chips ina
68020 System

Virtual Memory - How to Address Hardware
Resources

A virtual memory scheme allows a process in execution
to have access to the total address space of the CPU,
which for the MC68020 is 4 Gbytes (32 address lines).
The address generated by the host processor will index

2-34



CHAPTER 2
System Bus Interface

Hardware
Hardware
Address Resource
Virtual Decode Enables
Address
PAGER
MC68020 (Address Other System resources
Processor Translate)
Physical SYSTEM
Address MEMORY ETHERNET S:S'
C.
32 Bit System Bus
I | 1
0
DMA AmO5C60 Display
n Memory

Figure 2.3-1 Typical Workstation Block Diagram

into a page table mechanism, or pager, which maps this
4 Gbytes of virtual address space to the physical memory
within the system.

The pager system needs not only to generate the re-
quired address lines to the physical memory, translated
from the virtual address, but must be able to select the
hardware resources within the system. A simple method
of implementing this could be to configure the pager
system to generate one more physical address line than
is required to address the system memory. The addi-
tional line is used to indicate that the access is to a
hardware resource, not systemmemory. The page table
entries can hence be set up to map a virtual address to
any hardware resource within the system, offering maxi-
mum flexibility. To address a number of hardware
resources within this “hardware address space”, the
additional address line can be used to enable decode
logic of the lower address lines, thus disabling any
access to the system memory to select the desired
hardware resource.

Using this type of scheme, the enable to any peripheral
device, such as the graphics engine, can be generated

from the pager hardware system, which would include
the additional address decode logic to generate individ-
ual chip select lines to each hardware resource withinthe
system. For hardware resources containing a number of
registers, some of the low order address lines can be
used to address such registers, together with the chip
select to that device.

The pager would also need to indicate to memory if and
when the presented physical address is valid
(PhyStrobe). This would be true only if a mapping of
virtual address to physical address was found.

Otherlines may be available on the system bus to qualify
the address space (the function code lines FC0-2 for the
MC68020), or to define whetherthe access is for code or
data within user or supervisor address space. This
information may also be used by the pager system to
implement a memory protection scheme, but this is
beyond the scope of this application note. (See
Figure 2-3.2)

Typically the address decode can most simply be imple-
mented using a combinatorial PAL device. (See Figures
2-3.3and 2-3.4)
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Access Violation
A5 —— Page Fault
f—yf——— Hardware Enables
O o e
Enable
32 321 |—— PhyStrobe ————————1 Sirobe
VA i m, ,M+n Add
* 7 | L4
2
7 SYSTEM
Address) n (Physical
) Address) MEMORY
Data Bus Data

Where : n defines the No. of bytes per page;
m defines the No. of pages of system memory;
k defines the No. of Hardware Resources within system.

Figure 2.3-2 Simplified Pager System Block Diagram

(Physical Address Strobe) PHYSTROBE —
(Hardware Space/~Memory) PHYSADDR 50 —— |———— CSQPDM (see Note)
PHYSADDR 19 PAL CSQPDMO
PHYSADDR1g CSQPDM..
Hardware Resource PHSYADDR17 16L8B ——OSG’DM(N)
PHYSADDR 16 — —— CSDMA__
A — ——— CSPLANE
— CSPIXEL
Note: CSQPDM is set when any QPDM Is chip selected wnnBlC
(used by DSACK generation logic--see Fig. 2.3-12)

Figure 2.3-3 Hardware Resource Address Decoding
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Figure 2.3-4 MC68020-Am95C60 System Block Diagram
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The addresses used for individual hardware resources
within any particular system can be totally arbitrary and
will be defined by the designer as desired.

ASisusedinthe equationto turnoff the CS device quickly
at the end of a bus cycle.

PhyStrobe is only relevant when a “Pager” or similar
system is implemented.

CSPIXEL is used to set the /O mode register defining
subsequent accesses between the system bus and dis-
play memory planes to be “By Pixel".

CSPLANE is used to resetthe I/O mode register defining
subsequent cases between the system bus and display
memory planes to be “‘By Plane".

Direct Addressing of Peripheral Devices

In many applications where the MC68020 is the kernel
CPU in a mini- or microcomputer running a high-level
operation system, a virtual memory management
scheme will be most applicable. However, in applications
where the MC68020 is a controlling processor for periph-
eral devices, it is reasonable to use a direct addressing
scheme where unique addresses are permanently allo-
cated to peripheral devices within the system.

In such a system, the address decode logic needed to
generate the relevant chip selects to the peripheral
devices need only be a simple PAL device to decode the
address lines together with Address Strobe (AS). (See
Figure 2.3-3)

Appendix 1 contains an example of the source code for
such a PAL device.

-2.3.3 Signal Definitions

When a common bus is connected to multiple compo-
nents that do not have an identical bus cycle structure,
such as the Am95C60 and the MC68020, a number of
control and response signals require translation into the
appropriate form. (See Figure 2.3-5)

Initiating the Bus Cycle

The MC68020 or similar bus master initiates a bus cycle
by first requesting bus mastership via the arbitration
signals “Bus Request”, “Bus Grant” and “Bus Grant
Acknowledge” (BREQ, BGRNT and BGACK). Once bus
control is gained, the bus master drives an address and
function code onto the address and function code bus
lines and drives the Read/Write line defining the direction
of transferonthe bus. The bus masterthengenerates an
address strobe, AS, to define when the address lines are
valid.

MC68020 Am95C60
TPLo.2 INT
AVEC Aoy
FCo2 RD
ADDg-3 WR
cs

8l
PITTTTTTLTY
Lt

CLOCK

FESET NOTE: Clocks may be different.

Figure 2.3-5 QPDM to 68020 Interface Signals

Data Strobe, DS, is then generated at the appropriate
time within the bus cycle on a Write indicating to the slave
device that data is valid, or on a Read defining when the
slave should send data to the bus master.

The 32-bit address is further qualified by the function
code lines, FC_,, to define the address space within
which this address resides. Logic (probably within the
pager system) decodes all these lines to generate either
an enable to the memory (if a mapping of virtual address
to physical memory address exists within the pager sys-
tem), an enable to the appropriate hardware resource (if
a mapping exists to that hardware physical address), or
neither if an access violation or page fault has occurred
(no mapping exists).

If the bus cycle is aimed at the Am95C60, the
CSQPDM(N) should be asserted. (See Figures 2.3-2
and 2.3-3)

The MC68020 qualifies the direction of transfer of the bus
cycle using the WR signal (here called WRBUS to distin-
guish it from the write strobe signal to the QPDM), which
has been set prior to AS, and hence prior to CSQPDM.
This WRBUS signal can then be used to generate the
correctly timed RDQPDM or WRQPDM signals to qualify
the CSQPDM, as required by the Am95C60 to define the
direction of transfer of information between the MC68020
and the Am95C60 (Figure 2.3-6).
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SEQUENCER
STATE

| ol ol el elslolo]

g T LI LI LI L LI L L L L L L LT 1 _sseeocio

CSOPOM —I

l..J NOTE2

(Async)

CSQPDM 1

(Sync)
BT L_jNorE!

WRBUS X X
WRQPDM 1 I
RDQPDM . 1 |
DSACK1 1
NOTE 1: This delay is dependent on the Address Decode Logic.
NOTE 2: This delay in clearing the signal depends on the Address
Decode PAL propagation delay from AS negating.
Critical Timing Parameters Required Guaranteed
Min WRQPDM width 70/90/100 ns 120 ns
Set up CSQPDM to RDQPDM WRQPDM asserting Ons 60 ns
Set up Write Data to WRQPDM negating 50/75/100 ns >180 ns
Read Data valid from DSACKxx asserting 60 ns max -40/-20/0 ns
DSACKXxx asserting with respect to negative clock edge 18.5ns 12ns

Where more than one figure appears in a column, the different requirements for different speeds (12, 16 and
20 MHz) of the Am95C60 are reflected. The MC68020 timing requirements are for a 16.67 MHz device. Refer
to the Am95C60 Technical Manual and the MC68020 specifications for bus cycle timing details.

Figure 2.3-6 Bus Cycle Timing Diagram

Responding to a Bus Cycle

Having initiated a busy cycle to the Am95C60, logic is
required to generate sufficient WAIT states to the
MC68020 to generate a bus cycle of acceptable length to
the Am95C60. The response lines needing to be set are
the DSACKO and DSACK1 lines. When not asserted,
these lines cause WAIT states to be inserted in the bus
cycle. At the appropriate times, these lines can be

asserted, and the code supplied to the MC68020 indicat-
ing the width of the device responding to the bus cycle (1,
2or4byteswide). The Am95C60 is capable of operating
as either an 8- bit or 16-bit wide port, but in this instance,
for optimum performance it should be configuredas a 16-
bit port and hence should respond with a code of 01H.
(See Figure 2.3-7)

DSACK1  DSACKO  Function
H H Insert WAIT states
H L Cycle complete - 8-bit wide data port
L H Cycle complete - 16-bit wide data port
L L Cycle complete - 32-bit wide data port

Figure 2.3-7 DSACK Code Definition
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Port No. Operation Action
A1 A0 (Address pins of QPDM)
(ADDR2 ADDR1) (System Bus address lines)
0 0 Read Read Am95C60 Status Register
0 o] Wirite Write Instruction FIFO
0 1 Read Read Block Output /O FIFO
0 1 Write Write Block Input I/O FIFO
1 0 Read/Write Access to 1/O Pointer Register
1 1 Read/Write Access to Internal Register pointed to by the /O Pointer Register

Figure 2.3-8 Am95C60 Internal Register Address Decode

Once these signals are asserted, the bus cycle will
terminate, allowing the MC68020 to read the presented
16 bits of data on a Read cycle or to write 16 bits of data
on a Write cycle using the most significant 16 bits of the
32-bit data bus.

Note: The Am95C60 must be configured on the most
significant 16 bits of the 32-bit data bus.

Addressing the Am95C60’s Internal Resources

The Am95C60 recognizes four addresses in conjunction
with CSQPDM, as defined in Figure 2.3-8.

The method of accessing resources within the Am95C60
requires that the I/O Pointer Register be first loaded with
the address of the resource to be accessed. Having
loaded the I/O Pointer Register with the appropriate
value, any subsequent access to the I/O Data Register of
the Am95C60 will transfer data between the Bus Master
and this resource.

Itisimportantto note that each Am95C60 within a system
must be individually addressable to initialize each device
(using the Set QPDM Position instruction) to define the
position of each Am95C60 within the array of display
memory planes.

2.3.4 Dynamic Bus Sizing

The size of any bus cycle is dynamically defined by the
SIZO-1 lines generated by the MC68020. Any bus cycle
is capable of accessing 1, 2, 3 or 4 bytes on any byte
boundary provided that the access does not cross a
longword boundary (a longword = 4 bytes). Hence a 32-
bit wide memory systemwould need to decode the SIZO-
1 and address lines A0 and A1 together with AS and DS
to determine which of the byte select lines should be
asserted on Write cycles to the memory, so as to modify
only those bytes defined within any longword.

Allresources withinthe Am95C60 are 16 bits wide. Since
any Write cycle (under the control of CSQPDM and
WRQPDM) to the Am95C60 will take the 16-bit quantity
presented on the bus and load it into the appropriate

register, itis essential that data is word aligned. The least
significant address line is not used in addressing the
resources within the device.

The simplest way of organizing data to be loaded into the
Am95C60, either directly from the MC68020 or from
system memory under the control of a DMA channel, is
to ensure that the data is word aligned and that all bus
cycles are word transfers, i.e., avoid instructions that will
generate byte accesses to the Am95C60. For word
accesses to the IOP register, null data should be used in
the most significant byte position on loading, and unde-
fined data will be returned in this byte position when
reading.

Note also that as data is transferred a word at a time
between the QPDM and the MC68020, the address lines
A, and A, of the MC68020 connect to address pins
A, and A, respectively of the QPDM.

2.3.5 Halt and Bus Error Control

Other response lines which need to be controlled on bus
cycles generated by the MC68020 or similar bus master
are “Halt” and “Bus Error” (HALT and BERR). These two
signals inform the bus master whether or not the bus
cycle has terminated successfully, and if not, whether a
repeat bus cycle should immediately be attempted (once
HALT has been negated), or whether a Bus Error Excep-
tion should be taken causing a bus error handling routine,
similar to an interrupt routine, to be executed.

In general, the repeat option is used when the pager
mechanism or cache control system finds that a virtual
address presented does not immediately map to avail-
able local memory, but an update mechanism exists
which does not require the CPU to execute specific code
to update that local memory. The bus master is inhibited
from using the bus until HALT is negated, allowing the
update mechanism time to do whatever is necessary
before negating HALT.

The bus error exception is usually taken if the host
processor is required to execute code to correct the fault
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that caused the bus cycle to terminate unsuccessfully,
such as “Bring in new data from secondary memory or
backing store into local memory”.

Bus error may be set for other reasons than page fault
(the page of memory required is not currently resident in
available local memory) such as memory parity error or
access protection violation. In general, the pager mecha-
nism will be responsible for detecting these exception
conditions and will normally contain the logic to generate
these signals.

A special case of when Bus Error can be set is when an
Interrupt Acknowledge cycle is generated by the
MC68020 but no device is requesting service. If this
condition occurs and the Bus Erroris asserted in such an
Interrupt Acknowledge bus cycle, it is interpreted that
Spurious Interrupt has occurred. The Bus Error excep-
tion is not taken under this condition. The Interrupt
Handling logic of Figure 2.3-11 further describes this
condition.

In general, when accessing hardware resources within a
device such asthe Am95C60 where the resource should
always be available, there should never be a need to
unsuccessfully terminate the bus cycle, and hence addi-
tional logic should not be required beyond what is in-
cluded in Figure 2.3-11 or would already be present
within such a pager system.

If a particular system requires that Bus Error or Halt be
driven under specific conditions, it would be a simple task
to generate control logic to set these signals as appropri-
ate. (See Figure 2.3-6)

2.3.6 System Bus Arbitration

The Am95C60 canonly act as abus slave, neveras abus
master, and hence does not have directinvolvement with
system bus arbitration to become the bus master.
However, the task of loading the Am95C60 with data and
instructions can be taken from the host processor and
given to a suitable DMA controller to reduce the load on
the CPU, thus resulting in greater system performance.
Such a DMA controller must interface to the bus arbitra-
tion scheme.

2.3.7 Initializing the Am95C60

Two maintasks are involvedin controlling the Am95C60.
In order to initiate any activity within the graphics engine
following power-up reset, the device needs to be initial-
ized with a number of parameters defining the environ-
ment in which it resides (such as the size of the Video
DRAMs constituting the display memory, whether an 8-
or 16-bit bus interface is being used to the system bus,
etc.). As stated previously, it is essential that each

Am95C60 within a system can individually be chip se-
lected when executing the Set QPDM Position instruc-
tion. Once having loaded each Am95C60 position reg-
ister, most accesses to the array of Am95C60s should
set all chip select lines (CSQPDM(0...N), where there are
N devices within the system) as all Am95C60s execute
the same instruction simultaneously.

Execution of these instruction may have different effects
ondifferent display memory planes. This dependsonthe
data already present in display memory or on the con-
tents of certain registers within each Am95C60. The
following are some examples: defining which planes are
active (activity bits), what color lines should be drawn
when executing drawing instructions (color bits), what
color is being searched for and on which planes, and
when using Area Fill instructions (color search bits and
listen bits).

When the appropriate instruction is used to set the
desiredvalueinthese registers, the instruction has within
it a field defining which Am95C60 is being accessed.
Each Am95C60 compares this field with the contents of
its plane position register to determine whether it is the
target for this operation. See Section 13.2.4 of the
Technical Manual.

Hence when defining the addresses with the hardware
space for the Am95C60s within a system, individual
addresses should be allocated for each Am35C60 for
use when initializing the devices. A further address
should also be allocated causing all CSQPDM(0- N) lines
to be asserted for use when accessing all Am95C60s
simultaneously (once all the Am95C60s are initialized).
Refer to Figures 2.3-3 and 2.3-4.

Once the CPU hasinitialized the Am95C60, the device is
ready to begin executing drawing or data manipulation
instructions. Over fifty differentinstructions are available
which can be loaded into the Am95C60 in a number of
different ways.

2.3.8 Initiating Am95C60 Activity
Loading Instructions from the Host Processor

The most straightforward method of loading instructions
is for the host processor to generate a Write cycle and
directly address the Instruction FIFQ within the
AmM95C60 by writing to Port 0 in “hardware space” (see
Figure 2.3-8). This method is commonly known as
Programmed 1/O.

When servicing the Instruction FIFO by the host proces-
sor, the FREQ signal may not be directly connected.
However, when this is true, the FREQI interrupt, i.e., the
Instruction FIFO is half empty, can be “mask-controlled”
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to set a bit within the interrupt register of the Am35C60,
thereby causing the host to service the Instruction FIFO.
Alternatively, the host may poll the status register (Read
Port 0) bit 14 to determine whether or not the Instruction
FIFO requires service.

Using a DMA Channel to Load Instructions

The Instruction FIFO may be loaded using a dedicated
DMA channel, although no Acknowledge signal is avail-
able for the DMA channel supporting the instruction
FIFO; therefore, “flow-through”, not “fly-by”, transfers
must be supported for this channel.

Flow-through mode means that the DMA channel reads
system memory in one bus cycle using the address
reloaded into the Source Address Register of the DMAto
obtain the instruction to be loaded into the Am35C60.
The data is stored in a temporary data register. In the
next available bus cycle the DMA writes this datainto the
Instruction FIFO using the address preloaded into the
Destination Address Register of the DMA which should
incorporate the port number (Port 0) of the Instruction
FIFO of the Am95C60.

The signal FREQ is generated by the Am95C60 indicat-
ing that the Instruction FIFO is not full, and hence can be
used to request further instructions from system memory
under control of the previously initialized DMA channelto
keep the Instruction FIFO full.

Using Program Mode to Load Instructions

The third method of loading instructions into the
Am95C60 is to use a special instruction that causes the
Am95C60 to read instruction from an area in video
memoryinstead of accessing the Instruction FIFO. Thus,
once having written a string of instructions into video
memory, the Am95C60 can be loaded with the “Call”
instruction. When executed, this instruction will start to
take subsequent instructions from an area of video
memory pointed to by the following operand address pair
after the Call instruction. Subsequent Call instructions
allow the use of nested subroutines within display
memory. Execution control is switched back to the
Instruction FIFO either by executing a “Return” instruc-
tion (when notin a nested subroutine), or by areset of the
device (hence, the device always initially executes from
the Instruction FIFO).

Moving Data Between System and Display Memory

Certain instructions may require data to be written to the
Block input FIFO, or data to be read from the Block
Output FIFO when data is being transferred between
video memory and system memory, or another resource
on the system bus.

Programmed I/0

These FIFOs may be serviced directly by the host proc-
essor either by interrupting the host processoron such a
condition or by the host processor poliing the status
register to determine whether the Data FIFOs require
service, although this would impose a heavy workload on
the host. Alternatively, the Data FIFOs may be serviced
using a dedicated DMA channel from a suitable device,
such as the Am9516A two-channel DMA controller.

Request and Acknowledge lines are available on the
AmA5C60 to allow such a DMA channel to support the
Data Input and Output FIFOs, thus relieving the host
processor of this task.

Using a DMA Channel to Service the Data Input/
Output FIFOs

When data is required on a write-to-display memory, or
is ready on a ready-from-display memory, a request is
raised (DREQ) by the Am95C60 to request service of the
appropriate data FIFO. The FIFO may be serviced
directly by the host CPU by reading or writing the appro-
priate port onthe Am95C60 (Port 1) or by using a suitably
initialized DMA channel.

The DMA channel’s request input may be linked via an
inverting gate to the DREQ signal. Using the ACKD
associated with this DMA channel, “fly-by” transfer can
be achieved between Data FIFOs and system bus.
Hence, whenever the Data FIFOs require service, no
further host processor intervention will be required, pro-
vided the DMA channel has been initialized with the start
address of the area of system memory to be used and the
number of words to be transferred to/from system
memory.

On completion of each data transfer instruction or on
initiation of the next data transfer instruction, the host
processor needs to beinformed so that it caninitialize the
Data DMA channel with the relevant parameters for the
next data transfer instruction to be executed.

Note: The port number value on address lines ADDR2
and ADDR1 (QPDM pins A1 and A0) need not be valid
during DMA transfers using the DREQ and ACKD lines,
since these form part of the address to system memory.
Port 1 is assumed by the QPDM.

Using a DMA Channel to Service Multiple Am95C60s

Since all Am95C60s begin execution of the same instruc-
tions at approximately the same time, they will require
their Instruction and Data FIFOs to be serviced at the
same time.
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As the instruction stream to each Am95C60 is held in an
on-board FIFO, the ripple-through delay of each FIFO
may be sufficiently different to cause different
Am95C60s to detect and begin execution of an instruc-
tion on different clock edges. Hence, for a system
containing multiple Am95C60s, their instruction execu-
tion may initially be skewed by one clock cycle. This
problem is resolved by using the MATIN and MATOUT
lines between QPDMs to re-synchronize and ensure all
devices are in step.

To ensure that all Am95C60s are ready for the DMA
transfer to begin, all FREQ and DREQ lines are con-
nected together, effectively implementing a “Wire-AND”
function for each signal. Until all devices are ready, the
resultant line will not be asserted. This is possible as
these signals are of “open drain” construction (active
HIGH), and as such require a pull-up resistor to +5 V.
These are then inverted to generate active LOW DMA
channel requests.

2.3.9 Bus Interface Control

Six instructions are provided within the Am95C60s in-
struction setto facilitate transfer of databetween the sys-
tem bus and display memory. These are the Output
Block, Input Block and Store Immediate instructions for
reading and writing display memory. Each caneitheruse
the current pen position or use the address specified
within the instruction as the target area within display
memory.

2.3.10 Data Transfers by Plane or Pixel

When transferring between the system bus and memory,
two options are available under the control of the Z bit
within the instruction field to define whether data should
be accessed by plane or by pixel (Z=0 transfer by plane;
Z=1 transfer by pixel).

Display Memory Access by Plane

When reading display memory by plane, the activity bits
associated with each display memory plane must be set,
using the Set Activity Bitinstruction, so that only the plane
involved with the data transfer is active. All other plane
activity bits must be reset. Hence the only Am95C60 to
generate an enable (EDE) to control the bidirectional
buffer linking the Am95C60’s 16-bit data port to the
system bus will be the device with an activity bit set for
one of the planes for that it has control. When writing
display memory by plane, multiple activity bits may be set
if identical data is to be written to more than one plane.

Display Memory Access by Pixel

When accessing the display memory by pixel using the ’
Input and Output Block instructions, more than one plane
will be accessed concurrently. Any number of activity bits
may be set during the execution of the instruction. When
executing such an Input or Output Block (by Pixel)
instruction, the Block Input Step (BIS) field defines the
number of pixels contained in each 16-bit data word.

Bidirectional Buffer Enable Control

The control of the enables of the bidirectional buffers will
be more complex when using Input or Output Block
Transfer instructions by pixel within a Multi-QPDM sys-
tem, since each Am95C60 within the system will need to
transfer four bits (relating to their four planes) to be
assembled into the 16-bit value to be presented to the
system bus.

In a multi-QPDM system, additional bidirectional buffers
will be required that are only enabled when using this
mode to interface these four bits of data from each
Am95C60 to the 16-bit data bus. Figure 2.3-9 shows an
example for a 2-QPDM system. The Input Block Section
in Chapter 14 of the Technical Manual shows the recom-
mended connections for all possible system sizes.

By Plane or By Pixel

Control of the bidirectional buffer enables can be
achieved by using a PAL16R4 to decode the EDE lines
from each Am95C60, and by using a register (/O mode
register) withinthe PAL device that canbe setby the host
processor prior to the loading and execution of a Block
Input or Output instruction. This register will define
whether the Block I/O transfer is to be done by pixel
(register set) or by plane (register reset). Responsibility
lies with the software to ensure that the register is set to
the appropriate state to match subsequent Block /O
instructions; for example, if the register defines, “Trans-
fer by Pixel”, then the subsequent Block 1/O instruction
should also define “Transfer by Pixel” using the “Z” field
within the instruction. The appropriate enables to each
buffer can be generated by the PAL device.

A simple way to set and reset this “Pixel/Plane” /O mode
register could be to allocate two addresses within “hard-
ware space”, one to define “setting” the register and the
other to define ‘resetting” the register. The host would
thenonly need to generate a bus cycle to the appropriate
address to set the I/O mode register to the desired value.
This is only one of many different ways of implementing
this function.
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Figure 2.3-9 Transcelver Configuration to System Bus (2-QPDM System)

Note: The DSACK logic would need to respond to an
" access to these addresses, otherwise the system bus
would lock up with infinite WAIT states inserted.

Bidirectional Buffer Direction Control

The direction control of the buffers is a simple decode of
the system write (WRBUS) line and the acknowledge
(ACKD) line from the DMA channel associated with the
Data FIFOs. The ACKD line is required to indicate that
the sense of the WRBUS line is inverted when transfer-
ring data between the system bus and the Data FIFOs in
“fly-by” mode. An example of the PAL code to achieve
this function for a 2 QPDM system is shown in
Appendix 2.

2.3.11 Interrupt Handling

There are a number of conditions that cause the
AmI5C60 to raise interrupts to the host processor to
inform it of some specific event or an illegal condition.
The different types of interrupts that the Am95C60 can
generate are listed in Figure 2.3-10 All interrupts are
maskable.

The interrupt signal from the Am35C60 typically will be
connected to some priority encode scheme, so that all
the sources of interrupt within the system can be ar-
ranged by priority. (See Figure 2.3-11)

— Idle

— Stack Overflow

— Display Memory Boundary Crossed
— Clipping Boundary Crossed

— Frame

— FREQ (Instruction FIFO DMA Control)

— DREQ (Data FIFO DMA Control)
-- Vertical Blank

— Software (The SIGNAL Instruction)* or

Picking Detect (Non-maskable)*

*Note: “Software” and “Picking Detect” conditions set the same interrupt bit in the interrupt
register. However, “Picking Detect” is only enabled when picking is enabled.

Figure 2.3-10 Am95C60 Interrupt Sources
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Decode Logic Schematic:

QPDMINT L INT,
O B
Interrupt Sources < - _ 'NT_O
........ — amPAL — é\iFf '
SR w88 IACK<Device>
AS f—
ADDR —
Acknowledged Interrupt Level ADDR: SERRT
ADDF!1
IACK
FCo
FCi — TACK
FCo —— COPROCESSOR ENABLE (For MC68881)
ADDR4gq — ...
ADDR g AmPAL |
ADDR,, eLes L Any other CPU space
ADDR dgvif:e enables required
_ 16 within the system.
AS — E—

Note— AnIACK cycle uses a Function Code of 7H (defining CPU space
access), and address lines 16 to 19 contain a code of OFH.

The interrupt level being acknowledged is asserted by the MC68020
on address lines 1 to 3.

AVEC and IACK <Device> are mutually exclusive.

No DSACK response should be generated on bus cycles when
AVEC is asserted.

Figure 2.3-11 Interrupt Handling Logic
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The MC68020 Interrupt Sequence
The interrupt sequence of the MC68020 is as follows:

The MC68020 monitors the level of the IPL,, lines.
When a non-zero level is detected for at least two
consecutive system clocks, the MC68020 internally flags
that a genuine external interrupt condition exists. Note
that the IPL, lines are active LOW.

If this interrupt level present on the the ITLM lines is
greater than the current interrupt level, this will cause the
host processor to “stack” the state of the machine on
completion of the current instruction. The MC68020 will
then generate an Interrupt Acknowledge (Read) Bus
Cycle (IACK cycle) to determine which interrupting de-
vice for any particular interrupt level has raised the
interrupt. The device with an interrupt pending can
respond to this bus cycle by supplying a vector number
that is used to index into an Interrupt Address table to
point to a unique program subroutine to service that
particular interrupt.

Using Autovectors

It is not essential that the interrupting device respond to
this IACK cycle by providing a vector number and gener-
ating a DSACK response as previously described. In-
stead, the device cancause the AVEC line to be asserted
to the MC68020, indicating that the Autovector for this
particular interrupt level should be used. Within the
Vector Address table, this causes a specific entry unique
for each interrupt level, to be used as the source of the
interrupt service routine start address, instead of using
the returned vector number to index into the Vector
Address table to provide this start address.

Using the Autovector system to respond to the IACK
cycle, caused by the Am95C60 interrupt, makes the
hardware support more simple, as the Am95C60 does
not have a specific on-board register to hold an interrupt
vector number. However, should a particular system
require it, it would be relatively simple to use an external
register to hold the vector number enabled by a suitable
signal from the “Hardware Space” decode logic. When
using the Autovector feature, the Am95C60 does not
need to be informed that the IACK cycle has occurred at
this time, but decode logic can set the AVEC line to the
MC68020 in response to the IACK cycle. (See
Figure 2.3-11)

On entering the interrupt service routine for the
Am95C60, the software should read the Status Register
of the Am95C60. From this register the software can
determine that interrupt conditions currently require serv-
ice. To clear the relevant bits within the Am95C60, a
Write to the Interrupt Acknowledge Register should be

issued defining that bits of the Interrupt Register are to be
reset. If no further interrupt conditions have become set
since reading the Status Register, this Write to the
Interrupt Acknowledge Register will cause the interrupt
line from the Am95C60 to be negated.

If, after the Status Register has been read to determine
outstanding interrupts, another interrupt condition oc-
curs before the Write Interrupt Register occurs, then this
newly set bit will not be cleared by the Write to the
Interrupt Acknowledge Register, and hence the interrupt
line will not be reset. This does not cause a problem,
however, since when the interrupt routine completes and
tries to return to the previous interrupt level, the
MC68020 will again be interrupted due to this new
interrupt condition. The interrupt routine will again be
entered, allowing this new bit to be read, cleared and
serviced. This mechanism guarantees that no interrupt
will be lost.

Note that if an IACK cycle occurs but the interrupt
condition causing the IACK cycle to be generated by the
MC68020 is no longer set, then a Spurious Interrupt has
occurred. Under this circumstance, the IACK cycle
should be responded to with Bus Error, not DSACKxx or
AVEC. The MC68020 will interpret the Bus Error signal
to indicate that the Spurious Interrupt vector should be
used as the entry address into an interrupt routine. The
MC68020 will not take the Bus Error exception.

Reading the Status Register

When reading the Status Register of an Am95C60, the
device must be explicitly addressed using the unique
address associated with that Am35C60, as used when
setting the Plane Position Register of each Am35C60. If
the global address is used, multiple devices will attempt
to drive the system bus simultaneously. All QPDMs will,
however, contain the same value in their Status
Registers.

System Interrupt Priority

To prioritize a number of interrupts, some of which may
cause the same interrupt level, a PAL device may be
used simply to look at the currently outstanding inter-
rupts. The relevant interrupt level can than be asserted
onthe IPL,, lines to the MC68020. All devices must hold
their interrupt lines asserted until the device receives an
appropriate Acknowledge to their interrupt. Those de-
vices that can return an Interrupt Vector should have an
individual IACK line asserted to them during the IACK
cycle, informing the device to return the vector number.
Again, a PAL device can be used to generate the individ-
ual IACK lines, assuring that only one device responds to
any IACK cycle. (See Figure 2.3-11).
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Appendix 3 shows an example of the Source Code for
such a PAL device.

For alldevices that use the Autovector facility, no individ-
ual IACK line need be set to that device, only the AVEC
line asserted to the MC68020. As described above, the
device detects that the interrupt is being serviced (inter-
rupt acknowledged) when the Interrupt Acknowledge
Register is written. which will clear the relevant interrupt
bits that, when set, cause the interrupt line to be asserted.

Interrupt Handling within a Multi-Am95C60 System

As all Am95C60s within a system execute the same
instruction in synchronism, any interrupt conditions de-
tected by one Am95C60 will also be detected by all other
Am95C60s.

By reading the Status Register of any Am95C60, any
outstanding interrupt condition across all Am95C60s can
be detected. To clear such an interrupt condition across
all Am95C60s, a Write to the Interrupt Acknowledge
Register of all Am95C60s can be achieved simultane-
ously, thus causing the desired interrupt condition to be
acknowledged and cleared.

Using the Arbitration and Bus Cycle Response schemes
implemented by the MC68020, it is simple to interface
two devices on the same bus, each running asynchro-
nously from their own clock source.

To gain the most performance from the MC68020, the
device should be operated at the highest clock rate
defined within the specification of the part (currently
16.67 MHz). However, the Am95C60 is capable of
running on a 20 MHz clock for maximum performance in
drawing and data transfer operations. I maximum

performance is desired from each device, then each will
run from asynchronous clock sources.

Since the definition of the Bus Cycle for accesses to the
Am95C60 does not define a relationship to the Am95C60
clock, the CSQPDM(N), WRQPDM and RDQPDM sig-
nals may be asserted in synchronism with the MC68020
clock. Any asynchronicity will be handled by the
Am95C60 provided that the maximum and minimum
specified figures are complied with. Conversely, in
responding to the bus cycle, it is feasible to generate the
DSACK response signals from the Am95C60 clock, as
the MC68020 has internal logic to resynchronize these
signals to the MC68020 clock. Depending on whether
the response is synchronous or asynchronous, different
timings are given in the MC68020 timing definitions,
defining the specification of the DSACK response
signals.

DSACK Response Generation

Dependent upon other system constraints, it will proba-
bly be more simple to generate the DSACK responses
synchronously to the MC68020 clock using a fixed delay
logic sequence to define the length of any access to the
Am95C60. On detecting an access to an Am95C60,
sampling using the MC68020 clock, a timing sequence
can be initiated that at some programmed delay after
detecting the access can generate a synchronous
DSACK response. An example of how this may be
implemented is shown in Figure 2.3-12.

Example of How DSACK Response May be
Generated

Using a PAL device with pull-up resistors on each regis-
tered output, the registers can be clocked with the

AS —4
WRBUS
CSQPDM
TSPIXEL
CSPLANE
TLK 60 ns
REGEN 1

PAL
16R4B

Unused

COUNT,

COUNTy § State Counter
COUNT ,,

DSACK 4

RDQPDM

WRQPDM

QPDMEN

T

NOTE 1: 1 k Ohm pull-up resistors are required on the register
three-state outputs.

NOTE 2: The CSQPDM signal must be synchronous to the clock.

Figure 2.3-12 DSACK Response Generation using a PAL
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synchronous MC68020 clock (clocking on the negative
edge of the MC68020 clock).

The signal CSQPDM indicates that an access has oc-
curredto atleastone Am95C60. The delay from address
strobe to this signal being asserted is totally dependent
on the speed of the pager system plus the delay of the
logic that decodes the Hardware Space address, and so
may be totally asynchronous to the MC68020 clock.
However, WAIT states will be inserted in the bus cycle
during this period, since no DSACK response has yet
been given.

Depending upon how the pager system is designed, the
enables to either memory or hardware resources may or
may notbe synchronous. Forexample, if a state machine
is used to search look-up tables, then it may be as simple
to generate a synchronous enable of the hardware de-
code logic.

If adirect addressing scheme is used, then CSQPDM will
not suffer the delay of the pager system, just the delay of
the address decode PAL device.

With the advent of “B” speed PALSs, a solution is now
feasible using a PAL16R4B, as shown in Figure 2.3-12.
This solution offers a simple method of generating the
Read and Write strobe signals to the QPDM and
DSACKxx response signals to the MC68020 within the
framework of a MC68020 bus cycle. Appendix 4 shows
an example of the Source Code for such a PAL device.

How to Solve Signal Asynchronicity

If the synchronicity of these enables with respect to the
MC68020 clock cannot be guaranteed, then logic will be
necessary to re- synchronize such an enable. The enable
would be used to initiate the DSACK response logic for
accesses to the Am35C60 to ensure that metastability
problems cannot cause the logic to function erroneously.

A simple way to re-synchronize an asynchronous signal
to aclockof atleast 60 nsis shownin Figure 2.3-13. Even
if the first 74S74 (or 74F74) goes metastable, the output
can be guaranteed (within reason) to settle to either a
HIGH or LOW within 60 ns. Hence the second 74S74 will
be guaranteed not to go metastable, as its data set-up
time with respect to the next clock cycle will be met. The
output of the second 74S74 will, therefore, be synchro-
nous with the MC68020 clock.

Using a suitable synchronous signal, further control of
the Set or Clear pin (dependent on whether the input
signal is LOW or HIGH true) can allow the clearing of the
synchronous output without having to suffer the two clock
delay of the registerpipeline. Sucha suitable signalinthe
case of CSQPDM is AS, that runs synchronously to the
negative edge of the MC68020 clock.

DSACK Sequence Logic

Using a B-speed PAL guarantees that the DSACK re-
sponse is set within the requirement of 18.5 ns(worst
case) of the negative edge of the MC68020 clock. The
maximum “B” speed PAL register outputs from clock
delay is 12 ns. This meets the asynchronous set-up time
of the DSACK response with respect to the MC68020
clock, hence defining exactly on that clock edge the
MC68020 will detect DSACK asserted. The MC68020
willnegate AS onthe next negative edge of the processor
clock. This will help define the minimum possible bus
cycle time to maximize bus throughput for maximum
efficiency of data transfer instruction between system
bus and display memory.

The PAL is designed to use three outputs as a state
counter initiated by a synchronous CSQPDM. Depend-
ing on the level of WRBUS from the MC68020, either
RDQPDM or WRQPDM is asserted. The timing is
controlled by the state counter. (See timing diagram in
Figure 2.3-6) The PAL code in Appendix 2 is annotated
to explain the operation of the equations.

T
SET
T4F74 74F74
Async|/P >3 p Q D Q Sync OP
(CSQPDM async) (CSQPDM sync)
cK o CK al—
CLR

System Clock —@

(Min 60 ns period)

Figure 2.3-13 Resynchronization Logic
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2.3.12 Conclusions

This Application Note offers an example of a solution to
the problem of interfacing a QPDM Graphics Engine to a
MC68020 processor. While offering a solution to this
interface problem, the author realizes that many other
system constraints may exist that may require this ex-
ample solution to be modified to fit within system
requirements.

In discussing the areas of design that need careful
consideration, a comprehensive description is included
of the way in which both the MC68020 and QPDM fit
within a system andinterface to one another. This should
help the designer to quickly understand the operation of
both devices’ interface requirements and modify this
design appropriately.
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APPENDIX 1 — Address Decode PAL Source Code

DEVICE CPU_SPACE ADDRESS DECODE (pallé618)
PIN FC[0:2] = 1:3 “ THESE ARE FUNTION CODE LINES”
“ FROM THE Mc68020 DEFINING SUPERVISOR OR”
“ USER, CODE OR DATA SPACE”
ADDR([16:19] = 4:7 “ THESE ADDRESS LINES DEFINE”
“ THE TYPE OF CPU SPACE ACCESS”
“ WHEN THE FC VALUE IS 7.”
/AS =8 “ ADDRESS STROBE FROM THE 68020”

IACK =12 “ O/P INDICATING AN INTERRUPT”
“ ACKNOWLEDGE BUS CYCLE IS OCCURRING”

EN881 = 13; “ENABLE FOR MC68881”
“ ANY OTHER CPU SPACE ENABLES REQUIRED”
DEFINE
“ THE FOLLOWING VALUES ARE DEFINED IN THE 68020 SPEC.”
CPUSPACE = FC[0] * FC[1] * FC[2];
IACKEN = ADDR[16] * ADDR[17] * ADDR[18] * ADDR[19];

COPROCEN = /ADDR{16] * ADDR[17] * /ADDR[18] * /ADDR[19];

BEGIN
“ OUTPUT DEFINITION EQUATIONS”
/IACK = CPUSPACE * IACKEN * AS;
/EN881 = CPUSPACE * COPROCEN * AS;
END.

Listing sum—of-products equations for CPU_SPACE ADDRESS DECODER
/IACK = FC[0]*FC[1]*FC[2]*ADDR([16]*ADDR[17]*ADDR[18]*ADDR[19] *AS;

/EN881 = FC[0]*FC[1]*FC[2]*/ADDR[16] *ADDR[17]*/ADDR[18}*/ADDR[19] *AS;
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APPENDIX 2 — 1/0 Mode PAL Source Code

DEVICE BUS XCEIVER CONTROLLER (PAL16R4)

PIN
/AS =1 “This is the clock for the I/O Mode reg”
/WRBUS =3 “Write signal for system bus (68020)”
ADDR[1:0] = 4:5 “The system address lines defining which
port of the QPDM is being accessed. -
Note: These pins are connnected to System
Address lines A2 & Al. Refer to App Note.”
/CSPIXEL = 6 “Line from Address Decode PAL defining access
to the I/O Mode reg, setting the register.”
/CSPLANE = 7 “Line from Address Decode PAL defining access
to the I/O Mode reg, resetting the reg.”
ACKD =8 “Acknowledge line from the DMA controller.”
“Ensure correct polarity for DMA in use!”
/EDEO =9 “Buffer enable line from QPDMO.”
/EDE1 =11 “Buffer enable line from QPDMl.”
DIR =12 “Buffer Direction Control Output.”
“Ensure correct polarity for Bi-Di buffers
in use!”
OEPIX = 13 “Output Enable for BY PIXEL Buffer.”
PIXMOD =14 “The I/0 Mode Register — Set = Pixel Mode
Reset = Plane mode.”
OEO = 18 “Output Enable of the BY PLANE buffer (QPDMO)”
OEl = 19; “Output Enable of the BY PLANE buffer (QPDM1)”
BEGIN
“The sense of the WRBUS:L signal is inverted when
the DMA is controlling the Bus Cycle.”
/DIR = WRBUS * /ACKD

+ /WRBUS * ACKD;
“Note this Register clocks on the trailing (rising) edge of Address Strobe”

/PIXMOD := PIXMOD * /CSPIXEL * /CSPLANE “Leave the I/O Mode register
contents unchanged (clock back
in current contents), if access
not to I/O mode register.”

+ CSPIXEL; “Set reg if CSPIXEL is set when
Address Strobe negates.”

/OE0 = /PIXMOD * EDEO “Enable PIANE Buffer (QPDMO) if
EDEO:L set & NOT in pixel mode.”

2-50



CHAPTER 2
System Bus Interface

+ EDEO * /(/ADDR[1] * ADDR[0]); “This last term enables the PLANE
Buffer if EDEO is set AND the
access is not to the Data FIFO's -
PORT 1.”

/OE1 = /PIXMOD * EDE1l “Enable PIANE buffer (QPDM1) if
EDEl:L set & NOT in pixel mode.”

+ EDE1 * /(/ADDR[1] * ADDR([0]); “Comment as for OEO above.”
“Enable the PIXEL buffer if in Pixel Mode AND the relevant EDEx is asserted
AND the access is to PORT 1 or the acknowledge line from the DMA controller

is set.

i.e., don’t enable the Pixel Buffer if the access is to any resource other
than the Data FIFOs.”

/OEPIX = (PIXMOD * (EDEO + EDEl)) * ((/ADDR[1] * ADDR[O]) + ACKD);

END.

/DIR

/PIXMOD

/OEQ

/CE1

/OEPIX

Listing sum-of-products equations for BUS XCEIVER CONTROLLER

= WRBUS*/ACKD
+ /WRBUS*ACKD;

:= PIXMOD*/CSPIXEL*/CSPLANE
+ CSPIXEL;

= /PIXMOD*EDEO
+ EDEO*ADDR[1]
+ EDEO*/ADDR([0] ;

/PIXMOD*EDE1
EDE1*ADDR(1]
EDE1*/ADDR[0] ;

+ 4

PIXMOD*EDEO*ACKD

/ADDR[1] *ADDR[0] *PIXMOD*EDE1
PIXMOD*EDEO*/ADDR([1] *ADDR[O0]
PIXMOD*EDE1*ACKD;

+ 0+ 1
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APPENDIX 3 — Interrupt PAL Source Code

DEVICE INTERRUPT CONTROLLER PAL (PAL16L8)

PIN

/AS =1 “ADDRESS STROBE FROM THE 68020”

/IACK =2 “SIGNAL INDICATING AN INTERRUPT ACK.”
“CYCLE IS OCCURRING (FROM CPUADEC PAL)”

ADDR[1:3} = 3:5 “THESE ADDRESS LINES FROM”
“68020 DURING AN IACK CYCLE”
“DEFINE THE INTERRUPT LEVEL”
“BEING ACKNOWLEDGED.”

QPDMINT =6 “INTERRUPT SIGNAL FROM THE
“QPDM GRAPHICS SYSTEM.”

DMAINT =1 “ENSURE CORRECT POLARITY”
“FOR THE DMA TO BE USED!!”

“ANY OTHER INTERRUPT INPUTS SHOULD BE DEFINED HERE”

IPL[0:2] = 13:15 “INTERRUPT PRIORITY LEVEL”
“SIGNALS TO THE Mc68020.”

AVEC =16 “AUTOVECTOR SIGNAL TO 68020”

TACKDMA =17 “INTERRUPT ACKNOWLEDGE LINE TO”
“THE DMA CONTROLLER.”

BERR = 18; “BUS ERROR signal to 68020 to
warn of spurious interrupt cond.”

“ANY INDIVIDUAL INTERRUPT ACKNOWLEDGE LINES SHOULD

“BE DEFINED HERE & ALLOCATED O/P PINS APPROPRIATELY.”

DEFINE

“Let us assume QPDMINT relates to interrupt level 1, and DMAINT relates to
interrupt level 2 (Clearly these are totally user definable). Hence QPDMIACK
will relate to an Interrupt Acknowledge cycle to a level 1 interrupt, and as
such we require to set AVEC:L to the Mc68020. The DMA may, however, require an
IACK line directly, hence won’t set AVEC:L but will set the IACK line to be
connected to the DMA device.”

QPDMIACK = ADDR[1] * /ADDR[2] * /ADDR[3];
DMAIACK = /ADDR[1] * ADDR[2] * /ADDR[3];

“DEFINE ANY OTHER INTERRUPT LEVELS RELATING TO DEVICES”
“WITHIN THE SYSTEM, HERE. I.E. THE DMA, SCSI, etc.”

“Note : As this is a priority encoder, ensure that if an interrupt, say level 5,
becomes set, then all the equations relating to lower interrupt levels (levels 1
to 4) must be inhibited.
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Hence all the equations must have terms within them which only allow the equation
to take effect if this is the highest current interrupt level”

IF (QPDMINT * /DMAINT) THEN /IPL[2:0] = 1;
IF (DMAINT) THEN /IPL[2:0} = 2;
“The PAL should only respond to an interrupt acknowledge cycle if the interrupt

causing the IACK cycle to occur is still asserted. If it is no longer set then
BERR should be asserted.”

/AVEC = QPDMIACK * IACK * AS * QPDMINT; “AN INTERRUPT ACKNOWLEDGE”

“BUS CYCLE IS OCCURRING, AND”
“THE INTERRUPT LEVEL BEING”
“ACKNOWLEDGED BY THE 68020”
“IS QPDMIACK (DEFINED AS 1”
“ABOVE) .”

/IACKDMA = DMAIACK * IACK * AS * DMAINT; “THE DIRECT IACK LINE TO THE”

“DMA DEVICE.”

“DEFINE HERE THE BOOLEAN EQUATION FOR ANY INDIVIDUAL INTERRUPT”
“ACKNOWLEDGE LINES TO INDIVIDUAL DEVICES WITHIN THE SYSTEM.”

/BERR = IACK * AS * /((QPDMIACK * /QPDMINT) + (DMAIACK * /DMAINT));

/IPL[2]
/IPL[1]
/IPL[O]

/AVEC =

“Note: If an IACK cycle occurs and no interrupt is outstanding, then don’t set
DSACK or AVEC, but set BERR. The Mc68020 will take this to mean that a spurious
interrupt has occurred, and will not take the BUS ERROR trap, but will use the
SPURIOUS INTERRUPT vector.

Other reasons for setting BERR are discussed in the Applications Note, but are
dependent on other system constraints, and as such can’t be included in this
example.
In many applications, no other condition may need to set BERR.”

Listing sum-of-products for INTERRUPT CONTROLLER PAL

0;

DMAINT;

QPDMINT*/DMAINT;

ADDR[1]*/ADDR[2] */ADDR[3] *IACK*AS*QPDMINT ;

/IACKDMA = /ADDR([1]}*ADDR[2]*/ADDR[3] *IACK*AS*DMAINT;

/BERR = IACK*AS*ADDR[3]
IACK*AS*/ADDR([2] */ADDR[1]
IACK*AS*ADDR[2] *ADDR[1]
IACK*AS*DMAINT*QPDMINT
IACK*AS*ADDR [1] *QPDMINT
IACK*AS*DMAINT*/ADDR[1] ;

+

+ 4+ + o+
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APPENDIX 4 — DSACK PAL Source Code

DEVICE QPDM 68020 INTERFACE CONTROLLER (PAL16R4)

PIN
CLOCK =1 “This is the inverse of the clock to the Mc68020,
i.e. register clock on the falling edge of the
processor clock.”
/WRBUS = 2
/AS =3
/CSQPDM = 4
/CSPIXEL = 5
/CSPLANE = 6
/ENQPDM = 11
QPDMEN =12
COUNT[0:2] = 16:14
DSACK1 =17
RDOPDM = 19
WRQPDM = 18;
DEFINE
“Start sequence counter if the current state is 0 and CSQPDM:L (or CSPIXEL:L
or CSPLANE:L) are true, i.e. on the next clock edge step into state 1.
Once the sequence is started, the sequencer should run through states 1 to 5
before returning to state 0, and remaining there (Idle) until the start
conditions are again detected. The sequencer will stick in state 5 until
Address Strobe is negated. On the next clock it will return to Idle ready to
start the sequence again when the starting conditions again become true.”
ACCESS = CSQPDM + CSPIXEL + CSPLANE; “Defines which accesses DSACK

should be generated for”

START = /COUNT[O0] * /COUNT[1] * COUNT[2] * ACCESS * AS;

IDLE = /(ACCESS * AS);

“These expressions define values to the labels STATEx”

STATEO = /COUNT[0] * /COUNT[1] * /COUNT([2];
STATE1l = COUNT[0] * /COUNT[1] * /COUNT[2];
STATE2 = /COUNT[0] * COUNT[1] * /COUNT[2];
STATE3 = COUNT([0] * COUNT[1] * /COUNT[2];
STATE4 = /COUNT[O] * /COUNT[1] * COUNT([2];
STATES = COUNT[0] * /COUNT[1] * COUNT[2];
STATE6 = /COUNT[0] * COUNT[1] * COUNT[2];
STATE7 = COUNT[0O] * COUNT[1] * COUNT[2];

HOLDS = STATES * AS;
END5 = STATES * /AS;

BEGIN
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“These equations define the progression of the states, once the sequencer has been initiated.”

IF (START) THEN /COUNT[2:0] :=
IF (IDLE) THEN /COUNT[2:0] :=
IF (STATE1l) THEN /COUNT[2:0] :=
IF (STATE2) THEN /COUNT[2:0] :=
IF (STATE3) THEN /COUNT[2:0] :=
IF (STATE4) THEN /COUNT[2:0] :

g W o R
Ne e Siose N

~

“Default reset states”
IF (STATE6) THEN /COUNT([2:0]
IF (STATE7) THEN /COUNT[2:0]

= 0;
= 0;

“Return to Idle (state 0) if in state 5 AND Address Strobe
has been negated. If in state 5 and AS:L is still asserted,
then wait in state 5.”

IF (HOLD5) THEN /COUNT[2:0] := 5;
IF (ENDS) THEN /COUNT[2:0] := O;

“Only enable the DSACK line if the current bus cycle is to a QPDM or the
I/0 Mode register.”

/QPDMEN = ACCESS * AS; “This is connected to pin 11, the register enable, so that
the DSACK lines are only driven by the PAL when the QPDM's
or I/0 Mode register are being accessed.”

/DSACK1 := STATE2 + STATE3;
“Set DSACKl on entering state 3 and hold on during state 4.

Note the clock to o/p delay must be less than 18.5 ns to meet the DSACKxx
synchronous timing of the Mc68020.”

“Set WRQPDM if the current cycle is a write (WRQPDM is true) and the sequencer
is in states 1 or 2. This guarantees a Write Strobe to QPDM of 120 ns - QPDM
requires a min Write Strobe of 70 to 110 ns depending on which speed QPDM is
being used.

Write data is guaranteed stable for 60 ns after negating WRQPDM, as Address
Strobe will not be negating WRQPDM, as AS:L will not be negated by the
68020 until effectively state 4. Required data hold time is O ns.

/WRQPDM = CSQPDM * WRBUS * (STATEl1l + STATE2);

“The timing of when the 68020 samples read data, is associated with the timing
of the assertion of the DSACKxx lines. Data must be stable from the QPDM to the
68020 within 50 ns of DSACK being asserted.

This PAL ensures that the DSACKl line will be asserted at least 120 ns after
RDQPDM.

The QPDM will guarantee stable data after a max of 80, 100 or 120 ns (depending
on which speed QPDM) from RDQPDM being asserted, hence the data from the QPDM
will be stable within the requirements of the 50 ns of DSACK being asserted
required by the 68020.
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Data is sampled on the next negative edge of the 68020 clock after DSACK is
asserted (in the synchronous case), i.e., at the end of state 3. The data will
be held stable by the QPDM well beyond this point under the control of RDQPDM
negating, and hence meets the Data Hold time requirements of the 68020 (0 ns in
the synchronous mode).”

/RDQPDM = CSQPDM * /WRBUS * (STATE 1 + STATE2 + STATE 3 + STATE4);
END.

Listing sum-of-products equations for QPDM 68020 INTERFACE CONTROLLER
/COUNT [2] := /COUNT[1]*COUNT [2]*AS

COUNT [0] *COUNT [1] * /COUNT [2]
/COUNT [0] */COUNT [1] *COUNT[2] ;

+ +

/COUNT [1] := COUNT[O]*/COUNT[1}*/COUNT[2]

+ /COUNT[0] *COUNT[1]*/COUNT[2] ;

/COUNT [1] *COUNT [2] *AS

/COUNT [0] *COUNT [1] */COUNT[2]
/COUNT [0] */COUNT [1] *COUNT[2]
/COUNT [0] */COUNT [1] *AS*CSPLANE
/COUNT [0] */COUNT [1] *AS*CSPIXEL
/COUNT [0] */COUNT [1] *AS*CSQPDM;

/COUNT [0]

+ 4+ + + +

/QPDMEN AS*CSPIXEL
AS*CSPLANE

+
+ AS*CSQPDM;
/DSACK1 := COUNT[1]*/COUNT[2];

/WROPDM = CSQPDM*WRBUS*COUNT [0] */COUNT [1] */COUNT [2]
= CSQPDM+WRBUS*/COUNT [0] *COUNT [1] */COUNT[2] ;

/RDQPDM = CSQPDM*/WRBUS*COUNT [0] * /COUNT [2]
= CSQPDM*/WRBUS*COUNT [1] * /COUNT [2]
+ CSQPDM*/WRBUS*/COUNT [0] */COUNT [1] *COUNT [2] ;
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Display Memory Bus

In this section we cover the Display Memory Bus. In
Section 3.1, we present a detailed description of a multi-
bank display memory based on 64K * 4 VRAMs. This
design can be easily extended to 256K * 4 devices. In
Section 3.3, we present a method of connecting relatively
slow ROMs to the Display Memory Bus to store very large
fonts. While these designs have not been built and
tested, they have undergone rigorous “paper testing”. In
Section 3.2, we present the listing of a program that
perform a numerical analysis of the timing margins for a
QPDM Display Memory Bus.

For a detailed analysis of a demonstration /evaluation
board that was built and tested, refer to Section 5.

3.1 DISPLAY MEMORY CONNECTIONS
OF THE QPDM

This section describes the connections between the
Quad Pixel Dataflow Manager (QPDM), the display
memory, and the specialized video shift register, Video
Data Assembler FIFO (VDAF). -

3.1.1 System Configuration and Block
Diagram

The system contains one QPDM and therefore inter-
faces to four display memory planes. Each plane in this
system is 2048 pixels by 2048 pixels.

The block diagram (Figure 3.1-1) of this system shows
the display-memory bus of the QPDM connected via
drivers and a small amount of interface logic to the four
planes of display memory. The serial-data outputs of the

dual ported video memory connect to one Video Data
Assembly FIFO (VDAF) Am8172 for each plane. This
shifter provides an ECL output for the HIGH video speed.
The control signals for the VDAFs are provided by the
QPDM.

All the circuitry for the display memory connection is
synchronous to SYSCLK. This main clock signal for the
QPDM runs the internal micro-engine and determines all
display memory timing. The signals VSTB and DSTB,
synchronous to the SYSCLK signal, also strobe serial
data from the dual-ported video memory into the VDAF’s
internal FIFO. The VIDCLK signal, derived from the
DOTCLK and asynchronous to the SYSCLK, is de-
scribed in Chapter 4. The QPDM produces the video
synchronization signals HSYNC, VSYNC, and BLANK
with this VIDCLK signal and also reads data out of the
video side of the FIFO of the VDAF.

3.1.2 What You Can Do With The System

This 2K by 2K display memory is a common size for
graphic terminals, personal computers, high-perform-
ance desktop publishing systems, and CAE/CAD work-
stations.

This size allows easily for a 1280 pixel by 1024 pixel
screen and leaves enough room in the display memory
to scroll the screen vertically and pan it horizontally.
Furthermore there is room to store one or more images
of real windows that can be displayed alternately over
any rectangular area of the screen. Figure 3.1-2 shows
the size and the use of the 2K by 2K display memory. The
user may elect to lay out display memory differently.

Address —p
aPOM [ Control ] > = 2K by 2K
Am95C60 v Display
- Memory
Data 4 5 16 T 1
i 7 ]
v
Y Y1 VDAF Ame172
Control D >
‘ > e — S
>
| — o E——
PID 09682A 3.1-1

Figure 3.1-1 Block Diagram of a 4-Plane 2K by 2K Display Memory System
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3.1.3 Circuit Diagram

Figures 3.1-4a and 3.1-4b show the complete circuit
diagram for the connection of the QPDM to four planes of
display memory and four VDAFs. Figure 3.1-4a starts
with the QPDM and the buffer and logic section. Figure
3.1-4b shows the memory array and the VDAF section for
planes 0. The memory for planes 1through 3is organized
similarly. The total memory array consists of 4 banks.
Eachbankis organized as 64Kby 16 bit perplane. The
total amount of memory is:

4 planes with 2K by 2K pixels =
4 planes by 4 banks with each 64K by 16 bit = 16 MBit

Figure 3.1-3 shows the logical to physical address
mappingfor a 2K wide display memory. ltillustratesthat
fourbanks are requiredfora2K deep memory. The bank
boundaries are defined by the Y-address bit Y, and Y,
which are output via the address pins ADDR, , respec-
tively. The multiplexed address bits ADDR, , address all
display memory words within one bank. Address outputs
ADDR,, ,, are not utilized in this application. See
Chapter 12 of the technical manual for other memory
organizations.

The QPDM and the Drivers

Figure 3.1-4a shows the QPDM and the buffers to the
display memory. All display memory bus signals except
for the 64 bit wide data bus and some signals to and from

the VDAFs are buffered. Many of the signals just pass
through a buffer from the QPDM to the display memory
array. Some others pass through logic for decoding and
then get distributed within the memory array.

The eight least significant bits of the address bus
ADDR, , of the QPDM are fed into a buffer Am29827A.
The outputs of this driver ADDR"7 _pare connectedto the
multiplexed address inputs A.,._0 of every single 64K by 4
bit video memory chip (there are 64 chips). For consistent
nomenclature all names of amplified signals into the
memory array have a “*” at the end. Although not explic-
itly shown in Figure 3.1-4a, all those amplified signals
have a serial resistor of 25 Q in the signal line to prevent
undershoot.

Figure 3.1-4a lists on the bottom right side of the
Am29827A block for the address lines some additional
information about these signal lines. The information
{256 pF, 3-16 ns, to 64} indicates that the ADDR".,  lines
go to 64 chips altogether, that these chips represent 256
pF (64 chips with 4 pF each) input capacitance, and that
the best and worst case delay for the Am29827A for this
capacitance is 3 ns and 16 ns respectively.

ADDR, , are employed to select one of the four banks.
The decoding logic is described later. The address lines
ADDR,, ,, are not used in this example. In another
application these address lines would help to decode
bank addresses for a larger display memory array, for
example 4K by 4K.

le
<

2048 pixel

T oispiay Mamory 1280 pixel
|«

ol stack

2048 pixel
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PID 09682A 3.1-2

Figure 3.1-2 2048 by 2048 Display Memory with Several Real Window Locations
and Allocation for One or Several Character Fonts
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To minimize the CAS delay time the CAS signal is
amplified by eight buffers of an Am29827A driver. The
amplified CAS*(7:0) signal is distributed to all 64 chips of
the display memory array, thus each CAS*, , output
drives 8 memory chips.

The XF/G signalis buffered by an Am29827A driver. The
amplified signal XF/G* is transmitted, just like the ampli-
fied address lines ADDR", ; and the amplified and dis-
tributed CAS*(7:0) signals to all 64 memory chips. The
unbuffered XF/G signal is also used in subsequently
discussed logic.

The four Write Enable signals WE(3:0) for the four
display memory planes are buffered by an Am29827A
buffer. The buffered signals WE*(3:0) are distributed to
16 chips each, i.e. to all memory chips in one plane.

The addressing of the four banks within the display
memory is accomplished by generating four RAS sig-
nals. These four RAS signals are latched with the falling

edge of RAS by four negative edge triggered flip-flops
F114. A D-speed PAL AmPAL18P8 decodes the two
address lines ADDR  and provides the J-K-inputs for
the F114 flip-flops. '?he RASbk*(3:0) signals must be
latched in order to keep them stable during the complete
memory cycle. The individual RASbk*(3:0) signals stay
LOW for as long as RAS is LOW. The rising edge of
RASbk*(3:0) is generated by clearing the flip-flops with
the asynchronous reset function at the end of RAs from
the QPDM. :

During a display memory read, write, or transfer cycle,
only one bank of the memory is involved, thus only one
ofthe four possible RASbk*(3:0) signals is activated, and
only one of the four banks of memories comes out of
LOW power mode and switches to normal power con-
sumption. This feature allows the display memory to be
operated with minimal power consumption. During a
display memory refresh cycle, the RASbk*(3:0) of all four
banks are activated simultaneously to refresh the com-
plete memory with the smallest number of refresh cycles.

A1l A10 A9 A8 A7 A6 A5 A4 A3 A2 Al A0

X9 | X8| X7| X6| X5] X4 |(X3-X0)

4K

RAD vz| ve] vs| va| v3| v2| vi] vo
x |v11| 1o vo
CAD v [x10
Ye-0 l‘——— X10-0 -——4
_Lo 51Iz 1K 2K <
bgr!kwo \\\\\\\\\\\ oo o
_rn(— bank #1 \\\\\\\\\\\\ oo 1

n bank #2 m\ ol1] o

2K bank #3

iy e f |

T s NN o 0

sx_ unused \\\\\\\\\1 o 1
| used \W1 1] o

4K_ unused m 1 !

SHIFTER SIZE 256
TOTAL BITS TRANSFERRED 4096
NUMBER OF ROWS 2
MEM_CONFIG_VALUE : 0100
RAM SIZE 64K« 1
MEMORY WIDTH 2K
MAX DEVICES/PLANE 128
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Figure 3.1-3 Logical to Physical Address Mapping for 64K by 4-bit Memory Chips
for a Display Memory Width of 2K Pixels
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Figure 3.1-4a Circuit Diagram of the QPDM, the Buffer, and the Interface Logic
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Figure 3.1-4b Circuit Diagram of Memory Plane #0 and VDAF #0
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Table 3.1-1 Generation of J-K Inputs by AmPAL18P8D for RASbk*(3:0)

CAS Jbk, o Kbk, o Jbk, o Kbk, o number of active
of the bank selected by of the bank not selected by RASbk*(3:0)
ADDR, . ADDRg
1 L H H L one
0 L H L H all

The logic in the PAL uses the fact that the CAS signal is
already LOW before the falling edge of RAS during a
dynamic memory refresh cycle whereas it is still HIGH
during all other display memory cycles. Table 3.1-1
shows the relationship between the ADDRg 5, RAS, and
CAS inputs and the Jbk, ,and Kbk, , outputs of the PAL.
Each of the RASbk*(3-8) signals is distributed to 4 chips
in each of the four planes, that is to all chips within one
bank.

The VSTB signal provides timing for the two F138 logic
blocks to generate the signals VSTBsidebk*(3:0) and
SGsidebk*(3:0), respectively. In these signal names the
term side stands for either right or left, indicating a
VSTB- or SG- signal to the right or the left half of a 16-bit
display memory word, respectively. The term bk means
bank.

The two F138 1-0f-8 decoders for the generation of the
signals VSTBsidebk*(3:0) and SGsidebk*(3:0) require a
latched bank-select address for the time in between two
transfer cycles. The bank address ADDR, 4 is stored in
two flip-flops F74. These flip-flops get strobed by the
XFER pulse. This active HIGH pulse is generated by a
negative edge triggered flip-flop F114. The XFER signal
becomes active with the falling edge of RAS whenever
the XF/G signal of the QPDM was already LOW during
the RAS-transition. The flip-flop F114 gets asynchro-
nously reset when the XF/G pin of the QPDM is no longer
active, thuswhenit goes HIGH. If the XF/G signalis HIGH
during the falling edge of RAS, no XFER pulse is gener-
ated.

Each VSTBsidebk*(3:0) signal is distributed to eight
video memory chips, i.e. to all chips in one bank in all four

planes that contain either the left byte or the right byte.
These signals clock data out of the serial video memory
shifter. In this application example we chose to activate
the QPDM’s VSTB signal to the minimum number of
chips possible (to only one bank) at any given time in
order to reduce the power requirements for the video
memory chips. The logic in the F138 1-0f-8 decoder
provides the correct phase shift for this serial clock
signal.

When activated by register programming, the additional
VSTB pulse is generated by the QPDM during a transfer
cycle. Thus at the end of a transfer cycle a complete 16-
bit wide word is available on the output of the serial port
of four video memory chips. The subsequently discussed
SGsidebk*(3:0) signals will then output enable the left
and the right byte in sequence after the transfer cycle.
Depending on whether the first DSTB pulse (see below)
occurs while VSTB is LOW or HIGH, one. or both bytes,
respectively, of this first word are strobed into the VDAF.

The VSTBritebk*(3:0) signal is at all times in phase with
the VSTB output signal from the QPDM, whereas the
VSTBIleftbk*(3:0) signal is inverted to VSTBritebk*(3:0).

The following Table 3.1-2 shows the relationship be-
tween the QPDM’s VSTB output, the latched ADDF(Q_s
signals and the VSTBsidebk*(3:0) output signals of the
PAL.

The video memory chips have an output enable signalfor
the serial port. This signal is active in exactly one bank
during the entire time video data is shifted out of the serial
port. The active bank during this time is keptinthe CF74s.

Table 3.1-2 VSTB Outputs and Address Bits 8 and 9

ADDR ADDR VSTB VSTB- VSTB- VSTB- VSTB- VSTB- VSTB- VSTB- VSTB-
#9 #8 leftbk0  ritebk0 leftbk1 ritebk1  leftbk2 ritebk2 leftbk3 ritebk3

0 0 0 H L H H H H H H

0 0 1 L H H H H H H H

0 1 0 H H H L H H H H

0 1 1 H H L H H H H H

1 0 0 H H H H H L H H

1 0 1 H H H H L H H H

1 1 0 H H H H H H H L

1 1 1 H H H H H H L H

®
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Furthermore, the output enable signal on the video
memory chips must perform a multiplexing function. The
VDAF has only an 8-bit-wide input whereas the memory
outputs a 16-bit wide word per plane. Thus, during the
time the VDAF latches in the left half of a display memory
word, only the two “left” video memory chips must be
enabled, and during the time the VDAF strobes in the
right half of the display memory word, the other two video
memory chips of one bank in each plane must be en-
abled. The task of enabling and disabling the serial
outputs is accomplished by the signals SGleftbk*(3:0)
and SGritebk*(3:0) for the left and right sides,
respectively.

These output enable signals for the serial port of the
video memory chips are generated by an F138 chip. This
F138 is always enabled, thus at any given time there is
one active signal to the D, ; inputs of the VDAF. The
VSTB signals controls the left and right side of the display
memory word, the latched ADDR, , lines control the
addressing of the bank. The following Table 3.1-3 shows
the generation of the output enable signals.

The XFER pulse is also connected to the SBSTRB input
of the VDAFs. Here this signal strobes in the position of
the first valid bit within the first byte of video data in the
scan line. This position is presented to the VDAFs during
the rising edge of the SBSTRB input on the ACDZ_oIines.

The four 16 bit wide data busses DM, . . are not
buffered and connect directly to the video memory array.
Since there are four banks in the system, each data pin
of the QPDM is connected to four common data input/
output pins of the video memory chips. The bank select
encoding ensures that at any given time only one bank of
memory chips interchanges data with the QPDM.

The DSTB output of the QPDM is not buffered and
supplies the clock to strobe data into the VDAF. The
DSTB signal is distributed only to DSTRB inputs of the
four VDAF chips.

The CDAT2 _o Outputs of the QPDM are not buffered and
supply control data for the VDAF. During a transfer cycle

the CDATZ_ lines carry the information of the first valid bit
position wut%in the first byte after a transfer cycle. With
every DSTB cycle the CDAT, , lines inform the VDAF
about the number of valid bits within the current byte from
the video memories. The CDAT(2:0) signals are distrib-
uted only to the ACD,, , inputs of the four VDAF chips.

The FULL signal is send by the VDAF and is an input to
the QPDM. This input indicates when the VDAF has its
FIFO nearly full and cannot accept any more data. Only
the output of one VDAF - in this case from plane 0 — is
connected to the QPDM. Since all VDAFs receive the
same control signal and therefore the same number of
data bytes, the status of the FIFO is the same for all
planes. Thus, when plane 0 indicates that its FIFO is full,
the FIFOs of all planes are full, and the QPDM will not
strobe data into the VDAF’s.

The Memory Array

Figure 3.1-4b shows the memory arrays for plane 0. The
memory arrays for plane 1 through 3 are not shown; their
connections are similar to plane 0. The signals on the
right side of Figure 3.1-4b are connections to the other
three display memory planes. Each plane consists of 16
memory chips. The top four chips in the figure are bank
#0, the next row is bank #1, and so on. On the top of
Figure 3.1-4b the position of each chip within the display
memory word is indicated. The left column of four chips
supplies the four leftmost bits within a display memory
word. For plane 0 the data lines of these memory chips
are connected to the display memory bus data lines
DM, ,, With DM, connecting to the leftmost bit within
eac?'l 16-bit worc?. ﬁ'he column to the right of the left
column connects to DM, , 5, and so on.

The ADDR", , CAS*, and XF/G* lines are distributed to
allchipsin aﬁ planes. The WE*0 goes to all chips in plane
#0, the WE*1 signal goes to all chips in plane #1, and so
on. The RASbk*0 goes to bank #0 in all four planes, the
RASDbk*1 goes to bank #1 in all four planes, and so on.
The VSTBIeftbk*0 and SGleftbk*0 signals connect to the
two left columns of chips in bank #0 in all four planes, the

Table 3.1-3 Truth Table for SGsidebk*(3:0) Generation

Addr Addr VSTB SG SG SG SG SG SG SG SG
9 8 leftbk0  ritebko leftbk1 ritebk1  leftbk2 ritebk2 leftbk3 ritebk3
0 0 0 H L H H H H H H
0 0 1 L H H H H H H H
0 1 0 H H H L H H H H
0 1 1 H H L H H H H H
1 0 0 H H H H H L H H
1 0 1 H H H H L H H H
1 1 0 H H H H H H H L
1 1 1 H H H H H H L H
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VSTBritebk*0 and SGritebk*0 go to the two right columns
of chips in bank #0 in all four planes, and so on.

The data pins of all 4 chips within one bank of each plane
form a 16-bit-wide data bus. The data from plane #0 are
connected to the DMO, ¢ , lines of the QPDM, the data
from plane #1 are connected to the DM, . , lines of the
QPDM, and so on. The serial data outputs of both the two
left chips SDleft(3:0)(7:0) and the two right chips
SDrite(3:0)(7:0) within one bank of each plane form an 8-
bit-wide data bus. This 8-bit-wide data bus from plane #0
is connected to the D, , inputs of the VDAF for plane #0,
the 8-bit-wide data bus from plane #1 is connected to the
D, , inputs of the VDAF for plane #1, and so on.

The VDAF

Figure 3.1-4b also shows the VDAF serializer forplane 0.
The 8-bit-wide data input to the shifter is obtained from
the serial data output of the video memory array. At any
time, only the left side or the right side of a video memory
plane supplies data to the VDAF. DSTB, CDAT, ., and
the XFER pulse are supplied in parallel to the I§§TRB,
ACD,_,, and SBSTRB inputs of the VDAFs in all four
planes. The RESET signal is supplied to all VDAFs to
initialize the internal logic. The B/N pinthe VDAF is set to
accept byte wide data rather than nibble wide data. The
A/C input specifies that the VDAF interprets the ACD 2
input as the number of valid bits rather than the %ﬂ
position of the first unusable bit within a byte from the
memory array.

The DOTCLK and LDSR signals are also supplied to the
VDAF. The generation and distribution of these signals,
however, is analyzed and described in Chapter 4 of this
manual. The SO, pinoutputs the HIGH speed serial data

stream to the color palette or directly to the monitor. The
SO, output pin is not used.

3.1.4 The Timing Analysis

The timing analysis considers the propagation delay of
each signal. This insures that the suggested system will
work under worst case conditions. To drive the highly
capacitive load of a memory array, it is especially impor-
tant to use drivers that can drive high capacitances. The
propagation delay for the Am29800A family is specified
for an unloaded output. The AMD Bus Interface Products
Handbook (publication number #07175B) specifies
some additional guidelines. The switching speed in-
creases by 0.5 ns for each additional 50 pF of load and
by 0.3 ns for each additional output switching at the same
time. An output whose unloaded switching time, for
example, is specified to be 9 ns, will switch in reality in
14.2 ns with a 250 pF load when all 10 outputs in the
package switch at the same time. (2.5 ns slower for
added load plus 2.7 ns slower for simultaneous switch-
ing.) Since the exact load capacitance of the circuit varies
with every signal, some conservative interpolations have
been performedto calculate the actual propagationdelay
for the capacitance in the circuit.

The QPDM has a maximum SYSCLK frequency of 20
MHz. The SYSCLK not only determines the display
memory timing, but also clocks the internal microengine.
The drawing performance is directly proportional to the
SYSCLK speed. This design implements the full 20 MHz
(50 ns) SYSCLK speed for highest performance. If, in a
similar application one cannot fulfill all timing parameters
of the display memory interface, the speed of the
SYSCLK mustbe decreased until all parameters are met.

Timing Parameters

Not to Exceed
Set-up Time Hold Time

Row Address 4ns 26 ns
Column Address Ons 73 ns
Masked Write Strobe wrt RAS 2ns 51 ns
Write Mask Data wrt RAS 6ns 48 ns
Write Command wrt CAS 3ns ‘ 50 ns
Write Data wrt CAS 5ns 50 ns
XF/G wrt RAS Ons 129 ns

Not to Exceed
Row Access Time 128 ns
Column Access Time 50 ns
Output Enable Time on Random Port 74 ns
Clock to Output Time on Serial Port 69 ns
Output Enable Time on Serial Port 23 ns
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To run the display memory interface with 20 MHz a
relatively fast video memory chip must be selected. For
this application a “-10” (100 ns) 64K by 4-bit video-
memory chip has been chosen. In particular this memory
chip must fulfill the following timing parameters.

Most of these times are easily fulfilled. The only two tight
parameters are the column access time and the serial
output enable time.

Display Memory Read Cycle

Figure 3.1-5 shows the timing for a Display Memory Read
Cycle.

For a 20 MHz system clock the QPDM outputs its bank
select address ADDRg ¢ and row address ADDR,, , at
least 15 ns (parameter #30t of the QPDM) prior to the
falling edge of RAS and holdgs the row address valid for
at least 35 ns (parameter #31 t, of the QPDM). The
address lines are amplified in the Rm29827A with a best
and worst case delay fora 256 pF loadfrom3nsto 16 ns.
The resulting signal is ADDR*(7:0). The bank select
address ADDR,, ¢ is decoded in a D-speed AMPAL18P8

with a best and worst case propagation delay of 3 ns to
10 ns. When the falling edge of RAS arrives at the F114
flip-flop, the Jbk(3:0) and Kbk(3:0) bank select signals
have been steady for at least 5 ns (parameter #30 ts of
the QPDM minus maximum propagation delay through
the PAL), and will remain steady for the rest of the read
cycle. Thus the 5 ns set-up and 0 ns hold time (F114
parameter) for the F114 flip-flop is fulfilled.

The propagation delay time to generate the RASbk*(3:0)
signals from the bank select signals Jbk(3:0) and
Kbk(3:0) is 4 ns to 12 ns. Figure 3.1-5 shows that this
leaves a set-up and hold time for the row address on the
video memory chips of 4 ns and 26 ns respectively, which
is easily fulfilled with most video memory chips.

The RASDbk*(3:0) signals are negated with the rising
edge of RAS. As soon as the inverted RAS signal goes
LOW, the direct-set inputs of the F114 flip-flops that are
asserted go LOW and de-assert the RASbk*(3:0) signals
with a total propagation delay of 6 ns to 18 ns (addition of
propagation delays of NAND-gate FOO and flip-flop
F114). The NAND-gate logic in this path provides the
necessary recovery time for the F114 flip-flop.

ank select address
ADDR(9:8) L
5ns 35ns 13ns 80ns
ADDR(7:0) RAD CAD >
~1_§E§.. alls—. le—o 16ns — _3_"5
ADDR*(7:0) nAl ol
180ns
N
RAS 12ns 18ns
S| vy T || R A el ot
RASbk*(3:0) o e f
4ns 26ns 65ns 100ns
CAs
. ms 10ns
ns | 3"—3#
CAS*(7:0) Ons t
80ns 73ns
! 160ns
39%ns 110ns
XF/IG 16ns 16ns
308, o Sns L
XF/G 50ns
<128ns Z4ns L (<20

DM(3:0)(15:0

(3:0)( ) >20ns '>0ns

PO OBeteA 315

Figure 3.1-5 Display Memory Read Cycle
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The QPDM outputs its column address ADDR, 70t least
13 ns (parameter #37 tg of the QPDM) prior to the falling
edge of CAS and holds the column address and bank
select address valid for at least 80 ns (parameter #38 t,,
of the QPDM). The amplified signal is ADDR*(7:0). The
CAS signal is fed into eight drivers Am29827A, each of
which supplies eight video memory chips. The propaga-
tion delay to generate the four CAS* signalsis 3 nsto 10
ns (interpolation of Am29827A timing parameter). Figure
3.1-5 shows that this leaves a set-up and hold time for the
column address on the video memory chips of 0 ns and
73 ns respectively, which fulfill the requirement of video
memory chips. The normal requirement for video memo-
ries is 0 ns and 20 ns for the set-up and hold time,
respectively.

The XF/G signals goes active 39 ns (parameter #42t,
of the QPDM) or later after the falling edge of RAS. P
stays valid for at least 110 ns (parameter #44 t,,, of the
QPDM). This signal passes through the driver within3 ns
to 16 ns (interpolation of the Am29827 A timing specifica-
tion). The video memory chips will enable their outputs
soon after they see XF/G LOW.

The XF/G signalwill stay LOW for at least 80 ns (parame-
ter #41 t,, of the QPDM) after CAS has gone LOW and
160 ns (parameter #32 t;, of the QPDM) after RAS has
gone LOW. The data oomlng from the memory array into

the QPDM must be valid 20 ns (parameter #45 t., of the

QPDM) prior and 0 ns (parameter #46 t, of the E)PDM)
after the rising edge of XF/G on the QPlﬂw Figure 3.1-5
shows that, in order to fulfill these requirements, the
video memory chips must have an access time of less
than 128 ns after.the falling edge of RAS, less than 50 ns
afterthe falling edge of CAS, andless than 74 ns after XF/
Ghasbeenasserted. The speed of 100 ns video memory
just fulfills these parameters, with the access time from
CAS being the most critical parameter.

The signals WE(3:0), VSTB, DSTB, and CDAT(2:0) are
not employed during a display memory read cycle.

Display Memory Write Cycle

The timing for a Display Memory Write Cycle is shown in
Figure 3.1-6.

The timing to supply addresses and address strobe
signals to the video memory is identical to the read cycle.
This includes the parameters #30 and #37 t4 and the
parameters #31 and #381, ofthe QPDM. Thus all set-up
and hold time reqmrements for the row, column, and
bank-select addresses are fulfilled. The XF/G signal is
inactive during the complete write cycle. Inthe write cycle
the delay from RAS to CAS is 90 ns (parameter #56 t D
of the QPDM) ratherthan 65 ns (parameter#aénPD ofthe
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12ns 18ns
4ns 6ns
e — le—
RASbk*(3:0) \\ ///7
90ns 80ns
TAS
fTons 10ns
te—»
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4— — o fe—
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WERED) AN NN 7/
3 131 13
13ns _nﬂ — ns _J — ns
WE*(3:0) ‘\\\ \\\\\\ —
o [ >57ns ans ([T >50ns
LI 6ons gl B A 6ons
DM(3:0)(15:0) write mask write data )))
6ns 48ns 5ns N 50ns

Figure 3.1-6 Display Memory Write Cycle
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QPDM) as inthe read cycle. The CAS signal stays active
for 80 ns (parameter #57 t, of the QPDM).

During the first half of the write cycle the write mask may
be strobed into the video memory chips. Awrite mask, i.e.
the data on the DM(3:0)(15:0) bus, is loaded into the
video memory chips whenever its write input is LOW
during the falling edge of RAS. If WE is HIGH when RAS
falls, all four bits will be written.

The WE(3:0) signal is stable 11 ns (parameter #59 t of
the QPDM) before the falling edge of RAS and remains
stable for approximately 60 ns (interpolation of the
QPDM spec) after the falling edge of RAS. The WE(3:0)
signals run through an Am29827A driver with a best and
worst case propagation delay of 3 ns to 13 ns, respec-
tively (interpolation of Am29827A timing specification).
Figure 3.1-6 shows that this leaves a set-up and hold time
for the write enable pulse W on the video memory chip of
2 ns and more than 51 ns respectively, which is easily
fulfilled by video memory chips.

The datais supplied to the memory chips without passing
through any driver. The QPDM provides valid output data
at least 2 ns (parameter #62 ts of the QPDM) prior and
60 ns (parameter #63 t,, of the QPDM) after the falling
edge of RAS. Figure 3.1-6 shows that this leaves a set-
up and hold time for the write mask data on the video
memory chips of 6 ns and 48 ns respectively, which is
easily fulfilled by video memory chips.

During the second half of the write cycle the actual data
get strobed into the memory chips. The QPDM asserts
the write command at least 13 ns (parameter #60 t; of the
QPDM) prior to the falling edge of CAS and has a valid
WE(3:0) pulse width of at least 78 ns (parameter #611,,
of the QPDM). The propagation delay from CAS to
CAS*(7:0) is 3 ns to 10 ns. The video memory chips see
a write command set-up and hold time of 3 ns and more
than 50 ns, respectively, which satisfies video memory
chips.

The actual data is output at least 2 ns (parameter #64 ts
of the QPDM) prior to the falling edge of CAS and stay
valid at least 60 ns (parameter #65 t,, of the QPDM) after
this falling edge. Figure 3.1-6 shows that this leaves a
set-up and hold time for the data on the video memory
chip of 6 ns and 50 ns respectively, which again is
satisfied by video memory chips.

Display Memory Transfer Cycle

The timing of the display memory transfer cycle involves
both the display memory and the VDAFs.

The strobing of the row and shifter start address (column
address in the read cycle) into the video memory chips

works with the same timing as in the read cycle. Thus all
set-up and hold times for the row, column, and bank-
select address are fulfilled.

During atransfer cycle, however, the XF/G signal is valid
before the falling edge of RAS. The QPDM outputs the
XF/G signal 12 ns (parameter #49 t5 of the QPDM) before
the falling edge of RAS. It stays active 140 ns (parameter
#69 1, of the QPDM) after the falling edge of RAS and
55 ns (parameter #67 t,, of the QPDM) after the falling
edge of CAS. The XF/G signal becomes inactive at least
39 ns (parameter #70 ty of the QPDM) before the rising
edge of RAS and at least 40 ns (parameter #68 t , of the
QPDM) before the rising edge of CAS. The XF/él signal
passes through an Am29827A buffer, and XF/G* is
available 3 ns to 16 ns later on the video memory chips.
Figure 3.1-7 shows that this leaves (with the propagation
delay from the RAS to the RASbk*(3:0) signal) a set-up
and hold time for the XF/G signal with respect to the RAS
signal on the video memory chips of 0 ns and 131 ns,
respectively. This parameter, again, is fulfilled by video
memory chips.

The WE(3:0) signal of the QPDM is HIGH during the
complete transfer cycle. This indicates a transfer direc-
tion from the memory array to the shifter. Since this is
always the case, so-called “dummy” transfer cycles are
never required.

The falling edge of the RAS signal clocks the flip-flop
F114 that generates the transfer signal XFER. The
inverter FO4 delays the XF/G signal by 2 ns to 6 ns (F04
data). This leaves a set-up and hold time for the XF/G
signal onthe flip-flops F114 of 6 ns and more than 100 ns
respectively, which is more than the required 5 ns and 0
ns (F114 data). The propagation delay within the flip-flop
is2nsto8ns(F114data). The XFER pulse isdeactivated
2 ns to 8 ns after the rising edge of RAS.

The rising edge of the XFER pulse clocks the F74 D-
register to store the bank-select address for the time
between two transfer cycles. This address is valid 15 ns
(parameter #30 t., of the QPDM) before and more than
130 ns afterthe fa%ling edge of RAS. This leaves a set-up
and hold time with respect to the address for the F74 of
17 ns and more than 118 ns, respectively, which is more
than the required 3 ns and 1 ns (F74 data). The propaga-
tion delay forthe ADDR(9:8) signal through the flip-flop is
3 nsto 11 ns (F74 data).

During a transfer cycle start offset control information is
strobed into the VDAFs. These control data is presented
to the VDAFs on the ACD,,_, inputs and are strobed into
the VDAFs by their SBSTﬁ% inputs. The control data is
transferred without buffering from the QPDM CDAT

outputs to the four VDAFs. The strobe signal is the XFI?!%
signal generated by the flip-flop F114. The data on
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Figure 3.1-7 Display Memory Transfer Cycle Timing
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CDAT,_, are valid at least 10 ns prior to and 65 ns after
the faIF ing edge of RAS (parameters #50t; and #51t,, of
the QPDM). In a multi QPDM system each QPDM
delivers this control information to the four connected
VDAFs. Figure 3.1-7 shows that the ACD,, , dataonthe
VDAF have a set-up and hold time with réspect to XFER
of 12 ns and 57 ns, which fulfills the 10 ns and 15 ns
(parameter #9t4 and #1 0t,,ofthe VDAF). The set-upand
holdtime forthe strobing of the valid bit count dataonthe
the CDAT 2.0 lines during the first possible DSTB pulse
follows the timing of the general DSTB pulse and is
discussed under the video clock cycle timing section for
the VDAF.

Figure 3.1-7 shows that the VSTB signal of the QPDM is
in a HIGH state at the beginning and the end of the
transfer cycle. A VSTB LOW pulse can be activated by
register programming. The QPDM’s VSTB signal is
HIGH 90 ns (parameter #52 tg of the QPDM) before the
falling edge of RAS and stays HIGH until after the first
possible rising DSTB pulse. The 40 ns VSTB LOW pulse
(parameter #71 t,, of the QPDM) ends 90 ns (parameter
#73 tg of the QPDM) after XF/G has become inactive.
Furlhermore this pulse ends at least 90 ns (parameter
#72 1, of the QPDM) before the first possible DSTB
pulse, the pulse that strobes data into the VDAF.

The VSTBsidebk*(3:0) signals are produced by an F138
1-of-8 decoder with a best and worst case propagation
delay of 5 to 16 ns. The VSTBritebk*(3:0) signals follow
the waveform, and the phase of the VSTB signal from the
QPDM, the VSTBIeftbk*(3:0) is inverted. This is neces-
sary to give both the left half and the right half of the word
sufficient clock to output time inside the video memory
chip and time to travel from the video memory to the
VDAF.

The ADDR 4 is also fed into the F138 1-of-8 decoder.
This decoder outputs the SGsidebk*(3:0) signals with a
propagation delay of 4 ns to 12 ns (interpolation from
F138 data). At the end of the transfer cycle, before the
first possible DSTB pulse, the SGleftbk*(3:0) signal is
asserted and output enables the left byte of the selected
bank. Ifthe first possible rising DSTB edge occurs the left
byte is strobed into the VDAFs. Next, the 1-of-8 decoder
selects the right byte by enabling SGritebk*(3:0) of the
selected bank whenthe QPDM’s VSTB signal goes LOW
after the first possible DSTB pulse, that is at the end of the
transfer cycle. SGritebk*(3:0) of the enabled bank follows
the waveform of the QPDM's VSTB signal, the
SGleftbk*(3:0) signal of that bank is inverted to its
SGritebk*(3:0) counterpart.

Valid data from the serial output of the video memory
chips must be present at the VDAFs at least 5 ns
(parameter #5 t. of the VDAF) before the first possible
DSTB pulse. This is accomplished by fulfilling two access

time parameters of the video memory. First, after the
rising edge of VSTBIleftbk*(3:0) the first word of new
background or window data is transferred to the video
memories serial output pin. This leaves a clock to output
time of 109 ns (40 ns for the VSTB pulse width plus 90 ns
to the first possible DSTB pulse minus 16 ns for the
VSTBsidebk*(3:0) propagation delay minus 5 ns for the
data set-up time for the VDAF) for the video memories,
which s fulfilled by any video memory chip. Second, after
asserting SGleftbk*(3:0) and enabling the serial output
driver of the video memory chips the data travel from the
video memory chips to the VDAFs. This must be accom-

plished in 73 ns, which again is fulfilled by all video
memory chips.

Display Memory Refresh Cycle

The timing for the refresh cycle is fairly simple. The
QPDM outputs a CAS before RAS refresh cycle. The set-
up and hold times for the refresh address with respect to
the falling edge of RAS are identical to the row address
set-up and hold times during a read cycle and therefore
are fulfilled.

The QPDM activates CAS 37 ns (parameter #47 t, of the
QPDM) before the falling edge of RAS, and CA§ stays
active for atleast 185 ns (parameter #48t, , of the QPDM)
after the falling edge of RAS. The AmPAE18PBD gener-
ates the appropriate J-K-inputs for the flip-flops F114.
See Table 3.1-1 for a truth table of the PAL function.
Since CAS is LOW during the falling edge of RAS all four
flip-flops are set by the J-K-inputs to activate their
RASbk*, , outputs. Figure 3.1-8 shows that the video
memory chips see a set-up and hold time of 31 ns and
176 ns of the CAS*(7:0) signal with respect to the falling
edge of RASbk*(3:0).

Video Clock Cycle for VDAF

With every rising edge of DSTB (DSTRB input on the
VDAF) a new byte of video data and a new 3-bit control
word on the ACD, , inputs are strobed into the VDAF.
The verification o% the set-up and hold times for the
control data and the video data is is looked at independ-
ently.

First, the CDAT,  data fromthe QPDM are valid at least
8 ns prior and 15 ns after the rising edge of DSTB
(parameter #81 tg and #82 t,, of the QPDM). The set-up
and hold time requnrement of the ACD, , inputs with
respecttothe DSTRB inputis 5 ns and 10 ns respectively
(parameter #7 tg and #8 1, of the VDAF), thus the set-up
and hold time requnrements are fulfilled.

Second, video data is strobed into the VDAFs by the
DSTB signal. The correct video data is selected by a
combination of phase shifted clocking with the
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Figure 3.1-9 Video Clock Timing for VDAF

VSTBsidebk*(3:0) signals and phase shifted output
enabling with the SGsidebk*(3:0) signals.

The first byte of a 16-bit video word, i. e. the byte to
appear first on the screen, is called the left byte. It is
strobed out of one of the four banks of the video memory
chips by the rising edge of one of the four possible
VSTBIeftbk*(3:0) clocks. This byte is, however, nottrans-

mitted to the VDAFs immediately;SGleftbk*(3:0), the
output enable signal of this video memory chip is not
enabled yet. With the next rising edge of the DSTB clock
the output enable signal SGieftbk*(3:0) becomes active
and the left byte of the video word appears on the
SDleft(7:0) lines and is brought to the D7_ inputs of the
VDAF. While the left byte is strobed into the VDAF, the
right byte is shifted inside the video memory chip to the
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output buffer. It appears on the SDrite7 _o Outputs with the
next rising edge of DSTB, at the same time when the next
left byte is being shifted inside the video memory.

Every rising edge of DSTB from the QPDM changes the
polarity of the VSTB signal. The changing of the polarity of
the VSTB signal may take anywhere from 0 ns to 10 ns
(parameter #80 t,, of the QPDM) after the rising edge of
DSTB. This VS1JI;3 signal in conjunction with the latched
bank address ADDR, create the signals
VSTBsidebk*(3:0) in the B- speed AmPAL18P8 and and
SGsidebk*(3:0) in a F138 multiplexer. The propagation
delay through the PAL is 5 ns to 16 ns for a 64 pF (8
devices with 8 pF each) load. The propagation delay
through the F138is 4 ns to 12 ns for a 40 pF (8 devices with
5 pF each) load. This is illustrated in Figure 3.1-9.

To obtain a valid data input signal on the VDAFs, two
conditions must be met. First, the clock-to-output delay,
and second, the output enable to output delay times of the
video memory chips must be fulfilled. For a required data
set-up and hold time for the video data with respect to
DSTRB of 5 ns (parameter #5 tg of the VDAF) and 5 ns
(parameter #6 t,, of the VDAF), the following maximum
propagation delays inside the video memory are required.
The maximum output enable to output delay is 23 ns. (One
50 ns DSTB clock cycle minus the 10 ns VSTB propaga-
tion delay minus the 12 ns SGsidebk*(3:0) propagation
delay minus the 5 ns data set-up time.) The maximum
clock to output delay for all normal video clock cyclesis 69
ns. (Two 50 ns DSTB clock cycle minus the 10 ns VSTB

propagation delay minus the 16 ns VSTBsidebk*(3:0)
propagation delay minus the 5 ns data set-up time.)
These times are easily fulfilled by video memory chips.
After the rising edge of DSTB there is at least a 5 ns
delay until SGsidebk*(3:0) becomes inactive. This time
satisfies the required hold time of 5 ns for the VDAF.

3.1.5 Physical Board Dimensions

This design represents a typical graphic terminal mem-
ory design for the QPDM. It uses, in addition to the
QPDM Am95C60, 64 memory ICs of the organization
64K by 4, four VDAF ICs, three driver ICs Am28827A,
one flip-flop F74 chip, three flip-flops F114 chips, one
decoder F138, two PALs 18P8, and one inverter F04.
The required area for these ICs is illustrated in the
following Table 3.1-4. The table assumes that all chips
are conventional non-surface mount ICs.

The size of the memory board is at least 7.5" by 7".
Approximately three-quarters of the board space is oc-
cupied by the memory chips and decoupling capacitors.

3.1.6 Considerations for Modification ofthe
Design

This design can be modified to accommodate smalleror
larger display memory areas. This may require decreas-
ing or increasing the number of banks for decoding the
address.

Table 3.1-4 Required Area for ICs on Memory Board

1 Am95C60 144 pin 2.25 inch? 2.25 inch?
64 Video Memory 24 pin 400 mil 0.60 inch2 38.40 inch2
4 Am8IT 24 pin 600 mil 0.84 inch? 3.36 inch?
3 Am29827A 24 pin 300 mil 0.48 inch? 1.44 inch?
1 F74 14 pin 300 mil 0.28 inch? 1.44 inch?
3 F114 14 pin 300 mil 0.28 inch? 0.28 inch?
1 F138 16 pin 300 mil 0.32 inch® 0.32 inch?
2 PAL18P8 20 pin 300 mil 0.40 inch? 0.80 inch?
1 Fo4 14 pin 300 mil 0.28 inch? 0.28 inch®
1 F0O 14 pin 300 mil 0.28 inch? 0.28 inch?
75 100 nF Caps 2 pin 300 mil 0.03 inch? 2.25 inch?
50.40 inch?
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For a slower display system, the complete decoding
hardware may be implementedin PALs. Simultaneously
the buffers Am29827A can be replaced by Am2966 or
Am2976 dynamic memory drivers which include the
serial resistor and provide balanced driving to a highly
capacitive load.

If the system allows access to the display memory by
another processor, all address and control lines to the
display memory must be three-statable. All Am29827A
have three-state outputs. They must be controlled by the
handshake lines MEMREQ and MEMAVL.

3.2 DISPLAY MEMORY PROGRAM

In Section 3.2 we present the source code for a program
which examines the timing parameters for a Display
Memory Bus. This program is written for MS Basic for a
Macintosh Plus. It runs with either the compiler or
interpreter.

For each VRAM parameter, the program calculates the
worst-case and the best-case timing margins. These are
displayed on the screen and may be optionally written to
afile.

The program models a QPDM driving an array of VRAM
chips. There are certain delays between the QPDM and
VRAMs as follows:

RAS Decode Time to decode RAS in a multi-bank

system

RAS Delay Time to buffer and distribute the
decoded RAS

CAS Decode Time to decode CAS in a multi-bank
system

CAS Delay Time to buffer and distribute the
decoded CAS

XFG Decode Time to decode XFG in a multi-bank
system

XFG Delay Time to buffer and distribute the
decoded XFG

WE Decode  Time to decode WE in a multi-bank
system

WE Delay Time to buffer and distribute the
decoded WE

Address Delay Time to buffer and distribute the
multiplexed address

The programuses three values for each delay: minimum,
nominal, and maximum. These numbers are typically
taken from data sheets. In any case, the rules at your
design center should be followed.

Each value for each delay can be built into the program
oritcanbe set at runtime. Unfortunately, there is no way
to permanently change default values short of changing
the program itself. For the interpreted version, this is
simple. Forthe compiled version, it means doing a new
compilation.

We calculate three sets of numbers for each parameter.
In the first set, we use minimum delays for paths which
must be subtracted, and maximum delays for paths
which must be added. Inthe second set, we use nominal
delays for all paths (obtaining a sort of “typical” number).
Inthe third case, we use maximum delays for paths which
are subtracted and minimum delays for paths which are
added. The truth is guaranteed to lie somewhere be-
tween the first and third set of numbers.

Consider VRAM parameter 17, tASR. This is the time
that the row address is required to be valid at the VRAM
before RAS can fall (typically itis 0 ns). This is basically
the same as QPDM parameter 30, but we have to correct
for decoding and buffer delays. In particular, for this

particular parameter, we have to subtract delays in the

address paths and add delays in the RAS path.

Here is the program’s output for parameter 17.

17,tASR Address Setup to RAS (ns)
+QPDM Para35 15.0 15.0 15.0
-Adrs Delay -10.0 -13.0 -17.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 120 10.0 7.0
Total Time: 17.0 120 5.0
VRAM 0.0 0.0 0.0
Margins 170 120 5.0

The three columns of numbers are for the three cases
described above. We can be sure that the truth lies
between the two extremes.

Generally, these begin with one or more QPDM parame-
ters. This is followed by an appropriate number of
decodes and delays, depending onthe VRAM parameter
being calculated.

Onthe Total Time line, the numbers are allsummed. This
provides the time available at the VRAM. We subtractthe
VRAM requirements and the remainder is the margin.
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DIM gpar(4,115) ‘here go the gpdm parameters
ram.vend.count=9 ‘number of ram number sets
ram.para.count=98 ‘number of parameters to worry about
DIM ram(ram.vend.count,ram.para.count)
DIM ram.vend$ (ram.vend.count) ‘who built them
DIM ram.text$ (ram.para.count) ‘keep the ram parameter strings
DIM ram.desc$ (ram.para.count) ‘ram parameter descriptors

CALL TEXTFONT (4)
PRINT FRE (1)
‘we will be using the NEC ram parameter numbers (1..70)

clock(2)=50/2 20mhz clock

clock (3)=62/2 16 MHZ clock

clock(4)=83/2 12 MHz clock

st1S="#####. #" ‘one decimal point

st2$="\ \ HFFEEEEE L F REFFRAEE L AR
begin:

INPUT “Do you want a file copy of the results (y/n)”;a$
IF a$ <> “y” AND a$<>”Y” THEN GOTO beginl

file=1

INPUT “Specify Filename”;file$

OPEN file$ FOR OUTPUT AS #1

GOTO getspeed

beginl:

IF a$<>"n"” AND a$<>”N” THEN GOTO begin2
file=0 ‘will not write an output file
GOTO getspeed

begin2:

PRINT “You must respond y or n.”

GOTO begin

getspeed:

INPUT “what speed part are you designing with (20,16,12)";a$

a=VAL(a$) ‘make it a number

devicespeed=a ‘save to compare with clockrate

IF a<>20 THEN GOTO not20
sp=2 ‘speed parameter
GOTO getclock

not20:

IF a<>16 THEN GOTO notlé
sp=3 ‘speed parameter
GOTO getclock

notlé6:
IF a <>12 THEN GOTO notl2
sp=4
GOTO getclock
notl2:

PRINT”you need to enter a number:20, 16, or 12.”:GOTO getspeed

getclock:

INPUT “what clock rate (SYSCLK in MHz) are you designing to”;a$

a=VAL(a$)

IF a <=devicespeed THEN GOTO speedok

PRINT “I won’t let you design with SYSCLK out of spec for part.” .GOTO getclock
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speedok:
‘force clock(n) to c/2 according to selected clock rate
clock(sp)=500/a ‘reciprocal over 2

get .fake:

INPUT “Do we use the stored delays?(y/n)”;a$
IF a$="y” OR a$="Y” THEN
fake.numbers=1 :GOTO got.fake

END IF

IF a$=”"n” OR a$="N” THEN
fake.numbers=0 :GOTO got.fake

END IF

PRINT “You must respond ‘y’ or ‘n’”

GOTO get.

got.fake:

IF fake.numbers=1 THEN GOTO read.fakes

INPUT “Specify
INPUT “Specify
INPUT “Specify
INPUT “Specify
INPUT “Specify
INPUT “Specify
INPUT “specify
INPUT “Specify
INPUT “Specify

get.cas:

INPUT “Are you
IF a$<>”n” AND
early.cas (0)=0
GOTO ram.para
notn:

IF a$<>”y” AND
early.cas (0)=1
INPUT “Specify
“;early.cas (1),
GOTO ram.para
noty:

fake

‘otherwise get from keyboard

/RAS Decode min,nom,max “;ras.decode(l),ras.decode(2),ras.decode(3)
/RAS Delay min,nom,max”;ras.delay(l),ras.delay(2),ras.delay(3)

/CAS Decode min,nom,max”;cas.decode(l),cas.decode(2),cas.decode (3)
/CAS Delay min,nom,max”;cas.delay(l),cas.delay(2),cas.delay(3)

/XFG Decode min,nom,max”;xfg.decode(1),xfg.decode(2) ,xfg.decode (3)
/XFG Delay min,nom,max”;xfg.delay(1l),xfg.delay(2),xfg.delay(3)

/WE Decode min,nom,max “;we.decode(l),we.decode(2),we.decode (3)

/WE Delay min,nom,max”;we.delay(l),we.delay(2),we.delay(3)

Address delay min, nom,max “;ad.delay(l),ad.delay(2),ad.delay(3)

going to make early /CAS from /XF-G (y/n)”;a$
a$<>”N” THEN GOTO notn
‘no early cas

a$<>"Y” THEN GOTO noty

‘we will be doing early cas
/XF-G to early /CAS delay min,nom,max
early.cas(2) ,early.cas(3)

PRINT “you must respond with ‘n’ or ‘y’”:GOTO get.cas

read.fakes:
ras.decode (1)=0:
ras.delay(1)=7:
cas.decode(1)=0:
cas.delay(1)=5:
xfg.decode (1)=0:
xfg.delay(1l)=6:
we .decode (1) =0:
we.delay(1)=6:
ad.delay(1)=10:
early.cas(0)=0:

ras.decode (2)=0:
ras.delay(2)=10:
cas.decode (2)=0:
cas.delay(2)=10:
xfg.decode (2)=0:
xfg.delay(2)=9:
we.decode (2)=0:
we.delay(2)=9:
ad.delay(2)=13:
early.cas(1l)=8:

ras.decode (3)=0
ras.delay(3)=12
cas.decode (3)=0
cas.delay(3)=15
xfg.decode (3) =0
xfg,delay(3)=11
we .decode (3)=0
we.delay(3)=11
ad.delay(3)=17

early.cas(2)=10:

early.cas(3)=12
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ram.para:
FOR i=1 TO ram.para.count

FOR j=1 TO ram.vend.count
READ ram(j,i) ‘read ram parameters

YPRINT USING “######”;ram(j,1),

NEXT j
READ ram.text$(i) ‘and the text

YPRINT ,ram.text$ (i)

READ ram.desc$(i) ‘and the description

‘PRINT ,ram.desc$ (i)

GOTO

‘these are the data which are moved into table RAM

‘it is ordered first by NEC parameter number and secondly by device

‘the

‘a value of 99 says that parameter is not defined for that vendor

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

NEXT i
ram.vendors

second ordering is the same as RAM.VENDS$

220,270,220,260,190,220,260,230,260,tRC,Read Write Transfer
300,365,295, 345,260,300,355,300,345,tRWC,RMW Cycle
120,145,120,145,70,85,105,120,145,tPC,Page Mode Cycle
120,150,120,150,100,120,150,120,150, tRAC,Row Access

60,75,60,75,50,60,75,60,75,tCAC,Column Access

0,0,0,0,0,0,0,0,0,t0OFF,Output Disable from CAS HI

33,3,3,3,3,3,3,3, tT,Transition

90,100,90,100,80,90,100,100,100,tRP,RAS Precharge
120,150,120,150,100,120,150,120,150, tRAS,RAS Pulse Width
60,75,60,75,50,60,75,60,75,tRSH,CAS Falls to RAS Rises

25,30,25,30,99,99,99,50,60,tCPN,CAS Precharge (Not PM)
50, 60,50,60,10,15,20,50,60,tCP,CAS Precharge (PM)
60,75,10,75,50,60,75 ,60,75,tCAS,CAS Pulse Width

:REM

120,150,120,150,100,120,150,120,150,tCSH,CAS Hold From RAS Falls

60,75,60,75,50,60,75,60,75,tRCD,RAS to CAS Delay

1i0,10,10,10,10,10,10,0,0,tCRP,CAS Hi to RAS Low Precharge

9,0,0,0,0,0,0,0,0, tASR,Address Setup to RAS

15,20,15,20,15,15,20,15,15,tRAH,Row Address Hold

0,0,0,0,0,0,0,0,0,tASC,Address Setup to CAS

20,25,20,25,20,20,25,20,25,tCAH,Column Address Hold

80,100,80,100,99,99,99,80,100,tAR,Column Address Hold from RAS
0,0,0,0,0,0,0,0,0,tRCS,Read Command Setup to CAS
20,20,20,20,10,10,10,10,10,tRRH,Read Command Hold from RAS Hi
0,0,0,0,0,0,0,0,0,tRCH,Read Command Hold from CAS Hi
9,0,0,0,0,0,0,-5,-5,tWCS,Write Command Setup to CAS

35,45,35,45,25,25,35,35,45,tWCH,Write Command Hold

95,120,95,120,99,99,99,95,120,tWCR,Write CMND Hold from RAS Falls

35,45,35,45,15,20,25,35,45,tWP,Write Pulse Width
40,45,40,45,35,40,45,35,45, tRWL,Write Command to RAS
40,45,40,45,30,40,45,35,45,tCWL,Write Command to CAS Lead Time

:REM

10

15

20

25

30
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DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

0,0,0,0,0,0,0,0,0,tDS,Data Setup to CAS
35,45,35,45,25,25,30,35,45,tDH,Data Hold from CAS
95,120,95,120,99,99,99,95,120,DHR,Data Hold from RAS
60,75,100,120,85,100,125,90,110,tCWD,CAS to WE Delay
120,150,160,195,99,99,99,150,185,tRWD,RAS to WE Delay

30,40,35,40,30,35,40,40,45,t0EA,Access from OE
35,40,35,40,25,30,40,99,99,t0ED,OE High to Data in Setup
30,40,30,40,10,15,20,0,0,t0EH,OE Hi hold from WE Low
30,40,30,40,0,0,0,25,30,t0EZ,Output Disable from OE Hi
10,10,10,10,10,10,10,20,25,tCSR,CAS to RAS Setup for Refresh

25,30,25,30,20,25,30,20,25,tCHR,CAS before RAS Refresh Hold
0,0,0,0,10,10,10,99,99,tRPC,RAS Hi to CAS Lo Precharge
4,4,4,4,4,4,4,4,4,tREF,Refresh Interval
0,0,0,0,0,0,0,0,0,tDLS,DT to RAS Setup for Xfer
100,130,90,130,80,90,110,99,99,tRDH,DT Hold from RAS for Xfer

40,55, 40,55,99,99,99,99,99, tCDH,DT Hold After CAS LO
10,20,20,25,99,99,99,10,15,tSDD,SC Hi to DT Hi Delay
10,20,10,20,99,99,99,10,15,tSDH,SC Low Hold after DT Hi
35,40,35,40,99,99,99,0,0,t0E,OE Pulse Width
30,40,99,99,25,25,30 ,20,25,tS0Z,Serial Output Disable

40,60,40,60,40,40,60,40,50,tSCC,Serial Clock Cycle
10,20,10,20,10,10,20,10,10,tSCH, Serial Clock Hi
10,20,15,20,10,10,10,10,10,tSCL,Serial Clock Precharge (LOW)
5,5,5,5,99,99,99,99,99,tS00,SOE LOW to Serial Out Setup
35,50,35,50,25,30,40,20,25,tSOA, Serial Access from SOE

i0,10,10,10,10,10,10,8,8,tSOH, Serial Out Hold after SC Lo
40, 60,40,50,40,40,60,40,50,tSCA,Serial Access from SC
9,0,0,0,0,0,0,0,0,tDHS,DT Hi Setup to RAS (no XFER)
20,25,20,25,99,99,99,15,15,tDHH,DT Hold from RAS
10,10,10,10,10,10,10,-10,-10,tDTR,DT Hi to RAS Hi Delay

10,10,10,10,10,10,10,99,99,tDTC,DT Hi to CAS Hi Delay
10,10,30,40,99,99,99,99,99,t0ES,OE Setup to RAS Hi
0,0,0,0,0,0,0,0,0,tCOD,unused parameter
0,0,0,0,0,0,0,0,0,tWBS,Masked Write Command Setup
20,25,20,25,15,15,20,15,15, tWBH,Masked Write Command Hold

0,0,0,0,0,0,0,0,0,tWS,Write Mask Setup
20,25,20,25,15,15,20,15,15,tWH, Write Mask Hold
15,20,10,20,99,99,99,99,99,tSOE,SOE Pulse Width (Lo)
15,20,10,20,99,99,99,99,99,tSOP,SOE Precharge (Hi)
20,25,20,25,15,15,20,99,99,tDTH,DT HI Hold after RAS Hi

99,99,30,40,99,99,99,99,99,th(OECH) ,CAS hold after OE low
99,99,99,99,99,99,99,99,99, th(OERH) ,Unused
99,99,120,150,99,99,99,99,99,th(RLOE) ,OE hold after RAS low
99,99,0,0,99,99,99,99,99,tDOEL,Delay Data to OE low
99,99,0,0,99,99,99,99,99,tDCL,Delay data to CAS low

:REM

:REM

:REM

:REM

:REM

35

40

45

50

55

60

65

70

75
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DATA 99,99,10,20,99,99,99,99,99,tw(SEL),SOE low pulse width
DATA 99,99,10,20,99,99,99,99,99,tw(SEH), SOE high pulse width
DATA 99,99,0,0,99,99,99,0,0,tsu(WE) ,WE setup to RAS low

DATA 99,99,20,25,99,99,99,15,15,th(WE) ,WE hold after

RAS low

DATA 99,99,0,0,99,99,99,0,0,tsu(SE),SE setup to RAS low :REM 80

DATA 99,99,15,20,99,99,99,15,15,sh(SE),SE hold after

RAS low

DATA 99,99,0,0,0,0,0,0,0,tsu(SD),Serial in setup to SC high

DATA 99,99,10,15,15,20,25,15,15,th(SD), Serial in hold after SC high

DATA 99,99,20,30,99,99,99,99,99,tsu(SCRL),SC setup to RAS low

DATA 99,99,10,15,99,99,99,99,99,tsu(SEH),SE disable setup to SC high :REM 85

DATA 99,99,20,30,99,99,99,99,99,th(SEH) ,SE disable hold from SC high
DATA 99,99,10,15,99,99,99,25,30,tsu(SEL),SE enable setup before SC high
DATA 99,99,20,30,99,99,99,99,99,th(SEL) ,SE enable hold from SC high

DATA 99,99,0,0,99,99,99,99,99,tDDTH,Delay data to DT

high

DATA 99,99,20,30,99,99,99,25,30,tDTHD,Delay DT high to data :REM 90

DATA 99,99,99,99,99,99,99,40,45,tw(TRG) ,tRG Pulse width

DATA 99,99, 99,99,99,99,99,60,75,tCLGH,CAS low to TRG

high

DATA 99,99,99,99,99,99,99,100,120,tRLSH,RAS low to SC high after TRG hi
DATA 99,99,99,99,99,99,99,100,100,tTHRL, tRG high to RAS low after xfer
DATA 99,99,99,99,99,99,99,40,45,tCLSH,CAS low to SC after TRG :REM 95

DATA 99,99,99,99,99,99,99,40,45,tSHRL,SC high to RAS
DATA 99,99,99,99,99,99,99,30,45,tRHSH,RAS high to SC
DATA 99,99,99,99,99,99,99,10,15,tTHSH,tRG high to SC

ram.vendors:

ram.vend$ (1) =”"NEC uPD41264-12"
ram.vend$ (2) ="NEC uPD41264-15"
ram.vend$ (3) ="Mitsubishi M5M4C264P-12"
ram.vend$ (4) ="Mitsubishi M5M4C264-15"
ram.vend$ (5)="Hitachi HM53461-10"
ram.vend$ (6) ="Hitachi HM53461-12"
ram.vend$ (7)="Hitachi HM53461-15"
ram.vend$ (8)="T.I. TMS4461-12"
ram.vend$ (9)="T.I. TMS4461-15"

GOTO gpdm.para

gpdm.para:

FOR i=1 TO 115
FOR j=1 TO 4
READ gpar(j,i)
NEXT 3j

NEXT i

GOTO ramkind

FOR i=1 TO 115
PRINT USING “#####”;1i;
IF gpar(l,i)<>0 THEN GOTO inuse
PRINT ™ parameter is not used.”
GOTO loopend

inuse:
IF gpar(l,i)>0 THEN GOTO formula

low (w/xfer)
high
high
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PRINT USING stl$;qgpar(2,i),qpar(3,1i),qpar(4,1i)
GOTO loopend
formula:
FOR j=2 TO 4 :
PRINT USING stl$; (gpar(l,i)*clock(j))+gpar(j,i),
NEXT j
PRINT
loopend:
NEXT i
GOTO ramkind
‘now the 95C60 parameters
‘this is ordered by parameter number, 1..115
‘there are four entries for each parameter number
‘the first number:0 ->number unused.-l1->normal,>0->uses formulas,value is
‘clock half cycles. 1 -> c¢/2, 7-> 7c/2, etc
‘the other three numbers are for -20, -16, -12. Values if no note 4, else note 4
adders
‘system bus timing

DATA -1,0,0 ,0 :REM 1

DATA -1,65,95,125 :REM 2

DATA -1,50,60,70 :REM 3

DATA -1,50,60,70 :REM 4

DATA -1,10,10,10 :REM 5

DATA -1,65,70,75 :REM 6

pata -1,0,0,0 :REM 7

DATA -1,10,10,10 :REM 8

DATA -1,0,0,0 :REM 9

DATA -1,110,110,120 :REM 10

DATA -1,10,10,10 :REM 11

DATA -1,35,40,45 :REM 12

DATA 0,0,0,0 :REM 13 unused
DATA -1,10,20,20 :REM 14

DATA -1,10,20,20 :REM 15

DATA -1,0,0,0 :REM 16

DATA -1,70,90,110 :REM 17

DATA -1,50,75,100 :REM 18

DATA -1,15,25,25 :REM 19 byte mode
DATA -1,120,150,180 :REM 20

DATA -1,0,0,0 :REM 21

DATA -1,0,0,0 :REM 22

DATA 0,0,0,0 :REM 23 ususd
DATA 0,0,0,0 :REM 24

DATA 0,0,0,0 :REM 25

DATA 0,0,0,0 :REM 26

DATA 0,0,0,0 :REM 27

paTa 0,0,0,0 :REM 28

DATA 0,0,0,0 :REM 29

DATA 1,-10,-15,-20 :REM 30 (uses formula)
DATA 2,-15,-17,-20 :REM 31

DATA 7,-15,-15,-20 :REM 32

DATA 8,-20,-23,-25 :REM 33

DATA 1,-11,-16,-20 :REM 34

DATA 4,-5,-15,-20 :REM 35

DATA 3,-10,-15,-20 :REM 36

DATA 1,-12,-16,-20 :REM 37

DATA 4,-20,-20,-22 :REM 38
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DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

5,-25,-25,-27
2,-10,-15,-20
4,-20,-24,-26
2,-10,-15,-20
1,-12,-15,-20
5,-15,-17,-20
-1,20,30,45
-1,0,0,0
2,-13,-17,-20
8,-15,-23,-25
1,-13,-18,-20
1,-15,-20,-20
3,-10,-15,-20
4,-10,-15,-20
2,-10,-15,-20
4,-10,-15,-20
2,-10,-15,-20
4,-10,-15,-20
4,-20,-24,-26
8,-15,-18,-20
1,-14,-17,-20
1,-12,-17,-20
4,-22,-24,-26
-1,2,7,15
3,-15,-20,-20
-1,2,7,15
3,-15,-20,-20
-1,-8,-12,-16
0,0,0,

~

S N s s 8 N
N N N s N s N~

~

OO O OO OOOOO O
OO QOO OO0 OOOO O
D N R N T R
OO OO0 OO0OO0OO0OOO OO

~ N N S8~

el NeNeNeNeNoNeo XK=}

~ S N

o
o
~
o
o

’ 4
-1,10,10,10
-1,0,0,5
-1,20,30,40
2,0,0,0
-1,25,50,75
2,0,0,0

4
’
’

o es ee ee e ee e

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

(no formula)

(note negative numbers)

(unused

(also has a min of 0)

(unused)
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DATA 0,0,0 ,0 :REM 95
DATA 0,0,0 ,0 :REM 96
DATA 0,0,0,0 :REM 97
DATA 0,0,0,0 :REM 98
DATA 0,0,0 ,0 :REM 99
DATA -1,25,31,41 :REM 100
DATA -1,0,0,0 :REM 101
DATA -1,15,20,25 :REM 102
DATA -1,30,40,50 :REM 103
DATA -1,15,20,25 :REM 104
DATA -1,15,20,25 :REM 105
DATA -1,50,62,83 :REM 106
DATA -1,5,5,5 :REM 107
DATA -1,18,23,32 :REM 108
DATA -1,18,23,32 :REM 109
DATA -1,66,72,83 :REM 110
DATA -1,5,5,5 :REM 111
DATA -1,25,27,32 :REM 112
DATA -1,25,27,32 :REM 113
DATA 8,0,0,0 :REM 114
DATA -1 ,20,25,30 :REM 115

ramkind:

PRINT “Please specify the RAM chips you are designing for:’

FOR i=1 TO ram.vend.count

PRINT i, ram.vend$ (i)

NEXT i

INPUT ram.point

IF ram.point >0 AND ram.point<ram.vend.count+l THEN GOTO membus
PRINT “you must specify a number in the range displayed.”

GOTO ramkind

membus :
GOSUB out.top ‘print the time and date
paraml:
ramp=1: GOSUB out.param
text$="QPDM guarantees 6 SYSCLK cycles = “+STR$ (12*clock(sp)) :GOSUB out.string
text$="RAM requires “+STRS$(ram(ram.point,1l)) :GOSUB out.string
IF 12*clock(sp) < ram(ram.point,1l) THEN GOSUB out.problem

param2:
ramp=2 :GOSUB out.param
text$= “QPDM never does Read/Modify/Write Cycles.”: GOSUB out.string

param3:
ramp=3: GOSUB out.param
text$= “QPDM never does Page Mode Cycles.”:GOSUB out.string

paramé:

ramp=4 : GOSUB out.param
gpdmp=32 :GOSUB pos.qgpdm

GOSUB neg.ras

qpdmp=45: GOSUB neg.gpdm

GOSUB totals
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GOSUB finish

param5:

ramp=5 : GOSUB out.param
IF early.cas(0)=1 THEN GOTO param5.1
gpdmp=41: GOSUB pos.gpdm
GOSUB neg.cas

gpdmp=45: GOSUB neg.gpdm
GOSUB totals

GOSUB finish

GOTO param6

param5.1:

gpdmp=44: GOSUB pos.gpdm
GOSUB neg.e.cas

GOSUB neg.cas

gqpdmp=45: GOSUB neg.qgpdm
GOSUB totals

GOSUB finish

paramé6:

ramp=6 :GOSUB out.param
gqpdmp=46 :GOSUB neg.gpdm
gpdmp=43 :GOSUB pos.qpdm
GOSUB pos.cas

GOSUB totals

GOSUB finish

param7:

ramp=7 :GOSUB out.param
text$=ram.desc$ (ramp) : min=ram(ram.point, ramp)
nom=min: max=min :GOSUB out.values

GOTO param8

param8:

ramp=8: GOSUB out.param
gqpdmp=35 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

param9:

ramp=9: GOSUB out.param
qpdmp=33 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

paramlO:

ramp=10: GOSUB out.param
qpdmp=39 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

paramll:

ramp=11: GOSUB out.param
gpdmp=40 :GOSUB pos.qgpdm
GOSUB totals
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GOSUB finish

paraml2:

ramp=12: GOSUB out.param

text$="QPDM never does Page Mode Cycles.”
GOTO paraml3

paraml3:

ramp=13:GOSUB out.param
qpdmp=57 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

paramlé:

ramp=14 :GOSUB out.param
qpdmp=33 :GOSUB pos.gpdm
GOSUB neg.ras

GOSUB pos.cas

GOSUB totals

GOSUB finish

paramlS5:

ramp=15: GOSUB out.param
IF early.cas(0)=1 THEN GOTO paraml5.1
gpdmp=36: GOSUB pos.gpdm
GOSUB neg.ras

GOSUB pos.cas

GOSUB totals

GOSUB finish

GOTO paramlé

paraml5.1:

qpdmp=42: GOSUB pos.gpdm
GOSUB neg.ras

GOSUB pos.e.cas

GOSUB pos.cas

GOSUB totals

GOSUB finish

GOTO paramlé6

paramlé6:

ramp=16 :GOSUB out.param
gpdmp=35 :GOSUB pos.gpdm
GOSUB neg.cas

GOSUB pos.ras

GOSUB totals

GOSUB finish

paraml7:

ramp=17 :GOSUB out.param
qpdmp=30 :GOSUB pos.qgpdm
GOSUB neg.adrs

GOSUB pos.ras

GOSUB totals

GOSUB finish

paraml8:

GOSUB out.string
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ramp=18 :GOSUB out.param
gqpdmp=31 :GOSUB pos.gpdm
GOSUB pos.adrs

GOSUB neg.ras

GOSUB totals

GOSUB finish

paraml9:

ramp=19: GOSUB out.param
IF early.cas(0)=1 THEN GOTO paraml9.1l
qpdmp=37: GOSUB pos.qgpdm
GOSUB neg.adrs

GOSUB pos.cas

GOSUB totals

GOSUB finish

GOTO param20

paraml9.1:

qpdmp=66 :GOSUB pos.gpdm
GOSUB neg.adrs

GOSUB pos.e.cas

GOSUB pos.cas

GOSUB totals

GOSUB finish

GOTO param20

param20:

ramp=20: GOSUB out.param
gpdmp=38: GOSUB pos.gpdm
GOSUB pos.adrs

GOSUB neg.cas

GOSUB totals

GOSUB finish

param21l:

ramp=21: GOSUB out.param
qpdmp=56: GOSUB pos.gpdm
gpdmp=38: GOSUB pos.gpdm
GOSUB pos.adrs

GOSUB neg.ras

GOSUB totals

GOSUB finish

param22:

ramp=22: GOSUB out.param
gqpdmp=43: GOSUB pos.gpdm
qpdmp=40: GOSUB pos.gpdm
GOSUB neg.xfg

GOSUB pos.cas

GOSUB totals

GOSUB finish

param23:

ramp=23: GOSUB out.param
qgqpdmp=35 :GOSUB pos.gpdm
qpdmp=59 :GOSUB neg.gpdm
GOSUB pos.xfg
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GOSUB neg.ras
GOSUB totals
GOSUB finish

param24:

ramp=24: GOSUB out.param
qpdmp=35 :GOSUB pos.gpdm
qpdmp=59 :GOSUB neg.gpdm
GOSUB pos.xfg

GOSUB neg.cas

GOSUB totals

GOSUB finish

param25:

ramp=25:GOSUB out.param
gpdmp=60 :GOSUB pos.gpdm
GOSUB pos.we

GOSUB neg.cas

GOSUB totals

GOSUB finish

param26:

ramp=26:GOSUB out.param
gqpdmp=61 :GOSUB pos.gpdm
gpdmp=60 :GOSUB neg.gpdm
GOSUB pos.we

GOSUB neg.cas

GOSUB totals

GOSUB finish

param27:

ramp=27 :GOSUB out.param
gqpdmp=61 :GOSUB pos.gpdm
qpdmp=56 :GOSUB pos.gpdm
gqpdmp=60 :GOSUB neg.gpdm
GOSUB pos.we

GOSUB neg.ras

GOSUB totals

GOSUB finish

param28:

ramp=28 :GOSUB out.param
qpdmp=61 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

param29:

ramp=29:GOSUB out.param
gpdmp=33: GOSUB pos.gpdm
gpdmp=56: GOSUB neg.gpdm
gqpdmp=60: GOSUB pos.gpdm
GOSUB pos.ras

GOSUB neg.we

GOSUB totals
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GOSUB finish

param30:

ramp=30 :GOSUB out.param
qpdmp=60 :GOSUB pos.gpdm
gqpdmp=57: GOSUB pos.gpdm
GOSUB pos.cas

GOSUB neg.we

GOSUB totals

GOSUB finish

param31:

ramp=31:GOSUB out.param
gqpdmp=64 :GOSUB pos.qpdm
GOSUB pos.cas

GOSUB totals

GOSUB finish

param32:

ramp=32 :GOSUB out.param
gpdmp=65 :GOSUB pos.gpdm
GOSUB neg.cas

GOSUB totals

GOSUB finish

param33:

ramp=33:GOSUB out.param
gqpdmp=56 :GOSUB pos.qgpdm
gpdmp=65 :GOSUB pos.qgpdm
GOSUB neg.ras

GOSUB totals

GOSUB finish

param34:
ramp=34 :GOSUB out.param
text$= “QPDM never does Read/Modify/Write Cycles.”: GOSUB out.string

param35:

ramp=35:GOSUB out.param

text$= “QPDM never does Read/Modify/Write Cycles.”: GOSUB out.string
param36:

ramp=36:GOSUB out.param
qpdmp=44 :GOSUB pos.gpdm
GOSUB neg.xfg

gqpdmp=45 :GOSUB neg.qgpdm
GOSUB totals

GOSUB finish

param37:
ramp=37 :GOSUB out.param
text$= “QPDM never does Read/Modify/Write Cycles.”: GOSUB out.string

param38:
ramp=38 :GOSUB out.param
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text$= “QPDM never does Read/Modify/Write Cycles.”:

param39:

ramp=39:GOSUB out .param
gpdmp=46 :GOSUB pos.gpdm
GOSUB pos.xfg

GOSUB totals

GOSUB neg.finish

paramé0:

ramp=40:GOSUB out.param
gpdmp=47 :GOSUB pos.gpdm
GOSUB pos.ras

GOSUB neg.cas

GOSUB totals

GOSUB finish

paramél:

ramp=41:GOSUB out.param
gpdmp=48 :GOSUB pos.gpdm
GOSUB neg.ras

GOSUB pos.cas

GOSUB totals

GOSUB finish

paramé2:

ramp=42:GOSUB out.param
qpdmp=40 :GOSUB pos.gpdm
GOSUB pos.cas

GOSUB neg.ras

GOSUB totals

GOSUB finish

paramé3:
ramp=43: GOSUB out.param

GOSUB out.string

intval=ram(ram.point, ramp) *(1000000!/256) ‘refresh in nanosec
text$="You may program DMRR to “+STRS$ (INT (intval/clock(sp)+.99))

GOSUB out.string

paramé4d:

ramp=44:GOSUB out.param
gqpdmp=49 :GOSUB pos.gpdm
GOSUB neg.xfg

GOSUB pos.ras

GOSUB totals

GOSUB finish

param45:

ramp=45:GOSUB out.param
gpdmp=32 :GOSUB pos.gpdm
GOSUB neg.ras

GOSUB pos.xfg

GOSUB totals

GOSUB finish

paramé6:
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ramp=46: GOSUB out.param
gpdmp=41 :GOSUB pos.gpdm
GOSUB neg.cas

GOSUB pos.xfg

GOSUB totals

GOSUB finish

paramd7:

ramp=47: GOSUB out.param
gpdmp=52: GOSUB pos.gpdm
gpdmp=32: GOSUB pos.gpdm
GOSUB pos.xfg

GOSUB totals

GOSUB finish

paramé8:

ramp=48: GOSUB out.param
qpdmp=34: GOSUB pos.gpdm
gpdmp=53: GOSUB pos.gpdm
GOSUB totals

GOSUB finish

paramé49:

ramp=49: GOSUB out.param
gpdmp=44: GOSUB pos.gpdm
GOSUB totals

GOSUB finish

param50:

param51:

param52:

param53:

param54:

param55:

param56:

param57:

param58:

ramp=58: GOSUB out.param
gpdmp=43: GOSUB pos.qgpdm
gqpdmp=35: GOSUB pos.gpdm
GOSUB pos.ras

GOSUB neg.xfg

GOSUB totals

GOSUB finish

param59:

ramp=59: GOSUB out.param
gpdmp=42: GOSUB pos.gpdm
GOSUB neg.ras

GOSUB pos.xfg

GOSUB totals

GOSUB finish

paramé60:

ramp=60: GOSUB out.param
gpdmp=34: GOSUB pos.qgpdm
GOSUB pos.ras
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GOSUB neg.xfg
GOSUB totals
GOSUB finish

param6l:

ramp=61: GOSUB out.param
qpdmp=43 :GOSUB pos.gpdm
GOSUB pos.cas

GOSUB neg.xfg

GOSUB totals

GOSUB finish

param62:

ramp=62: GOSUB out.param
gpdmp=44: GOSUB pos.gpdm
qpdmp=34: GOSUB pos.gpdm
GOSUB neg.xfg

GOSUB pos.ras

GOSUB totals

GOSUB finish

param63:

param64:

ramp=64: GOSUB out.param
qpdmp=59: GOSUB pos.gpdm
GOSUB neg.we

GOSUB pos.ras

GOSUB totals

GOSUB finish

paramé65:

ramp=65: GOSUB out.param
gpdmp=60: GOSUB pos.qgpdm
gqpdmp=61: GOSUB pos.gpdm
GOSUB pos.ras

GOSUB neg.we

GOSUB totals

GOSUB finish

param66:

ramp=66: GOSUB out.param
gpdmp=52: GOSUB pos.gpdm
GOSUB pos.ras

GOSUB totals

GOSUB finish

paramé67:

ramp=67: GOSUB out.param
gpdmp=63: GOSUB pos.gpdm
GOSUB neg.ras

GOSUB totals

GOSUB finish

paramé68:
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param69:.

param70:

ramp=70: GOSUB out.param
qpdmp=35: GOSUB pos.gpdm
gpdmp=49: GOSUB neg.gpdm
GOSUB neg.ras

GOSUB pos.xfg

GOSUB totals

GOSUB finish

param71:

ramp=71 :GOSUB out.param
gpdmp=44 :GOSUB pos.gpdm
qpdmp=43: GOSUB pos.gpdm
GOSUB neg.xfg

GOSUB pos.cas

GOSUB totals

GOSUB finish

param72:

param73:

ramp=73 :GOSUB out.param
gpdmp=42 :GOSUB pos.gpdm
gpdmp=44 :GOSUB pos.qgpdm
GOSUB neg.ras

GOSUB pos.xfg

GOSUB totals

GOSUB finish

param74:
ramp=74: GOSUB out.param

text$="QPDM never does hidden refresh cycles.”

param75:

ramp=75: GOSUB out.param
gpdmp=57 :GOSUB pos.qgpdm
gpdmp=40 :GOSUB pos.gpdm
gpdmp=65 :GOSUB pos.gpdm
GOSUB neg.cas

GOSUB totals

GOSUB finish

param76:
param77:

param78:
ramp=78: GOSUB out.param

:GOSUB out.string

text$="QPDM never does write transfer cycles.”:GOSUB out.string

param79:
ramp=79: GOSUB out.param

text$="QPDM never does write transfer cycles.”:GOSUB out.string

param80:
ramp=80: GOSUB out.param

3-33



CHAPTER 3
Display Memory Bus

text$="QPDM never does write transfer cycles.”:GOSUB out.string

param81l:
ramp=81l: GOSUB out.param

text$="QPDM never does write transfer cycles.”:GOSUB out.string

param82:
ramp=82 :GOSUB out.param
text$="QPDM never does serializer

param83:
ramp=83 :GOSUB out.param
text$="QPDM never does serializer

param84:
ramp=84 :GOSUB out.param
text$="QPDM never does serializer

param85:
ramp=85 :GOSUB out.param
text$="QPDM never does serializer

param86:
ramp=86 ':GOSUB out.param
text$="QPDM never does serializer

param87:
ramp=87 :GOSUB out.param
text$="QPDM never does serializer

param88:
ramp=88 :GOSUB out.param
text$="QPDM never does serializer

param89:
ramp=89 :GOSUB out.param
text$="QPDM never does serializer

param90:
ramp=90 :GOSUB out.param
text$="QPDM never does serializer

param91l:

ramp=91 :GOSUB out.param
gqpdmp=44 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

param92:

ramp=92 :GOSUB out.param
qgpdmp=41 :GOSUB pos.gpdm
GOSUB totals

GOSUB finish

param93:

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

writes.” :GOSUB

out.string

out.string

out.string

out.string

out.string

out.string

out.string

out.string

out.string
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ramp=93 :GOSUB out.param

text$="this will handled only on REV C QPDM silicon.”:GOSUB out.string

param94:

ramp=94 :GOSUB out.param
gqpdmp=34 :GOSUB pos.gpdm
gpdmp=35 :GOSUB pos.gpdm
GOSUB pos.ras

GOSUB neg.xfg

GOSUB totals

GOSUB finish

param95:
ramp=95 :GOSUB out.param

text$="this will handled only on REV C QPDM silicon.”:GOSUB out.string

param96:
ramp=96: GOSUB out.param

text$="QPDM never does write transfer cycles.”:GOSUB out.string

param97:
ramp=97: GOSUB out.param

text$="QPDM never does write transfer cycles.”:GOSUB out.string

param98:
ramp=98: GOSUB out.param

text$="this will handled only on REV C QPDM silicon.”:GOSUB out.string

closeup:
IF file=1 THEN CLOSE #1
IF file=0 THEN GOTO wl
OPEN file$ FOR INPUT AS #1
WHILE NOT EOF (1)

LINE INPUT #1, a$

PRINT a$
WEND
CLOSE #1
wl:
GOTO wl
out.top: ‘no input, just print time and date

PRINT DATES, t IMES
IF file=1 THEN PRINT#1,DATES, tIMES

IF sp=2 THEN text$=STR$ (20) ‘build up a header

IF sp=3 THEN text$=STR$(16)

IF sp=4 THEN text$=STR$(12)
text$=text$+” MHz QPDM at”
text$=text$+STRS$ (500/clock (sp))+”"MHz"
PRINT text$

IF file=1 THEN PRINT #1, text$

PRINT ram.vend$ (ram.point)

IF file=1 THEN PRINT #1, ram.vend$(ram.point)

RETURN
out.string:
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PRINT text$
IF file=1 THEN PRINT#1, text$
RETURN

out.param: ‘print ram parameter text index by ramp (RAM Parameter)
PRINT
PRINT ramp,ram.text$ (ramp), ram.desc$ (ramp)
IF file=1 THEN PRINT#1,” »
IF file=1 THEN PRINT#1, ramp, ram.text$ (ramp), ram.desc$ (ramp)
mint=0: nomt=0: maxt=0 ‘clear accumulators
RETURN

out.problem:

PRINT “***THERE MAY BE A PROBLEM IN THE ABOVE PARAMETER***”

IF file=1 THEN PRINT#1l, “****THERE MAY BE A PROBLEM IN THE ABOVE PARAME-
TER***xx”

RETURN

out.values: ‘formatted output
PRINT USING st2$;text$,min,nom,max
IF file=1 THEN PRINT#1, USING st2$;text$,min,nom,max
RETURN

eval.gpdm: ‘input is gpdmp. output is min,nom,max all set to (same) value from
gpar ‘gpar of gpdmp. will use clock (sp) if necessary

IF gpar(l,gpdmp)<>0 THEN GOTO eval.gpdml

PRINT “QPDM Parameter is unused: “;gpdmp

STOP
eval.gpdml:
IF gpar(l,gpdmp)>0 THEN GOTO eval.gpdm2
min=gpar (sp,gpdmp) : nom=min: max=min ‘get the para for proper Q speed
RETURN
eval.qgpdm2:
min=clock (sp) *qpar (1, gpdmp) +gpar (sp, gedmp) ‘n clock/2 + (-) adder
nom=min: max=min
RETURN
accumulate:
mint=mint+min ‘add in new min

nomt=nomt+nom
maxt=maxt+max
RETURN

decrement:
mint=mint-min ‘subtract out new min
nomt=nomt -nom
maxt=maxt-max
RETURN

change.sign:
min=-min
nom=-nom
max=-max
RETURN

get.ras.decode:
min=ras.decode (1)
nom=ras.decode (2)
max=ras.decode (3)
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RETURN

get .ras.delay:
min=ras.delay (1)
nom=ras.delay(2)
max=ras.delay(3)
RETURN

get .cas.decode:
min=cas.decode (1)
nom=cas .decode (2)
max=cas.decode (3)
RETURN

get.cas.delay:
min=cas.delay (1)
nom=cas.delay (2)
max=cas.delay (3)
RETURN

get .xfg.decode:
nmin=xfg.decode (1)
nom=xfg.decode (2)
max=xfg.decode (3)
RETURN

get .xfg.delay:
min=xfg.delay (1)
nom=xfg.delay(2)
max=xfg.delay(3)
RETURN

get .we.decode:
min=we.decode (1)
nom=we .decode (2)
max=we .decode (3)
RETURN

get .we.delay:
min=we.delay (1)
nom=we .delay (2)
max=we.delay (3)
RETURN

get.ad.delay:
min=ad.delay (1)
nom=ad.delay (2)
max=ad.delay (3)
RETURN

get.early.cas:
min=early.cas(1l)
nom=early.cas (2)
max=early.cas (3)
RETURN

pos.ras:

text$="+RAS Decode” :GOSUB get.ras.decode: GOSUB pos.delay
text$="+RAS Delay”: GOSUB get.ras.delay: GOSUB pos.delay
RETURN

neg.ras:
text$="-RAS Decode” :GOSUB get.ras.decode:GOSUB neg.delay
text$="-RAS Delay” :GOSUB get.ras.delay:GOSUB neg.delay

3-37



CHAPTER 3
Display Memory Bus

RETURN

pos.cas:

text$="+CAS Decode” :GOSUB get.cas.decode: GOSUB pos.delay
text$="+CAS Delay”: GOSUB get.cas.delay: GOSUB pos.delay
RETURN

neg.cas:

text$="-CAS Decode” :GOSUB get.cas.decode: GOSUB neg.delay
text$="-CAS Delay”: GOSUB get.cas.delay: GOSUB neg.delay
RETURN

neg.e.cas:
text$="-Early CAS”: GOSUB get.early.cas: GOSUB neg.delay
RETURN

pos.e.cas:
text$="+Early CAS”: GOSUB get.early.cas: GOSUB pos.delay
RETURN

pos.xfg:

text$="+XFG Decode” :GOSUB get .xfg.decode: GOSUB pos.delay
text$="+XFG Delay”: GOSUB get.xfg.delay: GOSUB pos.delay
RETURN

neg.xfg:

text$="-XFG Decode” :GOSUB get .xfg.decode:GOSUB neg.delay
text$="-XFG Delay”:GOSUB get.xfg.delay:GOSUB neg.delay
RETURN

pos.we:
text$="+WE Decode” :GOSUB get.we.decode: GOSUB pos.delay
text$="+WE Delay”: GOSUB get.we.delay: GOSUB pos.delay
RETURN

neg.we:

text$="-WE Decode” :GOSUB get.we.decode:GOSUB neg.delay
text$="-WE Delay” :GOSUB get.we.delay:GOSUB neg.delay
RETURN

pos.adrs:
text$="+Adrs Delay”: GOSUB get.ad.delay: GOSUB pos.delay
RETURN

neg.adrs:

text$="-Adrs Delay”: GOSUB get.ad.delay: GOSUB neg.delay
RETURN

finish:

‘write the totals line, the ram parameter line, and the margins

‘print the error message if necessary
IF ram(ram.point,ramp)<>99 THEN GOTO finishl
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text$="Not a Parameter for this VRAM Vendor”: GOSUB out.string: RETURN
finishl:

min=ram(ram.point, ramp) : nom=min: max=min: text$=”VRAM”: GOSUB out.values
text$="Margins:”: min=mint-min :nom=nomt-nom: max=maxt-max: GOSUB out.values
IF min=>0 AND nom=>(0 AND max=>0 THEN RETURN

GOSUB out.problem

RETURN

neg.finish:

‘write the totals line, the ram parameter line, and the margins

‘print the error message if necessary

IF ram(ram.point, ramp)<>99 THEN GOTO neg.finishl

text$="Not a Parameter for this VRAM Vendor”: GOSUB out.string: RETURN
neg.finishl:

min=ram(ram.point, ramp) : nom=min: max=min: text$="VRAM”: GOSUB out.values
text$="Margins:”: min=min-mint :nom=nom-nomt: max=max-maxt: GOSUB out.values
IF min=>0 AND nom=>0 AND max=>0 THEN RETURN

GOSUB out.problem

RETURN

totals:
text$="Total Time:”: min=mint: nom=nomt: max=maxt: GOSUB out.values
RETURN

pos.qgpdm:
text$="+QPDM Para “+STR$ (gpdmp)
GOSUB eval.gpdm: GOSUB out.values: GOSUB accumulate: RETURN

neg.qpdm:

text$="-QPDM Para “+STR$ (gqpdmp)
GOSUB eval.gpdm: GOSUB change.sign
GOSUB out.values: GOSUB accumulate
RETURN

pos.delay:
SWAP min,max: GOSUB out.values: GOSUB accumulate: RETURN

neg.delay:
GOSUB change.sign: GOSUB out.values: GOSUB accumulate: RETURN
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3.3 FONT STORAGE IN KANJI ROMS
3.3.1 Introduction

This note describes a method of storing very large fonts
in a Am95C60 Quad Pixel Dataflow Manager (QPDM)
system. This method avoids the expense and board
space that would be required to keep the fonts in VRAM
by allowing them to reside in (relatively slow) MOS
ROMs.

3.3.2 String Operations on the QPDM

The QPDM provides a powerful text manipulation facility,
described in detailin Chapter 10 of the TechnicalManual.
An overview is provided here.

The Font

A font is stored in display memory (typically with Input
Block) and the QPDM is notified of the location of the font
using the Set Character Font Base instruction. Each
(there may be two) font contains up to 4096 character
entries, allbeginning at the same X address. See Figure
3.3-1. Each character description begins with a 16-bit
attribute word which specifies the size of the character.
Thisis followed by as many patternwords as are required
to describe the character. In the font described in this
section, each character is 24 pixels by 24 scan lines.
With this mechanization, character are separated hori-
zontally by up to eight blank pixels.

I.__ xi- —»

1K 2K

3K 4K

1st Level
VRAM Kanji

2nd Level
Kanji

24 scan lines * 32 bits = 768 bits

ONE T

CHARl | / \\\\\ I |
—_——

Attribute / By 71, i
Word = 16 bits ~ /2 scan lines

or ‘ e not used

ONE SCAN LINE | -051 P I -052 P I -053 P I Zeroes I
PID 09862A 3.3-1

Figure 3.3-1 Display Memory Layout
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\ A, —=>[J o G - D,
Do ‘-E —’Ds
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(OV) GND [EET N
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(A4-A0) M1 ROM2 ROM3
f—A—\ 051 P 052P -053 P
ADDD|DDDDDDDDDDDDDDIDDDIDDD
ol7lslslala|2]1]olzlsls]alal2]1lo]7]elsla]3]2]1
0
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4 [ |
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L a
| |
| le—— one scan line

94— next scan line

ek PplOPIOCPEPOPICPPIOCPICPOI»>

FFEFPFEFRERPRIEPPRPPICPEPPIPFIFIFIFPPPEPPEPPIPPPPPIPPIPI® >
FPREFREFPPEPPEPRFREFEIFEFPPPPEPFIFREREFEFPEPPEIPFEEFIEIFEPRPPICPIY
PP REPICPRFRFEPRPREEFEIPPLFEFEFPIPFEFPIPPFPPFPRPICI*>
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Figure 3.3-2 Kanji ROM Pinouts and Organization
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to
11111
PID 09682A 3.3-2
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The String Instruction

The String instruction is used to move characters from
the font area to a (normally) visible area of the display
memory. The String instruction specifies the beginning
location where the text is to appear. The String instruc-
tion is followed by a variable-length list of character
codes. Each entry in this list is processed as one
character.

The QPDM processes list entries as follows: The entry
is used as anindex into the font. Since charactersin the
font are ordered vertically, the index is a Y-offset from the
base of the font. The attribute word is fetched first so that
the QPDM knows the size of the character.

Then, for each scan line of the character, as many 16-bit
pattern words as necessary are fetched and placed into
the display memory. Since we are processing 24-bitwide
characters, two pattern words per scan line are required
(the right-most eight bits are discarded).

The QPDM processes all the scan lines of acharacter (in
this case there are 24) and moves the Current Pen
Position to the beginning of the next character space.
The high-order bit of the current list entry is tested to
determine if it is the last in the list. If not, the process
continues with the next entry.

3.3.3 Memory Requirements for Very
Large Fonts

This method of storing fonts in the display memory
presents a problem when the fonts become very large.
Consider a 24 x 24 font containing 8192 entries. Each
scan line of each character is stored in 32 bits (eight of
which areunused). There are 768 bits for pattern storage
plus 16 bits for the attribute word. Each character
requires 784 bits; the complete font requires over 6 Mbits.
At least in the short run (until 1M x 4 VRAMs become
available), this is sufficiently expensive that we would like
to find a better way.

3.3.4 The Solution for KANJI

Kanjifonts are available in 300 ns ROMs. There are two
sets of three ROMs each; 1st level Kanji contains 2965
characters and 2nd level Kanjicontains 3388 characters.

Each ROM in the three-chip set contains an 8-bit slice of
each scan line of each character. The ROMs are ad-
dressed in parallel; there are 12 address bits to select a
character and 5 address bits to selecta scanline. Not all

ofthe character codes are used, and only the first 24 scan
lines are used. The arrangement of the three ROMs is
shown in Figure 3.3-2. The development of the ad-
dresses is shown in Table 3.3-1

These ROMs have an access time (both address and
Chip Select) of 300 ns, but the QPDM provides the
address only 60 ns before the data are required. Sothere
is insufficient memory access time. This problem is
solved by pipelining the accesses.

Figures 3.3-3 and 3.3-4 show how this works. When the
QPDM executes the display memory read to fetch the
attribute word, this is detected inthe PAL device since X,
is aone and X, through X, are all zeroes. Thisis deﬁneJ
as an attribute word. EN_ATTRIB_WORD* enables U6
and U7 onto the DM lines during CAS. This is a “hard-
wired” attribute word which specifies a 24 x 24 character.
The bits in the attribute word are described in Section
3.35. :

During this same memory cycle, the character addressis
clockedinto U2 and U3 with CLK_CHAR at the beginning
of CAS. Further, the scan line number (which always
begins atzero) is clocked with CLK_SCAN_LINE, also at
the beginning of CAS. X, is also clocked with
CLK_SCAN_LINE. This is used to enable one or the
other triplet of ROMs based on the level selected.

The ROMs beginto access the data for the first scan line,
i.e., scan-line number zero, as the QPDM completes
fetching the attribute word. Even assuming back-to-back
cycles, the ROMs have somewhat over 300 ns before the
data are required.

Whenthe QPDM executes a memory-read cycle to fetch
the first word of the first scan line, the address will have
both X.. and X, as ones. The PAL device U5 will make
EN_LEFT_WORD* active while /CAS is active, gating
the upper 16 bits onto the DM lines via U8 and U9. Atthe
falling edge of /CAS, CLK_RIGHT_WORD will clock the
lower eight bits into U, .

When the QPDM executes a memory-read cycle to fetch
the second word of the first scan line, the address will
have X, and X ones, and X, will be a zero. The PAL
device will then make term EN_RIGHT_WORD* active
which will enable the lower eight bits of the font onto
DM, , via U10 and zeroes onto DM, , via U11. The
purpose of the zeroes is to guarantee %lanks between
characters. Atthefalling edge of /CAS, X through X are
clocked into U4 with CLK_SCAN_LINE and the R3Ms
will begin to access the second scan line (scan line one).
Referring to Table 3.3-1, one can observe that X, from
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Table 3.3-1 Address Bits

ROM ADDRESS BIT QPDM SOURCE CONFIG E
Ase Y14 Ao @ CAS
Ass 10 Ay @ CAS
A14 Yg A8 @ CAS
A Vg A, @ CAS
Ay Y, A, @ RAS
A, Ye As @ RAS
A10 Y5 A5 @ RAS
A9 Y4 A4 @ RAS
Aq A A, @ RAS
A, Y, A, @ RAS
Aq Y, A, @ RAS
A Y, A, @ RAS
A, Xq A, @ RAS
A, Xg A, @ RAS
A, X, A, @ RAS
A1 X6 A2 @ RAS
AO X5 A1 @ RAS

CONFIG D

Aq @ CAS
Ag @ CAS
A, @CAS
Ag @ RAS
A, @ RAS
Ag @ RAS
A; @ RAS
A, @ RAS
A; @ RAS
A, @ RAS
A@ RAS
A, @ RAS
A; @ RAS
A,@RAS
A; @ RAS
A, @ RAS
A, @RAS

The purpose of this table is to indicate the detailed source of each address bit into the ROM. The column labeled
“QPDM SOURCE” is the Y or X address bit internal to the QPDM. The columns labeled “CONFIG E” and “CONFIG
D”indicate which address pin of the QPDM presents the address bit and whetherit comes out during RAS or CAStime.

X,,=1indicates the access is a Kanji font address. X, selects first level or second level Kanji.

A through A5 select a character in the ROM; A, through A, select a scan line.
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the QPDM is not part of the address goinginto the ROMs,
but is used to determine which half of the character
should be fetched.

When the QPDM executes a memory read cycle to fetch
the first word of the second scan line, X, willbe aone. The
PAL device makes EN_LEFT_WOR 6" active and the
process continues.

3.3.5 Remarks
The X11 Problem

This solution requires that the QPDM emit address X,
which is not the case for memory configurations D and é
(see Chapter 12 of Tech Manual). The third major

revision of silicon (REV. C) supports these two address
bits in configurations D and E.

An interim solution is diagramed in Figure 3.3-5. The
QPDM is actually programmed for memory configuration
C (see Section 12 of the technical manual) so that
address X, is available. Then, we externally put a
multiplexer in front of A, to the VRAMs to make the
addresses the same as they would have beenin configu-
ration E. The implementer must insure that no RAM
timing parameters are violated. Row address set-up and
hold times should be checked especially carefully.

The Form of the Attribute Word

The attribute word should be as follows:

BIT 511411371211 T10l 9T g 71651 4T 3T 2T 1T 9
VALUE 11 11 01 0] 01 01T 0110 JO0ToloTl1Til 1T 01 o0
FIELD H S D iIco

His setto 1100 (decimal 12). Assuming cell scale is 2, this corresponds to 24 scan lines of active characters. If the

cell scale is set to 4, this should be 0110 (decimal 6).

S is set to 0000 because we do not want any space above characters.

D is set to 00 to force left-to-right character positioning.

ICO is set to 01 1100 (decimal 28). Since the character occupies 24 pixels, this leaves four pixels between
characters. These pixels are forced to zero by U11. Since eight zeroes are provided, the ICO could be as much

as 32, leaving eight pixels between characters.

Attribute SLO Left SLO Right SL1 Left SL1 Right
RAS =
1 11 | 1 11 11 |
CAS
| L | . LJ Ld
CLK-CHAR
CLK-SCAN- ﬂ I I I I
LINE
EN-ATTRIB-
WORD* I—I
EN-LEFT-
WORD* || |
EN-RIGHT-
WORD* | ||
A FIOM jo » 1 » 2
X-Address
from QPOM 0 1 3 4

Figure 3.3-3 Timing Diagram
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1st Level 2nd Level
051P] 052 P | 053 P| 054 P| 055 P | 056 P
A U2 Yi1 -Ye y »>
" A 4 DAes
| Y7 -Yo ‘s
u1 u3s
A A
+ETRTHA Xo -Xs
R
QPDM l | L a »>
POS_RAS
% —g————cxw CE I—o CE
—oR-scan LMJ |
U5 |o EN-LEFTWORD*
RAS 18P8|_CLK-RIGHTLWORD
CAS EN-RIGHT-WORD* 7
Attribute Word
7 uio ¥
EN-ATTRIB-WORD*
o . l
DM7.o
Figure 3.3-4 Logic Diagram
Intervening Memory Cycles

Memory cycles can intervene between accesses to the
font memory. There will certainly be write cycles to
Visible Display Memory, and there normally will be trans-
fer cycles and refresh cycles. This is no problem so long
as none of them make X, , a one, because the registers
in the ROM logic will remain static. The QPDM will not
make X, , a one during transfer or refresh cycles. Itis up
to the user to avoid using addresses that would make X, ,
a one during read or write cycles.

Preventing a Bus Crash

The implementer should use X, , to prevent the VRAMs
from executing read cycles when the Font ROM is being
accessed. Otherwise, a bus contention will result with
both the VRAMs and ROMs attempting to put data onto
the DM lines.

Logic Minimization

| made no attempt to minimize the logic in this note since
| wanted clarity of purpose above all else. ltis possible,
for example, to combine U6 and U8 into a single PAL
device (16H8). Another possibility is to combine U7, U9,
and U11 into a single PAL device.

Az (Y8) ——»

MUX | to VRAMs (A7 )
Ag (Y7 at RAS) ——p
(X11 at CAS) s
7 3
RAS*
(0 selects Ag)

ms T\ S

CAS \ /
VRA";‘\? vi X Y8 X vz

PID 09682A 3.3-5

Figure 3.3-5 X11 Solution
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Table 3.3.2 PAL Equations

X11, X9, X8, X7, X6, X5, X4

RAS, CAS
POS_RAS
CLK_CHAR
CLK_SCAN_LINE
EN_LEFT_WORD
EN_RIGHT_WORD
CLK_RIGHT_WORD
EN_ATTRIB_WORD
SPARE_IO
SPARE_IN

POS_RAS
CLK_CHAR

CLK_SCAN_LINE

IEN_LEFT_WORD
IIEN_RIGHT_WORD

PIN 1234567,

PIN  8,9;
PIN 19;
PIN 18;
PIN 17;
PIN 16;
PIN 15;
PIN 14;
PIN 13;
PIN 12;
PIN 11;
IRAS;

X11 &IX9 & IX8 & IX7 & IX6 & IX5 & IX4 & lICAS;

X11 & IX4 & ICAS

X11 & X4 & ICAS
X11 & X9 &!X4 & ICAS

# X11 & X8 & IX4 & ICAS
# X11 & X7 & IX4 & ICAS
# X11 & X6 & X4 & ICAS
# X11 & X5 & X4 & ICAS;
CLK_RIGHT_WORD = X11 & X4 & ICAS:
IIEN_ATTRIB_WORD = X11 & IX9 & IX8 & IX7 & IX6 & IX5 & IX4 & ICAS
Table 3.3.3 Device Type and Purpose
IC# Type Purpose
U1 Octal FF Save Row Address until CAS time.
U2 Quad FF Contains Yi1.100 ((High Order Char Adrs)
us Octal FF Contains Y.-Y, (Low Order Char Adrs)
U4 Hex FF Contains X, -X; (Select and Scan Line)
U5 PAL Device Control
ue Octal Buffer Emits Left Byte of Attribute
u7 Octal Buffer Emits Right Byte of Attribute
us Octal Buffer Buffers Top Byte of Kanji Character
us Octal Buffer Buffers Middle Byte of Kaniji Character
u1o0 Octal FF w/3S Latches, Buffers Low Byte of Kanji Character
ut1 Octal Buffer Emits eight zeros for inter-character space

The purpose of this table is to indicate the device type and purpose of each IC in this design

of the block diagram.

. It really could be part
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4.0 INTRODUCTION

This section covers the Video Bus, defined as the monitor
controls and the serializers. The monitor controls
(HSYNC and VSYNC) are covered first. Then we pres-
entthree detailed examples of the video serializers. The
first serializerusedinthe AMD evaluation/demonstration
board is suitable for video rates up to 40 MHz. The
second serializer uses Am8177s and is suitable for video
rates up to 125 MHz. The third serializer uses Am8172s
and is suitable for video rates up to 125 MHz. These
serializers have all been built and tested.

For a detailed analysis of a demonstration /evaluation
board that was built and tested, please refer to
Section 5.

4.1 VIDEO BUS

Inthis sectionwe discuss the ways of designing the video
bus portion of a QPDM design. We first talk about the
monitor controls and then cover three different video
serializers.

4.1.1 Monitor Controls

The three monitor controls from the QPDM (BLANK,
HSYNC, and VSYNC) have substantial (greater than
one-tenthdot clock) timing uncertainty and will have to be
resynchronized prior to use. In general, the timing with
which the SYNC signals are synchronized is not critical,
so long as it is consistent (does not vary more than a
fraction of a dot time from scan line to scan line). If the
design provides a timing pulse that is synchronous with
VIDCLK and is guaranteed to follow the positive edge by
at least timing parameter 103 plus the register set-up
time, there will be no problem. The SYNC pulses may be
buffered (with or without inversion) and driven directly to
the monitor. Alternatively, the SYNCs may goto the color
palette to be mixed with the video (usually green).

The time at which BLANK must be synchronized is very
much dependent on how the serializers work. We will
cover this in the discussion of each of the three serializer
methods.

4.2 SERIALIZERS IN GENERAL

The final serialization process is the responsibility of the
systemdesigner, notthe QPDM. The QPDM will execute
the transfer cycles to load the scan line into the VRAM
serial port and provide the blank signal to indicate when
the actual serialization should take place. The usertakes
care of the rest.

If the system contains Am8172 VDAF’s orthe equivalent,
the QPDM will take care of loading the INPUT side of the
FIFO but taking data out of the FIFO must be done by the
user.

4.2.1 Slow-speed Serializers

An example of slow-speed serialization is covered in
some detail in Section 5.1. To re-cap, the QPDM display
memory is organized in 16-bit words. Thus, the display
memory chips are allocated four (64K * 4) to a bit plane.
We use the serial output enables on the four chips to
multiplex to a 4-bit bus. This bus is loaded into a 4-bit
parallel-to-serial shift register with synchronous reset.
Every four bit times, the shift register is loaded. During
blanking time the output of the shifteris forced to a “0”with
the synchronized blanking pulse.

The longest path in this circuit is shown in Figure 4.1-1.
The dot clock causes a change in the dot counter value
(U,,), which makes VRAM output enable active (U,). This
in turn puts serial data from one of the VRAMSs onto the
nibble bus. This data must be set up before the fourth
subsequent dot clock arrives at the serializer(U,,). The
table below summarizes for various families of PAL
devices. In each case, we assume -12 VRAMs. In
practice, this should be compared to tmax for the PAL
Family.

Table 4.1-1 Summary of PAL devices

Parameter 16XX Typ 16XX Max 16XXA Max 16XXB Max
U, teo 17 25 15 12
Ugt,, 23 35 25 15
VRAM g, 20 35 35 35
Ut 20 30 15 10
Total 80 125 90 72
Total/Bit 20 31 22 18
Freq 50 32 44 56
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4.2.2 High-speed Serializer without HW
Windows (Am8177)

Thefollowing discussion assumes the readerhas access
to the data sheets for the parts that are used in the
examples. These parts and their data-sheet numbers
are listed below:

Am8151  Graphics Color Palette (GCP) 04653D
Am8158  Video Timing Controller (VTC) 04659C
Am8172 Video Data Assembly FIFO (VDAF) 07554A
Am8177 Video Data Serializer (VDS) 07080B

Figures 4.1-2 and 4.1-3 are schematic fragments show-
ing a method of serializing video at up to 125 MHz. This
method does not provide for a hardware window and
requires that the screen be placed on a 16-bit boundary.

Figure 4.1-2 shows an Am8158 Video Timing Controller
used to generate the Dot Clock and VIDCLK. Dot Clock
is generated on board the Am8158 with a built-in oscilla-
tor and 5X frequency multiplier. VIDCLK is generated in
the Am8158 with a divider that is programmed for divide-
by-16. VIDCLK is buffered to minimize loading in the
Am8158 and drives the QPDM VIDCLK, as well as being
used to generate the shift clocks for the VRAMs.

DCLKOUT is buffered in three sections of a 10103 to
provide two copies of the clock for the 8177 VDSs and
both rails forthe Am8151 GCPs. The fourth sectionofthe
10103 is used to gate the load pulse to the serializers.
Using all the sections of a single chip to generate these
signals ensures that the skew will be minimized.

Putting Words into the Serializer

The Am8158 generates LD* during the last dot clock of
any VIDCLK during which VC was ever LOW. The
relationship amongst these signals is shown in Figure
4.1-4 DOT.CLK and VIDCLK (CCLK) run continuously.
QBLANK from the QPDM goes not active during the
VIDCLK period before the video will actually begin which
causes LD* during the last DOT.CLK of that VIDCLK.
This loads the first 16-bit word into the Am8177 serializer
(this is shown as word 0 of VIDEQ). Eight bit times later,
SHIFT.CLK goes high to clock the next 16-bit word into
the VRAM serializer outputs. Actually, this can occur
almost anywhere during the word; the falling edge of
VIDCLK is a convenient time. Then, during the very last
DOT.CLK of the first word, LD* goes active againto clock
the second word into the Am8177s. This continues until
the very last word has been serialized.

us7
D e
u10 ue
COUNT ENABLE
L us9
paN
U40
Dot U14
Cloah D RED
09862A 4.1-1

Figure 4.1-1 Slow Serializer
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10103
DCLKOUT E Z 0 DOT.CLK
E > 1 DOT.CLK
8158
Y ST o
51
coLK | I VIDCLK
LD* LSR*
aBLANK 10 b— _jj [/E_l
SHIFT.CLK
| PaL |-SHI
ECLBLANK
tom)
I [0 51BLK
;D_ 74
09862A 4.1-2

10125

Figure 4.1-2 High Speed Serializer without HW Window - Controls

sC
SD15 SDo
L] L] L[] [ ]
LSR* )
ECL.ZERO 8177
—————15SIN (10f8) Sout
VLE n
v One of eight
n DOT.CLOCK /] BitPlanes
51BLK
51CLK" T 8151
51CLK o (10f3)
09862A 4.1-3

Figure 4.1-3 High Speed Serializer with HW Window - Serializer
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Scan Line End Conditions

Itis necessary now to examine the beginning and the end
of scan lines. As it turns out, the BLANK input of the
AmB8151 is a TTL signal and cannot be used to start and
stop the video at precisely the correct times. Rather, we
guarantee that the video outputs of the Am8177 is all
zeroes before and aftﬁ{the active portion of the scanline
and require thatthe 0" entry of the Am8151 LUT gener-
ate black video. This is accomplished by connecting the
serial input of the Am8177 to an ECL zero and suppress-
ing the load signals except during the active portion. The
Am8158 suppresses the LD* pulses before the active
video. The Am8158 generates one LD* pulse after the
active video (because the QPDM doesn’t drive QBLANK
active in time); we suppress this LD* pulse with
ECL.BLANK in the fourth section of the Am101013. Note
that ECL.BLANK doesn’t need to have very precise
timing.

To guarantee that the monitor will accomplish DC resto-
ration correctly, we must drive the video to blank (rather
than black) during HSYNC. QBLANK is ANDed with a
delayed QBLANK before going to the Am8151. This is

shown as 51BLK in Figure 4.1-4 51BLK goes not active
before the beginning of the scan line but this doesn’t
cause any problem because the video is still black.
51BLK does not go active until slightly afterthe end of the
scanline but this doesn’t cause any problembecause the
video is already black (because the Am8177s ran out of
data to serialize).

VRAM Serial Shifter Control

We must provide a shift pulse to the VRAMs after the
transfer cycle and before the first LSR*. This clocks the
first word to be serialized into the VRAM serial outputs.
This is done in the PAL device in Figure 4.1-2 which
monitors XFER* to generate the initial pulse. It then
generates an edge for every VIDCLK after the active
portion of the scan line has begun.

4.2.3 High-speed Serializer with HW Win-
dow (Am8172)

Figures 4.1-5 and 4.1-6 are schematic fragments show-
ing a method of serializing QPDM video with a hardware
window. This uses the Am8172 Video Data Assembly/

CoLK | L I L L1 l | | | |
QBLANK — \ i Ve
[
LD* u u ] —U LJ I_'
f
LSR* LI m ] T l_l
SHIFT.CLK | l | I_Jf_l I I J
VIDEO | word0 | _.f | word7s | word7e |
51BLK \ ! S

09862A 4.1-4

Figure 4.1-4 High Speed Serializer without HW Window - Timing Diagram
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t0124 ,

10125

10103
DCLKOUT 5 ) 0 DOT.CLK
D_ 1 DOT.CLK
8158
51CLK* VIDCLK
Y 3T s
COLK LSR" I[> > -
QBLANK |- b
58CLK
ECL.BLANK

74
>1

09862A 4.1-5

Figure 4.1-5 High Speed Serializer with HW Window - Control

15-12 11-8 7-4 3-0
sCc sCc
= — | T
48 +8
buffered XFG
S MUX
[En e | axzto]
1 ’ Do 7
VSTB
Am8172
VDAF
DSTB DCLK
3
CDAT + ACDg o
DOT.CLK b DOTCLOCK
LSR* LDSR So_y ———» 108151
________o
e

09862A 4.1-6

Figure 4.1-6 High Speed Serializer with HW Window - Serializer
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FIFO (VDAF). The VDAF provides two functions. The
first function is that of a “rubber- band” to provide video
when the VRAMs are executing transfer cycles. The
second function is to discard unused bits at the edges of
windows.

Figure 4.1-5 shows the Am8158 and associated logic.
This is similar to the Am8158 schematic shown in Figure
4.1-2 exceptthatwe needto loadthe final serializer every
eight pixels rather than every 16. This is done by
programming the CCLK divider for eight rather than for
16. In addition, we divide this clock by 2 to generate
VIDCLK (to keep VIDCLK below 15 MHz).

Figure 4.1-6 shows the VRAM serializers, the Am8172,
and the control logic. We consider first the removal of
data from the VDAF and then the loading of the VDAF.

Removing Serial Data from the VDAF

Figure 4.1-7 is a timing diagram showing how the seriali-
zation controls are used to drive the Am8172. Observe
that the horizontal scale for this diagram is by byte
whereasfor Figure 4.1-4itis by word. CCLK s generated
in the Am8158 and divided by two to generate VIDCLK.
When QBLANK goes not active the first LD* pulse for the
scan line is generated which in turn generates the first
LSR* pulse to the Am8172s. 51BLK will have already
gone not active but the pixels before active video will be
black.

Scan Line End Conditions

At the end of the scan line, the final LD* pulse has to be
suppressed; this is done by ANDing with ECL.BLANK.
As in the case of using the Am8177, the timing of
ECL.BLANK is not critical. The serial video from the
Am8172s goes to a set of three Am8151 color palettes
and thence on to a monitor.

Putting Data into the VDAF

Figure 4.1-8 is a timing diagram showing the video bytes
being loaded into the Am8172 VDAF. For purposes of
timing analysis, it is easiest to use DSTB fromthe QPDM
as the reference. VSTB from the QPDM changes be-
tween 0 and 10 ns following each positive edge of DSTB
(this is QPDM parameter 80). CDAT has 8 ns setup
(QPDM parameter 81) and 15 ns hold (QPDM parameter
82) from each positive edge of DSTB. All the signals
which go between the QPDM and the VDAF pass
through a common 22V10 PAL device. Using this com-
mon device, even for signals which have no logical
requirement, guarantees that the skew willbe minimized.

We will generate ACDO-2 directly from CDATO0-2 and
DCLK will come from DSTB. The multiplexer select will
come from VSTB. The VRAM serial clocks will be
generated from DSTB immediately after the data has
beenclockedintothe VDAF. Thetwo clocks (CLK.Hland
CLK.LO) will be generated out of phase.

CCLK | | | I |

QBLANK — \ [ /
[
LD* 1 1] ] 1T 1
[
LSR* L] I ] I
VIDEO | Byeo | ! | Byers | Bye7o |
51BLK \ [ Y

09862A 4.1-7

Figure 4.1-7 High Speed Serializer with HW Window - Timing Diagram
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ACD Setup and Hold Times Data Setup and Hold Times

The VDAF has a5 ns setup from ACD before DCLKcan  The VDAF requires that the data (from the VRAM serial-
rise. The QPDM provides 8 ns setup from CDAT to  izers) be valid 5 ns before DCLK canrise. This setup is

DSTB. We get a timing margin of 3 ns. interesting because it actually begins a full DSTB early.
In the worst case (the PAL device is very fast and the
Parameter min typ max multiplexer is very slow), the margins are 22 ns.
QPDM Para 81 8 8 8 .
+ PAL (DSTB - DCLK) 5 10 15 Parameter min typ max
- PAL (CDAT - ACD) 5 10 15 DSTB Period 50 50 50
Totals 8 8 8 - QPDM Para 80 10 5 0
Required (Para 7) 5 5 5 - PAL (VSTB - mux) 5 10 15
Margins 3 3 3 -Mux (Sto Q) 21 14 7
+ PAL (DSTB1 - DCLK) 5 10 15
The VDAF has a 10 ns hold time after DCLK rises before  Totals 24 41 58
ACD can change. The QPDM provides 15 ns holdtime.  Required (Para 5) 2 2 2
Margins 22 39 56
Parameter min typ max
The VDAF requires that the data be held on D7-0 for 5 ns
ﬂ': /[\)IPA(LF))E?BB?DCLK) 1: }g :g after DCLK has risen. Inthe worst case (the PAL device
+ PAL (CDAT - ACD) 5 10 15 is very slow, delaying DCLK), the tlmfng margin is 2 ns.
Totals 15 15 15 This assumes an extremely fast multiplexer as well.
Required (Para 8) 10 10 10
Margins 5 5 5
vsee _ f/// ANNAN [/l/ AN 77
coar — XX A X ) X X X X X
MUX
selet ____////1/ A Y7/ AN 17777
Do X vaup X X vaup X X vaup X X vaup X X vaLp
XvaupX XvaLoX XvaLpX XvauoX XoauoX X
CLKHI W [l M g ANNAN\
CLK.LO g A /11l AAARNNY 77777

Figure 4.1-8 VDAF Timing Diagram
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Parameter min typ max
QPDM Para 80 10 5 0
+ PAL (VSTB - mux) 5 10 15
+MUX (Sto Q) 21 14 7
- PAL (DSTB - DCLK) 5 10 15
Totals 31 19 7
Required (Para 6) 5 5 5
Margins 26 14 2
SBCLK Generation

Whenthetransfercycleis executed to move the scanline
or partial scan line into the VRAM serial registers, the
QPDM places data on the CDAT lines to identify the first
bit to be serialized. The interface has to recognize this is
taking place and generate a positive edge on SBCLK at
the correct time.

Figure 4.1-9 is a timing diagram that shows when this
clock is generated. Two inputs of a PAL device monitor
XFG and RAS to determine when a transfer cycle is

taking place. Thisis the case when XFGis low and RAS
is high (thatis, a transfer cycle is about to begin). Thisis
fed back and latched until RAS goes inactive.

The VDAF requires 15 ns setup time from ACD to the
positive edge of SBCK; the QPDM provides only 10 from
CDAT valid to RAS falls. We solve this problem by
throwing another PAL output atit. Thatis, we delay RAS
once through the PAL and use the result to time SBCK.

TELSC (That Extra Little Shift Clock)

We have saved the best for last. We must provide one
shift pulse to the VRAMs after the transfer cycle and
before the first data bits are clocked into the VDAF.
Figure 4.1-10 shows the timing required to accomplish
this.

The bounds on the time at which the edge can occur are;
The edge cannot occur too soon after the rising edge of
XF-G (atthe VRAM) orit will violate VRAM parameter 48.

XFG \ Requires 15 setup,
|<- p49=12ns 15 hold
RAS /
p50 = 10 ns —ul p51 = 65 ns —
CDAT Valid Start Bits X
DRAS ANRANNY
ACD X X X X
SBCK / \
XFER = IXFG + RAS
# XFER +! RAS
DRAS = RAS
SBCK = XFER +1 DRAS oA 410

Figure 4.1-9 SBCLK Generation
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It must occur soon enough to insure the data is available
and through the multiplexer to meet the VRAM set-up
time to the first DCLK.

The trailing edge of XFG is probably the best edge from
which to generate the extra shift clock. It occurs a little
earlier than the shift clock should and it is the edge from
which the critical timing parameter is measured. XFG at
the VRAM should be used; this eliminates timing uncer-
tainties through the buffer. If this goes directly into the
PAL device, there is a possibility of the SCLK coming too
early (the PAL minimum delay is 5 ns and we require 10
ns). So a5 ns active delay line must be inserted.

Now we consider whether the data will be available at the
VDAF inputs in time. As before, we have a 5 ns setup
time. Beginning with XFG rising edge, we have:

Video Bus
Parameter min typ max
QPDM Para 34 14 14 14
+ QPDM Para 55 40 40 40
+ PAL (DSTB - DCLK) 5 10 15
- XFG Buffer Delay 15 12 10
- XFG - XFG_D Delay 5 5 5
- XFG_D - SCLK Delay 5 10 15
- SC Access Time 10 10 10
- Mux D-Q 5 10 14
Total 19 17 15
Required (Para 5) 5 5 5
Margins 14 12 10

For Rev.C and later, this is unnecessary because the
QPDM itself will generate the pulse.

RAS /

34—

CAS /_

="

XFG /
VSTB
O 55 |
DSTB /
DCLK //// Yy
XFER AN
SCLK ////// 09862A 4.1-10

Figure 4.1-10 Extra Shift Clock Timing
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Evaluation and Demonstration Board

5.0 EVALUATION AND DEMONSTRATION
BOARD

Inthis chapter we describe an evaluation/demonstration
board designed and built by AMD. This board has been
put into pilot production; the design has been thoroughly
tested.

5.1 PC INTERFACE

5.1.1 Address Buffers

We need to buffer 20 address bits onto the board. Each
Am29C827 contains 10 bits per device. The two buffers
needed are U46 and U47. U47 is shown on Sheet 2 of
the schematic diagram; U46 is shown on Sheet 3. Be-
cause 29C827s suffered supply shortage in early 1987,
some boards may be populated with 29827s. These
consume somewhat more power thanthe CMOS version
but otherwise present no problem.

5.1.2 Address Decoder

Address decoding is done in U36, an AmPAL22V10. We
must monitor 18 address lines (BA19-BA2) and generate
four address matchterms. The address matchterms are:
PROM*, QPDM*, LUT*, and AUX*. This PAL device
must be replaced in order to move any function within the
address space. The equations for this PAL device are in
Section5.9.1. The PAL device is shownon Sheet2ofthe
schematic diagram.

5.1.3 System Bus Control Decoders

The control decoder for the system bus interface is split
into two devices, both AmPAL22V10s. BCONT, refer-
ence designator U29, controls the data buffers and
PROM enables. IOCONT, reference designator U21,
controls the I/O devices. These two devices take the four
address match terms from U36, and eight command lines
and a single address line from the system bus. The
outputs are the controls for the three data buffers, RD*
and WR* forthe QPDM, two control lines for the Am8159,
separate enables for the two PROMs, and a control line
for the AUX register. The equations for these PAL
devices are in Sections 5.9.2and 5.9.3. U21 is shown on
Sheet 2 of the schematic diagram and U29 is shown on
Sheet 3.

5.1.4 Data Buffer

Three 8-bit bidirectional buffers are used to get data on
to andoff of the board. The table below shows the refer-
ence designator and bus assignments for the devices:

Device Enable Term  System Bus Internal Bus
U, E_HI_BUF* SD,,..SD,, IDB,,..IDB,
U, E_LO_BUF* SD,..SD, IDB,..IDB
U, E_SW_BUF* SD,..SD, IDB,..IDB,

These buffers are shown on Sheet 3 of the schematic
diagram.

Whenthe board is plugged into an 8-bit backplane (PC or
XT), buffer U45 is never used. Buffer U48 transfers all
data onto and off of the board and U34 is used to transfer
bytes from the left EPROM (US6) to the low-order data
bus.

When the board is plugged into a 16-bit backplane (AT),
all transfers to and from the QPDM and the PROMs take
place in 16-bit mode. U48 transfers the low bytes and
U45 transfers the high bytes. The software must be
compiled differently for each case.

5.1.5 SYSCLK Generator

Y, is a standard crystal oscillator with a TTL output. To
insure that the SYSCLK input to the Am95C60 is as
nearly symmetrical as possible, the oscillator operates at
twice the desired SYSCLK frequency. This 2X signal is
divided by two in a 74F74, at reference designator U17.
The output of the F74 drives only the SYSCLK input and
is terminated to minimize undershoot. The terminator is
physically placed at the end of the trace farthest from the
F... Y, and U17 are shown on Sheet 4 of the schematic
diagram.

For a 20 MHz operation, a 40 MHz oscillator is chosen.
When the board is set up for a 16 MHz operation, a 32
MHz oscillator is chosen.
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5.1.6 INT Jumpers

The INT output of the Am95C60 is active HIGH. It is
buffered in a 74S244 (reference designator U4) to make
atermcalled BINT. This canbe connected to any of three
interrupt input pins at jumper block W4. The interrupt
inputs which may be chosen are INT,, INT,, and INT,.
These are the interrupts that are least likely to be used in
a standard PC. The software available from AMD that
uses interrupts is configured for INT,. U4 is shown on
Sheet 8 of the schematic diagram.

5.1.7 System Bus Cycles with QPDM

In general, the timing for system bus cycles with the
QPDM all comes from the PC bus timing. This is due to
the generous margins provided in the PC.

CPU Read Cycle from QPDM

Figure 5.1-1 shows the timing involved in a CPU read
cycle. The cycle begins when the address settles some-
time during clock T,. This makes term QPDM* (which is
the QPDM chip select) active. Near the beginning of T,

IOR* on the bus becomes active. PAL device U,
generates QPDMRD* to the QPDM and makes the buffer
control terms active. Within 100 ns, the read data are
valid atthe QPDM and within another 20 ns, are valid on
the bus. The data are not required on the bus until just
before the beginning of T,. Atthe beginning of T,, IOR*
goes inactive, making QPDMRD* at the QPDM, as well
as the buffer control terms, inactive. Atthe end of T,, the
address changes, making CS* at the QPDM inactive.
This completes the cycle.

CPU Write Cycle to QPDM

The timing for a CPU Write Cycle is shown in Figure 5.1-2.
The cycle begins whenthe address becomes valid late in
T,. This generates QPDM*, which is the QPDM Chip
Select. During T, the term IOW* on the bus goes active,
which makes QPDMWR* to the QPDM and the buffer
control terms active. The data on the bus is valid laterin
T,. IOW* onthe bus goes inactive at the end of T, which
allows QPDMWR* and the buffer control terms to go
inactive. The cycle completes at the end of T,, when the
address changes, making QPDM* (CS* to the QPDM)
inactive.

' | = | = | w | w | ©n |
wa L] L L T T TDL T1L T1
A9...A0 X\ X\

v
QPDM* \ /
IOR * \\
v
iy \
DataValid <XX )
Data Required { \
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Figure 5.1-1 CPU Read Cycle
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Figure 5.1-2 CPU Write Cycle

5.1.8 DMA Modifications

After this board was put into production, AMD decided
that 16-bit DMA transfer to the instruction FIFO was
necessary. This would make it possible to drive the
QPDM to saturation with a 286-class processor.

The modification is shown in Figure 5.1-3. A DMA Ac-
knowledge “fakes” a write to the instruction FIFO. This is
done by forcing QPDMCS*, AEN* and ALE*. In addition,
both address inputs to the QPDM are forced low.
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QPDM*
U36-19 vvs ERIRL SFowRTs U215
Uds-22 v1 K QLis
U4s-21 4 17 QMm1s
sian o ANl g U293
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Figure 5.1-3

5.2 DISPLAY MEMORY INTERFACE

The display memory interface is tailored to allow 20 MHZ
QPDM operation with 120 ns VRAMs. This involves
careful buffering and generating /CAS as early as pos-
sible.

The display memory is implemented with 64K x 4
VRAMs. Four devices per bit plane (total of 16 on the
board) allow for a bit map of 1Kx 1K. Actually, the bit map
could be configured as 256 X 4K, 512 x 2K or 1K x 1K by
reprogramming the Memory Mode Register (Register
23). The software that comes with the board uses only
the 1K x 1K configuration.

5.2.1 Address Buffer

The display memory addresses are buffered from AD -
AD,. The buffer used here is an Am2966 (reference
designator U,, shown on Sheet 5 of the schematic
diagram). Since 16 devices are driven with a maximum
of 5 pF input capacitance each, we estimate a maximum
of 90 pF loading on this 2966. Usingthe chartinthe 2966
data sheet, we estimate the delay through this buffer to
be between 10 and 17 ns.

Since the edge rates of the 2966 are relatively slow, due
to the internal series resistors, we would not expect any
significant undershoot or ringing on these lines.
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5.2.2 Write Enable Buffer

The four write enables from the QPDM are buffered in
half of an Am2966 (reference designator U5 shown on
Sheet 5 of the schematic diagram). Each output drives
four VRAMs with a maximum of 5 pF input capacitance
each, for atotal of 20 pF. Usingthe chartinthe 2966 data
sheet, we estimate the delay through this buffer to be
between 6 and 11 ns.

5.2.3 XFG Buffer

XF/G from the QPDM drives four inputs of an Am2966
(reference designator U2 shown on Sheet 5 of the
schematic diagram). Each of the four outputs of this
device drives four VRAM inputs. Each VRAM input has
5 pF input capacitance so that each 2966 is driving 20 pF.
From the chart in the 2966 data sheet, we estimate the
delay through this buffer will be between 6 and 11 ns.

5.2.4 RAS Buffer

RAS from the QPDM drives four inputs of an Am2966
(reference designator U2 shown on Sheet 5 of the
schematic diagram). Each of the four outputs of this
device drives four VRAM inputs. Each VRAM input has
7 pF input capacitance so that each 2966 output is driving
28pF. Fromthe chartinthe 2966 data sheet, we estimate
the delay through this buffer to be between 7 and 12 ns.

Since the XFG and RAS buffers reside on the same chip,
we expect the delays to track. That s, if the XFG buffers
are especially slow (due to temperature, VCC, or proc-
essing) we expect that the RAS buffers to be also slow.

5.2.5 CAS PAL Device

The equations forthe PAL device that generates CAS are
given in Section 5.9.4. This is an Am18P8B, reference
designator U3. This device is shown on Sheet 8 of the
schematic diagram.

Asignal called IXFER is generated for use inside the PAL
device. Thistermis active during any transfer cycle from
the time XF/G falls until RAS rises. The first min-term
detects that XF/G has fallen before RAS (which happens
only at the beginning of a transfer cycle) and the second
min-term serves to latch the signal until RAS rises at the
end of the cycle.

Four separate but identical /CAS terms are generated,
one for each four VRAMSs. This duplication keeps loading
below 50 pF so that the PAL device timing parameters
are guaranteed. This also minimizes the length of trace
necessary to help reduce undershoot.

There are three min-terms in the CAS equations. The
first makes CASn whenever CAS is active and XF/G is
not. This occurs during write and refresh cycles. The
second min-term makes CASn whenever Delayed XF/G
(DXFG) is active and XFER is inactive. This occurs only
during read cycles. The purpose is to generate CAS as
early as possible during read cycles. We delay XF/G just
long enough to guarantee that the Column Address Set-
up Time will be met. The third min-term for CASn is
whenever CAS is active and XFER is active. This is the
case during a transfer cycle.

Delayed Transfer (DLYFER*) is used to force the extra
clock pulse required by the VRAMs before serialization
begins. This is generated at the very end of the transfer
cycle by passing XFER back through the PAL device.

Two additional terms that have absolutely nothing to do
with the display memory interface are generated in this
device. Active LOW RESET"* is generated by inverting
RESET from the backplane. A high-frequency filter has
been addedto this output to minimize noise onthe QPDM
Reset line. Synchronized Composite Sync (SCS) is
generated by combining Synchronized Vertical Sync
(SVS) with Synchronized Horizontal Sync (SHS). Thisis
done with an exclusive-OR function.

5.3 TIMING GENERATOR

The timing generator emphasizes simplicity and clear-
ness of thought. Using standard (40 ns) PAL devices, it
supports a dot clock of up to 25 MHz. Using -A (25 ns)
PAL devices, it will operate at up to 40 MHz.

5.3.1 The Oscillator and Buffers

The Dot Clock oscillator is a standard TTL crystal oscil-
lator, reference designator Y1. In the standard QPDM
board configured for the NEC MultiSync (tm) or equiva-
lent, this is a24 MHz oscillator. Itis bufferedinfourpieces
of 745244 (reference designator U4) making the terms
DCLKO-DCLK3. The purpose of the careful clock distri-
bution is to avoid the problems that result from not being
careful about clock distribution. The oscillator and buffer
are shown on Sheet 8 of the schematic diagram.

5.3.2 The COUNT PAL Devices

This AM16R8 is used to generate the basic timing for the
serializers, reference designator U10. The equations for
this PAL device are shown in Section 5.9.5. The device
is shown on Sheet 2 of the schematic diagram.
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Terms Q,, Q,, and VIDCLK form a divide-by-8 binary
counter that changes state on the positive edge of DCLK.
These terms are decoded both internally and in the
ENABLE PAL device to allow timing at any required dot
clock within a byte. In addition, VIDCLK directly drives
VIDCLK of the Am95C60. CFF1* is used to clock an
externalflip-flop that extends the divide-by-8 to divide-by-
16. Basically, it keeps track of which byte of the current
word we are serializing.

LSR* is generated once every four dot clocks and is used
to load a nibble into the final 4-bit serializer shift registers.
ECBLNK* resynchronizes Am95C60 signals BLANK,
HSYNC, and VSYNC to a specific dot clock in U18. This
is necessary because these signals have substantial
timing uncertainty at the QPDM pins.

The timing relationships amongst these signals are
shown in Figure 5.1-4. Since this is a registered device,
the outputs actually become active during the clock cycle
following the one during which the inputs satisfied the
equations.

A completely unrelated function of this PAL device is to
delay SBLK asingle dot clock foruse inthe Am8159. This
delay is necessary to compensate for the delay of SBLK
through the serializers.

5.4 SERIALIZERS

The Am95C60 requires that display memory be organ-
ized into 16-bit words (for each bit plane). This in turn
requires that the serializers be organized to handle 16-bit
words. We will discuss only one bit plane; the other three
operate identically.

On this board, it was convenient to mechanize the
serialization as a 2-step process. First, the 16-bit words
are brought out onto a 4-bit bus using the serial output
enables of the four VRAMs. Then the contents of the
4-bit bus are serialized in a registered PAL device.

e LT L LML L Lty e

- 1 I

vibeo|10 |8 |8 |7 |e |5 |4 |3 |2 |1 o 15|14 |13 |21 |10]e s |7 |6 |5 |4

SHIFT 1*

L

L

SHIFT 2*

9682A5.1-4

Figure 5.1-4 Serializers
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5.4.1 The Enable AMD VCLK PAL Device

PAL device ENABLE is used to handle the first level of
serialization, reference designator U9. The equations for
this device are given in Section 5.9.6. This device is
shown on Sheet 2 of the schematic diagram. Figure 5.1-4
shows the timing relationships amongst the signals into
and out of this device.

Output enables GO* through G3 are generated by track-
ing the VIDCLK and FF1 inputs. The table below indi-
cates which bits are enabled by each of these terms, as
well as which VRAMs are enabled.

Enable Bits Red Green  Blue Intensify
Go* 15-12 U40 U44 u2s u33
G1* 11-8 U39 u43 u24 us2
G2* 7-4 uU3s U42 u23 U31
G3* 3-0 us7 u41 uU22 u3o

Q, from COUNT is used to qualify each of the four
enables. This precaution avoids a bus contention which
could otherwise exist on the 4-bit bus.

The shift terms to the VRAMs are also generated in the
PAL device ENABLE. We generate two of these terms to
allow the left-most byte of the word to be shifted, inde-
pendently of the right-most byte. This made the timing
somewhat easier. The second min-term is generated at
the end of a transfer cycle with DLYFER. This makes the
first word of data available at the serializer outputs of the
VRAMS.

5.4.2 The Serializer PAL Devices

The final serialization takes place in the SHIFT PAL
devices. There are fouridentical devices, one for each bit
plane. The reference designators are U12-U15 and are
shown on Sheets 6 and 7 of the schematic diagram. The
equations for these devices is given in Section 5.9.7.

The shifters are loaded once every four pixel times with
LSR*. Followingthe rising clock edge during whichLSR*
is active, the data on D, appears at the output (Q,). If
SBLK is active, then the output will be zero regardless of
what is loaded. This ensures the TTL outputs are zeroes
during blanking.

Figure 5.1-5 shows the timing at the beginning of each
scan line (the left margin of the screen). Sometime after
the rising edge of VIDCLK, the Am95C60 will make its
BLANK output (QBLANK) goes inactive, signaling the
beginning of a scan line. At a specific dot clock within
each VIDCLK period, ECBLNK will go active allowing
QBLANK (and HSYNC and VSYNC) to be sampled. This
occurs so that SBLK goes active one dot clock before the
first pixel is to be serialized. During the next dot clock
period, LSR* is active, allowing the first four pixels to
enter the shifters. At the very next positive transition of
DCLK, the first pixel is serialized.

QBLANK (T

ECBLNK LI LT L

SBLK 1

E A L L1 | . L1 L

VIDEO Jis J1a]s]i2]1n]w]ofs]z]es

9682A5.1-6

Figure 5.1-5 Left Edge Timing
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5.4.3 FF1

FF1 (reference designator U11 on Sheet 2 of the sche-
matic diagram) keeps track of whether we are currently
serializing at left byte or right byte. It can be considered
a high-order appendage of the counter formed by the Q,,,
Q,, and VIDCLK outputs of the PAL device COUNT.

5.4.4 SYNC Synchronizer

The monitor controls HSYNC, VSYNC, and BLANK must
be resynchronized outside the Am35C60. This is be-
cause of the substantial uncertainty in their timing at the
Am95C60 outputs. This takes place inthe 74S379 Quad
Register with Clock Enable, reference designator U18 on
Sheet 5 of the schematic diagram. The clock input is the
dot clock; the clock enable is ECBLNK*. This is gener-
ated once every VIDCLK cycle in the PAL device
COUNT.

In addition to timing these signals precisely , the ‘379 also
provides both the true and complement output of each of
the three terms.

5.5 COLOR LOOKUP TABLE AND DACS

The REV. B board contains an Am8159 Color Palette to
provide analog video. The device is shown on Sheet 8 of
the schematic diagram. This device contains a 64- entry
look-up table as well as three 4-bit DACs. Thus, we can
display 16 colors simultaneously from a palette of 4096.

The System Address (SA0-5) and H/L inputs of the
Am8159 come directly from the buffered address bus of
the PC. The data inputs CDO0-7 are tied to the internal
data bus IDB0-7. The remaining CD pins are not con-
nected.

The Video Address inputs are connected as indicated
below:

VA Input Source
0 Intensify Plane Video (Plane 3)
1 Blue Plane Video (Plane 2)
2 Green Plane Video (Plane 1)
3 Red Plane Video (Plane 0)
4 Output of HILITE Oscillator
5 Ground

~Thus, the video from the four planes select one of 16
entries in the look-up table and the HILITE oscillator
selects between one of two banks of 16 entries. The
remaining 32 entries in the look-up table are not used.

The BLANK input of the Am8159 is connected to DBLNK,
which is SBLK delayed one bit time. This delay exactly
compensates for the 1-bit time SBLK is delayed in the
serializers.

HSYNC and VSYNC inputs to the Am8159 can be
jumpered to the corresponding synchronized sync from
the Am95C60 or can be jumpered to ground. If either or
both sync inputs are connected, the corresponding (or
composite) sync will appear on the green output of the
DAC. If they are both connected to ground, no sync will
appear on the green output.

REFOUT is connected to IREF via a nominal 1020 Q
resistor. This provides a current level that is correct for
double- terminated 75 Q video outputs. This node is
heavily bypassed to ground.

The R, G, and B outputs are connected to pins 1, 2, and
3of J2 (the analog output connector). Eachis terminated
in 75 Q to ground at the connector. We expect the
monitor to have a similar termination at its end of the
cable.

5.5.1 DC-DC Convertor

Since the Am8159 requires a substantial amount of
current at -5.2 V with respect to ground, we chose to put
adc-dc converter on board. This is shown on Sheet 8 of
the schematic diagram, reference designator is U8.

Note: Experiments with a single IBM XT indicated that it
could supply adequate -5.0V to power the Am8159.
There is no spec for this supply, nor is there any guaran-
tee that some other board in the system is not taking
power from the system. We chose to be conservative.

The unit is manufactured by Reliability Incorporated and
israted at450 mA. The -5.2 V supply is decoupled atthe
convertor output and at both connections to the Am8159.
In addition, each V. pin on the Am8159 has its own trace
to the converter. This appears to provide adequate
isolation between the inputs.

5.5.2 HILITE Logic

To provide a highlighting capability (and more closely
utilize the functionality of the Am8159) we provided a
means of switching between two 16-entry banks of the
Am8159. This switching is provided by the hardware at
several programmable rates and duty factors.
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The control for the oscillator is an Am29845 register at
reference designator U35 shown on Sheet 8 of the
schematic diagram. It is cleared to all zeroes when
RESET* is active. It may then be programmed as
required by the host by writing to the AUX port. Bits
designation in this register are indicated below:

BIT:| 7]6]s5]4]3]2]1]0}

L— HILITE Duty Factor
HILITE Rate
(Unused)

The fourlow-order bits control PAL device Hl at reference
designator U28 (Sheet 8 of the schematic diagram). This
Am22V10 is programmed as a variable rate divider that
is clocked by SVS (Vertical Sync). The logic equations
for this device are given in Section 5.9.8.

The divisors available are:

Bit 1 Bit0 Divide Ratio Nominal Rate
0 0 (OFF) No Hilite
0 1 32 2Hz
1 0 64 1 Hz
1 1 128 0.5 Hz

The Duty Factors available are:
Bit 3 Bit 2 Duty Factor (ON/OFF)

0 0 0/100 (No Hilite)

0 1 25/75

1 0 50/50

1 1 75/25

5.5.3 Monitor Connections

Two monitor connectors are on the board. They are both
shown on Sheet 8 of the schematic diagram. J1 is for a
TTL monitor and J2 is for an analog monitor. The
software that comes with the board assumes an NEC
Multisync (or equivalent) monitor connected to J2 (the
analog connector). Each of these connectorsis afemale
DB- 9. The pin assignments are indicated below:

Pin Number JI(TTL) J2(Analog)
1 Ground Red Video
2 Ground Green Video
3 Red Video Blue Video
4 Green Video Horizontal Sync
5 Blue Video Vertical Sync
6 Intensify Video Ground
7 (No Connect) Ground
8 Horizontal Sync Ground
9 Vettical Sync Ground

5.6 EPROMS

The two EPROM sockets are U6 and U7, shownon Sheet
3 of the schematic diagram. Each socket is intended for
an Am27512; U6 is the left byte and U7 is the right byte.
The device enable (chip select) to both devices is made
active anytime an address in the range of 0B0000-
0BFF7Eisonthe bus. The output enables are independ-
ent. Ifthisis an AT, then both enables go active together.
Ifthisis an IBM-XT or PC, then only a single output enable
is made active, depending on the low-order address bit.

In the case of an AT, buffers U45 and U48 are both
enabled to drive a 16-bit word onto the bus. In the case
of a PC or XT, buffer U48 is made active. In addition,
buffer U34 will be made active with U6 to drive the left
byte onto the low-order bus.

AMD does not, at the time of this writing, supply any
software for these sockets. The intention is for user
supplied software.

5.7 MEMORY BUS TIMING ANALYSIS

The following table is a complete timing analysis of the
display memory bus. This assumes a 20 MHz QPDM
running at 20 MHz and -10 VRAM chips (Hitachi
HM53461-1-). This file was produced using the program
described in 3.2. For eachVRAM parameter, listed by
number, acronymand full name, this file explains the best
case, nominal and worst-worst case timing analysis. The
left column assumes min delays for paths to be sub-
tracted; max delays for paths to be added. The middie
column (nominal case) uses nominal delays. The right
column assumes max delays for paths to be subtracted,
min delays for pathstobe added. Thetruthis guaranteed
to lie somewhere between the left and right column.

There is a remote possibility of a timing problem with the
Address Setup to CAS. If one assumes a very slow
address buffer and a very fast CAS decoder, there is a
negative 1 ns margin.

There is a problem with DT HIGH to CAS HIGH after a
transfer cycle. This problem will be corrected with REV C
QPDMs.

5-8
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1 t

ne Read Write Transfer

QPDM guarantees 6 SYSCLK cycles = 300

RAM requires 190

2 tawe RMW Cycle

QPDM never does Read/Modify/Write Cycles.

3 toc Page Mode Cycle

QPDM never does Page Mode Cycles.

4 taac Row Access

+QPDM Para 32 160.0 160.0 160.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
-QPDM Para 45 -20.0 -20.0 -20.0
Total Time: 133.0 130.0 128.0
VRAM 100.0 100.0 100.0
Margins: 33.0 30.0 28.0
5 teac Column Access

+QPDM Para 41 80.0 80.0 80.0
-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
-QPDM Para 45 -20.0 -20.0 -20.0
Total Time: 57.0 55.0 50.0
VRAM 50.0 50.0 50.0
Margins: 7.0 5.0 0.0
6 torr Output Disable from CAS HI

-QPDM Para 46 0.0 0.0 0.0
+QPDM Para 43 13.0 13.0 13.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
Total Time: ) 23.0 18.0 16.0
VRAM 0.0 0.0 0.0
Margins: 23.0 18.0 16.0
7 t Transition

Transition 3.0 3.0 3.0
8 top RAS Precharge

+QPDM Para 35 95.0 95.0 95.0
Total Time: 95.0 95.0 95.0
VRAM 80.0 80.0 80.0
Margins: 15.0 15.0 15.0

9 thas RAS Puise Width

+QPDM Para 33 180.0 180.0 180.0
Total Time: 180.0 180.0 180.0
VRAM 100.0 100.0 100.0
Margins: 80.0 80.0 80.0
10 toqy CAS Falls to RAS Rises

+QPDM Para 39 100.0 100.0 100.0
Total Time: 100.0 100.0 100.0
VRAM 50.0 50.0 50.0
Margins: 50.0 50.0 50.0
LL I e CAS Precharge (Not PM)

+QPDM Para 40 40.0 40.0 40.0
Total Time: 40.0 40.0 40.0
Not a Parameter for this VRAM Vendor

12 t, CAS Precharge (PM)

QPDM never does Page Mode Cycles.

13 tos CAS Pulse Width

+QPDM Para 57 80.0 80.0 80.0
Total Time: 80.0 80.0 80.0
VRAM 50.0 50.0 50.0
Margins: 30.0 30.0 30.0
14t CAS Hold From RAS Falls

+QPDM Para 33 180.0 180.0 180.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
Total Time: 183.0 175.0 171.0
VRAM 100.0 100.0 100.0
Margins: 83.0 75.0 71.0
15 tpep RAS to CAS Delay

+QPDM Para 36 65.0 65.0 65.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
Total Time: 68.0 60.0 56.0
VRAM 50.0 50.0 50.0
Margins: 18.0 10.0 6.0

5-9
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16t CAS Hi to RAS Low Precharge

+QPDM Para 35 95.0 95.0 95.0
-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
Total Time: 104.0 100.0 92.0
VRAM 10.0 10.0 10.0
Margins: 94.0 90.0 82.0
17t Address Setup to RAS

+QPDM Para 30 15.0 15.0 15.0
-Adrs Delay -10.0 -13.0 -17.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 120 10.0 7.0
Total Time: 17.0 12.0 5.0
VRAM 0.0 0.0 0.0
Margins: 17.0 120 5.0
18ty Row Address Hold

+QPDM Para 31 35.0 35.0 35.0
+Adrs Delay 17.0 13.0 10.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
Total Time: 45.0 38.0 33.0
VRAM 15.0 15.0 15.0
Margins: 30.0 23.0 18.0
19t Address Setup to CAS

+QPDM Para 37 13.0 13.0 13.0
-Adrs Delay -10.0 -13.0 -17.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
Total Time: 13.0 5.0 -1.0
VRAM 0.0 0.0 0.0
Margins: 13.0 5.0 -1.0

***THERE MAY BE A PROBLEM IN THE ABOVE PA-
RAMETER****

20 toan Column Address Hold

+QPDM Para 38 80.0 80.0 80.0
+Adrs Delay 17.0 13.0 10.0
-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
Total Time: 94.0 88.0 80.0
VRAM 20.0 20.0 20.0
Margins: 74.0 68.0 60.0

21 tan Column Address Hold from RAS
+QPDM Para 56 90.0 90.0 90.0
+QPDM Para 38 80.0 80.0 80.0
+Adrs Delay 17.0 13.0 10.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
Total Time: 180.0 173.0 168.0
Not a Parameter for this VRAM Vendor

2 .o Read Command Setup to CAS

+QPDM Para 43 13.0 13.0 13.0
+QPDM Para 40 40.0 40.0 40.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
Total Time: 57.0 49.0 45.0
VRAM 0.0 0.0 0.0
Margins: 57.0 49.0 45.0
23 tpny Read Command Hold from RAS Hi
+QPDM Para 35 95.0 95.0 95.0
-QPDM Para 59 -11.0 -11.0 -11.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
Total Time: 88.0 83.0 78.0
VRAM 10.0 10.0 10.0
Margins: 78.0 73.0 68.0

24 tock Read Command Hold from CAS Hi

+QPDM Para 35 95.0 95.0 95.0
-QPDM Para 59 -11.0 -11.0 -11.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
-CAS Decode 00 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
Total Time: 92.0 88.0 80.0
VRAM 0.0 0.0 0.0
Margins: 92.0 88.0 80.0
25 twes Write Command Setup to CAS

+QPDM Para 60 13.0 13.0 13.0
+WE Decode 0.0 0.0 0.0
+WE Delay 11.0 9.0 6.0
-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
Total Time: 21.0 17.0 9.0
VRAM 0.0 0.0 0.0
Margins: 21.0 17.0 9.0
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26 ey Write Command Hold 31t Data Setup to CAS
+QPDM Para 61 78.0 78.0 78.0 +QPDM Para 64 2.0 2.0 20
-QPDM Para 60 -13.0 -13.0 -13.0 +CAS Decode 0.0 0.0 0.0
+WE Decode 0.0 0.0 0.0 +CAS Delay 10.0 5.0 3.0
+WE Delay 11.0 9.0 6.0 Total Time: 12.0 7.0 5.0
-CAS Decode 0.0 0.0 0.0 VRAM 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0 Margins: 12.0 7.0 5.0
Total Time: 73.0 69.0 61.0
VRAM 25.0 25.0 250 | 32 Data Hold from CAS
Margins: 48.0 44.0 36.0
+QPDM Para 65 60.0 60.0 60.0
27 Yy Write CMND Hold from RAS Falls -CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
+QPDM Para 61 78.0 78.0 78.0 Total Time: 57.0 55.0 50.0
+QPDM Para 56 90.0 90.0 90.0
-QPDM Para 60 -13.0 -13.0 -13.0 YAEIA'?'"S‘ gg'g gg'g gg'g
+WE Decode 0.0 0.0 0.0 gins: : : :
+WE Delay 11.0 9.0 6.0
-RAS Decode 0.0 0.0 00 | 3 D Data Hold from RAS
-RAS Delay -7.0 -10.0 -12.0
Total Time: 159.0 154.0 149.0 | +QPDMPara 56 90.0 90.0 90.0
Not a Parameter for this VRAM Vendor +QPDM Para 65 60.0 60.0 60.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
28 typ  Write Pulse Width Total Time: 1430 1400 1380
+QPDM Para 61 78.0 78.0 78.0 Not a Parameter for this VRAM Vendor
Total Time: 78.0 78.0 78.0 ;
VRAM 15.0 15.0 150 | 3% ‘fowo  CAStoWEDelay
Margins: 830 630 830 | QPDM never does Read/Modify/MWrite Cycles.
29t Write Command to RAS Bt RAS to WE Delay
+QPDM Para 33 180.0 180.0 180.0 o
-QPDM Para 56 -90.0 -90.0 -90.0 QPDM never does Read/Modify/Write Cycles.
+QPDM Para 60 13.0 13.0 13.0
+RAS Decode 0.0 0.0 00 |37 togp OE High to Data in Setup
+RAS Delay 12.0 10.0 7.0
-WE Decode 0.0 0.0 0.0 QPDM never does Read/Modify/Write Cycles.
-WE Delay -6.0 -9.0 -11.0
Total Time: 109.0 104.0 99.0 38 toen OE Hi hold from WE Low
VRAM 35.0 35.0 35.0
Margins: 740 69.0 64.0 | QPDM never does Read/Modify/Write Cycles.
30 ton Write Command to CAS Lead Time 3t Output Disable from OE Hi
+QPDM Para 60 13.0 13.0 13.0 +QPDM Para 46 0.0 0.0 0.0
+QPDM Para 57 80.0 80.0 80.0 +XFG Decode 0.0 0.0 0.0
+CAS Decode 0.0 0.0 0.0 | 4+XFG Delay 11.0 9.0 6.0
+CAS Delay 10.0 5.0 3.0 | Total Time: 11.0 9.0 6.0
-WE Decode 0.0 0.0 0.0 VRAM 0.0 0.0 0.0
-WE Delay -6.0 -9.0 -11.0 | Margins: -11.0 9.0 -6.0
Total Time: 97.0 89.0 85.0 | «+THERE MAY BE A PROBLEM IN THE ABOVE PA-
VRAM 30.0 30.0 30.0 RAMETER****
Margins: 67.0 59.0 55.0

5-11



CHAPTER 5

Evaluation and Demonstration Board

40t CAS to RAS Setup for Refresh

+QPDM Para 47 37.0 37.0 37.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
Total Time: 46.0 42.0 34.0
VRAM 10.0 10.0 10.0
Margins: 36.0 32.0 24.0
41 tour CAS before RAS Refresh Hold

+QPDM Para 48 185.0 185.0 185.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
Total Time: 188.0 180.0 176.0
VRAM 20.0 20.0 20.0
Margins: 168.0 160.0 156.0
42 tp. RAS Hi to CAS Lo Precharge

+QPDM Para 40 40.0 40.0 40.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
Total Time: 43.0 35.0 31.0
VRAM 10.0 10.0 10.0
Margins: 33.0 25.0 21.0
43t Refresh Interval

You may program DMRR to 625

4 . DT to RAS Setup for Xfer

+QPDM Para 49 12.0 12.0 12.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
Total Time: 18.0 13.0 8.0
VRAM 0.0 0.0 0.0
Margins: 18.0 13.0 8.0
a5t DT Hold from RAS for Xfer

+QPDM Para 32 160.0 160.0 160.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
Total Time: 164.0 159.0 154.0
VRAM 80.0 80.0 80.0
Margins: 84.0 79.0 74.0

% toy, DT Hold After CAS LO

+QPDM Para 41 80.0 80.0 80.0
-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
Total Time: 88.0 84.0 76.0
Not a Parameter for this VRAM Vendor

a1ty SC Hi to DT Hi Delay

+QPDM Para 52 90.0 90.0 90.0
+QPDM Para 32 160.0 160.0 160.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
Total Time: 261.0 259.0 256.0
Not a Parameter for this VRAM Vendor

48 tson SC Low Hold after DT Hi

+QPDM Para 34 14.0 14.0 14.0
+QPDM Para 53 40.0 40.0 40.0
Total Time: 54.0 54.0 54.0
Not a Parameter for this VRAM Vendor

49t OE Pulse Width

+QPDM Para 44 110.0 110.0 110.0
Total Time: 110.0 110.0 110.0
Not a Parameter for this VRAM Vendor

58 to.e DT Hi Setup to RAS (no XFER)

+QPDM Para 43 13.0 13.0 13.0
+QPDM Para 35 95.0 95.0 95.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 120 10.0 7.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
Total Time: 114.0 109.0 104.0
VRAM 0.0 0.0 0.0
Margins: 114.0 109.0 104.0
59t DT Hold from RAS

+QPDM Para 42 40.0 40.0 40.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
Total Time: 440 39.0 34.0

Not a Parameter for this VRAM Vendor
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60  tyrp DT Hi to RAS Hi Delay

+QPDM Para 34 14.0 14.0 14.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
Total Time: 20.0 15.0 10.0
VRAM 10.0 10.0 10.0
Margins: 10.0 5.0 0.0
61ty DT Hi to CAS Hi Delay

+QPDM Para 43 13.0 13.0 13.0
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
Total Time: 17.0 9.0 5.0
VRAM 10.0 10.0 10.0
Margins: 7.0 -1.0 -5.0
****THERE MAY BE A PROBLEM IN THE ABOVE PA-
RAMETER****

62 tyg OE Setup to RAS Hi

+QPDM Para 44 110.0 110.0 110.0
+QPDM Para 34 14.0 14.0 14.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 9.0 -11.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
Total Time: 130.0 125.0 120.0
Not a Parameter for this VRAM Vendor

64  ty. Masked Write Command Setup

+QPDM Para 59 11.0 11.0 11.0
-WE Decode 0.0 0.0 0.0
-WE Delay -6.0 -9.0 -11.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
Total Time: 17.0 12.0 7.0
VRAM 0.0 0.0 0.0
Margins: 17.0 12.0 7.0
65 twen Masked Write Command Hold

+QPDM Para 60 13.0 13.0 13.0
+QPDM Para 61 78.0 78.0 78.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
-WE Decode 0.0 0.0 0.0
-WE Delay -6.0 -9.0 -11.0
Total Time: 97.0 92.0 87.0
VRAM 15.0 15.0 15.0
Margins: 82.0 77.0 72.0

66 tye Write Mask Setup

+QPDM Para 52 90.0 90.0 90.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
Total Time: 102.0 100.0 97.0
VRAM 0.0 0.0 0.0
Margins: 102.0 100.0 97.0
67  tyu, Write Mask Hold

+QPDM Para 63 60.0 60.0 60.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
Total Time: 53.0 50.0 48.0
VRAM 15.0 15.0 15.0
Margins: 38.0 35.0 33.0
70 tyy DT HI Hold after RAS Hi

+QPDM Para 35 95.0 95.0 95.0
-QPDM Para 49 -12.0 -12.0 -12.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
Total Time: 87.0 82.0 77.0
VRAM 15.0 15.0 15.0
Margins: 72.0 67.0 62.0
ral th(OECH) CAS hold after OE low

+QPDM Para 44 110.0 110.0 110.0
+QPDM Para 43 13.0 13.0 13.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
+CAS Decode 0.0 0.0
0.0

+CAS Delay 10.0 5.0
3.0

Total Time: 127.0 119.0
115.0

Not a Parameter for this VRAM Vendor

73 th(RLOE) OE hold after RAS low

+QPDM Para 42 40.0 40.0 40.0
+QPDM Para 44 110.0 110.0 110.0
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
+XFG Decode 0.0 0.0 0.0
+XFG Delay 11.0 9.0 6.0
Total Time: 154.0 149.0 144.0

Not a Parameter for this VRAM Vendor
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74t Delay Data to OE low

DOEL

QPDM never does hidden refresh cycles.

88 SE enable hold from SC high

tysey

QPDM never does serializer writes.

75 toeL Delay data to CAS low

+QPDM Para 57 80.0 80.0
+QPDM Para 40 40.0 40.0
+QPDM Para 65 60.0 60.0
-CAS Decode 0.0 0.0
-CAS Delay -3.0 -5.0
Total Time: 177.0 175.0

Not a Parameter for this VRAM Vendor

80.0
40.0
60.0

-10.0
170.0

89 t Delay data to DT high

DDTH

QPDM never does serializer writes.

90 t Delay DT high to data

DTHD

QPDM never does serializer writes.

78 WE setup to RAS low

tnu(WE)

QPDM never does write transfer cycles.

79 WE hold after RAS low

thwe)

QPDM never does write transfer cycles.

80 t

su(SE) SE setup to RAS low

QPDM never does write transfer cycles.

81 SE hold after RAS low

Sh(sE)

QPDM never does write transfer cycles.

82 t

su(SD) Serial in setup to SC high

QPDM never does serializer writes.

83 Serial in hold after SC high

Y sp)

QPDM never does serializer writes.

84 t

su(SCRL) SC setup to RAS low

QPDM never does serializer writes.

85 t

su(SEH) SE disable setup to SC high

QPDM never does serializer writes.

86 t

h(SEH) SE disable hold from SC high

QPDM never does serializer writes.

87 SE enable setup before SC high

L)

QPDM never does serializer writes.

91 tWRG) TRG Pulse width

+QPDM Para 44 110.0 110.0 110.0
Total Time: 110.0 110.0 110.0
Not a Parameter for this VRAM Vendor

92  toay CAS low to TRG high

+QPDM Para 41 80.0 80.0 80.0
Total Time: 80.0 80.0 80.0
Not a Parameter for this VRAM Vendor

93 taisH RAS low to SC high after TRG hi

This will handled only on REV C QPDM silicon.

94 too TRG high to RAS low after xfer

+QPDM Para 34 14.0 14.0 14.0
+QPDM Para 35 95.0 95.0 95.0
+RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0
-XFG Decode 0.0 0.0 0.0
-XFG Delay -6.0 -9.0 -11.0
Total Time: 115.0 110.0 105.0

Not a Parameter for this VRAM Vendor

9% t CAS low to SC after TRG

CLSH

This will handled only on REV C QPDM silicon.

9% t SC high to RAS low (w/xfer)

SHRL

QPDM never does write transfer cycles.

97 t RAS high to SC high

RHSH

QPDM never does write transfer cycles.

98 t,  TRG hightoSC high

This will handled only on REV C QPDM silicon.
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5.8 SOFTWARE

At this writing, the following software packages are
known to run on this board. These are all available from
AMD.

5.8.1 QASM

QASM (QPDM Assembler) is a line-at-a-time assembler
designed explicitly for the QPDM. The binary code is
shipped with the board and the source code is available
from AMD for a nominal price.

QASM can be used with the board in two basic ways. In
interactive mode, the user can enter an instruction in
mnemonic form and watch the results onthe screen. This
is very useful for experimenting with the QPDM (evalu-
ation). The other way QASM can be used with this board
is to assemble from a prepared file, perhaps for a dem-
onstration.

QASM can also be used to translate mnemonic QPDM
instructions into “ones and zeroes” for entry into other
programs. The “C” array initializer is especially useful for
this purpose.

In addition to QASM itself, a number of generally useful
source files (QASM input) are shipped with the board.

5.8.2 QDEMO

AMD has prepared an extensive demonstration program
for the QPDM that runs on this board. The binary code
for this program is shipped with the board and the source
code is available from AMD.

The demonstration runs for about 10 minutes and we are
making additions to it as time permits. It is intended to
show the QPDM to its best advantage. In addition to
being a good demonstration of QPDM capability, it also
contains many examples of QPDM programming
methods.

5.8.3 Other Demos

An additional set of demos has been written for the
QPDM. These became available in August of 1987. The
binary fortheseis shipped with the boards. These demos
must be run on an AT and require the DMA modification.

5.8.4 G.K.S.

AMD has a “C” binding of the ANSI Graphical Kernel
System (G.K.S.). This board was used as the debugging
vehicle for this library. This is available from AMD.

5.8.5 Others

AMD has contracted with various third-party vendors for
drivers for X-Windows, MS Windows, AutoCAD, and
GEM/VP. These will become available during the first
half of 1988. In most cases, the board will have been
used as the debugging tool.
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5.9 PAL DEVICE EQUATIONS

5.9.1 ADECODE

MODULE ADECODE
FLAG ‘-R2'

TITLE ‘Generates Address Decodes on REV B QPDM BOARD’

“COPYRIGHT 1987 ADVANCED MICRO DEVICES,
“Tom Crawford Feb 17,

“DECLARATIONS

IC36 DEVICE ‘P22V10’;

BA2,BA3,BA4,BA5,BA6,BA7 PIN 1,2,3,4,5,6;
BA8,BA9,BA10,BAl1,BA12,BAl3 PIN 7,8,9,10,11,23;

1987

INC

BAl4,BAl5,BAl6,BAl17,BA18,BA1l9 PIN 22,21,16,15,14,13;

PROM PIN 20;
QPDM PIN 19;
LUT PIN 18;
AUX PIN 17;
VCC PIN 24;
GND PIN 12;

EQUATIONS

!QPDM

'AUX =

!LUT =

!PROM

H Hk W ¥ ¥ 3 |

END

BA9 & BA8 & BA7 &

BA9 & BA8 & BA7 &

BAl9 &

BAl0

BAl9
BAl9
BAl9
BAl9
BAl9
BAl9
BAl9
BAl9
BAl9

AR R R R R

'BA18
BA9 &

!BA18
!'BA18
!BA18
!BA18
!'BA18
!'BA18
!'BA18
!'BA18
!'BA18

!'BA6 & BAS

!'BA6 & BAS
& BA1l7 & BAl6 &
BA8 & BA7;
& BAl7 & BAl6 &
& BAl17 & BAl6 &
& BA1l7 & BAl6 &
& BA17 & BAl6 &
& BA1l7 & BAl6 &
& BA1l7 & BAl6 &
& BAl7 & BAl6 &
& BAl7 & BAl6 &
& BAl7 & BAl6 &

& !'BA4 & !BA3;
& !BA4 & BA3;

BAl5 & BAl4 & BAl3 & BAl2 & BAll &

!BAlS
'BAl4
!BA13
t{BAl12
I{BAll
!'BA10
!'BA9

!BA8

'BA7;

5.9.2 BCONT

MODULE BUFFER_CONTROL

FLAG ‘-R2'

TITLE ‘Generates Buffer Ebables and Prom Enables for REVB QPDM BOARD’

“COPYRIGHT 1987 ADVANCED MICRO DEVICES,
“Tom Crawford Feb 17,
“Dave August 27 May 87

“DECLARATIONS

IC29 DEVICE ‘P22V10’;

1987

INC
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PROM PIN 1;

AEN, SMEMR, SBHE, AT PIN 3,4,5,6;

Q,RD,WR PIN 7,8,9;

SPIN10,SPIN13 PIN 10,13;

BAO PIN 11;
GND PIN 12;

EN_LO_BUF,EN_SW_BUF,EN_HI BUF,DRV_PC PIN 14,19,21,15;
SIOl6,SI018,SI020 PIN 16,18,20;

MEMCS16 PIN 17;

EN_LO_PROM,EN_HI PROM PIN 22,23;

VCC PIN 24;
EQUATIONS
'EN_HI_PROM =
#
#
'EN_LO_PROM =
#
#
'EN_HI_BUF =
#
#
#
'EN_SW_BUF =
'EN_LO_BUF =
#
#
#
#
#
#
IDRV_PC =

ENABLE MEMCS16 =

'MEMCS16 -
END BUFFER_CONTROL;

'PROM &
!PROM &
!PROM &

!'PROM &
!PROM &
!PROM &

!'PROM &
!PROM &
Q & !AT
Q & !AT

!PROM &

!PROM &
!PROM &
!PROM &
Q & !AT
Q & !AT
RD

WR;

RD;

!'PROM;

!'PROM &

!AEN
'AEN
!AEN

'AEN
!AEN
!AEN

'AEN
!AEN
& RD
& WR

'AEN

!AEN
'AEN
'AEN
& RD
& WR

'AEN &

[ -

4]

R

2]

! SMEMR
! SMEMR
! SMEMR

! SMEMR
! SMEMR
! SMEMR

! SMEMR
! SMEMR
! SBHE

!SBHE;

! SMEMR
! SMEMR

! SMEMR
! SMEMR

!'SMEMR &

'AT & !SBHE & !'BAO
!AT & !SBHE & BAO

AT & BAO;

'!AT & !SBHE & !'BA0O
'AT & SBHE & !BAO

AT & !BAO;

'AT & !SBHE & !BAQ
'AT & !SBHE & BAQ

AT & BAO;

'AT & !SBHE & !'BAO
'AT & SBHE & !BAQ

AT

'AT & !SBHE & !BAO;

“Word Access
“0dd Byte on
“O0dd Byte on

“Word Access

on AT
AT
PC

on AT

“Even Byte on AT
“Even Byte on PC

“Word Access
“O0dd Byte on
“Word Access
“Word Access

“0dd Byte on

“Word Access

“Even Byte Access on AT

AT
to
to

QPDM
QPDM

PC

on AT

“Memory Access on PC

“QPDM on PC
“QPDM on PC
“LUT
“LUT
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5.9.3 IOCONT

MODULE IOCONTROL
FLAG ‘-R2'

TITLE ‘GENERATES QPDM, LUT, AUX, IOCS16 FOR REVB QPDM BOARD’

“COPYRIGHT 1987 ADVANCED MICRO DEVICES, INC

“Tom Crawford Feb 17, 1987
“After thought by Dave August 27 May 87

“DECLARATIONS
IC21 DEVICE ‘P22V10';

SPIN1, SPIN11, SPIN13 PIN 1,11,13;
DDACK, AEN, SMEMR PIN 2,3, 4;
QPDM, AUX, LUT PIN 5,7,6;
IOR, IOW, SMEMW PIN 8,9,10;
GND PIN 12;

VCC PIN 24;

LUTS1, LUTSO PIN 14,15;
WR_AUX PIN 21;

I0CS16 PIN 20;

QPDM RD, QPDM WR PIN 22,23;
Q, RD, WR PIN 18,17,16;

EQUATIONS

!QPDM RD = 'QPDM & !AEN &

!QPDM_WR = 'OPDM & !AEN &

WR_AUX = !AUX & !AEN &

'LUTSO = !'LUT & !SMEMW
# 'LUT & !'LUTS1

'LUTS1 = !'LUT & !SMEMR
# !'LUT & !LUTSO

ENABLE IOCS16 = !QPDM;

tIOCS16 = !QPDM;

Q = 'QPDM & !AEN;

RD = !QPDM & !AEN &
# 'LUT & !AEN &

WR = 'QPDM & !AEN &
# !LUT & !AEN &
# 'AUX & !AEN &

END IOCONTROL;

'I0R;
1IOW;
!IOW & DDACK;

& !AEN
& SMEMR & !'AEN;

& !'AEN
& !SMEMW & !AEN;

'IOR
! SMEMR;

'IOW
! SMEMW
! IOW;
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5.9.4 CAS

MODULE CAS
FLAG ‘-r2’/
TITLE ‘PAL TO CONTROL CAS ON ONE-BANK BOARD’

“COPYRIGHT 1985 ADVANCED MICRODEVICES, INC
“TOM CRAWFORD JUNE 20,1985 CHANGED MARCH 10, 1986 RCYCLED FEB 18, 87

“DECLARATIONS

IC3 DEVICE ‘P18P8';
IN1,IN8,IN9 PIN 1,8,9;
RESET, INVRESET PIN 11,13;
SVS, SHS, SCS PIN 6,7,12;

RAS, CAS, XFG PIN 2,5,3;
DELAY_XFG PIN 4;

CAS0, CAS1, CAS2, CAS3 PIN 14,15,16,17;
XFER PIN 18;
DLYFER PIN 19;

EQUATIONS

! INVRESET = RESET;

SCS = SVS & !SHS
# 1SVS & SHS;

!XFER = !'XFG & RAS
# !XFER & !XFG;

!{DLYFER = !XFER;

!CASO = !CAS;

!CAS1 = !CAS;

{CAS2 = !CAS;

!CAS3 = !CAS;

END CAS_CONTROL;
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5.9.5 Count

MODULE COUNT
FLAG ‘-R2'
TITLE ‘BIT COUNTER FOR QPDM SMALL BOARD’

“COPYRIGHT 1985 ADVANCED MICRO DEVICES, INC
“TOM CRAWFORD JUNE 17, 1985

“DECLARATIONS
IC10 DEVICE ‘P16R8';

CLOCK PIN 1;

IN2, IN4, IN5, IN6, IN7, IN8, INS PIN 2,4,5,6,7,8,9;
Q0,01,VIDCLK PIN 14,13,17;

LSR PIN 18;

CBLANK PIN 16;

CFF1l PIN 15;

SBLK, DBLNK PIN 3,19;

ROUT12 PIN 12;

OUTPUT ENABLE PIN 11;

EQUATIONS
Q0 i= 1Q0;
Q1 i= Q1 & QO
# Ql & !'Q0;
VIDCLK = !VIDCLK & Q1 & QO
# VIDCLK & !Q1
¥ VIDCLK & !QO0;
!'LSR = Q1 & !Q0;
!ECBLANK = !VIDCLK & !Q1 & QO;
ICFF1 = 'VIDCLK & Q1 & !QO0;
DBLNK o= SBLK;
END COUNT;

PINOUTS MARCH 10, 1986 RECYCLED FEB 17, 87

5.9.6 Enables

MODULE ENABLE
FLAG ‘-R2'
TITLE ‘PAL TO ENABLE VRAMS AND GENERATE SHIFT PULSES AS WELL'

“COPYRIGHT 1985 ADVANCED MICRODEVICES, INC
“TOM CRAWFORD JUNE 17,1985

“DECLARATIONS
ICY9 DEVICE ‘P16L8';

DXCYC, VIDCLK, FF1l PIN 1,3,9;

Q0, Q1 PIN 6,7;

IN4, INS5, IN8, IN11 PIN 4,5,8,11;
SBLK PIN 2;

SHIFT1, SHIFT2 PIN 16,15;

G0, Gl, G2, G3 PIN 18, 17, 14, 13;
OUT12, OUT19 PIN 12, 19;

RECYCLED

FEB 18,

1987
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EQUATIONS

!GO = !VIDCLK & FF1l & Ql;

'Gl = VIDCLK & !FFl1 & Q1;

'G2 = !VIDCLK & !FFl & Q1;

'G3 = VIDCLK & FF1l & Q1;

!SHIFT1 = !VIDCLK & !FFl1 & !Q1 & !Q0 & !SBLK
# !DXCYC;

!SHIFT2 = !VIDCLK & FF1 & !Q1 & !'Q0 & !SBLK
# 'DLYFER;

END ENABLES;

5.9.7 Shift

MODULE SHIFT

FLAG ‘-R2’

TITLE ‘4-BIT PARALLEL TO SERIAL SHIFT REGISTER WITH SYNCHRONOQOUS BLANK'

“COPYRIGHT 1986 ADVANCED MICRO DEVICES, INC
“TOM CRAWFORD JUNE 17,1985 RECYCLED FEB 18, 1987'

“DECLARATIONS
IC12 DEVICE ‘P16R8’;

CLOCK PIN 1;

p3,b2,D1,D0 PIN 7,6,4,5;

03,02,01,00 PIN 19,18,17,16;

BLANK PIN 3;

LSR PIN 2;

IN8, IN9 PIN 8,9;
ROUT15,ROUT14,ROUT13,ROUT12 PIN 15,14,13,12;
OUTPUT ENABLE PIN 11;

EQUATIONS
Q3 = !BLANK & LSR & Q2
# !BLANK & !'LSR & D3;
Q2 = LSR & Q1
# 'LSR & D2;
Q1 = LSR & QO
# 'LSR & D1;
Qo0 = !LSR & DO;
END SHIFT;

5.9.8 Hilite

MODULE HILITE
FLAG ‘-R2’
TITLE ‘GENERATES BLINK FOR REVB QPDM BOARD’

“COPYRIGHT 1987 ADVANCED MICRO DEVICES, INC
“Tom Crawford Feb 17, 1987

“DECLARATIONS
IC28 DEVICE ‘P22V10’;
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s1,82 PIN 10,5;

P1,P2 PIN 4,3;

BLINK PIN 18;

Q0,01,02,03,04,05,06,Q07 PIN 23,15,22,16,21,17,20,19;
PIN14 PIN 14;

EQUATIONS
Qo0 1= 1Q0;

Q1 = Q0 & !01
# 'Q0 & Q1;

Q2 = Q0 & Q1 & !Q2
# 'Q0 & Q2
# 01 & Q2;

Q3 s= Q0 & Q1 & Q2 & !Q3
# '00 & Q3
# 101 & Q3
# '02 & Q3;

Q4 i= Q0 & Q1 & Q2 & Q3 & 'Q4
# 100 & Q4
# 101 & Q4
# 102 & Q4
# 103 & Q4;

Q5 = Q0 & Q1 & Q2 & QO3 & Q4 & !Q5
# 100 & Q5
# Q1 & Q5
# Q2 & Q5
# '03 & Q5
# 04 & Q5;

Q6 := Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & !Q6
# Q0 & Q6
# Q1 & Q6
# 102 & Q6
# 'Q3 & Q6
# 104 & Q6
# 05 & Q6;

Q7 = Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & !Q7
'Q0 & Q7
'Q1 & Q7
'Q2 & Q7
'Q3 & Q7
'Q4 & Q7
'Q5 & Q7
106 & Q7;

EE I I
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BLINK 1= !1S1 & S2 & !'P1 & P2 & Q4 & Q5
# !S1 & S2 & Pl & !'P2 & Q5
# !1S1 & S2 & Pl & P2 & Q5
# !1S1 & S2 & Pl & P2s& Q4
# S1 & !'S2 & 'P1 & P2 & Q5 & Q6
# S1 & !'S2 & Pl & !P2 & Q6
# S1 & !'S2 & Pl & P2 & Q6
# S1 & !'S2 & Pl & P2 & Q5
# S1 & S2 & 'P1 & P2 & Q6 & Q7
# S1 & S2 & Pl & !'P2 & Q7
# S1 & S2 & Pl & P2 & Q7
# S1 & S2 & Pl & P2 & Q6;
PIN14 = BLINK;
END HILITE;
5.10 USERS GUIDE 5.10.2 Jumpers

5.10.1 Addressing

The locations used by the board inthe address spaces of

The following table shows the jumper blocks and their
use on the board.

the host are controlled by programming U36. The logic ~ Jumper USE Case1 Case2 Case3
equations are shown in 5.9.1. The user may change 4 CASDelay 5ns 10 ns 15 ns
these addresses if necessary; then the software sup- w2 HSYNC Active HI Active LO Composite
plied by AMD will also have to bechanged. The standard w3 VSYNC Active HI  Active LO Composite
addresses are shown in the following table. w4 Interrupt INT2 INT3 INTS
W5 8159 VSYNC Vsync Ground

Write Access Read Access we 8159 HSYNC Hsync  Ground
/0
Space:
03A0 Write QPDM FIFO Read QPDM Status
03A2 Write QPDM BIF Read QPDM BOF
03A4 Write QPDM Reg Adrs  Read QPDM Reg Adrs
03A6 Write QPDM Register =~ Read QPDM Register
03A8 Write Hilite Oscillator
Memory
Space:
B0000 to
-BFF7F  not applicable Read EPROM
BFF80 to
BFFFF  Write 8159 LUT Read 8159 LUT
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NOTES:
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2.

vee
+__ Cc60 1'__ cé1 L cr8. 11-23, 27-29, 32-38,
m 22 22 TN 0.1 41-44, 48-59
P2—01
mm _L
GND
SPARES
01 01
02 23 02| o7 L 19
03 oo |22 03| 16Ls 3|a
04| 21 04 b7
05 20 05 b 16
06 19 06 bts
07| 18 07 b 14
08 17 08| b3
09 16 09 b 12
10 15 11
11 14
13

UNLESS' OTHERWISE SPECIFIED:

ALL RESISTOR VALUES ARE IN OHMS, 1/4W, 5%.
ALL CAPACITOR VALUES ARE IN MICROFARADS.

QPDM Plug In Board (Sheet 1 of 8)

# of

DEVICE TYPE REF DESIG PINS GND | vee
DELAY LINE u1 14 14
AM2966 U2, 5, 16 20 1 20
AM18P8 U3 20 1 20
745244 U4 20 1 20
AN27512 ue, 7 28 1 28
DC/DC_CONVERTER us 12 1 1
AM16L8 9 20 1 20
AM16R8 u1o0 20 1 20
74F 74 u11, 17 14 7 14
AM16R4 V12, 13, 14, 15§ 20 10 20
74LS379 u18 16 8 16
SPARE u19 24 12 24
AMB159 u20 48
AM22V10 U21, 28, 29, 36 24 12 24

U22-25, U30-33,

41264-12 U37—44 24 24 12
AM95C60 u26 169
SPARE u27 20 1 20
74LS245 U34, 45,48 20 1 20
AN29C845 u3s 24 1 24
AM29C827 U46, 47 24 1 24
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3c8. 4B7, 8C7
3.8, 8C7

3c8, 8C7

3c3, 8C7

3cs, 8C7
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308
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3c8
3C8
3ce

8B2 DLYFER#

8c2

507, 6D7, 7D7

5D2
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AN > BAI1 :
A12 812
A13 BAI3 >
Al4 > BA4
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A16 > BA16 J
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A18
Al9
(oo PROMs
> > QPDMs
Gk
GND o1
oxs o0 o7 2] o
[ u 22 07 23
BA4 >> m EEU I o3 v21 =5 QPDMWR*
BAS >> 22V10 QPDMRD®
A6 o> 05 20 PROMs 04 21 ARAUXS
BA7 >> 061 apEcopE (19 QPDMe 5 B Ga—Pd TocSies
3A8 o> 07 18 LUTs 08| 1ocoNT 9
08 17 AUXY 07 18
BA9 >> Q
A10 0¢ 16 BAI6 08 17 R0
A11 10 15BA17 09| 16 ®
SMEMR# A12 11 14 BA18 10| 15 LUTSOx
AEN A19 13 K] 14 LUTS e
ALE 13
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AEN
SMEMRY
TORs
TOWs
SMEMWe
DBLNK
LSRe
ECBLNK«
o VIDCLK
peLkt >> o2 | uio 1o 1
ble |
y 03 18 16 2] e 19
SBLK >> 04 b1z 5| iels Pis cor
05 | o P 4 17 hoos
coul P
o8 s 03 ! SHIFT1e
07 14 Q0 06| ENABLE |1
SHIFT2¢
o8 13 7 ] o2
09 12 1
11 P 12 e
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SBLK* >>
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04 21 1A4 1 W81,
2C7 SMEMRe >> 13 7
05| 20 242 2Y: mB2 1
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A5 (F1=26 a5 Yshs 25 1A12 [Um =[B8  AsiGe sp7
A6 (F1=25 e v A11 D B7 A7 sD6
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CHAPTER 6 Pu |
Software

In this section, we present some software application
hints for the Am95C60. Section 6.1 is a BASIC program
that completely initializes the QPDM (from poweron) and
draws a very simple message on the screen. This
program initializes the registers in the recommended
order. It then issues the minimum instructions to get the
QPDM started and draws a few wide lines.

In Section 6.2, we discuss the logical and arithmetic
operations that can be performed on the source and
destination fields during Copy Block operations.

6.1 INITIALIZATION

The following program will completely initialize the add-
in board and draw the word “HI!” using stroke characters
with a logical PEL (Pixel Element). This program was
writtenin IBM PC BASICA and compiled using the BASIC
compiler. Both source code and the compiled binary are
shipped with the demonstration board.

The program contains adequate comments; we shall
amplify as necessary. The board is described in
Chapter 5.

When we execute lines 60-190, we are loading the look-
up table of the Am8159. Itis programmed as indicated in
the table below; the ‘Entry’ column lists the values used
by Set Color Bits.

When we execute lines 210-290, we define the 11O
addresses and set the HILITE oscillator to 2 Hz with a
25% duty factor.

When we execute lines 310-420, we call on subroutines
that initialize the registers. This is the recommended
order. Note that entering 8-bit mode may not be neces-
sary for some applications.

When we execute lines 440-520, we turn on Video
Refresh Enable. This is synchronized to top-of-frame by
waiting for Vertical Blanking Interrupt. When this pro-
gram is executed from the interpreter (at least on a PC),
the timing is not synchronized properly because it takes
several milliseconds to execute lines 500 and 510. The
compiled version does not have this problem.

When we execute lines 540-590 we send instructions to
the QPDM to initialize it and draw a simple message.
These are the minimum instructions required to program
the QPDM. Line 560 removes one word from the list of
data statements. If it is not the termination word (-1), it is
sentto the instruction FIFO. Afterthe last word has been
sent, the program stops at line 600. The instructions are
inthe form of DATA statements occupyinglines 630-840.

The subroutine at 1600 ensuresthere is roominthe FIFO
by waiting for FREQ (x4000 in Status Register) to be a
“1”. It then sends the word to the FIFO.

Table 6.1 Programming the Am8159

Entry HILITE Off HILITE On
0 Black Black
1 Black Grey
2 Dim Blue Dim Blue
3 Bright Blue Bright Blue
4 Dim Green Dim Green
5 Bright Green Bright Green
6 Dim Cyan Dim Cyan
7 Bright Cyan Bright Cyan
8 Dim Red Dim Red
9 Bright Red Bright Red
10 Dim Magenta Dim Magenta
1 Bright Magenta Bright Magenta
12 Dim Yellow Dim Yellow
13 Bright Yellow Bright Yellow
14 Dim White Dim White
15 Bright White Bright White
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10 ‘This programs the 95C60 on Tom Crawford’s demo board

20 " for the NEC Multi-sync (or equivalent) monitor. The

30 ™ monitor is color, 640 x 480. The Am8159 Color Palette

40 > is programmed strictly as one to one (RGBI in, RGBI out).
50 DEFINT A-Z

60 DEF SEG=&HBFF8 ‘point to base of LUT
70 FOR J = 0 TO 126 STEP 2 V128 locations in lut
80 R=0: G=0: B=0 :I=0 N

90 IF ((J AND 6)=4) THEN B=8 ‘dim blue

100 IF ((J AND 6)=6) THEN B=15 ‘bight blue

110 IF ((J AND 10)=8) THEN G=8 ‘dim green

120 IF ((J AND 10)=10) THEN G=15 ‘bright green

130 IF ((J AND 18)=16) THEN R=8 ‘dim red

140 IF ((J AND 18)=18) THEN R=15 ‘bright red

150 IF ((J AND 62)=34) THEN R=4: G=4: B=4: ‘blink intense black
160 POKE J, (G*16+R) ‘bits 7-0

170 POKE J+1,B ‘bits 11-8

180 NEXT J

190 DEF SEG ‘put it back to basic
200

210 BSE=&H3A0

220 INST=BSE ‘instruction FIFO

230 STATUS=BSE ‘status register

240 BIF=BSE+2 ‘block input FIFO

250 BOF=BSE+2 ‘block output FIFO
260 QADRS=BSE+4 ‘register address pointer
270 QEG=BSE+6 ‘io register

280 AUX=BSE+8 YBLINK CONTROL REGISTER
290 QUT AUX, 9 YSET BLINK TO 1 Hz, 25
300

310 ‘Write the Registers to Initialize the QPDM

320 GOSUB 870 ‘sw reset

330 GOSUB 920 ‘8-bit mode

340 GOSUB 970 ‘interrupts off

350 GOSUB 1010 ‘screen

360 GOSUB 1080 ‘windows

370 GOSUB 1170 ‘horizontal

380 GOSUB 1240 ‘vertical

390 GOSUB 1320 ‘vmode

400 GOSUB 1360 ‘mmode

410 GOSUB 1400 ‘dmrr

420 GOSUB 1440 ‘vte

430

440 ‘now wait for Vertical Blank to enable video timing

450 ‘First clear all the interrupts (especially VLKBI)

460 QA=30 :V=&H3FF :GOSUB 1480 ‘clear interrupts

470 ‘Now read Status Register until VBLKI goes Active

480 B=INP (STATUS) :BL=INP(STATUS) ‘always do two byte reads
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490 IF (B AND 1) = 0 THEN GOTO 480 ‘wait for interrupt to occur
500 OUT QADRS,0 :0UT QADRS,29 ‘start video timing
510 OUT QEG,0 :0UT QEG,1
520 PRINT “enable VRE”
530
540 ‘Now send some instructions to QPDM
550 ‘We will initialize it and then write HI! with strokes
560 READ V
570 IF V= -1 THEN GOTO 600
580 GOSUB 1600
590 GOTO 560
600 STOP
610
620 ‘Here are the instructions in the form of DATA statements
630 DATA &HOOBS8 :’set QPDM Position, enable
Masked Writes
640 DATA &H29,0,0 :"turn off scaling
650 DATA &H39, &HO03f0,0,&H01f0 :’stack boundary
660 DATA &H34, &H35 :’ turn off clipping and picking
670 DATA &h30,15 :/ Turn on all activity bits
680 DATA &H31,0 :’Set Listen Bits to All Planes
690 DATA &H36,15 :’turn off logical pel
700 DATA &H22,10,10 :’small block size
710 DATA &H20,0 :’black color
720 DATA &h0550,0,0,1023,1023 :’Filled Rectangle to clear
memory
730 DATA &H20,15 :’white drawing color
740 DATA &H54A,469,277,474,272 :’Circle with radius of five
750 DATA &H21,15 :"Search Color of all ones
760 DATA &H54,469,277 :’Fill the Circle with White
770 DATA &HB6, 7441 :’Logical PEL at 464,272
780 DATA &H54C,100,60,100,280 :'Left Stroke of ‘H’
790 DATA &H54C,220,60,220,280 :'Right Stroke of ‘H'
800 DATA &H54c¢,100,160,220,160 :'Crossbar of ‘H’
810 DATA &HS54¢,300,60,340,60 :'Top of ‘I
820 DATA &H54C,320,60,320,280 :’Vertical Stroke of ‘I’
830 DATA &H54C,300,280,340,280 :’Bottom of ‘I’
840 DATA &H54C,469,60,469,240 :’Stroke of !/
850 DATA -1
860 °
870 PRINT “SW reset”
880 OUT QADRS, 0 :0UT QADRS,27
890 OUT QEG,0 :0UT QEG,0
900 RETURN
910
920 PRINT “8-Bit Mode”
930 OUT QADRS, 31 :0UT QEG,0
940 OUT QADRS,59 :0UT QEG,0
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950 RETURN

960

970 PRINT “Interrupts Off”
980 QA=26 :V=0 :GOSUB 1480

990 RETURN

1000

1010 PRINT “Screen Parameters”

1020 QA=1 :V=0 :GOSUB 1480 ‘real start x

1030 QA=2 :V=0 :GOSUB 1480 ‘real start y

1040 QA=3 :V=640 :GOSUB 1480 ‘real term x

1050 QA=4 :V=480 :GOSUB 1480 ‘real tem y

1060 RETURN

1070

1080 PRINT “windows”

1090 QA=14 :V=800 :GOSUB 1480 ‘Apparent X Start
1100 QA=15 :V=500 :GOSUB 1480 ‘Apparent Y Start
1110 QA=16 :V=800 :GOSUB 1480 ‘Apparent X Terminate
1120 QA=17 :V=500 :GOSUB 1480 ‘Apparent Y Terminate
1130 QA=18 :V=800 :GOSUB 1480 ‘Real X Start

1140 QA=19 :V=800 :GOSUB 1480 ‘Real Y Start

1150 RETURN

1160 *

1170 PRINT “horizontal”

1180 QA=10 :V=10 :GOSUB 1480 YHSYNC

1190 QA=11 :V=20 :GOSUB 1480 ‘H Scan Delay

1200 QA=12 :v=80 :GOSUB 1480 ‘H Active

1210 QA=13 :V=104 :GOSUB 1480 ‘H Total

1220 RETURN

1230

1240 PRINT “vertical”

1250 QA=5 :V=40 :GOSUB 1480 YWSYNC

1260 QA=6 :V=50 :GOSUB 1480 ‘W Scan Delay Odd
1270 QA=7 :V=50 :GOSUB 1480 W Scan Delay Even
1280 QA=8 :V=480 :GOSUB 1480 W Active

1290 QA=9 :V=1024 :GOSUB 1480 W Total

1300 RETURN

1310

1320 PRINT “vmode”

1330 QA=22 :V=11 :GOSUB 1480 ‘Non-interlaced, Master, Master
1340 RETURN

1350

1360 PRINT “mmode”

1370 QA=23 :V=&H70 :GOSUB 1480 ' 64K Devices, 1K Display Memory
1380 RETURN

1390

1400 PRINT “DMRR"”

1410 QA=24 :V=&H200+320 :GOSUB 1480 320 SYSCLK Cycles and Bit 9

1420 RETURN
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1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700

A}

PRINT “VTE”

QA=28 :V=1 :GOSUB 1480
RETURN

Al

‘write 16 bit word to register
‘reg adrs in qga, value in v
‘most significant byte first
B=INT (QA/256) :0UT QADRS,B
B=QA MOD 256 :0UT QADRS,B
‘PRINT B,

B=INT(V/256) :0UT QEG,B
‘PRINT B;” “;

B=V MOD 256 :0UT QEG,B

YPRINT B

RETURN

Al

‘write 16 bit word to inst FIFO

‘word is in v

‘most sig byte first

‘first make sure there is room in the FIFO

B=INP (STATUS) :B1=INP(STATUS) ‘always read two bytes

IF (B AND 64) = 0 THEN GOTO 1640 ‘wait until FREQ is hi

B=INT(V/256) :0UT INST,B
YPRINT B;” v

B=V MOD 256 :0UT INST,B
YPRINT B

RETURN
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6.2 COPY BLOCK OPERATORS IN THE
QPDM

6.2.1 Introduction

This chapter documents how to perform various logical
and arithmetic operations with the Copy Block instruction
on the QPDM. This study was inspired by Dale Sim-
monds who took the corresponding operations on the
TMS34010 seriously.

6.2.2 Logical Operations

When two bi-modal quantities are logically combined,
there are 16 possible results. In otherwords there are 16
functions of two variables, A and B. It is easy to prove
there are exactly 16 ways; simply write down the cases
exhaustively.

We can also describe the procedure for each of these.
Twelve of the 16 cases canbe executedinone operation.
The other four require two operations each.

6.3.3 Arithmetic Operators

Overview

People have argued that arithmetic operations are useful
when doing graphics. The operations are:

Add dest = dest plus source

Add with Saturation Forces all ones rather than overflow

Subtract dest = dest minus source

Subtract w. Saturation Forces all zeroes rather than
underflow

Maximum Compare and use the numerically
larger

Minimum Compare and use the numerically
smaller

These operations can all be synthesized fromthe logical
operations we have (SOAXZ). The only part that is
expecially interesting (and time consuming) is the
propagation of carries. As you go over this code, bearin
mind that each operation is being done on more than
one quantity (pixel) in parallel. This means that optimiz-
ing in real time based on the partial results cannot be
done. Rather, you have to just go blindly through allthe
motions.

Add

We shall describe the add routine in great detail. Allthe
others are builtto some greateror lesser degree on add.
The nomenclature for the four bit planes in a single
QPDM is shown below.

Plane Number 0

123 (for font instruction)
Weight 8421

(for act instruction)

Carries propagate from right to left. Plane number 3
contains the LSB of each pixel; plane number 0 contains
the MSB of each pixel.

Four blocks in the display memory are defined. The two
originaloperands are “dest” and “source”. The operation
is definedin a manner consistent with the normal QPDM
logical operations.

dest = dest plus source

The other two blocks are “temp1” and “temp2”. These
are used to contain intermediate results as described
below.

Input Values of B,A: (where B is the source and A the destination)

0,0 0,1 1,0 1,1 Name Equation Procedure

0 0 [] 0 Clear A=0 Copy Destination to itself with AND and S|

0 0 0 1 And A=A ANDB Copy Block with Logical AND

0 0 1 0 And Reverse A=A ANDB a) Invert Destination, b) Copy with Logical AND
0 0 1 1 Copy A=B _ Copy Block with Logical SET

0 1 0 0 AndInverted A=A ANDB Copy Block with Logical AND, S|

0 1 0 1 NoOp A=A (left as an exercise for the reader)

0 1 1 0 Xor A=A XORB Copy Block with Logical XOR

0 1 1 1 Or A=A OR B Copy Block with Logical OR

1 0 0 0 Nor A=A OR B a) Copy Block with Logical OR, b)Invert Dest
1 0 0 1 Equivalent A=A XORB Copy Block with Logical XOR, Sl

1 0 1 Y Invert A=A Invert Destination

1 0 1 1 OrReverse A=AORB a) Invert Destination, b)Copy Block with OR

1 1 0 0 Copylnverted A=B _ Copy Block with Logical SET, Si

1 1 0 1 Orlnverted A=AORB Copy Block with Logical OR, Sl

1 1 1 0 NAnd A=A ANDB a) Copy Block with Logical AND, b)Invert Dest
1 1 1 1 Set A=1 Copy Destination to itself with OR and S|

“ Invert Destination” means: Copy Block Dest to Dest with Sl
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The program for add is shown in addtemp (which stands
for add TEMPlate). The block size of the arrays to be
added is set and all the activity bits are set.

The “propagates” are calculated and placed in temp1.
The propagate for each bit position of each pixel is the
logical OR of the two operands. If the resultis set, thena
carry into this bit position will result in a carry out. Note
that this calculation is a two-step operation. This is
because the QPDM requires the destination block to be
the same as one of the sources. (2-address machine)

The “generates” are calculated and placedintemp2. The
generate for each bit position of each pixel is the logical
AND of the two operands. If the result is set, then there
will be a carry out from this bit position regardless of any
carry in. We will see later how the propagates and
generates are combined.

The initial sums (with no carries) are calculated into
“dest” by XORing with “source”. Recall that XOR is a so-
called “half-add”. This is all there is to it except for the
carries.

For the case of add, there is no carry into the low-order
bit, so we can go directly to plane 2. We must add any
carry generated from plane 3 into plane 2. We want to
affect plane 2 only, so we set only its activity bit. We want
to use the generate from plane 3 so we set the single
plane source with the fnt 3: instruction. We XOR the
generate from plane 3into the destination of plane 2. This
leaves the correct sum in plane 2. Note that the single
plane source bitis set so that the source operand (temp2)
comes from plane 3.

Now the generate from plane 3 is ANDed with the
propagate from plane 2 with the result left in the plane 2
propagate array. Finally, this is ORed with the plane 2
generate and the result is left in plane 2 generate. This
can be done without single plane source since both
operands are in plane 2. Observe all this has affected
only plane 2.

“Generate” from any plane is propagate and carry-in or
generate. In a similar manner, we calculate the sum for
plane 1 and the carry from plane 1. Finally, we calculate
the sum for plane 0. This completes the add routine.
There is no need to calculate the carry-out of plane 0.
This has all taken 12 Copy Block instructions, five of
which use the single plane source option.

Add with Saturation

Add with Saturation is exactly the same as add except
that, if the result if larger than the maximum value, the
result is forced to the maximum value (there is no
overflow). The code is shown in addstemp. It is exactly

the same as addtemp with an extra step at the end. We
calculate the carry out of plane 0 (this is the overflow).
This carry is ORed with all four planes, forcing the
maximum for all pixels that have generated an overflow.

Subtract

The classical method of subtracting is “complement and
add”. The complement is a two’s complement; we do a
one’s complement and force a carry into plane 3. Thisis
shown in subtemp. The block temp3 is used as a source
of 1s to force the carry into plane 3. The complement of
the subtrahend is the very first “cpy”. The carry is forced
into plane 3. After that, itis identical to add (down to and
including the comments).

Subtract with Saturation

This is identical to subtract except we calculate the carry
from plane 0. Everywhere there is no carry, we force the
result to 0. The listing is substemp.

Maximum

The two values corresponding to the pixel are compared
and the one that is numerically larger is chosen. This is
listing maxtemp. Copies of the two operands are saved
and the source is subtracted from the destination. The
carry-out of plane zero is used to select either the source
or destination (from the saved copies). The result is left
in the destination.

Minimum

The two values corresponding to the pixel are compared
and the one that is numerically smaller is chosen. Thisis
shown in mintemp. This is identical to maxtemp except
for the ANDs which select the operands at the end.

Propagation of Carries Saturation between QPDMs

Clearly, in a multi-QPDM system, it is necessary to
propagate the carry from the low-order QPDM to the
high-order QPDM. ltis also necessary to convey the final
carry in the operations with saturate as well as maximum
and minimum. This is done using the match logic. Ob-
serve that while this works, it is not especially fast.

1. Zero the destination plane

2. Set the listen bits for the source plane only.

3. Set the search color to ones in the source plane

4. Copy the destination to itself using source invert and
match.

Everywhere else the source plane is a one, the destina-
tion will be forced to a one.
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6.2.4 Transparency

Tl has defined a logical operation called transparency.
This involves executing copy block only for pixels where
the source is not zero. This buys two things:

1. You canbuild up your destinationin layers with the most
recent information on top, providing a type of visual
priority. (Using a straight Copy Block obscures the old
layers).

1. No new colors are created which might distort the
readability or change the intended meaning of color
coded information. (Observe that using logical opera-
tions to merge information does just that. So does con-
trolling the activity bits to write only selected planes).

The String instruction can do exactly what is called for
here. If you use an SOAXZ field of 101 (Graphical Set)
and a single plane font, then the character will be written
into all planes wherever there is a one in the font. Any
place there is a zero in the font, the pixel will not be
written, allowing the data that is underneath to come
through.

The drawing instructions (Line, Point, etc) also do this
very well. Using a SOAXZ field of 101 (Graphical Set), the
drawing color will be written into all bit planes everywhere
the object exists. This also works properly for single
plane PELs.

For Copy Block, the situation may be slightly more
complex. If the source is a single plane, the Graphical Set
does exactly the correct thing: everywhere the source is
aone, all the planes of the destination will be written with
the current drawing color.

Itis more interesting if the sourceimage contains several
colors and the application wants to copy all of themto the
destination without overlaying anything where the source
is all zeroes. In this case, we cannot use a single plane
source because of the multiple color situation. One
method is:

1. Make a copy of the source (if it needs to be pre-
served).

2. Copy the destination to the source matching on a
field of all zeroes.

3. Copy the source to the destination.

A third example involves the case where all pixels of a
single color are to be copied fromthe source block, but no
others. The solution involves the self-canceling effect of
exclusive OR.

1. Copy the source to a temporary region.

2. Copy the source to temporary with logical XOR,
matching on the desired color.

3. Copy the source to temporary with logical XOR.
This leaves all pixels, except those of the desired
color, at zero.

4. Choose a plane whose color bit for the desired
color is a one and execute a single plane copy
from temporary to the destination. Use Graphical
Set with drawing color set to the desired color.

6-8
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MAXTEMP

blk [blksiz]

act 0 {15}

cpy [dest] [temp4]
cpy [source] [tempS5]

cpy ~ [source] [source]

cpy [dest] [templ]
cpy o [source] [templ]

cpy [dest] [temp2]
cpy a [source] [temp2]

cpy x [source] [dest]

;save copy of original dest
;and source

;invert the subtrahend

;propagates

;generates

;half-adders

;now we have to propagate carries from 3 to 0

act 0 {8}
cpy ~ o [temp3] [temp3]

act 0 {1}

fnt 0: [nul] O0_[fnt0] 1_[fntl]
cpy 11 x [temp3] [dest]

cpy 11 a [temp3] [templ]

cpy o [templ] [temp2]

act 0 {2}

fnt 3: [nul] 0_[£fnt0] 1_[fntl]
cpy 1| x [temp2] [dest]

cpy 1] a [temp2] [templ]

cpy o [templ] [temp2]

act 0 {4}

fnt 2: [nul] 0_[fnt0] 1_[fntl]
cpy 1| x [temp2] [dest]

cpy 1| a [temp2] [templ]

cpy o [templ] [temp2]

act 0 {8}
fnt 1: [nul] O0_[(£fnt0] 1_[fntl]
cpy 1| x [temp2] [dest]

;now we do the saturation part
;look for a carry out of plane zero

;will set all carries into plané three

’

;force carries into plane three

;jcarries come from plane zero

;final sum for plane three

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane zero only
;plane 1 is Source
;final sum for plane zero
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cpy 1| a [temp2] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;final carry from plane zero

act 0 {15} ;all activity bits

fnt 0: [nul] 0_[£fnt0] 1_[£fntl] ;and will force all zeroes where it isn’t
cpy 1| a [temp2] [temp4] ;keep the maximums

cpy 1|1 ~ a [temp2] [temp5] ;from each of the two images

cpy [temp4] [dest] ;and merge them together

cpy o [temp5] [dest] ;in the final destination
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MINTEMP
blk [blksiz]
act 0 {15}
cpy [dest] [temp4] ;save copy of original dest
cpy [source] [temp5] ;and source
cpy ~ [source] [source] ;invert the subtrahend
cpy [dest] [templ] ;propagates
cpy o [source] [templ]
cpy [dest] [temp2] ;generates
cpy a [source] [temp2]
cpy x [source] [dest] ;half-adders
;now we have to propagate carries from 3 to 0
act 0 {8} ;will set all carries into plane three
cpy ~ o [temp3] [temp3] ;
act 0 {1} ;force carries into plane three
fnt 0: [nul]l 0 _([£fnt0] 1_[£fntl] ;carries come from plane zero
cpy 1| x [temp3] [dest] ;final sum for plane three
cpy 11 a [temp3] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;ORd with this plane generate (final carry)
act 0 {2} ;write plane two only
fnt 3: [nul] O0_[£fnt0] 1_[£fntl] ;plane 3 is Source
cpy 1| x [temp2] [dest] ;final sum for plane two
cpy 11 a [temp2] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;ORd with this plane generate (final carry)
act 0 {4} ;write plane one only
fnt 2: [nul] 0_[£fnt0] 1_[£fntl] ;plane 2 is Source
cpy 1| x [temp2] [dest] ;final sum for plane one
cpy 1| a [temp2] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;ORd with this plane generate (final carry)
act 0 {8} ;write plane zero only
fnt 1: [nul] O_[£fnt0] 1_[£fntl] ;plane 1 is Source
cpy 1| x [temp2] [dest] ;final sum for plane zero

;now we do the saturation part
;look for a carry out of plane zero
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cpy 1| a [temp2] [templ]
cpy o [templ] [temp2]

act 0 {15}

fnt 0: [nul] O_[£fnt0] 1_[fntl]
cpy 1| ~ a [temp2] [temp4]
cpy 1| a [temp2] [temp5]

cpy [temp4] [dest]
cpy o [temp5] [dest]

;lower plane generate and this propagate
;final carry from plane zero

;all activity bits

;and will force all zeroes where it isn’t
;keep the minimums

;from each of the two images

;and merge them together
;in the final destination
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ADDSTEMP
blk [blksiz]
act 0 {15}
cpy [dest] [templ] ;propagates
cpy o [source] [templ]
cpy [dest] [temp2] ;generates
cpy a [source] [temp2]
cpy x [source] [dest] ;half-adders
;now we have to propagate carries from 3 to 0
act 0 {2} ;write plane two only
fnt 3: [nul] 0_([£fnt0] 1_{£fntl] ;plane 3 is Source
cpy 11 x [temp2] [dest] ;final sum for plane two
cpy 11 a [temp2] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;ORd with this plane generate (final carry)
act 0 (4} ;write plane one only
fnt 2: [nul] O_[£fnt0] 1_[£fntl] ;plane 2 is Source
cpy 1l x [temp2] [dest] ;final sum for plane one
cpy 1| a [temp2] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;ORd with this plane generate (final carry)
act 0 {8} ;write plane zero only
fnt 1: [nul] O0_[£fnt0] 1_[£fntl] ;plane 1 is Source
cpy 1| x [temp2] [dest] ;final sum for plane zero
;now we look for a carry out of plane zero
cpy 1| a [temp2] [templ] ;lower plane generate and this propagate
cpy o [templ] [temp2] ;ORd with this plane generate (final carry)
act 0 (15}
fnt 0: [nul] O_[£fnt0] 1_[£fntl] ;and will force all ones with it
cpy 1| o [temp2] [dest] ; (forcing result to saturated)
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ADDTEMP

blk
act

cpy
cpy

cpy
cpy

S12'

[blksiz]
0 {15}

[dest]
o [source]

[templ]
[templ]

[dest]
a [sourcel]

[temp2]
[temp2]

x [source] [dest]

;propagates

;jgenerates

s;half-adders

;now we have to propagate carries from 3 to 0

act
fnt
cpy
cpy
cpy

act
fnt
cpy
cpy
cpy

act
fnt

cpy

0 {2}

3: [nul] O_[£fnt0] 1_[£fntl]
1| x [temp2] [dest]

1| a [temp2] [templ]

o [templ] [temp2]

0 {4}

2: [nul] O0_[£fnt0] 1_[£fntl]
1| x [temp2] [dest]

1] a [temp2] [templ]

o [templ] [temp2]

0 {8}
1: [nul] O_[£fnt0] 1_[£fntl]
1| x [temp2] [dest]

;jwrite plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane zero only
;plane 1 is Source
;final sum for plane zero
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SUBTEMP

blk
act

cpy

cpy
cpy

cpy
cpYy

cpy

[blksiz]
0 {15}

~ [source] [source]

[dest] [templ]
o [source] [templ]

[dest] [temp2]
a [source] [temp2]

x [source] [dest]

;invert the subtrahend

;jpropagates

;jgenerates

;half-adders

;now we have to propagate carries from 3 to 0

act
cpy

act
fnt
cpy
cpy
cpy

act
fnt
cpy
cpy
cpy

act
fnt
cpy
cpy
cpy

act
fnt

cpy

‘1] a

0 {8}
~ o [temp3] [temp3]

0 {1}

0: [nul] O_[£fnt0] 1_[£fntl]
1| x [temp3] [dest]

1| a [temp3] [templ]

o [templ] [temp2]

0 {2}

3: [nul] O_[£fnt0] 1_[£fntl]
1| x [temp2] [dest]
[temp2] [templ]

o [templ] [temp2]

0 {4}

2: [nul] O_[£fnt0] 1_([£fntl]
1| x [temp2] [dest]

1| a [temp2] [templ]

o [templ] [temp2]

0 {8}
1: [nul] O_[£fnt0] 1_[£ntl]
1| x [temp2] [dest]

;will set all carries into plane three

’

;force carries into plane three

;carries come from plane zero

;final sum for plane three

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane zero only
;plane 1 is Source
;final sum for plane zero
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SUBSTEMP

blk
act

cpyY

cpy
cpy

cpy
cpy

cpy

[blksiz]
0 {15}

~ [source] [source]

[dest] [templ]
o [source] [templ]

[dest] [temp2]
a [source] [temp2]

x [source] [dest]

;invert the subtrahend

;propagates

;generates

;half-adders

;now we have to propagate carries from 3 to 0

act
cpy

act
fnt
cpy
cpy
cpy

act
fnt
cpy
cpy
cpy

act
fnt
cpy
cpy
CcpY

act
fnt

cpy

0 {8}
~ o [temp3] [temp3]

0 {1}

0: [nul] O_[£nt0] 1_[fntl]
1| x [temp3] [dest]

1| a [temp3] [templ]

o [templ] [temp2]

0 {2}

3: [nul] O0_[£fnt0] 1_[fntl]
1| x [temp2] [dest]

1] a [temp2] [templ]

o [templ] [temp2]

0 {4}

2: [nul] O_[£fnt0] 1_[£fntl]
1| x [temp2] [dest]

1| a [temp2] [templ]

o [templ] [temp2]

0 {8}
1: [nul] O_([£fnt0] 1_[fntl]
1| x [temp2] [dest]

;jnow we do the saturation part

;look for a carry out of plane zero

cpy
cpy

act
fnt

cpy

1] a [temp2] [templ]
o [templ] [temp2]

0 {15}
0: [nul] O0_[£fnt0] 1_[£fntl]
1] a [temp2] [dest]

;will set all carries into plane three

’

;force carries into plane three

;carries come from plane zero

;final sum for plane three

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;jwrite plane zero only
;plane 1 is Source
;final sum for plane zero

;lower plane generate and this propagate
;final carry from plane zero

;all activity bits
;and will force all zeroes where it isn’t
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