ﬂ‘ﬂ
Pw\

Am29112

A High-Performance 8-Bit Slice Microprogram Sequencer

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

® Expandable
8-bit slice, cascadable up to 16 bits

® Deep stack
A 33-deep on-chip stack is used for subroutine link-
age, interrupt handling, and loop control.

® Hold feature
A hold pin facilitates multiple sequencer implementa-
tions.

® |Interruptible at the microprogram level
Two kinds of interrupts: maskable and unmaskable.
e Powerful loop control
When cascaded, two counters can act as a single
16-bit counter or two independent 8-bit counters.
® Powerful addressing modes
Features direct, multiway, multiway relative, and pro-
gram counter relative addressing.

GENERAL DESCRIPTION

The Am29112 is a high-performance interruptible micropro-
gram sequencer intended for use in very high-speed
microprogrammed machines and optimized for the new
state-of-the-art ALUs such as the Am29116A 16-Bit Bipolar
Microprocessor.

The Am29112 is designed to operate in 10-MHz micropro-
grammed systems.

It has an instruction set featuring relative and multiway
branching, a rich variety of looping constructs, and provi-
sion for loading and unloading the on-chip stack.

Interrupts are accepted at the microcycle level and ser-
viced in a manner completely transparent to the interrupted
microcode.

BLOCK DIAGRAM*

CONDITION

| —
|
MICROPROGRAM |~ c¢ope I
R

Mux

EMERGENCY LIFo
DETECT
CIRCUIT
{o
[
& II VEcToRED INTREQ Am29112 cc
g : INT AGK INTERRUPTIBLE
E I LE| !
OE Y
VECTOR
MAP
PROM

MICROPROGRAM

PIPELINE REGISTER

BD002190

*Typical System Diagram — Am29112 in a Single Pipelined System
(See Figure 1 for Detailed Block Digram)

LIBERTY CHIP is a trademark of Advanced Micro Devices, Inc.

Publication # Rev. Amendment
03657 B /0
Issue Date: July 1986

-

cliegwy

$22IA2(O.DIW P2URADY

RELATED PRODUCTS

Part No. Description

Am29114 Vectored Priority Interrupt Controller
Am29116 A 16-Bit Bipolar Microprocessor
Am29117 Two-Port Am29116

Am29118 8-Bit Bidirectional 1/0 Port/Accumulator
Am29PL141 Fuse-Programmable Controller
e raa | Bit Bidirectional 1/0 Port

Am2925 System Clock Generator and Driver
Am2904 Status and Shift Control Unit
Am2940 DMA Address Generator

Am2942 Programmable Timer/Counter/DMA

Do-D7

L COMMAND

4

INTERRUPT
LOGIC

CZI0

DBUS

INTVECT

<

STACK
33x8

| STACK MUX I

]

FBUS

AMUX

cMux Pc

e
I

P

lo94 , 5 INSTRUCTION
- II

15, lg MODE
e

UCTION
LA

HOLD

Figure 1. Detailed Block Diagram

M-y
ys
I‘@

BD001932

CONNECTION DIAGRAM

Top View
Yo% it R ~ 48 [Vg (ECL)
UNTR]2 47 [] MINTR
M 3 46 [JLss
M, S 4 45 [Jczio
M []s 44[Jcio
M, 6 43] MINTA

W7 42 [] ACIO

1,8 4 1v,

Lo 40 [Ys

s []10 39 []Vs

[P R T 38[]Y.

Is 12 37 [_JGND (TTL)
(ECL) GND [13 36 [JVgg (TTL)
(ECL) Voo [14 35]Ys

s []15 34 [JHOLD

RESET (] 16 33[1Y,
cC |17 2 Y
CCEN [18 31 1Y,
POL []19 30 [JPcCiO
cP |20 29 [] STKERR
D,]2t 281D,
Dg [22 27 oy
Ds [} 2s3 261D,
D, 24 25 [D,
CD004891

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

8
NGuwanp L SLY YouY
7 ACIO
i> lo=ls PCIO
Cio
4 czio
Mo-M,
—{ POL
——— | CCEN
cc STKERR
———————— UINTR
—————————{ INTD
———— MINTR MINTA
—— | RESET
1 HOLD
—>| LSS
—cP

LS002630

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by

a combination of: A. Device Number

B. Speed Option (if applicable)

C. Package Type

D. Temperature Range
E. Optional Processing

AM29112

Am29112

D

L

A. DEVICE NUMBER/DESCRIPTION

High-Performance 8-Bit Slice Microprogram Sequencer

Valid Combinations

AM29112 | bc, bcs

sales office to

. OPTIONAL PROCESSING

Blank = Standard processing
B = Burn-in

. TEMPERATURE RANGE

C = Commercial (0 to +70°C)

. PACKAGE TYPE

D = 48-Pin Sidebrazed Ceramic DIP (SD 048)

. SPEED OPTION

Not Applicable

Valid Combinations

Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMD

confirm availability of specific valid

combinations, to check on newly released combinations, and
to obtain additional data on AMD's standard military grade

products.

PIN DESCRIPTION

Do-D7 Data I/0 Lines (8) (Input/Output)
Bidirectional bus inputs data to address multiplexer,
counter, and other control registers and outputs stack.

Yo-Y7 Address I/0 Lines (8) (Input/Output)
Bidirectional microprogram address bus outputs
microprogram address and inputs interrupt vector.

Mp-M3 Multiway Inputs (4) (Input)

Multiway input pins for up to 16-way branches.

HOLD Hold Control Pin (Input)

When this signal is HIGH, the Y-Bus is three-stated and the
carry-in to the program counter incrementer is forced LOW.
Also, the CMUX output is selected at the incrementer input.

CC Condition Code Pin (Input)
Test condition input for the sequencer (see Table 2).

CCEN Condition Code Enable Pin (Input)
Test enable for the sequencer (see Table 2).

POL Polarity Pin (Input)
Polarity Input for the test (see Table 2).

lop-14 Instruction Lines (5) (Input)
Used to select the instruction to be performed by the
Am29112.

Is, lg Instruction Lines (2) (Input)
Mode control inputs. Selects one of three modes: normal,
extended, or forced continue (see Table 1).

STKERR Stack Error Pin (Output)
Indicates stack overflow or underflow.

UINTR Unmaskable Interrupt Pin (Input)
Unmaskable interrupt request input. Needs to remain active
for at least one cycle.

MINTR Maskable Interrupt Pin (Input)
Maskable interrupt request input. Needs to remain active for
at least one cycle. May remain active during entire interrupt
routine. MINTR should go inactive for at least one cycle
before it can go active again.

INTD Interrupt Disable Pin (Input)
Disable input for maskable interrupts.

MINTA Maskable Interrupt Acknowledge Pin (Output)
Acknowledges to interrupting device that the Am29112 has
been interrupted.

LSS Least Significant Slice Pin (Input)
When LSS is HIGH, the Am29112 is programmed as the
least significant slice. When LSS is LOW, the Am29112 is
programmed as the most significant slice.

RESET Reset Pin (Input)
The reset input is registered and has no effect until the
following cycle. On the second clock edge after reset, the
stack pointer is reset, the command register is set to its
default values, and maskable interrupts are disabled. A
Jump-to-Zero is executed during the cycle following RESET
becoming active.

CP Clock Pulse Pin (Input)
The clock input to the Am29112.

ACIO Adder Carry 1/0 (Input/Output)
Carry 1/0 line for the adder for two cascaded Am29112s.
When not cascading two Am29112s, leave unconnected.

PCIO Program Counter 1/0 (Input/Output)
Carry 1/0 line for the program counter for two cascaded
Am29112s. When not cascading two Am29112s, leave
unconnected.

CIO Counter 1/0 (Input/Output)
Carry 1/0 line for the counter for two cascaded Am29112s.
When not cascading two Am29112s, leave unconnected.

CZIO Counter Zero 1/0 (Input/Output)
Counter zero detect for two cascaded Am29112s. This is an
open-collector output which should be OR-tied to another
Am29112 using a 1K pull-up resistor. When not cascading
two Am29112s, leave unconnected.

FUNCTIONAL DESCRIPTION

The Am29112 is designed for use in single-level pipelined
systems. A typical configuration is shown in Figure 2.

Branch addresses and constants for the various registers are
supplied to the Am29112 through the D port which is
bidirectional to allow the stack to be unloaded onto an
external LIFO. The next address generated by the sequencer
is output on the Y port and directly drives the microprogram
memory. A single pipeline register at the output of the
microprogram memory contains the microinstruction being
executed, while the next is being fetched. External conditions
are applied to the CC input of the Am29112 via the condition
code MUX and also to the multiway inputs.

A vectored priority interrupt controller generates a prioritized
interrupt request (MINTR) to the Am29112, which acknowl-

edges the request via the MINTA pin. Upon receiving the
acknowledge, the priority interrupt controller puts out the
encoded priority of the interrupt, which is translated to a vector
by the vector mapping PROM. The MINTA output of the
Am29112 turns on the PROM output and simultaneously
switches the Y port from output to input, enabling the interrupt
vector onto the microprogram address bus. In the Am29112,
the next address of the interrupted sequence is automatically
saved on the stack while the interrupt vector is transmitted
through the Y port and incremented to form the next micropro-
gram address.

The emergency detect circuit generates an unmaskable inter-
rupt request upon power failure or stack error. On receiving an
unmaskable interrupt, the sequencer branches to the unmask-
able interrupt routine; the address of this routine is stored on
the Am29112 in the INTVECT register. Detailed interrupt
handling is discussed in a later section.

EMERGENCY
DETECT o
CIRCUT

7

STKERR ° 1 F |

‘4

— Am29112 INTERR!
Am29114 peq | PRIORMZEOREQUEST _ |0 i wl ‘
] . ACKNOWLEDGE v SEQUENCER N\ n
Wienoe 1 | [prioerry —9 c¢ jo-——--—{ — | rest
: CONTROLLER CCEN Joo—— , CONDITIONS
- CONDITION
| PrioR WD v PoL cooemux | |
3 |
INTERRUPT VECTOR —
VECT —
PRI MAbING seL
PROM
MICROPROGRAM
MEMORY
L PIPELINE REGISTER I

BD001922

Figure 2. Control Path in a Single Pipelined System Using the Am29112

Architecture of the Am29112

The internal organization of the Am29112 is shown in Figure 1.
The most important control loop inside the sequencer consists
of the CMUX, incrementer, and PC register. The CMUX selects
the next microprogram address based on the instruction and
condition code inputs. The next microprogram address is
selected from the PC register for a continue, the D port for a
branch, the adder for relative and multiway branches, the
interrupt register for unmaskable interrupts, the stack for
subroutine returns or loop repeats, or all zeros for the JUMP
ZERO instruction.

The Am29112 has many registers other than the PC register
and the interrupt register. There is an 8-bit counter used for
loop control; the DWIDTH register is a 4-bit register which
programs the number of least significant bits of the D port that
are added to the PC in relative addressing modes; the stack
pointer is a 6-bit counter/register that points to the top of stack
element; the 3-bit command register is used to program the
chip on reset for compatibility with the external hardware

configuration; finally, there is the INTRTN register which is
used for saving the CMUX output on the stack when an
interrupt occurs.

With the exception of the INTRTN register, the stack pointer,
and the PC register, each of the above registers can be loaded
directly from the D port of the Am29112.

The Am29112 features a high-speed adder with full carry
lookahead across 8-bits. The adder is used for PC relative
addressing (branch address is PC + D), multiway relative
addressing (branch address is D + M, where M is the 4-bit
multiway input), and for testing the stack pointer against the D
bus. In cascaded configurations (see Figure 3), carry ripples
from the LSS adder to the MSS adder over the ACIO line.

The on-chip stack is 33 deep, and the Am29112 has instruc-
tions to save the D inputs, counter, multiway register, and PC-
register on the stack. The stack output bus is connected via
three-state buffers to the D port. It is possible to pop the stack
to the D port. It is also possible to push data from the D port
onto the stack.

lg=1s LSS p—1
00, 01, 1X lo—1s Lss |-o

I

L=l L=l e

Am29112 ACIO ACIO Am29112
P
wss ci0 PCIO Lss
cio
czio Vee czio
% ®
LD000320

Figure 3. 16-Bit Configuration

Instruction Set of The Am29112
Mode Bits (lg, I5)

The Am29112 is controlled by five instruction inputs, two
mode inputs, and the condition code. In typical applications it
is expected that the instruction inputs are driven directly from
the pipeline, whereas the mode inputs are either permanently
wired high or low to select the desired operating mode, or
driven indirectly via external logic. (In some applications it
might be justifiable to drive the mode bits directly from the
pipeline.) The two mode bits select among three operating
modes: normal (00), extended (01), and forced continue (10
and 11). In the normal mode, the entire instruction set of the
Am29112 applies.

TABLE 1. MODE CONTROLS

ls, Is| Mode Description
For cascaded Am29112s, two inde-
0o Normal pendent 8-bit counters
01 Extended For cascaded Am29112s, one 16-bit
counter
10 Forced The Am29112 executes a continue
Continue instruction regardless of instruction,
Al condition code, and multiway inputs.

Extended Mode

The instruction set includes instructions that differentiate
between upper and lower counters (when there are two
cascaded Am29112s). In the normal mode, the two counters
on cascaded Am29112s function independently, and it is
possible to set up a doubly nested loop without having to save
and restore counter values on the stack. In the extended
mode, however, the counters on cascaded Am29112s behave
like one 16-bit counter and instructions that differentiate
between the counters degenerate into identical instructions.
Hence in a system with only one Am29112 there is no use for
the extended mode.

Forced Continue Mode

In the forced continue mode the Am29112 executes a
continue in every cycle regardless of the instruction bits,
condition code, and multiway inputs. The simplest application
(if mode bits are driven directly from the pipeline) is to use
forced continue for straight-line segments of code, thereby
permitting most of the sequencer control fields of the pipeline

to be shared. The forced continue also has an important
application in systems with a writable control store (WCS)
where it is necessary to step through the addresses sequen-
tially while loading the WCS.

The instructions of the Am29112 are classified into four
groups:

® Branching and subroutine linkage
® Looping

® Stack and register

® Interrupt

The sequencer has an instruction repertoire of altogether thirty-
nine different instructions. In order to encode these instructions
with only five instruction lines, the condition code is used in
some cases to differentiate between two distinct instructions
sharing the same opcode. This way of encoding is used for the
stack and register, and interrupt groups of instructions. For
these instructions, therefore, the condition code multiplexer is
not used to select an external condition. However it is required
to force the condition code to unconditional Pass or Fail. The
condition code enable and polarity logic has been designed with
this in mind. Using the enable and polarity, it is possible to
generate both unconditional Pass and unconditional Fail (re-
gardless of the condition code input). Hence the condition code
for these instructions is like a sixth instruction line, and the
condition code multiplexer field of the pipeline can be shared for
these instructions (see Figure 4 and Table 2).

CCEN E

cc CONDITION

PF001062

Figure 4. Condition Code Circuit.

TABLE 2. CONDITION CODE TABLE

CCEN | C POL

Condition

PASS
FAIL
FAIL

PASS

PASS
FAIL

- 2 000O0
XX-=20=0
—“~ 02200

TABLE 3. Am29112 INSTRUCTION SET

Mnemonic
Opcode (l40) Condition (Note 1) Description
00 (00R) Unconditional JZ.U Unconditional Jump Zero
01 (01R) Forced Pass PUSHD.P Push D (Pass)
01 (01R) Forced Fail LDCMD.F Load Command Register from D (Fail)
02 (021) Conditional POP.C Pop; Conditional Stack out to D
03 (03n) Conditional CJD.C Conditional Jump D
04 (04p) Conditional CJSD.C Conditional Jump Subroutine D
05 (05R) Conditional CJMW.C Conditional Jump Multiway D
06 (061) Conditional CJSMW.C Conditional Jump Subroutine Multiway D
07 (07W) Conditional CRTN.C Conditional Return
?ﬁofgag‘)) Conditional PUSHPL.C Push PC; Conditional Load Lower Counter
?ﬁ 0895’)) Conditional LDLC.C Load Lower Counter; Conditional Push Counter
10 (0ARH) Unconditional POPLC.U Pop to Lower Counter
11 (0Bp) Forced Pass RSTSP.P Reset Stack Pointer (Pass)
11 (0BR) Forced Fail LDINTV.F Load Unmaskable Interrupt Vector (Fail)
Koggcj‘)) Forced Pass RFCTU.P Repeat Loop, Upper Counter #0 (Pass)
12 (0CH) Forced Fail RFCTLF |Repeat Loop, Lower Counter #0 (Fail
(Note 4) orced Fail . epeat Loop, Lower Counter (Fail)
2!308D5';) Forced Pass RPCTU.P Repeat Pipeline, Upper Counter #0 (Pass)
13 (0DR) . _— .
Forced Fail RPCTL.F Repeat Pipeline, Lower Counter #0 (Fail)
(Note 5)
14 (OER) Conditional LOOP.C Test End Loop
15 (OFR) Forced Pass ENINT.P Enable Interrupts (Pass)
15 (OFR) Forced Fail DISINT.F Disable Interrupts (Fail)
16 (10R) - g
(Note 6) Conditional TWBL.C Three-Way Branch, Lower Counter
2,3 og“é')) Conditional TWBU.C Three-Way Branch, Upper Counter
18 (12R) Forced Pass TSTSP.P Test SP with D (Pass)
18 (12p) Forced Fail TSTMT.F Jump D if Stack not Empty
19 (13p) Conditional CJDF.C Conditional Jump D/Stack and Pop
20 (14R) Conditional CJSDF.C Conditional Jump Subroutine D/Stack and Pop
21 (15R) Conditional CJMWR.C Conditional Jump Multiway Relative D
22 (16R) Conditional CJSMWR.C Conditional Jump Subroutine Multiway Relative D
23 (17w) Conditional CJPP.C Conditional Jump Pipeline and Pop
ﬁf}ogag)) Conditional PUSHPU.C Push PC; Conditional Load Upper Counter
(2I\?oggg)) Conditional Lbuc.C Load Upper Counter; Conditional Push Counter
26 (1AR) Forced Pass POPUC.P Pop to Upper Counter (Pass)
26 (1AR) Forced Fail POPDW.F Pop to Displacement Width (DW) Register (Fail)
27 (1BR) Conditional LDDW.C Load DW Register; Conditional Push DW Register
28 (1CR) Conditional CJR.C Conditional Jump D PC Rel
29 (1DR) Conditional CJRN.C Conditional Jump D PC Rel Negative
30 (1ER) Conditional CJSR.C Conditional Jump Subroutine D PC Rel
31 (1Fp) Conditional CJSRN.C Conditional Jump Subroutine D PC Rel Negative
Notes: 1. Extensions: U = Unconditional; C = Conditional; P = Pass Condition; F = Fail Condition.

. For two cascaded Am29112s in the extended mode, the two instructions are identical.
. For two cascaded Am29112s in the extended mode, the two instructions are identical.

. For two cascaded Am29112s in the extended mode, the two instructions are identical.
. For two cascaded Am29112s in the extended mode, the two instructions are identical.

1.
2
3
4. For two cascaded Am29112s in the extended mode, the two instructions are identical.
5
6

TABLE 4. JUMP INSTRUCTIONS

Instruction Functions Mnemonic Opcode Condition Y Stack
JZ.U (Note 1) 00 (00H) u 0 RESET
P D
CJD.C 03 (03p) -
One-Way F (PC)
P D Pop
CJPP.C 23 (17R)
F (PC) -
Direct Two-W. CJDF.C 19 (13p) P o P
'wo-Wa! R (o]
Y H F (Stack) P
Y4-Y7=D4-D7,
. P Yo-Y3z=Mo-Mg3
Multi-Way CJMW.C 05 (05p) (Note 2) -
F (PC)
P (PC) + D$
CJR.C 28 (1Cp) (Note 3) _
F (PC)
One-Way
P (PC) + D*
Relative CJRN.C 29 (1DR) (Note 4) -
F (PC)
P D+M
Multi-Way CJMWR.C 21 (15p) (Note 5) -
F (PC)

Notes: 1. JZ.U also resets the Command Register and the interrupt logic.

2. Yo-Y7 is as shown if CRy =1. If CRy1 =0, then Yo-Y7=Dg~D7.

3. D$ represents the number of D bits used as displacement; the remaining high-order bits are zero-extended.
4. D* represents the number of D bits used as displacement; the remaining high-order bits are one-extended. D should be

a two's-complement number.

5. Yo-Y7=D+M if CRy=1. If CRy =0, then Yp-Y7=Dg-D7.

10

TABLE 5. SUBROUTINE INSTRUCTIONS

Instruction Functions Mnemonic Opcode Condition Y Stack
P D Push
CJSD.C 04 (044)
F (PC) -
One-Way
P (Stack) Pop
CRTN.C 07 (07R)
F (PC) -
Direct Two-Way CJSDF.C 20 (14p) P D Pop and
F (Stack) Push
Y4~-Y7=D4-Dz,
. P Yo-Y3=Mo-Ms Push
Multi-Way CJSMW.C 06 (061) (Note 1)
F (PC) -
(PC) + D$
P Push
CJSR.C 30 (1EH) (Note 2)
F (PC) -
One-Way -
d (PO +D Push
Relative CJSRN.C 31 (1Fy) (Note 3)
F (PO) -
D+M
P Push
Multi-Way CJSMWR.C 22 (16p) (Note 4)
F (PC) -

Notes: 1. Yo-Y7 is as shown if CRy=1.

If CRq =0, then Yo-Y7=Dg-D7.

2. D$ represents the number of D bits used as displacement; the remaining high-order bits are zero-extended.
3. D* represents the number of D bits used as displacement; the remaining high-order bits are one-extended. D should be

a two's-complement number.

4. Yo-Y7=D+M if CRy=1. If CR1 =0, then Yo-Y7=Dg-D7.

1"

TABLE 6. REPEAT INSTRUCTIONS

Instruction Upper Lower
Functions Mnemonic Opcode Condition Count Count Y Stack
RFCTU.P p >0 (Stack) -
(Note 1) =0 (PC) Pop
12 (0CR)
RFCTL.F F >0 (Stack) -
(Note 1) =0 (PC) Pop
Loop RPCTU.P p >0 D _
(Note 2) =0 (PC)
13 (0DR)
RPCTL.F E >0 D _
(Note 2) =0 (PC)
P (PC) Pop
LOOP.C 14 (OER)
F (Stack) -
P (PC) Pop
TWBU.C
(Note 3) 17 (11p) E >0 (Stack) -
Loop = D Pop
and
Branch TWBLGC P (PC) Pop
(Note ’3) 16 (10R) E >0 (Stack) -
= D Pop
Notes: 1. For two cascaded Am29112s in the extended mode, the two instructions are identical.
2. For two cascaded Am29112s in the extended mode, the two instructions are identical.
3. For two cascaded Am29112s in the extended mode, the two instructions are identical.
TABLE 7. TESTING INSTRUCTIONS
Instruction Functions Mnemonic Opcode Condition Y Stack
SP+D<33 (PC) -
TSTSP.P
SP+D>33 (Stack) Pop
Test SP and Branch 18 (12n)
SP#0 D
TSTMT.F -
SP=0 (PC)

12

TABLE 8. OTHER INSTRUCTIONS

Opcode Mnemonic Condition Functions Stack
01 (011) PUSHD.P P D — Stack Push
H LDCMD.F F D —> Command Register -
P (Stack) — D
02 (02H) POP.C = Pop
PUSHPL.C P (PC) — Stack
08 (08H) (Note 1) D —> Lower Counter Push
F (PC) — Stack
LDLC.C P D —> Lower Counter Push
09 (09h) (Note 2) (Counter) — Stack
F D — Lower Counter -
10 (OAR) POPLC.U U (Stack) —> Lower Counter Pop
1 0By RSTSP.P P Reset SP
H LDINTV.F F D —> Interrupt Vector Register
15 (OF) ENINT.P P Enable Maskable Interrupt
H DISINT.F F Disable Maskable Interrupt
s c p (PC) — Stack
24 (18y) P(Lr{loTePg.) D — Upper Counter Push
F (PC) — Stack
D — Upper Counter
P Push
25 (19n) (I;\lDolijeCzC) (Counter) — Stack u
F D —> Upper Counter -
POPUC.P P (Stack) —> Upper Counter
26 (1AR) Pop
POPDW.F F (Stack) —> Displacement Width (DW) Register
p D — DW Register Push
27 (1BR) LDDW.C (DW Register) — Stack
F D — DW Register -

Notes: 1. For two cascaded Am29112s in the extended mode,
2. For two cascaded Am29112s in the extended mode,

the two instructions are identical.
the two instructions are identical.

INSTRUCTION SET DEFINITION OF THE Am29112
Jump Instructions

Key: @ = Other Instruction F = Fail
©® = Instruction Being Described U = Unconditional
O = Register in Part FP = Forced Pass
P = Pass FF = Forced Fail
Opcode Mnemonic Condition Execution Example
00(00H) Jz.u Unconditional

Description: Unconditional Jump Zero

This instruction causes an Unconditional Jump to address location 0. This in-

struction also resets the stack pointer and interrupt logic (maskable interrupt

disabled), as well as setting the Command Register as follows:
CRp=CRy=CR2=1.

Opcode Mnemonic Condition

Execution Example

03(03H) GJD.C Conditional

Description: Conditional Jump D

Conditionally Jump to the address input on the D port. If the condition is a
Pass, the next address is obtained from the D port. If the condition is a Fail,
a Continue is executed.

14

Opcode Mnemonic Condition Execution Example

23(17R) CJPP.C Conditional
Description: Conditional Jump Pipeline and Pop 631 /O—»POP
If the condition is a Pass, a Jump to D is executed and the Stack is popped. STACK
If the condition is a Fail, a Continue is executed. P s
P
64 0 82
P D=82
T
65 ¥ 83
Opcode Mnemonic Condition Execution Example
19(13n) CJDF.C Conditional

63

Description: Conditional Jump D/Stack and Pop 70
If the condition is a Pass, a Jump to D is executed and the Stack is popped. _ L >POP
If the condition is a Fail, a Jump is made to the address on the top of Stack oa (U STACK
and the Stack is popped. D=15 STACK =70

Opcode Mnemonic Condition Execution Example

05(05) CJMW.C Conditional

Description: Conditional Jump Multiway D

If the condition is a Pass, a branch is taken to an address provided by the D
and M inputs. The four M inputs directly replace the four LSBs of the branch
address input at D. If the condition is a Pass and multiway branching is dis-

abled in the Command Register, then a branch is taken to the address input
at D. If the condition is a Fail, then a Continue is executed.

AY

Opcode Mnemonic Condition Execution Example

28(1CH) CJR.C Conditional

Description: Conditional Jump D PC Rel

If the condition is a Pass, a Jump is made to an address computed from the A Y
PC and D inputs. The specified D bits are added to the PC to form the

branch address. The remaining D bits are ignored. If the condition is a Fail, a
Continue is executed.

Note: The number of D bits used as displacement is stored in the Displace- 4B (oS——P———- D=2

ment Width (DW) Register. The remaining high order bits are zero-extended.
F
4C 4
¥
4E)
Opcode Mnemonic Condition Execution Example
29(1Dp) CJRN.C Conditional
Description: Conditional Jump D PC Rel Negative
If the condition is a Pass, a Jump is made to an address computed from the 49
PC and D inputs. The specified D bits are subtracted from the PC to form the
branch address. The remaining bits are ignored. If the condition is a Falil, a
Continue is executed.
Note: The number of D bits used as displacement is stored in the DW Regis- 4A
ter. The remaining high order bits are one-extended. The D inputs should
therefore present a two's complement number.
4
PN ML S
F
acy

16

Opcode Mnemonic Condition

Execution Example

21(15p) CJMWR.C Conditional

Description: Conditional Jump Multiway Relative D

If the condition is a Pass, a branch is taken to an address computed from the
D and M inputs. The constant on the M inputs is added to the D inputs to
form the branch address. If the condition is a Pass and multiway branching is
disabled in the Command Register, then a branch is taken to the address
input at D. If the condition is a Fail, a Continue is executed.

A0

Al

A3

17

INSTRUCTION SET DEFINITION OF THE Am29112
Subroutine Instructions

Key: @ = Other Instruction F = Fail
@ = Instruction Being Described U = Unconditional
O = Register in Part FP = Forced Pass
P = Pass FF = Forced Fail
Opcode Mnemonic Condition Execution Example
04(04p) CJsD.C Conditional
Description: Conditional Jump Subroutine D
Conditionally Jump to Subroutine. The subroutine address is input over the D ¥ /O&Pc
port. If the condition is a Pass, the PC is saved on the Stack and a branch is STACK
taken to the subroutine address. If the condition is a Fail, a Continue is exe-
cuted. P Ve
y
s P D=37 37
F
04 ¥ 38
Opcode Mnemonic Condition Execution Example
07(07H) CRTN.C Conditional
Description: Conditional Return 27
If the condition is a Pass, a return is executed from the Interrupt or Sub- 25 /OSTA'CK PC
routine. The return address is obtained from the Stack and the Stack is
popped. If the condition is a Fail, a Continue is executed. /
26 y B2
27 f B3
POP
y
28Y P B4
F
29Y { B5

18

Opcode Mnemonic Condition

Execution Example

20(14n) CJSDF.C Conditional

Description: Conditional Jump Subroutine D/Stack and Pop

If the condition is a Pass, a subroutine Jump to D is executed. The Stack is
popped and PC is then pushed onto the Stack. If the condition is a Fail, a
subroutine Jump is made to the address on the top of Stack. The Stack is
popped and PC is then pushed onto the Stack.

63

PC__ 65 Al

~ STACK
(1

STACK=71
n

POP

72

Opcode Mnemonic Condition

Execution Example

06(061) CJSMW.C Conditional

Description: Conditional Jump Subroutine Muitiway D

If the condition is a Pass, a branch to subroutine is made. The subroutine
starting address is provided by the D and M inputs. The four M inputs directly
replace the four LSBs of the subroutine address input at D. If the condition is
a Pass and multiway branching is disabled in the Command Register, then a
subroutine call is made to the address input at D. In either case, the PC is
saved on the Stack as a return address. If the condition is a Fail, a Continue
is executed.

Opcode Mnemonic Condition

Execution Example

30(1ER) CJSR.C Conditional

Description: Conditional Jump Subroutine D PC Rel

If the condition is a Pass, a subroutine call is made to an address computed
from the PC and D inputs. The specified D bits are added to the PC to form
the subroutine starting address. The remaining D bits are ignored. The subrou-
tine Return Address is saved on the Stack. If the condition is a Fail, a Contin-
ue is executed.

Note: The number of bits of D used as displacement is stored in the DW
Register. The remaining high order bits are zero-extended.

4C

any¥

4E

19

Opcode Mnemonic Condition

Execution Example

31(1FR) CJSRN.C Conditional

Description: Conditional Jump Subroutine PC Rel Negative

If the condition is a Pass, a subroutine call is made to an address computed
from the PC and D inputs. The specified D bits are subtracted from the PC to
form the subroutine starting address. The remaining D bits are ignored. The
subroutine Return Address is saved on the Stack. If the condition is a Fail, a
Continue is executed.

Note: The number of bits of D used as displacement is stored in the DW
Register. The remaining high order bits are one-extended. The D inputs should,
therefore, present two's-complement number.

49

4A

4C

4C oo
& STACK
/

vo

4B (-L— D=-2

Opcode Mnemonic Condition

Execution Example

22(16R) CJSMWR.C Conditional

Description: Condtional Jump Subroutine Multiway Relative D

If the condition is a Pass, a branch to subroutine is made. The subroutine
starting address is computed from the D and M inputs. The constant on the
M inputs is added to the D inputs to form the starting address. If the condi-
tion is a Pass and multiway branching is disabled in the Command Register,
then a subroutine call is made to the address input at D. If the condition is a
Fail, a Continue is executed.

20

INSTRUCTION SET DEFINITION OF THE Am29112
Repeat Instructions
Key: @ = Other Instruction

® = Instruction Being Described
O = Register in Part

F = Fail
U = Unconditional
FP = Forced Pass

P = Pass FF = Forced Fail
Opcode Mnemonic Condition Execution Example
12(0CR) RFCTU.P Forced Pass

Description: Repeat Loop, Upper Counter #+ 0

On a Forced Pass condition, the upper counter value is checked. If found not
equal to zero, execution branches to the address provided from the top of
Stack and the counter is decremented. If found equal to zero, a Continue is
executed and the Stack is popped. For two cascaded Am29112s in the Nor-
mal mode, the lower slice loops back but its counter is unaffected. For two
cascaded Am29112s in the Extended mode, the instruction operates on the
16-bit concatenated counter.

Note: The counter is checked before being decremented. A count of 1
causes two iterations.

21

23

2 pe
Jetack
/

22 lé__@_N

UPPER
COUNTER

24%

CNTR EQ O

26

FP CNTR NEO
25 (s '— — — DEC.
UPPER

o Ea o COUNTER
N

0O-2»por

STACK

Opcode Mnemonic Condition

Execution Example

12(0Ch) RFCTL.F Forced Fail

Description: Repeat Loop, Lower Counter # 0

On a Forced Fail condition, the lower counter value is checked. If found not
equal to zero, execution branches to the address provided from the top of
Stack and the counter is decremented. If found equal to zero, a Continue is
executed and the Stack is popped. For two cascaded Am29112s in the Nor-
mal mode, the upper slice loops back but its counter is unaffected. For two
cascaded Am29112s in the Extended mode, the instruction operates on the
16-bit concatenated counter.

Note: The counter is checked before being decremented. A count of 1
causes two iterations.

21

23

24

FF

25 (G

CNTR EQ 0

26

c 23
STACK Fe
/
ot

LOWER
COUNTER

Y CNTR NEO
0 —— — DEC.
LOWER
AN cwmm £0 0 COUNTER
\CNTR €0

0O-2»ror

STACK

21

Opcode Mnemonic Condition

Execution Example

13(0DR) RPCTU.P Forced Pass

Description: Repeat Pipeline, Upper Counter # 0

On a Forced Pass condition, the upper counter value is checked. If found not
equal to zero, execution branches to the address provided from the D inputs
and the counter is decremented. If found equal to zero, a Continue is execut-
ed. For two cascaded Am29112s in the Normal mode, the lower slice loops
back but its counter is unaffected. For two cascaded Am29112s in the Extend-
ed mode, the instruction operates on the 16-bit concatenated counter.

Note: The counter is checked before being decremented. A count of 1
causes two iterations.

O N
UPPER

/ COUNTER
17
Fp D18
18 1
- g
CNTR NE 0 PER
CNTR Ea 0 COUNTER

19

Opcode Mnemonic Condition

Execution Example

13(0DR) RPCTL.F Forced Fail

Description: Repeat Pipeline, Lower Counter # 0

On a Forced Fail condition, the lower counter value is checked. If found not
equal to zero, execution branches to the address provided from the D inputs
and the counter is decremented. If found equal to zero, a Continue is execut-
ed. For two cascaded Am29112s in the Normal mode, the upper slice loops
back but its counter is unaffected. For two cascaded Am29112s in the Ex-
tended mode, the instruction operates on the 16-bit concatenated counter.

Note: The counter is checked before being decremented. A count of 1
causes two iterations.

N

/ COUNTER

17/

FFy
18 (. D =18
— — DEC.

19¥

Opcode Mnemonic Condition

Execution Example

14(0ER) LOOP.C Conditional

Description: Test End Loop

If the condition is a Fail, program execution branches to the address obtained
from the top of Stack. If the condition is a Pass, program execution continues
and the Stack is popped.

51

4F Stk ¢
/

N

51

52

53 (?\F—
P
PN\
54y b 51 POP

STACK

22

Opcode Mnemonic Condition

Execution Example

17(11R) TWBU.C Conditional

Description: Three-Way Branch, Upper Counter

If the condition is a Pass, a Continue is executed and the Stack is popped. If
the condition is a Fail, the upper counter value is checked. If found not equal
to zero, execution branches to the address provided from the top of Stack
and the counter is decremented. If the counter is equal to zero, execution
branches to the address provided from the D inputs and the Stack is popped.
For two cascaded Am29112s in the Normal mode, the lower slice branches or
loops back as the case may be, but its counter remains unaffected. For two
cascaded Am29112s in the Extended mode, the instruction operates on the
16-bi t concatenated counter.

Note: The counter is checked before being decremented. A count of 1
causes two iterations.

47
)S:TACK Fe

/

Z — O

UPPER
COUNTER

F AND
owmueo | pe

UPPER

N\ {#i ano cum €0 oy COUNTER
N\

O-2»por

STACK

Opcode Mnemonic Condition

Execution Example

16(10p) TWBL. Conditional

Description: Three-Way Branch, Lower Counter

If the condition is a Pass, a Continue is executed and the Stack is popped. If
the condition is a Fail, the lower counter value is checked. If found not equal
to zero, execution branches to the address provided from the top of Stack
and the counter is decremented. If the counter is equal to zero, execution
branches to the address provided from the D inputs and the Stack is popped.
For two cascaded Am29112s in the Normal mode, the upper slice branches or
loops back as the case may be, but its counter remains unaffected. For two
cascaded Am29112s in the Extended mode, the instruction operates on the
16-bit concatenated counter.

Note: The counter is checked before being decremented. A count of 1
causes two iterations.

Oy pc
STACK
/

K_-Q«i‘_

LOWER
COUNTER

F AND
CNTR NE O

L — - DpEC.
pon LOWER

N\ (AL ano om0 o) COUNTER
\

23

INSTRUCTION SET DEFINITION OF THE Am29112
Testing Instructions
Key: @ = Other Instruction

©® = Instruction Being Described
O = Register in Part

F = Fail
U = Unconditional
FP = Forced Pass

P = Pass FF = Forced Fail
Opcode Mnemonic Condition Execution Example
18(12R) TSTSP.P Forced Pass

Description: Test SP with D

On a Forced Pass condition, the sequencer tests the Stack to see if there is
enough space, as determined by a constant input at the D port. (The constant
must be a hexadecimal number.) If the available number of Stack locations is
greater than or equal to the constant, a Continue will be executed. If the
available number of Stack locations is less than the constant, a Subroutine
Return is executed.

c1y

45

ENOUGH
S$SPACE

ENOUGH
SPACE

Opcode Mnemonic Condition

Execution Example

18(12H) TSTMT.F Forced Fail

Description: Jump D if Stack Not Empty
On a Forced Fail condition, the Stack is checked to see if it is empty. If
empty, a Continue is executed. If not empty, a Jump to D is executed.

46 ¥

24

INSTRUCTION SET DEFINITION OF THE Am29112
Other Instructions

Key: @ = Other Instruction F = Fail
® = Instruction Being Described U = Unconditional
O = Register in Part FP = Forced Pass
P = Pass FF = Forced Fail
Opcode Mnemonic Condition Execution Example
01(01R) PUSHD.P Forced Pass
Description: Push D s0¥

Push the D port onto the top of Stack under the Forced Pass condition. The
next address is a Continue.
51

52 S.S—F-P_ —O+—0
STACK
53
54
Opcode Mnemonic Condition Execution Example

01(01R) LDCMD.F Forced Fail

Description: Load Command Register from D
On a Forced Fail condition, the Command Register is loaded from the least
significant three bits of the D input. The remaining bits on the D Port are
""don't cares. The three bits of the Command Register are described below:
CRo — Interrupt acknowledge on Stack full I
CRp =1 : inhibit acknowledge on Stack full (default)
CRg =0 : generate acknowledge on Stack full
CR{ — Multiway Enable oF
CRq =1 : Enable multiway branching (default for LSS)
CR1 =0 : Disable multiway branching (default for MSS)
CR2 — Interrupt post-delay
CR2=1 : No post-delay (default) 70 Og— —O«—0
CR2 =0 : Post-delay COMMAND
Note: When CRg = 1, the Stack is checked for a minimum of five locations)

before acknowledging an interrupt. n

72

25

Opcode Mnemonic Condition

Execution Example

02(02p) POP.C Conditional

Description: Pop; Conditional Stack Out to D

This instruction unconditionally pops the Stack. Also, on a Pass condition, the
value popped is output on the D port. Care should be taken to avoid bus
contention on the D Port when this is done.

32

35§

Opcode Mnemonic Condition

Execution Example

08(081) PUSHPL.C Conditional

Description: Push PC; Conditional Load Lower Counter

If the condition is a Pass, the PC is pushed onto the Stack and the lower
counter is loaded from the D inputs. If the condition is a Fail, the PC is
pushed onto the Stack and the lower counter remains unchanged. In sither
case, a Continue is executed. For two cascaded Am29112s in the Normal
mode, the PC is pushed onto the Stack in both devices and the high order
counter remains unchanged. For two cascaded Am29112s in the Extended
mode, the PC is pushed onto the Stack in both devices. If the condition is a
Pass, the concatenated 16-bit counter is loaded from the respective D inputs.

26 ¥

y

27 (o —

28 ¥

v

P LOWER

{)4—28 PC
STACK
/

D
COUNTER

Opcode Mnemonic Condition

Execution Example

09(09) LDLC.C Conditional

Description: Load Lower Counter; Conditional Push Counter

If the condition is a Pass, the lower counter is loaded from the D inputs and
the previous value in the counter is pushed onto the Stack. If the condition is
a Fail, the lower counter is loaded from the D inputs and the previous value
in the counter is lost. In either case, a Continue is executed. For two cascad-
ed Am29112s in the Normal mode, the high order counter is conditionally
pushed onto the Stack, but its value remains unchanged. For two cascaded
Am29112s in the Extended mode, the 16-bit counter is loaded from the re-
spective D inputs, and the previous 16-bit value from the counter is condition-
ally pushed onto the Stack.

38 ¥

39 go

40

N

LOWER
/ COUNTER

v
=

—O+*counter

STACK

26

Opcode Mnemonic Condition

Execution Example

10(0AR) POPLC.U Unconditional

Description: Pop to Lower Counter

The Stack is popped to the lower counter unconditionally. For two cascaded
Am29112s in the Normal mode, the Stack of the high order slice is also
popped but the higher counter remains unchanged. For two cascaded
AmM29112s in the Extended mode, the Stack is unconditionally popped to the
16-bit concatenated counter. .

4B

-t

an ¥

g — —(O+—STACK
LOWER
COUNTER

Opcode Mnemonic Condition

Execution Example

11(0BR) RSTSP.P Forced Pass

Description: Reset Stack Pointer
On a Forced Pass condition, the Stack Pointer is reset to 0. All previous
Stack contents are lost.

b o

STACK

POINTER
¥
Opcode Mnemonic Condition Execution Example

11(0BR) LDINTV.F Forced Fail

Description: Load Unmaskable Interrupt Vector

On a Forced Fail condition, the Interrupt Vector Register is loaded from the D

inputs.
o} 4

2F

4

2E ﬁ'STF — —(Qe—>

INTVECT
REG.

27

Opcode Mnemonic

Condition

Execution Example

15(0FR) ENINT.P

Description: Enable Interrupts

On a Forced Pass condition, enable maskable interrupts.

Forced Pass

15

ENABLE
—— ——— MASKABLE
INTERRUPTS

Opcode Mnemonic Condition Execution Example
15(0FR) DISINT.F Forced Fail
Description: Disable Interrupts
On a Forced Fail condition, disable maskable interrupts. 12
13
15
Opcode Mnemonic Condition Execution Example
24(18R) PUSHPU.C Conditional

Description: Push PC; Conditional Load Upper Counter

If the condition is a Pass, the PC is pushed onto the Stack and the upper
counter is loaded from the D inputs. If the condition is a Fail, the PC is
pushed onto the Stack and the upper counter remains unchanged. In either
case, a Continue is executed. For two cascaded Am29112s in the Normal
mode, the PC is pushed onto the Stack in both devices and the low order
counter remains unchanged. For two cascaded Am29112s in the Extended
mode, the PC is pushed onto the Stack in both devices and if the condition is
a Pass, the concatenated 16-bit counter is loaded from the respective D in-

puts.

26

27 (0%

28

28
(Oe=—rcC
4 STACK
u -
v

_ D
P UPPER
COUNTER

28

Opcode Mnemonic Condition Execution Example

25(19R) LDUC.C Conditional

Description: Load Upper Counter; Conditional Push Counter

If the condition is a Pass, the upper counter is loaded from the D inputs and
the previous value in the counter is pushed onto the Stack. If the condition is
a Fail, the upper counter is loaded from the D inputs and the previous value

in the counter is lost. In either case, a Continue is executed. For two cascad-
ed Am29112s in the Normal mode, the low order counter is conditionally /@‘N_o
pushed onto the Stack, but its value remains unchanged. For two cascaded 38 UPPER
Am29112s in the Extended mode, the 16-bit counter is loaded from the re- v ~ COUNTER
spective D inputs and the previous 16-bit value from the counter is conditional- b
ly pushed onto the Stack. 3 (- — —O+2counter
P STACK
40
Opcode Mnemonic Condition Execution Example
26(1AR) POPUC.P Forced Pass

Description: Pop to Upper Counter

On a Forced Pass condition, the Stack is popped to the upper counter. For
two cascaded Am29112s in the Normal mode, the Stack of the low order slice ¥
is also popped but the low order counter remains unchanged. For two cascad-
ed Am29112s in the Extended mode, on a Forced Pass condition, the Stack

is popped to the 16-bit concatenated counter. 4C C-S—F—P — '—UQ'_“STACK
E|
cOunTeR
a¥
Opcode Mnemonic Condition Execution Example
26(1ARH) POPDW.F Forced Fail

Description: Pop to Displacement Width Register
On a Forced Fail condition, the Stack is popped to the 4-bit Displacement
Width (DW) Register. The four MSBs are ignored. 27y

y
B O — ——Oe—STACK
DOW

REG.

74 ¥

29

Opcode Mnemonic Condition Execution Example

27(1BR) LDDW.C Conditional

Description: Load Displacement Width (DW) Register; Conditional Push

DW Register

The 4-bit Displacement Width (DW) Register is unconditionally loaded from the @20

four LSBs of the D input. (The four MSBs of the D input are ignored.) If the 29 /olw

condition is a Pass, the previous value of the Displacement Width Register is ~ FREG

pushed onto the Stack. If the condition is a Fail, the previous value of the v

Displacement Width Register is lost. 30 @f— — —O&DWREG‘
P STACK

31y

30

Branching Instructions
Direct Branching

Instruction 0 is the unconditional jump to zero instruction. This
instruction also executes an immediate reset (it is not delayed
until the following clock cycle)

Direct branching is implemented by instruction 3 (COND JUMP
D) and 4 (COND JSB D). The branch address is input through
the D port. If the condition is PASS, the branch is taken,
otherwise the sequencer executes a continue. Two-way direct
branching is implemented by instruction 19 (COND JMP D/
STACK) and instruction 20 (COND JSB D/STACK). If the
condition is Pass, the branch address is taken from the D input
port, otherwise, the branch address is taken from the stack. In
either case the stack is popped. This instruction assumes that
the alternative address was pushed on the stack by a previous
instruction. Jump to subroutine differs from JUMP in that the
PC register is pushed on the stack. This enables the subrou-
tine to use COND RETURN (7) to return to the point of call.
Note that the two-way jump to subroutine (20) causes a
simultaneous pop and push so that the stack pointer is
unaffected but the top of stack element is replaced by the
return address.

Relative Branching

In the relative branch instructions, a dynamically alterable
subfield of the D inputs is added to the PC to form the branch
address. The remaining most significant bits of the D inputs
are ignored and internally converted to all 0's for forward
branches and all 1's for backward branches. The displace-
ment width (DW) Register in the Am29112 holds the number
of least significant bits of D that participate in the relative
branch as the displacement, and can be loaded from the lower
four bits of the D port. In cascaded systems, the displacement
width has to be loaded consistently in the two chips. For
example, for a displacement width of 9, the lower order chip
gets a displacement width of 8 and the higher order chip gets
a displacement width of 1. As another example, if the lower
order chip has a displacement width of less than 8 bits, the
higher order chip must have a displacement width of zero. If
the displacement width register is loaded with any value
greater than 8, it is exactly as if it were loaded with 8.

Instruction 28 (29) is the relative jump (jump back) instruction,
and instruction 30 (31) is the relative jump to subroutine (jump
back to subroutine) instruction. For backward relative branch-
es, the displacement must be coded as a two's complement
negative number. When the displacement width is the same as
the microaddress width the forward and backward relative
branch instructions are identical. When the displacement
width is less than the microaddress width, the more significant
bits of D outside the displacement are forced to all zeros for
positive branches and to all ones for negative branches. This
is effectively sign extension except that the sign information is
contained in the instruction rather than the displacement, and
there is no need for sign information to propagate between
cascaded chips since it is assumed that the displacement
width registers in the two chips have been consistently loaded.

The disadvantage of having the sign information in the
instruction rather than the displacement can be overcome by a
judicious choice of instruction format. The opcodes for forward
and backward relative branch instructions have been chosen
to differ in the least significant bit position only, with a "'0" in
that bit for forward branches and a '1" for backward
branches. If the sequencer instruction field is contiguous with
and on the more significant side of the displacement field in
the pipeline register, then the least significant instruction bit is
like the sign bit for the displacement for relative branch
instructions. This permits the assembler to use the same

opcode for forward and backward relative branch instructions,
but overlap the displacement field (now declared to be one bit
longer than the actual displacement field in the pipeline) with
the sequencer instruction field by one bit. If the assembler now
generates a negative displacement, the sequencer opcode
formed is the backward branch; while if the displacement is
positive, the sequencer opcode formed is forward branch.

When the instruction is executed, the PC already has been
incremented and points to the next sequential instruction,
hence a forward branch with a displacement of 0 causes the
next sequential instruction to be executed.

Multiway Branching

Two variants of multiway branching are available on the
Am29112 - multiway substitute D (see Figure 5) and multiway
relative D (see Figure 6). In multiway substitute D the 4
multiway inputs directly replace the 4 least significant bits of
the branch address input at D. Instruction 5 is a conditional
multiway branch and instruction 6 a conditional multiway
subroutine call. In these instructions, the least significant 4 bits
of the D input port are not used by the sequencer, and may be
shared, for instance to select among different sets of multiway
inputs.

1. Concatenation
(a) With one Am29112

Y7-Yo=D7-Dg ¢ M3-Mo |

(b) With two Am29112

Y15-Yo=D15-Di2 e M7—Ms o D7-Ds s Mg-Mo |

(*(dot) denotes concatenation)

Figure 5. Multiway Branch — Concatenation
2. Relative to data inputs
(a) With one Am29112
r Y7-Yo=D7-Dg + M3-M0J
(b) With two Am29112
| Y15-Yg=D15-Dg + M7-Mgs + ACIOJ

[Y7-Yo=D7-Do+Mg-Mo |

Figure 6. Multiway Branch — Relative to
Data Inputs

Multiway branching has the disadvantage that the jump table
must be aligned on a 16-word boundary. This disadvantage is
overcome in the Am29112 multiway relative branching instruc-
tions. In these instructions, the number input on the multiway
pins is added to the branch address input at D. Instruction 21
is a conditional multiway relative branch and instruction 22 a
conditional multiway relative subroutine call.

One of the advantages of multiway branching is that it enables
a 16-way decision to be made in exactly one microcycle.
However, the 16 target addresses are constrained to be
contiguous in memory. Hence, if the target routines need more
than one microword each, as is very likely, they are addressed
indirectly through a table of 16 contiguous branch instructions.
For very high-speed applications, the extra microcycle needed
to branch indirectly off the jump table may not be acceptable.
This penalty is avoidable if the multiway bits are offset with
respect to the D inputs. When two cascaded Am29112s are
used, there are two sets of 4-bit multiway inputs. The least
significant chip has a multiway input with no offset, while the

31

most significant chip has a multiway input with an 8-bit offset.
The Am29112 command register has a bit CR that enables or
disables multiway branching on the chip. In a system with two
cascaded Am29112s, each chip has a command register bit.
Multiway. branching may be disabled in either chip by resetting
the command register bit on that chip, or enabled by setting
the command register bit. When multiway branching is dis-
abled on a chip, for that chip both multiway and multiway
relative branches are converted to direct branches, and the
multiway inputs are a Don't Care. Multiway branching with an
8-bit offset is implemented by disabling multiway in the least
significant slice and enabling it in the most significant slice. In
this case, the 16 target addresses are dispersed in memory,
separated by 256 locations each. Another useful configuration
is obtained by enabling multiway on both chips. In this case, up
to 16 sets of target addresses are dispersed in memory,
separated by 256 locations each (see Figure 7).

(a) Multiway branch
with one Am29112

(b) Multiway branch
with two Am29112

0
‘1’ Table 0
2
3 Lookup
256
: Table Table 1
.
15
(N-1)x 256
Table 15

Figure 7. Table Lookup Using Multiway

The Am29112 does not have an unconditional continue in its
instruction set. This is not expected to be a drawback because
the instruction set requires that both Unconditional Pass and
Unconditional Fail are programmable by the sequencer to
select among different instructions sharing the same opcode.
Hence, a continue is obtained by executing instruction 3
(COND JUMP D) with a Forced Fail condition.

Looping Instructions

The looping instructions on the Am29112 are of two kinds:
conditional, which depend on an external condition to signal
loop termination, and iterative, which decrement the Am29112
counter and check for a count of zero. There is also a three-
way branch instruction that combines the check for external
condition with the check for count of zero in a single
instruction.

Ali the looping instructions are similar in two respects. Firstly,
the check for the loop condition is done at the end of the loop.
This implies that the loop body is always executed at least
once. Secondly, in the case that the loop has to be repeated, a
backward branch to the loop head is made by using the
address on top of stack. This frees the D inputs for other use,
but makes it necessary to push the address of the start of the
loop on the stack before entering the loop. Also, if the loop is
iterative, it is necessary to load a count value in the counter at
the same time. Instructions 24 (PUSH PC; COND LOAD
UPPER COUNTER) and 8 (PUSH PC; COND LOAD LOWER
COUNTER) combine both these requirements.

Instruction 14 implements a simple conditional repeat loop. If
the condition is FAIL the sequencer loops back using the top
of stack address, and if the condition is PASS, the sequencer
performs a continue to the next sequential address, and
simultaneously pops the stack to remove the address of the
loop head. The instruction may be described in Pascal-like
syntax as:

repeat PUSH PC
LOOP BODY
until condition = TRUE;

Instruction 23 (COND JUMP PIPELINE AND POP) implements
a loop exit that may be used with any of the Am29112 loop
instructions. It is a conditional jump to D, which simultaneously
pops the stack. If the condition is FAIL, it simply performs a
continue.

As discussed earlier, the counters present in cascaded
Am29112s may be used independently or cascaded as a
single 16-bit counter under microprogram control. The mode
bits select the cascaded configuration only in the extended
mode. There are separate repeat and three-way branch
instructions for upper and lower counters. In the case of the
repeat instructions, the condition code is used to differentiate
between the repeat on the upper and the repeat on lower
counter (a condition of PASS selects the upper counter). In the
case of the three-way branch, which needs the condition code
input for the external condition, there are two separate
opcodes for three-way branch on upper (opcode 17) and
three-way branch on lower (opcode 16) counters. When a
single Am29112 is used only the repeat on lower counter
instructions are useful; and when two Am29112s are cascad-
ed but operated in the extended mode, the repeat instructions
on upper and lower counter are identical in effect and both
operate on the 16-bit cascaded counter.

Instruction 12 (REPEAT LOOP IF COUNTER NOT ZERO) is
the iterative analog of instruction 14 (TEST END LOOP).
Instruction 8 (PUSH PC; COND LOAD LOWER COUNTER) is
used with condition code as forced PASS and the desired
count in the D field of pipeline. This causes the address of the
loop head to be pushed on the stack, and the lower counter
loaded with the count. At the end of the loop body, the repeat
instruction checks if the count is zero. If it is not zero, it
performs a loop back using the top of stack address and
simultaneously decrements the counter; if it is zero, it pops the
address of the loop head off the stack and simultaneously
selects the next sequential address thereby exiting the loop. A
repeat loop on the upper counter can be set up using
instruction 24 instead of 8 to push PC and load upper counter
and using instruction 12 to loop back with condition code as
forced PASS. Note the potential off-by-one error: since the
count is checked before it is decremented, a count of 1 causes
two iterations: the first iteration finds a count of 1 and
decrements; on the second iteration the count is found to be
zero and the loop terminates. Hence, the value of count
loaded should be one less than the desired number of
iterations. In the example above, loading the counter with 7
resulted in 8 iterations.

The single instruction repeat (instruction 13) is provided for
applications where the loop body is a single microinstruction,
for example, an ALU shift. The loop is set up as before using
instruction 9 (LOAD LOWER COUNTER; COND PUSH
COUNTER) or 25 (LOAD UPPER COUNTER; COND PUSH
COUNTER). The repeat instruction then presents its own
address to the D inputs of the sequencer. As with the repeat
loop instruction, the single instruction repeat checks for
counter = 0. If the counter is equal to zero, it continues to the
next sequential instruction; otherwise it repeats the address
presented to the D inputs, and decrements the count by one.

32

Instruction 13 can also be used in place of instruction 12
where there is no stack location available to hold the address
of the loop head.

Often it is necessary to repeat an action until either some
external condition becomes true or a predetermined count is
reached: for example, searching a character string for an
occurrence of some character. The three-way branch instruc-
tions of the Am29112 combine the test for count and external
condition in one cycle. At any loop iteration, if the condition
becomes PASS when the three-way branch is executed, then
the sequencer performs a continue to the next sequential
instruction, and pops the stack. If the condition is FAIL when
the three-way branch is executed, the sequencer tests the
count. If the count is zero, then the search is unsuccessful and
the sequencer performs a branch to the address input at the D
port, simultaneously popping the stack. If the count is not zero,
and the condition is FAIL, the sequencer performs a loop back
via the stack. The instruction always decrements the counter
by one if the counter is non-zero.

Since interrupts may occur at any point in the execution of
microcode, it is necessary to be able to save counter values
on the stack so that the interrupt routines can use the counter
without interfering with the operation of the interrupted code.
The sequencer provides instructions that permit arbitrary
nesting of loops and subroutine calls. Instruction 9 (LOAD
LOWER COUNTER; CONDITIONAL PUSH COUNTER) can
be used to load the lower counter from the D port. If the
condition is PASS, then the instruction also causes the old
counter value to be pushed on the stack. To restore the
counter from the stack, instruction 10 (POP TO LOWER
COUNTER) can be used. Instructions 25 (LOAD UPPER
COUNTER; CONDITIONAL PUSH COUNTER) and 26 (COND
POP TO UPPER COUNTER/POP TO DISPLACEMENT
WIDTH) are the counterparts for operating on the upper
counter. Note that in cascaded systems, when the counter is
pushed, regardless of whether instruction 25 or instruction 9 is
executed, the entire counter is pushed to keep the stack
balanced in the two Am29112s.

Stack and Register Instructions

In addition to all the instructions mentioned earlier that
explicitly or implicitly alter the stack, the Am29112 has some
specialized instructions for stack manipulation.

The stack on the Am29112 is 33 levels deep. Attempting to
push when the stack is full will cause the top of the stack to be
overwritten. Attempting to pop when the stack is empty will
return undefined data. In either case STKERR will go HIGH
and will persist until the sequencer is reset or the stack is
popped in case of an overflow (or pushed in the case of an
underflow).

The stack on the Am29112 can be loaded through the D port
using instruction 1 (COND PUSH D/LOAD COMMAND REG-
ISTER) with condition as forced PASS and unloaded out of the
D port using instruction 2 (POP; COND STACK OUT TO D)
with a forced PASS condition. In the stackout instruction the D
port becomes an output port. Care must be taken to avoid
contention on the D bus when this instruction is executed. The
D bus is output enabled while CP is low for this instruction. The
ability to load and unload the stack is useful for implementing
context switches. For fast unloading of the stack, a tight two-
instruction loop can be set up using instruction 2 (POP; COND
STACKOUT TO D) with a Forced Pass condition and instruc-
tion 18 (COND TEST SP/BRANCH STACK NOT EMPTY) also
with a Forced Fail condition. The branch instruction performs a
branch to D if the stack is not empty.

The stack nesting level in an interruptible sequencer varies
dynamically. Hence, the Am29112 is provided with instructions

for checking the available stack space: instruction 18 (COND
TEST SP/BRANCH STACK NOT EMPTY). Two distinct in-
structions for testing the Stack Pointer have been packed into
the same opcode and are differentiated by the condition code.
A condition code of PASS selects the Test Stack Pointer
instruction. In this instruction, the sequencer tests the stack to
see if there is enough space, as determined by a constant
input at the D port; if there is enough space, the sequencer
performs a continue, whereas if there is not enough space, the
sequencer performs a subroutine return (the stack is popped).
The number of stack locations required is input at the D port.
In a system with only one Am29112, the least significant 6 bits
of the D are used within the chip for this instruction. In a
system with two cascaded Am29112s the determination is
made independently in the two chips (since the stack pointer
is at all times identical in the two chips). Hence, the same
number must be presented to the two chips. The adders in the
two Am29112s are not cascaded for this instruction but
function independently. In both Am29112s only the 6 LSBs of
the D port are actually used in the comparison.

Interrupt Handling

The Am29112 recognizes two kinds of interrupts: maskable
and unmaskable. Maskable interrupts cause automatic saving
of the interrupt return address on the internal stack and can be
inhibited, either externally via the INTERRUPT DISABLE pin,
or internally via instruction 15 (COND ENABLE/DISABLE
INTERRUPT). In addition, maskable interrupts are disabled
when there is not enough space on the stack to service the
interrupt, though this internal inhibit can be overridden be
clearing a bit in the command register. The unmaskable
interrupt, on the other hand, cannot be disabled and does not
save the interrupt return address on the internal stack. It is
intended for handling abnormal and irrecoverable situations
like power failure or stack overflow. When an unmaskable
interrupt occurs, the sequencer branches to the address of the
unmaskable interrupt routine stored in the INTVECT register.
This address is stored on-chip at system initialize time using
instruction 11 (COND RESET SP/LOAD INTERRUPT REGIS-
TER) with a condition of FAIL. If a maskable interrupt is being
processed when the unmaskable interrupt occurs, the un-
maskable interrupt may be delayed at most one cycle to
prevent contention on the Y bus. In any case, the unmaskable
interrupt request should persist for at least one clock edge.

The Am29112 contains an interrupt disable flip-flop on-chip.
The flip-flop is set by the DISABLE INTERRUPT instruction
(opcode 15 with forced FAIL) and reset by the ENABLE
INTERRUPT instruction (opcode 15 with forced PASS). The
flip-flop output performs the same function as the interrupt
disable pin. On reset, or on receiving an unmaskable interrupt,
the flip-flop is set thereby disabling maskable interrupts.
Hence, at the end of initialization, the ENABLE INTERRUPT
instruction will have to be executed to reset the flip-flop and
enable maskable interrupts.

In the case of maskable interrupts, the interrupt return address
is saved on the stack automatically using the INTRTN register.
The INTRTN register is loaded with the CMUX output with
every clock. When an interrupt is acknowledged, the Am29112
output is turned off and the vector applied externally. Howev-
er, the sequencer executes the instruction which is in the
pipeline register in that cycle. The result of executing the
interrupted instruction, namely the next address, does not
come out of the Am29112 Y bus because the Y bus is used to
input the interrupt vector. It is clocked into the INTRTN
register. On the first cycle of the interrupt routine, the
sequencer pushes the return address on the stack so that the
interrupt routine returns by doing a COND RETURN, like any
other subroutine.

33

THE INVISIBLE STACK PUSH THAT THE SEQUENCER
EXECUTES WHEN IT IS INTERRUPTED OCCURS IN THE
FIRST CYCLE OF THE INTERRUPT SERVICE ROUTINE.
HENCE, THE FIRST INSTRUCTION OF THE INTERRUPT
SERVICE ROUTINE MAY NOT BE ANY INSTRUCTION
THAT USES THE STACK.

Before acknowledging an interrupt, the sequencer checks the
stack to see if there is a minimum of five levels available to
handle the interrupt. If there is insufficient space on the stack,
the acknowledge is not generated. This feature may be
disabled by a bit in the command register.

Maskable Interrupts

The branch vector for maskable interrupts is applied externally
to the Y port of the Am29112. This section discusses the
system timing considerations and their impact on interrupt
handling in the Am29112.

Figures 12-1 & 12-2 show general system configurations
highlighting the interrupt portion of the circuitry and the control
loop. A priority interrupt controller generates an interrupt
request for the highest priority pending interrupt. This request
is applied to the MINTR pin of the Am29112. If the request is
not masked, the Am29112 puts out an acknowledge on the
MINTA pin. The interrupt controller then puts out the encoded
priority of the highest priority interrupt to the vector PROM,
which maps the priority code into a vector.

The MINTA line turns on the vector PROM output at the same
time as the Y port on the Am29112 is three-stated. Hence, the
interrupt vector gets onto the micromemory address bus and
is also input into the. Am29112, and incremented to form the
next address. The Am29112 saves the return address on the
stack so that when the interrupt service “routine does a
subroutine return, control returns to the instruction following
the interrupted instruction.

The maskable interrupt request is synchronized on the
Am29112. If there is no disable, therefore, the acknowledge
always is active in the cycle following the request. However,
the acknowledge to Y bus three-stating delay is programma-
ble: the Y bus three-stating signal can occur either in the same
cycle as, or in the cycle following, the MINTA acknowledge,
depending on a bit in the command latch of the Am29112.

The command register bit that programs the postdelay option
is bit 2, the third least significant bit. The command register
has 3 bits altogether and is loaded from the 3 LSBs of the D
inputs using instruction 1 (COND PUSH D/LOAD COMMAND
REGISTER) with a condition of FAIL. Note that in a system
with two cascaded Am29112s, bits 0 and 2 of the command
registers in the two chips must both be loaded with the same
data on system initialization. The postdelay bit in the com-
mand register selects the postdelay option when it is zero.

Figure 12-1 shows the configuration without postdelay, includ-
ing a simplified view of the acknowledge circuit. The acknowl-
edge is granted at the same time the Y output of the Am29112
is three-stated and the vector PROM enabled by the MINTA
signal out of the Am29112. The critical delay path in this case
is clock to acknowledge (Am29112) + acknowledge to priority
out (interrupt controller) + vector PROM access time
+ microprogram memory access time + pipeline setup time.
Obviously, this delay will have a significant impact on overall

cycle time. However, in slow systems or in systems where the
vector is always available immediately with acknowledge, this
configuration is acceptable. It is also acceptable if the vector
mapping PROM is made part of the microprogram memory by
dedicating the locations in low memory addressed by the
priority to hold vectors to the corresponding interrupt routines.
Care must be taken in disabling interrupts. Disabling of
interrupts using the INTD input or the DISABLE INTERRUPTS
instruction does not prevent an interrupt address from being
put on the Y-bus by an external device in the current cycle.
This interrupt address will be translated by the microprogram
memory into the first instruction of an interrupt routine, which
will probably begin by disabling interrupts and end by enabling
interrupts. Therefore, when the interrupted microcode re-
sumes control, interrupts will be enabled despite the fact that
interrupts should have been disabled at this point.

This problem can be solved in the no-postdelay mode by
letting the INTD signal from the microprogram memory bypass
the microinstruction pipeline register (see Figure 12-1). The
instruction lines, however, cannot bypass the microinstruction
pipeline register. Therefore the DISABLE INTERRUPT instruc-
tion must be accompanied by an asserted INTD bit in the
same microinstruction. Since it is normally known at assembly
time whether individual microinstructions can be interrupted,
the INTD bit can be set at that time.

Figure 12-2 shows a simplified view of the Am29112 config-
ured with postdelay active. An external D-type flip-flop adds a
one cycle delay to the MINTA signal before it switches the
output enable on the vector register. The interrupt request to
acknowledge delay is the same as in the circuit with postdelay
inactive, but the Y bus three-stating signal occurs one cycle
later than the acknowledge. The critical path has been broken
into two with the register at the vector PROM output. In this
case the critical delay path is cut short by the microprogram
memory access time. While the vector PROM accesses the
interrupt vector, the microprogram memory accesses the next
sequential instruction. This implies that one more instruction of
the interrupted code executes after the cycle in which the
acknowledge is granted.

The Command Register bits are summarized below:

CRp : Interrupt acknowledge on insufficient space

CRp =1 : inhibit acknowledge on insufficient space
CRp =0 : generate acknowledge
on insufficient space

CR4 : Multiway enable

CR41 =1 : enable multiway branching
(default for LSS)

CR4 =0 : disable multiway branching
(default for MSS)

CR2 : Interrupt postdelay flip-flop
CR2 =1 : no postdelay (default)
CR2 =0 : postdelay

On reset & JZ.U: CRp =1
CRy =LSS
CR2 =1

Hold

The Am29112 is equipped with a HOLD pin for configurations
utilizing more than one sequencer driving a common micropro-
gram address bus (see Figures 8 & 9). In such situations, it is
necessary to cause the unselected sequencer to hold its
internal state while some other sequencer executes, so that it
can resume execution at the point where it was held. The
HOLD pin, when asserted, three-states the Y bus, forces low
the carry into the PC incrementer, and selects the internal

CMUX output (instead of the Y bus) at the incrementer input.
To complete the HOLD function, it is also necessary to disable
interrupts and to put the sequencer into the forced continue
mode (see Figures 10 & 11). Under these conditions, the value
of the PC is recirculated through the CMUX and the incremen-
ter until the HOLD is released, and all the remaining state bits
in the sequencer are not altered because of the forced
continue. HOLD does not disable UINTR; all of the sequenc-
ers will accept it and put out the UINTR address when they
leave the Hold mode.

| L

Is=1lo

15=lo
Am29112 Am29112
Sequencer #1 Sequencer #2
ls ls
Hold v,-vY, Hold v,-v,
Multitasking Microprogram
Controller Memory

I

[Pipeline Register

LDO000330

Figure 8. Mulitasking System Without Interrupts

® Force HOLD seq. signal HIGH

® Force "forced continue” mode

in the next cycle Am29112

ol
~le

INC
Hold n

Figure 10. Hold Control Without Interrupts

® Disable maskable Interrupts

Hold Seq

LD000310

Is=1o ‘—— ls=1lo
Am29112 Am29112
Sequencer #1 Sequencer #2

ls ls

Hold vy, INTO) Holdy v, INTD

) T |
Ll
Multitasking Microprogram
Controller Memory

!
Ii Pipeline Register 4
|

LD000290

Figure 9. Multitasking System With Interrupts

® Force HOLD seq. signal HIGH

@ Force "forced continue™ mode
in the next cycle

® Disable maskable Interrupts

Am29112

INC

e =

LD000300

Figure 11. Hold Control With Interrupts

35

MINTR
WA

VECTOR
PROM

MICROPROGRAM
MEMORY

1

PF001113

Figure 12-1. Interrupt Control Loop — No Postdelay

= |

7

A\
INTERRUPT
VECTOR

cpP MICROPROGRAM
MEMORY

PF000342

Figure 12-2. Interrupt Control Loop with Postdelay

36

ABSOLUTE MAXIMUM RATINGS

Storage Temperaturecocevenvnnenns -65 to +150°C
Case Temperature Under Bias (Tg) -55 to +125°C
Supply Voltage to Ground Potential -05V to +7.0 V

DC Voltage Applied to Outputs For
High Output State.....
DC Input Voltage...................
DC Output Current, Into Outputs.
DC Input Currentcoeuvevenrennnns -30 mA to +5.0 mA

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device

~0.5 V to +Vgc Max.
...=0.5Vto +55V

reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature (TA)....coeeveeerruirnienenienininnins 0 to +70°C
Supply Voltage (Vce) +4.75 V to +5.25 V

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Parameter
Symbol Parameter Description Test Conditions (Note 1) Min. | Max |Units
Vee = Min.
VoH Output HIGH Voltage VIN=VIH or V|L loH=-16 mA | 24 v
Ve = Min. Yo-Y7 loL=12 mA
\7 Output LOW Voltage 0.5 Vv
oL P 9 VIN = ViH or ViL All Others | loL =8 mA
Guaranteed Input Logical HIGH
VIH Voltage (Note 5) All Inputs 20 \"
Guaranteed Input Logical LOW
ViL Voltage (Note 5) All Inputs 0.8 \)
\ Input Clamp Voltage Vce = Min. All inputs IIN=-18 mA -15| V
VoG = Max. All 1/0 Pins -0.55
TR Input LOW Current ViN = 0.5 Volts Hold, LSS ViN=05V -1.0| mA
(Note 3) All Others ~05
Vee = Max. All 1/0 Pins 100
iH Input HIGH Current VIN = 2.4 Volts Hold, LSS ViN=24 V 100 | pA
(Note 3) “All Others 50
Vec=Max.
h Input HIGH Curremk Vin =55 Volts All Inputs mA
: v Ve = Max.
. Off State (High Impedance) _
lozH Vo = 2.4 Volts VIN=24 V 100 | pA
Qutput Current (Note 3)
lozL Off State (High Impedance) xgc:ohga\);.olts ViN=05 V ~0.55| pA
Output Current (Note 4)
Vce = Max. + 0.5 Volts
los Output Short Circuit Current Vo =0.5 Volts gglgxcept -50 | mA
(Note 2)
TaL=0 to 70°C
lcc Power Supply Current (Note 4) | Vcg =Max. COM'L (Note 6) mA
' Ta=70°C 545
Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable

oma oM

device type.

the outputs are in the OFF state.

Worst case Icc is at minimum temperature.

Cold start.

. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
. Three-state outputs are internally connected to TTL inputs. Input characteristics are measured under conditions such that

. These input levels provide zero noise immunity and should be tested only in a static, noise-free environment.

37

A. Setup and Hold Times (ns)

Am29112 SWITCHING CHARACTERISTICS

GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE

(TA=0 to +70°C, Vo =4.75 to 5.25 V, C =50 pF)

B. Combinational Delays (ns)

Output
Input | ts | t input | D | Y |MINTA |STKERR| Acio | Pclo | cio | czio
Do-D7 | 34| 2 Do-D7 | — | 38 | — — 24 a7 — | 25
Mo-M7 | 33 | © Mo-Mz | — | 38 | — — 34 41 | [=]
Yo-¥7 |14 | © — |50 | aa | a7 T .
lo-ls 45 0 — 50 — — 0
Is 45| O T =0 — — 2
0 — e a7
0 = a7 37
0 — a7 a7
o 23 33 33 41 26 33
=2 = - —T=-T1T=] ==
i B — =1 = _ — — _ 24
M L0 — s | = _ _ 31 _ _
- 5. — - _ _ - - _ 37
HOLD | =] — Yo-Y7 | — | — | — — — 25 — —
Lss - | =
ACIO 19 o
PCIO 10| 2
cio 20| o0
czI0 7| 5

C. Enable/Disable Times (ns)

D. Clock Requirements (ns)

Output Minimum Clock LOW Time
Input D Y pcio | Aclo | czio Minimum Clock HIGH Time
lo-ls 36 — —_ — _ Minimum Clock Period
Is 40 | — — — —
CC 36 — — —_ —_
CCEN 36 — — — —
POL 36 — —_ — —
cP ¥ | — | 34 — — —
cP L 43 | — — — _
HOLD — 28 — — —
LSS — — 25 25 25

38

SWITCHING TEST WAVEFORMS

SET-UP, HOLD, AND RELEASE TIMES

3v

DATA
ov

I’— ts
th

3v

TIMING

INPUT % 15V
ov
WFR02970

Notes: 1. Diagram shown for HIGH data only.
Output transition may be opposite sense.
2. Cross hatched area is don't care
condition.

PROPAGATION DELAY

3v
SAME PHASE ___ 15V
INPUT TRANSITION)

ov

PLH BPHL

I
T

Vou

OUTPUT sV

|

VoL
tPLH

1!

3v

OPPOSITE PHASE __
INPUT TRANSITION

16V

4
T

ov

WFR02980

PULSE WIDTH

LOW-HIGH-LOW
PULSE 15V
I tw’ #
HIGH-LOW-HIGH
PULSE ™ 15 v
WFR02790
ENABLE AND DISABLE TIMES
Enable Disable
v
CONTROL
INPUT—NN % sV
ff— ov
._.'_xz._ W
— ~45 V
OUTPUT 05 v
NORMALLY 15V K:t ~15 v
Low
S3 OPEN " # Vou
lnz—.——l ‘ '
Vou

17
ZH
m
15V

OUTPUT
NORMALLY ~15 Vv
HIGH 5, OPEN 05V
~0 v :
WFR02660

Notes: 1. Diagram shown for Input Control Enable-
LOW and Input Control Disable-HIGH.
2. Sy, S2 and S3 of Load Circuit are closed
except where shown.

39

Notes on Test Methods

The following points give the general philosophy which we
apply to tests which must be properly engineered if they are to
be implemented in an automatic environment. The specifics of
what philosophies applied to which test are shown.

1. Ensure the part is adequately decoupled at the test head.
Large changes in supply current when the device switches
may cause function failures due to Vcc changes.

2. Do not leave inputs floating during any tests, as they may
oscillate at high frequency.

3. Do not attempt to perform threshold tests at high speed.
Following an input transition, ground current may change by
as much as 400 mA in 5 - 8 ns. Inductance in the ground
cable may allow the ground pin at the device to rise by
hundreds of millivolts momentarily.

4. Use extreme care in defining input levels for AC tests. Many
inputs may be changed at once, so there will be significant
noise at the device pins which may not actually reach V| or
VIH until the noise has settled. AMD recommends using
VIL<O V and V|g=3 V for AC tests.

5. To simplify failure analysis, programs should be designed to
perform DC, Function, and AC tests as three distinct groups
of tests.

6. To assist in testing, AMD offers complete documentation on
our test procedures and, in most cases, can provide actual
Sentry programs, under license from Sentry.

Capacitive Loading for A.C. Testing

Automatic testers and their associated hardware have stray
capacitance which varies from one type of tester to another,
but is generally around 50 pF. This, of course, makes it
impossible to make direct measurements of parameters
which call for a smaller capacitive load than the associated
stray capacitance. Typical examples of this are the so-called
""float delays' which measure the propagation delays into
and out of the high impedance state and are usually
specified at a load capacitance of 5.0 pF. In these cases,
the test is peformed at the higher load capacitance (typically
50 pF) and engineering correlations based on data taken

with a bench set up are used to predict the result at the
lower capacitance.

Similarly, a product may be specified at more than one
capacitive load. Since the typical automatic tester is not
capable of switching loads in mid-test, it is impossible to
make measurements at both capacitances even though
they may both be greater than the stray capacitance. In
these cases, a measurement is made at one of the two
capacitances. The result at the other capacitance is predict-
ed from engineering correlations based on data taken with a
bench set up and the knowledge that certain D.C. measure-
ments (lon, loL, for example) have already been taken and
are within specification. In some cases, special D.C. tests
are performed in order to facilitate this correlation.

Threshold Testing

The noise associated with automatic testing, the long,
inductive cables, and the high gain of bipolar devices when
in the vicinity of the actual device threshold, frequently give
rise to oscillations when testing high-speed circuits. These
oscillations are not indicative of a reject device, but instead,
of an overtaxed test system. To minimize this problem,
thresholds are tested at least once for each input pin.
Thereafter, ""hard" high and low levels are used for other
tests. Generally this means that function and A.C. testing
are performed at "'hard'" input levels rather than at Vj_ max
and V|4 min.

A.C. Testing

Occasionally, parameters are specified which cannot be
measured directly on automatic testers because of tester
limitations. Data input hold times often fall into this category.
In these cases, the parameter in question is guaranteed by
correlating these tests with other A.C. tests which have
been performed. These correlations are arrived at by the
cognizant engineer by using data from precise bench
measurements in conjunction with the knowledge that
certain D.C. parameters have already been measured and
are within specification.

In some cases, certain A.C. tests are redundant since they
can be shown to be predicted by other tests which have
already been performed. In these cases, the redundant
tests are not performed.

KEY TO SWITCHING WAVEFORMS

WAVEFORM

FEBE

INPUTS

MUST BE
STEADY

MAY CHANGE
FROMH TOL

MAY CHANGE
FROML TOH

DON'T CARE;
ANY CHANGE
PERMITTED

DOES NOT
APPLY

OUTPUTS

WILL BE
STEADY

WILL BE
CHANGING
FROMHTOL

WILL BE
CHANGING
FROML TOH

CHANGING;
STATE
UNKNOWN

CENTER

LINE ISHIGH
IMPEDANCE
“OFF” STATE

KS000010

40

SWITCHING WAVEFORMS

CP—T I I l l

L—fth J—

MINTR

s |

Yo-Y; X
Y Bus Off Y Bus Off
Interrupt Vector Input Interrupt Vector Input
(No Post Play) (Post Delay)
WF022320
Maskable Interrupt
Reset
Internally 2‘:99'8(‘;0‘3‘:" :dﬂd %Ommakl;%'
¢ ared and Mas|
Synchronized Interrupts disabled e
cpP —T —I
[e—ti—> t
|
RESET]
Yo-Y; x 00 X
WF022330

RESET

41

PHYSICAL DIMENSIONS

SD 048
25
24
—={ |=— .098 MAX. .005 MIN.——I [~— .590
2370 630
2370 %ﬁ 630
I— o 008\
_’ L. Fil Y& &%
090 030 015 . .
o0 20 __"___E 150 MIN

PID # 07646A

42

The International Standard of
Quality guarantees a 005% AQL on all
electrical parameters, AC and DC,

43

ADVANCED MICRO DEVICES
DOMESTIC SALES OFFICES

ALABAMAooiiiiiiiiiieiieeeeee e (205) 882-9122
ARIZONA,
TOMPO ...coiviiiieieieiree i e e e e (602) 242-4400
TUCSON .ceeneveiieiiierete e et eeeeeernas (602) 792-1200
CALIFORNIA,
El Segundo.......ccceveeeiriiiieeieeeieeeeeeeeeeens (213) 640-3210
Newport Beach.. .. (714) 752-6262
San Diego .. (619) 560-7030

Sunnyvale....
Woodland Hills

(408) 720-8811
(818) 992-4155

MARYLAND
MASSACHUSETTS.
MINNESOTA.......
NEW JERSEY
NEW YORK,

Liverpool ...

NORTH CAROLINA,
OREGON

(301) 796-9310
(617) 273-3970
(612) 938-0001
(201) 299-0002

(315) 457-5400
(914) 471-8180
(516) 364-8020
(919) 847-8471
(503) 245-0080

COLORADO....... (303) 741-2900 OHIO,
CONNECTICUT,evvvvrinneiininniseseeeans Columbusooeveiiiiiiiieiiiiiecee e (614) 891-6455
(203) 264-7800 PENNSYLVANIA,

FLORIDA, Allentown (AT&T only)couuveeerunernnnnnnns (215) 398-8006
Altamonte SpPrings...........ccuvveeieeereeevuennnns (305) 339-5022 Willow Grove (215) 657-3101
Clearwater (813) 530-9971 PUERTO RICO (809) 764-4524
Ft. Lauderdale . (305) 484-8600 TEXAS,

Melbourne ... (305) 729-0496 AUSHIN ..o (512) 346-7830
GEORGIA.... (404) 449-7920 Dallas .. (214) 934-9099
ILLINOIS .. (312) 773-4422 Houston . (713) 785-9001
INDIANA . (317) 244-7207 WASHINGTO (206) 455-3600
KANSASiiiiiiiiiiie et ~ (913) 451-3115 WISCONSIN ..covvviiiieieeeriiiieee e e (414) 782-7748

INTERNATIONAL SALES OFFICES

BELGIUM, HONG KONG,

Bruxelles Kowlooncccevevevnnnrennnnn, TEL: oo, 3-695377

FAX: 1234276
TLX: i 50426
CANADA, Ontario, ITALY, Milano.........ccccvveeennnnn. TEL: ...(02) 3390541

Kanatacccoviiiiiiiennennns (613) 592-0090
Willowdale (416) 224-5193
(416) 224-0056

FRANCE,
Paris (01) 45 60 00 55

.(01) 46 86 21 85
202053F

GERMANY,
Hannover area

JAPAN, Tokyo

LATIN AMERICA,
Ft. Lauderdale,

SWEDEN, Stockholm

UNITED KINGDOM,
Manchester area

London area.......................

...(02) 3498000

L N 315286
TEL: ..(03) 345-8241
FAX: oo, 3425196
TLX: s J24064 AMDTKOJ

NORTH AMERICAN REPRESENTATIVES

......... 925287
MUNChEN.....e.veeeereeeeeeaen (089) 41 14-0
.(089) 406490
............ 523883
Stuttgart.........cccovevereeeeeennnn. (0711) 62 33 77
(0711) 625187
.......................... 721882
CALIFORNIA
2 UINC oo OEM (408) 988-3400
DIST! (408) 496-6868
IDAHO
INTERMOUNTAIN TECH MKGTv.erc....... (208) 888-6071
INDIANA
SAl MARKETING CORPvveveeeeeerrenenann (317) 241-9276
IOWA
LORENZ SALEScovvveeereeeeereresesennn, (319) 377-4666
MICHIGAN
SAI MARKETING GORPcooveveeererrran (313) 227-1786
NEBRASKA
LORENZ SALESoveveeeeeeeeeerereresesnnn (402) 475-4660

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or perf

NEW MEXICO

THORSON DESERT STATES

NEW YORK

NYCOM, INC......cooriiiiiiiiiniiineee s

OHIO
Dayton
DOLFUSS ROOT & CO
Strongsville
DOLFUSS ROOT & CO
PENNSYLVANIA
DOLFUSS ROOT & CO
UTAH

RZ MARKETING........cveveveeeeeeereersreeresennns

.................... TEL:.. ... (305) 484-8600
FAX: (305) 485-9736

TLX: 5109554261 AMDFTL

.............. TEL:(08) 733 03 50
FAX: (08) 733 22 85

TLX: e 11602

................. TEL: ... (0925) 828008
FAX: . (0925) 827693

TX: e 628524

TEL: (04862) 22121

FAX:. (04862) 22179

TLX: i 859103

(505) 293-8555
(315) 437-8343

(513) 433-6776
(216) 238-0300
(412) 221-4420

(801) 595-0631

The p i
listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your

local AMD sales rep: The

no ibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA
TEL: (408) 732-2400 ® TWX: 910-339-9280 ® TELEX: 34-6306 ® TOLL FREE: (800) 538-8450

(%

© 1986 Advanced Micro Devices, Inc.
Printed in U.S.A. AIS-WCP-15M-07/86-0

44

