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CHAPTER 1 
INTRODUCTION 

What Is an Array Processor? 

In recent years, Array Processing has become an 
increasingly significant aspect of computing. What 
once was a mysterious art, is now becoming 
common practice. Array processing is a form of 
computing that uses specialized hardware for 
special results-the array processor. This machine 
is characterized by its ability to handle many 
arithmetic computations at high speed. In other 
words, it is a "number cruncher." However, the 
specialization goes beyond a powerful hardware 
arithmetic unit. The machine invariably performs 
best when the data it is processing is structured in 
an array, such as a matrix or vector. Hence the 
name, Array Processor. 

How Do Array Processors and General­
Purpose Computers Differ? 

Array processors and general purpose computers 
differ in a number of important aspects. The 
general purpose computer is usually of the 
classical Von Neumann architecture that was 
implemented by Mauchley and Eckert in the 
ENIAC machine, which became the first electronic 
Stored Program General Purpose Digital 
Computer. This machine had a memory area that 
allowed instructions and data to be intermixed. 
Conversely, array processors have separate 
memories for instructions and data (Harvard 
architecture). There may in fact be separate data 
memories for coefficients and variable data. The 
machines tend to be highly parallel, to allow for 
simultaneous multiplying and adding in the 
arithmetic section, while also performing address 
calculations for retrieving and storing the required 
data values. 

What Is the Usual Architecture of 
Array Processors? 

While there is no one standard architecture for all 
array processors, there are a number of 
characteristics that make the machine recognizable 
as an array processor. In addition to the above 
mentioned feature of separate data and instruction 
memories, pipe lining is a common architectural 
attribute. This technique consists of placing 
intermediate registers in the data path, breaking up 
long combinatorial delay paths into shorter paths 
terminating in registers. The rate at which these 
registers can be clocked determines how fast the 
system runs. The register clock rate is obviously 
dependent upon the delay time of the operation 

preceding it. Pipelined systems have 'latency', 
which is the number of clock cycles that passes 
before the first valid result appears, but this value 
will generally be low compared to the large number 
of calculations performed. 

Array processors also have dedicated hardware 
multipliers as part of their powerful arithmetic 
sections. Hardware floating point arithmetic may 
also be available, whereas some machines may 
have shifters to accomodate block floating point, 
and others may be dedicated to integer operation 
only. The basic operations that consume most of 
the processing time in matrix operations are 
multiplication and addition, as well as accessing the 
actual data values. Thus the architecture tends to 
be optimized for these operations. 

Microprogrammed architectures tend to be popular 
in array processing machines. This is the familiar 
AMD 2900 family "bit-slice" structure that allows a 
machine to be constructed from "building blocks" 
of ALU, sequencer, memory access and other 
required functions, without any predetermined 
instruction set or architectural constraints that 
might be imposed by fixed-instruction devices. 
Microprogramming is the technique of giving a 
machine its instruction set by means of 
microinstructions stored in a high speed memory 
and accessed by a special sequencer. These 
microinstructions operate at the primitive level of 
register, bus, and ALU function control. Since the 
control store is a memory, machine behavior may 
be modified by changing one or more of the 
microinstruction bits or words. The technique 
leads to an extremely flexible, often very high 
speed, implementation. 

Where Are Array Processors Used? 

If array processors are indeed so powerful, then 
one might reasonably ask why they don't replace 
general purpose machines. While array processors 
do an excellent job of handling their specialized 
type of problem, they are rather clumsy when 
confronted with problems that require a lot of 
branching within the program, which is where the 
general purpose computer performs so well. So 
rather than replacing the general purpose 
computer with an array processor, the tendency is 
to create an enhanced machine by using an array 
processor as a peripheral, as an 'accelerator' to the 
arithmetic-intensive portions of problems. 

Array processors have traditionally been 
implemented in peripheral fashion and as 
specialized Super Computers that had array 
processing type architectures. This latter class of 
machine tended to be extremely expensive, but 
very powerful. The peripheral array processor was 



such a desirable approach that a number of 
companies make their entire livelihood from 
offering such devices. These peripheral array 
processors, or accelerators, generally attach to the 
bus or 1/0 structure of a scientific minicomputer. 
Now a tendency is evolving to offer array 
processors as options on engineering work 
stations, or even as option boards for personal 
computers. 

Various types of problems lend themselves to 
array processing solutions, and so they are 
considered here. We wish to distinguish array 
processing by the type of hardware solution 
required, rather than the end application. Thus, 
robotics controllers, radar and sonar processors, 
flight simulators, graphics terminals, commun­
ications processors, medical analyzers, intelligent 
vision systems, and speech recognizers are all of 
interest here. If the problem is solved using 
multiply-and-add intensive algorithms, and the data 
and coefficients are structured in arrays, then we 
have an array processing application. 

Digital Signal Processing 

Digital signal processing is treated here as a subset 
of array processing because of the similarities that 
exist in the hardware and algorithms. The DSP 
engine tends to be more specific in its design and 
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is generally imbedded in other hardware. DSP also 
tends to start out with a "live" analog signal, which 
is AID converted, processed, and mayor may not 
be converted back to analog. One could put an 
AID converter in front of an array processor board 
and solve DSP problems. 

What Is in this Book 

We have attempted to collect in this book 
background and applications material that will 
motivate and guide the independent study of 
Array Processing. This book does not attempt to 
be a comprehensive text on the subject, but tends 
to emphasize the practical aspects of building array 
processor boards, implementing FFT's and FIR/IiR 
filters, selecting appropriate hardware, and writing 
microcode. 

Finally, note that the devices whose data sheet 
summaries are included here are not only suitable 
for array processing applications. For example, for 
a fast eight-bit ALU with multiple 1/0 ports, the 
Am29501 is ideal. The part certainly won't be 
aware of what type of problem it is solving, so this 
should not limit the innovative spirit of the design 
engineer. For more information on the devices and 
systems described herein, contact your local AMD 
sales office, or AMD Headquarter Applications 
Department (408) 982-6266. 



CHAPTER 2 
NUMBER SYSTEMS 

2.1 Fixed Point Numbers 

A binary number is an ordered set of binary digits 
(bits), each of which has a val~e 0 or 1. Each bit, bi, 
is assigned a binary weight, 21, and the value of the 
number is the sum of the weighted digits. 

The simplest form of binary number is the 
unsigned integer. In an N-bit unsigned integer the 
index, i, ranges from 0 to N-1. The value is given 
by: 

N-1 

Vinteger = L. bi * 2i 

i=O 

The range of V is from 0 to 2N_1. This type of 
number has two obvious limitations; it cannot 
represent quantities which are negative or 
fractional. There are many ways to represent 
negative numbers. The simplest method is to use 
an unsigned number to represent the magnitude, 
and a flag to indicate the sign. Not suprisingly this 
scheme is known as signed-magnitude. In an N-bit 
representation, the most significant bit, bN-1' is 
taken for the flag, wtth a 0 signifying positive, and a 
1 negative. This leaves N-1 bits for the magnitude, 
giving a range from -2(N-11+1 to +2(N-11-1. The 
value is given by: 

N-2 

Vsign magnitude = (-1)bN_1 * L. bi * 2i 

j=O 

An idiosyncrasy of signed-magnttude numbers is 
that there are two representations for zero, 
positive and negative. A similar scheme, which 
shares this characteristic, is one's complement. In 
one's complement, negative numbers are 
represented by inverting all bits of an unsigned 
number representing the magnitude. In order to 
distinguish positive and negative numbers, the 
magnitude range is restricted such that it can be 
expressed in N-1 bits. Thus the most significant bit 
is 0 for a positive number, and 1 for a negative 
number. One's complement numbers differ from 
signed-magnitude numbers only in that the 
magnitude bits are inverted in negative numbers. 

Obviously, the range of numbers represented by a 
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one's complement number must be the same as 
for signed-magnitude numbers. The value of a 
one's complement word may most easily be 
determined by treating it as an unsigned word, 
after having inverted all bits if the most significant 
bit is 1, in which case the value is negative. 
Alternatively, the value of the magnitude bits may 
be calculated, and if the most significant bit is 1, 
2(N-11-1 subtracted from this value. 

N-2 

V1's complement = -bN-1 * 2N-1 -1 + L. bj * 2i 

i=O 

A simple technique by which negative numbers 
may be represented without double 
representation of zero, is to add to the desired 
value the magnitude of the most negative 
representable number. This gives a positive 
number which may be represented in the 
unsigned format. The value of the number may be 
obtained by simply reversing this process. This 
scheme is known as offset binary, or excess-M, 
where M is the number added. The number Mis 
often, but not always a power of two. 

N-1 

Vexcess M = -M + L. bj * 2i 

i=O 

The special case, where M = 2(N-11, has the 
property that all negative numbers have a most 
significant bit which is 0, while zero and all postive 
numbers have a 1. Inverting this most significant bit 
leads to a scheme known as two's complement, 
which may be interpreted in several ways. The 
most significant bit is often treated as a sign flag, as 
it is in signed- magnitude. If the sign bit is 1, the 
number is negative and the following serial 
process is applied to convert it to an unsigned 
number representing its magnitude. Starting at the 
least significant bit, the bits are inspected in turn 
until the first 1 is encountered. This and all lesser 
significant bits are left unchanged. All more 
Significant bits are inverted. This process operates 
in both directions, converting a negative number 
to a positive number of the same magnitude, and 
vice versa. It may be viewed as inverting the 
number (one's complement) and incrementing, or 
as subtracting the number from 2(N-1 1. 

N-1 

V2's complement = - ( bN-1 * 2N-1 - L. bj * 2i ) 
i=O 



N-2 

= - bN-1 * 2N-1 + L bi' 2i 

i=O 

Inspection of this formula shows that the 
magnitude of the sign bit's weighting is consistent 
with its position if the number were unsigned, but 
that the weighting is negative. This is an important 
conclusion, and leads to the most useful 
interpretation of two's complement numbers; they 
are identical to unsigned numbers except the most 
significant bit is weighted negatively. The range of 
values which can be represented by an N-bit two's 
complement number is _2(N-1) to +2(N-1 )-1. 

Any of the above schemes may also be used to 
represent fractional numbers. This is achieved 
simply by adopting a convention that the weighting 
of the least significant bit is 2{-P) rather than 20, 
and adjusting the other weights accordingly. 
Conceptually, this locates the binary point P bits 
from the least significant end. Because such a 
convention must be chosen in advance, and 
adhered,to for all numbers, this is known as a fixed 
point number scheme. Other schemes, where the 
number contains a parameter locating the binary 
point, are known as floating point. 

2.1.1 Fixed Point Operations 

Three basic operators are described here: 
addition, subtraction and multiplication. Only 
unsigned and two's complement formats are 
described in detail. They are the two formats most 
commonly used in fixed point operation. Signed­
magnitude and offset binary are commonly used in 
floating point (see below), and are usually treated 
in fixed point by converting them to unsigned or 
two's complement, performing the operation and 
reconverting. One's complement is not in general 
usage. 

Addition of unsigned numbers is most easily 
performed by an iterative process known as ripple 
carry. The iterative block is shown in Figure 2-1.1. 
This has three inputs, which are equally weighted. 
Two of these are for operand bits, Ai and Bi' and 
the third is a carry input, Ci-1' The two outputs may 
be considered as a 2-bit word, representing the 
number of 1's present at the inputs. The unit 
weighted bit is the sum output, Si, and the bit with 
weight two is the carry output, Ci. In cascade, the 
carry output of one cell becomes the carry input to 
the next more significant cell, maintaining the 
equal weighting in that cell, Figure 2-1.2. 

Figure 2-1.1 

"0" 

Figure 2-1.2 
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The carry input to the least significant cell, C_1' is 
assumed to be o. For the complete multi-bit adder, 
for each pair of input btts Ai and Bi, there is one 
output bit, Sj. This new number is the sum. The 
characteristic that each carry out must be 
generated in turn before higher bits can be 
determined leads to the name "ripple carry." 

It is also possible to generate the carry jnputs to 
each cell without waiting for the ripple. Each cell is 
capable of creating a carry into the next cell in two 
ways; it can generate a carry if both Aj and Bj are 1s 
or tt can propagate a carry if etther Aj or Bj is a 1 and 
the carry input Ci-1 is a 1. This is called "Iookahead 
carry" and can be expressed by the equation: 

Cj-1 can be expanded so that the equation for a 
carry lookahead of two cells is: 

This expansion can continue until the carry is 
expressed entirely in terms of the inputs and each 
cell can produce its output without waiting for 
outputfrom any other cell. 

As noted above, the range of an N-bit number is 
limited, and it is possible to overflow this range 
when adding two numbers. This may be overcome 
by making the adder one bit longer, thus doubling 
the range of the output. In order to provide the 
additional inputs, the operands are zero­
extended. Inspection of the above formulae will 
show that the value of the unsigned words are not 
affected by leading D's. Zero-extension is also 
used when adding numbers of dissimilar length. 
This is performed in an adder long enough to 
handle the larger input, the other being zero­
extended. When the operand inputs to a cell are 
both 0, as in extension to prevent overflow, the 
sum output is equal to the carry input, and the carry 
output is identically o. This fact may be exploited to 
save hardware, the carry line being used directly as 
the extra sum. 

As the magnitude bits of a two's complement 
number are weighted the same as in an unsigned 
number, the same adder scheme may be used. In 
the most significant cell, the bits all have the same 
magnitude weighting, but while the carry remains 
positive, the operand inputs become negative. 
The cell is required to output a 2-bit two's 
complement number, that again represents the 
number of 1 's present at the input, but taking into 
account their sign. 
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As in the unsigned case, the carry would represent 
the sign-bit of a one bit longer word, which allows 
for overflow. Appropriately, the sum bit of this cell 
would be positively weighted as a magnitude-bit of 
the new word. 

Adding two's complement numbers of dissimilar 
length raises a question. The value of a two's 
complement number is not affected by adding 
leading D's if the existing weights. remain 
unchanged. However, this gives a number with a 
negatively weighted bit other than in the most 
significant position, which does not agree with the 
definition. This problem is overcome by using sign­
extension, rather than zero-extension. 

In sign-extension, additional bits are added which 
match the sign-bit. It must be stressed, however, 
that these are not extra sign-bits. A two's 
complement word can, by definition, only have 
one sign-bit; the negatively weighted most 
significant bit. When a new sign-bit is added, the 
old sign-bit reverts to a magnitude bit. If the 
number is positive, both old and new sign bits are 
0, and the value cannot be changed by altering the 
weighting of D's. 

If the number is negative, the reversion of the old 
sign-bit to a magnitude bit changes the value 
positively by twice its weight (from _2N-1 to 2N- 1). 
This exactly cancels the contribution to the value 
from the new, more significant sign-bit, thus 
leaving the value unchanged. This proceedure 
may be repeated, making the number as long as 
necessary. 

This process is reversible. If the most significant 
magnitude bit matches the sign-bit, then the 
number may be reduced in length by eliminating 
the sign-bit, the new most significant bit becoming 
the sign-bit. This fact is exploited to simplify the 
logic in the adder. If it is known that the sum cannot 
overflow into the N+ 1th bit, the sum output of the 
sign-bit adder cell can be taken as the sign-bit of 
the N-bit word. This is logically equivalent to the 
sum output of an unsigned adder cell, which may 
be used in place of the special cell. The carries, 
however, are not equivalent. If overflow is 
possible, it may be protected against by sign­
extending both inputs one bit, and using an 
additional adder cell to give the N+ 1-bit output. 

Two's complement subtraction is often described 
by modifying the adder, and re-interpreting the 
carry to become a borrow-not (analogous to 
decimal subtraction). This is confuSing. A more 
straightforward explanation is that the number to 
be subtracted has its sign changed by being two's 
complemented, and the result added to the other 



operand, uSing the adder as an adder. As 
described above, two's complementing a number 
involves one's complementing it and then 
incrementing it. The one's complement can be 
performed with inverters, and the incrementation 
effected by entering an extra 1 in the unused least 
significant carry input, Figure 2-1.3. If exclusive 
ORs are used in place of inverters to allow 
controlled inversion, and the least significant carry 
also controlled, an adder/subtractor is obtained .. 

Unsigned subtraction does not really exist. The 
unsigned operands are converted to two's 
complement by adding 0 (positive) sign-bits. 
These qre subtracted as above, giving a signed 
result. If this is positive, the 0 sign-bit can be 
dropped, reverting to an unsigned format. If it is 
known in advance that this is case, then it is not 
necessary to calculate the redundant sign-bit. This 
is what is sometimes referred to as an unsigned 
subtractor. 

When adding two unsigned numbers with the 
result expressed in the same number of bits as the 
inputs, overflow is signified by a carry out of the 
most significant bit. In unsigned subtraction, a 
negative result is signalled by the absence of a 
carry out. In all two's complement operations, 
overflow is signalled by the carry out of the sign-bit 
being different from the carry into it. This may be 
detected with an exclusive OR (XOR). 

Unsigned multiplication consists of addition of the 
partial products formed by weighting the 
multiplicand by each bit of the multiplier. 
Weighting by a multiplier bit which is 0 results in a 
partial product that is zero and weighting by a bit 
which is a 1 is a left shift of the multiplicand by a 
numbefof places equal to the bit position of the 
multiplier bit. A simple algorithm to perform 
multiplication is a shift and add procedure in which 
the multiplicand is shifted one bit position at a time 
and added to the product based on the 
corresponding multiplier bit and using the rules for 
adding operands of unequal lengths as stated in 

the discussion of addition above. Multiplication of 
two's complement numbers is the same when the 
rules for two's complement are applied, i.e., when 
the partial products are sign-extended instead of 
zero-extended for the shifted addition and the 
partial product from the multiplier sign bit is 
weighted by -bN-l *2N- 1 instead of +bN-l *2N- 1. 

MuHiplication of unSigned fractions is identical to 
multiplication of unSigned integers. Placement of 
the binary point is a matter of interpretation and 
does not require alteration of the algorithm, 
However, multiplication of two's complement 
fractions results in a product with different bit 
weights than the operands as shown in Figure 2-
1.4. To obtain the same bit weights in the product 
as the operands it is necessary to shift the product 
left one position as shown in Figure 2-1.5. A 
product which has the same format as the 
operands is obtained when the less significant 
product is truncated or causes rounding of the 
more significant part. One problem with this shift is 
the possibility of overflow when both multiplier and 
muHiplicand are equal to -1.0. The product is +1.0 
which cannot be represented in two's complement 
fractional notation. 

A common technique used to speed up 
multiplication is the Booth algorithm which 
examines consecutive bits of the multiplier. 
Whenever the consecutive multiplier bits change 
from a 1 to a 0, the multiplicand is added to the 
product with the proper bit weighting. When the 
bits change from a 0 to a 1, the multiplicand is 
subtracted; no operation is necessary when the 
bits are the same. This algorithm is based on the 
identities 3 = 2+1 = 4-1, 7 = 4+2+1 = 8-1, etc. 
which allow two operations (one addition and one 
subtraction) to replace a potentially larger number 
of operations (two additions, three additions, etc.). 
The worst case is a multiplier with alternating 1 s 
and Os for which there is the same number of 
operations as the add and shift algorithm when the 
multiplier is all1s, i.e., one operation per multiplier 

"1" 

Figure 2-1.3 
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bit. A modification to the algorithm examines pairs 
of multiplier bits as shown in Figure 2-1.6 This 
modification is usually done to modularize 
hardware into a cell which can be repeated for each 
pair of muHiplier bits. 

2.2 What Is A Floating-Point Number? 

The numbers one encounters everyday, such as 
12, 34.56, 0.0789, etc., are known as fixed-point 
numbers, because the decimal point is in a fixed 
position. Such numbers are fairly closely matched 
in magnitude and within about ten orders of 
magnitude from unity. Examples of such numbers 
are found in bank accounts, unit prices of store 
items and paychecks. 

In scientific notation applications, the numbers en­
countered can be very large. Avogadro's number 
expressed in fixed-point notation is approximately 

602,250,000,000,000,000,000,000. 

A scientist may also use Planck's constant which 
would be approximately 

0.000000000000000000000000006626196 

erg.sec. in fixed-point notation. These examples 
demonstrate the undesirability of writing fixed­
point notation to represent numbers such as 
Avogadro's number and Planck's constant. 

When a scientist writes the value of Avogadro's 
number, he writes 6.0225 x 1023. Similarly, he 
would express Planck's constant as 6.626196 x 
10-27 erg.sec. 

The number 6.0225 x 1023 is thus observed to 
consist of four parts: 

Sign. The sign of the number (+ or -). The plus 
sign is usually assumed when no sign is shown. 

Mantissa. Sometimes also known as the fraction. 
The mantissa describes the actual number. In the 
example, the mantissa is 6.0225. 

Exponent. Sometimes also known as the 
characteristic. The exponent describes the order 
of magnitude of the number. In the example, the 
exponent is 23. 

Base. Sometimes also known as the radix. The 
base is the number base in which the exponent is 
raised. In the example, the base is 10. 

The parts of a floating-point number can then be 
represented by the following equation: 

where 

F = Floating-point number 
S = Sign of the Floating-point number, so that 

S= 0 if the number is positive and S=1 if the 
number is negative 

M = Mantissa of the floating-point number 
B = Base olthe floating-point number 
E = Exponent of the floating-point number. 

0 o 0 NOP 
o 0 1 xl 

o 1 0 xl 

0 1 1 x2 

1 o 0 -x2 

1 o 1 -xl 

1 1 0 -xl 

1 1 1 NOP 

Figure 2·1.6 

Figure 2-1.5 

Figure 2·1.4 

7 



2.2.1 When Should Floating Point Be Used? 

Although floating-point numbers are useful when 
numbers of very different magnitude are used, 
they should not be used indiscriminately. There is 
an inherent loss of accuracy and increased 
execution time for floating-point computation on 
most computers. Floating-point computation 
suffers the greatest loss of accuracy when two 
numbers of closely matched magnitude are 
subtracted from each other, or two numbers of 
opposite sign-but almost equal magnitude-are 
added together. Therefore, the Associative Law in 
arithmetic 

A + (B + C) = (A + B) + C 

does not always hold true if B is of opposite sign to 
A and C and very similar in magnitude to either A or 
C. 

In most computers, hardware floating-point multiply 
and divide takes approximately the same amount 
of execution time as hardware fixed-point multiply 
and divide, but hardware floating-point add and 
subtract usually takes considerably more time than 
hardware fixed-point add and subtract. If the 
computer lacks floating-point hardware, all floating­
point computations will consume more CPU time 
than fixed-point computations. 

2.2.2 Floating-Point Formats 

The following three number bases are commonly 
used in floating-point number systems: 

1. Binary-The base is 2. 
2. Binary Code Decimal-The base is 10. 
3. Hexadecimal-The base is 16. 

8 

The two types of exponents used in floating-point 
number systems are the biased exponent and the 
unbiased exponent. An unbiased exponent is a 
two's complement number. An exponent said to 
be biased by N (or excess N notation) means that 
the coded exponent is formed by adding N to the 
actual exponent in two's complement form. Any 
overflow generated from the addition is ignored. 
The result becomes an unsigned number. Most 
common floating-point systems use a biased 
exponent because it simplfies floating-point 
hardware. During floating-point computation, 
arithmetic operations such as add and subtract 
need to be performed on the exponent of the 
operands. If a biased exponent is used, the 
arithmetic logic unit (ALU) needs only to perform 
unsigned arithmetic. If an unbiased exponent is 
used, the ALU must perform two's complement 
arithmetic; and overflow conditions are more 
difficult to detect. 

Floating-point numbers must always be presented 
to the computer in "normalized" form (Le., the most 
significant digit of the mantissa is always non-zero, 
except if the number is zero). For a binary floating­
point system, this means that the leading binary bit 
of the mantissa is always 1 (except when the 
number is zero). In some floating-point number 
systems, this 1 bit is suppressed on input or 
output to the floating-point processor. The saved 
bit can be used for one more bit of preCision or one 
more bit of exponent range. 

The IEEE and DEC floating-point formats are 
covered in significant detail in AMD's data sheet. 



CHAPTER 3 
ARRAY PROCESSING ALGORITHMS 

3.1 DIGITAL FILTERS IN THE TIME DOMAIN 

Digital filters are devices which accept a sequence 
of digital data samples and produce a modified 
sequence which is a linear combination of previous 
inputs and outputs. The sequence is usually data 
which has been obtained from a continous analog 
waveform that has been digitized at uniform time 
intervals. Uniform sampling is used since it 
simplifies analysis of the system performance and 
does not create any undesirable side effects or 
limitations. The usual notation when dealing with 
the digitized sequences is to associate each 
sample with a polynomial term, e.g., 

(Xnl = ... a,b,c,d,e ... for n = -2, -1, 0, 1,2 
= ... aL2 +bL1 +czo +dz1 + ez2 ... 

This polynomial is the Z-transform of the original 
sequence and can also be written: 

X(z) = L. xn z-n 

The relationship between the input and output of a 
digital filter is: 

Yn= L. xmhn-m 

where {xml and {Ynl are the input and output 
sequences and {hn-ml is the impulse response of 
the filter. When {hn-ml has a finite number of non­
zero terms, the filter has a Finite Impulse 
Response (FIR). Otherwise it is described as 
having an Infinite Impulse Response (IIR). 

If we delay an input sequence by one sample 
period, the result is the same as the input 
sequence multiplied by z-1. The combination of 
previous inputs and outputs of a digital filter can 
therefore be represented by: 

Yn= L. akxn-k- L. bkYn-k 

where the first sum is a linear combination of the 
current and previous inputs of the sequence and 
the second sum is a combination of the previous 
outputs. A recursive filter of this type has an 
infinite impulse response. When the coefficients 
of the second sum are all zero, the filter becomes 
non-recursive and the impulse response have a 
finite number of terms (an FIR filter). A Z-transform 
of each sequence in the digital fmer can be written: 
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EO. 1 

Y(z) = L. Yn z-n 

= L. [L. akxn-k- L. bkYn-k] z-n 

Using the equality X(n-k) = z-kX(n) this can be 
rewritten and rearranged as: 

EO. 2 

Y(z) = L. ak Lk X(z) - L. bk Lk Y(z) 

The transfer function of the filter is therefore: 

Y(z) L. a k z-k 
H(z) = --=--'---

X(z) 1 + L. bk Z- k 

When working with linear time-invariant systems, 
filters can be cascaded (either serially or in parallel) 
to obtain a desired transfer function as shown in 
Figure 3-1.1. A second order filter has a transfer 
function of the form: 

aOzo+a1 L1 +a2z-2 
H(z) =-------

=A----

This is a basic building block for digital fi~ers and is 
called a biquadratic filter with a gain of A. By 
cascading a number of these sections and 
selecting the proper values for the coefficients, it is 
possible to produce any frequency response with 
the same structure, e.g., high-pass, low-pass, 
band-pass or band-stop filter. Computer programs 
are available to assist the filter designer in 
choosing the proper coefficients for control of filter 
skirts, ripple, etc. These programs also allow the 
designer to select which parameter to compromise 
when the desired performance is unrealisable. 

Implementation of a digital filter is frequently a 
hardware embodiment of the equations expressed 
above. Adders and multipliers perform the 
arithmetic on data that have been appropriately 
delayed in registers. A filter section might use an 
adder for each addition and a multiplier for each 
multiplication or it might sequence data through a 
single unit. Cascading of sections could also take 
the form of multiple hardware sections or could be 



a single section with programmable coefficients 
that operates iteratively on the data. A block 
diagram of a second order filter section is shown in 
Figure 3-1.2. If the number of terms in the sums is 
the same (as is shown in the figure), it is possible to 
rearrange the blocks to reduce the number of 
delay registers to a single set (sometimes called 
the canonical form). This is done by factoring the 
transfer function to separate the numerator and 
denominator: 

The numerator is implemented by the hardware 
shown in Figure 3-1.3 and the denominator by that 
in Figure 3-1.4. When the two halves are 
cascaded, a single set of delay registers can be 
used as shown in Figure 3-1.5. 

Implementation of an FIR filter is a simple sum-of­
products as shown in the block diagram in Figure 3-
1.6 Since the number of terms in an FIR filter is 
significantly larger than the number in an IIR filter 
with equivalent performance, most implemen­
tations use algorithms that reduce the 
computational requirements wherever possible by 
taking advantage of symmetry or by decimating the 

Figure 3-1.1 

I---.... Yn 

Figure 3-1.2 
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Figure 3-1.3 

Figure 3-1.4 
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data. Symmetry trades a less costly computation 
(addition) for a more expensive one (multipli­
cation). Since the coefficients for an FIR filter are 
usually symmetrical 

(ak = an-k) , 

it is possible to reduce the number of multi­
plications required by adding data with the same 
coefficient before multiplying by the common 
coefficient as shown in Figure3-1.7. 

Decimation is the process of reducing the 
sampling rate when the frequency response is 
limited. For example a signal containing only 
frequencies below 5 kHz and sampled at 20 kHz 
can be decimated by 2. Also, a band pass filter can 
be converted to a low-pass filter and the resulting 
data could then be decimated with a 
corresponding reduction in computation require­
ments. Decimation by N is accomplished by only 
processing every Nth data sample and discarding 
the remaining data samples. This reduces the 
computations of an FIR filter by a factor of N. 
Decimation does not reduce the number of 
computations for an IIR filter since the recursive 
nature of the filter requires that all the previous 
outputs be computed for the current output. 

Digital filters are also used for interpolation. This is 
an increase in the sampling rate (the opposite of 
decimation) and is used to produce the data points 
between the actual samples. The interpolation 
procedure is to insert N-1 zeros between each 
data sample and pass the data through a low-pass 
filter. Since the data insertion is only conceptual 
(only calculations with non-zero data points are 
performed), an FIR filter has the same 
computational advantage over an IIR filter for this 
operation as for decimation. 

Since both IIR and FIR filters can be designed for 
equivalent performance, it may not be obvious why 
the FIR filter with its greater number of 
computations would ever be used. One important 
characteristic of an FIR filter is that it can be 
designed to have linear phase response which is 
not realizable with either IIR or analog filters. A 
second advantage of an FIR filter is that roundoff 
errors are limited and easily controlled. The 
recursion in an II R filter means that roundoff errors 
are cumulative. 

Another advantage of the FIR implementation of a 
filter is the ability to partition the processing for the 
filter into data sets for multiple filter circuits and 

)---_yn 

Figure 3-1.5 

12 



thus to increase the throughput of the system 
through parallel processing. This is not possible 
for IIR filters since the previous outputs are 
required for calculation of the current output. 
Although a cascaded IIR filter achieves a similar 
result, i.e., the processing can be distributed to 
different pieces of hardware operating in parallel, 
the complexity of the filter, or lack thereof, limits 
the potential gain. An FIR filter could use ten 
circuits to obtain a tenfold throughput gain or 

twenty circuits to obtain a throughput gain of 
twenty. An IIR filter might contain five second­
order sections and is limited to a potential 
throughput increase of five. 

Although stability of the FIR filter is sometimes 
cited as an advantage, it is not difficult to design a 
stable IIR filter, but the designer must pay attention 
to the warnings from the filter design program. 

I---~Yn 

Figure 3-1.6 

Xn ---1----.t 

a!2:.1 = a n+1 
2 2 

Figure 3-1.7 
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3.2 FILTERING IN THE FREQUENCY 
DOMAIN-FOURIER TRANSFORM 

Fourier transforms are used to change time domain 
data into the frequency domain when the 
processing required involves the measurement of 
spectra. The processing in the frequency domain 
is so much simpler compared to that in the time 
domain to warrant the additional transformations 
between time and frequency domains. Fourier 
transforms are performed on a limited series, 
usually a power of 2 to take advantage of the 
efficiencies of the fast algorithm described below. 
The Discrete Fourier Transform (OFT) of a limited 
series {x (n)}, 0:5 n:5 N-1 is defined by: 

N-1 21tnklN 

X(k) = L X(n) * e-j for k = 0, 1, ... , N - 1 
n=O 

Although the transform can be calculated directly 
by performing the summation of all the products in 
the equation, the number of calculations becomes 
prohibitive as the transfform size increases. Defin­
ing { x (n) } as a series of N complex numbers, there 
are (N-1)2 complex multiplications and N(N-1) 
complex additions to be performed. The following 
table illustrates the rapid increase in processing 
requirements as N increases. 

N 

64 
256 

1024 

Multipll· 
cation 

3969 
65025 

1046529 

Addi· 
tion 

4032 
64280 

104755 

These numbers represent complex operations 
which translate to four real multiplies and two real 
adds for each complex multiply and two real adds 
for each complex addition. Fortunately, it is 
possible to reduce the number of calculations 
necessary for the transform by organizing the 
sequence in which the calculations are performed. 
Because of the periodic nature of e(-j*21t*n*klN), 
product terms in the series appear in more than 
one summation and need not be recalculated for 
every occurrence. The Fast Fourier Transform 
(FFT) removes redundant calculations by 
repeatedly separating the initial series into two half 
series until the operation is reduced to a 
calculation with two data points. There are two 
different algorithms for doing this--decimation in 
time and decimation in frequency. 

Since the equations defining the DFT and FFT do 
not contain time or frequency as a variable, the 
calculations can be applied equally well to data 
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from audio sources to microwave frequencies. For 
example, if N =1024 data samples are taken at 
1 msec intervals, each frequency output will 
represent 

k * 1 kHzl1 024 

and if the sample interval is 1 Jlsec, then each out­
put will represent 

k*1MHz/1024. 

The spectrum is also continuous so that the filter 
output 0 is adjacent to filter output 1023 and it is 
sometimes convenient to think of the filters as 
being positive and negative, i.e., filters 0-1023 
become filters 0 to 511 and -512 to -1. 

Although the FFT is more efficient when 
computing a full spectrum, some applications are 
only interested in a limited band of frequencies. In 
these cases the FFT algorithm calculates many 
outputs which are not of interest and discarded. In 
these applications, calculating a small number of 
DFTs may be more efficient than calculation of the 
entire spectrum with an FFT. Examples of this 
restricted band of interest are carrier detection and 
target tracking in radar or sonar. 

3.2.1 Algorithm for Decimation in Time 

Assuming that N is an integral power of two (N = 
2r), we can separate { x (k) } into two half series:one 
sequence with even indices 

{ xE (n) } = {x (2n) } 

one sequence with odd indices 

{xc (n)} ={x (2n+1)}. 

The DFTs of the sequences constructed over 

{x E(n) } and {x 0 (n) } are 
{ X E (k) } and { X 0 (k) } with 

(~-1 .21tnkl(n/2) 
XE (k) = L X(2n) * e-I 

n=O 

(N~-1 .21tnkl(n/2) 
Xc (k) = L X(2n+1) * e1 

n=O 

The notation is simpler if we use WN = e(-j*27t1N) 
and the transform of the original series becomes 
the sum of the transform of the series of even 
indices and the transform of the series of odd 
indices multiplied by a twiddle factor. 



(NI2)-l (NI2)-l 2 
X(k) = L X(2n)W~n\ L X(2n+1) W~ n+1) k 

n=O n=O 

k. 
=XE(k)=WN Xo(k) 

Since W~ nk is reriodic with a length of N/2 and that 
W~ + N/2 = -Wn we can write 

k+NI2 • 
X(k+N/2) = XE (k+N/2)+W N Xc (k+N/2) 

= X E (k) - W ~ • Xo (k) 

This calculates X(k) and X(k+N/2) in terms of XE(k) 
and Xo(k) which is represented graphically by a 
simple butterfly: 

XE(k) --v- X(k) 

Xo(k) ~ X(k+N/2) 

This butterfly is usually simplified to: 

Xdk) 

Xo(k) 

The sequences 
{ x (2n) } and { x (2n + 1) } 

can each be separated into odd and even again: 

{x (2n) } can be decomposed into 
{x (4n) } and {x (4n + 2) } 

{ x (2n + 1) } can be decomposed into 
{x (4n + 1) } and {x (4n + 3) } 

This results in X(k), X(k+N/4), X(k+N/2) and 
X(k+3N/4) being calculated from the transforms of 
each quarter series Xoo(k), X01 (k), X02(k) and 
X03(k) in two stages as shown in the following 
equations: 

2k 
XE (k) = Xao (k)+WN • Xa2 (k) 
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XE (k+N/4) = XOl (k)+W~k. Xa3 (k) 

2k. 
Xo (k+N/4) = XOl (k) -W N X03 (k) 

Because N = 2r we can continue decomposing "r" 
times until the summations in the butterfly 
calculation become the terms x(k). For N = 8 
samples we obtain the results shown in Figure 3-
2.1. 

The input data in Figure 3-2.1 was ordered 
according to the needs of decomposition into odd 
and even series which has the property that the 
results occur in natural order. On the other hand, if 
the original data was in chronological order, the 
results would be in bit-reversed order. Bit-reversal 
refers to the binary representation of the 
sequential position of the data values. For a 
sequence N = 2r we read the binary code (r bits) of 
the initial position backwards and obtain the binary 
code of the bit-reversed position. 

For N = 8 the values are: 

Binary 
Value 

000 
001 
010 
011 
100 
101 
110 
111 

Bit-Reversed 
Value 

000 
100 
010 
110 
001 
101 
011 
111 

Note that the input data order when arranged for 
decimation in time is bit-reversed order so that the 
reordering process is the same for either input or 
output. Figure 3-2.2 shows the butterflies when 
the input data is ordered (and the results are bit­
reversed) for N = 8 samples. 

3.2.2 Algorithm for Decimation in 
Frequency 

The decimation in frequency algorithm decompos­
es the initial series into two consecutive series. 

Xl (n) = X(n) 
for n = 0, 1, ... , N/2 - 1 

X2 (n) = X(n+N/2) 



Using the preceding notation, the transform of the 
sequence can be written: 

(NI2)-1 n - 1 
X(k) = L X(n) • W~\ L X(n)· W~k 

n=O n=NI2 

(N/2)-1 

= L [~(n)+~ (n)· W~NI2]. W~k 
n=O 

Since W~N/2 is equal of -1 when k is odd and 
equal to +1 when k is even, the even and odd 
samples can be written: 

0 

4 

2 

6 

1 

5 

3 

7 

(N~-1 

X(2k) = 2.. [ ~ (n)+X2 (n) ] • yy2~1k 
n=O 

(N~-1 
X(2k+1)= 2.. [X1(n)-X2 (n) ]·W~k+1)n 

n=O 

Using W~nlk = e-j21t*2nklN = e-j2lt*nkIN/2 = W~~2 
the equations become: 

(N~-1 k 
X(2k) = 2.. [ ~ (n)+X2 (n) ] • W~12 

n=O 

o 

2 

3 

4 

5 

6 

7 

Figure 3-2.1 
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Figure 3-2.2 
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These equations show that the samples of the 
OFT can be obtained from the N/2 point DFTs of 
the sequences f(n) and g(n) where 

I(n) = Xl (n)+X2 (n) 

g(n) = [Xl (n) - X2 (n) ]. W~ 

This can be represented by the following butterfly: 

X1 (k) 

o 

2 

3 

4 

5 

6 

7 

~I(n) 

~g(n) 

As in the decimation in time algorithm we can 
decompose each series. into two sequences 
repeated "r" times. For N = 8 samples we get the 
graphic of Figure 3-2.3. 

Data order is the same as for decimation in time; we 
have to order the initial values in bit-reversed order 
(see Figure 3-2.4 for N = 8) in order to get the 
results in natural order. 

The decimation in time and decimation in 
frequency algorithms are very similar ·and call for 
the same number of arithmetic operations. The 
calculations can be made in-place (results replace 
the operands used to calculate them) but we must 
arrange the initial sequence in bit-reversed order 
to get the results in natural order or we can leave 

o 

4 

2 

6 

5 

3 

7 

Figure 3-2.3 
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Figure 3-2.4 
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the initial sequence in chronological order and 
rearrange the resulting sequence. Reordering the 
inputs or the results are both performed according 
to the same rule, i.e., bit-reverse the binary 
representation of the position. It is also possible to 
avoid the rearrangement by using a double buffer 
memory and placing the butterfly results in the 
alternate buffer instead of in-place. The buffers 
would be swapped at the end of each FFT iteration 
to make the output of the previous iteration the 
current input data. 

3.2.3 Comparison of FFT and OFT 

The algorithms of the Fast Fourier Transform (FFT) 
requires r = 1092 N steps. At each step there are N 
complex additions and N/2 complex 
multiplications. Therefore, the total number of 
operations is: 

N/2 1092 N multiplications 
N 1092 N additions 

The following table compares these results to the 
ones of the Discrete FourierTransform. 

Discrete Fast 
Fourier Fourier 
Transform Transform 

N (*) (+) (*) (+) 

64 3969 4032 192 384 
256 65025 65280 1024 2048 

1024 1046529 1047552 5120 10240 

As mentioned previously, this efficiency only 
applies when a large portion of the spectrum is of 
interest. If only three frequency outputs were 
required, the DFTtabie becomes: 

Xo 

Xl 

X2 

X3 
3K 

N 

64 
256 

1024 

(*) 

189 
765 

3069 

(+) 

189 
765 

3069 

3.2.4 Inverse Fourier Transform 

The inverse Fourier transform of a' Signal 
transforms data from the frequency domain to the 
time domain and is calculated by: 

N-l .21< nkIN 

X(n) = 1/N L X(k) • e+J 

n=O 

The similarity to the forward transform allows us to 
use the same algorithms for the inverse transform 
by changing the sign of the angle from (-2lt*n*klN) 
to (2lt*n*klN) or W~k to WNnk The scale factor 1/N 
is typically incorporated in the gain of the system 
and ignored for the purposes of calculation of the 
transform. 

3.2.5 Radix 4 FFT 

It is possible to further reduce the number of 
calculations required to perform the FFT by using a 
radix 4 algorithm. If the number of samples N is 
represented by N = 4x, for x = a positive integer, 
the butterflies of the preceding algorithms can be 
rearranged in groups of four. For the decimation in 
time algorithm with N = 4 we have to perform the 
operations shown by Figure 3-2.5. Figure 3-2.6 
shows the same thing for N = 16. Figures 3-2.7 
and 3-2.8 show the requirements for reordering 
the data for N = 16 but this time using the 
algorithms of decimation in frequency. The 
improvement in efficiency is shown in the 
following table: 

Xo = Xo + Xl * Wk+ x2 * W2k + x3 * W3k 

Xl = Xo - jXl * Wk - X2 * W2k + jX3 * W3k 

X2 = Xo - Xl * Wk+ X2 * W2k - x3 * W3k 

X3 = Xo + jXl * Wk - X2 * W2k - jX3 • W3k 

Figure 3-2.5 
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Radix 2 

N (*) (+) 

64 192 
256 1024 

1024 5120 

384 
2048 

10240 

Radix 4 

144 384 
768 2048 

3840 10240 

As shown in the table the advantage of the radix 4 
algorithm is in reducing the number of 
multiplications by 25%. 

3.2.6 Real-valued Input Fourier 
Transforms 

Although the FFT processes complex data, the 
input to a system is frequently real data only. One 
way to process real-valued input data is to zero-fill 
the imaginary data and perform the FFT as though 
the inputs were complex. However, this is wasteful 
of memory and processing time since half the 
outputs are discarded when the FFT is complete. 
One way to overcome this inefficiency is to 
combine two series of real inputs and process 
them as a complex number series. This produces 
two spectra in the processing time required for a 
single zero-filled data set. However, it does 
require an additional processing step to separate 
the outputs into two spectra. If 

(x1(n) } 
is treated as the real part of the data and 

(x2(n) } 
is treated as the imaginary part, the two spectra can 
be separated by calculating: 

X, (k) = 1/2 { [XR (k) + XR (N - k)] 

+j [X1(k)-X1(N-k)] } 

X2 (k)= 1/2 {[X1(k)+X1(N-k)] 

+ j [XR (k) - XR (N - k) ] } 

This additional processing step is much less than 
the time that would be required to perform a 
second FFT. 

A second algorithm takes a single series and treats 
every even data point as the real part and every 
odd data point as the imaginary part of the data. 
After performing an N/2-point FFT, the outputs 
must be calculated using the following: 

X(k) = 1/2 [XR (k) + XR (n - k) + cos e (X I (k) + X I (N - k) ) 

-sine (XR(k)-XR(N-k))] +j/2 [X1(k)+X1(n-k) 

- sin e (X I (k) + X I (N - k)) + cos e (XR (k) - XR (N - k) ) ] 

for e = 1tklN 

In this case the additional processing is traded off 
against the time to perform an N-point FFT instead 
of an N/2-point FFT. The additional processing is 
more than the previous method but requires less 
memory since only one data set is processed 
instead of two data sets simultaneously. The data 
flow through the system is also more regular, and 
that is sometimes important. 

A third algorithm developed by Bergland 
eliminates the calculations which produce 
redundant results. This method does not use the 
complex FFT algorithm; it treats the data as real or 
imaginary numbers during the calculations instead 
of operating on complex pairs. It also contains two 
butterfly configurations instead of the single 
butterfly used in complex algorithms. These 
butterflies are diagrammed in Figure 3-2.9. 
Butterfly type one is used when k = 0 and butterfly 
type two is used for all other coefficients. This 
algorithm also produces outputs in scrambled 
order as shown in Table 3-1 with the real and 
imaginary parts in consecutive positions in the 
sequence. The first two elements are the 
exception. These are the real parts of the first and 

Figure 3-2.7 
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last frequency filters, which have imaginary parts 
equal to zero. Although the order appears similar 
to bit-reversed order, it does not have a simple 
translation and must be generated algorithmically 
from the previous sequence. The new sequence 
algorithm is as follows: 

1) Even elements of the new sequence (starting 
with element 0) are the previous sequence. 

2) Odd elements are inserted by subtracting the 
even element from the length of the new 
sequence except for element 1 which is equal 
to 1/2 the length of the sequence. 

3.3 MAGNITUDE CALCULATION 

An operation that is frequently necessary in signal 
processing is the computation of the magnitude of 
complex samples. This is particularly common 
when performing FFT processing. A magnitude 
can be calculated directly as the square root of the 
sum of the squares of the quadrature com­
ponents. However this algorithm has the dis­
advantage of requiring double precision arithmetic 
for the calculations as well as being complicated 
and time consuming. A machine performing 1S-bit 
operations would require 32-bit arithmetic to sum 
the products and the square root computation 
typically requires one iteration per bn in the result. 

Since the computation of the square root of the 
sum of the squares is such a complex task, many 
alternatives to the magnitude calculation have 
been developed. The simplest approach to the 
calculation is to use a linear combination of the 
quadrature components. This takes the form M = 
ax+by for x = max(lRI,111) and y = min(IRI.III), i.e. x = 
abs(larger) and y = abs(smaller). Systems in which 
a shift is less expensive than a multiply (in time, 
hardware or both) typically use coefficients like a 
=1 and b =1/2. However a system which calculates 
a product as easily as a shift can obtain a more 
accurate magnitude with a = 0.9S0 and b = 0.398. 
Even more accuracy can be obtained by changing 
the coefficients as a function of the angle. 
Although the magnitude is independent of angle, 
the approximation error has an angle dependency 
equal to 1-(a*cos(S)+b*sin(S)) for 0<S<7tl4, which 
is the region defined by the larger/smaller equation 
stated above. The angle dependency of the 
algorithm can be kept simple by defining only two 
regions separated at an angle where the tangent is 
a simple ratio such as where one quadrature 
component is twice the other. An example of this 
approximation is to use a = 1 and b = 1/4 when 
x>2y and a =3/4 and b=3/4 forx<2y. 

Another approach to calculation of the magnitude 
is to use Cartesian-to-polar coordinate conversion 

22 

Table 3-1 

N = 4 8 16 

2R 2R 2R 
21 21 

SR 
SI 

1R 1R 1R 
11 11 11 

7R 
71 

3R 3R 
31 31 

5R 
51 

32 

OR 
1SR 
8R 
81 

4R 
41 
12R 
121 

2R 
21 
14R 
141 

SR 
SI 
10R 
101 

1R 
11 
15R 
151 

7R 
71 
9R 
91 

3R 
31 
13R 
131 

5R 
51 
11R 
111 

algorithms. The quadrature components are a 
vector in Cartesian coordinates and conversion to 
a magnitude-phase pair gives the desired result. A 
direct calculation of M = y/sin(arctan(y/x)) involves 
divisions and arctangents which are not attractive 
alternatives to a square root calculation. However, 
once the phase is determined, multiplication can 
be used to rotate the vector onto the x-axis where 
the value of the real component and magnitude 
are identical. This reduces the problem to 
calculation of the arctangent usually by means of a 
lookup table. Division can be eliminated by 
concatenating the two components of the vector 
to form the address of the table, but this double 
length address results in a prohibitively large table. 
The simplest approximation is to normalize the 



vector by left-justifying the larger component, and 
to use a limited number of MSBs of each 
component to address the table, ego using bits x15-
10 and Yl5-10 of 16-btt numbers to address a table 
containing 4096 angles. A more accurate 
approximation which also removes the necessity 
for normalization uses the most significant bits of 
the larger component, the most significant bits of 
the smaller component and the bit position of the 
MSBs of each component (or the number of 
leading zeros). This might use two data bits and a 
four bit position for each component of the vector 
to address a table of 4096, e.g., bits x12-11 and 
position 12 for one component and bits Y8-7 and 
position 8 for the other (assuming bits x15-12 are 
all the same and Y15-8 are also the same). 
Because the arctangent is well behaved for small 
angles, this algorithm can be iterated for greater 
accuracy. The previous one can not be iterated 
since btts Yl5-10 become nonsignificant as the 
vector is rotated toward the x-axis. Addressing a 
table with the number of leading zeros of each 
component and the single bit following the leading 
one can produce a magnitude with 1.4% accuracy. 
Additional accuracy can be obtained by using more 
bits following the leading one or by iteration. Table 
size can also be traded off by using the difference 
between the number of leading zeros of each 
component to address the table rather than the 
individual counts. Both of the approximations 
could produce the sine and cosine directly from 
the table but the angle is sufficient when a sine 
and cosine table is already available for FFT S. 

A' = Re [A+ jB + (C + jD)W~l 

B' = 1m [A+ j8+ (C+ jD)W~l 

C' = Re [A+ jB-(C + jD)W~l 

D' = 1m [-A - jB + (C + jD)W~l 

WN = e (-j21t1N) 

Another approximation which rotates the vector 
onto the x-axis can be used if multiplication is too 
costly. CORDIC (COordinate Rotation Digital 
Computer) rotation is one of a class of algorithms 
developed by Voider in 1956. The key elements 
of this algorithm are successive approximation and 
elimination of multiplication. The vector is placed in 
the first quadrant by taking the absolute values of 
the components and is then rotated toward the x­
axis by adding or subtracting a series of angles. 
Each angle is added if the phase of the vector is 
negative or subtracted if the phase is positive with 
the result that the x component of the vector 
becomes the magnitude as the phase angle 
approaches zero. Positive or negative phase is 
the same as a positive or negative y value which 
makes the determination of this condition 
straightforward. The angles are selected so that 
their tangents are simple binary ratios which allows 
rotation to take the form 

xn = xn-l + Yn_1/2r and 
Yn =yn-1 +xn_1/2 

where r increments for each iteration. Accuracy of 
the algorithm is a function of the number of 
iterations with four iterations producing an 
accuracy of 0.772%. A side effect of the algorithm 
is that there is gain, i.e. after four iterations the x 
component will be 1.643 times the magnitude of 
the original vector. However the gain is fixed for a 
given number of iterations and is usually absorbed 
in the gain of the system. 

(k*O) 

A 

X 
A' 

B B' 

C C' 

D D' 

A' = Re [A+ jC + (8 + jD)W~l 

B' = 1m [A+ jC + (8 + jD)W~l 

C' = Re [A+ jC- (8 + jD)W~l 

D' = 1m [-A - jC + (B + jD)W~l 

WN = e (-j21t1N) 

Figure 3-2_9 

23 



A common use of the magnitude calculation is for 
the detection of signals in noise such as radar­
target detection or communications carrier 
detection. The major concern in this application is 
the signal to noise ratio loss caused by the 
approximation. An average background value 
(representing noise) is calculated using an 
approximation with minimum average error and the 
signal magnitude is calculated for minimum peak 
error. Using the simple shifting approximations 
would mean using larger +1/4 smaller for the 
average (absolute error = +3, -11 %, average error 
= 0.6%) and larger +112 smaller for the signal 
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(maximum absolute error = +11, -0%, average 
error = 8%). Table 3-2 contains various 
coefficients and the errors associated wtth them. 

Table 3-2 

Peak Average 
Approximation Error Error 

L+.55 11.80 8.68 
L+.255 11.60 0.65 
.960L + .3985 3.96 -1.30 
L+ .255/ .75L+ .755 6.06 -3.01 



CHAPTER 4 
SYSTEM DESIGN 

4.1 ARRAY PROCESSOR DESIGN 
BASED ON THE Am29500 FAMILY 

The board described in this chapter was built and 
tested in AMD Headquarters Applications in early 
1985. This application was developed to show 
designers the efficiency in using the Am29500 
Family for digital signal processing. Doing a paper 
design is one thing; building a working prototype 
boosts confidence level. This section of the 
manual will help the reader to design a system and 
point out what aspects of the design require 
consideration. 

The goal here is to design an optimum 
cost/performance board. Table 4-1 compares radix-
2 butterfly cycle times for different architectures. 
The architecture chosen for this design is the 
2,2,1 architecture: two buses, two ALUs, and one 
multiplier. With this architecture, each butterfly 
takes four cycles. Therefore, 5,120 butterflies in a 
1 K complex point FFT at 10 MHz takes 2 ms. 
Figure 4-1.1 shows the basic architecture of the 
board. The two ALUs are 16 bits each for real and 
imaginary data. Each ALU is comprised of two 
Am29501s. The two ALUs can also be combined 
by using the Am2902 Carry Lookahead Generator 
to form a single, 32-bit, double-precision ALU. 
The two 16-bit buses supply real and imaginary 
data from the data memories to the ALUs, and vice 
versa, via the bidirectional DIO ports of the 
Am29501s. Data from the ALUs is transferred to 
the multiplier via the bidirectional MIO ports of the 
Am29501s. If 32-bit products are required, 16 of 

the 32 bits could come in from the muttiplier into 
the MIO ports. The 16X16 multiplier is the 
Am29517. Its X and Y ports are the two 16-bit 
input ports, and its P port is the 16-bit output port 
on which the 32-bit product can be multiplexed. 
The Y port of the multiplier is a bidirectional port 
and, for single cycle 32-bit multiplies, this port has 
to be used in conjunction with the P port to get the 
complete 32-bit product. 

The MIO ports of either the real or imaginary ALUs 
can be directed to the Y port of the multiplier. The 
X port data can be selected from one of several 
sources-the MIO ports of either the real or 
imaginary ALUs, the real data bus, the imaginary 
data bus, or the coefficient PROMs. The 1-of-4 
MUX provides the path required for data flow to the 
X port. The P port of the multiplier goes to the MI 
ports of the ALUs. 

The data memory is made up of high-speed (45 ns) 
RAMs. There are two memory banks. While one is 
being worked on by the DSP algorithm, the host 
CPU can unload and reload the other. Each 
memory bank is 1 K deep and 32 bits wide, which 
means that the maximum FFT size can be 1 K 
complex. Data from the host can be DMA'd over to 
the board or the CPU can use 1/0 to transport it. 
DMA is only provided on the 16-bit host buses. 
Eight-bit host buses must use programmed 1/0. 
Thirty-two 1/0 addresses are reserved for this 
board and the address decode logic decodes 
these addresses and selects appropriate logic on 
the board. 

The Am29540 and the Am29116 generate 
addresses for DSP algorithms. The Am29540 is an 
FFT address generator. The transform length, FFT 
type, etc. are supplied by the CPU to the part, and 

Table 4-1 "Optimum" CoSt/Performance 
(Radix-2 FFT) 

For Each Memory Access AddlSubtract Multiply 
Butterfly S 6 4 

Resources Memory Buses ALUs MuHlpliers 

#of # Usage # Usage # Usage 
Cycles 

S 1 8/8 1 6/8 1 418 
6 2 416 1 6/6 1 416 
4 2 414 2 3/4 1 414 
3 4 213 2 3/3 2 213 
2 4 212 4 1.5/2 2 212 
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the part puts out the correct sequence of data and 
coefficient addresses. The Am29116 provides 
addresses forthe filter and matrix algorithms. 

The Am29520 is the address pipeline register for 
the data memory. The Am29821 is the address 
pipeline register for the coefficient PROMs for the 
FFT and filter algorithms. 

The last block in the architecture is the 
microprogram control unit. The microword width is 
128 bits. The code can be up to 2K deep. High­
speed (35 ns) registered PROMs are used to store 
the code. The sequencer is the Am2910A. Two 
Am2922s allow the sequencer to test up to 16 
different conditions. 

The detailed architecture of the board is explained 
in the following five sections. 

a) Arithmetic 
b) Memory 
c) Addressing 
d) Control 
e) I/O 

4.1.1 Arithmetic 

Figure 4-1.2 shows a detailed diagram of the 
arithmetic section. 

Data scaling must be considered when designing 
an FFT board. This is necessary in fixed point 
systems, to ensure that the results do not 
overflow. The approach taken here is "block 
scaling," wherein all data is scaled by a certain 
amount at each pass. This kind of scaling can be 
done at the input to or the output from the ALU. A 
shifter at the input to each ALU serves the 
purpose without restricting the input data. When 
the shifter is at the output, the input data is 
restricted so that there is no overflow on the first 
pass through the pipeline. Overflow can occur 
during complex mutiplication when summing 
R*R-I*I or R*I+I*R because of inaccuracies due to 
truncation. Overflow could also occur when 
adding or subtracting, so two bits of overflow 
should be allowed when performing an FFT 
butterfly. Scaling involves right shifting of the data. 
Being able to shift up to 3 places is sufficient and 
thus 4-bit shifters (Am25S10), not barrel shifters, 
are used. Figure 4-1.3 shows how four 
Am25S10s are connected to form a 16-bit shifter 
for each ALU. They are connected so that when 
shifting a 2's complement number, the sign bit 
gets copied into the shifted position. The real and 
imaginary buses bring data into the 010 ports of 
the ALUs via these shifters. Two microcode bits 
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control the amount of shift. The return paths from 
the 010 ports of the ALUs to the memories are 
buffered by the Am29827 10-bit buffers. The 
Output Enables of the shifters and buffers are 
controlled by the Write Enable lines from the 
microword to the data memories to ensure that bus 
contention does not occur. 

The FFT algorithm uses the formula A±WB where 
A and B are the complex data points and W is the 
complex coefficient. Multiplication is only between 
Band W. So for the FFT algorithm, it is sufficient to 
have the coefficient as one input to the multiplier 
and the ALUs as the other input. Squaring to form 
a magnitude, on the other hand, requires 
multiplication between "data" inputs. No 
coefficients are involved in matrix multiplication. 
Thus, for this algorithm, both multiplier inputs must 
connect to the ALUs. Sum-of-product-type 
calculations may require that data flow directly from 
the memory into the multiplier, bypassing the ALU. 
Finally, complex arithmetic requires that data flow 
from either ALU to the other. All of these data 
paths exist in this design. The output of a 16-bit, 1-
of-4 MUX, made up of eight 74LS253s, is 
connected to the X input of the multiplier. The four 
possible X inputs are: the coefficient PROMs, the 
real data bus from memory, the imaginary data bus 
from memory, and either ALU. A transceiver 
between the two ALUs, appropriately controlled, 
prevents bus contention and allows either ALU to 
be connected to either multiplier input. The 
transceiver also allows bidirectional data flow from 
one ALU MIO port to the other. The MUX and 
transceiver are controlled from microcode. The Y 
input of the multiplier is a bidirectional port. If a 32-
bit product is required, 16 of the product bits can 
be multiplexed on this port and input into the ALUs 
via their corresponding MIO ports. The other 16 
bits of the 32-bit product can go from the P port of 
the multiplier to the MI ports of the ALUs. 

Some algorithms may require double-precision 
arithmetic. The Am2902 is a Carry Lookahead 
Generator that allows cascading of all four 
Am29501 s to form a 32-bit ALU. Figure 4-1.4 
shows how the ALUs and lookahead generator are 
interconnected to allow this. Here the Most 
Significant Byte for double-precision is the 
Imaginary MSB and the Least Significant Byte is 
the Real LSB. The RALUOM bit from microword 
controls whether the configuration is single­
precision or double-precision. When this bit is 
High, the propagate and generate signals from the 
imaginary MSB are forced High, thus forcing CN+Y 
from the Am2902 Low and effectively enabling 
Single-precision. 



N 
....... 

ALGORfTHM#1 

Am29540 

FFT ADDRESS GEN. 

ALGORITHM#2 

Am29116 

FILTER&MA.TRlX 
ADDRESS GEN. 

l1 
ADDRESS 

INTERFACE 

II 
r--

ADDRESS 
PIPUNE 

FORDATA 

~ Am29520 f-y 

-

ADDRESS 
PIPEUNE 

FORCOEF· 

-...I\. 
--V 

FICIENT 

Am29821 

HOST 

l1 
DATA 

INTERFACE 

D 
DATA RAM 

f-...l'\, 
Am2148 

'--------V 

~ 
COEFFICIENT PROM 

Am29526.27,28,29 

iii i 
MICROPROGRAM AND 

CONTROL UNIT 

Am2910A. Am27S45A 

A 
IMAGINARY BUS 

REALEWS 

D " 
r-

~ 

REAL IMAGINARY 
PROCESSOR PROCESSOR 

Am29501 Am29501 

"- ~Ir 3L: 
~ 7~ 

.A IL 
MUX 

" 

-" 16 x 16 ,.;t--MULTIPLIER 
Am29517 '\r-

Figure 4-1.1 

[I 



I\) 
(XI 

~ 
REAL _~/ 

v 

... 

~ 

BUFFER 

~ Am29827 
~ 

SCALER 

Am25S10 

'\ 
/ 
" 

to.. 

" 
.,.'<; 7, 

MUX 

IMAG 

l 
,.,. 

DIO n 
I 

REAL 

I MIO Am29501 

MI 

Ir 
TRANSCEIVER 

Am2947 V' 
i'r 

Figure 4-1.2 

BUFFER 
A 

Am29827 
~ 

to.. 
SCALER 

Am25S10 
V 

V 
DIO 

~!J~ MAG 

CLA Am29501 

Am2902 

MIO MI 

~n~ 

MULTIPLIER 

A 

to.. y~ 
X Am29517 

V 
p 

---------



f\) 
c.o 

13 12 11 10 -11 -12-13 
SO 
Sl Am25S10 

'I-1~/OE 
Y3 Y2 Yl YO 

15141312 

13 12 11 10 -11 -12-13 13 12 11 10 -11 -12 -13 13 12 11 10 -11 -12 -13 
SO SO SO 
Sl Am25S10 Sl Am25S10 Sl Am25S10 
fOE IOE fOE 

1110 9 8 7 6 5 4 3 2 

151413121110 

DATA BUS TO ALU 

9 8 7 6 5 432 1 0 

D9 08 07 D6 05 D4 D3 D2 01 DO 

1--------------1I/OE1 

1------------i- /OE2 
Am29827 

1514131211 10 9 8 7 6 5 4 3 2 1 0 

1 0 

I I I I I I I I I I I I I I I I <: DATA BUS FROM MEMORY :> 

Figure 4·1.3 



.A " MBUS 
'Ij V 

RALUOM RALUOL 

1,. 1,. 

10-18 'w 10-18 10-18 I<=--=> 10.18 
20-28 20·28 20·28 20-28 

Am29501 Am29501 Am29501 Am29501 
REALLSB REALLSB IMAGMSB IMAGLSB 

~ 
C IN r- C IN C IN I- C IN 1-

PG PG PG PG 

II II 
, I, 
P G P G P G P G 
1 1 0 0 3 3 2 2 

Am2902 

CN+X CN+Y CN.Z 

I I I 

Figure 4-1.4 

4.1.2 Memory 

The data memory is an important consideration in 
the design. It must be designed to support the 
high-speed architecture. The minimum 
requirement is one memory bank, to be toggled 
between the host system and the DSP Processor. 
But this means that the DSP Processor is idle 
during the time data is unloaded and new data 
reloaded. Real-time applications would typically 
sample data continuously at a fixed rate. Results of 
the process would be read continuously from the 
data memory. Thus, it is necessary to have two 
memory banks so that, while one bank is being 
unloaded and reloaded, the other bank is 
processed by the DSP. This restricts this design 
to in-place FFTs. 

Figure 4-1.5 shows the memory section 
architecture of this design. High-speed (45 ns) 
Am2148 memories make up the two memory 
banks designated L (Left) and R (Right). Each 
memory bank is 1 K deep and 32-bits wide. Since 
FFTs operate on complex data, each memory bank 
is further divided into 16-bit real and imaginary 
parts designated by R and I respectively. 
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One line, Q (described in the Control section), 
controls memory bank switching. To allow parallel 
operations, two address buses (designated Left 
and Right) supply addresses simultaneously to the 
two memory banks. These address buses switch 
when Q switches so that DSP data addresses are 
provided to the memory on which the DSP is 
processing and host data addresses are provided 
to the other memory bank for unloading and 
reloading of data. 

The DSP data buses are 16 bits wide. 
Transceivers (Am2947s) isolate one memory bank 
from the other on the DSP side. Q controls the 
Chip Enables of these transceivers so that only the 
appropriate set of transceivers are enabled at any 
time. The direction of these transceivers is 
controlled by the real and imaginary Write Enable 
bits from microcode. 

Host data buses can be 8 bits or 16 bits wide. The 
three inverting transceivers (Am2946) at the top of 
Figure 4-1.5 are connected to accommodate both 
sizes. If the host bus is 16 bits wide, transceivers 1 
and 3 are enabled by CD3 so that data is 
transferred directly in 16-bit words. If the host bus 



is 8 bits wide, data must be transferred in bytes. 
First the low byte is transferred through transceiver 
3 and then the high byte is transferred via 
transceiver 2. Notice that when the low byte is 
written, transceiver 1 is also enabled and invalid 
data enabled on the high byte. This is followed im­
mediately by the true high byte. When data is read 
back by the host, there is no problem because the 
host bus is only 8 bits wide. Control signals CD2 
and CD3 are generated from a PAL device. 

The direction of these transceivers is controlled by 
the system Read signal, lOR, such that the 
transceivers are directed into the board by default. 

The Am2947 transceivers on the host side of the 
section are to isolate the memory banks on that 
side. Their Chip Enables (CELR, CEll, CERR, 
CERI) are generated in a PAL device. Control 
signal a is used to distinguish between the left 
and right memory banks. The system Read signal, 
lOR, also controls the direction of these 
transceivers. 

Eight Write Enable lines, WE1 through WE8, are 
produced in a PAL device. Data Writes from the 
DSP side are in 16-bit words only. Two microcode 
bits, one for real data and the other for imaginary 
data, are used to generate the Write signals from 
the DSP side. Data Writes from the host side can 
be accomplished by DMA or 1/0. DMA is allowed 
only for 16-bit transfers. The Am9517A is the DMA 
controller being used in the design. Since 110 
Writes can be in either byte or word mode, two 1/0 
addresses are reserved for this. When a decode 
of these two addresses occurs, a PAL device 
produces two signals, BYTEH for the high byte 
and BYTEL for the low byte. When the bus is used 
in 16-bit mode, the MULTIBUS* produces a 
control Signal, BHEN. A combination of these 
three signals is used to produce the eight Write 
Enables during data loading via 110. 

4.1.3 Addressing 

To achieve parallel operation, both memory banks 
are addressed simultaneously, one by the host for 
unloading and reloading of data and the other by 
the DSP address generator. Figure 4-1.6 shows 
the arcMecture of this section. 

Addressing from the host processor must 
accommodate DMA or programmed 1/0. For this 
design, only 16-bit DMA transfers are allowed. 
Programmed 1/0 transfers, on the other hand, can 
be 8 bits or 16 bits. Host addressing is done by a 
"fly-by" counter. The counter is pre loaded with the 
starting address from the host processor. The 
counter is clocked by the Read or Write Signal 
produced by the Am9517 DMA Controller, if DMA 
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is being used, or by the Read or Write signal from 
the host system, if programmed 1/0 is being used. 
A PAL device produces these clock signals for the 
fly-by counter. The 12-bit Counter is made up of 
three Am74161s (4-bit presettable counters). 

The Least Significant Bit of the fly-by counter goes 
into the PAL device that produces the eight Write 
Enable signals forthe memory. It distinguis!;les the 
real data from the imaginary data. The next 10 bits 
of the counter address the 1K deep memory. The 
address for a complex word of memory is the same. 
Thus in the 16-bit mode, the address from the fly­
by counter to the memory remains unchanged for 
two consecutive clocks and the Least Significant 
Bit of the fly-by counter helps to generate a Write 
signal for either the real or imaginary part of the 
complex word. For 8-bit 1/0 transfers, the fly-by 
counter is clocked once every two 8-bit Writes so 
that the Least Significant Bit of the fly-by counter 
still distinguishes between real and imaginary data. 

This design supports the following DSP 
processes: 1)Fast Fourier Transforms, 2) Filters, 
and 3) Matrix Multiplication. Addressing for the 
FFT is quite complex but the Am29540 provides a 
hardware solution. Addresses for data source, data 
destination and coefficients are generated by the 
Am29540 FFT Address Sequencer. The 
microcode indicates to the address sequencer the 
FFTtype (radix 4/2; inplace, non-inplace; DIT/DIF). 
Four bits from the Instruction Register (described 
in the Control Section) indicate the transform 
length to the sequencer. The transform length is 
latched into the part at the start of the process. 
That's all that is required for initialization. The 
sequencer now produces data and coefficient 
address in the required order for the entire 
transform. 

The Am29116 is programmed to produce the 
address sequence for Filters and Matrix 
Multiplication. Since the board runs just one 
process at a time, the Am29540 and the Am29116 
are never used simultaneously. Therefore the 
microcode bits for the two parts are overlayed. The 
FFT transform length four bits from the IR indicate 
to the Am29116 the type of filter or the matrix size. 

The data addresses must be saved in a pipeline 
register for efficient microcoding. The Am29520 
serves as a dual, two-level pipeline register. The 
source addresses for the two complex inputs are 
saved in one level. These are moved into the 
second level to become the destination addresses 
for the results and new source addresses get put 
into the first level. Four bits of microcode control 
the two Am29520s that are connected in parallel to 
form the 12-bit-wide pipeline register for the data 
addresses. 
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The coefficient addresses need a simple, one­
level pipeline register and the Am29821 10-bit 
register serves the purpose. For the FFT process, 
there are 16-bit sine and cosine coefficient 
PROMs (Am29526-Am29529). Two 8-bit 
PROMs, Am27S291s, form a third 16-bit 
coefficient PROM for the filter algorithm. 
Addresses for the sine and cosine filter coefficient 
PROMs are generated by the Am29540. Coef­
ficient addresses from the Am29540 are left­
justified and for radix-2 operations, the MSB is 
always a "0." The Am29116 is programmed so that 
its MSB is always a "1" when generating filter 
coefficient addresses. This MSB is therefore used 
to "Chip Select" between the FFT coefficient 
PROMs and the filter coefficient PROMs. A 
microcode bit selects between the sine and cosine 
during the FFT process. 

The two memory banks are addressed simul-

7 

Am29845 

HOST DATA BUS 

LEI+--t__-+I 

0E1+--1>--t--+I 
7400 

taneously, one by the DSP addressing and 
one by the host addressing. Two address buses 
therefore supply these two addresses to the two 
memory banks. At the end of a process, the two 
buses must be switched, under control of the flag 
Q. This is achieved by the four 10-bit buffers, 
Am29827s. At anyone time, two of these buffers 
are enabled by Q, one supplying host addresses 
to one bank of memory and the other supplying 
DSP addresses to the other bank. At the end of a 
process, these two buffers are turn~d off and the 
other two turned on so that the buses switch, 
effectively switching memory banks. 

4.1.4 Control 

This section addresses the "heart" of the design 
because the microcode controls the rest of the 
system. The microcode width must. be decided 
during this phase of the design. A Microprogram 
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Sequencer is used to sequence through the 
microcode. A Pipeline Register is required for the 
microcode bits so that the sequencer can fetch the 
next microinstruction while the present one is 
executing. A Condition Code MUX is needed to 
test conditions. These are the basic necessities of 
the Control section. 

Figure 4-1.7 shows the architecture for this 
section. The microcode width required for this 
design is 128 bits: 58 bits for the Real and 
Imaginary ALUs, 21 overlayed bits for the 
Addressing section, 6 bits for the Multiplier, 4 bits 
for the Shift Register, 4 bits for the Address 
Pipeline Register, 16 bits for the Microprogram 
Sequencer, 5 bits for the Condition Code MUX, 
and some other miscellaneous bits. The PROMs 
used are Am27S45As; they are high speed (35 
ns) 2K x 8 registered PROMs. Using registered 
PROMs decreases part count and saves board 
space because the Pipeline Register is built into 
the PROM. The Condition Code MUX has built-in 
registers and so, to avoid having two registers in its 
path, a non-registered microcode PROM is used 
for it. A registered PROM could be used but the 
microcode for the CCMUX would be shifted by 1 
line with respect to the rest of the microcode. 

These PROMs have a 2049th location which can 
be programmed as any value. This value appears 
at the output of the PROM when an IN IT signal is 
applied to the PROMs. This is a useful feature for 
initialization on reset. The op-code for a Jump to 
Zero (JZ) instruction for the sequencer is 
programmed into this location for initialization on 
reset. The reset line from the CPU is connected to 
the INIT input ofthe PROM. 

The sequencer used is the Am2910A, capable of 
addressing up to 4K of microcode memory. We 
have 2K deep microcode memory in this design 
which is enough forthe processes desired here. 

Two Condition Code MUXs (Am2922s) enable 
testing of up to 16 inputs, of which one is used for 
the "forced pass" condition. The outputs of the 
Condition Code MUX is fed into the CC input of the 
sequencer for condition testing. 

The control section also contains an 8-bit 
Instruction Register (Am29845). Four bits go to 
the Am29540 or Am29116 to indicate FFT 
transform length, filter type, or matrix size. Three 
bits go into the sequencer to indicate the process 
to be run. The eighth bit from the host goes into a 
latch. This is the latch for Control Signal Q that 
indicates to the entire system which memory bank 
to process. The state of this eighth bit from the 
host either sets or resets the Q latch. 
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Also included in the Control Section of the design 
is the clock circuit. The Am2925 is a clock 
generator and microcycle length controller. It 
produces clocks of varying duty cycles. 

The following is a sequence of events that would 
occur from start to finish of any process. On power­
up, the reset line from the CPU is activated and the 
op-code for a JZ instruction is put out from the 
microcode PROM to the sequencer. This makes 
the sequencer jump to the start of microcode. The 
sequencer now waits for an instruction to be 
loaded into the IR by the CPU. 

On receiving an instruction, the sequencer jumps 
to one of eight locations at the end of the 
microcode. The exact location is decided by the 
three bits from the IR to the branch address field of 
the sequencer. The value of the three bits 
depends on what process must be run (one of 
eight). The sequencer jumps to one of eight 
locations and gets a branch address from there 
which would be the starting address for the 
process. At the end of the process, the 
sequencer would execute a JZ instruction and set 
a flag. This flag can be read by the CPU via 
software. The CPU can now load the IR with 
another instruction. The CPU should not load the 
IR if the flag from the microcode is inactive, as the 
sequencer would miss the instruction. 

4.1.5 InputlOutput 

The 1/0 section is the interface between the board 
and the host system. Decoding logic is required to 
decode 1/0 addresses reserved for the board. 
Also required is the DMA controller and some 
registers and buffers to interface with the host 
address and data buses. Figure 4-1.8 is a diagram 
of the architecture. 

The DMA Controller used in this design is the 
Am9517. The Am9517 is chosen I'lrimarily 
because of its capability to interface easily with an 8-
bit CPU. If a 16-bit CPU were being used, the 
Am9516 would have been selected. Although an 
8-bit CPU and a 16-bit DMA seem contradictory, 
the Multibus allows bus masters with different bus 
widths to exist in the same system. 

1/0 addresses must be reserved for this board. 
The DMA Controller must have 16 addresses 
reserved for it. Other 1/0 addresses needed are 
for 1/0 memory writes, fly-by counter loading, 
checking process complete status flag, loading 
three MSBs of address for DMA (described later in 
this section), loading the instructions into the IR, 
and initialization of the board. Thirty-two 1/0 
addresses are reserved for this board. 



The Am29809, an 8-Bit Comparator, produces a 
board select when one of these 32 110 addresses 
is put on the bus by the CPU. When using DMA, 
the controller must be programmed. This is done 
via Buffer 1 (Am29828). When an address decode 
occurs for the DMA Controller, Buffer 1 is ·output 
enabled" and the Am9517 is ·chip selected" and 
programmed. The MUL TIBUS address bus is 20 
bits wide. Since DMA is allowed only in 16-bit 
mode and this design is for an 8-bit CPU, the LSB 
of the address bus is grounded. The Am9517 
operates in 256-byte pages. The low order 8 bits 
go from the Am9517 to the host address bus via 
Buffer 2. The output of this buffer is enabled by 
the acknowledge line from the controller. The high 
order 8 bits of the address must be latched into a 
register. Device #3 on the diagram is an 8-bit 
register into which these 8 bits are latched. The 
MUL TIBUS address bus being 20 bits wide, the 
remaining 3 bits must be loaded into a second 
register (Device #4 on the diagram) by the CPU. 
An 1/0 address (signal name ADDRL) is reserved 
forthis function. 

An 1/0 address is also reserved for the process 
complete status flag. This flag from microcode 
goes into Buffer 5 and this buffer's output is 
enabled when the address decode for this flag 
occurs. The CPU reads the value of the buffer and 
decides if the DSP process is complete. 

Appendix 1 lists the equations for the three PAL 
devices used in the 110 section. 

4.1.6 Timing Considerations 

This is probably the most critical phase of the 
design. "Timing Considerations" refers to the 
speed at which the design will actually run. This 
should be done before the board is built. The 
designer starts out with a certain set of goals which 
the design has to meet. These goals can be 
divided into two categories. Category 1 lists the 
different algorithms that the design has to process. 
Category 2 lists how fast these processes must be 
run. The designer starts with the goals in Category 
1. He designs his architecture so that all algorithms 
can be run by the design. He then writes 
microcode for the processes. Knowing the 
architecture and having written the microcode, the 
designer can now evaluate worst case data paths 
and can compute process times and compare 
them with the goals in Category 2. All is well if the 
goals in both categories are met. If not, trade-offs 
must be made. First, the designer should try to 
make the microcode more efficient. If this is not 
sufficiently effective, the architecture needs to be 
changed or some of the goals need to be relaxed. 
Changing the architecture usually implies adding 
more hardware so that the deSign has more 
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processing power. This is not always possible due 
to board space and cost limitations. The alternative 
solution, relaxing some of the goals, could mean 
either disallowing some of the algorithms thus 
getting rid of some hardware and thereby 
eliminating propagation delays and increasing 
speed, or finally, deciding that the slower speeds 
are acceptable. 

In this design, the Category 1 goals were: 
a) 1 K Complex FFT; 
b) Filters; 
c) Matrix Multiplication. 

The Category 2 goal was: 
a) 1 K Complex FFT in 2 ms. 

The hardware is designed and microcode for the 
FFT has been written. Each butterfly takes 4 
cycles. Now the worst case data path needs to be 
computed which would decide the minimum cycle 
time. To achieve the 2 ms goal, the cycle time 
should be no greater than 100 ns. 

All data paths should be and have been 
considered. Three of the worst paths are: 

1) Clock to output of microprogram pipeline 
register 
+ select to output of Am29520 
+ prop delay of bus switching transceivers 
+ data memory access time 
+ prop delay of transceivers separating 
memory banks on DSP side 
+ shifters 
+ data set up time of Am29501 
=141 ns. 

2) Clock to output of microprogram pipeline reg 
+ INST to output of Am29116 
+ data setup time of Am29520 
= 104ns. 

3) Clock to output of microprogram pipeline reg 
+ 2 slice delay of Am29501 
+ CCMUX prop delay 
+ Am291 0 setup and prop delay 
+ microprogram memory access time 
= 178ns. 

The worst case path is 178 ns which means that 
the maximum clock frequency can be 5.62 MHz; 
less than the goal of 10 MHz. Reducing microcode 
is not possible. With the architecture chosen, 
doing a butterfly in 4 cycles is the best one can do; 
it's time to make a trade-off. As this design is for an 
evaluation board, the goals of Category 1 cannot 
be relaxed. The two possible paths left are to add 
more computing power to the design or relax the 
goals of Category 2. Again, because this design is 
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for an evaluation board, the latter of the two paths 
is chosen. The worst case path is not likely to be 
executed very often, so it is supported by 
changing the clock period with the Am2925, and 
the 141 ns path is considered worst case making 
the clock frequency 7.09 MHz. This path can be 
improved by putting in faster transceivers and 
faster data memories like the Am2148-35 or the 
Am9150-25. Using the latter brings the speed up 
to 8.26 MHz. Adding more computing power 
would mean providing more ALU's and/or 
multipliers. The designer would have to evaluate 
by how much the microcode would reduce if there 
was more arithmetic processing power. Timing 
paths would have to be recalculated and a new 
estimate made for the maximum clock frequency. 

4.1.7 Microcode 

This section deals with the software aspect of the 
design. Microprogramming involves writing a 
coherent sequence of microinstructions used to 
execute the various steps required by the 
process. A microinstruction usually has two 
primary parts: 1) the definition and control of all 
elemental micro-operations to be carried out; and 
2) the definition and control of the address of the 
next microinstruction to be executed. 

For our design, the definition of the various micro­
operations to be carried out includes the Real and 
Imaginary ALU's, multiplier, data address 
generation, data memory control, address pipeline 
registers, shifters, clock controller and condition 
code MUX select. The definition of the next 
microinstruction function includes identifying the 
source selection of the next microinstruction 
address and supplying the starting address for any 
process. 

Two basic principles should be remembered when 
writing microcode: 1) parallel execution of different 
operations, and 2) maximum utilization of 
resources due to the pipelined architecture. 

The microcode for the FFT is described here in 
some detail. 

The FFT algorithm is highly repetitive. The same 
butterfly operations are performed on different 
sets of numbers. Each radix 2 butterfly consists of 
four multiplies and six adds/subs. The code 
developed here is for a radix 2 DIT FFT. The 
equations for a radix 2 DIT butterfly are: 

A1 =A+8Wk 81 =A-8Wk 

where A and 8 are the complex input points, A1 
and 81 are the complex results and Wk is the 
complex coefficient. 
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The following rules should be kept in mind when 
developing microcode: 

a) Determine the program repetition rate. We 
have determined that our repetition rate is R = 
4, i.e., each butterfly will take 4 cycles. 

b) Start programming at line R + 1 =5. 

c) For every program entry, enter an 'X' R cycles 
above and below (Table 4-3). 

The arithmetic section will be programmed first. 
Table 4-2 is a programming work sheet for this 
section. Figures 4-1.9 through 4-1.18 and Tables 
4-3 through 4-7 show. the development of the 
code for the arithmetic section. Each block 
diagram showing data movement for a particular 
line of code is followed by a coding sheet showing 
the corresponding line. If a conflict of resources 
occurs, another resource must be used or the 
function re-scheduled for execution. 

Note in Table 4-9 that code is repeated every 4th 
line. Also note that the ALU's and multiplier are 
utilized 100% of the time. Also note in Table 4-9 
that a new butterfly starts every 4th cycle. It is the 
pipe lined process that makes the butterfly time 
equal to 4 cycles. At any given time, computation 
for 3 butterflies is in progress as illustrated in 
Figure 4-1.19. 

Next the code for the address generating section 
needs to be written. Obviously it needs to be 
mapped into the code already written for the 
arithmetic section. Tables 4-10 and 4-11. show 
the coding for the coefficient PROM select and for 
the address pipeline register for the coefficient 
PROMs. Tables 4-12 through 4-14 show the 
coding for the FFT address generator and the 
pipeline register. Figures 4-1.20 through 4-1.30 
show the data flow from the address generator 
through the data and coefficient address pipeline 
register to the memories. 

Having decided upon the code, it is now 
necessary to actually write it. A symbolic language 
would no doubt be of great help. This is possible 
with the AMDASM meta-assembler which is used 
in two phases. The first phase consists of defining 
the microinstructions and the language. This is 
done by creating a file of the type XXXX.DEF (see 
Appendix 2, DSP.DEF) which contains: 

a) The microword width (WOR D 128). 

b) The list of language mnemonics. Each 
mnemonic would be associated with an 
instruction field defining the bits controlling 
each resource. 
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Table 4-3 

Real Imaginary Multiplier 

Step 010 ALU A, ~ Aa a. ~ II:! ALU A, ~ Aa a. B2 II:! MIO MULl 

1 X X X 

2 

3 

4 I 

• 5 Read B Ot 01 

6 

7 
.j>. ..... 

8 

9 X X X 

10 

11 

12 

13 

14 

15 

16 

17 

18 
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Table 4-4 

Real Imaginary Multiplier 

Step 010 ALU A, ~ A:J ~ ~ Ba ALU A, ~ A:J ~ B2 B3 MIO MULT 

1 X X X 

2 X X X X X 

3 

4 

5 Read B 01 01 

• 6 Read A 01 01 H BA 

7 

t) 
8 

9 X X X 

10 X X X X X 

11 

12 

13 

14 

15 

16 

17 

18 
----------
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Figure 4-1.12 Line 8: The product WRBR is used by Re ALU to start to form B'. Save product in A3 Re A'. 
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Figure 4-1.14 Line 19: BIWR used by 1m ALU to complete B'. Also save this product for A' later. Re ALU starts on A'. 



Table 4-5 Line 10: a conflict has developed In 1m A1 

Real Imaginary Multiplier 

Step 010 ALU A, .~ ~ a, B:z Ba ALU A, ~ ~ a, B:z Ba MIO MULT 
, 

1 X X X 

2 X X X X X 

3 X X X X 

4 X X X X X X X 

5 Read B X X DI X X X X 01 X X 

6 Read A X 01 X X X l/(. X H X X BR X 

~ 
7 H H H BRWR 

B A1-MSP H MSP ALU H B, BRW, 

9 X H H X H A1-MSP H MSP X ALU B,WR 

10 X A1 + A3 X ALU H B2-MSP lX H X ALU MSP X B,W, 

11 X X X X 

12 X X X X X X X 

13 X X X X X X X X 

14 X X X X X X X X X 

15 

16 

17 

1B 

f 



Table 4-6 Line 10: conflict in 1m A1 resolved by delaying Read A one cycle to Line 7 (from 6). 

Real Imaginary Multiplier 

Slep 010 ALU ~ II:!. Aa ~ B2 B3 ALU ~ II:! Aa Bl B2 B3 MIO MULT 

1 X X X 

2 X X 

3 X X X X X 

4 X X X X X X X 

5 Read B X X 01 X X X X 01 X X 

6 X X X X X X H X X BR X 

~ 
7 Read A 01 X 01 H BRWR 

8 A1·MSP H MSP ALU H X BI BRW1 

9 X H H H A1·MSP H MSP X ALU B1W R 
i 

10 A1 + A3 ALU H B2·MSP H H X ALU MSP X B1W 1 

11 X X X X 

12 X X X X X X X 

13 X X X X X X X X 
\ 

14 X X X X X X X X X 

15 

16 

17 

18 
. - -- --_. 

t 
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Figure 4-1.15 Line 11: BIWI used by Re ALU to complete B'. Hold this product Re A' later. 1m ALU starts on A'. 
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Table 4·7 One complete butterly: lines 5-14 (10 lines). 

Real Imaginary Multiplier 

Slep 010 ALU A, Az Aa Bw ~ ~ ALU A, Az Aa Bw B2 ~ MIO MULT 

1 X X X 

2 X X 

3 X X X X X 

4 X X X X X X X 

5 Read B X X 01 X X X X 01 X X 

6 X X X X X X H X X BR X 

~ 
7 Read A X 01 X X X X 01 X X H X BRWR 

8 X A1·MSP H X MSP X ALU X H X B. BRW, 

9 X X H X H X H A1·MSP H X MSP X ALU B.WR 

10 X A1 + A3 ALU H B2·MSP H H X ALU MSP X B.W. 

11 X B2+MSP X H MSP ALU A1 + B3 X ALU H X H X 

12 Write B2 X X H X H X A2 + A3 X ALU X X 

13 A2. B1 X ALU X X X X H X X X 

. 14 Write A2 X X X X X X X X X 

15 X X X X X X X X 

16 X X X X X 

17 X X X 

18 X 



Table 4-8 The code repeats every 4 lines. Thus a new butterfly Is completed every 4 cycles. 

Real Imaginary Multiplier 

MIO I MULl 

6 I Write A2 I A1 + A3 I IALUI I H I I B2-MSP I H H I H IALU IMSpl BR B1W 1 

C11 
BRWR 

C11 
BI BRW1 

9 I Read B I A2 - B1 I H I ALU I H I 01 I H A1-MSP I H I H IMSPI 01 I ALU I B1WR 

10 I Write A2 I A1 + A3 I IALUI I H I B2·MSP I H H I H IALUIMSPI BR B1W 1 

11 I Read A I B2+MSP I 01 I H IMSplALUI A1 + B3 I 01 I ALU I H I H I H I BRWR 

12 I Write B2 I A1-NSP I H I H IMSpl H IALUI A2 + A3 I H I ALU I BI BRW1 

13 I Read B I A2 - B1 I H I ALU I H I 01 I H A1-MSP I H I H B1WR 

14 I Write A2 I A1 + A3 I IALUI I H B2-MSP I H H I H IALU IMSPI BR B1W1 

15 I Read A I B2+MSP I 01 I H IMSPIALUI A1 + B3 01 I ALU I H I H I H BRWR 

16 IWrlteB21 A1-MSP I H I H IMSPI H IALUI A2 + A3 I H I ALU I BI BRW1 

17 I Read B I A2 - B1 I H I ALU I H I 01 I H A1-MSP I H I H IMSP B1WR 

18 I Write A2 I A1 + A3 I IALUI I H B2-MSP I H I H BR B1W 1 



01 
0) 

Step DIO 

-2 Write A2 

3 Read A 

4 Write B2 

I 
6 Write A2 

7 Read A 

8 Write B2 

10 Write A2 

11 Read A 

12 Write B2 

14 Write A2 

15 Read A 

16 Write B2 

18 Write A2 

-

ALU 

III 
A1 • A3 

B2.MSP 

A1-MSP 

A1 + A3 

B2+MSP 

A1·MSP 

I 
A1 + A3 

B2.MSP 

A1·MSP 

A1 + A3 

B2.MSP 

A1·MSP 

A1. A3 

Table 4-9 A new butterfly must also start every 4 cycles. 

Real Imaginary Multiplier 

~ ~.~ ~ B:z Sa ALU ~ ~ ~ ~ B:z Sa MIO MULT 

I 
ALU H B2·MSP H H H ALU MSP BR B,W, 

DI H MSP ALU A1 • B3 DI ALU H H H BRWR 

H H MSP H ALU A2 + A3 H ALU B, BRW, 

]I II I 
ALU H B2·MSP H H H ALU MSP BR B,W, 

DI H MSP ALU A1 + B3 DI ALU H H H BRWR 

H H MSP H ALU A2 + A3 H ALU B, BRW, 

• ALU H B2·MSP H H H ALU MSP BR B,W, 

DI H MSP ALU A1 + B3 DI ALU H H H BRWR 

H H MSP H ALU A2 • A3 H ALU B, BRW, 

ALU H B2·MSP H H H ALU MSP BR B,W, 

DI H MSP ALU A1 + B3 DI ALU H H H BRWR 

H H MSP H ALU A2 + A3 H ALU B, BRW, 

ALU H B2-MSP H H H ALU MSP BR B,W, 
-
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Figure 4-1.19 Three butterflies In progress at the same time: A' for one BF Is being written back. Arithmetic for next BF Is In progress. 
The first product for the BF that is next again Is being set up. 
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Table 4-10 Coefficient selection: work back from required products. 

FFT Addr Gen o Addr Pipeline Multiplier 

tnstr A SEL tnstr SEL RAM Register PROM 
010 Mult RIW Enable SEL 

X \ \ 
X \ 
X X \ X 

X X 

X Read B X 

Re X 

tm Read A I BRWR 

Re X I BRW 1 

1m X B1WR 

X X BWI 

X X X 

X Write B2 X 

X X 

Write A2 X 

X 

\ 
X j l 

i 

----
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Table 4-11 Coefficient pipeline: pick up 'k' from 29540 and hold for all four products. 

FFT Addr Gen o Addr Pipeline Multiplier 

Inslr A SEL Inslr SEL RAM Reglsler PROM 010 Mult 
R/W Enable SEL 

X X X \ \ 
X X \ 
X X X \ X 

X X X 

8 En X Read B X 

H Re X 

H 1m Read A / BRW R 

H Re X I BRW, 

X X 1m X B,W R 

X X X B,W, 

X X X X 

X X Write B2 X 

X X 

Write A2 X 

X 

\ 
X \ 

t t 
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Table 4-12 Data-address pipelining: needs 2-level push-down-only stack in an Am29520/21. 

FFT Addr Gen o Addr Pipeline Multiplier 

Slep Inslr A SEL Inslr SEL RAM Reglsler PROM 010 Mull R/W Enable SEL 

1 X X X X X \ \ 
2 X X \ \ 
3 X X X X X \ X 

4 X X X 

5 8 B1 R En X Read B X 

6 H Re I X 

7 A1 R H 1m Read A BRW R 

8 X X H Re X I BRWI 

9 X X X X 1m X B1W R 

10 X X X X X BWI 

11 X X X X X X 

12 B2 W X X Wrlle B2 X 

13 X X 

14 A2 W Write A2 X 

15 

16 X X X 

17 \ 
18 X X X \ 

f f 



Table 4-13 Data-address pipeline: pipeline register instructions; 29540 address selection_ 

FFT Addr Gen D Addr Pipeline Multiplier 

Step Instr A SEL Instr SEL RAM Register PROM 010 Mult RIW Enable SEL 

1 X X X X X X _\ \ I 

2 X X X X \ \ 
3 X X X X X X \ X 

4 1 Push B X X X 

5 8 H B1 R En X Read B X 

~ 6 0 Push A H Re X 

7 H A1 R H 1m Read A BRWR 

8 X X X X H Re X I BRWI 

9 X X X X X 1m X BIW R 

10 X X X X X X X BWI 

11 X X X X X X X 

12 X X B2 W X X Write B2 X 

13 X X X X X X X 

14 X X A2 W X X Write A2 X 

15 X X X X X 

16 X X X X X 

17 X \ 
18 X X X j t 

t i 
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Table 4-14 Full address generation code: for one buUerfly; still to be overlapped. 

FFT Addr Gen o Addr Pipeline Multiplier 

Inslr A SEL Inslr SEL RAM Reglsler PROM 
010 Mull RIW Enable SEL 

X X X X X X \ \ 
X X X X X '\ 

COUNT X X X X X X 

H 1 Push B X X X 

H 8 B1 R En X Read B X 

H 0 Push A H Re X 

X A1 R H 1m Read A BRWR 

X X X X X H Re X 7 BRWI 

X X X X X 1m X BIW R 

X X X X X X X X BWI 

X X X X X X X 

X X X B2 W X X Write B2 X 

X X X X X X X 

X X X A2 W X X Write A2 X 

X X X X 

X X X X X 

X 

X X X 
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c) The format definition for each instruction. It 
consists of defining the order in which the 
value of each field is given while writing the 
microprogram. 

d) The second phase consists of writing the 
microprogram using the defined language to 
create a source file (Appendix 3, FFT.SRC). 

Another meta-assembler is MACASM by Microtec. 
Further queries can be directed to: Microtec 
Research, Inc., 3930 Freedom Circle, #101, Santa 
Clara, CA 95054, (408) 733-2919. 

Table 4-9 shows that the four lines of code for the 
butterfly are repeated. These are put in a loop and 
the condition for exiting from the loop is the FFT 
complete flag from the address sequencer. Some 
code is required to fill the pipeline and some to 
flush the pipeline at the end of the process. The 
following is the sequence of events that would 
occur from power up. 

On power up when the system is reset, the 
opcode for the JZ instruction is applied to the 
sequencer as described in the control section. 
This causes the sequencer to branch to location 0 
of the microcode. The op-code for the sequencer 
at this location is a jump to location 1. This is done 
to enable a development system to jam address 
zero on the address bus to emulate the JZ 
instruction. The PC in the sequencer is updated 
to the externally produced address by the jump 
instruction. At location 1, the sequencer waits for 
the load IR signal to go active. When this happens, 
the sequencer goes to location 2 and waits for the 
signal to go inactive. When this happens, the 
sequencer goes to location 3 and jumps to 1 of 8 
locations at the end of the microcode memory. At 
this location, the start address for the process is 
obtained and the sequencer jumps to this location. 
The process is completed and the process 
complete flag is set. When the CPU acknow­
ledges this flag, the sequencer returns to location 
1 and waits again. 

The schematics for this design are included in 
Appendix7. 

4.2 DIGITAL FILTERS USING 
MUL TIPL Y·ACCUMULATOR 

A high speed stand-alone digital filter is frequently 
implemented with a multiplier/accumulator, 
temporary storage and a state machine which 
together perform the following calculation 
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M L 

Yn = L.ak*Xn-k- L.bk*Yn.k 
k=O k=1 

where xk is a digitized time sample and yk is the 
output of the filter. This arithmetic can be 
performed in real time by a microprocessor or 
single chip signal processor for low frequency 
applications but a specialized design is required 
when the input signal frequencies are above 100 
kHz (requiring data sampling at >200 kHz). The 
Am29PL141 Fuse Programmable Controller (FPC) 
simplifies the design of microcode controlled filters 
by incorporating all the control functions in a single 
Chip. It contains a microprogram address sequen­
cer and 16 outputs for control of the other circuits 
in the system. In a digital filter design these out­
puts manage the temporary storage of previous 
inputs and outputs and steer the operands to a 
multiplier/ accumulator. 

Figure 4.2.1 is an example of a second order IIR 
filter (also called a biquadratic filter) using an 
Am29PL 141 FPC, an Am2951 0 multiplier/accumu­
lator (MAC), 2-Am29520 multilevel pipeline.regis­
ters, 2-Am27LS19 PROMs and 2-Am29827 
buffers. The Am29510 consists of a 16x16-bit 
parallel multiplier with a 35-bit accumulator. The 
Am29520 is a set of four 8-bit pipeline registers 
which can be configured as two shift registers for 
this design. Anyone of the four registers can be 
selected at the output of the Am29520. The 
Am27LS19 PROMs are used to hold the coef­
ficients which determine the characteristics of the 
filter. The negated coefficients are stored for W3 
and W4 to simplify the accumulation and one of 
four sets of coefficients can selected by strapping 
two address inputs to the PROMs. 

The design implements the equation shown 
above directly although the sequence of 
calculations is done using the oldest data first 
for purposes of data management. 
Appendixes 4, 5, and 6 contain a meta­
assembler file for three IIR filters. Each 
appendix contains a definition file and a 
source file. The definition file defines a set of 
custom program flow instructions for the filter 
and also defines the control functions for the 
output pins. The source file uses the 
instructions defined in the definition file. 
Another way to use a meta-assembler is to 
define a standard set of device instructions 
(FPC instructions for this design) instead of IIR 
filter instructions in the definition phase and to 
keep the customization in the assembly 
proQram. This has advantages in a complex 
deSign since it eliminates one pass of the 
meta-assembler when changes or corrections 
are made and the program is reassembled. 



The operation of the filter consists of receIvIng 
data from an AID or a similar filter section, 
performing the sum of products required for the 
filter and sending the output to a D/A converter or 
another filter section. There is signalling for input 
data taken and output data ready but synchronous 
operation is assumed and there is no "hand­
shaking" where the device waits until data is ready 
or taken. This was done because several sections 
of this type would normally be cascaded as shown 
in Figure 4-2.2 to obtain the desired frequency 
response. The signalling enables the sections to 
synchronize during powerup and could be used 
for diagnosing faults which cause the system to fall 
out of synchronization or to resynchronize after 
such a fault. The sample program simply sets an 
error flag and stops if data is not available when 
needed or taken when the calculation is complete. 
Since only a fourth of the PROM space is needed 
for the filter, a strapping option can be used for the 
coefficient addressing to allow a single design to 
be used for up to four cascaded sections. A filter 
constructed out of these sections requires five 
clock periods to produce an output from each 
input data sample so 10 MHz parts are capable of 
operating at a 2 MHz sampling rate and can handle 
input frequencies up to 1 MHz. These figures can 
be scaled linearly when faster or slower parts are 
used. 

Data management in the Am29520 is accom­
plished by configuring the device into two shift 
registers each containing two levels. The A 
registers hold the two previous input samples and 
the B registers hold the two previous outputs. The 
tri-state buffers on the input isolates it while the 
output data is routed to shift register B. Two FPC 
outputs are used to control the complementary tri­
state enables in order to eliminate the need for an 
inverter. 

A variation of this design could be used for a 
higher order filter by substituting a RAM or register 
file for the Am29520s. An example of a sixth order 
IIR filter is shown in Figure 4-2.3. This example is 
programmed to handshake on input and output 
since it is not a section of a cascaded filter. In order 
to obtain a NOP in the MAC during the 
handshaking, a zero is stored in the coefficient 
PROM and a zero product is accummulated while 
waiting for the input data ready or output data 
taken handshake. In the previous example it was 
possible to route operands to the MAC on every 
cycle since the registers could input and output 
simultaneously. However, this variation uses two 

cycles during which no calculations take place to 
store input and output values in the RAM. These 
cycles can be reclaimed to increase the 
throughput by adding hardware to route data to 
the MAC while writing into the RAM or by selecting 
write-transparent RAMs which place the data being 
written on the output during the write cycle. 
However, this would only be of value if the data 
flow was synchronous and the input and output 
handshaking loops could be removed. 

The two shift registers required for the filter are 
emulated by a RAM in which logical addresses 
represent the position in the shift register. A 
counter and an adder are used to translate the 
logical address to a physical address for the RAM. 
Reading an input data sample increments the 
counter and "shifts" the data in the RAM. With a 
minimum of handshaking time, this filter is capable 
of sampling data at a 600 kHz rate and filtering data 
containing frequencies up to 300 kHz when 
operated at 10 MHz. 

Because RAM sizes are available in discrete steps, 
the direct implementation of a sixth order filter is an 
acceptable choice. However, the 16 RAM storage 
locations can be used more efficiently if the 
canonical form of the IIR filter is implemented. This 
alternate form of the filter can be used whenever 
the number of previous inputs in the calculation is 
equal to the number of previous outputs, i.e., M = 
L for the summation limits. The circuit shown in 
Figure 4-2.3 can be used to implement an order-
15 filter by changing the FPC program to store 
intermediate calculation values instead of inputs 
and outputs. The equations to be calculated 
become 

and 

M 

Z n = X n + L a k * Z n-k 
k=O 

M 

Yn=Lbk*Zn-k 
k=O 

The intermediate value z is calculated from the 
input and previous values of z and then entered in 
the shift register. The output is then calculated 
from the values of z in the shift register. A zero 
coefficient is required to allow the MAC to hold an 
output value during handshaking as in the pre­
vious example. These number of calculations re­
quired limit the filter to a sampling rate of 300 kHz. 

-------------------------------------------" 
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Record signal-processing rates 
spring from chip refinements 

Improved buses, reconfigurability, pipelining, and parallelism unite 
in a bipolar family for building array and signal processors 

by Bernard New and Lyle Pittroff, Advanced Micro Devices Inc" Sunnyvale, Calif. 

o The number-crunching microprocessor requirements 
of the 1980s are ill-served by today's comparatively slow, 
conventional central processing units, Instead, the algo­
rithms executed by both general-purpose array proces­
sors and the more specialized digital-signal processors 
require highly individual architectures for maximum 
speed and performance, Jumping on the fast track is a 
new group of bipolar devices-the AM29500 family­
that combines internal emitter-coupled-logic circuit 
design for speed with TTL outputs for compatibility with 
the outside world, 

The family is able to overcome such speed-retarding 
problems as inadequate data-bus memory and band­
widths and slow execution times through a redesigned 
bus structure and parallel and pipelined processing, In 
fact, the bus structure is designed so that there are 
enough parallel buses to keep a device's multiplier or its 
arithmetic processing unit, or both, busy during each 
cycle. These features, plus programmable reconfigur­
ability, make the 29500 family the fastest group of 
large-scale integrated parts for signal processors to be 
commercially available. In one series of tests, a 29500-
based system had three times the speed achieved by the 
older 2900 family. 

The 29500 series are general-purpose building blocks. 
They include a byte-slice, multiple-port programmable 
signal processor (the 29501), a 16-by-16-bit parallel 
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multiplier with programmable input/output (the 
29516/17), a multilevel pipeline register for data and 
address pipelining (the 29520121), and a fast-Fourier­
transform address sequencer (the 29540). 

To increase processor speed, architectural enhance­
ments had to be made to the older 2900 device designs. 
That family took some steps in the right direction 
because it provides many of the peripheral building 
blocks, like interface devices and direct-memory-access 
chips, needed for real-time signal processing. But the 
2900's arithmetic devices are targeted at general­
purpose computing. They do not have the parallel chan­
nels that are required for a high-speed array or signal 
processor environment. 

One way of satisfying this need was to upgrade the 
2900 family's bus structure, number organization, and 
resource management. The new bus structure can sup­
port addition or subtraction and multiplication on every 
cycle because of extra parallel buses. Number organiza­
tion can now handle complex numbers in parallel quick­
ly. In addition, flexibility of resource management per­
mits the building blocks to be interconnected in enough 
ways to support all algorithms of interest efficiently. 

For dedicated-function and multiple-algorithm pro­
cessing (Fig. 1), a special-purpose processor like the 
29501 operates under the control of a host computer 
system that switches large blocks of data between its 

OUTPUT 

MAIN 
MEMORY 

main memory and temporary slave 
through DMA transfer. Once this 
transfer is complete, the special-pur­
pose processor operates under local 
program control. Each algorithm is 
executed by its own software routine, 
which is stored in its own local mem­
ory independently of the host com­
puter and its high-level language. 

Although the precise architecture 
of Fig. 1 varies with the algorithm 
used, all array- and signal-processing 
algorithms have similar needs for 

1. Dual-purpose. In a typical array- or digi­
tal-signal-processor architecture, both dedi­
cated and multiple algorithm functions can 
be implemented. A host computer provides 
overall guidance and a large memory. 



writing it into RAM locations 000000 to 000007. 
When the first four memory cycles are over, U 3 goes 

into the high state and the decoding occurs. The other 
half of U, furnishes a switch-reset pulse when the system 
has stabilized. This II-microsecond pulse sets the pro­
cessor but does not clear the register. Thus, for all reset 

Generating a negative voltage 
for portable instruments 
by J. D. McK. Watson. Biomedical Engineering Research Group, 
University of Sussex, Fa/mer, Brighton, UK 

Many recently designed microcomputer-based portable 
instruments require + 5- and - 10-volt dc supplies. 
Though + 5 v can be readily derived from a battery 
supply by means of a linear regulator, the latter needs a 
special circuit. This f1yback converter presents a novel 
power supply design that uses just one operational ampli­
fier and a few discrete components. The circuit efficien­
cy is about 75% for a load of about 10 milliamperes, and 
the output voltage can be changed by substituting an 
alternative zener diode. 

Operational amplifier U I functions as a current­
sensing threshold switch and is capable of providing a 
wide output-voltage swing. This threshold is adjusted for 
optimum supply efficiency and output-voltage regula­
tion. QI is driven by the output of UI and operates as a 
saturating switch, with pulse transformer T, functioning 
as its collector load. The transformer is designed for a 
turns ratio of I: I with primary and secondary induc­
tance of 3 millihenrys and a resistance of I ohm, 

The current in T,'s primary through QI provides a 

Flyback converter. This novel flyback con­
verter uses just one op amp, U,. pulse trans­

former T,. and a few discrete components to 
provide a - 1O-V dc voltage. The supply 

ripple contents are low and the circuit effi­

ciency is approximately 75%. Zener diode D2 
is used to set the output voltage. 

lMQ 
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conditions set by the U,-based switch, the vectors must 
be fetched from the RAM, thereby allowing the operating 
system to alter them. 0 

Designer's casebook is a regular feature in Bectronios. We invite readers to submit original 
and unpublished circuit ideas and solutions to design problems. Explain briefly but thoroughly 
the circuit's operating principle and purpose. We'll pay $75 for each item published. 

signal to the inverting input of U I whose noninverting 
input is fed from three sources. A portion of the op amp's 
output provides positive feedback to ensure fast 
switching, an ac signal from T, 's secondary results in the 
collapse of the flux before recycling, and a dc component 
tapped from the output lowers the threshold when the 
output exceeds zener diode O,'s breakdown voltage. 

When the circuit is switched on, U I delivers a high 
output to QI and turns it on. Current in the primary of 
T I increases linearly, developing a positive voltage at its 
secondary. This rising primary current also creates a 
voltage at the inverting input of U I that is sufficient to 
turn it off. As a result, the flux in T, collapses and the 
secondary current charges capacitor C I. Ouring this 
energy transfer, R4 holds the non inverting input negative 
and inhibits the switch from turning on. 

As subsequent cycles add charge to C I, a point is 
reached when 0, conducts and inhibits U I through R,. 
This stage is disabled until the dc output voltage falls 
below the zener threshold, whereupon the circuit 
resumes oscillation. The amplitude of the output voltage 
is approximately equal to the zener voltage of 0,. 
Because of the nonlinear method of regulation, a small 
amount of ripple is superimposed on the output. For the 
component values shown, the ripple is of the order of 40 
millivolts, but can be reduced by using a RC filter 
network at the output. Maximum power output is lim­
ited by the supply voltage and by the saturation current 
ofT,. 0 

R3 
1.0Q 

Rs 
1.0 kQ 

R, 
D2 2.2 MQ 
10 V 

C, 
47/lF + 



arithmetic and addressing-short, repetitive calculation 
loops requiring parallelism and pipelining. In addition, in 
digital-signal processing, arithmetic operations using 
complex numbers may be necessary, whereupon the 
computational load increases to twice as many additions 
or subtractions and four times as many multiplications 
as for real numbers. 

Because calculation loops for arithmetic operations 
are short, the 29500 family surrounds the additions with 
continuous memory accesses-data is fetched, the calcu­
lation loop performed, and the results written back into 
memory. Hence there are many times more memory 
accesses than there are data points. For FFTS, the num­
ber of repetitive memory accesses is multiplied by the 
number of passes through the data. Fortunately, 
although the memory-access sequence is long, it is well 
structured, making it possible as a result to design dedi­
cated address sequencers. 

Divide and rule 

The purpose of pipelining is to allow lengthy opera­
tions to be divided into suboperations, so that when 
one piece of data has completed a suboperation, the 
same hardware can start on the next piece. In this way, 
the 29501 allows up to a 500% speed improvement. 

For example, because a typical processor handles a set 
number of algorithms, its architecture can be very spe­
cific concerning arithmetic and address generation-no 
longer does the CPU have to mix addressing with arith­
metic computations. Also, separate sections can be 
streamlined to calculate each type in parallel and fast. 

A significant feature of the data path for the 29500 
family is the fact that the devices handle only data and 
do no address calculations. The data path can, therefore, 
be optimized for arithmetic. 

The 29501 multiport parallel processor also represents 
the current thinking about multiport organization. It has 
a data-bus port, an output port to a multiplier, and an 
input port from a multiplier. The chip can process an 
FFT fast because of its highly parallel internal bus struc­
ture. In this structure, six registers operate as pipelines 
and are connected to the 110 ports and an arithmetic and 
logic unit by 10 separate byte-wide internal buses. 

A typical cycle on the 29501 consists of data input 
from memory, data output to the multiplier, retrieving a 
previous product from the multiplier, and register-to­
register ALU operations and data moves. Because these 
operations can occur during the same cycle, data manip­
ulation is limited only by the designer's creativity. This 
flexibility, plus the possibility of parallel processors oper­
ating on complex numbers, is what makes high-speed 
operation possible. 

Twice as fast 

The 29500 family uses two high-speed parallel 16-
by-16-bit multipliers-the 29516 and 29517. The 29516 
is compatible with TRW'S MPY-16HJ multiplier but is 
more than twice as fast and has an output multiplexer. 
Either the least or the most significant product can be 
selected at this multiplexer output for use in many 
pipelined architecture calculations. 

On the other hand, the 29517 multiplier incorporates 
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all the features of the 29516 but has a modified 110-

register clocking structure to provide a single-clock input 
with register enables. This approach is preferred to the 
older clock-gating method, which suffers from skews. 

Dedicated addressing 

Address-sequencing complexity for array and signal 
processors can range from integer counting to the com­
plicated number patterns of FFTs. To keep addressing 
speeds high, the 29500 series generates addresses in 
parallel to the data path. However, other architectural 
considerations must also be weighed. 

For a specific application, several system implications 
affect the choice of algorithm from the diversity of FFTs 
available. This choice, together with the transform 
length (or lengths) to be implemented, determines the 
address sequence to be generated. Usually, the nested­
count nature of these sequences has forced the designer 
to use many medium-scale integrated-circuit packages. 

The 29540 is a single-chip solution to the address­
sequencing problem (Fig. 2). Four control inputs allow 
programmed or hardwired control of the actual number 
of data points in the transform. From this and other 
control-input commands, the 29540 can be sequenced 
through the entire transform while providing output 
flags. These flags indicate when each data pass is over 
and when the entire transform is complete. 

For their part, the 29540's control inputs accept the 
most common FFT formats. The designer can opt for 
bit-reversed output order or bit-reversed input order, 
radix-2 or radix-4 address sequences, and decimation-

4·BIT TRANSFO RM LENGTH 

ADDRESS 
SELECT, _ .. _+-__ • 
ASo-AS, 

OUTPUT _ 
ENABLE.OE 

16·BIT ADDRESS OUTPUT 
(OFFSET INPUT) 

ITERATION 
COMPLETE 

FAST 
FOURIER 
TRANSFORM 
COMPLETE 

ODD/EVEN 
COLUMN 

2. Multiple sequences. Fast Fourier transforms may have unusual 
address sequences, and with its four control inputs, the address­
sequencing 29540 chip is designed to handle all of them. It provides 
output flags when a calculation is complete. 
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3. Complete. A typical signal-processing system provides separate, parallel paths for complex data_ But in the 29500 setup, address 

pipelining handles both data and coefficient addressing operations for fast Fourier and other common transforms_ 

in-frequency or decimation-in-time sequences. 
The 16-bit output port of the address sequencer is 

controlled by the counter and transform-length-input 
instructions. Any transform from 2 to 65,536 points long 
can be selected. The higher-order bits not required for 
the specified transforms (a 1,024-point transform only 
requires lO-bit addresses) can be preloaded through a 
bidirectional address port to access the next data block. 

Easy address pipelining 

Because the primary objective of this architecture is to 
operate on array- or signal-processor systems in a highly 
parallel manner, addresses must also be pipelined. As a 
result, each address must be tracked, which requires a 
pipeline register-such as the 29520 or 29521. These are 
byte-slice pipelining registers configurable as a dual 
two-level or a single four-level pipeline. In both devices, 
the single four-level configuration operates as a push­
only stack. The selection of register is determined by the 
designer's choice of system timing and data movement. 

The architecture of a typical 29500 signal-processing 
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system (Fig. 3) can employ separate parallel data paths 
for complex data. Three possible address-generator 
blocks are shown, and together they represent a general­
purpose processor. Address sequences for other than 
FFTs might be configured from programmable read-only 
memory or 2901-based designs. Address pipelining is 
shown for both data and coefficient addresses. 

In this design, either bipolar or MaS static random­
access memories store data temporarily, and high-speed 
bipolar PROMs and RAMs or MaS ROMs are used for 
coefficient look-up tables. The local-control store may be 
either a PROM or a writable control-store RAM and can 
be controlled by a 2910 program sequencer. 

A common benchmark for signal processing is the 
execution speed of an FFT. The 29500 processor, operat­
ing at a lO-megahertz clock rate, can perform the trans­
form in 400 nanoseconds. This speed allows a 1,024-
point complex radix-2 butterfly to be completed in 2.0 
milliseconds. Compared with the best throughput avail­
able in current bit-slice CPU architectures, this figure is 
more than a twentyfold improvement. 0 
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shapes up addressing 

for large FFTs 

The addressing circuitry of a single Ie accesses 
both data and coefficient memories for performing 

a broad class of fast Fourier transforms. 

Jf.0ne of the most useful algorithms in the 
digital signal-processing repertoire, 
the fast Fourier transform provides a 

quick, orderly, and convenient means of com­
puting the frequency spectrum of a signal. 
When combined with' other operations, the 
FFT is also useful in correlating or convolving 
two or more waveforms, techniques required 
to perform radar, sonar, and image processing. 

One of the most difficult problems facing the 
FFT hardware designer is creating the circuit­
ry to address the memories that hold the data 
variables and coefficient constants. The diffi­
culty arises partially because of the memory 
space required and the resulting complexity of 
either accessing a large number of person­
alized address tables for each FFT or calling 
out a large data base in the proper sequence. 
Even when addressing is done in software, 
there is the problem of speed-the method is 
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often too slow for real-time applications. 
A new chip, however, contains all the ad­

dressing circuitry needed to access an FFT 
unit's data and coefficient memories so that a 
broad class of functions can be analyzed. The 
Am29540 programmable address sequencer is 
flexible enough to generate addresses for FFTs 
having as few as 2 or as many as 65,536 points. 
Twelve algorithms are supported in radix-2 
and radix-4 systems, including operations on 
complex and real-valued input data (either in­
place or non-in-place transforms); forward 
and inverse transforms; and decimation-in­
time (DIT) and decimation-in-frequency (DIF) 
algorithms. 

A web of nets 

Included in the 16-bit sequencer are a but­
terfly counter (see "Generating Addresses 
Efficiently," p. 160), a data address generator, 
and a coefficient address generator (Fig. 1). 
The butterfly circuit actually has two count­
ers, one for columns and one for rows. The 
column counter points to the current FFT 
stage, or column; the row counter, to the but­
terfly currently being performed within that 
stage. The counters are programmable and 
can be initialized to perform transforms of 
various lengths by prestoring the appropriate 
4-bit transform-length code in an on-chip 
latch. The transform-length code is placed on 
input lines TLo-TLa and latched with signals 

Reprinted with permission from Electronic Design, 
Vol.32,No.14,Copyright Hayden Publishing CO.,INC.,1984. 
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Transform Select (TSEL) and Transform 
Strobe (TSTRB). 

The butterfly counter executes one of four 
instructions: Reset, Reset/Load, Count, and 
Hold. These instructions are selected with con­
trol lines 10 and II and are executed on the 
rising edge of the Clock Input line (CP). An 
FFT is begun by initializing the butterfly 
counter with a Reset or Reset/Load instruc­
tion. The Count and Hold instructions are then 

used to advance the counter to the next butter­
fly operation or to hold it at the present butter­
fly position. 

The counter section generates four flags to 
help control FFT sequencing. The Iteration 
Complete flag (IT COMP) indicates the last 
butterfly operation performed in a stage or 
column; the last butterfly operation in a par­
ticular FFT is signaled by the FFT Complete 
flag (FFT COMP). The Even/Odd flag changes 

Generating addresses efficiently 

A quick look at the structure of a fast Fourier trans­
form reveals why the data and coefficient circuitry is so 
complex. At the heart of the FFT algorithm is the but­
terfly operation, which takes its name from the schema­
tic representation that shows how output data is gener­
ated from an input waveform. 

In the butterfly operation on a radix-2 DIT FFT (Fig. 
A), two complex data points, A and B, and one complex 
coefficient are used to compute two new complex data 
points, A' and B'. The coefficient is a complex ex­
ponential of the form e-j8 = cos 0 - j sin O. Each 
butterfly requires one complex multiplication, one com­
plex addition, and one complex subtraction or four real 
multiplications, three real additions, and three real sub­
tractions (Fig. B). 

An FFT is performed by concatenating butterfly 
operations. The butterflies are arranged in columns, or 
stages; an N-point, radix -2 FFTcomprises lo~ N stages, 

A - a.+laj ~A'-a"+la'i 

~ 8' - b',+jb'j 
8 - b,+jb j 

(A) 

(B) 
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each containing N/2 butterflies, and so a total of (N/2) 
(I0g2N) operations must be done. 

The structure of a I6-point FFT contains 32 butter­
flies (Fig. C). Each circle represents a single radix-2 
butterfly operation. The fractional number accom­
panying each butterfly of the last three stages is the 
coefficient needed to perform that butterfly: if the value 
of the fraction is k, the corresponding coefficient value 
is e -jrk. Memory locations in which data is stored are 
represented as blocks; in the case of the I6-point FFT, 16 
contiguous memory locations must be allocated to store 
the 16 complex data points. Each butterfly is performed 
by taking input points from the data memory, doing the 
necessary mathematical operations with the appropri­
ate coefficients, and returning the results. The algo­
rithm shown is in-place, meaning that the data points 
produced by each butterfly are stored in the same 
locations as the input data points. 

The order in which data must be accessed is not 
straightforward. For the FFT shown, data must be 
accessed in order 0, S, 1, 9, ... 7, 15, for the first stage. 
For the second and following stages, however, data ad­
dressing is somewhat more involved. The second stage, 
for example, is performed by accessing addresses 0, 4, 1, 
5,2,6,3,7, for the first group of four butterflies; then S, 
12,9,13, 10, 14, 11, 15, for a second group. The butterflies 
in the third and fourth stages are also addressed in 
groups. Stage m has 2m - I groups of N/2m butterflies 
with a group spacing of N/2m - 1 

Coefficients must also be accessed. For the first stage 
of this FFT, only sin ° and cos ° need be acquired. Stage 
two, however, uses angles ° and ,../2; stage three uses 
0,,,./2, ,../4, and 3,../4; and stage four needs angles 0, ,..12, 
"./4, 3,,../4, "./S, 5,../S, 3,../S, and 7,../S. In general, the 
coefficient address sequence for the mth stare of this 
FFT is 0, BR(I),../N, BR(2),../N, ... BR (2m - -I),../N, 
where BR(x) is a function that reverses the order of the 
bits of a binary word. 

A new coefficient must be accessed for each group of 
butterflies. Other types of FFTs have various address­
ing sequence requirements, but this example is a good 
representative. FFT analyzers use several techniques to 



state after every stage and can be used to 
control memory operations for non-in-place 
transforms. The fourth flag, KNZlKZ, is of 
special use when performing transforms with 
real-valued inputs. The last two flags are mul­
tiplexed onto a single pin. When the sequencer 
produces a data address fo!:..Ec transform with 
a real-valued-input, KNZ/KZ appears on the 
pin; for any other type of data, Even/Odd 
appears. 

generate these data and coefficient addresses. 
One of the most common solutions is to place the data 

and coefficient addresses in PROMs and then to 
sequentially address the PROMs with a counter. This 
approach has several serious drawbacks, however. First 
the number of data addresses becomes prohibitively 
large as the size of the FFT grows. A 4096-point, radix-2 
FFT with complex inputs, for example, must address 
24,576 butterflies, each requiring two data addresses 
and a coefficient address, for a total of 73,728 addresses. 
Although that number can be reduced by employing 
constant-geometry FFT algorithms that use the same 
data addresses for every stage, these algorithms have 
the disadvantage of being non-in-place, thereby requir-

x, 
x. 
x. 
x. 
x. 
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x, 
x. 
x. 
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x11 
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When performing a transform, the se­
quencer uses its address generators to create 
addresses combinatorially-that is, the data 
address generator produces an address for 
each input and output data point, and the co­
efficient address generator creates addresses 
for coefficients and weighting functions. Thref 
control signals-PSD, DIT/DIF, and Radix4/2 
-configure the address generators for various 
types of FFTs. These signals are stored in an 

ing twice the data memory of an in-place transform. The 
second disadvantage of the PROM approach is that if a 
single system is to perform several different sizes or 
types of FFT, a different address table is needed for 
each FFT. 

Another method uses as much SSI and MSI logic as is 
practical. This approach is easily implemented but 
usually results in a circuit that consumes considerable 
board space, is a headache to control, and takes a long 
time to debug. A circuit for the addressing function in a 
4096-point FFT might require 10 to 20 chips. 

A third approach is to compute the necessary ad­
dresses in software, a method that is often too slow for 
real-time applications. 

V. 

v, 

v. 
v,. 
V. 

v,. 
v, 

v" 
v, 
V. 

V. 

V13 

v. 
V11 

v, 

v" 

85 



DESIGN ENTRY 

One-chip FFT sequencer 

on-board latch controlled by the Select and 
Strobe lines (SEL, STRB). The user selects the 
desired input data, output data, or coefficient 
address with control lines Address Select 0 
through 3 (ASo-ASa). The address chosen by 
lines ASo-ASa is placed on Address lines 
Ao-AIS. Those lines can be forced to a high­
imQedance state by the Output Enable signal 
(OE), thus allowing other address generatiori 
devices to be tied to the same address bus. 

Conserving memory 

When addressing data, the sequencer can 
generate as many as 216 addresses; the actual 
number needed for a particular FFT depends 
on the size and type of the transform. An N­
point, radix-2, in-place FFT with inputs that 
are complex quantities, for example, must ad­
dress N complex-data points during each 
stage. liN is 16, only 16 memory locations need 
be addressed, leaving much of the available 
address space unused. 

TSELo----, 

TSTRB 
Counter 
Instructiono-~~...L-=;~_~_..i.::;:=n 

10-1, 

Address output/Offset Input +------' 
Ao-A15 

1. The Am29540 offers a one-chip solution to the 
problem of addressing data and coefficient memo­
ries for performing fast Fourier transforms. The but­
terfly counter can be programmed to address any­
where Irom 2 to more than 65,000 points. 

The Am29540 offers two data-addressing 
options for the user who needs less than 64 
kwords of space. The first sets the unused 
upper address bits to zero by initializing the 
butterfly counter with the Reset instruction. 
For a 16-point transform, then, the upper 12 
address lines would contain Os for any data 
address. The four remaining lines are avail­
able to call 2\ or 16, values. The other option is 
to program the upper address lines to a user­
selected value to address a given data block in a 
large memory. The up[ler data bits are pro­
grammed by bringing OE high, placing the 
desired bit pattern on address lines Ao-A1S, and 
then executing the butterfly counter's Reset! 
Load instruction. If, for example, the bit pat­
tern ABC016 is used to initialize a 16-point, 
complex-input FFT, the sequencer will ad­
dress a block of sixteen data locations begin­
ning at address ABCOI6. 

Non-in-place transforms present additional 
problems. Unlike in-place transforms, non-in­
place algorithms cannot store the output data 
from a butterfly operation in the same lo­
cations previously occupied by the input data. 
That problem is overcome by generating both 
the input and output data addresses for such 
transforms. 

Typically, non-in-place transforms are per­
formed with two data memories, one the source 
of input data, the other the destination for 
output data. When a butterfly operation for a 
given stage is completed, the roles of these 
memories are reversed, with the output data 
memory of one stage providing the input data 
for the next. The Even/Odd signal is particu­
larly useful in such cases; since it changes 
state after every stage, it can be used to con­
trol the direction of data flow between the two 
memories. 

Getting the coefficients 

To access coefficients, the Am29540 gener­
a tes a 16-bi t address corresponding to one of 216 
equally-spaced angles between 0 and 2?l" ra­
dians. For coefficient address A,· the angle 
addressed is 2?l"A/216 the angle ?l"/2, for in­
stance, would have the address 400016. The co­
efficient address is fed to look-up memory, 
usually PROM, containing sine and cosine 
values for the angles selected. 
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A given FFT will use some subset of the more 
than 65000 angles available. As a case in point, 
an N-point, radix-2 FFT with complex inputs 
must access only N/2 equally spaced angles 
in the range 0 to 11" radians; a I6-point FFT, 
then, needs only eight different angles. The 
sequencer automatically chooses the angles 
needed in the proper sequence, skipping over 
unused values. 

The coefficient-addressing scheme em­
ployed carries a significant benefit for systems 
in which various sizes of FFTs are to be imple­
mented. Because the chip automatically ac­
cesses only those sine and cosine values needed, 
a single sine/cosine table can be used to per­
form FFTs of various sizes. If, for example, the 
user creates a look-up table containing 2048-
sine and cosine values between 0 and 11" radians, 
that table can be used to perform all radix-2 

complex FFTs with 4096 or fewer points. 
Most FFT algorithms currently in use are 

designed to process complex input data. The 
Am29540 supports 12 different types of this 
transform (see the table, below). The choices 
include: 
.Radix-2 or radix-4 transforms. The butterfly 
structure of a radix-4 transform is more com­
plicated than that of radix-2 but offers some­
what greater computational efficiency. Each 
radix-4 butterfly produces four output data 
points from four input data points and three 
coefficients, and consumes 12 real multi­
plications and 22 real additions. Raqjx-4 trans­
forms are selected with the Radix4/2 signal. 
.Decimation-in-time or decimation-in-fre­
quency transforms. These terms refer to two 
basic classes of FFTs; they reflect the manner 
in which each class is derived. DIT and DIF 

Fast Fourier transforms supported by the Am29540 

Input data Decimation In-placel Input data Output data Direction of 
type Radix type non-in-place ordering ordering transform 

Digit- Forward and 
2 DIF In-place Normal reversed inverse 

Digit- Forward and 
2 DIF In-place reversed Normal inverse 

Forward and 
2 DIF Non-in-place Normal Normal inverse 

Digit- Forward and 
2 DIT In-place Normal reversed inverse 

Digit- Forward and 
2 DIT In-place reversed Normal inverse 

Forward 

Complex 
2 DIT Non-in-place Normal Normal inverse 

Digit- Forward and 
4 DIF In-place Normal reversed inverse 

Digit- Forward and 
4 DIF In-place reversed Normal inverse 

Forward and 
4 DIF Non-in-place Normal Normal inverse 

Digit- Forward and 
4 DIT In-place Normal reversed inverse 

Digit- Forward and 
4 DIT In-place reversed Normal inverse 

Forward and 
4 DIT Non-in-place Normal Normal inverse 

Real-valued 2 DIT In-place Normal Unique Forward 
(RVI) 

2 DIF In-place Unique Normal Inverse 
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butterfly structures differ somewhat but 
require an identical number of arithmetic 
operations. The DIT IDIF signal determines 
the desired transform type. 
eIn-place or non-in-place transforms. Non-in­
place transforms require twice the data memo­
ry of their in-place counterparts. It might seem, 
then, that in-place transforms would always be 
preferred. Unfortunately, the in-place ap­
proach has a drawback-the digits of the ad­
dress of the input or output data must be caned 
for in reversed order. This scheme requires a 
reordering operation. The choice between in­
place and non-in-place algorithms is made by 
using the appropriate values of ~-AS3 to select 
the desired addresses. Should the user select an 
in-place transform, the choice of digit-re­
versed-address input or output can be made 
with the signal PSD. 

Useful inversions 

The sequencing chip also can be used to per­
form inverse transforms, a useful feature in 
applications requiring a route from the fre­
quency to the time domain. Computing inverse 
transforms is straightforward-the address 
sequences needed are the same as those for the 
forward operations. With radix-2 transforms, 

CP 

TLo-TLo 

TSEL,TSTRB 

Radix 4/2, PSD, 
DIT/DIF 

SEL, ,STRB 

the only difference between the inverse and 
forward transforms is the complex exponen­
tial: e -j8 must be replaced with ej ",. Changing 
the sign of the complex exponential's argu­
ment is equivalent to replacing the coefficient 
sin 8 with -sin 8, an operation that can be 
executed by slightly modifying the addition 
and subtraction operations performed in the 
butterfly. Radix-4 inverse transforms require 
somewhat similar minor accommodations to 
sign changes iii the butterfly calculation. 

Some applications demand FFT transforms 
with real-valued inputs. The sequencer gener­
ates data addresses for both forward and in­
verse real-valued-input (RVI) transforms of a 
type first described by Bergland.1 

A weighty matter 

FFT filter characteristics can often be signif­
icantly improved by premultiplying the input 
data with a series of weighting factors. This 
technique, also called windowing, or shading, 
can significantly lower filter side lobes and thus 
simplify the analysis. The properties of a num­
ber of common weighting functions are well­
documented.2 

The sequencer supports two weighting ap­
proaches for radix-2 transforms. The first and 

Butterfly counter 
instruction (10-1,) ----------------~ 

ASo-AS. --------------------~ \ \ \ \ \ ~ 
Parameter addressed ---------------------

2. The Sequencing operation for a 16-point FFT begins by loading the appropriate 
transform-length code and control signals into on-board latches. The butterfly 
counter is then reset. After initialization, the first butterfly's memory addresses are 
selected with lines ASo·AS3• The sequencer is then advanced to each succeeding 
butterfly using the count instruction. 
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simplest approach is to perform a weighting 
prepass before the FFT begins. 

The sequencer is programmed to perform the 
first stage of a radix-2 DIF transform. The 
resulting prepass data addresses access the in­
put data, the coefficient addresses access 
weighting values stored in a look-up table. On 
completion of the prepass, the part is repro­
grammed to address the type of radix-2 FFT 
desired. 

The second approach takes advantage of the 
structure of a DIT FFT. For the first stage of 
the transform, only the coefficient values sin 0 
and cos 0 are needed. Weighting can thus be 
incorporated in this first stage, using the 
stage's multiplier. By configuring the part to 

Microcode 
controller 

(Am2910A) 
- Mic7o~d;--

memory 
(Am27S45 

register PROMs) 

Control 
lor 

rest of 
system 

Control lines 
for Am29540 

FFT 
address 

sequencer 
(Am29540) 

perform a radix-2, DIF FFT for stage 1, and 
then changing the FFT type from DIF to DIT 
for all remaining stages, the necessary data, 
weighting, and coefficient addresses can be 
generated. 

A look at an FFT 

Virtually all useful weighting functions are 
symmetrical. If Y(n) is a symmetrical N-point 
weighting function, point Y(x) is equal to 
Y(N -x). This symmetry implies that the user 
need not store all N points of the weighting 
function: (N/2) + 1 points are sufficient. The 
sequencer addresses such half tables by gener­
ating both x and N -x. The often-used von 
Hann weighting function is one such example, 

Host system interface 

OMA channel 

Data memories 
Real data : Imaginary data 

Scaling 
shifter 

(4 Am25S10s) 

Data 110 
Real ALU 

(2 Am29501 s) 
Multiplier Multiplier 

110 Input 

Weighting 
A table Q 

(2 Am27S43s) 

Sine, cosine 
A generators Q 
(Am29526/27/28/29) 

y 

memory 
(4 Am9168s) 

Scaling 
shifter 

(4 Am25S10s) 

Data 110 
Real ALU 

(2 Am29501s) 
Multiplier Multiplier 

110 Input 

16 X 16 bit 
multiplier 

(Am29517) 
P 

3. In a typical system, the Am29540 is used to access data, weighting, and sine 
and cosine (coefficient) values in a microcode-controlled FFT processor. This 
system can support a 4-kpoint radix-2 transform. 

89 



DESIGN ENTRY 

One-chip FFT sequencer 

easily derived from the table of cosines re­
quired by the FFT algorithm itself. Thus, the 
need for a separate weighting-function memo­
ry is altogether eliminated. 

The sequencer's operation can be best 
understood by considering its performance of a 
typical FFT. Suppose, then, that an in-place, 
radix-2, 16-point DlT FFT is to be implemented 
(see "Generating Addresses Efficiently," Fig. 
C, p.160). To initialize the device, the appropri­
ate transform-length code and control bits are 
loaded into the on-chip latches. For this exam­
ple, the transform-length code has the value 
001b; the control bLts must assume the values 
PSD = 1, Radix4/2 = 0, and DlT/DlF = l. 
After this data has been entered, the butterfly 
counter is initialized with a Reset or Reset! 
Load instruction. 

Once initialized, the part generates data and 
coefficient addresses for the FFT's first butter­
fly. For this algorithm, the input and output 
data addresses are set at 0 and 1, respectively, 
with lines ASo-ASa; the coefficient address is 
similarly set to 8. After all the addresses have 
been read, the device is advanced to the next 
butterfly by executing a count instruction 
(Fig. 2). 

Defining the system 

The Am29540's working environment is a 
microcode-driven FFT processor. That system 
can be divided into several basic blocks (Fig. 3): 
the address sequencer, arithmetic processor, 
high-speed data memory and coefficient memo­
ry, system controller, and the host interface. 

The address computer generates the read and 
write addresses to access data, as well as coeffi­
cient and weighting addresses. 

The arithmetic processor, consisting of a 
multiplier (here, the Am29517) and two ALUs 
(one for real and the other for imaginary data), 
efficiently calculates complex data from the 
data memory. Using coefficient and weighting 
generators, it processes the information and 
returns it to the data memory. The data width is 
16 bits; therefore each ALU requires two 
8-bit-slice multiport pipelined processors 
(here, Am29501s). A scaling shifter is provided 
in each data path from the memory to the 
ALUs. 

The high-speed data memory stores input 
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and output data from an FFT operation. It is 
also divided into two banks, one for real, one for 
imaginary data. The sequencer can be loaded 
with a data address offset, allowing data 
memory to be addressed at starting locations 
other than zero, "and permits the addressing of 
selected blocks of data. A set of coefficient gen­
erators (Am29526/27/28/29) provide the co­
efficients needed when performing an FFT and 
produce up to 2048 words of sine and cosine 
data. This is sufficient to support up to a 
4096-point, radix-2 transform. A PROM con­
tains the weighting values for the FFT input 
data. 

The system controller, as overseer, accepts 
instructions through the host computer inter­
face, determines which function must be per­
formed, issues the proper instructions to other 
components, and informs the host when the 
operation is done. It employs a microsequencer 
(the Am2910A) and microcode memory. 

The host interface consists of logic to handle 
the host systemprotocols and a DMA controller 
for high-speed data transfer. During block data 
transfer the DMA circuitry has direct access to 
the data memory. 

The address sequencer generates both read 
and write addresses for the data memory. 
When, as is usual, the operations for a sequence 
of butterflies are overlapped, those addresses 
must be temporarily stored in an agile shift­
register pipeline. This structure must unravel 
the intertwined sequence of addresses for the 
several butterflies that are in progress at any 
given time. Here, a multilevel pipeline register 
consisting of two Am29520s is used. It can serve 
as dual two-level or a single four-level pipeline 
register, and each of the registers is available to 
the output at any time. 0 
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500-1iliz single-board FFT ~ell1 
incorporates DSP-optimized chips 

VLSI devices optimized for digital signal processing can realize 
architectures that~ compared with traditional designs~ save space~ 

power and money. Such chips serve as the basis for a single­
board system that uses fewer than 40 standard components. 

Robert Cohen and Robert Perlman, 
Advanced Micro Devices Inc 

By employing VLSI devices to implement the fast 
Fourier transform, you can build a single-board digital­
signal-processing system that supports sampling rates 
to 500 kHz and requires fewer than 40 packages (includ­
ing processor, sequencer and local memory). 

Iil such systems, the FFT makes possible many 
applications that would otherwise be unrealizable be­
cause of computational complexity. FFT techniques 
require a great number of calculations, and general­
purpose computers incorporating the FFT aren't fast 
enough for such real-time high-bandwidth signal-proc­
essing systems as radar, video processing and telecom­
munications. Until the introduction of VLSI devices 
that are optimized for DSP tasks, only expensive array 
processors and special-purpose systems constructed 
with hundreds of SSI and MSI components could serve 
such applications. 

Optimize butterfly execution 
Effectively applying these VLSI circuits requires a 

familiarity with the FFT's computational requirements 
(see box, "FFTs reduce DFT computations"). Then, 
you can implement an appropriate algorithm in hard­
ware. Because the FFT's basic operation is the butter­
fly, you can start by designing a butterfly processor. 

Fig 1 lists the steps required to process a butterfly. 
The list helps you to determine the minimal resources 

required: an ALU, a multiplier and enough memory to 
hold the real and imaginary components of N samples. 
By adding resources, you can increase parallelism and 
boost throughput. For example, separate memories for 
the real and imaginary components of the sample data 
allow you to read A or B (or write A' or B') in one cycle. 
Extending this concept, you can divide the data path­
way into a real-variable processor and an imaginary­
variable processor (Fig 2). 

The multiplier (or set of multipliers) acts as a shared 

1 (READ AAND B) (LOOK UPW' ) 

2 MULTIPLY: ~~I B,w,!; II B.WI'I 

3 ADD: I~J-~I r-~-B'w!!=. -+ ~=, B=.W,'= 

4 ADD: A,+ ~+~ 

A,-~+~ 

5 (WRITE A' and B' ) 

Fig l-Flve sequential steps implement the butterfly, which 
is the primitive OFT operation. This list shows that the 
absolute minimum resources required /0 implement a butter· 
fly are an ALU, a multiplier and memory. 

Reprinted with permission from EON, October 31,1984 
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A butterfly processor needs an 
ALU, a multiplier and memory 

resource for both processors because it operates on 
both types of data. Each processor consists of an ALU 
and registers that hold intermediate results. Although 
you could add more ALUs, they prove superfluous for 
the FFT algorithm used here. (Additional ALUs are 
useful in radix-4 algorithms; see reference.) 

To achieve the best performance, you minimize the 
number of cycles needed to execute the butterfly. 
Parallel computations allow the processor to accomplish 
more in each cycle to effect the desired reduction. 

With an architecture like the one suggested-two 
memories, two processors and several multipliers-­
what is the smallest number of required cycles? To find 
out, examine Fig 1 and start by using two cycles to read 
A and B from memory. (You can store Wk in a PROM 
and read it concurrently with A and B.) Assuming the 
processor has four multipliers, step 2 executes in one 
cycle. Step 3 also executes in one cycle if it determines 

3 

6 

8 

Fig 2-Separate real and Imaginary data pathways allow 
you to share multipliers and reduce required system reo 
sources. 

DATA 
BUS 

A 

B 

A' 

B' 

REALALU 

B.w.: - B,W,' 

A. + B.w.: - B,W,' 

A, - B,w,:: - B.W,' 

IMAGINARY ALU MULTIPLIERS 

B.w.: B,VoI" B.VoI" B,w.: 

B,w,:: + B.VoI" 

AI + 81~ + BR~k 

Ao - B.w.: + B,W,' 

Fig 3-An 8-step butterfly. which implements the algorithm 
prior to optimization, uses its constraining resourc&-the data 
bus-only 50% of the time. 
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the left-column difference in the real ALU and the 
right-column sum in the imaginary ALU. Step 4 re­
quires two cycles, the left two operations being per­
formed in the real-variable ALU and the right two in 
the imaginary-variable ALU. A' and B' are then writ­
ten to memory in two cycles. This process executes a 
complete butterfly in eight cycles. 

You now estimate how fast this processor can oper­
ate. Assuming that N = 1024, the processor must per­
form (N(log2)N)/2 butterflies (a total of 5120). At eight 
cycles per butterfly, the processor needs 40,960 cycles. 
Next, assume a 100-nsec cycle time. (Cycle time de­
pends on the slowest pathway through the system, 
which is typically via the multiplier; 16x IS-bit combina­
torial multipliers with sub-l00-nsec propagation delays 
are common.) Under these conditions, a lk-sample 
transform requires 4 msec, corresponding to a 0.25-
MHz sampling rate, which is quite respectable for many 
applications. Further scrutiny will reveal ways to re­
duce hardware and increase throughput. 

Less hardware does the job faster 
Fig 3 shows a resource-utilization table for an 8-step 

butterfly. Note that all resources are idle most of the 
time: The data bus is active only 50% of the time, the 
ALUs 38%, and the multipliers 13%. You can· take 
advantage of this idle time by executing butterflies 
concurrently, a technique known as pipelining. 

For example, after reading A and B for the first 
butterfly, the data bus can read A and B for the second 
butterfly during cycles 3 and 4 while the multipliers and 
ALUs are busy. The multiplier could then begin work­
ing on the second butterfly immediately after comput­
ing results for the first. Using this technique, the 
processor still requires eight cycles to complete a 

DATA 
BUS 

A 

B 

A' 

B 

A' 

S' 

REAL ALU 

B.W:: - B,WI' 

AA + BRW: - B,V'/{' 

AI - B.W: - BRwr 

IMAGINARY ALU MULTIPLIERS 

B.W:: B,WI' B.W,' B,w,: 

B,w,: + B.WI' 

A, + B,W:: + B.WI' 

Ao - B,W:: + B.WI' 

B.W,' B,WI' B.WI'B,W:: 

Fig ~y starting a second butterfly concurrently, you 
can create a 5-cyc/e loop and improve throughput 38% 
compared with Fig 3's operation. 



particular butterfly, but it reduces the average number 
of cycles per butterfly because it works on more than 
one butterfly at a time. 

The most heavily used resource determines the mini­
mum average number of cycles per butterfly that you 
can achieve. By using the four idle bus cycles, you can 
reduce the average number of cycles per butterfly to 
four and double system throughput. 

You can see this doubling of throughput clearly in Fig 
4's resource-utilization table. A second concurrent but-

DATA 
BUS 

A 

B 

A 

B 

A' 

B' 

REAL ALU 

BRW~ - B.wr 

AR + SRW:: - B.W.k 

AI - BI~ - BRwr 

BR~ - a.Vf 

IMAGINARY ALU MULTIPLIERS 

BA w,l B, "\' BA "\' B, w,: 
BIW~ + BRwt' 

AI + BIW~ + BRW.k 

AR - BRW~ + B.w:' 

BR~ B.W.k BRIIf BIW~ 

B.W: + BRtW.k 
}I 

Fig 5-Data-bus utilization is 100% in a 4-cycle butterfly. 
Here you can see that using just one multiplier doesn't hinder 
throughput. 

I: REAL MEMORY 

0s-D'5 Do-D7 

I I IMAGINARY MEMORY,! 

0,-0'5 Do-D7 

8 8 8 1 
010 010 010 010 

Am29501 Am29501 Am29501 Am29501 

C'N_ COUT C'N -- COUT 

MIO MI MIO MI MIO MI MIO MI 

%8 %8 8 8 %8 i8 
8 8 

I 

P24- P 31 P'6- P23 

Am29517 r1 WkA~L I 
YO- Y7 '-

16 k ,I 
Ya- Y15 

XO-X'5 W IMAGINARY 

Fig 6-This FFT circuit uses only one multiplier and a 
handful of other components. 
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terfly starts on cycle 5; A and B are then read, and the 
new products are calculated in cycle 7. (You can also 
start the second butterfly on cycle 3 or 4.) After 
completing cycle 8, the processor jumps to cycle 4 
instead of cycLe 1, because it has already read A and B 
and computed the new products for the second butter­
fly. This technique creates a 5-cycle loop instead of an 
8-cycle loop, improving throughput by 38%. 

Fig 5's table shows how to achieve even higher 
performance. You can copy cycle 4 into cycle 8, which 
allows the processor to jump to cycle 5 and produce a 
4-cycle loop. This action doubles the original through­
put. In this case, the data bus experiences 100% 
utilization and the ALVs 75%, but the multipliers are 
still employed only 25% of the time. Clearly, you don't 
need four multipliers. In fact, you can achieve the same 
performance with only one multiplier by pipelining an 
additional butterfly. A design example demonstrates 
this technique. 

Start a butterfly every four cycles 
The Fig 6 design uses a real-variable processor and 

an imaginary-variable processor, each with two 
Am29501s to provide 16-bit precision. (The Am29501 is 
an 8-bit, cascadable processor comprising an ALV, a set 
of six registers, and three data ports.) The two pro­
cessors also share an Am29517 16-bit parallel multipli­
er, which has two 16-bit inputs, X and Y. The Y input 
connects to the multiplier I/O (MIO) port on the real 
and imaginary 29501s; the X input is driven either by a 
PROM containing the complex constants Wk or by 
Am29526/27128/29 sine/cosine generators. The high-or­
der 16 bits of the multiplier output (PU;-31) go to the 
29501s' multiplier input (MI) ports, while the low-order 
16 bits of the product are ignored. Memory consists of 
static RAM with a cycle time of less than 100 nsec. 

The microcode needed to perform one butterfly is 10 
cycles long (Fig 7a), but you should note two things. 
First, registers are never used for more than four 
cycles, so the processor can load them with new values 
every four cycles. This, in turn, means that it can start 
a new butterfly every four cycles. 

Second, you can superimpose each line of code onto 
the line four cycles below it without causing resource 
conflicts. For example, Fig 7b's code superimposes 
lines 1 through 4 over lines 5 through 8 to start 
computing a second butterfly while the first is still 
executing. This process repeats in Fig 7c's code, where 
lines 5 through 8 are then superimposed over lines 9 
through 12. These last four lines contain the code 
necessary to compute three concurrent butterflies. You 
must ensure only that, when the processor reads or 
writes A or B, it knows exactly to which butterfly the 
data applies. 



FFTs reduce OFT computations 

Fourier transforms mathematically 
approximate a signal's transfor­
mation from the time domain to 
the frequency domain, and sever­
al algorithms implement the tech­
nique. All are based on the dis­
crete Fourier transform (OFT), 
which sums time-domain samples 
(x(n)) that are multiplied by com­
plex constants: 

N--1 

X(k) = 2: x(n)W"'!N 
n=O 

k = 0, 1, ... , N ~ 1, 

where W=e IO and each X(k) is a 
frequency-domain Fourier coeffi­
cient. The computation of each 
coefficient requires N complex 
multiplications, where N is the 
number of samples. This results in 
N2 complex multiplications. 

The fast Fourier transform 
(FFT) reduces complex multiplica­
tions by eliminating redundant cal­
culations, using the equation 

X(k) = G(k) + W2~N H(k) 
k = 0, 1, ... , N ~ 1, (1) 

where G(k) is the OFT of the even 
samples in x(n), and H(k) is the 
OFT of the odd samples. (The 
algorithm discussed here is a ra­
dix-2 decimation-in-time algo­
rithm; other schemes may provide 
additional benefits.) 

Shaving pOints 
Based on Eq 1, Fig A shows an 

8-point OFT that's divided into two 
4-point OFTs, one of which oper­
ates on even samples while the 
other operates on odd ones. As 
Fig A shows, the results are 
summed to produce the 8-point 
OFT result. This configuration 
takes advantage of the fact that 

G(k) and H(k) have period N/2. In 
other words, 

G(k + ~) = G(k) 

H(k + ~) = H(k). 

Each 4-point OFT requires 
N2= 16 complex multiplications, 
and combining the intermediate 
results to obtain the eight frequen­
cy-domain coefficients requires 
one complex multiplication for 
each coefficient (the arrows repre­
sent multiplication by the noted 
constant). Thus, the Fig A trans­
form requires a total of 40 
(16+16+8) complex multiplica­
tions-a savings of 24 compared 
with the 64 multiplications re­
quired to compute an 8-point OFT 
directly. 

By repeating this process and 
dividing the 4-point OFTs into 2-
point OFTs, you can eliminate 
even more computations. The 8-

point FFT represented in Fig B 
requires eight complex multiplica­
tions for the four 2-point OFTs 
plus 16 other complex multiplica­
tions, for a total of 24. In general, 
the number of complex multiplica­
tions equals the number of col­
umns in the representation (log2N) 
times the number of samples. 

Another technique allows you to 
cut multiplications in half again. In 
Fig C, each circle represents a 

x(O) 

x(2) 

x(4) 

x(6) 

x(1) 

x(3) 

x(5) 

x(7) 

1-'--'-41<---_. X(O) 

F-'-4I~.,---:,4.X(1) 

1-'--'-4I~"'~A.X(2) 

F-'-4IHf-?*-,~.X(3) 

F"4IS*-,*",~:eX(4) 

l-'--'-4h,,"""",~""'''X(5) 

F"4""H..-~:eX(6) 

1-'--'-4I~_-_.X(7) 
W7/4 

~ = MULTIPLICATION BY W2kIN 

Fig A-(;ompared with direct computa­
tion of an a-point OFT, decomposing it 
into two 4'point OFTs saves 24 complex 
multiplications. 

x(O) I--_;:-------,--::;t~-------_,_.X(O) 

x(4) 

x(2) 

x(6) 

x(1) 

x(5) 

x(3) 

x(7) 

2·POINT 
DFT 

1-_;:---~~---.--::;t~---'~---___"L-...,.....X(1) 
1...-_-1 

2·POINT 
OFT 

2·POINT 
OFT 

2·POINT 
OFT 

1--_'---~~--'--"IIr----''''''''-""*---..L-....,-.X(2) 

1-_""-----l----"'~~---'*"-~:..-~E_.....,..,.X(3) 

I--_;:--------:--::;tt<----'>r-~..",_~f_~ X(4) 

1--'----?iE----"....,.t<---:-r---.7,:;---".,--'-'. X(6) 

I-_""-----l..--~~~---_=---~ X(7) 

Fig B-This scheme, which uses four 2-point OFTs to transform eight time·domain 
samples, requires a total of 24 complex multiplications: eight for the four 2-point OFTs 
plus the 16 represented here by arrows. 
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sum and a difference. Using the 
structure in Fig D, you define A' 
and B' as follows: 

A' = A + BW2I<lN 

B' = A - BW2kiN . 

This notation results because W is 
a complex exponential and there­
fore periodic: 

N 
W2kiN = _ W21k + 21/N . 

Because you can use the prod­
uct BXW2kiN to calculate both A' 
and B', the total number of com­
plex multiplications drops to 
(Nlog2N)/2. This structure is the 
primitive operation in FFT calcula­
tions and is called a butterfly oper­
ation. Note that each circle in Fig 
C is a butterfly operation. This fact 
suggests a pipelined operation, 
optimized to execute butterflies, 
that can exploit the algorithm's 
highly repetitive nature. 

x(O) 

x(4) 

x(2) 

x(6) 

x(1) 

x(5) 

x(3) 

xl?) 

Dissecting the butterfly 
Each butterfly consists of two 

calculations: 

A' = A + BWk 

B' = A - BWk, 

where A', B', A, Band Wk are 
complex numbers. (Here, the ex­
ponent 2k1N is consolidated into 
one term, k, for simplicity.) Divid­
ing these into their real and imagi­
nary parts yields 

A' = (AA + j AI) 
+ (BA + j BI)(WAk + j Wt'j 

B' = (AA + j AI) 
- (BA + j BI)(WAk + j Wt'j. 

Expanding the products gives 

A' = (AA + j AI) + (BA WAk + 
j BI WAk + j BA wt - BI Wt'j 

B' = (AA + j AI) - (BA WAk + 
j BI WAk + j BA wt - BI Wt'j. 

Dividing A' and B' into their real 

X(O) 

X(1) 

X(2) 

X(3) 

X(4) 

X(5) 

X(6) 

XI?) 

Fig C-In this OFT representation, intermediate results are multiplied by the complex 
constant W""N and then summed. Note that each sum of products, illustrated by a circle, 
is actually a butterfly operation. 
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A A' 

B B' 

Fig D-The 2-point OFT, or butterfly, is 
the primitive operation in FFT calculations. 
Fig C includes many such operations and 
thus lends itself to a pipelined implemen· 
tation. 

and imaginary parts yields four 
equations: 

AA' = AA + BA WAk - BI Wlk 

BA' = AA - BA WAk + BI wt 
AI' = AI + BI WAk + BA wt 
BI' = AI - BI WAk o' BA Wr 

These equations share common 
terms that need be calculated only 
once per butterfly. Regrouping 
terms yields additional savings: 

AA' = AA + (BA WAk - BI Wt'j 
BA' = AA - (BA WAk - BI Wt'j 
AI' = AI + (BI WA' + BA WO 
BI' = AI - (BI WAk + BA Wt'). 

You can now determine the 
number of calculations necessary 
per butterfly: four multiplications 
to compute BXWK, a subtraction 
to calculate real A' and B', an 
addition to calculate imaginary A' 
and B', two final additions for A', 
and two final subtractions for B'. 
This process yields a total of four 
products, three additions and 
three subtractions per butterfly. 



(8) 

(b) 

(0) 

A' ~ A + BK 

B'=A-BK 

A' _ A + BK 

B'_A_BK 

A' = A + BK 

B' • A - BK 

REAL 

STEP 010 ALU A, A" A" B, B. B. 
1 READB 01 

2 I 
3 READ A 01 

4 A, - MI I MI ALU 

5 I I I 

6 A,+Aa I ALU I I 
7 B. + MI I IvII ALU 

8 WRITEB. I 
9 A" - B, ALU 

10 WRITE A. 
11 

12 

13 

14 

15 

16 

17 

18 

REAL 

STEP 010 ALU A, A" A_ B, B. B_ 

1 READB IQI 

2 I 

3 READ A 01 

4 A - MI MI ALU 

5 READB I 01 I 
6 A + Aa ALU I I I 
7 READ A Bo + MI 01 I MI ALU 

8 WRITE B. A, - MI I MI I ALU 

9 A" - B, ALU I I 
10 WRITE A" I I 
11 

12 

13 

14 

15 

16 

17 

18 

REAL 

STEP 010 ALU A A" A" B, B. B_ 

1 READB 01 

2 I 
3 READ A 01 

4 A, - MI MI ALU 

5 READB I 01 I 
6 A, + A. ALU I I I 
7 READ A B. + MI 01 I MI ALU 

8 WRITEBo A, - MI I MI ALU 

9 READB A" - B, ALU I DI I 
10 WRITE A" A, + A" ALU I I I 
11 READ A B. + MI 01 I MI ALU 

12 WRITE Bo A, - MI I MI I ALU 

13 

14 

15 

16 

17 

18 

IMAGINARY MULTIPLIER 

ALU A, A" Ao B, B. Bo MIO MULT 

01 

B. 
01 B.W. 

I B, B.W, 

A, - MI I MI ALU B,W. 

B. - MI I I ALU MI B,W, 

A, + B. ALU I I 

A" + A" AlU 

I 

IMAGINARY MULTIPUER 

ALU A, A. A_ B, B. B_ MIO MULT 

01 

B. 

01 B.W. 

I B, BnWI 

A, - MI I MI 01 ALU B,W. 

Bo - MI I I ALU MI B. B,W, 

A, + B_ DI ALU I I B.W. 

Ao + Aa ALU B, B."'I 

I 

IMAGINARY MULTIPLIER 

ALU A, A" I Aa B, Bo B. MIO MULT 

DI 

B. 
01 B. W. 

B, B.W, 

A, - MI MI DI ALU B1WR 

B. - MI I ALU MI B. B,W, 

A, + B. DI ALU I I B.W. 

A,,+Aa ALU B, B. "'I 
A, - MI MI 01 ALU B, W. 

Bo - MI I ALU B. B,W, 

A, + B. 01 ALU I I B. W. 

Ao + A. I ALU B, B.W, 

Fig 7-The microcode needed to execute one butterfly in Fig S's circuit is 10 cycles long (a). By following the code in (b) you can 
start computIng a second buttarfly concurrently. The code in (c) starts a third concurrent butterfly. 
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Pipeline the FFT processor 
to reduce bus's 50% idle time 

To help keep these values straight, the circuit uses 
the Am29520 multilevel pipeline register. Fig 8 depicts 
how this device operates in the address pathway to 
memory. Every four clock cycles, at the beginning of a 
new butterfly, the Am29540 FFT address sequencer 
generates a new set of addresses for A and B. The 
29520s store these addresses temporarily in internal 
registers that are configured as a 4-deep pipeline. As 
each new address is clocked into the first pipeline 
register, previously stored addresses advance to the 
next register. You can select any register for output 
and access the appropriate address for any microcode 
cycle. Fig 9 illustrates the order in which this design 
stores and retrieves data addresses. 

The 29540 also generates addresses for the PROM 
containing Wk. It creates a new address for each 
butterfly and then stores it in an external register. 
Because complex products are computed on successive 
cycles, the address to the PROM changes at the begin­
ning of each new butterfly (that is, every four cycles). 

Microcode lines 9 through 12 then execute as a loop 
until the 29540's FFT Complete signal goes active. The 
entire transform requires only 12 words of microcode: 
The first eight preload the pipeline, while the last four 
perform the computations. 

Word size can almost triple 
In these FFT implementations, you must be con­

cerned about word growth. Because the FFT butterfly 
produces outputs by adding terms, butterfly outputs 
may require more bits than each input has. Specifically, 
consider the equation A' = A + BWk, where A', A, Band 
Wk are complex. This equation, one of the butterfly's 
two basic calculations, represents vector rotation and 
addition. The term BWk merely describes a rotation of 
vector B by unit vector Wk; the result is added to vector 
A. The magnitude of A' can therefore be twice as large 
as A or B. 

Unfortunately, this problem is more insidious than it 
appears. Although complex magnitudes do no more 
than double at each stage, the real and imaginary 
components of these complex values can increase by 
more than that amount. Indeed, they can increase by 
1 +v2, or 2.41, for decimation-in-time algorithms, 
which is the type used here. They can even increase by 
2xv2, or 2.82, for decimation-in-frequency algo­
rithms, which use a different butterfly technique (see 
reference). In either case, you must allow for as much 
as two bits of growth in every stage. You could design a 
system with sufficient extra growth bits, but this 
approach is wasteful and expensive, particularly if the 
transform has many stages. 

An inexpensive alternative is to use the block-float­
ine:-ooint scheme. This technique uses a common block 
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Fig 8-The system must keep track of many sets of data 
when computing concurrent butterflies. To do so, it must 
incorporate an FFT address sequencer. 

- 29520 CONTENTS -

MEMORY 29520 REG REG REG REG 29520 
CYCLE OPERATION INPUT A, A,. B, B, OUTPUT 

0 °B. 

1 READ B. 'B °B. 

2 °A. ·B. 

3 REAl> A, 'A, °B. 0A, 
4 °B, °A. °B. 

5 READ B, °B, 0A, °B. °B, 

6 °A, °B, 0A, °B. 

7 READ A, °A, °B, °A. °B. °A, 

8 WRITE B. °B, °A, °B, °A. °B. °B. 

9 READ B, °B, °A, °B, 0A, °B, 

10 WRITE A. °A, °B, °A, °B, 0A, °A. 

11 READ A, °A, °B, °A, °B, 0A, 
12 WRITE B, °B, 0A, oB, 0A, °B, °B, 

*indicates "address of" 

Fig 9-Four registers in the address sequencer prove 
sufficient to store the various data addresses needed to 
compute three concurrent butterflies. 



Efficient microcode executes 
three butterflies concurrently 

REAL MEMORY-LOW 

Fig 10-To avoid data overflow caused by word growth, 
implement a block-floating-point technique with 4-bit shifters 
inserted into the data-read pathway. 

exponent for all data_ If the system expects or detects 
an overflow, it shifts data to the right and increments 
the block exponent_ 

The circuit shown in Fig 10 implements this approach 
with two Am25S10 4-bit shifters inserted between 
memory and the real and imaginary processors in the 
data-read pathway. The shifters allow you to divide 
data read from memory by 1, 2 or 4_ Each time the 
system writes data to memory, external logic compares 
the two high-order data bits to the sign bit. 

If the high-order bits differ from the sign bit, the 
data's magnitude has expanded into the high-order 
bits, and an overflow could occur in the next column of 
butterflies because data could increase by 2.41. Conse­
quently, if logic detects an expansion into the high­
order bits, it sets a flag_ Then, when the next column 
begins (signaled by Iteration Complete from the 
29540), the system reads all data as shifted to the right 
by zero bits (if no expansion took place), by one bit (if 
the expansion occurred only in D'3) or by two bits (if the 
expansion occurred in D'4)' Note that the sign bit must 
be duplicated in the high-order bits_ Upon receipt of 
Iteration Complete, the block-exponent counter incre­
ments by 0, 1 or 2. The host CPU can then read this 
value to determine the Fourier coefficients' absolute 
magnitude_ 

Though the 29540 FFT address sequencer has many 
operating modes to accommodate varying architectures 
and algorithms, the system described here executes a 
radix-2 decimation-in-time transform that doesn't pro-
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duce data in a convenient sequence. You'd like data for 
the first frequency notch to occupy the lowest memory 
location, data for the second notch to occupy the next 
lowest location, and so on_ To remedy this situation, you 
can either scramble data points before they enter the 
algorithm so that they emerge in the proper sequence, 
or you can scramble them afterwards_ 

Although this article's architecture describes a spe­
cial-purpose FFT processor, you can use it as a general­
purpose signal processor_ Many signal-processing algo­
rithms have a sum-of-products notation that is well 
suited to this design_ Essentially, you can substitute 
the PROM that contains Wk with a RAM that the host 
processor loads_ In this way, you can easily implement 
windowing and scaling operations_ EDN 
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Trim DSP overhead 
by changing 

your sampling rate 
The sampling rate of a signal may be altered 

very easily as it passes through the 
various stages of a digital signal processing 

system. This can reduce the number 
of cycles required to perform operations 

in the digital domain. 

Kenn Lamb 
Advanced Micro Devices 

Sunnyvale, California 

Emerging digital signal processing techniques require 
arithmetically intensive real-time processing. Each 

sample fed into your system must be operated on many 
times. Therefore, the performance required of the DSP proc­
essor is determined by both the type of processing to be ap­
plied to the signal and by its sample rate. 

The sampling rate of a DSP system is usually determined 
by the analog-to-digital converter at the front end of the 
system. The choice of this sampling rate affects how well 
available arithmetic resources are used. Here's how to create 
a highly efficient system. 

The techniques used are called "decimation" and "inter­
polation." Both are used to decrease and increase the sam­
pling rate. respectively. When implemented using digital 
signal processing components (such as slices, programmable 
sequencers, and multipliers), these methods allow the con­
struction of very efficient narrowband filters which can out­
perform direct implementations oHhe desired filter. 

Reprinted with permission 
from INTEGRATED CIRCUITS MAGAZINE 
May 1985, with all rights reserved. 
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-I -41s -31s -21s -Is Is 21s 31s 41s +1 

Fig. 1. A sampled signal's spectrum is repeated at periodic in­
tervals, centered at integer multiples of the sampling frequency. 
The bandwidth of the images must be less than the sampling 
frequency to avoid aliasing. 

. rh rh rh ! ! 1 ! ! rh ! !. 
-I -Sis -41s -31s -21s -fs 0 Is 21s 31s 41s Sis +t 

(a) 

,D 
-12L! 

4 

(b) 
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-I', 31', 21', I', 

-4- --4- -4-

• I 

DDD 
1'. 

1', = 4fs 

D. 
Ml +1 

4 

Fig. 2. Sampling theory describes how the original signal repeats 
at intervals (a). With three zeros placed between each of the 
original samples, the bandwidth increases (b). Three of the sig­
nal's images are now included in the spectrum. 
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The sampling rate of a DSP 
system must satisfy a number of 
criteria, beginning at the front 
end within the analog-to-digital 
(A/D) converter. In theory, it is 
only necessary to sample a sig­
nal at a rate greater than twice 
the signal's bandwidth. 

In practice, this is not possible, 
because the band of interest may 
not extend from DC, and "brick­
wall" antialiasing filters are not 
available. Nevertheless, certain 
techniques allow us to approach 
the theoretical minimum . 

You-as a designer-could 
for example, shift the signal's 
frequency content, so that the 
band of interest extends from 
DC to ensure that the maximum 
signal frequency is equal to the 
signal's bandwidth. Quadrature 
sampling, another technique, ex­
tends this approach by allowing 
two analog-to-digital converters 
to share the work . 

Finally, second-order sam­
pling permits the signal to be ex­
amined at twice the bandwidth, 
even if there are higher frequen­
cies present. In the latter case, 
the sampling rate reduction is 
achieved at the cost of taking 
twice as many samples; it also 
presents an onerous filtering 
problem to the first stage of the 
digital signal processor. A sam­
pling rate reduction greater than 
two must be achieved if this tech­
nique is to be of any benefit. 

Avoid Last Resorts 
These sampling techniques are 

usually a last resort, used when 
the analog-to-digital conversion 
task would otherwise border on 
the impossible. There are only a 
few such applications in which 
the sampling rate will approach 
the theoretical minimum. 

In other situations, there are 
advantages in oversampling the 
input signal: reduced specifica­
tions for antialiasing filters and 
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improved resolution from A/D 
converters. These advantages 
usually dictate an initially high 
sampling rate, one that is in­
variably maintained throughout 
the rest of the system, and which 
therefore results in inefficient use 
of the available resources. 

A block diagram of a DSP sys­
tem is usually drawn as a cascade 
of processing stages, each per­
forming different operations on 
the signaL This is conceptually 
the simplest way to specify and 
analyze the processing, but it is 
rare for the individual blocks to 
map directly into separate pieces 
of hardware. 

All digital signal processing 
algorithms are based on the same 
set of arithmetic operations, typ­
ically addition, multiplication, 
and multiplication/ accumula­
tion. An arithmetic processor 
specifically tailored to DSP ap­
plications can perform all the op­
erations specified within the sep­
arate sections of the system 
block diagram. 

The Fewer the Better 

The objective of the system 
designer is to achieve all the 
processing required with the 
least number of processor units. 
Obviously, any reduction in the 
number of cycles needed to exe­
cute individual stages of the 
processing leads to overall sav­
ings. Typically, it may result in 
a reduction in processor units, an 
increase in the number of chan­
nels that may be accommodated, 
or higher processing quality in 
cases in which only a single DSP 
unit is used. 

Intelligent Rationing 

These benefits result from 
maintaining an efficient ratio be­
tween a signal's sampling rate 
and its bandwidth, as the overall 
frequency content of the signal 
is modified by its passage 

INTEGRA TED CIRCUITS MAGAZINE 

through the digital signal proc­
essing system. 

Additional processing savings 
accrue from integrating the sam­
pling rate changes directly into 
the processing stages themselves. 
These savings are most apparent 
in operations such as lowpass or 
narrowband filtering. 

Modify Those Sample Rates 

The sampling rate of a signal 
may be modified by either re­
moving unnecessary samples or 
calculating and inserting addi­
tional samples. These techniques 
make up decimation and inter­
polation, respectively. In order to 
understand the effects on a signal 
of the interpolation and decima­
tion processes, it is important to 
be familiar with the frequency 
domain representation of a sam­
pled signaL 

The Nyquist Criterion, so fa­
miliar to workers in the field of 
DSP, avoids aliasing distortion 
by specifying a minimum ratio 
between the sampling and max­
imum signal frequencies. In prac­
tice, this minimum ratio of two 
is often exceeded to alleviate the 
rolloff specification of the anti­
aliasing filter. 

In the frequency domain, the 
sampled signal's spectrum is re­
peated at periodic intervals, cen­
tered at integer multiples of fs 
(the sampling frequency). See 
Fig. 1. The bandwidth of these 
images must be less than fs or 
they will overlap, a condition 
termed aliasing. 

Decimation and interpolation 
change fs and hence also alter the 
interval at which the images re­
peat. These images may, there­
fore, be moved selectively closer 
together or further apart. 

Decimation Explained 

Given that a signal is oversam­
pled (that is, the maximum signal 
frequency is less than half the 
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sampling frequency), the sam­
pling rate may be reduced by 
eliminating unnecessary samples. 
At first sight, this may seem to 
entail simply removing a number 
of the samples from the time 
record. 

To avoid catastrophic distor­
tion of the signal, however, the 
time increment between each 
sample must be the same. This 
implies that the minimum achiev­
able decimation ratio is a factor 
of two, corresponding to the elim­
ination of every other sample. 

Such a technique has been used 
for multistage filters and is 
termed "decimation by octaves." 
While it is possible to decimate 
in this manner by an integer 
ratio, it is rare to have such 
grossly oversampled signals in a 
real application. 

Lowpass filtering leads to over­
sampled signals, as it is the high 
frequencies that are attenuated. 
Therefore, decimation tech­
nIques are usually associated 
with lowpass filters. Assuming 
that a signal is overs amp led by a 
factor of less than two, lowpass 
filtering must occur before any 
decimation to avoid aliasing dis­
tortion. A simplistic approach 
would be to filter the signal and 
then decimate by discarding un­
wanted filter outputs. 

If filter ou tpu ts are to be dis­
carded, then why bother to cal­
culate them in the first place? 
Unfortunately, recursive filter 
structures require all outputs to 
be calculated, since these outputs 
are fed back into the filter to in­
fluence subsequent outputs. 
Transversal filters do not suffer 
from this restriction and, conse­
quently, permit more efficient 
lowpass decimating filters. 

Assume that a lowpass filter 
of N coefficients filters a signal 
resulting in an output oversam­
pled by a factor of P. Without 
decimation, the filter would have 



COMPLEX HETERODYNING-HOW MUCH PROCESSING POWER? 

Why complex heterodyning? 
Just what is it? For an answer, 
consider that digital systems 
take full advantage of quadra­
ture frequency shifting tech­
niques. Unlike analog systems, 
there is no possibility of fre­
quency or phase drift. 

As such, let's look at some 
real continuous signals, such 
as those diagrammed in the 
accompanying series of figures. 
Take a look at the "snapshot" 
of Figure Aa. Multiplying this 
continuous signal by the co­
sine of frequency fc (illustrated 
in Figure Ab), yields a spectrum 
(Figure Ad). 

This spectrum displays sig­
nificant aliasing between the. 
two frequencies -fc and fc. 
However, multiplying the 
original signal by the sinusoid 
(Figure Ac) yields another 
spectrum (Figure Ae). 

Then, combining the in­
formation (that shown in 
Figure Ad and Ae) allows the 
reconstruction of the original 
signal. It is shifted in fre­
quency by fc. This technique 
is known as complex 
heterodyning. 

Repeat Performance 
In the sampled world, the 

original signal repeats at in­
tervals of fs, the sampling 
frequency, as illustrateCt in 
Figure Af. The sampled equiva­
lents of the SIN and COS have 
the form shown in Figures Ah 
and Ag, respectively. 

Multiplication of the original 
signal by these two sinusoids 
yields the spectra (Figures 
Aj and Ai). 

Again, the original signal 
information, with a shift in 

frequency of -fc, may be ex­
tracted (as indicated by Fig­
ure Ak). 

From a practical point of 
view, the original real signal of 
sampling rate fs has been con­
verted into a complex signal 
with the same sampling rate. 
This implies that twice as much 
processing will now be re­
quired to accommodate the 
real and imaginary components 
of the complex signal. 

Closer examination reveals 
that the spectra (of Ai and Aj) 
contain duplicated informa­
tion that may be removed with 
low pass filters and decimation 
of both components of the com­
plex signal (by a factor of two). 
The composite sampling rate of 
the complex components is the 
same as that of the original 
signal, while still extracting 
the spectrum of Figure AI. 

Decimation 
The process of decimation 

may be thought of as oc-

(a) ~ 
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(b) tit 
fe 0 fe 

(c) I t 
-fel 0 fe 

(d) ~ 
-fo-fe -fe 0 fe fo+fe 

Figure A 

~~~~~~ U) ----L--2hf~s~L---7fs~.fLO~O~~lo~-,ILS~-L~21~s~-L~31~s~-

(g) _----'--t .LJI t~~t -<-;1 t,-----;---+t 7-;1 tL--;---,;-t -,-;-1 -<,-;t ,-----L-t --,---I t.L...-...Lt --,---I t.l....-
I -Is-Ie Is Ie leO Ie Is-Iells+le I I 
.t It It .t .t .t (h)----~I~L--.I~~-~le·l~o~l~e--·J~~~-.J~---I~~-

(i) 
-21s -Is -Ie 0 Ie Is 21s 

(j) 

(1) 

MAY 1985 

102 



curring in two stages:.a low­
pass filtering stage, followed 
by sampling rate reduction. 
The original signal (Figure Ba) 
of maximum frequency fa is 
sampled at a frequency, fs. 

The signal is then passed 
through a lowpass filter with 
a cutoff frequency of fc. The 
resulting signal (shown in 
Figure Bb), may be decimated 
by a factor P to yield the 
spectrum of Figure Bc. This 
latter spectrum has a sampling 
rate of fslP where P=2. 

Interpolation 
Next comes interpolation. 

Interpolation is the opposite 
of decimation and is again 
achieved in two stages. The 
first stage involves padding 
the sampled signal with (Q-l) 
zero-valued samples between 
each of the original samples. 

This operation changes the 
spectrum of the original signal 
(that of Figure Ca) to that of 
Figure Cb, for Q=2. The 
spectrum (Figure Cb) has much 
the same form as that in 
Figure Ca, the major difference 
being labelling of the fre­
quency axis. 

The effective sampling rate 
has been increased to Q*fs, as 
expected; however, the sig­
nal's spectrum now contains 
(Q-1) additional images. A 
lowpass filter, with cutoff fre­
quency fa, will extract the de­
sired portion of the spectrum 
(from Figure 8b) to yield the 
interpolated signal of Figure 
8c. This low pass filter must 
exhibit a gain of Q to com­
pensate for the energy lost in 
filtering out the (Q-l) signal 
images. 
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to perform N operations per in­
put point. With decimation, this 
is reduced to NIP. The result is 
only one output for every P input. 

The throughput of this filter, 
as well as the rest of the process­
ing downstream, is therefore in­
creased by a factor of P. The fil­
ter does its job in fewer cycles, 
thereby reducing the processing 
burden on all subsequent op­
erations-a true "win-win" 
scenario! 

Interpolation, Too 
Interpolation is the opposite 

of decimation. This operation in­
volves increasing the sampling 
rate to create an oversampled sig­
nal. It cannot be used to recover 
signals distorted by aliasing, be­
cause this type of distortion is 
irreversible in the majority of 
situations. 

Typical applications for inter­
polation include the reduction of 
the output reconstruction filter 
specification in audio systems or 
the smoothing of gaps between 
discrete line spectra in the out-

/ V 
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I \ I 
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I vi V 
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put from a fast Fourier trans­
form (FFT). 

The first stage in interpolating 
a signal involves padding the sig­
nal with extra zero-valued sam­
ples. Since the previously stated 
restrictions about keeping the 
sampling interval constant apply, 
interpolation must be done by 
integer ratios. This is not a lim­
itation, because interpolation is 
usually implemented to signifi­
cantly increase the number of 
output samples. 

The original signal, sampled at 
fs, repeats at intervals of fs as 
dictated by sampling theory 
(Figure 2a). Padding the signal 
with zeros increases the sam­
pling rate, but also changes the 
form of the signal. 

In the case of three zeros 
placed between each of the orig­
inal samples (interpolating by a 
factor of four), the effective rep­
etition frequency becomes four 
times fs. However, the signal's 
bandwidth increases in propor­
tion, so that three of the signal's 
images are now included as part 

V \ 
Is Is Is 
2:62 

\ / \ 
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Fig. 3. Lowpass filtering in the decimation process needs a transition 
bandwidth of 15 percent of the interpolated signal's bandwidth (a). 
The original signal is lowpass filtered before interpolation (b). The 

new signal is interpolated to yield another signal (c); further 
decimation gives the output (d). 
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of its spectrum (Figure 2b). 
The frequency domain repre­

sentation of the signal has not 
changed in shape; the padding 
has the effect of relabelling the 
frequency axis. To obtain the de­
sired interpolation operation re­
quires-surprisingly-the use of 
a lowpass filter. This filter re­
moves the three unwanted im­
ages, yielding the original signal, 
oversampled by the desired fac­
tor of four. 

At first sight this might appear 
to be a difficult lowpass filtering 
task, requiring operation at the 
increased sampling rate. But this 
need not be the case if the trans­
versal filter structure is used. 

Clearly, three out of four in­
puts to the filter are zero and, con­
sequently, will not contribute to 
the filter output. These samples 
may, therefore, be skipped over 
when performing the filter op­
eration saving valuable processor 
cycles. This technique allows the 
construction of efficient inter­
polating lowpass filters. 

Let's assume that an N-point 
filter is used to interpolate a sig­
nal by a factor of Q. The sim­
plistic approach would require 
N*Q operations for each one of 
the original samples. The interpo­
lating lowpass filter only requires 
N operations per original sample, 
implying that the interpolating 
filter operates at the rate of the 
input data, regardless of the in­
terpolation ratio applied. 

Cascading Processes 
The ability to decimate by non­

integer ratios-in particular, ra­
tios of between one and two-is 
essential to make effective sav­
ings in system applications. Non­
integer ratios may be achieved 
by cascading interpolation and 
decimation processes. 

To interpolate a signal by a 
factor Q, and then to decimate it 
by a factor P, changes the effec-
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tive sampling rate to Q/P. While 
Q and P themselves must be in­
tegprs, the ratio of one to the 
other can yield non-integer deci­
mation ratios. The interpolation 
operation must, of course, pre­
cede the decimation to avoid ali­
asing distortion. 

Two for One? 
Again, both interpolation and 

decimation are effectively per­
formed by a lowpass filter. What 
about the possibility of concat­
enating both operations into the 
same filter? 

Assume that the interpolation 
ratio is Q. Then, for an N-point 
filter, N operations are required 
for every input point, despite the 
fact that Q*N output points are 
produced. The decimation im­
plies that only one output is gen­
erated for every P inputs, so that 
only NIP operations per input 
point fulfill the requirements of 
both operations. 

It may be tempting to assume 
that a large value for P, the ef­
fect of which could be offset by 
a correspondingly large value for 
Q, would significantly improve 
the efficiency of the decimation 
process by reducing the effective 
value of NIP. However, this will 
not work because N is related to 
Q and increases proportionally 
with any increase in Q. 

The increase in N occurs be­
cause the lowpass filtering for 
both the interpolation and deci­
mation is required to select a pro­
portionally smaller percentage of 
the padded signal's bandwidth. 
The number of points in a filter 
is related to the percentage of the 
signal's total bandwidth that is 
taken up by the transition band 
of the filter. 

As Q increases, the transition 
bandWidth remains constant, but 
the bandwidth of the padded sig­
nal increases; hence, N increases 
proportionally with Q. This 
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means that the processing over­
head involved in changing the 
sampling rate of signal is directly 
related to how closely the sam­
pling rate of the decimated signal 
approaches the Nyquist rate. 
This is the design parameter that 
specifies the maximum width of 
the transition band. 

Less Than You Imagine 
A non-integer decimating 

process actually requires signifi­
cantly less processing than a cur­
sory examination would indicate. 
For example, if one of the proc­
essing stages in a system reduces 
a signal's bandwidth to 0.67 of 
its former value, then a decima­
tion ratio of 1.5 may be applied 
without aliasing. This ratio may 
be achieved with values for Q 
and P of 2 and 3, respectively. 

Assume a practical sampling 
rate Fs of Fs = 2.6 * Fo (where 
Fo is the maximum signal fre­
quency, Figure 3a). The lowpass 
filter for the decimation process 
would need a transition band­
width of fifteen percent of the in­
terpolated signal's bandwidth. 
This gives N a value of 54. (The 
lowpass filtered signal is illus­
tr a ted in Figure 3 b.) 

This new signal is interpolated 
to yield the signal shown in Fig­
ure 3c, which is then decimated 
back down to give the output of 
Figure 3d. 

The value of P reduces the re­
quired number of operations per 
input sample from 54 to just 18. 
The output rate of the decima­
tion stage is 0.67 of the input 
rate, resulting in a saving of 33 
percent in the number of cycles 
required to execute all subse­
quent operations. 

If the number of subsequent 
cycles exceed 54, then an overall 
saving will be achieved. For ex­
ample, given 300 cycles of down­
stream processing, the total sys­
tem savings would be: 

[(1-1/1.5) * 300] -18 = 
82 cycles 

per input sample, which cor­
responds to 27 percent of all sub­
sequent processing. This saving 
enables you to reduce system 
size and cost or process more 
channels. 

Lowpass Filter It 
If a lowpass filter is used to re­

duce the signal's bandwidth in 
the previous example, then as 
this function is duplicated by the 
decimation process, the original 
filter becomes superfluous. It 
may be discarded, saving 27 cy­
cles per original input sample. 

It should be clear that the deci­
mating lowpass filter performs 
the same filtering operation as 
the original filter but in 18 in­
stead of 27 cycles, a saving of 
thirty percent in itself. This sav­
ing is in addition to those in sub­
sequent downstream processing 
that occur as a result of the re­
duced output rate. For these 
reasons, lowpass filters are usu­
ally implemented using decimat­
ing techniques. 

A Look at Hardware 
A decimating/interpolating 

stage, such as the one required in 
the system example, is construc­
ted from an enhanced finite im­
pulse response (FIR) filter. The 
filter structure performs a dis­
crete convolution, according to 
the following formula: 

N 

Yk = I: en * X (k-n+l) 

n=1 

where Xk and Yk are the filter 
inputs and outputs, respectively, 
and en are the coefficients; or, 
for the linear phase case: 

N/2 

Yk = I: en * [X (k=n+l) 

n=1 
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The arithmetic section of the 
FIR filter is unchanged from the 
non-decimating version, since the 
decimation is achieved by adapt­
ing the control and addressing 
sequence. 

The control flexibility of the 
components used to construct 
the filter determine how much of 
the expected savings from deci­
mation are realized in practice. 
The microprogrammable envi­
ronment is ideally suited to this 
type of application. 

Let's look at a hardware exam­
ple (Figure 4). The arithmetic 
section performs the "number 
crunching" and may be tailored 
to suit processing requirements 
by varying the number of multi­
pliers, multiplier/accumulators, 
and ALUs used. 

If desired, the arithmetic sec­
tion of a simple filter may be con­
structed with one multiplier / ac­
cumulator (Figure 4a). Alter­
natively, multipliers and multi­
portpipelinedprocessors( Fig . .4b) 
may be used for arithmetic to im­
prove the cycle time and provide 
the advantage of microprogram­
mabie control lines and overflow 
protection. An efficient linear 
phase construction may be 
achieved with devices like the 
AMD Type Am29501 multiport 
pipe lined processor and Am-
29510 16 X 16-bit parallel multi­
plier / accumulator combination, 
for example (Figure 4c), effec­
tively doubling the throughput. 

The control section sequences 
the operations and selects the 
correct data points and coefficient 
values for the arithmetic section. 
It does so by defining the appro­
priate addresses within the data 
RAM and the coefficient PROM. 

For the direct or linear phase 
implementation of a filter, count-

+ X (k-N+n)] 
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ers enhanced by hardware,such 
as multilevel pipeline registers, 
can generate addresses. For 
decimating or interpolating fil­
ters, the addressing sequence be­
comes more complex and re­
quires additional modulo count­
ers; this task also requires the 
overall control flexibility offered 
by a device such as the AMD 
Type Am29PL141 fuse-program­
mable controller. 

Control circuitry eliminates re­
dundant cycles that would result 
from zero inputs or unwanted 
outputs. The method is different 
for the decimating and interpo­
lating stages of the filter. 

In interpolation, a normal fil­
ter sequences through all of its 
coefficients, multiplying each by 
a corresponding data sample. For 
a padded signal, many of these 
data points are zero and, conse­
quently, do not contribute to the 
output. 

Zero padding may be achieved 
by incrementing the data ad­
dresses by one, and the coeffi­
cient addresses by an interval 
equal to the interpolation ratio. 
This padding technique has the 
beneficial side effect of automat­
ically avoiding all redundant 
operations. 

However, it is necessary to 
keep track of the location of the 
first non-zero data point, since 
this defines the first coefficient 
address to be used by the filter. 
Any subsequent decimation op­
erations will change this address. 

To avoid redundant cycles in 
decimation, filter outputs that 
would be subsequently discarded 
are simply not calculated. A filter 
without an interpolating stage 
accomplishes this by writing 
mere than one point at a time 
into the filter's cyclic buffer. For 
example, writing in two new 
samples for each calculation of 
an output gives a decimation ra­
tio of two. 

INTEGRATED CIRCUITS MAGAZINE 

J 

COUNTER l- I MODULO J.-COUNTER 

! '" MULTIlEVEL ~ I 
MULTILEVEL 1.1 1 Am49P1141 

PIPElINE PIPELINE 
REGISTER REGISTER 

1 ! 
W 2K X 8 REGISTERED r- STATIC 512 X 8 

RAM X2 PROM X2 

I I 
I 

1 
16 X 16·BIT 

PARALLEL 
MULTIPLIER 

I 

'" '" I 
MULTIPORT 

I 
MULTI PORT 

PIPELINED PIPELINED 
PROCESSOR PROCESSOR 

T I T I 

For a filter that incorporates 
an interpolation stage, the deci­
mation could require the writing 
of zeros or samples (or both) into 
the cyclic buffer. Since zeros are 
not explicitly written into the 
STORE, the coefficient START 
address is incremented to com­
pensate. 

The coefficient START ad­
dress is RESET to zero every time 
a true sample is written into the 
STORE. Depending upon the ap­
plicable decimation and interpo­
lation ratios, a varying number 
of true samples and apparent 
zeros will be written into the cy­
clic buffer between each output 
from the filter. The relevant co­
efficient START address may be 
calculated by incrementing a 
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Fig. 5. This decimator-based 
narrowband fIlter hardware frees 
the multiplier to perform hetero­
dyning without overhead. No 
filtering occurs while samples 
are written into the cyclic buffer. 



modulo counter by the decima­
tion ratio. The count modulus is 
equal to the interpolation ratio. 

Very efficient narrowband fil­
ters may be constructed, using 
the same techniques that resulted 
in efficient lowpass filters; this is 
because with narrowband filters, 
significant decreases in the sig­
nal's bandwidth occurs, allowing 
a high decimation ratio. 

A narrowband filter can be 
constructed from a lowpass fil­
ter with half the bandwidth of 
the equivalent narrowband filter. 
The input signal must first be 
shifted to baseband, with the sig­
nal frequency lying in the center 
of the bandpass filter shifted to 
be at DC, so that it fits within the 
passband of the lowpass filter. 

The shift operation can be 
done with a complex heterodyne 
stage that simply multiplies the 
input signal by a complex fre­
quency (SIN and COS) equal to 
the center frequency of the band­
pass filter. This complex, fre­
quency-shifted signal is then fil­
tered by a decimating lowpass 
filter, interpolated, and shifted 
back up to the original band with 
the same complex heterodyne 
technique. The signal may, of 
course, be shifted back up to any 
band desired. 

A given narrowband filter may 
have many different center fre­
quencies, each determined by the 
complex frequency employed in 
the heterodyne stage. The same 
filter may be used to divide a 
wide bandwidth signal up into a 
number of smaller blocks by 
stepping the heterodyne fre­
quency in increments equal to the 
filter's bandwidth. Since the 
bandwidth of the narrowband 
filter depends on the bandwidth 
of the lowpass filter, it is inde­
pendent of the effective center 
frequency. A number of lowpass 
filters may be stored within the 
arithmetic processor, allowing 

the narrowband filter's center 
frequency and bandwidth to be 
changed at will. 

The Complex Heterodyne 
The complex heterodyne op­

eration requires two cycles per 
input sample; these are used to 
multiply the sample by digitized 
values of SIN and COS, to yield 
the imaginary and real compo­
nents of the basebanded complex 
signal. 

The values of SIN and COS 
derive from the sampling of a 
complex sinusoid of the required 
frequency at a rate equal to the 
effective sampling rate of the sig­
nal. This lowpass filtering leads 
to an advantageous reduction in 
the bandwidth of the signal, 
which may be exploited by deci­
mating the signal accordingly. 
There is an additional inherent 
decimation factor of two in­
troduced when the signal is 
translated into a complex 
representation. 

Shifting to restore the signal 
back to its original band is again 
achieved through complex het­
erodyning. This operation must, 
of course, be performed after the 
signal has been interpolated back 
to the original sampling rate, to 
avoid aliasing distortion. 

For example, assume that a 
narrowband filter is required to 
select ten percent of the band of 
an input signal with transition 
bands occupying an additional 
ten percent. A direct implemen­
tation of this filter would operate 
at the input sampling rate and re­
quire about 160 cycles per input 
sample to process. 

The decimating equivalent 
would require two cycles per in­
put point, operating at the input 
sampling rate, to perform the 
complex heterodyne. The base­
band signal occupies only 15 per­
cent of the original signal's. band­
width, and therefore may be dec-
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imated by a factor of 6.7 resulting 
from values of P and Q of 20 and 
3, respectively. After the initial 
interpolation, the transition band 
occupies only 3.3 percent of the 
interpolated signal's bandwidth, 
suggesting that the lowpass filter 
will require 242 taps. 

The effective processing rate 
of this filter is N /P cycles per in­
put point, resulting in an overall 
requirement of twelve cycles for 
each of the original input points. 
Two filters are required for the 
real and imaginary channels, re­
suI ting in a total processing re­
quirement of 26 cycles per input, 
a saving of about eighty percent. 

To shift the filtered signal 
back up to its original band and 
sampling rate at this point would 
not achieve any overall savings, 
because there will be no net de­
crease in the sampling rate. If 
further processing of the filtered 
signal is required, then all stages 
that now operate at the reduced 
sampling rate will benefit from 
the eighty percent saving in 
processing. 

Narrowband filter hardware 
(Figure 5) is also based on the 
decimator. The complex hetero­
dyne operations are best imple­
mented by a multiplier using de­
vices such as the AMD Type 
Am29517 multiplier and Am-
29501 multiport pipelined proc­
essor as the arithmetic section. 

No filtering will occur while 
samples are being written into 
the cyclic buffer, so that the mul­
tiplier is free to perform the het­
erodyne operation without any 
overhead. The necessary com­
plex frequency coefficients may 
be obtained by incrementing the 
addresses of a pair of Am29526 
sine and Am 29527 cosine gen­
erators. The ICs share the same 
address space and bus as the reg­
istered PROMs that contain the 
filter coefficients. 
DATA FILE 130 

• 
MAYc1.985 



DSP BUILDING BLOCKS ALLOW RESOURCE OPTIMIZATION. 

by 
Bernard J New 

Manager 
Product Planning and Applications 

AMO 
901 Thompson Place 

Sunnyvale, CA. 94088 

Introduction 
The essent i a 1 genera 1 ity of genera 1 purpose 
computing usually prevents optimization of the 
processor. In digital signal processing, 
however, this is not usually the case. Even in 
multi-purpose signal processors, the 
a 19orithms to be imp lemented wi 11 have many 
similarities. In particular, they will be 
repetitive, intensive in both arithmetic and 
memory operations, and branch infrequently. 

The repetitive, non-branching characteristic 
is exp 10 ited through extens ive use of pipe­
lining, more than would be considered 
advantageous in a general purpose machine. The 
large and predictable number of arithmetic 
operations and memory accesses permdts an 
arithmetic processor to be contructed with 
resources balanced to match the problem at 
hand. 

The construction of this processor will not 
normally allow it to be multiplexed effectively 
with the task of address gene rat ion. As the 
addresses are often the only variation in 
successive iterations of the program and follow 
a well-defined pattern, it is desirable that 
they are generated in an independent processor 
which operates concurrently with the 
arithmetic processor. 

The AmZ9500 family of digital signal processing 
and array processing products provides devices 
for use in both areas. In particular, for use 
in the arithmetic processor, the fami ly 
includes the Am29501 Multi-port Pipelined 
Processor and the Am29516/7 16-bit Para lle 1 
Multipliers. These constitute two major 
resources. The parallel multiplier is 
essential to signal processing calculations, 
and the Multi-port Parallel Processor 
comolements this with register and ALU 
facilities. This device's three ports provide 
the communication necessary for efficient use 
of multiple elements. 
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The third major resource to be managed in the 
arithmetic processor is the memory. Using the 
fast Fourier transform (FFT) as an example, 
this paper describes an approach by which an 
algorithm may be analyzed and an appropriate 
allocation of resources made. It should be 
stressed, however, that the Am29500 family is 
of general application, and is not limited to 
the FFT. 

The Balancing Act 
The objective in optimizing an arithmetic 
processor is to provide facilities in 
proportion to their usage in the algorithm 
being implemented. In this way, the processor 
is balanced with no one resource lying idle 
while another completes its task, and all are 
used at peak efficiency. Increasing just one 
resource will not necessarily increase 
performance due to the creation of an 
imbalance. 

Consider the fast Fourier transform. This 
compri ses the repeated eva luat ion of what is 
commonly known as the FFT "Butterfly." This is 
shown diagramatically, together with its 
formulae, in Figure 1. There are two input data 
points, A and B, which are complex numbers. 
These are combined together, and with a complex 
coefficient, W, to form two outputs, A' and B'. 

Inspection of the formulae shows that a single 
implementation would require one complex 
addition, one complex subtraction and one 
complex multiplication. Also five complex 
memory operations are required; three reads for 
A, Band W, and two writes for A' and B'. In 
terms of real operations, this reduces to four 
multiplications, six addition/subtractions and 
ten memory transactions. It is to these 
requirements that an FFT processor must be 
matched. 
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FIGURE 1: The FFT Butterfly 

Moving the Bottleneck 
From the above analysis it may be seen that if 
all operations take equal time, the throughput 
is limited by the memory requirement, which 
makes it impossible to perform butterflies more 
frequently than every ten cycles. However, this 
may be reduced by exploiting two factors, which 
are common to many signal processing 
algorithms. 

Firstly, the memory may be re-organized to 
reflect the complex nature of the data. Making 
the memory twice as wide but only half as deep 
does not increase the size of the memory, but 

Memory Accesses 

8 

Resource Memory Buses 

#CYCleS~ # Usage 

8 1 8/8 

6 2 4/6 

4 2 4/4 

3 4 2/3 

2 4 2/2 

a llows for s imu ltaneous access to rea 1 and 
imaginary parts, effectively doubling the 
memory bandwidth. Secondly, it may be noted 
that the multiplications are performed between 
data and a coefficient. If the coefficients are 
stored in a separate memory, they may be 
accessed concurrently with the data. 

These changes reduce the number of data memory 
accesses to four. However, the butterfly will 
still require six cycles, as the throughput is 
now dominated by the ALU requirement. The 
bott leneck has moved from the memory to the 
ALU. 

Add/Subtract Multiply 

6 4 

ALU Multipliers 

# Usage # Usage 

1 6/8 1 4/8 

1 6/6 1 4/6 

2 3/4 1 4/4 

2 3/3 2 2/3 

4 1.5/2 2 2/2 

TABLE 1: FFT Resource Comparison 
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Measuring Efficiency 
A usefu 1 measure of efficiency is the 
proportion of time each resource is active. In 
the six cycle butterfly described above, the 
ALU will be used 100~ of the time. The memory 
and multiplier will each be used on only four 
of the six cycles, 67~ of the time. This is 
summarised in the first line of Table 1. This 
base system contains one memory, one ALU and 
one multiplier. 

As the multiplier is an expensive resource, it 
is desirable to utilize it more efficiently. To 
do this necessitates adding more capacity to 
the current bottleneck, the ALU. The second ALU 
reduces the necessary ALU cycles to three, and 
moves the bottleneck to both the memory and the 
multiplier, each requiring four cycles. In this 
case the memory and multiplier efficiency is 
100~. and the ALU efficiency is 75%. 

Algorithm # t 
Am29540 

FFT Address 
Sequencer 

Algorithm # 2 

Algorithm # 3 

Address 
Pipeline 

Am29520jt 

Address 
Pipeline 

Am29825 

As shown in the table, further improvement 
requires that both the memory and the 
multiplier be duplicated. This gives a 
situation similar to the base system, but with 
twice the hardware resulting in twice the 
throughput. 

A Reasonable Solution 
In theory this procedure could be repeated 
until four memories, four multipliers and six 
ALUs allowed a butterfly to be completed every 
cycle. However it is unlikely that this 
solution would be practical. 

The problem encountered is in partitioning the 
memory such that two reads and two writes can 
be performed simultaneously. This partitioning 
must be consistent with the data flow of the 

Data RAM 

Coefficient 
PROM 

Imaginary Data 

Real 
Processor 
Am29501 

Imaginary 
Processor 
Am29501 

Microprogrammed 
Control Unit 

FIGURE 2: FFT Processor Architecture 
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FFT. Even the base system is not wi thout 
problems. This requires that the result of a 
co~plex memory read be loaded into a real ALU. 
Also the inclusion of additional hardware to 
aChieve more speed than is necessary for the 
application is obviously undesirable. 

When comparing architectures which trade a 
doubling of throughput for a doubling of 
hardware, as occurs in the table, system 
integrity may be a deciding factor. While it 
may be convenient to build a single large, fast 
machine, if latency requirements allow, it 
may be better to alternate two slower machines. 
This allows for reduced operation, rather than 
failure, if one of the machines should fail. 

The table obtained from the above analysis 
should be viewed only as an initial survey of 
the options available. Even after selecting a 
like"ly candidate is is necessary to show that 
the algorithm can be programmed into the 
processor in the number of cycles anticipated. 

Overlapped Programming 
Let us assume that the single memory, two ALU, 
single multiplier architecture has been 
selected. This is shown in Figure 2. The 
objective is to implement the FFT butterfly in 
this architecture in four cycles. 

Step I Real 

DIO ALU At A2 I A3 Bl I B2 

I I I 
2 I I 

3 I I I 
4 I 

5 I Read B DI ! 
6 I 

7 I Read A DI I 

8 I AI-MSP! H MSPI IALUi 

9 i H H H 

10 i AI +A3 ALUI H 

II ! B2+MSP H I !MSPiALUI 

12 IWrite B2 I H H I 
13 i A2 - BI ALUi 

14 I Write A2! I I 

IS ! I 

t6 ! 

17 I 

18 I I 

B3 

A simple inspection of the algorithm shows that 
in order to generate and store the real part of 
A', it necessary to read A and B, complete the 
real part of the multiplication, perform an 
addition and write the result to memory. 
Allowing for maximum concurrency this requires 
five cycles, and it obvious that the full 
program would be longer than that. 

However, this does not imply that the goal of 
four cycle throughput is impossible, only that 
the latency will be greater than four cycles. 
The resources in the processor are such that if 
the program takes more than four cycles they 
will be idle for part of the time. While 
causality does not allow these resources to be 
applied to the current iteration of the 
program, the program repeats, and the resources 
may be applied to previous or following 
iterations. 

This leads to a situation where an iteration of 
the program commences before the previous ones 
are complete, and the iterations overlap. This 
is similar to pipelining except that whole 
programs are involved and the hardware is 
multiplexed between overlapped programs. 

The completed program for the FFT butterfly is 
shown in Table 2a. Ten cycles are required to 
complete this program. Table 2b shows the 
instruction stream when this program is 

Imaginary Multiplier 

ALU At A2 A3 B t B2 B3 I MIO MULT 

I I 

DI 

H I BR I 
DI H BRWR 

H BI I BRWI 

IAI-MSP! H MSP ALUI BIWR 

B2-MSPI H H I ALU IMspl BIWI 

AI + B3 I ALU H H I 
A2 +A3 IALU 

H 

I 

I 

TABLE 2a: The Butterfly Program 
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Real Imaginary Multiplier 

Step 010 ALU I Al A21 A3 Bl1 B2 B3 ALU , Al I A2 A3 I Bl B2 B3 MIO MULT 

1 Read B A2 - B11 H ALUI H 01 H A1-MSpl H I H Mspi 01 ALU BIWR 

2 Write A2 A1 + A3 I ALU i IH B2-MSPI H I H H IALU ~MSP BR I B,W, 

3 Read A B2+MSP' 01 Hl MSP ALU A1 + B31 01 iALU H H H BRWR 

4 Write B2 A1-MSP H H IMSP H iALU A2 + A31 H IALU BI BRW, 

5 Read B A2 - B1 L H ALUI H 01 I H A1-MSPI H I H MSP! 01 ALU I BIWR 

6 Write A21 A1 + A3 i ALUI 1H B2-MSpi H I H H ALU MSP BR B,W, 

7 Read A IB2 + MSPI 01 H I MSP ALU A1 + B3 j 01 IALU H I H I H I BRWR 

8 Write B2!A1 -MSP I H H IMSPI H IALU: A2 + A31 H !ALU. I BI I BRW, 

9 Read B I A2 - B1 I H ALUI H 01 i H I A1-MSP! H I H MSPI 01 ALUI I B,WR 

10 Write A2 i A1 + A3 ! ALUI 1H IB2-MSPI H I H I H ALU IMspi BR B,WI 

11 Read A B2+MSpi 01 H i MSPIALUI Al + B3 I 01 IALUI H I H H I BRWR 

12 Write B2 !A1 - MSP H I H 'MSP! H IALUI A2 + A31 H IALUI BI BRW, 

13 Read B A2 - B1 I H IALUI H 1H I A1-MSPI H I H MSP' 01 IALUI B,WR 

14 Write A2 A1 + A3 I ALUi I H I B2-MSP' H I H I H !ALUIMSPI BR I B,W, 

15 Read A IB2+MSPI 01 I H I MSPIALU' A1 + B31 01 IALul H i H I H I BRWR 

16 Write B2; A1- MSP' H I H MSPI H IALU! A2 + A3 I H IALUI I B, BRWI 

17 Read B I A2 - B1 i H ALU, H I H i A1-MSPI H I H !MSP' 01 ALUI BIWR 

18 Write A21 A1 + A3 I ALUi I H B2-MSP' H I H H IALUIMSP B.W, 

TABLE 2b: The FFT Instruction Stream 

restarted every four cycles. Through -careful 
programming this can occur without the programs 
interfering. It may be seen from this table 
that the three major resources, memory, ALU and 
multiplier are used 100% of the time. This 
differs from the original estimate of 75% 
utilisation of the ALU, the extra 25% being 
accounted for by "inefficient" use in the 
program. However, the extra use of the resource 
is free, and not using it would at least have 
increased the latency. 

Inspect ion of Tab Ie 2b a Iso shows the 
instruction stream to be periodiC, repeating 
every four cycles. These four cycles contain 
the information for the complete ten cycle 
butterfly program, and constitute the inner 
loop which must be executed to implement the 
FFT. At the beg i nn i ng and end of the FFT, 
previous and following iterations are absent 
and the instruction stream becomes aperiodic. 
This must be accommodated by segments of linear 
code derived from the instruction stream, which 
fill and empty the overlap pipeline.In this 
case the program could be written to give the 
desired throughput. If this had not been the 
case, it would have been necessary to move to a 
"faster" architecture. 
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The only outstanding task is to generate the 
addresses to provide the data stream into the 
arithmetic processor. For the specific case of 
the FFT this may be effected using the Am29540 
FFT Address Sequencer. In other cases an 
address computer may be designed and programmed 
using the techniques described above. 

Conclusion 
Using the FFT as an example, a method has been 
described whereby a digita I signa 1 processor 
may be opt imi zed through resource management. 
This technique is applicable to architectures 
using bui lding block components, such as the 
Am29500 Family. Indeed it was about this family 
that it was developed. Processors designed in 
this way exhibit maximum usage of components 
included. 
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ABSTRACT 

A New Approach to Floating Point DSP 

Robert Perlman 
senior engineer, Product Planning 

Advanced Micro Devices 
Sunnyvale, CA 94088 

A new high-speed, single-chip floating point processor, 
the Am29325, is introduced; this processor incorpo~ates features 
of interest to those implementing high-performance digital 
signal processing systems. Processor architecture is described, 
and the advantages of the architecture for DSP and array 
processing applications are discussed. Typical small- and 
large-system designs are presented. 

INTRODUCTION 

Floating point arithmetic engines are natural candidates 
for very-large-scale integration, due to the popularity of the 
function, and to the large amounts of design time and circuit 
board space needed to implement such a function in SST and MST. 
Early efforts to integrate floating point operators in a single 
chip or chip set usually resulted in serial-parallel designs 
which, while considerably faster than software floating point 
implementations, did not approach the speeds of fully parallel, 
dedicated hardware designs. 

Recent improvements in process technology have made 
possible, for the first time, the joining of combinatorial 
floating point addition/subtraction and multiplication functions 
in a single VLSI device. The Advanced Micro Devices Am29325 
Floating Point Processor contains all hardware necessary to 
perform high-speed, 32-bit floating point addition, subtraction, 
multiplication, and format conversion operations, in either IEEE 
or DEC floating point formats. The device also contains a 
flexible 32-bit data path, with facilities for local operand 
storage. 

The integration of three elements - a combinatoria 1 
adder/subtractor, combinatorial multiplier, and data path -
marks the fundamental difference between the Am29325 and 
prev ious floating point implementations. By combining these 
functions, the design addresses not only the problem of 
implementing fast floating point operators, but also the equally 
important problem of efficiently transferring operands from one 
operation to the next. The data path architecture is optimized 
for performing often-used arithmetic sequences, such as 
multiplication- accumulation and Newton-Raphson division. 

The Am29325 is fabricated with the IMOX-S (for Ion­
iMplantation, OXide isolation with Scaling) process, a 
refinement of earlier AMD bipolar processes. IMOX-S has a 
feature size of 1.S microns; three layers of metal are used for 
interconnects. The Am29325 die contains 48,000 devices on 
129,000 square mils of silicon, and is packaged in a 144-1ead 
pin-grid-array. Standard cell techniques were used to reduce 
design time and simplify chip layout. Improvements in turn­
around time were significant: custom design of the Am29116, a 
16-bit bipolar microprocessor, took 51 months, whi Ie design of 
the Am29325, a device three times as large, took only 31 months. 

The floating point processor is the first in a series of 
general-purpose, microprogrammable devices primarily intended 
for 32-bit systems. Other fami ly members include the Am29331 
microprogram sequencer, the Am29332 ALU, the Am29323 32-by-32-
bit fixed-point multiplier, and the Am29334 register file. 

~ ARCHITECTURE 

The Am29325 comprises a high speed floating point 
arithmetic unit, a status flag generator, and a 32-bit data path 
(f ig. 1). 

FLOATING POINT 
ARITHMETIC UNIT 

<ADDER, MULTIPLIER, 
FORMAT CONVERTER) 

PORT t 

1 

f<:J CLK 

16 
f<:JINSTRUCTION 

SELECT, 
CONTROL 

STATUS 
FLAGS 

Fig. 1: Am29325 Floating Point Processor block diagram. 
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Arithmetic unit - The three-port, combinatorial arithmetic 
unit contains a high speed adder/subtractor, a 24-by-24-bit 
multiplier, an exponent processor, and other logic needed to 
implement floating point operations. Two input ports, Rand S, 
provide operands for the instruction to be performed. The 
result of an operation appears on output port F. 

The arithmetic unit executes one of eight instructions 
(table 1). Three of the instructions - R PLUS S, R MINUS S, and 
R TIMES S - add, subtract, and multiply 32-bit floating point 
numbers. A fourth instruction, 2 MINUS S, subtracts 32-bit 
floating point operand 5 from 2. The 2 MINUS S instruction is 
used to perform Newton-Raphson division, a means of calculating 
the quotient A/B. Unlike conventional division, in which 
quotients are calr.ulated with a series of subtractions and 
shifts, the Newton-Raphson division algorithm first calculat·es 
the reciprocal (liB') using an iterative equation, then computes 
the quotient by post-multiplying the reciprocal by A. 

The remaining four instructions perform data format 
conversions. Instructions INT-TO-FP and FP-TO-INT convert 
between floating point and 32-bit, 2's complement integer 
formats. The IEEE-TO-DEC and DEC-TO-IEEE instructions convert 
between IEEE and DEC floating point formats. 

Instructions may be performed in either of two single­
precision floating point formats - the IEEE format, as specified 
in proposed standard P754, draft l@.@ (ref. 1), or the DEC F 
format (ref. 2). These _~ormats are similar, each having an 8-
bit biased exponent, a 24-bit significand comprising a 23-bit 

MNEMONIC OPERATION 

R PLUS S Add float1ng p01nt operands Rand S 

R MINUS S Subtract floatlng pOInt operand S from 
floatIng pOlnt operand R 

R TIMES S MultIply floatlng p01nt operands Rand S 

2 MINUS S Constant floatlng pOInt subtractIon for 
Newton-Raphson d1v1slon (see text) 

INT-TO-FP Convert floatIng p01nt operand R to lnteger 

FP-TO-INT Convert Integer operand R to float1ng pOInt 

IEEE-TO-DEC convert IEEE floatIng pOInt operand R to 
DEC flaatlng pOInt format 

DEC-TO-IEEE convert DEC float1ng pOInt operand R to 
IEEE ftoatlnq pOlnt format 

Table 1: Floating point arithmetic unit operations 

mantissa appended to an implied or "hidden" MSB, and a sign bit. 
There are, however, a number of differences between IEEE and DEC 
floating point conventions, in both the format and the manner in 
which operands are handled during the course of an operatio~. 
These differences are automatically accounted for when the 
desired format is selected. 

The arithmetic unit implements four IEEE-mandated 
rounding modes that map the infinitely precise result of a 
calculation to a representable floating point value. An 
additional VAX-compatible rounding mode is provided for users of 
the DEC floating point format. 

Status flag generator - The status flag generator produces 
six flags that report operation status. Four of the flags 
report exception conditions stipulated in IEEE standard P754. 
The first of these, the INVALID flag, indicates that an 
operation does not have a sensible answer; multiplying infinity 
by zero is one exarple of an invalid operation. Operations 
producing results either too large or too small to be 
represented in the selected floating point format are identified 
by the second and third exception flags, UNDERFLOW and OVERFLOW. 
The fourth exception flag, INEXACT, indicates that the result of 
an operation is not infinitely precise. Two additional flags 
not called for in the IEEE standard, ZERO and NAN, identify 
zero-valued or non-numerical results. 

Data path - The integrated data path comprises two input 
buses, a three-state output bus, and two data feedback buses, 
all 32 bits wide. Operands enter the Am29325 through input buses 
R0 - 31 and 5 0 - 31 ; results exit through three-state output bus 
F@_3l' Each of the R, S, and F buses has a 32-bit edge­
triggered register for data storage. An independent clock 
enable is provided for each register, so that new data can be 
clocked in or old data held. Input registers Rand S, and 
output register F can be made transparent independently. When 
all three registers are made transparent, the Am29325 operates 
in a purely combinatorial 'Iflow-through l' mode. 

The two feedback data paths transport processor output 
operands back to the inputs. The first feedback path routes 
data from the output of the arithmetic unit to a 32-bit 
multiplexer at the input of register R; the multiplexer selects 
the operation result or R0 - 31 • The other feedback path carries 
the output of register F to a second 32-bit multiplexer, which 
selects either register 5 or register F as the input for port S 
of the arithmetic unit. 

To allow easy interface with a variety of 16- and 32-bit 
systems, buses R, S, and F can be programmed to operate in one 
of three I/O modes. The first and most straightforward of these 
is the 32-bi t, 2- input-bus mode; in this mode, the Rand 5 buses 
are configured as independent 32-bit input buses, the F bus as a 
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32-bit output bus. The second I/O option is a 32-bit, single­
input-bus mode, in which the Rand S operands are taken from a 
single 32-bit input bus on alternate clock edges. For the third 
option, a 16-bit, two-input-bus mode, the R, S, and F buses are 
16 bits wide. Thirty-twa-bit operands are placed on these 16-
bit buses by time-multiplexing the 16 MSBs and LSBs of each data 
word during alternate halves of the clock cycle. Internal data 
paths and registers remain 32 bits wide when this 16-bit I/O 
mode is selected. 

ARCHITECTURAL ADVANTAGES FOR DSP APPLICATIONS 

The architecture of the Am29325 offers several advantages 
to the implementor of DSP and array processing systems: 

Efficient data routing - Three aspects of the Am29325 
architecture contribute to efficient data routing. First, 
placing the adder/subtractor and multiplier on the same die 
e1 iminates the shuffl ing of data between separate 
adder/subtractor and multiplier chips. Minimizing chip-to-chip 
communication is an important consideration in high performance 
system design, since, in VLSI-based systems, the time needed to 
transfer data between chips can often limit maximum operating 
speed. 

Second, the on-board data paths allow the intermediate 
result of a calculation to be routed to the input of the 
floating point arithmetic unit, for use as an input operand in 
the next phase of the calculation. This feature not only keeps 
data on-chip, but also makes an external implementation of a 
similar data path unnecessary_ Such an external data path would 
be expensive, both in components and circuit-board real estate; 
implementing the two 32-bit multiplexers alone would consume 
over a dozen MSI devices. 

Third, the absence of pipeline delays in the floating 
point arithmetic unit makes it possible to use the result of one 
calculation as the input operand for the very next calculation, 
a crucial feature when implementing algorithms with tight data 
feedback loops. Users of floating point processors with 
pipeline delays have one of two choices when implementing such 
an algorithm - they can either halt the operation while waiting 
for the desired result to drop out of the pipel ine, thus 
reducing computational efficiency, or can interleave different 
sets of calculations to keep the arithmetic unit busy, at the 
cost of more compl icated programming. Using a zero-pipel ine­
delay arithmetic unit avoids both of these unappealing choices. 

Am29325 data routing efficiency is best appreciated by 
considering the manner in which multiplication-accumulation is 
performed. In a typical multiplication-accumulation calculation, 

N input terms Xi are multiplied by coefficients k i • These 
products are then added, producing the weighted sum 

~ 
s =~ kixi 

i=0 

Multiplication-accumulation is performed in a two-step 
loop, with two additional steps for initialization (fig. 2a-d). 
To initialize the process, data and coefficient values x0 and k0 
are clocked into registers Rand S (fig. 2a). Next, the values 
x0 and k0 are multiplied, and the product placed in register F; 
at the same time, data and coefficient values Xl and kl are 
clocked into registers Rand S (fig. 2b). In the first step of 
the multiplication-accumulation loop, values Xl and kl are 
multiplied, and the product placed in register R (fig. 2c). In 
the second step, products xl*kl and x0*k0 are added, and their 
sum placed in register F; x2 and k2 are placed in registers R 
and S (fig. 2d). 

The two loop steps are then repeated for as many 
iterations as needed to complete the calculation. The internal 
data paths wrap back products and accumulations, thus keeping 
the arithmetic unit busy with a multiplication or addition every 
clock cycle; a new multiplication-accumulation is performed 
every two clock cycles. Partial results remain on-chip until 
the multiplication-accumulation is completed. 

High I/O bandwidth - The three 32-bit I/O buses provide 
high-bandwidth access to the floating point arithmetic unit. 
When the device is operated in the 32-bit, two-input-bus I/O 
mode, no multiplexing of I/O buses is required, thus improving 
system speed and easing critical timing constraints. 

Transparent operation - In many applications, the R, S, 
and F registers will be used to store an operation's inputs and 
outputs; it is in this register-to-register mode that the 
Am29325 operates the fastest. In some applications, however, it 
may be desirable to bypass the internal registers, either 
because system requirements dictate a data path structure 
substantially different from that provided, or because the 
floating point operations must be concatenated with other 
combinatorial functions. These situations can be accommodated 
by making all three registers transparent, turning the floating 
point processor into a purely combinatorial device; this "flow­
through" mode of operation would not be possible if the Am29325 
used multiplexed I/O. 
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Performing floating point multiplication­
accumulation with the Am29325. 

SYSTEM DESIGN 

A block diagram for a typical small system design is shown 
in fig. 3. The system consists of an Am29325, an Am29334 four­
port register file, data memory, coefficient memory, 
microprogrammed controller, clock generator, and host system 
interface. Although small enough to fit on a single circuit 
board, this system contains all the elements needed for floating 
point digital-signal and array processing. 

Because of its three-bus I/O structure and internal 
feedback paths, the Am29325 can be used to advantage in both 
cascade and parallel configurations. Fig. 4 illustrates a 
simple cascade system, a variation on the previous architecture. 
In this system, the output port of one floating point processor 
feeds the input port of another. This arrangement is 
particularly advantageous when performing high-speed 
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Fig. 3: Typical small-system design. 



mul1iiplication-accumulation; the first Am29325 forms products, 
while the second computes the accumulation in parallel. The 
accumulation is performed using a feedback data path in the 
second part _ no external feedback path is necessary. By doing 
the multiplications and additions in parallel, the effective 
throughput rate is one clock per mul tipl ication-accumu lation, 
twice that of the system shown in fig. 3. 
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Fig. 4: System using two floating point processors in cascade. 

Parallel configurations are also useful, and are easi ly 
implemented. In one such configuration, t~e Am29325 is used 
with other members of the Am29300 family to create a 32-bit 
floating-point/integer processor (fig. 5). In the system shown, 
the Am29332 ALU and the Am29323 32-by-32-bit parallel multiplier 
share three 32-bit buses with the Am29325; data can be passed 
from one processor to another through the Am29334 register file. 
Combining these parts produces a system that can perform high­
speed floating point, integer, and logical operations. The user 
can further expand the system by adding 32-bit operators of his 
own devising to the three-bus archi tecture. 
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SYSTEM DESIGN/lntegrated 

DIGITAL FILTER DESIGN 
MADE EASIER FOR 
FIRST·TIME USERS 
Off-the-shelf components and simplified filter formulas ease 
entry into the world of digital filter design, and allow a quick 
evaluation of the cost-effectiveness of digital solutions. 

by Kenn Lamb and 
Bob Perlman 

Realtime digital filtering is becoming an attractive al­
ternative in a growing number of analog-filtering ap­
plications. Today, specialized digital signal-processing 
part families, and a range of filter-design packages, 
make digital filters easier to implement. Neverthe­
less, getting into digital filter design for the first time 
is not easy. Some of the concepts are unfamiliar to 
novice filter designers and the tools generally avail­
able are aimed at the more experienced designers. 

A "cookbook" approach, however, eases entry 
into digital filter design and provides a quick way 
to evaluate the cost-effectiveness of a digital solu­
tion. This approach uses off-the-shelf ingredients, 
such as the Am29500 family, and a simple "recipe" 
for a linear phase finite-impulse response (FIR) filter. 
Copyright by COMPUTER DESIGN, 
November 1985. Reprinted 

A digital filter performs the same function as an 
analog filter, but.in a different "world." In the con­
tinuous world, a signal is monitored (or sampled) 
continuously, and filtering is described mathemati­
cally as a convolution operation. 

In the discrete world, things can be done much 
more efficiently. The z-transform, in which powers 
of z can be equated to simple time delays, provides 
a formula that is the discrete equivalent of the con­
volution operation. In addition, sampling reduces 
the monitoring overhead to periodic snapshots of 
the signal. A digital filter simply implements the dis­
crete convolution formula after an A-D converter 
has sampled the signal. Any arithmetic processor can 
perform the discrete convolution required for a 
digital filter, but the Am29500 family provides a pro­
cessing package without the overhead of a micro­
processor-based system, and can be optimized for 
digital-filtering applications. 

Unlike the characteristics of an analog filter, a dig­
ital filter's characteristics are determined by arith­
metic operations and coefficients, rather than by 
individual component values. This makes digital 
filtering inherently independent of component aging 
and environmental variables such as temperature. As 
a result, reliability is improved, and the filter response 

Kenn Lamb is a former product planning engineer for 
Advanced Micro Devices (Sunnyvale, CAl. He holds a 
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can be accurately reproduced. In addition, digital 
techniques permit useful characteristics that are not 
easily achieved in analog systems. Among these are 
zero passband insertion loss, very low frequency 
operation, and control over the stopband response. 

Using digital techniques, a designer can build 
linear-phase and all-pass filters that modify only the 
frequency or phase content of a signal. Linear-phase 
filters are used in multichannel environments where 
phase information is important, while all-pass filters 
are used typically for equalization. Cascading all­
pass and linear-phase filters allows phase and fre­
quency responses to be modified independently. In 
addition, filter coefficients, which are programmed 
by the designer, are easier to change than the com­
ponents of an analog filter. 

Because analog filters operate in the continuous 
world and can handle only one signal at a time, 
analog designs usually cascade a number of stages. 
As a result, there is a dear relationship between the 
physical size of an analog filter and its performance. 
The bandwidth of the active components within the 
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filter determines the overall filter bandwidth, but 
spare bandwidth cannot be used for other channels. 

Because the digital filter core is an arithmetic sec­
tion that performs the calculations according to the 
discrete convolution formula, it may be used for one 
large, or many small, single-channel filters, or may 
be a stage in a very large, high-bandwidth filter. 

Relationship between time and frequency 
The match between design and actual response in 

an analog filter is determined by the tolerance with 
which analog components may be constructed; the 
digital equivalent is the resolution (number of bits) 
at which the digital coefficients are represented. A 
relatively lax analog specification places wide toler­
ance on the component values, which translates into 
a less accurate (fewer bits) resolution of the digital 
coefficients. For an analog filter, the dynamic range 
corresponds to the range between the noise floor and 
the point at which the signal starts to dip. Dynamic 
range in a digital filter is determined by the number 
of bits in the digital representation of the signal. 

The filter consists of three main sections: the address­
generation and control section, the arithmetic section, 
and the store. The address-generation and control 
section consists of the read and write pointers, the 
8-bit adder, and the controller. The arithmetic unit 
consists of the multiplier/accumulator and the mul­
tiport pipelined processor. The store consists of the 
Am9128 RAMs and the Am27S25 registered PROMs. 

'-------------------------------------------------' 
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What is convolution? 
Two continuous functions x(t) and h(t) can be con· 
volved by evaluating the equation: 

00 

y(t) = 1 x (71") X h (t - 71") d7l" 
-00 

The discrete-time equivalent of this equation is: 

N-J 

y(n)= E x (k)xh (n-k) 

k=O 

Although somewhat different in appearance, both 
forms of the convolution equation can be evaluated 
similarly. First, the function h is time-reversed, or 
flipped. Then, function h is shifted left or right, with 
the amount of shift indicated by time variables t or 
k. The resulting function is then either integrated 
(in the continuous case) or multiplied and summed 
pOint by point (in the discrete case) with function x. 

One unfortunate aspect of convolution is that its 
worth is not readily apparent from the defining 
equations presented above. The real power of con­
volution is best appreciated by considering what 
happens in the frequency domain when two signals 
are convolved in the time domain. If the Fourier 
transforms of continuous signals x(t) and hit) are 
X(f) and H(f), the convolution of x(t) and hit) 
produces a signal whose frequency spectrum is 
equal to the product X(f)H(f). In other words, if one 
wishes to pass signal x(t) through a filter with trans­
fer function H(f), one merely convolves x(t) with hit). 
The same principle holds for discrete-time Signals, 
but with the z transform taking the place of the Fou­
rier transform. 

The discrete convolution of a sampled signal (a) 
with a sampled-impulse response (b) may be 
achieved by the following process. First, flip the im­
pulse response and place it over the signal (c). Sum 
the products of each impulse sample with its coin­
cident signal sample. The total is the convolution 

result for the particular overlap, and corresponds 
to the first filter output. Now, slide the impulse re­
sponse one sample interval to the right, so that it 
overlaps the next newest signal sample. Repeat the 
multiply/accumulate sequence. This result is the 
convolution for the new overlap, and corresponds 
to the second output from the filter. This process 
is repeated to calculate each new filter output. After 
each filter output, the oldest signal sample is no 
longer required, and may be discarded (d). 
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A signal to be filtered exists in the time domain 
of the familiar continuous world_ The desired filter 
response for this signal is best represented in the fre­
quency domain of the continuous world. These two 
domains are related through the continuous Fourier 
transform. The Fourier transform of a time-varying 
signal is its frequency spectrum, and the Fourier 
transform of the filter's frequency response is its 
impulse response. Viewed in the time domain, a 
filter's output is determined by the time-varying am­
plitude of the input signal and the filter's impulse 
response. In the frequency domain, on the other 
hand, the signal's frequency spectrum and the filter's 
frequency response determine the output. The fre­
quency response and the impulse response say the 
same thing about. a filter;-the impulse response is 
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simply the time-domain version of the filter's fre­
quency response. 

Just the continuous Fourier transform allows 
movement between the time and frequency domains 
of the continuous world, the z-transform allows 
movement directly from the continuous world into 
the sampled discrete world. Here the discrete time 
and frequency domains exist, linked by the discrete 
Fourier transform_ Sampled versions of the input 
signal, the signal's frequency spectrum, and the 
filter's frequency and impulse response are used. 

Design tradeoffs 
To understand the design tradeoffs between filter 

size and performance, a designer must be familiar 
with two relationships between the time and fre-



quency domains: multiplication in one domain is 
equivalent to convolution in the other domain, and 
a signal cannot be duration-limited in both domains. 
A filter can perform a multiplication in the fre­
quency domain in which the frequency spectrum of 
an incoming signal is multiplied by the frequency 
response of the filter, or it can perform a convolu­
tion operation in the time domain. For a digital fil­
ter, this requires the discrete convolution of a 
sampled version of the input signal with a sampled 
version of the filter's impulse response. The latter 
forms the coefficients of the filter. 

The frequency response of the filter will almost 
certainly be duration-limited in the frequency do­
main, because it's unusual for a filter to pass all input 
frequencies. Obvious examples are low-pass and high­
pass filters, where the aim is the elimination of great 
chunks of the input signal's frequency content. Be­
cause a signal cannot be duration-limited in both the 
time and frequency domains, a filter such as this will 
have an infinitely long impulse response. A simplistic 
approach to shortening this response is to truncate 
the impulse response to a convenient length. 

Truncating the impulse response is equivalent to 
multiplying it by a function that has a value of one 
where the impulse respol1se is to be preserved, and 
a value of zero where the impulse response is trun­
cated. This truncating function is called rect (x) be­
cause its amplitude plot describes a rectangle. Since 
multiplication in the time domain is equivalent to 
a convolution in the frequency domain, the initial 
ideal filter response must be convolved with the 
Fourier transform of the rect (x) function. The 
Fourier transform is the well-known sinc function. 
The nature of this sine function, however, smears 
the original ideal frequency response. And the more 
of the impulse response that is discarded, the worse 
the smearing effects of the sinc function. 

A designer can obtain a duration-limited impulse 
response without wrecking the original filter's fre­
quency response by mUltiplying the impulse response 
by a function with characteristics such that when the 
frequency response of this function is convolved with 
the desired filter's freo1lency response, it causes the 
minimum of smearir,g distortion. Window func­
tions, such as the Hamming function do just this. 
A window function such as this has a narrow main 
lobe to maintain the selectivity of the filter, and small 
sidelobes to maintain the depth of the stopband. 

Designing a low·pass filter 
The design of a low-pass filter is particularly easy, 

because the impulse response is obtained from the 
Fourier transform of the ideal rectangular response, 
which then takes the form of a geometric series, with 
c()f'ffi('if'nt~ that ('an hI" exnre~sed as the relatively 

simple sinc function sin (x)/x. The number (N) of 
coefficients (Sn) needed to implement the filter de­
pends on the sampling rate (usually 2.5 times the max­
imum frequency in the signal), the cutoff frequency 
of the filter, and the frequency that defines the start 
of the stopband. These coefficients must be multi­
plied by appropriate window function coefficients 
(W n) to yield windowed filter coefficients (en), 

These decimal coefficient values must then be con­
verted into 16-bit binary values, using the fractional 
two's complement numbering scheme. The coeffi­
cients are normally stored within registered PROMs, 
although RAM or EPROM storage offers advantages 
during development. Most A-D converters support 
the two's complement numbering scheme, ensuring 
that the representations of the data and coefficients 
are compatible. 

Filter hardware is used to implement the discrete 
convolution operation given by the formula: 

N 

Yk = E en x X(k-n+ \) 
n=l 

where Xk and Y k are the kth filter inputs and out­
puts, respectively. A filter implemented with this 
equation uses N data inputs to compute each filter 
output, and is therefore referred to as an N-tap or 
N-point filter. 

One advantage of a linear phase filter is that the 
coefficients are symmetrical. This means the required 
number of multiplications and the size of the coeffi­
cient store can be halved by adding the two data 
points that will be multiplied by the same coefficient 
value. The modified formula is: 

NI2 

Yk = E en x [X(k-n+l)+X(k-N+n)1 

n=l 
The filter hardware used to implement this for­

mula consists of three distinct sections: the address 
generation and control, the arithmetic section that 
performs the number crunching, and the store. The 
store holds a short time history of N samples for 
each of the channels to be filtered. These samples 
are held in a cyclic buffer with a length equal to the 
next integer power of two greater than the number 
of points in the filter. For each processed sample 
output from the filter, a new sample must be written 
in. This new sample overwrites the oldest sample 
within the cyclic buffer. 

For each output from the filter, the N newest sam­
ples must be read into the arithmetic section so the 
discrete convolution operation can be performed. 
Two pointers are needed-one (which counts up) to 
indicate the write address for incoming samples, and 
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and one (which counts down) to indicate the read 
addresses for the discrete convolution operation. 

The store will be required to read two data points 
for every cycle of the multiplier. The second data 
point may be found at an offset from the existing 
read pointer. An Am29PLl41 fuse-programmable 
controller supplies this offset, and the modified ad­
dress is calculated by an 8-bit adder formed from 
two Am25LS2517 ALUs. 

For a six-point filter, the offsets (0, 3, 5, and 7) 
are applied, on alternate cycles, to the 8-bit adder 
by the Am29PLl41, to permit generation of the sec­
ond read address from the first read address. 

For a six-point filter, all of the address calcula­
tions are performed modulo 8 (the next power of 
2 greater than 6), which is done by masking the ad-

---~-----

dress applied to the store so that the store sees only 
the least significant three bits. After each new word 
is written into the store, the write pointer loads the 
read pointer with the correct cyclic buffer start ad­
dress for the calculation of the next filter output. 

MUltiple channels may be accommodated by in­
hibiting the increments of the write pointer until all 
the channels have input a new sample. The chan­
nels are counted by the loop counter within the 
Am29PL 141 fuse-programmable controller, and are 
separated in the store section by the high-order ad­
dress bits latched with each new input. The chan­
nels may be presented in any order, but all channels 
must be processed at the same rate. When shifted 
one position so that the least significant bit is dis­
carded, the values forming the offset sequence give 

Determining the coefficients for a low-pass filter 
The coefficients for a low·pass filter can be ex· Inserting the values for Fs, F ep, and N into the 
pressed in terms of the so·called sinc function. The above equations gives: 
number of coefficients required to implement the 
filter N is given by: 

N = 4Fs/(Fcs - Fcp) 

Fs; the sampling rate of· the A·D converter, is equal 
to 2.5 times Fa, the maximum frequency present in 
the input Signal (set by the antialiasing filter). Fep 
is the cutoff frequency of the filter (the end of the 
passband) and Fes is the frequency that defines the 
start of the stopband (the end of the transition band). 

This estimate for N (the number of coefficients) 
is usually conservative, so the value of N may be 
reduced safely by about 10 percent. This leeway al· 
lows an even value for N to be obtained. Having de· 
termined N, the coefficient values can be obtained 
by sampling the filter's impulse response. The reo 
quired coefficients are given by the following sinc 
functions: 

For n= 1 to N 
S = sin [2X7rxFcpx(n-(N+l)I2)/Fsl 

n 7r X (Il - (N + 1 )12) 

where the Sn values are the samples of the sinc 
function. These values must then be multiplied by 
the window function to yield the windowed filter 
coeffiCients (Cn): 

where Wn (the Hamming window coefficients) are 
given by: 

Wn = 0.54 + 0.46 x cos [2 x 1f x (n - (N 
+ 1 )/2)/(N - 1)] 

Choosing Fa equal to 5 kHz, Fep equal to 3 kHz, 
and Fes equal to 4.5 kHz gives an N equal to 33. 

Sn = [sin (0.48 x 1f x (n - 15.5))]/(1f x (n - 15.5)) 
Wn = 0.54 + 0.46 x cos (2 x 1f x (n - 15.5)/29) 

This gives the Cn coefficients listed in the table. 

30-Point Low-Pass Filter Coefficients 

Coefficient Impulse Window Filter 
Index Samples Coefficients Coefficients 

Inl (Sn l (Wnl (Cnl 

1 0.00275 0.080 0.00022 
2 0.02353 0.090 0.00212 
3 0.00000 0.122 0.00000 
4 - 0.02762 0.173 -0.00478 
5 -0.00380 0.242 -0.00092 
6 0.03291 0.324 0.01066 
7 0.00931 0.417 0.00388 
8 -0.04036 0.515 -0.02078 
9 -0.01803 0.614 -0.01117 

10 0.05236 0.710 0.03717 
11 0.03407 0.798 0.02718 
12 -0.07679 0.874 -0.06711 
13 -0.07484 0.934 -0.06990 
14 0.16350 0.976 0.15958 
15 0.43580 0.997 0.43449 
16 0.43580 0.997 0.43449 
17 0.16350 0.976 0.15958 
18 - 0.07484 0.934 -0.06990 
19 - 0.07679 0.874 -0.06711 
20 0.03407 0.798 0.02718 
21 0.05236 0.710 0.03717 
22 -0.01803 0.614 -0.01117 
23 -0.04036 0.515 -0.02078 
24 0.00931 0.417 0.00388 
25 0.03291 0.324 0.01066 
26 -0.00380 0.242 -0.00092 
27 - 0.02762 0.173 -0.00478 
28 0.00000 0.122 0.00000 
29 0.02353 0.090 0.00212 
30 0.00275 0.080 0.00022 L Reducing this by 10 percent makes N equal to 30. 

~ .------~---.-.----
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Addressing and Operation Sequence for a Six-Point Filter 

Cycle Write Read Offset Read 
Number Count Count Address 

1 0 load - -
2 0 0 0 0 
3 0 0 3 3 
4 0 7 0 7 
5 0 7 5 4 
6 0 6 0 6 
7 0 6 7 5 
8 1 load -

9 1 1 0 1 
10 1 1 3 4 
11 1 0 0 0 
12 1 0 5 5 
13 1 7 0 7 
14 1 7 7 6 
15 2 load - -
16 2 2 0 2 
17 2 2 3 5 
18 2 1 0 1 
19 2 1 5 6 
20 2 0 0 0 
21 2 0 7 7 
22 3 load - -
23 3 3 0 3 
24 3 3 3 6 
25 3 2 0 2 
26 3 2 5 7 

The write count is used to load the read count every 
seventh cycle. Read addresses are obtained by add· 
ing the read count to the offset modulo 8. Two 
cycles are required for each add operation, with the 
least significant halves being added in the first 
cycle, the most significant in the second. The Add 
column indicates the addresses of the data sam· 
pies that are added together on each cycle. The mul· 

the new sequence (0, I, 2, 3) required to address 
the coefficients. An Am29520 must implement a 
two-cycle delay to ensure that the address is made 
available to the registered PROMs when needed. 

The arithmetic section consists of a single 8-bit 
Am29501 and a 16-bit Am29L51O. The 501 performs 
a 16-bit addition for every cycle of the 510, and oper­
ates at twice the clock rate of the. 51 O. An additional 
9-bit Am29823 register latches the least significant 
eight bits and the carry out of the add operation as 
it is performed by the 501. The 510 performs the 
multiply/accumulate operations required by the dis­
crete convolution process; the guard bits within the 
accumulator accommodate word growth. 

There are two store requirements within the 
filter-the data and the coefficients. The data re­
sides in two 2-kword, 8-bit wide Am9128 RAMs that 
cycle at the same rate as the 501. The coefficients 
reside in two 8-bit wide Am27S25 registered PROMs 
that cycle at the rate of the 510. 

Write Add Mult Output 
Address 

0 * * * ****** --
* * * ****** - --

*"''''*'''* - --- --

- 0+3 *"'*"''''* --
- 0+3 ------ ** 
- 7+4 0+3xC1 --
- 7+4 0+3xC1 ---
1 6+5 7+4x2 --
- 6+5 7 +4 xC2 --

- --- 6 + 5 x C3 --
- 1+4 6 + 5 x C3 --
- 1+4 ------ Y1 
- 0+5 1 +4xC1 --
- 0+5 1 +4 xC1 --
2 7+6 0+ 5 x C2 --
- 7+6 0+ 5 xC2 --
- -- - 7 + 6 x C3 --
- 2+5 7 + 6 x C3 --
- 2+5 ------ Y2 
- 1 + 6 2 + 5 x C1 --
- 1 +6 2+5xC1 --
3 0+7 1 + 6 x C2 --
- 0+7 1 + 6 x C2 --
- --- 0+ 7 x C3 --
- 3+6 0+7 x C3 --
- 3+6 ------ Y3 

tiplier/accumulator operates at half the speed of the 
adder, and therefore requires two cycles for each 
operation. The Mult column shows the results of 
prior add operations being multiplied by the filter 
coefficients. The filter outputs are shown in the out· 
put column. The filter coefficients are obtained by 
multiplying the impulse samples by the associated 
window coefficient. 

This filter structure accommodates up to 16 chan­
nels, each filtered by one stage of a linear phase FIR 
filter that has up to 128 points. Each point requires 
50 ns to process, yielding an effective sampling rate 
of 40 kHz for each of the 16 channels using the low­
pass filter described in the panel "Determining the 
coefficients for a low-pass filter." There is sufficient 
capacity within the PROMs for 32 different sets of 
filter coefficients, allowing a different filter to pro­
cess each channel. Outputs may be returned as inputs 
to a different channel, allowing steeper rolloffs by 
cascading filters, or more complicated responses by 
cascading low- and high-pass filters. 

This filter structure can be configured to yield a 
filter bank capable of resolving up to 32 spectral 
components from an input signal sampled at 20 kHz 
(using filters of similar complexity to the low-pass 
one in the panel). This type of filter bank provides 
a stable platform for automatic speech-recognition 
algorithms. If 20 channels are dedicated to resolving 
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spectral components, 37 percent of the available 
processing bandwidth remains for squaring and in­
tegrating the outputs from each filter. A low-pass 
filter performs integration, and threshold detec­
tion may be performed with the Am29501. 

The hardware described can perform all of the 
processing required to generate the "intensity" spec­
trum of the input signal, which is the major process­
ing requirement of a speech-recognition system. 

One of the advantages of a filter bank implemen­
tation is that the signal spectrum may be broken into 
completely arbitrary divisions (20 in this example). 
An FFT implementation, on the other hand, would 
require a linear scale, while decimating filter tech­
niques would require divisions linked by integer 
ratios. A useful scale not usually available has a 
logarithmic spacing of center frequencies and band­
widths. This logarithmic spacing may be specified 
at the design stage. The band of interest ranges from 
400 Hz to 8 kHz, which may be satisfactorily sam­
pled at a rate of 20 kHz. Each of these center 
frequencies must be entered into the band-pass filter­
impulse response equation, with the associated band­
width, in order to generate the filter coefficients. 

The design of a band-pass filter using windowed­
impulse techniques follows the same steps as the low-

Determining the coefficients 
for a band-pass filter 

The coefficients for a band·pass filter are derived 
from the following variation of the low-pass filter­
impulse response formula: 

s = n 

sin [7r X B x (n - (N + l)/2)/Fs] x 2 x cos 
[2x 7rXPe x(n- N + l)/2/Fs] 

7r X (n - (N + 1)/2) 

where B is the 3d'B bandwidth, Fe is the center fre­
quency, Fs is the sampling frequency, N is the 
number of coefficients, and n is the coefficient 
index. The same Hamming window formula used 
for the low-pass filter may be used here. 

Specifying each filter to have the same number 
of coefficients simplifies the overall control of the 
filter bank. Up to 32 coefficients may be used for 
each filter without exceeding the available process­
ing bandwidth; a reasonable design specification 
would set N equal to 32, with Fs at 20 kHz. Insert­
ing these values in the impulse response formula 
yields: 

sin [7r x B x (n - 16.5)/20000] x 2 x cos 
[7r X Fe X (n - 16.5)/10000] 

Sn = ---------------
7r X (n - 16.5) 

Substituting the 20 pairs of values for Fe and B 
into this formula will, after multiplying by the ap~ 
propriate window term, yield the required filter 
coefficients. These coefficients must then be con­
verted into a fractional two's complement format, 
and programmed into the PROMs. 

---~ -------

pass filter design, with two differences: the number 
of coefficients roughly doubles because there are two 
distinct stop bands within the band-pass filter re­
sponse, and the coefficients are computed using a 
modified formula. 

Because a single input channel will pass through 
20 different band-pass filters, the same allocation 
of 20 channels is made here as in the low-pass filter, 
but there is a slight difference in the control sequence. 
Previously, a new sample was written·into the cyclic 
buffer each time a processed point came out of the 
filter. But, for this application, a new sample is writ­
ten into the cyclic buffer for every 20 output points 
from the filter. This means modifying the controller 
microcode so that the write pointer increments are 
inhibited until 20 outputs have been calculated. 
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CHAPTER 6 
PRODUCT SPECIFICATIONS 



Am29501A 
Multi-Port Pipelined Processor (Byte-Slice TM) 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Expandable Byte-Slice ™ Register-ALU 
- Speed improved version of the Am29501 

• Eight instruction ALU 
- Four arithmetic operations 
- Four logic operations 
- Force/Inhibit carry modes 
- Flexible expansion - has carry and P / G 

• Three I/O ports for maximum system interconnect 
flexibility 

• Ten internal data paths 
- Highly parallel architectures 
- Multiple simultaneous data manipulations 

• Pipelining register file has six 8-bit registers 
- Multilevel pipelining 
- Multiple register-to-register moves 

• Completely microprogrammable 
- No instruction encoding 
- All operation combinations available 

GENERAL DESCRIPTION 

The Am29501A is an expandable Byte-Slice™ register­
ALU designed to bring maximum speed to array processor 
and digital signal processor systems. It provides a flexible 
processor building block for implementing highly pipelined, 
highly parallel architectures where speed is achieved by a 
combination of optimized integrated circuit technology 
(IMOX ™ process and internal ECL circuitry) and custom­
ized system architecture. I/O port flexibility and multiple 
concurrent data moves make it possible to construct 
processors capable of very high throughput. Parallel pro­
cessors are especially efficient for array/vector operations 
or signal processing algorithms requiring complex number 
arithmetic (e.g. FFT, convolution, correlation, etc.). 

The Am29501A's Pipeline Register File provides data 
storage and pipelining flexibility. Any combination of regis­
ter instructions, ALU instructions, and I/O instructions can 
be microprogrammed to occur in the same cycle. This 
allows overlap of external multiplication, ALU operations, 
and memory I/O. 

Three I/O ports support a wide variety of parallel, pipelined 
architectures by providing separate I/O ports for the 
multiplier and the memory data bus. Either of two bidirec­
tionall/O ports, 010 and MID, can interface to the data bus 
or multiplier Y -input port. A separate MI port connects to 
the multiplier output port. 

BLOCK DIAGRAM 

DO _ 

.... 'VOISj 
• , •• IMG) : c:otfTROl. . 

...... IAW) 

.... 

~<J--------------~~~~---, 

~<J--------------~~----~ 

80003060 

Byte-Slice is a trademarl< of Advanced Micro 0eYices, Inc. 
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• High-Speed 1.6 ... CMOS Process 

Am29C509 
12 x 12 CMOS Multiplier Accumulator 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Output Register Preload 
The Am29C509, at 50 ns maximum clock rate, supports 
real-time process 

The predetermined value can be loaded into the output 
register 

• 27-bit Product Accumulation Result 
Provides 24-bit product plus 3-bit extended product 

• Accumulator Function 
The accumulator value may be altered by LOAD, ADD 
and SUBTRACT instruction 

• Round Control 
The most significant 12 bits of the product rounded to 
the value nearest to the full 24-bit product 

• Accept 2's Complement or Unsigned Inputs 

GENERAL DESCRIPTION 

The Am29C509 is a high-speed 12-bit x 12-bit multiplier/ 
accumulator (MAC). The X and Y input registers accept 12-
bit inputs in two's complement or unSigned magnitude for­
mal. A third register stores the Two's Complement (TC) 
and Round (RND), Accumulate (ACC), and Subtraction 
SUB/ADD control bits. This register is clocked whenever 
the X or Y input registers are clOCked. 

The 27-bit accumulator/output register contains the full 24-
bit multiplier output which is sign extended or zero-filled 
based on the TC control bil. The accumulator can also be 
preloaded from an external source through the bidirectional 
P-port. The operation of the accumulator is controlled by 
the signals ACC, SUB/ADD, and PREL (Preload). Each of 
the input registers and output register has independent 
clocks. 

BLOCK DIAGRAM 

TC RND 

CLKX ---,-------; 

CLKy --t-f--------t--t--+---' 

ACC ------, 

SUBIADD ----, 

LEX/OEx ---.., 

LEN/OEM 

LEIlOEL 

PREL 

CLKp 

MULTIPLIER 
ARRAY 

RELATED PRODUCTS 

Part No. Description 

Am29526/527 High speed sine function generator 

Am29528/529 High speed cosine function generator 

Am29540 Programmable FFT address sequencer 

Am29520N521A Multilevel pipeline registers 

Am29524/525 Multilevel pipeline registers 
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Am29510/L510 
16 x 16 Multiplier Accumulator 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Uses two's complement or unsigned inputs and outputs • IMOX'" processing 
• Round control - ECl internal circuitry for speed 
• Output register preload - TTL I/O, single 5V supply 

• Fast • 35-bit product accumulator result 
- 32-bit product - High speed version multiply accumulate time 80ns 
- 3-bit extended product - low power version multiply accumulate time 110ns 

GENERAL DESCRIPTION 

The Am29510 is a high-speed 16 x 16-bit multiplier/ 
accumulator (MAC). The X and Y input registers accept 
16-bit inputs in two's complement or unsigned magnitude 
format. A third register stores the Two's Complement (TC) 
and Round (RND) control bits. This register is clocked 
whenever the X or Y input registers are clocked. 

preloaded from an external source through the bidirectional 
P port. The operation of the accumulator is controlled by the 
signals ACC (Accumulator), SUB/ADD (Subtraction/ 
Addition), and PREl (Preload). Each of the input registers 
and output register has independent clocks. 

The 35-bit accumulator/output register contains the full 32-
bit multiplier output which is sign extended or zero-filled 
based on the TC control bit. The accumulator can also be 

The Am29l510 is a low-power version of the Am29510. The 
Am29l510 consumes only one-half the power of its standard 
power counterpart while maintaining nearly two-thirds the 
speed. 

BLOCK DIAGRAM 

CLKX ---.,---------1 

CLKy --.,-t---------+--+--t--' 

Ace ------, 
SUB/ADD ------, 

LEx/OEx ----, 

LEM/OEM 

LEl/OEL 

PREL 

CLKp 

LE 6E 

Part No. 

Am29526/527 

Am29528/529 

Am29540 

Am29520/21 

IMOX is a trademark of Advanced Micro Devices, Inc. 

MULTIPLIER 
ARRAY 

RELATED PRODUCTS 

Description 

High-speed Sine function 
generator 
High-speed Cosine function 
generator 
Programmable FFT address 
sequencer 
Multilevel pipeli~e registers 
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Am29~~,t~!fJZs Fam i Iy 
ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• High-Speed 1-6 ... CMOS Process 
Supports 70 ns clocked multiply with 0.5W power 
dissipation. 

• Full Product Multiplexed at Output 
MSP and LSP routed to output port via multiplexer. 

• Two's Complement, Unsigned or Mixed Operands 

• Am29C516: Pin-fo,,"Pln Compatible with Am29516 
and MPY16HJ 

• Am29C517: Pin-fo,,"Pln Compatible with Am29517. 
Has Single Clock Input with Register Enables 
(Useful for Microprogrammed Systems) 

GENERAL DESCRIPTION 

The Am29C516 and Am29C517 are high-speed parallel 16 
x 16-bit multipliers utilizing internal CMOS logic to generate 
a 32-bit product. Two 17-bit input registers are provided for 
the X and Y operands and their associated mode controls 
XM and YM. These mode controls are used to specify each 
operand as either two's complement or unsigned numbers. 
When one operand is two's complement and the other is 
unsigned, the result is two's complement. 

At the output of the multiplier array, a format adjust control 
(FA) allows the user to select either a full 32-bit product or 
a left-shifted 31-bit product suitable for two's complement 
only. 

Two 16-bit output registers are provided to hold the most 
and least significant halves of the product (MSP and LSP) 
as defined by FA. For asynchronous output, these registers 
may be made transparent by taking the feed through con­
trol (FT) High. A round control (RND) allows the rounding 
of the MSP; this control is registered, and is entered when­
ever either input register is clocked. 

The two halves of the product may be routed to a 16-bit 
3-state output port (P) via a multiplexer, and in addition, the 
LSP is connected to the Y-input port through a separate 
three-state buffer. 

The Am29C516 X, Y, MSP and LSP registers have inde­
pendent clocks (CLKX, CLKY, CLKM, CLKL). The output 
multiplexer control (MSPSEL) uses a pin which is a supply 
ground in the TRW MPYI6HJ. When this control is LOW, 
the function is that of the MPY16HJ, thus allowing full 
compatibility. 

The Am29C517 differs in that it has a !!!:!9.le clock input 
(CLK) and three register enables (ENX, ENY, ENP) for the 
two input registers and the entire product, respectively. 
This facilitates the use of the part in microprogrammed sys­
tems. In both parts data is entered into the registers on the 
positive edge of the clock. 

Am29C516 BLOCK DIAGRAMS Am29C517 

RELATED PRODUCTS 

Part No. Description 

Am29501/A Multiport pipelined processor 

Am29526/27 Sine function generator 

Am29528/29 Cosine function generator 

Am29520A/21 A Pipeline register 

Am29540 Address generator 
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Am29520 • Am29521 
Multilevel Pipeline Registers 

DISTINCTIVE CHARACTERISTICS 

• Four 8-bit high speed registers 
• Dual two-level or single four-level push-only stack 

operation 
• All registers available at multiplexed output 

• Hold, transfer and load instructions 
• Provides temporary address or data storage 
• 24-pin 0.3" package 

GENERAL DESCRIPTION 

The Am29520 and Am29521 each contain four 8-bit positive 
edge-triggered registers, These may be operated as a dual 
2-level pipeline or as a single 4-level pipeline. A single 8-bit 
input is provided and all four registers are available at the 
8-bit, 3-state output. 

The Am29520 and Am29521 differ only in the way data is 
loaded into and between the registers in dual 2-level opera­
tion. This difference is illustrated in Figure 1. In the Am29520 

Part No. 

Am29540 
Am29116 
Am2925 
Am29517 
Am29510 
Am610S 

Am912S-70 
Am21L47-55 

RELATED PRODUCTS 

Description 

FFT Address Sequencer 
16-bit Bipolar Microprocessor 
System Clock Generator and Driver 
16 x 16-bit High Speed Multiplier 
16 x 16-bit Multiply Accumulator 
S-bit Microprocessor Compatible 
AI D Converter 
2K x S Static RAM 
4K x 1 Static RAM 

Chip-Pak is a trademark 01 Advanced Micro Devices, Inc. 

when data is entered into the first level (1=2 or 1= 1) the 
existing data in the first level is moved to the second level. In 
the Am29521 these instructions simply cause the data in the 
first level to be overwritten. Transfer of data to the second 
level is achieved using the 4-level shift instruction (I =0). This 
transfer also causes the first level to change. In either part 
1=3 is a NO-OP. 

LOGIC DIAGRAM 

---"'l.---'--_.l.ol 
INSTRUCTION 

10.11 
I MUX I 

I 
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Am29524/ Am29525 
Dual 7-/S-Deep Pipeline Registers 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Provides temporary address or data storage 
• Am29524 - Dual 7 -deep or single 14-de9p (with feed­

through and 0) registers 
• Am29525 - Dual 8-deep or single 16-deep registers 
• Hold, or shift and load instructions 

• High-speed EeL-internal technology, TIL-compatible 
1/0, packaged in 28-pin 0.4-inch (400 Mil) sidebrazed 
DIPs 

• All registers available at three-state output 

GENERAL DESCRIPTION 

The Am295241 Am29525 are 8-bit wide, 14- and 16-word 
deep pipeline registers. The registers are organized as two 
7- or 8-byte shift registers. By micrOinstruction, data may be 
entered into either shift register. 

In the Am29524, the shift registers are 7 deep. All fourteen 
registers are available at the output, as well as the input 
data fed directly to the output, or an all-zero byte. In the 

Am29525, the shift registers are 8 deep and any of the 
sixteen registers may be output. In both devices, the two 
shift-register stacks may be cascaded to form a single 14-
or 16-byte-long pipeline register. 

A Single clock is provided and operation of the shift 
registers is under microprogram control. The device has 
three-state outputs. 

BLOCK DIAGRAMS 
Am29524 Am29525 

B0006030 Boo0602O 
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Am29526 • Am29527 
Am29528 • Am29529 

High Speed Sine, Cosine Generators 

DISTINCTIVE CHARACTERISTICS 

• Provides values for sine/cosine functions in 7T/2048 
increments 

• Outputs are 16-bit two's complement fractions 
• Fast generation time of 50ns max Com'l 
• S/LS compatible 
• Three-state outputs 
• IMOX'· processing 

RELATED PRODUCTS 

Part No. Description 

Am29516/17 
Am29510 
Am29540 
Am29825 

16 x 16-Bit High Speed Multipliers 
16 x 16-Bit Multiply Accumulator 
FFT Address Sequencer 
High Performance 8-Bit Register 

CONNECTION DIAGRAMS - Top Views 

DIP 

A, Vee 

A. A, 

A, A, 

A. A" 

A, E, 

A, E, 

A, EJ 

A, " 
" " 
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GND " 

Chip-Pak™ 
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A, A, 

A. A" 

A, Ne 

A, E, 

A, E, 

A, EJ 

Ne Ne 

" " 
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ABL~OO6 

ABL"OO7 

IMOX and Chip-Pak are trademarks of Advanced Micro Devices, Inc. 

FUNCTIONAL DESCRIPTION 

The Am29526/27 and Am29528/29 provide high speed 
generation of sine and cosine functions over the range 
o ,., II < 7T in increments of 7T/2048. II is determined by an 
11-bit input word. Each device provides an 8-bit output and 
two are used to give the full 16-bit value. The Am29526 
and Am29527 generate the MS and LS by1es respectively 
for the sine function. Similarly, the Am29528 and Am29529 
generate the cosine functions. 

The outputs are fractional two's complement numbers with 
the radix point located immediately to the right of the sign 
bit (in between the bits weighted -2° and 2-1). As this 
format does not allow for the representation of + 1 the 
functions generated are -sinll and -cosll. In this way the 
output values are restricted to the range -1 ,., f(lI) < + 1 
which is representable. The outputs are three-state with 
one active Low enable and two active High enable. 

While providing general purpose sine and cosine function 
capability, the Am29526/27/28/29 satisfy the requirements 
of the Am29540 FFT Address Sequencer. 

E, 

E. 

E, 
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Am29540 
Programmable FFT Address Sequencer 

DISTINCTIVE CHARACTERISTICS 

• Generates data and coefficient addresses 
• Programmable transform length 2 to 65,536 points 
• Radix-2 or Radix-4 
• Decimation in frequency (DIF) or decimation in time (DIT) 

FFT algorithms supported 

• In-place or non-in-place transformation 
• 40-pin DIP package 
• 5 volt single supply 

GENERAL DESCRIPTION 

The Am29540 Fast Fourier Transform Address Sequencer 
generates all the data (RAM) and coefficient (ROM) 
addresses necessary to perform the repetitive butterfly 
operations of the FFT. Decimation in time and decimation 
in frequency algorithms are supported (control DIT/DIF) 
in radix-2 or radix-4 (RADIX 4/2). A radix-2 real valued 
input (AVI) transform is also supported. For radix-2 operation 
the transform length is programmable in powers of 2 from 2 
to 65,536 points. In radix-4 the range is 4 to 65,536 in 
powers of 4. 

Address sequences can be selected to be compatible with 
data which mayor may not have been pre-scrambled ("bit­
reversed"). " the data has been pre-scrambled the control 
PSD must be LOW to select the correct sequence. "the data 
is not pre-scrambled and an in-place transform is per­
formed, the output data will necessarily be in bit-reversed 
order. " this is not desirable, alternate addresses are avail­
able for a non-in-place, non-bit-reversing algorithm. 

The butterfly counter operates on the positive clock edge and 
responds to four instructions. COUNT causes the counter to 
increment to the next butterfly. RESET causes the counter to 
initialize for the specified transform length. RESET/LOAD 
causes the counter to initialize and a data address offset to 
be loaded into the part via the bi-directional 3-state AD­
DRESS port. This offset is effectively OR-ed onto the higher 
significance bits of the address which are unused for the 
selected transform length. A HOLD instruction is also pro­
vided. Three status lines are provided. EVEN/ODD (KNZ/ 
KZ) controls the alternation of read and write memories for 
non-in-place transforms and determines the outterfly struc­
ture in the RVI transform. The flag has the function KNZ/KZ 
when RVI data addi-esses are selected (AS = 12 to 15). 
Iteration complete (IT CaMP) flags the bottom of a "column" 
of butterflies and is used in conjunction with block floating 
point schemes. FFT CaMP identifies the last butterfly of the 
transform. 
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Am29526/27/28/29 - High-speed, sine/cosine generators 
Am29825 - High-performance, 8-bit register 

136 

ITCOMP. 

FFT COMPo 

EVEN/ODD (KNZ/KZ) 

035670·2 

Order # 03567D 



Am29323 
32-Bit Parallel Multiplier 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• 32-Bit Three-Bus Architecture 
- The device has two 32-bit input ports and one 32-bit 

output port with maximum multiply time of 80ns 
• Single Clock with Register Enables 

- The Am29323 is controlled by one clock with 
individual register enables 

• Supports Muftlprecision Multiplication 
- The device has dual 32-bit registers on each data 

input port to perform multi precision multiplication 

• Registers can be made transparent 
- I nput and output registers can be made transparent 

independently to eliminate unwanted pipeline delay 
• Supports Two's Complement, Unsigned or Mixed 

Numbers 
• Data Integrity Through Master-Slave Mode and Pari­

ty Check/Generate 
- Parity check/generate catches inter-device 

connection errors and master/slave mode provides 
complete function check 

GENERAL DESCRIPTION 

The Am29323 is a high-speed 32 x 32-Bit Parallel Multipli­
er with 67 -Bit Accumulator. The part is designed to maxi­
mize system level performance by providing a 32-bit three 
bus architecture and a single clock with register enables. 

The Am29323 further enhances the system throughput by 
providing individual register feedthrough controls, byte 
parity checking on both input ports and generation on the 
output port, and dual input registers on each data input b.us 
to support multi precision multiplication. The Am29323 can 
manage a wide variety of data types, including two's 

complement, unsigned, or mixed mode input formats. A 64 
x 64-bit multiplication can be performed in seven clock 
cycles, including input and output. Additional features 
provided are a format adjust control allowing for standard 
output or left shifted output suitable for fractional two's 
complement arithmetic, rounding, and master/slave opera­
tion. 

The Am29323 is designed with the IMOX· process, which 
allows internal Eel circuits with TTL-compatible I/O. The 
device is housed in a 168-lead pin-grid-array package. 

SIMPLIFIED BLOCK DIAGRAM 
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Am29325 
32-Bit Floating Point Processor 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Single VLSI device performs high-speed floating-point 
arithmetic 
- Floating-point addition, subtraction and multiplication 

in a single clock cycle 
- Internal architecture supports sum-of-products, 

Newton-Raphson division 
• 32-bit, 3-bus flow-through architecture 

- Programmable I/O allows interface to 32- and 16-bit 
systems 

• IEEE and DEC formats 
- Performs conversions between formats 
- Performs integer - floating point conversions 

• Six flags indicate operation status 
• Register enables eliminate clock skew 
• Input and output registers can be made transparent 

independently 

GENERAL DESCRIPTION 

The Am29325 is a high-speed floating-point processor unit. 
It performs 32-bit single-precision floating-point addition, 
subtraction, and multiplication operations in a single LSI 
integrated circuit, using the format specified by the proposed 
IEEE floating-point standard P754. The DEC single­
precision floating-point format is also supported. Operations 
for conversion between 32-bit integer format and floating­
point format are available, as are operations for converting 
between the IEEE and DEC floating-point formats. Any op­
eration can be performed in a single clock cycle. Six flags -
invalid operation, inexact result, zero, not-a-number, over­
flow, and underflow - monitor the status of operations. 

The Am29325 has a 3-bus, 32-bit architecture, with two 
input buses and one output bus. This configuration provides 

high I/O bandwidth, allows access to all buses and affords a 
high degree of flexibility when connecting this device in a 
system. All buses are registered, with each register having a 
clock enable. Input and output registers may be made trans­
parent independently. Two other I/O configurations, a 32-bit, 
2-bus architecture and a 16-bit, 3-bus architecture, are 
user-selectable, easing interface with a wide variety of sys­
tems. Thirty-two-bit internal feedforward data paths support 
accumulation operations, including sum-of-products and 
Newton-Raphson division. 

Fabricated with the high-speed IMOX'· bipolar process, the 
Am29325 is powered by a Single 5-volt supply. The device is 
housed in a 144-pin pin-grid-array package. 

Am29300 FAMILY HIGH PERFORMANCE SYSTEM BLOCK DIAGRAM 
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• Am29323 - 32 x 32 Parallel Multiplier 
• Am29332 - 32-Bit ALU 
• Am29331 - 16-Bit Sequencer 

IMOX is a trademark of Advanced Micro Devices, Inc. 
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RELATED PRODUCTS 

• Am29334 - 64 x 18 Four-Port Dual-Access 
Register File 
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Am29331 
16-Bit Microprogram Sequencer 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• 16-Bits Address Up to 64K Words 

Supports 80-90ns microcycle time for a 32-bit high 
performance system when used with the other members 
of the Am29300 Family. 

• Real Time Interrupt Support 

Micro-TRAP and Interrupts are handled transparently at 
any microinstruction boundary. 

• Built-In Conditional Test Logic 

Generates inequality evaluation branch conditions from 
four AlU status bits. Has eight external tests plus a 
polarity input. 

• Break-Point Logic 

Built-in acjress comparator allows bre.ak-points in the 
microcode for debugging and statistics collection. 

• Master/Slave Error Checking 

Two sequencers can operate in parallel as a Master and a 
Slave. The Slave generates a fault flag for unequal results. 

• 33-Level Stack 

Provides support for interrupts, loops and subroutine 
nesting. It can be accessed through the O-bus to support 
diagnostics. 

GENERAL DESCRIPTION 

The Am29331 is a 16-bit wide high-speed single chip se­
quencer designed to control the execution sequence of mi­
croinstruction stored in the microprogram memory. The in­
struction set is designed to resemble high-level language 
constructs, thereby bringing high-level language program­
ming to the micro level. 

The Am29331 is interruptible at any microinstruction bound­
ary to support real-time interrupts. Interrupts are handled 
transparently to the microprogram mer as an unexpected 
procedure call. Traps are also handled transparently at any 
microinstruction boundary. This feature allows re-execution 
of a prior microinstruction. Two separate buses are provided 
to bring a branch address directly into the chip from two 
sources to avoid slow turn-on and turn-off times for different 

sources connected to the data input bus. Four sets of multi­
way inputs are also provided to avoid slow turn-on and 
turn-off times for different branch address sources. This 
feature allows implementation of table look-up or use of 
external conditions as part of a branch address. The thirty­
three deep stack provides the ability to support interrupts, 
loops and subroutine nesting. The stack can be read through 
the O-bus to support diagnostics or to implement multi­
tasking at the micro-architecture level. The master/slave 
mode provides a compiete function check capability for 
the device. 

The Am29331 is designed with the IMOX'" process which 
allows internal Eel circuits with TTL-compatible 1/0. It is 
housed in a 120-lead pin-grid-array package. 

SIMPLIFIED BLOCK DIAGRAM 
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Am29332 
32-Bit Arithmetic Logic Unit 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Single Chip, 32-81t ALU 
Supports 60-90ns microcycle time for the 32-bit 
data path. It is a combinatorial ALU with equal cy­
cle time for all instructions. 

• Flow-through Architecture 
A combinatorial ALU with two input data ports and 
one output data port allows implementation of either 
parallel or pipelined architectures. 

• 64-81t In, 32-81t Out Funnel Shifter 
This unique functional block allows n-bit shift-up, 
shift-down, 32-bit barrel shift or 32-bit field extract. 

• Supports All Data Types 
It supports one-, two-, three- and four-byte data for 
all operations and variable-length fields for logical 
operations. 

• Multiply and Divide Support 
Built-in hardware to support two-bit-at-a-time modi­
fied Booth's algorithm and one-bit-at-a-time division 
algorithm. 

• Extensive Error Checking 
Parity check and generate provides data transmis­
sion check and master/slave mode provides com­
plete function checking. 

GENERAL DESCRIPTION 

The Am29332 is a 32-bit wide non-cascadable Arithmetic 
Logic Unit (ALU) with integration of functions that normally 
don't cascade, such as barrel shifters, priority encoders 
and mask generators. Two input data ports and one output 
data port provide flow-through architecture and allow the 
designer to implement his/her architecture with any degree 
of pipelining and no built-in penalties for branching. Also, 
the simplicity of a three-bus ALU allows easy implementa­
tion of parallel or reconfigurable architectures. The register 
file is off-chip to allow unlimited expansion and regular 
addressability. 

The Am29332 supports one-, two-, three- and four-byte 
data for arithmetic and logic operations. It also supports 

multiprecision arithmetic and shift operations. For logical 
operations, it can support variable-length fields up to 32 
bits. When fewer than four bytes are selected, unselected 
bits are passed to the destination without modification. The 
device also supports two-bit-at-a-time modified Booth's 
algorithm for high-speed multiplication and one-bit-at-a­
time division. Both signed and unsigned integers for all byte 
aligned data types mentioned above are supported. 

The Am29332 is designed to support 60-90 ns microcycle 
time. The device is packaged in a 166-lead pin-grid-array 
package. 

SIMPLIFIED BLOCK DIAGRAM 
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Am29334 
Four-Port, Dual-Access Register File 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Fast 
With an access time of 20ns, the Am29334 sup­
ports 80-90ns microcycle time when used with the 
Am29300 Family for 32-bit systems. 

• 64 x 18 Bits Wide Register File 
The Am29334 is a high-performance, high-speed, 
dual-access RAM with two READ ports and two 
WRITE ports. 

• Caseadable 
The Am29334 is cascadable to support either wider 
word widths, deeper register files, or both. 

• Simplified Timing Control 
Control for write enable timing and for on-chip 
read/write multiplexer are derived from a single­
phase clock input. 

• Byte Parity Storage 
Width of 18 bits facilitates byte parity storage for 
each port and provides consistency with the ' 
Am29332 32-bit ALU. 

• Byte Write Capability 
Individual byte-write enables allows byte or full word 
write. 

GENERAL DESCRIPTION 

The Am29334 is a 64-word deep and 18-bit wide dual­
access register file designed to support other members of 
the Am29300 Family by providing high-speed storage. It 
has two write and two read ports for data and four 6-bit 
address ports. Two address ports are associated with each 
pair of read and write data ports, one to read data and the 
other to write. The device is capable of performing two 
reads and two writes in one cycle. The 18-bit wide register 

file allows storage of byte parity to support parity check and 
generate in the Am29332 32-bit ALU. Independent control 
for each read and write data port allows the Am29334 to be 
used as a high-speed shared memory or as a mailbox for a 
multiprocessor system. The device is designed with an 
access time of 20ns. It is housed in a 120 lead-pin-grid­
array package. 
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Am2910A 
Microprogram Controller 

DISTINCTIVE CHARACTERISTICS 

• Twelve Bite Wide 
Addresses up to 4096 words of microcode with one 
chip. All internal elements are a full 12 bits wide. 

• Internal Loop Counter 
Pre-settable 12-bit down-counter for repeating instruc­
tions and counting loop iterations. 

• Four Add ..... Sources 
Microprogram Address may be selected from micropro­
gram counter, branch address bus, 9-level push/pop 
stack, or internal holding register. 

• Sixteen Powerful Microinstructions 
Executes 16 sequence control instructions, most of 
which are conditional on external condition input, stat. 
of internal loop counter, or both. 

• Output Ensble COntrofa for Three Branch Ad­
dre .. Sourcu 
Built-in decodsr function to enable external devices onto 
branch address bus. Eliminates external decodsr. 

• Feat 
The Am2910A supports 100ns cycle times and is 25-
30% faster than the Am2910. 

GENERAL DESCRIPTION 

The Am2910A Microprogram controller is an address 
sequencer intended for controlling the sequence of execu­
tion of microinstructions stored in microprogram mamory. 
Besides the capability of sequential access, it provides 
conditional branching to any microinstruction within its 
4096-microword range. A last-in, first-out stack provides 
microsubroutlne return linkage and looping capability; there 
are nine levels of nesting of microsubroutines. Microinstruc­
tion loop count control is provided with a count capacity of 
4096. 

During each microinstruction, the microprogram controller 
provides a 12-bit address from one of four sources: 1) the 

microprogram address register ("PC), which usually con­
tains an address one greater than the previous address; 2) 
an external (direct) input (D); 3) a register/counter (R) 
retaining data loaded during a previous microinstruction; or 
4) a nine-deep last-in, first-out stack (F). 

The Am2910A is a speed improved plug-in replacement of 
the Am2910 featuring AMO's ion-implanted micro-oxide 
(IMOX) processing and offering 25 - 30% speed improve­
ment. The Am2910A also features a nine-word deep stack 
versus the five-deep stack of the Am2910. 

BLOCK DIAGRAM 
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Am29C10A 
CMOS Microprogram Controller 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Low power 
The CMOS Am29C10A supports 125 ns cycle times at 
20% the power of the equivalent bipolar Am2910A. 

• Twelve bits wide 
Addresses up to 4096 words of microcode with one 
chip. All internal elements are a full 12 bits wide. 

• Internal loop counter 
Pre-setlable 12-bit down-counter for repeating instruc­
tions and counting loop iterations. 

• Four address sources 
Microprogram address may be selected from micropro­
gram counter, branch address bus, 9-level push/pop 
stack, or internal holding register. 

• Sixteen powerful microinstructions 
Executes 16 sequence control instructions, most of 
which are conditional on external condition input, state 
of internal loop counter, or both. 

• Output Enable controls three branch-address 
sources 
Built-in decoder function to enable external devices onto 
branch address bus. Eliminates external decoder. 

GENERAL DESCRIPTION 

The Am29C10A Microprogram Controller is an address 
sequencer intended for controlling the sequence of execu­
tion of microinstructions stored in microprogram memory. 
Besides the capability of sequential access, it provides 
conditional branching to any microinstruction within its 
4096-microword range. A last-in, first-out stack provides 
microsubroutine return linkage and looping capability; there 
are nine levels of nesting of microsubroutines. Microinstruc­
tion joop count control is provided with a count capacity of 
4096. 

BLOCK DIAGRAM 
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Durirog each microinstruction, the Microprogram Controller 
provides a 12-bit address from one of four sources: 1) the 
Microprogram Address Counter/Register (IlPG), which usu­
ally contains an address one greater than the previous 
address; 2) an external (Direct) input (D); 3) a Register/ 
counter (R) retaining data loaded during a previous microin­
struction; or 4) a nine-deep last-in, first-out stack/File (F). 

The Am29C10A is a CMOS plug-in replacement of the 
Am2910A. The Am29C10A-10 is a 10 MHz version and the 
Am29C10A-20 is a 20 MHz version. 

RELATED PRODUCTS 

Part No. Description 

Am29C101 16-Bit CMOS Microprocessor Slice 

Am2914 Vectored Interrupt Controller 

Am2918 Pipeline Register 

Am2922 Condition Code MUX 

Am25LS377 Status Register 

Am27S35 Registered PROM 

Am29818 SSR Diagnostics/Pipeline Register 
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• Expandable 

Am29112 
A High-Performance 8-Bit Slice Microprogram Sequencer 

ADVANCED INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Interruptible at the microprogram level 
8-bit Slice, caseadable up to 16-bits Two kinds of interrupts: maskable and unmaskable. 

• Deep stack 
A 33 deep on-chip stack is used for subroutine link­
age, interrupt handling and loop control. 

• Hold feature 
A hold pin facilitates multiple sequencer implementa­
tions. 

• Powerful loop control 
When caseaded, two counters can act as a single 
16-bit counter or two independent 8-bit counters. 

• Powerful addressing modes 
Features direct, multiway, multiway relative and pro­
gram counter relative addressing. 

GENERAL DESCRIPTION 

The Am29112 is a high performance interruptible micropro­
gram sequencer intended for use in very high speed 
microprogrammed machines and optimized for the new 
state-of-the-art ALU's and other processing components. 

Interrupts are accepted at the microcycle level and ser­
viced in a manner completely transparent to the interrupted 
microcode. 

The Am29112 is designed to operate in 10MHz micropro­
grammed systems. 

APPLICATION NOTES REFERENCE 
- Microprogrammed CPU using Am29116 
- An intelligent fast disk controller 

It has an instruction set featuring relative and multiway 
branching, a rich variety of looping constructs, and provi­
sion for loading and unloading the on-chip stack. 

- Am29116 architecture speeds pixel manipulation in 
interactive bit-mapped graphics 

BLOCK DIAGRAM 
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Am29C116 
16-Bit CMOS Microprocessor 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Very Low Power 
The CMOS Am29C116 supports 125-ns microcycle 
times and requires less than 1/4 the power of the 
bipolar Am29116. 

• Pin-Compatible and Functionally Equivalent to the 
Am29116 
The architecture, instruction set, and pin-out are 
completely identical to the bipolar Am29116. 

• Optimized for High-Performance Contronera 
The architecture is optimized for controllers provid­
ing an excellent solution for applications requiring 
bit-manipulation power. 

• Powerful Field Insertion/Extraction and 
Bit-Manipulation Instructions 
Rotate-and-Merge, Rotate-andoCompare and bit­
manipulation instructions provided for complex bit 
control. 

• Immediate Instruction Capability 
May be used for storing constants in microcode or 
for configuring a second data port. 

• 16-BIt Barrel Shifter 
• 32-Worklng Reglatera 

GENERAL DESCRIPTION 

The Am29C116 is a microprogrammable 16-bit CMOS 
microprocessor whose architecture and instruction set is 
optimized for high-performance peripheral controllers, like 
graphics controllers, disk controllers, communications con­
trollers, front-end concentrators and modems. The device 
also performs well in microprogrammed processor applica-

tions, especially when combined with the Am29C517, 
16 x 16 Multiplier. In addition to its complete arithmetic and 
logic instruction set, the Am29C116 instruction set contains 
functions particularly useful in controller applications; bit 
set, bit reset, bit test, rotate-and-merge, rotate-and-com­
pare, and cyclic-redundancy-check (CRC) generation. 
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Am29PL141 
Fuse Programmable Controller (FPC) 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Implements complex fuse programmable state ma­
chines 

• 64 words of 32-bit-wide microprogram memory 
• Serial Shadow Register (SSR TM) diagnostics on chip 

(programmable option) 
• 20 MHz clock rate, 28-pin DIP 

• 29 high-level microinstructions 
- Conditional branching 
- Conditional looping 
- Conditional subroutine call 
- Multiway branch 

• 16 outputs, 7 conditional inputs 

GENERAL DESCRIPTION 

The Am29Pl141 is a single-chip Fuse Programmable 
Controller (FPC) which allows implementation of complex 
state machines and controllers by programming the appro­
priate sequence of microinstructions. A repertoire of jumps, 
lOOps, and subroutine calls, which can be conditionally 
executed based on the test inputs, provides the designer 
with powerful control flow primitives. 

The Am29PL 141 FPC also allows distribution of intelligent 
control throughout the system. It off-loads the central 
controller by distributing FPCs as the control for various 

self-contained functional units, such as register file/ ALU, 
I/O, interrupt, diagnostic, and bus control units. 

A microprogram address sequencer is the heart of the FPC. 
It provides the microprogram address to an intemal 64-
word by 32-bit PROM. The fuse programming algorithm is 
almost identical to that used for AMD's Programmable 
Array Logic family. 

As an option, the Am29PL 141 may be programmed to have 
on chip SSR diagnostics capability. Microinstructions can 
be serially shifted in, executed, and the results shifted out 
to facilitate system diagnostics. 
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APPENDIX 1 
PAL EQUATION 

DEVICE DSP PAL U 72 (pa122V10) - -
PIN 

ICCLK = 1 IBUSY = 22 
IFLYO = 2 I BHEN = 21 
I BYTEL = 3 HACK = 20 
IEYTEH = 4 I BPRO = 19 
HREQ = 5 IEREQ = 18 
IQ = 6 ICDRI = 17 
I EPR N = 7 ICDRR = 16 
IBSY = 8 ICDLI = 15 

ICDLR = 1 4 ; 

BEGIN 
BEGIN 

BREQ · - HREQ; 

IHACK · - IBUSY; 

BUSY · - BREQ it BPR N it IBSY + · -
BREQ ,. BUSY; 

END; 

BEGIN 
BPRO = IBREQ it BPR N; 

BHEN = BUSY; 

CDLR = IQ it HREQ it IFLYO + 
IQ it BYTEH * IFLYO + 
IQ it BYTEL it IFLYO; 

CDLI = IQ It HREQ it FLYO + 
IQ It BYTEH It FLYO + 
IQ It EYTEL It FLYD; 

CDRR = Q It HREQ It IFLYD + 
Q it BYTEH * IFLYD + 
Q It BYTEL It IFLYO; 

CDRI = Q It HREQ it FLYD + 
Q \Ii BYTEH * FLYC + 
Q It BYTEL It FLYO; 

END; 
END. 
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DEVICE DSP PAL U73 (pa122V10) - -
PIN 

IBHEN = 1 n'lE8 = 21 
I BYTEL = 2 IWE'( = 20 
I BYTEH = 3 IWEo = 19 
HREQ = 4 I vi E 5 = 18 
II OW = 5 111E 4 = 17 
WEI = 0 I\1E3 = 16 
WER = 7 IWE2 = 15 
IFLYO = 8 IHE1 = 14 
IQ = 9 IDI1AH = 22 
IIOR = 10; 

BEGIN 
WE1 = Q .. I\1ER + 

IQ .. HREQ .. lOW * IFLYO + 
IQ .. IFLYO .. lOW * BYTEH; 

WE2 = Q .. IWER + 
IQ .. HREQ .. IO\J * IFLYO + 
IQ .. IFLYO .. lOW * BYTEH * BHEN + 
IQ .. lOti .. IFLYO .. BYTEL ; 

~I E 3 = Q " IHEI + 
IQ " HREQ " row .. FLYO + 
IQ " FLYO "lOW .. BYTEH; 

\1E4 = Q " I viE I + 
IQ " HREQ " lOW .. FLYO + 
IQ .. FLYO .. lOW * BYTEH * BHEN + 
IQ .. IOlf * FLYO * BYTEL ; 

WE5 = IQ .. IWER + 
Q * HREQ * lOW * IFLYO + 
Q * IFLYO * 10\1 .. BYTEH; 

WEb = IQ * !\vER + 
Q .. HREQ * IOv[ * IFLYO + 
Q * IFLYO * lOt ... * BYTEH * BHEN + 
Q " row * IFLYO " BYTEL ; 

WE7 = IQ * lWEI + 
Q " HREQ " Iml .. FLYO + 
Q .. FLYO " 10\1 .. BYTEH; 

WE8 = IQ .. lWEI + 
Q • HREQ • 10\1 it FLYO + 
Q " FLYO " IOIf .. BYTEH .. BHEN + 
Q .. lOW .. FLYO " BYTEL ; 

D~'lAH = 1m'l .. HREQ + 
lOR * HREQ; 

END. 
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DEVICE DSP_PAL_U74 lpa122Vl0) 

PIN 
IIOR = 1 IBYTEH = 23 
IEOUT = 2 IBYTEL = 22 
lAO = 3 IINIT = 21 
IAl = 4 ILOADL = 20 
IA2 = 5 ILOADH = 19 
IA4 = 0 CD3 = 18 
II OW = 7 CD2 = 17 
HREQ = 8 IPOLL = 16 
IBHEN = 9 INSTR = 15 
IHINIT = 10 IADDRL = 14 
IADSTB = 1 1 ; 

BEGIN 
IINSTR = A4 + 

IEOUT + 
IIo\/ + 
IA2 + 
IAl + 
lAO; 

INIT = HINIT + 
IA4 * EOUT * lOW It A2 It Al It lAO; 

ADDRL = IA4 * EOUT * lOW It A2 * IAl * AO; 

LOADH = IA4 * EOUT * lOW It A2 It IAl It lAO; 

LOADL = IA4 It EOUT * Im-l It IA2 It Al It AO + 
IA4 It EOUT * lOW .. BHEN It A2 * IAl * lAO; 

BYTEH = IA4 * EOUT * lOW .. IA2 * Al It lAO + 
IA4 * EOUT * lOR * IA2 * Al * lAO; 

BYTEL = IA4 * EOUT * lOW It IA2 It IAl * AO + 
IA4 * EOUT It lOR It IA2 * IAl * AO; 

POLL = IA4 * EOUT * lOR * A2 * Al * AO; 

ICD2 = IA4 * EOUT * lOW It IBHEN It IA2 * Al * lAO + 
IA4 * EOUT It lOR It IBHEN It IA2 It Al * lAO + 
IA4 It EOUT * lOW It IBHEN It A2 It I A 1 It lAO; 

ICD3 = IA4 * EOUT * lOW It AO + 
IA4 It EOUT It lOR It IA2 • IAl It AO + 
IA4 It EOUT * lOW it BHEM It IA2 * Al It lAO .. 
IA4 It EOUT * lOR It BHEN * IA2 * Al * lAO + 
IA4 It EOUT * lOW * BHEN It A2 * IAl It lAO + 
A4 It EOUT It lOW + 
A4 * EOUT * lOR + 
HREQ It IADSTB; 

END. 
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; 

WORD 128 

APPENDIX 2 
AmDSP DIGITAL SIGNAL 

PROCESSOR DEFINITION FILE 

=============================================================== 
1111111111111111 
~ ~ ~ ~ 2 2 221 1 1 1 111 1 
705 q 321 0 9 8 7 6 5 q 3 2 

s S R R R R R R R R R R R R R R 
H R A A A A R R R S S S A A A A 
1 0 L L L L 0 0 0 0 0 0 1 1 2 2 

U U U U P P P P P P 1 0 1 0 
3 2 1 0 2 1 0 2 1 0 

R 
A 
3 
1 

Real ALU 

11111111111 
1 000 0 0 0 0 0 0 0 9 9 9 9 
o 9 8 7 6 5 q 321 0 987 6 

R R R R R R R R R R R R R R R 
A B B B B B B M M M M D D D W 

3 1 1 2 2 3 3 I I I I I I I E 
0 1 0 1 0 1 0 0 0 0 0 0 0 0 

3 2 1 0 2 1 0 

=============================================================== 
9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 
5 q 3 2 1 0 9 8 7 6 5 q 3 2 1 0 9 8 7 6 5 q 3 2 1 0 9 8 7 6 5 q 

~-~~~-~--~-------------------~---------------------~----------~ S S I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I A A A A R R R S S S A A A A A A B B B B B B M M M M D D D W 

0 L L L L 0 0 0 0 0 0 1 1 2 2 3 3 1 1 2 2 3 3 I I I I I I I E 
U U U U P P P P P P 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
3 2 1 0 2 1 0 2 1 0 3 2 1 0 2 1 0 

Imaginary ALU 

============================~========================= ========= 
o 0 0 0 5 5 5 5 5 5 5 5 5 5 q q q q q q q q q q 3 3 3 3 3 3 3 3 
3210987654321098765 q 321 0 9 8 7 654 3 2 

D R F t1 0 2 X X E S C 1 5 A A A A A A A A A A A A A A A A A A A 
P N A S E C S S N I F 1 4 G G G G G G G G G G G G G G G G G G G 

D P L E E X N A 6 0 1 1 1 1 1 1 1 1 1 9 8 7 6 5 q 3 2 1 0 
L L L C D 0 0 8 7 6 5 q 3 2 1 0 
S 1 0 0 R E E 
P S 

Multiplier Address Generator 
---------------------------------------------------------------------------------------.---------------------------------------
3 322 2 2 222 2 2 2 1 1 1 1 1 1 111 1 
1 U 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 q 321 0 9 8 7 6 5 q 3 2 1 0 

B 5 5 5 5 I C C C C C C C B B B B B B B B B B B B 1 1 1 1 
U 2 2 2 2 N K K C C C C C R R R R R R R R R R R R 0 0 0 0 
F 0 0 0 0 T S S P S S S S 1 1 9 8 7 6 5 4 3 2 1 0 I I I I 
C I I S S R E E 0 E E E E 1 0 3 2 1 0 
D 1 0 1 0 L L L L L L L 

1 0 3 2 1 0 

Program Sequence 
=============================================================== 

EJECT 
ADDRESS GENERATOR OVERLAY 
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1 
1 
6 6 

S D I I I 
R L E 1 1 
E E N 5 4 

EJECT 
; . .. , . .. .. .. .. .. .. .. .. .. .. it it it it it it it 

Am29501 INSTRUCTION SET 

.. .. .. .. .. it .. it it it it it it it it it it it 

Am29501 ALU fUNCTIONS (R FUNCTION S) 

GONDITIONAL GARRY OUTPUT 
; 
ADD.CC: 
SUBS.CC: 
MOVE.CC: 
SUBR.CC: 
; 

EQU 
EQU 
EQU 
EQU 

;INHIBIT GARRY OUTPUT 
; 
ADD.NC: 
SUBS.NC: 
MOVE.NC: 
SUBR.NC: 
; 

EQU 
EQU 
EQU 
EQU 

;FORCE CARRY OUTPUT 
; 
ADD.FC: 
SUBS.FC: 
MOVE.FC: 
SUBR.FC: 
; 

EQU 
EQU 
EQU 
EQU 

H 110 
H 114 
HII8 
HIIC 

H 1/1 
H 1/5 
HI19 
HIID 

HI12 
HI16 
HilA 
H/IE 

1 
1 
6 
I 
1 
3 

it 

it 

D 
I 
T 4 P 
/ / S 
F 2 D 

1 1 
1 1 1 
6 6 6 
I I I 
1 1 1 
2 1 0 

555 5 5 5 
444 4 4 4 
o 0 0 0 0 0 
I ISS S S 
1 I) 3 2 1 0 

6 6 b 6 b b 
I I I I I I 
0 0 0 0 0 0 
9 8 7 6 5 4 

AG18 ... 01) 

it it it it it 

it it it it it 

b 
I 
0 
3 

;LOGICAL (NO CARRY USED TO DISTINGUISH FROM 29116 LOGICALS) 

XOR.NC: 
AND.NC: 
INV. NC: 
OR.NC: 

EQU 
EQU 
EQU 
EQU 

HI13 
H 1/7 
HIIB 
HI/F 

; Am29501 SOURCE OPERANDS 
; 
A 1 : EQU QIIO 

R, S 
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1 1 1 
1 1 1 
6 6 6 
I I I 
0 0 0 
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A2: EQU Q 111 
A3: EQU QI12 
B 1 : EQU Q 113 
B2: EQU QI14 
B 3: EQU QI15 
SIGN.EXT: EQU Q 116 
ZERO: EQU QII7 
MSP: EQU Q 116 
LSP: EQU QI17 
EJECT 

; PORT SELECTS 
; 
M.EQ.A1: EQU H II 0 
M.EQ.A2: EQU H 111 
M.EQ.A3: EQU H/12 
M.EQ.B1: EQU H 113 
M.EQ.B2: EQU H 114 
M.EQ.B3: EQU H 115 
M.EQ.AU: EQU H 116 
M.EQ.OI: EQU HII7 
MIO.IN: EQU HII8 

D.EQ.A2: EQU QIIO 
D.EQ.A3: EQU Q 111 
0.EQ.B2: EQU QI12 
0.EQ.B3: EQU QI13 
DIO.IN: EQU QI14 
; 
; Am29501 Register Operations 
; 
A1.EQ.MP: EQU BIIOO 
A1.EQ.OI: EQU B 1101 
A1.EQ.B3: EQU BI110 
A1.HOLD: EQU BI111 
A2.EQ.LP: EQU BIIOO 
A2.EQ.AU: EQU B 1101 
A2.EQ.A1: EQU B 1110 
A2.HOLD: EQU BI111 
A3. EQ. MP: EQU BIIOO 
A3.EQ.AU: EQU BIIO 1 
A3.EQ.A2: EQU BI110 
A3.HOLD: EQU B 1111 
B1.EQ.MP: EQU BIIOO 
B1.EQ.DI: EQU BIIO 1 
B1.EQ.A3: EQU BI110 
B1.HOLD: EQU B 1111 
B2. EQ. LP: EQU BIIOO 
B2.EQ.AU: EQU BIIO 1 
B2.EQ.B1: EQU BI110 
B2.HOLD: EQU B 111 1 
B3. EQ. MP: EQU BIIOO 
B3.EQ.AU: EQU BII01 
B3.EQ.B2: EQU BI110 
B3.HOLD: EQU B 1111 

2-3 



EJECT 
, 
;REAh AhU INSTRUCTIONS 
; 
R.ADD: DEF 
I 
R.SUBS: DEF 
I 
R.MOVE: DEF 
I 
R.SUBR: DEF 
I 
R.XOR: DEF 
I 
R.AND: DEF 
I 
R.INV: DEF 
I 
R.OR: DEF 
I 
, 

2X,ADD.CC,3VQ,o,3VQ'O,2VB'll,2VB'll,2VB'll,2VB'll,2VB'11, 
2VB'll,4VH'8,3VQ'4,97X 
2X,SUBS.CC,3VQ'O,3VQ'O,2VB'll,2VB'll,2VB'll,2VB'll,2VB'11, 
2VB'll,4VH'8,3VQ,4,97X 
2X,MOVE.NC,3VQ'O,3X,2VB'11,2VB'11,2VB'11,2VB'll,2VB'll, 
2VB'11,4VH'8,3VQ'4,97X 
2X,SUBR.CC,3VQ'O,3VQ'O,2VB'll,2VB'll,2VB'11,2VB'll,2VB'11, 
2VB'11,4VH'8,3VQ,4,97X 
2X,XOR.NC,3VQ'O,3VQ'O,2VB'11,2VB'll,2VB'll,2VB'11,2VB'11, 
2VB'11,4VH'8,3VQ'4,97X 
2X,AND.NC,3VQ'O,3VQ'O,2VB'11,2VB'11,2VB'll,2VB'11,2VB'11, 
2VB'11,4VH'8,3VQ'4,97X 
2X,INV.NC,3VQ'O,3VQ'O,2VB'll,2VB'll,2VB'11,2VB'11,2VB,11, 
2VB'11,4VHH8,3VQH4,97X 
2X,OR.NC,3VQHO,3VQ'O,2VB'11,2VBHll,2VB'll,2VB'11,2VB'l1, 
2VB'11,4VH'8,3VQ,4,97X 

;IMAGINARY AhU INSTRUCTIONS 
; 
I.ADD: DEF 
I 
I. SUBS: DEF 
I 
I. MOVE: DEF 
I 
I.SUBR: DEF 
I 
I. XOR: DEF 
I 
I.AND: DEF 
I 
I.INV: DEF 
I 
I. OR: DEF 
I 
EJECT 

34X,ADD.CC,3VQ'O,3VQ'O,2VB'll,2VB'11,2VB'll,2VB'11,2VB'11, 
2VB'll,4VH'B,3VQ,4,65X 
34X,SUBS.CC,3VQ'O,3VQHO,2VB'11,2VB'11,2VBHll,2VBHll,2VB'll, 
2VB'11,4VHHB,3VQH4,65X 
34X,MOVE.NC,3VQ'O,3X,2VB'll,2VBH11,2VB'11,2VB'11,2VB'l1, 
2VB'11,4VH'B,3VQ'4,65X 
34X,SUBR.CC,3VQ'O,3VQ'O,2VBH11,2VBH11,2VB'11,2VBH11,2VB'11, 
2VB'11,4VHHB,3VQH4,65X 
34X,XOR.NC,3VQ'O,3VQ'O,2VB'11,2VB'11,2VB'11,2VB'11,2VB'11, 
2VB'll,4VHHB,3VQH4,65X 
34X,AND.NC,3VQ'O,3VQ'O,2VB'11,2VB'11,2VB'll,2VB'11,2VB Hll, 
2VB'11,4VH'8,3VQ'4,65X 
34X,INV.NC,3VQ'O,3VQHO,2VB'll,2VB'11,2VB'11,2VB'11,2VB'11, 
2VB'11,4VH'B,3VQH4,65X 
34X,OR.NC,3VQ'O,3VQ'O,2VB'll,2VBH11,2VBHll,2VBH11,2VB'11, 
2VBH11,4VH'B,3VQo4,65X 

• • • • • • * * * * * * * * * * * * * * * * * * 
Am29517 MUhTIPhIER 
* * * • • * * * * * * * * * * * * * * * * * * * 

, 
MX.RAhU: 
MX.HOhD: 
MX.IMAG: 
MX.REU: 
MX.CONST: 
MX.COS: 
MX.SIN: 
MXY.2C: 
MXY.MAG: 
MY.OE: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

HoO 
H'2 
H'4 
HOB 
HHC 
HHC 
HHD 
Bol 
MXY.2C* 
BOO 

;MUhTIPhIER IS REAh AhU MIO 
;USE PREVIOUS MUhTIPhIER 
;MUhTIPhIER IS IMAG MEM 
;MULTIPLIER IS REAL MEM 
;MULTIPLIER IS COEF ROM 
;MULTIPhIER IS FFT COS ROM 
;MULTIPLIER IS FFT SIN ROM 
;MULTIPLIERS ARE TWO'S COMP 

;UNSIGNED MAGNITUDE 
;ENABLE LSP ON Y 
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MY.IN: 
MP.FRAC: 
MP.INTG: 
MP.ROUND: 
MP.TRUNC: 
MP.MSP: 
MP. LSP: 
MP.OE: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

MY.OE. ;ENABLE Y INPUT 
BOu ;FRACTIONAL MULTIPLY (FA) 
MP.FRAC· ;INTEGER MULTIPLY 
BII1 ;ROUNDED MSP 
MP.ROUND· ;TRUNCATED MSP 
BOO ;MOST SIGNIFICANT PRODUCT OUT 
MP.MSp. ;LEAST SIGNIFICANT PRODUCT OUT 
BIIO ;OUTPUT ENABLE 

; MULTIPLIER INSTRUCTIONS 
; 
MSPROD: DEF 
/ 
/ 
LSPROD: DEF 
/ 
/ 

65X, 1VB01, 1VBIIO,MP.MSP ;MOST SIGNIFICANT PRODUCT 
,1VBII1, 1VBII1, 4VHII2 
,22X,1VBII1,31X 
65X,1VB01,1VBOO,MP.LSP ;LEAST SIGNIFICANT PRODUCT 
,1VBII1, 1VBII1, 4VHII2 
,22X,1VB01,31X 

• • • • * * • • • • • • * • • * * * * * • * • • 
Am25S 10 SHIFTER 
• • • • • * * • * * • * * * • * * * • * • * * • 

, 
NO.SHIFT: EQU 

EQU 
EQU 
EQU 

BII11 
B010 
BOu1 
BODO 

;LSB CONNECTED TO I(~3) 

SHIFT.R1: 
SHIFT.R2: 
SHIFT.R3: 
; 
SHIFT.OE: 
EJECT 

EQU BOO 

• • • • • * • • • • * • * • * * • * * * * * * * • * • * * • 

INDEX TO Am29116 INSTRUCTIONS ~ [i] REFERS TO ALLOWED MNEMONICS GROUP 

SINGLE OPERAND l1], [2], [3], [4] 
TWO OPERAND [5], [6], [7], [8] 
SHIFT [9], [10], [11] 
ROTATE [12], [13], [14] 
BIT ~O R I E N TED [ 1 5 ], [1 6 ], [1 7 ] 
ROTATE & MERGE [18] 
ROTATE & COMPR [19] 
PRIORITIZE [20], [21], [22], [23], [24], [25] 
CYCLIC REDUNDANCY CHECKS 
NOOP 
STATUS 
TEST STATUS 

[26], [27] 
[CT] 

_ ..... _._._ ... _ ................... _ ... _ ......... . 
GENERAL MNEMONICS ••••••••• _ ••••••••••••• * ••••••••••••••••••••••• *. 

* ••••••• * ••••••• * •••••••• * •• 
BYTE ~ WORD MODE SELECT [M] 
•• * ••••• * •• * •••• * •••••• * •••• 
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; 
B: 
W: 

EQU 
EQU 

1 B 110 
1 Bill 

BYTE MODE 
WORD MODE 

*************************************************** 
32 RAM REGISTERS [R] 
*************************************************** 

; 
RO: 
HI: 
R 2: 
R 3: 
R 4: 
R5: 
R 6: 
R7: 
R 8: 
R 9: 
RIO : 
R 11 : 
R 12: 
R 13: 
R 14: 
R15: 
R 16: 
R 17: 
R18: 
R19: 
R20: 
R21 : 
R 22: 
R 23: 
R 24: 
R 25: 
R26 : 
R 27: 
R 28: 
R29: 
R 30: 
R 31 : 
EJECT 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

5D110% 
5Dlll% 
5D112% 
5D113% 
5D114% 
5D115% 
5"DII6% 
5 D 117% 
50118% 
50119% 
501110% 
50111 U 
501112% 
501113% 
501114% 
5D1115% 
501116% 
501117% 
501118% 
501119% 
5D1I20% 
501121% 
501122% 
501123% 
5D1124% 
501125% 
501126% 
5D1127% 
5D1128% 
5D1I29% 
501130% 
501131% 

* • * * * * * * * * * * * * * * * 
Am29116 CONTROL LINES 
16~Bit Bipolar Microprocessor 
* * * * * * * * * * * * * * * * * 

OEYEN: 
OEYOIS: 
; 
DLE.EN: 
OLE.OIS: 

OETEN: 
OETDIS: 

EQU 
EQU 

EQU 
EQU 

EQU 
EQU 

BI10 
Bill 

Bill 
BIIO 

Bill 
BIIO 

00000 

Y BUS ENABLE 

DATA LATCH ENABLE 

T BUS ENABLE 
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; 
SRE.EN: EQU BIIO STATUS REGISTER ENABLE 
SRE.DIS: EQU Bill 

lEN: EQU BIIO INSTRUCTION ENABLE 
lOIS: EQU Bill 

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

EJECT 
1**********1*****.***.***.*** 
SING~E OPERAND INSTRUCTIONS 
******************-********** 

OPCODES [1] 

MOVE: 
CO~l P: 
INC: 
NEG: 

EQU 
EQU 
EQU 
EQU 

; SOURCE-DESTINATION SELECT l2] 

SORA: EQU 
SORY: EQU 
SORS: EQU 
SOAR: EQU 
SODR: EQU 
SOIR: EQU 
SOZR: EQU 
SOZER: EQU 
SOSER: EQU 
SORR: EQU . 

H IIC 
HIID 
H liE 
HIIF 

HIIO 
HI12 
HI13 
H 114 
H 116 
HI17 
HI18 
HI19 
HilA 
HIIB 

COHPLEMENT 
INCREMENT 
NEGATE 

RAM 
RAM 
RAM 
ACC 
D 
I 
o 
D(OE) 
D(SE) 
RAM 

ACC 
Y BUS 
STATUS 
RAM 
RAM 
RAM 
RAM 
RAM 
RAM 
RAM 

. ************************************************************ , 
; 
SOR: DEF 
I 

74X, lVBlll, B1101, 3VBII010, 
lV, Blll0,4V, 4V, 

;SING~E OPERAND RAM 
5V%, 4X, 2VBlll1, 2VBlll1, 24X 

MODE,QUAD,OPCODE,SOURCE~DEST,REGISTER 

[M] [1] [2] [R] 

********************* ••• ************.*********************1* 

SOURCE (RIS) l3 ] 
; 
SOA: EQU H 114 ACC 
SOD: EQU H 116 D 
Sal: EQU HI17 I 
SOZ: EQU HI18 0 
SOZE: EQU HI19 D(OE) 
SaSE: EQU HilA D(SE) 
; 
; DESTINATION [4 ] 
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NRY: 
NRA: 
NRS: 
NRAS: 
, 

EQU 
EQU 
EQU 
EQU 

DUll 
DU1 
DU4 
DU5 

Y BUS 
ACC 
STATUS 
ACC,STATUS 

. *************************************************************** , . 

SONR: DEF 74X,1VBI11,BU01,3VBU010, 
I 1V, BI111,4V, 4V, 

; SINGLE OPERAND NON~RAM 
5V%, 4X, 2VB1111, 2VB1111, 24X 

MODE,QUAD,OPCODE,SOURCE,DESTINATION 
lMJ [1J [3J [4J 

; *************************************************************** 
EJECT 

*********************************** 
TWO OPERAND INSTRUCTIONS 
*********************************** 

OPCODES [5 J 

SUBR: EQU HUO S minus R 
SUBRC: EQU HU1 S minus R with carry 
SUBS: EQU HI12 R minus S 
SUBSC: EQU HI13 R minus S with carry 
ADD: EQU HU4 R pI us S 
ADDC: EQU HI15 R plus S with carry 
AND: EQU HU6 R S 
NAND: EQU HI17 R S 
EXOR: EQU HI18 R S 
NOR: EQU HI19 R + S 
OR: EQU HilA R + S 
EXNOR: EQU HUB R S 

SOURCE~DESTINATION [6 J R S DEST 
; 
TORAA: EQU HIIO RAM ACC ACC 
TORIA: EQU HI12 RAM I ACC 
TODRA: EQU HI13 D RAM ACC 
TORA Y: EQU HI18 RAM ACC Y BUS 
TORIY: EQU HUA RAM I Y BUS 
TODRY: EQU HIIB D RAM Y BUS 
TORAR: EQU HIIC RAM ACC RAM 
TORIR: EQU HIIE RAM I RAM 
TODRR: EQU HIIF D RAM RAM 
; 
; ************************************************************ 
TOR1: DEF 74X,1VBI11,BII01,3VBU010, ; TWO OPERAND RAM (1) 
I 1V, BllllO,4V, 4V, 5V%, 4X,2VBU11,2VBU11,24X 

MODE,QUAD,SOURCE"DEST,OPCODE,REGISTER 
lMJ [6J [5J [RJ 

************************************************************ 

THE [iJ IN THE COMMENT BELOW THE VARIABLE~FIELD REFERS TO THE ALLOWED 
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MNEMONIC GROUP. EXAMPLE: MODE REFERS VIA [M] TO THE BYTE~WORD SELECT. 
EXAMPLE: THE ALLOWED OPCODE SUBSTITUTIONS IN TOR1 COME FROM GROUP L5] 
WHILE THE ALLOWED SOURCE~DESTINATIONS COME FROM GROUP l6]. 

; 
EJECT 

SOURCE~DESTINATION [7] 
; 
TODAR: 
TOAIR: 
TODIR: 
, 

EQU 
EQU 
EQU 

HI11 
HI12 
HH5 

D 
ACC 
D 

R 

ACC 
I 
I 

S 

RAM 
RAM 
RAM 

DEST 

. ************************************************************ , 
TOR2: DEF 
/ 

74X, 1VB111, BH01, 3VBI1010, 
1V, BH10,4V, 4V, 

; TWO OPERAND RAM (2) 
5V~, 4X, 2VBH11, 2VB1111, 24X 

MODE,QUAD,SOURCE~DEST,OPCODE,REGISTER 

[M] [7] [5] [R] 
************************************************************ 

SOURCE [8] 
; 
TODA: 
TOAI: 
TODI: 

EQU 
EQU 
EQU 

H 111 
HH2 
HII5 

R 

D 
ACC 

, D 

S 

ACC 
I 
I 

; *********************************************************** 
TONR: DEF 74X,1VBH1,BH01,3VBII010, ; TWO OPERAND NON~RAM 

/ 1V, BI111,4V, 4V, 5V~, 4X,2VBI111,2VBH11,24X 

MODE, QUAD,SQURCE,OPCODE,DESTINATION 
[M] [8] [5] [4] 

; *********************************************************** 
EJECT 

************************************************** 
SHIFT INSTRUCTIONS 
************************~************************* 

DIRECTION AND 
; 
SHUPZ: 
SHUP1: 
SHUPL: 
SHDNZ: 
SHDN1: 
SHDNL: 
SHDNC: 
SHDNOV: 

SOURCE [ 10] 
; 
SHRR: 
SHDR: 

INPUT 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 

[9] 

HHO 
H 111 
HII2 
HI14 
HII5 
HI16 
Hf17 
HH8 

H/16 
Hf17 
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UP 0 
UP 1 
UP QLINK 
DOWN 0 
DOWN 1 
DOWN QLINK 
DOWN QC 
DOWN QN QOVR 

RAM 
D 

RAM 
RAM 



· """""""""""""""""""""""""'" , 
SHFTR: DEF 
/ 

74X, lVBlll, B1I01, 3VBII010, ; SHIFT RAM 
lV, BfJ10,4V, 4V, 5V~, 4X,2VBlll1,2VBII11,24X 

MODE,QUAD,SOURCE,DIRECT~INPT,REGISTER 
[M] [10] [9] [R] ..... ,.,", .. , ... ,""""""""""',.,""""'" 

SOURCE [11] 
; 
SHA: 
SHD: 

EQU 
EQU 

HII6 
HII7 

ACC 
D 

; .,*,.,"",.,"""""""""""""""""""" 
SHFTNR: DEF 74X, lVBll1 ,BII01, 3VBII010, ; SHIFT NON~RAM 
I lV, BfJll,4V, 4V, 5V~, 4X, 2VBllll, 2VBlll1, 24X 

MODE,QUAD,SOURCE,DIRECT~INP,DESTINATION 

[M] [11] [9] [4](NRY; NRA ONLY) 
"*""""""""""""""""""""""""" · , 

EJECT 
; .,"""",.,"""""',.,""""", .. , .. ,.".,' 
;ROTATE INSTRUCTIONS 

"""',.,', .... " .. ,', .. ,""',.".".,""""" 
SOURCE~DESTINATION [12] 

; 
RTRA: 
RTRY: 
RTRR: 

EQU 
EQU 
EQU 

HIIC 
HIIE 
HIIF 

RAM 
RAM 
RAH 

ACC 
Y BUS 
RAM 

; ............... ,"""',.,"""""""',.,"',.,.,' 
ROTR1: DEF 74X,lVBf/l,BfIOl,3VBII010, /; ROTATE RAM (1) 
I lV, BII00,4V,4V, 5V~, 4X,2VBlll1,2VBll11,24X 

MODE,QUAD,N,SOURCE~DEST,REGISTER 

[M] [N] [12] [R] 
",.,., ...... , ..... , .... , .. , .. ,." ..... ,',., ... , .... . 
~OURCE~DESTINATION l13] 

; 
RTAR: 
HTDR: 

EQU 
EQU 

HIIO 
Hill 

ACC 
D 

RAM 
RAM 

· .,',.,"', .... ,.,',.".,"""""""""""',.,'" , 
ROTR2: DEF 
I 

74X,lVBIl1,BII01,3VBII010, 
lV, BII01,4V,4V, 

; ROTATE RAM (2) 
5V~, 4X,2VBlll1,2VBIl11,24X 

MODE,QUAD,N,SOURCE~DEST,REGISTER 
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l M ] [N] [ 13 J [R] 
-**************************************************** 

SOURCE DESTINATION l 111 J 
; 
RTDY: EQU D#211 D Y BUS 
RTDA: EQU D#25 D ACC 
KTAY: EQU DI128 ACC Y BUS 
KTAA: EQU DI129 ACC ACC 

• -*****-********************************************** , 
ROTNR: IJEF 
/ 

74X,lVBU1,BUul,3VBU010, ; ROTATE NON .. RAM 
lV, BUll,4V,HUC, 5V~, IIX,2VBll11,2VBU11,24X 

MODE,QUAD,N,FIXED CODE,DESTINATION 
[M] [N] [111] 

• -**************************************************** , 
'EJECT 

-************************************************** 
~IT ORIENTED INSTRUCTIONS 
-************************************************** 

OPCODES [15] 
; 
SETNR: 
KSTNR: 
TSTNR: 

EQU 
EQU 
EQU 

HIID 
HUE 
HUF 

SET RAM, BIT N 
RESET RAM, BIT N 
TEST HAM, BIT N 

; ******************************************************** 
BOR1: DEF 711X,lVBU1,BU01,3VBU010, ; BIT ORIENTED RAM (1) 
/ lV, ~Ul1,4V,4V, 5V~, IIX,2VBUll,2VBf,lll,24X 

MODE,QUAD,N,OPCODE,REGISTER 
[M] [N] l15J lR] 

-******************************************************* 

UPCODES [ 1 6 J 

· , 
LD2NR: EQU HUC 2 A N ... -..-. RAM 
LDC2NR: EQU HIID 2"N .-..-- RAM 
A2NR: EQU HUE RAM + 2"N RAM 
S2NR: EQU Hf/F RAM - 2"N .. RAM 

; ******************************************************** 
BOR2: DEF 74X,lVBU1,BU01,3VBU010, ; BIT ORIENTED RAM (2) 
/ lV, Bf,ll0,4V,IIV, 5V~, 4X,2VBf,lll,2VBf,lll,24X 

MODE,QUAD,N,OPCODE,REGISTER 
[M] [N] l16] [R] 

******************************************************** 
EJECT 
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OPCODES L 17] 
; 
TSTNA: EQU DIIO TEST ACC, BIT N 
RSTNA: EQU DIll RESET ACC, BIT N 
SETNA: EQU DI12 SET ACC, BIT N 
A2NA: EQU D 111I ACC + 2"N .... ACC 
S2NA: EQU DII5 ACC .. 2"N ..... ACC 
LD2NA: EQU H/16 2"N .. '" ACC 
LDC2NA: EQU DII7 2"N ...... ACC 
TSTND: EQU DII16 TEST D, BIT N 
RSTND: EQU DII17 RESET D, BIT N 
SETND: EQU DII18 SET D, BIT N 
A2NDY: EQU DII20 D + 2"N ..... '" Y BUS 
S2NDY: EQU DI121 D .. 2"N .... -. Y BUS 
LD2NY: EQU DI122 2"N Y BUS 
LDC 2NY: EQU DI123 2"N ...... Y BUS 

; -******************************************************** 
BONR: DEF 711X,lVBlll,BII01,3VBII010, ; BIT ORIENTED NON ... RAM 
I lV, J:H/ll,lIV,Bllll00, 5V~, lIX,2VBlll1,2VBlll1,211X 

MODE,QUAD,N,FIXED CODE,OPCODE 
[M] [N] [17] 

; ********************************************************* 
EJECT 

**t**tt******************************************* 
HOTATE AND MERGE 
************************************************** 

SOURCE ... DEST SELECT [U,S,MASK ... DESTJ [18] 

MDAI: 
MDAR: 
M DRI: 
MDRA: 
MARI: 
MRAI: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

H 117 
H 118 
H/19 
HilA 
HIIC 
H/IE 

HOT 
D 
D 
D 
D 
ACC 
RAM 

NON ... ROT 
ACC 
ACC 
RAM 
RAM 
RAM 
ACC 

MASK ... DEST 
I 
RAM 
I 
ACC 
I 
I 

; ********************************************************** 
ROTM: DEF 
I 

74X, lVBlll ,BII01, 3VBII010, 
lV, BII01,lIV,lIV, 

;ROTATE AND MERGE 
5V~, lIX, 2VBllll, 2VBf/l1, 211X 

MODE,QUAD,N,SOURCE ... DEST,REGISTER 
[M] [N] [18] [R] 

********************************************************** 
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************************************************** 
ROTATE AND COMPARE 
************************************************** 

ROT.SRC(U)~NON ROT.SRC(S)/DEST~MASK(S)[19] 

; 
CDAI: 
CDRI: 
CDRA: 
CRAI: 

EQU 
EQU 
EQU 
EQU 

HI12 
HI13 
Hfl4 
HII5 

D 
D 
D 
RAM 

******************************************** 

ACC 
RAM 
RAM 
ACC 

I 
I 
ACC 
I 

ROTATE AND COMPARE ROTC: lJEF 
I 

74X,1VBfl1,Bfl01,3VBII010, 
1V, BII01,4V,lIV l 5V$, lIX, 2VBI111, 2VBII11, 24X 

MODE,QUAD,N,SOURCE~DEST-MASK,REGISTER 

[M] [N] [19] [R] 
********************************************* 

EJECT 

************************************************** 
PRIORITIZE 
************************************************** 

SOURCE L20] 

PRT1A: 
PR1D: 

EQU 
EQU 

DESTINATION [21] 
; 
PR1A: 
PR1Y: 
PR1R: 
, 

EQU 
EQU 
EQU 

Hf17 
HI19 

HI18 
HilA 
HIIB 

ACC 
D 

ACC 
Y BUS 
RAM 

; *********************************************** 
PRT1: DEF 74X,1VBI11,BII01,3VBfl010, ; RAM ADDR MASK(S) 
I 1V, BI110,4V, 4V, 5V$, lIX,2VBll11,2VBl111,24X 

MODE,QUAD,DESTINATION,SOURCE,REG~MASK 

[M] [21] [20] [R] 
*********************************************** 

; 
DESTINATION L23] 

PR 2A: 
PR2Y: 
, 
; MASK (S) l22] 

EQU 
EQU 

HIIO 
HI12 

2-13 

ACC 
Y BUS 



; 
PRA: 
PRZ: 
PRI: 

EQU 
EQU 
EQU 

HI18 
HilA 
HIIB 

ACC 
o 
I 

*********************************************** 
PRT2: DEF 
/ 

74X,lVB#l,B#01,3VB#010, ; PRIORITIZE RAM 
lV, B#10,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X 

MODE,QUAD,MASK,DEST,REG~SOURCE 

[M] [22] L23] [R] 
*********************************************** 

E JECr 
; 
; ::;OURCE ( R ) l24] 

PR 3R: EQU HI13 HAM 
PR3A: EQU H II 4 ACC 
PR3D: EQU HII6 I) 

.*.*********.*.******************************** 
PRT3: I)EF 
/ 

74X,lVB#l,B#01,3VB#010, ; PRIORITIZE HAM 
lV, tl#10,4V, 4V, 5V%, 4X,2VB#11,2VB#11,24X 

MODE,QUAD,MASK,SOURCE,REG~DEST 

[M] [22] L24] lRJ 
-********************************************** 

::;OURCE (R) l25] 
, 
PRTA: EQU 

EQU 
H 114 
H 116 

ACC 
D PRTD: 

*.* ••• *****.**.* •• ****-* ••• ***.****.****.***** 
PRTNR: lJEF 
/ 

74X,lVB#l,B#01,3VB#010, ; PRIORITIZE NON~RAM 
lV, tllll1,4V, 4V, 5V%,4X,2VBlll1,2VBlll1,24X 

MODE,QUAD,MASK,SOURCE,DESTINATION 
lM] [22] l25] [4](NRY,NRA ON~Y) 

.*******.*.****.****************************** , 
EJECT 

_.************.*********.****.******.********* 
CYCLIC HEDUNDANCY CHECK 
.******.******.**********************.*.*.*.** 

-**.********.****.**********.***.******.*** 
CRCF: lJEF 74X,lVBlll,BII01,3VBII010, 
/ B#11001100011, 5V%, 4X, 2VB#11, 2VBllll, 24X 
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-*.*****.******************.**.******** •••• 

_.*********** •• *.**.*****************._**** 
CRCR: lJEF 74X,lVBlll,BII01,3VBII010, 
/ Bllll00ll0l00l,5V%, 4X,2VBllll,2VBllll,24X REVERSE 

.*****-*.*.*.*.****.*********.*.*** •• * •• **. 

-*.** ••••• ****** •• ***.*****.*******.**** •• *. 

NOOP 

-****.* •• ****.*.***.*** •• **.******.*.***** •• 
NOOP: lJEF 74X,lVBlll,BII01,3VBII010,HI17140, 4X,2VBllll,2VBllll,24X; NO OPERATION 

-***********.**************.**************** 

!::JECT 
-*********************.************************* 
STATUS 
******.****************.***.*.***********.****** 

apCODE [26] 
; 
SONZC: EQU 501ln SET OVR,N,C,Z 
SL: EQU 50115% SET LINK 
SF 1: EQU 5D116% SET ~'LAG 

SF2: EQU 5D119% SET f'LAG 2 
SF3: EQU 5Dlll0% SET I'LAG 3 

-*******-**************.****.************.******** 
SETST: uEF 74X,lVBU1,BU01,3VBU010, 
/ BIIOll, HIIBA, 5V%, 4X, 2VBllll, 2VBllll, 24X ; SET STATUS 

OPCODE 
L26] 

**.*************-*_ •• *.************************.*. 

apCOOE L27] 

RONCZ: EQU D113% RESET OVR,N,C,Z 
RL: EQU D115% RESET LINK 
RF 1 : EQU D116% RESET FLAG 
RF2: EQU D119% RESET fLAG 2 
HF3: EQU Dlll0% RESET l'LAG 3 
; 
.******************.****.*** •• *.**.*****************.* , 
RSTST: DEF 74X,lVBU1,BU01,3VBU010, 
/ BIIOll, HIIAA, 5V%, 4X, 2VBllll, 2VBllll, 24X 
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OPCODE 
l27J 

w*************************************************** 
~JECT 

-****************-**********************.*****-***** 
SVSTR: IJEF 
I 

74X,lVBH1,BH01,3VBH010, ; SAVE STATUS~RAM 
lV, BH10,Hff7A, 5V%, 4X,2VBllll,2VBHll,24X 

MODE, QUAD, FIXED, RAM ADDRESS/DEST 
[MJ lRJ 

-*************************************************** 

, 
;***************************************************** 
sVSTNR: IJEF 
I 

74X,lVBH1,BH01,3VBH010, ; SAVE STATUS NON~RAM 
lV, Bllll,HI17A, 5V%, 4X,2VBllll,2VBllll,24X 

MODE,QUAD,FIXED,DESTINATION 
lMJ [4J(NRY,NRA ONLY) 

w*************************************************** 

-************************************************ 
TEST STATUS 
w************************************************ 

oPCODE (CT) 
; 
TNOZ: EQU DIIO TEST (N OVR) + Z 
TNO: EQU DI12 TEST N OVR 
TZ: EQU DI14 TEST I. 
TOVR: EQU DI16 TEST OVR 
TLOW: EQU D /18 TEST LOW 
TC: EQU Dlll0 TEST C 
TZC: EQU DH12 TEST z + C 
TN: EQU DH14 TEST N 
TL: EQU D016 TEST LINK 
TF 1 : EQU DII18 TEST FLAG 
TF2: EQU DI120 TEST FLAG 2 
TF3: EQU DI122 TEST FLAG 3 
; 
; --************************************************ 
TEST: IJEF 74X, lVB01, BI101, 3VBII010 
/ , BOOll, H/19A, 5V%, 4X,2VBHll,2VBOll,24X ; TEST STATUS 

-**********************.************************** 

IMMED: IJEF 
EJECT 

74X, lVBlll, BI101010, 16V$, 4X, 2VBllll, 2VBllll, 24X 

* •• * * * * * * * * ~* * * * * * * * * * * * * 
Am29540 FFT ADDRESS GENERATOR 
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• • • • • • • * • • * • • * • • • • • • * • • • 
; 
ADR.HOLD: 
ADR.RST: 
ADR.LOAD: 
ADR.INC: 
; 
RADIX.2: 
RADIX.II: 
I'SD: 
NORM.ORD: 
DIT: 
DIF: 
ADR.OE: 
, 
ADR1: 
ADR2: 
ADR3: 
ADRII: 
ALT.ADR1: 
ALT.ADR2: 
ALT.ADR3: 
ALT.ADRII: 
(;ONST 1: 
(;ONST2: 
(;O"NST3: 
CONST1.S: 
RVI.ADR1: 
RVI. ADR2: 
RVI.ADR3: 
RVI.ADRII: 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

BtlOO 
Btl01 
Btl10 
Btll1 

BtlO 
RADIX.2* 
BDO ;PRESCRAMBLED DATA 
PSD* ;NORMAL ORDER 
Btl1 
DIT* 
BtlO 

HDO 
HD1 
HD2 
Htl3 
HtllI 
HD5 
Htl6 
Hn 
H/18 
Htl9 
HDA 
HDB 
HtlC 
HDD 
HDE 
HDF 

;DATA ADDRESS FOR RADIX 2/11 
;DATA ADDRESS 2 FOR RADIX 2/11 
;DATA ADDRESS 3 FOR RADIX II 
;DATA ADDRESS II FOR RADIX II 
;ALTERNATE ADDRESS 1 FOR RADIX 2/11 
;ALTERNATE ADDRESS 2 FOR RADIX 2/11 
;ALTERNATE ADDRESS 3 FOR RADIX II 
;ALTERNATE ADDRESS II FOR RADIX II 
;CONSTANT ADDRESS 1 FOR RADIX 2/11 OR SHADING 
;CONSTANT ADDRESS 2 FOR RADIX II 
;CONSTANT ADDRESS 3 FOR RADIX II 
;INVERTED CONSTANT ADDRESS 1 FOR SHADING 
;REAL VALUE INPUT ADDRESS 1 
;REAL VALUE INPUT ADDRESS 2 
;REAL VALUE INPUT ADDRESS 3 
;REAL VALUE INPUT ADDRESS II 

• • • • • • • • • • • • * * * • • • • • • • • • 
Am29520 PIPELINE REGISTERS 
* • • • • • • • • • • • • • • • • • • * • • • • 

; 
ADP.SHFT: 
ADP.LDB: 
ADP.LDA: 
ADP.HOLD: 
; 
ADP.A1: 
ADP.A2: 
ADP.B1: 
ADP.B2: 
; 
ADP.OE: J::QU . , 

EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 

BDO 

BtlOO 
BII01 
BD10 
BII11 

BD11 
BII10 
BII01 
BIIOO 

;SHIFT ADDR THROUGH PIPELINE 
;LOAD & SHIFT SECOND HALF OF PIPELINE 
;LOAD & SHIFT FIRST HALF OF PIPELINE 
;NO OP 

;REG Al TO OUTPUT 
;REG A2 TO UUTPUT 
;REG Bl TO OUTPUT 
;REG B2 TO OUTPUT 

;OUTPUT J::NABLE 

; ADDRESS GENERATOR INSTRUCTIONS 
, 
ADG.HOLD: vEF 
/ 
ADG.RST: VEF 
/ 
ADG. LOAD: VEF 

711X, 1VB1I1, Bill 0001, 3X, 1VBII1, lVBIIO, 1VB/I1, ADR. HOLD,IIVHIIO, 8X, 
2VB#11,2VB1I11,24X 
711X, 1VBII1, BII1 0001, 3X, 1VBlll, lVBIIO, lVB#l, ADR. RST, IIVHIIO, 8X, 
2VB#11,2VB#11,24X 
711X, lVB#1, B#1 000 1, 3X, 1VBD1, lVBIIO, lVB#l, ADR. LOAD,IIVH#O, 8X, 
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I 
ADG.INC: DEF 
I 
EJECT 

2VBUll,2VBUll,24X 
74X, lVBlll ,B/ll000l, 3X, lVBU1, lVB/lll, lVBU1, ADR. INC, 4VH1I0, 8X, 
2VBUll, 2VBUll, 24X 

* * • • * • * * • * * * • * * • • • • • • * • • • • • • 

Am291ll MICROPROGRAM CONTROLLER INSTRUCTION SET l20] 

w • * • * • • • • • • • • • • • * * • * • • * • • • • • 

~ONDITION CODE MULTIPLEXER 
; 
IF.HIGH: 
IF. LOW: 
UNCOND: 
NEW.PROC: 
INT.ACK: 
FFT.ITC: 
FFT.DONE: 
ADR.CT: 
HALU.S: 
HALU.OV: 
HALU.Z: 
HALU.C: 
IALU.S: 
lALU.OV: 
IALU.Z: 
IALU.C: 
; 
JZ: 
CJS: 
JSR: 
JMAP: 
~ JP: 
JM P: 
PUSH: 
JSRP: 
~ JV: 
J HP: 
HFCT: 
HPCT: 
CRTN: 
RTN: 
CJPP: 
LDCT: 
LOOP: 
~ONT: 

TWB: 

EJECT 

DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 
DEF 

BlIll ;CONDITION PREFIX 
IF.HIGH" 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

HIIO ;UNCONDITIONAL BRANCH 
Hill ;NEW PROCESS ~OMMAND FROM HOST 
HII2 ;INTERRUPT ACK FROM HOST 
HII3 ;Am29540 ITERATION COMPLETE 
HII4 ;Am2954ll ~FT COMPLETE 
HII5 ;Am29116 CONDITION TEST 
HUB ;REAL ALU SIGN 
HII9 ;REAL ALU OVERFLOW 
HilA ;REAL ALU ZERO 
HUB ;REAL ALU CARRY 
HUC ;IMAG ALU 
HIID 
HIIE 
HUF 

124X, H/lll 
lll7X, lVBlIll,4V, 12V$HIIFFF,HIl1 
107X, B/lll, UNCONIl, 12V$HIIFFF, Hill 
112X,12V$H#FFF,H/12 
107X, lVBlIll,4V, 12V$HIIFFF,HI13 
lll7X, BlIll, UNCOND, 12V$HIIFFF, HII3 
107X, lVBlIll,4V, 12V$,H#4 
112X,12V$HIIFFF,H/15 
lll7X, lVBIIO, 4V, 12V$H/IFFF, H/16 
112X, 12V$H#FFF, HII7 
112X, 12V$HIIFFF, HII8 
112X, l2V$HUFFF, H#9 
107X, lVBUll,4V, 12V$HIIFFF,H#A 
lll7X,B#ll,UNCOND,12V$H#FFF,HIIA 
lll7X, lVBUO,4V, 12V$HIIFFF,HIIB 
112X, 12V$, HUC 
124X,HIID 
124X,HIIE 
lll7X, lVBlIll,4V, 12V$HIIFFF,HIIF 

RESET STACK, MICROPC, ADDRESS 
COND JUMP SUBROUTINE 
UNCOND JUMP SUBROUTINE 
UNCOND JUMP TO MEMORY MAP (Di) 
COND JUMP PIPELINE 
UNCOND JUMP PIPELINE 
PUSH STACK, LOAD REG MAYBE 
JUMP SUB FROM REG (F) OR PIPE(T) 
COND JUMP TO VECTOR INTER (Di) 
JUMP TO REG (F) OR PIPE (T) 
DO LOOP REPEAT UNTIL CTR=ll~STACK 

DO LOOP UNTIL CTR=ll ~ PIPE 
COND RETURN, POP STACK (T) 
UNCOND IlETURN 
CO NO JUMP PIPELINE, POP STACK 
LOAD IlEGISTER, CONTINUE 
DO LOOP UNTIL TEST=T ~ STACK 
CONTINUE 
THREE WAY BRANCH 

• • • • • • • • • • • * • * • • • • • • • * • • • • • 
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Am2 9 25 CYCLE LENGTH SELECT [21 1 
system Clock Generator and Dr i ver 

" " " " .. .. .. .. .. .. .. .. it .. .. .. " .. it it .. it .. 
THE ~'OLLOW ING ARE THE CYCLE LENGTH CODES (PRELIM) 

CLA: EQU Qllt) 3 CLOCK PERIODS 
CLB: EQU Qlll 4 
CLC: EQU QI15 5 
CLD: EQU QI17 6 
CLE: EQU QI13 7 
CLF: EQU QI12 5 
CLG: EQU QI16 9 
CLH: EQU QI14 10 CLOCK PERIODS 

(max crystal 

OTHER CONTROL LINES FOR THE Am2925 
INCOMPLETELY DEFINED AT PRESENT (IN THIS fILE) 

; 
FIRST.25: 
LAST.25: 
; 
HALT: 
NOHALT: 
, 
SINGLSTP: 
RUN: 

WAITREQ: 
NOWAITRQ: 
; 
READY: 
NOTREADY; 

INITIALIZE: 
NO.INIT: 

EJECT 
; 

EQU Bill 
EQU Bllll 

EQU Bllllll 
EQU BllOll 

EQU BllllO 
EQU BIIOO 

EQU Bllll 
EQU Bill 

EQU Bllll 
EQU 8111' 

EQU BIIO 
EQU Bill 

; MISCELLANEOUS CONTROLS FOR THE DSP 
; 
WE: 
NWE: 
; 
RD. MEM: DEF 
WR .CMPX: OEF 
WR.REAL: DEF 
WR.IMAG: DEF 

SEL.116: 
SEL.540: 
NO.ADDR: 

EQU 
EQU 

BIIO 
WE* 

;MEMORY WRITE ENABLE 
;NO WRITE 

31 X, NWE, 31 X, NW E, 64 X 
31X,WE,31X,WE,64X 
31X,WE,31X,NWE,64X 
31X, NWE, 31X, WE, 64X 

EQU 
EQU 
EQU 

Blllll 
Blllll 
Blill 
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EXAM PLE CYCLE ( 1 OF 4) 

It)llns AT 3llMHz 
16llns AT 25HHz 
20llns AT 25MHz 
20llns AT 30MHz 
28llns AT 25M Hz 
32llns AT 25HHz 
3llllns AT 30MHz 
322ns AT 31MHz 

frequency is 311MHz) 



BUFCD: 
IlUFEN: 

CF.LOAD: 
CF.HOLD: 

EQU 
EQU 

EQU 
EQU 

BU1 ;BUFFER (;HIP UISABLE 
BUFCD" 

BUO ;ENABLE NEW HOM ADDRESS 
CF.LOAD" 

; UATA PRESCALING 
; 
DIV.BY.l: 
UIV.BY.2: 
DIV.BY.4: 
UIV.BY.8: 

SP: 
DP: 

iNTRRUPT: UEF 
; 
;F'IEi.D POSITIONS 
; 
MISC: uEF 
; 
NO.OP: UEF 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
; 
HD.CMD: DEF 
/ 
/ 
/ 
I 
/ 

I 
I 
/ 
I 
/ 
; 
MAKE.ONE: UEF 
I 
I 
I 
I 
I 
I 
I 

; 
I::ND 

DEF 
DEF 
DEF 
DEF 

EQU 
EQU 

NO.SHIFT,30X,NO.SHIFT,94X 
SHIFT.Rl,30X,SHIFT.R1,94X 
SHIFT.R2,30X,SHIFT.R2,94X 
SHIFT.R3,30X,SHIFT.R3,94X 

BU1 
BUO 

;SINGLE PRECISION (16 IlITS) 
;DOUBLE PRECISION (32 BITS~IMAG:REAL) 

1 04X, BI11, 23X ;GENERATE t:XTERNAL INTERRUPT 

64X, 1VBI11, 39X, 1VBUO, 2VBUOO, 21X 

NO.SHIFT,MOVE.NC,Al,Al ;DO NOTHING 
,A1.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,NO.SHIFT,MOVE.NC,Al,Al 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,SP,MP.TRUNC,MP.FRAC,MP.MSP 
,MY.IN,MXY.2C,MX.CONST 
,1X, SEL. 540, BI1111 
,3X,DIT,RADIX.2,NORM.ORD,ADR.HOLD,ADR1 
,8X,ADP.HOLD,ADP.A1,24X 

NO.SHIFT,MOVE.CC,A1,A1 ;READ MODE INTO ?40 AND 29116 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,NO.SHIFT,MOVE.CC,Al,A1 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,SP,MP.TRUNC,MP.FRAC,MP.MSP 
,MY.IN,MXY.2C,MX.CONST 
,lX, NO.ADDR,BU101 
,3X,DIT,RADIX.2,NORM.ORD,ADR.HOLD,ADR1 
,8X,ADP.HOi.D,ADP.A1,24X 

NO.SHIFT,MOVE.FC,Al,A1 ;FORCE (;ARRY INTO IMAG ALU 
,Al.HOLD,A2.HOLD,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,NO.SHIFT,MOVE.CC,ZERO,Al ; U + CRY = 1 
,A1.HOLD,A2.EQ.AU,A3.HOLD,Bl.HOLD,B2.HOLD,B3.HOLD 
,MIO.IN,DIO.IN,NWE 
,DP,MP.TRUNC,MP.FRAC,MP.MSP 
,MY.IN,MXY.2C,MX.CONST 
,54X 
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APPENDIX 3 
AmDSP DIGITAL SIGNAL 

PROCESSOR SOURCE FILE 

• • • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

lDLE LOOP WAITING FOR PROCESS INSTRUCTION 

START:: 
NO.OP & JM P $ + 1 JUMP INSTR FOR JAMMING 

NO.OP & CJP IF.LOW,NEW.PROC,$ WAIT FOR INSTR STROBE 
; 
NO.OP & CJP IF.HIGH,NEW.PROC,$ WAIT FOR STROBE TO LATCH DATA 
; 
RD. CMD & JMAP VECTOR TO COMMANDED PROCESS 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
SET INTERRUPT FLAG AND WAIT FOR AN ACKNOWLEDGE 

; 
FINISH: 

INTRRUPT & NO.OP & CONT 
/; & CJP IF.HIGH,INT.ACK,$ 
; 
NO.OP & JMP START 
EJECT 

WAIT FOR ACKNOWLEDGE 
NO INTR WHILE DEBUGGING 

* * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * 
FFT PROGRAM 
SIZE HANDLED BY Am29540 

; 
FFT: : 
, 
ADG.RST & RD.MEM & DIV.BY.2 
/& R.MOVE & I.MOVE & MSPROD & MISC 
/& CONT 

*** RESET 29540 AND DO NOTHING 

; 
ADG.HOLD , DIT, RADIX.2, NORM.ORD, 
/& RD.MEM & DIV.BY.2 

*** FILL PIPELINE BEFORE WRITING 
ADR2, ADP. LDB 

/& R.MOVE & I.MOVE & MSPROD & MISC 
/& CONT 

*.* READ B OPERAND & COEFFICIENT 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORILORD, CONST1, ADP.HOLD, ADP.Bl 
/& RD.MEM & DIV.BY.2 
/& R.110VE , , , , B1.EQ.DI, , , , DIO.IN 
/& LMOVE , , , , Bl.EQ.DI, , , • DIO.IN 
/& MSPROD 
/& MISC 
/& CONT 
, *** REAL*COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORI1.0RD, ADR1, ADP.LDA 
/& RD.MEM & DIV.BY.2 
/& R.MOVE , , , , Bl.HOLD, , , M.EQ.Bl 
/& LMOVE , , , , B1.HOLD, , , MIO.IN 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, !lX.COS, BUFEN 
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1& MISC 
1& CO NT 
, ••• REAL.SIN, READ A OPERAND 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.EQ.DI, , , , , , M.EQ.B1, DIO.IN 
1& I.MOVE , A1.EQ.DI, , , B1.HOLD, , , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY. IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
; ••• IMAG·COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB 
1& RD.MEM & DIV.BY.2 
1& R.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, , B2.EQ.AU, , MIO.IN 
1& I.MOVE , A1.HOLD, , , B1.HOLD, , , M.EQ.B1 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CONT 
; ••• IMAG·SIN & READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.HOLD, , A3.HOLD, B1.EQ.DI, B2.HOLD, , MIO.IN, DIO.IN 
1& I.SUBS A1,MSP, A1.HOLD, , A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, , M.EQ.B1. DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY. IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 
; ••• REAL·COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA 
1& RD.MEM & DIV.BY.2 
1& R.SUBS A1,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MIse 
1& CONT 

••• PASS 1 LOOP CAN DO SHADING 
IT1.LOOP: 

••• REAL.SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.ADD B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
; ••• IMAG.COS, WRITE A - B.w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2 
1& WR.CMPX 
1& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
1& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
/& MISC 
1& CONT 
; ••• IMAG*SIN, READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
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1& R.SUBS A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN 
1& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 
, *** REAL*COS, WRITE A + B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA, ADP.A2 
1& WR.CMPX 
1& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CJP IF.LOW,FFT.ITC,IT1.LOOP 

BTF.LOOP: 
, *** REAL*SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.ADD B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CO NT 

*** IMAG*COS, WRITE A - B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2 
1& WR.CMPX 
1& a.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
1& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CONT 
; *** IMAG*SIN, READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, NORM.ORD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.SUBS A2,B3. A1.HOLD, ~:?EQ.AU, A3.HOLD, B1.EQ.DI. B2.HOLD, , , DIO.IN 
1& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 

*** REAL*COS, WRITE A + B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR1, ADP.LDA, ADP.A2 
1& WR.CMPX 
1& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2 
1& LADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CJP IF.LOW,FFT.DONE,BTF.LOOP 
;1& CJP IF.LOW,FFT.ITC,BTF.LOOP 
; *** REAL*SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.ADD B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MIse 
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/& CO NT 
;/& RPCT BTF.LOOP+1 ;COUNT PASSES FOR TESTING 

; FLUSH PIPELINE 
*** IMAG*COS, WRITE A - B*w 

ADG.HOLD CF.HOLD, DIT, RADIX.2, NORM.ORD, ADR2, ADP.LDB, ADP.B2 
/& WR.CMPX 
/& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
/& I.ADD A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
/& MISC 
/& CONT 
; .. * IMAG*SIN 
ADG.HOLD , DIT, RADIX.2, NORM.ORD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 
/& R.SUBS A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& I.SUBS A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, ,M.EQ.B1 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
/& MISC 
/ & CONT 
; *** WRITE A + B*w 
ADG.HOLD, DIT, RADIX.2, NORM.ORD, , ADP.LDA, ADP.A2 
/& WR.CMPX 
/& R.SUBS A1,A3, , A2.EQ.AU, , , B2.HOLD, , , D.EQ.A2 
/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, , B2.EQ.AU, B3.EQ.MP, , D.EQ.A2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C 
/& MISC 
/& CaNT 

ADG.HOLD , DIT, RADIx.2, NORM.ORD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 
/& R.ADD B2,MSP, , A2.HOLD, , , B2.EQ.AU, B3.EQ.MP 
/& I.SUBS A1,B3, , A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& MSPROD & MISC 
/& CaNT 
; 
ADG. HOLD, DIT, RADIX,. 2, NORM.ORD, 
/& WR.CMPX 
/& R.MOVE , , , , , , , , D.EQ.B2 
/& I.ADD A2,A3, , A2.EQ.AU, , , , 
/& MSPROD & MISC 
/& CaNT 
, 
ADG.HOLD , DIT, RADIX.2, NORM.ORD 
/& RD.MEM & DIV.BY.2 
/& R.SUBS A2,B3, , A2.EQ.AU 
/& I.MOVE , , A2.HOLD 
/& MSPROD & MISC 
/& CaNT 
• , 
ADG.HOLD , DIT, RADIX.2, NORM.ORD, 
/& WR,CMPX 
/& R.MOVE , , , , , , , , D.EQ.A2 
/& I.MOVE , , , , , , , , D.EQ.A2 
/& MSPROD & MISC 

, , 
*** WRITE A - B*w 

ADP.B2 

, , D.EQ.B2 

, , 
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1& JMP FINISH 
EJECT 

* * * * * * * * * * * • * * * * * * * • * • * * * * * * * * * * * * * 

INVERSE FFT PROGRAM (PRE SCRAMBLED DATA) 
SIZE HANDLED BY Am29540 

, 
IFFT:: 
; 
ADG.RST & RD.MEM & DIV.BY.2 
1& R.MOVE & I.MOVE & MSPROD & MISC 
1& CONT 

*** RESET 29540 AND DO NOTHING 

*** FILL PIPELINE BEFORE WRITING 
ADG.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB 
1& RD.MEM & DIV.BY.2 
1& R.MOVE & I.MOVE & MSPROD & MISC 
1& CONT 

*** READ B OPERAND & COEFFICIENT 
ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , , , , B1.EQ.DI, , , , DIO.IN 
1& I.MOVE , , , , B1.EQ.DI, , , , DIO.IN 
1& MSPROD 
1& MISC 
1& CONT 
; u* REAL*COS OF COMPLEX MULTIPLY 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , , , , B1.HOLD, , , M.EQ.B1 
1& I.MOVE , , , , B1.HOLD, , , MIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CONT 

*** REAL*SIN, READ A OPERAND 
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, , ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.EQ.DI, , , , , , M.EQ.B1, DIO.IN 
1& I.MOVE , A1.EQ.DI, , , B1.HOLD, , , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 

*** IMAG*COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB 
1& RD.MEM & DIV.BY.2 
1& R.ADD A1,MSP, A1.HOLD, , A3.EQ.MP, , B2.EQ.AU 
1& I.MOVE , A1.HOLD, , , B1.HOLD, , , M.EQ.Bl 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CO NT 

*** IMAG*SIN, READ e 
ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1 
1& RD.MEM & DIV.BY.2 
1& R.MOVE , A1.HOLD, , A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN 
1& LADD A1,MSP, A1.HOLD, , A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, , M.EQ.B1, DIO.IN 
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1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CO NT 
; *** REAL*COS 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA 
1& RD.MEM & DIV.BY.2 
1& R.SUBS A1,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CONT 

IBTF.LUP: 
, *** REAL*SIN, READ A 
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, ,ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.SUBS B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
, *** IMAG*COS, WRITE A - B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB, ADP.B2 
1& WR.CMPX 
1& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.I1P, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
1& I.SUBS A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
1& MISC 
1& CONT 

*** IMAG*SIN, READ B 
ADG.HOLD CF.LOAD, DIT, RADIX.2, PSD, CONST1, ADP.HOLD, ADP.B1 
1& RD.I1EM & DIV.BY.2 
1& R.ADD A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, B1.EQ.DI, B2.HOLD, , , DIO.IN 
1& I.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, B1.EQ.DI, B2.EQ.AU, ,M.EQ.B1, DIO.IN 
1& MSPROD I1P.ROUND, I1P.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
1& MISC 
1& CONT 

*** REAL*COS, WRITE A + B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR1, ADP.LDA, ADP.A2 
1& WR.CMPX 
1& R.SUBS A1,A3, , A2.EQ.AU, , B1.HOLD, B2.HOLD, , M.EQ.B1, D.EQ.A2 
1& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, B1.HOLD, B2.EQ.AU, B3.EQ.MP, MIO.IN, D.EQ.A2 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFEN 
1& MISC 
1& CJP IF.LOW,FFT.DONE,IBTF.LUP 
; *** REAL*SIN, READ A OPERAND 
ADG.INC CF.HOLD, DIT, RADIX.2, PSD, ,ADP.HOLD, ADP.A1 
1& RD.MEM & DIV.BY.2 
1& R.SUBS B2,MSP, A1.EQ.DI, A2.HOLD, , , B2.EQ.AU, B3.EQ.MP, M.EQ.B1, DIO.IN 
1& I.SUBS A1,B3, A1.EQ.DI, A2.EQ.AU, A3.HOLD, B1.HOLD, B2.HOLD, , MIO.IN, DIO.IN 
1& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFEN 
1& MISC 
1& CONT 
; 
; FLUSH PIPELINE 
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; *** IMAG*COS, WRITE A - B*w 
ADG.HOLD CF.HOLD, DIT, RADIX.2, PSD, ADR2, ADP.LDB, ADP.B2 
/& WR.CMPX 
/& R.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, B3.HOLD, , D.EQ.B2 
/& I.SUBS A2,A3, A1.HOLD, A2.EQ.AU, , B1.HOLD, , , M.EQ.B1, D.EQ.B2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.COS, BUFCD 
/& MISC 
/& CONT 

ADG.HOLD , DIT, RADIX.2, PSD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 

**' IMAG*SIN 

/& R.ADD A2,B3, A1.HOLD, A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& I.ADD A1,MSP, A1.HOLD, A2.HOLD, A3.EQ.MP, , B2.EQ.AU, ,M.EQ.B1 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C, MX.SIN, BUFCD 
/& MISC 
/& CO NT 
; **' WRITE A + B'w 
ADG.HOLD , DI!, RADIX.2, PSD, , ADP.LDA, ADP.A2 
/& WR.CMPX 
/& R.SUBS A1,A3, , A2.EQ.AU, , , B2.HOLD, , , D.EQ.A2 
/& I.ADD B2,MSP, A1.HOLD, , A3.HOLD, , B2.EQ.AU, B3.EQ.MP, , D.EQ.A2 
/& MSPROD MP.ROUND, MP.FRAC, MY.IN, MXY.2C 
/& MISC 
/ & CONT 
; 
ADG.HOLD , DIT, RADIX.2, PSD, , ADP.HOLD 
/& RD.MEM & DIV.BY.2 
/& R.SUBS B2,MSP, , A2.HOLD, , , B2.EQ.AU, B3.EQ.MP 
/& I.SUBS A1,B3, , A2.EQ.AU, A3.HOLD, , B2.HOLD 
/& MSPROD & MISC 
/& CONT 
; *** WRITE A - B*w 
ADG. HOLD , DIT, RADIX.2, PSD, , , ADP.B2 

, , , , , , , , D.EQ.B2 
/& WR.CMPX 
/& R.MOVE 
/& I.SUBS 
/& MSPROD 
/& CONT 

A2,A3, , A2.EQ.AU, , , , , , D.EQ.B2 
& MISC 

ADG. HOLD , DIT, RADIX.2, PSD 
/& RD.MEM & DIV.BY.2 
/& R.ADD A2,B3, , A2.EQ.AU 
/& I.MOVE, ,A2.HOLD 
/& MSPROD & MISC 
/& CONT 
, 
ADG.HOLD , DIT, 
/& WR.CMPX 

RADIX.2, PSD, , , ADP.A2 

/& R.MOVE , , , , , , , , D.EQ.A2 
/& I.MOVE , , , , , , , , D.EQ.A2 
/& MSPROD & MISC 
/& JMP FINISH 
EJECT 

MXMULT: : 
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*'* WRITE A + B*w 



NOoOP & JMP START 
EJECT 

;TBDL 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PROCESS VECTORS 
ORG 1024 - 8 

; 
NOoOP & JMP START INSTRUCTION 0 = NOOP 
NOoOP & JMP MXMULT 1 MATRIX MULTIPLY 
NOoOP & JMP FILTER 2 FILTER 
NOoOP & JMP FFT 3 FFT 
NOoOP & JMP IFFT 4 INVERSE FFT 

END 
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APPENDIX 4 
IIR SECOND ORDER FILTER 

SECTION USING THE 
Am29510 AND Am29PL141 

; Mlcrocode tield definitions 

WORD j2 

- Uutput enable 
- Up code 
- Test polarity 

P31 
1'30-26 
1'25 
1'211-22 
1'21-16 
1'15 
1'111 

- Test lnput select 
lnstruction data 

- lnput data taken llag 
- Input select 

; 1'13 
1'12-11 
1'10-09 
POB-06 
1'05 
1'011 
1'03 
1'02 
1'01 
1'00 

- MAC result select 
- ~hift register control 
- Kegister select 
- ~oefficient select 
- MAC add/subtract control 
- MAC pass/accumulate control 
- MAC round/truncate control 
- uutput data ready rlag 
- Unused 
- Error rlag 

• • • • • • • • • • • • • • • • • • • • • • • • 
Application uefinitions 

. . . • • • • • • • • * • • • • • • • • • • 
; 
DTACK: t:QU 
1 NSEL: toQU 
MACSEL: t:Qll 
HOLD: EQU 
LDA: EQU 
LDB: EQU 
A 1: EOU 
A~: EQU 
B 1: EOU 
B~: EQU 
WO: EQU 
W 1: EQU 
W2: EQU 
W3: EQU 
WII: EQU 
RND: EQU 
TRUNC: t;QU 
ACCUM: t:QU 
PASS: EQU 
~tJB: EQU 
ADD: EOU 
ORDY: ~:OU 

INRDY: t:QU 
READY: toQU 
OUTACK: t:QU 
TAKEN: t:QU 

HII/O 
lBI/O 
lBIlO 
213111 
2HI/l0 
21:\1101 
2Bll11 
2131/10 
2BI/01 
2lUOO 
3QIIO 
3Q/l 
3QII2 
30113 
301111 
113'0 
RND­
lBI/O 
ACCUM­
lBIlO 
SUB­
lBIlO 

3QII0 
1:1/0 

3Qll1 
BIIO 

Input data taken ack 
Input select tristate control 
NAC Input select = INSEL-
29520 instructions 

29520 register select 

Coefficlent select 

29510 round control 

29510 accumulate control 

29510 subtract control 

uutput data ready 

Test condition Input 10 
I'olarity control lor ready 
Test condition Input '1'1 
polarity control tor taken 
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Only need a few instructions for this simple aesign 

CONTINUE: DEF bHU2D:,lOOUOJ, 
I lV, lV, lV,2V,2V,:lV, lV, lV, lV, lV, lX, lVBllO 
GO.PL. IF: OEF bH#39:, lV, 3V~: ,bVJ:, 
I lV, lV, lV, 2V, 2V, 3V, lV, lV, lV, lV, lX, lVBIO 
WAIT.TILL: DEF bH#3A:,1V,3VJ:,bV~:, 

I lV, lV, lV,2V,2V,3V, lV, lV, lV, lV, lX, lVIHIO 
GO. PL: DEF 6H#39:, lBlll, 3006, bV~:, 
I lV, lV, lV,2V,2V,3V, lV, lV, lV, lV, lX, lVBllO 
STOP: OEF 6H#3A:,lBUO,3Q06,bX, 
I lV, lV, lV,2V,2V,3V, lV, lV, lV, lV, lX, lVBIIO 
; 
END 
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Continue 

Go to pipeline if 

Wait for test input 

Go to pipeline 

Error halt 



This program 1mplements the equation: 
y(n) = W(O)*x(n) + W(1)*x(n-l) + W(2)*x(n-2) + W(j)*yln-l) + W(Q)*y(n-2) 
The CC lnput is grounded for unconditional Jumps. 
TO is connected to 1nput data ready 
Tl is connected to output data taken 

TRUE: ~QU B#l 

Keep writing data on input lines until valid data 1S written 
No ops Keep data sampling synchronous 

; 
INIT: 
WAIT. TILL 
/ 
CONTINUE 
CONTINUE 
CONTINUE 
CONTINUE 

KEADY,!NRDY,$+l, 
DTACK*,INSEL,MACSEL*,LDA,Al,WO,ADD,rASS,RND,DRDY* 
DTACK,INSEL*,MACSEL,HOLD,Al,Wo,ADD,rASS,RND,DRDY* 
DTACK*,IMSEL*,MACSEL,HOLD,Al,WO,ADD,PASS,RND,DRDY* 
DTACK*,INSEL*,MACSEL,HOLD,Al,WO,ADD,PASS,RND,DRDY* 
DTACK*,INSEL*,MACSEL,HOLD,Al,WU,ADD,PASS,RMD,DRDY* 

, 
; ~rror 1f next oata sample not ready 
GO.PL.IF KEADY*,INRDY,ERROR, 
/ DTACK*,INSEL,MACSEL*,LDA,A2,Wl,ADD,PASS,TRUNC,DRDY* 

uutput W(O)*x(n) 
CONTINUE DTACK,INSEL*,MACSEL,LDB,A2,Wl,ADD,PASS,TRUNC,DRDY 
, 
; ~rror 1f data not taken 
GO.PL.IF TAKEN*,OUTACK,ERROR, 
/ DTACK*,INSEL*,HACSEL,HOLD,A2,Wl,ADD,PASS,TRUNC,DRDY* 

; Add W(1)*x(n-l) 
CONTINUE DTACK*,INSEL*,MACSEL,HOLD,Al,WO,ADD,ACCUM,TRUNC,DHDY* 

; Add W(3)*y(n-l) 
CONTINUE DTACK*,INSEL*,MACSEL,HOLD,Hl,W3,ADD,ACCUM,RND,DHDY* 
, 
; 00 W2*x(n-2), read oata sample, error 1f not ready 
FOREVER: 
GO.PL.IF HEADY*,INRDY,ERROR, 
/ DTACK,INSEL,MACSEL*,LDA,A2,W2,ADD,PASS,TRUNC,DRDY* 

Add Wl*x(n-l), output previous filtered sample 
CONTINUE DTACK*,INSEL*,HACSEL,LDB,A2,Wl,ADD,ACCUM,TRUNC,DRDY 
, 
; Add wO·xln), error 1f output not taKen 
GO.PL.IF TAKEN*,OUTACK,ERROR, 
/ DTACK*,lNS~L*,MACSKL,HOLD,Al,WO,AOD,ACCUM,TNUNC,DRDY* 

; Add WQ*y(n-2) 
CONTINUE DTACK*,INSEL*,HACSF.L,HOLD,H2,WQ,ADD,ACCUM,TNUNC,DRDY* 
; 
; Add 
GO.PL 
/ 
, 
ERROR: 
STOP 

END 

w3*y(n-l), loop indefinitely 
fOREVER 

DTACK*,INSEL*,MACSEL,HOLD,Bl,W3,ADD,ACCUM,RND,DRDY* 

DTACK*,INSEL*,MACSEL,HOLD,Al,WO,ADD,ACCUM,TRUNC,DNDY*,TRUE 
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APPENDIX 5 
IIR SIXTH ORDER FILTER 
USING THE Am29510 AND 

Am29PL141 

: Mlcrocode field definitions 

WOIlD 32 

P31 - Output enable 
P30-2b - Op code 
P25 - Test polarity 
P2q-22 - Test lnput select 
P21-1b - Instruction data 
P15 - Input data taken flag 
Plq - Input select 
P13 - MAC result select 
P12-09 - Operand address 
P08 - Operand HAM write enable 
P07-04 - Coefficient select 
P03 - MAC add/subtract control 
P02 - MAC pass/accumulate control 
POl - MAC round/truncate control 
POD - Output data ready flag 

• • • • • • • • • • • • • • • • • • • • • • • • 
Application Uefinitions 

• • • • • • • • • • • • • • • • • • • • • • • • 
DTACK: t:QU 
ItISEL: t.QU 
MACSEL: t.QU 
XN: EQU 
XO: EQU 
Xl: EQU 
X2: EQU 
X3 : EQU 
X4: EQU 
X5: EQU 
Xb: EQU 
YO: EQU 
Y 1 : EQU 
Y2: EQU 
Y3: EQU 
yq EQU 
Y5 EQU 
Yb t:QU 

lBIIO 
ltl80 
ltl#O 
qH#l 
qHIIO 
qHIIF 
qHllt: 
qUO 
qH#C 
qHIIB 
qHIA 
qH#8 
qHtt7 
4H#b 
qHII5 
qHttq 
qH'3 
qHtl2 

Input data taken ack 
Input select tristate control 
MAC lnput select = INSEL­
Next data sample x(n+l) 
Current oata sample x(n) 
Previous lnput x(n-l) 

Filtered output y(n) 
Previous output y(n-l) 
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WO: EQU IIHIIU Coefficient select 
W 1 : EQf) IIHf 
W 2: EQU IIH 112 
W3 : EQU IIH#3 
WII: EQU 4HIIlI 
W5: EQU IIHII5 
W6: EQU IIHfl6 
W1 : EQU IIHII1 
W8: EQU IIHIIB 
W9: EQU IIHfl9 
Wl0: EQU IIHflA 
W 11 : EQU II H 1113 
W 12: I::QU IIHflC 
ZERO: I::QU 
WE: EQU 

IIHIII' 
lBIIO 

Put 1n a zero coefficient [or NOP 
Operand HAM write enable 

ADD: EQU 11310 29510 add/subtract control 
SUBT: t;QU ADD-
ACCUM: t.QU 113#0 29510 accumulate control 
PASS: EQU ACCUM-
liND: EQU 113#0 29510 round control 
TRUNC: I::QU RNO-
ORDY: EQU 113/10 output data ready 
; 
INRDY: t::QU 
READY: ~;QU 

OUTACK: t::QU 
TAKE N: t::QU 

3Q#0 
BIIO 
3Qlll 
6110 

Test condition 1nput TO 
Polarity control [or ready 
Test condltlon 1nput Tl 
Polarity control for taken 

CONTINUE: OEF 6H#2D:,100'0~, 

I lV,lV, lV,lIV, lV,lIV, lV, lV, lV, lV 
LD. CREG: OEF 6H1I211:, 113111, 3QI6, bV~:, 
I lV,lV,lV,lIV,lV,lIV,lV,lV,lV,lV 
LOOP: DEF 6HI28: ,IIX, 6V~: , 
I lV, 1V,lV,lIV, lV,lIV, lV, lV, lV, lV 
WAIT.TILL: OEF 6H#3A:,lV,3V~:,6V~:, 
I lV, lV, lV,lIV, 1V,lIV, lV, lV,lV, lV . , 
END 
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continue 

Load counter 

Go to Label if C<>O 

Wait for test input 



This program 1mplements the equation: 
y l n) = W ( 0 ) * x ( n) + ••• + \'1( 0 ) * x ( n- 0) + W ( 1 ) .. y ( n- 1) + ••• + W ( 1 2) "y ( n- 0 ) 
The GC 1nput 1S grounded for unconditional Jumps. 
TO Is connected to 1nput data ready 
Tl 1s connected to output data taken 

TRUE: ~QU Bill 

; Make previous operands = ° 
INIT: 
LD.CREG 01115, 
LOOP $, 
; 
FOREVER: 

OTACK,INSEL",MACSEL",XN,WE,WU,ADD,PASS,TRUNC,DRDY" 
DTACK,lNSEL",MACSEL",XN,WE,WO,ADD,PASS,TRUNC,DRDY· 

WAIT.TILL 
I 

KEADY,lNRDY,$+I, ; ~ynchronize to lnput clock 
DTACK",INSEL,MACSEL",XN,WE,WO,ADD,PA~S,TRUNC,DHDY· 

; Do W 0" x ( n) 
CONTINUE DTACK,INSEL",MACSEL,XO,WE",WO,ADD,PASS,TRUNC,DRDY" 
; Add Wl"x(n-l) 
CONTINUE DTACK",INSEL",MACSEL,Xl,WE",Wl,ADD,ACCUM,TRUNC,DRDY" 
; Add W2"x( n-2) 
CONTINUE DTACK",INSEL",MAC~EL,X2,W~",W2,ADD,ACCUM,THUNC,DHDY" 

; Ad d W 3" x ( n- 3 ) 
CONTINUE DTACK",INSEL",MAC~EL,X3,WE",Wj,ADD,ACCUM,TRUNC,DRDY" 
; Add W4"x(n-4) 
CONTINUE DTACK",INSEL",MACSEL,X4,WE*,Wq,ADD,ACCU~,TRUNC,DRDY" 

; Add W5*x(n-5) 
CONTINUE DTACK",INSEL",MACSEL,X5,WE",W5,ADD,ACCU~,TRUNC,DRDY" 

; Add Wo"x( n-o) 
CONTINUE DTACK",INSEL",MACSEL,X6,WE*,Wo,ADD,ACCUM,TRUNC,DRDY" 
; Add W("y(n-l) 
CONTINUE DTACK",INSEL",MACSEL,Yl,WE",WY,ADD,ACCUM,TRUNC,DRDY" 
; Add ~I!l*y( n-2) 
CONTINUE DTACK",INSEL*,MACSEL,Y2,WE",W!l,ADD,ACCUM,TRUNC,DRDYw 
; Add w9"y( n-3) 
CONTINUE DTACK*,INSEL",MACSEL,Y3,WE",W9,ADD,ACCUM,TRUNC,DRDYW 
; Add wl0"y(n-4) 
CONTINUE DTACK",INSEL",MACSEL,Y4,WE*,Wl0,ADD,ACCUM,TRUNC,DRDYW 
; Add Wl1·y(n-5) 
CONTINUE DTACK",INSEL",MACSEL,Y5,WE",Wll,ADD,ACCUM,TRUNC,DRDYw 
; Add w12"y(n-o) 
CONTINUE DTACK",INSEL",MACSEL,Yo,WE",W12,ADD,ACCUM,RND,DRDY" 
; Wait lor pipeline delay 
CONTINUE DTACK",INSEL",MACSEL,rO,WE*,ZERO,ADD,ACCUM,TRUNC,DRDY" 
; Output data, then lOOp back lor next sample 
WAIT.TILL TAKEN,OUTACK,FOREVER, 
I DTACK*,INSEL",MACSEL,YO,WE,ZERO,ADD,PASS,TRUNC,DRDY 
; 
END 
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APPENDIX 6 
IIR ORDER 15 FILTER 
USING THE Am29510 

AND Am29PL 141 

; Microcode lield definitions 

WORD 32 

P31 - Output enable 
P30-26 - Op code 
P25 - Test polarity 
P24-22 - rest input select 
P21-16 - Instruction data 
P15 - Input data taken flag 
P14 - Input select 
P13 - MAC result select 
P12-09 - Uperand address 
P08 - Operand HAM write enable 
P07-03 - Coefficient select 
P02 - MAC pass/accumulate control 
POl - MAC round/truncate control 
POO - Uutput data ready flag 

• • • • • • • • • • • • • • • • • • • • • • • • 

Application Definitions 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. " 
; 
DTACK: EQU 18#0 Input data taken ack 
INSEL: t:.QU lB#O Input select tristate control 
~lACSEL: toQll lBIIO tl AC input select ,= HISEL" 
XN: EQU 4Hlll Next data sample x ( n) 
Z 0: EQU 4HIIO 
Z 1: EQU IIHIlF Intermediate result delayed once 
Z<': EQIJ IIH lIE 
Z 3: EQU 4HIID 
Z q: EQU IIHuC 
Z ~: EQU 4HIIB 
Z b: EQU 4HIA 
Z 7: EQU 4HIg 
Z e: EQU 4HII8 
Z 9: EQU 4HI17 
Z 10: EQU IIHI16 
Z 1 1 : EQU IIHII5 
Z 12: EQU 4H 114 
Z 13: F:QU IIHO 
Z '14: EQU 4HII2 
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WO: EOU 50110% Coefficient select 
Wl : EQU 50111% 
W~: EQU 50112% 
W3: EOU 50113% 
W q: EOU 5D114% 
W5: EOU 5015% 
Wb: EQU 501/6% 
W( : EOU 50lln 
W!l : EQO 5011tl% 
W9: EQU 50119% 
Wl0: EQU 501110% 
W 11: EOU 5DII1 U 
W12: ~OU 501112% 
W13: ~OU 50'13~ 
W 111: E::QU 501114% 
W15: EQU 501115% 
W 16: t:QU 501116% 
w 17: t:QU 50111n 
W18: t:QU 501118% 
W19: t:OU 501119% 
W~O: t.;QU 501120:t 
W~l : EQU 501121% 
W~2: EQ!! 501122% 
W23: EQU 50'23% 
W24: EQU 501124% 
W~5: t:QU 501125% 
W~6: EQU 501126% 
W27: EQU 501127% 
W~8: E::QU 501128% 
ZERO: EOU 501131% Zero coefficient for NOOP 
WE: EQU lBIlO Operand HAM write enable 
RNO: EQU lBIlO 29510 round control 
TRUNC: t;QU RNO* 
ACC UH: t;QU 16110 29510 accumulate control 
PASS: t:QU ACCUM* 
OROY: t.;QU 16110 Output <1ata ready 
; 
INROY: t;(.1U 30110 Test condition input TO 
REAOY: t;QU BIIO Polar i ty control t'or ready 
OUTACK: t;QU 3QI1 Test condition lnput T 1 
TAKEN: t;QU B#O Polarity control for taken 

; 
CONTINUE: OEF bHII20:,10D'0%, Continue 
I lV, lV, lV,qV, lV,5V, lV, lV, lV 
to.CREG: OEF bH 1124: , 11:311 1 , 30116, b V %: , Load counter 
I lV, lV, lV, 4V, lV,5V, lV, lV, lV 
LOOP: DEF bHI28: ,qX,bV%:, Go to pipeline if COO 
I lV, lV,lV, 4V, lV,5V, lV, lV, lV 
WAIT. TILL: OEF bHII3A:, lV, 3V%:, bV%:, Wait for test input 
I lV, lV, lV,IIV, lV,5V, lV, lV, lV 

ENO 
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This program 1mplements the equations: 
z(n) = W(O)*x(n) + W(l)*z(n-l) + ••• + W(ll1)*x(n-ll1) 
y(n) = z(n) + W(15)*z(n-l) + ••• + W(28)*z(n-ll1) 
The CC input 15 grounded for unconditional jumps. 
TO is connected to input data ready 
Tl is connected to output data taken 

TRUE: 
, 
; Make 
INIT : 

EQU BUl 

previous operands = 0 

LD.CREG 
LOOP $, 

utl15, DTACK,INSEL*,MACSEL*,ZO,WE,WU,PASS,TRUNC,DRDY* 
DTACK,INSEL*,MACSEL*,ZU,WE,Wu,PASS,TRUNC,DRDY* 

; 
FOREVER: 
WAIT. TILL KEADY,INRDY,$+l, ; wait for data to start 
I DTACK*,INSEL,MACSEL*,XN,WE,WU,PASS,TRUNC,DRDY* 
; Acknowle~ge 1nput, do WO·x(n) 
CONTINUE DTACK,INSEL*,MACSEL,XN,WE*,WU,PASS,TRUNC,DRDY* 
; Add wl*zln-l) 
CONTINUE DTACK*,INSEL*,MACSEL,Zl,WE*,Wl,ACCU~,TRUNC,DRDY* 

; Ad d W 2 * z ( n- 2 ) 
CONTINUE DTACK*,INSEL*,MACSEL,Z2,WE*,W2,ACCUM,TRUNC,DRDY* 
; Add W3*z( n-3) 
CONTINUE DTACK*,INSEL.,MACSEL,Z3,WE*,W3,ACCUM,TRUNC,DRDY* 
; Add WII*z(n-lI) 
CONTINUE DTACK*,INSEL*,MACSEL,ZII,WE*,WII,ACCUM,TRUNC,DRDY* 
; Add W5*z( n-5) 
CONTINUE DTACK*,INSEL*,MACSEL,Z?,WE*,W?,ACCUM,TRUNC,DRDY* 
; Add wt>*z(n-6) 
CONTINUE DTACK*,INSEL*,MACSEL,Zb,WE*,Wb,ACCUM,TRUNC,DRDY* 
; Add w7*z(n-7) 
CONTINUE DTACK*,INSEL*,HACSEL,Z1,WE*,W7,ACCUM,TRUNC,DRDY* 
; Add WS*z( n-8) 
CONTINUE DTACK*,INSEL*,MACSEL,Z~,WE*,Wtl,ACCUM,TRUNC,DRDY* 

; Add w9*z(n-9) 
CONTINUE DTACK*,INSEL*,MACSEL,Z9,WE*,WY,ACCUM,TRUNC,DRDY* 
; Add Wl0*z(n-l0) 
CONTINVE DTACK*,INSEL*,MACSEL,Z10,WE*,Wl0,ACCUM,TRUNC,DRDY* 
; Add wl1*z(n-l1J 
CONTINUE DTACK*,INSEL*,MACSEL,Z11,WE*,Wl1,ACCUM,TRUNC,DRDY* 
; Add W12*z(n-12) 
CONTINUE DTACK*,INSEL*,MACSEL,l12,WE*,W12,ACCUM,TRVNC,DRDY* 
; Add W13*z(n-13J 
CONTINUE DTACK*,INSEL*,MACSEL,Z13,WE*,W13,ACCUM,TRUNC,DRDY* 
; Add Wll1*z(n-lI1J 
CONTINUE DTACK*,INSEL*,MACSEL,Zll1,WE*,Wll1,ACCUM,TRUNC,DRDY* 
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; ~ave lntermediate result 
CONTINUE DTACK*,INSEL*,MACSEL,ZO,WE*,ZERO,ACCU~,TRUNC,DRDY* 
CONTINUE DTACK*,INSEL*,MACSEL,lO,WE,lERO,ACCUM,TRUNC,DRDY* 
; Add W15*z(n-l) 
CONTINUE DTACK*,INSEL*,MACSEL,Zl,WE*,W15,ACCUM,TRUNC,DRDY-
; Add W16*z(n-2) 
CONTINUE DTACK*,INSEL*,MACSEL,Z2,WE*,Wlb,ACCUM,TRUNC,DRDY* 
; Add w17*z(n-3) 
CONTINUE DTACK*,INSEL*,MACSEL,l3,WE*,W17,ACCUM,TRUNC,DRDY* 
; Add W18*z(n-lI) 
CONTINUE DTACK*,INSEL*,MACSEL,ZII,WE*,W1B,ACCUM,TRUNC,DRDY-
; Add w19*z(n-5) 
CONTINUE DTACK*,INSEL*,MACSEL,l~,WE*,W19,ACCUM,TRUNC,DRDY* 
; Add W20*z(n-b) 
CONTINUE DTACK*,INSEL*,MACSEL,Zb,WE*,W20,ACCUM,TRUNC,DRDY* 
; Add w21*z(n-7) 
CONTINUE DTACK*,INSEL*,MACSEL,ZY,WE*,W21,ACCUM,TRUNC,DRDY* 
; Add W22*z(n-S) 
CONTINUE DTACK*,INSEL*,MACSEL,ZB,WE*,W22,ACCUM,TRUNC,DRDY* 
; Add w23*z(n-9) 
CONTINUE DTACK*,INSEL*,MACSEL,Z9,WE*,W23,ACCUH,TRUNC,DRDY* 
; Add W211*z(n-l0) 
CONTINUE DTACK*,INSEL*,MACSEL,l10,WE*,W2I1,ACCUM,TRUNC,DRDY-
; Add W25*z(n-l1) 
CONTINUE DTACK*,INSEL*,MACSEL,Z11,WE*,Wz5,ACCUM,TRUNC,DRDY-
; Add W26*z(n-12) 
CONTINUE DTACK*,INSEL*,MACSEL,Z12,WE*,W26,ACCUM,TRUNC,DRDY* 
; Add W27*z(n-13) 
CO~TINUE DTACK*,INSEL*,MACSEL,Z13,WE*,W27,ACCUM,TRUNC,DRDY-
; Add W28*z(n-ll1) 
CONTINUE DTACK*,INSEL*,MACSEL,Zll1,WE*,W2B,ACCUM,RND,DRDY* 
; Wait for pipeline delay 
CONTINUE DTACK*,INSEL*,MACSEL,XN,WE*,ZERO,ACCUM,TRUNC,DRDY* 
; Wait for data taken, then loop back for next sample 
WAIT. TILL TAKEN,OUTACK,FOREVER 
I DTACK*,INSEL*,MACSEL,XN,WE*,ZERO,ACCUM,TRUNC,DRDY 

END 
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