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Preface 

This application note describes the design of a high-performance microprogrammed 32-bit processor 
using the Am29300 family of 32-bit building blocks. Basic design philosophy for a microprogrammed 
processor is discussed as the design choices made for this system are explained. Support circuitry 
used with the Am29300 family components is also covered in detail. This circuitry includes: Writable 
Control Store, Serial Shadow Register diagnostics, and Programmable Array Logic. This edition of 
the application note is a reprint of the 1987 version with no changes. However, some assumptions 
have been made for specifications on various data-sheet parameters that were applicable at the time 
of the writing in 1986, and have since been improved. These improvements are reflected in the 
following table. 

CMOS versions of the 29300-family devices, discussed in this application note, have recently been 
introduced. The table summarizes worst-case delay times for both the bipolar and CMOS versions. 
Also projected values for product speeds in early 1989 are indicated. In cases other than 
microprogrammable products, some new and faster devices, or devices of different architecture, may 
also affect the design. 

CMOS processes have dramatically improved the power dissipation and, in many cases, the 
maximum specified delay. As advanced processes provide shorter gate lengths and smaller 
geometries, new products will feature reduced delay times. 

The fastest cycle times are dependent on the architecture. Some designers are now using cycles of 
50-55 ns for implementation in early 1989. The architectural flexibility and single-cycle execution of 
the powerful instruction set is the key to the Am29300 system performance. 

SUPPORT TOOLS 

There are other sources of information that may be useful to you. The most important design tool is 
the comprehensive Am29300/29C300 data book. 

An Am29300 evaluation board is also available for device evaluation. It is a single-board computer 
that has a host 80188 microprocessor, 4K writable control store and one of each CMOS device in the 
Am29C300 family. There are RS232 ports for connection to a PC as well as a utility program for 
downloading microcode into resident EPROM. 

With available design models and simulators running system timing and interconnections, your 
design and debugging time is reduced. Hardware tools and emulators with writable control store and 
logic analysis allow for interactive assembly. Sophisticated software support with a new friendly meta 
assembler helps software engineers write compact and efficient microcode in high-level language 
constructs and user-defined symbolics. All of this support speeds your product to market. 

AMD applications and field sales engineers are just a phone call away and will update you on how 
to make designing an Am29300 system as easy as possible. 

Am29300/29C300 LITERATURE 

Contact your local sales office for copies. 

Am29300/29C300 Data Book 

Am29C300 Family Brochure 

Am29C325 Product Brochure 

Am29332 User's Manual 

Am29C327 User's Manual 

Order# 

09372 

07171 

09746 

09287 

10028 



WORST-CASE DELAY IN NANOSECONDS, OVER COMMERCIAL OPERATING RANGE 

Delay Assumed Current Current 
In App Note Bipolar CMOS Expected 

Device Symbol Value Specification Specif !cation 1089 Value 

REGISTER FILE Am29334/29C334 

Data Output ACCESS 24 24 20 16 

OE to Output Valid TURN-ON 20 20 16 13 

OE to Output 3 State TURN-OFF 16 16 15 13 

Data Set-up tDs 9 9 11 9 

ALU Am29332/29C332 

Data A or B to Y Parity DA, DB to PY 42 42 48 36 

Instruction to Y Parity Ito PY 53 53 60 45 

Width to Y Parity WtoPY 40 40 43 34 

Position to Y Parity Pto PY 48 48 51 41 

SEQUENCER Am29331/29C331 

Instruction to Y Output Ito Y 25 25 17 15 

Instruction to D Output Ito D 31 31 19 16 

Force Continue to Y Output FCto Y 21 21 15 14 

Interrupt Request to Interrupt Ack. INTRto TNTA 11 11 11 10 

OED to D Valid OED to D 25 25 16 14 

PARALLEL MULTIPLIER Am29C323 

Unclocked Multiply X or Y to P Parity tMUC 150 NIA 65 60 

Clocked Multiply Cycle Time tMC 125 NIA 50 45 

Clocked Multiply Data to Clock Set-up ts xv 20 NIA 18 17 

Clocked Multiply Clock to Output tPDPP 40 NIA 25 22 

FLOATING POINT PROCESSORS Am29325129C325 

Unclocked Multiply tMUC 125 105 125 100 

Clocked Multiply tMC 100 70 97 65 

Data to Clock Set-up Clocked Multiply tsD1 13 9 16 9 

Data to Clock Set-up tSD2 104 80 118 80 
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SECTION 1 

Overview 
This application note describes the design of a high 
performance microprogrammed 32-bit processor using 
the Am29300 family of 32-bit building blocks. 

Basic design philosophy for a microprogrammed proces­
sor is discussed as the design choices made for this 
system are explained. Issues of microprogram sequence 
control, interrupt handling, microprogram memory op­
tions, microword layout, macroprogramming, high speed 
multiply, and Clock control are covered. 

Support circuitry used with the Am29300 family compo­
nents is also covered in detail. This circuitry includes: 

Am29331 

Am29332 

Am29334 

Am29C323 

Am29325 

Am29114 

Am29800 

Am29PL141 

- 16-bit Address Sequencer, 

- 32-bit Arithmetic Logic Unit, 

- 64 x 18-bit Four Port Register File, 

- 32-bit Parallel (Integer) Multiplier 
Accumulator, 

- 32-bit Floating Point Unit, 

- Interrupt Controller, 

- Family of Interface and Diagnostics 
Logic Devices, 

- Fuse Programmable State Machine, 
Writable Control Store, Serial Shadow Register diagnos­
tics, and Programable Array Logic. 

AmPAL18P8 - Programmable Output 20-pin Combi-
natorial PAL, 

The use of the following Advanced Micro Devices com­
ponents is illustrated in extensively documented ex­
amples: 

AmPAL22V10 - Output Macrocell 24-pin PAL, 

Am9151 
Am99C165 

- Registered RAM with SSR™, 
-16K x 4-bit CMOS high speed 
RAM. 

~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~ 

, CPU , 
, CONTROL CPU , 
\ SECTION \ 

' ' ' ' ' ' ~ MICROCODE CONTROL STORE ~ 

' ' ' ' ' Control Decode ' 

' ' ' ' ' Control Multiplexers ' 

' ' \:::::::<<=:~''''"""'~"'"'"'"'""'"''''''''''''''"'''"'"'""''''''''""'''''''"'"''''""''' "'"''''''''''"''''''''''"'''''"'''''''''""'"'''":::::::::::::::,;:::::<::::::::<;:::::::::::::::::<::::::::::::<::::t: ' 

' ::; Interrupt Control ' ' ,, ' , CPU Am29334 Register File I , 
' DATA ii ' ' "" ' , SECTION )\ Am29331 , 

' I Sequencer ' 
~ i\1 ~ 

~ Amf~2 Amf,WS Am2~323 I ~~~~~~. l 
~ ...... ,., ...... ,.,.,.,.,.,.,.,., ....... , ............ ,., ................ ,.,.,., ...... ,.,.,., ................... .J:,' ''' ''' '''''' ''''' '~ 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ''~~'''' '''''''''''''''~ ' I I ' ~ xterna us, External ' 
~ . 16K x 36-bit Static RAM ' - ~ost ~ 
' ,, us ' ' ,, ' 
~ MEMORY ~~ 1/0 ~ 
~'''''''''''''''''''''''''''''''''''''~''''''''''''''''''''' 

Figure 1-1. System Components 
09856A 1-1 
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SECTION 1 
Overview 

SYSTEM LAYOUT 

As with all processors, this system contains three main 
portions: Central Processing Unit (CPU), memory, and 
input/output (1/0) (see Figure 1-1 ). 

The CPU consists of a control section and a data section: 

The data section manipulates data via operations such 
as addition, subtraction, shifting, merging, multiplication, 
and division. These functions are implemented with the 
Am29332 Arithmetic Logic Unit (ALU), Am29325 Float­
ing Point Processor (FPP), and Am29C323 Parallel 
Multiplier (PM). The data section also stores operands 
and intermediate results in Am29334 register files. 

The control section directs the operations performed by 
the data section and determines the order in which the 
operations are performed. This section contains the 
Am29331 Microprogram Sequencer, macro opcode 
register & decode, interrupt control logic, miarocode 
control store, control decoding logic, and control multi­
plexers for the register file and ALU. 

The memory contains a 16K word by 36-bit static RAM. 
Included as part of the memory block are two address 
registers/counters, which may be used to speed up 
sequential reads and writes made by the CPU. 

The 110 portion is a simple connection to a host system's 
address and data bus. It is assumed that the Am29300 
demonstration system operates as a peripheral proces­
sor to a larger host system, as might be the case with an 
array or digital signal co-processor. Information to be 
processed by the demonstration system is loaded into 
the memory portion via Direct Memory Access (OMA). 
When processing of the data is complete, the host 
system unloads the memory portion via OMA. 

A diagnostics port is also provided as part of the 1/0 
section. This port allows control over the demonstration 
system clock for single stepping, and it allows for serial 
diagnostics to display and control the state of the system. 

Throughout the remainder of this application note, it is 
assumed that the reader has some previous experience 
with microprogrammed processor design and is familiar 
with the Am29300 family data sheets. For those readers 
not familiar with microprogrammed design, some refer­
ence material is listed in Appendix A. 

DATA FLOW 

The system data paths are illustrated in the block dia­
gram of Figure 1-2. 

1-2 

Memory and 1/0 Sections 

Information processed by the Am29300 system is ex­
changed between the host system and the memory via 
the external bus interface. The information may be both 
data and macroinstructions. 

From the external bus, the host system is able to address 
the memory via the bus driver connected to the memory 
address bus. Data is moved over the memory data bus. 
The host system's only access to the Am29300 system 
is via these buses to the memory. Therefore, all data to 
the system flows through the memory via OMA accesses 
by the host system. 

Diagnostic control and information flows through the 
external bus interface via the host interface controller. It 
controls the clocking and single stepping of the system 
while loading and reading serial diagnostics via Serial 
Shadow Registers (SSR) that are placed in key locations 
throughout the system. 

(SSR is a trademark of Advanced Micro Devices, Inc.) 

Data Section 

Data must be moved from the memory to the register file 
to be available to the ALU and multipliers for processing. 

The register file has four access ports, two ports for 
writing data into the file and two ports for reading data out 
to the ALU and multipliers. This arrangement allows two 
operands to be read from the file in the same cycle as two 
operands are being written. The two read operands are 
usedeitherasAandBoperandsfortheALU, FPP,orPM, 
or as address and data inputs to the memory. 

To move data from the memory to the register file, an 
address to the memory is selected from the register file 
on the A read port. This address selects a word from the 
memory that is transferred on the memorydatabustothe 
B write port of the register file. 

Once data is loaded into the register file, it can then be 
selected for use on either the A or B read ports for input 
to the ALU, FPP, or PM. 

Data processing results from the ALU, FPP, or PM are 
then placed on the Y bus for return to the register file A 
write port. 

Finally, processed data is moved back to the memory via 
the Bread port of the register file, while the location to be 
written in the memory is addressed by the value on the A 
read port of the register file. 



Position and 
Width Mux 

ALU 
Am29332 

V Bus 

Microcode Control Store 

Control Pipeline Register 

Status Bus 

Memory 
16K X36 bits 

Address 

Data 

1K X 92 bits WCS Using Am9151, 
2K X 92 bits PROM Using Am27S75, 
4K X 92 bits PROM Using Am27S85 

MA_Bus 

MD_Bus 

Serial 
Diagnostics 

System Clocks 

"' ~ 
ID 
0 

~ 
~ 

Host Interface, 
SSR Diagnostics, 
Clock Controls 
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Sequencer 

Status 

External 
Bus 
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Figure 1-2. Am29300 Demonstration System 

(NOTE: The advantage of using both write ports on the 
register file is that it is possible to perform calculations 
and write the results via the A write port at the same time 
that new data is being moved into the registerfile from the 
memory via the B write port. This will be illustrated in 
more detail later in this document.} 

Control Section 

D Bus 

The D bus is a highway for information flow between the 
microcode control store, interrupt control sequencer, and 
data section of the CPU. 

Branch addresses or constants from the microcode can 
pass to the sequencer via the D bus. The interrupt 
controller's interrupt vector base address register may 
also be loaded via the D bus. 

Constants from the microcode can pass to the data 
section for use in calculations via the D bus to A bus 
transceiver. Microcode constants can also be used as 

addresses to the memory, via a D bus to A bus to memory 
address bus connection. 

Variable data can be passed from the register file to the 
sequencer. The sequencer can also return data to the 
register file, via the A bus to ALU Y bus to A write port 
path. The D bus path to the sequencer is valuable for 
storing and retrieving the state information in the se­
quencer when interrupts, traps, or context switches 
occur. 

Control Decode 

This section of logic expands encoded microcode fields 
into individual control lines used throughout the system. 

Interrupt Logic 

This circuit monitors interrupt and trap conditions such as 
parity errors and breakpoints. When an interrupt condi­
tion is detected, an interrupt request to the sequencer is 
made and an interrupt address vector generated. 

1-3 



SECTION 1 
Overview 

Sequencer 

The sequencer is an address multiplexer with an on-chip 
address incrementer and stack. It selects the address for 
each microinstruction word read from the control store. 
The address selected depends on the instruction to the 
sequencer and on the state of test conditions. The 
sequencer can select addresses from the branch field of 
the control pipeline register, the macro opcode map, the 
internal stack, the increment of the last microinstruction 
address, or one of four status condition driven multi-way 
branch inputs. 

Macro Opcode Suppon 

Macro vs. Micro Programs: A microprogram is the 
definition for the state of the primary system control 
signals during each system clock cycle. Each word of 
microcode usually has a large number of bits so that 
many parallel operations may be controlled simultane­
ously. Each microcode word must deal with the intricate 
details of system operation. The writing of microcode is 
a slow tedious process that must take into account every 
facet of system operation in order to provide the most 
efficient use of system resources. 

The advantage of microcode is that, very often, different 
system operations can be overlapped (done in parallel) 
since there is parallel control over all the system re­
sources. 

A "macroprogram" is a series of microcode ·subroutine 
calls. Each macroinstruction has an opcode field that is 
simply a value that can be translated into the starting 

· address of a microcode subroutine within the system 
microprogram. The macroinstruction may include para­
meters that are passed to the microprogram. These 
parameters might be register addresses, loop counter 
values, immediate data, or memory addresses. 

The advantage of a macroprogram is that the instructions 
are very simple and require relatively few bits to define as 
compared to a microcode word. The macroinstructions 
are simpler because all the details of system operation 
are specified by the underlying microcode instructions. 
The simpler instructions allow macroprograms to be 
written much more quickly than microprograms. There­
fore, once a set of microcode subroutines are developed 
to perform the most often needed system operations, a 
wide variety of macroprogram applications can be 
quickly written. Macroinstructions remove the system 
programmer's concern over every detail of system 
operation. 

The disadvantage of a macroprogram is that each in­
struction must be fetched from memory and decoded 
(translated to a microcode subroutine address) before 
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each microcode subroutine is executed. When each 
subroutine execution is long compared to the overhead 
of fetching and decoding the macroinstruction, the 
macroprogram will run nearly as fast as an equivalent 
microprogram with the advantage being a much easier 
programming task. When the microcode subroutines are 
short compared to the macroinstruction overhead, the 
system speed can drop significantly. 

So, if macroprogramming concepts are used carefully, a 
macroprogrammed approach to system design can yield 
a significant improvement in the ease of system use 
without a large decline in system performance. 

For that reason, the Am29300 demonstration system 
includes the features described below, which allow a 
macroprogrammed approach. These features are in­
tended to show how basic macroprogramming can be 
implemented. 

Macro Opcode Register: When macro-instructions are 
executed, the instructions are addressed in the memory 
via the A read port of the register file in the same way as 
described earlier for data. The selected instruction is 
read from the memory via the memory data bus and 
written into the macro opcode register. The instruction 
can also be written into the register file via the 8 write port 
in the same cycle (which may be useful for instructions 
that contain immediate operands that would be used by 
the data section). 

Macro Opcode Map RAM: The macro opcode map 
RAM is made of three Am9150 high speed SRAMs. The 
opcode portion of the macro opcode register addresses 
a microcode entry point table in the map RAM. This entry 
point is then used by the Am29331 sequencer as a 
branch address to the microcode routine that performs 
the function required by the macroinstruction. 

Macro Operands: The operand portion of the macro 
opcode register is loaded into the macro operand count­
ers. The macroinstruction operands allow the direct 
specification of register file addresses, ALU shift values, 
or ALU field masks to be used by the microcode routines. 

Register Fiie Address, Position, and Width 
Multiplexers: Register file addresses are passed to the 
register file via the register file address multiplexer. Po­
sition and width information for shift values and field 
masks are passed to the ALU via the position and width 
multiplexers. These multiplexers allow eitherthe microc­
ode or the macroinstructions to control the register file 
and ALU. 



SECTION 2 

Nomenclature 
Throughout the remaining figures in this application note, 
some naming and drawing conventions are used as 
noted below. 

All signal names are written as single word identifiers with 
underlines used to provide visual space between sec­
tions of a multi-word identifier. 

Signals that are active low have names that end with an 
asterisk. In some of this document's programmable logic 
definition files, this convention is not allowed. In those 
situations, the active low signal names will begin with an 
exclamation point or end with an underline character. 

Clock and qualified clock signals have names that begin 
with CLK_. 

Groups of signals that form buses are shown as single 
lines with an associated number that indicates how many 
lines are involved. Bus lines are drawn with 45 degree 
turns and intersections instead of the usual right angle 
turns and intersections used with individual signal lines, 
in order to highlight buses visually. Major data highways 
such as the A_BUS, B_BUS, and Y _BUS have signal 
namesthatendin_BUS. The lines of a bus are numbered 
from least significant to most significant with the least 
significant identified as line zero (0). Where a subset of 
the lines in a bus is shown, the bus signal name will be 
fallowed by parentheses containing numbers that show 
the range of lines in use. The numbers of a continuous 
range are separated by a colon (:), non-contiguously 
numbered lines are separated by a comma (,). Where 
Ii nes of a bus are split out to show the specific connection 
of bus lines in a circuit, a small number that indicates the 
line number within the bus will be shown near each line 
that is split off. 

Four major buses in the system share a common struc­
ture. The A_BUS, B_BUS, Y_BUS, and MD_BUS all 
have the same layout. Each bus carries a 36-bit data 
word, which is arranged as four 8-bit bytes, each byte 
having its own parity bit. Byte zero (least significant) is 

locatedinbits 0:7; bit32 is the parity bit for byte zero. Byte 
one is in bits 8:15with its parity in bit 33. Byte two is in bits 
16:23 with parity in bit 34. Byte three is in bits 24:31 with 
parity in bit 35. 

Signals that come directly from the microcode memory 
pipeline register have signal names that begin with "P _". 

Ground symbols (zero volt points) are drawn as down­
ward pointing triangles, or the signal name GND is used. 

Points tied to +5 volts are labeled with the signal name 

vcc· 

Components are shown with pin numbers immediately 
outside the rectangle that defines the component. 
Component-specific signal names related to component 
pins may be shown immediately inside the component 
rectangle. Where there are several components shown 
on a page with very similar connections, only one of the 
components will have pin numbers and signal names 
shown. The remaining components on the page are 
wired in the same manner. 

Each component is assigned and labeled with a "U 
number'' that uniquely identifies the component. This 
helps identify specific components for discussion and 
separates identical type devices in the system compo­
nent list. 

Because this demonstration system is complex by na­
ture, it must be illustrated with many figures, each focus­
ing on a different portion of the overall system. In order to 
show the signal interconnections between all parts of the 
system, each signal that leaves or enters a figure is given 
a name. Often the names are abbreviations in order to 
save space in the figures. Each name shows a relation­
ship to the signal's use. Wherever the same signal name 
appears in different figures, a connection between the 
figures is defined. To help in identifying all the figures to 
which a signal travels, there is a signal-to-figure cross 
reference listing in Appendix B. 
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SECTION 3 

Data Section Description 

REGISTER FILE 

Two Am29334 register files are used in tandem to pro­
vide a 64-register by 36-bit wide file. This allows the 
storage of 32-bit data plus parity (1 parity bit/byte). Each 
Am29334 contains 64 registers that are 18 bits wide; see 
Figure 3-1. 

An Am29334 register ti le can both read and write data in 
the same cycle, but it does not perform the read and write 
simultaneously. The read must be performed during part 
of the system cycle and the write during another part of 
the cycle. Since read data is needed by the ALU and 
multipliers as early in the cycle as possible and, since 
data values to be written are only available later in the 
cycle, the reading of data is done in the first half of the 
cycle and the writing done in the second half of the cycle. 
A convenient way to separate the two parts of the cycle 
is to use the system clock signal to control the internal 
address mux and write enable. 

As connected in Figure 3-1, the read port latch enables 
(LEA and LEB) and write port common enables (WEAC* 
and WEBC*) are tied to the data section clock line 
(CLK_D). This causes read data to be accessed while 
CLK_D is high and read data to be latched when CLK_D 
is low. Data is written when CLK_D is low if the port write 
enables are active (WEAL* and WEAH*, or WEBL* and 
WEBH*). The high and low byte write enables for each 
port are tied together since only full 36-bit word writes will 
be done in this system. 

The various read and write addresses are provided from 
the register file address multiplexers, which will be cov­
ered later. 

The output enable (P _OEA*) and write enables 
(P _WEA* and P _WEB*) come directly from the microc­
ode pipeline register. 

ARITHMETIC LOGIC UNIT 

Am29332 

The Am29332 provides a 64-bit funnel (barrel) shifter, 
32-bit mask generator, and 32-bit ALU. The ALU can 
perform binary and BCD add or subtract, multi-cycle 
multiply or divide, and logical operations. This single, 
highly-integrated chip provides the complete function of 
the ALU block in this system. The only added component 
is an external register used to maintain status bits for the 
macroprogram separate from status information used by 
the micro program. The ALU is shown in Figure 3-2. 

Most of the control lines come directly from the microc­
ode control pipeline register. 

The ALU output enable (ALU_ OE*) is decoded from the 
control pipeline register. 

The POSITION and WIDTH signals come from the posi­
tion and width multiplexers. These multiplexers select 
the position and width values from either the microcode 
pipeline· or the macroinstruction in the macro opcode 
register. 

The slave mode input is tied to ground since there will be 
no use of the slave mode comparisons in this system. 

The HOLD input is used as an enable control over the 
clocking of the internal micro status register and Q 
register during times the ALU is not in use. Because the 
ALU, FPP, and PM share the same data source and 
destination buses (A_BUS, B_BUS, and Y _BUS), they 
generally cannot be used simultaneously due to bus 
contention. In recognition of this, the control fields for the 
ALU, FPP, and PM have been overlapped in the microc­
ode to minimize the required width of each microcode 
word. This means that at certain times the control lines to 
the ALU will be meaningless to the ALU because the 
values on the lines are determined by the needs of the 
FPP or PM. Therefore, unless the hold input is used to 
prevent clocking of the status and Q register duing these 
times, the ALU status could be lost whenever the FPP or" 
PM are in use. 

Note, however, that the hold input is not used as the 
general means to prevent clocking of the ALU registers 
when the whole system is halted (e.g., during single step 
mode). The data clock (CLK_D) that is distributed 
throughout the data section of the CPU is a qualified clock 
and will be used to control the state change of all registers 
in the data section, including those in the ALU at times 
when the whole system is halted. 

Macro Status Register 

There are two levels of status information that the pro­
grammerof a microprogrammed system musttrackif that 
system executes macroinstructions. These are ref erred 
to as the micro and macro status. The micro status of the 
system is updated at the end of each microcode step and 
is part of the system state. The macro status is part of the 
macroprogram state as reflected at the end of each 
macro step. Since many microinstructions may be exe­
cuted to perform the function defined by a given macro­
instruction, the macro status reflects the machine state 
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SECTION 3 
Data Section Description 

from the macro program viewpoint. The macro status 
may be carried across many microinstruction cycles 
without change. This requires a separate register to 
contain the macro status independent of the micro status. 
The Am29332 does not have an internal macro status 
register so one must be provided externally. The loading 
of the macro status register and the use of the macro 
status information by the microprogram must be con­
trolled by microcode. The Am29332 does provide an on­
board multiplexer to select between the micro and 
macro status inputs. Only the carry and link values are 
used directly by the Am29332 since these are the only 
status values normally used to modify data values. The 
macro stat us for the zero, sign, and overflow flags can 
be used by the sequencer as test conditions for branch 
instructions. 

The register used for holding macro status is an 
Am29818-1. The register is loaded (clocked) by a quali­
fied clock called CLK_MAC _ST AT. This clock is qualified 
by the load macro status bit in the control pipeline 
register. The Am29818-1 is also used to provide a 
diagnostic ability to read and load the macro status 
register through the use of an internal serial shadow 
register (SSR). 

FLOATING POINT PROCESSOR 

Am29325 

The Am29325 Floating Point Processor (FPP) performs 
32-bit floating point multiplication, addition, or subtrac­
tion in a single cycle. Floating point division can be done 
in seven cycles using the Newton-Raphson method. The 
FPP is shown in Figure 3-3. 

All the control Jines for the FPP are driven directly by the 
microcode pipeline register with the exception of the FPP 
output enable and the register flow-through enables. 
Those signals are decoded from the data path select field 
of the microcode pipeline register. The output enable 
decodeisdonebytheAmPAL22V10in Figure 3-.3. The 
register flow through enable decode is done by the 
control decode logic which is described later. 

It should be noted that the Am29325 is not a full fledged 
member of the Am29300 family. It is different from the 
other Am29300 members with regard to three key char­
acteristics: it is slower, does no data bus parity checking 
or generation, and has no slave mode capability. 

The Am29325 flow through calculation time is 100 to 
125 ns rather than the 42 or 70 ns for the ALU or PM 
(the current PM is at 120 ns, but the fastest version will 
be at 70 ns). This requires that whenever the FPP is 
used, the system clock cycle must be extended to allow 
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for the slower propagation time. This extended clock 
timing is covered later in more detail. 

The lack of parity checking is not much of a problem for 
the rest of the system since it only affects the data 
integrity of information going through the FPP. The lack 
of parity generation isn't a problem as long as only the 
FPP is working on the data. The problem starts when 
floating point data is moved back to memory or is con­
verted to integer values for use by the ALU. 

If data from the FPP is read by the ALU or PM, parity 
errors will be detected and a system interrupt may 
result. That problem can be avoided if the system has 
kept track of which data resulted from FPP calculations 
and if the parity errors are ignored when that data is 
read. But if FPP data results are moved directly to the 
memory and then on to the host system, the parity errors 
will eventually be found. 

So some means of adding parity generation to the FPP 
should be provided. One way is to add four 8-bit parity 
generator chips to the FPP output bus. This consumes 
power and boardspace while providing a benefit only 
when FPP data is moved directly through the register file 
to the memory. A better way is to use the parity genera­
tors already available in the Am29332 by requiring that 
FPP data be passed through the ALU before being 
moved to the memory. Even though the data may not be 
modified by the ALU, correct parity will be generated on 
the ALU output. 

With the use of a little trick, there is a way to provide parity 
checking on the FPP data inputs. To do this, one of the 
data path select codes is used to control the output 
enables of both the ALU and FPP. This code (P _DSP = 
11) causes the FPP outputs to be disabled and the ALU 
outputs enabled, even though the data path selected is 
the FPP. By turning on the ALU outputs, the ALU parity 
error output will also be enabled and any parity error on 
the A_BUS or B_BUS will be reported. At the same time, 
the control microcode for the FPP is still valid and may be 
used to load registers with the data present on the 
A_BUS and B_BUS. Of course the register file should not 
be loaded from the Y _BUS in the cycle where this 
scheme is used because the ALU is driving nonsense 
information onto the Y _BUS. Enabling the ALU outputs 
is only a trick used to make the ALU parity checker results 
available for this scheme. Note that the ALU hold input 
remains active even though the ALU output enable is 
active. This prevents any state change in the ALU when 
the FPP is the data path actually in use. 

Finally, the issue of no slave error checking is unimpor­
tant, since the slave mode is not used in this system. 



P_DPS 

P_FP_13 

P_ENS• 

A_BUS 

e_eus 

P_FP_14 

FP_FTO 

P_ENR• 

CLK_D 

P_FP_IO 

P_FP_l1 

P_FP_l2 

P _IEEE/DEC" 

P_PROJ/AFP 

P_FP_RNDO 

P_FP_RND1 

P_ENP 

FP_FTt 

c.> 
0.. 

Seed Look·Up 
Table Prom 

(No Parity) ~'''R~S'''''''''''''''''''''''''''''''''''''''~ 

(No Parity) 

' ' ' ' ' ' 

FTO 

em 

a.K 

ENF 

FT1 

Of 

' U5 

SBus 

14 

,_ ............................................. ... 

. ' 

t--~~~~~ a.K 

13 

INEXACT 
INVALID 
NAN 
overflow 
UiideiiiOw 
Zero 

Am29325 

' ' ' ' ' ' 

' ' ~ 
~ 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

-=t FPP 
Status J--C>INT _FPP" 

Register 

I ,.,::AL 1+-DM1_Bu1 
22V10A 

32 Y_Bus 
(No Parity) (0:31) 

Figure 3-3 Floating Point Block O!IOS6A:u 

c 
~ 
D) 

en 
(!) 

!l 
0 
:::J 

c en 
CD m 
(/) () 
~~ 
-0(5 
=z g c.> 



SECTION 3 
Data Section Description 

FPP External Status Register 

Status Pipeline Issue 

The FPP status flags appear at the status outputs along 
with data at the Y outputs. If the FPP "F" register is made 
transparent, the status flag register is also transparent. If 
the F register is clocked, so is the status register. In this 
demonstration system this presents a problem. 

Normally, status conditions from the data section are 
registered before being used by the control section. This 
maintains the pipelined, parallel operation of the control 
and data sections. The control section bases its testing 
on registered status from the last data section cycle 
rather than being forced to wait for status results of the 
current execution cycle before determining the next 
microinstruction to execute. 

To provide the same system for the FPP requires an 
external status register for cycles in which the F register 
is transparent to allow results to pass directly to the 
register file. In that situation the status flags are not 
registered by the FPP and thus, without an external 
register, there is no place to pipeline the status for the 
control section. 

Multiple Status Flag Test Issue 

Several of the FPP status flags signal events of equal 
importance such that it would be a convenience to be 
able to test multiple flags in a single cycle rather than 
basing branches on only one flag at a time. 

A simple way to test multiple conditions at one time is to 
execute a multi-way branch based on the bits being 
tested. In the case of the FPP there are six flags, too 
many for a single multi-way branch which can be based 
on only four bits. A solution is to OR some of the flags 
together as one of the multi-way branch bits and use the 
remaining bits directly as part of the multi-way branch 
address. In that way, one multi-way branch can test all 
six flags. 

When testing the status, if no flags are active, no abnor­
mal condition exists, and the zero value destination of the 
multi-way branch continues. If one or more of the direct 
flags is active, the multi-way branch goes straight to a 
routine to handle the problem. If one of the ORed flags is 
active, the multi-way branch destination instruction can 
either ignore the flags or take a second multi-way branch 
that is based on direct inputs of the flags that were ORed 
in the first multi-way branch (an advantage of having 
more than one source for multi-way branch conditions). 
The second multi-way branch determines which of the 
ORed flags was active in the first multi-way branch. 

FPP Status Register Implementation 

An AmPAL22V10 Programmable Array Logic device is 
used to register the FPP status flags and perform the OR 
of some of the flags. 

This external status register loads new status only as the 
result of cycles in which the FPP is the selected data path 
during an instruction execution. When the FPP "F" regis­
ter is in transparent mode, the external status register is 
loaded with the flags at the end of an FPP cycle. This 
results in a one level deep pipeline on status in the same 
way that ALU status is pipelined one level internal to the 
ALU. When the F register is in clocked mode, the external 
status register will load in the cycle following an FPP 
cycle. This will capture the data that js loaded into the 
FPP on chip status register at the end of the FPP cycle. 
This causes the status to be double pipelined for cycles 
in which the F register is clocked. 

The multi-way branch outputs forthe first level branch are 
the following flags: Overflow, Underflow, Invalid, and the 
OR of the Inexact, OR, NAN, and Zero flags. The multi­
way branch outputs for the second level branch are: 
Inexact, NAN, Zero, and Ground. 

These groups of four bits are substituted for the least 
significant four bits of a branch address to act as a multi­
way branch. 

In addition to the multi-way branch test for flags, an added 
output of the status PAL ORs together the Overflow, 
Underflow, and Invalid flags for use as an interrupt signal 
to the system interrupt controller, thus giving one addi­
tional way to monitor the FPP error flags. Using the 
interrupt approach eliminates the need to follow floating 
point operations with multi-way branches in order to test 
for error conditions. Execution of instructions can pro­
ceed, assuming no major problems exist in an FPP cycle. 
If one of the above mentioned error flags is active, the 
resulting interrupt will deal with the error. 

One last element of the status PAL is that it acts as part 
of the system control decode by decoding the data path 
select bits of the control pipeline to enable the FP P output 
when the FPP is the selected data path. 

The logic definition file for the status PAL is listed in 
Appendix C. 

Seed Look-Up Table 
The Newton-Raphson division algorithm does a division 
of A by B by finding the inverse of B (i.e., 1/B) and 
performing a multiply against A. This scheme works with 
the Am29325 since finding the inverse of B requires only 



a series of multiplies and subtracts which the Am29325 
can do in single cycles. But, these multiplies and sub­
tracts are performed only to refine the accuracy of a 
precalculated seed value (a rough approximation of the 
inverse of B}. So a table of seed values must be available 
to support division with the Am29325. 

This seed table is stored in PROM memory external to the 
FPP. The B variable is used to address the seed table, 
and the resulting seed value is fed into the FPP to be 
refined. 

Placing the seed table in the path to one of the FPP inputs 
normally requires a 32-bit multiplexer to select between 
the PROM and the direct input bus for loading normal 
operands in multiply, add, and subtract operations. Build­
ing this multiplexer would require at least six hex-2-to-1 
multiplexer chips. The PROM and multiplexerwould also 
increase the propagation time needed to load the FPP, 
thereby requiring the cycle timing to be extended even 
more than is already required by the FPP. 

P_IEEE/OEC* 

SECTION 3 
Data Section Description 

The implementation of the seed table in this system has 
been modified to save chips and cycle length. Instead of 
placing the seed table between the A_BUS and the FPP, 
it is placed to the side as an appendage of the A_BUS 
(see Figure 3-3). The inputs and outputs of the table are 
tied together and to the A_BUS. The internal structure of 
the table is shown in Figure 3-4. It contains three 
PROMs, each of which is followed by a three-state output 
register (the Am27S25 has an internal register}. In this 
arrangement the PROMs can be accessed by the value 
presentontheA_BUS in one cycle andthe resulting seed 
loaded into the registers. In the following cycle the 
registers can drive the A_BUS with the seed value. This 
scheme requires three fewer chips and no extension to 
the FPP cycle time. It is true that two cycles are now 
required to load the seed value but the cycle used to 
access the seed table can be combined with the 
operation of checking for a zero divisor. This operation is 
generally done during the setup for a divide. 
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The detailed connections of the seed table are shown in 
Figure 3-5. The Am27S25 contains the seed values for 
the exponent and the two Am27S43s contain the seed for 
the fraction. The seed table output enable (SEED_ OE*) 
signal is a decoded output of the microcode control 
pipeline register. The output register of the seed look-up 
table is clocked by the data section clock. 

PARALLEL MULTIPLIER 

The entire Parallel Multiplier (PM) block's function is 
provided by the single chip Am29C323 Parallel Multi­
plier. This chip performs 32-bit, 64-bit, 96-bit, and 128-bit 
integer multiplies. It also can perform multiply accumu­
late using an internal 67-bit accumulator. The PM is 
shown in Figure 3-6. 
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SECTION4 ~ 
Memory and External System Interface 

The memory block and external system interface are 
discussed together in this chapter because of the tight 
interconnection between these areas. It is helpful to view 
the two blocks together in order to understand the shared 
use these blocks make of the memory address bus 
(MA_BUS) and the memory data bus (MO_BUS). Fig­
ure 4-1 shows a block diagram of the data and address 
paths used in these sections. -

One thing to note is that both the memory and the 
external interface are not elaborate in design. Essentially 
the external 110 section of this system is just a second 
port on the system memory. This system does little more 
than provide a simple arbitration scheme on access to 
the memory that allows an externally supplied OMA 
device to load and retrieve data from the memory. Event 

,--------------------
' 

MEMORY ADDRESS 
COUNTER A 

MEMORY ADDRESS 
COUNTERS 

, MEMORY 
,- -------------------, EXTERNALINTERFACE 

ADDRESS .,....,. ______ >------' 

DATA .>-t--------1 

or interrupt signaling between the CPU and host system 
is limited to a single pair of interrupt signals, one from host 
to CPU, one from CPU to host. Memory itself is only a 
simple bank of static RAM with two address counters on 
the input that help speed up array calculation. 

The reason for this simple approach is that the design to 
the CPU using the Am29300 family of building blocks is 
the focus of this application note. Every reader who may 
find the information in this application note useful will 
have different memory and 1/0 requirements to handle 
and will very likely design individual approachs to mem­
ory and 1/0. Therefore, only this simple approach is 
covered here so that more time can be spent discussing 
the CPU design. 
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SECTION 4 
Memory and External System Interface 

EXTERNAL BUS INTERFACE CONTROL 

Host Access Definition 

A block diagram of the host interface controller and its 
connection to the MA_BUS and MD_BUS buffers is 
shown in Figure 4-2. 

The Am29300 demonstration system is treated as a co­
processor to some host system. It ultimately gets all of its 
instructions, data, and control from the external host 
system. To provide communication with the host using a 
minimum of design effort and special hardware, only two 
portals into the Am29300 system are allowed. 

One portal is the Am29300 memory, which is treated as 
a dual port memory with all words directly mapped into 
the host bus address space. With this, the host has 
complete access to macroinstructions and data going 
into and out of the system. 

The second port is a serial diagnostics shift chain that 
runs through key control registers of the system. This 
serial pathway gives access to loading and reading the 
microcode writable control store, to the control pipeline 
register, to loading and reading the macro opcode map 
RAM, to the macro opcode register, to the macro status 
register, and to the interrupt base address register. 
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EXT_READY Address 
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Am29806 
EXT ADD Host 

Through this serial port, the microinstructions are loaded 
by the host before program execution begins. Also, the 
system clocks can be controlled by the host to allow 
diagnostics and code debugging via single stepping and 
breakpoints. · 

These portals are controlled by a state machine that is 
separate from the Am29300 system. The state machine 
is referred to as the host interface controller. It constantly 
monitors the external host address bus. When the host 
presents an address that matches a preset address on 
the Am29300 system board, the host interface controller 
is selected to perform one of several interface functions. 

Any function requested by the host takes priority over 
anything that the Am29300 CPU is doing. The host 
always gains control of the memory address and data 
buses as soon as the CPU clocks can be stopped and the 
CPU to memory bus buffers disabled. 

The function performed is dependent on the address 
used, thus the commands from the host to the interface 
controller are memory mapped. A 24-bit address from the 
host is assumed for this design. The 6 most significant 
bits (23:18) of the address are matched to the Am29300 
system board address to select the host interface control­
ler. The next two most significant bits (17:16) are used to 
select a command mode. The 3 least significant bits (2:0) 
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are used to select a specific command function within two 
of the command modes. 

Host Interface Block Diagram 

The 6 most significant bits of the host address are 
checked by the address recognition block: if the address 
matches the board address, then the match signal is fed 
into the input of a synchronizing register. Also fed into this 
register are: the external bus write enable line 
(EXT _WEN*); the external address bits 17, 16,. 2:0 
[EXT_ADD(17,16,2:0)]; and the host system reset lme. 

The synchronizing register is clocked by a free-running 
version of the Am29300 system clock. The register used 
has special meta-stable hardened circuitry that pre~e~ts 
the outputs from oscillating, regardless of the t1mmg 
relationship of input data to clock. This register allows the 
entire Am29300 system to run asynchronously with 
regard to the host system clock. All the interaction b~­
tween the host system and the Am29300 system is 
synchronized to the Am29300 system clock by the regis­
ter. Each command to the host interface controller is thus 
presented at the output of this register in synchronization 
with the host interface controller clock. 
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The heart of the host interface is an Am29PL141 Fuse 
Programmable Controller. It is a microprogra.m~ed 
sequencer with on-chip microcode memory and p1pel~ne 
register. This sequencer implements the state machine 
functions needed to control the interaction between the 
host and the Am29300 system. Used with the 
Am29PL141 is an Am22V10 PAL. This PAL collects 
together some glue logic functions: an interrupt signal 
latch, a multiplexer, and some encoding logic, all of which 
are described later. 

The Am29PL 141 provides control signals to the clock 
gating and distribution section of the Am29300 system: It 
also controls the enabling of all the buffers and transceiv­
ers that connect with the MA_BUS and MD_BUS. The 
controller acts as a '1raffic cop" that allows only one driver 
on those buses at a time to prevent contention. The 
controller also manages the loading, reading, and shift­
ing of the Serial Shadow Register diagnostic chain. 

The Serial Shadow Register (SSA) diagnostics port is a 
32-bit-wide parallel read and write register that also 
functions as a shift register. Data to be read or written to 
the SSA diagnostic chain is loaded or read via this port. 
The port is connected to the host via the MD_BUS. The 
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portisbuiltfromfourAm29818-1 SSRdiagnosticpipeline 
registers. These registers, like all the registers in the 
diagnostics chain in this system, contain one normal 
parallel input and output pipeline register that is backed­
up or "shadowed" by a second parallel input and output 
register that also acts as a serial shift register. The 
pipeline register can be loaded from the shadow register 
and the shadow register can be loaded from the outputs 
of the pipeline register. This gives the ability to move data 
into or out of the pipeline register via the shadow register. 
Data in the shadow register can be serially shifted to 
other similar registers in the system. By connecting all the 
diagnostic serial shadow registers together in a serial 
chain, data can be moved serially through a large number 
of key registers in the system using very few wires. 

The SSR diagnostics port is just an extra section of the 
diagnostics chain that runs throughout the Am29300 
system. This extra section is connected to the MD_BUS 
to serve as a parallel input and output port that gives 
access to the serial shadow register chain. 

P_FC * 

E_ADD (17) 

LADD (16) 

ANV_E * 

CLLFREE_RUN 

CPU_BLJS_EN * 

NEN_EN * 

A slightly more detailed view of the Host Interface Con­
troller is shown in Figures 4-3 and 4-4. 

Event Signals 

The host and the Am29300 systern need to be able to 
signal each other when important events occur, such as 
the transfer of ownership over sections of the dual port 
memory. To allow this, a simple interrupt setting and 
clearing scheme is provided. 

The host interrupts the Am29300 system with a com­
mand to the host interface controller. The controller in 
turn sets an interrupt flag in the Am29300 system inter­
rupt controller. The interrupt is cleared when the 
Am29300 services its interrupt controller. 

The Am29300 interrupts the host by using a microcode 
bit to set a latch that drives an interrupt line on the external 
bus. The interrupt is cleared whenever the host does an 
operation on the SSR port. The interrupt latch is imple­
mented in the AmPAL22V10, as shown in Figure 4-4. 

SVS_NEN_EN * 

so_o 
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Memory Enable 

The Am29300 system memory can be enabled by 
either the Am29300 microcode or by the host interface 
controller. A simple multiplexer is needed to direct the 
correct control signal to the memory enable input. This 
logic is also implemented in the AmPAL22V1 O shown 
in Figure 4-4. 

AmPAL22V10 Support Logic 

Figure 4-4 shows the logic for the AmPAL22V1 O that 
integrates the interrupt signal latch, SDI multiplexer, and 
memory enable logic. The logic equation definition file for 
this PAL is listed in Appendix D. 

SSR Diagnostics 

SSR Shift Path 

Figure 4-5 shows a block diagram of how the serial 
shadow registers in the system are linked together and 
how they relate to the macro opcode map RAM, se-
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quencer, and microcode control store. Most of these 
registers are also depicted in other Figures throughout 
this application note in their roles as parallel input and 
output pipeline registers. Figure 4-5 emphasizes the 
serial in and out and control connections of the shadow 
registers also contained in these registers. 

The SSA diagnostics port is shown as the starting and 
ending point for the entire shift chain (or loop as seen 
here). Data to be loaded into the SSA loop is parallel 
loaded into this registerf rom the MD _BUS via the bidirec­
tional outputs of the registers in this port (note: the 
shadow register in the Am29818-1 gets its inputfromthe 
output pins of the Am29818-1 pipeline register). 

Data loaded into this shadow register is then shifted into 
one of two branches of the SSA loop. One branch flows 
through the Writable Control Store (WCS) port and the 
microcode control store pipeline shadow registers. The 
WCS port is used to address the microcode control store 
or to receive (load) data from (to) the macro opcode map 
RAM. The microcode control store shadow register is 
used to write data into the microcode writable control 
store or to read the contents of the control pipeline 
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Opcode Map Sequencer 
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MODE ~----.__-----------------+----+-----4------+-i---------_J 
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DCLK_WCS 

WCS_INIT • -------------------------------------------------------l 
Figure 4-5. Serial Diagnostics Shift Path 
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register. The second branch flows through the macro 
opcode, macro status, and the interrupt base address 
registers. The macro opcode register is used in part to 
address the macro opcode map RAM . 

These branches are separate because it helps to shorten 
the shift chain length by using branches and because the 
shift chain clock to the writable control store and WCS 
port must be separate from the shift clocks to the rest of 
the diagnostics chain. The shift clocks must be separate 
because of the way the writable control store is loaded. 

The data outputs of the control store are connected to the 
inputs of the pipeline register as required for normal use 
in the system. To write the memory, the inputs must be 
driven with the data to be written, turning the input pins 
into outputs. In the Writable Control Store (WCS) pipeline 
register this is fine, since the memory outputs are dis­
abled during the write. 

If other diagnostic registers in the system were tied to the 
same shift clock and mode control lines as the WCS 
pipeline, there could be a problem every time the WCS is 
written. The other diagnostic registers not involved in the 
WCS write would see the same control signals as the 
WCS registers and would drive their input pins. Depend­
ing on what the other registers were connected to, this 
situation could cause serious contention problems 
through the system. 

For this reason, the SSR used to load WCS is treated 
separately from other SSR registers in the system. It is 
worth noting that the only control signal that need be 
separate is the shift clock. The mode and serial path may 
be shared with all SSR in the system. Putting the SSR 
into WCS loading mode, requirestheshiftclockto load an 
internal mode flipflop. If the shift clock is active only to the 
SSR used for WCS when the MODE and Serial Data In 
(SDI) signals are set high, only the WCS SSR will go into 
the input pin driving mode. 

The end of each branch in the SSR loop returns to a 
multiplexer at the serial data input (SDI) of the SSR 
diagnostics port. This multiplexer allows the selection of 
the shifted branch into the port when the SSR loop is 
being read ratherthan written. It also allows the SDI value 
to be forced when the MODE signal is high. When the 
MODE signal is high, all the SSRs in the system pass 
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their SDI directly to their Serial Data Output (SDO). This 
causes the SDI value forced at the input of the SSR port 
to be passed directly to all SSRs in the system (note: 
significant propagation time from SDI to SDO for each 
SSR is involved). In this way the forced value of SDI 
becomes an additional control signal to all the SSRs in 
the system. The function of this multiplexer is integrated 
into the AmPAL22V10 as shown in Figure 4-4. 

SSR Reading and Writing 

To read the contents of the pipeline registers in the 
Am29300 system, the host must first send a command to 
load the SSR throughout the system from the pipeline 
registers. Then the host must shift the contents of the 
SSR into the SSR port register (up to 32 bits at a time). 
The host then performs a read of the SSR port. The host 
then repeats the shifting-and-reading process until the 
entire SSR chain has been read. 

To write the system pipeline registers, the host reverses 
the above procedure. Data is first written into the SSR 
port. Then the SSR chain is shifted to move data into 

· position. The SSR port loading and SSR chain shifting go 
on until the section of the SSR chain desired is filled. 
Finally a pipeline load command is issued by the host to 
load the contents of the SSR into the pipeline registers. 

To write the macro opcode map RAM and the microcode 
writable control store (note: these are treated as a single 
WCS and must be written together), an address for the 
map RAM is first loaded into the macro opcode pipeline 
register via the method described above. Then the ad­
dress for the microcode WCS is loaded into the WCS port 
pipeline register. Next, the data to be written into the map 
RAM and into the microcode WCS is shifted into the WCS 
port SSR and WCS SSR. A load WCS command is then 
given which performs the actual write of data into the 
memories. During the write operation the output of the 
WCS port is enabled andthe Am29331 sequencer output 
is disabled (via its HOLD pin). 

The only trick involved in the SSR Reading and Writing is 
knowing how much to shift the SSR during each read or 
write. The problem is that the SSR chain length in this 
system (and in nearly every real system) is not an even 
multiple of the SSR port size. During the first (or last) shift 
operation of either the read or the write of pipeline 



registers, it will be necessary to shift fewer than the full 32 
bits of the SSR port. The number of bits to be shifted 
depends on the chain length. One thing to note is that the 
chain length will be in a multiple of 4 bits because 
diagnostic pipeline registers are currently available only 
in 4-bit and 8-bit devices. So, when a shift operation is 
commanded by the host, the number of nibbles (4-bit 
shifts) to be shifted must be indicated. 

A final note: during the shifting of the WCS SSR, the 
Am29300 system clocks must be halted. This is due to 
the fact that pipeline clock and shift clock to the Am9151 
may not occur within 65 ns of each other. Since these 
clocks would occur within the above window in this 
system, the pipeline clock must not be active. 

Controller Description 

Function/Command Descriptions 

The following is a list of the address values for functions 
that the host interface will perform when addressed by 
the host: 

ADDRESS BITS 

17 16 2 1 0 

0 0 x x x 

0 1 x x x 

0 0 0 0 

0 0 0 

0 0 0 

0 0 1 1 

0 0 0 

0 0 1 

0 0 

0 1 1 1 

0 0 0 

0 0 1 

0 0 

0 1 1 

0 0 

0 1 
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Memory Access: Reading and writing of the Am29300 
system memory is done by selecting the address for the 
Am29300 system with address bits 16 and 17 equal to 
zero. The address for the specific word in memory is 
contained in address bits 0:15. The host interface con­
troller, upon recognizing the host access, will stop the 
clocks to the Am29300 system and disable the CPU to 
MA_BUS and MD_BUS buffers. At the same time the 
external bus to MA_BUS and MD_BUS transceivers are 
enabled. This suspends the operation of the Am29300 
system and gives memory access to the external host. 
The write enable line on the external bus determines 
whether a read or write occurs. 

Note that by suspending the Am29300 system operation, 
the memory access is transparent to (or hidden from) the 
CPU. There is no action required on the part of the 
Am29300 microcode or interrupt control. 

Serial Diagnostics Port Access: This access is very 
similar to that of a memory access. The difference is that 
the SSR port register is being read or written instead of 
memory. 

FUNCTION 

Am29300 Memory Access 

Serial Diagnostics Port Access 

Illegal code 

Halt CPU 

Run CPU 

Single Step CPU 

Single Step CPU Control Section 

Single Step CPU Data Section 

Interrupt CPU 

Reset CPU 

Illegal code 

Load Pipeline Register 

Load Macro Opcode Register 

Load Writable Control Store 

Load Initialization Register 

Load Serial Shadow Register 

Shift WCS SSR Chain 

Shift Macro Opcode SSR chain 
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Halt CPU: This command throws the Am29300 system 
clocks in to a continuous stop condition until the mode is 
cleared by the RUN CPU command or temporarily over­
riden by one of the single step commands. 

Run CPU: This command starts the Am29300 system 
clocks running. 

Single Step CPU: When the CPU is halted, this com­
mand will cause all the system clocks to cycle once to 
adv.ance the state of the CPU one step. Note that gated 
clocks will be active during this cycle only if their enables 
are active (i.e., gated clocks operate astheywouldduring 
a normal clock cycle; they are not forced to operate). 

This mode is useful during diagnostic operations to single 
step the machine between serial load and unload of the 
SSR diagnostics. 

Single Step CPU Control Section: This will step only 
the clocks in the control section of the CPU. The control 
pipeline, macro opcode, macro operand, status, se­
quencer, and interrupt registers may be affected. 

This is useful for forcing the control section into a new 
state under the control of diagnostics, such as a forced 
branch to a new location in the microcode. This is done 
by first loading the control pipeline with an instruction to 
branch via the SSR diagnostics chain. The control sec­
tion would then be single stepped to execute the branch. 
Note that during these operations, the <;fata section is not 
affected and no data is modified. 

Single Step CPU Data Section: This operation single 
steps the clocks only in the data section of the CPU. This 
may be useful for repetitive diagnostic operations involv­
ing only the data section. 

Interrupt CPU: This command causes the host interface 
contra lier to set an interrupt input to the Am29300 system 
interrupt controller. The interrupt controller in turn priori­
tizes the interrupt and causes an interrupt to the CPU 
when that type of interrupt is enabled. 

Reset CPU: This will make the reset line to the Am29300 
system active and step all the ungated system clocks. 
The clocking is required by some parts of the system to 
affect reset state changes. 

Load Pipeline Register: This command will step only 
the clock to the control pipeline and WCS port for one 
cycle while forcing the pipeline registers to load data from 
the SSR chain. This is used to control the state of the 
pipeline through serial diagnostics. 
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Load Macro Opcode Register: This steps only the clock 
to the macro opcode, macro operand, status, and inter­
rupt base address pipeline registers while forcing the 
registers to load from the SSR chain. 

Load Writable Control Store: This command initiates a 
series of clock cycles that cause data in the SSR chain to 
be loaded into the writable microcode control store and 
the macro opcode map RAM from the SSR chain. The 
address loaded is also specified in the SSR chain. 

Load Initialization Register: Like the previous com­
mand, this operation loads the writable microcode store. 
The difference is that only the WCS (Am9151) initialize 
registers are loaded f ram the SSR chain. 

Load Serial Shadow Register: This causes the con­
tents of all diagnostic pipeline registers to be copied into 
the related SSR chain elements. This is used to read the 
Am29300 system state into the SSR chain so that it can 
be shifted out to the host. 

Shift WCS SSR Chain: This command shifts the con­
tents of the SSR port register into the SSR diagnostics 
chain used for the writable control store. It also brings the 
bits at the end of the WCS SSR chain into the SSR port 
register. This is the serial read and write operation of the 
WCS SSR chain (or loop). 

Shift Macro Opcode SSR Chain: This is the same as 
the previous command but it affects the SSR chain 
associated with the macro opcode, status, and interrupt 
base address registers. 

Illegal Code: Due to the way the host interface control­
ler algorithm was implemented, this command (address 
combination) is illegal. If it is used, it will lock up the host 
interface controller in an infinite loop. 

Access Timing 

The speed of interaction between the host and the 
Am29300 system is regulated by both the host and the 
host interface controller. 

Once the Am29300 system is addressed by the host, the 
host interface controller holds the external bus by driving 
EXT _READY inactive. This continues until the host inter­
face controller completes the command requested. The 
EXT _READY signal is then made active and held active 
until the host stops addressing the Am29300 system. At 
that time, the host interface controller recognizes that the 
host has completed the transaction and the 
EXT_READY line is again made inactive. 



In this fashion, either the host interface controller or the 
host can extend the length of the external bus transaction 
as required. The signal timing between the host and the 
host interface is treated as asynchronous. The timing of 
the host interface itself is synchronous with the Am29300 
internal clock cycle. 

An interaction diagram is shown below for a bus transac­
tion between the host and the Am29300 system. The 
single-line dividers indicate one clock cycle of the 

External Bus Activity 

Address to Am29300 is 
active on the bus. 

Address is clocked into 
the host interface 
controller synchronizing 
register. 

External bus 
transceivers are enabled 
if needed. 

If READY is inactive, 
wait for host interface 
to complete algorithm 
and make READY active. 
CPU operation is still 
suspended. 

External bus address 
no longer selects 
Am29300 system. 

Lack of external bus 
address is clocked into 
host interface sync 
register. 

External bus transceiver 
is disabled. 
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Am29300 system. The double-line dividers indicate one 
or more clocks as needed for synchronization or algo­
rithm execution. 

The length of an external bus transaction can vary from 
about 6 Am29300 system clock cycles for a memory 
access, to about 80 clock cycles for an SSR shift 
operation. Regardless of the transaction type, the 
Am29300 system looks to the host like a slave bus 
peripheral. Sometimes, as in the case of the SSR shift 
operation, it is a rather slow peripheral. 

Am29300 System Activity 

CPU is active. 
CPU owns MA and MD bus. 

CPU is still active. 
CPU still owns internal bus. 
Host interface controller 
performs branch to command 
routine. 

CPU clocks are stopped. 
CPU bus buffers are disabled. 
Host interface executes first 
instruction of command routine. 
READY may or may not be made 
active depending on routine. 

If READY is active, then 
wait for host to 
release external bus by 
stopping selection of 
the Am29300 system. 

CPU still suspended. 
Host interface waiting to 
see host release bus. 

CPU still suspended. 
Host interface branches back 
to idle loop. 

CPU clocks are active. 
CPU has MA and MD bus access. 
Host interface waits in idle loop for next command. 
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Program Definition 

A detailed definition of the host interface controller's 
algorithm is contained in Appendix E. 

MEMORY 

Memory Components 

The memory device used to construct the 16K word x 36-
bit memory is the Am99C165. This is a 16K x 4-bit CMOS 
static RAM memory. The 35 ns access time version is 
assumed in any timing estimates for the Am29300 
demonstration system. Nine memories are used as 
shown in Figure 4-6. 

The Am99C165 is used so that an additional output 
enable is available to help prevent bus contention with 
other buffers on the MD_BUS. The memory outputs are 
disabled whenever the memory write enable line is 
active. The write enable line is also used to control the 
direction of the external bus data transceiver and the 
enable on the CPU data buffer. The delay of the inverter 
on the output enable input to the memory has been 
matched by a buffer in each of the other bus drivers just 
noted. This is so that when a write operation is signalled, 
each bus driver receives its bus enable or disable signal 
at the same time as the memory. This overlaps the turn 
off time of the memory outputs with the turn on time of the 
other bus drivers td minimize bus contention with the 
memory. 

U31 
"'--------'ir-....._74AS32 

The enable line to the memory is used to power down the 
memory when it is not being selected by the Am29300 
CPU. 

The write enable line to the memory is gated with the 
Am29300 system free-running clock. This keeps the 
write line high (inactive) until late in the cycle when all 
the control signals that feed into the memory enable 
have settled. This is important for cycles in which there 
is a change of ownership on the memory address and 
data buses. The gating with clock ensures that unin­
tended pulses on the write enable line that may occur 
early in the system cycle will not cause spurious writes in 
the memory. 

Addressing Scheme 

Description: With reference to Figure 4-1, the memory 
address bus (MA_BUS) is not only the address input to 
the memory, it is also a part of a 4 to 1 multiplexer. There 
are four address drivers tied to the MA_BUS. They are: 
the A BUS to MA BUS buffer, the External Bus address 
to MA BUS buffer, and the two memory address count­
ers. Each of these sources has three-state output drivers 
and, by careful control of which source is allowed to drive 
the MA_BUS at any one time, the sources form the 4 to 
1 multiplexer. 

In this way the memory can be addressed directly by the 
A BUS or the External Bus. The memory can also be 
addressed indirectly by the A_BUS via the memory 
address counters. 

CLK_FREE_RUN 

MEM_WEN* \-----------------., 
SYS_MEM_EN * 

MA_BUS 
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The memory address counters are loadable up/down 
_counters that can serve as address pipeline registers, 
sequencers, or stack pointers independent of the CPU's 
data section. They allow sequential reads or writes to 
memory by the CPU without requiring the CPU to calcu­
late an address on every read or write cycle. 

In fact, after loading a memory address counter with an 
initial address, the CPU can perform sequential read 
cycles while at the same time continuing to use the data 
section for other calculations. This is possible because of 
the dual write port design of the CPU register file. The 
memory data is loaded into the register file via the B write 
port while calculation results on the Y _BUS are stored 
through the A write port. 

Two counters are provided to allow for consecutive A and 
B operand data fetches from two separate arrays of data 
without the need to constantly reload the counter values. 
Each counter is built from two AmPAL22V10 Program­
mable Array Logic (PAL) devices that act as two cas­
caded 7-bit loadable up/down counters. The counters 
are connected as shown in Figure 4-7. The logic defini­
tion file for the PALs is given in Appendix F. 

The two counters are only loaded from the A_BUS and 
not the External Bus, even though the connection of the 
counters to the MA_BUS would permit the latter. This is 
due to the difficulty in coordinating the use of the counters 
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between the CPU and the External Bus. The counters are 
simply viewed as a resource of the CPU only. 

Why This Approach?: Why address the memory from 
the A_BUS? Doing so means that data in the memory is 
selected by an address previously stored in the register 
file. So one cycle must be used to calculate an address 
in the data section of the CPU, store the result in the 
register file, and take a second cycle to actually address 
the memory. Why not just take the address as it is 
calculated and feed it directly from the Y _BUS to the 
memory? 

First, the access time is better from the A_B US than from 
the Y _BUS. The A_BUS address is valid 45 ns into a 
cycle which still leaves time to access a fast static RAM 
in the same time that data would normally flow from the 
A_BUS through the ALU and back to the register file. An 
address on the Y _BUS would not be valid until 87 ns 
into a cycle, which would require either that the memory 
access extend the cycle length significantly or that the 
address be pipelined into a memory address register and 
be used to address the memory in a second cycle. 

Second, since the register file can present two data 
words in one cycle it is possible to address the memory 
and provide write data in the same cycle; the address and 
data go from the register file to the memory. If the Y _BUS 
is used as the path to the memory in a write operation, a 
second cycle must be used to provide the write data. 
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Third, the above comments are trick answers. If the two 
approaches of A_BUS orY _BUS as the memory address 
path are carefully examined it can be seen that it is really 
a situation of "six of one, or half a dozen of the other''. 
Ultimately, in either case, a cycle is use to calculate the 
address and a second cycle is used to read or write the 
memory; there is only one data path in the system and 
only one calculation can occur in a cycle. Between the 
two approaches there are various ways to overlap other 
calculations with memory accesses to make the best use 
of the system's time but either approach takes the same 
time. 

The real difference is that the A_BUS method is simpler 
from the microprogrammer's point of view. With the 
A_BUS method a memory read is done in one cycle and 
the resulting data is in the register file in the next cycle. 

With the Y _BUS approach there is a one cycle delay 
between a read access and the return of data, which 
requires that the microprogrammer "fill in the hole" in the 
microcode with other useful work to get the same system 
efficiency. So, as a designer's preference, the A_BUS for 
memory address approach is used. 

CPU - Memory Buffers 

The address buffers from the A_BUS to the MA_ BUS and 
the data buffers from the B_BUS to the MD_BUS are 
shown in Figure 4-8. The address and data buffers are 
built from Am29827 10-bit-wide high speed buffers. 

The address bus is 14-bits wide to address 16K words of 
36-bit-wide memory. But these bits are taken from bit 
positions 2:15 of the A_BUS. This leaves the two least 
significant bits of the A_BUS unused and therefore treats 
the address as being in terms of bytes with the address­
ing restricted to four-byte (word) boundaries. This was 
done so that interlace with an external host bus would be 
simpler. Many of the host systems with which this dem­
onstration system could be mated use byte addressing. 

With the above address scheme, all the address line 
numbering is consistent between the host and CPU. In 
addition, if there were a future need to allow byte ad­
dressing of the CPU memory, it would be possible with 
only a minor change to the address buffer wiring. Also, it 
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may be noted that the parity bits on the A_BUS have been 
ignored in the MA_BUS since there is no parity checking 
implemented on the memory address. 

The data buffers are arranged as one buffer per byte of 
the B_BUS (with parityoneachbyte). Note that, since the 
B_BUS provides only write data, and read data from the 
memory is received by the register file, only a unidirec­
tional buffer is needed. 

Whenever the 'external bus interface does not have the 
memory buses in use, the CPU to memory buffers 
receive the CPU_BUS_EN* signal to enable the buffers. 
If the operation is a write, the CPU_WEN* signal is 
provided by the CPU. 

Note that the CPU_ WEN* is routed through the address 
buffer twice and then to the data buffer to enable it on a 
write operation. This is done to help equalize the timing 
between this buffer and the output enable on the mem­
ory. Note also that the address buffers have a second 
enable input that is controlled by the control pipeline bits 
that manage whether the memory address comes from 
the A_BUS or from one of the memory address counters. 

SECTION 4 
Memory and External System Interface 

External System Buffers 

The address buffers from the External Bus to the 
MA_BUS and the data buffers from the External Bus to 
the MD_BUS are shown in Figure 4-9. The address bus 
is built from Am29827 10-bit-wide high speed buffers. 
These buffers are connected in exactly the same way as 
described above for the CPU to memory address buffers. 

The data buffers are, however, different from the earlier 
circuit description. These buffers are Am29863 non­
inverting 9-bit high speed transceivers. The transceivers 
allow data to be both read and written by the external bus. 

When the external host system addresses the Am29300 
CPU memory, the external bus interlace controller halts 
the system clocks in the CPU and disconnects the CPU 
from the MA_BUS and MD_BUS by making 
CPU_BUS_EN* inactive. Then the external bus is con­
nected to the memory by making EXT _BUS_EN* active 
to enable the external bus buffers. The external bus 
supplies a write enable if the operation will be a write. 
Note again that the write enable timing is equalized with 
that of the write enable to the memory. 
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SECTION 5 

Control Section Description 

MACRO OPCODE SUPPORT 

Macro Opcode Register 

In order for the control section of the CPU to make use of 
a macro instruction, the instruction must be selected from 
memory and loaded into a register that is accessible to 
the control section. 

This register is called the macro opcode register. It is a 
32-bit register made from four Am29818-1 pipeline diag­
nostic registers. This register is shown in Figure 5-1. 

The most significant 14 bits (bits 31 :18) of the register 
output are used as the macro opcode. Bits 31 :22 are 
connected to the address inputs of the macro opcode 
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map RAM. Bits 21 :18 are connected to one of the 
Am29331 sequencer's multi-way branch inputs. These 
lower four bits may thus be used as an opcode modifier 
via a multi-way branch. 

Bits 17:0 are the instruction operand register addresses. 
These bits are divided into three 6-bit fields, one for each 
register file port. Bits 17:12 are used as the register file 'A' 
read port address. Bits 11 :6 are used as the 'B' read port 
address. Bits 5:0 are used as the register file 'A' write port 
address. These addresses are respectively referred to 
as the 'A', 'B', and 'C' operand register addresses. 

These three addresses allow macro instructions to spec­
ify directly three address operations with two read 
operands and a separate write operand. Note however, 
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that these bits are connected to the macro operand 
address counters, which in turn are used to address the 
register file. This is more fully described in a later section. 

In addition, bits 23:18 are connected to the position 
multiplexer. This allows macro instructions to specify 
directly the ALU position input as the lower bits of the 
opcode. Taking the position information from these bits 
still leaves all of the operand register addresses free for 
use in three address operations. 

Also, bits 4:0 are connected to the width multiplexer. This 
allows macro instructions to specify directly the width 
input of the ALU for use in masked operations. Although 
this overrides this field of the opcode for use as the 'C' 
operand address, the 'C' operand address may inter­
nally be specified as the same as either the 'A' or 'B' 
operand register addresses. Thus two address macroin­
structions involving width, or width and position specifi­
ers are possible. 

Macro Opcode Format Restrictions 

Because of the large number of possible macroin­
struction formats, this application note will not attempt to 
provide a detailed macroinstruction set definition. It is 
only important that the format restrictions imposed by the 
hardware design be stated. 

As defined by connections of the macro opcode register, 
the macro opcode must always be located within bits 
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are determined by how the macro opcode map RAM is 
set up to interpret and map the opcode. The optional 
opcode modifier (multi-way branch input) must be in bits 
21 :18 if it is used. 

The optional position field must be in bits 24:18 if used 
and the optional width field must come from bits 4:0 
when used. 

All three of the operand register addresses are optional 
and if used must come from the fields specified in the last 
section. The operand positions are fixed for the 'A' and 'B' 
operands since they may only come from the 'A' or 'B' 
operand bits of the macro opcode register. The 'C' 
operand address may come from any of the three 
operand fields. 

The reason that the' A' and 'B' operands do not share the 
positional flexibility of the 'C' operand is that the 'A' and 
'B' operands specify registers to be read from the register 
file. These read addresses are in the critical timing path 
for the system, and any excess delay in selecting the 
address adds directly to the system cycle time. A multi­
plexer like that used for the 'C' operand address would 
add undesired cycle lengths. The 'C' operand address 
may afford its multiplexer delay since the 'C' operand 
address is not used by the register file until late in the 
machine cycle. 
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Each operand address is optional, because the operand 
address may always be specified in the microcode. 

Any optional field, even an unused portion of the opcode 
field, may be used as a data operand. Where a field is not 
used as part of the instruction control, it may be treated 
as data by loading the macroinstruction into the register 
file. Once the instruction is in the data section of the 
system, any data field may be extracted and used in 
calculations. 

Some exa·mple macroinstruction formats are shown in 
Figure 5-2. The instructions are shown in a 32-bit word 
layout (byte parity is ignored for the moment). 

Macro Opcode Decoding Method 

The opcode portion of the macroinstruction is the index 
into the control store for the location of the first instruction 
of a microcode subroutine. Translating the bit pattern of 
the opcode into the microcode store address may be 
done several ways. 

The opcode could be used directly to point to a table of 
first instructions at the base of the microcode store. In 
such a scheme all microcode routines longer than one 
word would require the first word of the routine to branch 
to the remaining part of the routine elsewhere in the 
microcode store. This would break up many routines into 
different parts of microcode store. It may also be ineffi­
cient, depending on what other functions the branch field 
of the microcode word could have performed if the first 
word of the routine did not have to be a branch. 

The opcode could be used directly with zeros inserted at 
the least significant end to form an address that would 
point to microcode entry points separated by 2, 4, 8, 16, 
etc. words, depending on the number of zeros appended. 
This would allow more routines to be located in contigu­
ous words. Only routines longer than the entry point 
spacing wou Id have to be split by branching to other parts 
of microcode store. The disadvantage is that where 
routines are shorter than the entry point spacing, there 
would be unused holes in the microcode store. When 
microprograms are expanded and the microcode store 
gets full (as memories always seem to do), the micropro­
grams will be split more and more times to fit into the 
unused holes in the microcode store. This will make the 
micro program more difficult to design and debug as the 
microcode store fills up. 

A PAL may be programmed to decode the opcode into 
entry point addresses spaced to fit the microprograms. 
This allows the microcode words of the routines to be 
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kept together in consecutive locations, making design 
and debugging of programs easier. But each time rou­
tines are moved or expanded in size, a new program for 
the opcode mapping PAL must be defined. 

A RAM or PROM memory may be used as a look-up table 
for entry points in the microcode store. This allows the 
greatest flexibility. Microcode routines may be located 
anywhere in control store, independent of the opcode 
value. The entry points may be spaced to fit each routine. 
As routines are changed or moved, it is very easy to 
reload the look-up table with new entry points. 

The opcode mapping method chosen for this system is 
the RAM approach. 

_ Macro Opcode Map RAM 

The map RAM is shown in Figure 5-3. It is formed from 
three Am9150 1Kx4 bit separate 1/0 high speed RAMs. 

Together, the three RAMs provide a 12-bit output which 
is used as the microinstruction decode address. The 
address is limited to 12 bits since the maximum size of 
control store provided for in this system is 4K words. 

This decode address is connected to the 'A' address 
input of the Am29331 sequencer. When this address is 
selected by the sequencer, a branch is made to the first 
microinstruction of the selected routine. 

The address input to all the Am9150s comes from the 
most significant bits of the Macro Opcode Register (bits 
31 :22). This address selects the entry point into microc­
ode control store from the map RAM when a macroin­
struction is decoded. The macro opcode register is also 
used during diagnostics and WCS loading to address the 
map RAM. 

The Am9150 RAMs are always selected and output 
enabled since no other device shares the 'A' input of the 
sequencer. Also the Am9151 has no power down mode, 
so there would be no advantage to deselecting the 
memory. Note: if lower power in the system is required, 
an alternate memory to use in implementing the map 
RAM would be the Am2148. That memory does save sig­
nificant power when deselected and would increase map 
RAM access time only slightly. 

When the Am9150 RAMs are loaded with data, they 
are written with data as though they were an extension 
of the microcode control store. The writable control 
store write enable line is connected to the Am9150's 
write enable input. 
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WCS Port 

Also shown in Figure 5-3 is the Writable Control Store 
(WCS) port. This port is formed from two Am29818-1 
pipeline diagnostics registers. The port was shown in 
block form in Figure 4-5. The port is used as part of the 
system serial diagnostics and writable control store load­
ing scheme. 

The bidirectional "inputs" of the Am29818-1 are con­
nected to the macro opcode map RAM data inputs. When 
placed in a special mode, the port "inputs" are driven as 
data outputs. This data is then used as input to the map 
RAM during a WCS write operation. The data comes 
from the Am29818-1 's internal shadow register. 

The outputs of the WCS port are connected to the 
microcode control store address lines. The WCS port 
may thus be used as an alternate address source for the 
microcode control store. During a diagnostic read or 
write of the control store, the WCS port provides the 
needed address. 

Note that the data for the outputs of the WCS port comes 
from the Am29818-1 's internal pipeline register. The 
pipeline register contents are independent of the shadow 
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register contents. This allows an address for the microc­
ode control store to be in the pipeline register at the same 
time data for the map RAM is in the shadow register. 
These separate registers allow the WCS and map RAM 
to be written in the same cycle as though they were one 
writable control store. 

Macro Operand Address Counters 

These are three identical loadable up/down binary count­
ers made from AmPAL22V10 PALs. They are shown in 
Figure 5-4. The logic definition file for the PALs is 
shown in Appendix G. 

One counter is used for each operand register address. 
The counters are loaded from the data outputs of the 
macro opcode register. The outputs of the counters are 
tied to the address inputs of the read and write ports of the 
Am29334 register file. 

The counter load, count direction, output enable, and 
count enable functions are internally decoded from in­
puts that come from the control pipeline register. These 
counters are intended for use in array processing algo­
rithms, one example being a digital signal processing 
algorithm for a filter. 
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The counters make it simple to perform the same calcu­
lation on arrays of data stored in the register file. One 
microinstruction or a short microinstruction routine can 
loop on an array calculation and at the end of each 
calculation cycle simply increment the operand address 
counters. In that way, new operands are fetched for each 
calculation on the array without the need for the microc­
ode instructions to directly specify operand addresses. 

Control pipeline bits determine whether the microcode 
operand address or the macro operand counter address 
is used. The selection is independent for each operand 
address. Thus, an example would be the operand 'A' 
address' coming from the microcode while the 'B' 
operand and 'C' operand addresses come f ram the 
counters. 

An additional feature is that the 'C' operand counter 
address may be directed to the Am29334 register file 'B' 
write port address input. This allows the 'C' operand 
address to come from microcode while the 'C' operand 
counter address is used in writing data from system 
memory into the register file via the second write port. 
This means that CPU calculations may continue 
uninterrupted while new data is being loaded into the 
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register file. Also, as long as data is coming from sequen­
tial locations in memory and going to sequential locations 
in the register file, the memory address counter and 'C' 
operand counter may be incremented together, thus 
loading several memory words in sequence. This loading 
may be accomplished without repeated address calcula­
tion by the CPU. 

Operand Counter Use Example 

To help illustrate the use of the operand address count­
ers a typical Finite Impulse Response {FIR) digital signal 
processing filter algorithm is described here. 

An FIR digital filter takes in a stream of amplitude 
samples from an analog waveform. Each sample is 
processed through a series of calculations to produce an 
output value. The resulting stream of output amplitude 
values produces a waveform that is the result of a filter 
operation on the input waveform. 

The calculations involved are a series of multiplies be­
tween different coefficient values and several past input 
samples. The result of each multiply is accumulated to 
produce one output value. The number of coefficients 
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and retained past samples determines how selective 
the filter operation is. The values of the coefficients de­
termine the type of filter operation; e.g., bandpass vs. 
lowpass. 

The algorithm for calculating one output value would be 
the following: 

Sum:= O; 

for n = O to number_of _coefficients do 

Sum := Sum + (Sample(x - n}"' Coefficient(n}}; 

Each time a new input sample is acquired, the new 
sample becomes Sample(x}, and all past samples shift 
down in the sample array such that Sample(x - 1} := 
Sample(x} for all x. Note that the number of retained past 
samples is equal to the number of coefficients. 

This algorithm may be implemented with two arrays of 
data and a temporary register. One array contains coef­
ficients and the other contains past input samples. 

The coefficient and sample operands may be multiplied 
in a single system cycle by eitherthe Parallel Multiplier or 
the Floating Point Processor. The Parallel Multiplier may 
also perform an accumulate in the same cycle. The 
Floating Point Processor requires a second cycle to do 
the accumulate function. So for each multiply and accu­
mulate operation on a sample-coefficient pair, either one 
or two cycles are needed. 

Obviously the operand counters may be used to address 
the data arrays. As each coefficient-sample pair is multi­
ply-accumulated, the counters are incremented to point 
to the next pair of operands. This allows the inner 
multiply-accumulate loop to be only one or two microin­
structions long. 

One feature of the operand counters adds to the effi­
ciency of this algorithm. When an operand counter 
reaches either the maximum or minimum count value, 

_the counter will reload the original count value from the 
macro opcode register on the next increment. This cre­
ates a counter that may treat the register file as a circular 
buffer. The length of the buffer is determined by the 
distance from the original count value to either the base 
or upper limit of the register file address. 

Note also that if one counter is always incremented while 
the other is decremented, two circular buffers may share 
the register file. One has a lower bound of zero and the 
other an upper bound of 63. With this scheme two equal 
size buffers could be up to 32 words each. 

The circular buff er approach to the arrays works well with 
the FIR filter algorithm. At the end of each output value 
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calculation, the counter addresses will point back to the 
first coefficient-sample pair, ready for the next input 
sample iteration. 

Note that if on the last multiply-accumulate cycle of an 
iteratation the sample operand counter is not incre­
mented, and the 'C' operand counter is used to load a 
new sample from memory into the oldest sample array 
location, the effect will be to shift all the samples down by 
one in the array while overlapping the new sample load 
with the last cycle of a sample iteration. 

One additional cycle at the end of each iteration may 
move the output value from the register file to the mem­
ory. No memory address calculation cycle is needed 
since the memory address counter may be used to 
address the memory. 

With this scheme only one cycle of overhead between 
iterations is needed. Therefore, assuming clocked multi­
ply operation of the PM to achieve single cycle multiply­
accumulate execution, a 31 coefficient FIR could com­
plete one output value iteration in 32 cycles. Assuming a 
100 ns cycle time (100 ns clocked multiply in the PM}, 
that would allow over 312,000 samples per second or an 
input bandwidth of over 156 kHz. A 9 coefficient filter 
would have a 500 kHz bandwidth. 

This is an example of how a microprogrammed system 
may have its architecture tuned to a particular applica­
tion for the best possible performance. Much of the 
performance comes from the microprogrammed 
system's ability to control and perform several parallel 
functions at one time. 

REGISTER FILE ADDRESS MULTIPLEXER 

The Register File Address Multiplexer, shown in the 
block diagram of Figure 1-2, is made up of four sepa­
rate multiplexers. One multiplexer is used for each regis­
ter file address port; two read ports and two write ports. 

Read Ports A and B 

These multiplexers are shown in Figures 5-4 and 5-5. 
Each multiplexer is really a three-state bus that may be 
driven· either from the control pipeline register via an 
Am29827 three-state butter or f rem an operand counter 
output. A bit for each address f rem the control pipeline 
selects which source may drive each address bus. 

The Am29827 three-state buffers are needed in addition 
to the three-state outputs of the control pipeline because 
each operand address is 6 bits. This number does not fit 
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well into the 4-bit boundaries of each slice of the microc­
ode control store. So to avoid wasting control store bits, 
the external three-state buff er is used to gate the control 
pipeline address onto the register file address bus rather 
than trying to use the control store's own three-state 
outputs. 

Write Port A 

This multiplexer is implemented by a pair of Am PAL 18P8 
PALs. It is shown in Figure 5-6. The logic definition file 
for the PAL is contained in Appendix H. 

It is this four input hex multiplexer that allows the 'C' 
register file operand (i.e., register file 'A' write port) 
address to come from four possible sources. The ad­
dress may be provided from the 'C' operand in the control 
store, 'C' operand counter, 'A' operand final address, or 
'B' operand final address. The 'A' and 'B' operand ad­
dresses are referred to as final because the multiplexer 
input is taken from the register address buses after the 
choice between control pipeline or operand counter has 
been made for the 'A' and 'B' operand addresses. The 
select bits for the multiplexer come from the control 
pipeline. 
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Figure 5-8. Position and Width MUX 

Write Port B 

This multiplexer is made from an AmPAL22V10. It 
operates as a two input hex multiplexer. It is shown in 
Figure 5-7. The logic definition file for the PAL is given 
in Appendix I. 

It selects either the control pipeline 'C' operand address 
or the 'C' operand counter address as the source for the 
register file 'B' write port address. The select bit comes 
f rem the control pipeline register.. · 

POSITION AND WIDTH MULTIPLEXERS 

The position and width multiplexers are implemented 
with AmPAL22V10A PALs. They are shown in Fig­
ure 5-8. The logic definition file for the PALs is given in 
Appendix I. 

Each is a two input hex multiplexer, identical to the 
multiplexer used for the B Write Port Mux. They select 
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from the Position and Width values that may be provided 
either from the control pipeline or the Macro Opcode 
Register. The select control comes from the control 
pipeline. 

'A' speed PALs are used here since these multiplexers 
are in the critical patn to the ALU. They must use 7 ns 
less delay than the combined delay of the 'A' Read Port 
Mux and Register File access time. The required 7 ns 
advantage is consumed by the ALU's longer propagation 
delay from Position input to Y output vs. Data input to Y 
output. 

SEQUENCER 

The sequencer is a 16-bit-wide address generator that 
controls the execution sequence of microinstructions 
stored in the microcode control store. It may handle 
interrupts or traps at any microinstruction boundary. 
An interrupt or trap is treated like an unexpected pro­
cedure call. 
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SECTION 5 
Control Section Description 

Two independent branch inputs as well as four multi-way 
branch address sources are provided. One of the branch 
address inputs is bidirectional and may be used to read 
or write information in the sequencer's internal 33-level 
deep stack. 

A 16-bit counter, test condition multiplexer, and break­
point address comparitor are also provided. The break­
point comparitor is used as a hardware aid to microcode 
debugging. The connections to the sequencer are shown 
in Figure 5-9. 

The sequencer's 'A' branch address input is connected to 
the Macro Opcode map RAM output and is the path 
through which the macroinstruction specifies its entry 
point into microcode. 

The 'D' branch address input is tied to the D_BUS. 
Through this path, branch addresses or constants come 
from the control pipeline register and data may be ex­
changed with the data section of the CPU. 

D_OER* 

D_OET* 

The 'MO' multi-way branch address input is connected to 
the macro opcode register bits 21 :18. These bits may be 
used as a modifier to the macro opcode via a multi-way 
branch based on these bits. 

The 'M1' multi-way branch address inputs come from the 
Floating Point Processor (FPP) external status register. 
These bits are the overflow, underflow, invalid, and 
'extra' status flags f rem the FP P. The 'extra' status flag is 
the OR of the zero, NAN, and inexact status flags from the 
FPP. A single multi-way branch on these inputs may be 
used to detect and handle quickly any of the catastrophic 
status conditions from the FPP. If the 'extra' flag is active, 
it indicates that a second multi-way branch may be used 
to determine which of the 'extra' status flags is active. 

The FPP zero, NAN, and inexact status flags are con­
nected to the 'M2' multi-way branch input of the se­
quencer. 
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The 'M3' multi-way branch input is tied to the ALU 
microprogram status outputs so that an alternate means 
of checking ALU status is available. A multi-way branch 
based on these bits is able to check multiple condition 
flags in a single cycle. 

The Force Continue and Carry-In inputs of the sequencer 
are active in a trap operation to prevent state change in 
the sequencer and capture the address of the trapped 
instruction in the interrupt return address register. Carry­
in (GIN*) is driven high by a trap event signal from the trap 
logic in Figure 5-11. The trap event signal is also ORed 
with a signal from the control pipeline (P _FC) so that 
either signal will cause Force Continue to go high. The 
interrupt request input comes from the Trap circuit shown 
in Figure 5-11. 

The sequencer's HOLD input is driven by the inverted 
value of the WCS_WR* signal from the host interface 
controller shown in Figure 4-3. When this signal is 

CLK_INT_BASE 

MODE 

D_BUS{0:8) 

P _INT_INST{0:3) 

JEN• 

INT.:..CS • 

RESET_300* 

PE_D_BUS • 

PE_PM 

PE_ ALU 

INT_FPP • 

A_FULL 

INT_CPU • 

{Not Used) 

{Not Used) 

GND 

INTA* 

CLK_SEQ 

D 

j_ 

U104 
;>(.., 

U104 
::(... 

U104 
~ 

-r U104 

1 
L 

LCK_MOP 

SD_3 

EQUAL 

Do.a 

lo.a 

JEN Interrupt 
Vee 

cs Controller 

.>4.7K Reset 
U73 . 

INTO 

INT1 Am29114 

INT2 

INT3 vo.2 

INT4 CASIN2 

INTS 
MINTA 

INT6 

INT7 

PD 

JM 

CASIN1 

MINTA 

"°'I 

SECTION 5 
Control Section Description 

active, the sequencer's output will be three-stated so 
the WCS Port may drive the microcode control store 
address lines without contending with the sequencer's 
output drivers. 

The Slave input is grounded since no use of the mode is 
made in this demonstration system. 

The test condition inputs of the sequencer come from 
three sources. Conditions 11though7 arethe ALU status 
bits for zero, overflow, sign, carry, and link. Conditions 6 
through 2 come from the Macro Status Register; these 
bits are the macro version of the same ALU status bits. 
Condition 1 comes from the FPP external status register 
bit for zero. Condition O is unused. 

Control for the sequencer's interrupt enable, test condi­
tion select, and instruction input comes from the control 
pipeline register. 
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SECTION 5 
Control Section Description 

The sequencer's D_BUS output enable comes from the INTERRUPT CONTROL 
control decode logic. 

The sequencer A_FULL signal is used as an interrupt 
signal to the system interrupt controller. 

The Equal (breakpoint) signal is used as a trap event 
signal to the Trap Logic. 

Interrupt acknowledge goes to the interrupt controller 
and trap logic to enable the interrupt and trap vectors onto 
the microcode control store address bus when an inter­
rupt is executed. 

The 'Y' outputs of the sequencer drive the microcode 
control store address lines to select each microin­
struction. 

D BUS TRANSCEIVER 

The transceiver between the A_BUS and the D_BUS is 
shown in Figure 5-10. 

The D_BUS has no parity bits included where as the 
A_BUS does contain parity. It is therefore necessary to 
provide parity generation for the data moved from the 
D_BUS to the A_BUS. 

The D_BUS is only 16 bits wide vs. the 32-bit-wide 
A_BUS. Thus it is also necessary to provide bus drivers 
and parity generators for the upper two bytes of the 
A_BUS, even though no variable data is passed to the 
A_BUS from the D_BUS through those bits. 

The transceiver and parity generator/checker function 
are combined in a single device type: the Am29853. Four 
of these are used in addition to an Am29862 inverting 
transceiver. The inverting transceiver is used on /the 
parity bits because the Am29853 uses odd parity

1

while 
the Am29300 system uses even parity. 

As an added convenience for when numeric constants 
are passed from the D_BUS to the A_BUS, an AND gate 
is provided to drive the inputs of the upper two bytes of 
transceiver. If the AND gate is enabled by the control 
pipeline, the most significant bit of the D_BUS will be 
copied to all the upper bits on the A_BUS, thus perform­
ing a sign extend for two's complement numbers. If the 
AND gate is disabled, the upper bits of the A_BUS are 
forced to zero. 
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Interrupt and Trap Philosophy 

What Is a Trap? 

Traps are events that require the immediate attention of 
the CPU. The urgency of the event is so great that the 
CPU must not even complete the execution of the in­
struction in progress· in the cycle that the trap request 
happens. The CPU must not change any machine state 
in that cycle; it must store the address of the instruction 
that was to have been executed and must branch to a 
routine that services the trap event. 

The implication here is that the trap will prevent some 
disastrous change in machine state from which no recov­
ery would be possible. Also implied is that the trap 
servicing routine may repairwhat ever the problem is and 
then return to complete the execution of the instruction 
where the trap occurred. 

One additional implication is that the trap event may be 
signaled early enough in the instruction cycle to prevent 
the clocking (change of machine state) that normally 
occurs at the end of each instruction. 

An example of a trap event could be a miss on cache 
memory access. To complete an instruction when the 
data being accessed from a cache is invalid would be a 
disaster with little chance for recovery. If a trap routine to 
update the cache may be executed instead of completing 
the instruction, the program may be saved. After the 
cache has the correct data, the trap routine may return to 
the aborted instruction to continue execution of the 
program as if no problem had existed. 

Another example of a trap would be a program break­
point. When debugging a program it is very useful to be 
able to stop execution of a program just before executing 
a particular instruction. If this is done, the state of the 
machine before executing the breakpoint instruction may 
be examined. To do this the address of the breakpoint 
instruction is recognized as the instruction is fetched from 
microcode control store. In the next cycle before the 
instruction may complete, a trap occurs which branches 
to a debugging routine. When the programmer is ready to 
continue the program, a return from trap completes the 
execution of the breakpoint instruction. The breakpoint 
trap operation is easy to do, and hardware to implement 



it is already provided in the Am29331 sequencer. The 
breakpoint trap operation will be shown in the Trap Logic 
described later. 

What is an Interrupt? 

Interrupts are events that require the attention of the CPU 
soon. 

"Soon" is defined as faster than might happen if the event 
were polled by a CPU program but later than a few 
microinstruction execution cycles. 

Interrupt events and the resolution of an interrupt are not 
directly tied to the CPU state. No disasters occur if a few 
cycles pass by before the interrupt may be handled. 

Examples of events handled via interrupt could be: 
external mechanical events such as switches being 
opened or closed, an impending stack-full situation, a 
message signal f rem another processor, or a peripheral 
delay timer indicating time-out. 

In this demonstration system one other class of interrupt 
source is included. It is the parity error. A parity error 
implies corrupted data in a program that cannot be 
corrected. Since the influence of corrupted data on the 
program is difficult to determine or correct for, the af­
fected program should be aborted. A parity error is, 
therefore, important to detect so that the program in 
which it occurs may be terminated and perhaps rerun 
with corrected data. 

Parity errors are treated as interrupts ratherthan traps for 
two reasons. The indication that an error has occurred 
comes fairly late in an instruction cycle and is therefore 
difficult to use as a trigger for a trap. When a parity error 
occurs, the program is generally corrupted and will be 
terminated; whether the termination happens in the cycle 
following the error as would be the case with a trap, or 
within a few cycles, as with an interrupt, is unimportant. 

Interrupt Operations 

'There is no need to design an interrupt circuit from 
scratch when one already exists. The Am29114 interrupt 
controller is used in this system. It provides interrupt 
latching, priority, masking, and vector generation for 
eight interrupt inputs. 

Interrupt Controller 

Six interrupt sources are used in this Am29300 system; 
the two remaining interrupt source inputs are available 
for software generated interrupts. 

SECTION 5 
Control Section Description 

The interrupt and trap circuit block diagram is shown in 
Figure 5-11. 

The three highest priority interrupts are parity error sig­
nals from the D_BUS, the Am29C323 Parallel Multiplier, 
and the Am29332 ALU. 

The next priority interrupt is a signal from the FPP 
external status PAL, which indicates that one of the 
following status flags is active: Overflow, Underflow, or 
Invalid. 

The next priority interrupt is the A_FULL signal from the 
Am29331 sequencer. This interrupt indicates that the 
sequencer stack will be full if three additional stack 
pushes occur. 

The next interrupt is the external bus interrupt signal from 
the host interface controller. This is a "tap on the shoul­
der" from the host that requests the Am29300 CPU take 
some previously agreed on action, such as reading a 
message from the host out of memory. 

The two least significant interrupts are unused by hard­
ware and are available for use as software interrupts. 
These interrupts would be set by the CPU writing into the 
Am29114 interrupt register. 

The interrupt mode is set for capturing asynchronous low 
going pulses as interrupt signals. This is done because 
most of the interrupt signals are only guaranteed to be 
active for a single clock cycle. Therefore, the interrupts 
must be latched and held by the interrupt controller until 
acknowledged by the CPU. 

The D BUS is connected to the interrupt controller data 
pins so that the internal interrupt, mask, and in-service 
registers may be read and written. 

The interrupt controller is selected and given instructions 
via outputs of the control pipeline register. 

Interrupt Sequence 

During a given clock, one of the interrupt inputs goes 
active. At the end of that cycle (active edge of clock), the 
interrupt signal is clocked into the interrupt register of the 
Am29114. 

During the second clock cycle, the interrupt is ANDed 
with the interrupt mask register and, if the interrupt is 
allowed, its priority is compared to any currently in­
service interrupt. If the new interrupt is of higher priority 
than any in-service interrupt, the MINTA* (interrupt re­
quest) will go active at the next active clock edge. 
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During the third clock cycle, the Am29114 interrupt 
request is externally ORed with the interrupt request from 
the trap logic. The combined interrupt request is then 
loaded into a delay flip flop. The delay flipflop is needed 
to synchronize the final interrupt request with the system 
clock. The reason forthis is that the interrupt request from 
the Am29114 is stable too late (41 ns) in the third cycle 
to be useful in selecting an interrupt address. The set-up 
time for the microcode control store address could not be 
met if the Am29114 interrupt request were used directly 
with the Am29331 sequencer. 

The external OR and delay functions are imple­
mented in an AmPAL22V10A, whose logic is shown in 
Figure 5-12. 

During the fourth clock cycle, the INTR* (interrupt re­
quest) input of the sequencer is driven by the delay flip 
flop. The sequencer then returns INTA* (interrupt ac­
knowledge) if micro-interrupts are allowed. The INTA* 
signal enables the interrupt vector onto the microcode 
control store address lines. 

The LSB three bits of the interrupt vector are provided by 
the Am29114 interrupt priority encoder. Bit 3 of the 
interrupt vector is provided by the trap logic. The bit is low 
for an interrupt and high for a trap vector. The upper bits 
(4:11) of the vector are provided by an external 
Am29818-1 register. This register provides a variable 
base address for a nine entry point table look-up (multi­
way branch), which is based on the four bits of interrupt 
vector from the Am29114. The Am29818-1 register is 
loaded via the D_BUS or through the diagnostics SSR 
chain. The need for a nine entry point table is explained 
in the section on trap operation. 

During the fifth clock cycle of the interrupt sequence, the 
first instruction of the interrupt routine will execute. Dur­
ing this cycle the interrupt return address will be pushed 
onto the sequencer stack. 

In summary, from the time an interrupt signal becomes 
active until the interrupt service routine begins execu­
tion, four instructions in the main program will complete 
execution. 

INTR 

TRAP 

SEQ_FC 

SEQ_CIN* 
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3 

MC 
2 ADDRESS 

(0:3) 

0 
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Trap Operation 

Trap Issues 

A trap requires extremely fast response to the trap event 
signal. 

The ideal situation is for the trap event signal to cause the 
abortion of the instruction in execution at the time the 
event signal appears. 

This is extremely difficult in a high clock frequency 
system. To succeed, the trap event signal must be stable 
at least in time to prevent clocking of the data section of 
the CPU, which would otherwise change the system 
state (i.e., complete execution of the instruction). This 
implies that the trap event signal is stable one clock 
control circuit set-up time before the high to low edge of 
the system clock. The high-to-low edge of clock is signifi­
cant, because once the clock signal falls, the writing of 
any write enabled port on the Am29334 register file will 
begin. In addition, the trap event signal must be stable in 
time to cause the Am29331 sequencer force continue 
(FC), interrupt request (INTR), and carry in (CIN*) signals 
to go high soon enough to disable the sequencer micro­
program address in time to meet the set-up time require­
ments of the microcode control store. 

In a 100 ns cycle time system, such as the one being 
discussed here, the trap event signal must be valid no 
later than 25 ns into the cycle. For a trap event signal 
that is to be derived from the effects of the instruction in 
execution in that cycle, this requirement is very difficult 
to meet. 

Fortunately there are trap events that may be signalled 
on the one or two cycles previous to the cycle in which the 
trap must occur. Some examples would be: a cache miss 
that may be detected from the cache address created in 
a cycle prior to that in which the cache data is used in a 
calculation; or a breakpoint in which the breakpoint target 
instruction address is detected by the sequencer in the 
cycle prior to the instruction being loaded into the control 
pipeline for execution. 

If a an instruction is a known potential trap, it is possible 
to execute the instruction so that no critical information is 
destroyed by completing its execution. This may be done 
by writing results back to a temporary register while 
allowing no other significant system state changes, such 
as updating the ALU a register, or doing a return from 
procedure call. The instruction may then be allowed to 
execute and generate any trap event signals that might 
result from the execution, without concern for irrevocably 
destroying data because of some error condition. 

SECTION 5 
Control section Description 

In the above examples, the trap event signal may be 
loaded into a delay flip flop to synchronize the trap 
request with the beginning of the following cycle. This 
causes the trap operation to occur early in the cycle 
following the event and to complete successfully. 

The only trap condition implemented in this design is the 
breakpoint. 

Trap Logic 

By definition, the response time between trap event 
signal and trap operation must be much faster than the 
four or more cycles that an interrupt takes to begin 
execution. This requires that the trap logic be different 
from the Am29114 interrupt controller. The trap logic 
design is implemented in an AmPAL22V1 OA. The logic is 
shown in Figure 5-12. The definition file for the PAL is 
shown in Appendix J. 

The trap logic is in effect a simpler and faster interrupt 
controller. This "trap controller" is cascaded with the 
Am29114 interrupt controller so that the same address 
vector approach used with the interrupt controller may be 
extended to trap operations. 

A trap is treated as a special form of interrupt with a higher 
priority. When a trap occurs, the trap logic generates a 
cascade out (CASOUT2) signal to the Am29114 to 
prevent any interrupt operation from beginning in the 
same cycle. 

The trap logic also generates an INTR signal to the 
Am29331 sequencer. The INTR signal in turn causes the 
sequencer to three-state its microcode address outputs 
and return an INTA signal to the trap logic. The INTA 
signal enables a four bit vector from the trap logic and the 
interrupt base address from the Am29818-1 registers as 
shown in Figure 5-11. 

The above steps essentially generate an interrupt and 
provide the interrupt vector. What makes a trap different 
is that the Trap Logic is also used to drive the Am29331 
sequencer Force Continue and Carry-In inputs. This 
causes the sequencer to ignore the instruction being 
trapped and to perform a continue instruction instead, 
which changes no state in the sequencer. The CIN* 
signal's being high causes the trapped instruction ad­
dress to not be incremented. Therefore, the trapped 
instruction's address will be loaded into the sequencer 
interrupt return address register. In addition, the TRAP 
signal is used to prevent any state change in the system 
other than in the sequencer, effectively aborting the 
trapped instruction. 

5-15 



SECTION 5 
Control Section Description 

Following are some other features to note in the trap 
logic. 

Am29300 system RESET is used to generate the se­
quencer Carry-In signal (SEQ_CIN*). This is done to 
force SEQ_CIN* high during reset sothatthefirst microc­
ode instruction executed after reset will be at address 
zero rather than one. 

In order for a trap operation to take effect, the instruction 
that is to be trapped must have its microcode interrupt 
enable bit active. This bit is used as the interrupt enable 
to the sequencer. If it is not active, then the microcode 
control store address from the sequencer will not be 
three-stated, and the interrupt vector will not be substi­
tuted. In addition, the TRAP signal will still occur, causing 
the trap target instruction not to execute correctly. Note 
that the interrupt enable bit could be externally forced 
active by the trap operation via an OR gate. But the added 
delay could cause the interrupt acknowledge to be too 
late to allow the interrupt vector address to meet required 
set-up times. (Of course, it is possible to design the 
system so that every trap causes all the system clocks to 
be stopped for one cycle. That would allow enough time 
for all kinds of tricks to be played. This design, however, 
will not explore that approach.) 

MICROCODE CONTROL STORE AND 
CONTROL PIPELINE REGISTER 

Control Store Function 

The microcode control store is the high speed memory 
that contains the control bits comprising the instructions 
that the system may execute. 

This system uses what is called "horizontal" microcode. 
Each microinstruction contains many control bits that 
manage a variety of different functions in parallel. "In 
parallel" is the key phrase. All the control information 
needed to manage the entire Am29300 system during 
the execution of one microinstruction is contained in one 
word of microcode control store. 

The memory must be fast because its access time must 
be significantly shorter than the cycle time of the system. 
In general the access time must be less than half the 
cycle length. This is because of the time required by the 
sequencer to generate each new address to the control 
store, which takes up the remaining time in the cycle. 

Pipeline Register Function 

At the output of the microcode control store there is a 
register to hold the control information stable during the 
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execution of an instruction. With the control information 
held in the pipeline register, the control section of the 
CPU is free to begin reading the next microinstruction 
from the control store. In this way, the control section is 
operating in parallel with the data section. The control 
section fetches the next instruction while the data 
section executes the current instruction. This parallel 
operation, where one section of the system works on one 
step of a problem while another section works on the 
next step, is called pipelining, hence the name for the 
pipeline register. 

Through parallel operation, pipelining nearly doubles the 
speed of the system over what might be the case if the 
control section and data section were directly tied to­
gether in a serial fashion. 

Control Store Implementation 

Because this method of pipelining the output of a mi­
crocode store is so popular, there are special memories 
available that combine a high speed memory with a 
pipeline register at its output. These combined memory 
and pipeline devices may significantly reduce the 
system parts count. 

These memories are available as either RAM or 
PROM devices. RAM versions are used to make 
writable control stores. 

These memories also include Serial Shadow Registers 
(SSR) along with the pipeline register. This allows diag­
nostic routines to read and control the pipeline register 
outputs. Where RAM versions are used, the SSR is used 
as a built in means to load the writable control store. 

This system is designed to use one of the following for 
control store: Am9151-50, 1K x 4 RAM; Am27S65, 
1K x 4 PROM; Am27S75, 2K x 4 PROM; or 
Am27S85, 4K x 4 PROM. These devices all share a 
similar pinout so that simple jumper connections allow 
any of them to be placed in the same sockets. 

The connections to the control store are shown in Figures 
5-13 and 5-14. 

A total of 23 memories are used to form the needed 92-
bit-wide microcode words. 

Because this system is designed to use no more than a 
4K word deep control store, only the lower 12 bits of 
microcode address from the sequencer are connected. 

The memories in the control store which provide the 
microcode branch field are connected differently from the 
remaining memories. This is because the branch field 
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outputs are connected to the D_BUS and must be three­
stated when other devices drive the D_BUS. All the other 
outputs of the control store are always output enabled. 

Figure 5-13 shows how the bulk of the control store is 
connected. 

When the Am9151-50 or the Am27S65 is used, the 
jumper at location "B" is connected. This continuously 
enables the memory. 

When the Am27S75 is used, the jumpers at locations A 
and Dare connected. Also, the Am27S75 G/Gs* (pin 20) 
is internally programmed as an asynchronous enable. 
Those jumper connections will always enable the mem­
ory and connect address bit 10 to it. 

When the Am27S85 is used, the jumpers at locations A 
and Care connected. The Am27S85 G/Gs/l/ls* (pin 19) 
is programmed as a synchronous initialize function. 
Those connections will always enable the memory and 
provide address bits 10 and 11 to it. 

Figure 5-14 shows the connection for the memories 
that support the branch field. 

When the Am9151-50 or the Am27S65 is used, the 
jumpers at location Band E are connected. This enables 
the memory when the control pipeline selects the control 
store to drive the D_BUS. 

When the Am27S75 is used, the jumpers at locations A, 
D and E are connected. Also, the Am27S75 G/Gs* (pin 
20) is internally programmed as an asynchronous en­
able. Those jumper connections will enable the memory 
when the control pipeline selects the control store to drive 
the D_BUS. 

When the Am27S85 is used, the jumpers at locations A, 
C, and F are connected. The Am27S85 G/Gs/l/ls* (pin 
19) is programmed as an asynchronous enable function. 
Those connections will enable the memory when the 
control pipeline selects the control store to drive the 
D_BUS. Also, these connections imply that when the 
Am27S85 is used, the branch field of the initialize word 
will not be valid. 

CLOCK CONTROL 

In almost every complex digital system there is a need to 
control and qualify selectively the system clock. 

A register often needs a qualified clock that will clock (i.e., 
load) the register only when specified by some control 
signal. Sometimes a register will internally qualify its own 
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clock by providing a load enable input. But most often, 
registers have only data input and outputs, an output 
enable, and an unqualified clock input. It is up to the 
system designer to provide a means to restrict the clock 
to the register so that it receives clock only on those 
cycles when its load enable control signal is active. 

Restricting a clock in this fashion is referred to as quali­
fying a clock. The controlling signal that enables the 
qualified clock is called the qualifier. 

Most synchronous digital systems have a system clock 
with a single active edge. This means that the system 

. state will only change on eitherthe low-to-high or high-to­
low edge of the clock. The opposite transition of the clock 
will have no state changing effect in the system. The 
opposite transition of the clock is referred to as the 
inactive edge of the clock. It should be noted, however, 
that, even though there is a single active edge for the 
clocking of registered states in the system, the level of the 
clock may have an effect on some multiplexers or latches 
in the system. The level of the clock may control the path 
selected by a multiplexer, whether a latch is flow-through 
or held, or the write enable of a memory. 

To qualify a clock, there must be a way to prevent the 
active edge from occurring. This implies that the clock is 
held either high or low when it is prevented from cycling. 
The choice of whether the clock will be stopped (held) at 
its high level or low level may depend on what, if any, 
effect the level of the clock has on system multiplexers, 
latches, or memories. For example, if the low level of the 
clock enables a memory write line, it may be preferred to 
stop the clock at the high level rather than the low level to 
prevent any change in state of the memory. 

Clock Qualification Circuit 

In the Am29300 system described here, the system clock 
will be stopped at the high level. This is because the low 
level of the clock may start the writing of data into the 
Am29334 register file. The active edge of the clock will be 
the low-to-high transition. 

This method of qualifying clocks is referred to as 'OR' 
qualification. Usually with this method the free-running 
(unqualified) version of the system clock is 'ORed' with a 
low active enable signal. Thus, if the enable is active (low) 
the resulting qualified clock is allowed to track the free 
running clock. If the enable is inactive (high) the qualified 
clock will be forced high, stopping the clock, until the 
enable again goes active. Because the free running clock 
is always high during the first portion of each clock cycle, 
the clock enable signal need not be stable until just before 

_ the inactive edge of the free running clock. 



In this Am29300 demonstration system the following are 
the desired controls over the system clocks: 

1. The ability to stop all clocks to the Am29300 CPU, 
both control and data sections. This will suspend 
operation of (halt) the system. 

2. The ability further to qualify register loading 
(register clocks) with control pipeline signals. 
The controlled registers would be the Macro 
Status, Macro Opcode, and Interrupt Base 
Address register. 

3. The ability to single step all the system clocks 
when the system clocks are in the halt mode. Note 
this implies only conditional single stepping on 
those register clocks that are further qualified by 
load enable controls. 

4. The ability to single step the data section or the 
control section independently. 

5. The ability to force the control pipeline or the 
Macro Status, Macro Opcode, and Interrupt 
Base Address registers to load. This capability 
is used to implement diagnostic control over 
these registers. 
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To implement this kind of control over the system clocks, 
a separately qualified version of the system free running 
clock must be created for each differently handled regis­
ter. The general clock for the control section is different 
from that for the data section. Also, each qualified regis­
ter clock is different. 

The block diagram for the clock qualification circuit is 
shown in Figure 5-15. The logic equation definition file 
for the PAL in this circuit is shown in Appendix K. 

The qualifiers for the system clocks come from eitherthe 
control pipeline, trap logic or the host interface controller. 
The AmPAL22V10A Programmable Array Logic (PAL) 
device is used to combine the various qualifiers into the 
appropriate clock enables for each differently handled 
set of registers. The output of the PAL is then logically 
ORed with the system free running clock to form the 
various qualified clocks in the system. 

In this system, the free running clock generator produces 
an active low clock with the enables active high. By using 
negative logic OR gates (NAND gates) the clock and 
enable signals are logically ORed together to produce 
active high qualified clocks. The negative logic OR gates 
are external to the clock qualifier PALs. 
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Figure 5-15. Clock Qualification Block Diagram 
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The NANO gates also serve as high. output current 
buffers that allow the qualified clocks to drive many 
registers in the system. These NANO buffers also cause 
the clocks to have very high speed edges. This requires 
that clock lines be handled more carefully than other 
signal lines to help prevent noise, reflections, and ringing 
on the clock lines. Preventing these problems helps to 
ensure clean clock signals free from the glitches that may 
cause missed clocking or double clocking of registers. It 
is suggested that clock lines be routed serially, kept less 
than 12 inches in length, and terminated to the printed 
circuit board's characteristic impedance at the last point 
of use on each clock line. 

Note that all the system clock lines, even the free-running 
clock line, pass through a NANO gate. This is done to 
equalize the delay of all clocks so that clock skew in the 
system is minimized. 

Clock Generator 

The unqualified (free running) source for all the clocks in 
the system comes from a clock generator implemented in 
an Am PAL 16R6B. A diagram of the logic implemented in 
this PAL is shown in Figure 5-16. The logic equation 
definition file for this PAL is shown in Appendix L. 

P-CLKLEN (1) 

P-CLK-LEN (0) 

30 MHz CLOCK 

The only reason that a clock generator PAL is used in 
addition to a simple clock oscillator module is to provide 
the ability to vary dynamically the length of each system 
clock cycle. This ability allows the system to run at the 
maximum clock rate most of the time when the fastest 
data paths are in use and to run at a slower rate only when 
slower system data paths are in use. By slowing the 
system cycle time dynamically only when a slow data 
path is used, the average system speed is much higher 
than would be the case if the system clock rate were fixed 
at the rate required by the slowest data path. 

A simple way to do this would be to divide the normal 
system clock by two and on each cycle select whether 
the normal length or the double length clock cycle would 
be used. 

In this system, finer control over the length of each cycle 
is desired. Where the cycle need only be a little longer 
than usual, only a slightly longer cycle is used rather than 
doubling the cycle length. 

This is done by dividing down a high speed clock, which 
runs three times faster than the normal system clock. It is 
then possible to extend a clock cycle in increments of the 
high speed clock. A cycle then may be 1, 1 1/3, 1 2/3, or 
2 times the normal cycle length. 

CLK 
Free 
Run* 
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Figure 5-16. U100 AmPAL16R68 Clock Generator 
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The Am29300 demonstration system's normal clock is 
10 MHz, or 100 ns, long. The high speed clock is then 
30 MHz and is provided by a commercially available 
clock oscillator module. 

The control over the cycle length comes from the control 
pipeline register and may thus be specified differently on 
each instruction. Two bits are provided to select one of 
the four cycle lengths. Each instruction may thus control 
its own cycle length based on the time required by the 
data paths that are used. 

The waveform of the clock may be described in terms of 
the number of high speed clock periods during which it is 
active and then inactive. 

Note that the output of the Am PAL 16R6 is inverting. The 
logic internal to the PAL creates an "active high" clock 
with a low-to-high active edge. This waveform is inverted 
by the final output of the PAL and is later inverted once 
more in the clock qualifying circuit. The final system 
clocks are thus active high. When describing any system 
clock, it will be done in terms of an active high clock. The 
cloc~ generator waveform is shown in Figure 5-17, 
where the outputs are shown active high, even though 
the actual PAL output is inverted. 

Each clock cycle has two or more active periods followed 
by one inactive period. 

Oscillator 
Module 
Output 

0 0 

0 1 

._100ns_. 
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TheclockgeneratorPALoutput is from a Dflipflop. When 
the flip flop output is inactive (low), one term feeds back 
the inverted output. This will force the flip flop high on the 
next high speed clock. The output of this flip flop feeds a 
shift chain of four other flip flops, which act as a simple 
timer for the extended cycle lengths. 

During the first active period of the clock output, the 
output of the first flip flop in the timing chain is still inactive. 
This first flip flop's output is inverted and fed back into the 
clock output flip flop to force the clock output to remain 
high for a second active period. 

During the second active period, the clock cycle length 
bits from the control pipeline become stable and deter­
mine whether additional active periods will be inserted 
into the output clock. 

Note that since the first two periods of active clock are 
forced by the logic, the control bits need not be stable for 
two high speed clock periods minus the PAL set-up time 
(66.6 ns - 15 ns = 51.6 ns). This time margin is further 
reduced by the skew between the high speed clock and 
the qualified clock to the control pipeline which is equal to 
the clock-to-output time of the clock generator PAL plus 
the propagation delay of the qualifying NANO gate 
(51.6 ns- (10 ns +5.5 ns) = 36.1 ns). Therefore, as long 
as the control pipeline register clock-to-output time does 
not exceed 36 ns, the clock generator will work as 
described here. 
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Figure 5-17. Clock Generator Outputs (Inverted) 
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If the clock cycle length bits are zero, no additional 
feedback terms are enabled and the clock output flipflop 
will go low in the next high speed clock period. 

If the clock cycle length bits equal 1, the output of the 
second timing chain flip flop is fed back to the output flip 
flop to allow one additional active clock period. 

Similarly, when the clock cycle length bits are equal to 2 
or 3, an additional 2 or 3 active periods are inserted in the 
output clock waveform. 

When the clock output flip flop again goes inactive, its 
output will force all of the timing chain flip flops to be 
cleared, thus beginning a new Am29300 clock cycle. 

MICROCODE WORD 

This section describes the structure and function of each 
field of bits in this system's microcode word. Included are . 
some comments on how functions were determined and 
how they might vary in similar systems. 

Control Philosophy 

In a microprogrammed system, each word of the microc­
ode functions as the determinate of all system action 
during one clock cycle of system operation. Each bit 
directly affects some aspect of the machine. Each field of 
bits may act independent of other fields to manage 
parallel data paths and simultaneous operations. This 
ability to manage parallel activities in each machine cycle 
gives a microprogrammed system high speed and flexi­
bility. But the power of complete parallel control over . 
nearly all the functions in a system comes at a cost. 

The cost is wide control memory words. Fifty-, to 150-bit­
wide control words are common in microprogrammed 
systems. Three hundred-bit-wide control words have 
been used in large mainframe computers for years. 

With each machine instruction's eating up 100 or more 
bits of memory, it doesn't take lorig to consume signifi­
cant board space, power, and cost for high speed microc­
ode memory. 

The resulting dilemma between the need for parallel 
control and the cost, size, and power that accompanies 
it, is the basis of many a system designer's headache. 

The usual approach used to strike a balance between the 
opposing issues is to determine carefully which functions 
must absolutely be able to occur in parallel, then to limit 
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the microcode word size to that absolute minimum. 
Control over other less frequently used functions or over 
alternate operations is then overlapped with the primary 
control fields. 

Overlapping of control fields means that during certain 
operations, the meaning of the bits in the overlapped 
control field changes. The hardware controlled by the 
primary meaning of an overlapped field must be dis­
abled during the time that the alternative meaning is in 
effect. This of course means that the functions con­
trolled by the overlapped fields cannot occur in the 
same machine cycle. 

This results in winning a little and losing a little. More 
control and thus more functions may be managed with 
less control memory, but some operations then take 
multiple cycles to complete, due to the use of functions 
that may not be managed in one instruction. Also, the 
need to enable and disable control field meanings and 
the associated hardware, will add control bits and decod­
ing logic. The decode logic adds delay into the machine 
cycles and will cause the system to run a little slower. 

Additional savings in control word size may be made by 
encoding fields rather than having each bit directly drive 
a control signal. This again adds decoding logic and its 
associated delay. 

The job of deciding what control must be parallel and 
what must be overlapped is more art than science. No 
matter how the microcode word is defined, there will 
always be other interesting ways to rearrange and over­
lap the control fields. Each way will cost something either 
in word width or control decoding, thus providing endless 
trade-offs. 

All these possible variations make it extremely important 
to have a thorough understanding of the algorithms to be 
handled by a particular machine. The better the under­
standing, the better the chance to optimize the system 
architecture and control to solve the problem at hand. 

Microcode Word Field Descriptions 

Throughout the figures that detail the design of this 
system, signals that travel f rem page to page have been 
given meaningful names that imply the function of the 
signal. This helps in understanding what is going on in 
each figure. Many of these signals are the direct outputs 
of the control store pipeline register. As it turns out, many 
of the bits in the microcode carry multiple meanings 
because the function of several fields are overlapped to 
save microcode word size. 



The result is that more that one signal name may often be 
associated with a particular bit of the control pipeline. 
Physically, of course, all signal lines that ultimately con­
nect to a particular pipeline bit are one piece of wire. The 
logical separation of lines, by using different names, only 
helps to understand the function of a given signal, when 
the hardware that uses the signal is enabled. The follow­
ing three Figures show the physical and logical relation­
ships between the microcode control store bits and the 
signal names (meanings) that are attached. 

Each Figure is split into pairs of columns preceded by 
one column that indicates the individual bit numbers for 
each signal. Each column pair contains a Field Name 
column that describes the function of the bit and a Signal 
Name column that gives the signal name used through­
out the Figures in this document for that meaning. The left 
most column pair shows the primary meaning of the 
control bits. Other column pairs to the right give alternate 
(overlapped) meanings for the control bits along with the 
signal name used with each meaning. 

Unless a control bit is overlapped with an alternate 
meaning in one of the columns to the right, the function 
of the control bit is constant. 

Register File Controls 

Figure 5-18 shows the microcode word bits that affect 
the Am29334 register file. 

It was decided that a three address machine would be the 
most appropriate way to obtain the best performance 
from the Am29300 family components. Because of the 
common three bus architecture these parts share, a 
three address register file fits nicely. Two addresses are 
used to read an A and B operand from the file while the 
third address specifies an independent write location. 
This allows writing back results without requiring the 
destruction of one of the read operands in a single cycle. 

An address multiplexer on the C operand register ad­
dress does allow for two and one address operations by 
allowing either the A or B operand address to be used for 
the write operand address in addition to its use as a read 
operand. 

Also, to support macroinstruction execution, address 
multiplexers are used on the read addresses so that 
macroprogram supplied register addresses may be di­
rected to the register file. When macroprogram supplied 
addresses are in use, the meaning of the register ad­
dress fields changes to control signals for the macro 
operand address counters. With this alternate meaning, 
the macro addresses may be incremented or decre­
mented at the end of each cycle. 

SECTION 5 
Control Section Description 

Bits 91 and 84 select whether the microcode or the macro 
opcode addresses are directed to the register file. If 
either bit is high, the alternate definition for the related 
address field takes effect, and the macro opcode address 
is used. 

Bits 76 and 77 are used to select one of four addresses 
to be supplied to the A write port of the register file. The 
selections are as follows: 

Bit 

77 76 

0 0 C operand microcode address used. 
0 1 A operand address, as specified by bit 91. 
1 O B operand address, as specified by bit 84. 
1 1 C macro operand counter address used. 

When any selection other than for the C operand microc­
ode address is made, the field assumes the alternate 
meaning for control of the macro operand counter. 

In addition to the three addresses used by the data 
section of the CPU, a fourth address is provided for the 
B write port of the register file so that data may be moved 
into the file via the second port while other calculations go 
on undisturbed. 

The address for this fourth port comes from a multiplexer 
that may select either the C operand microcode address 
or the C macro opcode address counter as the source. Bit 
69 is the select input for this fourth address multiplexer. 

Bit 68 enables the register file A read port onto the 
A_BUS. If this bit is inactive and if the FPP seed register 
output is also inactive, the D_BUS to A_BUS transceiver 
is enabled so that constants, masks, and variables may 
be passed from the D_BUS to A_BUS. 

Bits 67 and 66 are used as the write enable controls for 
the two write ports of the register file. 

Data Path Controls 

The data path controls are shown in Figure 5-19. 

To provide a straightforward example of the usage of the 
PM and FPP, these devices have had their input and 
output buses paralleled with those of the ALU. In this 
arrangement it is not generally feasible to make use of 
more than one module in a given cycle. This is because 
the data buses may carry useful information to only one 
device at a time (this assumes that passing the same 
data to more than one device is of limited use). Also, only 
one device may drive the Y _BUS at a time. 
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Figure 5-18. Am29300 Demonstration System Microinstruction Word Layout -- Register Fiie Controls 

Control Field Name Signal Name Field Name Signal Name Field Name Signal Name 

Pipeline Primary Primary Alternate 1 Alternate 1 Alternate 2 Alternate 2 
Bit# Meaning Meaning Meaning Meaning Meaning Meaning 

P91 Reg A Macro/Micro* P_ARA_MAC 

If P91 = 0 then primary If P91 = 1 then alternate 1 

P90 Register A Address ( 5 ) P_RA (5) 
P89 Register A Address ( 4 ) P_RA (4) 
P88 Register A Address ( 3 ) P_RA (3) 
P87 Register A Address ( 2 ) P_RA (2) 
P86 Register A Address ( 1 ) P_RA ( 1 ) RA Count Direction P_UP/DN_A 
P85 Register A Address ( 0 ) P_RA (0) RA Count Enable P_CNTA_EN 

P84 Reg B Macro/Micro* P_ARB_MAC 

If P84 = O then primary If P84 = 1 then alternate 1 

P83 Register B Address ( 5 ) · P _RB (5) 
P82 Register B Address ( 4 ) P_RB (4) 
P81 Register B Address ( 3 ) P_RB (3) 
P80 Register B Address ( 2 ) P_RB (2) 
P79 Register B Address ( 1 ) P_RB (1) RB Count Direction P_UP/DN_B 
P78 Register B Address ( O ) P_RB (0) RB Count Enable P_CNTB_EN 

P77 Reg C Add Source ( 1 ) P_C_SEL ( 1 ) 
P76 Reg C Add Source ( 0) P_C_SEL (0) 

If P77:76 = 00 then primary If P77:76 = 01, 10, 11 then alternate 1 

P75 Register C Address ( 5 ) P_RC (5) 
P74 Register C Address ( 4 ) P_RC (4) 
P73 Register C Address ( 3 ) P_RC (3) 
P72 Register C Address ( 2 ) P_RC (2) 
P71 Register C Address ( 1 ) P_RC ( 1 ) RC Count Direction P_UP/DN_C 
P70 Register C Address ( 0 ) P_RC (0) RC Count Enable P_CNTC_EN 

P69 B Write Port Select P AWB MAC 
P68 A Bus Output Enable* P-OEA* 
P67 A Port Write Enable* P-WEA* 

P66 B Port Write Enable* P=WEB* 
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Figure 5-19. Am29300 Demonstration System Microlnsturctlon Word Layout -- Data Path Controls 

Control Field Name Signal Name Field Name Signal Name Field Name Signal Name 
Pipeline Primary Primary Alternate 1 Alternate 1 Alternate 2 Alternate 2 
Bit# Meaning Meaning Meaning Meaning Meaning Meaning 

P6S Data Path Select (1) P_DPS (1) 
P64 Data Path Select (0) P_DPS (0) 

ALU when P6S:64 = 00 FPP when P6S:64 = 10, 11 PM when P6S:64 = 01 

P63 ALU Instruction (8) PALU INST (8) FPU Instruction (4) P_FP_I (4) TCX P_TCX 
P62 ALU Instruction (7) P-ALU-INST (7) FPU Instruction (3) P_FP_I (3) TCY P_TCY 
P61 ALU Instruction (6) P-ALU-INST (6) FPU Instruction (2) P_FP_I ( 2) ACC (1) P_ACC ( 1) 
P60 ALU Instruction ( s) P-ALU-INST (S) FPU Instruction (1) P_FP_I (1) ACC (0) P_ACC (0) 
PS9 ALU Instruction (4) P-ALU-INST (4) FPU Instruction (0) P_FP_I (0) RND P RND 
PSS ALU Instruction (3) P-ALU-INST (3) ENR* P_ENR* XSEL P=XSEL 
PS7 ALU Instruction ( 2) P-ALU-INST (2) ENS* P ENS* YSEL P _YSEL 
PS6 ALU Instruction (1) P-ALU-INST (1) ENF* P=ENF* TSEL P _TSEL 
PSS ALU Instruction (0) P-ALU-INST (0) Feed Through (1) P_FP_FT (1) ENXA* P_ENXA* 
PS4 Position Mac/Mic* P=POs":::_MAC Feed Through (0) P_FP_FT (0) ENXB* P _ENXB* 
PS3 Position ( S) P_POSITION (S) IEEE/DEC* P IEEE/DEC* ENYA* P _ENYA* 
PS2 Position (4) P POSITION (4) Seed Output Enable* p-=:_sEED_OE ENYB* P _ENYB* 
PS1 Position (3) P-POSITION (3) Projective/Affine P PROJ/AFF* ENP* P ENP* 
PSO Position ( 2) P-POSITION (2) Rounding Mode (1) P=FP _RND ( 1 ) ENT* P=ENT* 
P49 Position (1) P-POSITION (1) Rounding Mode (0) P _FP _RND ( 0) FA P_FA 
P48 Position (0) P-POSITION (0) FTX P_FTX 
P47 Width Mac/Mic* P-WID MAC FTY P_FTY 
P46 Width (4) P=Width (4) FTP P FTP 
P4S Width (3) P_Width (3) PSEL (1) P-PSEL (1) 
P44 Width ( 2) P_Width (2) PSEL (0) P=PSEL (0) 
P43 Width (1) P_Width (1) 
P42 Width (0) P _Width (0) 
P41 Macro/Micro* Status P_MIC/MAC 
P40 Register Status P REG STAT 
P39 Load Macro Status P =LD_MAC_STAT 
P38 Borrow Mode P_BM 
P37 Memory Add Select ( 3 ) P_MEM (3) 
P36 Memory Add Select ( 2 ) P_MEM (2) 
P3S Memory Add Select ( 1 ) P_MEM ( 1 ) 
P34 Memory Add Select ( O ) P MEM (0) 
P33 Memory Write En* P=MEM_WR* 
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Figure 5-20. Am29300 Demonstration System Microinstruction Word Layout -- Control Section Controls 

Control Field Name Signal Name 
Pipeline Primary Primary 
Bit# Meaning Meaning 

P32 Cycle Length (1) P CLK LEN (1) 
P31 Cycle Length (0) P=CLK=LEN (0) 
P30 Interrupt Enable P_INT_EN 

P29 Force Continue P_FC* 
If P29 = 1 then primary 

P28 Seq Instruction ( 5) P SEQ INST ( 5) 
P27 Seq Instruction (4) P-SEQ-INST (4) 
P26 Seq Instruction (3) P-SEQ-INST (3) 
P25 Seq Instruction (2) P=SEQ=INST ( 2) 
P24 Seq Instruction (1) P SEQ INST (1) 
P23 Seq Instruction (0) P::::sEO::::INST (0) 

If P29 = 1 AND P28:27 I= 11 then primary 

P22 Test Select (3) P TEST (3) 
P21 Test Select (2) P-TEST ( 2) 
P20 Test Select (1) P-TEST (1) 
P19 Test Select ( 0) P=TEST (0) 

P18 Load Operand Counter P LD CNT 
P17 Load Macro Op Reg P::::LD::::MAc_OP 

P16 Branch Field Enable* P _BRANCH_EN* 
P15 Branch Address (15) D_BUS (15) 
P14 Branch Address (14) D_BUS (14) 
P13 Branch Address (13) D_BUS (13) 
P12 Branch Address (12) D_BUS (12) 
P11 Branch Address (11) D_BUS (11) 
P10 Branch Address (10) D_BUS (10) 
pg Branch Address (9) D_BUS(9) 
PS Branch Address (8) D_BUS (8) 
P7 Branch Address (7) D_BUS(7) 
P6 Branch Address (6) D_BUS(6) 
P5 Branch Address (5) D_BUS (5) 
P4 Branch Address (4) D_BUS (4) 
P3 Branch Address (3) D_BUS(3) 
P2 Branch Address ( 2) D_BUS (2) 
p 1 Branch Address (1) D_BUS ( 1) 
PO Branch Address (0) D_BUS(O) 

Field Name 
Alternate 1 
Meaning 

If P29 = 0 then alternate 1 

Interrupt Host 
Sign Extend A_BUS 
Initialize 
Load Interrupt Base Add 

Signal Name 
Alternate 1 
Meaning 

P INT HOST 
P::::s1GN_EX 
P INIT 
P::::LD_INT_BASE 

If P29 = 0 OR P28:27 = 11 then alternate 1 

Am29114 Instruction ( 3) P INT INST 
Am29114 Instruction ( 2) P=INT::::INST 
Am29114 Instruction ( 1 ) PINT INST 
Am29114 Instruction ( O) P=INT::::INST 

Field Name 
Alternate 2 
Meaning 

( 3) 
( 2) 
(1) 
(0) 

Signal Name 
Alternate 2 
Meaning 

If separate control bits were provided for the FPP or PM, 
they could perform multi-cycle operations such as New­
ton-Raphson division in the FPP or greaterthan 32 by 32 
bit multiplies in the PM, while remaining detached from 
the input and output buses during most of the multi-cycle 
operation. If this were done, the ALU could operate in 
parallel during such operations. The cost of doing this 
would be an additional 15 to 35 bits added to the microc­
ode word width. These bits would get full use only during 
those situations that parallel calculations are possible. 

Data Path Selection: Only one functional unit (data 
path) in the data section is chosen in any one cycle. Bits 
65 and 64 select one of four options: 

Forth is design it was decided to use a smaller microcode 
word by overlapping control bits for each of the three 
functional units. 
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Bit 

65 64 

0 

0 

0 

1 

0 

ALU enabled 

PM enabled 

FPP enabled 

Special function 



In the special function option, the FPP is enabled for 
calculation and the control bits are assumed to be set 
correctly for use by the FPP, but the output enable of the 
FPP is inactive with the ALU output enable active. The 
ALU is not enabled for calculation in the sense that its 
hold input is made active to prevent state change in the 
status or Q registers. 

This odd-looking combination is used to provide input 
operand parity checking for the FPP. The FPP does not 
have its own parity checking circuits, so with this arrange­
ment the ALU parity checkers will be enabled by the 
active output enable on the ALU. The FPP is still allowed 
to function and may complete its operation and store the 
result in its internal registers, while in the same cycle the 
input operand parity is checked by the ALU. The ALU 
state is left undisturbed by this operation. 

How useful is this scheme? It may save a cycle once in 
a while, but mainly it illustrates the odd sort of opportuni­
ties one may find to use up an otherwise wasted control 
code. 

ALU Path: When the data path select bits enable the 
ALU meaning for bits 63:38, bits 54 and 47 are used to 
select either the microcode or macroinstruction position 
and width fields. The macro supplied information is 
selected when these select bits are high. When the 
macro source is selected, the microcode position and 
width fields are unused. 

Bit 41 selects macro or micro status inputs for the ALU. 
Bit 40 selects whether the status output of the ALU is 
flow-through or registered. 

Bit 39 is used as a clock qualifier for the loading of the 
ALU external macro status register. 

Bit 38 directly controls the Borrow mode of the ALU. 

FPP Path: When the data path selects enable the FPP, 
the control bits shown directly manage the operation of 
the FPP as described by the Am29325 data sheet. Bit 52 
is used to enable the output of the FPP external "division 
seed" registered PROM. 

PM Path: When the data path selects enable the PM, the 
listed control bits are used as defined in the Am29C323 
data sheet. 

Data Path Enabling: What does it mean to enable or 
disable one of the functional units? The control bits that 
are shared between each functional unit are either high 
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or low every cycle, and they are connected to the ALU 
and multipliers all the time. There is no intervening logic 
that turns all the control bits "off" when a particular path 

is not selected. Each device sees a jumble of nonsense 
on its control lines whenever the control field meaning is 
intended for another device. Nonsense or not, each 
device will do whatever the control bits specify. 

Enabling a data path means making the output enable of 
these lected device active so that it drives the Y _BUS and 
is able to write calculation results back into the register 
file. In the case of the ALU, enabling also means that the 
ALU hold input will be made inactive so that state change 
of the ALU status and Q registers is allowed. Enabling 
one path implies disabling the other paths. 

For the PM and FPP, disabling means their output 
enables are inactive. It also means that the PM product 
register feed through pin is disabled by the control 
decode logic. For the FPP it means that both of its register 
feed through lines are disabled by control decode logic. 
These register feed through controls are disabled be­
cause, if they are allowed to be active, it is possible for the 
PM and FPP multipliers to feedback on themselves and 
begin to oscillate. This action would not damage the 
devices, but it could add to power consumption and 
system power plane noise. A simple prevention is just to 
disable the feed-throughs when the data paths are not 
selected. Note that the ALU has no internal feedback 
paths and does not need any similar treatment. 

Memory Control: Bits 37:33 are available at all times to 
control the Am29300 system memory. 

Bit 33 is the memory write enable control. 

Bits 35:34 select the source of the address for the 
memory. 

35 

0 

0 
1 

Bit 

34 

O No memory address or operation is 
selected 

1 A_BUS data is used to address memory 
0 The A memory address counter is 

selected for address 
The B memory address counter is 
selected for address 
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Bits 37:36 select the following: 

Bit 

37 36 

0 
0 

0 
1 
0 

Load counter A 
Load counter B 
Selected counter is incremented 
Selected counter is decremented 

The increment and decrement commands have effect 
only when a counter is selected as the MA_BUS source. 
The load commands have effect only when the A_BUS is 
the selected source. 

Control Section Controls 

Figure 5-20 shows the bit definitions for the control 
section. 

Pipeline bits 32:31 control the length of each machine 
cycle. 

Bit 

32 31 

0 0 Normal cycle length 
0 1 1.33 x Normal cycle length 
1 0 1.66 x Normal cycle length 
1 1 2 x Normal cycle length 

Bit 30 enables sequencer interrupts on a cycle by cycle 
basis. 

Bit 29 is the Force Continue signal for the sequencer. 
When this bit is active, the sequencer will execute a 
continue instruction regardless of the state of the se­
quencer instruction or test select lines. This effectively 
enables the alternate meaning for the sequencer instruc­
tion and test select fields. 

Bits 28:19 are normally the sequencer instruction and 
test select inputs. When Force Continue is active, the 
sequencer instruction field meaning changes. 

When Force Continue is active, bits 28:25 are used to 
control four individual functions. Bit 28 will send an 
interrupt signal to the host system. Bit 27 will enable the 
sign extension of data going from the D_BUS to the 
A_BUS. Bit 26 will force the control pipeline register to 
load data from the control store initialize register at the 
next active system clock. Bit 25 will enable the loading of 
the interrupt base address register. 
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Bits 22:19 are used to control the sequencer test selec­
tion. When an unconditional sequencer instruction is in 
effect or when the Force Continue bit is active, bits 22:19 
are used to control the Interrupt controller instruction. 

Bit 18 is used to load the macro operand counters from 
the macro opcode register. 

Bit 17 is used to load the macro opcode register. 

Bit 16 enables the three-state outputs on the branch field 
bits of the control pipeline register. If these outputs are 
disabled, then the sequencer, A_BUS to D_BUS trans­
ceiver, or Interrupt Controller may drive the D_BUS. How 
a device is chosen to drive the D_BUS is explained in the 
control decode logic description. It is only important to 
note that if bit 16 is active, the branch field outputs will be 
active and will have priority over any other driver on the 
D_BUS. 

Bits 15:0 are the branch address field to the sequencer. 
This field is also used to contain constants or masks. 
These may be used by the data section, sequencer, 
interrupt base register, or interrupt controller. It is a full 16 
bits long in order to allow for constants or masks that fill 
half of the 32-bit data path. This allows 32-bit microcode 
supplied masks to be formed with two microinstructions. 

Alternate Arrangements 

The microcode word size just defined for this system 
totals 92 bits wide. Having so many bits allows the 
flexibility to change the control over most of the 
machine's functions on any or every cycle. But, this 
degree of control flexibility is not required for every 
application. The size of the control store may be reduced 
based on how the system is used most often. Following 
are a few comments on ways to rearrange, and reduce the 
control store size. 

Current Control Bit Usage 

First let's look at how the control bits are used in this 
design. 

Seven of the bits are used to control the selection of 
alternate field meanings (i.e., overlap control in bits 91, 
84, 77:76, 65:64, and 29). 

Eleven bits are used to control functions that are desired 
to operate in all cycles, independent of other system 
operations. These are the register file write and read 
enables (bits 69:66), memory controls (bits 37:33), and 
the cycle length controls (bits 32:31 ). 



Eight bits generally do not change state frequently. Their 
existence in this design is a convenience that reduces the 
need for control decode logic and adds system flexibility. 
These bits are 41 :38, 30, 18:16. 

Three bit fields are used only with some instruction 
types. These are the position, width, and branch fields. 
Whenever a particular instruction does not use a field, 
those bits in the field are currently wasted in that in­
struction cycle. 

Alternative Usage 

The bits that change infrequently could be replaced by 
decode logic that provides these same control signals via 
set-reset flip flops. The flip flops would be controlled by 
overlapping set and reset commands with some other 
control store field. This would add to the decode logic 
complexity and would limit when the flip flops could be 
changed by restricting the control over them to certain 
instruction types. Since they change only infrequently, 
the requirement to use certain instruction types when 
setting or resetting them should not be a problem. 

Those bit fields that are limited to certain instruction types 
could be overlapped. An example might be to overlap the 
position and width fields with the branch address field. 
This would restrict branches to instructions that do not 
require the position or width information. 

When alternative field meanings are enabled, often the 
alternative definition does not make use of all the bits in 
the field. This presents the opportunity to overlap other 
control bits that may be valid in the same cycle as the 
alternate meaning of the field. 

For example, some of the infrequently-used control bits 
could be overlapped with the unused bits of the register 
C address when the primary meaning of the C address 
field is not active. When a two address instruction is 
executed, the address for the C register comes from the 
A or B address, thus leaving the microcode field for the C 
register address available for other functions. 

In another example, the bits in the position and width 
fields that are not used by the PM or FPP could be 
overlapped with other control functions when the alter­
nate meanings for the field are in effect. An alternate 
branch address field might be placed in those bits to allow 
branch instructions in combination with FPP or PM 
operations without the need for the currently defined 
branch field. 

Careful analysis of how each data path is used may also 
allow reductions through the elimination of controls that 
are not needed. As an example: if the PM were used 
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only in flow through mode, all the controls for register 
enables, flow through modes, and input multiplexers 
could be removed from the microcode word and those 
inputs to the PM tied to fixed voltage levels. If only two's 
complement mode is used then an additional two bits 
may be eliminated. This would leave only four necessary 
control bits, the accumulator controls, rounding mode, 
and format adjust. This reduction might allow PM 
operations to be overlapped with some multiply-accumu­
late operations in the FPP. 

By combining these reduction techniques, the following 
changes could be made: 

All of the eight infrequently used control bits could be 
moved to overlap with the C register address, with half in 
effect when the A address is substituted for the C address 
and half in effect when the B address is substituted. 

The PM controls, except for flow though and two's 
complement mode, may be moved to overlap with the 
position, width, and memory control fields. Also, the 
fourth data path select field may be changed to disable 
the memory controls and select the ALU - minus the 
position and width fields-to be active along with the PM. 
In this mode the PM flow through and two's complement 
mode controls would be fixed with no flow through and 
two's complement mode active. The ALU position and 
width inputs would be set to 0 and 31 ·respectively by 
control decode logic (unless these fields were selected to 
come from the macro opcode). 

The branch address field may be moved to overlap with 
the position, width, and memory control fields. When ever 
the sequencer instruction selects a branch operation, the 
position, width, and memory fields are disabled and the 
branch address meaning substituted. 

If all of these changes are made, the currently defined 
branch address field and infrequently used control bits 
may be eliminated, which would save 24 bits of microc­
ode word width. This would reduce the word size to 68 
bits. 

This savings would come at the cost of allowing branch 
instructions only when the ALU instruction does not need 
position or width information from the microcode (this 
information may still come from the macro opcode regis­
ter) and when the system memory is not being used. 
Further, a PM operation could not occur with a memory 
access in the same cycle. Also, with these changes it 
would be possible to control the ALU and PM concur­
rently when the ALU does not need position or width 
information and when the PM operates on internally 
registered data. 
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There are many such combinations of microcode control 
field definition. Each one provides a different trade-off 
between word size and what operations may be concur­
rent. Each one requires a different degree of complexity 
in the control decode logic. 

CONTROL DECODE 

What Is It Good For? 

The ideal microprogrammed system has a separate 
microcode control store bit for each control input that 
exists in the system. This kind of complete control over 
every aspect of the system directly from the control 
pipeline totally eliminates the need for decoding the 
meaning of any system control bits. It also requires a very 
large microcode word to manage most useful systems. 
So in the real world, most microprogrammed systems 
encode or overlap at least some control functions in the 
microcode word. 

Encoded control or not, each control input in the system 
requires valid voltage levels during each machine cycle 
if the system is to operate as expected. 

The control decode logic acts as the bridge between 
encoded or overlapped (i.e., sometimes unavailable) 
microcode control fields and the related control signals in 
the system. The control decode logic continuously pro­
vides valid logic levels for those control signals that 
cannot be directly driven by the control pipeline register. 

If the control field for a particular function is encoded, the 
control logic translates the function codes into individual 
control signals. Where control fields are overlapped, the 
control logic may be used to disable logic affected by a 
control field when that field has a meaning different than 
that intended for the logic being disabled (i.e., when 
overlapped control is active). 

In some cases, control logic is used to prevent harmful 
conflicts between the meaning of different control bits, for 
example when two separate control fields affect the 
three-state enables on different buffers which may drive 
the same signal line. Certain combinations of control bits 
might enable both buffers in the same cycle causing 
contention between the buffers. Allowed to continue for 
long periods, this kind of contention may destroy the 
buffers. Control logic may be used in this situation to 
disable one or both buffers when the combination of 
controls affecting them would otherwise cause damage. 
In fact it is strongly recommended that this kind of 
problem always be avoided by designing the control 
decode logic to prevent such disasters. The alternative is 
to watch hardware melt because of a software mistake. 
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Control Logic Description 

Some of the control logic function in this demonstration 
system has been distributed into the devices being 
controlled. This is done when a PAL is used to implement 
a function. A PAL generally has excess inputs and 
internal logic that may be put to use in decoding the 
meaning of encoded control fields( e.g. the memory 
address counters). The memory address counters are 
implementedfromAmPAL22V1 O devices and are shown 
in Figure 4-7. The control for loading, incrementing, 
decrementing, and output enabling the counters is pro­
vided directly from the encoded memory control field. 
The PALS internally decode the meaning of the control 
bits. 

When a device requires a decoded control signal, the 
signal must come from control decode logic that takes 
control pipeline bits as input and produces the needed 
control signal. In this system, the required control logic 
has been implemented in three AmPAL18P8B PALs. 
These PALS are fast to minimize the delay induced 
between the control pipeline register and the device 
controlled. The PALs also provide the convenience of 
having programmable output levels, either high or low 
active for each output, independent of other outputs. 

The block diagram for these PALs is shown in Figures 5-
21 and 5-22. The logic definition files for these PALs are 
in Appendix M. 

The ALU output enable, ALU hold, and PM output enable 
are all direct results of the pipeline data path select bits. 

The pipeline controls for seed register output enable, PM 
flow through, and FPP flow through are gated by the 
appropriate data path selection so that each control 
signal is active only when the related data path is se­
lected. 

The D BUS to A BUS direction of the D_BUS trans­
ceiver is enabled -by the register file A output's being 
disabled in conjunction with the seed register output's 
being disabled. 

The A BUS to MD BUS buffer is enabled by certain 
codes of the memory control field. 

The control store initialize register select is enabled by 
the combination of the pipeline Force Continue and the 
pipeline control bit for the initialize select. It is also 
enabled by the WCS_INIT* signal from the host interface 
controller. Note that the initialize control is synchronous 
as used in this system so that the initialize word is loaded 
only at the next active clock. 
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The D_BUS sign extend, Sequencer output enable, 
Interrupt controller instruction and chip select enables, 
and A_BUS to D_BUS enable are all direct results of the 
pipeline sequencer instruction, interrupt controller in­
struction, branch enable, and Force Continue bits. 

The Sequencer output enable, A_BUS to D_BUS en­
able, and interrupt controller chip select are used to 
control which device is allowed to drive the D _BUS in any 
given cycle. These output enables are arranged in a 
priority with only one output allowed to be active in any 
cycle; including the branch field of the control pipeline. 

The highest priority output is the branch field. If it is 
enabled all other outputs are disabled. 

If the branch field is disabled, then the Sequencer D 
output is enabled if either a Continue or a Pop D instruc­
tion is being executed. 

If neither the branch field nor the sequencer are enabled, 
then the interrupt c9ntroller may drive the D bus if the 
interrupt controller instruction is one of three read 
operations. 

If none of the above conditions exist to enable the other 
D_BUS devices, then the A_BUS to D_BUS transceive 
path is enabled. 
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Note that the interrupt controller chip select is treated as 
both an instruction enable and as an output disable. The 
chip select is active whenever there is a valid interrupt 
instruction that would not cause a conflict with another 
driver of the D_BUS. This means that when there is a 
valid instruction, the chip select will be inactive only if a 
read instruction is selected and either the branch field or 
sequencer are already enabled on the D_BUS. If any 
other interrupt instruction is in effect, the interrupt control­
ler does not drive its outputs. 

The above scheme for managing the access rights to the 
D_BUS may seem a bit complex but it allows great 
flexibility in movement of information over the D_BUS. 
Information may be moved between the interrupt control­
ler and sequencer, interrupt controller and A_BUS, or 
sequencer and A_BUS. Information may be loaded into 
the interrupt base address register from the pipeline, 
sequencer, or A_BUS. Also, the pipeline may provide 
data to the sequencer, interrupt controller, interrupt base 
address register, or A_BUS. 
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DEFINITIONS 

The upper limit on system speed is set by the slowest 
signal propagation path in the system. 

The length of a signal propagation path is measured from 
the output of one register to the input of another register, 
where all registers are loaded by the same clock. 

The slowest signal path will be different for different 
control states. An example would be the selection of the 
ALU data path vs. the FPP data path. 

A signal path may be slower in the first cycle that control 
selects the path than it will be in a subsequent cycle that 
maintains the same path selection. This can be due to 
three-state enable or disable times being longer than 
normal propagation delays of the circuits involved. 

Control Pipeline Register 

Pos + Wid .----et 
Mux 

Register 
File 

ALU 
PM 
FPP 

Y_BUS 

Status 
Register 

Control 
Decode 

CONTROL AND DATA PATHS 

In determining the maximum system speed, every signal 
path must be analyzed. This requires tracing every 
control signal and every data signal and totaling the delay 
induced by each component along the path from source 
register to destination register. Where parallel paths 
exist, the time delay for the slowest path is used. 

Most often, the critical (slowest) paths originate with the 
pipeline control register. In the data section the paths will 
end with data being loaded into the register file, an FPP 
or PM internal register, the system memory, or a D_BUS 
destination. In the control section the paths will end with 
loading of new control bits into the control pipeline 
register. 

A_BUS 

Memory 
Address 
But /Cnt 

MA_ BUS 

MD_BUS 

Operand 
Counters 
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Figure 6-1. Data Section Timing Paths 
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Figure 6-2. Control Section Timing Paths 

Since the control section and data section operate in 
parallel, the slowest path in either section will determine 
the cycle length required for a specific operation. 

Figures 6-1 and 6-2 provide a block diagram view of 
significant signal pathways for both control and data lines 
in both the control and data sections. 

Referring to these figures as critical timing paths are 
discussed may help in following the timing analysis. 

In this and nearly any complex system, there are hun­
dreds of pathways that must be traced in order to ensure 
finding alltheworstcasedelays. To go through all of them 
here would require too muc_h time and space. Many of the 
timing paths for this design have already been analyzed, 
and what appear to be the worst case paths will be shown 
here. 

WORST CASE PATHS 

Each case is shown in Table 6-1. The table is separated 
into several pages due to its length. It can be viewed as 
a long spreadsheet calculation in which the appropriate 
timing parameters that apply to each case have been 
selected and placed in the correct column. Only the worst 
case delay for each segment of a critical path is shown. 
Parallel but faster paths have been eliminated from each -
case so that the total of the times listed for a case 
represents the minimum time in which a path can be 
traveled. 
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Case Definitions 

1. Basic flow-through calculation, data path. 

Data is moved from the register file through the 
ALU and back to the register file. The timing path 
begins at the control pipeline where the register 
file address for the A and B read operands 
appear after the clock to output delay of the 
control pipeline register. These addresses flow 
through the Am29827 buff er that forms one side 
of the register file address multiplexer. The 
address accesses the register file and one ac­
cess time later the data operands are presented 
to the ALU. By this time the control signals for the 
ALU instruction have been stable long enough 
that the flow through time of the data in the ALU 
will be the slower path. Once data is on the Y bus 
the last delay is the set-up time for the registerfile 
before clock can occur. Again, the control path to 
the register file (A port write address) is faster 
than the data path so the data path is the limiting 
factor. 

The total delay for this path is 96 ns. If the PM 
· path is substituted for the ALU the delay would 

be 174 ns. If the FPPwere substituted, the delay 
is 179 ns. So flow through calculations with 
either of the multipliers will require extended 
cycle !ength. 

I 
I 



2. 

3. 

4. 

5. 

Basic flow-through calculation, position control 
path. 

This case is the same as Case 1 except that a 
careful look at the control path for the position 
input to the ALU is taken. This path turns out to 6. 
be 97 ns worst case. This is an example where 
the control path is a little slower than the data 
path. 

Flow-through calculation with address supplied 
by the Macro operand counter; counter output 
enabled same cycle. 

Again this path is similar to Case 1. The differ­
ence is that the read addresses are assumed to 
come from the Macro operand counters. It is 7. 
further assumed that the counters are selected 
during the cycle analyzed. This means that the 
output enable time of the counter must be added 
to the clock to output time for the pipeline bit that 
selects the macro opcode counter. 

This increases the delay path to 115 ns, indicat­
ing that during the first cycle, in which a macro 
opcode counter is used as the address source, 
the cycle length will need to be extended. 

Flow-through calculation with address supplied 
by the Macro operand counter; counter output 
enabled prior cycle. 8. 

This case is a comparison with Case 3, where 
the Macro operand counter was output enabled 
in the previous cycle. The counter delay is thus 
limited to the clock to output delay of the 
counter. This reduces the cycle time require­
ment to 90 ns. So, sequential register file 
address cycles, using an operand counter can 
be completed within the normal cycle time. 

First cycle of FPP Newton-Raphson division, 
seed value load. 

In this case the critical path starts at the control 
pipeline clock to output delay, and then goes 
through the control decode logic that enables the 
output of the Seed register. In this case it is 
assumed that the seed value is multiplied and 
stored in an FPP internal register to complete the 
first cycle of a Newton-Raphson division. This 

9. 
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requires a total of 169 ns. Note that if the seed 
value had simply been moved into the input 
register of the FPP, the total delay would have 
only been 73 ns. 

Memory read with address from the register file, 
selected by microcode. 

This is a simple memory read with the time 
starting at the pipeline clock to output delay, 
followed by the address mux, register file ac­
cess, A_BUS to MA_BUS buffer, memory, and 
register file data set-up time. The total time 
comes in at 99 ns, just under the desired 100 ns 
basic cycle time. 

Memory read with address from a memory 
address counter. 

Here the access time of the register file is essen­
tially traded for the output enable time of a 
memory address counter. The total delay only 
improves to 94 ns, but there is a big advantage 
in the fact that for a sequential access the CPU 
did not need to calculate a memory address. 
This will save at least one cycle. Also, it is 
possible to overlap a memory read from an 
address counter with a calculation cycle in the 
CPU. 

Memory write with data from register file, se­
lected by operand counter. 

In a memory write case, time is saved by needing 
only to meet the data set-up time of the memory 
rather than the memory access time plus the 
register file set-up time, as would be the case in 
a read operation. In this case the time gained is 
traded for the time required to output enable an 
operand counter. Even so, the total time is still 
94 ns. 

Move register file data to interrupt controller or 
sequencer, data selected by operand counter. 

Here again, the long delay path of using a macro 
opcode counter as the register file address 
source is used. Even with the output enable 
delay of the counter in addition to the pipeline 
clock to output time, the total delay comes in at 
89 ns. 
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10. Move sequencer or interrupt controller data to 
register file. 

vector then accesses the control store. The total 
for this cycle is 81 ns. 

In the reverse of the above case, the time to get 13. Sequencer branch to macro opcode specified 
instruction. 

11. 

12. 
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data from D_BUS is similar to the time in Case 9 
to access data from the register file. The big 
delay here is the need to move the data from the 
A_BUS, through the ALU and back to the regis-
ter file. Nothavingadirectpathtothe Y _BUS has 
cost a good bit of time. The total comes in at 
127 ns. Fortunately this type of data move is 
not likely to be a commonly executed cycle. 

Sequencer branch, conditional or unconditional. 

In this case much of the delay is in the pipeline 
clock to output time for the branch field enable 
bit, cascaded with the output enable time of the 
branch field in the control pipeline register. This 
is followed by the branch address flow through 
time of the sequencer and the access time of the 
control store. Even with all the delay, this path is 
significantly faster than most of the data section 
paths. The total time is 84 ns. 

Sequencer interrupt or trap cycle. 

In this case the pipeline output doesn't turn out to 
be in the main delay path. The interrupt starts at 
the clock to output delay of the trap logic where 
the interrupt request is generated. The se­
quencer then responds with interrupt acknowl­
edge, which in turn output enables bit 3 of the 
interrupt vector from the trap logic. The interrupt 

Here the initial delay is the clock to output delay 
of the macro opcode register, followed by the 
access time of the map RAM. Next is the branch 
flow through time for the sequencer and the 
access of the control store. This cycle comes in 
at 85 ns. 

FINAL RESULTS 

Several cases were shown here to help give an idea of 
how fast the system is for different instructions. These 
cases were some of the worst identified during the critical 
analysis of this design. All but three of the cases shown 
fit within the desired 100 ns basic clock cycle. Two of 
the cases would only require a cycle 1 1/3 times normal. 
Case 5 officially needs a double length cycle. 

As noted in the discussion of Case 1, both the PM and 
FPP require much longer cycles for flow through calcula­
tions. If the PM and FPP are used in clocked multiply 
mode for sequential pipelined multiplies, as would occur 
in array calculations, the cycle time can be significantly 
reduced. In clocked multiply mode the PM or the FPP 
requires only 100 ns cycle times. 

With a dynamically variable clock cycle length, this sys­
tem can run most instructions at the basic 100 ns cycle 
rate, but will still handle the occasional extended execu­
tion time instructions. 
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Am29300 Demonstration System 

Table 6-1A 

Data Path Element 
Parameter Description 

Symbol 

Control Store/Register -
Am9151-50 
Clock to Output Tpkhdqv1 
OE to Output Valid Tgldqv 
Synchronous! 
I to Clock Set-up Tivpkh 
Address to Clock Set-up Tavpkh 

Control Decode Logic -
AmPAL18P8B 
Input to Output Tpd 

Macro Opcode Register -
Am29818-1 
Clock to Output Tpd 
Input to Clock Set-up Ts 

Macro Operand Counters -
AmPAL22V10A 
Clock to Output Teo 
Input to Clock Set-up Ts 
OE to Output Valid Tea, Ter 

Reg File A or B Read 
Add Mux - Am29827 A 
Input to Output Tph 
OE to Output Valid Tzh 

Reg File C Write Add Mux -
AmPAL18P8Q 
Input to Output Tpd 

Signal Path Timing Analysis 

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

15 15 15 15 15 15 15 15 15 
20 

25 
30 

15 15 

11 
6 

15 15 
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25 25 25 25 

6 6 6 
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Table 6-18 

Data Path Element 
Parameter Description 

Symbol 

Reg File B Write Add Mux -
AmPAL22P10AL 
Input to Output Tpd 

ALU Position & Width Mux -
AmPAL22P10AL 
Input to Output Tpd 

Register File - Am29334 
Address to Read 
Data Output Access 
OE to Output Valid Turn-on 
OE to Output Three-state Turn-off 
Data Set-up Tds 

ALU -- Am29332 
Data A or B to Y Parity 
Instruction to Y Parity 
Width to Y Parity 
Position to Y Parity 

Parallel Multiplier -
Am29C323 
Unclocked Multiply X or Y 
to P Parity Tmuc 
Clocked Multiply, 
Cycle Time Tmc 
Clocked Multiply, 
Data to Clock Set-up Tsxy 
Clocked Multiply, 
Clock to Output Tpdpp 

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

25 

25 25 

24 24 24 24 24 24 24 
20 
16 
9 9 9 9 9 9 9 

42 42 42 42 
53 
40 
48 48 

150 

125 

20 

40 
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Table 6-1C 

Data Path Element 
Parameter Description 

Symbol 

Floating Point Processor -
Am29325 
Unclocked Operations 
Clocked Operation 
Clocked Multiply, 
Data to Clock Set-up Tsd1 
Clocked Multiply, 
Data to Clock Set-up Tsd2 

FPP Seed Register -
Am2920 & Am27S25 
OE to Output Valid Tzh 

FPP External Status 
Register -AmPAL22V10A 
Clock to Output Teo 
Input to Clock Set-up Ts 

Macro Status Register -
Am29818-1 
Clock to Output . Tpd 
Input to Clock Set-up Ts 

Memory Address or 
Data Buffer -Am29827 
Input to Output Tph 
OE to Output Valid Tzh 

Memory Address Counters 
AmPAL22V10 
Clock to Output Teo 
Input to Clock Set-up Ts 
OE to Output Valid Tea, Ter 
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Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

125 
100 

13 

104 104 

35 35 

15 
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Table 6-10 

Data Path Element 
Parameter Description 

Symbol 

Memory - Am99C165-35 
Chip Enable Access Time Telqv 
Address Access Time Tavqv 
Chip Enable to 
Output Disable Thz 
Write Pulse Width Twlwh 
Data to Write End Set-up Tdvwh 
Address to Write 
End Set-up Tavwh 
Write to Output Disable Twlqz 

D BUS-A BUS 
Transceiver - Am29853 
Input to Parity Output Tpd 
OE to Output Valid Tzh 

D_BUS -A_BUS Parity 
Buffer - Am29862 

Input to Output Tpd 
OE to Output Valid Tzh 

Map RAM - Am9150-25 
Address to Data Taa 

Interrupt Controller -
Am29114 
Clock to Interrupt Request 
Instruction Enable to 
Data Output 
Data in to Clock Set-up 
MINTA* to Vector OE 

Trap Logic -AmPAL22V1 QA 
Clock to Output Teo 
Input to Clock Set-up Ts 
OE to Output Valid Tea, Ter 

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

35 
35 35 35 

20 
30 
20 20 

30 
10 

15 15 
15 

6 
12 

25 
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30 
10 10 
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25 
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Table 6-1 E 

Data Path Element 
Parameter Description Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Symbol Value Case Case Case Case Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Sequencer - Am29331 
Branch Input to Y Output 19 19 19 
Instruction to Y Output 25 
Instruction to D Output 31 
Force Continue to 
Y Output 21 
Interrupt Request to 
Interrupt Ack 11 11 
OE D to D Valid 25 25 

Minimum Cycle Time 
per Case 96 97 115 90 169 99 94 94 .89 127 84 81 85 
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Am29300 Demonstration System 

Table 6-1 F 

Case Definitions 

1. Basic flow through calculation, data path. 

Signal Path Timing Analysis 

Pipeline, Teo; Address Mux, Tpd; Register File, Tpd; ALU, Tpd; Register File, Set-up. 

2. Basic flow through calculation, position control path. 
Pipeline, Teo; Position Mux, Tpd; ALU, Tpd; Register File, Set-up. 

3. Flow through calculation with address supplied by operand counter; counter output enabled same cycle. 
Pipeline, Teo; Operand Counter, Tea; Register File, Tpd; ALU, Tpd; Register File, Set-up. 

4. Flow through calculation with address supplied by operand counter; counter output enabled prior cycle. 
Pipeline, Teo; Operand Counter, Teo; Register File, Tpd; ALU, Tpd; Register File, Set-up. 

5. First cycle of FPP Newton-Raphson division, seed value load. 
Pipeline, Teo; Control Decode, Tpd; Seed Register, Tzh; FPP Internal Register Set-up, Tsd2. 

6. Memory read with address from the register file, selected by microcode. 
Pipeline, Teo; Address Mux, Tpd; Register File, Taa; Memory Address Buffer, Tpd; Memory, Taa; Register File, Set-up. 

7. Memory read with address from a memory address counter. 
Pipeline, Teo; Control Decode, Tpd; Memory Address Counter, Tzh; Memory, Taa; Register File, Set-up. 

8. Memory Write with data from register file, selected by operand counter. 
Pipeline, Teo; Operand Counter, Tea; Register File, Taa; Memory Address Buffer, Tpd; Memory, Write Set-up. 

9. Move register file data to interrupt controller or sequencer, data selected by operand counter. 
Pipeline, Teo; Operand Counter, Tea; Register File, Taa; A to D Bus Xcever, Tpd; Interrupt Controller, Data Set-up. 

1 o. Move sequencer or interrupt controller data to register file. 
Pipeline, Teo; Control Decode, Tpd; Sequencer, OED to D; D to A Bus Xcever, Tpd; Parity Buffer, Tpd; ALU, Tpd; Register File, Set-up. 

11. Sequencer branch, conditional or unconditional. . 
Pipeline, Teo; Pipeline Branch Field, Tzh; Sequencer, D to Y; Control Store, Address Set-up. 

12. Sequencer interrupt or trap cycle. 
Trap Logic, Clock to INTR; Sequencer, INTR to INTA; Trap Logic, Tea; Control Store, Address Set-up. 

13. Sequencer branch to macro opcode specified instruction. 
Macro Opcode Register, Teo; Map RAM, Taa; Sequencer A to Y, Control Store, Address Set-up. 
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SECTION 7 

Physical Issues 

ELECTRICAL LAYOUT ISSUES FOR 
POWER SUPPLY 

The TTL compatible, bipolar, Am29300 family compo­
nents all use internal ECL circuitry with TTL compatible 
110 buffers. 

Each part has a large number of output buffers due to the 
32-bit output bus, plus various status outputs. 

These two facts can make the real world interesting. 

When a large number of the output buffers switch simul­
taneously, the local Printed Circuit Board (PCB) power 
and ground, and the chip internal power supply lines can 
experience significant noise transients. 

This power supply noise can couple into the internal 
logic's ECL VCC pins. Since the internal ECL circuitry is 
referenced to the ECL VCC, the power supply noise can 
cause short duration shifts in the threshold levels of the 
internal logic. 

Due to the way ECL circuitry operates, it has much 
smaller noise margins than equivalent TTL circuits. The 
threshold shifts result in lowerthan normal noise margins 
in already sensitive high speed circuits. These reduced 
noise margins can result in noise-induced logic errors. 

It is, therefore, very important to provide very good power 
distribution and decoupling in a system using the 
Am29300 family. It is strongly suggested that a multi­
layer PCB be used to provide power and ground planes. 
It is also important to minimize coupling between the 
TTL and ECL VCC pins of any Am29300 bipolar device. 
This can be done in part through good power supply de­
coupling. 

An additional way to decouple the ECL and TTL VCC pins 
is to introduce inductive isolation. The simplest way to do 
that is to place a cut in the VCC plane that separates the 
ECL supply pins from the TTL pins. This produces a 

longer electrical path between the pins, which adds 
inductance between the pins. This inductive isolation will 
significantly reduce noise coupling. 

Some suggested PCB layouts for use with the Am29300 
family are shown in Figures 7-1a and 7-1b. The images 
are negatives where black indicates an absence of metal 
in the VCC plane. 

Although significant noise can also occur on the TTL and 
ECL ground lines, the ECL circuits are much less sensi­
tive to this noise. Attempting to isolate the TTL and ECL 
ground pins from each other can create more problems 
than it solves. Any isolation will reduce the noise in the 
ECL circuitry and thereby make the chip internal ECL 
ground "different" from the TTL ground. This can reduce 
the noise margin in the ECL to TTL conversion logic, 
introducing potential for noise induced errors. It is recom­
mended that no isolation between grounds be used. 

DECOUPLING CAPACITORS 

An added help in providing local VCC to ground decou­
pling is available in the form of under-chip capacitors. 

Special capacitors for PGA device packages have been 
developed by Rogers Corporation, 0-PAC Div., 2400 
South Roosevelt St., Tempe, AZ.. 85282. 

SOCKETS 

Whenever high pin count, expensive VLSI components 
are used in a system, many hardware designers prefer to 
have the devices in sockets. This allows easy removal for 
repairs or upgrades and provides an additional test point 
in the system. 

Sockets for the Am29300 family are available from Augat 
Corporation, Interconnection Component Div. 33 Perry 
Ave. Attleboro, MA. 02703. 

7-1 
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SECTION 8 

Conclusion 
There are many ways to skin a cat and surprisingly, 
many more ways to build a computer. This application 
note has tried to guide the reader through just one 
simple implementation. The author hopes some of the 
reasons behind the design choices in a microprogram­
med computer design were made clear during the course 
of the description. 

Aside from some general notions about how a micropro­
grammed system works, the reader should walk away 
having noted the following thoughts: 

This design is a full 32-bit processor capable of executing 
a full 32-bit add, barrel shift, logical, integer multiply, or 
even floating point multiply every 100 ns to 133 ns. That 
is a 7 to 1 O Million Instructions Per Second (MIPS) rate, 
which is (loosely) comparable to 7 times the performance 
of a VAX 11/780. 

For all that computing horsepower, the real core of this 
machine is made from only 6 chips: the Am29300 family 
of computer building blocks. That's an incredible degree 

of integration as compared with previous approacheS-to­
high performance microprogrammed computer design. 

Most of the logic surrounding the Am29300 family com­
ponents is not required. The additional logic is used to 
add system flexibility and to show off different aspects of 
microprogrammed design. Very little glue is needed to 
hold this family together. 

There is very little in the way of standard SSI logic 
used. Virtually all the MSI and SSI level logic functions 
were incorporated into Programmable Array Logic. 
This shows the versatility and integration that PALs can 
provide. 

Due to use of Serial Shadow Registers throughout the 
system, there is a reasonable hope that enough of the 
system state can be read and controlled so that debug­
ging in the factory or field will be simple. This access to 
the internal structure of the machine is gained with very 
little "excess" logic. 
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APPENDIX A 

Related Reference Material 

Bit-Slice Microprocessor Design, John Mick and Jim Brick, McGraw-Hill, 1980. 

Bit-Slice Design: Controllers and ALUs, Donnamaie E.White, Garland Publishing, 1981. 

Am29300 Family Handbook, Advanced Micro Devices, Sunnyvale, CA., 1985. 

Am29300 Family Datasheets, Advanced Micro Devices, Sunnyvale, CA. 

32-Bit Building Blocks for High Performance Processor/Controller, Paul Chu, Advanced Micro Device, 
Sunnyvale, CA., 

A Very High Speed Floating Point Processor, B. J. New, Advanced Micro Devices, Sunnyvale, CA. 
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APPENDIX B ~ 
Signal-to-Figure Cross Reference 

This is a "signal name to document figure number cross reference listing." Where a signal name is followed by a colon 
(:)the signal is identified as an 1/0 signal to that figure. Where a signal name is followed by a semi-colon(;) the signal 
is identified as an output from that figure. A plain signal name indicates an input to that figure. 

ALU_HOLD 3-2 CLK_D 3-1 DCLK_WCS 5-3 
ALU_HOLD; 5-21 CLK_D 3-2 DCLK_WCS; 4-3 
ALU_OE* 3-2 CLK_D 3-3 DECODE_ADD 5-9 
ALU_OE*; 5-21 CLK_D 3-5 DECODE_ADD; 5-3 
ANY_E* 4-4 CLK_D 3-6 D_BUS 5-10 

ANY_E*; 4-3 CLK_D 4-7 D_BUS 5-11 
ARA 3-1 CLK_D; 5-15 D_BUS 5-9 
ARA 5-6 CLK_FREE_RUN 4-3 D_BUS; 5-20 
ARA; 5-4 CLK_FREE_RUN 4-4 D_OER* 5-10 
ARA; 5-5 CLK_FREE_RUN 4-6 D_OER*; 5-21 

ARB 3-1 CLK_FREE_RUN* 5-15 D_OET* 5-10 
ARB 5-6 CLK_FREE_RUN*; 5-16 D_OET*; 5-22 
ARB; 5-4 CLK_FREE_RUN; 5-15 D_SIGN_EX 5-10 
ARB; 5:5 CLK_INT _BASE 5-11 D_SIGN_EX; 5-22 
AWA 3-1 CLK_INT_BASE; 5-15 EQUAL 5-11 

AWA; 5-6 CLK_MAC_STAT 3-2 EQUAL 5-12 
AWA_MAC 5-6 CLK_MAC_STAT; 5-15 EQUAL; 5-9 
AWA_MAC 5-7 CLK_MOP 5-1 EXT_ADD 4-2 
AWA_MAC; 5-4 CLK_MOP; 5-15 EXT_ADD 4-3 
AWB 3-1 CLK_PIPE 5-3 EXT_ADD 4-9 

AWB; 5-7 CLK_PIPE 5-13 EXT_BUS_EN* 4-9 
A_BUS 3-2 CLK_PIPE 5-14 EXT_BUS_EN*; 4-3 
A_BUS 3-3 CLK_PIPE; 5-15 EXT_DATA 4-2 
A_BUS 3-6 CLK_SEQ 5-11 EXT_DATA 4-9 
A_BUS 4-2 CLK_SEQ 5-12 EXT_INTR; 4-2 

A_BUS 4-8 CLK_SEQ 5-9 EXT_INTR; 4-4 
A_BUS; 3-1 CLK_SEQ; 5-15 EXT_READY 4-2 
A_BUS; 3-5 CLOCK_CNTL 5-15 EXT_READY 4-3 
A_BUS; 5-10 CLOCK_CNTL; 4-2 EXT_RESET 4-2 
A_FULL 5-11 CLOCK_CNTL; 4-3 EXT_RESET 4-3 

A_FULL; 5-9 CNTL_EN 4-4 EXT_WEN* 4-2 
A_MD_OE* 4-8 CNTL_EN; 5-15 EXT_WEN*. 4-3 
A_MD_OE*; 5-21 CPU_BUS_EN* 4-4 EXT_WEN* 4-9 
B_BUS 3-2 CPU_BUS_EN* 4-8 E_ADD 4-4 
B_BUS 3-3 CPU_BUS_EN*; 4-3 E_ADD; 4-3 

B_BUS 3-6 DCLK_MOP 3-2 FP_FT 3-3 
B_BUS 4-2 DCLK_MOP 4-5 FP_FT; 5-21 
B_BUS 4-8 DCLK_MOP 5-1 FTP 3-6 
B_BUS; 3-1 DCLK_MOP 5-11 FTP; 5-21 
CASOUT2 5-11 DCLK_MOP; 4-3 IEN* 5-11 

CASOUT2; 5-12 DCLK_SSR 4-5 IEN*; 5-22 
CLK_CNTL 5-13 DCLK_SSR; 4-3 INIT_MC* 5-13 
CLK_CNTL 5-14 DCLK_WCS 4-5 INIT_MC* 5-14 
CLK_CNTL 5-4 DCLK_WCS 5-13 INIT_MC*; 5-21 
CLK_CNTL; 5-15 DCLK_WCS 5-14 INTA* 5-11 

B-1 



APPENDIX B 
Signal-to-Figure Cross Reference 

INTA* 5-12 MODE 5-11 P_ENF*; 5-19 
INTA*; 5-9 MODE 5-13 P_ENP* 3-6 
INTR 5-9 MODE 5-14 P_ENP*; 5-19 
INTR; 5-11 MODE 5-3 P_ENR* 3-3 
INTR; 5-12 MODE; 4-3 P _ENR*; 5-19 
INT_CPU* 5-11 P(15:0); 5-14 P_ENS* 3-3 
INT_CPU*; 5-15 P(91 :0) 518, 5-19, 5-20 P _ENS*; 5-19 
INT_CS* 5-11 P(91 :16); 5-13 P_ENT* 3-6 
INT_CS*; 5-22 PE_ALU 5-11 P_ENT*; 5-19 
INT_FPP* 5-11 PE_ALU; 3-2 P_ENXA* 3-6 

INT_FPP*; 3-3 PE_D_BUS* 5-11 P_ENXA*; 5-19 
M1_BUS 5-9 PE_D_BUS*; 5-10 P_ENXB* 3-6 
M1_BUS; 3-3 PE_PM 5-11 P_ENXB*; 5-19 
M2_BUS 5-9 PE_PM; 3-6 P_ENYA* 3-6 
M2_BUS; 3-3 PM_OE* 3-6 P_ENYA*; 5-19 

MAC_OP 5-3 PM_OE*; 5-21 . P_ENYB* 3-6 
MAC_OP 5-4 POSITION 3-2 P_ENYB*; 5-19 
MAC_OP 5-8 POSITION; 5-8 P_FA 3-6 
MAC_OP 5-8 P_ACC 3-6 P_FA; 5-19 
MAC_OP 5-9 P_ACC; 5-19 P_FC* 4-4 

MAC_OP; 5-1 P_ALU_INST 3-2 P_FC* 5-12 
MAC_STATUS_BUS 5-9 P _ALU_INST; 5-19 P_FC* 5-15 
MAC_STATUS_BUS; 3-2 P_ARA_MAC 5-4 P_FC* 5-21 
MA_ BUS 4-6 P_ARA_MAC 5-5 P_FC* 5-22 
MA_BUS: 4-7 P_ARA_MAC; 5-18 P _FC*; 5-20 

MA_BUS; 4-8 P_ARB_MAC 5-4 P_FP_FT 5-21 
MA_BUS; 4-9 P_ARB_MAC 5-5 P_FP_FT; 5-19 
MC_ADDRESS 5-13 P_ARB_MAC; 5-18 P_FP_I 3-3 
MC_ADDRESS 5-14 P_AWB_MAC 5-7 P_FP_I; 5-19 
MC_ADDRESS; 5-11 P_AWB_MAC; 5-18 P_FP_RND 3-3 

MC_ADDRESS; 5-12 P_BM 3-2 P_FP_RND; 5-19 
MC_ADDRESS; 5-3 P_BM; 5-19 P_FTP 5-21 
MC_ADDRESS; 5-9 P _BRANCH_EN* 5-14 P_FTP; 5-19 
MD_BUS 3-1 P _BRANCH_EN* 5-22 P_FTX 3-6 
MD_BUS 5-1 P _BRANCH_EN*; 5-20 P_FTX; 5-19 

MD_BUS: 4-5 P_CLK_LEN 5-16 P_FTY 3-6 
MD_BUS: 4-9 P_CLK_LEN; 5-20 P_FTY; 5-19 
MD_BUS; 4-6 P_CNTA_EN 5-4, P _IEEE/DEC* 3-3 
MD_BUS; 4-8 P_CNTA_EN; 5-18 P _IEEE/DEC* 3-5 
MEM_EN* 4-4 P_CNTB_EN 5-4 P _IEEE/DEC*; 5-19 

MEM_EN*; 4-3 P_CNTB_EN; 5-18 P_INIT 5-21 
MEM_WEN* 4-6 P_CNTC_EN 5-4 P_INIT; 5-20 
MEM_WEN*; 4-8 P_CNTC_EN; 5-18 P_INT_EN 5-9 
MEM_WEN*; 4-9 P_C_SEL 5-4 P_INT_EN; 5-20 
MINTA* 5-12 P_C_SEL 5-6 P_INT_HOST 4-4 

MINTA*; 5-11 P_C_SEL; 5-18 P_INT_HOST; 5-20 
MODE 3-2 P_DPS 3-3 P_INT_INST 5-11 
MODE 4-4 P_DSP 5-21 P_INT_INST 5-22 
MODE 4-5 P_DSP; 5-19 P _INT _INST; 5-20 
MODE 5-1 P _ENF* 3-3 P_LD_CNT 5-4 
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P _LD_CNT; 5-20 P_TSEL; 5-19 SEQ_CIN*; 5-12 
P _LD_INT_BASE 5-15 P _UP/DN_A 5-4 SEQ_FC 5-9 
P _LD_INT_BASE; 5-20 P_UP/DN_A; 5-18 SEQ_FC; 5-11 
P _LD_MAC_OP 5-15 P_UP/DN_B 5-4 SEQ_FC; 5-12 
P _LD_MAC_OP; 5-20 P_UP/DN_B; 5-18 SEQ_ OED 5-9 

P _LD_MAC_STAT 5-15 P_UP/DN_C 5-4 SEQ_ OED; 5-22 
P _LD_MAC_STAT; 5-19 P_UP/DN_C; 5-18 SSR_BUS_EN* 4-5 
P_MEM 4-4 P_WEA* 3-1 SSR_BUS_EN*; 4-3 
P_MEM 4-7 P_WEA*; 5-18 STATUS_BUS 5-9 
P_MEM 5-21 P_WEB* 3-1 STATUS_BUS 5-9 

P_MEM; 5-19 P_WEB*; 5-18 STATUS_BUS; 3-2 
P_MEM_WR* 4-8 P_WIDTH 5-8 SYS_MEM_EN* 4-6 
P_MEM_WR*; 5-19 P_WIDTH; 5-19 SYS_MEM_EN*; 4-4 
P_MIC/MAC 3-2 P_WID_MAC 5-8 TRAP 5-15 
P_MIC/MAC; 5-19 P_WID_MAC; 5-19 TRAP; 5-11 

P _OEA* 3-1 P_XSEL 3-6 TRAP; 5-12 
P _OEA* 5-21 P_XSEL; 5-19 WCS_INIT* 4-5 
P _OEA*; 5-18 P_YSEL 3-6 WCS_INIT* 5-21 
P_POSITION 5-8 P _YSEL; 5-19 WCS_INIT*; 4-3 
P _POSITION; 5-19 RESET_300* 5-11 WCS_WR* 4-5 

P_POS_MAC 5-8 RESET_300* 5-12 WCS_WR* 5-3 
P_POS_MAC; 5-19 RESET_300* 5-9 WCS_WR* 5-9 
P _PROJ/AFF* 3-3 RESET_300*; 5-15 WCS_WR*; 4-3 
P _PROJ/AFF*; 5-19 SDl_SSR_MUX 4-4 WIDTH 3-2 
P _PSEL 3-6 SDl_SSR_MUX 4-5 WIDTH; 5-8 

P _PSEL; 5-19 SDl_SSR_MUX; 4-3 Y_BUS 3-1 
P_RA 5-5 SD_o 4-5 Y_BUS; 3-2 
P_RA; 5-18 SD_O; 4-4 Y_BUS; 3-3 
P_RB 5-5 SD_1 5-1 Y_BUS; 3-6 
P_RB; 5-18 SD_1 5-3 

P_RC 5-6 SD_1; 4-2 
P_RC 5-7 SD_2 3-2 
P_RC; 5-18 SD_2; 5-1 
P_REG_STAT 3-2 SD_3 5-11 
P _REG_STAT; 5-19 SD_3; 3-2 

P_RND 3-6 SD_4 4-2 
P_RND; 5-19 SD_4 4-4 
P _SEED_OE* 5-21 SD_4; 5-11 
P_SEED_OE; 5-19 SD_5 5-14 
P_SEQ_INST 5-22 SD_5; 5-3 

P_SEQ_INST 5-9 SD_5A 5-13 
P _SEQ_INST; 5-20 SD_5A; 5-14 
P_TCX 3-6 SD_6 4-2 
P_TCX; 5-19 SD_6 4-4 
P_TCY 3-6 

SD_6; 5-13 
P_TCY; 5-19 SEED_OE* 3-5 
P_TEST 5-9 SEED_OE; 5-21 
P_TEST; 5-20 SEQ_CIN* 5-9 
P_TSEL 3-6 SEQ_CIN*; 5-11 
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APPENDIX C 

FPP Status PAL Definition 

Advanced Micro Devices Application Note: 

Am29300 Demonstration System 

By Mark Mc Clain, Field Applications Enginee, San Dieg, CA. 

(619)560-7030, Date= 1/87 

Module 
FPP_STATUS_REG; 

Title 
'FPP status register PAL for an Am29300 Demonstration System.'; 

fpppl device 'P22V10'; 

"declarations 

X,Z,C,P = .X., .z., .C., .P.; 

"Signal names that end in an underline indicate an active low signal. 

CLK_D, P_DSP_l, P_DSP_O, FP_FT_l, INEXACT, INVALID, NAN Pin 
1, 2, 3, 4, 5, 6, 7 i 

OVERFLOW, UNDERFLOW, ZERO Pin 
8, 9, 10; 

Ml_O, Ml_l, M1_2, Ml_3, M2_0, M2_1, M2_2, INT_FPP_, delay_load Pin 
14, 15, 16, 17, 18, 19, 20, 21, 22; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins 
in the 22V10 are active low regardless of how they are declared. 
Earlier versions of ABEL will generate an incorrect JEDEC file. 

Ml_O, Ml_l, M1_2, M1_3, M2_0, M2_1, M2 2 
Istype 'pos,.reg'; 

INT_FPP_ 
Istype 'neg, com'; 

" define some constants 

status 
dsp 

= [M2_2, M2_1, M2_0, M1_3, M1_2, Ml_l, Ml_O]; 
[P_DSP_l, P_DSP_O]; 

fpp "blO; 
special "bll; 
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" define a macro 

EQUATIONS 

End;' 
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OR_EM macro (a,b,c) {(?a f '?b f '?c) }; 

The delay_load signal will cause the status register to load the 

cycle after a cycle in which the FPP data path was selected; if the 

FPP output register flow through is disabled. If the flow through is 

inactive, the flag register in the FPP holds the status in the first 

cycle. 

delay_load ·= (dsp == fpp) & !FP_FT_l f 
(dsp == special) & !FP_FT_l; 

The status register loads with the value of the input flags when the 

FPP. data path is enabled and the FPP output register flow through 

signal is active. It also will load if the delay_load signal is 

active. If neither condition is true, the status register will load 

with its own current value. This retains the state of the status 

register when there is no enable to load a new flag value. 

status ·= 

! ( (dsp 

( (dsp 

fpp) f (dsp 

fpp) f (dsp 

& !FP_FT_l f 

delay_load 

special)) & status & !delay_load f 

special)) & status & !delay_load 

& [ INEXACT, NAN, ZERO, OR_EM(INEXACT, NAN, ZERO), 
INVALID, OVERFLOW, UNDERFLOW] i 

((dsp == fpp) f (dsp ==special)) & FP_FT_l 
& [ INEXACT, NAN, ZERO, OR_EM(INEXACT, NAN, ZERO), 

INVALID, OVERFLOW, UNDERFLOW] 

The FPP interrupt to the CPU is based on the OR of flags_iou. 

!INT_FPP_ 

INVALID i OVERFLOW f UNDERFLOW; 

Test_Vectors need to be defined. 
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Host Interface Glue PAL Definition 
Advanced Micro Devices Application Note: 

Am29300 Demonstration System 

By Mark Mc Clain, Field Applications Engineer, San Diego, 
CA. 

(619)560-7030, Date 1/87 

Module 
Host Interface_Glue; 

Title 
'Host Interface Glue PAL for an Am29300 Demonstration System.'; 

hig device 'P22Vl0'; 

"declarations 

X,Z,C,P = .X., .Z., .C., .P.; 

"Signal names that end in an underline indicate an active low signal. 

CLK_FREE_RUN, P_INT_HOST, P_FC_, E ADD 17, E_ADD_l6, ANY E Pin 

1, 2, 3, 4, 5, 6; 

P_MEM_l, P_MEM_O, CPU BUS_EN_, MEM_EN_, SD_4, SD_6, MODE Pin 

7, 8, 9, 10, 11, 13, 14; 

SDI_SSR_MUX, CNTL EN Pin 15, 19; 

EXT_INTR, SYS MEM EN , SD_O Pin 
16, 17, 18; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins 
in the 22Vl0 are active low regardless of how they are declared. 
Earlier versions of ABEL will generate an incorrect JEDEC file. 

EXT INTR 
Istype 'pos, reg'; 

SD 0 
Istype 'pos, com'; 

SYS_MEM_EN_ 
Istype 'neg, com'; 

D-1 



APPENDIX D 
Host Interface Glue PAL Definition 

EQUATIONS 

End; 
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The external bus (host) interrupt signal comes from a registered 
latch which is set active when the pipeline Force Continue and 
Interrupt host bits are active along with the control section clock 
enable. The control section clock enable is needed since the 
register is clocked by the system free running clock. The free 
running clock is used so the latch can always be cleared by the 
host whether the CPU clocks are active or not. But we don't want' to 
set an interrupt unless the control section of the CPU really means 
it (i.e. completes the execution of the current clock cycle with 
the interrupt bits active. The interrupt is cleared by the host 
when any access (read or write) is done to the host interface SSR 
Port. 

EXT INTR ·= 

CNTL EN & P_INT_HOST & !P_FC_ # 
EXT INTR & ! (!ANY_E_ & !E_ADD_17 & E_ADD_16); 

When the CPU bus buffers are enabled the system memory is enabled 
by either of the LSB P_MEM pipeline bits being active. When the CPU 
bus buffers are not enabled the memory is enabled only by the host 
interface controller MEM_EN_. 

SYS_MEM_EN 

!CPU_BUS_EN_ & (P_MEM_l # P_MEM_O) # 
CPU_BUS_EN_ & !MEM_EN_ 

The Serial Data path bit zero is the output of a Multiplexer. When 
MODE is low, the SDI_SSR_MUX input is used as a mux selector for 
the SD_4 or SD_6 input. If MODE is high then the value of 
SDI_SSR_MUX is passed through the mux to be the SDI input of the 
SSR Port. 

SD 0 = 

MODE & SDI_SSR_MUX # 
!MODE & ((SDI_SSR_MUX & SD_6) # (!SDI_SSR_MUX & SD_4)); 

Test_Vectors need to be defined. 
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Host Interface Am29PL 141 Program 
Advanced Micro Devices Application Note: 
29300 Demonstration System 
External (Host) Interface Controller Program Definition 

This file is formated for the Am29PL141 assembler program, which is available from 
Advanced Micro Devices. 

By Mark Mc Clain, Field Application Engineer, San Diego 12/86 

Device (PL141) 

SSR = 0; 

"The device used is an Am29PL141 
Fuse Programmed Controller" 

"No SSR diagnostics used." 

Default = l; "Unused fuses will be left intact (just in case, I may be able to 
patch a bug without burning a new PL141 if the 
right fuses are still intact)" 

Define 

" Note:all test inputs are externally registered" 

not _write =cc "External bus !WR signal tied to cc input. ,, 

not - select =tS "External bus selection signal (board select and address 
indication) tied to test input 5. ,, 

address 17 =t4 "External bus address bit 17 tied to test input 4.,, 
-

address - 16 =t3 "External bus address bit 16 tied to test input 3.,, 

address - 2 =t2 "External bus address bit 2 tied to test input 2.,, 

address - 1 =tl "External bus address bit 1 tied to test input 1." 

address - 0 =tO "External bus address bit 0 tied to test input 0.,, 

Address bits 23 .. 18 are externally matched to a board address to 
generate the not_select signal to the external bus interface 
controller. Address bits 16 and 17 are used to select one of four 
command modes in the interface controller. Address bits 2 .. 0 are used 
as command modifiers or as the upper 3 bits of a 5 bit count value 
used in diagnostic shifting. 

valid 

command mask = lllOOO#b "Pass not_select (address bits valid if low) and pass ad­
dress_l6 and address_17 to select the command mode." 

cmd_modifier_mask Olllll#b "Pass address bits 2 .. 0, address 17 and address_16 to 
select a specifi~ operation." 

count_mask OOOlll#b "Pass address bits 2 .. 0 when a counter value is being 
loaded." 

E-1 



APPENDIX E 
Host Interface Am29PL 141 Program 

"end of define section" " 
"No Default output pattern is defined" 

"No Default test condition is defined" 

Assembler code format is as follows: 

Label Output Pattern , Opcode Comments (in quotes) 

cc cc 
LLLL 

s ! ! ! KKKK 
DCES 
IPXS cc cc 

W DOD -UTR 0000 
C!CCC S---!NNNN 
SWLLL SBBBMTTTT 

R-CKKK RUUUERRRR 
EIS---M-SSSMOOOO 
AN-WMSOM--~LLLL 

DIWCOSDUEEEE--~ 

YTRSPREXNNNN3210 

<== If you put your glasses on 
and read vertically, you will 
see the headers for each bit 
of the output pattern. Listed 
most to least significant: 
READY !CPU_BUS_EN 
!WCS_INIT 
!WCS_WR 
DCLK_WCS 
DCLK_MOP 
DCLK_SSR 
MODE 
SDI_SSR_MUX 

!EXT_BUS_EN 
!SSR_BUS_EN 
!MEM_EN 
CLK_CONTROL_3 
CLK_CONTROL_2 
CLK_CONTROL_l 
CLK_CONTROL_O 

Let's define what the outputs are used for: 

READY is the signal that is passed back to the host system bus to cause wait states 
that hold the host bus steady while the Am29PL141 (external bus interface control­
ler) performs the function requested by the host. While READY is inactive (low) the 
external bus is held. When READY goes active the external bus may proceed. The 
default state of READY is inactive. It is set active only by the last instruction in 
a command execution routine. 

!WCS_INIT is used in loading or reading the initialize word of the microcode memory. 
Its default state is inactive (high) . 

!WCS_WR is used to write the Macro Opcode Map RAM. This is done at the same time 
that the writable control store is written. Its default state is inactive (high). 

DCLK_WCS is the shift clock to all shadow registers in the Writable Control Store 
SSR chain. It is used to shift data into the writable control store SSR~ Its default 
state is inactive (low) . 

DCLK_MOP is the shift clock to all shadow registers in the Macro Opcode, Status, and 
Interrupt SSR chain. It is used to shift data into those SSR. Its default state is 
inactive (low). 

DCLK_SSR is the shift clock to all shadow registers in the SSR diagnostics port. It 
is used to shift data into or out of the SSR port. Its default state is inactive· 
(low). 

MODE controls the mode of operation for all the SSR in the diagnostics chains. Its 
default state is inactive (low) . 

SDI_SSR_MUX is a signal that, depending on the state of MODE, controls whether the 
WCS or MOP SSR chain is shifted in to the SSR port register via the SSR multiplexer; 
or acts directly as the Serial Data Input to all the SSR diagnostics chain. Its 
default state is inactive (low) . 
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!CPU_BUS_EN is the enable control over the buffers between the Am29300 CPU and the 
memory bus. Its default state is active (low). 

!EXT_BUS_EN is the enable control over the buffers between the External Bus and the 
memory bus. Its default state is inactive (high). 

!SSR_BUS_EN is the enable control over the output buffers of the SSR port registers. 
Its default state is inactive (high) . 

!MEM EN is the enable control of the memory. Its default state is inactive (high). 

CLK_CONTROL_ 3 .. 0 is a four bit encoded command to a control PAL in the Am29300 
system clock distribution circuit. The field defines the following commands to the 
clock control circuits: 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

No Operation, default state. 
Single cycle HALT of all clocks. 
Enter HALT mode continuously. 
Enter RUN mode on all clocks. 
Single step all clocks. 
Load control pipeline only. 
Single step control section and pipeline only. 
Load Macro Opcode, Status, and Interrupt registers. 
Single step data section only. 
Single step all clocks with Am29300 reset active. 
Set semiphore interrupt to the Am29300 CPU. 
Reserved. 
Reserved. 
Reserved. 
Reserved. 
Reserved. 

Program Structure: 

The Am29PL141 is a MICROPROGRAMMED controller. The whole point of using the micro­
program approach is to make hardware development easier, more structured, and flex­
ible than would be possible with a pure hard-wired approach; do as many functions in 
parallel as possible; perform one instruction per clock cycle for maximum speed; and 
make very frugal use of the available program memory space. 

The result tends to make either the memory map or the program flow of a microprogram 
difficult to follow. If the microprogram instructions are listed in the order they 
appear in memory so the positional relationships are clear, then the program flow is 
hard to see. If the instructions are listed to show program flow, then the posi­
tional relationships necessary to the understanding of some instructions like multi­
way branches are hard to see. 

In this program definition a compromise has been made between the two views. Where 
it is possible to show program flow by listing instructions together, that has been 
done. Often these instructions are widely separated in physical location due to the 
requirements of positional instructions like multi-way branches. To provide the 
correct positioning of instructions while showing program flow, a liberal use of 
ORIGIN statements has been made. 

A memory map showing the physical location of all instructions is shown at the end 
of the program listing. 
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Program Overview: 

The general idea of this program is to spin in a wait loop until the host system 
addresses the Am29300 system. When addressed, this controller does a multi-way· 
branch to one of four command modes based on the address used. One of the modes 
(memory access) has a valid address in bits 2 .. 0. For that reason the multi-way 
branch is not based on any of the bits 2 •• 0. To use those bits would consume too 
many entry points in the program memory. So, if the command specified by the host 
address is for a memory access or an access to the SSR port~ then command execution 
begins immediately. This makes memory and SSR port accesses occur with the maximum 
possible speed. If the command address is for one of the other 14 commands, a second 
multi-way branch is executed based on address bits 2 •• 0, which in that case contain 
command modifiers that select a specific command. Because these multi-way branches 
are based on the LSB address bits, the command entry points are all adjacent. This 
requires that any command requiring more than one instruction to execute does a 
branch to another location in program memory where the remainder of the instructions 
may be located. 

A note about conditional instructions: most of the P-~29PL141 instructions are condi­
tional, but often an uncondition operation is desired. The way to get an uncondi­
tional operation is to use the eq = 0 test condition. The eq flag is initially 
cleared by the reset instruction and is always left reset in this program so that 
all instructions referencing eq are, in effect, unconditional instructions. 

The remaining details of each command are well commented on in the program code 
itself. 

THE PROGRAM: 
As with all things that are logical and obvious, if you want to follow the program 
flow, you need to begin at the end. 
The program flow starts at reset; location 63. 

Begin 

.org 63 "Hardware reset will force the program counter to location 63 so 
we had better define the outputs we want to see during reset and 
define where to start execution after reset. 

reset: 0110000011110010fb, if (eq = 0) then goto pl(idle); 
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"Output explanation: 

If there is a hardware reset we are definitely not READY. A hard­
ware reset will also put the Am29300 CPU clocks in HALT mode so 
random strange things won't be happening. All other outputs are 
default state. 

Opcode explanation: 

Since the eq flag is cleared by a hardware reset, the opcode is an 
unconditional branch to the idle loop. 
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idle: OllOOOOOOlllOOOO#b , if (eq 0) then goto tm(command_mask); 

.org lOlOOO#b 

idle2: OllOOOOOOlllOOOO#b , if (eq 0) then goto tm(command_mask); 

.org llOOOO#b 

idle3: OllOOOOOOlllOOOO#b , if (eq 0) then goto tm(command_mask); 

.org lllOOO#b 

idle4: OllOOOOOOlllOOOO#b, if (eq = 0) then goto tm(command_mask); 

"Output explanation: 

In the idle states you are not READY. All other outputs 
are in their default states (i.e. if the host knocks on the door, 
you're not ready yet and while you're hanging around being idle 
don't do anything rash with the other outputs). 

Opcode explanation: 

The main loop (i.e. idle loop) for the external bus interface 
' controller is a single instruction that loops on itself until a 

valid command from the external bus is received. When a valid 
command does appear, an immediate multi-way branch occurs, which 
transfers control to the code that handles a command. This pro­
vides a very fast command execution by beginning the command 
routine in the clock cycle following the command appearance. 

The multi-way branch address is based on three bits from the 
external bus: the not_select, address_16, and address_17 bits. 
This means that the multi-way branch will transfer control to one 
of eight locations in the microcode. Four of these locations are 
the starting instructions for the four command modes. These loca­
tions are reached when the not_select bit is active (low) . Four 
other locations are reached when the not_select bit is inactive 
(high), meaning that address_16 and address_17 are invalid (don't 
care). Since these two LSB bits of the branch address are don't 
care, each location potentially addressed contains an identical 
instruction that performs another multi-way branch, i.e. forming 
the loop-on-itself instruction. These locations are referred to 
as idle states. 

The idle states occur at locations 32, 40, 48, and 56 since the 
MSB of the multi-way branch address is the not_select bit. If the 
external address bits are not valid (not_select = 1), then the 
Am29300 board is not being addressed and address_16 and ad­
dress 17 have no meaning. This implies that the branch address 
will fall in the locations just noted. Therefore, each location 
has the same opcode so that from the program execution point of 
view the controller sits in a single cycle loop waiting for the 
not_select input to go low. 
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. org OOOOOO#b 

When the not select input does go low the multi-way branch trans­
fers control to one of the locations 0, 8, 161 or 24 . 

memory: 011000001010000l#b , continue; 

"Output explanation: 
This is the memory access command that requests a read or write of 
the dual port main memory on the Am29300 board. During the execu­
tion of this micro instruction the CPU bus buffer is disabled and 
the clocks to the CPU are halted to place the CPU in suspended 
animation while the external bus (host) is given access to the 
memory. The external bus buffers are enabled and the memory is 
enabled. The memory begins its access cycle. The memory data on a 
read cycle will not be valid until near the end of the microin­
struction cycle so the READY line will not go active in this 
cycle. All other outputs are in the default state. 

Opcode explanation: 

Continue to next instruction. 

memory2: 111000001010000l#b , if (not_select 1) then goto pl(idle) else wait; 

. org 001000.#b 

"Output explanation: 

The memory has had time to be accessed and drive data on to the 
external bus (or receive data from the bus) so the bus transaction 
can now proceed. The READY line is made active to allow progress. 
All other outputs remain as they were in the last cycle of the 
memory access routine. 

Opcode explanation: 

The bus interface controller now needs to hold things steady until 
the external bus (host) indicates it is ready to proceed and 
release the bus. This is indicated by the not_select signal going 
inactive (i.e. the host stops addressing the Am29300 board). Until 
the not_select input goes inactive this instruction loops on 
itself. When it does go inactive the instruction branches back to 
the idle routine to wait for the next command . 

ssr_port: 011000101011000l#b, if (not_write) then goto pl(ssr_read); 
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"Output explanation: 

Since this is only the first instruction of the ssr_port access 
routine, the READY signal will be inactive. The MODE output is 
made active now to put the ssr_port register into diagnostics mode 
in anticipation of the next instruction, which will drive both 
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DCLK and PCLK active to the ssr_port. The SDI_SSR_MUX signal is 
kept inactive so that when DCLK and PCLK go active the shadow 
register will load from the ssr_port register outputs. The CPU bus 
buffers are disabled and the CPU clocks halted while the external 
bus buffers are enabled to allow for data set-up time if this will 
be a write to the ssr_port register. All other outputs are in the 
default state. 

Opcode explanation: 

If this ssr_port command is a read operation (not_write=l) then 
branch to the instruction that enables the register data onto the 
bus. Otherwise fall through to the instruction that writes data 
into the ssr_port register. ' 

ssr write: 1110011010110001#b , if (not_select 1) then goto pl(idle) else wait; 

ssr read 

"Output explanation: 

The data on the bus has been written into the ssr_port shadow 
register at the rising edge of DCLK_SSR and the READY signal is 
made active to allow the bus transaction to end. MODE remains high 
in this cycle to prevent any skew problems between it and the 
rising edge of DCLK_SSR. SDI_SSR_MUX remains low in this cycle for 
the same reason. The external bus buffers remain enabled and the 
CPU clocks halted. All other outputs are in the default state. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. 

1110011010010001#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

The data from the shadow register has been written into the pipe­
line register of ssr_port register at the rising edge of DCLK_SSR 
(which also serves as PCLK to the ssr_port) and the READY signal 
is made active to allow the bus transaction to end. !SSR_BUS_EN is 
made active to enable the ssr_port pipeline register contents onto 
the bus to be read by the host system. MODE remains high in this 
cycle to prevent any skew problems between it and the rising edge 

,of DCLK_SSR. SDI_SSR_MUX remains low in this cycle for the same 
reason. The external bus buffers remain enabled and the CPU clocks 
halted. All other outputs are in the default state. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. 
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.org OlOOOO#b 

comds_0_7: OllOOOOOOlllOOOO#b , if (eq 0) then goto tm(cmd_modifier_mask); 

haltmode 

runmode 

"Output explanation: 

Hold all the outputs to the same values used in the idle loop, 
since execution of a command has not started yet. 

Opcode explanation: 

Based on address_16 and addresses 2 .. 0, do a multi-way branch to a 
comma.nd execution routine. 

1110000001110010#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

This command takes only a single cycle to perform, so it is READY 
to proceed in this cycle. The clock control command is to enter 
the halt mode. All other outputs are at the default values. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. While 
waiting it helps to keep the clock command active. 

111000000111001l#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

This command takes only a single cycle to perform so it is READY 
to proceed in this cycle. The clock control command is to enter 
the run mode. All other outputs are at the default values. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. While 
waiting it helps to keep the clock command active. 

singlestp: 1110000001110100#b , if (eq 0) then goto pl(host_ack); 
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"Output explanation: 

This is a single cycle command so READY is made active in this 
cycle. The clock control command will single step all clocks. All 
other outputs are at the default values. 

Opcode explanation: 

Since the clock step command should occur for only one cycle, the 
program branches to a loop that waits for the host to release the 
bus. That loop has a no operation clock code. 
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ss contrl: 1110000001110110#b , if (eq 0) then goto pl(host_ack); 

ss_data 

"Output explanation: 

This is a single cycle command so READY is made active in this 
cycle. The clock control command will single step the control 
section clocks. All other outputs are at the default values. 

Opcode explanation: 

Since the clock step command should occur for only one cycle, the 
program branches to a loop that waits for the host to release the 
bus. That loop has a no operation clock code. 

lllOOOOOOlllOOll#b , if (eq 0) then goto pl(host_ack); 

"Output explanation: 

This is a single cycle command, so READY is made active in this 
cycle. The clock control command will single step only the data 
section clocks. All other outputs are at the default values. 

Opcode explanation: 

Since the clock step command should occur for only one cycle, the 
program branches to a loop that waits for the host to relea30 the 
bus. That loop has a no operation clock code. 

interrupt: 1110000001111010#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

Use the clock control code that causes a semiphore interrupt to 
the Am29300 CPU. The READY signal is active to end the transac­
tion. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. While 
waiting it helps to-keep the clock command active. 

reset_cpu: 1110000001111001#b if (not_select 
else wait; 

"Output explanation: 

1) then goto pl(idle) 

This instruction causes a reset to the Am29300 while forcing all 
the CPU control section clocks to step. READY is made active to 
end the bus transaction. All other outputs are default. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. While 
waiting it helps to keep the clock command active. 
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.org OOOlll#b 

host_ack 1110000001110000#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

Hold READY active, otherwise do nothing (default outputs) . 

Opcode explanation: 

Wait for the host to release the bus then go to idle. " 

. org OllOOO#b 

comds_8_F: OllOOOOOOlllOOOO#b , if (eq 0) then goto tm(cmd_modifier_mask); 

"Output explanation: 

Hold all the outputs to the same values used in the idle loop 
since execution of a command has not started yet. 

Opcode explanation: 

Based on address 16 and addresses 2 .. 0 do a multi-way branch to a 
command execution routine. 

load_pipe: 1110001001110101#b , if (eq 0) then goto pl(host_ack); 

load_mop 
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"Output explanation: 

This is a single cycle command so READY is made active in this 
cycle. MODE is active so that the pipeline register will load from 
the SSR when the pipeline register is next clocked. The clock 
control command will single step only the pipeline clocks. All 
other outputs are at the default values. 

Opcode explanation: 

Since the clock step command should occur for only one cycle the 
program branches to a loop that waits for the host to release the 
bus. That loop has a no operation clock code. 

1110001001110111#b , if (eq 0) then goto pl(host_ack); 

"Output explanation: 

This is a single cycle command so READY is made active in this 
cycle. MODE is active so that the macro opcode, status, and 
interrupt address pipeline registers will be loaded from the SSR 
at the next active edge of the pipeline clock. The clock control 
command will single step the above mentioned registers. All other 
outputs are at the default values. 



Opcode explanation: 
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Since the clock step command should occur for only one cycle the 
program branches to a loop that waits for the host to release the 
bus. That loop has a no operation clock code. 

load_wcs 011000110111000l#b , if (eq 0) then goto pl(load_wcs2); 

. org OOlOllfo 

"Output explanation: 

This is only the first instruction of this routine so READY is 
inactive. MODE and SDI_SSR_MUX are made active in anticipation of 
the next rising edge of DCLK_WCS. The CPU clocks are halted so 
that the pipeline registers in the system will not load from the 
shadow register instead of the normal inputs as would be directed 
by the state of MODE and SDI_SSR_MUX. All other outputs are in 
default state. 

Opcode explanation: 

Unconditional branch to second word of this routine that is lo­
cated elsewhere in the instructi6n memory . 

load_wcs2: 011000110111000l#b , if (eq 0) then load pl(7); 

"Output explanation: 

Still not READY. MODE and SDI_SSR_MUX remain active to propagate 
through the SDI-SDO chain of the SSR. The CPU clocks continue to 
be held to prevent changing the state of the pipeline register. 
All other outputs are at the default values. 

Opcode explanation: 

Load the CREG with a value of 7. Continue. 

load wcs3: 010000110111000l#b, while (creg <> 0) loop to pl(load_wcs3); 

"Output explanation: 

Still not READY. MODE is active in anticipation of DCLK_WCS. 
!WCS WR is active to enable the output of the WCS PORT so that the 
addr~ss to the WCS will be stable when DCLK_WCS n;xt goes active 
to begin the WCS write cycle. SDI_SSR_MUX remains active to con­
tinue propagating through the SDI-SDO chain in the SSR. The CPU 
clocks continue to be held to prevent changing the state of the 
pipeline register. All other outputs are at the default values. 
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Opcode explanation: 

Kill time by looping at this location for 8 more clocks. This 
allows time for the SDI_SSR_MUX signal to propagate 
through the serial data in to serial data out (SDI-SDO) path 
through all the SSR registers in the pipeline register. Each 
register in the 9151 WCS memories has a SDI to SDO propagation 
delay of 35ns worst case. There are about 25 of these connected in 
series in addition to the ssr_port register and wcs_port register 
which add an additional 15ns each. The total delay needed to 
ensure a valid SDI_SSR_MUX signal at the last register in the 
chain is about lOOOns (10 clocks) . Two clocks have occured prior 
to the current instruction and this instruction will loop for an 
additional 8 cycles. 

load_wcs4: 0101001101110001#b , continue; 

"Output explanation: 

Still not READY. !WCS_WR is active in order to write data into the 
macro opcode map RAM at the same time data is written into the 
Writable Control Store. DCLK_WCS goes active to clock the SSR 
internal register that enables shadow register data to be driven 
out on the input pins (i.e. driven to the data I/O pins of the 
WCS) . That same rising edge of DCLK_WCS causes the writing of data 
into the RAM of the AM9151s used in the WCS. MODE and SDI_SSR_MUX 
remain active to satisfy hold times relative to DCLK_WCS. The CPU 
clocks continue to be held to prevent changing the state of the 
pipeline register. All other outputs are at the default values. 

Opcode explanation: 

Continue to the next instruction. 

load_wcs5: 0110000001110001#b , continue; 
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"Output explanation: 

Still not READY. !WCS_WR goes inactive to complete the write of 
the macro opcode map RAM. DCLK_WCS goes inactive to prepare for 
going active again in the next cycle. MODE and SDI_SSR_MUX go 
inactive to meet the set-up,time to the rising edge of DCLK_WCS in 
the next cycle. MODE being inactive will cause the reseting of the 
SSR internal flip flop (at the next rising edge of DCLK_WCS) which 
enables the shadow register data onto the input pins of the SSR. 
The CPU clocks remain halted. All other outputs are in the default 
state. 

Opcode explanation: 

Continue to next instruction. Note: since MODE goes to all SSR in 
parallel there is no long delay required to wait for SDI SSR MUX 
to propagate through the SSR chain. MODE being inactive is alone 
enough to reset the SSR internal control flip flop. 
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load wcs6: 111100000111000l#b , if (not_select 1) then goto pl(idle) else wait; 

. org OlllOO#b 

"Output explanation: 

This is the last cycle of the routine and the READY signal is made 
active. DCLK_WCS goes active to clear the WCS write activity. The 
CPU clocks continue to be held. All other outputs have returned to 
the default states. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait . 

load init: 0110001101110001#b , if (eq 0) then goto pl(load_int2); 

. org OOOOlO#b 

"Output explanation: 

This is only the first instruction of this routine so READY is 
inacti~e. MODE and SDI_SSR_MUX are made active in anticipation of 
the next rising edge of DCLK_WCS occurring in the next cycle. The 
CPU clocks are halted so that the pipeline registers in the system 
will not load from the shadow register instead of the normol 
inputs as would be directed by the state of MODE and SDI SSH MUX. 
All other outputs are in default state. 

Opcode explanation: 

Unconditional branch to second word of this routine that is lo­
cated elsewhere in the instruction memory . 

load int2: 0110001101110001#b , if (eq 0) then load pl(7); 

"Output explanation: 

Still not READY. MODE and SDI_SSR_MUX remain active to propagate 
through the SDI-SDO chain of the SSR. The CPU clocks continue to 
be held to prevent changing the state of the pipeline register. 
All other outputs are at the default values. 

Opcode explanation: 

Load the CREG with a value of 7. Continue. 

load int3: 0010001101110001#b, while (creg <> 0) loop to pl(load_int3); 

"Output explanation: 

Still not READY. MODE is active in anticipation of DCLK_WCS. 
SDI_SSR_MUX remains active to continue propagating through the 
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SDI-SDO chain in the SSR. The CPU clocks continue to be held to 
prevent changing the state of the pipeline register. !WCS_INIT is 
active to meet set-up time to DCLK WCS. All other outputs are at 
the default values. 

Opcode explanation: 

Kill time by looping at this location for 8 more clocks. This 
allows time for the SDI_SSR_MUX signal to propagate through the 
serial data in to serial data out (SDI-SDO) path through all the 
SSR registers in the pipeline register. Each register in the 9151 
WCS memories has a SDI to SDO propagation delay of 35ns worst 
case. There are about 25 of these connected in series in addition 
to the ssr_port register and wcs_port register which add an addi­
tional 15ns each. The total delay needed to ensure a valid 
SDI_SSR_MUX signal at the last register in the chain is about 
lOOOns (10 clocks) . Two clocks have occured prior to the current 
instruction and this instruction will loop for an additional 8 
cycles. 

load_int4: 0011001101110001#b , continue; 

"Output explanation: 

Still not READY. !WCS_INIT is active in order to write data into 
the initialization register of the WCS. DCLK_WCS goes active to 
clock the SSR internal register that enables shadow register data 
to be driven out on the input pins (i.e. driven to the data I/O 
pins of the WCS) . That same rising edge of DCLK_WCS causes the 
writing of data into the initialization register of the AM9151s 
used in the WCS. MODE and SDI_SSR_MUX remain active to satisfy 
hold times relative to DCLK_WCS. The CPU clocks continue to be 
held to prevent changing the state of the pipeline register. All 
other outputs are at the default values. 

Opcode explanation: 

Continue to the next instruction. 

load_int5: 0110000001110001#b , continue; 
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"Output explanation: 

Still not READY. DCLK_WCS goes inactive to prepare for going 
active again in the next cycle. MODE, !WCS_INIT, and SDI_SSR_MUX 
go inactive to meet the set-up time to the rising edge of DCLK_WCS 
in the next cycle. These signals being inactive will cause the 
reseting of the SSR internal flip flop (at the next rising edge of 
DCLK_WCS) which enables the shadow register data onto the input 
pins of the SSR. The CPU clocks remain halted. All other outputs 
are in the default state. 



Opcode explanation: 

Continue to next instruction. 
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load_int6: 1111000001110001#b , if (not_select 1) then goto pl(idle) else wait; 

. org 0 lllOl#b 

"Output explanation: 

This is the last cycle of the routine and the READY signal is made 
active. DCLK_WCS goes active to clear the WCS write activity. The 
CPU clocks continue to be held. All other outputs have returned to 
the default states. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait . 

load ssr 0110001Q01110001#b I if (eq 0) then goto pl(load_ssr2); 

. org lllOOl#b 

"Output explanation: 

This is only the first instruction of this routine so READY i~ 

inactive. MODE is made active and SDI SSR MUX is made inactive in 
anticipation of the next rising edge of DCLK_WCS. The CPU clocks 
are halted so that the pipeline registers in the system will not 
load from the shadow register instead of the normal inputs as 
would be directed by the state of MODE and SDI_SSR_MUX. All other 
outputs are in default state. 

Opcode explanation: 

Unconditional branch to second word of this routine that is lo­
cated elsewhere in the instruction memory . 

load ssr2: 0110001001110001#b , if (eq 0) then load pl(7); 

"Output explanation: 

Still not READY. MODE and SDI SSR MUX remain as before to propa­
gate through the SDI-SDO chain of the SSR. The CPU clocks continue 
to be held to prevent changing the state of the pipeline regis­
ter. All other outputs are at the default values. 

Opcode explanation: 

Load the CREG with a value of 7. Continue. 
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load_ssr3: 0110001001110001#b, while (creg <> 0) loop to pl(load_ssr3); 

"Output explanation: 

Still not READY. MODE is active in anticipation of DCLK WCS. 
SDI_SSR_MUX remains inactive to continue propagating thr;ugh the 
SDI-SDO chain in the SSR. The CPU clocks continue to be held to 
prevent changing the state of the pipeline register. All other 
outputs are at the default values. 

Opcode explanation: 

Kill time by looping at this location for 8 more clocks. This 
allows time for the SDI_SSR_MUX signal to propagate through the 
serial data in to serial data out (SDI-SDO) path through all the 
SSR registers in the pipeline register. Each register in the 9151 
WCS memories has a SDI to SDO propagation delay of 35ns worst 
case. There are about 25 of these connected in series in addition 
to the ssr_port register and wcs_port register which add an addi­
tional 15ns each. The total delay needed to ensure a valid 
SDI~SSR_MUX signal at the last register in the chain is about 
lOOOns (10 clocks). Two clocks have occured prior to the current 
instruction and this instruction will loop for an additional 8 
cycles. 

load_ssr4: 0111101001110001#b , if (not_select 1) then goto pl(idle) else wait; 

. org 011110#b 

"Output explanation: 

Still not READY. DCLK_WCS and DCLK_MOP go active to load pipeline 
data into the shadow register throughout the diagnostic registers. 
MODE and SDI_SSR_MUX remain as before to satisfy hold times rela­
tive to DCLK. The CPU clocks continue to be held to prevent ·chang­
ing the state of the pipeline register. All other outputs are at 
the default values. 

Opcode explanation: 

Return to idle when the host releases the bus, else wait. While 
waiting it doesn't hurt to keep the clock command active . 

shift_wcs: 0110000001110001#b , if (eq 0) then goto pl(sh_wcs2); 

"Output explanation: 

Not READY. System clocks halted. 

Opcode explanation: 

Branch to remaining words of the routine. 
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.org 101001#b 

sh wcs2 

sh_wcs3 

sh_wcs4 

sh_wcsS 

0110000001110001#b ,. if (eq 0)· then load tm(count_mask); 

"Output explanation: 

Maintain last output. 

Opcode explanation: 

Load the CREG with the count for the number of nibbles to be 
shifted. This count value is contained in address bits 2 .. 0. 

0110000001110001#b , if (eq 0) then dee; 

"Output explanation: 

Maintain last output. 

Opcode explanation: 

Decrement the CREG so that the loop count for nibbles will be n-1. 
This is required since the CREG = 0 comparison in a loop is only 
made at the end of a loop, thus count values must be the number of 
loops desired -1. It is assumed that the host loads the count for 
the actual number of nibbles to be shifted. 

0110000101110001#b , if (eq 0) then load pl(3), nested; 

"Output explanation: 

SDI_SSR_MUX is active to meet the set-up time to DCLKs that will 
occur in the next cycle. With MODE being inactive, SDI_SSR_MUX 
will control the multiplexer at the input of the ssr_port to 
select the WCS SSR chain as input. System clocks are still held. 

Opcode explanation: 

Load the inner loop count for shifting a nibble into CREG and push 
the nibble count into SREG. 

0111010101110001#b , continue; 

"Output explanation: 

DCLK WCS and DCLK SSR go active together to shift one bit of a 
nibble from the s~r_port to the WCS SSR and also to shift one bit 
from the end of the WCS SSR chain into the ssr_port. SDI_SSR_MUX 
remains active to select the WCS SSR chain as the input to the 
ssr_port. System clocks are held. 
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sh wcs6 

sh wcs7 

sh_wcs8 

Opcode explanation: 

Continue to next instruction. 

0110000101110001#b , while (CREG <> 0) loop to pl(sh_wcsS) else nest; 

"Output explanation: 

DCLK_WCS and DCLK_SSR go inactive in preperation for going active 
again at the next shift of the SSR. SDI_SSR_MUX remains active. 
System clocks are halted. 

Opcode explanation: 

Loop on the SSR shift operation for 4 cycles then drop out. 

0110000101110001#b, while (CREG <> 0) loop to pl(sh_wcs4); 

"Output explanation: 

Maintain last output. 

Opcode explanation: 

For the number of nibbles in the shift count, loop through the 
nibble shift routine. Then fall through. 

lllOOOOOOlllOOOO#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

Last instruction so READY is active. 

Opcode explanation: 

Wait for the host to release the bus then go to idle . 

. org Olllll#b 

shift_mop: 0110000001110001#b , if (eq 0) then goto pl(sh_mop2); 

"Output explanation: 

Not READY. System clocks halted. 

Opcode explanation: 

Branch to remaining words of the routine. 
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.org llOOOHb 

sh_mop2 

sh_mop3 

sh_mop4 

sh_mop5 

011000000111000l#b , if (eq 0) then load tm(count_mask); 

"Output explanation: 

Maintain last output. 

Opcode explanation: 

Load the CREG with the count for the number of nibbles to be 
shifted. 

0110000001110001#b , if (eq 0) then dee; 

"Output explanation: 

Maintain last output. 

Opcode explanation: 

Decrement the CREG so that the loop count for nibbles will be n-1. 
This is required since tne CREG <> 0 comparison in a loop is only 
made at the end of a loop, thus count values must be the number of 
loops desired -1. It is assumed that the host loads the count for 
the actual number of nibbles to be shifted. 

0110000001110001#b , if (eq 0) then load pl(3), nested; 

"Output explanation: 

SDI_SSR_MUX is inactive to meet the set-up time to DCLKs that will 
occur in the next cycle. With MODE being inactive, SDI_SSR_MUX 
will control the multiplexer at the input of the ssr_port to 
select the MOP SSR chain as input. System clocks are still held. 

Opcode explanation: 

Load the inner loop count for shifting a nibble into CREG and push 
the nibble count into SREG. 

0110110001110001#b , continue; 

"Output explanation: 

DCLK MOP and DCLK SSR go active together to shift one bit of a 
nibble from the s~r_port to the MOP SSR and also to shift one bit 
from the end of the MOP SSR chain into the ssr_port. SDI_SSR_MUX 
remains inactive to select the MOP SSR chain as the input to the 
ssr_port. System clocks are held. 
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sh_rnop6 

sh_rnop7 

sh_rnop8 

End. 
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Opcode explanation: 

Continue to next instruction. 

0110000001110001#b , while (CREG <> 0) loop to pl(sh_mopS) else nest; 

"Output explanation: 

DCLK_MOP and DCLK_SSR go inactive in preperation for going active 
again at the next shift of the SSR. SDI_SSR_MUX remains inactive. 
System clocks are halted. 

Opcode explanation: 

Loop on the SSR shift operation for 4 cycles then drop out. 

0110000001110001#b, while (CREG <> 0) loop to pl(sh_mop4); 

"Output explanation: 

Maintain last output. 

Opcode explanation: 

For the number of nibbles in the shift count loop, go through the 
nibble shift routine. Then fall through. 

lllOOOOOOlllOOOO#b , if (not_select 1) then goto pl(idle) else wait; 

"Output explanation: 

Last instruction so READY is active. 

All other outputs default. 

Opcode explanation: 

Wait for the host to release the bus then go to idle. " 
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Memory Map: 

Location Label Location Label 

Dec Hex Bin Dec Hex Bin 

0 00 000000 memory 32 20 100000 idle 
1 01 000001 memory2 33 21 100001 
2 02 000010 load_int2 34 22 100010 
3 03 000011 load_int3 35 23 100011 
4 04 000100 load_int4 36 24 100100 
5 05 000101 load_i~t5 37 25 .100101 
6 06 000110 load_int6 38 26 100110 
7 07 000111 host_ack 39 27 100111 
8 08 001000 ssr_port 40 28 101000 idle2 
9 09 001001 ssr_write 41 29 101001 sh_wcs2 
10 OA 001010 ssr_read 42 2A 101010 sh_wcs3 
11 OB 001011 load_wcs2 43 2B 101011 sh_wcs4 
12 oc 001100 load_wcs3 44 2C 101100 sh_wcs5 
13 OD 001101 load_wcs4 45 2D 101101 sh_wcs6 
14 OE 001110 load_wcs5 46 2E 101110 sh_wcs7 
15 OF 001111 load_wcs6 47 2F 101111 sh_wcs8 
16 10 010000 cmd_0_7 48 30 110000 idle3 
17 11 010001 haltmode 49 31 110001 sh_mop2 

-is 12 010010 runmode 50 32 110010 sh_mop3 
19 13 010011 singlestp 51 33 110011 sh_mop4 
20 14 010100 ss_contrl 52 34 110100 sh_mop5 
21 15 010101 ss_data 53 35 110101 sh_mop6 
22 16 010110 interrupt 54 36 110110 sh_mop7 
23 17 010111 reset_cpu 55 37 110111 sh_mop8 
24 18 011000 cmd_S_F 56 38 111000 idle4 
25 19 011001 load_pipe 57 39 111001 load_ssr2 
26 lA 011010 load_mop 58 3A 111010 load_ssr3 
27 lB 011011 load_wcs 59 3B 111011 load_ssr4 
28 lC 011100 load_init 60 3C 111100 
29 lD 011101 load_ssr 61 3D 111101 
30 lE 011110 sh_wcs 62 3E 111110 
31 lF 011111 sh_mop 63 3F 111111 reset 
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Memory Address Counter PAL Definition 
"Advanced Micro Devices Application Note: 

"Am29300 Demonstration System 

"By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
"(619)560-7030, Date= 1/87 

Module 
Memory_Address_Counter_A; 

Flag '-r3' 

Title 
'Memory Address Counter PAL for an Am29300 Demonstration System.'; 

memad a device 'P22V10'; 

"declarations 

X,Z,C,P = .x.,.z.,.c.,.P.; 

"Signal names that end,in an underline indicate an active low signal. 

CLK_D, P_MEM_3, P_MEM_2, P_MEM_l, P_MEM_O, CASIN_ Pin 
1, 2, 

AIN_6, AIN 5, 
7, 8, 

AOUT 6, AOUT 
18, 19, 

ripple Pin 
15; 

-

3, 4, 5, 

AIN 4, AIN_3, AIN_2, AIN 
9, 10' 11, 13, 

5, AOUT_ 4, AOUT 3, AOUT 2, - -
20, 17, 21, 

6; 

1, AIN 0 Pin 
14; 

AOUT 1, AOUT 0, - -
16, 22, 

CASO UT Pin -
23; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins in the 
22V10 are active low regardless of how they are declared. Earlier 
versions of ABEL will generate an incorrect JEDEC file. 

AOUT_6, AOUT_5, AOUT_4, AOUT_3, AOUT_2, AOUT_l, AOUT 0 Istype 'pos, reg'; 

CASO UT 
Istype 'neg, com'; 

ripple 
Istype 'pos, com'; 

" declare some sets 

count msb 
[AOUT_6, AOUT_5, AOUT_4]; 
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count lsb = 

[AOUT_3, AOUT_2, AOUT_l, AOUT_O]; 

data in msb = 

[AIN_6, AIN_5, AIN_4]; 

data_in_lsb = 
[AIN_3, AIN_2, AIN_l, AIN_O]; 

select [P MEM 1, p MEM 0] ; 

cmd [P MEM 3, p MEM 2]; 

nop "BOO; 
a bus "BOl; 
cntr_ a "BlO; 
cntr b "Bll; 

load a "BOO; 
load b "BOl; 
inc "BlO; 
dee "Bll; 

" declare a macro 

EQUATIONS 
This is a loadable, cascadable, 7 bit up/down counter that decodes 
its _own output enable, count enable, direction, and load signals 
directly from the control pipeline bits. The counter is programmed as 
either an A counter or a B counter and will only operate with the 
appropriate command. Cascade-in and Cascade-out are used to cascade 
the counters. As used in the Am29300 demonstration system, the data 
input pins and output pins are tied together with the A_BUS. 

The equations for the high order bits of a 7 bit counter require more 
product terms than are available in any of the 22V10 outputs.So, the 
counter is internally split into a 4 bit and 3 bit counter that have 
a ripple carry between them. 

ripple = 

(cmd 
(cmd 

inc) and (count_lsb 
dee) and (count_lsb 

"bllll) # 
"bOOOO) 

The counter must be programmed as either an A counter or a B 
counter because the output enable is limited to a single product 
term. 

enable count msb 
enable count lsb 

(select 
(select 

cntr_a); 
cntr_a); 
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count_msb 

(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 

count lsb -

(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 

!CASOUT_ 

(cmd 
(cmd 

load_a) 
load_b) 
inc ) 

dee ) 

load_a) 
load_b) 
inc) 
dee) 

·= 

load_a) 
load_b) 
inc ) 

dee ) 

load_a) 
load_b) 
inc) 
dee) 

inc) 
dee) 

(select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 

(select 

(select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 

(select 

& (count_msb 
& (count_msb 

== nop ) 

a bus ) 

a bus ) 

a bus ) 

a bus ) 

cntr_a) 
cntr_a) 
cntr_a) 
cntr_a) 
cntr_b) 

== nop 
a bus ) 

a bus ) 

a bus ) 

a bus ) 

cntr a) -
cntr_a) 
cntr_a) 
cntr a) -
cntr_b) 

"blll) 
"bOOO) 

) 

Test vectors need to be defined. 

End; 

Module 
Memory_Address_Counter_B; 

Flag '-r3' 

Title 

& 

& 

APPENDIX F 
Memory Address Counter PAL Definition 

& count msb # 
& data in_msb # 

& count msb # 
& count_msb # 
& count_msb # 
& count msb # 
& count_msb # 

ripple & ( count msb + 1) # 
ripple & ( count_msb -

& count_msb 

& count lsb -
& data in lsb 

- -
& 

& 

& 

& 

& 

& !CASIN_ & 

& !CASIN & -
& count lsb -

& (count_lsb 
& (count_lsb 

count lsb -
count lsb -
count lsb -
count lsb -
count lsb -
(count lsb + -
(count lsb -

"bllll) 
"bOOOO) 

-

1) # 

# 
# 

# 
# 
# 
# 
# 

1)# 
1) # 

# 

'Memory Address Counter PAL for an Am29300 Demonstration System.'; 

memad b device 'P22V10'; 

"declarations 

X,Z,C,P = .X., .z., .C., .P.; 
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"Signal names that end in an underline indicate an active low signal. 

CLK_D, P_MEM_3, P_MEM_2, P_MEM_l, P_MEM_O, CASIN Pin 
1, 2, 3, 4, 5, 6; 

AIN_6, AIN_S, AIN_4, AIN_3, AIN_2, AIN_l, AIN 0 Pin 
7, 8, 9, 10, 11, 13, 14; 

AOUT 6, AOUT_S, AOUT_4, AOUT_3, AOUT_2, AOUT_l, AOUT_O, CASOUT_ Pin 
18, 19, 20, 17, 21, 16, 22, 23; 

ripple Pin 
15; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins in the 
22V10 are active low regardless of how they are declared. Earlier 
versions of ABEL will generate an incorrect JEDEC file. 

AOUT_6, AOUT_S, AOUT_4, AOUT_3, AOUT_2, AOUT_l, AOUT_O Istype 'pos, reg'; 

CASOUT_ 
Istype 'neg, com'; 

ripple 
Istype 'pos, com'; 

" declare some sets 

count_msb 
[AOUT_6, AOUT_S, AOUT_4]; 

count lsb = 

[AOUT_3, AOUT_2, AOUT_l, AOUT_O]; 

data_in_msb = 
[AIN_6, AIN_S, AIN_4]; 

data_in_lsb = 
[AIN_3, AIN_2, AIN_l, AIN_O]; 

select [P MEM 1, p MEM_ 0] ; 

cmd [P MEM 3, p _MEM_2]; 

nop "BOO; 
a bus "BOl; 
cntr_ a "BlO; 
cntr_b "Bll; 

load a "BOO; 
load_b "BOl; 
inc "BlO; 
dee "Bll; 
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" declare a macro 

EQUATIONS 
This is a loadable, cascadable, 7 bit up/down counter that decodes 
its own output enable, count enable, direction, and load signals 
directly from the control pipeline bits. The counter is programmed as 
either an A counter or a B counter and will only operate with the 
appropriate command. Cascade-in and Cascade-out are used to cascade 
the counters. As used in the Am29300 demonstration system, the data 
input pins and output pins are tied together with the A_BUS. 

The equations for the high order bits of a 7 bit counter require more 
product terms than are available in any of the 22Vl0 outputs, so the 
counter is internally split into a 4 bit and 3 bit counter that have 
a ripple carry between them. 

ripple = 

(cmd 
(cmd 

inc) and (count_lsb 
dee) and (count_lsb 

"bllll) # 
"bOOOO) 

The counter must be programmed as either an A counter or a B 
counter because the output enable is limited to a single product 
term. 

enable count_msb 
enable count_lsb 

count_msb ·= 

(select 
(select 

cntr_b); 
cntr_b); 

nop ) 
a_bus ) 
a_bus ) 
a bus ) 
a_bus ) 
cntr_b) 

& count msb 
& data in_msb 

& count_msb 
& count msb 
& count_msb 
& count msb 

# 
# 
# 
# 
# 
# 

(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 

load_b) 
load_a) 
inc ) 
dee ) 
load_a) 
load_b) 
inc) 
dee) 

(select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 
& (select 

(select 

cntr_b) & count_msb # 
cntr_b) & ripple & ( count_msb + 1) # 
cntr_b) & ripple & ( count msb - 1) # 
cntr_a) & count msb 

count lsb ·= 

(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 
(cmd 

load_b 
load_a) 
inc ) 
dee ) 
load_a) 
load_b) 
inc) 
dee) 

(select == nop ) 
& (select a bus ) 
& (select a bus ) 
& (select a_bus ) 
& (select a bus ) 
& (select cntr_b) 
& (select 
& (select 
& (select 

(select 

cntr_b) 
cntr_b) 
cntr_b) 
cntr a 

& count lsb 
& data_in lsb 

& count_lsb 
& count lsb 
& count_lsb 
& count_lsb 
& count_lsb 

& !CASIN & (count_lsb + 
& !CASIN & (count_lsb -
& count lsb 

# 
# 
# 
# 
# 
# 
# 

1)# 
1)# 
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!CASOUT_ 

(cmd 
(cmd 

inc) 
dee) 

& (count_msb 
& (count_msb 

" Test Vectors need to be defined. 

End; 
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Macro Operand Counter PAL Definition 
"Advanced Micro Devices Application Note: 

"Am29300 Demonstration System 

"By Mark.Mc Clain, Field Applications Engineer, San Diego, CA. 
"(619)560-7030, Date= 1/87 

Module 
Macro_Operand_Counter; 

Flag '-r3' 

Title 
'Macro Operand Counter PAL for an Am29300 Demonstration System.'; 

macop device 'P22Vl0'; 

"declarations 

X,Z,C,P = .X., .z., .C., .P.; 

"Signal names that end in an underline indicate an active low signal. 

CLK_CNTL, P_LD_CNT, P SEL_O, P_SEL_l, P_UP_DN, P CNT EN Pin 
1, 2, 3, 4, 5, 6; 

AIN_5, AIN_4, AIN_3, AIN_2, AIN_l, AIN 0 Pin 
7, 8, 9, 10, 11, 13; 

AOUT_5, AOUT_4, AOUT_3, AOUT_2, AOUT_l, AOUT_O, reload Pin 
18, 19, 20, 17, 21, 16, 22; 

valid_cmd Pin 
14; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins in the 
22Vl0 are active low regardless of how they are declared. Earlier 
versions of ABEL will generate an incorrect JEDEC file. 

AOUT 5, AOUT 4, AOUT_3, AOUT 2, AOUT 1, AOUT 0 - - - - -
Is type 'pos, reg' ; 

reload, valid_cmd 
Is type 'pos, com'; 

\\ declare some sets 

count 
[AOUT 5, AOUT 4, AOUT 3, AOUT 

-
2, AOUT - 1, AOUT - 0 l ; 
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data_in = 
[AIN_S, AIN_4, AIN_3, AIN_2, AIN_l, AIN_O]; 

select= [P_SEL_l, p SEL_O]; 

nop "BOO; 
a add "BOl; -
b add "BlO; -
c mac "Bll; 

declare a macro for decrement - because ABEL is too dumb to do it 
right for a counter bigger than 4 bits. 

dee count macro { 

( !AOUT_ 5 & !AOUT - 4 & !AOUT 3 & !AOUT_2 & !AOUT_ 1 & !AOUT 0 # AOUT 5 & -
AOUT 4 # -
AOUT 5 & AOUT 3 # - -
AOUT 5 & AOUT 2 # - -
AOUT 5 & AOUT 1 # - -
AOUT - 5 & AOUT - 0 ) ' 

(!AOUT 4 & !AOUT 3 & !AOUT 2 & !AOUT 1 & !AOUT 0 # AOUT 4 & AOUT 3 # - - - - - - -
AOUT 4 & AOUT 2 # -
AOUT 4 & AOUT 1 # - -

_AQUT - 4 & AOUT - 0 ) ' 

(!AOUT 3 & !AOUT 2 & !AOUT 1 & !AOUT 0 # AOUT 3 & AOUT 2 # - - - - -
AOUT 3 & AOUT 1 # - -
AOUT 3 & AOUT 0 ) ' - -

(!AOUT 2 & !AOUT 1 & !AOUT 0 # - - -
AOUT 2 & AOUT 1 # - -
AOUT 2 & AOUT 0 ) ' -

(!AOUT 1 & !AOUT 0 # - -
AOUT 1 & AOUT - 0 ) ' -

(!AOUT 0) -

] } ; 

EQUATIONS 

G-2 

This is a loadable, 6 bit up/down counter that decodes its own output 
enable, count enable, direction, and load signals directly from the 
control pipeline bits. When the max count is reached in increment 
mode, the next increment will reload the counter from the input 
value. When zero is reached in decrement mode, the next decrement 
will also reload the counter. 
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The pipeline control bits for the counter come from an overlapped 
field in the control word. It is necessary to disable (ignore) the 
counter control bits when the field meaning is not valid. The enable 
for the control bits is the OR of the P_C_SEL bits in the pipeline 
(when the counter is used for the A or B address, these two select 
inputs are simply both tied to the single control enable for the A or 
B address) . Since the enable is an OR function, it is necessary to 
conserve product terms in the counter equations by performing the OR 
function as a separate output which is fed back as an enable for the 
counter command bits. 

valid cmd = 

P_SEL_O # P_SEL_l; 

The reload signal is active for the max or min count value in 
increment or decrement mode, respectively. 

reload 

( P_UP DN & (count 
(!P_UP_DN & (count 

enable count (select --

count 

!valid cmd & (count 
valid cmd & (count 
valid cmd & (count 

"bllllll)) # 
"bOOOOOO)) 

c _mac); 

& !P 
& !P 

+ 1) & p 

& !P 

LD -
LD -
UP 
LD -

valid cmd & (dee count) & !P _UP -

CNT 
CNT 
DN 
CNT 

DN 
& !P LD CNT -

valid cmd & (data in & !P LD CNT - -
(data in & p LD CNT - -

Test Vectors need to be defined. 

End; 

& !P CNT EN 
& p CNT EN & !reload 

& p CNT EN & !reload 

& p CNT EN & reload 

# 
# 

# 

# 
# 
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Write Port A Multiplexer PAL Definition 
" Advanced Micro Devices Application Note: 

" Am29300 Demonstration System 

" By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
" (619)560-7030, Date= 1/87 

Module 
Hex_Four_Input_Mux; 

Title 
'One half of a hex four input multiplexer PAL for an Am29300 
Demonstration System.'; 

hfmux device 'Pl8P8'; 

"declarations 

"Signal names that end in an underline indicate an active low signal. 

AIN_2, AIN_l, AIN 0 Pin 
1, 2, 3; 

BIN 2, BIN 1, BIN 0 Pin 
4, 5, 6; 

CIN_2, CIN 1, CIN 0 Pin 
7, 8, 9; 

DIN_2, DIN 1, DIN 0 Pin 
11, 12, 13; 

YOUT_2, YOUT_l, YOUT_O Pin 
18, 17, 16; 

SELECT_O, SELECT_l Pin 
14, 15; 

YOUT_2, YOUT_l, YOUT_O 

Istype 'pos, com'; 

" declare some sets 

y 

[YOUT_2, YOUT_l, YOUT_O]; 

A 

[AIN_2, AIN_l, AIN_O]; 

B 

[BIN_2, BIN_l, BIN_O]; 
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c 
[CIN_2, CIN_l, CIN_O]; 

D 
[DIN_2, DIN_l, DIN_OJ; 

select = 

[SELECT_l, SELECT_O]; 

EQUATIONS 

y 

A & (select 
C & (select 

0) # B & (select 
2) # D & (select 

" Test_Vectors need to be defined. 

End; 
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Write Port B Multiplexer PAL Definition 
" Advanced Micro Devices Application Note: 

" Am29300 Demonstration System 

" By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
" (619)560-7030, Date= 1/87 

Module 
Hex_Two_Input_Mux; 

Title 
'Hex two input multiplexer PAL for an Am29300 Demonstration System.'; 

htmux device 'P22V10'; 

"declarations 

X,Z,C,P = .X., .z., .C., .P.; 

"Signal names that end in an underline indicate an 

AIN_5, AIN_4, AIN 3, AIN 2, AIN 1, AIN 0 Pin 
2, 3, 4, 5, 6, 7; 

BIN_5, BIN 4, BIN 3, BIN 2, BIN_l, BIN 0 Pin 
8, 9, 10, 11, 13, 14; 

YOUT_5, YOUT_4, YOUT_3, YOUT_2, YOUT_l, YOUT_O Pin 
23, 22, 21, 20, 19, 18; 

SELECT Pin 
1; 

active low signal. 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins in the 
22V10 are active low regardless of how they are declared. Earlier 
versions of ABEL will generate an incorrect JEDEC file. 

YOUT_S, YOUT_4, YOUT_3, YOUT_2, YOUT_l, YOUT 0 
Istype 'pos, com' ; 
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" declare some sets 

y 

[YOUT_S, YOUT_4, YOUT_3, YOUT_2, YOUT_l, YOUT_O]; 

A= 
[AIN_S, AIN_4, AIN_3, AIN_2, AIN_l, AIN_OJ; 

B 

[BIN_5, BIN_4, BIN_3, BIN_2, BIN_l, BIN_OJ; 

EQUATIONS 

y 

A & !SELECT # B & SELECT; 

" Test_Vectors need to be defined. 

End; 
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Trap Logic PAL Definition 

" Am29300 Demonstration System 

" By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
" (619)560-7030, Date= 1/87 

Module 
Trap_Logic; 

Title 
'Trap Logic PAL for an Am29300 Demonstration System.'; 

trap device 'P22V10'; 

"declarations 

X,Z,C,P = .x.,.z.,.c.,.P.; 

"Signal names that end in an underline indicate an active low signal. 

CLK_CNTL, MIN TR , EQUAL, p _FC - , RESET - 300 , INTA Pin 
1, 2, 3, 4, 5, 6; 

INTR, TRAP, SEQ_FC, SEQ_CIN , CASOUT2, MC ADD - 3, MC_ADD_2 Pin 
23, 22, 21, 20, 19, 18, 17; 

MC ADD 1, MC_ADD_O Pin 
16, 15; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins in the 
22V10 are active low regardless of how they are declared. Earlier 
versions of ABEL will generate an incorrect JEDEC file. 

INTR, TRAP 
Istype 'pos, reg'; 

SEQ FC, CASOUT2, MC ADD_3, MC_ADD_2, MC_ADD_l, MC ADD 0 
Istype 'pos, com'; 

SEQ_CIN_ 
Istype 'neg, com'; 

" declare some sets 

me add 

[MC_ADD_2, MC_ADD_l, MC_ADD_O]; 

EQUATIONS 

OR the interrupt controller's interrupt request with the breakpoint 
trap event signal to form the Sequencer's interrupt request. 
Including !TRAP with EQUAL will allow executing a breakpoint even on 
the first instruction of the breakpoint tr.a.p routirn~. Tf this rlisilhli=o 

of the trap were not included, and the trap vector address were the 
same as the breakpoint address, then the system would get stuck 
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forever trying to trap on the trap vector address. 

INTR := 

!MINTR_ # EQUAL & !TRAP; 

Equal causes the breakpoint trap. Note that the Equal signal is 
allowed or disallowed by setting or resetting the Equal comparator 
register in the Sequencer. This allows breakpoint traps to be 
disabled. 

TRAP := 

EQUAL & !TRAP; 

Disable the current Sequencer instruction on a TRAP or when the 
pipeline Force Continue bit is active. 

SEQ_FC = 

TR.Z\.P # !P_FC_; 

Don't increment the address stored on the stack after a trap so a 
return from trap goes back to the trapped instruction. During reset 
disable the incrementer so that the reset address will be zero 
instead of one. 

! SEQ_CIN_ 

TRAP # !RESET_300 ; 

When a trap comes, disable the interrupt controller from generating 
an interrupt in the same cycle. 

CASOUT2 = 

EQUAL & !TRAP; 

The trap logic always provides the fourth bit of the vector when the 
interrupt or trap is acknowledged. 

enable MC_ADD_3 = !INTA_; 

When a trap occurs, the fouth bit of the interrupt vector is active 
otherwise it will be inactive. 

MC_ADD_3 

TRAP; 

The LSB bits of the vector for the breakpoint trap are zero. Enable 
these bits when a trap is acknowledged. 

enable me add TRAP & !INTA_; 

me add = 

!TRAP; 

Test_Vectors need to be defined. 

End; 
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Clock Qualification PAL Definition 

" Advanced Micro Devices Application Note: 

" Am29300 Demonstration System 
" Clock Qualification Logic Definition 

" By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
" (619)560-7030, Date= 1/87 

Module 
Clock_Qualifier 1; 

Title 
'Clock Qualifying Control PAL for an Am29300 Demonstration System. This circuit 
combines signals from the system control pipeline register and the host interface 
controller to generate clock enables'; 

clkpal device 'P22V10'; 

"declarations 

X,Z,C,P = .X., .z., .C., .P.; 

"Signal names that end in an underline indicate an active low signal. 

CLK_FREE_RUN, CLK CONTROL_3, CLK_CONTROL_2, CLK_CONTROL_l Pin 
1, 

CLK CONTROL_ 0, 
5, 

p _FC - , p LD INT 
9, 10; 

2, 

TRAP, 
6, 

BASE 

3, 

P LD MAC_STAT, 
7, 

Pin 

INTB_EN, PIPE EN, MOP _EN, STAT _EN, -
14, 15, 16, 17, 

INT_CPU_, CNTL_EN, D_EN, haltmode Pin 

20, 21, 22, 23; 

4; 

P LD MAC OP Pin - - -
8; 

SEQ_ EN, RESET - 300 - Pin 
18, 19; 

Some outputs are declared as active high. This requires that ABEL 
version 2.0 or later be used to compile this definition. Earlier 
versions of ABEL have a bug that assumes all programmable pins in the 
22V10 are active low regardless of how they are declared. 
Earlier versions of ABEL will generate an incorrect JEDEC file. 

haltmode 
Istype 'pas, reg'; 

CNTL_EN, PIPE_EN, MOP_EN, STAT_EN, 
TNTB_EN, SF.Q_F.N, D_EN 

Istype 'pas, com'; 
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RESET_300_, INT_CPU_ 
Istype 'neg, com'; 

clk_cntl [CLK_CONTROL_3, CLK_CONTROL_2, CLK_CONTROL_l, 
CLK_CONTROL_O]; 

" CLK_CONTROL lines encoded meanings: 

nap "bOOOO; 
ss_halt "bOOOl; 
halt "b0010; 
run "b0011; 
SS "bOlOO; 
ld_pipe "b0101; 
ss_cntl "b0110; 
ld_mop "b0111; 
ss_data "blOOO; 
SS reset "blOOl; -
int _cpu "blOlO; 
reserved! "bl011; 
reserved2 "bllOO; 
reserved3 "bllOl; 
reserved4 "blllO; 
reservedS "bllll; 

Equations 

The haltmode signal is the output of a status flip flop which keeps 
track of when the system has been placed in the halt mode, where all 
clocks in the system are stopped. The flip flop is set when a halt 
command appears on the CLK_CONTROL lines. It is reset by a run 
command on the same lines. 

haltmode := 

(clk_cntl == halt) 
haltmode & ! (clk_cntl * run); 

Each of the following outputs acts as an enable on the respective 
qualified clock in the Am29300 system. Qualified clocks in this 
system are held inactive in the high state. 

The system clock generator produces an active low clock and the 
enables are active high. By using negative logic OR gates (NAND 
gates) the clock and enable signals are logically ORed together to 
produce active high qualified clocks. The negative logic OR gates are 
external to the PAL defined here. 

The data section clock enable is active whenever haltmode is not 
active and there is no single cycle halt command or trap operation 
active. If haltmode is active, the enable can be forced active by a 
single step command, a reset command, or a single step data section 
command. If a trap operation is active the enable can be forced 
active only by a reset command, or a single step data section 
command. 
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D EN = 
!haltmode & ! (clk_cntl ss_halt) & !TRAP # 
haltmode & (clk_cntl SS ) & !TRAP # 
haltmode & (clk_cntl SS - reset) # 
haltmode & (clk_cntl ss_data ) 

The control section clock enable is active whenever haltmode is not 
active and there is no single cycle halt command or trap active. If 
haltmode is active the enable can be forced active by a single step 
command, a reset command, or a single step control section command. 
If a trap is active the enable can be forced by a reset or single 
step control section command. 

CNTL EN = 
!haltmode & ! (clk_cntl ss_halt) & !TRAP # 
haltmode & (clk_cntl SS ) & !TRAP # 
haltmode & (clk_cntl SS - reset) # 
haltmode & (clk_cntl ss_cntl ) 

The Sequencer clock is the same as the control section clock except 
that it is unaffected by a trap condition. The Sequencer continues to 
be clocked during a trap. 

SEQ_EN = 
!haltmode & ! (clk_cntl ss_halt) & !TRAP # 
haltmode & (clk_cntl SS ) & !TRAP # 
haltmode & (clk_cntl SS - reset) # 
haltmode & (clk_cntl ss_cntl ) 

The pipeline register clock is similar to the Sequencer clock but it 
may be forced active by one additional condition when in the halt 
mode. The condition is a load pipeline command on the CLK_CONTROL 
lines. 

PIPE -EN 

!haltmode & ! (clk_cntl == ss_halt) # 
haltmode & (clk_cntl SS ) # 
haltmod~ & (clk_cntl SS - reset) # 
haltmode & (clk_cntl ss cntl ) # 
haltmode & (clk_cntl ld_pipe ) 

The macro status register clock is similar to the control section 
clock but it is further qualified by the pipeline enable to load the 
macro status register. The register will be loaded in any event if 

", there is a load macro opcode command on the CLK_CONTROL lines. 

STAT EN = 
!haltmode & ! (clk_cntl == ss_halt) & !TRAP & p LD MAC STAT # - - -
haltmode & (clk_cntl SS ) & !TRAP & p 

- LD_MAC_STAT # 
haltmode & (clk_cntl SS - reset) & p - LD_MAC_STAT # 
haltmode & (clk_cntl SS - cntl ) & p _LD_MAC_STAT # 

(clk_cntl ld_mop ) 
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The macro opcode register clock is very similar to the macro status 
register clock but it is qualified by the pipeline load command for 
the macro opcode. 

"MOP_EN = 

!haltmode & ! (clk_cntl ss_halt) & !TRAP & p 
- LD_MAC_OP # 

haltmode & (clk_cntl SS ) & !TRAP & p 
- LD MAC OP # 

haltmode & (clk_cntl SS - reset) & p - LD MAC OP # 
haltmode & (clk_cntl SS cntl ) & p LD MAC OP # -

(clk_cntl ld_mop ) 

The interrupt base address register clock is similar to the control 
section clock but it is further qualified by the pipeline enable to 
load the interrupt base register. This signal is qualified by the 
pipeline Force Continue being active. The register will be loaded in 
any event if there is a load macro opcode command on the CLK_CONTROL 
lines. 

INTB EN 
!haltmode & ! (elk_ cntl -- SS _halt) & 

!P FC & !TRAP & p LD INT BASE # - -
haltmode & (elk_ cntl -- SS ) & 

!P FC & !TRAP & p LD INT BASE # - -
haltmode & (elk cntl -- SS reset) & - -

!P FC & p 
- LD - INT _BASE # 

haltmode & (elk cntl -- SS cntl & - -
!P FC & p LD - INT _BASE # - -

(elk_ cntl ld_mop ) 

The reset for the Am29300 is made active by a reset command from the 
host interface controller. 

!RESET_300_ 

(clk_cntl == ss_reset); 

The interrupt to the Am29300 CPU is made active by an interrupt 
command from the host interface controller. 

! INT_ CPU_ 

(clk_cntl ==int_cpu); 

Test Vectors need to be defined. 

End; 
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Clock Generator PAL Definition 

" Advanced Micro Devices Application Note: 

" Am29300 Demonstration System 

" By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
" (619)560-7030, Date= 1/87 

Module 
Clock_Generator; 

Title 
'Clock Generator PAL for an Am29300 Demonstration System.'; 

ckgen device 'P16R6'; 

"declarations 

"Signal names that end in an underline indicate an active low signal. 

CLOCK_MODULE, P_CLK_LEN_l, P_CLK_LEN_O Pin 
1, 2, 3; 

CLK_FREE_RUN_, D_l_, D_2_, D_3_, D 4 Pin 
18, 17, 16, 15, 14; 

CLK_FREE_RUN_, D_l_, D_2_, D_3_, D 4 

Istype 'neg, reg'; 

" declare some sets 

cycle= [P_CLK_LEN_l, P_CLK_LEN_O]; 

EQUATIONS 

!CLK_FREE _RUN ·= 
CLK FREE RUN # 
D 1 # 
D 2 & (cycle 1) # 
D 2 & (cycle 2) # 
D 3 & (cycle 2) # 
D 2 & (cycle 3) # 
D _3_ & (cycle 3) # 
D 4 & (cycle 3) 

!D_l_ ·= 

!CLK_FREE_RUN ; 
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Clock Generator PAL Definition 

!D_2_ ·= 

!CLK_FREE~RUN_ & !D_l_; 

!D_3_ 

!CLK_FREE_RUN & !D_2_; 

!D_4_ 

!CLK_FREE_RUN & !D_3_; 

TEST_ VECTORS 

( [CLOCK_ MODULE, p CLK LEN 1, p _CLK_LEN_ OJ -> 
[CLK_FREE - RUN , D 1 , D _2_, D _3_, D 4 J ) 

[ .c., O, OJ -> [0,1,1,1,lJ; 
[ .C., 0, OJ -> [0,0,1,1,lJ; 
[ .C., 0, OJ -> [1,0,0,1,lJ; 
[ .C., O, OJ -> [0,l,1,1,lJ; 
[.C.,O,lJ -> [0,0,1,1,lJ; 
[.C.,O,lJ -> [0,0,0,l,lJ; 
[ .c., 0, lJ -> [1,0,0,0,lJ; 
[.C.,O,OJ -> [0,1,1,1,lJ; 
[.C.,1,0J -> [0,0,l,1,lJ; 
[ .C., 1, OJ -> [0,0,0,1,lJ; 
[ .C., 1, OJ -> [O,O,O,O,lJ; 
[ .C., 1, OJ -> [1,0,0,0,0J; 
[ .c., 1, OJ -> [0,1,1,1,lJ; 
[ .c., 1, lJ -> [0,0,1,1,lJ; 
[.C.,1,lJ -> [0,0,0,1,lJ; 
[.C.,1,lJ -> [0,0,0,0,lJ; 
[ .c., 1, lJ -> [0,0,0,0,0J; 
[.C.,l,lJ -> [1,0,0,0,0J; 
[ .c., 1, lJ -> [0,1,1,1,lJ; 
[ .C., 0, OJ -> [0,0,1,1,lJ; 
[ .c., O, OJ -> [1,0,0,1,lJ; 

End; 
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Control Decode PALs Definition 
" Advanced Micro Devices Application Note: 

" Am29300 Demonstration System 

" By Mark Mc Clain, Field Applications Engineer, San Diego, CA. 
" (619)560-7030, Date= 1/87 

Module 
Control_Decode_Data_Path; 

Title 
'Control Decode PAL for the data path, 
for an Am29300 Demonstration System.'; 

condedp device 'P18P8'; 

"declarations 

"Signal names that end in an underline indicate an active low signal. 

P_DPS_l, P_DPS_O, P_OEA_, P_SEED_OE, P_FTP, P_FP_FT_l Pin 
1, 2, 

P FP FT 0 Pin 
7; 

3, 4, 5, 6; 

ALU_OE_, ALU_HOLD, PM_OE_, SEED_OE_, FTP, FP_FT_l, FP FT 0 Pin 
19, 

D_OER_ Pin 
12; 

18, 17, 16, 

ALU_HOLD, FTP, FP_FT_l, FP FT 0 
Istype 'pos, com'; 

ALU_OE_, PM_OE_, SEED_OE , D OER 
Istype 'neg, com'; 

" declare some sets 

dps = [P_DPS_l, P_DPS_O]; 

EQUATIONS 

!ALU OE (dps == 0) # (dps 

ALU HOLD ! (dps == 0); 

!PM_OE_ (dps == 1); 

15, 14, 

3); 

! SEE:D OE - ( ( dfJ;:, 2j ; {dps -- 3)) & P_SEED_OE; 

FTP = (dps == 1) & P_FTP; 

13; 
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FP FT 1 ( (dps 2) # (dps 3)) & P_FP_FT_l; 

FP FT 0 ( (dps 2) # (dps 3)) & P_FP_FT_O; 

!D OER ! (((dps == 2) * (dps == 3)) & P_SEED_OE) & P_OEA_; 

" Test Vectors need to be defined. 

End; 

Module 
Control_Decode_Memory; 

Title 
'Control Decode PAL for memory enables 
for an Am29300 Demonstration System.'; 

condemem device 'P18P8'; 

"declarations 

"Signal names that end in an underline indicate an active low signal. 

P_MEM_3, P_MEM_2, P_MEM_l_, P_MEM_O, P_FC_, P_INIT, WCS INIT Pin 
1, 2, 3, 4, 5, 6, 7; 

AD_MD_OE_, INIT_MC_ Pin 
19, 18; 

AD_MD_OE_, INIT MC 
Istype 'neg, com'; 

" declare some sets 

select [P_MEM 1, P_MEM_O]; 

EQUATIONS 

!AD MD OE = (select== 1); 

!INIT MC P_FC_ & P_INIT # WCS_INIT_; 

" Test Vectors need to be defined. 

End; 

Module 
Control_Decode_D_BUS; 

Flag '-r3' 

Title 
'Control Decode for the D BUS driver enables 
for an Am29300 Demonstration System.'; 

condbus device 'P18P8'; 
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"declarations 

"Signal names that end in an underline indicate an active low signal. 

D P.P llNr'l-1 H'l\T p H'r' P TNT TN~T ~ P TNT TN~T ?_ P TNT TN~T 1 Pin 

1, 2, 3, 4, 5; 

p - INT - INST - 0, p 
- SEQ - INST _5, p 

- SEQ_ INST - 4, p - SEQ INST 3 Pin -
6, 7, 8, 9; 

p SEQ INST 2, p SEQ INST 1, p SEQ INST 0 Pin - - - - - -
11, 12, 13; 

D OET -' SEQ_ OED, IEN 
' 

INT cs ' 
D - SIGN EX Pin -

19, 18, 17, 16, 15; 

D_OET_, INT_CS_, 

SEQ_OED, D SIGN EX 

Istype 'pos, com'; 

IEN 

Istype 'neg, com'; 

" declare some sets 

seq_sp [P_SEQ INST_5, P SEQ_INST_4]; 

seq_ inst [P_SEQ_INST_5, P_SEQ_INST_4, P_SEQ_INST_3, P_SEQ_INST~2, 

P_SEQ_INST_l, P_SEQ_INST_O ]; 

int inst 

pop_d 
continue 
rdrnk 
rdsr 
rdir 

EQUATIONS 

[P_INT_INST_3, P_INT_INST_2, P INT_INST_l, P_INT_INST_O]; 

"h34; 
"h30; 
"h7; 
"hB; 
"hF; 

Enable A_BUS to D_BUS path if no one else will drive the D BUS. 

D OET !P_BRANCH_EN_ # 
(P_FC_ & 

((seq_inst ==continue) # (seq_inst == pop_d) ) # 
((((seq_sp == "bll) & P_FC_) # !P_FC_) & ((int_inst 
(int inst == rdsr) # (int_inst == rdir) 
) 

) 

) ; 

rdrnk) # 
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Enable sequencer output on continue to be able to read the stack 
pointer and on pop_d to read the top of stack. 

SEQ_ OED P_BRANCH_EN_ & P FC & 
((seq__inst ==continue) # (seq__inst == pop_d)); 

Unconditional instruction or when Force Continue. 

!IEN_ = (seq__sp == Abll) & P_FC_ # !P_FC_; 

" Disable if branch field active or if sequencer active and a interrupt 
" controller read instruction is valid. 

INT_CS_ 

D_SIGN_EX 

!P_BRANCH_EN_ # 
(P_FC_ & 

((seq__inst ==continue) # (seq__inst == pop_d)) & ((int_inst 
(int_inst == rdsr) # (int_inst == rdir)) 
) ; 

!P_FC & P_SEQ_INST_4; 

" Test_Vectors need to be defined. 

End; 
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Components List 

PART PART #OF POWER SUPPLY REQUIREMENTS FIGURE 
ID NUMBER PINS # 

STANDARD CMOS ORLOW 
BIPOLAR POWER VERSION 

Amps Watts Amps Watts 

u 7 Am27S25 24 0.185 0.925 0.185 0.925 3-5 
u 8 Am27S43 24 0.185 0.925 0.185 0.925 3-5 
u 9 Am27S43 24 0.185 0.925 0.185 0.925 3-5 
U73 Am29114 40 0.395 1.975 0.395 1.975 5-11 
u 10 Am2920 24 0.037 0.185 0.037 0.185 3-5 
u 11 Am2920 24 0.037 0.185 0.037 0.185 3-5 
U12 Am2920 24 0.037 0.185 0.037 0.185 3-5 
U·13 Am29C323 169 0.3 1.5 0.3 1.5 3-6 
u 5 Am29325 145 1.743 8.715 0.3 1.5 3-3 
U67 Am29331 120 1 5 0.3 1.5 5-9 
u 3 Am29332 169 1.36 6.8 0.3 1.5 3-2 
u 1 Am29334 120 0.85 4.25 0.2 1 3-1 
u 2 Am29334 120 0.85 4.25 0.2 1 3-1 
U14 Am29806 24 0.035 0.175 0.035 0.175 4-3 
u 4 Am29818-1 24 0.155 0.775 0.155 0.775 3-2 
U18 Am29818-1 24 0.155 0.775 0.155 0.775 4-5 
u 19 Am29818-1 24 0.155 0.775 0.155 0.775 4-5 
u 20 Am29818-1 24 0.155 0.775 0.155 0.775 4-5 
u 21 Am29818-1 24 0.155 0.775 0.155 0.775 4-5 
U48 Am29818-1 24 0.155 0.775 0.155 0.775 5-1 
U49 Am29818-1 24 0.155 0.775 0.155 0.775 5-1 
u 50 Am29818-1 24 0.155 0.775 0.155 0.775 5-1 
u 51 Am29818-1 24 0.155 0.775 0.155 0.775 5-1 
USS Am29818-1 24 0.155 0.775 0.155 0.775 5-3 
U56 Am29818-1 24 0.155 0.775 0.155 0.775 5-3 
U74 Am29818-1 24 0.155 0.775 0.155 0.775 5-11 
U15 Am29825 24 0.13 0.65 0.0001 0.0005 4-3 
U36 Am29827 24 0.075 0.375 0.0001 0.0005 4-8 
U37 Am29827 24 0.075 0.375 0.0001 0.0005 4-8 
U38 Am29827 24 0.075 0.375 0.0001 0.0005 4-8 
U39 Am29827 24 0.075 0.375 0.0001 0.0005 4-8 
U40 Am29827 24 0.075 0.375 0.0001 0.0005 4-8 
u 41 Am29827 24 0.075 0.375 0.0001 0.0005 4-8 
U42 Am29827 24 0.075 0.375 0.0001 0.0005 4-9 
U43 Am29827 24 0.075 0.375 0.0001 0.0005 4-9 
u 60 Am29827 24 0.075 0.375 0.0001 0.0005 5-5 
u 61 Am29827 24 0.075 0.375 0.0001 0.0005 5-5 
U106 Am29827 24 0.075 0.375 0.0001 0.0005 4-3 
U104 Am29828 24 0.075 0.375 0.0001 0.0005 5-11 
U68 Am29853 24 0.18 0.9 0.0001 0.0005 5-10 
U69 Am29853 24 0.18 0.9 0.0001 0.0005 5-10 
U70 · Am29853 24 0.18 0.9 0.0001 0.0005 5-10 
u 71 Am29853 24 0.18 0.9 0.0001 0.0005 5-10 
U72 Am29862 24 0.15 0.75 0.0001 0.0005 5-10 
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PART PART #OF POWER SUPPLY REQUIREMENTS FIGURE 
ID NUMBER PINS # 

STANDARD CMOS OR LOW 
BIPOLAR POWER VERSION 

Amps Watts Amps Watts 

U44 Am29863 24 0.15 0.75 0.0001 0.0005 4-9 
u 45 Am29863 24 0.15 0.75 0.0001 0.0005 4-9 
u 46 Am29863 24 0.15 0.75 0.0001 0.0005 4-9 
u 47 Am29863 24 0.15 0.75 0.0001 0.0005 4-9 
u 16 Am29PL141 28 0.4 2 0.4 2 4-3 
u 52 Am9150-25 24 0.18 0.9 0.13 0.65 5-3 
u 53 Am9150-25 24 0.18 0.9 0.13 0.65 5-3 
u 54 Am9150-25 24 0.18 0.9 0.13 0.65 5-3 
u 76 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 77 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 78 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 79 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 80 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 81 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 82 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 83 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 84 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 85 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 86 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 87 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 88 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 89 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 90 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 91 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 92 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 93 Am9151-50 24 0.18 0.9 0.18 0.9 5-13 
u 94 Am9151-50 ' 24 0.18 0.9 0.18 0.9 5-13 
u 95 Am9151-50 24 0.18 0.9 0.18 0.9 5-14 
u 96 Am9151-50 24 0.18 0.9 0.18 0.9 5-14 
u 97 Am9151-50 24 0.18 0.9 0.18 0.9 5-14 
u 98 Am9151-50 24 0.18 0.9 0.18 0.9 5-14 
u 22 Am99C 165-35 24 0.11 0.55 0.11 0.55 4-6 
u 23 Am99C165-35 24 0.11 0.55 0.11 0.55 4-6 
u 24 Am99C165-35 24 0.11 0.55 0.11 0.55 4-6 
u 25 Am99C165-35 24 0.11 0.55 0.11 0.55 4-6 
u 26 Am99C165-35 24 0.11 0.55 0.11 0.55 4-6 
u 27 Am99C165-35 24 0.11 0.55 0.11 0.55 4-6 
u 28 Am99C165-35 24 0.11 0.55 0.11 0.55 4-6 
u 29 Am99C 165-35 24 0.11 0.55 0.11 0.55 4-6 
u 30 Am99C 165-35 24 0.11 0.55 0.11 0.55 4-6 
U100 AmPAL16R6B 20 0.18 0.9 0.18 0.9 5-16 
u 62 AmPAL18P8 20 0.18 0.9 0.055 0.275 5-6 
u 63 AmPAL18P8 20 0.18 0.9 0.055 0.275 5-6 
U101 AmPAL18P8B 20 0.18 0.9 0.18 0.9 5-21 
U102 AmPAL18P8B 20 0.18 0.9 0.18 0.9 5-21 
U103 AmPAL18P8B 20 0.18 0.9 0.18 0.9 5-22 
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PART PART #OF POWER SUPPLY REQUIREMENTS FIGURE 
ID NUMBER PINS # 

STANDARD CMOS OR LOW 
BIPOLAR POWER VERSION 

Amps Watts Amps Watts 

U32 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7 
U33 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7 
U34 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7 
U35 AmPAL22V10 24 0.15 0.75 0.15 0.75 4-7 
u 64 AmPAL22V10 24 0.15 0.75 0.15 0.75 5-7 
u 65 AmPAL22V10 24 0.15 0.75 0.15 0.75 5-8 
u 66 AmPAL22V10 24 0.15 0.75 0.15 0.75 5-8 
u 6 AmPAL22V10A 24 0.15 0.75 0.15 0.75 3-3 
U17 AmPAL22V1 OA 24 0.15 0.75 0.15 0.75 4-4 
U57 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-4 
U58 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-4 
U59 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-4 
u 75 AmPAL22V10A 24 0.15 0.75 0.15 0.75 5-11 
U99 AmPAL22V1 OA 24 0.15 0.75 0.15 0.75 5-15 
u 31 74AS32 14 0.0165 0.0825 0.0165 0.0825 4-6 
U107 74AS804A 24 0.016 0.08 0.016 0.08 5-15 
U108 74AS804A 24 0.016 0.08 0.016 0.08 5-15 
U105 74ALS08 14 0.0022 0.011 0.0022 0.011 5-10 

Total 3267 20.859 104.29 13.458 67.294 
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APPENDIX 0 

Goals 

The primary guidelines behind the design choices made in this application 
note are outlined below. Listing them here will help in understanding the 
design alternatives selected. 

1. Illustrate the use of several of the 29300 family components in a 
typical system arrangement. 

2. Show both macroprogram and microprogram approaches to processor 
design. 

3. Make the design general purpose so that it may be copied in whole or 
in part by other engineers and used in a wide range of applications. 

4. Provide hardware aids for Digital Signal Processing algorithms. 

5. Illustrate the use of Serial Shadow Register (SSR) diagnostics. 

6. Show the use of dual write data ports on the 29334 register file. 

7. Work through the details of support logic design and system timing. 

Disclaimer 
Warning: This is a paper design. It has not been implemented in hardware. 
The design is therefore subject to the usual number of oversights, mistakes, 
and outright blunders that lie hidden in the depths of ariy complex and untried 
plan. 

All AC & DC parameters quoted in this document were based on information 
available at the time of writing this document. Some of the parameters 
represent PRELIMINARY information, which is subject to change. 
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LATIN AMERICA, 
Ft. Lauderdale ............. TEL ............................. (305) 484-8600 

FAX ............................ (305) 485-9736 
TEL ................. 5109554261 AMDFTL 

NORWAY, Hovik .............. TEL .................................. (02) 537810 
FAX .................................. (02) 591959 
TLX ............................................. 79079 

SINGAPORE .................... TEL ................................... 65-2257544 
FAX .................................. 65-2246113 
TLX ....................... RS55650 MMI RS 

SWEDEN, 
Stockholm .................... TEL .............................. (08) 733 03 50 

FAX .............................. (08) 733 22 85 
TLX ............................................. 11602 

TAIWAN ............................ TLX ............................. 886-2-7122066 
FAX ............................. 886-2-7122017 

UNITED KINGDOM, 
Manchester area ......... TEL .............................. (0925) 828008 

FAX .............................. (0925) 827693 
TLX ........................................... 628524 

London area ................ TEL .............................. (04862) 22121 
FAX .............................. (0483) 756196 
TLX ..................... , ..................... 859103 

North American Representatives __ _ 
CANADA 
Burnaby, B.C. 

DAVETEK MARKETING ................................. (604) 430-3680 
Calgar:r', Alberta 

VITEL ELECTRONICS .................................... (403) 278-5833 
Kanata, Ontario 

VITEL ELECTRONICS .................................... (613) 592-0090 
Mississauga, Ontario 

VITEL ELECTRONICS .................................... (416) 676-9720 
Quebec 

VITEL ELECTRONICS .................................... (514) 636-5951 
IDAHO 

INTERMOUNTAIN TECH MKGT ................... (208) 888-6071 
IN DIANA 

ELECTRONIC MARKETING 
CONSULTANTS, INC ..................................... (317) 921-3452 

IOWA 
LORENZ SALES .............................................. (319) 377-4666 

KANSAS 
Merriam 

LORENZ SALES .............................................. (913) 384-6556 
Wichita 

LORENZ SALES .............................................. (316) 721-0500 
KENTUCKY 

ELECTRONIC MARKETING 
CONSULTANTS, INC ..................................... (317) 921-3452 

MICHIGAN 
MIKE RAICK ASSOCIATES ........................... (313) 644-5040 

MISSOURI 
LORENZ SALES .............................................. (314) 997-4558 

NEBRASKA 
LORENZ SALES .............................................. (402) 475-4660 

NEW MEXICO 
THORSON DESERT STATES ....................... (505) 293-8555 

NEW YORK 
NYCOM, INC .................................................... (315) 437-8343 

OHIO 
Centerville 

DOLFUSS ROOT & CO .................................. (513) 433-6776 
Columbus 

DOLFUSS ROOT & CO .................................. (614) 885-4844 
Strongsville 

DOLFUSS ROOT & CO .................................. (216) 238-0300 
PENNSYLVANIA 

DOLFUSS ROOT & CO .................................. (412) 221-4420 
UTA~ 

R MARKETING ............................................... (801) 595-0631 
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