l e SUISS2204d [euSIS [e3151g pue Suiss250id Aelly '.1

Array Processing
and
Digital Signal

~ Processing

S3DIA3A OWIW AIDNVAAY



n

Advanced Micro Devices

Array Processing and
Digital Signal Processing
Handbook

The International Standard of

Quality guarantees a 005% AQL on all
electrical parameters, AC and DC,

over the entire operati :
m@‘fﬁ :

© 1986 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The performance
characteristics listed in this data book are guaranteed by specific tests, correlated

testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306



Table of Contents

. INTRODUCTION
. NUMBER SYSTEMS

2.1 Fixed Point Numbers .
2.1.1 Fixed Point Operations
2.2 Floating Point Numbers
2.2.1 Whento use Floating Point
2.2.2 Floating Point Formats

. ARRAY PROCESSING ALGORITHMS

3.1 Digital Filters in the Time Domain
3.2 Filtering in the Frequency Domain—
the Fourier Transform
3.2.1 Algorithm for Decimation in Tlme
3.2.2 Algorithm for Decimation in Frequency
3.2.3 Comparison of FFT and DFT
3.2.4 Inverse Fourier Transform
3.2.5 Radix4 FFT .
3.2.6 Real-Valued Input FounerTransforms
3.3 Magnitude Calculations .

. SYSTEM DESIGN

4.1 Array Processor Desngn based on Am29500 Famlly
4.1.1 Arithmetic ... .
4.1.2 Memory
4.1.3 Addressing
4.1.4 Control
4.1.5 Input/Output
4.1.6 Timing Considerations ...

4.1.7 Microcode ...
4.2 Digital Filter using Multlply-Accumulator

. ARTICLES

Record Signal-Processing Rates Spring from
Chip Refinements, Electronics. . .
One-Chip Sequencer Shapes up Addressmg for
Large FFT's, Electronic Design. .
500-kHz Single-Board FFT System Incorporates
DSP-Optimized Chips, EDN.
Trim DSP Overhead by Changing your
Sampling Rate, Integrated Circuits.
DSP Building Blocks Allow Resource Optimization. ThIS manuscnpt
was originally prepared for and presented at WESCON/83.
A New Approach to Floating Point DSP, 1984 |EEE Press.
Digital Filter Design Made Easier For First-Time Users,
Computer Design e e

w

w0 o ~N AW

14
14
15
18
18
18
20
22

25

79

83

91

99

109
115

121




6. PRODUCT SPECIFICATIONS

Am29501A

Am29509
Am29510/L510
Am29C516 Family
Am29C517 Family
Am29520/521
Am29524/525
Am29526/27/28/29 ...
Am29540

Am29323

Am29325

Am29331

Am29332

Am29334

Am2910A

Am29C10A

Am29112

Am29C116
Am29PL141

7. APPENDIXES

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7

129
130
131
132
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

*JCDUI-.hQI\)—‘
B R e N e







CHAPTER 1
INTRODUCTION

What Is an Array Processor?

In recent years, Array Processing has become an
increasingly significant aspect of computing. What
once was a mysterious art, is now becoming
common practice. Array processing is a form of
computing that uses specialized hardware for
special results—the array processor. This machine
is characterized by its ability to handle many
arithmetic computations at high speed. In other
words, it is a "number cruncher." However, the
specialization goes beyond a powerful hardware
arithmetic unit. The machine invariably performs
best when the data it is processing is structured in
an array, such as a matrix or vector. Hence the
name, Array Processor.

How Do Array Processors and General-
Purpose Computers Differ?

Array processors and general purpose computers
differ in a number of important aspects. The
general purpose computer is usually of the
classical Von Neumann architecture that was
implemented by Mauchley and Eckert in the
ENIAC machine, which became the first electronic
Stored Program General Purpose Digital
Computer. This machine had a memory area that
allowed instructions and data to be intermixed.
Conversely, array processors have separate
memories for instructions and data (Harvard
architecture). There may in fact be separate data
memories for coefficients and variable data. The
machines tend to be highly parallel, to allow for
simultaneous multiplying and adding in the
arithmetic section, while also performing address
calculations for retrieving and storing the required
data values.

What Is the Usual Architecture of
Array Processors?

While there is no one standard architecture for all
array processors, there are a number of
characteristics that make the machine recognizable
as an array processor. In addition to the above
mentioned feature of separate data and instruction
memories, pipelining is a common architectural
attribute. This technique consists of placing
intermediate registers in the data path, breaking up
long combinatorial delay paths into shorter paths
terminating in registers. The rate at which these
registers can be clocked determines how fast the
system runs. The register clock rate is obviously
dependent upon the delay time of the operation

preceding it. Pipelined systems have ‘latency’,
which is the number of clock cycles that passes
before the first valid result appears, but this value
will generally be low compared to the large number
of calculations performed.

Array processors also have dedicated hardware
multipliers as part of their powerful arithmetic
sections. Hardware floating point arithmetic may
also be available, whereas some machines may
have shifters to accomodate block floating point,
and others may be dedicated to integer operation
only. The basic operations that consume most of
the processing time in matrix operations are
multiplication and addition, as well as accessing the
actual data values. Thus the architecture tends to
be optimized for these operations.

Microprogrammed architectures tend to be popular
in array processing machines. This is the familiar
AMD 2900 family "bit-slice” structure that allows a
machine to be constructed from "building blocks"
of ALU, sequencer, memory access and other
required functions, without any predetermined
instruction set or architectural constraints that
might be imposed by fixed-instruction devices.
Microprogramming is the technique of giving a
machine its instruction set by means of
microinstructions stored in a high speed memory
and accessed by a special sequencer. These
microinstructions operate at the primitive level of
register, bus, and ALU function control. Since the
control store is a memory, machine behavior may
be modified by changing one or more of the
microinstruction bits or words. The technique
leads to an extremely flexible, often very high
speed, implementation.

Where Are Array Processors Used?

If array processors are indeed so powerful, then
one might reasonably ask why they don't replace
general purpose machines. While array processors
do an excellent job of handling their specialized
type of problem, they are rather clumsy when
confronted with problems that require a lot of
branching within the program, which is where the
general purpose computer performs so well. So
rather than replacing the general purpose
computer with an array processor, the tendency is
to create an enhanced machine by using an array
processor as a peripheral, as an ‘accelerator' to the
arithmetic-intensive portions of problems.

Array processors have traditionally been
implemented in peripheral fashion and as
specialized Super Computers that had array
processing type architectures. This latter class of
machine tended to be extremely expensive, but
very powerful. The peripheral array processor was




such a desirable approach that a number of
companies make their entire livelihood from
offering such devices. These peripheral array
processors, or accelerators, generally attach to the
bus or I/O structure of a scientific minicomputer.
Now a tendency is evolving to offer array
processors as options on engineering work
stations, or even as option boards for personal
computers.

Various types of problems lend themselves to
array processing solutions, and so they are
considered here. We wish to distinguish array
processing by the type of hardware solution
required, rather than the end application. Thus,
robotics controllers, radar and sonar processors,
flight simulators, graphics terminals, commun-
ications processors, medical analyzers, intelligent
vision systems, and speech recognizers are all of
interest here. If the problem is solved using
multiply-and-add intensive algorithms, and the data
and coefficients are structured in arrays, then we
have an array processing application.

Digital Signal Processing

Digital signal processing is treated here as a subset
of array processing because of the similarities that
exist in the hardware and algorithms. The DSP
engine tends to be more specific in its design and

is generally imbedded in other hardware. DSP also
tends to start out with a "live" analog signal, which
is A/D converted, processed, and may or may not
be converted back to analog. One could put an
A/D converter in front of an array processor board
and solve DSP problems.

What Is in this Book

We have attempted to collect in this book
background and applications material that will
motivate and guide the independent study of
Array Processing. This book does not attempt to
be a comprehensive text on the subject, but tends
to emphasize the practical aspects of building array
processor boards, implementing FFT's and FIR/IIR
filters, selecting appropriate hardware, and writing
microcode.

Finally, note that the devices whose data sheet
summaries are included here are not only suitable
for array processing applications. For example, for
a fast eight-bit ALU with multiple I/O ports, the
Am29501 is ideal. The part certainly won't be
aware of what type of problem it is solving, so this
should not limit the innovative spirit of the design
engineer. For more information on the devices and
systems described herein, contact your local AMD
sales office, or AMD Headquarter Applications
Department (408) 982-6266.




CHAPTER 2
NUMBER SYSTEMS

2.1 Fixed Point Numbers

A binary number is an ordered set of binary digits
(blts), each of which has a value 0 or 1. Each bit, b;,
is assigned a binary weight, 21, and the value of the
number is the sum of the weighted digits.

V=2bi*2i
i

The simplest form of binary number is the
unsigned integer. In an N-bit unsigned integer the
index, i, ranges from 0 to N-1. The value is given
by:

N-1

Vinteger = 2 b+ 2
i=0

The range of V is from 0 to 2N-1. This type of
number has two obvious limitations; it cannot
represent quantities which are negative or
fractional. There are many ways to represent
negative numbers. The simplest method is to use
an unsigned number to represent the magnitude,
and a flag to indicate the sign. Not suprisingly this
scheme is known as signed-magnitude. In an N-bit
representation, the most significant bit, by_1, is
taken for the flag, with a 0 signifying positive, and a
1 negative. This leaves N-1 bits for the magnitude,
giving a range from —2(N-1)11 to +2(N-1)-1. The
value is given by:

N-2
Vsign magnitude = (-1 )PN-1 * Zbi «2
i=0

An idiosyncrasy of signed-magnitude numbers is
that there are two representations for zero,
positive and negative. A similar scheme, which
shares this characteristic, is one's complement. In
one's complement, negative numbers are
represented by inverting all bits of an unsigned
number representing the magnitude. In order to
distinguish positive and negative numbers, the
magnitude range is restricted such that it can be
expressed in N-1 bits. Thus the most significant bit
is 0 for a positive number, and 1 for a negative
number. One's complement numbers differ from
signed-magnitude numbers only in that the
magnitude bits are inverted in negative numbers.

Obviously, the range of numbers represented by a

one's complement number must be the same as
for signed-magnitude numbers. The value of a
one's complement word may most easily be
determined by treating it as an unsigned word,
after having inverted all bits if the most significant
bit is 1, in which case the value is negative.
Alternatively, the value of the magnitude bits may
be calculated, and if the most significant bit is 1,
2(N-1)_1 subtracted from this value.

N-2
V1's complement =~DN-1 * oN-1_14 2 bj* 2
i=0

A simple technique by which negative numbers
may be represented  without  double
representation of zero, is to add to the desired
value the magnitude of the most negative
representable number. This gives a positive
number which may be represented in the
unsigned format. The value of the number may be
obtained by simply reversing this process. This
scheme is known as offset binary, or excess-M,
where M is the number added. The number M is
often, but not always a power of two.

N-1
Vexcess M = —M +Z bj* 2i
i=0

The special case, where M = 2(N-1) has the
property that all negative numbers have a most
significant bit which is 0, while zero and all postive
numbers have a 1. Inverting this most significant bit
leads to a scheme known as two's complement,
which may be interpreted in several ways. The
most significant bit is often treated as a sign flag, as
it is in signed- magnitude. If the sign bit is 1, the
number is negative and the following serial
process is applied to convert it to an unsigned
number representing its magnitude. Starting at the
least significant bit, the bits are inspected in turn
until the first 1 is encountered. This and all lesser
significant bits are left unchanged. All more
significant bits are inverted. This process operates
in both directions, converting a negative number
to a positive number of the same magnitude, and
vice versa. It may be viewed as inverting the
number (one's complement) and incrementing, or
as subtracting the number from 2(N-1),

N-1

V2's complement = — ( b1 * 2N-1 — z bj* 2i )
i=0




N-2
=-bn_1* oN-1 +Z bi"2i

i=0
Inspection of this formula shows that the
magnitude of the sign bit's weighting is consistent
with its position if the number were unsigned, but
that the weighting is negative. This is an important
conclusion, and leads to the most useful
interpretation of two's complement numbers; they
are identical to unsigned numbers except the most
significant bit is weighted negatively. The range of
values which can be represented by an N-bit two's
complement number is —2(N-1) to +2(N-1)-1,

Any of the above schemes may also be used to
represent fractional numbers. This is achieved
simply by adopting a convention that the weighting
of the least significant bit is 2(-P) rather than 20,
and adjusting the other weights accordingly.
Conceptually, this locates the binary point P bits
from the least significant end. Because such a
convention must be chosen in advance, and
adhered to for all numbers, this is known as a fixed
point number scheme. Other schemes, where the
number contains a parameter locating the binary
point, are known as floating point.

2.1.1 Fixed Point Operations

Three basic operators are described here:
addition, subtraction and multiplication. Only
unsigned and two's complement formats are
described in detail. They are the two formats most
commonly used in fixed point operation. Signed-
magnitude and offset binary are commonly used in
floating point (see below), and are usually treated
in fixed point by converting them to unsigned or
two's complement, performing the operation and
reconverting. One's complement is not in general
usage.

Addition of unsigned numbers is most easily
performed by an iterative process known as ripple
carry. The iterative block is shown in Figure 2-1.1.
This has three inputs, which are equally weighted.
Two of these are for operand bits, A; and B;, and
the third is a carry input, Ci_1. The two outputs may
be considered as a 2-bit word, representing the
number of 1's present at the inputs. The unit
weighted bit is the sum output, S;, and the bit with
weight two is the carry output, C;. In cascade, the
carry output of one cell becomes the carry input to
the next more significant cell, maintaining the
equal weighting in that cell, Figure 2-1.2.

Figure 2-1.1

"

Figure 2-1.2




The carry input to the least significant cell, C_4, is
assumed to be 0. For the complete multi-bit adder,
for each pair of input bits A; and B;, there is one
output bit, S;. This new number is the sum. The
characteristic that each carry out must be
generated in turn before higher bits can be
determined leads to the name "ripple carry."

It is also possible to generate the carry inputs to
each cell without waiting for the ripple. Each cellis
capable of creating a carry into the next cell in two
ways; it can generate a carry if both A; and B; are 1s
or it can propagate a carry if either Ajor Bjis a 1 and
the carry input Cj_y is a 1. This is called "lookahead
carry" and can be expressed by the equation:

Ci=Aj*Bj+(Aj+Bj)*Ci

Ci-1 can be expanded so that the equation for a
carry lookahead of two cells is:

Ci=Aj*Bj+ (Aj+Bj) * (Ai_1 * Bi1 + (A1 + Bi_1) * Cj_p)

This expansion can continue until the carry is
expressed entirely in terms of the inputs and each
cell can produce its output without waiting for
output from any other cell.

As noted above, the range of an N-bit number is
limited, and it is possible to overflow this range
when adding two numbers. This may be overcome
by making the adder one bit longer, thus doubling
the range of the output. In order to provide the
additional inputs, the operands are zero-
extended. Inspection of the above formulae will
show that the value of the unsigned words are not
affected by leading 0's. Zero-extension is also
used when adding numbers of dissimilar length.
This is performed in an adder long enough to
handle the larger input, the other being zero-
extended. When the operand inputs to a cell are
both 0, as in extension to prevent overflow, the
sum output is equal to the carry input, and the carry
output is identically 0. This fact may be exploited to
save hardware, the carry line being used directly as
the extra sum.

As the magnitude bits of a two's complement
number are weighted the same as in an unsigned
number, the same adder scheme may be used. In
the most significant cell, the bits all have the same
magnitude weighting, but while the carry remains
positive, the operand inputs become negative.
The cell is required to output a 2-bit two's
complement number, that again represents the
number of 1's present at the input, but taking into
account their sign.

As in the unsigned case, the carry would represent
the sign-bit of a one bit longer word, which allows
for overflow. Appropriately, the sum bit of this cell
would be positively weighted as a magnitude-bit of
the new word.

Adding two’s complement numbers of dissimilar
length raises a question. The value of a two's
complement number is not affected by adding
leading 0's if the existing weights. remain
unchanged. However, this gives a number with a
negatively weighted bit other than in the most
significant position, which does not agree with the
definition. This problem is overcome by using sign-
extension, rather than zero-extension.

In sign-extension, additional bits are added which
match the sign-bit. It must be stressed, however,
that these are not extra sign-bits. A two's
complement word can, by definition, only have
one sign-bit; the negatively weighted most
significant bit. When a new sign-bit is added, the
old sign-bit reverts to a magnitude bit. If the
number is positive, both old and new sign bits are
0, and the value cannot be changed by altering the
weighting of 0's.

If the number is negative, the reversion of the old
sign-bit to a magnitude bit changes the value
positively by twice its weight (from —2N-1 to 2N-1).
This exactly cancels the contribution to the value
from the new, more significant sign-bit, thus
leaving the value unchanged. This proceedure
may be repeated, making the number as long as
necessary.

This process is reversible. If the most significant
magnitude bit matches the sign-bit, then the
number may be reduced in length by eliminating
the sign-bit, the new most significant bit becoming
the sign-bit. This fact is exploited to simplify the
logic in the adder. If it is known that the sum cannot
overflow into the N+1th bit, the sum output of the
sign-bit adder cell can be taken as the sign-bit of
the N-bit word. This is logically equivalent to the
sum output of an unsigned adder cell, which may
be used in place of the special cell. The carries,
however, are not equivalent. If overflow is
possible, it may be protected against by sign-
extending both inputs one bit, and using an
additional adder cell to give the N+1-bit output.

Two's complement subtraction is often described
by modifying the adder, and re-interpreting the
carry to become a borrow-not (analogous to
decimal subtraction). This is confusing. A more
straightforward explanation is that the number to
be subtracted has its sign changed by being two's
complemented, and the result added to the other




operand, using the adder as an adder. As
described above, two's complementing a number
involves one's complementing it and then
incrementing it. The one's complement can be
performed with inverters, and the incrementation
effected by entering an extra 1 in the unused least
significant carry input, Figure 2-1.3. If exclusive
ORs are used in place of inverters to allow
controlled inversion, and the least significant carry
also controlled, an adder/subtractor is obtained. -

Unsigned subtraction does not really exist. The
unsigned operands are converted to two's
complement by adding 0 (positive) sign-bits.
These are subtracted as above, giving a signed
result. If this is positive, the 0 sign-bit can be
dropped, reverting to an unsigned format. If it is
known in advance that this is case, then it is not
necessary to calculate the redundant sign-bit. This
is what is sometimes referred to as an unsigned
‘subtractor. :

When adding two unsigned numbers with the
result expressed in the same number of bits as the
inputs, overflow is signified by a carry out of the
most significant bit. In unsigned subtraction, a
negative result is signalled by the absence of a
carry out. In all two's complement operations,
overflow is signalled by the carry out of the sign-bit
being different from the carry into it. This may be
detected with an exclusive OR (XOR).

Unsigned multiplication consists of addition of the
partial products formed by weighting the
multiplicand by each bit of the multiplier.
Weighting by a multiplier bit which is 0 results in a
partial product that is zero and weighting by a bit
which is a 1 is a left shift of the multiplicand by a
number of places equal to the bit position of the
multiplier bit. A simple algorithm to perform
multiplication is a shift and add procedure in which
the multiplicand is shifted one bit position at a time
and added to the product based on the
corresponding multiplier bit and using the rules for
adding operands of unequal lengths as stated in

the discussion of addition above. Multiplication of
two's complement numbers is the same when the
rules for two's complement are applied, i.e., when
the partial products are sign-extended instead of
zero-extended for the shifted addition and the
partial product from the multiplier sign bit is
weighted by ~by_1*2N-1 instead of +by_1*2N-1.

Multiplication of unsigned fractions is identical to
multiplication of unsigned integers. Placement of
the binary point is a matter of interpretation and
does not require alteration of the algorithm,
However, multiplication of two's complement
fractions results in a product with different bit
weights than the operands as shown in Figure 2-
1.4.  To obtain the same bit weights in the product
as the operands it is necessary to shift the product
left one position as shown in Figure 2-15. A
product which has the same format as the
operands is obtained when the less significant
product is truncated or causes rounding of the
more significant part. One problem with this shift is
the possibility of overflow when both multiplier and
multiplicand are equal to —1.0. The product is +1.0
which cannot be represented in two's complement
fractional notation.

A common technique used to speed up
multiplication is the Booth algorithm which
examines consecutive bits of the multiplier.
Whenever the consecutive multiplier bits change
from a 1 to a 0, the multiplicand is added to the
product with the proper bit weighting. When the
bits change from a 0 to a 1, the multiplicand is
subtracted; no operation is necessary when the
bits are the same. This algorithm is based on the
identities 3 = 2+1 = 4-1, 7 = 4+2+1 = 8-1, etc.
which allow two operations (one addition and one
subtraction) to replace a potentially larger number
of operations (two additions, three additions, etc.).
The worst case is a multiplier with alternating 1s
and Os for which there is the same number of
operations as the add and shift algorithm when the
multiplier is all 1s, i.e., one operation per multiplier

nqn

Figure 2-1.3




bit. A modification to the algorithm examines pairs
of multiplier bits as shown in Figure 2-1.6 This
modification is usually done to modularize
hardware into a cell which can be repeated for each
pair of multiplier bits.

2.2 What Is A Floating-Point Number?

The numbers one encounters everyday, such as
12, 34.56, 0.0789, etc., are known as fixed-point
numbers, because the decimal point is in a fixed
position. Such numbers are fairly closely matched
in magnitude and within about ten orders of
magnitude from unity. Examples of such numbers
are found in bank accounts, unit prices of store
items and paychecks.

In scientific notation applications, the numbers en-

countered can be very large. Avogadro’s number

expressed in fixed-point notation is approximately
602,250,000,000,000,000,000,000.

A scientist may also use Planck’s constant which
would be approximately

Sign. The sign of the number (+ or —). The plus
sign is usually assumed when no sign is shown.

Mantissa. Sometimes also known as the fraction.
The mantissa describes the actual number. In the
example, the mantissa is 6.0225.

Exponent.  Sometimes also known as the
characteristic. The exponent describes the order
of magnitude of the number. In the example, the
exponent is 23.

Base. Sometimes also known as the radix. The
base is the number base in which the exponent is
raised. Inthe example, the base is 10.

The parts of a floating-point number can then be
represented by the following equation:

F=(-1)S-M-BE

where
F = Floating-point number
S = Sign of the Floating-point number, so that

S=0if the number is positive and S=1 if the
number is negative

0.000000000000000000000000006626196 M = Mantissa of the floating-point number
B = Base of the floating-point number
erg.sec. in fixed-point notation. These examples E = Exponent of the floating-point number.
demonstrate the undesirability of writing fixed-
point notation to represent numbers such as 000 NOP
Avogadro’s number and Planck’s constant. 001 x1
010 x1
When a scientist writes the value of Avogadro’s 011 <2
number, he writes 6.0225 x 1023, Similarly, he
would express Planck’s constant as 6.626196 x 100 -x2
1027 erg.sec. 101 -x1
110 -x1
The number 6.0225 x 1023 is thus observed to 111 NOP
consist of four parts: Figure 2-1.6
I | 1 ll
.20 o1 2-15 .20 o1 9-15 .21 20 o1 2-30
Figure 2-1.5
L | | 1
_20 2-1 2-15 _20 2-1 2-15 _20 2'1 2'2 2'30 0
Figure 2-1.4




2.2.1 When Should Floating Point Be Used?
Although floating-point numbers are useful when
numbers of very different magnitude are used,
they should not be used indiscriminately. There is
an inherent loss of accuracy and increased
execution time for floating-point computation on
most computers. Floating-point computation
suffers the greatest loss of accuracy when two
numbers of closely - matched magnitude are
subtracted from each other, or two numbers of
opposite sign—but almost equal magnitude—are
added together. Therefore, the Associative Law in
arithmetic
A+(B+C)=(A+B)+C

does not always hold true if B is of opposite sign to
A and C and very similar in magnitude to either A or
C.

In most computers, hardware floating-point multiply
and divide takes approximately the same amount
of execution time as hardware fixed-point multiply
and divide, but hardware floating-point add and
subtract usually takes considerably more time than
hardware fixed-point add and subtract. If the
computer lacks floating-point hardware, all floating-
point computations will consume more CPU time
than fixed-point computations.

2.2.2 Floating-Point Formats

The following three number bases are commonly
used in floating-point number systems:

1. Binary—The base is 2.
2. Binary Code Decimal—The base is 10.
3. Hexadecimal—The base is 16.

The two types of exponents used in floating-point
number systems are the biased exponent and the
unbiased exponent. An unbiased exponent is a
two’s complement number. An exponent said to
be biased by N (or excess N notation) means that
the coded exponent is formed by adding N to the
actual exponent in two’s complement form. Any
overflow generated from the addition is ignored.
The result becomes an unsigned number. Most
common floating-point systems use a biased
exponent because it simplfies floating-point
hardware.  During floating-point computation,
arithmetic operations such as add and subtract
need to be performed on the exponent of the
operands. If a biased exponent is used, the
arithmetic logic unit (ALU) needs only to perform
unsigned arithmetic. If an unbiased exponent is
used, the ALU must perform two’s complement
arithmetic; and overflow conditions are more
difficult to detect.

Floating-point numbers must always be presented
to the computer in “normalized” form (i.e., the most
significant digit of the mantissa is always non-zero,
except if the number is zero). For a binary floating-
point system, this means that the leading binary bit
of the mantissa is always 1 (except when the
number is zero). In some floating-point number
systems, this 1 bit is suppressed on input or
output to the floating-point processor. The saved
bit can be used for one more bit of precision or one
more bit of exponent range.

The IEEE and DEC floating-point formats are
covered in significant detail in AMD’s data sheet.




CHAPTER 3
ARRAY PROCESSING ALGORITHMS

3.1 DIGITAL FILTERS IN THE TIME DOMAIN

Digital filters are devices which accept a sequence
of digital data samples and produce a modified
sequence which is a linear combination of previous
inputs and outputs. The sequence is usually data
which has been obtained from a continous analog
waveform that has been digitized at uniform time
intervals.  Uniform sampling is used since it
simplifies analysis of the system performance and
does not create any undesirable side effects or
limitations. The usual notation when dealing with
the digitized sequences is to associate each
sample with a polynomialterm, e.g.,

{Xn} =...abcde...forn=-2,-1,0,1,2
..az2+bz 1 +cz0+dzt +e22...

This polynomial is the Z-transform of the original
sequence and can also be written:

X(2) = z XnZ "

The relationship between the input and output of a
digital filter is:

Yn=2 Xmhn-m

where {xp} and {y,} are the input and output
sequences and {hp_m} is the impulse response of
the filter. When {h,_n,} has a finite number of non-
zero terms, the filter has a Finite Impulse
Response (FIR). Otherwise it is described as
having an Infinite Impulse Response (IIR).

If we delay an input sequence by one sample
period, the result is the same as the input
sequence multiplied by z=!'. The combination of
previous inputs and outputs of a digital filter can
therefore be represented by:

Yn=z ak"n—k‘zbkyn—k

where the first sum is a linear combination of the
current and previous inputs of the sequence and
the second sum is a combination of the previous
outputs. A recursive filter of this type has an
infinite impulse response. When the coefficients
of the second sum are all zero, the filter becomes
non-recursive and the impulse response have a
finite number of terms (an FIR filter). A Z-transform
of each sequence in the digital filter can be written:

EQ.1

Y(z)=2‘ynz‘n
=Z [ Z ak"n—k‘E’kaﬁ—k] z"

Using the equality X(n-k) = z—ky(n) this can be
rewritten and rearranged as:

EQ.2

Y(2) =2akz-k X(z)-zbkz-kv(z)

The transfer function of the filter is therefore:

2 agzk
1+Z byz*

When working with linear time-invariant systems,
filters can be cascaded (either serially or in parallel)
to obtain a desired transfer function as shown in
Figure 3-1.1. A second order filter has a transfer
function of the form:

Y(2)
H(z) = =

X(2)

aoz°+a1 Z_1 +322_2
H(z)=

1+byz 1 +byz2

224+ Dz+E
A—
22+Bz+C

This is a basic building block for digital fitters and is
called a biquadratic filter with a gain of A. By
cascading a number of these sections and
selecting the proper values for the coefficients, it is
possible to produce any frequency response with
the same structure, e.g., high-pass, low-pass,
band-pass or band-stop filter. Computer programs
are available to assist the filter designer in
choosing the proper coefficients for control of filter
skirts, ripple, etc. These programs also allow the
designer to select which parameter to compromise
when the desired performance is unrealisable.

Implementation of a digital filter is frequently a
hardware embodiment of the equations expressed
above. Adders and multipliers perform the
arithmetic on data that have been appropriately
delayed in registers. A filter section might use an
adder for each addition and a multiplier for each
multiplication or it might sequence data through a
single unit. Cascading of sections could also take
the form of multiple hardware sections or could be




a single section with programmable coefficients
that operates iteratively on the data. A block
diagram of a second order filter section is shown in
Figure 3-1.2. If the number of terms in'the sums is
the same (as is shown in the figure), it is possible to
rearrange the blocks to reduce the number of
delay registers to a single set (sometimes called
the canonical form). This is done by factoring the
transfer function to separate the numerator and
denominator:

1

H(z)=2ak2‘k*

The numerator is implemented by the hardware
shown in Figure 3-1.3 and the denominator by that
in Figure 3-1.4. When the two halves are
cascaded, a single set of delay registers can be
used as shown in Figure 3-1.5.

Implementation of an FIR filter is a simple sum-of-
products as shown in the block diagram in Figure 3-
1.6 Since the number of terms in an FIR filter is
significantly larger than the number in an IIR filter
with equivalent performance, most implemen-
tations use algorithms that reduce the
computational requirements wherever possible by

1+ z b krk taking advantage of symmetry or by decimating the
Hy@)
Xp Hfz) Yn
Ha(2)
X Hy(2) Ha(2) Hs(2) Yn
Figure 3-1.1
ap
Yo .A
o D>
A
-1
-b1 z a,
/‘\4 bl _A
X $&
A
-b, ' a,
AA "2 .A
%% ")
Figure 3-1.2

10




Wn

G-
+

s

X

s

X

o

Figure 3-1.3

Xn

Figure 3-1.4




data. Symmetry trades a less costly computation
(addition) for a more expensive one (multipli-
cation). Since the coefficients for an FIR filter are
usually symmetrical

(ak=2an¥),

it is possible to reduce the number of multi-
plications required by adding data with the same
coefficient before multiplying by the common
coefficient as shown in Figure 3-1.7.

Decimation is the process of reducing the
sampling rate when the frequency response is
limited. For example a signal containing only
frequencies below 5 kHz and sampled at 20 kHz
can be decimated by 2. Also, a band pass filter can
be converted to a low-pass filter and the resulting
data could then be decimated with a
corresponding reduction in computation require-
ments. Decimation by N is accomplished by only
processing every Nth data sample and discarding
the remaining data samples. This reduces the
computations of an FIR filter by a factor of N.
Decimation does not reduce the number of
computations for an IIR filter since the recursive
nature of the filter requires that all the previous
outputs be computed for the current output.

Digital filters are also used for interpolation. This is
an increase in the sampling rate (the opposite of
decimation) and is used to produce the data points
between the actual samples. The interpolation
procedure is to insert N-1 zeros between each
data sample and pass the data through a low-pass
filter. Since the data insertion is only conceptual
(only calculations with non-zero data points are
performed), an FIR filter has the same
computational advantage over an IIR filter for this
operation as for decimation.

Since both IIR and FIR filters can be designed for
equivalent performance, it may not be obvious why
the FIR filter with its greater number of
computations would ever be used. One important
characteristic of an FIR filter is that it can be
designed to have linear phase response which is
not realizable with either IIR or analog filters. A
second advantage of an FIR filter is that roundoff
errors are limited and easily controlled. The
recursion in an lIR filter means that roundoff errors
are cumulative.

Another advantage of the FIR implementation of a
filter is the ability to partition the processing for the
filter into data sets for multiple filter circuits and

a9

o

Xn *X) o o
b, z' an
Figure 3-1.5

12




thus to increase the throughput of the system
through parallel processing. This is not possible
for IIR filters since the previous outputs are
required for calculation of the current output.
Although a cascaded IIR filter achieves a similar
result, i.e., the processing can be distributed to
different pieces of hardware operating in parallel,
the complexity of the filter, or lack thereof, limits
the potential gain. An FIR filter could use ten
circuits to obtain a tenfold throughput gain or

twenty circuits to obtain a throughput gain of
twenty. An IR filter might contain five second-
order sections and is limited to a potential
throughput increase of five.

Although stability of the FIR filter is sometimes
cited as an advantage, it is not difficult to design a
stable IIR filter, but the designer must pay attention
to the warnings fromthe filter design program.

Xn

Figure 3-1.6

Xn

Figure 3-1.7

13




3.2 FILTERING IN THE FREQUENCY
DOMAIN—FOURIER TRANSFORM

Fourier transforms are used to change time domain
data into the frequency domain when the
processing required involves the measurement of
spectra. The processing in the frequency domain
is so much simpler compared to that in the time
domain to warrant the additional transformations
between time and frequency domains. Fourier
transforms are performed on a limited series,
usually a power of 2 to take advantage of the
efficiencies of the fast algorithm described below.
The Discrete Fourier Transform (DFT) of a limited
series {x (n) }, 0<n<N-1isdefined by:

N-1 _2nnk/N
X(k)=ZX(n)'e" for k=0,1,...,N-1
n=0

Although the transform can be calculated directly
by performing the summation of all the products in
the equation, the number of calculations becomes
prohibitive as the transfform size increases. Defin-
ing {x (n) } as a series of N complex numbers, there
are (N-1)2 complex multiplications and N(N-1)
complex additions to be performed. The following
table illustrates the rapid increase in processing
requirements as N increases.

N Multipli- Addi-
cation tion

64 3969 4032
256 65025 64280
1024 1046529 104755

These numbers represent complex operations
which translate to four real multiplies and two real
adds for each complex multiply and two real adds
for each complex addition. Fortunately, it is
possible to reduce the number of calculations
necessary for the transform by organizing the
sequence in which the calculations are performed.
Because of the periodic nature of e(-*2mn+k/N),
product terms in the series appear in more than
one summation and need not be recalculated for
every occurrence. The Fast Fourier Transform
(FFT) removes redundant calculations by
repeatedly separating the initial series into two half
series until the operation is reduced to a
calculation with two data points. There are two
different algorithms for doing this—decimation in
time and decimation in frequency.

Since the equations defining the DFT and FFT do
not contain time or frequency as a variable, the
calculations can be applied equally well to data

from audio sources to microwave frequencies. For
example, if N =1024 data samples are taken at
imsec intervals, each frequency output will
represent

k *1kHz/1024

and if the sample interval is 1usec, then each out-
put will represent
k *1MHz/1024.

The spectrum is also continuous so that the filter
output 0 is adjacent to filter output 1023 and it is
sometimes convenient to think of the filters as
being positive and negative, i.e., filters 0-1023
become filters 0to 511 and-512to 1.

Although the FFT is more efficient when
computing a full spectrum, some applications are
only interested in a limited band of frequencies. In
these cases the FFT algorithm calculates many
outputs which are not of interest and discarded. In
these applications, calculating a small number of
DFTs may be more efficient than calculation of the
entire spectrum with an FFT. Examples of this
restricted band of interest are carrier detection and
target tracking in radar or sonar.

3.2.1 Algorithm for Decimation in Time
Assuming that N is an integral power of two (N =

2r), we can separate { x (k) } into two half series:one
sequence with even indices

{xg (M) }={x(2n)}
one sequence with odd indices
{xo(n)}={x(2n+1)}.
The DFTs of the sequences constructed over

{xg(n)}and{x o (n)}are
{XE (k) }and {X o (K) } with

(N/2)-1 _2rnk/(n/2)
Xg (k) =Y X(@n)*e'

n=0

.2nnk/(n/2)

(N/2)-1
Xo (k) =2 X(2n+1)* &

n=0

The notation is simpler if we use Wy = e(-i*2@N)
and the transform of the original series becomes
the sum of the transform of the series of even
indices and the transform of the series of odd
indices multiplied by a twiddle factor.

14




2nk N2

2n+1) k
2nk, (2n+1)

-1
X(@n+1) W

(N22)-1

X(k) =2 X(@n)W
n=0 n=0

= X () = Wx* X ()

nkis kperiodic with a length of N/2 and that
= -Wp we canwrite

Since W2
WK+ N2

k+N/2

X(k+N/2) = Xg (k+N2HW 2 * X (k+N/2)

=Xg (k) - WR * Xo ()

This calculates X(k) and X(k+N/2) in terms of Xg(k)
and Xp(k) which is represented graphically by a
simple butterfly:

Xe(k) X(k)

Xo(k) X(k+N/2)

This butterfly is usually simplified to:

Xe(k) X(k)

Xo(k) X(k+N/2)

The sequences
{x(2n)}and{x(2n+1)}
can each be separated into odd and even again:

{x (2n) } can be decomposed into
{x(4n)}and{x(4n+2)}

{x(2n+ 1)} canbe decomposed into
{x(4n+1)}and{x(4n+3)}

This results in X(k), X(k+N/4), X(k+N/2) and
X(k+3N/4) being calculated from the transforms of
each quarter series Xqo(k), Xqi(k), Xqo(k) and
Xqa(k) in two stages as shown in the following
equations:

k
Xe (K) = Xao (KW * Xaz ()

Xo (K) = Xao (K) Wi * Xaz ()

Xe (crNi4) = Xqq (PW R Xaa (K)

2
Xo (keN/4) = X g (K) W 3™ X (K)

Because N = 2" we can continue decomposing "r"
times until the summations in the butterfly
calculation become the terms x(k). For N = 8
samples we obtain the results shown in Figure 3-
21.

The input data in Figure 3-2.1 was ordered
according to the needs of decomposition into odd
and even series which has the property that the
results occur in natural order. On the other hand, if
the original data was in chronological order, the
results would be in bit-reversed order. Bit-reversal
refers to the binary representation of the
sequential position of the data values. For a
sequence N = 2" we read the binary code (r bits) of
the initial position backwards and obtain the binary
code of the bit-reversed position.

For N = 8 the values are:

Binary Bit-Reversed
Value Value

000 000

001 100

010 010

011 110

100 001

101 101

110
111

011
111

Note that the input data order when arranged for
decimation in time is bit-reversed order so that the
reordering process is the same for either input or
output. Figure 3-2.2 shows the butterflies when
the input data is ordered (and the results are bit-
reversed) for N = 8 samples.

3.2.2 Algorithm for Decimation in
Frequency

The decimation in frequency algorithm decompos-
es the initial series into two consecutive series.

X4 (n) = X(n)
for n=0,1,...,N/2-1

X, (n) = X(n+N/2)

15




Using the preceding notation, the transform of the
sequence can be written:

(N/2)-1 n-1 K
X0 =Y X Wi ¥ X(m)* Wi

n=0 n=N/2

(N

X,(n) wik +i % () w(n+N/2)k

n=0 n=0

(N/2)-1

23 0

n=0

X, (X, (0) * WRNVZ ] = Wi

Since WKN/2 is equal of —1 when k is odd and
equal to +1 when k is even, the even and odd
samples can be written:

(N22)1 .
X(2k) = }f [ X Xz (m) ] * war

n=0

(N/2)-1

X(2ks1) = 2 [ Xy(m)-%p (0) ] W "
n=0

Using W2n/k = e-i2me2ni/N - g—2menk/N/2 - WN K

the equations become:

(N2)-1
X(2K) = 2 [% (1%, () ]* Wi

n=0

(N
X(2ks1) = 2 [ X ) - Xz ()] * W * Wiz
. n=0

0 0
D4 ,
2 2
6 >< 3
1 4
5 >< 5
3 6
7 >< 7
Figure 3-2.1
0 0
1 X,
2 2
3 >< 6
4 1
5 X 5
6 3
7 >< 7
Figure 3-2.2




These equations show that the samples of the
DFT can be obtained from the N/2 point DFTs of
the sequences f(n) and g(n) where

f(n) = X4 (n)+X; (n)

g = [ Xy(n)-Xp () J* Wy

This can be represented by the following butterfly:

As in the decimation in time algorithm we can
decompose each series .into two sequences
repeated "r" times. For N = 8 samples we get the
graphic of Figure 3-2.3.

Data order is the same as for decimation in time; we
have to order the initial values in bit-reversed order
(see Figure 3-2.4 for N = 8) in order to get the
results in natural order.

X () ) The decimatiop in time anq _degimation in
frequency algorithms are very similar and call for
the same number of arithmetic operations. The
calculations can be made in-place (results replace
the operands used to calculate them) but we must

X2 (k) g(n) arrange the initial sequence in bit-reversed order
to get the results in natural order or we can leave

0 0
1 >< 4
2 2
D :
4 1
5 >< 5
6 3
X ;
Figure 3-2.3
0 0 .
4 X
2 2
: X,
1 4
5 >< 5
3 6
7 >< 7
Figure 3-2.4




the initial sequence in chronological order and
rearrange the resulting sequence. Reordering the
inputs or the results are both performed according
to the same rule, i.e., bit-reverse the binary
representation of the position. It is also possible to
avoid the rearrangement by using a double buffer
memory and placing the butterfly results in the
alternate buffer instead of in-place. The buffers
would be swapped at the end of each FFT iteration
to make the output of the previous iteration the
current input data.

3.2.3 Comparison of FFT and DFT

The algorithms of the Fast Fourier Transform (FFT)
requires r = logo N steps. At each step there are N
complex additions and N2 complex
multiplications.  Therefore, the total number of
operations is:

N/2 log, N multiplications
N log, N additions

The following table compares these results to the
ones of the Discrete Fourier Transform.

Discrete Fast
Fourier Fourier
Transform Transform
N * ) * )
64 3969 4032 192 384
256 65025 65280 1024 2048
1024 1046529 1047552 5120 10240

As mentioned previously, this efficiency only
applies when a large portion of the spectrum is of
interest.  If only three frequency outputs were
required, the DFT table becomes:

N 9] (+)
64 189 189
256 765 765
1024 3069 3069

3.2.4 Inverse Fourier Transform

The inverse Fourier transform of a * signal
transforms data from the frequency domain to the
time domain and is calculated by:

N-1 .2n nkN
X(n) = 1/N 2 X(k)* &
=0

The similarity to the forward transform allows us to
use the same algorithms for the inverse transform
by changing the sign of the angle from (-2r+n+k/N)
to (2rnxn*k/N) or W to W™ The scale factor 1/N
is typically incorporated in the gain of the system
and ignored for the purposes of calculation of the
transform.

3.2.5 Radix 4 FFT

It is possible to further reduce the number of
calculations required to perform the FFT by using a
radix 4 algorithm. If the number of samples N is
represented by N = 4X, for x = a positive integer,
the butterflies of the preceding algorithms can be
rearranged in groups of four. For the decimation in
time algorithm with N = 4 we have to perform the
operations shown by Figure 3-2.5. Figure 3-2.6
shows the same thing for N = 16. Figures 3-2.7
and 3-2.8 show the requirements for reordering
the data for N = 16 but this time using the
algorithms of decimation in frequency. The
improvement in efficiency is shown in the
following table:

Xo Xp = x0+x1*wk+x2'W2k+x3*W3k
X4 K X1 = Xo—jX1'wk—X2*W2k+iX3*W3k
X2 X2 = xo—x1*Wk+x2'W2k—x3*W3k
2K
X3 3K X3 = Xg + jXq * WK — x5 * W2k — jx5 * W3k
Figure 3-2.5

18




6l

© © ~ (-] (3] & w N -- o

10

1

12

13

14

15

o o o o o o o o o o o o o o o (=]

%.

0

N

<K

X
BRI

O,

7

(\‘\

=0 =

Figure 3-2.6

o o

©




Radix 2 Radix 4
N (*) (+) (*) (+)
64 192 384 144 384
256 1024 2048 768 2048
1024 5120 10240 3840 10240

As shown in the table the advantage of the radix 4
algorithm is in reducing the number of
multiplications by 25%.

3.2.6 Real-valued Input Fourier
Transforms

Although the FFT processes complex data, the
input to a system is frequently real data only. One
way to process real-valued input data is to zero-fill
the imaginary data and perform the FFT as though
the inputs were complex. However, this is wasteful
of memory and processing time since half the
outputs are discarded when the FFT is complete.
One way to overcome this inefficiency is to
combine two series of real inputs and process
them as a complex number series. This produces
two spectra in the processing time required for a
single zero-filled data set. However, it does
require an additional processing step to separate
the outputs into two spectra. If

{x1(n)}
is treated as the real part of the data and

{x2(n)}
is treated as the imaginary part, the two spectra can
be separated by calculating:

X, (=172 { [Xa )+ X (N-H]
1 [X 00X (N-R)] }

X, () = 172 { [X,00+X,N-W)]

+1 [ X 6% (N-R] }

This additional processing step is much less than
the time that would be required to perform a
second FFT.

A second algorithm takes a single series and treats
every even data point as the real part and every
odd data point as the imaginary part of the data.
After performing an N/2-point FFT, the outputs
must be calculated using the following:

XK) =112 [Xg (k) + Xg(n-K) +cos & (X;(K) + X (N-k))
-sine (Xa(9-Xa(N-K))] +i2 [X,00+X,(n-K)
-sin e (X;(k) + X (N-k) ) + cos & (Xg (K) - Xg (N -K)) ]

for @ =mk/N

In this case the additional processing is traded off
against the time to perform an N-point FFT instead
of an N/2-point FFT. The additional processing is
more than the previous method but requires less
memory since only one data set is processed
instead of two data sets simultaneously. The data
flow through the system is also more regular, and
that is sometimes important.

A third algorithm developed by Bergland
eliminates the calculations which produce
redundant results. This method does not use the
complex FFT algorithm; it treats the data as real or
imaginary numbers during the calculations instead
of operating on complex pairs. It also contains two
butterfly configurations instead of the single
butterfly used in complex algorithms. These
butterflies are diagrammed in Figure 3-2.9.
Butterfly type one is used when k = 0 and butterfly
type two is used for all other coefficients. This
algorithm also produces outputs in scrambled
order as shown in Table 3-1 with the real and
imaginary parts in consecutive positions in the
sequence. The first two elements are the
exception. These are the real parts of the first and

X0

X4

X2

X3

Xo = Xo+ X1+ X2 + X3

K Xi= (X0 = X1 = X2 + jx3) * WK
Xo = (Xg— Xq+ X — Xg) * W2k
2Kk X2 (Xo = Xq + X2 — X3)
X3 = (Xg + jXq — X2 — jXg) * W3K
3k (Xo + Jxq — X2 = JX3)

Figure 3-2.7




e

10

11

12

13

14

15

0

o

o

NN |
R S v

ST
Q

O

NS
// ‘ 12 0

Figure 3-2.8

o

o

o

o

o

11

15




last frequency filters, which have imaginary parts
equal to zero. Although the order appears similar
to bit-reversed order, it does not have a simple
translation and must be generated algorithmically
from the previous sequence. The new sequence
algorithmis as follows:

1) Even elements of the new sequence (starting
with element 0) are the previous sequence.

2) Odd elements are inserted by subtracting the
even element from the length of the new
sequence except for element 1 which is equal
to 1/2 the length of the sequence.

3.3 MAGNITUDE CALCULATION

An operation that is frequently necessary in signal
processing is the computation of the magnitude of
complex samples. This is particularly common
when performing FFT processing. A magnitude
can be calculated directly as the square root of the
sum of the squares of the quadrature com-
ponents. However this algorithm has the dis-
advantage of requiring double precision arithmetic
for the calculations as well as being complicated
and time consuming. A machine performing 16-bit
operations would require 32-bit arithmetic to sum
the products and the square root computation
typically requires one iteration per bit in the result.

Since the computation of the square root of the
sum of the squares is such a complex task, many
alternatives to the magnitude calculation have
been developed. The simplest approach to the
calculation is to use a linear combination of the
quadrature components. This takes the form M =
ax+by for x = max(|R|,|l|) and y = min(|R,]I|), i.e. x =
abs(larger) and y = abs(smaller). Systems in which
a shift is less expensive than a multiply (in time,
hardware or both) typically use coefficients like a
=1andb =1/2. However a system which calculates
a product as easily as a shift can obtain a more
accurate magnitude with a = 0.960 and b = 0.398.
Even more accuracy can be obtained by changing
the coefficients as a function of the angle.
Although the magnitude is independent of angle,
the approximation error has an angle dependency
equal to 1-(a*cos(®)+b+sin(®)) for 0<O<w/4, which
is the region defined by the larger/smaller equation
stated above. The angle dependency of the
algorithm can be kept simple by defining only two
regions separated at an angle where the tangent is
a simple ratio such as where one quadrature
component is twice the other. An example of this
approximation is to use a = 1 and b = 1/4 when
x>2y and a = 3/4 and b = 3/4 for x<2y.

Another approach to calculation of the magnitude
is to use Cartesian-to-polar coordinate conversion

Table 3-1
N = 4 8 16 32
OR OR OR OR
16R
8r 8r
8
4R 4R 4R
4 4
12R
12
2R 2 2R 2R
2 2 2
14p
14,
6R 6R
6 6
10R
10;
1R 1R 1R 1R
1 1) 1) 1)
155
15;
7R 7R
7) 7
9R
9
3R 3R 3R
3 3 3
13R
13)
5Rr 5r
5 5
11R
11,

algorithms. The quadrature components are a
vector in Cartesian coordinates and conversion to
a magnitude-phase pair gives the desired result. A
direct calculation of M = y/sin(arctan(y/x)) involves
divisions and arctangents which are not attractive
alternatives to a square root calculation. However,
once the phase is determined, multiplication can
be used to rotate the vector onto the x-axis where
the value of the real component and magnitude
are identical. This reduces the problem to
calculation of the arctangent usually by means of a
lookup table. Division can be eliminated by
concatenating the two components of the vector
to form the address of the table, but this double
length address results in a prohibitively large table.
The simplest approximation is to normalize the

22




vector by left-justifying the larger component, and
to use a limited number of MSBs of each
component to address the table, eg. using bits x45_

10 and y15-19 of 16-bit numbers to address a table
containing 4096 angles. A more accurate
approximation which also removes the necessity
for normalization uses the most significant bits of
the larger component, the most significant bits of
the smaller component and the bit position of the
MSBs of each component (or the number of
leading zeros). This might use two data bits and a
four bit position for each component of the vector
to address a table of 4096, e.g., bits x12_11 and
position 12 for one component and bits yg_7 and
position 8 for the other (assuming bits x15_12 are
all the same and yi5_g are also the same).
Because the arctangent is well behaved for small
angles, this algorithm can be iterated for greater
accuracy. The previous one can not be iterated
since bits yi5_10 become nonsignificant as the
vector is rotated toward the x-axis. Addressing a
table with the number of leading zeros of each
component and the single bit following the leading
one can produce a magnitude with 1.4% accuracy.
Additional accuracy can be obtained by using more
bits following the leading one or by iteration. Table
size can also be traded off by using the difference
between the number of leading zeros of each
component to address the tabie rather than the
individual counts. Both of the approximations
could produce the sine and cosine directly from
the table but the angle is sufficient when a sine
and cosine table is already available for FFTs.

Another approximation which rotates the vector
onto the x-axis can be used if multiplication is too
costly. CORDIC (COordinate Rotation Dlgital
Computer) rotation is one of a class of algorithms
developed by Volder in 1956. The key elements
of this algorithm are successive approximation and
elimination of multiplication. The vector is placed in
the first quadrant by taking the absolute values of
the components and is then rotated toward the x-
axis by adding or subtracting a series of angles.
Each angle is added if the phase of the vector is
negative or subtracted if the phase is positive with
the result that the x component of the vector
becomes the magnitude as the phase angle
approaches zero. Positive or negative phase is
the same as a positive or negative y value which
makes the determination of this condition
straightforward. The angles are selected so that
their tangents are simple binary ratios which allows
rotation to take the form

Xp =Xp_1 + Yn—1/2" and
Yn =Yn-1 +Xn-1/2

where r increments for each iteration. Accuracy of
the algorithm is a function of the number of
iterations with four iterations producing an
accuracy of 0.772%. A side effect of the algorithm
is that there is gain, i.e. after four iterations the x
component will be 1.643 times the magnitude of
the original vector. However the gain is fixed for a
given number of iterations and is usually absorbed
inthe gain of the system.

(k=0)
A A
B 0 B'
c c
D D'

A'=Re[A+]B+(C+D)WY]
B =Im[A+]B+ (C+jDWR]
C'=Re[A+]B~(C+D)W]
D'=Im[-A-jB + (C +D)W]]

Wy = e (§2nN)

(k#0)

A A
B k B
c c
D D

A'=Re[A+]C+ (B +D)WE]
B'=Im[A+]C + (B +D)WK]
C'=Re[A+[C—(B+DW]
D'=Im [-A~]C + (B + D)W ]

Wy = e (j2wN)

Figure 3-2.9

23




A common use of the magnitude calculation is for

the detection of signals in noise such as radar-

target detection or communications carrier
detection. The major concern in this application is
the signal to noise ratio loss caused by the
approximation. An average background value
(representing noise) is calculated using an
approximation with minimum average error and the
signal magnitude is calculated for minimum peak
error. Using the simple shifting approximations
would mean using larger +1/4 smaller for the
average (absolute error = +3, —11%, average error
. = 0.6%) and larger +1/2 smaller for the signal

(maximum absolute error = +11, —0%, average
error = 8%). Table 3-2 contains various
coefficients and the errors associated with them.

Table 3-2
Peak Average
Approximation Error Error
L+.58 11.80 8.68
L+.258 11.60 0.65
.960L +.398S 3.96 -1.30
6.06 -3.01

L+.258/.75L +.75S

24




CHAPTER 4
SYSTEM DESIGN

4.1 ARRAY PROCESSOR DESIGN
BASED ON THE Am29500 FAMILY

The board described in this chapter was built and
tested in AMD Headquarters Applications in early
1985. This application was developed to show
designers the efficiency in using the Am29500
Family for digital signal processing. Doing a paper
design is one thing; building a working prototype
boosts confidence level. This section of the
manual will help the reader to design a system and
point out what aspects of the design require
consideration.

The goal here is to design an optimum
cost/performance board. Table 4-1 compares radix-
2 butterfly cycle times for different architectures.
The architecture chosen for this design is the
2,2,1 architecture: two buses, two ALUs, and one
multiplier. With this architecture, each butterfly
takes four cycles. Therefore, 5,120 butterflies in a
1K complex point FFT at 10 MHz takes 2 ms.
Figure 4-1.1 shows the basic architecture of the
board. The two ALUs are 16 bits each for real and
imaginary data. Each ALU is comprised of two
Am29501s. The two ALUs can also be combined
by using the Am2902 Carry Lookahead Generator
to form a single, 32-bit, double-precision ALU.
The two 16-bit buses supply real and imaginary
data from the data memories to the ALUs, and vice
versa, via the bidirectional DIO ports of the
Am29501s. Data from the ALUs is transferred to
the multiplier via the bidirectional MIO ports of the
Am29501s. If 32-bit products are required, 16 of

the 32 bits could come in from the muttiplier into
the MIO ports. The 16X16 multiplier is the
Am29517. Its X and Y ports are the two 16-bit
input ports, and its P port is the 16-bit output port
on which the 32-bit product can be multiplexed.
The Y port of the multiplier is a bidirectional port
and, for single cycle 32-bit multiplies, this port has
to be used in conjunction with the P port to get the
complete 32-bit product.

The MIO ports of either the real or imaginary ALUs
can be directed to the Y port of the multiplier. The
X port data can be selected from one of several
sources—the MIO ports of either the real or
imaginary ALUs, the real data bus, the imaginary
data bus, or the coefficient PROMs. The 1-of-4
MUX provides the path required for data flow to the
X port. The P port of the multiplier goes to the MI
ports of the ALUs.

The data memory is made up of high-speed (45 ns)
RAMs. There are two memory banks. While one is
being worked on by the DSP algorithm, the host
CPU can unload and reload the other. Each
memory bank is 1K deep and 32 bits wide, which
means that the maximum FFT size can be 1K
complex. Data from the host can be DMA'd over to
the board or the CPU can use I/O to transport it.
DMA is only provided on the 16-bit host buses.
Eight-bit host buses must use programmed /O.
Thirty-two 1/0 addresses are reserved for this
board and the address decode logic decodes
these addresses and selects appropriate logic on
the board.

The Am29540 and the Am29116 generate
addresses for DSP algorithms. The Am29540 is an
FFT address generator. The transform length, FFT
type, etc. are supplied by the CPU to the part, and

Table 4-1 "Optimum" Cost/Performance

(Radix-2 FFT)
For Each Memory Access Add/Subtract Multiply
Butterfly 8 6 4
Resources | Memory Buses ALUs Multipliers
# of # Usage # Usage # Usage
Cycles
8 1 8/8 1 6/8 1 4/8
6 2 4/6 1 6/6 1 4/6
4 2 4/4 2 3/4 1 4/4
3 4 2/3 2 3/3 2 23
2 4 22 4 1.52 2 22

25




the part puts out the correct sequence of data and
coefficient addresses. The Am29116 provides
addresses for the filter and matrix algorithms.

The Am29520 is the address pipeline register for
the data memory. The Am29821 is the address
pipeline register for the coefficient PROMs for the
FFT and filter algorithms.

The last block in the architecture is the
microprogram control unit. The microword width is
128 bits. The code can be up to 2K deep. High-
speed (35 ns) registered PROMs are used to store
the code. The sequencer is the Am2910A. Two
Am2922s allow the sequencer to test up to 16
different conditions.

The detailed architecture of the board is explained
in the following five sections.

a) Arithmetic
b) Memory
¢) Addressing
d) Control
e) 110

4.1.1 Arithmetic

Figure 4-1.2 shows a detailed diagram of the
arithmetic section.

Data scaling must be considered when designing
an FFT board. This is necessary in fixed point
systems, to ensure that the results do not
overflow. The approach taken here is "block
scaling,” wherein all data is scaled by a certain
amount at each pass. This kind of scaling can be
done at the input to or the output from the ALU. A
shifter at the input to each ALU serves the
purpose without restricting the input data. When
the shifter is at the output, the input data is
restricted so that there is no overflow on the first
pass through the pipeline. Overflow can occur
during complex mutiplication when summing
R+R-I+I or R*I+I*R because of inaccuracies due to
truncation. Overflow could also occur when
adding or subtracting, so two bits of overflow
should be allowed when performing an FFT
butterfly. Scaling involves right shifting of the data.
Being able to shift up to 3 places is sufficient and
thus 4-bit shifters (Am25S10), not barrel shifters,
are used. Figure 4-1.3 shows how four
Am25S10s are connected to form a 16-bit shifter
for each ALU. They are connected so that when
shifting a 2's complement number, the sign bit
gets copied into the shifted position. The real and
imaginary buses bring data into the DIO ports of
the ALUs via these shifters. Two microcode bits

control the amount of shift. The return paths from
the DIO ports of the ALUs to the memories are
buffered by the Am29827 10-bit buffers. The
Output Enables of the shifters and buffers are
controlled by the Write Enable lines from the
microword to the data memories to ensure that bus
contention does not occur.

The FFT algorithm uses the formula AYWB where
A and B are the complex data points and W is the
complex coefficient. Multiplication is only between
B and W. So for the FFT algorithm, it is sufficient to
have the coefficient as one input to the multiplier
and the ALUs as the other input. Squaring to form
a magnitude, on the other hand, requires
multiplication between "data" inputs. No
coefficients are involved in matrix multiplication.
Thus, for this algorithm, both multiplier inputs must
connect to the ALUs. Sum-of-product-type
calculations may require that data flow directly from
the memory into the multiplier, bypassing the ALU.
Finally, complex arithmetic requires that data flow
from either ALU to the other. All of these data
paths exist in this design. The output of a 16-bit, 1-
of-4 MUX, made up of eight 74LS253s, is
connected to the X input of the multiplier. The four
possible X inputs are: the coefficient PROMs, the
real data bus from memory, the imaginary data bus
from memory, and either ALU. A transceiver
between the two ALUs, appropriately controlled,
prevents bus contention and allows either ALU to
be connected to either multiplier input. The
transceiver also allows bidirectional data flow from
one ALU MIO port to the other. The MUX and
transceiver are controlled from microcode. The Y
input of the multiplier is a bidirectional port. If a 32-
bit product is required, 16 of the product bits can
be multiplexed on this port and input into the ALUs
via their corresponding MIO ports. The other 16
bits of the 32-bit product can go from the P port of
the multiplier to the Ml ports of the ALUs.

Some algorithms may require double-precision
arithmetic. The Am2902 is a Carry Lookahead
Generator that allows cascading of all four
Am29501s to form a 32-bit ALU. Figure 4-1.4
shows how the ALUs and lookahead generator are
interconnected to allow this. Here the Most
Significant Byte for double-precision is the
Imaginary MSB and the Least Significant Byte is
the Real LSB. The RALUOM bit from microword
controls whether the configuration is single-
precision or double-precision. When this bit is
High, the propagate and generate signals from the
imaginary MSB are forced High, thus forcing Cy,y
from the Am2902 Low and effectively enabling
single-precision.

26




/e

HOST

REAL
PROCESSOR

Am29501

IMAGINARY
PROCESSOR

Am29501

ADDRESS DATA
INTERFACE INTERFACE
ALGORITHM #1 ADDRESS DATA RAM
PIPLINE
FORDATA <
IMAGINARY BUS
Am29540 2 Am29520 Am2148
K REAL BUS
FFT ADDRESS GEN.
ALGORITHM #2 ADDRESS
PIPELINE
FORCOEF- \/ V
FICIENT COEFFICIENT PROM
Am29116 J\, Am29821 3 Am29526,27,28,29 A MUX K
FILTER & MATRIX
ADDRESS GEN. T
MICROPROGRAM AND
CONTROL UNIT

Am2910A, Am27S45A

Figure 4-1.1

16x 16
MULTIPLIER
Am29517




82

BUFFER
Am29827

SCALER
Am25S10

BUFFER
Am29827

SCALER
Am25S10

COEF ),

MUX

DIO DIO
REAL U MG
Mo y v
Am20501 Py Am29501
* Am2902
M

TRANSCEIVER

Am2947 <

MULTIPLEER
X Am20517 :

Figure 4-1.2




62

<

DATA BUS FROM MEMORY

< MBUS >
15 151515 1413 12

132 1110 -1 -R2-13

14131211109 8

1

10 9 8 7 6 5 4

132 1110 -H-2-B

B2 1io-n-R-B

32 1nio-n-2-13

D

| |
9 8
| |

—

ot Am25S510 o Am25S10 o Am25S10 o Am25S10
S1 m St m S1 m S1 m,

’—l{ 08 Y3 Y2 Y1 Y0 € Y3 Y2 Y1 YO E Y3 Y2 Y1 YO € Y3 Y2 Y1 YO
BN HRN NN HEN
111 LI1] L]

DATA BUS TO ALU »
LT LETT T
151413 121110 T T i |6 T ‘|1 (li |2 I T
D5 D4 D3 D2 D1 DO D9 D8 D7 D6 DS D4 D3 D2 D1 DO

o Ameoezr p
Y5 Y4 Y3 Y2 Y1 YO Y9 Y8 Y7 Y2 YO
NEREEEER
151413 1211 10 7I 4 3 2l ('i

DATA BUS FROM MEMORY

Figure 4-1.3




< MBUS >
RALUOM RALUOL
A A
lo ho
lo-18 lo-18 lo-18 lo-18
20-28 20-28 20-28 20-28
Am29501 Am29501 Am29501 Am29501
REALLSB REALLSB IMAG MSB IMAGLSB
»{CiN Cin Cn le [
P G L PG PG PG
PGPGPGPG
11003322
Am2902
CNex  CNoy  Cnaz
Figure 4-1.4
4.1.2 Memory One line, Q (described in the Control section),

The data memory is an important consideration in
the design. It must be designed to support the
high-speed  architecture. The  minimum
requirement is one memory bank, to be toggled
between the host system and the DSP Processor.
But this means that the DSP Processor is idle
during the time data is unloaded and new data
reloaded. Real-time applications would typically
sample data continuously at a fixed rate. Results of
the process would be read continuously from the
data memory. Thus, it is necessary to have two
memory banks so that, while one bank is being
unloaded and reloaded, the other bank is
processed by the DSP. This restricts this design
toin-place FFTs.

Figure 4-15 shows the memory section
architecture of this design. High-speed (45 ns)
Am2148 memories make up the two memory
banks designated L (Left) and R (Right). Each
memory bank is 1K deep and 32-bits wide. Since
FFTs operate on complex data, each memory bank
is further divided into 16-bit real and imaginary
parts designated by R and | respectively.

controls memory bank switching. To allow parallel
operations, two address buses (designated Left
and Right) supply addresses simultaneously to the
two memory banks. These address buses switch
when Q switches so that DSP data addresses are
provided to the memory on which the DSP is
processing and host data addresses are provided
to the other memory bank for unloading and
reloading of data.

The DSP data buses are 16 bits wide.
Transceivers (Am2947s) isolate one memory bank
from the other on the DSP side. Q controls the
Chip Enables of these transceivers so that only the
appropriate set of transceivers are enabled at any
time. The direction of these transceivers is
controlled by the real and imaginary Write Enable
bits from microcode.

Host data buses can be 8 bits or 16 bits wide. The
three inverting transceivers (Am2946) at the top of
Figure 4-1.5 are connected to accommodate both
sizes. If the host bus is 16 bits wide, transceivers 1
and 3 are enabled by CD3 so that data is
transferred directly in 16-bit words. If the host bus

30




is 8 bits wide, data must be transferred in bytes.
First the low byte is transferred through transceiver
3 and then the high byte is transferred via
transceiver 2. Notice that when the low byte is
written, transceiver 1 is also enabled and invalid
data enabled on the high byte. This is followed im-
mediately by the true high byte. When data is read
back by the host, there is no problem because the
host bus is only 8 bits wide. Control signals CD2
and CD3 are generated from a PAL device.

The direction of these transceivers is controlled by
the system Read signal, IOR, such that the
transceivers are directed into the board by default.

The Am2947 transceivers on the host side of the
section are to isolate the memory banks on that
side. Their Chip Enables (CELR, CELI, CERR,
CERI) are generated in a PAL device. Control
signal Q is used to distinguish between the left
and right memory banks. The system Read signal,
IOR, also controls the direction of these
transceivers.

Eight Write Enable lines, WE1 through WES8, are
produced in a PAL device. Data Writes from the
DSP side are in 16-bit words only. Two microcode
bits, one for real data and the other for imaginary
data, are used to generate the Write signals from
the DSP side. Data Writes from the host side can
be accomplished by DMA or I/0. DMA is allowed
only for 16-bit transfers. The Am9517A is the DMA
controller being used in the design. Since 1/O
Writes can be in either byte or word mode, two 1/O
addresses are reserved for this. When a decode
of these two addresses occurs, a PAL device
produces two signals, BYTEH for the high byte
and BYTEL for the low byte. When the bus is used
in 16-bit mode, the MULTIBUS* produces a
control signal, BHEN. A combination of these
three signals is used to produce the eight Write
Enables during data loading via I/O.

4.1.3 Addressing

To achieve parallel operation, both memory banks
are addressed simultaneously, one by the host for
unloading and reloading of data and the other by
the DSP address generator. Figure 4-1.6 shows
the architecture of this section.

Addressing from the host processor must
accommodate DMA or programmed 1/O. For this
design, only 16-bit DMA transfers are allowed.
Programmed I/0 transfers, on the other hand, can
be 8 bits or 16 bits. Host addressing is done by a
"fly-by" counter. The counter is preloaded with the
starting address from the host processor. The
counter is clocked by the Read or Write signal
produced by the Am9517 DMA Controller, if DMA

is being used, or by the Read or Write signal from
the host system, if programmed I/O is being used.
A PAL device produces these clock signals for the
fly-by counter. The 12-bit Counter is made up of
three Am74161s (4-bit presettable counters).

The Least Significant Bit of the fly-by counter goes
into the PAL device that produces the eight Write
Enable signals for the memory. It distinguishes the
real data from the imaginary data. The next 10 bits
of the counter address the 1K deep memory. The
address for a complex word of memory is the same.
Thus in the 16-bit mode, the address from the fly-
by counter to the memory remains unchanged for
two consecutive clocks and the Least Significant
Bit of the fly-by counter helps to generate a Write
signal for either the real or imaginary part of the
complex word. For 8-bit I/O transfers, the fly-by
counter is clocked once every two 8-bit Writes so
that the Least Significant Bit of the fly-by counter
still distinguishes between real and imaginary data.

This design supports the following DSP
processes: 1)Fast Fourier Transforms, 2) Filters,
and 3) Matrix Multiplication. Addressing for the
FFT is quite complex but the Am29540 provides a
hardware solution. Addresses for data source, data
destination and coefficients are generated by the
Am29540 FFT Address Sequencer. The
microcode indicates to the address sequencer the
FFT type (radix 4/2; inplace, non-inplace; DIT/DIF).
Four bits from the Instruction Register (described
in the Control Section) indicate the transform
length to the sequencer. The transform length is
latched into the part at the start of the process.
That's all that is required for initialization. The
sequencer now produces data and coefficient
address in the required order for the entire
transform.

The Am29116 is programmed to produce the
address sequence for Filters and Matrix
Multiplication.  Since the board runs just one
process at a time, the Am29540 and the Am29116
are never used simultaneously. Therefore the
microcode bits for the two parts are overlayed. The
FFT transform length four bits from the IR indicate
tothe Am29116 the type of filter or the matrix size.

The data addresses must be saved in a pipeline
register for efficient microcoding. The Am29520
serves as a dual, two-level pipeline register. The
source addresses for the two complex inputs are
saved in one level. These are moved into the
second level to become the destination addresses
for the results and new source addresses get put
into the first level. Four bits of microcode control
the two Am29520s that are connected in parallel to
form the 12-bit-wide pipeline register for the data
addresses.

*MULTIBUS IS A REGISTERED TRADEMARK OF INTEL CORP




ce

>

< DB15-DB8 HOST DATA BUS DB7-DBO
1 2 3
/IOR — /IOR — /IOR —]
Am2946 Am2946 Am2946
— CD3 — CD2 — CD3
<>—8 <>—8 <>—8
< D15-D8 MEMORY DATA BUS D0-D7 >
<>—16 <>—16 <>—16 <>—16
NOR /IOR — NIOR —| /IOR ~—]
Am2947 Am2947 Am2947 Am2947
— ICELR ICELI /CERR [CERI
__l T —__J | =y _—, F——— __—]
LEFT
ADDRESS
BUS
LR Ll MWES — RR WE7T—] RI -
1 I
/WE1 Am2148-45 WE3 —] Am2148-45 /WES —] Am2148-45 WE8S —] Am2148-45
: |
WE2 /WE4 —]
RIGHT |_
ADDRESS )\
BUS l—?—
16 16 16 [ 16
MWER — /WE!I — MWER — /WE|I —
Am2947 _ Am2947 Am2947 Am2947
L5 3 I Q —Q
___I p—
I>—16 16 <>—16 <>—16

DSP REAL DATA BUS - 16-BIT

Y

<

Figure 4-1.5 <

DSP IMAGINARY DATA BUS — 16-BIT




€€

74161

Am29540

Am29520

Am29S26-7

A Am29827

o—J

Am29116

Figure 4-1.6

Am29821

Am29S78-9

Am27S291A

) Am29827

s

:> p—

LEFT BANK
ADDRESS

5 —

3 Am29827

— RIGHT BANK
ADDRESS

o]

> COEFFICIENTS




The coefficient addresses need a simple, one-
level pipeline register and the Am29821 10-bit
register serves the purpose. For the FFT process,
there are 16-bit sine and cosine coefficient

PROMs (Am29526-Am29529). Two  8-bit
PROMs, Am27S291s, form a third 16-bit
coefficient PROM for the filter algorithm.

Addresses for the sine and cosine filter coefficient
PROMs are generated by the Am29540. Coef-
ficient addresses from the Am29540 are left-
justified and for radix-2 operations, the MSB is
always a "0." The Am29116 is programmed so that
its MSB is always a "1" when generating filter
coefficient addresses. This MSB is therefore used
to "Chip Select” between the FFT coefficient
PROMs and the filter coefficient PROMs. A
microcode bit selects between the sine and cosine
during the FFT process.

The two memory banks are addressed simul-

taneously, one by the DSP addressing and
one by the host addressing. Two address buses
therefore supply these two addresses to the two
memory banks. At the end of a process, the two
buses must be switched, under control of the flag
Q. This is achieved by the four 10-bit buffers,
Am29827s. At any one time, two of these buffers
are enabled by Q, one supplying host addresses
to one bank of memory and the other supplying
DSP addresses to the other bank. At the end of a
process, these two buffers are turned off and the
other two turned on so that the buses switch,
effectively switching memory banks.

4.1.4 Control

This section addresses the "heart" of the design
because the microcode controls the rest of the
system. The microcode width must be decided
during this phase of the design. A Microprogram

< HOST DATA BUS >
<fs—7 <>—1
< — Q
Am29845 7400 _
OF |« Q { MBUS )
‘4 o>—3 INSTR
+5V +5V
s <>— 3
12 fmap —
Am2925 é > Am2910A  CC Am2922 Jli——
Y —
<f>— 11
YYYV Y
Am29827 Am27S45A INIT }¢———————— RESET
<o— 12 116
MICRO CONTROL
CLOCKS
Figure 4-1.7

34




Sequencer is used to sequence through the
microcode. A Pipeline Register is required for the
microcode bits so that the sequencer can fetch the
next microinstruction while the present one is
executing. A Condition Code MUX is needed to
test conditions. These are the basic necessities of
the Control section.

Figure 4-1.7 shows the architecture for this
section. The microcode width required for this
design is 128 bits: 58 bits for the Real and
Imaginary ALUs, 21 overlayed bits for the
Addressing section, 6 bits for the Multiplier, 4 bits
for the Shift Register, 4 bits for the Address
Pipeline Register, 16 bits for the Microprogram
Sequencer, 5 bits for the Condition Code MUX,
and some other miscellaneous bits. The PROMs
used are Am27S45As; they are high speed (35
ns) 2K x 8 registered PROMs. Using registered
PROMs decreases part count and saves board
space because the Pipeline Register is built into
the PROM. The Condition Code MUX has built-in
registers and so, to avoid having two registers in its
path, a non-registered microcode PROM is used
for it. A registered PROM could be used but the
microcode for the CCMUX would be shifted by 1
line with respect to the rest of the microcode.

These PROMs have a 2049th location which can
be programmed as any value. This value appears
at the output of the PROM when an INIT signal is
applied to the PROMSs. This is a useful feature for
initialization on reset. The op-code for a Jump to
Zero (JZ) instruction for the sequencer is
programmed into this location for initialization on
reset. The reset line from the CPU is connected to
the INIT input of the PROM.

The sequencer used is the Am2910A, capable of
addressing up to 4K of microcode memory. We
have 2K deep microcode memory in this design
which is enough for the processes desired here.

Two Condition Code MUXs (Am2922s) enable
testing of up to 16 inputs, of which one is used for
the "forced pass" condition. The outputs of the
Condition Code MUX is fed into the CC input of the
sequencer for condition testing.

The control section also contains an 8-bit
Instruction Register (Am29845). Four bits go to
the Am29540 or Am29116 to indicate FFT
transform length, filter type, or matrix size. Three
bits go into the sequencer to indicate the process
to be run. The eighth bit from the host goes into a
latch. This is the latch for Control Signal Q that
indicates to the entire system which memory bank
to process. The state of this eighth bit from the
host either sets or resets the Q latch.

Also included in the Control Section of the design
is the clock circuit. The Am2925 is a clock
generator and microcycle length controller. It
produces clocks of varying duty cycles.

The following is a sequence of events that would
occur from start to finish of any process. On power-
up, the reset line from the CPU is activated and the
op-code for a JZ instruction is put out from the
microcode PROM to the sequencer. This makes
the sequencer jump to the start of microcode. The
sequencer now waits for an instruction to be
loaded into the IR by the CPU.

On receiving an instruction, the sequencer jumps
to one of eight locations at the end of the
microcode. The exact location is decided by the
three bits from the IR to the branch address field of
the sequencer. The value of the three bits
depends on what process must be run (one of
eight). The sequencer jumps to one of eight
locations and gets a branch address from there
which would be the starting address for the
process. At the end of the process, the
sequencer would execute a JZ instruction and set
a flag. This flag can be read by the CPU via
software. The CPU can now load the IR with
another instruction. The CPU should not load the
IR if the flag from the microcode is inactive, as the
sequencer would miss the instruction.

4.1.5 Input/Output

The I/O section is the interface between the board
and the host system. Decoding logic is required to
decode I/O addresses reserved for the board.
Also required is the DMA controller and some
registers and buffers to interface with the host
address and data buses. Figure 4-1.8 is a diagram
of the architecture.

The DMA Controller used in this design is the
Am9517. The Am9517 is chosen primarily
because of its capability to interface easily with an 8-
bit CPU. If a 16-bit CPU were being used, the
Am9516 would have been selected. Although an
8-bit CPU and a 16-bit DMA seem contradictory,
the Multibus allows bus masters with different bus
widths to exist in the same system.

/O addresses must be reserved for this board.
The DMA Controller must have 16 addresses
reserved for it. Other I/O addresses needed are
for /O memory writes, fly-by counter loading,
checking process complete status flag, loading
three MSBs of address for DMA (described later in
this section), loading the instructions into the IR,
and initialization of the board. Thirty-two /O
addresses are reserved for this board.

35




The Am29809, an 8-Bit Comparator, produces a
board select when one of these 32 I/O addresses
is put on the bus by the CPU. When using DMA,
the controller must be programmed. This is done
via Buffer 1 (Am29828). When an address decode
occurs for the DMA Controller, Buffer 1 is "output
enabled" and the Am3517 is "chip selected” and
programmed. The MULTIBUS address bus is 20
bits wide. Since DMA is allowed only in 16-bit
mode and this design is for an 8-bit CPU, the LSB
of the address bus is grounded. The Am9517
operates in 256-byte pages. The low order 8 bits
go from the Am9517 to the host address bus via
Buffer 2. The output of this buffer is enabled by
the acknowledge line from the controller. The high
order 8 bits of the address must be latched into a
register. Device #3 on the diagram is an 8-bit
register into which these 8 bits are latched. The
MULTIBUS address bus being 20 bits wide, the
remaining 3 bits must be loaded into a second
register (Device #4 on the diagram) by the CPU.
An /O address (signal name ADDRL) is reserved
for this function.

An |/O address is also reserved for the process
complete status flag. This flag from microcode
goes into Buffer 5 and this buffer's output is
enabled when the address decode for this flag
occurs. The CPU reads the value of the buffer and
decides if the DSP process is complete.

Appendix 1 lists the equations for the three PAL
devices used inthe I/O section.

4.1.6 Timing Considerations

This is probably the most critical phase of the
design. "Timing Considerations" refers to the
speed at which the design will actually run. This
should be done before the board is built. The
designer starts out with a certain set of goals which
the design has to meet. These goals can be
divided into two categories. Category 1 lists the
different algorithms that the design has to process.
Category 2 lists how fast these processes must be
run. The designer starts with the goals in Category
1. He designs his architecture so that all algorithms
can be run by the design. He then writes
microcode for the processes. Knowing the
architecture and having written the microcode, the
designer can now evaluate worst case data paths
and can compute process times and compare
them with the goals in Category 2. All is well if the
goals in both categories are met. If not, trade-offs
must be made. First, the designer should try to
make the microcode more efficient. If this is not
sufficiently effective, the architecture needs to be
changed or some of the goals need to be relaxed.
Changing the architecture usually implies adding
more hardware so that the design has more

processing power. This is not always possible due
to board space and cost limitations. The alternative
solution, relaxing some of the goals, could mean
either disallowing some of the algorithms thus
getting rid of some hardware and thereby
eliminating propagation delays and increasing
speed, or finally, deciding that the slower speeds
are acceptable.

Inthis design, the Category 1 goals were:
a) 1K Complex FFT;

b) Filters;

¢) Matrix Multiplication.

The Category 2 goalwas:
a) IKComplex FFT in2 ms.

The hardware is designed and microcode for the
FFT has been written. Each butterfly takes 4
cycles. Now the worst case data path needs to be
computed which would decide the minimum cycle
time. To achieve the 2 ms goal, the cycle time
should be no greater than 100 ns.

All data paths should be and have been
considered. Three of the worst paths are:

1) Clock to output of microprogram pipeline
register
+ select to output of Am29520
+ prop delay of bus switching transceivers
+ data memory access time
+ prop delay of transceivers separating
memory banks on DSP side
+ shifters
+ data set up time of Am29501
=141ns.
2) Clock to output of microprogram pipeline reg
+ INST to output of Am29116
+data setup time of Am29520
=104 ns.
3) Clock to output of microprogram pipeline reg
+2 slice delay of Am29501
+ CCMUX prop delay
+Am2910 setup and prop delay
+ microprogram memory access time
=178 ns.

The worst case path is 178 ns which means that
the maximum clock frequency can be 5.62 MHz;
less than the goal of 10 MHz. Reducing microcode
is not possible. With the architecture chosen,
doing a butterfly in 4 cycles is the best one can do;
it's time to make a trade-off. As this design is for an
evaluation board, the goals of Category 1 cannot
be relaxed. The two possible paths left are to add
more computing power to the design or relax the
goals of Category 2. Again, because this design is

36




A

¢

HOST ADDRESS

>

[¢ MBUS >

—

A11-AS lz L | A4| |A3-A0 A0-AB A9-A16 M7-A19
A Y Y Y D
Am20809 EOUT Am20828 Am29826 Am29326 Am29828
B DO Di-8 OF 2 DCP 3 D CP 4 OE Y 5
! ‘L | A
g =
o L{ /apsTB  HACK
OE  Am29828 AO-A7  Am9517
Y 1 — ¢S DB0-DB7
< HOST DATA BUS >
N AbpRL
INPUTS ———] Am22V10 ot
PAL OUTPUTS

Figure 4-1.8




for an evaluation board, the latter of the two paths
is chosen. The worst case path is not likely to be
executed very often, so it is supported by
changing the clock period with the Am2925, and
the 141 ns path is considered worst case making
" the clock frequency 7.09 MHz. This path can be
improved by putting in faster transceivers and
faster data memories like the Am2148-35 or the
Am9150-25. Using the latter brings the speed up
to 826 MHz. Adding more computing power
would mean providing more ALU's and/or
multipliers. The designer would have to evaluate
by how much the microcode would reduce if there
was more arithmetic processing power. Timing
paths would have to be recalculated and a new
estimate made for the maximum clock frequency.

4.1.7 Microcode

This section deals with the software aspect of the
design.  Microprogramming involves writing a
coherent sequence of microinstructions used to
execute the various steps required by the
process. A microinstruction usually has two
primary parts: 1) the definition and control of all
elemental micro-operations to be carried out; and
2) the definition and control of the address of the
next microinstruction to be executed.

For our design, the definition of the various micro-
operations to be carried out includes the Real and
Imaginary ALU's, multiplier, data address
generation, data memory control, address pipeline
registers, shifters, clock controller and condition
code MUX select. The definition of the next
microinstruction function includes identifying the
source selection of the next microinstruction
address and supplying the starting address for any
process.

Two basic principles should be remembered when
writing microcode: 1) parallel execution of different
operations, and 2) maximum utilization of
resources due to the pipelined architecture.

The microcode for the FFT is described here in
some detail.

The FFT algorithm is highly repetitive. The same
butterfly operations are performed on different
sets of numbers. Each radix 2 butterfly consists of
four multiplies and six adds/subs. The code
developed here is for a radix 2 DIT FFT. The
equations for a radix 2 DIT butterfly are:
A1=A+BWk B1=A-BWk

where A and B are the complex input points, A1
and B1 are the complex results and WK is the
complex coefficient.

The following rules should be kept in mind when
developing microcode:

a) Determine the program repetition rate. We
have determined that our repetition rate is R =
4,i.e., each butterfly will take 4 cycles.

b) Start programming at line R +1=5.

¢) For every program entry, enter an 'X' R cycles
above and below (Table 4-3).

The arithmetic section will be programmed first.
Table 4-2 is a programming work sheet for this
section. Figures 4-1.9 through 4-1.18 and Tables
4-3 through 4-7 show, the development of the
code for the arithmetic section. Each block
diagram showing data movement for a particular
line of code is followed by a coding sheet showing
the corresponding line. If a conflict of resources
occurs, another resource must be used or the
function re-scheduled for execution.

Note in Table 4-9 that code is repeated every 4th
line. Also note that the ALU's and multiplier are
utilized 100% of the time. Also note in Table 4-9
that a new butterfly starts every 4th cycle. It is the
pipelined process that makes the butterfly time
equal to 4 cycles. At any given time, computation
for 3 butterflies is in progress as illustrated in
Figure 4-1.19.

Next the code for the address generating section
needs to be written. Obviously it needs to be
mapped into the code already written for the
arithmetic section. Tables 4-10 and 4-11. show
the coding for the coefficient PROM select and for
the address pipeline register for the coefficient
PROMs. Tables 4-12 through 4-14 show the
coding for the FFT address generator and the
pipeline register. Figures 4-1.20 through 4-1.30
show the data flow from the address generator
through the data and coefficient address pipeline
register to the memories.

Having decided upon the code, it is now
necessary to actually write it. A symbolic language
would no doubt be of great help. This is possible
with the AMDASM meta-assembler which is used
in two phases. The first phase consists of defining
the microinstructions and the language. This is
done by creating a file of the type XXXX.DEF (see
Appendix 2, DSP.DEF) which contains:

‘a) The microword width (WORD 128).

b) The list of language mnemonics. Each
mnemonic would be associated with an
instruction field defining the bits controlling
each resource.

38




8t

Ll

9l

St

vi

113

(43

(33

oL

1IN OIN

|| %

nv |t l%|a|v|w

nv

Jepidiniy

AteuiBew

leay

oia

days

¢-v olqel

39



Il

| L

11

Br

]|

Figure 4-1.9 Line 5: Read B.

40




84

Table 4-3

Step

DIO

Real

Imaginary

Multiplier

ALU

A

Ay

MiO MULT

Read B

DI

DI

12

13

14

15

16

17

18




X UnW o1 Hm 1ussaud ‘g ploy A unw o1 Hg jussaid ‘y peay 19 u 0L’ L ainbid

A A i

]

dy

42



1594

Table 4-4

Step

Dio

Real

Imaginary

Multiplier

ALU

By | ALU

AlA

MiO

MULT

Read B

DI

DI

Read A

DI

DI

10

11

12

15

16

17

18




Bau-A Ui ur Hg pioy HmYg Adpinw 32 sury 1L 2anbig

N\ \

L L

44



Sy

2 ;
[ ] o]

WRXBR : ]

Figure 4-1.12 Line 8: The product WRBR is used by Re ALU to start to form B’. Save product in A3 Re A".




“se1e] v 10} €y Ul 1onpoud siyy eAes -,g Wels o} NV wy Aq pasn ImHg 1onpoid 16 surm  g17k-y 2inbiy

I Imdg

46



Ly

Lw | [= |

B|WRr

Figure 4-1.14 Line 19: BJ\WR used by Im ALU to complete B'. Also save this product for A’ later. Re ALU starts on A".




214

Table 4-5 Line 10: a conflict has developed in Im Aq

Real Imaginary Multiplier
Step [»][e] ALU A | A | A3 | B | By | By ALU A | A | A | B |B | B;| MO MULT
1 X X X
2 X X X X X
3 X X X X
4 X X X X X X X
5 Read B X X | bl| x X X X | pl| x X
6 Read A X DI | X X X xm X | H| x| x Bp X
7 H H H B Wg
8 A1-MSP | H MSP ALU H B, B.W,
9 X H H| X |H A1-MSP | H MSP| X |ALU BwW,
10 X A1+ A3 | X |ALU H B2-Msp | x H | x |aLu|msp| x BW,
11 X X X X
12 X X X X X X X
13 X X X X X X X X
14 X X X I X X X | x X
15
16
17
18




6V

Table 4-6 Line 10: conflict in Im A4 resolved by delaying Read A one cycle to Line 7 (from 6).

Real Imaginary Multiplier
Step pIo ALU AL | A | A | B | B | By ALU A [ A | A | B [ B | By | MIO MULT
1 X X X
2 X X
3 X X X X X
4 X X X X X X X
5 Bead B X X DI X X X X DI X X
6 X X X X X X|H|X|[X B X
7 Read A DI X DI H BRWR
8 A1-MSP H MSP ALU H X B, BRwl
9 X H H H A1-MSP | H MSP| X |ALU BW,
10 Al + A3 ALU H B2-MSP H H X |ALU [MSP X BW,
11 X X X X
12 X X X X X X X
13 X X X X X X X X X
14 X X X X X X X X X
15
16
17
18




0S

,AR"'BRWR| lAn-Ban l ,
|

[ wees |]] l LB.RWI [|| Bwn |
{ 2R . v v

Y N

[ Bwi | |

Figure 4-1.15 Line 11: BjW| used by Re ALU to complete B'. Hold this product Re A’ later. Im ALU starts on A’.




*¥ sale|dwod NV wi 's,2g woyj Alowsw o} %9eq g MM gt eull 91°I-p eanbiy

ATy

] [

o] (o]

)

N\

L JL

JL

A |

_ g A _Ssmm+m<_

4

[Cwe ] [

]

4

| NS

vy

51



*au)| snojaaid uj pajajdwod se ly spjoy NV wi °,v se1ejdwod Ny oY gk au L1 L-v @inbig

1w ]
)

L I ]

52



*g Uy U payels Ajjienng ayj saje|dwod sjyy °s,gy wolj Alowaw o} )oeq ¥ elIM b1 eul7 81 kb ainbiy

vy

53



1 4°]

Table 4-7 One complete butterly: lines 5-14 (10 lines).

Real Imaginary Multiplier

Step DlO ALU A lA A BB ALU A LA | A | B | B | Bj| MO MULT
1 X X X

2 X X

3 be X X X X
4 X X X X X X X
5 Read B X X |ol| x X X X | bl | x X
6 X X X X X x| H | x| x| Bg X
7 Read A X DI | X x | x X pi | x| x|H]|X B W,
8 X A1-MSP | H | x |MsP| x |aLU X H | x B, B W,
9 X X H| X|H| X |H A1-MSP | H | X |MsP| x [ALU BW,_
10 X Al + A3 ALU H B2-MSP | H H | x |ALU|MsP| X BW,
11 X B2+MSP | X | H MSP|ALU Al+B3 | X |[ALU[H | X | H X
12 | Write B2 X X |H| x| H| X A2 + A3 | X |ALU X X
13 A2-B1 | X |ALu| X X X x| H | Xx X X
14 | write A2 X X X X X X X | x X
15 X X X | x X X | x X

16 X X X X X

17 X X X

18 X




SS

Table 4-8 The code repeats every 4 lines. Thus a new butterfly is completed every 4 cycles.

Step

DIO

Real

Imaginary

Multiplier

ALU

A

SN N A S

A

Mio MULT

5 Read B | A2-B1 | H |ALU| H | DI | H A1-Msp | H | H [MsP| DI [ALU BWg
6 | Write A2 | A1 + A3 ALY H 82-MSP | H H | H |ALUIMSP| By | Bw,
7 Read A | B2+MSP | DI | H MSP|ALU A1+B3 [ DI |ALU| H | H | H BWo
8 Write B2 | A1-MSP | H H |[MSP] H |ALU A2 + A3 | H |ALU B anl
9 Read B | A2-B1 | H |ALU| H | DI | H a1-Msp | H | H [mMsP[ DI [ALU B,W,
10 | Write A2 | A1 + A3 ALU H B2-MSP | H H | H |ALUIMSP| Bp | Bw,
11 | Read A | B2+MSP | DI | H MSP|ALU A1+B3 | DI [ALU| H | H | H BW,
12 | Write B2 | A1-MSP | H | H |MSP| H |ALU A2+A3 | H |ALU B, B.W,
13 | Read B | A2-B1 | H |ALU| H [ DI | H A1-MsP | H | H [msP| DI |ALU BW,
14 | write A2 | A1+ A3 ALU H B2-MSP | H H | H |ALUMSP| B | BW,
15 | Read A | B2+4MSP | DI | H MSP|ALU A1+B3 | DI [ALU| H | H | H B W,
16 |Write B2 | A1-MSP | H | H |MSP| H |ALU A2 + A3 | H |ALU B, B, W,
17 | Read B | A2-B1 | H [ALU| H | DI | H A1-Msp | H | H [MsP| D1 [ALU B W,
18 | Write A2 | A1+ A3 ALU H B2-MSP | H H [ n lauimsel By | BW,




9s

Table 4-9 A new butterfly must also start every 4 cycles.

Real Imaginary Multiplier

2 | write A2 | A1+ A3 ALU H B2-MSP | H H | H [ALU|mMsP| B, B,W,
3 Read A | B2+4MSP | DI | H MSP|ALU A1+B3 | DI |[ALU| H [ H [ H B,
4 |WrteB2 | A1-MSP | H | H [MSP| H |ALU A2 + A3 | H |ALU B BW,

6 | write A2 | A1+ A3 ALU H B2-MSP | H H [ H |ALUIMSP| Bp | Bw,
7 | Read A | B2+MSP | DI | H MSP|ALU A1+B3 | DI |ALU] H | H | H BW,
8 |WrteB2| A1-MSP [ H | H |MSP| H |ALU A2+ A3 | H |ALU B, B.W

10 | Write A2 | A1+ A3 ALY H B2-MSP | H H | H |ALulmsp| Bp | Bw,
11 | Read A" | B24MsP | DI | H MSP|ALU ar+B3 (DI |ALU| H | H | H B W,
12 [write B2 | A1-MSP | H | H |MsP| H [ALU A2+ A3 | H [ALU B, B_W,

14 Write A2 | A1 + A3 ALU H B2-MSP | H H H |ALU|MSP BR B,W,
15 Read A | B2+MSP | DI | H MSP|ALU Al + B3 | DI |ALU| H H H BRWR
16 Write B2 | A1-MSP | H H |MSP] H |ALU A2 + A3 | H |ALU B, BRwl

18 Write A2 | A1 + A3 ALU H B2-MSP | H H H |ALU[MSP| Bp BW




LS

& 4

Figure 4-1.19 Three butterflies in progress at the same time: A’ for one BF is being written back. Arithmetic for next BF is in progress.
The first product for the BF that is next again is being set up.




89

Table 4-10 Coefficient selection: work back from required products.

FFT Addr Gen | D Addr Pipeline /Mu"ip]ier

Step | instr | ASEL | mnstr | SEL Ao |Register| PROM | pio \ Mult
1 x [ \\

2 X \

3 X X \ \ X
. x | L]«
5 X Read B \ \ X
6 Re / X
7 Im Read A / I BpWp
8 Re X / BW,
R Im X BWpg
10 X X BW,
11 X X X
12 X Write B2 \ \ X
13 X \ X
14 Write A2 I X
15 I

16 X \

T | L

18 X \ \




69

Table 4-11 Coefficient pipeline: pick up 'k' from 29540 and hold for all four products.

FFT Addr Gen | D Addr Pipeline /Multiplier

Step | Instr | ASEL | Instr SEL R |feglster) PEOM || oo \ Mult
1 X © X X \\

2 x x \\

3 X X X \ \ X
. « |« | |

5 8 En X Read B \ \

6 H Re / I X
7 H Im Read A / l BpWp
8 H Re x |/ BV,
9 X X Im X BWg
10 X X X ’ BW,
11 X X X \ X
12 X X Write B2 \ L X
13 X 1 X
14 Write A2 I X
15 I

16 X \

I 1\

18 X X \




Table 4-12 Data-address pipelining: needs 2-level push-down-only stack in an Am29520/21.

09

FFT Addr Gen | D Addr Pipeline / Multiplier
Step | Instr | ASEL | nstr | SEL A |Edister| PROM || pio \ Mult
1 X X X X X \ \
2 X X \
3 X X X X X \ \ X
4 X X W \
5 8 B1 R En X Read B \ \
6 H Re / X
7 A1 R H Im Read A / [ BpWp
8 X X H Re x |/ BV,
9 X X X Im X l BWg
10 X X X X 1 BW,
11 X X X X X 1 X
12 B2 w X X Write B2 1 X
13 X \ X
14 A2 w Write A2 I X
15 I
16 X X X \
" \
18 X X X \ \




19

Table 4-13 Data-address pipeline: pipeline register instructions; 29540 address selection.

FFT Addr Gen | D Addr Pipeline / Multiplier

step | mnstr | ASEL | mstr | SEL RAM [Register| PROM 1| bio \ Mult

1 X X X X X X \ \

2 X X x x \\

3 X X X X X X \ \ X

4 1 Push B X X \ r X

5 8 H B1 R En X Read B \ \ X

6 0 Push A H Re / I X

H A1l R H Im Read A / / BpWg

8 X X X X H Re X / BW,

9 X X X X X Im X BWg

10 X X X X X X X BW,

1 X X X X X X X

12 X X B2 w X X Write B2 X

13 X X X X X \ X

14 X X A2 w X X Write A2 / X

15 X X X X X l

16 X X X X X \

- x \

18 X X X \ (




29

Table 4-14 Full address generation code: for one butterfly; still to be overlapped.

FFT Addr Gen | D Addr Pipeline /Multiplier
Step | nstr | ASEL| mstr | SEL o |fegister| PROM || pio \ Mult
1 X X X X X X \ \
2 X X X X X \ \
3 | COuUNT X X X X X \ \ X
4 H 1 Push B X X \ \ X
5 H 8 B1 R En X Read B \ \ X
6 H 0 Push A H Re / I X
7 X Al R H Im Read A / / BpWg
8 X X X X H Re X / BW,
9 X X X Im X BWqo
10 X X X X X X X BW,
11 X X X X X X
12 X X B2 w X X Write B2 \ \ X
13 X X X X X \ L X
14 X X X A2 w X X Write A2 l X
15 X X X X I ’
16 X X X X X \ \
17 X \ L
18 X X X \ \




HOLD

Iy, 1o

Am29540

PUSHB

% Am29520 (2)

Aq A,
» Mux|_p DATA
@a I RAM ADDRESS
B, B2
Am29825 (2)

COEFFICIENT
PROM ADDRESS

Figure 4-1.20




V9

I, lo

¢
O

b

Am29520 (2)

Ay

A2

Am29540 AO - A1'5

S

B,

MUX

et

Am29825 (2)

ENABLE s

Figure 4-1.21

B
DATA

RAM ADDRESS
(READ)

COEFFICIENT
PROM ADDRESS




<9

PUSH A

HOLD
% % AmM29520 (2)
i, 1o M Az
> DATA
AM29540 5 " g »"YXI—> RAM ADDRESS
B, B,

AmM29825 (2)

COEFFICIENT
=%  PROMADDRESS

HOLD sl

Figure 4-1.22




99

COUNT

I I AS

Am29540 A A

b

AM29520 (2)

Aq

Az

By

MUX

A
DATA

=<{% RAM ADDRESS
(READ)

Am29825 (2)

HOLD s

et COEFFICIENT

PROM ADDRESS

Figure 4-1.23




JAS)

PUSH B

1
% % %g Am29520 (2)

A Az

Am29540 5 R

Ip NN

B, B2

MUX

DATA
RAM ADDRESS

Am29825 (2)

®

RE
##=  COEFFICIENT
PROM ADDRESS

Figure 4-1.24




HOLD 8

% % % Am29520 (2)
A

Iy I s Ar Az
Cy g
r > DATA
Am29540 p _ p > L »"X—>  RAM ADDRESS
BB |4+ B |
B, B,

Am29825 (2)

M
N @wmw% COEFFICIENT
PROM ADDRESS

ENABLE sssffips

Figure 4-1.25




69

PUSHA

0
‘% ‘% % Am29520 (2)

Aq A2

A »
L,
DATA

MUX|—>  2AM ADDRESS

Am29540 . pk

Am29825 (2)

RE
welwsdie  COEFFICIENT
PROM ADDRESS

Figure 4-1.26




0L

COUNT

l1$ I0 AS

Am29540 5 . A,

% Am29520 (2)

Aq Az

r : V

> DATA

L MUXI—>  RAM ADDRESS
BB |4» B | [~

Am29825 (2)

M
eornfite  COEFFICIENT
PROM ADDRESS

HOLD s

Figure 4-1.27




PUSH B

1
% % % Am29520 (2)

b

A A
R AS 1 2
AA » A L—]
MuUX B
%& > @ DATA
> RAM ADDRESS
(WRITE)
BB » B mj
B, Bj
Am29825 (2)
RE
COEFFICIENT

PROM ADDRESS

HOLD sedie

Figure 4-1.28




74

HOLD

17°0

Am29540

% Am29520 (2)
Aq Ag
AA » A —L’

"IMux » DATA

Ag- As

" > RAM ADDRESS
BBB » BB —r’

Am29825 (2)

IM
,w@,, COEFFICIENT
PROM ADDRESS

ENABLE s

Figure 4-1.29




€L

PUSH A

HOLD 0
% % % Am29520 (2)
|1| |° AS A1 A2
AA » A —L.
. A
Am29540 5 o MUXf—s DATA
Ag- Ass

> RAM ADDRESS
(WRITE)
BB —l_.

B, By

Am29825 (2)

RE
COEFFICIENT
PROM ADDRESS

HOLD "m@&

Figure 4-1.30




c) The format definition for each instruction. It
consists of defining the order in which the
value of each field is given while writing the
microprogram.

d) The second phase consists of writing the
microprogram using the defined language to
create a source file (Appendix 3, FFT.SRC).

Another meta-assembler is MACASM by Microtec.
Further queries can be directed to: Microtec
Research, Inc., 3930 Freedom Circle, #101, Santa
Clara, CA 95054, (408) 733-2919.

Table 4-9 shows that the four lines of code for the
butterfly are repeated. These are put in a loop and
the condition for exiting from the loop is the FFT
complete flag from the address sequencer. Some
code is required to fill the pipeline and some to
flush the pipeline at the end of the process. The
following is the sequence of events that would
occur from power up.

On power up when the system is reset, the
opcode for the JZ instruction is applied to the
sequencer as described in the control section.
This causes the sequencer to branch to location 0
of the microcode. The op-code for the sequencer
at this location is a jump to location 1. This is done
to enable a development system to jam address
zero on the address bus to emulate the JZ
instruction. The PC in the sequencer is updated
to the externally produced address by the jump
instruction. At location 1, the sequencer waits for
the load IR signal to go active. When this happens,
the sequencer goes to location 2 and waits for the
signal to go inactive. When this happens, the
sequencer goes to location 3 and jumps to 1 of 8
locations at the end of the microcode memory. At
this location, the start address for the process is
obtained and the sequencer jumps to this location.
The process is completed and the process
complete flag is set. When the CPU acknow-
ledges this flag, the sequencer returns to location
1 and waits again.

The schematics for this design are included in
Appendix7.

4.2 DIGITAL FILTERS USING
MULTIPLY-ACCUMULATOR

A high speed stand-alone digital filter is frequently
implemented with a multiplier/accumulator,
temporary storage and a state machine which
together perform the following calculation

M L
Yn= Zak*xn-k'zbk*)’n-k
k=0 k=1

where xk is a digitized time sample and yk is the
output of the filter. This arithmetic can be
performed in real time by a microprocessor or
single chip signal processor for low frequency
applications but a specialized design is required
when the input signal frequencies are above 100
kHz (requiring data sampling at >200 kHz). The
Am29PL141 Fuse Programmable Controller (FPC)
simplifies the design of microcode controlled filters
by incorporating all the control functions in a single
chip. It contains a microprogram address sequen-
cer and 16 outputs for control of the other circuits
in the system. In a digital filter design these out-
puts manage the temporary storage of previous
inputs and outputs and steer the operands to a
multiplier/ accumulator.

Figure 4.2.1 is an example of a second order IIR
filter (also called a biquadratic filter) using an
Am29PL141 FPC, an Am29510 multiplier/accumu-
lator (MAC), 2-Am29520 multilevel pipeline_regis-
ters, 2-Am27LS19 PROMs and 2-Am29827
buffers. The Am29510 consists of a 16x16-bit
parallel multiplier with a 35-bit accumulator. The
Am29520 is a set of four 8-bit pipeline registers
which can be configured as two shift registers for
this design. Any one of the four registers can be
selected at the output of the Am29520. The
Am27LS19 PROMSs are used to hold the coef-
ficients which determine the characteristics of the
filter. The negated coefficients are stored for W3
and W4 to simplify the accumulation and one of
four sets of coefficients can selected by strapping
two address inputs to the PROMs.

The design implements the equation shown
above directly although the sequence of
calculations is done using the oldest data first
for purposes of data management.
Appendixes 4, 5, and 6 contain a meta-
assembler file for three IR filters.  Each
appendix contains a definition file and a
source file. The definition file defines a set of
custom program flow instructions for the filter
and also defines the control functions for the
output pins. The source file uses the
instructions defined in the definition file.
Another way to use a meta-assembler is to
define a standard set of device instructions
(FPC instructions for this design) instead of IR
filter instructions in the definition phase and to
keep the customization in the assembly
program. This has advantages in a complex
design since it eliminates one pass of the
meta-assembler when changes or corrections
are made and the program is reassembled.

74




The operation of the filter consists of receiving
data from an A/D or a similar filter section,
performing the sum of products required for the
filter and sending the output to a D/A converter or
another filter section. There is signalling for input
data taken and output data ready but synchronous
operation is assumed and there is no "hand-
shaking" where the device waits until data is ready
or taken. This was done because several sections
of this type would normally be cascaded as shown
in Figure 4-2.2 to obtain the desired frequency
response. The signalling enables the sections to
synchronize during powerup and could be used
for diagnosing faults which cause the system to fall
out of synchronization or to resynchronize after
such a fault. The sample program simply sets an
error flag and stops if data is not available when
needed or taken when the calculation is complete.
Since only a fourth of the PROM space is needed
for the filter, a strapping option can be used for the
coefficient addressing to allow a single design to
be used for up to four cascaded sections. A filter
constructed out of these sections requires five
clock periods to produce an output from each
input data sample so 10 MHz parts are capable of
operating at a 2 MHz sampling rate and can handle
input frequencies up to 1 MHz. These figures can
be scaled linearly when faster or slower parts are
used.

Data management in the Am29520 is accom-
plished by configuring the device into two shift
registers each containing two levels. The A
registers hold the two previous input samples and
the B registers hold the two previous outputs. The
tri-state buffers on the input isolates it while the
output data is routed to shift register B. Two FPC
outputs are used to control the complementary tri-
state enables in order to eliminate the need for an
inverter.

A variation of this design could be used for a
higher order filter by substituting a RAM or register
file for the Am29520s. An example of a sixth order
IR filter is shown in Figure 4-2.3. This example is
programmed to handshake on input and output
since it is not a section of a cascaded filter. In order
to obtain a NOP in the MAC during the
handshaking, a zero is stored in the coefficient
PROM and a zero product is accummulated while
waiting for the input data ready or output data
taken handshake. In the previous example it was
possible to route operands to the MAC on every
cycle since the registers could input and output
simultaneously. However, this variation uses two

cycles during which no calculations take place to
store input and output values in the RAM. These
cycles can be reclaimed to increase the
throughput by adding hardware to route data to
the MAC while writing into the RAM or by selecting
write-transparent RAMs which place the data being
written on the output during the write cycle.
However, this would only be of value if the data
flow was synchronous and the input and output
handshaking loops could be removed.

The two shift registers required for the filter are
emulated by a RAM in which logical addresses
represent the position in the shift register. A
counter and an adder are used to translate the
logical address to a physical address for the RAM.
Reading an input data sample increments the
counter and "shifts" the data in the RAM. With a
minimum of handshaking time, this filter is capable
of sampling data at a 600 kHz rate and filtering data
containing frequencies up to 300 kHz when
operated at 10 MHz.

Because RAM sizes are available in discrete steps,
the direct implementation of a sixth order filter is an
acceptable choice. However, the 16 RAM storage
locations can be used more efficiently if the
canonical form of the lIR filter is implemented. This
alternate form of the filter can be used whenever
the number of previous inputs in the calculation is
equal to the number of previous outputs, i.e., M =
L for the summation limits. The circuit shown in
Figure 4-2.3 can be used to implement an order-
15 filter by changing the FPC program to store
intermediate calculation values instead of inputs
and outputs. The equations to be calculated
become

M
Zp=Xn+Dak*Z nk
k=0

and

M
Yn=zbk*zn-k
k=0

The intermediate value z is calculated from the
input and previous values of z and then entered in
the shift register. The output is then calculated
from the values of z in the shift register. A zero
coefficient is required to allow the MAC to hold an
output value during handshaking as in the pre-
vious example. These number of calculations re-
quired limit the filter to a sampling rate of 300 kHz.

75



DATA IN

D
Am29827
P14 —oJ OE
Y
| S———
INPUTDATA  OUTPUT DATA
READY  TAKEN
Low T P8-6
T P12-11 —], D A
LOW—{CC Am29PL141 P10-9—{S Am29520 Am27LS19
P Low—ooE Low—cjoE o
l . r
INPUT  P14-2 ERROR OUTPUT
DATA DATA
TAKEN READY HIGH
P3 —|RND X Y
pa —|ACC Am29510 SUB}— ps
P13 —d o p  PREL}|— LOW
16
DATA OUT
Figure 4-2.1
AD D/A
CONVERTER IR IR IR CONVERTER
Figure 4-2.2

76




LL

P14

INPUT DATA OQUTPUT DATA
READY  TAKEN

T
LOW-—1CC Am29PL141
P
INPUT P14-2 OUTPUT
DATA DATA
TAKEN READY

DATA IN

16

Low T P8-6

D
Am74LS161 Am29827
OE
Q Y
| S————
P12-9
A B DI
Am29LS381 A Am27s07
E LOW—of O Do

A
Am27LS19
LoW—of OF o

]

P3 —{RND X
pa —]Acc Am29510
P13 —of OE P

v}ﬁm

Y1
suB
PREL]

— P5
— Low

L

16

DATA OUT

Figure 4-2.3




CHAPTER 5
ARTICLES



Record signal-processing rates
spring from chip refinements

Improved buses, reconfigurability, pipelining, and parallelism unite

in a bipolar family for building

array and signal processors

by Bernard New and Lyle Pittroff, Advanced Micro Devices inc., Sunnyvale, Calit.

[0 The number-crunching microprocessor requirements
of the 1980s are ill-served by today’s comparatively slow,
conventional central processing units. Instead, the algo-
rithms executed by both general-purpose array proces-
sors and the more specialized digital-signal processors
require highly individual architectures for maximum
speed and performance. Jumping on the fast track is a
new group of bipolar devices—the AM29500 family —
that combines internal emitter-coupled-logic circuit
design for speed with TTL outputs for compatibility with
the outside world.

The family is able to overcome such speed-retarding
problems as inadequate data-bus memory and band-
widths and slow execution times through a redesigned
bus structure and parallel and pipelined processing. In
fact, the bus structure is designed so that there are
enough parallel buses to keep a device’s multiplier or its
arithmetic processing unit, or both, busy during each
cycle. These features, plus programmable reconfigur-
ability, make the 29500 family the fastest group of
large-scale integrated parts for signal processors to be
commercially available. In one series of tests, a 29500-
based system had three times the speed achieved by the
older 2900 family.

The 29500 series are general-purpose building blocks.
They include a byte-slice, multiple-port programmable
signal processor (the 29501), a 16-by-16-bit parallel

multiplier with programmable input/output (the
29516/17), a multilevel pipeline register for data and
address pipelining (the 29520/21), and a fast-Fourier-
transform address sequencer (the 29540).

To increase processor speed, architectural enhance-
ments had to be made to the older 2900 device designs.
That " family took some steps in the right direction
because it provides many of the peripheral building
blocks, like interface devices and direct-memory-access
chips, needed for real-time signal processing. But the
2900’s arithmetic devices are targeted at general-
purpose computing. They do not have the parallel chan-
nels that are required for a high-speed array or signal
processor environment.

One way of satisfying this need was to upgrade the
2900 family’s bus structure, number organization, and
resource management. The new bus structure can sup-
port addition or subtraction and multiplication on every
cycle because of extra parallel buses. Number organiza-
tion can now handle complex numbers in parallel quick-
ly. In addition, flexibility of resource management per-
mits the building blocks to be interconnected in enough
ways to support all algorithms of interest efficiently.

For dedicated-function and multiple-algorithm pro-
cessing (Fig. 1), a special-purpose processor like the
29501 operates under the control of a host computer
system that switches large blocks of data between its

main memory and temporary slave
through DMA transfer. Once this

et controtien | | CConrRocer | | contRoLien ouTPUT transfer is complete, the special-pur-
pose processor operates under local
program control. Each algorithm is
8, 16, OR 32-BIT MAIN-SYSTEM BUS executed by its own software routine,
I which is stored in its own local mem-
ory independently of the host com-
DETEROR AND puter and its high-level language.
CORRECTION Although the precise architecture
MAIN of Fig. 1 varies with the algorithm
ADDREss E MEMORY used, all array- and signal-processing

CONTROL

ARITHMETIC
PROCESSOR
MULTIPLIER

algorithms have similar needs for

1. Dual-purpose. In a typical array- or digi-
tal-signal-processor architecture, both dedi-
cated and multiple algorithm functions can
be implemented. A host computer provides
overall guidance and a large memory.

79



writing it into RAM locations 000000 to 000007.

When the first four memory cycles are over, U; goes
into the high state and the decoding occurs. The other
half of U, furnishes a switch-reset pulse when the system
has stabilized. This 11-microsecond pulse sets the pro-
cessor but does not clear the register. Thus, for all reset

conditions set by the U,-based switch, the vectors must
be fetched from the RAM, thereby allowing the operating
system to alter them. O

Designer's casebook is a regular feature in Electronics. We invite readers to submit original
and unpublished circuit ideas and solutions to design problems. Explain briefly but thoroughly
the circuit's operating principle and purpose. We'll pay $75 for each item published.

Generating a negative voltage
for portable instruments

by J. D. McK. Watson, Biomedical Engineering Research Group,
University of Sussex, Falmer, Brighton, UK

Many recently designed microcomputer-based portable
instruments require +5- and —10-volt dc supplies.
Though +5 Vv can be readily derived from a battery
supply by means of a linear regulator, the latter needs a
special circuit. This flyback converter presents a novel
power supply design that uses just one operational ampli-
fier and a few discrete components. The circuit efficien-
cy is about 75% for a load of about 10 milliamperes, and
the output voltage can be changed by substituting an
alternative zener diode.

Operational amplifier U, functions as a current-
sensing threshold switch and is capable of providing a
wide output-voltage swing. This threshold is adjusted for
optimum supply efficiency and output-voltage regula-
tion. Q, is driven by the output of U, and operates as a
saturating switch, with pulse transformer T, functioning
as its collector load. The transformer is designed for a
turns ratio of 1:1 with primary and secondary induc-
tance of 3 millihenrys and a resistance of 1 ohm.

The current in T,’s primary through Q, provides a

signal to the inverting input of U, whose noninverting
input is fed from three sources. A portion of the op amp’s
output provides positive feedback to ensure fast
switching, an ac signal from T,’s secondary results in the
collapse of the flux before recycling, and a dc component
tapped from the output lowers the threshold when the
output exceeds zener diode D,’s breakdown voltage.

When the circuit is switched on, U, delivers a high
output to Q, and turns it on. Current in the primary of
T, increases linearly, developing a positive voltage at its
secondary. This rising primary current also creates a
voltage at the inverting input of U, that is sufficient to
turn it off. As a result, the flux in T, collapses and the
secondary current charges capacitor C,. During this
energy transfer, R4 holds the noninverting input negative
and inhibits the switch from turning on.

As subsequent cycles add charge to C,, a point is
reached when D, conducts and inhibits U, through Rs.
This stage is disabled until the dc output voltage falls
below the zener threshold, whereupon the circuit
resumes oscillation. The amplitude of the output voltage
is approximately equal to the zener voltage of D,.
Because of the nonlinear method of regulation, a small
amount of ripple is superimposed on the output. For the
component values shown, the ripple is of the order of 40
millivolts, but can be reduced by using a RC filter
network at the output. Maximum power output is lim-
ited by the supply voltage and by the saturation current
Of T] . D

Flyback converter. This novel flyback con-
verter uses just one op amp, U,, pulse trans-
former Ty, and a few discrete components to
provide a —10-V dc voltage. The supply

ripple contents are low and the circuit effi-
ciency is approximately 75%. Zener diode D,
is used to set the output voltage.

D
'.=‘ ~10-v
1N4148 ouTRUT
Ry
< Dz é 22M8
Ra <~
e 0V
C ==
47 uF [+
Rs
6.8 kO
Rs <
1.0k2

80



arithmetic and addressing —short, repetitive calculation
loops requiring parallelism and pipelining. In addition, in
digital-signal processing, arithmetic operations using
complex numbers may be necessary, whereupon the
computational load increases to twice as many additions
or subtractions and four times as many multiplications
as for real numbers.

Because calculation loops for arithmetic operations
are short, the 29500 family surrounds the additions with
continuous memory accesses —data is fetched, the calcu-
lation loop performed, and the results written back into
memory. Hence there are many times more memory
accesses than there are data points. For FFTs, the num-
ber of repetitive memory accesses is multiplied by the
number of passes through the data. Fortunately,
although the memory-access sequence is long, it is well
structured, making it possible as a result to design dedi-
cated address sequencers.

Divide and rule

The purpose of pipelining is to allow lengthy opera-
tions to be divided into suboperations, so that when
one piece of data has completed a suboperation, the
same hardware can start on the next piece. In this way,
the 29501 allows up to a 500% speed improvement.

For example, because a typical processor handles a set
number of algorithms, its architecture can be very spe-
cific concerning arithmetic and address generation—no
longer does the CPU have to mix addressing with arith-
metic computations. Also, separate sections can be
streamlined to calculate each type in parallel and fast.

A significant feature of the data path for the 29500
family is the fact that the devices handle only data and
do no address calculations. The data path can, therefore,
be optimized for arithmetic. :

The 29501 multiport parallel processor also represents
the current thinking about multiport organization. It has
a data-bus port, an output port to a multiplier, and an
input port from a multiplier. The chip can process an
FFT fast because of its highly parallel internal bus struc-
ture. In this structure, six registers operate as pipelines
and are connected to the 170 ports and an arithmetic and
logic unit by 10 separate byte-wide internal buses.

A typical cycle on the 29501 consists of data input
from memory, data output to the multiplier, retrieving a
previous product from the multiplier, and register-to-
register ALU operations and data moves. Because these
operations can occur during the same cycle, data manip-
ulation is limited only by the designer’s creativity. This
flexibility, plus the possibility of parallel processors oper-
ating on complex numbers, is what makes high-speed
operation possible.

Twice as fast

The 29500 family uses two high-speed parallel 16-
by-16-bit multipliers—the 29516 and 29517. The 29516
is compatible with TRW’s MPY-16HJ multiplier but is
more than twice as fast and has an output multiplexer.
Either the least or the most significant product can be
selected at this multiplexer output for use in many
pipelined architecture calculations.

On the other hand, the 29517 multiplier incorporates

81

all the features of the 29516 but has a modified 1/0-
register clocking structure to provide a single-clock input
with register enables. This approach is preferred to the
older clock-gating method, which suffers from skews.

Dedicated addressing

Address-sequencing complexity for array and signal
processors can range from integer counting to the com-
plicated number patterns of FFTs. To keep addressing
speeds high, the 29500 series generates addresses in
parallel to the data path. However, other architectural
considerations must also be weighed.

For a specific application, several system implications
affect the choice of algorithm from the diversity of FFTs
available. This choice, together with the transform
length (or lengths) to be implemented, determines the
address sequence to be generated. Usually, the nested-
count nature of these sequences has forced the designer
to use many medium-scale integrated-circuit packages.

The 29540 is a single-chip solution to the address-
sequencing problem (Fig. 2). Four control inputs allow
programmed or hardwired control of the actual number
of data points in the transform. From this and other
control-input commands, the 29540 can be sequenced
through the entire transform while providing output
flags. These flags indicate when each data pass is over
and when the entire transform is complete.

For their part, the 29540’s control inputs accept the
most common FFT formats. The designer can opt for
bit-reversed output order or bit-reversed input order,
radix-2 or radix-4 address sequences, and decimation-

4-BIT TRANSFORM LENGTH

COUNTER
:L\IISERUCTIDN, ITERATION

COMPLETE

: FAST
RO e oot Fen FOURIER
CLOCK — i< BUFYERFLY.COUNTER TRANSFORM
S COMPLETE
0DD/EVEN
RADIX 4/2 COLUMN

PRESCRAMBLE
DATA

DECIMATION
IN FREQUENCY/
TIME
DATA- COEFFICIENT]
ADDRESS ADDRESS
GENERATOR'| | GENERATOR
ADDRESS
SELECT,
ASp—AS3
OUTPUT __ OUTPUT
ENABLE, OE STAGE

16-BIT ADDRESS OUTPUT
(OFFSET INPUT)

2. Multiple sequences. Fast Fourier transforms may have unusual
address sequences, and with its four control inputs, the address-
sequencing 29540 chip is designed to handle all of them. It provides
output flags when a calculation is complete.



HOST COMPUTER

2

INTERFACE
ALGORITHM NO. 1
29540 ADDRESS IMAGINARY
FAST-FOURIER- DRSS DATA L
TRANSFORM T RANDOM-ACCESS
ADDRESS MEMORY
SEQUENCER 93422 OR 9147 REAL DATA
3

ALGORITHM NO. 2
(USER-DEFINED)

ADDRESS BUS

4

DATA INPUT/QUTPUT

DATA 1/0

MULTIPLY INPUT

MULTIPLY INPUT/QUTPUT

16-BY-16-8IT
COEFFICIENT MULTIPLIER  JLGIDIVAY
ALGORITHM NO. 3 ADDRESS PROGRAMMABLE 29516/7
(USER-DEFINED) 2515374 READ-ONLY MEMORY
275181

A

MICROCODE MEMORY

NOTE: ALL BUSES

MICROPROGRAM SEQUENCER
2909/10/1

ARE 16 BITS WIDE
1

3. Complete. A typical signal-processing system provides separate,

parallel paths for complex data. But in the 29500 setup, address

pipelining handies both data and coefficient addressing operations for fast Fourier and other common transforms.

in-frequency or decimation-in-time sequences.

The 16-bit output port of the address sequencer is
controlled by the counter and transform-length-input
instructions. Any transform from 2 to 65,536 points long
can be selected. The higher-order bits not required for
the specified transforms (a 1,024-point transform only
requires 10-bit addresses) can be preloaded through a
bidirectional address port to access the next data block.

Easy address pipelining

Because the primary objective of this architecture is to
operate on array- or signal-processor systems in a highly
parallel manner, addresses must also be pipelined. As a
result, each address must be tracked, which requires a
pipeline register —such as the 29520 or 29521. These are
byte-slice pipelining registers configurable as a dual
two-level or a single four-level pipeline. In both devices,
the single four-level configuration operates as a push-
only stack. The selection of register is determined by the
designer’s choice of system timing and data movement.

The architecture of a typical 29500 signal-processing

82

system (Fig. 3) can employ separate parallel data paths
for complex data. Three possible address-generator
blocks are shown, and together they represent a general-
purpose processor. Address sequences for other than
FFTs might be configured from programmable read-only
memory or 2901-based designs. Address pipelining is
shown for both data and coefficient addresses.

In this design, either bipolar or MOS static random-
access memories store data temporarily, and high-speed
bipolar PROMs and RAMs or MOS ROMs are used for
coefficient look-up tables. The local-control store may be
either a PROM or a writable control-store RAM and can
be controlled by a 2910 program sequencer.

A common benchmark for signal processing is the
execution speed of an FFT. The 29500 processor, operat-
ing at a 10-megahertz clock rate, can perform the trans-
form in 400 nanoseconds. This speed allows a 1,024-
point complex radix-2 butterfly to be completed in 2.0
milliseconds. Compared with the best throughput avail-
able in current bit-slice CPU architectures, this figure is
more than a twentyfold improvement. 0



DESIGN ENTRY

One-chip sequencer
shapes up addressing
for large FFTs

The addressing circuitry of a single IC accesses
both data and coefficient memories for performing
a broad class of fast Fourier transforms.

digital signal-processing repertoire,

the fast Fourier transform provides a
quick, orderly, and convenient means of com-
puting the frequency spectrum of a signal.
When combined with® other operations, the
FFTis also useful in correlating or convolving
two or more waveforms, techniques required
to perform radar, sonar, and image processing.
One of the most difficult problems facing the
FFT hardware designer is creating the circuit-
ry to address the memories that hold the data
variables and coefficient constants. The diffi-
culty arises partially because of the memory
space required and the resulting complexity of
either accessing a large number of person-
alized address tables for each FFT or calling
out a large data base in the proper sequence.
Even when addressing is done in software,
there is the problem of speed —the method is

n s one of the most useful algorithms in the

David Quong and Robert Periman

Advanced: Micro Devices Inc.

Robert Perlman is a senior product planning engineer
with the DSP/array processing group at Advanced
Micro Devices in Sunnyvale, Calif. He obtained a
BSEE from the Rensselaer Polytechnic Institute and
an MSEE from the Johns Hopkins University, and has
previously done design work in airborne digital signal
processing at Westinghouse.

David Quong is a product planning engineer with the
DSP/array processing group. He received a BSEE
Jrom California State University in Sacramento.

Reprinted with permission from Electronic Design,

often too slow for real-time applications.

A new chip, however, contains all the ad-
dressing circuitry needed to access an FFT
unit’s data and coefficient memories so that a
broad class of functions can be analyzed. The
Am29540 programmable address sequencer is
flexible enough to generate addresses for FF'Ts
having as few as 2 or as many as 65,536 points.
Twelve algorithms are supported in radix-2
and radix-4 systems, including operations on
complex and real-valued input data (either in-
place or non-in-place transforms); forward
and inverse transforms; and decimation-in-
time (DIT) and decimation-in-frequency (DIF)
algorithms.

A web of nets

Included in the 16-bit sequencer are a but-
terfly counter (see “Generating Addresses
Efficiently,” p. 160), a data address generator,
and a coefficient address generator (Fig. 1).
The butterfly circuit actually has two count-
ers, one for columns and one for rows. The
column counter points to the current FFT
stage, or column; the row counter, to the but-
terfly currently being performed within that
stage. The counters are programmable and
can be initialized to perform transforms of
various lengths by prestoring the appropriate
4-bit transform-length code in an on-chip
latch. The transform-length code is placed on
input lines TL,-TL; and latched with signals

Vol.32,No.14,Copyright Hayden Publishing Co.,INC.,1984,

83



DESIGN ENTRY
One-chip FFT sequencer

Transform Select (TSEL) and Transform
Strobe (TSTRB).

The butterfly counter executes one of four
instructions: Reset, Reset/Load, Count, and
Hold. These instructions are selected with con-
trol lines I, and I, and are executed on the
rising edge of the Clock Input line (CP). An
FFT is begun by initializing the butterfly
counter with a Reset or Reset/Load instruc-
tion. The Count and Hold instructions are then

used to advance the counter to the next butter-
fly operation or to hold it at the present butter-
fly position.

The counter section generates four flags to
help control FFT sequencing. The Iteration
Complete flag (IT COMP) indicates the last
butterfly operation performed in a stage or
column; the last butterfly operation in a par-
ticular FFT i is signaled by the FFT Complete
flag (FFT COMP). The Even/Odd flag changes

A quick look at the structure of a fast Fourier trans-
form reveals why the data and coefficient circuitry is so
complex. At the heart of the FFT algorithm is the but-
terfly operation, which takes its name from the schema-
tic representation that shows how output data is gener-
ated from an input waveform.

In the butterfly operation on a radix-2 DIT FFT (Fig.
A), two complex data points, A and B, and one complex
coefficient are used to compute two new complex data
points, A’ and B’. The coefficient is a complex ex-
ponential of the form e ¥ cos § — j sin 6. Each
butterfly requires one complex multiplication, one com-
plex addition, and one complex subtraction or four real
multiplications, three real additions, and three real sub-
tractions (Fig. B).

An FFT is performed by concatenating butterfly
operations. The butterflies are arranged in columns, or
stages; an N-point, radix -2 FFT comprises logs N stages,

A = a +ja; + = e
+ .
B = b,+jb )
)0 % t - b/r+|b,i
(A)
a,
b, +
a’,
cos +
bj +g-8i
a’j
sin 6 +
b +
b,
cos +2 ~
b, A i
b'i
sin 8 _

(B)

Generating addresses efficiently

each containing N/2 butterflies, and so a total of (N/2)
(logeN) operations must be done.

The structure of a 16-point FFT contains 32 butter-
flies (Fig. C). Each circle represents a single radix-2
butterfly operation. The fractional number accom-
panying each butterfly of the last three stages is the
coefficient needed to perform that butterfly: if the value
of the fractlon is k, the correspondmg coefficient value
is e 3%, Memory locatlons in which data is stored are
represented as blocks; in the case of the 16-point FFT, 16
contiguous memory locations must be allocated to store
the 16 complex data points. Each butterfly is performed
by taking input points from the data memory, doing the
necessary mathematical operations with the appropri-
ate coefficients, and returning the results. The algo-
rithm shown is in-place, meaning that the data points
produced by each butterfly are stored in the same
locations as the input data points.

The order in which data must be accessed is not
straightforward. For the FFT shown, data must be
accessed in order 0, 8,1, 9, ... 7, 15, for the first stage.
For the second and following stages, however, data ad-
dressing is somewhat more involved. The second stage,
for example, is performed by accessing addresses 0, 4, 1,
5,2,6,3,7, for the first group of four butterflies; then 8,
12,9,13,10, 14,11, 15, for a second group. The butterflies
in the thlrd and fourth stages are also addressed in
groups. Stage m has 2™~ groups of N/2™ butterflies
with a group spacing of N/2™ !

Coefficients must also be accessed. For the first stage
of this FFT, only sin 0 and cos 0 need be acquired. Stage
two, however, uses angles 0 and =/2; stage three uses
0,7/2, w/4, and 37/4; and stage four needs angles 0, 7/2,
/4, 8,x/4, n/8, 5n/8, 3x/8, and Tx/8. In general, the
coefflclent address sequence for the mth stage of this
FFT is 0, BR(1)x/N, BR(2)x/N, ... BR (2™ "' —1)x/N,
where BR(x) is a function that reverses the order of the
bits of a binary word.

A new coefficient must be accessed for each group of
butterflies. Other types of FFTs have various address-
ing sequence requirements, but this example is a good
representative. FFT analyzers use several techniques to

84



state after every stage and can be used to
control memory operations for non-in-place
transforms. The fourth flag, KNZ/KZ, is of
special use when performing transforms with
real-valued inputs. The last two flags are mul-
tiplexed onto a single pin. When the sequencer
produces a data address for a transform with
a real-valued-input, KNZ/KZ appears on_the
pin; for any other type of data, Even/Odd
appears.

When performing a transform, the se-
quencer uses its address generators to create
addresses combinatorially—that is, the data
address generator produces an address for
each input and output data point, and the co-
efficient address generator creates addresses
for coefficients and weighting functions. Three
control signals—PSD, DIT/DIF, and Radix4/2
—configure the address generators for various
types of FFTs. These signals are stored in an

generate these data and coefficient addresses.

One of the most common solutions is to place the data
and coefficient addresses in PROMs and then to
sequentially address the PROMs with a counter. This
approach has several serious drawbacks, however. First
the number of data addresses becomes prohibitively
large as the size of the FFT grows. A 4096-point, radix-2
FFT with complex inputs, for example, must address
24,576 butterflies, each requiring two data addresses
and a coefficient address, for a total of 73,728 addresses.
Although that number can be reduced by employing
constant-geometry FFT algorithms that use the same
data addresses for every stage, these algorithms have
the disadvantage of being non-in-place, thereby requir-

ing twice the data memory of an in-place transforin. The
second disadvantage of the PROM approach is that if a
single system is to perform several different sizes or
types of FFT, a different address table is needed for
each FFT.

Another method uses as much SSI and MSI logic as is
practical. This approach is easily implemented but
usually results in a circuit that consumes considerable
board space, is a headache to control, and takes a long
time to debug. A circuit for the addressing function in a
4096-point FFT might require 10 to 20 chips.

A third approach is to compute the necessary ad-
dresses in software, a method that is often too slow for
real-time applications.

Input Output

data Start data

Xo Yo
/ 0

Xy 0 Ye

Xe ) 0 0 Yo
2,

Xs 1 0 Y1z

Xo 0 0 / Y.
Va,

Xs O / 0 / % / Yo

0 2 Ye
. / ] 1

IR 7 / /

Xe g / / - v,
6,

Xo 0 Ya, Yo

X0 0 2 Vs Ys
Sk,

X1 0 2 Yis

X2 2 Ys
s

X1a 2 Ya, Yu

Xia I Y7
/s,

X1s Yis
L ] 1 ] 1 11 Ed |
Stage 1 Stage 2 Stage 3 Stage 4

©)

85




DESIGN ENTRY
One-chip FFT sequencer

on-board latch controlled by the Select and
Strobe lines (SEL, STRB). The user selects the
desired input data, output data, or coefficient
address with control lines Address Select 0
through 3 (AS,-AS;). The address chosen by
lines AS,-AS; is placed on Address lines
As-A;;. Those lines can be forced to a high-
impedance state by the Output Enable signal
(OE), thus allowing other address generation
devices to be tied to the same address bus.

Conserving memory

When addressing data, the sequencer can
generate as many as 2'® addresses; the actual
number needed for a particular FFT depends
on the size and type of the transform. An N-
point, radix-2, in-place FFT with inputs that
are complex quantities, for example, must ad-
dress N complex-data points during each
stage. If Nis 16, only 16 memory locations need
be addressed, leaving much of the available
address space unused.

The Am29540 offers two data-addressing
options for the user who needs less than 64
kwords of space. The first sets the unused
upper address bits to zero by initializing the
butterfly counter with the Reset instruction.
For a 16-point transform, then, the upper 12
address lines would contain 0s for any data
address. The four remaining lines are avail-
able to call 2%, or 16, values. The other option is
to program the upper address lines to a user-
selected value to address a given data blockin a
large memory. The upper data bits are pro-
grammed by bringing OE high, placing the
desired bit pattern on address lines Ap-A;5, and
then executing the butterfly counter’s Reset/
Load instruction. If, for example, the bit pat-
tern ABCO,¢ is used to initialize a 16-point,
complex-input FFT, the sequencer will ad-
dress a block of sixteen data locations begin-
ning at address ABCO,.

Non-in-place transforms present additional
problems. Unlike in-place transforms, non-in-
place algorithms cannot store the output data
from a butterfly operation in the same lo-

Transform LengthQ
T

TSEL O cations previously occupied by the input data.

That problem is overcome by generating both
the input and output data addresses for such

TSTRB O
Counter
o

lo-ly S transforms.
Butterfly o FFT . .
cp counter o comp Typxcal'ly, non-in-place tra}nsforms are per-
Radix 4/2Q Even/6dd formed with twodata memories, one the source
PSDO (kNz/KZ) of input data, the other the destination for
DIT/DIF © aata Coefficiont output data. When a butterfly operation for a
si?é O generator __generator given stage is completed, the roles of these
ASo-AS, Ol t V—4+ &l memories are reversed, with the output data
iy memory of one stage providing the input data
. for the next. The Even/0Odd signal is particu-
Address o&:\tf_u}\{?ﬁset input

larly useful in such cases; since it changes
state after every stage, it can be used to con-

trol the direction of data flow between the two

1. The Am29540 offers a one-chip solution to the .
memories.

problem of addressing data and coefficient memo-
ries for performing fast Fourier transforms. The but-
terfly counter can be programmed to address any-
where from 2 to more than 65,000 points.

Getting the coefficients

To access coefficients, the Am29540 gener-
ates a 16-bit address corresponding to one of 2'°
equally-spaced angles between 0 and 2x ra-
dians. For coefficient address A, the angle
addressed is 2wrA/2' the angle #/2, for in-
stance, would have the address 4000,c. The co-
efficient address is fed to look-up memory,
usually PROM, containing sine and cosine
values for the angles selected.

86



A given FFT will use some subset of the more
than 65000 angles available. As a case in point,
an N-point, radix-2 FFT with complex inputs
must access only N/2 equally spaced angles
in the range 0 to v radians; a 16-point FFT,
then, needs only eight different angles. The
sequencer automatically chooses the angles
needed in the proper sequence, skipping over
unused values.

The coefficient-addressing scheme em-
ployed carries a significant benefit for systems
in which various sizes of FF'Ts are to be imple-
mented. Because the chip automatically ac-
cesses only those sine and cosine values needed,
a single sine/cosine table can be used to per-
form FFTs of various sizes. If, for example, the
user creates a look-up table containing 2048
sine and cosine values between 0 and 7 radians,
that table can be used to perform all radix-2

complex FF'Ts with 4096 or fewer points.

Most FFT algorithms currently in use are
designed to process complex input data. The
Am29540 supports 12 different types of this
transform (see the table, below). The choices
include:
eRadix-2 or radix-4 transforms. The butterfly
structure of a radix-4 transform is more com-
plicated than that of radix-2 but offers some-
what greater computational efficiency. Each
radix-4 butterfly produces four output data
points from four input data points and three
coefficients, and consumes 12 real multi-
plications and 22 real additions. Radix-4 trans-
forms are selected with the Radix4/2 signal.
eDecimation-in-time or decimation-in-fre-
quency transforms. These terms refer to two
basic classes of FF'Ts; they reflect the manner
in which each class is derived. DIT and DIF

Fast Fourier transforms supported by the Am29540
Input data Decimation In-place/ Input data | Output data | Direction of
type Radix type non-in-place | ordering ordering transform
Digit- Forward and
2 DIF In-place Normal reversed inverse
Digit- Forward and
2 DIF In-place reversed Normal inverse
Forward and
2 DIF Non-in-place Normal Nop'mal inverse
Digit- Forward and
2 DIT In-place Normal reversed inverse
Digit- Forward and
2 DIT In-place reversed Normal inverse
Forward
2 DIT Non-in-place Normal Normal inverse
Complex
Digit- Forward and
4 DIF In-place Normal reversed inverse
Digit- Forward and
4 DIF In-place reversed Normal inverse
Forward and
4 DIF Non-in-place Normal Normal inverse
Digit- Forward and
4 DIT In-place Normal reversed inverse
Digit- Forward and
4 DIT In-place reversed Normal inverse
Forward and
4 DIT Non-in-place Normal Normal inverse
Real-valued 2 DIT In-place Normal Unique Forward
(RVI)
2 DIF In-place Unique Normal Inverse

87



DESIGN ENTRY
One-chip FFT sequencer

butterfly structures differ somewhat but
require an identical number of arithmetic
operations. The DIT/DIF signal determines
the desired transform type.

e[n-place or non-in-place transforms. Non-in-
place transforms require twice the data memo-
ry of their in-place counterparts. It might seem,
then, that in-place transforms would always be
preferred. Unfortunately, the in-place ap-
proach has a drawback—the digits of the ad-
dress of the input or output data must be called
for in reversed order. This scheme requires a
reordering operation. The choice between in-
place and non-in-place algorithms is made by
using the appropriate values of A,-AS;toselect
the desired addresses. Should the user select an
in-place transform, the choice of digit-re-
versed-address input or output can be made
with the signal PSD.

Useful inversions

The sequencing chip also can be used to per-
form inverse transforms, a useful feature in
applications requiring a route from the fre-
quency to the time domain. Computing inverse
transforms is straightforward—the address
sequences needed are the same as those for the
forward operations. With radix-2 transforms,

the only difference between the inverse and
forward transforms is the complex exponen-
tial: e must be replaced with e’*. Changing
the sign of the complex exponential’s argu-
ment is equivalent to replacing the coefficient
sin § with —sin 6, an operation that can be
executed by slightly modifying the addition
and subtraction operations performed in the
butterfly. Radix-4 inverse transforms require
somewhat similar minor accommodations to
sign chianges in the butterfly calculation.

Some applications demand FFT transforms
with real-valued inputs. The sequencer gener-
ates data addresses for both forward and in-
verse real-valued-input (RVI) transforms of a
type first described by Bergland.'

A weighty matter

FFT filter characteristics can often be signif-
icantly improved by premultiplying the input
data with a series of weighting factors. This
technique, also called windowing, or shading,
can significantly lower filter sidelobes and thus
simplify the analysis. The properties of a num-
ber of common weighting functions are well-
documented.”

The sequencer supports two weighting ap-
proaches for radix-2 transforms. The first and

T i rirrrrir L rerieri
Tlo-Tla D¢ X
TSEL, TSTRB \ /
Radix 4/2, PSD,

DIT/DIF XX

SEL, STRB \ /
Butterfly counter
instruction (lo—l1) Reset Hold Count Hold Count

AS(-AS; CO XA X B IZ2K O XX 8 XZ2K0
Parameter addressed A B S A 6

2. The Sequencing operation for a 16-point FFT begins by loading the appropriate
transform-length code and control signals into on-board latches. The butterfly
counter is then reset. After initialization, the first butterfly’s memory addresses are
selected with lines AS,-AS;. The sequencer is then advanced to each succeeding
butterfly using the count instruction.



DESIGN ENTRY

One-chip FFT sequencer

simplest approach is to perform a weighting
prepass before the FFT begins.

The sequencer is programmed to perform the
first stage of a radix-2 DIF transform. The
resulting prepass data addresses access the in-
put data, the coefficient addresses access
weighting values stored in a look-up table. On
completion of the prepass, the part is repro-
grammed to address the type of radix-2 FFT
desired.

The second approach takes advantage of the
structure of a DIT FFT. For the first stage of
the transform, only the coefficient values sin 0
and cos 0 are needed. Weighting can thus be
incorporated in this first stage, using the
stage’s multiplier. By configuring the part to

perform a radix-2, DIF FFT for stage 1, and
then changing the FFT type from DIF to DIT
for all remaining stages, the necessary data,
weighting, and coefficient addresses can be
generated.

Alook atan FFT

Virtually all useful weighting functions are
symmetrical. If Y(n) is a symmetrical N-point
weighting function, point Y(x) is equal to
Y(N—x). This symmetry implies that the user
need not store all N points of the weighting
function: (N/2)+1 points are sufficient. The
sequencer addresses such half tables by gener-
ating both x and N—x. The often-used von
Hann weighting function is one such example,

Host system interface |

Microcode
controller

(Am2910A) M

_______ ultilevel | "

o fedsia | maginar data
memory register

(Am27S45 (2 Am29520s) (4 Am9168s) : (4 Am9168s)

]

DMA channel

T N
Data memories

register PROMs)

Control
tor
rest of
system
Control lines
for Am29540

FFT
address
sequencer
(Am29540)

Ao-Ass

Clock Register

>
generator .
{Am2925) |:

=

(2 Am29825s)

Weighting
A table Q
(2 Am27543s)

Scaling

Scaling
shifter
(4 Am25S10s)

shifter
(4 Am25510s)

Datal/O Data I/0
Real ALU Real ALU
(2 Am29501s) (2 Am29501s)
Muitiplier Multiplier| |Multiplier Multiplier
/0 Input 170

X 16 X 16 bit

muitiplier P
(Am29517)
Sine, cosine
A enerators  Q
(Am29526/27/28/29)

3. In a typical system, the Am29540 is used to access data, weighting, and sine
and cosine (coefficient) values in a microcode-controlled FFT processor. This
system can support a 4-kpoint radix-2 transform.

89



DESIGN ENTRY
One-chip FFT sequencer

easily derived from the table of cosines re-
quired by the FFT algorithm itself. Thus, the
need for a separate weighting-function memo-
ry is altogether eliminated.

The sequencer’s operation can be best
understood by considering its performance of a
typical FFT. Suppose, then, that an in-place,
radix-2, 16-point DIT FF'T is to be implemented
(see “Generating Addresses Efficiently,” Fig.
C, p.160). To initialize the device, the appropri-
ate transform-length code and control bits are
loaded into the on-chip latches. For this exam-
ple, the transform-length code has the value
00115; the control bits must assume the values
PSD = 1, Radix4/2 = 0, and DIT/DIF = 1.
After this data has been entered, the butterfly
counter is initialized with a Reset or Reset/
Load instruction.

Once initialized, the part generates data and
coefficient addresses for the FFT’s first butter-
fly. For this algorithm, the input and output
data addresses are set at 0 and 1, respectively,
with lines AS,-ASs; the coefficient address is
similarly set to 8. After all the addresses have
been read, the device is advanced to the next
butterfly by executing a count instruction
(Fig.2).

Defining the system

The Am29540’s working environment is a
microcode-driven FFT processor. That system
can be divided into several basic blocks (Fig. 3):
the address sequencer, arithmetic processor,
high-speed data memory and coefficient memo-
ry, system controller, and the host interface.

The address computer generates the read and
write addresses to access data, as well as coeffi-
cient and weighting addresses.

The arithmetic processor, consisting of a
multiplier (here, the Am29517) and two ALUs
(one for real and the other for imaginary data),
efficiently calculates complex data from the
data memory. Using coefficient and weighting
generators, it processes the information and
returns it to the data memory. Thedata width is
16 bits; therefore each ALU requires two
8-bit-slice multiport pipelined processors
(here, Am29501s). A scaling shifter is provided
in each data path from the memory to the
ALUs.

The high-speed data memory stores input

20

and output data from an FFT operation. It is
also divided into two banks, one for real, one for
imaginary data. The sequencer can be loaded
with a data address offset, allowing data
memory to be addressed at starting locations
other than zero, and permits the addressing of
selected blocks of data. A set of coefficient gen-
erators (Am29526/27/28/29) provide the co-
efficients needed when performing an FFT and
produce up to 2048 words of sine and cosine
data. This is sufficient to support up to a
4096-point, radix-2 transform. A PROM con-
tains the weighting values for the FFT input
data.

The system controller, as overseer, accepts
instructions through the host computer inter-
face, determines which function must be per-
formed, issues the proper instructions to other
components, and informs the host when the
operation is done. It employs a microsequencer
(the Am2910A) and microcode memory.

The host interface consists of logic to handle
the host system protocols and a DMA controller
for high-speed data transfer. During block data
transfer the DMA circuitry has direct access to
the data memory.

The address sequencer generates both read
and write addresses for the data memory.
When, as is usual, the operations for a sequence
of butterflies are overlapped, those addresses
must be temporarily stored in an agile shift-
register pipeline. This structure must unravel
the intertwined sequence of addresses for the
several butterflies that are in progress at any
given time. Here, 2 multilevel pipeline register
consisting of two Am29520s is used. It can'serve
as dual two-level or a single four-level pipeline
register, and each of the registersis available to
the output at any time.O
References

1. G. D. Bergland, “A Fast Fourier Transform Algorithm for
Real-Valued Series,” Communications of the ACM, Vol. 11,
Number 10, October 1968, pp. 703-710.

2. F. J. Harris, “On the Use of Windows for Harmonic Anal-
ysis with the Discrete Fourier Transform,” Proceedings of
the IEEE, Vol. 66, Number 1, January 1978, pp. 51-83.



500-kHz single-board FFT system
incorporates DSP-optimized chips

VLSI devices optimized for digital signal processing can realize
avchitectures that, compared with traditional designs, save space,
power and money. Such chips serve as the basis for a single-
board system that uses fewer than 40 standard components.

Robert Cohen and Robert Perlman,
Advanced Micrc Devices Inc

By employing VLSI devices to implement the fast
Fourier transform, you can build a single-board digital-
signal-processing system that supports sampling rates
to 500 kHz and requires fewer than 40 packages (includ-
ing processor, sequencer and local memory).

In such systems, the FFT makes possible many
applications that would otherwise be unrealizable be-
cause of computational complexity. FFT techniques
require a great number of calculations, and general-
purpose computers incorporating the FFT aren’t fast
enough for such real-time high-bandwidth signal-proc-
essing systems as radar, video processing and telecom-
munications. Until the introduction of VLSI devices
that are optimized for DSP tasks, only expensive array
processors and special-purpose systems constructed
with hundreds of SSI and MSI components could serve
such applications.

Optimize butterfly execution

Effectively applying these VLSI circuits requires a
familiarity with the FF'T’s computational requirements
(see box, “FFTs reduce DFT computations”). Then,
you can implement an appropriate algorithm in hard-
ware. Because the FFT’s basic operation is the butter-
fly, you can start by designing a butterfly processor.

Fig 1 lists the steps required to process a butterfly.
The list helps you to determine the minimal resources

required: an ALU, a multiplier and enough memory to
hold the real and imaginary components of N samples.
By adding resources, you can increase parallelism and
boost throughput. For example, separate memories for
the real and imaginary components of the sample data
allow you to read A or B (or write A’ or B’) in one cycle.
Extending this concept, you can divide the data path-
way into a real-variable processor and an imaginary-
variable processor (Fig 2).

The multiplier (or set of multipliers) acts as a shared

1 (READAANDB) ( LOOK UP W* )

Low Lo [ Lo ][ o |

2 MULTIPLY:
3 ADD: [BRW; |'| Blwlj I BWE |+ [ BaW¢ |
4 a0D: A, +l(Bow) —|(B,w|k)l A+ |(B,w;) + (B,vq*)l

>
|

- |[(ee)] + )|

+

oo {5 -[(ow0)]
s

Fig 1—Five sequential steps implement the butterfly, which
is the primitive DFT operation. This list shows that the
absolute minimum resources required to implement a butter-
fly are an ALU, a multiplier and memory.

Reprinted with permission from EDN, October 31,1984

91



A butterfly processor needs an
ALU, a multiplier and memory

resource for both processors because it operates on
both types of data. Each processor consists of an ALU
and registers that hold intermediate results. Although
you could add more ALUs, they prove superfluous for
the FFT algorithm used here. (Additional ALUs are
useful in radix-4 algorithms; see reference.)

To achieve the best performance, you minimize the
number of cycles needed to execute the butterfly.
Parallel computations allow the processor to accomplish
more in each cycle to effect the desired reduction.

With an architecture like the one suggested—two
memories, two processors and several multipliers—
what is the smallest number of required cycles? To find
out, examine Fig 1 and start by using two cycles to read
A and B from memory. (You can store W* in a PROM
and read it concurrently with A and B.) Assuming the
processor has four multipliers, step 2 executes in one
cycle. Step 3 also executes in one cycle if it determines

xﬂ(n) x,(n)
A A
y y
REAL IMAGINARY
PROCESSOR PROCESSOR

t, .

| wmumeuer | | muitieues ].oo[ MULTIPLIER ]

Fig 2—Separate real and imaginary data pathways allow
you to share multipliers and reduce required system re-
sources.

the left-column difference in the real ALU and the
right-column sum in the imaginary ALU. Step 4 re-
quires two cycles, the left two operations being per-
formed in the real-variable ALU and the right two in
the imaginary-variable ALU. A’ and B’ are then writ-
ten to memory in two cycles. This process executes a
complete butterfly in eight cycles.

You now estimate how fast this processor can oper-
ate. Assuming that N=1024, the processor must per-
form (N(log,)N)/2 butterflies (a total of 5120). At eight
cycles per butterfly, the processor needs 40,960 cycles.
Next, assume a 100-nsec cycle time. (Cycle time de-
pends on the slowest pathway through the system,
which is typically via the multiplier; 16 x 16-bit combina-
torial multipliers with sub-100-nsec propagation delays
are common.) Under these conditions, a 1lk-sample
transform requires 4 msec, corresponding to a 0.25-
MHz sampling rate, which is quite respectable for many
applications. Further scrutiny will reveal ways to re-
duce hardware and increase throughput.

Less hardware does the job faster

Fig 3 shows a resource-utilization table for an 8-step
butterfly. Note that all resources are idle most of the
time: The data bus is active only 50% of the time, the
ALUs 38%, and the multipliers 13%. You can-take
advantage of this idle time by executing butterflies
concurrently, a technique known as pipelining.

For example, after reading A and B for the first
butterfly, the data bus can read A and B for the second
butterfly during cycles 3 and 4 while the multipliers and
ALUs are busy. The multiplier could then begin work-
ing on the second butterfly immediately after comput-
ing results for the first. Using this technique, the
processor still requires eight cycles to complete a

DATA  REALALU IMAGINARY ALU MULTIPLIERS DATA  REALALU IMAGINARY ALU MULTIPLIERS
1 A 1 A
2 | B 2| B
3 BWE BWK BLWK BWE 3 BaWA BWK B WK B WY
k
4 BaWa - BWK BWE + BoWk 4 BaWi - BW BW + B
o
- |A B WK - BWK B,WK + B WK I
5 Aq + BOWE - BWKI A+ BWE + BoWk S| A % v BatR - BT At BIVR BaM 8o
m
6 A~ BWK - BWKIA, - BWE + BWK °
6 A - BWE - BWK A, - BWE + BWK B |A - BWE - BaW 1Ay - BWR + ByW] %g
7| A BaWW B BWB Wy &
7 | A
8| B’
8 | B

Fig 3—An 8-step butterfly, which implements the algorithm
prior to optimization, uses its constraining resource—the data
bus—only 50% of the time.

92

Fig 4—By starting a second butterfly concurrently, you
can create a 5-cycle loop and improve throughput 38%
compared with Fig 3’s operation.



particular butterfly, but it reduces the average number
of cycles per butterfly because it works on more than
one butterfly at a time.

The most heavily used resource determines the mini-
mum average number of cycles per butterfly that you
can achieve. By using the four idle bus cycles, you can
reduce the average number of cycles per butterfly to
four and double system throughput.

You can see this doubling of throughput clearly in Fig
4’s resource-utilization table. A second concurrent but-

%‘t}é‘ REAL ALU IMAGINARY ALU MULTIPLIERS

A

B

BHW; BIvvlk BRVVIK Blwﬂk

BaWa — BWK BWa + BaW

Ag + BgWg - BWK| A + BWE + Bwk

A - BWE - BWK|Ag - BuWy + BWK

NO d0O1

BRMI: Blvvlk BHVV"‘ Blw;

Sd31S 3S3HL

BaWA - BWK BWS + Batw

Fig 5—Data-bus utilization is 100% in a 4-cycle butterfly.
Here you can see that using just one multiplier doesn’t hinder
throughput.

REAL MEMORY IMAGINARY MEMORY

Dy - Dyg D,-D, Dg-Dys D,-D,
4 4 4 4
8 8 8 8
y \ 4 4
DIO DIO DIO DIO
Am29501 Am29501 Am29501 Am29501
Cinf¢1Cour Sl our
MIO Ml MIO Ml MIO MI MIO  MI
8 8 8 8 *B 8 8 8
Poa=Pa1 Pig= Py
Am29517
—11{Yo" Y+ X
vy, Yo

Fig 6—This FFT circuit uses only one multiplier and a
handful of other components.

93

terfly starts on cycle 5; A and B are then read, and the
new products are calculated in cycle 7. (You can also
start the second butterfly on cycle 3 or 4.) After
completing cycle 8, the processor jumps to cycle 4
instead of cycle 1, because it has already read A and B
and computed the new products for the second butter-
fly. This technique creates a 5-cycle loop instead of an
8-cycle loop, improving throughput by 38%.

Fig 5's table shows how to achieve even higher
performance. You can copy cycle 4 into cycle 8, which
allows the processor to jump to cycle 5 and produce a
4-cycle loop. This action doubles the original through-
put. In this case, the data bus experiences 100%
utilization and the ALUs 75%, but the multipliers are
still employed only 25% of the time. Clearly, you don’t
need four multipliers. In fact, you can achieve the same
performance with only one multiplier by pipelining an
additional butterfly. A design example demonstrates
this technique.

Start a butterfly every four cycles

The Fig 6 design uses a real-variable processor and
an imaginary-variable processor, each with two
Am29501s to provide 16-bit precision. (The Am29501 is
an 8-bit, cascadable processor comprising an ALU, a set
of six registers, and three data ports.) The two pro-
cessors also share an Am29517 16-bit parallel multipli-
er, which has two 16-bit inputs, X and Y. The Y input
connects to the multiplier I/O (MIO) port on the real
and imaginary 29501s; the X input is driven either by a
PROM containing the complex constants W* or by
Am29526/27/28/29 sine/cosine generators. The high-or-
der 16 bits of the multiplier output (Pys) go to the
29501s’ multiplier input (MI) ports, while the low-order
16 bits of the product are ignored. Memory consists of
static RAM with a cycle time of less than 100 nsec.

The microcode needed to perform one butterfly is 10
cycles long (Fig 7a), but you should note two things.
First, registers are never used for more than four
cycles, so the processor can load them with new values
every four cycles. This, in turn, means that it can start
a new butterfly every four cycles.

Second, you can superimpose each line of code onto
the line four cycles below it without causing resource
conflicts. For example, Fig 7b’s code superimposes
lines 1 through 4 over lines 5 through 8 to start
computing a second butterfly while the first is still
executing. This process repeats in Fig 7¢’s code, where
lines 5 through 8 are then superimposed over lines 9
through 12. These last four lines contain the code
necessary to compute three concurrent butterflies. You
must ensure only that, when the processor reads or
writes A or B, it knows exactly to which butterfly the
data applies.



FFTs reduce DFT computations

Fourier transforms mathematically
approximate a signal's transfor-
mation from the time domain to
the frequency domain, and sever-
al algorithms implement the tech-
nique. All are based on the dis-
crete Fourier transform (DFT),
which sums time-domain samples
(x(n)) that are multiplied by com-
plex constants:

XM = 3 x(nWesn
n=0

k=0,1,...,N—1,

where W=e " and each X(k) is a
frequency-domain Fourier coeffi-
cient. The computation of each
coefficient requires N complex
multiplications, where N is the
number of samples. This results in
N2 complex multiplications.

The fast Fourier transform
(FFT) reduces complex multiplica-
tions by eliminating redundant cal-
culations, using the equation

X(K) = G(k) + W2N H(k)
k=0,1,....,N=1, (1)

where G(k) is the DFT of the even
samples in x(n), and H(k) is the
DFT of the odd samples. (The
algorithm discussed here is a ra-
dix-2 decimation-in-time algo-
rithm; other schemes may provide
additional benefits.)

Shaving points

Based on Eq 1, Fig A shows an
8-point DFT that's divided into two
4-point DFTs, one of which oper-
ates on even samples while the
other operates on odd ones. As
Fig A shows, the results are
summed to produce the 8-point
DFT result. This configuration
takes advantage of the fact that

G(k) and H(k) have period N/2. In
other words,

G(k + g) = G(K)
H(k + g) = H(K).

Each 4-point DFT requires
N?=16 complex multiplications,
and combining the intermediate
results to obtain the eight frequen-
cy-domain coefficients requires
one complex multiplication for
each coefficient (the arrows repre-
sent multiplication by the noted
constant). Thus, the Fig A trans-
form requires a total of 40
(16+16+8) complex multiplica-
tions—a savings of 24 compared
with the 64 multiplications re-
quired to compute an 8-point DFT
directly.

By repeating this process and
dividing the 4-point DFTs into 2-
point DFTs, you can eliminate
even more computations. The 8-

point FFT represented in Fig B
requires eight complex multiplica-
tions for the four 2-point DFTs
plus 16 other complex multiplica-
tions, for a total of 24. In general,
the number of complex multiplica-
tions equals the number of col-
umns in the representation (log.N)
times the number of samples.
Another technique allows you to
cut multiplications in half again. In
Fig C, each circle represents a

G(0)

x(0) X(0)
X281 4poiNT X
xae— OFT @)
x(6) 0 X(3)
x(1) @ X(4)
X(3) 0— apoNT X(©)
xs)o— P X()
x(7) 0 X(7)

wr/a
—3— = MULTIPLICATION BY W2kN

Fig A—Compared with direct computa-
tion of an 8-point DFT, decomposing it
into two 4-point DFTs saves 24 complex
multiplications.

X(0) @—

2-POINT
DFT

X(4) @—

x(2) o—
2-POINT
DFT

x(6)

x(1)
2-POINT
DFT

x(5) @—

X(3) o—

WSM
WZM
+ > 29 X(6)

2-POINT
DFT

- W22 wen
w112 Wlll
x(7) o—— - > =

\ X(7)

w7

Fig B—This scheme, which uses four 2-point DFTs to transform eight time-domain
samples, requires a total of 24 complex multiplications: eight for the four 2-point DFTs

plus the 16 represented here by arrows.

94



sum and a difference. Using the
structure in Fig D, you define A’
and B’ as follows:

A" = A + BWaN
B = A - BW&N,

This notation results because W is
a complex exponential and there-
fore periodic:

N
W2N = _\W\2k+ 2N

Because you can use the prod-
uct BXW2N to calculate both A’
and B’, the total number of com-
plex multiplications drops to
(NlogzN)/2. This structure is the
primitive operation in FFT calcula-
tions and is called a butterfly oper-
ation. Note that each circle in Fig
C is a butterfly operation. This fact
suggests a pipelined operation,
optimized to execute butterflies,
that can exploit the algorithm’s
highly repetitive nature.

x(0) —
2-POINT
DFT
x(4) ——
Wwor2
X(2) @—
2-POINT
DFT w2
x(6) —
x(1) —
2-POINT
DFT
X(5) @—
WOIZ
x(3) @——
2-POINT
DFT W!IZ
x(7) —

1+

1+

I+

(B3

Dissecting the butterfly

Each butterfly consists of two
calculations:

A=A+ BW
B' = A - BW,

where A’, B, A, B and W* are
complex numbers. (Here, the ex-
ponent 2k/N is consolidated into
one term, k, for simplicity.) Divid-
ing these into their real and imagi-
nary parts yields

A’ = (Ag + j A|)
+ (Br + j B)(WR" + j W)
B’ = (AR + j A|)

= (B + j B)(WR" + j WIY).
Expanding the products gives
A" = (Ar + jA) + (Ba W& +

j B| Wnk + j BR W|k - BI Wlk)

B' = (Ar + jA) — (Br WR* +
j BiWRK + j B Wi — B, W),

Dividing A’ and B’ into their real

X(0)
X(1)
* X
* X(3)

WO/A
* X(4)

WI 4
+ X(5)

W?M
X(6)

W314
X(7)

Fig C—In this DFT representation, intermediate results are multiplied by the complex
constant W2N and then summed. Note that each sum of products, illustrated by a circle,

is actually a butterfly operation.

95

AO—

W2kiN
B @—

Fig D—The 2-point DFT, or butterfly, is
the primitive operation in FFT calculations.
Fig C includes many such operations and
thus lends itself to a pipelined implemen-
tation.

and imaginary parts yields four
equations:

AH' = AR + BR WRk - B| W|k
Bnl = An - BR ng + B| W|k
A’ = A + B Wg + B WK

B|, = A| - B| Wak = Bn W|k.

These equations share common
terms that need be calculated only
once per butterfly. Regrouping
terms yields additional savings:

Ar' = Ag + (Br Wt — B, W)
Br' = Ag — (Br Wg* — B Wlk)
A|: = A| + (B| Wnk + BR W|k)
B/ = A — (B, Wg* + Bg W)

You can now determine the
number of calculations necessary
per butterfly: four multiplications
to compute BXWK, a subtraction
to calculate real A’ and B’, an
addition to calculate imaginary A’
and B’, two final additions for A’,
and two final subtractions for B'.
This process yields a total of four
products, three additions and
three subtractions per butterfly.



@ REAL IMAGINARY MULTIPLIER
ster| Do | ALU A [ A, |A B, B, |Bs] ALU [A] A, [A,[8,] B, [B, MO MULT
1 | READ B DI DI
2 | By
3 | READA D DI B, W,
A=A +BK 4 A, - MI M| |ALU B, | B, W,
B'=A - BK 5 A, - M M| [ALU B, W,
6 A, + A | | [ALU B, - Mi ALU[MI B, W,
7 B, + MI mijacu] JA, + 8] JALu |
8 |WRITEB, A, + Al ALY
9 A, - B, ALU |
10 |WRITE A,
11
12
13
14
15
16
17
18
® REAL IMAGINARY MULTIPLIER
ster| bio | aw [a] A [als,| 8, ]8[ A [a] A, A8, B, [B,[mio] MuLT
1 | READ B ] DI
2 | By
3 | READ A DI DI B, W,
A=A+ BK 4 A - MI mi| ALy B, | B, W,
B = A - BK 5 | READ B DI A, - Mi Mi| DIJ ALU B, W,
6 A+ Al [ TALU | B, - MI au[mi| B, | B W,
7 | rREAD A [B, + mi] DI mifaLu] A, + B, |DifALu | By Wy
8 [WRITEB,[ A, - MI Ml T TALUf 1A, + A ] [ALu B, | ByW,
9 A, - B, || [ALU l
10 |WRITE A,
ik
12
13
14
15
16
17
18
© REAL ] IMAGINARY MULTIPLIER
STEP| DIO aw Al alale] 88| au |ala |l 8, [8fmio]mur
1 | READ B DI DI
2 | B,
3 | READ A DI DI By Wy
A=A+ BK 4 A, - Mi M| [ALU B, | By W,
B = A - BK 5 | READ B DI A, - Mi M| DI|ALU B, W,
6 A, + Al | [ALU | B, - MI ALU[MI| B, [ B W,
7 | READA | B, + MI| DI MI|ALU[ | A, + B, DIJALU B, W,
8 |WRITE B,| A, — MI M| |ALU| | A, + A| | |ALU B, | B, W,
9 | READB | A, - B, | |ALU| [ [DI A, - MI Mi| DI[ALU B, W,
10 |WRITE A,| A, + Ag| | | ALU | B, - MI ALl [ B, | B W,
71 | READA | B, + MI| DI MI[ALU[ [ A, + B,| DIJALU | B, W,y
12 |WRITE B,| A, - MI] | M| T |ALO[ | A, + A | [ALU B, | B, W,
13
14
15
16
17
18

Fig 7—The microcode needed to execute one butterfly in Fig 6°s circuit is 10 cycles long (a). By following the code in (b) you can
start computing a second butterfly concurrently. The code in (c) starts a third concurrent butterfly.

96



Pipeline the FFT processor
to reduce bus’s 50% idle time

To help keep these values straight, the circuit uses
the Am29520 multilevel pipeline register. Fig 8 depicts
how this device operates in the address pathway to
memory. Every four clock cycles, at the beginning of a
new butterfly, the Am29540 FFT address sequencer
generates a new set of addresses for A and B. The
29520s store these addresses temporarily in internal
registers that are configured as a 4-deep pipeline. As
each new address is clocked into the first pipeline
register, previously stored addresses advance to the
next register. You can select any register for output
and access the appropriate address for any microcode
cycle. Fig 9 illustrates the order in which this design
stores and retrieves data addresses.

The 29540 also generates addresses for the PROM
containing WX, It creates a new address for each
butterfly and then stores it in an external register.
Because complex products are computed on successive
cycles, the address to the PROM changes at the begin-
ning of each new butterfly (that is, every four cycles).

Microcode lines 9 through 12 then execute as a loop
until the 29540’s FFT Complete signal goes active. The
entire transform requires only 12 words of microcode:
The first eight preload the pipeline, while the last four
perform the computations.

Word size can almost triple

In these FFT implementations, you must be con-
cerned about word growth. Because the FFT butterfly
produces outputs by adding terms, butterfly outputs
may require more bits than each input has. Specifically,
consider the equation A’=A+BW*, where A’, A, B and
Wk are complex. This equation, one of the butterfly’s
two basic calculations, represents vector rotation and
addition. The term BW* merely describes a rotation of
vector B by unit vector W¥; the result is added to vector
A. The magnitude of A’ can therefore be twice as large
as A or B.

Unfortunately, this problem is more insidious than it
appears. Although complex magnitudes do no more
than double at each stage, the real and imaginary
components of these complex values can increase by
more than that amount. Indeed, they can increase by
1+V2, or 2.41, for decimation-in-time algorithms,
which is the type used here. They can even increase by
2xV2, or 2.82, for decimation-in-frequency algo-
rithms, which use a different butterfly technique (see
reference). In either case, you must allow for as much
as two bits of growth in every stage. You could design a
system with sufficient extra growth bits, but this
approach is wasteful and expensive, particularly if the
transform has many stages. ‘

An inexpensive alternative is to use the block-float-
ing-point scheme. This technique uses a common block

97

Am29540

FFT ADDRESS
SEQUENCER

&,

v v
Am29520 AM29520
MULTILEVEL | |MULTILEVEL
PIPELINE PIPELINE
REGISTER REGISTER
HIGH LoW
N 0 \
16 l REGISTER I
ADDRESS ADDRESS
REAL MEMORY IMAGINARY MEMORY
DATA DATA
A 4
4 A
DIO DIO
REAL IMAGINARY
PROCESSOR PROCESSOR
MIO Mi MIO Mi

L A I A

o

M )
PRODUCT REAL W
MULTIPLIER
—>{v X
IMAGINARY|
Wk

Fig 8—The system must keep track of many sets of data
when computing concurrent butterflies. To do so, it must
incorporate an FFT address sequencer.

—— 29520 CONTENTS —

MEMORY 29520 REG REG REG REG 29520
CYCLE OPERATION INPUT A, A, B, B, OUTPUT

0 ‘B,
1 READ B, *B, *B,
2 A, | ‘B,

3 READ A, A, | B, A,
4 B, | ‘A, | ‘B,

5 READ B, *B, | A, | 'B, B,
6 Al B[ A]E

7 READ A, A8 | A Bl A
8 | WANEB, | '8, | ‘A, | B | A | B] B
9 READ B, B, | 'A, | B, | A | °B,
10 | WRMEA, | A, | ‘B, | ‘A, | 'B, | A | A
1 READ A, A, |81 Al 8| A
12 | WAnEB, | '8, | ‘A, | 8, | ‘A | B | '8

*indicates “‘address of”

Fig 9—Four registers in the address sequencer prove
sufficient to store the various data addresses needed to
compute three concurrent butterflies.



Efficient microcode executes
three butterflies concurrently

duce data in a convenient sequence. You'd like data for
the first frequency notch to occupy the lowest memory
REAL MEMORY—HIGH REAL MEMORY—LOW location, data for the second notch to occupy the next
s DuDiDy  D,,D4oDs0s D, 0,D,D, D,D,D,D, lowest location, and so on. To remedy this situation, you
can either scramble data points before they enter the
algorithm so that they emerge in the proper sequence,
or you can scramble them afterwards.
Although this article’s architecture describes a spe-

SIGN
D,

-T.I cial-purpose FFT processor, you can use it as a general-
o &7 maTE s,-—lz—' __12_ L purpose signal processor. Many signal-'processin.g algo-
s amassto [ ] amessio || s ] amessio [] amessto rithms have a sum-of-products notation that is well
GE v,-v, |OIGE v,-v, | [ AR o (RN suited to this design. Essentially, you can substitute
A A =l A 8 the PROM that contains W* with a RAM that the host
READ ﬁb‘l ﬁ processor loads. In this way, you can easily implement
L windowing and scaling operations. EDN
8 WRITE 8 WRITE
Dlﬂ Cuo
Am29501 Am29501
HIGH Low Reference
Oppenheim, Alan V and Schafer, Ronald W, Digital Signal
Fig 10—To avoid data overflow caused by word growth, Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.

implement a block-floating-point technique with 4-bit shifters
inserted into the data-read pathway.

exponent for all data. If the system expects or detects
an overflow, it shifts data to the right and increments Authors’ biographies
the block exponent. Robert Cohen worked as a
The circuit shown in Fig 10 implements this approach design engineer in product
with two Am25810 4-bit shifters inserted between | planning at Advanced Micro
memory and the real and imaginary processors in the | Devices (Sunnyvale, CA) from
data-read pathway. The shifters allow you to divide | 1981 to 1984. He is now a
data read from memory by 1, 2 or 4. Each time the pr{vaée ‘g’sné‘é"am' He re-
system writes data to memory, external logic compares ;ﬁlt‘;? sgence an?jg:\‘;iir?eg?ir:é
the two high-order data bits to the sign bit. from the University of Penn- - -
If the high-order bits differ from the sign bit, the sylvania in 1981. His favorite
data’s magnitude has expanded into the high-order | food is a combination of gua-
bits, and an overflow could occur in the next column of | ca@mole and knishes.
butterﬂie§ beca}use data could incregse by 2.41. Cor}se- Robert Perlman is a senior
quently, if logic detects an expansion into the high- product planning engineer
order bits, it sets a flag. Then, when the next column with the DSP/array processing
begins (signaled by Iteration Complete from the | group at Advanced Micro De-
29540), the system reads all data as shifted to the right vices. fHe holgs aRB?‘EE |de'
by zero bit§ (if no expansion' took place), by one pit Gf l%ﬁitec;z()r\?:: Insetitutee assg a:r:
the expansion occurred only in D;3) or by two bits (if the MSEE degree from Johns
expansion occurred in Dyy). Note that the sign bit must | Hopkins University, and he
be duplicated in the high-order bits. Upon receipt of | has done design work in air-
Iteration Complete, the block-exponent counter incre- | 20rne digital design pro-
ments by 0, 1 or 2. The host CPU can then read this cessing for Westinghouse.
value to determine the Fourier coefficients’ absolute

magnitude.

Though the 29540 FFT address sequencer has many
operating modes to accommodate varying architectures
and algorithms, the system described here executes a
radix-2 decimation-in-time transform that doesn’t pro-

98



Trim DSP overhead
by changing
your sampling rate

The sampling rate of a signal may be altered
very easily as it passes through the
various stages of a digital signal processing
system. This can reduce the number
of cycles required to perform operations
in the digital domain.

Kenn Lamb
Advanced Micro Devices
Sunnyvale, California

Emerging digital signal processing techniques require
arithmetically intensive real-time processing. Each
sample fed into your system must be operated on many
times. Therefore, the performance required of the DSP proc-
essor is determined by both the type of processing to be ap-
plied to the signal and by its sample rate.

The sampling rate of a DSP system is usually determined
by the analog-to-digital converter at the front end of the
system. The choice of this sampling rate affects how well
available arithmetic resources are used. Here’s how to create
a highly efficient system.

The techniques used are called “decimation” and “inter-
polation.” Both are used to decrease and increase the sam-
pling rate. respectively. When implemented using digital
signal processing components (such as slices, programmable
sequencers, and multipliers), these methods allow the con-
struction of very efficient narrowband filters which can out-
perform direct implementations of the desired filter.

Reprinted with ermission
from INTEGRATED CIRCUITS MAGAZINE
May 1985, with all rights reserved.

99



AAAAAAAAL

—4fs —3fs =2fs  —fs

Fig. 1. A sampled signal’s spectrum is repeated at periodic in-
tervals, centered at integer multiples of the sampling frequency.
The bandwidth of the images must be less than the sampling
frequency to avoid aliasing.

A\A\A\A\A\JMI\A\A\A\A\

—f —bfs  —4fs —3fs s —fs

(@) —i 7

—- —f's =f's 0 fs 2A's  3f's fs  5f's 4f
4 4 4 q 4 4
/ f's = 4fs
— —
(b) +
s

Fig. 2. Sampling theory describes how the original signal repeats
at intervals (a). With three zeros placed between each of the
original samples, the bandwidth increases (b). Three of the sig-
nal's images are now included in the spectrum.

100

The sampling rate of a DSP
system must satisfy a number of
criteria, beginning at the front
end within the analog-to-digital
(A/D) converter. In theory, it is
only necessary to sample a sig-
nal at a rate greater than twice
the signal’s bandwidth.

In practice, this is not possible,
because the band of interest may
not extend from DC, and “brick-
wall” antialiasing filters are not
available. Nevertheless, certain
techniques allow us to approach
the theoretical minimum.

You—as a designer—could
for example, shift the signal’s
frequency content, so that the
band of interest extends from
DC to ensure that the maximum
signal frequency is equal to the
signal’s bandwidth. Quadrature
sampling, another technique, ex-
tends this approach by allowing
two analog-to-digital converters
to share the work.

Finally, second-order sam-
pling permits the signal to be ex-
amined at twice the bandwidth,
even if there are higher frequen-
cies present. In the latter case,
the sampling rate reduction is
achieved at the cost of taking
twice as many samples; it also
presents an onerous filtering
problem to the first stage of the
digital signal processor. A sam-
pling rate reduction greater than
two must be achieved if this tech-
nique is to be of any benefit.

Avoid Last Resorts

These sampling techniques are
usually a last resort, used when
the analog-to-digital conversion
task would otherwise border on
the impossible. There are only a
few such applications in which
the sampling rate will approach
the theoretical minimum.

In other situations, there are
advantages in oversampling the
input signal: reduced specifica-
tions for antialiasing filters and

MAY 1985



improved resolution from A/D
converters. These advantages
usually dictate an initially high
sampling rate, one that is in-
variably maintained throughout
the rest of the system, and which
therefore results in inefficient use
of the available resources.

A block diagram of a DSP sys-
tem is usually drawn as a cascade
of processing stages, each per-
forming different operations on
the signal. This is conceptually
the simplest way to specify and
analyze the processing, but it is
rare for the individual blocks to
map directly into separate pieces
of hardware.

All digital signal processing
algorithms are based on the same
set of arithmetic operations, typ-
ically addition, multiplication,
and multiplication/accumula-
tion. An arithmetic processor
specifically tailored to DSP ap-
plications can perform all the op-
erations specified within the sep-
arate sections of the system
block diagram.

The Fewer the Better

The objective of the system
designer is to achieve all the
processing required with the
least number of processor units.
Obviously, any reduction in the
number of cycles needed to exe-
cute individual stages of the
processing leads to overall sav-
ings. Typically, it may result in
a reduction in processor units, an
increase in the number of chan-
nels that may be accommodated,
or higher processing quality in
cases in which only a single DSP
unit is used.

Intelligent Rationing

These benefits result from
maintaining an efficient ratio be-
tween a signal’s sampling rate
and its bandwidth, as the overall
frequency content of the signal
is modified by its passage

INTEGRATED CIRCUITS MAGAZINE

through the digital signal proc-
essing system.

Additional processing savings
accrue from integrating the sam-
pling rate changes directly into
the processing stages themselves.
These savings are most apparent
in operations such as lowpass or
narrowband filtering.

Modify Those Sample Rates

The sampling rate of a signal
may be modified by either re-
moving unnecessary samples or
calculating and inserting addi-
tional samples. These techniques
make up decimation and inter-
polation, respectively. In order to
understand the effects on a signal
of the interpolation and decima-
tion processes, it is important to
be familiar with the frequency
domain representation of a sam-
pled signal.

The Nyquist Criterion, so fa-
miliar to workers in the field of
DSP, avoids aliasing distortion
by specifying a minimum ratio
between the sampling and max-
imum signal frequencies. In prac-
tice, this minimum ratio of two
is often exceeded to alleviate the
rolloff specification of the anti-
aliasing filter.

In the frequency domain, the
sampled signal’s spectrum is re-
peated at periodic intervals, cen-
tered at integer multiples of fs
(the sampling frequency). See
Fig. 1. The bandwidth of these
images must be less than fs or
they will overlap, a condition
termed aliasing.

Decimation and interpolation
change fs and hence also alter the
interval at which the images re-
peat. These images may, there-
fore, be moved selectively closer
together or further apart.

Decimation Explained

Given that a signal is oversam-
pled (that is, the maximum signal
frequency is less than half the

101

sampling frequency), the sam-
pling rate may be reduced by
eliminating unnecessary samples.
At first sight, this may seem to
entail simply removing a number
of the samples from the time
record.

To avoid catastrophic distor-
tion of the signal, however, the
time increment between each
sample must be the same. This
implies that the minimum achiev-
able decimation ratio is a factor
of two, corresponding to the elim-
ination of every other sample.

Such a technique has been used
for multistage filters and is
termed ““decimation by octaves.”
While it is possible to decimate
in this manner by an integer
ratio, it is rare to have such
grossly oversampled signals in a
real application.

Lowpass filtering leads to over-
sampled signals, as it is the high
frequencies that are attenuated.
Therefore, decimation tech-
niques are usually associated
with lowpass filters. Assuming
that a signal is oversampled by a
factor of less than two, lowpass
filtering must occur before any
decimation to avoid aliasing dis-
tortion. A simplistic approach
would be to filter the signal and
then decimate by discarding un-
wanted filter outputs.

If filter outputs are to be dis-
carded, then why bother to cal-
culate them in the first place?
Unfortunately, recursive filter
structures require all outputs to
be calculated, since these outputs
are fed back into the filter to in-
fluence subsequent outputs.
Transversal filters do not suffer
from this restriction and, conse-
quently, permit more efficient
lowpass decimating filters.

Assume that a lowpass filter
of N coefficients filters a signal
resulting in an output oversam-
pled by a factor of P. Without
decimation, the filter would have



COMPLEX HETERODYNING—HOW MUCH PROCESSING POWER?

Why complex heterodyning?
Just what is it? For an answer,
consider that digital systems
take full advantage of quadra-
ture frequency shifting tech-
niques. Unlike analog systems,
there is no possibility of fre-
quency or phase drift.

As such, let’s look at some
real continuous signals, such
as those diagrammed in the
accompanying series of figures.
Take a look at the “’snapshot”
of Figure Aa. Multiplying this
continuous signal by the co-
sine of frequency fc (illustrated
in Figure Ab), yields a spectrum
(Figure Ad).

This spectrum displays sig-
nificant aliasing between the.
two frequencies —fc and fc.
However, multiplying the
original signal by the sinusoid
(Figure Ac) yields another
spectrum (Figure Ae).

Then, combining the in-
formation (that shown in
Figure Ad and Ae) allows the
reconstruction of the original
signal. It is shifted in fre-
quency by fc. This technique
is known as complex
heterodyning.

Repeat Performance

In the sampled world, the
original signal repeats at in-
tervals of fs, the sampling
frequency, as illustratea in
Figure Af. The sampled equiva-
lents of the SIN and COS have
the form shown in Figures Ah
and Ag, respectively.

Multiplication of the original
signal by these two sinusoids
yields the spectra (Figures
Aj and Ai).

Again, the original signal
information, with a shift in

frequency of —fc, may be ex-
tracted (as indicated by Fig-
ure Ak).

From a practical point of
view, the original real signal of
sampling rate fs has been con-
verted into a complex signal
with the same sampling rate.
This implies that twice as much
processing will now be re-
quired to accommodate the
real and imaginary components
of the complex signal.

Closer examination reveals
that the spectra (of Ai and Aj)
contain duplicated informa-
tion that may be removed with
lowpass filters and decimation
of both components of the com-
plex signal (by a factor of two).
The composite sampling rate of
the complex components is the
same as that of the original
signal, while still extracting
the spectrum of Figure Al

(a) /i\

—fo 0 fo
o —tlt
©—— 1t
@ KN

—fo—fc —fc 0 fc fo+fc

e /{/\
(@) —fo— foc fo+fc

Decimation Figure A
The process of decimation
may be thought of as oc-
*) /_ AN /_t\ f0/ /i\ /j\ /i\
N s
o tlt tt 1l [y 1t sly
g | —fs—fc —fs—fc—fc(l fc fs—fclfs+fc | I
t t t
(h) 1 t —fcd o fc ! {
(i) —2fs —fs —fc 0 fc fs 2fs 3fs
6))

AAAAAA

DR B AR A P R

102

MAY 1985



curring in two stages:.a low-
pass filtering stage, followed
by sampling rate reduction.
The original signal (Figure Ba)
of maximum frequency fo is
sampled at a frequency, fs.

The signal is then passed
through a lowpass filter with
a cutoff frequency of fc. The
resulting signal (shown in
Figure Bb), may be decimated
by a factor P to yield the
spectrum of Figure Bc. This
latter spectrum has a sampling
rate of fs/P where P=2.

Interpolation

Next comes interpolation.
Interpolation is the opposite
of decimation and is again
achieved in two stages. The
first stage involves padding
the sampled signal with (Q-1)
zero-valued samples between
each of the original samples.

This operation changes the
spectrum of the original signal
(that of Figure Ca) to that of
Figure Cb, for Q=2. The
spectrum (Figure Cb) has much
the same form as that in
Figure Ca, the major difference
being labelling of the fre-
quency axis.

The effective sampling rate
has been increased to Q*fs, as
expected ; however, the sig-
nal’s spectrum now contains
(Q-1) additional images. A
lowpass filter, with cutoff fre-
quency fo, will extract the de-
sired portion of the spectrum
(from Figure 8b) to yield the
interpolated signal of Figure
8c. This lowpass filter must
exhibit a gain of Q to com-
pensate for the energy lost in
filtering out the (Q-1) signal
images.

INTEGRATED CIRCUITS MAGAZINE

— U,
\ H ‘
\ \ ( ! \
\ H \
(a)' _411..__ 0 fc  fo(fs—fo) fs
S
_X , /__W
1
{
(b) —"If—]‘l“— 0 fc (fs—fe) fs (fs+fc)
S
f
@ —Ee  TF o w
Figure B

(u) —) _fl_ le— 0 fs 2fs
--—“\ I,r--- ----“\
SV
\ 4 \
(b) _"I'f%“_ 0 fc % fs
(C) '—’Ifl_sl‘—' 0 fc fs

Figure C

103



to perform N operations per in-
put point. With decimation, this
is reduced to N/P. The result is
only one output for every P input.

The throughput of this filter,
as well as the rest of the process-
ing downstream, is therefore in-
creased by a factor of P. The fil-
ter does its job in fewer cycles,
thereby reducing the processing
burden on all subsequent op-
erations—a true “win-win”
scenario!

Interpolation, Too

Interpolation is the opposite
of decimation. This operation in-
volves increasing the sampling
rate to create an oversampled sig-
nal. It cannot be used to recover
signals distorted by aliasing, be-
cause this type of distortion is
irreversible in the majority of
situations.

Typical applications for inter-
polation include the reduction of
the output reconstruction filter
specification in audio systems or
the smoothing of gaps between
discrete line spectra in the out-

put from a fast Fourier trans-
form (FFT).

The first stage in interpolating
a signal involves padding the sig-
nal with extra zero-valued sam-
ples. Since the previously stated
restrictions about keeping the
sampling interval constant apply,
interpolation must be done by
integer ratios. This is not a lim-
itation, because interpolation is
usually implemented to signifi-
cantly increase the number of
output samples.

The original signal, sampled at
fs, repeats at intervals of fs as
dictated by sampling theory
(Figure 2a). Padding the signal
with zeros increases the sam-
pling rate, but also changes the
form of the signal.

In the case of three zeros
placed between each of the orig-
inal samples (interpolating by a
factor of four), the effective rep-
etition frequency becomes four
times fs. However, the signal’s
bandwidth increases in propor-
tion, so that three of the signal’s
images are now included as part

[T\

\/J:;\

—fs —fs 0 fs fs
(a) 2 26 2
1
/T / N/ | '\
—fs =fs 0 _fs fs fs
(b) 39 39 2

f's=

\

2fs
f
v

—f's f's 0 _f's s
1. 1.8
(c) Frs=1s
3
AR VAR VAR N VAR N VAR B\
—2f"'s —f"'s —f's 0 f’s f's 2"'s
(4) 26 76

Fig. 3. Lowpass filtering in the decimation process needs a transition
bandwidth of 15 percent of the interpolated signal’s bandwidth (a).
The original signal is lowpass filtered before interpolation (b). The

new signal is interpolated to yield another signal (c); further

decimation gives the output (d).

104

of its spectrum (Figure 2b).

The frequency domain repre-
sentation of the signal has not
changed in shape; the padding
has the effect of relabelling the
frequency axis. To obtain the de-
sired interpolation operation re-
quires—surprisingly—the use of
a lowpass filter. This filter re-
moves the three unwanted im-
ages, yielding the original signal,
oversampled by the desired fac-
tor of four.

At first sight this might appear
to be a difficult lowpass filtering
task, requiring operation at the
increased sampling rate. But this
need not be the case if the trans-
versal filter structure is used.

Clearly, three out of four in-
puts to the filter are zero and, con-
sequently, will not contribute to
the filter output. These samples
may, therefore, be skipped over
when performing the filter op-
eration saving valuable processor
cycles. This technique allows the
construction of efficient inter-
polating lowpass filters.

Let’s assume that an N-point
filter is used to interpolate a sig-
nal by a factor of Q. The sim-
plistic approach would require
N*Q operations for each one of
the original samples. The interpo-
lating lowpass filter only requires
N operations per original sample,
implying that the interpolating
filter operates at the rate of the
input data, regardless of the in-
terpolation ratio applied.

Cascading Processes

The ability to decimate by non-
integer ratios—in particular, ra-
tios of between one and two—is
essential to make effective sav-
ings in system applications. Non-
integer ratios may be achieved
by cascading interpolation and
decimation processes.

To interpolate a signal by a
factor Q, and then to decimate it
by a factor P, changes the effec-

MAY 1985



tive sampling rate to Q/P. While { I
Q and P themselves must be in-
tegers, the ratio of one to the >
other can yield non-integer deci- ‘I
mation ratios. The interpolation COUNTER &%ﬂﬁ%

operation must, of course, pre- J
cede the decimation to avoid ali- I ! 0
asing distortion. J —~ J 35_ t,‘fr/ %gE

MULTILEVEL MULTILEVEL

PROGRAMMABLE
PIPELINE PIPELINE
Two for One? REGISTER REGISTER CONTROLLER

Again, both interpolation and
decimation are effectively per- ! +
formed by a lowpass filter. What K X8 REGISTERED
about the possibility of concat- LJ4  stamc 512 X 8 4
enating both operations into the RAM X2 FROM X2
same filter?

Assume that the interpolation l l
ratio is Q. Then, for an N-point
filter, N operations are required
for every input point, despite the 1 l
fact that Q*N output points are ey
produced. The decimation im- PARALLEL
plies that only one output is gen- (a) MULTIPLIER/
erated for every P inputs, so that AT
only N/P operations per input
point fulfill the requirements of
both operations.

It may be tempting to assume SoNTROL l 1 l T

CONTROLS

that a large value for P, the ef- 16 X 16.BIT
fect of which could be offset by ‘ PARALLEL
a correspondingly large value for MULTIPLIER

Q, would significantly improve I
the efficiency of the decimation *

process by reducing the effective ,|  ARITHMETIC _— MULTIPORT MULTIPORT
value of N/P. However, this will SECTION PIPELNED  §—»]  PIPELINED
not work because N is related to PROCESSOR PROCESSOR

Q and increases proportionally
with any increase in Q.

The increase in N occurs be-
cause the lowpass filtering for
both the interpolation and deci-
mation is required to select a pro-
portionally smaller percentage of

T i

L |

the padded signal’s bandwidth.

The number of points in a filter

is related to the percentage of the MULTIPORT

signal’s total bandwidth that is  Fig. 4. Arithmetic “number crunchers” »  PIPELINED

taken up by the transition band  can be built up in a number of ways. A PROCESSOR

of the filter. multiplier/accumulator (a) forms a |_&
As Q increases, the transition  simple filter. Multiport pipelined proc- ‘1 R

bandwidth remains constant, but essors (b) improve cycle time and add R PARALLEL

the bandwidth of the padded sig-  control lines and overflow protection. i A“c‘é’ﬁﬂﬂﬂﬁﬂf,’n

nal increases; hence, N increases  Linear phase construction (c) doubles

proportionally with Q. This  throughput. (c) ;_

INTEGRATED CIRCUITS MAGAZINE

105



means that the processing over-
head involved in changing the
sampling rate of signal is directly
related to how closely the sam-
pling rate of the decimated signal
approaches the Nyquist rate.
This is the design parameter that
specifies the maximum width of
the transition band.

Less Than You Imagine

A non-integer decimating
process actually requires signifi-
cantly less processing than a cur-
sory examination would indicate.
For example, if one of the proc-
essing stages in a system reduces
a signal’s bandwidth to 0.67 of
its former value, then a decima-
tion ratio of 1.5 may be applied
without aliasing. This ratio may
be achieved with values for Q
and P of 2 and 3, respectively.

Assume a practical sampling
rate Fs of Fs = 2.6 * Fo (where
Fo is the maximum signal fre-
quency, Figure 3a). The lowpass
filter for the decimation process
would need a transition band-
width of fifteen percent of the in-
terpolated signal’s bandwidth.
This gives N a value of 54.(The
lowpass filtered signal is illus-
trated in Figure 3b.)

This new signal is interpolated
to yield the signal shown in Fig-
ure 3¢, which is then decimated
back down to give the output of
Figure 3d.

The value of P reduces the re-
quired number of operations per
input sample from 54 to just 18.
The output rate of the decima-
tion stage is 0.67 of the input
rate, resulting in a saving of 33
percent in the number of cycles
required to execute all subse-
quent operations.

If the number of subsequent
cycles exceed 54, then an overall
saving will be achieved. For ex-
ample, given 300 cycles of down-
stream processing, the total sys-
tem savings would be:

[(1-1/1.5) % 300] — 18 =
82 cycles

per input sample, which cor-
responds to 27 percent of all sub-
sequent processing. This saving
enables you to reduce system
size and cost or process more
channels.

Lowpass Filter it

If a lowpass filter is used to re-
duce the signal’s bandwidth in
the previous example, then as
this function is duplicated by the
decimation process, the original
filter becomes superfluous. It
may be discarded, saving 27 cy-
cles per original input sample.

It should be clear that the deci-
mating lowpass filter performs
the same filtering operation as
the original filter but in 18 in-
stead of 27 cycles, a saving of
thirty percent in itself. This sav-
ing is in addition to those in sub-
sequent downstream processing
that occur as a result of the re-
duced output rate. For these
reasons, lowpass filters are usu-
ally implemented using decimat-
ing techniques.

A Look at Hardware

A decimating/interpolating
stage, such as the one required in
the system example, is construc-
ted from an enhanced finite im-
pulse response (FIR) filter. The
filter structure performs a dis-
crete convolution, according to
the following formula:

N
Yk = Z Cn * X (k—n+1)

n=1

where Xk and Yk are the filter
inputs and outputs, respectively,
and Cn are the coefficients; or,
for the linear phase case:

The arithmetic section of the
FIR filter is unchanged from the
non-decimating version, since the
decimation is achieved by adapt-
ing the control and addressing
sequence.

The control flexibility of the
components used to construct
the filter determine how much of
the expected savings from deci-
mation are realized in practice.
The microprogrammable envi-
ronment is ideally suited to this
type of application.

Let’s look at a hardware exam-
ple (Figure 4). The arithmetic
section performs the “number
crunching” and may be tailored
to suit processing requirements
by varying the number of multi-
pliers, multiplier/accumulators,
and ALUs used.

If desired, the arithmetic sec-
tion of a simple filter may be con-
structed with one multiplier/ac-
cumulator (Figure 4a). Alter-
natively, multipliers and multi-
portpipelined processors(Fig. 4b)
may be used for arithmetic to im-
prove the cycle time and provide
the advantage of microprogram-
mable control lines and overflow
protection. An efficient linear
phase construction may be
achieved with devices like the
AMD Type Am29501 multiport
pipelined processor and Am-
29510 16 X 16-bit parallel multi-
plier/accumulator combination,
for example (Figure 4c), effec-
tively doubling the throughput.

The control section sequences
the operations and selects the
correct data points and coefficient
values for the arithmetic section.
It does so by defining the appro-
priate addresses within the data
RAM and the coefficient PROM.

For the direct or linear phase
implementation of a filter, count-

N/2
Yk = Z Cn * [X (k=n+1)

n=1

+ X (k—N+n)]

106

MAY 1985



ers enhanced by hardware, such

as multilevel pipeline registers,

can generate addresses. For
decimating or interpolating fil-
ters, the addressing sequence be-
comes more complex and re-
quires additional modulo count-
ers; this task also requires the
overall control flexibility offered
by a device such as the AMD
Type Am29PL141 fuse-program-
mable controller.

Control circuitry eliminates re-
dundant cycles that would result
from zero inputs or unwanted
outputs. The method is different
for the decimating and interpo-
lating stages of the filter.

In interpolation, a normal fil-
ter sequences through all of its
coefficients, multiplying each by
a corresponding data sample. For
a padded signal, many of these
data points are zero and, conse-
quently, do not contribute to the
output.

Zero padding may be achieved
by incrementing the data ad-
dresses by one, and the coeffi-
cient addresses by an interval
equal to the interpolation ratio.
This padding technique has the
beneficial side effect of automat-
ically avoiding all redundant
operations.

However, it is necessary to
keep track of the location of the
first non-zero data point, since
this defines the first coefficient
address to be used by the filter.
Any subsequent decimation op-
erations will change this address.

To avoid redundant cycles in
decimation, filter outputs that
would be subsequently discarded
are simply not calculated. A filter
without an interpolating stage
accomplishes this by writing
more than one point at a time
into the filter’s cyclic buffer. For
example, writing in two new
samples for each calculation of
an output gives a decimation ra-
tio of two.

INTEGRATED CIRCUITS MAGAZINE

MODULO
COUNTER  fe— COUNTER
| " L
MuLTEveL [, | MULTILEVEL Am29PLI41
PIPELINE PIPELINE FUSE
REGISTER REGISTER PROGRAMMABLE
« I [ v ?- _j
2K X 8 REGISTERED SIN/COS
— STATIC 512 X 8 FUNCTION
RAM X2 PROM X2 GENERATORS
A 4 v
16 X 16-BIT
PARALLEL e
MULTIPLIER
MULTIPORT MULTIPORT
PIPELINED PIPELINED
PROCESSOR PROCESSOR

v

For a filter that incorporates
an interpolation stage, the deci-
mation could require the writing
of zeros or samples (or both) into
the cyclic buffer. Since zeros are
not explicitly written into the
STORE, the coefficient START
address is incremented to com-
pensate.

The coefficient START ad-
dress is RESET to zero every time
a true sample is written into the
STORE. Depending upon the ap-
plicable decimation and interpo-
lation ratios, a varying number
of true samples and apparent
zeros will be written into the cy-
clic buffer between each output
from the filter. The relevant co-
efficient START address may be
calculated by incrementing a

107

Fig. 5. This decimator-based
narrowband filter hardware frees
the multiplier to perform hetero-
dyning without overhead. No
filtering occurs while samples
are written into the cyclic buffer.



modulo counter by the decima-
tion ratio. The count modulus is
equal to the interpolation ratio.

Very efficient narrowband fil-
ters may be constructed, using
the same techniques that resulted
in efficient lowpass filters; this is
because with narrowband filters,
significant decreases in the sig-
nal’s bandwidth occurs, allowing
a high decimation ratio.

A narrowband filter can be
constructed from a lowpass fil-
ter with half the bandwidth of
the equivalent narrowband filter.
The input signal must first be
shifted to baseband, with the sig-
nal frequency lying in the center
of the bandpass filter shifted to
be at DC, so that it fits within the
passband of the lowpass filter.

The shift operation can be
done with a complex heterodyne
stage that simply multiplies the
input signal by a complex fre-
quency (SIN and COS) equal to
the center frequency of the band-
pass filter. This complex, fre-
quency-shifted signal is then fil-
tered by a decimating lowpass
filter, interpolated, and shifted
back up to the original band with
the same complex heterodyne
technique. The signal may, of
course, be shifted back up to any
band desired.

A given narrowband filter may
have many different center fre-
quencies, each determined by the
complex frequency employed in
the heterodyne stage. The same
filter may be used to divide a
wide bandwidth signal up into a
number of smaller blocks by
stepping the heterodyne fre-
quency in increments equal to the
filter’s bandwidth. Since the
bandwidth of the narrowband
filter depends on the bandwidth
of the lowpass filter, it is inde-
pendent of the effective center
frequency. A number of lowpass
filters may be stored within the
arithmetic processor, allowing

the narrowband filter’s center
frequency and bandwidth to be
changed at will.

The Complex Heterodyne

The complex heterodyne op-
eration requires two cycles per
input sample; these are used to
multiply the sample by digitized
values of SIN and COS, to yield
the imaginary and real compo-
nents of the basebanded complex
signal.

The values of SIN and COS
derive from the sampling of a
complex sinusoid of the required
frequency at a rate equal to the
effective sampling rate of the sig-
nal. This lowpass filtering leads
to an advantageous reduction in
the bandwidth of the signal,
which may be exploited by deci-
mating the signal accordingly.
There is an additional inherent
decimation factor of two in-
troduced when the signal is
translated into a complex
representation.

Shifting to restore the signal
back to its original band is again
achieved through complex het-
erodyning. This operation must,
of course, be performed after the
signal has been interpolated back
to the original sampling rate, to
avoid aliasing distortion.

For example, assume that a
narrowband filter is required to
select ten percent of the band of
an input signal with transition
bands occupying an additional
ten percent. A direct implemen-
tation of this filter would operate
at the input sampling rate and re-
quire about 160 cycles per input
sample to process.

The decimating equivalent
would require two cycles per in-
put point, operating at the input
sampling rate, to perform the
complex heterodyne. The base-
band signal occupies only 15 per-
cent of the original signal’s band-
width, and therefore may be dec-

108

imated by a factor of 6.7 resulting
from values of P and Q of 20 and
3, respectively. After the initial
interpolation, the transition band
occupies only 3.3 percent of the
interpolated signal’s bandwidth,
suggesting that the lowpass filter
will require 242 taps.

The effective processing rate
of this filter is N/P cycles per in-
put point, resulting in an overall
requirement of twelve cycles for
each of the original input points.
Two filters are required for the
real and imaginary channels, re-
sulting in a total processing re-
quirement of 26 cycles per input,
a saving of about eighty percent.

To shift the filtered signal
back up to its original band and
sampling rate at this point would
not achieve any overall savings,
because there will be no net de-
crease in the sampling rate. If
further processing of the filtered
signal is required, then all stages
that now operate at the reduced
sampling rate will benefit from
the eighty percent saving in
processing.

Narrowband filter hardware
(Figure 5) is also based on the
decimator. The complex hetero-
dyne operations are best imple-
mented by a multiplier using de-
vices such as the AMD Type
Am29517 multiplier and Am-
29501 multiport pipelined proc-
essor as the arithmetic section.

No filtering will occur while
samples are being written into
the cyclic buffer, so that the mul-
tiplier is free to perform the het-
erodyne operation without any
overhead. The necessary com-
plex frequency coefficients may
be obtained by incrementing the
addresses of a pair of Am29526
sine and Am 29527 cosine gen-
erators. The ICs share the same
address space and bus as the reg-
istered PROMs that contain the
filter coefficients. L
DATA FILE 130

MAY. 1985



DSP BUILDING BLOCKS ALLOW RESOURCE OPTIMIZATION.

by

Bernard J New
Manager
Product Planning and Applications
AMD

901 Thompson Place
Sunnyvale, CA. 94088

Introduction

The essential generality of general purpose
computing usually prevents optimization of the
processor. In digital signal processing,
however, this is not usually the case. Even in
multi-purpose signal processors, the
algorithms to be implemented will have many
similarities. In particular, they will be
repetitive, intensive in both arithmetic and
memory operations, and branch infrequently.

The repetitive, non-branching characteristic
is exploited through extensive use of pipe-
lining, more than would be considered
advantageous in a general purpose machine. The
large and predictable number of arithmetic
operations and memory accesses permits an
arithmetic processor to be contructed with
resources balanced to match the problem at
hand.

The construction of this processor will not
normally allow it to be multiplexed effectively
with the task of address generation. As the
addresses are often the only variation in
successive iterations of the program and follow
a well-defined pattern, it is desirable that
they are generated in an independent processor
which operates concurrently with the
arithmetic processor.

The Am29500 family of digital signal processing
and array processing products provides devices
for use in both areas. In particular, for use
in the arithmetic processor, the family
includes the Am29501 Multi-port Pipelined
Processor and the Am29516/7 16-bit Parallel
Multipliers. These constitute two major
resources. The parallel multiplier is
essential to signal processing calculations,
and the Multi-port Parallel Processor
complements this with register and ALU
facilities. This device's three ports provide
the communication necessary for efficient use
of multiple elements.

109

The third major resource to be managed in the
arithmetic processor is the memory. Using the
fast Fourier transform (FFT) as an example,
this paper describes an approach by which an
algorithm may be analyzed and an appropriate
allocation of resources made. It should be
stressed, however, that the Am29500 family is
of general application, and is not limited to
the FFT.

The Balancing Act

The objective in optimizing an arithmetic
processor is to provide facilities in
proportion to their usage in the algorithm
being impiemented. In this way, the processor
is balanced with no one resource lying idle
while another completes its task, and all are
used at peak efficiency. Increasing just one

resource will not necessarily increase
performance due to the creation of an
imbalance.

Consider the fast Fourier transform. This
comprises the repeated evaluation of what is
commonly known as the FFT “Butterfly." This is
shown diagramatically, together with its
formulae, in Figure 1. There are two input data
points, A and B, which are complex numbers.
These are combined together, and with a complex
coefficient, W, to form two outputs, A' and B'.

Inspection of the formulae shows that a single

implementation would require one complex
addition, one complex subtraction and one
complex multiplication. Also five complex

memory operations are required; three reads for
A, B and W, and two writes for A' and B'. In
terms of real operations, this reduces to four
multiplications, six addition/subtractions and
ten memory transactions. It is to these
requirements that an FFT processor must be
matched.



oIT DIF
A A A A
k
B B B x 8
A=A +BWK A=A+B
B = A - BWK B = (A - B)WK

1=

@ BwK = {::

@ A+BWK=2+

4x
3+
3-

4 Data Reads

@®a+B=2+
@Aa-8=2-

4x
5 - K =
GREERENPRY Il B
FIGURE 1: The FFT Butterfly

Moving the Bottleneck

From the above analysis it may be seen that if
aj] operations take equal time, the throughput
is limited by the memory requirement, which
makes it impossible to perform butterflies more
frequently than every ten cycles. However, this
may be reduced by exploiting two factors, which
are common to many signal processing
algorithms.

Firstly, the memory may be re-organized to
reflect the complex nature of the data. Making
the memory twice as wide but only half as deep
does not increase the size of the memory, but

allows for simultaneous access to real and
imaginary parts, effectively doubling the
memory bandwidth. Secondly, it may be noted
that the multiplications are performed between
data and a coefficient. If the coefficients are
stored in a separate memory, they may be
accessed concurrently with the data.

These changes reduce the number of data memory
accesses to four. However, the butterfly will
still require six cycles, as the throughput is
now dominated by the ALU requirement. The
bottleneck has moved from the memory to the
ALU.

For Each Memory Accesses Add/Subtract Multiply

Butterfly 8 6 4

Resource Memory Buses ALU Multipliers

# Cycles # Usage # Usage # Usage
8 1 8/8 1 6/8 1 4/8
6 2 4/6 1 6/6 1 4/6
4 2 4/4 2 3/4 1 4/4
3 4 2/3 2 3/3 2 2/3
2 4 2/2 4 1.5/2 2 2/2

TABLE 1: FFT Resource Comparison

110



Measuring Efficiency

A useful measure of efficiency 1is the
proportion of time each resource is active. In
the six cycle butterfly described above, the
ALU will be used 100% of the time. The memory
and multiplier will each be used on only four
of the six cycles, 67% of the time. This is
summarised in the first line of Table 1. This
base system contains one memory, one ALU and
one multiplier.

As the multiplier is an expensive resource, it
is desirable to utilize it more efficiently. To
do this necessitates adding more capacity to
the current bottleneck, the ALU. The second ALU
reduces the necessary ALU cycles to three, and
moves the bottleneck to both the memory and the
multiplier, each requiring four cycles. In this
case the memory and multiplier efficiency is
100%, and the ALU efficiency is 75%.

As shown in the table, further improvement
requires that both the memory and the
multiplier be duplicated. This gives a

situation similar to the base system, but with
twice the hardware resulting in twice the
throughput.

A Reasonable Solution

In theory this procedure could be repeated
until four memories, four multipliers and six
ALUs allowed a butterfly to be completed every
cycle. However it s unlikely that this
solution would be practical.

The problem encountered is in partitioning the
memory such that two reads and two writes can
be performed simultaneously. This partitioning
must be consistent with the data flow of the

Host
Computev@

Interface

g ey ! Address
FET Add Pipeline
ress r— Am29520/1
Sequencer

Data RAM

imaginary Data

7N

]

[

Algorithm #2

Real Imaginary
Processor Processor
Am29501 Am29501

|

E 16 x 16

Multiplier
Am29516/7
. — Address Coefficient m /
Algorithm #3 Pipeline PROM
Am2982S
I Microprogrammed |

Control Unit

FIGURE 2:

m

FFT Processor Architecture



FFT. Even the base system is not without
problems. This requires that the result of a
complex memory read be loaded into a real ALU.
Also the inclusion of additional hardware to
achieve more speed than is necessary for the
application is obviously undesirable.

When comparing architectures which trade a
doudbling of throughput for a doubling of
hardware, as occurs
integrity may be a deciding factor. While it
may be convenient to build a single large, fast
machine, if latency requirements allow, it
may be better to alternate two slower machines.
This allows for reduced operation, rather than
failure, if one of the machines should fail.

in the table, system

The table obtained from the above analysis
should be viewed only as an initial survey of
the options available. Even after selecting a
likely candidate is is necessary to show that
the algorithm can be programmed into the
processor in the number of cycles anticipated.

Overlapped Programming
Let us assume that the single memory, two ALU,

single multiplier

selected. This

is shown
objective is to implement the FFT butterfly in
this architecture in four cycles.

architecture has been
in Figure 2. The

A simple inspection of the algorithm shows that
in order to generate and store the real part of
A', it necessary to read A and B, complete the
real part of the multiplication, perform an
addition and write the result to memory.
Allowing for maximum concurrency this requires
five cycles, and it obvious that the full
program would be longer than that.

However, this does not imply that the goal of
four cycle throughput is impossible, only that
the latency will be greater than four cycles.
The resources in the processor are such that if
the program takes more than four cycles they
will be idle for part of the time. While
causality does not allow these resources to be
applied to the current iteration of the
program, the program repeats, and the resources
may be applied to previous or following
iterations.

This leads to a situation where an iteration of
the program commences before the previous ones
are complete, and the iterations overlap. This
is similar to pipelining except that whole
programs are involved and the hardware is
multiplexed between overlapped programs.

The completed program for the FFT butterfly is
shown in Table 2a. Ten cycles are required to
complete this program. Table 2b shows the
instruction stream when this program is

Real Imaginary Multiplier

Step | DIO ALU | Aq | A; A3 [ By [ B[ B3| au | Ay | A2 [ A3 | By [ B | B3 [mi0]| muLT
1

2

3 |

4 |

5 | ReadB -] 1]

6 | H Br

7 | Read A ]} | DI H BpWp
8 | A1-MSP| H MSP| ALU! H By | BgW,
9 | H H H A1-MSP| H MSP ALU BWpg
10 | Al + A3 ALU H B2-MSP| H H ALU |MSP ByW,
1" | B2+MSP H | |MsPiALUI A1+ B3 ALU| H H

12 IWrite B2 W H A2 + A3 ALY

13 i A2 - BY ALU H

14 | Write A2

15 |

16 |

17 |

18 |

TABLE 2a: The Butterfly Program

112




Real imaginary Multiplier

Step | DIO AU | Ay [ Ay | A [ Bg[B [ B3| A [ A ] A2 [ A3 By [ By [ By Mi0] MuLT
1 ReadB |A2-B1| H [ALU| H | DI W A1-MSP| H | H |MSP| DI |ALU ByWp

2 |write A2| A1 + A3 ALU | [ H B2-MSP| H H | H |ALU!MSP BR | BW,

3 |ReadA [B2+MSP' DI | H MSP ALU A1+B3| DI (ALU/ H | H | H BpWp

4 |WriteB2|A1-MSP° H | H |MSP| H |ALU A2 +A3| H |ALU By | BgW,

S |ReadB |A2-B1|{ H |ALUI H | DI | H A1-MSP| H | H |MSP! DI |ALU B,Wp

6 |Write A2| A1 + A3 ALU! H B2-MSP| H H | H [ALU|MSP| Bp | BW,

7 Read A [B2+MSP! DI | H | MSP ALU A1+B3| DI |ALU| H | H | H BpWp

8 |WriteB2!A1-MSP! H | H IMSP| H |ALU; A2 +A3| H |aLu B, | Bpw,

9 | ReadB |A2-B1! H |ALUI H | DI | H | A1-MSP! H | H [MSP! DI |ALU: BWp

10 |Write A2 | A1 + A3 | ALU |H| B2-MSP! H H | H |ALUIMSP| By | BW,
11 |Read A [B2+MSPi DI | H | MSP|ALU A1+B3| DI |ALUI H | H | H BpWp

12 |Write B2 A1-MSP H | H 'MSP! H |ALU: A2+A3] H |ALU] | B; | Bgw,
13 | ReadB |A2-Bi| H |ALUI H H | A1-MSPl H | H |MSP: DI |ALU| B\Wp
14 |write A2/ A1 + A3 | ALUI H | B2-MSP' H | H | H |ALUIMSP| Bg | BW,
15 | Read A |B2+MSP' DI | H | MSP ALY A1+B3! DI |ALUl H | H | H BpWp
16 |Write B2 /A1-MSP' H | H MSP! H IALU]| A2 +A3| H IALU | B; | BpW,
17 |ReadB |A2-B1i H |ALUI H H A1-MSP! H | H |MsP: DI |ALU| BWp
18 |Write A2| A1 + A3 | ALU| H| [B2-MSP; H | H | H |ALUIMSP| BywW,

TABLE 2b: The FFT Instruction Stream

restarted every four cycles. Through <careful
programming this can occur without the programs
interfering. It may be seen from this table
that the three major resources, memory, ALU and
multiplier are used 100% of the time. This
differs from the original estimate of 75%
utilisation of the ALU, the extra 25% being
accounted for by "inefficient" use in the
program. However, the extra use of the resource
is free, and not using it would at least have
increased the latency.

Inspection of Table 2b also shows the
instruction stream to be periodic, repeating
every four cycles. These four cycles contain
the information for the complete ten cycle
butterfly program, and constitute the inner
loop which must be executed to implement the
FFT. At the beginning and end of the FFT,
previous and following iterations are absent
and the instruction stream becomes aperiodic.
This must be accommodated by segments of linear
code derived from the instruction stream, which
fill and empty the overlap pipeline.In this
case the program could be written to give the
desired throughput. If this had not been the
case, it would have been necessary to move to a
“faster" architecture.

113

The only outstanding task is to generate the
addresses to provide the data stream into the
arithmetic processor. For the specific case of
the FFT this may be effected using the Am29540
FFT Address Sequencer. In other cases an
address computer may be designed and programmed
using the techniques described above.

Conclusion

Using the FFT as an example, a method has been
described whereby a digital signal processor
may be optimized through resource management.
This technique is applicable to architectures
using building block components, such as the
Am29500 Family. Indeed it was about this family
that it was developed. Processors designed in
this way exhibit maximum usage of components
included.






SHE

A New Approach to Floating Point DSP

Robert Perlman
senior engineer, Product Planning
Advanced Micro Devices
Sunnyvale, CA 94088

ABSTRACT

A new high-speed, single-chip floating point processor,
the Am29325, is introduced; this processor incorporates features
of interest to those implementing high-performance digital
signal processing systems. Processor architecture is described,
and the advantages of the architecture for DSP and array
processing applications are discussed. Typical small- and
large~system designs are presented.

INTRODUCTION

Floating point arithmetic engines are natural candidates
for very-large-scale integration, due to the popularity of the
function, and to the large amounts of design time and circuit
board space needed to implement such a function in SSI and MSI,
Early efforts to integrate floating point operators in a single
chip or chip set usually resulted in serial-parallel designs
which, while considerably faster than software floating point
implementations, did not approach the speeds of fully parallel,
dedicated hardware designs.

Recent improvements in process technology have made
possible, for the first time, the joining of combinatorial
floating point addition/subtraction and multiplication functions
in a single VLSI device. The Advanced Micro Devices Am29325
Floating Point Processor contains all hardware necessary to
perform high-speed, 32-bit floating point addition, subtraction,
multiplication, and format conversion operations, in either IEEE
or DEC floating point formats. The device also contains a
flexible 32-bit data path, with facilities for local operand
storage.

The integration of three elements - a combinatorial
adder/subtractor, combinatorial multiplier, and data path -
marks the fundamental difference between the Am29325 and
previous floating point implementations. By combining these
functions, the design addresses not only the problem of
implementing fast floating point operators, but also the equally
important problem of efficiently transferring operands from one
operation to the next. The data path architecture is optimized
for performing often-used arithmetic sequences, such as
multiplication- accumulation and Newton-Raphson division.

The Am29325 is fabricated with the IMOX-S (for Ion-
iMplantation, OXide isolation with Scaling) process, a
refinement of earlier AMD bipolar processes. IMOX-S has a
feature size of 1.5 microns; three layers of metal are used for
interconnects. The Am29325 die contains 48,000 devices on
129,000 square mils of silicon, and is packaged in a 144-1lead
pin-grid-array. Standard cell techniques were used to reduce
design time and simplify chip layout. Improvements in turn-
around time were significant: custom design of the Am29116, a
16-bit bipolar microprocessor, took 51 months, while design of
the Am29325, a device three times as large, took only 31 months.

The floating point processor is the first in a series of
general-purpose, microprogrammable devices primarily intended
for 32-bit systems. Other family members include the Am29331
microprogram sequencer, the Am29332 ALU, the Am29323 32-by-32-
bit fixed-point multiplier, and the Am29334 register file.

Am29325 ARCHITECTURE

The Am29325 comprises a high speed floating point
arithmetic unit, a status flag generator, and a 32-bit data path

(fig. 1).

Rg-31 Sg-31

3 32

2: 1 REGISTER S 2 CLK
~<a
\E— yi INSTRUCTION

; SELECT
p recister R | EEE SeLecty
PORT R PORT S
FLOATING POINT
ARITHMETIC UNIT \L
(ADDER, MULTIPLIER,
FORMAT CONVERTER> STATUS FLAG
PORT £ GENERATOR

&

STATUS
FLAGS

Fig. 1: Am29325 Floating Point Processor block diagram.



9tL

Arithmetic unit - The three-port, combinatorial arithmetic
uhit contains a high speed adder/subtractor, a 24-by-24-bpit
multiplier, an exponent processor, and other logic needed to
implement floating point operations. Two input ports, R and §,
provide operands for the instruction to be performed. The
result of an operation appears on output port F.

The arithmetic unit executes one of eight instructions
(table 1). Three of the instructions - R PLUS S, R MINUS S, and
R TIMES S - add, subtract, and multiply 32-bit floating point
numbers. A fourth instruction, 2 MINUS S, subtracts 32-bit
floating point operand S from 2. The 2 MINUS S instruction is
used to perform Newton-Raphson division, a means of calculating
the quotient A/B. Unlike conventional division, in which
quotients are calculated with a series of subtractions and
shifts, the Newton-Raphson division algorithm first calculates
the reciprocal (1/B) using an iterative equation, then computes
the quotient by post-multiplying the reciprocal by A.

The remaining four instructions perform data format
conversions. Instructions INT-TO-FP and FP~TO-INT convert
between floating point and 32-bit, 2's complement integer
formats. The IEEE-TO-DEC and DEC-TO-IEEE instructions convert
between IEEE and DEC floating point formats.

Instructions may be performed in either of two single-
precision floating point formats - the IEEE format, as specified
in proposed standard P754, draft 10.0 (ref. 1), or the DEC F
format (ref. 2). These formats are similar, each having an 8-
bit biased exponent, a 24-bit significand comprising a 23-bit

MNEMONIC OPERATION

R PLUS S Add floating point operands R and S

R MINUS S Subtract floating point operand S from
floating point operand

R TIMES S Multiply floating point operands R and S

2 MINUS S Constant floating point subtraction for
Newton—Raphson division (see text)

INT-TO-FP Convert floating point operand R to integer

FP-TO-INT Convert i1nteger operand R to floating point

IEEE-TO-DEC |convert IEEE floating point operand R to
DEC floating point format

DEC-TO-IEEE convert DEC floating point operand R to
IEEE floating point format

Table 1: Floating point arithmetic unit operations

mantissa appended to an implied or "hidden" MSB, and a sign bit.
There are, however, a number of differences between IEEE and DEC
floating point conventions, in both the format and the manner in
which operands are handled during the course of an operation.
These differences are automatically accounted for when the
desired format is selected.

The arithmetic wunit implements four IEEE-mandated
rounding modes that map the infinitely precise result of a
calculation to a representable floating point value. An
additional VAX-compatible rounding mode is provided for users of
the DEC floating point format.

Status flag generator - The status flag generator produces
six flags that report operation status. Four of the flags
report exception conditions stipulated in IEEE standard P754.
The first of these, the INVALID flag, indicates that an
operation does not have a sensible answer; multiplying infinity
by zero is one examrple of an invalid operation. Operations
producing results either too large or too small to be
represented in the selected floating point format are identified
by the second and third exception flags, UNDERFLOW and OVERFLOW.
The fourth exception flag, INEXACT, indicates that the result of
an operation is not infinitely precise. Two additional flags
not called for in the IEEE standard, ZERO and NAN, identify
zero-valued or non-numerical results.

Data path - The integrated data path comprises two input
buses, a three-state output bus, and two data feedback buses,
all 32 bits wide. Operands enter the Am29325 through input buses
Rg_31 and Sg_377 results exit through three-state output bus
Fg.31- Each of the R, S, and F buses has a 32-bit edge-
triggered register for data storage. An independent clock
enable is provided for each register, so that new data can be
clocked in or old data held. Input registers R and S, and
output register F can be made transparent independently. When
all three registers are made transparent, the Am29325 operates
in a purely combinatorial "flow-through" mode.

The two feedback data paths transport processor output
operands back to the inputs. The first feedback path routes
data from the output of the arithmetic unit to a 32-bit
multiplexer at the input of register R; the multiplexer selects
the operation result or Ry_3;. The other feedback path carries
the output of register F to a second 32-bit multiplexer, which
selects either register S or register F as the input for port S
of the arithmetic unit.

To allow easy interface with a variety of 16- and 32-bit
systems, buses R, S, and F can be programmed to operate in one
of three I/0 modes. The first and most straightforward of these
is the 32-bit, 2-input-bus mode; in this mode, the R and S buses
are configured as independent 32-bit input buses, the F bus as a



LLL

32-bit output bus. The second I/0 option is a 32-bit, single-
input-bus mode, in which the R and S operands are taken from a
single 32-bit input bus on alternate clock edges. For the third
option, a 16-bit, two-input-bus mode, the R, S, and F buses are
16 bits wide. Thirty~two-bit operands are placed on these 16-
bit buses by time-multiplexing the 16 MSBs and LSBs of each data
word during alternate halves of the clock cycle. Internal data
paths and registers remain 32 bits wide when this 16-bit I/0
mode is selected.

ARCHITECTURAL ADVANTAGES FOR DSP APPLICATIONS

The architecture of the Am29325 offers several advantages
to the implementor of DSP and array processing systems:

Efficient data routing - Three aspects of the Am29325
architecture contribute to efficient data routing. First,
placing the adder/subtractor and multiplier on the same die
eliminates the shuffling of data between separate
adder/subtractor and multiplier chips. Minimizing chip-to-chip
communication is an important consideration in high performance
system design, since, in VLSI-based systems, the time needed to
transfer data between chips can often limit maximum operating
speed.

Second, the on-board data paths allow the intermediate
result of a calculation to be routed to the input of the
floating point arithmetic unit, for use as an input operand in
the next phase of the calculation. This feature not only keeps
data on~chip, but also makes an external implementation of a
similar data path unnecessary. Such an external data path would
be expensive, both in components and circuit-board real estate;
implementing the two 32-bit multiplexers alone would consume
over a dozen MSI devices.

Third, the absence of pipeline delays in the floating
point arithmetic unit makes it possible to use the result of one
calculation as the input operand for the very next calculation,
a crucial feature when implementing algorithms with tight data
feedback 1loops. Users of floating point processors with
pipeline delays have one of two choices when implementing such
an algorithm - they can either halt the operation while waiting
for the desired result to drop out of the pipeline, thus
reducing computational efficiency, or can interleave different
sets of calculations to keep the arithmetic unit busy, at the
cost of more complicated programming. Using a zero-pipeline-
delay arithmetic unit avoids both of these unappealing choices.

Am29325 data routing efficiency is best appreciated by
considering the manner in which multiplication-accumulation is
performed. In a typical multiplication-accumulation calculation,

N input terms x; are multiplied by coefficients kj These

i
products are then added, producing the weighted sum

Multiplication-accumulation is performed in a two-step
loop, with two additional steps for initialization (fig. 2a-d).
To initialize the process, data and coefficient values xy and kg
are clocked into registers R and s (fig. 2a). Next, the values
xg and kg are multiplied, and the product placed in register F;
at the same time, data and coefficient values xj and kl are
clocked into registers R and S (fig. 2b). In the first step of
the multiplication-accumulation loop, values X; and k, are
multiplied, and the product placed in register R (fig.Zc).{n
the second step, products xl*kl and xa*kG are added, avd their
sum placed in register F; x, and k, are placed in registers R
and S (fig. 2d).

The two loop steps are then repeated for as many
jterations as needed to complete the calculation. The internal
data paths wrap back products and accumulations, thus keeping
the arithmetic unit busy with a multiplication or addition every
clock cycle; a new multiplication-accumulation is performed
every two clock cycles. Partial results remain on-chip until
the multiplication-accumulation is completed.

High I/0 bandwidth ~ The three 32-bit I/O buses provide
high-bandwidth access to the floating point arithmetic unit.
When the device is operated in the 32-bit, two-input-bus 1/0
mode, no multiplexing of I/0 buses is required, thus improving
system speed and easing critical timing constraints.

Transparent operation - In many applications, the R, S,
and F registers will be used to store an operation's inputs and
outputs; it is in this register-to-register mode that the
Am29325 operates the fastest. In some applications, howevef, it
may be desirable to bypass the internal registers, either
because system requirements dictate a data path structure
substantially different from that provided, or because the
floating point operations must be concatenated with other
combinatorial functions. These situations can be accommodaged
by making all three registers transparent, turning the'floatlng
point processor into a purely combinatorial device; this "flow-
through" mode of operation would not be possible if the Am29325
used multiplexed 1/0.



gLt

Fig.

2(a-d): Performing floating point multiplic
accumulation with the Am29325.

ation-

SYSTEM DESIGN

A block diagram for a typical small system design is shown
in fig. 3. The system consists of an Am29325, an Am29334 four-
port register file, data memory, coefficient memory,
microprogrammed controller, clock generator, and host system
interface. Although small enough to fit on a single circuit
board, this system contains all the elements needed for floating
point digital~signal and array processing.

Because of its three-bus I/0 structure and internal
feedback paths, the Am29325 can be used to advantage in both
cascade and parallel configurations. Fig. 4 illustrates a
simple cascade system, a variation on the previous architecture.
In this system, the output port of one floating point processor
feeds the input port of another. This arrangement is
particularly advantageous when performing high-speed

0

HOST SYSTEM INTERFACE I
7 rey
3
MICROCODE DIN COEFFICIENT
CONTROLLER DATA MEMORY MEMORY
Am291e2A or (8 X AM93422> 4 X AM27S281)>
_,_.__.ﬁ_".‘%_g?.?.l_).. - DOUT DOUT.
MICROCODE ]
MEMORY
AM27545
REGISTER PROMS)> L b
FOUR—-PORT
REGISTER
CONTROL, N FRI ng334
> ADDRESSES 2 X Am
Lsy
4 4
cLock | 32 32
GENERATORf 4 a4
«AM2925> |3 ven S
N
AM29325
FLOATING POINT
PROCESSOR
Fo-31
32
ya

Fig. 3: Typical small-system design.



6L}

mul§iplication—accumulation; the first Am29325 forms products,
while the second computes the accumulation in parallel. The
accumulation is performed using a feedback data path in the
second part - no external feedback path is necessary. By doing
the multiplications and additions in parallel, the effective
throughput rate is one clock per multiplication-accumulation,
twice that of the system shown in fig. 3.

0

HOST SYSTEM INTERFACE

m 1

4
MICROCODE DIN COEFFICIENT
CONTROLLER DATA MEMORY MEMORY
(AM2918A or (8 X AMI3422)> 4 X AM27S281)>
| . _Am28331> pour pouT
MICROCODE I
MEMORY
AM27545
REGISTER PROMS> L
FOUR-PORT
REGISTER
__F: CONTROL, 2 xFﬁI a4
M.
= ADDRESSES
Il |
. —
CLOCK
GENERATORI> ‘[32 43
«Am2925) |3 e Crn
AM29325
FLOATING POINT
PROCESSOR
Fg-31
532 Maz
Rg-31 Se-31
AM29325
FLOATING POINT
PROCESSOR
Fp-31
I] 32

Fig. 4: System using two floating point processors in cascade.

Parallel configurations are also useful, and are easily
implemented. In one such configuration, the Am29325 is used
with other members of the Am29360 family to create a 32-bit
floating-point/integer processor (fig. 5). In the system shown,
the Am29332 ALU and the Am29323 32-by-32-bit parallel multiplier
share three 32-bit buses with the Am29325; data can be passed
from one processor to another through the Am29334 register file.
Combining these parts produces a system that can perform high-
speed floating point, integer, and logical operations. The user
can further expand the system by adding 32-bit operators of his
own devising to the three-bus architecture.

REFERENCES

1. A Proposed Standard for Binary Floating-Point Arithmetic,
IEEE Floating-Point Working Group, draft 10.8, December 2, 1982.

2. VAX Architecture Handbook, pigital Equipment Corporation,

1981.
0

HOST SYSTEM INTERFACE

> r4)
L9
MICROCODE DIN COEZFFICIENT
CONTROLLER DATAR MEMORY MEMORY
(Am281@A or (B8 X AMS3422> 4
romaa51 5 X AM27S281)>
____________________ DCUT DOUT
MICROCODE I
MEMORY
CAM2754S
REGISTER PROMS)> l}

L_‘:; CONTROL, FOUR-PORT

> ADDRESSES REGISTER
FILE

2 X Am29334

CLOCK
GENERATOR]
(AM2825)>

l oool

¢ f 32
I Il IR 1 a2

I I I I I I

Am2e325 Am2g332 Am29323
FLORTING POINT ALU 32-BY-32 PARALLEL
SSOR MULTIPLIER
U 21 U 32
;
7

7

Fig. 5: Thirty-two-bit floating point/integer processor.






SYSTEM DESIGN/itegrated Circuiis

DIGITAL FILTER DESIGN
MADE EASIER FOR
FIRST-TIME USERS

Off-the-shelf components and simplified filter formulas ease
entry into the world of digital filter design, and allow a quick
evaluation of the cost-effectiveness of digital solutions.

by Kenn Lamb and
Bob Periman

Realtime digital filtering is becoming an attractive al-
ternative in a growing number of analog-filtering ap-
plications. Today, specialized digital signal-processing
part families, and a range of filter-design packages,
make digital filters easier to implement. Neverthe-
less, getting into digital filter design for the first time
is not easy. Some of the concepts are unfamiliar to
novice filter designers and the tools generally avail-
able are aimed at the more experienced designers.

A “‘cookbook’’ approach, however, eases entry
into digital filter design and provides a quick way
to evaluate the cost-effectiveness of a digital solu-
tion. This approach uses off-the-shelf ingredients,
such as the Am29500 family, and a simple ‘‘recipe’’
for a linear phase finite-impulse response (FIR) filter.

Copyright by COMPUTER DESIGN,
November 1985. Reprinted
by permission.

A digital filter performs the same function as an
analog filter, but.in a different ‘‘world.”’ In the con-
tinuous world, a signal is monitored (or sampled)
continuously, and filtering is described mathemati-
cally as a convolution operation.

In the discrete world, things can be done much
more efficiently. The z-transform, in which powers
of z can be equated to simple time delays, provides
a formula that is the discrete equivalent of the con-
volution operation. In addition, sampling reduces
the monitoring overhead to periodic snapshots of
the signal. A digital filter simply implements the dis-
crete convolution formula after an A-D converter
has sampled the signal. Any arithmetic processor can
perform the discrete convolution required for a
digital filter, but the Am29500 family provides a pro-
cessing package without the overhead of a micro-
processor-based system, and can be optimized for
digital-filtering applications.

Unlike the characteristics of an analog filter, a dig-
ital filter’s characteristics are determined by arith-
metic operations and coefficients, rather than by
individual component values. This makes digital
filtering inherently independent of component aging
and environmental variables such as temperature. As
a result, reliability is improved, and the filter response

Kenn Lamb is a former product planning engineer for
Advanced Micro Devices (Sunnyvale, CA). He holds a
BSC in electronics from Imperial College in London.

Bob Perlman is a product planning section manager at
AMD. He holds an MSEE from Johns Hopkins
University.

121



can be accurately reproduced. In addition, digital
techniques permit useful characteristics that are not
easily achieved in analog systems. Among these are
zero passband insertion loss, very low frequency
operation, and control over the stopband response.

Using digital techniques, a designer can build
linear-phase and all-pass filters that modify only the
frequency or phase content of a signal. Linear-phase
filters are used in multichannel environments where
phase information is important, while all-pass filters
are used typically for equalization. Cascading all-
pass and linear-phase filters allows phase and fre-
quency responses to be modified independently. In
addition, filter coefficients, which are programmed
by the designer, are easier to change than the com-
ponents of an analog filter.

Because analog filters operate in the continuous
world and can handle only one signal at a time,
analog designs usually cascade a number of stages.
As aresult, there is a clear relationship between the
physical size of an analog filter and its performance.
The bandwidth of the active components within the

filter determines the overall filter bandwidth, but
spare bandwidth cannot be used for other channels.
Because the digital filter core is an arithmetic sec-
tion that performs the calculations according to the
discrete convolution formula, it may be used for one
large, or many small, single-channel filters, or may
be a stage in a very large, high-bandwidth filter.

Relationship between time and frequency

The match between design and actual response in
an analog filter is determined by the tolerance with
which analog components may be constructed; the
digital equivalent is the resolution (number of bits)
at which the digital coefficients are represented. A
relatively lax analog specification places wide toler-
ance on the component values, which translates into
a less accurate (fewer bits) resolution of the digital
coefficients. For an analog filter, the dynamic range
corresponds to the range between the noise floor and
the point at which the signal starts to clip. Dynamic
range in a digital filter is determined by the number
of bits in the digital representation of the signal.

DATA )}CHANNEL D

0

Y [

10-bit REGISTER 10-bit REGISTER
Am29821 Am29821

RS !

DATA RAM DATA RAM A
Am9128 Am9128

{ }

8-bit REGISTER
Am29825

8-bit AODER
Am252517

!

READ POINTER WRITE POINTER
Am252569 Am252569

8-bit ADDER
Am252517

READ PUINTER
Am252669

WRITE POINTER |
Am252569

8 {8

CONTROLLER

Mi DI0
MULTIPORT-PIPELINED
PROCESSOR
Am29501

Ci
MiQ T
L.

8

—1Co

Y

REGISTER
8 Am29823
8

Am29PL141

6

PIPELINE DELAY
Am29520

COEFFICIENT PROM COEFFICIENT PROM
AmZ 27525

16 y 16

X MULTIPLIER/ACCUMULATOR Y
CONTROLLER

The filter consists of three main sections: the address-
generation and control section, the arithmetic section,

Am29L510
P

T
OUTPUT

and the store. The address-generation and control
section consists of the read and write pointers, the
8-bit adder, and the controller. The arithmetic unit
consists of the multiplier/accumulator and the mul-
tiport pipelined processor. The store consists of the
Am9128 RAMs and the Am27S25 registered PROMs.

122



Two continuous functions x(t) and h(t) can be con-
volved by evaluating the equation:

oo

y(t)= s X (m)xh (t-=) dnr

-0
The discrete-time equivalent of this equation is:
N-1

ym= 3, x (k)xh (n—k)
k=0

Although somewhat different in appearance, both
forms of the convolution equation can be evaluated
similarly. First, the function h is time-reversed, or
flipped. Then, function h is shifted left or right, with
the amount of shift indicated by time variables t or
k. The resulting function is then either integrated
(in the continuous case) or multiplied and summed
point by point (in the discrete case) with function x.

One unfortunate aspect of convolution is that its
worth is not readily apparent from the defining
equations presented above. The real power of con-
volution is best appreciated by considering what
happens in the frequency domain when two signals
are convolved in the time domain. If the Fourier
transforms of continuous signais x(t) and hit) are
X(fy and H(f), the convolution of x(t) and h(t)
produces a signal whose frequency spectrum is
equal to the product X(f)H(f). In other words, if one
wishes to pass sighal x(t) through a filter with trans-
fer function H(f), one merely convolves x(t) with h(t).
The same principle holds for discrete-time signals,
but with the z transform taking the place of the Fou-
rier transform.

The discrete convolution of a sampled signal (a)
with a sampled-impulse response (b) may be
achieved by the following process. First, flip the im-
pulse response and place it over the signal (c). Sum
the products of each impulse sample with its coin-
cident signal sample. The total is the convolution

What is convolution?

result for the particular overlap, and corresponds
to the first filter output. Now, slide the impulse re-
sponse one sample interval to the right, so that it
overlaps the next newest signal sample. Repeat the
multiply/accumulate sequence. This result is the
convolution for the new overlap, and corresponds
to the second output from the filter. This process
is repeated to calculate each new filter output. After
each filter output, the oldest signal sample is no
longer required, and may be discarded (d).

/MMy 1]

(a) (b)
SAMPLED SIGNAL SAMPLED IMPULSE
RESPONSE

CONVOLUTION OF
TWO SIGNALS =Y,

NEW

OLDEST SAMPLE

SAMPLE
DISCARDED )/

\ Fd CONSECUTIVE
v FILTER

H OUTPUTS

+I+I =Yp+1

(d)

A signal to be filtered exists in the time domain
of the familiar continuous world. The desired filter
response for this signal is best represented in the fre-
quency domain of the continuous world. These two
domains are related through the continuous Fourier
transform. The Fourier transform of a time-varying
signal is its frequency spectrum, and the Fourier
transform of the filter’s frequency response is its
impulse response. Viewed in the time domain, a
filter’s output is determined by the time-varying am-
plitude of the input signal and the filter’s impulse
response. In the frequency domain, on the other
hand, the signal’s frequency spectrum and the filter’s
frequency response determine the output. The fre-
quency response and the impulse response say the
same thing about a filter; the impulse response is

simply the time-domain version of the filter’s fre-
quency response.

Just the continuous Fourier transform allows
movement between the time and frequency domains
of the continuous world, the z-transform allows
movement directly from the continuous world into
the sampled discrete world. Here the discrete time
and frequency domains exist, linked by the discrete
Fourier transform. Sampled versions of the input
signal, the signal’s frequency spectrum, and the
filter’s frequency and impulse response are used.

Design tradeoffs

To understand the design tradeoffs between filter
size and performance, a designer must be familiar
with two relationships between the time and fre-

123



quency domains: multiplication in one domain is
equivalent to convolution in the other domain, and
a signal cannot be duration-limited in both domains.
A filter can perform a multiplication in the fre-
quency domain in which the frequency spectrum of
an incoming signal is multiplied by the frequency
response of the filter, or it can perform a convolu-
tion operation in the time domain. For a digital fil-
ter, this requires the discrete convolution of a
sampled version of the input signal with a sampled
version of the filter’s impulse response. The latter
forms the coefficients of the filter.

The frequency response of the filter will almost
certainly be duration-limited in the frequency do-
main, because it’s unusual for a filter to pass all input
frequencies. Obvious examples are low-pass and high-
pass filters, where the aim is the elimination of great
chunks of the input signal’s frequency content. Be-
cause a signal cannot be duration-limited in both the
time and frequency domains, a filter such as this will
havean infinitely long impulse response. A simplistic
approach to shortening this response is to truncate
the impulse response to a convenient length.

Truncating the impulse response is equivalent to
multiplying it by a function that has a value of one
where the impulse response is to be preserved, and
a value of zero where the impulse response is trun-
cated. This truncating function is called rect (x) be-
cause its amplitude plot describes a rectangle. Since
multiplication in the time domain is equivalent to
a convolution in the frequency domain, the initial
ideal filter response must be convolved with the
Fourier transform of the rect (x) function. The
Fourier transform is the well-known sinc function.
The nature of this sin¢ function, however, smears
the original ideal frequency response. And the more
of the impulse response that is discarded, the worse
the smearing effects of the sinc function.

A designer can obtain a duration-limited impulse
response without wrecking the original filter’s fre-
quency response by multiplying the impulse response
by a function with characteristics such that when the
frequency response of this function is convolved with
the desired filter’s freauency response, it causes the
minimum of smearing distortion. Window func-
tions, such as the Hamming function do just this.
A window function such as this has a narrow main
lobe to maintain the selectivity of the filter, and small
sidelobes to maintain the depth of the stopband.

Designing a low-pass filter

The design of a low-pass filter is particularly easy,
because the impulse response is obtained from the
Fourier transform of the ideal rectangular response,
which then takes the form of a geometric series, with
coefficients that can he exnressed as the relatively

simple sinc function sin (x)/x. The number (N) of
coefficients (Sp) needed to implement the filter de-
pends on the sampling rate (usually 2.5 times the max-
imum frequency in the signal), the cutoff frequency
of the filter, and the frequency that defines the start
of the stopband. These coefficients must be multi-
plied by appropriate window function coefficients
(W) to yield windowed filter coefficients (Cp).

These decimal coefficient values must then be con-
verted into 16-bit binary values, using the fractional
two’s complement numbering scheme. The coeffi-
cients are normally stored within registered PROMs,
although RAM or EPROM storage offers advantages
during development. Most A-D converters support
the two’s complement numbering scheme, ensuring
that the representations of the data and coefficients
are compatible.

Filter hardware is used to implement the discrete
convolution operation given by the formula:

N

Yy = E Cp X X(k--n+l)
n=1
where Xy and Y are the kth filter inputs and out-
puts, respectively. A filter implemented with this
equation uses N data inputs to compute each filter
output, and is therefore referred to as an N-tap or
N-point filter.

One advantage of a linear phase filter is that the
coefficients are symmetrical. This means the required
number of multiplications and the size of the coeffi-
cient store can be halved by adding the two data
points that will be multiplied by the same coefficient
value. The modified formula is:

N/2
Yi= Y Co X Xgontn*t XNy
n=1
The filter hardware used to implement this for-

‘mula consists of three distinct sections: the address

generation and control, the arithmetic section that
performs the number crunching, and the store. The
store holds a short time history of N samples for
each of the channels to be filtered. These samples
are held in a cyclic buffer with a length equal to the
next integer power of two greater than the number
of points in the filter. For each processed sample
output from the filter, a new sample must be written
in. This new sample overwrites the oldest sample
within the cyclic buffer.

For each output from the filter, the N newest sam-
ples must be read into the arithmetic section so the
discrete convolution operation can be performed.
Two pointers are needed—one (which counts up) to
indicate the write address for incoming samples, and

124



and one (which counts down) to indicate the read
addresses for the discrete convolution operation.

The store will be required to read two data points
for every cycle of the multiplier. The second data
point may be found at an offset from the existing
read pointer. An Am29PL141 fuse-programmable
controller supplies this offset, and the modified ad-
dress is calculated by an 8-bit adder formed from
two Am25L.S2517 ALUs.

For a six-point filter, the offsets (0, 3, 5, and 7)
are applied, on alternate cycles, to the 8-bit adder
by the Am29PL141, to permit generation of the sec-
ond read address from the first read address.

For a six-point filter, all of the address calcula-
tions are performed modulo 8 (the next power of
2 greater than 6), which is done by masking the ad-

dress applied to the store so that the store sees only
the least significant three bits. After each new word
is written into the store, the write pointer loads the
read pointer with the correct cyclic buffer start ad-
dress for the calculation of the next filter output.

Multiple channels may be accommodated by in-
hibiting the increments of the write pointer until all
the channels have input a new sample. The chan-
nels are counted by the loop counter within the
Am29PL 141 fuse-programmable controller, and are
separated in the store section by the high-order ad-
dress bits latched with each new input. The chan-
nels may be presented in any order, but all channels
must be processed at the same rate. When shifted
one position so that the least significant bit is dis-
carded, the values forming the offset sequence give

The coefficients for a low-pass filter can be ex-
pressed in terms of the so-called sinc function. The
number of coefficients required to implement the
filter N is given by:

Fep)

F,, the sampling rate of the A-D converter, is equal
to 2.5 times F,, the maximum frequency present in
the input signal (set by the antialiasing filter). F¢,
is the cutoff frequency of the filter (the end of the
passband) and F is the frequency that defines the
start of the stopband (the end of the transition band).

This estimate for N (the number of coefficients)
is usually conservative, so the value of N may be
reduced safely by about 10 percent. This leeway al-
lows an even value for N to be obtained. Having de-
termined N, the coefficient values can be obtained
by sampling the filter's impulse response. The re-
quired coefficients are given by the following sinc
functions:

Forn=1to N
sin [2><1r><Fcp><(n—(N+ 1)/2)/F]

7X(n—-(N+1)/2)

where the S, values are the samples of the sinc
function. These values must then be multiplied by
the window function to yield the windowed filter
coefficients (Cp):

n

Ch, =S, x W,

where W, (the Hamming window coefficients) are
given by:

W, = 054 + 046 x cos[2 x m x (n — (N
+ 1)/2)(N — 1)]

Choosing F, equal to 5 kHz, F¢, equal to 3 kHz,
and F.q equal to 4.5 kHz gives an N equal to 33.
Reducing this by 10 percent makes N equal to 30.

Determining the coefficients for a low-pass filter

Inserting the values for Fg, Fcp, and N into the
above equations gives:

S, = [sin (0.48 x = x (n — 15.5)Ji(r x (n — 15.5))
W, = 054 + 046 xcos 2 x 7 x (n — 15.5)/29)

This gives the C, coefficients listed in the table.

30-Point Low-Pass Fiiter Coefficients

Coefficient Impulse Window Filter
Index Samples Coefficients | Coefficients

(n) (S,) (W,) (C,)
1 0.00275 0.080 0.00022
2 0.02353 0.090 0.00212
3 0.00000 0.122 0.00000
4 -0.02762 0.173 -0.00478
5 —0.00380 0.242 -0.00092
6 0.03291 0.324 0.01066
7 0.00931 0.417 0.00388
8 —-0.04036 0.515 -0.02078
9 -0.01803 0.614 -0.01117
10 0.05236 0.710 0.03717
11 0.03407 0.798 0.02718
12 -0.07679 0.874 -0.06711
13 -0.07484 0.934 -0.06990
14 0.16350 0.976 0.15958
15 0.43580 0.997 0.43449
16 0.43580 0.997 0.43449
17 0.16350 0.976 0.15958
18 -0.07484 0.934 -0.06990
19 -0.07679 0.874 -0.06711
20 0.03407 0.798 0.02718
21 0.05236 0.710 0.03717
22 -0.01803 0.614 -0.01117
23 -0.04036 0.515 -0.02078
24 0.00931 0.417 0.00388
25 0.03291 0.324 0.01066
26 -0.00380 0.242 —-0.00092
27 -0.02762 0.173 -0.00478
28 0.00000 0.122 0.00000
29 0.02353 0.090 0.00212
30 0.00275 0.080 0.00022

125




Addressing and Operation Sequence for a Six-Point Filter

Cycle Write Read Offset Read Write Add Mult Output
Number Count Count Address Address
1 0 load _ _ 0 * P .
2 0 0 o 0 _ - P .
3 0 o 3 3 _ L PRp—- .
4 (o] 7 [¢] 7 - 0+3 FrREEEx --
5 o 7 5 4 - o+3 | ------ *x
6 (o] 6 (0] 6 - 7+4 0+3xC1 --
7 (o] 6 7 5 - 7+4 0+3xC1 -
8 1 load - - 1 6+5 7+4x2 -
9 1 1 (o] 1 - 6+5 7+4xC2 --
10 1 1 3 4 - -—= 6+5xC3 -
11 1 0 (o] 0 - 1+4 6+5xC3 -=
12 1 (o] 5 5 - 1+4 | ——=———- Y1
13 1 7 o] 7 - 0+5 1+4xC1 -—
14 1 7 7 6 - 0+5 1+4xC1 -=
15 2 load - - 2 7+6 0+5xC2 —--
16 2 2 o] 2 - 7+6 0+5xC2 --
17 2 2 3 5 - -—- 7+6xC3 --
18 2 1 o] 1 - 2+5 7+6xC3 --
19 2 1 5 6 - 2+5 | —----= Y2
20 2 0o 0 0 - 1+6 2+5xC1 -
21 2 0o 7 7 - 1+6 2+5xC1 -
22 3 load - - 3 0+7 1+6xC2 -
23 3 3 0 3 - 0+7 1+6xC2 -—
24 3 3 3 6 - - 0+7xC3 --
25 3 2 0 2 - 3+6 0+7xC3 =
26 3 2 5 7 - 3+6 |  ---=-- Y3

The write count is used to load the read count every
seventh cycle. Read addresses are obtained by add-
ing the read count to the offset modulo 8. Two
cycles are required for each add operation, with the
least significant halves being added in the first
cycle, the most significant in the second. The Add
column indicates the addresses of the data sam-
ples that are added together on each cycle. The mul-

tiplier/accumulator operates at half the speed of the
adder, and therefore requires two cycles for each
operation. The Mult column shows the results of
prior add operations being multiplied by the filter
coefficients. The filter outputs are shown in the out-
put column. The filter coefficients are obtained by
multiplying the impulse samples by the associated
window coefficient.

the new sequence (0, 1, 2, 3) required to address
the coefficients. An Am29520 must implement a
two-cycle delay to ensure that the address is made
available to the registered PROMs when needed.

The arithmetic section consists of a single 8-bit
Am29501 and a 16-bit Am29L.510. The 501 performs
a 16-bit addition for every cycle of the 510, and oper-
ates at twice the clock rate of the 510. An additional
9-bit Am29823 register latches the least significant
eight bits and the carry out of the add operation as
it is performed by the 501. The 510 performs the
multiply/accumulate operations required by the dis-
crete convolution process; the guard bits within the
accumulator accommodate word growth.

There are two store requirements within the
filter—the data and the coefficients. The data re-
sides in two 2-kword, 8-bit wide Am9128 RAMs that
cycle at the same rate as the 501. The coefficients
reside in two 8-bit wide Am27S25 registered PROMs
that cycle at the rate of the 510.

This filter structure accommodates up to 16 chan-
nels, each filtered by one stage of a linear phase FIR
filter that has up to 128 points. Each point requires
50 ns to process, yielding an effective sampling rate
of 40 kHz for each of the 16 channels using the low-
pass filter described in the panel ‘‘Determining the
coefficients for a low-pass filter.”” There is sufficient
capacity within the PROMs for 32 different sets of
filter coefficients, allowing a different filter to pro-
cess each channel. Outputs may be returned as inputs
to a different channel, allowing steeper rolloffs by
cascading filters, or more complicated responses by
cascading low- and high-pass filters.

This filter structure can be configured to yield a
filter bank capable of resolving up to 32 spectral
components from an input signal sampled at 20 kHz
(using filters of similar complexity to the low-pass
one in the panel). This type of filter bank provides
a stable platform for automatic speech-recognition
algorithms. If 20 channels are dedicated to resolving

126



spectral components, 37 percent of the available
processing bandwidth remains for squaring and in-
tegrating the outputs from each filter. A low-pass
filter performs integration, and threshold detec-
tion may be performed with the Am29501.

The hardware described can perform all of the
processing required to generate the ‘‘intensity’’ spec-
trum of the input signal, which is the major process-
ing requirement of a speech-recognition system.

One of the advantages of a filter bank implemen-
tation is that the signal spectrum may be broken into
completely arbitrary divisions (20 in this example).
An FFT implementation, on the other hand, would
require a linear scale, while decimating filter tech-
niques would require divisions linked by integer
ratios. A useful scale not usually available has a
logarithmic spacing of center frequencies and band-
widths. This logarithmic spacing may be specified
at the design stage. The band of interest ranges from
400 Hz to 8 kHz, which may be satisfactorily sam-
pled at a rate of 20 kHz. Each of these center
frequencies must be entered into the band-pass filter-
impulse response equation, with the associated band-
width, in order to generate the filter coefficients.

The design of a band-pass filter using windowed-
impulse techniques follows the same steps as the low-

Determining the coefficients
for a band-pass filter
The coefficients for a band-pass filter are derived
from the following variation of the low-pass filter-
impulse response formula:

sin [t xBx (n—(N+1)/2)/Fg] X2 X cos
RxmxF.x(n-N+1)/2/Fs]

X (n-(N+1)/2)

where B is the 3dB bandwidth, F is the center fre-
quency, Fg is the sampling frequency, N is the
number of coefficients, and n is the coefficient
index. The same Hamming window formula used
for the low-pass filter may be used here.

Specifying each filter to have the same number
of coefficients simplifies the overall control of the
filter bank. Up to 32 coefficients may be used for
each filter without exceeding the available process-
ing bandwidth; a reasonable design specification
would set N equal to 32, with Fg at 20 kHz. Insert-
ing these values in the impulse response formula
yields:

sin [ X BX (n—-16.5)/20000] x 2 X cos
[7 X F.x(n—16.5)/10000]

7 X(n-16.5)

Substituting the 20 pairs of values for F. and B
into this formula will, after multiplying by the ap-
propriate window term, yield the required filter
coefficients. These coefficients must then be con-
verted into a fractional two’s complement format,
and programmed into the PROMs.

S =

n

S;:

n

pass filter design, with two differences: the number
of coefficients roughly doubles because there are two
distinct stopbands within the band-pass filter re-
sponse, and the coefficients are computed using a
modified formula.

Because a single input channel will pass through
20 different band-pass filters, the same allocation
of 20 channels is made here as in the low-pass filter,
but there is a slight difference in the control sequence.
Previously, a new sample was written-into the cyclic
buffer each time a processed point came out of the
filter. But, for this application, a new sample is writ-
ten into the cyclic buffer for every 20 output points
from the filter. This means modifying the controller
microcode so that the write pointer increments are
inhibited until 20 outputs have been calculated.

127



CHAPTER 6
PRODUCT SPECIFICATIONS



Am29501A

Multi-Port Pipelined Processor (Byte-Slice™)

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

® Expandable Byte-SIiceTM Register-ALU ® Ten internal data paths
- Speed improved version of the Am29501 - Highly parallel architectures

® Eight instruction ALU - Multiple simultaneous data manipulations
- Four arithmetic operations ® Pipelining register file has six 8-bit registers
- Four logic operations - Multilevel pipelining
- Force/Inhibit carry modes - Multiple register-to-register moves
- Flexible expansion - has carry and P/ G ® Completely microprogrammable

® Three |/O ports for maximum system interconnect - No instruction encoding
flexibility - All operation combinations available

GENERAL DESCRIPTION

The Am29501A is an expandable Byte-S|iceTM register- The Am29501A's Pipeline Register File provides data
ALU designed to bring maximum speed to array processor storage and pipelining flexibility. Any combination of regis-
and digital signal processor systems. It provides a flexible ter instructions, ALU instructions, and 1/0 instructions can
processor building block for implementing highly pipelined, be microprogrammed to occur in the same cycle. This
highly parallel architectures where speed is achieved by a aliows overlap of external multiplication, ALU operations,
combination of optimized integrated circuit technology and memory /0.

(IMOXTM process and internal ECL circuitry) and custom-

ized system architecture. 1/0 port flexibility and muiltiple Three 1/0 ports support a wide variety of parallel, pipelined
concurrent data moves make it possible to construct  architectures by providing separate 1/0 ports for the
processors capable of very high throughput. Parallel pro-  multiplier and the memory data bus. Either of two bidirec-
cessors are especially efficient for array/vector operations tional I/0 ports, DIO and MIO, can interface to the data bus
or signal processing algorithms requiring complex number  or multiplier Y-input port. A separate MI port connects to
arithmetic (e.g. FFT, convolution, correlation, etc.). the multiplier output port.

BLOCK DIAGRAM

o 'T' I -
|
I D =B i iy
ux :H wx o
=] e e
— o - T .
0 nwnn:n:: ux lm‘
| — o, REGeTER AtoRTER
— - Tt
[ ux .uux.
e a =
PEGISTER REGISTER
o >——rter "E}il -} 1
e V0 [—ie] NP LSPA M Ay 8,008, AA A B, o
17.00 (EG) [>—T3me] conTROL ll 1! !l H”H!{"
[EORHTY oS PR b e
20y <J- ; “"".{ "}

BD003060

Byte-Slice is a trademark of Advanced Micro Devices, Inc. 129 05766A



Am29C509

12 x 12 CMOS Multiplier Accumulator
ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

o High-Speed 1.6p CMOS Process

The Am29C509, at 50 ns maximum clock rate, supports

real-time process
® 27-bit Product Accumulation Result

Provides 24-bit product plus 3-bit extended product

o Accumulator Function

The accumulator value may be altered by LOAD, ADD

and SUBTRACT instruction

e Output Register Preload
The predetermined value can be loaded into the output
register

© Round Control
The most significant 12 bits of the product rounded to
the value nearest to the full 24-bit product

o Accept 2's Complement or Unsigned Inputs

GENERAL DESCRIPTION

The Am29C509 is a high-speed 12-bit x 12-bit multiplier/
accumulator (MAC). The X and Y input registers accept 12-
bit inputs in two’s complement or unsigned magnitude for-
mat. A third register stores the Two's Complement (TC)
and Round (RND), Accumulate (ACC), and Subtraction
SUB/ADD control bits. This register is clocked whenever

the X or Y input registers are clocked.

The 27-bit accumulator/output register contains the full 24-
bit multiplier output which is sign extended or zero-filled
based on the TC control bit. The accumulator can also be
preloaded from an external source through the bidirectional
P-port. The operation of the accumulator is controlled by
the signals ACC, SUB/ADD, and PREL (Preload). Each of
the input registers and output register has independent
clocks.

BLOCK DIAGRAM

X TC RND Y

Y
REG

CLKy

CLKy

acc
SuB/ADD
LEy/OEy
LEy/OEy
LE /OE_

LD—

MULTIPLIER

ADD/SUBTRACT/PASS

PREL —=] CONTROL 2
CLKp Loaic 1 Y

,,r 3+ 2] 2L

 F
12
[T 12 Y,
s y
LE, LE

04986C-1

RELATED PRODUCTS

Part No.

Description

Am29526/527

High speed sine function generator

Am29528/529

High speed cosine function generator

Am29540

Programmable FFT address sequencer

Am29520A/521A

Multilevel pipeline registers

Am29524/525

Multilevel pipeline registers

130 Order #04986D



Am29510/L510

16 x 16 Multiplier Accumulator
PRELIMINARY

® Round control

e Output register preload

® 35-bit product accumulator result
— 32-bit product
— 3-bit extended product

DISTINCTIVE CHARACTERISTICS

® Uses two's complement or unsigned inputs and outputs

® IMOX™ processing
— ECL internal circuitry for speed
— TTL |/O, single 5V supply
e Fast
— High speed version multiply accumulate time 80ns
— Low power version multiply accumulate time 110ns

The Am29510 is a high-speed 16 x 16-bit multiplier/
accumulator (MAC). The X and Y input registers accept
16-bit inputs in two’s complement or unsigned magnitude
format. A third register stores the Two's Complement (TC)
and Round (RND) control bits. This register is clocked
whenever the X or Y input registers are clocked.

The 35-bit accumulator/output register contains the full 32-
bit multiplier output which is sign extended or zero-filled
based on the TC control bit. The accumulator can also be

GENERAL DESCRIPTION

preloaded from an external source through the bidirectional
P port. The operation of the accumulator is controlled by the
signals ACC (Accumulator), SUB/ADD (Subtraction/
Addition), and PREL (Preload). Each of the input registers
and output register has independent clocks.

The Am29L510 is a low-power version of the Am29510. The
Am29L510 consumes only one-half the power of its standard
power counterpart while maintaining nearly two-thirds the
speed.

BLOCK DIAGRAM

X TC RND  Y/Py5-Y/Pg
1 x 16
I'_x;] v
CLKy — REG REG REG
CLKy I
I_——D ) 16 2 16
MULTIPLIER
ARRAY
AcC 32
SUB/ADD ‘_——_‘
LE‘/f" REG ADD/SUBTRACT/PASS
LEy/OEy ::I
LE_/OE __—J 3/*, wﬂi |G+
PREL —*1 CONTROL XTP MSP LSP s
CLKp LOGIC 1 REG
»i/ + 3+ 16 16
3 3
16, |
LE OE 16 1
3, 7
7
LEx LEy LE,
OEy oE, GE,
P3s-P32 P31-Pg 03563C-1
RELATED PRODUCTS
Part No. Description
Am29526/527 High-speed Sine function
generator
Am29528/529 High-speed Cosine function
generator
Am29540 Programmable FFT address
sequencer
Am29520/21 Multilevel pipeline registers

IMOX is a trademark of Advanced Micro Devices, Inc.

131 Order # 03563C



Am29C516/C17 Famil

16 x 16-Bit Parallel Multipliers
ADVANCED INFORMATION

y

DISTINCTIVE CHARACTERISTICS

e High-Speed 1-6p. CMOS Process
Supports 70 ns clocked multiply with 0.5W power
dissipation.
o Full Product Multiplexed at Output
MSP and LSP routed to output port via multiplexer.
o Two’s Complement, Unsigned or Mixed Operands

® Am29C516: Pin-for-Pin Compatible with Am29516
and MPY16HJ

o Am29C517: Pin-for-Pin Compatible with Am29517.
Has Single Clock Input with Register Enables
(Useful for Microprogrammed Systems)

GENERAL

The Am29C516 and Am29C517 are high-speed parallel 16
x 16-bit multipliers utilizing internal CMOS logic to generate
a 32-bit product. Two 17-bit input registers are provided for
the X and Y operands and their associated mode controls
Xm and Yp. These mode controls are used to specify each
operand as either two’'s complement or unsigned numbers.
When one operand is two’s complement and the other is
unsigned, the result is two’s complement.

At the output of the multiplier array, a format adjust control
(FA) allows the user to select either a full 32-bit product or
a left-shifted 31-bit product suitable for two’s complement
only.

Two 16-bit output registers are provided to hold the most
and least significant halves of the product (MSP and LSP)
as defined by FA. For asynchronous output, these registers
may be made transparent by taking the feed through con-
trol (FT) High. A round control (RND) allows the rounding
of the MSP; this control is registered, and is entered when-
ever either input register is clocked.

DESCRIPTION

The two halves of the product may be routed to a 16-bit
3-state output port (P) via a multiplexer, and in addition, the
LSP is connected to the Y-input port through a separate
three-state buffer.

The Am29C516 X, Y, MSP and LSP registers have inde-
pendent clocks (CLKX, CLKY, CLKM, CLKL). The output
multiplexer control (MSPSEL) uses a pin which is a supply
ground in the TRW MPY16HJ. When this control is LOW,
the function is that of the MPY16HJ, thus allowing full
compatibility.

The Am29C517 differs in that it has a single clock input
(CLK) and three register enables (ENX, ENY, ENP) for the
two input registers and the entire product, respectively.
This facilitates the use of the part in microprogrammed sys-
tems. In both parts data is entered into the registers on the
positive edge of the clock.

Am29C516

REGISTER

—ED—’;

wuTLien I

FORMAT ADJUST

REGISTER REGISTER

oy |

cLkx

A

AecisTER ] necieTER
16

I
CLKM. N

CLKL

MSPSEL
MULTIPLEXER

|

I
2
3

PRODUCT

BLOCK DIAGRAMS

Am29C517

[ |

‘—’&———ﬁ}J |
]

]
i

MULTIPLER
v

ENY.

FORMAT ADJUST

MSP Lsp
REGISTER | REGISTER

IBER N
I ]

ENP

MSPSEL

MULTIPLEXER

PRODUCT

03562D-1 03562D-2
RELATED PRODUCTS

Part No. Description

Am29501/A Multiport pipelined processor

Am29526/27 Sine function generator

Am29528/29 Cosine function generator

Am29520A/21A Pipeline register

Am29540 Address generator

132 Order #03562E



Am29520 -

Am29521

Multilevel Pipeline Registers

DISTINCTIVE CHARACTERISTICS

® Four 8-bit high speed registers

o Dual two-level or single four-level push-only stack
operation

® All registers available at multiplexed output

e Hold, transfer and load instructions
® Provides temporary address or data storage
® 24-pin 0.3" package

GENERAL DESCRIPTION

The Am29520 and Am29521 each contain four 8-bit positive
edge-triggered registers, These may be operated as a dual
2-level pipeline or as a single 4-level pipeline. A single 8-bit
input is provided and all four registers are available at the
8-bit, 3-state output.

The Am29520 and Am29521 differ only in the way data is

loaded into and between the registers in dual 2-level opera-
tion. This difference is illustrated in Figure 1. In the Am29520

when data is entered into the first level (I=2 or 1=1) the
existing data in the first level is moved to the second level. In
the Am29521 these instructions simply cause the data in the
first level to be overwritten. Transfer of data to the second
level is achieved using the 4-level shift instruction (1=0). This
transfer also causes the first level to change. In either part
1=3 is a NO-OP.

RELATED PRODUCTS

Part No. Description
Am29540 FFT Address Sequencer
Am29116 16-bit Bipolar Microprocessor
Am2925 System Clock Generator and Driver
Am29517 16 x 16-bit High Speed Multiplier
Am29510 16 x 16-bit Multiply Accumulator
Am6108 8-bit Microprocessor Compatible

A/D Converter
Am9128-70 2K x 8 Static RAM
Am21L47-55 4K x 1 Static RAM

LOGIC DIAGRAM

Dg-D
s},"’

INSTRUCTION | Mux
looh
2
— e |
REGISTER
CONTROL* OCTAL REG At OCTAL REG B1
cLock
1 1 l
locm. REG A2 ] OCTAL REG B2 l

% 1

MUX 5
SEL Mux
So. S

Yo-¥7

03569A-1

*Multilevel Pipeline Register

Chip-Pak is a trademark of Advanced Micro Devices, Inc.

# A
133 Order # 03569




Am29524/Am29525

Dual 7-/8-Deep Pipeline Registers

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

® Provides temporary address or data storage

® Am29524 — Dual 7-deep or single 14-deep (with feed-
through and 0) registers

Am29525 — Dual 8-deep or single 16-deep registers
Hold, or shift and load instructions

o High-speed ECL-internal technology, TTL-compatible
170, packaged in 28-pin 0.4-inch (400 Mil) sidebrazed
DiPs

® All registers available at three-state output

GENERAL DESCRIPTION

The Am29524/Am29525 are 8-bit wide, 14- and 16-word
deep pipeline registers. The registers are organized as two
7- or 8-byte shift registers. By microinstruction, data may be
entered into either shift register.

In the Am29524, the shift registers are 7 deep. All fourteen

registers are available at the output, as well as the input
data fed directly to the output, or an all-zero byte. In the

Am29525, the shift registers are 8 deep and any of the
sixteen registers may be output. In both devices, the two
shift-register stacks may be cascaded to form a single 14-
or 16-byte-long pipeline register.

A single clock is provided and operation of the shift
registers is under microprogram control. The device has
three-state outputs.

BLOCK DIAGRAMS

Am29524

[%ﬁﬂ I%"«ﬁl
ElRREE
|

1
A =
§§ _'Lmra - |
S B [ coma ocTaL s,
= | E=
| I

s Yy,

BD006030

Am29525

o0

(=] | [E=]
[==] | [==]
| ]
=] | =]
(=] | [==]
) e
S g [ s o)
D | =
OCTAL A OCTAL 8
(=] | (=]

BD006020

134

Order #07593A




AmM29526
Am29528

* Am29527
* Am29529

High Speed Sine, Cosine Generators

DISTINCTIVE CHARACTERISTICS

® Provides values for sine/cosine functions in /2048
increments

e Outputs are 16-bit two’s complement fractions

o Fast generation time of 50ns max Com’l

® S/LS compatible

® Three-state outputs

® |[MOX™ processing

FUNCTIONAL DESCRIPTION

The Am29526/27 and Am29528/29 provide high speed
generation of sine and cosine functions over the range
0 < 6 < = in increments of 7/2048. ¢ is determined by an
11-bit input word. Each device provides an 8-bit output and
two are used to give the full 16-bit value. The Am29526
and Am29527 generate the MS and LS bytes respectively
for the sine function. Similarly, the Am29528 and Am29529
generate the cosine functions.

The outputs are fractional two’s complement numbers with

RELATED PRODUCTS

Part No. Description

Am29516/17 16 x 16-Bit High Speed Muiltipliers
Am29510 16 x 16-Bit Multiply Accumulator
.Am29540 FFT Address Sequencer
Am29825 High Performance 8-Bit Register

the radix point located immediately to the right of the sign
bit (in between the bits weighted —2° and 2~1). As this
format does not allow for the representation of +1 the
functions generated are —sing and —cosé. In this way the
output values are restricted to the range —1 < f(6) < +1
which is representable. The outputs are three-state with
one active Low enable and two active High enable.

While providing general purpose sine and cosine function

CONNECTION DIAGRAMS — Top Views

DiP
. N\
A, 1 28] ] vee
as []2 2] A
as []3 2[7] A,
A [ 21[] A
Ay : 5 20[]E
A, []s 19 JE,
a7 18] ] €
A [ [ ] F
R[] 8 ] F
Fy [0 15[ ]Fs
F [ u[]F
GND (|12 B]F
Chip-Pak™ ABL-006
~ o 8 o
< < 2 2 £ 2 2
U OO0 0080
a 3 2 1
As Ag
Ay Ao
Ay NC
™ 2]
Ay E;
Ag Es
NC NC
o F7
£ Fg
16
LWH HHAA
F O 8 o oo o .
DL T ABL-007

capability, the Am29526/27/28/29 satisfy the requirements
of the Am29540 FFT Address Sequencer.

BLOCK DIAGRAM
Ao-A1o
"
SINE/COSINE
FUNCTION GENERATOR
g 8
€2
E 8
Fo-Fy

ABL-008

IMOX and Chip-Pak are trademarks of Advanced Micro Devices, Inc.

135 Refer to Page 13-1 for Essential Information on Military Devices



Am29540

Programmable FFT Address Sequencer

DISTINCTIVE CHARACTERISTICS

® Generates data and coefficient addresses

® Programmable transform length 2 to 65,536 points

® Radix-2 or Radix-4

® Decimation in frequency (DIF) or decimation in time (DIT)
FFT algorithms supported

® In-place or non-in-place transformation
® 40-pin DIP package
® 5 volt single supply

GENERAL DESCRIPTION

The Am29540 Fast Fourier Transform Address Sequencer
generates all the data (RAM) and coefficient (ROM)
addresses necessary to perform the repetitive butterfly
operations of the FFT. Decimation in time and decimation
in frequency algorithrhs are supported (control DIT/DIF)
in radix-2 or radix-4 (RADIX 4/2). A radix-2 real valued
input (RVI) transform is also supported. For radix-2 operation
the transform length is programmable in powers of 2 from 2
to 65,536 points. In radix-4 the range is 4 to 65,536 in
powers of 4.

Address sequences can be selected to be compatible with
data which may or may not have been pre-scrambled (“bit-
reversed”). If the data has been pre-scrambled the control
PSD mustbe LOW to select the correct sequence. If the data
is not pre-scrambled and an in-place transform is per-
formed, the output data will necessarily be in bit-reversed
order. If this is not desirable, alternate addresses are avail-
able for a non-in-place, non-bit-reversing algorithm.

The butterfly counter operates on the positive clock edge and
responds to four instructions. COUNT causes the counter to
increment to the next butterfly. RESET causes the counter to
initialize for the specified transform length. RESET/LOAD
causes the counter to initialize and a data address offset to
be loaded into the part via the bi-directional 3-state AD-
DRESS port. This offset is effectively OR-ed onto the higher
significance bits of the address which are unused for the
selected transform length. A HOLD instruction is also pro-
vided. Three status lines are provided. EVEN/ODD (KNZ/

. KZ) controls the alternation of read and write memories for
non-in-place transforms and determines the butterfly struc-
ture in the RVI transform. The flag has the function KNZ/KZ
when RVI data addresses are selected (AS = 12 to 15).
Iteration complete (IT COMP) flags the bottom of a “column”
of butterflies and is used in conjunction with block floating
point schemes. FFT COMP identifies the last butterfly of the
transform.

LOGIC DIAGRAM

TRANSFORM LENGTH

Ty-The
4

LATCH

e

IT COMP.
FFT COMP.
EVEN/ODD (KNZ/KZ)

BUTTERFLY
COUNTER

LATCH
DIT/OIF I

SEL DATA
ADDRESS
GENERATOR

COEFFICIENT
ADDRESS
GENERATOR

SELECT i

Ars-o0
ADDRESS OUTPUT
(OFFSET INPUT)

FFT Address Sequencer

03567D-2

RELATED PRODUCTS

Am29501 - Mulitport pipelined processor (Byte-Slice™)
Am29516/17 — 16 x 16 parallel multiplier

Am29520/21 — Multilevel pipeline register
Am29526/27/28/29 — High-speed, sine/cosine generators
Am29825 — High-performance, 8-bit register

136

Order # 03567D




Am29323

32-Bit Parallel Multiplier

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

® 32-Bit Three-Bus Architecture
— The device has two 32-bit input ports and one 32-bit
output port with maximum multiply time of 80ns
® Single Clock with Register Enables
- The Am29323 is controlled by one clock with
individual register enables
® Supports Multiprecision Multiplication
— The device has dual 32-bit registers on each data
input port to perform multiprecision multiplication

® Registers can be made transparent
- Input and output registers can be made transparent
independently to eliminate unwanted pipeline delay
® Supports Two's Complement, Unsigned or Mixed
Numbers
® Data Integrity Through Master-Slave Mode and Pari-
ty Check/Generate
- Parity check/generate catches inter-device
connection errors and master/slave mode provides
complete function check

GENERAL DESCRIPTION

The Am29323 is a high-speed 32 x 32-Bit Parallel Multipli-
er with 67-Bit Accumulator. The part is designed to maxi-
mize system level perforinance by providing a 32-bit three
bus architecture and a single clock with register enables.

The Am29323 further enhances the system throughput by
providing individual register feedthrough controls, byte
parity checking on both input ports and generation on the
output port, and dual input registers on each data input bus
to support multiprecision multiplication. The Am29323 can
manage a wide variety of data types, including two's

complement, unsigned, or mixed mode input formats. A 64
x 64-bit multiplication can be performed in seven clock
cycles, including input and output. Additional features
provided are a format adjust control allowing for standard
output or left shifted output suitable for fractional two's
complement arithmetic, rounding, and master/slave opera-
tion.

The Am29323 is designed with the MOX” process, which
allows internal ECL circuits with TTL-compatible I/0. The
device is housed in a 168-lead pin-grid-array package.

SIMPLIFIED BLOCK DIAGRAM

X-8US

Y.BUS

X-BUS Y-BUS

A_14
PARITY PARITY
CHECK ERROR

XA IEG x8 IEG YA fes v8 IEG
3 '

32x32
MULTIPLIER
ARRAY 0/32 BIT
SHIFTER
" . j &7
I 67.8IT ADDER _]
{57
[ PRODUCT REG l

BD005250

*IMOX is a trademark of Advanced Micro Devices, Inc.

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to

Order #05763B

help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.



Am29325

32-Bit Floating Point Processor
PRELIMINARY

DISTINCTIVE CHARACTERISTICS

® Single VLSI device performs high-speed floating-point
arithmetic
— Floating-point addition, subtraction and multiplication
in a single clock cycle

e |EEE and DEC formats
— Performs conversions between formats
— Performs integer =— floating point conversions

Six flags indicate operation status

— Internal architecture supports sum-of-products, ® Register enables eliminate clock skew
Newton-Raphson division ® Input and output registers can be made transparent
@ 32-bit, 3-bus flow-through architecture independently
— Programmable |/O allows interface to 32- and 16-bit
systems
GENERAL DESCRIPTION

The Am29325 is a high-speed floating-point processor unit.
It performs 32-bit single-precision floating-point addition,
subtraction, and multiplication operations in a single LSI
integrated circuit, using the format specified by the proposed
IEEE floating-point standard P754. The DEC single-
precision floating-point format is also supported. Operations
for conversion between 32-bit integer format and floating-
point format are available, as are operations for converting
between the IEEE and DEC floating-point formats. Any op-
eration can be performed in a single clock cycle. Six flags —
invalid operation, inexact result, zero, not-a-number, over-
flow, and underflow — monitor the status of operations.

The Am29325 has a 3-bus, 32-bit architecture, with two
input buses and one output bus. This configuration provides

high I/O bandwidth, allows access to all buses and affords a
high degree of flexibility when connecting this device in a
system. All buses are registered, with each register having a
clock enable. Input and output registers may be made trans-
parentindependently. Two other I/O configurations, a 32-bit,
2-bus architecture and a 16-bit, 3-bus architecture, are
user-selectable, easing interface with a wide variety of sys-
tems. Thirty-two-bit internal feedforward data paths support
accumulation operations, including sum-of-products and

Newton-Raphson division.

Fabricated with the high-speed IMOX™ bipolar process, the
Am29325 is powered by a single 5-volt supply. The device is

housed in a 144-pin pin-grid-array package.

Am29300 FAMILY HIGH PERFORMANCE SYSTEM BLOCK DIAGRAM

Am29334
Am29331 REGISTER
16-8IT FILE
SEQUENCER 64x18
R { 2
7
MICROPROGRAM {
MEMORY
) Am29323
Am2933
PIPELINE 32-8IT p:::L?EL
aeealsmﬂ ALY MULTIPLIER
CONTROL ‘ l
SIGNALS
05621A-1

RELATED PRODUCTS

® Am29323 - 32 x 32 Parallel Multiplier
® Am29332 - 32-Bit ALU
® Am29331 - 16-Bit Sequencer

® Am29334 — 64 x 18 Four-Port Dual-Access
Register File

IMOX is a trademark of Advanced Micro Devices, Inc.

Order # 05621B

138




Am29331

16-Bit Microprogram Sequencer
ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

e 16-Bits Address Up to 64K Words

Supports 80—90ns microcycle time for a 32-bit high
performance system when used with the other members
of the Am29300 Family.

o Real Time Interrupt Support

Micro-TRAP and Interrupts are handled transparently at
any microinstruction boundary.

Built-In Conditional Test Logic

Generates inequality evaluation branch conditions from
four ALU status bits. Has eight external tests plus a
polarity input.

e Break-Point Logic

Built-in acdress comparator allows break-points in the
microcode for debugging and statistics collection.

e Master/Slave Error Checking

Two sequencers can operate in parallel as a Master and a
Slave. The Slave generates afault flag for unequal results.

® 33-Level Stack

Provides support for interrupts, loops and subroutine
nesting. It can be accessed through the D-bus to support
diagnostics.

GENERAL DESCRIPTION

The Am29331 is a 16-bit wide high-speed single chip se-
quencer designed to control the execution sequence of mi-
croinstruction stored in the microprogram memory. The in-
struction set is designed to resemble high-level language
constructs, thereby bringing high-level language program-
ming to the micro level.

The Am29331 is interruptible at any microinstruction bound-
ary to support real-time interrupts. Interrupts are handled
transparently to the microprogrammer as an unexpected
procedure call. Traps are also handled transparently at any
microinstruction boundary. This feature allows re-execution
of a prior microinstruction. Two separate buses are provided
to bring a branch address directly into the chip from two
sources to avoid slow turn-on and turn-off times for different

sources connected to the data input bus. Four sets of multi-
way inputs are also provided to avoid slow turn-on and
turn-off times for different branch address sources. This
feature allows implementation of table look-up or use of
external conditions as part of a branch address. The thirty-
three deep stack provides the ability to support interrupts,
loops and subroutine nesting. The stack can be read through
the D-bus to support diagnostics or to implement multi-
tasking at the micro-architecture level. The master/slave
mode provides a compiete function check capability for
the device.

The Am29331 is designed with the IMOX™ process which

allows internal ECL circuits with TTL-compatible 1/O. It is
housed in a 120-lead pin-grid-array package.

SIMPLIFIED BLOCK DIAGRAM

MULTIWAY

I ]

COUP:I’iJ

1
1

33x 16
STACK

l PROGRAM

INPUTS D-BUS A-BUS
4l al a4} 4 1) 16
1 A
2
MUX >
| 4, 12
Aty
16}
INTR > REAL TIME 4
A 3 INT LOGIC
TEST 12 TEST
cono. =71 Loaic

i

<] cARRY-IN

COUNTER

INSTR
DECODE

INSTR D——fx—

BREAK PT. -
e &3 eaua

}

RRRN .

IMOX is a trademark of Advanced Micro Devices, Inc. Y-BUS 057298-1

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to
evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice. Order # 057298

139



Am29332

32-Bit Arithmetic Logic Unit

ADVANCED

INFORMATION

DISTINCTIVE CHARACTERISTICS

® Single Chip, 32-Bit ALU

Supports 80-90ns microcycle time for the 32-bit
data path. It is a combinatorial ALU with equal cy-
cle time for all instructions.

Flow-through Architecture

A combinatorial ALU with two input data ports and
one output data port allows implementation of either
parallel or pipelined architectures.

64-Bit In, 32-Bit Out Funnel Shifter

This unique functional block allows n-bit shift-up,
shift-down, 32-bit barrel shift or 32-bit field extract.

® Supports All Data Types

It supports one-, two-, three- and four-byte data for
all operations and variable-length fields for logical
operations.

Multiply and Divide Support

Built-in hardware to support two-bit-at-a-time modi-
fied Booth's algorithm and one-bit-at-a-time division
algorithm.

Extensive Error Checking

Parity check and generate provides data transmis-
sion check and master/slave mode provides com-
plete function checking.

GENERAL

The Am29332 is a 32-bit wide non-cascadable Arithmetic
Logic Unit (ALU) with integration of functions that normally
don't cascade, such as barrel shifters, priority encoders
and mask generators. Two input data ports and one output
data port provide flow-through architecture and allow the
designer to implement his/her architecture with any degree
of pipelining and no built-in penalties for branching. Also,
the simplicity of a three-bus ALU allows easy implementa-
tion of parallel or reconfigurable architectures. The register
file is off-chip to allow unlimited expansion and regular
addressability.

The Am29332 supports one-, two-, three- and four-byte
data for arithmetic and logic operations. It also supports

DESCRIPTION

multiprecision arithmetic and shift operations. For logical
operations, it can support variable-length fields up to 32
bits. When fewer than four bytes are selected, unselected
bits are passed to the destination without modification. The
device also supports two-bit-at-a-time modified Booth's
algorithm for high-speed muiltiplication and one-bit-at-a-
time division. Both signed and unsigned integers for all byte
aligned data types mentioned above are supported.

The Am29332 is designed to support 80-90 ns microcycle
time. The device is packaged in a 168-lead pin-grid-array
package.

SIMPLIFIED BLOCK DIAGRAM

PARITY
ERROR DB-BUS

DABUS DA DB
QU © B
4 Yo 2
INSTR >n] INSTR
. DECODE
STATUS REG
.
POSITION
OF FiELD O—+—

FUNNEL

; l_
WIDTH O—r
OF FIELD SHIFTER

MASK

GEN.

STATUS
REG Q REG &
SHIFTER
5 m
[ 2
N
9
STATUS v-BUS v-8US

ALU & PRIORITY ENCODER

BD005240

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to
help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Order # 057308



Am29334

Four-Port, Dual-Access Register File

ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

® Fast
With an access time of 20ns, the Am29334 sup-
ports 80-90ns microcycle time when used with the
Am29300 Family for 32-bit systems.

® 64 x 18 Bits Wide Register File
The Am29334 is a high-performance, high-speed,
dual-access RAM with two READ ports and two
WRITE ports.

® Cascadable
The Am29334 is cascadable to support either wider
word widths, deeper register files, or both.

o Simplified Timing Control
Control for write enable timing and for on-chip
read/write multiplexer are derived from a single-
phase clock input.

® Byte Parity Storage
Width of 18 bits facilitates byte parity storage for
each port and provides consistency with the
Am29332 32-bit ALU.

o Byte Write Capability
Individual byte-write enables allows byte or full word
write.

GENERAL DESCRIPTION

The Am29334 is a 64-word deep and 18-bit wide dual-
access register file designed to support other members of
the Am29300 Family by providing high-speed storage. It
has two write and two read ports for data and four 6-bit
address ports. Two address ports are associated with each
pair of read and write data ports, one to read data and the
other to write. The device is capable of performing two
reads and two writes in one cycle. The 18-bit wide register

file allows storage of byte parity to support parity check and
generate in the Am29332 32-bit ALU. Iindependent control
for each read and write data port allows the Am29334 to be
used as a high-speed shared memory or as a mailbox for a
multiprocessor system. The device is designed with an
access time of 20ns. It is housed in a 120 lead-pin-grid-
array package.

BLOCK DIAGRAM

7Y
18

Og
Y 18

__Cm——Clea

WEjc |>—'—‘—] DUAL ACCESS [—‘——G WEgc
6 S 64 x 18 S 6
Awa >—+—o o—+—-<TJAwe
6 | Mux — smux |
Apa [O—F—1 1——<JAss

| 1
LEp D———E LATCH ] [ utcr:]———-—c LEg

G€, >

<56,

18

BD003022

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to

help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

Order #05731B



Am2910A

Microprogram Controller

DISTINCTIVE CHARACTERISTICS

® Twelve Bits Wide
Addresses up to 4096 words of microcode with one
chip. All internal elements are a full 12 bits wide.

® Internal Loop Counter
Pre-settable 12-bit down-counter for repeating instruc-
tions and counting loop iterations.

® Four Address Sources
Microprogram Address may be selected from micropro-
gram counter, branch address bus, 9-level push/pop
stack, or internal holding register.

o Sixteen Powerful Microinstructions
Executes 16 sequence control instructions, most of
which are conditional on external condition input, state
of internal loop counter, or both.

® Output Enable Controls for Three Branch Ad-
dress Sources
Built-in decoder function to enable external devices onto
branch address bus. Eliminates external decoder.

o Fast
The Am2910A supports 100ns cycle times and is 25 -
30% faster than the Am2910.

GENERAL DESCRIPTION

The Am2910A Microprogram controller is an address
sequencer intended for controlling the sequence of execu-
tion of microinstructions stored in microprogram memory.
Besides the capability of sequential access, it provides
conditional branching to any microinstruction within its
4096-microword range. A last-in, first-out stack provides
microsubroutine return linkage and looping capability; there
are nine levels of nesting of microsubroutines. Microinstruc-
tion loop count control is provided with a count capacity of
4096.

During each microinstruction, the microprogram controller
provides a 12-bit address from one of four sources: 1) the

microprogram address register (uPC), which usually con-
tains an address one greater than the previous address; 2)
an external (direct) input (D); 3) a register/counter (R)
retaining data loaded during a previous microinstruction; or
4) a nine-deep last-in, first-out stack (F).

The Am2910A is a speed improved plug-in replacement of
the Am2910 featuring AMD's ion-implanted micro-oxide
(IMOX) processing and offering 25 — 30% speed improve-
ment. The Am2910A also features a nine-word deep stack
versus the five-deep stack of the Am2910.

BLOCK DIAGRAM

L g

o

&

&= 1
&

'.C‘ g

=x

o

RO
O

BDR02320

IMOX is a trademark of Advanced Micro Devices, Inc.

142

045228




Am29C10A

CMOS Microprogram Controller

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

® Low power
The CMOS Am29C10A supports 125 ns cycle times at
20% the power of the equivalent bipolar Am2910A.
® Twelve bits wide
Addresses up to 4096 words of microcode with one
chip. All internal elements are a full 12 bits wide.
® Internal loop counter
Pre-settable 12-bit down-counter for repeating instruc-
tions and counting loop iterations.

® Four address sources
Microprogram address may be selected from micropro-
gram counter, branch address bus, 9-level push/pop
stack, or internal holding register.

® Sixteen powerful microinstructions
Executes 16 sequence control instructions, most of
which are conditional on external condition input, state
of internal loop counter, or both.

® Output Enable controls three branch-address
sources
Built-in decoder function to enable external devices onto
branch address bus. Eliminates external decoder.

GENERAL DESCRIPTION

The Am29C10A Microprogram Controller is an address
sequencer intended for controlling the sequence of execu-
tion of microinstructions stored in microprogram memory.
Besides the capability of sequential access, it provides
conditional branching to any microinstruction within its
4096-microword range. A last-in, first-out stack provides
microsubroutine return linkage and looping capability; there
are nine levels of nesting of microsubroutines. Microinstruc-
tion ioop count controi is provided with a count capacity of
4096.

During each microinstruction, the Microprogram Controller
provides a 12-bit address from one of four sources: 1) the
Microprogram Address Counter/Register (uPC), which usu-
ally contains an address one greater than the previous
address; 2) an external (Direct) input (D); 3) a Register/
counter (R) retaining data loaded during a previous microin-
struction; or 4) a nine-deep last-in, first-out stack/File (F).

The Am29C10A is a CMOS plug-in replacement of the
Am2910A. The Am29C10A-10 is a 10 MHz version and the
Am29C10A-20 is a 20 MHz version.

BLOCK DIAGRAM

RELATED PRODUCTS

Part No. Description
Am29C101 | 16-Bit CMOS Microprocessor Slice
- Am2914 Vectored.lmerrupt Controller
= Jmex PR Am2918 Pipeline Register
il
Am2922 Condition Code MUX
Am25LS377| Status Register
S
o Am27S35 Registered PROM
—t Am29818 SSR Diagnostics/Pipeline Register
° G —j [——
« MULTIPLEXER COUNTER/
&
= 5
32 |newormoweiean
v 2 CLEARICOUNT
S X

"

" o—
e oO—

BDR02321

Order #06402B




Am29112

A High-Performance 8-Bit Slice Microprogram Sequencer
ADVANCED INFORMATION

DISTINCTIVE CHARACTERISTICS

o Expandable
8-bit Slice, cascadable up to 16-bits

® Deep stack
A 33 deep on-chip stack is used for subroutine link-
age, interrupt handling and loop control.

® Hold feature
A hold pin facilitates multiple sequencer implementa-
tions.

® Interruptible at the microprogram level
Two kinds of interrupts: maskable and unmaskable.
® Powerful loop control
When cascaded, two counters can act as a single
16-bit counter or two independent 8-bit counters.
® Powerful addressing modes
Features direct, muitiway, multiway relative and pro-
gram counter relative addressing.

GENERAL DESCRIPTION

The Am29112 is a high performance interruptible micropro-
gram sequencer intended for use in very high speed
microprogrammed machines and optimized for the new
state-of-the-art ALU's and other processing components.

The Am29112 is designed to operate in 10MHz micropro-
grammed systems.

It has an instruction set featuring relative and multiway
branching, a rich variety of looping constructs, and provi-
sion for loading and unioading the on-chip stack.

Interrupts are accepted at the microcycle level and ser-
viced in a manner completely transparent to the interrupted
microcode.

APPLICATION NOTES REFERENCE
- Microprogrammed CPU using Am29116
- An intelligent fast disk controller
- Am29116 architecture speeds pixel manipulation in
interactive bit-mapped graphics

BLOCK DIAGRAM

|EMerGeEnCY Lro
DETECT
CIRCUIT
D
—
(4 L—_
§= VECTORED INT REQ [
2 PRIORITY T ACK INTERRUPTIBLE [CC | CONDITION |
(K T . MICROPROGRAM P
EI LE SEQUENCER |
= ——
-
3 Y
VECTOR
MAP
PROM
MICROPROGRAM
PIPELINE REGISTER
BD002190

Figure 1. Am29112 in a Single Pipelined System.

144 03657A



Am29C116

16-Bit CMOS Microprocessor

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

® Very Low Power
The CMOS Am29C116 supports 125-ns microcycle
times and requires less than 1/4 the power of the
bipolar Am29116.

® Pin-Compatible and Functionally Equivalent to the
Am29116
The architecture, instruction set, and pin-out are
completely identical to the bipolar Am29116.

® Optimized for High-Performance Controllers
The architecture is optimized for controllers provid-
ing an excellent solution for applications requiring
bit-manipulation power.

o Powerful Field Insertion/Extraction and
Bit-Manipulation Instructions
Rotate-and-Merge, Rotate-and-Compare and bit-
manipulation instructions provided for complex bit
control.

o Immediate Instruction Capability
May be used for storing constants in microcode or
for configuring a second data port.

o 16-Bit Barrel Shifter

® 32-Working Registers

GENERAL DESCRIPTION

The Am29C116 is a microprogrammable 16-bit CMOS
microprocessor whose architecture and instruction set is
optimized for high-performance peripheral controllers, like
graphics controllers, disk controllers, communications con-
trollers, front-end concentrators and modems. The device
also performs well in microprogrammed processor applica-

tions, especially when combined with the Am29C517,
16 x 16 Multiplier. In addition to its complete arithmetic and
logic instruction set, the Am29C116 instruction set contains
functions particularly useful in controller applications; bit
set, bit reset, bit test, rotate-and-merge, rotate-and-com-
pare, and cyclic-redundancy-check (CRC) generation.

SIMPLIFIED BLOCK DIAGRAM*

n'o "

—
:
L]

BD001963
*For a detailed block diagram, refer to Figure 2.
45 Publication # BQL Amendment
1 07697 /0
Issue Date: April 1908




Am29PL141

Fuse Programmable Controller (FPC)

PRELIMINARY

Implements complex fuse programmable state ma-
chines

64 words of 32-bit-wide micrq|program memory
Serial Shadow Register (SSR M) diagnostics on chip
(programmable option)

20 MHz clock rate, 28-pin DIP

DISTINCTIVE CHARACTERISTICS

® 29 high-level microinstructions
- Conditional branching
- Conditional looping
- Conditional subroutine call
- Multiway branch
® 16 outputs, 7 conditional inputs

The Am29PL141 is a single-chip Fuse Programmable
Controller (FPC) which allows implementation of complex
state machines and controllers by programming the appro-
priate sequence of microinstructions. A repertoire of jumps,
loops, and subroutine calls, which can be conditionally
executed based on the test inputs, provides the designer
with powerful control flow primitives.

The Am29PL141 FPC also allows distribution of intelligent
control throughout the system. It off-loads the central
controller by distributing FPCs as the control for various

GENERAL DESCRIPTION

self-contained functional units, such as register file/ALU,
1/0, interrupt, diagnostic, and bus control units.

A microprogram address sequencer is the heart of the FPC.
It provides the microprogram address to an internal 64-
word by 32-bit PROM. The fuse programming algorithm is
almost identical to that used for AMD's Programmable
Array Logic family.

As an option, the Am29PL141 may be programmed to have
on chip SSR diagnostics capability. Microinstructions can
be serially shifted in, executed, and the results shifted out
to facilitate system diagnostics.

BLOCK DIAGRAM

CONDITION
TESTS
l
ADDRESS SEQUENCER | ZER0
V.
64 x32
MICROPROGRAM
MEMORY
| seniaL snapow ReisTER
- F———— our
l —.
l—-— MODE
PIPELINE REGISTER _J——m
f——— ax
| %
P[15:0]
BDR02340

RELATED PRODUCTS

Part No.

Description

Am2914

Vectored Priority Interrupt Controller

Am29100

Controller Family Products

SSR is a trademark of Advanced Micro Devices, Inc.

146




APPENDIX 1

PAL

EQUATION

DEVICE DSP_PAL_UT72 (pal22V10)

PIN

BEGIN
BEGIN

END.

END;

/CCLK
/FLYO
/BYTEL
/BYTEH
HREQ
/Q
/BPRN
/BSY

BREQ
/HACK

BUSY

BEGIN

END;

BPRO

BHEWN

CDLR

CDLI

CDRR

CDRI

OO =W N =

/BUSY = 22
/BHEN = 21
HACK = 20
/BPRO = 19
/BREQ = 18
/CDRI = 17
/CDRR = 16
/CDLI = 15
/CDLR = 14;

HREQ;

/BUSY;

BREQ * BPRN * /BSY

BREQ = BUSY;

/H
BU
/Q

/Q
/Q

REQ * BPRN;
SY;

* HREQ * /FLYO
* BYTEH * /FLYO
* BYTEL * /FLYO;

* HREQ * FLYO
BYTEH * FLYO
* BYTEL * FLYO;

™

* HREQ * /FLYO
EYTEH * /FLYO

¥ BYTEL * /FLYO;

*

* HREQ * FLYO
BYTEH ¥ FLYO
* BYTEL * FLYO;

*

1-1



DEVICE DSP_PAL_UT3 (pal22V10)

PIN

BEGIN

END.

/BHEN

/BYTEL
/BYTEH

HREQ
/I0W
WEI
WER
/FLYO

/Q
/IOR
WE1

WE?2

WE3

WEY4

WES

WEG6

WE7

WES8

DMAH

"

= 1 /WE8 = 21
= 2 /WET = 20
= 3 /WEb = 19
= 4 /WES = 18
= 5 /WEY = 17
= 6 /WE3 = 16
= 7 /WE2 = 15
= 8 /WE1 = 14
= 9 /DHMAH = 22
= 103

Q * /WER

/Q * HREQ * IOW * /FLYO
/Q * /FLYO * IOW * BYTEH;

Q * /WER

/Q * HREQ * IOW * /FLYO

/Q * /FLYO * IOW * BYTEH * BHEN
/Q * IOW * /FLYO * BYTLL;

Q * /WEI
/23 * HREQ * IOW * FLYO
/Q * FLYO *IOW * BYTEH;

Q * /WEI

/Q * HREQ * IOW * FLYO

/Q * FLYO * IOW * BYTEH ¥* BHEN
/Q * IOW * FLYO * BYTEL;

/Q * /WER
Q *¥ HREQ * IOW *®* /FLYO
Q * /JFLYO * IOW * BYTEH;

/Q * /WER

Q * HREQ * IOW * /FLYO

Q * /FLYO * IOW * BYTEH * BHEN
Q * IOW * /FLYO * BYTEL;

/Q * /WEI
Q ®* HREQ * IOW * FLYO

Q * FLYO * IOW * BYTEH;

/Q * /WEI

Q * HREQ *» IOW * FLYO

Q * FLYO * IOW * BYTEH * BHEN
Q * IOW * FLYO * BYTEL;

IOW * HREQ
IOR * HREQ;

+ +



DEVICE DSP_PAL_UT4 (pal22V10)

PIN
/IO0OR = 1 /BYTEH = 23
/EQUT = 2 /BYTEL = 22
/A0 = 3 /INIT = 21
/A1 = 4 /LOADL = 20
/A2 = 5 /LOADH = 19
/A4 = b CD3 = 18
/I0W = 7 ch2 = 17
HREQ = 8 /POLL = 16
/BHEN = 9 INSTR = 15
/JHINIT = 10 /ADDRL = 14
/ADSTB = 113
BEGIN
/INSTR = Al
/EQUT
/I0W
/A2
/A1
/AOQ;
INIT = HINIT
/A4 * EQUT * IOW * A2 * A1 * /AQ;
ADDRL = /A4 * EOUT * IOW * A2 * /A1 * AQ;
LOADH = /A4 * EOQUT * IOW * A2 * /A1 ® /AOQ;
LOADL = /A4 * EQUT ¥ IOW * /A2 * A1 * AO
/A4 * EOUT * IOW * BHEN * A2 * /A1 % /AQ;
BYTEH = /A4 * EQUT * IOQOW * /A2 * A1 * /AQ
/A4 * EQUT * IOR * /A2 * A1 % /AOQ;
BYTEL = /A4 % EQUT * IOW * /A2 * /A1 * AQ
/A4 ¥ EQOUT % IOR * /A2 *® /A1 * AQ;
POLL = /A4 * EOUT * IOR * A2 * A1 * AQ;
/CD2 = /A4 * EOUT * IOW * /BHEN * /A2 * A1 %* /AQ
/A4 * EOUT * IOR * /BHEN * /A2 * A1 * /AO
/A4 * EOUT * IOW * /BHEN * A2 * /A1 * /AOQ;
/CD3 = /A4 * EQUT * IOW * AQ
/A4 * EQOUT * IOR * /A2 * /A1 * AO
/A4 * EQUT * IOW * BHEN * /A2 * A1 * /AQ
/A4 * EQUT * TIOR ¥ BHEN *¥ /A2 * A1 *¥ /AOQ
/A4 ¥ EQUT * IOW * BHEN * A2 * /A1 * /AQ
A4 * EQUT * IOW
A4 * EQUT * IOR
HREQ * /ADSTB;
END.

1-3

++ 4+

+ +

+ + + + + + +






APPENDIX 2
AmDSP DIGITAL SIGNAL
PROCESSOR DEFINITION FILE

WORD 128

in -

" ~-

[e) Vo]
o b~
[ea = o]
[o) ey
DD
D~
DN
oM
o =
D
j= Vo)
D~
D o
2O
— 2D
Ll
— N
-m
-
- n
— O
-~
—
- o
N O
N —
[aVAaY}
N
N
QUNTe}
N O
N b~

R Sy By S S Sy By e i e B Sy B S R S e S S e e B S B e iy e g g i g e e B B R R G e R R e R e e g R i e e e e

SRRRRRRRRRRRRRRRRRRRRRRRRRRRRIBRR

S

=
[a}
o
[a]

M

A AAAAABBBBBBMMM

€3]

HOO
O —
HOWN
O o

O «—

HOM
[sp )
™M —
N D
N -
-
——
on D
o —
N D
N —
-0
- -
(o) -"Rw]
O A —
oo N
oo
oo~
oo N
DO
D -
~ DN
D m
(=]

-—

Real ALU

oz i H=Wm
65“IDI
66“IDI
67“IDI
68“IMI
69“IMI
70“IMI
71“IMI
72“183
74“182
75“182
76hIB1
77“IB1
79“IA3
80“1A2
82“IA1
83“IA1
SMHISO
85“150
86“150
87H"IRO
88“IRO
89“IRO
9O“IAL
91“IAL
92“IAL
93“IAL
94“810

S0 0B 0 00 0O OB S 00 OB OO Ok 0 00 00 00 S O o S0

00
10

0
2

o o

000
321

0101010

PP PP 1t o101
1021

P
2

uu
10

uu
32

Imaginary ALU

o N
[saN1a]
o =
o wn
™M O
o~
o™ 0
(s )
= O
=
TN
T o
= =r
T
= O
=t~
= o
¥ o
n o
w0 —
[TalaV}
0w m
[Tale=g
w0 wn
n o
W~
w0 o
n o
O O
O ~—
o N

O M

e e i g i i S iy e g By iy g g i g i g g B g i i g g B ey g i By B i i B e e e e e B g g B e e e e e e g e i g e e e e e e e o

RFMO2XXESC1T5AAAAAAAAAAAAAAAAAAA

D

[ ]
(L
U N
(&gl
[& 20y
o wn
[ Vel
O~
O ©
(& o))
v -
» -
[
(O
» -
(LR
v -

o -

o -
=z O
— O
fr, <t
- =
= >
0
N
[&]

23 |
29
<

=0
a.,

76543210

[N N-9

Address Generator

Multiplier

09876543210

222222222111

9 8765 43210987¢6H514321

2

{
{
't
{
1
{
f
{
f
{
/!
{
{
{
{
{
/{
t
i
t
{
1
i
{
{
{
{
{
{
{
{
|k
1
{
i
i
i
{
{
1
i
t
{
t
1
{
1
t
i
{
i
{
/!
{
{
t
1
t
't
t
{
i
1

f ™~ O H
.m — O
i = ohH
imeo
imes —
1men
“H mooe M
i
i @en
i@eo
i mes e~
i meo
i mes o
{m e e
i@ -
vown
WCCS
MCCS
ftoon
1ooa
MCKS
1oX®n
=
m520
M520
I o
I o

f Mo

=
—
N
o

=]

—

23 IS e )
21 .33 —
@I N
m.am
o 4
23 QS e )
23 IS Bl
[+

n o
N «—
L el

- —

[SRa]

Program Sequence

S0 Gk G e CR CH 0 Gk 0O OB O IR S0 R Gk oo S0 SR 0 SO 00 oh 00 05 04 oo oo o oa [1]

ADDRESS GENERATOR OVERLAY

oo oo

2-1



we we we we we

JECT

® We We Ve We wWe W We we we we [T] we we we we we we we we we

’
ADD.CC:
SUBS.CC:
MOVE.CC:
SUBR.CC:

EQU
EQU
EQU
EQU

’
s INHIBIT CARRY OUTPUT

’
ADD.NC:
SUBS.NC:
MOVE.NC:
SUBR.NC:

’

EQU
EQU
EQU
EQU

sFORCE CARRY OUTPUT

,
ADD.FC:
SUBS.FC:
MOVE.FC:
SUBR.FC:

’
s LOGICAL

’
XOR.NC:
AND.NC:
INV.NC:
OR.NC:

T> we we we

1:

EQU
EQU
EQU
EQU

(NO CARRY USED

EQU
EQU
EQU
EQU

Am29501 SOURCE OPERANDS

EQU

=
mr o
=ZmH

% ® x® X X ®* X ® % X ®X X X X ® *

Am29501 LNSTRUCTION SET

® ® ® ® ® ® ® * ® X * X X X * *

CONDITIONAL CARRY OUTPUT

H#0
Hitd
H#8
H#C

H#1
H#5
H#9
H#D

H#2
H#6
H#A
H#E

Ul = H O = =

Am29501 ALU FUNCTIONS (R FUNCTION

E,HO = -

TN HO
NN &
o wn'wo
- HOC &=WU
CHO®EWUV

W = o O =
N = O
- H O . .
C = O - e
O C HO = =

1
1
6
I
0
9
AG18=00

® ® ® % ® *

®* ®* ®* % ®* *

wno&EWw

~NO HQO = =

NUWNOo EU

QO HO = =

o rEwu

VIO HO = =

ocwnwosEWUm

ECHO = =

WO HO = =

TO DISTINGUISH FROM 29116 LOGICALS)

H#3
H#T
H#B
H#F
R, S

Q#0

2-2

NCHO = =

-_ O H O -

e R e R R B S e Sy B Sy S i B S e e e e B e S B iy iy B T B i By Ry Sy B iy e i B i B S i i e iy Sy Sy S e e By g S e iy iy e g By B B B S By e

CCHO = =



A2:
A3:
B1:
B2:
B3:
SIGN.EXT:
ZERO:
MSP:
LSP:
EJECT
s PORT SELECTS
,

M.EQ.A1:
M.EQ.A2:
M.EQ.A3:
M.EQ.Bt:
M.EQ.B2:
M.EQ.B3:
M.EQ.AU:
M.EQ.DI:
MIO. IN:

,

D.EQ.A2:
D.EQ.A3:
D.EQ.B2:
D.EQ.B3:
DIO. IN:

. we w

1l
A1.EQ.MP:
A1,EQ.DI:
A1,EQ.B3:
A1,HOLD:
A2,EQ.LP:
A2,EQ.AU:
A2.EQ.A1:
A2.HOLD:
A3.EQ.MP:
A3.EQ.AU:
A3.EQ.A2:
A3,.HOLD:
B1.EQ.MP:
B1.EQ.DI:
B1.EQ.A3:
B1.HOLD:
B2.EQ.LP:
B2.EQ.AU:
B2.EQ.B1:
B2.HOLD:
B3.EQ.MP:
B3.EQ.AU:
B3.EQ.B2:
B3.HOLD:

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Q#1
Q#2
Q#3
QY
Q#5
Q#6
Q#7
Q#6
Q#7

H#0
H#1
H#2
H#3
Hit Y
H#5
H#6
H#T
H#8

Q#0
Qi#1
Q#2
Q#3
QY

Am29501 Register Operations

B#00
B#01
B#10
B#11
B#00
B#01
B#10
B#11
B#00
B#01
B#10
B#11
B#00
B#01
B#10
B#11
B#00
B#01
B#10
B#11
B#00
B#01
B#10
B#11



EJECT

.ADD: DEF

.ADD: DEF
.SUBS: DEF
.MOVE: DEF

.SUBR: DEF

.
>
o
=
.

DEF

.
=
=
o
o

DEF

.
[
=
<
.

DEF

.OR: DEF

JECT

o we we we we [T N B N N N N N N BN e ve ve NS0 0N 0N OO 0N U SO SO e we e

?
MX.RALU:
MX.HOLD:
MX. IMAG:
MX.REAL:
MX,CONST:
MX.COS:
MX.SIN:
MXY.2C:
MXY,.MAG:
MY.OE:

REAL ALU INSTRUCTIONS

2X,ADD.CC, 3VQ#0, 3VQ#0,2VB#11,2VB#11,2VB#11, 2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4, 97X
2X,SUBS.CC,3vQ#0,3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4,97X

2X,MOVE.NC, 3VQ#0, 3X,2VB#11,2VB#11, 2VB#11,2VB#11,2VB#11,
2VB#11, UVH#8, 3VQ#4,97X
2X,SUBR.CC,3VQ#0,3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4, 97X

2X,XOR.NC, 3VQ#0, 3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4,97X

2X, AND.NC, 3VQ#0,3VQ#0,2VB#11,2VB#11,2VB#11, 2VB#11, 2VB#11,
2VB#11, 4VH#8, 3VQ#4, 97X

2X, INV.NC, 3VQ#0, 3VQ#0,2VB#11,2VB#11,2VB#11, 2VB#11,2VB#11,
2VB#11,4VH#8, 3VQ#4,97X
2X,0R.NC,3VQ#v,3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4,97X

IMAGINARY ALU INSTRUCTIONS

34X, ADD.CC,3VQ#0,3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11,4VH#8,3VQ#4, 65X

34X,suBsS.cC, 3vQ#0, 3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4, 65X

34X,MOVE.NC, 3VQ#0, 3X,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#l4, 65X

34X,SUBR.CC, 3VQ#0, 3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VBi#11, UVH#8, 3VQ#4, 65X

34X, XOR.NC, 3VQ#0, 3VQ#v0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, UVH#8, 3VQ#U, 65X

34X, AND.NC, 3VQ#v0,3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4UVH#8,3VQ#uU, 65X

34X, INV.NC, 3VQ#0, 3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4, 65X
34X,0R.NC,3VQ#0,3VQ#0,2VB#11,2VB#11,2VB#11,2VB#11,2VB#11,
2VB#11, 4VH#8, 3VQ#4, 65X

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Hi#0
H#2
Hitl
H#8
H#C
H#C
H{#D
B#1
MXY.2C*
B#0

® % % %R R R K X E K ® E X E % K % K K K K X X X
Am29517 MULTIPLIER

®* X % X %X %X ¥ ¥ X X X X X ¥ ¥ ¥ ¥ ¥ ¥ X %X %X * *

sMULTIPLIER IS REAL ALU MIO
sUSE PREVIOUS MULTIPLIER
sMULTIPLIER IS IMAG MEM
sMULTIPLIER IS REAL MEM
sMULTIPLIER IS COEF ROM
sMULTIPLIER IS FFT COS ROM
sMULTIPLIER IS FFT SIN ROM
sMULTIPLIERS ARE TWO'S COMP

sUNSIGNED MAGNITUDE
sENABLE LSP ON Y

2-4



MY.IN: EQU MY.OE#* sENABLE Y INPUT

MP.FRAC: EQU B#0 ;FRACTIONAL MULTIPLY (FA)

MP. INTG: EQU MP.FRAC* ;INTEGER MULTIPLY
MP.ROUND: EQU B#1 ;ROUNDED MSP

MP.TRUNC: EQU MP.ROUND*¥ ; TRUNCATED MSP

MP.MSP: EQU B#0 ;MOST SIGNIFICANT PRODUCT OUT
MP.LSP: EQU MP.MSP* ;LEAST SIGNIFICANT PRODUCT OUT
MP.OE: EQU B#0 ;OUTPUT ENABLE

3

; MULTIPLIER INSTRUCTIONS

;

MSPROD: DEF 65X, 1VB#1, 1VB#0,MP.MSP  ;MOST SIGNIFICANT PRODUCT
/ , 1VB#1, 1VB#1, 4VH#2

/ , 22X, 1VB#1, 31X

LSPROD: DEF 65X, 1VB#1, 1VB#0,MP, LSP ;LEAST SIGNIFICANT PRODUCT
/ , 1VB#1, TVB#1, bVH#2

/ , 22X, 1VB#1, 31X
;!R**i**!*!i************i

{ Am25510 SHIFTER
;**i*‘lﬁ**l*****l*********

:

NO.SHIFT: EQU B#11 ;LSB CONNECTED TO I(=3)
SHIFT.R1: EQU B#10

SHIFT.R2: EQU B#01

SHIFT.R3: EQU B#00

;

SHIFT.OE: EQU B#0

EJECT

® X X ® ® ® X X ¥ X X ¥ X X ¥ X X X X ¥ X X X %X X X X ¥ % *

INDEX TO Am29116 INSTRUCTIONS = [i] REFERS TO ALLOWED MNEMONICS GROUP

SINGLE OPERAND (11, [21, [31], [4]
TWO OPERAND {51, (61, [71, [8]
SHIFT [91, [10l, [11]
ROTATE (121, 0131, [14]
BIT=ORIENTED {151, 161, [17]
ROTATE & MERGE [18]

ROTATE & COMPR [19]

PRIORITIZE [201, [21]1, [22], [23], [24], [25]
CYCLIC REDUNDANCY CHECKS

NOOP

STATUS [261, [27]

TEST STATUS [CT]

IZZ XXX EESESERSESESEEE SRR RS RS R RS R R R R R R R R RS

GENERAL MNEMONICS
ERER R R R AR RN RN R R AR R R R R R R RN RRRR R RN RRRRRRRRRR

ERREEXXREXRX XXX REXRXEXRRRHRR

BYTE = WORD MODE SELECT [M]
EERRRRRERRRERRRR AR RRRRRRRRRR

WO WE we we WE We WE We WE We Ve WS W We W W WE We we W Wi Wl we we ws w



SO ODU SU SO NG DD we we we we we we X UJ e
VTEWN =OC
oo oo se v oo oo

=~}
o
.

R7:
R8:
R9:
R10:
R11:
R12:
R13:
R14:
R15:
R16:
R17:
R18:
R19:
R20:
R21:
R22:
R23:
R24:
R25:
R26:
R27:
R28:
R29:
R30:
R31:
EJECT

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

1B#0
1B#1

5D#0%
5D#1%
5D#2%
5D#3%
S5D#Y4S
5D#5%
5D#6%
S5D#T%
5D#8%
5D#9%
5D#10%
5D#i1%
5D#12%
5D#13%
SD#14%
SD#15%
5D#16%
5D#17%
5D#18%
5D#19%
5D#20%
5D#21%
5D#22%
5D#23%
SD#24%
5D#25%
5D#26%
SD#27%
5D#28%
5D#29%
5D#30%
5D#31%

;*Q*Ri*l*******i**

Am29116 CONTROL LINES

* X % X X ¥ X X X X ¥ X %X % X ¥ ¥

H
3 16=<Bit Bipolar Microprocessor
H
H

5
DLE.EN:
DLE.DIS:

’
OETEN:
OETDIS:

EQU
EQU

EQU
EQU

EQU
EQU

B#0
B#1

Bi#1
B#0

B#1
B#0

; BYTE MODE
; WORD MODE

HRERRREREEERRRREERERRRERRRRRRRERER RN RN

32 RAM REGISTERS [R]
R R R RN R AR R R R R R R R R R R R AR RERRRRRRRRRR RN RN

00000

We we we we Ws we we We We Wwe WE We e ws We We We we We We We we WS W e Ve Ve we we We we we

3 Y BUS ENABLE

3 DATA LATCH ENABLE

3 T BUS ENABLE



i
SRE.EN: EQU B#0 3 STATUS REGISTER ENABLE

SRE.DIS: EQU B#1

’

IEN: EQU B#0 ;3 INSTRUCTION ENABLE
IDIS: EQU B#1

®# ® % % X %X %X ¥ ¥ ¥ ¥ * X X %X * X ¥ X X X X ¥ X X X X X ®X %X X X *

JECT
EEERERERRRRRRRRRRRNRR RN RN RN RN

SINGLE OPERAND INSTRUCTIONS
EERERRERRR R AR R RN RR AR RN RN

OPCODES [1]

¢ we wo we we we [T]we we we

’

MOVE: EQU H{tC

COMP: EQU H#D ;3 COMPLEMENT
INC: EQU H{tE ;s INCREMENT
NEG: EQU H{tF ; NEGATE

’

3 SOURCE~DESTINATION SELECT [2]

’

SORA: EQU H#0 ; RAM ACC
SORY: EQU H#t2 ; RAM Y BUS
SORS: EQU H#3 ; RAM STATUS
SOAR: EQU H#l ; ACC RAM
SODR: EQU H#6 s D RAM
SOIR: EQU H#7 HE . RAM
SOZR: EQU H#8 HIRY] RAM
SOZER: EQU H#9 ; D(VE) RAM
SOSER: EQU H#tA ;s D(SE) RAM
SORR: EQU H{#tB s RAM RAM

(22222 R R RS RS REE AR RS RESER SRR R2 R SRR SRR R R R RS

OR: DEF 74X, 1VB#1,B#01,3VB#01v, sSINGLE OPERAND RAM
1V, Bi#1o,4v, 4v, 5V%, 4X,2VB#11,2VB#11,24X

MODE, QUAD, OPCODE, SOURCE=DEST, REGISTER
[M] [1] [21 [R]

(2 EE2EZ XSRS RRERZS RS RS RR2 22 RERRRRRRRRRR 2R R 2R RRRR R R R R R XX

SOURCE (R/S) 131

o we we we we we we we . [ we we

’
SOA: EQU Hitl

; ACC
SOD: EQU H#6 s D
SOI: EQU H#7 s I
S0Z: EQU H#8 ;s O
SOZE: EQU H#9 ;s D(OE)
SOSE: EQU H#A ;s D(SE)

.

’
;3 DESTINATION [4]

2-7



3
NRY: EQU ) D#0

s Y BUS
NRA: EQU D#1 ;s ACC
NRS: EQU D#4 s STATUS
NRAS: EQU D#5 ;3 ACC,STATUS
; HEEEEEXREXERRERERRRERRRXFEREERRERERRRERRERRRRRRRERRRREXRRRERRRER
SONR: DEF 74X, 1VB#1,B#01,3VB#010, 3 SINGLE OPERAND NON=RAM
/ 1V, B#11,4v, 4y, 5V%, 4X,2VB#11,2VB#11,24X
MODE, QUAD, OPCODE , SOURCE, DESTINATION
LM] [11] (31 (4]
I ZZEEZEEEEEEEEREREXZEZE RS RR RSS2SR R RER SRR RRR RS R R R R R 2R

JECT
ERREERERRRRRRRRRRRERRRRRRERR R RN N

TWO OPERAND INSTRUCTIONS
(2222222 322 222 22 222 2222222222222 2

OPCODES [5]

o we we wo s we [T]we we we we

’

SUBR: EQU H#0 s S minus R

SUBRC: EQU Hi#1 s S minus R with carry

SUBS: EQU H#2 s R minus S

SUBSC: EQU H#3 s R minus S with carry

ADD: EQU H#4 s R plus S

ADDC: EQU H#5 s R plus S with carry

AND: EQU H#6 ;s R . S

NAND: EQU H#7 s R . S

EXOR: EQU H#8 s R S

NOR: EQU H#9 s R + S

OR: EQU H#A s R + S

EXNOR: EQU H#B ; R S

H

’

s SOURCE=DESTINATION [6] ;s R S DEST

’

TORAA: EQU H#0 s RAM ACC ACC

TORIA: EQU H#2 s RAM I ACC

TODRA: EQU H#3 s D RAM ACC

TORAY: EQU H#8 ;s RAM ACC Y BUS

TORIY: EQU H#A ; RAM I Y BUS

TODRY: EQU H#B s D RAM Y BUS

TORAR: EQU H#C s+ RAM ACC RAM

TORIR: EQU H#E ;s RAM I RAM

TODRR: EQU H#F s D RAM RAM

; (2 X2 R 2 XXX EEEEEEE R R EEEEEREXEEEREEEEEZZEEEREESESEE SRS SRR R X ]

TOR1: DEF 74X, 1VB#1,B#01,3VB#010, s TWO OPERAND RAM (1)
1V, B#00, 4V, yv, 5V%, 4X,2VB#11,2VB#11, 24X

H

H MODE, QUAD, SOURCE=DEST, OPCODE,REGISTER

; LM] [61] [51 [R]

I I I ]
;
’

THE [i] IN THE COMMENT BELOW THE VARIABLE=FIELD REFERS TO THE ALLOWED

2-8



MNEMONIC GROUP. EXAMPLE: MODE REFERS VIA [M] TO THE BYTE=WORD SELECT.
EXAMPLE: THE ALLOWED OPCODE SUBSTITUTIONS IN TOR1 COME FROM GROUP 5]
WHILE THE ALLOWED SOURCE=DESTINATIONS COME FROM GROUP L6].

o wo we we [T] we we we we

JECT
SOURCE=DESTINATION [7] R s DEST

’

TODAR: EQU H#1 ; D AcC RAM

TOAIR: EQU H#2 ; ACC I RAM

TODIR: EQU H#5 ;i D I RAM

; I Z E R X R R EE R R R R R R R R E R EE R E R E R R R R EREEXERZRZEAREEEEEEXEEEEEERRXEX ]

TOR2: DEF 74X, 1VB#1,B#01,3VB#010, ; TWO OPERAND RAM (2)
1V, B#10, 4V, v, 5V%, 4X,2VB#11,2VB#11, 24X

MODE, QUAD,SOURCE=DEST, OPCODE,REGISTER
[M] [71 (51 [R]

(2 XXX REEXESRZS SRR RSS2 RRREZS AR AR R RS RER SRR R 2]

* we we we we we we

SOURCE [8] R S
’
TODA: EQU H#1 3 D ACC
TOAI: EQU H#2 ; ACC I
TODI: EQU H#5 ;5 D I
g REEEEEEEEEEEEERERE R RN R RN RN R R R R R R R RN RN RN R RN RN RRRNRRRNARN
TONR: DEF 74X, 1VB#1,B#01, 3VB#010, 3 TWO OPERAND NON=RAM
/ 1v, B#11, 4V, 4v, 5V%, u4X,2VB#11,2VB#11, 24X
MODE, QUAD,SOURCE,OPCODE,DESTINATION
[M] [8] (51 [u]
R R R R R R R R R R R R R R R RN R R RN R R RN RN R NN RN R RRRRNRRRRRN RN

JECT
(2222232222222 22 22 2222 22 2222222222222 22222222 2 2 X

SHIFT INSTRUCTIONS
AR E R R R R R RN R RN R RN R RN R R RN RN NN R RN

DIRECTION AND INPUT [9]

o we we we we we [T] we we we we

’

SHUPZ: EQU H#0 s UP 0O
SHUP1: EQU Hi#1 ;s UP 1
SHUPL: EQU H#2 ;s UP QLINK
SHDNZ: EQU H#U ;s DOWN 0
SHDN1: EQU H#5 ;s DOWN 1
SHDNL: EQU H#t6 ; DOWN QLINK
SHDNC: EQU H#7 s DOWN QC
SHDNOV: EQU H#8 ; DOWN QN QOVR
;

H

s SOURCE [10]

’

SHRR: EQU H#6 : RAM RAM
SHDR: EQU H#7 ;s D RAM

we

2-9



I EE 22 X222 XS RRXXRRRER2RESRR X2 2R X R R RRRZ AR RS R RXZ R R X 2 J

HFTR: DEF 74X, 1VB#1,B#01,3VB#010, ; SHIFT RAM
1V, B#10,4V, yy, 5V%, 4X,2VB#11,2VB#11,24X

MODE, QUAD, SOURCE, DIRECT=INPT,REGISTER
[(M] [101] (91 [R]

I Z2 22X 2R E XSRS R R 2R R R R RXRRRRRRRRRZR 2R R R R R R R R R 2]

SOURCE [11]

HA: EQU H#6 ; ACC
HD: EQU H#7 )

22222 AR RS EEEE AR R AR R RRRRR RS R R R RS

HFTNR: DEF 74X, 1VB#1,B#01,3VB#010, ; SHIFT NON=RAM
1v, B#11,4V, 4v, 5V%, u4X,2VB#11,2VB#11,24X

MODE, QUAD, SOURCE, DIRECT=INP,DESTINATION

v M) [111] [91] [4]J(NRY; NRA ONLY)
ERREE R RN RN R RN RN RN RN RN R RN RN R R RN RRRR R RRNRNR

JECT
(A ZZ SRR R R XS REEEREE R R RS RS R AR R AR R R R XS

ROTATE INSTRUCTIONS
R R R R R RN NN R RN R R RN R RN RN RN RN R R RRRRRRRRRRRRRNNRN

SOURCE=DESTINATION [12]

o wo we we we we [Tlwe we we wo we U2 we wo ws [ [ ws we we we we we ws we “\ (2 we we

’

RTRA: EQU H#C ;s RAM ACC
RTRY: EQU H#E s RAM Y BUS
RTRR: EQU H#F s RAM RAM

(2222 2R R R R R R R R R R RRRRRRRRRRRRRRR R R A X ]

OTR1: DEF Tux,1vB#1,B#01, 3VB#010, -3 ROTATE RAM (1)
1v, B#00,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X

MODE, QUAD, N, SOURCE=DEST, REGISTER
[M] [N] [12] [R]

EEXREEEEEX XXX EXEFRXFXRER XXX XXX XX XXX XXX XXX ERXR

SOURCE=DESTINATION L13]

EQU H#0
EQU H#1

ACC RAM
D RAM

=Rl
o >
o

HEEEREERRERREEE R R R R R E XXX RN ERRER

OTR2: DEF 74X, 1VB#1,B#01, 3VB#010, ; ROTATE RAM (2)
1V, B#01,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X

we we N\ U we we we T U we wo we we we we wo | S we we we

MODE, QUAD, N, SOURCE=DEST, REGISTER

2-10



[M] [N] [131 [R]

(2 XA SRR R R R R RS ER R RR XSRS RRSS SRR X}

SOURCE DESTINATION L14]

o we we wo we

’

RTDY: EQU D#24 ; D Y BUS

RTDA: EQU D#25 ; D AcC

RTAY: EQU D#28 ; ACC Y BUS

RTAA: EQU D#29 ; ACC  ACC

.

; REEREXEXER XXX R AR XXX XXX ER XXX R XRRERERRRERXRR

ROTNR: DEF 74X, 1VB#1,B#01, 3VB#010, ; ROTATE NON=RAM
/ 1V, B#11, 4V, H#C, 5V%, 4X,2VB#11,2VB#11, 24X
’

; MODE, QUAD, N,FIXED CODE,DESTINATION

; (M3 [N] [14]

H I ZEAEEZE SRR EESREERSERRERE SR RS RRRRE SRR RERRR R RS SRR R RE]

"EJECT

(22 XA SRR R R AR AR R R SRR XRRRRRRR XS RR SRR X RE XX

BIT ORIENTED INSTRUCTIONS
AR R AR R R R R AR R R R R R AR RN AR AR AN R AR RN R RRN RN RR

OPCODES [15]

* we we we wo we

i

SETNR: EQU H#D ; SET RAM, BIT N
RSTNR: EQU H#E ; RESET RAM, BIT N
TSTNR: : EQU H#F ; TEST RAM, BIT N

.

; EEEREEXRXEXEXEXF XXX XXX XXX R ERXRER XXX XX XTREXXRX XXX XXX XREXERRR
BOR1: DEF 74X, 1VB#1,B#01,3VB#010, ; BIT ORIENTED RAM (1)
/ 1V, B#11,4V,4V, 5V%, 4X,2VB#11,2VB#11,24X
;

; MODE, QUAD, N, OPCODE, REGISTER

H [M] [N] L1151 LR1]

; EEXEXXXXEXEXREXXER R XXX XXX X R XXX XXX XXX XXX XRXTXRX XXX XXX XXX EX

H

H

; OPCODES [16]

’

LD2NR: EQU H#C 3 27N === RAM
LDC2NR: EQU H#D 3 27N === RAM

A2NR: EQU HH#E ; RAM + 27N = RAM
S2NR: EQU H#F ; RAM = 27N = RAM

;

; EEEEXRXXERXER XX XXX XX XXX XXX XXX XX XX XX XXX ERERXRERERXFTRERERER
BOR2: DEF 74X, 1VB#1,B#01, 3VB#010, ; BIT ORIENTED RAM (2)
/ 1V, B#10,4V,4V,  5V%, 4X,2VB#11,2VB#11, 24X
;

; MODE, QUAD, N, OPCODE, REGISTER

; [M] [N] L16] [R]

: EXREEXREX XX XX XXX XX XERER XXX XX XX XXX XX XX XXX EXR XXX XXX REXRERXEX
EJECT



.
’
.
’
.
’
.
’
.
’
.
14

OPCODES L17]

?

TSTNA: EQU D#0 ; TEST ACC, BIT N
RSTNA: EQU D#1 s RESET ACC, BIT N
SETNA: EQU D#2 3 SET ACC, BIT N
A2NA: EQU D#4 s ACC + 27N == ACC
S2NA: EQU D#5 3 ACC = 2”N ==ACC
LD2NA: EQU H#6 7 27N == ACC
LDC2NA: EQU D#7 s 2°N == ACC
TSTND: EQU D#16 s TEST D, BIT N
RSTND: EQU D#17 s RESET D, BIT N
SETND: EQU D#18 s SET D, BIT N
A2NDY: EQU D#20 3 D+ 2°N == Y BUS
S2NDY: EQU D#21 3 D = 2°N == Y BUS
LD2NY: EQU D#22 s 2°N == Y BUS
LDC2NY: EQU D#23 3 2°N == Y BUS

(22X LSRR R R X222 R X2 RS R RS R RS R R 22X

ONR: DEF 74X, 1VB#1,B#01,3VB#010, 3 BIT ORIENTED NON=RAM
v, B#11,4V,B#1100, 5V%, 4X,2VB#11,2VB#11, 24X
MODE, QUAD,N,FIXED CODE,OPCODE
[M] [N] [17]
R R R R R R R R R R RN R R R RN RN RN R R R R AR AR R RN RN R R RN RN NNRN

JECT
RERRBERREREERERRERREEREERREREERERXREREERRERRRRNRERN

ROTATE AND MERGE
EERER AR R RN RN RN RN RN RN RN RN RRRR RN RN NN

SOURCE=DEST SELECT [U,S,MASK=DEST] 18]

we we we we we we wo [T]ws we we wo N\ LG we we we

ROT NON=ROT MASK=DEST

MDAI: EQU H#7 ;3 D ACC I
MDAR: EQU H#8 ;3 D ACC RAM
MDRI: EQU H#9 s D RAM I
MDRA: EQU H#A s D RAM ACC
MARI: EQU H#C ;s ACC RAM I
MRAI: EQU H#E s RAM ACC I

A AR EA SRR R R RS RS XEEEEXEREREEEZ SRR SRS XX R 2R R X ]

OTM: DEF Tux, 1VB#1,B#01,3VB#010, s ROTATE AND MERGE
1v, Bi#01,4V,4vV, 5V%, 4X,2VB#11,2VB#11,24X

MODE, QUAD, N, SOURCE=DEST,REGISTER
(M1 [(N] [181 [R]

(A A2 222 2R RXXXRXES XXX R RERXER SRR R R 2R}

we wo we we we we N\ U we we we



(2 S XX EEE RS EE SRR AR RS2 22 2R X2 2 R RS R R E

ROTATE AND COMPARE
IR R R R R R R A R R R RS R R RS ]

ROT.SRC(U)=NON ROT.SRC(S)/DEST=MASK(S)[19]

o e we we we we we we wo

’

CDAI: EQU H#2 s D ACC
CDRI: EQU H#3 ; D RAM
CDRA: EQU Hitl ;3 D RAM
CRAI: EQU H#5 ;s RAM ACC

RERERRXEXEXRXX XXX XXX XXX XXX XXX EXRRXRRRE XXX

OTC: DEF 74X, 1VB#1,B#01,3VB#010, H
v, B#01,4V,4vV, 5V%,

MODE, QUAD, N, SOURCE=DEST~MASK, REGISTER
[M] (N] [19] [R]

EE R R R R R R R R R R RN RN R R RN R R R R RN AR RN RN RRRRR
JECT

REREEREEX XXX XEXRXXRRX X XXX XX XXX XXX RS

PRIORITIZE
AR R R R R R R RN R R R R RN RN R RRRR R R RREARXRNRRRR

SOURCE L20]

“t s ws s we we we [T]we we we we S\ T we we w

ACC

ROTATE AND COMPARE
4X,2VB#11,2VB#11, 24X

PRT1A: EQU H#7 H

PR1D: EQU H#9 s D

. ;

;

s DESTINATION [21]

;

PR1A: EQU Hi#8 ;s ACC

PR1Y: EQU Hi#A s Y BUS

PR1R: EQU H#B s RAM

; REEXREXEXEFEREXXER XXX EREIRXEXR XXX REX XX XERXE X

PRT1: DEF T4X,1VB#1,B#01,3VB#010, s RAM ADDR MASK(S)
/ 1V, B#10,4V, 4v, 5V%, u4X,2VB#11,2VB#11,24X

U T ee we wo we we we we we

2A
2Y

R
R

H
;5 MASK (S) L22]

MODE, QUAD, DESTINATION, SOURCE,REG=MASK
[M] (211 [20] [R]

EEEXXREEX XX XXX R R AR XX RXRRR XX ERRXX XXX RRXRRERRER

DESTINATION (23]

EQU
EQU

H#0

;s ACC
H#2 H

Y BUS

2-13



H
PRA:

EQU H#8 ; ACC
PRZ: EQU H#A HE
PRI: EQU H#B HE

RT2: DEF

JECT

o we we [Tl we we we we | "U we we we

(222 R R 2222222222222 R R RS R R XX

74X, 1VB#1,B#01,3VB#010, s PRIORITIZE RAM
1v, B#10,4V, 4v, 5V%, 4X,2VB#11,2VB#11,24X

MODE, QUAD,MASK, DEST,REG=SOURCE
[M] [22] L23] [R]

RERRRXXRXEEXEERE XXX EREXRRRRRFRXRRRRRRRRRRRER

SOURCE (R) L24]

’

PR3R: EQU H#3 ;s RAM
PR3A: EQU H#4 ;s ACC
PR3D: EQU H#6 HE)

.

REREREREREREREXEERERRRRERXRRRRRERRRRERNR RN NERRR

RT3: DEF 74X, 1VB#1,B#01,3VB#010, H

MODE, QUAD,MASK, SOURCE,REG=<DEST
[M] L22] L24] LRI

(2 A2 222X R RS2 R R R R 22 2 R A 2 R R A 0 R R SRR

SOURCE (R) L251]

A: EQU Hi#td ACC
D:

EQU H#t6

IR E R R R R R R R R R R R R S
RTNR: DEF

MODE, QUAD,MASK, SOURCE, DESTINATION
LM] [22] 1251

(222 E2 SRS EERRRRRRRR2 2 R R R R R 2 R 2R RS 2]

. JECT

I we we we we \ "T we we we U U we we we we we we wo we N T we we w

REEREXERRRREREEERRERRRRRERERRRERREERERR RN RN

CYCLIC REDUNDANCY CHECK

RERRREXRERERREREREERERREEREREERRERRRRE RN TX

A A2 2222 RS ESZ RS R SR AR R R RS R R X 2 )

CRCF: DEF 74X, 1VB#1,B#01,3VB#010,
B#11001100011,5V%,4X,2VB#11,2VB#11,24X

(T we wo we o we we we we

~

PRIORITIZE RAM
1V, B#10,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X

74X, 1VB#1,B#01,3VB#010, ; PRIORITIZE NON=RAM
v, B#11,4V, 4V, 5V%, 4X,2VB#11,2VB#11, 24X

[4I(NRY, NRA ONLY)



(AR AR R RERRRRRRRRRR R R R Rt aX AR R &2 2

REXRERERRRERXEEXXER XXX R XXX RRERRXRRRRRER XN

RCR: DEF 74X, 1VB#1,B#01,3VB#010,
B#11001101001,5V%, u4X,2VB#11,2VB#11,24X ; REVERSE

RERRERERERERRRRE XXX XRRERRRRRRRERERRERRRR

(2SR RS R R RR X R 2 R A s s 2 R AR R LS RS

NOOP

RERXERREXRX XXX ERRAR RS

OOP: DEF T4X, 1VB#1,B#01,3VB#010,H#7140, 4X,2VB#11,2VB#11,24X; NO OPERATION

REXEXREEREXER R XXX XXX XXX XXX R XXX R RERRRRR

[T ws wo Z ws wo wo wo wo wo wo wo we wo we “\ () ws wo we weo

. JECT

(A2 XA AR RS RRRE R R s 2 2REE R

STATUS
EERERE R R R R R R RN R R RN RN AR RN RN RRRRRRRRRRR

OPCODE [26]

* we we we we we

’
SONZC: EQU 5D#3% ;3 SET OVR,N,C,Z
SL: EQU 5D#5% s SET LINK
SF1: EQU 5D#6% s SET FLAG 1
SF2: EQU 5D#9% 3 SET FLAG 2
SF3: EQU 5D#10% ; SET FLAG 3
H
; AR R R AR R R R AR R R R R R R R R R RN R R RN R RN RN RN RN RN RN
SETST: DEF 74X, 1VB#1,B#01,3VB#010,
B#011, H#BA,5V%, 4X,2VB#11,2VB#11, 24X s SET STATUS
OPCODE
L261]

EXEEREREXRERXERR R XN AR X ERXARRERR AR XXX XXX RREDR

OPCODE L27]

we we we we we ws we we we N\

RONCZ: EQU D#3% s RESET OVR,N,C,Z
RL: EQU D#5% s RESET LINK

RF1: EQU D#6% s RESET FLAG 1
RF2: EQU D#9% s RESET FLAG 2
RF3: EQU D#10% s RESET FLAG 3

’
;***i**i*l*i***i**ii***i***i!i****!**ii**lliil*iii*!**

RSTST: DEF T4X, 1VB#1,B#01,3VB#010,
/ B#011, H#AA,5V%, 4X,2VB#11,2VB#11,24X s RESET STATUS



OPCODE
[271]

AR R R R R R R R R R R R R R R RN R R RN R RN RN RN RN RN RRR RN
JECT

X e wo wo we

(22222222 AR R 222 R 2 R s 2 2 R R R R R 2R Z]

3VSTR: DEF 74X, 1VB#1,B#01,3VB#010, 3 SAVE STATUS=RAM
v, B#10,H#7A, 5V%, 4X,2VB#11,2VB#11, 24X

MODE,QUAD,FIXED,RAM ADDRESS/DEST
[M] [R]

(2 EZE X222 R R RE SRR SRR R RRRRSERER R R R R R SRR S

we we we we we we N\ [ we we we

;Q***ﬁ******i*************!i******l***ii*************!

SVSTNR: DEF Tux, 1vB#1,B#01, 3VB#010, s SAVE STATUS NON=RAM
/ 1v, B#11,H#7A, 5V%, 4X,2VB#11,2VB#11, 24X

MODE, QUAD,FIXED,DESTINATION
LM] L4J(NRY, NRA ONLY)
AR R R R R R R R R R R R R R R R R R RN RN R RN R R RN RN RN R RN R RN RN

222 SRR R RS R R XRRERARRRRRRR R RERER R RES]

TEST STATUS

(A A2 SRR R R R RERRR R R R R R E AR R R LSS

OPCODE (CT)

* we we we we we we we we we we we

’

TNOZ: EQU D#0 ; TEST (N OVR) + Z
TNO: EQU ' D#2 ; TEST N OVR
TZ: EQU D#l ; TEST Z
TOVR: EQU D#6 ; TEST OVR
TLOW: EQU D#8 ; TEST LOW
TC: EQU D#10 ; TEST C

TZC: EQU D#12 ; TEST Z + C
TN: EQU D#14 ; TEST N

TL: EQU D#16 ; TEST LINK
TF1: EQU D#18 ; TEST FLAG 1
TF2: EQU D#20 ; TEST FLAG 2
TF3: EQU D#22 ; TEST FLAG 3

.
’

H 22 222X RS R R R X222 2 R A A 2 a2 R R R 22 X

TEST: DEF Tu4X,1VB#1,B#01,3VB#010
,B#011,H#9A,5V%, u4X,2VB#11,2VB#11, 24X 3 TEST STATUS

(22222 AR AR R 2R 2 A R AR R R R R R 2

.o we we

IMMED: DEF 74X,1VB#1,B#01010,16V$,4X,2VB#11,2VB#11,24X
EJECT

.

® ®* ® X ® X %X X X X %X ¥ ¥ X X X X X X X X X % %

Am29540 FFT ADDRESS GENERATOR

.
’
.
’

2-16



;i!*ttﬁﬂ*i***‘l**l‘*ﬂi**ili
.

’

ADR.HOLD: EQU B#00

ADR.RST: EQU B#01

ADR.LOAD: EQU B#10

ADR.INC: EQU B#11

’

RADIX. 2: EQU B#0

RADIX. 4: EQU RADIX.2*

PSD: EQU B#0 s PRESCRAMBLED DATA

NORM.ORD: EQU PSD* s NORMAL ORDER

DIT: EQU Bi#1

DIF: EQU DIT*

ADR.OE: EQU B#0

’

ADR1: EQU H#0 sDATA ADDRESS 1 FOR RADIX 2/4
ADR2: EQU H#1 sDATA ADDRESS 2 FOR RADIX 2/4
ADR3: EQU H#2 sDATA ADDRESS 3 FOR RADIX 4

ADRY4: EQU H#3 ;DATA ADDRESS 4 FOR RADIX 4
ALT.ADR1: EQU H#4 sALTERNATE ADDRESS 1 FOR RADIX 2/4
ALT.ADR2: EQU H#5 sALTERNATE ADDRESS 2 FOR RADIX 2/4
ALT.ADR3: EQU H#6 sALTERNATE ADDRESS 3 FOR RADIX 4
ALT.ADRY4: EQU H#7 sALTERNATE ADDRESS 4 FOR RADIX 4
CONST1: EQU H#8 sCONSTANT ADDRESS 1 FOR RADIX 2/4 OR SHADING
CONST2: EQU H#9 ;CONSTANT ADDRESS 2 FOR RADIX 4
CONST3: EQU H#A sCONSTANT ADDRESS 3 FOR RADIX 4
CONST1.S: EQU H#B sINVERTED CONSTANT ADDRESS 1 FOR SHADING
RVI.ADR1: EQU H#C sREAL VALUE INPUT ADDRESS 1
RVI.ADR2: EQU H#D sREAL VALUE INPUT ADDRESS 2
RVI.ADR3: EQU H#E sREAL VALUE INPUT ADDRESS 3
RVI.ADRY: EQU H#F sREAL VALUE INPUT ADDRESS 4

; ® ®* ® ® ® X ® % X X X % % X X R % R X X %X ® ® *

3 Am29520 PIPELINE REGISTERS

§ R R R o R o® R R R OR R R R R X R E KRR E R KR

H

ADP,.SHFT: EQU B#00 sSHIFT ADDR THROUGH PIPELINE
ADP.LDB: EQU B#01 3 LOAD & SHIFT SECOND HALF OF PIPELINE
ADP.LDA: EQU B#10 sLOAD & SHIFT FIRST HALF OF PIPELINE
ADP.HOLD: EQU B#11 s NO OP

,

ADP.AT: EQU B#11 sREG A1 TO OUTPUT

ADP.A2: EQU B#10 sREG A2 TO OUTPUT

ADP.B1: EQU B#01 sREG B1 TO OUTPUT

ADP.B2: EQU B#00 sREG B2 TO OUTPUT

’

ADP.OE: EQU B#0 sOUTPUT ENABLE

ADDRESS GENERATOR INSTRUCTIONS

e we we

ADG.HOLD: DEF 74X, 1VB#1,B#10001, 3X, 1VB#1, 1VB#0, 1VB#1,ADR.HOLD, 4VH#0, 8X,
/ 2VB#11,2VB#11, 24X

ADG.RST: DEF 74X, 1VB#1,B#10001, 3X, 1VB#1, 1VB#0, 1VB#1,ADR.RST, 4VH#0, 8X,

/ 2VB#11,2VB#11, 24X

ADG.LOAD: DEF 74X, 1VB#1,B#10001, 3X, 1VB#1, 1VB#v0, 1VB#1,ADR.LOAD, 4VH#0, 8X,

2-17



/
ADG.INC:

/
EJECT

x * =

o we wo we we ws we ws we we we

’
IF.HIGH:
IF.LOW:
UNCOND:

DEF

x

NEW.PROC:

LNT,ACK:
FFT.ITC:

FFT.DONE:

ADR,CT:
RALU.S:
KALU.OV:
RALU,Z:
RALU.C:
IALU.S:
LALU.OV:
IALU.Z:
IALU.C:

’

JZ:
CJdS:
JSR:
JMAP:
CJP:
JMP:
PUSH:
JSRP:
CJv:
JRP:
RFCT:
RPCT:
CRTN:
RTN:
CJPP:
LDCT:
LOOP:
CONT:
TWB:

3
EJECT

’
;**xwﬁutﬁ**k*k**’*i*t**i

DEF
DEF
DEF
DEF
DEF
DEF

'DEF

DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

2VB#11,2VB#11, 24X
74X, 1VB#1,B#10001, 3X, 1VB#1, 1VB#0, 1VB#1,ADR.INC, 4VH#0, 8X,
2VB#11,2VB#11, 24X

®*® ® ® ® X X X ® R X X X X * X % X KX % X X X X X X X * %

Am2910 MICROPROGRAM CONTROLLER INSTRUCTION SET L20]

® ® ® * X ®* X % ¥ ® %X X ® % % * ¥ ¥ * ® * % *

CONDITION CODE MULTIPLEXER

EQU Bi#0 sCONDITION PREFIX

EQU IF.HIGH*

EQU H#tO sUNCONDITIONAL BRANCH

EQU H#1 sNEW PROCESS COMMAND FROM HOST
EQU H#2 s INTERRUPT ACK FROM HOST

EQU H#3 sAm29540 ITERATION COMPLETE
EQU Hit 4 3sAm29540 FFT COMPLETE

EQU Hi#t5 3Am29116 CONDITION TEST

EQU H#8 sREAL ALU SIGN

EQU H#9 sREAL ALU OVERFLOW

EQU Hi#tA sREAL ALU ZERO

EQU Hi#B sREAL ALU CARRY

EQU H{#tC s IMAG ALU

EQU H#D

EQU H#E

EQU H#tF

124X, H#O RESET STACK, MICROPC, ADDRESS

107X, 1VB#0, 4V, 12V$H#FFF, Hit 1
107X, B#0, UNCOND, 12V$H#FFF, H#t1
112X, 12V$H#FFF, H#2

107X, 1VB#0, 4V, 12V$H #FFF, H#3
107X, B#0, UNCOND, 12V$H#FFF, H#3
107X, 1VB#0, 4V, 12V$, H#U

112X, 12V$HAFFF, H#5

107X, 1VB#0, 4V, 12V$H#FFF, H#6
112X, 12V$H#FFF, H#T

112X, 12V$H#FFF, H#8

112X, 12V$H#FFF, H#9

107X, 1VB#0, 4V, 12V$H#FFF, H#A
107X, B#0, UNCOND, 12V$H#FFF, H#tA

COND JUMP SUBROUTINE

UNCOND JUMP SUBROUTINE

UNCOND JUMP TO MEMORY MAP (Di)
COND JUMP PIPELINE

UNCOND JUMP PIPELINE

PUSH STACK, LOAD REG MAYBE

JUMP SUB FROM REG (F) OR PIPE(T)
COND JUMP TO VECTOR INTER (Di)
JUMP TO REG (F) OR PIPE (T)

DO LOOP REPEAT UNTIL CTR=0=STACK
DO LOOP UNTIL CTR=0 = PIPE

COND RETURN, POP STACK (T)
UNCOND RETURN

107X, 1VB#0, 4V, 12V$H#FFF, H#B COND JUMP PIPELINE, POP STACK
112X, 12V$, H#C LOAD REGISTER, CONTINUE

124X, H#D DO LOOP UNTIL TEST=T = STACK
124X, H#E CONTINUE

107X, 1VB#0, 4V, 12V$H#FFF, H#F

2-18

we we we we We Wi we we we we we we we we we we we we ws

THREE WAY BRANCH



Am2925 CYCLE LENGTH SELECT [211]
System Clock Generator and Driver

* ® X ® ® ®* ®X X X X X ® X X X X X X %X X X X *X X %X % *

THE FOLLOWING ARE THE CYCLE LENGTH CODES (PRELIM)
EXAMPLE CYCLE (1 OF 4)

we we we we we ws we we

CLA: EQU Q#0 s 3 CLOCK PERIODS 100ns AT 3UMHz
CLB: EQU Q#1 HE) 16uons AT 25MHz
CLC: EQU Q#5 HEY 200ns AT 25MHz
CLD: EQU Q#7 HER 20uons AT 30MHz
CLE: EQU Q#3 H 280ns AT 25MHz
CLF: EQU Q#2 ; 8 320ns AT 25MHz
CLG: EQU Q#6 s 9 300ns AT 30MHz
CLH: EQU QY s 10 CLOCK PERIODS 322ns AT 31MHz
H (max crystal frequency is 311MHz)

’

;

3 OTHER CONTROL LINES FOR THE Am2925

s LNCOMPLETELY DEFINED AT PRESENT (IN THIS FILE)

’

FIRST.25: EQU B#1 ;
LAST.25: EQU B#0 ;
;

HALT: EQU B#00 ;
NOHALT: EQU B#00 ;
;

SINGLSTP: EQU B#00 ;
RUN: EQU B#00 ;
;

WAITREQ: EQU B#0 ;
NOWAITRQ: EQU B#1 ;
;

READY: EQU B#0 ;
NCTREADY: EQU BT ;
:

INITIALIZE: EQU B#0 ;
NO.INIT: EQU B#1 ;
X .

;

EJECT

;

s MISCELLANEOUS CONTROLS FOR THE DSP

;

WE: EQU B#0 {MEMORY WRITE ENABLE
NWE: EQU WE* sNO WRITE
;

RD.MEM: DEF 31X, NWE, 31X, NWE, 64X
WR.CMPX: DEF 31X, WE, 31X, WE, 64X
WR.REAL: DEF 31X, WE, 31X, NWE, 64X
WR.IMAG: DEF 31X, NWE, 31X, WE, 64X

;

SEL.116¢ EQU B#01

SEL.540: EQU B#10

NO.ADDR: EQU B#11



;
BUFCD:
BUFEN:

;
CF.LOAD:
CF.HOLD:

. we we

’
DIV.BY.1:
DIV.BY,2:
DIV.BY.4:
DIV.BY.8:
H

SP:

DP:

H
LNTRRUPT: DEF

i
sFIELD POSITIONS

e

ISC: DEF

(o]
[e]
o]
o

DEF

D.CMD: DEF

AKE.ONE: DEF

Mo N N N N NN N N e N NN NN N NN NNZXTee NNSNNNSNSNANSNNSNNSNNZw

=
o

EQU B#1 sBUFFER CHIP DISABLE
EQU BUFCD*

EQU B#0 sENABLE NEW ROM ADDRESS
EQU CF.LOAD*

DATA PRESCALING

DEF NO.SHIFT, 30X, NO.SHIFT, 94X

DEF SHIFT.R1,30X,SHIFT.R1, 94X

DEF SHIFT.R2,30X,SHIFT.R2, 94X

DEF SHIFT.R3, 30X, SHIFT.R3, 94X

EQU Bi1 3sSINGLE PRECISION (16 BITS)

EQU B#0 ;s DOUBLE PRECISION (32 BITS=IMAG:REAL)
104X,B#1,23X sGENERATE EXTERNAL INTERRUPT

64X, 1VB#1, 39X, 1VB#0, 2VB#00, 21X

NO.SHIFT,MOVE.NC,A1,A1 ;DO NOTHING
,A1.HOLD,A2,HOLD,A3.HOLD,B1.HOLD,B2,HOLD,B3.HOLD
,MIO.IN,DIO.IN,NWE

,NO.SHIFT,MOVE.NC,A1,A1
,A1.HOLD,A2.HOLD,A3.HOLD,B1.HOLD,B2. HOLD,B3. HOLD
,MIO.IN,DIO.IN,NWE

,SP,MP.TRUNC,MP.FRAC,MP.MSP
,MY.IN,MXY.2C,MX.CONST

,1X,SEL.540,B#111

,3X,DIT,RADIX.2, NORM,.ORD,ADR.HOLD,ADR1
,8X,ADP,HOLD,ADP.A1, 24X

NO.SHIFT,MOVE.CC,A1,A1 ;READ MODE INTO 540 AND 29116
,A1.HOLD,A2,HOLD,A3.HOLD,B1.HOLD,B2. HOLD,B3. HOLD
,MIO.IN,DIO.IN,NWE

,NO.SHIFT,MOVE.CC,A1,A1
,A1.HOLD,A2,HOLD,A3.HOLD,B1.HOLD,B2, HOLD,B3, HOLD
,MIO.IN,DIO.IN,NWE

,SP,MP.TRUNC,MP,FRAC,MP.MSP
,MY.IN,MXY.2C,MX.CONST

,1X, NO.ADDR,B#101

,3X,DIT,RADIX.2, NORM.ORD,ADR.HOLD,ADR1
,8X,ADP.HOLD,ADP.A1, 24X

NO.SHIFT,MOVE.FC,A1,A1 ;FORCE CARRY INTO IMAG ALU
»A1.HOLD,A2.HOLD,A3.HOLD,B1.HOLD,B2.HOLD,B3.HOLD
yMIO.IN,DIO.IN,NWE

s NO.SHIFT,MOVE.CC,ZERO,A1 35 0 + CRY = 1
»A1.HOLD,A2.EQ.AU,A3.HOLD,B1.HOLD,B2.HOLD,B3. HOLD
»MIO. IN,DIO.IN,NWE

»DP,MP.TRUNC,MP.FRAC,MP.MSP

+MY.IN,MXY.2C,MX.CONST

, SUX

2-20



APPENDIX

3

AmDSP DIGITAL SIGNAL
PROCESSOR SOURCE FILE

RN I A R I R R I I I |
;
;
3

START::

NO.OP & JMP $ + 1

H

NO.OP & CJP IF.LOW,NEW.PROC,$
3

NO.OP & CJP IF.HIGH,NEW.PROC,$

;
RD.CMD & JMAP

¥ R R R R R X R X X X X X X X X X X *

H
H
;
H
3
FINISH:

INTRRUPT & NO.OP & CONT
/3 & CJP IF.HIGH,INT.ACK,$

4
NO.OP & JMP START
EJECT

.

® OE R X X X X X X ¥ O X X X X X X X ¥

FFT PROGRAM )
SIZE HANDLED BY Am29540

Tl we we we we we

FT::

i

ADG.RST & RD.MEM & DIV,.BY.2

/& R.MOVE & I.MOVE & MSPROD & MISC
/& CONT

;

ADG.HOLD , DIT, RADIX.2, NORM.ORD, ADR2,
/& RD.MEM & DIV,.BY.2

/& R.,MOVE & I.MOVE & MSPROD & MISC

/& CONT

’

ADG.HOLD CF.LOAD, DIT, RADIX.2,
/& RD.MEM & DIV.BY.2

/& R.MOVE , , , , B1.EQ.DI, , , ,
/& I.MOVE , , , , B1.EQ.DI, , , .
/& MSPROD

/& MISC

/& CONT

’

ADG.HOLD CF.HOLD, DIT, RADIX.2,
/& RD.MEM & DIV.BY,?2

/& R.MOVE , , , , Bi1,HOLD, , ,
/& I.MOVE , , , , B1,HOLD, , ,
/& MSPROD MP.ROUND, MP.FRAC, MY.IN,

M.EQ.B1
MIO.IN

NORM.ORD,

DIO.IN
DIO.IN

NORM.ORD,

MXY.

* % %X X X % %X X X %X X X ¥ X * x

LDLE LOOP WAITING FOR PROCESS INSTRUCTION

;3 JUMP INSTR FOR JAMMING

; WAIT FOR INSTR STROBE

;3 WAIT FOR STROBE TO LATCH DATA

VECTOR TO COMMANDED PROCESS

* K R R O R R R X X K X X X X ¥

SET INTERRUPT FLAG AND WAIT FOR AN ACKNOWLEDGE

3 WAIT FOR ACKNOWLEDGE
3 NO INTR WHILE DEBUGGING

*OX R R X X X X X X K X X X X ¥

#%% RESET 29540 AND DO NOTHING

¥#% FILL PIPELINE BEFORE WRITING
ADP,.LDB

*¥% READ B OPERAND & COEFFICIENT
CONST1, ADP.HOLD, ADP.B1
**¥% REAL*COS

ADR1, ADP,LDA

2C, MX.COS, BUFEN

3-1



/& MISC

/& CONT

: #%% REAL®*SIN, READ A OPERAND
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1

/& RD.MEM & DIV.BY.2

/& R.MOVE , A1.EQ.DI, , , , , , M.EQ.B1, DIO.IN

/& I.MOVE , A1.EQ.DI, , , B1.HOLD, , , MIO.IN, DIO.IN

/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN

/& MISC

/& CONT

: *#%% IMAG*COS

ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM,.ORD, ADR2, ADP.LDB

/& RD.MEM & DIV.BY.2

/& R.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, , B2,EQ.AU, , MIO.IN

/& I.MOVE , A1.HOLD, , , B1.HOLD, , , M.EQ.B1

/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD

/& MISC

/& CONT

; ®%% IMAG*SIN & READ B
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1

/& RD.MEM & DIV.BY.2

/& R.MOVE , A1.HOLD, , A3.HOLD, B1.EQ.DI, B2.HOLD, , MIO.IN, DIO.IN
/& I.SUBS A1,MSP, A1.HOLD, , A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, , M.EQ.B1,
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD

/& MISC

/& CONT

; ®%% REAL*COS

ADG.HOLD CF,HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA

/& RD.MEM & DIV,BY.2

/& R.SUBS A1,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1

/& I.ADD B2,MSP, A1.HOLD, , A3,HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.
/& MSPROD MP,ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN

/& MISC
/& CONT
s %%% pPASS 1 LOOP CAN DO SHADING
IT1.LOOP:
: %%% REAL*SIN, READ A

ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1

/& RD.MEM & DIV.BY.2

/&% R.ADD B2,MSP, A1.EQ.DI, A2,HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, D
/& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN

/& MISC

/& CONT

; ®%% IMAG*COS, WRITE A - B*w
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP,LDB, ADP,B2

/& WR.CMPX

/& R.ADD A1,MSP, A1.HOLD, A2,HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.
/& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2

/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY,2C, MX.COS, BUFCD

/& MISC

/& CONT

: #%% IMAG*SIN, READ B

ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1

/& RD.MEM & DIV.BY.2

3-2

DIO. IN

IN

I0.IN
IN, DIO.IN

EQ.B2



/&
/&
/&
/&
/&

H
ADG.HOLD CF.HOLD, DIT, RADIX.2,

/&
/&
/&
/&
/&
/&

R.SUBS A2,B3, A1.
I.SUBS A1,MSP, A1
MSPROD MP.ROUND,

MISC

CONT

WR.CMPX

R.SUBS A1,A3, , A
I.ADD B2,MSP, A1.
MSPROD MP.ROUND,
MISC

HOLD, A2.EQ.AU,
.HOLD, A2.HOLD,

MP.FRAC,

2.EQ.AU,
HOLD, ,
MP.FRAC,

MY. IN,

, B1.HOLD,

A3.HOLD,
MY. IN,

CJP IF.LOW,FFT.ITC,IT1.LOOP

3
BTF.LOOP:

/&
/&
/%
/&

RD.MEM & DIV.BY.2
R.ADD B2,MSP, A1.
I.SUBS A1,B3, A1.
MSPROD MP.ROUND,

EQ.DI, A2.HOLD,
EQ.DI, A2.EQ.AU,

MP.FRAC,

MY. IN,

NORM.ORD,

A3.HOLD,

A3.EQ.MP,

MXY.2C,

*%* REAL*COS,
ADR1,

MXY. 2C,

B1.EQ.

MX.SIN,

B2.HOLD, ,
B1.HOLD,

MX.Co0S,

B1.EQ.DI,

ADP.LDA,

B2.EQ.AU,

DI, B2.HOLD,

BUFCD

WRITE A +
ADP.A2

B2.EQ.AU,

, DIO.IN
,M.EQ.B1

B¥*w

M.EQ.B1, D.EQ.A2

BUFEN

H ¥%% REAL*SIN, READ A
ADG, INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1

y» » B2.EQ.AU,
A3.HOLD,

MXY.2C,

MX.SIN,

B3.EQ.MP,
B1.HOLD, B2.HOLD,

BUFEN

B3.EQ.MP,

MIO.IN,

M.EQ.B1, DIO.I

MIO. IN,

/& MISC

/& CONT

H **% TMAG¥*COS, WRITE A - B¥*w
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2

/& WR.CMPX

/& R.ADD A1,MsP, A1,HOLD, A2,HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B
/& I.ADD A2,A3, A1,HOLD, A2.EQ.AU, , B1.,HOLD, , , M.EQ.B1, D.EQ.B2

/& MSPROD MP.ROUND, MP.FRAC, MY,IN, MXY.2C, MX.COS, BUFCD

/& MISC

/& CONT

H **% TMAG®*SIN, READ B

ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1

/& RD.MEM & DIV.BY.2

/&% R.SUBS A2,B3, A1,HOLD, A2,EQ.AU, A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN
/& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD

/& MISC

/& CONT

H *%% REAL¥COS, WRITE A + B¥*w
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA, ADP.A2

/& WR.CMPX

/& R.SUBS A1,A3, , A2,EQ.AU, , B1.HOLD, B2.,HOLD, , M.EQ.B1, D,EQ.A2

/& I.ADD B2,MSP, A1.,HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN,
/& MSPROD MP.ROUND, MP.FRAC, MY.,IN, MXY.2C, MX.COS, BUFEN

/&
/&

/&
/&
/&
/&
/&

MISC

CJP IF.LOW,FFT.DONE,BTF.LOOP
3/& CJP IF.LOW,FFT.ITC,BTF.LOOP

RD.MEM & DIV.BY.?2
R.ADD B2,MSP, A1.
I.SUBS A1,B3, A1,
MSPROD MP.ROUND,
MISC

EQ.DI, A2.HOLD,
EQ.DI, A2.EQ.AU,

MP.FRAC,

MY, IN,

H *%% REAL*SIN, READ A
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1

, » B2.EQ.AU,
A3.HOLD,

MXY.2C,

MX.SIN,

B3.EQ.MP,
B1.HOLD, B2.HOLD,

BUFEN

’

M.EQ.B1, DIO.I

MIO.IN,

, DIO.IN

D.EQ.A2

N
DIO.IN

2

, DIO.IN

D.EQ.A2

N
DIO.IN



/&

CONT

3/& RPCT BTF.LOOP+1

’
.
’

’
ADG.HOLD CF.HOLD, DIT, RADIX.2,

FLUSH PIPELINE

sCOUNT PASSES FOR TESTING

*%% TMAG*COS, WRITE A - B¥*w

NORM.ORD, ADR2, ADP.LDB, ADP.B2

/& WR.CMPX

/& R.ADD A1,MSP, A1,HOLD, A2.HOLD, A3.EQ.MP, , B2,EQ.AU, B3.HOLD, ,
/& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD

/& MISC

/& CONT

; ®#%% IMAG*SIN

ADG.HOLD , DIT, RADIX.2, NORM.ORD, , ADP.HOLD

/& RD.MEM & DIV.BY.2

/& R.SUBS A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, , B2,HOLD .
/& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, ,M.EQ.BT
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD

/& MISC

/& CONT

: #%% YWRITE A + B*w
ADG.HOLD , DIT, RADIX.2, NORM.ORD, , ADP.LDA, ADP.A2

/& WR.CMPX

/& R.SUBS A1,A3, , A2.EQ.AU, , , B2.HOLD, , , D.EQ.A2

/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, , B2.EQ.AU, B3.EQ.MP, , D.EQ.A2
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C

/& MISC

/& CONT

’

ADG.HOLD , DIT, RADIX.2, NORM.ORD, , ADP.HOLD

/& RD.MEM & DIV.BY,2

/& R.ADD B2,MSP, , A2.HOLD, , , B2.EQ.AU, B3.EQ.MP

/& I.SUBS A1,B3, , A2.EQ.AU, A3.HOLD, , B2.HOLD

/& MSPROD & MISC '

/& CONT

; %% WRITE A - B¥w
ADG.HOLD , DIT, RADIX.2, NORM.ORD, , , ADP.B2

/& WR.CMPX :

/& RMOVE , , , 4 » » » » D.EQ.B2

/& I.ADD A2,A3, , A2.EQ.AU, , , , , , D.EQ.B2

/& MSPROD & MISC

/& CONT

’

ADG.HOLD , DIT, RADIX.2, NORM,ORD

/& RD.MEM & DIV.BY.2 ,

/% R.SUBS A2,B3, , A2.EQ.AU

/& I.MOVE , , A2.HOLD

/& MSPROD & MISC

/& CONT

; ®%% WRITE A + B*w
ADG.HOLD , DIT, RADIX.2, NORM.ORD, , , ADP.A2

/& WR,.CMPX

/& RMOVE , , » » » » » » D.EQ.A2

/& I.MOVE , , » » » » » » D.EQ.A2

/& MSPROD & MISC .

D.EQ.B2



/& JMP FINISH
EJECT

¥ OE R ¥ % R OB X X X X X X X X X ¥ E X X X X O X X X X F X X X X * ¥ ¥

INVERSE FFT PROGRAM (PRE SCRAMBLED DATA)
SIZE HANDLED BY Am29540

FFT::

* b we we we we we w

: #%% RESET 29540 AND DO NOTHING
ADG.RST & RD.MEM & DIV.BY.2

/& R.MOVE & I.MOVE & MSPROD & MISC
/& CONT

; #%% FILL PIPELINE BEFORE WRITING
ADG.HOLD , DIT, RADIX.2, PSD, ADR2, ADP.LDB

/& RD.MEM & DIV.BY.2

/& R.MOVE & I.MOVE & MSPROD & MISC

/& CONT

; %#%% READ B OPERAND & COEFFICIENT
ADG,.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1

/& RD.MEM & DIV.BY.?2

/& R.MOVE , , , , B1.EQ.DI, , , , DIO.IN

/& I.MOVE , , , , B1.EQ.DI, , , , DIO.IN

/& MSPROD

/& MISC

/& CONT

; %#%% REAL*COS OF COMPLEX MULTIPLY
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA

/& RD.MEM & DIV.BY.?2

/& R.MOVE , , , , B1.HOLD, , , M.EQ.B1

/& I.,MOVE , , , , B1.HOLD, , , MIO.IN

/& MSPROD MP.ROUND, MP,FRAC, MY,IN, MXY.2C, MX.COS, BUFEN

/& MISC

/& CONT

; #%% REAL*SIN, READ A OPERAND
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, , ADP.HOLD, ADP.A1

/& RD.MEM & DIV.BY.?2

/& R.MOVE , A1.EQ.DI, , , , » » M.EQ.B1, DIO.IN

/& I.MOVE , A1.EQ.DI, , , B1.HOLD, , , MIO.IN, DIO.IN

/& MSPROD MP,ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN

/& MISC

/& CONT

: %%% IMAG*COS

ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB

/& RD.MEM & DIV.BY.2

/& R.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, , B2.EQ.AU

/& I.MOVE , A1.HOLD, , , B1.HOLD, , , M.EQ.B1

/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD

/& MISC

/& CONT

; %#%% IMAG*SIN, READ B

ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP,HOLD, ADP.B1

/& RD.MEM & DIV.BY.2

/& R.MOVE , A1,HOLD, , A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN

/& I.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, , M.EQ.B1, DIO.IN



/&

MSPROD MP.ROUND,

MP.FRAC,

MY. IN,

MXY.2C,

MX.SIN,

BUFCD

/& MISC

/& CONT

;- ®%% REAL*COS

ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA

/& RD.MEM & DIV.BY.2

/& R.SUBS A1,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1

/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1,HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN

/& MSPROD MP,ROUND, MP,FRAC, MY.IN, MXY.2C, MX.COS, BUFEN

/& MISC

/& CONT

’

IBTF.LUP:

; %%% REAL*SIN, READ A

ADG.INC CF.HOLD, DIT, RADIX.2, PSD, , ADP.HOLD, ADP.A1

/& RD.MEM & DIV.BY.2

/& R.SUBS B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN
/& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN
/& MSPROD MP,ROUND, MP,FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN

/& MISC

/& CONT

; #%% IMAG*COS, WRITE A - B*w

ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB, ADP.B2

/& WR.CMPX

/& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2
/& I.SUBS A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2

/& MSPROD MP.ROUND, MP.FRAC, MY,IN, MXY.2C, MX.COS, BUFCD

/& MISC

/& CONT

; %% TMAG*SIN, READ B

ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1

/& RD.MEM & DIV.BY.2

/& R.ADD A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN

/& I.ADD A1,MSP, A1,HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD

/& MISC

/& CONT

: #%% REAL*COS, WRITE A + B¥*yw

ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA, ADP.A2

/& WR.CMPX

/& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2

/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2
/& MSPROD MP,ROUND, MP.FRAC, MY,IN, MXY,2C, MX.COS, BUFEN

/& MISC

/& CJP IF.LOW,FFT,.DONE, IBTF,LUP

; #%% REAL*SIN, READ A OPERAND

ADG.INC CF.HOLD, DIT, RADIX.2, PSD, , ADP.HOLD, ADP.A1

/& RD.MEM & DIV.BY.2

/& R.SUBS B2,MSP, A1.EQ.DI, A2,HOLD, , , B2.EQ.AU, B3.EQ.MP, M,EQ.B1, DIO.IN
/& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN

/& MISC

/& CONT

FLUSH PIPELINE



; %%% IMAG*COS, WRITE A - B¥*w
ADG.HOLD CF,.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB, ADP.B2

/& WR.CMPX

/& R.ADD A1,MSP, A1,HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2
/& I.SUBS A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2

/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD

/& MISC

/& CONT

; #%% TMAG*SIN

ADG.HOLD , DIT, RADIX.2, PSD, , ADP.HOLD

/& RD.MEM & DIV.BY.2

/& R.ADD A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, , B2.HOLD

/& I.ADD A1,MSP, A1,HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, ,M.EQ.B1

/& MSPROD MP.ROUND, MP,FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD

/& MISC

/& CONT

; #%% WYRITE A + B*w

ADG.HOLD , DIT, RADIX.2, PSD, , ADP.LDA, ADP.A2

/& WR.CMPX

/& R.SUBS A1,A3, , A2.EQ.AU, , , B2.HOLD, , , D.EQ.A2

/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, , B2.EQ.AU, B3.EQ.MP, , D.EQ.A2
/& MSPROD MP,ROUND, MP,FRAC, MY.IN, MXY.2C

/& MISC

/& CONT

’

ADG.HOLD , DIT, RADIX.2, PSD, , ADP.HOLD

/& RD.MEM & DIV.BY.?2

/% R.SUBS B2,MSP, , A2.HOLD, , , B2.EQ.AU, B3.EQ.MP
/& I.SUBS A1,B3, , A2.EQ.AU, A3.HOLD, , B2.HOLD

/& MSPROD & MISC
/& CONT

; %#%% YRITE A - B*w
ADG.HOLD , DIT, RADIX.2, PSD, , , ADP.B2
/& WR.CMPX

/& R.MOVE , , , 4+ » » » » D.EQ.B2

/& I.SUBS A2,A3, , A2.EQ.AU, , , , , » D.EQ.B2
/& MSPROD & MISC

/& CONT

’

ADG.HOLD , DIT, RADIX.2, PSD
/& RD.MEM & DIV.BY.2

/& R.ADD A2,B3, , A2.EQ.AU
/& I.MOVE , , A2.HOLD

/& MSPROD & MISC

/& CONT

; #%% WRITE A + B¥*w
ADG.HOLD , DIT, RADIX.2, PSD, , , ADP.A2

/& WR.CMPX

/& R.MOVE , , , , 4 » » » D.EQ.A2

/& I.MOVE , 4, 4, , 5 » , » D.EQ.A2

/& MSPROD & MISC

/& JMP FINISH

EJECT

’
MXMULT::

3-7



NO.OP
EJECT

o wo we we

’

NO.OP
NO.OP
NO.OP
NO.OP
NO.OP

Ro Ro R Ro Re

JMP START s TBDL

* R R ¥ % B X ¥ X X X ¥

PROCESS VECTORS
ORG 1024 - 8

JMP START
JMP MXMULT
JMP FILTER
JMP FFT
JMP IFFT
END

e wo we we we

® X ¥ X X %

INSTRUCTION

3-8

EWN-O

® % X X ¥ X X X X X ¥

NOOP

MATRIX MULTIPLY
FILTER

FFT

INVERSE FFT



APPENDIX 4

IIR SECOND ORDER FILTER
SECTION USING THE
Am29510 AND Am29PL 141

3+ Microcode tield definiti
H
WORD 32
P31 - Output enable
P30-26 - Up code
P25 - Test polarity

P24-22 - Test input sele

P21-16 - lnstruction dat
P15 - 1lnput aata take
P14 ~ lnput select
P13 - MAC result sele
P12-11 - Shift register

P10-09 - Kegister select
P08-06 - Coefficient sel

rosS - MAC add/subtrac
PoY - MAC pass/accumu
P03 - MAC round/trunc
PO2 - Qutput data rea
P01 - Unused

roo - Error tlag

® W ® ® ¥ X X T W N N N

Application vefinitions

® W W W X W X W KX X X K

@ we We WO WS We Ve WS WS we Ve WO WE wWe Ve WE Ve WE Ve Ve we We we ws .we

’

DTACK: EQU 18#0 H
INSEL: QU 1B#0 H
MACSEL: EQU 1B#0 B
HOLD: EQU 28B#11 :
LDA: EQU 28#10
LDB: EQU 2B#01

A EQU 2B#11 H
AZ: EQU 2B#10

B1: EQU 2B#01

B2: EQU 28#00

WO: EQU 3Q2#0 :
Wis EQU 3911

W2: EQU 3Q#2

W3: EQU 3Q#3

Wy EQU 3Q#4

RND: EQU 1B#0 H
TRUNC: £QU RND*
ACCUM: EQU 1B#0 ;
PASS: EQU ACCUM®
SUB: EQU 1B#0 H
ADD: EQU SUB*
DRDY: EQU 18#0 H
’

INRDY: EQU 3Q#0 B
READY: £QU B#0 H
OUTACK: EQU 30#1 H
TAKEN: EQU B#0 H

ons

ct
a
n tlag

ct
control

ect
t control
late control

ate control
dy tlag

®* ® ® ® ® ® * * N " ® N

" *® ® ® ® & ® ® = ® ® %

Input data taken ack

Input select tristate control
MAC 1nput select = INSEL*
29520 instructions

29520 register select

Coefficient select

29510 round control

29510 accumulate control
29510 subtract control
Output data ready

Test condition input 10
Polarity control tor ready

Test condition input 11
Polarity control tor taken



H
;
’
C

ONTINUE: DEF 6H#2D:, 10D#0%,

/ 1V, 1V, 1V, 2V, 2V, 3V, 1V, 1V, 1V, 1V, 1X, 1VB#0
GO.PL.IF: DEF 6H#39:,1V,3V%E: ,6VE:,

/ 1V, 1V, 1V, 2V, 2V, 3V, 1V, 1V, 1V, 1V, 1X, 1VB#0
WATIT.TILL: DEF 6H#3A:,1V,3V%:,0VE:,

/ 1V, 1V, 1V, 2V, 2V, 3V, 1V, 1V, 1V, 1V, 1X, 1VB#0
GO.PL: DEF 6H#39:,1B#1,3Q4#6,6VE:,
/ 1V, 1V, 1V, 2V, 2V, 3V, 1V, 1V, 1V, 1V, 1X, 1YB#0
STOP: DEF 6H#3A:, 1B#0, 3Q#6, 6X,

/ 1V, 1V, 1V, 2V, 2V, 3V, 1V, 1V, 1V, 1V, 1X, 1VB#0
’

END

we

Only need a tew instructions tor this simple design

Continue

Go to pipeline it
Wait tor test input
Go to pipeline

Error halt



This program implements the equation:

y(n) = W(0)¥*x(n) + W(1)*x(n=-1) + W(2)*x(n=2) + W(3)*y(n=1) + W(4)*y(n=2)
The CC 1nput is grounded tor unconditional jumps.

1TO is connected to i1nput data ready

T1 is connected to output data taken

] we we we wo we wo

RUE: EQU B#1

Keep writing data on input lines until valid data 1s written
No ops keep data sampling synchronous

e wo we

’

INIT:

WAIT.TILL XEADY, INRDY, $+1,

/ DTACK*,INSEL,MACSEL*,LDA,A1,W0,ADD,PASS,RND,DRDY"
CONTINUE DTACK, INSEL*,MACSEL, HOLD,A1,W0,ADD, PASS,RND, DRDY*
CONTINUE DTACK*,INSEL*,MACSEL,HOLD,A1,W0,ADD,PASS,RND,DRDY*
CONTINUE DTACK*,INSEL*,MACSEL, HOLD,A1,W0,ADD, PASS,RND, DRDY*
CONTINUE DTACK#*,INSEL*,MACSEL,HOLD,A1,W0,ADD,PASS,RND, DRDY*

’
s Error 1f next data sample not ready
GO.PL.IF READY*,INRDY,ERROR,

/ DTACK*, INSEL,MACSEL*,LDA,A2,W1,ADD,PASS, TRUNC, DRDY*
H

s Output Ww(0)%*x(n)

CONTINUE DTACK, INSEL* ,MACSEL,LDB,A2,W1,ADD,PASS,TRUNC, DRDY

Error 1f data not taken
O.PL.IF TAKEN®,0UTACK, ERROR,
DTACK®*, INSEL®* ,MACSEL, HOLD,A2,W1,ADD,PASS, TRUNC, DRDY®*

Add W(1)*x(n-1)
ONTINUE DTACK*,INSEL®*,MACSEL, HOLD,A1,W0,ADD,ACCUM, TRUNC, DRDY*

Add W(3)*y(n-1)
ONTINUE DTACK*, INSEL* ,MACSEL, HOLD,B1,W3,ADD,ACCUM,RND, DRDY*

ws we (Y we ws (Awe we N Q) we we

Do W2*x(n-2), read data sample, error 1t not ready
FOREVER:

GO.PL.IF READY*,INRDY,ERROR,
DTACK, INSEL,MACSEL*,LDA,A2,W2,ADD,PASS, TRUNC,DRDY*

Add W1*x(n-1), output previous tiltered sample
ONTINUE DTACK#*, INSEL* ,MACSEL,LDB,A2,W1,ADD,ACCUM, TRUNC, DRDY

Add WO*x(n), error 1f output not taken
0.PL.IF TAKEN®*,OUTACK,ERROR,
DTACK®*, INSEL*,MACSEL, HOLD,A1,W0,ADD,ACCUM, TRUNC, DRDY*

Add wWi=ry(n-2)
ONTINUE DTACK®* ,INSEL®* ,MACSEL,HOLD,B2,W4,ADD,ACCUM, TRUNC, DRDY™*

Add W3*y(n-1), loop indefinitely
0.PL FOREVER
DTACK*, INSEL* ,MACSEL,HOLD,B1,W3,ADD,ACCUM,RND, DRDY*

lee N G) we o (Ywe wo N\ Q) we we () we wo

1
=
=
o
=
.

STOP DTACK*, INSEL*,MACSEL, HOLD,A1,W0,ADD,ACCUM, TRUNC, DRDY®*, TRUE

END

4-3



APPENDIX 5

IIR SIXTH ORDER FILTER

USING

Microcode tield deftiniti

e we

WORD 32

P31 - Output enable
P30-26 - Up code

P25 - lTest polarity
P24-22 - Test 1nput sele
P21-16 - Instruction dat

Application vefinitions

e wo we we wo wo

.

’

DTACK: EQU 1B#0 H
INSEL: ErQU 1B#0 H
MACSEL: EQU 1B#0 H
XN: EQU 4H#1 :
X0: EQU 4H#0 H
X1: EQU YUH#F H
X2: EQU 4H#LE

X3: EQU 4H#D

X4: EQU 4H#C

X5: EQU 4H#B

X6: EQU 4H#A

YO: EQU 4H#8 H
Y1i: EQU YH#7T H
Y2: EQU 4H#O

Y3: EQU 4H#S

Yu: EQU 4H#Y

YS5: EQU 4H#3

Yb6: EQU 4H#2

THE Am29510 AND
Am29PL141

ons

ct
a

H

’

H

H

H

H

s P15 - lnput data taken tlag

s P14 - Input select

s P13 - MAC result select

s P12-09 - Operand address

s PO8 - Operand KAM write enable

s P07-04 - Coefficient select

s PO3 - MAC add/subtract control

;s P02 - MAC pass/accumulate control
s PO1 - MAC round/truncate control
s POO - Output data ready tlag

® ® ® ® ® X ® ® K & % «®

® ® ® ® ® T T X N * X *

Input data taken ack

Input select tristate control
MAC 1nput select = INSEL*
Next data sample x(n+1)
Current aata sample x(n)
Previous input x(n-=1)

Filtered output y(n)
Previous output y(n-1)



4H#0
YH{
4H#2
LH#3
HH#Y
4H#5
4H#O
YUH#7
4H#E
4H#9
4HEA
4H#B
4H#C
YH#Y
1B#0
1B#0
ADD*
18#0
ACCUM*
1B#0
RND*
18#0

3Q#0
B#0
3Q4#1
B#0

DEF

;s Coefficient select

.e ws we

s 29510 accumulate control

29510 round control

s Output data ready

Test condition input
Polarity control tor
Test condition i1nput
Polarity control tor

.o we we we

6H#2D:,10D#0%,

TV, 1V, 1V, 47,1V, 4V, 1V, 1V, 1V, 1V

DEF

oH#24:,1B#1, 3Q#6,06V%:,

IV, 1V, 1V, 4V, 1V, 4V, 1V, 1V, 1V, 1V

DEF

6H#28: ,U4X,6V%:,

IV, IV, 1V, 4V, 1V, 4V, 1V, 1V, 1V, 1V

DEF

6H#3A:,1V,3V%:,b6V%:,

TV, 1V, 1V, 4V, 1V, 4V, 1V, 1V, 1V, 1V

WO: EQU
Wi EQD
Wa2: EQU
W3: EQU
Wiy EQU
W5: EQU
Wé: EQU
WT: EQU
w8 EQU
W9: EQU
W10: EQU
Wit EQU
Wi2: EQU
ZERO: EQU
WE: EQU
ADD: EQU
SUBT: EQU
ACCUM: QU
PASS: EQU
RND: EQU
TRUNC: EQU
DRDY: EQU
*

INRDY: EQU
READY: LQU
OUTACK: EQU
TAKEN: EQU
H

H

CONTINUE:

/

LD,.CREG:

/

LOOP:

/
WAIT.TILL:
/

H

END

O

Put 1n a zero coefficient tor nOP
Operand KAM write enable
29510 add/subtract control

ready

11

taken

.
’

Continue
Load counter
Go to label if C<OO0

Wait tor test input



This program implements the equation: .

yin) = W(0)*x(n) + ... + W(b)Ex(n=-6) + W(T7)¥y(n=1) + ... + W(12)*y(n=-6)
The CC 1nput 1s grounded tor unconditional jumps.

T0 is connected to input data ready

T1 is connected to output data taken

o we ws e we we we wo we

RUE: EQU B#1

Make previous operands = 0
’
INIT:
LD.CREG b#15, DTACK, INSEL* ,MACSEL*,XN,WE,Wu,ADD, PASS, TRUNC,DRDY*
LOOP s, DTACK, ANSEL* ,MACSEL*,XN,WE,W0,ADD,PASS, TRUNC, DRDY*
’
FOREVER:
WAIT,.TILL KEADY, LNRDY, $+1, ;s Synchronize to input clock
/ DTACK=*, INSEL,MACSEL* ,XN,WE,WU0,ADD, PASS, TRUNC, DRDY*
s Do WO0*x(n) \
CONTINUE DTACK, INSEL*,MACSEL,X0,WE* ,W0,ADD, PASS, TRUNC,DRDY*
s Add witx(n-1)
CONTINUE DTACK*, INSEL* ,MACSEL,X1,WE*,W1,ADD,ACCUM, TRUNC,DRDY*
;s Add wW2*x(n-2)
CONTINUE DTACK®*, INSEL* ,MACSEL,X2,WE* ,W2,ADD,ACCUM, TRUNC, DRDY*
;s Add W3*x(n-3)
CONTINUE DTACK®*, INSEL* ,MACSEL,X3,WE*,W3,ADD,ACCUM, TRUNC,DRDY®
s Add Wi®*x(n-l)
CONTINUE DTACK*, INSEL* ,MACSEL, X4,WE*,W4,ADD,ACCUM, TRUNC,DRDY*
s Add W5*x(n-=5)
CONTINUE DTACK®, INSEL* ,MACSEL,X5,WE*,W5,ADD,ACCUM, TRUNC, DRDY*
s Add wé6b*x(n=6)
CONTINUE DTACK®*, INSEL* ,MACSEL,X6,WE®* ,W6,ADD,ACCUM, TRUNC, DRDY*
3 Add W7*y(n-1)
CONTINUE DTACK®, INSEL* ,MACSEL,Y1,WE* ,W/,ADD,ACCUM, TRUNC,DRDY*
s Add wW8®*y(n-2)
CONTINUE DTACK*,INSEL*,MACSEL,Y2,WE*,W8,ADD,ACCUM, TRUNC,DRDY*
; Add wW9*y(n-3)
CONTINUE DTACK®*, INSEL*,MACSEL,Y3,WE®*,WYy,ADD,ACCUM, TRUNC,DRDY™*
s Add W10*y(n-4)
CONTINUE DTACK®*, INSEL* ,MACSEL, Y4, WE*,W10,ADD,ACCUM, TRUNC, DRDY™*
s Add wWl1®y(n-5)
CONTINUE DTACK=*,INSEL* ,MACSEL,Y5,WE*,W11,ADD,ACCUM, TRUNC, DRDY*
s Add W12*y(n-6)
CONTINUE DTACK*,INSEL*,MACSEL,Yb,WE*,Ww12,ADD,ACCUM,RND, DRDY*
s Wait tor pipeline delay
CONTINUE DTACK®*,INSEL*,MACSFL,YO,WE*,ZERO,ADD,ACCUM, TRUNC, DRDY*

s Output data, then i1oop back tor next sample
WAIT.TILL TAKEN,OUTACK,FOREVER,
/ DTACK*,INSEL*,MACSEL,YO,WE,ZERO,ADD,PASS, TRUNC,DRDY

3
END

5-3



APPENDIX 6

IIR ORDER 15 FILTER
USING THE Am29510
AND Am29PL141

s Microcode tield definiti
H
WORD 32
P31 - OQutput enable
P30-26 - Op code
P25 - Test polarity

P24-22 - Test input sele

® ® = ® ® ® ® ® ® ® ® *®

Application Definitions

® ® ® X X K wW ® ® T N ®

® We We We we W Ve WS Ve Ve We WE We We Vs We Ve we Ws we W we

’

DTACK: QU 1B#0 H
INSEL: EQU 1B#0 H
MACSEL: QU 1B#0 B
XN: EQU UH#1 H
Z0: EQU 4H#O

Z1: EQU YH#F H
Z2: EQU YH#E

Z3:s EQU 4H#D

YAH EQU 4H#C

Z5: EQU 4H#B

Zb: EQU 4H#A

Z7: EQU 4H#9

Z8: EQU 4UH#8

29: EQU YH#7

Z10: EQU 4H#6

Z11: EQU 4H#5

Z12: EQU YUH#Y

Z13: EQU 4H#3

Z14: EQU 4H#2

ons

ct

P21-16 - Instruction data

P15 - Input data taken tlag

P11y - Input select

P13 - MAC result select

P12-09 - Operand address

P08 - Operand KAM write enable
PO7-03 - Coetficient select

P02 - MAC pass/accumulate control
PO1 - MAC round/truncate control
POO - Output data ready tlag

®* ® ® ® ® ® ®* ® ® ®° * R

® ®® ® ® £ N T T ® ® * ®

Input data taken ack

Input select tristate control
MAC 1nput select = INSEL=*
Next data sample x(n)

Intermediate result delayed once



5D#0%
5D#1%
5D#2%
5D#3%
5D#U%
5D#5%
5D#6%
5D#7%
5D#8%
5D#9%
5D#10%
5D#11%
5D#12%
5D#13%
5D#14%
5D#15%
5D#16%
SD#17%
5D#18%
5D#19%
5D#20%
5D#21%
SD#22%
5D#23%
5D#24%
5D#25%
5D#26%
5D#27%
5D#28%
5D#31%
1B#0
1B#0
RND*
1B#0
ACCUM*
1B#0

3Q#0
B#0
3Q#1
B#0

DEF

s Coefficient select

Zero coefficient tor NOOP
Operand KAM write enable
29510 round control

.

29510 accumulate control

-

OQutput adata ready

Test condition input T0
Polarity control tor ready
Test condition i1nput 711
Polarity control tor taken

.o we weo we

6H#2D:,10D#0%, Continue

1V, 1V, 1V, 4V, 1V,5V, 1V, 1V, 1V

DEF

6H#24:,1B#1,3Q#6,6V%:, ; Load counter

1V, 1V, 1V, 4V, 1V,5V, 1V, 1V, 1V

DEF

6H#28:,4X,6V%:, ; Go to pipeline if C<>0

1V, 1V, 1V, 4V,1V,5V, 1V, 1V, 1V

DEF

6bH#3A:,1V,3V%:,6V%:, s Wait tor test input

1V, 1V, 1V, 8V, 1V, 5V, 1V, 1V, 1V

WOo: EQU
Wie EQU
w2: EQU
w3: EQU
Wy EQU
W5 EQU
Wo: EQU
W7 EQU
Wy: EQU
W9: EQU
W10: EQU
Wit: EQU
Wi2: EQU
Wi13: EQU
Wil: EQU
W15: EQU
W16: EQU
WiT: EQU
W18: LQU
W19: EQU
Weo: £QU
W21: EQU
Wea: EQU
W23: EQU
wW2auy: EQU
Wes:e EQU
W26: EQU
WaT7: EQU
wes: EQU
ZERO: EQU
WE: EQU
RND: EQU
TRUNC: EQU
ACCUM: rQU
PASS: EQU
DRDY: EQU
’

INRDY: rQU
READY: £QU
OUTACK: rQU
TAKEN: rQU
;

H

CONTINUE:

/

LD.CREG:

/

LOOP:

/
WAIT.TILL:
/

H

END



this program 1mplements the equations:

z(n) = W(O0)*x(n) + W(1)*2(n=1) + ... + W(14)*x(n-14)
y(n) = z(n) + W(15)*2(n=1) + ... + W(28)%*z(n~-14)

The CC input 1s grounded tor unconditional jumps.

TO is connected to input data ready

T1 is connected to output data taken

o we 1] ee we ws we ws we we

RUE: EQU B#1
s Make previous operands = 0
INIT:
LD.CREG vu#15, DTACK, INSEL* ,MACSEL*,Z0,WE,WU, PASS,TRUNC, DRDY*
LOOP s, DTACK, INSEL* ,MACSEL*,Z0,WE,Wu, PASS, TRUNC, DRDY*
?
FOREVER:
WAIT.TILL READY, INRDY, $+1, s Wait tor data to start
/ DTACK=*, INSEL,MACSEL*,XN,WE,Wu, PASS, TRUNC, DRDY~*
s Acknowledge i1nput, do WO*x(n)
CONTINUE DTACK, INSEL* ,MACSEL,XN,WE* ,W0, PASS, TRUNC, DRDY*
s Add Wi*z(n=1)
CONTINUE DTACK*,INSEL®,MACSEL,Z1,WE#* ,W1,ACCUM, TRUNC,DRDY™>
s Add W2*z(n-2)
CONTINUE DTACK*, INSEL* ,MACSEL,Z2,WE®* ,W2,ACCUM, TRUNC,DRDY*
s Add W3*z(n-3)
CONTINUE DTACK®*, INSEL* ,MACSEL,Z3,WE*,W3,ACCUM,TRUNC,DRDY™=
s Add Wi4rz(n-4)
CONTINUE DTACK*,INSEL* ,MACSEL,Z4,WE®*,W4,ACCUM, TRUNC,DRDY~>
s Add W5%*z(n-5)
CONTINUE DTACK*,INSEL*,MACSEL,Z5,WE*,W5,ACCUM, TRUNC, DRDY~>
s Add wb*z(n-6)
CONTINUE DTACK*, INSEL* ,MACSEL,Z0,WE*,W0,ACCUM, TRUNC,DRDY*
s Add W7*z(n-7)
CONTINUE DTACK*, INSEL*,MACSEL,Zf,WE* ,W7,ACCUM, TRUNC,DRDY*
;s Add wg8%*z(n-8)
CONTINUE DTACK*,INSEL* ,MACSEL,Zy%,WE®* ,W8,ACCUM, TRUNC,DRDY™=
;s Add W9%*z(n-9)
CONTINUE DTACK*,INSEL* ,MACSEL,Z9Y,WE* ,WY,ACCUM, TRUNC, DRDY>
;s Add W10*z(n-10)
CONTINUE DTACK*,INSEL*,MACSEL,Z10,WE*,W10,ACCUM, TRUNC, DRDY*
s Add Wi1l®*z(n-11)
CONTINUE DTACK=, INSEL* ,MACSEL,Z11,WE*,W11,ACCUM, TRUNC,DRDY*
s Add wWi12%*z(n-12)
CONTINUE DTACK®* ,INSEL®* ,MACSEL,Z212,WE®*,W12,ACCUM, TRUNC,DRDY*
s Add W13%*z(n-13)
CONTINUE DTACK*,INSEL*,MACSEL,Z13,WE®* ,W13,ACCUM, TRUNC,DRDY*
s Add Wild®z(n-14)
CONTINUE DTACK*, INSEL* ,MACSEL,Z14,WE*,W14,ACCUM, TRUNC, DRDY*

6-3



.o we

Save 1ntermediate result

CONTINUE DTACK®*, INSEL* ,MACSEL,Z0,WE*,ZERO,ACCUM, TRUNC, DRDY*
CONTINUE DTACK*,INSEL*,MACSEL,Z20,WE,ZERO,ACCUM, TRUNC,DRDY*
3 Add W15%*z(n=1)

CONTINUE DTACK®*, INSEL*,MACSEL,Z1,WE*,W15,ACCUM, TRUNC, DRDY™>
s Add W16®*z(n=-2)

CONTINUE DTACK*, INSEL* ,MACSEL,Z2,WE*,W16,ACCUM, TRUNC, DRDY*
s Add w17%*z(n-=3)

CONTINUE DTACK*®, INSEL* ,MACSEL,Z23,WE* ,W17,ACCUM, TRUNC, DRDY*
s Add W18%*z(n-}4)

CONTINUE DTACK®, INSEL* ,MACSEL,Z4,WE* ,W18,ACCUM, TRUNC, DRDY~
s Add w19*®*z(n-5)

CONTINUE DTACK*,INSEL*,MACSEL,Z%,WE*,W19,ACCUM, TRUNC, DRDY*
s Add w20*z(n-6)

CONTINUE DTACK®*,INSEL®* ,MACSEL,Z6,WE®* ,W20,ACCUM, TRUNC, DRDY*
s Add W21%2z(n-7)

CONTINUE DTACK®*,INSEL*,MACSEL,Z(,WE*,W21,ACCUM, TRUNC,DRDY*
s Add W22%*z(n-8)

CONTINUE DTACK*, INSEL®* ,MACSEL,Z8,WE®*,W22,ACCUM, TRUNC,DRDY*
s Add wW23*z(n-9)

CONTINUE DTACK*, INSEL®*,MACSEL,Z9,WE*,W23,ACCUM,TRUNC,DRDY*
3 Add W24%*2z(n-10)

CONTINUE DTACK*, INSEL* ,MACSEL,Z10,WE* ,W24,ACCUM, TRUNC, DRDY~*
s Add wW25*z(n-11)

CONTINUE DTACK®*, INSEL* ,MACSEL,Z11,WE®*,W25,ACCUM, TRUNC, DRDY~
s Add W26*z(n-12)

CONTINUE DTACK*,INSEL*,MACSEL,Z12,WE*,W26,ACCUM, TRUNC,DRDY*
;s Add W27*z(n-13)

CONTINUE DTACK+*, INSEL* ,MACSEL,Z13,WE* W27,ACCUM, TRUNC, DRDY*
s Add W28*%*z(n-14)

CONTINUE DTACK*,INSEL* ,MACSEL,Z14,WE* ,W28,ACCUM,RND, DRDY*

s Wait tor pipeline delay

CONTINUE DTACK®*, INSEL* ,MACSEL,XN,WE* ,ZERO,ACCUM, TRUNC, DRDY*®
s Wait tor data taken, then loop back tor next sample

WAIT.TILL TAKEN,OUTACK,FOREVER

/ DTACK*,INSEL* ,MACSEL,XN,WE®* ,ZERO,ACCUM, TRUNC, DRDY

’
END



APPENDIX 7-SCHEMATIC DIAGRAMS

A

—>ADDRESS BUS

A 1 1 it .
- T e i E 1l = NDATA BUS
AB-2 AL-8 AS-16 AL7-19 AS—11
29828 ﬂ” - A —rcna*i o —IO0R
2,08 296826 29826 "asszgw "294; | 9486
= Tt
7 —
L/2
i Dp~2 T PR BYTEL
R i i —
9517 2 e e/
22V108 | 2947 scs Q47 ses 2847 ses
G- B T (2> &_———-I (2> vm 2> 1
/INSTR :‘ % dHUd ( 97
~,C DELAY
" . N
CIRCUIT f—/IOWC [ pPAL e BIEN
172 PAL f/I0RC Q ke T /BYTEH
—
A 22u1D i m" _ ,m, R 22V10] /108
_lARBITER L | WET
2 Loeic : = 2148-45
— — 8—45 —
B HREQ
I JER
ZINIT /Q I—-——-—— I
—1 27545A8 J | L
Ccs 2947 rl—rWER 294? /R _—/NEI 2947 tm k—sWER [2947 ror /WETI
2982?17.&;31& (sl (2D 1o (25 ses (2> e /Q
29845 = jr
IR -o= | 20827
=L = = i
- 5510
SN : 72 |
2910A as2 77— | DSP_REAL_DATA BUS gcgzﬁ
l /MAP
cC | EEGL IMAGINAR
—_— < CT_ aLu n
MEMORY ¢ — 29501 ) 29391
2)
SELECT > FFT [
Locic [—>Q N COEFF. =
 PROMS JL
20526-9 S><b< 29827
<> 74';g§53 1 2> MULTIPLIER
\ 29520 L oF 4 Tbx 28517
29548 —) 2958 I l
FILTER
298 CFC’) v J
29116 = e N PROM DSP EVALUATION BOARD
—T

7-1




/]
£ B
8 G|
g g
ABG
/nEGlﬂ VABGS  Z|/ABGH ABEGE ,ABGLE FABGE Z é‘g 7ABGLE 7ABGL7
B B|H B
G G|d g
4 +5U 4/ 1
7 Y5 Y3
OEL uss Ve
OoEa 28828
D Y8 Y4, Y2 e / N
1 ]
= .
RN3-
+5U
T
n;s 4 s Ao e e Lro o . .
o7
DB S 8
EOP uss D8
H—G%_ 1 GND as17a %%4 3 DS vee,
us4 DBY] f D4 GND
0B 2 D3 cP
ﬁm\e/nnﬂ RES  ,TOW ZOEL
/TORHREQ ADSTH X
L"ﬁﬂz G 3 leE |6 )
Us3
7l8lsk |3kt
pBGa DBG2) DBGR
\— DBEG
1 l
o
usa 4gu
L‘ % 2 1y 14
7/ADDRL _ GND
A Q Uce GND /aingv L ne /ADSTB /POLL vee
i 4% a1 INSTR
¥ u74
u7a /BHEN an 2avia
22010 /BPRO 'B’ |/ T0W coa)
/BREQ REG co3
{CDLI/CORT _ (BERN/FLYD /BYTEH {BYTEL ZHINLT ~LOADL
4 ISiei? 5-D8
2 AR B o =
Z ; ZINIT)3-BL 4-CL
4 fil f i
[3) Rl W cl P é
R 0| T L] R g
C] C|] C K] N N 1
<) 4 (= g ﬁ
Pl (P o & il v H
8 ElE el Kl E Ul 1 ERR E R RRE g 5 3
R 3| 2 ARl |3 Y & i El [E] EEMENE é Nz Y
ile L @ g v v 21E101515iG.5 u2d/ T
12 4 P
189 g ,—E,“a“a % g 898 g g 10101010 4 5
DD 414 cBCB CBCH o D
L1 t 88 I144 {144 o 8

DSP 1/O

7.2



DB >
<DBG'? DBGO 5-D4

5
9
+5V ip |8 B |7 6 |5 3 ——1E>B— 2 9-A1, 2-A4, 5-B8
D7 D6 DS D4 D3 D2 Di DB
RNS-22 vee Le B2
GND o3 123,
241 pre ulia soe2)2l RRR 3 )le-A1,5-B8
29845 NNN U117
11 1 111 450
/CLR ~OE1 533 Uitz
7 Y6 YS Y4 Y3 Y2 Y1 Y
S L7 B IS pejet p2
< DBLDSBL p— > 1913 19010 C HIEEE >
1 |5 5 +5V
RN3-2
48U g sl s
3
nc g SSNC SSNO €x|3  CLKSELL poLA B C |,
1 % CLKSELD 2Bluce el
X Ao ulles L2 -Lin- p1 IS ==t >-5s
NC g 2925 L3> Ny 1810 U113 ISSTR
| 4
© Vecft3 M RN3-2 s 2922 72 =
NC 17
A e vce N3 B RRRR R RRR R g,CLR D3 13 5-D4
. 2| o /HeLT 1? 5 B p Dy 5 SEN N s 2;:5 D4 5-D4
D> Bl ZWATTRE 5782 3423585 | i ps L3 TR s 01
X1 ox P 116CT
= /RUNES »——J-qGNn ps L2
o /READY 122 _
1S 1 %g 1 7 28 15|89 112 |6 [31
FIRST, o BR@ 34[pe/™FP Y11 12 13 1@ I1 ~PL CP ho +
C1 %; LLAST_wWAITACK BBpnlz 2oD1 sFULL (Vele
g;cz A BRS 25Dz RN3-3
21p3 iS5
BR4 > RLD
D4 52
BRS 4 cI
DS uiis
BRE kg e /o€ B2
BR7 RE:] pd 2810A 50
BRB 21 o GNDF
BRO > /CCENJL
=22 14
D10 scc
BR11 27, D11 Ya Y7 Y5 Y3 Y1
Yiivie vy8 ' Y8 " vy4'> Y2 'l vl SVECT ?|ep
28] 26[24[22[20]18] 3] 439 37 353 5 o D8t ZERo 7-C5
GND prjil I_CARRY |7-cs
< I CARRY
ABH10 ABHY
< s %




+5U

A2

— ApBH —
[ABHLO ABHG ABHA ABHO 'ABHO ABHA ABHD ABHA T I
ABHLEA ABH1@ ABHL@ ABHL@ ABHL@ ABHL@ ABHL@ '
pibobdt ajau B lsl7 8 bal 4 8 b y a
LQn7n54r-)32 % = Lniéan4 AE27AZ 3 19 3a4 5 ”; 1 223L (213 4557 L1234 572 Fu.ae L 2394 617 L [2]3 =Bid 2031 |2 13 =R rd
28] et B P i ™ Ml i P | P9 A7 RS RITAL ha" a7 as A3 Al e a7 Pas aa a - % "7 a3 n )
- /INIT INIT 20
afiee use e ug7 Gee uss [24 7T gg 24T 100 2™ Ulel 2™ Ule2 T Ule3
) 27545A = 27S4 GND GND o vee uee 24 e
ls| s S458 g 27545A Qe  27545A o 27545A Hoo  27545A Bow  27s45A s 27545A
cp e cpld o all’ “E )
Q7 05 05 Q4 03 02 Q1 Q@ P SP
716 |15 L4 13 L1 |10 [ Qyﬁ%;ffif °I7°fs°f5°4 93,92 a1 0d Q7 0B 05 04 63 02 01 0B Q7 05 Q5 Q4 03 Q2 QL Q@ Q7 OB Q5 Q4 Q3 02 QL QP Q7 0B G5 04 03 02 0L &8 Q7 05 Q5 04 03 Q2 Q1 Q@ o
L7[ie LS [L4a[IS L1 TI@ 17118 |15 L4 L3 JLL |18 L7ILE L5 |14 |13 L1 L@ 1716 |15 L4 L3 L1 L 17|16 |15 [L4 |13 L1 [T
V. Vg N V
Ij I Il If 1 Il I || If If If I{z| I Il I 1| I I Rl Rl R| R| R R Rl Rl Rl Rl R R| R PRR‘RJRRR
M| M Bl Bl B Bl B Al Al A| A| A| A] S| S S| R Rl R Al gfﬁnnnnn M M Bl Bl Bl Bl Bl B Al Al A| Al Al Al 5| S 23232233 5D
o Il 3 3] 3| 2] 1 1 3|3 2| 2 L] L o]lo ol of of O L Il I g| I| I] I| I |1 3 3 2 2 | y 3l 3] 2| 2| 1| L o| © 221 B E
ol o i o 1 @f 4 el Ll o 1| o] 4| p| P = Pl P u| Rl o] o]l o|l o} o ol o @ a i o 21 2l Ual tlrle of of of of L LfL|L el a| | (| Bl Bl B| B
2| 3 ol 1 2 i 2 3 a| 1 2| ef i 2| 3 al 1 pl Bl P| P| Ul Uj U|U 11| Al Al Rl Rl R| R
A 2l o] 1| 2| ] 1| 2| 3 1] v Y| o i 2| 3
L . 01 1
B FBUS
H ’ AREEE B| B| B| B 1 1 C
A i o 4] p| 5| sl 8] A al Al 1| 1 B| B| B| B /| 8| s| B| L 1 IR
11 1 1 1 48R F”EJng gglgﬁétl Hi 2 sl a4 oo R S I I e al r| =l R| R| R| R| R 7 o 1| v| 2 a| 2| @ ol SIS Sl S
EREEERERE Al M oo ¢ 5 S| N g 4 i R g E g 8 g 7| 2| o| o 2| 5| 2 s| s| 8| 8| 8] 8] K| ¥ 1|1 a| 8 7 854 N Rl R|EL D ZEIHE EHHEE
o1 I e D s| E £l E| x| g Al g 8 E N I|I 14 5 -| 1] £| E| E ele| 1| ] I 1| S| 8 e T €l 32 1@ oo gk
o o o 9 Ui Pl L UL Df of © 1 4 1] 1 LfL a| 2f 1| e E| E D L
0 I 5 I R £ 5) Dl L il 2 LiL cl L 3 2 Ll e
1 e 2| 1 2 U I N E 4 K I Y e 1 1l @ 3l 7
s Fi ?‘ Bl 1) 1| 4 ¢ i I -
° badlasee 4.
i o 8
B -]
8 gl B ; é Tl T +5U
4 5| 4 RN3-!
L7116 |15 141311 1o |g L7)16 [15]14[13 11 ta|a 17116 |15 [14]13)11 1o ]g L7LE |15 [14[13 (11 j1m o L1716 [15[14]|13 )11 i@ ]a 17)16 |15(14(13 11 ia|g 17116 |15 [14(13)11 [1a g 176 |15lialisls o
|z 706 05 04 03 62 01 a8 gras as a4 0302 0L a8 | ,[a7 a5 05 a4 63 02 o1t aa 9706 0504 0302 a1 0B | o,[a708 0504 0302 G108 | o,fQ7AB 05040302 G108 | 5, a7 08 a5 64 03 a2 aLoa | | Jav a6 65 a4 03 02 a1 q@
5 22 5a 2 20 ce —{-ce csa
ZINIT |11 @4 - ZINIT (195 GJ/INIT ul@s SI/INMT 17 —a]7IMT  U1@B T ules —ﬁ-/mn’ (WER o uiit csalLe
GND CP 51 CcP
o 275450 N 27S45A no 27S45A oo 27545A Beo  27545A  F[TEe  27545A T iEew  27545A g 2752818 e
L/ /E =] P /E /E /E
ALB A8 AB A4 A2 AR Al@ AB ABS A4 A2 AG AIZ A8 AB A4 A2 AR AL@ A8 AB A4 a A
P TR b= Ag ;‘i? ZRS A3 Al 9 A7 AS A3 AL RL%;RBQ'?gsgsgdgagzm_% _Ag 7 __AS Qsazﬂlﬁa QL%QABQ7QER n493929.|.n. ALA AB AEB A4 ngn A QL%QQER'?QBQS‘MQBQEQLRE
1baball |23 6|78 bap3ll 2Bk B [s8]7]8 1pap3ly |2 6|78 2 8|78 1p2p3 (2 6|78 1pap3 2B KW B |B(78
\V
ABHL@ ABHL@ ABHLA RBHL ABHL@ ABHLB
laBH1G ABHA ABHA ABHA ABHA ABHA ABHA ABHA ABHA
ABH

mu:llm|r13>\'

DSP CONTROL STORE




[ CLKAJ3-A2

nCcwx

1IBI15 Lie1a
3-8 01
aysaly|a[3lals s 7l8ls asli disis
DLE 6% i T
8- 11111188 43218
p bES4531 @ 78 3 viofE3 DBLE
vi4P2|oBLL
IEN 190 1N U44 M
SRE 2o o 29116 v143408L2 29540
- o viske |oeL3| |peLs 31
+5u 48, a1, 1 &Y crfB P
g Ucc a 8 Al
11,25,35 44 op gt Be, pue A8 A8
yi5 Y13 YL Yo Y7 Y5 Y3 YL taflefasaysialllls ABES ABE? ABES ABE3 ABER ABE@
v 4 Y12 vi8 _vs ‘vy8 "va Y2 v@
393 {3437 |38[39(424546147|48) 48505 1,
y alda EECEE
ABDLS AB0A ABDZ ?.EEQI g BBB] gEBBBB
“AED FEEEEE £| €| E} EEEEE
ABDLY) GEIE] 5| 4 EECEEEERE
12
11 +5Y
13) U™ De DE D4 D2 D@
OE vedR4
uag
20821 onrf:2
~CFADR o
o8, Y6, Y4, .v2  YE
1
i gl b igehzalell | L CTooo
7 + +5U
lcos D8 DS D4 D2 D@ be"he D402 D@ ne” D8 -pa 2" be
SIN uee uss  soE Voo use ot cc usL
| GND 29827 opaft3 28827 JoE GND 29827
o5_04 02 0@ !
0705 03 0L GND 05 03 0L &N vo By "Bye¥4, Y2, YO va By7"Eysr 4yaray va vg By7"Bys" 4y
T pn (=A% NZF =] F. TALELS)

ABAB ABAB
ABA
ABBY ABER ABEBY | | ABEG
ABB

COS
IN

cos

BIN

nwD

A DSP ADDRESS AND
COEFFICIENT PROMs

7-5




<

DBF
D[D[D]D D[D|D|D D|D|[D][D D[D[D[D|D|D (D D[ D| D| D[ D[ D Dl D| D[ D] D] D] D[ D] D| D
B |B B |B B |B |B (B B |B|B |B B|B|B|B|B|B|B B| B| B| B| B| B B| B| B| B| B| B| B| B| B| B
F|F|F|F F|F|F[F F(F|F|F F |E |F |E |F [F|F FI|F|F|F| F| F FIFIF|F|E|F|F[FE|F| F
1111 111411 18|87 6|5|4|3|2]|1|@ 11 1)1} 1] 1 gl 8| 7| 6| 54|32 1o
5|5|5|5 4321 2 S|4/ 32 1| @
2N = +a +qv 450
L 755432|1L 7[6[5(4(3|2[1 7[6]5]4(3|2]1 7{6[5({4(3]|2]1 18 19 27 21|23 23 141516 17168 1927 21| 23 23
16 11 — 16/13 11 - 13 —11 - 13 71 — YSY4Y3Y2Y1 Y8 YSYBY?YBYSY4Y3Y2YIYD
U I1 11 _-I3 I1 I1 _-I3| LB 1 -13| 16 I1 _-I3 24
SOR 10|lop 12~ 18  -I2 MU°12 Ig -12 7| (glcC12 18 " -12 | " fVefr2’ 18 12 vee
=1 }=1%] 74
/SFL:R 193 si 2541 51 25510 A1 25510 g 25510 2%?3527 B 2;];27
= = /4
q& JOE 13 o fic py FiE s 14 0E2 GND—
o8 laydr3 Y2 i v GNOY3 Y2 Y1 Y@ cNDY3 Y2 Y1 Y@ npY3 Y2 Y1 Y@ DS D4 D3 D2 D1 D@ DS D8 D7 DS DS 04 D3 02 D1 07
11 |12 [13 [14 11 T12 13 ]14 B 111 [12 [13 [14 B |11 [12 [13 |14 6] 5| 4] 3| 2 1fig of 8] 7| 8] 5| 4] 3] 2
D |D |D |D D |D {D |D D |D |D |D D |D |D |D D| D| O/ D| B| D D| Dy D| D| B| B| B| B| B| D
< |B |B [B |B B |B |B |B <~ |B |B |B |B <~ |B |B |B |B Bl B| B| B| B| B Bl B| B| B| B| B| B| B| B| B
M oMM M MM (MM M M MM M (M (MM M| M M| M MM M[ M| M[ M| M| M| M| M| M| M
A N R 1 |1 |9 |8 7 |6 |5 |4 3 |2 |1 |o 11 1) 1] 1| 1} 1 g| Bl 7| 6|5|4|3/2 1|0
5 [4 |3 |2 1 . 5|43/ 2| 1| @
M DBM
B
u
S
DBE
DD jD D D|D|D|D D[D]D]D D[D|D|D|D|D|[D D[ D] D[ D] D] D o[ o] D] O] o] D] O] D{ D] D
B [B|B |B B [B|B |B B |B |B |B B|B|B|B|B|B|B B| B| Bj B| B| B B| B| B| B| B| B| B| B| B| B
E|E|E|E E |E|E |E E |E|E |E E (E |E |E |E |E [E E|E|E|E|E|E E|E|E| E| E|E| E{ E| E| E
11111 FR U A 19|87 6(5]|4|3|2]|1 |@ 1] 1] 1] 1} 1f1 9| Bl 7| B6|/5/4/ 3210
5|5|5|5 4 (321 (7] 54| 3{2 1| @
45U +5U +5V +5V
1 7 |6 43|21 Lj 7|6[5]4|3]|2]1 Lﬁ 7:55432L1|L 7|65 |4 (3|2 ]|L 16 19 2d 21] 2329 %3” 14191517 16 1929 21| 234 23
i=PAck 1 -I1 -I3 oe I1 _-I1 -I3 53 1 —-T1 -I3 5&3 -11 -I3 YSY4Y3Y2Y1YB YSYBY7YEYS5SY4Y3Y2Y1YD
SBI 19|gp 12 IB  —I2 1, I2 I8 -I2 1olspI2 I8 -I2 lz52512 Iz -1I2 Vce
)
'7%:%"% =t 2551n s 25510 £ 25510 At =Y U872 70 UB:
A 7 ] 7 g 7
1 . E % IE P 5510 e 25510 29827 14 .,0E2 29827 enolL2
GNDY3 Y2 YL Y@ GNDY3 Y2 Y1 Y@ GNDY3 Y2 Yio Y@ NDY3 Y2 Y1 Y® D5 D4 D3 D2 D1 D@ D9 08 07 06 DS D4 D3 D2 D1D@
N / |UB=2 1112 |13 |14 11 12 [13 |14 11 [12 113 |14 Eﬁ 11 12 |13 |14 7] 6] 5] 4] 3] 2 11dg of 8] 7] 8] 5] 4] 3] 2
D (D |D (D D |D (D |D D |D |D |D D |D [D |D D| D| D| D| D| D D| D/ D] D|D| D D|D| Bl D
N I|B |B |[B |B <~ |B |B |B |B B |B |B |B B [B |[B |B Bl B| B| B| B| B B| B| B| B| B| B| B| B| B| B
N [N IN |N N [N [N IN N IN [N |IN N [N [N |N N[ NI Nf N| Nf'N N[ NI N/ N| NI N| N| N| N| N
1 11 11 |1 1 |1 |9 |8 7 |8 |5 |4 3 |12 (1 |@ 11 1)1 1)1 gl 8| 7 6|5 4|32 1@
5 |4 |3 |2 1 5{4/3/2 1| @
DBN
SHIFTERS

7-6




MBUS

>-50 (T S cout
a—aam—“s [zERO

<_f DBM < BN
DEMLS DEME DEM? ——— G ] -0t DBENLS DBENE
7L
24 —<EE ] 7-c8 Lol et chab o { o
JSout Sout CILE J7-cs +5U DDDDD D DD g S8
IIIIIILI
J RALU3 T22 00000000 1an 57 IALU3J
Cin a 7685432 1@ TALUZ)]
121 7] AN =18 S
. RaLUL S5) -0 = 120FS 18
=11 7 & ND 11gff4 I6L.UP
e . 125 < -G s B
Vee ROPL B0, ], - I24F0
GND I23 1238
128 4k 128fF4
127 "1— cout 107
128 /Pg /PL/P2 46} 1o6[E-
ZERO b4 1a
OUERFLOW 18 UL2e A 18 =
17 17883 1Ai0
RA2L 36)7, o 29092 overFLOW LS L N T
19 29501 1aBs_1A20
112 CN+X CN+Y_ CN+Z 1128 1A -
IiL 12] 1 g 1P 2!
Ii4 A 1142 _IB
IDBTLS [2SIMIO? Bla 391, o MIO? I13jRd 1B01@
MIOB I18 |0BOL4 231 \1og 116F B
2 mros 528 4u)y o 7-0 DBOL3 | MIos 115kl 1520
TEEITNT, N oo :4 18 HOB0L2 19 { o4 11gft4 183
STCTN]C=l8 | DBOLL 17 EBTER
IDBIL@ 14 nig: MIOS 2 ﬁ'? CLCIN o MIO3 L7 ThTo3
L3 mros 18 [DBog 32 | MI92 rej3z IMi02
oL 3 ~ DEoE 1 | MIOL Is M10
| DBO8 1@ |
MIoR ETCTIET: iy MIO@ 14|32 IMIOR
Roroz 28] o 1e}26 10102 o
RDIOL 2 bs 1oroll
o I3k croroe | [Roros 28] p|A2 == B b I3
MIB MI4 MI2 MIBI2F——" I2 M1 MI4 M MI4 MI2 _MI@E LHLoe MIg_MI4
IS MIL MI7 MIS MI3 MIS MIL MI7 MIS MI3
5 8| 7 6§ f?rz 1 8] 7 6] 5 4
DBR1S DBP8 DBP? J L DBPLS OBP8 DEP?
TOBP
l ‘ TBP1S Pa
057
DBI? 08O
13483552058 L1HRAD LD S0 2 e
4 - Py P B3 P RND
: o] 15, P15 B35 pa3 pz%__‘ nmp 51 BRND =<
FRPR o Yt‘;' ':.i‘; F5% P2 Pob BB pie FAM3 ra
s a5 MgPLSP
57 DG BS B4 B3 B2 BL BD : Lly12,pi2 /MSPSE e
RMIO3 : vt PLL S
14 g 2 !
TR - S{vio, pio xHBL
|BUFCD gl-p Hva, Py A
'I Bly7,P7 uas ,oerfd2
A7 _AB AS A4 A3 A2 AL Ap ~]YS, PE 29517 Fri44
CE Y5, PS JENY
Y4,P4
NZ Y3, P3 /ENP <
Y2, P2 ZOEL]
YL,PL 7OELEED
DBO@ 9 Y@, PO Ve
DBOLS DBO8 0807 X14 X12 X18 XB X6__X4 X2
05O RS
{7 DSP/ARITHMETIC
(5
L
K
D|




OBT15 OBT12 DETIL DBI18 DBIg_DBIE BT DBT7 D518 BETSDBT4 DBig Dotz DBIL B0

VvVVV

%]
JLII l:;UE —JL:
S T LM T10 _r_lga BEY --'--'IIIS BIC DBIZ 73 D52 I3 T_I_
1 lis Y 1 lis SV 1 s 9V 1 s *SV ;1 hs SV 1 hs Y 1 s +5Y 1 hs Y ‘L
162G 16 26 16 26 16 26 162G 16 26 162G 1G 26
2co vce ﬁlaca Uce ﬁlaca Vee +9ece Vece +9ece Uec Uﬁ!aca Ucd| +9fco Vee “Goce Vce
oc1 = oc1 g oc1 =) 2c1 = oC1 g 2C1 g 2c1 =) oc1 g
2y 2y 2y, 2y g =2 2rE 2v 2, 2y 2
2c2 ] e o) B 18oca s 1aca 13oca 1oca 12ac2
2c3 U36 13loc3 U37? 13lac3 U3B 13l5c3 U39 13loc3 U4B 13laoc3 U41 13loc3 U42 13loc3 U43
7415253 s| 74LS253 s| 74LS253 sl 74LS253 s] 74LS253 gl 74LS253 sl 74L5253 s| 74LS253
1Co 1co 1co 1Co 1ce 1c0 1Co 1€
5 5 5 5| 5 5| 5
1C1 7 1C1 7 1C1 7 1C1 4 1C1 Fe 1C1 7 1C1 7 1C1 7
1c2 1Y 4ica oy 4lica 1R 4ica Y =2 Ier) YA 4lica 1y Hica n Hico 1y
1c3 3ic3 Hics ica Slics 3ic3 3ica Nica
GNIn B NDn B l_aswng B 8Ny B BkNDa B NDny B ~BloNr, - B NDn B
14 2 4 12 g |2 114 2 I 114 2 % 114 2 é 114 2 l |14 2
~z | | <[;
oL — — — — = =

DEKIS —OEKia ———DEio TR DR DERID ) == W —TEKZ T DBKT

B

XSELL XSELZ

DSP MUX




2-a3

2-m2 ZIOR

Yo ]=]

2-ns [ >———

@11 1213 14 4S5 1 8 |7 @ 12 i3 |14 15 19 11 12 13 {14 i5
1 E s g 7 +5V 4] +5V i 3 sl g 7 45U i 2 8l  +5V 19 16 17 16 15 14 13 1 +5U
g9 |AB AL A2 A3 A4 RS AB A7 8 1AB AL A2 A3 A4 RS AB A7 LT 8 ]AB AL A2 A3 A4 AS AB A7 8 | A2 AL A2 A3 A4 AS AB A7 8 | B@ 8L B2 B3 B4 BS BB B?
> —— Cm—>—
a8 2847 vecka @ 2947 ve Eea | | 2947 ecal 10 2947 o e | 2948
TR u4 D TR us S TR us TR uv TR ul
BA BiL B2 B3 B4 BS BB B7 <L B@ BL B2 B3 B4 B5 BB B7 B@ Bi B2 B3 B4 BS BB B7 B@ BL B2 B3 B4 BS BS B7 $ AB AL A2 A3 A4 A5 AB A7
19 169 17|16 15 14 13 1 19 16 17 16 15 14 19 L 19 16 17 16 15 14 19 1 19 18 17 160 15 14 13 fl 4 9
D (D DD DD |D|D D |ID D DD D |D O D |D |ID D |[D|D {D (D o |oD /D jD |D D D |D
R EEEEE A AR RN 1Hi11 A TR AN
B |B B B
8128 S |8 |7 B8 |8 |1@]ii|12]13]14i5 ?.EEEEE'? 8913111_1314].5 g
H
10 11 (12 13 {14 U5
D D 0 u] D D D D
B B B B B B B B B B DBH
E B B B B B B B B
2 13 14 s 8 a 11 12 13 14 15 8 8 1@ 11
1. 1 1 11 +! 1 1 1 14 1 1 1 14 +5V 1 1 1 14 +5V
1 I,s0L I,02 I/03 I/04 T .Ld Is0L I,02 I/03 I,/04 l.d I/0L I,02 I/03 I/04 1 I/0L I,02 I/03 I/04
a|?F 2148-45 vecpal € 2)48-45 oo L= o |7 2148-45 vecfBl )M D) 48-45 Veept
sc8 uiz2 GND o) ulL3 ,c8 uli4 GNI scs ulLs GND)
nmmzn;nmmm ARALA2A3A4ASABRPABAE ABRLAZAIA4ASABATABAT ABALAR2A3IR4ASABA7ABAS
7| 4} 3| 1] 5| 8] 7| 4] 1]
““““““ "_ ; AR B RA D sDBHL2 ——PL TBL
ABA B
sDBHLL
hph h h h B —“__
B B B B BB
PRP R al RR _&- (PL - 89)
5 7 -3 i 5B |7 k=] il2 K4 PL L=
KEEER ! u EEKEEEERY! +5U 8| 7| 4 3| 2[ L +5U EE K a1 +5U ,DBHQ@
pa-] ABALAZAINIASABATABAY i@ APALAZABA4ASABATABAS 10 RBA LA2ASZA4ASABATABAS j 10 ABALAZA3A4ASABARTABAS Jr—
| 2148-45 uvcclEl ME 2148-45 UecdB -mz-m o | 2148-45 yechal 1 2148-45 Yo (F1=85)
,c8 uz2m GND scs uz21 GND sca u22 /s u23
I/0L I,02 I/03 I/04 I/0L I/02 I/03 I/04 Is/01 I,02 I/03 I/04 I,01 I,02 I,08 I/04
1 1 1 14 1 13 L 11} 1. 1 1. 14 14 1 1 11
0 0 D D D D D e] D 1} D 0 D D 11} fu]
B B B B B B B B B B B B B B B B8
A 2] A g {2} A A R B B B B B B B B
4 S [ a8 1 2 3 > < G 7 1 2 3
DD DD DD DD D (D |D (D (D |D |D D
B |B [B B |[BB B |B B (B |[B |[B |B |B B |B
; SRR EEEE FADAAAA
18 2 113 |14 USs
n 5 + fl + 1| E 5 K +5V 4 4 gl +§Y
9 1A AL A2 A3 A4 AS AB A7 8 A8 AL A2 A3 A4 AS AB A7 QREALRERStMQERBA?I B | AB AL A2 A3 A4 AS AB A7
@ =847 U0 @ 2947  veckd ©  2gay  vegE | 2947 veofd
Ule U28 onppd, i, p U29 GNDLe el RO Uu3@ s MRS PP U31 GND
B@ B1L B2 B3 B4 BS BE B? ‘L B@ BL B2 B3 B4 BS BB B7 B@ Bl B2 B3 B4 BS B B7 B@ B1 B2 B3 B4 BS B8 B7

W W
E E
R I

MBUS

DSP DATA MEMORY
(FIRST HALF)

7-9




2-As

a-As5 ZWEB

s [ >—

oMmE

10 {L1 12 3E4 S

n 1 & |7 ie U1 [t2 If3 |f4 {5 fe [f1 {2 I3 {4 s
1 3 5 7 45V i 2 4 7|a+ 1 3 7 50 1 2 8 45U 19 18 17 16 15 14 13 12
o |Aa AL A2 A3 P4 A5 RB A7 I 0| A2 AL A2 A3 A4 AS AB A7 —A4 o |Ae AL Az A3 A4 a5 AB A7 o | na AL A2 A3 A4 AS AB A7 o | B@ BL B2 B3 B4 BS BS BY? l
co 2947 ved €D 2947 vee ZCERT cn 2947 ve cn 29477 vce 2 2-B8 cn 2948 vce fg
™" Us onobd il n “Us ule  Tle onofle ul. . Ui onp e 02 eNo
B BL B2 BS B4 BS BB BY? ‘L B2 BL B2 B3 B4 BS BB 57 | BP BL B2 B3 B4 BS BB BY ‘L Be BL B2 B3 B4 BS BS B? | AB AL A2 A3 A4 AS AB A7
18 16 17 16 15 14 15 L 16 18 17 1615 14 13 1 19 16 17 16 15] 14 13 1 12345’575
Do jojo oo oo b lojoplojp oo o o |lo|lojo o oo o
B B |[B {B |B |B |[B B B |B |B |B |[B |[B |B |B aaggaaaa ,DBHB
(o T S [ =~ ic fe le_lc_|c lc D [o |D Db [o|p b
@ ERE] S |6 |7 B |6 |fe|IL]i=]ia{lalis 8 |8 [ie]ii{in|1a]14{15 ZOBHL
/DEH2
/DBH3
D 1] D D D D D D /0BH4
B B B B B B B B
D fi] D D D D D D ZDBHS
2 [13 |14 5 &l @ it 12 |13 |14 15 &) s I re R, /DBHE
1 1 It FE! I 1 1 1 T ey 1 It L 1 ey 14 1 1 14] DEH?
19 1,01 1,02 1,03 1,04 1d 101 1,02 1,08 1,04 25 1d 1,01 T,02 1,03 1,04 14 1,01 1,02 1,03 :/04—|
o|c 2148-45 uecpal 1 2148-45 Yecps L a|”F 2148-45 vecf@ - /E - 2148-45 Veopd EEREEEER:
,ca uis enof8 scs uLv GND S sca uis GND) ] uig G 2-58 I P T —————
ABALAZATA4ASABATABAD AZALAZABA4ASABATAEAS ABRLAZABA4ASABATABAG ABALAZABA4ASABATABAR R 2
cp vee |28
‘ - - - 2946
5 8 )} Li7sls Sl B 1L R GND
"""" i i & EE & B@ BL B2 B3 B4 BS BS BY?
D P EEREEEEER BEERREE bbbk E oL EBMEER D D 16] 18] 17 18] 15] 14 15[ 12
B ABB B B
C D H DBGYL
IBGL ]
B B DBG2
7 |a L]= | DBG3
kK 1] . s8] 7 4 1] oy 5| & 7] 1 . FEKEEER BG4
18 | ABALAZABA4ASABATABAS | 18 | ABALAZA3A4ASABATABAS J 2-AS 18 | ABALA2A3AIASABA7ABAS ﬁ 18] ABALAZNIAMASABATABAS DBGS |
o |c 2148-45 uschal 1= 2148-45 vecps L2 > o | 2148-45 uwdl _|™ 2148-45 Ucejla ooes
sc8 u=4 eV E] s uz2s ND 19 ,cs uz2s GND s uz2v GNDIS
1,01 1,02 1,03 I,04 I/0L 1,02 1,03 I,04 ! 1,01 1,02 1,03 1,04 1,01 1,02 I,03 I,04 ! L DBHA s
1 it It 1 1 it 1 11 1 1 L m 14 1 1 14 (BL =733 ;\ /-
I D ‘}u D o D D D D o D o D <DBHL
B B B B B B B B B B B B B B B DEHR
c c c c c c e c o D D D D o o D
4 5 Kd (=] 1 2 3 6 7 () 1 2 3 SDBH3
PL - 72
~DBH4
D jp jojofpjo oo o jojojojppioio
B | B la BB BB ERCECR R ER R /0BHS
D o o fo oo D D oo jojp oo D )
1o lts ho hiafialis 2 2 |3 5 |6 |7 B o {te|itiiafialialis /DBHE
4 7 +5U +5U 1 3 5 7 +5U 1 g +5
/DBH?
AB AL A2 A3 A4 AS AB A7 AB AL A2 A3 A4 AS AB A7 T 9 |ra AL A2 A3 A4 AS AB A7 0] A2 AL A2 A3 A4 AS AB A7
¢ 2947 vee @ 2947 peed P ¢ 2947 Ueey co 2947 vect22
Hlvm u32 GND | TR u33 ? il £ Uu34 G el £7:} uss '\/'
B@ Bl B2 B3 B4 BS BE B? B@ BL B2 B3 B4 BS BB BY B2 BL B2 B3 B4 BS BE B B2 BL B2 B3 B4 BS B6 B?
13 1
]
B
E
13 [f4 [is

DSP DATA MEMORY
(SECOND HALF)

7-10




Order #04779B

b

ADVANCED
MICRO
DEVICES, INC.
901 Thompson Place
PO. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

Printed in US.A.  |H-MU-15M-6/86-0



