gRTY
P

Am29325

32-Bit Floating Point Processor
PRELIMINARY

e Single VLSI device performs high-speed floating-point
arithmetic
— Floating-point addition, subtraction and multiplication
in a single clock cycle
— Internal architecture supports sum-of-products,
Newton-Raphson division
e 32-bit, 3-bus flow-through architecture
— Programmable I/O allows interface to 32- and 16-bit
systems £

DISTINCTIVE CHARACTERISTICS

e |EEE and DEC formats
— Performs conversions between formats
— Performs integer =—= floating point conversions
o Six flags indicate operation status
® Register enables eliminate clock skew
e [nput and output reglsters can be made transparent
independently

The Am29325 is a high- speed floatrng pount processor unit,
It performs 32-bit snngleapremsron floating-point. addition,

integrated circuit, using the format specmed by the prop:
|IEEE floating-point stangard P754. The DEC sing

for conversion between 32 bit integer format and floating-
point format are avallabie as are. operatuons for converting
between the IEEE and/DE

eration can be perform
invalid operation, ine 2
flow, and underflow ~ monitor

The Am29325 has ¢ 3 bus, 3

le. Six flags —
umber, over-

ure, with two
ation provides

GENERAL DESCFIIPTION

subtraction, and multiplication operations in a smg|e LSl .system. All buses are registered, with each register having a

“clock enable. Input and output registers may be made trans-

precision floating-point format is.also supported Operatlonsi;v'

Iéh lle] bandwidth, aIIows access to all buses and affords a
hlgh degree of flexibility when connecting this device in a

parentlndependently Two other I/O configurations, a 32-bit,
“2-bus architecture and a 16-bit, 3-bus architecture, are
user-selectable, easing interface with a wide variety of sys-
tems. Thirty-two-bit internal feedforward data paths support
accumulation operations, including sum-of-products and
Newton-Raphson division.

Fabricated with the high-speed IMOX™ bipolar process, the
Am29325 is powered by a single 5-volt supply. The device is
housed in a 144-pin pin-grid-array package.

H PERFORMANCE SYSTEM BLOCK DIAGRAM

{
Am29331

Am29334
REGISTER
FILE
64 x 18

V

|

Am29332
32-BIT

Am29323
32x32
PARALLEL
MULTIPLIER

i

llel Multiplier
o Am29332 — 32-Bit ALU
o Am29331 — 16-Bit Sequencer

ED PRODUCTS

05621A-1

® Am29334 — 64 x 18 Four-Port Dual-Access
Register File

IMOX is a trademark of Advanced Micro Devices, Inc.

Order # 05621C

9861 ‘Aeniged

pa |

Seeeewy

@ OIDIW P22OURAPY

.

SAJIA2

1
oLk [>—F—

SELECT
AND ENABLE
LINES

16

BLOCK DIAGRAM

Am29325
Ro—Rg4 So=S31
1
| rl;u;(I REGISSTER

I_‘

REGISTER
i | x|

FLOATING-POINT
ALU

PORT F

PORT R PORT S

REGISTER
F

STATUS
FLAG
GENERATOR

STATUS FLAG
REGISTER

Fo—Fa1

LD INEXACT
INVALID
NAN
OVERFLOW

UNDERFLOW

—{ > zero

05621B-2

Am29325

Top View

Bottom View

PACKAGE INFORMATION

PACKAGE PHOTOGRAPHS

Lateral View

Isometric View

Am?29325

Am29325 PINOUT

SORTED BY PIN NUMBER

SORTED BY FUNCTIONAL NAME

Line # Pin # Functional Name Functional Name Pin #
1 Al Inexact CLK J1
2 A2 Invalid ENF D1
3 A3 Fog ENR D3
4 A4 Fap ENS E3
5 A5 Fog Fo E14
7 A7 Foq Fa C14
8 A8 Foo F3 B14
9 A9 Fi7 Fa B15

11 A1 Fi3 Fe B13
12 A12 Fiz F7 A13
13 A13 F, Fg Al4
14 A14 Fg Fg B12
15 A15 Fs Fio c12
16 B1 I Fiq C11
17 B2 NAN Fyo A12
18 B3 Zero Fi3 Al1
19 B4 Faq Fi4 B11
20 B5 Overflow Fis B10
21 B6 Fo7 Fis c10
22 B7 Foq Fq7 A9
23 B8 Fig Fig A10
24 B9 Fog Fi9 B8
25 B10 Fis Fao B9
26 B11 Fq4 Faq A7
27 B12 Fg Foo A8
28 B13 Fg Fo3 A5
29 B14 F3 Fo4 B7
30 B15 Fy Fas c7
31 C1 I4 Foe A6
32 c2 lg Fo7 B6
33 C3 GND, TTL Fog Cé
34 Cc4 GND, TTL Fag A3
35 C5 Underflow) A4
36 C6 Fog F31 B4
37 c7 Fog FTo E2
38 cs Voo TTL FT4 F2
39 Cc9 Voo, TTL GND, ECL N3
40 C10 Fie GND, ECL H14
41 ci Fiq GND, ECL G13
42 Cc12 Fio GND, ECL M3
43 C13 GND, TTL GND, ECL H13
44 C14 Fy GND, ECL J13
45 C15 Fy GND, TTL D15
46 D1 ENF GND, TTL D14
47 D2 |\EEE/DEC GND, TTL E13
48 D3 ENR GND, TTL F13
49 D13 GND, TTL GND, TTL Cc4
50 D14 GND, TTL GND, TTL C3
51 D15 GND, TTL GND, TTL D13
52 E1 Ig GND, TTL C13
53 E2 FTg lo c2
54 E3 ENS Iy Ci
55 E13 GND, TTL I B1
56 E14 Fo __ I3 P9
57 E15 PROJ/AFF s _ E1
58 F1 ONEBUS IEEE/DEC D2
59 F2 FTy Inexact Al
60 F3 S16/32 Invalid A2

Am29325

Am29325 PINOUT (Cont)
SORTED BY PIN NUMBER SORTED BY FUNCTIONAL NAME
Line # Pin # Functional Name Functional Name Pin #
61 F13 GND, TTL NAN B2
62 F14 Sy OE G1
63 F15 So ONEBUS F1
64 G1 OE Overflow B5
65 G2 Ve, ECL PROJ/AFF E15
66 G3 Vce, ECL Ro N9
67 G13 GND, ECL Rq R8
68 G14 Sp Ro R9
69 G15 S3 R3 N8
70 H1 Vce, ECL R4 P8
71 H2 Vee, ECL Rs P7
72 H3 Vce, ECL Re R7
73 H13 GND, ECL Rz R6
74 H14 GND, ECL Rg N7
75 H15 Ss Rg N6
76 J1 CLK R1o P6
77 J2 RNDg Rq4¢ P5
78 J3 Vce, ECL Rq2 R5
79 J13 GND, ECL Rq3 R4
80 Ji14 S4 Ri4 N5
81 J15 S, Ris N4
82 K1 R31 Rig P4
83 K2 RND4 Rqy7 R2
84 K3 Rog Ris R3
85 K13 Sg R1g P3
86 K14 Sg Roo R1
87 K15 Sg Roq P1
88 L1 R3o Roo P2
89 L2 Ro7 Ro3 N2
90 L3 Rog Ro4 N1
91 L13 S13 Ros M1
92 L14 S10 Rog L3
93 L15 S11 Ro7 L2
94 M1 Ros Rog M2
95 M2 Rog Rog K3
96 M3 GND, ECL R3o L1
97 M13 S14 R3¢ K1
98 M14 S1s5 RNDg J2
99 M15 S12 RND¢ K2
100 N1 Rog So F15
101 N2 Ro3 S F14
102 N3 GND, ECL Ss G14
103 N4 Ris S3 G15
104 N5 R4 Sy J14
105 N6 Rg Ss H15
106 N7 Rg Sg K15
107 N8 R3 S7 J15
108 N9 Ro Sg K13
109 N10 Sog Sg K14
110 N11 So7 S10 L14
111 N12 Vce, ECL S11 L15
112 N13 Vce, ECL S12 M15
113 N14 S1g Si3 L13
114 N15 S17 S14 M13
115 P1 R2q S1s M14
116 P2 Roo S16 P15
17 P3 R1g $16/32 F3
118 P4 Ris Sq7 N15
119 P5 R11 S18 N14
120 P6 Rio S19 R15

Am29325

SORTED BY PIN NUMBER

Am29325 PINOUT (Cont)

SORTED BY FUNCTIONAL NAME

Line # Pin # Functional Name Functional Name Pin #
121 P7 Rs S0 R14
122 P8 R4 S24 P14
123 P9 I3 Soo P13
124 P10 S34 So3 R13
125 P11 Soe So4 R12
126 P12 Sos Sos P12
127 P13 Soo Soe P11
128 P14 Soq So7 N11
129 P15 Ste Sog N10
130 R1 Roo Sog R11
131 R2 Ry7 S30 R10
132 R3 R1g S3q P10
133 R4 Ry3 Underflow C5
134 R5 Rz Vce, ECL J3
135 R6 Ry Vce, ECL G2
136 R7 Re Vce, ECL G3
137 R8 R4 Vce, ECL H2
138 R9 Ro Vce, ECL N13
139 R10 S30 Vce, ECL N12
140 R11 Sog Vce, ECL H3
141 R12 So4 Vee, ECL H1
142 R13 So3 Vee, TTL C8
143 R14 Soo Vee, TTL C9
144 R15 Si9 Zero B3

© ® N o a0 bW N

GRID ARRAY PIN CONFIGURATION

A B CDETFGH JKLMNPR

(0000006 OOOOG0 0
POOOOOOO®OOOO® 060
POOOOOO®OOOOO OO

[ONCNCNC) ©® 00
©®©0 [ONCONC]
® 00 ©®© 0
© 00 [ORCRC]
[ONCHS] © e e
[ONCRE} ©®© 0
® © 0 © 0O
® 00 [ORONC)
@00 [CXCNC)

Am29325

LOGIC SYMBOL

Ro-Ra1 Fo-Fas I>
S-S iNEXACT 22—

—=»]cLK INVALID ——>
—] ENR NAN f——>
—] ENS OVERFLOW }——»
—| ENF UNDERFLOW [——>

FTo, FTy ZERO |—>
lo-la

——>1 IEEE/DEC
—»] OE
——] ONEBUS
———»{ PROJ/AFF

D RNDg, RND;

——» S16/32

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order
number (Valid Combination) is formed by a combination of: A. Device Number
B. Speed Option (if applicable)
C. Package Type
D. Temperature Range
E. Optional Processing

Am29325 G Cns

E. OPTIONAL PROCESSING
Blank = Standard processing

D. TEMPERATURE RANGE
C = Commercial (0 to +70°C)
15 = Notation For 150ns Performance Restriction

C. PACKAGE TYPE (per Prod. Nomenclature/16-038)
G = 144-Pin Pin Grid Array (CG 144)

. SPEED OPTION
Not Applicable

A. DEVICE NUMBER/DESCRIPTION (include revision letter)

Valid Combinations

Valid Combinations Valid Combinations list configurations planned to be

supported in volume for this device. Consult the local
Am29325 GC/15 AMD sales office to confirm availability of specific valid

combinations.

DEFINITION OF TERMS

AFFINE MODE

One of two modes affecting the handling of operations on
infinities — see the Operations with Infinities section under
Operation in IEEE Mode below.

BIASED EXPONENT

The true exponent of a floating-point number, plus a constant.
For IEEE floating-point numbers, the constant is 127; for DEC
floating-point numbers, the constant is 128. See also True
Exponent.

BUS
Data input or output channel for the floating-point processor.

DEC RESERVED OPERAND

A DEC floating-point number that is interpreted as a symbol and
has no numeric value. A DEC reserved operand has a sign of 1
and a biased exponent of 0.

DESTINATION FORMAT

The format of the final result produced by the floating-point ALU.
The destination format can be IEEE floating-point, DEC floating-
point or integer.

FINAL RESULT
The result produced by the floating-point ALU.

FRACTION
The twenty-three least-significant bits of the mantissa.

INFINITELY PRECISE RESULT

The result that would be obtained from an operation if both
exponent range and precision were unbounded.

INPUT OPERANDS

The value or values on which an operation is performed. For
example, the addition 2 + 3 = 5 has input operands 2 and 3.

MANTISSA

The portion of a floating-point number containing the number's
significant bits. For the floating-point number 1.101 x 2-3, the
mantissa is 1.101.

NAN (Not-a-Number)

An IEEE floating-point number that is interpreted as a symbol,
and has no numeric value. A NAN has a biased exponent of
25510 and a non-zero fraction.

PORT
Data input or output channel for the floating-point ALU.

PROJECTIVE MODE

One of two modes affecting the handling of operations on
infinities — see the Operations with Infinities section under
Operation in IEEE Mode below.

ROUNDED RESULT

The result produced by rounding the infinitely precise result to fit
the destination format.

TRUE EXPONENT (or Exponent)

Number representing the power of two by which a floating-point
number's mantissa is to be multiplied. For the floating-point
number 1.101 x 2-3, the true exponent is —3.

Am29325

Ro-R3q

So-S31

Fo-S31

CLK
ENR

ENS

ENF

FTo

FT,

lo-12

IEEE/DEC

INEXACT

PIN DESCRIPTION

R operand bus, input. Ry is the least-
significant bit.

S operand bus, input. Sp is the least-
significant bit.

F operand bus, output. Fg is the least-
significant bit.

Clock input for the internal registers.

Register R clock enable, input. Active Low
—When ENR is LOW, register R is clocked
on the LOW-to-HIGH transition of CLK. When
ENR is HIGH, register R retains the previous
contents.

Register S clock enable, input. Active Low
—When ENS is LOW, register S is clocked on
the LOW-to-HIGH transition of CLK. When
ENS is HIGH, register S retains the previous
contents.

Register F clock enable, input. Active Low
—When ENF is LOW, register F is clocked on
the LOW-to-HIGH transition of CLK. When
ENF is HIGH, register F retains the previous
contents.

Input register feedthrough control, input. Ac-
tive High—When FTg is HIGH, registers R
and S are transparent.

Output register feedthrough control, input. Ac-
tive High—When FT is HIGH, register F and
the status flag register are transparent.

Operation select lines, inputs. Used to select
the operation to be performed by the ALU.
See the ALU Operation Select Table for a
list of operations and the corresponding
codes.

ALU S port input select, input. A LOW on Iz
selects register S as the input to the ALU S
port. A HIGH on |3 selects register F as the
input to the ALU S port.

Register R input select, input. A LOW on Iy
selects Rp-R34 as the input to register R. A
HIGH selects the ALU F port as the input to
register R.

IEEE/DEC mode select, input. When IEEE/
DEC is HIGH, IEEE mode is selected. When
IEEE/DEC is LOW, DEC mode is selected.

Inexact result flag, output. Active High—A
HIGH indicates that the final result of the last
operation was not infinitely precise, due to
rounding.

INVALID

NAN

ONEBUS

OVERFLOW

PROJ/AFF

RNDg, RND,

S16/32

UNDERFLOW

ZERO

Invalid operation flag, output. Active High—A
HIGH indicates that the last operation per-
formed was invalid, e.g., « times 0.

Not-a-number flag, output. Active High—A
HIGH indicates that the final result produced
by the last operation is not to be interpreted
as a number. The output in such cases is ei-
ther an IEEE Not-a-Number (NAN) or a DEC
reserved operand.

Output enable, input. Active Low—When OE
is LOW, the contents of register F are placed
on Fo-F31. When OE is HIGH, Fo-Fg,
assume a high-impedance state.

Input bus configuration control, input. A LOW
on ONEBUS configures the input bus circuitry
for two-input bus operation. A HIGH on
ONEBUS configures the input bus circuitry for
single-input bus operation.

Overflow flag, output. Active High—A HIGH
indicates that the last operation produced a
final result that overflowed the floating-point
format.

Projective/affine mode select, input. Choice of
projective or affine mode determines the way
in which infinities are handled in IEEE mode.
A LOW on PROJ/AFF selects affine mode; a
HIGH selects projective mode.

Rounding mode selects, inputs. RNDy and
RND select one of four rounding modes. See
the Rounding Mode Select Table for a list of
rounding modes and the corresponding con-
trol codes.

Sixteen- or thirty-two bit /0 mode select,
input. A LOW on S16/32 selects the thirty-
two-bit I/O mode; a HIGH selects the
sixteen-bit /0 mode. In thirty-two-bit mode,
inputs and output buses are 32 bits wide. In
sixteen-bit mode, input and output buses are
sixteen bits wide, with the least and most sig-
nificant portions of the thirty-two bit input and
output words being placed on the buses
during the HIGH and LOW portions of CLK,
respectively.

Underflow flag, output. Active High—A HIGH
indicates that the last operation produced a
rounded result that underflowed the floating-
point format.

Zero flag, output. Active High—A HIGH indi-
cates that the last operation produced a final
result of zero.

Am29325

ARCHITECTURE

The Am29325 comprises a high-speed, floating-point ALU, a
status flag generator, and a 32-bit data path.

Floating-Point ALU

The floating-point ALU performs 32-bit floating-point operations.
It also performs floating-point-to-integer conversions, integer-
to-floating-point conversions, and conversions between the
IEEE and DEC floating-point formats. The ALU has two 32-bit
input ports, R and S, and a 32-bit output port, F.

Conceptually, the process performed by the ALU can be divided
into three stages — see Figure 1. The operation stage performs
the arithmetic operation selected by the user; the output of this
section is referred to as the infinitely precise result of the opera-
tion. The rounding stage rounds the infinitely precise result to fitin
the destination format; the output of this stage is called the
rounded result. The last stage checks for exceptional conditions.
If no exceptional condition is found, the rounded result is passed
through this stage. If some exceptional condition is found, e.g.,
overflow, underflow, or an invalid operation, this section may
replace the rounded result with another output, such as +=, —x,
a NAN, or a DEC reserved operand. The output of this last stage
appears on port F, and is called the final result.

The ALU performs one of eight operations; the operation to be
performed is selected by placing the appropriate control code on
lines Ig—I2. The ALU Operation Select Table gives the control
codes corresponding to each of the eight operations.

The floating-point addition operation (R PLUS S) adds the
floating-point numbers on ports R and S, and places the
floating-point result on port F. In IEEE mode (IEEE/DEC = HIGH)
the addition is performed in IEEE floating-point format; in DEC
mode (IEEE/DEC = LOW) the addition is performed in DEC
format.

The floating-point subtraction operation (R MINUS S) subtracts
the floating-point number on port S from the floating-point
number on port R and places the floating-point result on port F. In
|EEE mode (IEEE/DEC = HIGH) the subtraction is performed in
|EEE floating- point format; in DEC mode (IEEE/DEC = LOW) the
subtraction is performed in DEC format.

The floating-point multiplication operation (R TIMES S) multiplies
the floating-point numbers on ports R and S, and places the
floating-point result on port F. In IEEE mode (IEEE/DEC = HIGH)

Figure 1. Conceptual Model of the Process Performed by
the Floating-Point ALU

OPERAND R OPERAND S

R s

OPERATION STAGE
(PERFORMS SELECTED OPERATION)

~=—— INFINITELY PRECISE RESULT

ROUNDING STAGE
(ROUNDS INFINITELY PRECISE
RESULT)

~=———— ROUNDED RESULT

EXCEPTION STAGE
(CHECKS FOR UNUSUAL CONDITIONS)

F

FINAL RESULT 05621A-3

the multiplication is performed in IEEE floating-point format; in
DEC mode (IEEE/DEC = LOW) the multiplication is performedin
DEC format.

The floating-point constant subtraction (2 MINUS S) operation
subtracts the floating-point value on port S from 2, and places the
result on port F. The operand on port R is not used in this
operation; its value will not affect the operation in any way. In
IEEE mode (IEEE/DEC = HIGH) the operation is performed in
IEEE floating-point format; in DEC mode (IEEE/DEC = LOW) the
operation is performed in DEC format. This operation is used to
support Newton-Raphson floating-point division; a description of
its use appears in Appendix C.

The integer-to-floating-point conversion (INT-TO-FP) operation
takes a 32-bit, two’s complement integer on port R and places the
equivalent floating-point value on port F. The operand on port S is
not used in this operation; its value will not affect the operation in
any way. In |[EEE mode (IEEE/DEC = HIGH) the result is de-
livered in IEEE format; in DEC mode (IEEE/DEC = LOW)
the result is delivered in DEC format.

10

Am29325

ALU OPERATION SELECT TABLE

23 I4 lo Operation Output Equation

0 0 0 Floating-point addition F=R+S
(R PLUS S)

0 0 1 Floating-point subtraction F=R-S§
(R MINUS S)

0 1 0 Floating-point multiplication F=R*S
(R TIMES S)

0 1 1 Floating-point constant F=2-S8
subtraction (2 MINUS S)

1 0 0 Integer-to-floating-point F (floating-point) = R (integer)
conversion (INT-TO-FP)

1 0 1 Floating-point-to-integer F (integer) = R (floating-point)
conversion (FP-TO-INT)

1 1 0 |EEE-TO-DEC format conversion |F (DEC format) = R (IEEE format)
(IEEE-TO-DEC)

1 1 1 DEC-TO-IEEE format conversion |F (IEEE format) = R (DEC format)
(DEC-TO-IEEE)

The floating-point-to integer conversion (FP-TO-INT) operation
takes a floating-point number on port R and places the equivalent
32-bit, two’s complement integer value on port F. The operand on
port S is not used in this operation; its value will not affect the
operation in any way. in IEEE mode (IEEE/DEC = HIGH) the
operand on port R is interpreted using the IEEE floating-point
format; in DEC mode (IEEE/DEC = LOW)) it is interpreted using
the DEC floating-point format.

The |IEEE-to-DEC conversion operation (IEEE-TO-DEC) takes
an IEEE-format floating-point number on port R and places the
equivalent DEC-format floating-point number on port F. The
operand on port S is not used in this operation; its value will not
affect the operation in any way. The operation can be performed
in either IEEE mode (IEEE/DEC = HIGH) or DEC mode (IEEE/
DEC = LOW).

The DEC-to-IEEE conversion operation (DEC-TO-IEEE) takes
a DEC-format floating-point number on port R and places the
equivalent IEEE-format floating-point number on port F. The
operand on port S is not used in this operation; its value will not
affect the operation in any way. The operation can be performed
in either IEEE mode (IEEE/DEC = HIGH) or DEC mode (IEEE/
DEC = LOW).

Status Flag Generator

The status flag generator controls the state of six flags that report
the status of floating-point ALU operations. The flags indicate
when an operation is invalid (e.g., infinity times zero) or when an
operation has produced an overflow, an underflow, a non-
numerical result (e.g., a NAN or DEC reserved operand), an
inexact result, or a result of zero. The flags represent the status of
the most-recently-performed operation. Flag status is stored in
the flag status register on the LOW-to-HIGH transition of CLK.
When the output register feedthrough control FT4 is HIGH, the
flag status register is made transparent.

Data Path

The 32-bit data path consists of the R and S input buses, the F
output bus, data registers R, S, and F, the register R input multi-
plexer, and the ALU port S input multiplexer.

Input operands enter the floating-point processor through the
32-bit R and S input buses, Rgp—Rga1 and Sp—S31. Results
of operations appear on the 32-bit F bus, Fo—F31. The F
bus assumes a high-impedance state when output enable
OE is HIGH.

The R and S registers store input operands; the F register stores
the final result of the floating-point ALU operation. Each register
has an independent clock enable (ENR, ENS and ENF). When a
register’s clock enable is LOW, the register stores the data on its
input at the LOW-to-HIGH transition of CLK; when the clock
enable is HIGH, the register retains its current data. All data
registers are fully edge-triggered — both the input data and the
register enable need only meet modest setup and hold time
requirements. Registers R and S can be made transparent by
setting FTg, the input register feedthrough control, HIGH. Regis-
ter F can be made transparent by setting FT4, the output register
feedthrough control, HIGH.

The register R input multiplexer selects either the R input bus or
the floating-point ALU’s F port as the input to register R. Selection
is controlled by l5 — a LOW selects the R input bus; a HIGH
selects the ALU F port. The ALU port S input multiplexer selects
either register S or register F as the input to the floating-point
ALU’s S port. Selection is controlled by I3 — a LOW selects
register S; a HIGH selects register F.

Data selected by I3 and | is described in the Mux Select Tables.
When registers R and S are transparent (FTg = HIGH) multi-
plexer select |4 must be kept LOW, so that the register R input
multiplexer selects Rg—R31. When register F is transparent (FT1
= HIGH) multiplexer select i3 must be kept LOW, so that the ALU
port S input multiplexer selects register S.

MUX SELECT TABLES

I3 Data selected for floating-point ALU S port
0 Register S

1 Register F

lg Data selected for register R input

0 R bus

1 Floating-point ALU port F

Am29325

I/O MODES Rand S operands are taken from their respective input buses and
clockedinto the R and S registers on the LOW-to-HIGH transition
of CLK. Register F is also clocked on the LOW-to-HIGH transition

The Am29325 data path can be configured in one of three I/0 Of CLK. Figure 5(a.) depicts typical I/O timing in this mode.

modes: a 32-bit, two-input-bus mode; a 32-bit, single-input-bus

mode; and a 16-bit, two-input-bus mode. These modes affect
only the manner in which data is delivered to and taken from the

Am29325; operation of the floating-point ALU is not altered. The

1/0 mode is selected with the ONEBUS and S16/32 controls. The

I/O Mode Selection Table lists the control codes needed to

32-Bit, Single-Input-Bus Mode

invoke each I/O mode. In th{s 110 mode, the R and S buses are corjnecteq to a single
32-bit multiplexed input data bus; the F bus is configured as an
I/O MODE SELECTION TABLE independent 32-bit output bus. Figure 3 is a functional block
diagram of the Am29325 in this I/O mode. Note that both the R
S16/32 ONEBUS I/O Mode and S bus lines must be wired to the input bus.
0 Y 32-bit, two-input-bus mode Rand S operands are multiplexed onto the input bus by the host
0 1 32-bit, single-input-bus mode(x) system. The S operand is clocked from the input bus into a
1 0 16-bit, two-input-bus mode(s) temporary holding register on the HIGH-to-LOW transition gf
] . CLK and is transferred to register S on the LOW-to-HIGH transi-
! ! lllegal /O mode selection value tion of CLK. The R operand is clocked from the input bus into

(+)FTp must be held LOW in this mode (see text). register R on the LOW-to-HIGH transition of CLK. Register F is
clocked on the LOW-to-HIGH transition of CLK. Figure 5(b.)
depicts typical I/O timing in this mode.

32-Bit, Two-Input-Bus Mode

When placed in this /O mode, the data path will not function
properly if the R and S registers are made transparent. Therefore
input register feedthrough control F Tg must be held LOW in this

In this I/O mode, the R and S buses are configured as indepen- mode

dent 32-bit input buses, and the F bus is configured as a 32-bit
output bus. Figure 2is a functional block diagram of the Am29325
in this 1/O mode.

Figure 2. Functional Block Diagram for the 32-Bit, Two-Input-Bus Mode

RBUS /|, 32/ 4,
32y
S BUS
/1/ ! 32 f Ro-Ray 32/ so-S1 /l/
1 C>— g 21 ° regs EN +<: ENS
4 7 MUX ——— ck
1 rl T
ENRCO—/ —ofen 0 L, 1 '
REG R ux S <1
CLK I:,L}’ S MUX 7
ONEBUS (=Low) CD— L — R B
FLOATING-POINT
$16/32 (=LOW) [:)%L— ALY
_ 1
ENF[CD— / ——OfEN
REGF
ok —h
oE >~ —3
Am29325
32
32 Fo-F:

Fous 12/ s 1

05621B-4

12

Am29325

Figure 3. Functional Block Diagram for the 32-Bit, Single-Input-Bus Mode

32
RIS BUS 1
/1/ 32/ Ro-Ry, 32§ 50-53
1 1
I SV s le:.u‘x L
T EN l l Y =
ENR N 1] ENS
4 REG R REGS © oK
CLK CD— —b
[1 1
21 g A
MUX
1
ONEBUS (= HIGH) [D—F,——{— R S
FLOATING-POINT
1 ALU
§16/32 (= LOW) [D—~——— F
1
ENF C— —en
F
ck— b rec
1
=Y 57
OF
Am29325
32
3 Fo-F31
FBUS /|- %

05621A-5

16-Bit, Two-Input-Bus Mode

In this I/O mode, the R and S buses are configured as indepen-
dent 16-bit input buses, and the F bus is configured as a 16-bit
output bus. Figure 4 is a functional block diagram of the Am29325
in this I/0 mode. Note that the 16 LSBs and 16 MSBs of the R, S
and F buses must be wired to their respective system buses in
paraliel.

Thirty-two-bit operands are passed along the 16-bit data buses
by time-multiplexing the 16 LSBs and 16 MSBs of each 32-bit
word. For the R input bus, the host system multiplexes the 16
LSBs and 16 MSBs of the R operand onto the 16-bit R bus. The 16
LSBs of the R operand are stored in a temporary holding register
on the HIGH-to-LOW transition of CLK. The 16 MSBs are clocked
into register R on the LOW-to-HIGH transition of CLK; at the
same time, the 16 LSBs are transferred from the temporary
holding register to register R. Transfer of data from the S input bus
to the S register takes place in a similar fashion. Register F is
clocked on the LOW-to-HIGH transition of CLK. Circuitry internal
to the Am29325 multiplexes data from register F onto the 16-bit
output bus by enabling the 16 LSBs of the F output bus when CLK
is HIGH, and enabling the 16 MSBs of the F output bus when CLK
is LOW. Figure 5(c.) depicts typical I/O timing in this mode.

When placed in this /O mode, the data path will not function
properly if the R and S registers are made transparent. Therefore
input register feedthrough control FTg must be held LOW in this
mode. Caution must also be taken in controlling the register R
input multiplexer control line, I, in this /O mode. I3 should be
changed only when CLK is HIGH, in addition to meeting the setup
and hold time requirements given in the Switching Characteris-
tics section.

OPERATION IN IEEE MODE

When input signal IEEE/DEC is HIGH, the IEEE mode of opera-
tion is selected. In this mode the Am29325 uses the floating-point
format set forth in the IEEE Proposed Standard for Binary
Floating-Point Arithmetic, P754. In addition, the IEEE mode
complies with most other aspects of single-precision floating-
point operation outlined in the proposed standard — differences
are discussed in Appendix A.

IEEE Floating-Point Format

The |IEEE single-precision floating-point word is thirty-two bits
wide, and is arranged in the format shown in Figure 6. The
floating-point word is divided into three fields: a single-bit sign,
an eight-bit biased exponent, and a 23-bit fraction.

The sign bit indicates the sign of the floating-point number’s
value. Non-negative values have a sign of 0; negative values, a
sign of 1. The value zero may have either sign.

The biased exponent is an eight-bit unsigned integer field repre-
senting a multiplicative factor of some power of two. The bias
value is 127. If, for example, the multiplicative factor for a
floating-point number is to be 22, the value of the biased expo-
nent would be a+127; a is called the true exponent.

The fraction is a 23-bit unsigned fractional field containing the 23
least-significant bits of the floating-point number's 24-bit man-
tissa. The weight of fraction’s most significant bit is 2~1; the
weight of the least-significant bit is 223,

13

Am29325

Figure 4. Functional Block Diagram for the 16-Bit, Two-Input-Bus Mode

16, /l/
asus /)
16 /l/
seus 7/ 16 15| 6y 16
R1gR31/Rg R1s S15531{SgS15
32,
1 .
s O s 2
1
ENR [EN
7, REG R
ck O r_l_
L
1 ¥
_ - R S
onesus (-Low) [~/ FLOATING-POINT
— 1 ALU
$16/32 (=HIGH) [D>—F—1— F
1
B O/ s El
cLK >
16 MSBs /{16 LSBs a2,
7
— 1,
o [
Am29325
(0D
16 16-Fa1 0=F1s
F BUS // /1/

05621B-6

A floating-point number is evaluated or interpreted per the fol-
lowing conventions:

let s = sign bit
e = biased exponent
f = fraction

ife=0andf=0...value = (—1)«(0) (+0, —0)
ife=0andf$0...value = denormalized number

if 0 < e < 255..value = (—1)S+(28~127)s(1 f)
(normalized number)

ife=255andf=0 ..value = (—1)Sx(x) (+x, —%)
ife=255andf$0...value = not-a-number (NAN)

Zero — The value zero can have either a positive or negative sign.
Rules for determining the sign of a zero produced by an operation
are given in the Sign Bit section on page 12.

Denormalized Number — A denormalized number represents a
quantity with magnitude less than 2126 but greater than zero.

Normalized Number — A normalized number represents a
quantity with magnitude greater than or equal to 2126 but less
than 2128,

Example 1:

The number +3.5 can be represented in floating-point format
as follows:

+35 = 11.15x 20
=111 x 21

sign =0

biased exponent = 119+12719 = 12819
= 10000000,

fraction = 110000000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
4060000016.

N

Am29325

CLK |

Figure 5. Typical Bus Timing for the /O Modes, with FTg = LOW, FTy = LOW

XXX

- XXXXXKEXXXKK =

XXXX

F BUS X F DATA

X

a) 32-Bit, Two-Input-Bus Mode

CLK |

XXX

FBUS X F DATA

b) 32-Bit, Single-Input-Bus Mode

CLK |

F BUS X F DATA -~ 16 LSBs X F DATA - 16 MSBs

X

c) 16-Bit, Two-Input-Bus Mode

05621A-7

15

Am29325

Figure 6. IEEE Mode Single-Precision Floating-Point Format

SIGN BIASED
BIT (S) EXPONENT (E) FRACTION (F)
—_
BITNUMBER: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 4 3 2 1 0

A

I 1 1 1 1 1 1 I 1 1 1 |
o7 26 25 28 23 22 21 20 |2-1 2-2 2-3 2-4 -5
1 1 1 1 1

4 I I 1 I I
.o 2-19 2-20 p-21 p-22 23
A 1 1 1 1

4

VALUE = (-1)S (2E-127) (1.F)

05621A-8

Example 2:

The number —11.375 can be represented in floating-point for-
mat as follows:

—~11.375 = —1011.0113 x 20
= —1.0110115 x 23

sign = 1

biased exponent = 319+12719 = 13019
100000102

fraction = 011011000000000000000002
(the leading 1 is implied in the format)

I

Concatenating these fields produces the floating-point word
C136000016.

Infinity — Infinity can have either a positive or negative sign. The
way in which infinities are interpreted is determined by the state of
the projective/affine mode select, PROJ/AFF.

Not-a-Number — A not-a-number, or NAN, does notrepresenta
numeric value, but is interpreted as a signal or symbol. NANs are
used to indicate invalid operations, and as a means of passing
process status information through a series of calculations. NANs
arise in two ways: they can be generated by the Am29325 to
indicate that an invalid operation has taken place (e.g., infinity
times zero), or they can be provided by the user as an input
operand. There are two types of NANs: signalling and quiet.
These NANs have the formats shown in Figure 7.

IEEE Mode Integer Format

Integer numbers are represented as 32-bit, two's complement
words; Figure 8 depicts the integer format. The integer word can
represent a range of integer values from —231 to 2311,

Figure 7.

Signalling and Quiet NAN Formats

SIGN BIASED
BIT EXPONENT FRACTION
—_~

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X

*x
x
x
x
>
>
x
>

SIGNALLINGNANIXI1 1111 11 1|1 X X X X X

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QUIETNANF|1 1 11 1 1 1 IIDXXXXXXXXXXXXXXXXXXXX

X = DON'T CARE AT LEAST ONE OF THE

TWENTY-TWO LSBs OF A QUIET NAN
MUST BE 1

05621A-9
Figure 8. Thirty-Two-Bit Integer Format
BIT NUMBER: 31 30 29 28 27 26 25 24 M 8 7 6 5 4 3 2 1 L]
T 1 V T T
I_zznlzso 229 223|227|226|225]224| eese ! 28I27I26|25|24|23 22' 21 20]
N i i i SR T Tl | A | N T T O T Bl |
14
05621A-10

16

Am29325

1

OPERATIONS

All eight floating-point ALU operations discussed in the Func-
tional Description section above can be performed in IEEE mode.
Various exceptional aspects of the R PLUS S, R MINUS S, R
TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT operations
for this mode are described below. The IEEE-TO-DEC and
DEC-TO-IEEE operations are discussed separately in the
|IEEE-TO-DEC and DEC-TO-IEEE Operations section on
page 23.

Operations with NANs — NANs arise in two ways: they can be
generated by the Am29325 to indicate that an invalid operation
has taken place (e.g., infinity times zero), or they can be provided
by the user as an input operand. There are two types of
NANSs: signalling and quiet. These NANs have the formats
shown in Figure 7.

Signalling NANSs set the invalid operation flag when they appear
as aninput operand to an operation. They are useful for indicating
uninitialized variables, or for implementing user-designed exten-
sions to the operations provided. The ALU never produces a
signalling NAN as the final result of an operation.

Quiet NANs are generated for invalid operations. When they
appear as an input operand, they are passed through most oper-
ations without setting the invalid flag, the floating-point-to-
integer conversion operation being the exception.

The sign of any input operand NAN is ignored. All quiet NANs
produced as the final result of an operation have a sign of 0.

When a NAN appears as an input operand, the final result of the
operation is a quiet NAN that is created by taking the input NAN
and forcing bit 22 LOW and bit 21 HIGH. If an operation has two
NANSs as input operands, the resulting quiet NAN is created using
the NAN on the R port.

When a quiet NAN is produced as the final result of an invalid
operation whose input operand or operands are not NANs, the
resulting NAN will always have the value 7FA000001g.

The NAN flag will be HIGH whenever an operation produces a
NAN as a final result.

Example 1:

Suppose the floating-point addition operation is performed
with the following input operands:

R port: 3F8000001¢ (1.0+29)

S port: 7FC12345¢ (signalling NAN)

Result: The signalling NAN on the S port is converted to
a quiet NAN by forcing bit 22 LOW and bit 21 HIGH.
The operation’s final result will be 7FA12345+¢. Since
one of the two input operands is a signalling NAN,
the invalid flag will be HIGH; the NAN flag will also
be HIGH.

Example 2:
Suppose the floating-point multiplication operation is per-
formed with the following input operands:
R port: FFF1111145 (signalling NAN)
S port: 7FC222224¢ (quiet NAN)

Result: Since both input operands are NANs, the NAN on the

R port s chosen for output. In addition to forcing bit 22
LOW, the sign bit (bit 31) is set LOW (bit 21 is already
HIGH, and need not be changed). The operation’s final
result will be 7FB111114g. Since one of the two input
operands is a signalling NAN, the invalid flag is HIGH;
the NAN flag will also be HIGH.

Example 3:

Suppose the floating-point subtraction operation is performed
with the following input operands:

R port: FF8000014g (quiet NAN)
S port: 7F8000004¢ (+=)

Result: To create the final result, the quiet NANs sign bit (bit
31) is forced LOW and bit 21 is forced HIGH (bit 22 is
already LOW, and need not be changed). The final
result will be 7FA000014g. The NAN flag will be HIGH.

Operations with Denormalized Numbers — The proposed
|EEE standard incorporates denormalized numbers to allow a
means of gradual underflow for operations that produce non-zero
results too small to be expressed as a normalized floating-point
number. The Am29325 does not support gradual underflow. If a
floating-point operation produces a non-zero rounded result that
is not large enough to be expressed as a normalized floating-
point number, the final result will be a zero of the same sign; the
inexact, underflow, and zero flags will be HIGH. If an input
operand is a denormalized number, the floating-point ALU will
assume that operand to be a zero of the same sign.

Operations Producing Overflows — If an operation has a finite
input operand or operands, and if the operation produces a
rounded result that is too large to fit in the destination format, that
operation is said to have overflowed.

A floating-point overflow occurs if an R PLUS S, R MINUS S, R
TIMES S, or 2 MINUS S operation with finite input operand(s)
produces a result which, after rounding, has a magnitude greater
than or equal to 2128, Positive or negative infinity will appear as
the final result if the rounded result is positive or negative, respec-
tively, and the overflow and inexact flags will be HIGH.

Integer overflow occurs when the floating-point-to-integer con-
version operation attempts to convert a number which, after
rounding, is greater than 23! —1 or less than —231. The final
result will be quiet NAN 7FA00000+6, and the invalid operation
and NAN flags will be HIGH. Note that the overflow and inexact
flags remain LOW for integer overflow.

Operations Producing Underflows — If an operation produces
a floating-point rounded result having a magnitude too small to be
expressed as a normalized floating-point number, but greater
than zero, that operation is said to have underflowed. Underflow
occurs when an R PLUS S, R MINUS S, or R TIMES S operation
produces a result which, after rounding, has a magnitude in the
range:

0 < magnitude < 2126,

In such cases, the final result will be +0 (000000001¢) if the
rounded result is non-negative, and —0 (80000000+g) if the
rounded resultis negative. The underflow, inexact, and zero flags
will be HIGH.

Underflow does not occur if the destination formatis integer. If the
infinitely precise result of a floating-point-to-integer conversion
has a magnitude greater than 0 and less than 1 but the rounded
result is 0, the underflow flag remains LOW.

Operations with Infinities — In most cases, positive and nega-
tive infinity are valid input arguments for the R PLUS S, R MINUS
S, RTIMES S, and 2 MINUS S operations. Those cases for which
infinities are not valid inputs for these operations are listed in the
|EEE Mode Invalid Operations Table (see next page).

Infinities in IEEE mode can be handled either as projective or
affine. The projective mode is selected when PROJ/AFF is HIGH;

Am29325

the affine mode is selected when PROJ/AFF is LOW. The only
differences between the modes that are relevant to Am29325
operation occur during the addition and subtraction of infinities:

precise result of zero, however, present a problem, as the IEEE
floating-point format allows for representation of both +0 and
—0. The following rules can be used to determine the signs of
zero produced in such cases:

Affine

Operation Mode Projective Mode
(+2)+(+x) Output +2= Output 7FA000004¢ (quiet NAN),

setinvalid and NAN flags RPLUS 8 — The operations +x + (—x) and —x + (+x) produce a
(=) +(—2) Output —= | Output 7FA000004¢ (quiet NAN), final result of zero; the sign of the zero is dependent on the

set invalid and NAN flags rounding mode:
(+x)—(—=x) Output + | Output 7FA000004¢ (quiet NAN), . . .

set invalid and NAN flags Rounding Mode Sign of Final Resuit
(—%)—(+x) Output —= | Output 7FA00000¢ (quiet NAN), Round to nearest 0

set invalid and NAN flags Round toward —x

IfanRPLUS S, RMINUS S, RTIMES S, or 2 MINUS S operation
has infinity as an input operand or operands, the final result, if
valid, is presumed to be exact. For example, adding +x= and 2.0
will produce a final result of +x; since the result is considered
exact, the inexact flag remains LOW.

Invalid Operations — If an input operand is invalid for the opera-
tion to be performed, that operation is considered invalid. When
an invalid operation is performed, the floating-point ALU pro-
duces a quiet NAN as the final result, and the invalid operation
flag goes HIGH. The IEEE Mode Invalid Operations Table lists
the cases for which the invalid flagis HIGH in IEEE mode, and the
final results produced for these operations.

|EEE MODE INVALID OPERATIONS TABLE

Operation Input Operand Final Resuit

RPLUS S (+%) + (—x) 7FA00000+¢
or (—x) + (+%) (quiet NAN)

RPLUS S (+2) + (+%) 7FA00000+¢
or (=) + (—=) (Note 1) (quiet NAN)

R MINUS S (+%) — (+%) 7FA000004¢
or (=) — (—x) (quiet NAN)

R MINUS S (+x) — (=) 7FA000001g
or (=) — (+=) (Note 1) (quiet NAN)

R TIMES S (+0) * (+2)
or (+0) « (-=) 7FA000001g
or (—0) * (+x) (quiet NAN)
or (=0) + (—=)

RPLUS S R or S is a signalling NAN

R MINUS S (Note 2)

R TIMES S

2 MINUS S S is a signalling NAN (Note 2)

FP-TO-INT R is a signalling or quiet NAN | (Note 2)

FP-TO-INT R > 2314 7FA000001¢
orR< — (231) (quiet NAN)

Notes: 1. These cases are invalid in projective mode only.
2. Results for these operations are described in the Operations
with NANs section.

The Sign Bit

For most floating-point operations, the sign bit of the final result is
unambiguous, i.e., there is only one sign bit value that yields a
numerically correct result. Operations that produce an infinitely

Round toward +x=

1
0
Round toward 0 0

The operation +0 + (+0) produces a final result of +0; the
operation —0 + (—0) produces a final result of —0.

RMINUS S — The operations +x — (+x) and —x — (—x) produce
a final result of zero; the sign of the zero is dependent on the
rounding mode:

Rounding Mode Sign of Result

Round to nearest 0

Round toward —=

1
Round toward += 0
Round toward 0 0

The operation +0 — (—0) produces a final result of +0; the
operation —0 — (+0) produces a final result of —0.

R TIMES S — The sign of any multiplication result other than a
NAN is the exclusive-OR of the signs of the input operands.
Therefore, if x is non-negative,

+0 times
+0 times
—0 times
-0 times

+x produces a final result of +0,
—X produces a final result of —0,
+x produces a final result of -0,
—X produces a final result of +0.

2 MINUS S — If S equals 2, the final result is —0 for the round
toward —= mode, and +0 for all other rounding modes.

Rounding

Rounding is performed whenever an operation produces an infi-
nitely precise result that cannot be represented exactly in the
destination format. For example, suppose a floating-point opera-
tion produces the infinitely precise result

1.10101010101010101010101\01 x 23.

In this example, the fraction portion of the mantissa has twenty-
five bits; the IEEE floating-point format can accommodate only
twenty-three. The backslash (\) in the mantissa represents the
boundary between the first twenty-three bits of the fraction and
any remaining bits. Rounding is the process by which this resultis
‘approximated by a representation that fits the destination format.

18

Am29325

There are four rounding modes in IEEE mode: round to nearest, The result is rounded to the closest representable floating-point
round toward +=, round toward —=, and round toward 0. The value,

rounding mode is chosen using the rounding mode select lines, 22042-3 = 1.00000000000000000000001 x 220,

RNDg and RND4. The Rounding Mode Select Table lists the

select states needed to obtain the desired rounding mode.

Example 2:
ROUNDING MODE SELECT TABLE In Figure 9(b), the infinitely precise result of an operation is:
220-2-44+2-8 = 1.11111111111111111111111\ 0001 x 219,
RND4 RNDg Rounding Mode
0 0 Round to nearest This result is rounded to the closest representable floating-point
0 1 Round toward —x= value,
20-2-4 = 19
1 o Round toward +» 220-2 1.11111111111111111111111 x 219,
1 1 Round toward 0
Example 3:
In Figure 9(c), the infinitely precise result of an operation is:
Round to Nearest — In this rounding mode the infinitely precise —(2204+2-3+2-4)
result of an operation is rounded to the closest representation that = —1.00000000000000000000001\1 x 220,

fits in the destination format. If the infinitely precise result is
exactly halfway between two representations, it is rounded to the
representation having an LSB of zero. Rounding is performed
both for floating-point and integer destination formats.

This result is exactly halfway between two representable
floating-point values. Accordingly, it is rounded to the closest
representation with an LSB of zero, or

Figure 9illustrates four examples of the round to nearest process —(22042.2-3) = —1,00000000000000000000010 x 220

for operations having a floating-point destination format. The ’ '
infinitely precise result of an operation is represented by an X on

the number line; the black dots on the number line indicate Example 4:

:2?;2: alues that can be represented exactly in the floating-point In Figure 9(d), the infinitely precise result of an operation is:

Example 1: 220+3+2-3 = 1,00000000000000000000011 x 220,

In Figure 9(a), the infinitely precise result of an operation is: This result can be represented exactly in the floating-point
2204+2-442-5 = 1.00000000000000000000000\11 x 220, format, and is left unaltered by the rounding process.

Figure 9. Floating-Point Rounding Examples for Round to Nearest Mode

-(220 3279 220 _ 2-4 ROUND TO 220 + 2-3
(220 _ —’ 220 _3e2- 4_| f)
o © o A PN o : P x o o

| |
-(220 +3°279) —(220 + 273) ~(220 - z 279 0 220 _ 2+ 2-4 I 220 + 2-3 220 4 3+ 273

(220 4 2+ 2-3) —(229) a) 220 220 4 2+ 2-3
ROUND 70 220 — 2-4 220 4 2-4 4 2-5
° ° o o Py Al Ao o o - o o
° - VT -
0 b
274 4 2-
ROUND TO —(220 + 2-3) b) 2 M

- l - - o o o o i1 Ao - - o o o o

> ° *~—/—— © ° o
0

~(220 4 273 4 274) o) NO CHANGE

® ° ° o—0—0—=o A = /—o- *—00——o °. o O*

0 20 ! 3
220 4 3+ 2~

d)

05621A-11

19

Am29325

Figure 10 illustrates four examples of the round to nearest
process for operations-having an integer destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be represented exactly in the integer format.

Example 1:
In Figure 10(a), the infinitely precise result of an operation is:
210-2-2 = 00...001111111111.11.

The resultis rounded to the closest representable integer value,
210 = 00...010000000000.

Example 2:

In Figure 10(b), the infinitely precise result of an operation is:
2104+20+2-3 = 00...010000000001.001.

This result is rounded to the closest representable integer value,

210+20 = 00...010000000001.

Example 3:
In Figure 10(c), the infinitely precise result of an operation is:
—(210+20+2-1) = 11..101111111110.1.
This resultis exactly halfway between two representable integer

values. Accordingly, it is rounded to the closest representation
with an LSB of zero, or

—(210+2x20) = 11...101111111110.

Example 4:
In Figure 10(d), the infinitely precise result of an operation is:
2104+3+20 = 00...010000000011.

This result can be represented exactly in the integer format, and
is left unaltered by the rounding process.

Figure 10. Integer Rounding Examples for Round to Nearest Mode

ROUND TO 210
° ° o o PY I | 1 o o o -
I I I L I] ! I 1
-(10+3) —(21042) _(2104) —(210) —(210 - 1) “) 210 _ 4 210 210 4 4 210+ 2 21043
a
29-272 BouND TO 210 + 1

—_— - - . o v : A o ° C\x . °

0

ko1

ROUND TO -(210 + 2)

210 4 20 4 2-3

° ° ° Al A ° ° ® ° °
/'4 ® ® ® —/ - ® g ©
0
—(210 4+ 20 4 2-1)) NO CHANGE
o Y o o °. o | A o ° ° ° o
— . *—
0 |
d) 210 4 3+ 20
05621A-12

20

T

Am29325

Round Toward —= — In this rounding mode the result of an
operation is rounded to the closestrepresentation that is less than
or equal to the infinitely precise result, and which fits the destina-
tion format. Rounding is performed both for floating-point and
integer destination formats.

Figure 11 illustrates four examples of the round toward —= pro-
cess for operations having a floating-point destination format.
The infinitely precise result of an operation is represented by an X
on the number line; the black dots on the number line indicate
those values that can be represented exactly in the floating-point
format.

Example 1:
In Figure 11(a), the infinitely precise result of an operation is:

2204+2-4+2-5 = 1.00000000000000000000000\11 x 220,

This result cannot be represented exactly in floating-point
format, and is rounded to the next-smaller floating-point repre-
sentation:

220 = 1,00000000000000000000000 x 220.

Example 2:
In Figure 11(b), the infinitely precise result of an operation is:
220-2-44+2-8 = 1,11111111111111111111111\ 0001 x 219,

This result cannot be represented exactly in floating-point for-
mat, and is rounded to the next-smaller floating-point rep-
resentation:

220-2-4 = 1.11111111111111111111111 x 219,

Example 3:
In Figure 11(c), the infinitely precise result of an operation is:
—(220+2-3+2-4)
= —1.00000000000000000000001\1 x 220,

This result cannot be represented exactly in floating-point
format, and is rounded to the next-smaller floating-point
representation:

—(220+2+2-3) = —1.00000000000000000000010 x 220,

Example 4:
In Figure 11(d), the infinitely precise result of an operation is:
220+3+2-3 = 1.00000000000000000000011 x 220.

This result can be represented exactly in the floating-point
format, and is left unaltered by the rounding process.

Figure 11. Floating-Point Rounding Examples for Round Toward — % Mode

—(220 -~ 3+ 2-9)
_(220 _ 2-4) —‘l
. . . . A

220 _ -4

° . —/

—l ROUND TO 220
: ,(° ° o
|

% ®
| | ! | |
-(220 + 3+ 279) —(220 + 273) —(220 - 2+ 279 0 220 2+ 2-4 | 220 4 2-3 220 4 3+ 273
—(220 4 2+ 2-9) -(229) a) 220 220 4 2+ 273
ROUND TO 220 — 24 220 4 2-4 4 2-5
. ° ° ° ° o - | Ao Py ° ° Py °
® Y/ —/ e
0 [}
220 . 2-4 4 278
ROUND TO —(220 + 2+ 2-3) b)
° o oo A1 e o—o °
L *— — g ° -
[
—(220 4 273 + 2-9) NO CHANGE
c) O
P & . & A I A 8-
° o —o—o—o y———e PPN ° ° *_
0
220 4+ 3+ 2-3
d)
05621A-13

21

Am29325

Figure 12 illustrates four examples of the round toward —> pro-
cess for operations having an integer destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be exactly represented in the integer format.

Example 1:
In Figure 12(a), the infinitely precise result of an operation is:
210-2-2 = 00...001111111111.11.

The result is rounded to the next-smaller representable integer
value,

210-20 = 00...001111111111.

Example 2:
In Figure 12(b), the infinitely precise result of an operation is:
210+20+2-3 = 00...010000000001.001.

This result is rounded to the next-smaller representable integer
value,

210420 = 00...010000000001.

Example 3:
In Figure 12(c), the infinitely precise result of an operation is:
—(210+20+2-1) = 11..101111111110.1.

This result is rounded to the next-smaller representable integer
value:

—(2104+2+20) = 11...101111111110.

Example 4:
In Figure 12(d), the infinitely precise result of an operation is:
210+3+20 = 00...010000000011.

This result can be represented exactly in the integer format, and
is unaltered by the rounding process.

Figure 12. Integer Rounding Examples for Round Toward — © Mode

ROUND TO 210 — 1

° ° ° ° A

® | x o ®
- . - v -/ o ° ° -
I f I I ! [[| I I
-10+3) (042 (1041 -(219 —(210 — 1) °) 210 4 (210 210 + 4 210 4+ 2 210+ 3
a
20-2"2 gouUND TO 210 4 1
- - - - - Al A . o (\x ° °
e S S < VT
0)
ROUND TO (210 + 2) b) 210420 + 273
o [\x o Py Al A ° ° ° ® Y
° - VT ° ° ° *
0
~(210 4 20 4 2-1)) NO CHANGE
. - ° o o | A Py - o o
VT ¢ . @ %
0 10 ’ 0
d) 210 4 3+ 2
05621A-14

22

Am29325

Round Toward +w — In this rounding mode the result of an
operation is rounded to the closest representation that is greater
than or equal to the infinitely precise result, and which fits the
destination format. Rounding is performed both for floating-point
and integer destination formats.

Figure 13 illustrates four examples of the round toward +=
process for operations having a floating-point destination
format. The infinitely precise result of an operation is represented
by an X on the number line; the black dots on the number line
indicate those values that can be represented exactly in the
floating-point format.

Example 1:
In Figure 13(a), the infinitely precise result of an operation is:
220+2-4+2-5 = 1.00000000000000000000000\11 x 220,

This result cannot be represented exactly in floating-point
format, and is rounded to the next-larger floating-point repre-
sentation:

220+2-3 = 1,00000000000000000000001 x 220,

Example 2:
In Figure 13(b), the infinitely precise result of an operation is:
220-2-4+2-8 = 1.11111111111111111111111\0001 x 219,

This result cannot be represented exactly in floating-point
format, and is rounded to the next-larger floating-point repre-
sentation:

220 = 1.00000000000000000000000 x 220.

Example 3:
In Figure 13(c), the infinitely precise result of an operation is:
—(22042-3+2-4)
= —1.00000000000000000000001\1 x 220,

This result cannot be represented exactly in floating-point
format, and is rounded to the next-larger floating-point repre-
sentation:

—(220+2-3) = —1.00000000000000000000001 x 220,

Example 4:
In Figure 13(d), the infinitely precise resuit of an operation is:
220+3+«2-3 = 1,00000000000000000000011 x 220,

This result can be represented exactly in the floating-point for-
mat — no rounding takes place.

—(220 — 3+ 2-9)
_(220 — 2-%) _‘ 2
| A

Figure 13. Floating-Point Rounding Examples for Round Toward + % Mode

ROUND TO 220 4+ 2-3

o

[I | T I]
-(220 + 3+ 2793) —(220 + 2-3) —(220 - 2+ 279) 0 220 _ 2+ 2-4 220 4 2-3 220 4 3273
—(220 4+ 2+ 2-3) —(220) a) 220 220 4 2+ 2-3
ROUND TO 220 220 4 2-4 4 2-5
o o ° . ° ° Py VA : /—e . ﬁ ° °. P
0
ROUND TO 220 + 23 b) 220 - 274+ 278
° ° xq ° —06 Al
* o > ° Y | —
| 0
(220 4 273 4 2-9) <) NO CHANGE
° ° ° ° >——ao Al e ® ° ° ° ° O
. - s S WD WD ¥
0
220 4 3+ 2-3
d)
05621A-15

23

Am29325

Figure 14 illustrates four examples of the round toward += pro-
cess for operations having an integer destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be exactly represented in the integer format.

Example 1:
In Figure 14(a), the infinitely precise result of an operation is:
210-2-2 = 00...001111111111.11.

The result is rounded to the next-larger representable integer
value,

210 = 00...010000000000.

Example 2:
In Figure 14(b), the infinitely precise result of an operation is:
2104+20+2-3 = 00...010000000001.001.

This result is rounded to the next-larger representable integer
value,

21042+20 = 00...010000000010.

Example 3:
In Figure 14(c), the infinitely precise result of an operation is:
_(210+20+2_1) = 11..101111111110.1

This result is rounded to the next-larger representable integer
value:

—(210+20) = 11..1011111111110.

Example 4:
In Figure 14(d), the infinitely precise result of an operation is:
210+3+20 = 00...010000000011.

This result can be represented exactly in the integer format — no
rounding takes place.

Figure 14. Integer Rounding Examples for Round Toward + % Mode

® A

ROUND TO 210

- . . - . R o o . -
I I [[[! [I I I !
—210+3 -@04+2) 22104 9) -(219) —(210 - 1) o 210 — 4 210 210 4+ ¢ 210+ 2 2104+ 3
a -
) 210 - 2=2 ROUND TO 210 + 2
o o o - o | A . o o l -
. ° . V—1—
0
ROUND TO (210 + 1) b) 2104204 273
o o o o] A ° Y Py Py o
L ° ° —/- — ° ° °
0
~(210 4 20 4 2-1) 0 NO CHANGE
o ° P P o 1 1 Py o o o
—/—— ° -
[
d) 210 4 3+ 20
05621A-16

24

Am29325

Round Toward 0 — In this rounding mode the result of an
operation is rounded to the closest representation whose mag-
nitude is less than or equal to the infinitely precise result, and
which fits the destination format. Rounding is performed both for
floating-point and integer destination formats.

Figure 15 illustrates four examples of the round toward 0 process
for operations having a floating-point destination format. The
infinitely precise result of an operation is represented by an X on
the number line; the black dots on the number line indicate those
values that can be represented exactly in the floating-point
format.

Example 1:
In Figure 15(a), the infinitely precise result of an operation is:
220+2-4+2-5 = 1,00000000000000000000000\11 x 220,

This result cannot be represented exactly in floating-point
format, and is rounded to:

220 = 1.00000000000000000000000 x 220,

Example 2:
In Figure 15(b), the infinitely precise result of an operation is:
220-2-44+2-8 = 1.11111111111111111111111\001 x 219,

This result cannot be represented exactly in floating-point
format, and is rounded to:

220-2-4 = 1.11111111111111111111111 x 219,
Example 3:
In Figure 15(c), the infinitely precise result of an operation is:

~(220+2-312-4)
—1,00000000000000000000001\1 x 220,

This result cannot be represented exactly in floating-point
format, and is rounded to:

—(220+2-3) = —1.00000000000000000000001 x 220,
Example 4:

In Figure 15(d), the infinitely precise result of an operation is:

220+3+2-3 = 1.00000000000000000000011 x 220,

This result can be represented exactly in the floating-point
format, and is unaffected by the rounding process.

Figure 15. Floating-Point Rounding Examples for Round Toward 0 Mode

—(220 -3+ 279 220 - 24 ROUND TO 220
—(220 - 2-4)—| -1 220 -3+ 2"4——| —] [_\
o o o o - Y o | A - o o o °
° © —eo—o—o—/—1— ° *
| | | I
_(220 4 3+ 273 —(220 4 273 —(220 _ 2+ 274 0 220 _ 5+ -4 220 4 2-3 220 4 3+ 9-3
—(220 + 2+ 273) -(220) a) 220 220 4 2273
ROUND TO 220 — 24 220 4 2-4 4 2-5

° ° ° Py °. ° v | Ao o ° Py Py o
- ° L L ® *

I 1 4

0 |

20 _ 5-4 4 5-8
ROUND TO —(220 + 2-3) b) =%+ 2
° ° xq *—o—o0—o—/ ! J/—o——o—o—= ° - °
} °
_(220 4 273 4 274) o NO CHANGE
° ° ° o ~—o | A ® ° ° ° °
o——o—o y—1/—e *——o ° ®
d(: 220 4 3+ 2-3
05621A-17

25

Am29325

Figure 16 illustrates four examples of the round toward 0 process
for operations having an integer destination format. The infinitely
precise result of an operation is represented by an X on the
number line; the black dots on the number line indicate those
values that can be exactly represented in the integer format.
Example 1:

In Figure 16(a), the infinitely precise result of an operation is:

210-2-2 = 00...001111111111.11.

The result is rounded to:

210-20 = 00...001111111111.

Example 2:
In Figure 16(b), the infinitely precise result of an operation is:
2104204+2-3 = 00...010000000001.001.
The result is rounded to:
210420 = 00...010000000001.

Example 3:
In Figure 16(c), the infinitely precise result of an operation is:
—(210+204+2-1) = 11..101111111110.1.
This result is rounded to:
—(210+20) = 11..101111111111.

Example 4:
In Figure 16(d), the infinitely precise result of an operation is:
210+3+20 = 00...010000000011.

This result can be represented exactly in the integer format, and
is unaffected by the rounding process.

Flag Operation

The Am29325 generates six status flags to monitor floating-point
processor operation. The following is a summary of flag conven-
tions in IEEE mode:

Invalid Operation Flag - The invalid operation flag is HIGH
when an input operand is invalid for the operation to be per
formed. The IEEE Mode Invalid Operations Table lists the
cases for which the invalid operation flag is HIGH in IEEE mode,
and the corresponding final result. In cases where the invalid
operation flag is HIGH, the overflow, underflow, zero, and inex-
act flags are LOW, the NAN flag will be HIGH.

Overflow Flag — The overflow flag is HIGH if an R PLUS S,
R MINUS S, R TIMES S, or 2 MINUS S operation with finite in-
put operand(s) produces a result which, after rounding, has a
magnitude greater than or equal to 2128, The final result will be
+% or —=.

Underflow Flag — The underflow flagis HIGH if an R PLUS S, R
MINUS S, or R TIMES S operation produces a result which, after
rounding, has a magnitude in the range:

0 < magnitude < 2-126,

The final result will be +0 (000000001¢) if the rounded result is
non-negative, and —0 (800000001¢) if the rounded result is
negative.

Inexact Flag — The inexact flag is HIGH if the final result of an R
PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or
FP-TO-INT operation is not equal to the infinitely precise result.
Note that if the underflow or overflow flag is HIGH, the inexact flag
will also be HIGH.

Figure 16. Integer Rounding Examples for Round Toward 0 Mode

o o Py o A

ROUND TO 210 — ¢

YA vf X—o ® .

. °] .
| I | | ol I I | | 1
-@210+3) —(2104+2) -0+ -(219 —(210 - 1) ° 210 _ 4 210 210 4+ ¢ 210+ 2 21043
a)
10 _ o
29272 QoUND TO 210 + 1
° ° ° o o A : A . o {\x o °
0
ROUND TO —(210 + 1) b) 210 4 20 4 2-3
- © x/\. ° ° +/h : A © ° ° - -©
0
—(210 4+ 20 4 2-1)) NO CHANGE
o ° . ° o yA | A Y ° ° o O
7 ® o
0 |
d) 21043+ 20
05621A-18

26

Am29325

Zero Flag — The zero flag is HIGH if the final result of an
operation is zero. For operations producing an IEEE floating-
point number, the flag accompanies outputs +0 (0000000016)
and —0 (800000004¢). For operations producing an integer, the
flag accompanies the output 0 (000000001¢).

NAN Flag — The NAN flagis HIGH if an RPLUS S, RMINUS S, R
TIMES S, 2 MINUS S, or FP-TO-INT operation produces a NAN
as a final result.

OPERATION IN DEC MODE

When input signal IEEE/DEC is LOW, the DEC mode of operation
is selected. In this mode the Am29325 uses the single-precision
floating-point format (floating F) set forth in Digital Equipment
Corporation’s VAX Architecture Manual. In addition, the DEC
mode complies with most other aspects of single-precision
floating-point operation outlined in the manual — differences are
discussed in Appendix B.

DEC Floating-Point Format

The DEC single-precision floating-point word is thirty-two bits
wide, and is arranged in the format shown in Figure 17. The
floating-point word is divided into three fields: a single-bit sign,
an eight-bit biased exponent, and a 23-bit fraction.

The sign bit indicates the sign of the floating-point number's
value. Non-negative values have a sign of 0, negative values a
sign of 1.

The biased exponent is an eight-bit unsigned integer field repre-
senting a multiplicative factor of some power of two. The bias
value is 128. If, for example, the multiplicative factor for a
floating-point number is to be 23, the value of the biased expo-
nent would be a+128; a is called the true exponent.

The fraction is a 23-bit unsigned fractional field containing the 23
least-significant bits of the floating-point number's 24-bit man-
tissa. The weight of this field's most significant bit is 2-2; the
weight of the least-significant bit is 224,

A floating-point number is evaluated or interpreted per the fol-
lowing conventions:

let s = sign bit
e = biased exponent
f = fraction

ife=0ands=0...value =0

ife=0ands = 1...value = DEC reserved operand
if 0 < e < 255..value = (—1)s«(26~128)+(.1f)
(normalized number) :

Zero — The value zero always has a sign of zero.

DEC Reserved Operand — A DEC reserved operand does not
represent a numeric value, but is interpreted as a signal or sym-
bol. DEC reserved operands are used to indicate invalid opera-
tions and operations whose results have overflowed the destina-
tion format. They may also be used to pass symbolic information
from one calculation to another.

Normalized Number — A normalized number represents a
quantity with magnitude greater than or equal to 2128 but less
than 2127,

Example 1:

The number +3.5 can be represented in floating-point format as
follows:

+3.5 = 11.1p x 20
= 1113 x 22

sign = 0

biased exponent = 219 + 12819 = 13019
= 100000102

fraction = 110000000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
4160000016.

Example 2:

The number —11.375 can be represented in floating-point
format as follows:

~11.375 = —1011.0115 x 20
= -.10110115 x 24

sign = 1
biased exponent = 419 + 12819 = 13219
= 100001002
fraction = 011011000000000000000002
(the leading 1 is implied in the format)

Concatenating these fields produces the floating-point word
C236000046.

DEC Mode Integer Format

DEC mode integer format is identical to that of the IEEE mode.
Integer numbers are represented as 32-bit, two's complement
words; Figure 8 depicts the integer format. The integer word can
represent a range of integer values from —2 Tt0 231 -1,

Operations

All eight floating-point ALU operations discussed in the Gen-
eral Description section can be performed in DEC mode.

Figure 17. DEC-Mode Floating-Point Format

SIGN BIASED
BIT (S) EXPONENT (E) FRACTION (F)
—_~—
BITNUMBER: 31 30 29 28 27 26 25 24 23 21 20 19 18 . 4 3 2 1 0
— T 1 1 1T 1 1 T | U L 4 T T 1 T 1
o7 26 25 24 23 22 21 20 |p-2 2-3 -4 2-5 2-6 coe 2-20 p-21 2-22 2-23 2-24
Lo L 1 L1 1 A 1 I S S |

VALUE = (~1)S (2E-128) (.1F)

14

05621A-19

27

Am29325

Various exceptional aspects of the R PLUS S, R MINUS S, R
TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT operations
for this mode are described below. The IEEE-TO-DEC and
DEC-TO-IEEE operations are discussed separately in the IEEE-
TO-DEC and DEC-TO-IEEE Operations section.

Operations with DEC Reserved Operands — DEC reserved
operands arise in two ways: they can be generated by the
Am29325 to indicate that an invalid operation or floating-point
overflow has taken place, or they can be provided by the user as
an input operand.

When a DEC reserved operand appears as an input operand, the
final result of the operation is the same DEC reserved operand. If
an operation has two DEC reserved operands as inputs, the DEC
reserved operand on the R port becomes the final result.

The NAN flag will be HIGH whenever an operation produces a
DEC reserved operand as a final result.

Example 1:
Suppose the floating-point addition operation is performed with
the following input operands:
R port: 408000004¢ (0.1+21)
S port: 800123454 (DEC reserved operand)

Result: This operation produces the DEC reserved operand on
the S port, 800123454, as the final result. The NAN flag
will be HIGH.

Example 2:

Suppose the floating-point multiplication operation is performed
with the following input operands:

8076543216 (DEC reserved operand)
800000014¢ (DEC reserved operand)
Since both input operands are DEC reserved operands,

the operand on the R port, 807654324, is the final
result of the operation. The NAN flag will be HIGH.

R port:
S port:

Result:

Operations Producing Overflows — If an operation produces a
rounded result that is too large to fit in the destination format, that
operation is said to have overflowed.

A floating-point overflow occurs if a R PLUS S, R MINUS S, R
TIMES S, or 2 MINUS S operation with finite input operand(s)
produces a result which, after rounding, has a magnitude greater
than or equal to 2127, The final result in such cases will be DEC
reserved operand 800000001¢; the overflow, inexact, and NAN
flags will be HIGH.

Integer overflow occurs when the “floating-point-to-integer” con-
version operation attempts to convert to integer a floating-point
number WhICh after rounding, is greater than 2°' —1 or less
than —23". The final result in such cases will be DEC reserved
operand 80000000+¢; the invalid operation flag will be HIGH.
Note that the overflow and inexact flags remain LOW for integer
overflow.

Operations Producing Underflows — If an operation produces
a floating-point result which, after rounding, has a magnitude
too small to be expressed as a normalized floating-point num-
ber, but greater than zero, that operation is said to have under-
flowed. Underflow occurs when an R PLUS S, R MINUS S, or R
TIMES S operation produces a result which, after rounding,
has magnitude:

0 < magnitude < 2-128,

The final result in such cases will be 0 (000000001g). The under-
flow, inexact, and zero flags will be HIGH.

Underflow does not occur if the destination format s integer. If the
infinitely precise result of a floating-point-to-integer conversion
has a magnitude greater than 0 and less than 1, but the rounded
result is 0, the underflow flag remains LOW.

Invalid Operations — If an input operand is invalid for the opera-
tion to be performed, that operation is considered invalid. In DEC
mode, there are only two invalid operations:

— Performing a floating-point-to-integer conversion on a value
too large to be expressed as a 32-bit integer. In this case the
final result will be DEC reserved operand 800000004, and the
invalid operation and NAN flags will be HIGH.

— Performing a floating-point-to-integer conversion on a DEC
reserved operand. In this case the final result will be the input
DEC reserved operand, and the invalid operation and NAN
flags will be HIGH.

Sign Bit

For all operations producing a DEC floating-point result, the sign
bit of the final result is unambiguous, i.e., there is only one sign bit
value that yields a numerically correct result.

Rounding

There are four rounding modes for DEC operation: round to
nearest, round toward + =, round toward —x, and round toward 0.
The round toward +=, round toward —x, and round toward 0
modes are performed in a manner identical to that for IEEE
operation; refer to the Rounding section under Operation in
IEEE Mode on page 12. The round to nearest mode is similar to
that for IEEE operation, but differs in one respect: for the case in
which the infinitely-precise result of an operation is exactly
halfway between two representable values, DEC round to
nearest mode rounds to the value with the larger magnitude,
rather than to the value whose LSB is 0.

Flag Operation

The Am29325 generates six status flags to monitor floating-point
processor operation. The following is a summary of flag operation
in DEC mode:

Invalid Operation Flag — The invalid operation flagis HIGH if the
FP-TO-INT operation is performed on a floating-point number too
large to be converted to an integer, or on a DEC reserved
operand. If the FP-TO-INT operation is performed on a floating-
point number too large to be converted to integer, the final result is
the DEC reserved operand 80000000+g. If the FP-TO-INT oper-
ation is performed on a DEC reserved operand, that operand
becomes the final result.

Overflow Flag — The overflow flag is HIGH if an R PLUS S, R
MINUS S, RTIMES S, or 2 MINUS S operation produces a result
which, after rounding, has a magnitude greater than or equal to
2127 The final result will be the DEC reserved operand
8000000016.

28

Am29325

Underflow Flag — The underflow flag is HIGH ifan RPLUS S, R
MINUS S, or R TIMES S operation produces a result which, after
rounding, has a magnitude in the range:

0 < magnitude < 2-128,
The final result will be 0 (000000001g) in such cases.

Inexact Flag — The inexact flag is HIGH if the final result of an R
PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or
FP-TO-INT operation is not equal to the infinitely precise result.
Note that if the underflow or overflow flag is HIGH, the inexact flag
will also be HIGH.

Zero Flag — The zero flag is HIGH if the final result of an
operation is zero. For operations producing an integer or a DEC
floating-point number, the flag accompanies the output 0
(0000000016). (It should be noted that any operation producing a
floating-point 0 in DEC mode will output 000000001g.)

NAN Flag — The NAN flagis HIGH ifan RPLUS S, RMINUS S, R
TIMES S, 2 MINUS S, or FP-TO-INT operation produces a DEC
reserved operand as the final result.

IEEE-TO-DEC AND DEC-TO-IEEE OPERATIONS

The IEEE-TO-DEC and DEC-TO-IEEE operations are used to
convert floating-point numbers between the IEEE and DEC for-
mats. Both operations work in a manner independent of the
|EEE/DEC mode control.

IEEE-TO-DEC Conversion

This operation converts an IEEE floating-point number to DEC
floating-point format. Most conversions are exact; in no case

does the round mode have any effect on the final result. There
are, however, a few exceptional cases:

a.) If the IEEE floating-point input has a magnitude greater than
or equal to 2127, it is too large to be represented by a DEC
floating-point number. The final result will be the DEC re-
served operand 800000004¢; the overflow, inexact, and NAN
flags will be HIGH.

b.) If the IEEE floating-pointinput is a NAN, the final result will be
the DEC reserved operand 800000004¢; the invalid and NAN
flags will be HIGH.

c.) If the IEEE floating-point input is a denormalized number,
the final result will be a DEC 0 (00000000+g); the zero flag
will be HIGH.

d.) Ifthe IEEE floating-point input is +0 or —0, the final result will
be a DEC 0 (0000000046); the zero flag will be HIGH.

DEC-TO-IEEE Conversion

This operation converts a DEC floating-point number to IEEE
floating-point format. Most conversions are exact; in no case
does the round mode have any effect on the final result. There
are, however, a few exceptional cases:

a.) If the DEC floating-point input is not 0, but has a magnitude
less than 2126, it is too small to be expressed as a nor-
malized IEEE floating-point number. The final result will be an
|IEEE floating-point 0 having the same sign as the input
(0000000016 for positive inputs and 800000001¢ for negative
inputs); the underflow, inexact, and zero flags will be HIGH.

b.) Ifthe DEC floating-pointinputis a DEC reserved operand, tho
final result will be quiet NAN 7FA000001g; the invalid opera-
tion and NAN flags will be HIGH.

c.) Ifthe DEC floating-pointinputis 0, the final result will be IEEE
floating-point +0 (000000001¢); the zero flag will be HIGH.

29

Am29325

APPENDIX A:

Differences Between the IEEE Proposed Standard for Binary
Floating-Point Arithmetic and the Am29325’s IEEE Mode

When operated in IEEE mode, the Am29325 High-speed
Floating-Point Processor complies with the single-precision por-
tion of the IEEE Proposed Standard for Binary Floating-Point
Arithmetic (P754, draft 10.0) in most respects. There are, how-
ever, several differences:

Denormalized Numbers

The Am29325 does not handle denormalized numbers. A de-
normalized input will be converted to a zero of the same sign
before the specified operation takes place. The operation pro-
ceeds in exactly the same manner as if the input were +0 or -0,
producing the same numerical result and flags.

If the result of an operation, after rounding, has a magni-
tude smaller than 27126, the result is replaced by a zero of the
same sign.

Representation of Overflows

In some rounding modes, the proposed |EEE standard requires
that overflows be represented as the format’s most positive or
most negative finite number. In particular:

— Whenrounding toward 0, all overflows should produce a result
of the largest representable finite number with the sign of the
intermediate result.

When rounding toward —=, all positive overflows should pro-
duce a result of the largest representable positive finite
number.

When rounding toward +x=, all negative overflows should
produce a result of the largest representable negative finite
number.

The Am29325, however, always represents positive overflows as
+x and negative overflows as —=, regardless of rounding mode.

Projective Mode

The proposed IEEE standard provides only for an affine mode to
control the handling of infinities. The Am29325 provides both
affine and projective modes; the desired mode can be selected by
the user.

Traps

The proposed IEEE standard stipulates that the user be able to
request a trap on any exception. The Am2935 does not support
trapped operation, and behaves as if traps are disabled.

Resetting of Flags

The proposed IEEE standard states that once an exception flag
has been set, itis reset only at the user's request. The Am29325’s
flags, however, reflect the status of the most recent operation.

Generation of the Underflow Flag

The proposed IEEE standard suggests several possible criteria
for determining if underflow occurs. These criteria generate
underflow flags that differ in subtle ways. The underflow criteria
chosen for the Am29325 stipulate that underflow occurs if:

a) the rounded result of an operation has a magnitude in the
‘range:

0 < magnitude < 2126,
and
b) the final result is not equal to the infinitely precise result.

Since the Am29325 never produces a denormalized number as
the final result of a calculation, condition (b) is true whenever (a) is
true. Note, then, that the operation of the Am29325’s underflow
flag is somewhat different than that of an “|IEEE standard” system
using the same underflow criteria. For example, if an operation
should produce an infinitely precise result that is exactly 2~ 127,
an “IEEE standard” system would produce that value as the final
result, expressed as a denormalized number. Since that system’s
final result is exact, the underflow flag would remain LOW. The
Am29325, on the other hand, would output zero; since its final
result is not exact, the underflow flag would be HIGH.

30

Am29325

APPENDIX B:

Differences Between DEC VAX and Am29325 DEC Mode

Operation in DEC mode complies with most aspects of single-
precision floating-point operation outlined in the Digital Equip-
ment Corporation’s VAX Architecture Manual. However, there
are some differences that should be noted:

Format

The Am29325's DEC format is:

sign — bit 31
exponent — bits 30—-23
mantissa - 22-0
The VAX format is:
sign — bit 15
exponent — 14-7
mantissa - bits 60, bits 31-16.

In both cases, fields are listed from MSB to LSB, with bit 31 the
MSB of the 32-bit word. The Am29325's DEC format can be
converted to VAX format by swapping the 16 LSBs and 16 MSBs
of the 32-bit word.

Flags vs. Exceptions

In DEC VAX operation, certain unusual conditions arising during
system operation may incur an exception, or an indication to the
operating system that special handling is needed.

The VAX recognizes a number of arithmetic exceptions. The
following exceptions are relevant to the operations supported by
the Am29325:

Integer overflow trap — indicates that the last operation
produced an integer overflow. The LSBs of the correct result
are stored in the destination operand.

Floating-point overflow trap/fault — indicates that the last
operation produced, after normalization and rounding, a
floating-point number with magnitude greater than or equal
to 2127, A trap replaces the destination operand with the
DEC reserved operand 800000001¢; a fault leaves the de-
stination operand unchanged.

Floating-point underflow trap/fault — indicates that the last
operation produced, after normalization and rounding, a
floating-point number with magnitude less than 2—128, A
trap replaces the destination operand with zero; a fault
leaves the destination operand unchanged.

Reserved operand fault — indicates that the last operation
had a reserved operand as an input. The destination
operand is unchanged.

The Am29325 does not directly support DEC traps and faults.
Rather, it indicates unusual conditions by setting one or more of
the six status flags HIGH. Table d2 describes flag operation in
DEC mode.

Integer Overflow

In cases of integer overflow, the VAX signals the integer overflow
trap and stores the LSBs of the correct result. The Am29325 sets
the invalid operation flag and outputs the DEC reserved operand
800000004¢,

Floating-Point Underflow/Overflow Operation

The VAX Architecture Manual specifies the action to be taken on
the destination operand when floating-point underflow or over-
flow is encountered. The Am29325 has no immediate control
over this destination operand, as it resides somewhere off-chip,
either in a register or memory location. This isn't so much a
difference between the VAX specification and Am29325 opera-
tion as it is a difference in scope.

The Am29325 responds to fioating-point underflow by producing
a final result of 0 (00000000+g); the underflow, inexact, and zero
flags will be HIGH. It responds to floating-point overflow by pro-
ducing the DEC reserved operand 800000001¢ as the final result;
the overflow, inexact, and NAN flags will be HIGH.

Handling of DEC Reserved Operands

If an operation has a DEC reserved operand as an input, the
Am29325 will produce that operand as the final result. If an
operation has two input arguments and both are DEC reserved
operands, the operand on port R becomes the final result. For the
VAX, operations with a DEC reserved operand input or inputs do
not modify the destination operand. As mentioned above, control
of the destination operand is beyond the scope of the Am29325’s
operation.

Inexact Flag

The Am29325 provides an inexact flag to indicate that the final
result produced by an operation is not equal to the infinitely
precise result. The VAX does not provide this flag.

31

Am29325

APPENDIX C:

Performing Floating-Point Division on the Am29325

While the Am29325 does not have a floating-point division in-
struction, it can be used to evaluate reciprocals. The division:
C=AB

can then be performed by evaluating:

C = A«(1/B).
Only a modest amount of external hardware is needed to imple-
ment the reciprocal function.

The technique for calculating reciprocals is based on the
Newton-Raphson method for obtaining the roots of an equation.
The roots of equation:

F(x) =0
can be found by iteratively evaluating the equation
X1 = X — F(i)/F'(xi).

The process begins by making a guess as to the value of xj, and
using this guess or “seed” value to perform the first iteration.
lterations are continued until the root is evaluated to the desired
accuracy. The number of iterations needed to achieve a given
accuracy depends both on the accuracy of the seed value and the
nature of F(x).

Now consider the equation
F(x) = (1/x) — B.

The root of F(x) is 1/B. The reciprocal of B, then, can be found by
using the Newton-Raphson method to find the root of F(x). The
iterative equation for finding the root is

X — F(xi)/F'(xi)

Xi = (1xi — B)/=(x)~2

Xj (2—B=*x;).

It can be shown that, in order for this iterative equation to con-
verge, the seed value xg must fall in the range

0<xp<2B ifB>0

2B<xg<0 ifB<O.

For example, if the reciprocal of 3 is to be evaluated, the seed
value must be between 0 and 2/3.

The error of x; reduces quadratically; that is, if the error of xj is e,
the error is reduced to order e2 by the next iteration. The number
of bits of accuracy in the result, then, roughly doubles after every
iteration. While this is only an approximation of the actual error
produced, itis a handy rule-of-thumb for determining the number
of iterations needed to produce a result of a certain accuracy,
given the accuracy of the seed.

Xi+1

I

or

Example 1:
Find the reciprocal of 7.25.
Solution:
The seed value must fall in the range
0 <xg < 2/7.25
0 < xp < .275862.
Suppose Xg is chosen to be .1

Iteration 1: x4 = xg (2—B*xg)
1(2—-(7.25) (.1))
1275

or

I

lteration 2: xp = xq (2—B*x1)
.1275(2—(7.25) (.1275))
1371421875
X2(2—B*x2)
1371421875+

(2—(7.25) (.1371421875))
= .1379265230

The actual value of 1/7.25, to ten decimal places, is
.1379310345.

The error after each iteration is:

lteration 3: x3

Iteration X Error to Ten Places
0 A —0.0379310345
1 1275 —0.0104310345
2 .1371421875 —0.0007888470
3 .1379265230 —0.0000045115
Example 2:
Find the reciprocal of —.3.
Solution:
The seed value must fall in the range
2/(-3)<x <0 :
or —6.66 <xg<0.
Suppose Xxg is chosen to be —2.0.
lteration 1: x4 = xo(2—B*xg)
= —2.0(2—(~.3) (-2.0))
=-28
lteration 2: xp = X1 (2—B=*xq)
= —2.8(2—(—.3) (—2.8))
= —3.248
lteration 3: x3 = xo(2—B*x)
= —3.248(2—(—.3) (—3.248))
= —3.3311488
Iteration 4: x4 = x3(2—B*x3)
= —3.3311488+
(2—(—.3) (—3.3311488))
= —3.333331902

The actual value of 1/(-.3), to ten decimal places, is
—3.333333333.

The error after each iteration is:

i Xj Error to Ten Places
0 -2.0 1.333333333
1 -28 0.533333333
2 -3.248 0.085333333
3 —3.3311488 0.002184533
4 —3.333331902 0.000001431

In order to implement the Newton-Raphson method on the
Am29325, some means is needed to generate the seed used
in the first iteration. One approach is to place a hardware
seed look-up table between the R bus and the Am29325; see
Table c1. A more detailed diagram of the look-up table appears
in Figure c2.

32

Am29325

TABLE c1. CONTENTS OF THE SEED EXPONENT PROM

DEC IEEE
Address (16) Data (16) Address (16) Data (16)

000 (Note 1) 100 FD
001 (Note 1) 101 FC
002 FF 102 FB
003 FE 103 FA
004 FD 104 F9
005 FC 105 F8
006 FB 106 F7
007 FA 107 F6
008 F9 108 F5.
009 F8 109 F4
00A F7 10A F3
00B F6 10B F2
00C F5 10C F1
00D F4 10D Fo
00E F3 10E EF
00F F2 10F EE
010 F1 110 ED
o1 Fo 111 EC
012 EF 12 EB
OEE 13 1EE OF
OEF 12 1EF OE
OF0 " 1FO oD
OF1 10 1F1 oc
0F2 OF 1F2 0B
OF3 OE 1F3 0A
OF4 oD 1F4 09
OF5 oc 1F5 08
OF6 0B 1F6 07
OF7 0A 1F7 06
OF8 09 1F8 05
OF9 08 1F9 04
OFA 07 1FA 03
OFB 06 1FB 02
OFC 05 1FC 01
OFD 04 1FD (Note 2)
OFE 03 1FE (Note 2)
OFF 02 1FF (Note 2)

Notes: 1. The reciprocals of these numbers are too large to be representedin DEC

format.

2. The reciprocals of these numbers are too small to be represented in

normalized IEEE format.

Figure c1. Adding a Hardware Look-Up Table to the Am29325

R BUS

S BUS

F BUS

HARDWARE
LOOK-UP
TABLE

R
Am29325
F

05621A-20

33

Am29325

The look-up table has two sections: a biased exponent look-up
PROM and a fraction look-up PROM. The seed biased exponent
look-up table is stored in a 512-by-8-bit PROM. This table con-
sists of two sections — the DEC format section, which occupies
addresses 000-0FF g, and the IEEE section, which occupies
addresses 100—1FFg. The appropriate table will be selected
automatically if address line Ag is wired to the Am29325's IEEE/
DEC pin. The equations implemented by these table sections are:

DEC table: seed biased exponent
= 25740 —input biased exponent
IEEE table: seed biased exponent
= 253410 —input biased exponent
Table c1 lists the contents of this PROM.
The seed fraction look-up table is stored in one or more PROMSs,
the number of PROMs depending on the desired accuracy of the

seed value. The hardware depicted in Figure c2 uses two 4K-
by-8-bit PROMs to implement a fraction look-up table whose

inputs are the 12 MSBs of the input argument’s fraction. These
PROMSs output the 16 MSBs of the seed’s fraction field — the
remaining 7 bits of fraction are set to 0. The equation im-
plemented in this table is:

seed fraction = —————2— -1,
1 + input fraction

where the value of the input fraction falls in the range
0 = input fraction < 1.

Note that the seed fraction must also be constrained to fall in
the range

0 = seed fraction < 1.

Therefore, if the input fraction is 0, the corresponding seed frac-
tion stored in the table must be .1111...1115, not 1.02. The same
seed fraction look-up table may be used for both IEEE and DEC
formats. Table c2 contains a partial listing for the seed fraction
look-up table shown in Figure c2.

TABLE c2. CONTENTS OF THE SEED FRACTION PROMs

PROM Outputs (16)
Address (16) | Value of Input Fraction (10) | Value of Seed Fraction (10) R2s—Ry5| Rys—R7
000 0.0 0.9999999999 (see text) FF FF
001 0.0002441406 0.9995118370 FF EO
002 0.0004882812 0.9990239150 FF co
003 0.0007324219 0.9985362280 FF A0
004 0.0009765625 0.9980487790 FF 80
005 0.0012207031 0.9975615710 FF 60
006 0.0014648438 0.9970745970 FF 40
007 0.0017089844 0.9965878630 FF 20
008 0.0019531250 0.9961013650 FF 00
009 0.0021972656 0.9956151030 FE E1
00A 0.0024414063 0.9951290800 FE co
00B 0.0026855469 0.9946432920 FE Al
00C 0.0029296875 0.9941577400 FE 81
FF6 0.9975585938 0.0012221950 00 50
FF7 0.9978027344 0.0010998410 00 48
FF8 0.9980486750 0.0009775170 00 40
FF9 0.9982910156 0.0008552230 00 38
FFA 0.9985351563 0.0007329590 00 30
FFB 0.9987792969 0.0006107240 00 28
FFC 0.9990234375 0.0004885200 00 20
FFD 0.9992675781 0.0003663450 00 18
FFE 0.9995117188 0.0002442000 00 10
FFF 0.9997558594 0.0001220850 00 08
Figure c2. The Hardware Lookup-Up Table
0
RBUS .
.
1 18 12
SIGN BIASED 12 MSBs
(R3) EXPONENT OF FRACTION
(R3p—Ra3) (Ry2-Ryq)
IEEE/DEC ——————‘ ———‘
Ag A7-Ag A11-Ap A=Ay

Am27S15 512 x 8
SEED EXPONENT PROM

D7-Do

(2) Am27!

D7-Do

343 4K x 8
SEED FRACTION PROMs
D7-Dg

1 8 8

SEED SIGN SEED EXPONENT
SEED FRACTION

05621A-21

34

Am29325

With the hardware look-up table in place, the reciprocal of value B

can be calculated with the following series of operations:

1.) Place B on both the R and S buses. The 2 : 1 multiplexer at
the output of the hardware look-up table should select the
output of the look-up table. (see Figure c3-a)

2.) Load the seed value xq into register R and load B into register
S. Select the R TIMES S operation. (see Figure c3-b)

3.) Load product B=xg into register F. Select the 2 MINUS S
operation, and select register F as the input to the ALU S port.
(see Figure c3-c)

4.) Load2-B+xgintoregister F. Selectthe R TIMES S operation
and select register F as the input to the ALU S port. (see
Figure ¢3-d)

5.) Load the value x; (x;=xg(2—B#xo)) into registers R and F.
Select the R TIMES S operation. (see Figure c3-e)

6.) Repeat steps 3 through 5 until the result has the accuracy
desired.

Figure c3-a. Data Flow for Step 1 of the Reciprocal Procedure

BUSS B ——— — — — — — — —— —— —— ——
BUSR B—— — —— —— —— —— |
i |
SEED |
LOOK-UP
TABLE I
1B |
0 2:1 J 1 |
MUX
fukad
| |
L_:I Ro—Rg1 | So—S34
I 1 2:1 | 0 |
| MUX REGISTER S |
|
) 1 l
REGISTER R 2:1
| MUX |
| PORT PORT |
R s
I ALU |
, PORT F |
| REGISTER F l
| Am29325 |
L —— S ——
Fo—F31
BUSF

05621B-22

35

Am29325

BUS S

BUS R

BUSF

Figure c3-b. Data Flow for Step 2 of the Reciprocal Procedure

SEED
LOOK-UP
TABLE

—

Ro—Rg, So—Sa1
l 2:1 0 REGISTER S |
| MUX [B] |
| ==t
| —
T
0 2:1 1 |
REGISTER R :
MUX
| [%o] l
|
I |
| PORT PORT
R S
| ALU
PORT F
l B* X,
REGISTER F
Am29325
Fo—Fa1

05621B-23

36

Am29325

BUS S

BUSR

BUSF

Figure c3-c. Data Flow for Step 3 of the Reciprocal Procedure

SEED
LOOK-UP
TABLE

Ro—Rgy So=S31
0
1 2:1 REGISTER S
MUX [B]
0 2:1 1|
REGISTER R
X l“i —

-

W:

R S

ALU

PORT F

1z-|at-x,J

REGISTER F
[B* Xo]

Am29325

| PORT PORT

-]

05621A-24

37

Am29325

BUS S

BUSR

BUSF

Figure c3-d. Data Flow for Step 4 of the Reciprocal Procedure

SEED
LOOK-UP
TABLE
0 1
2:1
MUX

Rp—Rg4 So—S34
| I— K 2:1 0 REGISTER S ‘
| | L MUX [B] |
-
Bl iE r_I |
| |l]
0 2:1 1
REGISTER R
	X1 (X1 = Xo (2-B+Xo)) 'i"”_"____J	
	l L '	
l PORT PORT		
R s		
I ALU		
l	PORT F i	
T o = %0 -8		
REGISTER F I		
[2-B * Xg]		
'		
e 1		
Am29325 I		
— ———— —————— — ——— ————		
Fo-Fa1

05621B-25

38

Am29325

BUS S

BUSR

BUSF

Figure c3-e. Data Flow for Step 5 of the Reciprocal Procedure

SEED
LOOK-uP
TABLE
° 2:1 1
MUX

[X1 (X3 = Xo (2—B*Xo))]

Ro—Rgy So-Saq
| ! 2:1 ° REGISTER S l
l MUX [B] |
| — T — |
I REGISTER R 0 | 2:1 1 I
l Xs (%1 = Xo (2-BeXol)] : _Imux |
[]
| | 1 |
l PORT PORT I
R S
, ALU I
I PORT F l
I B* Xy I
| REGISTER F I

Am29325
| S—

05621B-26

39

Am29325

A tabular description of the operations above is given in Table c3. port S. The look-up table produces the value
The following examples, performed in IEEE format, illustrate the .039527894¢ (3D21E8004g). The reciprocal is
process. evaluated using the procedure described above; reg-
. ister values for each step are given in Table c4. The
Example 1: : .

i X expected result, to the precision of the floating-point
Find the reciprocal of 25.3. word, is .039525691¢ (3D21E5B11g). In this case the
Solution: The IEEE floating-point representation for 25.3 is expected result is produced after the first iteration. All

41CA666616. The reciprocal process is begun by subsequent iterations produce the same result, and
feeding this value to both the seed look-up table and are therefore unnecessary.
TABLE c3. SEQUENCE OF EVENTS FOR EVALUATING RECIPROCALS
Clock
Cycle lo—1l2 I3 Ig ENR ENS ENF Register R Register S Register F
1 Y X 0 0 0 X - - -
2 R TIMES S 0 X 1 1 0 Xo B -
3 2 MINUS S 1 X 1 1 0 Xo B B+X, .
irst
4 R TIMES S 1 1 0 1 0 Xo B 2-B:X, itgf'aﬁon
5 R TIMES S 0 X 1 1 0 X4(= Xp(2-B+Xyp)) B Xq(= Xg(2—B*Xy))
6 2 MINUS S 1 X 1 1, 0 X, B B+X,
7 RTIMESS | 1 1 0 1 0 X, B 2-BeX, ﬁ:;‘:l';‘:]
8 R TIMES S 0 X 1 1 0 Xo(= X4(2-B+Xy)) B Xo(= X4(2—BsXy))
X = DON'T CARE
TABLE c4. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 1
Clock
Cycle R Input S Input Register R Register S Register F
1 3D21E800 41CA66661¢ - - -
(.03952789) (25.3)
2 - - 3D21E800+g 41CAB66615 -
(.03952789) (25.3)
3 - - 3D21E8004¢ 41CA666616 3F8001D31g
(.03952789) (25.3) (1.0000556)
4 - - 3D21E800+g 41CA66661 3F7FFC5A16
(.03952789) (25.3) (.99984419)
5 - - 3D21E5B14¢ 41CA666616 3D21E5B11¢)
(.03952569) (25.3) (.03952569) —=-Result of first
iteration
6 - - 3D21E5B14¢ 41CA66661¢ 3F7FFFFFyg
(.03952569) (25.3) (.99999994)
7 - - 3D21E5B14g 41CA66661¢ 3F8000001¢
(.03952569) (25.3) (1.0)
8 - - 3D21E5B14g 41CA66661¢ 3D21E5B14g
(.03952569) (25.3) (.03952569) - 5‘;2‘:2?‘ second

40

Am29325

Example 2:

Find the reciprocal of —.4725.

evaluated using the procedure described above; reg-
ister values for each step are given in Table c5. The
expected result, to the precision of the floating-point

Solution: The IEEE floating-point' representation fpr —.4725is word, is —2.1164024 (C00773221g). In this case the
BEF1EB8546. The reciprocal process is begun by expected result is produced after the first iteration. All
feeding this value to both the seed look-up table and subsequent iterations produce the same result, and
port S. The look-up table produces the value are therefore unnecessary.

—2.116210941¢ (C007700046). The reciprocal is
TABLE c5. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 2
Clock
Cycle R Input S Input Register R Register S Register F
1 C00770004¢ BEF1EB85¢ - - -
(—2.1162109) (—0.4725)

2 - - C00770004¢ BEF1EB854¢ -
(—2.1162109) (—0.4725)

3 - - C00770004g BEF1EB85¢ 3F7FFA144¢
(—2.1162109) (—0.4725) (0.99990963)

4 - - C00770004¢ BEF1EB854¢ 3F8002F64g
(—2.1162109) (—0.4725) (1.0000904)

5 - - C00773224¢ BEF1EB85,¢ C00773224¢)
(~2.116402) (~0.4725) (~2.116402) *5‘:}2‘1‘2:’ first

6 - - C00773224¢ BEF1EB85;¢ 3F8000001¢
(—2.116402) (—0.4725) (1.0)

7 - - C00773224¢ BEF1EBB854g 3F8000001¢
(—2.116402) (—0.4725) (1.0)

8 - - C0077322¢¢ BEF1EB856 C00773224¢
(-2.116402) (~0.4725) (~2.116402) ~- E‘;z‘t‘l'c‘,:‘ second

41

Am29325

APPENDIX D:
Summary of Flag Operation

Tables d1, d2, and d3 summarize flag operation for the IEEE
mode, the DEC mode, and for the IEEE-TO-DEC and DEC-TO-

|EEE operations.

Operation

TABLE d1. FLAG SUMMARY FOR IEEE MODE

Condition(s)

INV OVF UNF

ZER

NAN

Any operation
listed in the
|EEE Invalid
Operations Table

H L L

RPLUS S

R MINUS S
R TIMES S
2 MINUS S

Input operands are finite,
|rounded result| = 2128

RPLUS S
R MINUS S
R TIMES S

0 < |rounded result| < 2-126

RPLUS S

R MINUS S
RTIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT

Final result does not equal
infinitely precise result

RPLUS S

R MINUS S
R TIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT

Final result is zero

RPLUS S

R MINUS S
R TIMES S
2 MINUS S
FP-TO-INT

Final result is a NAN

Notes: INV
OVF
UNF
INE
ZER
NAN
L
H

*

L]

LI | | R

Invalid operation flag
Overflow flag
Underflow fiag
Inexact flag

Zero flag

NAN flag

Low

HIGH

State of flag

depends on the
input operands
and the operation
performed

42

Am29325

TABLE d2. FLAG SUMMARY FOR DEC MODE

Operation Condition(s) INV OVF UNF INE ZER NAN
FP-TO-INT Rounded result > 2311 H L L L L H
or rounded result < —231
FP-TO-INT Input is a DEC reserved H L L L L H
operand
RPLUS S
R MINUS S | Rounded result] = 2127 L H L H L H
R TIMES S
2 MINUS S
RPLUS S
R MINUS S 0 < |rounded result| < 2-128 L L H H H L
R TIMES S
RPLUS S Final result does not equal L * * H * *
R MINUS S infinitely precise result
RTIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT
RPLUS S Final result is zero L L * * H L
R MINUS S
R TIMES S
2 MINUS S
INT-TO-FP
FP-TO-INT
RPLUS S Final result is a DEC * * L L L H
R MINUS S reserved operand
RTIMES S
2 MINUS S
FP-TO-INT
Notes: INV = Invalid operation flag H = HIGH
OVF = Overflow flag * = State of flag
UNF = Underflow flag depends on the
INE = Inexact flag input operands
ZER = Zero flag and the operation
NAN = NAN flag performed
L = LOW
TABLE d3. FLAG SUMMARY FOR IEEE-TO-DEC AND DEC-TO-IEEE CONVERSIONS
Operation Condition(s) INV OVF UNF INE ZER NAN
IEEE-TO-DEC Input is a NAN H L L L L H
|IEEE-TO-DEC |Input| = 2127 L H L H L H
DEC-TO-IEEE Input is a DEC reserved operand H L L L L H
DEC-TO-IEEE 0 < |rounded result| < 2-126 L L H H H L
DEC-TO-IEEE Final result is zero L L * * H L
IEEE-TO-DEC
Notes: INV ~ = Invalid operation flag H = HIGH
OVF = Overflow flag * = State of flag
UNF = Underflow flag depends on the
INE = Inexact flag input operands
ZER = Zeroflag and the operation
NAN = NAN flag performed
L . = LOW

43

ABSOLUTE MAXIMUM RATINGS
Storage Temperature —65 to +150°C

Am29325

OPERATING RANGES

Commercial (C) Devices

Temperature Under Bias — Tg -55to +125°C Temperature (TA) -« .o vvvererneenainaann 0to +70°C

Supply Voltage to Ground Potential Supply Voltageoues +4.75 to +5.25V
CORMINUOUS . .ovvis e —05t0 +7.0V Air VeloGity 200 linear feet per minute

DC Voltage Applied to Outputs

forHigh State —-0.5V to +Vgc Max Opgratigg ranges define those limits over which the functionality of the

DC Input Voltagecovenvuenn. —0.5to +5.5V device is guaranteed.

DC Output Current, into Outputs 30mA

DC Input Currentcoovenn. —30 to +5.0mA OPERATING RESTRICTIONS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent device failure. Functionality at or above these
limits is not implied. Exposure to absolute maximum ratings for ex-
tended periods may affect device reliability.

The Am29325 is temporarily restricted to the feedthrough
mode only (FTg, FT4 = HIGH). Parts designated and marked
Am29325GC/15 are not tested or guaranteed in the clocked
(FTo and FT4 LOW separately or together) mode.

Contact your local AMD sales representative for further

information.

DC CHARACTERISTICS OVER OPERATING RANGE unless otherwise specified

Am29325/15
Test Conditions Typ
Parameter Description (Note 1) Min (Note 2) Max Units
Vcc = Min
VoH Output HIGH Voltage ViN = VjLor Viy 2.4 2.7 Volts
loq = —1.0mA
Vce = Min
VoL Output LOW Voltage VIN = VL or Vg 0.3 0.5 Volts
loL = 4.0mA
Guaranteed Input Logical y
ViH Input HIGH Level HIGH Voltage for All Inputs 2.0 Volts
Guaranteed Input Logical
ViL Input LOW Level LOW Voltage for All Inputs 0.8 Volts
Vce = Min _
Vi Input Clamp Voltage N = —18mA 1.5 Volts
Vce = Max -1.0
i Input LOW Current Vin = 0.5V : 05 mA
CLK, S16/32, OE 100
hH Input HIGH Current OTHERS 50 pA
] Input HIGH Current 1 mA
Vo = 2.4V 50
lozH Fo-F31 Off State (High _
lozL Impedance) Output Current Ve = Max Vo = 0.5V —50 A
Fo-F31 Outputs -15 —-50
\ Output Short Circuit Current Vce = Max +0.5V mA
SC (Note 3) Vo = 0.5V Flag Outputs -15 -50
COM'L, Tp = +25°C 1743
Ta = 0to +70°C 2114
COM'L Only
lcc Power Supply Current Vce = Max Ta = +70°C 1806 mA
(Notes 4, 5)
Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under Operating Ranges for the applicable device type.
2. Typical values are for Voc = +25°C ambient and maximum loading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Measured with OE LOW, and with all output bits (Fo-F31 and flag outputs) LOW.
5. Worst-case Icc applies to cold start at lowest operating temperature.

44

7

Am29325/15

SWITCHING CHARACTERISTICS
OVER OPERATING RANGE

COM'L (Note 2)

Ta = 0to +70°C
Vee = +5V +5%

Parameters Description Cor;l;iei?itons Min Max Units
1 tasc Clocked Add, Subtract Time (R PLUS S, ns
R MINUS S, 2 MINUS S)
2 tmc Clocked Multiply Time (R TIMES S) ns
3 tco Clocked Conversion Time (INT-TO-FP, ns
FP-TO-INT, |IEEE-TO-DEC, DEC-TO-IEEE)
Unclocked Add, Subtract Time (R, Sto F,
4 tasuc Flags) for R PLUS S, R MINUS S, 150 ns
and 2 MINUS S Instructions
5 WUC | rRTMES S naeten | FTY = o W |
Unclocked Conversion Time (R, S to F,
6 tcuc Flags) for INT-TO-FP, FP-TO-INT, IEEE- 150 ns
TO-DEC and DEC-TO-IEEE Instructions
7 tpwH Clock Pulse Width HIGH ns
8 tpwL Clock Pulse Width LOW ns
9 tPDOF1 Clock to Fg-F34 and Flag Outputs 23 ; II:|(I)GV;I-| ns
10 tpporF2 FTy = LOW ns
11 tpzL OE Enable Time Z to LOW 35 ns
12 tpzn Z to HIGH 35 ns
13 tpLz OE Disable Time LOW to Z 35 ns
14 tpyz HIGH to Z : 35 ns
15 tpzi16 | Clock] to Fo-Fys Enable, | Z10LOW | S16/32 = HIGH "~ ns
16 tpzHis 16-Bit /0 Mode Z to HIGH ONEBUS = LOW ns
17 tpizie | Clock| to Fo-Fys Disable, | LOW10.Z ns
18 tprzis 16-Bit 1/0 Mode S THIGH 0 Z ns
19 tpzi1e Clock | to F1g-Fg1 Enable, " | Z1oLOW S16/32 = HIGH ns
20 tpzHis 16-Bit I/O Mode S Z to HIGH ONEBUS = LOW ns
21 tpiz16 | Clock] to Fqg-Fay Disable, |LOWtoZ ns
22 tpHzis 16-Bit I/O Mode HIGH to Z s
23 tsce Register Clock Enable Setup Time g? : tgw ns
24 thcE Register Clock Enable Hold Time g‘: : tgw ns
25 tsp1 Ro-R3a1, So-S31 Setup Time (Note 1) FTo = LOW ns
26 tHD1 Ro-R31, So-S31 Hold Time (Note 1) ns
27 tsp2 Ro-R31, So-S31 Setup Time (Note 1) FTo = HIGH ns
28 thpe Ro-Ra1, So-Sa1 Hold Time (Note 1) FTy = LOW ns
29 tsio2 lo-l2 Instruction Select Setup Time FT for Destination ns
30 tHio2 lo—l2 Instruction Select Hold Time Register = LOW ns
31 tppio2 lo-l2 Instruction Select to Fg-F34, Flags FT4 = HIGH 145 ns
32 tgi3 I3 Port S Input Select Setup Time FTy = LOW ns
33 tHiz I3 Port S Input Select Hold Time ns
34 tgia 14 Register R Input Select Setup Time (Note 1) FTo = LOW ns
35 tHia 14 Register R Input Select Hold Time (Note 1) ns
36 tspm Round Mode Select Setup Time FT for Destination ns
37 tHRM Round Mode Select Hold Time Register = LOW ns
38 tpRF Round Mode Select to Fo-F34, Flags FT4 = HIGH 40 ns

Notes: 1. See timing diagram for desired mode of operation to determine clock edge to which these setup and hold times apply.
2. At air velocity of 200 linear feet per minute.

45

Am29325

CLOCKED OPERATION: FTg = LOW

FTy = LOW
| O]
@
I ©
CLK @
Fote-
i 1
o ' (RN
2 M KRR
~ ®
LY vauo X
So=Sa1
®
®;!<
'3
) X
@
RND—RND, %
05621A-31
CLOCKED OPERATION: FTy = HIGH
FTy = LOW
CLK ®
® —I~-— ® vi
. """""""v"‘ ’/.v"".'.'.'.v""’v"""."'."V."V"’V.
ww D (R | R
®
Ve X vauo X
@ @
wh X X
@ ®
Ip-1,
- D)§
@ @
-= X X
)l(— =
RNDy— RND,
X 05621A-32

46

Am29325

S

CLOCKED OPERATION: FTy = LOW
FTy = HIGH

RN

R

(O]

\/ .V V’V.V.V’V’V’V‘V.V’V’V.V" \AYAYAY ";‘

(XX
RIS

| @

) /juo

7

D

- @ .‘
’V.V‘V’V’V.V.V.V’V’V.V’V’V.v‘V.V.V’V’V.V.V‘V \/
RRRRRRRRRRN | XS

lo=1p

X

I‘@»w @9(

RNDg— RND,

><__

X
X
X

05621A-33

FLOW-THROUGH OPERATION (FTp = HIGH, FT{ = HIGH)

l ®

m]
Rg-Rgy,
Sp—S31

| @

| @

S
g R R R KRR RN <

05621A-27

32-BIT, SINGLE-INPUT-BUS MODE

CLK

®—|-%
INPUT DATA
BUS S DATA

@

@

m——4l

R DATA

05621A-28

47

Am29325

16-BIT, TWO-INPUT-BUS MODE

CLK —I

'.V.V.V.V.V.V‘V’V’V V’
XEREREN

R INPUT BUS,
S INPUT BUS

_.|

L V."V."V""."'.'.'."""'. HOOXXXXXXX
wore 1) SRS (e delooo¥
| @ @
| /_
Fo-Fis >< VALID L {
| ®
| @ @
Fre=Far Hz VALID X

Note 1. I4 has special setup and hold time requirements in this mode. All other control signals have timing requirements as shown in the diagram

“Clocked operation, FTg = LOW, FT{ = LOW.”

05621B-29

SWITCHING TEST CIRCUIT

A. THREE-STATE OUTPUTS

Vee

!

S2

Ry = 8200

S
Vout o—0""

|

AA
o
=

S3

ull—-o\o—

TC001100
50-Vee - VoL

Ry =
loL + VoL
K

Notes: 1. C_ = 50pF includes scope probe, wiring and stray capacitances without device in test fixture.
2. S4, Sp, S3 are closed during function tests and all AC tests except output enable tests.

3. S¢ and Sg are closed while Sy is open for tpzp test.
S1 and Sy are closed while Sz is open for tpz_ test.
4. C = 5.0pF for output disable tests.

B. NORMAL OUTPUTS

Vee
R3 = 9100
Sq
Vour 00—
Ry = 6K :[CL
TC001081
_ 24V
R2 = lon
A, - 5.0 - Vge - Vo
loL + VoL
R2

SET-UP, HOLD, AND RELEASE TIMES PROPAGATION DELAY

av
SAME PHASE __ 15V
INPUT TRANSITION :
3v ov
5 A WA e
l(_ ov OH
ts > 1.5V
s | " ouTPUT
3v Vou
TIMING
INPUT 1.5V tpLH '—I <> —tpHL
av
ov
OPPOSITE PHASE ___ 15V
INPUT TRANSITION i
ov

WFR02970 WFR02980

Notes: 1. Diagram shown for HIGH data only. Output
transition may be opposite sense.
2. Cross hatched area is don’t care condition.

OUTPUT ENABLE/DISABLE TIMING

OE
| tpz —>| < tpzy >
Vou — -5V
Fo-Fg; (HIGH LEVEL)
HIGH IMPEDANCE
VoL + 5V
Fo-F31
(LOW LEVEL)
~—tp 7 —> < tpz) >

05621A-30

49

OUTPUT ENABLE/DISABLE TIMING

THREE-STATE NORMAL
DRIVEN INPUT OUTPUT OUTPUT
Vee
B.
IR 3 P
<
h 1
1 N N\
- 1A [
™~
> r—
n lou loL
3
L b3
A
ICR00530
ICR00520
CLK, 16/32, OE
R = 8KQ
ALL OTHER INPUTS
R = 16KQ

C; = 5.0pF, all inputs

Co = 5.0pF all outputs
Note: Actual current flow direction shown.

The Am29325 operates in an environment of fast signal rise
times, and substantial switching currents. While the part has
been designed to minimize both noise generation and sensitiv-
ity, care must be exercised in circuit board design and layout,
just as in any other high performance system. Since systems
vary widely in electrical configuration, AMD cannot be respon-
sible for specific layout suggestions, and an empirical evaluation
of the intended layout is recommended.

The TTL Vcc/Gnd pins tend to generate noise since the exter
nal switching currents are sourced by these pins. The ECL
Vcc/Gnd pins tend not to produce noise, but may be influenced
by fast spikes. For this reason, it is best to provide isolation and
independent decoupling between these pins.

1) A multilayer PC board with separate Vg, Gnd, and signal
planes is recommended. It is not necessary to provide distinct

planes for ECL and TTL pins, but physically separate tie-points
are suggested.

2) TTL Vcc may be isolated by means of an isolation cut in the
Vcc plane (see fig 18). TTL Gnd may be brought out via a
signal-plane path, where it may be decoupled with TTL V¢g,
and tied thru to the Gnd plane (see fig 19).

3) ECL Gnd pins may be tied directly to the ground plane (see
fig 20). ECL V¢ should be brought out via a signal-plane path,
to the opposite side of the device from the TTL V¢ lead. Here it
should be decoupled to Gnd, and tied thru to the V¢ plane (see
fig 21).

4) Decoupling should be by means of a 1.0 uf electrolytic, or
larger, and a high frequency ceramic 0.1 uf.

5) An under-package decoupling capacitor may be used to
provide low inductance decoupling local to the device. It is sug-
gested that this device be used to decouple the ECL Vg, and
that TTL V¢ be physically isolated as in 2) above.

50

Isolation
Cut

In

Vee
Plane

© @ N ® M oa W oN oo

Fig 18. TTL V¢ Connections

SUGGESTED PRINTED CIRCUIT BOARD LAYOUT

Bottom View

B C DEF G H J KL MNPR A B C

Fig 19. TTL GND Connections

Bottom View

D E F GH JKULMNP

o o o o o o o o o o 1 e o o o 0 e s 0 e s s e o
e« o o o 0 o o o o 2 e o o s o o s o s e e s s e
e o s e e o o o s e 3 N F Y E R T R R
« o e s o ofX X ..
.« o 5 e o o TTL ..
SR 6 . o o|GND ..
e o 7 e o . o
e o o 8 e o o o .
e o o 9 o o o o o
« o e 10 o o ..
e o o n e o o . o
P 12 « o . .o .
e o e e o 0 o s s o 13 e o ¢ o o o o
e ® o o o o o o o o 14 * o o o o o o
e o o o o o o o o o 15 e o o o o o o
e-tey Signal
¥ X Plane
u ﬂ Decoupling
Capacitors Tie Through
for TTL i to GND Plane
Decoupling GND Plane
Capacitors
for TTL
Fig 20. ECL GND Connections Fig 21. ECL V¢ Connections
Bottom View Bottom View
A B CDETFGH J KLMNPR
Vcc Plane |
e o o o o o o s 0 0 s s s o . =X
e e e o . =X
e o o o o .) Decoupling
« e o » . Capacitors
.. . for ECL
¢ * A BCDEF PR
e : 1 e e e ..
o o o . 2 . o o o . . o o
. o o . 3 e e o ° o o « o
. e . . a « o o o ..
e o o o o . s M b
e o o o . s ¢t ° e
. o o e o . 7 * ¢ ¢
8 “ o e . e
9 « o o o o
10 e o o o o
n e o o o o o
12 o o e X|e o
1 * ¢ o o o o X|eo o
14 e o o o o o e s s s e o 0 s .
15 e & o o o o o o & s e o s o .

51

Am29325

Note: 1. D4 (alignment pin) is not connected internally—may be wired to TTL ground or left unconnected.

SUGGESTED PRINTED CIRCUIT BOARD LAYOUT

© @ N O U s WN o

=
=)

Bottom View

TTL GND

05621B-35
Am29325
THERMAL CHARACTERISTICS
26]
24
22— PRELIMINARY
20 =
g
e
w
Q
i
@
7
w
4
-
<
=
@
uw
T
4 -
2
0
I | 1 1 |
] 200 400 600
AIR VELOCITY (LINEAR FEET PER MINUTE)
AVERAGE THERMAL RESISTANCE (©JA)
05621B-36

52

.075 x 45° REF.
(REFERENCE CORNER)

PHYSICAL DIMENSIONS

BOTTOM VIEW 020
050
1.540
1.570

A B CDE F G

H J KL MN PR

(0600000606
©O®0 000
00006060

$P0000000
000000

© 0 06
[ONONC]
[ORONC)
© 00
1.540
1570 —8 & —

I I R R

@@@@@@@ﬁ

.030 x 45° REFERENCE ’
——.080 MAX.

(3 PLACES)

*Subject to change.

HEATSINK (OPTION)

355
410

07321A

53

The International Standard of
Quality guarantees a 005% AQL on all
electrical parameters, AC and DC,

ALABAMA

ARIZONA,

CALIFORNIA,

ElSegundo

Newport Beach ..
San Diego
Sunnyvale
Woodland Hills . ..

COLORADOcceuue

CONNECTICUT,

Southbury

FLORIDA,
Altamonte Springs
Clearwater
Ft Lauderdale

KANSAS

BELGIUM,
Bruxelles

Kanata

FRANCE,
Paris ...

GERMANY,
Hannoverarea

Minchen

Stuttgart

CALIFORNIA

BINC ...

CONNECTICUT

SCIENTIFIC COMPONENTS

IDAHO
INTERMOUNTAIN TECH MKGT
INDIANA

SAI MARKETING CORP

IOWA

LORENZ SALES

MICHIGAN

SAI MARKETING CORP

NEBRASKA

LORENZ SALES

ADVANCED MICRO DEVICES
DOMESTIC SALES OFFICES

............. (205) 882-9122

(602) 242-4400
(602) 792-1200

(213) 640-3210
(714) 752-6262
(619) 560-7030
(408) 720-8811
(818) 992-4155
(303) 691-5100

............ (203) 264-7800
(305) 339-5022
(813) 530-9971
(305) 484-8600
(305) 254-2915
(404) 449-7920
(312) 773-4422
(317) 244-7207
(913) 451-3115
(301) 796-9310

MASSACHUSETTScoiviiininnn.. (617) 273-3970
MINNESOTA (612) 938-0001
NEW JERSEY (201) 299-0002
NEW YORK,
Liverpool ... (315) 457-5400
Poughkeepsie (IBM only) .. (914) 471-8180
Woodbury ... (516) 364-8020

NORTH CAROLINA,

(704) 525-1875
(919) 847-8471
(503) 245-0080

Columbus
PENNSYLVANIA,
Allentown (AT&T only)

(614) 891-6455
(215) 398-8006

Willow Grove (215) 657-3101
TEXAS,

Austin ... (512) 346-7830

Dallas (214) 934-9099

Houston (713) 785-9001
WASHINGTON (206) 455-3600
WISCONSIN (414) 782-7748

INTERNATIONAL SALES OFFICES

TEL: (02) 771 99 93
FAX: oo 762-3716
TLX: oo 61028
TEL: ©...... (613) 592-0090

TEL: (416) 224-5193
FAX: (416) 224-0056
TEL: (01) 46 87 36 66
FAX: (01) 46 86 21 85
TLX: e 202053F
TEL: ooo.a.n. (05143) 50 55
[5553
TLX: e 925287
TEL: ooonnn... (089) 41 14-0
FAX: e 406490
TLX: oo 523883
TEL: (0711) 62 33 77
[625187
TLX: oo 721882

HONG KONG,
Kowlooncovuinn, TEL: ...l 3-695377
FE 1234276
: 50426
ITALY, Milanoc.oouunnn TEL: ..., (02) 3390541
FAX: ...l 3498000
TLX: oo 315286
JAPAN, Tokyocoueunn TEL: . .. (03) 345-8241
FAX: 3425196
TLX: J24064 AMDTKOJ
LATIN AMERICA,
Ft. Lauderdale TEL: (305) 484-8600
FAX: (305) 485-9736
SWEDEN, Stockholm TEL: (08) 733 03 50
FAX:ooie 7332285
TLX: oo 11602
UNITED KINGDOM,
Manchesterarea TEL: (0925) 828008
FAX: 827693
TLX: o 628524
Londonarea TEL: (04862) 22121
FAX: ... 22179
TLX: o 859103

NORTH AMERICAN REPRESENTATIVES

OEM (408) 988-3400
DISTI (408) 498-6868

(203) 272-2963

(208) 322-5022

(317) 241-9276

(319) 377-4666

(313) 227-1786

(402) 475-4660

NEW JERSEY

TAICORPORATIONooiune (609) 933-2600
NEW MEXICO

THORSON DESERT STATES (505) 293-8555
NEW YORK

NYCOM,INC ..., (315) 437-8343
OHIO
Dayton

DOLFUSS ROOT&COccunennn. (513) 433-6776
Strongsville

DOLFUSS ROOT&COoennnns. (216) 238-0300
PENNSYLVANIA

DOLFUSS ROOT & COccvnvvinnnn (412) 221-4420
UTAH

RZMARKETINGcovvvvinnnnnnnnnnnn. (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details,
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA © 1986 Advanced Micro Devices, Inc.
e (408) 732-2400 ® TWX: 910-339-9280 @ TELEX: 34-6306 ® TOLL FREE: (800) 5388450 Printed in U.S.A. CBM-WP-15M-2/86-0

