W

Am29300 Advanced
Demonstration System Micro
Application Devices
Note

S onloia s i obiad

Advanced Micro Devices

Am29300
Demonstration System

Application Note
By Mark McClain

© 1988 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in
order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited
to implied warranties of merchantability or fitness for a particular application. AMD assumes
no responsibility for the use of any circuitry other than the circuitry embodied in an AMD
product.

The information in this publication is believed to be accurate in all respects at the time of
publication, but is subject to change without notice. AMD assumes no responsibility for any
errors or omissions, and disclaims responsibility for any consequences resulting from the use
of the information included herein. Additionally, AMD assumes no responsibility for the
functioning of undescribed features or parameters.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Preface

This application note describes the design of a high-performance microprogrammed 32-bit processor
using the Am29300 family of 32-bit building blocks. Basic design philosophy for a microprogrammed
processor is discussed as the design choices made for this system are explained. Support circuitry
used with the Am29300 family components is also covered in detail. This circuitry includes: Writable
Control Store, Serial Shadow Register diagnostics, and Programmable Array Logic. This edition of
the application note is a reprint of the 1987 version with no changes. However, some assumptions
have been made for specifications on various data-sheet parameters that were applicable at the time
of the writing in 1986, and have since been improved. These improvements are reflected in the
following table. :

CMOS versions of the 29300-family devices, discussed in this application note, have recently been
introduced. The table summarizes worst-case delay times for both the bipolar and CMOS versions.
Also projected values for product speeds in early 1989 are indicated. In cases other than
microprogrammable products, some new and faster devices, or devices of different architecture, may
also affect the design.

CMOS processes have dramatically improved the power dissipation and, in many cases, the
maximum specified delay. As advanced processes provide shorter gate lengths and smaller
geometries, new products will feature reduced delay times.

The fastest cycle times are dependent on the architecture. Some designers are now using cycles of
50-55 ns forimplementation in early 1989. The architectural flexibility and single-cycle execution of
the powerful instruction set is the key to the Am29300 system performance.

SUPPORT TOOLS

There are other sources of information that may be useful to you. The most important designtool is
the comprehensive Am29300/29C300 data book.

An Am29300 evaluation board is also available for device evaluation. ltis a single-board computer
that has a host 80188 microprocessor, 4K writable control store and one of each CMOS device inthe
Am29C300 family. There are RS232 ports for connection to a PC as well as a utility program for
downloading microcode into resident EPROM.

With available design models and simulators running system timing and interconnections, your
design and debugging time is reduced. Hardware tools and emulators with writable control store and
logic analysis allow forinteractive assembly. Sophisticated software support with a new friendly meta
assembler helps software engineers write compact and efficient microcode in high-level language
constructs and user-defined symbolics. All of this support speeds your product to market.

AMD applications and field sales engineers are just a phone call away and will update you on how
to make designing an Am29300 system as easy as possible.

Am29300/29C300 LITERATURE

Contact your local sales office for copies.

Order #
Am29300/29C300 Data Book 09372
Am29C300 Family Brochure 07171
Am29C325 Product Brochure 09746
- Am29332 User's Manual 09287

Am29C327 User's Manual 10028

WORST-CASE DELAY IN NANOSECONDS, OVER COMMERCIAL OPERATING RANGE

Delay Assumed Current Current
In App Note Bipolar CMOS Expected

Device Symbol Value Specification Specification 1Q89 Value
REGISTER FILE Am29334/29C334
Data Output ACCESS 24 24 20 16
OE to Output Valid TURN-ON 20 20 16 13
OE to Output 3 State TURN-OFF 16 16 15 13
Data Set-up s 9 9 11 9
ALU Am29332/29C332
Data A or Bto Y Parity DA, DB to PY 42 42 48 36
Instruction to Y Parity Ito PY 53 53 60 45
Width to Y Parity Wto PY 40 40 43 34
Position to Y Parity Pto PY 48 48 51 41
SEQUENCER Am29331/29C331
Instruction to Y Output ItoY 25 25 17 15
Instruction to D Output 1toD 31 31 19 16
Force Continue to Y Output FCtoY 21 21 15 14
Interrupt Request to Interrupt Ack. INTR to INTA 11 11 11 10
OE,, to D Valid OE,to D 25 25 16 14
PARALLEL MULTIPLIER Am29C323
Unclocked Multiply X or Y to P Parity tuuc 150 N/A 65 60
Clocked Multiply Cycle Time tuc 125 N/A 50 45
Clocked Multiply Data to Clock Set-up toxy 20 N/A 18 17
Clocked Multiply Clock to Output tooep 40 N/A 25 22
FLOATING POINT PROCESSORS Am29325/29C325
Unclocked Multiply tuuc 125 105 125 100
Clocked Multiply tuc 100 70 97 65
Data to Clock Set-up Clocked Multiply tspg 13 9 16 9
Data to Clock Set-up t 104 80 118 80

SD2.

Table of Contents

SECTION 1

SECTION 2
SECTION 3

SECTION 4

SECTION 5

Overview
SYSTEM LAYOUT
DATA FLOW

Memory and I/O Sections
Data Section
Control Section

Nomenclature
Data Section Description

REGISTER FILE
ARITHMETIC LOGIC UNIT
Am29332
Macro Status Register
FLOATING POINT PROCESSOR
Am29325
FPP External Status Register
Seed Look-Up Table

PARALLEL MULTIPLIER

Memory and External System Interface
EXTERNAL BUS INTERFACE CONTROL

Host Access Definition

Host Interface Block Diagram
Event Signals

Memory Enable
AmPAL22V10 Support Logic
SSR Diagnostics

Controller Description

MEMORY

Memory Components
Addressing Scheme
CPU - Memory Buffers
External System Buffers

Control Section Description
MACRO OPCODE SUPPORT

Macro Opcode Register

Macro Opcode Format Restrictions
Macro Opcode Decoding Method
Macro Opcode Map RAM

WCS Port

Macro Operand Address Counters

REGISTER FILE ADDRESS MULTIPLEXER

Read Ports A and B
Wirite Port A
Write Port B

1-1
1-2
1-2
1-2
1-2
1.3
21
3-1
341
31
31
31
3-4
3-4
36
36
3.8

4-1

42
43
44
4-5
4-5
45
47
410
410
410
412
413

5-1
5-1

5-2
53
53
5-4
5-4
5-6
56
57
58

CONTINUED
Table of Contents

SECTION 6

SECTION 7

SECTION 8

APPENDIX A

OZE2rXc—-I0OMMOOW

POSITION AND WIDTH MULTIPLEXERS
SEQUENCER
D BUS TRANSCEIVER
INTERRUPT CONTROL
Interrupt and Trap Philosophy

Interrupt Operation
Trap Operation

MICROCODE CONTROL STORE AND CONTROL PIPELINE
REGISTER
Control Store Function
Pipeline Register Function
Control Store Implementation
CLOCK CONTROL

Clock Qualification Circuit
Clock Generator
MICROCODE WORD
Control Philosophy
Microcode Word Field Descriptions
Alternate Arrangements
CONTROL DECODE

What Is It Good For?
Control Logic Description

System Timing and Critical Path Analysis

DEFINITIONS
CONTROL AND DATA PATHS
WORST CASE PATHS
Case Definitions
FINAL RESULTS
Physical Issues

ELECTRICAL LAYOUT ISSUES FOR POWER SUPPLY
DECOUPLING CAPACITORS

SOCKETS

Conclusion

Related Reference Materlal

Slgnal to Figure Cross Reference

FPP Status PAL Definition

Host Interface Glue PAL Definition
Host Interface Am29PL141 Definition
Memory Address Counter PAL Definition
Macro Operand Counter PAL Definition
Write Port A Multiplexer PAL Definition
Write Port B Multiplexer PAL Definition
Trap Logic PAL Definition

Clock Qualification PAL Definition
Clock Generator PAL Definltion
Control Decode PALs Definitions
Components List

Goals

Disclaimer

58

59

512
512
5-12
513
5-15

5-16
5-16
5-16
5-16
5-18
5-18
5-20
5-22
5-22
5-22
5-28
5-30
5-30
5-30

6-1
6-1
6-1
6-2
6-2
6-4
71

7-1
7-1
7-1
8-1

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1
-1

J-1
K-1
L-1
M-1
N-1
01
0O-1

SECTION 1
Overview

This application note describes the design of a high ~ Am29331 - 16-bit Address Sequencer,
performance microprogrammed 32-bit processor using aAm29332 - 32-bit Arithmetic Logic Unit
the Am29300 family of 32-bit building blocks. '

y g Am29334 - 64 x 18-bit Four Port Register File,
Basicdesignphilosophy foramicroprogrammedproces- Am29C323 - 32-bit Parallel (Integer) Multiplier
sor is discussed as the design choices made for this Accumulator,
system are explained. Issues of microprogram sequence
control, interrupt handling, microprogram memory op- AM29325 - 32-bit Floating Point Unt,
tions, microword layout, macroprogramming, highspeed =~ Am29114 - Interrupt Controller,
multiply, and clock control are covered. Am29800 - Family of Interface and Diagnostics
Support circuitry used with the Am29300 family compo- Logic Devices,
nents is also covered in detail. This circuitry includes: ~ Am29PL141 - Fuse Programmable State Machine,
Writable Control Store, Serial Shadow Registerdiagnos- ~ AmpAL18P8 - Programmable Output 20-pin Combi-
tics, and Programable Array Logic. natorial PAL,

The use of the following Advanced Micro Devices com- AmPAL22V10 - Output Macrocell 24-pin PAL,
ponents is illustrated in extensively documented ex-
amples: Am9151 - Registered RAM with SSR™,
Am99C165 -16K x 4-bit CMOS high speed
RAM.
\
\ SECTION CPU
MICROCODE CONTROL STORE

Control Decode

Figure 1-1. System Components

\

\

\
\ \
\ \
\ \
\ \
\ \
\ \
\ N
: . : :
: Control Multiplexers :
v \
\ —»{ Interrupt Control |—# \
\ . y <— \
\ CPU Am29334 Register File \
_DATA “ N
\SECTION _ ¢ > » Am20331 \
\ Sequencer |— \
N y ¥ v 3 IR Agm N
\ \
\ Am29332 Am29325 Am29C323 Macro Opcode \
: ALU FPP PM Reg. and Decode :
\ Y v v 1 \
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\ “ \\\ LR R \\\\\\\\\\\\\\\\
\ \ : External \
N 16K x 36-bit Static RAM J N <l Hostoand | Host
\ NY Diagnostics Bus ¢
\ \ : \
N MEMORY w N
\\\\\\\\‘\\\\\\\\\\\\\‘\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\.\\\\\

09856A 1-1

SSRis a trademark of Advanced Micro Devices, Inc.

&

SECTION 1
Overview

SYSTEM LAYOUT

As with all processors, this system contains three main
portions: Central Processing Unit (CPU), memory, and
input/output (I/0) (see Figure 1-1).

The CPU consists of a contro!l section and a data section:

The data section manipulates data via operations such
as addition, subtraction, shifting, merging, multiplication,
and division. These functions are implemented with the
Am29332 Arithmetic Logic Unit (ALU), Am29325 Float-
ing Point Processor (FPP), and Am29C323 Parallel
Multiplier (PM). The data section also stores operands
and intermediate results in Am29334 register files.

The control section directs the operations performed by
the data section and determines the order in which the
operations are performed. This section contains the
Am29331 Microprogram Sequencer, macro opcode
register & decode, interrupt control logic, miarocode
control store, control decoding logic, and control multi-
plexers for the register file and ALU.

The memory contains a 16K word by 36-bit static RAM.
 Included as part of the memory block are two address
registers/counters, which may be used to speed up
sequential reads and writes made by the CPU.

The I/O portion is a simple connection to a host system’s
address and data bus. It is assumed that the Am29300
demonstration system operates as a peripheral proces-
sor to a larger host system, as might be the case with an
array or digital signal co-processor. Information to be
processed by the demonstration system is loaded into
the memory portion via Direct Memory Access (DMA).
When processing of the data is complete, the host
system unloads the memory portion via DMA.

A diagnostics port is also provided as part of the I/O
section. This port allows control over the demonstration
system clock for single stepping, and it allows for serial
diagnostics to display and control the state of the system.

Throughout the remainder of this application note, it is
assumed that the reader has some previous experience
with microprogrammed processor design and is familiar
with the Am29300 family data sheets. For those readers
not familiar with microprogrammed design, some refer-
ence material is listed in Appendix A.

DATA FLOW

The system data paths are illustrated in the block dia-
gram of Figure 1-2.

Memory and I/O Sections

Information processed by the Am29300 system is ex-
changed between the host system and the memory via
the external bus interface. The information may be both
data and macroinstructions.

Fromthe external bus, the host systemis able to address
the memory via the bus driver connected to the memory
address bus. Data is moved over the memory data bus.
The host system’s only access to the Am29300 system
is via these buses to the memory. Therefore, all data to
the systemflows through the memory via DMA accesses
by the host system.

Diagnostic control and information flows through the
external bus interface via the host interface controller. It
controls the clocking and single stepping of the system
while loading and reading serial diagnostics via Serial
Shadow Registers (SSR) that are placed inkey locations
throughout the system.

(SSR is a trademark of Advanced Micro Devices, Inc.)

Data Section

Data must be moved from the memory to the register file
to be available to the ALU and multipliers for processing.

The register file has four access ports, two ports for
writing data into the file and two ports for reading data out
to the ALU and multipliers. This arrangement allows two
operands to be read fromthe file inthe same cycle astwo
operands are being written. The two read operands are
used eitheras Aand B operandsforthe ALU, FPP,or PM,
or as address and data inputs to the memory.

To move data from the memory to the register file, an
address to the memory is selected from the register file
onthe A read port. This address selects a word from the
memory that istransferred onthe memory databusto the
B write port of the register file.

Once data is loaded into the register file, it can then be
selected for use on either the A or B read ports for input
to the ALU, FPP, or PM.

Data processing results from the ALU, FPP, or PM are
then placed on the Y bus for return to the register file A
write port.

Finally, processed data is moved back to the memory via
the B read port of the register file, while the location to be
written in the memory is addressed by the value onthe A
read port of the register file.

1-2

SECTION 1

Overview
] 1K X 92 bits WCS Using Am9151,
Microcode Control Store 2K X 92 bits PROM Using Am27575,
4K X 92 bits PROM Using Am27S85 Address
Control Pipeline Register | 1
- — Macro Operand Bus a g Control , 12
{ & (T @ Decoder 1
a
Pasition and Register File 16
Width Mux Address Mux
Interrupt | /|
Logic
YRA__YRB VWA ¥wB ‘DA §o8) L__,
[Am29334 Register File | - Am29331
A Bus | y4 D<JL Sequencer
f NI N ﬁ f
v v¢ l. ' y ¥
Floating Parallel Macro Macro
ALU Point Multiplier g‘”"‘"d ,f‘mn‘:fm
Am29332 Am29325 Am29C323 ounters ap
L Macro Opcode Register I
__Status Bus 3 Status
_Y_Bus N N\ MA_Bus 3,5, P
4 MD_Bus) 36, DZ Extornal
[(~
Memory Address .
16K X 36 bits Dinamaenel 4 H ”
/ iagnostics— ost Interface,
Data SSR Diagnostics,
Clock Controls
System Clocks <@
09856A 1-2

Figure 1-2. Am29300 Demonstration System

(NOTE: The advantage of using both write ports on the
register file is that it is possible to perform calculations
and write the results via the A write port at the same time
that new datais being moved into the registerfile fromthe
memory via the B write port. This will be illustrated in
more detail later in this document.)

Control Section

D Bus

The D bus is a highway for information flow between the
microcode control store, interrupt controlsequencer and
data section of the CPU.

Branch addresses or constants from the microcode can
pass to the sequencer via the D bus. The interrupt
controller's interrupt vector base address register may
also be loaded via the D bus.

Constants from the microcode can pass to the data
section for use in calculations via the D bus to A bus
transceiver. Microcode constants can also be used as

addresses to the memory, via aD bus to A bus to memory
address bus connection.

Variable data can be passed from the register file to the
sequencer. The sequencer can also return data to the
register file,viathe A bus to ALU Y bus to A write port
path. The D bus path to the sequencer is valuable for
storing and retrieving the state information in the se-
quencer when interrupts, traps, or context switches
occur.

Control Decode

This section of logic expands encoded microcode fields
into individual control lines used throughout the system.

Interrupt Logic

This circuit monitors interrupt and trap conditions suchas
parity errors and breakpoints. When an interrupt condi-
tion is detected, an interrupt request to the sequencer is
made and an interrupt address vector generated.

SECTION 1
Overview

Sequencer

The sequencer is an address multiplexer with an on-chip
address incrementer and stack. It selects the address for
each microinstruction word read from the control store.
The address selected depends on the instruction to the
sequencer and on the state of test conditions. The
sequencer can select addresses from the branch field of
the control pipeline register, the macro opcode map, the
internal stack, the increment of the last microinstruction
address, or one of four status condition driven multi-way
branch inputs.

Macro Opcode Support

Macro vs. Micro Programs: A microprogram is the
definition for the state of the primary system control
signals during each system clock cycle. Each word of
microcode usually has a large number of bits so that
many parallel operations may be controlled simultane-
ously. Each microcode word must deal with the intricate
details of system operation. The writing of microcode is
a slow tedious process that must take into account every
facet of system operation in order to provide the most
efficient use of system resources.

The advantage of microcode is that, very often, different
system operations can be overlapped (done in parallel)
since there is parallel control over all the system re-
sources.

A “macroprogram” is a series of microcode subroutine
calls. Each macroinstruction has an opcode field that is
simply a value that can be translated into the starting

- address of a microcode subroutine within the system
microprogram. The macroinstruction may include para-
meters that are passed to the microprogram. These
parameters might be register addresses, loop counter
values, immediate data, or memory addresses.

The advantage of a macroprogramis that the instructions
are very simple and require relatively few bits to define as
compared to a microcode word. The macroinstructions
are simpler because all the details of system operation
are specified by the underlying microcode instructions.
The simpler instructions allow macroprograms to be
written much more quickly than microprograms. There-
fore, once a set of microcode subroutines are developed
to perform the most often needed system operations, a
wide variety of macroprogram applications can be
quickly written. Macroinstructions remove the system
programmer’s concern over every detail of system
operation. :

The disadvantage of a macroprogram is that each in-
struction must be fetched from memory and decoded
(translated to a microcode subroutine address) before

each microcode subroutine is executed. When each
subroutine execution is long compared to the overhead
of fetching and decoding the macroinstruction, the
macroprogram will run nearly as fast as an equivalent
microprogram with the advantage being a much easier
programming task. When the microcode subroutines are
short compared to the macroinstruction overhead, the
system speed can drop significantly.

So, if macroprogramming concepts are used carefully, a
macroprogrammed approach to system design canyield
a significant improvement in the ease of system use
without a large decline in system performance.

For that reason, the Am29300 demonstration system
includes the features described below, which allow a
macroprogrammed approach. These features are in-
tended to show how basic macroprogramming can be
implemented.

Macro Opcode Reglster: When macro-instructions are
executed, the instructions are addressed in the memory
viathe A read port of the register file in the same way as
described earlier for data. The selected instruction is
read from the memory via the memory data bus and
written into the macro opcode register. The instruction
can also be written into the register file via the B write port
in the same cycle (which may be useful for instructions
that contain immediate operands that would be used by
the data section). ‘

Macro Opcode Map RAM: The macro opcode map
RAM is made of three Am9150 high speed SRAMs. The
opcode portion of the macro opcode register addresses
amicrocode entry pointtable inthe map RAM. This entry
point is then used by the Am29331 sequencer as a
branch address to the microcode routine that performs
the function required by the macroinstruction.

Macro Operands: The operand portion of the macro
opcode register is loaded into the macro operand count-
ers. The macroinstruction operands allow the direct
specification of register file addresses, ALU shift values,
or ALU field masks to be used by the microcode routines.

Register File Address, Position, and Width
Multiplexers: Register file addresses are passed to the
register file via the register file address multiplexer. Po-
sition and width information for shift values and field
masks are passed to the ALU via the position and width
multiplexers. These multiplexers allow either the microc-
ode or the macroinstructions to control the register file
and ALU.

1-4

SECTION 2

¢\

Nomenclature

Throughoutthe remaining figuresinthis application note,
some naming and drawing conventions are used as
noted below.

Allsignal names are written as single word identifiers with
underlines used to provide visual space between sec-
tions of a multi-word identifier.

Signals that are active low have names that end with an
asterisk. In some of this document’s programmable logic
definition files, this convention is not allowed. In those
situations, the active low signal names will begin with an
exclamation point or end with an underline character.

Clock and qualified clock signals have names that begin
with CLK_.

Groups of signals that form buses are shown as single
lines with an associated numberthatindicates how many
lines are involved. Bus lines are drawn with 45 degree
turns and intersections instead of the usual right angle
turns and intersections used with individual signal lines,
in order to highlight buses visually. Major data highways
such as the A_BUS, B_BUS, and Y_BUS have signal
namesthatendin_BUS. The lines of abus are numbered
from least significant to most significant with the least
significant identified as line zero (0). Where a subset of
the lines in a bus is shown, the bus signal name will be
followed by parentheses containing numbers that show
the range of lines in use. The numbers of a continuous
range are separated by a colon (:), non-contiguously
numbered lines are separated by a comma (,). Where
lines of a bus are split out to show the specific connection
of bus lines in a circuit, a small number that indicates the
line number within the bus will be shown near each line
that is split off.)

Four major buses in the system share a common struc-
ture. The A_BUS, B_BUS, Y_BUS, and MD_BUS all
have the same layout. Each bus carries a 36-bit data
word, which is arranged as four 8-bit bytes, each byte
having its own parity bit. Byte zero (least significant) is

locatedinbits 0:7; bit 32is the parity bit for byte zero. Byte
oneisinbits 8:15 with its parity inbit 33. Byte twois in bits
16:23 with parity in bit 34. Byte three is in bits 24:31 with
parity in bit 35.

Signals that come directly from the microcode memory
pipeline register have signal names that begin with “P_".

Ground symbols (zero volt points) are drawn as down-
ward pointing triangles, or the signal name GND is used.

Points tied to +5 volts are labeled with the signal name
VCC'
Components are shown with pin numbers immediately
outside the rectangle that defines the component.
Component-specific signal names related to component
pins may be shown immediately inside the component
rectangle. Where there are several components shown
on a page with very similar connections, only one of the
components will have pin numbers and signal names
shown. The remaining components on the page are
wired in the same manner.

Each component is assigned and labeled with a “U
number” that uniquely identifies the component. This
helps identify specific components for discussion and
separates identical type devices in the system compo-
nent list.

. Because this demonstration system is complex by na-

ture, it must be illustrated with many figures, each focus-
ing on a different portion of the overall system. In order to
show the signalinterconnections between all parts of the
system, each signal that leaves or enters afigureis given
a name. Often the names are abbreviations in order to
save space in the figures. Each name shows a relation-
ship to the signal’s use. Wherever the same signal name
appears in different figures, a connection between the
figures is defined. To help in identifying all the figures to
which a signal travels, there is a signal-to-figure cross
reference listing in Appendix B.

2-1

SECTION 3

1

Data Section Description

REGISTER FILE

Two Am29334 register files are used in tandem to pro-
vide a 64-register by 36-bit wide file. This allows the
storage of 32-bit data plus parity (1 parity bit/byte). Each
Am29334 contains 64 registers that are 18 bits wide; see
Figure 3-1.)

An Am29334 register file can both read and write datain
the same cycle, but it does not performthe read and write
simultaneously. The read must be performed during part
of the system cycle and the write during another part of
the cycle. Since read data is needed by the ALU and
multipliers as early in the cycle as possible and, since
data values to be written are only available later in the
cycle, the reading of data is done in the first half of the
cycle and the writing done in the second half of the cycle.
A convenient way to separate the two parts of the cycle
is to use the system clock signal to control the internal
address mux and write enable.

Asconnectedin Figure 3-1,the read port latch enables
(LEA and LEB) and write port common enables (WEAC*
and WEBC*) are tied to the data section clock line
(CLK_D). This causes read data to be accessed while
CLK_Dis high and read data to be latched when CLK_D
is low. Data is written when CLK_D is low if the port write
enables are active (WEAL* and WEAH*, or WEBL" and
WEBH?*). The high and low byte write enables for each
port are tied together since only full 36-bit word writes will
be done in this system.

The various read and write addresses are provided from
the register file address muitiplexers, which will be cov-
ered later.

The output enable (P_OEA®) and write enables
(P_WEA* and P_WEB*) come directly from the microc-
ode pipeline register.

ARITHMETIC LOGIC UNIT

Am29332

The Am29332 provides a 64-bit funnel (barrel) shifter,
32-bit mask generator, and 32-bit ALU. The ALU can
perform binary and BCD add or subtract, multi-cycle
multiply or divide, and logical operations. This single,
highly-integrated chip provides the complete function of
the ALU block inthis system. The only added component
is an external register used to maintain status bits for the
macroprogram separate from status information used by
the micro program. The ALU is shown in Figure 3-2.

Most of the control lines come directly from the microc-
ode control pipeline register.

The ALU output enable (ALU_QE") is decoded from the
control pipeline register.

The POSITION and WIDTH signals come from the posi-
tion and width multiplexers. These multiplexers select
the position and width values from either the microcode
pipeline or the macroinstruction in the macro opcode
register.

The slave mode input is tied to ground since there will be
no use of the slave mode comparisons in this system.

The HOLD input is used as an enable contro! over the
clocking of the internal micro status register and Q
register during times the ALU is not in use. Because the
ALU, FPP, and PM share the same data source and
destination buses (A_BUS, B_BUS, and Y_BUS), they
generally cannot be used simultaneously due to bus
contention. In recognition of this, the control fields forthe
ALU, FPP, and PM have been overlapped in the microc-
ode to minimize the required width of each microcode
word. This means that at certaintimes the control lines to
the ALU will be meaningless to the ALU because the
values on the lines are determined by the needs of the
FPP or PM. Therefore, unless the hold input is used to
prevent clocking of the status and Q register duing these
times, the ALU status could be lost whenever the FPP or~
PM are in use.

Note, however, that the hold input is not used as the
general means to prevent clocking of the ALU registers
whenthe whole systemis halted (e.g., during single step
mode). The data clock (CLK_D) that is distributed
throughout the data section of the CPUis a qualified clock
andwillbe usedto controlthe state change of all registers
in the data section, including those in the ALU at times
when the whole system is halted.

Macro Status Register

There are two levels of status information that the pro-
grammer of a microprogrammed system musttrackifthat
system executes macroinstructions. These are referred
to as the micro and macro status. The micro status of the
systemis updated at the end of each microcode step and
is part of the systemstate. The macro statusis part of the
macroprogram state as reflected at the end of each
macro step. Since many microinstructions may be exe-
cuted to perform the function defined by a given macro-
instruction, the macro status reflects the machine state

3-1

c€

CLK_D [
ARB[>-54
AwB[—>-54
P_WEB* [>
36 y .
MD_BUS [~ (18:35) (©0:17)
3] : \ 0:1
Y BUS [~ (18:35) ©17)
srrrsssssssrafencsasrcecnnnnnnnny B L L R A S R
: DA DB \ : DA 0B \
\ \
\ \ \ N
N \ N \
\ { 18 \ N (t! 18 v
— — \
: WE o WEpLA—¢ —— VWEa Y WE b y—4
\
\
[Y—
W WE gy A +—10E WEpy ¥
: - DUALA SS By [R L B
— RAM [
WE ac s Tt 64x18 T WEsc : v WEac } 64x18 WE sc N
Y A o A b S
wA S —<"] A wa— —— ml'_'>~—€’—
[y 6, | Mux MUX
A4 Agg : —\—\ A >4
\ \ \
R Y L] L) LEA
N \ \ \
\
A\ OFA [: r———OCEA :
N \ \ \
\ \ \
N \ N \
\ U1 Y vh Am29334 \ . uz2 Y Y Am29334 \
N A A
(18:35) | (18:35) 17 | 17
P_WEA*
6
awa >
S,
ARA [
P_OEA* [>
36
AN A [—>8_BUS
36
N A > A BUS
D9BSBA 31

Figure 3-1 Register File

€ NOILO3S

uopdpiosag uojloes eleq

€€

36,

B_BUS > 3;
ya
A BUS & 7 .
\Srrssssssssssfranas e SN
\ \
\ () \
PBM > \Borrow \
- VHODE = \
ALY OE* [> : OEY > :
GND [>— 4-Slave > |
9, N Decode —é—@—ﬁ PE_ALY
P_ALU_INST [>—— 1 Inst > PARITY : :
ERROR
ALU HOLD [: HOLD [+ \
v
\
\- Macro {32 2432 4, staws N
v Link —r~— Register
A Macro MUX | output 3
\ Carry | “ Mask \
\ % Generator l \
LY
P_MC_MAC [>——— . Funnel N
wintH [7 3 Shifter Mux :
\ 32 432 32 N
6, \ \
posimon [> — — > m& Y R V. M V s \
\ . \
\ ALU & Priority Encoder \
\ \
\ Up/Down Shifter \
N \
\ \
N \
\ 32 \
CLK D > N cP > Tl Register \
\
\ 1 — \
\ Reg \
P_REG_STAT [> : 32 \
\
N \
7\ . \
\
s02 [| (21 |22 \ N
MODE [>————— SDIT \ \
DCLK_MOP [>—————> 0 U4 Am20818-1 : N
CLK_MAC_STAT [>>———— 0 \
T 1|1a 'R \ Am29332
OE . mSmmemTswmamwnww
Link| Camry
- 3«3/ [>vY Bus
5 [> (Not Used)
AN Vi > STATUS_BUS
5 {>sp 3

. Figure 3-2 ALU Block

- —{ > MAC_STATUS_BUS

088564 3.2

uondiiosag uopoas eieqg

€ NOILO3S

SECTION 3
Data Section Description

from the macroprogram viewpoint. The macro status
may be carried across many microinstruction cycles
without change. This requires a separate register to
containthe macro status independent of the micro status.
The Am29332 does not have an internal macro status
register so one must be provided externally. The loading
of the macro status register and the use of the macro
status information by the microprogram must be con-
trolled by microcode. The Am29332 does provide anon-
board muitiplexer to select between the micro and
macro status inputs. Only the carry and link values are
used directly by the Am29332 since these are the only
status values normally used to modify data values. The
macro stat us for the zero, sign, and overflow flags can
be used by the sequencer as test conditions for branch
instructions.

The register used for holding macro status is an
Am29818-1. The register is loaded (clocked) by a quali-
fied clock called CLK_MAC_STAT. This clockis qualified
by the load macro status bit in the control pipeline
register. The Am29818-1 is also used to provide a
diagnostic ability to read and load the macro status
register through the use of an internal serial shadow
register (SSR).

FLOATING POINT PROCESSOR

Am29325

The Am29325 Floating Point Processor (FPP) performs
32-bit floating point multiplication, addition, or subtrac-
tionin a single cycle. Floating point division can be done
in sevencycles using the Newton-Raphson method. The
FPP is shownin Figure 3-3.

All the control lines for the FPP are driven directly by the
microcode pipeline register with the exception of the FPP
output enable and the register flow-through enables.
Those signals are decoded from the data path select field
of the microcode pipeline register. The output enable
decodeisdone by the AmPAL22V10inFigure 3-3.The
register flow through enable decode is done by the
control decode logic which is described later.

It should be noted that the Am29325 is not a full fledged
member of the Am29300 family. It is different from the
other Am29300 members with regard to three key char-
acteristics: it is slower, does no data bus parity checking
or generation, and has no slave mode capability.

The Am29325 flow through calculation time is 100 to
125 nsratherthanthe 420or70 ns forthe ALU or PM
(the current PMis at 120 ns, but the fastest version will
be at 70 ns). This requires that whenever the FPP is
used, the system clock cycle must be extended to allow

for the slower propagation time. This extended clock
timing is covered later in more detail.

The lack of parity checking is not much of a problem for
the rest of the system since it only affects the data
integrity of information going through the FPP. The lack
of parity generation isn’t a problem as long as only the
FPP is working on the data. The problem starts when
floating point data is moved back to memory or is con-
verted to integer values for use by the ALU.

If data from the FPP is read by the ALU or PM, parity
errors will be detected and a system interrupt may
result. That problem can be avoided if the system has
kept track of which data resulted from FPP calculations
and if the parity errors are ignored when that data is
read. But if FPP data results are moved directly to the
memory and then on to the host system, the parity errors
will eventually be found.

So some means of adding parity generation to the FPP
should be provided. One way is to add four 8-bit parity
generator chips to the FPP output bus. This consumes
power and boardspace while providing a benefit only
when FPP datais moved directly through the register file
to the memory. A better way is to use the parity genera-
tors already available in the Am293332 by requiring that
FPP data be passed through the ALU before being
moved to the memory. Even though the data may not be
modified by the ALU, correct parity will be generated on
the ALU output.

Withthe use of alittle trick, there is away to provide parity
checking on the FPP data inputs. To do this, one of the
data path select codes is used to control the output
enables of both the ALU and FPP. This code (P_DSP =
11) causes the FPP outputs to be disabled and the ALU
outputs enabled, even though the data path selected is
the FPP. By turning on the ALU outputs, the ALU parity
error output will also be enabled and any parity error on
the A_BUS or B_BUS will be reported. At the same time,
the control microcode forthe FPP is still valid and may be
used to load registers with the data present on the
A_BUS and B_BUS. Of course the register file should not
be loaded from the Y_BUS in the cycle where this
scheme is used because the ALU is driving nonsense
information onto the Y_BUS. Enabling the ALU outputs
isonly atrick used to make the ALU parity checker results
available for this scheme. Note that the ALU hold input
remains active even though the ALU output enable is
active. This prevents any state change in the ALU when
the FPP is the data path actually in use.

Finally, the issue of no slave error checking is unimpor-
tant, since the slave mode is not used in this system.

3-4

S-€

P_DPS
PFP13
P_ENS*
A_BUS
B_BUS
P_FP_H
FP_FTO
P_ENR®
CLK D
P_FP 10
P_FP_H
P_FP_I2
P_IEEE/DEC
P_PROJ/AFF*
P_FP_RNDO
P_FP_RND1
P_ENF*

FP_FT1

Seed Look-Up

Table Prom
D%
[
>
otz tiopaty) | :-\\R\B;:‘-\-\\\\\.‘.\\.\\‘\‘\\‘\“\\‘~\.‘\‘\\\-.:
7
\
\
[>_32 (No Pariy) N SBus \
’ \ 24 R-R 2 4 s,4-8 :
\ “ R 31 0-S3 N
B> N 1 — \
\ ENS
_FT0 MUX — REGS \
o) | oK N
Nl {
ENR l \
> — ¥ { \
\ B \
o TS REGR MUX '
\ONE Bus (<Low) | Ly T l — :
o Bus (= O
I 516/32 (-LOW) Flag N
\ - ¥ Floating-Point | Generator :
>3 L 2 oot | - 2 N
‘ o :
D— \Jp— Register \
_ENF d-
: \ T REGF INEXACT) FPP
N INVALID \ Status L__SINT FPP*
NAN v 9
| e 3, M2 Bus
D— y OE 87 Overfiow \ > (0:2)
[y 2 '/‘, FeE Underflow d Us a
D A \ 0" '3 Zero N AmPAL [—I> M1_Bus
: \ 22V10A
\
D— : .
\
v ous Am29325 N
O T Py
D—
Y_Bus
7 -
32 (No Parity) (@:31)
098564 3.3

Figure 3-3 Floating Point Block

uopdiosaq uojloes ejed

€ NOILO3S

SECTION 3
Data Section Description

FPP External Status Register

Status Pipeline Issue

The FPP status flags appear at the status outputs along
with data atthe Y outputs. If the FPP “F” registeris made
transparent, the status flag register is also transparent. lf
the F register is clocked, so is the status register. In this
demonstration system this presents a problem.

Normally, status conditions from the data section are
registered before being used by the control section. This
maintains the pipelined, parallel operation of the control
and data sections. The control section bases its testing
on registered status from the last data section cycle
rather than being forced to wait for status results of the
current execution cycle before determining the next
microinstruction to execute.

To provide the same system for the FPP requires an
external status register for cycles in which the F register
is transparent to allow results to pass directly to the
register file. In that situation the status flags are not
registered by the FPP and thus, without an external
register, there is no place to pipeline the status for the
control section.

Multiple Status Flag Test Issue

Several of the FPP status flags signal events of equal
importance such that it would be a convenience to be
able to test multiple flags in a single cycle rather than
basing branches on only one flag at a time.

A simple way to test multiple conditions at one time is to
execute a multi-way branch based on the bits being
tested. In the case of the FPP there are six flags, too
many for a single multi-way branch which can be based
on only four bits. A solution is to OR some of the flags
together as one of the multi-way branch bits and use the
remaining bits directly as part of the multi-way branch
address. In that way, one multi-way branch can test all
six flags.

When testing the status, if no flags are active, no abnor-
mal condition exists, and the zero value destination of the
multi-way branch continues. If one or more of the direct
flags is active, the multi-way branch goes straight to a
routine to handle the problem. If one of the ORed flags is
active, the multi-way branch destination instruction can
eitherignore the flags or take a second multi-way branch
thatis based on direct inputs of the flags that were ORed
in the first multi-way branch (an advantage of having
more than one source for multi-way branch conditions).
The second multi-way branch determines which of the
ORed flags was active in the first multi-way branch.

FPP Status Register Implementation

An AmPAL22V10 Programmable Array Logic device is
usedto register the FPP status flags and performthe OR
of some of the flags.

This external status register loads new status only as the
result of cyclesinwhich the FPPis the selected data path
during aninstruction execution. Whenthe FPP “F"regis-
ter is in transparent mode, the external status registeris
loaded with the flags at the end of an FPP cycle. This
results in a one level deep pipeline on status in the same
way that ALU status is pipelined one level internal to the
ALU. Whenthe F registerisinclocked mode, the external
status register will load in the cycle following an FPP
cycle. This will capture the data that s loaded into the
FPP on chip status register at the end of the FPP cycle.
This causes the status to be double pipelined for cycles
in which the F register is clocked.

The multi-way branch outputs for the first level branch are
the following flags: Overflow, Underflow, Invalid , and the
OR of the Inexact, OR, NAN, and Zero flags. The multi-
way branch outputs for the second level branch are:
Inexact, NAN, Zero, and Ground.

These groups of four bits are substituted for the least
significant four bits of a branch address to act as a multi-
way branch.

Inadditionto the multi-way branch test for flags, an added
output of the status PAL ORs together the Overflow,
Underflow, and Invalid flags for use as an interrupt signal
to the system interrupt controller, thus giving one addi-
tional way to monitor the FPP error flags. Using the
interrupt approach eliminates the need to follow floating
point operations with multi-way branches in order to test
for error conditions. Execution of instructions can pro-
ceed, assuming no major problems existinan FPP cycle.
If one of the above mentioned error flags is active, the
resulting interrupt will deal with the error.

One last element of the status PAL is that it acts as part
of the system control decode by decoding the data path
select bits of the control pipeline to enable the FPP output
when the FPP is the selected data path.

The logic definition file for the status PAL is listed in
Appendix C.

Seed Look-Up Table

The Newton-Raphson division algorithm does a division
of A by B by finding the inverse of B (i.e., 1/B) and
performing a multiply against A. This scheme works with
the Am29325 since finding the inverse of B requires only

3-6

SECTION 3
Data Section Description

a series of multiplies and subtracts which the Am29325
can do in single cycles. But, these multiplies and sub-
tracts are performed only to refine the accuracy of a
precalculated seed value (a rough approximation of the
inverse of B). So atable of seed values must be available
to support division with the Am29325.

This seedtableis storedin PROM memory externalto the
FPP. The B variable is used to address the seed table,
and the resulting seed value is fed into the FPP to be
refined.

Placingthe seedtable inthe pathto one ofthe FPP inputs
normally requires a 32-bit multiplexer to select between
the PROM and the direct input bus for loading normal
operandsinmultiply, add, and subtractoperations. Build-
ing this multiplexer would require at least six hex-2-to-1
multiplexer chips. The PROM and multiplexerwould also
increase the propagation time needed to load the FPP,
thereby requiring the cycle timing to be extended even
more than is already required by the FPP.

The implementation of the seed table in this system has
been modified to save chips and cycle length. Instead of
placing the seed table betweenthe A_BUS and the FPP,
it is placed to the side as an appendage of the A_BUS
(see Figure 3-3). Theinputs and outputs of thetable are
tied together and tothe A_BUS. The internal structure of
the table is shown in Figure 3-4. It contains three
PROMs, each of whichis followed by a three-state output
register (the Am27S25 has an internal register). In this
arrangement the PROMSs can be accessed by the value
presentonthe A_BUSinonecycle andthe resulting seed
loaded into the registers. In the following cycle the
registers can drive the A_BUS with the seed value. This
scheme requires three fewer chips and no extension to
the FPP cycle time. It is true that two cycles are now
required to load the seed value but the cycle used to
access the seed table can be. combined with the
operation of checking for a zero divisor. This operation is
generally done during the setup for a divide.

P_IEEE/DEC* [>——

[A_BUS (31)

A BUS (30:23)

A B u7
A 70 27525

uio
ek 2020 197 A Bus 31
REGISTER

A BUS (30:23)

REGISTERED
PROM

us

utt
2920

Q7:0

27543
PROM

A_BUS (22:11)

us9
27543 7:0

RegIsTER I A_BUS (22:15)

> a_BUS

ut2

D7:0 2920

1970 4 BUS (14:7)

PROM

! REGISTER

REGISTER

u1lo

D6:0 2920

960, gus (6:0)}

09856A 3-4

Figure 3-4. Floating Point Block Seed Look-Up Table -- Data Flow Diagram

3-7

SECTION 3
Data Section Description

The detailed connections of the seed table are shownin
Figure 3-5.The Am27S25 contains the seed values for
the exponentand the two Am27S43s containthe seedfor
the fraction. The seed table output enable (SEED_OE*)
signal is a decoded output of the microcode control
pipeline register. The output register of the seed look-up
table is clocked by the data section clock.

PARALLEL MULTIPLIER

The entire Parallel Multiplier (PM) block’s function is
provided by the single chip Am29C323 Parallel Multi-
plier. This chip performs 32-bit, 64-bit, 96-bit, and 128-bit
integer multiplies. It also can perform multiply accumu-
late using an internal 67-bit accumulator. The PM is
shown in Figure 3-6.

Most of the control signals come directly from the control
pipeline register. The Parallel Multiplier output enable
(PM_OE?") is decoded from the data path select field of
the microcode pipeline register. The enable and flow
through controls for the instruction register (ENI* and
FTI) are tied respectively to GND and VCC to allow
instructions to flow directly from the microcode pipeline
register to the multiplier, since the microcode pipeline
register already provides the one level of pipeline re-
quired in the system. The flow through enable on the
product register is enabled only when the PM data path
is selected via the control decode logic.

30:23 9,
P_IEEE/ A (
- 3 8,23 |Aos
DEC* .
v 7S 30:11 {No Parity) 32
ce .ﬁaﬁ 9:11,13:17 ™ va — O A_Bus (0:31)
20 ur f 310
27525 3023
SEED_OE*[> FE o 1
5 D> X Lse MsB
— 8 8
‘f & Doy
3
K D > uto | Asteo
- OYom 2020 | 256091215
T &R 16,19
el E
12 . D
a9 N2 2120 07
21 a9] Aon
w| 552
%] CS1 ys uty A 2218
27543
4K x8
12
22:11 \.1. D
4 Aot o7
CS,
TS, us uUi2 / 147
‘l,— 27843 2920
4K x8
-
GND| >~

09856A 35

Figure 3-5. Floating Point Block Seed Look-Up Table -- Implementation

3-8

6-€

A_BUS
B_BUS
CLK D
P_EXNA*
P_EXNB*
P_ENYA*
P_ENYB*
GND
P_ENP*
P_ENT*
P_FA
P_TSEL
P_PSELO
P_PSEL1
PM_OE*
GND

P_FTX
P_FTY
vee

P_XSEL
P_YSEL
P_TCX
P_TCY
P_ACCO
P_ACC1
P_RND

N

pgrTrsiAdasasissasasiamafTaTALTILASLTALLLLALLLL LRSS

\
\
N 24 LY
N N N
\ | - To HARDERR
‘ ey
N oY - 4 | Parity XA | XB Parity 0-32 Bit
\ Check Reg| Reg Check Shifter
A MUX > XSEL
674 <+—— YSEL
N YAl a2x22 3 i—
\ R
N 991 5| muttiply 7Bt Adder] «—— ACCo
N— v 5 Y8 x| Array 2 ACCH
7 Reg ~——anND
N ok [| Product Register |
L——————— ENXA, ENXB_ - FTX
L % ENYA,ENYB +~——FTY
A ENT From PARERR 167 <«
ENO — —FP
— ENT I]
FA
L] — J Parity
TSEL r—
+—— PSELO !] ! G
\ Po—%E“ Hard Error [
: SLAVE Generation :
\ HARDERR
NI Am29C323
-\““\-“\\‘.\\\“.\\\““~“‘.‘\-‘\“\1:\““‘-‘

N\

— o,

PP PPyl

Py yyyyl

PARERR ———————————{ > PE_PM

—> Y_BUS

VAYAYAVAVRVAVAVRVANAY, QJLYYTTTTWQUWUU

N Figure 3-6. Integer Multiplier Block

{>(Not Used)

00858A 3-8

uonduosaq uonoas eleq

€ NOILO3S

- SECTION 4

Pn

Memory and External System Interface

The memory block and external system interface are
discussed together in this chapter because of the tight
interconnection betweenthese areas. Itis helpful to view
the two blocks togetherin orderto understand the shared
use these blocks make of the memory address bus
(MA_BUS) and the memory data bus (MD_BUS). Fig-
ure 4-1shows ablock diagram of the data and address
paths used in these sections. '

One thing to note is that both the memory and the
externalinterface are not elaborate in design. Essentially
the external I/O section of this system is just a second
port on the system memory. This system does little more
than provide a simple arbitration scheme on access to
the memory that allows an externally supplied DMA
device to load and retrieve data from the memory. Event

or interrupt signaling between the CPU and host system
is limitedto a single pair of interrupt signals, one from host
to CPU, one from CPU to host. Memory itself is only a
simple bank of static RAM with two address counters on
the input that help speed up array calculation.

The reason for this simple approach is that the design to
the CPU using the Am29300 family of building blocks is
the focus of this application note. Every reader who may
find the information in this application note useful will
have different memory and 1/0 requirements to handle
and will very likely design individual approachs to mem-
ory and I/0. Therefore, only this simple approach is
covered here so that more time can be spent discussing
the CPU design.

A_BUS > fl>
R \
N \
N \
v MEMORY ADDRESS N
) COUNTER A — \
' 14 MEMORY \
[} ?+ . \
16K x 36 bit
N MEMORY ADDRESS MA_BUS x 36 bi \
. COUNTER B > \
N \
' b 36 \
[N \
i MEMORY !
: EXTERNAL INTERFACE J :
ADDRESS > > '
N \
N \
N \ MD_BUS Register Fi
- /\. - egister File
DATA >= N N > 8" Wiile Port
Lbescememerammeenssannn=== N and Macro
Instruction
Register
B_BUS > Il>
09856A 4-1

Figure 4-1. Memory and External Interface Address and Data Paths

SECTION 4
Memory and External System Interface

EXTERNAL BUS INTERFACE CONTROL

Host Access Definition

A block diagram of the host interface controller and its
connection to the MA_BUS and MD_BUS buffers is
shown in Figure 4-2.

The Am29300 demonstration system is treated as a co-
processor to some host system. It ultimately gets all of its
instructions, data, and control from the external host
system. To provide communication with the host using a
minimum of design effort and special hardware, only two
portals into the Am29300 system are allowed.

One portal is the Am29300 memory, which is treated as
a dual port memory with all words directly mapped into
the host bus address space. With this, the host has
complete access to macroinstructions and data going
into and out of the system.

The second port is a serial diagnostics shift chain that
runs through key control registers of the system. This
serial pathway gives access to loading and reading the
microcode writable control store, to the control pipeline
register, to loading and reading the macro opcode map
RAM, to the macro opcode register, to the macro status
“register, and to the interrupt base address register.

Through this serial port, the microinstructions are loaded
by the host before program execution begins. Also, the
system clocks can be controlled by the host to allow
diagnostics and code debugging via single stepping and
breakpoints. ‘

These portals are controlled by a state machine that is
separate from the Am29300 system. The state machine
isreferredto asthe host interface controller. It constantly
monitors the external host address bus. When the host
presents an address that matches a preset address on
the Am29300 system board, the host interface controller
is selected to perform one of several interface functions.

Any function requested by the host takes priority over
anything that the Am29300 CPU is doing. The host
always gains control of the memory address and data
buses as soon asthe CPU clocks canbe stopped andthe
CPU to memory bus buffers disabled.

The function performed is dependent on the address
used, thus the commands from the host to the interface
controller are memory mapped. A 24-bitaddressfromthe
host is assumed for this design. The 6 most significant
bits (23:18) of the address are matched to the Am29300
systemboard addressto selectthe hostinterface control-
ler. The nexttwo most significant bits (17:16) are used to
selectacommand mode. The 3 least significant bits (2:0)

- READY
EXT_READY ¢———{ Address - |
Recognize
4
- AM29806 o < »CLOCK_CNTL
! En os!
(23:16, 2:0) Interface
Controller
Am29PL141 Gl <+ SD_4
| ue <
N SF{:; ‘W Logic Sb_s
EXT_WEN" Am22V10
EXT_RESET. Am29825 oA
EXT_INTR -
E_WR'
“5‘ W‘R E}‘ L Control
3 soI e spo- »SD_1
2 Memory SSR Port
@
5 y [[
D—| >
14
ot U
ﬁ MA_Bus ~ ~N ABUS
1 3 4 y £| UL
EXT_DATA D Bus " < B_BUS

09856A 4-2

Figure 4-2. Host Interface Block Diagram

42

SECTION 4
Memory and External System Interface

are usedto select a specific command function within two
of the command modes.

Host Interface Block Diagram

The 6 most significant bits of the host address are
checked by the address recognition block: if the address
matches the board address, then the match signalis fed
into the input of a synchronizing register. Also fed into this
register are: the external bus write enable line
(EXT_WEN?*); the external address bits 17, 16, 2:0
[EXT_ADD(17,16,2:0)]; and the host system reset line.

The synchronizing register is clocked by a free-running
version of the Am29300 system clock. The register used
has special meta-stable hardened circuitry that prevents
the outputs from oscillating, regardless of the timing
relationship of input datato clock. Thisregisterallows the
entire Am29300 system to run asynchronously with
regard to the host system clock. All the interaction be-
tween the host system and the Am29300 system is
synchronized to the Am29300 system clock by the regis-
ter. Each commandto the hostinterface controlleris thus
presented at the output of this registerin synchronization
with the host interface controller clock.

The heart of the host interface is an Am29PL141 Fuse
Programmable Controller. It is a microprogrammed
sequencer with on-chip microcode memory and pipeline
register. This sequencer implements the state machine
functions needed to control the interaction between the
host and the Am29300 system. Used with the
Am29PL141 is an Am22V10 PAL. This PAL collects
together some glue logic functions: an interrupt signal
latch, a multiplexer, and some encoding logic, allof which
are described later.

The Am29PL141 provides control signals to the clock
gating and distribution section of the Am29300 system. It
also controls the enabling of all the butfers and transceiv-
ers that connect with the MA_BUS and MD_BUS. The
controller acts as a ‘traffic cop”that allows only one driver
on those buses at a time to prevent contention. The
controller also manages the loading, reading, and shift-
ing of the Serial Shadow Register diagnostic chain.

The Serial Shadow Register (SSR) diagnostics portis a
32-bit-wide parallel read and write register that also
functions as a shift register. Data to be read or written to
the SSR diagnostic chain is loaded or read via this port.
The port is connected to the host via the MD_BUS. The

EXT_ADD

(23:78) [A B

SW \/

EXT_READY €+——— ACK C |*

U106
Am29827

cc ——>—» wesmit:

-———’ »
T WCS_WR

——|>—> DCLK_WCS
T43

—————» DCLK_MOP

u14
Am29806
EWR"
Any E
AnyE*
2
EXT_ADD (16,17) ———pt——n Add 16:17
EXT WEN*— 5] U5

| Am2gs2s | Add02

3
EXT_ADD (0:2) —————»
EXT_RESET —
CLK_FREE_RUN

T20 [—" DCLK_SSR

——>— wmone

ute - SD|_SSR_MUX
Reset Am29PL141 CPU_BUS_EN *

[EXT_BUS_EN*

N » SSR_BUS_EN*
L » MEM_EN*

————— CLOCK_CNTL

Mo

7 » E_ADD (16:17)

ANY_E*

09856A 4-3

Figure 4-3. Host Interface Controller

4-3

SECTION 4
Memory and External System Interface

portis builtfrom four Am29818-1 SSR diagnostic pipeline
registers. These registers, like all the registers in the
diagnostics chain in this system, contain one normal
parallelinput and output pipeline register that is backed-
up or “shadowed” by a second parallel input and output
register that also acts as a serial shift register. The
pipeline register can be loaded from the shadow register
and the shadow register can be loaded from the outputs
of the pipeline register. This gives the ability to move data
into orout of the pipeline register viathe shadow register.
Data in the shadow register can be serially shifted to
othersimilar registersinthe system. By connecting allthe
diagnostic serial shadow registers together in a serial
chain, data canbe moved serially through alarge number
of key registers in the system using very few wires.

The SSR diagnostics port is just an extra section of the
diagnostics chain that runs throughout the Am29300
system. This extra section is connected to the MD_BUS
to serve as a parallel input and output port that gives
access to the serial shadow register chain.

A slightly more detailed view of the Host Interface Con-
troller is shown in Figures 4-3 and 4-4.

Event Signals

The host and the Am29300 system need to be able to
signal each other when important events occur, such as
the transfer of ownership over sections of the dual port
memory. To allow this, a simple interrupt setling and
clearing scheme is provided.

The host interrupts the Am29300 system with a com-
mand to the host interface controller. The controller in
turn sets an interrupt flag in the Am29300 system inter-
rupt controller. The interrupt is cleared when the
Am29300 services its interrupt controller.

The Am29300 interrupts the host by using a microcode
bitto set alatchthatdrives aninterruptline onthe external
bus. The interrupt is cleared whenever the host does an
operation on the SSR port. The interrupt latch is imple-
mented in the AmPAL22V10, as shown in Figure 4-4.

CNTL_EN ————
P_INT_HOST

P_FC *

E_ADD (17)°

EXT_INTR

N
|/

Vv ©
=1 K=

E_ADD (16)

ANY_E *

CLK_FREE_RUN

P_MEM (1)

P_MEM (0)

CPU_BUS_EN *

MEM_EN *

B,

SD_4

SD-6

MODE

it Lbb@ S ¢

SDI_SSR_MUX

)

SYS_MEM_EN ¥

SD_0

\V4

09856A 4-4

Figure 4-4. U17 Am22V10A Host Interface Glue Logic

4-4

SECTION 4
Memory and External System Interface

Memory Enable

The Am29300 system memory can be enabled by
either the Am29300 microcode or by the host interface
controller. A simple multiplexer is needed to direct the
correct control signal to the memory enable input. This
logic is also implemented in the AmPAL22V10 shown
in Figure 4-4.

AmPAL22V10 Support Logic

Figure 4-4 shows the logic for the AmPAL22V10 that
integrates the interrupt signal latch, SDI multiplexer, and
memory enable logic. The logic equation definition file for
this PAL is listed in Appendix D.

SSR Diagnostics
SSR Shift Path
Figure 4-5 shows a block diagram of how the serial

shadow registers in the system are linked together and
how they relate to the macro opcode map RAM, se-

quencer, and microcode control store. Most of these
registers are also depicted in other Figures throughout
this application note in their réles as parallel input and
output pipeline registers. Figure 4-5 emphasizes the
serial in and out and control connections of the shadow
registers also contained in these registers.

The SSR diagnostics port is shown as the starting and
ending point for the entire shift chain (or loop as seen
here). Data to be loaded into the SSR loop is parallel
loadedinto this registerfromthe MD_BUS via the bidirec-
tional outputs of the registers in this port (note: the
shadow registerin the Am29818-1 gets its input from the
output pins of the Am29818-1 pipeline register).

Data loaded into this shadow register is then shifted into
one of two branches of the SSR loop. One branch flows
through the Writable Control Store (WCS) port and the
microcode control store pipeline shadow registers. The
WCS portis used to address the microcode control store
or to receive (load) data from (to) the macro opcode map
RAM. The microcode control store shadow register is
used to write data into the microcode writable control
store or to read the contents of the control pipeline

sp4| Am29818
Interrupt
BASE Address
[
D_CLK MOP
Lado MUX ‘ v ¥
1 Macro Opcode Register Status Register
2 sp.o| U18:U21SSRPort AmM29818 sD_2 Am29818 sD_s
3 > Am29818
1 0 = SD_1
A
1 & Address Hold
v Y _ v
Opcode Map
SDI_SSR_MUX] RAM '1’2 S:;:gl;ge‘r
WE Am3150 Dout A
MD_BUS (31:0) < v
I
N
SSR_BUS_EN 2
DCLK_SSR 3
) Control Store
x WCS Port
~ Control Pipeline Register
Am29818 [Tso.s bt =
4 |y 4 4 4 -
MODE
WCS_WR*
DCLK_WCS
WCS_INIT *
09856A 4-5

Figure 4-5. Serial Diagnostics Shift Path

45

SECTION 4
Memory and External System Interface

register. The second branch flows through the macro
opcode, macro status, and the interrupt base address
registers. The macro opcode register is used in part to
address the macro opcode map RAM .

These branches are separate becauseit helpsto shorten
the shiftchain length by using branches and because the
shift chain clock to the writable control store and WCS
port must be separate from the shift clocks to the rest of
the diagnostics chain. The shift clocks must be separate
because of the way the writable control store is loaded.

The data outputs of the control store are connected to the
inputs of the pipeline register as required for normal use
in the system. To write the memory, the inputs must be
driven with the data to be written, turning the input pins
into outputs. Inthe Writable Control Store (WCS) pipeline
register this is fine, since the memory outputs are dis-
abled during the write.

If other diagnostic registers in the systemwere tiedto the
same shift clock and mode control lines as the WCS
pipeline, there could be a problem every time the WCSiis
written. The other diagnostic registers not involved inthe
WCS write would see the same control signals as the
WCS registers and would drive theirinput pins. Depend-
ing on what the other registers were connected to, this
situation could cause serious contention problems
through the system.

For this reason, the SSR used to load WCS is treated
separately from other SSR registers in the system. It is
worth noting that the only control signal that need be
separateis the shift clock. The mode and serial path may
be shared with all SSR in the system. Putting the SSR
into WCS loading mode, requiresthe shift clockto load an
internal mode flip flop. If the shift clockis active only to the
SSR used for WCS when the MODE and Serial Data In
(SDI) signals are set high, only the WCS SSR will go into
the input pin driving mode.

The end of each branch in the SSR loop returns to a
multiplexer at the serial data input (SDI) of the SSR
diagnostics port. This multiplexer allows the selection of
the shifted branch into the port when the SSR loop is
being read rather thanwritten. It also allows the SDlvalue
to be forced when the MODE signal is high. When the
MODE signal is high, all the SSRs in the system pass

their SD! directly to their Serial Data Output (SDO). This
causes the SDI value forced at the input of the SSR port
to be passed directly to all SSRs in the system (note:
significant propagation time from SDI to SDO for each
SSR is involved). In this way the forced value of SDI
becomes an additional control signal to all the SSRs in
the system. The function of this multiplexer is integrated
into the AmPAL22V10 as shown in Figure 4-4.

SSR Reading and Writing

To read the contents of the pipeline registers in the
Am29300 system, the host must first send acommandto
load the SSR throughout the system from the pipeline
registers. Then the host must shift the contents of the
SSR into the SSR port register (up to 32 bits at a time).
The host then performs a read of the SSR port. The host
then repeats the shifting-and-reading process until the
entire SSR chain has been read.

To write the system pipeline registers, the host reverses
the above procedure. Data is first written into the SSR
port. Then the SSR chain is shifted to move data into

“position. The SSR port loading and SSR chain shifting go

on until the section of the SSR chain desired is filled.
Finally a pipeline load command is issued by the host to
load the contents of the SSR into the pipeline registers.

To write the macro opcode map RAM and the microcode
writable control store (note: these are treated as a single
WCS and must be written together), an address for the
map RAM is first loaded into the macro opcode pipeline
register via the method described above. Then the ad-
dress for the microcode WCSis loadedinto the WCS port
pipeline register. Next, the data to be written into the map
RAM andinto the microcode WCSis shiftedintothe WCS
port SSR and WCS SSR. A load WCS command is then
given which performs the actual write of data into the
memories. During the write operation the output of the
WCS portis enabled andthe Am29331 sequenceroutput
is disabled (via its HOLD pin).

The only trick involved in the SSR Reading and Writingis
knowing how much to shift the SSR during each read or
write. The problem is that the SSR chain length in this
system (and in nearly every real system) is not an even
multiple of the SSR port size. During the first (or last) shift
operation of either the read or the write of pipeline

4-6

SECTION 4
Memory and External System Interface

registers, itwill be necessary to shiftfewerthanthe full 32
bits of the SSR port. The number of bits to be shifted
depends on the chain length. One thing to note is that the
chain length will be in a multiple of 4 bits because
diagnostic pipeline registers are currently available only
in 4-bit and 8-bit devices. So, when a shift operation is
commanded by the host, the number of nibbles (4-bit
shifts) to be shifted must be indicated.

A final note: during the shifting of the WCS SSR, the
Am29300 system clocks must be haited. This is due to
the fact that pipeline clock and shift clock to the Am9151
may not occur within 65 ns of each other. Since these
clocks would occur within the above window in this
system, the pipeline clock must not be active.

Controller Description
Function/Command Descriptions
The following is a list of the address values for functions

that the host interface will perform when addressed by
the host:

Memory Access: Reading and writing of the Am29300
system memory is done by selecting the address for the
Am29300 system with address bits 16 and 17 equal to
zero. The address for the specific word in memory is
contained in address bits 0:15. The host interface con-
troller, upon recognizing the host access, will stop the
clocks to the Am29300 system and disable the CPU to
MA_BUS and MD_BUS buffers. At the same time the
external bus to MA_BUS and MD_BUS transceivers are
enabled. This suspends the operation of the Am29300
system and gives memory access to the external host.
The write enable line on the external bus determines
whether a read or write occurs.

Note that by suspending the Am29300 systemoperation,
the memory access is transparent to (or hidden from) the
CPU. There is no action required on the part of the
Am29300 microcode or interrupt control.

Serial Dlagnostics Port Access: This.access is very
similarto that of a memory access. The differenceis that
the SSR port register is being read or written instead of
memory.

ADDRESS BITS FUNCTION
17 16 2 1 0
0 0 x x x Am29300 Memory Access
0 1 x x X Serial Diagnostics Port Access
1 0 0 0 O lilegal code
1 0 0 0 1 Halt CPU
1 0 0 t O Run CPU
i 0 0 1 1 Single Step CPU
i 0 1 0 O Single Step CPU Control Section
i 0 1 0 1 Single Step CPU Data Section
1 0 1 1 0 Interrupt CPU
1 0 1 1 1 Reset CPU
i 1 0 0 0 lilegal code
i 1 0 0 1 Load Pipeline Register
i1 1 0 1 O© Load Macro Opcode Register
i 1 0 1 1 Load Writable Control Store
1 1 1 0 O0 Load Initialization Register
1 1 1 0o 1 Load Serial Shadow Register
1 1 1 1 0 Shift WCS SSR Chain
1 1 1 1 1 Shift Macro Opcode SSR chain

47

SECTION 4
Memory and External System Interface

Halt CPU: This command throws the Am29300 system
clocks in to a continuous stop condition until the mode is
cleared by the RUN CPU command or temporarily over-
riden by one of the single step commands.

Run CPU: This command starts the Am29300 system
clocks running.

Single Step CPU: When the CPU is halted, this com-
mand will cause all the system clocks to cycle once to
advance the state of the CPU one step. Note that gated
clocks will be active during this cycle only if their enables
are active (i.e., gated clocks operate as they would during
a normal clock cycle; they are not forced to operate).

This mode is useful during diagnostic operations to single
step the machine between serial load and unload of the
SSR diagnostics.

Single Step CPU Control Section: This will step only
the clocks in the control section of the CPU. The control
pipeline, macro opcode, macro operand, status, se-
quencer, and interrupt registers may be affected.

This is useful for forcing the control section into a new
state under the control of diagnostics, such as a forced
branch to a new location in the microcode. This is done
by first loading the control pipeline with an instruction to
branch via the SSR diagnostics chain. The control sec-
tionwould then be single stepped to execute the branch.
Note that during these operations, the data sectionis not
affected and no data is modified.

Single Step CPU Data Section: This operation single
steps the clocks only inthe data section of the CPU. This
may be useful for repetitive diagnostic operations involv-
ing only the data section.

Interrupt CPU: This command causes the hostinterface
controller to set aninterruptinput to the Am29300 system
interrupt controller. The interrupt controller in turn priori-
tizes the interrupt and causes an interrupt to the CPU
when that type of interrupt is enabled.

Reset CPU: This willmake the reset line to the Am29300
system active and step all the ungated system clocks.
The clocking is required by some parts of the system to
affect reset state changes.

Load Pipeline Register: This command will step only
the clock to the control pipeline and WCS port for one
cycle while forcingthe pipeline registersto load data from
the SSR chain. This is used to control the state of the
pipeline through serial diagnostics.

Load Macro Opcode Register: This steps only the clock
to the macro opcode, macro operand, status, and inter-
rupt base address pipeline registers while forcing the
registers to load from the SSR chain.

Load Writable Control Store: This command initiates a
series of clock cycles that cause datain the SSR chainto
be loaded into the writable microcode control store and
the macro opcode map RAM from the SSR chain. The
address loaded is also specified in the SSR chain.

Load Initialization Register: Like the previous com-
mand, this operation loads the writable microcode store.
The difference is that only the WCS (Am3151) initialize
registers are loaded from the SSR chain.

Load Serlal Shadow Register: This causes the con-
tents of all diagnostic pipeline registers to be copied into
the related SSR chain elements. Thisis used to read the
Am29300 system state into the SSR chain so that it can
be shifted out to the host.

Shift WCS SSR Chaln: This command shifts the con-
tents of the SSR port register into the SSR diagnostics
chainused for the writable control store. It also brings the
bits at the end of the WCS SSR chain into the SSR port
register. Thisis the serial read and write operation of the
WCS SSR chain (or loop).

Shift Macro Opcode SSR Chain: Thisis the same as
the previous command but it affects the SSR chain
associated with the macro opcode, status, and interrupt
base address registers.

lllegal Code: Due to the way the host interface control-
ler algorithm was implemented, this command (address
combination) isillegal. If it is used, it will lock up the host
interface controller in an infinite loop.

Access Timing

The speed of interaction between the host and the
Am29300 system is regulated by both the host and the
host interface controller.

Once the Am29300 system is addressed by the host, the
hostinterface controller holds the external bus by driving
EXT_READY inactive. This continues untilthe hostinter-
face controller completes the command requested. The
EXT_READY signal is then made active and held active
until the host stops addressing the Am29300 system. At
thattime, the hostinterface controller recognizes that the
host has completed the transaction and the
EXT_READY line is again made inactive.

48

SECTION 4
Memory and External System Interface

In this fashion, either the host interface controller or the
host can extend the length of the external bus transaction
as required. The signal timing between the host and the
host interface is treated as asynchronous. The timing of
the hostinterfaceitself is synchronous with the Am29300
internal clock cycle.

Aninteraction diagramis shown below for a bus transac-
tion between the host and the Am29300 system. The
single-line dividers indicate one clock cycle of the

Am29300 system. The double-line dividers indicate one
or more clocks as needed for synchronization or algo-
rithm execution.

The length of an external bus transaction can vary from
about 6 Am29300 system clock cycles for a memory
access, to about 80 clock cycles for an SSR shift
operation. Regardless of the transaction type, the
Am29300 system looks to the host like a slave bus
peripheral. Sometimes, as in the case of the SSR shift
operation, it is a rather slow peripheral.

External Bus Activity Am29300 System Activity
Address to Am29300 is CPU is active.
active on the bus. CPU owns MA and MD bus.

Address is clocked into
the host interface
controller synchronizing

CPU is still active.
CPU still owns internal bus.
Host interface controller

register. performs branch to command
routine.
External bus CPU clocks are stopped.

transceivers are enabled
if needed.

CPU bus buffers are disabled.
Host interface executes first
instruction of command routine.
READY may or may not be made
active depending on routine.

If READY is inactive,
wait for host interface

to complete algorithm
and make READY active.
CPU operation is still
suspended.

If READY is active, then

wait for host to

release external bus by
stopping selection of

the Am29300 system. !

External bus address
no longer selects
Am29300 system.

CPU still suspended.
Host interface waiting to
see host release bus.

Lack of external bus
address is clocked into
host interface sync
register.

CPU still suspended.
Host interface branches back
to idle loop.

External bus transceiver
is disabled.

CPU clocks are active.
CPU has MA and MD bus access.
Host interface waits in idle loop for next command.

49

SECTION 4 :
Memory and External System Interface

Program Definition

A detailed definition of the host interface controller's
algorithm is contained in Appendix E.

MEMORY
Memory Components

The memory device used to construct the 16K word x 36-
bit memory is the Am99C165. Thisis a 16K x 4-bit CMOS
static RAM memory. The 35 ns access time version is
assumed in any timing estimates for the Am29300
demonstration system. Nine memories are used as
shown in Figure 4-6.

The Am99C165 is used so that an additional output
enable is available to help prevent bus contention with
other buffers on the MD_BUS. The memory outputs are
disabled whenever the memory write enable line is
active. The write enable line is also used to control the
direction of the external bus data transceiver and the
enable on the CPU data buffer. The delay of the inverter
on the output enable input to the memory has been
matched by a buffer in each of the other bus drivers just
noted. This is so that when a write operation is signalled,
each bus driver receives its bus enable or disable signal
at the same time as the memory. This overlaps the turn
off time of the memory outputs with the turn ontime of the
other bus drivers td minimize bus contention with the
memory.

The enable line to the memory is used to power down the
memory when it is not being selected by the Am29300
CPU.

The write enable line to the memory is gated with the
Am29300 system free-running clock. This keeps the
write line high (inactive) until late in the cycle when all
the control signals that feed into the memory enable
have settled. This is important for cycles in which there
is a change of ownership on the memory address and
data buses. The gating with clock ensures that unin-
tended pulses on the write enable line that may occur
early in the system cycle will not cause spurious writes in
the memory.

Addressing Scheme

Description: Withreference to Figure 4-1,the memory
address bus (MA_BUS) is not only the address input to
the memory, itis also a part of a4 to 1 multiplexer. There
are four address drivers tied to the MA_BUS. They are:
the A_BUSto MA_BUS buffer, the External Bus address
to MA_BUS buffer, and the two memory address count-
ers. Each of these sources has three-state output drivers
and, by careful control of which source is allowed to drive
the MA_BUS at any one time, the sources form the 4 to
1 multiplexer.

In this way the memory can be addressed directly by the
A_BUS or the External Bus. The memory can also be
addressed indirectly by the A_BUS via the memory
address counters.

Us1

CLK_FREE_RUN 74AS32
MEM_WEN * [—>—

SYS_MEM_EN* [>—
E U104

MA_BUS [>—t
=l
0]
1 2 e e o
+ 0:13
18,1923 7 Additional Memories 3o
Am99C165 To Form a 36-Bit Word | Am99C165
u22 | e o o
103
oz B4)3 35
101 PS5 Y2 34
loo P& 33
17No 32

36
~—{ > MD_BUS

Figure 4-6. Memory

09856A 4-6

4-10

SECTION 4
Memory and ExternalSystem Interface

The memory address counters are loadable up/down
counters that can serve as address pipeline registers,
sequencers, or stack pointers independent of the CPU’s
data section. They allow sequential reads or writes to
memory by the CPU without requiring the CPU to calcu-
late an address on every read or write cycle.

In fact, after loading a memory address counter with an
initial address, the CPU can perform sequential read
cycles while at the same time continuing to use the data
section for other calculations. Thisis possible because of
the dual write port design of the CPU register file. The
memory datais loaded into the register file viathe B write
port while calculation results on the Y_BUS are stored
through the A write port.

Two counters are provided to allow for consecutive A and
B operand data fetches from two separate arrays of data
without the need to constantly reload the counter values.
Each counter is built from two AmPAL22V10 Program-
mable Array Logic (PAL) devices that act as two cas-
caded 7-bit loadable up/down counters. The counters
are connected as shownin Figure 4-7. The logic defini-
tion file for the PALs is given in Appendix F.

The two counters are only loaded from the A_BUS and
not the External Bus, even though the connection of the
counters to the MA_BUS would permit the latter. This is
due to the difficulty in coordinating the use of the counters

betweenthe CPU and the External Bus. The counters are
simply viewed as a resource of the CPU only.

Why This Approach?: Why address the memory from
the A_BUS? Doing so means that datain the memory is
selected by an address previously stored in the register
file. So one cycle must be used to calculate an address
in the data section of the CPU, store the result in the
register file, and take a second cycle to actually address
the memory. Why not just take the address as it is
calculated and feed it directly from the Y_BUS to the
memory?

First, the accesstime is better fromthe A_BUS than from
the Y_BUS. The A_BUS address is valid 45 nsinto a
cycle which still leaves time to access a fast static RAM
in the same time that data would normally flow from the
A_BUS through the ALU and back to the register file. An
address on the Y_BUS would not be valid until 87 ns
into a cycle, which would require either that the memory
access extend the cycle length significantly or that the
address be pipelined into a memory address register and
be used to address the memory in a second cycle.

Second, since the register file can present two data
words in one cycle it is possible to address the memory
and provide write datain the same cycle; the address and
data go fromthe registerfile to the memory. If the Y_BUS
is used as the path to the memory in a write operation, a
second cycle must be used to provide the write data.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

dfiddddd dddddd
u33
COUNTER A LSB > COUNTER AMSB
5 AM22V10 Am22V10
A A
P_MEM_(3)
P_MEM_(2)
P_MEM_(1) s4—> MA_BUS
P_MEM_(0)
CLK_D
V \Y
u34 u3s
COUNTER B LSB » COUNTERBMSB
Am22V10 Am22V10
LLLCLEE NN

0 1 2 3 4 5 6

7 8 9% 10 11 12 13

09856A 4.7

Figure 4-7. Memory Address Counters A and B

4-11

SECTION 4
Memory and External System Interface

Third, the above comments are trick answers. If the two
approachesof A_BUS orY_BUS as the memory address
path are carefully examined it can be seenthatitis really
a situation of “six of one, or half a dozen of the other”.
Ultimately, in either case, a cycle is use to calculate the
address and a second cycle is used to read or write the
memory; there is only one data path in the system and
only one calculation can occur in a cycle. Between the
two approaches there are various ways to overlap other
calculations with memory accesses to make the best use
of the system’s time but either approach takes the same
time.

The real difference is that the A_BUS method is simpler
from the microprogrammer's point of view. With the
A_BUS method a memory read is done in one cycle and
the resulting data is in the register file in the next cycle.

With the Y_BUS approach there is a one cycle delay
between a read access and the return of data, which
requires that the microprogrammer “fill in the hole” in the
microcode with other useful work to getthe same system
efficiency. So, as adesigner's preference, the A_BUS for
memory address approach is used.

CPU - Memory Buffers

The address buftersfromthe A_BUS tothe MA_BUS and
the data buffers from the B_BUS to the MD_BUS are
shownin Figure 4-8. The address and data bufters are
built from Am29827 10-bit-wide high speed buffers.

The address bus is 14-bits wide to address 16K words of
36-bit-wide memory. But these bits are taken from bit
positions 2:15 of the A_BUS. This leaves the two least
significant bits of the A_BUS unused and therefore treats
the address as being in terms of bytes with the address-
ing restricted to four-byte (word) boundaries. This was
done so thatinterface with an external host bus would be
simpler. Many of the host systems with which this dem-
onstration system could be mated use byte addressing.

With the above address scheme, all the address line
numbering is consistent between the host and CPU. In
addition, if there were a future need to allow byte ad-
dressing of the CPU memory, it would be possible with
only a minor change to the address buffer wiring. Also, it

D % —,‘—l—D MEM_WEN *

P_MEM_WR* [> T
10 DB YB
[») 15
2l
Dg Y.
D7 2 uar
u3s Am29827
Am29827 [23:18
29 - - Dos Y%s
<, (7] o,
OE, J -1-13— OE > Fud
14 S
A_BUS (2:15) [> < 2 [—>wmaBUS
CPU_BUS_EN*
(- 47K
AAA— Voo
A_MD_OE *
-
uss uss
Am29827 Am29827
a 18:26
08
= f <
B_BUS 4 S _ S) A#—[> MD_BUS
—oE
1=
106,
017 27:35
u4o -
Am29827 a1
i, Am29827
9
v Mpos Yoo 2315 M

09856A 4-8

Flgure 4-8. CPU to Memory Bus Buffers

412 -

SECTION 4
Memory and External System Interface

may be notedthat the parity bits onthe A_BUS have been
ignored in the MA_BUS since there is no parity checking
implemented on the memory address.

The data buffers are arranged as one buffer per byte of
the B_BUS (with parity on eachbyte). Note that, since the
B_BUS provides only write data, and read data from the
memory is received by the register file, only a unidirec-
tional buffer is needed.

Whenever the external bus interface does not have the
memory buses in use, the CPU to memory buffers
receive the CPU_BUS_EN" signal to enable the buffers.
If the operation is a write, the CPU_WEN"* signal is
provided by the CPU.

Note that the CPU_WEN" is routed through the address
buffer twice and then to the data buffer to enable it on a
write operation. This is done to help equalize the timing
between this buffer and the output enable on the mem-
ory. Note also that the address buffers have a second
enable input that is controlled by the control pipeline bits
that manage whether the memory address comes from
the A_BUS orfrom one of the memory address counters.

External System Buffers

The address buffers from the External Bus to the
MA_BUS and the data buffers from the External Bus to
the MD_BUS are showninFigure 4-9.The addressbus
is built from Am29827 10-bit-wide high speed buffers.
These buffers are connected in exactly the same way as
described above forthe CPU to memory address buffers.

The data buffers are, however, different from the earlier
circuit description. These buffers are Am29863 non-
inverting 9-bit high speed transceivers. The transceivers
allow data to be both read and written by the externalbus.

When the external host system addresses the Am29300
CPU memory, the external bus interface controller halts
the system clocks in the CPU and disconnects the CPU
from the MA_BUS and MD_BUS by making
CPU_BUS_EN"* inactive. Then the external bus is con-
nected to the memory by making EXT_BUS_EN* active
to enable the external bus buffers. The external bus
supplies a write enable if the operation will be a write.
Note again that the write enable timing is equalized with
that of the write enable to the memory.

—,Tl—D MEM_WEN*

EXT_WEN* [> || 77 gs 2
10] s
D. 15
D2g : D;
g; Ya9 w3
us2 Am29827
Am29827 y J23:18
TE, 2 77 g%—? Yos
OE, J 5113— OE> e
. g
EXT_ADD (2:15) [—> < ¥ > wmaBus
EXT_BUS_EN* [> 47K
AAN— Veo
-
-
usa uas
Am29863 Am29863
/| 18:26
08
o f
EXT_DATA 7 S —Q) #—{> MD_BUS
7 OET 1
17 |OER2
~+JOET, 27:35
OER3 T 917
1 08 215 u4z
N1, 1 Am29863
2:10 ~ U4
Am29863 N

Figure 4-9. External Bus Buffers

09856A 4-9

4-13

SECTION 5
Control Section Description

MACRO OPCODE SUPPORT
Macro Opcode Register

Inorder for the control section of the CPU to make use of
amacroinstruction, the instruction must be selected from
memory and loaded into a register that is accessible to
the control section.)

This register is called the macro opcode register. It is a
32-bit register made from four Am29818-1 pipeline diag-
nostic registers. This register is shown in Figure 5-1.

The most significant 14 bits (bits 31:18) of the register
output are used as the macro opcode. Bits 31:22 are
connected to the address inputs of the macro opcode

map RAM. Bits 21:18 are connected to one of the
Am29331 sequencer's multi-way branch inputs. These
lower four bits may thus be used as an opcode modifier
via a multi-way branch.

Bits 17:0 are the instruction operand register addresses.
These bits are divided into three 6-bit fields, one for each
registerfile port. Bits 17:12 are used as the register file ‘A’
read port address. Bits 11:6 are used as the ‘B’ read port
address. Bits 5:0 are used as theregisterfile ‘A’ write port
address. These addresses are respectively referred to
as the ‘A’, ‘B’, and ‘C’ operand register addresses.

These three addresses allow macroinstructions to spec-
ify directly three address operations with two read
operands and a separate write operand. Note however,

243 - 1
SD_2
| u4s \| 24:31
16:23
u49
|| [~ \| 1623
MD_BUS (0:31) =
— MAC_OP (0:31)
815 N\
uso /] 815
-
07 \L Do.7 .
MODE MODE
DCLK_MOP bocLK , / o7
CLK_MOP bpok
GND OEY Us1
sD_| | SDI
Am29818-1

09856A 5-1

Figure 5-1. Macro Opcode Register

5-1

1

SECTION 5
Control Section Description

that these bits are connected to the macro operand
address counters, which in turn are used to address the
registerfile. Thisis more fully describedin alater section.

In addition, bits 23:18 are connected to the position
multiplexer. This allows macro instructions to specify
directly the ALU position input as the lower bits of the
opcode. Taking the position information from these bits
still leaves all of the operand register addresses free for
use in three address operations.

Also, bits 4:0 are connected to the width multiplexer. This
allows macro instructions to specify diréctly the width
input of the ALU for use in masked operations. Although
this overrides this field of the opcode for use as the ‘C’
operand address, the ‘C’ operand address may inter-
nally be specified as the same as either the ‘A’ or ‘B’
operand register addresses. Thus two address macroin-
structions involving width, or width and position specifi-
ers are possible.

Macro Opcode Format Restrictions

Because of the large number of possible macroin-
struction formats, this application note will not attempt to
provide a detailed macroinstruction set definition. It is
only important that the format restrictions imposed by the
hardware design be stated.

As defined by connections of the macro opcode register,
the macro opcode must always be located within bits

31:22. The size and position of the opcode within this field
are determined by how the macro opcode map RAM is
set up to interpret and map the opcode. The optional
opcode modifier (multi-way branch input) must be in bits
21:18if it is used.

The optional position field must be in bits 24:18 if used
and the optional width field must come from bits 4:0
when used.

All three of the operand register addresses are optional
and if used must come from the fields specified inthe last
section. The operand positions are fixedforthe ‘A’and ‘B’
operands since they may only come from the ‘A’ or ‘B’
operand bits of the macro opcode register. The ‘C’
operand address may come from any of the three
operand fields.

Thereasonthat the ‘A’ and ‘B’ operands do not share the
positional flexibility of the ‘C’ operand is that the ‘A’ and
‘B operands specify registersto be readfromthe register
file. These read addresses are in the critical timing path
for the system, and any excess delay in selecting the
address adds directly to the system cycle time. A multi-
plexer like that used for the ‘C’ operand address would
add undesired cycle lengths. The ‘C’ operand address
may afford its multiplexer delay since the ‘C’ operand
address is not used by the register file until late in the
machine cycle.

31 22 21 18 17 12 11 6 5 0
OPCODE MODIFIER A B (o]
31 0
OPCODE MODIFIER A B % WIDTH
72
31 24 23 18 17 12 11 6 5 0
OPCODE POSITION A B (o]
31 0
OPCODE POSITION A B y// WIDTH
7

Figure 5-2. Example Macro Opcode Formats

09856A 5-2

SECTION 5
Control Section Description

Each operand address is optional, because the operand
address may always be specified in the microcode.

Any optional field, even an unused portion of the opcode
field, may be used as a dataoperand. Where afield is not
used as part of the instruction control, it may be treated
as data by loading the macroinstruction into the register
file. Once the instruction is in the data section of the
system, any data field may be extracted and used in
calculations.

Some example macroinstruction formats are shown in
Figure 5-2. The instructions are shown in a 32-bit word
layout (byte parity is ignored for the moment).

Macro Opcode Decoding Method

The opcode portion of the macroinstruction is the index
into the control store for the location of the first instruction
of a microcode subroutine. Translating the bit pattern of
the opcode into the microcode store address may be
done several ways.

The opcode could be used directly to point to a table of
first instructions at the base of the microcode store. In
such a scheme all microcode routines longer than one
word would require the first word of the routine to branch
to the remaining part of the routine elsewhere in the
microcode store. This would break up many routines into
different parts of microcode store. It may also be ineffi-
cient, depending onwhat other functions the branchfield
of the microcode word could have performed if the first
word of the routine did not have to be a branch.

The opcode could be used directly with zeros inserted at
the least significant end to form an address that would
point to microcode entry points separated by 2, 4, 8, 16,
etc. words, depending onthe number of zeros appended.
This would allow more routines to be located in contigu-
ous words. Only routines longer than the entry point
spacing would have to be splitby branching to otherparts
of microcode store. The disadvantage is that where
routines are shorter than the entry point spacing, there
would be unused holes in the microcode store. When
microprograms are expanded and the microcode store
gets full (as memories always seemto do), the micropro-
grams will be split more and more times to fit into the
unused holes in the microcode store. This will make the
micro program more difficult to design and debug as the
microcode store fills up.

A PAL may be programmed to decode the opcode into
entry point addresses spaced to fit the microprograms.
This allows the microcode words of the routines to be

kept together in consecutive locations, making design
and debugging of programs easier. But each time rou-
tines are moved or expanded in size, a new program for
the opcode mapping PAL must be defined.

A RAM or PROM memory may be used as alook-uptable
for entry points in the microcode store. This allows the
greatest flexibility. Microcode routines may be located
anywhere in control store, independent of the opcode
value. The entry points may be spacedto fit each routine.
As routines are changed or moved, it is very easy to
reload the look-up table with new entry points.

The opcode mapping method chosen for this system is
the RAM approach.

_Macro Opcode Map RAM

The map RAM is shownin Figure 5-3. Itis formed from
three Am9150 1K x 4 bit separate I/O high speed RAMs.

' Together, the three RAMs provide a 12-bit output which

is used as the microinstruction decode address. The
address is limited to 12 bits since the maximum size of
control store provided for in this system is 4K words.

This decode address is connected to the ‘A* address
input of the Am29331 sequencer. When this address is
selected by the sequencer, a branch is made to the first
microinstruction of the selected routine.

The address input to all the Am3150s comes from the
most significant bits of the Macro Opcode Register (bits
31:22). This address selects the entry point into microc-
ode control store from the map RAM when a macroin-
struction is decoded. The macro opcode register is also
used during diagnostics and WCS loading to address the
map RAM. ‘

The Am9150 RAMs are always selected and output
enabled since no other device shares the ‘A’ input of the
sequencer. Also the Am93151 has no power down mode,
so there would be no advantage to deselecting the
memory. Note: if lower power in the system is required,
an alternate memory to use in implementing the map
RAMwould be the Am2148. That memory does save sig-
nificant powerwhendeselected and would increase map
RAM access time only slightly.

When the Am9150 RAMs are loaded with data, they
are written with data as though they were an extension
of the microcode control store. The writable control
store write enable line is connected to the Am9150’s
write enable input.

SECTION 5
Control Section Description

WCS Port

Also shownin Figure 5-3is the Writable Control Store
(WCS) port. This port is formed from two Am29818-1
pipeline diagnostics registers. The port was shown in
block formin Figure 4-5. The portis used as part of the
system serial diagnostics and writable control store load-
ing scheme.

The bidirectional “inputs” of the Am29818-1 are con-
nectedto the macro opcode map RAM data inputs. When
placed in a special mode, the port “inputs” are driven as
data outputs. This data is then used as input to the map
RAM during a WCS write operation. The data comes
from the Am29818-1’s internal shadow register.

The oulputs of the WCS port are connected to the
microcode control store address lines. The WCS port
may thus be used as an alternate address source for the
microcode control store. During a diagnostic read or
write of the control store, the WCS port provides the
needed address.

Note that the data for the outputs of the WCS port comes
from the Am29818-1's internal pipeline register. The
pipelineregister contents are independent of the shadow

register contents. This allows an address for the microc-
ode control store to be in the pipeline register at the same
time data for the map RAM is in the shadow register.
These separate registers allow the WCS and map RAM
to be written in the same cycle as though they were one
writable control store.

Macro Operand Address Counters

These are three identical loadable up/down binary count-
ers made from AmPAL22V10 PALs. They are shown in
Figure 5-4. The logic definition file for the PALs is
shown in Appendix G.

One counter is used for each operand register address.
The counters are loaded from the data outputs of the
macro opcode register. The outputs of the counters are
tied to the address inputs of the read and write ports of the
Am29334 register file.

The counter load, count direction, output enable, and
count enable functions are internally decoded from in-
puts that come from the control pipeline register. These
counters are intended for use in array processing algo-
rithms, one example being a digital signal processing
algorithm for a filter.

]
ﬁazﬂ SD_5
— us2
p—1 <
uss
D —————— MC_ADDRESS (0:11)
Am9150-25
%
MAC_OP(31:22) —/
= 47 Am29818
+—] A _
» DECODE_ADD (0:11)
Am9150-25
\ Aoy 03
Vee R DouT] SDO v
— S uss 10, 11,
- uss
GND G 13.14
W O e o] o7
T >PCLK Yo7 b/
. 13 — 22:15
Am3150-25 ~ OEY
CLK_PIPE >DCLK
WCS_WR* —| MooE
DCLK_WCS —_so!
MODE
sD_| Am29818-1

Figure 5-3. Macro Opcode Map RAM

09856A 5-3

SECTION 5
Control Section Description

The counters make it simple to perform the same calcu-
lation on arrays of data stored in the register file. One
microinstruction or a short microinstruction routine can
loop on an array calculation and at the end of each
calculation cycle simply increment the operand address
counters. Inthat way, new operands are fetched foreach
calculation on the array without the need for the microc-
ode instructions to directly specify operand addresses.

Control pipeline bits determine whether the microcode
operand address or the macro operand counter address
is used. The selection is independent for each operand
address. Thus, an example would be the operand ‘A’
address’ coming from the microcode while the ‘B’
operand and ‘C’ operand addresses come from the
counters.

An additional feature is that the ‘C’ operand counter
address may be directed to the Am29334 register file ‘B’
write port address input. This allows the ‘C’ operand
address to come from microcode while the ‘C’ operand
counter address is used in writing data from system
memory into the register file via the second write port.
This means that CPU calculations may continue
uninterrupted while new data is being loaded into the

registerfile. Also, as long as data is coming from sequen-
tial locations in memory and going to sequential locations
in the register file, the memory address counter and ‘C’
operand counter may be incremented together, thus
loading several memory words in sequence. This loading
may be accomplished without repeated address calcula-
tion by the CPU.

Operand Counter Use Example

To help illustrate the use of the operand address count-
ers a typical Finite Impulse Response (FIR) digital signal
processing filter algorithm is described here.

An FIR digital filter takes in a stream of amplitude
samples from an analog waveform. Each sample is
processed through a series of calculations to produce an
output value. The resulting stream of output amplitude
values produces a wavetorm that is the result of a filter
operation on the input waveform.

The calculations involved are a series of multiplies be-
tween different coefficient values and several past input
samples. The result of each multiply is accumulated to
produce one output value. The number of coefficients

17:12
P_CNTA_EN
P_UPDN_A Us7
P_ARA_MAC] Am22vioa ARA
—P
MAC_OP (0:17) —
N11:6
P_CNTB_EN
P_UP/DN_B
N N uss
P_ARB_MAC Am22V10A [1722 ARB
[
\ 50
P_CNTC_EN
P_UP/DN_C uUs9
P_C_SEL (0:1) ,5 Am22V10A AWA_MAC
P_LD_CNT
CLK_CNTL b
09856A 5-4

Figure 5-4. Macro Operand Address Counters

5-5

SECTION 5
Control Section Description

and retained past samples determines how selective
the filter operation is. The values of the coefficients de-
termine the type of filter operation; e.g., bandpass vs.
lowpass.

The algorithm for calculating one output value would be
the following:

Sum = 0;
for n = 0 to number_of_coefficients do
Sum ;= Sum + (Sample(x - n) * Coefficient(n));

Each time a new input sample is acquired, the new
sample becomes Sample(x), and all past samples shift
down in the sample array such that Sample(x - 1) :=
Sample(x) for all x. Note that the number of retained past
samples is equal to the number of coefficients.

This algorithm may be implemented with two arrayé of
data and a temporary register. One array contains coef-
ficients and the other contains past input samples.

The coefficient and sample operands may be multiplied
in a single system cycle by either the Parallel Multiplier or
the Floating Point Processor. The Parallel Multiplier may
also perform an accumulate in the same cycle. The
Floating Point Processor requires a second cycle to do
the accumulate function. So for each multiply and accu-
mulate operation on a sample-coefficient pair, either one
or two cycles are needed.

Obviously the operand counters may be used to address
the data arrays. As each coefficient-sample pair is multi-
ply-accumulated, the counters are incremented to point
to the next pair of operands. This allows the inner
multiply-accumulate loop to be only one or two microin-
structions long.

One feature of the operand counters adds to the effi-
ciency of this algorithm. When an operand counter
reaches either the maximum or minimum count value,
_the counter will reload the original count value from the
macro opcode register on the next increment. This cre-
ates a counter that may treat the register file as a circular
buffer. The length of the buffer is determined by the
distance from the original count value to either the base
or upper limit of the register file address.

Note also that if one counter is always incremented while
the other is decremented, two circular buffers may share
the register file. One has a lower bound of zero and the
other an upper bound of 63. With this scheme two equal
size buffers could be up to 32 words each.

The circular buffer approach to the arrays works well with
the FIR filter algorithm. At the end of each output value

calculation, the counter addresses will point back to the
first coefficient-sample pair, ready for the next input
sample iteration.

Note that if on the last multiply-accumulate cycle of an
iteratation the sample operand counter is not incre-
mented, and the ‘C’ operand counter is used to load a
new sample from memory into the oldest sample array
location, the effect will be to shift all the samples down by
one in the array while overlapping the new sample load
with the last cycle of a sample iteration.

One additional cycle at the end of each iteration may
move the output value from the register file to the mem-
ory. No memory address calculation cycle is needed
since the memory address counter may be used to
address the memory.

With this scheme only one cycle of overhead between
iterations is needed. Therefore, assuming clocked multi-
ply operation of the PM to achieve single cycle multiply-
accumulate execution, a 31 coefficient FIR could com-
plete one output value iteration in 32 cycles. Assuming a
100 nscycletime (100 nsclocked multiplyinthe PM),
that would allow over 312,000 samples per second or an
input bandwidth of over 156 kHz. A 9 coefficient filter
would have a 500 kHz bandwidth.

This is an example of how a microprogrammed system
may have its architecture tuned to a particular applica-
tion for the best possible performance. Much of the
performance comes from the microprogrammed
system’s ability to control and perform several parallel
functions at one time.

REGISTER FILE ADDRESS MULTIPLEXER

The Register File Address Multiplexer, shown in the
block diagram of Figure 1-2, is made up of four sepa-
rate multiplexers. One multiplexeris used for each regis-
ter file address port; two read ports and two write ports.

Read Ports Aand B

These multiplexers are shown in Figures 5-4 and 5-5.
Each multiplexer is really a three-state bus that may be
driven-either from the control pipeline register via an
Am29827 three-state buffer or from an operand counter
output. A bit for each address from the control pipeline
selects which source may drive each address bus.

The Am29827 three-state buffers are needed in addition
to the three-state outputs of the control pipeline because
each operand address is 6 bits. This number does not fit

5-6

SECTION S
Control Sectlon Description

8 8
PRA[>—~ 27 23118 #— > ARA
68:11 Uso 17:14
P_ARA_MAC D - Am29827A
613
6 6
P_RB [>— »~—1{ > ARB
§5 us1
P_ARB_MAC [> Am29827A
09856A 5-5
Figrue 5-5. Register File Address MUX, Read Ports
S 3 LsBs
P_RC[>4 S 5
ARAC>—%4 ~ T Y%
ARB [< %~ AmPAL 3 —
, ? 79 " 7 7 7~ AWA
AWA_MAC [>— S 7] 1rea |
14
15
3
N
WYY S
_Fi 3
T s AmPAL |~/
16:18
LsB 1113 | 18P8Q
2
P_C_SEL D—/—L MsB :‘;
09856A 56

Figure 5-6. Reglster Fila Address MUX, Write Port A

well into the 4-bit boundaries of each slice of the microc-
ode control store. So to avoid wasting control store bits,
the external three-state buffer is used to gate the control
pipeline address onto the register file address bus rather
than trying to use the control store’s own three-state
outputs.

Write Port A

This multiplexer is implemented by a pair of AmMPAL18P8
PALs. It is shown in Figure 5-6. The logic definition file
for the PAL is contained in Appendix H.

It is this four input hex multiplexer that allows the ‘C’
register file operand (i.e., register file ‘A’ write port)
address to come from four possible sources. The ad-
dress may be provided fromthe ‘C’ operand in the control
store, ‘C’ operand counter, ‘A’ operand final address, or
‘B’ operand final address. The ‘A’ and ‘B’ operand ad-
dresses are referred to as final because the multiplexer
input is taken from the register address buses after the
choice between control pipeline or operand counter has
been made for the ‘A’ and ‘B’ operand addresses. The
select bits for the multiplexer come from the control
pipeline.

SECTION 5
Control Section Description

P_RC &,’2

AWA_MAC [>~

P_AWB_MAC [_>

Us4

6
AmPAL A > AWB
22V10AL

09856A 5-7
Figrue 5-7. Register File Address MUX, Write Port B
P_POSITION[> /2 -
MAC_OP (23:18) >~ —— s
AmPAL 2 [~ rosiTioN
7
P_POS_MAC [> 7] 22vioaL | % v
P_WIDTH > ,'z —
MAC_OP (4:0) (> povn 1’3 Uss
o AmPAL 5
wioT!
P_WID_MAC > - 2vioaL | 2 1> H
09856A 5-8

Figure 5-8. Position and Width MUX

Write Port B

This multiplexer is made from an AmPAL22V10. It
operates as a two input hex multiplexer. It is shown in
Figure 5-7. The logic definition file for the PAL is given
in Appendix 1.

It selects either the control pipeline ‘C' operand address
or the ‘C’ operand counter address as the source for the
register file ‘B’ write port address. The select bit comes
from the control pipeline register.

POSITION AND WIDTH MULTIPLEXERS

The position and width multiplexers are implemented
with AmPAL22V10A PALs. They are shown in Fig-
ure 5-8. The logic definition file for the PALs is given in
Appendix I.

Each is a two input hex multiplexer, identical to the
multiplexer used for the B Write Port Mux. They select

from the Position and Width values that may be provided
either from the control pipeline or the Macro Opcode
Register. The select control comes from the control
pipeline.

‘A’ speed PALs are used here since these multiplexers
are in the critical path to the ALU. They mustuse 7 ns
less delay than the combined delay of the ‘A’ Read Port
Mux and Register File access time. The required 7 ns
advantage is consumed by the ALU’s longer propagation
delay from Position input to Y output vs. Data inputto Y
output. '

SEQUENCER

The sequencer is a 16-bit-wide address generator that
controls the execution sequence of microinstructions
stored in the microcode control store. It may handle
interrupts or traps at any microinstruction boundary.
An interruptor trap is treated like an unexpected pro-
cedure call.

6-G

DECODE_ADD [>

o_Bus E}

STATUS_BUS (8:1) [

M2_Bus > =3
MI_BUS [> =

MAC_OP(21:18) [>

R N Y N Y N N L R R R N

CLK SEQ[>}
RESET300* [>—— — 1
seq_ Fc D——m
INTR Dy
PINTEN >——————

wes_ Wi+ Do U1

SEQ OED [>——F——
GND O—

cP D—
RST O>—
pc DO—
INTR >—
INTEN [>—
INTA ES3—
HotD [O—
OEp o—
SLAVE [D>—
ERROR <3—

7
4112

gERO:T‘H l
OVER=T10

a M

STATUS_BUS

TEST
LOGIC

v iy

MUX

D CNTR

33x16
STACK

b sP

2 A_FULL

CARRY=T8
TTER

1 1 2n!

LINK=T7

ZERO=T6

TEST
MUX

OVR=T5
SIGN=T4

:

DINTRET

MAC_STATUS_BUS [>—
\CARRY=T3

_LINK=T2 A

INSTR

DECODE 47

INC [

lll"'ll"ll"ll’l"‘llllllJJl’[

M2_Bus (0) [>——
P_TEST [>— |
P_SEQ_INST 4
SEQ_CIN®

‘ue
N 7 Am29331

TRwRRRATRTRRRRRRRR .

MUX

16

D

ADDR
REG

, ComP
REG

NN A RPN N SR I S N N Y

COMP

———— 3 EQUAL

rFT TR TILTRTRRRRRRRRR RN R

AT EEREE R W R W

\
\
\
\
\
\
\
\
\
\
-

E3 MC_ADDRESS

> (Not Used)

Figure 5-9. Sequencer Block

B3 INTA*

uopdiosag uopseg j01uo)

S NOILO3S

SECTION 5
Control Section Description

Two independent branch inputs as well as four multi-way
branch address sources are provided. One of the branch
address inputs is bidirectional and may be used to read
or write information in the sequencer’s internal 33-level
deep stack.

A 16-bit counter, test condition multiplexer, and break-
point address comparitor are also provided. The break-
point comparitor is used as a hardware aid to microcode
debugging. The connections to the sequencer are shown
in Figure 5-9.

The sequencer’s ‘A’ branch address inputis connected to
the Macro Opcode map RAM output and is the path
through which the macroinstruction specifies its entry
point into microcode.

The ‘D' branch address input is tied to the D_BUS.
Throughtthis path, branch addresses or constants come
from the control pipeline register and data may be ex-
changed with the data section of the CPU.

The ‘M0’ multi-way branch address input is connected to
the macro opcode register bits 21:18. These bits may be
used as a modifier to the macro opcode via a multi-way
branch based on these bits.

The ‘M1’ multi-way branch address inputs come fromthe
Floating Point Processor (FPP) external status register.
These bits are the overflow, underflow, invalid, and
‘extra’ status flags fromthe FPP. The ‘extra’ status flagis
the OR ofthe zero, NAN, and inexact status flags fromthe
FPP. A single multi-way branch on these inputs may be
used to detect and handle quickly any of the catastrophic
status conditions fromthe FPP. If the ‘extra’ flagis active,
it indicates that a second multi-way branch may be used
to determine which of the ‘extra’ status flags is active.

The FPP zero, NAN, and inexact status flags are con-
nected to the ‘M2’ multi-way branch input of the se-
quencer.

Vee
D_OER [>
D_OET* [_>
D_SIGN_EX[_> 16 po- — .
D_BUS <> S ~ .
CLR A OET OEREN
7 uss Us9 u”n U7
Am29853 Am29853 Am29853 Am29853
ERR__ To7 __PAR
o |26 [is
2| 3| 4} | 13|
Ro Ry Ry Ra OET OER
ur2
Am29853
Vee To Ty T2 T3
23| 22| 21] 20
¥
~
A
\ AN N N A BUS
07 8:15 1623 2331 32 33 34 3576 >
- ! >PE D_BUS*

09856A 5-10

Figure 5-10. D Bus Transceiver

SECTION 5
Control Sectlon Description

The ‘M3’ multi-way branch input is tied to the ALU
microprogram status outputs so that an alternate means
of checking ALU status is available. A multi-way branch
based on these bits is able to check multiple condition
flags in a single cycle.

The Force Continue and Carry-Ininputs of the sequencer
are active in a trap operation to prevent state change in
the sequencer and capture the address of the trapped
instruction inthe interrupt return address register. Carry-
in (CIN*) isdriven highby atrap event signal fromthe trap
logicin Figure 5-11. The trap event signalis also ORed
with a signal from the contro! pipeline (P_FC) so that
either signal will cause Force Continue to go high. The
interrupt request input comes fromthe Trap circuit shown
in Figure 5-11.

The sequencer's HOLD input is driven by the inverted
value of the WCS_WR* signal from the host interface
controller shown in Figure 4-3. When this signal is

active, the sequencer’'s output will be three-stated so
the WCS Port may drive the microcode control store
address lines without contending with the sequencer’s
output drivers.

The Slave input is grounded since no use of the mode is
made in this demonstration system.

The test condition inputs of the sequencer come from
three sources. Conditions 11though 7 are the ALU status
bits for zero, overflow, sign, carry, and link. Conditions 6
through 2 come from the Macro Status Register; these
bits are the macro version of the same ALU status bits.
Condition 1 comes from the FPP external status register
bit for zero. Condition 0 is unused.

Control for the sequencer’s interrupt enable, test condi-
tion select, and instruction input comes from the control
pipeline register.

CLK_INT_BASE
MODE
Interrupt Base
! Address
D_BUS(0:8) | Do.s Am?29818-1
P_INT_INST(0:3) ——8 “ﬂ o oo 604
[EN * ———————— IEN Interrupt v
INT.C§* ———— TS Controller cc M
00 - Utos é ok D uns
RESET_300 Reset u7s 3t oF y
PE_D_BUS* ————————1INTO S
U104 D
PE_PM INT1 Am29114 o1
PE_ALU Y1041 inT2 MC_ADDRESS
INT_FPP * —————eet INT3 Voo
U104
AFuLL —{ >0 T4 CASIN2
INT_CPU* ——————1 INT5 —
N MINTR
(NotUsed) —————————] INT6
(Not Used) ——————— INT7
PD
o ——E y Trap
CASIN1 Logic
PAL
INTA* MINTA INTR
CLK_SEQ > u7s |————— TRAP
SEQ_FC
Am22V10A
SEQ_CIN*
>d
DLCK_MOP
sD 3
EQUAL

Figure 5-11. Interrupt and Trap Logic

09856A 5-11

SECTION 5
Control Section Description

The sequencer’'s D_BUS output enable comes from the
control decode logic.

v The sequencer A_FULL signal is used as an interrupt
signal to the system interrupt controller.

The Equal (breakpoint) signal is used as a trap event
signal to the Trap Logic.

Interrupt acknowledge goes to the interrupt controller
andtraplogicto enable theinterrupt andtrap vectors onto
the microcode control store address bus when an inter-
rupt is executed.

The 'Y’ outputs of the sequencer drive the microcode
contro! store address lines to select each microin-
struction.

D BUS TRANSCEIVER

The transceiver between the A_BUS and the D_BUS is
shown in Figure 5-10.

The D_BUS has no parity bits included where as the
A_BUS does contain parity. It is therefore necessary to
provide parity generation for the data moved from the
D_BUSto the A_BUS.

The D_BUS is only 16 bits wide vs. the 32-bit-wide
A_BUS. Thus it is also necessary to provide bus drivers
and parity generators for the upper two bytes of the
A_BUS, even though no variable data is passed to the
A_BUSfrom the D_BUS through those bits.

The transceiver and parity generator/checker function
are combined in a single device type:the Am29853. Four
of these are used in addition to an Am29862 inverting
transceiver. The inverting transceiver is used on‘the
parity bits because the Am29853 uses odd parity while
the Am29300 system uses even parity.

As an added convenience for when numeric constants
are passed fromthe D_BUS to the A_BUS, an AND gate
is provided to drive the inputs of the upper two bytes of
transceiver. If the AND gate is enabled by the control
pipeline, the most significant bit of the D_BUS will be
copied to all the upper bits on the A_BUS, thus perform-
ing a sign extend for two's complement numbers. If the

AND gate is disabled, the upper bits of the A_BUS are -

forced to zero.

INTERRUPT CONTROL

Interrupt and Trap Philosophy
What Is a Trap?

Traps are events that require the immediate attention of
the CPU. The urgency of the event is so great that the
CPU must not even complete the execution of the in-
struction in progress in the cycle that the trap request
happens. The CPU must not change any machine state
in that cycle; it must store the address of the instruction
that was to have been executed and must branch to a
routine that services the trap event.

The implication here is that the trap will prevent some
disastrous change in machine state from which no recov-
ery would be possible. Also implied is that the trap
servicing routine may repairwhat ever the problemis and
then return to complete the execution of the instruction
where the trap occurred.

One additional implication is that the trap event may be
signaled early enough in the instruction cycle to prevent
the clocking (change of machine state) that normally
occurs at the end of each instruction.

An example of a trap event could be a miss on cache
memory access. To complete an instruction when the
data being accessed from a cache is invalid would be a
disaster with little chance for recovery. If atrap routine to

- update the cache may be executedinstead of completing

the instruction, the program may be saved. After the
cache has the correct data, the trap routine may returnto
the aborted instruction to continue execution of the
program as if no problem had existed.

Another example of a trap would be a program break-
point. When debugging a program it is very useful to be
able to stop execution of a program just before executing
a particular instruction. If this is done, the state of the
machine before executingthe breakpointinstruction may
be examined. To do this the address of the breakpoint
instructionis recognized asthe instructionisfetched from
microcode control store. In the next cycle before the
instruction may complete, a trap occurs which branches
to adebuggingroutine. Whenthe programmeris ready to
continue the program, a return from trap completes the
execution of the breakpoint instruction. The breakpoint
trap operation is easy to do, and hardware to implement

5-12

SECTION 5
Control Section Description

it is already provided in the Am29331 sequencer. The
breakpoint trap operation will be shownin the Trap Logic
described later.

What is an Interrupt?

Interrupts are events that require the attention of the CPU
soon.

“Soon”is defined as fasterthan might happenif the event
were polled by a CPU program but later than a few
microinstruction execution cycles.

Interrupt events and the resolution of an interrupt are not
directly tied to the CPU state. No disasters occur if a few
cycles pass by before the interrupt may be handled.

Examples of events handled via interrupt could be:
external mechanical events such as switches being
opened or closed, an impending stack-full situation, a
message signal from another processor, or a peripheral
delay timer indicating time-out.

In this demonstration system one other class of interrupt
source is included. It is the parity error. A parity error
implies corrupted data in a program that cannot be
corrected. Since the influence of corrupted data on the
program is difficult to determine or correct for, the af-
fected program should be aborted. A parity error is,
therefore, important to detect so that the program in
which it occurs may be terminated and perhaps rerun
with corrected data.

Parity errors are treated as interrupts ratherthantraps for
two reasons. The indication that an error has occurred
comes fairly late in an instruction cycle and is therefore
difficult to use as a trigger for a trap. When a parity error
occurs, the program is generally corrupted and will be
terminated; whether the termination happensinthe cycle
following the error as would be the case with a trap, or
within a few cycles, as with an interrupt, is unimportant.

Interrupt Operations

‘There is no need to design an interrupt circuit from
scratch when one already exists. The Am29114interrupt
controller is used in this system. It provides interrupt
latching, priority, masking, and vector generation for
eight interrupt inputs.

Interrupt Controller
Six interrupt sources are used in this Am29300 system;

the two remaining interrupt source inputs are available
for software generated interrupts.

The interrupt and trap circuit block diagram is shown in
Figure 5-11.

The three highest priority interrupts are parity error sig-
nals from the D_BUS, the Am29C323 Parallel Multiplier,
and the Am23332 ALU.

The next priority interrupt is a signal from the FPP
external status PAL, which indicates that one of the
following status flags is active: Overflow, Underflow, or
Invalid.

The next priority interrupt is the A_FULL signal from the
Am29331 sequencer. This interrupt indicates that the
sequencer stack will be full if three additional stack
pushes occur.

The nextinterruptis the externalbus interrupt signal from
the host interface controller. This is a “tap on the shoul-
der” from the host that requests the Am29300 CPU take
some previously agreed on action, such as reading a
message from the host out of memory.

The two least significant interrupts are unused by hard-
ware and are available for use as software interrupts.
These interrupts would be set by the CPU writing into the
Am29114 interrupt register.

The interrupt mode is set for capturing asynchronous low
going pulses as interrupt signals. This is done because
most of the interrupt signals are only guaranteed to be
active for a single clock cycle. Therefore, the interrupts
must be latched and held by the interrupt controller until
acknowledged by the CPU.

The D_BUS is connected to the interrupt controller data
pins so that the internal interrupt, mask, and in-service
registers may be read and written.

The interrupt controlleris selected and given instructions
via outputs of the control pipeline register.

Interrupt Sequence

During a given clock, one of the interrupt inputs goes
active. At the end of that cycle (active edge of clock), the
interrupt signal is clocked into the interrupt register of the
Am29114.

During the second clock cycle, the interrupt is ANDed
with the interrupt mask register and, if the interrupt is
allowed, its priority is compared to any currently in-
service interrupt. If the new interrupt is of higher priority
than any in-service interrupt, the MINTR* (interrupt re-
quest) will go active at the next active clock edge.

5-13

SECTION 5
Control Section Description

During the third clock cycle, the Am29114 interrupt
requestis externally ORed with the interrupt request from
the trap logic. The combined interrupt request is then
loaded into a delay flip flop. The delay flip flop is needed
to synchronize the final interrupt request with the system
clock. The reasonforthisisthatthe interrupt request from
the Am29114 is stable too late (41 ns) in the third cycle
to be useful in selecting an interrupt address. The set-up
time for the microcode control store address could not be
met if the Am29114 interrupt request were used directly
with the Am29331 sequencer.

The external OR and delay functions are imple-
mented in an AmMPAL22V10A, whose logic is shown in
Figure 5-12.

During the fourth clock cycle, the INTR* (interrupt re-
quest) input of the sequencer is driven by the delay flip
flop. The sequencer then returns INTA" (interrupt ac-
knowledge) if micro-interrupts are allowed. The INTA*
signal enables the interrupt vector onto the microcode
control store address lines.

The LSB three bits of the interrupt vector are provided by
the Am29114 interrupt priority encoder. Bit 3 of the
interrupt vector is provided by the trap logic. The bit is low
for an interrupt and high for a trap vector. The upper bits
(4:11) of the vector are provided by an external
Am29818-1 register. This register provides a variable
base address for a nine entry point table look-up (multi-
way branch), which is based on the four bits of interrupt
vector from the Am29114. The Am29818-1 register is
loaded via the D_BUS or through the diagnostics SSR
chain. The need for a nine entry point table is explained
in the section on trap operation.

During the fifth clock cycle of the interrupt sequence, the
first instruction of the interrupt routine will execute. Dur-
ing this cycle the interrupt return address will be pushed
onto the sequencer stack.

Insummary, from the time an interrupt signal becomes
active until the interrupt service routine begins execu-
tion, four instructions in the main program will complete
execution. .

CLK_CNTL
MINTR* Ol)
D Q '\I >——— INTR
EQUAL >
-—{—\ N D Q R* TRAP
> i
ll> SEQ_FC
P FC*
[} — SEQCIN®
RESET_300 *) .
‘! - {>_ CASOUT2
INTA* 4 ;
™ N,
l_/ "
— MC,
&—— 2 FADDRESS
= [
—)) > ;S
L/ L

09856A 5-12

Figure 5-12. U75 AmPAL 22V10A Trap Logic PAL

5-14

SECTION 5
Control Section Description

Trap Operation
Trap Issues

Atrap requires extremely fast response to the trap event
signal.

The ideal situation is for the trap event signal to cause the

abortion of the instruction in execution at the time the -

event signal appears.

This is extremely difficult in a high clock frequency
system. To succeed, the trap event signal must be stable
at least in time to prevent clocking of the data section of
the CPU, which would otherwise change the system
state (i.e., complete execution of the instruction). This
implies that the trap event signal is stable one clock
control circuit set-up time before the high to low edge of
the system clock. The high-to-low edge of clock is signifi-
cant, because once the clock signal falls, the writing of
any write enabled port on the Am29334 register file will
begin. In addition, the trap event signal must be stable in
time to cause the Am29331 sequencer force continue
(FC), interrupt request (INTR), and carry in (CIN*) signals
to go high soon enough to disable the sequencer micro-
program address in time to meet the set-up time require-
ments of the microcode control store.

In a 100 ns cycle time system, such as the one being
discussed here, the trap event signal must be valid no
later than 25 ns into the cycle. For a trap event signal
that is to be derived from the effects of the instruction in
execution in that cycle, this requirement is very difficult
to meet.

Fortunately there are trap events that may be signalled
onthe one ortwo cycles previousto the cycle inwhich the
trap must occur. Some examples would be: acache miss
that may be detected from the cache address created in
a cycle prior to that in which the cache data is used in a
calculation; or a breakpointinwhichthe breakpoint target
instruction address is detected by the sequencer in the
cycle prior to the instruction being loaded into the control
pipeline for execution.

If a an instruction is a known potential trap, it is possible
to execute the instruction so that no critical information is
destroyed by completing its execution. This may be done
by writing results back to a temporary register while
allowing no other significant system state changes, such
as updating the ALU Q register, or doing a return from
procedure call. The instruction may then be allowed to
execute and generate any trap event signals that might
result from the execution, without concernfor irrevocably
destroying data because of some error condition.

In the above examples, the trap event signal may be
loaded into a delay flip flop to synchronize the trap
request with the beginning of the following cycle. This
causes the trap operation to occur early in the cycle
following the event and to complete successfully.

The only trap condition implemented in this design is the
breakpoint.

Trap Logic

By definition, the response time between trap event
signal and trap operation must be much faster than the
four or more cycles that an interrupt takes to begin
execution. This requires that the trap logic be different
from the Am29114 interrupt controller. The trap logic
designisimplemented inan AmPAL22V10A. The logicis
shown in Figure 5-12. The definition file for the PAL is
shown in Appendix J.

The trap logic is in effect a simpler and faster interrupt
controller. This “trap controller” is cascaded with the
Am239114 interrupt controller so that the same address
vector approach used with the interrupt controller may be
extended to trap operations.

Atrapistreated as a special formof interrupt with a higher
priority. When a trap occurs, the trap logic generates a
cascade out (CASOUT?2) signal to the Am23114. to
prevent any interrupt operation from beginning in the
same cycle.

The trap logic also generates an INTR signal to the
Am29331 sequencer. The INTR signal inturn causes the
sequencer to three-state its microcode address outputs
and return an INTA signal to the trap logic. The INTA
signal enables a four bit vector from the trap logic and the
interrupt base address from the Am29818-1 registers as
shown in Figure 5-11. ,
The above steps essentially generate an interrupt and
provide the interrupt vector. What makes a trap different
is that the Trap Logic is also used to drive the Am29331
sequencer Force Continue and Carry-In inputs. This
causes the sequencer to ignore the instruction being
trapped and to perform a continue instruction instead,
which changes no state in the sequencer. The CIN*
signal’s being high causes the trapped instruction ad-
dress to not be incremented. Therefore, the trapped
instruction’s address will be loaded into the sequencer
interrupt return address register. In addition, the TRAP
signal is used to prevent any state change inthe system
other than in the sequencer, effectively aborting the
trapped instruction.

SECTION 5
Control Section Description

Following are some other features to note in the trap
logic.

Am29300 system RESET is used to generate the se-
quencer Carry-In signal (SEQ_CIN®). This is done to
force SEQ_CIN* high during reset so that the first microc-
ode instruction executed after reset will be at address
zero rather than one.

In order for a trap operation to take effect, the instruction
that is to be trapped must have its microcode interrupt
enable bit active. This bit is used as the interrupt enable
to the sequencer. If it is not active, then the microcode
control store address from the sequencer will not be
three-stated, and the interrupt vector will not be substi-
tuted. In addition, the TRAP signal will still occur, causing
the trap target instruction not to execute correctly. Note
that the interrupt enable bit could be externally forced
active by the trap operationvia an OR gate. Butthe added
delay could cause the interrupt acknowledge to be too
late to allow the interrupt vector address to meet required
set-up times. (Of course, it is possible to design the
systemso that every trap causes all the system clocks to
be stopped for one cycle. That would allow enough time
for all kinds of tricks to be played. This design, however,
will not explore that approach.)

MICROCODE CONTROL STORE AND
CONTROL PIPELINE REGISTER

Control Store Function

The microcode control store is the high speed memory
that contains the control bits comprising the instructions
that the system may execute.

This system uses what is called “horizontal” microcode.
Each microinstruction contains many control bits that
manage a variety of different functions in parallel. “In
parallel” is the key phrase. All the control information
needed to manage the entire Am29300 system during
the execution of one microinstruction is contained inone
word of microcode control store.

The memory must be fast because its access time must
be significantly shorter than the cycle time of the system.
In general the access time must be less than half the
cycle length. This is because of the time required by the
sequencer to generate each new address to the control
store, which takes up the remaining time in the cycle.

Pipeline Register Function

At the output of the microcode contro! store there is a
register to hold the control information stable during the

execution of an instruction. With the control information
held in the pipeline register, the control section of the
CPU is free to begin reading the next microinstruction
from the control store. In this way, the control section is
operating in parallel with the data section. The control
section fetches the next instruction while the data
section executes the current instruction. This parallel
operation, where one section of the systemworks onone
step of a problem while another section works on the
next step, is called pipelining, hence the name for the
pipeline register.

Through parallel operation, pipelining nearly doubles the
speed of the system over what might be the case if the
control section and data section were directly tied to-
gether in a serial fashion.

Control Store Implementation

Because this method of pipelining the output of a mi-
crocode store is so popular, there are special memories
available that combine a high speed memory with a
pipeline register at its output. These combined memory
and pipeline devices may significantly reduce the
system parts count.

These memories are available as either RAM or
PROM devices. RAM versions are used to make
writable control stores.

These memories also include Serial Shadow Registers
(SSRY) along with the pipeline register. This allows diag-
nostic routines to read and control the pipeline register
outputs. Where RAM versions are used, the SSRis used
as a built in means to load the writable control store.

This system is designed to use one of the following for
control store: Am9151-50, 1K x 4 RAM; Am27S65,
1K x. 4 PROM; Am27S75, 2K x 4 PROM; or
Am27S85,4K x 4 PROM. These devices all share a
similar pinout so that simple jumper connections allow
any of them to be placed in the same sockets.

The connections to the control store are shown in Figures
5-13 and 5-14.

Atotal of 23 memories are used to form the needed 92-
bit-wide microcode words.

Because this system is designed to use no more than a
4K word deep control store, only the lower 12 bits of
microcode address from the sequencer are connected.

The memories in the control store which provide the
microcode branchfield are connected differently fromthe
remaining memories. This is because the branch field

5-16

SECTION 5

Control Section Description

12 10
MC_ADDRESS [_>=——r ~ <
9N A
sf\2] °
8
1 7N2] Ay u7e us4
6 1
N1 4e Am9151
SN A or)
N A, AM27565 17 Additional
10 3R 4 or Memories to
—oA NG As Am27575 Forma 76-bit
B 5 Az or Control Store
1" C 1% Ay Am27S85 e o 0
g°De °NA Ao
o] Aos
INIT_MC *[—> =] Awd
oy sa
SD_SA [> 1 = s 14 ——1{ >0
9 M DO? —«le 0 n3
oK DQ2 —«‘; 1 n2
10 il
— Px 0031? 2 m
13 3 n
MODE [>
DCLK_WCS >
CLK_PIPE >
\ > Pe1:16)
09856A 5-13
Figure 5-13. Microcode Control Store
}2 10
MC_ADDRESS [_>— <7 <
SN Ag
8 NZ]
2 2| A
) INE| ugs uss
6 1
Lz As Am9151
SN Ag or o o 0
1 N A, Am27565 2 Additional
10 3N 4 or Memories 1o
oA NG Am27S75 Forma 16-bit
—oB \—5 Az or Micro Code
"\loco TN a, Am27S85 Branch Field
e 0\: Ao e o 0
21| AoE
INIT_MC* [Eo— x| Aus
P_BHANCHgiNSD Fo m 20"’0 SQ = L —[>sD sA
s[> 1 " D [~ . 12
9 DAz
DK DQ3 1 13
10 K 7o) ilH PY 14
'H‘ 15 \3 15
MODE [>
DCLK_WCS [>—
CLK_PIPE [> 16
. \ ~{ > P (15:0)

Figure 5-14. Microcode Control Store

09856A 5-14

5-17

SECTION 5
Control Section Description

outputs are connected to the D_BUS and must be three-
stated when other devices drive the D_BUS. Allthe other
outputs of the control store are always output enabled.

Figure 5-13 shows how the bulk of the control store is
connected.

When the Am9151-50 or the Am27S65 is used, the
jumper at location “B” is connected. This continuously
enables the memory.

When the Am27S75 is used, the jumpers at locations A
and D are connected. Also, the Am27S75 G/Gs* (pin 20)
is internally programmed as an asynchronous enable.
Those jumper connections will always enable the mem-
ory and connect address bit 10 to it.

When the Am27S85 is used, the jumpers at locations A
and C are connected. The Am27S85 G/Gs/I/Is* (pin 19)
is programmed as a synchronous initialize function.
Those connections will always enable the memory and
provide address bits 10 and 11 to it.

Figure 5-14 shows the connection for the memories
that support the branch field.

When the Am3151-50 or the Am27S65 is used, the
jumpers at location B and E are connected. This enables
the memory when the control pipeline selects the control
store to drive the D_BUS.

When the Am27S75 is used, the jumpers at locations A,
D and E are connected. Also, the Am27S75 G/Gs* (pin
20) is internally programmed as an asynchronous en-
able. Those jumper connections will enable the memory
whenthe control pipeline selects the control store to drive
the D_BUS.

When the Am27S85 is used, the jumpers at locations A,
C, and F are connected. The Am27S85 G/Gs/l/Is* (pin
19) is programmed as an asynchronous enable function.
Those connections will enable the memory when the
control pipeline selects the control store to drive the
D_BUS. Also, these connections imply that when the
Am27885 is used, the branch field of the initialize word
will not be valid. i

CLOCK CONTROL

In almost every complex digital system there is a need to
control and qualify selectively the system clock.

Aregisteroften needs a qualified clock that will clock (i.e.,
load) the register only when specified by some control
signal. Sometimes aregister will internally qualify its own

clock by providing a load enable input. But most often,
registers have only data input and outputs, an output
enable, and an unqualified clock input. It is up to the
system designer to provide a means to restrict the clock
to the register so that it receives clock only on those
cycles when its load enable control signal is active.

Restricting a clock in this fashion is referred to as quali-
fying a clock. The controlling signal that enables the
qualified clock is called the qualifier.

Most synchronous digital systems have a system clock
with a single active edge. This means that the system

_state willonly change on eitherthe low-to-high or high-to-

low edge of the clock. The opposite transition of the clock
will have no state changing effect in the system. The
opposite transition of the clock is referred to as the
inactive edge of the clock. It should be noted, however,
that, even though there is a single active edge for the
clocking of registered states inthe system, the levelofthe
clock may have an effect on some multiplexers or latches
in the system. The level of the clock may control the path
selected by a multiplexer, whether a latch is flow-through
or held, or the write enable of a memory.

To qualify a clock, there must be a way to prevent the
active edge from occurring. This implies that the clock is
held either high or low when it is prevented from cycling.
The choice of whether the clock wili be stopped (held) at
its high level or low level may depend on what, if any,
effect the level of the clock has on system multiplexers,
latches, or memories. For example, if the low leve! of the
clock enables a memory write line, it may be preferredto
stop the clock at the high level rather than the low level to
prevent any change in state of the memory.

Clock Qualification Circuit

Inthe Am29300 systemdescribed here, the systemclock
will be stopped at the high level. This is because the low
level of the clock may start the writing of data into the
Am29334 registerfile. The active edge of the clock willbe
the low-to-high transition.

This method of qualifying clocks is referred to as ‘OR’
qualification. Usually with this method the free-running
(unqualified) version of the system clock is ‘ORed’ with a
low active enable signal. Thus, ifthe enable is active (low)
the resulting qualified clock is allowed to track the free
running clock. if the enable is inactive (high) the qualified
clock will be forced high, stopping the clock, until the
enable againgoes active. Because the free running clock
is always high during the first portion of each clock cycle,
the clock enable signal need not be stable untiljust before

_ the inactive edge of the free running clock.

5-18

SECTION 5
Control Section Description

In this Am29300 demonstration system the following are
the desired controls over the system clocks:

1. The ability to stop all clocks to the Am29300 CPU,
both control and data sections. This will suspend
operation of (halt) the system.

2. The ability further to qualify register loading
(register clocks) with control pipeline signals.
The controlled registers would be the Macro
Status, Macro Opcode, and Interrupt Base
Address register.

3. The ability to single step all the system clocks
whenthe system clocks are inthe halt mode. Note
this implies only conditional single stepping on
those register clocks that are further qualified by
load enable controls.

4. The ability to single step the data section or the
control section independently.

5. The ability to force the control pipeline or the
Macro Status, Macro Opcode, and Interrupt
Base Address registers to load. This capability
is used to implement diagnostic control over
these registers.

To implement this kind of control over the system clocks,
a separately qualified version of the system free running
clock must be created for each differently handled regis-
ter. The general clock for the control section is different
fromthat for the data section. Also, each qualified regis-
ter clock is different.

The block diagram for the clock qualification circuit is
shownin Figure 5-15. The logic equation definition file
for the PAL in this circuit is shown in Appendix K.

The qualifiers for the system clocks come from either the
control pipeline, trap logic or the host interface controller.
The AmPAL22V10A Programmable Array Logic (PAL)
device is used to combine the various qualifiers into the
appropriate clock enables for each differently handled
set of registers. The output of the PAL is then logically
ORed with the system free running clock to form the
various qualified clocks in the system.

Inthis system, the free running clock generator produces
an active low clock with the enables active high. By using
negative logic OR gates (NAND gates) the clock and
enable signals are logically ORed together to produce
active high qualified clocks. The negative logic OR gates
are external to the clock qualifier PALs.

U107

CLK_FREE_RUN *

CLK_FREE_RUN

' L—> HALTMODE

CLK_CNTL3 5 D_EN

CLK_CNTL 2 5 ONTL_EN

CLK_CNTL1 - INTBEN

CLK_CNTLO

5 PIPE_EN

TRAP . STAT_EN

PLD_MAC_STAT < MOP EN
PLD_MAC_OP -
P_FC* -
P_LD_INT_BASE -
11

— ug9
13
AmPAL 22V10A

| —

CLK_D

3}——- CLK_CNTL
- v CNTL_EN

U108

CLK_INT_BASE
CLK_PIPE
CLK_MAG_STAT

CLK_MOP N

CLK_SEQ

RESET_300*

INT_CPU "

09856A 5-15

Figure 5-15. Clock Qualification Block Diagram

5-19

SECTION 5
Control Section Description

The NAND gates also serve as high output current
buffers that allow the qualified clocks to drive many
registers in the system. These NAND buffers also cause
the clocks to have very high speed edges. This requires
that clock lines be handled more carefully than other
signal lines to help prevent noise, reflections, and ringing
on the clock lines. Preventing these problems helps to
ensure clean clock signals free fromthe glitches that may
cause missed clocking or double clocking of registers. It
is suggested that clock lines be routed serially, kept less
than 12 inches in length, and terminated to the printed
circuit board's characteristic impedance at the last point
of use on each clock line.

Note that allthe system clock lines, eventhe free-running
clock line, pass through a NAND gate. This is done to
equalize the delay of all clocks so that clock skew in the
system is minimized.

Clock Generator

The unqualified (free running) source for all the clocks in
the system comes from a clock generatorimplementedin
an AmPAL16R6B. A diagram of the logic implemented in
this PAL is shown in Figure 5-16. The logic equation
definition file for this PAL is shown in Appendix L.

The only reason that a clock generator PAL is used in
addition to a simple clock oscillator module is to provide
the ability to vary dynamically the length of each system
clock cycle. This ability allows the system to run at the
maximum clock rate most of the time when the fastest
data paths areinuse andtorun at a slower rate onlywhen
slower system data paths are in use. By slowing the
system cycle time dynamically only when a slow data
path is used, the average system speed is much higher
thanwould be the case if the system clock rate were fixed
at the rate required by the slowest data path.

A simple way to do this would be to divide the normal
system clock by two and on each cycle select whether
the normal length or the double length clock cycle would
be used.

In this system, finer control over the length of each cycle
is desired. Where the cycle need only be a little longer
thanusual, only a slightly longer cycle is used rather than
doubling the cycle length. i

This is done by dividing down a high speed clock, which
runs three times faster than the normal system clock. Itis
then possible to extend a clock cycle in increments of the
high speed clock. A cycle then may be 1, 1.1/3,1 2/3, or
2 times the normal cycle length.

CLK

Free

P-CLKLEN (1)

Run *

P-CLK-LEN (0)

30 MHz CLOCK

o
[+]

S A
S A

o o
o o

ol o

ﬁ—CE_‘ﬁ—Ctj

O A

ol ©

08856A 5-16

Figure 5-16. U100 AmPAL16R6B Clock Generator

5-20

SECTION 5
Control Section Description

The Am29300 demonstration system's normal clock is
10 MHz, or 100 ns, long. The high speed clock is then
30 MHz and is provided by a commercially available
clock oscillator module.

The control over the cycle length comes from the control
pipeline register and may thus be specified differently on
each instruction. Two bits are provided to select one of
the four cycle lengths. Each instruction may thus control
its own cycle length based on the time required by the
data paths that are used.

The waveform of the clock may be described in terms of
the number of high speed clock periods duringwhich it is
active and then inactive.

Note that the output of the AmPAL16R6 is inverting. The
logic internal to the PAL creates an “active high” clock
with a low-to-high active edge. This waveformis inverted
by the final output of the PAL and is later inverted once
more in the clock qualifying circuit. The final system
clocks are thus active high. When describing any system
clock, it will be done in terms of an active high clock. The
clock generator waveform is shown in Figure 5-17,
where the outputs are shown active high, even though
the actual PAL output is inverted.

Each clock cycle has two or more active periods followed
by one inactive period.

The clock generator PAL outputisfroma Dflipflop. When
the flip flop output is inactive (low), one term feeds back
the inverted output. This will force the flip flop high on the
next high speed clock. The output of this flip flop feeds a
shift chain of four other flip flops, which act as a simple
timer for the extended cycle lengths.

During the first active period of the clock output, the
outputof thefirstilipflopinthe timing chainis stillinactive.
This first flip flop’s output is inverted and fed back into the
clock output flip flop to force the clock output to remain
high for a second active period.

During the second active period, the clock cycle length
bits from the control pipeline become stable and deter-
mine whether additional active periods will be inserted
into the output clock.

Note that since the first two periods of active clock are
forced by the logic, the control bits need not be stable for
two high speed clock periods minus the PAL set-up time
(66.6 ns - 15 ns = 51.6 ns). This time margin is further
reduced by the skew between the high speed clock and
the qualified clock to the control pipeline which is equalto
the clock-to-output time of the clock generator PAL plus
the propagation delay of the qualifying NAND gate
(51.6ns-(10 ns+5.5ns)=236.1ns). Therefore, aslong
as the control pipeline register clock-to-output time does
not exceed 36 ns, the clock generator will work as
described here.

Oscillator
ModulellIlllllllllllllllllllllllII

Output “—100 NS —»

G L L L LT

<4—— 133 n§ ——>

e o] L L] LI
Held < 166 ns >
Constant 10 I I__I l I
< 200 ns >
Nt L] LI
4
Cycle
Length
Bits(10) | » 0 0 01 11
L
Varied I [L]

09856A 5-17

Figure 5-17. Clock Generator Outputs (Inverted)

5-21

SECTION S
Control Section Description

If the clock cycle length bits are zero, no additional
feedback terms are enabled and the clock output flip flop
will go low in the next high speed clock period.

If the clock cycle length bits equal 1, the output of the
second timing chain flip flop is fed back to the output flip
flop to allow one additional active clock period.

Similarly, when the clock cycle length bits are equalto 2
or3, anadditional 2 or 3 active periods are insertedinthe
output clock waveform.

When the clock output flip flop again goes inactive, its

output will force all of the timing chain flip flops to be
cleared, thus beginning a new Am29300 clock cycle.

MICROCODE WORD

This section describes the structure and function of each

field of bits in this system’s microcode word. Included are .

some comments on how functions were determined and
how they might vary in similar systems.

Control Philosophy

In a microprogrammed system, each word of the microc-
ode functions as the determinate of all system action
during one clock cycle of system operation. Each bit
directly affects some aspect of the machine. Eachfield of
bits may act independent of other fields to manage
parallel data paths and simultaneous operations. This
abilityto manage parallel activities in each machine cycle
gives a microprogrammed system high speed and flexi-

bility. But the power of complete parallel control over

nearly all the functions in a system comes at a cost.

The cost is wide control memory words. Fifty- to 150-bit-
wide control words are common in microprogrammed
systems. Three hundred-bit-wide control words have
been used in large mainframe computers for years.

With each machine instruction’s eating up 100 or more
bits of memory, it doesn't take long to consume signifi-
cantboard space, power, and cost for high speed microc-
ode memory.

The resulting dilemma between the need for parallel
control and the cost, size, and power that accompanies
it, is the basis of many a system designer’s headache.

The usual approach usedto strike a balance betweenthe
opposingissues is to determine carefully which functions
must absolutely be able to occur in parallel, then to limit

the microcode word size to that absolute minimum.
Control over other less frequently used functions or over
alternate operations is then overlapped with the primary
control fields.

Overlapping of control fields means that during certain
operations, the meaning of the bits in the overlapped
control field changes. The hardware controlled by the
primary meaning of an overlapped field must be dis-
abled during the time that the alternative meaningisin
effect. This of course means that the functions con-
trolled by the overlapped fields cannot occur in the
same machine cycle.

This results in winning a little and losing a little. More
control and thus more functions may be managed with
less control memory, but some operations then take
multiple cycles to complete, due to the use of functions
that may not be managed in one instruction. Also, the
need to enable and disable control field meanings and
the associated hardware, will add control bits and decod-
ing logic. The decode logic adds delay into the machine
cycles and will cause the system to run a little slower.

Additional savings in control word size may be made by
encoding fields rather than having each bit directly drive -
a control signal. This again adds decoding logic and its
associated delay.

The job of deciding what control must be paralle!l and
what must be overlapped is more art than science. No
matter how the microcode word is defined, there will
always be other interesting ways to rearrange and over-
lap the control fields. Each way will cost something either
in word width or control decoding, thus providing endless
trade-offs.

Allthese possible variations make it extremely important
to have a thorough understanding of the algorithms to be
handled by a particular machine. The better the under-
standing, the better the chance to optimize the system
architecture and control to solve the problem at hand.

Microcode Word Field Descriptions

Throughout the figures that detail the design of this
system, signals that travel from page to page have been
given meaningful names that imply the function of the
signal. This helps in understanding what is going on in
each figure. Many of these signals are the direct outputs
of the control store pipeline register. As it turns out, many
of the bits in the microcode carry multiple meanings
because the function of several fields are overlapped to
save microcode word size.

5-22

SECTION 5
Control Section Description

The result is that more that one signal name may often be
associated with a particular bit of the control pipeline.
Physically, of course, all signal lines that ultimately con-
nect to a particular pipeline bit are one piece of wire. The
logical separation of lines, by using different names, only
helps to understand the function of a given signal, when
the hardware that uses the signal is enabled. The follow-
ing three Figures show the physical and logical relation-
ships between the microcode control store bits and the
signal names (meanings) that are attached.

Each Figure is split into pairs of columns preceded by
one column that indicates the individual bit numbers for
each signal. Each column pair contains a Field Name
column that describes the function of the bit and a Signal
Name column that gives the signal name used through-
outthe Figuresinthisdocument forthat meaning. The left
most column pair shows the primary meaning of the
control bits. Other column pairs to the right give alternate
(overlapped) meanings for the control bits along with the
signal name used with each meaning.

Unless a control bit is overlapped with an alternate
meaning in one of the columns to the right, the function
of the control bit is constant.

Register File Controls

Figure 5-18 shows the microcode word bits that affect
the Am29334 register file.

ltwas decidedthat athree address machine would be the
most appropriate way to obtain the best performance
from the Am29300 family components. Because of the
common three bus architecture these parts share, a
three address register file fits nicely. Two addresses are
used to read an A and B operand from the file while the
third address specifies an independent write location.
This allows writing back results without requiring the
destruction of one of the read operands in a single cycle.

An address multiplexer on the C operand register ad-
dress does allow for two and one address operations by
allowing either the A or B operand address to be used for
the write operand address in addition to its use as aread
operand.

Also, to support macroinstruction execution, address
multiplexers are used on the read addresses so that
macroprogram supplied register addresses may be di-
rected to the register file. When macroprogram supplied
addresses are in use, the meaning of the register ad-
dress fields changes to control signals for the macro
operand address counters. With this alternate meaning,
the macro addresses may be incremented or decre-
mented at the end of each cycle.

Bits 91 and 84 select whetherthe microcode orthe macro
opcode addresses are directed to the register file. If
either bit is high, the alternate definition for the related
addressfield takes effect, and the macro opcode address
is used.

Bits 76 and 77 are used to select one of four addresses
to be supplied to the A write port of the register file. The
selections are as follows:

Bit
77 76

0 0 C operand microcode address used.

0 1 Aoperand address, as specified by bit 91.
1 0 B operand address, as specified by bit 84.
1 1 C macro operand counter address used.

When any selection other than forthe C operand microc-
ode address is made, the field assumes the alternate
meaning for control of the macro operand counter.

In addition to the three addresses used by the data
section of the CPU, a fourth address is provided for the
B write port of the register file so that data may be moved
into the file viathe second port while other calculations go
on undisturbed.

The address for this fourth port comes from a multiplexer
that may select either the C operand microcode address
orthe C macro opcode address counter as the source. Bit
69 is the select input for this fourth address multiplexer.

Bit 68 enables the register file A read port onto the
A_BUS. If this bit is inactive and if the FPP seed register
output is also inactive, the D_BUS to A_BUS transceiver
is enabled so that constants, masks, and variables may
be passed from the D_BUS to A_BUS.

Bits 67 and 66 are used as the write enable controls for
the two write ports of the register file.

Data Path Controls
The data path controls are shown in Figure 5-19.

To provide a straightforward example of the usage of the
PM and FPP, these devices have had their input and
output buses paralleled with those of the ALU. In this
arrangement it is not generally feasible to make use of
more than one module in a given cycle. This is because
the data buses may carry useful information to only one
device at a time (this assumes that passing the same
datato more than one device is of limited use). Also, only
one device may drive the Y_BUS at a time.

5-23

SECTION 5
Control Section Description

Figure 5-18. Am29300 Demonstration System Microinstruction Word Layout -- Register File Controls

Control Field Name Signal Name Field Name Signal Name Field Name Signal Name
Pipeline Primary Primary Alternate 1 Alternate 1 Alternate 2 Alternate 2
Bit # Meaning Meaning Meaning Meaning Meaning Meaning
Po1 Reg A Macro/Micro* P_ARA_MAC

It P91 = 0 then primary If P91 = 1 then alternate 1
P90 Register A Address (5) P_RA (5)
P89 Register A Address (4) P_RA (4)
P88 Register A Address (3) P_RA (3)
P87 Register A Address (2) P_RA (2)
P86 Register A Address (1) P_RA (1) RA Count Direction P_UP/DN_A
P85 Register A Address (0) P_RA (0) RA Count Enable P_CNTA_EN
P84 Reg B Macro/Micro* P_ARB_MAC

If P84 = 0 then primary If P84 =1 then alternate 1
P83 Register B Address (5) -P_RB (5)
P82 Register B Address (4) P_RB (4)
P81 Register B Address (3) P_RB (3)
P80 Register B Address (2) P_RB (2)
P79 Register B Address (1) P_RB (1) RB Count Direction P_UP/DN_B
P78 Register B Address (0) P_RB (0) RB Count Enable P_CNTB_EN
P77 Reg C Add Source (1) P_C_SEL (1)
P76 Reg C Add Source (0) P_C_SEL (0)

If P77:76 = 00 then primary If P77:76 = 01, 10, 11 then alternate 1
P75 Register G Address (5) P_RC (5)
P74 Register C Address (4) P_RC (4)
P73 Register C Address (3) P_RC (3)
P72 Register C Address (2) P_RC (2)
P71 Register C Address (1) P_RC (1) RC Count Direction P_UP/BDN_C
P70 Register C Address (0) P_RC (0) RC Count Enable P_CNTC_EN
P69 B Write Port Select P_AWB_MAC
P68 A Bus Output Enable* P_OEA*
P67 A Port Write Enable* P_WEA*
P65 B Port Write Enable* P_WEB* #

5-24

SECTION 5

Control Section Description

Figure 5-19. Am29300 Demonstration System Microinsturction Word Layout -- Data Path Controls

Control Field Name Signal Name Field Name Signal Name FieldName Signal Name
Pipeline Primary Primary Alternate 1 Alternate 1 Alternate 2 Alternate 2
Bit # Meaning Meaning Meaning Meaning Meaning Meaning
P65 Data Path Select (1) P_DPS (1)

P64 Data Path Select (0) P_DPS (0)

ALU when P65:64 = 00 FPP when P65:64 = 10,11 PM when P65:64 = 01

P63 ALU Instruction (8) P_ALU_INST (8) FPU Instruction (4) P_FP_I (4) TCX P_TCX
P62 ALU Instruction (7) P_ALU_INST (7) FPU Instruction (3) P_FP_I (3) TCY P_TCY

P61 ALU Instruction (6) P_ALU_INST (6) FPU Instruction (2) P_FP_I (2) ACC (1) P_ACC (1)
P60 ALU Instruction (5) P_ALU_INST (5) FPU Instruction (1) P_FP_l (1) ACC (0) P_ACC(0)
P59 ALU Instruction (4) P_ALU_INST (4) FPU Instruction (0) P_FP_I (0) RND P_RND
P58 ALU Instruction (3) P_ALU_INST (3) ENR* P_ENR* XSEL P_XSEL
P57 ALU Instruction (2) P_ALU_INST (2) ENS* P_ENS* YSEL P_YSEL
P56 ALU Instruction (1) P_ALU_INST (1) ENF P_ENF* TSEL P_TSEL
P55 ALU Instruction (0) P_ALU_INST (0) Feed Through (1) P_FP_FT (1) ENXA" P_ENXA*
P54 Position Mac/Mic* P_POS_MAC Feed Through (0) P_FP_FT (0) ENXB* P_ENXB*
P53 Position (5) P_POSITION (5) I|EEE/DEC* P_IEEE/DEC* ENYA" P_ENYA*
P52 Position (4) P_POSITION (4) SeedOutput Enable* P_SEED_OE ENYB" P_ENYB*
P51 Position (3) P_POSITION (3) Projective/Affine P_PROJ/AFF* ENP* P_ENP*
P50 Position (2) P_POSITION (2) Rounding Mode (1) P_FP_RND(1) ENT P_ENT*
P49 Position (1) P_POSITION (1) Rounding Mode (0) P_FP_RND(0) FA P_FA

P48 Position (0) P_POSITION (0) FTX P_FTX

P47 Width Mac/Mic* P_WID_MAC FTY P_FTY

P4s Width (4) P_Width (4) FTP P_FTP

P45 Width (3) P_Width (3) PSEL (1) P_PSEL (1)

P44 Width (2) P_Width (2) PSEL (0) P_PSEL (0)

P43 Width (1) P_Width (1)

P42 Width (0) P_Width (0)

P41 Macro/Micro* Status P_MIC/MAC

P40 Register Status P_REG_STAT

P39 Load Macro Status P_LD_MAC_STAT

P38 Borrow Mode P_BM

P37 Memory Add Select (3) P_MEM (3)

P36 Memory Add Select (2) P_MEM (2)

P35 Memory Add Select (1) P_MEM (1)

P34 Memory Add Select (0) P_MEM (0)

P33 Memory Write En* P_MEM_WR*

5-25

SECTION 5
Control Section Description

Figure 5-20. Am29300 Demonstration System Microinstruction Word Layout -- Control Section Controls

Control Field Name Signal Name Field Name Signal Name Field Name Signal Name
Pipeline Primary Primary Alternate 1 Alternate 1 Alternate 2 Alternate 2
Bit # Meaning Meaning Meaning Meaning Meaning Meaning
P32 Cydelength (1) P_CLKLEN (1)
P31 Cycle Length (0) P_CLK_LEN (0)
P30 Interrupt Enable P_INT_EN
P29 Force Continue P_FC*
If P29 = 1 then primary If P29 = 0 then alternate 1
P28 Seq Instruction (5) P_SEQ_INST (5) Interrupt Host P_INT_HOST
P27 Seqlnstruction (4) P_SEQ_INST (4) Sign Extend A_BUS P_SIGN_EX
P26 Seqlnstruction (3) P_SEQ_INST (3) Initialize P_INIT
P25 Seqinstruction (2) P_SEQ_INST (2) Load Interrupt Base Add P_LD_INT_BASE
P24 SeqInstruction (1) P_SEQ_INST (1)
P23 SeqInstructon (0) P_SEQ_INST (0)
1f P29 = 1 AND P28:27 != 11 then primary If P29 = 0 OR P28:27 = 11 then alternate 1
p22 Test Select (3) P_TEST (3) Am?29114 Iastruction (3) P_INT_INST (3)
P21 Test Select (2) P_TEST (2) Am29114 Instruction (2) P_INT_INST (2)
P20 Test Select (1) P_TEST (1) Am29114 Instruction (1) P_INT_INST (1)
P19 Test Select (0) P_TEST (0) Am29114 Instruction (0) P_INT_INST (0)
P18 Load Operand Counter P_LD_CNT
P17 Load Macro Op Reg P_LD_MAC_OP
P16 Branch Field Enable* P_BRANCH_EN*
P15 Branch Address (15) D_BUS (15)
P14 Branch Address (14) D_BUS (14)
P13 Branch Address (13) D_BUS (13)
P12 Branch Address (12) D_BUS (12)
P11 Branch Address (11) D_BUS (11)
P10 Branch Address (10) D_BUS (10)
P9 Branch Address (9) D_BUS (9)
P8 Branch Address (8) D_BUS (8)
P7 Branch Address (7) D_BUS(7)
P6 Branch Address (6) D_BUS (6)
P5 Branch Address (5) D_BUS (5)
P4 Branch Address (4) D_BUS (4)
P3 Branch Address (3) D_BUS (3)
P2 Branch Address (2) D_BUS(2)
P1 Branch Address (1) D_BUS (1)
PO Branch Address (0) D_BUS(0)

If separate control bits were provided for the FPP or PM,
they could perform multi-cycle operations such as New-
ton-Raphson division inthe FPP or greater than 32 by 32
bit multiplies in the PM, while remaining detached from
the input and output buses during most of the multi-cycle
operation. If this were done, the ALU could operate in
parallel during such operations. The cost of doing this
would be an additional 15 to 35 bits added to the microc-
ode word width. These bits would get full use only during
those situations that parallel calculations are possible.

For this design it was decided to use a smaller microcode
word by overlapping contro!l bits for each of the three
functional units.

Data Path Selection: Only one functional unit (data
path) in the data section is chosen in any one cycle. Bits
65 and 64 select one of four options:

Bit
65 64
0 0 ALU enabled
0 1 PM enabled
1 0 FPP enabled
1 1 Special function

5-26

SECTION 5
Control Section Description

In the special function option, the FPP is enabled for
calculation and the control bits are assumed to be set
correctly for use by the FPP, but the output enable of the
FPP is inactive with the ALU output enable active. The
ALU is not enabled for calculation in the sense that its
hold input is made active to prevent state change in the
status or Q registers.

This odd-looking combination is used to provide input
operand parity checking for the FPP. The FPP does not
have its own parity checking circuits, so with this arrange-
ment the ALU parity checkers will be enabled by the
active output enable onthe ALU. The FPP s still allowed
to function and may complete its operation and store the
result in its internal registers, while in the same cycle the
input operand parity is checked by the ALU. The ALU
state is left undisturbed by this operation.

How useful is this scheme? It may save a cycle once in
awhile, but mainly itillustrates the odd sort of opportuni-
ties one may find to use up an otherwise wasted control
code.

ALU Path: When the data path select bits enable the
ALU meaning for bits 63:38, bits 54 and 47 are used to
select either the microcode or macroinstruction position
and width fields. The macro supplied information is
selected when these select bits are high. When the
macro source is selected, the microcode position and
width fields are unused.

Bit 41 selects macro or micro status inputs for the ALU.
Bit 40 selects whether the status output of the ALU is
flow-through or registered.

Bit 39 is used as a clock qualifier for the loading of the
ALU external macro status register.

Bit 38 directly controls the Borrow mode of the ALU.

FPP Path: When the data path selects enable the FPP,
the control bits shown directly manage the operation of
the FPP as described by the Am29325 data sheet. Bit52
is usedto enable the output of the FPP external “division
seed” registered PROM.

PM Path: When the data path selects enable the PM, the
listed control bits are used as defined in the Am29C323
data sheet.

Data Path Enabling: What does it mean to enable or
disable one of the functional units? The control bits that
are shared between each functional unit are either high

or low every cycle, and they are connected to the ALU
and muttipliers all the time. There is no intervening logic
that turns all the control bits “off” when a particular path

is not selected. Each device sees a jumble of nonsense
on its control lines whenever the control field meaning is
intended for another device. Nonsense or not, each
device will do whatever the control bits specify.

Enabling a data path means making the output enable of
the selected device active so thatitdrivesthe Y_BUS and
is able to write calculation results back into the register
file. In the case of the ALU, enabling also means that the
ALU holdinput will be made inactive so that state change
of the ALU status and Q registers is allowed. Enabling
one path implies disabling the other paths.

For the PM and FPP, disabling means their output
enables are inactive. It also means that the PM product
register feed through pin is disabled by the control
decode logic. Forthe FPP it meansthat both of its register
feed through lines are disabled by control decode logic.
These register feed through controls are disabled be-
cause, ifthey are allowedto be active, itis possible forthe
PM and FPP multipliers to feedback on themselves and
begin to oscillate. This action would not damage the
devices, but it could add to power consumption and
system power plane noise. A simple prevention is just to
disable the feed-throughs when the data paths are not
selected. Note that the ALU has no internal feedback
paths and does not need any similar treatment.

Memory Control: Bits 37:33 are available at alltimes to
control the Am29300 system memory.

Bit 33 is the memory write enable control.

Bits 35:34 select the source of the address for the
memory.

Bit

35 34

0 0 No memory address or operation is
selected

0 1 A_BUS datais usedto address memory

1 The A memory address counter is
selected for address

1 1 The B memory address counter is

selected for address

5-27

SECTION 5
Control Section Description

Bits 37:36 select the following:

Bit
37 36
0 0 Load counter A
0 1 Load counter B
1 0 Selected counter is incremented
1 1 Selected counter is decremented

The increment and decrement commands have effect
only when a counter is selected as the MA_BUS source.
The load commands have effect only whenthe A_BUS is
the selected source.

Control Section Controls

Figure 5-20 shows the bit definitions for the control
section.

Pipeline bits 32:31 control the length of each machine
cycle.

Bit
32 31
0 0 Normal cycle length
0 1 1.33 x Normal cycle length
1 0 1.66 x Normal cycle length
1 1 2 x Normal cycle length

Bit 30 enables sequencer interrupts on a cycle by cycle
basis.

Bit 29 is the Force Continue signal for the sequencer.
When this bit is active, the sequencer will execute a
continue instruction regardless of the state of the se-
quencer instruction or test select lines. This effectively
enables the alternate meaning for the sequencerinstruc-
tion and test select fields.

Bits 28:19 are normally the sequencer instruction and
test select inputs. When Force Continue is active, the
sequencer instruction field meaning changes.

When Force Continue is active, bits 28:25 are used to
control four individual functions. Bit 28 will send an
interrupt signal to the host system. Bit 27 will enable the
sign extension of data going from the D_BUS to the
A_BUS. Bit 26 will force the control pipeline register to
load data from the control store initialize register at the
next active system clock. Bit 25 will enable the loading of
the interrupt base address register.

Bits 22:19 are used 1o control the sequencer test selec-
tion. When an unconditional sequencer instruction is in
effector whenthe Force Continue bit is active, bits 22:19
are used to control the Interrupt controller instruction.

Bit 18 is used to load the macro operand counters from
the macro opcode register.

Bit 17 is used to load the macro opcode register.

Bit 16 enables the three-state outputs on the branch field
bits of the control pipeline register. If these outputs are
disabled, then the sequencer, A_BUS to D_BUS trans-
ceiver, or interrupt Controller may drive the D_BUS. How
adevice is chosento drive the D_BUS is explained in the
control decode logic description. It is only important to
note that if bit 16 is active, the branch field outputs will be
active and will have priority over any other driver on the
D_BUS.

Bits 15:0 are the branch address field to the sequencer.
This field is also used to contain constants or masks.
These may be used by the data section, sequencer,
interrupt base register, orinterrupt controller. Itis afull 16
bits long in order to allow for constants or masks that fill
half of the 32-bit data path. This allows 32-bit microcode
supplied masks to be formed with two microinstructions.

Alternate Arrangements

The microcode word size just defined for this system
totals 92 bits wide. Having so many bits allows the
flexibility to change the control over most of the
machine’s functions on any or every cycle. But, this
degree of control flexibility is not required for every
application. The size of the control store may be reduced
based on how the system is used most often. Following
are atewcomments onwaystorearrange and reduce the
control store size.

Current Control Bit Usage

First let's look at how the control bits are used in this
design.

Seven of the bits are used to control the selection of
alternate field meanings (i.e., overlap control in bits 91,
84, 77:76, 65:64, and 29).

Eleven bits are used to control functions that are desired
to operate in all cycles, independent of other system
operations. These are the register file write and read
enables (bits 69:66), memory controls (bits 37:33), and
the cycle length controls (bits 32:31).

5-28

Section 5
Control Section Description

Eight bits generally do not change state frequently. Their
existence in this design is a convenience that reduces the
need for control decode logic and adds system flexibility.
These bits are 41:38, 30, 18:16.

Three bit fields are used only with some instruction
types. These are the position, width, and branch fields.
Whenever a particular instruction does not use a field,
those bits in the field are currently wasted in thatin-
struction cycle.

Alternative Usage

The bits that change infrequently could be replaced by
decode logic that provides these same control signals via
set-reset flip flops. The flip flops would be controlled by
overlapping set and reset commands with some other
control store field. This would add to the decode logic
complexity and would limit when the flip flops could be
changed by restricting the control over them to certain
instruction types. Since they change only infrequently,
the requirement to use certain instruction types when
setting or resetting them should not be a problem.

Those bit fields that are limited to certaininstructiontypes
could be overlapped. An example might be to overlapthe
position and width fields with the branch address field.
This would restrict branches to instructions that do not
require the position or width information.

When alternative field meanings are enabled, often the
alternative definition does not make use of all the bits in
the field. This presents the opportunity to overlap other
control bits that may be valid in the same cycle as the
alternate meaning of the field.

For example, some of the infrequently-used control bits
could be overlapped with the unused bits of the register
C address when the primary meaning of the C address
field is not active. When a two address instruction is
executed, the address for the C register comes from the
Aor B address, thus leaving the microcode field forthe C
register address available for other functions.

In anothier example, the bits in the position and width
fields that are not used by the PM or FPP could be
overlapped with other control functions when the alter-
nate meanings for the field are in effect. An alternate
branch address field might be placed inthose bits to allow
branch instructions in combination with FPP or PM
operations without the need for the currently defined
branch field.

Careful analysis of how each data path is used may also
allow reductions through the elimination of controls that
are not needed. As an example: if the PM were used

only in flow through mode, all the controls for register
enables, flow through modes, and input multiplexers
could be removed from the microcode word and those
inputs to the PM tied to fixed voltage levels. If only two’s
complement mode is used then an additional two bits
may be eliminated. This would leave only four necessary
control bits, the accumulator controls, rounding mode,
and format adjust. This reduction might allow PM
operations to be overlapped with some multiply-accumu-
late operations in the FPP.

By combining these reduction techniques, the following
changes could be made:

All of the eight infrequently used control bits could be
moved to overlap with the C register address, with half in
effectwhenthe A address is substituted forthe C address
and half in effect when the B address is substituted.

The PM controls, except for flow though and two’s
complement mode, may be moved to overlap with the
position, width, and memory control fields. Also, the
fourth data path select field may be changed to disable
the memory controls and select the ALU — minus the
position and width fields—to be active along withthe PM.
In this mode the PM flow through and two’s complement
mode controls would be fixed with no flow through and
two's complement mode active. The ALU position and
width inputs would be set to 0 and 31 respectively by
control decode logic (unless these fields were selectedto
come from the macro opcode).

The branch address field may be moved to overlap with
the position, width, and memory controlfields. When ever
the sequencer instruction selects a branch operation, the
position, width, and memory fields are disabled and the
branch address meaning substituted.

If all of these changes are made, the currently defined
branch address field and infrequently used control bits
may be eliminated, which would save 24 bits of microc-
ode word width. This would reduce the word size to 68
bits.

This savings would come at the cost of allowing branch
instructions only when the ALU instruction does not need
position or width information from the microcode (this
information may still come from the macro opcode regis-
ter) and when the system memory is not being used.
Further, a PM operation could not occur with a memory
access in the same cycle. Also, with these changes it
would be possible to control the ALU and PM concur-
rently when the ALU does not need position or width
information and when the PM operates on internally
registered data.

5-29

SECTION 5
Control Section Description

There are many such combinations of microcode control
field definition. Each one provides a different trade-off
between word size and what operations may be concur-
rent. Each one requires a different degree of complexny
in the control decode logic.

CONTROL DECODE
What Is It Good For?

The ideal microprogrammed system has a separate
microcode control store bit for each control input that
exists in the system. This kind of complete control over
every aspect of the system directly from the control
pipeline totally eliminates the need for decoding the
meaning of any system control bits. It also requires avery
large microcode word to manage most useful systems.
So in the real world, most microprogrammed systems
encode or overlap at least some control functlons in the
microcode word.

Encoded control or not, each control input in the system
requires valid voltage levels during each machine cycle
if the system is to operate as expected.

The control decode logic acts as the bridge between
encoded or overlapped (i.e., sometimes unavailable)
microcode control fields and the related control signals in
the system. The control decode logic continuously pro-
vides valid logic levels for those control signals that
cannot be directly driven by the control pipeline register.

If the control field for a particular function is encoded, the
control logic translates the function codes into individual
control signals. Where control fields are overlapped, the
control logic may be used to disable logic affected by a
control field when that field has a meaning different than
that intended for the logic being disabled (i.e., when
overlapped control is active).

In some cases, control logic is used to prevent harmful
conflicts between the meaning of different control bits, for
example when two separate control fields affect the
three-state enables on different buffers which may drive
the same signal line. Certain combinations of control bits
might enable both buffers in the same cycle causing
contention between the buffers. Allowed to continue for
long periods, this kind of contention may destroy the
buffers. Control logic may be used in this situation to
disable one or both buffers when the combination of
controls affecting them would otherwise cause damage.
In fact it is strongly recommended that this kind of
problem always be avoided by designing the control
decode logic to prevent such disasters. The alternative is
to watch hardware melt because of a software mistake.

Control Logic Description

Some.of the control logic function in this demonstration
system has been distributed into the devices being
controlled. This is done when a PAL is used to implement
a function. A PAL generally has excess inputs and
internal logic that may be put to use in decoding the
meaning of encoded control fields(e.g. the memory
address counters). The memory address counters are
implemented from AmPAL22V10 devices and are shown
in Figure 4-7. The control for loading, incrementing,
decrementing, and output enabling the counters is pro-
vided directly from the encoded memory control field.
The PALs internally decode the meaning of the control
bits.

When a device requires a decoded control signal, the
signal must come from control decode logic that takes
control pipeline bits as input and produces the needed
control signal. In this system, the required contro! logic
has been implemented in three AmPAL18P8B PALs.
These PALs are fast to minimize the delay induced
between the control pipeline register and the device
controlled. The PALs also provide the convenience of
having programmable output levels, either high or low
active for each output, independent of other outputs.

" The block diagram for these PALs is shown in Figures 5-

21 and 5-22. The logic definition files for these PALs are
in Appendix M.

The ALU output enable, ALU hold, and PM output enable
are all direct results of the pipeline data path select bits.

The pipeline controls for seed register output enable, PM
flow through, and FPP flow through are gated by the
appropriate data path selection so that each control
signal is active only when the related data path is se-
lected. '

The D_BUS to A_BUS direction of the D_BUS trans-
ceiver is enabled by the register file A output's being
disabled in conjunction with the seed register output's
being disabled.

The A_BUS to MD_BUS buffer is enabled by certain
codes of the memory control field.

The control store initialize register select is enabled by
the combination of the pipeline Force Continue and the
pipeline control bit for the initialize select. It is also
enabled by the WCS_INIT* signal fromthe host interface
controller. Note that the initialize control is synchronous
as used inthis system so that the initialize word is loaded
only at the next active clock.

5-30

SECTION 5
Control Sectlon Description

P_DSP (1) ALU_OE*
P_DSP (0) ALU_HOLD
P_OEA® PM_OE*
P_SEED_OE uiot "SEED_OE*
P_FTP AmPAL FIP
P_FP_FT (1) 18p8B FP_FT (1)
P_FP_FT (0) FP_FT (0)
D_OER*
P_MEM (3) A_MD_OE*
P_MEM (2) INIT_MG*
_P_MEM(1) ut02)
P_MEM (0) AmPAL
P_FC* 18P8B
P_INIT
WCS_INIT*
09856A 5-21
Figure 5-21. Control Decode Logic Part1
P_BRANCH_EN* D_OET*
P_FC*® SEQ_OED
IEN*
P_INT_INST (3) INT_CS*
P_INT_INST (2) D_SIGN_EX
P_INT_INST (1)
P_INT_INST (0) u103
P_SEQ_INST (5) AmPAL
P_SEQ_INST (4) 18P8B
P_SEQ_INST (3)
P_SEQ_INST (2)
P_SEQ_INST (1)
P_SEQ_INST (0)
09856A 5-22

Figure 5-22. Control Decode Logic Part 2

5-31

SECTION 5
Control Sectlon Description

The D_BUS sign extend, Sequencer output enable,
Interrupt controller instruction and chip select enables,
and A_BUS to D_BUS enable are all direct results of the
pipeline sequencer instruction, interrupt controller in-
struction, branch enable, and Force Continue bits.

The Sequencer output enable, A_BUS to D_BUS en-
able, and interrupt controller chip select are used to
controlwhich device is allowed to drive the D_BUSinany
given cycle. These output enables are arranged in a
priority with only one output allowed to be active in any
cycle; including the branch field of the control pipeline.

The highest priority output is the branch field. If it is
enabled all other outputs are disabled.

If the branch field is disabled, then the Sequencer D
output is enabled if either a Continue or a Pop D instruc-
tion is being executed.

If neither the branchfield northe sequencer are enabled,
then the interrupt controller may drive the D bus if the
interrupt controller instruction is one .of three read
operations.

If none of the above conditions exist to enable the other
D_BUS devices, then the A_BUS to D_BUS transceive
path is enabled.

Note that the interrupt controller chip select is treated as
both an instruction enable and as an output disable. The
chip select is active whenever there is a valid interrupt
instruction that would not cause a conflict with another
driver of the D_BUS. This means that when there is a
valid instruction, the chip select will be inactive only if a
read instruction is selected and either the branch field or
sequencer are already enabled on the D_BUS. If any
otherinterrupt instructionisin effect, the interrupt control-
ler does not drive its outputs.

The above scheme for managing the access rights to the
D_BUS may seem a bit complex but it allows great
flexibility in movement of information over the D_BUS.
Information may be moved between the interrupt control-
ler and sequencer, interrupt controller and A_BUS, or
sequencer and A_BUS. Information may be loaded into
the interrupt base address register from the pipeline,
sequencer, or A_BUS. Also, the pipeline may provide
data to the sequencer, interrupt controller, interrupt base
address register, or A_BUS.

5-32

SECTION 6
System Timing and Critical Path Analysis

DEFINITIONS

The upper limit on system speed is set by the slowest
signal propagation path in the system.

Thelengthof a sig‘nal propagation pathis measured from
the output of one register to the input of another register,
where all registers are loaded by the same clock.

The slowest signal path will be different for different
control states. An example would be the selection of the
ALU data path vs. the FPP data path.

A signal path may be slower in the first cycle that control
selects the path than it will be in a subsequent cycle that
maintains the same path selection. This can be due to
three-state enable or disable times being longer than
normal propagation delays of the circuits involved.

CONTROL AND DATA PATHS

In determining the maximum system speed, every signal
path must be analyzed. This requires fracing every
control signal and every data signal and totaling the delay
induced by each component along the path from source
register to destination register. Where parallel paths
exist, the time delay for the slowest path is used.

Most often, the critical (slowest) paths originate with the
pipeline control register. In the data section the paths will
end with data being loaded into the register file, an FPP
or PMinternal register, the system memory, oraD_BUS
destination. In the control section the paths will end with
loading of new control bits into the control pipeline
register.

v y
| Control Pipeline Register | Macro Opcode Operand
Register Counters
‘ i
vy ‘
Pos + Wid |« Address Control y
Mux Mux Decode SEQ
I INT
- 4
3 >
A
Register
File Dto A
¢ Xcevr
< A_BUS 5
Py
A Memory
Address
ALU <
PM < Buf/Cnt
FPP MA_BUS
Y_BUS MD_BUS

Status
Register

09856A 6-1

Figure 6-1. Data Section Timing Paths

6-1

¢

SECTION 6
System Timing and Critical Path Analysls

y
Control Store
o " Macro Opcode
Control Pipeline Register Rogistor
Branch Field &
Output Buffer | A VECTOR
Control Decode » Interrupt Controller MAP
D RAM
4
y y 3 L
OED 0D INTR INTA A
Sequencer
. 4
MC_ADDRESS
Status Mult-Way
Register Source Registers

09856A 6-2

Figure 6-2. Control Section Timing Paths

Since the control section and data section operate in
parallel, the slowest path in either section will determine
the cycle length required for a specific operation.

Figures 6-1 and 6-2 provide a block diagram view of
significant signal pathways for both control and data lines
in both the control and data sections.

Referring to these figures as critical timing paths are
discussed may help in following the timing analysis.

In this and nearly any complex system, there are hun-
dreds of pathways that must be traced in order to ensure
finding allthe worst case delays. To go through allofthem
here would require too much time and space. Many of the
timing paths for this design have already been analyzed,
andwhat appearto be the worst case paths will be shown
here.

WORST CASE PATHS

Each case is shownin Table 6-1. The table is separated
into several pages due to its length. It can be viewed as
a long spreadsheet calculation in which the appropriate
timing parameters that apply to each case have been
selected and placedinthe correct column. Only the worst
case delay for each segment of a critical path is shown.

Parallel but faster paths have been eliminated fromeach -

case so that the total of the times listed for a case
represents the minimum time in which a path can be
traveled.

Case Definitions

1.

Basic flow-through calculation, data path.

Data is moved from the register file through the
ALU andbackto the register file. The timing path
begins at the control pipeline where the register
file address for the A and B read operands
appear after the clock to output delay of the
control pipeline register. These addresses flow
through the Am29827 buffer that forms one side
of the register file address multiplexer. The
address accesses the register file and one ac-
cess time later the data operands are presented
tothe ALU. By thistime the control signals forthe
ALU instruction have been stable long enough

-that the flow through time of the datain the ALU

will be the slower path. Once dataisonthe Y bus
the lastdelayisthe set-uptimeforthe registerfile
before clock canoccur. Again, the control path to
the register file (A port write address) is faster
than the data path so the data path is the limiting
factor.

The total delay for ihis path is 96 ns. If the PM

- path is substituted for the ALU the delay would

be 174 ns. If the FPP were substituted, the delay
is 179 ns. So flow through calculations with
either of the multipliers will require extended
cycle length.

6-2

SECTION 6
System Timing and Critical Path Analysis

Basic flow-through calculation, position control
path.

This case is the same as Case 1 except that a
careful look at the control path for the position
input to the ALU is taken. This path turns out to
be 97 ns worst case. This is an example where
the control path is a little slower than the data
path.

Flow-through calculation with address supplied
by the Macro operand counter; counter output
enabled same cycle.

Again this path is similar to Case 1. The differ-
ence is that the read addresses are assumed to
come from the Macro operand counters. It is
further assumed that the counters are selected
during the cycle analyzed. This means that the
output enable time of the counter must be added
to the clock to output time for the pipeline bit that
selects the macro opcode counter.

This increases the delay pathto 115 ns, indicat-
ing that during the first cycle, in which a macro
opcode counter is used as the address source,
the cycle length will need to be extended.

Flow-through calculation with address supplied
by the Macro operand counter; counter output
enabled prior cycle.

This case is a comparison with Case 3, where
the Macro operand counter was output enabled
in the previous cycle. The counter delay is thus
limited to the clock to output delay of the
counter. This reduces the cycle time require-
ment to S0 ns. So, sequential register file
address cycles, using an operand counter can
be completed within the normal cycle time.

First cycle of FPP Newton-Raphson division,
seed value load.

In this case the critical path starts at the control
pipeline clock to output delay, and then goes
through the control decode logic that enables the
output of the Seed register. In this case it is
assumed that the seed value is multiplied and
storedin an FPP internal registerto complete the
first cycle of a Newton-Raphson division. This

requires a total of 169 ns. Note that if the seed
value had simply been moved into the input
register of the FPP, the total delay would have
only been 73 ns.

Memory read with address from the register file,
selected by microcode.

This is a simple memory read with the time
starting at the pipeline clock to output delay,
followed by the address mux, register file ac-
cess, A_BUS to MA_BUS buffer, memory, and
register file data set-up time. The total time
comes in at 99 ns, just under the desired 100 ns
basic cycle time.

Memory read with address from a memory
address counter.

Here the access time of the registerfile is essen-
tially traded for the output enable time of a
memory address counter. The total delay only
improves to 94 ns, but there is a big advantage
in the fact that for a sequential access the CPU
did not need to calculate. a memory address.
This will save at least one cycle. Also, it is
possible to overlap a memory read from an
address counter with a calculation cycle in the
CPU.

Memory write with data from register file, se-
lected by operand counter.

In a memory write case, time is saved by needing
only to meet the data set-up time of the memory
rather than the memory access time plus the
register file set-up time, as would be the case in
a read operation. In this case the time gained is
traded for the time required to output enable an
operand counter. Even so, the total time is still
94 ns.

Move register file data to interrupt controller or
sequencer, data selected by operand counter.

Here again, the long delay path of using a macro
opcode counter as the register file address
source is used. Even with the output enable
delay of the counter in addition to the pipeline
clock to output time, the total delay comes in at
89 ns.

SECTION 6
System Timing and Critical Path Analysis

10.

11.

12.

Move sequencer or interrupt controller data to
register file.

Inthe reverse of the above case, the time to get
data from D_BUS is similarto the time in Case 9
to access data from the register file. The big
delay here is the need to move the data from the
A_BUS, through the ALU and back to the regis-
terfile. Nothaving adirectpathtothe Y_BUS has
cost a good bit of time. The total comes in at
127 ns. Fortunately this type of data move is
not likely to be a commonly executed cycle.

Sequencer branch, conditional or unconditional.

In this case much of the delay is in the pipeline
clock to output time for the branch field enable
bit, cascaded with the output enable time of the
branch field in the control pipeline register. This
is followed by the branch address flow through
time of the sequencer and the access time of the
control store. Even with all the delay, this path is
significantly faster than most of the data section
paths. The total time is 84 ns.

Sequencer interrupt or trap cycle.

Inthis case the pipeline outputdoesn'tturn out to
be in the main delay path. The interrupt starts at
the clock to output delay of the trap logic where
the interrupt request is generated. The se-
quencer then responds with interrupt acknowl-
edge, which in turn output enables bit 3 of the
interrupt vector fromthe trap logic. The interrupt

vector then accesses the control store. The total
for this cycle is 81 ns. .

13. Sequencer branch to macro opcode specified
instruction.

- Here the initial delay is the clock to output delay
of the macro opcode register, followed by the
access time of the map RAM. Next is the branch
flow through time for the sequencer and the
access of the control store. This cycle comes in
at85 ns.

FINAL RESULTS

Several cases were shown here to help give an idea of
how fast the system is for different instructions. These
caseswere some of the worst identified during the critical
analysis of this design. All but three of the cases shown
fit within the desired 100 ns basic clock cycle. Two of
the cases would only require a cycle 1 1/3 times normal.
Case 5 officially needs a double length cycle.

As noted in the discussion of Case 1, both the PM and
FPP require much longer cycles for flow through calcula-
tions. If the PM and FPP are used in clocked multiply
mode for sequential pipelined multiplies, as would occur
in array calculations, the cycle time can be significantly
reduced. In clocked multiply mode the PM or the FPP
requires only 100 ns cycle times.

With a dynamically variable clock cycle length, this sys-
tem can run most instructions at the basic 100 nscycle
rate, but will still handle the occasional extended execu-
tion time instructions.

59

Am29300 Demonstration System

Table 6-1A

Signal Path Timing Analysis

Data Path Element
Parameter Description

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range

Symbol Value | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case
1 2 3 4 5 6 7 8 9 10 11 12 13
Control Store/Register -
Am9151-50
Clock to Output Tpkhdgvi | 15 15 15 15 15 15 15 15 15 15 15
OE to Output Valid Tgldgv 20 ’ 20
Synchronous!
1 to Clock Set-up Tivpkh 25
Address to Clock Set-up = | Tavpkh 30 30 30 30
Control Decode Logic -
AmPAL18P8B
Input to Output Tpd 15 15 15
Macro Opcode Register -
Am29818-1
Clock to Output Tpd 11 11
Input to Clock Set-up Ts 6
Macro Operand Counters -
AmPAL22V10A
Clock to Output Tco 15 15
Input to Clock Set-up Ts 20
OE to Output Valid Tea, Ter 25 25 25 25
Reg File A or B Read
Add Mux - Am29827A
Input to Output Tph 6 6 6
OE to Output Valid Tzh 10
Reg File C Write Add Mux -
AmPAL18P8Q
Input to Output Tpd 35

sisA|euy yied |1edani pue bujwil weisAs

9 NOILO3S

9-9

Table 6-1B

Data Path Element

Parameter Description Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range
Symbol Value | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case [Case
- 1 2 3 4 5 6 7 8 9 10 11 12 13
Reg File B Write Add Mux - '
AmPAL22P10AL
Input to Output Tpd 25
ALU Position & Width Mux -
AmPAL22P10AL
Input to Output Tpd 25 25
Register File - Am29334
Address to Read
Data Output Access 24 24 24 24 24 24 24
OE to Output Valid Turn-on 20
OE to Output Three-state | Turn-off 16
Data Set-up Tds 9 9 9 9 9 9 9 9
ALU -- Am29332
Data AorBto Y Parity 42 42 42 42 42
Instruction to Y Parity 53
Width to Y Parity 40
Position to Y Parity 48 48
Parallel Multiplier -
Am29C323
Unclocked Multiply X or Y
to P Parity Tmuc 150
Clocked Multiply,
Cycle Time Tmc 125
Clocked Multiply,
Data to Clock Set-up Tsxy 20
Clocked Multiply,
Clock to Output Tpdpp 40

9 NOILO3S

sisAjeuy yied |eonid pue Bujwil wolsAs

L9

Table 6-1C

Data Path Element

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range

Parameter Description
Symbol Value | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case
1 2 3 4 5 6 7 8 9 10 11 12 13

Floating Point Processor -

Am29325

Unclocked Operations 125

Clocked Operation 100

Clocked Muiltiply,

Data to Clock Set-up Tsd1 13

Clocked Multiply,

Data to Clock Set-up Tsd2 104 104
FPP Seed Register -

Am2920 & Am27S25

OE to Output Valid Tzh 35 35
FPP External Status

Register -AmPAL22V10A

Clock to Output Tco 15

Input to Clock Set-up Ts 20
Macro Status Register -

Am29818-1

Clock to Output Tpd 11

Input to Clock Set-up Ts 6
Memory Address or

Data Buffer -Am29827

Input to Output Tph 10 10 10

OE to Output Valid Tzh 17
Memory Address Counters

AmPAL22V10

Clock to Output Tco 25

Input to Clock Set-up Ts 30

OE to Output Valid Tea, Ter 35 35

sisAleuy yied 1eon9 pue Bujwil waisAs

9 NOILO3S

8-9

Table 6-1D

Data Path Element
Parameter Description

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range

Symbol Value | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case
1 2 3 4 5 6 7 8 9 10 11 12 13
Memory - Am39C165-35 '
Chip Enable Access Time {Telqv 35
Address Access Time Tavqv 35 35 35
Chip Enable to
Output Disable Thz 20
Write Puise Width Twiwh 30
Data to Write End Set-up | Tdvwh 20 20
Address to Write '
End Set-up Tavwh 30
Write to Output Disable Twiqz 10
D_BUS - A_BUS
Transceiver - Am29853
Input to Parity Output Tpd 15 15 15
OE to Output Valid Tzh 15
D_BUS - A_BUS Parity
Buffer - Am29862
Input to Output Tpd 6 6
OE to Output Valid Tzh 12
Map RAM - Am9150-25
Address to Data Taa 25 25
Interrupt Controller -
Am29114
Clock to Interrupt Request 41
Instruction Enable to
Data Output 30
Data in to Clock Set-up 10 10
MINTA" to Vector OE 19
Trap Logic -AmPAL22V10A
Clock to Output Tco 15 15
Input to Clock Set-up Ts 20
OE to Output Valid Tea, Ter 25 25

9 NOILO3S

sisfjeuy yied [eona9 pue Bujwil waisAs

6-9

Table 6-1E

Data Path Element
Parameter Description

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range

Symbol Value | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case | Case
1 2 3 4 5 6 7 8 9 10 11 12 13

Sequencer - Am29331

Branch Input to Y Output 19 19 19

Instruction to Y Output 25

Instruction to D Output 31

Force Continue to

Y Output 21

Interrupt Request to

Interrupt Ack 11 11

OE Dto D Valid 25 25
Minimum Cycle Time
per Case 96 97 115 90 169 99 94 94 .89 127 84 81 85

sisAjeuy yied jeona pue bujwyl weisAs

9 NOILO3S

0}-9

Am29300 Demonstration System Signal Path Timing Analysis
Table 6-1F

Case Definitions

1. Basic flow through calculation, data path.
Pipeline, Tco; Address Mux, Tpd; Register File, Tpd; ALU, Tpd; Register File, Set-up.

2. Basic flow through calculation, position control path.
Pipeline, Tco; Position Mux, Tpd; ALU, Tpd; Register File, Set-up.

3. Flow through calculation with address supplied by operand counter; counter output enabled same cycle.
Pipeline, Tco; Operand Counter, Tea; Register File, Tpd; ALU, Tpd; Register File, Set-up.

4. Flow through calculation with address supplied by operand counter; counter output enabled prior cycle.
Pipeline, Tco; Operand Counter, Tco; Register File, Tpd; ALU, Tpd; Register File, Set-up.

5. First cycle of FPP Newton-Raphson division, seed value load.
Pipeline, Tco; Control Decode, Tpd; Seed Register, Tzh; FPP Internal Register Set-up, Tsd2.

6. Memory read with address from the register file, selected by microcode.
Pipeline, Tco; Address Mux, Tpd; Register File, Taa; Memory Address Buffer, Tpd; Memory, Taa; Register File, Set-up.

7. Memory read with address from a memory address counter.
Pipeline, Tco; Control Decode, Tpd; Memory Address Counter, Tzh; Memory, Taa; Register File, Set-up.

8. Memory Write with data from register file, selected by operand counter.
Pipeline, Tco; Operand Counter, Tea; Register File, Taa; Memory Address Buffer, Tpd; Memory, Write Set-up.

9. Move register file data to interrupt controller or sequencer, data selected by operand counter.
Pipeline, Tco; Operand Counter, Tea; Register File, Taa; A to D Bus Xcever, Tpd; Interrupt Controller, Data Set-up.

10. Move sequencer or interrupt controller data to register file.
Pipeline, Tco; Control Decode, Tpd; Sequencer, OED to D; D to A Bus Xcever, Tpd; Parity Buffer, Tpd; ALU, Tpd; Register File, Set-up.

11. Sequencer branch, conditional or unconditional. ‘
Pipeline, Tco; Pipeline Branch Field, Tzh; Sequencer, D to Y; Contro! Store, Address Set-up.

12. Sequencer interrupt or trap cycle.
Trap Logic, Clock to INTR; Sequencer, INTR to INTA; Trap Logic, Tea; Control Store, Address Set-up.

13. Sequencer branch to macro opcode specified instruction.
Macro Opcode Register, Tco; Map RAM, Taa; Sequencer A to Y, Control Store, Address Set-up.

9 NOILO3S

sisAjeuy yied jed)yj19 pue Bujwil waisAs

SECTION 7

¢

Physical Issues

ELECTRICAL LAYOUT ISSUES FOR
POWER SUPPLY

The TTL compatible, bipolar, Am29300 family compo-
nents all use internal ECL circuitry with TTL compatible
I/O buffers.

Each part has a large number of output buffers due to the
32-bit output bus, plus various status outputs.

These two facts can make the real world interesting.

When a large number of the output buffers switch simul-
taneously, the local Printed Circuit Board (PCB) power
and ground, and the chip internal power supply lines can
experience significant noise transients.

This power supply noise can couple into the internal
logic’'s ECL VCC pins. Since the internal ECL circuitry is
referenced to the ECL VCC, the power supply noise can
cause short duration shifts in the threshold levels of the
internal logic.

Due to the way ECL circuitry operates, it has much
smaller noise margins than equivalent TTL circuits. The
threshold shifts result in lowerthan normal noise margins
in already sensitive high speed circuits. These reduced
noise margins can result in noise-induced logic errors.

It is, therefore, very importantto provide very good power
distribution and decoupling in a system using the
Am29300 family. It is strongly suggested that a multi-
layer PCB be used to provide power and ground planes.
It is also important to minimize coupling between the
TTL and ECL VCC pins of any Am29300 bipolar device.
This can be done in part through good power supply de-
coupling.

Anadditionalway to decouple the ECLand TTLVCC pins
isto introduce inductive isolation. The simplest way to do
that is to place a cut in the VCC plane that separates the
ECL supply pins from the TTL pins. This produces a

longer electrical path between the pins, which adds
inductance between the pins. This inductive isolation will
significantly reduce noise coupling.

Some suggested PCB layouts for use with the Am29300
family are shown in Figures 7-1a and 7-1b. The images
are negatives where black indicates an absence of metal
in the VCC plane.

Although significant noise can also occuronthe TTL and
ECL ground lines, the ECL circuits are much less sensi-
tive to this noise. Attempting to isolate the TTL and ECL
ground pins from each other can create more problems
than it solves. Any isolation will reduce the noise in the
ECL circuitry and thereby make the chip internal ECL
ground “different” from the TTL ground. This can reduce
the noise margin in the ECL to TTL conversion logic,
introducing potential for noise induced errors. Itis recom-
mended that no isolation between grounds be used.

DECOUPLING CAPACITORS

An added help in providing local VCC to ground decou-
pling is available in the form of under-chip capacitors.

Special capacitors for PGA device packages have been
developed by Rogers Corporation, Q-PAC Div., 2400
South Roosevelt St., Tempe, AZ. 85282.

SOCKETS

Whenever high pin count, expensive VLS| components
are usedin a system, many hardware designers preferto
have the devices in sockets. This allows easy removal for
repairs or upgrades and provides an additional test point
in the system.

Sockets forthe Am29300 family are available from Augat
Corporation, Interconnection Component Div. 33 Perry
Ave. Attleboro, MA. 02703.

SECTION 7
Physical Issues

Am29325
Co C Isolation cut
Q- ~~|~~~-% &---||---0
R O 0000O0O0 1
) 0000 (-] o0 2
' 0000 o o0 3
' 0000 o0 4
Ca; o000 (N] S
\ o000 o0 6
' (XN (X 7
& N o0 8
00 (N 9
& 000 o0 10
N eoco L X 11
C, = 000 ¢Lo 12
N 0000 0000000 %O 13
'y 0000 POO0O0OOO O Q 14
0000 15
ABCD EFGHUJKLMNPR

056210

© = Through Hole 29325

€ = Ve Plane Connection

Cy=Cy=01uF
Co=C4=10pF
Am29331
A BCDEFGHUJ KLMN
] o 1
[} o (] o 2
. @ o) @ 3
" @ (] o o 4
[} (] -] o 5
] (] [o 6
e (] [o 7
okl ¢ ¢ o 8
(] (] [o 9
. 0 (] [o 10
o 000000200 H 1
0000002 O0CO H 12
ogo 000020 ? *
l ry an i
O] oy Bt @ Isolation Cut
Cs Cs
© = Through Hole
€ = V¢ Plane Connection
C1=03=C5=1°]—LF
02=C4=cs=0.1uF 0572D-1

29331
09856A 7-1

Figure 7-1a. Layout Recommendations for the V_. Plane

SECTION 7
Physical Issues

Am29332
A BCDEFGHJKLMNPRTU

000200000000 O0COOKE

00000COOGOGORRO0000O0HN
0000000O0OK

05730D-5

© = Through Hole
[
29332

= V¢ Plane Connection
C,=Cy=Cg=104F
Cp=Cq=Cg=0-10F

Am29334
ABCDEFGHUJKLMN

- =
- 0w ® N O U A& WN =

© = Through Hole

€ = V¢ Plane Connection
C,=Cy=01pF

C 2= 04 =10pF

Figure 7-1b. Layout Recommendations for the V . Plane

® N OO A WN -

16
17

<4— Isolation Cut

05731E-1
29334

09856A 7-1b

7-3

SECTION 8

n

Conclusion

There are many ways to skin a cat and surprisingly,
many more ways to build a computer. This application
note has tried to guide the reader through just one
simple implementation. The author hopes some of the
reasons behind the design choices in a microprogram-
med computer design were made clear duringthe course
of the description.

Aside from some general notions about how a micropro-
grammed system works, the reader should walk away
having noted the following thoughts:

Thisdesignis a full 32-bit processor capable of executing
a full 32-bit add, barrel shift, logical, integer multiply, or
even floating point multiply every 100 ns to 133 ns. That
is a 7 to 10 Million Instructions Per Second (MIPS) rate,
which s (loosely) comparable to 7 times the performance
of a VAX 11/780.

For all that computing horsepower, the real core of this
machine is made from only 6 chips: the Am29300 family
of computer building blocks. That's an incredible degree

of integration as compared with previous approachestor
high performance microprogrammed computer design.

Most of the logic surrounding the Am29300 family com-
ponents is not required. The additional logic is used to
add system flexibility and to show off different aspects of
microprogrammed design. Very little glue is needed to
hold this family together.

There is very little in the way of standard SSI logic
used. Virtually all the MSI and SSI level logic functions
were incorporated into Programmable Array Logic.
This shows the versatility and integration that PALs can
provide.

Due to use of Serial Shadow Registers throughout the
system, there is a reasonable hope that enough of the
system state can be read and controlled so that debug-
ging in the factory or field will be simple. This access to
the internal structure of the machine is gained with very
little “excess” logic.

APPENDIX A
Related Reference Material

Bit-Slice Microprocessor Design, John Mick and Jim Brick, McGraw-Hill, 1980.

Bit-Slice Design: Controllers and ALUs, Donnamaie E.White, Garland Publishing, 1981.
Am29300 Family Handbook, Advanced Micro Devices, Sunnyvale, CA., 1985.
Am29300 Family Datasheets, Advanced Micro Devices, Sunnyvale, CA.

32-Bit Building Blocks for High Performance Processor/Controller, Paul Chu, Advanced Micro Device,
Sunnyvale, CA.,

A Very High Speed Floating Point Processor, B. J. New, Advanced Micro Devices, Sunnyvale, CA.

¢

APPENDIX B by
Signal-to-Figure Cross Reference

Thisis a “signal name to document figure number cross reference listing.” Where a signal name is followed by a colon
(:) the signal is identified as an I/O signal to that figure. Where a signal name is followed by a semi-colon (;) the signal
is identified as an output from that figure. A plain signal name indicates an input to that figure.

ALU_HOLD 3-2 CLK_D 3-1 DCLK_WCS 5-3
ALU_HOLD; 5-21 CLK_D 3-2 DCLK_WCS; 4-3
ALU_OE* 3-2 CLK_D 3-3 DECODE_ADD 5-9
ALU_OE*; 5-21 CLK_D 3-5 DECODE_ADD; 5-3
ANY_E* 4-4 CLK_D 3-6 D_BUS 5-10
ANY_E*; 4-3 CLK_D 4-7 D_BUS 5-11
ARA 3-1 CLK_D; 5-15 D_BUS 5-9
ARA 5-6 CLK_FREE_RUN 4-3 D_BUS; 5-20
ARA; 5-4 CLK_FREE_RUN 4-4 D_OER* 5-10
ARA; 5-5 CLK_FREE_RUN 4-6 D_OER*; 5-21
ARB 3-1 CLK_FREE_RUN* 5-15 D_OET* 5-10
ARB 5-6 CLK_FREE_RUN*; 5-16 D_OET*, 5-22
ARB; 5-4 CLK_FREE_RUN; 5-15 D_SIGN_EX 5-10
ARB; 55 CLK_INT_BASE 5-11 D_SIGN_EX; 5-22
AWA 3-1 CLK_INT_BASE; 5-15 EQUAL 5-11
AWA; 5-6 CLK_MAC_STAT 3-2 EQUAL 5-12
AWA_MAC 5-6 CLK_MAC_STAT; 5-15 EQUAL; 5-9
AWA_MAC 5-7 CLK_MOP 5-1 EXT_ADD 4-2
AWA_MAC; 5-4 CLK_MOP; 5-15 EXT_ADD 4-3
AwB 3-1 CLK_PIPE 5-3 EXT_ADD 49
AWB; 5-7 CLK_PIPE 5-13 EXT_BUS_EN* 4-9
A_BUS 3-2 CLK_PIPE 5-14 EXT_BUS_EN*; 4-3
A_BUS 3-3 CLK_PIPE; 5-15 EXT_DATA 4-2
A_BUS 3-6 CLK_SEQ 5-11 EXT_DATA 4-9
A_BUS 4-2 CLK_SEQ 5-12 EXT_INTR; 4-2
A_BUS 4-8 CLK_SEQ 5-9 EXT_INTR; 4-4
A_BUS; 3-1 CLK_SEQ; 5-15 EXT_READY 4-2
A_BUS; 3-5 CLOCK_CNTL 5-15 EXT_READY 4-3
A_BUS; 5-10 CLOCK_CNTL; 4-2 EXT_RESET 4-2
A_FULL 5-11 CLOCK_CNTL; 4-3 EXT_RESET 4-3
A_FULL; 5-9 CNTL_EN 4-4 EXT_WEN* 4-2
A_MD_OFE* 4-8 CNTL_EN; 5-15 EXT_WEN". 4-3
A_MD_OE*; 5-21 CPU_BUS_EN* 4-4 EXT_WEN* 4-9
B_BUS 3-2 CPU_BUS_EN* 4-8 E_ADD 4-4
B_BUS 3-3 CPU_BUS_EN*; 4-3 E_ADD; 4-3
B_BUS 3-6 DCLK_MOP 3-2 FP_FT 3-3
B_BUS 4-2 DCLK_MOP 4-5 FP_FT; 5-21
B_BUS 4-8 DCLK_MOP 5-1 FTP 3-6
B_BUS; ’ 3-1 DCLK_MOP 5-11 FTP; 5-21
CASOUT2 5-11 DCLK_MOP; 4-3 IEN* 5-11
CASOUT2; 5-12 DCLK_SSR 4-5 IEN™; 5-22
CLK_CNTL - 5-13 DCLK_SSR; 4-3 INIT_MC* 5-13
CLK_CNTL 5-14 DCLK_WCS 4-5 INIT_MC* 5-14
CLK_CNTL 5-4 DCLK_WCS 5-13 INIT_MC*; 5-21
CLK_CNTL; 5-15 DCLK_WCS 5-14 INTA* 5-11

B-1

APPENDIX B

Signal-to-Figure Cross Reference

INTA*
INTA*;
INTR
INTR;
INTR;
INT_CPU*
INT_CPU*;
INT_CS*
INT_CS*;
INT_FPP*

INT_FPP*;
M1_BUS
M1_BUS;
M2_BUS
M2_BUS;

MAC_OP
MAC_OP
MAC_OP
MAC_OP
MAC_OP

MAC_OP;

MAC_STATUS_BUS
MAC_STATUS_BUS;

MA_BUS
MA_BUS:

MA_BUS;
- MA_BUS;
MC_ADDRESS
MC_ADDRESS

MC_ADDRESS;

MC_ADDRESS;
MC_ADDRESS;
MC_ADDRESS;

MD_BUS
MD_BUS

MD_BUS:
~MD_BUS:
MD_BUS;
MD_BUS;
MEM_EN*

MEM_EN*;
MEM_WEN*
MEM_WEN*;
MEM_WEN*:
MINTR*

MINTR*;
MODE
MODE
MODE
MODE

5-12
5-9

5-9

5-11
5-12
5-11
5-15
5-11
5-22
5-11

3-3
5-9
3-3
5-9
3-3

5-3
5-4
5-8
5-8
5-9

5-1
5-9
3-2
4-6
47

48
4-9
5-13
5-14
5-11

5-12
5-3
5-9
3-1
5-1

45
4-9
4-6
4-8
4-4

4-3
4-6
4-8
4-9
5-12
5-11
3-2

4-5
5-1

MODE
MODE
MODE
MODE
MODE;
P(15:0);
P(91:0)
P(91:16);
PE_ALU
PE_ALU;

PE_D_BUS*
PE_D_BUS*;
PE_PM
PE_PM;
PM_OE*

PM_OE*;
POSITION
POSITION;
P_ACC
P_ACC;

P_ALU_INST
P_ALU_INST;
P_ARA_MAC
P_ARA_MAC
P_ARA_MAC;

P_ARB_MAC
P_ARB_MAC
P_ARB_MAC;
P_AWB_MAC
P_AWB_MAC;

P_BM
P_BM;

P_BRANCH_EN*
P_BRANCH_EN*

518, 5-19,

P_BRANCH_EN*;

P_CLK_LEN

P_CLK_LEN;
P_CNTA_EN
P_CNTA_EN;
P_CNTB_EN

P_CNTB_EN;
P_CNTC_EN
P_CNTC_EN;
P_C_SEL
P_C_SEL

P_C_SEL;
P_DPS
P_DSP
P_DSP;
P_ENF*

5-11
5-13
5-14
5-3

5-14
5-20
5-13
5-11
3-2

5-11
5-10
5-11
3-6

5-21 -

3-2
5-8
3-6
5-19
3-2
5-19
5-4
5-5
5-18
5-4

5-18
5-7
5-18

3-2
5-19
5-14
5-22
5-20

5-16
5-20

P_ENF*;
P_ENP*
P_ENP*;
P_ENR*
P_ENR";
P_ENS*
P_ENS®;
P_ENT*
P_ENT*;
P_ENXA*

P_ENXA*;
P_ENXB*
P_ENXB*;
P_ENYA*
P_ENYA";

P_ENYB*
P_ENYB*;
P_FA
P_FA;
P_FC*

P_IEEE/DEC*
P_IEEE/DEC*
P_IEEE/DEC*;

P_INIT
P_INIT;
P_INT_EN
P_INT_EN;
P_INT_HOST

P_INT_HOST;
P_INT_INST
P_INT_INST
P_INT_INST;
P_LD_CNT

5-19

B-2

APPENDIX B

Signal-to-Figure Cross Reference

L
L

D_INT_BASE;

P_LD_MAC_STAT
P_LD_MAC_STAT

L
LD_| _
_LD_MAC_OP;
L
L
P_MEM

P_MEM;
P_MEM_WR*
P_MEM_WR";
P_MIC/MAC
P_MIC/MAC;

P_OEA*
P_OEA*
P_OEA";
P_POSITION
P_POSITION;

P_POS_MAC
P_POS_MAC;
P_PROJ/AFF*
P_PROJ/AFF*;
P_PSEL

P_PSEL;
P_RA
P_RA;
P_RB
P_RB;

P_RC
P_RC
P_RC;
P_REG_STAT
P_REG_STAT;

P_RND
P_RND;
P_SEED_OE*
P_SEED_OE;
P_SEQ_INST

P_SEQ_INST
P_SEQ_INST;
P_TCX
P_TCX;
P_TCY

P_TCY;
P_TEST
P_TEST;
P_TSEL

5-20
5-15
5-20
5-15
5-20

5-15
5-19
4-4

5-21

5-19
4-8
5-19
3-2
5-19

3-1
5-21
5-18
5-8
5-19
5-8
5-19
5-19
3-6

5-19
5-5
5-18

5-19

5-20
3-6

P_TSEL;

P_UP/DN_A
P_UP/DN_A;
P_UP/DN_B
P_UP/DN_B;

P_UP/DN_C
P_UP/DN_C;
P_WEA*
P_WEA*;
P_WEB*

P_WEB*:
P_WIDTH
P_WIDTH;
P_WID_MAC
P_WID_MAC;

P_XSEL
P_XSEL,;
P_YSEL
P_YSEL;
RESET_300*

RESET_300*
RESET_300*
RESET_300";

SDI_SSR_MUX
SDI_SSR_MUX

SDI_SSR_MUX;

SD_0
SD_0;
SD_1
SD_1

SD_1;
SD_2
SD_2;
SD_3
SD_3;

SD_4
SD_4
SD_4;
SD_5
SD_5;

SD_5A
SD_5A;
SD_6
SD_6

SD_6;
SEED_OE*
SEED_OE;
SEQ_CIN*
SEQ_CIN®;

5-1
5-11
3-2

4-2
4-4
5-11
5-14
5-3

5-13
5-14
42
4-4

5-13
3-5
5-21
5-9
5-11

SEQ_CIN%;
SEQ_FC
SEQ_FC;
SEQ_FC;
SEQ_OED

SEQ_OED;
SSR_BUS_EN*

SSR_BUS_EN*;

STATUS_BUS
STATUS_BUS

STATUS_BUS;
SYS_MEM_EN*

SYS_MEM_EN*;

TRAP
TRAP;

TRAP;
WCS_INIT*
WCS_INIT*
WCS_INIT*;
WCS_WR*

WCS_WR*
WCS_WR*
WCS_WR*;
WIDTH
WIDTH,;

Y_BUS
Y_BUS;
Y_BUS;
Y_BUS;

5-12
5-9
5-11
5-12
5-9

5-22
4-5
4-3
5-9
5-9

3-2
4-6
4-4
5-15
5-11

5-12
4-5
5-21
4-3
45

5-3
5-9
4-3
3-2
5-8

31
3-2
33
3-6

B-3

APPENDIX C Pu |
FPP Status PAL Definition

" Advanced Micro Devices Application Note:

» Am29300 Demonstration System

By Mark Mc Clain, Field Applications Enginee, San Dieg, CA.

" (619)560-7030, Date = 1/87

Module
FPP_STATUS_REG;

Title
YFPP status register PAL for an Am29300 Demonstration System.’;

fpppl device ‘P22V10’;
“declarations
X2,C,Pp = X.;,.2.,.C.,.P.;
“Signal names that end in an underline indicate an active low signal.

CLK D, P_DSP_1, P_DSP_0, FP_FT 1, INEXACT, INVALID, NAN Pin

1, 2, 3, 4, 5, 6, 7;
OVERFLOW, UNDERFLOW, ZERO Pin

8, 9, 10;
M1 0, M1 1, M1 2, M1 3, M2 0, M2 1, M2 2, INT FPP_, delay load Pin
14, 15, 16, 17, 18, 19, 20, 21, 22;

“ Some outputs are declared as active high. This requires that ABEL
Y wversion 2.0 or later be used to compile this definition. Earlier
versions of ABEL have a bug that assumes all programmable pins

in the 22V10 are active low regardless of how they are declared.

Earlier versions of ABEL will generate an incorrect JEDEC file.

w
A\

w

M1 0, M1_1, M1 2, Ml 3, M2 0, M2_1, M2 2
Istype ‘pos,.reg’;

INT_FPP_
Istype ‘neg, com’;

w

define some constants

status = [M2_2, M2_1, M2 0, M1 _3, M1 2, M1 1, Ml 0];
dsp = [P_DSP_1, P_DSP_0];

fpp = “bl0;

special = “bll;

C-1

APPENDIX C
FPP Status PAL Definition

“ define a macro

OR_EM macro (a,b,c) {(?a # ?b # 2c)};

EQUATIONS
» The delay load signal will cause the status register to load the
» cycle after a cycle in which the FPP data path was selected; if the
» FPP output register flow through is disabled. If the flow through is
» inactive, the flag register in the FPP holds the status in the first
" cycle. d
delay load := (dsp == fpp) & !FP_FT 1 #
(dsp == special) & !FP_FT_1;
" The status register loads with the value of the input flags when the
» FPP data path is enabled and the FPP output register flow through
" signal is active. It also will load if the delay load signal is
» active. If neither condition is true, the status register will load
w with its own current value. This retains the state of the status
- register when there is no enable to load a new flag value.
status :=
h!((dsp == fpp) # (dsp == special)) & status & !delay_ load #
((dsp == fpp) # (dsp == special)) & status & !delay load
& !FP_FT 1 #
delay load
& [INEXACT, NAN, ZERO, OR_EM(INEXACT, NAN, ZERO),
INVALID, OVERFLOW, UNDERFLOW] #
((dsp == fpp) # (dsp == special)) & FP_FT 1
& [INEXACT, NAN, ZERO, OR_EM(INEXACT, NAN, ZERO),
INVALID, OVERFLOW, UNDERFLOW] ;
» ' The FPP interrupt to the CPU is based on the OR of flags_iou.
'INT_FPP_ =
INVALID # OVERFLOW # UNDERFLOW;
» Test_Vectors need to be defined.
End;

APPENDIX D , by |
Host Interface Glue PAL Definition

" Advanced Micro Devices Application Note:
» Am29300 Demonstration System

By Mark Mc Clain, Field Applications Engineer, San Diego,
CA.

(619)560~7030, Date = 1/87

Module
Host_Interface_Glue;

Title
‘Host Interface Glue PAL for an Am29300 Demonstration System.’;

hig device ‘P22V10‘;
“declarations
X,%2,C,P = .X.,.2.,.C., P
“Signal names that end in an underline indicate an active low signal.

CLK_FREE_RUN, P_INT HOST, P_FC_, E.ADD_17, E _ADD_16, ANY E_ Pin
1 ’ 2 r 3 r 4 r 5 I3 6 ;

P_MEM 1, P_MEM 0, CPU_BUS_EN_, MEM EN_, SD_4, SD_6, MODE Pin
7, 8, "9, 10, 11, 13, 14;

SDI_SSR MUX, CNTL_EN Pin 15, 19;

EXT_INTR, SYS_MEM EN_, SD_O Pin

16, 17, 18;
" Some outputs are declared as active high. This requires that ABEL
» version 2.0 or later be used to compile this definition. Earlier
» versions of ABEL have a bug that assumes all programmable pins

“

in the 22V10 are active low regardless of how they are declared.
Earlier versions of ABEL will generate an incorrect JEDEC file.

w

EXT_INTR
Istype ‘pos, reg’;

SD_0
Istype ‘pos, com’;

SYS_MEM EN_
Istype ‘neg, com’;

D-1

APPENDIX D

Host Interface Glue PAL Definition

EQUATIONS

w
w
w
w
w

“

“

End;

The external bus (host) interrupt signal comes from a registered
latch which is set active when the pipeline Force Continue and
Interrupt host bits are active along with the control section clock
enable. The control section clock enable is needed since the
register is clocked by the system free running clock. The free
running clock is used so the latch can always be cleared by the
host whether the CPU clocks are active or not. But we don’t want’'to
set an interrupt unless the control section of the CPU really means
it (i.e. completes the execution of the current clock cycle with
the interrupt bits active. The interrupt is cleared by the host
when any access (read or write) is done to the host interface SSR
Port.

EXT_INTR :=

CNTL_EN & P_INT HOST & !P_FC_ #
EXT_INTR & ! (!ANY E_ & 'E_ADD 17 & E_ADD_16);

When the CPU bus buffers are enabled the system memory is enabled
by either of the LSB P_MEM pipeline bits being active. When the CPU
bus buffers are not enabled the memory is enabled only by the host
interface controller MEM EN .

SYS_MEM EN_ =

!CPU_BUS_EN_ & (P_MEM 1 # P_MEM 0) #
CPU_BUS_EN_ & !MEM EN_ ;

The Serial Data path bit zero is the output of a Multiplexer. When
MODE is low, the SDI_SSR MUX input is used as a mux selector for
the SD_4 or SD_6 input. If MODE is high then the value of

SDI_SSR MUX is passed through the mux to be the SDI input of the
SSR Port.

SD_0 =

MODE & SDI_SSR_MUX # ,
IMODE & ((SDI_SSR_MUX & SD_6) # (!SDI_SSR_MUX & SD_4));

Test_Vectors need to be defined.

D-2

APPENDIX E b
Host Interface Am29PL141 Program

» Advanced Micro Devices Application Note:
29300 Demonstration System
External (Host) Interface Controller Program Definition

This file is formated for the Am29PL141 assembler program, which is available from
Advanced Micro Devices.

By Mark Mc Clain, Field Application Engineer, San Diego 12/86

XY

Device (PL141) “The device used is an Am29PL141
Fuse Programmed Controller”

SSR = 0; “No SSR diagnostics used.”

Default = 1; “Unused fuses will be left intact (just in case, I may be able to
patch a bug without burning a new PL141 if the
right fuses are still intact)”

Define

“ Note:all test inputs are externally registered”

not_write =cc “External bus !WR signal tied to CC input.”

not_select =t5 “External bus selection signal (board select and address valid
indication) tied to test input 5.7

address_17 =t4 “External bus address bit 17 tied to test input 4.”
address_16 =t3 “External bus address bit 16 tied to test input 3.”
address_2 =t2 “External bus address bit 2 tied to test input 2.”
address_1 =tl “External bus address bit 1 tied to test input 1.”

t0 “External bus address bit 0 tied to test input 0.”

address 0

% Address bits 23..18 are externally matched to a board address to

% generate the not_select signal to the external bus interface

“ controller. Address bits 16 and 17 are used to select one of four

“ command modes in the interface controller. Address bits 2..0 are used
% as command modifiers or as the upper 3 bits of a 5 bit count value

% used in diagnostic shifting. ‘

command mask = 111000#b “Pass not_select {address bits valid if low) and pass ad-
: dress_16 and address_17 to select the command mode.”

cmd modifier mask = 011111#b “Pass address bits 2..0, address_17 and address_16 to
select a specific operation.”

count_mask = 000111#b “Pass address bits 2..0 when a counter value is being
loaded.”

E-1

APPENDIX E
Host Interface Am29PL 141 Program

; “end of define section” “
“No Default output pattern is defined”

“No Default test condition is defined”

Assembler code format is as follows:

Label Output Pattern , Opcode Comments (in quotes)
Ccccc <== If you put your glasses on
LLLL and read vertically, you will
S!!t KKKK : see the headers for each bit
DCES --—— of the output pattern. Listed
! IPXS CCCC most to least significant:
W DDD -UTR 0000 READY !CPU_BUS_EN
C!CCC S--—!NNNN IWCS_INIT 'EXT_BUS_EN
SWLLL SBBBMTTTT !WCS_WR {SSR_BUS_EN
R~CKKK RUUUERRRR DCLK_WCS !MEM_EN
EIS——-M~SSSMOO0O0O DCLK_MOP CLK_CONTROL 3
AN-WMSOM-~—LLLL DCLK_SSR CLK_CONTROL_2
DIWCOSDUEEEE-—— MODE CLK_CONTROL_1
YTRSPREXNNNN3210 SDI_SSR_MUX CLK_CONTROL_0

Let’s define what the outputs are used for:

READY is the signal that is passed back to the host system bus to cause wait states
that hold the host bus steady while the Am29PL141 (external bus interface control-
ler) performs the function requested by the host. While READY is inactive (low) the
external bus is held. When READY goes active the external bus may proceed. The
default state of READY is inactive. It is set active only by the last instruction in
a command execution routine.

'WCS_INIT is used in loading or reading the initialize word of the microcode memory.
Its default state is inactive (high).

!WCS_WR is used to write the Macro Opcode Map RAM. This is done at the same time
that the writable control store is written. Its default state is inactive (high).

DCLK WCS is the shift clock to all shadow registers in the Writable Control Store
SSR chain. It is used to shift data into the writable control store SSR. Its default
state is inactive (low).

DCLK_MOP is the shift clock to all shadow registers in the Macro Opcode, Status, and
Interrupt SSR chain. It is used to shift data into those SSR. Its default state is
inactive (low).

DCLK_SSR is the shift clock to all shadow registers in the SSR diagnostics port. It
is used to shift data into or out of the SSR port. Its default state is inactive’
(low) . .

MODE controls the mode of operation for all the SSR in the diagnostics chains. Its
default state is inactive (low).

SDI_SSR_MUX is a signal that, depending on the state of MODE, controls whether the
WCS or MOP SSR chain is shifted in to the SSR port register via the SSR multiplexer;
or acts directly as the Serial Data Input to all the SSR diagnostics chain. Its
default state is inactive (low).

E-2

APPENDIX E
Host Interface Am 29PL141 Program

!CPU_BUS_EN is the enable control over the buffers between the Am29300 CPU and the
memory bus. Its default state is active (low).

!EXT_BUS_EN is the enable control over the buffers between the External Bus and the
memory bus. Its default state is inactive (high).

!SSR_BUS_EN is the enable control over the output buffers of the SSR port registers.
Its default state is inactive (high).

!MEM EN is the enable control of the memory. Its default state is inactive (high).
CLK_CONTROL _ 3..0 is a four bit encoded command to a control PAL in the Am29300

system clock distribution circuit. The field defines the following commands to the
clock control circuits:

0000 No Operation, default state.

0001 Single cycle HALT of all clocks.

0010 Enter HALT mode continuously.

0011 Enter RUN mode on all clocks.

0100 Single step all clocks.

0101 Load control pipeline only.

0110 Single step control section and pipeline only.
0111 Load Macro Opcode, Status, and Interrupt registers.
1000 Single step data section only.

1001 Single step all clocks with Am29300 reset active.
1010 Set semiphore interrupt to the Am29300 CPU.

1011 Reserved.

1100 Reserved.

1101 Reserved.

1110 Reserved.

1111 Reserved.

Program Structure:

The Am29PL141 is a MICROPROGRAMMED controller. The whole point of using the micro-
program approach is to make hardware development easier, more structured, and flex-
ible than would be possible with a pure hard-wired approach; do as many functions in
parallel as possible; perform one instruction per clock cycle for maximum speed; and
make very frugal use of the available program memory space.

The result tends to make either the memory map or the program flow of a microprogram
difficult to follow. If the microprogram instructions are listed in the order they
appear in memory so the positional relationships are clear, then the program flow is
hard to see. If the instructions are listed to show program flow, then the posi-
tional relationships necessary to the understanding of some instructions like multi-
way branches are hard to see.

In this program definition a compromise has been made between the two views. Where
it is possible to show program flow by listing instructions together, that has been
done. Often these instructions are widely separated in physical location due to the
requirements of positional instructions like multi-way branches. To provide the
correct positioning of instructions while showing program flow, a liberal use of
ORIGIN statements has been made.

A memory map showing the physical location of all instructions is shown at the end
of the program listing.

E-3

APPENDIX E
Host Interface Am29PL141 Program

Program Overview:

The general idea of this program is to spin in a wait loop until the host system
addresses the Am29300 system. When addressed, this controller does a multi-way
branch to one of four command modes based on the address used. One of the modes
(memory access) has a valid address in bits 2..0. For that reason the multi-way
branch is not based on any of the bits 2..0. To use those bits would consume too -
many entry points in the program memory. So, if the command specified by the host
address is for a memory access or an access to the SSR port, then command execution
begins immediately. This makes memory and SSR port accesses occur with the maximum
possible speed. If the command address is for one of the other 14 commands, a second
multi-way branch is executed based on address bits 2..0, which in that case contain
command modifiers that select a specific command. Because these multi-way branches
are based on the LSB address bits, the command entry points are all adjacent. This
requires that any command requiring more than one instruction to execute does a
branch to another location in program memory where the remainder of the instructions
may be located.

A note about conditional instructions: most of the Am29PL141 instructions are condi-
tional, but often an uncondition operation is desired. The way to get an uncondi-
tional operation is to use the eq = 0 test condition. The eq flag is initially
cleared by the reset instruction and is always left reset in this program so that
all instructions referencing eq are, in effect, unconditional instructions.

Therremaining details of each command are well commented on in the program code
itself.

THE PROGRAM:
As with all things that are logical and obvious, if you want to follow the program
flow, you need to begin at the end.

The program flow starts at reset; location 63.
w .

Begin

.org 63 “Hardware reset will force the program counter to location 63 so
we had better define the outputs we want to see during reset and

define where to start execution after reset.
A

reset: 0110000011110010#b , if (eq = 0) then goto pl(idle);
“Output explanation:

If there is a hardware reset we are definitely not READY. A hard-
ware reset will also put the Am29300 CPU clocks in HALT mode so
random strange things won’t be happening. All other outputs are
default state.

Opcode explanation:

Since the eq flag is cleared by a hardware reset, the opcode is an
unconditional branch to the idle loop.

“

E-4

APPENDIX E
Host Interface Am29PL141 Program

.org 100000#b

idle: 0110000001110000#b , if (eq = 0) then goto tm(command mask);

.org 101000#b

idle2: 0110000001110000#b , if (eq

.org 110000#b

idle3: 0110000001110000#b , if (eq

.org 111000#b

idle4: 0110000001110000#b , if (eq

0) then goto tm{(command mask);

0) then goto tm(command mask);

A

0) then goto tm(command mask) ;
“Output explanation:

In the idle states you are not READY. All other outputs

are in their default states (i.e. if the host knocks on the door,
you’re not ready yet and while you’re hanging around being idle
don’t do anything rash with the other outputs).

Opcode explanation:

The main loop (i.e. idle loop) for the external bus interface
controller is a single instruction that loops on itself until a
valid command from the external bus is received. When a valid
command does appear, an immediate multi-way branch occurs, which
transfers control to the code that handles a command. This pro-
vides a very fast command execution by beginning the command
routine in the clock cycle following the command appearance.

The multi-way branch address is based on three bits from the
external bus: the not_select, address_16, and address_17 bits.
This means that the multi-way branch will transfer control to one
of eight locations in the microcode. Four of these locations are
the starting instructions for the four command modes. These loca-
tions are reached when the not_select bit is active (low). Four
other locations are reached when the not_select bit is inactive
(high), meaning that address_16 and address_17 are invalid (don’t
care) . Since these two LSB bits of the branch address are don’t
care, each location potentially addressed contains an identical
instruction that performs another multi-way branch, i.e. forming
the loop-on-itself instruction. These locations are referred to
as idle states.

The idle states occur at locations 32, 40, 48, and 56 since the
MSB of the multi-way branch address is the not_select bit. If the
external address bits are not valid (not_select = 1), then the
Am29300 board is not being addressed and address_16 and ad-
dress_17 have no meaning. This implies that the branch address
will fall in the locations just noted. Therefore, each location
has the same opcode so that from the program execution point of
view the controller sits in a single cycle loop waiting for the
not_select input to go low.

E-5

APPENDIX E

Host Interface Am29PL141 Program

.org 000000#b

When the not_select input does go low the multi-way branch trans-
fers control to one of the locations 0, 8, 16, or 24.

w

memory: 0110000010100001#b , continue;

“Output explanation: .

This is the memory access command that requests a read or write of
the dual port main memory on the Am29300 board. During the execu-
tion of this micro instruction the CPU bus buffer is disabled and
the clocks to the CPU are halted to place the CPU in suspended
animation while the external bus (host) is given access to the
memory. The external bus buffers are enabled and the memory is
enabled. The memory begins its access cycle. The memory data on a
read cycle will not be valid until near the end of the microin-
struction cycle so the READY line will not go active in this
cycle. All other outputs are in the default state.

Opcode explanation:

Continue to next instruction.

XY

memory2 : 1110000010100001#b , if (not_select = 1) then goto pl(idle) else wait;

.org 001000#b

“Output explanation:

The memory has had time to be accessed and drive data on to the
external bus (or receive data from the bus) so the bus transaction
can now proceed. The READY line is made active to allow progress.
All other outputs remain as they were in the last cycle of the
memory access routine.

Opcode explanation:

The bus interface controller now needs to hold things steady until
the external bus (host) indicates it is ready to proceed and
release the bus. This is indicated by the not_select signal going
inactive (i.e. the host stops addressing the Am29300 board). Until
the not_select input goes inactive this instruction loops on
itself. When it does go inactive the instruction branches back to
the idle routine to wait for the next command.

w

ssr_port: 0110001010110001#b , if (not_write) then goto pl(ssr_read);

“Output explanation:

Since this is only the first instruction of the ssr port access
routine, the READY signal will be inactive. The MODE output is
made active now to put the ssr_port register into diagnostics mode
in anticipation of the next instruction, which will drive both

E-6

APPENDIX E
Host Interface Am29PL141 Program

DCLK and PCLK active to the ssr_port. The SDI_SSR MUX signal is
kept inactive so that when DCLK and PCLK go active the shadow
register will load from the ssr_port register outputs. The CPU bus
buffers are disabled and the CPU clocks halted while the external
bus buffers are enabled to allow for data set-up time if this will
be a write to the ssr_port register. All other outputs are in the
default state.

Opcode explanation:

If this ssr_port command is a read operation (not_write=1) then
branch to the instruction that enables the register data onto the
bus. Otherwise fall through to the instruction that writes data
into the ssr_port register. ‘

“

ssr_write: 1110011010110001#b , if (not_select = 1) then goto pl(idle) else wait;
“Output explanation:

The data on the bus has been written into the ssr_port shadow
register at the rising edge of DCLK_SSR and the READY signal is
made active to allow the bus transaction to end. MODE remains high
in this cycle to prevent any skew problems between it and the
rising edge of DCLK SSR. SDI_SSR MUX remains low in this cycle for
the same reason. The external bus buffers remain enabled and the
CPU clocks halted. All other outputs are in the default state.

Opcode explanation:

Return to idle when the host releases the bus, else wait.

XY

ssr_read : 1110011010010001#b , if (not_select = 1) then goto pl(idle) else wait;
“Output explanation:

The data from the shadow register has been written into the pipe-
line register of ssr_port register at the rising edge of DCLK_SSR
(which also serves as PCLK to the ssr_port) and the READY signal
is made active to allow the bus transaction to end. !SSR BUS_EN is
made active to enable the ssr_port pipeline register contents onto
the bus to be read by the host system. MODE remains high in this
cycle to prevent any skew problems between it and the rising edge
.of DCLK_SSR. SDI_SSR MUX remains low in this cycle for the same
reason. The external bus buffers remain enabled and the CPU clocks
halted. All other outputs are in the default state.

Opcode explanation:

Return to idle when the host releases the bus, else wait.

XY

E-7

APPENDIX E

Host Interface Am29PL 141 Program

.oxrg 010000#b

comds_0_7: 0110000001110000#b , if (eq = 0) then goto tm(cmd modifier_mask):

haltmode

runmode

“Qutput explanation:

Hold all the outputs to the same values used in the idle loop,
since execution of a command has not started yet.

Opcode explanation:

Based on address_16 and addresses 2..0, do a multi-way branch to a
command execution routine.

“w

1110000001110010#b , if (not_select = 1) then goto pl(idle) else wait;

“Output explanation:

This command takes only a single cycle to perform, so it is READY
to proceed in this cycle. The clock control command is to enter
the halt mode. All other outputs are at the default values.

Opcode explanation:

Return to idle when the host releases the bus, else wait. While
waiting it helps to keep the clock command active.

w

: 1110000001110011#b , if (not_select = 1) then goto pl(idle) else wait;

“Qutput explanation:

This command takes only a single cycle to perform so it is READY
to proceed in this cycle. The clock control command is to enter
the run mode. All other outputs are at the default values.

Opcode explanation:

Return to idle when the host releases the bus, else wait. While
waiting it helps to keep the clock command active.

w

singlestp: 1110000001110100#b , if (eq = 0) then goto pl(host;ack);

“Output explanation:

This is a single cycle command so READY is made active in this
cycle. The clock control command will single step all clocks. All
other outputs are at the default values.

Opcode explanation:

Since the clock step command should occur for only one cycle, the
program branches to a loop that waits for the host to release the
bus. That loop has a no operation clock code.

“

APPENDIX E
Host Interface Am29PL141 Program

ss_contrl: 1110000001110110#b , if (eq = 0) then goto pl(host_ack);

“Output explanation:

This is a single cycle command so READY is made active in this
cycle. The clock control command will single step the control
section clocks. All other outputs are at the default values.

Opcode explanation:

Since the clock step command should occur for only one cycle, the
program branches to a loop that waits for the host to release the
bus. That loop has a no operation clock code.

w

ss_data : 1110000001110011#b , if (eq = 0) then goto pl(host_ack);
“Output explanation:

This is a single cycle command, so READY is made active in this
cycle. The clock control command will single step only the data
section clocks. All other outputs are at the default values.

Opcode explanation:

Since the clock step command should occur for only one cycle, the
program branches to a loop that waits for the host to relcasc the
bus. That loop has a no operation clock code.

Y

interrupt: 1110000001111010#b , if (not_select = 1) then goto pl(idle) else wait;
“Output explanation:
Use the clock control code that causes a semiphore interrupt to

the Am29300 CPU. The READY signal is active to end the transac-
tion.

Opcode explanation:

Return to idle when the host releases the bus, else wait. While
waiting it helps to keep the clock command active.

W

reset_cpu: 1110000001111001#b , if (not_select = 1) then goto pl(idle)
else wait;

“Output explanation:

This instruction causes a reset to the Am29300 while forcing all
the CPU control section clocks to step. READY is made active to
end the bus transaction. All other outputs are default.

Opcode explanation:

Return to idle when the host releases the bus, else wait. While
waiting it helps to keep the clock command active.

“

APPENDIX E

Host Interface Am29PL141 Program

.oxrg 000111#b

host_ack : 1110000001110000#b , if (not_select = 1) then goto pl(idle) else wait;

.org 0110004b

“Output explanation:
Hold READY active, otherwise do nothing (default outputs).
Opcode explanation:

Wait for the host to release the bus then go to idle. ™

comds_8_F: 0110000001110000#b , if (eq = 0) then goto tm(cmd modifier mask):;

“Output explanation:

Hold all the outputs to the same values used in the idle loop
since execution of a command has not started yet.

Opcode explanation:

Based on address_16 and addresses 2..0 do a multi-way branch to a
command execution routine.

w

load_pipe: 1110001001110101#b , if (eq = 0) then goto pl(host_ack);

“Output explanation:

This is a single cycle command so READY is made active in this
cycle. MODE is active so that the pipeline register will load from
the SSR when the pipeline register is next clocked. The clock
control command will single step only the pipeline clocks. All
other outputs are at the default values.

Opcode explanation:

Since the clock step command should occur for only one cycle the
program branches to a loop that waits for the host to release the
bus. That loop has a no operation clock code.

w

load mop : 1110001001110111#b , if (eq = 0) then goto pl(host_ack);

“Output explanation:

This is a single cycle command so READY is made active in this
cycle. MODE is active so that the macro opcode, status, and
interrupt address pipeline registers will be loaded from the SSR
at the next active edge of the pipeline clock. The clock control
command will single step the above mentioned registers. All other
outputs are at the default values.

E-10

APPENDIX E
Host Interface Am29PL 141 Program

Opcode explanation:

Since the clock step command should occur for only one cycle the
program branches to a loop that waits for the host to release the
bus. That loop has a no operation clock code.

w

load_wcs : 0110001101110001#b , if (eq = 0) then goto pl(load wcs2);

.org 001011#b

“Output explanation:

This is only the first instruction of this routine so READY is
inactive. MODE and SDI_SSR_MUX are made active in anticipation of
the next rising edge of DCLK_WCS. The CPU clocks are halted so
that the pipeline registers in the system will not load from the
shadow register instead of the normal inputs as would be directed
by the state of MODE and SDI_SSR MUX. All other outputs are in
default state.

Opcode explanation:

Unconditional branch to second word of this routine that is lo-
cated elsewhere in the instructidn memory.

w

load_wcs2: 0110001101110001#b , if (eq = 0) then load pl(7);

“Output explanation:

Still not READY. MODE and SDI_SSR MUX remain active to propagate
through the SDI-SDO chain of the SSR. The CPU clocks continue to
be held to prevent changing the state of the pipeline register.
All other outputs are at the default values.

Opcode explanation:

Load the CREG with a value of 7. Continue.

w

load_wcs3: 0100001101110001#b , while (creg <> 0) loop to pl{load wcs3);

“Output explanation:

Still not READY. MODE is active in anticipation of DCLK_WCS.
!WCS_WR is active to enable the output of the WCS_PORT so that the
address to the WCS will be stable when DCLK_WCS next goes active
to begin the WCS write cycle. SDI_SSR MUX remains active to con-
tinue propagating through the SDI-SDO chain in the SSR. The CPU
clocks continue to be held to prevent changing the state of the
pipeline register. All other outputs are at the default values.

E-11

APPENDIX E

Host Interface Am29PL141 Program

Opcode explanation:

Kill time by looping at this location for 8 more clocks. This
allows time for the SDI_SSR_MUX signal to propagate _

through the serial data in to serial data out (SDI-SDO) path
through all the SSR registers in the pipeline register. Each
register in the 9151 WCS memories has a SDI to SDO propagation
delay of 35ns worst case. There are about 25 of these connected in
series in addition to the ssr_port register and wcs_port register
which add an additional 15ns each. The total delay needed to
ensure a valid SDI_SSR_MUX signal at the last register in the
chain is about 1000ns (10 clocks). Two clocks have occured prior
to the current instruction and this instruction will loop for an
additional 8 cycles.

“

load wcs4: 0101001101110001#b , continue;

“Output explanation:

Still not READY. !WCS_WR is active in order to write data into the
macro opcode map RAM at the same time data is written into the
Writable Control Store. DCLK_WCS goes active to clock the SSR
internal register that enables shadow register data to be driven
out on the input pins (i.e. driven to the data I/O pins of the
WCS) . That same rising edge of DCLK WCS causes the writing of data
into the RAM of the AM9151s used in the WCS. MODE and SDI_SSR_MUX
remain active to satisfy hold times relative to DCLK_WCS. The CPU
clocks continue to be held to prevent changing the state of the
pipeline register. All other outputs are at the default values.

Opcode explanation:

Continue to the next instruction.

“

load wcs5: 0110000001110001#b , continue;

“OQutput explanation:

Still not READY. !WCS_WR goes inactive to complete the write of
the macro opcode map RAM. DCLK_WCS goes inactive to prepare for
going active again in the next cycle. MODE and SDI_SSR_MUX go
inactive to meet the set-up time to the rising edge of DCLK_WCS in
the next cycle. MODE being inactive will cause the reseting of the
SSR internal flip flop (at the next rising edge of DCLK_WCS) which
enables the shadow register data onto the input pins of the SSR.
The CPU clocks remain halted. All other outputs are in the default
state.

Opcode explanation:

Continue to next instruction. Note: since MODE goes to all SSR in
parallel there is no long delay required to wait for SDI_SSR MUX
to propagate through the SSR chain. MODE being inactive is alone
enough to reset the SSR internal control flip flop.

w

E-12

APPENDIX E
Host Interface Am29PL141 Program

loéd_wcsG: 1111000001110001#b , if (not_select = 1) then goto pl(idle) else wait;

.org 011100#b

“Output explanation:

This is the last cycle of the routine and the READY signal is made
active. DCLK WCS goes active to clear the WCS write activity. The
CPU clocks continue to be held. All other outputs have returned to
the default states.

Opcode explanation:

Return to idle when the host releases the bus, else wait.

w

load init: 0110001101110001#b , if (eq = 0) then goto pl(load _int2);

.org 000010#b

“Output explanation:

This is only the first instruction of this routine so READY is
inactive. MODE and SDI_SSR_MUX are made active in anticipation of
the next rising edge of DCLK_WCS occurring in the next cycle. The
CPU clocks are halted so that the pipeline registers in the system
will not load from the shadow register instead of the normal
inputs as would be directed by the state of MODE and SDI_SSR_MUX.
All other outputs are in default state.

Opcode explanation:
Unconditional branch to second word of this routine that is lo-

cated elsewhere in the instruction memory.

w

load_int2: 0110001101110001#b , if (eq = 0) then load pl(7);

“Output explanation:

Still not READY. MODE and SDI_SSR_MUX remain active to propagate
through the SDI-SDO chain of the SSR. The CPU clocks continue to

be held to prevent changing the state of the pipeline register.

All other outputs are at the default values.

Opcode explanation:

Load the CREG with a value of 7. Continue.

w

load_int3: 0010001101110001#b , while (creg <> 0) loop to pl(load int3);

“Output explanation:

Still not READY. MODE is active in anticipation of DCLK_WCS.
SDI_SSR_MUX remains active to continue propagating through the

E-13

APPENDIX E

Host Interface Am29PL141 Program

SDI-SDO chain in the SSR. The CPU clocks continue to be held to
prevent changing the state of the pipeline register. !WCS_INIT is
active to meet set-up time to DCLK WCS. All other outputs are at
the default values.

Opcode explanation:

Kill time by looping at this location for 8 more clocks. This
allows time for the SDI_SSR MUX signal to propagate through the
serial data in to serial data out (SDI-SDO) path through all the
SSR registers in the pipeline register. Each register in the 9151
WCS memories has a SDI to SDO propagation delay of 35ns worst
case. There are about 25 of these connected in series in addition
to the ssr_port register and wcs_port register which add an addi-
tional 15ns each. The total delay needed to ensure a valid
SDI_SSR_MUX signal at the last register in the chain is about
1000ns (10 clocks). Two clocks have occured prior to the current
instruction and this instruction will loop for an additional 8
cycles.

w

load int4: 0011001101110001#b , continue;

“Output explanation:

Still not READY. !WCS_INIT is active in order to write data into
the initialization register of the WCS. DCLK_WCS goes active to
clock the SSR internal register that enables shadow register data
to be driven out on the input pins (i.e. driven to the data I/0
pins of the WCS). That same rising edge of DCLK_WCS causes the
writing of data into the initialization register of the AM9151s
used in the WCS. MODE and SDI_SSR MUX remain active to satisfy
hold times relative to DCLK WCS. The CPU clocks continue to be
held to prevent changing the state of the pipeline register. All
other outputs are at the default values.

Opcode explanation:

Continue to the next instruction.

Y

load int5: 0110000001110001#b , continue;

“Output explanation:

Still not READY. DCLK_WCS goes inactive to prepare for going
active again in the next cycle. MODE, !WCS_INIT, and SDI_SSR_MUX
go inactive to meet the set-up time to the rising edge of DCLK WCS
in the next cycle. These signals being inactive will cause the
reseting of the SSR internal flip flop (at the next rising edge of
DCLK_WCS) which enables the shadow register data onto the input
pins of the SSR. The CPU clocks remain halted. All other outputs
are in the default state.

E-14

APPENDIX E
Host Interface Am29PL141 Program

Opcode explanation:

Continue to next instruction.

w

load_int6: 1111000001110001#b , if (not_select = 1) then goto pl(idle) else wait;

.org 011101#b

“Output explanation:

This is the last cycle of the routine and the READY signal is made
active. DCLK _WCS goes active to clear the WCS write activity. The
CPU clocks continue to be held. All other outputs have returned to
the default states.

Opcode explanation:

Return to idle when the host releases the bus, else wait.

XY

load_ssr : 0110001001110001#b , if (eq = 0) then goto pl(load ssr2);

.org 111001#b

“Qutput explanation:

This is only the first instruction of this routine so READY iy
inactive. MODE is made active and SDI_SSR MUX is made inactive in
anticipation of the next rising edge of DCLK WCS. The CPU clocks
are halted so that the pipeline registers in the system will not
load from the shadow register instead of the normal inputs as
would be directed by the state of MODE and SDI_SSR MUX. All other
outputs are in default state.

Opcode explanation:

Unconditional branch to second word of this routine that is lo-
cated elsewhere in the instruction memory.

w

load_ssr2: 0110001001110001#b , if (eqg = 0) then load pl(7);

“Output explanation:

Still not READY. MODE and SDI_SSR _MUX remain as before to propa-
gate through the SDI-SDO chain of the SSR. The CPU clocks continue
to be held to prevent changing the state of the pipeline regis-
ter. All other outputs are at the default values.

Opcode explanation:

Load the CREG with a value of 7. Continue.

w

E-15

APPENDIX E

Host Interface Am29PL141 Program

load_ssr3: 0110001001110001#b , while (creg <> 0) loop to pl(load_ssr3);

“Output explanation:

Still not READY. MODE is active in anticipation of DCLK_WCS.
SDI_SSR_MUX remains inactive to continue propagating through the
SDI-SDO chain in the SSR. The CPU clocks continue to be held to
prevent changing the state of the pipeline register. All other
outputs are at the default values.

Opcode explanation:

Kill time by looping at this location for 8 more clocks. This
allows time for the SDI_SSR MUX signal to propagate through the
serial data in to serial data out (SDI-SDO) path through all the
SSR registers in the pipeline register. Each register in the 9151
WCS memories has a SDI to SDO propagation delay of 35ns worst
case. There are about 25 of these connected in series in addition
to the ssr_port register and wcs_port register which add an addi-
tional 15ns each. The total delay needed to ensure a valid

SDI. SSR_MUX signal at the last register in the chain is about
1000ns (10 clocks). Two clocks have occured prior to the current
instruction and this instruction will loop for an additional 8
cycles.

w

load_ssr4: 0111101001110001#b , if (not_select = 1) then goto pl(idle) else wait;

.org 011110#b

“Output explanation:

Still not READY. DCLK WCS and DCLK_MOP go active to load pipeline
data into the shadow register throughout the diagnostic registers.
MODE and SDI_SSR_MUX remain as before to satisfy hold times rela-

tive to DCLK. The CPU clocks continue to be held to prevent chang-
ing the state of the pipeline register. All other outputs are at

the default values.

Opcode explanation:

Return to idle when the host releases the bus, else wait. While
waiting it doesn’t hurt to keep the clock command active.

w

shift wcs: 0110000001110001#b , if (eq = 0) then goto pl(sh_wcs2);

“Output explanation:
Not READY. System clocks halted.
Opcode explanation:

Branch to remaining words of the routine.

“

E-16

APPENDIX E
Host Interface Am29PL141 Program

.org 101001#b

sh _wes2 ¢ 0110000001110001#b ,- if (eq = 0) then load tm(count_mask);A
“Output explanation:
Maintain last output.
Opéode explanation:

Load the CREG with the count for the number of nibbles to be
shifted. This count value is contained in address bits 2..0.

“

sh_wes3 : 0110000001110001#b , if (eq = 0) then dec;
“Qutput explanation:
Maintain last output.
Opcode explanation:

Decrement the CREG so that the loop count for nibbles will be n-1.
This is required since the CREG = 0 comparison in a loop is only
made at the end of a loop, thus count values must be the number of
loops desired -1. It is assumed that the host loads the count for
the actual number of nibbles to be shifted.

w

sh_wcs4 : 0110000101110001#b , if (eq = 0) then load pl(3), nested;
“Output explanation:

SDI_SSR MUX is active to meet the set-up time to DCLKs that will
occur in the next cycle. With MODE being inactive, SDI_SSR_MUX
will control the multiplexer at the input of the ssr_port to
select the WCS SSR chain as input. System clocks are still held.

Opcode explanation:

Load the inner loop count for shifting a nibble into CREG and push
the nibble count into SREG.

“

sh_wes5 : 0111010101110001#b , continue;
“Output explanation:

DCLK_WCS and DCLK_SSR go active together to shift one bit of a
nibble from the ssr_port to the WCS SSR and also to shift one bit
from the end of the WCS SSR chain into the ssr_port. SDI_SSR_MUX
remains active to select the WCS SSR chain as the input to the
ssr_port. System clocks are held.

E-17

APPENDIX E

Host Interface Am29PL141 Program

Opcode explanation:

Continue to next instruction.

w

sh_wes6 - : 0110000101110001#b , while (CREG <> 0) loop to pl(sh_wcs5) else nest;

“Output explanation:

DCLK_WCS and DCLK_SSR go inactive in preperation for going active
again at the next shift of the SSR. SDI_SSR_MUX remains active.
System clocks are halted.

Opcode explanation:

Loop on the SSR shift operation for 4 cycles then drop out.

w

sh_wes7 : 0110000101110001#b , while (CREG <> 0) loop to pl(sh_wcs4);

“Output explanation:
Maintain last output.
Opcode explanation:

For the number of nibbles in the shift count, loop through the
nibble shift routine. Then fall through.

w

sh_wcs8 : 1110000001110000#b , if (not_select = 1) then goto pl(idle) else wait;

.org 011111#b

“Output explanation:
Last instruction so READY is active.
Opcode explanation:

Wait for the host to release the bus then go to idle.

w

shift_mop: 0110000001110001#b , if (eq = 0) then goto pl(sh_mop2);

“Output explanation:
Not READY. System clocks halted.
Opcode explanation:

Branch to remaining words of the routine.

w

E-18

APPENDIX E
Host Interface Am29PL141 Program

.org 110001#b

sh_mop2 : 0110000001110001#b , if (eq = 0) then load tm(count_mask);
“Output explanation:
Maintain last output.
Opcode explanation:

Load the CREG with the count for the number of nibbles to be
shifted.

w

sh_mop3 : 0110000001110001#b , if (eq = 0) then dec;
“Output explanaﬁion:
Maintain last output.
Opcode explanation:

Decrement the CREG so that the loop count for nibbles will be n-1.
This is required since thHe CREG <> 0 comparison in a loop is only
made at the end of a loop, thus count values must be the numbecr of
loops desired -1. It is assumed that the host loads the count for
the actual number of nibbles to be shifted.

w

sh mop4 : 0110000001110001#%b , if (eq = 0) then load pl(3), nested;
“Output explanation:

SDI_SSR MUX is inactive to meet the set-up time to DCLKs that will
occur in the next cycle. With MODE being inactive, SDI_SSR_MUX
will control the multiplexer at the input of the ssr_port to
select the MOP SSR chain as input. System clocks are still held.

Opcode explanation:

Load the inner loop count for shifting a nibble into CREG and push
the nibble count into SREG.

w

sh_mop5 : 0110110001110001#b , continue;
“Output explanation:

DCLK_MOP and DCLK_SSR go active together to shift one bit of a
nibble from the ssr_port to the MOP SSR and also to shift one bit
from the end of the MOP SSR chain into the ssr_port. SDI_SSR MUX
remains inactive to select the MOP SSR chain as the input to the
ssr_port. System clocks are held.

E-19

APPENDIX E
Host Interface Am29PL 141 Program

Opcode explanation:

Continue to next instruction.

Y

sh_mop6 : 0110000001110001#b , while (CREG <> 0) loop to pl(sh_mop5) else nest;
“Output explanation:
DCLK _MOP and DCLK SSR go inactive in preperation for going active
again at the next shift of the SSR. SDI_SSR MUX remains inactive.
System clocks are halted. :

Opcode explanation:

Loop on the SSR shift operation for 4 cycles then drop out.

w

sh_mop7 : 0110000001110001#b , while (CREG <> 0) loop to pl(sh_mop4):
“Output explanation:
Maintain last output.
Opcode explanation:

For the number of nibbles in the shift count loop, go through the
nibble shift routine. Then fall through.

“

sh _mop8 : 1110000001110000#b , if (not_select = 1) then goto pl(idle) else wait;
“Output explanation:
Last instruction so READY is active.
All other outputs default.
Opcode explanation:

Wait for the host to release the bus then go to idle.

End.

E-20

APPENDIX E
Host Interface Am29PL141 Program

Memory Map:

Location Label Location Label

Dec Hex Bin Dec Hex Bin

0 00 000000 memory 32 20 100000 idle
1 01 000001 memory2 33 21 100001

2 02 000010 load_int2 34 22 100010

3 03 000011 load_int3 35 23 100011

4 04 000100 load_int4 36 24 100100

5 05 000101 load_int5 37 25 100101

6 06 000110 load_inté 38 26 100110

7 07 000111 host_ack 39 27 100111

8 08 001000 ssr_port 40 28 101000 idle2
9 09 001001 ssr_write 41 29 101001 sh_wcs2
10 oa 001010 ssr_read 42 22 101010 sh_wcs3
11 0B 001011 load_wcs2 43 2B 101011 sh_wcsd
12 oc 001100 load_wcs3 44 2C 101100 sh_wcs5
13 0D 001101 load wcs4 45 2D 101101 sh_wcs6
14 0E 001110 load _wcs5 46 2E 101110 sh_wecs?7
15 OF 001111 load_wcs6 47 2F 101111 sh_wcs8
16 10 010000 cmd 0_7 48 30 110000 idle3
17 11 010001 haltmode 49 31 110001 sh_mop2
18 12 010010 runmode 50 32 110010 sh_mop3
19 13 010011 singlestp 51 33 110011 sh_mop4
20 14 010100 ss_contrl 52 34 110100 sh_mop5
21 15 010101 ss_data 53 35 110101 sh_mop6
22 16 010110 interrupt 54 36 110110 sh_mop7
23 17 010111 reset_cpu 55 37 110111 sh_mop8
24 18 011000 cnd 8_F 56 38 111000 idle4
25 19 011001 load_pipe 57 39 111001 load ssr2
26 1A 011010 load_mop 58 3a 111010 load_ssr3
27 1B 011011 load _wcs 59 3B 111011 load ssr4
28 1c 011100 load_init 60 3C 111100

29 1D 011101 load ssr 61 3D 111101

30 1E 011110 sh_wcs 62 3E 111110

31 iF 011111 sh_mop 63 3F 111111 reset

E-21

APPENDIX F
Memory Address Counter PAL Definition

“Advanced Micro Devices Application Note:

w

“Am29300 Demonstration System

w

“By Mark Mc Clain, Field Applications Engineer, San Diego, CA.
“(619)560-7030, Date = 1/87

Module
Memory Address_Counter A;

Flag ‘-r3’

Title
‘Memory Address Counter PAL for an Am29300 Demonstration System.’;

memad_a device ‘P22V10’;

“declarations

X 2,C,Pp = X.y.2.,.C.,.P.;

“Signal names that end,in an underline indicate an active‘low signal.

CLK D, P_MEM 3, P_MEM 2, P_MEM 1, P_MEM 0, CASIN_ Pin
1 ’ 2 li 3 ’ 4 ’ 5 I3 6 H

AIN 6, AIN 5, AIN 4, AIN 3, AIN 2, AIN 1, AIN 0 Pin

7, 8, 9, 10, 11, 13, 14;

AOUT_6, AOUT_5, AOUT 4, AOUT_3, AOUT 2, AOUT 1, AOUT_0, CASOUT_ Pin
18, 19, 20, 17, 21, 16, 22, 23;

ripple Pin
15;

Some outputs are declared as active high. This requires that ABEL

“ wversion 2.0 or later be used to compile this definition. Earlier

“ wversions of ABEL have a bug that assumes all programmable pins in the
“ 22Vv10 are active low regardless of how they are declared. Earlier

“ wversions of ABEL will generate an incorrect JEDEC file.

AOUT_6, AOUT_S5, AOUT_4, AOUT_3, AOUT_2, AOUT_l, AOUT_0 Istype ‘pos, reg’;

CASOUT_
Istype ‘neg, com’;

ripple
Istype ‘pos, com’;

" declare some sets

count_msb =
[AOUT_6, AOUT_5, AOUT_41;

¢

APPENDIX F
Memory Address Counter PAL Definition

count_1lsb =
[AOUT_3, AOUT_2, AOUT 1, AOUT 0];

data_in msb =
[AIN_6, AIN_5, AIN_4];

data_in_1lsb =
[AIN 3, AIN 2, AIN 1, AIN 0];

select = [P_MEM 1, P_MEM 0];
cmd = [P_MEM 3, P_MEM 2];
nop = ~B00;
a_bus = ~B01;
cntr_a = ”~B10;
cntr b = "“Bll;
load_a = ~B00;
load b = "“B01;
inc = ”~B10;
dec = "Bll;

* declare a macro

EQUATIONS

“ This is a loadable, cascadable, 7 bit up/down counter that decodes
its own output enable, count enable, direction, and load signals
directly from the control pipeline bits. The counter is programmed as
either an A counter or a B counter and will only operate with the
appropriate command. Cascade-in and Cascade-out are used to cascade
the counters. As used in the Am29300 demonstration system, the data
input pins and output pins are tied together with the A BUS.

The equations for the high order bits of a 7 bit counter require more
product terms than are available in any of the 22V10 outputs.So, the
counter is internally split into a 4 bit and 3 bit counter that have
a ripple carry between them.

w

ripple =
(cmd == inc) and (count_lsb == ~bllll) #
(cmd == dec) and (count_lsb == ~b0000) ;

w

The counter must be programmed as either an A counter or a B
counter because the output enable is limited to a single product
Y term.

w

enable count_msb = (select == cntr_a);
enable count_lsb = (select == cntr_a);

F-2

APPENDIX F
Memory Address Counter PAL Definition

count_msb :=

(select == nop) & count_msb #
(cmd == load a) & (select == a_bus) & data_in_msb #
(cmd == load_b) & (select == a_bus) & count_msb #
(cmd == inc) & (select == a_bus) & count_msb #
(cmd == dec) & (select == a_bus) & count_msb #
(cmd == load a) & (select == cntr_a) & count_msb #
(cmd == load_b) & (select == cntr_a) & count_msb #
(cmd == inc) & (select == cntr_a) & ripple & (count_msb + 1) #
(cmd == dec) & (select == cntr_a) & ripple & (count_msb - 1) #

(select == cntr_b) & count_msb H

count_1lsb :=

(select == nop) & count_lsb #
(cmd == load_a) & (select == a _bus) & data_in_1lsb #
(cmd == load_b) & (select == a_bus) & count_lsb #
(cmd == inc) & (select == a_bus) & count_1sb #
(cmd == dec) & (select == a_bus) & count_lsb #
(cmd == load a) & (select == cntr_a) & count_1lsb #
(cmd == load_b) & (select == cntr_a) & count_1lsb #
(cmd == inc) & (select == cntr_a) & !CASIN_ & (count_1lsb + 1)#
(cmd == dec) & (select == cntr_a) & !CASIN_ & (count_lsb - L)#

(select == cntr_b) & count_lsb ;

!CASOUT_ =

(cmd == inc) & (count_msb == ~blll) & (count_lsb == "bllll) #
(cmd == dec) & (count_msb == "“b000) & (count_lsb == "b0000) ;

% Test_Vectors need to be defined.
End;

Module
Memory Address_Counter_ B;

Flag ‘-r3’

Title
‘Memory Address Counter PAL for an Am29300 Demonstration System.’:

memad b device ‘P22V10’;
“declarations

X,2,C,p = .X.,.2.,.C.,.P.;

F-3

APPENDIX F
Memory Address Counter PAL Definition

“Signal names that end in an underline indicate an active low signal.

CLK_D, P_MEM_3 , P_MEM 2, P_MEM 1, P_MEM_O , CASIN_ P in
1, 2, 3, 4, 5, 6;

AIN 6, AIN 5, AIN_4, AIN 3, AIN 2, AIN 1, AIN 0 Pin
7, 8, 9, 10, 11, 13, 14;

AOUT 6, AOUT_5, AOUT 4, AOUT 3, AOUT 2, AOUT_1, AOUT_0, CASOUT_ Pin
18, 19, 20, 17, 21, 16, 22, 23;

ripple Pin
15;

Some outputs are declared as active high. This requires that ABEL
version 2.0 or later be used to compile this definition. Earlier
versions of ABEL have a bug that assumes all programmable pins in
% 22V10 are active low regardless of how they are declared. Earlier
“ versions of ABEL will generate an incorrect JEDEC file.

the

AOUT_6, AOUT 5, AOUT 4, AOUT 3, AOUT 2, AOUT_1, AOUT_0 Istype ‘pos, reg’;

CASOUT__
Istype ‘neg, com’;

ripple
Istype ‘pos, com’;

“ declare some sets

count_msb =
[AOUT_6, AOUT_5, AOUT_4];

count_1lsb =
{AOUT_3, AOUT_2, AOUT_1, AOUT_0];

data_in msb =
[AIN_6, AIN 5, AIN 4];:

data_in_1sb =
[AIN_3, AIN_2, AIN_1, AIN_0];

select = [p_MEM 1, P_MEM 0]
cmd = (P_MEM 3, P_MEM 2];
nop = ~B00;
a_bus = ~B01;
cntr_a = ”~B10;
cntr_b = "Bl1l;
load_ a = ~B00;
load b = ~B01;
inc = "“Bl10;
dec = ~Bll;

F-4

APPENDIX F
Memory Address Counter PAL Definition

" declare a macro

EQUATIONS

Y This is a loadable, cascadable, 7 bit up/down counter that decodes

“ its own output enable, count enable, direction, and load Signals

“ directly from the control pipeline bits. The counter is programmed as
“ either an A counter or a B counter and will only operate with the

“ appropriate command. Cascade-in and Cascade-out are used to cascade

“ the counters. As used in the Am29300 demonstration system, the data

“ input pins and output pins are tied together with the A BUS.

“ The equations for the high order bits of a 7 bit counter require more
“ product terms than are available in any of the 22V10 outputs, so the
“ counter is internally split into a 4 bit and 3 bit counter that have
“ a ripple carry between them.

ripple =

(cmd == inc) and (count_lsb == ~bl111l) #
(cmd == dec) and (count_lsb ~b0000) ;

“ The counter must be programmed as either an A counter or a B
“ counter because the output enable is limited to a single product
Y term.

enable count_msb = (select == cntr_b);
enable count_lsb = (select == cntr b);

count_msb :=

(select == nop) & count_msb #

(cmd == load_b) & (select == a_bus) & data_in msb #
(cmd == load a) & (select == a_bus) & count_msb #
(cmd == inc) & (select == a_bus) & count_msb #
(cmd == dec) & (select == a_bus) & count_msb #
(cmd == load_a) & (select == cntr_b) & count_msb #
(cmd == load b) & (select == cntr_b) & count_msb #
(cmd == inc) & (select == cntr_b) & ripple & (count_msb + 1) #
(cmd == dec) & (select == cntr b) & ripple & (count_msb - 1) #
. (select == cntr_a) & count_msb ;

count_1lsb :=

(select == nop) & count_lsb #

(cmd == load b & (select == a_bus) & data_in_1sb #
(cmd == load_a) & (select == a_bus) & count_lsb #
(cmd == inc) & (select == a_bus) & count_1lsb #
(cmd == dec) & (select == a_bus) & count_1lsb #
(cmd == load a) & (select == cntr_b) & count_lsb #
(cmd == load_b) & (select == cntr_b) & count_lsb #
(cmd == inc) & (select == cntr_b) & !CASIN_ & (count_lsb + 1)#
(cmd == dec) & (select == cntr_b) & !CASIN_ & (count_lsb - 1)#
(select == cntr_a & count_lsb H

F-5

APPENDIX F
‘Memory Address Counter PAL Definition

!CASOUT_ =
(cmd == inc) & (count_msb == ~blll) & (count_lsb == "bllll)
(cmd == dec) & (count_msb == "~b000) & (count_lsb == "b0000)

“ Test_Vectors need to be defined.

End;

F-6

APPENDIX G by |
Macro Operand Counter PAL Definition

“Advanced Micro Devices Application Note:

w

“Am29300 Demonstration System

w

“By Mark.Mc Clain, Field Applications Engineer, San Diego, CA.
“(619)560~7030, Date = 1/87

Module
Macro_Operand Counter;

Flag ‘-r3’

Title
‘Macro Operand Counter PAL for an Am29300 Demonstration System.’;

macop device ‘P22V10’;
“declarations
X,2,C,Pp = X.,.%2.,.C.,.P.;
“Signal names that end in an underline indicate an active low signal.

CLK _CNTL, P_LD CNT, P_SEL 0, P_SEL_1, P_UP_DN, P_CNT EN Pin
1, 2, 3, 4, 5, 6;

AIN_5, AIN_4, AIN_3, AIN 2, AIN 1, AIN 0 Pin
7, 8, 9, 10, 11, 13;

AOUT_5, AOUT_4, AOUT_3, AQOUT_2, AOUT_1, AOUT_0, reload Pin
18, 19, 20, 17, 21, 16, 22;

valid cmd Pin
14;

“ Some outputs are declared as active high. This requires that ABEL

% version 2.0 or later be used to compile this definition. Earlier

% versions of ABEL have a bug that assumes all programmable pins in the
“ 22V10 are active low regardless of how they are declared. Earlier

% versions of ABEL will generate an incorrect JEDEC file.

AOUT_5, AOUT_4, AOUT_3, AOUT_2, AOUT_1, AOUT_0
Istype ‘pos, reg';

reload, valid cmd
Istype ‘pos, com’;

* declare some sets

count =
[AOUT 5, AOUT 4, AOUT 3, AOUT 2, AOUT_l, AOUT_01;

G-1

APPENDIX G
Macro Operand Counter PAL Definition

data_in =
[AIN_5, AIN_4, AIN_3, AIN 2, AIN_1, AIN 0];

select = [P_SEL 1, P_SEL 0];

nop = "~B00;
a_add = "BOl;
b_add = "BlO0;
c_mac = "Bl1;

declare a macro for decrement — because ABEL is too dumb to do it
right for a counter bigger than 4 bits.

dec_count macro {

{

]

(!AOUT_5 & !'AOUT_4 & !AOUT 3 & !AOUT 2 & !AOUT_1 & 'AOUT 0 # AOUT 5 &
ROUT_4 #

AOUT_5 & AOUT_3 #

AOUT_5 & AOUT 2 #

AOUT_5 & AOUT_1 #

AOUT_5 & AOUT 0),

(AOUT_4 & !'AOUT_3 & !'AOUT_2 & !AOUT_1 & 'AOUT 0 # AOUT_4 & AOUT 3 #
ROUT_4 & AOUT 2 #
AOUT_4 & RAOUT_1 #
.AQUT_4 & AOUT 0),

(AOUT_3 & !AOUT 2 & !'AOUT_1 & !AOUT_0 # AOUT 3 & AOUT_2 #
AOUT 3 & AOUT 1 #

AOUT_3 & AOUT 0),

(tAOUT_2 & 'AOQUT_1 & !AOUT 0 #

AOUT_2 & AOUT_1 #

AOUT 2 & AOUT 0),

('AQUT_1 & !AOUT_0 #
AOUT_1 & AOUT 0),

('AQUT_0)

}i

EQUATIONS

This is a loadable, 6 bit up/down counter that decodes its own output
enable, count enable, direction, and load signals directly from the
control pipeline bits. When the max count is reached in increment
mode, the next increment will reload the counter from the input
value. When zero is reached in decrement mode, the next decrement
will also reload the counter.

APPENDIX G
Macro Operand Counter PAL Definition

% The pipeline control bits for the counter come from an overlapped

% field in the control word. It is necessary to disable (ignore) the

“ counter control bits when the field meaning is not valid. The enable
“ for the control bits is the OR of the P_C SEL bits in the pipeline

w (when the counter is used for the A or B address, these two select

Y inputs are simply both tied to the single control enable for the A or
“ B address). Since the enable is an OR function, it is necessary to

“ conserve product terms in the counter equations by performing the OR
“ function as a separate output which is fed back as an enable for the
Y counter command bits.

valid cmd =
P_SEL 0 # P_SEL_1;

“ The reload signal is active for the max or min count value in
Y increment or decrement mode, respectively.

reload =
(P_UP_DN & (count == "bl11111)) #
(!P_UP_DN & (count == ~b000000))
enable count = (select == c_mac);
count :=
!valid cmd & (count) & !P_LD_CNT #
valid cmd & (count) & !P_LD_CNT & !P_CNT_EN #
valid cmd & (count + 1) & P_UP_DN & P_CNT EN & !reload
& !P_LD_CNT #
valid cmd & (dec_count) & !'P_UP_DN & P_CNT_EN & !reload
& !P_LD _CNT #
valid cmd & (data_in) & !P_LD_CNT & P_CNT_EN & reload #
(data_in) & P_LD_CNT ;

" Test_Vectors need to be defined.

End;

G-3

APPENDIX H
Write Port A Multiplexer PAL Definition

¢

“ Advanced Micro Devices Application Note:

w

“ Am29300 Demonstration System

w

“ By Mark Mc Clain, Field Applications Engineer, San Diego, CA.
“ (619)560-7030, Date = 1/87

Module
Hex_Four_ Input Mux;

Title

‘One half of a hex four input multiplexer PAL for an Am29300
Demonstration System.’;

hfmux device ‘P18P8’;

“declarations

“Signal names that end in an underline indicate an active low signal.

AIN_2, AIN_1, AIN 0 Pin

1, 2, 3;
BIN_2, BIN_1, BIN 0 Pin
4, 5, 6;
CIN_2, CIN_ 1, CIN_0 Pin
7, 8, 9;

DIN_2, DIN_1, DIN 0 Pin
11, 12, 13;
YOUT 2, YOUT 1, YOUT 0 Pin

18, 17, 16;
SELECT_0, SELECT_1 Pin
14, 15;

YOUT_2, YOUT_ 1, YOUT_O0
Istype ‘pos, com’;

“ declare some sets

Y =

[YOUT 2, YOUT_1, YOUT 0];
A =

[AIN 2, AIN_1, AIN 0];
B =

[BIN_2, BIN_1, BIN 0];

H-1

APPENDIX H
Write Port A Multiplexer PAL Definition

C =
[CIN 2, CIN 1, CIN 0];
D =
[DIN 2, DIN_1, DIN 0]:
select = A
[SELECT 1, SELECT 0];
EQUATIONS
Y =
A & (select == 0) # B & (select == 1)#
C & (select == 2) # D & (select == 3);

“ Test_Vectors need to be defined.

End;

APPENDIX |
Write Port B Multiplexer PAL Definition

¢\

“

w

Advanced Micro Devices Application Note:
Am29300 Demonstration System

By Mark Mc Clain, Field Applications Engineer, San Diego, CA.
(619)560-7030, Date = 1/87

Module

Hex Two_Input_Mux;

Title
‘Hex two input multiplexer PAL for an Am29300 Demonstration System.’;

htmux device ‘P22V10’;

“declarations

X,2,C,p = .X.,.%2.,.C.,.P.;
“Signal names that end in an underline indicate an active low signal.

AIN 5, AIN_4, AIN_3, AIN_2, AIN 1, AIN 0 Pin
2! 31 4! 5/ 6, 7:

BIN_S, BIN_4, BIN 3, BIN_2, BIN_1, BIN 0 Pin
8, 9, 10, 11, 13, 14;

YOUT 5, YOUT_4, YOUT 3, YOUT 2, YOUT 1, YOUT 0 Pin

23, 22, 21, 20, 19, 18;
SELECT Pin ~
1;

Some outputs are declared as active high. This requires that ABEL
version 2.0 or later be used to compile this definition. Earlier
versions of ABEL have a bug that assumes all programmable pins in the

©22V10 are active low regardless of how they are declared. Earlier
versions of ABEL will generate an incorrect JEDEC file.

YOUT 5, YOUT 4, YOUT 3, YOUT_2, YOUT 1, YOUT 0
Istype ‘pos, com’;

APPENDIX i
Write Port B Multiplexer PAL Definition

“ declare some sets

Y =
[YOUT_5, YOUT_4, YOUT_3, YOUT 2, YOUT 1, YOUT 0];
A=
[AIN_5, AIN 4, AIN 3, AIN_2, AIN 1, AIN_O0];
B =
(BIN 5, BIN_4, BIN 3, BIN 2, BIN 1, BIN_0];
EQUATIONS
Y =

A & !SELECT # B & SELECT;
“ Test_Vectors need to be defined.

End;

APPENDIX J
Trap Logic PAL Definition

¢

“ Am29300 Demonstration System

w

w

By Mark Mc Clain, Field Applications Engineer, San Diego, CA.
“ (619)560-7030, Date = 1/87

Module
Trap_ Logic;

Title
‘Trap Logic PAL for an Am29300 Demonstration System.’;

trap device ‘P22V10‘;
“declarations
X,2,C,P = .X.,.%2.,.C.,.P.;
“Signal names that end in an underline indicate an active low signal.

CLK_CNTL, MINTR_, EQUAL, P_FC_, RESET 300_, INTA_Pin
1, 2, 3, 4, s, 6;

INTR, TRAP, SEQ FC, SEQ CIN_, CASOUT2, MC_ADD_3, MC_ADD 2 Pin
23, 22, 21, 20, 19, 18, 17;

MC_ADD_1, MC_ADD_0 Pin
16, 15;

Y Some outputs are declared as active high. This requires that ABEL
version 2.0 or later be used to compile this definition. Earlier
versions of ABEL have a bug that assumes all programmable pins in the
22V10 are active low regardless of how they are declared. Earlier

“ wversions of ABEL will generate an incorrect JEDEC file.

INTR, TRAP
Istype ‘pos, reg’;

SEQ FC, CASOUT2, MC_ADD 3, MC_ADD 2, MC_ADD_1, MC_ADD 0
Istype ‘pos, com’;

SEQ CIN_
Istype ‘neg, com’;

* declare some sets
mc_add =
[MC_ADD 2, MC_ADD 1, MC_ADD 0];
EQUATIONS

OR the interrupt controller’s interrupt request with the breakpoint
trap event signal to form the Sequencer’s interrupt request.

% Including !TRAP with EQUAL will allow executing a breakpoint even on
the first instruction of the breakpoint trap routine. Tf this disable
of the trap were not included, and the trap vector address were the

% same as the breakpoint address, then the system would get stuck

J-1

APPENDIX J
Trap Logic PAL Definition

w

w

w

“

w

“

forever trying to trap on the trap vector address.

INTR :=

'MINTR _ # EQUAL & !TRAP;

Equal causes the breakpoint trap. Note that the Equal signal is

- allowed or disallowed by setting or resetting the Equal comparator

register in the Sequencer. This allows breakpoint traps to be
disabled.

TRAP :@=

EQUAL & !TRAP;

Disable the current Sequencer instruction on a TRAP or when the
pipeline Force Continue bit is active.

SEQ_FC =
TRAP # !P_FC_;

Don’t increment the address stored on the stack after a trap so a
return from trap goes back to the trapped instruction. During reset
disable the incrementer so that the reset address will be zero
instead of one.

1SEQ_CIN_ =

TRAP # !RESET_300_;

When a trap comes, disable the interrupt controller from generating
an interrupt in the same cycle.

CASOUT2 =

EQUAL & !TRAP;

The trap logic always provides the fourth bit of the vector when the
interrupt or trap is acknowledged.

enable MC_ADD 3 = !INTA ;

When a trap occurs, the fouth bit of the interrupt vector is active
otherwise it will be inactive.

MC_ADD 3 =
TRAP;

The LSB bits of the vector for the breakpoint trap are zero. Enable
these bits when a trap is acknowledged.

enable mc_add = TRAP & !INTA ;

mc_add =

w

!TRAP;

Test_Vectors need to be defined.

End;_

APPENDIX K

Clock Qualification PAL Definition

¢\

Advanced Micro Devices Application Note:

Am29300 Demonstration System
Clock Qualification Logic Definition

By Mark Mc Clain, Field Applications Engineer, San Diego, CA.

(619)560-7030, Date = 1/87

Module

Clock Qualifier 1;

Title

‘Clock Qualifying Control PAL for an Am29300 Demonstration System. This circuit’

combines signals from the system control pipeline register and the host interface
controller to generate clock enables’;

clkpal device ‘P22V10’;

“declarations

X,2,C,p = X.,.2.,.C.,.P.;

“Signal names that end in an underline indicate an active low signal.

CLK_FREE_RUN, CLK_CONTROL_3, CLK_CONTROL 2, CLK_CONTROL 1
1, 2, 3, 4,;

CLK_CONT ROL_O ’ TRAP, P_LD MAC STAT, P_LD MAC OP P in
5, 6, 7, 8;

P_FC_, P_LD_INT BASE Pin
9, 10;

Pin

INTB_EN, PIPE_EN, MOP_EN, STAT EN, SEQ EN, RESET_300_ Pin

14, 15, 16, 17, 18, 19;
INT CPU_, CNTL_EN, D_EN, haltmode Pin

20, 21, 22, 23;

Some outputs are declared as active high. This requires that ABEL
version 2.0 or later be used to compile this definition. Earlier
versions of ABEL have a bug that assumes all programmable pins in the

22V10 are active low regardless of how they are declared.

Earlier versions of ABEL will generate an incorrect JEDEC file.

haltmode
Istype ‘pos, reg’;

CNTL_EN, PIPE_EN, MOP_EN, STAT EN,
INTB_EN, SFEQ_FN, D_EN
Istype ‘pos, com’;

K-1

APPENDIX K
Clock Qualification PAL Definition

RESET_300_, INT_CPU_
Istype ‘neg, com’;

clk_cntl = [CLK_CONTROL_3, CLK_CONTROL_2, CLK_CONTROL 1,
CLK_CONTROL_0] ;

“ CLK_CONTROL lines encoded meanings:

nop = "~b0000;
ss_halt = ~b0001;
halt = ~b0010;
run .= "b0011;
ss = ~b0100;
1d pipe = "~b0101;
ss_cntl = ~b0110;
1d_mop = ~b0111;
ss_data = ~b1000;
ss_reset = ”~bl001;
int_cpu = “b1010;
reservedl = “bl011;
reserved2 = “~b1100;
reserved3 = “~bl101;
reserved4 = "~bl110;
reservedS = ~bll11l;
Equations

The haltmode signal is the output of a status flip flop which keeps
track of when the system has been placed in the halt mode, where all
clocks in the system are stopped. The flip flop is set when a halt
command appears on the CLK_CONTROL lines. It is reset by a run
command on the same lines.

haltmode :=
(clk_cntl == halt) #
haltmode & !(clk_cntl == run);

Each of the following outputs acts as an enable on the respective
qualified clock in the Am29300 system. Qualified clocks in this
system are held inactive in the high state.

The system clock generator produces an active low clock and the
enables are active high. By using negative logic OR gates (NAND
gates) the clock and enable signals are logically ORed together to
produce active high qualified clocks. The negative logic OR gates are
external to the PAL defined here.

The data section clock enable is active whenever haltmode is not
active and there is no single cycle halt command or trap operation
active. If haltmode is active, the enable can be forced active by a
single step command, a reset command, or a single step data section.
command. If a trap operation is active the enable can be forced
active only by a reset command, or a single step data section
command.

K-2

APPENDIX K
Clock Qualification PAL Definition

w

W

D_EN =

'haltmode & !(clk_cntl == ss halt) & !TRAP #
haltmode & (clk_cntl == ss) & !TRAP #
haltmode & (clk_cntl == ss_reset) #
haltmode & (clk_cntl == ss_data) ;

The control section clock enable is active whenever haltmode is not
active and there is no single cycle halt command or trap active. If
haltmode is active the enable can be forced active by a single step
command, a reset command, or a single step control section command.
If a trap is active the enable can be forced by a reset or single

step control section command.

CNTL_EN =
thaltmode & !(clk_cntl == ss_halt) & !TRAP #
haltmode & (clk_cntl == ss) & !TRAP #
haltmode & (clk_cntl == ss_reset) #
haltmode & (clk_cntl == ss cntl) ;

The Sequencer clock is the same as the control section clock except
that it is unaffected by a trap condition. The Sequencer continues to

be clocked during a trap.

SEQ EN =
'haltmode & !(clk_cntl == ss_halt) & !TRAP #
haltmode & (clk_cntl == ss) & !TRAP #
haltmode & (clk_cntl == ss_reset) #
haltmode & (clk_cntl == ss_cntl) ;

The pipeline register clock is similar to the Sequencer clock but it
may be forced active by one additional condition when in the halt
mode. The condition is a load pipeline command on the CLK_CONTROL

lines.

PIPE EN =
'haltmode & !(clk_cntl == ss_halt) #
haltmode & (clk_cntl == ss) #
haltmode & (clk_cntl == ss_reset) #
haltmode & (clk cntl == ss_cntl) #
haltmode & (clk cntl == 1d pipe) ;

The macro status register clock is similar to the control section
clock but it is further qualified by the pipeline enable to load the
macro status register. The register will be loaded in any event if
there is a load macro opcode command on the CLK _CONTROL lines.

STAT EN =
'haltmode & !(clk _cntl == ss halt) & !TRAP & P_LD MAC STAT #
haltmode & (clk_cntl == ss) & !TRAP & P_LD_MAC STAT #
haltmode & (clk_cntl == ss_reset) & P_LD_MAC_STAT #
haltmode & (clk_cntl == ss_cntl) & P_LD_MAC_STAT #

(clk_cntl == 1ld mop) ;

APPENDIX K
Clock Qualification PAL Definition

w

w

w

The macro opcode register clock is very similar to the macro status
register clock but it is qualified by the pipeline load command for
the macro opcode.

“MOP_EN =
'haltmode & !(clk_cntl == ss_halt) & !TRAP & P_LD MAC_OP #
haltmode & (clk_cntl == ss) & !TRAP & P_LD_MAC OP #
haltmode & (clk_cntl == ss_reset) & P_LD_MAC_OP #
haltmode & (clk_cntl == ss_cntl) & P_LD_MAC_OP #

(clk_cntl == 1d mop) ;

XY

The interrupt base address register clock is similar to the control
section clock but it is further qualified by the pipeline enable to
load the interrupt base register. This signal is qualified by the
pipeline Force Continue being active. The register will be loaded in
any event if there is a load macro opcode command on the CLK CONTROL
lines.

INTB_EN =
'haltmode & !(clk_cntl == ss_halt) &
'P FC_ & !TRAP & P_LD INT BASE #
haltmode & (clk_cntl == ss) &
'P FC_ & !TRAP & P_LD_INT_BASE #
haltmode & (clk_cntl == ss_reset) &
'P_FC_ & P_LD_INT_BASE #
haltmode & (clk_cntl == ss_cntl) &
'P_ FC_ & P_LD_INT_BASE #

(clk_cntl == 1d mop) H

The reset for the Am29300 is made active by a reset command from the
host interface controller.

!RESET_300_ =
(clk_cntl == ss_reset);

The interrupt to the Am29300 CPU is made active by an interrupt
command from the host interface controller.

'INT_CPU_ =
(clk_cntl ==int_cpu);

Test_Vectors need to be defined.

End;

K-4

APPENDIX L
Clock Generator PAL Definition

&\

w
w
w

w

w

Mo

Ti

Advanced Micro Devices Application Note:
Am29300 Demonstration System

By Mark Mc Clain, Field Applications Engineer, San Diego, CA.
(619)560-7030, Date = 1/87

dule
Clock_Generator;

tle

‘Clock Generator PAL for an Am29300 Demonstration System.’;

ck

gen device ‘P1l6R6’;

“declarations

w

EQ

“Signal names that end in an underline indicate an active low signal.

CLOCK_MODULE, P_CLK LEN_1, P_CLK LEN 0 Pin
1, 2, 3;

CLK_FREE RUN_, D_1 , D 2, D_3_, D_4_Pin
18, 17, 16, 15, 14;

CLK_FREE RUN , D 1 , D 2 , D 3 , D_4_
Istype ‘neg, reg’;
declare some sets

cycle = [P_CLK LEN_ 1, P_CLK LEN 0];

UATIONS
!CLK_FREE_RUN_ :=
CLK_FREE_RUN_ #
D 2 & (cycle == 1) #
D 2 & (cycle == 2) #
D_3_ & (cycle == 2) #
D 2 & (cycle == 3) #
D_3_ & (cycle == 3) #
D_4_ & (cycle == 3) ;

) 1 :=

~

!CLK_FREE_RUN_

APPENDIX L

Clock Generator PAL Definition

ICLK_FREE_RUN_ & !D 2 ;

ICLK_FREE RUN_ & !D_3_;

TEST_VECTORS

([CLOCK_MODULE, P_CLK_LEN_ 1, P_CLK_LEN_0]
[CLK_ FREE_RUN , D 1 , D 2 , D 3, D_4_))

c.,0,0]
c.,0,0]
c.,0,0]
.C.,0,0]
Cc.,0,1]
c.,0,1]

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

{0,1,1,1,1];
fo,0,1,1,13;
[1,0'0'1,1] ;
{0,1,1,1,131;
[0,0,1,1,11;
[0,0,0,1,13;
(1,0,0,0,11;
[0,1,1,1,1];
[0,0,1,1,1];
(0,0,0,1,13;
(0,0,0,0,13;
(1,0,0,0,01;
fo,1,1,1,11;
[0,0,1,1,1};
[0,0,0,1,13;
[0,0,0,0,1);
{0,0,0,0,0];
{1,0,0,0,031;
[0,1,1,1,13;
fo,0,2,1,13;
(1,0,0,1,1};

->

APPENDIX M
Control Decode PALs Definition

¢

Advanced Micro Devices Application Note:
“ Am29300 Demonstration System

By Mark Mc Clain, Field Applications Engineer, San Diego, CA.
Y (619)560-7030, Date = 1/87

Module
Control Decode_Data_Path;

Title

‘Control Decode PAL for the data path,
for an Am29300 Demonstration System.’;
condedp device ‘P18P8';

“declarations

“Signal names that end in an underline indicate an active low signal.

P DPS_1, P_DPS_0, P_OEA , P_SEED OE, P_FTP, P_FP_FT 1 Pin
1, 2, 3, 4, 5, 6;

P_FP_FT_0 Pin
7;

ALU_OE_, ALU_HOLD, PM OE_, SEED OE , FTP, FP_FT 1, FP_FT 0 Pin
19, 18, 17, 16, 15, 14, 13;

D_OER_ Pin
12;

ALU HOLD, FTP, FP_FT 1, FP_FT 0
Istype ‘pos, com’;

ALU_OE_, PM OE_, SEED OE_, D_OER_
Istype ‘neg, com’;

“ declare some sets

dps = [P_DPS_1, P_DPS_0];

EQUATIONS
!ALU CE_ = (dps == 0) # (dps == 3);
ALU_HOLD = !(dps == 0);
'PM OE_ = (dps == 1);
{SEED_OE_ - {{dps -- 2) = (dps —— 3)) & P_SEED_OE;
FTP = (dps == 1) & P_FTP;

M-1

APPENDIX M
Control Decode PALSs Definition

FP_FT 1 = ((dps == 2) # (dps == 3)) & P_FP_FT_1;
FP_FT_0 = ((dps == 2) # (dps == 3)) & P_FP_FT 0;
!D_ OER_ = !(((dps == 2) # (dps == 3)) & P_SEED_OE) & P_OEA ;

“ Test_Vectors need to be defined.
End;

Module
Control_ Decode Memory;

Title

‘Control Decode PAL for memory enables
for an Am29300 Demonstration System.’;
condemem device ‘P18P8';

“declarations

“Signal names that end in an underline indicate an active low signal.

P_MEM 3, P_MEM 2, P_MEM 1, P_MEM 0, P_FC_, P_INIT, WCS_INIT_ Pin
1, 2, 3, 4, 5, 6, 7;

AD_MD_OE_, INIT _MC_ Pin
19, 18;

AD_MD_OE_, INIT MC_
Istype ‘neg, com’;

* declare some sets

select = [P_MEM 1, P_MEM 0];

EQUATIONS
'!AD MD OE_ = (select == 1);
'INIT_MC_ = P_FC_ & P_INIT # WCS_INIT ;

" Test_Vectors need to be defined.
End;

Module
Control_Decode D_BUS;

Flag ‘-r3’
Title
‘Control Decode for the D_BUS driver enables

for an Am29300 Demonstration System.’;

condbus device ‘P18P8’;

M-2

APPENDIXM
Control Decode PALs Definition

“declarations

“Signal names that end in an underline indicate an active low signal.

D RRANCH "N 1~

1,

e

2,

P TNT TNST R

P TNT TNST 2.
3, 4,

P TNT TNST 1
S;

Pin

P_INT INST 0, P_SEQ_ INST 5, P_SEQ INST_4, P_SEQ INST 3 Pin

6,

7, 8, 9;

P _SEQ INST 2, P_SEQ INST 1, P_SEQ INST 0 Pin

11,

12, 13;

D OET , SEQ OED, IEN_, INT CS_, D_SIGN EX Pin

19,
D_OET_,

SEQ_OED,

Istype

IEN_

Istype

18, 17, 16, 15;

INT CS_,

D_SIGN_EX
‘pos, com’;

‘neg, com’;

“ declare some sets

seq_sp =

seq_inst

int_inst

pop_d
continue
rdmk
rdsr
rdir

EQUATIONS

“ Enable A BUS to

D OET_ =

[P_SEQ INST_5, P_SEQ INST 4];:

= [P_SEQ_INST 5, P_SEQ INST 4, P_SEQ INST 3,
P_SEQ_INST_l, P_SEQ INST 0];

= [P_INT_INST_3, P_INT_INST 2, P_INT INST 1,

= ~h34;
= ~h30;
= ~h7;
= "~hB;
= ~hF;

!P_BRANCH EN_ #

P_SEQ_INST 2,

P_INT_INST 0];

D_BUS path if no one else will drive the D_BUS.

(p_FC_ &
- ((seq_inst == continue) # (seg_inst == pop_d)) #
((((seq_sp == ~bll) & P_FC_) # !P FC) & ((int_inst == rdmk) #
(int_inst == rdsr) # (int_inst == rdir)

)
)
)

M-3

APPENDIX M
Control Decode PALSs Definition

w

" pointer and on pop_d to read the top of stack.
SEQ OED = P_BRANCH_EN_ & P_FC_ &
((seq_inst == continue) # (seq_ inst == pop_d)):

w

Unconditional instruction or when Force Continue.

'IEN_ = (seq_sp == “bll) & P_FC_ # !P_FC_;

’

centroller read instruction is valid.

INT_CS_ = !P_BRANCH_EN_ #
(P_FC_ &
((seq_inst == continue) # (seq_inst == pop d)) &
(int_inst == rdsr) # (int_inst == rdir))

):
D_SIGN EX = !P_FC_ & P_SEQ INST_4;
“ Test_Vectors need to be defined.

End;

Enable sequencer output on continue to be able to read the stack

Disable if branch field active or if sequencer active and a interrupt

((int_inst == rdmk) #

M-4

APPENDIX N
Components List

¢

PART PART #OF POWER SUPPLY REQUIREMENTS FIGURE
ID NUMBER PINS #
STANDARD CMOS OR LOW
BIPOLAR POWER VERSION
Amps Watts Amps Watts

u7z Am27S25 24 0.185 0.925 0.185 0.925 3-5
Uus Am27543 24 0.185 0.925 0.185 0.925 3-5
usg Am27S43 24 0.185 0.925 0.185 0.925 3-5
u73 Am29114 40 0.395 1.975 0.395 1.975 5-11
u10 Am2920 24 0.037 0.185 0.037 0.185 3-5
(VR B Am2920 24 0.037 0.185 0.037 0.185 3-5
ui2 Am2920 24 0.037 0.185 0.037 0.185 3-5
uU13 Am29C323 169 0.3 1.5 0.3 1.5 3-6
Uus Am29325 145 1.743 8.715 0.3 1.5 3-3
ue7 Am29331 120 1 5 0.3 1.5 5-9
U3 Am29332 169 1.36 6.8 0.3 1.5 3-2
U1 Am29334 120 0.85 4.25 0.2 1 3-1
U2 Am29334 120 0.85 4.25 0.2 1 3-1
u14 Am29806 24 0.035 0.175 0.035 0.175 4-3
U4 Am29818-1 24 0.155 0.775 0.155 0.775 3-2
u1s Am29818-1 24 0.155 0.775 0.155 0.775 4-5
u 19 Am29818-1 24 0.155 0.775 0.155 0.775 4-5
u20o Am29818-1 24 0.155 0.775 0.155 0.775 4-5
u21 Am29818-1 24 0.155 0.775 0.1585 0.775 4-5
u4s8 Am29818-1 24 0.155 0.775 0.155 0.775 541
U493 Am29818-1 24 0.155 0.775 0.155 0.775 5-1
uso Am29818-1 24 0.155 0.775 0.155 0.775 5-1
U 51 Am29818-1 24 0.155 0.775 0.155 0.775 5-1
us5 Am29818-1 24 0.155 0.775 0.155 0.775 5-3
us6 Am29818-1 24 0.155 0.775 0.155 0.775 5-3
u74 Am29818-1 24 0.155 0.775 0.155 0.775 5-11
u15 Am29825 24 0.13 0.65 0.0001 0.0005 4-3
u36 Am29827 24 0.075 0.375 0.0001 0.0005 4-8
u37 Am29827 24 0.075 0.375 0.0001 0.0005 4-8
u3s Am29827 24 0.075 0.375 0.0001 0.0005 4-8
U39 Am29827 24 0.075 0.375 0.0001 0.0005 4-8
U40 Am29827 24 0.075 0.375 0.0001 0.0005 4-8
U 41 Am29827 24 0.075 0.375 0.0001 0.0005 4-8
u42 Am29827 24 0.075 0.375 0.0001 0.0005 4-9
U 43 Am29827 24 0.075 0.375 0.0001 0.0005 4-9
U 60 Am29827 24 0.075 0.375 0.0001 0.0005 5-5
U 61 Am29827 24 0.075 0.375 0.0001 0.0005 5-5
u106 Am29827 24 0.075 0.375 0.0001 0.0005 4-3
U104 Am29828 24 0.075 0.375 0.0001 0.0005 5-11
ues Am29853 24 0.18 0.9 0.0001 0.0005 5-10
U es Am29853 24 0.18 0.9 0.0001 0.0005 5-10
Uu70 - Am29853 24 0.18 0.9 0.0001 0.0005 5-10
U771, Am29853 24 0.18 0.9 0.0001 0.0005 5-10
u72 Am29862 24 0.15 0.75 0.0001 0.0005 5-10

APPENDIX N
Components List

PART PART #OF POWER SUPPLY REQUIREMENTS FIGURE
ID NUMBER PINS #
STANDARD CMOS OR LOW
BIPOLAR POWER VERSION
Amps Watts Amps Watts

U44 Am29863 24 0.15 0.75 0.0001 0.0005 4-9
U 45 Am29863 24 0.15 0.75 0.0001 0.0005 4-9
U 46 Am29863 24 0.15 0.75 0.0001 0.0005 4-9
U 47 Am29863 24 0.15 0.75 0.0001 0.0005 4-9
U116 Am29PL141 28 0.4 2 0.4 2 4-3
us2 Am3150-25 24 0.18 0.9 0.13 0.65 5-3
U 53 Am9150-25 24 0.18 0.9 0.13 0.65 5-3
U 54 Am9150-25 24 0.18 0.9 0.13 0.65 5-3
U776 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
u77 Amg151-50 24 0.18 0.9 0.18 0.9 5-13
u7s Am9151-50 24 0.18 0.9 0.18 0.9 5-13
u79 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U 80 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U 81 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
u 82 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
u 83 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U84 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U85 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U 86 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
u 87 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U 88 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U89 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U 90 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
U9 Am9151-50 24 0.18 0.9 0.18 0.9 5-13
ug2 Am93151-50 24 0.18 0.9 0.18 0.9 5-13
Ua3 AmM9151-50 24 0.18 0.9 0.18 0.9 5-13
uUsg4 ‘Am9151-50 .24 0.18 0.9 0.18 0.9 5-13
ugs Am38151-50 24 0.18 0.9 0.18 0.9 5-14
U 96 Am9151-50 24 0.18 0.9 0.18 0.9 5-14
ug7 Am39151-50 24 0.18 0.9 0.18 0.9 5-14
u9os Am9151-50 24 0.18 0.9 0.18 0.9 5-14
U 22 Am99C165-35 24 0.11 0.55 0.1 0.55 4-6
ua3 Am99C165-35 24 0.11 0.55 0.1 0.55 4-6
uU24 Am99C165-35 24 0.1 0.55 0.1 0.55 4-6
uas Am99C165-35 24 0.11 0.55 0.1 0.55 4-6
U226 Am99C165-35 24 0.1 0.55 0.11 0.55 4-6
uza7 Am99C165-35 24 0.1 0.55 0.1 0.55 4-6
uas Am99C165-35 24 0.1 0.55 0.1 0.55 4-6
U 29 Amg9C165-35 24 0.11 0.55 0.1 0.55 4-6
U 30 Am@9C165-35 24 0.11 0.55 0.11 0.55 4-6
U100 AmPAL16R6B 20 0.18 0.9 0.18 0.9 5-16
U 62 AmMPAL18P8 20 0.18 0.9 0.055 0.275 5-6
uUe3 AmPAL18P8 20 0.18 0.9 0.055 0.275 5-6
U101 AmMPAL18P8B 20 0.18 0.9 0.18 0.9 5-21
U102 AmPAL18P8B 20 0.18 0.9 0.18 0.9 5-21
U103 AmPAL18P8B 20 0.18 0.9 0.18 0.9 5-22

N-2

APPENDIX N
Components List

PART PART # OF POWER SUPPLY REQUIREMENTS FIGURE
ID NUMBER PINS #
STANDARD CMOS OR LOW
BIPOLAR POWER VERSION

Amps Watts Amps Watts
U32 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7
U 33 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7
U 34 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7
us3s AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7
Ue4 AmPAL22V10 24 0.15 0.75 0.15 0.75 5-7
U 65 AmPAL22V10 24 0.15 0.75 0.15 0.75 5-8
U 66 AmPAL22V10 24 0.15 0.75 0.15 0.75 5-8
(V) AmPAL22V10A 24 0.15 0.75 0.15 0.75 3-3
u17 AmPAL22V10A 24 0.15 0.75 0.15 0.75 4-4
us7 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-4
uss8 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-4
U 59 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-4
u75 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-11
U9 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-15
U31 74AS32 14 0.0165 0.0825 0.0165 0.0825 4-6
U107 74AS804A 24 0.016 0.08 0.016 0.08 5-15
U108 74AS804A 24 0.016 0.08 0.016 0.08 5-15
U105 74ALS08 14 0.0022 0.011 0.0022 0.011 5-10
Total 3267 20859 104.29 13.458 67.294

APPENDIX O
Goals

¢

The primary guidelines behind the design choices made in this application
note are outlined below. Listing them here will help in understanding the
design alternatives selected.

1. lNlustrate the use of several of the 29300 family components in a
typical system arrangement.

2. Show both macroprogram and microprogram approaches to processor
design.

3. Make the design general purpose so that it may be copied in whole or
in part by other engineers and used in a wide range of applications.

4, Provide hardware aids for Digital Signal Processing algorithms.
5. lllustrate the use of Serial Shadow Register (SSR) diagnostics.
6. Show the use of dual write data ports on the 29334 register file.

7. Work through the details of support logic design and system timing.

Disclaimer

Warning: This is a paper design. It has not been implemented in hardware.
The design is therefore subject to the usual number of oversights, mistakes,
and outright blunders that lie hidden in the depths of any complex and untried
plan. -

All AC & DC parameters quoted in this document were based on information
available at the time of writing this document. Some of the parameters
represent PRELIMINARY information, which is subject to change.

0O-1

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

+ Sales Offices

North Amencan

ALABAMA .. <. (205) 882-9122
ARIZONA ...(602) 242-4400
CALIFORNIA,
Culver Cny rerenrennneenne. (213) 645-1524
Newpon Beach (714) 752-6262
SaN DIBGO0 .t 619) 560-7030
San Jose weeee.. (408) 452-0500
Woodland Hills ..(818) 992-4155

CANADA, Ontario,

..(613) §92-0060

Willowdale .(416) 224-5193
COLORADO(303) 741-2900
CONNECTICUT ... 203) 264-7800
FLORIDA,

Clearwater 813) 530-9971

Ft. Lauderdale. .(305) 776-2001

Orlando (407) 830-8100
GEORGIA(404) 449-7920
ILLINOIS,

Chlcago 2312) 773-4422

Naperville ...{312) 505-9517
INDIANA . .(317) 244-7207
KANSAS.. .(913) 451-3115
MARYLAN 301) 796-9310
MASSACHUSE 617) 273-3970
MINNESOTA . .(612) 938-0001
MISSOURI 913) 451-3115
NEW JERSEY,

Cherry Hill. {609 662-2900

Parsippany .. 201) 299-0002
NEW YORK,

Liverpool (315) 457-5400

Poughkeepsie(914) 471-8180

Woodbury . ..(516) 364-8020
NORTH CAROLINA ..ot (919) 878-8111
OH!IO

Columbus(614) 891-6455

DaYION ...t s (513) 439-0470
OREGON(503) 245-0080
PENNSYLVAN 215) 398-8006
SOUTH CAROLIN 803) 772-6760

TEXA

Austin 512) 346-7830
Dallas(214) 934-9099
Houston. .(713) 785-9001
WASHINGTON ..ottt 206) 455-3600
WISCONSIN .o ...{(414) 792-0590
International
BELGIUM, Bruxelles TEL (02) 771-91-42
FAX ..(02) 762-37-12
TLX et 61028
FRANCE, Paris TEL .. .(1) 49-75-10-10
FAX coooveririnriennirinns (1) 49-75-10-13
TLX e 263282
WEST GERMANY,
Hannover area TEL.. (0511) 736085
FAX oot (0511) 721264
TLX.. 922850
Minchen .. TEL .. (089) 4114170

FAX (089) 406490
N ..523883

Stuttgart........ccccerenns (071 1? '62 3377
..(0711) 625187

TLX.. ..
HONG KONGoececnn. TEL. 852-5- 8654525
FAX. .852-5-8654335
TLX. . 67955AMDAPHX
ITALY, Milancoveueene ..(02) 3390541
..{02) 3533241
2) 3498000
315286

JAPAN,

Kanagawa........ccoeun. TEL ...462-47-2911
FAXccece. ...462-47-1729

International (Continued)

Tokyo ...(03) 345-8241
03) 342-5196

TLX . . J24064AMDTKOJ

058K e, = A 06-243-3250
FAX. ...06-243-3253

KOREA, Seoul82-2-784-7598

82-2-784-8014

..(305) 484-8600
305) 485-9736
4261 AMDFTL
....{02) 537810

LATIN AMERICA,
Ft. Lauderdale

NORWAY, Hovik e €

SINGAPOREccccoevvnnee .65-2257544
..65-2246113
TLX. "RS55850 MMI RS

SWEDEN,
Stockholm (08) 733 03 50

(08) 733 22 85
1602

TAIWAN ..886-2-7122066
..886-2-7122017

UNITED KINGDOM,
Manchester area.........F (0925) 828008

(0925) 827693

628524
(04862) 22121
(0483) 756196
- 859103

London area ...

North American Representat:ves____

CANADA
Burnaby, B.C
DAVETEK MARKETlNG (604) 430-3680
Cal\garé Alber
ITEL ELECTRONICS. (403) 278-5833

Kanata, Ontario
VITEL ELECTRONICS.

> ..(613) 592-0090
Mississauga, Ontario

VITEL ELECTRONICSooovvtrririee e (416) 676-9720
Quebec
IDIYI-‘ITOEL ELECTRONICS ...t (514) 636-5951
INTERMOUNTAIN TECH MKGT(208) 888-6071
INDIANA
ELECTRONIC MARKETING
OV%SNSULTANTS, INC ot (317) 921-3452
LORENZ SALESccoovivririiicecinecieneeene (319) 377-4666
KAN SA
Merr
Wi LORENZ SALES ..(913) 384-6556
ich
LORENZ SALES ..o (316) 721-0500
KENTUCKY
ELECTRONIC MARKETING
MK(;:'_IOlNSULTANTS INC ottt (317) 921-3452
MIySIKE S'AICK ASSOCIATEScoeevvvirnnnn (313) 644-5040
LORENZ SALES [P (314) 997-4558
NEBRASKA
LORENZ SALES.cccecveienircrnrnrecccnrenee.. (402) 475-4660
NEW MEXICO
NEWORS%N DESERT STATES......ccccoccvvevvnnnen (505) 293-8555
NYCOM, INC .. (315) 437-8343
OHIO
Centerville
DOLFUSS ROOT & COcoovvrerrrenrrrerennrrennens (513) 433-6776
Columbus
DOLFUSS ROOT & COccevvvvvecrevirnne.... (6 14) 885-4844
Strongsville
DOLFUSS ROOT & CO ...covvercieie e (216) 238-0300
PENNSYLVANIA
UT?\OLFUSS ROOT & CO ..cooveveeeeeerreeeene (412) 221-4420
Flg| MARKETING...... (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details,
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

Tel: (408) 732-2400 = TWX: 910-339-9280 - TELEX: 34-6306 - TOLL FREE: (800) 538-8450

1 Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA
‘ APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323 « (408) 749-5703

© 1988 Advanced Micro Devices, Inc.
WCP-10M-10/88-0

Printed in USA

ADVANCED

MICRO
DEVICES, INC.
901 Thompson Place

P.O. Box 453

Sunnyvale,

~ California 94086

(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
-TOLL FREE

(800) 538-8450

098568

