
Content Addressable
Data Manager
Am95C85

Technical Manual

CPU + CADM = Performance Enhancement I

Advanced Micro Devices

Am95C85 (CADM)
Content Addressable

Data Manager
Technical Manual

© 1986 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The performance

characteristics listed in this technical manual are guaranteed by specific tests, correlated
testing, guard banding, design and other practices common to the industry. For specific
testing details contact your local AMD sales representative. The company assumes no

responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

ACKNOWLEDGEMENTS:

This technical manual was written by Sarosh Vesuna, Headquarters Applications
Engineer. The Senior Technical Writer is Erland Kyllonen.

Contributions and assistance were provided by Dave Horton, Product Planning
Manager, Rob Oliver, Senior Product Marketing Engineer, and Joseph Brcich,
Headquarters Applications Manager.

TABLE OF CONTENTS

1. INTRODUCTION 1-1

1.1 Overview 1-1
1.2 Distinctive Characteristics 1-1
1.3 The Hardware Solution 1-1
1.4 Applications 1-2

2. FUNCTIONAL DESCRIPTION 2-1

2.1 General Description 2-1
2.2 Address Space 2-1

2.2.1 Variable-Width Record 2-1
2.2.2 The Masking Option 2-1
2.2.3 Input Buffer Space 2-2
2.2.4 Remaining Space ... 2-3

2.3 Addressing Modes 2-3
2.3.1 Content Addressable Array 2-3
2.3.2 Auto-Increment Mode 2-3
2.3.3 Stack Access Mode 2-3

2.4 Sorting 2-4
2.5 Cascading MUltiple CADMs 2-4

2.5.1 Cascading Up To 16 Am95C85s 2-4
2.5.2 Cascading More Than 16 Am95C85s 2-4

2.6 Pin Description 2-6
2.6.1 DataBus 2-6

DO-D7 Data Bus (Input/Output, 3-state) 2-6
2.6.2 Interface Control 2-7

RST Reset(lnput, Active LOW) 2-7
CS Chip Select (Inpui, Active LOW) 2-7
RE Read Enable (Input, Active LOW) 2-7
WE Write Enable (Input, Active LOW) 2-7
C/O Command/Data (Input) ... 2-7
CLK Clock (Input) ... 2-8
fIR Transmit/Receive (Output) 2-8
DONE bone (Input/Output, Active LOW, 3-state) 2-8
STAT Status (Output, Active LOW, 3-state) 2-9

2.6.3 Chip to Chip Communication 2-9
TUP Transmit Up (Output, Active HIGH) 2-9
TDWN Transmit Down (Output, Active HIGH) 2-9
RUP Receive from the Up Direction (Input, Active HIGH) 2-9
RDWN Receive from the Down Direction (Input, Active HIGH) 2-9
GLB Global (Input/Output, 3-state) 2-9
DIRG Direction of GLB Signal (Output, Active LOW, Open Dr.) 2-9
DIRD Direction of DONE Signal (Output, Active LOW, Open Dr.) 2-9

2.6.4 Supply Pins 2-9
Vee Power Supply 2-9
GND Ground 2-9

3. Am95C85 INSTRUCTION SET 3-1

3.1 Initialization Instructions 3-1
3.2 Byte-oriented Instructions 3-1
3.3 Record-oriented Instructions 3-1
3.4 Instruction Set 3-1

AIM Auto Increment Mode 3-2
DEC Decrement Address Pointer 3-3
FND Find a Matching Key 3-4
GSF Get Status Full 3-5
KPL Load Length of Key Field, Length of Pointer Field

and Last Address Pointer 3-6
LAL Load Address Long 3-7
LAS Load Address Short 3-8
LUD Load Unsorted Data 3-9
NXT Pointto Next Record 3-10
PRE Pointto Previous Record 3-11
RRB Restore Record Boundary 3-12
RST Reset 3-13
5MB Set Mask Bytes 3-14
SOF Sort Off Line 3-15
SON Sort On Line 3-16
STK Stack Access Mode 3-17

4. PROGRAMMING THE Am95C85 4-1

4.1 Required Software Command Sequences 4-1
4.1.1 Typical Initialization Sequence 4-1
4.1.2 Sorting Off-line 4-1
4.1.3 Search for a Matching Key 4-2
4.1.4 Record-oriented Data Access 4-2

4.2 Command Sequences to be Avoided 4-3
4.3 Byte Boundary to Bit Boundary Conversion ... 4-4
4.4 Data Manipulation 4-4
4.5 Helpful Hints 4-5

4.5.1 Using the LUD Command 4-5
4.5.2 Keep the Pointer Within Meaningful Data 4-5
4.5.3 Last Address Too High 4-5
4.5.4 Using STAT in Polled Mode ... 4-5
4.5.5 5MB Declares CADM Data Unsorted 4-5

5. INTERFACE CIRCUIT 5-1

5.1 Introduction 5-1
5.2 DMA Transfer Mode 5-1
5.3 CADMClock 5-1
5.4 System Bus to CADM Bus Isolation ... 5-2
5.5 Local CADM Data Bus Bank-to-bank .Isolation 5-2
5.6 CADM Status Output 5-2
5.7 Local CADM Signal Buffering 5-2

5.8 CADM Command/Data Select 5-6
5.9 Forcing READY Active 5-6

5.10 The Am95C85 (CADM) Interface to an IBM PC/XT/AT ... 5-7
5.10.1 Synchronizing the Read and Write Signals 5-7
5.10.2 Chip Select Logic 5-7
5.10.3 Generating the Ready Signal 5-10
5.10.4 PAL Device Implementation of the Interface 5-10

5.11 Am95C85 (CADM) Interface to an 8086 Processor ... 5-10
5.11.1 Synchronizing the Read and Write Signals 5-10
5.11.2 Chip Select Logic 5-12
5.11.3 Generating the READY Signal 5-16

5.12 Am95C85 (CADM) Interface to an MC68000 Processor ... 5-16
5.12.1 Synchronizing the Read and Write Signals 5-16
5.12.2 Chip Select Logic 5-20
5.12.3 Generating the READY Signal 5-20

APPENDIX A

Am95C85 CADM SORT PERFORMANCE BENCHMARK SUMMARY A-1

Benchmark Summary A-1
Benchmark Description A-1
Methodology A-3
Input Files A-4
Calculating Sort Times A-4

Maintaining Data Accuracy A-4
System Clock Granularity A-4
Multi-User Systems A-4

Summary A-4
CADM Sort Times vs. Standard Computers A-5

LIST OF ILLUSTRATIONS

Figure 1-1. Am95C85 CADM Block Diagram 1-1
Figure 1-2. Typical System Configuration 1-2
Figure 1-3. Indexed File Using CADM 1-2

Figure 2-1. Am95C85 CADM Address Space 2-1
Figure 2-2. Content-Addressable Array Operations 2-2
Figure 2-3. Auto-Increment Mode 2-3
Figure 2-4. Stack Access Mode 2-4
Figure 2-5. Cascading Up To 16 CADM Devices 2-5
Figure 2-6. Cascading 256 CADM Devices 2-6
Figure 2-7. Buffering Banks of CADMs 2-7
Figure 2-8. Am95C85 Block Diagram 2-8

Figure 4-1. Initialization Sequence 4-1
Figure 4-2. Simplified Off-Une Sort Sequence 4-2
Figure 4-3. Record Search Sequence 4-3
Figure 4-4. Boundary Conversion Example 4-4

Figure 5-1. Unsymmetrical CADM Clock Logic 5-1

iii

Figure 5-2. Cascading Up To 16 CADM Devices
Figure 5-3. Cascading More Than 16 CADM Devices
Figure 5-4. Am95C85-IBM PC/XT/AT Interface
Figure 5-5. 74LS 125 Logic Diagram
Figure5-6. Am95C85-IBM PC/XT/AT Interface Wrtle Timing
Figure 5-7. Am95C85-IBM PC/XT/AT Interface Read Timing
Figure 5-8. Am95C85-IBM PC/XT/AT Interface Using Am PAL 16R4A
Figure 5-9. PAL Device Equations for CADM-IBM Interface Ready Circuit
Figure 5-10. Am95C85-8086 Interface
Figure 5-11. Am95C85-8086 Interface Write Timing
Figure 5-12. Am95C85-8086 Interface Read Timing
Figure 5-13. Am95C85-68000 Interface
Figure 5-14. Am95C85-68000 Interface Write Timing
Figure 5-15. Am95C85-8086 Interface Read Timing

Figure A-1. Sort Performance-GADM vs. Standard Computers

iv

5-3
5-4
5-6
5-5
5-8
5-9
5-11
5-12
5-13
5-14
5-15
5-17
5-18
5-19

A-2

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The Am95C85, Content Addressable Data
Manager (CADM), is a microprocessor peripheral
device capable of both, storing and managing
data, thus relieving the host CPU of many time­
consuming data manipulation and management
tasks. The CADM can perform many sorting and
searching operations significantly faster than
applications software.

Any computer-based system spends a significant
amount of its time performing repetitive tasks
associated with data management. As an example,
the graphics workstation typically spends a major
portion of its CPU time searching and updating
virtual memory tables, graphics vector lists, task
tables, and directories. A Content Addressable
Data Manager can perform the time-consuming
details involved in these tasks thus freeing the
CPU for other functions and increasing overall
system performance. (Refer to the Appendix for
CADM Benchmark summary.)

The Am95C85 combines the advantages of a CAM
(Content Addressable Memory) with the flexibility
of a RAM. It eliminates the need to provide physi­
cal addresses to access its memory. It provides
automatic record manipulation for operations such
as tabular search, index file updates, list sorts, and
other iterative tasks. It provides programmable
record width and several modes of physical
addressing. In addition, an auto-increment mode
allows a sequence of reads or writes from

consecutive memory locations. A Stack Access
Mode allows the insertion or removal of a record at
any location without the need for resorting.

1.2 DISTINCTIVE CHARACTERISTICS

Some of the prominent features of the Am95C85,
Content Addressable Data Manager (CADM), are:

• On-chip intelligence controls host-independent
processing and manipulation

• 1 kbyte of on-chip RAM
Cascadable to 256 K RAM

• A software programmable field width provides
flexibility in managing different data types

• High-performance sorting and searching
operations done by hardware without CPU
involvement

• CAM (Content Addressable Memory) mode
accelerates the searching process

• Stack mode allows the insertion and deletion of
a record at any location in the CADM memory
A short, powerful, yet simple instruction set
provides versatility to the user

• Manufactured in low power CMOS technology

1.3 THE HARDWARE SOLUTION

To speed up the sort process, software is replaced
by hardware in the Am95C85, Content
Addressable Data Manager (CADM). A block
diagram of the CADM is shown in Figure 1-1.

< DATA RECONFIGURABLE ADDRESS
MEMORY ARRAY CONTROL

~ y "'---vi INTERFACE iY---y
8·BITBUS

ll{> "1
"- MEMORY ACCESS CASCADE

y CONTROL ENGINE CIRCUIT ~==:::::l CONTROL <.. INTERFACE

CONTROL BUS CASCADE SIGNALS

oa03SA 1·1

Figure 1-1. Am95C85 CADM Block Diagram

1-1

The Am95C85 is capable of data storage and
management without CPU intervention. Some of
the sort and search operations are orders of
magnitude faster when performed by the
Am95C85 as compared to the same operations
implemented by applications software. Refer to
the CADM (Am95C85) Sort Performance
Benchmark for details.

1.4 APPLICATIONS

The spectrum of applications which can benefit
from the high performance of the CADM include:

• Data base management
• Real-time graphics systems
• Multi-tasking systems

WINCHESTER
DRIVE

~ DISK
CONTROLLER

~ BOARD

0 GRAPHICS
CONTROLLER

IBBBBBBBBBBI

• Robotics
• Artificial intelligence
• Networking and data communications
• Disk and file server systems
• Image scanning devices
• Data acquisition-(Radar)

Virtually any system or sub-system requiring high­
speed data structuring and manipulation can be
significantly improved by using the CADM.

Figure 1-2 shows a typical system configuration
using CADMs. Figure 1-3 shows the relationship
of a CADM to main memory. The key fields
(keywords) are sorted in the CADM whereas the
data records may be randomly located in main
memory.

Am95C85
CADM
BOARD

DRAM
BOARD

cpu LA
BUS

N

ETHERNET
LAN r--

BOARD

CPU ,

08035A 1-2

Figure 1-2. Typical System Configuration

CADM MAIN MEMORY

KEYWORD-A POINTER

~L
DATA RECORD

KEYWORD-B POINTER DATA RECORD

~ KEYWORD-C POINTER DATA RECORD

KEYWORD-D POINTER DATA RECORD

KEYWORD-E POINTER

~
DATA RECORD

KEYWORD-F POINTER DATA RECORD

KEYWORD-G POINTER DATA RECORD

KEYWORD-H POINTER ~ DATA RECORD

KEYWORD-I POINTER DATA RECORD

08035A 1-3

Figure 1-3. Indexed File Using CADM

1-2

CHAPTER 2

FUNCTIONAL DESCRIPTION

2.1 GENERAL DESCRIPTION

This chapter describes the Am95C85 and
discusses the functional relationships of its control
signals. It describes setting the record length, the
masking option for the key field, cascading multiple
CADMs, the sorting capability, and the addressing
modes. The memory is content-addressable. In
addition, an auto-increment mode allows a
sequence of reads or writes from consecutive
memory locations. A Stack Access Mode allows
the insertion or removal of a record at any location
without the need for resorting. Examples are
given to aid in understanding the concepts. This
chapter also contains the pin descriptions.

2.2 ADDRESS SPACE

The address space of the CADM consists of a
mask area, a record area, and an input buffer area.
These areas are shown in Figure 2-1. If the
masking option is chosen, the first 'k' bytes of each
CADM are reserved for the mask. If the masking
option is not chosen, this space is included in the
usable record space.

2.2.1 VARIABLE-WIDTH RECORD

The CADM's data management scheme was
designed for flexibility in accommodating many
types of files. The device's unique intemal RAM
has an adaptive design that allows the record width
to be selected by the user to meet the specific
demands of the application.

Each record consists of a key field and an optional
pointer field (Figure 2-1). The key field may have
from 1 to 255 bytes and the pointer field may have
from 0 to 255 bytes. The width of a record can be
varied between 1 and 510 bytes, thus providing
the versatility to handle a wide range of file types
and record sizes.

2.2.2 THE MASKING OPTION

Bits in the key field may be selectively masked by
the user before a sort or search operation. When
the mask option is used, it must be programmed
before data is loaded into the CADM. This is
necessary because the Am95C85 allocates the
first 'k' bytes of each device to accommodate

MASK FIELD (k BYTES)

I KEY FIELD (k BYTES) POINTER FIELD (p BYTES) I

KEY FIELD (k BYTES) POINTER FIELD (p BYTES)

REMAINING SPACE

INPUT BUFFER SPACE

r:--- k BYTES -4·+1·~--- P BYTES ---:1
14·------S0FTWARE PROGRAMMABLE----~-

CADM LOGICAL MODEL

Figure 2-1. Am95C85 CADM Address Space

2-1

the mask bytes if selected (where 'k' is the length
of the key field). A new masking bit pattern may
then be chosen anytime during normal operation.
For example, masking bit 5 in each key byte allows
for sorting or searching of ASCII text without regard
to upper and lower case characters.

though the same mask is used for all of the
records.

2.2.3 INPUT BUFFER SPACE

If more than one CADM is connected in cascade,
the mask space is duplicated in each CADM even

The last (k + p) bytes of each CADM are
designated as an Input Buffer Space. These
memory locations, equivalent to one record space,

INSERT

BEFORE AFTER

BROWN I 7 BROWN I 7

COOPERI6 COOPERI6

LEV Y I 3 I K A H N I 8 f-
MARZ I 5 LEV Y I 3

MI LLERI4 MARZ I 5

YOUNG I 2 MI LLERI4

YOUNG I 2

SEARCH/DELETE

BROWN I 7

COOPER 16

LEV Y I 3

MARZ I 5

MILLERI4

S MIT H 1'1

YOUNG 12

SORT

BEFORE AFTER

SM I T H
I '

BROWN I 7

YOUNG I 2 COOPERI6

LEV Y I 3 LEV Y I 3

MI LLERI4 MARZ I 5

MARZ I 5 MI LLERI4

COOPERls SM I T H
I '

BROWN I 7 YOUNG I 2

NOTE: IN THIS EXAMPLE, THE KEY FIELD HAS BEEN SPECIFIED AS 6 BYTES IN LENGTH.
ALL RECORDS MUST BE LOADED WITH KEYS LEFT JUSTIFIED WITH SPACES FILLED
IN TOTHE RIGHT. INTHIS EXAMPLE, INFORMATION IS SORTED ALPHABETICALLY.

Figure 2-2. Content-Addressable Array Operations

2-2

08035A2·2

are temporarily used to store a record. After an
entire record has been loaded into the input buffer
space, one byte at a time, data manipulation on this
record begins (e.g., sort, find, insert, etc.).

2.2.4 REMAINING SPACE

Each CADM device has 1024 bytes of memory as
mentioned earlier. The first 'k' bytes of this
memory space are used to store the mask bytes if
masking is desired. The last (k + p) bytes of each
CADM are reserved as input buffer space. All
other memory space is available to the user to load
records for sort and search operations. Unless this
record space is an integral multiple of the record
length, some record space is left over. Hence, a
few bytes are unusable (always less than the
length of a record field) in each CADM. These
bytes, designated as the remaining space, are
located between the last address location and the
beginning of the input buffer space (Figure 2-1). A
simple formula for calculating the Last Address
location is:

• if mask bytes are used,
LA = {INT[(1024-2·k-p)/(k+p)]}· (k+p) +k-1

• if masking is not used,
LA = {INT [(1 024-k-p)/(k+p)]} • (k+p)-1

where,

LA ~ is the Last Address location (byte) in each
chip which can contain meaningful user
data

k ~ is the length ofthe key field in bytes

p ~ is the length of the pointer field in bytes

2.3 ADDRESSING MODES

The CADM maintains all the pointers necessary to
manage the following three modes of data access:
Content Addressing, Auto Increment, and Stack
Access. Only one of these pointers is relevant to
the user, that being the one to read and write data,
the Address Pointer. The user may write an
address into this pointer. This feature is provided
for diagnostics and testability.

2.3.1 CONTENT ADDRESSABLE ARRAY

As a content-addressable device, the CADM
searches the memory array to find a record whose
key value matches a particular key designated by
the user. If a matching key is found, the Address
Pointer contains the address of the first byte of the
record which returned the match (Figure 2-2).

Multiple matches to a key value are located during
subsequent Find operations. If the desired key is
not found in the array, the Status line is pulled
LOW indicating a 'no match'. The Address Pointer
will then contain the address of the first byte of the
record with the next higher value key. (This is
consistent with the Stack Address mode of data
insertion used to place new data in the array.)

Once the address of a required record is
determined using the above scheme, data (Le.,
key and pointer values) may be read from, or
written to the Am95C85 devices. When multiple
CADMs are cascaded, the Search works in parallel
on all devices. Thus,. the performance of the Find
operation is independent of file size if at least one
CADM is filled up.

2-3

2.3.2 AUTO·INCREMENT MODE

The auto-increment mode allows the host to select
any particular address location and read or write
data at that location. Subsequent reads and writes
are easy to execute since the device auto­
increments the Address Pointer after each data
access. When writing data to a location, any
previous data at that location is lost when in the
Auto-increment Mode. Refer to Figure 2-3. This
facilitates loading and unloading the CADM with
DMA.

OB035A2·3

WRITE (INSERT) D, E, F STARTING AT G

BEFORE

A

B

C

D G

E H

AFTER

A

C

D

Figure 2-3. Auto-Increment Mode

2.3.3 STACK ACCESS MODE

Operating in the stack access mode allows for
immediate insertion or deletion of records. In a
previously sorted data array, a record can be
inserted or deleted without the need for resorting.

The pointer is set by executing a FND (FIND)
instruction, or loading the pointer with an LAS or
LAL.

In this mode, the device will insert or delete a
record in the array by physically moving all data
below the record addressed. A data read 'pops' a
byte at the Address Pointer location, moving data
below it in the upward direction. Conversely, a
data write 'pushes' a byte on the array at the
Address Pointer, moving all the data below the
pointer downward to make room for the insertion
(Figure 2-4). This quick updating of a data base
without having to re-sort the entire array delivers
amazing performance improvement over traditional
software implementations. The CADM can be
accessed by DMA.

WRITE (INSERT) D AT G IN STACK MODE

BEFORE AFTER

A A

B B

C C

0 G 0

H G

H

08035A2·4

Figure 2-4. Stack Access Mode

2.4 SORTING

Each record in the CADM consists of a key and a
pointer. The key may be just one byte or up to 255
bytes in length. The pointer field may vary
between 0 and 255 bytes. Data entered into the
CADM is sorted by performing a binary
search/insert type sort. The user may choose
between the On-Line Sort, where data is sorted
record by record as it is loaded into the CADM, or
an Off-Line Sort, where the host is allowed to
quickly load an entire block of unsorted data into
the CADM for sorting at a later point in time.

Off-line sorting allows the CPU to perform other
tasks while the sorting is taking place. This on-chip
intelligence of the Am95C85 is of particular
advantage in multiprocessing systems where
reducing CPU overhead can significantly increase
system performance.

2.5 CASCADING MULTIPLE CADMs

The address space is physically partitioned into
several sections to facilitate internal operations of
the Am95C85. This address space is expandable
up to 256 kbytes by cascading multiple CADM
devices. A maximum of 256 devices may be linked
together (Figures 2-5, 2-6, and 2-7) so that, from a
programmer's perspective, the memory space
resembles a single continuous memory block.

The architecture of the Am95C85 is ideal for
linking multiple devices in cascade. Four signals,
Transmit Up, Transmit Down, Receive Up, and
Receive Down, provide the inter-chip control and
communication required to successfully complete
operations on multi-chip arrays (Figure 2-5).

2-4

2.5.1 CASCADING UP TO 16 Am95C85s

All CADM devices in cascade share a common data
bus. In addition there are a few control signals that
connect to all CADM devices. In order to interface
the data bus and these signals to the host system,
some form of buffering must be used to isolate the
local CADM data bus and control signals from the
host. This is necessary so that transactions
between CADMs during an off-line operation do
not interfere with operations performed by the
CPU during the same time period. One of the
methods to accomplish this is shown in Figure 2-5.

2.5.2 CASCADING MORE THAN 16
Am95C85s

When cascading more than 16 CADMs, two levels
of data buffering are required. In addition some of
the control Signals that interconnect all CADM
devices also need to be buffered. This is
necessary because the Am95C85 outputs can
drive a maximum of 200 pF capacitive load at the
rated maximum frequency (If the capacitive load is
larger than 200 pF, the CADMs will work properly
but the clock may have to be slowed down). Each
CADM has an input capacitance of the order of 10
pF. Taking the bus loading capactance and other
stray capacitance into consideration, each CADM is
capable of driving about 16 CADMs. A buffering
scheme to separate banks of CADMs is shown in
Figures 2-6 and 2-7. The CADM device
identification register is eight bits wide. This
enables a system to have 256 cascaded CADMs
(16 banks of CADMs with 16 devices per bank).

Banks of 16 CADMs are isolated from each other
and from the host system by control signal buffers
and data buffers (Figures 2-6 and 2-7). The

+5V

+
~1K!l

..- TUP Am95C85 RDWN TUP Am95C85 RDWN ~ ... - TUP Am95C85 RDWN 1Kn

- RUP DEVICE 1 TDWN RUP DEVICE 2 TDWN r------ ... - RUP DEVICE 16 TDWN --
I

l ~ CHIP-Ta-CHIP CONTROL SIGNALS ~ J
INTERFACE SIGNALS U , 7- , 7- "-< LOCAL CADM DATA BUS &BIT

~ "
DONE

, 7-

ADDRESS DECOIE "- HOSTTOCADM BIDIRECTIONAL
LOGIC INTERFACE 1/0 PORT

N " v

&0
~

[t A "-
(SYSTEM DATA IlJS 8-BIT

" "- "- ~ m v

SYSTEM CONTROL BUS

t ' t
I---

HOST DMA INTERRUPT MEMORY
CPU CONTROLLER CONTROLLER

-

0803SA2-S

Figure 2-5. Cascading Up To 16 CADM Devices

Am2959 octal buffers isolate the Read, Write, Chip
Enable and Command/Data signals. The 74LS125
buffers are connected as shown in Figure 2-7 to
control the direction of the Global and Done
signals. An eight-input NAND gate combines
STAT (Status Signal) from up to eight banks of
CADMs for an interrupt request to the Am9519A
interrupt controller.

2.6 PIN DESCRIPTION

The signal names and the block diagram of the
Am95C85 are shown in Figure 2-8.

2.6.1 DATA BUS

00-07 Data bus (Input/Output, 3-state)

The eight bidirectional data pins are connected to
all Am95C85 devices. These lines are used for
information exchanges between Am95C85 CADM
devices and the host processor, and between
CADM devices themselves. Because the same
data pins are used for system interaction and
CADM interaction, a transceiver must isolate the
CADM array from the system data bus. The pins
carry data or command information to and from the
Am95C85 devices. A HIGH on a data line

.4-------------16BANKS-------------...... +5V

16CADMs

CADM

BUFFER BUFFER

CADM BUS

SYSTEM BUS
08035A2·6

Figure 2-6. Cascading 256 CADM Devices

2-6

corresponds to a logic '1' and a LOW corresponds
to a logic '0'. These lines act as inputs when WE
and CS are active, and as outputs when RE and
CS are active. DO is the least significant and 07 the
most significant bit position.

2.6.2 INTERFACE CONTROL

The following control signals interface the CADMs
to the Host processor.

RST Reset (Input, Active LOW)

A chip reset is initiated by pulling this pin LOW for a
minimum of four CADM clock cycles. Any
command under execution is terminated. DONE
goes HIGH for the duration of the internal reset
operation. Masking is disabled. The Am95C85
device with RUP tied HIGH assumes it has a chip
address of 0, the next chip assumes an address of
1, and so on, until all devices enumerate
themselves. The device with its RDOWN tied HIGH
is the last device in the cascade. The wire-ORed
DONE pin signals completion of the reset cycle by
going LOW. (A software reset (RST) has the effect
of activating the RST pin.) A hardware reset is
recommended on power-up.

CS Chip Select (Input, Active LOW)

The chip select input enables the host CPU to
perform read and write operations with the
Am95C85 devices. When chip select is HIGH, the
read and write inputs are ignored.

RE Read Enable (Input, Active LOW)

The simultaneous condition of active Read Enable
and Chip Select indicates that information internal
to the Am95C85 CADM needs to be transferred to
the data bus. Read and Write are not allowed to be
active simultaneously.

WE Write Enable (Input, Active LOW)

The simultaneous condition of active Write Enable
and Chip Select indicates that information from the
data bus is to be transferred to an internal location.

cm Command/Data (Input)

This Signal defines the type of information transfer

INTER-BANK BUFFERING

1 INT 1
DATA

Am2959
DATA

Am2959
CONTROL CONTROL

BUFFER BUFFER BUFFER BUFFER

t ·rr fr +5

5V I ~J' ~;. I
'OWN J ;>

STAT STAT - TUP BANK I RDWN TUP BANK II

+

v

RUP TOWN RUP TOWN f----
OIRD DONE DIRG GLB DIRD DONE i5iRG GLB

BIDIRECTIONAL BIDIRECTIONAL
BUFFER BUFFER
74LS125 74LS125

I DONE !
-
GLB

08035A2·7

Figure 2-7. Buffering Banks of CADMs

2-7

performed by the Am95C85 CADM, i.e., command
or data. A command byte is written into the CADM
instruction registerwhen this pin is HIGH. Data read
and data write operations transfer data from and to
the CADM during the period that this pin is lOW.

ClK Clock (Input)

The clock input determines the frequency of
operation of the Am95C85. The lower limit on
frequency (as specified in the A.C. Spec.) is
imposed because of the refresh cycle
requirements ofthe on-chip dynamic circuitry.

fIR Transmit/Receive (Output)

To operate banks of more than 16 Am95C85

IP CHIP-TO-CH
SIGN AlS

H
INTERF

OST
ACE

SBIT
DATA BUS

A

<-

CLK

GLB

i5iRG

r/R

TUP

" RUP

TOWN

RDWN

i5iRo
INTERFACE
CIRCUITRY

DONe

STAT

C/O A

" WE

RE

cs
RST

-"
DATA

y

devices in cascade without slowing down the clock
frequency, bidirectional bus transceivers are
required to isolate the data bus between banks of
16 devices each. This pin provides an input to the
inter-bus transceiver to control the direction of data
flow during a read, write or an off-line operation.
Only the device that intends to Rut information on
the Data Bus has its Transmit/Receive output
pulled lOW.

DONE Done (Input/Output, Active lOW,
3-state)

The DONE signal indicates the termination of an
operation. This signal goes HIGH at the beginning
of new commands, data writes, or data reads, then
goes lOW to indicate that the CADM is ready for
subsequent operations.

MICRO·CONTROL
UNIT

"" 1-

... 1 KBYTE
PROPRIETARY

CONTROL
y RAM

;,-

EXECUTION
UNIT f..---J\

I ADDRV

1~
DATA

O8035A2-S

Figure 2-8. Am95C85 Block Diagram

2-8

STAT Status (Output, Active lOW,
3-state)

The Status signal indicates an exception condition
following either a command or data access. A LOW
level on this pin, after DONE signals completion,
indicates that further action is needed by the host.

2.6.3 CHIP-TO-CHIP COMMUNICATION

The TUP, TDWN, RUP, and RDWN pins are used
in various chip-to-chip communication functions in
multiple Am95C85 memory configurations.
Following are some typical examples.

TUP Transmit Up (Output, Active HIGH)

This signal, for example, is issued by a lower CADM
to its next higher peer in the cascade to indicate
that data is available, on the bus, to be latched in
the input buffer space.

TOWN Transmit Down
(Output, Active HIGH)

This signal, for example, is issued by a higher
CADM to its next lower peer in cascade to indicate
that data is available on the bus, to be latched in
the input buffer space.

RUP Receive from the Up Direction
(Input, Active HIGH)

This signal, for example, is received by a CADM
from its next higher peer indicating that data is
available on the bus to be latched in. This signal is
connected to Vee by a 1 kQ resistor on the very

first device in the CADM cascade.

RDWN Receive from the down Direction
(Input, Active HIGH)

This signal, for example, is received by a CADM
from its next lower peer indicating that data is
available on the bus to be latched in. This signal is
connected to Vcc by a 1 kQ resistor on the last
device in the CADM cascade.

TUP is connected to the RDWN and TDWN is
connected to RUP on adjacent parts to enable
inter-chip data transfers.

GlB Global (Input/Output, 3-state)

The Signal is used for part-to-part synchronization
during instruction execution.

DIRG Direction of GlB Signal
(Output, Active lOW, Open Drain)

2-9

This output determines the direction of the GLB
pin.

DIRD Direction of DONE signal
(Output, Active lOW, Open Drain)

This output determines the direction of the DONE
signal.

2.6.4 Supply Pins

Vcc Power Supply

GND Ground

CHAPTER 3

Am95C85 INSTRUCTION SET

This chapter contains detailed information about
each of the 16 commands that constitute the
Am95C85 instruction set. A summary of the
instructions is shown grouped into three
categories according to the function performed or
the manner in which data is manipulated. These
groups are:

Initialization Instructions
Byte-oriented Instructions
Record-oriented Instructions

Following this summary, the sixteen commands are
described in alphabetical order.

3.1 INITIALIZATION INSTRUCTIONS

These commands initialize the CADM devices to
prepare them for record oriented operation. The
operations performed during an initialization
sequence specify the number of the chips in
cascade, the record length, and the bit masking
option. The instructions in this category are:

KPL Load the Length ofthe Key field, Length
of the Pointerfield and Last Address
pointer

RST Reset and enumerate CADM chips
5MB Set Mask Byte

3.2 BYTE-ORIENTED INSTRUCTIONS

These commands operate on byte boundaries.
This enables data transfers between the CADM

3-1

and the host system and between the CADMs on a
byte-by-byte basis. A user-transparent Address
Pointer addresses one and only one byte in the
entire array of CADM devices. All Reads, Writes,
Pushes, and Pops will access data at the location
pointed to by the Address Pointer. The byte­
oriented instructions are:

AIM Set Auto-Increment Mode
DEC Decrement Address Pointer
GSF Get Status Full
LAL Load Address Long
LAS Load Address Short
STK Set Stack Access Mode

3.3 RECORD-ORIENTED
INSTRUCTIONS

These commands operate on record boundaries.
The record length must be set before any of the
following instructions may be executed:

FND Find a matching key
LUD Load Unsorted Data
NXT Pointto next Record
PRE Point to previous record
RRB Restore Record Boundary
SOF Sort Off Line
SON Sort On Line

3.4 INSTRUCTION SET

All of the instructions are explained in detail in
alphabetical order in the following pages.

AIM

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Auto Increment Mode

Read in Auto Increment Mode

Host System ~ Data from Am95C85

Address pointer ~ Address Pointer + 1

OR

Write in Auto Increment Mode

CADM Memory ~ Data from Host System

Address Pointer ~ Address Pointer + 1

One command byte

Byte-oriented Instruction

The AIM command allows the user to access the CADM memory with a post increment
of the Address Pointer. This mode allows the user to read from or write to the
Am95C85s as if they were in continuous address space without the need to
increment the Address Pointer externally. An RST command sets the CADM to the
Auto Increment Mode (Le., default mode).

AIM

06

I 00000110

The status signal is never asserted by the execution of an AIM command.

3-2

DEC

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Decrement Address Pointer

Address Pointer f- Address Pointer-1

One command byte

Byte-oriented Instruction

This command decrements the value of the Address Pointer by one. If the current
value of the Address Pointer addresses the first byte of the first record in one device,
the execution of the DEC command will set the Address Pointer to point to the last
byte of the last record in the preceding chip. (This location is set by the user, with the
LA field of the KPL instruction.)

DEC

02

I 00000010

The status signal is asserted if the DEC command is executed when the Address
Pointer points to the first byte of the first record in the first chip. In this case, the
Address Pointer remains unchanged.

3-3

FND

Operation:

Size:

Category:

Description:

Mnemonic:

Command/Data:

Hex value:

Machine code:

STAT:

Find a Matching Key

Address Pointer f- Address of First Byte of located record

One command byte + 'k' literal bytes
(where 'k' is the number of bytes in the key field)

OR

One command byte

Record-oriented Instruction

The FND command normally requires k bytes of literal data to follow the FND
command. These k bytes contain the key that is being searched for. The key bytes
must be loaded in proper sequence, with the most significant byte first. The key
bytes are saved in the input buffer space at the end of each chip. When all key bytes
are loaded, all of the chips initiate a search to obtain a match for the loaded key in user
data space. The data must be sorted prior to a FND being executed.

If the CADM finds a match, then the Address Pointer contains the address of the first
byte of the located record. If no match was found, then the Address Pointer contains
the address of the next higher key that was found. The status line is asserted to
indicate this event.

If the CADM array contains more than one record with the desired key, then the first
occurrence of the record in the entire set of cascaded devices is located when a FND
with key value is executed.

If more records matching a particular key value are to be located, additional FND
commands without a key following the command can be issued. In this case, the
value of the key contained in the input buffer space from the previous FND is used.
The Address Pointer is incremented and the key comparisons are performed. This
continues with each subsequent FND. To terminate this mode of operation, for
instance to allow a new record to be sought, a command other than FND or RRB
should be issued. The CADMs will then expect a subsequent FND command to be
followed by a new key for which to search.

FND KEY KEY KEY I ...

'--__ -'-__ 0_-'-__ 0'----'-__ 0_--<1 ...

03

1 00000011 1 00000000 1 00000000 1 00000000 1 ...

The status line is asserted if no key in the record space matches the key specified.

3-4

GSF

Operation:

Size:

Category

Description:

CommandlData:

Mnemonic:

Hex value:

Machine code:

STAT:

Get Status Full

STAT f- LOW (if no record space is available)

STAT f- HIGH (if record space is available)

One byte command

Byte-oriented Instruction

The GSF command allows the user to determine the availability of empty memory
space in the on-chip RAM. This command indicates whether or not one more byte of
data can be inserted into the user space in the CADM.

GSF

OF

I 00001111

The status signal is asserted if and only if the device cannot hold even one more byte
of user data (i.e., all devices are full).

3-5

KPL

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine Code:

STAT:

Load Length of Key Field, Length of Pointer Field
and Last Address Pointer

Key Length f- First Literal Byte

Pointer Length f- Second Literal Byte

Last Address Location f- Third and Fourth Literal Bytes

One command byte + four literal bytes

Initialization Instruction

This command configures the CADM memory such that the record boundaries are
well defined. The KPL command also sets the address of the last memory location
that can hold user data in each device, This command must be issued by the user
before any of the record-oriented commands may be executed.

This command resets the Mask option. (See 5MB command.)

The first literal byte of this command contains a value k, where k is the number of
bytes in the key field. The key field may vary between 1 byte and 255 bytes. The
second literal byte contains a value p, where p defines the length of the pointer field
in each record. The third and fourth literal bytes contain a value LA, the address of
the last usable byte in each Am95C85. The value of LA depends on whether or not
masking is used and can be calculated from the equations in Chapter 2.

o o o

KPL K P LA(LSB) LA(MSB)

08

I 00001000 I DDDDDDDD I DDDDDDDD I AAAAAAAA I XXXXXXAA I

The status signal is asserted if the first literal byte (Le., the length of the key field) is
zero.

3-6

LAL

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Load Address Long

Address Pointer ~ First and Second Literal Bytes

Device Identification ~ Third Literal Byte

One command byte + three literal bytes

Byte-oriented Instruction

The LAL command loads an 18-bit address into the Am95C85s which is sufficient to
specify exactly one byte of data when a maximum of 256 CADMs are cascaded. The
third literal byte contains an 8-bit number which, when compared to the chip
identification number specifies the device to be accessed. The second literal byte
contains only two bits of meaningful address which effectively becomes the two most
significant bits of the byte address. The first literal byte has eight bits of address.
These eight bits when combined with the two bits from the second literal byte form a
10-bit address which is common to all CADMs and can point to one of the 1024 bytes
of each CADM memory.

o o

LAL I BYTE ADR I BYTE ADR I CHIP ADR

OD

I 00001101 I AAAAAAAA I XXXXXXAA I AAAAAAAA I

where A = a bit of the address

The status signal is asserted if the the device selected does not physically exist (I.e., if
the number given in the third literal byte is equal to or exceeds the number of CADM
devices in the cascade).

3-7

LAS

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Load Address Short

Address Pointer ~ First and Second Literal Bytes

One command byte + two literal bytes

Byte-oriented Instruction

The LAS command is similar to the LAL, except that no device identification is given
in the LAS instruction. Instead, the byte address is used to point to a byte of data in
the currently selected device.

o o

LAS I BYTE ADR I BYTE ADR I

01

I 00000001 I AAAAAAAA I XXXXXXAA I

The status signal is never asserted by this command.

3-8

LUD

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Load Unsorted Data

CADM Memory f- Unsorted Data

One command byte + n Literal Bytes
Where: n is the number of bytes of data to be loaded, and n is an integral multiple of
the record size.

Record-oriented Instruction

The LUD command loads a block of unsorted data into the CADM devices. The total
number of bytes loaded must be an integral multiple of r = (k + p) bytes, where r is the
length of a record field. The CADM assumes that all bytes loaded after the LUD
command are data bytes, until the next command is issued by forcing the C/O line
HIGH. This newly loaded, unsorted data must be sorted by issuing a SOF (Sort Off­
Line) command. The LUD shifts the Address Pointer to the end of existing data. The
data following a LUD is appended to previously existing meaningful record data if any.
The previously existing data is assumed to be sorted.

o o o

LUD DATA DATA DATA I ...

DB

I 00001011 I DDDDDDDD I DDDDDDDD I DDDDDDDD I ...

The status signal is asserted after the command opcode if the entire bank of CADM
memory is full and no more data can be accepted, or after a data byte write cycle if the
CADM array just filled up.

3-9

NXT

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Point to Next Record

Address Pointer +- Address of the next record's MSB

One command byte

Record-oriented Instruction

The NXT command loads the Address Pointer with the address of the first byte of the
next record.

The 'next record' is defined as being that following the last record located by either a
FND operation, RRB, PRE, or a NXT operation on sorted data.

NEXT

04

I 00000100

The status signal is asserted if the execution of a NXT command will leave the
Address Pointer pointing to meaningless data. The Address Pointer will be left
pointing to the first byte beyond meaningful data.

3-10

PRE

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Point to Previous Record

Address Pointer f- Address of previous record's MSB

One command byte

Record-oriented Instruction

The PRE command loads the Address Pointer with the address of the first byte of the
previous record. The PRE command will not decrement the Address Pointer, if the
Address Pointer points to the first user data byte in the first device.

The 'previous record' is defined as that prior to the record located by the last FND,
PRE, RRB, or NXT instruction.

PRE

DE

I 00001110

The status signal is asserted if the execution of this instruction attempts to load the
Address Pointer with an address less than that of the first record in the first CADM.
The pointer is loaded with the address of the first record.

3-11

RRB

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonics:

Hex value:

Machine code:

STAT:

Restore Record Boundary

Address Pointer f- Current Record's MSB

One command byte

Record-oriented Instruction

The RRB command provides an efficient means of restoring the Address Pointer to
the current record. The current record is defined as that located by the last FND,
RRB, PRE, or NXT instruction.

RRB

05

I 00000101

The status signal is asserted if the Address Pointer will address a record that does not
lie within meaningful data. Monitoring the condition of the status signal after an RRB
is executed can verify whether or not the Address Pointer points to meaningful user
data.

3-12

RST

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Reset

Initialize CADM Array and Enumerate Chips

One command byte

Initialization Instruction

This command resets the internal state of the Am95C85. The RUP and RDOWN
signals are sampled to locate the first and last device in a bank of Am95C85s. The first
device has its RUP tied HIGH, while the last device has its RDOWN tied HIGH. Next
the devices are enumerated and the device identification number of each is stored in
its device address register.

The reset also logically clears the CADM memory by setting the address of the next
free byte to location zero in the first device which indicates that all of memory contains
meaningless data. A read issued by the user, immediately after the reset, will indicate
the number of devices in cascade.

Note: While RST logically clears the CADM memory, it does not physically clear the
memory and therefore, the data can be recovered. Hence, the RST should not solely
be relied upon for security purposes.

RST

00

I 00000000

The status signal is never asserted by this command.

3-13

5MB

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Set Mask Bytes

First k Bytes of CADM Memory ~ k Mask Bytes
Where k is the number of bytes in the key field

One command byte + k literal bytes

The 5MB command falls into two categories:
(a) Record-oriented Instruction
(b) Initialization Instruction

The 5MB command loads k bytes of literal data into the first k locations in each CADM.
These k bytes are used as mask bytes to selectively mask out bits in the key field of all
records during a sort or find operation by logically ANDing the mask with the key. The
most significant mask byte is written first. The first k bytes in each Am95CB5 are
reserved for the mask only if the masking option is chosen by issuing an 8MB
command.

The 5MB command may also be used to simply indicate to the CADMs during
initialization, that the user plans to use the masking option later on for record
manipulation. In this case the 5MB is issued with all literal bytes following it set to
zero. In this case, the first k bytes of each CADM are reserved for the mask bytes.
The actual masking pattern can be supplied later with the execution of another 5MB
command.

o o o

5MB MASK MASK MASK I ...

09

I 00001001 I DDDDDDDD I DDDDDDDD I DDDDDDDD I ...

The status signal is never asserted by the execution of the 5MB command.

3-14

SOF

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

T

Sort Off Line

Sort Unsorted Records

One command byte

Record-oriented Instruction

The SOF command follows either a LUD (Load Unsorted Data) command or an 5MB
(Set Mask Bytes) command, initiating an off-line sort process. The unsorted data in
the CADM memory is sorted without any assistance from the host system.

In the case of 5MB and the first LUD, the SOF command works with the entire record
content. In the case of data appended to an existing data array, the SOF command
works with recently written records. The action in the latter case is to take each
unsorted record and place it in its sorted position within the existing records.

SOF

DC

I 00001100

The status signal is asserted at the end of the sort if the record space within the
CADM array is full.

3-15

SON

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

Sort On Line

Insert records into sorted positions

One command byte + n records

Record-oriented Instruction

The SON command is used to insert records into already sorted data. Following a
write of the last byte of each record, this record is inserted into the proper location
wnhin the sorted data.

o o o

SON DATA DATA DATA I ...

OA

I 00001010 I DDDDDDDD I DDDDDDDD I DDDDDDDD I ...

The status signal is asserted immediately after the SON if the CADMs are full or, after a
write of the last byte of a record if the insertion of that record has filled the CADM
record space.

3-16

STK

Operation:

Size:

Category:

Description:

Command/Data:

Mnemonic:

Hex value:

Machine code:

STAT:

•

Stack Access Mode

Read in Stack Access Mode

Host system f- Data from CADM memory plus POP Operation

OR

Write in Stack Access Mode

CADM memory f- Data from host system plus Push Operation

One command byte

Byte-oriented Instruction

The STK command allows access of data from the CADM location pointed to by the
current value of the Address Pointer. The value of this pointer remains unchanged
during subsequent memory accesses, but all bytes below the point of access are
moved upward or downward depending on whether the memory access constituted a
read or a write.

STK

07

I 00000111

The status signal is never asserted by the execution of the STK command.

3-17

•

CHAPTER 4

PROGRAMMING THE CADM

This chapter discusses the programming support
needed to design a system that uses CADMs. The
software guidelines consist of the important
command sequences to be followed as well as the
command sequences to be avoided.

4.1 REQUIRED SOFTWARE COMMAND
SEQUENCES

4.1.1 TYPICAL INITIALIZATION
SEQUENCE

After switching on power, a few simple steps must
be executed to provide a frame of reference for
the Am95C85s. A flow-chart of the initialization
sequence is shown in Figure 4-1.

The first step is to reset the devices. The reset
may be performed either by an RST (reset)
command or by a hardware reset (both have the
same effect on the Am95C85s). The hardware
reset is initiated by asserting the reset pin LOW for
at least four clock cycles. One of the major
functions of the reset is to enumerate the
cascaded CADM devices. If a read is issued with
the Command/Data pin LOW following a reset, the
last CADM in the cascade places its device
identification number on the data bus. Thus the
user can determine the number of devices in
cascade.

The second step in the initialization process
provides the record size to the CADMs. The
execution of the KPL (load key, pointer and last
address) command, configures the memory for a
fixed number of bytes in the key and pointer fields
and sets the location of the last address in each
Am95C85.

The last step of the initialization process indicates
to the Am95C85s whether or not masking of
selected key bits is to be used during sort and
search operations. This is accomplished by
executing the 5MB (set mask bytes) command.
This step is optional and the 5MB command need
not be issued if none of the key bits are to be
masked during data manipulation.

If masking is to be used at some future time, it is
best to reserve space for the mask with the 5MB
command. If data is loaded before the mask area is
reserved and masking is to be used, then the data

4-1

has to be reloaded after the 5MB is issued. Unless
the user is at the limit of usable space, it is a good
practice to reserve the mask bytes during
initialization.

Hence, the initialization sequence consists of:

(a) Reset
(b) Load Key, Pointer and Last Address
(c) Set Mask Bytes (optional)

4.1.2 SORTING OFF LINE

The Am95C85 capability to Sort Off Line ensures
that the host CPU is not disturbed until the entire
off-line operation is completed, at which time the
CADM informs the CPU by asserting the DONE
signal. The CADM's co-processing capabilities not

08053A 4-1

PROVIDE VALUES
FOR

* KEY FIELD
* POINTER FIELD
* LAST ADDRESS

NO

END

YES

Figure 4·1. Initialization Sequence

only free the host from the
repetitive, time-consuming
tasks, but also significantly
performance.

chore of performing
software-intensive

improve the overall

Unsorted data is first loaded into the CADMs (using
the Load Unsorted Data (LUD) command) either by
the CPU or by DMA. The number of bytes loaded
must always be an integral multiple of the number
of bytes per record to ensure that complete
records are loaded.

The 5MB and LUD commands must be followed by
a Sort Off Line (SOF) command so that future
searches on the newly loaded records are
meaningful. An exception to this rule is explained
in Section 4.5.1.

Hence, an off-line sort operation (Figure 4-2)
normally consists of:

(a) Set Mask Bytes (optional)
(b) Load Unsorted Data
(c) Sort Off Line

SETUPCADMs

DMA DATA
INTO CADMs
FROM DISK

INITIATE
OFF·LlNE SORT

WAIT FOR
DONE SIGNAL

FILE IS
NOW SORTED

OBOS3A 4-2

Figure 4-2. Simplified Off-Line
Sort Sequence

4.1.3 SEARCH FOR A MATCHING KEY

In order to locate a particular record the Am95C85
must match the user- supplied key with a key value
in its content-addressable memory. This is
accomplished by executing the FND instruction
consisting of the FND command followed by 'k'
bytes of the key value required to be matched.

These 'k' bytes are stored in the input buffer space
at the end of each device. When a match is found,
the Address Pointer is set to the first byte of the
located record. The entire record can then be
read.

Multiple records with identical key values are
located in the CADMs in consecutive record
locations. If no command other than RRB has
been issued since the last FND, the CADMs
interpret the next FND as 'find next', and no key
data is permitted. The key value stored in the input
buffer space will be used for a search.

This operation internally performs a NXT instruction
followed by a comparison of the key. Multiple FND
commands may be issued without key values if no
other command except RRB is issued between
them. Issuing any command (except RRB or FND)
after a FN D logically clears the input buffer space of
the current key value. The next time a FND is
issued it must be followed by 'k' key bytes.

4-2

From the previous discussion, it follows that if FND
commands are to be issued for different key
values, they must be separated by at least one
command other than RRB or FND. Any command
except the RRB or FND can be used for this
purpose. The safest command to use would be
the GSF (Get Status Full) instruction since this
instruction does not alter the state of the data or
Address Pointers in any of the devices.

The sequence to be followed for a record search is
shown by the flowchart in Figure 4-3.

4.1.4 RECORD-ORIENTED DATA
ACCESS

The CADM provides several features enabling the
user to access data by record content rather than
physical address. In reality, this is a means of
setting the Address Pointer to the first byte of a
record of interest. The FND instruction does this
automatically. The user may then wish to use byte­
oriented commands, such as DEC, LAL, or LAS, to
move elsewhere within the CADM record space,
prior to returning to the record of interest. Three
(3) instructions provide record-oriented pOinter
control; RRB, PRE, and NXT. They all load the
Address Pointer with the location of the first byte
of a record, the one adjacent to, or the one itself
most recently selected by FND, RRB, PRE, or
NXT.

In this way, the user can manipulate the pointer
anywhere in the array and still have a means of
returning to the record of interest.

I

f

4.2 COMMAND SEQUENCES TO BE
AVOIDED

Certain command sequences must be avoided to
ensure predictable results from the Am95C85. If
proper logic is used during software development,
these sequences will never occur, but sometimes
they may not be absolutely obvious. The
command sequences to be avoided are as follows:

1. Attempting to execute any record-oriented
command before issuing the KPL command.
The results from the CADM would be

NO

08053A 4-3

meaningless. It may even cause the devices to
hang up by not returning the DONE signal.
Since the KPL command defines the record
boundaries and the location of the last user­
available byte in each device, it is imperative
that this command be issued at the beginning
of the software routine. Also, if new data
(sorted or unsorted) with a different record size
from the previous data is to be loaded into the
CADMs, the KPL instruction must be issued to
reflect the new record boundaries before this
data is loaded.

WAIT FOR
COMPLETION

YES

NO

END

Figure 4·3. Record Search Sequence

4-3

2. The SOF (Sort off Line) command should be
preceeded by an 5MB or LUD command.

3. If a FND command is attempted on unsorted
data, then the devices may not return the
DONE signal. In the case of a user error
causing the DONE signal to remain High, the
contents of the CADM are not destroyed but
the outcome of the last operation is not
defined.

4. The Set Mask Bytes command must never be
issued after the devices have valid data if the
masking option was not chosen before loading
the data. Doing so would guarantee loss of
data in the first 'k' bytes of all the CADMs and
also cause the devices to lose their frame of
reference of the record boundaries. The mask
area must be reserved before loading of any
data if masking of selective key bits is desired
for any subsequent finds and sorts.

If the mask needs changing, and new data
needs to be appended to a sorted array with
the LUD command, the order of the commands
is important. First, append the data, then
change the mask.

A good way to avoid this problem is to always
select the mask option during initialization with
no bits masked. Then if it is necessary to mask
something later, the 5MB command can be re­
issued with mask bits. The only penalty in
doing this is that each CADM loses k bytes
(length of the key field) of its memory space if
no mask were to be used for the sort and
search process.

4.3 BYTE BOUNDARY TO BIT BOUNDARY
CONVERSION

The CADM is designed to interpret a Key and
Pointer only in terms of byte boundaries.

The user model in the example shown in Figure
4-4 indicates that the user needs a 12-bit key field
and a 12-bit pointer field. It would appear that the
user would have to specify two bytes for the key
field and two bytes for the pointer field leaving four
unused bits in each field. However, with a slight
manipulation of the CADM, the device can be used
to respond to key and pointer fields on bit
boundaries. This is where the 5MB (Set Mask
Byte) is useful.

In this example, the user can define the key field as
two bytes long and the pointer field as one byte
long giving a record length of 24 bits. The records

are loaded into the CADM as 24-bit records. The
mask is specified as shown in Figure 4-4 to mask
off the rightmost four bits of the key field.
Subsequent Sort and Find commands then sort
and find records with respect to the leftmost 12
bits of each record which is the user's key field.
When the desired record is found by the CADM, it
can be read into the user's memory. The user
reads the record from the CADM one byte at a
time. The user software must know that the
pointer field of the record consists of 12 bits (Le.,
the rightmost four bits of the second byte and all
eight bits of the third byte). Hence, as long as the
user software keeps track of the key and pointer
boundaries, substantial CADM memory space is
saved by splitting a byte between a key and
pointer as shown in this example.

This example shows the flexibility of the CADM in
adapting to user records in which the key and
pointer fields are not on byte boundaries.

4.4 DATA MANIPULATION

Chapter 2 discusses cascading multiple CADM
devices to provide enough CADM memory to meet
system file size requirements. In some cases,
economic or logic constraints could restrict the
available CADM memory to be less than the
maximum length of an index file to be manipulated.

For example, a CADM system is initially designed
to handle a finite length of data considered
adequate at the time of design. But as time
progresses, the CADM system is found to be
suitable for many other application areas requiring
manipulation of larger data bases than the physical
memory available and an alternative solution must
be developed to up-grade the system without
changing the hardware.

I+-BYTE #1 --+I+- BYTE #2~ BYTE #3--+1
RECORD KEY (16 BITS) 1 POINTER (8 BITS) 1

CADM MODEL

MASK 100000000000011111

RECORD KEY (12 BITS) POINTER (12 BITS)

USER MODEL

08053A 4-1

Figure 4-4. Boundary Conversion Example

4-4

•

I
:1
•

&.

This section shows how Quicksort can be used LUD 1 data I data I data I (presorted data)
with the CADMs for maximum efficiency. Consider
an example wherein the physical CADM memory LUD (declares that data is sorted)
available is 4 Kbytes but the data to be sorted
requires 6 Kbytes.

Layer 1 of Quicksort, when executed, selects a
key at random from the records (usually the first
key) and separates the data into two parts around
that key value. One part has all of the keys that are
smaller than the selected key and the other part
has all of the keys that are larger than the selected
key.

The two parts of this data file are loaded into the
CADMs one part at a time and an Off-line Sort is
performed on each part. The result is two sorted
files, one containing all the lower key values and
the other containing all the higher key values in the
file. These two files are combined and stored in
system memory as one sorted file.

Sometimes, it may happen that the key picked at
random by Quicksort may divide the data file in
such a way that one part of the file is much larger
than the other. For example, in a 6 Kbyte file, 5
Kbytes may have key values lower than the value
picked by Quicksort and consequently be placed
into the same part. The 5 Kbyte part would not fit
into the CADMs of this example. The solution is to
run layer 1 of Quicksort once more on the 5 Kbyte
part dividing it into two parts. Then there would be
three parts that need to be sorted by the CADMs.

Using this method, the best case timing takes
nlogn iterations and the worst case takes n2
iterations, where:

Number of records in data file
n = --------------------

Available CADM record space

4.5 HELPFUL HINTS

4.5.1 USING THE LUD COMMAND

When data is loaded into the CADMs using the
LUD command, the previously existing data in the
CADMs is assumed to be sorted. This feature can
be useful if the data being loaded into the CADMs
has been pre-sorted. Assuming that no other
meaningful data existed in the CADMs before the
LUD is issued, issuing a Sort Off-line would be a
waste of time since the data is already sorted. After
the data is loaded with the first LUD, issuing a
second LUD indicates to the CADM that the data
existing in it is sorted.

4.5.2 KEEP THE POINTER WITHIN
MEANINGFUL DATA

Although the LAL and LAS commands can be
used to point to any location within CADM memory,
the pointer must not point to the Mask Space or
Input Buffer Space while performing PUSHES or
POPs in Stack Mode. It is important that this
pointer always point to meaningful data space
within the CAD Ms.

4.5.3 LAST ADDRESS TOO HIGH

The value of the Last Address Pointer (set by the
KPL command) must never be higher than the
value 1023 minus the record length in bytes. The
input buffer in each CADM is located at the high
end of the address space and requires enough
space for one record. For example, if a record
within the CADM is only one byte long (a record
must have at least one byte of key data), the value
of the Last Address Pointer must be set no higher
than 1022. Setting the pointer at 1023 would
leave no space in the CADM memory for the input
buffer. If a record is 100 bytes long, any Last
Address Pointer value higher than 923 is wrong.
The equation given in Section 2.2.4 gives the
correct Last Address Pointer value to use for any
allowable record length.

4.5.4 USING STAT IN POLLED MODE

4-5

The STAT (status) output is valid only when the
CADM has completed an operation indicated by
the DONE signal going active. Hence, STAT
should be polled only after DONE goes active. If
STAT is active, then branch to the current
command's error recovery routine.

4.5.5 5MB DECLARES CADM DATA
UNSORTED

Issuing the 5MB (Set Mask Bytes) command to set
or change a mask makes any previously sorted
data appear unsorted because a new set of bits in
the key field are now masked. This means that
data already in the CADMs must be re-sorted with
respect to the new mask bit patterns. Remember:
5MB always declares the contents of the CADM
unsorted.

CHAPTER 5

INTERFACE CIRCUITS

5.1 INTRODUCTION

This chapter discusses, in detail, various aspects
of the hardware interface of the CADM that are
common to many processors. In addition, the
unique aspects of the hardware interface to three
specific processors or systems are described.

The common topics discussed include:

DMA Transfer Mode
CADMClock
CADM Status Output
CADM Bus to System Bus Isolation
CADM Data Bus Bank to Bank Isolation
CADM Local Signal Buffering
CADM Command/Data Select

The three specific application interfaces are:

A CADM interface to an IBM PC XT/AT
A CADM interface to an 8086 processor
A CADM interface to an MC68000 processor

5.2 DMA TRANSFER MODE

The DMA mode of data transfer is used to move a
large block of data to or from the CADM memory.
The two instructions which use DMA to write to the
CADMsare:

1. The Load Unsorted Data (LUD) instruction
which requires a fixed number of bytes to be
dumped to the CADMs

2. The Sort On-Line (SON) instruction which also
requires a fixed number of bytes to be loaded
into the CADMs, but allows the CADMs to sort
this data into an existing data base while it is
being loaded

DMA can also be used while reading a large block
of sorted data from the CADMs into system
memory.

In either case (DMA read or write), the starting
address in memory and the length of the data base
to be transferred is loaded into the registers of the
appropriate DMA controller channel which is then
enabled. The single byte transfer mode or
demand transfer mode may be used so that.a DMA

5-1

transfer is initiated by the simuHaneous occurrence
of three factors. They are:

1. An active DMA request (DREQ) input
2. The requested channel must be enabled
3. The word count for the requested channel

must be non-zero

5.3 CADM CLOCK

The CADM can operate at the frequency range
specified in the data sheet. In this interface, the
clock that drives the CADM is deliberately
unsymmetrical in order to provide higher perform­
ance. The minimum LOW time for the clock is
specified in the data sheet. When multiple banks
of CADMs are cascaded, the data bus buffers that
isolate the banks from each other introduce
additional delays in the data paths. When CADMs
have to move data among themselves, the
transmitting device places data on the local CAOM
bus on the rising edge of the clock. This data is
latched in by the receiving device on the
immediately following falling edge. Propagation
delays through buffers during data transfers can
be taken care of by lengthening the clock HIGH
time while leaving the LOW time fixed as required
by the A.C. specifications of the device.

The scheme used to implement this unsymmetrical
clock involves a Ootype flip-flop, a delay line, and an
EX-OR gate. Refer to Figure 5-1. A 12 Mhz clock

Oscillator
Output

Ti

Td __ -J!
CADM
Clock

1+-01- 32 ns

08035A 5-1

Figure 5-1. Unsymmetrical CADM Clock

is fed from an oscillator to D3 which is connected in
a divide-by-two configuration and yields a 50% du­
ty cycle. Output 03 is fed into a delay line at Ti
which is tapped at the 32 ns delay output, Td· Ti
and Td are gated giving a 12 MHz output with a
lOW time fixed at 32 ns and a HIGH time of 52 ns.
If the propagation delay in. the local data paths is
increased, the oscillator frequency must be
decreased. This is done by keeping the lOW time
fixed, and increasing the HIGH time substantially,
thus making the most efficient use of the
extended time between the rising and the falling
edge.

5.4 SYSTEM BUS TO CADM BUS
ISOLATION

The CADM is different from most peripherals
because it also acts as a coprocessor. While the
CADM is performing search and sort operations off
line without any intervention from the host, the
host processor can be busy with other data
transfer operations not involving the CADMs. This
means that a system with multiple CADM devices
must also have more than one data bus which can
be electrically isolated from or connected to each
other at will. Refer to Figures 5-2 and 5-3.

The two levels of buffering shown in Figures 2-6,
2-7, and 5-3 implement the data bus isolation. In
addition, all the control signals need to be buffered
between banks to provide sufficient drive cap­
ability. The Am2952A 8-bit bidirectional registered
1/0 port serves to isolate the host system data bus
from the CADM data bus (Figure 5-4).

While writing to the CADMs, the output of the
Am2952A is enabled by the write pulse to the
CADMs and remains enabled for the duration of
the write. The data is frozen in the registers on the
falling edge of clock prior to the write enable going
inactive. The CADM samples data during the lOW
time of clock as long as its write is active, and it
latches in the data that was sampled during the
clock lOW time just before the write goes inactive.

During a CPU read from the CADMs, the output of
the Am2952A is enabled by the read from the
processor, qualified by an active CS. The
processor read is used in this case to enable the
Am2952A ouputs because data may be latched by
the processor after the read to the CADM has
gone inactive. Output data from the CADMs is
valid within 20 ns (worst case) after the falling edge
of clock. Considering the propagation delay
through the Am29863 and the set-up time
required for the Am2952A, the data will not be
valid at the Am2952A input port at the following
rising edge. Hence, during a read, the data is

clocked into the Am2952A by the falling edge of
the CADM clock.

5.5 LOCAL CADM DATA BUS
BANK·Te-BANK ISOLATION

The CADM outputs are designed to drive a
maximum of about 200 pF capacitive load (Le.,
about 16 CADM inputs). Hence, banks of 16
CADMs have to be buffered from each other. The
Am29863 serves this purpose for the local data
bus.

The fIR signal which is normally HIGH is used to
control the direction of data flow through the
Am29863 data buffers. In the idle state, all CADMs
are set up ready to receive data from either the
host system or from any other CADM. When the
CADMs have an active read signal, the fIR Signal is
pulled lOW thus allowing any CADM to transmit
data to the host. During an off-line operation, the
CADMs have to transfer data among themselves.
This involves one CADM transmitting and another
receiving the data. The transmitting CADM places
the data buffer at its bank in the transmit mode by
forcing its fIR signal lOW, while the buffers on all
other banks are in the receive mode. This enables
inter- chip communication involving inter-bank data
transfers.

5.6 CADM STATUS OUTPUT

The Status (STAT) output of the CADMs is pulled
active (lOW) if an exception condition occurs
when the CADMs are either executing an
instruction or transfering data. The occurrence of
an exception condition indicates that CPU
attention is needed. After a STAT-signal interrupt,
the CPU looks at the current CADM instruction
being executed and branches to an appropriate
exception handling routine, which clears the fault.
All STAT lines from up to eight banks of CADMs
form the inputs to the 74lS30 NAND gate which
outputs a single Interrupt signal. See Figure 5-3.

5-2

5.7 LOCAL CADM SIGNAL BUFFERING

The Am2959 supplies enough drive capability for
the CS, RE, WE, C/O and ClK inputs to the
CADMs for each bank. These signals from the
host system are buffered on every bank in the
cascade of CADMs.

In addition, the Am2959 buffer on the first bank is
the only one that buffers the DONE Signal to the
interface logic circuit. All DONE pins are tied
together and have a 1 kohm pull-up resistor to Vcc.

08035A 5-2

DO-D7

HE

WE

Cs

C/O

DONE

IRQ

ClK

RESET

.A

"

--<J-

1KO

t r'+5 v

... TUP RUP

Do-D7
v

HE

WE

CS

c/o Am95C85
Device 1

DONE
+5 v

--
STAT

ClK GlB f---

RST

RDWN TDWN

... TUP RUP

Do-D7
v

RE

WE

Cs Am95C85
Device 2

C/O

DONE

STAT

ClK GlB -----<

RST

RDWN TDWN

! !

•
:

•
... TUP RUP

Do-D7
v

HE

WE
- Am95C85 CS Device n*

? +5~ f' C/O
1KO 1KO

DONE

STAT

+5V~ ClK GlB f---

RST

t *
+5V~ RDWN TDWN

1KO i ~

n ~ 16

Figure 5-2. Cascading Up To 16 CADM Devices

5-3

0'1
.;,..

00-07

FiE
WE
cs

el5
DONE

ClK

RST

IRQ

Am29863 I I
CA D TABUS L ALCADMBA K US

i ! - .'j _ ! l L. '" = r-D"'o~:..-,-:!l':-:!J~E-:l~cs,iO"'i'~IR-c.i.l-K~RS"T"""'"
l RUP Am95C85 TDWN f-... ... - RUP Am95C85 TDWN I--

I- TUP _____ RDWNIo- TUP ______ RDWN l"-
f--- +5V STAT DIRD DIAG DONE GlB STAT DIRD DIRG DONE GlB

I I I I I r Am2959 h I
r---4-~ ~--~+-~-+------~ I I~~I~~--------~

• ~ +5V y , y I I Lr---+--------I
1-+-+--1--1-++-1'----< 1KG Y DIR~IR~ DCN~lB GLB h r

Of DIRD DIRG DONE GLB ~ GlB

74lS125 DONE h-r- DONE DO':4lS125

L-I- I-J L, GLs GLs 5CiNE iiiRG DIRG DiAD DIRD

r-t-I- '----I- STAT INPUTFROMOTHER ! TIT J
t-t- Am2959 BANKS IF PRESENT j ~ I A
t- .1v -I Lf I.t>

1~~ I

I-__ --If-- .rrf-- +
5vi ST~T DI~D DIRG DONE alB STAT DI~D DI~G DONE GlB

I V "'-l-t- L RDWN TUP 1-+ ... - RDWN Am95C85 TUP!----<

I TDWN Am95C85 RUP 10- TDWN RUP I--
OET OER 00-07 FiE WE OS cii5 r/R elK RsT 00-07 RE WE Cs cio 'fIR eLK AST

-TI PI
Am29863 1"-11-1

08035A5-3

Figure 5-3. Cascading More Than 16 CADM Devices

lOR

lOW

IBM
PC/XT/AT
INPUT-

OUTPUT
PORT

Do-D7

AEN

Ag

As

A7

As

As

A4

A3

A2

A,

I/O
CHRDY

DRO

DACK1

AO

IR06

IR04

08035AS-4

....... ~ r--- ro;o; bJ r=t-J- I Do 00 D, 0,

~~ H>===-
I=--

---->
ClK ClK

PR l.....-

I

t.
r--

~
~o,o. ~

DELAY
LINE

OSC ClK_

~- .~~ Td CEs CER CPR CPS

Ao Bo

A, B,

... A2 B2 n A3 B3
Am2952A

A4 B4

As Bs

As Bs f- As Bs

A4 B4 I-- A7_ _ B7

A3 B3
OEAS OESR

I--

i ~ A2 B2 I-- ,u
A, B, I--

Ao Bo I--

S, -=?
E3 ~n-So
E,

+5V
Eo

! Am29806 -----LJ
-

ACK ~
C

,....
'-..k-

PR J
~

D4 04

r--o ~ ClK

ClK
74lS393

ClR 0

Figure 5-4. Am95C85-1BM PC/XT/AT Interface

5-5

WE

DONE

ClK

C/O

I RO

The DONE and GLOBAL signals are bidirectional
and also provide inter-chip communication. These
are buffered between banks by the 74LS125 buff­
ers. The Direction of Done (DIRD) and Direction of
Global (DIRG) signals control the direction of these
buffers. The detailed connection for the 74LS125
is shown in Figure 5-5.

The other inter-chip signals include RUP,
RDWN,TUP, TDWN, daisy-chain from chip-to-chip
as shown in Figure 5-2 and Figure 5-3 and are
transparent to the user. The RUP on the first
device and the RDWN of the last device are
connected to Vcc through a pull-up resistor to
allow the CADMs to enumerate and configure
themselves during a reset operation. The reset
can be performed either in software by the Reset
(RST) command or in hardware during a power up
or by forcing the reset input LOW.

5.8 CADM COMMAND/DATA SELECT

Both the Command port and the Data port of the
CADM are accessed through a single 8-bit data
bus. The two ports are differentiated by the use of
the Command/Data (C/O) pin. During CPU trans­
fers to the CADM, address line AO distinguishes
whether the current byte on the system data bus is
a command to the CADM or simply data to be
stored in the on-chip memory. If a DMA controller
is to be used to transfer data, OMA Acknowledge
(OACK) may be used to force C/O pin LOW so that
data can be written to or read from CADM memory.

5.9 FORCING READY ACTIVE

During the development stages of the software for
the CADM, the programmer may write an invalid

sequence of commands that may cause the DONE
signal from the CADMs to remain inactive (HIGH).
The design of this hardware interface is such that
access to CADMs is prohibited while DONE is
HIGH. Hence, some other mechanism must be
developed to externally force DONE active (LOW)
following an invalid command sequence that cause
DONE to remain HIGH.

The following discussion is based on the IBM
PC/XT/AT. However, this discussion also applies
to the 8086 and 68000 interfaces. The RDY signal
follows the C input on the Am29806 whenever an
address match exists. For the 68000 interface, the
RDY is replaced by DTACK. If the DONE signal
remains inactive (HIGH) the ROY is prevented from
going active (HIGH) and releasing the CPU. If the
system is held in the WAIT state longer than
allowed by system specification, (e.g., the IBM
PC/XT/AT cannot be held in the WAIT state longer
than 2.6 llSec as this will prevent a refresh of its
dynamic memory), then the system may hang up.

The 74LS393 counter is enabled by the falling
edge of CS and reset by the rising edge of CS.
During normal operation (with the exception of
FND, KPL, SON, and SOF), the CS pulse width is
shorter that 16 clock pulses (the count-down time
on the counter). Hence, the counter is reset
before it can count down 16 clock pulses to
activate the RDY line.

If one of the operations (FND, SON, SOF, or KPL)
is being performed or if the DONE signal remains
HIGH because of an illegal command sequence,
then the DONE signal may not return to LOW or
may take too long. If the CADM is accessed while
the DONE is HIGH, 02 is prevented from going
LOW which in turn forces RDY to remain inactive
(Le., inserting WAIT states). In this case, the

GLB ------~~+_---< r---r-~---- GLB

DIRG

Y
DONE r---It--..---- DONE

-
DIRD

Y
74LS125

08035A 5·5

Figure 5-5. 74LS125 Logic Diagram

5-6

counter counts down the -16 pulses and forces a
ROY signal to the system. It also sends an inter­
rupt, IR04, to the system to inform the processor
that this is a special case. The processor then
checks the command issued before the current
device access.

If it was one of the four commands (FND, SON,
SOF, or KPL), the processor tries to access the
device after Wai~ng E predetermined amount of
time or it polls the ON before the next access.

If the DONE remains HIGH because the user
issued an illegal sequence of commands such as a
FND on unsorted data (this may happen during
debugging), the CADMs must be reset to force
DONE LOW.

This counter provides a mechanism to prevent a
hang-up of the entire system caused by a software
error. The 16 clock cycle count-down is
appropriate for a 10 MHz CADM clock. The
number of clock pulses needed for the counter to
force a ROY depends on the CADM clock
frequency and the requirements of the system.

5.10 The Am95C85 (CADM) INTERFACE
TO AN IBM PC/XT/AT

The interface of the Am95C85 CADM to an IBM
PC/XT/AT is shown in Figure 5-4 combined with ei­
ther Figure 5-2 or Figure 5-3. If 16 or fewer CADMs
are used, Figure 5-4 is combined with Figure 5-2.
If more than 16 CADMs are used in the application,
Figure 5-4 is combined with Figure 5-3. This
discussion deals with the generation of the
hardware interface signals. This interface consists
of three separate data and control buses that can
be isolated from each other. The three buses are:

1. The System Bus
2. The CADM Bus
3. The Local CADM Bank Bus

The Write and Read timing diagrams for this
interface is shown in Figures 5-6 and 5-7. The
clock mentioned in this discussion is the CADM
clock unless otherwise stated.

This section discusses in detail how and why each
CADM interface control signal is generated. Due
to the unique nature of this device, some of the
control Signals have special timing requirements.

5.10.1 SYNCHRONIZING THE READ AND
WRITE SIGNALS

Whereas, most peripherals accept asynchronous

control signals, the Am95C85 requires that its
Read (RE) and Write (WE) inputs be synchronized
with its clock. The I/O Read (lOR) and I/O Write
(lOW) Signals from the input/output port are
ANDed together. This signal is then qualified by
the DONE control output from the CADM to
ensure that the CADM has completed the previous
operation before any further access is allowed. At
this point we shall assume that the DONE output
from the CADM is active (LOW). The case when
DONE is inactive (HIGH) at a point in time when
10RIIOW goes active (LOW) is dealt with separately
in this discussion.

5-7

The falling edge of the clock following the
read/write being active at the 01 input passes the
Signal to 01. The next riSing edge generates the
read/write signal for the CADMs which is then
appropriately gated with the 10RIIOW from the
system port to separate the RE and WE signals.
After the CADMs receive the read/write signal,
they 3-state the DONE signal (which has a 1 kohm
pull-up to Vcc) on the next falling edge. On the
subsequent rising edge, the CADMs force the
DONE line to the inactive (HIGH) state to indicate
that they are busy with the current device access.

The DONE now drives the D1 input to the HIGH
state. 01 will now go HIGH on the next falling edge
of clock. Flip-flop 01 is clocked on the falling edge
because DONE is stable in the HIGH state before
the falling edge, whereas its state is undefined at
the rising edge. The subsequent rising edge of
clock drives 02 HIGH thus de-activating read/write
to the CAD Ms. This mechanism of generating the
read/write signals for the CADMs meets two
requirements:

1. The read/write signals to the CADMs shall meet
the A.C. specifications of set up time with
respect to CADM clock.

2. The readlwrite signals shall be active (LOW) for
at least two clock cycles. This scheme
guarantees that these signals are active for
exactly two clock cycles, for any operating
frequency of the CADM.

5.10.2 CHIP SELECT LOGIC

The Chip Select (CS) signal is generated by the
Am29806 comparator. Address lines A 1-A8 from
the system bus are fed to the A- inputs of the
Am29806. This device has internal pull-up
resistors on the comparator B-inputs for easy
connection to SPST switches. The comparator
function is defined by:

EOUT = (AO 0 BO)(A 1 0 B 1)(A2 0 B2) ... (Ai 0 Bi)G

()l

0:>

SYSTEM CLOCK

CADMCLOCK

IOWANDCS
or i5ACK

01

020rWE
(CADM)

DONE

T/R

RDYorDREO

11 T2 T3 TW

C WRITE DATA) DO-D7 ---------, l
CADM BUS DATA SAMPLED

T4

DO-D7 ()
SYSTEM BUS WRITE DATA VPlID)-------------

t DATA LATCHED

0803SAS-6

Figure 5-6. Am95C85-IBM PC/XT/AT Interface Write Timing

0'1
cl:>

SYSTEM CLOCK

CADMCLOCK

IORANDCs
orDACK

01

020rRE
(CADM)

DONE

T/R

RDYorDREO

Do-D7
CADMBUS

T1 T2 T3 TW T4

----------------~(READ DATA)>-----------------

t DATA LATCHED

SYSTEM BUS READ DATA VAUD)>----------DO-D7 (

t DATA SAMPLED

08035AS-7

Figure 5-7. Am95C85-IBM PC/XT/AT Interface Read Timing

As seen from this equation EoUT is qualified by G,
the enabl~ input to the comparator. --'!! this
interface, G is provided by gating lOR, 10W.!.~,
and AEN from the system, to avoid spurious EoUT
active signals caused by a memory access that
matches the address of this input/output port. The
CS to the CADMs is generated by ANDing the
EoUT address qualifier from the Am29806 and the
DMA Acknowledge from channel 1 (DACK1) of the
DMAcontroller, i.e.,

CS = EOUT· DACKl

Gating the DACK1 signal provides an active CS
during DMA transfers of data to and from the
CADM.

5.10.3 GENERATING THE READY
SIGNAL

The 1/0 Channel Ready (1/0 CH ROY) input on the
IBM PC/XT/AT must not be held inactive (LOW) for
more than 2.5 us. This requirement of the IBM PC
(XT or AT) dictates the generation of the Ready
signal. Also to maximize system performance,
each VO access should insert the smallest possible
number of Wait States. The 1/0 CH ROY signal is
normally held active (HIGH) and is forced inactive
(LOW) when CS goes active. This is then held
LOW until 02 goes LOW, i.e., a valid read/write is
available for the CADMs at which point the 1/0 CH
ROY is driven to the active (HIGH) state. This is
shown in Figures 5-6 and 5-7.

The hardware implementation of ROY is shown in
Figure 5-4. The normally HIGH output from 04 is
clocked LOW when CS goes active, i.e., a valid
Chip Select is available to the CADMs. This places
the processor in a Wait state. If DONE is active at
this point, the read/write is clocked through 01 and
02 as explained earlier. When 02 goes LOW it
forces 04 HIGH thus releasing the processor from
the Wait state.

If the DONE is inactive (HIGH) when CS goes
active, then the readlwrite from the system is
temporarily prevented from being clocked through
01 and 02 until DONE goes active. If this
condition occurs, extra Wait states are inserted.
Refer to Section 5.9.

5.10.4 PAL DEVICE IMPLEMENTATION
OF THE INTERFACE

Figure 5-8 shows the Am95C85 - IBM PC/XT/AT
Interface using a PAL device. The PAL16R4
shown in Figure 5-8 serves as an alternative
source to generate the RE, WE, C/O and CLK,

thus eliminating some of the discrete logic. The
difference of the PAL device implementation as
compared to the discrete implementation lies in
the manner in which 01 is clocked. The PAL
device can only use the rising edge of clock; flip­
flop 01 is clocked by the rising edge. Since DONE
is forced HIGH by the rising edge of clock, output
01 will go HIGH on the next rising edge thus
adding an extra clock cycle to the CADM readlwrite
active pulse. Figure 5-9 is a listing of the PAL
device equations.

5.11 Am95C85 (CADM) INTERFACE TO
AN 8086 PROCESSOR

The interface of the Am95C85 CADM to an 8086
processor is shown in Figure 5-10 combined with
either Figure 5-2 or Figure 5-3. If 16 or fewer
CADMs are used, Figure 5-10 is combined with Fig­
ure 5-2. If more than 16 CADMs are used in the ap­
plication, Figure 5-10 is combined with Figure 5-3.
This discussion deals with the generation of the
hardware interface signals.This interface consists
of three separate data and control buses that can
be isolated from each other. The three buses are:

1. The System Bus
2. The CADM Bus
3. The Local CADM Bank Bus

The Write and Read timing diagrams for this
interface are shown in Figures 5-11 and 12. The
clock mentioned in this discussion is the CADM
clock unless otherwise stated.

This section discusses in detail how and why each
CADM interface control signal is generated.
Because of the unique nature of this device, some
of the control signals have special timing
requirements.

5.11.1 SYNCHRONIZING THE READ AND
WRITE SIGNALS

Whereas, most peripherals accept asynchronous
control signals, the Am95C85 requires that its
Read (RE) and Write (WE) inputs be synchronized
with the rising edge of its clock. The Read (RE)
and Write (WE) signals from the 8086 are ANDed
to form one readlwrite signal and qualified by chip
select from the decoder. Thi~ signal is then gated
by the DONE 'control output from the CADM to
ensure that the CADM has completed the previous
operation before any further access is allowed. At
this point we shall assume that the DONE output
from the CADM is active (LOW). (The case when
DONE is inactive (HIGH) when RD/WR goes active

5-10

00-0 7

IBM
PC/XT/AT
INPUT-

OUTPUT
PORT

Ag

AEN

lOR

lOW

Ao

OACK1

As

A7

As

As

A4

A3

A2

A1

I/O
CHROY

ORO

IR06

IR04

08035A 5-8

r<ll
CPs CPR

8- I 8-BI A MBUS
v Am2952A

L~
~~~ ~ OELA~ CEs 

_CER 
LINE OEBR 

~ 
Td l 

L ClK CK 19 

~ Ti C/O 18 

3 Td « ~ .,. 01 c:: 
4 - to 

~ lOR :; 02 
5 - ct. ~ lOW E 
6 « 

~ Ao 
7 

OACK1 
- 13 WE 

--'! RE 12 
G ,-----2-As 85 I-- DONE 

A4 B4 I-- ~ OE 

A3 83 I-- -
A2 82 f-

A1 81 f- r-4-
PR 

A1 Bo f- -r- 0 
Or- -

Sl --= ,. ClK 
So E3 I-- "--- I 74LS14-LT1 

+r E2 I-f>---t> I 
E1 I---ACK 
Eo 

Am29806 "----LJ 

c -'-.J:-

f--o ClK 

74lS393 

f--o -'-.\:- CLR 0 

Figure 5-8_ Am95C85-1BM Pc/XT/AT Interface Using AmPAL16R4A 

5-11 

CLK 

C/D 

WE 

RE 

DONE 

RST 

CS 

IRO 



(LOW) is deaH with separately, in this discussion). 

The falling edge of clock following the readJwrite 
being active at the D1 input passes the signal to 
01. The next rising edge generates the read/write 
signal for the CADMs which is then appropriately 
gated with the RDIWR from the processor to 
separate the synchronized RE and WE signals. 
After the CADMs receive the read/write signal, 
they 3-state the DONE signal (which has a 1 kohm 
pull-up to Vcc) on the next falling edge. On the 
subseCluent rising edge, the CADMs force the 
DONE line to the inactive (HIGH) state to indicate 
that they are busy with the current device access. 

The DONE now drives the D1 input to the HIGH 
state. 01 will go HIGH on the next falling edge of 
clock. Flip-flop 01 is clocked on the falling edge 
because DONE is stable in the HIGH state before 
the falling edge, whereas its state is undefined at 
the rising edge. The subsequent rising edge of 

IBM PC AT - Am95C85 INTERFACE 
ADVANCED MICRO DEVICES 

clock drives 02 HIGH thus de-activating readJwrite 
to the CADMs. This mechanism of generating the 
reacllwrite signals for the CADMs meets two 
requirements: 

1. The read/write signals to the CADMs shall meet 
the A.C. specifications of set up time with 
respect to CADM clock. 

2. The read/write signals shall be active (LOW) for 
at least two clock cycles. This scheme 
guarantees that these signals are active for 
exactly two clock cycles, for any operating 
frequency of the CADM. 

5.11.2 CHIP SELECT LOGIC 

The Chip Select (CS) signal is primarily generated 
by two Am29809, 9-bit comparators, and one 
Am2980S. These devices have internal pull-up 
resistors on the comparator 8 inputs for easy 

PAL DESIGN SPECIFICATION 
SAROSH VESUNA 3-11-86 

CLK TIN TD /IOR /IOW /DONE AO /DACK NC GND 
JOE /RE /WE Q2 Q1 NC NC CD CK VCC 

/Q1 := lOR *DONE + lOW *DONE 

/Q2 := /Q1 

RE = /Q2*IOR 

WE = /Q2*IOW 

/CD = /AO + DACK 

/CK = TIN* /TD + /TIN*TD 

FUNCTION TABLE 
CLK TIN TD /IOR /IOW /DONE AO /DACK /RE /WE Q2 Q1 CD CK 

P H L H H L L H H H H H L L 
X H H H L L L H H H H H L H 
C H H H L L L H H H H L L H 
X L H H L L L H H H H L L L 
X L L H L L L H H H H L L H 
C L L H L L L H H L L L L H 
X H L H L H L H H L L L L L 
X H H H L H L H H L L L L H 
C H H H L H L H H L L H L H 
X L H H L H L H H L L H L L 
X L L H. L H L H H L L H L H 
C L L H L H L H H H H H L H 

DESCRIPTION: 

THE ABOVE FUNCTION TABLE TESTS THE CADM WRITE CYCLE, WITH THE CPU PROVIDING 
THE WRITE AND CHIP SELECT. 

Figure 5-9. PAL Device Equations for CADM-IBM Interface Ready Circuit 

5-12 

T 



RD 

WR 

8086 

00-0 7 

MIlO 

A'2 -A'9 

ALE 

Ao-A" 

ROY 

INTR 

08035A 5-10 

~~ .....-- ro;o; 1n 0, Q, 

[=-
,. 

I- C~ 
ClK 

T "----

L L-I--

~~-~[jJIr LINE f- f-
OSC ClK 

Y 03 -
I...........,;; 

CEs CE R CPR CPS 

Ao Bo 

A, B, 

A2 B2 

r--~ G A3 B3 
Am2952A 

!::) 29841 t---v 29809 --y A. B. 

EOUT ~ lE 
As B5 

DREQ As Bs 
G DMA 

29809 CONTROllER A7_ _ B7 
lE DACK 

OEAS OEBR 

29841 EOUT 

~ 
Ao 

2 G EO~ 
+5V 

SO-S, 

29806 

~ 

"~ "~ 
ClK 

~~I 
~ I 

B 74lS393 

I 
ClR 

H INTERRUPT I 
CONTROllE R I 

Figure 5-10_ Am95C85-8086 Interface 

5-13 

ClK 

Q 

I 

RE 

CS 

WE 

DONE 

ClK 



~ ..,. 

SYSTEM CLOCK 

CADMCLOCK 

WR ANDCS 
orDACK 

01 

T1 T2 T3 TW T4 

\ ! 

020rWE ----------------

(CADM) 

DONE 

fIR 

DREOor 
RDY 

00-D7 
CADMBUS 

00-D7 
SYSTEM BUS 

_____________ ~( WRITE DATA »).. ______________ _ 

t DATA SAMPLED 

----------------« WRITE DATA VI'LID )>------------­

t DATA LATCHED 

08035A5-11 

Figure 5-11. Am95C85-8086 Interface Write Timing 

.L 



~ 
CJ1 

SYSTEM CLOCK 

CAOMCLOCK 

RoANOCS 
orOACK 

01 

020rRE 
(CAOM) 

DONE 

11R 

OREO 
or ROY 

00-07 
CAOMBUS 

00-07 
SYSTEM BUS 

T1 T2 T3 TW T4 

\ I 

--------------------------------------~~ READ DATA )~-----------------------------

lOATALATCHEO 

------------------------------------------~<====--~A~OA~AVAUO )r-------------------­
l~~~ 

08035A5-12 

Figure 5-12_ Am95C85-8086 Interface Read Timing 



connection to SPST switches to ground selected 
inputs. The address lines are latched by the 
Am29841 s on the falling edge of ALE. The 
comparator function is defined by: 

EOUT = (AO 0 BO)(A 10 B1)(A2 0 B2) ... (Ai 0 Bi)G 

As seen in this equation, EOUT is qualified by G, 
the enable input to the comparator. In this 
interface, G is provided by M/iO from the processor 
so as to avoid spurious EOUT active signals caused 
by a memory access that matches the address of 
this inputloutpu!. port. The CS is generated by 
ANDing the Eo address qualifier from the 
Am29806 with the DMA Acknowledge from 
channel 1 of the DMAcontroller, Le., 

CS = EOUT • DACK 

Gating the DACK signal provides an active CS 
during DMA transfers of data to and from the 
CADM. This CS signal is gated with the readlwrite 
and passed through ---.!be synchronizing logic to 
obtain a synchronized CS for the CADMs from 02. 

E1 is selected when there is a valid address on 
A1-A18 and A1 is HIGH. This provides an 
alternative source of a hardware reset for the 
CADMs. 

5.11.3 GENERATING THE READY 
SIGNAL 

To maximize system performance, each 1/0 access 
should insert the smallest possible number of 
WAIT States. The Ready Signal is normally held 
inactive (LOW) and is forced active (HIGH) when 
02 goes active, Le., a valid readlwrite is available to 
the CADMs. This is held HIGH until 02 goes 
inactive as shown in Figures5-11 and 12. 

The hardware implementation of ROY is shown in 
Figure 5-10. If DONE is active when RD/WR goes 
active, the readlwrite is clocked through 01 and 02 
as explained earlier. When 02 goes LOW it forces 
C LOW on the Am29806. If an address match 
exists (Le., Eo is active), the ACK output goes 
LOW. The invertor at the ROY input of the 8284 
causes it to go active (HIGH) thus releasing the 
processor from the Wait state. 

If the DONE is inactive (HIGH) when RDIWR goes 
active, then the readlwrite from the system is 
temporarily prevented from being clocked through 
D1 and 02 until DONE goes active. If this 
condition occurs, extra Wait states are inserted. 
Referto Section 5-9. 

5.12 Am95C85 (CADM) INTERFACE TO 
AN MC68000 PROCESSOR 

The interface of the Am95C85 CADM to a 
MC68000 processor is shown in Figure 5-13 
combined with either Figure 5-2 or Figure 5-3. If 
16 or fewer CADMs are used, Figure 5-13 is 
combined with Figure 5-2 If more than 16 CADMs 
are used in the application, Figure 5-13 is 
combined with Figure 5-3. This discussion deals 
with the generation of the hardware interface 
signals. This interface consists of three separate 
data and control busses that can be isolated from 
each other. The three busses are: 

1. The System Bus 
2. The CADM Bus 
3. The Local CADM Bank Bus 

The Write and Read timing diagrams for this 
interface are shown in Figures 5-14 and 15. The 
clock mentioned in this discussion is the CADM 
clock unless otherwise stated. 

This section discusses in detail how and why each 
CADM interface control signal is generated. 
Because of the unique nature of this device, some 
of the control signals have special timing 
requirements. 

5.12.1 SYNCHRONIZING THE READ AND 
WRITE SIGNALS 

Whereas, most peripherals accept asynchronous 
control signals, the Am95C85 requires that its 
Read (RE) and Write (WE) inputs be synchronized 
with the rising edge of its clock. The LOS (Lower 
Data Strobe) is gated by the DONE control output 
from the CADM to ensure that the CADM has 
completed the previous operation before any 
further access is allowed. At this point we shall 
assume that the DONE output from the CADM is 
active (LOW). The case when DONE is inactive 
(HIGH) when R/W goes active is dealt with 
separately, in this discussion. 

The falling (trailing) edge of clock following the 
LOS being active at the 01 input passes the signal 
to 01. The next rising edge generates the 
readlwrite signal for the CADMs which is then 
appropriately gated to separate the RE and WE 
signals. After the CADMs receive the 
synchronized readlwrite signal, they 3-state the 
DONE signal (which has a 1 kohm pull-up to Vccl 
on the next falling edge. On the subsequent 
rising edge, the CADMs force the DONE line to the 
inactive (HIGH) state to indicate that they are busy 

5-16 



Do-D7 

RiW r-rf) 
lDS 

68000 

Ao 

A12-A19 8 

A3-A11 
" 

A1 

A2 

DTACK 

RESET 

iPlo 

0803SA 5-13 

8 / Do-D7 
Am2952A 

CPS H--1 ClK 

CEs CPR 

~ ~~ CEROEAS 

OEeR 

~~ 
1 ~ 

r--- r--- 1 ro;o; r-L-" 1 ..:f:" Do 0 0 ----0 D1 01 

~!~=-
r ClK ~ -

DREO 

Lr;;-; Am9517DMA 

str 
CONTROllER 

LINE DACK r-

FD ~CKQt- Td r-OSC __ 

r-~ ~ 
Eo 

1 EOUT + r-- So 

C 29809 ,---

" .'~ 
ClK 

---- EOUT 29806 74lS393 

29809 IJ :~ ClR 0 
9 

"""-- f----------l 

+5f L K~ 
I SYSTEM I r--t: I RESET 

74lS14 

INTERRUPT 
CONTROllER 

Figure 5·13. Am95C85-68000 Interface 

5·17 

R 

DONE 

C/D 

ClK 

I RO 



\ I 

-----------------« Write Data )~--------------------

t Data Sampled 

SYSTEM BUS Write Data Valid )~-------------------DO-D7 ( 

t Data Lalched 

OB035A5-14 

Figure 5-14. Am95C85-98000 Interface Write Timing 



SYSTEM CLOCK 

CADMCLOCK 

LDSANDCS 
orDACK \ ! 

01 

02 

DONE (Delayed DONE) 

~ 
(0 

T/R 

DTACK 
or DREO 

DO-D7 
CADM BUS -----------------------------------------1( Read Dam )~----------------------------­

t Data Latched 

( Read Data Valid ) DO-D7 ------------- 1 t 
SYSTEM BUS Data Sampled 

08035A5-15 

Figure 5-15. Am95C85-8086 Interface Read Timing 



with the current device access. 

The DONE now drives the D1 input to the HIGH 
state which triggers the transition of 01 HIGH on 
the next falling edge of clock. Flip-flop 01 is 
clocked on the falling edge because DONE is 
stable in the HIGH state before the falling edge, 
whereas its state is undefined at the rising edge. 
The subsequent rising edge of clock drives 02 
HIGH thus deactivating read/write to the CADMs. 
This mechanism of generating the read/write 
signals forthe CADMs satisfies two requirements: 

1. The read/write signals to the CADMs shall meet 
the A.C. specifications of set up time with 

channel 1 of the DMA controller, i.e., 

CS = EOUT" DACK 

Gating the DACK signal provides an active CS 
during DMA transfers of data to and from the 
CADM. The Eo output of the Am29806 is selected 
when address lines A 1 and A2 are both LOW. 

E1 is selected when there is a valid address on A3-
A19, A1 is HIGH, and A2 is LOW. This provides an 
alternative source of a hardware reset for the 
CADMs. 

respect to CADM clock. 5.12.3 GENERATING THE READY 

2. The readlwrite signals shall be active (LOW) for 
at least two clock cycles. This scheme 
guarantees that these Signals are active for 
exactly two clock cycles, for any operating 
frequency of the CADM. 

5.12.2 CHIP SELECT LOGIC 

The Chip Select (CS) signal is primarily generated 
by two Am29809, 9-bit comparators, and the 
Am29806. These devices have internal pull-up 
resistors on the comparator B-inputs for easy 
connection to SPST switches to ground selected 
inputs. The comparator function is defined by: 

EOUT= (A00 BO)(A10 B1)(A2 0B2) ... (Ai0Bi)G 

As seen from the above equation EOUT is 
qualified by G, the enable input to the comparator. 
In this interface, G to the first Am29809 is provided 
~ LDS from the processC?!:...to avoid spurious 
EOUT active signals. The CS to the CADMs is 
generated by ANDing the Eo address qualifier from 
the Am29806 and the DMA Acknowledge from 

SIGNAL 

To maximize system performance, each I/O access 
should insert the smallest possible number of Wait 
States. The DTACK (Data Transfer Acknowledge) 
signal is normally held inactive( HIGH) and is forced 
active (LOW) when 02 goes active, i.e., a valid 
read/write is available to the CAD Ms. This is held 
LOW until 02 goes inactive (HIGH), as shown in 
Figure 5-13. 

The hardware implementation of RDY is shown in 
Figure 5-13. If DONE is active when LDS goes 
active, the read/write is clocked through D1 and D2 
as explained earlier. When 02 goes LOW, it forces 
C LOW on the Am29809. If an address match 
exists (i.e., EOUT is active), the ACK output goes 
LOW thus releasing the processor from the Wait 
state. 

If the DONE is inactive (HIGH) when LDS goes 
active, then the read/write from the system is 
temporarily prevented from being clocked through 
D1 and D2 until DONE goes active. If this 
condition occurs, extra Wait States are inserted. 
Referto Section 5-9. 

5-20 



APPENDIX A 

Am95C85 CADM SORT PERFORMANCE BENCHMARK 
SUMMARY 

BENCHMARK SUMMARY 

One measure of the performance of the Am95C85 
Content Addressable Data Manager (CADM) 
device is it's ability to sort data. When compared to 
the OSort, OPoint, and Tree sort software 
algorithms, the CADM, simulated at 16 MHz, 
performed as follows: 

• Up to 50-times faster than the VAX 111785 
• Up to 116-times faster than the Valid ScaldStar 

Workstation 
• Upto 154-times faster than the IBM PC-AT 
• Upto 424-times faster than the IBM PC-XT 

(Improvement Factor = CADM Load & Sort Time / 
Software Sort Time) 

CADM Performance 
Improvement Factors 

Computer Minimum Maximum 

VAX 111785 12.49 50.16 
VALID ScaldStar 43.77 116.41 
IBM PC-AT 25.43 154.37 
IBMPC-XT 77.52 424.43 

Figure 1 illustrates the performance ranges of the 
Am95C85 CADM with respect to each of the four 
computers for 100-, 400-, and 1000-record file 
sizes. 

This comparison represents real-world reflections 
of expected performance gains of the CADM since 
the time required to both load and sort data by the 
CADM is compared to the time required to sort data 
in software. 

Types of File 
Input Data1 Sizes 

Random 100 Records 
Reverse sorted 400 Records 
Identical 1000 Records 
Pre-sorted 
98% Pre-sorted 
90% Pre-sorted 

Furthermore, performance improvement multiples 
are delineated for all combinations of six data 
types, three file sizes, three sort algorithms and 
four processing machines. 

BENCHMARK DESCRIPTION 

The Am95C85 Content Addressable Data 
Manager (CADM) is a unique CMOS peripheral 
device designed to perform high-performance 
data sorting, searching and updating. The device 
is capable of accelerating by orders-of-magnitude 
many of the time consuming, repetitive data 
manipulation tasks which are found in operating 
systems and application level software. 

The purpose of this benchmark is to document 
these performance advantages in an objective 
framework so that greater understanding of the 
device's capabilities may be obtained. In 
designing the analysis, care has been taken to 
represent performance data in a manner as close 
to actual system conditions as possible. To this 
end, the comparison of the CADM to software sort 
performance is intended to represent an "apples 
to apples" reflection of the performance 
advantages of the device. 

While the CADM is also able to perform content 
addressable searching, insertions, deletions and 
other data manipulative tasks, the sort operation 
has been selected as the comparative element 
since this task is germane to most operating 
systems and applications software and must be 
performed by the CADM prior to searching and 
other operations. 

Sort Processing 
Algorithms2 Machines 

OSort VAX 111785 
OPoint Valid ScaldStar 
Tree sort IBM PC-AT 

iBMPC-XT 

Note: All software sort times presented in this analysis are accurate to within +/- 2.5%. 
1 All records contained in the input data files consist of a 14-byte key field plus a 2-byte pointer field. 
2The sort algorithms used are given in the CADM Benchmark publication. 

A-1 



a: 
wO 
()I-

~~ ::1-a: z 
Ow 
~:: ww 
a.> 
::0 oa: «a. 
();§ 

450X 

400X 

350X 

300X 

250X 

200X 

150X 

100X 

50X 

LEGEND: 

r:::d 100 RECORD FILES 

~ 400 RECORD FILES 

III 1000 RECORD FILES 

• EACH RECORD CONSISTS OF A 14-BYTE 
KEY & A 2-BYTE POINTER. 

• EACH BAR REPRESENTS THE AGGREGATE 
PERFORMANCE RANGE FOR ALL SORT 
ALGORITHMS AND DATA CONFIGURATIONS 
USED THIS COMPARISON. 

• CADM LOAD & SORT TIMES (IN MSEC) ARE 
COMPARED TO SOFTWARE SORT ONLY 
TIMES (IN MSEC). 

VAX 
111785 

VALID 
SCALDSTAR 

(68010 - 10 MHZ) 

IBM 
PC-AT 

TYPE OF PROCESSING MACHINE 

IBM 
PC-XT 

Note: All computer sorting is conducted in main memory, without disk accesses. 

Figure A-1. Sort Perfonnance 
CADM vs. Standard Computers 

A-2 

08035A A·l 



The sort performance of the Am95C85 was 
compared to three common software sort 
algorithms each run on four industry standard 
processing machines. The comparison assumes 
that the data to be sorted is resident in main 
memory and does not involve disk accesses. The 
benchmark compares the time required for the 
data to be loaded into the Am95C85 from main 
memory and then sorted versus the time needed 
for the computer to perform the software sort 
alone. In both cases, the analysis begins with the 
data to be sorted located in system memory and 
ends with a sorted file ready for the next task. The 
processing machines and sort algorithms used are: 

Processing Machines 

1. VAX 111785 
2. VALID SCALDST AR 

(68010-10MHz) 
3. IBM PC-AT (80286-6MHz) 
4. IBM PC-XT (8088-4.8MHz) 

Sort Algorithms 

1.QPOINT 
2. QSORT 

3. TREE SORT 

METHODOLOGY 

Input Files 

Ten input files were sorted, with the sort time 
results categorized into six groups based on type 
of data. Performance results were then charted 
based on these six data categories. The 10 ASCII 
input files and their resulting data categories are: 

Input Files 

3 Random data files 

1 Identical data file 
1 Reverse-sorted file 
1 Pre-sorted file 
298% pre-sorted files 

2 90% pre-sorted files 

10 Total 

Type of input 

Resultant Data 
Categories 

Random data 
(average of 3 files) 
Identical data 
Reverse-sorted data 
Pre-sorted data 
98% pre-sorted data 
(average of 2 files) 
90% pre-sorted data 
(average of 2 files) 

Description 
Sort programs were written in "C" based upon data file 
each of the three standard sort algorithms found in ----------------
the literature (Wirth, Niklaus. Algorithms + Data Random Data in each key field has no 

specific pattern or sequence~ 
Data in each key field is 
identical. 

Structures = Programs, Pentice-Hall, Englewood 
Cliffs, N.J., 1976.). These algorithms are available Identical 
in the CADM Benchmark publication. 

Six types of ASCII data files were sorted. These 
are: 

• Random data (3 sets) 

Reverse-sorted 

Pre-sorted 

Data records are pre-sorted in 
reverse order based on key 
field. 
Data records are pre-sorted 
based on key field. 

• Identical data 98% pre-sorted Data records are pre-sorted. 
Last 2% of file is then 
removed and scattered 
randomly throughout the 
remainder of the file. 

• Reverse sorted data 
• Pre-sorted data 
• 98% pre-sorted data (2 sets) 

90% pre-sorted data (2 sets) 

From each of these data types, three lengths of 
input files were generated: 100 records, 400 
records and 1000 records (where each record 
consists of a 14-byte key field plus a 2-byte pointer 
field). Thus, 30 total input files of varying length 
and data type were sorted using three different 
sort algorithms. Each combination of data type, 
length and sort algorithms were run on four 
processing machines. The same input files were 
also loaded and sorted by a 16 MHz CADM sort 
simulation routine which represented an array of 
16 CADM devices in cascade. 

90% pre-sorted Data records are pre-sorted. 
Last 1 0% of file is then 
removed and scattered 
randomly throughout the 
remainder of the file. 

In preparing the analysis, each of the 10 input files 
were run independently and the results recorded. 
For the sake of simplicity and graphic illustration, 
the results of the three random data files were 
averaged as were the two 98% pre-sorted and the 

A-3 



two 90% pre-sorted files. Figures 2, 3, 4 and 5 
demonstrate these averaged performance values 
of the CADM compared to sort algorithms run on 
the four processing machines used in this analysis. 
A complete listing of the results for each of the 10 
input files, prior to averaging, is available in 
AppendixB. 

Calculating Sort Times 

The internal system clock was used in determining 
the time required for computer sorting. 
Conceptually, a source program, written in "C", was 
generated which called the appropriate sort 
algorithm. Immediately prior to the start of the sort, 
the system clock was polled and the time recorded 
by the program. Upon termination of the software 
sort, the time was immediately sampled again and 
compared to the start time. A simple subtraction 
then produced the time required by the computer 
to sort the given file using the given algorithm. 

Maintaining Data Accuracy 

System Clock Granularity 

It is important to note that the granularity of the real­
time clock within the computers can impose limits 
on the accuracy of sort times. In cases where the 
sort times are small (such as 100 record data files), 
the time required to complete a sort can approach 
the incremental graduations of the computer clock. 
The resulting inaccuracy would be particularly 
acute with the 55 msec granularity of the IBM PC­
XT and PC-AT clocks. 

To avoid this source of inaccuracy, multiple sort 
operations were consecutively performed and the 
total time recorded. This total was then divided by 
the number of sort passes involved to accurately 
determine the sort time. Precautions were also 
taken to assure that clock sampling times were not 
included in the sort time. As a result of these 
measures, the sort times performed by the four 
computers are accurate to within ± 2.5%. 

Mum-User Systems 

The VAX 11/785 and Valid ScaldStar provide for 
multi-user support by sharing CPU time among the 
users involved. To assure sort times were not 
inflated due to the time-sharing process, the 
comparison was made by measuring actual CPU 
time devoted to the sort process rather than 
comparing elapsed time. Each machine was 
dedicated exclusively to the sort calculations 
without competing with other time-shared tasks. 

An interesting effect of multi-user systems occurs 
when using the Tree sort algorithm. As shown in 
Figures 2 and 3, the sort time required by the Tree 
sort for pre-sorted and nearly-sorted data is 
proportionately much greater than equivalent data 
types on the PC-XT and PC-AT. This is due to the 
mechanism of the Tree sort algorithm of allocating 
additional memory as each record is compared and 
sorted. Since requests for additional memory 
allocation in multi-user systems must be granted by 
the operating system, this added time is rightfully 
reflected in the Tree sort results. 

SUMMARY 

The sort comparison benchmark illustrates that 
very significant performance gains can be 
expected by the user with respect to standard 
software sorting routines. Effort has been made to 
assure the analysis was cast in a practical, user­
oriented environment. Such conservatism is 
apparent since software sort times of the 
computers are compared to the time required by 
the CADM to both load data into the device from 
system memory and conduct the sort. This bias 
against the Am95C85 was included in order to 
represent an "apples-to-apples" comparison of 
traditional sort techniques in software to higher 
performance sorting in hardware. 

The benchmark conducted an objective 
comparison involving four industry standard 
computers and three commonly-used sort 
algorithms on a spectrum of data types and file 
sizes. Every combination of the above elements 
were compared and the results illustrated both 
graphically and in tabular form. 

A-4 



CADM SORT TIMES VS. STANDARD COMPUTERS 
(All sort times are in milliseconds) 

RANDOM RANDOM RANDOM RANDOM IDENTICAL REVERSE-
DATA DATA DATA DATA DATA SORTED 

(set 1) (set 2) (set 3) (avq. ) DATA 

Am95C85 CADM 
100 records 1.77 1. 76 1.77 1.77 2.59 1.81 
400 records 8.15 8.17 8.20 8.17 10.59 8.83 

1000 records 23.63 23.60 23.51 23.58 26.67 27.37 

VAX 11/785 
QP.100 40 37 37 38.0 42 27 
QP.400 183 186 177 182.0 218 137 
QP.1000 566 554 540 553.3 597 365 

QS.100 51 49 50 50.0 61 35 
QS.400 238 244 236 239.3 313 166 
QS.1000 714 703 703 706.7 858 342 

TR.100 62 61 62 61.7 77 62 
TR.400 323 320 319 320.7 382 296 
TR.1000 1015 1019 1014 1016.0 1069 824 

VALID SCALDSTAR 
QP.100 141 134 133 136.0 150 97 
QP.400 631 642 618 630.3 761 469 
QP.1000 1847 1808 1818 1824.3 2021 1198 

QS.100 186 180 181 182.3 218 127 
QS.400 848 867 842 852.3 1112 592 
QS.1000 2467 2434 2440 2447.0 2955 1466 

TR.100 134 132 134 133.3 196 138 
TR.400 663 660 659 660.7 982 684 
TR.1000 1894 1891 1877 1887.3 2806 1933 

IBM PC-XT 
QP.100 223 215 208 215.3 360 162 
QP.400 1105 1032 991 1042.7 1885 785 
QP.1000 3003 2920 2948 2957.0 5148 1985 

QS.100 522 512 530 521. 3 807 356 
QS.400 2435 2517 2462 2471. 3 4195 1573 
QS.1000 7018 6908 6974 6966.7 11319 3729 

TR.100 197 194 197 196.0 424 207 
TR.400 1010 991 991 997.3 2242 104l 
TR.1000 2986 2948 2986 2973.3 6578 3250 

IBM PC-AT 
QP.100 76 74 70 73.3 128 55 
QP.400 348 352 338 346.0 680 270 
QP.l000 1037 1009 1023 1023.0 1862 696 

QS.l00 186 180 186 184.0 292 127 
QS.400 854 888 877 873.0 1515 563 
QS.l000 2494 2494 2490 2492.7 4117 1348 

TR.l00 68 68 68 68.0 153 72 
TR.400 349 342 343 344.7 788 359 
TR.l000 1009 1009 1009 1089.0 2329 1033 

A-5 



PRE-SORTED 98% PRE- 98t PRE- 98% PRE-
DATA SORTED DATA SORTED DATA SORTED DATA 

(set 1) (set 2) (avq. ) 

Am95C85 CADM 
100 records 1.63 1.63 1.63 1.626 
400 records 6.64 6.75 6.74 6.743 

1000 records 16.87 17.27 17.27 17.266 

VAX 11/785 
QP.100 27 27 27 27.0 
QP.400 136 137 135 136.0 
QP.1000 363 364 364 364.0 

QS.100 32 32 32 32.0 
QS.400 153 151 152 151.5 
QS.1000 399 401 403 402.0 

TR.100 62 62 62 62.0 
TR.400 304 310 308 309.0 
TR.1000 834 862 865 863.5 

VALID SCALDSTAR 
QP.100 96 96 96 96.0 
QP.400 467 461 461 461.0 
QP.1000 1194 1195 1192 1193.5 

QS.100 117 117 117 117.0 
QS.400 550 542 542 542.0 
QS.1000 1371 1372 1375 1373.5 

TR.100 139 139 139 139.0 
TR.400 687 709 709 709.0 
TR.1000 1949 2010 2003 2006.5 

IBM PC-XT 
QP.100 162 162 162 162.0 
QP.400 771 757 771 764.0 
QP.1000 1985 1996 1996 1996.0 

QS.100 293 299 299 299.0 
QS.400 1316 1280 1280 1280.0 
QS.1000 3069 3085 3096 3090.5 

TR.100 208 207 208 207.5 
TR.400 1060 1078 1078 1078.0 
TR.1000 3058 3344 3344 3344.0 

IBM PC-AT 
QP.100 55 55 55 55.0 
QP.400 270 265 265 265.0 
QP.1000 696 696 696 696.0 

QS.100 105 107 106 106.5 
QS.400 475 462 470 466.0 
QS.1000 1147 1128 1147 1137.5 

TR.100 70 73 70 71.5 
TR.400 359 372 371 371.5 
TR.1000 1050 1078 1078 1078.0 

A-6 



90% PRE- 90% PRE- 90% PRE-
SORTED DATA SORTED DATA SORTED DATA 

(set 1) (set 2) (avg. ) 

Am95C85 CADM 
100 records 1.65 1.65 1.654 
400 records 7.02 7.02 7.019 

1000 records 18.39 18.38 18.389 

VAX 11/785 
QP.l00 27 27 27.0 
QP.400 137 137 137.0 
QP.l000 373 374 373.5 

QS.l00 32 32 32.0 
QS.400 156 156 156.0 
QS.l000 419 421 420.0 

TR.l00 62 62 62.0 
TR.400 317 716 316.5 
TR.l000 909 906 907.5 

VALID SCALDS TAR 
QP.l00 97 97 97.0 
QP.400 468 468 468.0 
QP.l000 1229 1227 1228.0 

QS.l00 119 118 118.5 
QS.400 556 556 556.0 
QS.l000 1440 1439 1439.5 

TR.l00 140 140 140.0 
TR.400 715 717 716.0 
TR.1000 2051 2061 2056.0 

IBM PC-XT 
QP.100 162 162 162.0 
QP.400 785 771 778.0 
QP.l000 2079 2051 2065.0 

QS.l00 304 298 301.0 
QS.400 1335 1358 1346.5 
QS.1000 3399 3399 3399.0 

TR.l00 207 212 209.5 
TR.400 1078 1096 1087.0 
TR.l000 3388 3388 3388.0 

IBM PC-AT 
QP.l00 55 55 55.0 
QP.400 270 270 270.0 
QP.1000 718 718 718.0 

QS.l00 107 107 107.0 
QS.400 493 490 491.5 
QS;1000 1238 1238 1238.0 

TR.100 72 72 72.0 
TR.400 371 371 371. 0 
TR.l000 1105 1092 1098.5 

A-7 





The International Standard of 
Quality guarantees a 005% AQL on all 

electrical parameters, AC and DC, 
over the entire ope~e. 





Order #08035A 

ADVANCED 
MICRO 

DEVICES, INC. 
901 Thompson Place 

Po. Box 3453 
Sunnyvale, 

California 94088 
(408) 732-2400 

TWX: 910-339-9280 
TELEX: 34-6306 

TOLL FREE 
(800) 538-8450 

IH-MU-7.5M-7 ( 86-0 


