
Am9SC60
Quad Pixel Dataflow Manager
Applications
Handbook

Advanced
Micro

Devices

Advanced Micro Devices

Am95C60
QPDM Quad Pixel
Dataflow Manager

Applications
Handbook

© 1988 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics.

This handbook neither states nor implies any warranty of any kind, including but not
limited to implied warranties of merchantability or fitness for a particular application.
AMD assumes no responsibility for the use of any circuitry other than the circuitry
embodied in an AMD product.

The information in this publication is believed to be accurate in all respects at the
time of publication, but is subject to change without notice. AMD assumes no
responsibility for any errors or omissions, and disclaims responsibility for any
consequences resu~ing from the use of the information included herein. Additionally,
AMD assumes no responsibility for the functioning of undescribed features or
parameters.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

Authors:

Tom Crawford
Stuart Tindall
Ed Dupuis
Wolfgang Reis
Achim Strupat

Chapters 3.0, 3.2, 3.3, 4, 5, and 6.
Chapters 1 and 3.1.
Chapter 2.1.
Chapter 2.2.
Chapter 2.3.

Introduction

This QPDM Applications Handbook is the third in a series of documents describing the Am95C60
Quad Pixel Data Manager (QPDM) device and its use in graphics systems.

The first , most basic document is the QPDM data sheet (Order Number 07013B) which gives a terse
functional description plus a very detailed listing of the electrical and timing parameters, as well as
package, pin-out, and ordering information. This data sheet will be updated for any parametric
changes, e.g . speed enhancements, made as the device matures.

The second document is the QPDM Technical Manual (Order Number 07785B). It provides a more
complete functional description and explains each of the 61 instructions in detail.

The third document, this QPDM Applications Handbook, describes a wide variety of interfaces to the
QPDM. The System Bus is covered in Chapters 2 and 5, the Display Memory Bus is covered in
Chapters 3 and 5, the Memory Bus in Chapters 4 and 5.

Chapter 6 contains some programming hints and a complete initialization program.

Table of Contents

CHAPTER 1 Overview 1·1

DESIGN APPLICATIONS 1·1

CHAPTER 2 System Bus Interface 2·1

2.1 Am9560 • 80186 INTERFACE DESIGN 2·1

2.2 VMEBUS 2·28

2.3 68020 BUS 2·34

CHAPTER 3 Display Memory Bus 3-1

3.1 DISPLAY MEMORY CONNECTIONS OF THE QPDM 3-1

3.2 DISPLAY MEMORY PROGRAM 3-16

3.3 FONT STORAGE IN KANJI ROMS 3-41

CHAPTER 4 Video Bus 4-1

4.1 VIDEO BUS 4-1

4.2 SERIALIZERS IN GENERAL 4-1

CHAPTER 5 Evaluation and Demonstration Board 5-1

5.1 PC INTERFACE 5-1

5.2 DISPLAY MEMORY INTERFACE 5·3

5.3 TIMING GENERATOR 5-4

5.4 SERIALIZERS 5·5

5.5 COLOR LOOKUP TABLE AND DACS 5-7

5.6 EPROMS 5-8

5.7 MEMORY BUS TIMING ANALYSIS 5-8

5.8 SOFTWARE 5-15

5.9 PAL DEVICE EQUATIONS 5-16

5.10 USERS GUIDE 5-23

DIAGRAMS 5-24

CHAPTER 6 Software 6-1

6.1 INITIALIZATION 6·1

6.2 COPY BLOCK OPERATORS IN THE QPDM 6·6

CHAPTER 1

Overview

DESIGN APPLICATIONS 1-1

CHAPTER 1
Overview

DESIGN APPLICATIONS

Interface helps controller
boost graphics performance
Stuart Tindall and Achim Strupat
Advanced Micro Devices Inc., 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088; (408) 732·2400.

A new generation of graphics processors is hiking
the performance of graphic systems by more than
an order of magnitude. These devices work their
wonders by taking over tasks formerly performed
by the system's CPU: frame updating, video reo
freshing, and memory refreshing. The dedicated
processors offload the system CPU of unnecessary
tasks while they manipulate image data faster than
the original controllers ever could.

The price to pay for the extra speed and the easier
overall system design is
the added complexity of

A dedicated graphics
processor speeds im­
age handling while
making the CPU's job
easier. Moreover, its
bus interface is a
snap to implement.

connecting one or more
graphics processors to
the system bus. The task
need not be daunting,
however. In fact, with
the Am95C60 Quad
Pixel Dataflow Manag·
er, the connection to the
system bus is very
straightforward.

The Am95C6O CMOS device is aimed at mini·
computers and workstations built around the
68020 microprocessor. The device manages bit
maps of up to 4096 by 4096 pixels and pixel rates of
up to 400 MHz, which translates into screen sizes of
up to 2000 by 2000 pixels. For reference purposes,
today's high. resolution CAD and desktop publish·
ing workstations have l280·by·1024·pixel displays.

The graphics processor can draw up to 110,000
lines, averaging 10 pixels long, per second; place
text at 50,000 characters per second; fill polygons at
20 ns per pixel; and perform bit-block transfers at
60 ns per pixel. One device manages and drives up
to four bit-mapped memory planes, and designers
can cascade up to 64 devices without slowing per·
formance. As a result, a system based on the
Am95C6O processor can support 256 display memo
oryplanes.

Moreover, the graphics processor connects di·
rectly to video dynamic RAMs and supplies all the
signals to drive them. Video dynamic RAMs are

dual.port memories that make possible simulta­
neous display refresh from a serial port and display
update through a random·access port. In a high·
resolution system with video dynamic RAMs, the
update bandwidth exceeds 90%, almost triple that
with conventional dynamic RAMs.

In a typical graphics subsystem, one or more
graphics processors connect to the system bus. Oth·
er major components include video dynamic
RAMs, one serializer per memory plane, a high·
frequency dot clock generator, and a color palette
(Fig. I).

Note that the 68020 is a bus master, and the
Am95C6O is addressed as a bus slave. If the system
did not have a DMA controller, the CPU would be
the only bus master, and it would never have to per·
form bus·arbitration cycles or give away the system
bus. The optional DMA controller helps the CPU
load instructions into or exchange data with the
graphics processor, but the controller must request
the bus and use the standard bus-arbitration
handshake.

Because the graphics processor is always a sys·
tem bus slave, the transactions on its interface do
not have to be synchronized to a clock. As a result,
bus-interface connections are relatively simple, and
the graphics processor needs only a small amount
of additional logic to work with all common 8-, 16-,
or 32-bit microprocessors.

&- OR 16-BIT MODES POSSIBLE

After a reset, the designer can configure the data
bus to work in an 8-bit mode with programmable
byte order or in a 16-bit mode. In a 68020 system,
the 16-bit mode offers the highest throughput. In
this case, the device's 16 data lines connect to bits
16 through 31 of the processor's 32-bit data bus.

The 68020 accommodates both virtual and di­
rect addressing. Because the processor does riot. dis­
tinguish between memory and I/O addresses, peri­
pherals are memory mapped. Virtual memory
management is better when the 68020 is the kernel
CPU running a high-level operating system. Then

Reprinted with permission from Electronic Design, Vol 35, No. 17; July 23, 1987. Ii:> Copyright Hayden Publishing Co., Inc.
1-1

CHAPTER 1
Overview

1-2

any execution process can access the CPU's total address
space-4 Gbytes for the 68020.

Direct addressing is preferred when the 68020 controls
peripheral devices or when the peripherals have unique
addresses because only one user can access the quad pixel
data-flow manager in an interactive graphics system.
Even if this user displays results from a multitasking pro­
cess, the I/O accesses run sequentially through an operat­
ing system driver. Ideally, a PAL device contains the ad­
dress decoding logic needed to generate the relevant Chip
Enable signals to the graphics processor. As a result, the
following discussion assumes a direct-addressing
scheme.

To interface a processor to a peripheral with an inde­
pendent system bus cycle, as the graphics processor has,
several control and response signals must be translated.
Also, each device must operate at its own highest clock
rate, and therefore, asynchronously.

The interface to the Am95C60 includes a 16-bit bidir­
ectional, three-state data bus (lines Do to D 15), Read and
Write strobe inputs (RD and WR), a Chip Select input
(CS), two address line inputs (Ao and AI)' an interrupt
output, three DMA handshake signals, an output that en­
ables an external driver, a reset, and a system clock input.
The system clock, which runs at up to 20 MHz, times the
internal microengine and controls the display-memory
timing, but not the system-bus and video timing. The two
address lines connect to four ports within the device.

A typical application has a 68020 connected to two
Am95C60s that form an eight-plane system (Fig. 2). A
PAL device decodes the 68020 address and outputs two
Chip Select (CSo and CSI) signals to the graphics proces­
sors. A third signal, CSQPDM, which shows an access to
either graphics processor, combines with the 68020's
Read/Write signal to form the read and write inputs for
the Am95C60. The timing of the Chip Select signal and
the read and write inputs follows the timing of the 68020's

System bus

Color
palette

Address Strobe, with the addition of the decode logic's
propagation delay.

Because all resources within the graphics processor are
16 bits wide, any write cycle to the device results in the 16-
bit quantity on the bus being loaded into the appropriate
register. But the data word must be aligned, because the
least significant address line is not used in addressing the
resources within the device. Connecting the 68020's ad­
dress lines, Al and A2, to the graphics processor's address
pins, Aoand AI' allows data to be transferred one word at
a time. Consequently, the quad pixel data-flow manager
does not need any transfer-size information; the request­
ed 16 bits are always fulfilled. The 68020's address bits Al
and A2 connect to the graphics processor's two address
inputs, Ao and AI' to select the internal resource for a bus
access.

Depending on the speed difference between the two
processors, none, one, or more wait states extend the pro­
cessor's bus cycle. Two lines-Data Transfer and Size
Acknowledge (DSACK)-cause wait states in the bus
cycle if they are not asserted. To avoid this, the designer
can generate DSACK responses that are synchronous to
the 68020 clock by using a fixed-delay logic sequence that
defines the length of any access to the graphics processor
after Address Strobe is asserted.

This delay can be modulated by a registered PAL de­
vice, timed by the processor's clock. The PAL device's
DSACK outputs are put in a thr_state mode because a
ml!ltiperipheral system may have several sources of
DSACK signals. A pull-up resistor on the thr_stated
outputs defines the logical state when the PAL device is
not driving the lines.

The 68020 communicates with the graphics processor
over two types of bus cycles: word read and word write.
At the beginning of a system bus cycle, the 68020 as the
bus master asserts the R!W signal to indicate the direc­
tion of data flow. A word read cycle moves data from the

graphics processor to the CPU,
then presents the address and
function code to distinguish be­
tween user and supervisory ad­
dress space.

To transfer 16 bits with a
word-transfer instruction, the
CPU's transfer size outputs,
SIZI and SIZa, are set to two
bytes (that is, 10H). As noted,
however, the Am95C60 does
not need this information, if the
CPU's address lines and the
graphics processor's address
pins are properly connected.

1. The AM95C60 Quad pIxel Dataflow Manager can accommodate four bit­
mapped memory planes. A graphics subsystem can include up to 64 de­
vices, tor 256 memory planes.

Because all transactions are
word aligned and word wide,
address bit AD is always low,

----- -.--~----- -~- -~~~-- ---~ -~-~--~~----~ - --- --~~-~-----~-~-----.-- ~~-~-.------~~------

CHAPTER 1
Overview

and the infonnation is read in on the data-bus lines DI6
through D 31 • The 68020 then asserts Address Strobe to
show that the address is valid, and activates Data Strobe
to indicate that the graphics processor should drive the
data bus.

After the CPU produces Chip Select and asserts the
read input, the graphics processor needs a specified mini­
mum time to complete the word read bus cycle, depend­
ing on the device's speed version. For a 20-MHz device,
for instance, the read data on the system bus is valid after
a maximum of 110 ns.

Depending on the 68020's clock speed, this time may
or may not be fast enough to ensure access without a wait
state. To cover the general case, the example assumes that
after a certain delay, the graphics processor creates a wait
state by asserting the DSACK lines to the CPU. The de­
lay, produced by extemallogic, is a multiple of the
68020's clock cycle.

Once valid data is on the data bus and the DSACK sig­
nals are asserted, the CPU latches the data and termi­
nates the bus cycle by deasserting Data Strobe and Ad­
dress Strobe. This negates the graphics processor's Read
Strobe and lets the device enter the three-state mode on its
data bus. To conclude the bus cycle, the PAL device that
generates the DSACK signals goes into a three-state
mode also.

The pull-up resistor brings the outputs to an inactive
state. As soon as the CPU receives the deasserted
DSACK signals, it knows the
word read cycle is complete and
starts another cycle.

The transactions are similar
for a write cycle, except that the

CPU
(68020)

Write pulse, which is formed from the 68020's Data
Strobe pulse. Negation of the DSACK signals by the
PAL device after the rising edge of Address Strobe con­
cludes the bus cycle.

ADDRESS UNES CONTROL 1/0 PORTS

The Am9SC60 has four I/O ports addressed by lines
Ao and AI' Through these ports, the CPU, using its own
AI and A2 lines, directly addresses the instruction FIFO
buffer and status register, the block I/O FIFO buffer, the
I/O-pointer register, and the data registers indicated by
that register (see the table, p.l (0).

Access to the other registers within the device employs
a two-tier process. The operator first loads the address of
the desired resource into the IIO-pointer register,
through which the resource can be accessed. Then, any
subsequent access to the I/O-data register transfers data
between the bus master and the register.

In a multiple data-manager system, the processors can
be addressed either individually or as a single peripheral.
The broadcast mode, in which the CPU transmits data to
all quad pixel data managers simultaneously, offers the
fastest overall system speed.

In broadcast mode, a global address enables all Chip
Select lines. The CPU sends most of the register data dur­
ing the initialization phase and all but one drawing in­
struction to the quad pixel data managers. All the graph­
ics processors then execute the same instruction

32·bi\ data bus

R/W signal shows a transfer
from the CPU to the graphics
processor. In this case the CPU
places valid data on the system
bus before activating the Data
Strobe. Because the Write
Strobe to the graphics proces­
sor may be as short as 70 ns,
fewer wait states are needed
than in a Word Read cycle. If
any are inserted, the PAL de­
vice's DSACK signals again
handle them.

F~~ r:::::=t=i::~~~~-1~ ArA., r-
0.-0" 1--_

Assertion of the two
DSACK lines tells the CPU
that the graphics processor is
ready to latch the data. The
68020 then negates its Address
and Data strobes and removes
the data from the bus. The
graphics processor latches the
data with the rising edge of its

R/Vii ~---+-1--'---'
SIz.,-sIZ,

AS 1----+
os 1----+--1

Reset
CLKI----+

EDE
Reset
SVSCLK

interruptS from other sources In the system

2. In the straightforward system bus connection between the Am95C60
graphics processor and the 68020 microprocessor, three PAL devices create
the logiC needed lor the connection. The CPU's clock and the graphics con­
troller's clock are asynchronous, easing the Interface.

1-3

CHAPTER 1
OVerview

1-4

simultaneously. The 68020's address bits A3 and A. cre­
ate the required Chip Select signals in a two-data-manag­
er system (see the table again).

The one instruction executed can affect different dis­
play memory planes differently, depending on what data
is in the display memory and on certain parameters in the
quad pixel data manager. Those parameters include ac­
tivity bits, which define the active planes; color bits,
which pick the color the graphics processor draws with;
and search bits and listen bits, which show what color is
needed in certain planes for fill area instructions.

The instructions that set these parameters include a
field denoting which quad pixel data manager is being ad­
dressed. Each device compares its plane position with this
field to determine whether the device is a target. Thus in­
structions that change only one quad pixel data manager
within an array can be broadcast to all devices.

Initialization of individual Am95C60s is important be­
cause the multiple graphics processors in a system may be
initialized differently. One graphics processor may be the
video master, while the others are video slaves. Each de­
vice's position in an array is determined by the Set QPDM
Position instruction, which must be sent to each chip
individually.

A user activates the Am95C6O graphics engine by ini­
tializing several registers that define its environment. For
instance, these registers specify the type and size of the
connected display memory, the video timing, the dynam-

32-bit·wide data bus
16

D0-031 1t .. ~.,.---tI
CPU

(66020)

Quad Pixel
Data Manager

(Am95C60)

Device 2
(Am95C60)

A(M.4.3)

Driver-
select Plane-access select
logic

Pixel-access setect

3. Adding driver select logic and extra buHers lets
the operator of this two-controller system choose a
data-transfer scheme from among a 16-bit broad·
cast technique, a 32·bit by·plane transfer, and a 32·
bit by·pixeltransfer.

~-.--.---

ic memory refresh frequency, and the screen and window
size and position within the display memory.

After initialization, the CPU transmits drawing in­
structions to the graphics processor. The 60 instructions
in the set include drawing lines, moving rectangular
blocks, filling triangles, and writing character strings.
The selection allows users to create many different types
of drawings and to mix graphics and text efficiently.

The graphics processor accepts instructions in three
ways: programmed I/O loading, fast loading with an ex·
ternal DMA controller, and program mode. Pro·
grammed I/O is the most straightforward method. The
host processor directly addresses the instruction FIFO
buffer, supplying instructions as long as the buffer has
space.

The CPU checks whether the buffer needs service by
polling the internal status register or the open.drain
FIFO Request (FREQ) output pins, because the FREQ
signal is asserted whenever the buffer has room for at least
one instruction word.

In a system with multiple graphics processors, all the
FREQ pins are tied together and their open·drain struc­
ture is connected to an external pull-up resistor that per­
forms a logical AND function. Therefore, only when ev­
ery device has room in its instruction FIFO buffer will the
FREQ node be asserted. The FREQ signal can also be
tied into the interrupt structure to request immediate ser­
vice from the CPU.

Or a DMA channel can load the instruction FIFO
buffer directly from system memory. This method also
employs the FREQ signal for handshaking with the
DMA controller. In effect, the graphics processor re­
quests additional instructions under control of the previ­
ously initialized DMA channel.

Finally, the program mode uses the Call instruction to
cause the graphics processor to read instructions from the
nonvisible part of the display memory, instead of access­
ing the instruction FIFO buffer. Basically, the program
mode switches the device from a Harvard to a von Neu­
mann architecture because the display memory bus both
delivers instructions and transports manipulated data.

Essentially, the CPU writes a group ofinstructions into
the display memory. Then a Call instruction is executed,
meaning that subsequent instructions are fetched from
the display memory. Embedded Calls allow nesting of
subroutines within the display memory. A Return in­
struction restores control to the instruction FIFO buffer.

Users employ Block input and Output instructions to
transfer data between the display and system memories.
These commands move image, or font, and control data
over the Data Input and Output FIFO buffer. Several ac­
cess methods exist.

Programmed I/O loading is the simplest technique.
The data request, DREQ, bit in the status register or the
DREQ pin signals when the BLOCK FIFO buffer needs

service. As with the FREQ bit, this condition can be test­
ed by polling, by letting it generate an interrupt, or by the
AND structure of the open-drain DREQ node.

In addition, a dedicated DMA channel can service the
Block FIFO buffer. The Acknowledge Data, ACKD,line
allows the DMA channel to accommodate a two-bus-cy­
c1e DMA transfer (Flow-Thru Mode) or a single-bus-cy­
c1e transfer (Fly-By Mode).

When transferring data between system bus and dis­
play 'memory, the user can access the data by plane or
pixel. A by-plane access transfers 16 bits from one plane.
On the other hand, a by-pixel access transfers a complete
pixel, meaning one-bit from each plane.

For best efficiency, a designer should choose a transfer
scheme that fills the 68020's 32-bit-wide data word. For
example, in a two-graphics processor system, a by-plane
access transfers 16 bits from each of two planes to the 32-
bit bus. Or a by-pixel access allows four 8-bit deep pixels
to be transferred to the CPU's bus.

The example application of a two-graphics processor
system needs additional data buffers between the system
bus and the graphic processors' data lines. These buffers
multiplex the relevant data lines to the correct data bits
on the bus (Fig. 3).

The 68020 uses the Chip Select lines to enable the buff­
ers and chooses between the additional or the standard
access buffers. The choice is implemented by the CPU's
address bits A, and A., which enable the relevant data
bus driver. They select either a 16-bit-wide broadcast ac­
cess using bits 16 through 31, a 32-bit by-plane access of
two planes, or a 32-bit by-pixel access offour 8-bit pixels.

AddreSSing the Am95C60's
internal resources

__ u

Funcllan dRl_ A" A" A" A, A, A,

Access instruction FIFO register for
write access and access status
register for fead access X X X X 0 0

Access block in/out FIFO register X X X X 0 1
Access I/O pointer X X X X 1 0
Access register pointed to by

1/0 pointer X X X X 1 1

Both Quad Pixel Data MonagetS
are accessed (broadcast) X X 0 0 X X

Device 1 is accessed X X 0 1 X X
Device 2 is accessed X X 1 0 X X
Reserved X X 1 1 X X

16-bit wide broadcast 0 0 X X X X
Double 16-bit data transfer 0 1 X X X X
four pixel with 8 bits each 1 0 X X X X
Reserved 1 1 X X X X

• A3 through At. are undefinable,

CHAPTER 1
Overview

Ten maskable conditions in the Am95C60 can signal
interrupts to the CPU over the INT output. Typically,
this signal connects to a priority encoder that arranges
the interrupts for servicing in preferred order. The encod­
er then asserts the relevant interrupt levels on the CPU's
Interrupt Level Priority lines, ILPo to ILP,.

When the CPU detects an interrupt level greater than
the current one, it waits until the end of the current in­
struction, saves its state, and generates an interrupt ac­
knowledge bus cycle to find out which device has raised
the interrupt. The device responds with either a vector
number or by asserting AVEC, which requests an inter­
nally generated vector. The Am95C60 employs the auto­
vector method to handle interrupt acknowledge. Both
methods point to an interrupt service routine.

On entering the interrupt service routine, the CPU
software reads the graphics processor's status register to
find out which interrupts are outstanding. The CPU
clears the bits for the interrupt it will service by writing to
the graphics controller's interrupt acknowledge register
and then it re-enables its interrupt system. Writing the
register not only tells the graphics chip that the CPU has
serviced the interrupt, but it also clears the relevant inter­
rupt bits, which, when set, assert the interrupt line.

Because all Am95C60 controllers in a multi-unit sys­
tem execute the same instruction simultaneously, any in­
terrupt will be detected by all the devices, and flagged in
their status registers. The 68020 reads the status register
of one quad pixel data-flow manager, using its individual
Chip Select address, to avoid having several chips drive
the data bus at the same time. A Write signal to the inter­
rupt acknowledge register of all the Am95C60s clears the
interrupt on all the chips.O

Stuart Tindall is afield applications engineer specializing
in graphics products. He works out of AMD's UK office in
Warrington. Tindall received his electronic engineering
degree from Liverpool University, UK.

Achim Strupat, a field application engineer in AMD's
Southern California office, previously was a member of the
Quad Pixel Datafiow Manager product- planning group in
Sunnyvale, Calif. Strupat earned his MSEE at the Rhein­
isch Westfaelisch Technische Hochscule in Aachen, West
Germany.

1-5

CHAPTER 1
OVerview

D (0:15)

~
ACKD
DREQ
FREQ
m

iiiiif

_ ------''-<-­

M(O:31
.... m
"M'
ADDA (0:11)

TSVNOUT
TnMIN
MEMAVi: -
MATOUl
MATIN
DMO(O:15)

OM310:15)

YSTB
DSTB
COAT (0:2)

'-__ JO---Fij[[
,----'-___ HSYNC

VSYNC
BLANK
HRESET

'--__ JO--- ~Sgg~TEV!N

The lour main functional blocks o(the Am95C6D are the micro engme, system
mterface. display-memory con/roller, and video IImmg con/roller

Graphics controller
draws 110,000 lines/sec

Controls four bit-mapped
memory planes

KA WAI LEI:N(:
. ·ldml",.·t! .1/il"/'" [},"'I(TN

To rnl't't tht' cirawing-"pt'pd d('mand~
of bit-maJllll'd graphie,.; s;'o':.;tprns.

AMD'" Am~5('1;n quad pixt'i dataflow
mllnagt'r (QPDM) draws a...; many 11.:-
110,000 vt'('t()r~sl:'('. Tht' chip also
place:! text at 45,000 cp:-; and fills
polygonI' at a rate of 20 ni"lt'c/pixt'l.

Thil' 20-MHz CMOS prucl't'sor ha."I
four 16-bit-wide data-path units and a
16-bit-widt' acidrt'ss-gt'm'ration unit.
Tht'st' units t'quip the ('hip tu control
one to four bit-mapped mt'mory
planes for a scrt't'n I't'solution a. .. lint'
as 2000x~ pixels. Each display­
mt'm(Jry plane contains as mally as
4kx-lk bits.

Thl' chip's four Hi-bit data units
work in parallel, obeying instructions
that are decotlt'd and t'xecutefi in a
I6-bit micro en¢ne with a i,o-nsee
instruction time. In addition, parallt'l
arehitt'etul"€' lets you callcade all many
as 64 95('6Os to support 256-mt'mory­
plant' l"lystemll with no degradatiun ill
pt'rformance.

Graphics primitives
To spt'ed execution, the dedcl' Ullt'~

hard-..... ired graphicl"l algorithms to 1'1:'­

duCt' the numbt'r of inlltructions a."so­
ciated with each operation. In con­
trast, a programmable graphicl!
processor requires the user to haw a
detailed knowledge of its internal ar­
chitecture and to spend time develop­
ing software.

ROM with miel'Oemie wi(h' en(Ju~h for
parallf'1 eontrol of all the t'xP{'utiun
unit~. In addition, thl' ('ngillt' has a
brant'h ~l'qUt:'n{·('r.

Thl' ~{'{'ond fundional bl(K'k i~ a
,.;y,.;tt'm intel'fat't:' that link,.; tht' ~~'lItt'm
hUll with tht' \"arioull control blot'kll.
Alw1\\":-: a ,.;Iaw to till' hus. tht' intl'r­
faet· 'prnvilit:':-: a Hi-hit bidil'l:'etio(}:.d
data path that t'an be reeullfigurl'"d to
~ bit:-: for ('(mllt:'('tioll to an ~- or Hi-bit
ho:-:t pnJ('elilior. To minimize the load
on thl' hOiiit. a dt'dicatE:'d DMA t'ontrol­
ler ('an bt' u:-:ed to malllige data mow­
mt'nt.

During DMA operations, the Hi,t'1iO
usel! a fi4-word-dl't'p instru{·tion
FWO buffer operating in fluw­
through mode to minimize CPU waitll
during iniiitru(,tion tran!!ft'rs. In addi­
tion. bl(K'k-in and block-out buffers
l'pet'd data transfer from system
memory to the display memory.
The:lt' block buffen; use either flow­
through or fly-by DMA.

The third functional block-the dis­
play-memory controller-gent·rate!l
display-memory timing and arbitrates
video refre:-:hes. memory I't'freshes.
and update a('Ct'sl;es. To avoid video
and update contention!! for the diiii­
play memories. the 95C60 supporb
dual-port video RAMs_

Video RAMs
Video RAMs improve the updating

of graphics memory by more than Ii\'e
times over standard dynamic RAMs.
U::;ing video RAMs lets the chip re­
fresh a 1280x 1024-pixel screen at 60
Hz noninterlaced, which tr.m!'liates
into a 120-MHz pixel rate with more
than 901l of the time <l\'ailable for
display update_

Another part of the display-memo­
ry controller is a translator that let!'
the CPU use XtY coordinatt's for

vention is program mode, which lets
you store program data. pointer, and
stack values alongside the displayable
screer_

The display-memory controller also
has a data-plane controller, which
contains four 16-bit data-logic units
and four i6-bit bidiret'tional barrel­
shif'tenl.

The last main functional block iF- the
video-timing controller, which gener­
ates timing signals to control the
video monitor and data tramlmission
on the video bus. Twelve video-con­
trol registen:; define horizontal tim­
ings, vertical timings, and operating
mode. You can program the 95C60 to
be the horizontal master or slave(s)
and the vertical master or slave(s) of
another video source in the system.

Block copy
One of the 95C60's most useful ca­

pabilities is block copy. Operating at
5O-nsec/pixel, the chip moves large
blocks of data within the bit map.
allowing 30urce and destination over­
laps without contention or loss of
data.

During block copy. source data can
be rotated in 90° increments. mir­
rored, and zoomed independently in
X and Y directions. You can perform
logical operations to the source pixel
before it is written to the destination.
Because the 95C60 supports mask
write in video RAMs, the USE>r can
preserve data integrity .in selected
memory planes during memory ac­
cesses.

The block-copy feature also sup­
ports one hardware window and many
software windows. Unlike software

BEHIND THE DESIGN

Bit-map design
called. for video
RAMs

AMD started designing the
Am95C60 at the beginning of 1982·
in response to increasing demand
for bit-mapped, high-resolution
text and graphics displays. The
objective was to build a high-per­
formance graphics controller
based on the company's bit-slice
architecture_

The bit-slice approach lets the
designer increase data width by
cascading multiple bit-slice pro­
cessors. In the 95C60, the pixel
width (color resolution) can be in­
creased by cascading 95C~ne
for every four bit planes-without
sacrificing drawing perlonnance.

One of the biggest design chal­
lenges was keeping the die size
<200k mil2• This task was compli­
cated by the chip's amount of par­
allelism and its high degree of in­
tegration. Because the initial
design called for a display memo­
ry that supported dynamic
RAMs, the chip needed to incor­
porate a Iarge video-stream FIFO
buffer. However, the emergence
of video RAMs as the preferred
type of bit-map memory lead to a
decision to drop dynamic-RAM
support and substitute on-chip
support for video RAMs.

The 95C60's instruction set sup­
ports the implementation of l'mch
graphics standards as Computer
Graphics Interlace (CGl), Graphical
Kernel System (GKS), and Graphicll
Device Interlace (GDI). A micro en­
gine handleF- instruction execution.

background and window locations. '----'-----------'
This frees the CPU from having to

Functional blocks
The micro engine, one of four main

functional blocks on the chip, use::! a

convert XtY screen coordinates to
display-memory locations_ An addi-
tional feature that reduces CPU inter-

..... indows. the hardware window does
not overwrite the image it replaces .

When using multiple windows, you
('an designate the most frequently
used window 3." the hardware window
and all remaining windows as soft­
ware windows. The 95C60 responds
rapidly to window movements by al­
tering pointers instead of bit-map
contents .

In addition to windowing. the chip
supports panning, scrolling. and
zooming of graphics primitives drawn
in varioulil line styles. The 95C60 uses
an antialia.."Iing scheme that smooths
out the jagged edges of lines, arcs,
and circles by illuminating adjacent
pixels.

Other 95C60 capabilities include
~upport of proportional spacing and
fonts as large as 63 x 60 pixels---30
times larger than the 9 x 14-pixel char­
acter font of an IBM PC. This large
font capability allows the chip to sup­
port such foreign-language character
sets as Kanji, which requires 24x24
pixels to produce Japanese charac­
ters.

The 95C60 comes in a 144-pin pin­
grid-array package. Prices are
$198.57 for the 12-MHz version, $250
for the I6-MHz unit. and $278.57 for a
2O-MHz device (100). Production
quantities are available now; delivery,
four to six weeks ARO. 0
For mort informatio1l on the
Am95C60 graphics controller,

Ka Wai UllIIg is senior I~trategic­
de!'eloplllent e~lgineer at Advallced
Micro Del'ieer; Inc, Box J4.SJ, Sunny­
!'ale, CA 94088. Plum(' (408) 71,9-;-141:1 .

Reprinted with pennission from EDN News. April 23, 1987.
1-6

CHAPTER 2

System Bus Interface

2.1 Am9560 - 80186 INTERFACE DESIGN

2.2 VMEBUS

2.3 68020 BUS

2-1

2-28

2-34

CHAPTER 2

System Bus Interface
In this section, detailed descriptions of the System Bus
Connections for three popular buses are presented.
These are the 80186 microprocessor bus, the VME bus,
and the 68020 microprocessor bus. We also include
schematic diagrams and PAL device equations. While
these designs have not actually been built and tested,
they have undergone substantial ''paper testing".

For a detailed analysis of a demonstration/evaluation
board that has already been built and tested, please refer
to Section 5.

2.1 Am9560 - 80186 INTERFACE DESIGN

I n this section, two designs employing the Am95C60 are
discussed in detail. A single Am95C60 system (i.e., four
bit planes) will first be discussed and then a four
Arn95C60 system (i.e., 16 bit planes) will conclude this
section. The major theme in these designs is to keep chip
count and cost to a minimum. The designs use a 10 MHz

Vee 20 MHz

iiEsET

8018&-1
AU;

10 MHz DT-'f
RESET
DRtlO
DRQt

AU; ClKOUT INTt/J
(10_1 om

Vee Wi\
"i!C§O

R
~A2
l!CS5iA1

80186 and a 20 MHz Am95C60. The features of both the
Am95C60 and the 80186 help to achieve these goals.

2.1.1 Single QPDM Design

Figure 2.1-1, "Single QPDM Schematic ", shows sche­
matically how to connect a single QPDM.

Read Cycle

Figure 2.1-2a, "Single QPDM Read Cycle Timing",
shows the QPDM read cycle when using a 10 MHz
80186. In this design the PCSs and PCSs output pins
have been programmed to reflect the state of the A, and
~ address lines and PCSo is used to select the QPDM.

These outputs (A1 and ~) are latched throughout the
cycle. The address bits and PCSo become valid simulta­
neously so that the address lines are not guaranteed
stable at the Am95C60 when chip select goes active.
This means that the QPDM chip select must be delayed

ProgramAdd_ AlJ.A15

lS

Data buo ADO-A015

DTlII:

OREQ
FREQ

INT
om
•
A2
AI

0PiiMCS
~

mET

11882A2.1-1

Figure 2.1-1 Single QPDM Schematic

2-1

CHAPTER 2
System Bus Interface

T4 TW T4 T1

ALE

!lm'" 11CYCN 1- 11CYD~ 1-
PsC0
A1.A2

QPii'MCs'

i'iiS'

-I tCLIU. r- ~ tCLRH-4i~I_

AD0-AMS Address 1 FLOAT l~oo~.J Data from 95C60 1

T4 12t~l-
"'OPiiiViOE 4+ ~'T4·/oEN) :i"-

+~r-OTiR 1t~F
W2A2.2-3

Figure 2.1·2a Single QPDM Read Cycle Timing

as a result of having to be qualified by ALE. This can be
made more apparent by examining the PAL equations.
The PAL device "QPDMCS" solves two problems: the
set·up time of addresses to chip select, and the qualifica·
tion of addresses with ALE. Figure 2.1 ·2a, "Single
QPDM Read Cycle Timing", illustrates that after peso
goes active and addresses A1 and ~ are latched (via
PCS5 and PCS6), the PCSo to the QPDM is delayed by
waiting for the falling edge of ALE. The RD signal gener·
ated by the 80186 is guaranteed active tCLRL ns after the
falling edge of T2. In the worst case, this is 56 ns. The
data from the QPDM is guaranteed valid 80 ns afterRD
becomes active. The allowable read access time is

200 ns • (tCLRLmax + tovcLmln)
= 200 • (55 + 15)
= 130 ns.

The 80186 samples data on the falling edge of T4• This
means that data from the QPDM is presented to the
80186 in plenty of time to meet the 80186 set·up times of
tDVCLmin (15 ns). The QPDM also guarantees that the
read data will be held a minimum of 10 ns from the rising

2·2

edge of RD. This provides more than adequate hold time
(tcLOXrrin = 3 ns) for the processor. Figure 2.1 ·2a, "Single
QPDM Read Cycle Timing", illustrates this quite clearly.

The only other parameter of concern during a read cycle
is tRHAV (not shown in the diagrams). This parameter is the
minimum time from RD inactive until addresses are
active for the next bus cycle. If memory or peripheral
devices cannot disable their output drivers in this time,
data buffers will be required to prevent both the 80186
and the peripheral or memory device from driving the
data/address lines concurrently. In most designs a data
transceiver is required due to the dc characteristics ofthe
QPDM. This can be attributed to the CMOS I/O struc·
tures of the QPDM. To guarantee the deSign, a data
transceiver is used. This will be the case in a multiple
Am95C60 deSign as well.

With this in mind, we must now examine the implications
of using a data transceiver. The parameter of interest
here is the minimum time from RD inactive until the
addresses become active forthe next cycle, which has a
minimum value of 60 ns for a 1 0 MHz 80186. This means

CHAPTER 2
System Bus Interface

F~~ __ --,

~Q~--I
I~~----------------------------------~=-----i

~~~~~------, 

N.c. EliE 

l)TiIt-------t 18 

'QiliiMOe 
A2 
AI 

RESET 

CiPiiMCs 
VlIf 
'IZ 

00-015 

AI 
NIJ 

mET 
!!II 
\'11ft 
111 

95C60 
QPDM 

_.M 

DISPLAY 
MEMORY 
INTERFACE 

Figure 2.1-2b Single 95C60 Schematic 

Single QPDM Read Cycle TIming 

Parameter List 

MIN (ns) MAX (ns) 

tCHCH (80186-1) 30 
tCHu. (80186-1) 30 
tCVC1V (80186-1) 5 56 
tcvoex (80186-1) 10 56 
tcLCSV (80186-1) 45 
tCHCSX (80186-1) 5 32 
tpD (B-Speed PAL) 15 
tCLJ<I. (80186-1) 10 56 
tCLRH (80186-1) 10 44 
tHOPOM (95C60-20) 10 
tPOPDM (95C60-20) 80 
tCHCTV (80186-1) 10 44 

that the data and the associated driving data transceiver 
must be off the bus 60 ns after AD goes inactive. The 
EDE pin provided on the Am95C60 to control the output 
enable pin of the data transceivers goes inactive far too 
late in the read cycle to disable the transceiver and meet 
the tAHAV specification. The DEN signal of the 80186 
can go inactive a tCVDEX maximum of 56 ns after the falling 
edge of T4. The minimum tCLRH/RD inactive delay is 10 ns. 

If we add to this set of parameters the maximum tPlZ 

(tCYDEXmu -lcLRHmln) + tpLZ 
... 56-10+15 
= 61 ns; 

this already exceeds the tRHAy spec of 60 ns. 

The solution is to synthesize a signal from the existing 
processor signals that will allow us to turn off the trans­
ceivers after the falling edge of T4 more quickly. The 
small state machine PAL device "XCV A" accomplishes 
this goal. Figure 2.1-3, ''Transceiver Enable/Disable 
Timing", illustrates how the circuit wor1<s. An inverted 
CLK(out) clocks the entire state machine. The purpose of 
this state machine is to output a signal T 4 at the beginning 
of state T4 of the 80186. ALE informs the circuit when 
state T, has occurred. This signal counts through until we 
get to state T w This is a wait state that is automatically 
inserted by the 80186 when we read from or write to the 
Am95C60. The reason for a wait state will become clear 
when the topic of DMA is discussed. 

When the cycle reaches T w' T4 is also qualified by the 
signal RD. If we are not reading the Am95C60, we do not 
generate signal T4. In the case of a write cycle, we have 
no tRHAy specification, and the CPU signal DEN is al­
lowed to disable the data transceivers. More on this later. 

2-3 



CHAPTER 2 
System Bus Interface 

T4 T1 

ALE ~'~+ 1'1+ 
l'~I+ mr 1'ovtU 1+ 

PSCiii ~'-~~ :1'~'f Al.A2 

'CiPoMCS 1.or-

'1m' 

-I r- ~'CL~_I+ 1 CUI. 

AD0-AMS Address 1 ~Q" 
I...!-PDO- J Dala from 95C6O 1 

T4 121
.0 1+ 

1lJ5I5lmE'" 9+ :i'+ ~"T4·/OEN) 

-1 tocwl+ OT,ft 1tacNF -= 

Figure 2.1-3 Transceiver Enable/Disable Timing 

Transceiver Enable/Disable Timing 

tpc (B-Speed PAL) 
tCHUi (80186-1) 
tCHlJ. (80186-1) 
tCLAL (80186-1) 

MIN (ns) 

10 

MAX (ns) 

15 
30 
30 
56 

The bottom line is that if a read cycle is occurring, the data 
transceivers are disabled within 

3°fpornax + tpLZmax = 3( 15) + 15 = 60 ns. 

This meets the tRHAV specification. The PAL equations 
are given in the listing XCVR for closer examination. 
Since the CPU data hold time tCLOX (8 ns min) and the T4 
transceiver tum off delay are relative to the same clock 
edge (falling edge of T4), and if we factor in the trans­
ceiver delay, the hold time at the processor is guaran­
teed. The DEN turn-on delay allows: 

2-4 

2°fcLCL + fcHLLmin - fcVCTVmax - tOVCL 
= 200 + 44 -44 -15 
= 185 ns 

transceiver enable time prior to valid data reguired at the 
CPU. The PAL outputs, QPDMCS and QPDMOE, use 
15 ns maximum ofthis time to enable the transceiver, and 
si nce the Am95C60 places data in the bus a maximum of 
80 ns from the active edge of RD, the data will be present 
in plenty of time to meet the processor set-up time. 

The DT /R signal is used to control the direction of the flow 
of the transceiver. The timing of this signal is no cause 
for concern. 

Write Cycle 

The write cycle of the 80186 is very similar. The timing 
is shown in F~e 2.1-4, "Single QPDM Write Cycle 
Timing". The WR signal is guaranteed active tCVCTV ns 
from the falling edge of T2 and inactivated tCVCTX ns from 
the falling edge of T4. The QPDM requires a minimum 
WR pulse width of 70 ns, the data written to the QPDM 
must be valid at least 50 ns from the rising edge of WR, 
and the data must have a finite hold time. The chip select 
timing is identical to a RD bus cycle. The worst case 
pulse width of the WR is 

30tCLCL - fcVCTXmln 
= 300 - (44 + 5) 
= 251 ns 



ALE 

pes 
Al,A2 

T4 
VOl' 

CHAPTER 2 
System Bus Interface 

Figure 2.1-4 Single QPOM Write Cycle TIming 

Single QPOM Write Cycle Timing 

Parameter List 

tCHLH (80186-1) 
tCHlL (80186-1) 
tCYClV (80186-1) 
tcvcnc (80186-1) 
tCLCSV (80186-1) 
tCHCSX (80186-1) 
tpD (8-Speed PAL) 
tCVClV (80186-1) 
tcvcnc (80186-1) 
lwoPDM (95C60-20) 
tHOPDM (95C60-20) 
tSOPD" (95C60-20) 

MIN (ns) 

10 
5 

5 

5 
5 

70 
o 

50 

MAX(ns) 

30 
30 
44 
44 
45 
32 
15 
56 
44 

This substantially exceeds the minimal 70 ns required by 
the QPOM, The write data is driven by the 80186 a 
maximum of 40 ns after the falling edge of T2, The data 
transceivers are enabled a maximum of 

tCHLLmax + 2tpDmax 
= 30 + 2(15) 
= 60 ns 

from the rising edge of T1" Therefore, the data will be 
presented to the QPOM in plenty of time to meet the set­
up time of 50 ns to the rising edge of WR (which occurs 
tcvcne ns from the falling edge of T4), The 80186 guaran­
tees a data hold time of tWHDXmIn after the rising edge of 

WR tCLCL - 34 
=100-34 
= 66 ns. 

Another point to examine is that in this case we allow the 
DEN signal to disable the data transceivers by itself. This 
is because we don't have the tight tRHAV specification 
present in the read cycles. Examining the PAL equations 
in QPOMCS makes this point clearer. DEN is disabled 
a minimum of 

fcLCHmin + fcvcT)(m'n - tcvcnemax 
=44+5-44 
=5 ns 

after WR inactive. This, in combination with the delay to 
turn off the transceivers, ensures that we meet the hold 
time of th~ QPDM in relation to the rising edge of WR. 
Also, since this last equation uses a minimum tCVCTX with 
a maximum tcvcne, the hold time will be longer. 

2-5 



CHAPTER 2 
System Bus Interface 

DMA 

QPDM DMA requests pose no special problem to the 
80186. In fact, since the 80186 built-in DMA controller 
looks to the QPDM as a flow-through type, the interfacing 
is quite simple. The 80186 DMA cycles appear as normal 
processor read orwrite cycles to the QPDM. These types 
of read and write cycles have been covered in the 
preceding paragraphs. The only issue left to be consid­
ered is the choice of source or destination synchronized 
DMA transfers. 

When the QPDM requires that large quantities of data be 
down loaded, destination synchronized transfers must 
be issued. In destination synchronized DMA transfers, 
the destination of the DMA data requests the DMA 
transfer. In this type of transfer, the QPDM is written to 
during the deposit cycle of the DMA transfer. The only 
parameter requiring special concern is the DMA request 
signal inactive time. To prevent unwanted DMA transfer 
cycles, the 'DMA requesting device must drop its DMA 
request at least two clock cycles before the end of the 
deposit cycle, regardless of the number of wait states 
inserted into the bus cycle. With a 10 MHz processor 
clock, the value for DRQ inactive from the start of T2 
(assuming no wait states) is 

t CLCL - tlNVCLrrln 

= 100 - 20 
= 80 ns. 

Examining the QPDM specifications, DREQ and FREQ 
become inactive 50 ns maximum after WR to the QPDM. 
We have seen previously that the WR goes inactive 56 
ns maximum after the falling edge of T2. This is a total of 
56 + 50 = 106 ns maximum after the falling edge of T 2' 
which means that in order to avoid unwanted DMA 
cycles, we must insert a single wait state into the cycle. 
The wait state provides an additional 1 00 ns so that the 
DRQ inactive time becomes 100 + 80 = 180 ns. Since 
DREQ or FREQ goes inactive a maximum of 106 ns, the 
180 ns DRQ inactive time is more than adequate, and a 
single wait state is all that is required. No extra circuitry 
is required to insert this wait state, as we shall cover more 
fully in a later section. 

When the QPDM has data to be transferred out via DMA, 
the DMA can be programmed to source synchronized 
mode. In a source-synchronized DMA transfer, the 
QPDM requests DMA transfer, and the QPDM is read 
during the fetch cycle of the DMA transfer. Please note 
that the source or destination synchronized transfer 
modes are selected by programming bits in the periph­
eral control register block internal to the 80186. This 
allows the user to change the mode of the DMA controller 
via software or on the fly. This means that we can edit the 
appropriate transfer mode for the QPDM depending on 
the transfer direction required. To ensure that DMA 

2-6 

transfers do not occur when it is not desired, the DRQ 
signal must be driven inactive before the falling edge of 
Tl in the deposit cycle. This does not pose a problem 
because the QPDM will de-activate DREQ or FREQ 
50 ns maximum after RD to the QPDM. This occurs 

~RLmu +50 ns 
=56+50 
= 106 ns 

after the falling edge ofT2, well before the falling edge of 
Tl in the deposit cycle. 

There are three other considerations regarding DMA in 
general. Rrst, the DREQ and FREQ DMA request pins 
are open-drain and must be pulled up to V cc with resistors. 
Second, ACKD is not used in this design and must also 
be pulled up. Third, the 20-bit source and destination 
pointers allow access to the complete 1 M byte address 
space of the 80186, but when addressing VO space, the 
upper four bits of the DMA pointer registers should be 
programmed to be O. Otherwise, the programmed value 
(greater than 64K in I/O space) will be driven onto the 
address bus (an area of VO space not seen by the 
processor). This could cause chip selection problems in 
any external logic that the user may wish to add to the 
design. 

Interrupts 

The 80186 contains an integrated interrupt controller. 
Four extemal interrupt pins are available for use. If no 
more than fourextemal interrupt sources are required,no 
extemal interrupt controller is needed. When using the 
internal interrupt controller, the interrupt types are fixed 
and cannot be changed. In response to an interrupt, the 
processorwill jump to the vector address associated with 
the interrupt type. The addressesofthe interrupt routines 
are stored in the interrupt vector table in low memory. 
These addresses are user supplied and controlled. On 
the 80186, the interrupt vector address is the interrupt 
type (or number) multiplied by four. This speeds up the 
interrupt response greatly, because no external bus 
cycles are required to fetch the interrupt types. Consult 
the 80186 data sheet forthe vector types associated with 
the four external interrupt pins. The user can connect the 
QPDM INT pin to any of the four externallNT pins of the 
80186 according to the design requirements; INTo was 
chosen arbitrarily in this design. Please note that the 
execution of writes to the Interrupt Acknowledge register 
of the QPDM is used to clear interrupt requests. These 
steps should be an integral part of all QPDM interrupt 
service routines. A "1" must be programmed in the word 
for each interrupt that is to be cleared. A "0" bit has no 
effect. When all enabled interrupt requests have been 
acknowledged and cleared, the INT signal goes inactive. 
Consult the QPDM Technical Manual for further details. 



Miscellaneous 

The peripheral chip select lines PCS5 and PCSe have 
been programmed to provide latched address lines AI 
and Az. This is accomplished by programming the PACS 
·and MPCS registers in the peripheral control block. 
These two latched address pins are connected to pins Au 
and AI of the QPDM and are used to access the internal 
registers of the QPDM. All the internal QPDM registers 
will appear at even addresses to the 80186. 

In this deSign, PCSo is used to control CS of the QPDM. 
Each PSCx line is active for one of seven contiguous 128 
byte areas in memory space or 110 space above a 
programmed base address. ConsuH the PCS Address 
Ranges Table in the 80186 data sheet for the details 
regarding address partitioning. As stated earlier, the 
peripheral chip selects are controlled by two registers in 
the internal-peripheral control block of the 80186. These 
registers allow the base address of the peripherals to be 
set and allow the user to determine whether the ad­
dresses will be in memory space or I/O space. Both 
registers must be programmed by the user before the 
chip selects become active. 

The 80186 includes a ready generation unit. This unit 
generates an integral ready signal for all accesses to 
memory or I/O addresses to which the internal chip select 
circuitry responds. For each chip select, 0-3 wait states 
may be inserted by the internal unit. Also, the ready 
generation circuits can be programmed to ignore the 
state of the external ready pins. In this case, only the 
internal ready state will be used by the processor. The 
ready generation circuit can also be programmed to 
respond to the external ready signal. This means that the 
ready circuitry will perform a logical AND function of the 
external and internal ready states and a ready will be 
provided only after both are true. In this QPDM deSign, 
the user may program the Ro -R2 bits in the PACS register 
for one wait state with no extemal ready required. Bits Ro­
~e~ the M PCS register control the ready generation for 

4-6. Bits ~-R2 of the PACS register specify the ready 
mode for PC Q.3. Bit 7 of the MPCS register is used to 
select whether the peripheral chip select lines are 
mapped into memory or I/O space. After reset, the 
contents of both the MPCS and PACS registers are 
undefined; however, none of the PCS lines will be active 
until both the MPCS and PACS registers are accessed. 
Also on reset, only UCS (upper chip select) is active. It 
is programmed by reset to be active for the top 1 K 
memory block, to insert 3 wait states to all memory 
fetches, and to factor external ready for every memory 

CHAPTER 2 
System Bus Interface 

access. Therefore, some kind of circuit must be included 
to generate an extemal ready until the ready generation 
logic is reprogrammed not to factor in extemal ready. 

In this design, the lower 16 address lines are latched. 
This is done because the integrated chip selects perform 
the selection between the various memories and periph­
erals. Therefore, the upper four address bits can be 
ignored. The usage of these upper four bits will probably 
vary from design to design. 

2.1.2 Multiple QPDM Design 

In this section, an extension of the previous design is 
discussed. A 16 bit plane, four QPDM system design is 
illustrated (Figure 2.1-5). First, a discussion on multiple 
QPDM operation is in order. 

Multiple QPDM Design Considerations 

Initialization and Broadcast 

Since each QPDM handles up to four bit planes, a 16 
plane system will require four QPDM devices. In general, 
all QPDMs are given each instruction simultaneously 
with identical parameters, so that the instruction can 
update each plane. In some cases, however, a means to 
differentiate between QPDMs and some planes within a 
single QPDM is necessary. To facilitate individual QPDM 
plane operation, each QPDM is assigned a QPDM 
number. This number is loaded into each QPDM using 
the "Set QPDM Position" instruction. Each QPDM must 
be assigned a unique number, via four separate set 
QPDM position instructions; one instruction is executed 
per QPDM. This means that it is necessary to provide 
chip select (CS) decoding for each individual QPDM and 
for all QPDMs as a group. In this design we would need 
five separate CS signals. The "Quad QPDM Chip Se­
lects" shows the relationship between PCSx and the 
QPDM table chip selects in this example. 

Quad QPDM Chip Selects 

Peripheral 
Chip Select 

pcso 
pcs1 

pcs2 

pcs3 

pcs4 

QPDM(s) 
Selected 

OPDM1 
OPDM2 

OPDM3 

OPDM4 

ALL (OPDM1-OPDM4) 

2-7 



CHAPTER 2 
System Bus Interface 

vee 

R 

RESEf.~----__ ~+----~ 

INTREADY 
ACCESS 

DECODES --"'PI~r:;;"r' 

RESET 

AROY 

SROY 

20 MHz 

r-------------------~DTiR 

X. X 2 DTilI 

ADO ...... o'. ..0 ........ 

ADO ...... 0,. 

ALE 

ALE-----' CLOCKOUT (' OMHz) 
PCsii 
PCS1 

r-----------------------------~~PCsii 
~-----------------------------~~ 

DREQ1 

DREQ2---i---+_----~ 
DREQ3 
DREQ4 
FREQ. 
FREQ2----i---+-----~ 
FREQ. 
FREQ4 

FromS259A -----------... 

Froml_{ 
&wro. ---------~~ 

vee 
R 

DRCIO 

ORO! 

INTO 
INT. 
INTO 

TESr 

MATOUT 

TSYNOUT 

.. MATIN 
~ TSYNIN 

80186-1 

UCS 

ToMomoly 
Conlrol Logic 

vee 

R~ 

PCs2 
PCS3 
PCs4 
PCS5 DEN 

AD 
RESET 

i'lR 
CLOCKOUT 

INTAO 

To Peripheral 
C~p_ 

LogIc 

~=====================:~ I- PCSi 
~------------------------------~PCs4 
r-----------------------------.~ 
~::::::::::::::::::::::::::::::::~DEN I- AD 
I--------------------------------~~~RESET 

t-::::::::::::::::::::::::::::::::::~'i'lR ~CLOCKOUT 
I------------------~INTAO 

~ => Display Memory Inle1face 
4 .... 

1012-1D15 .. 
2X 

74ALS245A 

DG-D15 B A ADG-AD15 ~ $Y 
QPDM1 

~ DIR 

2-8 

RESETOU 

QPDMCSl 

RD 

iii 

T 

R 

Nl. 
A 1 

DT/A" 

RESET 

CS 

AD 
WR 
Al 

~ NJ 

INT 

EDE 

DREQ 

FREQ 

TSYNOUT 

MATOUT 

Figure 2.1-5 Quad QPDM SchematIc 

G 

96B2A2.1-10 

011NT 

Ei5Bi 
DREOl 

FREOl 

TSYN10UT 

MAT10UT 



MATOUT 

TSYNOUT 

RESETOUT 

OPOMCS2 

AD 
WR 

A2 
A1 

OT/A 

MATOUT 

TSYNOUT 

T RESETOU 

OPOMCS3 

AD 
WR 
A2 
A 1 

DT/A 

Rf 
ACKO 

MATIN 

TSYNIN 

00-015 

QPDM2 

RESET INT 

as WE 
AD OREO 

WR FREO 

A1 TSYNOUT 

NJ MATOUT 

vee 

R~ 
ACKO 

MATIN 

TSYNIN 

00-015 

QPDM3 

RESET INT 

as E5E 
RO OREO 

WR FREO 

A1 TSYNOUT 

NJ MATOUT 

=> Display Memory InI""ace 
4 

L 

2X 

CHAPTER 2 
System Bus Interface 

... 
) 2012-2015 ... 

~O~ 
74ALS245A 

~ B A 

~ OIR G 

ADO-A015 

""-'1 

~OBpmYMemo~lnlerlace 
4 

/ 

2X 
74ALS245A 

~ 

02lNT 

EDe1 
OREQ2 

FRE02 

TSYN20UT 

MAT20UT 

3012-3015 

~ B A ~ ADO-A015 

.... DlR G 

H82A2.1-12 

031NT 

Ei5E2 
ORE03 

FRE03 

TSYN30UT 

MAT30UT 

Figure 2.1-5 Quad QPDM Schematic (continued) 

2-9 



CHAPTER 2 
System Bus Interface 

2-10 

MATOUT 

TSYNOUT 

RESETOUT 

QPDMCS4 

iID 
WR 
A2 
A1 

OT/R 

Af 
ACKO => Display Memory Inlllrlace 

MATIN 

TSYNIN 2X 

~17' 
74AlS245A 

00-015 B A 

QPDM4 ~ OIR G 

AESE'f INT 

as EOE 

iID OREQ 

WR FREQ 

A1 TSYNOUT 
NJ MATOUT 

4012-4015 

A 

3012·3015 

O~R--------------~ 

2012·2015 

1012·1015 

~ ----------------~ 

Figure 2.1-5 Quad QPDM Schematic (continued) 

4 ... 
> 4012-4015 .. 

~ ADO-A015 

8112A2.2-13 

11112A2.1-18 

Q4INT 

EOE3 
OREQ4 

FREQ4 

TSYN40UT 

MAT40UT 



011NT 
021NT 
031NT 

041NT 

Peso 
PCSl 
PCS2 
PCS3 
PCS4 

ALE 
TSYN10UT­
TSYN40UT 
CLOCKOUT 

RESET 

MAT10UT­
MAT40UT 

DEN 
P:3 

~ 
~DE2 

DE3 

iNTAo 
RESET 

4 

4 , 

vee 

A 

lAo SP' f--
IAI 
11\ 
IR3 

INT 
8529A-2 

Ao 

'JIiJTA 

~ Do-o, 

WR ""'I 

1m 
os 

~ 

• m_ 
• CD .... 

a.:::i: 
CDC .... a. 
~O a.-

~ .... -
~~ 

~~ 
CDC 
:ia. 
~9 

"'"--

~ 

m-a: .... ---. (Da: 
:i~ 
c(X a.-

"'"--

Figure 2.1-5 Quad OPOM Schematic (continued) 

11882A2.1-15 

CHAPTER 2 
System Bus Interface 

.. 

INTo 

ADo -AD, 

OPDMCSl 
OPDMCS2 

OPDMCS3 

OPDMCS4 
TSYNOUT 
CLK 

MATOUT 
OEl 
OE2 

OE3 
OE4 
PIXELOE 

T4 

INTREADY 

RESETOUT 

9682A2. I -14 

2-11 



CHAPTER 2 
System Bus Interface 

QPDM instructions are sent to each QPDM simultane­
ously. This is called broadcasting. Broadcasting of 
instructions is accomplished by chip selecting all QPDMs 
and writing to Port O. Further details can be found in the 
QPDM Technical Manual. The hardware requirements 
for QPDM initialization and for broadcasting are a 
mechanism for individual chip selection as well as a 
global chip select. 

DMA Requests 

DMA with a muHiple CPOM system is fairly straightfor­
ward. Both FREQ and DREQ are open-drain outputs. 
Each QPDM in a system will release its FREQ or DREQ 
when it is ready so that a DMA request will be presented 
to the 80186. The FREQ controls DMA to the Instruction 
FIFO and DREQcontrois DMA to and from the Data FIFO 
of the QPDM. In a muHiple QPDM system, all the FREQ 
lines of the QPDMs are tied together through a pull-up 
resistor to DRQ, ofthe 80186. Similarly, all the DREQ 
lines are tied together through a pull-up resistor to the 
DRQO input of the CPU. In the case of a data transfer 
(DREQ), as long as any QPDM is not ready to continue 
with the transfer, the node will be pulled LOW. When the 
last QPDM becomes ready, the node goes HIGH and a 
DMA request will be seen at the 80186. The same is true 
of the instruction FIFO and the FREQ pins. As long as 
any QPDM is not ready to request more instructions, the 
node goes LOW. When the last QPDM becomes ready, 
the node will be pulled HIGH through the pull-up resistor 
and an instruction DMA request will be seen at the DRQ, 
pin of the CPU. 

To summarize, one can see that all DMA to and from 
muHiple QPDMs are synchronized by the open-clrain 
AND connection. The open-clrain AND ensures that all 
DREQ and FREQ requests of the QPDMs are active 
before the DMA request is seen at the processor. Above 
and beyond the previous diSCUSSion, the DMA cycles are 
the same as outlines in the single QPDM design. 

Block Transfer to and from Display Memory 

In the multiple QPDM deSign, provisions have been 
made for display memory accesses by plane (horizontal 
on a selected bit plane) and by pixel (reading all bits in all 
planes per pixel). In a by plane Block 1/0 instruction, only 
one plane in a single QPDM is selected for a read orwrite. 
In the read case, a provision must be made to keep all 
QPDMs in synchronization. To do this, the processor 
fakes a read operation on all the QPDMs. The inactive 
QPDMs (do not contain the bit plane accessed) leave 
EDE not active, so as not to cause contention with the 
data ofthe only active QPDM. The active QPDM, the one 
with a plane active for the instruction, places data on the 
bus as in a normal read cycle. In large systems, however, 

2-12 

we need external data transceivers. This is where the 
EDE (External Driver Enable) pin comes in handy. For 
the inactive QPDMs, the EDE pin does not go active to 
their corresponding bus transceivers. Only the active 
QPDM drives its EDE signal valid to its bus transceiver to 
allow its data onto the bus. Therefore, by adding a little 
more intelligence to the QPDM interface, synchroniza­
tion is achieved and maintained even when only one bit 
plane in a single QPDM is to be accessed. 

In a by pixel Block 1/0, the user wishes to access all bits 
in all planes per pixel. This implies that all QPDMs 
contribute the bits of the planes that they control for that 
particular pixel. Synchronization, therefore, is not a 
problem, as all QPDMs will be active. In a muHiple CPOM 
system, an extra set of transceivers must be provided to 
route the pixels from each QPDM to a single 16-bit data 
bus. These are shown on Sheet 8 of the Quad CPOM 
Schematic. For example, in this design each CPOM 
contributes four bits for each individual pixel. A mecha­
nism has been provided in the QPDM to program the 
number of shifts necessary for the proper asselT'bly of 
pixels. This is done by specifying the correct number (1, 
2 or 4) dependent on the numberof CPDMs in the system 
in the BOS field of the Input or Output Block instructions. 
To see how this works examine Figure 2.1-6, "By Pixel 
Read". On the first pixel'S read cycle, each CPOM places 
16 bits on its respective data bus, only four of which will 
be used. A 16-bit transceiver concatenates four bits from 
each CPOM to form a 16-bit data value. Following each 
cycle, each QPDM shifts its data four bits to the left. In 
this way the next pixel's four bits of data are positioned 
correctly in the data bus to be assembled into the 16-bit 
value at the transceiver. This process continues until all 
16-bit values forthe selected number of pixels have been 
read. From a hardware standpoint, all that is required is 
an extra transceiver and extra decoding logic to selec­
tively enable or disable the set of transceivers depending 
upon the type of access (by plane or by pixel). 

From a software point of view it is best if planes appear 
in consistent bit positions. What this means in hardware 
terms is that some conSideration must be given to how 
the data bits of the "by pixel" transceiver are connected. 
The relationship between data bits and planes is fixed by 
the organization of operands in the Set Activity Bits 
instruction. Each of four QPDMs extract four bits as 
shown below: 



015 

CHAPTER 2 
System Bus Interface 

~ I' 1'~1'l'l'l'l'nl'~1' I'I'/' 

18 

QP0M4 
Pa 0000111122223333 .. ~ Pa 
~5 
• 

014 

013 

012 

15 
14 

13 

ana 12 

BY·PIXEL .. .. 
~} ~ ~p\l'p ~"''''''~''''''N 1\1' 

18 

~ 0000,,1122223333 QPOM3 

p..~ 
~t • 

011 

010 

09 

11 
10 

linea 

08 

~} ((~~~(~~~(~(~~(~ 
18 

QP0M2 

~~ 
P. 

$ 
07 

7 

06 

05 

04 

D3 QPDMI 2 

D2 

01 

DO 
XCVR Oe 

~ 
Nolo: ~ _bllorpbcelxlromplaney. 

9UlA2.1·17 

PIXELOE 

Figure 2.1-6a By Pixel (OUtput Block) Read· First Cycle 

There is no reasonable way to change this relationship; 
everything else will have to match. To make I/O by-pixel 
conform, one must wire the by-pixel data transceiver as 
shown in Figure 2.1-6, "By Pixel Read". Also see Chapter 
13 of the QPDM Technical Manual, "The Relationship 
Between Data Bits and Pixels." It should be noted here 
that only pixels that are 16 planes or less can be proc· 
essed in one pass; deeper bit planes would require 
multiple passes. 

Other Synchronization Concerns 

The synchronization of getting new words out of the 
instruction FIFO and reading and writing the data ex­
change FIFOs use the MAT IN and MAT OUT pins. The 
MAT OUT pins of all the QPDMs are ANDed together. This 
composite signal goes HIGH only when all the QPDMs 
are ready to begin the next instruction. All QPDMs 

sample the composite MAT OUT signal at the MATIN input. 
From an interface standpoint, all that is required is to AN D 
the MAT OUT pins and connect the composite signal to the 
MATIN pins. The AND is done in PAL device QPDM2. 

In a similar fashion, the TSYNoUT and TSYN IN pin combi­
nation is used to synchronize the bit map display memory 
bus activities. The same hardware considerations dis­
cussed in the preceding paragraphs apply. The AND is 
done in PAL device QPDM1. Please note that even in a 
single QPDM system MATIN and MAToUT must be tied 
together, as are TSYNoUT and TSYNIN • 

2.1.3 Hardware Overview 

Read Cycles 

The multiple QPDM read is shown in Figure 2.1-7, "Quad 
QPDM Read Timing". The situation is sightly more 

2·13 



CHAPTER 2 
System Bus Interface 

015 

014 D '~I'I'NI'I'liW'n 1'1'1' 

16 
15 

QP0M4 14 
013 P, ~2 2223'" 4 4 4 4 13 

012 (>.4 , 
(>.5 , 

BY·PlXEL •• .. 
"} n I'N n'N ~ I'N UI' QPDM3 J! ""22223333 .. 444 

olf ~o~ 
010 

~' 
D6 

, 
os .. .. 

16 
7 $ I ~~~~~~~~~~~~~~~~ 

1 ',112222333344 .... "} QPOM2 

~~ 
07 If 
os 
os 

D4 

D3 i.} ~p'~~~p'''p'~''''~~~~~ QPOMI 

D2 ~~ 
01 

~ 
DO 

XCVR OE 

1 
Note: ~ - bit for pixel x from plane y. 

1112A2.'·1' 
PIXELOe 

Figure 2.1-6b By Pixel (Output Block) Read - Second Cycle 

complex than in the single QPOM case. We must mOdify 
the transceiver PAL device logic to factor in the EOE 
signal discussed previously. The EOE signal from the 
selected CPOM is guaranteed active a maximum of 50 ns 
after CS to the selected QPOM goes active. This EOE 
signal can be active a maximum of 

tCHLLMAX + tpOMAX + tpHLMAX 

= 70 + 15 +50 
= 135 ns 

from the rising edge of T,. DEN can go active a minimum 
of 5 ns from the rising edge of T2• This means that 
factoring in the EDE signal into the PAL equations can 
delay OE to the transceiver a maximum of 30 ns. Note 
that again we are mixing minimum and maximum para­
meters of the 80186. In practice, the delay will be less 
than the calculated 30 ns. Remember from the single 

2-14 

CPOM design that we had 185 ns transceiver enable 
time prior to valid data required at the CPU. With the 
factOring in of the QPOM EOE Signal, we have reduced 
this figure to a minimum of 155 ns. The PAL device circuit 
uses 15 ns maximum of this time, so that 140 ns still 
remains to enable the transceivers. Since the QPOM 
places data on its bus a maxi mum of 80 ns from the falling 
edge of read, we can see that the factoring in of the EOE 
signal really does not change things all that much. We still 
use the T 4 signal to disable the transceivers and meet the 
tAHAN specification of 60 ns. Examination of the PAL 
equations, QPOM1 and QPOM2, will clarify these points. 

Write Cycles 

The write cycles remain the same as in the single QPOM 
design. Once the CPOM(s) have been chip selected, the 
write cycles are identical to the single QPOM case. 



T4 

CHAPTER 2 
System Bus Interface 

ALE 1:f 1tCHt-L-__ ~ ___ _ 
15m -------,Ttc-vcrvll+ 
j5C§' ----+---, 

Ei5E -----+=1--,0L r- -1 ~ F 

=1 tc~r-L-------+l--.,'!: 
AOO·AD1S ----j-ttV ..... j 1-1.----1. __ Da_ta_fr_om_ap_DM ____ ~__'I------

tPDI+ tOLAY lew ~ r------, 

~-------------------------i_~. 

DT.ii 

Del2A2.1-1' 

l tPOF 

1tCHCNF 

(i5Eiii+ T4+m'i -------------------------------------~-tt-,PDr-

+-r-
Figure 2.1-7 Quad QPOM Read Timing 

Quad QPOM Read Cycle 
Parameter List 

tCHLH (80186-1) 
tCHLL (80186-1) 
tCYCTV (80186-1) 
tCYDEX (80186-1) 
tcLCSY (80186-1) 
tCHCSX (80186-1) 
tpHLOPO" (95C60-20) 
tpLHQPO" (95C60-20) 
tCLl'L (80186-1) 
tCLAA (80186-1) 
tCLAY (80186-1) 
tCLAZ (80186-1) 
tPDOpo" (95C60-20) 
tHOPO" (95C60-20) 
tpo (B-Speed PAL) 
tCHCTV (80186-1) 
tCHCTV (80186-1 ) 

MIN (n8) MAX (n8) 

5 
10 

5 

10 
10 
5 

10 

10 
10 

30 
30 
56 
56 
45 
32 
50 
65 
56 
44 
50 
30 
80 

15 
44 
44 

Chip Select Logic 

This design uses PCS(>.4 to enable one or all of the chip 
selects of the individual QPOMs. Note that in this design 
the address pins A1 and ~ are not latched via PCS5 and 
PCSs. This means that PCS5 and PCSs are free to 
select other peripheral devices. The address information 
required by the QPOM is now latched in the Am74LS373 
latches and connected directly to the Ao and A1inputs. 
Note again that the ~ and A, CPU address pins have 
been connected to the Aa and A1 pins of the QPOM such 
that the internal registers appear at even address 
multiples. 

The PeS pins still need to be qualified by ALE to ensure 
that valiladdress data is present at the Ao and A1 pins of 
the QPOMs before a chip select goes active. ALE is 
inactive 30 ns maximum from the rising edge of Tl' which 
means that the qualified QPOM chip selects are active a 
tpD maximum of 15 ns later. This ensures valid ad-

2-15 



CHAPTER 2 
System Bus Interface 

dresses at the QPOM, as addresses are guaranteed 
valid by the CPU at least 20 ns before the falling edge of 
ALE. 

To implement a global chip select to the QPOMs, iSCS4 

was chosen. Whenever· the user's code wishes to 
broadcast to all QPOMs, the 1/0 or memory addresses 
used will correspond to the fifth 128-byte area above the 
programmed base address (PBA) inthe PACS register of 
the 80186. The logic to generate both single and global 
chip selects is easily implemented in a PAL device. 
Examine the QPOM1 PAL device listing. Whenever 
PCS4 and ALE are active, all the chip selects from the 
QPOMs will be active. 

When the user wishes to access only a single QPOM, the 
address block assigned to the chip select for that particu­
lar QPOM is used. 

Block 110 "By Pixel" Control 

In this deSign, two extra transceivers are included to 
allow the user to read all 16-bit planes controlled by all 
four QPOMs on a pixel-by-pixel basis. This means that 
some differentiation is necessary between the regular 
1/0 transceiver and the "By Pixel" transceivers. This is 
accomplished by using address line A3 to enable the 
extra transceivers. To read data on a "By Pixel" basis 
using a block 1/0 QPOM instruction, the user addresses 
the global bank of addresses (PCS4), with address line ~ 
active HIGH. This chip select enables all the QPOMs so 
that each can contribute up to four bits to the 16-bit word 
to be read by the CPU. The assembly of these 4-bit 
nibbles occurs at the "By Pixel" data transceivers. These 
two transceivers are only enabled when address line A3 
is active. 

The same holds true for CPU writes on a "By Pixel" baSis. 
In this case the 16 bits written by the CPU are disas­
sembled by the ''By Pixel" transceivers and four bits are 
presented to each QPOM to be inserted into the bit-map 
for the selected pixel. 

Individual QPOM accesses with address line ~ LOW 
only enable the transceivers associated with the selected 
QPOM. Global QPOM accesses with address line A3 
LOW enable only the eight transceivers associated with 
regular QPOM accesses. The "By Pixel"transceivers are 
not enabled. Therefore, with a little extra decoding logic, 
the user is given the capability to examine all the bit 
planes of one pixel in a single CPU access cycle. 

One further point must be made clear. The Input and 
Output Block instructions of the QPOM are provided to 
allow the CPU to access directly into display memory. As 
discussed earlier, the CPU may access the display 
memory "By Plane" or "By Pixel". This brings up the point 

2-16 

of activity bits. Each QPOM has four activity bits, one for 
each plane it controls. With the Set Activity Bits instruc­
tion the user can set or clear these bits in each QPOM in 
the design. If the activity bit for a plane is set to "1", the 
plane will operate normally. Write operations will condi­
tionally write into the plane. If the activity bit for a plane 
is set to a "0", the plane will not be written to. The activity 
bits of a QPOM also affect the generation of the EOE 
(external driver enable) signal. During accesses to the 
Block 1/0 FIFO of the QPOM, the following equation 
determines whether or not an EOE signal is generated: 

EOE = CS . A, . An . (ABo + AB, + AB2 + ABJ 

where ABo - AB3 are the activity bits for each plane the 
QPOM controls. What are the ramifications of the activity 
bits? During an Input Block instruction, data from the 
CPU will only be written to the planes whose activity bits 
are set. During an Output Block instruction, where the 
QPOM outputs display map data to the CPU, two cases 
arise. In the case of a by-plane read of display data, only 
one activity bit in one QPOM may be set. To repeat, in a 
system with multiple QPOMS, when executing a by­
plane Output Block instruction, make sure that only one 
QPOM has one activity bit set. If multiple QPOMs have 
their activity bits set, then their EOE pins will go active, 
enabling their data transceivers and bus contention will 
result. In the case of an output block by pixel, the 
software must be consistent to interpret the data bits from 
all the QPOMS. For a by pixel output, "1"s will be returned 
for all inactive planes. Therefore, the sOftware must be 
consistent and keep track of all active planes so that it can 
interpret the data for the individual pixels. 

DMA 

The OMA issues remain the same as in the single QPOM 
design. 

Interrupts 

In this design an external interrupt controller is added. In 
the case of an external interrupt controller, several of the 
internal 80 186 peripheral control registers must be repro­
grammed. The internal interrupt controller must be in 
master mode. The cascade bit of the INTo control register 
must also be set. In this mode, whenever the interrupt 
presented to the INTo is acknowledged, the integrated 
interrupt controller will not provide the interrupt type for 
the interrupt. Instead, two interrupt-acknowledge bus 
cycles will be run, with the INT2 pin of the 80186 now 
providing the interrupt-acknowledge pulses for the INTo 
requests. The 80186 will read the interrupt type from the 
lower eight bits of the address/data bus on the second 
interrupt-acknowledge cycle. In this design the INTo and 
INT2 pins have been reconfigured to hook up to the 
external 8259A interrupt controller. The INT, and INT3 



lines are still used as direct interrupt inputs, identical to 
the single QPOM design. The 8259A can handle up to 
eight external interrupt requests. These eight, combined 
with the two direct input interrupt pins provide a total of 10 
external interrupt requests. Also note that an interrupt­
ready signal must be returned to the CPU to prevent wait 
state generation during the interrupt-acknowledge 
cycles. This is provided via the PAL devices. We have 
also used PCSs to provide the chip-select logic to the 
external interrupt controller. The four INT pins of the 
QPOMs have been connected to the external 8259A. 
Software must be written to initialize the external 8259A 
and to set up the actual external interrupt vector num­
bers. More details can be found in the 8259A data sheet. 

Miscellaneous 

The comments on peripheral chip selects in the single 
QPOM case also apply in this case. Remember to 

CHAPTER 2 
System Bus Interface 

program the PACS and MPCs registers for the correct 
(one) number of wait states with no external ready. 
Consult the 80186 data sheet for bit patterns. The base 
address for the PCSx pins are programmed into the 
PACS register and each PCSx pin is assigned a 128 byte 
block relative to this base address. The PCSx pins 
respond only to the addresses in their individually as­
signed blocks. This means that each QPOM in the 
multiple QPOM design is aSSigned a 128-byte block of 
addresses. The global chip select takes up another 128-
byte block. 

One last statement: in any QPOM deSign, a few extra 
moments ensuring that the hardware bit organizations 
are consistent with the software interpretation is time well 
spent. 

The PAL Equations are listed on the next ten pages. 

2-17 



CHAPTER.2 
System Bus Interface 

CUPL version 2.10a Serial. 2-00001-066 
Copyright@ 1983,84,85,86 Personal CAD Systems, Inc. 
CREATED Fri Dec 12 12:45:19 1986 

LISTING FOR LOGIC DESCRIPTION FILE: XCVR.p1d 

l:Name 
2 :Partno 
3:Date 
4:Revision 
5:Designer 
6:Company 
7:Device 

XCVR ; 
95C60-2 
12/12/86; 
02; 
Ed Dupuis 
Advanced Micro Devices Canada 
P16R6; 

8 : 
9:/*************************************************************************/ 

10:/* This PAL generates a signal T4 which signifies to the data */ 
11:/* transceivers when the CPU enters T state 4. During a QPDM */ 
12:/* read cycle, this signal T4 turns off the transceivers so that */ 
13:/* the CPU specification tHRAV is not violated. During a QPDM */ 
14:/* write cycle, this T4 signal is not generated, and /DEN is */ 
15:/* allowed to turn off the data transceivers. */ 
16: 
17:/*************************************************************************/ 
18:/* Allowable Target Device Types: 16R6, 16RB, anything with at */ 
19:/* least five free registers. */ 
20:/*************************************************************************/ 
21: 
22:/** Inputs **/ 
23: 
24:Pin 1 CLOCK 
25:Pin 2 ALE 
26: 
27: 
28:Pin 3 - !READ 
29: 
30: 
31:Pin 4 RESET 
32: 
33:Pinll !OE 
34: 
35: 
36:/** Outputs **/ 
37: 
38 :Pin18 T4 
39: 
40: 
41:Pin17 TW 
42:Pin16 T3 
43:Pin15 T2 
44:Pin14 T1 
45: 
46: 
47: 

/* Inverted CPU clock from chip select PAL */ 
/* Address Latch Enable from CPU. */ 
/* this signal tells us when CPU reaches */ 
/* state T1 */ 
/* CPU read strobe. Only when this */ 
/* signal is active do we generate */ 
/* output signal T4. */ 
/* CPU reset signal out */ 

/* Output Enable for PAL. Grounded 
/* permanently 

/* This signal is generated when 
/* the CPU reaches state T4 during 
/* a QPDM read. 
/* Wait State 
/* CPU State T3 
/* CPU State T2 
/* Appearance of ALE signifies the 
/* onset of CPU state T1 

*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

48:/** Declarations and Intermediate Variable Definitions **/ 
49: 
50: 

2-18 



51: 
52: 
53: 
54: 
55:/** Logic Equations **/ 
56: 
57:T1.D ALE 7 !RESET 
58:T2.D = T1 & !RESET 
59:T3.D T2 & !RESET 
60:TW.D - T3 & READ & !RESET 
61:T4,D 
62: 
63: 
64: 
65: 
66: 

TW & !RESET 

[0022ca] Please note: missing header item(s) 

Jedec Fuse Checksum 
Jedec Transmit Checksum 

(2AAD) 

(AF91) 

CHAPTER 2 
System Bus Interface 

2·19 



CHAPTER 2 
System Bus Interface 

CUPL Version 2.10a Serialt 2-00001-066 
Copyright@ 1983,84,85,86 Personal CAD Systems, Inc. 
CREATED Fri Dec 12 16:59:56 1986 

LISTING FOR LOGIC DESCRIPTION FILE: cup1\qpdmcs.pld 

QPDMCS ; 
95C60-1 ; 
12/11/86; 
01; 
Ed Dupuis 

l:Name 
2:Partno 
3:Date 
4:Revision 
5:Designer 
6:Company 
7:Device 

Advanced Micro Devices Canada 
P18P8; 

8 : 
9 : 

10:/*************************************************************************/ 
11:/* This PAL generates a qualified chip select to the Am95C60. */ 
12:/* It also provides an inverted CLKOUT from the 80186 to the */ 
13': / * processor state monitor PAL. * / 
14:/* This PAL also generates the output enable signal to the */ 
15:/* data transceivers. */ 
16:/*************************************************************************/ 
17:/* Allowable Target Device Types: Am16L8B, Am18p8B */ 
18:/*************************************************************************/ 
19: 
20:/** Inputs 
21: 
22:Pin 1 
23:Pin 2 
24 :Pin 3 
25:Pin 4 
26:Pin 5 
27:Pin 6 
28: 
29:/** Outputs 
30: 
31:Pin19 
32:Pin18 
33:Pin17 
34:Pin16 
35: 

**/ 

CLKOUT 
RESET 
ALE 
!PCSO 
!DEN 
T4 

**/ 

!QPDMCS 
!QPDMOE 
!RESETOUT 
!CLK 

/* CPU clock signal from 80186 */ 
/* RESET signal from 80186 */ 
/* Address Latch Enable from 80186 */ 
/* Peripheral chip select from CPU */ 
/* Data ENable from CPU */ 
/* CPU state T4 from state monitor PAL */ 

/* Qualified chip select for QPDM */ 
/* Output enable for QPDM data transceivers*/ 
/* Inverted CPU reset to system */ 
/* Inverted CPU clock */ 

36:/** Declarations and Intermediate Variable Definitions **/ 
37 : 
38: 
39: 
40: 
41: 
42: 
43:/** Logic Equations **/ 
44:CLK = CLKOUT 
45:RESETOUT = RESET 
46: 
47:QPDMCS 
48: 
49: 
50: 

2-20 

PSCO & !ALE & !RESET; 

/* Inverted clock to state monitor PAL */ 
/* Inverted CPU reset to system */ 

/* Qualify address to QPDM by 
/* delaying chip select until ALE 
/* ensures valid addresses. 

*/ 
*/ 
*/ 



51:QPDMOE = DEN & !T4 & QPDMCS 
52: 
53: 
54: 
55: 
56: 

CHAPTER 2 
System Bus Interface 

/* Turn off data transceivers when 
/* either DEN goes inactive or 
/* T4 goes active, whichever event 
/* occurs first. 

*/ 
*/ 
*/ 
*/ 

[0022ca] Please note: missing header item(s) 

Jedec Fuse Checksum 
Jedec Transmit Checksum 

(2362) 
(B64F) 

2-21 



CHAPTER 2 
System Bus Interface 

CUPL version 2.10a Serial# 2-00001-066 
Copyright@ 1983,84,85,86 Personal CAD Systems, Inc. 
CREATED Wed Dec 17 11:06:28 1986 

LISTING FOR LOGIC DESCRIPTION FILE: XCVR1.pld 

1:Name 
2:Partno 
3:Date 
4:Revision 
5:Designer 
6:Company 
7:Device 

XCVR1 ; 
95C60-3 
12/16/86; 
02; 
Ed Dupuis 
Advanced Micro Devices Canada 
P16R6; 

8 : 
9:/*************************************************************************/ 

10:/* This PAL generates a signal T4 which signifies to the data */ 
11:/* transceivers when the CPU enters T state 4. During a QPDM */ 
12:/* read cycle, this signal T4 turns off the transceivers so that */ 
13:/* the CPU specification tHRAV is not violated. During a QPDM */ 
14:/* write cycle, this T4 signal is not generated, and /DEN is */ 
15:/* allowed to turn off the data transceivers. */ 
16:/* This PAL also generated QPDM and system reset, and also */ 
17:/* provides the correct polarity ready signal to the CPU from the */ 
18:/* interrupt acknowledge pulse output from the CPU. */ 
19: 
20:**************************************************************************/ 
21:/* Allowable Target Device Types: 16R6, 16R8, anything with at */ 
22:/* least five free registers. */ 
23:/*************************************************************************/ 
24: 
25:/** Inputs **/ 
26: 
27:Pin 1 CLOCK /* Inverted CPU clock from chip select PAL */ 
28:Pin 2 ALE /* Address Latch Enable from CPU. */ 
29: /* This signal tells us when CPU reaches */ 
30: /* state T1. */ 
31:Pin 3 '" !READ /* CPU read strobe. Only when this */ 
32: /* signal is active do we generate */ 
33: /* output signal T4. *1 
34:Pin 4 RESET 1* CPU reset signal out */ 
35: 
36:Pinll !OE 1* Output Enable for PAL. Grounded */ 
37: 1* permanently. */ 
38: 
39:Pin 5 '" !INTAO /* Interrupt acknowledge pulses *1 
40: 1* from CPU to external 8259A-2 *1 
41: 1* these pulses are necessary to */ 
42 : 1* the CPU to finish the interrupt *1 
43: 1* vector fetching process. */ 
44:/** Outputs **/ 
45: 
46:Pin19 !RESETOUT /* System and QPDM reset from CPU */ 
47:Pin18 T4 /* This signal is generated when */ 
48: /* the CPU reaches state T4 during */ 
49: 1* a QPDM read. */ 
50:Pin17 TW /* Wait State */ 

2-22 



51:Pin16 
52:Pin15 = 
53:Pin14 
54: 
S5:Pin12 
56: 
57 : 
58: 

T3 
T2 
T1 

INTREADY 

/* CPU State T3 
/* CPU State T2 
/* Appearance of ALE signifies the 
/* onset of CPU state T1. 
/* Inverted interrupt acknowledge 
/* pulse to the ARDY input of the 
/* CPU. 

59:/** Declarations and Intermediate Variable Definitions **/ 
60: 
61: 
62 : 
63: 
64: 
65: 
66:/** 
67: 

Logic Equations **/ 

68 :Tl.D 
69:T2.D 
70:T3.D 
7l:TW.D 
72:T4.D 
73: 

ALE 
T1 
T2 
T3 
TW 

& 

& 

& 

& 

& !RESET 
!RESET 
!RESET 
READ & 

!RESET 

74:INTREADY = INTAO 
75:RESETOUT = RESET 
76: 
77: 
78: 

!RESET 

[0022ca] Please note: missing header item(s) 

Jedec Fuse Checksum 
Jedec Transmit Checksum 

(3A8C) 
(CDF6) 

CHAPTER 2 
System Bus Interface 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

2-23 



CHAPTER 2 
System Bus Interface 

CUPL version 2.10a Serial# 2-00001-066 
Copyright© 1983,84,85,86 Personal CAD Systems, Inc. 
CREATED Wed Dec 17 11:02:24 1986 

LISTING FOR LOGIC DESCRIPTION FILE: QPDM1.pld 

l:Name 
2:Partno 
3:Date 
4:Revision 
5:Designer 
6:Company 
7:Device 
8 : 
9 : 

QPDM1 ; 
18p8-1 ; 
12/16/86; 
03; 
Ed Dupuis 
Advanced Micro Devices Canada 
P18P8; 

10:/*************************************************************************/ 
11:/* This PAL generates qualified chip selects to the 4 Am95C60s. */ 
12:/* It also provides an inverted CLKOUT from the 80186 to the */ 
13:/* processor state monitor PAL. */ 
14:/* This PAL also generates the signal TSYNOUT. This signal is used */ 
15:/* by the QPDMs to synchronize display memory activities. */ 
16:/*************************************************************************/ 
17:/* Allowable Target Device Types: Am16L8B, Am8p8B */ 
18:/*************************************************************************/ 
19: 
20:/** Inputs **/ 
21: 
22:Pin 1 
23:Pin 2 
24 :Pin 3 
25:Pin 4 
26 :Pin 5 
27:Pin 6 
28:Pin 7 
29 :Pin 8 
30: 
31:Pin 9 
32 :Pinll 
33:pin12 
34 :pin13 
35: 

CLKOUT 
RESET 
ALE 
!PSCO 
!PCS1 
!PCS2 
!PCS3 
!PCS4 

TSYN10UT 
TSYN20UT 
TSYN30UT 
TSYN40UT 

36:/** Outputs **/ 
37: 
38:Pin19 
39:Pin18 
40:Pin17 
41:Pin16 
42:Pin15 
43: 
44: 
45:Pin14 
46: 
47: 

!QPDMCS1 
!QPDMCS2 
!QPDMCS3 
!QPDMCS4 
!CLK 

TSYNOUT 

/* CPU clock signal from 80186 
/* RESET signal from 80186 
/* Address Latch Enable from 80186 
/* QPDM #1 chip select from CPU 
/* QPDM 42 chip select from CPU 
/* QPDM #3 chip select from CPU 
/* QPDM 44 chip select from CPU 
/* Global chip select which selects 
/* all QPDMs for broadcasting 
/* These are the four signals output 
/* by the individual QPDMs and are used 
/* to synchronize display memory 
/* activities. 

/* Qualified chip select for QPDM1 
/* Qualified chip select for QPDM2 
/* Qualified chip select for QPDM3 
/* Qualified chip select for QPDM4 
/* Inverted CPU clock to state 
/* monitor PAL. 

/* Global signal to TSYNIN inputs 
/* of all the QPDMs. 

48:/** Delcarations and Intermediate Variable Definitions **/ 
49: 
50: 

2-24 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*1 
*/ 

*/ 
*/ 



51: 
52: 
53: 
54: 
55:/** Logic Equations **/ 
56:CLK = CLKOUT 
57:RESETOUT = RESET 
58: 
59:QPDMCS1 pcso & !ALE & !RESET 
60: * PCS4 & !ALE & !RESET; 
61: 
62 : 
63:QPDMCS2 PCS1 & !ALE & !RESET 
64: * PCS4 & !ALE & !RESET; 
65: 
66: 
67:QPDMCS3 PCS2 & !ALE & !RESET 
68: * PCS4 & !ALE & !RESET; 
69: 
70: 
71:QPDMCS4 PCS3 & !ALE & !RESET 
72: * PCS4 & !ALE & !RESET; 
73: 
74: 

CHAPTER 2 
System Bus Interface 

/* Inverted clock to state monitor PAL */ 
/* Inverted CPU reset to system */ 

/* Qualify addresses to QPDM1 by */ 
/* delaying chip select until ALE */ 
/* ensures valid addresses */ 

/* Qualify addresses to QPDM2 by */ 
/* delaying chip select until ALE */ 
/* ensures valid addresses */ 

/* Qualify addresses to QPDM3 by */ 
/* delaying chip select until ALE */ 
/* ensures valid addresses */ 

/* Qualify addresses to QPDM4 by */ 
/* delaying chip select until ALE */ 
/* ensures valid addresses */ 

75:TSYNOUT TSYN10UT & TSY20UT & TSYN30UT & TSYN40UT ; /* All QPDMs */ 
76: /* must be in synch 
77: /* to be active 
78: 
79: 
[0022ca] Please note: missing header item(s) 

Jedec Fuse Checksum 
Jedec Transmit Checksum 

(456C) 
(04E7) 

for this signal */ 
*/ 

2-25 



CHAPTER 2 
System Bus Interface 

CUPL version 2.10a Serial' 2-00001-066 
Copyright@ 1983,84,85,86 Personal CAD Systems, Inc. 
CREATED Wed Dec 17 11:04:33 1986 

LISTING FOR LOGIC DESCRIPTION FILE: QPDM2.pld 

l:Name 
2:Partno 
3:Date 
4: Revis-ion 
5:Designer 
6:Company 
7:Device 
8: 
9: 

QPDM2 ; 
18p8-2 ; 
12/16/86; 
03; 
Ed Dupuis 
Advanced Micro Devices Canada 
P18P8; 

10:***************************************************************'***********/ 
11:/* This PAL generates qualified output enables to the data xcvrs */ 
12:/* associated with each individual QPDM. When the selected QPDM's */ 
13:/* chip select goes active this will cause the QPDM's /EDE output */ 
14:/* pin to go active. This signal is then factored in to generate */ 
15:/* an output enable signal. As in the single QPDM design, the */ 
16:/* signal T4 from the state monitor PAL will disable the xcvrs on */ 
17:/* a read of the selected QPDM by the CPU. In the event of a CPU */ 
18:/* write cycle, T4 is not generated by the state PAL and /DEN */ 
19:/* going inactive disables the xcvrs. */ 
20:/* This PAL also generates the output enable for the "by pixel" */ 
21:/* data transceiver. */ 
22:/* This PAL also generates the MATOUT signal to all the QPDMs. */ 
23: 
24: 
25:/*************************************************************************/ 
26:/* Allowable Target Device Types: Arn16L8B, Arn18p8B */ 
27:/*************************************************************************/ 
28: 
29:/** Inputs **/ 
30: 
31:Pin 1 T4 /* CPU state T4 signal from state */ 
32 : /* PAL. */ 
33:Pin 2 RESET /* RESET signal from 80186 */ 
34:Pin 3 !DEN /* Data ENable from CPU */ 
35:Pin 4 !EDEO /* QPDM '1 external driver enable */ 
36:Pin 5 !EDE1 /* QPDM .2 external driver enable */ 
37:Pin 6 !EDE2 /* QPDM .3 external driver enable */ 
38:Pin 7 !EDE3 /* QPDM '4 external driver enable */ 
39:Pin 8 A3 /* Address bit A3 which differentiates */ 
40: /* between the regular data xcvrs and */ 
41: /* the "by pixel" data xcvr. */ 
42:Pin 9 MATlOUT /* Color match/syncronization signals */ 
43:Pinll MAT20UT /* from the four QPDMs. These signals */ 
44:Pin12 MAT30UT /* must be ANDed together to ensure */ 
45:Pin13 MAT40UT /* that all QPDMs execute together */ 
46: 
47:/** Outputs **/ 
48: 
49:Pin19 !OE1 /* Qualified output enable for */ 
50: /* QPDM1's xcvrs */ 

2-26 



CHAPTER 2 
System Bus Interface 

51:Pin18 
52 : 
53:Pin17 
54: 
55:Pin16 
56: 
57:Pin15 = 
58: 

!OE2 

!OE3 

!OE4 

!PIXELOE 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

Qualified output enable for 
QPDM2' s xcvrs 
Qualified output enable for 
QPDM3's xcvrs 
Qualified output enable for 
QPDM4's xcvrs 
Qualified output enable for 
"by pixel" xcvr 

59: 
60:Pin14 
61: 

MATOUT 1* Synchronization signal for QPDMs 

62:1** Declarations and Intermediate Variable Definitions **1 
63: 
64: 
65: 
66: 
67:1** Logic Equations **1 
68: 
69:0E1 
70: 
7l:0E2 

EDEO & !A3 & DEN & !T4 & !RESET 

EDE1 & !A3 & DEN & !TA & !RESET 
72: 
73:0E3 = EDE2 
74: 
75:0E4 EDE3 
76: 
77:PIXELOE = 
78: 
79: 
80: 
81: 
82: 
83: 
84: 

* * t 

& !A3 & 

& !A3 & 

EDEO & A3 
EDE1 & A3 
EDE2 & A3 
EDE3 7 A3 

DEN & !TA & !RESET 

DEN & !T4 & !RESET 

& DEN & !T4 & !RESET 
& DEN & !T4 & !RESET 
& DEN & !T4 & !RESET 
& DEN & !T4 & !RESET 

1* enable qpdm1's 

1* enable qpdm2' s 

1* enable qpdm3' s 

1* enable qpdm4' s 

1* enable the "by 
1* data xcvr. 

xcvr 

xcvr 

xcvr 

xcvr 

pixel" 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

*1 

*1 

*1 

*1 

*1 

*1 
*1 

85:MATOUT 
86: 

MAT10UT & MAT20UT & MAT30UT & MAT40UT; 1* Determine if all QPDMs*1 
1* are matched and in synch *1 

87: 
88: 
[0022ca] Please note: missing header item(s) 

Jedec Fuse Checksum 
Jedec Transmit Checksum 

(3DFE) 
(04CE) 

2-27 



CHAPTER 2 
System Bus Interface 

2.2 VME BUS 

The QPOM, as a fast graphic display oontroller, can be 
adapted to nearly any system bus structure. 

This application note describes the adaptlon to the VME 
Bus. The term VME Bus, in this case, does not include 
the other busses such as VMX and VMS Bus. Only a 
small amount of hardware must be developed to adapt 
the QPOM to the VME Bus in a simple way. 

In the following chapters, only the system bus of the 
QPOM is described. The other busses are not of interest 
when discussing the system bus interface. 

The QPOM has a normal operation and a OMA-driven 
operation. Two approaches have thus been made for an 
adaption logic. The first approach uses only the CPU to 
do all tasks for the QPOM. The seoond approach uses a 
OMA oontroller to do high-speed transfers between the 
QPOM and the Main Memory. 

VME 
Address 
Bus 

23 

A23-A16 A15-AS 

2.2.1 Simple Approach 

Circuit diagram 2.2-1 shows the simple approach. The 
circuit only needs an address decoder, a QPOM, Oata 
drivers, and a PAL device that does the interfacing 
between the VME Bus and the QPOM. 

Address Decoder 

The address decoder oontains an 8-input NANO gate 
and an Am25LS521 Comparator. So, the QPOM ad­
dress space begins at an address with the eight most­
significant address bits - 1. The next eight bits are 
selected by the oomparator. The lowest bits are not fully 
decoded. 

Intertacs PAL 

The VME Bus is an asynchronous bus. The QPOM is a 
synchronous device, so the PAL device has to generate 
an asynchronous signal OTACK for the VME bus. All 

QPOM 

A1-A2 AD 
r--";';';'~'----..L.--I A1 

cs 
RO 
WR 

1 Am25LS2521 
FREQ 
OREQ 
ACKO 

2-28 

AD 
A1 
A2 

1 A3 
3 A4 
5 AS 

EN 

AS 
7 A7 B 

EOUT 
19 AmPAL16R4L 

16 

O.C. 

Figure 2.2-1 Circuit Diagram: Design without DMA 

...-----l EDE 
INT 

.---, SYSCLK 
v----1 mEl' 

MATOUT 
MATIN 
DO 
01 
02 
D3 
D4 
os 
D6 
07 
De 
D9 
010 
011 
012 
013 
014 
015 

........ 2.2.1 



CHAPTER 2 
System Bus Interface 

Figure 2.2-2 States of Machine 

terms concerning the VME Bus are not described in 
detail, therefore, the VME Bus specification has to be 
studied. Anothertask ofthe PAL device is to generate the 
necessary control signals for the QPDM. 

The following describes the generation of all signals in 
detail. 

Generation of DTACK 

The DT ACK signal is generated to show the Bus Master 
that the QPDM is ready with the Data transfer. The 
QPDM itself is not generating this signal. The signal is 
generated in the following way. 

When a normal Read or Write to the QPDM is done, the 
PAL device generates three cycles after the DTACK 
signal. The clock is the normal system clock. The 
DT ACK signal is generated until the Read or Write cycle 
is finished. 

The criterion for a normal Read or Write cycle at the VME 
Bus is: 

1. CS for the device is LOW. 

2. Either DSO or DS1 is LOW. 

3. INTACK is HIGH. (The cycle is not an interrupt 
acknowledge cycle.) 

The logical form is: 

EN = CS + (OSO· OS1)+ INTACK 

To generate DT ACK, a little state machine has to be 
developed. The states of the machine are shown in 
Figure 2.2-2. 

Because the machine has four states, two flip-flops are 
needed to realize the state machine. Figure 2.2-3 shows 
the state change of the machine. With this form, the 
combinational logic could be easily computed. The 
simplification of the logic is shown in the two KV diagrams 
(Figure 2.2-4) 

Figure 2.2-3 Change Table 

EN 01 DO 11 10 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 1 1 
0 1 1 1 1 
1 0 0 0 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 0 0 

2-29 



CHAPTER 2 
System Bus Interface 

As another point the state machine has to be set to state 
o after a system reset. The Input formula for flip-flop 1 is: 

'0 = EN· DO· RESET + EN· D1 • RESET 

with the equation of EN: 

'0 = (CS + DSO• DS1 + INTACK)· DO· RESET 

+ (CS + DSO• DS1 + fNTACK). D1 • RESET 

= DSO• cs ·INTACK· DO· RESET 

+DS1·CS.~.DO·RESET 

+DSO• CS ·INTACK· D1 • RESET 

+DS1 ·CS.,NTACK.D1 ·RESET 

The input formula for flip-flop 2 is: 

'1 = EN • DO • RESET + EN • D 1 • RESET 

with the equation of EN: 

'1 = (CS+ DSO• DS1 + INTACK)· DO· RESET 

+ (CS + DSO • DS1 + INTACK) • D 1 • RESET 

= DSO• CS ·INTACK· DO· RESET 

+ DS1 • CS ·INTACK· DO· RESET 

+ DSO • CS ·INTACK· D 1 • RESET 

+ DS1 • CS ·INTACK· D1 • RESET 

DT ACK signal is generated in the following way: 

DTACK = DO· D1 

cnherOont~/Slgnals 

The other control signals for the CPOM are: 

o RO: RD is generated when either DSO or DS1 is 

LOW and RIW is HIGH. 

o WR: WR is generated when either DSO or OS1 is 

LOW and RIW is LOW. 

o CSO: CPOM Chip Select, CSO, is generated when 
AS is LOW and CS is LOW and no interrupt ac­
knowledge cycle is performed (INTACK = High). 

2-30 

DO 

~ 
1 0 1 0 

1:\ 

0 0 0 ~ 

EN 

KV-Oiagram for 10 

00 

~ 0 1 1 1:\ 

1 v 0 0 0 

EN 

KV-Oiagram for I, 

Figure 2.2-4 KV-Dlagrams 



The formulas are: 

RO= OSo· OS, + RIW 

WR=OSO·OS, + RIW 

CSO = AS + CS + INTACK 

The timing of the PAL device is shown in Figure 2.2-5. 

o 
SYSCLK 

2 

2.2.2 DMA Approach 

CHAPTER 2 
System Bus Interface 

To use all the features of the QPOM, the QPOM must 
couple with a OMA controller; thus an Am9516 two­
channel OMA controller was used. The interface for that 
device to the VME-Bus is described in the Am9516 OMA 
Contoller Technical Manual starting on page 6-20. The 
QPOM is adapted to the VME-Bus with the same PAL 
device discussed in Section 2.2.1 of this handbook. This 
PAL device also performs bus-driver steering. Address 
decoding is discussed in the same section. Only the 
lower addresses are decoded with a multiplexer. 

3 3 o 

Figure 2.2-58 Timing of DTACK 

OSO~ 

OS1~ 
RAN --------------

RD~ 

Timing of RD 

CS~ 

CSO ~ 

Timing of CSD 

Figure 2.2-5b Other Timings 

OSO 

OS1 

RAN --------------

WR 

Timing ofWR 

2-31 



CHAPTER 2 
System Bus Interface 

23 
'LS645 

iiOOii'i' 

lACK 
1£ D15 

Il'Sii 
DS1 
rvw 

A15 

DIl 

D7 

8c 

8a 
7a 
6a 
Sa 

A23-A16 

'lS30 

!lS' 
mm 
tlSl! 
~ 
RiW 
1lIt:R 
1£ 
ImSY' 
1ACRiN 

A15-AB 

iN'i'ACR 
CYCLE 

DlR 

IACKOUT liGOiii' 

ADDRBu. 

A7-A6 

~----~--------~18------;-------~ 

Conlrol 
L---~--------------~~--~~-------------'~~~--------------~~------B~ 

15 

Clock 
Gen. 

SYSCLK 

Figure 2_2-6 Circuit Diagram: VME - Bus - Interface 

Add,Bu. 

Am9516A Am29843 . __ I 
ADO I 5 2 DO '" ~2223 
AD11-1!-8-.1-----~43 D1 Y;r.;:;---21 
AD2 7 02 ... r.::--
ADO 8 5 DO y.~ 
AD4 8 D4 y~ 
ADS 10 D5 "'~ 
ADIl 11 DIl Vi t*--
AD7 12 D7 v.~ 
ADB~",", ll! DIl .'fI~ 
AD9 14 r-:-' tlE l'RI:t-1;::4-t'WIr-" 

AD10 .!§. r1 mlAm29843L tll AD11 1"":':18,........<1""-.1 
AD12 r::.ll,........'iI""'oI 
A013 ..1§. DO Y( ~ 
A014 ..!i. r---, 01 Y1 ff, 
A015 l...2!l. 02 V< r:: 

rnImi ~ DO y: f..2I 

=~ ~ D4 ~J~ 
iiACK2 H!- ~ f: ~I ~ 
m!tL1~:S '~1 ~ ~~ ~~ iwJJ ~ "'L1EI-7E..J..a~/or+ 

CE1t:~~~~§ INT.PAL 

18 2 l:i!J: 
I~ CorrtroiBus 

15 

Figure 2.2-7 Circuit Diagram: DMA Section 

2-32 

\ 
" 



CHAPTER 2 
System Bus Interface 

L--~G1 

FromOMA 
From Bus-PAl 

G2A 
G2B 

23 AddrBu8 

Control Bus 

Figure 2.2-8 Circuit Diagram: Interrupt logic 

CIPOM 

Addr. Bus A1-A2 NJ 
~~~-------------------~~------~~-;A1 

m 'e'S
'1m
WR

~----------lr------~r-~--------~::~F~Q
_ __________ ~----~~~;---~====~--_10REQ

'I!imi ~

AmPAl16R4l 2

'e'S iYi'ACK
n§O Fm'
1m' Wit
A§ ~
~
RfI1

1/6lS06 svsm
SYSCU<

Control Bus S 2

DaIaBus 16

Figure 2.2-9 Circuit Diagram: QPDM Interface

~
INT
SYSCU<
RESEf
MATOUT
MAnN
DO
01
D2
00
D4
os
Il6
07
D8
D9
010
011
012
013
014
015

2-33

CHAPTER 2
System Bus Interface

2.3 68020 BUS

A graphics engine utilizing a new graphics controller can
provide a real boost to minicomputers based on the
68020. The Am95C60 Quad Pixel Dataflow Manager
(QPDM) combines four major functions previously re­
quiring many integrated circuits: video refresh of the
display; memory refresh; update of the bit map; and
arbitration between the memory update, video refresh,
and dynamic memory refresh.

Not only can the Am95C60 support a bit map size of up
to 4K x 4K pixels and screen size of up to 2K x 2K, but it
also has the high- performance drawing capabilities that
are necessary in today's advanced graphic systems.

e.g. Block Move - 60 nslpixel,
Vector Draw - 300 nslpixel
Polygon Fill - 280 nslpixel

Advanced features such as Anti-Aliasing, Hardware and
Software Windowing, Clipping, Picking, Text and Poly­
gon Fill are supported directly on Chip.

A minimum system consists of one Am95C60 plus Video
DRAM frame buffer, one serializer per plane (Am8172 or
Am8177) and clock generator (Am8158), together with a
color palette (Am8159 OR Am8151). Such a system is
easily expandable to support up to 256 color planes.

A small amount of "glue" logic allows the Am95C60 to
interface with all of the common 8-, 16- and 32-bit
microprocessors.

2.3.1 Overview of Graphics Engine and
Display System

The Tasks Required of a Graphics Engine

Key features in today's workstation are the ability to offer
a high-resolution graphic display and a rapid responSe to
prompts by the user to manipulate images on the screen.

As many of the applications of graphic workstations
involve the manipulation of "Visual information" stored
within the system, there is an obvious need not only for
a significant amount of memory to hold this visual infor­
mation, but also for dedicated· hardware to manipulate
such data and supply it at the required data rate and in the
correct format to the workstation display system (typi­
cally a high-resolution color CRT).

The Advantages of Single Chip, Dedicated
Graphics Controller

The Am95C60 is a graphics processing chip capable of
handling all the necessary tasks for supporting a bit-

2-34

mapped display memory graphics scheme, where the
display memory is constructed from Video DRAMs. As
such, much of the work load in supporting the graphics
sub-system is taken from the host CPU and handled
directly by this dedicated graphics processor. These
features include dynamic memory refresh control, video
display refresh control, line drawing and other graphic
function support, and arbitration to allow other parts of
the system access to the video display memory.

The Frame Buffer

The frame buffer consists of a number of memory de­
vices which hold the current picture information to be
supplied to the video display device (CRT).

Video DRAMs are used as the memory device for such
a frame buffer. This special type of DRAM Is similar to
standard DRAMs, but has additional features which
include a second port, ideal for supporting the interface
to a video system.

In a special access cycle, called a Transfer Cycle, 1024
pixels of data can be read from the DRAM array into an
on-chip shift mechanism. This shift mechanism can then
be driven independently of, and concurrently with, further
accesses to the DRAM array from the normal (host) port,
providing serial pixel data at rates of up to 100 MHz. For
example, by banking four Video DRAMs in parallel to
provide a 16-bit data path, pixel rates of up to 400 MHz
are achievable, with the real limiting factor being the
maximum clock rate of the shift registers being used
(Am81n and Am8172 - 200 MHz max).

The advantage of this scheme over a system with video
memory constructed from standard DRAMs is that typi­
cally the host or Am95C60 can access the video memory
of Video DRAMs for update in excess of 95% of the time,
compared with less than 40% of the time for a video
memory of standard DRAMs. This will offer a greater
drawing and BLlTing capability, an essential feature in
supporting animation and quick drawing and data trans­
fer responses, key features in today's workstations.

The Am95C60 generates all the necessary signals to
control such a Video DRAM array.

2.3.2 How to Address Peripheral Chips in a
68020 System

Virtual Memory - How to Address Hardware
Resources

A virtual memory scheme allows a process in execution
to have access to the total address space of the CPU,
which for the MC68020 is 4 Gbytes (32 address lines).
The address generated by the host processor will index

MC68020
Processor

VlttuaJ
Address

PAGER
(Address
Translate)

I- Hardware

Hardware I--- Resource
Address
Decode I- Enables

CHAPTER 2
System Bus Interface

Other System resources

L-""'T--r"'jP,;;;hyslca;!k;;". SYSTEM
SCSI
etc.

Address MEMORY ETHERNET

32 Bit System Bus I I I
I 1

o
DMA 1----1 Am95C60 ----1 Display

Memory

I

Figura 2.3-1 Typical Workstation Block Diagram

into a page table mechanism, or pager, which maps this
4 Gbytes of virtual address space to the physical memory
within the system.

The pager system needs not only to generate the re­
quired address lines to the physical memory, translated
from the virtual address, but must be able to select the
hardware resources within the system. A simple method
of implementing this could be to configure the pager
system to generate one more physical address line than
is required to address the system memory. The addi­
tional line is used to indicate that the access is to a
hardware resource, not system memory. The page table
entries can hence be set up to map a virtual address to
any hardware resource within the system, offering maxi­
mum flexibility. To address a number of hardware
resources within this "hardware address space", the
additional address line can be used to enable decode
logic of the lower address lines, thus disabling any
access to the system memory to select the desired
hardware resource.

Using this type of scheme, the enable to any peripheral
device, such as the graphics engine, can be generated

from the pager hardware system, which would include
the additional address decode logic to generate individ­
ual chip select lines to each hardware resource within the
system. For hardware resources containing a number of
registers, some of the low order address lines can be
used to address such registers, together with the chip
select to that device.

The pager would also need to indicate to memory if and
when the presented physical address is valid
(PhyStrobe). This would be true only if a mapping of
virtual address to physical address was found.

Other lines may be available on the system bus to qualify
the address space (the function code lines FCO-2 for the
MC68020), or to define whether the access is for code or
data within user or supervisor address space. This
information may also be used by the pager system to
implement a memory protection scheme, but this is
beyond the scope of this application note. (See
Figure 2-3.2)

Typically the address decode can most simply be imple­
mented using a combinatorial PAL device. (See Figures
2-3.3 and 2-3.4)

2-35

CHAPTER 2
System Bus Interface

2-36

Interrupt
Sources

IACKUnes
to Individual

~terrupting Devices

3
Fe

32
VA

+ (VittuBJ
Add ffIBS)

Da taBus

PAGER
SYS'TEM

32:<

I
n

Access VIoIa1Ion

k
PageFauh
HardWare Enables
HardWare Space

I EnBiii8
f--PhyStrobe iiiiiiii8

m m+ll
Add

I + (PII)sIcaJ SYSTEM

AddtBBs) MEMORY

Data

Where : n defines the No. of bytes per page;

m deftnes the No. of pages of system memory;

k deftnes lhe No. of Hardware Resources whhln system.

Figure 2.3-2 Simplified Pager System Block Diagram

(Physical Add Strobe)

(Hardware Spscel-Memory)

Hardware Resou~ {

PHYSTROBE
PHVSADDR20

PHYSADDRI9
PHYSADDRI8
PHSYADDR17

PHYSADDR.6
AS

CSQPDM (see Note)
CSOPDMO
CSQPDM ..
CSOPDM(N)
CSi5MA

Note: CSCiPi5M Is sel when any OPDM Is chip selected
(used by DSACK gsnereUon loglc-see fig. 2.3-.2)

CSPi:ANE
CSP'iXEi.
..... etc.

CLK60 ns

Figure 2.3-3 Hardware Resource Address Decoding

A 3-,1.

Arn85C60

A1-2I-+--------+--I-.AO_t

MC6tI020 ;t====a
rWil-___

1---.....WFi
1-."....-..... i'ii5

SCLK

DSACKo-.I+--------'
CLK50 ns

32 System Data Bus

Figure 2.3-4 MC68020-Am95C60 System Block Diagram

INT

The addresses used for individual hardware resources
within any particular system can be totally arbitrary and
will be defined by the designer as desired.

AS is used in the equation to turn off the CSdevice quickly
at the end of a bus cycle.

PhyStrobe is only relevant when a "Pager" or similar
system is implemented.

CSPIXEL is used to set the VO mode register defining
subsequent accesses between the system bus and dis­
play memory planes to be "By Pixel".

CSPLANE is used to resetthe I/O mode register defining
subsequent cases between the system bus and display
memory planes to be ''By Plane".

Direct Addressing of Peripheral Devices

In many applications where the MC68020 is the kernel
CPU in a mini- or microcomputer running a high-level
operation system, a virtual memory management
scheme will be most applicable. However, in applications
where the MC68020 is a controlling processor for periph­
eral devices, it is reasonable to use a direct addressing
scheme where unique addresses are permanently allo­
cated to peripheral devices within the system.

In such a system, the address decode logic needed to
generate the relevant chip selects to the peripheral
devices need only be a simple PAL device to decode the
address lines together with Address Strobe (AS). (See
Figure 2.3-3)

Appendix 1 contains an example of the source code for
such a PAL device.

2.3.3 Signal Definitions

When a common bus is connected to muhiple compo­
nents that do not have an identical bus cycle structure,
such as the Am95C60 and the MC68020, a number of
control and response signals require translation into the
appropriate form. (See Figure 2.3-5)

Initiating the Bus Cycle

The MC68020 or similar bus master initiates a bus cycle
by first requesting bus mastership via the arbitration
signals "Bus Request", "Bus Grant" and "Bus Grant
Acknowledge" (BREQ, BGRNT and BGACK). Once bus
control is gained, the bus master drives an address and
function code onto the address and function code bus
lines and drives the ReadlWrite line defining the direction
of transfer on the bus. The bus master then generates an
address strobe, AS, to define when the address lines are
valid.

MC68020

CLOCK

i'iESE'i'

CHAPTER 2
System Bus Interface

Am95C60

NOTE: Clocks may be different.

Figure 2.3-5 QPDM to 68020 Interface Signals

Data Strobe, DS, is then generated at the appropriate
time within the bus cycle on a Write indicating to the slave
device that data is valid, or on a Read defining when the
slave should send data to the bus master.

The 32-bit address is further qualified by the function
code lines, FCG-2' to define the address space within
which this address resides. Logic (probably within the
pager system) decodes all these lines to generate either
an enable to the memory (if a mapping of virtual address
to physical memory address exists within the pager sys­
tem), an enable to the appropriate hardware resource (if
a mapping exists to that hardware physical address), or
neither if an access violation or page fauh has occurred
(no mapping exists).

If the bus cycle is aimed at the Arn95C60, the
CSQPDM(N) should be asserted. (See Figures 2.3-2
and 2.3-3)

The MC68020 qualifies the direction of transfer of the bus
cycle using the WR signal (here called WRBUS to distin­
guish it from the write strobe signal to the QPDM), which
has been set prior to AS, and hence prior to CSQPDM.
This WRBUS Signal can then be used to generate the
correctly timed RDQPDM or WRQPDM signals to qualify
the CSQPDM, as required by the Am95C60 to define the
direction of transfer of information between the MC68020
and the Am95C60 (Figure 2.3-6).

2-37

CHAPTER 2
System Bus Interface

SEQUENCER
STATE 1010111213141510101

CLOCK
(6Ons)

~ ------------~
(Async) -------------------................

~ -----------------~
(Sync) -----------------'

NOTE 2

~ L-I~NOTE~I __________________ -I--------------

'WRiiU'S ===::x xC======
~ ------------------------L-______ Jr-------------------
~ -----------------------,~ ____________ ~r-------------

NOTE 1: This delay is dependent on the Address Decode logic.

NOTE 2: This delay in clearing the signal depends on the Address
Decode PAL propagation delay from A!!I negating.

CrHlcal Timing Parameters

Min WROPDM width
Set up CSOPDM to RDOPDM WROPDM asserting
Set up Write Data to WROPDM negating
Read Data valid from DSACKxx asserting
DSACKxx asserting with respect to negative clock edge

Required

70190/100 ns
o ns
50175/100 ns
60 ns max
18.5 ns

Guaranteed

120 ns
60 ns
>180 ns
-40/-20/0 ns
12 ns

Where more than one figure appears in a column, the different requirements for different speeds (12, 16 and
20 MHz) of the Am95C60 are reflected. The MC68020 timing requirements are for a 16.67 MHz device. Refer
to the Am95C60 Technical Manual and the MC68020 specifications for bus cycle timing details.

Figure 2.3-6 Bus Cycls 11mlng Diagram

Responding to a Bus Cycle asserted, and the code supplied to the MC68020 indicat­
ing the width of the device responding to the bus cycle (1,
2 or 4 bytes wide). The Arn95CSO is capable of operating
as either an 8- bit or 1S-bit wide port, but in this instance,
for optimum performance it should be configured as a 1S­
bit port and hence should respond with a code of 01 H.
(See Figure 2.3-7)

Having initiated a busy cycle to the Arn95CSO, logic is
required to generate sufficient WAIT states to the
MCS8020 to generate a bus cycle of acceptable length to
the Am95CSO. The response lines needing to be set are
the DSACKO and DSACK1 lines. When not asserted,
these lines cause WAIT states to be inserted in the bus
cycle. At the appropriate times, these lines can be

2-38

DSACK1

H
H
L
L

DSACKO

H
L
H
L

Function

Insert WAIT states
Cycle complete - 8-bit wide data port
Cycle complete - 16-bit wide data port
Cycle complete - 32-bit wide data port

Figure 2.3-7 DSACK Code DefinItIon

Port No. Operation Action

CHAPTER 2
System Bus Interface

A1 AO
(ADDR2 ADDR1)

(Addre .. pins of QPDM)
(System Bus addre .. lines)

0 0
0 0

Read
Write

Read Am95C60 Status Register
Write Instruction FIFO

0 1
0 1
1 0

Read
Write
ReadJWrite

Read Block Output 00 FIFO
Write Block Input 00 FIFO
Access to I/O Pointer Register

1 1 ReadJWrite Access to Internal Register pointed to by the VO Pointer Register

Figure 2.3-8 Am95C60 Intarnal Register Addre .. Decode

Once these signals are asserted, the bus cycle will
terminate, allowing the MC68020 to read the presented
16 bits of data on a Read cycle or to write 16 bits of data
on a Write cycle using the most significant 16 bits of the
32-bit data bus.

Note: The Am95C60 must be configured on the most
significant 16 bits of the 32-bit data bus.

Addressing the Am95C60's Intemal Resources

The Am95C60 recognizes four addresses in conjunction
with CSQPOM, as defined in Figure 2.3-8.

The method of accessing resources within the Am95C60
requires that the I/O Pointer Register be first loaded with
the address of the resource to be accessed. Having
loaded the I/O Pointer Register with the appropriate
value, any subsequent access to the I/O Oata Register of
the Am95C60 will transfer data between the Bus Master
and this resource.

It is important to note that each Am95C60 within a system
must be individually addressable to initialize each device
(using the Set QPOM Position instruction) to define the
position of each Am95C60 within the array of display
memory planes.

2.3.4 Dynamic Bus Sizing

The size of any bus cycle is dynamically defined by the
SIZO-1 lines generated by the MC68020. Any bus cycle
is capable of accessing 1, 2, 3 or 4 bytes on any byte
boundary provided that the access does not cross a
longword boundary (a longword = 4 bytes). Hence a 32-
bit wide memory system would need to decode the SIZO-
1 and address lines AO and A 1 together with AS and OS
to determine which of the byte select lines should be
asserted on Write cycles to the memory, so as to modify
only those bytes defined within any Iongword.

All resources within the Am95C60 are 16 bits wide. Since
any Write cycle (under the control of CSQPOM and
WRQPOM) to the Arn95C60 will take the 16-bit quantity
presented on the bus and load it into the appropriate

register, it is essential that data is word aligned. The least
significant address line is not used in addressing the
resources within the device.

The simplest way of organizing data to be loaded into the
Arn95C60, either directly from the MC68020 or from
system memory under the control of a OMA channel, is
to ensure that the data is word aligned and that all bus
cycles are word transfers, i.e., avoid instructions that will
generate byte accesses to the Am95C60. For word
accesses to the lOP register, null data should be used in
the most significant byte position on loading, and unde­
fined data will be returned in this byte position when
reading.

Note also that as data is transferred a word at a time
between the QPOM and the MC68020, the address lines
Al and ~ of the MC68020 connect to address pins
Aa and Al respectively of the QPOM.

2.3.5 Halt and Bus Error Control

Other response lines which need to be controlled on bus
cycles generated by the MC68020 or similar bus master
are "Halt" and "Bus Error" (HALT and BERR). These two
signals inform the bus master whether or not the bus
cycle has terminated successfully, and if not, whether a
repeat bus cycle should immediately be attempted (once
HALT has been negated), or whether a Bus Error Excep·
tion should be taken causing a bus error handling routine,
similar to an interrupt routine, to be executed.

In general, the repeat option is used when the pager
mechanism or cache control system finds that a virtual
address presented does not immediately map to avail­
able local memory, but an update mechanism exists
which does not require the CPU to execute specific code
to update that local memory. The bus master is inhibited
from using the bus until HALT is negated, allowing the
update mechanism time to do whatever is necessary
before negating HALT.

The bus error exception is usually taken if the host
processor is required to execute code to correct the fault

2-39

CHAPTER 2
System Bus Interface

that caused the bus cycle to terminate unsuccessfully,
such as "Bring in new data from secondary memory or
backing store into local memory".

Bus error may be set for other reasons than page fault
(the page of memory required is not currently resident in
available local memory) such as memory parity error or
access protection violation. In general, the pagermecha­
nism will be responsible for detecting these exception
conditions and will normally contain the logic to generate
these signals.

A special case of when Bus Error can be set is when an
Interrupt Acknowledge cycle is generated by the
MC68020 but no device is requesting service. H this
condition occurs and the Bus Error is asserted in such an
Interrupt Acknowledge bus cycle, it is interpreted that
Spurious Interrupt has occurred. The Bus Error excep­
tion is not taken under this condition. The Interrupt
Handling logic of Rgure 2.3-11 further describes this
condition.

In general, when accessing hardware resources within a
device such as the Am95C60 where the resource should
always be available, there should never be a need to
unsuccessfully terminate the bus cycle, and hence addi­
tional logic should not be required beyond what is in­
cluded in Figure 2.3-11 or would already be present
within such a pager system.

If a particular system requires that Bus Error or Halt be
driven under specific conditions, it would be a simple task
to generate control logic to set these signals as appropri­
ate. (See Figure 2.3-S)

2.3.6 System Bus Arbitration

The Am95CSO can only act as a bus slave, never as a bus
master, and hence does not have direct involvement with
system bus arbitration to become the bus master.
However, the task of loading the Am95CSOwith data and
instructions can be taken from the host processor and
given to a suitable DMA controller to reduce the load on
the CPU, thus resulting in greater system performance.
Such a DMA controller must interface to the bus arbitra­
tion scheme.

2.3.7 Initializing the Am95C60

Two main tasks are involved in controlling the Am95C60.
In orclerto initiate any activity within the graphics engine
following power-up reset, the device needs to be initial­
ized with a number of parameters defining the environ­
ment in which it resides (such as the size of the Video
DRAMs constituting the display memory, whether an 8-
or 1S-bit bus interface is being used to the system bus,
etc.). As stated previously, it is essential that each

2-40

Am95CSO within a system can individually be chip se­
lected when executing the Set QPDM Position instruc­
tion. Once having loaded each Am95CSO position reg­
ister, most accesses to the array of Am95C60s should
set all chip select lines (CSQPDM(O ... N), where there are
N devices within the system) as all Am95C60s execute
the same instruction simultaneously.

Execution of these instruction may have different effects
on different display memory planes. This depends on the
data already present in display memory or on the con­
tents of certain registers within each Am95C60. The
following are some examples: defining which planes are
active (activity bits), what color lines should be drawn
when executing drawing instructions (color bits), what
color is being searched for and on which planes, and
when using Area Fill instructions (color search bits and
listen bits).

When the appropriate instruction is used to set the
desired value in these registers, the instruction has within
it a field defining which Am95CSO is being accessed.
Each Am95CSO compares this field with the contents of
its plane position register to determine whether it is the
target for this operation. See Section 13.2.4 of the
Technical Manual.

Hence when defining the addresses with the hardware
space for the Am95CSOs within a system, individual
addresses should be allocated for each Am95C60 for
use when initializing the devices. A further address
should also be allocated causing all CSQPDM(O- N) lines
to be asserted for use when accessing all Am95CSOs
simultaneously (once all the Am95CSOs are initialized).
Refer to Figures 2.3-3 and 2.3-4.

Once the CPU has initialized the Am95CSO, the device is
ready to begin executing drawing or data manipulation
instructions. Over fifty different instructions are available
which can be loaded into the Am95CSO in a number of
different ways.

2.3.8 Initiating Am95C60 Activity

Loading Instructions from the Host Processor

The most straightforward method of loading instructions
is for the host processor to generate a Write cycle and
directly address the Instruction FIFO within the
Am95CSO by writing to Port 0 in "hardware space" (see
Figure 2.3-8). This method is commonly known as
Programmed I/O.

When servicing the Instruction FIFO by the host proces­
sor, the FREQ signal may not be directly connected.
However, when this is true, the FREQI interrupt, i.e., the
Instruction FIFO is haH empty, can be "mask-controlled"

to set a bit within the interrupt register of the Am95C60,
thereby causing the host to service the Instruction FIFO.
Alternatively, the host may poll the status register (Read
Port 0) bit 14 to determine whether or not the Instruction
FIFO requires service.

Using a DMA Channel to Load Instructions

The Instruction FIFO may be loaded using a dedicated
DMA channel, although no Acknowledge signal is avail­
able for the DMA channel supporting the instruction
FIFO; therefore, ''flow-through'', not ''fly-by'', transfers
must be supported for this channel.

Flow-through mode means that the DMA channel reads
system memory in one bus cycle using the address
reloaded into the Source Address Register of the DMA to
obtain the instruction to be loaded into the Am95C60.
The data is stored in a temporary data register. In the
next available bus cycle the DMA writes this data into the
Instruction FIFO using the address pre loaded into the
Destination Address Register of the DMA which should
incorporate the port number (Port 0) of the Instruction
FIFO of the Am95C60.

The signal FREO is generated by the Am95C60 indicat­
ing that the Instruction FIFO is not full, and hence can be
used to request further instructions from system memory
under control of the previously initialized DMA channel to
keep the Instruction FIFO full.

Using Program Mode to Load Instructions

The third method of loading instructions into the
Am95C60 is to use a special instruction that causes the
Am95C60 to read instruction from an area in video
memory instead of accessing the Instruction FIFO. Thus,
once having written a string of instructions into video
memory, the Am95C60 can be loaded with the ·Call"
instruction. When executed, this instruction will start to
take subsequent instructions from an area of. video
memory pointed to by the following operand address pair
after the Call instruction. Subsequent Call instructions
allow the use of nested subroutines within display
memory. Execution control is switched back to the
Instruction FIFO either by executing a "Return" instruc­
tion (when not in a nested subroutine), or by a reset of the
device (hence, the device always initially executes from
the Instruction FIFO).

Moving Data Between System and Display Memory

Certain instructions may require data to be written to the
Block Input FIFO, or data to be read from the Block
Output FIFO when data is being transferred between
video memory and system memory, or another resource
on the system bus.

Programmed 110

CHAPTER 2
System Bus Interface

These FIFOs may be serviced directly by the host proc­
essor either by interrupting the host processor on such a
condition or by the host processor polling the status
register to determine whether the Data FIFOs require
service, although this would impose a heavy workload on
the host. Alternatively, the Data FIFOs may be serviced
using a dedicated DMA channel from a suitable device,
such as the Am9516A two-channel DMA controller.

Request and Acknowledge lines are available on the
Am95C60 to allow such a DMA channel to support the
Data Input and Output FIFOs, thus relieving the host
processor of this task.

Using a DMA Channel to Service the Data Input!
Output FIFOs

When data is required on a write-to-display memory, or
is ready on a ready-from-display memory, a request is
raised (DR EO) by the Am95C60 to request service ofthe
appropriate data FIFO. The FIFO may be serviced
directly by the host CPU by reading or writing the appro­
priate port on the Am95C60 (Port 1) or by using a suitably
initialized DMA channel.

The DMA channel's request input may be linked via an
inverting gate to the DREO signal. Using the ACKD
associated with this DMA channel, ''fly-by" transfer can
be achieved between Data FIFOs and system bus.
Hence, whenever the Data FIFOs require service, no
further host processor intervention will be required, pro­
vided the DMA channel has been initialized with the start
address of the area of system memory to be used and the
number of words to be transferred tolfrom system
memory.

On completion of each data transfer instruction or on
initiation of the next data transfer instruction, the host
processor needs to be informed so that it can initialize the
Data DMA channel with the relevant parameters for the
next data transfer instruction to be executed.

Note: The port number value on address lines ADDR2
and ADDR1 (QPDM pins A 1 and AD) need not be valid
during DMA transfers using the DREQ and ACKD lines,
since these form part of the address to system memory.
Port 1 is assumed by the QPDM.

Using a DMA Channel to Service Multiple Am95C60s

Since all Am95C60s begin execution ofthe same instruc­
tions at approximately the same time, they will require
their Instruction and Data FIFOs to be serviced at the
same time.

2-41

CHAPTER 2
System Bus Interface

As the instruction stream to each Am95C60 is held in an
on-board FIFO, the ripple-through delay of each FIFO
may be sufficiently different to cause different
Am95C60s to detect and begin execution of an instruc­
tion on different clock edges. Hence, for a system
containing multiple Am95C60s, their instruction execu­
tion may initially be skewed by one clock cycle. This
problem is resolved by using the MATIN and MATOUT
lines between QPDMs to re-synchronize and ensure all
devices are in step.

To ensure that all Am95C60s are ready for the DMA
transfer to begin, all FREQ and DREQ lines are con­
nected together, effectively implementing a 'Wire-AND"
function for each signal. Until all devices are ready, the
resultant line will not be asserted. This is possible as
these signals are of "open drain" construction (active
HIGH), and as such require a pull-up resistor to +5 v.
These are then inverted to generate active LOW DMA
channel requests.

2.3.9 Bus Interface Control

Six instructions are provided within the Am95C60s in­
struction setto facilitate transfer of data between the sys­
tem bus and display memory. These are the Output
Block, Input Block and Store Immediate instructions for
reading and writing display memory. Each can eitheruse
the current pen position or use the address Specified
within the instruction as the target area within display
memory.

2.3.10 Data Transfers by Plane or Pixel

When transferring between the system bus and memory,
two options are available under the control of the Z bit
within the instruction field to define whether data should
be accessed by plane or by pixel (Z=O transfer by plane;
Z-1 transfer by pixel).

Display Memory Access by Plane

When reading display memory by plane, the activity bits
associated with each display memory plane must be set,
using the Set Activity Bit instruction, so that only the plane
involved with the data transfer is active .. All other plane
activity bits must be reset. Hence the only Am95C60 to
generate an enable (EDE) to control the bidirectional
buffer linking the Am95C60's 16-bit data port to the
system bus will be the device with an activity bit set for
one of the planes for that it has control. When writing
display memory by plane, multiple activity bits may be set
if identical data is to be written to more than one plane.

2-42

Display Memory Access by Pixel

When accessing the display memory by pixel using the /
Input and Output Block instructions, more than one plane
will be accessed concurrently. Any number of activity bits
may be set during the execution of the instruction. When
executing such an Input or Output Block (by Pixel)
instruction, the Block Input Step (BIS) field defines the
number of pixels contained in each 16-bit data word.

Bidirectional Buffer Enable Control

The control of the enables of the bidirectional buffers will
be more complex when using Input or Output Block
Transfer instructions by pixel within a Multi-QPDM sys­
tem, since each Am95C60 within the system will need to
transfer four bits (relating to their four planes) to be
assembled into the 16-bit value to be presented to the
system bus.

In a multi-QPDM system, additional bidirectional buffers
will be required that are only enabled when using this
mode to interface these four bits of data from each
Am95C60 to the 16-bit data bus. Figure 2.3-9 shows an
example for a 2-QPDM system. The Input Block Section
in Chapter 140fthe Technical Manual shows the recom­
mended connections for all possible system sizes.

By Plane or By Pixel

Control of the bidirectional buffer enables can be
achieved by using a PAL 16R4 to decode the EDE lines
from each Am95C60, and by using a register (I/O mode
register) within the PAL device that can be set by the host
processor prior to the loading and execution of a Block
Input or Output instruction. This register will define
whether the Block I/O transfer is to be done by pixel
(register set) or by plane (register reset). ResponsibiHty
Hes with the software to ensure that the register is set to
the appropriate state to match subsequent Block I/O
instructions; for example, if the register defines, "Trans­
fer by Pixel", then the subsequent Block I/O instruction
should also define "Transfer by Pixel" using the ''Z. field
within the instruction. The appropriate enables to each
buffer can be generated by the PAL device.

A simple way to set and reset this "PixeI/Plane"VO mode
register could be to allocate two addresses within "hard­
ware space", one to define "setting" the register and the
other to define "resetting" the register. The host would
then only need to generate a bus cycle to the appropriate
address to set the I/O mode register to the desired value.
This is only one of many different ways of implementing
this function.

M SYSTE
DA TABUS

1. " ,

3Z
,

J

l' " ,

16 " ,

4

~g;! ..
;;

~fil 0

i: g;ffi~
~r-

~

~ r!: g;ffi
~ g'"

~ CD~ 0

~ FNAAI F lAV PllCEU

FNARI F IAV PLANEI

DIRECTION

(PoIari1y dependent on
buffer type used)

OPDU
0

OPDM
1

CHAPTER 2
System Bus Interface

ACKD - (FROMDMA)

WRaiiS
AS-

~
~

'--
'--

An PAL
A, 11R4B
rn=o--
EDE

- t--

'---

CsPiXeI. ----'-CSPlANE

Figure 2.3-9 Transceiver Configuration to System Bus (2-QPDM System)

Note: The DSACK logic would need to respond to an
J access to these addresses, otherwise the system bus
would lock up with infinite WAIT states inserted.

Bidirectional Buffer Direction COntrol

The direction control of the buffers is a simple decode of
the system write (WRBUS) line and the acknowledge
(ACKD) line from the DMA channel associated with the
Data FIFOs. The ACKD line is required to indicate that
the sense of the WRBUS line is inverted when transfer­
ring data between the system bus and the Data FIFOs in
''fly-by'' mode. An example of the PAL code to achieve
this function for a 2 QPDM system is shown in
Appendix 2.

- Idle
- Stack Overflow
- Display Memory Boundary Crossed
- Clipping Boundary Crossed
- Frame
- FREQ (Instrudion FIFO DMA Control)
- DREQ (Data FIFO DMA Control)
-- Vertical Blank
- Software (The SIGNAL Instrudion)· or

Picking Deted (Non-maskable)"

2_3.11 Interrupt Handling

There are a number of conditions that cause the
Am95C60 to raise interrupts to the host processor to
inform it of some specific event or an illegal condition.
The different types of interrupts that the Am95C60 can
generate are listed in Figure 2.3-10 All interrupts are
maskable.

The interrupt signal from the Am95C60 typically will be
connected to some priority encode scheme, so that all
the sources of interrupt within the system can be ar­
ranged by priority. (See Figure 2.3-11)

"Note: "Software" and ·Picking Deted" conditions set the same interrupt bit in the interrupt
register. However, ·Picking Deted" is only enabled when picking is enabled.

Figure 2.3-10 Am95C60 Interrupt Sources

2-43

CHAPTER 2
System Bus Interface

2-44

Decode Logic Schematic:

INT2

INT 1

INT 0

AVEC

}
Interrupt Level
to MC68020 Haru~~~. {~~

AmPAL

16l8B
iACK<Oevice>

Acknowledged Interrupt Level ADDR 3 {

AS

ADOR 2

FCo

FC1

F~

ADOR19

ADOR18

ADOR17
AOOR16

AS

AmPAL

16l8B

ADOR 1
iAcK

COPROCESSOR ENABLE (For MC68881)

Any other CPU space
device enables required
within the system.

Note - An lACK cycle uses a Function Code of 7H (defining CPU space
access). and address lines 16 to 19 contain a code of OFH.

The interrupt level being acknowledged is asserted by the MC68020
on address lines 1 to 3.

~ and lACK <Device> are mutually exclusive.

No DSACK response should be generated on bus cycles when
A VEe is asserted.

Figure 2.3-11 Interrupt Handling logic

The MC6B020 Interrupt Sequence

The interrupt sequence of the MC68020 is as follows:

The MC68020 monitors the level of the IPLa-2 lines.
When a non-zero level is detected for at least two
consecutive system clocks, the MC68020 internally flags
that a genuine external interrupt condition exists. Note
that the IPL()'2 lines are active LOW.

If this interrupt level present on the the IPL 2 lines is
greater than the current interrupt level, this wilPcause the
host processor to "stack" the state of the machine on
completion of the current instruction. The MC68020 will
then generate an Interrupt Acknowledge (Read) Bus
Cycle (lACK cycle) to determine which interrupting de­
vice for any particular interrupt level has raised the
interrupt. The device with an interrupt pending can
respond to this bus cycle by supplying a vector number
that is used to index into an Interrupt Address table to
point to a unique program subroutine to service that
particular interrupt.

Using Autovectors

It is not essential that the interrupting device respond to
this lACK cycle by providing a vector number and gener­
ating a DSACK response as previously described. In­
stead, the device can cause the AVEC line to be asserted
to the MC68020, indicating that the Autovector for this
particular interrupt level should be used. Within the
Vector Address table, this causes a specific entry unique
for each interrupt level, to be used as the source of the
interrupt service routine start address, instead of using
the returned vector number to index into the Vector
Address table to provide this start address.

Using the Autovector system to respond to the lACK
cycle, caused by the Am95C60 interrupt, makes the
hardware support more simple, as the Am95C60 does
not have a specific on-board register to hold an interrupt
vector number. However, should a particular system
require it, it would be relatively simple to use an external
register to hold the vector number enabled by a suitable
signal from the "Hardware Space" decode logic. When
using the Autovector feature, the Am95C60 does not
need to be informed that the lACK cycle has occurred at
this time, but decode logic can set the AVEC line to the
MC68020 in response to the lACK cycle. (See
Figure 2.3-11)

On entering the interrupt service routine for the
Am95C60, the software should read the Status Register
of the Am95C60. From this register the software can
determine that interrupt conditions currently require serv­
ice. To clear the relevant bits within the Am95C60, a
Write to the Interrupt Acknowledge Register should be

CHAPTER 2
System Bus Interface

issued defining that bits of the Interrupt Register are to be
reset. If no further interrupt conditions have become set
since reading the Status Register, this Write to the
Interrupt Acknowledge Register will cause the interrupt
line from the Am95C60 to be negated.

If, after the Status Register has been read to determine
outstanding interrupts, another interrupt condition oc­
curs before the Write Interrupt Register occurs, then this
newly set bit will not be cleared by the Write to the
Interrupt Acknowledge Register, and hence the interrupt
line will not be reset. This does not cause a problem,
however, since when the interrupt routine completes and
tries to return to the previous interrupt level, the
MC68020 will again be interrupted due to this new
interrupt condition. The interrupt routine will again be
entered, allowing this new bit to be read, cleared and
serviced. This mechanism guarantees that no interrupt
will be lost.

Note that if an lACK cycle occurs but the interrupt
condition causing the lACK cycle to be generated by the
MC68020 is no longer set, then a Spurious Interrupt has
occurred. Under this circumstance, the lACK cycle
should be responded to with Bus Error, not DSACKxx or
AVEC. The MC68020 will interpret the Bus Error signal
to indicate that the Spurious Interrupt vector should be
used as the entry address into an interrupt routine. The
MC68020 will not take the Bus Error exception.

Reading the Status Register

When reading the Status Register of an Am95C60, the
device must be explicitly addressed using the unique
address associated with that Am95C60, as used when
setting the Plane Position Register of each Am95C60. If
the global address is used, multiple devices will attempt
to drive the system bus simultaneously. All QPDMs will,
however, contain the same value in their Status
Registers.

System Interrupt Priority

To prioritize a number of interrupts, some of which may
cause the same interrupt level, a PAL device may be
used simply to look at the currently outstanding inter­
rupts. The relevant interrupt level can than be asserted
on the IPLa-2 lines to the MC68020. All devices must hold
their interrupt lines asserted until the device receives an
appropriate Acknowledge to their interrupt. Those de­
vices that can return an Interrupt Vector should have an
individual lACK line asserted to them during the lACK
cycle, informing the device to return the vector number.
Again, a PAL device can be used to generate the individ­
uallACK lines, assuring that only one device responds to
any lACK cycle. (See Figure 2.3-11).

2-45

CHAPTER 2
System Bus Interface

Appendix 3 shows an example of the Source Code for
such a PAL device.

For all devices that use the Autovector facility, no individ­
uallACK line need be set to that device, only the AVEC
line asserted to the MC68020. As described above, the
device detects that the interrupt is being serviced (inter­
rupt acknowledged) when the Interrupt Acknowledge
Register is written. which will clear the relevant interrupt
bits that, when set, cause the interrupt line to be asserted.

Interrupt Handling within a Multl-Am95C60 System

As all Am95C60s within a system execute the same
instruction in synchronism, any interrupt conditions de­
tected by one Arn95C60 will also be detected by all other
Arn95C60s.

By reading the Status Register of any Arn95C60, any
outstanding interrupt condition across all Am95C60s can
be detected. To clear such an interrupt condition across
all Arn95C60s, a Write to the Interrupt Acknowledge
Register of all Am95C60s can be achieved simuHane­
ously, thus ca\Jsing the desired interrupt condition to be
acknowledged and cleared.

Using the Arbitration and Bus Cycle Response schemes
implemented by the MC68020, it is simple to interface
two devices on the same bus, each running asynchro­
nously from their own clock source.

To gain the most performance from the MC68020, the
device should be operated at the highest clock rate
defined within the specification of the part (currently
16.67 MHz). However, the Arn95C60 is capable of
running on a 20 MHz clock for maximum performance in
drawing and data transfer operations. If maximum

N3

WRBUS

CSOPDM
CSPiXE[

CSPLANE

ClK60ns

REGEN 11

PAL
16R4B

performance is desired from each device, then each will
run from asynchronous clock sources.

Since the definition of the Bus Cycle for accesses to the
Arn95C60 does not define a relationship to the Am95C60
clock, the CSQPDM(N), WRQPDM and RDQPDM sig­
nals may be asserted in synchronism with the MC68020
clock. Any asynchronicity will be handled by the
Arn95C60 provided that the maximum and minimum
specified figures are complied with. Conversely, in
responding to the bus cycle, it is feasible to generate the
DSACK response signals from the Arn95C60 clock, as
the MC68020 has intemal logic to resynchronize these
signals to the MC68020 clock. Depending on whether
the response is synchronous or asynchronous, different
timings are given in the MC68020 timing definitions,
defining the specification of the DSACK response
signals.

DSACK Response Generation

Dependent upon other system constraints, it will proba­
bly be more simple to generate the DSACK responses
synchronously to the MC68020 clock using a fixed delay
logic sequence to define the length of any access to the
Arn95C60. On detecting an access to an Arn95C60,
sampling using the MC68020 clock, a timing sequence
can be initiated that at some programmed delay after
detecting the access can generate a synchronous
DSACK response. An example of how this may be
implemented is shown in Figure 2.3-12.

Example of How DSACK Response May be
Generated

Using a PAL device with pull-up resistors on each regis­
tered output, the registers can be clocked with the

Unused

~~ ~} State Counter

COUNT 2
i5SACi(1

RDQPDM

WRQPDM

QPDMEN

NOTE 1: 1 k Ohm pull-up resistors are required on the register
three-state outputs.

NOTE 2: The CSQPDM signalrrust be synchronous to the clock.

Figure 2.3-12 DSACK Response Generation using a PAL

2-46

synchronous MC68020 clock (clocking on the negative
edge of the MC68020 clock).

The signal CSQPDM indicates that an access has oc­
curred to at least one Am95C60. The delay from address
strobe to this signal being asserted is totally dependent
on the speed of the pager system plus the delay of the
logic that decodes the Hardware Space address, and so
may be totally asynchronous to the MC68020 clock.
However, WAIT states will be inserted in the bus cycle
during this period, since no DSACK response has yet
been given.

Depending upon how the pager system is designed, the
enables to either memory or hardware resources mayor
may not be synchronous. For example, if a state machine
is used to search look-up tables, then it may be as simple
to generate a synchronous enable of the hardware de­
code logic.

If a direct addressing scheme is used, then CSQPDM will
not suffer the delay of the pager system, just the delay of
the address decode PAL device.

With the advent of "B" speed PALs, a solution is now
feasible using a PAL16R4B, as shown in Figure 2.3-12.
This solution offers a simple method of generating the
Read and Write strobe signals to the QPDM and
DSACKxx response signals to the MC68020 within the
framework of a MC68020 bus cycle. Appendix 4 shows
an example of the Source Code for such a PAL device.

How to Solve Signal Asynchronlclty

If the synchronicity of these enables with respect to the
MC68020 clock cannot be guaranteed, then logic will be
necessary to re- synchronize such an enable. The enable
would be used to initiate the DSACK response logic for
accesses to the Am95C60 to ensure that metastability
problems cannot cause the logic to function erroneously.

74F74

CHAPTER 2
System Bus Interface

A simple way to re-synchronize an asynchronous signal
to a clock of at least 60 ns is shown in Figure 2.3-13. Even
if the first 74S74 (or 74F74) goes metastable, the output
can be guaranteed (within reason) to settle to either a
HIGH or LOWwithin 60 ns. Hence the second 74S74 will
be guaranteed not to go metastable, as its data set-up
time with respect to the next clock cycle will be met. The
output of the second 74S74 will, therefore, be synchro­
nous with the MC68020 clock.

Using a suitable synchronous Signal, further control of
the Set or Clear pin (dependent on whether the input
signal is LOW or HIGH true) can allow the clearing of the
synchronous output without having to suffer the two clock
delayofthe register pipeline. Such a suitable signalinthe
case of CSQPDM is AS, that runs synchronously to the
negative edge of the MC68020 clock.

DSACK Sequence Logic

Using a B-speed PAL guarantees that the DSACK re­
sponse is set within the requirement of 18.5 ns(worst
case) of the negative edge of the MC68020 clock. The
maximum "B" speed PAL register outputs from clock
delay is 12 ns. This meets the asynchronous set-up time
of the DSACK response with respect to the MC68020
clock, hence defining exactly on that clock edge the
MC68020 will detect DSACK asserted. The MC68020
will negate AS on the next negative edge ofthe processor
clock. This will help define the minimum possible bus
cycle time to maximize bus throughput for maximum
efficiency of data transfer instruction betwe~n system
bus and display memory.

The PAL is designed to use three outputs as a state
counter initiated by a synchronous CSQPDM. Depend­
ing on the level of WRBUS from the MC68020, either
RDQPDM or WRQPDM is asserted. The timing is
controlled by the state counter. (See timing diagram in
Figure 2.3-6) The PAL code in Appendix 2 is annotated
to explain the operation of the equations.

SET
74F74

__ ~cllP
(CSOPOM async)

o 01-----------10 o ~
(cSQPDM sync)

CK Q r---;CK

Syslem Clock --. -----------1
(Min 60 ns period)

Figure 2.3-13 Resynchronlzatlon logic

2-47

CHAPTER 2
System Bus Interface

2.3.12 Conclusions

This Application Note offers an example of a solution to
the problem of interfacing a QPOM Graphics Engine to a
MC68020 processor. While offering a solution to this
interface problem, the author realizes that many other
system constraints may exist that -may require this ex­
ample solution to be modified to fit within system
requirements.

2-48

In discussing the areas of design that need careful
consideration, a comprehensive description is included
of the way in which both the MC68020 and QPOM fit
within a system and interface to one another. This should
help the designer to quickly understand the operation of
both devices' interface requirements and modify this
design appropriately.

APPENDIX 1 - Address Decode PAL Source Code

DEVICE

PIN

DEFINE

FC[0:2) - 1:3

ADDR[16:19)

/AS

lACK

EN881

" THESE ARE FUNTION CODE LINES"
" FROM THE Mc68020 DEFINING SUPERVISOR OR"
" USER, CODE OR DATA SPACE"

= 4:7 " THESE ADDRESS LINES DEFINE"
" THE TYPE OF CPU SPACE ACCESS"
" WHEN THE FC VALUE IS 7."

- 8 " ADDRESS STROBE FROM THE 68020"

= 12 " O/P INDICATING AN INTERRUPT"
" ACKNCMLEDGE BUS CYCLE IS OCCURRING"

= 13; "ENABLE FOR MC68881"

" ANY OTHER CPU SPACE ENABLES REQUIRED"

" THE FOLLOWING VALUES ARE DEFINED IN THE 68020 SPEC."

CPUSPACE = FC[O) * FC[l) * FC[2);

IACKEN - ADDR[16) * ADDR[17) * ADDR[18) * ADDR[19);

COPROCEN - /ADDR[16) * ADDR[17) * /ADDR[18) * /ADDR[19);

BEGIN

" OUTPUT DEFINITION EQUATIONS"

/IACK - CPUSPACE * IACKEN * AS;

/EN881 - CPUSPACE * COPROCEN * AS;

END.

Listing sum-of-products equations for CPU_SPACE_ADDRESS_DECODER

/IACK - FC[O) *FC[l) *FC[2) *ADDR[16) *ADDR[17) *ADDR[18)*ADDR[19) *AS;

/EN881 = FC[O) *FC[l) *FC[2) */ADDR[16) *ADDR[17) */ADDR[18}*/ADDR[19) *AS;

CHAPTER 2
System Bus Interface

2-49

CHAPTER 2
System Bus Interface

APPENDIX 2 - I/O Mode PAL Source Code

PIN

BEGIN

2-50

/AS

!WRBUS
ADDR[1:0)

1 "This is the clock for the I/O Mode reg"
3 "Write signal for system bus (68020)"
4:5 "The system address lines defining which

port of the QPDM is being accessed. -

Note: These pins are connnected to System
Address lines A2 'AI. Refer to App Note."

/CSPlXEL - 6 "Line from Address Decode PAL defining access
to the I/O Mode reg, setting the register."

/CSPLANE - 7 "Line from Address Decode PAL defining access
to the I/O Mode reg, resetting the reg."

ACKD

/EDEO
/EDE1
DIR

OEPIX
PIXMJD

OEO
OE1

8

- 9
-11

12

"Acknowledge line from the DMA controller."
"Ensure correct polarity for DMA in use!"

"Buffer enable line from QPDMO."
"Buffer enable line from QPDM1."
"Buffer Direction Control Output."
"Ensure correct polarity for Bi-Di buffers
in use!"

13 "Output Enable for BY PIXEL Buffer."
14 "The I/O Mode Register - Set - Pixel Mode

Reset - Plane mode."
18 "Output Enable of the BY PLANE buffer (QPOMO)"

= 19; "Output Enable of the BY PLANE buffer (QPOM1)"

"The sense of the WRBOS:L signal is inverted when
the OMA is controlling the Bus Cycle."

/OIR = WRBOS * /ACKD
+ !WRBOS * ACKD;

"Note this Register clocks on the trailing (rising) edge of Address Strobe"

/PIXMOO :- PIXMOD * /CSPlXEL * /CSPLANE

+ CSPIXEL;

/OEO - /PIXMOD * EDEO

"Leave the I/O Mode register
contents unchanged (clock back
in current contents), if access
not to I/O mode register."

"Set reg if CSPIXEL is set when
Address strobe negates."

"Enable PLANE Buffer (QPDMO) if
EDEO:L set , NOT in pixel mode."

CHAPTER 2
System Bus Interlace

l0E1

+ EDEO * I (/ADDR [1) * ADDR [0)); "This last term enables the PLANE
Buffer if EDEO is set AND the
access is not to the Data FIFO's -
PORT 1."

- IPIXMOD * EDE1 "Enable PLANE buffer (QPDM1) if
EDE1 : L set & NOT in pixel IIDde."

+ EDE1 * /(/ADDR[l) * ADDR[O); "Comnent as for OEO above."

"Enable the PIXEL buffer if in Pixel Mode AND the relevant EDEx is asserted
AND the access is to PORT 1 or the acknowledge line from the DMA controller
is set.

i.e., don't enable the Pixel Buffer if the access is to any resource other
than the Data FIFOs."

IOEPIX - (PIXMOD * (EDEO + EDEl» * «/ADDR[l) * ADDR[O» + ACKD);
END.

Listing sum-of-products equations for BUS_XCEIVER_CONTROLIER

IDIR - WRBUS*/ACKD
+ !WRBUS*ACKD;

IPIXMOD := PIXMOD*/cspIXEL*/cSPLANE
+ CSPIXEL;

IOEO - IPIXMOD*EDEO
+ EDEO*ADDR[l)
+ EDEO*/ADDR[O);

IOEl = IPIXMOD*EDE1
+ EDE1*ADDR[l)
+ EDE1*/ADDR[0);

lOEPIX = PIXMOD*EDEO*ACKD
+ IADDR[l)*ADDR[O)*PIXMOD*EDEl
- PIXMOD*EDEO*/ADDR[l)*ADDR[O)
+ PIXMOD*EDEl*ACKD;

2-51

CHAPTER 2
System Bus Interface

APPENDIX 3 - Interrupt PAL SOurce Code

DEVICE INTERRUPT_CONTROLLER_PAL (PAL16LS)
PIN

DEFINE

2-52

/AS = 1 "ADDRESS STROBE FRCM THE 6S020"

/IACK - 2 "SIGNAL INDICATING AN INTERRUPT ACK."
"CYCLE IS OCCURRING (FROM CPUADEC PAL)"

ADDR[1:3} - 3:5

QPDMINT 6

DMAINT 7

"THESE ADDRESS LINES FROM"

"6S020 DURING AN lACK CYCLE"
"DEFINE THE INTERRUPT LEVEL"

"BEING ACKNOWLEDGED."

"INTERRUPT SIGNAL FROM THE
"QPDM GRAPHICS SYSTEM."

"ENSURE CORRECT POL1lRITY"

"FOR THE DMA TO BE USED!!"

"ANY OTHER INTERRUPT INPUTS SHOULD BE DEFINED HERE"

IPL[0:2) = 13:15 "INTERRUPT PRIORITY LEVEL"

"SIGNALS TO THE Mc6S020."

AVEC = 16 "AUTOVECTOR SIGNAL TO 6S020"

IACKDMA 17 "INTERRUPT ACKNOWLEDGE LINE TO"

"THE DMA CONTROLLER."

BERR = lS; "BUS ERROR signal to 6S020 to
warn of spurious interrupt

"ANY INDIVIDUAL INTERRUPT ACKNOWLEDGE LINES SHOULD

"BE DEFINED HERE & ALLOCATED O/P PINS APPROPRIATELY."

cond."

"Let us assume QPDMINT relates to interrupt levell, and DMAINT relates to

interrupt level 2 (Clearly these are totally user definable). Hence QPDMIACK

will relate to an Interrupt Acknowledge cycle to a level 1 interrupt, and as

such we require to set AVEC:L to the Mc6S020. The DMA may, however, require an

lACK line directly, hence won't set AVEC:L but will set the lACK line to be

connected to the DMA device."

QPDMIACK - ADDR[l) * /ADDR[2) * /ADDR[3);

DMAIACK - /ADDR[l) * ADDR[2) * /ADDR[3];

"DEFINE ANY OTHER INTERRUPT LEVELS RElATING TO DEVICES"
"WITHIN THE SYSTEM, HERE. I.E. THE DMA, SCSI, etc."

"Note : As ~his is a priority encoder, ensure that if an interrupt, say level 5,

becomes set, then all the equations relating to lower interrupt levels (levels 1
to 4) IIUlst be inhibited.

CHAPTER 2
System Bus Interface

Hence all the equations must have terms within them which only allow the equation

to take effect if this is the highest current interrupt level"

IF (QPDMINT * /DMAINT) THEN /IPL[2:0] - 1;

IF (DMAINT) THEN /IPL[2:01 = 2;

"The PAL should only respond to an interrupt acknowledge cycle if the interrupt

causing the lACK cycle to occur is still asserted. If it is no longer set then

BERR should be asserted."

/AVEC - QPDMIACK * lACK * AS * QPDMINT;

/IACKDMA - DMAIACK * IACK * AS * DMAINT;

"AN INTERRUPT ACKNOWLEDGE"
"BUS CYCLE IS OCCURRING, AND"

"THE INTERRUPT LEVEL BEING"

"ACKNOWLEDGED BY THE 68020"
"IS QPDMIACK (DEFINED AS 1"

"ABOVE) ."

"THE DIRECT lACK LINE TO THE"

"DMA DEVICE."

"DEFINE HERE THE BOOLEAN EQUATION FOR ANY INDIVIDUAL INTERRUPT"
"ACKNOWLEDGE LINES TO INDIVIDUAL DEVICES WITHIN THE SYSTEM."

/BERR = lACK * AS * / «QPDMIACK * /QPDMINT) + (DMAIACK * /DMAINT»;

"Note: If an lACK cycle occurs and no interrupt is outstanding, then don't set
DSACK or AVEC, but set BERR. The Mc68020 will take this to mean that a spurious

interrupt has occurred, and will not take the BUS ERROR trap, but will use the
SPURIOUS INTERRUPT vector.

Other reasons for setting BERR are discussed in the Applications Note, but are

dependent on other system constraints, and as such can't be included in this
example.

In many applications, no other condition may need to set BERR."

Listing sum-of-products for INTERRUPT_CONTROLLER_PAL

/IPL[2] 0;

/IPL[l] = DMAINT;

/IPL[O] = QPDMINT*/DMAINT;

/AVEC - ADDR[1]*/ADDR[2] */ADDR[3] *IACK*AS*QPDMINT;

/IACKDMA = /ADDR[1]I*ADDR[2]*/ADDR[3]*IACK*AS*DMAINT;

/BERR = IACK*AS*ADDR[3]
+ IACK*AS*/ADDR[2]*/ADDR[1]
+ IACK*AS*ADDR[2]*ADDR[1]

+ IACK*AS*DMAINT*QPDMINT

+ IACK*AS*ADDR[l]*QPDMINT
+ IACK*AS*DMAINT*/ADDR[l];

2-53

CHAPTER 2
System Bus Interface

APPENDIX 4 - DSACK PAL Source Code

PIN

DEFINE

CLOCK - 1

!WRBUS - 2

/AS - 3
/CSQPDM - 4

/CSPlXEL - S
/CSPLANE - 6
/ENQPDM = 11
QPDMEN = 12

COUNT[0:2] - 16:14
DSACK1 = 17

RDQPDM - 19
WRQPDM - 18;

"This is the inverse of the clock to the Mc68020,
i.e. register clock on the falling edge of the
processor clock."

"Start sequence counter if the current state is 0 and CSQPDM:L(or CSPlXEL:L
or CSPLANE:L) are true, i.e. on the next clock edge step into state 1.

Once the sequence is started, the sequencer should run through states 1 to S
before returning to state 0, and remaining there (Idle) until the start
conditions are again detected. The sequencer will stick in state S until

Address Strobe is negated. On the next clock it will return to Idle ready to
start the sequence again when the starting conditions again become true."

ACCESS = CSQPDM + CSPlXEL + CSPLANE; "Defines which accesses DSACK
should be generated for"

START - /COUNT[O] * /COUNT[l] * COUNT[2] * ACCESS * AS;

IDLE - / (ACCESS * AS);

"These expressions define values to the labels STATEx"

BEGIN

2-54

STATEO = /COUNT[O] * /COUNT[l] * /COUNT[2];
STATE1 = COUNT [0] * /COUNT[l] * /COUNT [2] ;
STATE2 - /COUNT[O] * COUNT [1] * /COUNT [2] ;
STATE3 - COUNT [0] * COUNT [1] * /COUNT [2];
STATE4 - /COUNT[O] * /COUNT[l] * COUNT[2];

STATES - COUNT [0] * /COUNT[l] *
STATE6 - /COUNT[O] *
STATE7 = COUNT [0] *

HOLDS - STATES * AS;

ENDS = STATES * /AS;

COUNT [1] *
COUNT [1] *

COUNT[2];
COUNT[2];
COUNT[2];

CHAPTER 2
System Bus Interface

"These equations define the progression of the states, once the sequencer has been initiated."

IF (START) THEN /COUNT[2:0) :- 1;

IF (IDLE) THEN /COUNT[2:0) :== 0;
IF (STATEl) THEN /COUNT[2:0) :- 2;
IF (STATE2) THEN /COUNT[2:0) :- 3;
IF (STATE3) THEN /COUNT[2:0) :- 4;

IF (STATE4) THEN /COUNT[2:0) :- 5;

"Default reset states"
IF (STATE6) THEN /COUNT[2:0) := 0;
IF (STATE7) THEN /COUNT[2:0) :- 0;

"Return to Iclle (state 0) if in state 5 AND Address strobe

has been negated. If in state 5 and AS:L is still asserted,
then wait in state 5."

IF (HOLDS) THEN /COUNT[2:0) :- 5;
IF (ENDS) THEN /COUNT[2:0) :- 0;

"Only enable the DSACK line if the current bus cycle is to a QPDM or the

I/O Mode register."

/OPmEN - ACCESS * AS; "This is connected to pin 11, the register enable, so that
the DSACK lines are only driven by the PAL when the QPDM's
or I/O Mode register are being accessed."

/DSACK1 :- STATE2 + S~TE3;

"Set DSACKl on entering state 3 and hold on during state 4.

Note the clock to o/p delay must be less than 18.5 ns to meet the DSACKxx
synchronous timing of the Mc68020."

"Set WRQPDM if the current cycle is a write (WRQPDM is true) and the sequencer
is in states 1 or 2. This guarantees a Write Strobe to Q1?DM of 120 ns - QPDM
requires a min Write Strobe of 70 to 110 ns depending on which speed QPDM is
being used.

Write data is guaranteed stable for 60 ns after negating WRQPDM, as 1lddress
Strobe will not be negating WRQPDM, as AS:L will not be negated by the

68020 until effectively state 4. Required data hold time is 0 ns.

/WRQI?DM - CSQPDM * WRBUS * (STATE1 + STATE2);

"The timing of when the 68020 samples read data, is associated with the timing
of the assertion of the DSACKxx lines. Data must be stable from the QPDM to the
68020 within 50 ns of DSACK being asserted.

This PAL ensures that the DSACK1 line will be asserted at least 120 ns after
RDQPDM.

The QPDM will guarantee stable data after a max of 80, 100 or 120 ns (depending
on which speed QPDM) from RDQPDM being asserted, hence the data from the QPDM
will be stable within the requirements of the 50 ns of DSACK being asserted
required by the 68020.

2-55

CHAPTER 2
System Bus Interface

Data is sampled on the next negative edge of the 68020 clock after DSACK is
asserted (in the synchronous case), i. e., at the end of state 3. The data will
be held stable by the QPDM well beyond this point under the control of RDQPDM
negating, and hence meets the Data Hold time requirements of the 68020 (0 ns in
the synchronous mode)."

/RDQPDM - CSQPDM * /WRBUS * (STATE 1 + STATE2 + STATE 3 + STATE4);
END.

/COUNT[2] := /COUNT[l]*COUNT[2]*AS
+ COUNT[O]*COUNT[l]*/COUNT[2]
+ /COUNT[O]*/COUNT[l]*COUNT[2];

/COUNT[l] := COUNT[O]*/COUNT[l}*/COUNT[2]
+ /COUNT[O]*COUNT[l]*/COUNT[2];

/COUNT[O] := /COUNT[l)*COUNT[2]*AS
+ /COUNT[O]*COUNT[l]*/COUNT[2]
+ /COUNT[O]*/COUNT[l]*COUNT[2]
+ /COUNT[O]*/COUNT[l]*AS*CSPLANE
+ /COUNT[O]*/COUNT[l]*AS*CSPlXEL
+ /COUNT[O)*/COUNT[l]*AS*CSQPDM;

/QPDMEN = AS*CSPlXEL
+ AS*CSPLANE
+ AS*CSQPDM;

/DSACKl

!WROPDM

/RDQPDM

2-56

:- COUNT[1]*/COUNT[2];

= CSQPDM*WRBUS*COUNT[O]*/COUNT[l]*/COUNT[2]
- CSQPDM+WRBUS*/COUNT[O]*COUNT[l]*/COUNT[2];

- CSQPDM*/WRBUS*COUNT[0]*/COUNT[2]
= CSQPDM*/WRBUS*COUNT[l]*/COUNT[2]
+ CSQPDM*/WRBUS*/COUNT[O]*/COUNT[1]*COUNT[2];

CHAPTER 3

Display Memory Bus

3.1 DISPLAY MEMORY CONNECTIONS OF THE QPDM

3.2 DISPLAY MEMORY PROGRAM

3.3 FONT STORAGE IN KANJI ROMS

3-1

3-16

3-41

CHAPTER 3

Display Memory Bus
In this section we cover the Display Memory Bus. In
Section 3.1 , we present a detailed description of a multi­
bank display memory based on 64K * 4 VRAMs. This
design can be easily extended to 256K * 4 devices. In
Section 3.3, we present a method of connecting relatively
slow ROMs to the Display Memory Bus to store very large
fonts. While these designs have not been built and
tested, they have undergone rigorous "paper testing". In
Section 3.2, we present the listing of a program that
perform a numerical analysis of the timing margins for a
QPDM Display Memory Bus.

For a detailed analysis of a demonstration levaluation
board that was built and tested, refer to Section 5.

3.1 DISPLAY MEMORY CONNECTIONS
OF THE QPDM

This section describes the connections between the
Quad Pixel Dataflow Manager (QPDM), the display
memory, and the specialized video shift register, Video
Data Assembler FIFO (VDAF) ..

3.1.1 System Configuration and Block
Diagram

The system contains one QPDM and therefore inter­
faces to four display memory planes. Each plane in this
system is 2048 pixels by 2048 pixels.

The block diagram (Figure 3.1-1) of this system shows
the display-memory bus of the QPDM connected via
drivers and a small amount of interface logic to the four
planes of display memory. The serial-data outputs of the

Address

CPOM Control J~
Am95C60

Data 4 x16

Control
~

dual ported video memory connect to one Video Data
Assembly FIFO (VDAF) Arn8172 for each plane. This
shifter provides an ECl outputforthe HIGH video speed.
The control signals for the VDAFs are provided by the
QPDM.

All the circuitry for the display memory connection is
synchronous to SYSClK. This main clock signal for the
QPDM runs the internal micro-engine and determines all
display memory timing. The signals VSTB and OSTB,
synchronous to the SYSClK Signal, also strobe serial
data from the dual-ported video memory into the VDAF's
internal FIFO. The VIDClK Signal, derived from the
DOTClK and asynchronous to the SYSClK, is de­
scribed in Chapter 4. The QPOM produces the video
synchronization signals HSYNC, VSYNC, and BLANK
with this VIDClK signal and also reads data out of the
video side of the FIFO of the VOAF.

3.1.2 What You Can Do With The System

This 2K by 2K display memory is a common size for
graphic terminals, personal computers, high-perform­
ance desktop publishing systems, and CAE/CAD work­
stations.

This size allows easily for a 1280 pixel by 1024 pixel
screen and leaves enough room in the display memory
to scroll the screen vertically and pan it horizontally.
Furthermore there is room to store one or more images
of real windows that can be displayed alternately over
any rectangular area of the screen. Figure 3.1-2 shows
the size and the use of the 2K by 2K display memory. The
user may elect to layout display memory differently.

2Kby2K
Display
Memory

llJ • VDAFAm8172

PID D8682A 3.1-1

Figure 3.1·1 Block Diagram of a 4-Plane 2K by 2K Display Memory System

3-1

CHAPTER 3
Display Memory Bus

3.1.3 Circuit Diagram

Figures 3.1-4a and 3.1-4b show the complete circuit
diagram for the connection of the QPOM to four planes of
display memory and four VOAFs. Figure 3.1-4a starts
with the QPOM and the buffer and logic section. Figure
3.1-4b shows the memory array and the VOAF section for
planes O. The memory for planes 1 through 3 is organized
similarly. The total memory array consists of 4 banks.
Each bank is organized as 64K by 16 bit per plane. The
total amount of memory is:

4 planes with 2K by 2K pixels =
4 planes by 4 banks with each 64K by 16 bit = 16 MBit

Figure 3.1-3 shows the logical to physical address
mapping for a 2K wide display memory. It illustrates that
four banks are requi red for a 2K deep memory. The bank
boundaries are defined by the V-address bit V10 and Vg
which are output via the address pins AOOR9-8' respec­
tively. The multiplexed address bits AOOR7-O address all
display memory words within one bank. Address outputs
AOOR11-10 are not utilized in this application. See
Chapter 12 of the technical manual for other memory
organizations.

The QPDM and the Drivers

Figure 3.1-4a shows the QPOM and the buffers to the
display memory. All display memory bus signals except
forthe 64 bit wide data bus and some signals to and from

"iii
.!S

the VOAFs are buffered. Many of the signals just pass
through a buffer from the QPOM to the display memory
array. Some others pass through logic for decoding and
then get distributed within the memory array.

The eight least significant bits of the address bus
AOOR7_0 of the QPOM are fed into a buffer Am29827A.
The outputs of this driver AOOR* 7.{J are connected to the
multiplexed address inputs A7_0 of every single 64K by 4
bit video memory chip (there are 64 chips). For consistent
nomenclature all names of amplified Signals into the
memory array have a at the end. Although not explic­
itly shown in Figure 3.1-4a. all those amplified signals
have a serial resistor of 25 Q in the signal line to prevent
undershoot.

Figure 3.1-4a lists on the bottom right side of the
Am29827A block for the address lines some additional
information about these signal lines. The information
{256 pF. 3-16 ns. to 64} indicates thatthe AOOR* 7-0 lines
go to 64 chips altogether. that these chips represent 256
pF (64 chips with 4 pF each) input capaCitance. and that
the best and worst case delay for the Am29827 A for this
capacitance is 3 ns and 16 ns respectively.

AOORg-s are employed to select one of the four banks.
The decoding logic is described later. The address lines
AOOR1'_10 are not used in this example. In another
application these address lines would help to decode
bank addresses for a larger display memory array. for
example 4K by 4K.

2048 pixel

stacK

window 1 window 3 window 4

3-2

fW/%@j~
character font

PIO 09682A 3.1-2

Figura 3.1·2 2048 by 2048 Display Memory with Savaral Real Window Locations
and Allocation for One or Several Character Fonts

To minimize the CAS delay time the CAS signal is
amplified by eight buffers of an Am29827A driver. The
amplified CAS·(7:0) signal is distributed to all 64 chips of
the display memory array, thus each CAS· HJ output
drives 8 memory chips.

The XF/G signal is buffered by an Am29827 A driver. The
amplified signal XF/G· is transmitted, just like the ampli­
fied address lines ADDR· 7-0 and the amplified and dis­
tributed CAS·(7:0) signals to all 64 memory chips. The
unbuffered XF/G signal is also used in subsequently
discussed logic.

The four Write Enable signals WE(3:0) for the four
display memory planes are buffered by an Am29827A
buffer. The buffered signals WE·(3:0) are distributed to
16 chips each, i.e. to all memory chips in one plane.

The addressing of the four banks within the display
memory is accomplished by generating four RAS sig­
nals. These four RAS signals are latched with the falling

CAD

YS-C j.-- X10-0 ---I
-Lo 512 1K 2K

T
1K

2K

3K
unused

4K
unused

SHIFTER SIZE

CHAPTER 3
Display Memory Bus

edge of RAS by four negative edge triggered flip-flops
F114. A D-speed PAL AmPAL18P8 decodes the two
address lines ADDR 08 and provides the J-K-inputs for
the F114 flip-flops. ~lie RASbk·(3:0) signals must be
latched in order to keep them stable during the complete
memory cycle. The individual RASbk·(3:0) signals stay
LOW for as long as RAS is LOW. The rising edge of
RASbk·(3:0) is generated by clearing the flip-flops with
the asynchronous reset function at the end of RAs from
the QPDM.

During a display memory read, write, or transfer cycle,
only one bank of the memory is involved, thus only one
ofthe four possible RASbk·(3:0) signals is activated, and
only one of the four banks of memories comes out of
LOW power mode and switches to normal power con­
sumption. This feature allows the display memory to be
operated with minimal power consumption. During a
display memory refresh cycle, the RASbk·(3:0) of all four
banks are activated simultaneously to refresh the com­
plete memory with the smallest number of refresh cycles.

0 0 0

0 0

0 0

0

0 0

0

0

256
TOTAL BITS TRANSFERRED 4096
NUMBER OF ROWS 2

MEM_CONFIG_VALUE: 0100

RAM SIZE 64K-1
MEMORY WIDTH 2K
MAX DEVICES/PLANE 128

flt009682A3.1-3

Figure 3.1-3 Logical to Physical Address Mapping for 64K by 4-blt Memory Chips
for a Display Memory Width of 2K Pixels

3-3

CHAPTER 3
Display Memory Bus

~~: 8110 Alrfa827A

ADDR(7~) • ~ • AOOR"(7~)
AIlOR(Oa) • • I256pF.3-16n1.1O 841

8/10_27
ADIlR(11~0)

_ 1101.-
.~ en I'll ~ 1:1
• I84pF_3-10na,

1110Am20827A 108..".

Xi'1G • ~ .---• • (266pF.3-1 1084)
4I10Am2N27A

"iiN"
WEO
WE1

WE'I

WE2 ~ ~

"WE3 'WE"!
1128pF _ 3-13no.1016 oactt

RAS

~~ oImPALl8P8D
JbkO

KbkO Fl14

~ EJn - r...,
r-- m· Al'J&"l

Jbk2
i!ilShk'2 ~ f-- r-- R1.B'f

~ F114 1128pF_ EJ 4-12118. I<bk3
K 1 1016..".

!25PI.
3-10...
lOll

VSlIIIilIi1i'll VSTB "CIT F114 III
WTIIiIIiliK'G

~ - XFERADDR:m
l7T"

J Q f- ADDR A(2:1) W VI!'I!IIiftIiII
1-) m 11!ITI!iIIiliIi

£EJr- "!Ill" V!ITI!IilIIiI1'

ll5' ~
-";:F04 or V!I'TI!IilISIi'

" 12-1na}
"(j'f ~

2·F74
1841'1. - 5-16 ... 108)

0 Q 136

:J~~
'!I!Ii1I5R'II

III "CIT
"lIi:lilIiIiI\'

A(2:1) l7T"
1!!lIilIIi1<'l'

W
m "DRiIiM

~

"!Ill" 1RlIilIIiR"l!

ll5' 1lIliiIiIiI<"!

or milIIiI<':I

O'f "!Rli'HiIiR"!"

I32pF.
4-12 ... 108)
~

DMO(lS:O)

DM1(lS:O)

DM2(lS:O)

DM3(lS:O)
140pF. 0... 1041

DSTB
140pF. 0... 104)

CDAT(2:O)
14OpF. On8. 104/ FER

1'iii7
(4OpF.O" 1

Figure 3.1-4a Circuit Diagram of the QPDM, the Buffer, and the Interface Logic

3-4

AOOR"(7<1)

~~~ 

~ 
~ 

l'IX§iN 
VITIIiliIiN 
VSTBII_-o 

Sdi8ii6k'i, v5hi8ii6k 3 
!Il!iIIiIiR'3.17l!TI!iIliIiM 

OM0(1'<I) 
OM1(1'<I) 

OM2(1.<I) 

OM3(1'<I) 

DSTB 

CDAT(2<1) 

'l!FEIm" 
FUlL 

Plane 0 16 chips 64Kbi1 by 4 
OM0(1.:12) DMO(11S) 

• I-

64K by 4 54Kby4 
A(7<1) A(7<1) 
CAS CAS 
TAG TAG 
VCl.K VCl.K 
W W 
RAS RAS 

"- so "- so 
80(3<1) r- 50(3:0) -0(3<1) 0(3:0) 

54Kby4 54Kby4 
A(7:O) A(7;O) 
CAS CAS 
TAG TAG 
VCl.K VCl.K 
W W 
RAS RAS 

"- so "- so 
S0(3<1) S0(3:O) 
0(3:0) 0(3:0) 

54Kby4 
~:r4 A(7:O) 

CAS CAS 
TAG TAG 
VCl.K VCl.K 
W W 
RAS RAS 

"- so "- so 
SO(3:O) 50(3:0) 
0(3:0) 0(3<1) 

54Kby4 54Kby4 
A(7:O) A(7:O) 

r- CAS r- CAS -= TAG -= TAG 
VCl.K Yell< - W '-- W - RAS ""- RA8 

'---- so '---- so 
SO(3:O) 50(3<1) 
0(3:0) 0(3:0) 

~ DSTRB 

-----. ACD(2:O) 

SBSTRB 

---I 1'IElIET 
.. V_ "!III 

~ 
:Q: 

DMO(7:4) 1 _ 

54K by 4 
A(7:O) 
CAS 
TAG 
VCl.K 
W 
RAS - so "-

CHAPTER 3 
Display Memory Bus 

OM0(3:O) 1 _ 

54Kby4 

AcW 

TAG 
VCLK 
W 
RAS 
so 

S0(3:O) r- S0(3<1) 
0(3:0) 0(3:0) 

54K by 4 54Kby4 
A(7:O) A(7:O) 
CAS CAS 
TRG TAG 
Yell< VCLK 
W W 
RAS RAS 

"- so "- so 
S0(3:O) S0(3:O) 
0(3:0) 0(3<1) 

64K by 4 54K by 4 
A(7:O) A(7:O) 
CAS CAS 
TAG TRG 
Yell< VCLK 
W W 
RAS RA8 

"- sa "- so 
S0(3<1) S0(3:O) 
0(3:0) 0(3:0) 

54Kby4 54Kby4 

~ _ tv,J' 
TRG -=~ = VCl.K 
W _ W 

- RAS '--- RAS 
'---- SG '--- so 

80(3:0) 80(3:0) 
0(3:0) 0(3:0) 

81Jef1O(7:O) SDItIoO(7<1) 

I J 0(7 ••. 0) 
roII 

COTCLI< --Ilmr !'---
S011S02 :- oort .. _pl .... O 

VDAFAm8172 

PID~s.'-4b 

Figure 3.1-4b Circuit Diagram of Memory Plane j'ft) and VDAF tIO 

3·5 



CHAPTER 3 
Display Memory Bus 

Table 3.1·1 Generation of J·K Inputs by AmPAL 18P8D for RASbk*(3:0) 

CAS Jbk3-0 Kbk3-G Jbk3-G Kbk3.Q number of active 

of the bank selected by of the bank not selected by RASbk*(3:0) 
ADDRg..a ADDRg..a 

1 L H H 
0 L H L 

The logic in the PAL uses the fact that the CAS signal is 
already LOW before the falling edge of RAS during a 
dynamic memory refresh cycle whereas it is still HIGH 
during all other display memory cycles. Table 3.1·1 
shows the relationship between the ADDR9-8' RAS, and 
CAS inputs and the Jbk3-O and Kbk3-Q outputs of the PAL. 
Each of the RASbk*(3·0) signals is distributed to 4 chips 
in each of the four planes, that is to all chips within one 
bank. 

The VSTB signal provides timing for the two F138 logic 
blocks to generate the signals VSTBsidebk*(3:0) and 
SGsidebk*(3:0), respectively. In these signal names the 
term side stands for either right or left, indicating a 
VSTB· or SG· signal to the right or the left half of a 16·bit 
display memory word, respectively. The term bk means 
bank. 

The two F138 1·of-8 decoders for the generation of the 
signals VSTBsidebk*(3:0) and SGsidebk*(3:0) require a 
latched bank-select address for the time in between two 
transfer cycles. The bank address ADDR9-8 is stored in 
two flip-flops F74. These flip-flops get strobed by the 
XFER pulse. This active HIGH pulse is generated by a 
negative edge triggered flip-flop F114. The XFER signal 
becomes active with the falling edge of RAS whenever 
the XF/G signal of the QPDM was already LOW during 
the RAS-transition. The flip-flop F114 gets asynchro· 
nously reset when the XF/G pin of the QPDM is no longer 
active, thus when it goes HIGH. Ifthe XF/G signalis HIGH 
during the falling edge of RAS, no XFER pulse is gener­
ated. 

Each VSTBsidebk*(3:0) signal is distributed to eight 
video memory chips, i.e. to all chips in one bank in all four 

L one 
H all 

planes that contain either the left byte or the right byte. 
These signals clock data out of the serial video memory 
shifter. In this application example we chose to activate 
the QPDM's VSTB signal to the minimum number of 
chips possible (to only one bank) at any given time in 
order to reduce the power requirements for the video 
memory chips. The logic in the F138 1-of-8 decoder 
provides the correct phase shift for this serial clock 
signal. 

When activated by register programming, the additional 
VSTB pulse is generated by the QPDM during a transfer 
cycle. Thus at the end of a transfer cycle a complete 16-
bit wide word is available on the output of the serial port 
offourvideo memory chips. The subsequently discussed 
SGsidebk*(3:0) signals will then output enable the left 
and the right byte in sequence after the transfer cycle. 
Depending on whether the first DSTB pulse (see below) 
occurs while VSTB is LOW or HIGH, one. or both bytes, 
respectively, of this first word are strobed into the VDAF. 

The VSTBritebk*(3:0) Signal is at all times in phase with 
the VSTB output signal from the QPDM, whereas the 
VSTBleftbk*(3:0) signal is inverted to VSTBritebk*(3:0). 

The following Table 3.1-2 shows the relationship be­
tween the QPDM's VSTB output, the latched ADDR9-8 
signals and the VSTBsidebk*(3:0) output signals of the 
PAL. 

The video memory chips have an output enable signal for 
the serial port. This signal is active in exactly one bank 
during the entire time video data is shifted out of the serial 
port. The active bank during this time is kept in the CF74s. 

Table 3.1·2 VSTB Outputs and Address Bits 8 and 9 

ADDR AD DR VSTB VSTB· VSTB· VSTB- VSTB- VSTB· VSTB- VSTB· VSTB· 
#9 #8 IeftbkO rltebkO Ieftbk1 rltebk1 leftbk2 rltebk2 leftbk3 rltabk3 

0 0 0 H L H H H H H H 
0 0 1 L H H H H H H H 
0 1 0 H H H L H H H H 
0 1 1 H H L H H H H H 
1 0 0 H H H H H L H H 
1 0 1 H H H H L H H H 
1 1 0 H H H H H H H L 
1 1 1 H H H H H H L H 

3-6 



Furthermore, the output enable signal on the video 
memory chips must perform a multiplexing function. The 
VDAF has only an 8-bit-wide input whereas the memory 
outputs a 16-bit wide word per plane. Thus, during the 
time the VDAF latches in the left half of a display memory 
word, only the two "left" video memory chips must be 
enabled, and during the time the VDAF strobes in the 
right half of the display memory word, the other two video 
memory chips of one bank in each plane must be en­
abled. The task of enabling and disabling the serial 
outputs is accomplished by the signals SGleftbk*(3:0) 
and SGritebk*(3:0) for the left and right sides, 
respectively. 

These output enable signals for the serial port of the 
video memory chips are generated by an F138 Chip. This 
F138 is always enabled, thus at any given time there is 
one active signal to the D7.0 inputs of the VDAF. The 
VSTB signals controls the left and right side ofthe display 
memory word, the latched ADDR9-8 lines control the 
addressing of the bank. The following Table 3.1-3 shows 
the generation of the output enable signals. 

The XFER pulse is also connected to the SBSTRB input 
of the VDAFs. Here this signal strobes in the position of 
the first valid bit within the first byte of video data in the 
scan line. This position is presented to the VDAFs during 
the rising edge of the SBSTRB input on the ACD2_0 lines. 

The four 16 bit wide data busses DM3-015-0 are not 
buffered and connect directly to the video memory array. 
Since there are four banks in the system, each data pin 
of the QPDM is connected to four common data input! 
output pins of the video memory chips. The bank select 
encoding ensures that at any given time only one bank of 
memory chips interchanges data with the QPDM. 

The DSTB output of the QPDM is not buffered and 
supplies the clock to strobe data into the VDAF. The 
DSTB signal is distributed only to DSTRB inputs of the 
four VDAF chips. 

The CDAT 2-0 outputs of the QPDM are not buffered and 
supply control data forthe VDAF. During a transfer cycle 

CHAPTER 3 
DIsplay Memory Bus 

the CDAT ~-O lines carry the information ofthe first valid bit 
position within the first byte after a transfer cycle. With 
every DSTB cycle the CDAT 2-0 lines inform the VDAF 
about the numberof valid bits within the current byte from 
the video memories. The CDAT(2:0) signals are distrib­
uted only to the ACD2_0 inputs of the four VDAF chips. 

The FULL signal is send by the VDAF and is an input to 
the QPDM. This input indicates when the VDAF has its 
FIFO nearly full and cannot accept any more data. Only 
the output of one VDAF - in this case from plane 0 - is 
connected to the QPDM. Since all VDAFs receive the 
same control signal and therefore the same number of 
data bytes, the status of the FIFO is the same for all 
planes. Thus, when plane 0 indicates that its FIFO is full, 
the FIFOs of all planes are full, and the QPDM will not 
strobe data into the VDAF's. 

The Memory Array 

Figure 3.1-4b shows the memory arrays for plane O. The 
memory arrays for plane 1 through 3 are not shown; their 
connections are similar to plane O. The signals on the 
right side of Figure 3.1-4b are connections to the other 
three display memory planes. Each plane consists of 16 
memory chips. The top four chips in the figure are bank 
#0, the next row is bank #1, and so on. On the top of 
Figure 3.1-4b the position of each chip within the display 
memory word is indicated. The left column of four chips 
supplies the four leftmost bits within a display memory 
word. For plane 0 the data lines of these memory chips 
are connected to the display memory bus data lines 
DM015-12 with DMOl5.. connecting to the leftmost bit within 
eaCh 16-bit wOrd. The column to the right of the left 
column connects to DMoll _8 ' and so on. 

The ADDR* -0' CAS*, and XF/G* lines are distributed to 
aI/ chips in all planes. The WE*O goes to all chips in plane 
#0, the WE*1 signal goes to all chips in plane #1, and so 
on. The RASbk~O goes to bank #0 in all four planes, the 
RASbk*1 goes to bank #1 in all four planes, and so on. 
The VSTBleftbk*O and SGleftbk*O signals connect to the 
two left columns of chips in bank #0 in aI/ four planes, the 

Table 3.1-3 Truth Table for SGsldebk*(3:0) Generation 

Addr Addr VSTB SG SG SG SG SG SG SG SG 
9 8 leftbkO rHebkO leftbk1 rltebk1 leftbk2 rltebk2 leftbk3 rltebk3 

0 0 0 H L H H H H H H 
0 0 1 L H H H H H H H 
0 1 0 H H H L H H H H 
0 1 1 H H L H H H H H 
1 0 0 H H H H H L H H 
1 0 1 H H H H L H H H 
1 1 0 H H H H H H H L 
1 1 1 H H H H H H L H 

3-7 



CHAPTER 3 
Display Memory Bus 

VSTBritebk*Oand SGritebk*O go to the two right columns 
of chips in bank #0 in all four planes, and so on. 

The data pins of all 4 chips within one bank of each plane 
form a 16-bit-wide data bus. The data from plane #0 are 
connected to the DM015-O lines of the QPDM, the data 
from plane #1 are connected to the DM11 lines of the 
QPDM, and so on. The serial data outputs gfboth the two 
left chips SDleft(3:0)(7:0) and the two right chips 
SDrite(3:0)(7:0) within one bank of each plane form an 8-
bit-wide data bus. This 8-bit-wide data bus from plane #0 
is connected to the D7-O inputs of the VDAF for plane #0, 
the 8-bit -wide data bus from plane #1 is connected to the 
D7-O inputs of the VDAF for plane #1, and so on. 

TheVDAF 

Figure 3.1-4b also shows the VDAF serializerforplane O. 
The 8-bit-wide data input to the shifter is obtained from 
the serial data output of the video memory array. Many 
time, only the left side or the right side of a video memory 
plane supplies data to the VDAF. DSTB, CDAT ,and 
the XFER pulse are supplied in parallel to the d~TRB, 
ACD2_0, and SBSTRB inputs of the VDAFs in all four 
planes. The RESET signal is supplied to all VDAFs to 
initialize the internal logic. The BIN pin the VDAF is set to 
accept byte wide data rather than nibble wide data. The 
AlC input specifies that the VDAF interprets the ACD().~ 
input as the number of valid bits rather than the bit 
position of the first unusable bit within a byte from the 
memory array. 

The DOTCLK and LDSR signals are also supplied to the 
VDAF. The generation and distribution of these Signals, 
however, is analyzed and described in Chapter 4 of this 
manual. TheS01 pin outputs the HIGH speed serial data 

stream to the color palette or directly to the monitor. The 
S02 output pin is not used. 

3.1.4 The Timing Analysis 

The timing analysis considers the propagation delay of 
each signal. This insures that the suggested system will 
work under worst case conditions. To drive the highly 
capacitive load of a memory array, it is especially impor­
tant to use drivers that can drive high capacitances. The 
propagation delay for the Am29800A famity is specified 
for an unloaded output. The AMD Bus Interface Products 
Handbook (publication number #07175B) specifies 
some additional guidelines. The switching speed in­
creases by 0.5 ns for each additional 50 pF of load and 
by 0.3 ns for each additional output switching at the same 
time. An output whose unloaded switching time, for 
example, is specified to be 9 ns, will switch in reality in 
14.2 ns with a 250 pF load when all 10 outputs in the 
package switch at the same time. (2.5 ns slower for 
added load plus 2.7 ns slower for simultaneous switch­
ing.) Since the exact load capacitance of the circuit varies 
with every Signal, some conservative interpolations have 
been performed to calcu late the actual propagation delay 
for the capacitance in the circuit. 

The QPDM has a maximum SYSCLK frequency of 20 
MHz. The SYSCLK not only determines the display 
memory timing, but also clocks the internal microengine. 
The drawing performance is directly proportional to the 
SYSCLK speed. This design implements the full 20 MHz 
(50 ns) SYSCLK speed for highest performance. If, in a 
similar application one cannot fulfill all timing parameters 
of the display memory interface, the speed of the 
SYSCLK must be decreased until all parameters are met. 

Timing Parameters 

Row Address 
Column Address 
Masked Write Strobe wrt RAS 
Write Mask Data wrt RAS 
Write Command wrt CAS 
Write Data wrt CAS 
XF/Gwrt RAS 

Row Access Time 
Column Access Time 
Output Enable Time on Random Port 
Clock to Output Time on Serial Port 
Output Enable Time on Serial Port 

3-8 

Set-up Time 

4ns 
o ns 
2 ns 
6 ns 
3 ns 
5 ns 
o ns 

Not to Exceed 

Not to Exceed 

128 ns 
50 ns 
74 ns 
69 ns 
23 ns 

Hold Time 

26ns 
73ns 
51 ns 
48ns 
SOns 
SOns 

129 ns 



To run the display memory interface with 20 MHz a 
relatively fast video memory chip must be selected. For 
this application a "-10" (100 ns) 64K by 4-bit video­
memory chip has been chosen. In particular this memory 
chip must fulfill the following timing parameters. 

Most of these times are easily fulfilled. The only two tight 
parameters are the column access time and the serial 
output enable time. 

D/splay Memory Read Cycle 

Figure 3.1-5showsthetimingfora Display Memory Read 
Cycle. 

For a 20 MHz system clock the OPDM outputs its bank 
select address ADDRg-e and row address ADDR7-O at 
least 15 ns (parameter #30 t of the OPDM) prior to the 
falling edge of RAS and hol~ the row address valid for 
at least 35 ns (parameter #31 t of the OPDM). The 
address lines are amplified in the ~m29827 A with a best 
and worst case delay for a 256 pF load from 3 ns to 16 ns. 
The resulting signal is ADDR*(7:0). The bank select 
address ADDRg_8 is decoded in aD-speed AmPAL 18P8 

CHAPTER 3 
Display Memory Bus 

with a best and worst case propagation delay of 3 ns to 
10 ns. When the falling edge of RAS arrives at the F114 
flip-flop, the Jbk(3:0) and Kbk(3:0) bank select signals 
have been steady for at least 5 ns (parameter #30 ts of 
the OPDM minus maximum propagation delay through 
the PAL), and will remain steady for the rest of the read 
cycle. Thus the 5 ns set-up and 0 ns hold time (F114 
parameter) for the F114 flip-flop is fulfilled. 

The propagation delay time to generate the RASbk*(3:0) 
signals from the bank select signals Jbk(3 :0) and 
Kbk(3:0) is 4 ns to 12 ns. Figure 3.1-5 shows that this 
leaves a set-up and hold time for the row address on the 
video memory chips of 4 ns and 26 ns respectively, which 
is easily fulfilled with most video memory chips. 

The RASbk*(3:0) signals are negated with the rising 
edge of RAS. As soon as the inverted RAS signal goes 
LOW, the direct-set inputs of the F114 flip-flops that are 
asserted go LOW and de-assert the RASbk*(3:0) signals 
with a total propagation delay of 6 ns to 18 ns (addition of 
propagation delays of NAND-gate FOO and flip-flop 
F114). The NAND-gate logic in this path provides the 
necessary recovery time for the F114 flip-flop. 

ADDR(9:8j"~ oanK select accress 

1·15ns, 35ns 
113nll _8~ 

ADDR(7:0)~ HAL ~ "AI 

1·16n8 3~ ~ I~ --4 ~s 

ADDR*(7:0) 
180ns 1 

"RAs 

~ ~ 18ns 
4n~ 6ns - '.~"."."."'.'.""'.'. ,.".,"."., .. ,,,",",,,,,,, ~ ,,,.,,.,,,., .. ,, .. , .. , ... ,,.,,.,, ... , .. , .. ,, .. ,.,,, .... . "."., .. , .... , .. , ...... , .. ".,", ..... , .. , -""-"-~---Im ~~ 

RASbk*(3:0) 
4ns 

..=-
26ns 

65ns 100ns I 
CAS 

J:=i 3~ 
~8 

~I~ f-

CAS*(7:0) OnL ~~ 1///"1 
I- 73ns 80ns 

160ns 
39ns ns 

J 
XFtG 

~ k1 3M.. I+- 3~ 

~ r 74ns-<lIuns ------4 
'I 

<128ns '-tl~s 

DM(3:0)(15:0) 
>20ns >Ons 

Figure 3.1-5 Display Memory Read Cycle 

3-9 



CHAPTER 3 
Display Memory Bus 

The QPDM outputs its column address ADDR7-D at least 
13 ns (parameter #37 ts of the QPDM) prior to ttie falling 
edge of CAS and holas the column address and bank 
select address valid for at least 80 ns (parameter #38 tH 
of the QPDM). The amplified signal is ADDR·(7:0). The 
CAS signal is fed into eight drivers Am29827 A, each of 
which supplies eight video memory chips. The propaga­
tion delay to generate the four CAS· signals is 3 ns to 10 
ns (interpolation of Am29827 A timing parameter). Figure 
3.1-5 shows thatthis leaves a set-up and hold time for the 
column address on the video memory chips of 0 ns and 
73 ns respectively, which fuHili the requirement of video 
memory chips. The normal requirement for video merno~ 
ries is 0 ns and 20 ns for the set-up and hold time, 
respectively. 

The XF/Gsignals goes active 39 ns (parameter #42 tpD 
of the QPDM) or later after the falling edge of RAS. It 
stays valid for at least 110 ns (parameter #44lw of the 
QPDM). This signal passes through the driverwiiflin 3 ns 
to 16 ns (interpolation of .the Am29827 A timing specifica­
tion). The video memory chips will enable their outputs 
soon after they see XF/G LOW. 

The XF/G signal will stay LOW for at least 80 ns (parame­
ter #41 tpD of the QPDM) after CAS has gone LOW and 
160 ns (parameter #32 tpt> of the QPDM) after RAS has 
gone LOW. The data coming from the memory array into 

" ~ 

the QPDM must be valid 20 ns (parameter #45 ts. of the 
QPDM) prior and 0 ns (parameter #46 t of the aPDM) 
after the rising edge of XF/G on the QPOM. Figure 3.1-5 
shows that, in order to fuHili these requirements, the 
video memory chips must have an access time of less 
than 128 ns after.the falling edge of RAS, less than 50 ns 
after the falling edge of CAS, and less than 74 ns after XFI 
G has been asserted. The speed of 100 ns video memory 
just fuHills these parameters, with the access time from 
CAS being the most critical parameter. 

The signals WE(3:0), VSTB, DSTB, and CDAT(2:0) are 
not employed during a display memory read cycle. 

Display Memory Write Cycle 

The timing for a Display Memory Write Cycle is shown in 
Figure 3.1-6. 

The timing to supply addresses and address strobe 
signals to the video memory is identical to the read cycle. 
This includes the parameters #30 and #37 ts and the 
parameters#31 and #38 tH of the QPDM. Thus all set-up 
and hold time requirements for the row, column, and 
bank-select addresses are fulfilled. The XF/G signal is 
inactive during the complete write cycle. In thewrite cycle 
the delay from RAS to CAS is 90 ns (parameter #56 t 0 

of the QPDM) ratherthan 65 ns (parameter #36 tpD of the 

lBOnS 

,/ 
18ns 

4ns 

~"."""""""."'.'''''A''''_.""." ......... """" .... "."""." .. " ...... "".,,w .. ~ ... w.".""" ........ "".""."""." .... "".~ · .. ,,·tmm --t ... " --RASbk'(3:0) '"'''' T 
90ns 80ns 

, 
~ ~ 

~ - ~j@ 
~" 

llns 
~ 

eons ~ 78ns 

"" 1'\.'''''' 1/////// 

1.13ns M ~Ir ~ ~I~ ~ 
~~IJ 'I 
2iiSI'! ~ >51ns 3;;s' f- >5Ons 

4~ I- sons ~ I- BOns 

DM(3:O)(15:O) WtiI8 mask WtiI8 data 

'iiiiS"I ~ 48ns 5IIiI1 I- SOns 

Figure 3.1-6 Display Memory Write Cycle 

3-10 



QPDM) as in the read cycle. The CAS signal stays active 
for 80 ns (parameter #57 \v of the QPDM). 

During the first half of the write cycle the write mask may 
be strobed into the video memory chips. A write mask, i.e. 
the data on the DM(3:0)(15:0) bus, is loaded into the 
video memory chips whenever its write input is LOW 
during the falling edge of RAS.1f WE is HIGH when RAS 
falls, all four bits will be written. 

The WE(3:0) signal is stable 11 ns (parameter #59 tl! of 
the QPDM) before the falling edge of RAS and remains 
stable for approximately 60 ns (interpolation of the 
QPDM spec) after the falling edge of RAS. The WE(3:0) 
signals ru n through an Am29827 A driver with a best and 
worst case propagation delay of 3 ns to 13 ns, respec­
tively (interpolation of Am29827A timing specification). 
Figure 3.1-6 shows thatthis leaves a set-up and hold time 
for the write enable pulse W on the video memory chip of 
2 ns and more than 51 ns respectively, which is easily 
fulfilled by video memory chips. 

The data is supplied to the memory chips without passing 
through any driver. The QPDM provides valid output data 
at least 2 ns (parameter #62 ts of the QPDM) prior and 
60 ns (parameter #63 t of the QPDM) after the falling 
edge of RAS. Figure 3.:r..6 shows that this leaves a set­
up and hold time for the write mask data on the video 
memory chips of 6 ns and 48 ns respectively, which is 
easily fuHilled by video memory chips. 

During the second haH of the write cycle the actual data 
get strobed into the memory chips. The QPDM asserts 
the write command at least 13 ns (parameter #60 ts of the 
QPDM) prior to the falling edge of CAS and has a valid 
WE(3:0) pulse width of at least 78 ns (parameter #61 tw 
of the QPDM). The propagation delay from CAS to 
CAS*(7:0) is 3 ns to 10 ns. The video memory chips see 
a write command set-up and hold time of 3 ns and more 
than 50 ns, respectively, which satisfies video memory 
chips. 

The actual data is output at least 2 ns (parameter #64 ts 
of the QPDM) prior to the falling edge of CAS and stay 
valid at least 60 ns (parameter #65 tH of the QPDM) after 
this falling edge. Figure 3.1-6 shows that this leaves a 
set-up and hold time for the data on the video memory 
chip of 5 ns and 50 ns respectively, which again is 
satisfied by video memory chips. 

Display Memory Transfer Cycle 

The timing of the display memory transfer cycle involves 
both the display memory and the VDAFs. 

The strobing of the row and shifter start address (column 
address in the read cycle) into the video memory chips 

CHAPTER 3 
Display Memory Bus 

works with the same timing as in the read cycle. Thus all 
set-up and hold times for the row, column, and bank­
select address are fuHilled. 

During a transfer cycle, however, the XF/G signal is valid 
before the falling edge of RAS. The QPDM outputs the 
XF/G signal 12 ns (parameter #49 ts of the QPDM) before 
the falling edge of RAS. It stays active 140 ns (parameter 
#69 tp of the QPDM) after the falling edge of RAS and 
55 ns fparameter #67!PQ of the QPDM) after the falling 
edge of CAS. The XF/G Signal becomes inactive at least 
39 ns (parameter #70 tH of the QPDM) before the rising 
edge of RAS and at least 40 ns (parameter #68 t of the 
QPDM) before the rising edge of CAS. The XF/G'signal 
passes through an Am29827A buffer, and XF/G* is 
available 3 ns to 16 ns later on the video memory chips. 
Figure 3.1-7 shows that this leaves (with the propagation 
delay from the RAS to the RASbk*(3:0) signal) a set-up 
and hold time forthe XF/G signal with respect to the RAS 
signal on the video memory chips of 0 ns and 131 ns, 
respectively. This parameter, again, is fulfilled by video 
memory chips. 

The WE(3:0) signal of the QPDM is HIGH during the 
complete transfer cycle. This indicates a transfer direc­
tion from the memory array to the shifter. Since this is 
always the case, so-called "dummy" transfer cycles are 
never required. 

The falling edge of the RAS signal clocks the flip-flop 
F114 that generates the transfer signal XFER. The 
inverter F04 delays the XF/G signal by 2 ns to 6 ns (F04 
data). This leaves a set-up and hold time for the XF/G 
signal on the flip-flops F114 of 6 ns and more than 100 ns 
respectively, which is more than the required 5 ns and 0 
ns (F114 data). The propagation delay within the flip-flop 
is2nst08 ns (F114data). TheXFER pulse is deactivated 
2 ns to 8 ns after the rising edge of RAS. 

The rising edge of the XFER pulse clocks the F74 D­
register to store the bank-select address for the time 
between two transfer cycles. This address is valid 15 ns 
(parameter #30 t of the QPDM) before and more than 
130 ns afterthefJtling edge of RAS. This leaves a set-up 
and hold time with respect to the address for the F74 of 
17 ns and more than 118 ns, respectively, which is more 
than the required 3 ns and 1 ns (F74 data). The propaga­
tion delay for the ADD R(9:8) signal through the flip-flop is 
3 ns to 11 ns (F74 data). 

During a transfer cycle start offset control information is 
strobed into the VDAFs. These control data is presented 
to the VDAFs on the ACD2:co..inputs and are strobed into 
the VDAFs by their SBSTRB inputs. The control data is 
transferred without buffering from the QPDM CDAT . 
outputs to the four VDAFs. The strobe signal is the XFE~ 
signal generated by the flip-flop F114. The data on 

3-11 



CHAPTER 3 
Display Memory Bus 

18C1no 

~ ..!!:!. I!no ~ 
--....;;;;;,... ..... ~~"' ................................................................................. "'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''~''''i'~ 

1I'Ar -

lCFER 

ACDR(9:8) 

ADDRI(II:8) 

COAT(2:G) 

VSlB 

VSTBIoftbk"(3:G) 

VS_·(3:G) 

SCletl(3:G)(7:G) 

3-12 

!!.I"~j 
,r~,~ 
~~ 

100n0 

• &&no 

I 
;J>131,. 

.13Ono 

:..118n1 

-- 5?no 

Figure 3.1-7 Display Memory Transfer Cycle Timing 



CDAT 2-0 are valid at least 10 ns prior to and 65 ns after 
the falling edge of RAS (parameters #50 ts and #51 ~ of 
the QPDM). In a multi QPDM system, each QPDM 
delivers this control information to the four connected 
VDAFs. Figure 3.1-7 shows that the ACD2_0 data on the 
VDAF have a set-up and hold time with respect to XFER 
of 12 ns and 57 ns, which fulfillS the 10 ns and 15 ns 
(parameter #9 ts and #1 0 tH ofthe VDAF). The set-up and 
hold time for the strobing of the valid bit count data on the 
the CDAT2-O lines during the first possible DSTB pulse 
follows the timing of the general DSTB pulse and is 
discussed under the video clock cycle timing section for 
theVDAF. 

Figure 3.1-7 shows that the VSTB signal of the QPDM is 
in a HIGH state at the beginning and the end of the 
transfer cycle. A VSTB LOW pulse can be activated by 
register programming. The QPDM's VSTB signal is 
HIGH 90 ns (parameter #52 ts of the QPDM) before the 
falling edge of RAS and stays HIGH until after the first 
possible rising DSTB pulse. The 40 ns VSTB LOW pulse 
(parameter #71 tw. of the QPDM) ends 90 ns (parameter 
#73 ts of the QPDM) after XF/G has become inactive. 
Furthermore, this pulse ends at least 90 ns (parameter 
#72 tpD of the QPDM) before the first possible DSTB 
pulse, the pulse that strobes data into the VDAF. 

The VSTBsidebk*(3:0) signals are produced by an F138 
1-of -8 decoder with a best and worst case propagation 
delay of 5 to 16 ns. The VSTBritebk* (3 :0) signals follow 
the waveform, and the phase of the VSTB signal from the 
QPDM, the VSTBleftbk*(3:0) is inverted. This is neces­
sary to give both the left half and the right half of the word 
sufficient clock to output time inside the video memory 
chip and time to travel from the video memory to the 
VDAF. 

The ADDR9-8 is also fed into the F138 1-of-8 decoder. 
This decoder outputs the SGsidebk*(3:0) signals with a 
propagation delay of 4 ns to 12 ns (interpolation from 
F138 data). At the end of the transfer cycle, before the 
first possible DSTB pulse, the SGleftbk*(3:0) signal is 
asserted and output enables the left byte of the selected 
bank. If the first possible rising DSTB edge occurs the left 
byte is strobed into the VDAFs. Next, the 1-of-8 decoder 
selects the right byte by enabling SGritebk*(3:0) of the 
selected bank when the QPDM's VSTB signal goes LOW 
after the first possible DSTB pulse, that is atthe end ofthe 
transfer cycle. SGritebk*(3:0) ofthe enabled bank follows 
the waveform of the QPDM's VSTB signal, the 
SGleftbk*(3:0) signal of that bank is inverted to its 
SGritebk*(3:0) counterpart. 

Valid data from the serial output of the video memory 
chips must be present at the VDAFs at least 5 ns 
(parameter #5 t~ of the VDAF) before the first possible 
DSTB pulse. ThiS is accomplished byfulfillingtwo access 

CHAPTER 3 
Display Memory Bus 

time parameters of the video memory. First, after the 
rising edge of VSTBleftbk*(3:0) the first word of new 
background or window data is transferred to the video 
memories serial output pin. This leaves a clock to output 
time of 109 ns (40 ns forthe VSTB pulse width plus 90 ns 
to the first possible DSTB pulse minus 16 ns for the 
VSTBsidebk*(3:0) propagation delay minus 5 ns for the 
data set-up time for the VDAF) for the video memories, 
which is fulfilled by any video memory Chip. Second, after 
asserting SGleftbk*(3:0) and enabling the serial output 
driver of the video memory chips the data travel from the 
video memory chips to the VDAFs. This must be accom­
plished in 73 ns, which again is fulfilled by all video 
memory chips. 

Display Memory Refresh Cycle 

The timing for the refresh cycle is fairly simple. The 
QPDM outputs a CAS before RAS refresh cycle. The set­
up and hold times for the refresh address with respect to 
the falling edge of RAS are identical to the row address 
set-up and hold times during a read cycle and therefore 
are fulfilled. 

The QPDM activates CAS 37 ns (parameter #47 ~ of the 
QPDM) before the falling edge of RAS, and CA~ stays 
active for at least 185 ns (parameter #48 ttl of the QPDM) 
after the falling edge of RAS. The AmPAL 18P8D gener­
ates the appropriate J-K-inputs for the flip-flops F114. 
See Table 3.1-1 for a truth table of the PAL function. 
Since CAS is LOW during the falling edge of RAS al/ four 
flip-flops are set by the J-K-inputs to activate their 
RASbk* 3-0 outputs. Figure 3.1-8 shows that the video 
memory chips see a set-up and hold time of 31 ns and 
176 ns of the CAS*(7:0) signal with respect to the falling 
edge of RASbk*(3:0). 

Video Clock Cycle for VDAF 

With every rising edge of DSTB (DSTRB input on the 
VDAF) a new byte of video data and a new 3-bit control 
word on the ACD -0 inputs are strobed into the VDAF. 
The verification oi the set-up and hold times for the 
control data and the video data is is looked at independ­
ently. 

First, the CDAT 2-0 data from the QPDM are valid at least 
8 ns prior and 15 ns after the rising edge of DSTB 
(parameter #81 ts and #82 tH of the QPDM). The set-up 
and hold time requirement of the ACD2-O inputs with 
respect to the DSTRB input is 5 ns and 10 ns respectively 
(parameter #7 ts and #8 tH of the VDAF), thus the set-up 
and hold time requirements are fulfilled. 

Second, video data is strobed into the VDAFs by the 
DSTB signal. The correct video data is selected by a 
combination of phase shifted clocking with the 

3-13 



CHAPTER 3 
Display Memory Bus 

180ns 

lIS 
4ns 

~:O) 

37118 185ns 

~O) 
118 ns 

Figure 3.1-8 Display Memory Refresh Cycle 

200. 

>ons 
5011. 

"' ______ ;1 ~ ________ _;vr---

1/////// 

18na 18n. 

VSTBlaltbk"(3:O) :::···::::····:::···::::····t··::::····j·· ~ .. ~~~~~------IT-r~~~~~···~···::::···:::····::::···:::···::::····:::···::::· ... :::: ... :::: .... :::: ... :::: .... :::: ... ~ ... ~ ... ~ .. :::: ... ~ .. zz·· 

12118 4n. 
~ 

SGiit86k'(3:O) 
I~ 

SGI8lI6k'(3:tJ) ...................................................... ···········W 

<23nl 
<23na 

80.118(3:0)(7:0) 
.1 

<23118 <23n. 

8DIeft(3:OX7:O) 
·1 

0(7:0) right byte left byte D!K 

Figure 3.1-9 Video Clock TIming for VDAF 

VSTBsidebk*(3:0) signals and phase shifted output 
enabling with the SGsidebk*(3:0) signals. 

The first byte of a 16-bit video word, i. e. the byte to 
appear first on the screen, is called the left byte. It is 
strobed out of one of the four banks of the video memory 
chips by the rising edge of one of the four possible 
VSTBleftbk*(3 :0) clocks. This byte is, however, not trans-

3-14 

mitted to the VDAFs immediately;SGleftbk*(3:0), the 
output enable signal of this video memory chip is not 
enabled yet. With the next rising edge of the DSTB clock 
the output enable signal SGleftbk*(3:0) becomes active 
and the left byte of the video word appears on the 
SDleft(7:0) lines and is brought to the D7_0 inputs of the 
VDAF. While the left byte is strobed into the VDAF, the 
right byte is shifted inside the video memory chip to the 

I 

I~ 
I 



output buffer. It appears on the SDrite7,o outputs with the 
next rising edge of DSTB, at the same time when the next 
left byte is being shifted inside the video memory. 

Every rising edge of DSTB from the QPDM changes the 
polarity of the VSTB signal. The changing of the polarity of 
the VSTB signal may take anywhere from 0 ns to 10 ns 
(parameter #80 ~D of the QPDM) after the rising edge of 
DSTB. This VSTB signal in conjunction with the latched 
bank address ADDR9_8 create the signals 
VSTBsidebk*(3:0) in the B-speed AmPAL18P8 and and 
SGsidebk*(3:0) in a F138. multiplexer. The propagation 
delay through the PAL is 5 ns to 16 ns for a 64 pF (8 
devices with 8 pF each) load. The propagation delay 
through the F138 is 4 ns to 12 ns for a 40 pF (8 devices with 
5 pF each) load. This is illustrated in Figure 3.1-9. 

To obtain a valid data input signal on the VDAFs, two 
conditions must be met. First, the clock-to-output delay, 
and second, the output enable to output delay times of the 
video memory chips must be fulfilled. For a required data 
set-up and hold time for the video data with respect to 
DSTRB of 5 ns (parameter #5 ts of the VDAF) and 5 ns 
(parameter #6 tH of the VDAF), the following maximum 
propagation delays inside the video memory are required. 
The maximum output enable to output delay is 23 ns. (One 
50 ns DSTB clock cycle minus the 10 ns VSTB propaga­
tion delay minus the 12 ns SGsidebk*(3:0) propagation 
delay minus the 5 ns data set-up time.) The maximum 
clock to output delay for all normal video clock cycles is 69 
ns. (Two 50 ns DSTB clock cycle minus the 10 tiS VSTB 

CHAPTER 3 
Display Memory Bus 

propagation delay minus the 16 ns VSTBsidebk*(3:0) 
propagation delay minus the 5 ns data set-up time.) 
These times are easily fulfilled by video memory chips. 
After the rising edge of DSTB there is at least a 5 ns 
delay until SGsidebk*(3:0) becomes inactive. This time 
satisfies the required hold time of 5 ns for the VDAF. 

3.1.5 Physical Board Dimensions 

This design represents a typical graphic terminal mem­
ory design for the QPDM. It uses, in addition to the 
QPDM Am95C60, 64 memory ICs of the organization 
64K by 4, four VDAF ICs, three driver ICs Am28827 A, 
one flip-flop F74 chip, three flip-flops F114 chips, one 
decoder F138, two PALs 18P8, and one inverter F04. 
The required area for these ICs is illustrated in the 
following Table 3.1-4. The table assumes that all chips 
are conventional non-surface mount ICs. 

The size of the memory board is at least 7.5" by 7". 
Approximately three-quarters of the board space is oc­
cupied by the memory chips and decoupling capacitors. 

3.1.6 Considerations for Modification of the 
Design 

This design can be modified to accommodate smaller or 
larger display memory areas. This may require decreas­
ing or increasing the number of banks for decoding the 
address. . 

Table 3.1·4 Required Area for ICa on Memory Board 

64 

4 

3 

3 

2 

75 

Am95C60 

Video Memory 

Arn8171 

Am29827A 

F74 

F114 

F138 

PAL 18P8 

F04 

FOO 

100 nF Caps 

144 pin 

24 pin 

24 pin 

24 pin 

14 pin 

14pin 

16 pin 

20 pin 

14 pin 

14 pin 

2 pin 

2.25 inch2 2.25 inch2 

400 mil 0.60 inch2 38.40 inch2 

600 mil 0.84 inch2 3.36 inch2 

300 mil 0.48 inch2 1.44 inch2 

300 mil 0.28 inch2 1.44 inch2 

300 mil 0.28 inch2 0.28 inch2 

300 mil 0.32 inch2 0.32 inch2 

300 mil 0.40 inch2 0.80 inch2 

300 mil 0.28 inch2 0.28 inch2 

300 mil 0.28 inch2 0.28 inch2 

300 mil 0.03 inch2 2.25 inch2 

50.40 inch2 

3-15 



CHAPTER 3 
Display Memory Bus 

For a slower display system, the complete decoding 
hardware may be implemented in PALs. Simultaneously 
the buffers Am29827 A can be replaced by Am2966 or 
Am2976 dynamic memory drivers which include the 
serial resistor and provide balanced driving to a highly 
capacitive load. 

If the system allows access to the display memory by 
another processor, all address and control lines to the 
display memory must be three-statable. All Am29827A 
have three-state outPtlts. They must be controlled by the 
handshake lines MEMREO and MEMAVL. 

3.2 DISPLAY MEMORY PROGRAM 

In Section 3.2 we present the source code for a program 
which examines the timing parameters for a Display 
Memory Bus. This program is written for MS Basic for a 
Macintosh Plus. It runs with either the compiler or 
interpreter. 

For each VRAM parameter, the program calculates the 
worst-case and the best-case timing margins. These are 
displayed on the screen and may be optionally written to 
aftle. 

The program models a OPDM driving an array of VRAM 
chips. There are certain delays between the OPDM and 
VRAMs as follows: 

RAS Decode Time to decode RAS in a multi-bank 
system 

RAS Delay Time to buffer and distribute the 
decoded RAS 

CAS Decode Time to decode CAS in a multi-bank 
system 

CAS Delay Time to buffer and distribute the 
decoded CAS 

XFG Decode Time to decode XFG in a multi-bank 
system 

XFG Delay Time to buffer and distribute the 
decodedXFG 

WE Decode Time to decode WE in a multi-bank 
system 

WE Delay Time to buffer and distribute the 
decoded WE 

Address Delay Time to buffer and distribute the 
multiplexed address 

3-16 

The program uses three values for each delay: minimum, 
nominal, and maximum. These numbers are typically 
taken from data sheets. In any case, the rules at your 
design center should be followed. 

Each value for each delay can be built into the program 
or it can be set at run time. Unfortunately, there is no way 
to permanently change default values short of changing 
the program itself. For the interpreted version, this is 
simple. For the compiled version, it means doing a new 
compilation. 

We calculate three sets of numbers for each parameter. 
In the first set, we use minimum delays for paths which 
must be subtracted, and maximum delays for paths 
which must be added. In the second set, we use nominal 
delays for all paths (obtaining a sort of ''typical" number). 
Inthe third case, we use maximum delays for paths which 
are subtracted and minimum delays for paths which are 
added. The truth is guaranteed to lie somewhere be­
tween the first and third set of numbers. 

Consider VRAM parameter 17, tASR. This is the time 
that the row address is required to be valid at the VRAM 
before RAS can fall (typically it is 0 ns). This is basically 
the same as OPDM parameter 30, but we have to correct 
for decoding and buffer delays. In particular, for this 
particular parameter, we have to subtract delays in the 
addreSS paths and add delays in the RASpath. 

Here is the program's output for parameter 17. 

17,tASR Address Setup to RAS (ns) 

+OPDM Para 35 15.0 15.0 15.0 
-Adrs Delay -10.0 -13.0 -17.0 
+RAS Decode 0.0 0.0 0.0 
+RAS Delay 12.0 10.0 7.0 
Total Time: 17.0 12.0 5.0 
VRAM 0.0 0.0 0.0 
Margins 17.0 12.0 5.0 

The three columns of numbers are for the three cases 
described above. We can be sure that the truth lies 
between the two extremes. 

Generally, these begin with one or more OPDM parame­
ters. This is followed by an appropriate number of 
decodes and delays, depending onthe VRAM parameter 
being calculated. 

Onthe Total Time Une, the numbers are all summed. This 
provides the time available atthe VRAM. We subtract the 
VRAM requirements and the remainder is the margin. 



DIM qpar (4,115) 
ram.vend.count=9 

'here go the qpdm parameters 
'number of ram number sets 

CHAPTER 3 
Display Memory Bus 

ram.para.count=98 'number of parameters to worry about 
DIM ram(ram.vend.count,ram.para.count) 
DIM ram.vend$(ram.vend.count) 'who built them 
DIM ram.text$(ram.para.count) 'keep the ram parameter strings 
DIM ram.desc$(ram.para.count) 'ram parameter descriptors 
CALL TEXTFONT(4) 
PRINT FRE(l) 
'we will be using 
clock(2)=50/2 
clock(3)=62/2 
clock(4)=83/2 
st1$="fUU.f" 

the NEC ram parameter numbers (1 .. 70) 
'20mhz clock 
'16 MHZ clock 
'12 MHz clock 
'one decimal point 

st2$="\ \ ffffffff.f ffffffff.f fffffffff.f" 
begin: 
INPUT "Do you want a file copy of the results (y/n)";a$ 
IF a$ <> "y" AND a$<>"Y" THEN GOTO begin1 

begin1: 

file=l 
INPUT "Specify Filename";file$ 
OPEN file$ FOR OUTPUT AS f1 
GOTO getspeed 

IF a$<>"n" AND a$<>"N" THEN GOTO begin2 
file=O 'will not write an output file 
GOTO getspeed 

begin2: 
PRINT "You mustresporui y or rt." 
GOTO begin 

getspeed: 
INPUT "what speed part are you designing with (20,16,12)";a$ 
a=VAL(a$) 'make it a number 
devicespeed=a 'save to compare with clockrate 
IF a<>20 THEN GOTO not20 

not20: 

sp=2 'speed parameter 
GOTO getclock 

IF a<>16 THEN GOTO not16 

not16: 

sp=3 'speed parameter 
GOTO getclock 

IF a <>12 THEN GOTO not12 
sp=4 
GOTO getclock 

not12: 
PRINT"you need to enter a number:20, 16, or 12.":GOTO getspeed 

getclock: 
INPUT "what clock rate (SYSCLK in MHz) are you designing to";a$ 
a=VAL(a$) 
IF a <=devicespeed THEN GOTO speedok 
PRINT "I won't let you design with SYSCLK out of spec for part." :GOTO getclock 

3·17 



CHAPTER 3 
Display Memory Bus 

speedok: 
'force clock(n) to c/2 according to selected clock rate 
clock(sp)=500/a 'reciprocal over 2 

get.fake: 
INPUT "Do we use the stored delays? (yin) ";a$ 

IF a$="y" OR a$="Y" THEN 
fake.numbers=l :GOTO got.fake 
END IF 
IF a$="n" OR a$="N" THEN 
fake.numbers-O :GOTO got.fake 
END IF 
PRINT "You must respond 'y' or 'n'" 
GOTO get.fake 

got.fake: 
IF fake.numbers=l THEN GOTO read. fakes 'otherwise get from keyboard 
INPUT "Specify lRAS Decode min,nom,max ";ras.decode(1),ras.decode(2),ras.decode(3) 
INPUT "Specify lRAS Delay min,nom,max";ras.delay(1),ras.delay(2),ras.delay(3) 
INPUT "Specify ICAS Decode min,nom,max";cas.decode(1),cas.decode(2),cas.decode(3) 
INPUT "Specify ICAS Delay min,nom,max";cas.delay(1),cas.delay(2),cas.delay(3) 
INPUT "Specify IXFG Decode min,nom,max";xfg.decode(1),xfg.decode(2),xfg.decode(3) 
INPUT "Specify IXFG Delay min,nom,max";xfg.delay(1),xfg.delay(2),xfg.delay(3) 
INPUT "specify lWE Decode min,nom,max ";we.decode(1),we.decode(2),we.decode(3) 
INPUT "Specify lWE Delay min,nom,max";we.delay(1),we.delay(2),we.delay(3) 
INPUT "Specify Address delay min, nom,max ";ad.delay(1),ad.delay(2),ad.delay(3) 

get.cas: 
INPUT "Are you going to make early ICAS from IXF-G (y/n)";a$ 
IF a$<>"n" AND a$<>"N" THEN GOTO notn 
early.cas(O)=O 'no early cas 
GOTO ram.para 
notn: 
IF a$<>"y" AND a$<>"Y" THEN GOTO noty 
early. cas (0)=1 'we will be doing early cas 
INPUT "Specify IXF-G to early ICAS delay min,nom,max 
";early.cas(1),early.cas(2),early.cas(3) 
GOTO ram. para 
noty: 
PRINT "you must respond with 'n' or 'y''':GOTO get.cas 

read.fakes: 
ras.decode(l)=O: 
ras.delay(1)=7: 
cas.decode(l)=O: 
cas.delay(1)=5: 
xfg.decode(l)=O: 
xfg.delay(1)=6: 
we.decode(l)=O: 
we • delay (1) =6: 
ad.delay(l)=lO: 
early.cas(O)=O: 

3·18 

ras.decode(2)=O: 
ras.delay(2)=10: 
cas.decode(2)=O: 
cas.delay(2)=10: 
xfg.decode(2)=0: 
xfg.delay(2)=9: 
we.decode(2)=0: 
we.delay(2)=9: 
ad.delay(2)=13: 
early.cas(1)=8: 

ras.decode(3)=0 
ras.delay(3) =12 
cas.decode(3)=0 
cas.delay(3)=15 
xfg.decode(3)=0 
xfg.delay(3)=11 
we.decode(3)=0 
we.delay(3)=11 
ad.delay(3) =17 
early.cas(2)=10: early.cas(3)=12 



CHAPTER 3 
Display Memory Bus 

ram. para: 
FOR i=l TO ram.para.count 

FOR j=l TO ram. vend. count 
READ ram(j,i) 'read ram parameters 

'PRINT USING "tttttt";ram(j,i), 
NEXT j 
READ ram.text$(i) 'and the text 

'PRINT ,ram.text$(i) 
READ ram.desc$(i) 'and the description 

'PRINT ,ram.desc$(i) 
NEXT i 

GOTO ram. vendors 

'these are the data which are moved into table RAM 

'it is ordered first by NEC parameter number and secondly by device 

'the sec,ond ordering is the same as RAM. VEND $ 

'a value of 99 says that parameter is not defined for that vendor 

DATA 220,270,220,260,190,220,260,230,260,tRC,Read Write Transfer 
DATA 300,365,295,345,260,300,355,300,345,tRWC,RMW Cycle 
DATA 120,145,120,145,70,85,105,120,145,tPC,Page Mode Cycle 
DATA 120,150,120,150,100,120,150,120,150,tRAC,Row Access 
DATA 60,75,60,75,50, 60,75, 60, 75,tCAC,Column Access 

DATA O,O,O,O,O,O,O,O,O,tOFF,Output Disable from CAS HI 
DATA 3,3,3,3,3,3,3,3,3, tT,Transition 
DATA 90,100,90,100,80,90,100,100,100,tRP,RAS Precharge 
DATA 120,150,120,150,100,120,150,120,150,tRAS,RAS Pulse Width 
DATA 60,75,60,75,50,60,75,60,75,tRSH,CAS Falls to RAS Rises 

DATA 25,30,25,30,99,99,99,50,60,tCPN,CAS Precharge (Not PM) 
DATA 50,60,50,60,10,15,20,50,60,tCP,CAS Precharge (PM) 
DATA 60,75,10,75,50,60,75 ,60,75,tCAS,CAS Pulse Width 
DATA 120,150,120,150,100,120,150,120,150,tCSH,CAS Hold From RAS Falls 
DATA 60,75,60,75,50,60,75,60,75,tRCD,RAS to CAS Delay 

DATA 10,10,10,10,10,10,10,0,0,tCRP,CAS Hi to RAS Low Precharge 
DATA 0,0,0,0,0,0,0,0,0, tASR,Address Setup to RAS 
DATA 15,20,15,20,15,15,20,15,15,tRAH,Row Address Hold 
DATA O,O,O,O,O,O,O,O,O,tASC,Address Setup to GAS 

:REM 5 

:REM 10 

:REM 15 

DATA 20,25,20,25,20,20,25,20,25,tCAH,Column Address Hold :REM 20 

DATA 80,100,80,100,99,99,99,80,100,tAR,Column Address Hold from RAS 
DATA O,O,O,O,O,O,O,O,O,tRCS,Read Command Setup to CAS 
DATA 20,20,20,20,10,10,10,10,10,tRRH,Read Command Hold from RAS Hi 
DATA O,O,O,O,O,O,O,O,O,tRCH,Read Command Hold from CAS Hi 
DATA 0,0,0,0,0,0,0,-5,-5,tWCS,Write Command Setup to CAS :REM 25 

DATA 35,45,35,45,25,25,35,35,45,tWCH,Write Command Hold 
DATA 95,120,95,120,99,99,99,95,120,tWCR,Write CMND Hold from RAS Falls 
DATA 35,45,35,45,15,20,25,35,45,tWP,Write Pulse Width 
DATA 40,45,40,45,35,40,45,35,45, tRWL,Write Command to RAS 
DATA 40,45,40,45,30,40,45,35,45,tCWL,Write Command to CAS Lead Time :REM 30 

3·19 



CHAPTER 3 
Display Memory Bus 

DATA O,O,O,O,O,O,O,O,O,tDS,Data Setup to CAS 
DATA 35,45,35,45,25,25,30,35,45,tDH,Data Hold from CAS 
DATA 95,120,95,120, 99, 99, 99, 95,120,DHR,Data Hold from RAS 
DATA 60,75,100,120,85,100,125,90,110,tCWD,CAS to WE Delay 
DATA 120,150,160,195,99,99,99,150,185,tRWD,RAS to WE Delay 

DATA 30,40,35,40,30,35,40,40,45,tOEA,Access from OE 
DATA 35,40,35,40,25,30,40,99,99,tOED,OE High to Data in Setup 
DATA 30,40,30,40,10,15,20,0,0,tOEH,OE Hi hold from WE Low 
DATA 30,40,30,40,0,0,0,25,30,tOEZ,Output Disable from OE Hi 
DATA 10,10,10,10,10,10,10,20,25,tCSR,CAS to RAS Setup for Refresh 

DATA 25,30,25,30,20,25,30,20,25,tCHR,CAS before RAS Refresh Hold 
DATA 0,0,0,0,10,10,10,99,99,tRPC,RAS Hi to CAS Lo Precharge 
DATA 4,4,4,4,4,4,4,4,4,tREF,Refresh Interval 
DATA O,O,O,O,O,O,O,O,O,tDLS,DT to RAS Setup for Xfer 
DATA 100,130,90,130,80,90,110,99,99,tRDH,DT Hold from RAS for Xfer 

DATA 40,55,40,55,99,99,99,99,99,tCDH,DT Hold After CAS LO 
DATA 10,20,20,25,99,99,99,10,15,tSDD,SC Hi to DT Hi Delay 
DATA 10,20,10,20,99,99,99,10,15,tSDH,SC Low Hold after DT Hi 
DATA 35,40,35,40,99,99,99,0,0,tOE,OE Pulse Width 
DATA 30,40,99,99,25,25,30 ,20,25,tSOZ,Serial Output Disable 

DATA 40,60,40,60,40,40,60,40,50,tSCC,Serial Clock Cycle 
DATA 10,20,10,20,10,10,20,10,10,tSCH,Serial Clock Hi 
DATA 10,20,15,20,10,10,10,10,10,tSCL,Serial Clock Precharge 
DATA 5,5,5,5,99,99,99,99,99,tSOO,SOE LOW to Serial Out Setup 
DATA 35,50,35,50,25,30,40,20,25,tSOA,Serial Access from SOE 

(LOW) 

DATA 10,10,10,10,lO,10,10,8,8,tSOH,Serial Out Hold after SC Lo 
DATA 40,60,40,50,40,40,60,40,50,tSCA,Serial Access from SC 
DATA O,O,O,O,O,O,O,O,O,tDHS,DT Hi Setup to RAS (no XFER) 
DATA 20,25,20,25,99,99,99,15,15,tDHH,DT Hold from RAS 
DATA lO,lO,lO,lO,lO,lO,lO,-lO,-lO,tDTR,DT Hi to RAS Hi Delay 

DATA lO,lO,lO,lO,10,10,10,99,99,tDTC,DT Hi to CAS Hi Delay 
DATA lO,10,30,40,99,99,99,99,99,tOES,OE Setup to RAS Hi 
DATAO,O,O,O,O,O,O,O,O,tCOD,unused parameter 
DATA O,O,O,O,O,O,O,O,O,tWBS,Masked Write Command Setup 
DATA 20,25,20,25,15,15,20,15,15,tWBH,Masked Write Command Hold 

DATA O,O,O,O,O,O,O,O,O,tWS,Write Mask Setup 
DATA 20,25,20,25,15,15,20,15,15,tWH,Write Mask Hold 
DATA 15,20,10,20,99,99,99,99,99,tSOE,SOE Pulse Width(Lo) 
DATA 15,20,10,20,99,99,99,99,99,tSOP,SOE Precharge (Hi) 
DATA 20,25,20,25,15,15,20,99,99,tDTH,DT HI Hold after RAS Hi 

DATA 99,99,30,40,99,99,99,99,99,th(OECH),CAS hold after OE low 
DATA 99,99,99,99,99,99,99,99, 99,th(OERH),Unused 
DATA 99,99,120,150,99,99,99,99,99,th(RLOE),OE hold after RAS low 
DATA 99,99,0,0,99,99,99,99,99,tDOEL,Delay Data to OE low 
DATA 99,99,0,0,99,99,99,99,99,tDCL,Delay data to CAS low 

3-20 

:REM 35 

:REM 40 

:REM 45 

:REM 50 

:REM 55 

:REM 60 

:REM 65 

:REM 70 

:REM 75 



CHAPTER 3 
Display Memory Bus 

DATA 99,99,10,20,99,99,99,99,99,tw(SEL),SOE low pulse width 
DATA 99,99,10,20,99,99,99,99,99,tw(SEH), SOE high pulse width 
DATA 99,99,0,0,99,99,99,0,0,tsu(WE),WE setup to RAS low 
DATA 99,99,20,25,99,99,99,15,15,th(WE),WE hold after RAS low 
DATA 99,99,0,0,99,99,99,0,0,tsu(SE),SE setup to RAS low 

DATA 99,99,15,20,99,99,99,15,15,sh(SE),SE hold after RAS low 
DATA 99,99,0,0,0,0,0,0,0,tsu(SD),Serial in setup to SC high 
DATA 99,99,10,15,15,20,25,15,15,th(SD),Serial in hold after SC high 
DATA 99,99,20,30,99,99,99,99,99,tsu(SCRL),SC setup to RAS low 
DATA 99,99,10,15,99,99,99,99,99,tsu(SEH),SE disable setup to SC high 

DATA 99,99,20,30,99,99,99,99,99,th(SEH),SE disable hold from SC high 
DATA 99,99,10,15,99,99,99,25,30,tsu(SEL),SE enable setup before SC high 
DATA 99,99,20,30,99,99,99,99,99,th(SEL),SE enable hold from SC high 
DATA 99,99,0,0,99,99, 99,99, 99, tDDTH, Delay data to DT high 

:REM 80 

:REM 85 

DATA 99,99,20,30,99,99,99,25,30,tDTHD,Delay DT high to data :REM 90 

DATA 99,99,99,99,99,99,99,40,45,tw(TRG),tRG Pulse width 
DATA 9"9,99,99,99,99,99,99,60,75, tCLGH, CAS low to TRG high 
DATA 99,99,99,99,99,99,99,100,120,tRLSH,RAS low to SC high after TRG hi 
DATA 99,99,99,99,99,99,99,100,100,tTHRL,tRG high to RAS low after xfer 
DATA 99,99,99,99,99,99,99,40,45,tCLSH,CAS low to SC after TRG :REM 95 

DATA 99,99,99,99,99,99,99,40,45,tSHRL,SC high to RAS low (w/xfer) 
DATA 99,99,99,99,99,99,99,30,45,tRHSH,RAS high to SC high 
DATA 99,99,99,99,99,99,99,10,15,tTHSH,tRG high to SC high 

ram. vendors: 
ram.vend$(l)="NEC uPD41264-12" 
ram.vend$(2)="NEC uPD41264-15" 
ram.vend$(3)="Mitsubishi M5M4C264P-12" 
ram.vend$(4)-"Mitsubishi M5M4C264-15" 
ram.vend$(5)="Hitachi HM53461-10" 
ram.vend$(6)="Hitachi HM53461-12" 
ram.vend$(7)="Hitachi HM53461-15" 
ram.vend$(8)="T.I. TMS4461-12" 
ram.vend$(9)="T.I. TMS4461-15" 
GOTO qpdm.para 

qpdm.para: 
FOR i=l TO 115 

NEXT i 

FOR j=l TO 4 
READ qpar(j,i) 
NEXT j 

GOTO ramkind 

FOR i=l TO 115 
PRINT USING "tUU"; i; 
IF qpar(l,i)<>O THEN GOTO inuse 
PRINT " parameter is not used." 
GOTO loopend 

inuse: 
IF qpar(l,i»O THEN GOTO formula 

3·21 



CHAPTER 3 
Display Memory Bus 

PRINT USING st1$;qpar(2,i),qpar(3,i),qpar(4,i) 
GOTO loopend 

formula: 
FOR j=2 TO 4 
PRINT USING st1$;(qpar(1,i)*clock(j»+qpar(j,i), 
NEXT j 
PRINT 
loopend: 

NEXT i 
GOTO ramkind 
'now the 95C60 parameters 
'this is ordered by parameter number, 1 .. 115 
'there are four entries for each parameter number 
'the first number:O ->number unused.-1->normal,>0->uses formulas, value is 
'clock half cycles. 1 -> c/2, 7-> 7c/2, etc 
'the other three numbers are for -20, -16, -12. Values if no note 4, else note 4 
adders 
'system bus timing 
DATA -1,0,0 ,0 : REM 1 
DATA -1,65,95,125 : REM 2 
DATA -1,50,60,70 : REM 3 
DATA -1,50,60,70 : REM 4 
DATA -1,10,10,10 : REM 5 
DATA -1,65,70,75 : REM 6 
DATA -1,0,0,0 : REM 7 
DATA -1,10,10,10 : REM 8 
DATA -1,0,0,0 : REM 9 
DATA -1,110,110,120 : REM 10 
DATA -1,10,10,10 : REM 11 
DATA -1,35,40,45 : REM 12 
DATA 0,0,0,0 : REM 13 unused 
DATA -1,10,20,20 : REM 14 
DATA -1,10,20,20 : REM 15 
DATA -1,0,0,0 : REM 16 
DATA -1,70,90,110 : REM 17 
DATA -1,50,75,100 : REM 18 
DATA -1,15,25,25 : REM 19 byte mode 
DATA -1,120,150,180 : REM 20 
DATA -1,0,0,0 : REM 21 
DATA -1,0,0,0 : REM 22 
DATA 0,0,0,0 : REM 23 ususd 
DATA 0,0,0,0 : REM 24 
DATA 0,0,0,0 : REM 25 
DATA 0,0·,0,0 : REM 26 
DATA 0,0,0,0 : REM 27 
DATA 0,0,0,0 : REM 28 
DATA 0,0,0,0 : REM 29 
DATA 1,-10,-15,-20 : REM 30 (uses formula) 
DATA 2,-15,-17,-20 : REM 31 
DATA 7,-15,-15,-20 : REM 32 
DATA 8,-20,-23,-25 : REM 33 
DATA 1,-11,-16,-20 : REM 34 
DATA 4,-5,-15,-20 : REM 35 
DATA 3,-10,-15,-20 : REM 36 
DATA 1,-12,-16,-20 : REM 37 
DATA 4,-20,-20,-22 : REM 38 

3·22 



CHAPTER 3 
Display Memory Bus 

DATA 5,-25,-25,-27 : REM 39 
DATA 2,-10,-15,-20 : REM 40 
DATA 4,-20,-24,-26 : REM 41 
DATA 2,-10,-15,-20 : REM 42 
DATA 1,-12,-15,-20 : REM 43 
DATA 5,-15,-17,-20 : REM 44 
DATA -1,20,30,45 : REM 45 (no formula) 
DATA -1,0,0,0 : REM 46 
DATA 2,-13,-17,-20 : REM 47 
DATA 8,-15,-23,-25 : REM 48 
DATA 1,-13,-18,-20 : REM 49 
DATA 1,-15,-20,-20 : REM 50 
DATA 3,-10,-15,-20 : REM 51 
DATA 4,-10,-15,-20 : REM 52 
DATA 2,-10,-15,-20 : REM 53 
DATA 4,-10,-15,-20 : REM 54 
DATA 2,-10,-15,-20 : REM 55 
DATA 4,-10,-15,-20 : REM 56 
DATA 4,-20,-24,-26 : REM 57 
DATA 8,-15,-18,-20 : REM 58 
DATA 1,-14,-17,-20 : REM 59 
DATA 1,-12,-17,-20 : REM 60 
DATA 4,-22,-24,-26 : REM 61 
DATA -1,2,7,15 : REM 62 
DATA 3,-15,-20,-20 : REM 63 
DATA -1 ,2,7,15 : REM 64 
DATA 3,-15,-20,-20 : REM 65 
DATA -1,-8,-12,-16 : REM 66 (note negative numbers) 
DATA 0,0,0,0 : REM 67 (unused 
DATA 0,0,0,0 : REM 68 
DATA 0,0,0,0 : REM 69 
DATA 0,0,0,0 : REM 70 
DATA 0,0,0,0 : REM 71 
DATA 0,0,0,0 : REM 72 
DATA 0,0,0,0 : REM 73 
DATA 0,0,0,0 : REM 74 
DATA 0,0.,0,0 : REM 75 
DATA 0,0,0,0 : REM 76 
DATA 0,0,0,0 : REM 77 
DATA 0,0,0,0 : REM 78 
DATA 0,0,0,0 : REM 79 
DATA -1,10,10,10 : REM 80 (also has a min of 0) 
DATA -1,0,0,5 : REM 81 
DATA -1,20,30,40 : REM 82 
DATA 2,0,0,0 : REM 83 
DATA -1,25,50,75 : REM 84 
DATA 2,0,0,0 : REM 85 
DATA 6,0,0,0 : REM 86 
DATA 0,0,0 ,0 : REM 87 (unused) 
DATA 0,0,0,0 : REM 88 
DATA 0,0,0,0 : REM 89 
DATA 5,35,35,35 : REM 90 
DATA 18,0,0,0 : REM 91 
DATA 0,0,0 ,0 : REM 92 
DATA 0,0,0 ,0 : REM 93 
DATA 0,0,0 ,0 : REM 94 

3-23 



CHAPTER 3 
Display Memory Bus 

DATA 0,0,0 ,0 : REM 95 
DATA 0,0,0 ,0 : REM 96 
DATA 0,0,0,0 : REM 97 
DATA 0,0,0,0 : REM 98 
DATA 0,0,0 ,0 : REM 99 
DATA -1,25,31,41 : REM 100 
DATA -1,0,0,0 : REM 101 
DATA -1,15,20,25 : REM 102 
DATA -1,30,40,50 : REM 103 
DATA -1,15,20,25 : REM 104 
DATA -1,15,20,25 : REM 105 
DATA -1,50,62,83 : REM 106 
DATA -1,5,5,5 : REM 107 
DATA -1,18,23,32 : REM 108 
DATA -1,18,23,32 : REM 109 
DATA -1,66,72,83 : REM 110 
DATA -1,5,5,5 : REM 111 
DATA -1,25,27,32 : REM 112 
DATA -1,25,27,32 : REM 113 
DATA 8,0,0,0 : REM 114 
DATA -1 ,20,25,30 : REM 115 

ramkind: 
PRINT "Please specify the RAM chips you are designing for:' 
FOR i=l TO ram. vend. count 
PRINT i,ram.vend$(i) 
NEXT i 
INPUT ram.point 
IF ram.point >0 AND ram.point<ram.vend.count+1 THEN GOTO membus 
PRINT "you must specify a number in the range displayed." 
GOTO ramkind 

membus: 
GOSUB out.top 

param1: 
ramp=l: GOSUB out.param 

'print the time and date 

text$="QPDM guarantees 6 SYSCLK cycles = "+STR$(12*clock(sp» :GOSUB out.string 
text$-"RAM requires "+STR$(ram(ram.point,l» :GOSUB out.string 
IF 12*clock(sp) < ram(ram.point,l) THEN GOSUB out.problem 

param2 : 
ramp=2 :GOSUB out.param 
text$= "QPDM never does Read/Modify/Write Cycles.": GOSUB out.string 

param3: 
ramp=3: GOSUB out.param 
text$= "QPDM never does Page Mode Cycles.":GOSUB out.string 

param4: 
ramp=4 : GOSUB out.param 

qpdmp=32 : GOSUB pos. qpdm 
GOSUB neg.ras 
qpdmp=45: GOSUB neg.qpdm 
GOSUB totals 

3·24 



GOSUB finish 

param5: 
ramp=5 : GOSUB out.param 
IF early.cas(O)=l THEN GOTO param5.1 
qpclmp=41: GOSUB pos.qpdm 
GOSUB neg.cas 
qpdmp=45: GOSUB neg. qpdm 
GOSUB totals 
GOSUB finish 
GOTO param6 
param5.I: 
qpdmp=44": GOSUB pos .qpdm 
GOSUB neg.e.cas 
GOSUB neg.cas 
qpclmp=45: GOSUB neg. qpdm 
GOSUB totals 
GOSUB finish 

param6: 
ramp=6 :GOSUB out.param 
qpdmp=46 :GOSUB neg.qpdm 
qpdmp=43 : GOSUB pos. qpdm 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 

param7: 
ramp-7 :GOSUB out.param 
text$=ram.desc$(ramp): min=ram(ram.point,ramp) 
nom=min: max=min :GOSUB out.values 
GOTO param8 

param8: 
ramp=8: GOSUB out.param 
qpdmp=35 :GOSUB pos.qpdm 
GOSUB totals 
GOSUB finish 

param9: 
ramp=9: GOSUB out.param 
qpclmp=33 :GOSUB pos .qpdm 
GOSUB totals 
GOSUB finish 

paramlO: 
ramp=IO: GOSUB out.param 
qpdmp=39 : GOSUB pos. qpdm 
GOSUB totals 
GOSUB finish 

paramll: 
ramp-II: GOSUB out.param 
qpdmp=40 :GOSUB pos.qpdm 
GOSUB totals 

CHAPTER 3 
Display Memory Bus 

3·25 



CHAPTER 3 
Display Memory Bus 

GOSUB finish 

paraml2: 
ramp=l2: GOSUB out.param 
text$="QPDM never does Page Mode Cycles." 
GOTO paraml3 

paraml3: 
ramp=l3:GOSUB out.param 
qpdmp=57 :GOSUB pos.qpdm 
GOSUB totals 
GOSUB finish 

paraml4: 
ramp=l4 :GOSUB out.param 
qpdmp=33 : GOSUB pos. qpdm 
GOSUB neg.ras 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 

paraml5: 
ramp=l5: GOSUB out.param 
IF early.cas(O)=l THEN GOTO paraml5.l 
qpdmp=36: GOSUB pos. qpdm 
GOSUB neg.ras 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 
GOTO paraml6 
paraml5.l: 
qpdmp=42: GOSUB pos. qpdm 
GOSUB neg.ras 
GOSUB pos.e.cas 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 
GOTO paraml6 

paraml6: 
ramp=l6 :GOSUB out.param 
qpdmp=35 : GOSUB pos. qpdm 
GOSUB neg.cas 
GOSUB pos.ras 
GOSUB totals 
GOSUB finish 

paraml7: 
ramp=l7 .:GOSUB out.param 
qpdmp=30 :GOSUB pos.qpdm 
GOSUB neg.adrs 
GOSUB pos.ras 
GOSUB totals 
GOSUB finish 

paraml8: 

3·26 

GOSUB out.string 



ramp=18:GOSUB out.param 
qpdmp=3l :GOSUB pos.qpdm 
GOSUB pos.adrs 
GOSUB neg.ras 
GOSUB totals 
GOSUB finish 

param19: 
ramp=19: GOSUB out.param 
IF early.cas(O)=l THEN GOTO param19.l 
qpdmp=37: GOSUB pos.qpdm 
GOSUB neg.adrs 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 
GOTO param20 
param19.l: 
qpdmp=66 :GOSUB pos .qpdm 
GOSUB neg.adrs 
GOSUB pos.e.cas 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 
GOTO param20 

param20: 
ramp=20: GOSUB out.param 
qpdmp=38: GOSUB pos .qpdm 
GOSUB pos.adrs 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param2l: 
ramp=2l: GOSUB out.param 
qpdmp=56: GOSUB pos.qpdm 
qpdmp=38: GOSUB pos.qpdm 
GOSUB pos.adrs 
GOSUB neg.ras 
GOSUB totals 
GOSUB finish 

param22: 
ramp=22: GOSUB out.param 
qpdmp=43: GOSUB pos.qpdm 
qpdmp=40: GOSUB pos.qpdm 
GOSUB neg.xfg 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 

param23 : 
ramp=23: GOSUB out.param 
qpdmp=35 :GOSUB pos .qpdm 
qpdmp=59 : GOSUB neg. qpdm 
GOSUB pos. xfg 

CHAPTER 3 
Display Memory Bus 

3-27 



CHAPTER 3 
Display Memory Bus 

GOSUB neg.ras 
GOSUB totals 
GOSUB finish 

param24: 
ramp=24: GOSUB out.param 
qpdmp=35 :GOSUB pos .qpclm 
qpc1mp=59 : GOSUB neg. qpclm 
GOSUB pos.xfg 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param25: 
ramp=25:GOSUB out.param 
qpdmp-60 :GOSUB pos .qpclm 
GOSUB pos.we 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param26: 
ramp=26:GOSUB out.param 
qpdmp=61 :GOSUB pos.qpclm 
qpc1mp=60 :GOSUB neg.qpclm 
GOSUB pos.we 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param27 : 
ramp=27:GOSUB out.param 
qpdmp=61 : GOSUB pos. qpclm 
qpdmp=56 : GOSUB pos. qpclm 
qpc1mp=60 :GOSUB neg.qpclm 
GOSUB pos.we 
GOSUB neg.ras 
GOSUB totals 
GOSUB fi"nish 

param28: 
ramp=28 :GOSUB out.param 
qpc1mp=61 :GOSUB pos .qpclm 
GOSUB totals 
GOSUB finish 

param29: 
ramp=29:GOSUB out.param 
qpc1mp=33: GOSUB pos.qpclm 
qpc1mp=56: GOSUB neg. qpclm 
qpdmp=60: GOSUB pos .qpclm 
GOSUB pos.ras 
GOSUB neg.we 
GOSUB totals 

3-28 



CHAPTER 3 
Display Memory Bus 

GOSUB finish 

param30: 
ramp=30 :GOSUB out.param 
qpdmp=60:GOSUB pos.qpdm 
qpdmp=57: GOSUB pos .qpdm 
GOSUB pos.cas 
GOSUB neg.we 
GOSUB totals 
GOSUB finish 

param3l: 
ramp=3l:GOSUB out.param 
qpdmp=64 :GOSUB pos.qpdm 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 

param32: 
ramp=32:GOSUB out.param 
qpdmp=65 :GOSUB pos.qpdm 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param33: 
ramp=33:GOSUB out.param 
qpdmp=56 :GOSUB pos.qpdm 
qpdmp=65 :GOSUB pos.qpdm 
GOSUB neg.ras 
GOSUB totals 
GOSUB finish 

param34: 
ramp=34 :GOSUB out.param 
text$= "QPDM never does Read/Modify/Write Cycles.": GOSUB out.string 

param35: 
ramp=35:GOSUB out.param 
text$= "QPDM never does Read/Modify/Write Cycles.": GOSUB out.string 

param36: 
ramp=36:GOSUB out.param 
qpdmp=44 :GOSUB pos .qpdm 
GOSUB neg.xfg 
qpdmp=45 :GOSUB neg.qpdm 
GOSUB totals 
GOSUB finish 

param37: 
ramp=37 :GOSUB out.param 
text$= "QPDM never does Read/Modify/Write Cycles.": GOSUB out.string 

param38: 
ramp=38:GOSUB out.param 

3·29 



CHAPTER 3 
Display Memory Bus 

text$= "QPDM never does Read/Modify/Write Cycles.": GOSUB out.string 

param39: 
ramp=39:GOSUB out.param 
qpdmp=46 :GOSUB pos .qpdm 
GOSUB pos.xfg 
GOSUB totals 
GOSUB neg.finish 

param40: 
ramp=40:GOSUB out.param 
qpdmp=47 :GOSUB pos.qpdm 
GOSUB pos.ras 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param41: 
ramp=41:GOSUB out.param 
qpdmp=48 :GOSUB pos.qpdm 
GOSUB neg.ras 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 

param42: 
ramp=42:GOSUB out.param 
qpdmp=40 :GOSUB pos .qpdm 
GOSUB pos.cas 
GOSUB neg.ras 
GOSUB totals 
GOSUB finish 

param43: 
ramp=43: GOSUB out.param 
intval=ram(ram.point,ramp)*(lOOOOOO!/256) 'refresh in nanosec 
text$="You may program DMRR to "+STR$(INT(intval/clock(sp)+.99» 
GOSUB out.string 

param44: 
ramp=44:GOSUB out.param 
qpdmp=49 :GOSUB pos.qpdm 
GOSUB neg.xfg 
GOSUB pos.ras 
GOSUB totals 
GOSUB finish 

param45: 
ramp=45:GOSUB out.param 
qpdmp=32 :GOSUB pos.qpdm 
GOSUB neg.ras 
GOSUB pos.xfg 
GOSUB totals 
GOSUB finish 

param46: 

3-30 



ramp=46: GOSUB out.param 
qpdmp=41 :GOSUB pos.qpdm 
GOSUB neg.cas 
GOSUB pos.xfg 
GOSUB totals 
GOSUB finish 

param47: 
ramp=47: GOSUB out.param 
qpdmp=52: GOSUB pos.qpdm 
qpdmp=32: GOSUB pos. qpdm 
GOSUB pos.xfg 
GOSUB totals 
GOSUB finish 

param48: 
ramp=48: GOSUB out.param 
qpdmp=34: GOSUB pos.qpdm 
qpdmp=53: GOSUB pos. qpdm 
GOSUB totals 
GOSUB finish 

param49: 
ramp=49: GOSUB out.param 
qpdmp=44: GOSUB pos .qpdm 
GOSUB totals 
GOSUB finish 

param50: 
param51: 
param52: 
param53: 
param54: 
param55: 
param56: 
param57: 
param58: 
ramp=58: GOSUB out.param 
qpdmp=43: GOSUB pos.qpdm 
qpdmp=35: GOSUB pos.qpdm 
GOSUB pos.ras 
GOSUB neg.xfg 
GOSUB totals 
GOSUB finish 

param59: 
ramp=59: GOSUB out.param 
qpdmp=42: GOSUB pos.qpdm 
GOSUB neg.ras 
GOSUB pos.xfg 
GOSUB totals 
GOSUB finish 

param60: 
ramp=60: GOSUB out.param 
qpdmp=34: GOSUB pos. qpdm 
GOSUB pos.ras 

CHAPTER 3 
Display Memory Bus 

3·31 



CHAPTER 3 
Display Memory Bus 

GOSUB neg.xfg 
GOSUB totals 
GOSUB finish 

param61: 
ramp=61: GOSUB out.param 
qpdmp=43:GOSUB pos.qpdm 
GOSUB pos.cas 
GOSUB neg.xfg 
GOSUB totals 
GOSUB finish 

param62: 
ramp=62: GOSUB out.param 
qpdmp=44: GOSUB pos.qpdm 
qpdmp=34: GOSUB pos .qpdm 
GOSUB neg.xfg 
GOSUB pos.ras 
GOSUB totals 
GOSUB finish 

param63: 
param64: 
ramp=64: GOSUB out.param 
qpdmp=59: GOSUB pos. qpdm 
GOSUB neg.we 
GOSUB pos.ras 
GOSUB totals 
GOSUB finish 

param65: 
ramp=65: GOSUB out.param 
qpdmp=60: GOSUB pos .qpdm 
qpdmp=61: GOSUB pos.qpdm 
GOSUB pos.ras 
GOSUB neg.we 
GOSUB totals 
GOSUB finish 

param66: 
ramp=66: GOSUB out.param 
qpdmp=52: GOSUB pos. qpdm 
GOSUB pos.ras 
GOSUB totals 
GOSUB finish 

param67: 
ramp=67: GOSUB out.param 
qpdmp=63: GOSUB pos. qpdm 
GOSUB neg.ras 
GOSUB totals 
GOSUB finish 

param68: 

3-32 



param69:, 

param70: 
ramp=70: GOSUB out.param 
qpdmp=35: GOSUB pos. qpdm 
qpdmp=49: GOSUB neg.qpdm 
GOSUB neg.ras 
GOSUB pos.xfg 
GOSUB totals 
GOSUB finish 

param71: 
ramp=71 :GOSUB out.param 
qpdmp=44:GOSUB pos.qpdm 
qpdmp=43: GOSUB pos. qpdm 
GOSUB neg.xfg 
GOSUB pos.cas 
GOSUB totals 
GOSUB finish 
param72: 

param73: 
ramp=73 :GOSUB out.param 
qpdmp=42 : GOSUB pos. qpdm 
qpdmp=44 :GOSUB pos.qpdm 
GOSUB neg. ras 
GOSUB pos.xfg 
GOSUB totals 
GOSUB finish 

param74: 
ramp=74: GOSUB out.param 
text$="QPDM never does hidden refresh cycles." :GOSUB out.string 

param75: 
ramp=75: GOSUB out.param 
qpdmp=57 :GOSUB pos.qpdm 
qpdmp=40 :GOSUB pos.qpdm 
qpdmp=65 :GOSUB pos.qpdm 
GOSUB neg.cas 
GOSUB totals 
GOSUB finish 

param76: 

param77:' 

param78: 
ramp=78: GOSUB out.param 
text$="QPDM never does write transfer cycles.":GOSUB out.string 

param79: 
ramp=79: GOSUB out.param 
text$="QPDM never does write transfer cycles.":GOSUB out.string 

param80: 
ramp=80: GOSUB out.param 

CHAPTER 3 
Display Memory Bus 

3-33 



CHAPTER 3 
Display Memory Bus 

text$="QPDM never does write transfer cycles.":GOSUB out.string 

param81: 
ramp=81: GOSUB out.param 
text$="QPDM never does write transfer cycles.":GOSUB out.string 

param82: 
ramp=82 :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param83: 
ramp=83 :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param84: 
ramp=84 :GOSUB out.param 
text$="QPDM never does serial·izer writes.": GOSUB out. string 

param8S: 
ramp=8S :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param86: 
ramp=86 ':GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param87: 
ramp=87 :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param88: 
ramp-88 :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param89: 
ramp=89 :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param90: 
ramp-90 :GOSUB out.param 
text$="QPDM never does serializer writes.":GOSUB out.string 

param91: 
ramp=91 :GOSUB out.param 
qpdmp=44 :GOSUB pos .qpdm 
GOSUB totals 
GOSUB finish 

param92: 
ramp=92 :GOSUB out.param 
qpdmp=41 :GOSUB pos .qpdm 
GOSUB totals 
GOSUB finish 

param93: 

3-34 



CHAPTER 3 
Display Memory Bus 

ramp=93 :GOSUB out.param 
text$="this will handled only on REV C QPDM silicon.":GOSUB out.string 

param94: 
ramp=94 :GOSUB out.param 
qpdmp=34 : GOSUB pos. qpdm 
qpdmp=35 :GOSUB pos.qpdm 
GOSUB pos.ras 
GOSUB neg.xfg 
GOSUB totals 
GOSUB finish 

param95: 
ramp=95 :GOSUB out.param 
text$="this will handled only on REV C QPDM silicon.":GOSUB out.string 

param96: 
ramp=96: GOSUB out.param 
text$="QPDM never does write transfer cycles.":GOSUB out.string 

param97: 
ramp=97: GOSUB out.param 
text$="QPDM never does write transfer cycles.":GOSUB out.string 

param98 : 
ramp=98: GOSUB out.param 
text$="this will handled only on REV C QPDM silicon.":GOSUB out.string 

closeup: 
IF file=l THEN CLOSE #1 
IF file=O THEN GOTO w1 
OPEN file$ FOR INPUT AS f1 
WHILE NOT EOF(l) 

LINE INPUT f1, a$ 
PRINT a$ 
WEND 

CLOSE fl 
w1: 

GOTO w1 

out.top: 'no input, just print time and date 
PRINT DATE$,tIME$ 
IF file=l THEN PRINTf1,DATE$,tIME$ 
IF sp=2 THEN text$=STR$(20) 'build up a header 
IF sp=3 THEN text$=STR$(16) 
IF sp=4 THEN text$=STR$(12) 
text$=text$+" MHz QPDM at" 
text$=text$+STR$(500/clock(sp»+"MHz" 
PRINT text$ 
IF file=l THEN PRINT f1, text$ 
PRINT ram.vend$(ram.point) 
IF file=l THEN PRINT #1, ram.vend$(ram.point) 
RETURN 

out.string: 

3·35 



CHAPTER 3 
Display Memory Bus 

PRINT textS 
IF file=l THEN PRINTtl,text$ 
RETURN 

out.param: 'print ram parameter text index by ramp (RAM Parameter) 
PRINT 
PRINT ramp,ram.text$(ramp),ram.desc$(ramp) 
IF file=l THEN PRINTtl," 
IF· file=l THEN PRINTtl, ramp, ram. text $ (ramp), ram.desc$ (ramp) 
mint=O: nomt=O: maxt=O 'clear accumulators 
RETURN 

out.problem: 
PRINT "***THERE MAY BE A PROBLEM IN THE ABOVE PARAMETER***" 
IF file=l THEN PRINTtl, "****THERE MAY BE A PROBLEM IN THE ABOVE PARAME­

TER****" 
RETURN 

out.values: 'formatted output 
PRINT USING st2$;text$,min,nom,max 
IF file=l THEN PRINTtl, USING st2$;text$,min,nom,max 
RETURN 

eval.qpdm: 'input is qpdmp. output is min,nom,max all set to (same) value from 
qpar 'qpar of qpdmp. will use clock (sp) if necessary 

IF qpar(l,qpdmp)<>O THEN GOTO eval.qpdml 
PRINT "QPDM Parameter is unused: ";qpdmp 
STOP 

eval.qpdml: 
IF qpar(l,qpdmp»O THEN GOTO eval.qpdm2 
min=qpar (sp,qpdmp): nom=min: max=min 
RETURN 

eval. qpdm2 : 
min=clock(sp)*qpar(l,qpdmp)+qpar(sp,qpdmp) 
nom=min: max=min 
RETURN 

accumulate: 
mint=mint+min 
nomt=nomt+nom 
maxt=maxt +max 
RETURN 

decrement: 
mint=mint-min 
nomt=nomt-nom 
maxt=maxt-max 
RETURN 

change.sign: 
min=-min 
nom=-nom 
max=-max 
RETURN 

get.ras.decode: 
min=ras.decode(l) 
nom=ras.decode(2) 
max=ras.decode(3) 

3-36 

'add in new min 

'subtract out new min 

'get the para for proper Q speed 

'n clock/2 + (-) adder 



RETURN 
get.ras.delay: 

min=ras.delay(l) 
nom=ras.delay(2) 
max=ras.delay(3) 
RETURN 

get.cas.decode: 
min=cas.decode(l) 
nom=cas.decode(2) 
max=cas.decode(3) 
RETURN 

get.cas.delay: 
min=cas.delay(l) 
nom=cas.delay(2) 
max=cas.delay(3) 
RETURN 

get.xfg.decode: 
min=xfg.decode(l) 
nom=xfg.decode(2) 
max=xfg.decode(3) 
RETURN 

get.xfg.delay: 
min=xfg.delay(l) 
nom=xfg.delay(2) 
max=xfg.delay(3) 
RETURN 

get.we.decode: 
min=we.decode(l) 
nom=we.decode(2) 
max=we.decode(3) 
RETURN 

get.we.delay: 
min=we.delay(l) 
nom=we.delay(2) 
max=we.delay(3) 
RETURN 

get.ad.delay: 
min=ad.delay(l) 
nom=ad.delay(2) 
max=ad.delay(3) 
RETURN 

get.early.cas: 
min=early.cas(l) 
nom=early.cas(2) 
max=early.cas(3) 
RETURN 

pos.ras: 
text$="+RAS Decode":GOSUB get.ras.decode: GOSUB pos.delay 
text$="+RAS Delay": GOSUB get.ras.delay: GOSUB pos.delay 
RETURN 

neg.ras: 
text$="-RAS Decode":GOSUB get.ras.decode:GOSUB neg.delay 
text$="-RAS Delay":GOSUB get.ras.delay:GOSUB neg.delay 

CHAPTER 3 
Display Memory Bus 

3-37 



CHAPTER 3 
Display Memory Bus 

RETURN 

pos.cas: 
text$="+CAS Decode":GOSUB get.cas.decode: GOSUB pos.delay 
text$="+CAS Delay": GOSUB get.cas.delay: GOSUB pos.delay 
RETURN 

neg.cas: 
text$="-CAS Decode":GOSUB get.cas.decode: GOSUB neg.delay 
text$="-CAS Delay": GOSUB get.cas.delay: GOSUB neg.delay 
RETURN 

neg.e.cas: 
text$="-Early CAS": GOSUB get.early.cas: GOSUB neg.delay 
RETURN 

pos.e.cas: 
text$="+Early CAS": GOSUB get.early.cas: GOSUB pos.delay 
RETURN 

pos.xfg: 
text$="+XFG Decode":GOSUB get.xfg.decode: GOSUB pos.delay 
text$="+XFG Delay": GOSUB get.xfg.delay: GOSUB pos.delay 
RETURN 

neg.xfg: 
text$="-XFG Decode":GOSUB get.xfg.decode:GOSUB neg.delay 
text$="-XFG Delay":GOSUB get.xfg.delay:GOSUB neg.delay 
RETURN 

pos.we: 
text$="+WE Decode":GOSUB get.we.decode: GOSUB pos.delay 
text$="+WE Delay": GOSUB get.we.delay: GOSUB pos.delay 
RETURN 

neg.we: 
text$="-WE Decode":GOSUB get.we.decode:GOSUB neg.delay 
text$="-WE Delay":GOSUB get.we.delay:GOSUB neg.delay 
RETURN 

pos.adrs: 
text$="+Adrs Delay": GOSUB get.ad.delay: GOSUB pos.delay 
RETURN 

neg.adrs: 
text$="-Adrs Delay": GOSUB get.ad.delay: GOSUB neg.delay 
RETURN 

finish: 
'write the totals line, the ram parameter line, and the margins 
'print the error message if necessary 
IF ram(ram.point,ramp)<>99 THEN GOTO finishl 

3-38 



CHAPTER 3 
Display Memory Bus 

text$="Not a Parameter for this VRAM Vendor": GOSUB out.string: RETURN 
finishl: 
min=ram(ram.point,ramp): nom=min: max=min: text$="VRAM": GOSUB out.values 
text$="Margins:": min=mint-min :nom=nomt-nom: max=maxt-max: GOSUB out.values 
IF min=>O AND nom=>O AND max=>O THEN RETURN 
GOSUB out.problem 
RETURN 

neg.finish: 
'write the totals line, the ram parameter line, and the margins 
'print the error message if necessary 
IF ram(ram.point,ramp)<>99 THEN GOTO neg.finishl 
text$="Not a Parameter for this VRAM Vendor": GOSUB out.string: RETURN 
neg. fini'shl: 
min=ram(ram.point,ramp): nom=min: max=min: text$="VRAM": GOSUB out.values 
text$="Margins:": min=min-mint :nom=nom-nomt: max=max-maxt: GOSUB out.values 
IF min=>O AND nom=>O AND max=>O THEN RETURN 
GOSUB out.problem 
RETURN 

totals: 
text$="Total Time:": min=mint: nom=nomt: max=maxt: GOSUB out.values 
RETURN 

pos.qpdm: 
text$="+QPDM Para "+STR$(qpdmp) 
GOSUB eval.qpdm: GOSUB out.values: GOSUB accumulate: RETURN 

neg.qpdm: 
text$="-QPDM Para "+STR$(qpdmp) 
GOSUB eval.qpdm: GOSUB change.sign 
GOSUB out.values: GOSUB accumulate 
RETURN 

pos.delay: 
SWAP min,max: GOSUB out.values: GOSUB accumulate: RETURN 

neg.delay: 
GOSUB change.sign: GOSUB out.values: GOSUB accumulate: RETURN 

3-39 



CHAPTER 3 
Display Memory Bus 

3.3 FONT STORAGE IN KANJI ROMS 

3.3.1 Introduction 

This note describes a method of storing very large fonts 
in a Am95C60 Quad Pixel Dataflow Manager (QPDM) 
system. This method avoids the expense and board 
space that would be required to keep the fonts in VRAM 
by allowing them to reside in (relatively slow) MOS 
ROMs. 

3.3.2 String Operations on the QPDM 

The QPDM provides a powerful text manipulation facility, 
described in detail in Chapter 1 0 ofthe Technical Manual. 
An overview is provided here. 

The Font 

A font is stored in display memory (typically with Input 
Block) and the QPDM is notified of the location of the font 
using the Set Character Font Base instruction. Each 
(there may be two) font contains up to 4096 character 
entries, all beginning at the same X address. See Figure 
3.3-1. Each character description begins with a 16-bit 
attribute word which specifies the size of the character. 
This is followed by as many pattern words as are required 
to describe the character. In the font described in this 
section, each character is 24 pixels by 24 scan lines. 
With this mechanization, character are separated hori­
zontally by up to eight blank pixels. 

j.--XII= ~ 

3-40 

ONE 
CHAR 

~ 
Attribute 

Word = 16 bits 

ONE SCAN LINE 

1K 2K 3K 4K 

1 st Level 2nd Level 
VRAM Kanji Kanji 

PIO 09862A 3.3-1 

Figure 3.3-1 Display Memory Layout 



KANJI ROM ORGANIZATION 

Figure 3.3-2 Kanji ROM Pinouts and Organization 

CHAPTER 3 
Display Memory Bus 

• ="1" 

o ="0" 

one scan line 
next scan line 

Unused Area 
(AcAo : 11000 

to 
11111 

PIO 09682A 3.3-2 

3-41 



CHAPTER 3 
Display Memory Bus 

The String Instruction 

The String instruction is used to move characters from 
the font area to a (normally) visible area of the display 
memory. The String instruction specifies the beginning 
location where the text is to appear. The String instruc­
tion is followed by a variable-length list of character 
codes. Each entry in this list is processed as one 
character. 

The QPDM processes list entries as follows: The entry 
is used as an index into the font. Since characters in the 
font are ordered vertically, the index is a Y -offset from the 
base of the font. The attribute word is fetched first so that 
the QPDM knows the size of the character. 

Then, for each scan line of the character, as many 16-bit 
pattern words as necessary are fetched and placed into 
the display memory. Since we are processing 24-bitwide 
characters, two pattern words per scan line are required 
(the right-most eight bits are discarded). 

The QPDM processes all the scan lines of a character (in 
this case there are 24) and moves the Current Pen 
Position to the beginning of the next character space. 
The high-order bit of the current list entry is tested to 
determine if it is the last in the list. If not, the process 
continues with the next entry. 

3.3.3 Memory Requirements for Very 
Large Fonts 

This method of storing fonts in the display memory 
presents a problem when the fonts become very large. 
Consider a 24 x 24 font containing 8192 entries. Each 
scan line of each character is stored in 32 bits (eight of 
which are unused). There are 768 bits for pattern storage 
plus 16 bits for the attribute word. Each character 
requires 784 bits; the complete font requires over6 Mbits. 
At least in the short run (until 1 M x 4 VRAMs become 
available), this is sufficiently expensive that we would like 
to find a better way. 

3.3.4 The Solution for KANJI 

Kanjifonts are available in 300 ns ROMs. There are two 
sets of three ROMs each; 1st level Kanjicontains 2965 
characters and 2nd level Kanjicontains 3388 characters. 

Each ROM in the three-chip set contains an 8-bit slice of 
each scan line of each character. The ROMs are ad­
dressed in parallel; there are 12 address bits to select a 
character and 5 address bits to select a scan line. Not all 

3-42 

ofthe character codes are used, and only the first 24 scan 
lines are used. The arrangement of the three ROMs is 
shown in Figure 3.3-2. The development of the ad­
dresses is shown in Table 3.3-1 

These ROMs have an access time (both address and 
Chip Select) of 300 ns, but the QPDM provides the 
address only 60 ns before the data are required. So there 
is insufficient memory access time. This problem is 
solved by pipelining the accesses. 

Figures 3.3-3 and 3.3-4 show how this works. When the 
QPDM executes the display memory read to fetch the 
attribute word, this is detected in the PAL device since X11 
is a one and Xg through X4 are all zeroes. This is defineo 
as an attribute word. EN_ATTRIB_WORD* enables U6 
and U7 onto the OM lines during CAS. This is a "hard­
wired" attribute word which specifies a 24 x 24 character. 
The bits in the attribute word are described in Section 
3.3.5. 

During this same memory cycle, the character address is 
clocked into U2 and U3 with ClK_CHAR atthe beginning 
of CAS. Further, the scan line number (which always 
begins at zero) is clocked with ClK_SCAN_L1NE, also at 
the beginning of CAS. X10 is also clocked with 
ClK SCAN LINE. This is used to enable one or the 
othertriplet of ROMs based on the level selected. 

The ROMs begin to access the data for the first scan line, 
i.e., scan-line number zero, as the QPDM completes 
fetching the attribute word. Even assuming back-to-back 
cycles, the ROMs have somewhat over 300 ns before the 
data are required. 

When the QPDM executes a memory-read cycle to fetch 
the first word of the first scan line, the address will have 
both 'Sl. and X:'Las ones. The PAL device U5 will make 
EN_lt:t-T_WOHD* active while ICAS is active, gating 
the upper 16 bits onto the OM lines via U8 and U9. At the 
falling edge of ICAS, ClK_RIGHT_WORD will clock the 
lower eight bits into U10. 

When the QPDM executes a memory-read cycle to fetch 
the second word of the first scan line, the address will 
have X 1 and Xs ones, and X4 will be a zero. The PAL 
device kill then make term EN_RIGHT_WORD* active 
which will enable the lower eight bits of the font onto 
DM15-8 via U10 and zeroes onto DM7_ via U11. The 
purpose of the zeroes is to guarantee tlanks between 
characters. At the falling edge of ICAS, Xg through X.li are 
clocked into U4 with ClK SCAN LINE and the RuMs 
will begin to access the second scan line (scan line one). 
Referring to Table 3.3-1, one can observe that X4 from 



CHAPTER 3 
Display Memory Bus 

Table 3.3-1 Address Blta 

ROM ADDRESS BIT QPDMSOURCE CONFIGE CONFIGD 

A1S V11 A10 @CAS Ag@CAS 

A15 V10 Ag@CAS Aa@CAS 

A14 Vg Aa@CAS A,@CAS 

A13 Va A,@CAS Aa@RAS 

A12 V7 A,@RAS A7 @RAS 

A11 Vs As@RAS As@RAS 

A10 Vs As@RAS As@RAS 

Ag V4 A4 @RAS A4 @RAS 

Aa V3 ~@RAS A3 @RAS 

A7 V2 ~@RAS A2 @RAS 

As V1 A1 @RAS A1 @RAS 

As Vo Ao@RAS Ao@RAS 

A4 Xg As@RAS A5 @RAS 

A3 Xa A4 @RAS A4 @RAS 

A2 X7 ~@RAS A3 @RAS 

A1 Xs ~@RAS A2 @RAS 

Ao Xs A1 @RAS A1 @RAS 

The purpose of this table is to indicate the detailed source of each address bit into the ROM. The column labeled 
"OPOM SOURCE" is the V or X address bit internal to the OPOM. The columns labeled ''CONFIG E" and "CONFIG 
0" indicate which address pin of the OPOM presents the address bit and whether it comes out during RAS or CAS time. 

Xll=1 indicates the access is a Kanji font address. Xl0 selects first level or second level Kanji. 

A16 through As select a character in the ROM; A4 through Ao select a scan line. 

3-43 



CHAPTER 3 
Display Memory Bus 

the CPOM is not part ofthe address going into the ROMs, 
but is used to determine which half of the character 
should be fetched. 

When the CPOM executes a memory read cycle to fetch 
the first word ofthe second scan line, X.! will be a one. The 
PAL device makes EN_LEFT_WORu· active and the 
process continues. 

3.3.5 Remarks 

The X11 Problem 

This solution requires that the CPOM emit address Xu 
which is not the case for memory configurations 0 and E 
(see Chapter 12 of Tech Manual). The third major 

BIT 
VALUE 

FIELD 

15 I 14 I 13 I 12 
1 I 1 I 0 I 0 

H 

11 I 10 I 9 I 8 
o I 0 I 0 I 0 

S 

revision of silicon (REV. C) supports these two address 
bits in configurations D and E. 

An interim solution is diagramed in Figure 3.3-5. The 
CPOM is actually programmed for memory configuration 
C (see Section 12 of the technical manual) so that 
address X1\ is available. Then, we externally put a 
multiplexer 10 front of ~ to the VRAMs to make the 
addresses the same as they would have been in configu­
ration E. The implementer must insure that no RAM 
timing parameters are violated. Row address set-up and 
hold times should be checked especially carefully. 

The Form of the Attribute Word 

The attribute word should be as follows: 

7 I 6 5 I 4 I 3 I 2 I 1 I 0 
o I 0 o I 1 I 1 I 1 I 0 I 0 

0 ICO 

H is set to 1100 (decimal 12). Assuming cell scale is 2, this corresponds to 24 scan lines of active characters. If the 
cell scale is set to 4, this should be 0110 (decimal 6). 

S is set to 0000 because we do not want any space above characters. 

o is set to 00 to force left-to-right character positioning. 

ICO is s!'!t to 01 1100 (decimal 28). Since the character occupies 24 pixels, this leaves four pixels between 
characters. These pixels are forced to zero by U11. Since eight zeroes are provided, the ICO could be as much 
as 32, leaving eight pixels between characters. 

An ...... SlOl.eft SlO Right SLll.eft 81.1 Right 

RAS 

CAS 

ClK-CHAR 

CLK-SCAN-
LINE 

EIMTIRIB-
WORD' 

EN-LEFT· 
WORD' 

EN-RIGHT-
WORD' 

PROM 0 
Address 

X-AddI888 0 2 3 4 
fromQPOM 

Figure 3.3-3 Timing Diagram 

3-44 



All ....... - ....... -------f 

QPOM 

RASI_---I 

CASI---L..J~=~~;;;;;t..., 

CHAPTER 3 
Display Memory Bus 

DM1~--------~-+_-------+-_I_-~--;_---

DM~I_---------~---------+-----+-----

Figure 3.3-4 logic Diagram 

Intervening Memory Cycles 

Memory cycles can intervene between accesses to the 
font memory. There will certainly be write cycles to 
Visible Display Memory, and there normally will be trans­
fer cycles and refresh cycles. This is no problem so long 
as none of them make Xll a one, because the registers 
in the ROM logic will remain static. The QPDM will not 
make Xll a one during transfer or refresh cycles. It is up 
to the userto avoid using addresses that would make Xll 
a one during read or write cycles. 

Preventing a Bus Crash 

The implementer should use Xll to prevent the VRAMs 
from executing read cycles when the Font ROM is being 
accessed. Otherwise, a bus contention will result with 
both the VRAMs and ROMs attempting to put data onto 
the DM lines. 

Logic Minimization 

I made no attempt to minimize the logic in this note since 
I wanted clarity of purpose above all else. It is possible, 
for example, to combine U6 and U8 into a single PAL 
device (16H8). Another possibility is to combine U7, U9, 
and U11 into a single PAL device. 

As Cf7atRAS) 
(XII aICAS) 

MUX 

s 

to VRAMs (A7 ) 

RAS" ____ .... 

(0 selects As) 

RAS ,'--___ ---'r-
CAS ,\.-_-.Jr-

~~~X~ ____ Y~8 _____ ~ 

PIO 09682A 3.3-5

Figure 3.3-5 Xll Solution

3-45

CHAPTER 3
Display Memory Bus

X11,X9,XB,X7,X6,XS,X4
RAS,CAS
POS_RAS
ClK_CHAR
ClK_SCAN_LlNE
EN_lEFT_WORD
EN_RIGHT_WORD
ClK_RIGHT_WORD
EN_ATTRIB_WORD
SPARE_IO
SPARE_IN

POS_RAS
ClK_CHAR

ClK_SCAN_LlNE

liEN_lEFT_WORD
IIEN_RIGHT_WORD

ClK_RIGHT_WORD

IIEN_ATTRI B_WORD

IC# Type

U1
U2

Octal FF
Quad FF

U3
U4

US
U6
U7
UB
U9
U10
U11

Octal FF

Hex FF

PAL Device
Octal Buffer
Octal Buffer
Octal Buffer
Octal Buffer
Octal FF w/3S
Octal Buffer

Table 3.3.2 PAL Equations

PIN 1,2,3,4,S,6,7;
PIN B,9;
PIN 19;
PIN 1B;
PIN 17;
PIN 16;
PIN 1S;
PIN 14;
PIN 13;
PIN 12;
PIN 11;

!RAS;
X11 &!X9 & !X8 & IX7 & !X6 & IXS & IX4 & IICAS;

X11 & !X4 & ICAS

X11 & X4 & !CAS
X11 & X9 &IX4 & !CAS
X11 & XB & !X4 & ICAS
X11 & X7 & IX4 & !CAS
X11 & X6 & !X4 & !CAS
X11 & XS & !X4 & ICAS;

X11 & X4 & ICAS:

X11 & !X9 & !XB & IX7 & !X6 & IXS & !X4 & !CAS

Table 3.3.3 Device Type and Purpose

Purpose

Save Row Address until CAS time.
Contains Yll,10,Q,8 ((High Order Char Adrs)
Contains Y7-YO (low Order Char Adrs)

Contains X10-XS (Select and Scan Line)

Control
Emits left Byte of Attribute
Emits Right Byte of Attribute
Buffers Top Byte of Kanji Character
Buffers Middle Byte of Kanji Character
Latches, Buffers low Byte of Kanji Character
Emits eight zeros for inter-character space

The purpose of this table is to indicate the device type and purpose of each IC in this design, It really could be part
of the block diagram.

3-46

CHAPTER 4

Video Bus

4.1 VIDEO BUS

4.2 SERIALIZERS IN GENERAL

4-1
4-1

CHAPTER 4

Video Bus
4.0 INTRODUCTION

This section covers the Video Bus, defined as the monitor
controls and the serializers. The monitor controls
(HSYNC and VSYNC) are covered first. Then we pres­
ent three detailed examples of the video serializers. The
first serializerused in the AMO evaluation/demonstration
board is suitable for video rates up to 40 MHz. The
second serializer uses Am8177s and is suitable for video
rates up to 125 MHz. The third serializer uses Am8172s
and is suitable for video rates up to 125 MHz. These
serializers have all been built and tested.

For a detailed analysis of a demonstration levaluation
board that was built and tested, please refer to
Section 5.

4.1 VIDEO BUS

In this section we discuss the ways of designing the video
bus portion of a apOM design. We first talk about the
monitor controls and then cover three different video
serializers.

4.1.1 Monitor Controls

The three monitor controls from the apOM (BLANK,
HSYNC, and VSYNC) have substantial (greater than
one-tenth dot clock) timing uncertainty and will have to be
resynchronized prior to use. In general, the timing with
which the SYNC signals are synchronized is not critical,
so long as it is consistent (does not vary more than a
fraction of a dot time from scan line to scan line). If the
design provides a timing pulse that is synchronous with
VIOCLK and is guaranteed to follow the positive edge by
at least timing parameter 1 03 plus the register set-up
time, there will be no problem. The SYNC pulses may be
buffered (with or without inversion) and driven directly to
the monitor. Alternatively, the SYNCs may go to the color
palette to be mixed with the video (usually green).

The time at which BLANK must be synchronized is very
much dependent on how the serializers work. We will
cover this in the discussion of each of the three serializer
methods.

4.2 SERIALIZERS IN GENERAL

The final serialization process is the responsibility of the
system deSigner, not the apOM. The apOM will execute
the transfer cycles to load the scan line into the VRAM
serial port and provide the blank signal to indicate when
the actual serialization should take place. The usertakes
care of the rest.

If the system contains Am8172 VOAF's or the equivalent,
the apOM will take care of loading the INPUT side of the
FIFO but taking data out of the FIFO must be done by the
user.

4.2.1 Slow-speed Serializers

An example of slow-speed serialization is covered in
some detail in Section 5.1. To re-cap, the apOM display
memory is organized in 16-bit words. Thus, the display
memory chips are allocated four (64K • 4) to a bit plane.
We use the serial output enables on the four chips to
multiplex to a 4-bit bus. This bus is loaded into a 4-bit
parallel-to-serial shift register with synchronous reset.
Every four bit times, the shift register is loaded. During
blanking time the output ofthe shifter is forced to a "O"with
the synchronized blanking pulse.

The longest path in this circuit is shown in Figure 4.1-1.
The dot clock causes a change in the dot counter value
(U,o)' which makes VRAM output enable active (U,,). This
in turn puts serial data from one of the VRAMs onto the
nibble bus. This data must be set up before the fourth
subsequent dot clock arrives at the serializer(U,.). The
table below summarizes for various families of PAL
devices. In each case, we assume -12 VRAMs. In
practice, this should be compared to tmax for the PAL
Family.

Table 4.1-1 Summary of PAL devices

Parameter 16XXTyp 16XXMax 16XXA Max 16XXB Max

U,o teo 17 25 15 12
U. tpo 23 35 25 15
VRAMt_ 20 35 35 35

U,. t. 20 30 15 10
Total 80 125 90 72
TotaVBit 20 31 22 18
Freq 50 32 44 56

4-1

CHAPTER 4
Video Bus

4.2.2 High-speed Serializer without HW
Windows (Am8177)

The following discussion assumes the reader has access
to the data sheets for the parts that are used in the
examples. These parts and their data-sheet numbers
are listed below:

Am8151 Graphics Color Palette (GCP)
Am8158 Video Timing Controller (VTC)
Am8172 Video Data Assembly FIFO (VDAF)

Am8177 Video Data Serializer (VOS)

046530
04659C
07554A

07080B

Figures 4.1-2 and 4.1-3 are schematic fragments show­
ing a method of serializing video at up to 125 MHz. This
method does not provide for a hardware window and
requires that the screen be placed on a 16-bit boundary.

Figure 4.1-2 shows an Am8158 Video Timing Controller
used to generate the Oot Clock and VIOClK. Oot Clock
is generated on board the Arn8158 with a built-in oscilla­
tor and 5Xfrequency multiplier. VIOClK is generated in
the Am8158 with a divider that is programmed for divide­
by-16. VIOClK is buffered to minimize loading in the
Arn8158 and drives the QPOM VIOClK, as well as being
used to generate the shift clocks for the VRAMs.

Dot
Clock

U10
COUNT

U9
ENABLE

OClKOUT is buffered in three sections of a 10103 to
provide two copies of the clock for the 8177 VOSs and
both rails forthe Am8151 GCPs. The fourth sectionofthe
10103 is used to gate the load pulse to the serializers.
Using all the sections of a single chip to generate these
signals ensures that the skew will be minimized.

puulng Words Into the Serlallzer

The Arn8158 generates lO* during the last dot clock of
any VIOClK during which VC was ever lOW. The
relationship amongst these signals is shown in Figure
4.1-4 OOT.ClK and VIOClK (CClK) run continuously.
QBlANK from the QPOM goes not active during the
VIOClK period before the video will actually begi n which
causes lO* during the last OOT.ClK of that VIOClK.
This loads the first 16-bit word into the Am8177 serializer
(this is shown as word 0 of VIOEO). Eight bit times later,
SHIFT.ClK goes high to clock the next 16-bit word into
the VRAM serializer outputs. Actually, this can occur
almost anywhere during the word; the falling edge of
VIOClK is a convenient time. Then, during the very last
OOT.ClK of the first word, lO* goes active again to clock
the second word into the Am8177s. This continues until
the very last word has been serialized.

U14
RED

09862A4.1·1

FIgure 4.1-1 Slow Serlallzer

4-2

!

I~
I

QBLANK
VC

8158

OC~OUT~--------~+--4
L-~-+-""""""'"

CClK~----7l0~·~--+-------~------~~~
LDt:>----=::;--+<lI"""~p_t_--....:::::::..!...

ECL.BLANK

10125

Figure 4.1-2 High Speed Serlallzer without HW Window - Controls

S;015 I
• • •

lSR·
lO

ECL.ZERO SIN
8177

(1 of 8)
~ VLE
-

I n DOT.ClOCK

51BlK
51ClK·

C
51ClK

C

I soo
• • •

SoUl

8151
(1 of 3)

f---

,-
V One of ei

Bit Plane
ght
s

09862A 4.1-3

Figure 4.1-3 High Speed Serializer with HW Window - Serlallzer

CHAPTER 4
Video Bus

SHIFT.ClK

09862A 4.1-2

4-3

CHAPTER 4
Video Bus

Scan Line End CondItIons

It is necessary now to examine the beginning and the end
of scan lines. As it turns out, the BLANK input of the
Am8151 is a TIL signal and cannot be used to start and
stop the video at precisely the correct times. Rather, we
guarantee that the video outputs of the Am8177 is all
zeroes before and aftmthe active portion ofthe scan line
and require thatthe 0 entry ofthe Am8151 lUT gener­
ate black video. This is accomplished by connecting the
serial input of the Am8177 to an ECl zero and suppress­
ing the load signals except during the active portion. The
Am8158 suppresses the lO* pulses before the active
video. The Am8158 generates one lO* pulse after the
active video (because the QPOM doesn't drive QBLANK
active in time); we suppress this lO* pulse with
ECL.BlANK in the fourth section of the Am1. 01 013. Note
that ECL.BLANK doesn' need to have very precise
timing.

To guarantee that the monitor will accomplish OC resto­
ration correctly, we must drive the video to blank (rather
than black) during HSYNC. QBLANK is AN Oed with a
delayed QBLANK before going to the Am8151. This is

OOT.CLOCK

CClK

QBLANK \

lO" U U

LSR" U U

SHIFT.ClK

VIDEO
word 0

shown as 51 BlK in Figure 4.1-4 51 BlK goes not active
before the beginning of the scan line but this doesn't
cause any problem because the video is still black.
51 BlK does not go active until slightly after the end ofthe
scan line butthis doesn' cause any problem because the
video is already black (because the Am8177s ran out of
data to serialize).

VRAM Serial Shifter Control

We must provide a shift pulse to the VRAMs after the
transfer cycle and before the first lSR*. This clocks the
first word to be serialized into the VRAM serial outputs.
This is done in the PAL device in Figure 4.1-2 which
monitors XFER* to generate the initial pulse. It then
generates an edge for every VIOClK after the active
portion of the scan line has begun.

4.2.3 High-speed Serializer with HW Win­
dow (Am8172)

Figures 4.1-5 and 4.1-6 are schematic fragments show­
ing a method of serializing QPOM video with a hardware
window. This uses the Am8172 Video Oata Assemblyl

r / ..

r
"U U U

r
"U U

r word 78 word 79

"

\I-_________ -:f;.-________ ----'I,.)
09862A4.HI

51BlK

Figure 4.1-4 High Speed Serlallzer without HW Window - Timing Diagram

4-4

QBLANK
VC

8158

10103

DCLKOUT~--------1-+--4J_~~~~~~

CCLK~----------~------~~--------~
LD~ ____ ~~ __ ~~--~~~~L~S~R~' __ __

ECL.BLANK

51BLK

10125
09862A 4.1-5

Figure 4.1-5 High Speed Serializer with HW Window - Control

buffered XFG

S MUX
8x2to1

DCl-7

VSTB
Am8172

VDAF

DSTB DCLK

3
COAT ACDC1-2

DOT.ClK DOTClOCK
SCl-1 LSR" lDSR

CHAPTER 4
Video Bus

VIDCLK

58 LK

to 8151

D9862A 4.1·6

Figure 4.1-6 High Speed Serializer with HW Window - Serializer

4-5

CHAPTER 4
Video Bus

FIFO (VDAF). The VDAF provides two functions. The
first function is that of a "rubber- band" to provide video
when the VRAMs are executing transfer cycles. The
second function is to discard unused bits at the edges of
windows.

Figure 4.1-5 shows the Am8158 and associated logic.
This is similar to the Am8158 schematic shown in Figure
4.1-2 exceptthat we need to load the final serializer every
eight pixels rather than every 16. This is done by
programming the CCLK divider for eight rather than for
16. In addition, we divide this clock by 2 to generate
VIDCLK (to keep VIDCLK below 15 MHz).

Figure 4.1-6 shows the VRAM serializers, the Am8172,
and the control logic. We consider first the removal of
data from the VDAF and then the loading of the VDAF.

Removing S(!rial Data from the VDAF

Figure 4.1-7 is a timing diagram showing how the seriali­
zation controls are used to drive the Am8172. Observe
that the horizontal scale for this diagram is by byte
whereas for Figure 4.1-4 it is by word. CCLK is generated
in the Am8158 and divided by two to generate VIDCLK.
When QBLANK goes not active the first LD* pulse forthe
scan line is generated which in turn generates the first
LSR* pulse to the Arn8172s. 51 BLK will have already
gone not active but the pixels before active video will be
black.

CCLK

VIDCLK ~

QBLANK \

LO" U U

LSR" U U

VIDEO
Byte 0

51BLK \

Scan Line End Conditions

At the end of the scan line, the finalLD* pulse has to be
suppressed; this is done by ANDing with ECl.BLANK.
As in the case of using the Am8177, the timing of
ECl.BLANK is not critical. The serial video from the
Am8172s goes to a set of three Am8151 color palettes
and thence on to a monitor.

Putting Data Into the VDAF

Figure 4.1-8 is a timing diagram showing the video bytes
being loaded into the Am8172 VDAF. For purposes of
timing analysis, it is easiest to use DSTB from the QPDM
as the reference. VSTB from the QPDM changes be­
tween 0 and 10 ns following each positive edge of DSTB
(this is QPDM parameter 80). CDAT has 8 ns setup
(QPDM parameter 81) and 15 ns hold (QPDM parameter
82) from each positive edge of DSTB. All the signals
which go between the QPDM and the VDAF pass
through a common 22V1 0 PAL device. Using this com­
mon device, even for signals which have no logical
requirement, guarantees that the skew will be minimized.

We will generate ACDO-2 directly from CDATO-2 and
DCLK will come from DSTB. The multiplexer select will
come from VSTB. The VRAM serial clocks will be
generated from DSTB immediately after the data has
been clocked into the VDAF. The two clocks (CLK.HI and
CLK.LO) will be generated out of phase.

[I ,

r • U U U

r • U U

[Byte 78 Byte 79 .
r I •

09862A 4.1-7

Figure 4.1-7 High Speed Serlalizer with HW Window· Timing Diagram

4-6

ACD Setup and Hold Times

The VOAF has a 5 ns setup from ACO before OCLK can
rise. The QPOM provides 8 ns setup from COAT to
OSTB. We get a timing margin of 3 ns.

Parameter min typ max

OPDM Para 81 8 8 8
+ PAL (DSTB - DCLK) 5 10 15
- PAL (CDAT - ACD) 5 10 15
Totals 8 8 8
Required (Para 7) 5 5 5
Margins 3 3 3

The VOAF has a 10 ns hold time after OCLK rises before
ACO can change. The QPOM provides 15 ns hold time.

Parameter

OPDM Para 82
- PAL (DSTB - DCLK)
+ PAL (CDAT - ACD)
Totals
Required (Para 8)
Margins

min

15
5
5

15
10
5

typ max

15 15
10 15
10 15
15 15
10 10
5 5

Data Setup and Hold Times

CHAPTER 4
Video Bus

The VOAF requires that the data (from the VRAM serial­
izers) be valid 5 ns before OCLK can rise. This setup is
interesting because it actually begins a full OSTB early.
In the worst case (the PAL device is very fast and the
multiplexer is very slow). the margins are 22 ns.

Parameter min typ max

DSTB Period 50 50 50
- OPDM Para 80 10 5 0
- PAL (VSTB - mux) 5 10 15
-Mux (Sto 0) 21 14 7
+ PAL (DSTB1 - DCLK) 5 10 15
Totals 24 41 58
Required (Para 5) 2 2 2
Margins 22 39 56

The VOAF requires that the data be held on 07-0 for 5 ns
after OCLK has risen. In the worst case (the PAL device
is very slow. delaying OCLK). the timing margin is 2 ns.
This assumes an extremely fast multiplexer as well.

I \\..._--J \

VSPB 00 \\\\

I

00

\~ _ _JI

\\\\

\~_-,I

00

CDAT =x_---.JX~ _ _'X'-------JX'_ _ _JX~ _ _JX'_ _ _JX~ _ _'X~ _ _JX~ _ __'x:::=
MUX

Select 000 \\\\\\ I/lOl \ \\..o..;\ \\.....,\'--_....s.I..L.oI1 I.LJ0

D S TB1 _-,I I.l..JO \\\\ 00 \\\\ ml \\\\ 00 \\\\ /01

D7~ ________ X~V~AL=ID~X~ ____ ~X~V~AL~ID~X~ ____ ~X~V~AL~ID~X~ ____ ~X~V~A=LlD~X~ ____ ~X~V~AL~ID~

ACD

DCLK /00/ \\\\\\ 000 \\\\\\ mm \\\\\\ 10m \\\\\\ mm
ClK.HI \\\\\\\ /00 \\\\\\\ 000 \\\\\\

ClK.lO Imm \\\\\ 1////0 \\\\\\ 000

Figure 4.1-8 VDAF Timing Diagram

4-7

CHAPTER 4
Video Bus

Parameter min typ max

QPDM Para 80 10 5 0
+ PAL (VSTB - mux) 5 10 15
+ MUX (Sto Q) 21 14 7
- PAL (DSTB - DCLK) 5 10 15
Totals 31 19 7
Required (Para 6) 5 5 5
Margins 26 14 2

SBCLK Generation

When the transfer cycle is executed to move the scan line
or partial scan line into the VRAM serial registers, the
QPDM places data on the CDAT lines to identify the first
bit to be serialized. The interface has to recognize this is
taking place and generate a positive edge on SBCLK at
the correct time.

Figure 4.1-9 is a timing diagram that shows when this
clock is generated. Two inputs of a PAL device monitor
XFG and RAS to determine when a transfer cycle is

XFG ,~----~---------

taking place. This is the case when XFG is low and RAS
is high (that is, a transfer cycle is about to begin). This is
fed back and latched until RAS goes inactive.

The VDAF requires 15 ns setup time from ACD to the
positive edge of SBCK; the QPDM provides only 10 from
CDAT valid to RAS falls. We solve this problem by
throwing another PAL output at it. That is, we delay RAS
once through the PAL and use the result to time SBCK.

TELSC (That Extra Little Shift Clock)

We have saved the best for last. We must provide one
shift pulse to the VRAMs after the transfer cycle and
before the first data bits are clocked into the VDAF.
Figure 4.1-10 shows the timing required to accomplish
this.

The bounds on the time at which the edge can occur are;
The edge cannot occur too soon after the rising edge of
XF-G (atthe VRAM) or it will violate VRAM parameter 48.

Requires 15 setup,
15 hold ~ r- p49=12ns

------..;~_------.J/

p50 = 10 ns -.I 'l:- p51 = 65 ns --I

RAS

COAT __________ ~Xr----~--~V~a~lid~S~t-art-B~i-~------~x:::

DRAS -----------""'I:\T\"\\~\\

-------~~----------~~ ACO

SBCK

4-8

--------------~/

XFER = IXFG + RAS
#XFER+i RAS

DRAS = RAS
SeCK = XFER +1 DRAS

Figure 4.1-9 SBCLK Generation

,'------

09862A 4.1-9

It must occur soon enough to insure the data is available
and through the multiplexer to meet the VRAM set-up
time to the first DCLK.

Parameter

OPDM Para 34
+ OPDM Para 55
+ PAL (DSTB - DCLK)
- XFG Buffer Delay
- XFG - XFG_D Delay
- XFG_D - SCLK Delay
- SC Access Time
-Mux D-Q
Total
Required (Para 5)
Margins

min

14
40
5

15
5
5

10
5

19
5

14

CHAPTER 4
Video Bus

typ max

14 14
40 40
10 15
12 10
5 5

10 15
10 10
10 14
17 15
5 5

12 10

The trailing edge of XFG is probably the best edge from
which to generate the extra shift clock. It occurs a little
earlier than the shift clock should and it is the edge from
which the critical timing parameter is measured. XFG at
the VRAM should be used; this eliminates timing uncer­
tainties through the buffer. If this goes directly into the
PAL device, there is a possibility of the SCLK coming too
early (the PAL minimum delay is 5 ns and we require 10
ns). So a 5 ns active delay line must be inserted.

For Rev.C and later, this is unnecessary because the
Now we consider whether the data will be available atthe
VDAF inputs in time. As before, we have a 5 ns setup
time. Beginning with XFG rising edge, we have:

RAS

CAS

XFG

VSTB

DSTB

DCLK

XFER

SCLK

QPDM itself will generate the pulse.

-+lI+-
S ns

55

Figure 4.1-10 Extra Shift Clock Timing

09B62A4.1-10

4-9

CHAPTERS

Evaluation and Demonstration Board

5.1 PC INTERFACE 5-1

5.2 DISPLAY MEMORY INTERFACE 5-3

5.3 TIMING GENERATOR 5-4

5.4 SERIALIZERS 5-5

5.5 COLOR LOOKUP TABLE AND DACS 5-7

5.6 EPROMS 5-8

5.7 MEMORY BUS TIMING ANALYSIS 5-8

5.8 SOFTWARE 5-15

5.9 PAL DEVICE EQUATIONS 5-16

5.10 USERS GUIDE 5-23

DIAGRAMS 5-24

CHAPTER 5 ~

Evaluation and Demonstration Board

5.0 EVALUATION AND DEMONSTRATION
BOARD

In this chapter we describe an evaluation Idemonstration
board designed and built by AMO. This board has been
put into pilot production; the design has been thoroughly
tested.

5.1 PC INTERFACE

5.1.1 Address Buffers

We need to buffer 20 address bits onto the board. Each
Am29C827 contains 10 bits per device. The two buffers
needed are U46 and U47. U47 is shown on Sheet 2 of
the schematic diagram; U46 is shown on Sheet 3. Be­
cause 29C827s suffered supply shortage in early 1987,
some boards may be populated with 29827s. These
consume somewhat more power than the CMOS version
but otherwise present no problem.

5.1.2 Address Decoder

AddressdecodingisdoneinU36,anAmPAL22V10. We
must monitor 18 address lines (BA 19-BA2) and generate
four address match terms. The address match terms are:
PROM*, QPOM·, LUT*, and AUX·. This PAL device
must be replaced in orderto move any function within the
address space. The equations for this PAL device are in
Section5.9.1. The PAL device isshownonSheet20fthe
schematic diagram.

5.1.3 System Bus Control Decoders

The control decoder for the system bus interface is split
into two devices, both AmPAL22V10s. BCONT, refer­
ence designator U29, controls the data buffers and
PROM enables. 10CONT, reference designator U21,
controls the 1/0 devices. These two devices take the four
address match terms from U36, and eight command lines
and a single address line from the system bus. The
outputs are the controls for the three data buffers, RD·
and WR· forthe QPOM, two control lines for the Am8159,
separate enables for the two PROMs, and a control line
for the AUX register. The equations for these PAL
devices are in Sections 5.9.2 and 5.9.3. U21 is shown on
Sheet 2 of the schematic diagram and U29 is shown on
Sheet 3.

5.1.4 Data Buffer

Three 8-bit bidirectional buffers are used to get data on
to and off of the board. The table below shows the refer­
ence designator and bus assignments for the devices:

Device Enable Tarm System Bus Intarnal Bus

U .. E_HLBUF* 80, •.. 8008 10B, •.. IDB.
U .. E_LO_BUF* 807 •• 80. IOB7·.I0B.
U34 E_8W_BUF* 807 •• 80. IOB, •. .I0B.

These buffers are shown on Sheet 3 of the schematic
diagram.

When the board is plugged into an 8-bit backplane (PC or
XT), buffer U45 is never used. Buffer U48 transfers all
data onto and off of the board and U34 is used to transfer
bytes from the left EPROM (U6) to the low-order data
bus.

When the board is plugged into a 16-bit backplane (AT),
all transfers to and from the QPOM and the PROMs take
place in 16-bit mode. U48 transfers the low bytes and
U45 transfers the high bytes. The software must be
compiled differently for each case.

5.1.5 SYSCLK Generator

Y 2 is a standard crystal oscillator with a TTL output. To
insure that the SYSCLK input to the Am95C60 is as
nearly symmetrical as poSSible, the oscillator operates at
twice the desired SYSCLK frequency. This 2X signal is
divided by two in a 74F74, at reference designator U17.
The output of the F74 drives only the SYSCLK input and
is terminated to minimize undershoot. The terminator is
physically placed at the end of the trace farthest from the
F74• Y2 and U17 are shown on Sheet 4 of the schematic
diagram.

For a 20 MHz operation, a 40 MHz oscillator is chosen.
When the board is set up for a 16 MHz operation, a 32
MHz oscillator is chosen.

5-1

CHAPTERS
Evaluation and DemonstratIon Board

5.1.6 INT Jumpers

The INT output of the Am95C60 is active HIGH. H is
buffered in a 74S244 (reference designator U4) to make
a term called BINT. This can be connected to any ofthree
interrupt input pins at jumper block W4. The interrupt
inputs which may be chosen are INT2, INT3, and INTs.
These are the interrupts that are least likely to be used in
a standard PC. The software available from AMD that
uses interrupts is configured for INT5• U4 is shown on
Sheet 8 of the schematic diagram.

5.1.7 System Bus Cycles with QPDM

In general, the timing for system bus cycles with the
QPDM all comes from the PC bus timing. This is due to
the generous margins provided in the PC.

CPU Read Cycle from QPDU

Figure 5.1-1 shows the timing involved in a CPU read
cycle. The cycle begins when the address settles some­
time during clock T1• This makes term QPDM* (which is
the QPDM chip select) active. Near the beginning of T2,

T1 T2

Clock

IOR* on the bus becomes active. PAL device U21

generates QPDMRD* to the QPDM and makes the buffer
control terms active. Within 100 ns, the read data are
valid at the QPDM and within another 20 ns, are valid on
the bus. The data are not required on the bus until just
before the beginning of T4• At the beginning of T4, IOR*
goes inactive, making QPDMRD* at the QPDM, as well
as the buffer control terms, inactive. At the end of T4, the
address changes, making CS* at the QPDM inactive.
This completes the cycle.

CPU Write Cycle to QPDU

The timing for aCPUWriteCycleisshown in Figure5.1-2.
The cycle begins when the address becomes valid late in
T,. This generates QPDM*, which is the QPDM Chip
Select. During T2, the term IOW* on the bus goes active,
which makes QPDMWR* to the QPDM and the buffer
control terms active. The data on the bus is valid later in
T 2. IOW* on the bus goes inactive at the end of T w' which
allows QPDMWR* and the buffer control terms to go
inactive. The cycle completes at the end of T4, when the
address changes, making QPDM* (CS* to the QPDM)
inactive.

T3 TW T4 T1

A9...AO X, X~~ ___ _ -------- .~.------------------~ .
QPOM'

lOR'

QPOMRO*
Buffer Control

\ /~---

\\ • \
OataValid ------------<XX\I!~~ __________ »)---------

OataReqUired ___________________ <'-__ --')~-------
- 9682A5.'.'

Figure 5.1-1 CPU Read Cycle

5-2

!

T1 T2 T3

Clock

CHAPTERS
Evaluation and Demonstration Board

TW T4 T1

__________ ~xu,~ __________________ ~x~,~-------
QPDM' ------------~\ }~-------
A9 ... AO

lOW' \'\ I
~

QPDM WR' ------------. ,....---------
Buffer Control \ /

'------~

Data Valid --------------~(~--------------~)~------

Data Required -------------------------.(0)--------
9682A5.1·2

Figure 5.1·2 CPU Write Cycle

5.1.8 DMA Modifications

After this board was put into production, AMD decided
that 16-bit DMA transfer to the instruction FIFO was
necessary., This would make it possible to drive the
QPDM to saturation with a 286-class processor.

The modification is shown in Figure 5.1-3. A DMA Ac­
knowledge ''fakes'' a write to the instruction FIFO. This is
done by forcing QPDMCS·, AEN* and ALE·. In addition,
both address inputs to the QPDM are forced low.

U36·19

U46·22

U46-21

J1·A11

J2·28

(FD near
u29-1ol

(FD near
U28-1lJ

U27 =er-
CPOM·

2 19
BA1

3 18
BA2

4 17
AEN

5 16
AlE

6 15

7 14

8 13

9 12

1 11

Figure 5.1·3

OPDMN15
U21·5

(H15

O-M15

U~3

U~2

9682A5.1-3

5.2 DISPLAY MEMORY INTERFACE

The display memory interface is tailored to allow 20 MHZ
QPDM operation with 120 ns VRAMs. This involves
careful buffering and generating ICAS as early as pos­
sible.

The display memory is implemented with 64K x 4
VRAMs. Four devices per bit plane (total of 16 on the
board) allow fora bit map of 1 Kx 1K. Actually, the bit map
could be configured as 256 X4K, 512x 2K or 1Kx 1K by
reprogramming the Memory Mode Register (Register
23). The software that comes with the board uses only
the 1 K x 1 K configuration.

5.2.1 Address Buffer

The display memory addresses are buffered from ADo­
AD7• The buffer used here is an Am2966 (reference
designator U16 shown on Sheet 5 of the schematic
diagram). Since 16 devices are driven with a maximum
of 5 pF input capacitance each, we estimate a maximum
of 90 pF loading on this 2966. Using the chart in the 2966
data sheet, we estimate the delay through this buffer to
be between 1 0 and 17 ns.

Si nce the edge rates of the 2966 are relatively slow, due
to the internal series resistors, we would not expect any
significant undershoot or ringing on these lines.

5-3

CHAPTER 5
Evaluation and Demonstration Board

5.2.2 Write Enable Buffer

The four write enables from the OPOM are buffered in
half of an Am2966 (reference designator U5 shown on
Sheet 5 of the schematic diagram). Each output drives
four VRAMs with a maximum of 5 pF input capacitance
each, for a total of 20 pF. Using the chart in the 2966 data
sheet, we estimate the delay through this buffer to be
between 6 and 11 ns.

5.2.3 XFG Buffer

XF/G from the OPOM drives four inputs of an Am2966
(reference designator U2 shown on Sheet 5 of the
schematic diagram). Each of the four outputs of this
device drives four VRAM inputs. Each VRAM input has
5 pF input capacitance so that each 2966 is driving 20 pF.
From the chart in the 2966 data sheet, we estimate the
delay througl1 this buffer will be between 6 and 11 ns.

5.2.4 RAS Buffer

RAS from the OPOM drives four inputs of an Am2966
(reference designator U2 shown on Sheet 5 of the
schematic diagram). Each of the four outputs of this
device drives four VRAM inputs. Each VRAM input has
7 pF input capacitance so that each 2966 output is driving
28 pF. From the chart in the 2966 data sheet, we estimate
the delay through this buffer to be between 7 and 12 ns.

Since the XFG and RAS buffers reside on the same chip,
we expect the delays to track. That is, if the XFG buffers
are especially slow (due to temperature, VCC, or proc­
essing) we expect that the RAS buffers to be also slow.

5.2.5 CAS PAL Device

The equations for the PAL device that generates CAS are
given in Section 5.9.4. This is an Am18P8B, reference
designator U3. This device is shown on Sheet 8 of the
schematic diagram.

A signal called !XFER is generated for use inside the PAL
device. This term is active during any transfer cycle from
the time XF/G falls until RAS rises. The first min-term
detects that XF/G has fallen before RAS (which happens
only at the beginning of a transfer cycle) and the second
min-term serves to latch the signal until RAS rises at the
end of the cycle.

Four separate but identical/CAS terms are generated,
one for each four VRAMs. This duplication keeps loading
below 50 pF so that the PAL device timing parameters
are guaranteed. This also minimizes the length of trace
necessary to help reduce undershoot.

5-4

There are three min-terms in the CAS equations. The
first makes CASn whenever CAS is active and XF/G is
not. This occurs during write and refresh cycles. The
second min-term makes CASn whenever Delayed XF/G
(OXFG) is active and XFER is inactive. This occurs only
during read cycles. The purpose is to generate CAS as
early as possible during read cycles. We delay XF/G just
long enough to guaranteethatthe Column Address Set­
up Time will be met. The third min-term for CASn is
whenever CAS is active and XFER is active. This is the
case during a transfer cycle.

Delayed Transfer (OL YFER·) is used to force the extra
clock pulse required by the VRAMs before serialization
begins. This is generated at the very end of the transfer
cycle by passing XFER back through the PAL device.

Two additional terms that have absolutely nothing to do
with the display memory interface are generated in this
device. Active LOW RESET· is generated by inverting
RESET from the backplane. A high-frequency filter has
been added to this outputto minimize noise on the OPOM
Reset line. Synchronized Composite Sync (SCS) is
generated by combining Synchronized Vertical Sync
(SVS) with Synchronized Horizontal Sync (SHS). This is
done with an exclusive-OR function.

5.3 TIMING GENERATOR

The timing generator emphasizes simplicity and clear­
ness of thought. Using standard (40 ns) PAL devices, it
supports a dot clock of up to 25 MHz. Using -A (25 ns)
PAL devices, it will operate at up to 40 MHz.

5.3.1 The Oscillator and Buffers

The Dot Clock oscillator is a standard TIL crystal oscil­
lator, reference designator Y1. In the standard OPOM
board configured for the NEC MUltiSync (tm) or equiva­
lent, this is a24 MHz oscillator. It is buffered infourpieces
of 74S244 (reference designator U4) making the terms
OCLKO-OCLK3. The purpose of the careful clock distri­
bution is to avoid the problems that result from not being
careful about clock distribution. The oscillator and buffer
are shown on Sheet 8 of the schematic diagram.

5.3.2 The COUNT PAL Devices

This AM 16R8 is used to generate the basic timing for the
serializers, reference designator U1 O. The equations for
this PAL device are shown in Section 5.9.5. The device
is shown on Sheet 2 of the schematic diagram.

Terms 0 0 , 0 1, and VIDCLK form a divide-by-8 binary
counter that changes state on the positive edge of DCLK.
These terms are decoded both internally and in the
ENABLE PAL device to allow timing at any required dot
clock within a byte. In addition, VIDCLK directly drives
VIDCLK of the Am95C60. CFF1* is used to clock an
external flip-flop that extends the divide-by-8 to divide-by-
16. Basically, it keeps track of which byte of the current
word we are serializing.

LSR* is generated once every four dot clocks and is used
to load a nibble into the final4-bit serializer shift registers.
ECBLNK* resynchronizes Am95C60 signals BLANK,
HSYNC, and VSYNC to a specific dot clock in U18. This
is necessary because these signals have substantial
timing uncertainty at the OPDM pins.

The timing relationships amongst these signals are
shown in Figure 5.1-4. Since this is a registered device,
the outputs actually become active during the clock cycle
following the one during which the inputs satisfied the
equations.

DCLK

co

Ql--.J

VIDCLK

CHAPTERS
EvaluatIon and DemonstratIon Board

A completely unrelated function of this PAL device is to
delay SBLK a single dot clock for use in the Am8159. This
delay is necessary to compensate for the delay of SBLK
through the serializers.

5.4 SERIALIZERS

The Am95C60 requires that display memory be organ­
ized into 16-bit words (for each bit plane). This in turn
requires that the serializers be organized to handle 16-bit
words. We will discuss only one bit plane; the other three
operate identically.

On this board, it was convenient to mechanize the
serialization as a 2-step process. First, the 16-bit words
are brought out onto a 4-bit bus using the serial output
enables of the four VRAMs. Then the contents of the
4-bit bus are serialized in a registered PAL device.

LSR' LJ

CFF1' LJ

LJ LJ

LJ

LJ LJ

LJ

FFI

GO"

Gl'

G2'!

G3'

VIDEO 110 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 115 114 113 112 111 110 I 9 I 8 I 7 I 6 I 5 I 4

SHIFT l' LJ

SHIFT 2' LJ
9682A5.1-4

Figure 5.1-4 Serlallzer.

5-5

CHAPTER 5
Evaluation and Demonstration Board

5.4.1 The Enable AMD VCLK PAL Device

PAL device ENABLE is used to handle the first level of
serialization, reference designator U9. The equations for
this device are given in Section 5.9.6. This device is
shown on Sheet 2 of the schematic diagram. Figure 5.1-4
shows the timing relationships amongst the signals into
and out of this device.

Output enables GO* through G3 are generated by track­
ing the VIDCLK and FF1 inputs. The table below indi­
cates which bits are enabled by each of these terms, as
well as which VRAMs are enabled.

Enable Bits Red Green Blue Intensify

GO· 15-12 U40 U44 U25 U33
G1· 11-8 U39 U43 U24 U32
G2· 7-4 U38 U42 U23 U31
G3· 3-0 U37 U41 U22 U30

0 1 from COUNT is used to qualify each of the four
enables. This precaution avoids a bus contention which
could otherwise exist on the 4-bit bus.

The shift terms to the VRAMs are also generated in the
PAL device ENABLE. We generate two ofthese terms to
allow the left-most byte of the word to be shifted, inde­
pendently of the right-most byte. This made the timing
somewhat easier. The second min-term is generated at
the end of a transfer cycle with DL YFER. This makes the
first word of data available at the serializer outputs of the
VRAMS.

5.4.2 The Serializer PAL Devices

The final serialization takes place in the SHIFT PAL
devices. There are four identical devices, one for each bit
plane. The reference designators are U12-U15 and are
shown on Sheets 6 and 7 of the schematic diagram. The
equations for these devices is given in Section 5.9.7.

The shifters are loaded once every four pixel times with
LSR*. Following the rising clock edge during which LSR*
is active, the data on D3 appears at the output (OJ. If
SBLK is active, then the output will be zero regardless of
what is loaded. This ensures the TTL outputs are zeroes
during blanking.

Figure 5.1-5 shows the timing at the beginning of each
scan line (the left margin of the screen). Sometime after
the rising edge of VIDCLK, the Am95C60 will make its
BLANK output (OBLANK) goes inactive, Signaling the
beginning of a scan line. At a specific dot clock within
each VIDCLK period, ECBLNK will go active allowing
QBLANK (and HSYNC and VSYNC) to be sampled. This
occurs so that SBLK goes active one dot clock before the
first pixel is to be serialized. During the next dot clock
period, LSR* is active, allowing the first four pixels to
enter the shifters. At. the very next positive transition of
DCLK, the first pixel is serialized.

2 3 4 S 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23

DCLK

VDCLK ---,L. _____ ...I L..-___ r-
QBLANK 1111111111111111111111111

ECBLNK u u u
SBLK

u u u LJ

VIDEO _____________________ 1...;1;.;;,S I...;.;14 ... 1....,,;,;;13 ... 1....,,;,;;12""'1'-'-'11 1"""""'10...l1"""""9 1L...",;8 1I...,;"7 IL..,,,;;s
9682A5.1-5

Figure 5.1·5 Left Edge Timing

5-6

i,
I

5.4.3 FF1

FF1 (reference designator U11 on Sheet 2 of the sche·
matic diagram) keeps track of whether we are currently
serializing at left byte or right byte. It can be considered
a high-order appendage of the counterformed by the 0 0,

a" and VIDCLK outputs of the PAL device COUNT.

5.4.4 SYNC Synchronizer

The monitor controls HSYNC, VSYNC, and BLANK must
be resynchronized outside the Am95C60. This is be­
cause of the substantial uncertainty in their timing at the
Am95C60 outputs. This takes place in the 74S379 Ouad
Registerwith Clock Enable, reference designator U18 on
Sheet 5 of the schematic diagram. The clock input is the
dot clock; the clock enable is ECBLNK*. This is gener­
ated once every VIDCLK cycle in the PAL device
COUNT.

In addition to timing these signals precisely, the '379 also
provides both the true and complement output of each of
the three terms.

5.5 COLOR LOOKUP TABLE AND DACS

The REV. B board contains an Am8159 Color Palette to
provide analog video. The device is shown on Sheet 8 of
the schematic diagram. This device contains a 64- entry
look-up table as well as three 4-bit DACs. Thus, we can
display 16 colors simultaneously from a palette of 4096.

The System Address (SAO-5) and H/L inputs of the
Arn8159 come directly from the buffered address bus of
the PC. The data inputs CDO-7 are tied to the intemal
data bus IDBO-7. The remaining CD pins are not con­
nected.

The Video Address inputs are connected as indicated
below:

VA Input

o
1
2
3
4
5

Source

Intensify Plane Video
Blue Plane Video
Green Plane Video
Red Plane Video
Output of HILITE Oscillator
Ground

(Plane 3)
(Plane 2)
(Plane 1)
(Plane 0)

Thus, the video from the four planes select one of 16
. entries in the look-up table and the HILITE oscillator
selects between one of two banks of 16 entries. The
remaining 32 entries in the look-up table are not used.

CHAPTER 5
Evaluation and Demonstration Board

The BLANK input ofthe Arn8159 is connected to DBLNK,
which is SBLK delayed one bit time. This delay exactly
compensates for the 1-bit time SBLK is delayed in the
serializers.

HSYNC and VSYNC inputs to the Arn8159 can be
jumpered to the corresponding synchronized sync from
the Am95C60 or can be jumpered to ground. If either or
both sync inputs are connected, the corresponding (or
composite) sync will appear on the green output of the
DAC. If they are both connected to ground, no sync will
appear on the green output.

REF OUT is connected to IREF via a nominal 1020 n
resistor. This provides a current level that is correct for
double- terminated 75 n video outputs. This node is
heavily bypassed to ground.

The R, G, and B outputs are connected to pins 1, 2, and
3 of J2 (the analog output connector). Each is terminated
in 75 n to ground at the connector. We expect the
monitor to have a similar termination at its end of the
cable.

5.5.1 DC-DC Convertor

Since the Arn8159 requires a substantial amount of
current at -5.2 V with respect to ground, we chose to put
a de-de converter on board. This is shown on Sheet 8 of
the schematic diagram, reference designator is U8.

Note: Experiments with a single IBM XT indicated that it
could supply adequate -5.0V to power the Am8159.
There is no spec for this supply, nor is there any guaran­
tee that some other board in the system is not taking
power from the system. We chose to be conservative.

The unit is manufactured by Reliability Incorporated and
is rated at 450 mAo The -5.2 V supply is decoupled at the
convertor output and at both connections to the Arn8159.
In addition, each VEE pin on the Am8159 has its own trace
to the converter. This appears to provide adequate
isolation between the inputs.

5.5.2 HILITE Logic

To provide a highlighting capability (and more closely
utilize the functionality of the Arn8159) we provided a
means of switching between two 16-entry banks of the
Arn8159. This switching is provided by the hardware at
several programmable rates and duty factors .

5-7

CHAPTER 5
Evaluation and Demonstration Board

The control for the oscillator is an Am29845 register at
reference designator U35 shown on Sheet 8 of the
schematic diagram. It is cleared to all zeroes when
RESET" is active. It may then be programmed as
required by the host by writing to the AUX port. Bits
designation in this register are indicated below:

BIT: I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I

I T --r::: HILITE Duty Factor
L _____ HILITE Rate

L... _______ (Unused)

The four low-order bits control PAL device HI at reference
designator U28 (Sheet 8 of the schematic diagram). This
Am22V10 is programmed as a variable rate divider that
is clocked by SVS (Vertical Sync). The logic equations
for this device are given in Section 5.9.8.

The divisors available are:

BH1

o
o
1
1

Bit 0

o
1
o
1

Divide Ratio Nominal Rata

(OFF)
32
64
128

No Hilite
2Hz
1 Hz

0.5 Hz

The Duty Factors available are:

Bit 3

o
o
1
1

Bit 2

o
1
o
1

Duty Factor (ON/OFF)

0/100 (No Hilite)
25175
50150
75125

5.5.3 Monitor Connections

Two monitor connectors are on the board. They are both
shown on Sheet 8 of the schematic diagram. J1 is for a
TTL monitor and J2 is for an analog monitor. The
software that comes with the board assumes an NEC
Multisync (or equivalent) monitor connected to J2 (the
analog connector). Each of these connectors is a female
DB- 9. The pin assignments are indicated below:

Pin Number

5-8

1
2
3
4
5
6
7
8
9

J1(TTL)

Ground
Ground
Red Video
Green Video
Blue Video
Intensify Video
(No Connect)
Horizontal Sync
Vertical Sync

J2(Analog)

Red Video
Green Video

Blue Video
Horizontal Sync

Vertical Sync
Ground
Ground
Ground
Ground

5.6 EPROMS

The two EPROM sockets are U6 and U7, shown on Sheet
3 of the schematic diagram. Each socket is intended for
an Am27512; U6 is the left byte and U7 is the right byte.
The device enable (chip select) to both devices is made
active anytime an address in the range of OBOOOO­
OBFF7E is on the bus. The output enables are independ­
ent. Ifthis is an AT, then both enables go active together.
Ifthisis an IBM-XT or PC, then only a single output enable
is made active, depending on the low-order address bit.

In the case of an AT, buffers U45 and U48 are both
enabled to drive a 16-bit word onto the bus. In the case
of a PC or XT, buffer U48 is made active. In addition,
buffer U34 will be made active with U6 to drive the left
byte onto the low-order bus.

AMD does not, at the time of this writing, supply any
software for these sockets. The intention is for user
supplied software.

5.7 MEMORY BUS TIMING ANALYSIS

The following table is a complete timing analysis of the
display memory bus. This assumes a 20 MHz QPDM
running at 20 MHz and -10 VRAM chips (Hitachi
HM53461-1-). This file was produced using the program
described in 3.2. For eachVRAM parameter, listed by
number, acronym andfull name, this file explains the best
case, nominal and worst-worst case timing analysiS. The
left column assumes min delays for paths to be sub­
tracted; max delays for paths to be added. The middle
column (nominal case) uses nominal delays. The right
column assumes max delays for paths to be subtracted,
min delays for paths to be added. The truth is guaranteed
to lie somewhere between the left and right column.

There is a remote possibility of a timing problem with the
Address Setup to CAS. If one assumes a very slow
address buffer and a very fast CAS decoder, there is a
negative 1 ns margin.

There is a problem with DT HIGH to CAS HIGH after a
transfer cycle. This problem will be corrected with REV C
QPDMs.

CHAPTERS
Evaluation and Demonstration Board

1 tAC Read Write Transfer 9 t AAS RAS Pulse Width

OPDM guarantees 6 SYSCLK cycles - 300 +CPDM Para 33 180.0 180.0 180.0
RAM requires 190 Total Time: 180.0 180.0 180.0

VRAM 100.0 100.0 100.0
2 t RWC RMWCycle Margins: 80.0 80.0 80.0

OPDM never does ReadlModifyIWrite Cycles. 10 t ASH CAS Falls to RAS Rises

3 tpc Page Mode Cycle +CPDM Para 39 100.0 100.0 100.0
Total Time: 100.0 100.0 100.0

OPDM never does Page Mode Cycles. VRAM 50.0 50.0 50.0
Margins: 50.0 50.0 50.0

4 t AAC Row ACC8SS
11 tCPN CAS Pracharge (Not PM)

+OPDM Para 32 160.0 160.0 160.0
-RAS Decode 0.0 0.0 0.0 +CPDM Para 40 40.0 40.0 40.0

-RAS Delay -7.0 -10.0 -12.0 Total Time: 40.0 40.0 40.0

-OPDM Para 45 -20.0 -20.0 -20.0 Not a Parameter for this VRAM Vendor

Total Time: 133.0 130.0 128.0
VRAM 100.0 100.0 100.0 12 tcp CAS Precharge (PM)

Margins: 33.0 30.0 28.0
OPDM never does Page Mode Cycles.

5 tCAC Column ACC8SS
13 tCAS CAS Pulse Width

+OPDM Para 41 80.0 80.0 80.0
-CAS Decode 0.0 0.0 0.0 +CPDM Para 57 80.0 80.0 80.0
-CAS Delay -3.0 -5.0 -10.0 Total Time: 80.0 80.0 80.0
-CPDM Para 45 -20.0 -20.0 -20.0 VRAM 50.0 50.0 50.0
Total Time: 57.0 SS.O 50.0 Margins: 30.0 30.0 30.0

VRAM 50.0 50.0 50.0
Margins: 7.0 5.0 0.0 14 tCSH CAS Hold From RAS Falls

6 IoFF Output Disable from CAS HI +CPOM Para 33 180.0 180.0 180.0
-RAS Decode 0.0 0.0 0.0

-CPDM Para 46 0.0 0.0 0.0 -RAS Delay -7.0 -10.0 -12.0

+OPDM Para 43 13.0 13.0 13.0 +CAS Decode 0.0 0.0 0.0

+CASDecode 0.0 0.0 0.0 +CAS Delay 10.0 5.0 3.0

+CASDelay 10.0 5.0 3.0 Total Time: 183.0 175.0 171.0

Total Time: 23.0 18.0 16.0 VRAM 100.0 100.0 100.0

VRAM 0.0 0.0 0.0 Margins: 83.0 75.0 71.0
Margins: 23.0 18.0 16.0

15 tACO RAS to CAS Delay

7 tr Transition
+CPDM Para 36 65.0 65.0 65.0

Transition 3.0 3.0 3.0 -RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0

8 tAP RAS Precharge +CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0

+OPDM Para 35 95.0 95.0 95.0
Total Time: 68.0 60.0 56.0

Total Time: 95.0 95.0 95.0
VRAM 50.0 .50.0 50.0

VRAM 80.0 80.0 80.0
Margins: 18.0 10.0 6.0

Margins: 15.0 15.0 15.0

5-9

CHAPTERS
Evaluation and Demonstration Board

16 tCRP CAS HI to RAS Low Precharge 21 tAR Column Address Hold from RAS

+QPDM Para 35 95.0 95.0 95.0 +OPDM Para 56 90.0 90.0 90.0
-CAS Decode 0.0 0.0 0.0 +OPDM Para 38 80.0 80.0 80.0
-CAS Delay -3.0 -5.0 -10.0 +Adrs Delay 17.0 13.0 10.0
+RASDecode 0.0 0.0 0.0 -RAS Decode 0.0 0.0 0.0
+RASDelay 12.0 10.0 7.0 -RAS Delay -7.0 -10.0 -12.0
Total Time: 104.0 100.0 92.0 Total Time: 180.0 173.0 168.0
VRAM 10.0 10.0 10.0 Not a Parameter for this VRAM Vendor
Margins: 94.0 90.0 82.0

22 t RCS Read Command Setup to CAS
17 t ASR Address Setup to RAS

+OPDM Para 43 13.0 13.0 13.0
+QPDM Para 30 15.0 15.0 15.0 +OPDM Para 40 40.0 40.0 40.0
-Adrs Delay -10.0 -13.0 -17.0 -XFG Decode 0.0 0.0 0.0
+RAS Decode 0.0 0.0 0.0 -XFG Delay -6.0 -9.0 -11.0
+RAS Delay 12.0 10.0 7.0 +CAS Decode 0.0 0.0 0.0
Total Time: 17.0 12.0 5.0 +CAS Delay 10.0 5.0 3.0
VRAM 0.0 0.0 0.0 Total Time: 57.0 49.0 45.0
Margins: 17.0 12.0 5.0 VRAM 0.0 0.0 0.0

Margins: 57.0 49.0 45.0
18 tRAH Row Address Hold

23 tRRH Read Command Hold from RAS Hi

+QPDM Para 31 35.0 35.0 35.0
+Adrs Delay 17.0 13.0 10.0 +OPDM Para 35 95.0 95.0 95.0
-RAS Decode 0.0 0.0 0.0 -QPDM Para 59 -11.0 -11.0 -11.0
-RAS Delay -7.0 -10.0 -12.0 +XFG Decode 0.0 0.0 0.0
Total Time: 45.0 38.0 33.0 +XFG Delay 11.0 9.0 6.0
VRAM 15.0 15.0 15.0 -RAS Decode 0.0 0.0 0.0
Margins: 30.0 23.0 18.0 -RAS Delay -7.0 -10.0 -12.0

Total Time: 88.0 83.0 78.0

19 tASC Address Setup to CAS VRAM 10.0 10.0 10.0
Margins: 78.0 73.0 68.0

+QPDM Para 37 13.0 13.0 13.0
-Adrs Delay -10.0 -13.0 -17.0 24 t RCH Read Command Hold from CAS HI

+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0 +OPDM Para 35 95.0 95.0 95.0
Total Time: 13.0 5.0 -1.0 -QPDM Para 59 -11.0 -11.0 -11.0
VRAM 0.0 0.0 0.0 +XFG Decode 0.0 0.0 0.0
Margins: 13.0 5.0 -1.0 +XFG Delay 11.0 9.0 6.0
····THERE MAY BE A PROBLEM IN THE ABOVE PA- -CAS Decode 0.0 0.0 0.0
RAMETER···· -CAS Delay -3.0 -5.0 -10.0

Total Time: 92.0 88.0 80.0

20 tCAH Column Address Hold VRAM 0.0 0.0 0.0
Margins: 92.0 88.0 80.0

+QPDM Para 38 80.0 80.0 80.0
+Adrs Delay 17.0 13.0 10.0 25 lwcs Write Command Setup to CAS

-CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0 +OPDM Para 60 13.0 13.0 13.0

Total Time: 94.0 88.0 80.0 +WEDecode 0.0 0.0 0.0
VRAM 20.0 20.0 20.0 +WEDelay 11.0 9.0 6.0

Margins: 74.0 68.0 60.0 -CAS Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0
Total Time: 21.0 17.0 9.0
VRAM 0.0 0.0 0.0
Margins: 21.0 17.0 9.0

5-10

CHAPTER 5
Evaluation and Demonstration Board

26 fwCH WrHe Command Hold 31 tos Data Setup to CAS

+OPDM Para 61 78.0 78.0 78.0 +OPDM Para 64 2.0 2.0 2.0
-QPDM Para 60 -13.0 -13.0 -13.0 +CAS Decode 0.0 0.0 0.0
+WE Decode 0.0 0.0 0.0 +CAS Delay 10.0 5.0 3.0
+WEDelay 11.0 9.0 6.0 Total Time: 12.0 7.0 5.0
-CAS Decode 0.0 0.0 0.0 VRAM 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0 Margins: 12.0 7.0 5.0
Total Time: 73.0 69.0 61.0
VRAM 25.0 25.0 25.0 32 tDH Data Hold from CAS
Margins: 48.0 44.0 36.0

+OPDM Para 65 60.0 60.0 60.0
27 fwCR Write CMND Hold from RAS Falls -CAS Decode 0.0 0.0 0.0

-CAS Delay -3.0 -5.0 -10.0
+OPDM Para 61 78.0 78.0 78.0 Total Time: 57.0 55.0 50.0
+OPDM Para 56 90.0 90.0 90.0 VRAM 25.0 25.0 25.0
-QPDM Para 60 -13.0 -13.0 -13.0 Margins: 32.0 30.0 25.0
+WE Decode 0.0 0.0 0.0
+WEDelay 11.0 9.0 6.0

33 DHR Data Hold from RAS -RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0
Total Time: 159.0 154.0 149.0 +OPDM Para 56 90.0 90.0 90.0

Not a Parameter for this VRAM Vendor +OPDM Para 65 60.0 60.0 60.0
-RAS Decode 0.0 0.0 0.0

28 fwp Write Pulse Width
-RAS Delay -7.0 -10.0 -12.0
Total Time: 143.0 140.0 138.0

+OPDM Para 61 78.0 78.0 78.0
Not a Parameter for this VRAM Vendor

Total Time: 78.0 78.0 78.0 34 tcwo CAS to WE Delay
VRAM 15.0 15.0 15.0
Margins: 63.0 63.0 63.0

OPDM never does ReadJModifylWrite Cycles.

29 tAWL Write Command to RAS
35 tRWO RAS to WE Delay

+OPDM Para 33 180.0 180.0 180.0
-QPDM Para 56 -90.0 -90.0 -90.0 OPDM never does ReadJModifylWrite Cycles.

+OPDM Para 60 13.0 13.0 13.0
+RAS Decode 0.0 0.0 0.0 37 toeD OE High to Data In Setup

+RAS Delay 12.0 10.0 7.0
-WE Decode 0.0 0.0 0.0 OPDM never does ReadJModifylWrite Cycles.
-WE Delay -6.0 -9.0 -11.0
Total Time: 109.0 104.0 99.0 38 toeH OE HI hold from WE Low
VRAM 35.0 35.0 35.0
Margins: 74.0 69.0 64.0 OPDM never does ReadJModifylWrite Cycles.

30 tCWL Write Command to CAS Lead Time 39 toez Output Disable from OE HI

+OPDM Para 60 13.0 13.0 13.0 +OPDM Para 46 0.0 0.0 0.0
+OPDM Para 57 80.0 80.0 80.0 +XFG Decode 0.0 0.0 0.0
tCAS Decode 0.0 0.0 0.0 +XFG Delay 11.0 9.0 6.0
+CAS Delay 10.0 5.0 3.0 Total Time: 11.0 9.0 6.0
-WE Decode 0.0 0.0 0.0 VRAM 0.0 0.0 0.0
-WE Delay -6.0 -9.0 -11.0 Margins: -11.0 -9.0 -6.0
Total Time: 97.0 89.0 85.0 ····THERE MAY BE A PROBLEM IN THE ABOVE PA-
VRAM 30.0 30.0 30.0 RAMETER····
Margins: 67.0 59.0 55.0

5-11

CHAPTERS
Evaluation and Demonstration Board

40 tCSR CAS to RAS Setup for Refresh 46 tCDH DT Hold After CAS LO

+QPDM Para 47 37.0 37.0 37.0 +OPDM Para 41 80.0 80.0 80.0
+RAS Decode 0.0 0.0 0.0 -CAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0 -CAS Delay -3.0 -5.0 -10.0
-CAS Decode 0.0 0.0 0.0 +XFG Decode 0.0 0.0 0.0
-CAS Delay -3.0 -5.0 -10.0 +XFG Delay 11.0 9.0 6.0
Total Time: 46.0 42.0 34.0 Total Time: 88.0 84.0 76.0
VRAM 10.0 10.0 10.0 Not a Parameter for this VRAM Vendor
Margins: 36.0 32.0 24.0

47 tSDD SC HI to DT HI Delay
41 icHR CAS before RAS Refresh Hold

+OPDM Para 52 90.0 90.0 90.0
+QPDM Para 48 185.0 185.0 185.0 +OPDM Para 32 160.0 160.0 160.0
-RAS Decode 0.0 0.0 0.0 +XFG Decode 0.0 0.0 0.0
-RASDelay -7.0 -10.0 -12.0 +XFG Delay 11.0 9.0 6.0
+CAS Decode 0.0 0.0 0.0 Total Time: 261.0 259.0 256.0
+CAS Delay 10.0 5.0 3.0 Not a Parameter for this VRAM Vendor
Total Time: 188.0 180.0 176.0
VRAM 20.0 20.0 20.0 48 tSOH SC Low Hold after DT HI
Margins: 168.0 160.0 156.0

+OPDM Para 34 14.0 14.0 14.0
42 tRPc RAS HI to CAS Lo Precharge +OPDM Para 53 40.0 40.0 40.0

Total Time: 54.0 54.0 54.0
+QPDM Para 40 40.0 40.0 40.0 Not a Parameter for this VRAM Vendor
+CAS Decode 0.0 0.0 0.0
+CAS Delay 10.0 5.0 3.0 49 toe OE Pulse Width
-RAS Decode 0.0 0.0 0.0
-RAS Delay -7.0 -10.0 -12.0 +OPDM Para 44 110.0 110.0 110.0
Total Time: 43.0 35.0 31.0 Total Time: 110.0 110.0 110.0
VRAM 10.0 10.0 10.0 Not a Parameter for this VRAM Vendor
Margins: 33.0 25.0 21.0

58 tDHS DT HI Setup to RAS (no XFER)
43 tREF Refresh Interval

+QPDM Para 43 13.0 13.0 13.0
You may program DMRR to 625 +OPDM Para 35 95.0 95.0 95.0

+RAS Decode 0.0 0.0 0.0
44 IoLS DT to RAS Setup for Xfer +RAS Delay 12.0 10.0 7.0

-XFG Decode 0.0 0.0 0.0
+QPDM Para 49 12.0 12.0 12.0 -XFG Delay -6.0 -9.0 -11.0
-XFG Decode 0.0 0.0 0.0 Total Time: 114.0 109.0 104.0
-XFG Delay -6.0 -9.0 -11.0 VRAM 0.0 0.0 0.0
+RAS Decode 0.0 0.0 0.0 Margins: 114.0 109.0 104.0
+RAS Delay 12.0 10.0 7.0
Total Time: 18.0 13.0 8.0 59 tDHH DT Hold from RAS
VRAM 0.0 0.0 0.0
Margins: 18.0 13.0 8.0 +OPDM Para 42 40.0 40.0 40.0

-RAS Decode 0.0 0.0 0.0
45 tRDH DT Hold from RAS for Xfer -RAS Delay -7.0 -10.0 -12.0

+XFG Decode 0.0 0.0 0.0
+QPDM Para 32 160.0 160.0 160.0 +XFG Delay 11.0 9.0 6.0
-RAS Decode 0.0 0.0 0.0 Total Time: 44.0 39.0 34.0
-RAS Delay -7.0 -10.0 -12.0 Not a Parameter for this VRAM Vendor
+XFG Decode 0.0 0.0 0.0
+XFGDelay 11.0 9.0 6.0
Total Time: 164.0 159.0 154.0
VRAM 80.0 80.0 80.0
Margins: 84.0 79.0 74.0

5-12

CHAPTERS
Evaluation and Demonstration Board

60 tOTR DT HI to RAS HI Delay 66 lws Write Mask Setup

+OPDM Para 34 14.0 14.0 14.0 +OPDM Para 52 90.0 90.0 90.0
+RAS Decode 0.0 0.0 0.0 +RAS Decode 0.0 0.0 0.0
+RAS Delay 12.0 10.0 7.0 +RAS Delay 12.0 10.0 7.0
-XFG Decode 0.0 0.0 0.0 Total Time: 102.0 100.0 97.0
-XFG Delay -6.0 -9.0 -11.0 VRAM 0.0 0.0 0.0
Total Time: 20.0 15.0 10.0 Margins: 102.0 100.0 97.0
VRAM 10.0 10.0 10.0
Margins: 10.0 5.0 0.0 67 lwH Write Mask Hold

61 lore DT HI to CAS HI Delay +OPDM Para 63 60.0 60.0 60.0
-RAS Decode 0.0 0.0 0.0

+OPDM Para 43 13.0 13.0 13.0 -RAS Delay -7.0 -10.0 -12.0
+CASDecode 0.0 0.0 0.0 Total Time: 53.0 50.0 48.0
+CAS Delay 10.0 5.0 3.0 VRAM 15.0 15.0 15.0
-XFG Decode 0.0 0.0 0.0 Margins: 38.0 35.0 33.0
-XFG Delay -6.0 -9.0 -11.0
Total Time: 17.0 9.0 5.0 70 tOTH DT HI Hold after RAS HI
VRAM 10.0 10.0 10.0
Margins: 7.0 -1.0 -5.0 +OPDM Para 35 95.0 95.0 95.0
····THERE MAY BE A PROBLEM IN THE ABOVE PA- -oPDM Para 49 -12.0 -12.0 -12.0
RAMETER···· -RAS Decode 0.0 0.0 0.0

-RAS Delay -7.0 -10.0 -12.0
62 tOES OE Setup to RAS HI +XFG Decode 0.0 0.0 0.0

+XFG Delay 11.0 9.0 6.0
+OPDM Para 44 110.0 110.0 110.0 Total Time: 87.0 82.0 77.0
+OPDM Para 34 14.0 14.0 14.0 VRAM 15.0 15.0 15.0
-XFG Decode 0.0 0.0 0.0 Margins: 72.0 67.0 62.0
-XFG Delay -6.0 -9.0 -11.0
+RAS Decode 0.0 0.0 0.0 71 th(OECHI CAS hold after OE low
+RASDelay 12.0 10.0 7.0
Total Time: 130.0 125.0 120.0 +OPDM Para 44 110.0 110.0 110.0
Not a Parameter for this VRAM Vendor +OPDM Para 43 13.0 13.0 13.0

-XFGDecode 0.0 0.0 0.0
64 \vas Masked Write Command Setup -XFG Delay -6.0 -9.0 -11.0

+CAS Decode 0.0 0.0
+OPDM Para 59 11.0 11.0 11.0 0.0
-WE Decode 0.0 0.0 0.0 +CAS Delay 10.0 5.0
-WE Delay -6.0 -9.0 -11.0 3.0
+RAS Decode 0.0 0.0 0.0 Total Time: 127.0 119.0
+RASDelay 12.0 10.0 7.0 115.0 Total Time: 17.0 12.0 7.0
VRAM 0.0 0.0 0.0 Not a Parameter for this VRAM Vendor

Margins: 17.0 12.0 7.0
73 th(RLOE) OE hold after RAS low

65 \vaH Masked Write Command Hold
+OPDM Para 42 40.0 40.0 40.0

+OPDM Para 60 13.0 13.0 13.0 +OPDM Para 44 110.0 110.0 110.0

+OPDM Para 61 78.0 78.0 78.0 -RAS Decode 0.0 0.0 0.0

+RAS Decode 0.0 0.0 0.0 -RAS Delay -7.0 -10.0 -12.0

+RAS Delay 12.0 10.0 7.0 +XFG Decode 0.0 0.0 0.0

-WE Decode 0.0 0.0 0.0 +XFG Delay 11.0 9.0 6.0

-WE Delay -6.0 -9.0 -11.0 Total Time: 154.0 149.0 144.0

Total Time: 97.0 92.0 87.0 Not a Parameter for this VRAM Vendor

VRAM 15.0 15.0 15.0
Margins: 82.0 77.0 72.0

5-13

CHAPTERS
Evaluatulon and Demonstration Board

Delay Data to OE low

QPDM never does hidden refresh cycles.

75 tOCL Delay data to CAS low

+QPDM Para 57 80.0
+QPDM Para 40 40.0
+QPDM Para 65 60.0
-CAS Decode 0.0
-CAS Delay -3.0
Total Time: 1n.O
Not a Parameter for this VRAM Vendor

78 tllU{WEl WE setup to RAS low

QPDM never does write transfer cycles.

80.0
40.0
60.0

0.0
-5.0

175.0

79 th(WE1 WE hold after RAS low

QPDM never does write transfer cycles.

SE setup to RAS low

QPDM never does write transfer cycles.

81 ~(SEI SE hold after RAS low

QPDM never does write transfer cycles.

82 t.U(SOI Serial In setup to SC high

QPDM never does serializer writes.

Serial In hold after SC high

QPDM never does serializer writes.

~ t'U(SCRL) SC setup to RAS low

QPDM never does serializer writes.

85 t.u(SEH) SE disable setup to SC high

QPDM never does serializer writes.

86 th(SEHI SE dlseble hold from SC high

QPDM never does serializer writes.

87 t.U(SEL) SE enable setup before SC high

QPDM never does serializer writes.

5-14

80.0
40.0
60.0

0.0
-10.0
170.0

88 th(SEL) SE enable hold from SC high

QPDM never does serializer writes.

Delay data to DT high

QPDM never does serializer writes.

Delay DT high to data

QPDM never does serializer writes.

91 tW(TRG) TRG Pulse width

+CPOM Para 44 110.0 110.0
Total Time: 110.0 110.0
Not a Parameter for this VRAM Vendor

CAS low to TRG high

+CPOM Para 41 80.0 80.0
Total Time: 80.0 80.0
Not a Parameter for this VRAM Vendor

RAS low to SC high after TRG hi

This will handled only on REV C QPDM silicon.

94 ~RL TAG high to RAS low after xfer

+CPOM Para 34 14.0
+CPOM Para 35 95.0
+RAS Decode 0.0
+RAS Delay 12.0
-XFG Decode 0.0
-XFG Delay -6.0
Total Time: 115.0
Not a Parameter for this VRAM Vendor

14.0
95.0

0.0
10.0
0.0

-9.0
110.0

95 tCLSH CAS low to SC after TRG

This will handled only on REV C QPDM silicon.

SC high to RAS low (whder)

QPDM never does write transfer cycles.

RAS high to SC high

QPDM never does write transfer cycles.

98 ~H TAG high to SC high

This will handled only on REV C QPDM silicon.

110.0
110.0

80.0
80.0

14.0
95.0

0.0
7.0
0.0

-11.0
105.0

5.8 SOFTWARE

At this writing, the following software packages are
known to run on this board. These are all available from
AMO.

5.8.1 QASM

CASM (CPOM Assembler) is a line-at-a-time assembler
designed explicitly for the CPOM. The binary code is
shipped with the board and the source code is available
from AMO for a nominal price.

CASM can be used with the board in two basic ways. In
interactive mode, the user can enter an instruction in
mnemonic form and watch the resu"s on the screen. This
is very useful for experimenting with the CPOM (evalu­
ation). The other way CASM can be used with this board
is to assemble from a prepared file, perhaps for a dem­
onstration.

CASM can also be used to translate mnemonic CPOM
instructions into "ones and zeroes" for entry into other
programs. The ''C. array initializer is especially useful for
this purpose.

In addition to CASM itseH, a number of generally useful
source files (CASM input) are shipped with the board.

CHAPTERS
Evaluatulon and Demonstration Board

5.8.2 QDEMO

AMO has prepared an extensive demonstration program
for the CPOM that runs on this board. The binary code
forthis program is shipped with the board and the source
code is available from AMO.

The demonstration runs for about 10 minutes and we are
making additions to it as time permits. It is intended to
show the CPOM to its best advantage. In addition to
being a good demonstration of CPOM capability, it also
contains many examples of CPOM programming
methods.

5.8.3 Other Demos

An additional set of demos has been written for the
CPOM. These became available in August of 1987. The
binaryforthese is shipped with the boards. These demos
must be run on an AT and require the OMA modification.

5.8.4 G.K.S.

AMO has a "C" binding of the ANSI Graphical Kernel
System (G.K.S.). This board was used as the debugging
vehicle for this library. This is available from AMO. /

5.8.5 Others

AMO has contracted with various third-party vendors for
drivers for X-Windows, MS Windows, AutoCAO, and
GEMlVP. These will become available during the first
haH of 1988. In most cases, the board will have been
used as the debugging tool.

5-15

CHAPTER 5
Evaluation and Demonstration Board

5.9 PAL DEVICE EQUATIONS

5.9.1 ADECODE
MODULE ADECODE
FLAG '-R2'
TITLE 'Generates Address Decodes on REV B QPDM BOARD'

"COPYRIGHT 1987 ADVANCED MICRO DEVICES, INC
"Tom Crawford Feb 17, 1987

"DECLARATIONS
IC36 DEVICE 'P22V10';
BA2,BA3,BA4,BA5,BA6,BA7 PIN 1,2,3,4,5,6;
BA8,BA9,.BA10,BA11,BA12,BA13 PIN 7,8,9,10,11,23;
BA14,BA15,BA16,BA17,BA18,BA19 PIN 22,21,16,15,14,13;
PROM PIN 20;
QPDM PIN 19;
LUT PIN 18;
AUX PIN 17;
VCC PIN 24;
GND PIN 12;

EQUATIONS

!QPDM BA9 & BA8 & BA7 & !BA6 & BA5 & !BA4 & !BA3;

!AUX BA9 & BA8 & BA7 & !BA6 & BA5 & !BA4 & BA3;

!LUT BA19 & !BA18 & BA17 & BA16 & BA15 & BA14 &
BA10 & BA9 & BA8 & BA7;

!PROM BA19 & !BA18 & BA17 & BA16 & !BA15
BA19 & !BA18 & BA17 & BA16 & !BA14
BA19 & !BA18 & BA17 & BA16 & !BA13
BA19 & !BA18 & BA17 & BA16 & !BA12
BA19 & !BA18 & BA17 & BA16 & !BAll
BA19 & !BA18 & BA17 & BA16 & !BA10
BA19 & !BA18 & BA17 & BA16 & !BA9
BA19 & !BA18 & BA17 & BA16 & !BA8
BA19 & !BA18 & BA17 & BA16 & !BA7;

END

5.9.2 BCONT
MODULE BUFFER_CONTROL
FLAG '-R2'

BA13 & BA12 & BAll &

TITLE 'Generates Buffer Ebables and Prom Enables for REVB QPDM BOARD'

"COPYRIGHT 1987 ADVANCED MICRO DEVICES, INC
"Tom Crawford Feb 17, 1987
"Dave August 27 May 87

"DECLARATIONS
IC29 DEVICE 'P22V10';

5-16

PROM PIN 1;
AEN,SMEMR,SBHE,AT PIN 3,4,5,6;
Q,RD,WR PIN 7,8,9;
SPIN10,SPIN13 PIN 10,13;
BAO PIN 11;
GND PIN 12;

CHAPTER 5
Evaluation and Demonstration Board

EN LO BUF,EN_SW_BUF,EN_HI~UF,DRV_PC PIN 14,19,21,15;
SI016,SI018,SI020 PIN 16,18,20;
MEMCS16 PIN 17;
EN_LO_PROM,EN_HI_PROM PIN 22,23;
VCC PIN 24;

EQUATIONS
!EN_HI_PROM !PROM & !AEN & !SMEMR & !AT & !SBHE & !BAO "Word Access on AT

* !PROM & !AEN & !SMEMR & !AT & !SBHE & BAO "Odd Byte on AT

* !PROM & !AEN & !SMEMR & AT & BAO; "Odd Byte on PC

!EN_LO_PROM !PROM & !AEN & !SMEMR & !AT & !SBHE & !BAO "Word Access on AT

* !PROM & !AEN & !SMEMR & !AT & SBHE & !BAO "Even Byte on AT

* !PROM & !AEN & !SMEMR & AT & !BAO; "Even Byte on PC

!EN_HI_BUF !PROM & !AEN & !SMEMR & !AT & !SBHE & !BAO "Word Access

* !PROM & !AEN & !SMEMR & !AT & !SBHE & BAO "Odd Byte on AT

* Q & !AT &RD & !SBHE "Word Access to QPDM
Jt Q & !AT & WR & !SBHE; "Word Access to QPDM

!EN_SW_BUF !PROM & !AEN & !SMEMR & AT & BAO; "Odd Byte on PC

!EN_LO_BUF !PROM & !AEN & !SMEMR & !AT & !SBHE & !BAO "Word Access on AT

* !PROM & !AEN & !SMEMR & !AT & SBHE & !BAO "Even Byte Access on

* !PROM & !AEN & !SMEMR & AT "Memory Access on PC

* Q & !AT &RD "QPDM on PC
Jt Q & !AT &WR "QPDM on PC

* RD "LUT

* WR; "LUT

!DRV_PC RD;

ENABLE MEMCS16 !PROM;

!MEMCS16 !PROM & !AEN & !SMEMR & !AT & !SBHE & !BAO;
END BUFFER_CONTROL;

5-17

AT

CHAPTERS
EvaluatIon and DemonstratIon Board

5.9.3 lOCO NT
MODULE IOCONTROL
FLAG '-R2'
TITLE 'GENERATES QPDM, LUT, AUX, IOCS16 FOR REVB QPDM BOARD'

"COPYRIGHT 1987 ADVANCED MICRO DEVICES, INC
"Tom Crawford Feb 17, 1987
"After thought by Dave August 27 May 87

"DECLARATIONS
IC21 DEVICE 'P22V10';

SPIN1, SPIN11, SPIN13 PIN 1,11,13;
DDACK,AEN,SMEMR PIN 2,3,4;
QPDM, AUX, LUT PIN 5,7,6;
lOR, lOW, SMEMW PIN 8,9,10;
GND PIN 12;
VCC PIN 24;
LUTS1, LUTSO PIN 14,15;
WR_AUX PIN 21;
IOCS16 PIN 20;
QPDM_RD, QPDM_WR PIN 22,23;
Q, RO, WR PIN 18,17,16;

EQUATIONS

!LUTSO

!QPDM &

!QPDM &

!AUX &

!LUT &

!AEN &

!AEN &

!AEN &

!SMEMW

!IOR;

!IOW;

!IOW &

& !AEN

DDACK;

!LUT & !LUTS1 & SMEMR & !AEN;

!LUTS1

ENABLE IOCS16

!IOCS16

Q

RO

WR

END IOCONTROL;

S-18

!LUT & !SMEMR & !AEN
! LUT & ! LUTSO & ! SMEMW & ! JI.EN;

!QPDM;

!QPDM;

!QPDM & !AEN;

!QPDM & !AEN & !IOR
!LUT & !AEN & !SMEMR;

!QPDM & !AEN & !IOW
!LUT & !AEN & !SMEMW
!AUX & !AEN & !IOW;

5.9.4 CAS
MODULE CAS
FLAG '-r2'
TITLE 'PAL TO CONTROL CAS ON ONE-BANK BOARD'

"COPYRIGHT 1985 ADVANCED MICRODEVICES, INC

CHAPTERS
Evaluation and Demonstration Board

"TOM CRAWFORD JUNE 20,1985 CHANGED MARCH 10, 1986 RCYCLED FEB 18, 87

"DECLARATIONS

IC3 DEVICE 'P18P8';

IN1,IN8,IN9 PIN 1,8,9;

RESET, INVRESET PIN 11,13;

SVS, SHS, SCS PIN 6,7,12;

RAS, CAS, XFG PIN 2,5,3;
DELAY XFG PIN 4;

CASO, CAS1, CAS2, CAS3 PIN 14,15,16,17;
XFER PIN 18;
DLYFER PIN 19;

EQUATIONS

!INVRESET
SCS

!XFER

!DLYFER
!CASO
!CAS1
!CAS2
!CAS3

END CAS_CONTROL;

RESET;
SVS & !SHS
!SVS & SHS;
!XFG & RAS
!XFER & !XFG;
!XFER;
!CAS;
!CAS;
!CAS;
!CAS;

5-19

CHAPTERS
Evaluation and Demonstration Board

5.9.5 Count
MODULE COUNT
FLAG '-R2'
TITLE 'BIT COUNTER FOR QPDM SMALL BOARD'

"COPYRIGHT 1985 ADVANCED MICRO DEVICES, INC
"TOM CRAWFORD JUNE 17, 1985 PINOUTS MARCH 10, 1986 RECYCLED FEB 17, 87

"DECLARATIONS
IC10 DEVICE 'P16R8';

CLOCK PIN 1;
IN2,IN4,IN5,IN6,IN7,IN8,IN9 PIN 2,4,5,6,7,8,9;
QO,Q1,VIDCLK PIN 14,13,17;
LSR PIN 18;
CBLANK PIN 16;
CFF1 PIN 15;
SBLK, DBLNK PIN 3,19;
ROUT12 PIN 12;
OUTPUT_ENABLE PIN 11;

EQUATIONS
QO :=
Q1 "=

* VIDCLK "=

* * !LSR :=
!ECBLANK :=
!CFF1 :=
DBLNK :=
END COUNT;

5.9.6 Enables
MODULE ENABLE
FLAG '-R2'

!QO;
!Q1 & QO
Q1 & !QO;
!VIDCLK & Q1 & QO
VIDCLK & !Q1
VIDCLK & !QO;
Q1 & !QO;
!VIDCLK & !Q1 & QO;
!VIDCLK & Q1 & !QO;
SBLK;

TITLE 'PAL TO ENABLE VRAMS AND GENERATE SHIFT PULSES AS WELL'

"COPYRIGHT 1985 ADVANCED MICRODEVICES, INC
"TOM CRAWFORD JUNE 17,1985

"DECLARATIONS
IC9 DEVICE 'P16L8';

DXCYC, VIDCLK, FF1 PIN 1,3,9;
QO, Q1 PIN 6,7;
IN4, IN5, IN8, IN11 PIN 4,5,8,11;
SBLK PIN 2;
SHIFT1, SHIFT2 PIN 16,15;
GO, G1, G2, G3 PIN 18, 17, 14, 13;
OUT12, OUT19 PIN 12, 19;

5-20

RECYCLED FEB 18, 1987

EQUATIONS

!GO
!G1
!G2
!G3
!SHIFT1

!SHIFT2

END ENABLES;

5.9.7 Shift
MODULE SHIFT
FLAG '-R2'

!VIDCLK & FF1 & Q1;
VIDCLK & !FF1 & Q1;
!VIDCLK & !FF1 & Q1;
VIDCLK & FF1 & Q1;
!VIDCLK & !FF1 & !Q1 & !QO & !SBLK
!DXCYC;
!VIDCLK & FF1 & !Q1 & !QO & !SBLK * !DLYFER;

CHAPTERS
Evaluation and Demonstration Board

TITLE '4-BIT PARALLEL TO SERIAL SHIFT REGISTER WITH SYNCHRONOUS BLANK'

"COPYRIGHT 1986 ADVANCED MICRO DEVICES, INC
"TOM CRAWFORD JUNE 17,1985 RECYCLED FEB 18, 1987'

"DECLARATIONS
IC12 DEVICE 'P16R8';

CLOCK PIN 1;
D3,D2,D1,DO PIN 7,6,4,5;
Q3,Q2,Q1,QO PIN 19,18,17,16;
BLANK PIN 3;
LSR PIN 2;
IN8, IN9 PIN 8,9;
ROUT15,ROUT14,ROUT13,ROUT12 PIN 15,14,13,12;
OUTPUT_ENABLE PIN 11;

EQUATIONS

Q3 :=
t

Q2 :=
t

Q1 :=
t

QO :=

END SHIFT;

5.9.8 Hilite
MODULE HILITE
FLAG '-R2'

!BLANK & LSR & Q2
!BLANK & !LSR & D3;
LSR & Q1
!LSR & D2;
LSR & QO
!LSR & D1;
!LSR & DO;

TITLE 'GENERATES BLINK FOR REVB QPDM BOARD'

"COPYRIGHT 1987 ADVANCED MICRO DEVICES, INC
"Tom Crawford Feb 17, 1987

"DECLARATIONS
IC28 DEVICE 'P22V10';

5-21

CHAPTERS
Evaluation and Demonstration Board

51,52 PIN 10,5;
P1,P2 PIN 4,3;
BLINK PIN 18;
QO,Q1,Q2,Q3,Q4,Q5,Q6,Q7 PIN 23,15,22,16,21,17,20,19;
PIN14 PIN 14;

EQUATIONS

QO := !QO;

Q1 := QO & !Q1
f !QO & Q1;

Q2 := QO & Q1 & !Q2
t !QO & Q2
t !Q1 & Q2;

Q3 := QO & Q1 & Q2 & !Q3
t !QO & Q3

* !Q1 & Q3

* !Q2 & Q3;

Q4 := QO & Q1 & Q2 & Q3 & !Q4
t !QO & Q4
t !Q1 & Q4
t !Q2 & Q4

* !Q3 & Q4;

QS := QO & Q1 & Q2 & Q3 & Q4 & !QS

* !QO & Q5
t !Q1 & QS
f !Q2 & Q5
f !Q3 & QS

* !Q4 & Q5;

Q6 := QO & Q1 & Q2 & Q3 & Q4 & QS & !Q6
f !QO & Q6

* !Q1 & Q6

* !Q2 & Q6
t !Q3 & Q6
t !Q4 & Q6

* !Q5 & Q6;

Q7 := QO & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 &
t !QO & Q7
t !Q1 & Q7

* !Q2 & Q7
t !Q3 & Q7
t !Q4 & Q7
f !QS & Q7

* !Q6 & Q7;

5-22

!Q7

BLINK .= !51 & 52 & !P1 & p2 &
it !51 & 52 & P1 & !P2 &
it !51 & 52 & P1 & p2 &
it !51 & 52 & P1 & p2 &
it 51 & !52 & !P1 & P2 &
it 51 & !52 & P1 & !p2 &
it 51 & !52 & P1 & P2 &
it 51 & !52 & P1 & P2 &
it 51 & 52 & !P1 & p2 &
it 51 & 52 & P1 & !P2 &

it 51 & 52 & P1 & p2 &
it 51 & 52 & P1 & p2 &

PIN14 BLINK;

END HILITE;

5.10 USERS GUIDE

5.10.1 Addressing

The locations used by the board in the address spaces of
the host are controlled by programming U36. The logic
equations are shown in 5.9.1. The user may change
these addresses if necessary; then the software sup­
plied by AM 0 will also have to be changed. The standard
addresses are shown in the following table.

1/0
Space:

03M
03A2
03A4
03A6
03A8

Memory
Space:

BOOOOto

Write Access

Write CPOM FIFO
Write CPOM BIF
Write CPOM Reg Adrs
Write CPOM Register
Write Hilite Oscillator

-BFF7F not applicable
BFF80to
BFFFF Write 8159 LUT

Read Access

Read CPOM Status
Read CPOM BOF
Read CPOM Reg Mrs
Read CPOM Register

Read EPROM

Read 8159 LUT

CHAPTER 5
Evaluation and Demonstration Board

Q4 & Q5
Q5
Q5
Q4

Q5 & Q6
Q6
Q6
Q5
Q6 & Q7
Q7

Q7
Q6;

5.10.2 Jumpers

The following table shows the jumper blocks and their
use on the board.

Jumper USE Case 1 Case 2 Case 3

W1 CAS Oelay 5 ns 10 ns 15 ns
W2 HSYNC Active HI Active LO Composite
W3 VSYNC Active HI Active LO Composite
W4 Interrupt INT2 INT3 INT5
W5 8159VSYNC Vsync Ground
W6 8159 HSYNC Hsync Ground

5-23

~

vee

~T
P4-16 + I cso ;-I e61 I ere. 11-23, 27-29. ms 122 122 1°' 41148-5'

P2-10
P2-Jl

GND

SPARES

05 01

Ij
02 " 02 1.127 19
03 U19 22 03 ISlB 18

OS 04
22Vl0

21 04 17
05 20 05 16
OS ,. 06 15
07 ,. 07 104-
08 17 08 13

05 o. lS 09 12
10 15 11
11 ,.

OS II

NOTES' uNLESS' OTHERWIse SPECIFIED;

1. ALL RESISTOR VALUES ARE IN OHMS, 1/4W. 5".
2. M.l CAPACITOR VALUES ARE IN YICROF MADS.

32-38.

QPDM Plug In Board (Sheet 1 of 8)

DEVICE TYPE

DElAY LINE
AU2966
Ati18P8
745244-
... "'27512
DC DC CONVERTER
At.i161.8
AU16R8
74!74
"hlI6R-4-
74lS379
SPARE
... .,8159
At,I22Vl0

41264-12

At.i95C60
SPARE
74lSHS
AY29C845
At.l29C827

REF DESIG ' 0' PINS
Ul ,.
U2, 5, 16 20
U3 20
U4 20
U6, 7 2 •
U. 12
U' 20
UlD 20
U11, 17 ,.
U12. 13. a. 15 20
U18 16
Ul. ..
U20 '8
U21. 28. 29. 36 24
U22-25. U30-33,

24 U37-H
U2. IS.
U27 2Q

UJ4, 45, 48 2Q

U35 2'
U46, 47 2'

GND vee
7 ,.

lD 20
lD 20
10 20 ,. 2.
11 1
lD 20
lD 2Q

7 ,.
lD 20
8 IS

12 ..
12 ..
2' 12

lD 2Q

lD 2Q

12 ..
12 ..

mo
ls;
C"'O

!orr!
O;:JJ
::101

1
C

~
° i
iii = g

I

AlO
All
A12

A"
A14
A15
AI.
A17
AlB
AI •

~
'Do"~tt'b 23

1-20 ~! 01 Y1
22
21

1-19 ~ 02 Y2
20

~ ~~. 06
03 Y3

19
04 Y4

~ 05 V5 " 17
1 1 09 Of Y6

I.
~ 10

07 Y7
15

1-'~ DB Y3

~ ..L.b 09 Y9
DEl OE2

m m
~3 ~;~

3CB. 487. ae7 BA2
3e8, Be7 BA>
3l.:6, ae7 BA<
3C3, Be7 BA5
3C8, !3C7 BA.

3D. BA7
3DB BAB
3DB BA.

3CB S!AEt.IR.

IC' AEN
3CB ALE

ALE
AEN

SU[t.4R.

GND 01 »
02 g 01 »

"
UJ6 0' " »

04
~'2V'(, ~ 03 lilt 22 »

05 ~. ~
2':!Vl0

21 »

" 19 QPO"'. 20 » ADECODE 05

» 07 18 LUT. " IOCONT I.
08 17 AUX. 07 18 »

~ ~ ~ 17

~ 15 BA17 ~ I.
» BA12 11 14 BA18 ,.!.g 15

>~
8,1,1913 11 14

>~ 13

~
~

IOR_ 2 14
IO,,"

SMEt,lWt-
892. DL vrER.

~
>P

BC2 DClKl

507, 607. 707 selK I »
01 r--

Olr--02 UtO I.
03 l6RB 18 ~ u. p:9 »
04 17 03 t6lB 18
05 16 04 17
O. COUNT

PB-- 05 16
07

"
00 06 ENABLE 15

CB " 1 07 14
O' p" VGG OB " r- r- ~ fl" ., 11

GNO " '----

L1" 12 0 cm:
CFFh

Ull
F7.

t 1 • 08

502 salK.» pc.

~ System Bus Controller (Sheet 2 of 8)

»
>
>

»
>

»
>

>
>

>
>
>

a.6.'o\
BAll I

I

:~:; >
BAl. I
BA1~ 1
BA1G)

PROUt
QPOU.

QPDWR ..

3DB

30B

4C7

4C7
QPDt.lRO. 4C7

.Ql.....!j.
~AU)(. a07
IOCS16.

>
>
>
>
>

3BB
RC 3SB
V.R 3aB
lUTsa, 8e7
LUTS,. Be7

,
,
,

DBlNI<
LS~.

ECBLNK.
> VIOCLK

> GO ..
> Gl.

Stun,.
SHlfT2.
G2'

> G3.

BC7
607, 707
507
4C7

687, 7B7
687, 787
687, 787
6C7, 7C7
6C7, 7C7
6C7. 7C7

m

i
!!1.
0'
::::II

• ::::II a.
C

~
0
::::II
!.
in
-:I: g>

"tI
ID-I
2 m
a~

'{I

~

202 PROW.
(SA16
I SA15

<I BAl.

202. 811.13
I BA12
I BAll
",AIO

2C7 BA9
2C7 BAa
2e7 BA7

2e7, BC7 BAS
'le7. BC7 BAS
2e7. BCl 8M
'le7. BC7 SAJ

2e7. 487. BC7 SAl
487, BC7 SAl

2e7 ALE
2e7 AEN

2e7 SUEt.R*
SBHE.

AT.
2C2 Q

2C2 RD
2.C2 v.R

Be7 BAO

,0

" A2 ., ..
'5
A.
A7
Aa
A.

»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»

vee
r

'RN1 RIO ,. ,.
O'

»
»

~
• 1

»
»
»

»

---,,-,-;-
~Do'~tg~@.
~Dl Vtl¥,-

1 29 05 02 Y21'fo-
~ 06 03 Y3f-fg-
1-2 >----07 0.4 Y4 18
1 26 0805 V5 17
1 2. 0906 Y6 16

~ 10 07 Y7 ,5
1-2 >-----t1 08 YB 14

...!......b 09 Y9
Of! 0E2

01 "
GND

~G U'

01 ~'5 27512

27 A14
26 A13
02 A12 07 '9
23 All 06 '8
21 AID 05 17
24 A9 04 '6
25 A8 03 '5
03 "7 02 '3
O. AS 01 12
05 AS DO 11
06 M
07 11.3
08 A2
09 Al
10 AD

--+.1 --;;.-;--02 .g. +.l2};,~\'y o • 0' U2.
22Vl0 ¥.- ~'M IV 12 04 21

05 20 --?12A2 2Y 07
O. BCONT

,. ~'A3 lY 14
07 "

15 2A3 2.Y 05

O' *t-- 04 'A2 lY 16

O. 17 2 2y 03

10

"~
02 ' 11.1 IV 18

" ~ " 01 19

l¥,< G
U7

-f,< E 27512

---'it AlS

'---To" A"
A" 02
Al2 07 '9

2J
A" 0& 18

21
AlO 05 '7

2' A9 04 '6
25

Aa 03 15
0' O. A7 02 '3

05
A. 01 12

AS DO 11
O.

A4
07

A' oa
A2

o.
10

Al
AD

EPROMs and Data Bus (Sheet 3 of 8)

~

" B/-'t.iJ',~, 02 'ii=P3
17 82 A203 ~
16 B3 "3 04 18 P
15 84 A 05 _~
14 B5 A 06 H-P

~i 86 A6 ~! 13-P3
"B7 A709 -~

88 A8~~

~'R
19 01

>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>

~

,. 01

.TOIR
l' B8 A8 09 ~
12 87 1.7 08 03-Pl
13 86 A6~>f.=i;i
~: 85 AS~: 05 PI

16:: :~~-~
17S2 A2~~
18 81 U-48 A.l 02 09-PI
~ ~

5015
SOU
S013
5012
5011
SOlO
SO.
soa

IDBB "'"
10B9 I

10810 I

IDBll > 487
10812 ,
IDB13 ,
10814 I
IOB1S)

lOBO ~
lOBI I
108l I
1083 ? .f.B7, BD7 IDB4
lOBS ,
IDB8 ,
IDB7)

UEUCSI6.

SD7
SO.
SOS
SO.
SO,
S02
SOl
SOD

WO
!.~ i'tl
O· rr1
::J::n
IJU'I
::J
Q.

f
I g
r a.

vee

01
RN1
1K

02

13

2C2 QPD~RD*

2c2 QPD~~t

282
2D-Q

8A2

388, Be7

2C7. 3CB. Be7

382

3e2
807

302

C11
N
-..J

vee

08 220

S'r'SCLK vee vee

rrrr lK IK lK lK

06 07 DB 09

vee
TSYN

~ ,:;l 13 VID~tK RD. ~ ~ 1') TSIN I.IL~UT~ ~
N15 14 CSt VI '; 6 TSYNOUT ~

~~: ~! :~SET. ~ v~~ ~~ ~~
M15 14 Al ~cc 84 CIO
R15 14 106 G13
P14 12 DO plo vee 110 Lt3

~~~ ~~ ~~ A~g206C65 VODD/E~~~ ~~; ~~~ 

1"'3\ "14\K14 \A13\F15 \N14 \< 14 ~~H 
111 126 124 100 135 127 1191~~ 

:.. H2 

03 VRESET 

~;~ ~I~ 04 TEST~~3 ~:4 I 
R12 99 05 HREi~; 109 K13 

P12 98~; DREQ~ > INT 807 

NI2 97 DB FREQ~ 
Rl1 93 09 EDE.~ 
PI! 92 010 MEMAVL~ 

:~~ :~ 01' VSTB~ 
"," 85 012 DSTB~ 

r~ fa ~~! ~~~~~~ 
R9 81 D 5 COAT ~ 

1 ( GND ) 

I" I" 160 161 178 I" 191 196 
IEJ jl3 IC6 IN6 leg IN9 JN1t JGI2 

~ 
GND 

QPDM System Bus (Sheet 4 of 8) 

i 
E' a 
0-
:::J 
III 
:::J 
a. 

~ 
o 
:::J 
!!1. 
!to 
-. J: g» 

"tl 
aJ-i om 
1Il:o 
Q.C11 



~ 

8A2 282 8e2 

SA7 

6AS 

6" 

6A3 

7e7 

7e6 

7e< 

7eJ 

,. SHS ---

'"" ... ''"=; ;; ., > ~ 
VSy > SBLK. 

6~ se... 6~ SC7 

.r~--:--~-y~--:--~-¥~-~~-¥~--:--;,-a. 

~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ 
GND 

8'7 
8A7 

(OU100 » 
I CUtOt » 
') Dt.ll02 » 
\DM10J » 
(OU104 » 

I_Dt.tl05 » 
'l01A106 » 
'PUl07 » 
(0 .. 108 » 

; 0101109 » 
'I OU110 » 
"PU111 » 
(DUlI2 » 

) Dt.l113 » 
l OM11 ... » 
\DUllS » 

(OM200 ,.,. 

) DId201 » 
') OUZ02 » 

\Ot.l203 » 
(DW204 » 

) 011205 » 
'I :lM20S » 
,OM207 » 
(DUZOS » 

I OU209 » 
l DUlIO » 
,OWl! » 
(DM212 » 

) DU213 » 
'l 011214 » 
\OUZ15 » 

A2 16 DM200 
C3 33 011201 
AJ 31 DW02 
C5 54 OM203 
B3 32 OWO. 
C4 48 011205 
A4 4ti OU206 
84 47 DU207 
86 59 DU2DS 
A5 52 DUlDg 
C7 66 DU2l0 
BS 53 OU2lt 
81 65 DW212 
A6 58 DU213 
A8 70 DU2l4 
A7 64 DM215 

ouoxx , 
HSYNC 136 GIS 

VSVNC 121 G14 

BLANk 122 H14 

AOoR" 88 A,1 t 

/ 

ACOR789 811 

P 0 U26 ADDRS 8J 810 

",W9SCeQ 

DYJXX 

ADDR39 ... All 

ADoRS 82. "to 

AOOR295 B12 

ADORO 101 813 

AODRt 90 ell 

~3 132 Ct5 

11£2 133 015 

~ 12216812'}0712°1061"1°'l"l"l041031'81021°'l'7 G2 HI F'2 G1 E2 F'1 F3 E1 D2 03 01 Cl C2 81 A1 82 

" " " " " " 1\ " /I. " A. " " 1\ A 1\ 
0nCl 0 0 0 0 c 0 c 0 co-o 0 0 * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

'--_. --..../'....---v---.....A...--,,--.....A...---v---..../ 
7'7 7A6 7 .. 7A3 

BLK 

.D6 
AD2 
AOO 

AD' 

1IE3. 

1IE2. 

lIE,. 
1lE0. 

RAS. 

XFe. 

QPDM Memory Bus (Sheet 5 of 8) 

eND GND 

OND OND 

~-------------» ""1 

m~~~~.> "A7 1 
> !.lAS I 

> ""3 " > t.lA6 ( 

t~==================:> t.lA2 I 

> !.lAO , 
> MAt) 

287, 607. 707 2A7 

SHEETS 6 ok 7 

~:-------------» 8'1£3. 711.7 

:t!2'-------------» SWE2t 7C7 

c-------------» Bv.El' 6A7 

t"''-------------» 8'11£0' ae7 

> CAS. 81..7 
> )CFG. SA7 

-----__ .... > RAS. 8A7 

~=========:::::> RAsa_ 6B7. 7B7 .. > XfG3. 711.7 

li~~~~~~~~~~> RAS1' 6B7, 787 

> XF'G2. 7C7 
> RASZ, ae7. 7e7 
> XFGI' 611.7 
> RAS3. 6e7, 7C7 
> )CFGO. 6e7 

GND GND 

mo 
~J: 
-l> 

i~ om 
:sll 
.01 
:s 
Do 

f 
I 
i 



707. Be2 
282. 707 

287, 502. 707 

505 

5A2 
SA> 

5A2. 7C7 
7C7. Be2 
2A2. 7C7 
282. 7C7 

SA2, 7C7 
7C7. 882 
21\2, 7C7 
SAl, 797 
797, 882 
282. 787 
SA2, 787 
787. 882 
282. 7B7 
282, 7B7 

5C7 

SA> 5., 

~ 

nCll<2 » 
lSR. » 
SBlK » 

t.lAO» 
MAl » 
YA2 >,. 
t.lAJ » 
WA4 » 
MAS » 
.. A.S » 
MA7 » 

(owooo » 
~ DMOOI » 

DWO02 » 
I.,pM003 » 

XFGO. » 
B~o. » 
RAS3. » 
CAS3. » 

G3. » 
SHlfT2' » 

Ro\S2* » 
CAS2, » 

G2* » 
RASh » 
CASh » 

Gh » 
RASa. » 
CAsa. » 

GO. » 
SHIFT1. » 

WI\O » 
I.IAI » 
MA2 » 
MA3 » 
lolA" » 
MAS» 
MAS » 
Wt.7 » 

(0 .. ,00 » 
~ DM,OI » 

Dt.ll02 » 
'PUI03 » 
XfGh » 
8'1'£1. » 

17 AD 

====t~:~A1 :::: '4:~ ~i~64 

===i"~A4 10 AS 
09 A6 
13 1\7 
05 DO 

06 01 
19 02 
20 03 

o XFG 

~ .. 
==JJ!~'.~~:~ :::: 21 SGR 

01 vet{ 

17 AD !: AI 

:~:~ ~ti64 
10 A,4 

O. AS 
13 A& 

05 "'7 
06 DO 
19 01 
20 02 
o ,J 

101M » !: ~o 
UAI » 15 AI 

:~ :: ~~:; ~i~64 
YM » 10 1\4 
MAS » 09 AS 
MA6 » 13 A6 

)JAO » ~: 040 

UAI » 15 Al 

:; :: ! ~ Z; ~~~64 
",A.» oM 
"'A5 » ~9 AS 
",A6 » 13 A6 

UAO » :: AO 
t.lA.l » IS AI 

~:~ :: 14:; ~t~64 
hlI.4 >,. ~~ A4 
UAS » 09 AS 
UA6 » 13 A6 

(DM~~: :: ~~ ~~ 
50S/ 0 1.l005 » 19 01 

'101.1006» D2 

(DU~~: :: ~: ~~ 
loU009» 01 

506'\OU010 » 19 02 

5 •• 
5.7 
5.7 
5.7 

hlA7 ,.,. 05 A7 01 

DUOI2. » 06 DO 19 ,. RED 
01.1013 » 19 01 BB7 

,01.1007 » ~~ D3 
o xrG 

~ :s 
21 CAS 

01 ~~: 

"P"'Ott » ~O 03 
o XFG 

~ ~S 
21 CAS 

01 ~~ 

DUO 14 » 20 02 

DUOIS »0 ~~G 

o 11£ 

~ RAS 
21 CAS 

01 ~: 

WAO » 17 AO UAO » 17 AO UA.O » 17 WJ 
UAI » :: AI MAl » :: At MAl» :: AI 
UA2» A2 U42 UA.2» A2 U43 MA2» A2 U44 
UA3 » '~ A3 41264 UA3 » :~ A3 41264 MA3 » :~ A3 41264 
UA.4 » '0 44 MA4 » 10 A4 MA.4 » 10 1.4 
UA5 »' A5 UA.5 »0 AS "'-'S »0 A5 
UA6 » ~; A6 UA6 » ,; A6 UA6 » ,; A6 

~ (OU~~!:: 05 ~~ ~ (oU~~~:: 05 ~~ ~ (oU~~ :: 05 ~~ 
!3 IOUI05 » 0: 01 ~) 01.1109 » ~: 01 !3; 01.1113 » ~: 01 

101.1106» I 02 10Ull0» 02 'l0UI14» 02 
,PUI07 » ~~ 03 "PU111 » ~O 03 \pUlIS » ~: D3 

o Xf'G 0 XFG 0 XfG 

l~~~~~~~O~ViE 0 ViE 0 ViE 03 
1 RAS t RAS 1 RAS sp 02 

21 ~~: 2 ~:: 21;: ~~Q 22 
01 VCK 01 VCK 01 vel( SDQ.23 

Bit Map I (Sheet 6 of 8) 

GN. 

GNIl 

> GREEN 
•• 7 

~ 
~ 
!!L 
f 
1 

I 
in -:z:: g> 

"tI 

fnf 
a.~ 



~ o 

607, Be2 DCLK2 »===================================================~ 282, 607 LSR_» I 
287, 502. 807 seu<» I I 

WAD » ~: 0 
MAl » 15 Al 

:~ :: ~~ ~~ ~~~64 
MA4 » 10 '&'4 

:~ :: 09 ~; 
MA7 » 13 "7 

MAO » ~: AD 
MAl n 15 At 

:; :: ~~~; ~n64 
tJM » 10 A4 
MAS »0 A5 

~:~ :: ,; ~~ 

UAD » ': AO 
MAt » ~5 Al 

:~ :: 14:~ ~~i64 
MA4 » ~~ 1\4 
MAS» AS 

MA6 » ~~ A6 
MA7 » 1\7 

IoIAO » !! A.O 
MAt» 15 At 

:~ :; !~:~ ~~~64 
MA4 » 10 A.-4 
MAS» 09 AS 
MA6 » 13 A6 

(01.1200 » ~~ 00 

587 ~ OU201 » 19 01 

\~~~~; :: 20 ~; 

(01..1204 » ~; DO 

587 1 0 1.1205 » 19 01 
lOU206» 02 

\01.4207 » ~~ 03 

(otJ20a » 05 DO 
/01.1209» 06 01 

587 ')01.4210 » 19 02 
~M211 » 20 03 

04 XfG 

5B7 DU~~~ :: ~! ~~ 
sa7 DU213 » 19 01 
5A7 01.1214 » 20 02 
SA7 DU21S » 04 DJ 

51>.2 XFGZ*» ~4 XFG 

582 8\\(2_» 08 Y£ 
o XFG 

08 ~s 
18 CAS 
21 SGR 
01 vel( 

° lIE 
o XfG 

08 lIE 
RAS 
CAS 

5A2. 6C7 ~AS3.» 18 RAS 
Be7, 882 CAS,3.» CAS 
21\2, 6e7 G3. »-.-H-t+7.<i 
282. 6e7 SHlfTZ. »;ttt-t+-"-'C1 

SA2. aC7 RAS2_ » 
Be7, 882 ¥'A~';2. » 
2"2. 6C7 
5A2, 687 "{ASh » 
687, 882 "ASh » 
282. 687 :',. » 
SA.2, 687 ~ASO. » 
687, 882 cAsa. » 
282. 687 :'0_ » 
282. 687 SHIFTl. » 

MAO » 
IAAI » 
t.lA2 » 
MA3 » 
1otA4 » 
MAS » 
UA6 » 

17 AD MAO »,17 AD MAO » 17 ",0 MAO » 17 AD 

~~ Al MAl » ~~ Al t.lAl » ~~ Al MAl » ~~ Al 
"2 U30 W-2» "2 U31 UA2» ,,2 U32 MA2» A2 U33 

-+ftt+t-,,'4:-!A3 41264 MA3 » 14 A3 41264 UA3 » :~ A3 41264 MAl» '4 A,3 41264 

'~ 1\4 UA4 » '~ 1\4 UA4 » 10 1\4 MA4 » '~ 1\4 

~9 :~ ~~; :: ~9 :~ ::~ :; 09 :: ~:~ :: ~9 :: 
MA7 » ~~ 1\7 UA7 » ~~ 1\7 MA7 » ~~ 1\7 MA7 » ~; A7 

(0104300 » 06 DO Ut (OUlD"'» 06 DO til (hulce » 06 00 til (OU312 » 06 DO 
5A7 ) DUlD1 » 19 01 ~ ) aUlOS » 19 01 it I DUl09 » 19 01 ~) DU313 » 19 01 

')0104302» 2002 'I DU306 »2002 '10Ull0» 2002 'I Dt.l314 » 0 02 
'.ot.4303 » 0 03 "J>UJ07 » 04 03 'PUll! »0 03 I",pt.C315 » ~4 03 

~:~ ~~;::: ~~~~~~30~~G 0 :G 0 :G 
RAS RAS ~ RAS S DQlo~ 

21 CAS 21 CAS 21 CAS SOQ 22 

_______ -"0-'<1' ~~~ 01 ~~= 01 ~~= ~~ci 23, 

Bit Map II (Sheet 7 of 8) 

01 

02 U13 > BLUE 

laR4 887 

o. 
0. 

'r 
1;0 

01 

02 U15 ~: > INTEN 

taR'" 17 887 

" ,. 
14 

'3 
09 1 L12 

.fat--
GND 

mo 
!~ 
i~ -m 
~::D 
DIU! 
::::II c:a. 

I 
i 
g 

i 



~ 

4.2 
2C2 

'.2 
3C2 

'.7 

'.8 
3C8. 487 

2C7. 3C8. 4B7 
2C7. 3C8 
2C7. 3C8 
2C7. 3CB 

INl » 
\\RAUX. » 

(lOBO » 
I IOBl » 
I !DB2 » 
~ IOB7 » 

lOBS» 
I lOBS » 
11084 » 
,1083 » 

~-
~~ 

BAD ».-----------'-"1 

.AI "========m BA2 » 
BA3 » 

BA4 »----------~~ 

BAS »=====================~ 2C7. 3CB BA6 » 
2C2 LUlSO.» 

ONO 

U20 
8159 

i:ii", 

CD ~~ 
~~ 29 
CO 2B 
CD 27 
CD 26 
CO 25 

2C2 LUlS,.» ----------~-;J CD 4 ... 

CO H 

.1; 

- OO~» Wu 
7A1 INlEN» COlO 42 
7C1 BLUE» COl' 41 

C012 36 
INlEN~~~; ~~'''-8--------' 

GREEN B 40 

REO 
SCl RED» 
SAl GREEN» 

GNO 
VCC 

00 
~. 

01 GNO GNO 0p 
C30 C31 

~O.I~O.I 

VCC iil", 
1::...-_~~ 

01-J 
02-J 
03-J 

~. 75 75 75 :: 2A~"sI,'ly ~~ 
13 'A4 1Y 07 

06~:~ ~~.~I'~~~ ______ ~ ____ ~. 
~~ 2A3 2Y~! 

> OCLK2 s07. 707 

> OCLKl 287 

> oeLKO 507 

17 lA2 1Y 03 8INT 
4--------+-;;0;(12 ~:~ ~~ 18 

10/ 2G/ 
01 19 

INT2 

GIIIO GNO INT3 
INT5 

'US3L88 Pf.~:;t-~+-------------->,> OlYfER. 2B7 

17 
16 > CAS3.. 6C7. 7C7 
'5 > CAS2. SC7. 7C7 

07 14 > CAS1. 687. 7B7 
DB 13 > CASO. 687. 7B7 
09 12 > RESEr. 4C7 
11 > SCS 507 

'-

I :::~~:::t:::::::::::::::b::::::~~~~G~NO~~G~NO~~~~H~'~L~'T~E~~~~~~~J=::::::::::::::::::::::::::::::f1=fr=::::::::::::::::::::::::~J GNO GNO GNO::: GNO 
5.2 XfG .. » 
5.2 RAS* » 
5.2 CAS .. » 
502 SVS » 
502 SHS » 

RESET ~ 

8159 (SheetS oU) 

l 
i 
0" 
::::II 
III 

a 

f 
i 
in 
O"::I: 
::::II> 

m::!:l 
2 m 
.. JJ 
Q,UI 





CHAPTER 6 

Articles! Application Notes 

6.1 INITIALIZATION 

6.2 COPY BLOCK OPERATORS IN THE QPDM 

6·1 

6·6 





CHAPTER 6 

Software 
In this section, we present some software application 
hints for the Am95C60. Section 6.1 is a BASIC program 
that completely initializes the QPDM (from power on) and 
draws a very simple message on the screen. This 
program initializes the registers in the recommended 
order. It then issues the minimum instructions to get the 
QPDM started and draws a few wide lines. 

In Section 6.2, we discuss the logical and arithmetic 
operations that can be performed on the source and 
destination fields during Copy Block operations. 

6.1 INITIALIZATION 

The following program will completely initialize the add­
in board and draw the word "HI!" using stroke characters 
with a logical PEL (Pixel Element). This program was 
written in IBM PC BASICA and compiled using the BASIC 
compiler. Both source code and the compiled binary are 
shipped with the demonstration board. 

The program contains adequate comments; we shall 
amplify as necessary. The board is described in 
Chapter 5. 

When we execute lines 60-190, we are loading the look­
up table olthe Am8159. It is programmed as indicated in 
the table below; the 'Entry' column lists the values used 
by Set Color Bits. 

When we execute lines 210-290, we define the 1/0 
addresses and set the HILITE oscillator to 2 Hz with a 
25% duty factor. 

When we execute lines 310-420, we call on subroutines 
that initialize the registers. This is the recommended 
order. Note that entering 8-bit mode may not be neces­
sary for some applications. 

When we execute lines 440-520, we tum on Video 
Refresh Enable. This is synchronized to top-of-frame by 
waiting for Vertical Blanking Interrupt. When this pro­
gram is executed from the interpreter (at least on a PC), 
the timing is not synchronized properly because it takes 
several milliseconds to execute lines 500 and 510. The 
compiled version does not have this problem. 

When we execute lines 540-590 we send instructions to 
the QPDM to initialize it and draw a simple message. 
These are the minimum instructions required to program 
the QPDM. Line 560 removes one word from the list of 
data statements. If it is not the termination word (-1), it is 
sentto the instruction FIFO. After the last word has been 
sent, the program stops at line 600. The instructions are 
in the form of DATA statements occupying lines 630-840. 

The subroutine at 1600 ensures there is room in the FI FO 
by waiting for FREQ (x4000 in Status Register) to be a 
"1". It then sends the word to the FIFO. 

Table 6.1 Programming the Am8159 

Entry HIUTEOff HIUTEOn 

0 Black Black 
1 Black Grey 
2 Dim Blue Dim Blue 
3 Bright Blue Bright Blue 
4 .DimGreen Dim Green 
5 Bright Green Bright Green 
6 Dim Cyan Dim Cyan 
7 Bright Cyan Bright Cyan 
8 Dim Red Dim Red 
9 Bright Red Bright Red 
10 Dim Magenta Dim Magenta 
11 Bright Magenta Bright Magenta 
12 Dim Yellow Dim Yellow 
13 Bright Yellow Bright Yellow 
14 Dim White Dim White 
15 Bright White Bright White 

6-1 



CHAPTER 6 
Software 

10 'This programs the 95C60 on Tom Crawford's demo board 

20 ' for the NEC Multi-sync (or equivalent) monitor. The 

30 ' monitor is color, 640 x 480. The Am8159 Color Palette 

40 ' is programmed strictly as one to one (RGBI in, RGBI out) . 
50 DEFINT A-Z 

60 DEF SEG=&HBFF8 

70 FOR J = 0 TO 126 STEP 2 

80 R=O: G=O: B=O :1=0 

90 IF «J AND 6)=4) THEN B=8 

100 IF «J AND 6)=6) THEN B=15 

110 IF «J AND 10)=8) THEN G=8 

120 IF «J AND 10)=10) THEN G=15 

130 IF «J ANn 18)=16) THEN R=8 

140 IF «J AND 18)=18) THEN R=15 

150 IF «J AND 62)=34) THEN R=4: G=4: B=4: 

160 POKE J, (G*16+R) 

170 POKE J+1,B 

180 NEXT J 

190 DEF SEG 

200 , 
210 BSE=&H3AO 

220 INST=BSE 

230 STATUS=BSE 

240 BIF=BSE+2 
250 BOF=BSE+2 

260 QADRS=BSE+4 

270 QEG=BSE+6 

280 AUX=BSE+8 

290 OUT AUX,9 

300 , 
310 'Write the Registers to Initialize the QPDM 

320 GOSUB 870 

330 GOSUB 920 

340 GOSUB 970 

350 GOSUB 1010 

360 GOSUB 1080 

370 GOSUB 1170 

380 GOSUB 1240 

390 GOSUB 1320 
400 GOSUB 1360 

410 GOSUB 1400 

420 GOSUB 1440 

430 ' 

'point to base of LUT 

'128 locations in lut 

'dim blue 
'bight blue 

'dim green 

'bright green 

'dim red 

'bright red 

'blink intense black 

'bits 7-0 

'bits 11-8 

'put it back to basic 

'instruction FIFO 

'status register 

'block input FIFO 

'block output FIFO 

'register address pointer 

'io register 

'BLINK CONTROL REGISTER 

'SET BLINK TO 1 Hz, 25 

'sw reset 

'8-bit mode 

'interrupts off 

'screen 

'windows 

'horizontal 

'vertical 

'vrnode 

'mmode 

'dmrr 

'vte 

440 'now wait for vertical Blank to enable video timing 

450 'First clear all the interrupts (especially VLKBI) 

460 QA=30 :V=&H3FF :GOSUB 1480 'clear interrupts 

470 'Now read Status Register until VBLKI goes Active 

480 B=INP(STATUS) :BL=INP(STATUS) 'always do two byte reads 

6-2 



CHAPTER 6 
Software 

490 IF (B AND 1) = 0 THEN GOTO 480 'wait for interrupt to occur 

500 OUT QADRS,O :OUT QADRS,29 'start video timing 

510 OUT QEG,O :OUT QEG,l 

520 PRINT "enable VRE" 

530 

540 'Now send some instructions to QPDM 

550 'We will initialize it and then write HI! with strokes 

560 READ V 

570 IF V= -1 THEN GOTO 600 

580 GOSUB 1600 

590 GOTO 560 

600 STOP 

610 ' 
620 'Here are the instructions in the form of DATA statements 

630 DATA &HOOB8 :'set QPDM Position, enable 
Masked Writes 

640 DATA &H29,0,0 

650 DATA &H39, &H03fO,0,&H01fO 

660 DATA &H34, &H35 

670 DATA &h30,15 

680 DATA &H31,0 

690 DATA &H36,15 

700 DATA &H22,10,10 

710 DATA &H20,0 

720 DATA &h0550,0,0,1023,1023 
memory 

730 DATA &H20,15 

740 DATA &H54A,469,277,474,272 

750 DATA &H21,15 

760 DATA &H54,469,277 

770 DATA &HB6, 7441 

780 DATA &H54C,100,60,100,280 

790 DATA &H54C,220,60,220,280 

BOO DATA &H54c,100,160,220,160 

B10 DATA &H54c,300,60,340,60 

B20 DATA &H54C,320,60,320,2BO 

B30 DATA &H54C,300,2BO,340,2BO 

B40 DATA &H54C,469,60,469,240 

B50 DATA -1 

B60 ' 
B70 PRINT "sw reset" 

BBO OUT QADRS,O :OUT QADRS,27 

B90 OUT QEG,O :OUT QEG,O 

900 RETURN 

910 ' 

920 PRINT "B-Bit Mode" 

930 OUT QADRS,31 :OUT QEG,O 

940 OUT QADRS,59 :OUT QEG,O 

:'turn off scaling 

:'stack boundary 

:' turn off clipping and picking 

., Turn on all activity bits 

:'Set Listen Bits to All Planes 

:'turn off logical pel 

:'small block size 

: ' black color 

:'Filled Rectangle to clear 

:'white drawing color 

:'Circle with radius of five 

:'Search Color of all ones 

:'Fill the Circle with White 

:'Logical PEL at 464,272 

:'Left Stroke of 'H' 

:'Right Stroke of 'H' 

:'Crossbar of 'H' 

:'Top of 'I' 

:'Vertical Stroke of 'I' 

: 'Bottom of 'I' 

: ' Stroke of '!' 

6·3 



CHAPTER 6 
Software 

950 RETURN 

960 ' 
970 PRINT "Interrupts Off" 

980 QA=26 :v=O :GOSUB 1480 

990 RETURN 

1000 ' 
1010 PRINT "Screen Parameters" 

1020 QA=l :V=O :GOSUB 1480 

1030 QA=2 :v=O :GOSUB 1480 

1040 QA=3 :V=640 :GOSUB 1480 

1050 QA=4 :V=480 :GOSUB 1480 

1060 RETURN 

1070 , 
1080 PRINT "windows" 
1090 QA=14 :V=800 : GOSUB 1480 

1100 QA=15 :V=500 : GOSUB 1480 

1110 QA=16 :V=800 : GOSUB 1480 

1120 QA=17 :V=500 : GOSUB 1480 

1130 QA=18 :V=800 : GOSUB 1480 

1140 QA=19 :v=800 : GOSUB 1480 

1150 RETURN 

1160 , 
1170 PRINT "horizontal" 

1180 QA=10 :V=10 : GOSUB 1480 

1190 QA=l1 :v=20 : GOSUB 1480 

1200 QA=12 :V=80 :GOSUB 1480 

1210 QA=13 :V=104 :GOSUB 1480 

1220 RETURN 

1230 , 
1240 PRINT "vertical" 

1250 QA=5 :V=40 : GOSUB 1480 

1260 QA=6 :V=50 : GOSUB 1480 

1270 QA=7 :V=50 :GOSUB 1480 

1280 QA=8 :V=480 :GOSUB 1480 

1290 QA=9 :V=1024 :GOSUB 1480 

l300 RETURN 

1310 , 
1320 PRINT "vrnode" 

1330 QA=22 :V=ll :GOSUB 1480 

1340 RETURN 

1350 ' 
1360 PRINT "mmode" 

1370 QA=23 :V=&H70 :GOSUB 1480 

1380 RETURN 

1390 ' 
1400- PRINT "DMRR" 

1410 QA=24 :V=&H200+320 :GOSUB 1480 

1420 RETURN 

6-4 

'real start x 

'real start y 

'real term x 

'real tern y 

'Apparent X Start 

'Apparent Y Start 

'Apparent X Terminate 

'Apparent Y Terminate 

'Real X Start 

'Real Y Start 

'HSYNC 

'H Scan Delay 

'H Active 

'H Total 

'VSYNC 

'V Scan Delay Odd 

'V Scan Delay Even 

'V Active 

'V Total 

'Non-interlaced, Master, Master 

'64K Devices, 1K Display Memory 

'320 SYSCLK Cycles and Bit 9 



1430 ' 
1440 PRINT "VTE" 

1450 QA=28 :V=l :GOSUB 1480 

1460 RETURN 

1470 ' 
1480 'write 16 bit word to register 

1490 'reg adrs in qa, value in v 

1500 'most significant byte first 

1510 B=INT(QA/256) :OUT QADRS,B 

1520 B=QA MOD 256 :OUT QADRS,B 

1530 'PRINT B, 

1540 B=INT(V/256) :OUT QEG,B 

1550 'PRINT B;" "; 

1560 B=V MOD 256 :OUT QEG,B 

1570 'PRINT B 

1580 RETURN 

1590 ' 
1600 'write 16 bit word to inst FIFO 

1610 'word is in v 

1620 'most sig byte first 

1630 'first make sure there is room in the FIFO 

1640 B=INP (STATUS) :B1=INP(STATUS) 'always read two bytes 

1650 IF (B AND 64) = 0 THEN GOTO 1640 'wait until FREQ is hi 

1660 B=INT(V/256) :OUT INST,B 

1670 'PRINT B;" "; 

1680 B=V MOD 256 :OUT INST,B 

1690 'PRINT B 

1700 RETURN 

CHAPTER 6 
Software 

6-5 



CHAPTER 6 
Software 

6.2 COPY BLOCK OPERATORS IN THE 
QPDM 

6.2.1 Introduction 

This chapter documents how to perform various logical 
and arithmetic operations with the Copy Block instruction 
on the CPOM. This study was inspired by Dale Sim­
monds who took the corresponding operations on the 
TMS34010 seriously. 

6.2.2 Logical Operations 

When two bi-modal quantities are logically combined, 
there are 16 possible results. In other words there are 16 
functions of two variables, A and B. It is easy to prove 
there are exactly 16 ways; simply write down the cases 
exhaustively. 

We can also describe the procedure for each of these. 
Twelve of the 16 cases can be executed in one operation. 
The other four require two operations each. 

6.3.3 Arithmetic Operators 

Overview 

People have argued that arithmetic operations are useful 
when doing graphics. The operations are: 
Add dest ,. dest plus source 
Add with Saturation Forces all ones rather than overflow 
Subtract dest • dest minus source 
Subtract w. Saturation Forces all zeroes rather than 

underflow 
Maximum Compare and use the numerically 

larger 
Minimum Compare and use the numerically 

smaller 

These operations can all be synthesized from the logical 
operations we have (SOAXZ). The only part that is 
expecially interesting (and time consuming) is the 
propagation of carries. As you go over this code, bear in 
mind that each operation is being done on more than 
one quantity (pixel) in parallel. This means that optimiz­
ing in real time based on the partial resuHs cannot be 
done. Rather, you have to just go blindly through all the 
motions. 

Add 

We shall describe the add routine in great detail. All the 
others are builtto some greateror lesser degree on add. 
The nomenclature for the four bit planes in a single 
CPOM is shown below. 

Plane Number 0 1 2 3 
Weight 8 4 2 1 

(for font instruction) 
(for act instruction) 

Carries propagate from right to left. Plane number 3 
contains the LSB of each pixel; plane number 0 contains 
the MSB of each pixel. 

Four blocks in the display memory are defined. The two 
original operands are "dest" and "source". The operation 
is defined in a manner consistent with the normal CPOM 
logical operations. 

dest = dest plus source 

The other two blocks are "temp1" and "temp2H. These 
are used to contain intermediate resuHs as described 
below. 

Input Values of B,A: (where B Is the source and A the destination) 

0,0 0,1 1,0 1,1 Name Equation Procedure 

0 0 0 0 Clear A=O Copy Destination to itself with AND and SI 
0 0 0 1 And A-A ANDB Copy Block with logical AND 
0 0 1 0 And Reverse A.A ANDB a) Invert Destination, b) Copy with logical AND 
0 0 1 1 Copy A=B Copy Block with logical SET 
0 1 0 0 Andlnverted A.A ANDB Copy Block with logical AND, SI 
0 1 0 1 NoOp A-A (left as an exercise for the reader) 
0 1 1 0 Xor A-A XORB Copy Block with logical XOR 
0 1 1 1 Or A-A OR B Copy Block with logical OR 
1 0 0 0 Nor A-A OR B a) Copy Block with logical OR, b)lnvert Dest 
1 0 0 1 Equivalent A.A XORB Copy Block with logical XOR, SI 
1 0 1 0 Invert A-A Invert Destination 
1 0 1 1 OrReverse A-AORB a) Invert Destination, b)Copy Block with OR 
1 1 0 0 Copylnverted A-B Copy Block with logical SET, SI 
1 1 0 1 Orlnverted A-AORB Copy Block with logical OR, SI 
1 1 1 0 NAnd A-A ANDB a) Copy Block with logical AND, b)lnvert Dest 
1 1 1 1 Set A-1 Copy Destination to itself with OR and SI 

• Invert Destination" means: Copy Block Dest to Dest with SI 

6-6 



The program for add is shown in addtemp (which stands 
for add TEMPlate). The block size of the arrays to be 
added is set and all the activity bits are set. 

The "propagates" are calculated and placed in temp1. 
The propagate for each bit position of each pixel is the 
logical OR of the two operands. If the result is set, then a 
carry into this bit position will result in a carry out. Note 
that this calculation is a two-step operation. This is 
because the OPOM requires the destination block to be 
the same as one of the sources. (2-address machine) 

The "generates' are calculated and placed in temp2. The 
generate for each bit position of each pixel is the logical 
AND of the two operands. If the result is set, then there 
will be a carry out from this bit position regardless of any 
carry in. We will see later how the propagates and 
generates are combined. 

The initial sums (with no carries) are calculated into 
"dest" by XORing with ·source". Recall that XOR is a so­
called "haH-add". This is all there is to it except for the 
carries. 

For the case of add, there is no carry into the low-order 
bit, so we can go directly to plane 2. We must add any 
carry generated from plane 3 into plane 2. We want to 
affect plane 2 only, so we set only its activity bit. We want 
to use the generate from plane 3 so we set the single 
plane source with the fnt 3: instruction. We XOR the 
generate from plane 3 into the destination of plane 2. This 
leaves the correct sum in plane 2. Note that the single 
plane source bit is set so that the source operand (temp2) 
comes from plane 3. 

Now the generate from plane 3 is AN Oed with the 
propagate from plane 2 with the result left in the plane 2 
propagate array. Finally, this is ORed with the plane 2 
generate and the result is left in plane 2 generate. This 
can be done without single plane source since both 
operands are in plane 2. Observe all this has affected 
only plane 2. 

"Generate" from any plane is propagate and carry-in or 
generate. In a similar manner, we calculate the sum for 
plane 1 and the carry from plane 1. Finally, we calculate 
the sum for plane O. This completes the add routine. 
There is no need to calculate the carry-out of plane O. 
This has all taken 12 Copy Block instructions, five of 
which use the single plane source option. 

Add with Saturation 

Add with Saturation is exactly the same as add except 
that,H the result H larger than the maximum value, the 
result is forced to the maximum value (there is no 
overflow). The code is shown in addstemp. It is exactly 

CHAPTER 6 
Software 

the same as addtemp with an extra step at the end. We 
calculate the carry out of plane 0 (this is the overflow). 
This carry is ORed with all four planes, forcing the 
maximum for all pixels that have generated an overflow. 

Subtract 

The classical method of subtracting is "complement and 
add". The complement is a two's complement; we do a 
one's complement and force a carry into plane 3. This is 
shown in subtemp. The block temp3 is used as a source 
of 1 s to force the carry into plane 3. The complement of 
the subtrahend is the very first ·cpy". The carry is forced 
into plane 3. Afterthat, it is identical to add (down to and 
including the comments). 

Subtract with Saturation 

This is identical to subtract except we calculate the carry 
from plane o. Everywhere there is no carry, we force the 
result to O. The listing is substemp. 

Maximum 

The two values corresponding to the pixel are compared 
and the one that is numerically larger is chosen. This is 
listing maxtemp. Copies of the two operands are saved 
and the source is subtracted from the destination. The 
carry-out of plane zero is used to select either the source 
or destination (from the saved copies). The result is left 
in the destination. 

Minimum 

The two values corresponding to the pixel are compared 
and the one that is numerically smaller is chosen. This is 
shown in mintemp. This is identical to maxtemp except 
for the ANOs which select the operands at the end. 

Propagation of carries Saturation between QPDMs 

Clearly, in a multi-OPOM system, it is necessary to 
propagate the carry from the low-order OPOM to the 
high-order OPOM. It is also necessary to convey the final 
carry in the operations with saturate as well as maximum 
and minimum. This is done using the match logic. Ob­
serve that while this works, it Is not especially fast. 

1. Zero the destination plane 
2. Set the listen bits for the source plane only. 
3. Set the search color to ones in the source plane 
4. Copy the destination to itseH using source invert and 

match. 

Everywhere else the source plane is a one, the destina­
tion will be forced to a one. 

6-7 



CHAPTER 6 
Software 

6.2.4 Transparency 

TI has defined a logical operation called transparency. 
This involves executing copy block only for pixels where 
the source is not zero. This buys two things: 

I. You can build up your destination in layers with the most 
recent information on top, providing a type of visual 
priority. (Using a straight Copy Block obscures the old 
layers). 

II. No new colors are created which might distort the 
readability or change the intended meaning of color 
coded information. (Observe that using logical opera­
tions to merge information does just that. So does con­
trolling the activity bits to write only selected planes). 

The String instruction can do exactly what is called for 
here. If you use an SOAXZ field of 101 (Graphical Set) 
and a single plane font, then the character will be written 
into all planes wherever there is a one in the font. Any 
place there is a zero in the font, the pixel will not be 
written; allowing the data that is underneath to come 
through. 

The drawing instructions (Line, Point, etc) also do this 
verywell. UsingaSOAXZfieldof101 (Graphical Set), the 
drawing colorwill be written into all bit planes everywhere 
the object exists. This also works properly for single 
plane PELs. 

6-8 

For Copy Block, the situation may be slightly more 
complex. If the source is a single plane, the Graphical Set 
does exactly the correct thing: everywhere the source is 
a one, all the planes of the destination will be written with 
the current drawing color. 

It is more interesting ifthe source image contains several 
colors and the application wants to copy all of them to the 
destination without overlaying anything where the source 
is all zeroes. In this case, we cannot use a single plane 
source because of the multiple color situation. One 
method is: 

1. Make a copy of the source (if it needs to be pre­
served). 

2. Copy the destination to the source matching on a 
field of all zeroes. 

3. Copy the source to the destination. 

A third example involves the case where all pixels of a 
single color are to be copied from the source block, but no 
others. The solution involves the self-canceling effect of 
exclusive OR. 

1. Copy the source to a temporary region. 
2. Copy the source to temporary with logical XOR, 

matching on the desired color. 
3. Copy the source to temporary with logical XOR. 

This leaves all pixels, except those of the desired 
color, at zero. 

4. Choose a plane whose color bit for the desired 
color is a one and execute a single plane copy 
from temporary to the destination. Use Graphical 
Set with drawing color set to the desired color. 



CHAPTER 6 
Software 

MAXTEMP 

blk [blksiz] 

act 0 11S} 
cpy [dest] [temp4] 

cpy [source] [tempS] 

cpy - [source] [source] 

cpy [dest] [temp1] 

cpy 0 [source] [temp1] 

cpy [dest] [temp2] 
cpy a [source] [temp2] 

cpy x [source] [dest] 

;save copy of original dest 
;and source 

;invert the subtrahend 

; propagates 

; generates 

; half-adders 

;now we have to propagate carries from 3 to 0 
act 0 18} ;will set all carries into plane three 

cpy - 0 [temp3] [temp3] 

act OIl} ;force carries into plane three 
fnt 0: [nul] O_[fntO] 1_[fnt1] 

cpy 11 x [temp3] [dest] 

cpy 11 a [temp3] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 12} 
fnt 3: [nul] O_[fntO] 1_[fnt1] 
cpy 11 x [temp2] [dest] 
cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 14} 
fnt 2: [nul] O_[fntO] 1_[fnt1] 

cpy 11 x [temp2] [dest] 
cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 18} 
fnt 1: [nul] O_[fntO] 1_[fnt1] 
cpy 11 x [temp2] [dest] 

;now we do the saturation part 

;look for a carry out of plane zero 

;carries come from plane zero 

;final sum for plane three 

;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane two only 
;plane 3 is Source 
;final sum for plane two 
;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;write plane one only 

;plane 2 is Source 
;final sum for plane one 
;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;write plane zero only 
;plane 1 is Source 
;final sum for plane zero 

6-9 



CHAPTER 6 
Software 

cpy 11 a [temp2] [tempi] 

cpy 0 [tempi] [temp2] 

act 0 US} 
fnt 0: [nul] O_[fntO] 1 [fntl] 

cpy 11 a [temp2] [temp4] 

cpy 11 - a [temp2] [tempS] 

cpy [temp4] [dest] 
cpy 0 [tempS] [dest] 

6-10 

;lower plane generate and this propagate 

;final carry from plane zero 

;all activity bits 

;and will force all zeroes where it isn't 

; keep the maximums 

;from each of the two images 

;and merge them together 

;in the final destination 



MINTEMP 

blk [blksiz] 

act 0 lIS} 

cpy [dest] [temp4] 

cpy [source] [tempS] 

cpy - [source] [source] 

cpy [dest] [tempI] 

cpy 0 [source] [tempI] 

cpy [dest] [temp2] 

cpy a [source] [temp2] 

cpy x [source] [dest] 

;save copy of original dest 

;and source 

;invert the subtrahend 

;propagates 

; generates 

; half-adders 

CHAPTER 6 
Software 

;now we have to propagate carries from 3 to 0 

act 0 IS} ;will set all carries into plane three 

cpy - 0 [temp3] [temp3] 

act 0 II} 

fnt 0: [nul] 0 [fntO] 1 [fntl] - -
cpy 11 x [temp3] [dest] 

cpy 11 a [temp3] [tempI] 

cpy 0 [tempI] [temp2] 

act 0 12} 

fnt 3: [nul] O_[fntO] l_[fntl] 

cpy 11 x [temp2] [dest] 

cpy 11 a [temp2] [tempI] 

cpy 0 [tempI] [temp2] 

act 0 14} 

fnt 2: [nul] O_[fntO] 1_[fntl] 

cpy 11 x [temp2] [dest] 

cpy 11 a [temp2] [tempI] 

cpy 0 [tempI] [temp2] 

act 0 {S} 

fnt 1: [nul] O_[fntO] 1_[fntl] 

cpy 11 x [temp2] [dest] 

;now we do the saturation part 

;look for a carry out of plane zero 

;force carries into plane three 

;carries come from plane zero 

;final sum for plane three 

;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;write plane two only 

;plane 3 is Source 

;final sum for plane two 

;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;write plane one only 

;plane 2 is Source 

;final sum for plane one 

;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane zero only 

;plane 1 is Source 

;final sum for plane zero 

6-11 



CHAPTER 6 
Software 

cpy 11 a [temp2] [temp1] 

cpy 0 [temp1] [temp2] 

act 0 {lS} 

fnt 0: [nul] O_[fntO] 1_[fnt1] 

cpy 11 - a [temp2] [temp4] 

cpy 11 a [temp2] [tempS] 

cpy [temp4] [dest] 

cpy 0 [tempS] [dest] 

6-12 

;lower plane generate and this propagate 

;final carry from plane zero 

;all activity bits 

;and will force all zeroes where it isn't 

;keep the minimums 

;from each of the two images 

;and merge them together 

;in the final destination 



ADDSTEMP 

blk [blksiz] 

act 0 {IS} 

cpy [dest] [temp1] 

cpy 0 [source] [temp1] 

cpy [dest] [temp2] 

cpy a [source] [temp2] 

cpy x [source] [dest] 

; propagates 

; generates 

; half-adders 

CHAPTER 6 
Software 

;now we have to propagate carries from 3 to 0 

act 0 {2} 

fnt 3: [nul] O_[fntO] 1_[fnt1] 

cpy 11 x [temp2] [dest] 

cpy 11 a [temp2] [temp1] 

cpy 0 [temp1] [temp2] 

act 0 {4 } 

fnt 2: [nul] 0 [fntO] 1 [fntl] -
cpy 11 x [temp2] [dest] 

cpy 11 a [temp2] [temp1] 

cpy 0 [templ] [temp2] 

act 0 {S} 

fnt 1: [nul] 0 [fntO] 1 [fntl] -
cpy 11 x [temp2] [dest] 

;write plane two only 

;plane 3 is Source 

;final sum for plane two 

;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;write plane one only 

;plane 2 is Source 

;final sum for plane one 

; lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

; write plane zero only 

;plane 1 is Source 

; final sum for plane zero 

;now we look for a carry 

cpy 11 a [temp2] [temp1] 

cpy 0 [templ] [temp2] 

out of plane zero 

act 0 {lS} 

fnt 0: [nul] O_[fntO] 1_[fnt1] 

cpy 11 0 [temp2] [dest] 

;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;and will force all ones with it 

; (forcing result to saturated) 

6-13 



CHAPTER 6 
SoftWare 

ADDTEMP 

blk [blksiz] 
act o {lS} 

cpy [dest] [temp1] 
cpy 0 [source] [temp1] 

cpy [dest] [temp2] 
cpy a [source] [temp2] 

cpy x [source] [dest] 

; propagates 

; generates 

; half-adders 

;now we have to propagate carries from 3 to 0 

act 0 12} 
fnt 3: [nul] O_[fntO] 1_[fnt1] 
cpy 11 x [temp2] [dest] 
cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 14} 
fnt 2: [null O_[fntO] 1_[fntl] 
cpy 11 x [temp2] [dest] 
cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 IS} 
fnt 1: [nul] O_[fntO] 1_[fnt1] 
cpy 11 x [temp2] [dest] 

6-14 

;write plane two only 
;plane 3 is Source 
;final sum for plane two 
;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane one only 
;plane 2 is Source 
;final sum for plane one 
;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane zero only 
;plane 1 is Source 
;final sum for plane zero 



SOBTEMP 

blk [blksiz] 

act 0 {1S} 

cpy - [source] [source] 

cpy [dest] [temp1] 

cpy 0 [source] [temp1] 

cpy [dest] [temp2] 

cpy a [source] [temp2] 

cpy x [source] [dest] 

;invert the subtrahend 

; propagates 

; generates 

; half-adders 

CHAPTER 6 
Software 

;now we have to propagate carries from 3 to 0 

act 0 {8} ;will set all carries into plane three 

cpy - 0 [temp3] [temp3] 

act 0 {l} 

fnt 0: [nul] O_[fntO] 1_[fnt1] 

cpy 11 x [temp3] [dest] 
cpy 11 a [temp3] [temp1] 

cpy 0 [temp1] [temp2] 

act 0 {2} 

fnt 3: [nul] O_[fntO] 1_[fnt1] 

cpy 11 x [temp2] [dest] 

cpy 11 a [temp2] [temp1] 

cpy 0 [temp1] [temp2] 

act 0 {4} 
fnt 2: [nul] 0 [fntO] 1 [fntl] -
cpy 11 x [temp2] [dest] 

cpy 11 a [temp2] [temp1] 

cpy 0 [temp1] [temp2] 

act 0 {8} 

fnt 1: [nul] 0 [fntO] 1 [fnt1] - -
cpy 11 x [temp2] [dest] 

;force carries into plane three 

;carries come from plane zero 

;final sum for plane three 
;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

;write plane two only 

;plane 3 is Source 

;final sum for plane two 

;lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

; write plane one only 

;plane 2 is Source 

; final sum for plane one 

; lower plane generate and this propagate 

;ORd with this plane generate (final carry) 

; write plane zero only 

; plane 1 is Source 

;final sum for plane zero 

6-15 



CHAPTER 6 
Software 

SUBSTEMP 

blk [blksiz] 
act 0 {lS} 

cpy - [source] [source] 

cpy [dest] [tempI] 
cpy 0 [source] [tempI] 

cpy [dest] [temp2] 
cpy a [source] [temp2] 

cpy x [source] [dest] 

;invert the subtrahend 

; propagates 

; generates 

; half-adders 

;now we have to propagate carries from 3 to 0 
act 0 {S} ;will set all carries into plane three 
cpy - 0 [temp3] [temp3] 

act 0 {I} 
fnt 0: [nul] 0 [fntO] 1 [fnt1] -
cpy 11 x [temp3] [dest] 
cpy 11 a [temp3] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 {2 } 
fnt 3: [nul] 0 [fntO] 1 [fnt1] - -
cpy 11 x [temp2] [dest] 
cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 {4} 
fnt 2: [nul] O_[fntO] 1_[fnt1] 
cpy 11 x [temp2] [dest] 
cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 {S} 
fnt 1: [nul] O_[fntO] 1_[fnt1] 
cpy 11 x [temp2] [dest] 

;now we do the saturation part 
;look for a carry out of plane zero 

cpy 11 a [temp2] [temp1] 
cpy 0 [temp1] [temp2] 

act 0 {lS} 
fnt 0: [nul] O_[fntO] 1_[fnt1] 
cpy 11 a [temp2] [dest] 

6-16 

;force carries into plane three 
;carries come from plane zero 
;final sum for plane three 
;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane two only 
;plane 3 is Source 
;final sum for plane two 
;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane one only 
;plane 2 is Source 
;final sum for plane one 
;lower plane generate and this propagate 
;ORd with this plane generate (final carry) 

;write plane zero only 
;plane 1 is Source 
;final sum for plane zero 

;lower plane generate and this propagate 
;final carry from plane zero 

;all activity bits 
;and will force all zeroes where it isn't 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



ADVANCED MICRO DEVICES' NORTH AMERICAN SALES OFFICES 

ALABAMA ............................. . 
ARIZONA ............................. . 
CALIFORNIA, 

Culver City .......................... . 
Newport Beach ..................... .. 
San Diego ......................... .. 
SanJose .......................... .. 
SantaClara ........................ .. 
Woodland Hills ...................... .. 

CANADA, Ontario, 
Kanata .............................. . 
Willowdale .......................... . 

COLORADO ........................... . 
CONNECTICUT ...................... .. 
FLORIDA, 

Clearwater ......................... .. 
FtLauderdale ...................... .. 
Melbourne .......................... .. 
Orlando ............................. . 

GEORGIA ............................. . 
ILLINOIS, 

Chicago ............................ .. 
Naperville .......................... .. 

INDIANA ............................. .. 

(2051882-9122 
(602 242-4400 

(213) 645-1524 
(7141 752-6262 

1
619 56Q.. 7030 
408 249-7766 
408 727-3270 
818) 992-4155 

(613) 592-0060 
(416) 224-5193 
(303) 741-2900 
(203) 264-7800 

1
8131 530-9971 
305 776-2001 
305 729-0496 
305 859-0831 

(404) 449-7920 

(312) 773-4422 
(312) 505-9517 
(317) 244-7207 

KANSAS ............................. .. 
MARYLAND ........................... . 
MASSACHUSETIS .................... . 
MINNESOTA ......................... .. 
MiSSOURI ........ , .................. .. 
NEW JERSEY ........................ .. 
NEW YORK, 

Liverpool ........................... .. 
Poughkeepsie ....................... .. 
Woodbury .......................... .. 

NORTH CAROLINA .................... . 
OHIO ................................ .. 

Columbus ........................... . 

o~~llg~·:::: :::: ::::: :::::::: ::::::::: 
PENNSYLVANIA, 

Allentown .......................... .. 
Willow Grove ........................ . 

TEXAS, 
Austin ..... ........... , ............. . 
Dallas ............................. .. 
Houston ............................. . 

WASHINGTON ....................... .. 
WiSCONSiN ......................... .. 

1
913! 451-3115 
301 796-9310 
617 273-3970 
612 938-Q001 
913 451-3115 

(201) 299'0002 

1
315 457-5400 
914 471-8180 
516 364-8020 

1
919 878-8111 
614 891-6455 
614 891-6455 
513 439-0470 
503) 245-0080 

(2151398-8006 
(215 657-3101 

(5121 346-7830 

1
214 934-9099 
713 785-9001 
206 455-3600 

(414) 792-0590 

ADVANCED MICRO DEVICES' INTERNATIONAL SALES OFFICES 

BELGIUM, 
Bruxelles ................... TEL ..... (02) 771 91 42 

FAX ..... (02) 76237 12 
TLX ............. 61028 

FRANCE, 
Paris ....................... TEL ..... (1149-75-10-10 

FAX ..... (1 49-75-10-13 
TLX ............ 263282 

WEST GERMANY, 
Hannover area .............. TEL ...... (05143) 50 55 

FAX ...... (05143) 55 53 
TLX ............ 925287 

Manchen ................... TEL ...... (089)4114-0 
FAX . . . . . .. (089) 406490 
TLX ............ 523883 

Stuttgart .................... TEL ..... (0711)623377 
FAX ...... (0711) 625187 
TLX ............ 721882 

HONG KONG, 
Kowloon . .. .. .. .. .. .. .. .. ... TEL ...... 852-3-695377 

FAX ...... 852-123-4276 
TLX .. 504260AMDAPHX 

ITALY, Milano ................. TEL ....... (02) 3390541 
(02) 3533241 

FAX ....... (02) 3498000 
TLX ............ 315286 

JA~:~8gawa .................. TEL ....... 462-47-2911 
FAX ....... 462-47-1729 

Tokyo ...................... TEL ...... (031345-8241 
FAX ...... (03 342-5196 
TLX . . . J24064AMDTKOJ 

Osaka ..................... TEL ....... 06-243-3250 
FAX ....... 06-243-3253 

KOREA, Seoul ............ TEL ......... 82-2-764-7598 
FAX ......... 82-2-784-8014 

LATIN AMERICA, 
Ft. Lauderdale ........... TEL . (305) 484-8600 

FAX ........ (305) 485-9736 
TLX .. 5109554261 AMDFTL 

NORWAY, 
Hovik ................... TEL ........... (02) 537810 

FAX ........... (02) 591959 
TLX ................. 79079 

SINGAPORE .............. TEL ........... 65-2257544 
FAX .............. 2246113 
TLX ...... RS55650 MMI RS 

SWEDEN, Stockholm ...... TEL ......... (081733 03 50 
FAX ......... (08 733 22 85 
TLX ................. 11602 

TAIWAN .................. TLX ......... 886-2-7122066 
FAX ......... 886-2-7122017 

UNITED KINGDOM, 
Farnborough ............ TEL ......... (0252) 517431 

FAX ......... (0252) 521041 
TLX ............... 858051 

Manchester area .... .. ... TEL ......... (09251828008 
FAX ......... (0925 827693 
TLX ............... 628524 

London area ............ TEL ......... (04862) 22121 
FAX ......... (0483) 756196 
TLX ............... 859103 

NORTH AMERICAN REPRESENTATIVES 

CALIFORNIA 
12 INC .......................... OEM (408) 988-3400 

DISTI (408) 498-6868 
CANADA 
Burnaby, B.C. 

DAVETEK MARKETING .............. . 

C~~l?'L ~~~~RONICS ............... . 
Kanata, Ontario 

VITEL ELECTRONICS ............... . 

Mi~~~~~'l:fE8;:Oi~ICS ................ . 
Quebec 

VITEL ELECTRONICO:: .............. .. 
IDAHO 

INTERMOUNTAIN TECH MKGT ....... . 
INDIANA 

ELECTRONIC MARKETING 
CONSULTANTS, INC. . .............. .. 

IOWA 
LORENZ SALES .................... .. 

KANSAS 
LORENZ SALES .................... .. 

(804) 430-3680 

(403) 278-5833 

(613) 592-0090 

(416) 676-9720 

(514) 636-5951 

(208) 888-8071 

(317) 253-1668 

(319) 377-4666 

(913) 384-6556 

KENTUCKY 
ELECTRONIC MARKETING 
CONSULTANTS, INC. . ............... . 

MICHIGAN 
SAl MARKETING CORP .............. . 

MISSOURI 
LORENZ SALES .................... .. 

NEBRASKA 
LORENZ SALES .................... .. 

NEW MEXICO 
THORSON DESERT STATES ......... . 

NEW YORK 
NYCOM, INC ....................... .. 

OHIO 
Centerville 

DOLFUSSROOT&CO ............. .. 
Columbus 

DOLFUSSRDOT&CO .............. . 

St~8~'1="~~s ROOT & CO .............. . 
PENNSYLVANIA 

DOLFUSSROOT&CO .............. . 
UTAH 

R2 MARKETING .................... .. 

(317) 253-1668 

(313) 750-1922 

(314) 997-4558 

(402) 475-4660 

(505) 293-8555 

(315) 437-8343 

(513) 433-6776 

(614) 885-4844 

(216) 238-0300 

(412) 221-4420 

(801) 595-0631 

Advancad Micro Devices reserves the right to make changes in its product without notice in order to improve design or parlormance 
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and 
other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company 
assumes no responsibility for the use of any circu"s described herein. 

© 1988 Advanced Micro Devices. Inc. 
.. TEL: (408) 732-2400 .1WX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450 ~ ADVANCED MICRO DEVICES 901 Thompson PI., P.O. Box 3453, Sunnyvale, CA 94088, USA 

... APPLICATIONS HDTUNE TOLL FREE: (800) 222-9323 Printed in U.S.A. PEP-WCP-l1M-3/88-1 

I ~ 
i 




