
en -. (,Q
~
GI -
."
o n
~
en
en -.
~

(,Q

Array Processing
and
Digital Signal

. Processing

ADM£~

GeNERATOR,.. I

"'mOlq" ...

ADD~SS

GENERATORIOI ~
A...,;Jq~40

~
Advanced Micro Devices

Array Processing and
Digital Signal Processing

Handbook

The International Standard of
Quality guarantees a 0.05% AQL on all

electrical parameters, AC and DC,

=;;.~.

© 1986 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The performance
characteristics listed in this data book are guaranteed by specific tests, correlated

testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.

The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Table of Contents

1. INTRODUCTION

2. NUMBER SYSTEMS

2.1 Fixed Point Numbers
2.1.1 Fixed Point Operations

2.2 Floating Point Numbers
2.2.1 When to use Floating Point
2.2.2 Floating Point Formats

3. ARRAY PROCESSING ALGORITHMS

3.1 Digital Filters in the Time Domain
3.2 Filtering in the Frequency Domain­

the Fourier Transform
3.2.1 Algor~hm for Decimation in Time
3.2.2 Algor~hm for Decimation in Frequency
3.2.3 Comparison of FFT and DFT ...
3.2.4 Inverse Fourier Transform
3.2.5 Radix 4 FFT
3.2.6 Real-Valued Input Fourier Transforms

3.3 Magnitude Calculations

4. SYSTEM DESIGN

4.1 Array Processor Design based on Am29500 Family
4.1.1 Arithmetic ...
4.1.2 Memory
4.1.3 Addressing
4.1.4 Control
4.1.5 Input/Output
4.1.6 Timing Considerations ...
4.1.7 Microcode ...

4.2 Digital Filter using Multiply-Accumulator

5. ARTICLES

Record Signal-Processing Rates Spring from
Chip Refinements, Electronics.

One-Chip Sequencer Shapes up Addressing for
Large FFT's, Electronic Design.

500-kHz Single-Board FFT System Incorporates
DSP-OptimizedChips, EDN.

Trim DSP Overhead by Changing your
Sampling Rate, Integrated Circuits. . ..

DSP Building Blocks Allow Resource Optimization. This manuscript
was originally prepared for and presented at WESCON/83.

A New Approach to Floating Point DSP, 19841EEE Press.
Digital Filter Design Made Easier For First-Time Users,

Computer Design

3

3
4
7
8
8

9

9

14
14
15
18
18
18
20
22

25

25
26
30
31
34
35
38
38
74

79

79

83

91

99

109
115

121

6. PRODUCT SPECIFICATIONS

Am29501A
Am29509
Am2951 0/L51 0
Am29C516 Family .. .
Am29C517 Family .. .
Am29520/521
Am29524/525
Am29526/27/28/29
Am29540
Am29323
Am29325
Am29331
Am29332
Am29334
Am2910A
Am29C10A
Am29112
Am29C116
Am29PL141

7. APPENDIXES

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7

129
130
131
132
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

1-1
2-1
3-1
4-1
5-1
6-1
7-1

CHAPTER 1
INTRODUCTION

What Is an Array Processor?

In recent years, Array Processing has become an
increasingly significant aspect of computing. What
once was a mysterious art, is now becoming
common practice. Array processing is a form of
computing that uses specialized hardware for
special results-the array processor. This machine
is characterized by its ability to handle many
arithmetic computations at high speed. In other
words, it is a "number cruncher." However, the
specialization goes beyond a powerful hardware
arithmetic unit. The machine invariably performs
best when the data it is processing is structured in
an array, such as a matrix or vector. Hence the
name, Array Processor.

How Do Array Processors and General­
Purpose Computers Differ?

Array processors and general purpose computers
differ in a number of important aspects. The
general purpose computer is usually of the
classical Von Neumann architecture that was
implemented by Mauchley and Eckert in the
ENIAC machine, which became the first electronic
Stored Program General Purpose Digital
Computer. This machine had a memory area that
allowed instructions and data to be intermixed.
Conversely, array processors have separate
memories for instructions and data (Harvard
architecture). There may in fact be separate data
memories for coefficients and variable data. The
machines tend to be highly parallel, to allow for
simultaneous multiplying and adding in the
arithmetic section, while also performing address
calculations for retrieving and storing the required
data values.

What Is the Usual Architecture of
Array Processors?

While there is no one standard architecture for all
array processors, there are a number of
characteristics that make the machine recognizable
as an array processor. In addition to the above
mentioned feature of separate data and instruction
memories, pipe lining is a common architectural
attribute. This technique consists of placing
intermediate registers in the data path, breaking up
long combinatorial delay paths into shorter paths
terminating in registers. The rate at which these
registers can be clocked determines how fast the
system runs. The register clock rate is obviously
dependent upon the delay time of the operation

preceding it. Pipelined systems have 'latency',
which is the number of clock cycles that passes
before the first valid result appears, but this value
will generally be low compared to the large number
of calculations performed.

Array processors also have dedicated hardware
multipliers as part of their powerful arithmetic
sections. Hardware floating point arithmetic may
also be available, whereas some machines may
have shifters to accomodate block floating point,
and others may be dedicated to integer operation
only. The basic operations that consume most of
the processing time in matrix operations are
multiplication and addition, as well as accessing the
actual data values. Thus the architecture tends to
be optimized for these operations.

Microprogrammed architectures tend to be popular
in array processing machines. This is the familiar
AMD 2900 family "bit-slice" structure that allows a
machine to be constructed from "building blocks"
of ALU, sequencer, memory access and other
required functions, without any predetermined
instruction set or architectural constraints that
might be imposed by fixed-instruction devices.
Microprogramming is the technique of giving a
machine its instruction set by means of
microinstructions stored in a high speed memory
and accessed by a special sequencer. These
microinstructions operate at the primitive level of
register, bus, and ALU function control. Since the
control store is a memory, machine behavior may
be modified by changing one or more of the
microinstruction bits or words. The technique
leads to an extremely flexible, often very high
speed, implementation.

Where Are Array Processors Used?

If array processors are indeed so powerful, then
one might reasonably ask why they don't replace
general purpose machines. While array processors
do an excellent job of handling their specialized
type of problem, they are rather clumsy when
confronted with problems that require a lot of
branching within the program, which is where the
general purpose computer performs so well. So
rather than replacing the general purpose
computer with an array processor, the tendency is
to create an enhanced machine by using an array
processor as a peripheral, as an 'accelerator' to the
arithmetic-intensive portions of problems.

Array processors have traditionally been
implemented in peripheral fashion and as
specialized Super Computers that had array
processing type architectures. This latter class of
machine tended to be extremely expensive, but
very powerful. The peripheral array processor was

such a desirable approach that a number of
companies make their entire livelihood from
offering such devices. These peripheral array
processors, or accelerators, generally attach to the
bus or 1/0 structure of a scientific minicomputer.
Now a tendency is evolving to offer array
processors as options on engineering work
stations, or even as option boards for personal
computers.

Various types of problems lend themselves to
array processing solutions, and so they are
considered here. We wish to distinguish array
processing by the type of hardware solution
required, rather than the end application. Thus,
robotics controllers, radar and sonar processors,
flight simulators, graphics terminals, commun­
ications processors, medical analyzers, intelligent
vision systems, and speech recognizers are all of
interest here. If the problem is solved using
multiply-and-add intensive algorithms, and the data
and coefficients are structured in arrays, then we
have an array processing application.

Digital Signal Processing

Digital signal processing is treated here as a subset
of array processing because of the similarities that
exist in the hardware and algorithms. The DSP
engine tends to be more specific in its design and

2

is generally imbedded in other hardware. DSP also
tends to start out with a "live" analog signal, which
is AID converted, processed, and mayor may not
be converted back to analog. One could put an
AID converter in front of an array processor board
and solve DSP problems.

What Is in this Book

We have attempted to collect in this book
background and applications material that will
motivate and guide the independent study of
Array Processing. This book does not attempt to
be a comprehensive text on the subject, but tends
to emphasize the practical aspects of building array
processor boards, implementing FFT's and FIR/IiR
filters, selecting appropriate hardware, and writing
microcode.

Finally, note that the devices whose data sheet
summaries are included here are not only suitable
for array processing applications. For example, for
a fast eight-bit ALU with multiple 1/0 ports, the
Am29501 is ideal. The part certainly won't be
aware of what type of problem it is solving, so this
should not limit the innovative spirit of the design
engineer. For more information on the devices and
systems described herein, contact your local AMD
sales office, or AMD Headquarter Applications
Department (408) 982-6266.

CHAPTER 2
NUMBER SYSTEMS

2.1 Fixed Point Numbers

A binary number is an ordered set of binary digits
(bits), each of which has a val~e 0 or 1. Each bit, bi,
is assigned a binary weight, 21, and the value of the
number is the sum of the weighted digits.

The simplest form of binary number is the
unsigned integer. In an N-bit unsigned integer the
index, i, ranges from 0 to N-1. The value is given
by:

N-1

Vinteger = L. bi * 2i

i=O

The range of V is from 0 to 2N_1. This type of
number has two obvious limitations; it cannot
represent quantities which are negative or
fractional. There are many ways to represent
negative numbers. The simplest method is to use
an unsigned number to represent the magnitude,
and a flag to indicate the sign. Not suprisingly this
scheme is known as signed-magnitude. In an N-bit
representation, the most significant bit, bN-1' is
taken for the flag, wtth a 0 signifying positive, and a
1 negative. This leaves N-1 bits for the magnitude,
giving a range from -2(N-11+1 to +2(N-11-1. The
value is given by:

N-2

Vsign magnitude = (-1)bN_1 * L. bi * 2i

j=O

An idiosyncrasy of signed-magnttude numbers is
that there are two representations for zero,
positive and negative. A similar scheme, which
shares this characteristic, is one's complement. In
one's complement, negative numbers are
represented by inverting all bits of an unsigned
number representing the magnitude. In order to
distinguish positive and negative numbers, the
magnitude range is restricted such that it can be
expressed in N-1 bits. Thus the most significant bit
is 0 for a positive number, and 1 for a negative
number. One's complement numbers differ from
signed-magnitude numbers only in that the
magnitude bits are inverted in negative numbers.

Obviously, the range of numbers represented by a

3

one's complement number must be the same as
for signed-magnitude numbers. The value of a
one's complement word may most easily be
determined by treating it as an unsigned word,
after having inverted all bits if the most significant
bit is 1, in which case the value is negative.
Alternatively, the value of the magnitude bits may
be calculated, and if the most significant bit is 1,
2(N-11-1 subtracted from this value.

N-2

V1's complement = -bN-1 * 2N-1 -1 + L. bj * 2i

i=O

A simple technique by which negative numbers
may be represented without double
representation of zero, is to add to the desired
value the magnitude of the most negative
representable number. This gives a positive
number which may be represented in the
unsigned format. The value of the number may be
obtained by simply reversing this process. This
scheme is known as offset binary, or excess-M,
where M is the number added. The number Mis
often, but not always a power of two.

N-1

Vexcess M = -M + L. bj * 2i

i=O

The special case, where M = 2(N-11, has the
property that all negative numbers have a most
significant bit which is 0, while zero and all postive
numbers have a 1. Inverting this most significant bit
leads to a scheme known as two's complement,
which may be interpreted in several ways. The
most significant bit is often treated as a sign flag, as
it is in signed- magnitude. If the sign bit is 1, the
number is negative and the following serial
process is applied to convert it to an unsigned
number representing its magnitude. Starting at the
least significant bit, the bits are inspected in turn
until the first 1 is encountered. This and all lesser
significant bits are left unchanged. All more
Significant bits are inverted. This process operates
in both directions, converting a negative number
to a positive number of the same magnitude, and
vice versa. It may be viewed as inverting the
number (one's complement) and incrementing, or
as subtracting the number from 2(N-1 1.

N-1

V2's complement = - (bN-1 * 2N-1 - L. bj * 2i)
i=O

N-2

= - bN-1 * 2N-1 + L bi' 2i

i=O

Inspection of this formula shows that the
magnitude of the sign bit's weighting is consistent
with its position if the number were unsigned, but
that the weighting is negative. This is an important
conclusion, and leads to the most useful
interpretation of two's complement numbers; they
are identical to unsigned numbers except the most
significant bit is weighted negatively. The range of
values which can be represented by an N-bit two's
complement number is _2(N-1) to +2(N-1)-1.

Any of the above schemes may also be used to
represent fractional numbers. This is achieved
simply by adopting a convention that the weighting
of the least significant bit is 2{-P) rather than 20,
and adjusting the other weights accordingly.
Conceptually, this locates the binary point P bits
from the least significant end. Because such a
convention must be chosen in advance, and
adhered,to for all numbers, this is known as a fixed
point number scheme. Other schemes, where the
number contains a parameter locating the binary
point, are known as floating point.

2.1.1 Fixed Point Operations

Three basic operators are described here:
addition, subtraction and multiplication. Only
unsigned and two's complement formats are
described in detail. They are the two formats most
commonly used in fixed point operation. Signed­
magnitude and offset binary are commonly used in
floating point (see below), and are usually treated
in fixed point by converting them to unsigned or
two's complement, performing the operation and
reconverting. One's complement is not in general
usage.

Addition of unsigned numbers is most easily
performed by an iterative process known as ripple
carry. The iterative block is shown in Figure 2-1.1.
This has three inputs, which are equally weighted.
Two of these are for operand bits, Ai and Bi' and
the third is a carry input, Ci-1' The two outputs may
be considered as a 2-bit word, representing the
number of 1's present at the inputs. The unit
weighted bit is the sum output, Si, and the bit with
weight two is the carry output, Ci. In cascade, the
carry output of one cell becomes the carry input to
the next more significant cell, maintaining the
equal weighting in that cell, Figure 2-1.2.

Figure 2-1.1

"0"

Figure 2-1.2

4

The carry input to the least significant cell, C_1' is
assumed to be o. For the complete multi-bit adder,
for each pair of input btts Ai and Bi, there is one
output bit, Sj. This new number is the sum. The
characteristic that each carry out must be
generated in turn before higher bits can be
determined leads to the name "ripple carry."

It is also possible to generate the carry jnputs to
each cell without waiting for the ripple. Each cell is
capable of creating a carry into the next cell in two
ways; it can generate a carry if both Aj and Bj are 1s
or tt can propagate a carry if etther Aj or Bj is a 1 and
the carry input Ci-1 is a 1. This is called "Iookahead
carry" and can be expressed by the equation:

Cj-1 can be expanded so that the equation for a
carry lookahead of two cells is:

This expansion can continue until the carry is
expressed entirely in terms of the inputs and each
cell can produce its output without waiting for
outputfrom any other cell.

As noted above, the range of an N-bit number is
limited, and it is possible to overflow this range
when adding two numbers. This may be overcome
by making the adder one bit longer, thus doubling
the range of the output. In order to provide the
additional inputs, the operands are zero­
extended. Inspection of the above formulae will
show that the value of the unsigned words are not
affected by leading D's. Zero-extension is also
used when adding numbers of dissimilar length.
This is performed in an adder long enough to
handle the larger input, the other being zero­
extended. When the operand inputs to a cell are
both 0, as in extension to prevent overflow, the
sum output is equal to the carry input, and the carry
output is identically o. This fact may be exploited to
save hardware, the carry line being used directly as
the extra sum.

As the magnitude bits of a two's complement
number are weighted the same as in an unsigned
number, the same adder scheme may be used. In
the most significant cell, the bits all have the same
magnitude weighting, but while the carry remains
positive, the operand inputs become negative.
The cell is required to output a 2-bit two's
complement number, that again represents the
number of 1 's present at the input, but taking into
account their sign.

5

As in the unsigned case, the carry would represent
the sign-bit of a one bit longer word, which allows
for overflow. Appropriately, the sum bit of this cell
would be positively weighted as a magnitude-bit of
the new word.

Adding two's complement numbers of dissimilar
length raises a question. The value of a two's
complement number is not affected by adding
leading D's if the existing weights. remain
unchanged. However, this gives a number with a
negatively weighted bit other than in the most
significant position, which does not agree with the
definition. This problem is overcome by using sign­
extension, rather than zero-extension.

In sign-extension, additional bits are added which
match the sign-bit. It must be stressed, however,
that these are not extra sign-bits. A two's
complement word can, by definition, only have
one sign-bit; the negatively weighted most
significant bit. When a new sign-bit is added, the
old sign-bit reverts to a magnitude bit. If the
number is positive, both old and new sign bits are
0, and the value cannot be changed by altering the
weighting of D's.

If the number is negative, the reversion of the old
sign-bit to a magnitude bit changes the value
positively by twice its weight (from _2N-1 to 2N- 1).
This exactly cancels the contribution to the value
from the new, more significant sign-bit, thus
leaving the value unchanged. This proceedure
may be repeated, making the number as long as
necessary.

This process is reversible. If the most significant
magnitude bit matches the sign-bit, then the
number may be reduced in length by eliminating
the sign-bit, the new most significant bit becoming
the sign-bit. This fact is exploited to simplify the
logic in the adder. If it is known that the sum cannot
overflow into the N+ 1th bit, the sum output of the
sign-bit adder cell can be taken as the sign-bit of
the N-bit word. This is logically equivalent to the
sum output of an unsigned adder cell, which may
be used in place of the special cell. The carries,
however, are not equivalent. If overflow is
possible, it may be protected against by sign­
extending both inputs one bit, and using an
additional adder cell to give the N+ 1-bit output.

Two's complement subtraction is often described
by modifying the adder, and re-interpreting the
carry to become a borrow-not (analogous to
decimal subtraction). This is confuSing. A more
straightforward explanation is that the number to
be subtracted has its sign changed by being two's
complemented, and the result added to the other

operand, uSing the adder as an adder. As
described above, two's complementing a number
involves one's complementing it and then
incrementing it. The one's complement can be
performed with inverters, and the incrementation
effected by entering an extra 1 in the unused least
significant carry input, Figure 2-1.3. If exclusive
ORs are used in place of inverters to allow
controlled inversion, and the least significant carry
also controlled, an adder/subtractor is obtained ..

Unsigned subtraction does not really exist. The
unsigned operands are converted to two's
complement by adding 0 (positive) sign-bits.
These qre subtracted as above, giving a signed
result. If this is positive, the 0 sign-bit can be
dropped, reverting to an unsigned format. If it is
known in advance that this is case, then it is not
necessary to calculate the redundant sign-bit. This
is what is sometimes referred to as an unsigned
subtractor.

When adding two unsigned numbers with the
result expressed in the same number of bits as the
inputs, overflow is signified by a carry out of the
most significant bit. In unsigned subtraction, a
negative result is signalled by the absence of a
carry out. In all two's complement operations,
overflow is signalled by the carry out of the sign-bit
being different from the carry into it. This may be
detected with an exclusive OR (XOR).

Unsigned multiplication consists of addition of the
partial products formed by weighting the
multiplicand by each bit of the multiplier.
Weighting by a multiplier bit which is 0 results in a
partial product that is zero and weighting by a bit
which is a 1 is a left shift of the multiplicand by a
numbefof places equal to the bit position of the
multiplier bit. A simple algorithm to perform
multiplication is a shift and add procedure in which
the multiplicand is shifted one bit position at a time
and added to the product based on the
corresponding multiplier bit and using the rules for
adding operands of unequal lengths as stated in

the discussion of addition above. Multiplication of
two's complement numbers is the same when the
rules for two's complement are applied, i.e., when
the partial products are sign-extended instead of
zero-extended for the shifted addition and the
partial product from the multiplier sign bit is
weighted by -bN-l *2N- 1 instead of +bN-l *2N- 1.

MuHiplication of unSigned fractions is identical to
multiplication of unSigned integers. Placement of
the binary point is a matter of interpretation and
does not require alteration of the algorithm,
However, multiplication of two's complement
fractions results in a product with different bit
weights than the operands as shown in Figure 2-
1.4. To obtain the same bit weights in the product
as the operands it is necessary to shift the product
left one position as shown in Figure 2-1.5. A
product which has the same format as the
operands is obtained when the less significant
product is truncated or causes rounding of the
more significant part. One problem with this shift is
the possibility of overflow when both multiplier and
muHiplicand are equal to -1.0. The product is +1.0
which cannot be represented in two's complement
fractional notation.

A common technique used to speed up
multiplication is the Booth algorithm which
examines consecutive bits of the multiplier.
Whenever the consecutive multiplier bits change
from a 1 to a 0, the multiplicand is added to the
product with the proper bit weighting. When the
bits change from a 0 to a 1, the multiplicand is
subtracted; no operation is necessary when the
bits are the same. This algorithm is based on the
identities 3 = 2+1 = 4-1, 7 = 4+2+1 = 8-1, etc.
which allow two operations (one addition and one
subtraction) to replace a potentially larger number
of operations (two additions, three additions, etc.).
The worst case is a multiplier with alternating 1 s
and Os for which there is the same number of
operations as the add and shift algorithm when the
multiplier is all1s, i.e., one operation per multiplier

"1"

Figure 2-1.3

6

bit. A modification to the algorithm examines pairs
of multiplier bits as shown in Figure 2-1.6 This
modification is usually done to modularize
hardware into a cell which can be repeated for each
pair of muHiplier bits.

2.2 What Is A Floating-Point Number?

The numbers one encounters everyday, such as
12, 34.56, 0.0789, etc., are known as fixed-point
numbers, because the decimal point is in a fixed
position. Such numbers are fairly closely matched
in magnitude and within about ten orders of
magnitude from unity. Examples of such numbers
are found in bank accounts, unit prices of store
items and paychecks.

In scientific notation applications, the numbers en­
countered can be very large. Avogadro's number
expressed in fixed-point notation is approximately

602,250,000,000,000,000,000,000.

A scientist may also use Planck's constant which
would be approximately

0.000000000000000000000000006626196

erg.sec. in fixed-point notation. These examples
demonstrate the undesirability of writing fixed­
point notation to represent numbers such as
Avogadro's number and Planck's constant.

When a scientist writes the value of Avogadro's
number, he writes 6.0225 x 1023. Similarly, he
would express Planck's constant as 6.626196 x
10-27 erg.sec.

The number 6.0225 x 1023 is thus observed to
consist of four parts:

Sign. The sign of the number (+ or -). The plus
sign is usually assumed when no sign is shown.

Mantissa. Sometimes also known as the fraction.
The mantissa describes the actual number. In the
example, the mantissa is 6.0225.

Exponent. Sometimes also known as the
characteristic. The exponent describes the order
of magnitude of the number. In the example, the
exponent is 23.

Base. Sometimes also known as the radix. The
base is the number base in which the exponent is
raised. In the example, the base is 10.

The parts of a floating-point number can then be
represented by the following equation:

where

F = Floating-point number
S = Sign of the Floating-point number, so that

S= 0 if the number is positive and S=1 if the
number is negative

M = Mantissa of the floating-point number
B = Base olthe floating-point number
E = Exponent of the floating-point number.

0 o 0 NOP
o 0 1 xl

o 1 0 xl

0 1 1 x2

1 o 0 -x2

1 o 1 -xl

1 1 0 -xl

1 1 1 NOP

Figure 2·1.6

Figure 2-1.5

Figure 2·1.4

7

2.2.1 When Should Floating Point Be Used?

Although floating-point numbers are useful when
numbers of very different magnitude are used,
they should not be used indiscriminately. There is
an inherent loss of accuracy and increased
execution time for floating-point computation on
most computers. Floating-point computation
suffers the greatest loss of accuracy when two
numbers of closely matched magnitude are
subtracted from each other, or two numbers of
opposite sign-but almost equal magnitude-are
added together. Therefore, the Associative Law in
arithmetic

A + (B + C) = (A + B) + C

does not always hold true if B is of opposite sign to
A and C and very similar in magnitude to either A or
C.

In most computers, hardware floating-point multiply
and divide takes approximately the same amount
of execution time as hardware fixed-point multiply
and divide, but hardware floating-point add and
subtract usually takes considerably more time than
hardware fixed-point add and subtract. If the
computer lacks floating-point hardware, all floating­
point computations will consume more CPU time
than fixed-point computations.

2.2.2 Floating-Point Formats

The following three number bases are commonly
used in floating-point number systems:

1. Binary-The base is 2.
2. Binary Code Decimal-The base is 10.
3. Hexadecimal-The base is 16.

8

The two types of exponents used in floating-point
number systems are the biased exponent and the
unbiased exponent. An unbiased exponent is a
two's complement number. An exponent said to
be biased by N (or excess N notation) means that
the coded exponent is formed by adding N to the
actual exponent in two's complement form. Any
overflow generated from the addition is ignored.
The result becomes an unsigned number. Most
common floating-point systems use a biased
exponent because it simplfies floating-point
hardware. During floating-point computation,
arithmetic operations such as add and subtract
need to be performed on the exponent of the
operands. If a biased exponent is used, the
arithmetic logic unit (ALU) needs only to perform
unsigned arithmetic. If an unbiased exponent is
used, the ALU must perform two's complement
arithmetic; and overflow conditions are more
difficult to detect.

Floating-point numbers must always be presented
to the computer in "normalized" form (Le., the most
significant digit of the mantissa is always non-zero,
except if the number is zero). For a binary floating­
point system, this means that the leading binary bit
of the mantissa is always 1 (except when the
number is zero). In some floating-point number
systems, this 1 bit is suppressed on input or
output to the floating-point processor. The saved
bit can be used for one more bit of preCision or one
more bit of exponent range.

The IEEE and DEC floating-point formats are
covered in significant detail in AMD's data sheet.

CHAPTER 3
ARRAY PROCESSING ALGORITHMS

3.1 DIGITAL FILTERS IN THE TIME DOMAIN

Digital filters are devices which accept a sequence
of digital data samples and produce a modified
sequence which is a linear combination of previous
inputs and outputs. The sequence is usually data
which has been obtained from a continous analog
waveform that has been digitized at uniform time
intervals. Uniform sampling is used since it
simplifies analysis of the system performance and
does not create any undesirable side effects or
limitations. The usual notation when dealing with
the digitized sequences is to associate each
sample with a polynomial term, e.g.,

(Xnl = ... a,b,c,d,e ... for n = -2, -1, 0, 1,2
= ... aL2 +bL1 +czo +dz1 + ez2 ...

This polynomial is the Z-transform of the original
sequence and can also be written:

X(z) = L. xn z-n

The relationship between the input and output of a
digital filter is:

Yn= L. xmhn-m

where {xml and {Ynl are the input and output
sequences and {hn-ml is the impulse response of
the filter. When {hn-ml has a finite number of non­
zero terms, the filter has a Finite Impulse
Response (FIR). Otherwise it is described as
having an Infinite Impulse Response (IIR).

If we delay an input sequence by one sample
period, the result is the same as the input
sequence multiplied by z-1. The combination of
previous inputs and outputs of a digital filter can
therefore be represented by:

Yn= L. akxn-k- L. bkYn-k

where the first sum is a linear combination of the
current and previous inputs of the sequence and
the second sum is a combination of the previous
outputs. A recursive filter of this type has an
infinite impulse response. When the coefficients
of the second sum are all zero, the filter becomes
non-recursive and the impulse response have a
finite number of terms (an FIR filter). A Z-transform
of each sequence in the digital fmer can be written:

9

EO. 1

Y(z) = L. Yn z-n

= L. [L. akxn-k- L. bkYn-k] z-n

Using the equality X(n-k) = z-kX(n) this can be
rewritten and rearranged as:

EO. 2

Y(z) = L. ak Lk X(z) - L. bk Lk Y(z)

The transfer function of the filter is therefore:

Y(z) L. a k z-k
H(z) = --=--'---

X(z) 1 + L. bk Z- k

When working with linear time-invariant systems,
filters can be cascaded (either serially or in parallel)
to obtain a desired transfer function as shown in
Figure 3-1.1. A second order filter has a transfer
function of the form:

aOzo+a1 L1 +a2z-2
H(z) =-------

=A----

This is a basic building block for digital fi~ers and is
called a biquadratic filter with a gain of A. By
cascading a number of these sections and
selecting the proper values for the coefficients, it is
possible to produce any frequency response with
the same structure, e.g., high-pass, low-pass,
band-pass or band-stop filter. Computer programs
are available to assist the filter designer in
choosing the proper coefficients for control of filter
skirts, ripple, etc. These programs also allow the
designer to select which parameter to compromise
when the desired performance is unrealisable.

Implementation of a digital filter is frequently a
hardware embodiment of the equations expressed
above. Adders and multipliers perform the
arithmetic on data that have been appropriately
delayed in registers. A filter section might use an
adder for each addition and a multiplier for each
multiplication or it might sequence data through a
single unit. Cascading of sections could also take
the form of multiple hardware sections or could be

a single section with programmable coefficients
that operates iteratively on the data. A block
diagram of a second order filter section is shown in
Figure 3-1.2. If the number of terms in the sums is
the same (as is shown in the figure), it is possible to
rearrange the blocks to reduce the number of
delay registers to a single set (sometimes called
the canonical form). This is done by factoring the
transfer function to separate the numerator and
denominator:

The numerator is implemented by the hardware
shown in Figure 3-1.3 and the denominator by that
in Figure 3-1.4. When the two halves are
cascaded, a single set of delay registers can be
used as shown in Figure 3-1.5.

Implementation of an FIR filter is a simple sum-of­
products as shown in the block diagram in Figure 3-
1.6 Since the number of terms in an FIR filter is
significantly larger than the number in an IIR filter
with equivalent performance, most implemen­
tations use algorithms that reduce the
computational requirements wherever possible by
taking advantage of symmetry or by decimating the

Figure 3-1.1

I---.... Yn

Figure 3-1.2

10

80

Wn ---...... ----~)---.... Yn

Figure 3-1.3

Figure 3-1.4

11

data. Symmetry trades a less costly computation
(addition) for a more expensive one (multipli­
cation). Since the coefficients for an FIR filter are
usually symmetrical

(ak = an-k) ,

it is possible to reduce the number of multi­
plications required by adding data with the same
coefficient before multiplying by the common
coefficient as shown in Figure3-1.7.

Decimation is the process of reducing the
sampling rate when the frequency response is
limited. For example a signal containing only
frequencies below 5 kHz and sampled at 20 kHz
can be decimated by 2. Also, a band pass filter can
be converted to a low-pass filter and the resulting
data could then be decimated with a
corresponding reduction in computation require­
ments. Decimation by N is accomplished by only
processing every Nth data sample and discarding
the remaining data samples. This reduces the
computations of an FIR filter by a factor of N.
Decimation does not reduce the number of
computations for an IIR filter since the recursive
nature of the filter requires that all the previous
outputs be computed for the current output.

Digital filters are also used for interpolation. This is
an increase in the sampling rate (the opposite of
decimation) and is used to produce the data points
between the actual samples. The interpolation
procedure is to insert N-1 zeros between each
data sample and pass the data through a low-pass
filter. Since the data insertion is only conceptual
(only calculations with non-zero data points are
performed), an FIR filter has the same
computational advantage over an IIR filter for this
operation as for decimation.

Since both IIR and FIR filters can be designed for
equivalent performance, it may not be obvious why
the FIR filter with its greater number of
computations would ever be used. One important
characteristic of an FIR filter is that it can be
designed to have linear phase response which is
not realizable with either IIR or analog filters. A
second advantage of an FIR filter is that roundoff
errors are limited and easily controlled. The
recursion in an II R filter means that roundoff errors
are cumulative.

Another advantage of the FIR implementation of a
filter is the ability to partition the processing for the
filter into data sets for multiple filter circuits and

)---_yn

Figure 3-1.5

12

thus to increase the throughput of the system
through parallel processing. This is not possible
for IIR filters since the previous outputs are
required for calculation of the current output.
Although a cascaded IIR filter achieves a similar
result, i.e., the processing can be distributed to
different pieces of hardware operating in parallel,
the complexity of the filter, or lack thereof, limits
the potential gain. An FIR filter could use ten
circuits to obtain a tenfold throughput gain or

twenty circuits to obtain a throughput gain of
twenty. An IIR filter might contain five second­
order sections and is limited to a potential
throughput increase of five.

Although stability of the FIR filter is sometimes
cited as an advantage, it is not difficult to design a
stable IIR filter, but the designer must pay attention
to the warnings from the filter design program.

I---~Yn

Figure 3-1.6

Xn ---1----.t

a!2:.1 = a n+1
2 2

Figure 3-1.7

13

3.2 FILTERING IN THE FREQUENCY
DOMAIN-FOURIER TRANSFORM

Fourier transforms are used to change time domain
data into the frequency domain when the
processing required involves the measurement of
spectra. The processing in the frequency domain
is so much simpler compared to that in the time
domain to warrant the additional transformations
between time and frequency domains. Fourier
transforms are performed on a limited series,
usually a power of 2 to take advantage of the
efficiencies of the fast algorithm described below.
The Discrete Fourier Transform (OFT) of a limited
series {x (n)}, 0:5 n:5 N-1 is defined by:

N-1 21tnklN

X(k) = L X(n) * e-j for k = 0, 1, ... , N - 1
n=O

Although the transform can be calculated directly
by performing the summation of all the products in
the equation, the number of calculations becomes
prohibitive as the transfform size increases. Defin­
ing { x (n) } as a series of N complex numbers, there
are (N-1)2 complex multiplications and N(N-1)
complex additions to be performed. The following
table illustrates the rapid increase in processing
requirements as N increases.

N

64
256

1024

Multipll·
cation

3969
65025

1046529

Addi·
tion

4032
64280

104755

These numbers represent complex operations
which translate to four real multiplies and two real
adds for each complex multiply and two real adds
for each complex addition. Fortunately, it is
possible to reduce the number of calculations
necessary for the transform by organizing the
sequence in which the calculations are performed.
Because of the periodic nature of e(-j*21t*n*klN),
product terms in the series appear in more than
one summation and need not be recalculated for
every occurrence. The Fast Fourier Transform
(FFT) removes redundant calculations by
repeatedly separating the initial series into two half
series until the operation is reduced to a
calculation with two data points. There are two
different algorithms for doing this--decimation in
time and decimation in frequency.

Since the equations defining the DFT and FFT do
not contain time or frequency as a variable, the
calculations can be applied equally well to data

14

from audio sources to microwave frequencies. For
example, if N =1024 data samples are taken at
1 msec intervals, each frequency output will
represent

k * 1 kHzl1 024

and if the sample interval is 1 Jlsec, then each out­
put will represent

k*1MHz/1024.

The spectrum is also continuous so that the filter
output 0 is adjacent to filter output 1023 and it is
sometimes convenient to think of the filters as
being positive and negative, i.e., filters 0-1023
become filters 0 to 511 and -512 to -1.

Although the FFT is more efficient when
computing a full spectrum, some applications are
only interested in a limited band of frequencies. In
these cases the FFT algorithm calculates many
outputs which are not of interest and discarded. In
these applications, calculating a small number of
DFTs may be more efficient than calculation of the
entire spectrum with an FFT. Examples of this
restricted band of interest are carrier detection and
target tracking in radar or sonar.

3.2.1 Algorithm for Decimation in Time

Assuming that N is an integral power of two (N =
2r), we can separate { x (k) } into two half series:one
sequence with even indices

{ xE (n) } = {x (2n) }

one sequence with odd indices

{xc (n)} ={x (2n+1)}.

The DFTs of the sequences constructed over

{x E(n) } and {x 0 (n) } are
{ X E (k) } and { X 0 (k) } with

(~-1 .21tnkl(n/2)
XE (k) = L X(2n) * e-I

n=O

(N~-1 .21tnkl(n/2)
Xc (k) = L X(2n+1) * e1

n=O

The notation is simpler if we use WN = e(-j*27t1N)
and the transform of the original series becomes
the sum of the transform of the series of even
indices and the transform of the series of odd
indices multiplied by a twiddle factor.

(NI2)-l (NI2)-l 2
X(k) = L X(2n)W~n\ L X(2n+1) W~ n+1) k

n=O n=O

k.
=XE(k)=WN Xo(k)

Since W~ nk is reriodic with a length of N/2 and that
W~ + N/2 = -Wn we can write

k+NI2 •
X(k+N/2) = XE (k+N/2)+W N Xc (k+N/2)

= X E (k) - W ~ • Xo (k)

This calculates X(k) and X(k+N/2) in terms of XE(k)
and Xo(k) which is represented graphically by a
simple butterfly:

XE(k) --v- X(k)

Xo(k) ~ X(k+N/2)

This butterfly is usually simplified to:

Xdk)

Xo(k)

The sequences
{ x (2n) } and { x (2n + 1) }

can each be separated into odd and even again:

{x (2n) } can be decomposed into
{x (4n) } and {x (4n + 2) }

{ x (2n + 1) } can be decomposed into
{x (4n + 1) } and {x (4n + 3) }

This results in X(k), X(k+N/4), X(k+N/2) and
X(k+3N/4) being calculated from the transforms of
each quarter series Xoo(k), X01 (k), X02(k) and
X03(k) in two stages as shown in the following
equations:

2k
XE (k) = Xao (k)+WN • Xa2 (k)

15

XE (k+N/4) = XOl (k)+W~k. Xa3 (k)

2k.
Xo (k+N/4) = XOl (k) -W N X03 (k)

Because N = 2r we can continue decomposing "r"
times until the summations in the butterfly
calculation become the terms x(k). For N = 8
samples we obtain the results shown in Figure 3-
2.1.

The input data in Figure 3-2.1 was ordered
according to the needs of decomposition into odd
and even series which has the property that the
results occur in natural order. On the other hand, if
the original data was in chronological order, the
results would be in bit-reversed order. Bit-reversal
refers to the binary representation of the
sequential position of the data values. For a
sequence N = 2r we read the binary code (r bits) of
the initial position backwards and obtain the binary
code of the bit-reversed position.

For N = 8 the values are:

Binary
Value

000
001
010
011
100
101
110
111

Bit-Reversed
Value

000
100
010
110
001
101
011
111

Note that the input data order when arranged for
decimation in time is bit-reversed order so that the
reordering process is the same for either input or
output. Figure 3-2.2 shows the butterflies when
the input data is ordered (and the results are bit­
reversed) for N = 8 samples.

3.2.2 Algorithm for Decimation in
Frequency

The decimation in frequency algorithm decompos­
es the initial series into two consecutive series.

Xl (n) = X(n)
for n = 0, 1, ... , N/2 - 1

X2 (n) = X(n+N/2)

Using the preceding notation, the transform of the
sequence can be written:

(NI2)-1 n - 1
X(k) = L X(n) • W~\ L X(n)· W~k

n=O n=NI2

(N/2)-1

= L [~(n)+~ (n)· W~NI2]. W~k
n=O

Since W~N/2 is equal of -1 when k is odd and
equal to +1 when k is even, the even and odd
samples can be written:

0

4

2

6

1

5

3

7

(N~-1

X(2k) = 2.. [~ (n)+X2 (n)] • yy2~1k
n=O

(N~-1
X(2k+1)= 2.. [X1(n)-X2 (n)]·W~k+1)n

n=O

Using W~nlk = e-j21t*2nklN = e-j2lt*nkIN/2 = W~~2
the equations become:

(N~-1 k
X(2k) = 2.. [~ (n)+X2 (n)] • W~12

n=O

o

2

3

4

5

6

7

Figure 3-2.1

0 o

1 4

2 2

3 6

4 1

5 5

6 3

7 7

Figure 3-2.2

16

These equations show that the samples of the
OFT can be obtained from the N/2 point DFTs of
the sequences f(n) and g(n) where

I(n) = Xl (n)+X2 (n)

g(n) = [Xl (n) - X2 (n)]. W~

This can be represented by the following butterfly:

X1 (k)

o

2

3

4

5

6

7

~I(n)

~g(n)

As in the decimation in time algorithm we can
decompose each series. into two sequences
repeated "r" times. For N = 8 samples we get the
graphic of Figure 3-2.3.

Data order is the same as for decimation in time; we
have to order the initial values in bit-reversed order
(see Figure 3-2.4 for N = 8) in order to get the
results in natural order.

The decimation in time and decimation in
frequency algorithms are very similar ·and call for
the same number of arithmetic operations. The
calculations can be made in-place (results replace
the operands used to calculate them) but we must
arrange the initial sequence in bit-reversed order
to get the results in natural order or we can leave

o

4

2

6

5

3

7

Figure 3-2.3

o o

4

2 2

6 3

4

5 5

3 6

7 7

Figure 3-2.4

17

the initial sequence in chronological order and
rearrange the resulting sequence. Reordering the
inputs or the results are both performed according
to the same rule, i.e., bit-reverse the binary
representation of the position. It is also possible to
avoid the rearrangement by using a double buffer
memory and placing the butterfly results in the
alternate buffer instead of in-place. The buffers
would be swapped at the end of each FFT iteration
to make the output of the previous iteration the
current input data.

3.2.3 Comparison of FFT and OFT

The algorithms of the Fast Fourier Transform (FFT)
requires r = 1092 N steps. At each step there are N
complex additions and N/2 complex
multiplications. Therefore, the total number of
operations is:

N/2 1092 N multiplications
N 1092 N additions

The following table compares these results to the
ones of the Discrete FourierTransform.

Discrete Fast
Fourier Fourier
Transform Transform

N (*) (+) (*) (+)

64 3969 4032 192 384
256 65025 65280 1024 2048

1024 1046529 1047552 5120 10240

As mentioned previously, this efficiency only
applies when a large portion of the spectrum is of
interest. If only three frequency outputs were
required, the DFTtabie becomes:

Xo

Xl

X2

X3
3K

N

64
256

1024

(*)

189
765

3069

(+)

189
765

3069

3.2.4 Inverse Fourier Transform

The inverse Fourier transform of a' Signal
transforms data from the frequency domain to the
time domain and is calculated by:

N-l .21< nkIN

X(n) = 1/N L X(k) • e+J

n=O

The similarity to the forward transform allows us to
use the same algorithms for the inverse transform
by changing the sign of the angle from (-2lt*n*klN)
to (2lt*n*klN) or W~k to WNnk The scale factor 1/N
is typically incorporated in the gain of the system
and ignored for the purposes of calculation of the
transform.

3.2.5 Radix 4 FFT

It is possible to further reduce the number of
calculations required to perform the FFT by using a
radix 4 algorithm. If the number of samples N is
represented by N = 4x, for x = a positive integer,
the butterflies of the preceding algorithms can be
rearranged in groups of four. For the decimation in
time algorithm with N = 4 we have to perform the
operations shown by Figure 3-2.5. Figure 3-2.6
shows the same thing for N = 16. Figures 3-2.7
and 3-2.8 show the requirements for reordering
the data for N = 16 but this time using the
algorithms of decimation in frequency. The
improvement in efficiency is shown in the
following table:

Xo = Xo + Xl * Wk+ x2 * W2k + x3 * W3k

Xl = Xo - jXl * Wk - X2 * W2k + jX3 * W3k

X2 = Xo - Xl * Wk+ X2 * W2k - x3 * W3k

X3 = Xo + jXl * Wk - X2 * W2k - jX3 • W3k

Figure 3-2.5

18

o o

4

8

12

5

9

13

......
<0

______ 2

9 :i/~ ~<C; :6
10 10

11 14

12 ~3

13 7

14 11

15 15

Figure 3-2.6

Radix 2

N (*) (+)

64 192
256 1024

1024 5120

384
2048

10240

Radix 4

144 384
768 2048

3840 10240

As shown in the table the advantage of the radix 4
algorithm is in reducing the number of
multiplications by 25%.

3.2.6 Real-valued Input Fourier
Transforms

Although the FFT processes complex data, the
input to a system is frequently real data only. One
way to process real-valued input data is to zero-fill
the imaginary data and perform the FFT as though
the inputs were complex. However, this is wasteful
of memory and processing time since half the
outputs are discarded when the FFT is complete.
One way to overcome this inefficiency is to
combine two series of real inputs and process
them as a complex number series. This produces
two spectra in the processing time required for a
single zero-filled data set. However, it does
require an additional processing step to separate
the outputs into two spectra. If

(x1(n) }
is treated as the real part of the data and

(x2(n) }
is treated as the imaginary part, the two spectra can
be separated by calculating:

X, (k) = 1/2 { [XR (k) + XR (N - k)]

+j [X1(k)-X1(N-k)] }

X2 (k)= 1/2 {[X1(k)+X1(N-k)]

+ j [XR (k) - XR (N - k)] }

This additional processing step is much less than
the time that would be required to perform a
second FFT.

A second algorithm takes a single series and treats
every even data point as the real part and every
odd data point as the imaginary part of the data.
After performing an N/2-point FFT, the outputs
must be calculated using the following:

X(k) = 1/2 [XR (k) + XR (n - k) + cos e (X I (k) + X I (N - k))

-sine (XR(k)-XR(N-k))] +j/2 [X1(k)+X1(n-k)

- sin e (X I (k) + X I (N - k)) + cos e (XR (k) - XR (N - k))]

for e = 1tklN

In this case the additional processing is traded off
against the time to perform an N-point FFT instead
of an N/2-point FFT. The additional processing is
more than the previous method but requires less
memory since only one data set is processed
instead of two data sets simultaneously. The data
flow through the system is also more regular, and
that is sometimes important.

A third algorithm developed by Bergland
eliminates the calculations which produce
redundant results. This method does not use the
complex FFT algorithm; it treats the data as real or
imaginary numbers during the calculations instead
of operating on complex pairs. It also contains two
butterfly configurations instead of the single
butterfly used in complex algorithms. These
butterflies are diagrammed in Figure 3-2.9.
Butterfly type one is used when k = 0 and butterfly
type two is used for all other coefficients. This
algorithm also produces outputs in scrambled
order as shown in Table 3-1 with the real and
imaginary parts in consecutive positions in the
sequence. The first two elements are the
exception. These are the real parts of the first and

Figure 3-2.7

20

!:i

o

2

3

4

5

6

Figure 3-2.8

o 0

o 4

.!!....- 8

o 12

o 5

o 9

o 13

o 2

6

o 10

o 14

o 3

7

0 11

0 15

last frequency filters, which have imaginary parts
equal to zero. Although the order appears similar
to bit-reversed order, it does not have a simple
translation and must be generated algorithmically
from the previous sequence. The new sequence
algorithm is as follows:

1) Even elements of the new sequence (starting
with element 0) are the previous sequence.

2) Odd elements are inserted by subtracting the
even element from the length of the new
sequence except for element 1 which is equal
to 1/2 the length of the sequence.

3.3 MAGNITUDE CALCULATION

An operation that is frequently necessary in signal
processing is the computation of the magnitude of
complex samples. This is particularly common
when performing FFT processing. A magnitude
can be calculated directly as the square root of the
sum of the squares of the quadrature com­
ponents. However this algorithm has the dis­
advantage of requiring double precision arithmetic
for the calculations as well as being complicated
and time consuming. A machine performing 1S-bit
operations would require 32-bit arithmetic to sum
the products and the square root computation
typically requires one iteration per bn in the result.

Since the computation of the square root of the
sum of the squares is such a complex task, many
alternatives to the magnitude calculation have
been developed. The simplest approach to the
calculation is to use a linear combination of the
quadrature components. This takes the form M =
ax+by for x = max(lRI,111) and y = min(IRI.III), i.e. x =
abs(larger) and y = abs(smaller). Systems in which
a shift is less expensive than a multiply (in time,
hardware or both) typically use coefficients like a
=1 and b =1/2. However a system which calculates
a product as easily as a shift can obtain a more
accurate magnitude with a = 0.9S0 and b = 0.398.
Even more accuracy can be obtained by changing
the coefficients as a function of the angle.
Although the magnitude is independent of angle,
the approximation error has an angle dependency
equal to 1-(a*cos(S)+b*sin(S)) for 0<S<7tl4, which
is the region defined by the larger/smaller equation
stated above. The angle dependency of the
algorithm can be kept simple by defining only two
regions separated at an angle where the tangent is
a simple ratio such as where one quadrature
component is twice the other. An example of this
approximation is to use a = 1 and b = 1/4 when
x>2y and a =3/4 and b=3/4 forx<2y.

Another approach to calculation of the magnitude
is to use Cartesian-to-polar coordinate conversion

22

Table 3-1

N = 4 8 16

2R 2R 2R
21 21

SR
SI

1R 1R 1R
11 11 11

7R
71

3R 3R
31 31

5R
51

32

OR
1SR
8R
81

4R
41
12R
121

2R
21
14R
141

SR
SI
10R
101

1R
11
15R
151

7R
71
9R
91

3R
31
13R
131

5R
51
11R
111

algorithms. The quadrature components are a
vector in Cartesian coordinates and conversion to
a magnitude-phase pair gives the desired result. A
direct calculation of M = y/sin(arctan(y/x)) involves
divisions and arctangents which are not attractive
alternatives to a square root calculation. However,
once the phase is determined, multiplication can
be used to rotate the vector onto the x-axis where
the value of the real component and magnitude
are identical. This reduces the problem to
calculation of the arctangent usually by means of a
lookup table. Division can be eliminated by
concatenating the two components of the vector
to form the address of the table, but this double
length address results in a prohibitively large table.
The simplest approximation is to normalize the

vector by left-justifying the larger component, and
to use a limited number of MSBs of each
component to address the table, ego using bits x15-
10 and Yl5-10 of 16-btt numbers to address a table
containing 4096 angles. A more accurate
approximation which also removes the necessity
for normalization uses the most significant bits of
the larger component, the most significant bits of
the smaller component and the bit position of the
MSBs of each component (or the number of
leading zeros). This might use two data bits and a
four bit position for each component of the vector
to address a table of 4096, e.g., bits x12-11 and
position 12 for one component and bits Y8-7 and
position 8 for the other (assuming bits x15-12 are
all the same and Y15-8 are also the same).
Because the arctangent is well behaved for small
angles, this algorithm can be iterated for greater
accuracy. The previous one can not be iterated
since btts Yl5-10 become nonsignificant as the
vector is rotated toward the x-axis. Addressing a
table with the number of leading zeros of each
component and the single bit following the leading
one can produce a magnitude with 1.4% accuracy.
Additional accuracy can be obtained by using more
bits following the leading one or by iteration. Table
size can also be traded off by using the difference
between the number of leading zeros of each
component to address the table rather than the
individual counts. Both of the approximations
could produce the sine and cosine directly from
the table but the angle is sufficient when a sine
and cosine table is already available for FFT S.

A' = Re [A+ jB + (C + jD)W~l

B' = 1m [A+ j8+ (C+ jD)W~l

C' = Re [A+ jB-(C + jD)W~l

D' = 1m [-A - jB + (C + jD)W~l

WN = e (-j21t1N)

Another approximation which rotates the vector
onto the x-axis can be used if multiplication is too
costly. CORDIC (COordinate Rotation Digital
Computer) rotation is one of a class of algorithms
developed by Voider in 1956. The key elements
of this algorithm are successive approximation and
elimination of multiplication. The vector is placed in
the first quadrant by taking the absolute values of
the components and is then rotated toward the x­
axis by adding or subtracting a series of angles.
Each angle is added if the phase of the vector is
negative or subtracted if the phase is positive with
the result that the x component of the vector
becomes the magnitude as the phase angle
approaches zero. Positive or negative phase is
the same as a positive or negative y value which
makes the determination of this condition
straightforward. The angles are selected so that
their tangents are simple binary ratios which allows
rotation to take the form

xn = xn-l + Yn_1/2r and
Yn =yn-1 +xn_1/2

where r increments for each iteration. Accuracy of
the algorithm is a function of the number of
iterations with four iterations producing an
accuracy of 0.772%. A side effect of the algorithm
is that there is gain, i.e. after four iterations the x
component will be 1.643 times the magnitude of
the original vector. However the gain is fixed for a
given number of iterations and is usually absorbed
in the gain of the system.

(k*O)

A

X
A'

B B'

C C'

D D'

A' = Re [A+ jC + (8 + jD)W~l

B' = 1m [A+ jC + (8 + jD)W~l

C' = Re [A+ jC- (8 + jD)W~l

D' = 1m [-A - jC + (B + jD)W~l

WN = e (-j21t1N)

Figure 3-2_9

23

A common use of the magnitude calculation is for
the detection of signals in noise such as radar­
target detection or communications carrier
detection. The major concern in this application is
the signal to noise ratio loss caused by the
approximation. An average background value
(representing noise) is calculated using an
approximation with minimum average error and the
signal magnitude is calculated for minimum peak
error. Using the simple shifting approximations
would mean using larger +1/4 smaller for the
average (absolute error = +3, -11 %, average error
= 0.6%) and larger +112 smaller for the signal

24

(maximum absolute error = +11, -0%, average
error = 8%). Table 3-2 contains various
coefficients and the errors associated wtth them.

Table 3-2

Peak Average
Approximation Error Error

L+.55 11.80 8.68
L+.255 11.60 0.65
.960L + .3985 3.96 -1.30
L+ .255/ .75L+ .755 6.06 -3.01

CHAPTER 4
SYSTEM DESIGN

4.1 ARRAY PROCESSOR DESIGN
BASED ON THE Am29500 FAMILY

The board described in this chapter was built and
tested in AMD Headquarters Applications in early
1985. This application was developed to show
designers the efficiency in using the Am29500
Family for digital signal processing. Doing a paper
design is one thing; building a working prototype
boosts confidence level. This section of the
manual will help the reader to design a system and
point out what aspects of the design require
consideration.

The goal here is to design an optimum
cost/performance board. Table 4-1 compares radix-
2 butterfly cycle times for different architectures.
The architecture chosen for this design is the
2,2,1 architecture: two buses, two ALUs, and one
multiplier. With this architecture, each butterfly
takes four cycles. Therefore, 5,120 butterflies in a
1 K complex point FFT at 10 MHz takes 2 ms.
Figure 4-1.1 shows the basic architecture of the
board. The two ALUs are 16 bits each for real and
imaginary data. Each ALU is comprised of two
Am29501s. The two ALUs can also be combined
by using the Am2902 Carry Lookahead Generator
to form a single, 32-bit, double-precision ALU.
The two 16-bit buses supply real and imaginary
data from the data memories to the ALUs, and vice
versa, via the bidirectional DIO ports of the
Am29501s. Data from the ALUs is transferred to
the multiplier via the bidirectional MIO ports of the
Am29501s. If 32-bit products are required, 16 of

the 32 bits could come in from the muttiplier into
the MIO ports. The 16X16 multiplier is the
Am29517. Its X and Y ports are the two 16-bit
input ports, and its P port is the 16-bit output port
on which the 32-bit product can be multiplexed.
The Y port of the multiplier is a bidirectional port
and, for single cycle 32-bit multiplies, this port has
to be used in conjunction with the P port to get the
complete 32-bit product.

The MIO ports of either the real or imaginary ALUs
can be directed to the Y port of the multiplier. The
X port data can be selected from one of several
sources-the MIO ports of either the real or
imaginary ALUs, the real data bus, the imaginary
data bus, or the coefficient PROMs. The 1-of-4
MUX provides the path required for data flow to the
X port. The P port of the multiplier goes to the MI
ports of the ALUs.

The data memory is made up of high-speed (45 ns)
RAMs. There are two memory banks. While one is
being worked on by the DSP algorithm, the host
CPU can unload and reload the other. Each
memory bank is 1 K deep and 32 bits wide, which
means that the maximum FFT size can be 1 K
complex. Data from the host can be DMA'd over to
the board or the CPU can use 1/0 to transport it.
DMA is only provided on the 16-bit host buses.
Eight-bit host buses must use programmed 1/0.
Thirty-two 1/0 addresses are reserved for this
board and the address decode logic decodes
these addresses and selects appropriate logic on
the board.

The Am29540 and the Am29116 generate
addresses for DSP algorithms. The Am29540 is an
FFT address generator. The transform length, FFT
type, etc. are supplied by the CPU to the part, and

Table 4-1 "Optimum" CoSt/Performance
(Radix-2 FFT)

For Each Memory Access AddlSubtract Multiply
Butterfly S 6 4

Resources Memory Buses ALUs MuHlpliers

#of # Usage # Usage # Usage
Cycles

S 1 8/8 1 6/8 1 418
6 2 416 1 6/6 1 416
4 2 414 2 3/4 1 414
3 4 213 2 3/3 2 213
2 4 212 4 1.5/2 2 212

25

the part puts out the correct sequence of data and
coefficient addresses. The Am29116 provides
addresses forthe filter and matrix algorithms.

The Am29520 is the address pipeline register for
the data memory. The Am29821 is the address
pipeline register for the coefficient PROMs for the
FFT and filter algorithms.

The last block in the architecture is the
microprogram control unit. The microword width is
128 bits. The code can be up to 2K deep. High­
speed (35 ns) registered PROMs are used to store
the code. The sequencer is the Am2910A. Two
Am2922s allow the sequencer to test up to 16
different conditions.

The detailed architecture of the board is explained
in the following five sections.

a) Arithmetic
b) Memory
c) Addressing
d) Control
e) I/O

4.1.1 Arithmetic

Figure 4-1.2 shows a detailed diagram of the
arithmetic section.

Data scaling must be considered when designing
an FFT board. This is necessary in fixed point
systems, to ensure that the results do not
overflow. The approach taken here is "block
scaling," wherein all data is scaled by a certain
amount at each pass. This kind of scaling can be
done at the input to or the output from the ALU. A
shifter at the input to each ALU serves the
purpose without restricting the input data. When
the shifter is at the output, the input data is
restricted so that there is no overflow on the first
pass through the pipeline. Overflow can occur
during complex mutiplication when summing
R*R-I*I or R*I+I*R because of inaccuracies due to
truncation. Overflow could also occur when
adding or subtracting, so two bits of overflow
should be allowed when performing an FFT
butterfly. Scaling involves right shifting of the data.
Being able to shift up to 3 places is sufficient and
thus 4-bit shifters (Am25S10), not barrel shifters,
are used. Figure 4-1.3 shows how four
Am25S10s are connected to form a 16-bit shifter
for each ALU. They are connected so that when
shifting a 2's complement number, the sign bit
gets copied into the shifted position. The real and
imaginary buses bring data into the 010 ports of
the ALUs via these shifters. Two microcode bits

26

control the amount of shift. The return paths from
the 010 ports of the ALUs to the memories are
buffered by the Am29827 10-bit buffers. The
Output Enables of the shifters and buffers are
controlled by the Write Enable lines from the
microword to the data memories to ensure that bus
contention does not occur.

The FFT algorithm uses the formula A±WB where
A and B are the complex data points and W is the
complex coefficient. Multiplication is only between
Band W. So for the FFT algorithm, it is sufficient to
have the coefficient as one input to the multiplier
and the ALUs as the other input. Squaring to form
a magnitude, on the other hand, requires
multiplication between "data" inputs. No
coefficients are involved in matrix multiplication.
Thus, for this algorithm, both multiplier inputs must
connect to the ALUs. Sum-of-product-type
calculations may require that data flow directly from
the memory into the multiplier, bypassing the ALU.
Finally, complex arithmetic requires that data flow
from either ALU to the other. All of these data
paths exist in this design. The output of a 16-bit, 1-
of-4 MUX, made up of eight 74LS253s, is
connected to the X input of the multiplier. The four
possible X inputs are: the coefficient PROMs, the
real data bus from memory, the imaginary data bus
from memory, and either ALU. A transceiver
between the two ALUs, appropriately controlled,
prevents bus contention and allows either ALU to
be connected to either multiplier input. The
transceiver also allows bidirectional data flow from
one ALU MIO port to the other. The MUX and
transceiver are controlled from microcode. The Y
input of the multiplier is a bidirectional port. If a 32-
bit product is required, 16 of the product bits can
be multiplexed on this port and input into the ALUs
via their corresponding MIO ports. The other 16
bits of the 32-bit product can go from the P port of
the multiplier to the MI ports of the ALUs.

Some algorithms may require double-precision
arithmetic. The Am2902 is a Carry Lookahead
Generator that allows cascading of all four
Am29501 s to form a 32-bit ALU. Figure 4-1.4
shows how the ALUs and lookahead generator are
interconnected to allow this. Here the Most
Significant Byte for double-precision is the
Imaginary MSB and the Least Significant Byte is
the Real LSB. The RALUOM bit from microword
controls whether the configuration is single­
precision or double-precision. When this bit is
High, the propagate and generate signals from the
imaginary MSB are forced High, thus forcing CN+Y
from the Am2902 Low and effectively enabling
Single-precision.

N
.......

ALGORfTHM#1

Am29540

FFT ADDRESS GEN.

ALGORITHM#2

Am29116

FILTER&MA.TRlX
ADDRESS GEN.

l1
ADDRESS

INTERFACE

II
r--

ADDRESS
PIPUNE

FORDATA

~ Am29520 f-y

-

ADDRESS
PIPEUNE

FORCOEF·

-...I\.
--V

FICIENT

Am29821

HOST

l1
DATA

INTERFACE

D
DATA RAM

f-...l'\,
Am2148

'--------V

~
COEFFICIENT PROM

Am29526.27,28,29

iii i
MICROPROGRAM AND

CONTROL UNIT

Am2910A. Am27S45A

A
IMAGINARY BUS

REALEWS

D "
r-

~

REAL IMAGINARY
PROCESSOR PROCESSOR

Am29501 Am29501

"- ~Ir 3L:
~ 7~

.A IL
MUX

"

-" 16 x 16 ,.;t--MULTIPLIER
Am29517 '\r-

Figure 4-1.1

[I

I\)
(XI

~
REAL _~/

v

...

~

BUFFER

~ Am29827
~

SCALER

Am25S10

'\
/
"

to..

"
.,.'<; 7,

MUX

IMAG

l
,.,.

DIO n
I

REAL

I MIO Am29501

MI

Ir
TRANSCEIVER

Am2947 V'
i'r

Figure 4-1.2

BUFFER
A

Am29827
~

to..
SCALER

Am25S10
V

V
DIO

~!J~ MAG

CLA Am29501

Am2902

MIO MI

~n~

MULTIPLIER

A

to.. y~
X Am29517

V
p

f\)
c.o

13 12 11 10 -11 -12-13
SO
Sl Am25S10

'I-1~/OE
Y3 Y2 Yl YO

15141312

13 12 11 10 -11 -12-13 13 12 11 10 -11 -12 -13 13 12 11 10 -11 -12 -13
SO SO SO
Sl Am25S10 Sl Am25S10 Sl Am25S10
fOE IOE fOE

1110 9 8 7 6 5 4 3 2

151413121110

DATA BUS TO ALU

9 8 7 6 5 432 1 0

D9 08 07 D6 05 D4 D3 D2 01 DO

1--------------1I/OE1

1------------i- /OE2
Am29827

1514131211 10 9 8 7 6 5 4 3 2 1 0

1 0

I I I I I I I I I I I I I I I I <: DATA BUS FROM MEMORY :>

Figure 4·1.3

.A " MBUS
'Ij V

RALUOM RALUOL

1,. 1,.

10-18 'w 10-18 10-18 I<=--=> 10.18
20-28 20·28 20·28 20-28

Am29501 Am29501 Am29501 Am29501
REALLSB REALLSB IMAGMSB IMAGLSB

~
C IN r- C IN C IN I- C IN 1-

PG PG PG PG

II II
, I,
P G P G P G P G
1 1 0 0 3 3 2 2

Am2902

CN+X CN+Y CN.Z

I I I

Figure 4-1.4

4.1.2 Memory

The data memory is an important consideration in
the design. It must be designed to support the
high-speed architecture. The minimum
requirement is one memory bank, to be toggled
between the host system and the DSP Processor.
But this means that the DSP Processor is idle
during the time data is unloaded and new data
reloaded. Real-time applications would typically
sample data continuously at a fixed rate. Results of
the process would be read continuously from the
data memory. Thus, it is necessary to have two
memory banks so that, while one bank is being
unloaded and reloaded, the other bank is
processed by the DSP. This restricts this design
to in-place FFTs.

Figure 4-1.5 shows the memory section
architecture of this design. High-speed (45 ns)
Am2148 memories make up the two memory
banks designated L (Left) and R (Right). Each
memory bank is 1 K deep and 32-bits wide. Since
FFTs operate on complex data, each memory bank
is further divided into 16-bit real and imaginary
parts designated by R and I respectively.

30

One line, Q (described in the Control section),
controls memory bank switching. To allow parallel
operations, two address buses (designated Left
and Right) supply addresses simultaneously to the
two memory banks. These address buses switch
when Q switches so that DSP data addresses are
provided to the memory on which the DSP is
processing and host data addresses are provided
to the other memory bank for unloading and
reloading of data.

The DSP data buses are 16 bits wide.
Transceivers (Am2947s) isolate one memory bank
from the other on the DSP side. Q controls the
Chip Enables of these transceivers so that only the
appropriate set of transceivers are enabled at any
time. The direction of these transceivers is
controlled by the real and imaginary Write Enable
bits from microcode.

Host data buses can be 8 bits or 16 bits wide. The
three inverting transceivers (Am2946) at the top of
Figure 4-1.5 are connected to accommodate both
sizes. If the host bus is 16 bits wide, transceivers 1
and 3 are enabled by CD3 so that data is
transferred directly in 16-bit words. If the host bus

is 8 bits wide, data must be transferred in bytes.
First the low byte is transferred through transceiver
3 and then the high byte is transferred via
transceiver 2. Notice that when the low byte is
written, transceiver 1 is also enabled and invalid
data enabled on the high byte. This is followed im­
mediately by the true high byte. When data is read
back by the host, there is no problem because the
host bus is only 8 bits wide. Control signals CD2
and CD3 are generated from a PAL device.

The direction of these transceivers is controlled by
the system Read signal, lOR, such that the
transceivers are directed into the board by default.

The Am2947 transceivers on the host side of the
section are to isolate the memory banks on that
side. Their Chip Enables (CELR, CEll, CERR,
CERI) are generated in a PAL device. Control
signal a is used to distinguish between the left
and right memory banks. The system Read signal,
lOR, also controls the direction of these
transceivers.

Eight Write Enable lines, WE1 through WE8, are
produced in a PAL device. Data Writes from the
DSP side are in 16-bit words only. Two microcode
bits, one for real data and the other for imaginary
data, are used to generate the Write signals from
the DSP side. Data Writes from the host side can
be accomplished by DMA or 1/0. DMA is allowed
only for 16-bit transfers. The Am9517A is the DMA
controller being used in the design. Since 110
Writes can be in either byte or word mode, two 1/0
addresses are reserved for this. When a decode
of these two addresses occurs, a PAL device
produces two signals, BYTEH for the high byte
and BYTEL for the low byte. When the bus is used
in 16-bit mode, the MULTIBUS* produces a
control Signal, BHEN. A combination of these
three signals is used to produce the eight Write
Enables during data loading via 110.

4.1.3 Addressing

To achieve parallel operation, both memory banks
are addressed simultaneously, one by the host for
unloading and reloading of data and the other by
the DSP address generator. Figure 4-1.6 shows
the arcMecture of this section.

Addressing from the host processor must
accommodate DMA or programmed 1/0. For this
design, only 16-bit DMA transfers are allowed.
Programmed 1/0 transfers, on the other hand, can
be 8 bits or 16 bits. Host addressing is done by a
"fly-by" counter. The counter is pre loaded with the
starting address from the host processor. The
counter is clocked by the Read or Write Signal
produced by the Am9517 DMA Controller, if DMA

·MULTIBUS IS A REGISTERED TRADEMARK OF INTEL CORP 31

is being used, or by the Read or Write signal from
the host system, if programmed 1/0 is being used.
A PAL device produces these clock signals for the
fly-by counter. The 12-bit Counter is made up of
three Am74161s (4-bit presettable counters).

The Least Significant Bit of the fly-by counter goes
into the PAL device that produces the eight Write
Enable signals forthe memory. It distinguis!;les the
real data from the imaginary data. The next 10 bits
of the counter address the 1K deep memory. The
address for a complex word of memory is the same.
Thus in the 16-bit mode, the address from the fly­
by counter to the memory remains unchanged for
two consecutive clocks and the Least Significant
Bit of the fly-by counter helps to generate a Write
signal for either the real or imaginary part of the
complex word. For 8-bit 1/0 transfers, the fly-by
counter is clocked once every two 8-bit Writes so
that the Least Significant Bit of the fly-by counter
still distinguishes between real and imaginary data.

This design supports the following DSP
processes: 1)Fast Fourier Transforms, 2) Filters,
and 3) Matrix Multiplication. Addressing for the
FFT is quite complex but the Am29540 provides a
hardware solution. Addresses for data source, data
destination and coefficients are generated by the
Am29540 FFT Address Sequencer. The
microcode indicates to the address sequencer the
FFTtype (radix 4/2; inplace, non-inplace; DIT/DIF).
Four bits from the Instruction Register (described
in the Control Section) indicate the transform
length to the sequencer. The transform length is
latched into the part at the start of the process.
That's all that is required for initialization. The
sequencer now produces data and coefficient
address in the required order for the entire
transform.

The Am29116 is programmed to produce the
address sequence for Filters and Matrix
Multiplication. Since the board runs just one
process at a time, the Am29540 and the Am29116
are never used simultaneously. Therefore the
microcode bits for the two parts are overlayed. The
FFT transform length four bits from the IR indicate
to the Am29116 the type of filter or the matrix size.

The data addresses must be saved in a pipeline
register for efficient microcoding. The Am29520
serves as a dual, two-level pipeline register. The
source addresses for the two complex inputs are
saved in one level. These are moved into the
second level to become the destination addresses
for the results and new source addresses get put
into the first level. Four bits of microcode control
the two Am29520s that are connected in parallel to
form the 12-bit-wide pipeline register for the data
addresses.

w
I\)

LEFT
ADDRESS

BUS

RIGHT
ADDRESS

BUS

A

'"
1I0R-

L
IWE1 -

IWE2 -

<
--

"\J

1I0R-

t 16

Am2947

LR

Am2148-45

Am2947

+-16

- -

~

DB15-DBS HOST DATA BUS DB7-DBO
V

I
1 2 3

1I0R- 1I0R-
Am2946 Am2946 Am2946

I-CD3 -CD2 I-- CD3

ci>-S t s
ci>-S

"-015-08 MEMORY DATA BUS 00-07
,/

t 16 t 16 t 16

IIOR- IIOR- 1I0R- ~. Am2947 Am2947 Am2947 t !CELR r !CELI t /cERR ERI

13-

LI Ls- RR lE7- RI
~

I I
Am2148-45 IWE6- Am2148-45 IWE8- Am2148-45

I

T4- r
" I • o . .
~6 16 ~6
IWEI- l~ER- IWEI-

Am2947 Am2947 Am2947 to I 0 to I
+-16 +-16 ~ ci>-16

DSP REAL DATA BUS -16-BIT
V

A ~

"
DSP IMAGINARY DATA BUS -16-BIT

1/

w
w

~
74161

~JJ1
(L

Am29520

,~'" i1f 'm_' ~

Figure 4·1.6

~ '---

IV'
Am29S26~

LJ.". Am29S7~~
IV'

~
Am27S291:C-

~

"- Am29827

IV'

Q...J

~ Am29827

Q~

"- Am29827
./

Q~

~
V

Am29827

Q~

I--
I--

~

I-- "

" "' /

LEFT BANK
ADDRESS

RIGHT BANK
ADDRESS

COEFFICIENTS

The coefficient addresses need a simple, one­
level pipeline register and the Am29821 10-bit
register serves the purpose. For the FFT process,
there are 16-bit sine and cosine coefficient
PROMs (Am29526-Am29529). Two 8-bit
PROMs, Am27S291s, form a third 16-bit
coefficient PROM for the filter algorithm.
Addresses for the sine and cosine filter coefficient
PROMs are generated by the Am29540. Coef­
ficient addresses from the Am29540 are left­
justified and for radix-2 operations, the MSB is
always a "0." The Am29116 is programmed so that
its MSB is always a "1" when generating filter
coefficient addresses. This MSB is therefore used
to "Chip Select" between the FFT coefficient
PROMs and the filter coefficient PROMs. A
microcode bit selects between the sine and cosine
during the FFT process.

The two memory banks are addressed simul-

7

Am29845

HOST DATA BUS

LEI+--t__-+I

0E1+--1>--t--+I
7400

taneously, one by the DSP addressing and
one by the host addressing. Two address buses
therefore supply these two addresses to the two
memory banks. At the end of a process, the two
buses must be switched, under control of the flag
Q. This is achieved by the four 10-bit buffers,
Am29827s. At anyone time, two of these buffers
are enabled by Q, one supplying host addresses
to one bank of memory and the other supplying
DSP addresses to the other bank. At the end of a
process, these two buffers are turn~d off and the
other two turned on so that the buses switch,
effectively switching memory banks.

4.1.4 Control

This section addresses the "heart" of the design
because the microcode controls the rest of the
system. The microcode width must. be decided
during this phase of the design. A Microprogram

Q

(5

~+-----------------------------r-------~---INSTR

+5V +5V

12

Am2925 Am2910A CC Am2922

y

11

Am29827 Am27S45A t.ti----- REsET

116

~--_ MICRO CONTROL

CLOCKS

Figure 4-1.7

34

Sequencer is used to sequence through the
microcode. A Pipeline Register is required for the
microcode bits so that the sequencer can fetch the
next microinstruction while the present one is
executing. A Condition Code MUX is needed to
test conditions. These are the basic necessities of
the Control section.

Figure 4-1.7 shows the architecture for this
section. The microcode width required for this
design is 128 bits: 58 bits for the Real and
Imaginary ALUs, 21 overlayed bits for the
Addressing section, 6 bits for the Multiplier, 4 bits
for the Shift Register, 4 bits for the Address
Pipeline Register, 16 bits for the Microprogram
Sequencer, 5 bits for the Condition Code MUX,
and some other miscellaneous bits. The PROMs
used are Am27S45As; they are high speed (35
ns) 2K x 8 registered PROMs. Using registered
PROMs decreases part count and saves board
space because the Pipeline Register is built into
the PROM. The Condition Code MUX has built-in
registers and so, to avoid having two registers in its
path, a non-registered microcode PROM is used
for it. A registered PROM could be used but the
microcode for the CCMUX would be shifted by 1
line with respect to the rest of the microcode.

These PROMs have a 2049th location which can
be programmed as any value. This value appears
at the output of the PROM when an IN IT signal is
applied to the PROMs. This is a useful feature for
initialization on reset. The op-code for a Jump to
Zero (JZ) instruction for the sequencer is
programmed into this location for initialization on
reset. The reset line from the CPU is connected to
the INIT input ofthe PROM.

The sequencer used is the Am2910A, capable of
addressing up to 4K of microcode memory. We
have 2K deep microcode memory in this design
which is enough forthe processes desired here.

Two Condition Code MUXs (Am2922s) enable
testing of up to 16 inputs, of which one is used for
the "forced pass" condition. The outputs of the
Condition Code MUX is fed into the CC input of the
sequencer for condition testing.

The control section also contains an 8-bit
Instruction Register (Am29845). Four bits go to
the Am29540 or Am29116 to indicate FFT
transform length, filter type, or matrix size. Three
bits go into the sequencer to indicate the process
to be run. The eighth bit from the host goes into a
latch. This is the latch for Control Signal Q that
indicates to the entire system which memory bank
to process. The state of this eighth bit from the
host either sets or resets the Q latch.

35

Also included in the Control Section of the design
is the clock circuit. The Am2925 is a clock
generator and microcycle length controller. It
produces clocks of varying duty cycles.

The following is a sequence of events that would
occur from start to finish of any process. On power­
up, the reset line from the CPU is activated and the
op-code for a JZ instruction is put out from the
microcode PROM to the sequencer. This makes
the sequencer jump to the start of microcode. The
sequencer now waits for an instruction to be
loaded into the IR by the CPU.

On receiving an instruction, the sequencer jumps
to one of eight locations at the end of the
microcode. The exact location is decided by the
three bits from the IR to the branch address field of
the sequencer. The value of the three bits
depends on what process must be run (one of
eight). The sequencer jumps to one of eight
locations and gets a branch address from there
which would be the starting address for the
process. At the end of the process, the
sequencer would execute a JZ instruction and set
a flag. This flag can be read by the CPU via
software. The CPU can now load the IR with
another instruction. The CPU should not load the
IR if the flag from the microcode is inactive, as the
sequencer would miss the instruction.

4.1.5 InputlOutput

The 1/0 section is the interface between the board
and the host system. Decoding logic is required to
decode 1/0 addresses reserved for the board.
Also required is the DMA controller and some
registers and buffers to interface with the host
address and data buses. Figure 4-1.8 is a diagram
of the architecture.

The DMA Controller used in this design is the
Am9517. The Am9517 is chosen I'lrimarily
because of its capability to interface easily with an 8-
bit CPU. If a 16-bit CPU were being used, the
Am9516 would have been selected. Although an
8-bit CPU and a 16-bit DMA seem contradictory,
the Multibus allows bus masters with different bus
widths to exist in the same system.

1/0 addresses must be reserved for this board.
The DMA Controller must have 16 addresses
reserved for it. Other 1/0 addresses needed are
for 1/0 memory writes, fly-by counter loading,
checking process complete status flag, loading
three MSBs of address for DMA (described later in
this section), loading the instructions into the IR,
and initialization of the board. Thirty-two 1/0
addresses are reserved for this board.

The Am29809, an 8-Bit Comparator, produces a
board select when one of these 32 110 addresses
is put on the bus by the CPU. When using DMA,
the controller must be programmed. This is done
via Buffer 1 (Am29828). When an address decode
occurs for the DMA Controller, Buffer 1 is ·output
enabled" and the Am9517 is ·chip selected" and
programmed. The MUL TIBUS address bus is 20
bits wide. Since DMA is allowed only in 16-bit
mode and this design is for an 8-bit CPU, the LSB
of the address bus is grounded. The Am9517
operates in 256-byte pages. The low order 8 bits
go from the Am9517 to the host address bus via
Buffer 2. The output of this buffer is enabled by
the acknowledge line from the controller. The high
order 8 bits of the address must be latched into a
register. Device #3 on the diagram is an 8-bit
register into which these 8 bits are latched. The
MUL TIBUS address bus being 20 bits wide, the
remaining 3 bits must be loaded into a second
register (Device #4 on the diagram) by the CPU.
An 1/0 address (signal name ADDRL) is reserved
forthis function.

An 1/0 address is also reserved for the process
complete status flag. This flag from microcode
goes into Buffer 5 and this buffer's output is
enabled when the address decode for this flag
occurs. The CPU reads the value of the buffer and
decides if the DSP process is complete.

Appendix 1 lists the equations for the three PAL
devices used in the 110 section.

4.1.6 Timing Considerations

This is probably the most critical phase of the
design. "Timing Considerations" refers to the
speed at which the design will actually run. This
should be done before the board is built. The
designer starts out with a certain set of goals which
the design has to meet. These goals can be
divided into two categories. Category 1 lists the
different algorithms that the design has to process.
Category 2 lists how fast these processes must be
run. The designer starts with the goals in Category
1. He designs his architecture so that all algorithms
can be run by the design. He then writes
microcode for the processes. Knowing the
architecture and having written the microcode, the
designer can now evaluate worst case data paths
and can compute process times and compare
them with the goals in Category 2. All is well if the
goals in both categories are met. If not, trade-offs
must be made. First, the designer should try to
make the microcode more efficient. If this is not
sufficiently effective, the architecture needs to be
changed or some of the goals need to be relaxed.
Changing the architecture usually implies adding
more hardware so that the deSign has more

36

processing power. This is not always possible due
to board space and cost limitations. The alternative
solution, relaxing some of the goals, could mean
either disallowing some of the algorithms thus
getting rid of some hardware and thereby
eliminating propagation delays and increasing
speed, or finally, deciding that the slower speeds
are acceptable.

In this design, the Category 1 goals were:
a) 1 K Complex FFT;
b) Filters;
c) Matrix Multiplication.

The Category 2 goal was:
a) 1 K Complex FFT in 2 ms.

The hardware is designed and microcode for the
FFT has been written. Each butterfly takes 4
cycles. Now the worst case data path needs to be
computed which would decide the minimum cycle
time. To achieve the 2 ms goal, the cycle time
should be no greater than 100 ns.

All data paths should be and have been
considered. Three of the worst paths are:

1) Clock to output of microprogram pipeline
register
+ select to output of Am29520
+ prop delay of bus switching transceivers
+ data memory access time
+ prop delay of transceivers separating
memory banks on DSP side
+ shifters
+ data set up time of Am29501
=141 ns.

2) Clock to output of microprogram pipeline reg
+ INST to output of Am29116
+ data setup time of Am29520
= 104ns.

3) Clock to output of microprogram pipeline reg
+ 2 slice delay of Am29501
+ CCMUX prop delay
+ Am291 0 setup and prop delay
+ microprogram memory access time
= 178ns.

The worst case path is 178 ns which means that
the maximum clock frequency can be 5.62 MHz;
less than the goal of 10 MHz. Reducing microcode
is not possible. With the architecture chosen,
doing a butterfly in 4 cycles is the best one can do;
it's time to make a trade-off. As this design is for an
evaluation board, the goals of Category 1 cannot
be relaxed. The two possible paths left are to add
more computing power to the design or relax the
goals of Category 2. Again, because this design is

'" -..j

1"

" lJ A11-A5 ~ A4

A

Am29809 EOUT I-

B

lrr ,)

A3-AO

DO

.&

HOST ADDRESS

AO-AS

Y

Am29828

01-8 OE 2

I

I
0

OE Am29828

y

I

INPUTS -

''\ 1" ''\
MBUS

"
A9-A16 A1?-A19

I J
Y y 0

Am29826 Am29826 Am29828

o CP 3 0 CP 4 OE y 5

......
'J

I
'-- IADSTB HACK

t-I-- AO-A? Am951?

-1 CS DBO-DB?

I

<
HOST DATA BUS

V

In ADDRL

Am22V10 II POLL

II

PAL OUTPUTS

Figure 4-1.8

for an evaluation board, the latter of the two paths
is chosen. The worst case path is not likely to be
executed very often, so it is supported by
changing the clock period with the Am2925, and
the 141 ns path is considered worst case making
the clock frequency 7.09 MHz. This path can be
improved by putting in faster transceivers and
faster data memories like the Am2148-35 or the
Am9150-25. Using the latter brings the speed up
to 8.26 MHz. Adding more computing power
would mean providing more ALU's and/or
multipliers. The designer would have to evaluate
by how much the microcode would reduce if there
was more arithmetic processing power. Timing
paths would have to be recalculated and a new
estimate made for the maximum clock frequency.

4.1.7 Microcode

This section deals with the software aspect of the
design. Microprogramming involves writing a
coherent sequence of microinstructions used to
execute the various steps required by the
process. A microinstruction usually has two
primary parts: 1) the definition and control of all
elemental micro-operations to be carried out; and
2) the definition and control of the address of the
next microinstruction to be executed.

For our design, the definition of the various micro­
operations to be carried out includes the Real and
Imaginary ALU's, multiplier, data address
generation, data memory control, address pipeline
registers, shifters, clock controller and condition
code MUX select. The definition of the next
microinstruction function includes identifying the
source selection of the next microinstruction
address and supplying the starting address for any
process.

Two basic principles should be remembered when
writing microcode: 1) parallel execution of different
operations, and 2) maximum utilization of
resources due to the pipelined architecture.

The microcode for the FFT is described here in
some detail.

The FFT algorithm is highly repetitive. The same
butterfly operations are performed on different
sets of numbers. Each radix 2 butterfly consists of
four multiplies and six adds/subs. The code
developed here is for a radix 2 DIT FFT. The
equations for a radix 2 DIT butterfly are:

A1 =A+8Wk 81 =A-8Wk

where A and 8 are the complex input points, A1
and 81 are the complex results and Wk is the
complex coefficient.

38

The following rules should be kept in mind when
developing microcode:

a) Determine the program repetition rate. We
have determined that our repetition rate is R =
4, i.e., each butterfly will take 4 cycles.

b) Start programming at line R + 1 =5.

c) For every program entry, enter an 'X' R cycles
above and below (Table 4-3).

The arithmetic section will be programmed first.
Table 4-2 is a programming work sheet for this
section. Figures 4-1.9 through 4-1.18 and Tables
4-3 through 4-7 show. the development of the
code for the arithmetic section. Each block
diagram showing data movement for a particular
line of code is followed by a coding sheet showing
the corresponding line. If a conflict of resources
occurs, another resource must be used or the
function re-scheduled for execution.

Note in Table 4-9 that code is repeated every 4th
line. Also note that the ALU's and multiplier are
utilized 100% of the time. Also note in Table 4-9
that a new butterfly starts every 4th cycle. It is the
pipe lined process that makes the butterfly time
equal to 4 cycles. At any given time, computation
for 3 butterflies is in progress as illustrated in
Figure 4-1.19.

Next the code for the address generating section
needs to be written. Obviously it needs to be
mapped into the code already written for the
arithmetic section. Tables 4-10 and 4-11. show
the coding for the coefficient PROM select and for
the address pipeline register for the coefficient
PROMs. Tables 4-12 through 4-14 show the
coding for the FFT address generator and the
pipeline register. Figures 4-1.20 through 4-1.30
show the data flow from the address generator
through the data and coefficient address pipeline
register to the memories.

Having decided upon the code, it is now
necessary to actually write it. A symbolic language
would no doubt be of great help. This is possible
with the AMDASM meta-assembler which is used
in two phases. The first phase consists of defining
the microinstructions and the language. This is
done by creating a file of the type XXXX.DEF (see
Appendix 2, DSP.DEF) which contains:

a) The microword width (WOR D 128).

b) The list of language mnemonics. Each
mnemonic would be associated with an
instruction field defining the bits controlling
each resource.

...
~ ..J

.!!! =>

~
:=;

:;
:;; Q

:=;

m"

m'"

ar
~ .[' CD
I:
'0,

CD .['
.§

ct.-

=>
..J
ct.

m"

r1'

ar

iii
.[' .,

II: .['

ct.-

=>
..J
ct.

0
C

0.

" - CO< ..," U> ... co 0> ~ - ~
..," U> :: co

iii - - - - - -

39

< _ a:
al al

40

iii
-g
~
.ti
Q)
c:
:::i

"!
T""

.!-
l!!
::l
C'I

L------_ u::

Table 4-3

Real Imaginary Multiplier

Step 010 ALU A, ~ Aa a. ~ II:! ALU A, ~ Aa a. B2 II:! MIO MULl

1 X X X

2

3

4 I

• 5 Read B Ot 01

6

7
.j>.

8

9 X X X

10

11

12

13

14

15

16

17

18
1----

r--

0 0 .. iii '" '----

r--

0 0 ..
/ -

'----

r--

0 0 a:
~ '" III

'----

r--

0 0 I ..

V -
'--

42

0-

> • t--

~

r--

x

~ ~ t"-

'----

--l

r--

0-

I-- --

'----

'----

.2
a:

III

o
T""

T""

~
~
:::J
C'I
u::

Table 4-4

Real Imaginary Multiplier

Step 010 ALU A, ~ A:J ~ ~ Ba ALU A, ~ A:J ~ B2 B3 MIO MULT

1 X X X

2 X X X X X

3

4

5 Read B 01 01

• 6 Read A 01 01 H BA

7

t)
8

9 X X X

10 X X X X X

11

12

13

14

15

16

17

18

· D D
· D 0 tn

&!
>--"5
:E
.5

..---I-----. ~
"0
"0
.c

ii:
~
III
>-
~
"5
E
r:.: ..

L------l :5
r-----_ ;:

D D 0
~ D 0

44

,...
~ ..
:;
0>
u:

,"----,I [- -]

- -I 'L....-..---J

~
"'---y 7

WR

Figure 4-1.12 Line 8: The product WRBR is used by Re ALU to start to form B'. Save product in A3 Re A'.

.;

0 i
< ..
.2
~
.5
U
::I
't:I

~ 0 a
1/1

~

! rn
III
1:: as
'Iii
S
::I ...
c(

.5
~ >-
II: .a

In 't:I
CII
1/1
::I

~
In

U

0 0
::I

'l 't:I

II: e
In fl.
I .;; II:
~ CII

C

~ :::i

M
"':

II: ...
~ ..!-

!!!
::I
til u:

46

r-- - I

~

Figure 4-1.14 Line 19: BIWR used by 1m ALU to complete B'. Also save this product for A' later. Re ALU starts on A'.

Table 4-5 Line 10: a conflict has developed In 1m A1

Real Imaginary Multiplier

Step 010 ALU A, .~ ~ a, B:z Ba ALU A, ~ ~ a, B:z Ba MIO MULT
,

1 X X X

2 X X X X X

3 X X X X

4 X X X X X X X

5 Read B X X DI X X X X 01 X X

6 Read A X 01 X X X l/(. X H X X BR X

~
7 H H H BRWR

B A1-MSP H MSP ALU H B, BRW,

9 X H H X H A1-MSP H MSP X ALU B,WR

10 X A1 + A3 X ALU H B2-MSP lX H X ALU MSP X B,W,

11 X X X X

12 X X X X X X X

13 X X X X X X X X

14 X X X X X X X X X

15

16

17

1B

f

Table 4-6 Line 10: conflict in 1m A1 resolved by delaying Read A one cycle to Line 7 (from 6).

Real Imaginary Multiplier

Slep 010 ALU ~ II:!. Aa ~ B2 B3 ALU ~ II:! Aa Bl B2 B3 MIO MULT

1 X X X

2 X X

3 X X X X X

4 X X X X X X X

5 Read B X X 01 X X X X 01 X X

6 X X X X X X H X X BR X

~
7 Read A 01 X 01 H BRWR

8 A1·MSP H MSP ALU H X BI BRW1

9 X H H H A1·MSP H MSP X ALU B1W R
i

10 A1 + A3 ALU H B2·MSP H H X ALU MSP X B1W 1

11 X X X X

12 X X X X X X X

13 X X X X X X X X
\

14 X X X X X X X X X

15

16

17

18
. - -- --_.

t

(J'1
o

Figure 4-1.15 Line 11: BIWI used by Re ALU to complete B'. Hold this product Re A' later. 1m ALU starts on A'.

0 '" !II

0
~
Q.
E
0
U
:::I
...J
c(

.5
<Ii
N

n ID

E
,g
~
0
E
CD
E
S
.!It
U .,
.a
III
CD

:!:!

~
N

0
...
CD

~
<:

a: ::i
ID ill

<0 ...
~

0 .; 0
!!!
:s

a: Cl

ID u::
+
a:

C(

51

0 0 0 Gi
:§

'" ::s
0 .:;

0
~

0
C-

.5 -
~ < Q)

iii
Ii
E
0
u

'" 01

<
'" ~ "0

.t::
;:)
..I
c(

.5
<
'" Q)

]!
C-
E
0
u
;:)
..I
c(
Q)

a:
~ M ,....
III Q)

.5

..I

0
" --: ,....
..!-
~ ::s
Cl u::

52

ui

0 0 0
GI
C
~

.5
"Q
GI
t:

~

0 0
~

i
Cc 5

.IJ
GI .s:. ..
1/1
GI
Gi
ii.
E
0
U
1/1 :c
t-

.-N
ct
E .g
~
0
E
GI
E
oS
.:0:
U
01

0 0 0
.IJ

<c
GI

~
.;,;

0 0
GI
.5
...I

II:

Cc 00
or:
.a-
GI ... ::s
1:11

u:::

53

Table 4·7 One complete butterly: lines 5-14 (10 lines).

Real Imaginary Multiplier

Slep 010 ALU A, Az Aa Bw ~ ~ ALU A, Az Aa Bw B2 ~ MIO MULT

1 X X X

2 X X

3 X X X X X

4 X X X X X X X

5 Read B X X 01 X X X X 01 X X

6 X X X X X X H X X BR X

~
7 Read A X 01 X X X X 01 X X H X BRWR

8 X A1·MSP H X MSP X ALU X H X B. BRW,

9 X X H X H X H A1·MSP H X MSP X ALU B.WR

10 X A1 + A3 ALU H B2·MSP H H X ALU MSP X B.W.

11 X B2+MSP X H MSP ALU A1 + B3 X ALU H X H X

12 Write B2 X X H X H X A2 + A3 X ALU X X

13 A2. B1 X ALU X X X X H X X X

. 14 Write A2 X X X X X X X X X

15 X X X X X X X X

16 X X X X X

17 X X X

18 X

Table 4-8 The code repeats every 4 lines. Thus a new butterfly Is completed every 4 cycles.

Real Imaginary Multiplier

MIO I MULl

6 I Write A2 I A1 + A3 I IALUI I H I I B2-MSP I H H I H IALU IMSpl BR B1W 1

C11
BRWR

C11
BI BRW1

9 I Read B I A2 - B1 I H I ALU I H I 01 I H A1-MSP I H I H IMSPI 01 I ALU I B1WR

10 I Write A2 I A1 + A3 I IALUI I H I B2·MSP I H H I H IALUIMSPI BR B1W 1

11 I Read A I B2+MSP I 01 I H IMSplALUI A1 + B3 I 01 I ALU I H I H I H I BRWR

12 I Write B2 I A1-NSP I H I H IMSpl H IALUI A2 + A3 I H I ALU I BI BRW1

13 I Read B I A2 - B1 I H I ALU I H I 01 I H A1-MSP I H I H B1WR

14 I Write A2 I A1 + A3 I IALUI I H B2-MSP I H H I H IALU IMSPI BR B1W1

15 I Read A I B2+MSP I 01 I H IMSPIALUI A1 + B3 01 I ALU I H I H I H BRWR

16 IWrlteB21 A1-MSP I H I H IMSPI H IALUI A2 + A3 I H I ALU I BI BRW1

17 I Read B I A2 - B1 I H I ALU I H I 01 I H A1-MSP I H I H IMSP B1WR

18 I Write A2 I A1 + A3 I IALUI I H B2-MSP I H I H BR B1W 1

01
0)

Step DIO

-2 Write A2

3 Read A

4 Write B2

I
6 Write A2

7 Read A

8 Write B2

10 Write A2

11 Read A

12 Write B2

14 Write A2

15 Read A

16 Write B2

18 Write A2

-

ALU

III
A1 • A3

B2.MSP

A1-MSP

A1 + A3

B2+MSP

A1·MSP

I
A1 + A3

B2.MSP

A1·MSP

A1 + A3

B2.MSP

A1·MSP

A1. A3

Table 4-9 A new butterfly must also start every 4 cycles.

Real Imaginary Multiplier

~ ~.~ ~ B:z Sa ALU ~ ~ ~ ~ B:z Sa MIO MULT

I
ALU H B2·MSP H H H ALU MSP BR B,W,

DI H MSP ALU A1 • B3 DI ALU H H H BRWR

H H MSP H ALU A2 + A3 H ALU B, BRW,

]I II I
ALU H B2·MSP H H H ALU MSP BR B,W,

DI H MSP ALU A1 + B3 DI ALU H H H BRWR

H H MSP H ALU A2 + A3 H ALU B, BRW,

• ALU H B2·MSP H H H ALU MSP BR B,W,

DI H MSP ALU A1 + B3 DI ALU H H H BRWR

H H MSP H ALU A2 • A3 H ALU B, BRW,

ALU H B2·MSP H H H ALU MSP BR B,W,

DI H MSP ALU A1 + B3 DI ALU H H H BRWR

H H MSP H ALU A2 + A3 H ALU B, BRW,

ALU H B2-MSP H H H ALU MSP BR B,W,
-

<.n
-...j

Figure 4-1.19 Three butterflies In progress at the same time: A' for one BF Is being written back. Arithmetic for next BF Is In progress.
The first product for the BF that is next again Is being set up.

01
OJ

Step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 4-10 Coefficient selection: work back from required products.

FFT Addr Gen o Addr Pipeline Multiplier

tnstr A SEL tnstr SEL RAM Register PROM
010 Mult RIW Enable SEL

X \ \
X \
X X \ X

X X

X Read B X

Re X

tm Read A I BRWR

Re X I BRW 1

1m X B1WR

X X BWI

X X X

X Write B2 X

X X

Write A2 X

X

\
X j l

i

0'1
<0

Slep

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 4-11 Coefficient pipeline: pick up 'k' from 29540 and hold for all four products.

FFT Addr Gen o Addr Pipeline Multiplier

Inslr A SEL Inslr SEL RAM Reglsler PROM 010 Mult
R/W Enable SEL

X X X \ \
X X \
X X X \ X

X X X

8 En X Read B X

H Re X

H 1m Read A / BRW R

H Re X I BRW,

X X 1m X B,W R

X X X B,W,

X X X X

X X Write B2 X

X X

Write A2 X

X

\
X \

t t

O'l o

Table 4-12 Data-address pipelining: needs 2-level push-down-only stack in an Am29520/21.

FFT Addr Gen o Addr Pipeline Multiplier

Slep Inslr A SEL Inslr SEL RAM Reglsler PROM 010 Mull R/W Enable SEL

1 X X X X X \ \
2 X X \ \
3 X X X X X \ X

4 X X X

5 8 B1 R En X Read B X

6 H Re I X

7 A1 R H 1m Read A BRW R

8 X X H Re X I BRWI

9 X X X X 1m X B1W R

10 X X X X X BWI

11 X X X X X X

12 B2 W X X Wrlle B2 X

13 X X

14 A2 W Write A2 X

15

16 X X X

17 \
18 X X X \

f f

Table 4-13 Data-address pipeline: pipeline register instructions; 29540 address selection_

FFT Addr Gen D Addr Pipeline Multiplier

Step Instr A SEL Instr SEL RAM Register PROM 010 Mult RIW Enable SEL

1 X X X X X X _\ \ I

2 X X X X \ \
3 X X X X X X \ X

4 1 Push B X X X

5 8 H B1 R En X Read B X

~ 6 0 Push A H Re X

7 H A1 R H 1m Read A BRWR

8 X X X X H Re X I BRWI

9 X X X X X 1m X BIW R

10 X X X X X X X BWI

11 X X X X X X X

12 X X B2 W X X Write B2 X

13 X X X X X X X

14 X X A2 W X X Write A2 X

15 X X X X X

16 X X X X X

17 X \
18 X X X j t

t i

0)
I\)

Slep

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 4-14 Full address generation code: for one buUerfly; still to be overlapped.

FFT Addr Gen o Addr Pipeline Multiplier

Inslr A SEL Inslr SEL RAM Reglsler PROM
010 Mull RIW Enable SEL

X X X X X X \ \
X X X X X '\

COUNT X X X X X X

H 1 Push B X X X

H 8 B1 R En X Read B X

H 0 Push A H Re X

X A1 R H 1m Read A BRWR

X X X X X H Re X 7 BRWI

X X X X X 1m X BIW R

X X X X X X X X BWI

X X X X X X X

X X X B2 W X X Write B2 X

X X X X X X X

X X X A2 W X X Write A2 X

X X X X

X X X X X

X

X X X

HOLD PUSH 8

t t t Am29520 (2)

11, I 0 AS A1 A2

Am29540
'------<.~I MUX

8 1 8 2

~ Am29825 (2)

....... 1

Figure 4-1.20

DATA
RAM ADDRESS

COEFFICIENT
PROM ADDRESS

HOLD 8

t t
11. 10 AS

~

Am29540 " A __ A._

m
"'"

~ Am29520 (2)

~~
i ~ 1

I

ENABLE ,

Figure 4-1.21

B
DATA

.... 1 I 1 P RAM ADDRESS

fLY I
B1 B2

Am29825 (2)

(READ)

COEFFICIENT
PROM ADDRESS

O"l
CJ1

HOLD

t
11 , 10

Am29540

o

+
AS

PUSH A

t Am29520 (2)

A1 A2

B1 B2

Am29825 (2)

K 1 I ~

HOlD

Figure 4-1.22

DATA
RAM ADDRESS

COEFFICIENT
PROM ADDRESS

COUNT

+
It. 10 AS

Am29540 Ao· At5 I

Ol
Ol

~ Am29520 (2)

A1 A2

rJh-.Ih ~
, I

HOLD

Figure 4-1.23

A
DATA

MUX (READ) ~ ... RAMADDAESS

B1 B2

Am29825 (2)

K) I e.. 1M
COEFFICIENT
PROM ADDRESS

(J')
"-J

HOLD

t
11, 10

Am29540

t
AS

PUSH 8 + Am29520 (2)

A1 A2

8 1 82

Am29825 (2)

(;li"""""' _l

HOLD~

Figure 4·1.24

DATA
RAM ADDRESS

RE
COEFFICIENT
PROM ADDRESS

HOLD 8

~ t
11, 10 AS

Am29540

~

ENABLE -.

Figure 4-1.25

t Am29520 (2)

A1 A2

B1 B2

Am29825 (2)

K

DATA
RAM ADDRESS

1M
COEFFICIENT
PROM ADDRESS

HOLD 0

t +
11• 10 AS

Am29540

~

PUSH A

t Am29520 (2)

A1 A2

B1 B2

Am29825 (2)

KKl I @:

HOLD 1

Figure 4·1.26

DATA
RAM ADDRESS

RE
COEFFICIENT
PROM ADDRESS

COUNT

+
11• 10 AS

Am29540 Ao - A15

-..J
0

HOLD~

Figure 4-1.27

t Am29520 (2)

A1 A2

8 1 8 2

Am29825 (2)

KK) I @:

DATA
RAM ADDRESS

1M
COEFFICIENT
PROM ADDRESS

HOLD

t t
A., I

11, 10

Am29540 ..

:l.

PUSH B

t Am29520 (2)

I
A1 A2

~
W'1-1 ~I II i ~

~ I
B1 B2

Am29825 (2)

KK 1 I 6>

HOLD,.

Figure 4-1.28

B
DATA
RAM ADDRESS
(WRITE)

RE
COEFFICIENT
PROM ADDRESS

HOLD 8

t t
~. I 0 AS

Am29540

~

ENABLE 1

Figure 4-1.29

~ Am29520 (2)

A1 A2

r-___ ... IMUX

B1 B2

Am29825 (2)

KK) 4 ...

DATA
RAM ADDRESS

1M
COEFFICIENT
PROM ADDRESS

HOLD 0

t t
~. 10

~I
Am29540 I!,

......
Co)

PUSH A

t Am29520 (2)

IrE' A,

~
@I , _IMUX~

~·I
8 1 82

Am29825 (2)

KKK) I $):

HOLD 1

Figure 4-1.30

A
DATA
RAM ADDRESS
(WRITE)

RE
COEFFICIENT
PROM ADDRESS

c) The format definition for each instruction. It
consists of defining the order in which the
value of each field is given while writing the
microprogram.

d) The second phase consists of writing the
microprogram using the defined language to
create a source file (Appendix 3, FFT.SRC).

Another meta-assembler is MACASM by Microtec.
Further queries can be directed to: Microtec
Research, Inc., 3930 Freedom Circle, #101, Santa
Clara, CA 95054, (408) 733-2919.

Table 4-9 shows that the four lines of code for the
butterfly are repeated. These are put in a loop and
the condition for exiting from the loop is the FFT
complete flag from the address sequencer. Some
code is required to fill the pipeline and some to
flush the pipeline at the end of the process. The
following is the sequence of events that would
occur from power up.

On power up when the system is reset, the
opcode for the JZ instruction is applied to the
sequencer as described in the control section.
This causes the sequencer to branch to location 0
of the microcode. The op-code for the sequencer
at this location is a jump to location 1. This is done
to enable a development system to jam address
zero on the address bus to emulate the JZ
instruction. The PC in the sequencer is updated
to the externally produced address by the jump
instruction. At location 1, the sequencer waits for
the load IR signal to go active. When this happens,
the sequencer goes to location 2 and waits for the
signal to go inactive. When this happens, the
sequencer goes to location 3 and jumps to 1 of 8
locations at the end of the microcode memory. At
this location, the start address for the process is
obtained and the sequencer jumps to this location.
The process is completed and the process
complete flag is set. When the CPU acknow­
ledges this flag, the sequencer returns to location
1 and waits again.

The schematics for this design are included in
Appendix7.

4.2 DIGITAL FILTERS USING
MUL TIPL Y·ACCUMULATOR

A high speed stand-alone digital filter is frequently
implemented with a multiplier/accumulator,
temporary storage and a state machine which
together perform the following calculation

74

M L

Yn = L.ak*Xn-k- L.bk*Yn.k
k=O k=1

where xk is a digitized time sample and yk is the
output of the filter. This arithmetic can be
performed in real time by a microprocessor or
single chip signal processor for low frequency
applications but a specialized design is required
when the input signal frequencies are above 100
kHz (requiring data sampling at >200 kHz). The
Am29PL141 Fuse Programmable Controller (FPC)
simplifies the design of microcode controlled filters
by incorporating all the control functions in a single
Chip. It contains a microprogram address sequen­
cer and 16 outputs for control of the other circuits
in the system. In a digital filter design these out­
puts manage the temporary storage of previous
inputs and outputs and steer the operands to a
multiplier/ accumulator.

Figure 4.2.1 is an example of a second order IIR
filter (also called a biquadratic filter) using an
Am29PL 141 FPC, an Am2951 0 multiplier/accumu­
lator (MAC), 2-Am29520 multilevel pipeline.regis­
ters, 2-Am27LS19 PROMs and 2-Am29827
buffers. The Am29510 consists of a 16x16-bit
parallel multiplier with a 35-bit accumulator. The
Am29520 is a set of four 8-bit pipeline registers
which can be configured as two shift registers for
this design. Anyone of the four registers can be
selected at the output of the Am29520. The
Am27LS19 PROMs are used to hold the coef­
ficients which determine the characteristics of the
filter. The negated coefficients are stored for W3
and W4 to simplify the accumulation and one of
four sets of coefficients can selected by strapping
two address inputs to the PROMs.

The design implements the equation shown
above directly although the sequence of
calculations is done using the oldest data first
for purposes of data management.
Appendixes 4, 5, and 6 contain a meta­
assembler file for three IIR filters. Each
appendix contains a definition file and a
source file. The definition file defines a set of
custom program flow instructions for the filter
and also defines the control functions for the
output pins. The source file uses the
instructions defined in the definition file.
Another way to use a meta-assembler is to
define a standard set of device instructions
(FPC instructions for this design) instead of IIR
filter instructions in the definition phase and to
keep the customization in the assembly
proQram. This has advantages in a complex
deSign since it eliminates one pass of the
meta-assembler when changes or corrections
are made and the program is reassembled.

The operation of the filter consists of receIvIng
data from an AID or a similar filter section,
performing the sum of products required for the
filter and sending the output to a D/A converter or
another filter section. There is signalling for input
data taken and output data ready but synchronous
operation is assumed and there is no "hand­
shaking" where the device waits until data is ready
or taken. This was done because several sections
of this type would normally be cascaded as shown
in Figure 4-2.2 to obtain the desired frequency
response. The signalling enables the sections to
synchronize during powerup and could be used
for diagnosing faults which cause the system to fall
out of synchronization or to resynchronize after
such a fault. The sample program simply sets an
error flag and stops if data is not available when
needed or taken when the calculation is complete.
Since only a fourth of the PROM space is needed
for the filter, a strapping option can be used for the
coefficient addressing to allow a single design to
be used for up to four cascaded sections. A filter
constructed out of these sections requires five
clock periods to produce an output from each
input data sample so 10 MHz parts are capable of
operating at a 2 MHz sampling rate and can handle
input frequencies up to 1 MHz. These figures can
be scaled linearly when faster or slower parts are
used.

Data management in the Am29520 is accom­
plished by configuring the device into two shift
registers each containing two levels. The A
registers hold the two previous input samples and
the B registers hold the two previous outputs. The
tri-state buffers on the input isolates it while the
output data is routed to shift register B. Two FPC
outputs are used to control the complementary tri­
state enables in order to eliminate the need for an
inverter.

A variation of this design could be used for a
higher order filter by substituting a RAM or register
file for the Am29520s. An example of a sixth order
IIR filter is shown in Figure 4-2.3. This example is
programmed to handshake on input and output
since it is not a section of a cascaded filter. In order
to obtain a NOP in the MAC during the
handshaking, a zero is stored in the coefficient
PROM and a zero product is accummulated while
waiting for the input data ready or output data
taken handshake. In the previous example it was
possible to route operands to the MAC on every
cycle since the registers could input and output
simultaneously. However, this variation uses two

cycles during which no calculations take place to
store input and output values in the RAM. These
cycles can be reclaimed to increase the
throughput by adding hardware to route data to
the MAC while writing into the RAM or by selecting
write-transparent RAMs which place the data being
written on the output during the write cycle.
However, this would only be of value if the data
flow was synchronous and the input and output
handshaking loops could be removed.

The two shift registers required for the filter are
emulated by a RAM in which logical addresses
represent the position in the shift register. A
counter and an adder are used to translate the
logical address to a physical address for the RAM.
Reading an input data sample increments the
counter and "shifts" the data in the RAM. With a
minimum of handshaking time, this filter is capable
of sampling data at a 600 kHz rate and filtering data
containing frequencies up to 300 kHz when
operated at 10 MHz.

Because RAM sizes are available in discrete steps,
the direct implementation of a sixth order filter is an
acceptable choice. However, the 16 RAM storage
locations can be used more efficiently if the
canonical form of the IIR filter is implemented. This
alternate form of the filter can be used whenever
the number of previous inputs in the calculation is
equal to the number of previous outputs, i.e., M =
L for the summation limits. The circuit shown in
Figure 4-2.3 can be used to implement an order-
15 filter by changing the FPC program to store
intermediate calculation values instead of inputs
and outputs. The equations to be calculated
become

and

M

Z n = X n + L a k * Z n-k
k=O

M

Yn=Lbk*Zn-k
k=O

The intermediate value z is calculated from the
input and previous values of z and then entered in
the shift register. The output is then calculated
from the values of z in the shift register. A zero
coefficient is required to allow the MAC to hold an
output value during handshaking as in the pre­
vious example. These number of calculations re­
quired limit the filter to a sampling rate of 300 kHz.

---"

75

P14

INPUT DATA OUTPUT DATA
READY TAKEN

LOW CC Am29PL141

P12-11

Pl0-9

LOW

INPUT Pl4-2
DATA

TAKEN

ERROR OUTPUT
DATA

READY

P3

P4
P13

DATA IN

l
0

Am29827
-< OE

Y
~

...
'I

'Ii '7 LOW T P8-6

-I 0 A

-5 Am29520 Am27LS19

-C OE
Y

LOW-C OE
0

II
,7~wOH 'Ii

- RND

- ACC Am2951 0 SUB r- P5
-C OE P PREL r- LOW

~
DATA OUT

Figure 4-2.1

I CON~~TER H .. __ I_IR_--ilH .. __ I_IR_ H .. __ I_IR_--ilH CON~~TER I

Figure 4-2.2

76

.....

INPUT DATA OUTPUT DATA
READY TAKEN

LOW --I CC Am29PL 141

P

INPUT
DATA

TAKEN

P14-2 OUTPUT
DATA

READY

P14 rT

Am74LS161

Q

P12-9

~J " 7

A B

Am29LS381

F

[

DATA IN

~~
D

Am29827

r~Y
A

...

" 7- LOWTP8-6

r-~
DI A

~~
A Am27S07 Am27LS19

OE DO LOW-< OE 0

~ lj
" 7~~ HIGH

RND X YTCp

ACC Am29510 SUB t-- PS
-< OE P PREL t-- LOW

" 16}
DATA OUT

Figure 4·2.3

CHAPTER 5
ARTICLES

Record signal-processing rates
spring from chip refinements

Improved buses, reconfigurability, pipelining, and parallelism unite
in a bipolar family for building array and signal processors

by Bernard New and Lyle Pittroff, Advanced Micro Devices Inc" Sunnyvale, Calif.

o The number-crunching microprocessor requirements
of the 1980s are ill-served by today's comparatively slow,
conventional central processing units, Instead, the algo­
rithms executed by both general-purpose array proces­
sors and the more specialized digital-signal processors
require highly individual architectures for maximum
speed and performance, Jumping on the fast track is a
new group of bipolar devices-the AM29500 family­
that combines internal emitter-coupled-logic circuit
design for speed with TTL outputs for compatibility with
the outside world,

The family is able to overcome such speed-retarding
problems as inadequate data-bus memory and band­
widths and slow execution times through a redesigned
bus structure and parallel and pipelined processing, In
fact, the bus structure is designed so that there are
enough parallel buses to keep a device's multiplier or its
arithmetic processing unit, or both, busy during each
cycle. These features, plus programmable reconfigur­
ability, make the 29500 family the fastest group of
large-scale integrated parts for signal processors to be
commercially available. In one series of tests, a 29500-
based system had three times the speed achieved by the
older 2900 family.

The 29500 series are general-purpose building blocks.
They include a byte-slice, multiple-port programmable
signal processor (the 29501), a 16-by-16-bit parallel

Reprinted from ELECTRONICS
July 28,1982, copyright 1982
by McGraw Hill,lnc., with
all rights reserved

79

multiplier with programmable input/output (the
29516/17), a multilevel pipeline register for data and
address pipelining (the 29520121), and a fast-Fourier­
transform address sequencer (the 29540).

To increase processor speed, architectural enhance­
ments had to be made to the older 2900 device designs.
That family took some steps in the right direction
because it provides many of the peripheral building
blocks, like interface devices and direct-memory-access
chips, needed for real-time signal processing. But the
2900's arithmetic devices are targeted at general­
purpose computing. They do not have the parallel chan­
nels that are required for a high-speed array or signal
processor environment.

One way of satisfying this need was to upgrade the
2900 family's bus structure, number organization, and
resource management. The new bus structure can sup­
port addition or subtraction and multiplication on every
cycle because of extra parallel buses. Number organiza­
tion can now handle complex numbers in parallel quick­
ly. In addition, flexibility of resource management per­
mits the building blocks to be interconnected in enough
ways to support all algorithms of interest efficiently.

For dedicated-function and multiple-algorithm pro­
cessing (Fig. 1), a special-purpose processor like the
29501 operates under the control of a host computer
system that switches large blocks of data between its

OUTPUT

MAIN
MEMORY

main memory and temporary slave
through DMA transfer. Once this
transfer is complete, the special-pur­
pose processor operates under local
program control. Each algorithm is
executed by its own software routine,
which is stored in its own local mem­
ory independently of the host com­
puter and its high-level language.

Although the precise architecture
of Fig. 1 varies with the algorithm
used, all array- and signal-processing
algorithms have similar needs for

1. Dual-purpose. In a typical array- or digi­
tal-signal-processor architecture, both dedi­
cated and multiple algorithm functions can
be implemented. A host computer provides
overall guidance and a large memory.

writing it into RAM locations 000000 to 000007.
When the first four memory cycles are over, U 3 goes

into the high state and the decoding occurs. The other
half of U, furnishes a switch-reset pulse when the system
has stabilized. This II-microsecond pulse sets the pro­
cessor but does not clear the register. Thus, for all reset

Generating a negative voltage
for portable instruments
by J. D. McK. Watson. Biomedical Engineering Research Group,
University of Sussex, Fa/mer, Brighton, UK

Many recently designed microcomputer-based portable
instruments require + 5- and - 10-volt dc supplies.
Though + 5 v can be readily derived from a battery
supply by means of a linear regulator, the latter needs a
special circuit. This f1yback converter presents a novel
power supply design that uses just one operational ampli­
fier and a few discrete components. The circuit efficien­
cy is about 75% for a load of about 10 milliamperes, and
the output voltage can be changed by substituting an
alternative zener diode.

Operational amplifier U I functions as a current­
sensing threshold switch and is capable of providing a
wide output-voltage swing. This threshold is adjusted for
optimum supply efficiency and output-voltage regula­
tion. QI is driven by the output of UI and operates as a
saturating switch, with pulse transformer T, functioning
as its collector load. The transformer is designed for a
turns ratio of I: I with primary and secondary induc­
tance of 3 millihenrys and a resistance of I ohm,

The current in T,'s primary through QI provides a

Flyback converter. This novel flyback con­
verter uses just one op amp, U,. pulse trans­

former T,. and a few discrete components to
provide a - 1O-V dc voltage. The supply

ripple contents are low and the circuit effi­

ciency is approximately 75%. Zener diode D2
is used to set the output voltage.

lMQ

80

conditions set by the U,-based switch, the vectors must
be fetched from the RAM, thereby allowing the operating
system to alter them. 0

Designer's casebook is a regular feature in Bectronios. We invite readers to submit original
and unpublished circuit ideas and solutions to design problems. Explain briefly but thoroughly
the circuit's operating principle and purpose. We'll pay $75 for each item published.

signal to the inverting input of U I whose noninverting
input is fed from three sources. A portion of the op amp's
output provides positive feedback to ensure fast
switching, an ac signal from T, 's secondary results in the
collapse of the flux before recycling, and a dc component
tapped from the output lowers the threshold when the
output exceeds zener diode O,'s breakdown voltage.

When the circuit is switched on, U I delivers a high
output to QI and turns it on. Current in the primary of
T I increases linearly, developing a positive voltage at its
secondary. This rising primary current also creates a
voltage at the inverting input of U I that is sufficient to
turn it off. As a result, the flux in T, collapses and the
secondary current charges capacitor C I. Ouring this
energy transfer, R4 holds the non inverting input negative
and inhibits the switch from turning on.

As subsequent cycles add charge to C I, a point is
reached when 0, conducts and inhibits U I through R,.
This stage is disabled until the dc output voltage falls
below the zener threshold, whereupon the circuit
resumes oscillation. The amplitude of the output voltage
is approximately equal to the zener voltage of 0,.
Because of the nonlinear method of regulation, a small
amount of ripple is superimposed on the output. For the
component values shown, the ripple is of the order of 40
millivolts, but can be reduced by using a RC filter
network at the output. Maximum power output is lim­
ited by the supply voltage and by the saturation current
ofT,. 0

R3
1.0Q

Rs
1.0 kQ

R,
D2 2.2 MQ
10 V

C,
47/lF +

arithmetic and addressing-short, repetitive calculation
loops requiring parallelism and pipelining. In addition, in
digital-signal processing, arithmetic operations using
complex numbers may be necessary, whereupon the
computational load increases to twice as many additions
or subtractions and four times as many multiplications
as for real numbers.

Because calculation loops for arithmetic operations
are short, the 29500 family surrounds the additions with
continuous memory accesses-data is fetched, the calcu­
lation loop performed, and the results written back into
memory. Hence there are many times more memory
accesses than there are data points. For FFTS, the num­
ber of repetitive memory accesses is multiplied by the
number of passes through the data. Fortunately,
although the memory-access sequence is long, it is well
structured, making it possible as a result to design dedi­
cated address sequencers.

Divide and rule

The purpose of pipelining is to allow lengthy opera­
tions to be divided into suboperations, so that when
one piece of data has completed a suboperation, the
same hardware can start on the next piece. In this way,
the 29501 allows up to a 500% speed improvement.

For example, because a typical processor handles a set
number of algorithms, its architecture can be very spe­
cific concerning arithmetic and address generation-no
longer does the CPU have to mix addressing with arith­
metic computations. Also, separate sections can be
streamlined to calculate each type in parallel and fast.

A significant feature of the data path for the 29500
family is the fact that the devices handle only data and
do no address calculations. The data path can, therefore,
be optimized for arithmetic.

The 29501 multiport parallel processor also represents
the current thinking about multiport organization. It has
a data-bus port, an output port to a multiplier, and an
input port from a multiplier. The chip can process an
FFT fast because of its highly parallel internal bus struc­
ture. In this structure, six registers operate as pipelines
and are connected to the 110 ports and an arithmetic and
logic unit by 10 separate byte-wide internal buses.

A typical cycle on the 29501 consists of data input
from memory, data output to the multiplier, retrieving a
previous product from the multiplier, and register-to­
register ALU operations and data moves. Because these
operations can occur during the same cycle, data manip­
ulation is limited only by the designer's creativity. This
flexibility, plus the possibility of parallel processors oper­
ating on complex numbers, is what makes high-speed
operation possible.

Twice as fast

The 29500 family uses two high-speed parallel 16-
by-16-bit multipliers-the 29516 and 29517. The 29516
is compatible with TRW'S MPY-16HJ multiplier but is
more than twice as fast and has an output multiplexer.
Either the least or the most significant product can be
selected at this multiplexer output for use in many
pipelined architecture calculations.

On the other hand, the 29517 multiplier incorporates

81

all the features of the 29516 but has a modified 110-

register clocking structure to provide a single-clock input
with register enables. This approach is preferred to the
older clock-gating method, which suffers from skews.

Dedicated addressing

Address-sequencing complexity for array and signal
processors can range from integer counting to the com­
plicated number patterns of FFTs. To keep addressing
speeds high, the 29500 series generates addresses in
parallel to the data path. However, other architectural
considerations must also be weighed.

For a specific application, several system implications
affect the choice of algorithm from the diversity of FFTs
available. This choice, together with the transform
length (or lengths) to be implemented, determines the
address sequence to be generated. Usually, the nested­
count nature of these sequences has forced the designer
to use many medium-scale integrated-circuit packages.

The 29540 is a single-chip solution to the address­
sequencing problem (Fig. 2). Four control inputs allow
programmed or hardwired control of the actual number
of data points in the transform. From this and other
control-input commands, the 29540 can be sequenced
through the entire transform while providing output
flags. These flags indicate when each data pass is over
and when the entire transform is complete.

For their part, the 29540's control inputs accept the
most common FFT formats. The designer can opt for
bit-reversed output order or bit-reversed input order,
radix-2 or radix-4 address sequences, and decimation-

4·BIT TRANSFO RM LENGTH

ADDRESS
SELECT, _ .. _+-__ •
ASo-AS,

OUTPUT _
ENABLE.OE

16·BIT ADDRESS OUTPUT
(OFFSET INPUT)

ITERATION
COMPLETE

FAST
FOURIER
TRANSFORM
COMPLETE

ODD/EVEN
COLUMN

2. Multiple sequences. Fast Fourier transforms may have unusual
address sequences, and with its four control inputs, the address­
sequencing 29540 chip is designed to handle all of them. It provides
output flags when a calculation is complete.

HOST COMPUTER

ALGORITHM NO.1
29540

FAST-FOURIER- "
TRANSFORM P

ADDRESS
SEQUENCER

ADDRESS
PIPELINE
2952011

DATA
RANDOM-ACCESS

MEMORY
93422 OR 9147

ALGORITHM NO_ 3
(USER-DEFINED)

COEFFICIENT
PROGRAMMABLE

READ-ONLY MEMORY
27S181

16-BY-16-BIT
MULTIPLIER

2951617

MICROCODE MEMORY
27S35 NOTE: ALL 8USES

ARE 16 BITSWIDE
MICROPROGRAM SEQUENCER

2909/10/11

3. Complete. A typical signal-processing system provides separate, parallel paths for complex data_ But in the 29500 setup, address

pipelining handles both data and coefficient addressing operations for fast Fourier and other common transforms_

in-frequency or decimation-in-time sequences.
The 16-bit output port of the address sequencer is

controlled by the counter and transform-length-input
instructions. Any transform from 2 to 65,536 points long
can be selected. The higher-order bits not required for
the specified transforms (a 1,024-point transform only
requires lO-bit addresses) can be preloaded through a
bidirectional address port to access the next data block.

Easy address pipelining

Because the primary objective of this architecture is to
operate on array- or signal-processor systems in a highly
parallel manner, addresses must also be pipelined. As a
result, each address must be tracked, which requires a
pipeline register-such as the 29520 or 29521. These are
byte-slice pipelining registers configurable as a dual
two-level or a single four-level pipeline. In both devices,
the single four-level configuration operates as a push­
only stack. The selection of register is determined by the
designer's choice of system timing and data movement.

The architecture of a typical 29500 signal-processing

82

system (Fig. 3) can employ separate parallel data paths
for complex data. Three possible address-generator
blocks are shown, and together they represent a general­
purpose processor. Address sequences for other than
FFTs might be configured from programmable read-only
memory or 2901-based designs. Address pipelining is
shown for both data and coefficient addresses.

In this design, either bipolar or MaS static random­
access memories store data temporarily, and high-speed
bipolar PROMs and RAMs or MaS ROMs are used for
coefficient look-up tables. The local-control store may be
either a PROM or a writable control-store RAM and can
be controlled by a 2910 program sequencer.

A common benchmark for signal processing is the
execution speed of an FFT. The 29500 processor, operat­
ing at a lO-megahertz clock rate, can perform the trans­
form in 400 nanoseconds. This speed allows a 1,024-
point complex radix-2 butterfly to be completed in 2.0
milliseconds. Compared with the best throughput avail­
able in current bit-slice CPU architectures, this figure is
more than a twentyfold improvement. 0

DESIGN ENTRY

One-chip sequencer
shapes up addressing

for large FFTs

The addressing circuitry of a single Ie accesses
both data and coefficient memories for performing

a broad class of fast Fourier transforms.

Jf.0ne of the most useful algorithms in the
digital signal-processing repertoire,
the fast Fourier transform provides a

quick, orderly, and convenient means of com­
puting the frequency spectrum of a signal.
When combined with' other operations, the
FFT is also useful in correlating or convolving
two or more waveforms, techniques required
to perform radar, sonar, and image processing.

One of the most difficult problems facing the
FFT hardware designer is creating the circuit­
ry to address the memories that hold the data
variables and coefficient constants. The diffi­
culty arises partially because of the memory
space required and the resulting complexity of
either accessing a large number of person­
alized address tables for each FFT or calling
out a large data base in the proper sequence.
Even when addressing is done in software,
there is the problem of speed-the method is

David Quong and Robert Perlman
Advanced Micro Devices Inc.
Robert Perlman is a senior product planning engineer
with the DSPlarray processing group at Advanced
Micro Devices in Sunnyvale, Calif. He obtained a
BSEE from the Rensselaer Polytechnic Institute and
an MSEE from the Johns Hopkins University, and has
previously done design work in airborne digital signal
processing at Westinghouse.

David Quong is a product planning engineer with the
DSPlarray processing group. He received a BSEE
from California State University in Sacramento.

often too slow for real-time applications.
A new chip, however, contains all the ad­

dressing circuitry needed to access an FFT
unit's data and coefficient memories so that a
broad class of functions can be analyzed. The
Am29540 programmable address sequencer is
flexible enough to generate addresses for FFTs
having as few as 2 or as many as 65,536 points.
Twelve algorithms are supported in radix-2
and radix-4 systems, including operations on
complex and real-valued input data (either in­
place or non-in-place transforms); forward
and inverse transforms; and decimation-in­
time (DIT) and decimation-in-frequency (DIF)
algorithms.

A web of nets

Included in the 16-bit sequencer are a but­
terfly counter (see "Generating Addresses
Efficiently," p. 160), a data address generator,
and a coefficient address generator (Fig. 1).
The butterfly circuit actually has two count­
ers, one for columns and one for rows. The
column counter points to the current FFT
stage, or column; the row counter, to the but­
terfly currently being performed within that
stage. The counters are programmable and
can be initialized to perform transforms of
various lengths by prestoring the appropriate
4-bit transform-length code in an on-chip
latch. The transform-length code is placed on
input lines TLo-TLa and latched with signals

Reprinted with permission from Electronic Design,
Vol.32,No.14,Copyright Hayden Publishing CO.,INC.,1984.

83

DESIGN ENTRY

One-chip FFT sequencer

Transform Select (TSEL) and Transform
Strobe (TSTRB).

The butterfly counter executes one of four
instructions: Reset, Reset/Load, Count, and
Hold. These instructions are selected with con­
trol lines 10 and II and are executed on the
rising edge of the Clock Input line (CP). An
FFT is begun by initializing the butterfly
counter with a Reset or Reset/Load instruc­
tion. The Count and Hold instructions are then

used to advance the counter to the next butter­
fly operation or to hold it at the present butter­
fly position.

The counter section generates four flags to
help control FFT sequencing. The Iteration
Complete flag (IT COMP) indicates the last
butterfly operation performed in a stage or
column; the last butterfly operation in a par­
ticular FFT is signaled by the FFT Complete
flag (FFT COMP). The Even/Odd flag changes

Generating addresses efficiently

A quick look at the structure of a fast Fourier trans­
form reveals why the data and coefficient circuitry is so
complex. At the heart of the FFT algorithm is the but­
terfly operation, which takes its name from the schema­
tic representation that shows how output data is gener­
ated from an input waveform.

In the butterfly operation on a radix-2 DIT FFT (Fig.
A), two complex data points, A and B, and one complex
coefficient are used to compute two new complex data
points, A' and B'. The coefficient is a complex ex­
ponential of the form e-j8 = cos 0 - j sin O. Each
butterfly requires one complex multiplication, one com­
plex addition, and one complex subtraction or four real
multiplications, three real additions, and three real sub­
tractions (Fig. B).

An FFT is performed by concatenating butterfly
operations. The butterflies are arranged in columns, or
stages; an N-point, radix -2 FFTcomprises lo~ N stages,

A - a.+laj ~A'-a"+la'i

~ 8' - b',+jb'j
8 - b,+jb j

(A)

(B)

84

each containing N/2 butterflies, and so a total of (N/2)
(I0g2N) operations must be done.

The structure of a I6-point FFT contains 32 butter­
flies (Fig. C). Each circle represents a single radix-2
butterfly operation. The fractional number accom­
panying each butterfly of the last three stages is the
coefficient needed to perform that butterfly: if the value
of the fraction is k, the corresponding coefficient value
is e -jrk. Memory locations in which data is stored are
represented as blocks; in the case of the I6-point FFT, 16
contiguous memory locations must be allocated to store
the 16 complex data points. Each butterfly is performed
by taking input points from the data memory, doing the
necessary mathematical operations with the appropri­
ate coefficients, and returning the results. The algo­
rithm shown is in-place, meaning that the data points
produced by each butterfly are stored in the same
locations as the input data points.

The order in which data must be accessed is not
straightforward. For the FFT shown, data must be
accessed in order 0, S, 1, 9, ... 7, 15, for the first stage.
For the second and following stages, however, data ad­
dressing is somewhat more involved. The second stage,
for example, is performed by accessing addresses 0, 4, 1,
5,2,6,3,7, for the first group of four butterflies; then S,
12,9,13, 10, 14, 11, 15, for a second group. The butterflies
in the third and fourth stages are also addressed in
groups. Stage m has 2m - I groups of N/2m butterflies
with a group spacing of N/2m - 1

Coefficients must also be accessed. For the first stage
of this FFT, only sin ° and cos ° need be acquired. Stage
two, however, uses angles ° and ,../2; stage three uses
0,,,./2, ,../4, and 3,../4; and stage four needs angles 0, ,..12,
"./4, 3,,../4, "./S, 5,../S, 3,../S, and 7,../S. In general, the
coefficient address sequence for the mth stare of this
FFT is 0, BR(I),../N, BR(2),../N, ... BR (2m - -I),../N,
where BR(x) is a function that reverses the order of the
bits of a binary word.

A new coefficient must be accessed for each group of
butterflies. Other types of FFTs have various address­
ing sequence requirements, but this example is a good
representative. FFT analyzers use several techniques to

state after every stage and can be used to
control memory operations for non-in-place
transforms. The fourth flag, KNZlKZ, is of
special use when performing transforms with
real-valued inputs. The last two flags are mul­
tiplexed onto a single pin. When the sequencer
produces a data address fo!:..Ec transform with
a real-valued-input, KNZ/KZ appears on the
pin; for any other type of data, Even/Odd
appears.

generate these data and coefficient addresses.
One of the most common solutions is to place the data

and coefficient addresses in PROMs and then to
sequentially address the PROMs with a counter. This
approach has several serious drawbacks, however. First
the number of data addresses becomes prohibitively
large as the size of the FFT grows. A 4096-point, radix-2
FFT with complex inputs, for example, must address
24,576 butterflies, each requiring two data addresses
and a coefficient address, for a total of 73,728 addresses.
Although that number can be reduced by employing
constant-geometry FFT algorithms that use the same
data addresses for every stage, these algorithms have
the disadvantage of being non-in-place, thereby requir-

x,
x.
x.
x.
x.
x.
x,
x.
x.
x,.
x11

X,.
X'3

X,.
x,.

(e)

When performing a transform, the se­
quencer uses its address generators to create
addresses combinatorially-that is, the data
address generator produces an address for
each input and output data point, and the co­
efficient address generator creates addresses
for coefficients and weighting functions. Thref
control signals-PSD, DIT/DIF, and Radix4/2
-configure the address generators for various
types of FFTs. These signals are stored in an

ing twice the data memory of an in-place transform. The
second disadvantage of the PROM approach is that if a
single system is to perform several different sizes or
types of FFT, a different address table is needed for
each FFT.

Another method uses as much SSI and MSI logic as is
practical. This approach is easily implemented but
usually results in a circuit that consumes considerable
board space, is a headache to control, and takes a long
time to debug. A circuit for the addressing function in a
4096-point FFT might require 10 to 20 chips.

A third approach is to compute the necessary ad­
dresses in software, a method that is often too slow for
real-time applications.

V.

v,

v.
v,.
V.

v,.
v,

v"
v,
V.

V.

V13

v.
V11

v,

v"

85

DESIGN ENTRY

One-chip FFT sequencer

on-board latch controlled by the Select and
Strobe lines (SEL, STRB). The user selects the
desired input data, output data, or coefficient
address with control lines Address Select 0
through 3 (ASo-ASa). The address chosen by
lines ASo-ASa is placed on Address lines
Ao-AIS. Those lines can be forced to a high­
imQedance state by the Output Enable signal
(OE), thus allowing other address generatiori
devices to be tied to the same address bus.

Conserving memory

When addressing data, the sequencer can
generate as many as 216 addresses; the actual
number needed for a particular FFT depends
on the size and type of the transform. An N­
point, radix-2, in-place FFT with inputs that
are complex quantities, for example, must ad­
dress N complex-data points during each
stage. liN is 16, only 16 memory locations need
be addressed, leaving much of the available
address space unused.

TSELo----,

TSTRB
Counter
Instructiono-~~...L-=;~_~_..i.::;:=n

10-1,

Address output/Offset Input +------'
Ao-A15

1. The Am29540 offers a one-chip solution to the
problem of addressing data and coefficient memo­
ries for performing fast Fourier transforms. The but­
terfly counter can be programmed to address any­
where Irom 2 to more than 65,000 points.

The Am29540 offers two data-addressing
options for the user who needs less than 64
kwords of space. The first sets the unused
upper address bits to zero by initializing the
butterfly counter with the Reset instruction.
For a 16-point transform, then, the upper 12
address lines would contain Os for any data
address. The four remaining lines are avail­
able to call 2\ or 16, values. The other option is
to program the upper address lines to a user­
selected value to address a given data block in a
large memory. The up[ler data bits are pro­
grammed by bringing OE high, placing the
desired bit pattern on address lines Ao-A1S, and
then executing the butterfly counter's Reset!
Load instruction. If, for example, the bit pat­
tern ABC016 is used to initialize a 16-point,
complex-input FFT, the sequencer will ad­
dress a block of sixteen data locations begin­
ning at address ABCOI6.

Non-in-place transforms present additional
problems. Unlike in-place transforms, non-in­
place algorithms cannot store the output data
from a butterfly operation in the same lo­
cations previously occupied by the input data.
That problem is overcome by generating both
the input and output data addresses for such
transforms.

Typically, non-in-place transforms are per­
formed with two data memories, one the source
of input data, the other the destination for
output data. When a butterfly operation for a
given stage is completed, the roles of these
memories are reversed, with the output data
memory of one stage providing the input data
for the next. The Even/Odd signal is particu­
larly useful in such cases; since it changes
state after every stage, it can be used to con­
trol the direction of data flow between the two
memories.

Getting the coefficients

To access coefficients, the Am29540 gener­
a tes a 16-bi t address corresponding to one of 216
equally-spaced angles between 0 and 2?l" ra­
dians. For coefficient address A,· the angle
addressed is 2?l"A/216 the angle ?l"/2, for in­
stance, would have the address 400016. The co­
efficient address is fed to look-up memory,
usually PROM, containing sine and cosine
values for the angles selected.

86

A given FFT will use some subset of the more
than 65000 angles available. As a case in point,
an N-point, radix-2 FFT with complex inputs
must access only N/2 equally spaced angles
in the range 0 to 11" radians; a I6-point FFT,
then, needs only eight different angles. The
sequencer automatically chooses the angles
needed in the proper sequence, skipping over
unused values.

The coefficient-addressing scheme em­
ployed carries a significant benefit for systems
in which various sizes of FFTs are to be imple­
mented. Because the chip automatically ac­
cesses only those sine and cosine values needed,
a single sine/cosine table can be used to per­
form FFTs of various sizes. If, for example, the
user creates a look-up table containing 2048-
sine and cosine values between 0 and 11" radians,
that table can be used to perform all radix-2

complex FFTs with 4096 or fewer points.
Most FFT algorithms currently in use are

designed to process complex input data. The
Am29540 supports 12 different types of this
transform (see the table, below). The choices
include:
.Radix-2 or radix-4 transforms. The butterfly
structure of a radix-4 transform is more com­
plicated than that of radix-2 but offers some­
what greater computational efficiency. Each
radix-4 butterfly produces four output data
points from four input data points and three
coefficients, and consumes 12 real multi­
plications and 22 real additions. Raqjx-4 trans­
forms are selected with the Radix4/2 signal.
.Decimation-in-time or decimation-in-fre­
quency transforms. These terms refer to two
basic classes of FFTs; they reflect the manner
in which each class is derived. DIT and DIF

Fast Fourier transforms supported by the Am29540

Input data Decimation In-placel Input data Output data Direction of
type Radix type non-in-place ordering ordering transform

Digit- Forward and
2 DIF In-place Normal reversed inverse

Digit- Forward and
2 DIF In-place reversed Normal inverse

Forward and
2 DIF Non-in-place Normal Normal inverse

Digit- Forward and
2 DIT In-place Normal reversed inverse

Digit- Forward and
2 DIT In-place reversed Normal inverse

Forward

Complex
2 DIT Non-in-place Normal Normal inverse

Digit- Forward and
4 DIF In-place Normal reversed inverse

Digit- Forward and
4 DIF In-place reversed Normal inverse

Forward and
4 DIF Non-in-place Normal Normal inverse

Digit- Forward and
4 DIT In-place Normal reversed inverse

Digit- Forward and
4 DIT In-place reversed Normal inverse

Forward and
4 DIT Non-in-place Normal Normal inverse

Real-valued 2 DIT In-place Normal Unique Forward
(RVI)

2 DIF In-place Unique Normal Inverse

87

DESIGN ENTRY

One-chip FFT sequencer

butterfly structures differ somewhat but
require an identical number of arithmetic
operations. The DIT IDIF signal determines
the desired transform type.
eIn-place or non-in-place transforms. Non-in­
place transforms require twice the data memo­
ry of their in-place counterparts. It might seem,
then, that in-place transforms would always be
preferred. Unfortunately, the in-place ap­
proach has a drawback-the digits of the ad­
dress of the input or output data must be caned
for in reversed order. This scheme requires a
reordering operation. The choice between in­
place and non-in-place algorithms is made by
using the appropriate values of ~-AS3 to select
the desired addresses. Should the user select an
in-place transform, the choice of digit-re­
versed-address input or output can be made
with the signal PSD.

Useful inversions

The sequencing chip also can be used to per­
form inverse transforms, a useful feature in
applications requiring a route from the fre­
quency to the time domain. Computing inverse
transforms is straightforward-the address
sequences needed are the same as those for the
forward operations. With radix-2 transforms,

CP

TLo-TLo

TSEL,TSTRB

Radix 4/2, PSD,
DIT/DIF

SEL, ,STRB

the only difference between the inverse and
forward transforms is the complex exponen­
tial: e -j8 must be replaced with ej ",. Changing
the sign of the complex exponential's argu­
ment is equivalent to replacing the coefficient
sin 8 with -sin 8, an operation that can be
executed by slightly modifying the addition
and subtraction operations performed in the
butterfly. Radix-4 inverse transforms require
somewhat similar minor accommodations to
sign changes iii the butterfly calculation.

Some applications demand FFT transforms
with real-valued inputs. The sequencer gener­
ates data addresses for both forward and in­
verse real-valued-input (RVI) transforms of a
type first described by Bergland.1

A weighty matter

FFT filter characteristics can often be signif­
icantly improved by premultiplying the input
data with a series of weighting factors. This
technique, also called windowing, or shading,
can significantly lower filter side lobes and thus
simplify the analysis. The properties of a num­
ber of common weighting functions are well­
documented.2

The sequencer supports two weighting ap­
proaches for radix-2 transforms. The first and

Butterfly counter
instruction (10-1,) ----------------~

ASo-AS. --------------------~ \ \ \ \ \ ~
Parameter addressed ---------------------

2. The Sequencing operation for a 16-point FFT begins by loading the appropriate
transform-length code and control signals into on-board latches. The butterfly
counter is then reset. After initialization, the first butterfly's memory addresses are
selected with lines ASo·AS3• The sequencer is then advanced to each succeeding
butterfly using the count instruction.

88

DESIGN ENTRY

One-chip FFT sequencer

simplest approach is to perform a weighting
prepass before the FFT begins.

The sequencer is programmed to perform the
first stage of a radix-2 DIF transform. The
resulting prepass data addresses access the in­
put data, the coefficient addresses access
weighting values stored in a look-up table. On
completion of the prepass, the part is repro­
grammed to address the type of radix-2 FFT
desired.

The second approach takes advantage of the
structure of a DIT FFT. For the first stage of
the transform, only the coefficient values sin 0
and cos 0 are needed. Weighting can thus be
incorporated in this first stage, using the
stage's multiplier. By configuring the part to

Microcode
controller

(Am2910A)
- Mic7o~d;--

memory
(Am27S45

register PROMs)

Control
lor

rest of
system

Control lines
for Am29540

FFT
address

sequencer
(Am29540)

perform a radix-2, DIF FFT for stage 1, and
then changing the FFT type from DIF to DIT
for all remaining stages, the necessary data,
weighting, and coefficient addresses can be
generated.

A look at an FFT

Virtually all useful weighting functions are
symmetrical. If Y(n) is a symmetrical N-point
weighting function, point Y(x) is equal to
Y(N -x). This symmetry implies that the user
need not store all N points of the weighting
function: (N/2) + 1 points are sufficient. The
sequencer addresses such half tables by gener­
ating both x and N -x. The often-used von
Hann weighting function is one such example,

Host system interface

OMA channel

Data memories
Real data : Imaginary data

Scaling
shifter

(4 Am25S10s)

Data 110
Real ALU

(2 Am29501 s)
Multiplier Multiplier

110 Input

Weighting
A table Q

(2 Am27S43s)

Sine, cosine
A generators Q
(Am29526/27/28/29)

y

memory
(4 Am9168s)

Scaling
shifter

(4 Am25S10s)

Data 110
Real ALU

(2 Am29501s)
Multiplier Multiplier

110 Input

16 X 16 bit
multiplier

(Am29517)
P

3. In a typical system, the Am29540 is used to access data, weighting, and sine
and cosine (coefficient) values in a microcode-controlled FFT processor. This
system can support a 4-kpoint radix-2 transform.

89

DESIGN ENTRY

One-chip FFT sequencer

easily derived from the table of cosines re­
quired by the FFT algorithm itself. Thus, the
need for a separate weighting-function memo­
ry is altogether eliminated.

The sequencer's operation can be best
understood by considering its performance of a
typical FFT. Suppose, then, that an in-place,
radix-2, 16-point DlT FFT is to be implemented
(see "Generating Addresses Efficiently," Fig.
C, p.160). To initialize the device, the appropri­
ate transform-length code and control bits are
loaded into the on-chip latches. For this exam­
ple, the transform-length code has the value
001b; the control bLts must assume the values
PSD = 1, Radix4/2 = 0, and DlT/DlF = l.
After this data has been entered, the butterfly
counter is initialized with a Reset or Reset!
Load instruction.

Once initialized, the part generates data and
coefficient addresses for the FFT's first butter­
fly. For this algorithm, the input and output
data addresses are set at 0 and 1, respectively,
with lines ASo-ASa; the coefficient address is
similarly set to 8. After all the addresses have
been read, the device is advanced to the next
butterfly by executing a count instruction
(Fig. 2).

Defining the system

The Am29540's working environment is a
microcode-driven FFT processor. That system
can be divided into several basic blocks (Fig. 3):
the address sequencer, arithmetic processor,
high-speed data memory and coefficient memo­
ry, system controller, and the host interface.

The address computer generates the read and
write addresses to access data, as well as coeffi­
cient and weighting addresses.

The arithmetic processor, consisting of a
multiplier (here, the Am29517) and two ALUs
(one for real and the other for imaginary data),
efficiently calculates complex data from the
data memory. Using coefficient and weighting
generators, it processes the information and
returns it to the data memory. The data width is
16 bits; therefore each ALU requires two
8-bit-slice multiport pipelined processors
(here, Am29501s). A scaling shifter is provided
in each data path from the memory to the
ALUs.

The high-speed data memory stores input

90

and output data from an FFT operation. It is
also divided into two banks, one for real, one for
imaginary data. The sequencer can be loaded
with a data address offset, allowing data
memory to be addressed at starting locations
other than zero, "and permits the addressing of
selected blocks of data. A set of coefficient gen­
erators (Am29526/27/28/29) provide the co­
efficients needed when performing an FFT and
produce up to 2048 words of sine and cosine
data. This is sufficient to support up to a
4096-point, radix-2 transform. A PROM con­
tains the weighting values for the FFT input
data.

The system controller, as overseer, accepts
instructions through the host computer inter­
face, determines which function must be per­
formed, issues the proper instructions to other
components, and informs the host when the
operation is done. It employs a microsequencer
(the Am2910A) and microcode memory.

The host interface consists of logic to handle
the host systemprotocols and a DMA controller
for high-speed data transfer. During block data
transfer the DMA circuitry has direct access to
the data memory.

The address sequencer generates both read
and write addresses for the data memory.
When, as is usual, the operations for a sequence
of butterflies are overlapped, those addresses
must be temporarily stored in an agile shift­
register pipeline. This structure must unravel
the intertwined sequence of addresses for the
several butterflies that are in progress at any
given time. Here, a multilevel pipeline register
consisting of two Am29520s is used. It can serve
as dual two-level or a single four-level pipeline
register, and each of the registers is available to
the output at any time. 0

References
1. G. D. Bergland, "A Fast Fourier Transform Algorithm for
Real-Valued Series," Communications of the ACM, Vol. U,
Number 10, October 1968, pp. 703-710.

2. F. J. Harris, "On the Use of W'indows for Harmonic Anal­
ysis with the Discrete Fourier Transform," Proceedings of
the IEEE, Vol. 66, Number 1, January 1978, pp. 51-83.

500-1iliz single-board FFT ~ell1
incorporates DSP-optimized chips

VLSI devices optimized for digital signal processing can realize
architectures that~ compared with traditional designs~ save space~

power and money. Such chips serve as the basis for a single­
board system that uses fewer than 40 standard components.

Robert Cohen and Robert Perlman,
Advanced Micro Devices Inc

By employing VLSI devices to implement the fast
Fourier transform, you can build a single-board digital­
signal-processing system that supports sampling rates
to 500 kHz and requires fewer than 40 packages (includ­
ing processor, sequencer and local memory).

Iil such systems, the FFT makes possible many
applications that would otherwise be unrealizable be­
cause of computational complexity. FFT techniques
require a great number of calculations, and general­
purpose computers incorporating the FFT aren't fast
enough for such real-time high-bandwidth signal-proc­
essing systems as radar, video processing and telecom­
munications. Until the introduction of VLSI devices
that are optimized for DSP tasks, only expensive array
processors and special-purpose systems constructed
with hundreds of SSI and MSI components could serve
such applications.

Optimize butterfly execution
Effectively applying these VLSI circuits requires a

familiarity with the FFT's computational requirements
(see box, "FFTs reduce DFT computations"). Then,
you can implement an appropriate algorithm in hard­
ware. Because the FFT's basic operation is the butter­
fly, you can start by designing a butterfly processor.

Fig 1 lists the steps required to process a butterfly.
The list helps you to determine the minimal resources

required: an ALU, a multiplier and enough memory to
hold the real and imaginary components of N samples.
By adding resources, you can increase parallelism and
boost throughput. For example, separate memories for
the real and imaginary components of the sample data
allow you to read A or B (or write A' or B') in one cycle.
Extending this concept, you can divide the data path­
way into a real-variable processor and an imaginary­
variable processor (Fig 2).

The multiplier (or set of multipliers) acts as a shared

1 (READ AAND B) (LOOK UPW')

2 MULTIPLY: ~~I B,w,!; II B.WI'I

3 ADD: I~J-~I r-~-B'w!!=. -+ ~=, B=.W,'=

4 ADD: A,+ ~+~

A,-~+~

5 (WRITE A' and B')

Fig l-Flve sequential steps implement the butterfly, which
is the primitive OFT operation. This list shows that the
absolute minimum resources required /0 implement a butter·
fly are an ALU, a multiplier and memory.

Reprinted with permission from EON, October 31,1984

91

A butterfly processor needs an
ALU, a multiplier and memory

resource for both processors because it operates on
both types of data. Each processor consists of an ALU
and registers that hold intermediate results. Although
you could add more ALUs, they prove superfluous for
the FFT algorithm used here. (Additional ALUs are
useful in radix-4 algorithms; see reference.)

To achieve the best performance, you minimize the
number of cycles needed to execute the butterfly.
Parallel computations allow the processor to accomplish
more in each cycle to effect the desired reduction.

With an architecture like the one suggested-two
memories, two processors and several multipliers-­
what is the smallest number of required cycles? To find
out, examine Fig 1 and start by using two cycles to read
A and B from memory. (You can store Wk in a PROM
and read it concurrently with A and B.) Assuming the
processor has four multipliers, step 2 executes in one
cycle. Step 3 also executes in one cycle if it determines

3

6

8

Fig 2-Separate real and Imaginary data pathways allow
you to share multipliers and reduce required system reo
sources.

DATA
BUS

A

B

A'

B'

REALALU

B.w.: - B,W,'

A. + B.w.: - B,W,'

A, - B,w,:: - B.W,'

IMAGINARY ALU MULTIPLIERS

B.w.: B,VoI" B.VoI" B,w.:

B,w,:: + B.VoI"

AI + 81~ + BR~k

Ao - B.w.: + B,W,'

Fig 3-An 8-step butterfly. which implements the algorithm
prior to optimization, uses its constraining resourc&-the data
bus-only 50% of the time.

92

the left-column difference in the real ALU and the
right-column sum in the imaginary ALU. Step 4 re­
quires two cycles, the left two operations being per­
formed in the real-variable ALU and the right two in
the imaginary-variable ALU. A' and B' are then writ­
ten to memory in two cycles. This process executes a
complete butterfly in eight cycles.

You now estimate how fast this processor can oper­
ate. Assuming that N = 1024, the processor must per­
form (N(log2)N)/2 butterflies (a total of 5120). At eight
cycles per butterfly, the processor needs 40,960 cycles.
Next, assume a 100-nsec cycle time. (Cycle time de­
pends on the slowest pathway through the system,
which is typically via the multiplier; 16x IS-bit combina­
torial multipliers with sub-l00-nsec propagation delays
are common.) Under these conditions, a lk-sample
transform requires 4 msec, corresponding to a 0.25-
MHz sampling rate, which is quite respectable for many
applications. Further scrutiny will reveal ways to re­
duce hardware and increase throughput.

Less hardware does the job faster
Fig 3 shows a resource-utilization table for an 8-step

butterfly. Note that all resources are idle most of the
time: The data bus is active only 50% of the time, the
ALUs 38%, and the multipliers 13%. You can· take
advantage of this idle time by executing butterflies
concurrently, a technique known as pipelining.

For example, after reading A and B for the first
butterfly, the data bus can read A and B for the second
butterfly during cycles 3 and 4 while the multipliers and
ALUs are busy. The multiplier could then begin work­
ing on the second butterfly immediately after comput­
ing results for the first. Using this technique, the
processor still requires eight cycles to complete a

DATA
BUS

A

B

A'

B

A'

S'

REAL ALU

B.W:: - B,WI'

AA + BRW: - B,V'/{'

AI - B.W: - BRwr

IMAGINARY ALU MULTIPLIERS

B.W:: B,WI' B.W,' B,w,:

B,w,: + B.WI'

A, + B,W:: + B.WI'

Ao - B,W:: + B.WI'

B.W,' B,WI' B.WI'B,W::

Fig ~y starting a second butterfly concurrently, you
can create a 5-cyc/e loop and improve throughput 38%
compared with Fig 3's operation.

particular butterfly, but it reduces the average number
of cycles per butterfly because it works on more than
one butterfly at a time.

The most heavily used resource determines the mini­
mum average number of cycles per butterfly that you
can achieve. By using the four idle bus cycles, you can
reduce the average number of cycles per butterfly to
four and double system throughput.

You can see this doubling of throughput clearly in Fig
4's resource-utilization table. A second concurrent but-

DATA
BUS

A

B

A

B

A'

B'

REAL ALU

BRW~ - B.wr

AR + SRW:: - B.W.k

AI - BI~ - BRwr

BR~ - a.Vf

IMAGINARY ALU MULTIPLIERS

BA w,l B, "\' BA "\' B, w,:
BIW~ + BRwt'

AI + BIW~ + BRW.k

AR - BRW~ + B.w:'

BR~ B.W.k BRIIf BIW~

B.W: + BRtW.k
}I

Fig 5-Data-bus utilization is 100% in a 4-cycle butterfly.
Here you can see that using just one multiplier doesn't hinder
throughput.

I: REAL MEMORY

0s-D'5 Do-D7

I I IMAGINARY MEMORY,!

0,-0'5 Do-D7

8 8 8 1
010 010 010 010

Am29501 Am29501 Am29501 Am29501

C'N_ COUT C'N -- COUT

MIO MI MIO MI MIO MI MIO MI

%8 %8 8 8 %8 i8
8 8

I

P24- P 31 P'6- P23

Am29517 r1 WkA~L I
YO- Y7 '-

16 k ,I
Ya- Y15

XO-X'5 W IMAGINARY

Fig 6-This FFT circuit uses only one multiplier and a
handful of other components.

93

terfly starts on cycle 5; A and B are then read, and the
new products are calculated in cycle 7. (You can also
start the second butterfly on cycle 3 or 4.) After
completing cycle 8, the processor jumps to cycle 4
instead of cycLe 1, because it has already read A and B
and computed the new products for the second butter­
fly. This technique creates a 5-cycle loop instead of an
8-cycle loop, improving throughput by 38%.

Fig 5's table shows how to achieve even higher
performance. You can copy cycle 4 into cycle 8, which
allows the processor to jump to cycle 5 and produce a
4-cycle loop. This action doubles the original through­
put. In this case, the data bus experiences 100%
utilization and the ALVs 75%, but the multipliers are
still employed only 25% of the time. Clearly, you don't
need four multipliers. In fact, you can achieve the same
performance with only one multiplier by pipelining an
additional butterfly. A design example demonstrates
this technique.

Start a butterfly every four cycles
The Fig 6 design uses a real-variable processor and

an imaginary-variable processor, each with two
Am29501s to provide 16-bit precision. (The Am29501 is
an 8-bit, cascadable processor comprising an ALV, a set
of six registers, and three data ports.) The two pro­
cessors also share an Am29517 16-bit parallel multipli­
er, which has two 16-bit inputs, X and Y. The Y input
connects to the multiplier I/O (MIO) port on the real
and imaginary 29501s; the X input is driven either by a
PROM containing the complex constants Wk or by
Am29526/27128/29 sine/cosine generators. The high-or­
der 16 bits of the multiplier output (PU;-31) go to the
29501s' multiplier input (MI) ports, while the low-order
16 bits of the product are ignored. Memory consists of
static RAM with a cycle time of less than 100 nsec.

The microcode needed to perform one butterfly is 10
cycles long (Fig 7a), but you should note two things.
First, registers are never used for more than four
cycles, so the processor can load them with new values
every four cycles. This, in turn, means that it can start
a new butterfly every four cycles.

Second, you can superimpose each line of code onto
the line four cycles below it without causing resource
conflicts. For example, Fig 7b's code superimposes
lines 1 through 4 over lines 5 through 8 to start
computing a second butterfly while the first is still
executing. This process repeats in Fig 7c's code, where
lines 5 through 8 are then superimposed over lines 9
through 12. These last four lines contain the code
necessary to compute three concurrent butterflies. You
must ensure only that, when the processor reads or
writes A or B, it knows exactly to which butterfly the
data applies.

FFTs reduce OFT computations

Fourier transforms mathematically
approximate a signal's transfor­
mation from the time domain to
the frequency domain, and sever­
al algorithms implement the tech­
nique. All are based on the dis­
crete Fourier transform (OFT),
which sums time-domain samples
(x(n)) that are multiplied by com­
plex constants:

N--1

X(k) = 2: x(n)W"'!N
n=O

k = 0, 1, ... , N ~ 1,

where W=e IO and each X(k) is a
frequency-domain Fourier coeffi­
cient. The computation of each
coefficient requires N complex
multiplications, where N is the
number of samples. This results in
N2 complex multiplications.

The fast Fourier transform
(FFT) reduces complex multiplica­
tions by eliminating redundant cal­
culations, using the equation

X(k) = G(k) + W2~N H(k)
k = 0, 1, ... , N ~ 1, (1)

where G(k) is the OFT of the even
samples in x(n), and H(k) is the
OFT of the odd samples. (The
algorithm discussed here is a ra­
dix-2 decimation-in-time algo­
rithm; other schemes may provide
additional benefits.)

Shaving pOints
Based on Eq 1, Fig A shows an

8-point OFT that's divided into two
4-point OFTs, one of which oper­
ates on even samples while the
other operates on odd ones. As
Fig A shows, the results are
summed to produce the 8-point
OFT result. This configuration
takes advantage of the fact that

G(k) and H(k) have period N/2. In
other words,

G(k + ~) = G(k)

H(k + ~) = H(k).

Each 4-point OFT requires
N2= 16 complex multiplications,
and combining the intermediate
results to obtain the eight frequen­
cy-domain coefficients requires
one complex multiplication for
each coefficient (the arrows repre­
sent multiplication by the noted
constant). Thus, the Fig A trans­
form requires a total of 40
(16+16+8) complex multiplica­
tions-a savings of 24 compared
with the 64 multiplications re­
quired to compute an 8-point OFT
directly.

By repeating this process and
dividing the 4-point OFTs into 2-
point OFTs, you can eliminate
even more computations. The 8-

point FFT represented in Fig B
requires eight complex multiplica­
tions for the four 2-point OFTs
plus 16 other complex multiplica­
tions, for a total of 24. In general,
the number of complex multiplica­
tions equals the number of col­
umns in the representation (log2N)
times the number of samples.

Another technique allows you to
cut multiplications in half again. In
Fig C, each circle represents a

x(O)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

x(7)

1-'--'-41<---_. X(O)

F-'-4I~.,---:,4.X(1)

1-'--'-4I~"'~A.X(2)

F-'-4IHf-?*-,~.X(3)

F"4IS*-,*",~:eX(4)

l-'--'-4h,,"""",~""'''X(5)

F"4""H..-~:eX(6)

1-'--'-4I~_-_.X(7)
W7/4

~ = MULTIPLICATION BY W2kIN

Fig A-(;ompared with direct computa­
tion of an a-point OFT, decomposing it
into two 4'point OFTs saves 24 complex
multiplications.

x(O) I--_;:-------,--::;t~-------_,_.X(O)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

2·POINT
DFT

1-_;:---~~---.--::;t~---'~---___"L-...,.....X(1)
1...-_-1

2·POINT
OFT

2·POINT
OFT

2·POINT
OFT

1--_'---~~--'--"IIr----''''''''-""*---..L-....,-.X(2)

1-_""-----l----"'~~---'*"-~:..-~E_.....,..,.X(3)

I--_;:--------:--::;tt<----'>r-~..",_~f_~ X(4)

1--'----?iE----"....,.t<---:-r---.7,:;---".,--'-'. X(6)

I-_""-----l..--~~~---_=---~ X(7)

Fig B-This scheme, which uses four 2-point OFTs to transform eight time·domain
samples, requires a total of 24 complex multiplications: eight for the four 2-point OFTs
plus the 16 represented here by arrows.

94

sum and a difference. Using the
structure in Fig D, you define A'
and B' as follows:

A' = A + BW2I<lN

B' = A - BW2kiN .

This notation results because W is
a complex exponential and there­
fore periodic:

N
W2kiN = _ W21k + 21/N .

Because you can use the prod­
uct BXW2kiN to calculate both A'
and B', the total number of com­
plex multiplications drops to
(Nlog2N)/2. This structure is the
primitive operation in FFT calcula­
tions and is called a butterfly oper­
ation. Note that each circle in Fig
C is a butterfly operation. This fact
suggests a pipelined operation,
optimized to execute butterflies,
that can exploit the algorithm's
highly repetitive nature.

x(O)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

xl?)

Dissecting the butterfly
Each butterfly consists of two

calculations:

A' = A + BWk

B' = A - BWk,

where A', B', A, Band Wk are
complex numbers. (Here, the ex­
ponent 2k1N is consolidated into
one term, k, for simplicity.) Divid­
ing these into their real and imagi­
nary parts yields

A' = (AA + j AI)
+ (BA + j BI)(WAk + j Wt'j

B' = (AA + j AI)
- (BA + j BI)(WAk + j Wt'j.

Expanding the products gives

A' = (AA + j AI) + (BA WAk +
j BI WAk + j BA wt - BI Wt'j

B' = (AA + j AI) - (BA WAk +
j BI WAk + j BA wt - BI Wt'j.

Dividing A' and B' into their real

X(O)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

XI?)

Fig C-In this OFT representation, intermediate results are multiplied by the complex
constant W""N and then summed. Note that each sum of products, illustrated by a circle,
is actually a butterfly operation.

95

A A'

B B'

Fig D-The 2-point OFT, or butterfly, is
the primitive operation in FFT calculations.
Fig C includes many such operations and
thus lends itself to a pipelined implemen·
tation.

and imaginary parts yields four
equations:

AA' = AA + BA WAk - BI Wlk

BA' = AA - BA WAk + BI wt
AI' = AI + BI WAk + BA wt
BI' = AI - BI WAk o' BA Wr

These equations share common
terms that need be calculated only
once per butterfly. Regrouping
terms yields additional savings:

AA' = AA + (BA WAk - BI Wt'j
BA' = AA - (BA WAk - BI Wt'j
AI' = AI + (BI WA' + BA WO
BI' = AI - (BI WAk + BA Wt').

You can now determine the
number of calculations necessary
per butterfly: four multiplications
to compute BXWK, a subtraction
to calculate real A' and B', an
addition to calculate imaginary A'
and B', two final additions for A',
and two final subtractions for B'.
This process yields a total of four
products, three additions and
three subtractions per butterfly.

(8)

(b)

(0)

A' ~ A + BK

B'=A-BK

A' _ A + BK

B'_A_BK

A' = A + BK

B' • A - BK

REAL

STEP 010 ALU A, A" A" B, B. B.
1 READB 01

2 I
3 READ A 01

4 A, - MI I MI ALU

5 I I I

6 A,+Aa I ALU I I
7 B. + MI I IvII ALU

8 WRITEB. I
9 A" - B, ALU

10 WRITE A.
11

12

13

14

15

16

17

18

REAL

STEP 010 ALU A, A" A_ B, B. B_

1 READB IQI

2 I

3 READ A 01

4 A - MI MI ALU

5 READB I 01 I
6 A + Aa ALU I I I
7 READ A Bo + MI 01 I MI ALU

8 WRITE B. A, - MI I MI I ALU

9 A" - B, ALU I I
10 WRITE A" I I
11

12

13

14

15

16

17

18

REAL

STEP 010 ALU A A" A" B, B. B_

1 READB 01

2 I
3 READ A 01

4 A, - MI MI ALU

5 READB I 01 I
6 A, + A. ALU I I I
7 READ A B. + MI 01 I MI ALU

8 WRITEBo A, - MI I MI ALU

9 READB A" - B, ALU I DI I
10 WRITE A" A, + A" ALU I I I
11 READ A B. + MI 01 I MI ALU

12 WRITE Bo A, - MI I MI I ALU

13

14

15

16

17

18

IMAGINARY MULTIPLIER

ALU A, A" Ao B, B. Bo MIO MULT

01

B.
01 B.W.

I B, B.W,

A, - MI I MI ALU B,W.

B. - MI I I ALU MI B,W,

A, + B. ALU I I

A" + A" AlU

I

IMAGINARY MULTIPUER

ALU A, A. A_ B, B. B_ MIO MULT

01

B.

01 B.W.

I B, BnWI

A, - MI I MI 01 ALU B,W.

Bo - MI I I ALU MI B. B,W,

A, + B_ DI ALU I I B.W.

Ao + Aa ALU B, B."'I

I

IMAGINARY MULTIPLIER

ALU A, A" I Aa B, Bo B. MIO MULT

DI

B.
01 B. W.

B, B.W,

A, - MI MI DI ALU B1WR

B. - MI I ALU MI B. B,W,

A, + B. DI ALU I I B.W.

A,,+Aa ALU B, B. "'I
A, - MI MI 01 ALU B, W.

Bo - MI I ALU B. B,W,

A, + B. 01 ALU I I B. W.

Ao + A. I ALU B, B.W,

Fig 7-The microcode needed to execute one butterfly in Fig S's circuit is 10 cycles long (a). By following the code in (b) you can
start computIng a second buttarfly concurrently. The code in (c) starts a third concurrent butterfly.

96

Pipeline the FFT processor
to reduce bus's 50% idle time

To help keep these values straight, the circuit uses
the Am29520 multilevel pipeline register. Fig 8 depicts
how this device operates in the address pathway to
memory. Every four clock cycles, at the beginning of a
new butterfly, the Am29540 FFT address sequencer
generates a new set of addresses for A and B. The
29520s store these addresses temporarily in internal
registers that are configured as a 4-deep pipeline. As
each new address is clocked into the first pipeline
register, previously stored addresses advance to the
next register. You can select any register for output
and access the appropriate address for any microcode
cycle. Fig 9 illustrates the order in which this design
stores and retrieves data addresses.

The 29540 also generates addresses for the PROM
containing Wk. It creates a new address for each
butterfly and then stores it in an external register.
Because complex products are computed on successive
cycles, the address to the PROM changes at the begin­
ning of each new butterfly (that is, every four cycles).

Microcode lines 9 through 12 then execute as a loop
until the 29540's FFT Complete signal goes active. The
entire transform requires only 12 words of microcode:
The first eight preload the pipeline, while the last four
perform the computations.

Word size can almost triple
In these FFT implementations, you must be con­

cerned about word growth. Because the FFT butterfly
produces outputs by adding terms, butterfly outputs
may require more bits than each input has. Specifically,
consider the equation A' = A + BWk, where A', A, Band
Wk are complex. This equation, one of the butterfly's
two basic calculations, represents vector rotation and
addition. The term BWk merely describes a rotation of
vector B by unit vector Wk; the result is added to vector
A. The magnitude of A' can therefore be twice as large
as A or B.

Unfortunately, this problem is more insidious than it
appears. Although complex magnitudes do no more
than double at each stage, the real and imaginary
components of these complex values can increase by
more than that amount. Indeed, they can increase by
1 +v2, or 2.41, for decimation-in-time algorithms,
which is the type used here. They can even increase by
2xv2, or 2.82, for decimation-in-frequency algo­
rithms, which use a different butterfly technique (see
reference). In either case, you must allow for as much
as two bits of growth in every stage. You could design a
system with sufficient extra growth bits, but this
approach is wasteful and expensive, particularly if the
transform has many stages.

An inexpensive alternative is to use the block-float­
ine:-ooint scheme. This technique uses a common block

97

Fig 8-The system must keep track of many sets of data
when computing concurrent butterflies. To do so, it must
incorporate an FFT address sequencer.

- 29520 CONTENTS -

MEMORY 29520 REG REG REG REG 29520
CYCLE OPERATION INPUT A, A,. B, B, OUTPUT

0 °B.

1 READ B. 'B °B.

2 °A. ·B.

3 REAl> A, 'A, °B. 0A,
4 °B, °A. °B.

5 READ B, °B, 0A, °B. °B,

6 °A, °B, 0A, °B.

7 READ A, °A, °B, °A. °B. °A,

8 WRITE B. °B, °A, °B, °A. °B. °B.

9 READ B, °B, °A, °B, 0A, °B,

10 WRITE A. °A, °B, °A, °B, 0A, °A.

11 READ A, °A, °B, °A, °B, 0A,
12 WRITE B, °B, 0A, oB, 0A, °B, °B,

*indicates "address of"

Fig 9-Four registers in the address sequencer prove
sufficient to store the various data addresses needed to
compute three concurrent butterflies.

Efficient microcode executes
three butterflies concurrently

REAL MEMORY-LOW

Fig 10-To avoid data overflow caused by word growth,
implement a block-floating-point technique with 4-bit shifters
inserted into the data-read pathway.

exponent for all data_ If the system expects or detects
an overflow, it shifts data to the right and increments
the block exponent_

The circuit shown in Fig 10 implements this approach
with two Am25S10 4-bit shifters inserted between
memory and the real and imaginary processors in the
data-read pathway. The shifters allow you to divide
data read from memory by 1, 2 or 4_ Each time the
system writes data to memory, external logic compares
the two high-order data bits to the sign bit.

If the high-order bits differ from the sign bit, the
data's magnitude has expanded into the high-order
bits, and an overflow could occur in the next column of
butterflies because data could increase by 2.41. Conse­
quently, if logic detects an expansion into the high­
order bits, it sets a flag_ Then, when the next column
begins (signaled by Iteration Complete from the
29540), the system reads all data as shifted to the right
by zero bits (if no expansion took place), by one bit (if
the expansion occurred only in D'3) or by two bits (if the
expansion occurred in D'4)' Note that the sign bit must
be duplicated in the high-order bits_ Upon receipt of
Iteration Complete, the block-exponent counter incre­
ments by 0, 1 or 2. The host CPU can then read this
value to determine the Fourier coefficients' absolute
magnitude_

Though the 29540 FFT address sequencer has many
operating modes to accommodate varying architectures
and algorithms, the system described here executes a
radix-2 decimation-in-time transform that doesn't pro-

98

duce data in a convenient sequence. You'd like data for
the first frequency notch to occupy the lowest memory
location, data for the second notch to occupy the next
lowest location, and so on_ To remedy this situation, you
can either scramble data points before they enter the
algorithm so that they emerge in the proper sequence,
or you can scramble them afterwards_

Although this article's architecture describes a spe­
cial-purpose FFT processor, you can use it as a general­
purpose signal processor_ Many signal-processing algo­
rithms have a sum-of-products notation that is well
suited to this design_ Essentially, you can substitute
the PROM that contains Wk with a RAM that the host
processor loads_ In this way, you can easily implement
windowing and scaling operations_ EDN

Reference
Oppenheim, Alan V and Schafer, Ronald W, Digital Signal

Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.

Authors' biographies
Robert Cohen worked as a
design engineer in product
planning at Advanced Micro
Devices (Sunnyvale, CAl from
1981 to 1984. He is now a
private consultant. He re­
ceived a SSE degree in com­
puter science and engineering
from the University of Penn­
sylvania in 1981. His favorite
food is a combination of gua­
camole and knishes.

Robert Perlman is a senior
product planning engineer
with the DSP/array processing
group at Advanced Micro De­
vices. He holds a SSEE de­
gree from the Rensselaer
Polytechnic Institute and an
MSEE degree from Johns
Hopkins University, and he
has done design work in air­
borne digital design pro­
cessing for Westinghouse.

Trim DSP overhead
by changing

your sampling rate
The sampling rate of a signal may be altered

very easily as it passes through the
various stages of a digital signal processing

system. This can reduce the number
of cycles required to perform operations

in the digital domain.

Kenn Lamb
Advanced Micro Devices

Sunnyvale, California

Emerging digital signal processing techniques require
arithmetically intensive real-time processing. Each

sample fed into your system must be operated on many
times. Therefore, the performance required of the DSP proc­
essor is determined by both the type of processing to be ap­
plied to the signal and by its sample rate.

The sampling rate of a DSP system is usually determined
by the analog-to-digital converter at the front end of the
system. The choice of this sampling rate affects how well
available arithmetic resources are used. Here's how to create
a highly efficient system.

The techniques used are called "decimation" and "inter­
polation." Both are used to decrease and increase the sam­
pling rate. respectively. When implemented using digital
signal processing components (such as slices, programmable
sequencers, and multipliers), these methods allow the con­
struction of very efficient narrowband filters which can out­
perform direct implementations oHhe desired filter.

Reprinted with permission
from INTEGRATED CIRCUITS MAGAZINE
May 1985, with all rights reserved.

99

-I -41s -31s -21s -Is Is 21s 31s 41s +1

Fig. 1. A sampled signal's spectrum is repeated at periodic in­
tervals, centered at integer multiples of the sampling frequency.
The bandwidth of the images must be less than the sampling
frequency to avoid aliasing.

. rh rh rh ! ! 1 ! ! rh ! !.
-I -Sis -41s -31s -21s -fs 0 Is 21s 31s 41s Sis +t

(a)

,D
-12L!

4

(b)

DDD 1
-I', 31', 21', I',

-4- --4- -4-

• I

DDD
1'.

1', = 4fs

D.
Ml +1

4

Fig. 2. Sampling theory describes how the original signal repeats
at intervals (a). With three zeros placed between each of the
original samples, the bandwidth increases (b). Three of the sig­
nal's images are now included in the spectrum.

100

The sampling rate of a DSP
system must satisfy a number of
criteria, beginning at the front
end within the analog-to-digital
(A/D) converter. In theory, it is
only necessary to sample a sig­
nal at a rate greater than twice
the signal's bandwidth.

In practice, this is not possible,
because the band of interest may
not extend from DC, and "brick­
wall" antialiasing filters are not
available. Nevertheless, certain
techniques allow us to approach
the theoretical minimum .

You-as a designer-could
for example, shift the signal's
frequency content, so that the
band of interest extends from
DC to ensure that the maximum
signal frequency is equal to the
signal's bandwidth. Quadrature
sampling, another technique, ex­
tends this approach by allowing
two analog-to-digital converters
to share the work .

Finally, second-order sam­
pling permits the signal to be ex­
amined at twice the bandwidth,
even if there are higher frequen­
cies present. In the latter case,
the sampling rate reduction is
achieved at the cost of taking
twice as many samples; it also
presents an onerous filtering
problem to the first stage of the
digital signal processor. A sam­
pling rate reduction greater than
two must be achieved if this tech­
nique is to be of any benefit.

Avoid Last Resorts
These sampling techniques are

usually a last resort, used when
the analog-to-digital conversion
task would otherwise border on
the impossible. There are only a
few such applications in which
the sampling rate will approach
the theoretical minimum.

In other situations, there are
advantages in oversampling the
input signal: reduced specifica­
tions for antialiasing filters and

MAY 1985

improved resolution from A/D
converters. These advantages
usually dictate an initially high
sampling rate, one that is in­
variably maintained throughout
the rest of the system, and which
therefore results in inefficient use
of the available resources.

A block diagram of a DSP sys­
tem is usually drawn as a cascade
of processing stages, each per­
forming different operations on
the signaL This is conceptually
the simplest way to specify and
analyze the processing, but it is
rare for the individual blocks to
map directly into separate pieces
of hardware.

All digital signal processing
algorithms are based on the same
set of arithmetic operations, typ­
ically addition, multiplication,
and multiplication/ accumula­
tion. An arithmetic processor
specifically tailored to DSP ap­
plications can perform all the op­
erations specified within the sep­
arate sections of the system
block diagram.

The Fewer the Better

The objective of the system
designer is to achieve all the
processing required with the
least number of processor units.
Obviously, any reduction in the
number of cycles needed to exe­
cute individual stages of the
processing leads to overall sav­
ings. Typically, it may result in
a reduction in processor units, an
increase in the number of chan­
nels that may be accommodated,
or higher processing quality in
cases in which only a single DSP
unit is used.

Intelligent Rationing

These benefits result from
maintaining an efficient ratio be­
tween a signal's sampling rate
and its bandwidth, as the overall
frequency content of the signal
is modified by its passage

INTEGRA TED CIRCUITS MAGAZINE

through the digital signal proc­
essing system.

Additional processing savings
accrue from integrating the sam­
pling rate changes directly into
the processing stages themselves.
These savings are most apparent
in operations such as lowpass or
narrowband filtering.

Modify Those Sample Rates

The sampling rate of a signal
may be modified by either re­
moving unnecessary samples or
calculating and inserting addi­
tional samples. These techniques
make up decimation and inter­
polation, respectively. In order to
understand the effects on a signal
of the interpolation and decima­
tion processes, it is important to
be familiar with the frequency
domain representation of a sam­
pled signaL

The Nyquist Criterion, so fa­
miliar to workers in the field of
DSP, avoids aliasing distortion
by specifying a minimum ratio
between the sampling and max­
imum signal frequencies. In prac­
tice, this minimum ratio of two
is often exceeded to alleviate the
rolloff specification of the anti­
aliasing filter.

In the frequency domain, the
sampled signal's spectrum is re­
peated at periodic intervals, cen­
tered at integer multiples of fs
(the sampling frequency). See
Fig. 1. The bandwidth of these
images must be less than fs or
they will overlap, a condition
termed aliasing.

Decimation and interpolation
change fs and hence also alter the
interval at which the images re­
peat. These images may, there­
fore, be moved selectively closer
together or further apart.

Decimation Explained

Given that a signal is oversam­
pled (that is, the maximum signal
frequency is less than half the

101

sampling frequency), the sam­
pling rate may be reduced by
eliminating unnecessary samples.
At first sight, this may seem to
entail simply removing a number
of the samples from the time
record.

To avoid catastrophic distor­
tion of the signal, however, the
time increment between each
sample must be the same. This
implies that the minimum achiev­
able decimation ratio is a factor
of two, corresponding to the elim­
ination of every other sample.

Such a technique has been used
for multistage filters and is
termed "decimation by octaves."
While it is possible to decimate
in this manner by an integer
ratio, it is rare to have such
grossly oversampled signals in a
real application.

Lowpass filtering leads to over­
sampled signals, as it is the high
frequencies that are attenuated.
Therefore, decimation tech­
nIques are usually associated
with lowpass filters. Assuming
that a signal is overs amp led by a
factor of less than two, lowpass
filtering must occur before any
decimation to avoid aliasing dis­
tortion. A simplistic approach
would be to filter the signal and
then decimate by discarding un­
wanted filter outputs.

If filter ou tpu ts are to be dis­
carded, then why bother to cal­
culate them in the first place?
Unfortunately, recursive filter
structures require all outputs to
be calculated, since these outputs
are fed back into the filter to in­
fluence subsequent outputs.
Transversal filters do not suffer
from this restriction and, conse­
quently, permit more efficient
lowpass decimating filters.

Assume that a lowpass filter
of N coefficients filters a signal
resulting in an output oversam­
pled by a factor of P. Without
decimation, the filter would have

COMPLEX HETERODYNING-HOW MUCH PROCESSING POWER?

Why complex heterodyning?
Just what is it? For an answer,
consider that digital systems
take full advantage of quadra­
ture frequency shifting tech­
niques. Unlike analog systems,
there is no possibility of fre­
quency or phase drift.

As such, let's look at some
real continuous signals, such
as those diagrammed in the
accompanying series of figures.
Take a look at the "snapshot"
of Figure Aa. Multiplying this
continuous signal by the co­
sine of frequency fc (illustrated
in Figure Ab), yields a spectrum
(Figure Ad).

This spectrum displays sig­
nificant aliasing between the.
two frequencies -fc and fc.
However, multiplying the
original signal by the sinusoid
(Figure Ac) yields another
spectrum (Figure Ae).

Then, combining the in­
formation (that shown in
Figure Ad and Ae) allows the
reconstruction of the original
signal. It is shifted in fre­
quency by fc. This technique
is known as complex
heterodyning.

Repeat Performance
In the sampled world, the

original signal repeats at in­
tervals of fs, the sampling
frequency, as illustrateCt in
Figure Af. The sampled equiva­
lents of the SIN and COS have
the form shown in Figures Ah
and Ag, respectively.

Multiplication of the original
signal by these two sinusoids
yields the spectra (Figures
Aj and Ai).

Again, the original signal
information, with a shift in

frequency of -fc, may be ex­
tracted (as indicated by Fig­
ure Ak).

From a practical point of
view, the original real signal of
sampling rate fs has been con­
verted into a complex signal
with the same sampling rate.
This implies that twice as much
processing will now be re­
quired to accommodate the
real and imaginary components
of the complex signal.

Closer examination reveals
that the spectra (of Ai and Aj)
contain duplicated informa­
tion that may be removed with
low pass filters and decimation
of both components of the com­
plex signal (by a factor of two).
The composite sampling rate of
the complex components is the
same as that of the original
signal, while still extracting
the spectrum of Figure AI.

Decimation
The process of decimation

may be thought of as oc-

(a) ~
fo 0 fo

(b) tit
fe 0 fe

(c) I t
-fel 0 fe

(d) ~
-fo-fe -fe 0 fe fo+fe

Figure A

~~~~~~ U) ----L--2hf~s~L---7fs~.fLO~O~~lo~-,ILS~-L~21~s~-L~31~s~-

(g) _----'--t .LJI t~~t -<-;1 t,-----;---+t 7-;1 tL--;---,;-t -,-;-1 -<,-;t ,-----L-t --,---I t.L...-...Lt --,---I t.l....-
I -Is-Ie Is Ie leO Ie Is-Iells+le I I 
.t It It .t .t .t (h)----~I~L--.I~~-~le·l~o~l~e--·J~~~-.J~---I~~-

(i) 
-21s -Is -Ie 0 Ie Is 21s 

(j) 

(1) 

MAY 1985 

102 



curring in two stages:.a low­
pass filtering stage, followed 
by sampling rate reduction. 
The original signal (Figure Ba) 
of maximum frequency fa is 
sampled at a frequency, fs. 

The signal is then passed 
through a lowpass filter with 
a cutoff frequency of fc. The 
resulting signal (shown in 
Figure Bb), may be decimated 
by a factor P to yield the 
spectrum of Figure Bc. This 
latter spectrum has a sampling 
rate of fslP where P=2. 

Interpolation 
Next comes interpolation. 

Interpolation is the opposite 
of decimation and is again 
achieved in two stages. The 
first stage involves padding 
the sampled signal with (Q-l) 
zero-valued samples between 
each of the original samples. 

This operation changes the 
spectrum of the original signal 
(that of Figure Ca) to that of 
Figure Cb, for Q=2. The 
spectrum (Figure Cb) has much 
the same form as that in 
Figure Ca, the major difference 
being labelling of the fre­
quency axis. 

The effective sampling rate 
has been increased to Q*fs, as 
expected; however, the sig­
nal's spectrum now contains 
(Q-1) additional images. A 
lowpass filter, with cutoff fre­
quency fa, will extract the de­
sired portion of the spectrum 
(from Figure 8b) to yield the 
interpolated signal of Figure 
8c. This low pass filter must 
exhibit a gain of Q to com­
pensate for the energy lost in 
filtering out the (Q-l) signal 
images. 

INTEGRATED CIRCUITS MAGAZINE 

I 

\ 
I 

Ie 

, 
I 
I , 

1htrnrrt nL..-L----2-(--L-....JD 
(b) ---+I I~ 10-- Ie (Is-Ie) Is (fs+le) 

hrr1 bcbrb 
(c) ----.J 2 1-. 0 Is 21s 

'1TSrr- T 2 
Figure B 

bcbcb 
o Is 21s 

b rb 
o Ie Is 

Figure C 

103 



to perform N operations per in­
put point. With decimation, this 
is reduced to NIP. The result is 
only one output for every P input. 

The throughput of this filter, 
as well as the rest of the process­
ing downstream, is therefore in­
creased by a factor of P. The fil­
ter does its job in fewer cycles, 
thereby reducing the processing 
burden on all subsequent op­
erations-a true "win-win" 
scenario! 

Interpolation, Too 
Interpolation is the opposite 

of decimation. This operation in­
volves increasing the sampling 
rate to create an oversampled sig­
nal. It cannot be used to recover 
signals distorted by aliasing, be­
cause this type of distortion is 
irreversible in the majority of 
situations. 

Typical applications for inter­
polation include the reduction of 
the output reconstruction filter 
specification in audio systems or 
the smoothing of gaps between 
discrete line spectra in the out-

/ V 
-Is -Is 

(a) 
-2-

I \ / 
-Is ts 

(b) 3.9 

I \ I 
-I"s -I"s 

7.B 
(c) 

I vi V 
-21'"s -I"'s -I"'s 

(d) 2.6 

put from a fast Fourier trans­
form (FFT). 

The first stage in interpolating 
a signal involves padding the sig­
nal with extra zero-valued sam­
ples. Since the previously stated 
restrictions about keeping the 
sampling interval constant apply, 
interpolation must be done by 
integer ratios. This is not a lim­
itation, because interpolation is 
usually implemented to signifi­
cantly increase the number of 
output samples. 

The original signal, sampled at 
fs, repeats at intervals of fs as 
dictated by sampling theory 
(Figure 2a). Padding the signal 
with zeros increases the sam­
pling rate, but also changes the 
form of the signal. 

In the case of three zeros 
placed between each of the orig­
inal samples (interpolating by a 
factor of four), the effective rep­
etition frequency becomes four 
times fs. However, the signal's 
bandwidth increases in propor­
tion, so that three of the signal's 
images are now included as part 

V \ 
Is Is Is 
2:62 

\ / \ 
Is Is Is 

3.9 2 

I"s=2fs 

\ / \ d 
fs I"s 
Tif 

I'"s = fs 
3 

v v \ 
1"' s I'" s 21"'s 
2.6 

Fig. 3. Lowpass filtering in the decimation process needs a transition 
bandwidth of 15 percent of the interpolated signal's bandwidth (a). 
The original signal is lowpass filtered before interpolation (b). The 

new signal is interpolated to yield another signal (c); further 
decimation gives the output (d). 

104 

of its spectrum (Figure 2b). 
The frequency domain repre­

sentation of the signal has not 
changed in shape; the padding 
has the effect of relabelling the 
frequency axis. To obtain the de­
sired interpolation operation re­
quires-surprisingly-the use of 
a lowpass filter. This filter re­
moves the three unwanted im­
ages, yielding the original signal, 
oversampled by the desired fac­
tor of four. 

At first sight this might appear 
to be a difficult lowpass filtering 
task, requiring operation at the 
increased sampling rate. But this 
need not be the case if the trans­
versal filter structure is used. 

Clearly, three out of four in­
puts to the filter are zero and, con­
sequently, will not contribute to 
the filter output. These samples 
may, therefore, be skipped over 
when performing the filter op­
eration saving valuable processor 
cycles. This technique allows the 
construction of efficient inter­
polating lowpass filters. 

Let's assume that an N-point 
filter is used to interpolate a sig­
nal by a factor of Q. The sim­
plistic approach would require 
N*Q operations for each one of 
the original samples. The interpo­
lating lowpass filter only requires 
N operations per original sample, 
implying that the interpolating 
filter operates at the rate of the 
input data, regardless of the in­
terpolation ratio applied. 

Cascading Processes 
The ability to decimate by non­

integer ratios-in particular, ra­
tios of between one and two-is 
essential to make effective sav­
ings in system applications. Non­
integer ratios may be achieved 
by cascading interpolation and 
decimation processes. 

To interpolate a signal by a 
factor Q, and then to decimate it 
by a factor P, changes the effec-

MAY 1985 



tive sampling rate to Q/P. While 
Q and P themselves must be in­
tegprs, the ratio of one to the 
other can yield non-integer deci­
mation ratios. The interpolation 
operation must, of course, pre­
cede the decimation to avoid ali­
asing distortion. 

Two for One? 
Again, both interpolation and 

decimation are effectively per­
formed by a lowpass filter. What 
about the possibility of concat­
enating both operations into the 
same filter? 

Assume that the interpolation 
ratio is Q. Then, for an N-point 
filter, N operations are required 
for every input point, despite the 
fact that Q*N output points are 
produced. The decimation im­
plies that only one output is gen­
erated for every P inputs, so that 
only NIP operations per input 
point fulfill the requirements of 
both operations. 

It may be tempting to assume 
that a large value for P, the ef­
fect of which could be offset by 
a correspondingly large value for 
Q, would significantly improve 
the efficiency of the decimation 
process by reducing the effective 
value of NIP. However, this will 
not work because N is related to 
Q and increases proportionally 
with any increase in Q. 

The increase in N occurs be­
cause the lowpass filtering for 
both the interpolation and deci­
mation is required to select a pro­
portionally smaller percentage of 
the padded signal's bandwidth. 
The number of points in a filter 
is related to the percentage of the 
signal's total bandwidth that is 
taken up by the transition band 
of the filter. 

As Q increases, the transition 
bandWidth remains constant, but 
the bandwidth of the padded sig­
nal increases; hence, N increases 
proportionally with Q. This 

INTEGRATED CIRCUITS MAGAZINE 

.--

L-..., 

2K X 8 
STATIC 

RAM X2 

CONTROL 
SECTION 

ARITHMETIC 
SECTION 

REGISTERED 
512 X 8 

PROM X2 

Fig. 4. Arithmetic "number crunchers" 
can be built up in a number of ways. A 
multiplier! accumulator (a) forms a 
simple filter. Multiport pipelined proc­
essors (b) improve cycle time and add 
control lines and overflow protection. 
Linear phase construction (c) doubles 
throughput. 

105 

CONTROLS 

64-WDRD 
32-BIT FUSE 

PROGRAMMABLE 
CONTROLLER 

MULTIPORT 
PIPELINED 

PROCESSOR 

( c) 

MULTI PORT 
PIPELINED 

PROCESSOR 



means that the processing over­
head involved in changing the 
sampling rate of signal is directly 
related to how closely the sam­
pling rate of the decimated signal 
approaches the Nyquist rate. 
This is the design parameter that 
specifies the maximum width of 
the transition band. 

Less Than You Imagine 
A non-integer decimating 

process actually requires signifi­
cantly less processing than a cur­
sory examination would indicate. 
For example, if one of the proc­
essing stages in a system reduces 
a signal's bandwidth to 0.67 of 
its former value, then a decima­
tion ratio of 1.5 may be applied 
without aliasing. This ratio may 
be achieved with values for Q 
and P of 2 and 3, respectively. 

Assume a practical sampling 
rate Fs of Fs = 2.6 * Fo (where 
Fo is the maximum signal fre­
quency, Figure 3a). The lowpass 
filter for the decimation process 
would need a transition band­
width of fifteen percent of the in­
terpolated signal's bandwidth. 
This gives N a value of 54. (The 
lowpass filtered signal is illus­
tr a ted in Figure 3 b.) 

This new signal is interpolated 
to yield the signal shown in Fig­
ure 3c, which is then decimated 
back down to give the output of 
Figure 3d. 

The value of P reduces the re­
quired number of operations per 
input sample from 54 to just 18. 
The output rate of the decima­
tion stage is 0.67 of the input 
rate, resulting in a saving of 33 
percent in the number of cycles 
required to execute all subse­
quent operations. 

If the number of subsequent 
cycles exceed 54, then an overall 
saving will be achieved. For ex­
ample, given 300 cycles of down­
stream processing, the total sys­
tem savings would be: 

[(1-1/1.5) * 300] -18 = 
82 cycles 

per input sample, which cor­
responds to 27 percent of all sub­
sequent processing. This saving 
enables you to reduce system 
size and cost or process more 
channels. 

Lowpass Filter It 
If a lowpass filter is used to re­

duce the signal's bandwidth in 
the previous example, then as 
this function is duplicated by the 
decimation process, the original 
filter becomes superfluous. It 
may be discarded, saving 27 cy­
cles per original input sample. 

It should be clear that the deci­
mating lowpass filter performs 
the same filtering operation as 
the original filter but in 18 in­
stead of 27 cycles, a saving of 
thirty percent in itself. This sav­
ing is in addition to those in sub­
sequent downstream processing 
that occur as a result of the re­
duced output rate. For these 
reasons, lowpass filters are usu­
ally implemented using decimat­
ing techniques. 

A Look at Hardware 
A decimating/interpolating 

stage, such as the one required in 
the system example, is construc­
ted from an enhanced finite im­
pulse response (FIR) filter. The 
filter structure performs a dis­
crete convolution, according to 
the following formula: 

N 

Yk = I: en * X (k-n+l) 

n=1 

where Xk and Yk are the filter 
inputs and outputs, respectively, 
and en are the coefficients; or, 
for the linear phase case: 

N/2 

Yk = I: en * [X (k=n+l) 

n=1 

106 

The arithmetic section of the 
FIR filter is unchanged from the 
non-decimating version, since the 
decimation is achieved by adapt­
ing the control and addressing 
sequence. 

The control flexibility of the 
components used to construct 
the filter determine how much of 
the expected savings from deci­
mation are realized in practice. 
The microprogrammable envi­
ronment is ideally suited to this 
type of application. 

Let's look at a hardware exam­
ple (Figure 4). The arithmetic 
section performs the "number 
crunching" and may be tailored 
to suit processing requirements 
by varying the number of multi­
pliers, multiplier/accumulators, 
and ALUs used. 

If desired, the arithmetic sec­
tion of a simple filter may be con­
structed with one multiplier / ac­
cumulator (Figure 4a). Alter­
natively, multipliers and multi­
portpipelinedprocessors( Fig . .4b) 
may be used for arithmetic to im­
prove the cycle time and provide 
the advantage of microprogram­
mabie control lines and overflow 
protection. An efficient linear 
phase construction may be 
achieved with devices like the 
AMD Type Am29501 multiport 
pipe lined processor and Am-
29510 16 X 16-bit parallel multi­
plier / accumulator combination, 
for example (Figure 4c), effec­
tively doubling the throughput. 

The control section sequences 
the operations and selects the 
correct data points and coefficient 
values for the arithmetic section. 
It does so by defining the appro­
priate addresses within the data 
RAM and the coefficient PROM. 

For the direct or linear phase 
implementation of a filter, count-

+ X (k-N+n)] 

MAY 1985 



ers enhanced by hardware,such 
as multilevel pipeline registers, 
can generate addresses. For 
decimating or interpolating fil­
ters, the addressing sequence be­
comes more complex and re­
quires additional modulo count­
ers; this task also requires the 
overall control flexibility offered 
by a device such as the AMD 
Type Am29PL141 fuse-program­
mable controller. 

Control circuitry eliminates re­
dundant cycles that would result 
from zero inputs or unwanted 
outputs. The method is different 
for the decimating and interpo­
lating stages of the filter. 

In interpolation, a normal fil­
ter sequences through all of its 
coefficients, multiplying each by 
a corresponding data sample. For 
a padded signal, many of these 
data points are zero and, conse­
quently, do not contribute to the 
output. 

Zero padding may be achieved 
by incrementing the data ad­
dresses by one, and the coeffi­
cient addresses by an interval 
equal to the interpolation ratio. 
This padding technique has the 
beneficial side effect of automat­
ically avoiding all redundant 
operations. 

However, it is necessary to 
keep track of the location of the 
first non-zero data point, since 
this defines the first coefficient 
address to be used by the filter. 
Any subsequent decimation op­
erations will change this address. 

To avoid redundant cycles in 
decimation, filter outputs that 
would be subsequently discarded 
are simply not calculated. A filter 
without an interpolating stage 
accomplishes this by writing 
mere than one point at a time 
into the filter's cyclic buffer. For 
example, writing in two new 
samples for each calculation of 
an output gives a decimation ra­
tio of two. 

INTEGRATED CIRCUITS MAGAZINE 

J 

COUNTER l- I MODULO J.-COUNTER 

! '" MULTIlEVEL ~ I 
MULTILEVEL 1.1 1 Am49P1141 

PIPElINE PIPELINE 
REGISTER REGISTER 

1 ! 
W 2K X 8 REGISTERED r- STATIC 512 X 8 

RAM X2 PROM X2 

I I 
I 

1 
16 X 16·BIT 

PARALLEL 
MULTIPLIER 

I 

'" '" I 
MULTIPORT 

I 
MULTI PORT 

PIPELINED PIPELINED 
PROCESSOR PROCESSOR 

T I T I 

For a filter that incorporates 
an interpolation stage, the deci­
mation could require the writing 
of zeros or samples (or both) into 
the cyclic buffer. Since zeros are 
not explicitly written into the 
STORE, the coefficient START 
address is incremented to com­
pensate. 

The coefficient START ad­
dress is RESET to zero every time 
a true sample is written into the 
STORE. Depending upon the ap­
plicable decimation and interpo­
lation ratios, a varying number 
of true samples and apparent 
zeros will be written into the cy­
clic buffer between each output 
from the filter. The relevant co­
efficient START address may be 
calculated by incrementing a 

107 

FUSE 
PROGRAMMABLE 

CONTROLLER 

.. 
J SIN/COS 

, 
FUNCTION 

GENERATORS 

Fig. 5. This decimator-based 
narrowband fIlter hardware frees 
the multiplier to perform hetero­
dyning without overhead. No 
filtering occurs while samples 
are written into the cyclic buffer. 



modulo counter by the decima­
tion ratio. The count modulus is 
equal to the interpolation ratio. 

Very efficient narrowband fil­
ters may be constructed, using 
the same techniques that resulted 
in efficient lowpass filters; this is 
because with narrowband filters, 
significant decreases in the sig­
nal's bandwidth occurs, allowing 
a high decimation ratio. 

A narrowband filter can be 
constructed from a lowpass fil­
ter with half the bandwidth of 
the equivalent narrowband filter. 
The input signal must first be 
shifted to baseband, with the sig­
nal frequency lying in the center 
of the bandpass filter shifted to 
be at DC, so that it fits within the 
passband of the lowpass filter. 

The shift operation can be 
done with a complex heterodyne 
stage that simply multiplies the 
input signal by a complex fre­
quency (SIN and COS) equal to 
the center frequency of the band­
pass filter. This complex, fre­
quency-shifted signal is then fil­
tered by a decimating lowpass 
filter, interpolated, and shifted 
back up to the original band with 
the same complex heterodyne 
technique. The signal may, of 
course, be shifted back up to any 
band desired. 

A given narrowband filter may 
have many different center fre­
quencies, each determined by the 
complex frequency employed in 
the heterodyne stage. The same 
filter may be used to divide a 
wide bandwidth signal up into a 
number of smaller blocks by 
stepping the heterodyne fre­
quency in increments equal to the 
filter's bandwidth. Since the 
bandwidth of the narrowband 
filter depends on the bandwidth 
of the lowpass filter, it is inde­
pendent of the effective center 
frequency. A number of lowpass 
filters may be stored within the 
arithmetic processor, allowing 

the narrowband filter's center 
frequency and bandwidth to be 
changed at will. 

The Complex Heterodyne 
The complex heterodyne op­

eration requires two cycles per 
input sample; these are used to 
multiply the sample by digitized 
values of SIN and COS, to yield 
the imaginary and real compo­
nents of the basebanded complex 
signal. 

The values of SIN and COS 
derive from the sampling of a 
complex sinusoid of the required 
frequency at a rate equal to the 
effective sampling rate of the sig­
nal. This lowpass filtering leads 
to an advantageous reduction in 
the bandwidth of the signal, 
which may be exploited by deci­
mating the signal accordingly. 
There is an additional inherent 
decimation factor of two in­
troduced when the signal is 
translated into a complex 
representation. 

Shifting to restore the signal 
back to its original band is again 
achieved through complex het­
erodyning. This operation must, 
of course, be performed after the 
signal has been interpolated back 
to the original sampling rate, to 
avoid aliasing distortion. 

For example, assume that a 
narrowband filter is required to 
select ten percent of the band of 
an input signal with transition 
bands occupying an additional 
ten percent. A direct implemen­
tation of this filter would operate 
at the input sampling rate and re­
quire about 160 cycles per input 
sample to process. 

The decimating equivalent 
would require two cycles per in­
put point, operating at the input 
sampling rate, to perform the 
complex heterodyne. The base­
band signal occupies only 15 per­
cent of the original signal's. band­
width, and therefore may be dec-

108 

imated by a factor of 6.7 resulting 
from values of P and Q of 20 and 
3, respectively. After the initial 
interpolation, the transition band 
occupies only 3.3 percent of the 
interpolated signal's bandwidth, 
suggesting that the lowpass filter 
will require 242 taps. 

The effective processing rate 
of this filter is N /P cycles per in­
put point, resulting in an overall 
requirement of twelve cycles for 
each of the original input points. 
Two filters are required for the 
real and imaginary channels, re­
suI ting in a total processing re­
quirement of 26 cycles per input, 
a saving of about eighty percent. 

To shift the filtered signal 
back up to its original band and 
sampling rate at this point would 
not achieve any overall savings, 
because there will be no net de­
crease in the sampling rate. If 
further processing of the filtered 
signal is required, then all stages 
that now operate at the reduced 
sampling rate will benefit from 
the eighty percent saving in 
processing. 

Narrowband filter hardware 
(Figure 5) is also based on the 
decimator. The complex hetero­
dyne operations are best imple­
mented by a multiplier using de­
vices such as the AMD Type 
Am29517 multiplier and Am-
29501 multiport pipelined proc­
essor as the arithmetic section. 

No filtering will occur while 
samples are being written into 
the cyclic buffer, so that the mul­
tiplier is free to perform the het­
erodyne operation without any 
overhead. The necessary com­
plex frequency coefficients may 
be obtained by incrementing the 
addresses of a pair of Am29526 
sine and Am 29527 cosine gen­
erators. The ICs share the same 
address space and bus as the reg­
istered PROMs that contain the 
filter coefficients. 
DATA FILE 130 

• 
MAYc1.985 



DSP BUILDING BLOCKS ALLOW RESOURCE OPTIMIZATION. 

by 
Bernard J New 

Manager 
Product Planning and Applications 

AMO 
901 Thompson Place 

Sunnyvale, CA. 94088 

Introduction 
The essent i a 1 genera 1 ity of genera 1 purpose 
computing usually prevents optimization of the 
processor. In digital signal processing, 
however, this is not usually the case. Even in 
multi-purpose signal processors, the 
a 19orithms to be imp lemented wi 11 have many 
similarities. In particular, they will be 
repetitive, intensive in both arithmetic and 
memory operations, and branch infrequently. 

The repetitive, non-branching characteristic 
is exp 10 ited through extens ive use of pipe­
lining, more than would be considered 
advantageous in a general purpose machine. The 
large and predictable number of arithmetic 
operations and memory accesses permdts an 
arithmetic processor to be contructed with 
resources balanced to match the problem at 
hand. 

The construction of this processor will not 
normally allow it to be multiplexed effectively 
with the task of address gene rat ion. As the 
addresses are often the only variation in 
successive iterations of the program and follow 
a well-defined pattern, it is desirable that 
they are generated in an independent processor 
which operates concurrently with the 
arithmetic processor. 

The AmZ9500 family of digital signal processing 
and array processing products provides devices 
for use in both areas. In particular, for use 
in the arithmetic processor, the fami ly 
includes the Am29501 Multi-port Pipelined 
Processor and the Am29516/7 16-bit Para lle 1 
Multipliers. These constitute two major 
resources. The parallel multiplier is 
essential to signal processing calculations, 
and the Multi-port Parallel Processor 
comolements this with register and ALU 
facilities. This device's three ports provide 
the communication necessary for efficient use 
of multiple elements. 

109 

The third major resource to be managed in the 
arithmetic processor is the memory. Using the 
fast Fourier transform (FFT) as an example, 
this paper describes an approach by which an 
algorithm may be analyzed and an appropriate 
allocation of resources made. It should be 
stressed, however, that the Am29500 family is 
of general application, and is not limited to 
the FFT. 

The Balancing Act 
The objective in optimizing an arithmetic 
processor is to provide facilities in 
proportion to their usage in the algorithm 
being implemented. In this way, the processor 
is balanced with no one resource lying idle 
while another completes its task, and all are 
used at peak efficiency. Increasing just one 
resource will not necessarily increase 
performance due to the creation of an 
imbalance. 

Consider the fast Fourier transform. This 
compri ses the repeated eva luat ion of what is 
commonly known as the FFT "Butterfly." This is 
shown diagramatically, together with its 
formulae, in Figure 1. There are two input data 
points, A and B, which are complex numbers. 
These are combined together, and with a complex 
coefficient, W, to form two outputs, A' and B'. 

Inspection of the formulae shows that a single 
implementation would require one complex 
addition, one complex subtraction and one 
complex multiplication. Also five complex 
memory operations are required; three reads for 
A, Band W, and two writes for A' and B'. In 
terms of real operations, this reduces to four 
multiplications, six addition/subtractions and 
ten memory transactions. It is to these 
requirements that an FFT processor must be 
matched. 



A 

B 

OIT 

A'. A + aw. 
a'. A - 8W" 

<!) BWK_ 1 + 

A' 

B' 

4. 
:1+ 
:1-

OfF 

A' - A +. 
B' -II. - .,wK 

A' 

S' 

{ 4. I 1 -

® A+BWK=Z+ 

@ A - BWK = z-
,. Data Rea"s 
,. D.ta Write. 
Zea.lfR ..... 

FIGURE 1: The FFT Butterfly 

Moving the Bottleneck 
From the above analysis it may be seen that if 
all operations take equal time, the throughput 
is limited by the memory requirement, which 
makes it impossible to perform butterflies more 
frequently than every ten cycles. However, this 
may be reduced by exploiting two factors, which 
are common to many signal processing 
algorithms. 

Firstly, the memory may be re-organized to 
reflect the complex nature of the data. Making 
the memory twice as wide but only half as deep 
does not increase the size of the memory, but 

Memory Accesses 

8 

Resource Memory Buses 

#CYCleS~ # Usage 

8 1 8/8 

6 2 4/6 

4 2 4/4 

3 4 2/3 

2 4 2/2 

a llows for s imu ltaneous access to rea 1 and 
imaginary parts, effectively doubling the 
memory bandwidth. Secondly, it may be noted 
that the multiplications are performed between 
data and a coefficient. If the coefficients are 
stored in a separate memory, they may be 
accessed concurrently with the data. 

These changes reduce the number of data memory 
accesses to four. However, the butterfly will 
still require six cycles, as the throughput is 
now dominated by the ALU requirement. The 
bott leneck has moved from the memory to the 
ALU. 

Add/Subtract Multiply 

6 4 

ALU Multipliers 

# Usage # Usage 

1 6/8 1 4/8 

1 6/6 1 4/6 

2 3/4 1 4/4 

2 3/3 2 2/3 

4 1.5/2 2 2/2 

TABLE 1: FFT Resource Comparison 

110 



Measuring Efficiency 
A usefu 1 measure of efficiency is the 
proportion of time each resource is active. In 
the six cycle butterfly described above, the 
ALU will be used 100~ of the time. The memory 
and multiplier will each be used on only four 
of the six cycles, 67~ of the time. This is 
summarised in the first line of Table 1. This 
base system contains one memory, one ALU and 
one multiplier. 

As the multiplier is an expensive resource, it 
is desirable to utilize it more efficiently. To 
do this necessitates adding more capacity to 
the current bottleneck, the ALU. The second ALU 
reduces the necessary ALU cycles to three, and 
moves the bottleneck to both the memory and the 
multiplier, each requiring four cycles. In this 
case the memory and multiplier efficiency is 
100~. and the ALU efficiency is 75%. 

Algorithm # t 
Am29540 

FFT Address 
Sequencer 

Algorithm # 2 

Algorithm # 3 

Address 
Pipeline 

Am29520jt 

Address 
Pipeline 

Am29825 

As shown in the table, further improvement 
requires that both the memory and the 
multiplier be duplicated. This gives a 
situation similar to the base system, but with 
twice the hardware resulting in twice the 
throughput. 

A Reasonable Solution 
In theory this procedure could be repeated 
until four memories, four multipliers and six 
ALUs allowed a butterfly to be completed every 
cycle. However it is unlikely that this 
solution would be practical. 

The problem encountered is in partitioning the 
memory such that two reads and two writes can 
be performed simultaneously. This partitioning 
must be consistent with the data flow of the 

Data RAM 

Coefficient 
PROM 

Imaginary Data 

Real 
Processor 
Am29501 

Imaginary 
Processor 
Am29501 

Microprogrammed 
Control Unit 

FIGURE 2: FFT Processor Architecture 

111 



FFT. Even the base system is not wi thout 
problems. This requires that the result of a 
co~plex memory read be loaded into a real ALU. 
Also the inclusion of additional hardware to 
aChieve more speed than is necessary for the 
application is obviously undesirable. 

When comparing architectures which trade a 
doubling of throughput for a doubling of 
hardware, as occurs in the table, system 
integrity may be a deciding factor. While it 
may be convenient to build a single large, fast 
machine, if latency requirements allow, it 
may be better to alternate two slower machines. 
This allows for reduced operation, rather than 
failure, if one of the machines should fail. 

The table obtained from the above analysis 
should be viewed only as an initial survey of 
the options available. Even after selecting a 
like"ly candidate is is necessary to show that 
the algorithm can be programmed into the 
processor in the number of cycles anticipated. 

Overlapped Programming 
Let us assume that the single memory, two ALU, 
single multiplier architecture has been 
selected. This is shown in Figure 2. The 
objective is to implement the FFT butterfly in 
this architecture in four cycles. 

Step I Real 

DIO ALU At A2 I A3 Bl I B2 

I I I 
2 I I 

3 I I I 
4 I 

5 I Read B DI ! 
6 I 

7 I Read A DI I 

8 I AI-MSP! H MSPI IALUi 

9 i H H H 

10 i AI +A3 ALUI H 

II ! B2+MSP H I !MSPiALUI 

12 IWrite B2 I H H I 
13 i A2 - BI ALUi 

14 I Write A2! I I 

IS ! I 

t6 ! 

17 I 

18 I I 

B3 

A simple inspection of the algorithm shows that 
in order to generate and store the real part of 
A', it necessary to read A and B, complete the 
real part of the multiplication, perform an 
addition and write the result to memory. 
Allowing for maximum concurrency this requires 
five cycles, and it obvious that the full 
program would be longer than that. 

However, this does not imply that the goal of 
four cycle throughput is impossible, only that 
the latency will be greater than four cycles. 
The resources in the processor are such that if 
the program takes more than four cycles they 
will be idle for part of the time. While 
causality does not allow these resources to be 
applied to the current iteration of the 
program, the program repeats, and the resources 
may be applied to previous or following 
iterations. 

This leads to a situation where an iteration of 
the program commences before the previous ones 
are complete, and the iterations overlap. This 
is similar to pipelining except that whole 
programs are involved and the hardware is 
multiplexed between overlapped programs. 

The completed program for the FFT butterfly is 
shown in Table 2a. Ten cycles are required to 
complete this program. Table 2b shows the 
instruction stream when this program is 

Imaginary Multiplier 

ALU At A2 A3 B t B2 B3 I MIO MULT 

I I 

DI 

H I BR I 
DI H BRWR 

H BI I BRWI 

IAI-MSP! H MSP ALUI BIWR 

B2-MSPI H H I ALU IMspl BIWI 

AI + B3 I ALU H H I 
A2 +A3 IALU 

H 

I 

I 

TABLE 2a: The Butterfly Program 

112 



Real Imaginary Multiplier 

Step 010 ALU I Al A21 A3 Bl1 B2 B3 ALU , Al I A2 A3 I Bl B2 B3 MIO MULT 

1 Read B A2 - B11 H ALUI H 01 H A1-MSpl H I H Mspi 01 ALU BIWR 

2 Write A2 A1 + A3 I ALU i IH B2-MSPI H I H H IALU ~MSP BR I B,W, 

3 Read A B2+MSP' 01 Hl MSP ALU A1 + B31 01 iALU H H H BRWR 

4 Write B2 A1-MSP H H IMSP H iALU A2 + A31 H IALU BI BRW, 

5 Read B A2 - B1 L H ALUI H 01 I H A1-MSPI H I H MSP! 01 ALU I BIWR 

6 Write A21 A1 + A3 i ALUI 1H B2-MSpi H I H H ALU MSP BR B,W, 

7 Read A IB2 + MSPI 01 H I MSP ALU A1 + B3 j 01 IALU H I H I H I BRWR 

8 Write B2!A1 -MSP I H H IMSPI H IALU: A2 + A31 H !ALU. I BI I BRW, 

9 Read B I A2 - B1 I H ALUI H 01 i H I A1-MSP! H I H MSPI 01 ALUI I B,WR 

10 Write A2 i A1 + A3 ! ALUI 1H IB2-MSPI H I H I H ALU IMspi BR B,WI 

11 Read A B2+MSpi 01 H i MSPIALUI Al + B3 I 01 IALUI H I H H I BRWR 

12 Write B2 !A1 - MSP H I H 'MSP! H IALUI A2 + A31 H IALUI BI BRW, 

13 Read B A2 - B1 I H IALUI H 1H I A1-MSPI H I H MSP' 01 IALUI B,WR 

14 Write A2 A1 + A3 I ALUi I H I B2-MSP' H I H I H !ALUIMSPI BR I B,W, 

15 Read A IB2+MSPI 01 I H I MSPIALU' A1 + B31 01 IALul H i H I H I BRWR 

16 Write B2; A1- MSP' H I H MSPI H IALU! A2 + A3 I H IALUI I B, BRWI 

17 Read B I A2 - B1 i H ALU, H I H i A1-MSPI H I H !MSP' 01 ALUI BIWR 

18 Write A21 A1 + A3 I ALUi I H B2-MSP' H I H H IALUIMSP B.W, 

TABLE 2b: The FFT Instruction Stream 

restarted every four cycles. Through -careful 
programming this can occur without the programs 
interfering. It may be seen from this table 
that the three major resources, memory, ALU and 
multiplier are used 100% of the time. This 
differs from the original estimate of 75% 
utilisation of the ALU, the extra 25% being 
accounted for by "inefficient" use in the 
program. However, the extra use of the resource 
is free, and not using it would at least have 
increased the latency. 

Inspect ion of Tab Ie 2b a Iso shows the 
instruction stream to be periodiC, repeating 
every four cycles. These four cycles contain 
the information for the complete ten cycle 
butterfly program, and constitute the inner 
loop which must be executed to implement the 
FFT. At the beg i nn i ng and end of the FFT, 
previous and following iterations are absent 
and the instruction stream becomes aperiodic. 
This must be accommodated by segments of linear 
code derived from the instruction stream, which 
fill and empty the overlap pipeline.In this 
case the program could be written to give the 
desired throughput. If this had not been the 
case, it would have been necessary to move to a 
"faster" architecture. 

113 

The only outstanding task is to generate the 
addresses to provide the data stream into the 
arithmetic processor. For the specific case of 
the FFT this may be effected using the Am29540 
FFT Address Sequencer. In other cases an 
address computer may be designed and programmed 
using the techniques described above. 

Conclusion 
Using the FFT as an example, a method has been 
described whereby a digita I signa 1 processor 
may be opt imi zed through resource management. 
This technique is applicable to architectures 
using bui lding block components, such as the 
Am29500 Family. Indeed it was about this family 
that it was developed. Processors designed in 
this way exhibit maximum usage of components 
included. 





~ 

01 

ABSTRACT 

A New Approach to Floating Point DSP 

Robert Perlman 
senior engineer, Product Planning 

Advanced Micro Devices 
Sunnyvale, CA 94088 

A new high-speed, single-chip floating point processor, 
the Am29325, is introduced; this processor incorpo~ates features 
of interest to those implementing high-performance digital 
signal processing systems. Processor architecture is described, 
and the advantages of the architecture for DSP and array 
processing applications are discussed. Typical small- and 
large-system designs are presented. 

INTRODUCTION 

Floating point arithmetic engines are natural candidates 
for very-large-scale integration, due to the popularity of the 
function, and to the large amounts of design time and circuit 
board space needed to implement such a function in SST and MST. 
Early efforts to integrate floating point operators in a single 
chip or chip set usually resulted in serial-parallel designs 
which, while considerably faster than software floating point 
implementations, did not approach the speeds of fully parallel, 
dedicated hardware designs. 

Recent improvements in process technology have made 
possible, for the first time, the joining of combinatorial 
floating point addition/subtraction and multiplication functions 
in a single VLSI device. The Advanced Micro Devices Am29325 
Floating Point Processor contains all hardware necessary to 
perform high-speed, 32-bit floating point addition, subtraction, 
multiplication, and format conversion operations, in either IEEE 
or DEC floating point formats. The device also contains a 
flexible 32-bit data path, with facilities for local operand 
storage. 

The integration of three elements - a combinatoria 1 
adder/subtractor, combinatorial multiplier, and data path -
marks the fundamental difference between the Am29325 and 
prev ious floating point implementations. By combining these 
functions, the design addresses not only the problem of 
implementing fast floating point operators, but also the equally 
important problem of efficiently transferring operands from one 
operation to the next. The data path architecture is optimized 
for performing often-used arithmetic sequences, such as 
multiplication- accumulation and Newton-Raphson division. 

The Am29325 is fabricated with the IMOX-S (for Ion­
iMplantation, OXide isolation with Scaling) process, a 
refinement of earlier AMD bipolar processes. IMOX-S has a 
feature size of 1.S microns; three layers of metal are used for 
interconnects. The Am29325 die contains 48,000 devices on 
129,000 square mils of silicon, and is packaged in a 144-1ead 
pin-grid-array. Standard cell techniques were used to reduce 
design time and simplify chip layout. Improvements in turn­
around time were significant: custom design of the Am29116, a 
16-bit bipolar microprocessor, took 51 months, whi Ie design of 
the Am29325, a device three times as large, took only 31 months. 

The floating point processor is the first in a series of 
general-purpose, microprogrammable devices primarily intended 
for 32-bit systems. Other fami ly members include the Am29331 
microprogram sequencer, the Am29332 ALU, the Am29323 32-by-32-
bit fixed-point multiplier, and the Am29334 register file. 

~ ARCHITECTURE 

The Am29325 comprises a high speed floating point 
arithmetic unit, a status flag generator, and a 32-bit data path 
(f ig. 1). 

FLOATING POINT 
ARITHMETIC UNIT 

<ADDER, MULTIPLIER, 
FORMAT CONVERTER) 

PORT t 

1 

f<:J CLK 

16 
f<:JINSTRUCTION 

SELECT, 
CONTROL 

STATUS 
FLAGS 

Fig. 1: Am29325 Floating Point Processor block diagram. 



~ 

en 

Arithmetic unit - The three-port, combinatorial arithmetic 
unit contains a high speed adder/subtractor, a 24-by-24-bit 
multiplier, an exponent processor, and other logic needed to 
implement floating point operations. Two input ports, Rand S, 
provide operands for the instruction to be performed. The 
result of an operation appears on output port F. 

The arithmetic unit executes one of eight instructions 
(table 1). Three of the instructions - R PLUS S, R MINUS S, and 
R TIMES S - add, subtract, and multiply 32-bit floating point 
numbers. A fourth instruction, 2 MINUS S, subtracts 32-bit 
floating point operand 5 from 2. The 2 MINUS S instruction is 
used to perform Newton-Raphson division, a means of calculating 
the quotient A/B. Unlike conventional division, in which 
quotients are calr.ulated with a series of subtractions and 
shifts, the Newton-Raphson division algorithm first calculat·es 
the reciprocal (liB') using an iterative equation, then computes 
the quotient by post-multiplying the reciprocal by A. 

The remaining four instructions perform data format 
conversions. Instructions INT-TO-FP and FP-TO-INT convert 
between floating point and 32-bit, 2's complement integer 
formats. The IEEE-TO-DEC and DEC-TO-IEEE instructions convert 
between IEEE and DEC floating point formats. 

Instructions may be performed in either of two single­
precision floating point formats - the IEEE format, as specified 
in proposed standard P754, draft l@.@ (ref. 1), or the DEC F 
format (ref. 2). These _~ormats are similar, each having an 8-
bit biased exponent, a 24-bit significand comprising a 23-bit 

MNEMONIC OPERATION 

R PLUS S Add float1ng p01nt operands Rand S 

R MINUS S Subtract floatlng pOInt operand S from 
floatIng pOlnt operand R 

R TIMES S MultIply floatlng p01nt operands Rand S 

2 MINUS S Constant floatlng pOInt subtractIon for 
Newton-Raphson d1v1slon (see text) 

INT-TO-FP Convert floatIng p01nt operand R to lnteger 

FP-TO-INT Convert Integer operand R to float1ng pOInt 

IEEE-TO-DEC convert IEEE floatIng pOInt operand R to 
DEC flaatlng pOInt format 

DEC-TO-IEEE convert DEC float1ng pOInt operand R to 
IEEE ftoatlnq pOlnt format 

Table 1: Floating point arithmetic unit operations 

mantissa appended to an implied or "hidden" MSB, and a sign bit. 
There are, however, a number of differences between IEEE and DEC 
floating point conventions, in both the format and the manner in 
which operands are handled during the course of an operatio~. 
These differences are automatically accounted for when the 
desired format is selected. 

The arithmetic unit implements four IEEE-mandated 
rounding modes that map the infinitely precise result of a 
calculation to a representable floating point value. An 
additional VAX-compatible rounding mode is provided for users of 
the DEC floating point format. 

Status flag generator - The status flag generator produces 
six flags that report operation status. Four of the flags 
report exception conditions stipulated in IEEE standard P754. 
The first of these, the INVALID flag, indicates that an 
operation does not have a sensible answer; multiplying infinity 
by zero is one exarple of an invalid operation. Operations 
producing results either too large or too small to be 
represented in the selected floating point format are identified 
by the second and third exception flags, UNDERFLOW and OVERFLOW. 
The fourth exception flag, INEXACT, indicates that the result of 
an operation is not infinitely precise. Two additional flags 
not called for in the IEEE standard, ZERO and NAN, identify 
zero-valued or non-numerical results. 

Data path - The integrated data path comprises two input 
buses, a three-state output bus, and two data feedback buses, 
all 32 bits wide. Operands enter the Am29325 through input buses 
R0 - 31 and 5 0 - 31 ; results exit through three-state output bus 
F@_3l' Each of the R, S, and F buses has a 32-bit edge­
triggered register for data storage. An independent clock 
enable is provided for each register, so that new data can be 
clocked in or old data held. Input registers Rand S, and 
output register F can be made transparent independently. When 
all three registers are made transparent, the Am29325 operates 
in a purely combinatorial 'Iflow-through l' mode. 

The two feedback data paths transport processor output 
operands back to the inputs. The first feedback path routes 
data from the output of the arithmetic unit to a 32-bit 
multiplexer at the input of register R; the multiplexer selects 
the operation result or R0 - 31 • The other feedback path carries 
the output of register F to a second 32-bit multiplexer, which 
selects either register 5 or register F as the input for port S 
of the arithmetic unit. 

To allow easy interface with a variety of 16- and 32-bit 
systems, buses R, S, and F can be programmed to operate in one 
of three I/O modes. The first and most straightforward of these 
is the 32-bi t, 2- input-bus mode; in this mode, the Rand 5 buses 
are configured as independent 32-bit input buses, the F bus as a 



.. 

~ 

-J 

32-bit output bus. The second I/O option is a 32-bit, single­
input-bus mode, in which the Rand S operands are taken from a 
single 32-bit input bus on alternate clock edges. For the third 
option, a 16-bit, two-input-bus mode, the R, S, and F buses are 
16 bits wide. Thirty-twa-bit operands are placed on these 16-
bit buses by time-multiplexing the 16 MSBs and LSBs of each data 
word during alternate halves of the clock cycle. Internal data 
paths and registers remain 32 bits wide when this 16-bit I/O 
mode is selected. 

ARCHITECTURAL ADVANTAGES FOR DSP APPLICATIONS 

The architecture of the Am29325 offers several advantages 
to the implementor of DSP and array processing systems: 

Efficient data routing - Three aspects of the Am29325 
architecture contribute to efficient data routing. First, 
placing the adder/subtractor and multiplier on the same die 
e1 iminates the shuffl ing of data between separate 
adder/subtractor and multiplier chips. Minimizing chip-to-chip 
communication is an important consideration in high performance 
system design, since, in VLSI-based systems, the time needed to 
transfer data between chips can often limit maximum operating 
speed. 

Second, the on-board data paths allow the intermediate 
result of a calculation to be routed to the input of the 
floating point arithmetic unit, for use as an input operand in 
the next phase of the calculation. This feature not only keeps 
data on-chip, but also makes an external implementation of a 
similar data path unnecessary_ Such an external data path would 
be expensive, both in components and circuit-board real estate; 
implementing the two 32-bit multiplexers alone would consume 
over a dozen MSI devices. 

Third, the absence of pipeline delays in the floating 
point arithmetic unit makes it possible to use the result of one 
calculation as the input operand for the very next calculation, 
a crucial feature when implementing algorithms with tight data 
feedback loops. Users of floating point processors with 
pipeline delays have one of two choices when implementing such 
an algorithm - they can either halt the operation while waiting 
for the desired result to drop out of the pipel ine, thus 
reducing computational efficiency, or can interleave different 
sets of calculations to keep the arithmetic unit busy, at the 
cost of more compl icated programming. Using a zero-pipel ine­
delay arithmetic unit avoids both of these unappealing choices. 

Am29325 data routing efficiency is best appreciated by 
considering the manner in which multiplication-accumulation is 
performed. In a typical multiplication-accumulation calculation, 

N input terms Xi are multiplied by coefficients k i • These 
products are then added, producing the weighted sum 

~ 
s =~ kixi 

i=0 

Multiplication-accumulation is performed in a two-step 
loop, with two additional steps for initialization (fig. 2a-d). 
To initialize the process, data and coefficient values x0 and k0 
are clocked into registers Rand S (fig. 2a). Next, the values 
x0 and k0 are multiplied, and the product placed in register F; 
at the same time, data and coefficient values Xl and kl are 
clocked into registers Rand S (fig. 2b). In the first step of 
the multiplication-accumulation loop, values Xl and kl are 
multiplied, and the product placed in register R (fig. 2c). In 
the second step, products xl*kl and x0*k0 are added, and their 
sum placed in register F; x2 and k2 are placed in registers R 
and S (fig. 2d). 

The two loop steps are then repeated for as many 
iterations as needed to complete the calculation. The internal 
data paths wrap back products and accumulations, thus keeping 
the arithmetic unit busy with a multiplication or addition every 
clock cycle; a new multiplication-accumulation is performed 
every two clock cycles. Partial results remain on-chip until 
the multiplication-accumulation is completed. 

High I/O bandwidth - The three 32-bit I/O buses provide 
high-bandwidth access to the floating point arithmetic unit. 
When the device is operated in the 32-bit, two-input-bus I/O 
mode, no multiplexing of I/O buses is required, thus improving 
system speed and easing critical timing constraints. 

Transparent operation - In many applications, the R, S, 
and F registers will be used to store an operation's inputs and 
outputs; it is in this register-to-register mode that the 
Am29325 operates the fastest. In some applications, however, it 
may be desirable to bypass the internal registers, either 
because system requirements dictate a data path structure 
substantially different from that provided, or because the 
floating point operations must be concatenated with other 
combinatorial functions. These situations can be accommodated 
by making all three registers transparent, turning the floating 
point processor into a purely combinatorial device; this "flow­
through" mode of operation would not be possible if the Am29325 
used multiplexed I/O. 



-'" 
0:> 

X~ 

( a. 

(C. 

Fig. 2 (a-d): 

Xl k 1 

( b. 

X2 k 2 

(d. 

Performing floating point multiplication­
accumulation with the Am29325. 

SYSTEM DESIGN 

A block diagram for a typical small system design is shown 
in fig. 3. The system consists of an Am29325, an Am29334 four­
port register file, data memory, coefficient memory, 
microprogrammed controller, clock generator, and host system 
interface. Although small enough to fit on a single circuit 
board, this system contains all the elements needed for floating 
point digital-signal and array processing. 

Because of its three-bus I/O structure and internal 
feedback paths, the Am29325 can be used to advantage in both 
cascade and parallel configurations. Fig. 4 illustrates a 
simple cascade system, a variation on the previous architecture. 
In this system, the output port of one floating point processor 
feeds the input port of another. This arrangement is 
particularly advantageous when performing high-speed 

MICROCODE DIN COEFFICIENT 
CONTROLLER DATA MEMORY MEMORY 
<Am2910A or (8 X Am93422) (4 X Am275281) 

Am29331) 
------ - - --- -- ------ DOUT 

MICROCODE 
MEMORY 

(Am27545 
REGI5TER PROM5) 

FOUR-PORT 
REGI5TER 

CONTROL, FILE 

ADDRES5ES 2 X Am29334 

32 32 

R0 - 31 

Am29325 
FLOATING POINT 

PROCESSOR 

f"0-31 

32 

Fig. 3: Typical small-system design. 



mul1iiplication-accumulation; the first Am29325 forms products, 
while the second computes the accumulation in parallel. The 
accumulation is performed using a feedback data path in the 
second part _ no external feedback path is necessary. By doing 
the multiplications and additions in parallel, the effective 
throughput rate is one clock per mul tipl ication-accumu lation, 
twice that of the system shown in fig. 3. 

.... 
<0 

MICROCODE 
CONTROLLER 
<Am2911!lA or 

Am29331) -----------
MICROCODE 

MEMORY 
(Am27S45 

REGISTER PROMS) 

CONTROL. 
ADDRESSES 

DATA MEMORY 
(8 X Am93422) 

COEFF"lCIENT 
MEMORY 

(4 X Am27S281) 

FOUR-PORT 
REGISTER 

FILE 
2 X Am29334 

32 

ReI-31 

Am29325 
FLOATING POINT 

PROCESSOR 

r0-31 

32 

DOUT 

32 

""-31 S0-all 

Am2932S 
FLOATING POINT 

PROCESSOR 

f"0-31 

32 

Fig. 4: System using two floating point processors in cascade. 

Parallel configurations are also useful, and are easi ly 
implemented. In one such configuration, t~e Am29325 is used 
with other members of the Am29300 family to create a 32-bit 
floating-point/integer processor (fig. 5). In the system shown, 
the Am29332 ALU and the Am29323 32-by-32-bit parallel multiplier 
share three 32-bit buses with the Am29325; data can be passed 
from one processor to another through the Am29334 register file. 
Combining these parts produces a system that can perform high­
speed floating point, integer, and logical operations. The user 
can further expand the system by adding 32-bit operators of his 
own devising to the three-bus archi tecture. 

REFERENCES 

1. A Proposed Standard for Binary Floating-Point Arithmetic, 
IEEE Floating-point Working Group, draft 10.0, December 2, 1982. 

2. VAX Architecture Handbook, Digital Equipment Corporation, 

1981 

l H05T SYSTEM INTERFACE 

]1 I' 
MICROCODE DIN COE:FFICIENT 

CONTROLLER DATA MEMORY MEMORY 
(Am2911!lA or (8 X Am93422) (4 X Am27S281> 

Am29331 ) 
[lOUT DOUT ----- - -- ---- --- ----

MICROCODE 

~ MEMORY 
(Am27S45 

I 

REGISTER PROMS) ! 
~CONTROL. FOUR-PORT 

: ADDRESSES REGISTER 
FILE 

CLOCK '[ 
2 X Am29334 

GENERATOR. 
(Am292S> : 

.u II 32 

II I .u II .u 32 

11 1 11 II 
Am29325 Am29332 Am29323 

FLOATING POINT ALU 32-BY-32 PARALLEL 
PROCESSOR MULTIPLIER 

_.lJ. .. .lJ. .lJ. 32 

Fig_ 5: Thirty-twa-bit floating point/integer processor. 





SYSTEM DESIGN/lntegrated 

DIGITAL FILTER DESIGN 
MADE EASIER FOR 
FIRST·TIME USERS 
Off-the-shelf components and simplified filter formulas ease 
entry into the world of digital filter design, and allow a quick 
evaluation of the cost-effectiveness of digital solutions. 

by Kenn Lamb and 
Bob Perlman 

Realtime digital filtering is becoming an attractive al­
ternative in a growing number of analog-filtering ap­
plications. Today, specialized digital signal-processing 
part families, and a range of filter-design packages, 
make digital filters easier to implement. Neverthe­
less, getting into digital filter design for the first time 
is not easy. Some of the concepts are unfamiliar to 
novice filter designers and the tools generally avail­
able are aimed at the more experienced designers. 

A "cookbook" approach, however, eases entry 
into digital filter design and provides a quick way 
to evaluate the cost-effectiveness of a digital solu­
tion. This approach uses off-the-shelf ingredients, 
such as the Am29500 family, and a simple "recipe" 
for a linear phase finite-impulse response (FIR) filter. 
Copyright by COMPUTER DESIGN, 
November 1985. Reprinted 

A digital filter performs the same function as an 
analog filter, but.in a different "world." In the con­
tinuous world, a signal is monitored (or sampled) 
continuously, and filtering is described mathemati­
cally as a convolution operation. 

In the discrete world, things can be done much 
more efficiently. The z-transform, in which powers 
of z can be equated to simple time delays, provides 
a formula that is the discrete equivalent of the con­
volution operation. In addition, sampling reduces 
the monitoring overhead to periodic snapshots of 
the signal. A digital filter simply implements the dis­
crete convolution formula after an A-D converter 
has sampled the signal. Any arithmetic processor can 
perform the discrete convolution required for a 
digital filter, but the Am29500 family provides a pro­
cessing package without the overhead of a micro­
processor-based system, and can be optimized for 
digital-filtering applications. 

Unlike the characteristics of an analog filter, a dig­
ital filter's characteristics are determined by arith­
metic operations and coefficients, rather than by 
individual component values. This makes digital 
filtering inherently independent of component aging 
and environmental variables such as temperature. As 
a result, reliability is improved, and the filter response 

Kenn Lamb is a former product planning engineer for 
Advanced Micro Devices (Sunnyvale, CAl. He holds a 
BSC in electronics from Imperial College in London. 

Bob Perlman is a product planning section manager at 
AMD. He holds an MSEE from Johns Hopkins 
University. 

by permission. 121 



can be accurately reproduced. In addition, digital 
techniques permit useful characteristics that are not 
easily achieved in analog systems. Among these are 
zero passband insertion loss, very low frequency 
operation, and control over the stopband response. 

Using digital techniques, a designer can build 
linear-phase and all-pass filters that modify only the 
frequency or phase content of a signal. Linear-phase 
filters are used in multichannel environments where 
phase information is important, while all-pass filters 
are used typically for equalization. Cascading all­
pass and linear-phase filters allows phase and fre­
quency responses to be modified independently. In 
addition, filter coefficients, which are programmed 
by the designer, are easier to change than the com­
ponents of an analog filter. 

Because analog filters operate in the continuous 
world and can handle only one signal at a time, 
analog designs usually cascade a number of stages. 
As a result, there is a dear relationship between the 
physical size of an analog filter and its performance. 
The bandwidth of the active components within the 

MI 010 
MULTI PORT-PIPELI NED 

PROCESSOR 
Am19501 

MIO 
Ci 

16 
r+.------_+,, 

MULTI Pli ERI ACCU MULATOR 
CONTROLLER 

Am19L510 
P 

16 
OUTPUT 

filter determines the overall filter bandwidth, but 
spare bandwidth cannot be used for other channels. 

Because the digital filter core is an arithmetic sec­
tion that performs the calculations according to the 
discrete convolution formula, it may be used for one 
large, or many small, single-channel filters, or may 
be a stage in a very large, high-bandwidth filter. 

Relationship between time and frequency 
The match between design and actual response in 

an analog filter is determined by the tolerance with 
which analog components may be constructed; the 
digital equivalent is the resolution (number of bits) 
at which the digital coefficients are represented. A 
relatively lax analog specification places wide toler­
ance on the component values, which translates into 
a less accurate (fewer bits) resolution of the digital 
coefficients. For an analog filter, the dynamic range 
corresponds to the range between the noise floor and 
the point at which the signal starts to dip. Dynamic 
range in a digital filter is determined by the number 
of bits in the digital representation of the signal. 

The filter consists of three main sections: the address­
generation and control section, the arithmetic section, 
and the store. The address-generation and control 
section consists of the read and write pointers, the 
8-bit adder, and the controller. The arithmetic unit 
consists of the multiplier/accumulator and the mul­
tiport pipelined processor. The store consists of the 
Am9128 RAMs and the Am27S25 registered PROMs. 

'-------------------------------------------------' 

122 



-~-~--.. --- ---.-----~~~~~~~~-----, 

What is convolution? 
Two continuous functions x(t) and h(t) can be con· 
volved by evaluating the equation: 

00 

y(t) = 1 x (71") X h (t - 71") d7l" 
-00 

The discrete-time equivalent of this equation is: 

N-J 

y(n)= E x (k)xh (n-k) 

k=O 

Although somewhat different in appearance, both 
forms of the convolution equation can be evaluated 
similarly. First, the function h is time-reversed, or 
flipped. Then, function h is shifted left or right, with 
the amount of shift indicated by time variables t or 
k. The resulting function is then either integrated 
(in the continuous case) or multiplied and summed 
pOint by point (in the discrete case) with function x. 

One unfortunate aspect of convolution is that its 
worth is not readily apparent from the defining 
equations presented above. The real power of con­
volution is best appreciated by considering what 
happens in the frequency domain when two signals 
are convolved in the time domain. If the Fourier 
transforms of continuous signals x(t) and hit) are 
X(f) and H(f), the convolution of x(t) and hit) 
produces a signal whose frequency spectrum is 
equal to the product X(f)H(f). In other words, if one 
wishes to pass signal x(t) through a filter with trans­
fer function H(f), one merely convolves x(t) with hit). 
The same principle holds for discrete-time Signals, 
but with the z transform taking the place of the Fou­
rier transform. 

The discrete convolution of a sampled signal (a) 
with a sampled-impulse response (b) may be 
achieved by the following process. First, flip the im­
pulse response and place it over the signal (c). Sum 
the products of each impulse sample with its coin­
cident signal sample. The total is the convolution 

result for the particular overlap, and corresponds 
to the first filter output. Now, slide the impulse re­
sponse one sample interval to the right, so that it 
overlaps the next newest signal sample. Repeat the 
multiply/accumulate sequence. This result is the 
convolution for the new overlap, and corresponds 
to the second output from the filter. This process 
is repeated to calculate each new filter output. After 
each filter output, the oldest signal sample is no 
longer required, and may be discarded (d). 

lal 
SAMPLED SIGNAL 

_coY n 

ICI~ 

(bl 
SAMPLED IMPULSE 

RESPONSE 

CONVOLUTION Of 
TWO SIGNALS = Y, 

NE~ OLDEST SAMPLE 

SAMPLE '" 
DISCARDED ~ 

\ " CONSECUTIVE 
" fillER 

_J t I ~! ",",,7°.'",' 
Idl 

______ ~~ __ ~ _____ ~. ______________ ~...J 

A signal to be filtered exists in the time domain 
of the familiar continuous world_ The desired filter 
response for this signal is best represented in the fre­
quency domain of the continuous world. These two 
domains are related through the continuous Fourier 
transform. The Fourier transform of a time-varying 
signal is its frequency spectrum, and the Fourier 
transform of the filter's frequency response is its 
impulse response. Viewed in the time domain, a 
filter's output is determined by the time-varying am­
plitude of the input signal and the filter's impulse 
response. In the frequency domain, on the other 
hand, the signal's frequency spectrum and the filter's 
frequency response determine the output. The fre­
quency response and the impulse response say the 
same thing about. a filter;-the impulse response is 

123 

simply the time-domain version of the filter's fre­
quency response. 

Just the continuous Fourier transform allows 
movement between the time and frequency domains 
of the continuous world, the z-transform allows 
movement directly from the continuous world into 
the sampled discrete world. Here the discrete time 
and frequency domains exist, linked by the discrete 
Fourier transform_ Sampled versions of the input 
signal, the signal's frequency spectrum, and the 
filter's frequency and impulse response are used. 

Design tradeoffs 
To understand the design tradeoffs between filter 

size and performance, a designer must be familiar 
with two relationships between the time and fre-



quency domains: multiplication in one domain is 
equivalent to convolution in the other domain, and 
a signal cannot be duration-limited in both domains. 
A filter can perform a multiplication in the fre­
quency domain in which the frequency spectrum of 
an incoming signal is multiplied by the frequency 
response of the filter, or it can perform a convolu­
tion operation in the time domain. For a digital fil­
ter, this requires the discrete convolution of a 
sampled version of the input signal with a sampled 
version of the filter's impulse response. The latter 
forms the coefficients of the filter. 

The frequency response of the filter will almost 
certainly be duration-limited in the frequency do­
main, because it's unusual for a filter to pass all input 
frequencies. Obvious examples are low-pass and high­
pass filters, where the aim is the elimination of great 
chunks of the input signal's frequency content. Be­
cause a signal cannot be duration-limited in both the 
time and frequency domains, a filter such as this will 
have an infinitely long impulse response. A simplistic 
approach to shortening this response is to truncate 
the impulse response to a convenient length. 

Truncating the impulse response is equivalent to 
multiplying it by a function that has a value of one 
where the impulse respol1se is to be preserved, and 
a value of zero where the impulse response is trun­
cated. This truncating function is called rect (x) be­
cause its amplitude plot describes a rectangle. Since 
multiplication in the time domain is equivalent to 
a convolution in the frequency domain, the initial 
ideal filter response must be convolved with the 
Fourier transform of the rect (x) function. The 
Fourier transform is the well-known sinc function. 
The nature of this sine function, however, smears 
the original ideal frequency response. And the more 
of the impulse response that is discarded, the worse 
the smearing effects of the sinc function. 

A designer can obtain a duration-limited impulse 
response without wrecking the original filter's fre­
quency response by mUltiplying the impulse response 
by a function with characteristics such that when the 
frequency response of this function is convolved with 
the desired filter's freo1lency response, it causes the 
minimum of smearir,g distortion. Window func­
tions, such as the Hamming function do just this. 
A window function such as this has a narrow main 
lobe to maintain the selectivity of the filter, and small 
sidelobes to maintain the depth of the stopband. 

Designing a low·pass filter 
The design of a low-pass filter is particularly easy, 

because the impulse response is obtained from the 
Fourier transform of the ideal rectangular response, 
which then takes the form of a geometric series, with 
c()f'ffi('if'nt~ that ('an hI" exnre~sed as the relatively 

simple sinc function sin (x)/x. The number (N) of 
coefficients (Sn) needed to implement the filter de­
pends on the sampling rate (usually 2.5 times the max­
imum frequency in the signal), the cutoff frequency 
of the filter, and the frequency that defines the start 
of the stopband. These coefficients must be multi­
plied by appropriate window function coefficients 
(W n) to yield windowed filter coefficients (en), 

These decimal coefficient values must then be con­
verted into 16-bit binary values, using the fractional 
two's complement numbering scheme. The coeffi­
cients are normally stored within registered PROMs, 
although RAM or EPROM storage offers advantages 
during development. Most A-D converters support 
the two's complement numbering scheme, ensuring 
that the representations of the data and coefficients 
are compatible. 

Filter hardware is used to implement the discrete 
convolution operation given by the formula: 

N 

Yk = E en x X(k-n+ \) 
n=l 

where Xk and Y k are the kth filter inputs and out­
puts, respectively. A filter implemented with this 
equation uses N data inputs to compute each filter 
output, and is therefore referred to as an N-tap or 
N-point filter. 

One advantage of a linear phase filter is that the 
coefficients are symmetrical. This means the required 
number of multiplications and the size of the coeffi­
cient store can be halved by adding the two data 
points that will be multiplied by the same coefficient 
value. The modified formula is: 

NI2 

Yk = E en x [X(k-n+l)+X(k-N+n)1 

n=l 
The filter hardware used to implement this for­

mula consists of three distinct sections: the address 
generation and control, the arithmetic section that 
performs the number crunching, and the store. The 
store holds a short time history of N samples for 
each of the channels to be filtered. These samples 
are held in a cyclic buffer with a length equal to the 
next integer power of two greater than the number 
of points in the filter. For each processed sample 
output from the filter, a new sample must be written 
in. This new sample overwrites the oldest sample 
within the cyclic buffer. 

For each output from the filter, the N newest sam­
ples must be read into the arithmetic section so the 
discrete convolution operation can be performed. 
Two pointers are needed-one (which counts up) to 
indicate the write address for incoming samples, and 

124 



and one (which counts down) to indicate the read 
addresses for the discrete convolution operation. 

The store will be required to read two data points 
for every cycle of the multiplier. The second data 
point may be found at an offset from the existing 
read pointer. An Am29PLl41 fuse-programmable 
controller supplies this offset, and the modified ad­
dress is calculated by an 8-bit adder formed from 
two Am25LS2517 ALUs. 

For a six-point filter, the offsets (0, 3, 5, and 7) 
are applied, on alternate cycles, to the 8-bit adder 
by the Am29PLl41, to permit generation of the sec­
ond read address from the first read address. 

For a six-point filter, all of the address calcula­
tions are performed modulo 8 (the next power of 
2 greater than 6), which is done by masking the ad-

---~-----

dress applied to the store so that the store sees only 
the least significant three bits. After each new word 
is written into the store, the write pointer loads the 
read pointer with the correct cyclic buffer start ad­
dress for the calculation of the next filter output. 

MUltiple channels may be accommodated by in­
hibiting the increments of the write pointer until all 
the channels have input a new sample. The chan­
nels are counted by the loop counter within the 
Am29PL 141 fuse-programmable controller, and are 
separated in the store section by the high-order ad­
dress bits latched with each new input. The chan­
nels may be presented in any order, but all channels 
must be processed at the same rate. When shifted 
one position so that the least significant bit is dis­
carded, the values forming the offset sequence give 

Determining the coefficients for a low-pass filter 
The coefficients for a low·pass filter can be ex· Inserting the values for Fs, F ep, and N into the 
pressed in terms of the so·called sinc function. The above equations gives: 
number of coefficients required to implement the 
filter N is given by: 

N = 4Fs/(Fcs - Fcp) 

Fs; the sampling rate of· the A·D converter, is equal 
to 2.5 times Fa, the maximum frequency present in 
the input Signal (set by the antialiasing filter). Fep 
is the cutoff frequency of the filter (the end of the 
passband) and Fes is the frequency that defines the 
start of the stopband (the end of the transition band). 

This estimate for N (the number of coefficients) 
is usually conservative, so the value of N may be 
reduced safely by about 10 percent. This leeway al· 
lows an even value for N to be obtained. Having de· 
termined N, the coefficient values can be obtained 
by sampling the filter's impulse response. The reo 
quired coefficients are given by the following sinc 
functions: 

For n= 1 to N 
S = sin [2X7rxFcpx(n-(N+l)I2)/Fsl 

n 7r X (Il - (N + 1 )12) 

where the Sn values are the samples of the sinc 
function. These values must then be multiplied by 
the window function to yield the windowed filter 
coeffiCients (Cn): 

where Wn (the Hamming window coefficients) are 
given by: 

Wn = 0.54 + 0.46 x cos [2 x 1f x (n - (N 
+ 1 )/2)/(N - 1)] 

Choosing Fa equal to 5 kHz, Fep equal to 3 kHz, 
and Fes equal to 4.5 kHz gives an N equal to 33. 

Sn = [sin (0.48 x 1f x (n - 15.5))]/(1f x (n - 15.5)) 
Wn = 0.54 + 0.46 x cos (2 x 1f x (n - 15.5)/29) 

This gives the Cn coefficients listed in the table. 

30-Point Low-Pass Filter Coefficients 

Coefficient Impulse Window Filter 
Index Samples Coefficients Coefficients 

Inl (Sn l (Wnl (Cnl 

1 0.00275 0.080 0.00022 
2 0.02353 0.090 0.00212 
3 0.00000 0.122 0.00000 
4 - 0.02762 0.173 -0.00478 
5 -0.00380 0.242 -0.00092 
6 0.03291 0.324 0.01066 
7 0.00931 0.417 0.00388 
8 -0.04036 0.515 -0.02078 
9 -0.01803 0.614 -0.01117 

10 0.05236 0.710 0.03717 
11 0.03407 0.798 0.02718 
12 -0.07679 0.874 -0.06711 
13 -0.07484 0.934 -0.06990 
14 0.16350 0.976 0.15958 
15 0.43580 0.997 0.43449 
16 0.43580 0.997 0.43449 
17 0.16350 0.976 0.15958 
18 - 0.07484 0.934 -0.06990 
19 - 0.07679 0.874 -0.06711 
20 0.03407 0.798 0.02718 
21 0.05236 0.710 0.03717 
22 -0.01803 0.614 -0.01117 
23 -0.04036 0.515 -0.02078 
24 0.00931 0.417 0.00388 
25 0.03291 0.324 0.01066 
26 -0.00380 0.242 -0.00092 
27 - 0.02762 0.173 -0.00478 
28 0.00000 0.122 0.00000 
29 0.02353 0.090 0.00212 
30 0.00275 0.080 0.00022 L Reducing this by 10 percent makes N equal to 30. 

~ .------~---.-.----

125 



Addressing and Operation Sequence for a Six-Point Filter 

Cycle Write Read Offset Read 
Number Count Count Address 

1 0 load - -
2 0 0 0 0 
3 0 0 3 3 
4 0 7 0 7 
5 0 7 5 4 
6 0 6 0 6 
7 0 6 7 5 
8 1 load -

9 1 1 0 1 
10 1 1 3 4 
11 1 0 0 0 
12 1 0 5 5 
13 1 7 0 7 
14 1 7 7 6 
15 2 load - -
16 2 2 0 2 
17 2 2 3 5 
18 2 1 0 1 
19 2 1 5 6 
20 2 0 0 0 
21 2 0 7 7 
22 3 load - -
23 3 3 0 3 
24 3 3 3 6 
25 3 2 0 2 
26 3 2 5 7 

The write count is used to load the read count every 
seventh cycle. Read addresses are obtained by add· 
ing the read count to the offset modulo 8. Two 
cycles are required for each add operation, with the 
least significant halves being added in the first 
cycle, the most significant in the second. The Add 
column indicates the addresses of the data sam· 
pies that are added together on each cycle. The mul· 

the new sequence (0, I, 2, 3) required to address 
the coefficients. An Am29520 must implement a 
two-cycle delay to ensure that the address is made 
available to the registered PROMs when needed. 

The arithmetic section consists of a single 8-bit 
Am29501 and a 16-bit Am29L51O. The 501 performs 
a 16-bit addition for every cycle of the 510, and oper­
ates at twice the clock rate of the. 51 O. An additional 
9-bit Am29823 register latches the least significant 
eight bits and the carry out of the add operation as 
it is performed by the 501. The 510 performs the 
multiply/accumulate operations required by the dis­
crete convolution process; the guard bits within the 
accumulator accommodate word growth. 

There are two store requirements within the 
filter-the data and the coefficients. The data re­
sides in two 2-kword, 8-bit wide Am9128 RAMs that 
cycle at the same rate as the 501. The coefficients 
reside in two 8-bit wide Am27S25 registered PROMs 
that cycle at the rate of the 510. 

Write Add Mult Output 
Address 

0 * * * ****** --
* * * ****** - --

*"''''*'''* - --- --

- 0+3 *"'*"''''* --
- 0+3 ------ ** 
- 7+4 0+3xC1 --
- 7+4 0+3xC1 ---
1 6+5 7+4x2 --
- 6+5 7 +4 xC2 --

- --- 6 + 5 x C3 --
- 1+4 6 + 5 x C3 --
- 1+4 ------ Y1 
- 0+5 1 +4xC1 --
- 0+5 1 +4 xC1 --
2 7+6 0+ 5 x C2 --
- 7+6 0+ 5 xC2 --
- -- - 7 + 6 x C3 --
- 2+5 7 + 6 x C3 --
- 2+5 ------ Y2 
- 1 + 6 2 + 5 x C1 --
- 1 +6 2+5xC1 --
3 0+7 1 + 6 x C2 --
- 0+7 1 + 6 x C2 --
- --- 0+ 7 x C3 --
- 3+6 0+7 x C3 --
- 3+6 ------ Y3 

tiplier/accumulator operates at half the speed of the 
adder, and therefore requires two cycles for each 
operation. The Mult column shows the results of 
prior add operations being multiplied by the filter 
coefficients. The filter outputs are shown in the out· 
put column. The filter coefficients are obtained by 
multiplying the impulse samples by the associated 
window coefficient. 

This filter structure accommodates up to 16 chan­
nels, each filtered by one stage of a linear phase FIR 
filter that has up to 128 points. Each point requires 
50 ns to process, yielding an effective sampling rate 
of 40 kHz for each of the 16 channels using the low­
pass filter described in the panel "Determining the 
coefficients for a low-pass filter." There is sufficient 
capacity within the PROMs for 32 different sets of 
filter coefficients, allowing a different filter to pro­
cess each channel. Outputs may be returned as inputs 
to a different channel, allowing steeper rolloffs by 
cascading filters, or more complicated responses by 
cascading low- and high-pass filters. 

This filter structure can be configured to yield a 
filter bank capable of resolving up to 32 spectral 
components from an input signal sampled at 20 kHz 
(using filters of similar complexity to the low-pass 
one in the panel). This type of filter bank provides 
a stable platform for automatic speech-recognition 
algorithms. If 20 channels are dedicated to resolving 

126 



spectral components, 37 percent of the available 
processing bandwidth remains for squaring and in­
tegrating the outputs from each filter. A low-pass 
filter performs integration, and threshold detec­
tion may be performed with the Am29501. 

The hardware described can perform all of the 
processing required to generate the "intensity" spec­
trum of the input signal, which is the major process­
ing requirement of a speech-recognition system. 

One of the advantages of a filter bank implemen­
tation is that the signal spectrum may be broken into 
completely arbitrary divisions (20 in this example). 
An FFT implementation, on the other hand, would 
require a linear scale, while decimating filter tech­
niques would require divisions linked by integer 
ratios. A useful scale not usually available has a 
logarithmic spacing of center frequencies and band­
widths. This logarithmic spacing may be specified 
at the design stage. The band of interest ranges from 
400 Hz to 8 kHz, which may be satisfactorily sam­
pled at a rate of 20 kHz. Each of these center 
frequencies must be entered into the band-pass filter­
impulse response equation, with the associated band­
width, in order to generate the filter coefficients. 

The design of a band-pass filter using windowed­
impulse techniques follows the same steps as the low-

Determining the coefficients 
for a band-pass filter 

The coefficients for a band·pass filter are derived 
from the following variation of the low-pass filter­
impulse response formula: 

s = n 

sin [7r X B x (n - (N + l)/2)/Fs] x 2 x cos 
[2x 7rXPe x(n- N + l)/2/Fs] 

7r X (n - (N + 1)/2) 

where B is the 3d'B bandwidth, Fe is the center fre­
quency, Fs is the sampling frequency, N is the 
number of coefficients, and n is the coefficient 
index. The same Hamming window formula used 
for the low-pass filter may be used here. 

Specifying each filter to have the same number 
of coefficients simplifies the overall control of the 
filter bank. Up to 32 coefficients may be used for 
each filter without exceeding the available process­
ing bandwidth; a reasonable design specification 
would set N equal to 32, with Fs at 20 kHz. Insert­
ing these values in the impulse response formula 
yields: 

sin [7r x B x (n - 16.5)/20000] x 2 x cos 
[7r X Fe X (n - 16.5)/10000] 

Sn = ---------------
7r X (n - 16.5) 

Substituting the 20 pairs of values for Fe and B 
into this formula will, after multiplying by the ap~ 
propriate window term, yield the required filter 
coefficients. These coefficients must then be con­
verted into a fractional two's complement format, 
and programmed into the PROMs. 

---~ -------

pass filter design, with two differences: the number 
of coefficients roughly doubles because there are two 
distinct stop bands within the band-pass filter re­
sponse, and the coefficients are computed using a 
modified formula. 

Because a single input channel will pass through 
20 different band-pass filters, the same allocation 
of 20 channels is made here as in the low-pass filter, 
but there is a slight difference in the control sequence. 
Previously, a new sample was written·into the cyclic 
buffer each time a processed point came out of the 
filter. But, for this application, a new sample is writ­
ten into the cyclic buffer for every 20 output points 
from the filter. This means modifying the controller 
microcode so that the write pointer increments are 
inhibited until 20 outputs have been calculated. 

127 



CHAPTER 6 
PRODUCT SPECIFICATIONS 



Am29501A 
Multi-Port Pipelined Processor (Byte-Slice TM) 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Expandable Byte-Slice ™ Register-ALU 
- Speed improved version of the Am29501 

• Eight instruction ALU 
- Four arithmetic operations 
- Four logic operations 
- Force/Inhibit carry modes 
- Flexible expansion - has carry and P / G 

• Three I/O ports for maximum system interconnect 
flexibility 

• Ten internal data paths 
- Highly parallel architectures 
- Multiple simultaneous data manipulations 

• Pipelining register file has six 8-bit registers 
- Multilevel pipelining 
- Multiple register-to-register moves 

• Completely microprogrammable 
- No instruction encoding 
- All operation combinations available 

GENERAL DESCRIPTION 

The Am29501A is an expandable Byte-Slice™ register­
ALU designed to bring maximum speed to array processor 
and digital signal processor systems. It provides a flexible 
processor building block for implementing highly pipelined, 
highly parallel architectures where speed is achieved by a 
combination of optimized integrated circuit technology 
(IMOX ™ process and internal ECL circuitry) and custom­
ized system architecture. I/O port flexibility and multiple 
concurrent data moves make it possible to construct 
processors capable of very high throughput. Parallel pro­
cessors are especially efficient for array/vector operations 
or signal processing algorithms requiring complex number 
arithmetic (e.g. FFT, convolution, correlation, etc.). 

The Am29501A's Pipeline Register File provides data 
storage and pipelining flexibility. Any combination of regis­
ter instructions, ALU instructions, and I/O instructions can 
be microprogrammed to occur in the same cycle. This 
allows overlap of external multiplication, ALU operations, 
and memory I/O. 

Three I/O ports support a wide variety of parallel, pipelined 
architectures by providing separate I/O ports for the 
multiplier and the memory data bus. Either of two bidirec­
tionall/O ports, 010 and MID, can interface to the data bus 
or multiplier Y -input port. A separate MI port connects to 
the multiplier output port. 

BLOCK DIAGRAM 

DO _ 

.... 'VOISj 
• , •• IMG) : c:otfTROl. . 

...... IAW) 

.... 

~<J--------------~~~~---, 

~<J--------------~~----~ 

80003060 

Byte-Slice is a trademarl< of Advanced Micro 0eYices, Inc. 
129 05766A 



• High-Speed 1.6 ... CMOS Process 

Am29C509 
12 x 12 CMOS Multiplier Accumulator 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Output Register Preload 
The Am29C509, at 50 ns maximum clock rate, supports 
real-time process 

The predetermined value can be loaded into the output 
register 

• 27-bit Product Accumulation Result 
Provides 24-bit product plus 3-bit extended product 

• Accumulator Function 
The accumulator value may be altered by LOAD, ADD 
and SUBTRACT instruction 

• Round Control 
The most significant 12 bits of the product rounded to 
the value nearest to the full 24-bit product 

• Accept 2's Complement or Unsigned Inputs 

GENERAL DESCRIPTION 

The Am29C509 is a high-speed 12-bit x 12-bit multiplier/ 
accumulator (MAC). The X and Y input registers accept 12-
bit inputs in two's complement or unSigned magnitude for­
mal. A third register stores the Two's Complement (TC) 
and Round (RND), Accumulate (ACC), and Subtraction 
SUB/ADD control bits. This register is clocked whenever 
the X or Y input registers are clOCked. 

The 27-bit accumulator/output register contains the full 24-
bit multiplier output which is sign extended or zero-filled 
based on the TC control bil. The accumulator can also be 
preloaded from an external source through the bidirectional 
P-port. The operation of the accumulator is controlled by 
the signals ACC, SUB/ADD, and PREL (Preload). Each of 
the input registers and output register has independent 
clocks. 

BLOCK DIAGRAM 

TC RND 

CLKX ---,-------; 

CLKy --t-f--------t--t--+---' 

ACC ------, 

SUBIADD ----, 

LEX/OEx ---.., 

LEN/OEM 

LEIlOEL 

PREL 

CLKp 

MULTIPLIER 
ARRAY 

RELATED PRODUCTS 

Part No. Description 

Am29526/527 High speed sine function generator 

Am29528/529 High speed cosine function generator 

Am29540 Programmable FFT address sequencer 

Am29520N521A Multilevel pipeline registers 

Am29524/525 Multilevel pipeline registers 

130 

04986C·1 

Order #04986D 



Am29510/L510 
16 x 16 Multiplier Accumulator 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Uses two's complement or unsigned inputs and outputs • IMOX'" processing 
• Round control - ECl internal circuitry for speed 
• Output register preload - TTL I/O, single 5V supply 

• Fast • 35-bit product accumulator result 
- 32-bit product - High speed version multiply accumulate time 80ns 
- 3-bit extended product - low power version multiply accumulate time 110ns 

GENERAL DESCRIPTION 

The Am29510 is a high-speed 16 x 16-bit multiplier/ 
accumulator (MAC). The X and Y input registers accept 
16-bit inputs in two's complement or unsigned magnitude 
format. A third register stores the Two's Complement (TC) 
and Round (RND) control bits. This register is clocked 
whenever the X or Y input registers are clocked. 

preloaded from an external source through the bidirectional 
P port. The operation of the accumulator is controlled by the 
signals ACC (Accumulator), SUB/ADD (Subtraction/ 
Addition), and PREl (Preload). Each of the input registers 
and output register has independent clocks. 

The 35-bit accumulator/output register contains the full 32-
bit multiplier output which is sign extended or zero-filled 
based on the TC control bit. The accumulator can also be 

The Am29l510 is a low-power version of the Am29510. The 
Am29l510 consumes only one-half the power of its standard 
power counterpart while maintaining nearly two-thirds the 
speed. 

BLOCK DIAGRAM 

CLKX ---.,---------1 

CLKy --.,-t---------+--+--t--' 

Ace ------, 
SUB/ADD ------, 

LEx/OEx ----, 

LEM/OEM 

LEl/OEL 

PREL 

CLKp 

LE 6E 

Part No. 

Am29526/527 

Am29528/529 

Am29540 

Am29520/21 

IMOX is a trademark of Advanced Micro Devices, Inc. 

MULTIPLIER 
ARRAY 

RELATED PRODUCTS 

Description 

High-speed Sine function 
generator 
High-speed Cosine function 
generator 
Programmable FFT address 
sequencer 
Multilevel pipeli~e registers 

131 

03563C·1 

Order # 03563C 



Am29~~,t~!fJZs Fam i Iy 
ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• High-Speed 1-6 ... CMOS Process 
Supports 70 ns clocked multiply with 0.5W power 
dissipation. 

• Full Product Multiplexed at Output 
MSP and LSP routed to output port via multiplexer. 

• Two's Complement, Unsigned or Mixed Operands 

• Am29C516: Pin-fo,,"Pln Compatible with Am29516 
and MPY16HJ 

• Am29C517: Pin-fo,,"Pln Compatible with Am29517. 
Has Single Clock Input with Register Enables 
(Useful for Microprogrammed Systems) 

GENERAL DESCRIPTION 

The Am29C516 and Am29C517 are high-speed parallel 16 
x 16-bit multipliers utilizing internal CMOS logic to generate 
a 32-bit product. Two 17-bit input registers are provided for 
the X and Y operands and their associated mode controls 
XM and YM. These mode controls are used to specify each 
operand as either two's complement or unsigned numbers. 
When one operand is two's complement and the other is 
unsigned, the result is two's complement. 

At the output of the multiplier array, a format adjust control 
(FA) allows the user to select either a full 32-bit product or 
a left-shifted 31-bit product suitable for two's complement 
only. 

Two 16-bit output registers are provided to hold the most 
and least significant halves of the product (MSP and LSP) 
as defined by FA. For asynchronous output, these registers 
may be made transparent by taking the feed through con­
trol (FT) High. A round control (RND) allows the rounding 
of the MSP; this control is registered, and is entered when­
ever either input register is clocked. 

The two halves of the product may be routed to a 16-bit 
3-state output port (P) via a multiplexer, and in addition, the 
LSP is connected to the Y-input port through a separate 
three-state buffer. 

The Am29C516 X, Y, MSP and LSP registers have inde­
pendent clocks (CLKX, CLKY, CLKM, CLKL). The output 
multiplexer control (MSPSEL) uses a pin which is a supply 
ground in the TRW MPYI6HJ. When this control is LOW, 
the function is that of the MPY16HJ, thus allowing full 
compatibility. 

The Am29C517 differs in that it has a !!!:!9.le clock input 
(CLK) and three register enables (ENX, ENY, ENP) for the 
two input registers and the entire product, respectively. 
This facilitates the use of the part in microprogrammed sys­
tems. In both parts data is entered into the registers on the 
positive edge of the clock. 

Am29C516 BLOCK DIAGRAMS Am29C517 

RELATED PRODUCTS 

Part No. Description 

Am29501/A Multiport pipelined processor 

Am29526/27 Sine function generator 

Am29528/29 Cosine function generator 

Am29520A/21 A Pipeline register 

Am29540 Address generator 

132 Order #03562E 



Am29520 • Am29521 
Multilevel Pipeline Registers 

DISTINCTIVE CHARACTERISTICS 

• Four 8-bit high speed registers 
• Dual two-level or single four-level push-only stack 

operation 
• All registers available at multiplexed output 

• Hold, transfer and load instructions 
• Provides temporary address or data storage 
• 24-pin 0.3" package 

GENERAL DESCRIPTION 

The Am29520 and Am29521 each contain four 8-bit positive 
edge-triggered registers, These may be operated as a dual 
2-level pipeline or as a single 4-level pipeline. A single 8-bit 
input is provided and all four registers are available at the 
8-bit, 3-state output. 

The Am29520 and Am29521 differ only in the way data is 
loaded into and between the registers in dual 2-level opera­
tion. This difference is illustrated in Figure 1. In the Am29520 

Part No. 

Am29540 
Am29116 
Am2925 
Am29517 
Am29510 
Am610S 

Am912S-70 
Am21L47-55 

RELATED PRODUCTS 

Description 

FFT Address Sequencer 
16-bit Bipolar Microprocessor 
System Clock Generator and Driver 
16 x 16-bit High Speed Multiplier 
16 x 16-bit Multiply Accumulator 
S-bit Microprocessor Compatible 
AI D Converter 
2K x S Static RAM 
4K x 1 Static RAM 

Chip-Pak is a trademark 01 Advanced Micro Devices, Inc. 

when data is entered into the first level (1=2 or 1= 1) the 
existing data in the first level is moved to the second level. In 
the Am29521 these instructions simply cause the data in the 
first level to be overwritten. Transfer of data to the second 
level is achieved using the 4-level shift instruction (I =0). This 
transfer also causes the first level to change. In either part 
1=3 is a NO-OP. 

LOGIC DIAGRAM 

---"'l.---'--_.l.ol 
INSTRUCTION 

10.11 
I MUX I 

I 

133 

f--
REGISTER lr---'-----.J 
CONTROL· ~ OCTAL REG A 1 

CLOCK 

-'r-- f-t--,---, 

1-__ --' I OCTAL REG A21 

MUX 2 
SEL 

50,51 

I 
MUX 

'Multilevel Pipeline Register 

I OCTAL REG 81 I 
J 

I OCTAL REG 82 1 

I 
I 

03569A·j 

Order fie 03569A 



Am29524/ Am29525 
Dual 7-/S-Deep Pipeline Registers 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Provides temporary address or data storage 
• Am29524 - Dual 7 -deep or single 14-de9p (with feed­

through and 0) registers 
• Am29525 - Dual 8-deep or single 16-deep registers 
• Hold, or shift and load instructions 

• High-speed EeL-internal technology, TIL-compatible 
1/0, packaged in 28-pin 0.4-inch (400 Mil) sidebrazed 
DIPs 

• All registers available at three-state output 

GENERAL DESCRIPTION 

The Am295241 Am29525 are 8-bit wide, 14- and 16-word 
deep pipeline registers. The registers are organized as two 
7- or 8-byte shift registers. By micrOinstruction, data may be 
entered into either shift register. 

In the Am29524, the shift registers are 7 deep. All fourteen 
registers are available at the output, as well as the input 
data fed directly to the output, or an all-zero byte. In the 

Am29525, the shift registers are 8 deep and any of the 
sixteen registers may be output. In both devices, the two 
shift-register stacks may be cascaded to form a single 14-
or 16-byte-long pipeline register. 

A Single clock is provided and operation of the shift 
registers is under microprogram control. The device has 
three-state outputs. 

BLOCK DIAGRAMS 
Am29524 Am29525 

B0006030 Boo0602O 

134 Order # 07593A 



Am29526 • Am29527 
Am29528 • Am29529 

High Speed Sine, Cosine Generators 

DISTINCTIVE CHARACTERISTICS 

• Provides values for sine/cosine functions in 7T/2048 
increments 

• Outputs are 16-bit two's complement fractions 
• Fast generation time of 50ns max Com'l 
• S/LS compatible 
• Three-state outputs 
• IMOX'· processing 

RELATED PRODUCTS 

Part No. Description 

Am29516/17 
Am29510 
Am29540 
Am29825 

16 x 16-Bit High Speed Multipliers 
16 x 16-Bit Multiply Accumulator 
FFT Address Sequencer 
High Performance 8-Bit Register 

CONNECTION DIAGRAMS - Top Views 

DIP 

A, Vee 

A. A, 

A, A, 

A. A" 

A, E, 

A, E, 

A, EJ 

A, " 
" " 
" " 
F, F. 

GND " 

Chip-Pak™ 

.t .. ~ ~ ,ll u .t z 

A, A, 

A. A" 

A, Ne 

A, E, 

A, E, 

A, EJ 

Ne Ne 

" " 
" '. 

.I' ~ c .::' ~ ,: .::' Il 

ABL~OO6 

ABL"OO7 

IMOX and Chip-Pak are trademarks of Advanced Micro Devices, Inc. 

FUNCTIONAL DESCRIPTION 

The Am29526/27 and Am29528/29 provide high speed 
generation of sine and cosine functions over the range 
o ,., II < 7T in increments of 7T/2048. II is determined by an 
11-bit input word. Each device provides an 8-bit output and 
two are used to give the full 16-bit value. The Am29526 
and Am29527 generate the MS and LS by1es respectively 
for the sine function. Similarly, the Am29528 and Am29529 
generate the cosine functions. 

The outputs are fractional two's complement numbers with 
the radix point located immediately to the right of the sign 
bit (in between the bits weighted -2° and 2-1). As this 
format does not allow for the representation of + 1 the 
functions generated are -sinll and -cosll. In this way the 
output values are restricted to the range -1 ,., f(lI) < + 1 
which is representable. The outputs are three-state with 
one active Low enable and two active High enable. 

While providing general purpose sine and cosine function 
capability, the Am29526/27/28/29 satisfy the requirements 
of the Am29540 FFT Address Sequencer. 

E, 

E. 

E, 

135 

BLOCK DIAGRAM 

SINE/COSINE 
FUNCTION GENERATOR 

Fo-F7 

ABL·OOB 

Refer to Page 13-1 lor Eoaential Information on MIII1ary DeYiceo 



Am29540 
Programmable FFT Address Sequencer 

DISTINCTIVE CHARACTERISTICS 

• Generates data and coefficient addresses 
• Programmable transform length 2 to 65,536 points 
• Radix-2 or Radix-4 
• Decimation in frequency (DIF) or decimation in time (DIT) 

FFT algorithms supported 

• In-place or non-in-place transformation 
• 40-pin DIP package 
• 5 volt single supply 

GENERAL DESCRIPTION 

The Am29540 Fast Fourier Transform Address Sequencer 
generates all the data (RAM) and coefficient (ROM) 
addresses necessary to perform the repetitive butterfly 
operations of the FFT. Decimation in time and decimation 
in frequency algorithms are supported (control DIT/DIF) 
in radix-2 or radix-4 (RADIX 4/2). A radix-2 real valued 
input (AVI) transform is also supported. For radix-2 operation 
the transform length is programmable in powers of 2 from 2 
to 65,536 points. In radix-4 the range is 4 to 65,536 in 
powers of 4. 

Address sequences can be selected to be compatible with 
data which mayor may not have been pre-scrambled ("bit­
reversed"). " the data has been pre-scrambled the control 
PSD must be LOW to select the correct sequence. "the data 
is not pre-scrambled and an in-place transform is per­
formed, the output data will necessarily be in bit-reversed 
order. " this is not desirable, alternate addresses are avail­
able for a non-in-place, non-bit-reversing algorithm. 

The butterfly counter operates on the positive clock edge and 
responds to four instructions. COUNT causes the counter to 
increment to the next butterfly. RESET causes the counter to 
initialize for the specified transform length. RESET/LOAD 
causes the counter to initialize and a data address offset to 
be loaded into the part via the bi-directional 3-state AD­
DRESS port. This offset is effectively OR-ed onto the higher 
significance bits of the address which are unused for the 
selected transform length. A HOLD instruction is also pro­
vided. Three status lines are provided. EVEN/ODD (KNZ/ 
KZ) controls the alternation of read and write memories for 
non-in-place transforms and determines the outterfly struc­
ture in the RVI transform. The flag has the function KNZ/KZ 
when RVI data addi-esses are selected (AS = 12 to 15). 
Iteration complete (IT CaMP) flags the bottom of a "column" 
of butterflies and is used in conjunction with block floating 
point schemes. FFT CaMP identifies the last butterfly of the 
transform. 

LOGIC DIAGRAM 

TRANSFORM LENGTH 

n'T: 
-- I LATCH 

I I 
I BUTIERFLY 

I COUNTER cp--------------~ 

I 
I I RADIX4I':J p~ LATCH 

DIT/DtF 

ill 
STRB I DATA I ADDRESS 

GENERATOR 

I 
I I 

I COEFFICIENT I 
ADDRESS 

GENERATOR 

16 

ADDRES~~~~i~ _________________ tl-__ +_ : __ -1-':"' __ ...11 

o.--------------------------~~ 

A,5- 0 
ADDRESS OUTPUT 

(OfFSET INPUT) 

FFT Address Sequencer 

RELATED PRODUCTS 

I 

Am29501 - Mulitport pipelined processor (Byte-Slice™) 
Am29516/17 - 16 x 16 parallel multiplier 
Am29520/21 - Multilevel pipeline register 
Am29526/27/28/29 - High-speed, sine/cosine generators 
Am29825 - High-performance, 8-bit register 

136 

ITCOMP. 

FFT COMPo 

EVEN/ODD (KNZ/KZ) 

035670·2 

Order # 03567D 



Am29323 
32-Bit Parallel Multiplier 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• 32-Bit Three-Bus Architecture 
- The device has two 32-bit input ports and one 32-bit 

output port with maximum multiply time of 80ns 
• Single Clock with Register Enables 

- The Am29323 is controlled by one clock with 
individual register enables 

• Supports Muftlprecision Multiplication 
- The device has dual 32-bit registers on each data 

input port to perform multi precision multiplication 

• Registers can be made transparent 
- I nput and output registers can be made transparent 

independently to eliminate unwanted pipeline delay 
• Supports Two's Complement, Unsigned or Mixed 

Numbers 
• Data Integrity Through Master-Slave Mode and Pari­

ty Check/Generate 
- Parity check/generate catches inter-device 

connection errors and master/slave mode provides 
complete function check 

GENERAL DESCRIPTION 

The Am29323 is a high-speed 32 x 32-Bit Parallel Multipli­
er with 67 -Bit Accumulator. The part is designed to maxi­
mize system level performance by providing a 32-bit three 
bus architecture and a single clock with register enables. 

The Am29323 further enhances the system throughput by 
providing individual register feedthrough controls, byte 
parity checking on both input ports and generation on the 
output port, and dual input registers on each data input b.us 
to support multi precision multiplication. The Am29323 can 
manage a wide variety of data types, including two's 

complement, unsigned, or mixed mode input formats. A 64 
x 64-bit multiplication can be performed in seven clock 
cycles, including input and output. Additional features 
provided are a format adjust control allowing for standard 
output or left shifted output suitable for fractional two's 
complement arithmetic, rounding, and master/slave opera­
tion. 

The Am29323 is designed with the IMOX· process, which 
allows internal Eel circuits with TTL-compatible I/O. The 
device is housed in a 168-lead pin-grid-array package. 

SIMPLIFIED BLOCK DIAGRAM 

P-8US 

"IMOX is a trademark of Advanced Micro Devices, Inc. 

PARITY 
ERROR 

80005250 

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to 
help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. 

Order#05763B 



Am29325 
32-Bit Floating Point Processor 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Single VLSI device performs high-speed floating-point 
arithmetic 
- Floating-point addition, subtraction and multiplication 

in a single clock cycle 
- Internal architecture supports sum-of-products, 

Newton-Raphson division 
• 32-bit, 3-bus flow-through architecture 

- Programmable I/O allows interface to 32- and 16-bit 
systems 

• IEEE and DEC formats 
- Performs conversions between formats 
- Performs integer - floating point conversions 

• Six flags indicate operation status 
• Register enables eliminate clock skew 
• Input and output registers can be made transparent 

independently 

GENERAL DESCRIPTION 

The Am29325 is a high-speed floating-point processor unit. 
It performs 32-bit single-precision floating-point addition, 
subtraction, and multiplication operations in a single LSI 
integrated circuit, using the format specified by the proposed 
IEEE floating-point standard P754. The DEC single­
precision floating-point format is also supported. Operations 
for conversion between 32-bit integer format and floating­
point format are available, as are operations for converting 
between the IEEE and DEC floating-point formats. Any op­
eration can be performed in a single clock cycle. Six flags -
invalid operation, inexact result, zero, not-a-number, over­
flow, and underflow - monitor the status of operations. 

The Am29325 has a 3-bus, 32-bit architecture, with two 
input buses and one output bus. This configuration provides 

high I/O bandwidth, allows access to all buses and affords a 
high degree of flexibility when connecting this device in a 
system. All buses are registered, with each register having a 
clock enable. Input and output registers may be made trans­
parent independently. Two other I/O configurations, a 32-bit, 
2-bus architecture and a 16-bit, 3-bus architecture, are 
user-selectable, easing interface with a wide variety of sys­
tems. Thirty-two-bit internal feedforward data paths support 
accumulation operations, including sum-of-products and 
Newton-Raphson division. 

Fabricated with the high-speed IMOX'· bipolar process, the 
Am29325 is powered by a Single 5-volt supply. The device is 
housed in a 144-pin pin-grid-array package. 

Am29300 FAMILY HIGH PERFORMANCE SYSTEM BLOCK DIAGRAM 

Am29331 
16-81T 

SEQUENCER 

1"6 
MICROPROGRAM 

MEMORY 

PIPELINE 
REGISTER 

I 
CONTROL 
SIGNALS 

• Am29323 - 32 x 32 Parallel Multiplier 
• Am29332 - 32-Bit ALU 
• Am29331 - 16-Bit Sequencer 

IMOX is a trademark of Advanced Micro Devices, Inc. 

05621A-1 

RELATED PRODUCTS 

• Am29334 - 64 x 18 Four-Port Dual-Access 
Register File 

138 
Order # 05621 B 



Am29331 
16-Bit Microprogram Sequencer 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• 16-Bits Address Up to 64K Words 

Supports 80-90ns microcycle time for a 32-bit high 
performance system when used with the other members 
of the Am29300 Family. 

• Real Time Interrupt Support 

Micro-TRAP and Interrupts are handled transparently at 
any microinstruction boundary. 

• Built-In Conditional Test Logic 

Generates inequality evaluation branch conditions from 
four AlU status bits. Has eight external tests plus a 
polarity input. 

• Break-Point Logic 

Built-in acjress comparator allows bre.ak-points in the 
microcode for debugging and statistics collection. 

• Master/Slave Error Checking 

Two sequencers can operate in parallel as a Master and a 
Slave. The Slave generates a fault flag for unequal results. 

• 33-Level Stack 

Provides support for interrupts, loops and subroutine 
nesting. It can be accessed through the O-bus to support 
diagnostics. 

GENERAL DESCRIPTION 

The Am29331 is a 16-bit wide high-speed single chip se­
quencer designed to control the execution sequence of mi­
croinstruction stored in the microprogram memory. The in­
struction set is designed to resemble high-level language 
constructs, thereby bringing high-level language program­
ming to the micro level. 

The Am29331 is interruptible at any microinstruction bound­
ary to support real-time interrupts. Interrupts are handled 
transparently to the microprogram mer as an unexpected 
procedure call. Traps are also handled transparently at any 
microinstruction boundary. This feature allows re-execution 
of a prior microinstruction. Two separate buses are provided 
to bring a branch address directly into the chip from two 
sources to avoid slow turn-on and turn-off times for different 

sources connected to the data input bus. Four sets of multi­
way inputs are also provided to avoid slow turn-on and 
turn-off times for different branch address sources. This 
feature allows implementation of table look-up or use of 
external conditions as part of a branch address. The thirty­
three deep stack provides the ability to support interrupts, 
loops and subroutine nesting. The stack can be read through 
the O-bus to support diagnostics or to implement multi­
tasking at the micro-architecture level. The master/slave 
mode provides a compiete function check capability for 
the device. 

The Am29331 is designed with the IMOX'" process which 
allows internal Eel circuits with TTL-compatible 1/0. It is 
housed in a 120-lead pin-grid-array package. 

SIMPLIFIED BLOCK DIAGRAM 

TeST 
CONDo 

INSTR 

MUlTtWAV 
INPUTS 

IMOX is a trademark of Advanced Micro Devices, Inc. 

,. 

D-BUS A·BUS 

...-----a CARRY-IN 

EOUAL 

Y-BUS 0572911-1 

TIlis document contains information on a product under development at Advanced Micro Devices, Inc. TIle information is intended to help you to 
evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Order II 057296 

139 



Am29332 
32-Bit Arithmetic Logic Unit 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Single Chip, 32-81t ALU 
Supports 60-90ns microcycle time for the 32-bit 
data path. It is a combinatorial ALU with equal cy­
cle time for all instructions. 

• Flow-through Architecture 
A combinatorial ALU with two input data ports and 
one output data port allows implementation of either 
parallel or pipelined architectures. 

• 64-81t In, 32-81t Out Funnel Shifter 
This unique functional block allows n-bit shift-up, 
shift-down, 32-bit barrel shift or 32-bit field extract. 

• Supports All Data Types 
It supports one-, two-, three- and four-byte data for 
all operations and variable-length fields for logical 
operations. 

• Multiply and Divide Support 
Built-in hardware to support two-bit-at-a-time modi­
fied Booth's algorithm and one-bit-at-a-time division 
algorithm. 

• Extensive Error Checking 
Parity check and generate provides data transmis­
sion check and master/slave mode provides com­
plete function checking. 

GENERAL DESCRIPTION 

The Am29332 is a 32-bit wide non-cascadable Arithmetic 
Logic Unit (ALU) with integration of functions that normally 
don't cascade, such as barrel shifters, priority encoders 
and mask generators. Two input data ports and one output 
data port provide flow-through architecture and allow the 
designer to implement his/her architecture with any degree 
of pipelining and no built-in penalties for branching. Also, 
the simplicity of a three-bus ALU allows easy implementa­
tion of parallel or reconfigurable architectures. The register 
file is off-chip to allow unlimited expansion and regular 
addressability. 

The Am29332 supports one-, two-, three- and four-byte 
data for arithmetic and logic operations. It also supports 

multiprecision arithmetic and shift operations. For logical 
operations, it can support variable-length fields up to 32 
bits. When fewer than four bytes are selected, unselected 
bits are passed to the destination without modification. The 
device also supports two-bit-at-a-time modified Booth's 
algorithm for high-speed multiplication and one-bit-at-a­
time division. Both signed and unsigned integers for all byte 
aligned data types mentioned above are supported. 

The Am29332 is designed to support 60-90 ns microcycle 
time. The device is packaged in a 166-lead pin-grid-array 
package. 

SIMPLIFIED BLOCK DIAGRAM 

PARITY 

DA'S:S 9. 9. ER~OR Oil-SUS 

[:J--J 
INSTR. 

WIDTH 6 
OF FIELD (>--.'--

STATUS y·sus V-BUS 

80005240 

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to 
help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Order#05730B 



Am29334 
Four-Port, Dual-Access Register File 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Fast 
With an access time of 20ns, the Am29334 sup­
ports 80-90ns microcycle time when used with the 
Am29300 Family for 32-bit systems. 

• 64 x 18 Bits Wide Register File 
The Am29334 is a high-performance, high-speed, 
dual-access RAM with two READ ports and two 
WRITE ports. 

• Caseadable 
The Am29334 is cascadable to support either wider 
word widths, deeper register files, or both. 

• Simplified Timing Control 
Control for write enable timing and for on-chip 
read/write multiplexer are derived from a single­
phase clock input. 

• Byte Parity Storage 
Width of 18 bits facilitates byte parity storage for 
each port and provides consistency with the ' 
Am29332 32-bit ALU. 

• Byte Write Capability 
Individual byte-write enables allows byte or full word 
write. 

GENERAL DESCRIPTION 

The Am29334 is a 64-word deep and 18-bit wide dual­
access register file designed to support other members of 
the Am29300 Family by providing high-speed storage. It 
has two write and two read ports for data and four 6-bit 
address ports. Two address ports are associated with each 
pair of read and write data ports, one to read data and the 
other to write. The device is capable of performing two 
reads and two writes in one cycle. The 18-bit wide register 

file allows storage of byte parity to support parity check and 
generate in the Am29332 32-bit ALU. Independent control 
for each read and write data port allows the Am29334 to be 
used as a high-speed shared memory or as a mailbox for a 
multiprocessor system. The device is designed with an 
access time of 20ns. It is housed in a 120 lead-pin-grid­
array package. 

BLOCK DIAGRAM 

WEAL C>----Qi' 

WEAH L.:>--+--<lI 

Awl>. L..;--f---t 

18 

DUAL ACCESS 
RAM 

64 x 18 

18 

-lC---<::J WEBL 

s 6 
01--+---< 

SMUX 

r-----------<~LEB 

vc>--------------<::J OEB 

80003022 

ThiS document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to 
help you to evaluate this product. AMO reserves the right to change or discontinue work on this proposed product without notice. Order#057318 



Am2910A 
Microprogram Controller 

DISTINCTIVE CHARACTERISTICS 

• Twelve Bite Wide 
Addresses up to 4096 words of microcode with one 
chip. All internal elements are a full 12 bits wide. 

• Internal Loop Counter 
Pre-settable 12-bit down-counter for repeating instruc­
tions and counting loop iterations. 

• Four Add ..... Sources 
Microprogram Address may be selected from micropro­
gram counter, branch address bus, 9-level push/pop 
stack, or internal holding register. 

• Sixteen Powerful Microinstructions 
Executes 16 sequence control instructions, most of 
which are conditional on external condition input, stat. 
of internal loop counter, or both. 

• Output Ensble COntrofa for Three Branch Ad­
dre .. Sourcu 
Built-in decodsr function to enable external devices onto 
branch address bus. Eliminates external decodsr. 

• Feat 
The Am2910A supports 100ns cycle times and is 25-
30% faster than the Am2910. 

GENERAL DESCRIPTION 

The Am2910A Microprogram controller is an address 
sequencer intended for controlling the sequence of execu­
tion of microinstructions stored in microprogram mamory. 
Besides the capability of sequential access, it provides 
conditional branching to any microinstruction within its 
4096-microword range. A last-in, first-out stack provides 
microsubroutlne return linkage and looping capability; there 
are nine levels of nesting of microsubroutines. Microinstruc­
tion loop count control is provided with a count capacity of 
4096. 

During each microinstruction, the microprogram controller 
provides a 12-bit address from one of four sources: 1) the 

microprogram address register ("PC), which usually con­
tains an address one greater than the previous address; 2) 
an external (direct) input (D); 3) a register/counter (R) 
retaining data loaded during a previous microinstruction; or 
4) a nine-deep last-in, first-out stack (F). 

The Am2910A is a speed improved plug-in replacement of 
the Am2910 featuring AMO's ion-implanted micro-oxide 
(IMOX) processing and offering 25 - 30% speed improve­
ment. The Am2910A also features a nine-word deep stack 
versus the five-deep stack of the Am2910. 

BLOCK DIAGRAM 

BDR02320 

IMaX Ie • _ 01 _ MIcro Ilevicaa. Inc. 
142 04522B 



Am29C10A 
CMOS Microprogram Controller 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Low power 
The CMOS Am29C10A supports 125 ns cycle times at 
20% the power of the equivalent bipolar Am2910A. 

• Twelve bits wide 
Addresses up to 4096 words of microcode with one 
chip. All internal elements are a full 12 bits wide. 

• Internal loop counter 
Pre-setlable 12-bit down-counter for repeating instruc­
tions and counting loop iterations. 

• Four address sources 
Microprogram address may be selected from micropro­
gram counter, branch address bus, 9-level push/pop 
stack, or internal holding register. 

• Sixteen powerful microinstructions 
Executes 16 sequence control instructions, most of 
which are conditional on external condition input, state 
of internal loop counter, or both. 

• Output Enable controls three branch-address 
sources 
Built-in decoder function to enable external devices onto 
branch address bus. Eliminates external decoder. 

GENERAL DESCRIPTION 

The Am29C10A Microprogram Controller is an address 
sequencer intended for controlling the sequence of execu­
tion of microinstructions stored in microprogram memory. 
Besides the capability of sequential access, it provides 
conditional branching to any microinstruction within its 
4096-microword range. A last-in, first-out stack provides 
microsubroutine return linkage and looping capability; there 
are nine levels of nesting of microsubroutines. Microinstruc­
tion joop count control is provided with a count capacity of 
4096. 

BLOCK DIAGRAM 

" 

BDR02321 

143 

Durirog each microinstruction, the Microprogram Controller 
provides a 12-bit address from one of four sources: 1) the 
Microprogram Address Counter/Register (IlPG), which usu­
ally contains an address one greater than the previous 
address; 2) an external (Direct) input (D); 3) a Register/ 
counter (R) retaining data loaded during a previous microin­
struction; or 4) a nine-deep last-in, first-out stack/File (F). 

The Am29C10A is a CMOS plug-in replacement of the 
Am2910A. The Am29C10A-10 is a 10 MHz version and the 
Am29C10A-20 is a 20 MHz version. 

RELATED PRODUCTS 

Part No. Description 

Am29C101 16-Bit CMOS Microprocessor Slice 

Am2914 Vectored Interrupt Controller 

Am2918 Pipeline Register 

Am2922 Condition Code MUX 

Am25LS377 Status Register 

Am27S35 Registered PROM 

Am29818 SSR Diagnostics/Pipeline Register 

Order#06402B 



• Expandable 

Am29112 
A High-Performance 8-Bit Slice Microprogram Sequencer 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Interruptible at the microprogram level 
8-bit Slice, caseadable up to 16-bits Two kinds of interrupts: maskable and unmaskable. 

• Deep stack 
A 33 deep on-chip stack is used for subroutine link­
age, interrupt handling and loop control. 

• Hold feature 
A hold pin facilitates multiple sequencer implementa­
tions. 

• Powerful loop control 
When caseaded, two counters can act as a single 
16-bit counter or two independent 8-bit counters. 

• Powerful addressing modes 
Features direct, multiway, multiway relative and pro­
gram counter relative addressing. 

GENERAL DESCRIPTION 

The Am29112 is a high performance interruptible micropro­
gram sequencer intended for use in very high speed 
microprogrammed machines and optimized for the new 
state-of-the-art ALU's and other processing components. 

Interrupts are accepted at the microcycle level and ser­
viced in a manner completely transparent to the interrupted 
microcode. 

The Am29112 is designed to operate in 10MHz micropro­
grammed systems. 

APPLICATION NOTES REFERENCE 
- Microprogrammed CPU using Am29116 
- An intelligent fast disk controller 

It has an instruction set featuring relative and multiway 
branching, a rich variety of looping constructs, and provi­
sion for loading and unloading the on-chip stack. 

- Am29116 architecture speeds pixel manipulation in 
interactive bit-mapped graphics 

BLOCK DIAGRAM 

EMERGENCY I UFO I ::.: n 1 
I L tD 

~I Ii: VECTORED INT REO 
i! I PIIIDMY t--INT-ACI( ...... -f Am2l112 

INTEAfIUPTIBI.E 
MlCROPROGRAIl 

SEQUENCER 
~I~ 
!L .....,-,........ 

r--Oi~ 

VECTOR 
y 

- ..:. t-----+ 

MICROPROGRAM 

I 
PIPELINE REGISTER 

IL-
80002190 

Figure 1_ Am29112 in a Single Pipellned System. 

144 n!lfl57A 



Am29C116 
16-Bit CMOS Microprocessor 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Very Low Power 
The CMOS Am29C116 supports 125-ns microcycle 
times and requires less than 1/4 the power of the 
bipolar Am29116. 

• Pin-Compatible and Functionally Equivalent to the 
Am29116 
The architecture, instruction set, and pin-out are 
completely identical to the bipolar Am29116. 

• Optimized for High-Performance Contronera 
The architecture is optimized for controllers provid­
ing an excellent solution for applications requiring 
bit-manipulation power. 

• Powerful Field Insertion/Extraction and 
Bit-Manipulation Instructions 
Rotate-and-Merge, Rotate-andoCompare and bit­
manipulation instructions provided for complex bit 
control. 

• Immediate Instruction Capability 
May be used for storing constants in microcode or 
for configuring a second data port. 

• 16-BIt Barrel Shifter 
• 32-Worklng Reglatera 

GENERAL DESCRIPTION 

The Am29C116 is a microprogrammable 16-bit CMOS 
microprocessor whose architecture and instruction set is 
optimized for high-performance peripheral controllers, like 
graphics controllers, disk controllers, communications con­
trollers, front-end concentrators and modems. The device 
also performs well in microprogrammed processor applica-

tions, especially when combined with the Am29C517, 
16 x 16 Multiplier. In addition to its complete arithmetic and 
logic instruction set, the Am29C116 instruction set contains 
functions particularly useful in controller applications; bit 
set, bit reset, bit test, rotate-and-merge, rotate-and-com­
pare, and cyclic-redundancy-check (CRC) generation. 

SIMPLIFIED BLOCK DIAGRAM* 

...-----<:1111; 

r--.,...------'""T--t)--r-..::,.-ICYOot5 

.... 

..... 

""' 

C'I 

80001963 

• For a detailed block diagram, refer to Figure 2. 

145 



Am29PL141 
Fuse Programmable Controller (FPC) 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Implements complex fuse programmable state ma­
chines 

• 64 words of 32-bit-wide microprogram memory 
• Serial Shadow Register (SSR TM) diagnostics on chip 

(programmable option) 
• 20 MHz clock rate, 28-pin DIP 

• 29 high-level microinstructions 
- Conditional branching 
- Conditional looping 
- Conditional subroutine call 
- Multiway branch 

• 16 outputs, 7 conditional inputs 

GENERAL DESCRIPTION 

The Am29Pl141 is a single-chip Fuse Programmable 
Controller (FPC) which allows implementation of complex 
state machines and controllers by programming the appro­
priate sequence of microinstructions. A repertoire of jumps, 
lOOps, and subroutine calls, which can be conditionally 
executed based on the test inputs, provides the designer 
with powerful control flow primitives. 

The Am29PL 141 FPC also allows distribution of intelligent 
control throughout the system. It off-loads the central 
controller by distributing FPCs as the control for various 

self-contained functional units, such as register file/ ALU, 
I/O, interrupt, diagnostic, and bus control units. 

A microprogram address sequencer is the heart of the FPC. 
It provides the microprogram address to an intemal 64-
word by 32-bit PROM. The fuse programming algorithm is 
almost identical to that used for AMD's Programmable 
Array Logic family. 

As an option, the Am29PL 141 may be programmed to have 
on chip SSR diagnostics capability. Microinstructions can 
be serially shifted in, executed, and the results shifted out 
to facilitate system diagnostics. 

BLOCK DIAGRAM 

I-=-

L-J"I J .. L 
Vo("'O] 

BDR02340 

RELATED PRODUCTS 

Part No. Descrtptlon 

Am2914 Vectored Priority Interrupt Controller 

Am29100 Controller Family Products 

SSR is a trademark of Advanced Mk:ro Devices. Inc, 146 



APPENDIX 1 
PAL EQUATION 

DEVICE DSP PAL U 72 (pa122V10) - -
PIN 

ICCLK = 1 IBUSY = 22 
IFLYO = 2 I BHEN = 21 
I BYTEL = 3 HACK = 20 
IEYTEH = 4 I BPRO = 19 
HREQ = 5 IEREQ = 18 
IQ = 6 ICDRI = 17 
I EPR N = 7 ICDRR = 16 
IBSY = 8 ICDLI = 15 

ICDLR = 1 4 ; 

BEGIN 
BEGIN 

BREQ · - HREQ; 

IHACK · - IBUSY; 

BUSY · - BREQ it BPR N it IBSY + · -
BREQ ,. BUSY; 

END; 

BEGIN 
BPRO = IBREQ it BPR N; 

BHEN = BUSY; 

CDLR = IQ it HREQ it IFLYO + 
IQ it BYTEH * IFLYO + 
IQ it BYTEL it IFLYO; 

CDLI = IQ It HREQ it FLYO + 
IQ It BYTEH It FLYO + 
IQ It EYTEL It FLYD; 

CDRR = Q It HREQ It IFLYD + 
Q it BYTEH * IFLYD + 
Q It BYTEL It IFLYO; 

CDRI = Q It HREQ it FLYD + 
Q \Ii BYTEH * FLYC + 
Q It BYTEL It FLYO; 

END; 
END. 

1-1 



DEVICE DSP PAL U73 (pa122V10) - -
PIN 

IBHEN = 1 n'lE8 = 21 
I BYTEL = 2 IWE'( = 20 
I BYTEH = 3 IWEo = 19 
HREQ = 4 I vi E 5 = 18 
II OW = 5 111E 4 = 17 
WEI = 0 I\1E3 = 16 
WER = 7 IWE2 = 15 
IFLYO = 8 IHE1 = 14 
IQ = 9 IDI1AH = 22 
IIOR = 10; 

BEGIN 
WE1 = Q .. I\1ER + 

IQ .. HREQ .. lOW * IFLYO + 
IQ .. IFLYO .. lOW * BYTEH; 

WE2 = Q .. IWER + 
IQ .. HREQ .. IO\J * IFLYO + 
IQ .. IFLYO .. lOW * BYTEH * BHEN + 
IQ .. lOti .. IFLYO .. BYTEL ; 

~I E 3 = Q " IHEI + 
IQ " HREQ " row .. FLYO + 
IQ " FLYO "lOW .. BYTEH; 

\1E4 = Q " I viE I + 
IQ " HREQ " lOW .. FLYO + 
IQ .. FLYO .. lOW * BYTEH * BHEN + 
IQ .. IOlf * FLYO * BYTEL ; 

WE5 = IQ .. IWER + 
Q * HREQ * lOW * IFLYO + 
Q * IFLYO * 10\1 .. BYTEH; 

WEb = IQ * !\vER + 
Q .. HREQ * IOv[ * IFLYO + 
Q * IFLYO * lOt ... * BYTEH * BHEN + 
Q " row * IFLYO " BYTEL ; 

WE7 = IQ * lWEI + 
Q " HREQ " Iml .. FLYO + 
Q .. FLYO " 10\1 .. BYTEH; 

WE8 = IQ .. lWEI + 
Q • HREQ • 10\1 it FLYO + 
Q " FLYO " IOIf .. BYTEH .. BHEN + 
Q .. lOW .. FLYO " BYTEL ; 

D~'lAH = 1m'l .. HREQ + 
lOR * HREQ; 

END. 

1-2 



DEVICE DSP_PAL_U74 lpa122Vl0) 

PIN 
IIOR = 1 IBYTEH = 23 
IEOUT = 2 IBYTEL = 22 
lAO = 3 IINIT = 21 
IAl = 4 ILOADL = 20 
IA2 = 5 ILOADH = 19 
IA4 = 0 CD3 = 18 
II OW = 7 CD2 = 17 
HREQ = 8 IPOLL = 16 
IBHEN = 9 INSTR = 15 
IHINIT = 10 IADDRL = 14 
IADSTB = 1 1 ; 

BEGIN 
IINSTR = A4 + 

IEOUT + 
IIo\/ + 
IA2 + 
IAl + 
lAO; 

INIT = HINIT + 
IA4 * EOUT * lOW It A2 It Al It lAO; 

ADDRL = IA4 * EOUT * lOW It A2 * IAl * AO; 

LOADH = IA4 * EOUT * lOW It A2 It IAl It lAO; 

LOADL = IA4 It EOUT * Im-l It IA2 It Al It AO + 
IA4 It EOUT * lOW .. BHEN It A2 * IAl * lAO; 

BYTEH = IA4 * EOUT * lOW .. IA2 * Al It lAO + 
IA4 * EOUT * lOR * IA2 * Al * lAO; 

BYTEL = IA4 * EOUT * lOW It IA2 It IAl * AO + 
IA4 * EOUT It lOR It IA2 * IAl * AO; 

POLL = IA4 * EOUT * lOR * A2 * Al * AO; 

ICD2 = IA4 * EOUT * lOW It IBHEN It IA2 * Al * lAO + 
IA4 * EOUT It lOR It IBHEN It IA2 It Al * lAO + 
IA4 It EOUT * lOW It IBHEN It A2 It I A 1 It lAO; 

ICD3 = IA4 * EOUT * lOW It AO + 
IA4 It EOUT It lOR It IA2 • IAl It AO + 
IA4 It EOUT * lOW it BHEM It IA2 * Al It lAO .. 
IA4 It EOUT * lOR It BHEN * IA2 * Al * lAO + 
IA4 It EOUT * lOW * BHEN It A2 * IAl It lAO + 
A4 It EOUT It lOW + 
A4 * EOUT * lOR + 
HREQ It IADSTB; 

END. 

1-3 





; 

WORD 128 

APPENDIX 2 
AmDSP DIGITAL SIGNAL 

PROCESSOR DEFINITION FILE 

=============================================================== 
1111111111111111 
~ ~ ~ ~ 2 2 221 1 1 1 111 1 
705 q 321 0 9 8 7 6 5 q 3 2 

s S R R R R R R R R R R R R R R 
H R A A A A R R R S S S A A A A 
1 0 L L L L 0 0 0 0 0 0 1 1 2 2 

U U U U P P P P P P 1 0 1 0 
3 2 1 0 2 1 0 2 1 0 

R 
A 
3 
1 

Real ALU 

11111111111 
1 000 0 0 0 0 0 0 0 9 9 9 9 
o 9 8 7 6 5 q 321 0 987 6 

R R R R R R R R R R R R R R R 
A B B B B B B M M M M D D D W 

3 1 1 2 2 3 3 I I I I I I I E 
0 1 0 1 0 1 0 0 0 0 0 0 0 0 

3 2 1 0 2 1 0 

=============================================================== 
9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 
5 q 3 2 1 0 9 8 7 6 5 q 3 2 1 0 9 8 7 6 5 q 3 2 1 0 9 8 7 6 5 q 

~-~~~-~--~-------------------~---------------------~----------~ S S I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I A A A A R R R S S S A A A A A A B B B B B B M M M M D D D W 

0 L L L L 0 0 0 0 0 0 1 1 2 2 3 3 1 1 2 2 3 3 I I I I I I I E 
U U U U P P P P P P 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
3 2 1 0 2 1 0 2 1 0 3 2 1 0 2 1 0 

Imaginary ALU 

============================~========================= ========= 
o 0 0 0 5 5 5 5 5 5 5 5 5 5 q q q q q q q q q q 3 3 3 3 3 3 3 3 
3210987654321098765 q 321 0 9 8 7 654 3 2 

D R F t1 0 2 X X E S C 1 5 A A A A A A A A A A A A A A A A A A A 
P N A S E C S S N I F 1 4 G G G G G G G G G G G G G G G G G G G 

D P L E E X N A 6 0 1 1 1 1 1 1 1 1 1 9 8 7 6 5 q 3 2 1 0 
L L L C D 0 0 8 7 6 5 q 3 2 1 0 
S 1 0 0 R E E 
P S 

Multiplier Address Generator 
---------------------------------------------------------------------------------------.---------------------------------------
3 322 2 2 222 2 2 2 1 1 1 1 1 1 111 1 
1 U 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 q 321 0 9 8 7 6 5 q 3 2 1 0 

B 5 5 5 5 I C C C C C C C B B B B B B B B B B B B 1 1 1 1 
U 2 2 2 2 N K K C C C C C R R R R R R R R R R R R 0 0 0 0 
F 0 0 0 0 T S S P S S S S 1 1 9 8 7 6 5 4 3 2 1 0 I I I I 
C I I S S R E E 0 E E E E 1 0 3 2 1 0 
D 1 0 1 0 L L L L L L L 

1 0 3 2 1 0 

Program Sequence 
=============================================================== 

EJECT 
ADDRESS GENERATOR OVERLAY 

2-1 



1 
1 
6 6 

S D I I I 
R L E 1 1 
E E N 5 4 

EJECT 
; . .. , . .. .. .. .. .. .. .. .. .. .. it it it it it it it 

Am29501 INSTRUCTION SET 

.. .. .. .. .. it .. it it it it it it it it it it it 

Am29501 ALU fUNCTIONS (R FUNCTION S) 

GONDITIONAL GARRY OUTPUT 
; 
ADD.CC: 
SUBS.CC: 
MOVE.CC: 
SUBR.CC: 
; 

EQU 
EQU 
EQU 
EQU 

;INHIBIT GARRY OUTPUT 
; 
ADD.NC: 
SUBS.NC: 
MOVE.NC: 
SUBR.NC: 
; 

EQU 
EQU 
EQU 
EQU 

;FORCE CARRY OUTPUT 
; 
ADD.FC: 
SUBS.FC: 
MOVE.FC: 
SUBR.FC: 
; 

EQU 
EQU 
EQU 
EQU 

H 110 
H 114 
HII8 
HIIC 

H 1/1 
H 1/5 
HI19 
HIID 

HI12 
HI16 
HilA 
H/IE 

1 
1 
6 
I 
1 
3 

it 

it 

D 
I 
T 4 P 
/ / S 
F 2 D 

1 1 
1 1 1 
6 6 6 
I I I 
1 1 1 
2 1 0 

555 5 5 5 
444 4 4 4 
o 0 0 0 0 0 
I ISS S S 
1 I) 3 2 1 0 

6 6 b 6 b b 
I I I I I I 
0 0 0 0 0 0 
9 8 7 6 5 4 

AG18 ... 01) 

it it it it it 

it it it it it 

b 
I 
0 
3 

;LOGICAL (NO CARRY USED TO DISTINGUISH FROM 29116 LOGICALS) 

XOR.NC: 
AND.NC: 
INV. NC: 
OR.NC: 

EQU 
EQU 
EQU 
EQU 

HI13 
H 1/7 
HIIB 
HI/F 

; Am29501 SOURCE OPERANDS 
; 
A 1 : EQU QIIO 

R, S 

2-2 

1 1 1 
1 1 1 
6 6 6 
I I I 
0 0 0 
2 1 I) 



A2: EQU Q 111 
A3: EQU QI12 
B 1 : EQU Q 113 
B2: EQU QI14 
B 3: EQU QI15 
SIGN.EXT: EQU Q 116 
ZERO: EQU QII7 
MSP: EQU Q 116 
LSP: EQU QI17 
EJECT 

; PORT SELECTS 
; 
M.EQ.A1: EQU H II 0 
M.EQ.A2: EQU H 111 
M.EQ.A3: EQU H/12 
M.EQ.B1: EQU H 113 
M.EQ.B2: EQU H 114 
M.EQ.B3: EQU H 115 
M.EQ.AU: EQU H 116 
M.EQ.OI: EQU HII7 
MIO.IN: EQU HII8 

D.EQ.A2: EQU QIIO 
D.EQ.A3: EQU Q 111 
0.EQ.B2: EQU QI12 
0.EQ.B3: EQU QI13 
DIO.IN: EQU QI14 
; 
; Am29501 Register Operations 
; 
A1.EQ.MP: EQU BIIOO 
A1.EQ.OI: EQU B 1101 
A1.EQ.B3: EQU BI110 
A1.HOLD: EQU BI111 
A2.EQ.LP: EQU BIIOO 
A2.EQ.AU: EQU B 1101 
A2.EQ.A1: EQU B 1110 
A2.HOLD: EQU BI111 
A3. EQ. MP: EQU BIIOO 
A3.EQ.AU: EQU BIIO 1 
A3.EQ.A2: EQU BI110 
A3.HOLD: EQU B 1111 
B1.EQ.MP: EQU BIIOO 
B1.EQ.DI: EQU BIIO 1 
B1.EQ.A3: EQU BI110 
B1.HOLD: EQU B 1111 
B2. EQ. LP: EQU BIIOO 
B2.EQ.AU: EQU BIIO 1 
B2.EQ.B1: EQU BI110 
B2.HOLD: EQU B 111 1 
B3. EQ. MP: EQU BIIOO 
B3.EQ.AU: EQU BII01 
B3.EQ.B2: EQU BI110 
B3.HOLD: EQU B 1111 

2-3 



EJECT 
, 
;REAh AhU INSTRUCTIONS 
; 
R.ADD: DEF 
I 
R.SUBS: DEF 
I 
R.MOVE: DEF 
I 
R.SUBR: DEF 
I 
R.XOR: DEF 
I 
R.AND: DEF 
I 
R.INV: DEF 
I 
R.OR: DEF 
I 
, 

2X,ADD.CC,3VQ,o,3VQ'O,2VB'll,2VB'll,2VB'll,2VB'll,2VB'11, 
2VB'll,4VH'8,3VQ'4,97X 
2X,SUBS.CC,3VQ'O,3VQ'O,2VB'll,2VB'll,2VB'll,2VB'll,2VB'11, 
2VB'll,4VH'8,3VQ,4,97X 
2X,MOVE.NC,3VQ'O,3X,2VB'11,2VB'11,2VB'11,2VB'll,2VB'll, 
2VB'11,4VH'8,3VQ'4,97X 
2X,SUBR.CC,3VQ'O,3VQ'O,2VB'll,2VB'll,2VB'11,2VB'll,2VB'11, 
2VB'11,4VH'8,3VQ,4,97X 
2X,XOR.NC,3VQ'O,3VQ'O,2VB'11,2VB'll,2VB'll,2VB'11,2VB'11, 
2VB'11,4VH'8,3VQ'4,97X 
2X,AND.NC,3VQ'O,3VQ'O,2VB'11,2VB'11,2VB'll,2VB'11,2VB'11, 
2VB'11,4VH'8,3VQ'4,97X 
2X,INV.NC,3VQ'O,3VQ'O,2VB'll,2VB'll,2VB'11,2VB'11,2VB,11, 
2VB'11,4VHH8,3VQH4,97X 
2X,OR.NC,3VQHO,3VQ'O,2VB'11,2VBHll,2VB'll,2VB'11,2VB'l1, 
2VB'11,4VH'8,3VQ,4,97X 

;IMAGINARY AhU INSTRUCTIONS 
; 
I.ADD: DEF 
I 
I. SUBS: DEF 
I 
I. MOVE: DEF 
I 
I.SUBR: DEF 
I 
I. XOR: DEF 
I 
I.AND: DEF 
I 
I.INV: DEF 
I 
I. OR: DEF 
I 
EJECT 

34X,ADD.CC,3VQ'O,3VQ'O,2VB'll,2VB'11,2VB'll,2VB'11,2VB'11, 
2VB'll,4VH'B,3VQ,4,65X 
34X,SUBS.CC,3VQ'O,3VQHO,2VB'11,2VB'11,2VBHll,2VBHll,2VB'll, 
2VB'11,4VHHB,3VQH4,65X 
34X,MOVE.NC,3VQ'O,3X,2VB'll,2VBH11,2VB'11,2VB'11,2VB'l1, 
2VB'11,4VH'B,3VQ'4,65X 
34X,SUBR.CC,3VQ'O,3VQ'O,2VBH11,2VBH11,2VB'11,2VBH11,2VB'11, 
2VB'11,4VHHB,3VQH4,65X 
34X,XOR.NC,3VQ'O,3VQ'O,2VB'11,2VB'11,2VB'11,2VB'11,2VB'11, 
2VB'll,4VHHB,3VQH4,65X 
34X,AND.NC,3VQ'O,3VQ'O,2VB'11,2VB'11,2VB'll,2VB'11,2VB Hll, 
2VB'11,4VH'8,3VQ'4,65X 
34X,INV.NC,3VQ'O,3VQHO,2VB'll,2VB'11,2VB'11,2VB'11,2VB'11, 
2VB'11,4VH'B,3VQH4,65X 
34X,OR.NC,3VQ'O,3VQ'O,2VB'll,2VBH11,2VBHll,2VBH11,2VB'11, 
2VBH11,4VH'B,3VQo4,65X 

• • • • • • * * * * * * * * * * * * * * * * * * 
Am29517 MUhTIPhIER 
* * * • • * * * * * * * * * * * * * * * * * * * 

, 
MX.RAhU: 
MX.HOhD: 
MX.IMAG: 
MX.REU: 
MX.CONST: 
MX.COS: 
MX.SIN: 
MXY.2C: 
MXY.MAG: 
MY.OE: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

HoO 
H'2 
H'4 
HOB 
HHC 
HHC 
HHD 
Bol 
MXY.2C* 
BOO 

;MUhTIPhIER IS REAh AhU MIO 
;USE PREVIOUS MUhTIPhIER 
;MUhTIPhIER IS IMAG MEM 
;MULTIPLIER IS REAL MEM 
;MULTIPLIER IS COEF ROM 
;MULTIPhIER IS FFT COS ROM 
;MULTIPLIER IS FFT SIN ROM 
;MULTIPLIERS ARE TWO'S COMP 

;UNSIGNED MAGNITUDE 
;ENABLE LSP ON Y 

2-4 



MY.IN: 
MP.FRAC: 
MP.INTG: 
MP.ROUND: 
MP.TRUNC: 
MP.MSP: 
MP. LSP: 
MP.OE: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

MY.OE. ;ENABLE Y INPUT 
BOu ;FRACTIONAL MULTIPLY (FA) 
MP.FRAC· ;INTEGER MULTIPLY 
BII1 ;ROUNDED MSP 
MP.ROUND· ;TRUNCATED MSP 
BOO ;MOST SIGNIFICANT PRODUCT OUT 
MP.MSp. ;LEAST SIGNIFICANT PRODUCT OUT 
BIIO ;OUTPUT ENABLE 

; MULTIPLIER INSTRUCTIONS 
; 
MSPROD: DEF 
/ 
/ 
LSPROD: DEF 
/ 
/ 

65X, 1VB01, 1VBIIO,MP.MSP ;MOST SIGNIFICANT PRODUCT 
,1VBII1, 1VBII1, 4VHII2 
,22X,1VBII1,31X 
65X,1VB01,1VBOO,MP.LSP ;LEAST SIGNIFICANT PRODUCT 
,1VBII1, 1VBII1, 4VHII2 
,22X,1VB01,31X 

• • • • * * • • • • • • * • • * * * * * • * • • 
Am25S 10 SHIFTER 
• • • • • * * • * * • * * * • * * * • * • * * • 

, 
NO.SHIFT: EQU 

EQU 
EQU 
EQU 

BII11 
B010 
BOu1 
BODO 

;LSB CONNECTED TO I(~3) 

SHIFT.R1: 
SHIFT.R2: 
SHIFT.R3: 
; 
SHIFT.OE: 
EJECT 

EQU BOO 

• • • • • * • • • • * • * • * * • * * * * * * * • * • * * • 

INDEX TO Am29116 INSTRUCTIONS ~ [i] REFERS TO ALLOWED MNEMONICS GROUP 

SINGLE OPERAND l1], [2], [3], [4] 
TWO OPERAND [5], [6], [7], [8] 
SHIFT [9], [10], [11] 
ROTATE [12], [13], [14] 
BIT ~O R I E N TED [ 1 5 ], [1 6 ], [1 7 ] 
ROTATE & MERGE [18] 
ROTATE & COMPR [19] 
PRIORITIZE [20], [21], [22], [23], [24], [25] 
CYCLIC REDUNDANCY CHECKS 
NOOP 
STATUS 
TEST STATUS 

[26], [27] 
[CT] 

_ ..... _._._ ... _ ................... _ ... _ ......... . 
GENERAL MNEMONICS ••••••••• _ ••••••••••••• * ••••••••••••••••••••••• *. 

* ••••••• * ••••••• * •••••••• * •• 
BYTE ~ WORD MODE SELECT [M] 
•• * ••••• * •• * •••• * •••••• * •••• 

2-5 



; 
B: 
W: 

EQU 
EQU 

1 B 110 
1 Bill 

BYTE MODE 
WORD MODE 

*************************************************** 
32 RAM REGISTERS [R] 
*************************************************** 

; 
RO: 
HI: 
R 2: 
R 3: 
R 4: 
R5: 
R 6: 
R7: 
R 8: 
R 9: 
RIO : 
R 11 : 
R 12: 
R 13: 
R 14: 
R15: 
R 16: 
R 17: 
R18: 
R19: 
R20: 
R21 : 
R 22: 
R 23: 
R 24: 
R 25: 
R26 : 
R 27: 
R 28: 
R29: 
R 30: 
R 31 : 
EJECT 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

5D110% 
5Dlll% 
5D112% 
5D113% 
5D114% 
5D115% 
5"DII6% 
5 D 117% 
50118% 
50119% 
501110% 
50111 U 
501112% 
501113% 
501114% 
5D1115% 
501116% 
501117% 
501118% 
501119% 
5D1I20% 
501121% 
501122% 
501123% 
5D1124% 
501125% 
501126% 
5D1127% 
5D1128% 
5D1I29% 
501130% 
501131% 

* • * * * * * * * * * * * * * * * 
Am29116 CONTROL LINES 
16~Bit Bipolar Microprocessor 
* * * * * * * * * * * * * * * * * 

OEYEN: 
OEYOIS: 
; 
DLE.EN: 
OLE.OIS: 

OETEN: 
OETDIS: 

EQU 
EQU 

EQU 
EQU 

EQU 
EQU 

BI10 
Bill 

Bill 
BIIO 

Bill 
BIIO 

00000 

Y BUS ENABLE 

DATA LATCH ENABLE 

T BUS ENABLE 

2-6 



; 
SRE.EN: EQU BIIO STATUS REGISTER ENABLE 
SRE.DIS: EQU Bill 

lEN: EQU BIIO INSTRUCTION ENABLE 
lOIS: EQU Bill 

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

EJECT 
1**********1*****.***.***.*** 
SING~E OPERAND INSTRUCTIONS 
******************-********** 

OPCODES [1] 

MOVE: 
CO~l P: 
INC: 
NEG: 

EQU 
EQU 
EQU 
EQU 

; SOURCE-DESTINATION SELECT l2] 

SORA: EQU 
SORY: EQU 
SORS: EQU 
SOAR: EQU 
SODR: EQU 
SOIR: EQU 
SOZR: EQU 
SOZER: EQU 
SOSER: EQU 
SORR: EQU . 

H IIC 
HIID 
H liE 
HIIF 

HIIO 
HI12 
HI13 
H 114 
H 116 
HI17 
HI18 
HI19 
HilA 
HIIB 

COHPLEMENT 
INCREMENT 
NEGATE 

RAM 
RAM 
RAM 
ACC 
D 
I 
o 
D(OE) 
D(SE) 
RAM 

ACC 
Y BUS 
STATUS 
RAM 
RAM 
RAM 
RAM 
RAM 
RAM 
RAM 

. ************************************************************ , 
; 
SOR: DEF 
I 

74X, lVBlll, B1101, 3VBII010, 
lV, Blll0,4V, 4V, 

;SING~E OPERAND RAM 
5V%, 4X, 2VBlll1, 2VBlll1, 24X 

MODE,QUAD,OPCODE,SOURCE~DEST,REGISTER 

[M] [1] [2] [R] 

********************* ••• ************.*********************1* 

SOURCE (RIS) l3 ] 
; 
SOA: EQU H 114 ACC 
SOD: EQU H 116 D 
Sal: EQU HI17 I 
SOZ: EQU HI18 0 
SOZE: EQU HI19 D(OE) 
SaSE: EQU HilA D(SE) 
; 
; DESTINATION [4 ] 

2-7 



NRY: 
NRA: 
NRS: 
NRAS: 
, 

EQU 
EQU 
EQU 
EQU 

DUll 
DU1 
DU4 
DU5 

Y BUS 
ACC 
STATUS 
ACC,STATUS 

. *************************************************************** , . 

SONR: DEF 74X,1VBI11,BU01,3VBU010, 
I 1V, BI111,4V, 4V, 

; SINGLE OPERAND NON~RAM 
5V%, 4X, 2VB1111, 2VB1111, 24X 

MODE,QUAD,OPCODE,SOURCE,DESTINATION 
lMJ [1J [3J [4J 

; *************************************************************** 
EJECT 

*********************************** 
TWO OPERAND INSTRUCTIONS 
*********************************** 

OPCODES [5 J 

SUBR: EQU HUO S minus R 
SUBRC: EQU HU1 S minus R with carry 
SUBS: EQU HI12 R minus S 
SUBSC: EQU HI13 R minus S with carry 
ADD: EQU HU4 R pI us S 
ADDC: EQU HI15 R plus S with carry 
AND: EQU HU6 R S 
NAND: EQU HI17 R S 
EXOR: EQU HI18 R S 
NOR: EQU HI19 R + S 
OR: EQU HilA R + S 
EXNOR: EQU HUB R S 

SOURCE~DESTINATION [6 J R S DEST 
; 
TORAA: EQU HIIO RAM ACC ACC 
TORIA: EQU HI12 RAM I ACC 
TODRA: EQU HI13 D RAM ACC 
TORA Y: EQU HI18 RAM ACC Y BUS 
TORIY: EQU HUA RAM I Y BUS 
TODRY: EQU HIIB D RAM Y BUS 
TORAR: EQU HIIC RAM ACC RAM 
TORIR: EQU HIIE RAM I RAM 
TODRR: EQU HIIF D RAM RAM 
; 
; ************************************************************ 
TOR1: DEF 74X,1VBI11,BII01,3VBU010, ; TWO OPERAND RAM (1) 
I 1V, BllllO,4V, 4V, 5V%, 4X,2VBU11,2VBU11,24X 

MODE,QUAD,SOURCE"DEST,OPCODE,REGISTER 
lMJ [6J [5J [RJ 

************************************************************ 

THE [iJ IN THE COMMENT BELOW THE VARIABLE~FIELD REFERS TO THE ALLOWED 

2-8 



MNEMONIC GROUP. EXAMPLE: MODE REFERS VIA [M] TO THE BYTE~WORD SELECT. 
EXAMPLE: THE ALLOWED OPCODE SUBSTITUTIONS IN TOR1 COME FROM GROUP L5] 
WHILE THE ALLOWED SOURCE~DESTINATIONS COME FROM GROUP l6]. 

; 
EJECT 

SOURCE~DESTINATION [7] 
; 
TODAR: 
TOAIR: 
TODIR: 
, 

EQU 
EQU 
EQU 

HI11 
HI12 
HH5 

D 
ACC 
D 

R 

ACC 
I 
I 

S 

RAM 
RAM 
RAM 

DEST 

. ************************************************************ , 
TOR2: DEF 
/ 

74X, 1VB111, BH01, 3VBI1010, 
1V, BH10,4V, 4V, 

; TWO OPERAND RAM (2) 
5V~, 4X, 2VBH11, 2VB1111, 24X 

MODE,QUAD,SOURCE~DEST,OPCODE,REGISTER 

[M] [7] [5] [R] 
************************************************************ 

SOURCE [8] 
; 
TODA: 
TOAI: 
TODI: 

EQU 
EQU 
EQU 

H 111 
HH2 
HII5 

R 

D 
ACC 

, D 

S 

ACC 
I 
I 

; *********************************************************** 
TONR: DEF 74X,1VBH1,BH01,3VBII010, ; TWO OPERAND NON~RAM 

/ 1V, BI111,4V, 4V, 5V~, 4X,2VBI111,2VBH11,24X 

MODE, QUAD,SQURCE,OPCODE,DESTINATION 
[M] [8] [5] [4] 

; *********************************************************** 
EJECT 

************************************************** 
SHIFT INSTRUCTIONS 
************************~************************* 

DIRECTION AND 
; 
SHUPZ: 
SHUP1: 
SHUPL: 
SHDNZ: 
SHDN1: 
SHDNL: 
SHDNC: 
SHDNOV: 

SOURCE [ 10] 
; 
SHRR: 
SHDR: 

INPUT 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 

[9] 

HHO 
H 111 
HII2 
HI14 
HII5 
HI16 
Hf17 
HH8 

H/16 
Hf17 

2-9 

UP 0 
UP 1 
UP QLINK 
DOWN 0 
DOWN 1 
DOWN QLINK 
DOWN QC 
DOWN QN QOVR 

RAM 
D 

RAM 
RAM 



· """""""""""""""""""""""""'" , 
SHFTR: DEF 
/ 

74X, lVBlll, B1I01, 3VBII010, ; SHIFT RAM 
lV, BfJ10,4V, 4V, 5V~, 4X,2VBlll1,2VBII11,24X 

MODE,QUAD,SOURCE,DIRECT~INPT,REGISTER 
[M] [10] [9] [R] ..... ,.,", .. , ... ,""""""""""',.,""""'" 

SOURCE [11] 
; 
SHA: 
SHD: 

EQU 
EQU 

HII6 
HII7 

ACC 
D 

; .,*,.,"",.,"""""""""""""""""""" 
SHFTNR: DEF 74X, lVBll1 ,BII01, 3VBII010, ; SHIFT NON~RAM 
I lV, BfJll,4V, 4V, 5V~, 4X, 2VBllll, 2VBlll1, 24X 

MODE,QUAD,SOURCE,DIRECT~INP,DESTINATION 

[M] [11] [9] [4](NRY; NRA ONLY) 
"*""""""""""""""""""""""""" · , 

EJECT 
; .,"""",.,"""""',.,""""", .. , .. ,.".,' 
;ROTATE INSTRUCTIONS 

"""',.,', .... " .. ,', .. ,""',.".".,""""" 
SOURCE~DESTINATION [12] 

; 
RTRA: 
RTRY: 
RTRR: 

EQU 
EQU 
EQU 

HIIC 
HIIE 
HIIF 

RAM 
RAM 
RAH 

ACC 
Y BUS 
RAM 

; ............... ,"""',.,"""""""',.,"',.,.,' 
ROTR1: DEF 74X,lVBf/l,BfIOl,3VBII010, /; ROTATE RAM (1) 
I lV, BII00,4V,4V, 5V~, 4X,2VBlll1,2VBll11,24X 

MODE,QUAD,N,SOURCE~DEST,REGISTER 

[M] [N] [12] [R] 
",.,., ...... , ..... , .... , .. , .. ,." ..... ,',., ... , .... . 
~OURCE~DESTINATION l13] 

; 
RTAR: 
HTDR: 

EQU 
EQU 

HIIO 
Hill 

ACC 
D 

RAM 
RAM 

· .,',.,"', .... ,.,',.".,"""""""""""',.,'" , 
ROTR2: DEF 
I 

74X,lVBIl1,BII01,3VBII010, 
lV, BII01,4V,4V, 

; ROTATE RAM (2) 
5V~, 4X,2VBlll1,2VBIl11,24X 

MODE,QUAD,N,SOURCE~DEST,REGISTER 

2-10 



l M ] [N] [ 13 J [R] 
-**************************************************** 

SOURCE DESTINATION l 111 J 
; 
RTDY: EQU D#211 D Y BUS 
RTDA: EQU D#25 D ACC 
KTAY: EQU DI128 ACC Y BUS 
KTAA: EQU DI129 ACC ACC 

• -*****-********************************************** , 
ROTNR: IJEF 
/ 

74X,lVBU1,BUul,3VBU010, ; ROTATE NON .. RAM 
lV, BUll,4V,HUC, 5V~, IIX,2VBll11,2VBU11,24X 

MODE,QUAD,N,FIXED CODE,DESTINATION 
[M] [N] [111] 

• -**************************************************** , 
'EJECT 

-************************************************** 
~IT ORIENTED INSTRUCTIONS 
-************************************************** 

OPCODES [15] 
; 
SETNR: 
KSTNR: 
TSTNR: 

EQU 
EQU 
EQU 

HIID 
HUE 
HUF 

SET RAM, BIT N 
RESET RAM, BIT N 
TEST HAM, BIT N 

; ******************************************************** 
BOR1: DEF 711X,lVBU1,BU01,3VBU010, ; BIT ORIENTED RAM (1) 
/ lV, ~Ul1,4V,4V, 5V~, IIX,2VBUll,2VBf,lll,24X 

MODE,QUAD,N,OPCODE,REGISTER 
[M] [N] l15J lR] 

-******************************************************* 

UPCODES [ 1 6 J 

· , 
LD2NR: EQU HUC 2 A N ... -..-. RAM 
LDC2NR: EQU HIID 2"N .-..-- RAM 
A2NR: EQU HUE RAM + 2"N RAM 
S2NR: EQU Hf/F RAM - 2"N .. RAM 

; ******************************************************** 
BOR2: DEF 74X,lVBU1,BU01,3VBU010, ; BIT ORIENTED RAM (2) 
/ lV, Bf,ll0,4V,IIV, 5V~, 4X,2VBf,lll,2VBf,lll,24X 

MODE,QUAD,N,OPCODE,REGISTER 
[M] [N] l16] [R] 

******************************************************** 
EJECT 

2-11 



OPCODES L 17] 
; 
TSTNA: EQU DIIO TEST ACC, BIT N 
RSTNA: EQU DIll RESET ACC, BIT N 
SETNA: EQU DI12 SET ACC, BIT N 
A2NA: EQU D 111I ACC + 2"N .... ACC 
S2NA: EQU DII5 ACC .. 2"N ..... ACC 
LD2NA: EQU H/16 2"N .. '" ACC 
LDC2NA: EQU DII7 2"N ...... ACC 
TSTND: EQU DII16 TEST D, BIT N 
RSTND: EQU DII17 RESET D, BIT N 
SETND: EQU DII18 SET D, BIT N 
A2NDY: EQU DII20 D + 2"N ..... '" Y BUS 
S2NDY: EQU DI121 D .. 2"N .... -. Y BUS 
LD2NY: EQU DI122 2"N Y BUS 
LDC 2NY: EQU DI123 2"N ...... Y BUS 

; -******************************************************** 
BONR: DEF 711X,lVBlll,BII01,3VBII010, ; BIT ORIENTED NON ... RAM 
I lV, J:H/ll,lIV,Bllll00, 5V~, lIX,2VBlll1,2VBlll1,211X 

MODE,QUAD,N,FIXED CODE,OPCODE 
[M] [N] [17] 

; ********************************************************* 
EJECT 

**t**tt******************************************* 
HOTATE AND MERGE 
************************************************** 

SOURCE ... DEST SELECT [U,S,MASK ... DESTJ [18] 

MDAI: 
MDAR: 
M DRI: 
MDRA: 
MARI: 
MRAI: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

H 117 
H 118 
H/19 
HilA 
HIIC 
H/IE 

HOT 
D 
D 
D 
D 
ACC 
RAM 

NON ... ROT 
ACC 
ACC 
RAM 
RAM 
RAM 
ACC 

MASK ... DEST 
I 
RAM 
I 
ACC 
I 
I 

; ********************************************************** 
ROTM: DEF 
I 

74X, lVBlll ,BII01, 3VBII010, 
lV, BII01,lIV,lIV, 

;ROTATE AND MERGE 
5V~, lIX, 2VBllll, 2VBf/l1, 211X 

MODE,QUAD,N,SOURCE ... DEST,REGISTER 
[M] [N] [18] [R] 

********************************************************** 

2-12 



************************************************** 
ROTATE AND COMPARE 
************************************************** 

ROT.SRC(U)~NON ROT.SRC(S)/DEST~MASK(S)[19] 

; 
CDAI: 
CDRI: 
CDRA: 
CRAI: 

EQU 
EQU 
EQU 
EQU 

HI12 
HI13 
Hfl4 
HII5 

D 
D 
D 
RAM 

******************************************** 

ACC 
RAM 
RAM 
ACC 

I 
I 
ACC 
I 

ROTATE AND COMPARE ROTC: lJEF 
I 

74X,1VBfl1,Bfl01,3VBII010, 
1V, BII01,4V,lIV l 5V$, lIX, 2VBI111, 2VBII11, 24X 

MODE,QUAD,N,SOURCE~DEST-MASK,REGISTER 

[M] [N] [19] [R] 
********************************************* 

EJECT 

************************************************** 
PRIORITIZE 
************************************************** 

SOURCE L20] 

PRT1A: 
PR1D: 

EQU 
EQU 

DESTINATION [21] 
; 
PR1A: 
PR1Y: 
PR1R: 
, 

EQU 
EQU 
EQU 

Hf17 
HI19 

HI18 
HilA 
HIIB 

ACC 
D 

ACC 
Y BUS 
RAM 

; *********************************************** 
PRT1: DEF 74X,1VBI11,BII01,3VBfl010, ; RAM ADDR MASK(S) 
I 1V, BI110,4V, 4V, 5V$, lIX,2VBll11,2VBl111,24X 

MODE,QUAD,DESTINATION,SOURCE,REG~MASK 

[M] [21] [20] [R] 
*********************************************** 

; 
DESTINATION L23] 

PR 2A: 
PR2Y: 
, 
; MASK (S) l22] 

EQU 
EQU 

HIIO 
HI12 

2-13 

ACC 
Y BUS 



; 
PRA: 
PRZ: 
PRI: 

EQU 
EQU 
EQU 

HI18 
HilA 
HIIB 

ACC 
o 
I 

*********************************************** 
PRT2: DEF 
/ 

74X,lVB#l,B#01,3VB#010, ; PRIORITIZE RAM 
lV, B#10,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X 

MODE,QUAD,MASK,DEST,REG~SOURCE 

[M] [22] L23] [R] 
*********************************************** 

E JECr 
; 
; ::;OURCE ( R ) l24] 

PR 3R: EQU HI13 HAM 
PR3A: EQU H II 4 ACC 
PR3D: EQU HII6 I) 

.*.*********.*.******************************** 
PRT3: I)EF 
/ 

74X,lVB#l,B#01,3VB#010, ; PRIORITIZE HAM 
lV, tl#10,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X 

MODE,QUAD,MASK,SOURCE,REG~DEST 

[M] [22] L24] lRJ 
-********************************************** 

::;OURCE (R) l25] 
, 
PRTA: EQU 

EQU 
H 114 
H 116 

ACC 
D PRTD: 

*.* ••• *****.**.* •• ****-* ••• ***.****.****.***** 
PRTNR: lJEF 
/ 

74X,lVB#l,B#01,3VB#010, ; PRIORITIZE NON~RAM 
lV, tllll1,4V, 4V, 5V%,4X,2VBlll1,2VBlll1,24X 

MODE,QUAD,MASK,SOURCE,DESTINATION 
lM] [22] l25] [4](NRY,NRA ON~Y) 

.*******.*.****.****************************** , 
EJECT 

_.************.*********.****.******.********* 
CYCLIC HEDUNDANCY CHECK 
.******.******.**********************.*.*.*.** 

-**.********.****.**********.***.******.*** 
CRCF: lJEF 74X,lVBlll,BII01,3VBII010, 
/ B#11001100011, 5V%, 4X, 2VB#11, 2VBllll, 24X 

2-14 

FORI-lARD 



-*.*****.******************.**.******** •••• 

_.*********** •• *.**.*****************._**** 
CRCR: lJEF 74X,lVBlll,BII01,3VBII010, 
/ Bllll00ll0l00l,5V%, 4X,2VBllll,2VBllll,24X REVERSE 

.*****-*.*.*.*.****.*********.*.*** •• * •• **. 

-*.** ••••• ****** •• ***.*****.*******.**** •• *. 

NOOP 

-****.* •• ****.*.***.*** •• **.******.*.***** •• 
NOOP: lJEF 74X,lVBlll,BII01,3VBII010,HI17140, 4X,2VBllll,2VBllll,24X; NO OPERATION 

-***********.**************.**************** 

!::JECT 
-*********************.************************* 
STATUS 
******.****************.***.*.***********.****** 

apCODE [26] 
; 
SONZC: EQU 501ln SET OVR,N,C,Z 
SL: EQU 50115% SET LINK 
SF 1: EQU 5D116% SET ~'LAG 

SF2: EQU 5D119% SET f'LAG 2 
SF3: EQU 5Dlll0% SET I'LAG 3 

-*******-**************.****.************.******** 
SETST: uEF 74X,lVBU1,BU01,3VBU010, 
/ BIIOll, HIIBA, 5V%, 4X, 2VBllll, 2VBllll, 24X ; SET STATUS 

OPCODE 
L26] 

**.*************-*_ •• *.************************.*. 

apCOOE L27] 

RONCZ: EQU D113% RESET OVR,N,C,Z 
RL: EQU D115% RESET LINK 
RF 1 : EQU D116% RESET FLAG 
RF2: EQU D119% RESET fLAG 2 
HF3: EQU Dlll0% RESET l'LAG 3 
; 
.******************.****.*** •• *.**.*****************.* , 
RSTST: DEF 74X,lVBU1,BU01,3VBU010, 
/ BIIOll, HIIAA, 5V%, 4X, 2VBllll, 2VBllll, 24X 

2-15 

RESET STATUS 



OPCODE 
l27J 

w*************************************************** 
~JECT 

-****************-**********************.*****-***** 
SVSTR: IJEF 
I 

74X,lVBH1,BH01,3VBH010, ; SAVE STATUS~RAM 
lV, BH10,Hff7A, 5V%, 4X,2VBllll,2VBHll,24X 

MODE, QUAD, FIXED, RAM ADDRESS/DEST 
[MJ lRJ 

-*************************************************** 

, 
;***************************************************** 
sVSTNR: IJEF 
I 

74X,lVBH1,BH01,3VBH010, ; SAVE STATUS NON~RAM 
lV, Bllll,HI17A, 5V%, 4X,2VBllll,2VBllll,24X 

MODE,QUAD,FIXED,DESTINATION 
lMJ [4J(NRY,NRA ONLY) 

w*************************************************** 

-************************************************ 
TEST STATUS 
w************************************************ 

oPCODE (CT) 
; 
TNOZ: EQU DIIO TEST (N OVR) + Z 
TNO: EQU DI12 TEST N OVR 
TZ: EQU DI14 TEST I. 
TOVR: EQU DI16 TEST OVR 
TLOW: EQU D /18 TEST LOW 
TC: EQU Dlll0 TEST C 
TZC: EQU DH12 TEST z + C 
TN: EQU DH14 TEST N 
TL: EQU D016 TEST LINK 
TF 1 : EQU DII18 TEST FLAG 
TF2: EQU DI120 TEST FLAG 2 
TF3: EQU DI122 TEST FLAG 3 
; 
; --************************************************ 
TEST: IJEF 74X, lVB01, BI101, 3VBII010 
/ , BOOll, H/19A, 5V%, 4X,2VBHll,2VBOll,24X ; TEST STATUS 

-**********************.************************** 

IMMED: IJEF 
EJECT 

74X, lVBlll, BI101010, 16V$, 4X, 2VBllll, 2VBllll, 24X 

* •• * * * * * * * * ~* * * * * * * * * * * * * 
Am29540 FFT ADDRESS GENERATOR 

2-16 



• • • • • • • * • • * • • * • • • • • • * • • • 
; 
ADR.HOLD: 
ADR.RST: 
ADR.LOAD: 
ADR.INC: 
; 
RADIX.2: 
RADIX.II: 
I'SD: 
NORM.ORD: 
DIT: 
DIF: 
ADR.OE: 
, 
ADR1: 
ADR2: 
ADR3: 
ADRII: 
ALT.ADR1: 
ALT.ADR2: 
ALT.ADR3: 
ALT.ADRII: 
(;ONST 1: 
(;ONST2: 
(;O"NST3: 
CONST1.S: 
RVI.ADR1: 
RVI. ADR2: 
RVI.ADR3: 
RVI.ADRII: 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

BtlOO 
Btl01 
Btl10 
Btll1 

BtlO 
RADIX.2* 
BDO ;PRESCRAMBLED DATA 
PSD* ;NORMAL ORDER 
Btl1 
DIT* 
BtlO 

HDO 
HD1 
HD2 
Htl3 
HtllI 
HD5 
Htl6 
Hn 
H/18 
Htl9 
HDA 
HDB 
HtlC 
HDD 
HDE 
HDF 

;DATA ADDRESS FOR RADIX 2/11 
;DATA ADDRESS 2 FOR RADIX 2/11 
;DATA ADDRESS 3 FOR RADIX II 
;DATA ADDRESS II FOR RADIX II 
;ALTERNATE ADDRESS 1 FOR RADIX 2/11 
;ALTERNATE ADDRESS 2 FOR RADIX 2/11 
;ALTERNATE ADDRESS 3 FOR RADIX II 
;ALTERNATE ADDRESS II FOR RADIX II 
;CONSTANT ADDRESS 1 FOR RADIX 2/11 OR SHADING 
;CONSTANT ADDRESS 2 FOR RADIX II 
;CONSTANT ADDRESS 3 FOR RADIX II 
;INVERTED CONSTANT ADDRESS 1 FOR SHADING 
;REAL VALUE INPUT ADDRESS 1 
;REAL VALUE INPUT ADDRESS 2 
;REAL VALUE INPUT ADDRESS 3 
;REAL VALUE INPUT ADDRESS II 

• • • • • • • • • • • • * * * • • • • • • • • • 
Am29520 PIPELINE REGISTERS 
* • • • • • • • • • • • • • • • • • • * • • • • 

; 
ADP.SHFT: 
ADP.LDB: 
ADP.LDA: 
ADP.HOLD: 
; 
ADP.A1: 
ADP.A2: 
ADP.B1: 
ADP.B2: 
; 
ADP.OE: J::QU . , 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 

BDO 

BtlOO 
BII01 
BD10 
BII11 

BD11 
BII10 
BII01 
BIIOO 

;SHIFT ADDR THROUGH PIPELINE 
;LOAD & SHIFT SECOND HALF OF PIPELINE 
;LOAD & SHIFT FIRST HALF OF PIPELINE 
;NO OP 

;REG Al TO OUTPUT 
;REG A2 TO UUTPUT 
;REG Bl TO OUTPUT 
;REG B2 TO OUTPUT 

;OUTPUT J::NABLE 

; ADDRESS GENERATOR INSTRUCTIONS 
, 
ADG.HOLD: vEF 
/ 
ADG.RST: VEF 
/ 
ADG. LOAD: VEF 

711X, 1VB1I1, Bill 0001, 3X, 1VBII1, lVBIIO, 1VB/I1, ADR. HOLD,IIVHIIO, 8X, 
2VB#11,2VB1I11,24X 
711X, 1VBII1, BII1 0001, 3X, 1VBlll, lVBIIO, lVB#l, ADR. RST, IIVHIIO, 8X, 
2VB#11,2VB#11,24X 
711X, lVB#1, B#1 000 1, 3X, 1VBD1, lVBIIO, lVB#l, ADR. LOAD,IIVH#O, 8X, 

2-17 



I 
ADG.INC: DEF 
I 
EJECT 

2VBUll,2VBUll,24X 
74X, lVBlll ,B/ll000l, 3X, lVBU1, lVB/lll, lVBU1, ADR. INC, 4VH1I0, 8X, 
2VBUll, 2VBUll, 24X 

* * • • * • * * • * * * • * * • • • • • • * • • • • • • 

Am291ll MICROPROGRAM CONTROLLER INSTRUCTION SET l20] 

w • * • * • • • • • • • • • • • * * • * • • * • • • • • 

~ONDITION CODE MULTIPLEXER 
; 
IF.HIGH: 
IF. LOW: 
UNCOND: 
NEW.PROC: 
INT.ACK: 
FFT.ITC: 
FFT.DONE: 
ADR.CT: 
HALU.S: 
HALU.OV: 
HALU.Z: 
HALU.C: 
IALU.S: 
lALU.OV: 
IALU.Z: 
IALU.C: 
; 
JZ: 
CJS: 
JSR: 
JMAP: 
~ JP: 
JM P: 
PUSH: 
JSRP: 
~ JV: 
J HP: 
HFCT: 
HPCT: 
CRTN: 
RTN: 
CJPP: 
LDCT: 
LOOP: 
~ONT: 

TWB: 

EJECT 

DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 

BlIll ;CONDITION PREFIX 
IF.HIGH" 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

HIIO ;UNCONDITIONAL BRANCH 
Hill ;NEW PROCESS ~OMMAND FROM HOST 
HII2 ;INTERRUPT ACK FROM HOST 
HII3 ;Am29540 ITERATION COMPLETE 
HII4 ;Am2954ll ~FT COMPLETE 
HII5 ;Am29116 CONDITION TEST 
HUB ;REAL ALU SIGN 
HII9 ;REAL ALU OVERFLOW 
HilA ;REAL ALU ZERO 
HUB ;REAL ALU CARRY 
HUC ;IMAG ALU 
HIID 
HIIE 
HUF 

124X, H/lll 
lll7X, lVBlIll,4V, 12V$HIIFFF,HIl1 
107X, B/lll, UNCONIl, 12V$HIIFFF, Hill 
112X,12V$H#FFF,H/12 
107X, lVBlIll,4V, 12V$HIIFFF,HI13 
lll7X, BlIll, UNCOND, 12V$HIIFFF, HII3 
107X, lVBlIll,4V, 12V$,H#4 
112X,12V$HIIFFF,H/15 
lll7X, lVBIIO, 4V, 12V$H/IFFF, H/16 
112X, 12V$H#FFF, HII7 
112X, 12V$HIIFFF, HII8 
112X, l2V$HUFFF, H#9 
107X, lVBUll,4V, 12V$HIIFFF,H#A 
lll7X,B#ll,UNCOND,12V$H#FFF,HIIA 
lll7X, lVBUO,4V, 12V$HIIFFF,HIIB 
112X, 12V$, HUC 
124X,HIID 
124X,HIIE 
lll7X, lVBlIll,4V, 12V$HIIFFF,HIIF 

RESET STACK, MICROPC, ADDRESS 
COND JUMP SUBROUTINE 
UNCOND JUMP SUBROUTINE 
UNCOND JUMP TO MEMORY MAP (Di) 
COND JUMP PIPELINE 
UNCOND JUMP PIPELINE 
PUSH STACK, LOAD REG MAYBE 
JUMP SUB FROM REG (F) OR PIPE(T) 
COND JUMP TO VECTOR INTER (Di) 
JUMP TO REG (F) OR PIPE (T) 
DO LOOP REPEAT UNTIL CTR=ll~STACK 

DO LOOP UNTIL CTR=ll ~ PIPE 
COND RETURN, POP STACK (T) 
UNCOND IlETURN 
CO NO JUMP PIPELINE, POP STACK 
LOAD IlEGISTER, CONTINUE 
DO LOOP UNTIL TEST=T ~ STACK 
CONTINUE 
THREE WAY BRANCH 

• • • • • • • • • • • * • * • • • • • • • * • • • • • 

2-18 



Am2 9 25 CYCLE LENGTH SELECT [21 1 
system Clock Generator and Dr i ver 

" " " " .. .. .. .. .. .. .. .. it .. .. .. " .. it it .. it .. 
THE ~'OLLOW ING ARE THE CYCLE LENGTH CODES (PRELIM) 

CLA: EQU Qllt) 3 CLOCK PERIODS 
CLB: EQU Qlll 4 
CLC: EQU QI15 5 
CLD: EQU QI17 6 
CLE: EQU QI13 7 
CLF: EQU QI12 5 
CLG: EQU QI16 9 
CLH: EQU QI14 10 CLOCK PERIODS 

(max crystal 

OTHER CONTROL LINES FOR THE Am2925 
INCOMPLETELY DEFINED AT PRESENT (IN THIS fILE) 

; 
FIRST.25: 
LAST.25: 
; 
HALT: 
NOHALT: 
, 
SINGLSTP: 
RUN: 

WAITREQ: 
NOWAITRQ: 
; 
READY: 
NOTREADY; 

INITIALIZE: 
NO.INIT: 

EJECT 
; 

EQU Bill 
EQU Bllll 

EQU Bllllll 
EQU BllOll 

EQU BllllO 
EQU BIIOO 

EQU Bllll 
EQU Bill 

EQU Bllll 
EQU 8111' 

EQU BIIO 
EQU Bill 

; MISCELLANEOUS CONTROLS FOR THE DSP 
; 
WE: 
NWE: 
; 
RD. MEM: DEF 
WR .CMPX: OEF 
WR.REAL: DEF 
WR.IMAG: DEF 

SEL.116: 
SEL.540: 
NO.ADDR: 

EQU 
EQU 

BIIO 
WE* 

;MEMORY WRITE ENABLE 
;NO WRITE 

31 X, NWE, 31 X, NW E, 64 X 
31X,WE,31X,WE,64X 
31X,WE,31X,NWE,64X 
31X, NWE, 31X, WE, 64X 

EQU 
EQU 
EQU 

Blllll 
Blllll 
Blill 

2-19 

" " 

EXAM PLE CYCLE ( 1 OF 4) 

It)llns AT 3llMHz 
16llns AT 25HHz 
20llns AT 25MHz 
20llns AT 30MHz 
28llns AT 25M Hz 
32llns AT 25HHz 
3llllns AT 30MHz 
322ns AT 31MHz 

frequency is 311MHz) 



BUFCD: 
IlUFEN: 

CF.LOAD: 
CF.HOLD: 

EQU 
EQU 

EQU 
EQU 

BU1 ;BUFFER (;HIP UISABLE 
BUFCD" 

BUO ;ENABLE NEW HOM ADDRESS 
CF.LOAD" 

; UATA PRESCALING 
; 
DIV.BY.l: 
UIV.BY.2: 
DIV.BY.4: 
UIV.BY.8: 

SP: 
DP: 

iNTRRUPT: UEF 
; 
;F'IEi.D POSITIONS 
; 
MISC: uEF 
; 
NO.OP: UEF 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
; 
HD.CMD: DEF 
/ 
/ 
/ 
I 
/ 

I 
I 
/ 
I 
/ 
; 
MAKE.ONE: UEF 
I 
I 
I 
I 
I 
I 
I 

; 
I::ND 

DEF 
DEF 
DEF 
DEF 

EQU 
EQU 

NO.SHIFT,30X,NO.SHIFT,94X 
SHIFT.Rl,30X,SHIFT.R1,94X 
SHIFT.R2,30X,SHIFT.R2,94X 
SHIFT.R3,30X,SHIFT.R3,94X 

BU1 
BUO 

;SINGLE PRECISION (16 IlITS) 
;DOUBLE PRECISION (32 BITS~IMAG:REAL) 

1 04X, BI11, 23X ;GENERATE t:XTERNAL INTERRUPT 

64X, 1VBI11, 39X, 1VBUO, 2VBUOO, 21X 

NO.SHIFT,MOVE.NC,Al,Al ;DO NOTHING 
,A1.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,NO.SHIFT,MOVE.NC,Al,Al 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,SP,MP.TRUNC,MP.FRAC,MP.MSP 
,MY.IN,MXY.2C,MX.CONST 
,1X, SEL. 540, BI1111 
,3X,DIT,RADIX.2,NORM.ORD,ADR.HOLD,ADR1 
,8X,ADP.HOLD,ADP.A1,24X 

NO.SHIFT,MOVE.CC,A1,A1 ;READ MODE INTO ?40 AND 29116 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,NO.SHIFT,MOVE.CC,Al,A1 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,SP,MP.TRUNC,MP.FRAC,MP.MSP 
,MY.IN,MXY.2C,MX.CONST 
,lX, NO.ADDR,BU101 
,3X,DIT,RADIX.2,NORM.ORD,ADR.HOLD,ADR1 
,8X,ADP.HOi.D,ADP.A1,24X 

NO.SHIFT,MOVE.FC,Al,A1 ;FORCE (;ARRY INTO IMAG ALU 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,NO.SHIFT,MOVE.CC,ZERO,Al ; U + CRY = 1 
,A1.HOLD,A2.EQ.AU,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,DP,MP.TRUNC,MP.FRAC,MP.MSP 
,MY.IN,MXY.2C,MX.CONST 
,54X 

2-20 



APPENDIX 3 
AmDSP DIGITAL SIGNAL 

PROCESSOR SOURCE FILE 

• • • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

lDLE LOOP WAITING FOR PROCESS INSTRUCTION 

START:: 
NO.OP & JM P $ + 1 JUMP INSTR FOR JAMMING 

NO.OP & CJP IF.LOW,NEW.PROC,$ WAIT FOR INSTR STROBE 
; 
NO.OP & CJP IF.HIGH,NEW.PROC,$ WAIT FOR STROBE TO LATCH DATA 
; 
RD. CMD & JMAP VECTOR TO COMMANDED PROCESS 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
SET INTERRUPT FLAG AND WAIT FOR AN ACKNOWLEDGE 

; 
FINISH: 

INTRRUPT & NO.OP & CONT 
/; & CJP IF.HIGH,INT.ACK,$ 
; 
NO.OP & JMP START 
EJECT 

WAIT FOR ACKNOWLEDGE 
NO INTR WHILE DEBUGGING 

* * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * 
FFT PROGRAM 
SIZE HANDLED BY Am29540 

; 
FFT: : 
, 
ADG.RST & RD.MEM & DIV.BY.2 
/& R.MOVE & I.MOVE & MSPROD & MISC 
/& CONT 

*** RESET 29540 AND DO NOTHING 

; 
ADG.HOLD , DIT, RADIX.2, NORM.ORD, 
/& RD.MEM & DIV.BY.2 

*** FILL PIPELINE BEFORE WRITING 
ADR2, ADP. LDB 

/& R.MOVE & I.MOVE & MSPROD & MISC 
/& CONT 

*.* READ B OPERAND & COEFFICIENT 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORILORD, CONST1, ADP.HOLD, ADP.Bl 
/& RD.MEM & DIV.BY.2 
/& R.110VE , , , , B1.EQ.DI, , , , DIO.IN 
/& LMOVE , , , , Bl.EQ.DI, , , • DIO.IN 
/& MSPROD 
/& MISC 
/& CONT 
, *** REAL*COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORI1.0RD, ADR1, ADP.LDA 
/& RD.MEM & DIV.BY.2 
/& R.MOVE , , , , Bl.HOLD, , , M.EQ.Bl 
/& LMOVE , , , , B1.HOLD, , , MIO.IN 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, !lX.COS, BUFEN 

3-1 



1& MISC 
1& CO NT 
, ••• REAL.SIN, READ A OPERAND 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.EQ.DI, , , , , , M.EQ.B1, DIO.IN 
1& I.MOVE , A1.EQ.DI, , , B1.HOLD, , , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY. IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
; ••• IMAG·COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB 
1& RD.MEM & DIV.BY.2 
1& R.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, , B2.EQ.AU, , MIO.IN 
1& I.MOVE , A1.HOLD, , , B1.HOLD, , , M.EQ.B1 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CONT 
; ••• IMAG·SIN & READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.HOLD, , A3.HOLD, B1.EQ.DI, B2.HOLD, , MIO.IN, DIO.IN 
1& I.SUBS A1,MSP, A1.HOLD, , A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, , M.EQ.B1. DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY. IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 
; ••• REAL·COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA 
1& RD.MEM & DIV.BY.2 
1& R.SUBS A1,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MIse 
1& CONT 

••• PASS 1 LOOP CAN DO SHADING 
IT1.LOOP: 

••• REAL.SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.ADD B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
; ••• IMAG.COS, WRITE A - B.w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2 
1& WR.CMPX 
1& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
1& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
/& MISC 
1& CONT 
; ••• IMAG*SIN, READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 

3-2 



1& R.SUBS A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN 
1& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 
, *** REAL*COS, WRITE A + B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA, ADP.A2 
1& WR.CMPX 
1& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CJP IF.LOW,FFT.ITC,IT1.LOOP 

BTF.LOOP: 
, *** REAL*SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.ADD B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CO NT 

*** IMAG*COS, WRITE A - B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2 
1& WR.CMPX 
1& a.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
1& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CONT 
; *** IMAG*SIN, READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.SUBS A2,B3. A1.HOLD, ~:?EQ.AU, A3.HOLD, B1.EQ.DI. B2.HOLD, , , DIO.IN 
1& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 

*** REAL*COS, WRITE A + B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA, ADP.A2 
1& WR.CMPX 
1& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2 
1& LADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CJP IF.LOW,FFT.DONE,BTF.LOOP 
;1& CJP IF.LOW,FFT.ITC,BTF.LOOP 
; *** REAL*SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.ADD B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MIse 

3-3 



/& CO NT 
;/& RPCT BTF.LOOP+1 ;COUNT PASSES FOR TESTING 

; FLUSH PIPELINE 
*** IMAG*COS, WRITE A - B*w 

ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2 
/& WR.CMPX 
/& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
/& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
/& MISC 
/& CONT 
; .. * IMAG*SIN 
ADG.HOLD , DIT, RADIX.2, NORM.ORD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 
/& R.SUBS A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, ,M.EQ.B1 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
/& MISC 
/ & CONT 
; *** WRITE A + B*w 
ADG.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.LDA, ADP.A2 
/& WR.CMPX 
/& R.SUBS A1,A3, , A2.EQ.AU, , , B2.HOLD, , , D.EQ.A2 
/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, , B2.EQ.AU, B3.EQ.MP, , D.EQ.A2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C 
/& MISC 
/& CaNT 

ADG.HOLD , DIT, RADIx.2, NORM.ORD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 
/& R.ADD B2,MSP, , A2.HOLD, , , B2.EQ.AU, B3.EQ.MP 
/& I.SUBS A1,B3, , A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& MSPROD & MISC 
/& CaNT 
; 
ADG. HOLD, DIT, RADIX,. 2, NORM.ORD, 
/& WR.CMPX 
/& R.MOVE , , , , , , , , D.EQ.B2 
/& I.ADD A2,A3, , A2.EQ.AU, , , , 
/& MSPROD & MISC 
/& CaNT 
, 
ADG.HOLD , DIT, RADIX.2, NORM.ORD 
/& RD.MEM & DIV.BY.2 
/& R.SUBS A2,B3, , A2.EQ.AU 
/& I.MOVE , , A2.HOLD 
/& MSPROD & MISC 
/& CaNT 
• , 
ADG.HOLD , DIT, RADIX.2, NORM.ORD, 
/& WR,CMPX 
/& R.MOVE , , , , , , , , D.EQ.A2 
/& I.MOVE , , , , , , , , D.EQ.A2 
/& MSPROD & MISC 

, , 
*** WRITE A - B*w 

ADP.B2 

, , D.EQ.B2 

, , 

3-4 

*** WRITE A + B*w 
ADP.A2 



1& JMP FINISH 
EJECT 

* * * * * * * * * * * • * * * * * * * • * • * * * * * * * * * * * * * 

INVERSE FFT PROGRAM (PRE SCRAMBLED DATA) 
SIZE HANDLED BY Am29540 

, 
IFFT:: 
; 
ADG.RST & RD.MEM & DIV.BY.2 
1& R.MOVE & I.MOVE & MSPROD & MISC 
1& CONT 

*** RESET 29540 AND DO NOTHING 

*** FILL PIPELINE BEFORE WRITING 
ADG.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB 
1& RD.MEM & DIV.BY.2 
1& R.MOVE & I.MOVE & MSPROD & MISC 
1& CONT 

*** READ B OPERAND & COEFFICIENT 
ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , , , , B1.EQ.DI, , , , DIO.IN 
1& I.MOVE , , , , B1.EQ.DI, , , , DIO.IN 
1& MSPROD 
1& MISC 
1& CONT 
; u* REAL*COS OF COMPLEX MULTIPLY 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , , , , B1.HOLD, , , M.EQ.B1 
1& I.MOVE , , , , B1.HOLD, , , MIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CONT 

*** REAL*SIN, READ A OPERAND 
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.EQ.DI, , , , , , M.EQ.B1, DIO.IN 
1& I.MOVE , A1.EQ.DI, , , B1.HOLD, , , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 

*** IMAG*COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB 
1& RD.MEM & DIV.BY.2 
1& R.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, , B2.EQ.AU 
1& I.MOVE , A1.HOLD, , , B1.HOLD, , , M.EQ.Bl 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CO NT 

*** IMAG*SIN, READ e 
ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.HOLD, , A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN 
1& LADD A1,MSP, A1.HOLD, , A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, , M.EQ.B1, DIO.IN 

3-5 



1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CO NT 
; *** REAL*COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA 
1& RD.MEM & DIV.BY.2 
1& R.SUBS A1,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CONT 

IBTF.LUP: 
, *** REAL*SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, ,ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.SUBS B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
, *** IMAG*COS, WRITE A - B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB, ADP.B2 
1& WR.CMPX 
1& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.I1P, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
1& I.SUBS A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CONT 

*** IMAG*SIN, READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1 
1& RD.I1EM & DIV.BY.2 
1& R.ADD A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN 
1& I.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN 
1& MSPROD I1P.ROUND, I1P.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 

*** REAL*COS, WRITE A + B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA, ADP.A2 
1& WR.CMPX 
1& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CJP IF.LOW,FFT.DONE,IBTF.LUP 
; *** REAL*SIN, READ A OPERAND 
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, ,ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.SUBS B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
; 
; FLUSH PIPELINE 

3-6 



; *** IMAG*COS, WRITE A - B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB, ADP.B2 
/& WR.CMPX 
/& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
/& I.SUBS A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
/& MISC 
/& CONT 

ADG.HOLD , DIT, RADIX.2, PSD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 

**' IMAG*SIN 

/& R.ADD A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& I.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, ,M.EQ.B1 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
/& MISC 
/& CO NT 
; **' WRITE A + B'w 
ADG.HOLD , DI!, RADIX.2, PSD, , ADP.LDA, ADP.A2 
/& WR.CMPX 
/& R.SUBS A1,A3, , A2.EQ.AU, , , B2.HOLD, , , D.EQ.A2 
/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, , B2.EQ.AU, B3.EQ.MP, , D.EQ.A2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C 
/& MISC 
/ & CONT 
; 
ADG.HOLD , DIT, RADIX.2, PSD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 
/& R.SUBS B2,MSP, , A2.HOLD, , , B2.EQ.AU, B3.EQ.MP 
/& I.SUBS A1,B3, , A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& MSPROD & MISC 
/& CONT 
; *** WRITE A - B*w 
ADG. HOLD , DIT, RADIX.2, PSD, , , ADP.B2 

, , , , , , , , D.EQ.B2 
/& WR.CMPX 
/& R.MOVE 
/& I.SUBS 
/& MSPROD 
/& CONT 

A2,A3, , A2.EQ.AU, , , , , , D.EQ.B2 
& MISC 

ADG. HOLD , DIT, RADIX.2, PSD 
/& RD.MEM & DIV.BY.2 
/& R.ADD A2,B3, , A2.EQ.AU 
/& I.MOVE, ,A2.HOLD 
/& MSPROD & MISC 
/& CONT 
, 
ADG.HOLD , DIT, 
/& WR.CMPX 

RADIX.2, PSD, , , ADP.A2 

/& R.MOVE , , , , , , , , D.EQ.A2 
/& I.MOVE , , , , , , , , D.EQ.A2 
/& MSPROD & MISC 
/& JMP FINISH 
EJECT 

MXMULT: : 

3-7 

*'* WRITE A + B*w 



NOoOP & JMP START 
EJECT 

;TBDL 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PROCESS VECTORS 
ORG 1024 - 8 

; 
NOoOP & JMP START INSTRUCTION 0 = NOOP 
NOoOP & JMP MXMULT 1 MATRIX MULTIPLY 
NOoOP & JMP FILTER 2 FILTER 
NOoOP & JMP FFT 3 FFT 
NOoOP & JMP IFFT 4 INVERSE FFT 

END 

3-8 



APPENDIX 4 
IIR SECOND ORDER FILTER 

SECTION USING THE 
Am29510 AND Am29PL141 

; Mlcrocode tield definitions 

WORD j2 

- Uutput enable 
- Up code 
- Test polarity 

P31 
1'30-26 
1'25 
1'211-22 
1'21-16 
1'15 
1'111 

- Test lnput select 
lnstruction data 

- lnput data taken llag 
- Input select 

; 1'13 
1'12-11 
1'10-09 
POB-06 
1'05 
1'011 
1'03 
1'02 
1'01 
1'00 

- MAC result select 
- ~hift register control 
- Kegister select 
- ~oefficient select 
- MAC add/subtract control 
- MAC pass/accumulate control 
- MAC round/truncate control 
- uutput data ready rlag 
- Unused 
- Error rlag 

• • • • • • • • • • • • • • • • • • • • • • • • 
Application uefinitions 

. . . • • • • • • • • * • • • • • • • • • • 
; 
DTACK: t:QU 
1 NSEL: toQU 
MACSEL: t:Qll 
HOLD: EQU 
LDA: EQU 
LDB: EQU 
A 1: EOU 
A~: EQU 
B 1: EOU 
B~: EQU 
WO: EQU 
W 1: EQU 
W2: EQU 
W3: EQU 
WII: EQU 
RND: EQU 
TRUNC: t;QU 
ACCUM: t:QU 
PASS: EQU 
~tJB: EQU 
ADD: EOU 
ORDY: ~:OU 

INRDY: t:QU 
READY: toQU 
OUTACK: t:QU 
TAKEN: t:QU 

HII/O 
lBI/O 
lBIlO 
213111 
2HI/l0 
21:\1101 
2Bll11 
2131/10 
2BI/01 
2lUOO 
3QIIO 
3Q/l 
3QII2 
30113 
301111 
113'0 
RND­
lBI/O 
ACCUM­
lBIlO 
SUB­
lBIlO 

3QII0 
1:1/0 

3Qll1 
BIIO 

Input data taken ack 
Input select tristate control 
NAC Input select = INSEL-
29520 instructions 

29520 register select 

Coefficlent select 

29510 round control 

29510 accumulate control 

29510 subtract control 

uutput data ready 

Test condition Input 10 
I'olarity control lor ready 
Test condition Input '1'1 
polarity control tor taken 

4-1 



Only need a few instructions for this simple aesign 

CONTINUE: DEF bHU2D:,lOOUOJ, 
I lV, lV, lV,2V,2V,:lV, lV, lV, lV, lV, lX, lVBllO 
GO.PL. IF: OEF bH#39:, lV, 3V~: ,bVJ:, 
I lV, lV, lV, 2V, 2V, 3V, lV, lV, lV, lV, lX, lVBIO 
WAIT.TILL: DEF bH#3A:,1V,3VJ:,bV~:, 

I lV, lV, lV,2V,2V,3V, lV, lV, lV, lV, lX, lVIHIO 
GO. PL: DEF 6H#39:, lBlll, 3006, bV~:, 
I lV, lV, lV,2V,2V,3V, lV, lV, lV, lV, lX, lVBllO 
STOP: OEF 6H#3A:,lBUO,3Q06,bX, 
I lV, lV, lV,2V,2V,3V, lV, lV, lV, lV, lX, lVBIIO 
; 
END 

4-2 

Continue 

Go to pipeline if 

Wait for test input 

Go to pipeline 

Error halt 



This program 1mplements the equation: 
y(n) = W(O)*x(n) + W(1)*x(n-l) + W(2)*x(n-2) + W(j)*yln-l) + W(Q)*y(n-2) 
The CC lnput is grounded for unconditional Jumps. 
TO is connected to 1nput data ready 
Tl is connected to output data taken 

TRUE: ~QU B#l 

Keep writing data on input lines until valid data 1S written 
No ops Keep data sampling synchronous 

; 
INIT: 
WAIT. TILL 
/ 
CONTINUE 
CONTINUE 
CONTINUE 
CONTINUE 

KEADY,!NRDY,$+l, 
DTACK*,INSEL,MACSEL*,LDA,Al,WO,ADD,rASS,RND,DRDY* 
DTACK,INSEL*,MACSEL,HOLD,Al,Wo,ADD,rASS,RND,DRDY* 
DTACK*,IMSEL*,MACSEL,HOLD,Al,WO,ADD,PASS,RND,DRDY* 
DTACK*,INSEL*,MACSEL,HOLD,Al,WO,ADD,PASS,RND,DRDY* 
DTACK*,INSEL*,MACSEL,HOLD,Al,WU,ADD,PASS,RMD,DRDY* 

, 
; ~rror 1f next oata sample not ready 
GO.PL.IF KEADY*,INRDY,ERROR, 
/ DTACK*,INSEL,MACSEL*,LDA,A2,Wl,ADD,PASS,TRUNC,DRDY* 

uutput W(O)*x(n) 
CONTINUE DTACK,INSEL*,MACSEL,LDB,A2,Wl,ADD,PASS,TRUNC,DRDY 
, 
; ~rror 1f data not taken 
GO.PL.IF TAKEN*,OUTACK,ERROR, 
/ DTACK*,INSEL*,HACSEL,HOLD,A2,Wl,ADD,PASS,TRUNC,DRDY* 

; Add W(1)*x(n-l) 
CONTINUE DTACK*,INSEL*,MACSEL,HOLD,Al,WO,ADD,ACCUM,TRUNC,DHDY* 

; Add W(3)*y(n-l) 
CONTINUE DTACK*,INSEL*,MACSEL,HOLD,Hl,W3,ADD,ACCUM,RND,DHDY* 
, 
; 00 W2*x(n-2), read oata sample, error 1f not ready 
FOREVER: 
GO.PL.IF HEADY*,INRDY,ERROR, 
/ DTACK,INSEL,MACSEL*,LDA,A2,W2,ADD,PASS,TRUNC,DRDY* 

Add Wl*x(n-l), output previous filtered sample 
CONTINUE DTACK*,INSEL*,HACSEL,LDB,A2,Wl,ADD,ACCUM,TRUNC,DRDY 
, 
; Add wO·xln), error 1f output not taKen 
GO.PL.IF TAKEN*,OUTACK,ERROR, 
/ DTACK*,lNS~L*,MACSKL,HOLD,Al,WO,AOD,ACCUM,TNUNC,DRDY* 

; Add WQ*y(n-2) 
CONTINUE DTACK*,INSEL*,HACSF.L,HOLD,H2,WQ,ADD,ACCUM,TNUNC,DRDY* 
; 
; Add 
GO.PL 
/ 
, 
ERROR: 
STOP 

END 

w3*y(n-l), loop indefinitely 
fOREVER 

DTACK*,INSEL*,MACSEL,HOLD,Bl,W3,ADD,ACCUM,RND,DRDY* 

DTACK*,INSEL*,MACSEL,HOLD,Al,WO,ADD,ACCUM,TRUNC,DNDY*,TRUE 

4-3 



APPENDIX 5 
IIR SIXTH ORDER FILTER 
USING THE Am29510 AND 

Am29PL141 

: Mlcrocode field definitions 

WOIlD 32 

P31 - Output enable 
P30-2b - Op code 
P25 - Test polarity 
P2q-22 - Test lnput select 
P21-1b - Instruction data 
P15 - Input data taken flag 
Plq - Input select 
P13 - MAC result select 
P12-09 - Operand address 
P08 - Operand HAM write enable 
P07-04 - Coefficient select 
P03 - MAC add/subtract control 
P02 - MAC pass/accumulate control 
POl - MAC round/truncate control 
POD - Output data ready flag 

• • • • • • • • • • • • • • • • • • • • • • • • 
Application Uefinitions 

• • • • • • • • • • • • • • • • • • • • • • • • 
DTACK: t:QU 
ItISEL: t.QU 
MACSEL: t.QU 
XN: EQU 
XO: EQU 
Xl: EQU 
X2: EQU 
X3 : EQU 
X4: EQU 
X5: EQU 
Xb: EQU 
YO: EQU 
Y 1 : EQU 
Y2: EQU 
Y3: EQU 
yq EQU 
Y5 EQU 
Yb t:QU 

lBIIO 
ltl80 
ltl#O 
qH#l 
qHIIO 
qHIIF 
qHllt: 
qUO 
qH#C 
qHIIB 
qHIA 
qH#8 
qHtt7 
4H#b 
qHII5 
qHttq 
qH'3 
qHtl2 

Input data taken ack 
Input select tristate control 
MAC lnput select = INSEL­
Next data sample x(n+l) 
Current oata sample x(n) 
Previous lnput x(n-l) 

Filtered output y(n) 
Previous output y(n-l) 

5-1 



WO: EQU IIHIIU Coefficient select 
W 1 : EQf) IIHf 
W 2: EQU IIH 112 
W3 : EQU IIH#3 
WII: EQU 4HIIlI 
W5: EQU IIHII5 
W6: EQU IIHfl6 
W1 : EQU IIHII1 
W8: EQU IIHIIB 
W9: EQU IIHfl9 
Wl0: EQU IIHflA 
W 11 : EQU II H 1113 
W 12: I::QU IIHflC 
ZERO: I::QU 
WE: EQU 

IIHIII' 
lBIIO 

Put 1n a zero coefficient [or NOP 
Operand HAM write enable 

ADD: EQU 11310 29510 add/subtract control 
SUBT: t;QU ADD-
ACCUM: t.QU 113#0 29510 accumulate control 
PASS: EQU ACCUM-
liND: EQU 113#0 29510 round control 
TRUNC: I::QU RNO-
ORDY: EQU 113/10 output data ready 
; 
INRDY: t::QU 
READY: ~;QU 

OUTACK: t::QU 
TAKE N: t::QU 

3Q#0 
BIIO 
3Qlll 
6110 

Test condition 1nput TO 
Polarity control [or ready 
Test condltlon 1nput Tl 
Polarity control for taken 

CONTINUE: OEF 6H#2D:,100'0~, 

I lV,lV, lV,lIV, lV,lIV, lV, lV, lV, lV 
LD. CREG: OEF 6H1I211:, 113111, 3QI6, bV~:, 
I lV,lV,lV,lIV,lV,lIV,lV,lV,lV,lV 
LOOP: DEF 6HI28: ,IIX, 6V~: , 
I lV, 1V,lV,lIV, lV,lIV, lV, lV, lV, lV 
WAIT.TILL: OEF 6H#3A:,lV,3V~:,6V~:, 
I lV, lV, lV,lIV, 1V,lIV, lV, lV,lV, lV . , 
END 

5-2 

continue 

Load counter 

Go to Label if C<>O 

Wait for test input 



This program 1mplements the equation: 
y l n) = W ( 0 ) * x ( n) + ••• + \'1( 0 ) * x ( n- 0) + W ( 1 ) .. y ( n- 1) + ••• + W ( 1 2) "y ( n- 0 ) 
The GC 1nput 1S grounded for unconditional Jumps. 
TO Is connected to 1nput data ready 
Tl 1s connected to output data taken 

TRUE: ~QU Bill 

; Make previous operands = ° 
INIT: 
LD.CREG 01115, 
LOOP $, 
; 
FOREVER: 

OTACK,INSEL",MACSEL",XN,WE,WU,ADD,PASS,TRUNC,DRDY" 
DTACK,lNSEL",MACSEL",XN,WE,WO,ADD,PASS,TRUNC,DRDY· 

WAIT.TILL 
I 

KEADY,lNRDY,$+I, ; ~ynchronize to lnput clock 
DTACK",INSEL,MACSEL",XN,WE,WO,ADD,PA~S,TRUNC,DHDY· 

; Do W 0" x ( n) 
CONTINUE DTACK,INSEL",MACSEL,XO,WE",WO,ADD,PASS,TRUNC,DRDY" 
; Add Wl"x(n-l) 
CONTINUE DTACK",INSEL",MACSEL,Xl,WE",Wl,ADD,ACCUM,TRUNC,DRDY" 
; Add W2"x( n-2) 
CONTINUE DTACK",INSEL",MAC~EL,X2,W~",W2,ADD,ACCUM,THUNC,DHDY" 

; Ad d W 3" x ( n- 3 ) 
CONTINUE DTACK",INSEL",MAC~EL,X3,WE",Wj,ADD,ACCUM,TRUNC,DRDY" 
; Add W4"x(n-4) 
CONTINUE DTACK",INSEL",MACSEL,X4,WE*,Wq,ADD,ACCU~,TRUNC,DRDY" 

; Add W5*x(n-5) 
CONTINUE DTACK",INSEL",MACSEL,X5,WE",W5,ADD,ACCU~,TRUNC,DRDY" 

; Add Wo"x( n-o) 
CONTINUE DTACK",INSEL",MACSEL,X6,WE*,Wo,ADD,ACCUM,TRUNC,DRDY" 
; Add W("y(n-l) 
CONTINUE DTACK",INSEL",MACSEL,Yl,WE",WY,ADD,ACCUM,TRUNC,DRDY" 
; Add ~I!l*y( n-2) 
CONTINUE DTACK",INSEL*,MACSEL,Y2,WE",W!l,ADD,ACCUM,TRUNC,DRDYw 
; Add w9"y( n-3) 
CONTINUE DTACK*,INSEL",MACSEL,Y3,WE",W9,ADD,ACCUM,TRUNC,DRDYW 
; Add wl0"y(n-4) 
CONTINUE DTACK",INSEL",MACSEL,Y4,WE*,Wl0,ADD,ACCUM,TRUNC,DRDYW 
; Add Wl1·y(n-5) 
CONTINUE DTACK",INSEL",MACSEL,Y5,WE",Wll,ADD,ACCUM,TRUNC,DRDYw 
; Add w12"y(n-o) 
CONTINUE DTACK",INSEL",MACSEL,Yo,WE",W12,ADD,ACCUM,RND,DRDY" 
; Wait lor pipeline delay 
CONTINUE DTACK",INSEL",MACSEL,rO,WE*,ZERO,ADD,ACCUM,TRUNC,DRDY" 
; Output data, then lOOp back lor next sample 
WAIT.TILL TAKEN,OUTACK,FOREVER, 
I DTACK*,INSEL",MACSEL,YO,WE,ZERO,ADD,PASS,TRUNC,DRDY 
; 
END 

5-3 



APPENDIX 6 
IIR ORDER 15 FILTER 
USING THE Am29510 

AND Am29PL 141 

; Microcode lield definitions 

WORD 32 

P31 - Output enable 
P30-26 - Op code 
P25 - Test polarity 
P24-22 - rest input select 
P21-16 - Instruction data 
P15 - Input data taken flag 
P14 - Input select 
P13 - MAC result select 
P12-09 - Uperand address 
P08 - Operand HAM write enable 
P07-03 - Coefficient select 
P02 - MAC pass/accumulate control 
POl - MAC round/truncate control 
POO - Uutput data ready flag 

• • • • • • • • • • • • • • • • • • • • • • • • 

Application Definitions 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. " 
; 
DTACK: EQU 18#0 Input data taken ack 
INSEL: t:.QU lB#O Input select tristate control 
~lACSEL: toQll lBIIO tl AC input select ,= HISEL" 
XN: EQU 4Hlll Next data sample x ( n) 
Z 0: EQU 4HIIO 
Z 1: EQU IIHIlF Intermediate result delayed once 
Z<': EQIJ IIH lIE 
Z 3: EQU 4HIID 
Z q: EQU IIHuC 
Z ~: EQU 4HIIB 
Z b: EQU 4HIA 
Z 7: EQU 4HIg 
Z e: EQU 4HII8 
Z 9: EQU 4HI17 
Z 10: EQU IIHI16 
Z 1 1 : EQU IIHII5 
Z 12: EQU 4H 114 
Z 13: F:QU IIHO 
Z '14: EQU 4HII2 

6-1 



WO: EOU 50110% Coefficient select 
Wl : EQU 50111% 
W~: EQU 50112% 
W3: EOU 50113% 
W q: EOU 5D114% 
W5: EOU 5015% 
Wb: EQU 501/6% 
W( : EOU 50lln 
W!l : EQO 5011tl% 
W9: EQU 50119% 
Wl0: EQU 501110% 
W 11: EOU 5DII1 U 
W12: ~OU 501112% 
W13: ~OU 50'13~ 
W 111: E::QU 501114% 
W15: EQU 501115% 
W 16: t:QU 501116% 
w 17: t:QU 50111n 
W18: t:QU 501118% 
W19: t:OU 501119% 
W~O: t.;QU 501120:t 
W~l : EQU 501121% 
W~2: EQ!! 501122% 
W23: EQU 50'23% 
W24: EQU 501124% 
W~5: t:QU 501125% 
W~6: EQU 501126% 
W27: EQU 501127% 
W~8: E::QU 501128% 
ZERO: EOU 501131% Zero coefficient for NOOP 
WE: EQU lBIlO Operand HAM write enable 
RNO: EQU lBIlO 29510 round control 
TRUNC: t;QU RNO* 
ACC UH: t;QU 16110 29510 accumulate control 
PASS: t:QU ACCUM* 
OROY: t.;QU 16110 Output <1ata ready 
; 
INROY: t;(.1U 30110 Test condition input TO 
REAOY: t;QU BIIO Polar i ty control t'or ready 
OUTACK: t;QU 3QI1 Test condition lnput T 1 
TAKEN: t;QU B#O Polarity control for taken 

; 
CONTINUE: OEF bHII20:,10D'0%, Continue 
I lV, lV, lV,qV, lV,5V, lV, lV, lV 
to.CREG: OEF bH 1124: , 11:311 1 , 30116, b V %: , Load counter 
I lV, lV, lV, 4V, lV,5V, lV, lV, lV 
LOOP: DEF bHI28: ,qX,bV%:, Go to pipeline if COO 
I lV, lV,lV, 4V, lV,5V, lV, lV, lV 
WAIT. TILL: OEF bHII3A:, lV, 3V%:, bV%:, Wait for test input 
I lV, lV, lV,IIV, lV,5V, lV, lV, lV 

ENO 

6-2 



This program 1mplements the equations: 
z(n) = W(O)*x(n) + W(l)*z(n-l) + ••• + W(ll1)*x(n-ll1) 
y(n) = z(n) + W(15)*z(n-l) + ••• + W(28)*z(n-ll1) 
The CC input 15 grounded for unconditional jumps. 
TO is connected to input data ready 
Tl is connected to output data taken 

TRUE: 
, 
; Make 
INIT : 

EQU BUl 

previous operands = 0 

LD.CREG 
LOOP $, 

utl15, DTACK,INSEL*,MACSEL*,ZO,WE,WU,PASS,TRUNC,DRDY* 
DTACK,INSEL*,MACSEL*,ZU,WE,Wu,PASS,TRUNC,DRDY* 

; 
FOREVER: 
WAIT. TILL KEADY,INRDY,$+l, ; wait for data to start 
I DTACK*,INSEL,MACSEL*,XN,WE,WU,PASS,TRUNC,DRDY* 
; Acknowle~ge 1nput, do WO·x(n) 
CONTINUE DTACK,INSEL*,MACSEL,XN,WE*,WU,PASS,TRUNC,DRDY* 
; Add wl*zln-l) 
CONTINUE DTACK*,INSEL*,MACSEL,Zl,WE*,Wl,ACCU~,TRUNC,DRDY* 

; Ad d W 2 * z ( n- 2 ) 
CONTINUE DTACK*,INSEL*,MACSEL,Z2,WE*,W2,ACCUM,TRUNC,DRDY* 
; Add W3*z( n-3) 
CONTINUE DTACK*,INSEL.,MACSEL,Z3,WE*,W3,ACCUM,TRUNC,DRDY* 
; Add WII*z(n-lI) 
CONTINUE DTACK*,INSEL*,MACSEL,ZII,WE*,WII,ACCUM,TRUNC,DRDY* 
; Add W5*z( n-5) 
CONTINUE DTACK*,INSEL*,MACSEL,Z?,WE*,W?,ACCUM,TRUNC,DRDY* 
; Add wt>*z(n-6) 
CONTINUE DTACK*,INSEL*,MACSEL,Zb,WE*,Wb,ACCUM,TRUNC,DRDY* 
; Add w7*z(n-7) 
CONTINUE DTACK*,INSEL*,HACSEL,Z1,WE*,W7,ACCUM,TRUNC,DRDY* 
; Add WS*z( n-8) 
CONTINUE DTACK*,INSEL*,MACSEL,Z~,WE*,Wtl,ACCUM,TRUNC,DRDY* 

; Add w9*z(n-9) 
CONTINUE DTACK*,INSEL*,MACSEL,Z9,WE*,WY,ACCUM,TRUNC,DRDY* 
; Add Wl0*z(n-l0) 
CONTINVE DTACK*,INSEL*,MACSEL,Z10,WE*,Wl0,ACCUM,TRUNC,DRDY* 
; Add wl1*z(n-l1J 
CONTINUE DTACK*,INSEL*,MACSEL,Z11,WE*,Wl1,ACCUM,TRUNC,DRDY* 
; Add W12*z(n-12) 
CONTINUE DTACK*,INSEL*,MACSEL,l12,WE*,W12,ACCUM,TRVNC,DRDY* 
; Add W13*z(n-13J 
CONTINUE DTACK*,INSEL*,MACSEL,Z13,WE*,W13,ACCUM,TRUNC,DRDY* 
; Add Wll1*z(n-lI1J 
CONTINUE DTACK*,INSEL*,MACSEL,Zll1,WE*,Wll1,ACCUM,TRUNC,DRDY* 

6-3 



; ~ave lntermediate result 
CONTINUE DTACK*,INSEL*,MACSEL,ZO,WE*,ZERO,ACCU~,TRUNC,DRDY* 
CONTINUE DTACK*,INSEL*,MACSEL,lO,WE,lERO,ACCUM,TRUNC,DRDY* 
; Add W15*z(n-l) 
CONTINUE DTACK*,INSEL*,MACSEL,Zl,WE*,W15,ACCUM,TRUNC,DRDY-
; Add W16*z(n-2) 
CONTINUE DTACK*,INSEL*,MACSEL,Z2,WE*,Wlb,ACCUM,TRUNC,DRDY* 
; Add w17*z(n-3) 
CONTINUE DTACK*,INSEL*,MACSEL,l3,WE*,W17,ACCUM,TRUNC,DRDY* 
; Add W18*z(n-lI) 
CONTINUE DTACK*,INSEL*,MACSEL,ZII,WE*,W1B,ACCUM,TRUNC,DRDY-
; Add w19*z(n-5) 
CONTINUE DTACK*,INSEL*,MACSEL,l~,WE*,W19,ACCUM,TRUNC,DRDY* 
; Add W20*z(n-b) 
CONTINUE DTACK*,INSEL*,MACSEL,Zb,WE*,W20,ACCUM,TRUNC,DRDY* 
; Add w21*z(n-7) 
CONTINUE DTACK*,INSEL*,MACSEL,ZY,WE*,W21,ACCUM,TRUNC,DRDY* 
; Add W22*z(n-S) 
CONTINUE DTACK*,INSEL*,MACSEL,ZB,WE*,W22,ACCUM,TRUNC,DRDY* 
; Add w23*z(n-9) 
CONTINUE DTACK*,INSEL*,MACSEL,Z9,WE*,W23,ACCUH,TRUNC,DRDY* 
; Add W211*z(n-l0) 
CONTINUE DTACK*,INSEL*,MACSEL,l10,WE*,W2I1,ACCUM,TRUNC,DRDY-
; Add W25*z(n-l1) 
CONTINUE DTACK*,INSEL*,MACSEL,Z11,WE*,Wz5,ACCUM,TRUNC,DRDY-
; Add W26*z(n-12) 
CONTINUE DTACK*,INSEL*,MACSEL,Z12,WE*,W26,ACCUM,TRUNC,DRDY* 
; Add W27*z(n-13) 
CO~TINUE DTACK*,INSEL*,MACSEL,Z13,WE*,W27,ACCUM,TRUNC,DRDY-
; Add W28*z(n-ll1) 
CONTINUE DTACK*,INSEL*,MACSEL,Zll1,WE*,W2B,ACCUM,RND,DRDY* 
; Wait for pipeline delay 
CONTINUE DTACK*,INSEL*,MACSEL,XN,WE*,ZERO,ACCUM,TRUNC,DRDY* 
; Wait for data taken, then loop back for next sample 
WAIT. TILL TAKEN,OUTACK,FOREVER 
I DTACK*,INSEL*,MACSEL,XN,WE*,ZERO,ACCUM,TRUNC,DRDY 

END 

6-4 



APPENDIX 7-SCHEMATIC DIAGRAMS 

II '11'" II II 

A0 2:J{: 1fAl 8 +tA9 16 

it 
+tA17 19 d{A5 11 

29B26 1 

... 

HREO~--------~ 
9517 

""'>-~I--- 1/2 PAL 
"'I--- 22V10 
dl--- ARB ITER 

/C DELAy8 

CIRCUIT _/IOWC 
L-__ --l-/10RC 

PAL 
22V10 

1------I.l'INIT il 6 
c • a a 

.fINeTR ~ ~ 

CDO 

~ 
~29B271 

r---

" 

I 
2947/c.}--
(2) TNR 

I f 
I1EI10AY RI!:AL 

lJ 
2148-45 F 

VI (4) 

J!: LOGIC 
il 00-9 ~74161-- ~2982'~~ ~======j ~ (3) ----y :r.,.,W"T,!!!!AI-

'V 

/INIT 

27545A 
C5 

(2) /CCEN 2922<1 
C MUX '------.J, 2910A f---

L--H-i----t=L==~~/".~P ____ ~----

MEMORY 
SELECT 
LOGIC 

o 
/0 

/',. ,-----, 

/0 

r--

o 29B2 hm 'oJD. 

/0 
-

~29B27~ 

29540 ~ ri 2z~fkl ==--

FILTER 
COEFF. 

29116 H fJ 29B21~===:...':::L--.J~ PROM r--v (2) t- 275291 f-

JL 

7-1 

ADDRE55 BU5 

1 
DATA BU5 

1r I. /IOR n' T//T ft TnRI 
1 c"2946TNRf CD 2946 C"2946 

"'[7' 4";>-
I I 

J ..J. :) 
/2PAL 

/BYTEL 
~m 

2947_~ 
/BYTEH 

I ~'l,;;:::J 
/FLY0 

22VHJ HREO 
/0 

I 2947/c0t-
(2) TNR (2) T ...... R 

"F,PAL /BHEN 
/BYTEL I 

I r 
I /BYTEI-i 

II 
"~o 

r1EI'IOR'I" II'IRO. 22V10 /IOR 

MEMORY U'AG. 
"EMORY REAL L ]J 

/IOW 

elf LIJ WEI 
~ ~ 

~ rl' ~2148-451 r2148-45~ ~r 2148-45\ /FLY0 
(4 ) (4 ) (4 ) 

HREO 
WER 
/0 

DSP EVALUATION BOARD 



ReG 
/ABG1~J 

is 

D D 
1 1 

~ ~ ~ '~ ~ ~ '~ ~ ~ '~ ~ I'~ (~:~ ~ I :~ I ! 
i ~ ~ i ~ ~ ~ ~ 

7-2 

I~ 
5 
D 
8 

/ABG19 IABG1? 

DSP 110 



< '\IDBG7 

I 
+SV 098765 

... 
DBG;> 

k 3 

D1 Del 

~5-D4 
5 

RN3-2 VCC ~f: D7 D6 DS D4 D3 D2 
LE F1~3~ ________ ~ 

~~O---+lr~~""'19 U~1;;n=;8_--~ 9-A1, 2-A4, 5-B8 

I I ~-;-~r. -~_~~~~2~4. ~~~--i[~~Q~~>10-A1,5-B8 ~GND /OE3f2~3~---------+---------------4 
~/PRE U1l2 

29845 

~/CLR 

/OE2~ 

/OE~ 
7 Y6 YS Y4 Y3 Y2 Yl Y0 
I1S 6 7 jlt:l ~9 120 21 122 

DBL3 Imu PI ... 

,) 

It 111 ~ 1 6 

R R R 
N N N 
1 1 1 +sv 
2 :3 4 1 

_NC __ Q1r SSNC SSNO Cx L:3:..........=C=LK:..:S:::E:::L:::1:........ _____ --l 
-Jel L1. 
~ C2 U1l6 L2J-4.:...-..:C:=L:..;KS=E:::L:::2:........ _____ --l 

2925 L3 S 
~ C4 vec'I-~-3-+"""'''''--,....&''''' 
NC 14 
. .:.::....::...: F0 Vee 

<>RN3-3 
__ 22 /HALT~ 

2-AB ~tl1Ni'i1I-Ti'")---=1=6~/INIT /WAITREQ~ 

1...-----=r::: ....... =-I Xl CX ~ 
o /RUNi¥L 

~ /READY~ 
IS X2 GND r¥-

II GND~ 
Cl'7 FIRST/ C3 ... RL--I-...., 

LAST WAITACK 

2-BS~ 

~ C2 117 120 "'¢" 

6 17 Is ~d.EIt 7 ' 
D4 D6Y4 Y6 

D5 Y5 
14 

+~V kg Y9 D9 11 
~ DS U1l9 

~ce 29827 Y8~ i Y7 D71lil 
~ D3 GND 
3 02 /OE1~ 

Dl 3 
200 /OE2t--

Y3 Y2 Y1 Y0 
f"'1<'J f'" 1 f"'<! f"'~ -.::7 

~~n 
7 4 4 5 
A C C D 
4 B B 3 

I--­
I--

10I3 

~ ~ ---
U117 U117 

RN3-2 

~ C ~ 

t ~ ~ 

~ ~ 
+1,9 "6 S 

POLABC I 

1 Vee D0 ~E 
~D7 D1 9 

+!;;iV L-. __ .=1~6!VOE U1l3 t~STR 

v 10I0 

~ L 
3 

~2-B8 

+~V 

RN3-2 ~ __ ~5'-l 2922 D2 t--
• ,.. Y 17 ..----

R R R R R '----+_---1,..:8=-i/CLR D3 ~IT~----< ............... :r1j'T...,15-D4 

N N N N N ~ ~ ~ ~ 3 14 -1 1 1 1 2 2 2 2 2 +sv .... +-= /RE D4 ~ 5-D4 
56?8234"5~ I H-.§/ME F;fT I~~ ----- r-_-+~+-~~7 CP D5~1~1~6-C-T----<116CTls-Dl 

I» > > ~ ~ ~ ~~ 7 12B /16 8 9 1112 ~4-A6 ~r~G: 4 615D6~ d062 

t'lB~R~0tt:t:+::t:::t:=t=t::j=t::t::t3~4D~MAP Yll 12 13 10 Ii /PL CP 10 LC 20 POL A B C/OE 16 12~ 
.... BR: 36 D1 /FULL VCC~ Vee D0 1 
~~; 38 D2 i RN3-3 ~ /ME R SIGN 
BR4 40 D3 RLD ~ ~ VRE Dl 19 

t!BtRl!S:::::::=:t=t=t=j;:::=t=!=!=j~;tl~~ U1l5 C1~ U114 D2f.l80VERFL 

~~ l~ D6 2910A /OE §29 2922 1'1 ZERO 
BRB 21 07 GND 30 8 D3 17 

MJj"'~~;r..~--------<>--.J--+-+-.;;;J 2,: /CCEN 13 L-I--=VCLR D4 .f4 CARRY 

BRIel 2= Dl0 /CCj-=1:....4:.....:..-f __ ....... ---II-.... ', c;~ Y I3 SIGN 
I-~BR~I~I _________ ~~2~7~11 Y9 Y7 Y5 DS 

Yll Y10 YB Y6 Y4 Y3 Y2 Yl Y0 /VECT I~_OVERFL 
+-____ 1-_74CP D I.L'" 28\ 2624222018 3 13!: 37353::; rs I ZERO 

I ~ GND D7 11 
.... 7 I CARRY 

A ABH10 

\, 

R SIGN 17-Cl 

R OVERFL I 7 - C 1 

R ZERO 17-Cl 

R CARRY 17-C 1 

I S1GN~7-C5 

I OVERFC!7-CS 

I ZERO 17-CS 

I CARRY 17-CS 

DSP/CONTROL 

7 .. 3 



+5V 

ABHH 

:l 3 S 7 

ABH0 
ABH10 

/E CP 8 
07 06 05 04 03 O:l 01 Olil I-

17 B 15 14 1:; 1. 1 .. 

FlBHi0 

I 
A 
3 
Iil 

F 
A 

ABH10 
ASHe 

I I 
A A 
3 :1 
1 Iil 

/ / 
M 0 
5 E 
P L 
L 
S 
P 

1716 

I I I 
A A A 
:1 1 J. 
1 0 1 

:1 X X 
C ! 5 

E E 
L L 
:1 1 

15 1413 

I 
5 
0 
P 
0 

E 
N 
X 

11 

I 
S 
0 

A"Hil 
ABHlil 

I 
5 
0 
P 

I I 
R R 
0 0 
P P P 

1 :1 i 1 

C 

~ 0 
5 
5 
I 
N 

HI 9 

ABHHil 

ABH0 

/ / 
5 1 
4 1 
0 B 
0 0 
E E 

1716 

I I I I 
R A A A 
0 L L L 

~ ~ U U 
1 :1 

/ 0 

~~ 5 L 
R E 
E 

15 1413 11 

~ i / 
W 

I 
A 
L I I E 
U R 
3 

1 
1 
6 
I 
1 
4 

1 0 4 
1 I ~ 
6 T 

~ I ~ 
§ 0 1 

I t !: 
1 I 
1 1 
6 1 
I 
1 
:l 

llil 9 1716 

ABH1E1 

ABH0 

R R R R 
0 0 0 M 
I I I I 
0 0 0 0 
Ii! 1 :l III 

5 A 
4 0 
0 5 

I E 

0 L 

I ~ 
1 1 
6 1 
I B 
B I 

7 

R 
M 
I 
0 
1 

A 
0 
5 
E 
L 
:l 

1: 
1 
6 
I 
6 

ABHe 
ABHlil 

R 
M 
I 
0 
2 

A 
0 
5 
E 
L 

! 
1 
1 
B 
I 
5 

15 14 13 11 HI 9 

ABH10 
ABH'!! 

ABH 

7-4 

R R 

, l M B 
I 
0 Iil 
:3 

A 1 1 1 
0 1 1 1 
5 6 6 6 
E I I I 

L 3 :l 1 

Iil 
I 
1 
6 
I 
4 

~ R ~ B 
:l 1 1 
1 Iil 

ABH0 
ABH10 

R 
A 
3 
Iil 

B 
R 
1 
1 

17 16 15 14 13 1 lEI 9 

3 

B 
6 

R R R ~ A A A 
3 :1 :l 1 
1 Iil 1 Iil 

B B B B 

R R R R 
1 9 B 7 
0 

R R 
A 5 
1 0 
1 P 

0 

B B 
R R 
B 5 

R 
5 
0 
P 
1 

B 
R 
4 

ABHe 
ABHle 

R 
S 
0 
p 
:l 

~ 

R 
R 
0 
P 
Iil 

S 
0 
R 

R R R R R 
R R A A A 
0 0 L L L 
P P U U U 
1 :l Iil 1 :l 

L 

5 B 1 1 1 

1 U 0 Iil 0 

R F I I I 
C 3 :1 1 
0 

R 
A 
L 
U 
3 

1 
0 
I 
0 

A"H .. ABH0:!> 
ABH10 

20 

:l 1:l 3 
Ale AS A6 A4 A:l AB 

A9 A7 AS R3 Ri 

t-- /INIT 
~ Vee UIlZl3 r¥e GND 27545A 

S /E CP~LK; 07 06 05 04 a3 O:l 01 Q0 A:l 
17 6 15 4 13 11 10 9 LKB +l2 

9 
5 5 0 

B B 8 B 
R R I< R 
e 1 :l :3 

+5U 

RN3-

17 16 15 14 13 11 10 9 17 6 15 14 13 11 lEI 9 17 6 15 14 3 1 111 §. 

ABH10 
ABH0 

ABH1E1 

ABHIil ABHIi! 

DSP CONTROL STORE 



HBIl5 

3-88 

:2 ~l.J.:J 3 4 5 S ? 8 9 II 1 

~I-' llIll19B?S543 
~DLE543alll 

Ia£!'l lJ; lEN U44 
SRE 2e SRE 29116 

~ ~ 
+!;V 411 41 1 
11015354 

,& 

OS 
IN 

/CF"ADR 

OEY 
Vee 
GND 

101 

U?S 
13 

1 

DBI? 

11 

DBI 
'nRTOI 

16I11 

ABD15 I 
,t 
D8 

~/OE 

" CP 
Y9Y8 

ABC15 

DBI? 

COS 
1sIl'L 

DaIlS DBI~ DBll5 

ABDS 

ABCB 

DBIII DBI? 
JOBIII 

DBIB 
OBI8 

N3-6 +5~N3_6 ~6:2 [~~r3 .... -6-'11t!l1~~~~., 
A ~ 07 "oS'403 Ol~[~ I~ csg7 OS 03 0:JOPgNIj!:lL '-rC"S1I3"'01llt6ltfOIllt4~Otlio:J~O'!r~,b~ 

OS B 53 U53 Ail tr U55 AB!lL-,-----!!l C9a U57 A9~ 
pIN"----!c/-----="'Icsa 29526 Al fL- VL.!.ll csa 29528 17 f+.!;jf'[:2 CSl 27S291A A11I~ 

~ CS~ ,y AS A3 Ve ~ ,2i /C!lJg A7 AS R3V~ ~ I \ A8 A7.ABA5 A3 A' GNDrd... or~A8 .? AS A4 Aa Al'" AB A6 A4 Aa -m!I I 

~ a I"~ a 5\ e ''7 a a I ! ''7 a 11'\' \ '1 ' '7 
U 
5 A 

B 
C 
1 
5 ABC14 BCB 

i 
i 

ABC14 RBCB 

~----~----~1~=5~ 
08G 

D I D8G? 4 D8G4 D8G3 BGII 

:~V r~::::NI::D:':D!:-"5~:""~B:--~'l!:~0-A"r~Q +~V BO ~ B L hD ",-?9 +5~lf Vee :ENA~p 
I -S-BB I" RCO U46 '."'rl-~~--I.1B"I~eCeO n. .? U ~- I~ ENPn n U47 ENP tll T ~ RCO U48 W ~. ~-D5 N3-5 Vee 74161 ENT~ ~GND 74161 ENT~ GND 74161 ~ECANLKT ~ -A4 
~ 1 CLR CLK~:2 R 5 1 CLR CLK l:2 RN CLR ~AB 
I 1'I'i"'o-BB nn OC OB OA OD OC OB OA OD OC OB ~~J~~~~J~~~li~ ~- III 1:2 13 14 11 101 13 14 11 101 3 14 ~A6 

, L----+-+--l--\----.l------\-+-+---4.-"'16 U64 a ~AB 
\ ~6 

ABE9 ABE? ABES 
ABE 

AB07 ABDII 

ABB9 ABBII 
ABB 

7-5 

ABE3 ABE:J 

~ ~~~~~~ II~ ~ 
E E E[ 7 E E E EI ~ E 
9 B ?[' 5 4 :J II 

I ABEll 

~·DS -

ABB9 ABBII 

DSP ADDRESS AND 
COEFFICIENT PROMs 

S-DB 



M 
a 
U 
5 

o 0 0 0 000 0 
B a B a B B a B 
F F F F F F F F 
1111 1111 
5 5 5 5 ~----44 3 2 1 

+5U 

000 0 
a B a B 
F F F F 
198 7 

...-----40 

oaF 
o 0 0 0 0 0 0 
B B B a a a B 
F F F F F F F 
6 5 4 3 2 1 0 

oaM 

+ U 

Uee 

o 0 0 0 0 0 
a a a a a B 
F F F F F F 
1 1 1 1 1 1 
5 4 3 2 1 0 

+ U 

o 0 0 0 0 0 0 0 0 0 
a a a a a B B a B B 
F F F F F F F F F F 
9 8 7 6 5 4 3 2 1 0 

IE H 2e 21 2;:: 22 1<1 1= IE If IE 1~ 2e 21 2~ 2:: 
Y5 Y 4 Y3 Y2 Y 1 Y0 2L Y9 Y8 Y7 Y6 Y5 Y 4 Y3 Y2 Y 1 Y0 

Uee 

U85 1 /OE1 U86 
I--

29827 1:: /OE2 29827 GNJ: I-:-=-

050403020100 I-- 090807060504030201 oe 12 
7 6 5 4 3 2 11 Ie 9 8 7 6 5 4 3 2 

oaE ~ '-~D~O~~O~O~----------~o~o~~o~o~----------~o~o~~o~o~-----------"o~~o~o~~o~o~~o-..o~--------------~o~o~~o~o~~o~o~----~o~o~~o~o~~o~o~~o~o~~o~oa~ 
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 
E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E 
1 1 1 1 111 1 198 7 654 3 2 1 0 1 1 1 1 1 1 9 8 7 6 5 432 1 0 
5 5 5 5 ...-----44 3 2 1 ...-----... 0 5 4 3 2 1 0 

I +~U r +lU I +~U 
7 6 5 4 3 2 11 1 7 6 5 4 3 12 11 1 7 6 5 4 3 2 1r:1,....-;1---+-::7::-t-c6~5 4 3 2. 1 

~i.:3e II -II -13 1u:0~e II -II -13 h..EJ3 II -II -13 I!Jj 13 II -II -13 
501 10 50 12 10 -12 i-J,J?J 50 12 10 -12 ~ 50 12 10 -12 ---1E ~~eI2 10 -12 

511 9 51 UBI ~ 51 U82 9 51 U83 9 U84 
/WEI 1:=i· 25510 ~ ~ ----:-==: 51 

+ U 

-.!.. /OE1 
12 /OE2 

IE 15 2ei 21 2~ 23 +56U 14 15 IE 17 IE 19 2e 21 22 2:: 

Y5 Y 4 Y3 Y2 Y 1 Y0 Y9 Y8 Y7 Y6 Y5 Y 4 Y3 Y2 Y 1Y0 
4Uee 

U87 ~ /OEl U88 

J~ /OE I 12/0E 25510 ~ /OE 25510 ~ /OE 25510 

V .Ljgi GNOY3 Y2 Y1 Y0 NOY3 Y2 Y1 Y0 r.NOY3 Y2 Yl Y0 GNOY3 Y2 Yl Y0 
U62 F 11 12 13 14 f3 11 12 13 14 l' 11 12 13 14 F 11 12 13 14 

-- GNO 

J 
29827 12 /OE2 29827 GN0i 
050403020100 ----= 09080706050403020100 
7 6 5 4 3 2 11 Ie 9 8 7 6 5 4 3 2 

o 0 0 0 0 0 000 000 0 0 0 0 ~~ ~ ~ ~ ~~ ~ ~ ~ -~-~ ~ ~ ~ ~~ ~ ~ ~ a a B a a a a a a a a a a a a a 
N N N N N N N N N N N N N N N N 
1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0~ 
5 4 3 2 1 0 

oaN 

111 1 1 198 7 6 5 4 321 0 
5 432 1 0 

! 

SHIFTERS I' 

I: 
~ ______________________________________________________________________________________________________________________________________________ ~i 

7-6 



A 
DBM 

I I I I DBMB 

24bda~, 1 lJl 9 

DEM15 

4 Sout D D D D D D DD SIn 58 
I I I I I I I I 

7-C4 -. 
,,~ o a 0 00 0 00 122 57 RALU:3 

Cln 7654:3 2 11! 5aRflLU2 - r21 

7-D5 RMG 5:3 /G ral! 155RALUl 

7-D5 aE!!l- sa Il9 'A'" "". 
/p Sl~= 

... ~ las 
ISI!RROP Ucc r:24 

~ 159RROPI! GND ra:3 
:3-ES""'-- Cout ras ~ -- ra7 l63J:lsQE; 
:3-E- 46 ZERO 6aR50PI! - las 

l4 RA~ 
S-E~ 4 IS DUERFLOW 

133 "A1" ==- UB9 17 
I:3s..Re:ll S-B N 29501 

Ill! - 19 IS5~RAal! 

Il:2 13BRA31 

/' 111 1"'7RA31! 

r---

It4 14B REU 
D8.T15 las MI07 It3 B9RB1B 

lA:ltm2.L MIOS ItS 
IDBH3 al I<B:21! MI05 ItS 
I[JBJ':> 4RE31 MI04 ItB 

BJll MID3 It7 431<E3B 
BHB 1 I 271<MIOS 

MIO:2 
BJ9 1 IS 2i<MI02 

MIOl 
BJ8 1 MIOB IS 

14 i;LBRMIOB 

II! SI<DI02 
4£ CP IS 9RDIOl 

81<DIOB 
MIS MI4 MI2 MIBI:2 

MI7 MIS MI3 MIt 
7 6 4 3 • 

~ 
DBP15 DEPS 

DBP 

DEJ 
DBJ15 DEJ8 

1 lS 1 1 1 1819 
... 51 '7 B 

~ Vee 

3 '" B. EB 

T/(/R 
I<MIOS 

'(GND 

U93 
2947 

CD 9 EUFCD 

A7 AB AS A4 A:3 Aa Al AI! 
E 7 B 5 4 :3 :2 

DB015 D808 

DBM7 DBMB ::/ 

45 Sout D DD D D D D D g,n 5S 

RALU:3-.S:j 
I I I I I I I I 

r22 00000 0 a a 
IRALU2 ~5e 7S54:3 a 11! 51! ral Cln 
RALU15 121! 
IRALUI!L5. Il9 "7 
IRRopa S /G 53 

las 
RROPl 6~ ra4 5:2 

ROPI! 5~ /p 
ra3 

~ ~ IaE 
Q9QlJ. li~ ra7 Ucc 

QSllIJliL6.< 

RAl 3, 
las 

ri IS GND 
"A1" 3. 17 U90 RAal ss Ill! 29501 "A21! 35 19 
~ ~ It2 

"""''' '" 111 
REl 4E ~ It4 

Bll! 3 
It3 5 DEJ 

QIl' A< MI07 
ItS DBJS 

BaB 41 MIOS 3 
ItS ~~ I<E31 .. MI05 
ItB 

MID4 ~9 DBJ' B31! 4 It7 
MIOS 2 MIOS 7~ It 

4 --"lE~ 18 MI02 
MIOl 3 ~= IS MIOl 

11! DBJE I<MIOI! ~ 
14 MIOI! 

I<DIOa 2 IB 
I<DIOl a 13 CpI48 

DIOI! 28 12 MIS MI4 MI2 MIB 
MI7 MIS MI3 MIt 
B E 5 4 

3 " 

DEP7 DBPB 

DBJ7 DBJa 

12 1 14 1 18 10 1! 1 ... 5U 
B7 EB 85 84 8S B:2 81 EB 

/(/R) 
Ucc I<MIOS 

~CD GND~ 
A7 A8 AS A4 A:3 Aa Al AB I -&-

U94 
2947 

'7B54:3 1 

DB07 D80B 

DEO 

;. 

I 

MEU9 

L 

DBN 
~7-Dl 

~7-Dl 
~7-C8 

-<::!!:[J7-CB 

DBN15 II I DBN8 

lS I, 

I "''' C,n 

~ 
............ ucc 

GND 
'5. /G 

5~ /p 

,jlJ. 
DDDDDDDD 
11111111 
00000000 
765"3:211! 

3--1'1~ ~. 
~~~.."C"",R",I<-'-Y"--"""---'COUT 

i"-1~ ~MEI!'I'r.O:L~ .. IflI'ZEI<O

:3- F

:3.--

~

47 0UEI<FLOW U91
29501

9 I nI'5"'8'-_---1
122 57 IALUS
121 S8 IALU2

laB 5.s-r.aL
Il9 IALUB
r25 61 11<0":>

1:24 BliLIIlill'J.
12S 59 II<OPB
Ia8 150P2
12783 ISO"1

126~
IS 4 IAl
1733 IA1B

Ill! 38 IA:>l

InRO'" ,'J<' MI07

~~~~~ ;~ MIOS 

12 1 L 
19 35 J.92a 

It23S lAS; 
111 7 IA3B 
It4 <IliL LB.l 
It3 99 IE1B 

116~ 
ItS 18:2B 
Its 4183 ~ 

~-D8 

DBP15 

hRn,c;24 15 P15 
bBO 42S 14' P14 

~Y13:P13 
~Y1:2,P12 
~:~Zl <1: Y 11, PU 
~ Yita,Plta 

~~~::~ 
~ Y7,P7

YS,PS

=g: ~~

I DBO; 2 L9 ~i~~
DEO 7

I [JBOll<! 14 MIO:3
DBOe 2 MI02
DB08 Hl MIOl

MIOI!

Ii?~~s
IS 3~ IM10:;;:!
IS IM10J
14 SB IMIOB
II! a6 IDI02

f--t-_C"'P-i 48 13 9IDIO
-T2 8 IDIO

Mr~I'~1I!1;'I':,"3 MI2MlrI .,..

8 7 81 = 4 S 2

DBP15

U95
29517

EPB

DEP8

DBO

fo~~; ~~

I ~ /OEL~'U
~ YI<!,PB Ucc f47 GND X~ Ucc ..

CP XI X14 X12 X1B XS XB X4 X:2 ~

YS,PS
Y4,P4
Y3,P3
YC!,PC!
Yl,Pl

/OEL

IL-____ ~I <A~G~N~D-~nRK~F,s~~~5~~~B~~~1~:2~~5~D-8~KB~
DEK ,)

'~I------------~~------------'v/

7-7

DBN]ll j J DBNB

y

1-_---'4,,5"150ut

IALUS 5 122
IALU258 121
IALUl 55 121!

~~~~: ~1 It9 
F=-=--'=t 125 
IIRoE. .JlI! 124 
ImOPB Sf 123 
II90P:2 6· las 
lISa" 6S 1:27 

190PB-.6.i 128 
IAll 3 18 
IA1B S, 17 
IAal :3£ Itl! 
IAali! ~ 19 
IA:31 :3£ It:2 

IA:31! :3. 111 
1811 Ai It4 
IB1B :3 Il:3 
1821 -"-" Its 
IBal! 41 Il5 
18:31 4 IlS 
IB:3B AS Il 7 
I1:LQa:2 Il 

=~116 

n~ n ¥ H 5In"S",8=-_-, 
00000000 
78S4S:211! 

U92 
29501 

Cln SB 

/G SS 

/p ~--tl!!>7-DS 
I "'1u 

ucc~ 

GND~ 
4 

MI07~ 
MI08~ 
MI05~ 
MI04~ 
MIO:3!4 ~~~; 
MI02 
MI01~ 
MIOI<!~ 

1"'-'='-"915 
IMIOB SI! 14 
IDI02:2 IB 

=0 2 IS CP~ 
IDIOB 28 1:2 MI8 MI4 MI2 MIl! 

HI7 MIS MIS MIl 
S 7 8 S 2 

DBP7 DBPI<! 

DSPI ARITHMETIC 



.A ..... 
< B 15 I14 I1 1 Il1 I B BI " 1 } 
~ y 

.A .... 
< 4 F1 1 BFB ) 

"" I 
y 

( -"'" 
1 I!I BEg D EB D 4 1 B I!I 

"" I I I I I 
y 

.A ~ < D 1 B 14 1 B g BJ7 BJ6 4 B J 

~ Y 

, I,s iI k ks J I, ks J I, I,s J I, I,s 0' I: IJ +5V I, I" 1! 11 lS 0' ~ 1 15 J' 
IG 2G lG 2G IG 2G IG 2G IG 2G IG 2G IG 2G 

Il.ei 
IG 

.u: 2C0 Vee .u: 2C0 Vee 1lil 2C0 Vee iJ...el 2C0 Vee l!..i:! 2C0 Vee u: 2C0 Vee ill 2C0 Vee 2C0 Vee 6 

W 2Cl 2Y 9 c...li 2Cl 9 c...li 2Cl c...li 2Cl .J.1I2Cl 9 c...li 2Cl 2Y~ 
1 c...li [2Cl 2Y~ 2Y §.. 2Y §.. ~ 2Cl 2Y 9 

-1E 2C2 - .....li' 2C2 2Y- c.......li! 2C2 c.......li! 2C2 ...J.g 2C2 2Y I- .....li' 2C2 .....li' 2C2 F- c.......li! 2C2 
~ 2C3 U36 ~ 2C3 U37 ~ 2C3 U38 ~ 2C3 U39 ~ 2C3 U40 ~ 2C3 U41 ~ 2C3 U42 ~ 2C3 U43 

6 74L5253 6 74L5253 6 74L5253 
~ 

74L5253 
~ 

74L5253 
~ 

74L5253 
~ 

74L5253 
~ 

74L5253 
~ lC0 "---- lC0 '------ lC0 lC0 lC0 lC0 lC0 lC0 

5 lCl 
lY7 

5 lCl 5 lCl 
lY7 

5 lCl 
lY7 

5 lCl 
lY7 

5 lCl 
1 Y tr 5 lCl 5 lCl 

.4 lC2 A. 1Y 
A lC2 .4 lC2 .4 lC2 .4 lC2 4 lC2 

lY 4 lC2 
1Y 

lC2 

3 lC3 3 lC3 3 lC3 3 lC3 3 lC3 3 lC3 3 lC3 3 lC3 

(GNI} 13 .---e.pNDA 13 ,..J: NDA 13 ..--£ pNDA 13 t GNDA 
13 ~PNDA 13 ,..§GN~ 13 t GNDA 

13 
14 2 ~ 114 12 ~ 114 j2 ~ 114 12 114 12 ~ 114 12 -&f4 12 f4 r "'V 

I I I I 1 1 

t .~ ""l r"""l "....-", "....-"', r''', ~'-, ~~ ~ ..... 

"" y 

A .. < MBU5 X5EL1 XSEL2 ) 
r 

DSP MUX 

7-8 



2-AS "WEl 

D 
B 
A 

2-AS C2"~WE§2C>----f 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ g ~ ~ V ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
A ~ ~2 ~ A ~ e ~? ~ ~9 A1D- ~1 A2- A~ ~14 ~-s ~ ~ ~ ~ ~ ~ ~ ~ ~ g ~0 ~1 ~2~::I ~4 BSW\ 1~;; ~ I"' sl4 E ~ ?t"' E +~p lt"' 2 ~ ~4 -5 6 ~ 6 +iV 1 ';; ::I oj Sr E ?' E +SV 1 '2 3 4 --S -'B-? 6 + V 

[::z[:::> _____ ----=:9~ A0 Al A2 A:;J A4 AS AS A? 9 A0 I'll A2 A::J A4 AS A6 A? I 9 Ail Al A2 A::I A4 AS A6 A? I ~'r 9 Ail Al A2 A::I A4 AS AS A? 
::1-06 I /0 r: 1=1-------1 ~ "Iil 

CD 2947 Vee CD 2947 vee~ CD 2947 v,,"~ CD 2947 VeeE! 

.-__ l_l--fVR U28 GND r1 T"R U29 GND i 11 T/R U30 GNrliil, 11 VR U31 GND~& 
BIilB1B2B:3B4BSBBB?- BilB1B2B::IB4B5BSB? BilB1B2B::IB4BSBBB? I BIilB1B2B3B4BSBSB? 

lE lB 1 lE lS 1 1< 12 '\ UI 18 1 lE 15 14 1 1. 19 11l 17 lE 1~ 1 1~ 12 \J 19 If 1? 11l 1~ 14 13 12 '\ 

~~~~~~~~ ~~g~g~~g ~~~~~~~~ ~~~~~~~~ 
A ,~ ~ ~ , ~ ~ ~ ~ ~ [0 '1 [2 '::I [4 '5 '" <;A ... ____ 1_~_§ __ ~_I§_~ ~=__I'i_I:i_1_Iil_l_1_2_::I_1_4_S_.....,

DBF DBE
~ V

~ ~I R I

MBUS :>
v

7-9

I

DBH

~Pl-61il
"DBH14 Pl S9

"DBH1::1 Pl 62

"DBH12 Pi - 61

"DBHH Pl 64

"DBH10
Pl - 6::1

"DBH9 ~ Pi 66)

"DBH6
Pi 6S

DSP DATA MEMORY
(FIRST HALF)

DBG

~ ~ I I ~ I I I I i t t t ~3 ~~ t I i I I ~ I I I I I ~ ~ [Q t i ~, I I [Q

;1

Q Q ~. ~ G ~1 '2 ~0 ~2 'S 14 ~5 8 10 1~ 5

2-AS

1 • 3 5 e 7 f +SU 1 2 3 ~ 5 B 7 8 +5/J 1 ~ 3 ~ 5 f 7 8 +5U 12 ~5~ B~U 16 1E 17 le 15 1~ 1~ 1. iJ
9 A0A1A2A3A~A5ABA7 9 A0A1A2A3A~A5ABA7 2-A~ 9 AIaA1A2A3A~A5ABA7 B AIaA1A2A3A4A5ABA7 B B0B1B2B3B4B5BBB7

/CERR CO 2947 Ue ~ co uee~
/CERI co 2947 uec~ co 2947 Uee

2-BB I CO2 >-- CO 2946 Uee 21a 2947
11 UB GNO U9

GNO 11 U10 GNO ~ T/R U11 GNO:&, 11 T/R U2 GNO 1 /IOR T/R f-+-- T/R T/R
Bia Bl B2 83 B4 B5 BB 87 Bia Bl 82 83 8~ 85 88 B7 Bia 81 B2 BS 84 85 88 87 Bia 81 82 83 B4 as B8 B7 ~ Ala Al A2 AS A4 AS AS A7

1~ lE 17 OlE OH 01 1
01"0

'V HOlE l' lE
015 1 1 01 •

'V if 18 17 if 15 1 13 H '¢7 H 18 1? 1E 15 1 13 12 12 456 8
0 0 0 0 0 0 0 0 0 D 0 D D DDDDDDDD

2-A2

8 8 B 8 8 B 8 8
~

8 8 8 8 II 8 8 8 8 8 8 8 8 8 8 II B 8 II 8 B II 8 /D8HIa C l S ~ ~ C C C ~ C
II 12 Is C C D 0 D 0 o D D D D o D D D D D

0 5 B 7 8 Ii 10 14 5

=> < 0 1 2 3 4 5 S 7 8 B 1011 12 lS 14 15 /D8Hl
/08H2

~ ~ ~ ~ ~ ~ ~ ~
/D8HS

D 0 D D 0 D D D /D8H4
8 8 8 8 8 8 8 8

/08HS
2 is 14 C5 ~ ~ (;11 ~1 D 0 D D 0 D D D

1 12 13 lS 1. 14 11 15 ~ 14 8 1 B 1. 111 11 11 +SU
/D8HB

14 13 12 11 +SU 14 1:3 1. 11 QU /DBH7

/WE5
11 I/Ol I/02 I/03 I/04 J-: I/Ol I/02 I/03 I/04 2-AS 1~ I/Ol I/O" I/O:3 I/04 12 I/Ol I/02 I/03 I/04 J

f--- /WE 214B-45 Uee /WE 214B-45 Uee 18 I /WE7 /WE 214B-45 Uee B /WE: 2148-45 Uee lB
12456 BJ B ,~ U16 _ , ,~, U17 "" ~ "~ UIB "'fL{ ~, U19 - ~ 2-88 B A0 Al A2 A:3 A4 AS AB A7

A0A1A2A3A4A5A8A7A8A9 ABA1A2A:3A4A5ABA7ABAB A0A1A2A:3A4A5A8A7ABAB AIlA1A2A~5ABA7ABAB cre >-- co 2946 Uee 2B

51 8 74 :3 2 1 LHS 5 B 7 413 2 1l 1~8~S 5 B 7 4 S 2 1 L6~S 5 6 7 4 3 2 1 8L5
11 T/R U3 GNO 1

i n Ii Ii ~ ~ i iUUHUi iii~~~~~~~ ~;~~;;;~;;
L-

D

~
B ~ ~B~~~~~ ~~~~~~~~~~ ~ D D ;"w~,:, ll~ ~~,~ i'1

B AJ:jB B B
D8GB

C ~ii;~~ii~~ ~~~ii;~~~; i ~~ ~ ~ ~ ~ ~~ ~ ~a~=-~~~a
v D H D8Gl

~ ~. u_ ~1 8!3 B ~_ ~ ~ =_~J ;_~ ~_~
D8G2

5~e 7a4~3~2~1 ~- if ~S" +5U 5~BI7F14 3~ 4A!51~1~e~s 9 +5U 5~8 MsB
D8G3

7 S -. 1~' 5 6 7 413 2 1 ~6~5 ~U D8G4

111 A0A1A2A3A4ABA8A7A8AB ~ ABA1AA!A3A4A5ABA7A8AB J- 2-A5 11l A0A1A2A3A4A5A8A7ABAB ~ AIlA1A2A3A4A5ABA7ABAB D8G5
I /WEB

- /WE 214B-45 Uee 8 /WE 214B-45 Uee 6
/WEB /WE 2148-45 Ue /WE: 214B-45 Uee lB

D8GB
D8G7

"~ U24 ~ , ,~ U25 ~ 1 8
"CS U26 ~\f ~ U27 ~~

I/Ol I/02 I/OS I"04 I/Ol I/02 I/OS I/04 I/Ol I/02 I/OS I/04 I/Ol I/02 I/03 I/04 /D8lila V 1 1 1. 11 14 1~ 12 11 1. 0 11 1'1 lS 1. 11
Pl - 7S

1 1 /08Hl
D D D D D D D D D 0 D D D D D Pl 74
8888 8888 B 8 8 8 8 B 8 8 ,.DBHa
C C C C C C C C

~
~ ~ D D D D D D Pl 71

4 5 B 7 Il 1 3 B 7 Ia 1 2 3 /08H3 Pl 72

~~~~~~~~ ~~~~~~~~ 
/08H4 Pi - 6B D D D D D D o D D D o D o D D 0 

8 8 8 8 8 8 8 8 8 8 8 B B 8 8 8 /D8H5 
Pl - 711 D D D D D 0 0 D D DOD D D D D 

1~ ~ 1 ~ 2 ~:3 5~ e~ 7~ e +5U 1 B 2" 111 \ 28 31 11: 5 + U Ia :;; 1 2 3 4 e 5 8 13 1 8 • 9 ~ 111 115 11,13 14 50 /08HB Pl - 81 

All FU A2 A3 A4 A5 A13 A7 ~ Ala Al A2 A3 A4 AS AB A1 .1' 
1 3" 5 7 + U 1 4 13 +5 

/08H7 Pi 138 9 9 A0Al A2ASA4 AS AB A7 ~ AIiIA1A2A3A4A5ABA7 
Q 

CO 2947 Uee CD 2947 Uee ~ CD 2947 Uee CD 2947 Uee 211 
11 

T/R U32 GNO~ T/R U33 GND 1 11 ;~ U34 ~r '" LB5 -~ ~ 7 
~m~83~B5B5m ~m~83~B5B5~ ~m~83~B5BB~ ~m~83~B5B5~ 

16 16 17 le 15 14 lE 12 16 le 17 18 15 1 13 1. 19 1E 11 If 15 14 1 12 19 1E 1 1E 15 1" 1 1 

2-A5 

2-1'15 

3-DB 

D D D D D D D D 0 D D D 0 D D D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 II 8 8 II II 8 II 8 8 8 8 8 II 8 II 

~ I'" ~ ~ r ~ , ~ F" F" F" F" F" I'" F" F" 
~ ~ ~ ~ ~ '"' 

~ § 1 8 9 10 1 12 3 14 5 1 111 1 12 13 14 5 

DBF DBE 
DSP DATA MEMORY 

101 

~l (SECOND HALF) E 
R 

M8US 

7-10 



Order # 047798 

ADVANCED 
MICRO 

DEVICES, INC. 
901 Thompson Place 

p.D. Box 3453 
Sunnyvale, 

California 94088 
(408) 732-2400 

TWX: 910-339-9280 
TELEX: 34-6306 

TOLL FREE 
(800) 538-8450 

Printed in U.S.A. IH-MU-15M-6/86-0 


