
Am29300 Family
Handbook

+
Am29325

32-BIT
FLOATING POINT

PROCESSOR

~

I I
It t

Am29334
64 x 18

REGISTER
FILE -

t
I
Am29332

32-BIT
ALU

High Performance
32-Bit
Building
Blocks

April 1985

+
Am29323
32 x 32

PARALLEL
MULTIPLIER

~

~
Advanced Micro Devices

Am29300 Family
Handbook

The International Standard of
Quality guarantees a 0.05% AQL on all

electrical parameters, AC and DC,

over;sm~

© 1985 Advanced Micro Devices, Inc.

Advanced f'{Iicro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The performance
characteristics listed in this data book are guaranteed by specific tests, correlated

testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.

The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Printed in U.S.A. 4/85 06584A

TABLE OF CONTENTS

I. Am29300 FAMILY OVERViEW ... 5

II. ARTICLES
(i) "32-Bit Bipolar Building Blocks Debut at AMD," Integrated Circuits 7
(ii) "32-Bit ICs Enhance Array Processor Performance," Digital Design 12
(iii) "Microprogrammable Chips Blend Top Performance With 32-Bit Structures,"

Electronic Design .. 15
(iv) Bipolar Building Blocks Deliver Supermini Speed to Microcoded Systems,"

Electronic Design .. 16
(v) "Single-Chip Accelerators Speed Floating-Point and Binary Computations,

Electronic Design .. 26
(vi) "Building Blocks Stack up to High Performance," Computer Design 36

III. BIBLIOGRAPHy .. 43

IV. PRODUCT SPECIFICATIONS
• Am29323 .. 45
• Am29325 .. 51
o Am29331 .. 99
• Am29332 ... 113
o Am29334 ... 123

3

Am29300 Family Overview
Advanced Micro Devices has developed a new VLSI family to
support very high performance applications in general purpose
computation, intelligent peripheral controllers and array and
digital signal processing-the Am29300 family.

The family features high performance, greatly increased
functionality relative to earlier approaches, and a high degree
of architectural flexibility.

32-BIT VLSI
Historically, the Am2901 made a radical departure from con­
ventional MSI functions by integrating several elements of a
CPU into a vertical4-bit slice. The combination of memory and
ALU logic in a single package offered the user added
functionality, reduced package count and data-path width
flexibility.

The Am29300 family reverses the trend of vertical slice
partitioning by integrating complete 32-bit functions into single
VLSI devices.

16

Am29818
PIPELINE

REGISTER
W/SSR

~
Am29325

32-81T
FLOATING POINT

PROCESSOR

~ ,

There are several reasons for the choice of a wider data path.
First, cycle time is improved significantly if carry lookahead is
contained entirely on the the chip. Second, certain powerful
on-chip functions, such as the funnel shifter, priority encoder
and mask generator are extremely difficult to expand when
using vertical slices. Third, a higher level of integration leads to
a more cost-effective system solution. The wider data path
also affords greater I/O bandwidth, higher precision and in­
creased memory addressability. These and other advantages
contributed to the decision to make a family of complete 32-bit
functions rather than slices.

The Am29300 family currently consists of five members:

• Am29332 32-Bit ALU
• Am29331 16-Bit Microinterruptible Sequencer
• Am29334 62 x 18 Dual-Access Four-Port Register File
• Am29325 32-Bit Floating Point Processor
• Am29323 32x32 Parallel Multiplier

I I
I , t

Am29334
64 x 18

REGISTER
FILE I-

! /32

/32

+
,

~
Am29323

Am29332 32 x 32
32-81T PARALLEL

ALU MULTIPLIER

/32 l
Figure 1. Am29300 Family High Performance System Block Diagram

5

FUNCTIONAL PARTITIONING
MORE EFFICIENT
The Am29300 family departs from vertically partitioned bit-slice
functions because it is divided into larger, horizontally parti­
tioned building blocks. The AlU no longer contains a register
file. Instead, there is a more ·flexible stand-alone register file,
the Am29334, making expansion and regular addressing much
easier.

The new partiiioning resulis in a number of benefiis. The user
gets a powerful processor with two uncommitted input buses
and gains the flexibility of adding storage elements to these
buses. The overall organization is more structured. Also, a
larger power budget is available for the register file thus
making it faster and bigger than if it had been in the processor
chip. Functional partitioning results in an open system, giving
the designer the ability to easily connect external components,
e.g. memory components or arithmetic accelerators. Also,
each of the Am29300 components, while designed to work
together in a system, can be used as a standalone functional
block.

THREE-BUS FLOW-THROUGH
ARCHITECTURE
The Am29300 family features a three-bus flow-through archi­
tecture. The Am29332 AlU, Am29325 Floating Point Proces­
sor and Am29323 Multiplier all have two input buses and one
output bus. This contributes to high throughput by eliminating
bus bottlenecks caused by turnaround delays. It provides un­
limited register file expansion and regular addressability.
Moreover, the unlimited bus accessibility gives the designer
the ability to configure the optimal micro-architecture for the
application. If the design objectives change, the micro­
architecture can be easily reconfigured. The three-bus configu­
ration also supports concurrent processing and pipelined
architectures.

BALANCED TIMING
In previous generations of microprogrammed systems, the
control path containing the sequencer has been the bottleneck
because the sequencer was usually slower than the associ­
ated data path. Not so in the Am29300 family. The Am29331
sequencer has been designed so that the entire system timing
is balanced between the control path and the data path leading
to higher overall throughput.

POWERFUL INSTRUCTION SETS
Each device in the family executes its instructions in a single
cycle.

The Am29332's instruction set is symmetric and orthogonal.
Symmetric means that an operation that can be executed on

6

port A can also be executed on port B and vice versa. Orthogo­
nal means that all operations are independent of the data type.
The Am29332 can operate both on multi byte data and on
variable-width field data. This regularity of the Am29332's in­
struction set makes it easy to create "clean" interfaces to com­
pilers for high level language support.

The Am29331 's instruction set is comprised of instructions that
resemble high level language constructs. This makes it possi­
ble to write structured microprograms.

COMPLETE INTERLOCKING
FAULT DETECTION
The family supports both master/slave fault detection and data
path parity to enhance system reliability by ensuring data in­
tegrity and correct hardware operation.

The system features byte parity checking on the inputs and
byte parity generation on the outputs of the Am29332 AlU and
the Am29323 Multiplier. Also, the organization of the Am29334
64 x 18 register file accommodates parity bits for each byte.
The parity mechanism assures data path integrity.

Major functional blocks-the Am29332 AlU, Am29331 Se­
quencerand Am29323 Multiplier-also have master/slave
fault detection to ensure correct device operation without
having to carry parity through complex internal logic and with­
out having to pay the resulting delay penalties. In master/slave
mode, two functional units are connected in parallel with one
unit performing the actual operation and the other checking the
result, on a cycle-by-cycle, bit-by-bit basis.

The master is used in the normal data path. In the slave,
however, all outputs become inputs, and the slave compares
the outputs of the master with its own internally generated
result. If the two don't match, an error signal is generated,
which can trigger an interrupt at the microinstruction level. No
specialized software is required. Also, the designer can
choose to impose redundancy at the component or board
level.

The parity and the master/slave provisions comprise a com­
plete interlocking fault detection mechanism. Using cost­
effective hardware rather than expensive software, they
provide a comprehensive solution for fault tolerant systems.

PERFORMANCE/FLEXIBILITY/INTEGRATION
The Am29300 family achieves high performance and high inte­
gration but avoids architectural or pipelining restrictions. These
become especially important in high performance parallel ar­
chitectures or in emulations where the system is being opti­
mized for particular instructions or processes.

The Eel-internal, TTL I/O Am29300 family minimizes the
requirement for external components and achieves a system
cycle time of well under 100 nsec.

32~bit bipolar
building blocks
debutatAMD

Alex Mendelsohn
Editor-in-Chief

INTEGRATED CIRCUITS MAGAZINE

The last six mo~ths have
seen a proceSSlOn of ad­

vanced microprocessors and pe­
ripheral support chips making
the leap from NMOS fabrication
technologies to CMOS. Although
systems designers can now im­
plement circuits with fast-run­
ning machines that dissipate less
power than their NMOS for­
bears, true speed-demons still
opt for bipolar devices.

Witness the success of the Ad­
vanced Micro Devices Type Am-
29116, a microprogrammable 16-
bit bipolar microprocessor whose
100 nanosecond microcycle bit
slice speed has been an attractive
calling card in recent years for
designers seeking maximum sys­
tem throughput. Most designers
using the 29116 haven't felt
compromised by power dissipa­
tion and supply requirements­
the tradeoff has been a fair one.

AMD is now at it again, but
in addition to bipolar speed,
AMD's latest chip set features
an open 32-bit wide "building
block" register file/ ALU archi­
tecture that lends itself to unique
general purpose implementa­
tions, freeing you from cast-in­
silicon approaches.

Targeting designers looking
for blazing speed for projects like

parity-equipped fault tolerant
processors, advanced graphics
systems, image processors, large
register file based RISC ma­
chines, and high-through pu t
simulators, AMD has just an­
nounced a "superset" of the flex­
ibility of the venerable 29116.
This first ECL-internallTTL-I10
32-bit architecture is the 29300
Family.

Partitioned for performance
into five individual bipolar de­
vices, the 29300 offers a one-chip
ALU with access to three 32-bit
buses. You, as a designer, can
thus arrange your own unique
system as you see fit. The 29300
busing provides a "flow through"
architecture and virtually unlim­
ited bus accessibility and register
file expansion. No bidirectional
busing is used, and apparently
AMD chip designers were not
concerned with conserving pack­
age pins.

An all-important orthogonal
instruction set facilitates struc­
tured micrprogramming, permit­
ting the machine to execute a
number of functions on each mi­
crocycle in a regular symmetric
way. Pins are available to tell
whether an operation is byte
width or a 16-, 24-, or 32-bit op­
eration. No coding changes are
required to perform at the byte
or at the 32-bit level. The com­
piler is therefore very easy to
generate, without exception han­
dling complexities; a high level
language interface is thus a
"clean" one.

All instructions execute in sin­
gle machine cycles. During one
such cycle a 29300 system can
do as much as it would take six
or seven cycles to perform in one
of today's MOS machines. For
example, a shift and rotate could

NOVEMBER 1984

Reprinted with permission from Hearst Business Communications, Inc., November 1984, Integrated Circuits, ali rights reserved.

7

1
Am29331

16-BIT
SEQUENCER

f16
MICROPROGRAM

CONTROL MEMORY

PIPRINE REGISTER

~ L-
CONTROL
SIGNALS

be combined with 10gical-ORs,
something a 68020, even with its
on-chip cache, would need mul­
tiple cycles to perform.

Functionally, the 29300-fam­
i1y is horizontally partitioned to
provide faster processing than
previous vertically partitioned
bit-slice approaches. Five bipolar
VLSI circuits are to be introduced
between now and next summer.
AMD has already seen first sili­
con on one of the elements, a 32-
bit math processor.

The five Ies are: a 32-bit arith­
metic logic unit, dubbed the Am-
29332; a four-port dual-access
64-by-18 register file-the Am-
29334; the aforementioned high
speed floating point processor,
the Am29325; a Type Am29323
32-bit parallel multiplier with
two Read and two Write ports;
and lastly, a Type Am29331 16-
bit microprogram sequencer.
Let's take a look at each.

INTEGRATED CIRCUITS MAGAZINE

Am29332
32-BIT ALU

Am29325 32-BIT
FLOATING POINT

PROCESSOR

The 29332 arithmetic logic
unit (ALU) is a 32-bit wide non­
slice three bus Ie that allows in­
tegration of functions that nor­
mally don't slice. Examples of
these include shifters, priority
encoders, and mask generators.
Instructions are tailored to take
advantage of these internal
blocks (offering field logical op­
erations or concatenation across
word boundaries).

The Heart of the System

Cycle time for all 29332 ALU
instructions are equal. Pipelined
registers are avoided so that in­
dividual designers can build-in
pipelining or not, according to
their own schemes, paying no
penalties for branching. The
three bus architecture also allows
ready design of parallel and re­
configurable architectures. The
off-chip register file ensures un­
limited expansion and regular
addressability.

8

Am29323
32 X 32 PARALLEL

MULTIPLIER

The 29332 also includes a
unique 64-bit in/32-bit out fun­
nel shifter block. It allows n-bit
shift-up/ down as well as a 32-
bit barrel shifts (see Integrated
Circuits Magazine, Jan.lFeb. '84,
page 34). The funnel shifter also
permits 32-bit field extraction in
conjunction with the mask gen­
erator. These unique functions
can be combined with all logical
instructions within the same cy­
cle and with no increases in cy­
cle time.

Shift control for the above
functions can come from an ex­
ternal source or from the internal
status register (generated on a
previous instruction)-a useful
feature for logical operations be­
tween non-aligned variable­
length fields. It can also be used
for floating point normalization.

Use of internal position and
width status register fields can
save eleven bits of microcode
width. As mentioned previously,

NOVEMBER 1984

In evaluating the new AMD
29300-family architecture, it
may pay to look at some of the
competitive devices recently
introduced by other IC ven­
dors. For example, Texas In­
struments has been expanding
their low-voltage high speed
small-transistor advanced
Schottky (AS) bipolar line to
include a 20 MHz 8-bit slice.

Their 74AS888 features a
parallel 8-bit ALU with ex­
pansion inputs and outputs, a
16 x 8 register file, and handles
bit, byte, and word length op­
erations. When used with their
new 25 nanosecond 74AS890
microinstruction sequencer,
architectures can be built with­
out limit (i.e. 64-bits wide).

The 74AS890 controller has
an address width of 14-bits,
and can thus address up to
16,384 words of microcode.
These ICs are designed to
implement systems with nar­
row microcode word widths
and very high throughput, and
as such, should compete fav­
orably.

Also in the realm of ALUs,
but in MOS technologies, Ana­
log Devices (Norwood, Mas­
sachusetts) has recently an­
nounced their 16-bit Type
ADSP-1201. This device, as
the name suggests, is targeted
at digital signal processor
(DSP) designers. Similarly,
Weitek, of Santa Clara, Cali­
fornia, introduced an NMOS
two chip set early this year;
their 32-bit data path Type
WTLl032 multiplier and
WTL1033 ALU.

Both Weitek's and Analog
Devices' ICs, while excellent·
for DSP applications, are
somewhat limited for non-DSP
circuits because of their exten­
sive pipelining. Both include
registered inputs and outputs,
thus they both require more

INTEGRATED CIRCUITS MAGAZINE

A LOOK AT COMPETITIVE ALUs

than one cycle to get results
"off" the chip. Operands are
entered, and the results taken,
from the Weitek chip in about
125 nanoseconds, for example.

The ADSP-1201 also in­
cludes a single port 8-word
register file in each data path,
however this precludes expand­
ability. The chip does include a
barrel shifter, but use of the
shifter and the ALU com­
binatorially in the same cycle
isn't possible.

In contrast, 29332 ALU de­
signers avoided the use of
pipelining. There are no built­
in penalties for branching. The
simplicity of the three-bus
ALU should also allow very
easy implementation of parallel
or reconfigurable architectures.

INST - -'-I~

HOLO --+I

CPtJ:J;>---+I

WIDTH --,L..-l
INPUT

POSITION -I---.L-I
INPUT

9

INSTRUCTION
DECODE

STATUS

Another consideration in the
comparison: the 29332's off­
chip register file allows unlim­
ited and regular addressability.
In contrast, the ADSP-1201
has a single port eight-word
register file in each input data
path. These are not expandable.

The 29332 supports one-,
two-, three-, and four-byte
data for arithmetic and logic
functions as well as multipre­
cision arithmetic and multiple­
bit shift operations. Neither
Analog Devices' nor Weitek's
ALUs support all data types for
arithmetic operations. Neither
can they support field logical
operations as used in graphics.

P A PB DS

32

y PY

NOVEMBER 1984

The vanguard of the 29300
family is the 29325 floating

point processor. Here's a photo-
micrograph of first silicon.

the 29332 also supports one-,
two-, three-, or four-byte data as
well as multiprecision arithmetic
and multiple bit shift operations.

For logical operations, the
29332 can accommodate variable
length fields up to 32-bits. When
fewer than four bytes are selec­
ted, the un selected bits are
passed to the destination without
modification. Support of all data
types is highly important for
arithmetic operations; field logi­
cal operations are very necessary
for applications such as graphics.

Support is also provided for
two-bit at a time modified
Booth's algorithm multiplication
and one-bit at a time divide with
both signed and unsigned in­
tegers. Parity checking on data
inputs and generation on out­
puts, plus master/slave fault de­
tection enhances applicability in
fault tolerant systems.

Separate Register File

The Type 29334, the 20 nano­
second access time RAM register
file chip, supports these parity
equipped designs. A byte parity

INTEGRATED CIRCUITS MAGAZINE

storage feature, with a width of
18-bits, provides consistency
with the ALU for parity check
and generation. No other multi­
port register file presently on the
market offers this parity storage.

The 29334, with its two Read
and two Write ports, can read
and write simultaneously on
both. It is cascadable to support
wider word widths or to form
deeper register files, or both. You
can use multiple 29334's in an in­
terleaved configuration, or you
can build one file as high and as
wide as you like. Write enable
timing and multiplexer selection
are derived from a single-phase
clock; the MUX eliminates one
"layer" of I/O delay. Also, indi­
vidual byte write enables allow
choice of either an 8- or 16-bit
data interface.

Math Chip Here and Now

The single-chip 144-pin Type
29325 floating point processor­
the first VLSI family member to
emerge from fab-performs very
fast 32-bit single precision addi­
tion, subtraction, and multiplica­
tion. It conforms to the proposed
IEEE P754 standard and also to
Digital Equipment Corporation's
(DEC) format.

Options for conversion be­
tween the 32-bit integer format
and floating point are available,
as are operations for converting
between IEEE and DEC. Execut­
ing all instructions in a single
cycle, the 29325's throughput
equates to 8 MHz, regardless of
the algorithm.

The 29325 features three 32-
bit wide non-multiplexed buses
for high I/O bandwidth. The use
of two 32-bit operand feedfor­
ward data paths on-chip support
accumulation operations, includ­
ing sum-of-products and New­
ton-Raphson division. All buses
are registered and each has a
clock enable. Registers can be

10

independently transparent to
eliminate unwanted pipelining if
desired. Software synchroniza­
tion of pipelining is not needed
because there are no multi-stage
pipeline structures.

Go Forth and Multiply

Although the Type 29323
multiplier chip is still in the de­
sign stage, and no working sili­
con has yet been seen, AMD chip
designers are confident that the
device will be able to perform a
32 by 32 multiply in only two cy­
cles. They're hoping to achieve
an 80 nanosecond clock-to-clock
multiply time.

With two 32-bit input and one
32-bit output ports, there is no
need to multiplex operands.
The chip will be controlled by
only one clock with individual
register enables, thus leading to
simple timing requirements.
Dual input port registers will en­
able multi precision multiplica­
tion (a 32-bit multiply will occur
in one cycle; a 64-bit in four).

Like the floating point chip,
the 29323 multiplier's registers
can be made independently
transparent tc eliminate unwan­
ted pipeline delays in non-pipe­
lined systems. A master / slave
mode allows two 29323'5 to op­
erate in parallel. A parity check/
generate feature will catch inter­
device errors.

Advanced Program Control

The remaining chip in the
29300-family will be the dual
bus 29331 microprogram se­
quencer. Controlling the se­
quence of microinstructions
stored in microprogram memory,
the 29331 aids structured micro­
programming, handling se­
quential execution, branches,
subroutines, and loops. It can ac­
cess up to 64 Kwords of micro­
code, and integrates otherwise
external critical-path conditional

NOVEMBER 1984

test logic into internal high speed
gates to improve microcycle time.
There is no branching penalty.

The 29331 generates inequal­
ity evaluation branch conditions
from four ALU status bits. It fea­
tures an eight external-test-con­
dition multiplexer plus parity
control. An address comparator
allows breakpoint in the micro­
code for debug or for gathering
run-time statistics. This latter
feature is something AMD has
identified that most systems
builders want but, so far, no ven­
dor has implemented in silicon.

Other 29331 features include
four sets of 4-bit multiway in­
puts to implement table look-up
or to use external conditions as
part of a branch address, master /
slave error checking for parallel
sequencer operation, real-time
interrupt support, trap handling
at any microinstruction bound­
ary, and a 32-level stack.

INTEGRATED CIRCUITS MAGAZINE

The latter provides the ability
to support interrupts and loops
as well as subroutine nesting.
The stack can be read to support
diagnostics or to run multi-task­
ing at the micro-architecture lev­
el. The chip's instruction set is
designed to resemble high level
language constructs.

Development Support
AMD expects most customers

will use Tektronix, Hewlett­
Packard, or AMD development
systems for microcode develop­
ment, and AMD is introducing
"M29" software that will run on
VAX-size mini.

M29 uses a description lan­
guage that can describe a variety
of architectures. It consists of
three programs: a microinstruc­
tion definition program, an as­
sembler, and a relocation linker.

The definition program creates
a file that describes each micro-

11

instruction field by field, defin­
ing its name and length, its fields
and variations in format, and al­
lowable values for each field.
The file allows the assembler to
be retargeted to support many
different instruction formats.

The assembler allows you to
create microcode in several styles
depending on the amount of ef­
fort invested in the design of
macros. The linker for the as­
sembler is used to relocate as­
sembly modules and link them
together. Its output can be loaded
into a writable control store or
burned into PROMs.

For more details call AMD at
408-732-2400, or use the Reader
Service card. -

NOVEMBER 1984

32-Bit ICs Enhance Array
Processor Performance
by Dave Wilson, Executive Editor

F uture high performance proces­
sors/controllers require faster

processing rates, higher machine
densities, and greater system reliability.
The need for virtual memory support, in­
creased memory bandwidth and im­
proved precision means a growing de­
mand for 32-bit performance. Advanced
Micro Devices' (Sunnyvale, CA) Am-
29300 family has been developed to ad­
dress these needs in general purpose
computation, intelligent peripheral con­
trol, and array and digital signal process­
ing applications.

The Arn29300 family evolved from the
industry standard Am2900 bit-sliced
family. A great number of the functional
enhancements are the result of user feed­
back from existing Am2900-based de­
signs. On the other hand, the Am29300

DIGITAL DESIGN. DECEMBER 1984

family has been designed from the ground
up for higher performance and architec­
tural flexibility. The Am29300 devices
have internal ECL circuitry for speed, yet
maintain TTL compatible inputs/outputs
for ease of interface. A 32-bit Am29300
microprogrammed system has a system
microcycle time of70 to 80 nsec. In addi­
tion, the devices have regular and or­
thogonal instruction sets and contain
built-in primitives to tackle crucial
system issues such as fault tolerance/
detection.

AMD offers several support chips for
Am29300-based designs. For instance,
systems requiring a 32-bit data path can
be configured with the following devices:
the Am29332 Integer Processor, a 32-bit
arithmetic/logic and shift unit with built­
in support for variable byte and bit field

Photomicrograph of AMO's 29325 floating
pOint processor.

data; the Am29334 Register File, a true
dual-ported register file which allows
simultaneous read and write accesses,
organized as 64 words by 18 bits; the
Am29323 Parallel Multiplier, a 32 x 32
parallel multiplier capable of multiple cy­
cle expansion to 64 x 64 and 128 x 128
without the use of external logic; and the
Am29325 Floating Point Processor,
which performs single cycle addition,
subtraction, multiplication and conver­
sions, using either the single precision
IEEE or DEC format. Each of the above
devices can be used in conjunction with
or independent of the others. These de­
vices can be configured in a variety of
ways to tailor them to a specific applica­
tion. All of the data path elements have
single cycle instructions. The
microinstructions are typically supplied
by the control path. The key control path
element is the Am29331 Microprogram
Sequencer which supplies the next ad­
dress to the control memory. The 16-bit
Am29331 is also capable of handling in­
terrupts or traps at the microinstruction
level.

Historically, the Arn2900 devices have
been partitioned vertically, combining
register file and ALU in a single package.
The Arn29300 devices, however, are par­
titioned horizontally, so that the register
file is separated from the rest ofthe data
path elements. The functional partition­
ing has two advantages. First, it allows for
an easily expandable register file space.
Second, it also enables arithmetic ac­
celerators to add to the data path.

A major disadvantage of a bit-sliced ar­
chitecture is the time lost in transmitting
carries from one chip to another. To avoid
this, the Arn29300 family arithmetic ele­
ments are constructed with full internal
32-bit data paths. Although the ALU has
limited carry capability for cascading, it
will normally perform multi-precision
expansion through multiple cycle opera-

Reprinted with permission from Digital DeSign, Vol. 14, No. 11; copyright Morgan-Grampian Publishing Company, November 1984.

12

Am29J300
Dual
Acceas
RAM

tions. The other data path elements use
this scheme exclusively.

A second benefit of the full 32-bit data
path elements is that they can include
functions not easily sliced. Two classic
examples of this are shift arrays and
multipliers. Both of these require an
unacceptable amount of information to be
transferred between slices. Other func­
tions, such as prioritization and mask
generation for byte and word operation,
while feasible, expand clumsily. All these
functions are provided in the Am29300
family, either in the ALU, or in the 32-bit
multiplier.

Three-Bus Flow
Through Architecture
In order to fully exploit the 32-bit data
path devices, it is necessary to provide
adequate data transfer bandwidth. In the
Arn29300 family this is achieved through
the use of a three-bus architecture. The
Am29334 Register File is a true two­
ported file, allowing simultaneous access
from each port. Output latches are pro­
vided to allow read and write operation
within a single clock cycle. Each of the
data path elements has two 32-bit oper­
and input buses which can be sourced
from the register file. The data path
elements also have a 32-bit result bus
which can return data to one input of the
register file. With this organization, a
three-address register to register opera­
tion may be completed within a single
clock cycle.

Two-register files may be used to
achieve still higher bandwidth. Connect­
ing the input ports in parallel, and writing
duplicate data into the two files, allows
four operands to be sourced simultane­
ously from a single database. Two results
may also be written into the file simulta­
neously. This provides adequate data

Am29J3-4
Dual
Access
RAM

Figure 1: RAM with 4
read and 2 write ports.

transfer for two groups of arithmetic
elements to operate concurrently (Figure
1). The flexibility of this three-bus archi­
tecture also allows the use of these parts
in other configurations. In a signal or ar­
ray processing application, the multiplier
and ALU may be placed in series rather
than parallel. This provides a "free
operand," allowing the three-operand
summation of products operation to pro­
ceed at maximum speed.

The cycle time of a microprogrammed
system is dependent on both the control
path (i.e., sequencer and microprogram
memory) and the data path (i.e., register
file and ALU). Traditionally, the system
bottleneck has been the control path,
especially the timing paths associated
with conditional branching. The 16-bit
Arn2933l Microprogram Sequencer has
been optimized for speed, so that the data
path and control path timing are balanc­
ed. The previously external condition
code multiplexer, test logic generator and
polarity control logic (usually the system
critical path), have been integrated on
chip. Moreover, the Arn29331 has several
built-in features which enable it to res­
pond to external stimuli with minimum
latency. The sequencer can perform a
16-way branch, dependent on the simul­
taneous occurances of four external test
conditions. The Arn29331 Microprogram
Sequencer can also handle interrupts or
traps at the micro-level.

The system ARM concept (Availabili­
ty, Reliability and Maintainability) is
becoming increasingly important. The
Am29300 addresses the problem of fault
detection at the device level by a combina­
tion of two techniques - parity and
master/slave. Parity at the byte level is
generated on the 32-bit result bus of the
data path elements, stored in the Arn29334
Register File, and checked again going into

13

any of the operand buses of the data path
elements. Thus any interconnection failure
in the data bus can be detected. The choice
of even parity scheme also allows detec­
tion of an open TIL bus which defaults to
high impedance all "ones" state, an error
condition. For functional verification, a
master/slave mode of operation permits
two units to be connected in parallel, with
one unit actually performing the computa­
tion and the other checking the results on
a cycle by cycle basis. The slave unit
therefore veri fies correct operation of the
master. In addition, the master unit chec ks
its internal result with the data on the output
bus to ensure that no other device is driving
the external bus when it is not supposed
to be. Any fault detected can trigger an in­
terrupt at the microinstruction level. Unlike
previous redundant schemes, no specializ­
ed software is required. No system degra­
dation results from the communication be­
tween the redundant functional units. This
combination of parity checking and master/
slave operation, which uses cost-effective
hardware, rather than expensive software,
is the key to future redundant system de­
sign.

The functional and performance require­
ments of a general purpose supermini­
computer and a digital signal processor are
vastly different. Yet with functional par­
titioning and a simple three-bus archi­
tecture, the Am29300devices are suited
to address the needs of a diverse spectrum
of applications. Figure 2 depicts an exam­
ple of a microprogrammed supermini built
out of Am29300 components. The data
path consists of the Am29332 Integer Pro­
cessor, the Am29323 Parallel Multiplier
as an accelerator, and the Am29334
Register File. In this configuration, address
calculation and data computation are per­
formed in series. Alternatively, the
Arn29334 can be paralleled to yield effec­
tively a six-ported register file, allowing
four read accesses and two write accesses
per microcycle. Another Am29332 can be
dedicated to perform address computation
concurrent with the normal ALU execu­
tion, sharing the register space. With a 70
to 80 nsec microcycle time, a pro­
cessor/controller subsystem capable of
several times the performance of a typical
supermini can be built with the Arn29300
parts, occupying far less board space and
dissipating significantly less power.

Figure 3 is a block diagram of a small
array processor using the Am29325. A
high-speed multi-port memory is used to
provide storage for operands such that they
may be accessed in simultaneous pairs.
These operands may originate in the data
memory, or may be intermediate results

DECEMBER 19B4 • CIGITAL CEBIGN

Confrol_-----------r------_+i

CIOCk~CIOCk
~Control

from the processor. One of these operands
may be replaced with a value drawn from
a non-volatile coefficient store.

The array processor is microprogram
controlled, with memory addresses being
derived directly from the microcode. This
is probably inefficient for large programs.
and some form of microprogammed ad­
dress generator would need to be added.
The interface to the host processor is
deliberately undefined, as this is user
dependent.

A~ a benchmark, this processor can per­
form FFT butterflies in the canonical time
of 10 cycles. At a 100 nsec cycle time, this
permits one butterfly every I p.sec, or a
1024-pt complex transform in 5.12 msec.
A simple modification to the architecture
allows a second Am29325 to be incorpo­
rated to give a complex arithmetic pro­
cessor. This doubles the throughput for
the FFT, reducing the computation for
the 1024-pt transform to 2.56 msec.

While the Arn29325 only provides sin­
gle-precision floating point operation,
the Am29300 family also provides bus­
compatible devices which may be used to
enhance the capabilities of the array pro­
cessor described. The Am29332 Integer
Processor offers a wide range of arithme­
tic. logic and shift facilities. This device
may be operated with a reduced width
data path. allowing words of I to 4 bytes.
The internal architecture is designed for
efficient programming of floating point
operations. and may therefore be used to
support the Arn29325 with double-preci­
sion operations. To assist in double-pre­
cision floating point multiplication. or
for integer multiplication. the Am29323
32-bit Multiplier provides 32 x 32-bit

multiplication in a single cycle, and has
internal facilities for multi-cycle expan­
sion to 128 x 128.

These additional arithmetic elements
have the same 32-bit, three-bus architec­
ture as the Am29325. This allows them to
be added in parallel. The routing of
operands to the appropriate arithmetic
clement is a simple microcode task.

The horizontal partitioning of this new
family of parts has resulted in a number

Microcode
Memory

(Am27S45
Register PROMs)

Control.
Addresses

Figure 3: Am29300-based array processor.

14

Figure 2: Am29300-based supermini emu­
lation.

of benefits. First, the user gains the flex­
ibility of adding storage clements to two
uncommitted output buses from the pro­
cessor. Second, more power budget is
available for the register file m~king it
faster and biggerthan if it had been in the
processor chip. The family addresses a
number of crucial system issues such as
fault detection, support of high-level
languages in systems programming and
large register file-based architectures like
RISe. cc

References:
32-Bit Building Blocks for High Per­
formance Processor/Controller, Paul
Chu, Advanced Micro Devices, Sun­
nyvale, CA

A Very High Speed Floating Point Pro­
cessor, 8J. New_ Advanced Micro
Devices, Sunnyvale, CA.

Four-Port
Register

File
(2 x Am29334)

Am29325
Floatrng POint

Processor

FO·31

DECEMBER 19B4 • OIGITAL OESIGN

6 &<

DESIGN ENTRY

Microprogrammable chips
blend top performance
with 32-bit structures

Broken down into 32-bit functional blocks instead
of being sliced into multiple-bit sections,

five VLSI bipolar chips match a supermini's speed.

D
,·· .. esigners of systems and subsystems for
, ;. high-speed computation, intelligent
',... . peripheral control, and array and digital

signal processing typically need higher per­
formance than standard microcomputer parts
can deliver. The required precision, speed, and
virtual memory support has to some degree
been supplied by dedicated VLSI components
that are customized for particular applications.
Yet an overwhelming need still remains for a
set of building blocks that can bring extremely
high performance to a large assortment of ap­
plications.

A new approach extends the bit-slice concept
to 32 bits and also satisfies system designs that
require cycle times of less than 100 ns. With a
family of five VLSI chips, designers of micro­
programmed systems can count on cycle times
of 70 to 80 ns, using merely a handful of com-

Paul Chu and Bernard J. New
Advanced Micro Devices Inc.

Paul Chu is now department manager of program­
mable processors in the product planning division of
Advanced Micro Devices in Sunnyvale, Calif He holds
several patents for microprogrammable devices and
has a BSEE and an MSEE from Stanford University.
As product planning manager for array processors at
AMD, Bernard J. New is responsible for conceiving
and defining arithmetic computing devices. The holder
of a BSc (Hons) in electronic engineering from
England's University of Birmingham, New has two
patents on A m29500 products.

ponents. The building blocks for 32-bit systems
functionally partition the chips and separate
the register file from the rest of the data path.

The following two articles first explore the
key members of the Am29300 family and then
focus on a floating-point processor, which is the
first chip scheduled for sampling. Details are
'given on how to use the chip and other devices in
the series to build a fast Fourier transform
computer, as well as more general-purpose dig­
ital signal-processing circuits.

The Am29300 family addresses the problem
of fault detection through an interlocking
checking scheme-parity and master-slave.
Byte parity is generated, stored, and then
checked on all data-path elements as a means of
detecting interconnection failures. Moreover,
to verify certain functions, the master-slave
operating mode permits two units to be
connected in parallel, with one unit actually
handling the computation and the other check­
ing the result cycle by cycle.

Detecting a fault triggers an interrupt at the
microinstruction level. Unlike previous redun­
dant schemes, no specialized software is re­
quired. Furthermore, communication among
the redundant functional units causes no
system degradation.

The five chips form a strong foundation for
any system designer's work. For instance, a
I6-bit sequencer can handle interrupts and
traps at the microinstruction level. There is

Electronic Design' November 15, 1984

Reprinted with permission from Electronic Design, Vol. 32, No. 22; copyright Hayden Publishing Co., Inc., 1984.

15

DESIGN ENTRY

Microprogrammable 32-bit chips

also a combined ALU and shifter that inter­
nally supports variable byte and bit fields. To­
gether with the ALU-shifter chip, a true dual­
port register file, organized as 64 words by 18
bits, can build a basic system. The register file,
designed for simultaneous read and write ac­
cesses, is separated from the data-path ele­
ments, thereby avoiding the problem of ad­
dressing an internal register file differently
from external memory. The benefits of that
separation are uniform register addressing and
unlimited depth expansion.

Two accelerator chips-a floating-point
processor and a parallel multiplier-can be
added to the basic system to raise the number of
functions and cut processing time. The 32-by-
32-bit parallel multiplier can, on successive cy­
cles, expand to 64 by 64 or 128 by 128 bits, with-

out help from external logic. For its part, the
math chip can tackle single-cycle addition, mul­
tiplication, subtraction, and conversions-all
in single-precision IEEE or DEC formats.

Becaus~ of functional partitioning, a three­
bus flow-through architecture was chosen as
the data path. For maximum bus accessibility,
all data-path elements-the integer processor
and the parallel multiplier, for example-share
two operand and one result bus. The flow­
through architecture not only transfers data
extremely quickly but also avoids the complex
timing control needed to turn around bidirec­
tional buses. Above all, the simplicity of the
three-bus architecture allows these com­
ponents to be configured in a variety of ways to
optimize micro-architectures for different
jobs.

Bipolar building blocks
deliver supermini speed
to microcoded systems

/f.CMOS processes start to encroach on the
performance of bipolar circuits, bipolar
technology is taking the next step to

keep itself in the lead for the highest speed
systems. A family of five bipolar VLSI com­
putational circuits-fabricated with a scaled,

Dhaval Ajmera, 01e Moller, and David Sorensen
Advanced Micro Devices Inc.
Since the beginning of last year, Dhaval Ajmera has
been a design engineer in product planning at Ad­
vanced Micro Devices in Sunnyvale, Calif. He holds
an MSEE from the University of Florida.

0le Moller is also a design engineer in AMD's product
planning operation. He holds an MSEE from the
Technical University of Denmark.

Another engineer in product planning, David Sorensen
specializes in programmable processors. He holds a
BSEEfrom Arizona State University.

Eleclronic De.ign • November 15. 1984

ion-implanted, oxide-isolated process and three
levels of metal interconnections for high den­
sity-provides a set of functionally partitioned
microprogram mabie VLSI building blocks for
systems such as superminicomputers, digital
signal processors, high-speed controllers, and
many others. The modularity of the system
functions ensures that the chips can meet the
performance requirements of a general­
purpose superminicomputer, as well as those of
an image processor, which are radically differ­
ent from each other.

Included in the family are three parts that
form the core of a general-purpose micro­
programmed system: a 32-bit arithmetic and
logic unit (ALU), a 16-bit microprogram
sequencer, and a 64-by-18 four-port, dual­
access RAM. And, for systems that do a large
number of multiplications or floating-point

16

operations, two performance accelerators-a
32-by-32-bit multiplier and a 32-bit floating­
point processor will be available to tie onto the
buses (see Design Entry, p. 246).

The chips offer high performance, a flexible
architecture, and microprogrammability, and
even address the problem of fault detection for
data integrity. These circuits can thus support
an extremely fast microcycle-about 80 ns
(projected). That high speed is the result of
several design considerations: Each part is de­
signed internally with emitter-coupled logic
but has TTL-compatible inputs and outputs.
Second, more power was allocated to the logic
circuits used in the critical paths than for logic
in the noncritical paths on each chip, to max­
imize the speed. Third, by integrating highly
specialized logic on chip it is possible to execute
very complex operations in a single cycle.

The microprogrammability of this chip set
offers several benefits to the system designer.
It provides a structured and systematic ap­
proach for implementing the control mech­
anism of the system, and like the bit slices, it al­
lows the instruction set to be customized to suit
the designer's application (see "Architectural
Limitations of Bit Slices," opposite). And
several versions of the initial design can be
tested, or current designs can be enhanced
simply by changing the microcode.

Thus, the functionally partitioned Am29300
family overcomes all of the performance penal­
ties of bit-slice structures, while maintaining
its ability to form a wide variety of architec­
tures. Even though the chips are designed to
work together as a family, each can also be used
independently in an application that requires
its unique capabilities.

Pipelinos are out

The flexibility of the Am29300 family is
largely due to a decision not to place pipeline
stages within the functional blocks. Not includ­
ing the pipeline registers inside incurs some
off-chip delays. This is a small price to pay to al­
low system designers to optimize the pipeline
structure for their individual needs. Moving the
register file out of the functional block for the
ALU also slows things down. At the same time
it does not force a fixed register size on the user,
enabling systems to be created with dedicated

17

registers, register windows, or register banks­
all with neither fixed depth nor width.

Additionally, the high level of integration
helps eliminate the propagation delays often
encountered when signals must go from chip to
chip. The use of VLSI also resul ts in fewer parts
at the system level, which, in turn, conserves
power (usually many watts in the case of bi­
polar systems) and board space. Lastly, a com­
plete 32-bit solution is provided for applications
that require increased precision for arithmetic
operations, high memory bandwidth, and a

Architectural limitations
ot bit slices

The limited performance of bit-slice circuits can
be improved by increasing the width of the slices.
That higher level of integration results in higher
performance by reducing the number of off-chip
delays while preserving the flexibility that has
made bit-slice systems so attractive. However, as
higher levels of integration become possible, two
inherent problems with bit-slice architectures
will limit their ultimate speed. The first involves
the off-chip delays inherent in cascading. For ex­
ample, the carry chain is usually the slowest path
of an ALU. Breaking this chain between slices in­
troduces off-chip delays into the critical path.

The second problem is that the functional needs
of many systems do not slice well. Barrel shifters
and prioritizers are especially difficult to cascade.
Unfortunately, the ability to perform N-bit shifts
and locate the position of leading Is are of greatest
importance in applications that require heavy
number crunching and manipulation of data
fields, such as image processing, graphics, data­
base management, and controllers. These are pre­
cisely the applications whose need for speed forces
the use of bit-slice devices. The system per­
formance is compromised not only because these
operations must be done bit by bit, but also be­
cause many high speed algorithms cannot be effi­
ciently implemented.

Electronic D •• ign • November 15. 1984

DESIGN ENTRY

Microprogrammable 32-bit chips

large addressing capability (4 billion bytes) to
support virtual memory systems (Fig. 1).

The performance of a system depends, not
just on its raw computing speed, but on its abili­
ty to respond to events such as interrupts and
traps. For example, the Am29331 sequencer re­
sponds to both interrupts and traps at the mi­
croprogram level very quickly, and its response
is completely transparent to the interrupted
microroutine. Also, the Am29332 ALU indirect­
ly supports the handling of these events by al­
lowing its internal state to be saved or restored.

The Am29332, a noncascadable 32-bit-wide,
ALU, provides fast number crunching, high
data transfer rates, and powerful bit-manip­
ulation capabilities. Intended to be used with
the Am29334 dual-ported RAM, which serves
as an external register file, the ALU has two

32-bit input buses (DA and DB) and one 32-bit
output bus (Y).

Internally, the device has a 32-bit data path
that interconnects its va.rious functional
blocks. These blocks include various shifters
and multiplexers, a mask generator, a funnel
shifter, the ALU proper, a priority encoder, a
parity generator and checker, a master-slave
comparator, and the status and Q registers
(Fig. 2). The ALU proper has three 32-bit in­
puts: R, Sand M. The R input comes from the
funnel shifter, the M input from the mask gen­
erator, and the S input from a variety of sources
-the DA or DB buses, status register, or the Q
register.

The power and flexibility of the Am29332
comes partly from its ability to perform oper­
ations on various data types. It can operate on

-----------------.------------Address

------'1~-----------+---....... --""'T'----- Dete

Am29323
32 X 32-blt
multiplier

or
Am29325

32-blt
floating-point

processor

1. A conventional CPU, built with Am29300 building blocks, forms the focal point of an
extremely compact system that cycles as fast as 80 ns.

Electronic D •• lgn • November 15. 1984

18

variable bytes, variable-length bi t fields, or sin­
gle bits. This is made possible by the internal
mask generator, which creates a 32-bit mask
for each instruction (with no time overhead).
The mask is used as an additional operand in
each instruction to allow the operation on only
selected data widths.

The type of mask generated depends on the
type of instruction. For instructions that oper­
ate on variable bytes (1, 2, 3 or 4 bytes) the mask
is a fence of Is (bit 0 aligned) for all low-order
selected bytes with a fence of Os for all high­
order un selected bytes. Instructions that oper­
ate on variable-length bit fields require a mask
that is a string of contiguous Is for all selected
bit positions and Os for all un selected bit posi­
tions. In cases where the field exceeds the 32-bit
boundary, the mask does not wrap around, thus

ce-y
Slave

INST

HOld

CP

allowing operation on a contiguous field across
a word boundary. For instructions that operate
on a single bit, the mask is a 1 for the selected bit
position and Os for the other unselected bits.

For most single-operand instructions, the
unselected bit positions pass the corresponding
bits of the operand unmodified. For most two­
operand instructions, the un selected bit posi­
tions pass the corresponding bits of the operand
unmodified on the DB input. Thus, for two­
operand instructions the mask allows the
merging of two operands in a single cycle. In ad­
dition to being used internally, the mask can be
sent out over the Y bus, permitting the gener­
ator to be used as a pattern generator for test­
ing purposes.

To speed various mathematical and logical
operations, many circuits have started to in-

2. To connect its various intornal functional blocks, the Am29332 ALU
employs a 32-bit bus. Among tho chip's major foatures are a 54-bit fun­
nel shifter, parity checking and goneration, and a basic 32-bit ALU that
has three input ports. Tho procossor also has threo 32-bit ports through
which it transfers data into and out of the chip.

Electronic O •• ign • November 15, 1984

19

DESIGN ENTRY

Microprogrammable 32-bit chips

clude a barrel shifter, which has an N-bit input
and an N-bit output. The barrel shifter would
be used to shift or rotate the operand either up
or down from 0 to N bits in a single cycle. Such
high-speed shifting is very useful in operations
such as the normalization of a mantissa for
floating-point arithmetic or in applications in
which the packing and unpacking of data are
frequent operations.

However, a more useful circuit is a funnel
shifter, which can be thought of as having two
N-bit inputs and one N-bit output. Just such a
circuit (with 32-bit-wide ports) was included on
the 29332. The circuit can perform all the oper­
ations of a barrel shifter with capabilities ex­
tended to two operands instead of one. In addi­
tion, it can extract a 32-bit contiguous field
across its two operands, a function very useful
in several graphics applications. And any of its
operations can be followed by a logical oper­
ation, with both completed in a single cycle.

Setting the priorities

Prioritization, useful to control N-way
branches, perform normalizations, and in
graphic operations such as polygon fills, can
readily be handled by the ALU chip. The built­
in priority encoder sends out a 5-bit binary
weighted code that signifies the relative posi­
tion of the most-significant 1 from the most­
significant bit position of the byte width se­
lected. That allows prioritization on either 8-,
16-,24-, or 32-bit operands. The priority encoder
output can be passed on to the Y bus or stored in
the status register.

If, for example, prioritization is used to nor­
malize a mantissa during a floating-point
arithmetic operation, it requires two cycles. In
the first, the mantissa is prioritized to deter­
mine the number of leading Os that need to be
stripped off. In the next cycle, the mantissa is
shifted up by the amount specified by the prior­
ity encoder output.

Relevant information for each operation per­
formed by the chip is stored in the 32-bit status
register after each microcycle. Each byte of the
status word holds different information. The
least-significant byte holds the position spec­
ifier. The next most-significant byte holds the
width specifier and three other bits that are
used to test the comparison of unsigned and

Electronic De.lgn • November 15, 1984

signed operands. The next byte contains the
Carry, Negative, Overflow, Link, Zero, M and S
flags: The M fla~ stores the r;t~l~ipli~r bit, f~r
multIply or the SIgn compare Ult lOf slgneu Ul­

vision, and the S flag stores the sign of the par­
tial remainder for unsigned division. The most
significant byte stores the nibble carries for
BCD operations.

The states of the Carry, Negative, Overflow,
Link and Zero flags are available on the status
pins, and the status multiplexer allows the user
to select either the status of the previous in­
struction (register status) or the status of the
current instruction (raw status) to appear on
the status pins. The raw status could be used to
update an external macro status register. This
also allows branching at.either the micro- or
macro-level.

The Q shifter and Q register are primarily
used to assemble the partial product or partial
quotient in multiplication and division oper­
ations. Variable bytes of the status and Q reg­
ister can either be loaded via the DA and DB
inputs or can be read over the Y bus. Thus sav­
ing and restoring of the registers allows effi­
cient interrupt handling after any microcycle.
It is also possible to inhibit the update of both
these registers by asserting the Hold pin.

Powerful and orthogonal instructions

The power of the ALU chip's instruction set
comes directly from the integration of several
functional blocks mentioned earlier. The com­
mands are symmetrical as well as orthogonal,
to make it easier for a compiler to generate effi­
cient code. Thus, any operation on the DA input
is also possible on the DB input, and each in­
struction is completely independent of its data
type.

Three-fourths of the instruction set consists
of variable byte-width (one, two, three or four)
operand instructions. The byte-width is se­
lected by two bits in the instruction. For these
operands, the instruction set supports all con­
ventional arithmetic, logical and shift oper­
ations. Arithmetic operations can be per­
formed on both signed and unsigned binary
integers.

Additionally, the instruction set supports
multiprecision arithmetic such as addition
with carrying and subtraction with carrying or

20

DESIGN ENTRY

Microprogrammable 32-bit chips

borrowing. For all subtract operations it pro­
vides the convenience of using borrowing in­
stead of carrying by asserting the borrow pin.
In this mode the carry flag is updated with the
true Borrow. To allow efficient execution of
macroinstructions the chip contains a Macro
mode pin. When the chip asserts this pin, it al­
lows the external Macro-Carry and Macro-Link
bits instead of their microcounterparts to part­
icipate in the operation.

InstruCtions that execute algorithms for the
multiplication and division of signed and un­
signed integers are multiple cycles are also pro­
vided. For multiplication, the circuit supports
the modified Booth algorithm, yielding two
product bits in one cycle. Both single-precision
and multiprecision division of signed and un­
signed integers are supported at the rate of one
quotient bit in every cycle.

Besides binary integers the instruction set
provides basic arithmetic operations for
binary-coded decimal (BCD) numbers. Byoper­
ating directly on the decimal numbers created

Error

3. To help enlure IYltem integrity, two Am29332
procellorl can be let for malter and Ilave oper­
ation. Both chipi perform the lame operation in par­
allel, and any diHerence in their relultl il flagged al
an error. The malter allo checkl itl internal relult
againlt the data on the output bUI to make lure
that no other device (such al device X) is turned on
at the lame time.

Electronic D.,ign • November 15, 1984

21

in most business applications, significant pro­
cessing time is saved by eliminating the need to
convert from binary to BCD and vice versa.
Also, the round-off errors involved in con­
verting from one base to the other are elimi­
nated.

The last group of instructions was created to
support variable-length bit fields (1 to 32) and
single-bit operands. The position and width of
the field can be specified by either the position
and width inputs or by fields in the status reg­
ister, thereby saving bits in the microcode.
Most of the time, the position and width are
determined dynamically. It is therefore diffi­
cult to supply them via the microinstructions.
For single bit operations only the position spec­
ifier is needed.

Bit-manipulation instructions include set­
ting, resetting, or extracting a single bit of the
operand or the status register. Logical oper­
ations on either aligned or nonaligned fields in
the two operands include OR, AND, NOT and
XOR. In the case of nonaligned fields it is as­
sumed that at least one of the fields is aligned to
bi t position o. It is also possible to extract a field
from one operand and insert it into another
operand or extract a field across two operands.

Enhancing system integrity

The growing need for data integrity has been
addressed at both the system and the chip level
by including hardware for fault detection. Dur­
ing calculations, byte-wide even parity is gener­
ated for the data result by the ALU and stored
with the data in the external RAM. Byte-wide
even parity is also checked at the ALU inputs
and any error is flagged.

Even parity is specifically used to check for a
floating TTL bus. Thus, all interchip connec­
tions are checked out. In addition, hardware for
functional verification is also provided on the
sequencer and the ALU functional verification
can be implemented by using two similar de­
vices in the master and slave mode (Fig. 3). In
that setup, both chips perform the same oper­
ation, with any difference in their outputs being
flagged as an error. The slave-mode chip's bidi­
rectional buses operate in their input mode, al­
lowing the master to compare its own internal
result with that of the slave on every cycle. Ad­
ditionally, the master checks the output bus to

DESIGN ENTRY

Microprogrammable 32-bit chips

make sure that no other device is turned on at
the same time.

As mentioned earlier, the ALU architecture
was designed to use an external register file.
Keeping the file external to the chip permits the
user to expand it to meet any system need. The
Am29334, a high-speed 64-word-by-18-bit dual­
access RAM, provides two independent data in­
put ports and two independent data output
ports (Fig. 4). Each port can be read from or
written to using the separate inputs and out­
puts. The two accesses are independent except
for the case when simultaneous write opera­
tions are done to the same word-in which case
the result is undefined. The read address inputs
and the write address inputs of each side are se-

WEAL WEOL

WEAH WEOH

WEAa WEoc
AWA Awo

A"" ARo

LEA LEo

aEA CEo

4. The dual-access RAM serves as an external reg­
ister file for the arithmetic processor chip. The
Am29334 holds 64 words, each 18 bits long. Two
chips are often connected to build a RAM block with
four data outputs, two data inputs, and six address
lines. Each port of the RAM can be independently
accessed to read or write.

Electronic O •• lgn • November 15, 1984

22

parate in order to save the cost and time delay
of external multiplexing between a read ad­
dress and a wri te address.

The word width of 18 bits allows the RAM to
store two bytes plus a parity bit for each. Each
side has separate write enable for the lower and
upper nine-bit bytes and a common write en­
able that also switches the address multiplexer.
The actual write is delayed internally to allow
the write address to set up internally before
writing starts.

It is possible to build a RAM with four data
outputs, two data inputs and six addresses by
using two dual-access RAMs and on each side
connecting the data input, write address and
write enables of one RAM in parallel with the
corresponding inputs of the other RAM. This
expanded RAM may be used in concurrent pro­
cessing applications in which an ALU and an
adder (which generates the address) do their
computations- this yields a result and an ad­
dress in parallel. The two values can then be fed
simultaneously to the multiport memory.

The sequencer controls the show

The cycle time of the microprogrammed sys­
tem is dependent on both the control path (Le.,
sequencer and microprogram memory) and the
data path (i.e., register file and ALU). Tradi­
tionally, the system bottleneck has been the
control path, especially the ciritical paths asso­
ciated with conditional branching. Special care
has been taken in the design of the Am29300
family to balance control and data-path timing.

A key device contributing to the improved
control-path timing is the Am2933116-bit mi­
croprogram sequencer. It is designed for high
speed, and that speed has been attained by the
elimination of functions that would slow down
the microaddress selection and by including the
test logic and the test multiplexer in the se­
quencer (Fig. 5). As in most previous generation
sequencers, the address register, the incre­
menter, the address multiplexer, the stack, and
the counter are standard functions. The se­
quencer has multiway branch instructions that
allow 1 of 16 consecutive addresses to be se­
lected as the branch target in a single cycle.

The address register in most other sequen­
cers is called a program counter, but this name
is not correct if a strict definition is applied. In

DESIGN ENTRY

Microprogrammable 32-bit chips

the Am29331, the incrementing counter is
placed after the address register, which thus al­
lows for the handling of traps. The stack stores
return addresses, loop addresses and loop
counts. It has 33 levels to permit the deep nest­
ing of subroutines, loops and interrupts. An
output, Almost Full (A-Full), indicates when 28
or more of the levels are in use.

Available for use in iterative loops, the
counter can be loaded with an iteration count at
the beginning of a loop, and the count is tested
and then decremented at the end of the loop.

The loop is terminated if the count is equal to
one; otherwise a jump to the beginning of the
loop is executed.

There are three buses that carry microad­
dresses. The bidirectional D bus can be con­
nected to the pipeline register, providing
branch addresses or loop counts, or used for
two-way communication with the data process­
ing part of the system. The A bus, called an al­
ternate bus, can be connected to a mapping
PROM to provide starting microaddresses for
instructions in a computer. The Y bus sends out

5. To aid in handling trap operations, the incrementer is placed aHer the address
register in the Am29331 microsequencer. Additionally, the chip has a 16-bit ad­
dress bus, which enables it to access up to 64 kwords of control memory and han­
dle interrupts and multiple-path branches.

Eleclronlc Design· November 15, 1984

23

DESIGN ENTRY

Microprogrammable 32-bit chips

selected microaddresses to the microprogram
memory and accepts interrupt or trap address­
es if interrupt or trap is employed.

Four sets of 4-bit multiway inputs provide a
simultaneous test capability of up to 4 bits.
And, one way to use those inputs would be to
decode mode bits in changing positions in mac­
roinstructions. The four select lines select 1
of 16 tests to be used in conditional instructions.
There are twelve test inputs. Four of these may
be used for C (Carry), N (Negative), V (Over­
flow) and ZJZero), generating internally the
tests C+Z, C + Z, N XOR V, and N XOR V +Z,
which are used for comparison of signed and
unsigned numbers.

Relative addressing was the only somewhat
useful function that was removed in order to
maximize speed. The sequencer supports inter­
rupts and traps with single-level pipelining, but
may also be used with two levels of pipelining in
the control path. It has a 16-bit-wide address
path and cannot be cascaded, which thus limits
the addressable memory depth to 64 kwords of
microcode. That, however, is sufficient for the
vast majority of applications-a typical
computer, for instance, that has a micropro­
grammed instruction set, might use only about
1 to 2 kwords. However, for systems in which
the microprogram is the sole program level, its
size is generally larger.

Microprogram interrupts supported

The Am29331 sequencer supports interrupts
at the microprogram level. Like polling, inter­
rupts handle asynchronous events. However,
polling requires explicit tests in the micro­
program for events, thus leading to long re­
sponse times, lower throughput, and larger mi­
croprograms. Interrupts, on the other hand,
have a response time equal to the cycle time of
the system (approximately 80 ns), measured
from the Interrupt Request input (INTR). The
sequencer accepts interrupts at every micro­
instruction boundary when the Interrupt En­
able input (lNTEN) is asserted.

An actual interrupt turns off the Y bus driver
and asserts the Interrupt Acknowledge output
(INTA), which should be used to enable an ex­
ternal interrupt address onto the Y bus, thus
driving the microprogram memory. The inter­
rupt also causes the interrupt return address to

Electronic D.aign • November 15, 1984

be saved on the stack; this permits nested inter­
rupts to be handled (Fig. 6).

The Am29331 is also the first sequencer that
can handle traps. A trap is an unexpected situa­
tion caused by the current microinstrudion,
which must be handled before the microin­
struction completes and changes the state of
the system. An attempt to read a word from
memory across a word boundary in a single cy­
cle is an example of such a situation. When a
trap occurs, the current microinstruction must
be aborted and re-executed after the execution
of a trap routine, which will take corrective
measures.

Execution of a trap requires that the se­
quencer ignore the current microinstruction
and push the trap return address-the address
of the ignored microinstruction-on the stack.
The trap address must be transferred onto the
Y bus at the same time. All this can be accom­
plished by disabling the carry-in to the incre­
menter (Cin) and asserting the Force Continue
input (FC) and the Interrupt Request input
(lNTR).

Also built into the sequencer is an address
comparator, which allows detection of break­
point in the microprogram. An output signal
from the comparator indicates when the con­
tent of the comparator register is equal to the
address on the Y bus. There is an instruction
that loads the comparator register from the D
bus and enables the comparator, which may lat­
er be disabled by another instruction.

Parallel microprocesses are useful when the
system must deal with peripheral devices that
are controlled at the microcode level. Normally
only one processor is present and it must be
time multiplexed between the concurrent oper­
ations that must be performed. When a process
is suspended its private state must be saved, so
that it can be restored when the process re­
sumes execution. That, in turn, requires that
the state of the sequencer be saved and re­
stored, or each process must have its own
sequencer that is active when the associated
process is active. The first approach is the least
expensive, but the second offers the advantage
of shorter response time, because no time is
spent on saving and restoring the state.

The Am29331 supports the first approach
with its bidirectional D bus, through which the

24

DESIGN ENTRY

Microprogrammable 32-bit chips

entire state, with the exception of the com­
parator register, can be sa ved and restored. The
sequencer also supports the multiple sequencer
arrangement, in which the three-state Y buses
from the sequencers are tied together driving a
single microprogram memory. One of the se­
quencers is active, while the remaining sequen­
cers are put on hold by asserting their Hold
inputs. The Hold input disables most outputs
(the D bus synchronously), disables the incre­
menter, and enables an internal Force Con­
tinue. This effectively detaches the sequencer

A : CALL C
A+l: ...

Stack
B : CONTINUE
B+l: ...

y

.-t1
B

from the system and preserves its state.
The sequencer has a 6-bit instruction input

that is internally decoded to yield a set of 64 in­
structions. There are 16 basic branch instruc­
tions, each in an unconditional version, a condi­
tional version, and a conditional version with
complemented test. In addition there are 16
special instructions like Continue and Push C
(push counter on stack). The branching instruc­
tions handle jumps, subroutines, various kinds
of loops and exits out of loops, and FC actually
overrides the instruction inputs with acontinue

y

4
B+l

A+l
slack

6. Because It can accept interrupts at any microinstruction boundary, the sequencer responds faster than
mast other microprogrammed systems. For example, while the instruction at point A in memory is being
executed, the sequencer is directed to point B. The only restriction on the programmer is that the first in­
struction of the interrupt routine cannot use the stack, since the interrupt return address is pushed onto it at
the start of the procedure.

Electronic O •• ign • November 15, 1984

25

DESIGN ENTRY

Microprogrammable 32-bit chips

instruction. FC is useful in field sharing and
support for writable microprogram memory.

The Am29331 is one of the few sequencers
where the ~lack i~ acce~sible from outside
through the bidirectional D bus. This indirectly
allows access to the whole state of the se­
quencer except the comparator register. This is
useful when testing the device, and during

system debugging, in which, for example, the
contents of the counter and the stack may be
examined and altered. By including the trou-

. bleshooting instructions in the microcode, the
sequencer may aid in debugging itself and the
rest of the system. The access to the state is also
useful for changing context or extending the
stack outside.D

Single-chip accelerators
speed floating-point

and binary computations

Complex multiplication or floating-point
mathematical operations are frequently
needed in most computer systems, but in

many cases, not often enough to warrant the
added cost of dedicating CPU hardware to the
computational job. To speed up the calcu­
lations, many systems, though, allow for accel­
erator boards or boxes that can perform such
operations at several megahertz speeds or
more.

Already, many silicon designers have devel­
oped chips to simplify the design of such sub­
systems-16-bi t parallel m ul ti pliers fabricated
in bipolar, CMOS or NMOS processes, and
single-chip or multichip floating-point pro­
cessors made with CMOS or NMOS have been

David Quong and Robert Perlman
Advanced Micro Devices Inc.

David Quong is a product planning engineer with the
digital signal processing and array processing group at
Advanced Micro Devices in Sunnyvale, Calif, He re­
ceived a BSEE from California State University in
Sacramento.

Robert Perlman is a senior product planning engineer
with the digital signal processing and array processing
group. He obtained a BSEE from the Rensselaer Poly­
technic Institute and an MSEE from the Johns Hop­
kins University, and has previously done design work
in airborne digital signal processing at Westinghouse.

Electronic D .. lgn • November 15, 1984

26

available for some time. However, they are low­
performance solutions to the problem, or in
some cases, have limited application since they
are intended for highly pipelined systems.

Now, the ability to handle 32-bit binary mul­
tiplication or 32-bit floating-point multiplica­
tion, addition or subtraction can be added to a
system with just a single chip. The Am29323 is a
32-bit parallel multiplier that accepts two
32-bit inputs and can deliver a 64-bit product in
a single clock cycle of 80 ns. Alternatively, per­
forming floating-point operations, the
Am29325 accepts two 32-bit inputs and delivers
a 32-bit result in less than 125 ns. It can operate
with numbers represented in either the IEEE
(P754) or Digital Equipment Corp. floating­
point formats and can convert numbers from
one format into the other.

Both chips are part of the just unveiled
Am29300 series of 32-bit computational ele­
ments (Design Entry, p. 230). The multiplier is
ideal for computer systems that do floating­
point operations only infrequently but must of­
ten perform high-speed integer calculations
such as those required in image manipulation.
The floating-point processor enhances systems
used for fast Fourier transform and scientific
calculations. Systems could even contain both
accelerators if a high-performance, general-

purpose system were built (Fig. 1).
To speed the flow of data into and out of the

chips, both circuits were designed with two
32-bit-wide input ports and one 32-bit output
port. But the similarities end there, since the
chips perform vastly different operations on
the data. A fairly straightforward design, the
multiplier uses a full Booth-encoded array to
deliver a 64-bit product to the output register
(Fig. 2). The output register feeds a multiplexer
that sends the result, 32 bits at a time, to the
output port.

Double-precision operations can be done
thanks to dual 32-bit input registers that are
multiplexed into the multiplier array. A 67-bit
partial-product adder allows new products to
be summed with the contents of the output reg­
ister. During this operation, the contents of the
output register may be scaled by 32 bits, if nec­
essary. Four partial products are formed and
summed, and a temporary register assists in
the scheduling of output transfers. The effec­
tive pipelining throughput in the double­
precision mode is one 64-bit multiplication
every four cycles. The accumulator can also
support 96- and 128-bit multiplications. How­
ever, for such operations, input data must be
repeatedly applied.

The input and output registers of the multi­
plier have independent control signals so that
they can be optimally timed in pipelined
systems. However, in unpipelined systems, the
registers can independently be made "trans­
parent" so that data encounters no delays when
entering or leaving the chip. Like the other
chips in the Am29300 family, the multiplier has
parity checking and generating circuits to en­
sure system data integrity. And, the circuit of­
fers a slave mode in addition to its normal
mode-if two chips are tied together to operate
in parallel with one set to operate in the slave
mode, the circuits will generate an error flag if
unequal results are obtained.

In the world of floating-point computations,
several single-chip units, designed to be gen­
eral-purpose math coprocessors for micro­
processor systems have achieved close to micro­
second operating speeds. However, to achieve
higher throughput rates, several recently an­
nounced two-chip sets have cut that speed by a
factor of 10, achieving data throughput rates of

27

10 MHz for pipelined operations. But, if oper­
ated in nonpipelined systems, these chips lose
considerable speed-often by a factor or two or
three-since data must ripple through the
stages of pipeline registers.

To cu t the da ta delays, the Am29325 took a di­
rect approach and eliminated all the pipelining.
I t is the first floating-point processor to contain
a 32-bit floating-point adder/subtractor, mul­
tiplier, and flexible 32-bit wide data path on a
single chip (Fig. 3). Additionally, support for di­
vision operations is included on the chip as well
as a status flag generator.

Fabricated with the IMOX-S bipolar process
and three levels of metal interconnections and

4·porl
regisler

file
(Two Am29334s)

1. The 32-bit multiplier and the 32-bit floating-point
processor can be used together in a system. Either
chip also functions without the other if just one of
the capabilities is needed.

Electronic D •• ign • November 15, 1984

DESIGN ENTRY

32-bit math accelerators

housed in a 144-lead pin-grid-array package,
the Am29325 can replace one to two boards of
SSI and MSI logic typically used in general­
purpose computers, array processors and
graphics engines, to provide high-speed float­
ing-point math capability. When used in con-

67

2. Surrounding the 32-by-32-bit multiplier array on
the Am29323 are multipliers for the two 32-bit input
buses, which permit 64-bit multiplications to be
done in just four cycles. The multiplier checks parity
on the input data and generates parity bits for the
output result.

Eleclronic O •• ign • November 15, 1984

cert, the on-chip functions will meet the com­
putational and data-routing needs of these and
many other applications.

Integrating these functions into a single de­
vice greatly reduces data routing problems and
minimizes processing overhead that would
otherwise be incurred when shuffling data on
and off the chip. The internal data path is
ideally suited for multiplication and accumu­
lation, Newton-Raphson division, polynomial
evaluation, and other often-used arithmetic
sequences. Placing the data path on chip also
dramatically reduces the number of les needed
to interface the device to the rest of the system.

The three-port floating-point arithmetic
unit at the chip's core can perform any of eight
instructions in a single clock cycle. The absence
of pipeline delay in the arithmetic unit means
that the result of an operation is available for
use as an input operand in the very next oper­
ation, a crucial feature when performing algo­
rithms with tight feedback loops. Instructions
and other operating modes are selected with
dedicated input signals, an approach ideally
suited to microprogrammed environments. The
device easily interfaces with a variety of 16- and
32-bit systems using one of three program­
mable bus modes.

Delving into the operation

A t the heart of the ari thmetic uni t are a high­
speed adder-subtracter, a 24-by-24-bit multi­
plier, an exponent processor, and other logic
needed to implement the floating-point
operations. Two input ports, Rand S, provide
operands for the instruction to be performed;
the result appears on port F. One of eight in­
structions is selected by placing a 3-bit code on
lines 10, II> and 12 , The first three instructions­
R + S, R - S, and R X S-operate on both input
operands; the remaining instructions need only
one input operand.

The fourth instruction, 2 - S, forms the core
of the Newton-Raphson division algorithm, in
which the quotient AlB is calculated by first
evaluating liB, then postmultiplying by A. The
reciprocal value liB is derived by using an ex­
ternallookup table to provide an approxima­
tion of liB; this approximation is refined using
the iterative equation:

Xn = Xn-I (2-Bxn-d,

28

DESIGN ENTRY

32-bit math accelerators

where Xn is the nth approximation of liB.
Once B and the approximation of liB are

loaded into the Am29325, the approximation is
refined using a sequence of R X Sand 2 - S in­
structions; no additional 110 operations are
needed for reciprocal refinement. The remain­
ing four instructions perform data format con­
versions. Instruction INT to FP converts a
32-bit, two's complement integer to floating­
point form, useful when processing data initial-

Ro-R" S,-S"

Port R Port S

Ftoating·point
arithmetic unit

(adder·multiplier)
and format converter

(lEEE-to-DEC and vice versa)
Port F

-+-0 ClK

18 Instruction

-1-0 ~~~~f~n~~d

Status flags'

• (Inexact, Invalid, Not a number. Overflow, Underflow, Zero)

3. Also using separate 32-bit buses for the inputs
and output, the AM29325 floating-point processor
handles either IEEE or DEC formatted data and can
translate between formats, if necessary.

Electronic O .. ign • November IS, 1984

29

ly generated in fixed-point format; conversion
from floating point to integer format is handled
by instruction FP to INT. Two other instruc­
tions convert between IEEE and DEC floating­
point formats.

The arithmetic unit recognizes two single­
precision floating-point formats-the IEEE
format as specified in proposed standard P754,
draft 10.0, or the DEC format used in V AX
minicomputers. The eight instructions can be
performed using either format; the desired
format is selected with the IEEE/DEC pin on
the processor chip. The formats are broadly
similar-each has an 8-bit biased exponent, a
24-bit significand comprising a 23-bit mantissa
appended to an implied or "hidden" most­
significant bit (MSB), and a sign bit.

There are, however, a number of subtle dif­
ferences. The IEEE format has an exponent
bias of 127 and a binary point placed to the right
of the hidden bit, while the DEC format has an
exponent bias of 128 and a binary point placed
to the left of the hidden bi t- these variances re­
sult in a slightly different range of represent­
able values. Each format has its own set of
operands reserved for special uses. The IEEE
format reserves operands to represent non­
numerical values (referred to as Not a Number,
or NaN), +00, -00, and plus and minus 0; the
DEC format reserves only two types of oper­
ands to represent non-numerical values and 0.
In addition to format differences, there are a
number of minor differences in the manner
in which operands are handled during the
course of a calculation. These differences are
automatically accounted for when the desired
format is selected.

The need for rounding

When performing a floating-point operation,
it is sometimes possible to generate a result
whose value cannot be precisely expressed as a
floating-point number. If, for example, the
single-precision floating-point values 223 and
2- 1 are added, the infinitely precise result, 223

+2- 1
, cannot be represented exactly in the

single-precision floating-point format. Some
means, then, must be provided for mapping the
infinitely precise result of a calculation to a re­
presentable floating point value. The arith­
metic unit implements four IEEE-mandated

DESIGN ENTRY

32-bit math accelerators

rounding modes to afford the user some flex­
ibility when performing this mapping; the de­
sired rounding mode is selected with signals
RNDc-RND 1•

Of the four modes, the round-to-even mode is
most often used; it maps the infinitely precise
result of an operation to the closest representa­
ble floating-point value. The round-toward
-00 mode maps to the nearest representable
value less than or equal to the infinitely precise
result; similarly, the round to +00 mode maps
to the nearest value greater than or equal to the
infinitely precise result. A fourth mode, Round
toward zero, maps to the closest representation
whose magnitude is less than or equal to that of
the infinitely precise result. As one would ex­
pect, if the infinitely precise result of an oper­
ation is representable in the floating-point
format, it passes through the rounding oper­
ating unchanged, regardless of rounding mode.

As the result of an operation, various status
flags are set or reset by the status flag gener­
ator. Six flags are used to note the occurrence of
overflow, underflow, zero, not-a-number,
invalid, or inexact conditions. Because the flags
are generated as the operation is performed,
the user can greatly reduce processing over­
head that would otherwise be needed to test the
results of operations. The flags are fully de­
coded, minimizing the amount of hardware
needed to interpret them.

Flagging the status

Four of the status flags report exception con­
ditions stipulated in IEEE standard P754. The
Invalid flag indicates that an input operand or
operands are invalid for the operation to be per­
formed. The Underflow and Overflow flags are
active when a result is too small or too large for
the operation's destination format. The fourth
exception flag, Inexact, tells the user that the
result of an operation is not infinitely precise.
Although these flags are primarily an adjunct
to operation in the IEEE format, they also pro­
duce valid results when the DEC format is se­
lected. The Am29325 generates two additional
flags not provided for in the IEEE standard.
Flags Zero and NaN identify zero-valued or
nonnumerical results for both IEEE and DEC
formats.

A floating-point processor whose arithmetic

Eleclronic De.ign • November 15. 1984

30

unit performs millions of operations per second
can maintain that operating speed only if the
correct operands can be routed to the arith­
metic unit at that rate; if not, the specification
is meaningless. To meet this crucial require­
ment, the core of the Am29325 is supported by a
32-bit data path comprising two input buses, a
three-state output bus, and two data feedback
paths. These data paths give the user the means
to get the operands to where they are needed
without devouring extra clock cycles.

Data enters through input buses Ro-R31 and
SO-S31; results exit through three-state output
bus F 0-F 31' Each bus has a 32-bi t edge-triggered
register for data storage; data is stored on the
rising edge of common clock input, CLK. An in­
dependent clock enable is provided for each reg­
ister, so that new data can be clocked in or old
data held; the clock enables are well-suited to a
microprogrammed environment, and make the
gating of clocks, always a risky business, un­
necessary. The ability to clock or hold any
register is a powerful tool for performing algo­
rithms with conditional operations, or algo­
rithms in which intermediate results must be
delayed for one or more cycles before reenter­
ing the calcula tion.

In many applications,the internal registers
will be used to store input and output operands;
it is in this register-to-register mode that the
chip shows its top speed. Some users, however,
may wish to bypass one or more of the internal
registers. The input and output registers can be
made transparent independently using feed­
through controls FTO and FTl. If all three reg­
isters are made transparent the device operates
in a purely combinatorial "flow-through"
mode. That mode, through, is somewhat slower
than the register-to-register mode, but is useful
in systems that need a register structure sub­
stantially different from that provided in the
Am29325, or in systems where floating point
operations must be concatenated with other
combinatorial functions.

The two feedback data paths greatly simplify
the task of moving data from one calculation to
the next. One path routes data from the output
of the arithmetic unit to a multiplexer at the in­
put of register R; the multiplexer selects the
operation result or Ro-R31' The result of any
operation can therefore be loaded into register

DESIGN ENTRY

32-bit math accelerators

R, register F, or both. The second path feeds the
output of register F to a multiplexer at the
arithmetic unit's S port; the multiplexer selects
either register S or register F as the port S in­
put. This path effectively increases the number
of commands-instruction R Plus S, for ex-

32
Input bus R 1----;f---..-------:1'

Input bus S f-_3..;.,2 ___ --+--+------1

32
''Output bus F f--.,!-----4------I

(a)

32
Input bus RS f----;f----...----1r-----{

32
Output bus F J----,f-----4------I

(b)

" Input bus R f-_l..;.,6f--_+-_-----~

,Input bus S f---,----+--+-......,~---~

4. Three programmable 1/0 bus modes permit the
floating-point processor to operate with dual 32-bit
input buses (a), a single, shared 32-bit input bus (b),
or even two 16-bit buses (c) so that it can easily
connect to most 16-bit microprocessor systems.

Electronic Design' November 15, 1984

31

ample, can also be performed as R Plus F.
Thanks to the inclusion of three program­

mable 110 modes, the circuit readily interfaces
with both 16- and 32-bit sytems. The most
straightforward of these options is the 32-bit,
two-input bus mode (Fig. 4a). The advantage of
this mode is its high 110 bandwidth-no multi­
plexing of 110 buses is required, thus improving
system speed and easing critical timing con­
straints. Rand S operands are taken from their
respective buses and clocked into the Rand S
registers on the rising edge of eLK; register F is
also clocked on this transition.

Another choice sets up a 32-bit, ~ingle-input
bus, in which both the Rand S buses are con­
nected to a single input bus (Fig. 4b). The Rand
S operands are multiplexed onto this bus by the
host system; the R register clocks its operand on
the rising edge of eLK, the S register on the
falling edge. The S operand is double-buffered
on chip, so that the new S operand is presented
to the ari thmetic uni t on the rising edge of eLK.
Operation of register F and the F bus is the
same as in the 32-bit. two-input bus mode.

The last option has targeted 16-bit systems­
a 16-bit, two-input bus mode (Fig. 4c). In this
mode the R, S, and F buses are 16 bits wide;
32-bit operands are placed on the buses by time­
multiplexing the 16 MSBs and LSBs of each
data word. The LSBs of the Rand S operands
are double-buffered on chip, so that the com­
plete 32-bit operands are presented to the arith­
metic unit on the rising edge of eLK. Internal
data paths and registers remain 32 bits wide,
thus giving the 16-bit system designer the be­
nefits of the simple interface and the speed of
the wide internal data paths.

Putting the part through its paces

Multiplication and accumulation-a combi­
nation of operations very commonly used in
digital filtering, image processing, matrix
manipulation, and many other applications­
can readily show the capability of the floating­
point processor. In such a combination of
operations, N input terms Xi are multiplied by
constants ki ; the products are then added, pro­
ducing the weighted sum:

N-\

s = ~ k i Xi
i=O

To do this with the Am29325 is a simple two­
step process, with two additional steps for ini-

DESIGN ENTRY

32-bit math accelerators

tialization. In the first step data and coefficient
values Xo and ~ are clocked into registers Rand
S. During step two the values Xo and ~ are mul­
tiplied and the product placed in register F; at
the same time, data and coefficient values Xl
and kl are clocked into Rand S. Third, values Xl
and kl are multiplied and the product placed in
R. In step four, products xlkl and Xo~ are added
and the sum placed in F, and X2 and k2 are clock­
ed into Rand S.

The third and fourth steps are then repeated
for as many iterations as needed to complete
the operation. Once the part has been loaded
with the first two sets of operands, the internal
data path routes partial results to keep the
arithmetic unit busy with a multiplication or
addition every clock cycle; a new multiplication
and accumulation is performed every two clock
cycles. The partial results remain on-chip until
the multiplication and accumulation is com­
pleted, thus eliminating I/O delays and the
more complex programming that would result
from having the adder and multiplier on sep­
arate chips.

Some real applications

A more specific application for the Am29325
could be its use as the computational engine in a
fast Fourier transform (FFT) processor. Dur­
ing a FFT operation, word growth is incurred in
the butterfly calculation, and if the FFT pro­
cessor uses integer arithmetic, word growth
can cause a system overflow. To prevent over­
flow, a scaling operation must be performed on
the data. The overhead involved in checking for
word growth overflow and scaling of data can
be avoided by using floating-point arithmetic.
Floating-point provides not only greater dy­
namic range but in most cases also provides
greater precision (24 bits of significance versus
16 bits in a typical integer system).

A powerful, low-cost system that executes
FFTs can be built around the floating-point
processor (Fig. 5). It consists of a floating-point
arithmetic processing unit, a data and coeffi­
cient address generator, a data and address
storage block, high-speed data and coefficient
memories, a system controller, clock generator,
and host interface. Input operands to the R port
are fed from the data store, while data to the S
port is fed from the coefficient memory. The re-

Electronic D.,ign • November 15. 1984

32

suIt of an arithmetic operation may be stored
back in the data memory. An exclusive-OR gate
is also available to complement the sign of the
result, effectively mu~tiplying the operand on
the F bus by -1. For most operations, inter­
mediate results can be held within temporary
registers in the floating-point unit; only the fi­
nal result need be sent off chip.

The high-speed data memory is made up of
RAMs, the coefficient memory of PROMs. The
data memory can be loaded with data from the
host or can store results that have been pro­
cessed through the floating-point chip. Once all
data or results have been stored, the data
memory is ready for use in an operation, or for
transfer back to the host system. The coeffi­
cient PROMs contains the sine and cosine data
required for an FFT, while the data store holds
frequently used operands.

During the calculation of a butterfly, the
same operands must be used in several differ­
ent cycles-and since the data store reduces the
number of memory read operations required, it
speeds up data access. As the butterfly se­
quence progresses, the appropriate address is
available from the address store, which con­
sists of two more multilevel pipelined registers.

The host interface consists of a DMA channel
that can perform high-speed block data trans­
fers between the host system and the data
memory. The system controller communicates
with the host to receive or transfer data.ltgov­
erns which operations are to be performed and
how to perform them. Instructions are issued
by the host computer, via the host interface, to
the system controller, and the system control­
ler informs the host when the operation is done.

The system controller consists of an
Am29331 or similar micro sequencer, and a mi­
crocode program stored in registered PROMs.
The system clock generator uses an Am2925.
The architecture allows a ten-cycle butterfly
FFT to be executed (see Fig. 5 again) using a
radix-2 decimation-in-time (DIT) algorithm.
The equations for a radix-2 DIT algorithm are:

A' = A + BWB'
B' = A - BW, where all values are

complex

In cycles 1, 2, and 3, the first three operands
are read from the data memory. Because of the

DESIGN ENTRY

32-bit math accelerators

overlapping butterflies, this read takes place
while the previous butterfly is still being pro­
cessed. In the following two cycles, data writes
of the previous butterfly occur while the com­
plex multiplications of (BW) are being per­
formed. Cycle 6 reads in a new operand for the

Am29325

Sign
control

Microcode
prom

(Am27S45)

5. To build a fast-Fourier transform processor that
uses the floating-point processor as its heart re­
quires only a few control chips and some memories.
Use of the Am29540 and Am29332 LSI building
blocks helps keep the circuitry simple.

Electronic O •• ign • November 15. 1984

present butterfly and sums together the two
products from the two previous cycles. In cycles
7 and 8, the real part of A' and B' is formed. In
cycles 9 and 10, the real part of A' and B' is writ­
ten to memory. Also, during these two cycles
the other product pairs of (BW) are formed.

During cycles 11, 12, and 13, data for the next
butterfly is read, and as part of cycles 12 and 13,
the imaginary part of A' and B' is formed. In the
following cycles the imaginary part of A' and B'
is written to memory and processing of the next
butterfly is initiated. The real and imaginary
components of B' have a negative sign, and can
be corrected by complementing the sign. Count­
ing the number of cycles from the first read or
write of one butterfly to the next, it can be seen
that a butterfly is computed every 10 cycles.

The big system picture

Although the floating-point chip fits well in
small systems, it is also easily incorporated in
larger, more powerful configurations. In one
such system, a high-speed, microprogrammed
integer and floating-point processor can be
readily tailored to implement signal process­
ing, image processing, or graphics algorithms
(Fig. 6). The processor consists of a two-level
controller, data and coefficient memory, ad­
dress generator, and arithmetic unit. These
functional blocks are considerably more flex­
ible than their counte:;parts in the simpler FFT
system.

The controller is divided into two levels, or
sections: program and microprogram. In the
topmost or program section, an Am2910A mi­
croprogram controller addresses a program
memory that contains high-level instructions,
or macros. These macros implement build­
ing-block operations; a graphics processor, for
example, might have macros called Translate
and Rotate that move objects in three-dimen­
sional space. Each macro would carry with it
parameters relevant to its operation, such as
memory pointers or iteration count.

The program section passes address-related
parameters to the address generator, and
passes the iteration count and the decoded mi­
croinstruction start address to the micro­
program section of the controller; this section
then provides cycle-by-cycle control of pro­
cessor resources during the execution of a

33

DESIGN ENTRY

32-bit math accelerators

macro. The heart of the microprogam section is
an Am29331 microprogram controller-it ad­
dresses a microcode memory, in which the mi­
croprogram sequence for each macro type is
stored.

The microprogram controller was chosen for

three reasons: first, it can address up to 64
kwords, which makes possible a deep micro­
program memory that can store many oper­
ation sequences. Second, its high speed permits
the use of slower, less expensive microprogram
memory, a particularly important considera-

6. A versatile, yet hlgh-penormance microprogram mabie system can be built by including both the
floating-point processor and the 32-bit multiplier into a system that uses the other Am29300 build­
ing blocks to form the control and address generation sections.

Eleclronic De.ign • November 15. 1984

34

DESIGN ENTRY

32-bit math accelerators

tion when the microprogram is large. And
third, its micro-interrupt feature can be used to
efficiently implement exception handling for
arithmetic operations. By using interrupts for
these exceptions, the overhead otherwise in­
curred in testing status flags can be greatly
reduced.

The data and coefficient memories store in­
put data, output data, and constants. In this ap­
plication, data and coefficient memory have
been separated from program memory. Some­
times referred to as a Harvard architecture,
this approach increases throughput by allow­
ing instruction fetch and operand fetch oper­
ations to proceed in parallel.

The address generator comprises a Am29332
ALU and two Am29334 register files. The reg­
ister file stores up to sixty-four 32-bit base ad­
dresses and pointers. The Am29332 creates a
32-bit effective address from these bases and
pointers, with the calculation assuming the
forms:

base + pointer
base - pointer
base

or pointer

In addition, the Am29332 can perform mask,
shift, and merge operations in a single cycle.
This feature can be used to quickly calculate
matrix addresses of the form:

a2N + b,

where a and b are the row and column indices of
the matrix element to be accessed. The combi­
nation of a 32-biteffective address and efficient
matrix addressing makes this address gener­
ator particularly attractive for applications
such as image processing, in which matrices
must be plucked out of very large data arrays.

The arithmetic unit contains three arith­
metic facilities-an Am29325 for floating­
point operations, and the Am29332 and
Am29323 for integer and logical operations.
These devices accept data from a six-port reg­
ister file made of four Am29334s. The register
file has three purposes-it acts as a fast, tem­
porary scratchpad for data, it routes data
among arithmetic devices (the output of one
arithmetic device can be written to the register
file, and be used as an input operand by another

Electronic O •• ign • November 15, 1984

35

such device during the following clock cycle),
and it provides access to four data words every
clock cycle, so that two or more arithmetic de­
vice can operate in parallel.

An example of this parallelism is integer
multiplication-accumulation: because the
Am29323 and the Am29332 receive operands in­
dependently, an integer product and sum can be
calculated every clock cycle, The register file
can then pass products from the Am29323 to the
Am29332, for a throughput of one clock cycle
per multiplication-accumulation.

Operation of the processor might be best un­
derstood by considering the execution of a
typical macro. For graphics applications, one
such macro is Translate, with which a set of
points in three-dimensional space is moved in a
given direction. The set of points is described by
a list of vectors (Xi, Yi, Z;), while the translation
is described by vector (ST, Y T, ZT); each vector is
stored in three contiguous data memory lo­
cations. Translation is performed by adding the
translation vector to each entry in the vector
list.

The translation process begins when the mi­
croprogram controllers encounters a Translate
instruction in program memory. The Translate
instruction is accompanied by three parame­
ters: the start address of the translation vector,
the start address of the vector list, and the num­
ber of vectors in the list. The first two parame­
ters are passed to the address generator, the
third to the iteration counter.

The microprogram section of the controller
then assumes command, accessing the micro­
code for the Translate instruction. The micro­
code controls the address generator and arith­
metic unit, specifying the operations needed to
fetch each vector from the vector list, add the
translation vector, and return the modified vec­
tor to the data memory. After all vectors in the
list have been processed (as indicated by the it­
eration counter), control is returned to the
Am2910A program sequencer, which then ac­
cesses the next macro from program memory. 0

BUILDING BLOCKS
STACK UP TO
HIGH PERFORMANCE
Designed using concepts of functional partitioning, three-bus
architecture, and fault detection, a family of 32-bit building
blocks can satisfy the needs of both general-purpose
computing and signal processing.

by Timothy J. Flaherty

As processing rates, machine densities, and system
reliability requirements increase, functional integra­
tion at the device level becomes mandatory in high
performance controllers and processors. When used
as standalone devices or combined in a high speed
system, functional building blocks can provide solu­
tions to a wide range of design problems. They fit
equally well into a general-purpose computer and
a digital signal processor, despite the great functional
differences between these two systems.

As device densities have increased over the years,
system word widths have grown, bringing greater
precision and allowing a larger memory space to
be addressed. The jumps from 4- to 8-bit and from
8- to 16-bit systems occurred relatively quickly.
The leap to 32-bit systems has already taken place,
bringing with it a slowdown in the quest for wider
system words. Partitioned into 32-bit building
blocks, Advanced Micro Devices' Am29300 family
integrates functions that are difficult, if not impos­
sible to implement with bit-slice devices. These func­
tions include barrel shifting, priority encoding, and
mask generation.

Whenever carry-Iookahead logic can be contained
in the same device as the arithmetic logic it supports,
cycle time is improved. In fact, by reducing the

Timothy J. Flaherty is a product planning engineer
at Advanced Micro Devices, Inc (Sunnyvale, Calif).
He holds a BS in electrical engineering from the
University of Santa Clara.

amount of intrafunction communication across chip
boundaries, cycle time no longer has to depend on
the speed of the interface between components. Be­
cause of this, all intrafunction communications were
eliminated in the Am29300 family. Pipelining can
result in the faster execution of certain highly repeti­
tive operations, but system latency increases. In some
cases, this latency will actually degrade throughput.
In a recursive algorithm, where a calculation depends
on the immediately preceding result, true through­
put can be lost while waiting for intermediate results
to work their way through the pipe. To maximize
performance without sacrificing architectural flexi­
bility, intrafunction pipelining was also eliminated
in the Am29300 devices.

A three-bus, flow-through architecture comple­
ments functional partitioning in this chip family.

COMPUTER DESIGII/February 1985

Copyright by Computer Design February 1985. All rights reserved. Reprinted by permission.

36

The data path members share a common bus con­
figuration with two input operand buses and one
output bus. Independent of each other (neither
bidirectional nor shared), these buses provide
maximum accessibility.

Bidirectional or shared 110 buses limit the speed
at which information can be transferred between
different parts in the system. Achieving rapid turn­
around of bidirectional TTL data buses is often an
arduous task. And shared input buses require greater
timing restrictions than do nonshared buses. These
limitations have been eliminated in the Am29300
data path devices by removal of shared or bidirec­
tional buses.

A high data transfer bandwidth is achieved with
the flow-through architecture. This direct access
allows the designer to tailor the system's register file
to the specific application rather than forcing use
of a fixed, more general memory organization. The
beauty of the three-bus architecture lies in its sim­
plicity. This straightforward structure permits many
possible component configurations optimized for
different micro-architectures.

Simple, internal 110 registers may introduce un­
wanted pipeline delays. A flexible register structure
requires that any 110 registers can be made trans­
parent. The input and output registers on both the
Am29323 parallel multi precision multiplier and the

OUTPUT
BUS

4 PARITY BITS
GENERATED
FOR OUTPUT

BUS

STATUS PARITY
FLAGS ERROR FLAG

The three-bus, flow-through architecture affords the
greatest access to the device cores. Byte-parity
checking detects connection failures between devices.

COMPUTER DESIGI/February 1985

DATA

I NSTRUCTIONS.........,,<..-_--+---+---,

ERROR ERROR

Master/slave 'checking provides device failure
detection using redundant parallel devices. This
happens without incurring the delay of a "voting"
scheme often used in high reliability designs.

Am29325 floating point processor can be made trans­
parent independently, providing a number of differ­
ent register configurations including flow-through.

Fault detection
The philosophy governing this chip family is maxi­

mum functionality with minimum impact on system
cycle time. The methods used for fault detection put
this idea into practice.

The 32-bit family addresses fault detection at the
component level using a twofold scheme-byte par­
ity and master/slave checking. To detect intercon­
nection failures, byte parity is both generated and
checked by the data path elements of the family. The
byte parity circuitry checks for single bit failures
across each byte of the two input operands. Even par­
ity checking was chosen for this family of TTL­
compatible parts instead of odd parity to provide the
additional check for bus failure. Any parity faults
detected cause assertion of the parity error
(PARERR) flag.

Master/slave checking detects failures at the device
level. When using this mode, two devices are oper­
ated in parallel, each receiving the same data and
instructions. The master device generates its result
and transfers this information to the output bus. The
slave device generates its own result from the same
inputs; instead of delivering this data, however, the
slave reads the output bus and compares the master's
results with its own. The hard error (HARDERR)
flag indicates any discrepancies between the two out­
puts.Moreover, the assertion level of both the par­
ity and hard error flags indicates device failure due
to loss of power and error signal faults.

37

Both error checking schemes operate on a cycle­
by-cycle basis so any detected fault triggers an in­
terrupt at the microinstruction level. Unlike other
redundant schemes, specialized software is not re­
quired, and system performance is not affected
by the communication between redundant func­
tional units.

Cycle time and control paths
In high performance system design, the system's

intended operations must be given, with careful con­
sideration paid to required cycle time. The cycle time
depends on the type of operation the system per­
forms. The design should be optimized for quick exe­
cution of the instructions that make up the largest
percentage of the system's operations.

Complex operations requiring long cycle times,
but used infrequently, should be performed over
multiple cycles. For example, a complicated arith­
metic procedure such as division should not deter­
mine the cycle time of the system if the operation
only used a small portion of the time. On the other
hand, if this operation is used frequently, the sys­
tem should be made to handle it efficiently.

Comparing the instruction mixes of a general­
purpose processor and a dedicated array processor

PRODUCT BUS

illustrates this point well. Multiplication operations
dominate the array processor's instruction set, while
the general-purpose machine's set would be less
multiplication intensive. The Am29323 parallel
multiplier would enhance an array processor by
providing a high speed, single cycle 32- x 32-bit
multiplication. The general-purpose machine might
not need a dedicated multiplier and could fare well
with the Am29332 ALU chip and its multiple cycle
multiplication capability.

When optimizing the system for speed, a designer
should remember the control path. By causing a
change in the normal flow of information in the con­
trol path, conditional branching often becomes the
system bottleneck. Conditional codes must be
checked to determine the next address, but this check­
ing can extend the cycle time. The speed of the con­
trol path must remain on a par with the speed of the
data path. The Am29331 microprogram sequencer
architecture balances the timing between the control
and data paths.

By integrating the conditional code multiplexer, test
logic, and polarity control logic in the same device,
cycle time is reduced by eliminating intrafunction
delays. The microprogram sequencer can perform
four sets of 16-way branches upon the simultaneous

The 32- x 32-bit parallel
multi precision multiplier
provides dual input registers
to support extended
multiplications. An internal
wrap-back path and shifter
eliminate transferring data
offchip for shifting.

COMPUTER DESIGI/February 1985

38

A family gathering

A member of the Am29300 family,
the Am29332 32·bit noncascad·
able ALU chip, was designed for
systems requiring fast number
crunching, high data transfer
rates, and powerful bit·manipula·
tion capabilities. The internal
data path of the ALU chip inter·
connects several functional
blocks. These blocks include a
mask generator, a funnel shifter,
an ALU, and a priority encoder.
The ALU chip allows operations
that once took multiple cycles to
be executed in a single cycle.

The ALU chip uses a 64· to
32·bit funnel shifter to perform a
full complement of N·bit shifts,
N·bit rotates, field extractions, and field logical
operations in a single cycle. This funnel shifter
works on either one or both input operands. Such
shifting is extremely useful in such operations as
floating point mantissa normalization or denormali·
zation, and in applications where packing and un·
packing of data is a frequent task. Also, the ability
to extract a 32·bit contiguous field from two oper·
ands provides a useful function in many graphics·
related operations. The output of the funnel shifter
is directed to the R input of the ALU, allowing logi·
cal operations to then be performed on the shifted
word. The ALU section of the Am29332 has three
input ports. One input comes from the funnel
shifter, another from the mask generator, and a third
can be selected from various sources including
both input buses. This three·input ALU allows
merger of two instructions into a single cycle.

The Am29325, a single·precision floating point
processor, integrates a fully combinatorial 32·bit
floating point adder/subtractor, multiplier, and
data path in a single chip. This integration min·
imizes processing overhead. The floating point
processor supports both IEEE P754 and Digital
Equipment Corp floating point formats. All instruc·
tion-addition, subtraction, multiplication, float·
ing pointlinteger conversions, and IEEEIDEC
conversions-are performed in a single clock
cycle. There are no internal pipeline delays to limit
true throughput.

The core of the floating point processor is a
3·port arithmetic unit containing a mantissa proces·
sor, an exponent processor, and additional logic reo
quired to implement floating point operations.

The Am29323 is a 32· x 32·bit parallel multi·
plier with multi precision capabilities designed
to perform a 32· x 32·bit multiplication in a single
cycle. The parallel multiplier also supports multi·
pie cycle, multiprecision multiplications. Using
a 67·bit onboard accumulator and internal wrap·
back paths, this device can perform a 64· x 64·bit
multiplication every four cycles. This part also
supports 96· x 96·bit and 128· x 128-bit multiplica­
tions. These expanded multiplications offer support

COMPUTER OESIGI/February 1985

39

to extended and double·
precision format floating pOint
multiplications.

To provide a flexible interface
for a variety of applications, the
parallel multiplier has dual 32·bit
registers on each input bus. Both
halves of a 64·bit input word can
be loaded, stored, and selected
as needed when extended multi·
plications are performed. The
input registers can be made
transparent and the outputs can
be selected directly from the
array core to provide a high
speed multiplier accelerator in a
system designed with the other
members of the Am29300 family.

The task of reducing cycle time in a micro·
programmed system-a primary goal for the
Am29300 family-is assisted by the Am29331 pro·
gram sequencer. The critical path in the control sec·
tion of a system typically passes through the status
register through test logiC, test multiplexer,
sequencer, and microprogram memory. The micro·
program sequencer removes the "control bottle·
neck" by integrating the test logic, multiplexer,
and sequencer.

Handling Interrupts
Interrupts and polling both handle asynchronous

events. But in interrupts, unlike in polling, explicit
tests in the microcode are not required. Quicker
response times and less microcode are the reasons
the microprogram sequencer uses interrupt han·
dling. When an interrupt is received, the interrupt
return address is pushed on an internal 33·level
stack allowing nested interrupts.

Interrupts are handled by the sequencer at the
end of a microcycle. Traps, on the other hand, must
be handled before the end of the microcycle. Be·
cause they indicate an unexpected condition
caused by the current microinstruction, traps cause
the sequencer to halt the operation before the cur·
rent instruction changes the state of the system.
When a trap occurs, the current microinstruction
must be aborted and re·executed after the trap han·
dling routine has taken corrective measures.

The Am29334, a high speed, 64- x 18·bit, dual·
access RAM, provides the Am29300 family with flex·
ible, configurable memory. The device's dual read/
write ports allow simultaneous access for two oper·
ations every cycle: two operand fetches, a read and
write to two locations, or two write operations.

Because it can be expanded in both width and
depth, the register file allows several memory con·
figurations. Two of these devices may be hooked
together in an expanded 6·port configuration, for
example. This setup allows two processors to oper·
ate on the same memory simultaneously. Four reads
and two writes every cycle could provide high speed
local memory, possibly configured as a cache.

occurrence of four external test conditions. This abil­
ity to handle multi way branching greatly reduces the
branching delay penalty.

Data routing
A system should be able to route data punctually

to the proper location-a task as important as reduc­
ing cycle time. Cycles wasted while waiting for results
to work their way out of the pipeline and into the
arithmetic unit where they are needed degrade per­
formance. Bus bandwidth is lost by the redundant
transferring of intermediate results back and forth
from memory. And cycles lost shuffling data reduce
true throughput.

Often data is fetched from one memory location,
processed, and the result of the operation returned
to the original memory location. The Am29334
register file supports these read/modify/write oper­
ations by allowing a single cycle read and write
memory operation to the same location. The register
file's internal circuitry makes this operation possible
without requiring external hardware to store the
modified data temporarily.

Maximum bus bandwidth requires operands to be
in the right place at the right time without monopoliz-

HOST SYSTEM INTERFACE

flOATING POINT
PROCESSOR
(Am29325)

DATA MEMORY
(EIGm Am93412s)

ALU
(Am29332)

ing the bus structure. Redundant data transfers, such
as returning intermediate sums from a sum-of­
products operation to memory, only congest the bus
structure and reduce bandwidth. The Am29325
floating point processor provides internal wrap-back
paths and handles such data routing onchip. These
internal wrap-back paths for sum-of-products oper­
ations with intermediate results double the band­
width of a bus shared between multiple processors.

The Am29323 parallel multiplier also provides
internal wrap-back paths and shifting circuitry for
extended mUltiplications. These elements eliminate
the delays resulting from data leaving the chip, being
adjusted by an external shifter, and then returning
to the device. The parallel mUltiplier has dual 32-bit
input registers to support the cross-products needed
for multiprecision multiplications. These registers
also reduce bus congestion by eliminating the need
for redundant memory fetches.

System bus structures
A general-purpose CPU falls short of today's

number crunching requirements because it cannot
take advantage of highly structured array and digi­
tal signal processing algorithms. The differences

COEFfiCIENT
MEMORY

(FOUR Am27S281s)

32- x 32-PARAllEL
MUlTIPLIER
(Am29323)

32

A 32-bit floating point/
integer processor can be
designed using a parallel
configuration. In the system
shown, the floating point
processor shares three 32-bit
buses with the ALU chip and
the parallel multiplier.

COMPUTER OESIGI/February 1985

40

between a general-purpose CPU design and an array
processor design allow optimization of the configura­
tions to serve specific needs.

Different system designs often have different data
bus requirements. Parallel configurations are useful
and easily implemented. In a general-purpose ma­
chine, for example, several processing units might
share the same data buses. The Am29332 ALU chip
can share three 32-bit buses with the parallel multi­
plier and the floating point processor. Data could be
passed from one processor to another through the
shared register file.

Although parallel configurations fit a general­
purpose design, specific processors may require
different bus structures. With a dedicated bus
structure and paired Am29331 RAMs configured
as a 6-port register file, for example, a high speed
system that is well-suited for matrix processing
can be designed. For array processing this arrange­
ment offers a distinct advantage over the shared
bus system.

To perform a multiplication/accumulation, the
Am29323 multiplies two 32-bit numbers, the product
is passed through the register file and added to the
previous product by the ALU chip. Performing the
multiplication and the addition in parallel, results in
an effective throughput of one multiplication/accum­
ulation per clock cycle-twice that of the system with
shared buses.

Status generation
The status flag generators on Am29300 data path

devices create flags that indicate where significant
events occur during the calculations. These flags,
generated as the operation is performed, reduce the
processing overhead. The fully decoded flags mini-

mize the amount of hardware needed for status inter­
pretation. Such special conditions as a zero result or
a byte carry may provide the user with important
information about the calculation. A zero result­
reported via the ZERO flag-is useful in compari­
son operations, for example.

Many of the status flags report such exception con­
ditions as underflow, overflow, and invalid. Each of
these conditions would indicate that the result ob­
tained is not correct. These flags are active whether
or not the output bus is enabled. In this way, the sta­
tus of such iterative operations as floating point multi­
plication/accumulation can be monitored without
enabling the output bus to check each intermediate
calculation for exception conditions. This will reduce
both hardware requirements and bus congestion.

Many of the conditions reported by the status flags
indicate a problem with the current operation. The
INVALID flag on the floating point processor, for
example, indicates an invalid operation has been at­
tempted. This flag can be used to generate an inter­
rupt. The microprogram sequencer handles this
interrupt at the microprogram level. After accepting
the interrupt, the sequencer allows an external inter­
rupt handling address to gain access to the micropro­
gram address bus. This address begins the interrupt
handling routine. The microprogram sequencer saves
the interrupt return address on an internal stack.

Traps are unexpected situations caused by the cur­
rent microinstruction, which must be handled before
the end of the current microcycle. Conditions such
as overflow can be trapped so corrective action can
be taken.

Suppose the current instruction requires a read
from memory locations A and B, a floating point
addition using this data, and a write of the result

f- -- .--__ -_-_-_-_-_-___ -_---;--l
~ I

I • + I
I OATA DAIA DATA DATA I
I WRITE WRITE WRITE WRITE

PORT A PORT B PORT A PORT B I

'

I DUAL ACCESS RAM DUAL ACCESS RAM I
(Am29334) (Am19334) I I

I DATA READ DATA READ _ DATA READ OATA READ I
I PORT A PORT 8 PORT A PORT B

L ___ --i----------t--i--~

~i I (Am~~~32) I I :u~~~~tffR I
(Am29323) ---,.------'

__ ~ I

1 66 COMPUTER DESIGI/February 1985

41

Two dual-port register files
can be configured as a six­
port register file. With this
setup, four reads and two
writes may be performed
every cycle.

back into location A. If this addition operation
results in an overflow and the result is written back
into location A, information may be lost. This may
happen if the OVERFLOW flag is used to generate
an interrupt. A trapping setup, however, offers a
different scenario.

If the OVERFLOW flag is used to indicate a trap,
the operation can be interrupted before the overflow
result can be written over the data in memory loca­
tion A. An overflow trap handling routine scales both
operands. Upon re-execution of the addition opera­
tion, the result does not overflow. The microprogram
sequencer pushes the address of the current microin­
struction onto its internal stack and allows the trap
handling address to gain access to the microprogram
address bus. After completion of the trap handling
routine, the trapped instruction address is popped
from the stack and re-executed.

Multiway branching
The Am29331 address sequencer's multiway

branch instructions allow the selection of 16 consecu­
tive addresses as a branch target. Generated in a single
cycle, the address consists of the upper 12 bits from
the 0 bus concatenated with 4 bits from the multi­
way inputs. This type of branching allows the test­
ing of up to four conditions in a single clock cycle.

Four multi way sets of 4 bits each allow designers
to group test conditions according to type. The 2 least
significant bits of the 0 bus, DO and 01, control
which 4-bit multi way is selected.

The multiway-branch feature provides designers
with a hardware solution to the problem of per­
forming certain high level software instructions in a
single cycle. Many combinations of conditions could
be arranged. For example, CARRY, ZERO, and
NEGATIVE flags from the Am29332 ALU chip
might be used to perform If (AND/OR)-Then
(AND/OR)-Else operations. By using multiway
branching, the AND/OR functions in the If-Then­
Else statement do not incur the penalty of additional
gates or additional delay.

42

BIBLIOGRAPHY-LiTERATURE-BIBLIOGRAPHIE-BIBLIOGRAFIA- il;,lf)t~

Belgium
Chu, P., New, B.J.-"Des blocs 32-bit microprogrammables destines a un large eventail d'applications."
Panelectronics, Novembre 1984.

France
Chu, P., New, B.J.-"Des blocs 32-bit mieroprogrammables destines a un large eventail d'applications."
Electronique Techniques et Industries, Oetobre 1984.

Grosvalet, F.-"AMD introduit une famille de processeurs bipolaires 32 bits." Electronique Actualites, 9 Novembre
1984.

"La Famille Am29300 d'AMD: pour realiser des systemes 32-bit a hautes performances." Minis et Micros,
Novembre 1984.

Germany
"Bipolare 32-Bit-Baustein-Familie," Elektronik Informationen, November 1984.

"Bipolare 32-Bit-Prozessorfamilie," Markt & Technik,9 November 1984.

Chu, Paul and Bernard J. New. "Mikroprogrammierbare 32-Bit-Bausteine," Elektronik, 2 November 1984.

Renz, Udo. "fLP-Building-Blocks-neue 32-Bit-Familie von AMD," Der Elektroniker; Dezember 1984.

"Zentraleinheit KOnftiger Minicomputer," Markt & Technik, 16 November 1984.

Italy
Galleni, S. "Componenti bipolari AMD ad alte prestazioni," Elettronica Oggi, Gennaio 1985.

Chu, Paul and New, Bernard J. "Una direttissima verso i 32 bit," Elettronica Domani,
Novembre 1984.

Japan
;f.-J~' T:J.-

1\-1-- F • J • =:J.-,

Stm¥f~(1)13'!lJ)~~1*m ld:32 1::'/ t­
/\-(;f.'-5LS 17J"~IJAm29300,

• B*l.I.L-? !-c=?.7.. 1984st:"~19Bfj-. NO. 356, PP.275-290.

Dempa Shinbun. 1984tj:llJl14B-i5-.

United Kingdom
"AMD to Introduce 32-Bit Bipolar Processors," Microforecast, 16 November 1984.

Chu, Paul and Bernard J. New. "32-Bit Mieroprogrammable Building Blocks," Electronic Product Design,
November 1984.

Holder, Keith. "Manufacturers Enthuse At 32-Bit Bipolar Debut," Computer Weekly, 15 November 1984.

Parry, Simon. "AMD Bipolar Trio Cuts Design Limits," Electronics Times, 8 November 1984.

Parry, Simon. "Chip Chain for 32-Bit Microprocessor," Electronics Times, 28 February 1985.

Sylvester, David. "Instant Answer From High Speed Chips," Electronics Times, 28 February 1985.

"32-bit bipolars at AMD," Electronics Weekly, 28 November 1984.

United States
"Advanced Micro Devices Offers 32-Bit Bipolar MPU Family," Electronic News, November 12,1984.

Baker, Stan. "AMD: 1st 32-Bit Bipolar fLP Line," Electronic Engineering Times, November 12, 1984.
Barney, Clifford. "32-Bit Chip Integrates Bit-Slice Functions," Electronics Week, November 12, 1984.

DiDio, Laura. "AMD Unveils Bipolar 32-Bit MPU," Electronic Buyer's News, November 12,1984.

"First 32-Bit Bipolar CPU," Engineering Manager; December 1984.

"fLPS Soar to New Performance Dimensions," EON, November 15, 1984.

Sylvester, David. ''AMD Introduces Some New Chips Off the Old Block," San Jose Mercury News, December 31,
1984.

"32-Bit Floating-Point IC Heralds Appearance of High-Performance Family," Electronic Products, February 15,
1985.

Williams, Tom. "Bipolar Building Blocks Well-Suited for Fast, Flexible 32-Bit CPUs," Computer Design, December
1984.

43

Am29323
32-Bit Parallel Multiplier

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

• 32-Bit Three-Bus Architecture
- The device has two 32-bit input ports and one 32-bit

output port with maximum multiply time of 80ns
• Single Clock with Register Enables

- The Am29323 is controlled by one clock with
individual register enables

• Supports Multiprecision Multiplication
- The device has dual 32-bit registers on each data

input port to perform multiprecision multiplication

• Registers can be made transparent
- Input and output registers can be made transparent

independently to eliminate unwanted pipeline delay
• Supports Two's Complement, Unsigned or Mixed

Numbers
• Data Integrity Through Master-Slave Mode and Pari­

ty Check/Generate
- Parity check/generate catches inter-device

connection errors and master/slave mode provides
complete function check

GENERAL DESCRIPTION

The Am29323 is a high-speed 32 x 32-Bit Parallel Multipli­
er with 67-Bit Accumulator. The part is designed to maxi­
mize system level performance by providing a 32-bit three
bus architecture and a single clock with register enables.

The Am29323 further enhances the system throughput by
providing individual register feedthrough controls, byte
parity checking on both input ports and generation on the
output port, and dual input registers on each data input bus
to support multiprecision multiplication. The Am29323 can
manage a wide variety of data types, including two's

complement, unsigned, or mixed mode input formats. A 64
x 64-bit multiplication can be performed in seven clock
cycles, including input and output. Additional features
provided are a format adjust control allowing for standard
output or left shifted output suitable for fractional two's
complement arithmetic, rounding, and master/slave opera­
tion.

The Am29323 is designed with the IMOX' process, which
allows internal Eel circuits with TIL-compatible I/O. The
device is housed in a 168-lead pin-grid-array package.

SIMPLIFIED BLOCK DIAGRAM

"IMOX is a tradomnrk 01 Advanced Micro Devices, Inc.

PARITY
ERROR

80005250

This documont cont.W\5 Information on a product under development at Advanced Micro Devices, Inc. The information is intended to
help you to ovnlunto this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

45

Order # 057638

RELATED PRODUCTS

Part No. Description

Am29325 32-Bit Floating Point Processor

Am29331 16-Bit Microprogram Sequencer

Am29332 32-Bit Extended Function ALU

Am29334 64 x 18 Four-Port. Dual Access
Register File

BLOCK DIAGRAM

pyC)------~~--~

32

I YA rEG I I YB rEG I
32

MULTIPLEXER

ClK

ENXA,ENXB ~
ENVA,ENYB +-

ENi
ENP

EN'f
FA

TSEl

PSElO

PSEL1

Of
SLAVE

HARDERR

46

PP

INSTRUCTION
REGISTER

PARERR

XSEl

YSEl

ICX

ICY

ACCO

ACCI

RND

--FTX

--FTY

--FTI

--FTP

80003041

PIN DESCRIPTION

X3l-XO

Y3l-YO

P3l-PO

TCX, TCY

ACC1, ACCO

RND

CLK

ENXA, ENXB

XSEL

YSEL

Multiplicand data input port.

Multiplier data input port.

Product output port.

Mode control inputs for each input data
word; LOW for unsigned data and HIGH
for two's complement format.

Accumulator control lines used to
determine accumulator function; PASS,
ACCUMULATE, SHIFT/ACCUMULATE.

Round control for rounding the most
significant product.

Clock; all registers.

Register enables for multiplicand data
input registers (XA and XB).

Register enables for multiplier data input
registers (YA and VB).

Register enable for accumulator product
register (P).

Register enable for instruction register (I).

Register enable for temporary register
(T).

Control line used to route the contents of
either the XA register (HIGH) or XB
register (LOW) into the multiplier array.

Control line used to route the contents of
either the YA register (HIGH) or YB
register (LOW) into the multiplier array.

FUNCTIONAL DESCRIPTION

Architecture

The Am29323 comprises a high speed 32 by 32-bit multiplier
array, a 67-bit accumulator, and a 32-bit data path.

Multiplier Array

The multiplier is a 32 by 32-bit array which produces a 64-bit
product. This product is then fed to the accumulator section.

Accumulator

The accumulator is 67 bits wide. It performs accumulation for
sum of product operations and multi precision multiplication
operations. The accumulator can perform three operations:
store product without accumulation, accumulate product, and
shift accumulator value and accumulate with product.

Data Path

The 32-bit data path consists of X and Y input buses; the P
output bus; data registers XA, XB, YA, VB, and the product
accumulator; two multiplier input multiplexers; byte parity input
checkers; byte parity output generators; and master/slave
comparators. Input operands enter the device through the two
32-bit input buses, Xo - X31 and Yo - Y 31. These operands
may then be stored in one of the two registers for each bus
(XA or XB for X, Y A or YB for Y) or they may be fed directly
through to the multiplier array. Input parity checking is per­
formed as soon as the operands are put on the input buses.
The signals used for output parity generation are taken from
the input side of the output translator.

FA Format adjust select either a full 64-bit
product (HIGH) or a left-shifted 63-bit
product suitable for fractional two's
complement arithmetic (LOW).

TSEL Select control line used to route the most
significant product register (HIGH) or the
least significant product register (LOW)
into the temporary register.

FTX, FTY,
FTI

Feedthrough control lines for X, Y, and I
registers.

FTP Bypass control for output multiplexer.

Product control lines useq to select
desired output including disabling P
output port.

PSEL 1, PSELO

PX3-PXO

PY3-PYO

PP3-PPO

PAR ERR

Byte parity inputs on X input port.

Byte parity inputs on Y input port.

Byte parity outputs on P output port.

Parity error flag indicates a parity error on
the input buses.

Output enable control line used to disable
the P output port.

SLAVE Master/Slave control line used to
determine mode of operation.

HARDERR Hard error flag used when two Am29323s
are configured as master and slave to
indicate hardware errors.

47

Operational Modes

The Am29323 can perform signed, unsigned, or mixed mode
multiplication. These different numerical representations are
controlled by TCX and TCY. A HIGH input on one of these
lines indicates to the device that the respective input should
be treated as a two's complement number; a LOW, an
unsigned number. The output format is unsigned when both
inputs are unsigned. The output format is two's complement
when either or both inputs are two's complement.

Command Description and Formats

The accumulator is controlled by ACCO and ACC1. These
lines are used to select any of the three operations that the
accumulator can perform. This instruction set is described in
Table 1.

The temporary output register is controlled by TSEL and FA.
These lines are used to select any of the four different sets of
data that can be stored in the temporary register. This
instruction set is described in Table 2.

The output multiplexer is controlled by PSELO, PSEL 1, and
FA. These lines are used to select any of the five different sets
of data that can be output through the P port. PSELO and
PSEL 1 can also be used to disable the outputs. (This
instruction is independent of OE.) This instruction set is
described in Table 3.

Format Adjust (FA) is used to select either a full 64-bit product
or a left-shifted 63-bit product suitable for fractional two's
complement arithmetic. This shifting increases the precision of
the upper half of the product word by eliminating the redun-

dant sign bit. Output Data Formats shows the effect of FA.
(page 5).

User Visible Register Descriptions

TABLE 2. INPUT SELECT INSTRUCTIONS FOR
TEMPORARY (T) REGISTER

TSEL FA Temp Reg Input

0 0 Pi-1

0 1 Pi

1 0 Pi + 31

1 1 Pi + 32

The Am29323 contains seven different register sets, each with
its own clock enable. Two 32-bit registers are attached to each
of the input data buses. These registers are differentiated by
the suffix A or B. For example, the X bus has registers XA and
XB. The 67-bit accumulator register can be used as a regular
product register when the part is used as a multiplier only or as
the register part of the accumulator section. The 32-bit
temporary output register is included to aid in the pipelining of
multiprecision multiplication operations. An instruction register
is also provided.

All of these registers can be made transparent with the
exception of the accumulator register and the temporary
register. The product from the multiplier can be fed directly to
the output by using the FTP control line.

TABLE 3. OUTPUT SELECT INSTRUCTIONS FOR
PRODUCT (P) PORT

TABLE 1. ACCUMULATOR OPERATION
INSTRUCTIONS

ACC1 ACCO Accumulator Operation

0 0 PASS

0 1 ACCUMULATE

1 0 INVALID

1 1 SHIFT AND ACCUMULATE

PSEL1 PSELO FA

0 0 X

0 1 0

0 1 1

1 0 0

1 0 1

1 1 X

Am29323 X AND Y INPUT DATA FORMATS

Fractional Two's Complement

TCX, TCY = 1

31 30 29 28 27 26 3

_2° 2- 1 2-2 2-3 2-4 2- 5 2-28

Integer Two's Complement

TCX, TCY= 1

31 30 29 28 27 26 3

_231 230 229 228 227 226 23

Unsigned Fractional

TCX, TCY=O

31 30 29 28 27 26 3

2- 1 2-2 2-3 2- 4 2-5 2-6 2-29

Unsigned Integer

TCX, TCY =0

31 30 29 28 27 26 3

231 230 229 228 227 226 23

48

P Port Output

TEMP REGISTER

Pi -1

Pi

Pi+31

Pi + 32

DISABLE

2 0

2- 29 2- 30 2- 31

2 0

22 21 2°

2 0

2-30 2- 31 2-32

2 0

22 21 2°

Am29323 P-PORT OUTPUT DATA FORMATS

Fractional Two's Complement (Shifted)*

FA = 0, PSEL 1 = 1, PSELO = 0

31 30 29 28 27 26 3 2 0

_2° 2- 1 2-2 2-3 2- 4 2- 5 2- 28 2-29 2- 30 2- 31

FA = 0, PSEL 1 = 0, PSELO = 1

31 30 29 28 27 26 3 2 0

2- 32 2-33 2-34 2-35 2-36 2-37 2-60 2-61 2-62 2-63 ""

Fractional Two's Complement

FA = 1, PSEL 1 = 1, PSELO = 0

31 30 29 28 27 26 3 2 0

_21 2° 2- 1 2-2 2-3 2- 4 2- 27 2-28 2- 29 2- 30

FA = 1, PSEL1 = 0, PSELO = 1

31 30 29 28 27 26 3 2 0

2- 31 2-32 2-33 2-34 2-35 2-36 2- 59 2-60 2-61 2-62

Integer Two's Complement

FA= 1, PSEL1 = 1, PSELO=O

31 30 29 28 27 26 3 2 0

_263 262 261 260 259 258 235 234 233 232

FA = 1, PSEL 1 = 0, PSELO = 1

31 30 29 28 27 26 3 2 0

231 230 229 228 227 226 23 22 21 2°

Unsigned Fractional

FA= 1, PSEL1 = 1, PSELO=O

31 30 29 28 27 26 3 2 0

2- 1 2-2 2-3 2- 4 2- 5 2-6 2- 29 2-30 2- 31 2-32

FA= 1, PSEL1 =0, PSELO= 1

31 30 29 28 27 26 3 2 0

2-33 2-34 2-35 2-36 2-37 2-38 2-61 2-62 2-63 2-64

Unsigned Integer

FA=1, PSEL1=1, PSELO=O

31 30 29 28 27 26 3 2 0

263 262 261 260 259 258 235 234 233 232

FA = 1, PSEL1 = 0, PSELO = 1

31 30 29 28 27 26 3 2 0

231 230 229 228 227 226 23 22 21 20

"In this format, an overflow occurs in the attempted multiplication of the two's complement number -1.000 with itself, yielding a
product of + 1.000 which cannot be represented in this format. ""This bit position (2-63) equals zero in this format.

49

264 x 64 Multiplication
X~ XW1 XWO

To perform a 64 x 64-bit multiplication using the Am29323, Y~ . YW1 YWO
each 64-bit input must be split into two 32-bit inputs; a most
significant half and a least significant half (XW1 and XWO or XWO • YWO ... Multiply only
YW1 and YWO, respectively.) These 32-bit inputs are then XW1 • YWO ... Mult & Shift! Acc
used to perform the four multiplications needed to obtain the XWO • YW1 ... Mult & Accumulate
128-bit product. This product is represented in four 32-bit XW1 • YW1 ... Mult & Shiftl Acc
words, PW3 - PWo. The least significant word being PWo. The
product is output 32 bits at a time through the product (P) port.

P~PW3 PW2 PW1 PWO

The following equation shows the required multiplications:
Table 4 details the movement of the input operands through

X • Y = ((XW1 • YW1) • 264) + ((XWO • VW1) • 232 the Am29323. Table 5 defines the microcode required to
+ ((XW1 • YWO) • 232) + ((XWO • VWO) • 2°) perform a signed 64 x 64-bit multiplication. For an unsigned

P = (PW3 • 296) + (PW2 • 264) + (PW1 • 232)
multiplication, TCX and TCV are LOW for all cycles. The

+ (PWO • 20) operations and data movement are scheduled to produce a
single product in seven clock cycles or a new pipelined

The Am29323 uses an internal accumulator to sum these product every four clock cycles.
intermediate products. The previous equation, in a slightly
different form, is shown with the necessary instructions below:

TABLE 4. BUS AND REGISTER CONTENTS FOR A 64 x 64-BIT SIGNED MULTIPLICATION WITH ONE
COMPLETE EXTENDED MULTIPLICATION SHOWN IN THE UNSHADED CYCLES

Cycle 0 1 2 3 4 5 6

x BUS XWO XW1 XWO XW1
XA REG XWO XWO XWO xwo XWO xwo XWO
XB REG XW1 XW1 XW1 XW1 XW1 XW1 XW1
Y BUS YWO YW1 YWO YW1
YA REG YWO YWO YWO YWo YWo YWO YWO
YB REG YW1 YW1 YW1 YW1 YW1 YW1 YW1
MPY OP W1'W1 wo·wo W1'WO WO'W1 W1'W1 Wo·Wo W1'WO
ACC OP SIA PASS SIA ACC SIA PASS SIA

T REG P3 PO P3 PO
P BUS P1 P2 P3 PO P1 P2 P3

Note: MPY OP = Operation of multiplier array (X'Y)
ACC OP = Operation of internal accumulator

PASS = Pass through multiplier product
ACC = Add previous result to current product
SI A = Shift previous result then add to current product

TABLE 5. INSTRUCTION MICROCODE FOR 64 x 64-BIT SIGNED MULTIPLICATION WITH ONE COMPLETE
EXTENDED MULTIPLICATION SHOWN IN THE UNSHADED CYCLES

Cycle 0 1 2 3 4 5 6 7 8 9 A B C 0

ENXA 0 1 1 1 0 1 1 1 0 1 1 1 0 1

ENXB 1 0 1 1 1 0 1 1 1 0 1 1 1 0

TCX 0 1 0 1 0 1 0 1 0 1 0 1 0 1

XSEL 1 0 1 0 1 0 1 0 1 0 1 0 1 0

ENYA 0 1 1 1 0 1 1 1 0 1 1 1 0 1

ENYB 1 0 1 1 1 0 1 1 1 0 1 1 1 0

TCY 0 0 1 1 0 0 1 1 0 0 1 1 0 0

YSEL 1 1 0 0 1 1 0 0 1 1 0 0 1 1

ENI 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ENT 1 0 0 1 1 0 0 1 1 0 0 1 1 0

TSEL X 1 0 X X 1 0 X X 1 0 X X 1

ACCO 0 1 1 1 0 1 1 1 0 1 1 1 0 1

ACCl 0 1 0 1 0 1 0 1 0 1 0 1 0 1

ENP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PSELO 1 1 0 0 1 1 0 0 1 1 0 0 1 1
PSEL1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50

Am29325
32-Bit Floating Point Processor

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

• Single VLSI device performs high-speed floating-point
arithmetic
- Floating-point addition, subtraction and multiplication

in a single clock cycle
- Internal architecture supports sum-of-products,

Newton-Raphson division
• 32-bit, 3-bus flow-through architecture

- Programmable I/O allows interface to 32- and 16-bit
systems

• IEEE and DEC formats
- Performs conversions between formats
- Performs integer - floating point conversions

• Six flags indicate operation status
• Register enables eliminate clock skew
• Input and output registers can be made transparent

independently

GENERAL DESCRIPTION

The Am29325 is a high-speed floating-point processor unit.
It performs 32-bit single-precision floating-point addition,
subtraction, and multiplication operations in a single LSI
integrated circuit, using the format specified by the proposed
IEEE floating-point standard P754. The DEC single­
precision floating-point format is also supported. Operations
for conversion between 32-bit integer format and floating­
point format are available, as are operations for converting
between the IEEE and DEC floating-point formats. Any op­
eration can be performed in a single clock cycle. Six flags -
invalid operation, inexact result, zero, not-a-number, over­
flow, and underflow - monitor the status of operations.

The Am29325 has a 3-bus, 32-bit architecture, with two
input buses and one output bus. This configuration provides

high I/O bandwidth, allows access to all buses and affords a
high degree of flexibility when connecting this device in a
system. All buses are registered, with each register having a
clock enable. Input and output registers may be made trans­
parent independently. Two other I/O configurations, a 32-bit,
2-bus architecture and a 16-bit, 3-bus architecture, are
user-selectable, easing interface with a wide variety of sys­
tems. Thirty-two-bit internal feedforward data paths support
accumulation operations, including sum-of-products and
Newton-Raphson division.

Fabricated with the high-speed IMOX™ bipolar process, the
Am29325 is powered by a single 5-volt supply. The device is
housed in a 144-pin pin-grid-array package.

Am29300 FAMILY HIGH PERFORMANCE SYSTEM BLOCK DIAGRAM

Am29331
16·81T

SEQUENCER

MICROPROGRAM
MEMORY

PIPELINE
REGISTER

I
CONTROL
SIGNALS

• Am29323 - 32 x 32 Parallel Multiplier
• Am29332 - 32·[3it ALU
• Am29331 - 16·Bit Sequencer

IMOX is a trademark of Advanced Micro Devices, Inc.

I
I I
Am29332

32·81T
ALU

,
32/

I

Am29334
REGISTER

FILE
64 x 18 -, I
1 I

J I
Am29325

32·81T
FLOATING POINT

PROCESSOR ,

32

32

I I
Am29323
32 x 32

PARALLEL
MULTIPLIER

05621A·l

RELATED PRODUCTS

51

• Am29334 - 64 x 18 Four-Port Dual-Access
Register File

Order # 05621 B

BLOCK DIAGRAM
Am29325

PORT R PORTS

1
CLKC>-+-

FLOATING-POINT
ALU

STATUS
FLAG

GENERATOR

SELECT 15
ANDENABLE~

LINES

DEFINITION OF TERMS

AFFINE MODE

PORT F

One of two modes affecting the handling of operations on
infinities - see the Operations with Infinities section under
Operation in IEEE Mode below.

BIASED EXPONENT

The true exponent of a floating-point number, plus a constant.
For IEEE floating-point numbers, the constant is 127; for DEC
floating-point numbers, the constant is 128. See also True
Exponent

BUS

Data input or output channel for the floating-point processor.

DEC RESERVED OPERAND

A DEC floating-point number that is interpreted as a symbol and
has no numeric value. A DEC reserved operand has a sign of 1
and a biased exponent of o.

DESTINATION FORMAT

The format of the final result produced by the floating-point ALU.
The destination format can be IEEE floating-point, DEC floating­
point or integer.

52

OVERFLOW

UNDERFLOW

ZERO

05621B·2

FINAL RESULT

The result produced by the floating-point ALU.

FRACTION

The twenty-three least-significant bits of the mantissa.

INFINITELY PRECISE RESULT

The result that would be obtained from an operation if both
exponent range and precision were unbounded.

INPUT OPERANDS

The value or values on which an operation is performed. For
example, the addition 2 + 3 = 5 has input operands 2 and 3.

MANTISSA

The portion of a floating-point number containing the number's
significant bits. For the floating-point number 1.101 x 2-3, the
mantissa is 1.101.

Am29325

DEFINITION OF TERMS (Cant)

NAN (Not-a-Number)

An IEEE floating-point number that is interpreted as a symbol,
and has no numeric value. A NAN has a biased exponent of
25510 and a non-zero fraction.

PORT

Data input or output channel for the floating-point AlU.

PROJECTIVE MODE

One of two modes affecting the handling of operations on
infinities - see the Operations with Infinities section under
Operation in IEEE Mode below.

PIN DESCRIPTION

ClK

ENR

FTO

R operand bus, input. Ro is the least-signifi­
cant bit.

S operand bus, input. So is the least-signifi­
cant bit.

F operand bus, output. Fo is the least­
significant bit.

Clock input for the internal registers.

Register R clock enable, input. When ENR is
lOW, register R is clocked on the lOW-to­
HIGH transition of ClK. When ENR is HIGH,
register R retains the previous contents.

Register S clock enable, input. When ENS is
lOW, register S is clocked on the lOW-to­
HIGH transition of ClK. When ENS is HIGH,
register S retains the previous contents.

Register F clock enable, input. When ENF is
lOW, register F is clocked on the lOW-to­
HIGH transition of ClK. When ENF is HIGH,
register F retains the previous contents.

Input register feedthrough control, input.
When FT 0 is HIGH, registers Rand S are
transparent.

Output register feedthrough control, input.
When FT 1 is HIGH, register F and the status
flag register are transparent.

Operation select lines, inputs. Used to select
the operation to be performed by the AlU. See
the AlU Operation Select Table for a list of
operations and the corresponding codes.

ALU S port input select, input. A lOW on 13
selects register S as the input to the AlU S
port. A HIGH on 13 selects register F as the
input to the ALU Sport.

53

ROUNDED RESULT

The result produced by rounding the infinitely precise result to fit
the destination format.

TRUE EXPONENT (or Exponent)

Number representing the power of two by which a floating-point
number's mantissa is to be multiplied. For the floating-point
number 1.101 x 2- 3, the true exponent is -3.

IEEE/DEC

INEXACT

INVALID

NAN

ONEBUS

OVERFLOW

PROJ/AFF

Register R input select, input. A lOW on 14
selects Ro - R31 as the input to register R. A
HIGH selects the AlU F port as the input to
register R.

IEEE/DEC mode select, input. When IEEE/
DEC is HIGH, IEEE mode is selected. When
IEEEJDEC is lOW, DEC mode is selected.

Inexact result flag, output. A HIGH indicates
that the final result of the last operation was not
infinitely precise, due to rounding.

Invalid operation flag, output. A HIGH indi­
cates that the last operation performed was
invalid, e.g., x times O.

Not-a-number flag, output. A HIGH indicates
that the final result produced by the last opera­
tion is not to be interpreted as a number. The
output in such cases is either an IEEE Not-a­
Number (NAN) or a DEC reserved operand.

Output enable, input. When OE is LOW, the
contents of register F are placed on Fo- F31.
When OE is HIGH, Fo- F31 assume a high­
impedance state.

Input bus configuration control, input. A lOW
on ONEBUS configures the input bus circuitry
for two-input bus operation. A HIGH on
ONEBUS configures the input bus circuitry for
single-input bus operation.

Overflow flag, output. A HIGH indicates that
the last operation produced a final result that
overflowed the floating-point format.

Projective/affine mode select, input. Choice of
projective or affine mode determines the way
in which infinities are handled in IEEE mode. A
lOW on PROJ/AFF select~ffine mode; a
HIGH selects projective mode.

PIN DESCRIPTION (Cont)

RNDQ, RND1

S16/32

ARCHITECTURE

Rounding mode selects, inputs. RNDo and
RND1 select one of four rounding modes. See
the Rounding Mode Select Table for a list of
rounding modes and the corresponding con­
trol codes.

Sixteen- or thirty-two-bit I/O mode select,
input. A LOW on S16/32 selects the thirty-two­
bit I/O mode; a HIGH selects the sixteen-bit I/O
mode. In thirty-two-bit mode, inputs and out­
put buses are 32 bits wide. In sixteen-bit
mode, input and output buses are sixteen bits

The Am29325 comprises a high-speed, floating-point ALU, a
status flag generator, and a 32-bit data path.

Floating-Point ALU

The floating-point ALU performs 32-bit floating-point operations.
It also"performs floating-point-to-integer conversions, integer­
to-floating-point conversions, and conversions between the
IEEE and DEC floating-point formats. The ALU has two 32-bit
input ports, Rand S, and a 32-bit output port, F.

Conceptually, the process performed by the ALU can be divided
into three stages - see Figure 1. The operation stage performs
the arithmetic operation selected by the user; the output of this
section is referred to as the infinitely precise result of the opera­
tion. The rounding stage rounds the infinitely precise result to fit in
the destination format; the output of this stage is called the
rounded result. The last stage checks for exceptional conditions.
If no exceptional condition is found, the rounded result is passed
through this stage. If some exceptional condition is found, e.g.,
overflow, underflow, or an invalid operation, this section may
replace the rounded result with another output, such as +x, -x,

a NAN, or a DEC reserved operand. The output of this last stage
appears on port F, and is called the final result.

The ALU performs one of eight operations; the operation to be
performed is selected by placing the appropriate control code on
lines 10 -12. The ALU Operation Select Table gives the control
codes corresponding to each of the eight operations.

The floating-point addition operation (R PLUS S) adds the
floating-point numbers on ports Rand S, and places the
floating-point result on port F.ln IEEE mode (IEEE/DEC = HIGH)
the addition is performed in IEEE floating-point format; in DEC
mode (IEEE/DEC = LOW) the addition is performed in DEC
format.

The floating-point subtraction operation (R MINUS S) subtracts
the floating-point number on port S from the floating-point
number on port R and places the floating-point result on port F. In
IEEE mode (IEEE/DEC = HIGH) the subtraction is performed in
IEEE floating-point format; in DEC mode (IEEE/DEC = LOW) the
subtraction is performed in DEC format.

The floating-point multiplication operation (R TIMES S) multiplies
the floating-point numbers on ports Rand S, and places the
floating-point result on port F.ln IEEE mode (IEEElDEC = HIGH)

54

Am29325

wide, with the least and most significant por­
tions of the thirty-two-bit input and output
words being placed on the buses during the
HIGH and LOW portions of CLK, respectively.

UNDERFLOW Underflow flag, output. A HIGH indicates that
the last operation produced a rounded result
that underflowed the floating-point format.

ZERO Zero flag, output. A HIGH indicates that the last
operation produced a final result of zero.

Figure 1. Conceptual Model of the Process Performed by
the Floating-Point ALU

OPERAND S

I
OPERATION STAGE

(PERFORMS SELECTED OPERATION)

1-- INFINITELY PRECISE RESULT

ROUNDING STAGE
(ROUNDS INFINITELY PRECISE

RESULT)

1--ROUNDED RESULT

EXCEPTION STAGE
(CHECKS FOR UNUSUAL CONDITIONS)

I
FINAL RESULT 05621A·3

the multiplication is performed in IEEE floating-point format; in
DEC mode (IEEE/DEC = LOW) the multiplication is performed in
DEC format.

The floating-point constant subtraction (2 MINUS S) operation
subtracts the floating-point value on port S from 2, and places the
result on port F. The operand on port R is not used in this
operation; its value will not affect the operation in any way. In
IEEE mode (IEEE/DEC = HIGH) the operation is performed in
IEEE floating-point format; in DEC mode (IEEE/DEC = LOW) the
operation is performed in DEC format. This operation is used to
support Newton-Raphson floating-point division; a description of
its use appears in Appendix C.

The integer-to-floating-point conversion (INT -TO-FP) operation
takes a 32-bit, two's complement integer on port R and places the
equivalent floating-point value on port F. The operand on port S is
not used in this operation; its value will not affect the operation in
any way. In IEEE mode (IEEE/DEC = HIGH) the result is de­
livered in IEEE format; in DEC mode (IEEEIDEC = LOW)
the result is delivered in DEC format.

Am29325

ALU OPERATION SELECT TABLE

10 Operation Output Equation

0 0 0 Floating-point addition F=R+S
(R PLUS S)

0 0 1 Floating-point subtraction F=R-S
(R MINUS S)

0 1 0 Floating-point multiplication F = R' S
(R TIMES S)

0 1 1 Floating-point constant F=2-S
subtraction (2 MINUS S)

1 0 0 Integer-to-floating-point F (floating-point) = R (integer)
conversion (INT-TO-FP)

1 0 1 Floating-point-to-integer F (integer) = R (floating-point)
conversion (FP-TO-INT)

1 1 0 IEEE-TO-DEC format conversion F (DEC format) = R (IEEE format)
(IEEE-TO-DEC)

1 1 1 DEC-TO-IEEE format conversion F (IEEE format) = R (DEC format)
(DEC-TO-IEEE)

The floating-point-to integer conversion (FP-TO-INT) operation
takes a floating-point number on port R and places the equivalent
32-bit, two's complement integer value on port F. The operand on
port S is not used in this operation; its value will not affect the
operation in any way. In IEEE mode (IEEE/DEC = HIGH) the
operand on port R is interpreted using the IEEE floating-point
format; in DEC mode (IEEE/DEC = LOW) it is interpreted using
the DEC floating-point format.

The IEEE-to-DEC conversion operation (IEEE-TO-DEC) takes
an IEEE-format floating-point number on port R and places the
equivalent DEC-format floating-point number on port F. The
operand on port S is not used in this operation; its value will not
affect the operation in any way. The operation can be performed
in either IEEE mode (IEEE/DEC = HIGH) or DEC mode (IEEE/
DEC = LOW).

The DEC-to-IEEE conversion operation (DEC-TO-IEEE) takes
a DEC-format floating-point number on port R and places the
equivalent IEEE-format floating-point number on port F. The
operand on port S is not used in this operation; its value will not
affect the operation in any way. The operation can be performed
in either IEEE mode (IEEE/DEC = HIGH) or DEC mode (IEEE/
DEC = LOW).

Status Flag Generator

The status flag generator controls the state of six flags that report
the status of floating-point ALU operations. The flags indicate
when an operation is invalid (e.g., infinity times zero) or when an
operation has produced an overflow, an underflow, a non­
numerical result (e.g., a NAN or DEC reserved operand), an
inexact result, or a result of zero. The flags represent the status of
the most-recently-performed operation. Flag status is stored in
the flag status register on the LOW-to-HIGH transition of CLK.
When the output register feedthrough control FT 1 is HIGH, the
flag status register is made transparent.

Data Path

The 32-bit data path consists of the Rand S input buses, the F
output bus, data registers R, S, and F, the register R input multi­
plexer, and tho ALU port S input multiplexer.

Input operands enter the floating-point processor through the
32-bit Rand S input buses, Ro-R31 and SO-S31. Results
of operations appear on the 32-bit F bus, Fo-F31' The F
bus assumes a high-impedance state when output enable
OE is HIGH.

The Rand S registers store input operands; the F register stores
the final result of the floating-point ALU operation. Each register
has an independent clock enable (ENR, ENS and ENF). When a
register's clock enable is LOW, the register stores the data on its
input at the LOW-to-HIGH transition of CLK; when the clock
enable is HIGH, the register retains its current data. All data
registers are fully edge-triggered - both the input data and the
register enable need only meet modest setup and hold time
requirements. Registers Rand S can be made transparent by
setting FT 0, the input register feedthrough control, HIGH. Regis­
ter F can be made transparent by setting FT 1, the output register
feedthrough control, HIGH.

The register R input multiplexer selects either the R input bus or
the floating-point ALU's F port as the input to register R. Selection
is controlled by 14 - a LOW selects the R input bus; a HIGH
selects the ALU F port. The ALU port S input multiplexer selects
either register S or register F as the input to the floating-point
ALU's S port. Selection is controlled by 13 -- a LOW selects
register S; a HIGH selects register F.

Data selected by 13 and 14 is described in the Mux Select Tables.
When registers Rand S are transparent (FT 0 = HIGH) multi­
plexer select 14 must be kept LOW, so that the register R input
multiplexer selects Ro- R31. When register F is transparent (FT1
= HIGH) multiplexer select 13 must be kept LOW, so that the ALU
port S input multiplexer selects register S.

MUX SELECT TABLES

13 Data selected for floating-point ALU Sport

0 Register S

1 Register F

14 Data selected for register R input

0 R bus

1 Floating-point ALU port F

55

I/O MODES

The Am29325 data path can be configured in one of three I/O
modes: a 32-bit, two-input-bus mode; a 32-bit, single-input-bus
mode; and a 16-bit, two-input-bus mode. These modes affect
only the manner in which data is delivered to and taken from the
Am29325; operation of the floating-point AlU is not altered. The
I/O mode is selected with the ONEBUS and S16/32 controls. The

I/O Mode Selection Table lists the control codes needed to
invoke each I/O mode.

I/O MODE SELECTION TABLE

S16/32 ONEBUS I/O Mode

0 0 32-bit, two-input-bus mode

0 1 32-bit, single-input-bus mode(-)

1 0 16-bit, two-input-bus mode(-)

1 1 Illegal 1/0 mode selection value

(-)FTo must be held lOW in this mode (see text).

32-Bit, Two-Input-Bus Mode

In this I/O mode, the Rand S buses are configured as indepen­
dent 32-bit input buses, and the F bus is configured as a 32-bit
output bus. Figure 2 is a functional block diagram of the Am29325
in this I/O mode.

Am29325

Rand S operands are taken from their respective input buses and
clocked into the Rand S registers on the lOW-to-HIGH transition
of elK. Register F is also clocked on the lOW-to-HIGH transition
of elK. Figure 5{a.) depicts typical I/O timing in this mode.

32-Bit, Single-Input-Bus Mode

In this I/O mode, tho Rand S buses ai6 connected to a single
32-bit multiplexed input data bus; the F bus is configured as an
independent 32-bit output bus. Figure 3 is a functional block
diagram of the Am29325 in this I/O mode. Note that both the R
and S bus lines must be wired to the input bus.

Rand S operands are multiplexed onto the input bus by the host
system. The S operand is clocked from the input bus into a
temporary holding register on the HIGH-to-lOW transition of
elK and is transferred to register S on the lOW-to-HIGH transi­
tion of elK. The R operand is clocked from the input bus into
register R on the lOW-to-HIGH transition of elK. Register F is
clocked on the lOW-to-HIGH transition of elK. Figure 5(b.)
depicts typical I/O timing in this mode.

When placed in this I/O mode, the data path will not function
properly if the Rand S registers are made transparent. Therefore
input register feedthrough control FT 0 must be held lOW in this
mode.

Figure 2_ Functional Block Diagram for the 32-Bit, Two-Input-Bus Mode

R BUS
32

SBUS/I/~32~ ________________ +-__________________ -+ ____________________ ~

b-----------I------,!--CI ENS

ONEBUS (= LOW) r::::::>-+--+-

S16/32 (= LOW) r-"")--+---+-

ENFc:>-~-+----------------dE;-~----1

0Ec:J-~--~--------------------_dV

FBUS/I/--~------------------------~~~~--------------------------~

056216-4

56

Am29325

Figure 3. Functional Block Diagram for the 32-Bit, Single-Input-Bus Mode

32
RISBUS~~~+--------------3-2~Ro-_-R3-1-------------3~2rS-o-_S-3-1--------------JI

I. L:>-+--+--+---i

P-~------+-7--C~ ENS

ONEBUS (= HIGH) r->--f---+-

516/32 (= lOW) r--'"-----'--,--

elK ------C>

OEr->-+-~-------------------~~

32
FBUS~~--+-----------------------~~~------------------------~~

16-Bit, Two-Input-Bus Mode

In this I/O mode, the Rand S buses are configured as indepen­
dent 16-bit input buses, and the F bus is configured as a 16-bit
output bus. Figure 4 is a functional block diagram of the Am29325
in this I/O mode. Note that the 16 lSBs and 16 MSBs of the R, S
and F buses must be wired to their respective system buses in
parallel.

Thirty-two-bit operands are passed along the 16-bit data buses
by time-multiplexing the 16 lSBs and 16 MSBs of each 32-bit
word. For the R input bus, the host system multiplexes the 16
lSBs and 16 MSBsofthe R operand onto the 16-bit R bus. The 16
lSBs of the R operand are stored in a temporary holding register
on the HIGH -to- lOW transition of ClK. The 16 MSBs are clocked
into register R on the lOW-to-HIGH transition of ClK; at the
same time, the 16 lSBs are transferred from the temporary
holding register to register R. Transfer of data from the S input bus
to the S register takes place in a similar fashion. Register F is
clocked on the lOW-to-HIGH transition of ClK. Circuitry internal
to the Am29325 multiplexes data from register F onto the 16-bit
output bus by enabling the 16 lSBs of the F output bus when ClK
is HIGH, and enabling the 16 MSBs of the F output bus when ClK
is lOW. Figure 5(c.) depicts typical I/O timing in this mode.

When placed in this I/O mode, the data path will not function
properly if the Rand S registers are made transparent. Therefore
input register feedthrough control FT 0 must be held lOW in this
mode. Caution must also be taken in controlling the register R
input multiplexer control line, 14, in this I/O mode. 14 should be
changed only when ClK is HIGH, in addition to meeting the setup
and hold time requirements given in the Switching Characteris­
tics section.

57

05621A·S

OPERATION IN IEEE MODE

When input signallEEElDEC is HIGH, the IEEE mode of opera­
tion is selected. In this mode the Am29325 uses the floating-point
format set forth in the IEEE Proposed Standard for Binary
Floating-Point Arithmetic, P754. In addition, the IEEE mode
complies with most other aspects of single-precision floating­
point operation outlined in the proposed standard - differences
are discussed in Appendix A.

IEEE Floating-Point Format

The IEEE Single-precision floating-point word is thirty-two bits
wide, and is arranged in the format shown in Figure 6. The
floating-point word is divided into three fields: a single-bit sign,
an eight-bit biased exponent, and a 23-bit fraction.

The sign bit indicates the sign of the floating-point number's
value. Non-negative values have a sign of 0; negative values, a
sign of 1. The value zero may have either sign.

The biased exponent is an eight-bit unsigned integer field repre­
senting a multiplicative factor of some power of two. The bias
value is 127. If, for example, the multiplicative factor for a
floating-point number is to be 2a, the value of the biased expo­
nent would be a+127; a is called the true exponent.

The fraction is a 23-bit unsigned fractional field containing the 23
least-significant bits of the floating-point number's 24-bit man­
tissa. The weight of fraction's most significant bit is 2- 1; the
weight of the least-significant bit is 2-23.

Am29325

Figure 4. Functional Block Diagram for the 16-Bit, Two-Input-Bus Mode

RBUS /~_1~6r-__________ ~ __ ~~ ________________________________ -JV

SBUS /lr~1~6r---------~16~--~16rl------------"~~~----------------Jl
R16R31 RQ"R15

32

elK

ONEBUS (= lOW)

S16/32 (= HIGH)

16
F BUS

A floating-point number is evaluated or interpreted per the fol­
lowing conventions:

let s = sign bit
e = biased exponent
f = fraction

if e = 0 and f = 0 ... value = (-1)s·(0) (+0, -0)

if e = 0 and f :t: 0 ... value = denormalized number

if 0 < e < 255 .. value = (-1)S.(2e- 127).(1.f)
(normalized number)

if e = 255 and f = 0 .. value = (-1)S.(x) (+x, -x)

if e = 255 and f :t: 0 ... value = not-a-number (NAN)

Zero - The value zero can have either a positive or negative sign.
Rules for determining the sign of a zero produced by an operation
are given in the Sign Bit section on page 12.

Denormalized Number - A denormalized number represents a
quantity with magnitude less than 2- 126 but greater than zero.

58

Am29325

05621B-6

Normalized Number - A normalized number represents a
.quantity with magnitude greater than or equal to 2- 126 but less
than 2128.

Example 1:

The number +3.5 can be represented in floating-point format
as follows:

+3.5 = 11.12 x 20

= 1.112 x 21

sign = 0

biased exponent = 110+12710 = 12810
= 100000002

fraction = 110000000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
4060000016.

Am29325

Figure 5. Typical Bus Timing for the I/O Modes, with FTO = LOW, FTl = LOW

C~ J
"'"' XXXXXXXXXX R DATA

SBUS XXXXXXXXXXX S DATA

""' x F DATA

a) 32-Bit, Two-Input-Bus Mode

=J
R/S BUS XXXX S DATA XXXX R DATA

F BUS x F DATA

b) 32-Bit, Single-Input-Bus Mode

elK J
R BUS XXXXX R DATA - 16 lSBs XXXXX R DATA - 16 MSBs

S BUS xxxxx S DATA - 16 lSBs XXXXX S DATA - 16 MSBs

F BUS x F DATA - 16 lSBs x F DATA - 16 MSBs

c) 16-Bit, Two-Input-Bus Mode

59

xxx
XXXX
x

xxx
x

XXXX
xxx
x

05621A-7

Am29325

Figure 6. IEEE Mode Single-Precision Floating-Point Format

SIGN BIASED
BIT(S) EXPONENT (E) FRACTION (F) --BIT NUMBER: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 4 3 2 1 0

I I 27 1 26 1 25 1 24 1 23 1 22 1 21 I 20 12-1 I 2-2 1 2_ 3 12 _ 4 I 2- 5 I ... 12-1912-2012-2112-2212-231
1 1 1

VALUE = (-1)5 (2E-127) (1.F)

05621A-8

Example 2: Not-a-Number - A not-a-number, or NAN, does not represent a

The number -11.375 can be represented in floating-point for- numeric value, but is interpreted as a signal or symbol. NANs are

mat as follows: used to indicate invalid operations, and as a means of passing

-11.375 = -1011.0112 x 20
process status information through a series of calculations. NANs
arise in two ways: they can be generated by the Am29325 to

= -1.0110112 x 23 indicate that an invalid operation has taken place (e.g., infinity
sign = 1 times zero), or they can be provided by the user as an input

biased exponent = 310+ 12710 = 13010
operand_ There are two types of NANs: signalling and quiet.

= 100000102
These NANs have the formats shown in Figure 7_

fraction = 011011000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
IEEE Mode Integer Format

C136000016,

Infinity - Infinity can have either a positive or negative sign. The Integer numbers are represented as 32-bit, two's complement
way in which infinities are interpreted is determined by the state of words; Figure 8 depicts the integer format. The integer word can
the projective/affine mode select, PROJ/AFF, represent a range of integer values from - 231 to 231 _1.

Figure 7. Signalling and Quiet NAN Formats

SIGN BIASED
BIT EXPONENT FRACTION -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIGNALLING NAN I X 11 1 1 1 1 1 1 1 11 X I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QUIET NAN I X 11 1 1 1 1 1 1 1 I 0 X I
X = DON'T CARE AT LEAST ONE OF THE

TWENTY·TWO LSBs OF A QUIET NAN
MUST BE 1

05621A-9

Figure 8. Thirty-Two-Bit Integer Format

BIT NUMBER: 31 30 29 28 27 26 25 24 8 7 6 5 4 3 2 1 0

1-2311230 1 229 I 228 I 227 I 226 I 2251224 1 ... I 28 I 27 I 26 1 25 1 24 1 23 1 22 I 21 I 20 I
I I I I I I I I I I I I I I I I I .

05621A-10

60

Am29325

Operations

All eight floating-point ALU operations discussed in the Func­
tional Description section above can be performed in IEEE mode.
Various exceptional aspects of the R PLUS S, R MINUS S, R
TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT operations
for this mode are described below. The IEEE-TO-DEC and
DEC-TO-IEEE operations are discussed separately in the
IEEE-TO-DEC and DEC-TO-IEEE Operations section on
page 23.

Operations with NANs - NANs arise in two ways: they can be
generated by the Am29325 to indicate that an invalid operation
has taken place (e.g., infinity times zero), or they can be provided
by the user as an input operand. There are two types of
NANs: signalling and quiet. These NANs have the formats
shown in Figure 7.

Signalling NANs set the invalid operation flag when they appear
as an input operand to an operation. They are useful for indicating
uninitialized variables, or for implementing user-designed exten­
sions to the operations provided. The ALU never produces a
signalling NAN as the final result of an operation.

Quiet NANs are generated for invalid operations. When they
appear as an input operand, they are passed through most oper­
ations without setting the invalid flag, the floating-point-to­
integer conversion operation being the exception.

The sign of any input operand NAN is ignored. All quiet NANs
produced as the final result of an operation have a sign of O.

When a NAN appears as an input operand, the final result of the
operation is a quiet NAN that is created by taking the input NAN
and forcing bit 22 LOW and bit 21 HIGH. If an operation has two
NANs as input operands, the resulting quiet NAN is created using
the NAN on the R port.

When a quiet NAN is produced as the final result of an invalid
operation whose input operand or operands are not NANs, the
resulting NAN will always have the value 7FA0000016.

The NAN flag will be HIGH whenever an operation produces a
NAN as a final result.

Example 1:

Suppose the floating-point addition operation is performed
with the following input operands:

R port: 3F80000016 (1.0 0 2°)
Sport: 7FC1234516 (signalling NAN)

Result: The signalling NAN on the S port is converted to
a quiet NAN by forcing bit 22 LOW and bit 21 HIGH.
The operation's final result will be 7FA1234516. Since
one of the two input operands is a signalling NAN,
the invalid flag will be HIGH; the NAN flag will .also
be HIGH.

Example 2:
Suppose the floating-point multiplication operation is per­
formed with the following input operands:

R port: FFF1111116 (signalling NAN)
Sport: 7FC2222216 (quiet NAN)

Result: Since both input operands are NANs, the NAN on the
R port is chosen for output. In addition to forcing bit 22
LOW, the sign bit (bit 31) is set LOW (bit 21 is already
HIGH, and need not be changed). The operation's final
result will be 7FB1111116. Since one of the two input
operands is a Signalling NAN, the invalid flag is HIGH;
the NAN flag will also be HIGH.

Example 3:

Suppose the floating-point subtraction operation is performed
with the following input operands:

R port: FF80000116 (quiet NAN)
Sport: 7F80000016 (+x)

Result: To create the final result, the quiet NANs sign bit(bit
31) is forced LOW and bit 21 is forced HIGH (bit 22 is
already LOW, and need not be changed). The final
result will be 7FA0000116. The NAN flag will be HIGH.

Operations with Denormalized Numbers - The proposed
IEEE standard incorporates denormalized numbers to allow a
means of gradual underflow for operations that produce non-zero
results too small to be expressed as a normalized floating-point
number. The Am29325 does not support gradual underflow. If a
floating-point operation produces a non-zero rounded result that
is not large enough to be expressed as a normalized floating­
point number, the final result will be a zero of the same sign; the
inexact, underflow, and zero flags will be HIGH. If an input
operand is a denormalized number, the floating-point ALU will
assume that operand to be a zero of the same sign.

Operations Producing Overflows - If an operation has a finite
input operand or operands, and if the operation produces a
rounded result that is too large to fit in the destination format, that
operation is said to have overflowed.

A floating-point overflow occurs if an R PLUS S, R MINUS S, R
TIMES S, or 2 MINUS S operation with finite input operand(s)
produces a result which, after rounding, has a magnitude greater
than or equal to 2128. Positive or negative infinity will appear as
the final result if the rounded result is positive or negative, respec­
tively, and the overflow and inexact flags will be HIGH.

Integer overflow occurs when the fixed-to-floating-point conver­
sion operation attempts to convert a number which, after round­
ing, is greater than 231 _1 or less than - 231. The final result will
be quiet NAN 7FA0000016, and the invalid operation and NAN
flags will be HIGH. Note that the overflow and inexact flags
remain LOW for integer overflow.

Operations Producing Underflows - If an operation produces
a floating-point rounded result having a magnitude too small to be
expressed as a normalized floating-point number, but greater
than zero, that operation is said to have underflowed. Underflow
occurs when an R PLUS S, R MINUS S, or R TIMES S operation
produces a result which, after rounding, has a magnitude in the
range:

0< magnitude < 2- 126.

In such cases, the final result will be +0 (0000000016) if the
rounded result is non-negative, and -0 (8000000016) if the
rounded result is negative. The underflow, inexact, and zero flags
will be HIGH.

Underflow does not occur if the destination format is integer. If the
infinitely precise result of a floating-point-to-integer conversion
has a magnitude greater than 0 and less than 1 but the rounded
result is 0, the underflow flag remains LOW.

Operations with Infinities - In most cases, positive and nega­
tive infinity are valid input arguments for the R PLUS S, R MINUS
S, RTIMES S, and 2 MINUS S operations. Those cases for which
infinities are not valid inputs for these operations are listed in the
IEEE Mode Invalid Operations Table (see next page).

Infinities in IEEE mode can be handled either as projective or
affine. The projective mode is selected when PROJ(AFF is HIGH;

61

the affine mode is selected when PROJ/AFF is LOW. The only
differences between the modes that are relevant to Am29325
operation occur during the addition and subtraction of infinities:

Operation

(+x)+(+x)

(-x)+(-x)

(+x)-(-x)

(-x)-(+x)

Affine
Mode

Output +x.

Output -x

Output +:x:

Output -x

Projective Mode

Output 7FAOO00016 (quiet NAN),
set invalid and NAN flags

Output 7FA0000016 (quiet NAN),
set invalid and NAN flags

Output 7FA0000016 (quiet NAN),
set invalid and NAN flags

Output 7FA0000016 (quiet NAN),
set invalid and NAN flags

If an R PLUS S, R MINUS S, R TIMES S, or 2 MINUS S operation
has infinity as an input operand or operands, the final result, if
valid, is presumed to be exac1.-For example, adding +x and 2.0
will produce a final result of +x; since the result is considered
exact, the inexact flag remains LOW.

Invalid Operations - If an input operand is invalid for the opera­
tion to be performed, that operation is considered invalid. When
an invalid operation is performed, the floating-point ALU pro­
duces a quiet NAN as the final result, and the invalid operation
flag goes HIGH. The IEEE Mode Invalid Operations Table lists
the cases for which the invalid flag is HIGH in IEEE mode, and the
final results produced for these operations.

IEEE MODE INVALID OPERATIONS TABLE

Operation Input Operand Final Result

R PLUS S (+x) + (-x) 7FAOOOO016
or (-x) + (+x) (quiet NAN)

R PLUS S (+x) + (+x) 7FAOOOO016
or (-x) + (-x) (Note 1) (quiet NAN)

R MINUS S (+0:) - (+x) 7FAOOOO016
or (-x) - (-x) (quiet NAN)

R MINUS S (+x) - (-x) 7FAOOOO016
or (-x) - (+x) (Note 1) (quiet NAN)

R TIMES S (+0). (+x)
or (+0) • (-x) 7FAOOOO016
or (-0) • (+x) (quiet NAN)
or (-0) • (-x)

R PLUS S R or S is a signalling NAN
R MINUS S (Note 2)
R TIMES S

2 MINUS S S is a signalling NAN (Note 2)

FP-TO-INT R is a signalling or quiet NAN (Note 2)

FP-TO-INT R> 231-1 7FAOOOO016
or R < - (231) (quiet NAN)

Notes: 1. These cases are invalid in projective mode only.
2. Results for these operations are described in the Operations

with NANs section.

The Sign Bit

For most floating-point operations, the sign bit of the final result is
unambiguous, i.e., there is only one sign bit value that yields a
numerically correct result. Operations that produce an infinitely

62

Am29325

precise result of zero, however, present a problem, as the IEEE
floating-point format allows for representation of both +0 and
-0. The following rules can be lIsed to determine the signs of
zero produced in such cases:

R PLUS S - The operations +x + (-x) and -x + (+x) produce a
final result of zero; the sign of the zero is dependent on the
rounding mode:

Rounding Mode Sign of Final Result

Round to nearest 0

Round toward -x 1

Round toward-+x 0

Round toward 0 0

The operation +0 + (+0) produces a final result of +0; the
operation -0 + (-0) produces a final result of -0.

R MINUS S - The operations +x - (+x) and -x - (-x) produce
a final result of zero; the sign of the zero is dependent on the
rounding mode:

Rounding Mode Sign of Result

Round to nearest 0

Round toward -x 1

Round toward +x 0

Round toward 0 0

The operation +0 - (-0) produces a final result of +0; the
operation -0 - (+0) produces a final result of -0.

R TIMES S - The sign of any multiplication result other than a
NAN is the exclusive-OR of the signs of the input operands.
Therefore, if x is non-negative,

+0 times +x produces a final result of +0,
+0 times -x produces a final result of -0,
-0 times +x produces a final result of -0,
-0 times -x produces a final result of +0.

2 MINUS S - If S equals 2, the final result is -0 for the round
toward -x mode, and +0 for all other rounding modes.

Rounding

Rounding is performed whenever an operation produces an infi­
nitely precise result that cannot be represented exactly in the
destination format. For example, suppose a floating-point opera­
tion produces the infinitely precise result

1.10101010101010101010101\01 x 23.

In this example, the fraction portion of the mantissa has twenty­
five bits; the IEEE floating-point format can accommodate only
twenty-three. The backs lash (\) in the mantissa represents the
boundary between the first twenty-three bits of the fraction and
any remaining bits. Rounding is the process by which this result is
approximated by a representation that fits the destination format.

Am29325

There are four rounding modes in IEEE mode: round to nearest,
round toward +x, round toward -x, and round toward O. The
rounding mode is chosen using the rounding mode select lines,
RNDo and RND1. The Rounding Mode Select Table lists the
select states needed to obtain the desired rounding mode.

ROUNDING MODE SELECT TABLE

RNDO Rounding Mode

° ° Round to nearest

° Round toward - x.

° Round toward + %

Round toward °

Round to Nearest - In this rounding mode the infinitely preCise
result of an operation is rounded to the closest representation that
fits in the destination format. If the infinitely precise result is
exactly halfway between two representations, it is rounded to the
representation having an LSB of zero. Rounding is performed
both for floating-point and integer destination formats.

Figure 9 illustrates four examples of the round to nearest process
for operations having a floating-point destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate
those values that can be represented exactly in the floating-point
format.

Example 1:

In Figure 9(a), the infinitely precise result of an operation is:

22°+2-4+2-5 = 1.00000000000000000000000 11 x 220.

The result is rounded to the closest representable floating-point
value,

22°+2-3 = 1.00000000000000000000001 x 220.

Example 2:

In Figure 9(b), the infinitely precise result of an operation is:

22°-2-4+2-8 = 1.11111111111111111111111 0001 x 219.

This result is rounded to the closest representable floating-point
value,

220-2-4 = 1.11111111111111111111111 x 219.

Example 3:

In Figure 9(c), the infinitely precise result of an operation is:

-(220+2-3+2- 4)
= -1.00000000000000000000001\1 x 220.

This result is exactly halfway between two representable
floating-point values. Accordingly, it is rounded to the closest
representation with an LSB of zero, or

-(220+2'2-3) = -1.0uOOOOOOOOOOOOOOOOOOOlO x 220.

Example 4:

In Figure 9(d), the infinitely precise result of an operation is:

22°+3'2-3 = 1.00000000000000000000011 x 220.

This result can be represented exactly in the floatir.lg-point
format, and is left unaltered by the rounding process.

Figure 9. Floating-Point Rounding Examples for Round to Nearest Mode

--~.'_----~.'_----~.'_----~.~~.'-~.'_~.'_--~--4.~--. __ --~~~~--• ._----~.~----~.~----~.~--
•

ROUND TO _(220 + 2-3) b)
220 - 2- 4 + 2-8

---• ._------•• ~--~)(t---. __ ----~ • .-~ • ._~ • ._~ • ._--~--4.~--• ._--•• --~ • ._----~ • .-----~.~----~ • .---
t

_(220 + 2-3 + 2-4) c) NO CHANGE

--~.~----~.~-----e.------~.~~.~-4.~-e.---~--4.--~.~-4.~-4.~----~.~-----4.~-----~~tct--
•

d)
220 + 3 • 2-3

05621A-11

63

Figure 10 illustrates four examples of the round to nearest
process for operations having an integer destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be represented exactly in the integer format.

Example 1:

In Figure 10(a), the infinitely precise result of an operation is:

2 10-2-2 = 00 ... 001111111111.11.

The result is rounded to the closest representable integer value,
210 = 00 ... 010000000000.

Example 2:

In Figure 10(b), the infinitely precise result of an operation is:

2 10+20+2-3 = 00 ... 010000000001.001.

This result is rounded to the closest representable floating-point
value,

210+20 = 00 ... 010000000001.

Am29325

Example 3:

In Figure 10(c), the infinitely precise result of an operation is:

-(210+20+2- 1) = 11 ... 101111111110.1.

This result is exactly halfway between two representable integer
values. Accordingly, it is rounded to the closest representation
with an LSB of zero, or

-(210+2.20) = 11 ... 101111111110.

Example 4:

In Figure 10(d), the infinitely precise result of an operation is:

210 +3.20 = 00 ... 010000000011.

This result can be represented exactly in the integer format, and
is left unaltered by the rounding process.

Figure 10. Integer Rounding Examples for Round to Nearest Mode

ROUND TO 210

• • • • • vL-+---vA • i) • • • I I I I I I
(I

I I I
-(210 + 3) _(210 + 2) _(210 + 1) _(210) _(210 - 1) 0 210 - 1 210 210 + 1 210 + 2 210 + 3

a)
210 - 2-2

ROUND TO 210 + 1

• • • • • .~ • • ~ • •
0 • ROUND TO _(210 + 2) b) 210 + 20 + 2- 3

• n • • • ~ • • • • •
• 0

_(210 + 20 + 2- 1) c) NO CHANGE

• • • • • ~ • • • • Q
0 • d)

210 + 3.20

05621A-12

64

Am29325

Round Toward -'XC - In this rounding mode the result of an
operation is rounded to the closest representation that is less than
or equal to the infinitely precise result, and which fits the destina­
tion format. Rounding is performed both for floating-point and
integer destination formats.

Figure 11 illustrates four examples of the round toward ~X pro­
cess for operations having a floating-point destination format.
The infinitely precise result of an operation is represented by an X
on the number line; the black dots on the number line indicate
those values that can be represented exactly in the floating-point
format.

Example 1:

In Figure 11 (a), the infinitely precise result of an operation is:

2 20 +2- 4+2-5 = 1.00000000000000000000000\11 x 220.

This result cannot be represented exactly in floating-point
format, and is rounded to the next-smaller floating-point repre­
sentation:

2 20 = 1.00000000000000000000000 x 220.

Example 2:

In Figure 11 (b), the infinitely precise result of an operation is:

220-2-4+2-8 = 1.11111111111111111111111\0001 x 219.

This result cannot be represented exactly in floating-point for­
mat, and is rounded to the next-smaller floating-point rep­
resentation:

220-2-4 = 1.11111111111111111111111 x 219.

Example 3:

In Figure 11 (c), the infinitely precise result of an operation is:

-(220+2- 3 +2- 4)

= -1.00000000000000000000001\1 x 220.

This result cannot be represented exactly in floating-point
format, and is rounded to the next-smaller floating-point
representation:

-(220 +2-2- 3) = -1.00000000000000000000010 x 220.

Example 4:

In Figure 11 (d), the infinitely precise result of an operation is:

220 +3-2- 3 = 1.00000000000000000000011 x 220.

This result can be represented exactly in the floating-point
format, and is left unaltered by the rounding process.

Figure 11. Floating-Point Rounding Examples for Round Toward - 00 Mode

--~O'-----~O'-------OD-----~OD-~.~ __ .D_--.D_~~~~O~--OO---O~U-_oo------_oO------~OD-------.O---
•

ROUND TO _(220 + 2' 2- 3, b)
220 _ 2- 4 + 2- 8

---.D_------~D_~~~---.O-------O __ --.D---.D_--.D_--~~~.~--•• --_o.~_oO-------O.------~.D-------•• ---
t

_(220 + 2- 3 + 2-4) c) NO CHANGE

---.D_------•• ------~.D_------.D_~.D_--.D_~ • ._~~--4.~--.D---.O---.D_----~.D_----~.~-----~~t(.r--
• 220 + 3 • 2- 3

d)

05621A·13

65

Figure 12 illustrates four examples of the round toward - 'l:. pro­
cess for operations having an integer destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be exactly represented in the integer format.

Example 1:

In Figure 12(a), the infinitely precise result of an operation is:

210-2-2 = 00 ... 001111111111.11.

The result is rounded to the next-smaller representable integer
value,

210-20 = 00 ... 001111111111.

Example 2:

In Figure 12(b), the infinitely precise result of an operation is:

210+20+2-3 = 00 ... 010000000001.001.

Am29325

This result is rounded to the next-smaller representable integer
value,

210+20 = 00 ... 010000000001.

Example 3:

In Figure 12(c), the infinitely precise result of an operation is:

-(210+20+2-1) = 11 ... 101111111110.1.

This result is rounded to the next-smaller representable integer
value:

-(210+2-2°) = 11 ... 101111111110.

Example 4:

In Figure 12(d), the infinitely precise result of an operation is:

2 10+3-20 = 00 ... 010000000011.

This result can be represented exactly in the integer format, and
is unaltered by the rounding process.

Figure 12. Integer Rounding Examples for Round Toward - x Mode

ROUND TO 210 - 1

v~
n

0 0 CI • 0 • X· • • •
I I I I I I (I I I I

-(210 + 3) -(210 + 2) -(210 + 1) -(210) _(2 10 - 1) 0 210 _1 2 10 210 + 1 210 + 2 210 + 3
a)

210 - 2- 2
ROUND TO 210 + 1

II • 0 • • ~ • •

"*
• •

I
ROUND TO -(210 + 2) b) 210 + 20 + 2- 3

0
()

0 It • ~ 0 • • • •
I 0

-(210 + 20 + 2- 1) c) NO CHANGE

Q 0 • • 0 0 ~ • • • •
I

d) 210 + 3.2°

05621A·14

66

Am29325

Round Toward +00 - In this rounding mode the result of an
operation is rounded to the closest representation that is greater
than or equal to the infinitely precise result, and which fits the
destination format. Rounding is performed both for floating-point
and integer destination formats.

Figure 13 illustrates four examples of the round toward +x
process for operations having a floating-point destination
format. The infinitely precise result of an operation is represented
by an X on the number line; the black dots on the number line
indicate those values that can be represented exactly in the
floating-point format.

Example 1:

In Figure 13(a), the infinitely precise result of an operation is:

22°+2-4+2-5 = 1.00000000000000000000000\11 x 220.

This result cannot be represented exactly in floating-point
format, and is rounded to the next-larger floating-point repre­
sentation:

220+2-3 = 1.00000000000000000000001 x 220.

Example 2:

In Figure 13(b), the infinitely precise result of an operation is:

22°-2-4+2-8 = 1.11111111111111111111111\0001 x219.

This result cannot be represented exactly in floating-point
format, and is rounded to the next-larger floating-point repre­
sentation:

220 = 1.00000000000000000000000 x 220.

Example 3:

In Figure 13(c), the infinitely precise result of an operation is:

-(220 +2-3+2-4)
= -1.00000000000000000000001 \1 x 220.

This result cannot be represented exactly in floating-point
format, and is rounded to the next-larger floating-point repre­
sentation:

-(220+2-3) = -1.00000000000000000000001 x 220.

Example 4:

In Figure 13(d), the infinitely precise result of an operation is:

22°+3-2-3 = 1.00000000000000000000011 x 220.

This result can be represented exactly in the floating-point for­
mat - no rounding takes place.

Figure 13. Floating-Point Rounding Examples for Round Toward + 00 Mode

_(220 - 3 • 2-4)l 220 - 2-4 ROUND TO 220 + 2-3

_(220 - 2-4)l 2
20

- 3' 2-
4l l • xfJ • • • • • • • • • ~ . ..

I I I I I I I c.". ! ,-, I ". + ! . ,-, _(220 + 3' 2- 3) _(220 + 2-3) -(220 - 2' 2-4) 0 220 - 2' 2-4

_(220 + 2 • 2-3) _(220) a) 220 220 + 2 • 2-3

ROUND TO 220 220 + 2-4 + 2-5

• • • • • • • ~ • • .£J • • •
• ROUND TO 220 + 2-3

b)
220 - 2-4 + 2-8

• • ,[) • • • • ~ • • • • • • • t
_(220 + 2- 3 + 2-4) c) NO CHANGE

Q • • • • • • • ~ • • • • • •
•

d)
220 + 3' 2-3

05621A-15

67

Figure 14 illustrates four examples of the round toward + x pro­
cess for operations having an integer destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be exactly represented in the integer format.

Example 1:

In Figure 14(a), the infinitely precise result of an operation is:

21°-2- 2 = 00 ... 001111111111.11.

The resuit is rounded to the next-larger representable integer
value,

210 = 00 ... 010000000000.

Example 2:

In Figure 14(b), the infinitely precise result of an operation is:

21°+20+2-3 = 00 ... 010000000001.001.

Am29325

This result is rounded to the next-larger representable integer
value,

210+2*20 = 00 ... 010000000010.

Example 3:

In Figure 14(c), the infinitely precise result of an operation is:

-(210+20+2- 1) = 11 ... 101111111110.1

This result is rounded to the next-larger representable integer
value:

-(210+20) = 11 ... 1011111111110.

Example 4:

In Figure 14(d), the infinitely precise result of an operation is:

2 10+3*20 == 00 ... 010000000011.

This result can be represented exactly in the integer format - no
rounding takes place.

Figure 14. Integer Rounding Examples for Round Toward + 00 Mode

ROUND TO 210

• • I • • ~' • *fJ I • • I I I I I I
(I

I I I
_(2 10 + 3) _(2 10 + 2) _(210 + 1) _(210) _(210 - 1) 210 - 1 210 210 + 1 210 + 2 210 + 3

a) 210 - 2- 2
ROUND TO 210 + 2

I I I I I ~ • • ,i--l •
4

ROUND TO -(210 + 1) b)
210 + 20 + 2- 3

II I I I I ~ I I • • •
4

_(210 + 20 + 2- 1)
c)

NO CHANGE

Q I I • I • ~' • I • •
+

d)
210 + 3 • 20

05621A·16

68

Am29325

Round Toward 0 - In this rounding mode the result of an
operation is rounded to the closest representation whose mag­
nitude is less than or equal to the infinitely precise result, and
which fits the destination format. Rounding is performed both for
floating-point and integer destination formats.

Figure 15 illustrates four examples of the round toward 0 process
for operations having a floating-point destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be represented exactly in the floating-point
format.

Example 1:

In Figure 15(a), the infinitely precise result of an operation is:

220+2-4+2-5 = 1.00000000000000000000000\11 x 220.

This result cannot be represented exactly in floating-point
format, and is rounded to:

220 = 1.00000000000000000000000 x 220.

Example 2:

In Figure 15(b), the infinitely precise result of an operation is:

220-2-4+2-8 = 1.11111111111111111111111\001 x 219.

This result cannot be represented exactly in floating-point
format, and is rounded to:

220-2-4 = 1.11111111111111111111111 x 219.

Example 3:

In Figure 15(c), the infinitely precise result of an operation is:

-(220+2-3+2- 4)
= -1.00000000000000000000001\1 x 220.

This result cannot be represented exactly in floating-point
format, and is rounded to:

-(220+2-3) = --1.00000000000000000000001 x 220.

Example 4:

In Figure 15(d), the infinitely precise result of an operation is:

220+ 3*2-3 = 1.00000000000000000000011 x 220.

This result can be represented exactly in the floating-point
format, and is unaffected by the rounding process.

Figure 15. Floating-Point Rounding Examples for Round Toward 0 Mode

_(220 - 3 • 2-4)l 220 - 2-4

l
ROUND TO 220

_(220 - 2- 4)l 220 - 3' 2-4l n
I) " • " 0 I) II I--f-/ 0 • • • Xo 0 0
I I I I I I C ''"!,~, I I

_(220 + 3 • 2- 3) _(220 + 2- 3) _(220 - 2 • r4) 0 220 - 2 • 2- 4 220 + 3 • 2-3

_(220 + 2' 2- 3) _(220) a) 220 220 + 2 • 2- 3

ROUND TO 220 - 24 220 + 2- 4 + 2- 5

I) 0 I) 0 0 • .. I--f-/ 0 I) ilE I) " 0 0

0 • ROUND TO _(220 + 2- 3) b)
220 - 2- 4 + 2- 8

I) 0
{) • 0 III 0 ~ • " • I) • III •
t

_(220 + r 3 + 2- 4)
c)

NO CHANGE

Q
III II • 0 II • • ~ • 0 • 0 • "

0 • d)
220 + 3 • 2- 3

05621A-17

69

Figure 16 illustrates four examples of the round toward 0 process
for operations having an integer destination format. The infinitely
precise result of an operation is represented by an X on the
number line; the black dots on the number line indicate those
values that can be exactly represented in the integer format.

Example 1:

In Figure 16(a). the infinitely precise result of an operation is:

210-2-2 = 00 ... 001111111111.11.

The result is rounded to:

210-20 = 00 ... 001111111111.

Example 2:

In Figure 16(b), the infinitely precise result of an operation is:

210+20+2-3 = 00 ... 010000000001.001.

The result is rounded to:

210+20 = 00 ... 010000000001.

Example 3:

In Figure 16(c), the infinitely precise result of an operation is:

-(2 10+20+2- 1) = 11 ... 101111111110.1.

This result is rounded to:

-(2 10+20) = 11 ... 101111111111.

Example 4:

In Figure 16(d), the infinitely precise result of an operation is:

210+3-20 = 00 ... 010000000011.

This result can be represented exactly in the integer format, and
is unaffected by the rounding process.

Am29325

Flag Operation

The Am29325 generates six status flags to monitor floating-point
processor operation. The following is a summary of flag conven­
tions in IEEE mode:

Invalid Operation Flag - The invalid operation flag is HIGH
when an input operand is invalid for the operation to be per­
formed. The IEEE Mode Invalid Operations Table on page 12
lists the cases for 'vvhich the in'v'alid operation flag is HIGH in IEEE
mode, and the corresponding final result. In cases where the
invalid operation flag is HIGH, the overflow, underflow, zero, and
inexact flags are LOW; the NAN flag will be HIGH.

Overflow Flag - The overflow flag is HIGH if an R PLUS S,
R MINUS S, R TIMES S, or 2 MINUS S operation with finite in­
put operand(s) produces a result which, after rounding, has a
magnitude greater than or equal to 2128. The final result will be
+Y- or -Y ..

Underflow Flag - The underflow flag is HIGH if an R PLUS S, R
MINUS S, or R TIMES S operation produces a result which, after
rounding, has a magnitude in the range:

o < magnitude < 2 -126.

The final result will be +0 (0000000016) if the rounded result is
non-negative, and -0 (8000000016) if the rounded result is
negative.

Inexact Flag - The inexact flag is HIGH if the final result of an R
PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or
FP-TO-INT operation is not equal to the infinitely precise result.
Note that if the underflow or overflow flag is HIGH, the inexact flag
will also be HIGH.

Figure 16. Integer Rounding Examples for Round Toward 0 Mode

ROUND TO 210 - 1

• • • • • v1---f---v Q. • • • I I I I I I (I I I I
-(210 + 3) -(210 + 2) _(210 + 1) _(210) -(210 - 1) 0 210 - 1 210 210 + 1 210 + 2 210 + 3

a)
210 - 2-2

ROUND TO 210 + 1

• • • • • v1---f---v • • ~ • •
0 +

ROUND TO _(210 + 1) b)
210 + 20 + 2- 3

• • D • • v1---f---v • • • • •
+ 0

_(210 + 20 + 2-1) c) NO CHANGE

• • • • • v1---f---v • • • • Q
0 +
d) 210 + 3' 20

05621A-1a

70

Am29325

Zero Flag - The zero flag is HIGH if the final result of an
operation is zero. For operations producing an IEEE floating­
point number, the flag accompanies outputs +0 (0000000016)
and -0 (8000000016). For operations producing an integer, the
flag accompanies the output 0 (OOQ0000016)'

NAN Flag - The NAN flag is HIGH if an R PLUS S, R MINUS S, R
TIMES S, 2 MINUS S, or FP-TO-INT operation produces a NAN
as a final result.

OPERATION IN DEC MODE

When input signallEEE/DEC is LOW, the DEC mode of operation
is selected. In this mode the Am29325 uses the single-precision
floating-point format (floating F) set forth in Digital Equipment
Corporation's VAX Architecture Manual. In addition, the DEC
mode complies with most other aspects of single-precision
floating-point operation outlined in the manual - differences are
discussed in Appendix B.

DEC Floating-Point Format

The DEC single-precision floating-point word is thirty-two bits
wide, and is arranged in the format shown in Figure 17. The
floating-point word is divided into three fields: a single-bit sign,
an eight-bit biased exponent, and a 23-bit fraction.

The sign bit indicates the sign of the floating-point number's
value. Non-negative values have a sign of 0, negative values a
sign of 1.

The biased exponent is an eight-bit unsigned integer field repre­
senting a multiplicative factor of some power of two. The bias
value is 128. If, for example, the multiplicative factor for a
floating-point number is to be 2a, the value of the biased expo­
nent would be a + 128; a is called the true exponent.

The fraction is a 23-bit unsigned fractional field containing the 23
least-significant bits of the floating-point number's 24-bit man­
tissa. The weight of this field's most significant bit is 2-2; the
weight of the least-significant bit is 2-24.

A floating-point number is evaluated or interpreted per the fol­
lowing conventions:

let s = sign bit
e = biased exponent
f = fraction

if e = 0 and s = 0 ... value = 0

if e = 0 and s = 1 ... value = DEC reserved operand

if 0 < e ~ 255 .. value = (-1)s.(2e- 128).(.1f)
(normalized number)

Zero - The value zero always has a sign of zero.

DEC Reserved Operand - A DEC reserved operand does not
represent a numeric value, but is interpreted as a signal or sym­
bol. DEC reserved operands are used to indicate invalid opera­
tions and operations whose results have overflowed the destina­
tion format. They may also be used to pass symbolic information
from one calculation to another.

Normalized Number - A normalized number represents a
quantity with magnitude greater than or equal to 2 -128 but less
than 2127.

Example 1:

Tre number +3.5 can be represented in floating-point format as
follows:

+3.5 = 11.12 x 20
= .1112 x 22

sign = 0

biased exponent = 210 + 12810 = 13010
= 100000102

fraction = 110000000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
4160000016.

Example 2:

The number -11.375 can be represented in floating-point
format as follows:

-11.375 = -1011.0112 x 20
= -.10110112 x 24

sign = 1

biased exponent = 410 + 12810 = 13210
= 100001002

fraction = 011011000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
C236000016·

DEC Mode Integer Format

DEC mode integer format is identical to that of the IEEE mode.
Integer numbers are represented as 32-bit, two's complement
words; Figure 7 depicts the integer format. The integer word can
represent a range of integer values from - 231 to 231-1.

Operations

All eight floating-point ALU operations discussed in the Gen­
eral -Description section can be performed in DEC mode.

Figure 17. DEC-Mode Floating-Point Format

SIGN
BIT(S)

BIASED
EXPONENT (E)

VALUE = (-1)S (2E-128) (.1F)

71

FRACTION (F)

05621A-19

Various exceptional aspects of the R PLUS S, R MINUS S, R
TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT operations
for this mode are described below. The IEEE-TO-DEC and
DEC- TO-IEEE operations are discussed separately in the
IEEE-TO:DEC and DEC-TO-IEEE Operations section on
page 23.

Operations with DEC Reserved Operands - DEC reserved
operands arise in two ways: they can be generated by the
Am29325 to indicate that an invalid operation or floating-point
overfiow has taken place, or they can be provided by the user as
an input operand.

When a DEC reserved operand appears as an input operand, the
final result of the operation is the same DEC reserved operand. If
an operation has two DEC reserved operands as inputs, the DEC
reserved operand on the R port becomes the final result.

The NAN flag will be HIGH whenever an operation produces a
DEC reserved operand as a final result.

Example 1:

Suppose the floating-point addition operation is performed with
the following input operands:

R port: 4080000016 (0.1.21)
Sport: 8001234516 (DEC reserved operand)

Result: This operation produces the DEC reserved operand on
the Sport, 8001234516, as the final result. The NAN flag
will be HIGH.

Example 2:

Suppose the floating-point multiplication operation is performed
with the following input operands:

R port: 8076543216 (DEC reserved operand)
Sport: 8000000116 (DEC reserved operand)

Result: Since both input operands are DEC reserved operands,
the operand on the R port, 8076543216, is the final
result of the operation. The NAN flag will be HIGH.

Operations Producing Overflows - If an operation produces a
rounded result that is too large to fit in the destination format, that
operation is said to have overflowed.

A floating-point overflow occurs if a R PLUS S, R MINUS S, R
TIMES S, or 2 MINUS S operation with finite input operand(s)
produces a result which, after rounding, has a magnitude greater
than or equal to 2127. The final result in such cases will be DEC
reserved operand 8000000016; the overflow, inexact, and NAN
flags will be HIGH.

Integer overflow occurs when the fixed-to-floating-point conver­
sion operation attempts to convert to integer a floating-point
number which, after rounding, is greater than 231 -1 or less than
-231. The final result in such cases will be DEC reserved
operand 8000000016; the invalid operation flag will be HIGH.
Note that the overflow and inexact flags remain LOW for integer
overflow.

Operations Producing Underflows - If an operation produces
a floating-point result which, after rounding, has a magnitude
too small to be expressed as a normalized floating-point num­
ber, but greater than zero, that operation is said to have under­
flowed. Underflow occurs when an R PLUS S, R MINUS S, or R
TIMES S operation produces a result which, after rounding,
has magnitude:

o < magnitude < 2 -128.

The final result in such cases will be 0 (0000000016). The under­
flow, inexact, and zero flags will be HIGH.

72

Am29325

Underflow does not occur if the destination format is integer. If the
infinitely precise result of a floating-point-to-integer conversion
has a magnitude greater than 0 and less than 1, but the rounded
result is 0, the underflow flag remains LOW.

Invalid Operations - If an input operand is invalid for the opera­
tion to be performed, that operation is considered invalid. In DEC
mode, there are only two invalid operations:

- Performing a floating-point-to-integer conversion on a value
too large to be expressed as a 32-bit integer. In this case the
final result will be DEC reserved operand 8000000016, and the
invalid operation and NAN flags will be HIGH.

- Performing a floating-point-to-integer conversion on a DEC
reserved operand. In this case the final result will be the input
DEC reserved operand, and the invalid operation and NAN
flags will be HIGH.

Sign Bit

For all operations producing a DEC floating-point result, the sign
bit of the final result is unambiguous, i.e., there is only one sign bit
value that yields a numerically correct result.

Rounding

There are four rounding modes for DEC operation: round to
nemest, round toward +x, round toward -x, and round toward O.
The round toward +X, round toward -x, and round toward 0
modes are performed in a manner identical to that for IEEE
operation; refer to the Rounding section under Operation in
IEEE Mode on page 12. The round to nearest mode is similar to
that for IEEE operation, but differs in one respect: for the case in
which the infinitely-precise result of an operation is exactly
halfway between two representable values, DEC round to
nearest mode rounds to the value with the larger magnitude,
rather than to the value whose LSB is O.

Flag Operation

The Am29325 generates six status flags to monitor floating-point
processor operation. The following is a summary of flag operation
in DEC mode:

Invalid Operation Flag - The invalid operation flag is HIGH if the
FP-TO-INT operation is performed on a floating-point number too
large to be converted to an integer, or on a DEC reserved
operand. If the FP-TO-INT operation is performed on a floating­
point number too large to be converted to integer, the final result is
the DEC reserved operand 8000000016. If the FP-TO-INT oper­
ation is performed on a DEC reserved operand, that operand
becomes the final result.

Overflow Flag - The overflow flag is HIGH if an R PLUS S, R
MINUS S, R TIMES S, or 2 MINUS S operation produces a result
which, after rounding, has a magnitude greater than or equal to
2127. The final result will be the DEC reserved operand
8000000016.

Am29325

Underflow Flag - The underflow flag is HIGH if an R PLUS S, R
MINUS S, or R TIMES S operation produces a result which, after
rounding, has a magnitude in the range:

0< magnitude < 2-128.

The final result will be 0 (0000000016) in such cases.

Inexact Flag - The inexact flag is HIGH if the final result of an R
PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or
FP-TO-INT operation is not equal to the infinitely preCise result.
Note that if the underflow or overflow flag is HIGH, the inexact flag
will also be HIGH.

Zero Flag - The zero flag is HIGH if the final result of an
operation is zero. For operations producing an integer or a DEC
floating-point number, the flag accompanies the output 0
(0000000016). (It should be noted that any operation producing a
floating-point 0 in DEC mode will output 0000000016.)

NAN Flag - The NAN flag is HIGH if an R PLUS S, R MINUS S, R
TIMES S, 2 MINUS S, or FP-TO-INT operation produces a DEC
reserved operand as the final result.

IEEE-TO-DEC AND DEC-TO-IEEE OPERATIONS

The IEEE-TO-DEC and DEC-TO-IEEE operations are used to
convert floating-point numbers between the IEEE and DEC for­
mats. Both operations work in a manner independent of the
IEEEJDEC mode control.

IEEE-TO-DEC Conversion

This operation converts an IEEE floating-point number to DEC
floating-point format. Most conversions are exact; in no case

does the round mode have any effect on the final result. There
are, however, a few exceptional cases:

a.) If the IEEE floating-point input has a magnitude greater than
or equal to 2 127, it is too large to be represented by a DEC
floating-point number. The final result will be the DEC re­
served operand 8000000016; the overflow, inexact, and NAN
flags will be HIGH. .

b.) If the IEEE floating-point input is a NAN, the final result will be
the DEC reserved operand 8000000016; the invalid and NAN
flags will be HIGH.

c.) If the IEEE floating-point input is a denormalized number,
the final result will be a DEC 0 (0000000016); the zero flag
will be HIGH.

d.) If the IEEE floating-point input is +0 or -0, the final result will
be a DEC 0 (0000000016); the zero flag will be HIGH.

DEC-TO-IEEE Conversion

This operation converts a DEC floating-point number to IEEE
floating-point format. Most conversions are exact; in no case
does the round mode have any effect on the final result. There
are, however, a few exceptional cases:

a.) If the DEC floating-point input is not 0, but has a magnitude
less than 2- 126, it is too small to be expressed as a nor­
malized IEEE floating-point number. The final result will be an
IEEE floating-point 0 having the same sign as the input
(0000000016 for positive inputs and 8000000016 for negative
inputs); the underflow, inexact, and zero flags will be HIGH.

73

b.) If the DEC floating-point input is a DEC reserved operand, the
final result will be quiet NAN 7FA0000016; the invalid opera­
tion and NAN flags will be HIGH.

c.) If the DEC floating-point input is 0, the final result will be IEEE
floating-point +0 (0000000016); the zero flag will be HIGH.

APPENDIX A:

Differences Between the IEEE Proposed Standard for Binary
Floating-Point Arithmetic and the Am2932S's IEEE Mode

When operated in IEEE mode, the Am29325 High-speed
Floating-Point Processor complies with the single-precision por­
tion of the IEEE Proposed Standard for Binary Floating-Point
Aritt"irllelic (P754, drafi 10.0) in most respects. r here are, how­
ever, several differences:

Denormalized Numbers

The Am29325 does not handle denormalized numbers. A de­
normalized input will be converted to a zero of the same sign
before the specified operation takes place. The operation pro­
ceeds in exactly the same manner as if the input were +0 or -0,
producing the same numerical result and flags.

If the result of an operation, after rounding, has a magni­
tude smaller than 2- 126, the result is replaced by a zero of the
same sign.

Representation of Overflows

In some rounding modes, the proposed IEEE standard requires
that overflows be represented as the format's most positive or
most negative finite number. In particular:

- When rounding toward 0, all overflows should produce a result
of the largest representable finite number with the sign of the
intermediate result.

- When rounding toward -x, all positive overflows should pro­
duce a result of the largest representable positive finite
number.

When rounding toward +x, all negative overflows should
produce a result of the largest representable negative finite
number.

The Am29325, however, always represents positive overflows as
+ x and negative overflows as - x, regardless of rounding mode.

Projective Mode

The proposed IEEE standard provides only for an affine mode to
control the handling of infinities. The Am29325 provides both
affine and projective modes; the desired mode can be selected by
the user.

Am29325

Traps

The proposed IEEE standard stipulates that the user be able to
request a trap on any exception. The Am2935 does not support
trapped operation, and behaves as if traps are disabled.

Resetting of Flags

The proposed IEEE standard states that once an exception flag
has been set, it is reset only at the user's request.The Am29325's
flags, however, reflect the status of the most recent operation.

Generation of the Underflow Flag

The proposed IEEE standard suggests several possible criteria
for determining if underflow occurs. These criteria generate
underflow flags that differ in subtle ways. The underflow criteria
chosen for the Am29325 stipulate that underflow occurs if:

a) the rounded result of an operation has a magnitude in the
range:

0< magnitude < 2- 126,

and

b) the final result is not equal to the infinitely precise result.

Since the Am29325 never produces a denormalized number as
the final result of a calculation, condition (b) is true whenever (a) is
true. Note, then, that the operation of the Am29325's underflow
flag is somewhat different than that of an" I EEE standard" system
using the same underflow criteria. For example, if an operation
should produce an infinitely precise result that is exactly 2- 127,
an "IEEE standard" system would produce that value as the final
result, expressed as a denormalized number. Since that system's
final result is exact, the underflow flag would remain LOW. The
Am29325, on the other hand, would output zero; since its final
result is not exact, the underflow flag would be HIGH.

74

Am29325

APPENDIX B:

Differences Between DEC VAX and Am29325 DEC Mode

Operation in DEC mode complies with most aspects of single­
precision floating-point operation outlined in the Digital Equip­
ment Corporation's VAX Architecture Manual. However, there
are some differences that should be noted:

Format

The Am29325's DEC format is:

sign - bit 31
exponent - bits 30 - 23
mantissa - 22 - 0

The VAX format is:

sign - bit 15
exponent - 14 - 7
mantissa - bits 6 - 0, bits 31-16.

In both cases, fields are listed from MSB to LSB, with bit 31 the
MSB of the 32-bit word. The Am29325's DEC format can be
converted to VAX format by swapping the 16 LSBs and 16 MSBs
of the 32-bit word.

Flags vs. Exceptions

In DEC VAX operation, certain unusual conditions arising during
system operation may incur an exception, or an indication to the
operating system that special handling is needed.

The VAX recognizes a number of arithmetic exceptions. The
following exceptions are relevant to the operations supported by
the Am29325:

Integer overflow trap - indicates that the last operation
produced an integer overflow. The LSBs of the correct result
are stored in the destination operand.

Floating-point overflow trap/fault - indicates that the last
operation produced, after normalization and rounding, a
floating-point number with magnitude greater than or equal
to 2127. A trap replaces the destination operand with the
DEC reserved operand 8000000016; a fault leaves the de­
stination operand unchanged.

Floating-point underflow trap/fault - indicates that the last
operation produced, after normalization and rounding, a
floating-point number with magnitude less than 2- 128. A
trap replaces the destination operand with zero; a fault
leaves the destination operand unchanged.

Reserved operand fault - indicates that the last operation
had a reserved operand as an input. The destination
operand is unchanged.

The Am29325 does not directly support DEC traps and faults.
Rather, it indicates unusual conditions by setting one or more of
the six status flags HIGH. Table d2 describes flag operation in
DEC mode.

Integer Overflow

In cases of integer overflow, the VAX signals the integer overflow
trap and stores the LSBs of the correct result. The Am29325 sets
the invalid operation flag and outputs the DEC reserved operand
8000000016.

Floating-Point Underflow/Overflow Operation

The VAX Architecture Manual specifies the action to be taken on
the destination operand when floating-point underflow or over­
flow is encountered. The Am29325 has no immediate control
over this destination operand, as it resides somewhere off-chip,
either in a register or memory location. This isn't so much a
difference between the VAX specification and Am29325 opera­
tion as it is a difference in scope.

The Am29325 responds to floating-point underflow by producing
a final result of 0 (0000000016); the underflow, inexact, and zero
flags will be HIGH. It responds to floating-point overflow by pro­
ducing the DEC reserved operand 8000000016 as the final result;
the overflow, inexact, and NAN flags will be HIGH.

Handling of DEC Reserved Operands

If an operation has a DEC reserved operand as an input, the
Am29325 will produce that operand as the final result. If an
operation has two input arguments and both are DEC reserved
operands, the operand on port R becomes the final result. For the
VAX, operations with a DEC reserved operand input or inputs do
not modify the destination operand. As mentioned above, control
of the destination operand is beyond the scope of the Am29325's
operation.

Inexact Flag

The Am29325 provides an inexact flag to indicate that the final
result produced by an operation is not equal to the infinitely
precise result. The VAX does not provide this flag.

75

APPENDIX C:

Performing Floating-Point Division on the Am29325

While the Am29325 does not have a floating-point division in­
struction, it can be used to evaluate reciprocals. The division:

C = NB

can then be performed by evaluating:

C = A-(1/B).

Only a modest amount of external hardware is needed to imple­
ment the reciprocal function.

The technique for calculating reciprocals is based on the
Newton-Raphson method for obtaining the roots of an equation.
The roots of equation:

F(x) = 0

can be found by iteratively evaluating the equation

xi+1 = xi - F(Xi)/F'(Xi)·

The process begins by making a guess as to the value of Xi, and
using this guess or "seed" value to perform the first iteration.
Iterations are continued until the root is evaluated to the desired
accuracy. The number of iterations needed to achieve a given
accuracy depends both on the accuracy of the seed value and the
nature of F(x).

Now consider the equation

F(x) = (1/x) - B.

The root of F(x) is 1/B. The reciprocal of B, then, can be found by
using the Newton-Raphson method to find the root of F(x). The
iterative equation for finding the root is

xi+1 = Xi - F(Xi)/F'(Xi)

= Xi - (1/Xi - B)/-(Xi)-2

= Xi (2-B-Xi).

It can be shown that, in order for this iterative equation to con­
verge, the seed value Xo must fall in the range

o < Xo < 2/B if B > 0

or 2/B < Xo < 0 if B < O.

For example, if the reciprocal of 3 is to be evaluated, the seed
value must be between 0 and 2/3.

The error of Xi reduces quadratically; that is, if the error of Xi is e,
the error is reduced to order e2 by the next iteration. The number
of bits of accuracy in the result, then, roughly doubles after every
iteration. While this is only an approximation of the actual error
produced, it is a handy rule-of-thumb for determining the number
of iterations needed to produce a result of a certain accuracy,
given the accuracy of the seed.

Example 1:

Find the reciprocal of 7.25.

Solution:

The seed value must fall in the range

0< Xo < 2/7.25

or 0 < Xo < .275862.

Suppose Xo is chosen to be .1

Iteration 1: x1 = xo (2 - B-xo)
= .1(2-(7.25) (.1))
= .1275

76

Iteration 2: x2 = x1 (2-B-X1)
= .1275(2-(7.25) (.1275))
= .1371421875

Iteration 3: x3 = X2(2 - B-x2)
= .1371421875-

(2- (7.25) (.1371421875))
= .1::179265230

Am29325

The actual value of 1/7.25, to ten decimal places, is
.1379310345.

The error after each iteration is:

Iteration Xi Error to Ten Places

0 .1

1 .1275

2 .1371421875

3 .1379265230

Example 2:

Find the reciprocal of - .3.

Solution:

The seed value must fall in the range

2/(-.3) < Xo < 0

or -6.66 < Xo < O.

Suppose Xo is chosen to be -2.0.

Iteration 1: x1 = xo(2 - B-xo)
= -2.0(2-(-.3) (-2.0))
= -2.8

Iteration 2: x2 = x1 (2 - B-X1)
= -2.8(2-(-.3) (-2.8))
= -3.248

Iteration 3: x3 = X2(2 - B' X2)

-0.0379310345

-0.0104310345

- 0.0007888470

-0.0000045115

= -3.248(2-(-.3) (-3.248))
= -3.3311488

Iteration 4: x4 = X3(2 - B-X3)
= -3.3311488-

(2-(-.3) (-3.3311488))
= -3.333331902

The actual value of 1/(- .3), to ten decimal places, is
-3.333333333.

The error after each iteration is:

Xi Error to Ten Places

0 -2.0 1 .333333333

1 -2.8 0.533333333

2 -3.248 0.085333333

3 -3.3311488 0.002184533

4 -3.333331902 0.000001431

In order to implement the Newton-Raphson method on the
Am29325, some means is needed to generate the seed used
in the first iteration. One approach is to place a hardware
seed look-up table between the R bus and the Am29325; see
Table c1. A more detailed diagram of the look-up table appears
in Figure c2.

Am29325

TABLE c1. CONTENTS OF THE SEED EXPONENT PROM

DEC IEEE

Address (16) Data (16) Address (16) Data (16)

000 (Note 1) 100 FO
001 (Note 1) 101 FC
002 FF 102 FB
003 FE 103 FA
004 FO 104 F9
005 FC 105 F8
006 FB 106 F7
007 FA 107 F6
008 F9 108 F5
009 F8 109 F4
OOA F7 10A F3
OOB F6 10B F2
OOC F5 10C F1
000 F4 100 FO
OOE F3 10E EF
OOF F2 10F EE
010 F1 110 ED
011 FO 111 EC
012 EF 112 EB

OEE 13 1EE OF
OEF 12 1EF OE
OFO 11 1FO 00
OF1 10 1F1 OC
OF2 OF 1F2 OB
OF3 OE 1F3 OA
OF4 00 1F4 09
OF5 OC 1F5 08
OF6 OB 1F6 07
OF7 OA 1F7 06
OF8 09 1F8 05
OF9 08 1F9 04
OFA 07 1FA 03
OFB 06 1FB 02
OFC 05 1FC 01
OFD 04 1FO (Note 2)
OFE 03 1FE (Note 2)
OFF 02 1FF (Note 2)

Notes: 1. The reciprocals of these numbers are too large to be represented in DEC
format.

2. The reciprocals of these numbers are too small to be represented in
normalized IEEE format.

Figure c1. Adding a Hardware Look-Up Table to the Am29325

R BUS

S BUS

I "'"ow." I LOOK·UP
TABLE

~~
I 2: 1 I

I
R S

I Am2932S

F

F BUS l 05621A·20

77

The look-up table has two sections: a biased exponent look-up
PROM and a fraction look-up PROM. The seed biased exponent
look-up table is stored in a 512-by-8-bit PROM. This table con­
sists of two sections - the DEC format section, which occupies
addresses 000-OFF16, and the IEEE section, which occupies
addresses 100-1FF16. The appropriate table will be selected
automatically if address line A8 is wired to the Am29325's IEEE/
DEC pin. The equations implemented by these table sections are:

DEC table: seed biased exponent
= 25710 -input biased exponent

IEEE table: seed biased exponent
= 25210 -input biased exponent

Table c1 lists the contents of this PROM.

The seed fraction look-up table is stored in one or more PROMs,
the number of PROMs depending on the desired accuracy of the
seed value. The hardware depicted in Figure c2 uses two 4K­
by-8-bit PROMs to implement a fraction look-up table whose

Am29325

inputs are the 12 MSBs of the input argument's fraction. These
PROMs output the 16 MSBs of the seed's fraction field - the
remaining 7 bits of fraction are set to O. The equation im­
plemented in this table is:

2
seed fraction -1,

+ input fraction

where the value of the input fraction falls in the range

o ~ input fraction < 1.

Note that the seed fraction must also be constrained to fall in
the range

o ~ seed fraction < 1.

Therefore, if the input fraction is 0, the corresponding seed frac­
tion stored in the table must be .1111 ... 1112, not 1.02. The same
seed fraction look-up table may be used for both IEEE and DEC
formats. Table c2 contains a partial listing for the seed fraction
look-up table shown in Figure c2.

TABLE c2. CONTENTS OF THE SEED FRACTION PROMs

Address (16)

000
001
002
003
004
005
006
007
008
009
ooA
OOB
OOC

FF6
FF7
FF8
FF9
FFA
FFB
FFC
FFD
FFE
FFF

PROM Outputs (16)
Value of Input Fraction (10) Value of Seed Fraction (10) R22- R15

R BUS

0.0 0.9999999999 (see text)
0.0002441406 0.9995118370
0.0004882812 0.9990239150
0.0007324219 0.9985362280
0.0009765625 0.9980487790
0.0012207031 0.9975615710
0.0014648438 0.9970745970
0.0017089844 0.9965878630
0.0019531250 0.9961013650
0.0021972656 0.9956151030
0.0024414063 0.9951290800
0.0026855469 0.9946432920
0.0029296875 0.9941577400

0.9975585938 0.0012221950
0.9978027344 0.0010998410
0.9980486750 0.0009775170
0.9982910156 0.0008552230
0.9985351563 0.0007329590
0.9987792969 0.0006107240
0.9990234375 0.0004885200
0.9992675781 0.0003663450
0.9995117188 0.0002442000
0.9997558594 0.0001220850

Figure c2. The Hardware Lookup-Up Table

BIASED
EXPONENT
(R30 -R23)

12

12 MSBs
OF FRACTION

(Rn-Rll)

FF
FF
FF
FF
FF
FF
FF
FF
FF
FE
FE
FE
FE

00
00
00
00
00
00
00
00
00
00

IEEE/DEC ----+----,1

AS A7- Ao

Am27S15 512 x 8
SEED EXPONENT PROM

0 7-00

SEED SIGN SEED EXPONENT

78

A11 -AO J All-Ao

(2) Am27S43 4K x 8
SEED FRACjlON PROMs

07-00 I Dr-Do

SEED FRACTION

R14- R7

FF
EO
CO
AO
80
60
40
20
00
El
CO
Al
81

50
48
40
38
30
28
20
18
10
08

05621A·21

Am2932S

With the hardware look-up table in place, the reciprocal of value 8
can be calculated with the following series of operations:

1.) Place 8 on both the Rand S buses. The 2 : 1 multiplexer at
the output of the hardware look-up table should select the
output of the look-up table. (see Figure c3-a)

2.) Load the seed value Xo into register R and load 8 into register
S. Select the R TIMES S operation. (see Figure c3-b)

3.) Load product 8*xO into register F. Select the 2 MINUS S
operation, and select register F as the input to the ALU Sport.
(see Figure c3-c)

4.) Load 2 - 8.xo into register F. Select the R TIMES S operation
and select register F as the input to the ALU S port. (see
Figure c3-d)

5.) Load the value Xl (Xl =xo(2-8*xo)) into registers Rand F.
Select the R TIMES S operation. (see Figure c3-e)

6.) Repeat steps 3 through 5 until the result has the accuracy
desired.

Figure c3-a. Data Flow for Step 1 of the Reciprocal Procedure

BUSS B -----------------------

BUS R B -------------

SEED
LOOK·UP

TABLE

I
I
I
I
I
I

L__ Ro-R3l I
~----I----I

PORT
R

ALU

PORT F

~------~--------~

PORT
S

REGISTER F

Am29325 L..-___________ _ ---------------1

BUSF------------------4------------------

79

056216·22

Figure c3-b. Data Flow for Step 2 of the Reciprocal Procedure

BUSS--.---------------------

BUSR --------------.-----------~~------------------+_--------------------

,,----

SEED
LOOK·UP

TABLE

PORT
R

ALU

PORT F

PORT
S

REGISTER F

Am29325

~-------------
________ ---------I

BUSF--------------------------------~---------------------------------

80

Am29325

056216-23

Am29325

Figure c3-c. Data Flow for Step 3 of the Reciprocal Procedure

BUSS --.--------------------

BUSR --------------.-----------~~------------------+---------------------

~---­

I
I
I

Am29325

SEED
LOOK·UP

TABLE

PORT
R

ALU

PORT F

.--..l.-----I-"-~

PORT
S

l2-B' Xo

REGISTER F
[B' Xo]

I
I
I
I
I
I
I
I
I
I

L _____ .J

L...-_____________ _ _ _______ --------I

BUSF----------------------------------~----------------------------------

81

05621A-24

Figure c3-d. Data Flow for Step 4 of the Reciprocal Procedure

BUSS--.--------------------

BUSR------------~~----------~------------------+--------------------

SEED
LOOK· UP

TABLE

~----

Ir-+-'---~
I
I
I
I
I
I
I
I
I

PORT
R

L ____ _

Am29325 L-_____________ _

ALU

PORT F

REGISTER S
[B)

r---"-------I...--;.,l

PORT
S

I
I
I
I
I
I
I
I
I
I

L..-_____ ..J

BUSF--------------------------------~--------------------------------

82

Am29325

056216-25

Am29325

Figure c3-e. Data Flow for Step 5 of the Reciprocal Procedure

BUSS --.--------------------

BUSR --------------~------------~--------------------+_---------------------

,,----

SEED
LOOK-UP

TABLE

PORT
R

ALU

PORT F

REGISTER F

PORT
S

I
I

[X, (X, = x" (2 - B.x,,))]

I Am29325 1.....-___________ _ -----------------'

BUSF----------------------------------4-----------------------------------

83

056218-26

Am29325

A tabular description of the operations above is given in Table c3. port S. The look-up table produces the value
The following examples, performed in IEEE format, illustrate the .0395278910 (3021E80016). The reciprocal is
process. evaluated using the procedure described above; reg-

Example 1: ister values for each step are given in Table c4. The
expected result, to the precision of the floating-point

Find the reciprocal of 25.3. word, is .0395256910 (3021 E5B116). In this case the

Solution: The IEEE floating-point representation for 25.3 is expected result is produced after the first iteration. All

41 CA666616. The reciprocal process is begun by subsequent iterations produce the same result, and

feeding this value to both the seed look-up table and are therefore unnecessary.

TABLE c3. SEQUENCE OF EVENTS FOR EVALUATING RECIPROCALS

Clock
Cycle 10- 12 13 14 ENR ENS ENF Register R Register S Register F

1 Y X 0 0 0 X - - -

2 R TIMES S 0 X 1 1 0 Xo B -

3 2 MINUS S 1 X 1 1 0 Xo B B.Xo

} 4 R TIMES S
First

1 1 0 1 0 Xo B 2-B.Xo iteration

5 R TIMES S 0 X 1 1 0 X1(= Xo(2-B.Xo)) B XI (= Xo(2 - B.Xo))

6 2 MINUS S 1 X 1 1 0 XI B B,X1

} 7 R TIMES S 1 1 0 1 0 XI B 2-B,X1
Second
iteration

8 R TIMES S 0 X 1 1 0 X2(= X1(2-B.X1)) B X2(= X1(2-B.X1))

X = DON'T CARE

TABLE c4. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 1

Clock
Cycle R Input S Input Register R Register S Register F

1 3D21E800 41CA666616 - - -
(.03952789) (25.3)

2 - - 3D21E80016 41CA666616 -

(.03952789) (25.3)

3 - /' - 3D21E80016 41CA666616 3F8001D316
(.03952789) (25.3) (1.0000556)

4 - - 3D21E80016 41CA666616 3F7FFC5A16
(.03952789) (25.3) (.99984419)

5 - - 3D21E5B116 41CA666616 3D21E5B116
(.03952569) (25.3) (.03952569) --- Result of first

iteration
6 - - 3D21E5B1 16 41CA666616 3F7FFFFF16

(.03952569) (25.3) (.99999994)

7 - - 3D21E5B116 41CA666616 3F80000016
(.03952569) (25.3) (1.0)

8 - - 3D21E5B1 16 41CA666616 3D21E5B116
(.03952569) (25.3) (.03952569) --- Result of second

iteration

84

Am29325

Example 2:

Find the reciprocal of - .4725.

Solution: The IEEE floating-point representation for - .4725 is
BEF1EB8516. The reciprocal process is begun by
feeding this value to both the seed look-up table and
port S. The look-up table produces the value
-2.1162109410 (C007700016). The reciprocal is

evaluated using the procedure described above; reg­
ister values for each step are given in Table c5. The
expected result, to the precision of the floating-point
word, is -2.11640210 (C007732216). In this case the
expected result is produced after the first iteration. All
subsequent iterations produce the same result, and
are therefore unnecessary.

TABLE cS. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 2

Clock
Cycle R Input S Input Register R Register S Register F

COO7700016 BEF1EB8516
(-2.1162109) (-0.4725)

2 COO7700016 BEF1EB8516
(-2.1162109) (-0.4725)

3 C007700016 BEF1EB8516 3F7FFA14 16
(-2.1162109) (-0.4725) (0.99990963)

4 COO7700016 BEF1EB8516 3F8002F616
(-2.1162109) (-0.4725) (1.0000904)

5 COO7732216 BEF1EB8516 COO7732216
--Result of first (-2.116402) (-0.4725) (-2.116402)

iteration
6 COO7732216 BEF1EB8516 3F80000016

(-2.116402) (-0.4725) (1.0)

7 COO7732216 BEF1EB8516 3F80000016
(-2.116402) (-0.4725) (1.0)

8 COO7732216 BEF1EB8516 COO7732216
-a- Result of second (-2.116402) (-0.4725) (-2.116402)

iteration

85

APPENDIX D:

Summary of Flag Operation

Tables d1, d2, and d3 summarize flag operation for the IEEE
mode, the DEC mode, and for the IEEE-TO-DEC and DEC-TO­
IEEE operations.

TABLE d1. FLAG SUMMARY FOR IEEE MODE

Operation Condition(s) INV OVF UNF

Any operation H L L
listed in the
IEEE Invalid
Operations Table

R PLUS S Input operands are finite, L H L
R MINUS S I rounded result I ~ 2128

R TIMES S
2 MINUS S

R PLUS S
R MINUS S o < I rounded result I < 2- 126 L H
R TIMES S

R PLUS S Final result does not equal L
R MINUS S infinitely precise result
R TIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT

R PLUS S Final result is zero L L
R MINUS S
R TIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT

R PLUS S Final result is a NAN L L
R MINUS S
R TIMES S
2 MINUS S
FP-TO-INT

Notes: INV Invalid operation flag
OVF Overflow flag
UNF Underflow flag
INE Inexact flag
ZER Zero flag
NAN NAN flag
L LOW
H HIGH

State of flag
depends on the
input operands
and the operation
performed

86

Am29325

INE ZER NAN

L L H

H L L

H H L

H L

H L

L L H

Am29325

Operation

FP-TO·INT

FP·TO-INT

R PLUS S
R MINUS S
R TIMES S
2 MINUS S

R PLUS S
R MINUS.S
R TIMES S

R PLUS S
R MINUS S
R TIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT

R PLUS S
R MINUS S
R TIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT

R PLUS S
R MINUS S
R TIMES S
2 MINUS S
FP-TO-INT

Notes: INV
OVF
UNF
INE
ZER
NAN
L

TABLE d2. FLAG SUMMARY FOR DEC MODE

Condition(s)

Rounded result> 231- 1
or rounded result < -231

Input is a DEC reserved
operand

I Rounded result I ;" 2127

0< I rounded result I < 2- 128

Final result does not equal
infinitely precise result

Final result is zero

Final result is a DEC
reserved operand

Invalid operation flag
Overflow flag
Underflow flag
Inexact flag

H

Zero flag
NAN flag
LOW

INV OVF

H

H

L

L

L

L

HIGH
State of flag
depends on the
input operands
and the operation
performed

L

L

H

L

L

UNF

L

L

L

H

L

INE ZER

L L

L L

H L

H H

H

H

L L

TABLE d3. FLAG SUMMARY FOR IEEE-TO-DEC AND DEC-TO-IEEE CONVERSIONS

Operation

IEEE-TO-DEC

IEEE-TO-DEC

DEC-TO-IEEE

DEC-TO-IEEE

DEC-TO-IEEE
IEEE-TO-DEC

Notes: INV
OVF
UNF
INE
ZER
NAN
L

Condition(s)

Input is a NAN

Iinputl ;" 2127

Input is a DEC reserved operand

o < I rounded result I < 2- 126

Final result is zero

Invalid operation flag
Overflow flag
Underflow flag
Inexact flag
Zero flag
NAN flag
LOW

H

INV OVF

H

L

H

L

L

HIGH
State of flag
depends on the
input operands
and the operation
performed

87

L

H

L

L

L

UNF INE ZER

L L

H L

L L L

H H H

H

NAN

H

H

H

L

L

H

NAN

H

H

H

L

L

Am29325

PACKAGE INFORMATION

PACKAGE PHOTOGRAPHS

Top View Lateral View

Bottom View Isometric View

88

Am29325
ABSOLUTE MAXIMUM RATINGS OPERATING RANGES
Storage Temperature -65 to +150°C Commercial (C) Devices
Temperature Under Bias - T C - 55 to + 125°C Temperature (TAl 0 to +70°C
Supply Voltage to Ground Potential Supply Voltage +4.75 to +5.25V

Continuous -0.5 to + 7.0V
Military (Ml Devices

DC Voltage Applied to Outputs
for High State -0.5V to +VCC Max

Temperature (Tel -55 to +125°C

DC Input Voltage -0.5 to +5.5V
Supply Voltage +4.5 to +5.5V

DC Output Current, into Outputs 30mA
DC Input Current -30 to +5.0mA

Operating ranges define those limits over which the functionality of the
device is guaranteed.

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent device failure. Functionality at or above these
limits is not implied. Exposure to absolute maximum ratings for ex­
tended periods may affect device reliability.

DC CHARACTERSITICS OVER OPERATING RANGE unless otherwise specified

Test Conditions
Parameter Description (Note 1) Min

Vee = Min
VOH Output HIGH Voltage VIN = VIL or VIH 2.4

IOH = -Oo4mA

Vee = Min
VOL Output LOW Voltage VIN = VIL or VIH

IOL = 4.0mA

VIH Input HIGH Level
Guaranteed Input Logical

2.0
HIGH Voltage for All Inputs

VIL Input LOW Level
Guaranteed Input Logical
LOW Voltage for All Inputs

VI Input Clamp Voltage Vee = Min
liN = -18mA

IlL Input LOW Current Vee = Max
VIN = Oo4V

IIH Input HIGH Current Vee = Max
VIN = 204V

II Input HIGH Current Vee = Max
VIN = 5.5V

IOZH Fa - F31 Off State (High Vo = 2.4V
Vee = Max

IOZl Impedance) Output Current Vo = o4V

Output Short Circuit Current Vee = Max Fa- F31 Outputs -3
Ise (Note 3) Vo = OV Flag Outputs -3

COM'L, MIL TA = +25°C

COM'L Only
TA = 0 to +70°C

lee Power Supply Current (Note 4) Vee = Max TA = +70°C

MIL Only
TA = -55 to +125°C

TA = +125°C

Typ
(Note 2)

2.7

0.3

Max

0.5

0.8

-1.5

-004

75

1

25

-25

-30

-30

Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under Operating Ranges for the applicable device type.
2. Typical values are for Vee = +25°C ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Measured with OE LOW, and with all output bits (Fa-F31 and flag outputs) LOW.

89

Units

Volts

Volts

Volts

Volts

Volts

mA

!LA

mA

!LA

mA

mA

Am29325
SWITCHING CHARACTERISTICS COM'L (Note 2) MIL
OVER OPERATING RANGE

TA = 25°C TA = 0 to +70°C Te = -55 to 125°C

Test Vee = 5.0V Vee = +5V ±5% Vee = +5V ±10%

Parameters Description Conditions Typ Min Max Min Max

tASC
Clocked Add, Subtract Time (R PLUS S,
R MINUS S, 2 MINUS S)

tMC Clocked Multiply Time (R TIMES S)

tcc
Clocked Conversion Time (I NT -TO- FP,
Fp· TO·INT, IEEE-TO-DEC, DEC-TO·IEEE)

Unciocked Add, Subtract Time (R, S to F,

tASUC Flags) for R PLUS S, R MINUS S,
and 2 MINUS S Instructions

tMUG
Unclocked Multiply Time (R, S to F, Flags) FTo = HIGH
for R TIMES S Instruction FTl = HIGH

Unciocked Conversion Time (R, S to F,

tCUG Flags) for INT-TO·FP, FP-TO-INT, IEEE-
TO·DEC and DEC-TO-IEEE Instructions

tpWH Clock Pulse Width HIGH

tpWL Clock Pulse Width LOW

tpDOFl
FTo = LOW

Clock to Fo-F31 and Flag Outputs FTl = HIGH

tPDOF2 FTl = LOW

tPZL
OE Enable Time

Z to LOW

tpZH Z to HIGH

tpLz BE Disable Time
LOW to Z

tpHZ HIGH to Z

tpZL16 Clockj to Fo-F15 Enable, Z to LOW S16/32 = HIGH

tpZH16 16-Bit I/O Mode Z to HIGH ONEBUS = LOW
----- ---.- .. _--

tpLZ16 Clock! to Fo-F15 Disable, LOWtoZ

tPHZ16 16-Bit I/O Mode HIGH to Z

tpZU6 Clock! to F16-F31 Enable, Zto LOW S16/32 = HIGH

tpZH16 16-Bit I/O Mode Z to HIGH ONEBUS = LOW

tPLZ16 Clockj to F16-F31 Disable, LOWtoZ

tpHZ16 16-Bit I/O Mode HIGH to Z

tSCE Register Clock Enable Setup Time FTo = LOW
FTl = LOW

tHCE Register Clock Enable Hold Time
FTo = LOW
FTl = LOW

tSDl Ro-R31' SO-S31 Setup Time (Note 1)

Ro-R31' SO-S31 Hold Time (Note 1)
FTo = LOW

tHDl

tSD2 Ro-R31' SO-S31 Setup Time (Note 1) FTo = HIGH

tHD2 Ro-R31' SO-S31 Hold Time (Note 1) FTl = LOW

tSI02 10-12 Instruction Select Setup Time FT for Destination

tHI02 10-12 Instruction Select Hold Time Register = LOW

tpDI02 10-12 Instruction Select to Fo-F31' Flags FTl = HIGH

tSI3 13 Port S Input Select Setup Time

13 Port S Input Select Hold Time
FTl = LOW

tHI3

tSI4 14 Register R Input Select Setup Time (Note 1)

14 Register R Input Select Hold Time (Note 1)
FTo = LOW

tHI4

tSRM Round Mode Select Setup Time FT for Destination

tHRM Round Mode Select Hold Time Register = LOW

tpRF Round Mode Select to Fo-F31, Flags FTl = HIGH

Notes: 1. See timing diagram for desired mode of operation to determine clock edge to which these setup and hold times apply.
2. At air velocity of_linear feet per minute.

90

Units

ns

ns

ns

ns

--

ns

ns

--
ns

--
ns

--

ns

--
ns

--
ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ClK

ClK

CLOCKED OPERATION: FTO = LOW
FT1 = LOW

lAse
~---------------- IMe ------------------~ lee

J-------IpWH --------..... -------lpWL -------oi

VALID

~--------------ISI02 --------------+

1-------------- ISl3 --------------t--

~-------------ISRM-------------_1_ IHRM

CLOCKED OPERATION: FTO = HIGH
FT1 = LOW

1--------lpWH--------l-------IpWL--------i

VALID

~---------------ISD2---------------f---+

1--------------- ISI02 --------------t----t-

f------- ISI3 ----------------.-r---o+_

t-------------ISRM--------------t----t-

91

Am29325

05621A-31

05621A-32

Am29325

elK

ENA. \A/\A/\A/\/v
ENS fV\fV\/V\/\A

FO-F31 • JV',A/',A/'\i'>f
FLAGS 'V'v'V'v'V'vf\A

AO-A31 • .JVVV\A/\/V
5 0 -531 'V,/V\fV\fV\.

CLOCKED OPERATION: FTO = LOW
FT1 = HIGH

i-----1pWH-----t-----1pwL-----I

f--------- 1pDOF1--------l

f-------1pDI02--------l

f--------1pRF------i

FLOW-THROUGH OPERATION (FTO = HIGH, FT1 = HIGH)

IASUC
1 _________ IMuc -------1

ICUC

1-------lpDI02 -------1

1 ________ lpRF -----_1

ANDO- AND1 _ '/\/VVV'v'V\1V/\.

32-BIT, SINGLE-INPUT-BUS MODE

92

05621A-33

05621A-27

05621A-28

CLK

R INPUT BUS,
S INPUT BUS

14
(NOTE 1)

FO-F'5

F'6 - F31

Am29325

16-BIT, TWO-INPUT-BUS MODE

~ I ~'"" I!,:,,,
==I~''''-I~I='':'-I~I-----
~ 16 LSBs ~ 16 MSBs I
~r- -j.
I IpZL16, '- l pLZl6,

IpZH16 IpHZ16

~V VALID
\ HI-Z (~ 1\ J

I IpLZ16, - I pZLl6,
IpHZ16 IpZH16

~ HI-Z / VALID
J \

Note 1. 14 has special setup and hold time requirements in this mode. All other control signals have timing requirements as shown in the diagram
"Clocked operation, FTo = LOW, FT1 = LOW."

056218·29

OUTPUT ENABLE/DISABLE TIMING

- VOH

OE J
------------------- 1.5V

~ ~
VOL

Fo-F31
(HIGH LEVEL) VOH - .5V

\ J

HIGH IMPEDANCE

Fo- F31
I VOL + .SV

,
1\

(LOW LEVEL) ~ -lpZL-

05621A-30

93

Am29325

Am29325 PINOUT

SORTED BY PIN NUMBER SORTED BY FUNCTIONAL NAME

Line # Pin # Functional Name Functional Name Pin #

1 A1 Inexact ClK J1
2 A2 Invalid ENF 01
3 A3 F29 ENR 03
4 A4 F30 ENS E3
5 A5 F23 Fo E14
6 A6 F26 F1 C15
7 A7 F21 F2 C14
8 A8 F22 F3 B14
9 A9 F17 F4 B15

10 A10 F1a F5 A15
11 A11 F13 F6 B13
12 A12 F12 F7 A13
13 A13 F7 Fa A14
14 A14 Fa F9 B12
15 A15 F5 F10 C12
16 B1 12 F11 C11
17 B2 NAN F12 A12
18 B3 Zero F13 A11
19 B4 F31 F14 B11
20 B5 Overflow F15 B10
21 B6 F27 F16 C10
22 B7 F24 F17 A9
23 B8 F19 F1a A10
24 B9 F20 F19 B8
25 B10 F15 F20 B9
26 B11 F14 F21 A7
27 B12 F9 F22 AS
28 B13 F6 F23 A5
29 B14 F3 F24 B7
30 B15 F4 F25 C7
31 C1 11 F26 A6
32 C2 10 F27 B6
33 C3 GNO, TTL F2a C6
34 C4 GNO, TTL F29 A3
35 C5 Underflow F30 A4
36 C6 F2a F31 B4
37 C7 F25 FTo E2
38 C8 Vee, TTL FT1 F2
39 C9 Vee, TTL GNO, ECl N3
40 C10 F16 GNO, ECl H14
41 C11 F11 GNO, ECl G13
42 C12 F10 GNO, ECl M3
43 C13 GNO, TTL GNO, ECl H13
44 C14 F2 GNO, ECl J13
45 C15 ~
46 01 ENF

GNO, TTL 015
GNO, TTL 014

47 02 IEEElOEC GNO, TTL E13
48 03 ENR GNO, TTL F13
49 013 GNO, TTL GNO, TTL C4
50 014 GNO, TTL GNO, TTL C3
51 015 GNO, TTL GNO, TTL 013
52 E1 14 GNO, TTL C13
53 E2 ~ 10 C2
54 E3 ENS 11 C1
55 E13 GNO, TTL 12 B1
56 E14 Fa 13 P9
57 E15 PROJ/AFF 14 E1
58 F1 ONEBUS IEEE/OEC 02
59 F2 FT1_ Inexact A1
60 F3 516/32 Invalid A2

94

Am29325

Am29325 PINOUT (Cant)

SORTED BY PIN NUMBER SORTED BY FUNCTIONAL NAME

Line # Pin # Functional Name Functional Name Pin #

61 F13 GND. TTL NAN B2
62 F14 S1 OE G1
63 F15 §Q... ONEBUS F1
64 G1 OE Overflow B5
65 G2 Vee. Eel PROJ/AFF E15
66 G3 Vee. Eel Ro N9
67 G13 GND. Eel R1 R8
68 G14 S2 R2 R9
69 G15 S3 R3 N8
70 H1 Vee. Eel R4 P8
71 H2 Vee. Eel R5 P7
72 H3 Vee. Eel R6 R7
73 H13 GND. Eel R7 R6
74 H14 GND. Eel R8 N7
75 H15 S5 R9 N6
76 J1 elK RlO P6
77 J2 RNDo R11 P5
78 J3 Vee. Eel R12 R5
79 J13 GND. Eel R13 R4
80 J14 S4 R14 N5
81 J15 S7 R15 N4
82 K1 R31 R16 P4
83 K2 RND1 R17 R2
84 K3 R29 R18 R3
85 K13 S8 R19 P3
86 K14 S9 R20 R1
87 K15 S6 R21 P1
88 l1 R30 R22 P2
89 l2 R27 R23 N2
90 l3 R26 R24 N1
91 l13 S13 R25 M1
92 L14 SlO R26 l3
93 l15 S11 R27 l2
94 M1 R25 R28 M2
95 M2 R28 R29 K3
96 M3 GND. Eel R30 L1
97 M13 S14 R31 K1
98 M14 S15 RNDo J2
99 M15 S12 RND1 K2

100 N1 R24 So F15
101 N2 R23 S1 F14
102 N3 GND. Eel S2 G14
103 N4 R15 S3 G15
104 N5 R14 S4 J14
105 N6 R9 S5 H15
106 N7 R8 S6 K15
107 N8 R3 S7 J15
108 N9 Ro S8 K13
109 N10 S28 S9 K14
110 N11 S27 SlO L14
111 N12 Vee. Eel S11 L15
112 N13 Vee. Eel S12 M15
113 N14 S18 S13 l13
114 N15 S17 S14 M13
115 P1 R21 S15 M14
116 P2 R22 S16 P15
117 P3 R19 S16/32 F3
118 P4 R16 S17 N15
119 P5 R11 S18 N14
120 P6 RlO S19 R15

95

Am29325 PINOUT (Cont)

SORTED BY PIN NUMBER SORTED BY FUNCTIONAL NAME

Line # Pin # Functional Name Functional Name

121 P7 R5 S20
122 P8 R4 S21
123 P9 13 S22
124 P10 831 823
125 P11 S26 S24
126 P12 S25 S25
127 P13 S22 S26
128 P14 S21 S27
129 P15 S16 S28
130 R1 R20 S29
131 R2 R17 S30
132 R3 R18 S31
133 R4 R13 Underflow
134 R5 R12 Vee,ECl
135 R6 R7 Vee, Eel
136 R7 R6 Vee,ECl
137 R8 R1 Vee, ECl
138 R9 R2 Vee,ECl
139 R10 S30 Vee,ECl
140 R11 S29 Vee, ECl
141 R12 S24 Vee,ECl
142 R13 S23 Vee, TTL
143 R14 S20 Vee, TTL
144 R15 S19 Zero

POWER SUPPLY WIRING CONSIDERATIONS

SYSTEM
GROUNO~

PLANE "

ECl
GNO

~

Notes: 1. All power supply pins must be connected.

TTL.
GNO

100pF
CERAMIC

ECl
Vcc

TTL
Vcc

-'

.-"

PACKAGE
V-Am29325

SYSTEM
rVccPlANE

Pin #

R14
P14
P13
R13
R12
P12
P11
N11
N10
R11
R10
P10
C5
J3
G2
G3
H2
N13
N12
H3
H1
C8
C9
83

Am29325

05621A-34

2. Eel GND and TTL GND should not be connected directly into the main system ground plane_ Using signal plane traces as short and wide as
possible, Eel GND pins should be connected together, as should TTL GND pins, but without interconnection. These separate ground buses
should be connected together and to the system ground plane at a decoupling capacitor close to the package. Eel Vee and TTL Vee should be
treated similarly. See diagram above_

96

Am29325

SUGGESTED PRINTED CIRCUIT BOARD LAYOUT

10

11

12

13

14

15

Bottom View

ABCDEFGHJKlMNPR

l ECl vee

r,
• • • • I • I· •

• r-;'" • l. • ,

TTL GND

.,. . .
;, .

ECl ,
Vee)

I
I • I •
I
I •

ECl I.
GND

\..~ ..
• I· •

· ~-.""G.J. •

Note: 1. 04 (alignment pin) is not connected internally-may be wired to TTL ground or left unconnected.

THERMAL
RESISTANCE

'C/W

THERMAL CHARACTERISTICS

AIR VELOCITY
LINEAR FEET PER MINUTE

97

056218-35

056218·36

PHYSICAL DIMENSIONS

BOTTOM VIEW

I-------::~:~-------

I
ABCDEFGHJKLMNPR

O©©©©@©
2 ©©©©©©©~©©©©©©©
3 ©©©©©©©$©©©©©O

4@@@@r--__ -t' ___ ,..-...

5 © © © ~~~
6 © © ©
7 © © ©

1.540 -8
1.560

11

12

·Subject to change.

The International Standard of Quality
guarantees the AQL on all electrical parameters,

AC and DC, over the entire operating range.

98

'--"
HEATSINK

L'380
.410

Am29325

Am29331
16-Bit Microprogram Sequencer

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

• 16-Bits Address Up to 64K Words

Supports 80- 90ns microcycle time for a 32-bit high
performance system when used with the other members
of the Am29300 Family.

• Real Time Interrupt Support

Micro-TRAP and Interrupts are handled transparently at
any microinstruction boundary.

• Built-In Conditional Test Logic

Generates inequality evaluation branch conditions from
four AlU status bits. Has eight external tests plus a
polarity input.

• Break-Point Logic

Built-in acdress comparator allows break-points in the
microcode for debugging and statistics collection.

• Master/Slave Error Checking

Two sequencers can operate in parallel as a Master and a
Slave. The Slave generates a fault flag for unequal results.

• 33-Level Stack

Provides support for interrupts, loops and subroutine
nesting. It can be accessed through the D-bus to support
diagnostics.

GENERAL DESCRIPTION

The Am29331 is a 16-bit wide high-speed single chip se­
quencer designed to control the execution sequence of mi­
croinstruction stored in the microprogram memory. The in­
struction set is designed to resemble high-level language
constructs, thereby bringing high-level language program­
ming to the micro level.

The Am29331 is interruptible at any microinstruction bound­
ary to support real-time interrupts. Interrupts are handled
transparently to the microprogram mer as an unexpected
procedure call. Traps are also handled transparently at any
microinstruction boundary. This feature allows re-execution
of a prior microinstruction. Two separate buses are provided
to bring a branch address directly into the chip from two
sources to avoid slow turn-on and turn-off times for different

sources connected to the data input bus. Four sets of multi­
way inputs are also provided to avoid slow turn-on and
turn-off times for different branch address sources. This
feature allows implementation of table look-up or use of
external conditions as part of a branch address. The thirty­
three deep stack provides the ability to support interrupts,
loops and subroutine nesting. The stack can be read through
the D-bus to support diagnostics or to implement multi­
tasking at the micro-architecture level. The master/slave
mode provides a complete function check capability for
the device.

The Am29331 is designed with the (MOXT
.. process which

allows internal Eel circuits with TTL-compatible I/O. It is
housed in a 120-lead pin-grid-array package.

SIMPLIFIED BLOCK DIAGRAM

INTR

INTA

TEST
CONDo

INSTR

MULTIWAY
INPUTS

IMOX is a trademark of Advanced Micro Devices, Inc.

D·BUS A-BUS

CARRY-IN

EQUAL

Y-BUS 057298·'

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to
evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Order # 057298

99

CPD--­

RST D--­

FC D--­

INTR D--­

INTEN D--­

INTAD­

HOLD D--­

OED D--­

SLAVE D--­

ERROR <:J----

RELATED PRODUCTS

Part No. Description

Am29323 32 x 32 Parallel Multiplier
Am29325 32-Bit Floatirg Point Processor
Am29332 32-Bit Extended Function ALU
Am29334 64 x 18 Four Port. Dual Access

Register File

Figure 1. Am29331 Block Diagram

D A

16

MUX

100

EaUAL

CIN

057298-2

MO-3, MO-3

YO-Vs

CP

FC

PIN DESCRIPTION

Data, Bidirectional, Three-State
Input to address multiplexer, counter, stack,
and comparator register. Output for stack and
stack pointer.

Alternate Data, Input
Input to address multiplexer and counter.

Multiway, Input
Four sets of multiway inputs providing 16-way
branches. The first index refers to the set
number.

Address, Bidirectional, Three-State
Output of microcode address. Input for inter­
rupt address.

Instruction, Input
Selects one of 64 instructions.

Test, Input
Provides external test inputs.

Select, Input
Selects one of 16 test conditions.

Clock Pulse, Input
Clocks sequencer at the low to high transition.

Reset, Input
Resets the sequencer.

Force Continue, Input
Overrides instruction with CONTINUE.

INTR

INTEN

INTA

HOLD

OED

SLAVE

ERROR

A-FULL

EQUAL

101

Interrupt Request, Input
Requests the sequencer to interrupt
execution.

Interrupt Enable, Input
Enables interrupts.

Interrupt Acknowledge, Bidirectional,
Three-State, Active Low
Indicates that an interrupt is accepted.

Input
Stops the sequencer and three-states the
outputs.

Output Enable D-Bus, Input
Enables the O-bus driver provided the se­
quencer is not in the hold or slave mode.

Input
Makes the sequencer a slave.

Output, Three-State
Indicates a Master/Slave error in the slave
mode. Indicates a malfunctioning driver or
contention in the master mode.

Input, Active Low
Carry-in to incrementer

Almost Full, Bidirectional, Three-State
Indicates that SP ? 28.

Bidirectional, Three-State
Indicates that the address comparator is ena­
bled and has found a match.

ARCHITECTURE

The major blocks of the sequencer are the address multiplexer,
the microprogram counter (PC), the stack (with the top of stack
denoted TOS), the counter (C), the test multiplexer with logic, and
the address comparison register (R), (Figure 1). The bidirectional
D-bus provides branch addresses and iteration counts; it also
allows access to the stack from outside. The A-bus may be used
for map addresses. There are four sets of four-bit multiway
branch inputs (M). The bidirectional V-bus either outputs micro­
program addresses or inputs interrupt addresses. The buses are
al116 bits wide. Figure 1 shows a block diagram of the sequencer.

ADDRESS MULTIPLEXER

The address multiplexer can select an address from any of five
sources:

1) A branch address supplied by the D-bus.
2) A branch address supplied by the A-bus.
3) A multiway branch address.
4) A return or loop address from the top of stack.
5) The next sequential address from the incrementer.

MULTIWAY BRANCH ADDRESS

A multiway branch address is formed by substituting the low­
er four bits of the address on the D-bus (D3D2D1 Do) with one
of the four sets (Mo, M1, M2 or M3) of four-bit multiway branch
addresses. The multiway branch set is selected by the number
D1 Do, while the bits D3 and D2 are don't cares.

ADDRESS REGISTER

The address register contains the current address. It is loaded
from the interrupt multiplexer and feeds the incrementer. The
incrementer is inhibited if CIN is taken HIGH.

STACK

A 33-word deep and 16-bit wide stack provides first-in last-out
storage for return addresses, loop addresses, and counter val­
ues. Items to be pushed come from the incrementer, the interrupt
return address register, the counter, or the D-bus. Items popped
go to the address multiplexer, the counter, or the D-bus.

The access to the stack via the D-bus may be used for context
switching, stack extension, or diagnostics. As the stack is only
accessible from the top, stack extension is done by temporarily
storing the whole or some lower part of the stack outside the
sequencer. The save and the later restore are done with pop and
push operations respectively at balanced points in the micropro­
gram, i.e., points with the same stack depth. The internal D-bus
driver must be turned on when popping an item to the D-bus; if the
driver is off, the item will be unstacked instead. The driver is
normally turned on when the signal Output Enable is asserted
and the sequencer is not being reset (OED = 1, RST = 1).

The stack pointer is a module 64 counter, which is incremented
on each push and decremented on each pop. The stack pointer is
reset to zero when the sequencer is reset, but the pointer may
also be reset by instruction. Thus, the stack pointer indicates the
number of items on the stack as long as stack overflow or under­
flow has not occurred. Overflow happens when an item is pushed
onto a full stack, whereby the item at the bottom of the stack is
overwritten. Underflow happens when an item is popped from an
empty stack, in this case the item is undefined.

The contents of the stack pointer is present on the D-bus for all
instructions except POP D, provided the driver is turned on. The
output signal A-FULL is defined as SP ~ 28.

102

COUNTER

The counter may be used as a loop counter. It may be loaded from
the D-bus, the A-bus or via a pop from the stack. Its contents may
alsc be pushed onto the stack.

A normal for-loop is set up by a FOR instruction, which loads the
courter from the D- or A-bus with the desired number of itera­
tions; the instruction also pushes onto the stack a loop address,
that points to the next sequential instruction. The end of the loop is
given by an unconditional END FOR instruction, which tests the
counter value aqainst the value one and then decrements the
counter. If the values differ, the loop is repeated by selecting the
address at the stack as the next address. If the values are equal,
the loop is terminated by popping the stack, thereby removing the
loop address, and selecting the address from the incrementer as
the next address. The number of iterations is a 16-bit unsigned
number, except that the number zero corresponds to 65536
iterations. By pushing and popping counter values it is possible to
handle nested loops.

ADDRESS COMPARISON

The sequencer is able to compare the address from the interrupt
multiplexer with the contents of the comparator register. The
instruction SET loads the comparator register with the address on
the D-bus and enables the comparison, while CLEAR disables it.
The comparison is disabled at reset. A HIGH is present at the
output EQUAL if the comparison is useful for detection of a
breakpoint or counting how often a microinstruction at a specific
address is executed.

INSTRUCTION SET

The sequencer has 64 instructions that are divided into four
classes of 16 instructions each. The instruction lines 10 -15 use 15
and 14 to select a class and 10 -13 to select an instruction within a
class. The classes are:

15

o
o

14

o Conditional sequence control,

Conditional sequence control with inverted
polarity,

o Unconditional sequence control, and

Special function with implicit continue.

Note that for the first three classes 15 forces the condition to be
true and 14 inverts the condition. The basic instructions of the first
three classes are shown in Table 1 and the instructions of the
fourth class in Table 2.

Structured microprogramming is supported by sequencer in­
structions that singly or in pairs correspond to high-level lan­
guage control constructs. Examples are FOR I: = D DOWN TO 1
DO ... END FOR and CASE N OF ... END CASE. The instruc­
tions have been given high-level language names where appro­
priate. Figure 2 shows how to microprogram important control
constructs; the high-level language is on the left and the mi­
crocode on the right.

TEST CONDITIONS

The condition for a conditional instruction is supplied by a test
multiplexer, which selects one out of sixteen tests with the select
lines So- S3. Twelve of these are supplied directly by the inputs
To- T11, while the remaining four tests are generated by the test
logic from the inputs T B - T 11. The following table shows the
assignments.

S

0-7
8
9
10
11
12

13

14
15

Test

To-T7
T8
T9
TlO
T11
T8 + T11

Intended Use

General
C (Carry)
N (Negative)
V (Overflow)
Z (Zero or equal)
C + Z (Unsigned less

FORCE CONTINUE

The sequencer has a force continue (FC) input, which overrides
the instruction inputs 10 -15 with a CONTINUE instruction. This
makes it possible to share the microinstruction field for the se­
quencer instruction with some other control or to initialize a writ­
able control store.

than or equal, borrow mode)
RESET

In order to start a microprogram properly the sequencer must be
reset. The reset works like an instruction overriding both the
instruction input and the force continue input. The reset selects
the address 0 at the address multiplexer, forces the EQUAL
output to LOW, and disregards a potential interrupt request. It
synchronously disables the address comparison and initializes
the stack pointer to O.

18 + T11 C + Z (Unsigned less
than or equal)

T9 ED TlO N ED V (Signed less than)

(T 9 ED T 10) + T 11 (N ED V) + Z (Signed less
than or equal)

TABLE 1

Cond.: False Cond.: True

10- 13 Instruction y Stack y Stack Counter Compo D-Mux

0 Goto D PC - D - - - SP
1 Call D PC - D Push PC - - SP
2 Exit D PC - D Pop - - SP
3 End for D, Coil PC - D - C.....c - 1 - SP

End for D, C = 1 PC - PC - C.....c - 1 - SP
4 Goto A PC - A - - - SP
5 Call A PC - A Push PC - - SP
6 Exit A PC - A Pop - - SP
7 End for A, C "# 1 PC - A - C.....c - 1 - SP

End for A, C = 1 PC - PC - C ... C - 1 - SP
8 Goto M PC - D:M - - - SP
9 Call M PC - D:M Push PC - - SP
10 Exit M PC - D:M Pop - - SP
11 End for M, C of. 1 PC - D:M - C.....c - 1 - SP

End for M, C = 1 PC - PC - C.....c - 1 - SP
12 End Loop PC Pop TOS - - - SP
13 Call Coroutine PC - TOS TOS<-PC - - SP
14 Return PC - TOS Pop - - SP
15 End for, C # 1 PC Pop TOS - C.....c - 1 - SP

End for, C = 1 PC Pop PC Pop C.....c - 1 - SP

Cond. = (Test[S] or 15) XOR 14
: = Concatination
C = Counter

TABLE 2

10- 13 Instruction Y Stack Counter Compo D-Mux

0 Continue PC - - - SP
1 For D PC Push PC C<-D - SP
2 Decrement PC - C.....c - 1 - SP
3 Loop PC Push PC - - SP
4 Pop D PC Pop - - TOS
5 Push D PC Push D - - SP
6 Reset SP PC SP<-o - - SP
7 ForA PC Push PC C<-A - SP
8 Pop C PC Pop C<-TOS - SP
9 Push C PC Push C - - SP
10 Swap PC TOS.....c C<-TOS - SP
11 Push C Load D PC Push C C<-D - SP
12 Load D PC - C<-D - SP
13 Load A PC - C<-A - SP
14 Sot PC - - R<-D, Enable SP
15 Clear PC - - Disable SP

14 " 15 = HIGH; R = Comp. Register

103

INTERRUPTS

The sequencer may be interrupted at the completion of the cur­
rent microcycle by asserting the interrupt request input INTR. The
return address of the interrupted routine is saved on the stack;
nested interrupts are allowed. An interrupt is accepted if inter­
rupts are enabled and the sequencer is not being reset or held
(INTEN = HIGH, RESET = LOW, and HOLD = LOW).

When there is no interrupt, addresses go from the address mul­
tiplexer to the V-bus via the driver and to the incrementer and the
comparator via the interrupt multiplexer. '.II/hen there is an inter­
rupt, the driver of the sequencer is tu rned off, an external driver is
turned on, and the interrupt multiplexer is switched. The interrupt
address is supplied via the external driver to the V-bus and the
incrementer and the comparator. In order to save the address
from the address multiplexer, the address is stored in the interrupt
address register, which for simplicity is clocked every cycle. The
next microinstruction is the first microinstruction of the interrupt
routine.

In this cycle the address in the interrupt return address register is
automatically pushed onto the stack. Therefore the microinstruc­
tion in this cycle must not use the stack; if a stack operation is
programmed, the result is undefined. The instructions that do not
use the stack are GOTO D, GOTO A, GOTO M, CONTINUE,
DECREMENT, LOAD D, LOAD A, SET and CLEAR. A RETURN
instruction terminates the interrupt routine and the inter­
rupted routine is resumed. Interrupts only work with a single-level
control path.

TRAPS

A trap is an unexpected situation linked to the current mi­
croinstruction, that must be handled before the microinstruc­
tion completes and changes the state of the system. An example
of such a situation is an attempt to read a word from memory
across a word boundary in a single cycle. When a trap occurs, the
current microinstruction must be aborted and re-executed after
the execution of a trap routine, which in the meantime wi:1 take
corrective measures. An interrupt, on the other hand, is not linked
directly to the current microinstruction that can complete safely
before an interrupt routine is executed.

Execution of a trap requires that the sequencer ignores the cur­
rent microinstruction, selects the trap return address at the ad­
dress multiplexer, and initiates an interrupt. This will save the trap
return address on the stack and issue the trap address from an

104

external source. The address register contains the address of the
microinstruction in the pipeline register, thus the address register
already contains the trap return address when a trap occurs. This
address can be selected by the address multiplexer by disabling
the incrementer (CIN = 1), and using the force continue mode
(FC = 1). In this mode the sequencer ignores the current mi­
croinstruction. The remaining part of the trap handling is done by
the interrupt. Thus the section on interrupts also applies to traps.
TherJ is one exception, however. The interrupt enable cannot be
used as a trap enable as it does not control the force continue
mode and the carry-in to the incrementer.

HOLD MODE

The sequencer has a hold mode in which operation is suspended.

When the HOLD signal goes active, the incrementer and the
outputs (except the D-bus) are disabled and the sequencer en­
ters the hold mode after the current cycle. While the sequencer is
in this mode, the internal state is left unchanged and the D-bus is
disabled. When the HOLD signal goes inactive the incrementer
and the outputs (except the D-bus) are enabled again and the
sequencer leaves the hold mode after that cycle.

In a time multiplexed multi-microprocess system there may be
one sequencer for all processes with microprogrammed context
save and restore, or there may be one sequencer per micro­
process permitting fast process switch. In the latter case the
V-buses of the sequencers are tied together and connected to a
single microprogram store. A control unit decides on a cycle by
cycle basis, what sequencer should be running and activates the
HOLD signal to the remaining sequencers. The hold mode has
higher priority than interrupts, and works independently of the
RESET signal. The hold mode can only be used with a single­
level control path.

MASTER/SLAVE CONFIGURATION

In some systems reliability is very important. The master/slave
configuration, that consists of two sequencers operated in paral­
lel is able to detect faults in both the interrconnect and the internal
fu~ction of the sequencers. One sequencer is the master and
operates normally. The other is a slave, i.e., all outputs except the
signal ERROR are turned into inputs and connected to the out­
puts of the master. Since the slave is operated in parallel with the
master, it can compare its result with the result of the master and
signal an error if they differ. The error signal from the master
indicates a malfunctioning driver or contention.

Figure 2A

Loops with unknown number of iterations:

REPEAT LOOP
- -
- -

UNTIL CC END LOOP NOT CC

WHILE CC DO LOOP
IF NOT CC THEN EXIT L

- -
- -

END WHILE END LOOP
L:

LOOP LOOP

IF CC THEN EXIT IF CC THEN EXIT L

END LOOP

Case Statment,

END LOOP
L:

Figure 2C

with 0 = A15 ... ~XXOO and Mo, 0-3 = A311100 during
the GOTO M instruction. A2A1AO must be 000, and X signifies a
don't care.

CASE I OF
0: -

1: -

2: -

3: -

END CASE

PUSH 0 B
GOTOM
A: -

-, RETURN TO B
A + 2: -

-, RETURN TO B
A + 4: -

-, RETURN TO B
A + 6: -

-,RETURN
B:

Figure 2B

Loop with known number of iterations:

FOR CNT: = 10 DOWN TO 1 DO FOR 0 10

END FOR END FOR

Figure 20

Double nested if-statement:

PUSH 0 C
IF X THEN IF NOT X THEN GOTO A

IF Y THEN IF NOT Y THEN GOTO B
- -
- -, RETURN TO C
ELSE B:
- -
- -, RETURN TO C
END IF

ELSE A:
IF Z THEN IF NOT Z THEN GOTO 0
- -
- -, RETURN TO 0
ELSE 0:
- -
- -, RETURN TO C
END IF

END IF C:

105

INSTRUCTION SET DEFINITION

Legend: o = Other instruction P = Test pass

@ = Instruction being described F = Test fail

o = Register in part
Opcode Mnemonics Description
(15 - 10)

32 BRA_D Go to D. Unconditional branch to the ad- ,
dress specified by the 0 inputs.

50 4

36 BRA-A Go to A. Unconditional branch to the ad-
dress specified by the A inputs. 51

40 BRA_M Go to M. Unconditional branch to the ad-
52~ dress specified by the 0 inputs catenated 90

with the multiway M inputs.
4 91

44 BRA_S Go to TOS. Unconditional branch to the
address on the top of the stack. Also

4 92
End Loop when used to terminate
WHILE ... ENDWHILE loops.

057298-3

0 BRCC_D If CC is HIGH then branch to the address
50 4

specified by the 0 inputs else continue.

4 PRCC-A If CC is HIGH then branch to the address 51 4

specified by the A inputs else continue.

8 BRCC_M If CC is HIGH then branch to the address 52 ~ ~F
specified by the 0 inputs catenated with
the multiway M inputs else continue. 53~ 90

12 BRCC_S If CC is HIGH then branch to the address 91
on the top of the stack else pop the stack
and continue. Also End Loop when used 92
to terminate REPEAT ... UNTIL loops.

057298-4

16 BRNC_D If CC is LOW then branch to the address
specified by the 0 inputs else continue. 50

20 BRNC-A If CC is LOW then branch to the address
specified by the A inputs else continue. 51 4

24 BRNC_M If CC is LOW then branch to the address
52 • F

specified by the 0 inputs catenated with
the multiway M inputs else continue.

53 • 90

28 BRNC_S If CC is LOW then branch to the address
p

on the top of the stack else pop the stack 91

and continue. Also End Loop when used
to terminate REPEAT ... UNTIL loops. 92

Note: Opcode numbers are in decimal notation.

057298-5

106

Opcode Mnemonics Description
(15 - 10)

33 CALL_D Call D. Unconditional branch to the sub-
routine address specified by the D inputs
and push the PC on the stack. 50

37 CALL-A Call A. Unconditional branch to the sub- STACK

routine address specified by the A inputs 51 0- PC+l
/ 53

and push the PC on the stack.
,

52~ 90

41 CALL_M Call M. Unconditional branch to the sub-
routine address specified by the D inputs 53

~
91

catenated with the multiway M inputs and
push the PC on the stack. 54 92

45 CALL_S Call TOS. Exchange PC and TOS. Also
call coroutine.

057298·6

1 CCC_D If CC is HIGH then call the subroutine
address specified by the D inputs else 50 ~
continue.

5 CCC_A If CC is HIGH then call the subroutine 51 ~
address specified by the A inputs else STACK

continue. 52. F D- PC+l
/ 54

9 CCC_M If CC is HIGH then call the subroutine /

address specified by the D inputs cate-
53 • 90

P

nated with the multiway M inputs else
54

~
91

continue.

13 CCC_S If CC is HIGH then call the address on the 55 92

top of the stack else continue. Also used
for conditional coroutine calls. 56 •

057298-7

17 CNC_D If CC is LOW then call the address 50

specified by the D inputs else continue.

21 CNC_A If CC is LOW then call the address 51

specified by the A inputs else continue. STACK

25 CNC_M If CC is LOW then call the address
52. F o-PC+l

/ 54

specified by the D inputs catenated with /

53 • 90
the multiway M inputs else continue. P

29 CNC_S If CC is LOW then call the address on the 544

~
91

top of the stack else continue. Also a con-
ditional coroutine call. 55 4 92

057298-8

34 EXIT_D Exit to D. Unconditional branch to the ad-
dress specified by the D inputs and pop
the stack.

50

38 EXIT_A Exit to A. Unconditional branch to the ad-
dress specified by the A inputs and pop 5~~ 90

the stack. /
/

42 EXIT_M Exit to M. Unconditional branch to the ad- -a 91

dross specified by the D inputs catenated STACK

with tho multiway M inputs and pop the 92

stack.

057298-9

107

STACK

Opcode Mnemonics Description
D-PC+l .- 51

(15 - 10)
504

~.1
2 XTCC_D If CC is HIGH then exit to the address

specified by the 0 inputs and pop the /~->-;-stack else continue with no pop.
STACK /

6 XTCC_A If CC is HIGH then exit to the address Q... 52 4

specified by the A inputs and pop the
stack else continue with no pop. 53 ~

10 XTCC_M If CC is HIGH then exit to the address
specified by the 0 inputs catenated to the

~
54

multiway M inputs and pop the stack else
55

continue with no pop.

56

05729B-l0

STACK

0- PC + l

.- 51
18 XTNC_D If CC is LOW then exit to the address ",""

specified by the 0 inputs and pop the
50

stack else continue. /~.>7-
22 XTNC_A If CC is LOW then exit to the address STACK .-

specified by the A inputs and pop the ~ 52 4~

stack else continue.

26 XTNC_M If CC is LOW then exit to the address 534~

specified by the 0 inputs catenated with
the multiway M inputs and pop the stack ~

54
else continue.

55 ~

05729B-ll

35 DJMP_D If the counter is not equal to one then
decrement the counter and branch to the
address specified by the 0 inputs else
continue.

39 DJMP_A If the counter is not equal to one then
decrement the counter and branch to the 50
address specified by the A inputs else
continue. 51

43 DJMp_M If the counter is not equal to one then
decrement the counter and branch to the 52

address specified by the 0 inputs cate-
COUNTER", 1

COUNTER

nated with the multiway M inputs else 53 • - -0- COUNT·1

continue.

47 DJMP_S If the counter is not equal to one then
54 COUNTER = 1

decrement the counter and branch to the
address on the top of the stack else de-
crement the counter, pop the stack and
continue.

057298-12

108

Opcode Mnemonics Description
(15 - 10)

3 OJCC_D If CC is HIGH and the counter is not equal
to one then decrement the counter and
branch to the address specified by the D
inputs else decrement the counter and
continue.

7 OJCC_A If CC is HIGH and the counter is not equal
to one then decrement the counter and 50

branch to the address specified by the A
inputs else decrement the counter and 51

continue.
52

11 OJCC_M If CC is HIGH and the counter is not equal PAND COUNTER
to one then decrement the counter and COUNTER,," 1 --0- COUNT-l 53 •
branch to the address specified by the D
inputs catenated with the multiway M 541 FOR

inputs else decrement the counter and
COUNTER = 1

continue.

15 DJCC_S If CC is HIGH and the counter is not equal
to one then decrement the counter and
branch to the address on the top of the
stack else decrement the counter, pop the
stack and continue.

057298·13

19 DJNCC_D If CC is LOW and the counter is not equal
to one then decrement the counter and
branch to the address specified by the D
inputs else decrement the counter and
continue. 50 1

23 DJNCC_A If CC is LOW and the counter is not equal 51
to one then decrement the counter and
branch to the address specified by the A

52 4
inputs else decrement the counter and
continue.

27 DJNCC_M If CC is LOW and the counter is not equal
53 1

to one then decrement the counter and PAND COUNTER
COUNTER,," 1

branch to the address specified by the D 54. --0- COUNT-l

inputs catenated with the multiway M
FOR inputs else decrement the counter and 55 1

COUNTER = 1
continue.

56 1
31 DJNCC_S If CC is LOW and the counter is not equal

to one then decrement the counter and
branch to the address on the top of the
stack else decrement the counter, pop the
stack and continue.

057298-14

STACK

o-PC+l
/

46 RET Unconditional return from subroutine. /
50 90

14 RETCC If CC is HIGH then return from subroutine
else continue. 51 4 91

30 RETNC If CC is LOW then return from subroutine
else continue. ~'N" 53. • 93

057298-15

109

Opcode Mnemonics
(15 -10)

49 FOR-D

55 FOR-A

51 LOOP

52 POP_D

56 POP_C

53 PUSH_D

5? PUSH_C

58 SWAP

Description

Initialize loop. Push the PC on the stack,
load the counter with the value of the D
inputs and continue. Use with DJMP_S
for FOR ... NEXT loops.

Initialize loop. Push the PC on the stack,
load the counter with the value of the A
inputs and continue. Use with DJMP_S
for FOR ... NEXT loops.

Initialize loop. Push the PC and continue.
Use with BRCC_S for REPEAT ... UN­
TIL loops or with XTCC_D and BRA-S
for WHILE ... ENDWHILE loops.

Pop the stack, output the value on the D
outputs and continue.

Pop the stack, place the value in the
counter and continue.

Push the D inputs on the stack and
continue.

Push the counter on the stack and
continue.

Exchange the counter and the top of stack
and continue.

110

50 o-PC+l t
STACK

51 • .I~---o- N

COUNTER

52

STACK

50 0- PC+l

" " 51 •

52

STACK

50. 0--0

" " 51 •

52 •

STACK

50. 0-0 .I
" 51 •

52 ••

t
STACK

50 C\.
51. <--~

COUNTER

52

057298·16

057298-17

STACK

• ,~~, Opcode Mnemonics Description
(15 -10) 0

59 STACK_C Push the counter on the stack, load the COUNTER

counter with the value of the D inputs and I

continue.

60 LOAD_D Load the counter with the value of the D
inputs and continue.

COUNTER
61 LOAD_A Load the counter with the value of the A 50 0-0

inputs and continue.
" "

51 0

52

057296-18

50

51 0

48 CONT Continue.
52 ~

50 DECR Decrement the counter and continue. COUNTER

54 RESET_SP Reset the stack pointer and continue.
50 c 0- COUNT-1

" ,
51 0

52 ..

057296-19

COMPARE

62 SET Load the comparison register with the 50 0-0

value of the D inputs, enable the com- " "
parator and continue. 51 0

63 CLEAR Disable the comparator and continue. 52 >

057296-20

111

Am29332
32-Sit Arithmetic Logic Unit

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

o Single Chip, 32-Bit ALU
Supports 80-90ns microcycle time for the 32-bit
data path. It is a combinatorial ALU with equal cy­
cle time for all instructions.

• Flow-through Architecture
A combinatorial ALU with two input data ports and
one output data port allows implementation of either
parallel or pipelined architectures.

• 64-Bit In, 32-Bit Out Funnel Shifter
This unique functional block allows n-bit shift-up,
shift-down, 32-bit barrel shift or 32-bit field extract.

• Supports All Data Types
It supports one-, two-, three- and four-byte data for
all operations and variable-length fields for logical
operations.

• Multiply and Divide Support
Built-in hardware to support two-bit-at-a-time modi­
fied Booth's algorithm and one-bit-at-a-time division
algorithm.

• Extensive Error Checking
Parity check and generate provides data transmis­
sion check and master/slave mode provides com­
plete function checking.

GENERAL DESCRIPTION

The Am29332 is a 32-bit wide non-cascadable Arithmetic
Logic Unit (ALU) with integration of functions that normally
don't cascade, such as barrel shifters, priority encoders
and mask generators. Two input data ports and one output
data port provide flow-through architecture and allow the
designer to implement his/her architecture with any degree
of pipe lining and no built-in penalties for branching. Also,
the simplicity of a three-bus ALU allows easy implementa­
tion of parallel or reconfigurable architectures. The register
file is off-chip to allow unlimited expansion and regular
addressability.

The Am29332 supports one-, two-, three- and four-byte
data for arithmetic and logic operations. It also supports

multiprecision arithmetic and shift operations. For logical
operations, it can support variable-length fields up to 32
bits. When fewer than four bytes are selected, unselected
bits are passed to the destination without modification. The
device also supports two-bit-at-a-time modified Booth's
algorithm for high-speed multiplication and one-bit-at-a­
time division. Both signed and unsigned integers for all byte
aligned data types mentioned above are supported.

The Am29332 is designed to support 80-90 ns microcycle
time. The device is packaged in a 168-lead pin-grid-array
package.

SIMPLIFIED BLOCK DIAGRAM

PARITY

DA-B:S 94 94 ER~OR DB-BUS

~
INSTR.

STATUS Y·BUS Y·BUS

80005240

This document conl3lf" Inlormatlon on a product under development at Advanced Micro Devices. Inc. The information is intended to
help you to evalualo U". product. AMD resorves the right to change or discontinue work on this proposed product without notice.

113

Order#05730B

DA31- DAO

PB3-PBO

IS -10

18- 17

Ps-Po

C, Z, N, V, L

RELATED PRODUCTS

Part No. Description

Am29323 32 x 32 Parallel Multiplier

Am2932S 32·8it Floating Point Processor

Am29331 16·8it Microprogram Sequencer

Am29334 64 x 18 Four-Port, Dual-Access Register File

PIN DESCRIPTION

Parity input for operand A on DA-bus (one
per byte).

Data input lines for operand A.

Parity input for operand B on DB-bus (one
per byte).

Data input lines for operand B.

Parity output for data on Y -bus (one per
byte).

Data Input/Output Lines
When OE-Y is LOW and the ALU is in the
Master mode, the ALU result is enabled
on the V-bus. When OE-Y is HIGH, the Y­
bus is tristated. In Slave mode the V-bus
acts as external data input.

Instruction Inputs

Byte width inputs for byte boundary
aligned operand instructions. Selects the
sources for width and position inputs for
variable field bit operands. If 17 is LOW it
selects the width inpur from pins
W4 - Wo° If 17 is HIGH the width input is
selected from the internal width register.
Similarly if 18 is LOW it selects the
position inputs from pins Ps - Po and if
HIGH it selects input from the internal
position register.

Width input to select the width of a
contiguous bit field.

Position input to select the position of the
least significant bit of a field. Also
indicates the amount by which data is to
be shifted up (Ps = LOW) or down
(P1 = HIGH) or rotated.

When the Register Status pin is LOW,
these pins give the carry, zero, negative,
overflow and link outputs of the ALU
where applicable to the instruction being
executed. When not applicable to the
instruction being executed, or when the
Register Status pin is HIGH, these pins
give the outputs of the carry, zero,
negative, overflow and link bits of the
internal status register. In SLAVE mode,
C, Z, N, V and L become inputs.

Register
Status

HOLD

CP

Borrow

Macro Carry

Macro Link

Macro/Micro
SEL

Slave

MS-Error

Parity-Error

114

Register Status Mode Pin
Selects between ALU status (Register
Status = LOW) or register status
(Register Status = HIGH) on the C, Z, N,
V and L outputs.

When HIGH it inhibits the update of the
status and Q registers.

Clocks internal registers (status, Q) at the
LOW to HIGH transition, provided HOLD
input is LOW.

Output Enable
When OE-Y is HIGH the V-bus is disabled
(tri-stated).

When HIGH the Carry In and Carry Out
are borrows for subtract operations.

Macro Status Carry Input

Macro Status Link Input

When HIGH selects macro carry and
macro link pins as input instead of micro
carry and micro link from the micro-status
register.

When HIGH this pin puts the ALU in the
slave mode. All output pins become input
pins and signals on them are compared
with the ALU's internally generated
results. When OE-Y is HIGH, the YO - Y31
and PYo - PY3 inputs are ignored. When
the SLAVE pin is LOW, the ALU is put in
master mode where outputs are
generated as normal.

Master-Slave Error
When HIGH this signal indicates that the
master's and slave's data were not
identical.

When HIGH indicates that a parity error
was detected on the DA or DB inputs.

BORROW
MODE

SLAVE

INST

.HOLD

CP

REGISTER­
STATUS

INSTRUCTION
DECODE

MUX

BLOCK DIAGRAM

32

PRE O/P POST O/P

MASTER/SLAVE
COMPARATOR

MS-ERROR

115

MASK
GENERATOR

UP/DOWN
SHIFTER

32

De

32

32

PARITY
ERROR

32 STATUS
r---''''--- REGISTER

OUTPUT

80003011

Am29331
16-BIT

SEQUENCER

MICROPROGRAM
MEMORY

PIPELINE
REGISTER

l
CONTROL
SIGNALS

1
Am29325

32-BIT
FLOATING POINT

PROCESSOR

I

I

1
Am29334

REGISTER
FILE

64 X 18

j
1

1
Am29332

32-BIT
ALU

1

~

I

1
Am29323
32 x 32

PARALLEL
MULTIPLIER

AF003480

Figure 1. Am29332 Family High Performance System Block Diagram

PRODUCT OVERVIEW
The Am29332 is a 32-bit wide, high performance, non­
expandable Arithmetic Logic Unit. It has two 32-bit wide input
ports (A and B) and one 32-bit wide output port (Y). These
three ports provide flexibility and accessibility for high-perfor­
mance processor designs. Dedicated input and output ports
provide a flow-through architecture and avoid the penalty
associated with switching the bus half-way thrcugh the cycle
for input and output of data. The chip is designed for use with
a dual access RAM (Am29334) as a register file. In addition,
the three bus architecture facilitates the connection of other
arithmetic units in parallel with the Am29332 for high perfor­
mance systems.

The Am29332 supports one-, two-, three- and four-byte
arithmetic operations. It also supports multiprecision arithme­
tic and multiple bit shifts. For logical operations, it can handle
variable-length fields of up to 32 bits. The chip incorporates
dedicated hardware to allow efficient implementation of a two
bit-at-a-time (modified Booth) multiply algorithm, supporting
signed and unsigned arithmetic data types. Similarly, hardware
is provided to support a bit-at-a-time divide algorithm, also
supporting signed and unsigned arithmetic data types. An
internal 32-bit register (a) is used by the multiply and divide
hardware for double precision operands. For business applica­
tions, the Am29332 supports variable-length BCD arithmetic.

Field logical instructions operate on bit-fields taken from the A
and B data inputs; they may be of variable width and starting
position. A is normally thS source input and B the destination
input. In general, destination bits not falling within a specified
field are passed by the ALU unchanged. Field width and
position are specified either by direct inputs to the chip, or by
entries in the status register. There are two kinds of field
logical instructions - aligned and non-aligned. The first type of
instruction assumes that source and destination fields are
aligned and the operation is performed only for bits within the
specified fields. In the second type of instruction, source and
destination fields are normally non-aligned. However, it is
always assumed that one field (either source or destination) is
least significant bit (LSB) aligned.

If the destination field is LSB aligned then the source field is
downshifted in order to make it LSB aligned as well. Down-

116

shifting is accomplished by making the 6-bit position input
equal to the two's complement of the number of places the
field is to be downshifted. If the source field is LSB aligned
then it is upshifted in order to align it with the destination.
Upshifting is accomplished by making the position inputs equal
to the number of places the field is to be upshifted. Any other
type of field operation is not allowed. Whenever the field
crosses the word boundary, the portion not falling within the
word boundary is ignored. This effect is useful when perform­
ing operations on fields that overlap two different words.
Instructions to perform straightforward multiple-bit shifts (ei­
ther up or down) are also provided. Additionally, it is possible
to extract a bit-field from a word in one instruction, even if that
field overlaps a word boundary.

The power and the flexibility of the processor comes partly
from its ability to generate a mask to control the width of an
operation for each instruction without any overhead. For all
byte aligned instructions (three quarters of the instruction set),
the mask is either 1, 2, 3 or 4 bytes wide and is generated from
the byte width input (Is - 17). For all field instructions the mask
is of variable width and is generated from the position inputs
(Ps - PO) and the width inputs (W4 - Wo). Whenever the width
of the operand is less than 32-bits, all unselected bits from the
inputs of the ALU are passed to the output without any
modification. Depending upon the instruction type, unselected
bits are taken from different sources. For example in all single
operand instructions, bits from the source operand (from
either A or B input) are passed in unselected bit pOSitions. For
two operand instructions, bits from the B input are passed in
unselected bit positions. There are some exceptions which are
explained in the instruction set section.

The processor has a 32-bit status register to indicate the
status of different operations performed. The status register is
loaded at the rising edge of the clock with new status unless
the HOLD signal is HIGH. The bit position for each status bit is
given in the functional description. The least significant byte of
the status register holds the six position bits (Ps - Po). The two
most significant bits of this byte may be read or loaded but are
otherwise unused by the ALU. The second byte (bits 8 to 15)
consists of the five width bits (W4 - Wo) and three read-only
bits that are a combinational function of other status bits, and
which indicate useful branch conditions. Tho third byte con-

sists of ALU status bits plus bits for high speed multiply and
divide. The most significant byte holds intermediate nibble
carries for BCD operations. An extract-status instruction is
provided which allows a Boolean value to be formed from any
selected bit. This is particularly useful in machines employing a
stack architecture. Instructions to save and restore the status
register are provided. As the entire status of each instruction is
stored in the status register, interrupts at any microinstruction
boundary are feasible.

The processor has a 32-bit wide priority encoder to support
floating-point and graphics operations. The priority enc.)der
supports all byte aligned data types - the result is dependent
upon the byte width specified. The result of a priority encode is
also loaded into the position bits of the status register. The
result of the prioritize operation can then be used in the
following clock cycle, e.g., to normalize a floating-point num­
ber or to help detect the edge of a polygon in graphics
applications.

To support system diagnostics, l.he Am29332 has a special
"Master-Slave" mode. To use this mode, two chips are
connected in parallel, and hence receive the same instructions
and data. The master chip is used for the normal data path.
However, in the slave chip, all outputs becomes inputs. The
slave compares the outputs of the master with its own
internally generated result. If the two do not match, the slave
will activate an error signal.

As a further diagnostic aid, byte-wise parity checking is
performed at both the A and B data inputs. The "parity" signal
is activated if an error is detected. Parity bits (one per byte) are
generated for the 32-bit output bus.

FUNCTIONAL DESCRIPTION
A detail description of each functional block is given in the
following paragraphs.

64-Bit Funnel Shifter

The 64-bit funnel shifter is a combinatorial network. The 64-bit
input is formed from a combination of the A and B inputs. This
may be left-shifted by up to 31 bits before being used by the
ALU. The output of the shifter is the most significant 32 bits of
the result. The 64-bit shifter can be used on either the A or B
operands to perform barrel shifts (either up or down) or
rotates. The operation is controlled by positioning operands
properly at the input of the 64-bit up-shifter.

The number "n" by which operand is shifted comes from two
sources: the microprogram memory via the P5 - Po pins or the
internal register (byte 0 of the status register), as selected by
an instruction bit.

In general, the 6-bit position input, P5 - Po, takes a 6-bit two's
complement number representing upshifts from 0 to 31 places
(positive numbers) or downshifts from 1 to 32 places (negative
numbers).

Mask Generator

The mask generator logic provides the ability to generate the
appropriate mask for an operand of given width and position.
The generation of the mask depends upon two types of
instructions. The first type has byte boundary aligned oper­
ands (widths of either 1, 2, 3 or 4 bytes) with the least
significant bit aligned to bit O. The width of an operand is
specified by the byte width inputs (Ie and 17) as shown in Table
1. The second type of instruction has operands of variable
width (1 to 32 bits) and position. Tho operand is specified by
tho width inputs (W,.. - Wo) and tho position inputs (P5 - Po)
indicating tho loast ~;inniflcanl bit position of the operand.
Thus, in this typo of in!;truction tho operand mayor may not be

least significant bit aligned. Depending upon the type of
instruction, the mask generator first generates a fence of all
zeros starting from the least significant bit with the width
specified either by the byte width or the width input fields. This
fence can be upshifted by up to 31 bits by the 32-bit mask
shifter. Whenever the mask is moved up over the 32-bit
boundary, it does not wrap around. Instead, ONE's are
inserted from the least significant end. This configuration
provides the ability to operate on a contiguous field located
anywhere in a word, or across a word boundary.

The mask generator can be used as a pattern generator by
allowing the mask to pass through ALU (by using the PASS­
MASK instruction). For example, a single-bit wide mask can be
generated and by shifting it up by different amounts can give
walking ONE or walking ZERO patterns for memory tests.

TABLE 1_

IS 17 Width in Bytes

0 0 4

0 1 1

1 0 2

1 1 3

Arithmetic and Logical Unit

The ALU is a three input unit which uses the mask as a second
or third operand in every instruction. The mask is used to
merge two operands. For all selected bits (wherever the mask
is 0), the desired operation specified by the instruction input is
performed, and for all unselected bits either corresponding
destination bits or zeros are passed through. The status of
each operation (carry, negative, zero, overflow, link) applies to
the result only over the specified width. For all byte aligned
arithmetic and logical operations (first three quarters of the
instruction set), the status is extracted from the appropriate
byte boundary. For all field operations (last quarter of the
instruction set), the operand width is assumed to be 32 bits for
status generation. The ZERO flag always indicates the status
of all bits selected by the mask.

The actual width of the ALU is 34 bits. There are two extra bits
used for the high speed signed and unsigned multiplication
instructions. These two bits are automatically concatenated to
the most-significant end of the ALU depending upon the width
specified for the operation. Since the modified Booth algorithm
requires a two-bit down-shift each cycle, these ALU bits
generate the two most-significant bits of the partial product.

The ALU is capable of shifting data down by two bits for the
multiplication algorithm, up by one bit for the divide algorithm
and single-bit-up-shifts.

The processor is capable of performing BCD arithmetic on
packed BCD numbers. The ALU has separate carry logic for
BCD operations. This logic generates nibble carries (BCD digit
carry) from propagate and generate signals formed from the A
and B operands. In order to simplify the hardware while
maintaining throughput, the BCD add and subtract operations
are performed in two cycles. In the first cycle, ordinary binary
addition or subtraction is performed and BCD nibble carries
are generated. These are blocked from affecting the result at
this stage, but are saved in the status register to be used later
for BCD correction. In the second cycle all BCD numbers are
adjusted by examining the previously generated nibble carries.
Since all the necessary information is stored in the status
register, the processor can be interrupted after the first BCD
cycle.

117

Priority Encoder

The priority encoder is provided to support floating-point
arithmetic and some graphics primitives. The priority encoder
takes up to 32 bits as input and generates a 5-bit wide binary
code to indicate location of the most significant one in the
operand. Input to the priority encoder comes from the input
multiplexer, which masks all bits that the user does not want to
participate in the prioritization. The priority encoder supports 8,
16, 24 and 32-bit operations depending upon the byte width
specified. For each data type the priority encoder generates
the appropriate binary weighted code. For example, when a
byte width of two is specified, the output of the encoder is zero
when bit 15 is HIGH. However, if byte width of four is specified
(18 - 17 = 00), the output of encoder is 16 (decimal) if bit 15 is
HIGH and bits 31 - 16are LOW. Table 2 shows the output for
each data type. If none of the inputs are HIGH or the most
significant bit of the data type specified is HIGH then the
output is zero. The difference between these two cases is
indicated by the Z-flag of the status register which is HIGH
only if all inputs are zero.

Q-Register

The a-register holds dividend and quotient bits for division,
and multiplier and product bits for multiplication. During
division, the contents of the a-register are shifted left, a bit at
a time, with quotient bits inserted into bit o. During multiplica­
tion, the contents of the a-register are shifted right, two bits at
a time, with product bits inserted into the most-significant two
bits (according to the selected byte width). The a-register may
be loaded from the A or B inputs and read onto the Y bus.

Master-Slave Comparator

All ALU outputs (except MS-Error) employ tri-state buffers.
The master-slave comparator compares the input and output
of each buffer. Any difference causes the MS-Error signal to
be made true. In SLAVE mode, all output buffers are disabled.
Outputs from a second ALU may then be connected to the
equivalent pins of the first. The comparator in the slave will
then detect any difference in the results generated by the two.
When the Y bus is tri-stated by making Output-Enable false,
the Y bus master-slave comparators are disabled.

Parity Logic

For each byte of the DA and DB inputs there is an associated
parity bit (8 in all). If a parity error is detected on any byte, the
PARITY-ERROR signal is made true. Four parity signals (one
per byte) are also generated for the Y bus outputs. EVEN
parity is employed for the Am29332.

Status Register

All necessary information about operations performed in the
ALU is stored in the 32-bit wide status register after every
microcycle. Since the register can be saved, an interrupt can
occur after any cycle. The status register can be loaded from
either the A or B input of the chip and can be read out on the Y
bus for saving in an external register file. For loading, the byte
width indicates how many bytes are to be updated. The status
register is only updated if the HOLD input is inactive.

Each byte of the status register holds different types of
information (see Figure 3). The least significant byte (bits 0 to
7) holds six pOSition bits for the data shifter. The two most
significant bits are not used. The next most significant byte
(bits 8 to 15) holds the 5-bit width field for the mask generator.
The three most-significant bits of that byte (bits 13 to 15) are
read-only bits that represent three different conditions ex­
tracted from the other bits of the status register. They are
C + Z, N Ell V, and (N Ell V) + Z for bits 13, 14 and 15

118

respectively. These bits can be read on the Yo pin by the
extract-status instruction. The next byte contains all the
necessary information generated by an ALU operation. The
least-significant four bits (bits 16 to 19) hold carry, negative,
overflow and zero flags. Bit 20 holds link information for single
bit shifts and bits 21 and 22 are used by the multiply and divide
instructions. The M flag holds the multiplier bit for the modified
Booth algorithm or it holds the sign comparison result for the
divide algorithm. The S flag holds the sign of the partial
remainder for unsigned division. Both the flags (M and S) are
provided as a part of the status register so that multiply and
divide instructions can be interrupted at microinstruction
boundaries. The most significant byte of the status register
holds nibble carries for BCD arithmetic. Since BCD arithmetic
is performed in two cycles, the nibble carries are saved in the
first cycle and used in the second cycle. Since all the
information is stored, BCD instructions are also interruptible at
the microinstruction boundary.

TABLE 2.

Highest Priority Encoder
Active Bit Output

Byte Width = 00 (32-bit)
None 0
31 0
30 1
29 2
28 3

1 30
0 31

Byte Width = 01 (8-bit)
None 0
7 0
6 1
5 2

1 6
0 7

Byte Width = 10 (16-bit)
None 0
15 0
14 1
13 2
12 3

1 14
0 15

Byte Width = 11 (24-bit)
None 0
23 0
22 1
21 2
20 3

1 22
0 23

StatusO_7: Position Register Status16: Carry
Status17: Negative

PR7 PR6 PR5 PR4 PR3 PR2 PRl PRo Status18: Overflow
Status19: Zero

7 6 5 4 2 Status20: Link
Status21: Multiply (and divide) Bit

Status8-12: Width Register
Status22: Sign Flag
Status23: 0

Status13: C+Z

J Status14: NEBV Read Only
S M Z V N C Status15: (N EB V) + Z

23 22 21 20 19 18 17 16

l SIGNED _I SIGNED J UNSIGNED J WR WR31 WR2 WRl 1 WRo 1 Status24-31 : Nibble Carries LE LT LE 4

15 14 13 12 11 10 8 NC7 I NC6 NC5 NC4 NC3 NC2 NCl NCo

31 30 29 28 27 26 25 24

Figure 1. ALU Status Register Bit Assignment

Am29332 INSTRUCTION SET

Data Types

The Am29332 supports the following data types:

1. Integer
2. Binary coded decimal
3. Variable-length bit field

The first two data types fall into the category of by1e boundary
aligned operands (Figure 2). The size of the operand could be
1 byte, 2 bytes, 3 bytes or 4 by1es. All operands are least
significant bit (bit 0) aligned. The byte width is determined by
bits 18 and 17 of the instruction as shown in Table 3.

TABLE 3.

Width in
18 17 Bytes

0 0 4

0

0 2

3

The third data type has operands of variable width (1 to 32
bits) as shown in Figure 2. The operand is specified by width
inputs (W4 - Wo) and position inputs (P5 - Po). The position
inputs indicate the least significant bit position of the operand.
Depending on bits 18 and 17 of the instruction, the width and
position inputs can be selected from either the Status Register
or the Width and Position Pins as shown in Table 4. A
summary of the data types available is illustrated in Table 5.

TABLE 4.

Position Width

18 17 Pins Reg Pins Reg

0 0 X X

0 X X

0 X X

X X

119

I. Byte Boundary Aligned Operands

31 23 15

1 BYTE

2 BYTES

3 BYTES

I I 4 BYTES

TB000096

II. Variable-Length Bit Field

31 P + W-l P P·l -W-l

TB000097

P = Bit displacement of the least significant field with re­
spect to bit o.

W = Width of field in bits.

Figure 2.

TABLE 5.

Data Type Size Range

Integer Signed Unsigned
1 byte 8 bits -128 to + 127 o to 255
2 bytes 16 bits _215 to +215 _1 o to 216 _1
3 bytes 24 bits _223 to 223_1 o to 224_1
4 bytes 32 bits _231 to 231 -1 o to 232 _1
BCD 1 to 4 bytes Numeric, 2 digits per byte.

(8 digits) Most-significant digit may be
used for sign.

Variable 1 to 32 bits Dependent on pOSition and
width inputs.

INSTRUCTION FORMAT
The Am29332 has two types of Instruction Formats:

1. Byte Boundary Aligned Instructions

BYTE WIDTH OPCOOE

'0

T8000098

2. Variable-Length Field Bit Instructions

P/PR I W/WR OPCOOE

10 6 5

WIDTH POSmON

T8000099

For instructions which allow a field to be shifted up or down,
P5 - Po is a two's complement number in the range -32 to
+ 31 representing the direction and magnitude of the shift. For
instructions which assume a fixed field position, P 4 - Po
represent the position of the least-significant bit of the field
and P5 is ignored.

Instruction Classification
ALU instructions can be classified as follows:

A. Byte Boundary Aligned Operand Instructions:

1. Arithmetic
- Binary, BCD
- Multiply steps
- Division steps (Single and multiple precision)

2. Prioritize

3. Logical

4. Single-bit shifts

5. Data movement

B. Variable-Length Bit Field Operand Instructions:

1. N-bit shifts and rotates

2. Bit manipulations

3. Field logical operations (aligned, non-aligned, extract)

4. Mask generation

Three-fourths of the ALU instructions apply to operands that
are byte boundary aligned. For these instructions, two orthog­
onal issues are the width of the operand (in bytes) and the
contents of the high order unselected bytes on the Y bus. As
mentioned earlier, the width of the operand is specified by 18
and 17. With the exception of a few instructions, the unselected
bytes are assigned values as follows: for single operand
instructions, unselected bytes are passed unchanged from the
source (A or B). For two operand instructions, unselected
bytes are passed unchanged from the destination (B input).

In the last quarter of the instruction set, the width of the
operand is from 1 to 32 bits (based on the width input) for field
operations, 32 bits for N-bit shift operations and 1-bit for bit­
oriented operations. In the case of field-aligned and single-bit
operands, the position bits (P 4 - PO) determine the least
significant bit of the operand. In the case of N-bit shifts and

120

field non-aligned operands, the position bits P5 - Po is a 6-bit
signed integer determining the magnitude and direction of the
shift.

The operation of each instruction can be explained by the use
of a collection of handy functions. The most common of these
describes a fundamental property of the ALU:

Merge (X, Y, Mask)

Here the selected bits (determined by the Mask) pass X while
the unselected bits pass Y.

Most single byte boundary aligned operand instructions of the
ALU can be explained by:

Y Merge (f(operand), operand, byte mask)

where byte mask itself is a function of byte width and can be
denoted by bytemask = mask (byte width). The function
bytemask returns a mask consisting of ones in the least
significant bytes (selected by byte width) and zeros in the
remaining bytes. In the above operation, the result of the
function is returned in the least significant bytes selected by
the mask and the operand in the high order unselected bytes.

Similarly two-operand instructions can be explained by:

Y Merge (f(A, B), B, bytemask)

The only difference is that here the operation is done on two
operands and that the unselected high order bytes always
pass the B operand.

The shift operation on byte boundary aligned can be explained
by:

Up/Down Shift (operand, fill-bit, byte-width)

where byte-width determines the number of bytes to be shifted
and fill-bit is the bit shifted in.

The variable bit field operations can also be explained in the
same manner:

Y Merge (f(A, B), B, bitmask (position, width))

The mask in this case is a bitmask and is a function of position
and width. Position determines the position of the least
significant bit of the selected field, and width determines the
number of higher order bits selected. Mask bits are HIGH for
selected bits in the word and LOW for the remaining bits. The
function is done on only the selected bits; a pass of the source
operand on unselected bits for single operand instructions and
operand B for two operand instructions is performed.

Flags

Byte-Aligned Instructions:
The zero flag always looks only at the selected bytes:

Z (Y and bytemask (byte width) = 0)

Similarly, N sign bit (Y, byte width), where the function
"sign-bit" returns bit 7, 15, 23, or 31 of the first argument for
byte widths 01, 10, 11, or 00 respectively.

Also, C carry (byte width) returns the carry from the
appropriate byte boundary, and:

V overflow (byte width)

returns the overflow from the appropriate byte boundary.

The link (L) flag is generally loaded with the bit moved out of
the highest selected byte in the case of upshifts, or the bit
moved out of the least significant byte for downshifts. Other
status flags have specialized uses, explained in the following
sections.

Variable-Length Field Instruction: the outputs of the corresponding bits in the status register. If
the direct status output is selected, then for instructions that

Generally, only Nand Z are affected. N takes the most- do not affect a particular flag (e.g., carry for logical arithmetic)
significant bit of the 32-bit result (i.e., N +- Y31). Z detects that output will reflect the state of its corresponding bit in the
zeros in the selected field of the result (i.e., Z +- (Y and status register. Similarly, when the HOLD signal is made
bitmask (position, width) = 0). HIGH, the C, Z, N, V and L pins will be made equal to the

Output Select
contents of the status register, regardless of the RS input.

The Register Status pin may be used to switch the C, Z, N, V,
and L output pins between the direct output of the ALU and

INSTRUCTION SET SUMMARY

Operand Size: Variable Byte Width: 1, 2, 3, 4 Bytes

Type Operation Data Type

• Increment by one, two, four
• Decrement by one, two, four
• Add, addc (carry = macro/micro) Binary Integer
• Sub, subr and BCD

Arithmetic • Subc, subrc (carry/borrow)
• BCD sum and difference correct steps

• Negate (two's complement)
{ (Signed and unsigned) • Multiply steps (modified Booth) Binary Integer

• Divide steps (non-restoring)

Prioritize • Prioritize Binary

Logical o Not, OR, AND, XOR, XNOR, zero, sign Binary

Single-Bit • Upshift with 0, 1, link fill { (Single and double precision) Binary
Shifts • Downshift with 0, 1, link, sign fill

• Zero extend

Data • Sign extend
• Pass-status, Q-Reg Binary

Movement
• Load-status, Q-Reg
• Merge

Operand Size: 32 Bits

Type Operation Data Type

N-Bit Shifts • Upshift by 0 to 31 bits with 0 fill

N-Bit Rotates • Downshift by 1 to 32 bits with 0, sign fill Binary
• Rotate by 0 to 31 bits

Operand Size: Single Bit

Type Operation Data Type

Bit • Extract
• Set Binary

Manipulation
• Reset

Operand Size: Variable Length Bitfield: 1 to 32 Bits

Type Operation Data Type

Field Logical
(aligned and • Not, OR, XOR, AND, extract, insert Binary
non-aligned)

Mask • Pass-mask Binary

121

Am29334
Four-Port, Dual-Access Register File

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

• Fast
With an access time of 20ns, the Am29334 sup-
ports 80-90ns microcycle time when used with the
Am29300 Family for 32-bit systems.

• 64 x 18 Bits Wide Register File
The Am29334 is a high-performance, high-speed,
dual-access RAM with two READ ports and two
WRITE ports.

• Cascadable
The Am29334 is cascadable to support either wider
word widths, deeper register files, or both.

• Simplified Timing Control
Control for write enable timing and for on-chip
read/write multiplexer are derived from a single­
phase clock input.

• Byte Parity Storage
Width of 18 bits facilitates byte parity storage for
each port and provides consistency with the
Am29332 32-bit ALU.

• Byte Write Capability
Individual byte-write enables allows byte or full word
write.

GENERAL DESCRIPTION

The Am29334 is a 64-word deep and 18-bit wide dual­
access register file designed to support other members of
the Am29300 Family by providing high-speed storage. It
has two write and two read ports for data and four 6-bit
address ports. Two address ports are associated with each
pair of read and write data ports, one to read data and the
other to write. The device is capable of performing two
reads and two writes in one cycle. The 18-bit wide register

file allows storage of byte parity to support parity check and
generate in the Am29332 32-bit ALU. Independent control
for each read and write data port allows the Am29334 to be
used as a high-speed shared memory or as a mailbox for a
multiprocessor system. The device is designed with an
access time of 20ns. It is housed in a 120 lead-pin-grid­
array package.

BLOCK DIAGRAM

18

WEAL

WEAH

WEAC DUAL ACCESS
RAM

64 x 18

AwA

ARA

lEA L.:>-------~

This document contaln~ mformatlon on a product under development at Advanced Micro Devices, Inc. The information is intended to
help you to ovaluato Ihls product. AMD rosorves the right to change or discontinue work on this proposed product without notice.

123

WEBl

WEBH

WEBC

AWB

ARB

lEB

OEB

8D003022

Order#05731B

ARA,0-5

ARB,0-5

YA,O-17

YB,O-17

AWA,O-5

AWB,O-5

DA,0-17

DB,0-17

LEA

LEB

RELATED PRODUCTS

Part No. Description

Am29323 32 x 32 Parallel Multiplier

Am29325 32-Bit Floating Point Processor

Am29331 16-Bit Microprogram Sequencer

Am29331
16-81T

SEQUENCER

MICROPROGRAM
MEMORY

PIPELINE
REGISTER

~
CONTROL
SIGNALS

Am29332 32-Bit Extended Function ALU

1
Am29325

32-81T
FLOATING POINT

PROCESSOR

I

/

Am29334
REGISTER

FILE
64 x 18

1
i

1
Am29332

32-BIT
ALU

1
Am29323
32 x 32

PARALLEL
MULTIPLIER

1
AF003480

Figure 1. Am29300 Family High Performance System Block Diagram

PIN DESCRIPTION

Input
Read address for Y A

Input
Output enable for Y A

Input
Read address for YB

Input
Output enable for YB

Three-State Output
Data output A

WEAC Input
Common write enable A

Three-State Output Input
Data output B Low byte write enable A (bits 0 - 8)
Input
Write address for DA

Input
High byte write enable A (bits 9 - 17)

Input
Write address for DB

WEBC Input
Common write enable B

Input
Data input A

Input
Low byte write enable B (bits 0 - 8)

Input Input
Data input B High byte write enable B (bits 9 - 17)
Input
Latch enable A

Input
Latch enable B

14 power pins.

124

FUNCTIONAL DESCRIPTION

The part has two read ports (Y A 0 - 170 Y S 0 _ 17). two write
ports (OA,0-17. 0S,O-17). fo~r addre~ses (ARA,0-5.
AWA,O - 5. ARS,O - 5. Aws,O - 5). two latch enables (LEA. LEs).
two output enables (OEA. OEs). and six write enables WEAC.
WEAL. WEAH. WEsCo WESl. WESH) that allow writing of data
into one or both bytes of a word. The separate read and write
addresses facilitate creation of three and four-address archi­
tectures and allow address set-up and RAM access to
overlap.

Since the A and B sides are identical. only operation of the A
side is described. The address multiplexer provides the RAM
with the address ARA when WEAC = HIGH and with the
address AWA when WEAC = LOW. Internally the part is
designed so that there is no race condition between the write
address and the write enable. In most cases WEAC and LEA
will be connected to the clock as shown in Figure 2 so that
reading will take place in the first part of a clock cycle and
writing in the last part. The latch at the output of the RAM is
transparent when LEA = HIGH and retains the data when
LEA = LOW. The latch has a three-state output Y A controlled
by OEA. Each word is split into two bytes of nine bits that can
be individually written. The low byte covers bits 0 through 8
and the high byte covers bits 9 through 17. One or both bytes
of the data at 0A are written into the location given by AWA
when the common write enable (WEAc) and the appropriate
byte write enables (WEAL and WEAH) are active.

READ AND WRITE
ADDRESS SELECTION x

Two special cases arise. First, if a location is written into and
read at the same time. the value read is the value being
written. Second. if a location is written into from both the A
side and the B side. the value written is undefined. but the
operation is not harmful.

Extension To Four Read Ports and Two Write
Ports

A RAM with four read ports and two write ports can be made
by using two dual access RAMs and connecting each of the
write ports. write addresses. and write enables in parallel for
the two devices. As an example. this RAM may provide data
storage for a data ALU and an address adder as shown in
Figure 3. A location should not be read before it has been
written into for the first time as the contents of the two dual
access RAMs are likely to be different upon power-up.

32 Words x 36 Bits Single Access Ram

It is possible to convert the 64 words x 18 bits dual access
RAM into a 32 word x 36 bit single access RAM by storing the
upper half of the 36 bits in the upper half of the 64 words and
address these from the A side and storing the lower half of the
36 bits in the lower half of the 64 words and address these
from the B side. This arrangement. which is shown in Figure 4.
does not change the capacity of the RAM. but the dual access
is lost.

\--------f
READ DATA

______ ~----~)(~--------------------Y-A--------------------_+----~
WRITE DATA

______ ~--------------------------J;>C~-----------D-A--------4_-'
WF009520

Figure 2. Read through Y A and Write through DA in a Single Cycle (Two Bytes)

125

I -------------- I
I I
I I DA DB DA DB

I I
I DUAL DUAL I ACCESS ACCESS

I RAM RAM I
I VA VA VB I
L ------ =--.J

AF003490

Figure 3. RAM with 4 Read Ports and 2 Write Ports

°18-°35 °0-°17

DA De

WEA,C WEe,C

WEA,L WEe,L

WEA,H WEe,H

AW _S-l-.... _-f AWA,O-4 A We ,O-4

AWA,5 AWe,5 LOW

ARA,O-4 A Re ,O-4

A RA,5 ARe,5 LOW

LE - -~ LEA LEe

OE - -~ OEA OEe

VA Ve

LS001790

Figure 4. 32 x 36 RAM (Single Access) Using 64 x 18 Dual Access RAM

126

Order #06584A

ADVANCED
MICRO

DEVICES, INC.
901 Thompson Place

P.O. Box 3453
Sunnyvale,

California 94088
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306

TOLL FREE
(800) 538-8450

Pri nted in U.S .A. CBM-MU-35M-4/85-0

