
Am29PL 141 Handbook

Fuse Programmable Controller

Test 7
Inputs --+--t

Reset-
Address

Sequencer

6

64-Word by
32-Bit PROM

32

32-Bit Pipeline
----+---I> Register

16 16

Control
Outputs

Zero
Out

Advanced Micro Devices

Am29PL 141
Fuse Programmable Controller

06591A

Handbook

© 1986 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics.

This manual neither states nor implies any warranty of any kind, including but not
limited to implied warranties of merchantability or fitness for a particular application.
AMO assumes no responsibility for the use of any circuitry other than the circuitry
embodied in an AMO product.
The information in this publication is believed to be accurate in all respects at the
time of publication, but is subject to change without notice. AMO assumes no
responsibility for any errors or omissions, and disclaims responsibility for any
consequences resulting from the use of the information included herein. Additionally,
AMO assumes no responsibility for the functioning of undescribed features or
parameters.

Contributors to the Am29PL 141 Fuse Programmable Controller Handbook:

Rajesh Tanna, Headquarters Applications, Sunnyvale, CA (Chapters 1 and 4) MS 151
Om Agrawal, Product Planning (Chapters 1, 2, and 3)
William Chen, Product Planning (Chapters 2 and 3)
Arthur Khu, Product Planning (Chapter 1)
Rick Purvis, FAE, Austin, TX (Chapters 5 and 6)
David Stoenner, FAE, Newport Beach, CA (Chapters 7 and 8)
Robert O'Hara, FAE, Dorsey, MD (Chapter 9)
Stephen L. Belechak-Becraft, former AMO FAE (Chapter 9)
Dan Overman, Dibec, Inc. (Chapter 9)
Frank Hudziak, Jr., FAE, Itasca, II (Chapter 10)
Philip Freiden, Product Planning Manager

Technical Writer:

Er/and Kyllonen, Senior Technical Writer, Headquarters, MS71

Copyright Notices

DEC, PDP, Q-Bus, and Unibus are trademarks of the Digital Equipment Company.
IBM PC is a trademark of IBM
SSR is a trademark of Advanced Micro Devices
PAL is a registered Trademark of and used under license from Monolithic Memories, INC.

TABLE OF CONTENTS

1. Fuse Programmable Controller Overview
1.1 Design Choices
1.2 Am29PL141 Architecture Overview

1.2.1 Address Sequencer
1.2.2 Branch Control/Condition Code Logic
1.2.3 Instruction Decode Logic ...
1.2.4 Microprogram Memory and Pipeline Register ...

1.3 Microcode
1.3.1 Microinstruction Format
1.3.2 Microinstructions

Looping
Conditional
Unconditional

1.3.3 SSR Diagnostics
1.4 Am29PL141 Software Support

1.4.1 Am29PL 141 Assembler
1.4.2 Am29PL141 Test Vector Generator ...
1.4.3 Am29PL 141 Simulator

1.5 An Overview of this Technical Manual

2. Am29PL 141 Assembler
2.1 Introduction to the Am29PL 141 Assembler

2.1.1 Assembler Features
2.1.2 Error Detection and Diagnosis
2.1.3 System Requirements
2.1.4 Making Backups

2.2 User's Guide
2.2.1 Notation
2.2.2 Running the Assembler
2.2.3 Assembler Output

JEDEC Standard Fuse Map
PROM Bit Pattern

2.3 Language Reference
2.3.1 Language Elements

Keywords
Identifiers

2.3.2 Assembler Program Structure
DEVICE Section
SSR Section
DEFAULT Section
DEFINE Section
DEFAULT_OUTPUT Section
TEST_CONDITION
Main Body

2.3.3 Statement Elements
Labels
Control Output
Logic Operators

2.3.4 Statement Format
2.3.5 Statements Available for the Am29PL 141
2.3.6 QUICK Reference Guide

2.4 Design Example

1-1
1-1
1-1
1-2
1-2
1-2
1-4
1-4
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7

5-3 Microword Organization
5-4 Unibus Controller Source Program Listing
5-5 FPC PROM Contents
5-6 BR Timing Diagram
5-7 NPR Timing Diagram
5-8 NPR DATI and DATO Timing Diagram ...
5-9 DATI and DATO (Slave) Timing Diagram

6-1 Q-Bus Controller Block Diagram
6-2 0-Bus Controller Microword Format ...
6-3 0-Bus Controller Source Program Listing
6-4 FPC PROM Program Listing

7-1 Starlan OMA Controller Block Diagram. ..
7-2 Starlan Controller Circuitry
7-3 Starlan Address and Data Circuitry
7-4 Miscellaneous Control Circuits
7-5 Starlan Controller Program Flow Diagram
7-6 Starlan Controller Source Program Listing

8-1 SSA Controller Block Diagram
8-2 SSA Controller Circuitry
8-3 User Equipment Interface Circuitry
8-4 SSA Controller Program Flow Diagram
8-5 SSA Controller Source Program Listing

9-1 OIC-02 Interface
9-2 Am29PL 141 QIC-02 and SCSI Controller Block Diagram ...
9-3 SCSl/QIC-02 Driver Example
9-4 Am29PL 141 QIC-02 and SCSI Controller Circuitry
9-5 Condition Code MUX PAL Device Description
9-6 Addressable Latch PAL Device
9-7 QIC-02 Controller Program Flow Diagram
9-8 Am29PL 141 Valid Command Routines
9-9 OIC-02 Controller Source Program Listing
9-10 SCSI Advanced Features Upgrade ...
9-11 Node Address Comparator PAL Device Equation
9-12 SCSI and QIC-02 Controller Parts List

10-1 OMA Channel Interface
10-2 Format of User Output Portion of Am29PL 141 Microcode
10-3 OMA Controller Program Flow Diagram
10-4 OMA Controller Source Program Listing

C-1 QIC-02 Interface
C-2 QIC-02 Read Status Command Timing Diagram
C-3 QIC-02 Write Data Command Timing Diagram .. .
C-4 QIC-02 Read Data Command Timing Diagram .. .
C-5 Possible Bus Configurations
C-6 SCSI Command Phase Timing
C-7 SCSI Data Read (from disk) Timing
C-8 SCSI Data Write (to disk) Timing

TABLES

2-1 POL Values for Various Types of Tests
2-2 Am29PL141 Microprogram Instruction Set

iv

5-4
5-6
5-8
5-9

5-10
5-11
5-12

6-3
6-4
6-5
6-8

7-2
7-3
7-4
7-5
7-8
7-9

8-3
8-4
8-5
8-6
8-7

9-1
9-2
9-4
9-7
9-8

9-11
9-12
9-14
9-15
9-17
9-18
9-19

10-2
10-3
10-4
10-5

C-1
C-3
C-4
C-5
C-6
C-7
C-7
C-7

2-7
2-8

CHAPTER 1

FUSE PROGRAMMABLE CONTROLLER OVERVIEW

1.1 DESIGN CHOICES

Sequential state machine design is normally
approached using one of two general methods:
the traditional random logic and flip-flop approach,
or microprogramming. Until recently, traditional
methods were used for state machines with
relatively few states (e.g. dynamic memory
controllers), while microprogramming was used for
applications with many states (e.g. CPUs). The
area in between was handled with a hodge-podge
of techniques ranging from ad-hoc use of counters
and shift registers to PROM-based sequencers.
Now, Advanced Micro Devices has introduced the
Am29PL 141 Fuse Programmable Controller (FPC)
to allow cost effective application of microprogram­
ming techniques to fairly small state machines.

Traditional design methodology generally uses
state diagrams to define machine behavior, follow­
ed by derivation of appropriate J-K flip-flop excita­
tion equations. This approach typically results in
very high speed state machine implementations
which are highly optimized for a particular task.
Unfortunately, this technique is at best tedious,
and can be essentially unusable for large state
machines.

The microprogramming approach to state machine
design consists of storing machine cycle control
sequences in memory locations. These instruc­
tions are fetched and executed sequentially.
Microprogramming is similar to assembly language
programming of other processors. It is typically
register oriented, with subroutines, loops, and
structured programming constructs.

1.2 Am29PL141 ARCHITECTURE OVERVIEW

The Advanced Micro Devices Am29PL141 is a
single-chip Fuse Programmable Controller (FPC).
It combines, in one chip, powerful address sequen­
cer logic and a memory to store a microprogram
based on an instructions set of 29 microin­
structions including a repertoire of jumps, multiple
branches, and subroutine calls. These instruc­
tions can be· executed conditionally depending on
the level of one of seven external input lines or
one internal condition. A Serial Shadow Register
(SSA) helps designers diagnose system troubles
at the individual IC component level. A pipeline
register permits fetching the next instruction at the

same time that the current instruction is being
executed. This Chapter provides a general
description of the FPC. For a detailed description,
refer to Appendix F, the data sheet.

The Am29PL141 consists of four major archi­
tectural blocks:

1-1

• Address sequencer control logic
• Branch control/condition code select logic
• Instruction decode logic
• 64 x 32-bit microprogram memory with a Pipeline

Register and Serial Shadow Register

1.2.1 Address Sequencer

As shown in Figure 1-1, FPC control sequences,
stored in the 64 word by 32 bit on-chip
programmable memory, are fetched under control
of the address sequencer and clocked into the
pipeline register. Figure 1-2 shows a more detailed
block diagram of the Am29PL 141.

The address sequencer inputs consist of seven
external condition code inputs and sixteen bits of

06591A 1-1

CONDITION
TESTS

64x32
MICROPROGRAM

MEMORY

3
SERIALSHADOWREGISTER

r-- ---------,
I 1-+ouT
I 14'-IN
I 14-MODE

14-ocLK
PIPELINEREGISTER __ ...J

----CLK

P[15:0)

Figure 1-1. Am29PL141 Block Diagram

the 32 bit instruction currently in the pipeline
register. These 16 bits are wrapped around inter­
nally in the chip. (The remaining 16 bits go off chip
to control the remainder of the state machine.)
The test field in the 16-bit microcode input to the
address sequencer tells the sequencer which
condition code input to test. The results of the
condition code test determines whether the
sequencer will process the next instruction in the
sequence or fetch an instruction from the· address
specified in the data field of the 16-bit input, from
one of the two stack registers, or from the external
world via the test inputs.

Within the address sequencer control logic, a 6-bit
wide, four-to-one address multiplexer supplies the
next state address (refer to Figure 1-2). This next
state address can be one of the following:

• Current address (for repeat or hold instructions)
• Incremented PC state (for sequential and

continue instructions)
• Subroutine register (SREG) value (for nesting

and repeat loops)
• Output of the GO-TO branch control logic

The Program Counter contains the address of the
current state (the current instruction being
executed). Allowing the address multiplexer to
select the current state as the next state allows
execution of loops and wait-until-condition-true
type instructions. The PLC can thus simply insert
wait states until a particular event becomes true.
This function of intelligent state machines is
needed to interface with various microprocessors
and peripherals.

The incremented Program Counter address is the
normal next address when no jumps, branches, or
subroutine calls are active.

In addition to the Program Multiplexer and Program
Counter, the address sequencer contains a
dedicated subroutine block and a counter block.
The subroutine block has a 6-bit subroutine
register (SREG) and a three-to-one multiplexer as
the source for the SREG. When a microprogram
calls a subroutine, the subroutine register (SREG)
supplies the return address.

The counter block is used for timing. It has a 6-bit
register (CREG) and a four-to-one multiplexer as
the source for the CREG. To perform iterative
loops, the controller first loads CREG with the
value of the number of iterations required. Every
iteration of the loop decrements the count. When
the count reaches zero, iterations stop. The zero
condition is detected by the zero detect logic on
the chip.

The two internal registers, SREG and CREG, are
used respectively as a 1 address stack and 6-bit
counter. In addition, they can be used together as
either a two deep stack, or as nested counters.
The ZERO* output indicates that the internal
CREG value is zero. The RESET* input initializes
the FPC to address 63. An additional operating
mode allows use of Serial Shadow Register (SSA)
diagnostic techniques.

1.2.2 Branch Control/Condition Code Select

The branch control logic provides the address for
multiple branching and for conditional statements
such as IF-THEN-ELSE. The condition code
select logic selects the condition to be tested
which the user can specify for each microprogram
instruction. This allows monitoring of both external
(7) and internal (1) events.

The user-defined microcode can set the polarity
control to test on either true or false conditions
without the need for external hardware inverters.

The branch control logic accepts six bits of external
test inputs and six bits of branch address from the
microinstruction to be used as either an address
value or a counter value. It also receives six mask
bits from the microinstruction to mask some of the
test inputs or the branch address. The resulting
masked value specifies the branch address. This
provides easy multibranching based on external
inputs.

A flexible next address instruction set provides
powerful conditional branch, multibranching, sub­
routine, and loop structures. These instructions
are listed below, and explained in the data sheet.

Branch - CONT, WAIT, GOTOPL, GOTOPLZ,
GOTOTM, FORK

Call - CALPL, CALPLN, CAL TM, CAL TMN
Push - PSH, PSHN, PSHPL, PSHTM
Return - RET, RETN, RETPL, RETPLN
Loop - LPPL, LPPLN
Load - LDPL, LDPLN, LDTM, LDTMN
misc. - DECPL, DECGOPL, DECTM, DEC,

1-2

CMP

1.2.3 Instruction Decode Logic

The instruction decoder decodes 15 of the upper
16 bits of the microinstruction. These include the
5-bit opcode field, the polarity bit, the 3-bit test
field, and the 6-bit data field. The test field
specifies the condition code input that determines
if a branch is to be taken. For conditional
branches, if the condition is true (or false if the
polarity bit is set to 1), a branch is taken to the

------------ -~- --

CONDITIONAL I
TEST INPUTS

l>

06591A 1-2

3-9

GOTO BRANCH INST.

LOOPS
1 STLEVEL STACK

ORLOOPCOUNTER t--~~~~~~~

PROGRAM
COUNTER

SEQUENTIAL INST.

ADDRESSMUL TIPLEXER

15

64 WORD x 32 BIT
PROM

PIPELINE REGISTER

OE

Figure 1-2. Am29PL141 Detailed Block Diagram

branch address specified in the data field. The
16th bit is an output enable line that enables the
16 output lines of the FPC.

1.2.4 Microprogram Memory and
Pipeline Register

Conceptually, each memory location can be
thought of as defining a particular state of the state
machine, with each address corresponding to the
number of this state. Seven external test inputs
(TO, T1, T2, T3, T4, TS, and CC) and one internal
test (EQ) are included to allow conditional state
transitions based on external inputs. Typical
microcode consists of testing one of the test
inputs and branching if the condition tested is true.

The 64 by 32-bit fuse-programmable memory
stores the microprogram of up to 64 microinstruc­
tions. It stores all state transitions. Each micro­
instruction specifies the state of each of the 16
output lines used to control peripherals and other
devices. The remaining fields in the micro-instruc­
tion have been described above. The internal
PROM is programmed using commercially available
PROM programmers.

The pipeline register associated with the memory
is 32 bits wide and contains the microinstruction cu­
rrently being executed. It allows concurrent execu­
tion of the current micro-instruction and fetching of
the next instruction. Its upper 16 bits form the
state sequencing and internal control logic. The
low order 16 bits are used as general purpose,
user definable control outputs. Of these user­
controlled bits, the upper eight bits can be tristated
by output enable bit (OE) in the microinstruction. If
more than 16 output control bits are needed,
Am29PL 141s can be cascaded quite simply.

The FPC operates in two modes: normal and
diagnostic. In the normal mode, a microinstruction
is executed for every clock cycle. When the FPC is
programmed to use the diagnostics feature, a 32-
bit Serial Shift Register (SSR) is activated. This
provides a simple, straightforward method of in­
system testing to isolate problems to the individual
IC level.

A 32-btt Serial Shadow Register (SSR) simplifies
device and system-level diagnostics. To test a
chip, an instruction is shifted serially into the SSR
and then loaded in parallel into the pipeline. As a
result, the instruction is executed and its results
are transferred back from the pipeline into the
SSR. From there, it may be shifted out for
diagnosis.

1.3 MICROCODE

Microinstructions are 32 bits long. Up to 64
microinstructions can be stored in the 64 by 32-bit
FPC memory. This Section discusses the micro­
instruction formats, the instructions, and the SSR
diagnostic option. For more detailed information,
ref er to the data sheet.

1.3.1 Mlicroinstruction Format

Each microinstruction is partitioned into fields.
There are two microinstruction formats: the general
microinstruction format and the Compare micro­
instruction format. The low order 16 bits in each
format contain 16 user-controlled output signals
that appear on FPC outputs P[15:0].

In the general microinstruction format, the upper
16 bits are assigned as follows:

Bits Description

16-21 Data (A conditional branch address, test
input mask, or counter value)

22-24 Test (specifies which one of eight input
signals to use for the condition code)

25 Polarity (specifies whether to test input
for true or false)

26-30 Opcode (identifies microinstruction to
execute)

31 Output Enable (when set to 0, it 3-states
output lines P[15:8]

In the Compare microinstruction format, the upper
16 bits are assigned as follows:

Bits Description

16-21 Data (A 6-bit mask for masking the T[5:0]
inputs)

22-27 Constant (specifies a 6-bit constant for
comparison with T*M for the condition
code)

1-4

28-30 Opcode (identifies microinstruction to
execute)

31 Output Enable (when set to 0, it 3-states
output lines P[15:8]

1.3.2 Mlicroinstructions

The FPC microinstruction set consists of 29
instructions. These opcodes can be grouped into
three groups:

Looping
Conditional
Unconditional

Looping. The four looping instructions use the
counter CREG to execute loops. CREG is loaded
prior to entering the loop. When CREG is not zero,
CREG Is decremented on each pass through the
loop and a branch is performed to the beginning of
the loop as specified in the data field. When CREG
becomes zero, program execution continues at
the next instruction following the loop.

One variation of the loop instruction loads the
CREG with the value specified in the data field or
the test inputs when CREG is zero. Another loop
instruction tests both CREG and a test condition
and branches to a specified location when either
CREG becomes zero or the condition is true.

High-level language constructs such as REPEAT­
UNTIL, WHILE-DO, and FOR are used to apply
structured programming techniques to improve
code readability and documentation. These same
benefits can be realized in the FPC by imple­
menting these constructs in microcode as follows:

REPEAT-UNTIL (condition) can be performed
using one of the loop or branch instructions as the
UNTIL condition test. WHILE-DO is implemented
similarly except that the microcoded condition test
is performed at the beginning of the loop instead
of at the end.

An equivalent FOR construct uses a loop
instruction to load CREG and then test for zero
status. If it is zero, execution continues with the
next instruction following the loop. If CREG is not
zero, it is decremented by one and a branch is
performed to the top of the loop. As with the other
constructs, the designer can choose to do the
CREG test at the top or at the end of the loop.

Conditional. Conditional instructions depend on
the results of a test. If the test condition is not true,
the action such as branch, push, load, or decre­
ment is not performed.

The branch opcodes use the data field in the micro­
instruction to specify a branch address or sub­
routine location. In addition, multi-way branches or
subroutine calls can be implemented by using the
GOTO T*M or CALL T*M opcodes. In these
instructions, the address is specified by the test (T)
inputs masked by a mask value (M) in the data field.
This allows a branch through the test inputs to a
vector which can be used for interrupt servicing.

Other conditional instructions are pushing the pro­
gram counter value onto the stack, loading CREG

with a value, or decrementing CREG. Each of
these conditional instructions is performed only if a
test condition is true (or false if the Polarity bit is 1).

Unconditional. The two unconditional instructions
are: CONTINUE and COMPARE. CONTINUE is
used to generate the output bit and proceed to
the next instruction. COMPARE unconditionally
compares the test inputs with a user-defined
constant and sets an internal equal bit (EQ)
accordingly. This instruction is useful in searching
for a character.

1.3.3 SSR Diagnostics

In the diagnostics mode, four of the device pins
are redefined. These include one input and three
output pins. The CC input is redefined as Serial
Data In (SDI). The three output pins are redefined
as Diagnostics Clock (DCLK), MODE, and Serial
Data Out (SDO).

The shadow register can be serially loaded from
the SDI pin under control of DCLK with MODE
LOW. It can be parallel-loaded from the pipeline
register with MODE HIGH, SDI LOW. The pipeline
register is loaded from the microprogram memory
during normal operation. During diagnostics, the
pipeline register is loaded from the shadow
register when MODE is High on the LOW to HIGH
transition of CLK.

To run the diagnostics, a test pattern is serially load­
ed into the shadow register. From there, it is trans­
ferred to the pipeline register in parallel causing it
to be executed. The results can then be clocked
into the pipeline register, transferred to the sha­
dow register, and serially shifted out for diagnosis.

1-5

1.4 Am29PL141 SOFTWARE SUPPORT

Designing complex state machines and intelligent
controllers requires good software support.

The Am29PL141 software package simplifies the
complete design process. Three major software
modules-the Assembler, the Test Vector Genera­
tor, and the Simulator-are available. The Assem­
bler is used to permit specifying the design in a
symbolic language. The Test Vector Generator
and the Simulator are used to simulate and verify
the design.

1.4.1 Am29PL141 Assembler

The Am29PL 141 Assembler converts design
specifications written in a symbolic language into a
JEDEC fuse map which can be used by other
modules such as the Simulator.

The assembler allows data to be defined as bytes
or words, permits forward label references, and
allows assignment of values to bits in binary, octal,
decimal, and hexadecimal format.

High level language constructs such as IF-THEN­
ELSE and WHILE are directly supported by the
assembler providing program structure and clear
documentation for the designer.

The Assembler is described in detail in Chapter 2.

1.4.2 Am29PL 141 Test Vector Generator

The Am29PL 141 Test Vector Generator takes the
test vector file (function table) generated by the
designer and generates a JEDEC standard format
test vector file. This output is used as an input by
the Simulator.

1.4.3 Am29PL 141 Simulator

Device simulation is based on a test vector file,
generated by a Test Vector Generator from the
test vectors specified by the designer. The
Am29PL 141 Simulator uses the JEDEC fuse map
file (generated by the Am29PL141 Assembler)
and the test vector file as its inputs. The Simulator
generates computed output signals. These are
compared with expected output values as speci­
fied in the test vector file. A printout of the output
shows the differences if any.

The Simulator also provides an interactive mode
allowing the designer to interactively preload or
change any or all of the Am29 PL 141 's internal reg­
isters. Single-step and breakpoints provide further
control. For details, refer to Chapter 3.

1.5 AN OVERVIEW OF THIS TECHNICAL
MANUAL

Chapter 2 describes the Am29PL 141 Assembler.
The assembler lets the user write microcode in a
higher level language using mnemonics for
addresses and using several number bases to
represent numbers.

Chapter 3 describes in detail an Am29PL 141 Fuse
Programmable Controller Simulator. The simulator
makes it possible to check out the logic of the
microprogram before it is entered into the
Am29PL 141 chip memory.

Chapter 4 provides a simple, tutorial example of an
Am29PL 141 application. It is a coffee machine

controller. This example shows not only the hard­
ware but also the microprogram required.

Chapter 5 describes the realistic use of an
Am29PL141 as an interface for the DEC PDP-11
Unibus. The complexity of Unibus handshaking is
such that microprogramming is a reasonable
design technique, but use of a separate sequen­
cer, control memory, and pipeline register is not
economical. Since the FPC contains a sequencer,
memory, and pipeline, an interface for the DEC
PDP-11 Unibus can be readily designed using the
Am29PL141 FPC. It fits this class of problem
rather well. The PDP-11 was chosen for this ex­
ample because it has a well documented protocol
which is familiar to many engineers.

Chapter 6 describes the use of an Am29PL 141 as
a controller for the DEC 0-Bus. The problem
addressed is to design an interface between the Q­
Bus and a generic device to allow the following
operations:

• DATl/DATO with device as slave
• Device interrupt request (single level)
• Device Direct Memory Access request
• DATl/DATO with device as master

The control logic is implemented using the
Am29PL141 FPC. Its microprogram implements a
state machine to control both device and 0-Bus
handshaking.

Chapter 7 describes the use of the Am29PL 141
as a dual port memory arbitrator in a Starlan system.
The Am29PL 141 controls the OMA transfers to
and from the relatively slow speed communication
lines freeing the CPU to perform other tasks.

Chapter 8 describes the use of an IBM/PC to run
diagnostic tests on a device containing a Serial
Shadow Register (SSR). The Am29PL141 con­
trols the flow of data to and from the SSR.

1-6

Chapter 9 describes an Am29PL141-QIC-02 and
SCSI interface. This interface links tape drives with
a CPU. It permits the backup of large hard disk
drives on quarter-inch magnetic tape.

Chapter 1 o Describes a high speed OMA controller
using the Am29PL 141.

The appendixes include the JEDEC Standard
Number 3; an alphabetical listing of the Assembler
Error Messages; the QIC-02 and SCSI timing
diagrams; References; Glossary; Am29PL 141 data
sheet; and an Index.

CHAPTER 2

Am29PL 141 ASSEMBLER

2.1 INTRODUCTION TO THE
Am29PL 141 ASSEMBLER

This section discusses the Am29PL 141 assem­
bler. It describes the features, the installation pro­
cedures, the assembler execution statements, the
system requirements, and the assembler language
elements.

2.1.1 ASSEMBLER FEATURES

The Am29PL141 Assembler provides higher level
support for developing microprograms for the
Am29PL 141. This assembler accepts data defin­
ed as either bytes or words, allows forward referen­
ces, and assigns values to bits in different formats
(binary, octal, decimal or hexadecimal).

With the inclusion of high level language
constructs such as IF-THEN-ELSE and WHILE, the
microprogrammer's task is greatly simplified since
the microcode is written in a logical and more
natural flowing syntax. In addition, documentation
of code is significantly enhanced since the micro­
code is expressed in a more readable and easy to
follow format.

The assembler features include:

• High level language constructs
• IF-THEN-ELSE
•WHILE

• Binary, octal, decimal, and hexadecimal numbers
are recognized

• Jump/branch to labels

• Logic equations for control outputs

• Error detection and diagnosis

• Default test condition

• JEDEC standard fuse map output

• Symbol table output

2.1.2 ERROR DETECTION AND DIAGNOSIS

Much effort has been made to provide relevant
syntax error detection and diagnosis messages in
order to facilitate debugging of errors occurring in
the microcode. Note that one error may cause
spurious errors to propagate through the assem­
bler source file because the compiler logic is based

2-1

on the expected sequence of symbols. The
compiler does not understand the micro-code's
intent or purpose. Correcting the first error and
other meaningful errors (ex: variable name not
defined in DEFINE section) will erase the spurious
errors (ex:',' symbol not defined).

The programmer can choose a default test
condition to reduce the amount of microcoding
since any conditional statement should refer to the
default test condition as the condition. (Refer to
Section 2.3)

The assembler will check the input file to deter­
mine that no conflicts exist in the use of input pins
which double as SSR diagnostic pins.

2.1.3 SYSTEM REQUIREMENTS

The following hardware and software are required
to use the assembler:

Hardware:

• An IBM PC/XT or other PC-compatible with at
least 256K bytes of RAM memory

• Two double-sided, double-density floppy disk
drives

• RS232 serial port and a cable to connect to a
logic device programmer

Software:

• PC-DOS Version 2.0 or higher or
MS-DOS 2.11 or higher

• A word processor to create the assembler
source file. Any word processor which produces
standard ASCII output files is acceptable.
Example: Wordstar operating in Non-document
mode.

• The following files are on the Am29PL141
Assembler disk:

FILENAME

ASM141.EXE
PL141
COFFEE.EXP

MAKE_CPY.BAT

DESCRIPTION

Am29PL141 assembler
Database file for Am29PL141
Source file for coffee machine
example
Batch file for making copies
and backups

2.1.4 MAKING BACKUPS

Before using the Am29PL141 assembler, make a
backup copy of the distribution disk using the
following procedure.

For two drive systems:

Put master diskette in drive A and a formatted
blank diskette in drive Band type "MAKE_CPY B"

All the files in the distribution disk will be copied to

11 items separated by vertical bars indicate a
choice between the items

2.2.2 RUNNING THE ASSEMBLER

The assembler takes an input source file written in
the AM29PL 141 syntax (described in Section 2.3)
and produces a JEDEC fuse map which can be
sent to a programmer.

Two system files are required to run the assembler:

the diskette in drive b. The executable file ASM141.EXE and the data­
base file PL141.

For Hard disk systems :

1. Turn on the computer and boot up with DOS
2. Put the master/distribution disk in drive A
3. Set the system prompt to drive A by typing

C>A: <CR>

4. Type "MAKE_CPY C" and press return.

Check that a directory "FPC" does not exist.
"MAKE_CPY C" will create a directory called "FPC"
and all the files on the distribution disk will be
copied on to the hard disk in this directory. This
batch file may be modified if the files are to be
copied to a directory other than "FPC".

Store the distribution disk in a sate place. The
copy just created is the working copy.

The recommended procedure is to make a backup
of the program disk and use the backup copy as
the working copy. In the event something hap­
pens to the working copy, a new working copy can
be created by repeating the above procedure.

2.2 USER'S GUIDE

2.2.1 NOTATION

The Backus-Naur format (BNF) is used to describe
the syntax of an action expression used in a
statement. BNF is a short-hand notation with the
following rules:

·- means "is defined as"

'' literals must be enclosed in single quotes.
High-lighted characters and characters in
single quotes are literals and are required.

< > angle brackets enclose identifiers

[] square brackets enclose optional items

After a source file is created, it is assembled using
the following command:

A> ASM141 -1 <assembler file> [-0 <fuse map
file>] [-B <PROM bit file>] [-E <error message
file>] [-T <symbol table file>] [-SJ

where:

-I <filename> specifies an input file

-0 <filename> specifies a destination file for
the fuse map generated by
the assembler

-E <filename> specifies a file to hold the
assembler's error messages

-B <filename> displays and stores the PROM
bit pattern into a file

2-2

-T <filename> displays a symbol table file

-S removes the SSA fuse from the
JEDEC fuse map

Options 0, E, B, T, and S are optional. The error
messages and fuse map will always be displayed
on the screen. The options do not have to be
capitalized.

Examples:

A> ASM141 -I MYINPUT
ASM141 will process the input file named
MYINPUT

A> ASM141 -I MYINPUT-0 MAPOUT
ASM141 will process the input file MYINPUT
and output the fusemap to the file named
MAPOUT

A> ASM141 -I MYINPUT-B PROMBIT

ASM141 will process the input file named
MYINPUT and store the PROM bit pattern into
the output file named PROMBIT

A> ASM141 -i COFFEE.EXP -o COFFEE.JED -b
COFFEE.BIT
ASM141 will process the assembler file
named COFFEE.EXP and output a JEDEC
fuse map file named COFFEE.JED and output
a PROM bit pattern file named COFFEE.BIT.

2.2.3 ASSEMBLER OUTPUT

JEDEC Standard Fuse Map

ASM141 produces a fuse map file which follows
the standards set forth by the Joint Electronic
Device Engineering Council (JEDEC) for program­
mable devices. The fuse map file can be sent to a
programmer via a communications program. Pro­
grammers from different manufacturers may have
varying setup and communications parameters and
procedures. Consult the programmer manual for
more details. Information regarding the fields in
the JEDEC fuse map file is detailed in Appendix A.

PROM Bit Pattern

When the 'B' option is specified, ASM141 displays
the bit pattern for every word in the .PROM that is
translated into the JEDEC format.

Each word in the PROM is preceded by its decimal
PROM address. Words are displayed from the
lowest location to the highest (maximum of 63 for
the Am29PL141).

The fields (e.g. DATA, OPCODE, TEST
CONDITION) in the bit pattern are marked. This
allows the microprogrammer to quickly check the
contents of a field in a particular word.

2.3 LANGUAGE REFERENCE

The Am29PL141 Assembler language is used to
program the Fuse-Programmable Controller
Am29PL141. Logic designs and state-machines
are described in this high-level language and trans­
lated into a format that can be loaded into a pro­
grammable logic device programmer. The device
programmer then programs the Am29PL141 with
this information.

This section describes the elements and structure
of the assembler language. It is arranged as
follows

2.3.1 Language Elements
Describes the elements used in the
language.

2.3.2 Assembler Program Structure
Explains how the language elements are
put together to describe a logic design.

2.3.3 Statement Format
Describes the general assembler statement
format

2.3.4 Statements Available for the Am29PL 141
Lists the statement forms which
correspond to data sheet opcodes of
the Am29PL141

2.3.5 Quick Reference Guide
Shows the flowcharts for the different
statements and opcodes.

2~~ LANGUAGEELEMENTS

The language consists of keywords and user­
defined identifiers which are put together to form
statements describing a logic design/state
machine. These statements correspond to
Am29PL141 machine level opcodes used to
implement the state machine.

A source file must conform to the following rules
and restrictions:

2-3

1. Comments are allowed in the assembler file for
readability. Comments are enclosed between
double quotes and can span more than one
line. Comments cannot be nested.

2. Keywords and identifiers are separated by at
least one space.

3. Keywords and identifiers can be in upper or
lower case. No distinctions are made between
the two alphabetic cases.

4. A line in the source file must not be more than
80 characters long. This is the normal width of
the screen on a computer monitor.

Keywords

The following words are assembler keywords and
cannot be used as variables:

DEVICE T2 PUSH CONTINUE
DEFAULT T3 RET OE
DEFINE T4 DEC OD
TEST_CONDITION TS WAIT PL
SSR cc LOOP TM
BEGIN EQ TO SREG
END GOTO NESTED CREG
TO CALL NEST DEFAULT_OUTPUT
Tl LOAD CMP .ORG

Note: TO to TS, CC and EQ are test conditions.

Identifiers

Identifiers are user-defined names identifying
control output patterns, test pins, and labels.

The following rules apply to names and numbers
used in the language:

• Variables, labels and constant names are limited
to 29 characters in length. The first character
should be an alphabetic character ('A' to 'Z' or 'a'
to 'z') and the remainder can be alphanumeric
characters or the underscore sign'-'·

• Numbers should be terminated with a '#n' where
n is either B (binary), 0 (octal), D (decimal), or H
(hexadecimal). If '#n' is left out, then the number
is assumed to be decimal.

2.3.2 ASSEMBLER PROGRAM
STRUCTURE

An assembler program source file describing a
logic design or state machine contains seven
sections which must appear in the following order:

(1) DEVICE
(2) SSR
(3) DEFAULT
(4) DEFINE
(5)DEFAULT OUTPUT
(6)TEST_CONDITION
(7) Main body

DEVICE Section

This section must be specified for each file. It
consists of the keyword DEVICE (need not be in
uppercase) followed by the part name to be
programmed in parenthesis.

Example:

DEVICE (PL141

SSR Section

This is is an optional section which instructs the as­
sembler to check for test conditions made unavail­
able during SSR diagnostics mode. The
messages generated by the assembler will indicate
which test condition pins have to be left solely for
SSA diagnostics. This option will set the SSR fuse
in the JEDEC fuse map. Default is SSR = O or no
diagnostics.

Example:

SSR = 1; "a semicolon is necessary"

Note: Some device programmers may require the
designer to blow the·SSR fuse externally; i.e, SSR
cannot be specified in the fuse map. In this case,
use the "-S" option to remove the SSA fuse from
the JED EC fuse map.

The control output pins P[7] and P[6] are also
used for SSR diagnostics. Because these are out­
put pins to the user in normal mode, they are not
flagged as errors if the user assigns a control
output value using these two pins. If the SSR
option is chosen, P[7] and P[6] will have
undefined values.

DEFAULT Section

If a DEFAULT= o is specified, unspecified fuses
will be blown, thus programming unspecified
microcode words and fields at a logic level 0. If no
DEFAULT statement is used or if a DEFAULT= 1 is
specified, unspecified fuses will remain unblown,
thus leaving unspecified microcode words and
fields at a logic level 1.

DEFINE Section

Any variable name specified in this section can be
assigned to a defined test condition or to a number
by using the '=' sign. The last definition should
end with a semicolon. This optional section is not
needed if user defined names are not created.

Example:

DEFINE first = 1 "assign first the
decimal value 1"

second = 2
third = 3
test = to "assign test to be

tO"
"condition TO"

outputl = 45#H
last_one = 0101001lll#b;

DEFAULT_OUTPUT Section

This section is used to specify a default control
output. This default output value is used if no
control output expression is specified for an
assembler statement.

2-4

Example:

DEFAULT_OUTPUT FFOF#h;

Begin
"linel" , if (test = 0) then

goto pl (stateN) ;

"line2" FF#h , if (cond = 1) then MAIN BODY
load pl(value) ;

end.

In the above example, the statement at line 1 uses
the default control output. Statement 2 will use
'FF#h' as its control output.

TEST_CONDITION

A default test condition can be specified if only
one test condition is being tested by the device.
This reduces the number of 'IF <cond> THEN'
strings because if a default test condition is
specified, the aforementioned string is
automatically concatenated with the action (ex.
GOTO, CALL, LOAD).

The test condition works with assembler
statements that use the form: 'IF (cond) THEN
<action>' where condition is one of the eight test
conditions TO to TS, CC, or EO .

Example:

TEST_CONDITION = tO; "specify the
default test
condition as
TO"

Begin

output_patternl, ret;

output_pattern2, if (cond = 1) then
goto pl
(a_defined_label);

End .

In the statement prefaced by output_pattern1, this
statement becomes OUTPUT_PATIERN1, IF (tO)
THEN RET; after default test condition
replacement.

The default test condition can also be overridden
in the same file by typing out the IF-THEN string
with a different test condition (see line prefaced by
output_pattern2).

Note that the default test conditions are limited to
the name only; no comparisons or complements
(<>,=or NOT) are allowed.

The main body must be enclosed by a single
BEGIN-END block. Any number of statements as
described in Section 2.3 can be inside this BEGIN­
END block as long as the number does not exceed
the total PROM size of the part being used (for the
Am29PL 141 the maximum number of statements
is 64).

Example:

Begin
LABELl: outputl, if (tO = O) then

load pl(data);
output2, while (creg <> 0)
loop to pl(LABELl);

End . "terminate the block with a

2-5

I• I II

2.3.3 STATEMENT ELEMENTS

A statement consists of the following elements:

• an optional label
• an output value
• a statement form

Example:

LABELl: output, IF (cond = 0) THEN
GOTO PL(data);

Both the colon separating the label from the rest of
the statement and the comma separating the
output part f ram the statement are necessary to
distinguish the elements from each other.

All statements are terminated by a ';' symbol.

SPECIFYING ADDRESSES

The assembler defaults to starting assembly at
location 0. ·Successive statements go into succes­
sive locations. The pseudo operation .ORG
followed by an address value can be used to
change this. See the examples in the following
section on Labels.

LABELS

Labels are names followed by a colon. Labels are
permitted in the body of the program. This allows

Table 2-2. Am29PL141 Microprogram Instruction Set

Opcode

(1) 19
(2) OF
(3) OB
(4) 18

(5) lC
(6) lD
(7) lE
(8) lF

(9) 04
(10) 05
(11) 06
(12) 07

(13) 15
(14) 17
(15) 14
(16) 16

(17) 02
(18) 03
(19) 00
(20) 01

(21) 09
(22) oc
(23) OE
(24) lB

(25) lA
(26) 08
(27) OA

Mnemonics

GOTOPL
GOTO TM
GOTOPLZ
FORK

CAL PL
CALPLN
CAL TM
CALTMN

LDPL
LDPLN
LDTM
LDTMN

PSH
PSHN
PSHPL
PSHTM

RET
RETN
RETPL
RETPLN

DEC
DE CPL
DEC TM
DECGOPL

WAIT
LPPL
LPPLN

(28) OD CONT
(29) 10 - 13

Assembler statement

IF cond THEN GOTO PL(data)
IF cond THEN GOTO TM(data)
IF CREG 0)THEN GOTO PL(data)
IF cond THEN GOTO PL(data) ELSE GOTO (SREG)

IF cond THEN CALL PL(data)
IF cond THEN CALL PL(data),NESTED
IF cond THEN CALL TM(data)
IF cond THEN CALL TM(data),NESTED

IF cond THEN LOAD PL(data)
IF cond THEN LOAD PL(data),NESTED
IF cond THEN LOAD TM(data)
IF cond THEN LOAD TM(data),NESTED

IF cond THEN PUSH
IF cond THEN PUSH,NESTED
IF cond THEN PUSH,LOAD PL(data)
IF cond THEN PUSH,LOAD TM(data)

IF cond THEN RET
IF cond THEN RET,NESTED
IF cond THEN RET,LOAD PL(data)
IF cond THEN RET NESTED,LOAD PL(data)

IF cond THEN DEC
WHILE (CREG <> 0) WAIT ELSE LOAD PL(data)
WHILE (CREG <> 0) WAIT ELSE LOAD TM(data)
IF (cond) THEN GOTO PL(data) ELSE WHILE CREG <> 0) WAIT

IF cond THEN GOTO PL(data) ELSE WAIT
WHILE (CREG <> 0 LOOP TO PL(data)
WHILE (CREG <> 0) LOOP TO PL(data) ELSE NEST

CONTINUE
CMP CMP TM(data) TO PL(data)

2-8

CHAPTER3

Am29PL 141 SIMULATOR and TEST VECTOR GENERATOR

3.1 OVERVIEW

The Am29PL141 Simulator, Test Vector
Generator, and the Am29PL141 Assembler
provide complete high level software support for
the Am29PL141 device. Both the simulator and
the test vector generator are designed specifically
forthe Am29PL141.

3.1.1 SIMULATOR FEATURES

The Am29PL141 simulator provides high level
interactive simulation capability for the
Am29PL141 microprograms. Along with the
Assembler and Test Vector Generator, it helps to
verify Am29PL 141 designs completely before a
device is programmed. The simulator supports
functional simulation only. It does not provide any
timing simulation.

The Am29PL141 simulator uses the Jedec fuse

DATABASE

Am29PL141 ,..
ASSEMBLER

._
ERROR PROM BIT

FILE PATIERN

map file (generated by the Am29PL141
Assembler) and the test vector file (generated by
the Am29PL141 Test Vector Generator) as its
inputs (Figure 3-1). Based upon the contents of
the Jedec fuse map and the test vector file, it
generates "computed output signals" and
compares these against expected output values
as specified in the test vector file or interactively by
the user. If any differences are detected, it flags
the errors by displaying a "?"under the unmatched
output signals. For any outputs in the test vector
for which the computed results or contents of the
Jedec fuse map file (omitting the output signals)
are desired, "X" or "N" must be specified.

3.1.2 Am29PL141 SIMULATOR DISTINCTIVE
CHARACTERISTICS

• Allows the user to preload or change all internal
registers (interactively)

• Displays complete status information including

USER

1
SYSTEM
EDITOR

J

I TEST VECTOR
GENERATOR

1
JEDECFUSE

I
t_ t_

PROM]
PROGRAMMER SIMULATOR

--

06541A 3-1

Figure 3-1. Simulator/Test Vector Environment

3-1

all input pin signals, computed and expected
output signals, contents of all internal registers

• Break point capability
• Single step capability
• Simulates SSR diagnostic mode
• Default values for test vectors
• Interactive mode of operation
• Jedec fuse map file used as simulated micro

program memory
• Another program can be executed during

simulation

3.1.3 SIMULATOR REQUIREMENTS

The following steps are required to run the
simulator:

A. Write and Assemble a microprogram source file

Write a micro-program using the Am29PL 141
Assembler language. Then use the Am29PL 141
Assembler to assemble the program. The
Assembler will generate the corresponding Jedec
fuse map file to be used by the simulator. Refer to
Chapter 2 for details about writing and assembling
a micro-program.

B. Create Test Vectors File

The source test vectors file can be written in a
symbolic format. This test vector source file is
transformed into the Jedec standard, structured
functional test information format by the
Am29PL 141 test vector generator. The output of
the Am29PL141 test vector generator is called the
Test Vector file. (Please refer to the Am29PL 141
Test vector generator description in Section 3.2
for details.

Keeping micro program source and test vector files
separate allows one simulation model to have a set
of different test vector files.

C. Execute simulation

After the source program is assembled and the
test vectors file has been generated, the simulator
is ready to run. The details of running the
simulator are presented in Section 3.3.

The simulator model is designed to reflect the
Am29PL 141 device as much as possible. Initially
applying a software asserted RESET signal to the
simulator is the same as applying a RESET to the
Am29PL 141 device. On the next rising clock
edge after a RESET, a value of 63 is loaded into
the microprogram counter; the microinstruction at
location 63 is loaded into the pipeline register and
the EQ flag is cleared. However, if the RESET

signal is not asserted in the beginning, the
simulator assumes its stage right after a RESET.

Please note, that Am29PL 141 simulator provides
functional simulation only-no timing simulation.
The simulator assumes 0 propagation delay.
However, the clock pulse must be specified as one
of the inputs in the test vectors to get register
transfers and to compute outputs.

3.2 Am29PL 141 TEST VECTOR GENERATOR

3.2.1 INTRODUCTION

This section describes the test vector generator
program, TEST41, and the syntax of the function
table. The source test vector file is defined as the
function table created by the user (using a text
editor). The function table is written in a symbolic
format which the Am29PL 141 Test Vector
Generator (TEST41) can transform into JEDEC
standard test vector format. The syntax of the
function table is quite similar to that of PLPL. The
output of TEST41 is in the JEDEC standard
format. It can be used as the input file to the
Am29PL141 simulator or sent to the device
programmer.

The function table enables the user to easily
specify his own set of test vectors to verify his
microprogram design.

3.2.2 FUNCTION TABLE SYNTAX

The function table has the following format:

3-2

[Table heading]

(PIN)

Pin declaration

(VECTORS)

(IN) Input pin names ;
(OUT)Output pin names ;

(BEGIN)

Test vectors

(END.)

Keywords are enclosed in parentheses. The
optional fields are enclosed in brackets.

Table Heading: The heading comprises the first

arbitrary number of lines before the keyword "PIN".
The table heading is provided as design
documentation.

Pin Declaration: The purpose of pin declarations is
to let users specify symbolic names for device
pins, so that user-defined identifiers can be
equated to physical device pins. The first five
character of the specified name are displayed
vertically on the simulator screen. Note, the pin
names in Figure 3-2 and the resulting simulation
screen display.

The pin declaration begins with the keyword "PIN"
and is terminated with a semicolon. All the pin
assignments appear within the keyword PIN and
the semicolon.

The syntax for a single pin assignment is as
follows:

pin_name = pin_number
Example : CLK = 27

The difference in pin declarations between PLPL

HEADER fAm29PL141)
Test for Instr PSH

PIN

VECTORS

elk = 27
/reset .. 19
t5 = 20
t3 = 22
tl = 24
cc = 26
MEMRQ = 17
pl2 = 15
!ORD = 12
pa = 10.
p6 = 8
p4 = 6
p2 = 4
po = 2
/zero = 1

t4 = 21
t2 = 23
to .. 25
pl5 = 18
pl3 "' 16
pll = 13
IOWR = 11
p7 = 9
p5 = 7
p3 = 5
pl = 3

(Programmable Logic Programming Language)
and Am29PL141 software supporting package
TEST 41 is that TEST 41 can not support vector­
type pin declaration. Thus, the following pin
assignment is illegal in TEST 41 environment:

T[5:0] = 20:25

The correct form is:

T5= 20
T4= 21
T3 = 22
T2= 23
T1=24
TO= 25

Vector Table Body: The vector table body begins
with the keyword "VECTORS". A list of signal
declarations follows the keyword VECTORS. This
list specifies that all signals in test vector body be
identified in the same sequence as they appear in
this list. TEST41 will identify and display the
vectors according to the order in the names are
given in the list.

IN elk /reset t5 t4 t3 t2 tl to cc :
OUT p4 p5 p6 p7 pl5 MEMRQ pl3 pl2 pll !ORD IOWR pa p3 p2 pl pO /zero

BEGIN
II

c I M I
1 r E II
o e M 00 e
c s ttttttc pppp lRll lRWp pppp r
k e 5432lOc 4567 5Q32 lDRa 3210 o

11 TEST INSTR FOR FAIL CONDITION

l c 0 1000000 LHHL LHHL LLHH LLHH x
2 c l OlllOOX HHLL LLHH LLHL LLHL x
3 c l 1001100 HHLL LLHH LLHH LLHH x
4 c l OOOlOlX HHLL LLHH HLLL HLLL x
5 c l 1001000 HHLL.LHHH HHHH HLLH H
6 c l lXXXXXX HHLL LLHH LHHL LHHL H
END.

Figure 3-2. TEST41 Input File (Function Table) Example

3-3

There are two fields in this signal declaration
list-IN, and OUT. The IN field contains the input
signals to the device. The OUT field contains the
output signals of the device. The signals are
displayed in the simulation screen display in the
order in which they are listed in the IN and OUT
fields. Figure 3-2 shows the IN and OUT
declarations. Refer to Figure 3-3 for the resulting
simulation display.

Test Vector Format: The test vectors are
embodied between the keyword "BEGIN" and
"END.". Each test vector starts with a vector
number and ends with a semicolon. The vector
number can be any decimal integer with 4 or fewer
digits. The test vectors in the TEST 41 output file
are in JEDEC standard format and have the same
vector numbers specified in the source function
table by the user. This makes cross reference
~~oc .

The test vectors must contain only valid JEDEC
test conditions:

0 - drive input low
1 - drive input high

VOOOl

Pin
Name

c
L
K

I
R
E
s T
E 5

INPUT

T T T T T c
4 3 2 1 0 c

Pin # : 27 19 20 21 22 23 24 25 26
Vector: c o 1 o o o o o o

Computed :

CREG = 0 , SREG = 0 ,
#XOO #XOO

PC • 63,
#X3F

C - drive input low, high, low
N - power pins and outputs not tested
L - test output low
H - test output high
Z - test output for high impedance
X-don't care

There is a direct one to one correspondence
between each entry in a test vector and the pin
signal within the test vector table. For example, in
Figure 3-2, the first signal 'C' in the test vector table
body corresponds to the CLOCK input signal while
the second test signal bit corresponds to the
RESET signal. The simulator maps test signals to
their corresponding pre-defined pin locations.
The test vector signals must be in the same order
as the listing of the pins in the "IN" and "OUT" list.

The signals not included in the "IN" and "OUT" list
are treated as don't cares(i.e. 'X') in the JEDEC
format. There is a direct one to one
correspondence between each test signal and the
"IN" and "OUT" list.

Regardless of the order in which the vector signals
are displayed, the output vector in the pipeline is

OUTPUT
M
E

p M p P p
P P P P 1 R 1 1 1
4 5 6 7 5 Q 3 2 1

I I
0 0
R W
D R

p p p p
8 3 2 1

6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
LHHLL H H LL L H H LLH
LHHLL H H LL L H H LLH

EQ = 0

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
#B0110001101100011
#X6363

1 #XOF 1 6 63
#X3F

OPCODE MNEMONICS : GOTOTM
Current PL Contents loaded from ROM address 63

V0002 INPUT OUTPUT
I M
R E I I

Pin c E p M p p p 0 0
Name L s T T T T T T c p p p p 1 R 1 1 1 R w p p p p

K E 5 4 3 2 1 0 c 4 5 6 7 5 Q 3 2 1 D R 8 3 2 1

Pin # : 27 19 20 21 22 23 24 25 26 6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
Vector: c 1 0 1 1 l 0 0 x H H LL L L H H L L H L L L H

Computed : H H L L L L H H L L H L L L H

CREG = 0 , SREG = 0 , PC = 32, EQ = 0
#XOO #XOO #X20

Pipeline : OE OPCODE CONSTANT DATA OUTPUTS
l #BlOO 28 63 #BOOllOOlOOOllOOlO

#XlC #X3F #X3232
OPCODE MNEMONICS : CMP
current PL Contents loaded from ROM address 32

Figure 3-3. Simulator Output File Example

3-4

V0003
I
R

C E

INPUT

Pin
Name L S T T T T T T C

K E 5 4 3 2 1 O C

Pin # 27 19 20 21 22 23 24 25 26
Vector: C 1 1 o o 1 1 o o

CREG = 0 ,
#XOO

SREG • 0 ,
#XOO

Computed :

PC .. 33,
#X21

p
p p p p 1
4 5 6 7 5

OUTPUT
M
E
M P P
R 1 1
Q 3 2

I I
p 0 0
1 R W p p p p
1 D R 8 3 2 1

6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
HHLLL L H H LL H H LLH
HHLLL L H H LL H H LLH

EQ = 1

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
#B0011001100110011
#X3333

1 #XOF 1 6 63
#X3F

OPCODE MNEMONICS : GOTOTM
Current PL Contents loaded from ROM address 33

V0004

Pin

I
R

C E

INPUT

Name L S T T T T T T C
K E 5 4 3 2 1 0 C

Pin # 27 19 20 21 22 23 24 25 26
Vector: c 1 o o o 1 o 1 x

Computed :

CREG = 0 I

#XOO
SREG • 0 ,

#XOO
PC • 38,

#X26

OUTPUT
M
E

p M p P
P P P P 1 R 1 1
4 5 6 7 5 Q 3 2

I I
p 0 0
lRWPPPP
1 D R 8 3 2 1

6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
HHLLL L H H H LL L HLL
HHLLL L H H H LL L HLL

EQ = 1

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
#B0011100000111000
#X3838

1 #Xl6 0 7 63
#X3F

OPCODE MNEMONICS : PSHTM
Current PL Contents loaded from ROM address 38

V0005

Pin
Name

I
R

C E

INPUT

L S T T T T T T C
K E 5 4 3 2 1 0 C

OUTPUT
M
E

p M p p
P P P P 1 R 1 1
4 5 6 7 5 Q 3 2

p 0 0
1 R W P
1 D R 8

p pp
3 2 1

Pin # 27 19 20 21 22 23 24 25 26
Vector: c 1 1 o o 1 O o o

Computed :

6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
HHLLL H H H H H H H HLL
HHLLL L H H H LL H HLL

CREG = 5 ,
#X05

SREG = 39,
#X27

Unmatched :

PC '" 39,
#X27

?

EQ = 1

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
#B0011100100111001
#X3939

1 #XOF l 6 63
#X3F

OPCODE MNEMONICS : GOTOTM
current PL Contents loaded from ROM address 39

V0006

Pin

I
R

C E

INPUT

Name L S T T T T T T C
K E 5 4 3 2 l 0 C

Pin # 27 19 20 21 22 23 24 25 26
Vector: c 1 1 X X X X X X

CREG = 5 ,
#X05

SREG • 39,
#X27

Computed :

PC • 36,
#X24

OUTPUT
M
E I I

P M P P P O 0
PPP P 1 R 1 1 1 R W P PPP
4 5 6 7 5 Q 3 2 1 D R 8 3 2 l

7 8 9 18 17 16 15 13 12 11 10 5 4 3
HHLLL L H H L H H L LHH
HHLLL L H H L H H L LHH

EQ

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
#BOOllOllOOOllOllO
#X3636

l #Xl5 l 5 0
#XOO

OPCODE MNEMONICS : PSH
current PL contents loaded from ROM address 36

Simulation Completed 3 simulation error(s) found

Figure 3-4. Function Table Example 2

3-5

given in ascending order from right to left by pin ·b adr Set break point at microprogram memory
number. address adr. When the microinstruction at

address adr is loaded into pipeline register
and executed, the simulator pauses and

3.2.3 RUNNING TEST41 waits for commands from users. The
address adr must be a decimal integer from

Format: TEST41 [-e] [-o OUTFILE] INFILE 0 to 63.

-x val Set default value for "X" in test vectors. Val
Meaning: is either 1 or 0. Without this option, the

default value of "X" is 0.
-e Suppress the output to the CRT

-o OUTFILE Write the test vector generator
output to the file named "OUTFILE"

INFILE The test vector source file
(Function Table) Refer to Figure
3-2.

3.3 EXECUTING SIMULATIONS

3.3.1 INVOCATION COMMAND OPTIONS
AVAILABLE

This section describes the options which can be
supplied to the simulator in the invocation
command. Option flags are prefaced with a minus
"-" character. Options can be specified in upper
case or lower case characters. Some options
require a parameter. The parameter following the
option flag must be typed. The order of
appearance of options is not significant as long as
they are situated between the command name and
the JED EC fuse map file name.

The invocation command line format is:

sim41 [-edsr] [-b adr] [-x val] [-o
out] [-p val] -t tstvec -ntstin
jedf ile

Where:

-e

-d

-s

-r

Suppress the output to the CRT.

Simulate in the SSR diagnostic mode.

Suppress single step mode. Without this
option, simulator pauses after each test
vector is simulated until the user gives a
command (carriage return) to let it continue.
During the pause, users can enter
commands interactively. Refer to Section
3.3.5 for details.

Suppress displaying the contents of all
internal registers.

-o out Write the simulator output to the file name
"out".

-p val Preload internal registers. Which internal
register is preloaded depends on the first
character of "val" as follows:

3-6

First Character Register Preloaded

p
c
s
E

PC
CREG
SREG
EQ

The next character . following E is the
decimal integer O or 1. For all other
registers, the first character is a value
from 0 to 63.

-t tstvec Specifies the test vector file, the output
file of test vector generator program
TEST41. It is required.

-n tstin Specifies the input source file also used
in the test vector generator program
TEST41. It is required.

jedfile The last command line argument is not
optional. It is the Jedec fuse map file
name.

Some examples of simulation command lines
which demonstrate correct invocation syntax are:

sim41 -sr -t cntr. tl -n cnta
cntr. jed

sim41 -t cntr. t2 -n cnta cntr. jed
sim41 -es -o tmpf ile -x 0 -r -t

cntr.t3 -n cnta cntr.jed

sim41 -esr -t tmpfile 0 -n cnt
cntr. jed

sim41 -p p21 -o tmpfile -n cnt
cntr. jed

sim41 -p pO -p c63 -p sO -t cntr.tl
-n cnt cntr.jed

The files cntr.t1, cntr.t2, and cntr.t3 are TEST 41
output vector files. The files cnta and cnt are
TEST 41 input files. Both the source name and the
output file name are required. The file cntr.jed
contains the JED EC fuse map.

3.3.2 SIMULATOR OUTPUT

After each test vector is simulated, the simulator
outputs a snapshot. The output snapshot
contains the result of the simulation for the test
vector, the test vector input with pin number and
pin name, and a vector number of the vector last
fetched. Each vector number with an initial
character of "V" is a vector fetched from the test
vector file.

The contents of internal registers are also
displayed. If the single step mode is not
suppressed, the simulator will prompt the user for
commands by displaying "!". The user can either
enter commands or press <CR> to continue the
simulation. Among the commands is a help
command "H" which, when invoked, shows all
available commands to the user. An example of
simulation output is shown in Figure 3-3.

The test vector number ''V0001" appears on the
upper left corner of Figure 3-3. This means that
the test vector "V0001" in the test vector file was
used as the input. The vector numbers preceded
by a 'V' are the same as the vector numbers
fetched by the simulator from the test vectors file.

The first line displays the vector file number and
the "INPUT" and "OUTPUT" column titles. The
next five lines give the pin names displayed
vertically. Shown below the pin names are pin
numbers. The pin names and numbers appear in
the order they are specified in the TEST 41 source
file in the "IN" and "OUT" list. Refer to Section 3.2.
Below the pin numbers are the test vectors given
to the simulator. Below the test vectors are the
output signals computed by the simulator. If the
user specifies expected output signals ('H' or 'L'),
the simulator compares the expected output
signals with the computed output signals and
shows any unmatched signals by displaying '?'
under them.

Unless users apply "-r" option when invoking the
simulator, the simulator displays the contents of all
internal registers, OPCODE mnemonics of the
current OPCODE field in the pipeline register, and
the source of the contents of pipeline register. For
GREG, SREG, PC, and DATA field of pipeline
register, both decimal and hexadecimal values are
displayed. The hexadecimal values are displayed
below their decimal values. For the number

representations, please see Section 3.3.6.

The simulator output file shown in Figure 3-3 is the
result of running the file shown in Figure 3-2 along
with a related Jedec map. In the first test (V0001),
the CC input (pin 26) is tested for a low signal and
since it is a Zero, a branch is taken to the address in
T[S:O] which is decimal 32 or hex 20. In the next
step, the value 32 is in the PC. The opcode calls
for a compare with the constant value 28. Since
the T[S:O] input is 011100 which is hex 1 C or
decimal 28, the compare is true and the EO flag is
set as seen in the next display (V0003).

The PC is incremented to 33. The value of the test
input of vector V0003 is 38. The condition to be
tested is test 6 (CC) for LOW or false. Since bit 26
is zero, the branch is taken to address 38.

The next display (V0004) shows that the EO bit is
still set to ONE and the PC is at address 38. The
EQ is not reset to Zero unless EQ is the condition
in a branch or a reset is executed. In this step, the
EQ bit is tested for true as indicated by the test
number (7) with the polarity bit set at Zero. As a
result, the address PC + 1 (39) is pushed into the
SREG. The GREG is loaded from the T[S:O] field
masked by the data field (#X3F) placing the value 5
into the GREG. VOOOS shows these register
values. The EQ bit remains at "1" because it was
the condition in a PUSH instruction, not a branch
instruction.

3-7

The pipeline is loaded from address 39 for VOOOS.
The condition to be tested for false is test 6 (CC).
Since CC (pin 26) is Zero, the branch is taken to
the address specified by the input T[S:O] masked
by the data field giving an address of 36 decimal or
24 hexadecimal.

There are three errors in the VOOS output vector as
shown by the three question marks in the
"unmatched" line. This did not affect the
simulation results but would affect the application
control signals.

The last test vector shown in this example (V0006)
tests the TS input. Since it is a ONE and the
polarity bit is set to One (test for false), no branch is
taken. This test vector is not the last vector in the
application being simulated but it is the last vector
in this simulator run. Therefore, a summary of the
number of errors found is displayed following this
vector.

3.3.3 TERMINATING THE SIMULATION

When not in the single-step mode, the simulation
is terminated when the simulator has read all of the

lines in the test vector file. When In the single-step LS [arg] Load argument into Subroutine
Register (SREG) mode, the user terminates the simulation by

entering the command EX. After the simulation is
terminated, the simulator tells the user how many LL Load pipeline register. The simulator

will prompt for each field's contents. unmatched output signals were detected by
displaying the total number of such errors as seen
in Figure 3-2. SO Set EQ flag.

3.3.4 SSR DIAGNOSTICS SIMULATION

To choose th SSR diagnostics option, one must
specify the "-d" option in the simulator invocation
command. In addition, MODE, DCLK, and SDI
input signals must be specified in test vectors file.
The simulated internal registers include the
Shadow Register on this option.

3.3.5 INTERACTIVE COMMAND SET

To use interactive commands, one must be in the
single-step mode. Single-step mode is specified
in the invocation command by not specifying the -
S option which suppresses the single-step mode.
An interactive command is defined to be the
contents of a single text line. Only one command
is allowed on a single text line. The simulator
prompts for commands with the prompt"!". There
is no difference between the upper and the lower
case characters.

Each command line begins with the name of the
command. Some commands require arguments. If
the user does not enter the argument in the
command line, the simulator will prompt for the
argument. The argument for interactive
commands may be a binary, octal, decimal, or
hexadecimal number. Usually, the argument
specifies the contents of a register or a PROM
address. The argument should not exceed the
range of values that a register can hold. If a user
specifies an argument beyond the range, the
argument will not be accepted. All invalid
arguments leave the contents of the internal
register intact. Note: the simulator refers to
interactive commands as subcommands to
distinguish them from the invocation command.

The space between commands and arguments is
optional.

The following commands are currently available:

LP [arg]

LC [arg]

Load argument into Program Counter
. (PC).

Load argument into Count Register
(CREG).

RO Reset EQ flag.

SS Set single step mode. It is used to
resume after reaching a breakpoint in
single step mode.

CS Cancel single step mode.

SB [arg, ..] Set break point at PROM address
specified by argument.

CB [arg, ..] Cancel break point at PROM address
specified by argument. If the break
point is not set yet, this command has
no effect.

CBA Cancel all break points.

DB Display break points currently set.

3-8

RUN [prog] Run another program. The full device
and pathname for COMMAND.COM
must be given by an entry in the
environment, with "COMSPEC". This
may be checked by using the DOS
command "SET' at the system
command level (not at the interactive
command level).

EX Terminate simulation and exit to OS
when entering interactive commands
from the keyboard in the single-step
mode.

Command Examples:

Shown below are some examples of the usage of
interactive commands. The underlined characters
are entered by the user. The other characters are
prompts by the simulator.

! ~ .lQ.

!~
PC = .lQ.

! lc#bOOOOOOO

!k
CREG = !Xl..a.

~ 1.2.3.4

.cil
Break Point = ~

! .db.
Break point(s) : 1,4

.ci2a.

.db.
Break point(s)

3.3.6 NUMBERS

Much of the information passed between the
simulator and the user is expressed in numeric
form. Input numbers are typed by the user, and
accepted by the simulator. Output numbers are
generated by the simulator, and viewed by the
user. Each number is in one of four bases: 2, 8,
10, or 16.

On input, the user must specify the intended
number base. This is done by either an explicit
number prefix, or by following the prompt of the
simulator.

The simulator output format is fixed. The user can
neither change the format nor the number base.
However, if the internal form of an output data has
a bit width more than or equal to 6, the simulator
displays the data (with the exception of opcodes}

in both decimal and hexadecimal form. Opcodes
are only displayed in hexadecimal form. The
output field of the pipeline register is displayed in
both binary and hexadecimal forms .

Uppercase characters do not differ from lowercase
characters in number representation.

Binary Numbers: Input and output binary numbers
are represented as a string of 'O' and '1' digits
prefaced with the string "#8" .

Octal Numbers: Input and output octal numbers
are represented as a string of the digits 'O' through
'7' prefaced with the string "#0".

Decimal Numbers: Input and output decimal
numbers are represented as a string of the digits
'O' through '9'. Decimal numbers may optionally be
pref aced with the string "#D".

Hexadecimal Numbers: Input and output
hexadecimal numbers are represented as a string
of the digits 'O' through '9' and the letters 'A'
through 'F' prefaced with the string "#X".

3-9

Number Examples:

#d123
123
#80110
#b101
#0077
#xa1
-#b100

(decimal}
(decimal}
(binary}
(binary}
(octal}
(hex}
(invalid, the simulator does not
accept negative numbers}

CHAPTER 4

COFFEE MACHINE CONTROLLER USING Am29PL141

This section is a tutorial to show designers how to
go from a design requirement to Am29PL141
microcode. The coffee machine application was
chosen because it is easy to understand.
Obviously, the Am29PL 141 will never be used for
such a slow application.

The following example describes the hardware and
the programming required. A flow diagram of the
program is included. The assembler program for
the coffee vending machine example is called
COFFEE.EXP. The Am29PL 141 assembler
produces two outputs, the JEDEC fuse map
output file (COFFEE.JED) and the PROM bit
pattern output file (COFFEE.BIT. First, the
problem is defined.

The coffee machine controller waits for a coin
before dispensing the beverage selected by the
customer. The choices are indicated as
combinations of buttons.

Design requirement:

Design a coffee machine controller that works as
follows:

10. If coffee was selected, check to see if cream
and/or sugar are selected. If yes, cream 2.0
seconds, sugar 1 .5 seconds.

11. After water has completed filling the cup, allow
3.5 seconds for cup removal before testing for
presence of next coin.

12. Clock rate is 1 O Hz.

As can be seen, there are six possible beverages:

i. coffee black
ii. coffee with sugar
iii. coffee with cream
iv. coffee with cream and sugar
v. chocolate
vi. soup

The conditions that need to be tested are:

i. coin drop
ii. coffee
iii. cream
iv. sugar
V. chocolate
vi. soup
vii. return (coin return)

1. Do nothing until a coin is detected. Control signals that need to be generated from the
2. On coin detection turn on busy light and wait controller are:

for selection:

i. coffee
ii . chocolate
iii. soup
iv . coin return

3. If coin return is detected, return coin, turn off
busy light and wait for next coin.

4. If coffee, chocolate or soup is detected, drop
a cup.

5. The cup has 1.5 seconds to get into place.
6. Turn on water for 1 second prior to release of

powders.
7. Water will remain on continuously for a total of

10 seconds.
8. Busy light will remain on until end of

sequence.
9. Depending on selection, either coffee, soup

or chocolate will be dispensed:

coffee 2.5 seconds
soup 2.0 seconds

chocolate 3.5 seconds

4-1

i. busy light on (busy)
ii. cup drop (cup)
iii. water on (water)
iv. coffee on (coffee)
v. cream on (cream)
vi. sugar on (sugar)
vii. chocolate on (choclat)
viii. soup on (soup)
ix. coin return (coin_return)
x. clear inputs (clr_inp)

Figure 4-1 represents the hardware required for
the controller. The inputs need to be synchro­
nized and latched hence the PAL device (16R8).
Once latched, the clr_inp signal from the
Am29Pl141 clears the external registers within
the Pal at the end of each sequence. The
Am29Pl141 has seven external test inputs.
These are used to test the seven conditions.
Since all but one of the Am29Pl141 instructions
are conditional, unconditional jumps must be
implemented by a 'forced pass'. The 'EQ' flag
internal to the Am29Pl141 is a test condition not

being used in this design. It can therefore be used
to allow 'unconditional' instructions. The state of
the 'EQ' flag is always known since it is unused for
any other purpose. (The 'EO' flag is cleared on
reset).

Figure 4-2 is the flow diagram for the program. It
describes the logical flow of events required by the
design. The rectangular boxes in the flow diagram
show the value of the control field for that state.
The diamond shaped boxes imply a conditional
test to decide the next state. A pair of rectangular
and diamond shaped boxes indicate a conditional
microcode line. A rectangular box not followed by
a diamond shaped box implies that the instruction
is a continue or an unconditional branch.

The Am29PL 141 is used to develop the micro-

CLR
16R8

code. Figure 4-3 is a listing of the Assembler
source code used. It is assumed that the reader is
familiar with the Am29PL 141 assembler (described
in Chapter 2) supplied by Advanced Micro
Devices. Note that all timing is in 0.5 second
increments. At 10 Hz, 0.5 second corresponds to
5 clocks.

Each box in the flow diagram can be directly
translated into one or more lines of microcode.
One important convention needs to be
remembered. Each microcode line specifies the
state of the control outputs and the branch
address for the NEXT instruction. Hence in the
flow diagram, the decision box follows the output
field box. The flow. diagram indicates the
microcode line numbers corresponding to each
box.

CLK PO Busy

P1 Cup

P2 Water

P3 Coffee

P4 Cream

PS Sugar

PG Chocolate

P7 Soup

PB Coln
Return

·-1'9 Clear
Inputs

Am29PL141

06591A 4·1

Figure 4-1. Coffee Machine Hardware

4-2

Sub

3 !
44,45

46,47
4 !

48

·!
v· 6

06591A 4-2

Figure 4-2. Coffee Machine Program Flow Diagram {Sheet 1 of 2)

4-3

8
Cupdrop,Busy

CallSub

9, 10

Busy,Water,
Coffee 2.5sec

Busy,Water

Busy,Water

24 25

28

Cupdrop,Busy
CallSub

29,30

Busy,Water,
Choe. 3.5sec

Busy,Water,
Sugar 1.5sec

NO

Busy,Water,
Cream 2.0 sec

20, 21

33

Cupdrop,Busy
CallSub

34,35

Busy,Water,
Soup2sec

Busy,Water,
Cream 2.0 sec

13,14,18,19,22,23, 26,27,31,32,38,39,40

Busy,Water,
Total 10sec

41,42,43

Busy3.5sec
Clear1nputs

36,37

Busy,Water,
6sec

06591A 4-2b

Figure 4-2. Coffee Machine Program Flow Diagram (Sheet 2 of 2)

4-4

Special care needs to be taken to ensure that
water is on continuously for 1 O seconds. Six
possible paths lead to the microcode line labeled
"last". At the end of each of these paths, the
CREG is loaded with a value equal to 10 seconds
minus the time in seconds for which water has
already been on. Note that the value loaded into
the CREG is one less than the expected value.
This is because the value o in the CREG needs to
be accounted for as the Am29PL141 checks the
CREG and then decrements.

For example, coffee needs to be turned on for 2.5
seconds if selected. At 1 O Hz., this translates into
25 clock periods. Coffee is on for one clock period
during the instruction when the counter (CREG) is
loaded with a countdown value (line 9 of the
microcode). The counter therefore needs to be
loaded with a countdown value of 23 which
corresponds to coffee being on for 24 clock
periods before the counter counts down to zero.
The total time for which coffee is on is therefore 24
+ 1 = 25 clock periods or 2.5 seconds.

DEVICE (PL141)

DEFAULT = l ;

On reset, the 'EQ' flag is cleared. For a 'pass' to
occur, the flag must, therefore, be tested for a 'O'.
Hence the 'not fail' in each of the unconditio.nal
microcode lines instead of the more obvious
'pass'. Also on reset, the Am29PL141 executes
the instruction on line 63. In this example, this line
is an unconditional branch to line 1 of microcode.
This is a wasted microcode line. If efficient coding
is required to preserve microcode lines, the coin
test on line 1 of the microcode could be placed on
line 63 thus saving one line of microcode.

To assemble this file, type:

A> ASM141 -i COFFEE.EXP -o COFFEE.JED -b
COFFEE.BIT

When the file COFFEE.EXP is assembled, two
output files are created, COFFEE.JED and
COFFEE.BIT. The JEDEC fuse map output is sent
to the file COFFEE.JED (Figure 4-4). The PROM
bit pattern is sent to the file COFFEE.BIT. See
Figure 4-5 for a listiing of this file.

DEFINE "test inputs are given name assignments"

coin = to
soup_test = tl
choc test = t2
cream test = t3
sugar-test = t4
coffee test = ts
coin ret = cc
fail-= eq

"output/control bits are given name assignments"

BEGIN

off = O#h
busy = Ol#h
cup = 02#h
water = 04#h
coffee = 08#h
cream = lO#h
sugar = 20#h
choclat = 40#h
soup = SO#h
en ret = lOO#h
clr_inp = 200#h;

"wait for a coin to drop and
11 111 zero:off,

check selection after coin detect"
if (not coin) then goto pl(zero);
continue; 11 211 clr inp,

113 11 test:busy,
11411 busy,
"5" busy,
11 611 busy,
11711 busy + cn_ret +

if (coffee test) then goto pl(cofe);
if (choc test) then goto pl(choc);
if (soup-test) then goto pl(sup);
if (not coin ret) then goto pl(test);

clr_inp,if (not fail) then goto pl(zero);

Figure 4-3. Coffee Machine Source Program Listing (Sheet 1 of 2)

4-5

hex <dee> OE OPCODE POL TEST DATA OUTPUT
000 < 0> [1 11001 1 000 000000 0000000000000000]
001 < l> [1 01101 1 111 111111 0000001000000000]
002 < 2> [1 11001 0 101 000111 0000000000000001]
003 < 3> [1 11001 0 010 011011 0000000000000001]
004 < 4> [1 11001 0 001 100000 0000000000000001]
005 < 5> [1 11001 1 110 000010 0000000000000001]
006 < 6> [1 11001 1 111 000000 0000001100000001]
007 < 7> [1 11100 1 111 101011 0000000000000011]
008 < 8> [1 00100 1 111 010111 0000000000001101]
009 < 9> [1 01000 1 111 001001 0000000000001101]
OOA < 10> [1 11001 0 100 001110 0000000000000101]
OOB < 11> [1 11001 0 011 010111 0000000000000101]
ooc < 12> [1 00100 1 111 111100 0000000000000101]
OOD < 13> [1 11001 1 111 100111 0000000000000101]
OOE < 14> (1 00100 1 111 001100 0000000000100101]
OOF < 15> [1 01000 l 111 001111 0000000000100101]
010 < 16> [1 11001 0 011 010011 0000000000100101]
011 < 17> [1 00100 1 111 101110 0000000000000101]
012 < 18> [1 11001 1 111 100111 0000000000000101]
013 < 19> [l 00100 1 111 010010 0000000000010101]
014 < 20> (l 01000 1 111 010100 0000000000010101]
015 < 21> (1 00100 1 111 011010 0000000000000101]
016 < 22> (1 11001 1 111 100111 0000000000000101]
017 < 23> (1 00100 l 111 010010 0000000000010101]
018 < 24> (l 01000 l 111 011000 0000000000010101]
019 < 25> [l 00100 1 111 101000 0000000000000101]
OlA < 26> (l 11001 l 111 100111 0000000000000101]
OlB < 27> [1 11100 l 111 101011 0000000000000011]
OlC < 28> (1 00100 1 111 100001 0000000001000101]
OlD < 29> (1 01000 1 111 011101 0000000001000101]
OlE < 30> (l 00100 l 111 110100 0000000000000101]
OlF < 31> (l 11001 l 111 100111 0000000000000101]
020 < 32> (1 11100 l 111 101011 0000000000000011]
021 < 33> (1 00100 l 111 010010 0000000010000101]
022 < 34> (l 01000 l 111 100010 0000000010000101]
023 < 35> [l 00100 l 111 111010 0000000000000101]
024 < 36> (1 01000 l 111 100100 0000000000000101]
025 < 37> (l 00100 l 111 000111 0000000000000101]
026 < 38> (1 11001 l 111 100111 0000000000000101]
027 < 39> (1 I 01000 l 111 100111 0000000000000101]
028 < 40> [1 I 00100 l 111 100000 0000000000000001]
029 < 41> [1 I 01000 l 111 I 101001 0000000000000001]
02A < 42> [1 I 11001 l 111 I 000000 0000001000000001]
028 < 43> [1 I 00100 I l 111 I 001101 0000000000000001]
02C < 44> (1 I 01000 I 1 111 I 101100 0000000000000001]
02D < 45> [l I 00100 I 1 111 I 000111 0000000000000101]
02E < 46> (1 I 01000 I l 111 I 101110 I 0000000000000101]
02F < 47> (1 I 00010 I l 111 I 111111 I 0000000000000101]
03F < 63> [1 I 11001 I l 111 I 000000 I 0000001000000000]

Where:
Oe = synchronous output enable for P[l5:8)
OPCODE = Five-bit field for selecting one of the 29

microinstructions
POL = Test condition polarity select field

0 = Test for true (HIGH) condition
l = Test for false (LOW) condition

TEST = Binary value of input line to be tested
Value Input condition Value Input Condition
000 TO 100 T4
001 Tl 101 TS
010 T2 110 cc
011 T3 111 EQ

DATA = 6-bit conditional branch microaddress, test input mask,
or counter value field designated as PL in
microinstruction mnemonics (P(21:16])

Output = 16-bit user output control signals (P[l5:0))

Figure 4-5. PROM File for Coffee Machine Application

4-8

CHAPTER 5

DEC PDP-11 UNIBUS CONTROLLER

5.1 THE DESIGN PROBLEM

This paper discusses the use of the Am29PL141
Fuse Programmable Controller (FPC) as a DEC
PDP-11 Unibus* interface controller.

Designing an interface for the Unibus is typical of
the problems which can be readily solved using
the Am29PL 141 FPC. The complexity of Unibus
handshaking is such that microprogramming is a
reasonable design technique, but use of a
separate sequencer, control memory, and pipeline
register is not economical. Since the FPC contains
a sequencer, memory, and pipeline; it fits this class
of problem rather well. The PDP-11 was chosen for
this example because it has a well documented
protocol which is familiar to many engineers. An
Overview of the Unibus is included.

The problem this application note solves is to:

Design an interface between the Unibus and a
generic 1/0 device to allow the following
operations:

• Interface to handle all Unibus protocol for
• DATl/DATO with device as slave
• Device BR (interrupt)
• Device NPR (direct memory access)
• DATl/DATO with device as master
• Interface to handle synchronous parallel

transfers with device

5.2 DEC UNIBUS OVERVIEW

The DEC PDP-11 Unibus is an asynchronous bus
which supports programmed 1/0, prioritized
interrupts, and Direct Memory Access (OMA) in a
memory mapped 1/0 environment. All bus transfers
are between a bus master and bus slave, and are
controlled by the master. A bus arbitrator grants
bus mastership to requesting devices.

The six basic types of transfers allowed are:

DATO - word data transfer from master to
slave

DATOB - byte data transfer from master to
slave

DATI - word data transfer from slave to
master

5-1

DATIP - word data transfer slave to master,
inhibit restore cycle

NPR - Non Processor Request.
DMA device wants to become bus
master.

BRi - Bus Request. Interrupt request at
level i (4,5,6,or 7).

The following control signals are used during
transfers:

MSYN
SSYN
CO,C1
BRi
BGi
INTR
NPR
NPG
SACK
BBSY

master sync-timing control
slave sync-timing control
data transfer type
interrupt bus request level i
interrupt bus grant level i (note 1)
interrupt vector strobe
DMA bus request
OMA bus grant (note 1)
select acknowledge
bus busy

Note 1 : These signals are daisy chained to form
a physical priority level at each separate
logical priority level (npg, bg4, bg5, bg6,
bg7).

5.3 INTERFACE HARDWARE DESIGN

As shown in Figure 5-1, the architecture chosen
for this interface consists of three main sections­
Unibus signal buffering, address decoding, and
control logic. Data, address, and control signal
buffers provide proper Unibus levels and are
implemented using DS8641 Quad Unified Bus
Transceivers. The address decoder detects
whether the device is addressed as a slave or
master during Unibus DATI and DATO transfers,
and is best implemented using Am29806
decoders. The control logic is a microprogrammed
state machine which handles both Unibus and
device handshaking.

The heart of the control logic is the Am29PL141
Fuse Programmable Controller. Its user-defined
microprogram implements a state machine which
handles both device and Unibus handshaking.
Test inputs are synchronized with the FPC clock
using an AM29821 A 10-bit register. Five of these
inputs go directly to the FPC, while the other five
go through a multiplexer which expands the FPC
conditional test capability from seven to fourteen
signals. Two D flip-flops and OR gates are used to

DEVICE----------INTERFACE ------------"M- UNIBUS

(4) DS8641
TRANSCEIVER

IN
BUS

OUT

VE~~b~ t----1.:..:6"-------------~
DATA ---

1
"-'
6--------------a t)...----'"..;..;16

;..._-M DATA

ENA

ADDRESS t----1....,8~-----------...,
FROM i5m'OuT

(5) DS8641
TRANSCEIVER

ENABLES t----..1<----eo
4

Am2980619
IN DECODER

BUS
E A OUT

18
ADDRESS

ENA

FROM ADDROUT

(3) DS8641
TRANSCEIVER

WRITE
INTREQ !+---~--•

DMAREQ

OUT

IN
BUS o--_.,.c....;..;10 _ _.., CONTROLSIGNALS

M8YN

Am29821A E'NA
CP(15MHz) t-----~ CLK REGISTER

y

DATXREQ C1
DMAREQ

INTREQ 5
WRITE

D

C 74F251A
A
B MUX

+SV

CC TS

RESET 1----+-mln RESET

y
5E

WG,oo
MSYN
SSYN

5 ~y

BG
T[4:0)

10

Am29PL141 ZERo N.C.
CP(15MHz) i------n CLK

DATAIN CMPLT ..,_ __ .._ __ __.

ERROR

ENA

NPR,BR

Figure 5-1. Unibus Interface Block Diagram

5-2

8SYN
~
C1
SACK
IITTR

~
NPG
BG

06591A 5-1

implement the Unibus requesVgrant handshaking.
Because the clock period must be at least 64.5 ns,
a clock frequency of 15 MHz is appropriate (66.6
ns). A detailed control logic timing analysis is
shown in Figure 5-2.

5.4 MICROWORD FORMAT

The microword organization for this application of
the FPC is shown in Figure 5-3. The 32-bit
microword is subdivided into fields of various sizes
and functions. The 16 most significant bits are
used during next address generation within the
FPC, while the lower 16 bits are tailored to the
application.

OE is a synchronous output enable for output bits
15 through 8. The 5-bit OPCODE field contains
the FPC next address instruction.

POL controls polarity of the test condition selected

by the 3-bit TEST field.

DATA is a 6-bit address, test mask, or counter
value; depending on the OPCODE used.

ERROR is an interface timeout indication to the
peripheral device.

AUX TEST is a 3-bit field which controls the
external multiplexer for additional test inputs. The
TEST field must have a value of 5 to use the test
selected by AUX TEST.

The 12 COMMAND outputs are single bit control
signals. ADDROUT and DATAOUT enable Unibus
address and data buffers. DATAIN clocks Unibus
data into peripheral device registers. COMPLT
indicates to the device that an interrupt or OMA
operation has been completed. The remaining
outputs are Unibus control signals described in
Section 5.2.

Am29PL141
MIN.CU<

--"""I"'"---' 50

MINIMUM CLOCK PERIOD-15 +9.5 +40-64.5 ns

06591A 5-2

Figure 5-2. Control Logic Timing

5-3

Microword Format:

: 31 : 30 - 26 25 : 24,23,22 : 21 - 16 : 15 : 14,13,12 : 11 - 0
: oe : opcode : pol : test data : error : aux tst : command
oe: output
(31)

opcode:
(30-26)

pol:
(25)

test:
(24,23,22)

data:
(21-16)

error:
(15)

aux test:
(14, 13, 12)

command:
(11-0)

11

enable

29PL141 command
00 - RETPL 08 - LPPL 10 - CMP 18 - FORK
01 - RETPLN 09 - DEC 11 - CMP 19 - GOTOPL
02 - RET OA - LPPLN 12 - CMP lA - WAIT
03 - RETN OB - GOTOPLZ 13 - CMP lB - DECGO/C
04 - LDPL oc - DECAL 14 - PSHPL lC - CALPL
05 - LDPLN OD - CONT 15 - PSH 1D - CALPLN
06 - LDTM OE - DECTM 16 - PSHTM lE - CALTM
07 - LDTMN OF - GOTOTM 17 - PSHN lF - CALTMN

test polarity (1 = negate

conditional test input select
0 - msyn 4 - npg
1 - ssyn 5 - aux tests
2 - bbsy 6 - pass
3 - bg 7 - equal flag

branch address, test input mask, or counter load value

timeout error indication to device

additional test inputs when test 5
0 - datxreq cl
1 - dmareq 5 - spare
2 - intreq 6 - spare
3 - write 7 - spare

10 9 8 7 6 5 : 4 3 2 0
: addr : data : data : com : cl : intr : br : npr : sack : bbsy : ssyn : msyn :
: out : out : in : plt :
: : : : : : : : : : : : :

06591A 5-3

Figure 5-3. Microword Organization

5-4

5.5 UNIBUS CONTROLLER MICROCODE

Two things always happen during execution of a
microinstruction-the address of the next
microinstruction is determined using the
OPCODE, POLARITY, TEST, and DATA fields;
while concurrently, the Unibus and device
interfaces are controlled by signals from the
COMMAND field.

The microcode which controls the FPC was written
using the Am29Pl141 assembler available from
AMD. The mnemonics used in the source code are
shown in Figure 5-4. Note that these definitions
are consistent with the microword definition of
Figure 5-3. Figure 5-4 also contains the source
code for the FPC. Figure 5-5 shows the FPC
PROM contents. Note that one line of source
generates one PROM word. The general source
format is:

<label>: <outputs>, <FPC
instruction>; "comment"

Outputs may be either mnemonic or constants,
and may be logically "ANDed" or "ORed" together.
The FPC assembler instructions are included in
Chapter 2. The following paragraphs describe the
code written for this FPC application. It is helpful to
refer to the microcode source program listing
(Figure 5-4) and the timing diagrams (Figures 5-6,
5-7, 5-8, and 5-9).

After reset to address 63, the program branches to
address O (label TOP) and loops until one of the
external conditions DATXREQ, DMAREQ, or
INTREQ is asserted. For example, at TOP, if
auxiliary test condition DATXREQ is asserted, the
subroutine DATX is called. Otherwise, the next
sequential instruction is executed.

DATXREQ true indicates that a Unibus master has
initiated a DATO or DATI transfer with the interface
and causes a branch to the subroutine at label
DATX, with the return address being saved in the
FPC SREG. Unibus signal C1 is tested to deter­
mine direction, and then a DATO or DATI slave
sequence is completed beginning at label DATO
or DATI. At DATI, Unibus signal SSYN is asserted
and data gated onto the Unibus using DATAOUT,
until test MSYN is negated. The next instruction
has no control signals asserted (OFF), and returns
f ram the subroutine by branching to the address
saved in SREG. DATO processing is similar.

DMAREQ indicates that the device is requesting a
Direct Memory Access cycle, which causes a
branch to label NPRX. The program waits at NPRX
until NPG is de-asserted. NPR is then asserted and
the program loops at NPR1 until NPG is
reasserted. SACK is asserted, and the program
loops at NPR2 until the three signals NPG, BBSY,
and SSYN are unasserted. Note how the compare
instruction masks the test inputs with the constant
NPG_BBSY _SSYN and compares the result to 0.
This allows concurrent testing of three inputs in
only two microcycles. BBSY is asserted, making
the interface bus master, and WRITE is tested to
determine DMA direction. If a DATI cycle is to
occur, we fall through to NPRDATI.

Front-end 150 ns de-skewing is done at NPRDATI
and WAIT1, concurrent with loading the FPC
CREG with 31 hex for a 15 microsecond slave
timeout. WAIT2 is the top of the timeout loop. If the
slave Unibus device asserts SSYN within 15
microseconds, the program branches to pass1 for
tail-end 75 ns de-skew. Otherwise it falls through
to the error exit at ERROR1. DATO processing is
similar to DATI, and begins at NPRDATO.

INTREQ is asserted when the device wants to
interrupt the Unibus CPU, causing execution to
continue at INTRO. Interrupt requesUgrant
processing occurs at INTRO and INTR1. SACK is
then asserted and the program loops at INTR2 until
BG, BBSY, and SSYN are unasserted. The device
supplied interrupt vector is gated onto the Unibus
data lines at INTR3, and the interrupt handshake is
finished at WAITO.

5.6 CONCLUSION

5-5

One of the advantages of microprogrammed
design is that it is relatively easy to change. In this
application, Unibus DATOB and DATIP transfers
were not differentiated from DATO and DATI trans­
fers. This could be easily accommodated by modi­
fying the DATX microcode to test Unibus signal C1
by adding a few words of additional code. Another
change to be considered is to change the device
interface to a less rudimentary protocol. Additional
control signals could be provided by adding a
decoder at the FPC output, and encoding eight
signals using only 3 microword bits. Spare
multiplexer inputs could be used for additional
device status lines. Additional control signals can
also be provided by adding another FPC.

II Unibus Controller microcode usinq Am29PL141 assembler

II Version 1. 2

device (PL141)
default = 1 ;

define

R. Purvis, 19 December 85

II ********** DEFINITION OF TEST INPUTS *********** 11

tmsyn to
ts syn tl
tbbsy = t2
tbq t3
tnpq t4
aux ts
pass cc
bq bbsy ssyn
npg_bbsy_ssyn

Oe#h
16#h

test Unibus signal MSYN
SSYN
BBSY
BG
NPG

auxiliary test conditions
unconditional pass
test mask
test mask

II ********** DEFINITION OF OUTPUTS **************** II

II

II

begin

AUXILIARY
datxreq
dmareq
intreq
write

TEST CONDITIONS
OOOO#h II Unibus CATI or DATO request
lOOO#h " device OMA request

= 2000#h 11 device Interrupt request
JOOO#h 11 device write request

tel 4000#h 11 Unibus signal cl

CONTROL SIGNALS
off OOOO#h
error SOOO#h
addr OSOO#h
dataout 0400#h
datain 0200#h
complt OlOO#h

cl
intr
br
npr
sack
bbsy
ssyn
msyn

OOSO#h
0040#h
0020#h
OOlO#h
OOOS#h

= 0004#h
= 0002#h

OOOl#h

11 aux tests 5 - 7 are unused

11 no signals active
" error f laq to device
" gate address onto Unibus
" gate data onto Unibus
" strobe data in from Unibus
11 complete flaq to device

" assert Unibus signal Cl
11 INTR
II BR
" NPR
II SACK
II BBSY
" SSYN
II MSYN

test_condition = cc; " default test condition

II

II

II

II

II

II

II

II

II

II

II

II

" II

II

II

II

II

"
II

II

II

"
" II

*************** source Code
Unibus Controller Vl.2

II

II

II ***
II

II

* MAIN LOOP Loop at TOP until external condition
* DATXREQ, DMAREQ, or INTREQ is true.
**********************~************************************

top: datxreq, if· (aux) call pl (datx);
dmareq, if (aux) call pl(nprx);
intreq, if (not aux) goto pl(top);

II

II

"
II

** * INTERRUPT SERVICE ROUTINE Device interrupt service
* request. Perform Unibus interrupt handshake.
**

Rgure 5-4. Unibus Controller Source Program Listing (Sheet 1 of 2)

5-6

II

II

II

II

II

II

II

II

II

II

intro:
intrl:

intr2:

intr3:
waitO:

II

II

II

II

datx:

dati:

date:

II

II

II

nprx:
nprl:

npr2:

II

nprdati:
waitl:
wait2:

errorl:
passl:

II

nprdato:
wait3:
wait4:

error2:
pass2:

end.

off, if (tbg) goto pl (intro);
br, if (not tbg) goto pl(intrl);
br + sack, continue;

11 request/grant handshake "

br +sack, cmp tm(bg bbsy ssyn) to pl(O);
br + sack, if (not eq) goto pl(intr2);
sack + bbsy + intr + dataout, continue;
bbsy + intr + dataout, if (not tssyn) goto
complt, goto pl(top);

" interrupt vector "
pl(waitO);

** * PROGRAMMED I/O ROUTINE Unibus master accessing
* device. Perform Unibus DATO/DATI handshake.
**

tel, if (aux) goto pl(dato);

II

"
" II

ssyn + dataout, if (tmsyn) goto pl(dati); "unibus slave DAT! 11

off, ret;

ssyn + datain, if (tmsyn) goto pl(dato); 11 unibus slave DATO"
off, ret;

**
* DMA SERVICE ROUTINE Device DMA service request.
* Perform Unibus OMA handshake.
**

off, if (tnpg) goto pl(nprx);
npr, if (not tnpg) goto pl(nprl);
npr + sack, continue;

" request/grant handshake

II

II

II

II

II

npr +sack, cmp tm(npg_bbsy_ssyn) to pl(O);
npr +sack, if (not eq) goto pl(npr2);
bbsy +write, if (aux) goto pl(nprdato); 11 bus master now 11

OMA READ ROUTINE (unibus master DAT!)

bbsy + addr, load pl(3l#h);
bbsy + addr, if (tssyn) goto pl(waitl);
bbsy + addr + msyn, if (tssyn) goto pl(passl); 11 15 us
bbsy + addr + msyn, if (tssyn) goto pl(passl); 11 tineout
bbsy + addr + msyn, if (tssyn) goto pl(passl);
bbsy + addr + msyn, while (creg<>O) loop to pl(wait2);
bbsy + addr + error, ret; 11 timeout error
bbsy + addr + complt + datain, ret; 11 normal exit

DMA WRITE ROUTINE (unibus master DATO)

bbsy + addr + cl + dataout, load pl (3l#h) ;
bbsy + addr + cl + dataout, if (tssyn) goto pl (wait3);
bbsy + addr + cl + dataout + msyn, if (ts syn) goto pl(pass2);
bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2);
bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2);

II

II

II

II

II

II

bbsy + addr + cl + dataout + msyn, while(creg<>O)loop to pl(wait4);
bbsy + addr + cl + error, ret; II timeout error II

bbsy + addr + cl + complt, ret; " normal exit II

.erg 63#d
off, goto pl(O); II hardware reset here. II

Figure 5-4. Unibus Controller Source Program Listing (Sheet 2 of 2)

5-7

PROM contents are :

hex <dee> OE OPCODE POL TEST DATA OUTPUT
000 < O> [1 I 11100 o I 101 I 001011 I 0000000000000000]
001 < l> [1 I 11100 o I 101 I 010000 I 0001000000000000]
002 < 2> [1 I 11001 1 I 101 I 000000 I 0010000000000000]
003 < 3> [1 I 11001 o I 011 I 000011 I 0000000000000000]
004 < 4> [1 I 11001 1 I 011 I OODlOD I OOODDOODOOlDOOOO]
005 < 5> [1 I 01101 1 I 111 I 111111 I OODDODDDOOlDlDDD]

OPCODE CONSTANT DATA
006 < 6> [1 lOD OOODDD DOlllD I ODDODOODOOlDlDOD]
007 < 7> [1 llDDl 1 I 111 ODDllO I ODOOODDOD0101000]
D08 < 8> [1 OllDl 1 I 111 111111 I OOODDlODOlOOllOD]
009 < 9> [1 llDOl 1 I DDl ODlDDl I ODOOOlDDOlODDlOD]
OOA < lD> [1 11001 D I 110 DODOOD I OODDOOOlOODOOOOO]
OOB < 11> [1 llDOl o I lDl ODlllD I DlOOODDOODODDDOO]
DOC < 12> [1 11001 D I ooo OOllDD I ODODDlOODOODODlO]
OOD < 13> [1 DOOlD o I llD 111111 I ODDODDDDOOODODOO]
OOE < 14> [1 llDOl o I ODO ODlllD I ODDDDOlODOOOODlD]
OOF < 15> [1 ODOlD o I llD 111111 ODOOOOOOOODDOOOO]
010 < 16> [1 11001 o I 100 OlOOOD OODDODDDOOODODOO]
011 < 17> [1 llDOl 1 I loo OlOODl ODOOOOOODODlDDDD]
Dl2 < 18> [1 OllDl 1 I 111 111111 DDOOODDDOODllDOD]

OPCODE CONSTANT DATA
Dl3 < 19> [1 I 100 Dooooo I DlOllO OOODODODOOOllDOO]
Dl4 < 20> [1 I llDDl 1 111 I 010011 OOODOOOOOOOllOOO]
015 < 21> [1 I 11001 0 101 I 011110 OOllOOOODOOOOlOD]
016 < 22> [1 I 00100 0 110 I 110001 0000100000000100]
017 < 23> [1 I llDOl 0 001 I 010111 ODOOlOODODODDlOO]
018 < 24> [1 I 11001 0 001 I 011101 ODOOlDDOODOODlOl]
019 < 25> [1 I llDDl 0 ODl I 011101 OOOOlDOODOODDlDl]
OlA < 26> [1 I 11001 0 001 I 011101 0000100DDOD00101]
OlB < 27> [1 I 01000 0 110 I OllDOD DOODlOODDOOOOlOl]
OlC < 28> [1 I OODlD 0 110 I 111111 lDDOlDODODDDOlOO]
OlD < 29> [1 I 00010 0 110 I 111111 0000101100000100]
DlE < 3D> [1 I ODlOD 0 110 I llDDDl ODDOllODlDODOlDO]
DlF < 31> [1 I llDDl 0 DDl I 011111 OOODllDOlDDODlOD]
D20 < 32> [1 I llODl 0 DOl I 100101 OODDllDOlDDOOlOl]
021 < 33> [1 I 11001 0 001 I 100101 OOOD110010D00101]
022 < 34> [1 I 11001 0 001 I 100101 OOODllDOlODOOlOl]
023 < 35> [1 I 01000 0 110 I 100000 0000110010000101]
024 < 36> [1 I 00010 0 110 I 111111 1000100010000100]
025 < 37> [1 I 00D10 0 110 I 111111 OODDlODllOODDlOO]
03F < 63> [1 I 11001 0 110 I ODDO DO DOOODDODDDOODOOO]

Figure 5-5. FPC PROM .Contents

5-8

CU< ... __JL_JL_
LABEL INTRO INTR1 INTR1 INTR2 INTR3 WAITO

ADDA I 2 I 3 I 4 I 4 I 5 I 6 I 7 I 8 I 9 I 9 I 10

ITREO(I)

BR(O)

BG(I)

SACK(O)

I
01
cb

BBSY(I)

BBSY(O)

INTR(O)

DATA(O)

SSVN(I)

COMPLT(O)

06591A 5-6 Figure 5-6. BR Timing Diagram

a:
a.
z

x
a:
a.
z

:5
_,
w

0 IXl :s

0

"'

~

~

~

~

~

a:
0
0
<

~ E:
C> 0 a: a. w a. z a: z <

::!!
0

E
f!
C)
ca
Ci
C)
c
'E
i=
a:
D.
z
ti-
ll)

CD :;
C)

ii:

,...
.;,

~ e. < z w
Si ~ >- >- >- !::: rJ)

~ rJ) a: :g
0 IXl

Cl) :: < IXl IXl Cl)

5-10

CLK

LABEL

ADDR

BBSY(O)

DATA(O)

ADDR(O)

MYSN(O)

SSYN(I)

COMPLT(O)

CLK

LABEL

ADDR

BBSY(O)

ADDR(O)

MYSN(O)

SSYN(I)

COMPLT(O)

DATAIN(O)

06591A 5-8

NPR DATO TIMING

NPRDATO

30

NPR DATI TIMING

NPRDATI

22

WAIT3

31

WAIT1

23

WAIT4

32

WAIT2

24

33 34

25 26

Figure 5-8. NPR DATI and DATO Timing Diagram

5-11

PASS2

37

PASS1

29

2

2

CLK

LABEL

ADDA

DATXAEQ(I)

C1 (I)

DATAIN(O)

SSYN(O)

MSYN(I)

CLK

LABEL

ADDA

DATXAEQ(I)

C1 (I)

DATAIN(O)

SSYN(O)

MSYN(I)

DATO TIMING (SLAVE)

TOP

DATI TIMING (SLAVE)

TOP

DATX

11

DATX

11

DATO

14

DATI

12

DATO

14

(HIGH)

DATI

12

(LOW)

15

13

Figure 5-9. DATI and DATO (Slave) Timing Diagram

5-12

06591A 5-9

CHAPTERS

Am29PL141 BASED DEC Q-BUS CONTROLLER

6.1 THE DESIGN PROBLEM

Designing an interface for the DEC 0-Bus has
been approached using many techniques. One
technique, microprogramming, has in the past
been economically unattractive because it
required use of a separate sequencer, control
store, and pipeline registers. Now that Advanced
Micro Devices has introduced the single chip
Am29Pl141 Fuse Programmable Controller (see
Section 1), engineers can economically apply
powerful microprogramming techniques to the
design of medium complexity state machines like
that required to control the Q-Bus.

The problem is to design an interface between the
0-Bus and a generic device to allow the following
operations:

• DATl/DATO with device as slave
• Device interrupt request
• Device Direct Memory Access request
• DATl/DATO with device as master

The DEC Q-Bus is an asynchronous bus which
supports Programmed 1/0, prioritized Interrupts,
and Direct Memory Access (DMA) operations. All
bus transfers are between a bus master and bus
slave, and are controlled by the master. An arbi­
trator grants bus mastership to requesting devices.

The nine basic types of transfers allowed are:

DATI - Word data transfer from slave to
master

DATO - Word data transfer from master to
slave

DATOB - Byte data transfer from master to slave
DATIO - Read-modify-write word transfer
DA Tl OB - Read-modify-write byte transfer
DATBI - Block data transfer from slave to

master
DATBO - Block data transfer from master to

slave
DMR - Direct Memory Access request to

become bus master.
IROi - Interrupt request at level i (4,5,6,or 7).

The fallowing control signals are used during
transfers:

SNYC sync - master timing control
DOUT data out - indicates master write

DIN data in - indicates master read
APL Y reply - slave acknowledge
WTBT write/byte - byte write cycle
BS7 1/0 page select
IROi interrupt request level i
IAK interrupt grant
DMR DMA request
DMG DMA grant
SACK select acknowledge

6.2 Q-BUS CONTROLLER HARDWARE DESIGN

6-1

A block diagram of this interface is shown in Figure
6-1. It consists of three sections-a-Bus
buffering, address decoding, and control logic.
The address decoder detects addressing of the
device as a slave during DATI and DATO transfers.

The control logic is based on the Am29PL141
Fuse Programmable Controller (FPC). Its
microprogram implements a state machine to
control both device and 0-Bus handshaking. Test
inputs are synchronized with the FPC clock using
an AM29821A 10-bit register and a D flip-flop.
Note the use of a multiplexer to expand the FPC
test capability. The additional D flip-flop and AND
gates are used to implement the interrupt and
DMA request/grant handshaking.

6.3 MICROWORD FORMAT

The microword organization for this application of
the FPC is shown in Figure 6-2. The 32-bit micro­
word is subdivided into fields of various sizes and
functions. The 16 most significant bits are used
during next address generation within the FPC,
while the lower 16 bits are application interface
signals.

6.4 MICROCODE

The microcode of Figure 6-3 was written using the
Am29PL 141 assembler available from AMD (refer
to Chapter 2). Mnemonic definitions are shown,
followed by code to control the interface. Figure 6-
4 shows the FPC PROM contents. A brief
description of the code follows.

After reset to address 63, the program branches to
label TOP and loops until one of the external

conditions DATXREQ, DMAREQ, or INTREQ is
asserted.

DATXREQ true Indicates a Q-Bus DATO or DATI
operation addressing the device and causes a
subroutine call to DATX. Q-Bus signal WTBT is
tested, and DATO or DATI handshaking is
completed beginning at label DATO or DATI.

INTREQ is asserted when the device wants to
interrupt the CPU, causing execution to continue
at INTRO. Interrupt requesVgrant processing
occurs and then the vector is read by the CPU.

6.5 CONCLUSION

The problem statement for this Interface does not

require block, byte, or read-modify-write master
handshaking. These features can be imple­
mented by adding extra device request lines and
microcoding the additional handshake algorithms.
Another possible change is to implement the Q­
Bus four-level interrupt configuration. These
changes are left as an exercise for the interested
reader!

References:

Microsystems Handbook, Digital Equipment
Corporation, 1985.

Am29PL 141 FPC Data Sheet, Advanced Micro
Devices, 1985.

6-2

DEVICE i.----------INTERFACE-------------. Q-BUS

BUFFER

OUT
BUS o-------°" ~~~~ESS/ 1--------------------... ~

CP(15MHz) t----+---n

DATXREO

c
B
A

+5V

cc
RESET RESET

Am29PL141
CP(15MHz) ----~, CLK

P[15:0]

COMPLT
ERROR i.--+----'
DATAIN

3

06591A 6-1

SYNC
RPLY

DIN
5 DMGI

IAKI

ZERO N.C.

8

IAKI

ADDROUT
2

IRQ,DMR

Figura 6-1. Q-Bus Controller Block Diagram

6-3

~OLSIGNALS

~
BN.Y
!B9...
~

E
IAKO

: 31 : 30 - 26 25 : 24,23,22 : 21 - 16 : 15 : 14,13,12 : 11 - 0
: : : : : : : : :
: oe : opcode : pol : test data : error : aux tst : command
oe:
(31)

opcode:
(30-26)

pol:
(25)

test:
(24,23,22)

data:
(21-16)

error:
(15)

aux test:
(14,13,12)

command:
(11-0)

11 : 10

output enable

29PL141 command
00 - RETPL 08 - LPPL 10 - CMP 18 -·FORK
01 - RETPLN 09 - DEC 11 - CMP 19 - GOTOPL
02 - RET OA - LPPLN 12 - CMP lA - WAIT
03 - RETN OB - GOTOPLZ 13 - CMP 1B - DECGO/C
04 - LDPL QC - DECAL 14 - PSHPL lC - CAL PL
05 - LDPLN OD - CONT 15 - PSH 1D - CALPLN
06 - LDTM OE - CTTM 16 - PSHTM lE - CAL TM
07 - LDTMN OF - GOTOTM 17 - PSHN lF - CALTMN

test polarity (1 = negate

conditional test input select
0 - sync 4 - iak
1 - rply 5 - aux tests
2 - din 6 - pass
3 - dmg 7 - equal flag

branch address, test input mask, or counter load value

timeout error indication to device

additional test inputs when test 5
0 - datxreq 4 - dout

- dmareq 5 - wtbt
2 - intreq 6 - spare
3 - write 7 - spare

9 8 7 6 5 4 3 2 1 0
: com : data : data : addr : rply : irq : dmr : sack : dout : din : sync : wtbt :
: plt : in : out* : out* ~

: : : : : : : : : : : : :
* - indicates active low microcode bits

Figure 6-2. Q-Bus Controller Microword Format

6-4

II Q-Bus Controller microcode using Am29PL141 assembler

Version 1.1 R. Purvis, 3 January 86

device (pll41)
default = 1 :

define
II **********

tsync to
trply tl
tdin t2
tdmgi t3
tiaki t4
aux ts
pass cc

DEFINITION OF TEST INPUTS ******** 11

11 test Q-Bus signal SYNC 11

II RPLY II

II DIN II

II DMGI II

II !AKI II

11 auxiliary test conditions 11

11 unconditional pass 11

sync_rply = 03#h 11 test mask 11

11 ********** DEFINITION OF OUTPUTS **************
II

II

AUXILIARY
datxreq
dmareq
intreq
write
tdout
twtbt

TEST CONDITIONS
0300#h II Q-Bus DAT! or DATO request
1300#h 11 device DMA request
2300#h 11 device Interrupt request
3300#h 11 device write request
4300#h 11 Q-Bus signal DOUT
5300#h 11 Q-Bus signal WTBT

CONTROL SIGNALS
off 0300#h
error 8300#h
complt OBOO#h
datain 0700#h
dataout FDFF#h
addrout FEFF#h

rply
irq
dmr
sack
dout
din
sync
wtbt

0380#h
0340#h
0320#h
0310#h
030B#h
0304#h
0302#h
030l#h

11 aux tests 6 and 7 are spares

11 no signals active
11 error flag to device
11 complete flag to device
11 strobe data in from Q-Bus
11 gate data onto Q-Bus
11 gate address onto Q-Bus

11 assert Q-Bus signal
II

II

II

II

II

II

II

RPLY
IRQ
DMR
SACK
DOUT
DIN
SYNC
WTBT

test_condition cc; 11 default test condition II

Figure 6-3. Q.Bus Controller Source Program Listing (Sheet 1 of 3)

6-5

II

II

II

II

II *****
II

II

II

II

II

begin

II

II

II

II

assumptions ******

no I/O page OMA
single xf er OMA (not block mode)
single level interrupts
no byte operations
no parity

II

II

II

II

II

II

II

II
*************** Source Code
Q-Bus Controller Vl.O

*** * MAIN LOOP Loop at TOP until external condition
* DATXREQ, DMAREQ, or INTREQ is true.

II

II

II

II

II

II

top: datxreq, if (aux) call pl(datx);
dmareq, if (aux) call pl(dmax);
intreq, if (not aux) goto pl(top);

II

II

II

II

intro
intrl
intr2
intr3
intr4

II

II

II

II

datx:

dati:
waitG:

date:
waits:

** * INTERRUPT SERVICE ROUTINE Device interrupt service
* request. Perform Q-Bus interrupt handshake.
**

II

II

II

II

off, if (tdin) goto pl(intrO); II request/grant handshake 11

irq, if (not tdin) goto pl(intrl);
irq, if (not tiaki) goto pl(intr2);
rply * dataout, if (tdin) goto pl(intr3);
rply * dataout, if (tiaki) goto pl(intr4);
complt, goto pl(top);

II output vector 11

**
* PROGRAMMED I/O ROUTINE Q-Bus master accessing
* device. Perform Q-Bus DATO/DAT! handshake.
**

twtbt, if (aux) goto pl(dato);

off, if (not tdin) goto pl (dati) ; ,·, slave DAT! 11

rply * dataout, if (tdin) goto pl(waitG);
off, ret;

tdout, if (not aux) goto pl (date); 11 slave DATO 11

rply + datain + tdout, if (aux) goto pl(wait5);
off, ret;

Figure 6-3. ~Bus Controller Source Program Listing (Sheet 2 of 3)

6-6

II

II

II

II

II

II

II

II

dmax
dmal
dma2

II

dmadati:

waitl:

errorl:
passl:

wait2:

II

dmadato:

wait3:

error2:
pass2:

wait4:

end.

** * DMA SERVICE ROUTINE Device DMA servic~ request.
* Perform Q-Bus DMA handshake.
**

II

II

II

II

off,
dmr,
dmr,
dmr,
sack

if (tdmgi) goto pl(dmax); II request/grant handshake 11

if (not tdmgi) goto pl(dmal);
cmp tm(sync_rply) to pl(O);
if (not eq) goto pl(dma2);
+ write, if (aux) goto pl(dmadato); II bus master now 11

DMA READ ROUTINE (Q-Bus master DAT!)

sack * addrout, continue;
sack * addrout, continue;

II

II

addr setup II

(sack + sync) * addrout, continue;
(sack+ sync) * addrout, load pl(2B#h);

11 addr hold 11

11 10 us timeout 11

sack+ sync + din, if (trply) goto pl(passl);
sack + sync + din, if (trply) goto pl(passl);
sack+ sync + din, while (creg<>O) loop to pl(waitl);
sack + sync + error, ret; 11 timeout exit
sack + sync + din, continue; 11 data deskew
sack + sync + din, continue;

II

II

sack+ sync, if (trply) goto pl(wait2);
complt, ret;

11 clock data in 11

DMA WRITE ROUTINE (Q-Bus master DATO) II

(sack + wtbt) * addrout, continue; II addr setup II

(sack + wtbt) * addrout, continue;
(sack + wtbt + sync) * addrout, continue; II addr hold II

(sack + wtbt + sync) * addrout, load pl(2b#h);
(sack + sync + dout) * dataout, if (trply) goto pl(pass2);
(sack + sync + dout) * dataout, if (trply) goto pl(pass2);
(sack + sync + dout) * dataout, while(creg<>O)loop to pl(wait3);
sack + sync + error, ret; 11 timeout exit II

(sack + sync + dout) * dataout, continue; 11 data deskew II

(sack + sync + dout) ·• dataout, continue;
(sack + sync) * dataout, continue; 11 data hold II

(sack + sync) * dataout, continue;
sack + sync, if(trply) goto pl(wait4);
complt, ret;
.erg 63#d
off, goto pl(O); II hardware reset here.

Figure 6-3. Q.Bus Controller Source Program Listing (Sheet 3 of 3)

6-7

II

ADDRESS PAL DEVICE _.J

A7-19 - COMPARE CONTROL Am29Pl141
..... 25LS2521 LOGIC CONTROUER

(U1,2,21,22,24) 16L8 (U16,17,18)
(U3,4) I"' ...,

IOWR 11 IORD T MEMWR
MEMRD

CONTROL l _._

ADDRESSAND
DATA BUFFERS -- Am7990 _.J Am7960
LS373 (U9,10) LANCE ...

CPU
..... r- ""I CDT

LS245 (U11,12) (U13) (U18,20,23)

BUS

-...J
~

r\l
13~ v .~

16

. lo

Ao-15 L ADDRESSAND 7
DATA BUFFERS 13 MEMORY

LS245 (US,6) 99C88

Do-15 !;- . LS244 (U7,8) ~-
U14,15 ,.

'1s

06591A 7·1

Figure 7-1. Stnrlan DMA Controller Block Diagram

16L8(U3)
IOWR IOWR

IORD IORD

MEMWR MEMWR IORO

MEMRD MEMRD MFMRQ

IOCOMP DEN 1-f- U,5,6,7,8 ..
MEMCOMP EDIR t-f- U5,6 r-H
7990EN READY EN H-U24 fl r-H

2SLS2521
r--tl 799oWE ME MOE t-f- U14,15

...J

BA7-15 1-- (U1) ~ WR DALI 1-t- 0

~ MEMwE
WE ~

Ea M"
N

-c=.J 2.

CPU 2SLS2521
BUS

BA14.19 I-ti (U2)

Ec>

I
.......
~

DECODER 16l8 (U4)
BA

2 r--- LS32!U2~ 1----' IORD 7990DBEN LS04 U22 La. U11,12
LS125(U2) IOWR 7990DBDIR U11,12

~ HOLDA DAS

H----t DALI WR
~ IORQ 7990READY

BNBHE i-- MISCELL· DALO WE i---
BDO ~ ANO US U9 LAO WEHB 1-- U15 CONTROL

BRESET i--- (FIGURE 7-4) 7990EN WELB 1-- U14

BREADY 1+-1 (U21,22, 24)
~ 7990BHE

l U24 BBHE

Figure 7-2. Starlan Controller Clrcµltry

S174(U17)

IORO 1--
MEMRQ I--
HOLD 1--t:
i5AS ~
TCLK 1----ti

CLK ~

i_.,

L..--..1

Am29PL141 (U16)

TO 7990CS PO

T1 HOLDA P1

T2 MEMOK P2
T3 799oEN P3
T4 7990WE P4 I-
TS MEMCYLCLR PS

CLK
MEMWE P6 0 cc

RESET

AM7990 (U13)

HOLDA HOLD I-

7990CS ALE 1---1 f-- U9,I
RESET 7990READY I---'
DAS 7990BHE I-

WR DALI t--+--i

DALO ~ f-,

06591A 7-2

.A

0

U24

U20

U9,U10

U20

-..J
~

CPU
BUS

BDG.-7

BDa-15

BAG.-7

BAa-15

(U16) 7990EN

LS373(U9) Am799.0 (U13)

rl DALG.-7 LAG.-7 RXD
G e RXCLK

LS245(U5) T l RENA

IDG.-7 I+--
TXD

DALG.-7
TXCLK

e DIR TENA

~ J
DALa-15

LS373(U10)
rl CLSN ALE

DALa-15LAa-15

LS245(U6) G E

10,_,. ~ J 'CJ 1---'

e DIR (U13)

~ J
LS244 (U7) LS245(U11)

99C88(U14)

- L-. DALG.-7 IDG.-7
IDG.-7

LAG.-7 ~ LA1-13
1,19 DIR E

~ .------=:r T R/W cs OE

F (U4)WELB
LS244(U8)

t>v:- i--
LS245(U12) 99C88(U15)

DALa-15 IDa-15
1,19 a-15

IDa-15

~
DIR E ~ LA1-13

1 T (U4) 7990iIB5iR R/W cs OE
(U4) 7980DBEN fj_Y

1--- EDIR(U3)

Figure 7-3. Starlan Address and Data Circuitry

Am7960 (U23)

81
RXD

RXC TXLO

~ CD
1oon ~ 1

TXD

t : ~
TXC
RTS

1oopFT f
r-1 Cs TXL1

EI
....

I- rl ~~SET RXLO
RXL1

II[

L--- 16MCLK (U18)

+r
574

~ D Q ~
(U18) LSOB

L--. c

I
(U17)

06591A 7-3

MEMOE(U3)

U2

LS04

DECODER
(110 ADDRESS COMPARE &

CPU TEST OF HOLDA ACTIVE)

LS32

n----- MEMCOMP (U3)

BA2(BUS) ---1--~

(U22)

BDO(BUS)

RESET CIRCUIT

LS04 LS04
BRESET(BUS) -{::?.>-------~ RESET(U13)

(U22) (U22)

'------- RESET (U16,U23)

READY CIRCUIT

+5V +5V

(U3) IORQ (U19)

ROY LSOS LS125

READY:? BREADV(BUS)
(U16) 7990CS MEMRDY U20

(U24)

(U4) 7990
READY EN (U3)

READY
+SV +SV

CLOCK CIRCUIT

+SV
(U3) MEMRQ

+SV SCLK 8 CLK (U16, 17)

(U16) MEMOK
8CLK

(U16) MEMCYLCLR

+SV
16 MCLK (U23)

06591A 7-4

Figure 7-4. Miscellaneous Control Circuits

7-5

PAL Devices to control the memory access. See
Figure 7-2 for the routing of its signals.

The Am29PL 141 can accept seven (7) different
test inputs and control 16 different events .. This
application uses six (6) input lines and eight (8)
output lines to accomplish the handshaking and
control.

U17 (5174) is used to provide metastability
hardening of the Am29PL 141.

In the following discussion, refer to Figure 7-3 for
the address and data circuity blocks: US, 6, 7, 8, 9,
10, 11, 12, 13, 14, 1S, 18., and 23.

US and US (LS24S) provide the Data Bus
buffering.

U7and US (LS244) provide the address bus
buffering.

U9 and U1 O (LS373s) serve as address latches to
demultiplex the 7990's DAL bus.

U11 and U12 (LS245s) are data buffers to isolate
the 7990 for the dual porting.

U13 is the Am7990. It uses U23 (Am7960) as the
Manchester encoder/decoder and media interface
to the TXD and RXD lines. This circuitry is shown in
Figure 7-3.

U14 and U15 (99C88) are the memories
themselves. These may also be expanded very
easily if required. The address and data lines are
shown in Figure 7-3.

U19 (LS112), U20 (LS08), U21 (LS32), and U24
(LS12S) provide the Ready line conditions
appropriate to the Bus timing of valid data to the
main CPU. This circuitry is shown in Figure 7-4.
The clock circuit is also shown in Figure 7-4. The
16 MHz clock is a crystal oscilator. Its fundamental
is used to drive the Am7960 (U23) directly. The
oscillator frequency is divided by two to drive the
prelatch (U17) and the Am29PL141 (U16). Figure
7-4 also shows the RESET circuitry which sends a
CPU bus reset signal to the Am29PL141,
Am7990, and the Am7960.

This design may also be used to not only provide
isolation to the OMA but also to provide a bus
translation service for an 8 bit CPU. The 16 bit 1/0
transfer needed by the Am7990 write and read can
be accomplished if, on the data bus side, the D8-
1S LS24Ss are replaced with LS373. In memory

operation, the LS373s are made transparent but in
1/0, the high byte is written first and then as the low
byte is written, both are enabled into the 7990. On
a read, the full 16 bit transfer takes place and the
low byte is read immediately. The next operation
reads location 1/0 + 2 for the D8-1S value.

In this application, memory is treated as memory
and the 7990 is treated as 1/0 space. The 2 port
memory is used by the CPU to set up ring
descriptors as well as the rings themselves.
Packet buffers can be assembled and
disassembled in this area under the operating
system at low level drivers. 16K space is enough
for 8-512 byte transmit rings and 8-S12 byte
receive rings. At 1 MHz data rate, that is probably
more than enough. However, a 10 MHz design
may require 64K DRAM to provide sufficient high
speed memory bandwidth.

7.3 MICROPROGRAM

The Am29PL141 controller's major function is to
process a HOLD request by the Am7990. When
the Am7990 is not active, it processes normal CPU
memory read/write and normal 1/0 read/write
(Figure 7-S shows the microprogram flow diagram).

When the Am29PL141 receives a HOLD request,
it sends a HOLDA signal to the Am7990 to activate
the Am7990. The HOLDA signal also goes to the
BOO pin of the CPU so that the CPU can check to
see if the Am7990 is using the OMA. Only in the
HOLDA path (main path) is another task allowed
besides the normal path. In the HOLDA path, the
CPU is allowed access until TS of the Am7990
state machine. At that point, the memory is
diverted and remains until the completion of the
7990 OMA. The Am7990 dropping Hold Request
(HOLD) is what finally clears the HOLDA cycle and
returns control to the Am29PL 141. Branch #1 is
just a normal CPU 1/0 read/write and branch #2 is a
normal CPU memory read/write when the HOLDA
is not active. Figure 7-6 is the actual microcode of
the 29PL141.

7-6

Note: The 7990 cannot be slave-accessed with
HOLDA valid. Therefore, any 1/0 request is
blocked in the controller during a OMA transfer. In
order to prevent a possible 48 microsecond
Ready/Wait signal, HOLDA can be sampled by the
CPU at the data 1/0 pin BOO and when logically
false, the 1/0 request can then be made at 1/0
address of 7990 + 4.

7.4 PAL DEVICE EQUATIONS

PAL Device fl (U3) : CPU Bus Control
(AmPAL16L8)

PIN

/!ORD 1 /MEMWE 11

/IOWR 2 /WE = 12
/MEMRD 3 /DALI 13
/MEMWR 4 /MEMOE = 14
/MEMCOMP = 5 /READYEN = 15
/IOCOMP 6 /EDIR 16
/7990EN = 7 /EADEN 17
/7990WE 8 /IORQ 18
/WR 9 /MEMRQ 19

BEGIN.

MEMRQ = MEMRD * MEMCOMP + MEMWR *
MEMCOMP

IORQ - IORD * IOCOMP + IOWR *
IOCOMP

EADEN = MEMRQ * /7990EN + IORQ *
/7990EN ;

EDIR = MEMRD + IORD ;

READYEN = MEMRQ + IORQ

WE = 7990WE * WR + MEMWE * MEMWR +
/7990EN * MEMRQ * MEMWR

MEMOE
DALI

END.

/7990EN * MEMRD + 7990EN *

PAL Device f2 (U4) : 7996 control
equations

PIN

/!ORD 1 /BBHE 11

/IOWR 2 /WELB 12
/HOLDA 3 /WEHB 13
/DALI 4 /WE 14
/IORQ 5 /7990READY = 15
/DALO 6 /WR 16
/LAO 7 /DAS 17
/7990EN 8 /7990DBDIR = 18
/7990BHE 9 /7990JDBEB = 19

BEGIN.

7-7

IF (/HOLDA THE ENABLE (DAS , WR,
7990READY)

DAS = OWWR + !ORD

WR = IOWR ;

7990READY = HOLDA;

7990DBEN = /HOLDA * IORQ + HOLDA *
7990EN * (DALI + DALO)

7990DBIR = /HOLDA * IORQ + HOLDA *
DALI

WELB /LAO * WE ;

WEHB = WE *7990EN * 7990BHE + WE *
/7990EN * BBHE ;

END.

7.5 SUMMARY

In summary, the design solves the system
requirements of double buffering and DMA
isolation using a minimum of parts yet retaining
memory at bus bandwidth without a large number
of wait states added. The 7990 is allowed full
access as needed without ever seeing a slow
down and the basic design has a large amount of
frequency latitude for the LAN Speed.

___ ..._ __ .,. OE-1

INST-19
POL-1
TEST-010
DATA-OOH

'---...---.. OUTPUT-FFFF

CALL
MEMRT

CLEAR
NHOLDA

CALL
MEMRT

BRANCH #1 (LOCI)

OE•1

NO

OE-1
INST·1A
POt...-0
TEST-000
DATA-NEXT

INST NO.
OUTPUT -FFFE

INST-19
POt...-0
TEST-010
DATA-OOH
OUTPUT-FFFF

BRANCH #2 (l.OC2)

MEMRT

RETURN

Figure 7-5. Starlan Controller Program Flow Diagram

7-8

(LOC16)

OE-1
INST-00
OUTPUT-FFBO

OE-1
INST..02
POt...-0
TEST-010
DATA-OOH
OUTPUT-FF90

06591A 7-5

DEVICE (PL141

DEFAULT 1 ;

DEFINE
NIORQ == TO
NMEMRQ = Tl
NHOLD = T2
NDAS = T3
TCLK = T4
vcc = cc
N7990CS = FFFE#H
NHOLDA = FFFD#H
NMEMOK = FFFB#H
N7990EN = FFF7#H
N7990WE = FFEF#H
NMEMCYLCLR = FFDF#H
NMEMWE = FFBF#H
NEXEC = FF7F#H;

DEFAULT_OUTPUT = FFFF#H;

BEGIN

EXEC :

MEMRQ :

IORQ :

HOLDA :

HOLDAl

HOLDA2

NEXEC , IF
NEXEC , IF
NEXEC , IF
NEXEC , IF

NOT NHOLD) THEN GOTO PL (HOLDA) ;
NOT NIORQ)THEN GOTO PL (IORQ) ,
NOT NMEMRQ) THEN GOTO PL (MEMRQ) ;
VCC) THEN GOTO PL (EXEC) ;

NMEMOK , IF (NMEMRQ THEN GOTO PL (EXEC) ELSE WAIT;

N7990CS , IF (NIORQ THEN GOTO PL (EXEC) ELSE WAIT;

NHOLDA
NHOLDA ,
NHOLDA ,
NHOLDA
NHOLDA ,
NHOLDA
NHOLDA ,
FFF5#H
FFE5#H ,
FFE5#H ,
FFF5#H ,

IF NOT NMEMRQ) THEN CALL PL (MEM)
IF NHOLD) THEN GOTO PL (EXEC) ;
IF NDAS) THEN GOTO PL (HOLDA) ,
IF NOT MEMRQ) THEN CALL PL (MEM) , '
IF NOT TCLK) THEN GOTO PL (HOLDAl) ELSE WAIT;
IF NOT NMEMRQ) THEN CALL PL (MEM) ,
IF (TCLK) THEN GOTO PL (HOLDA2) ELSE WAIT;
CONTINUE ;
CONTINUE ;
CONTINUE ;
IF (NDAS) THEN GOTO PL (HOLDA) ELSE WAIT;

MEM FFBB#H CONTINUE ;
FF9B#H , CONTINUE ;

END.

NHOLDA , IF (VCC) THEN RET ;
.ORG 63#0
EXEC , IF (VCC) THEN GOTO PL (EXEC)

Figure 7-6. Starlan Controller Source Program Listing

7-9

CHAPTER 8

IBM PC-SSR INTERFACE USING an Am29PL141 CONTROLLER

8.1 THE DESIGN PROBLEM

This application note describes the use of an
Am29PL141 controller and an IBM PC or other
computer to run diagnostics tests on a device
containing a Serial Shadow Register (SSR). The
SSR is a special serial in, serial out register built
into devices to facilitate diagnostic testing.

To test a complex state machine or a microcoded
CPU engine in a manufacturing environment is a
complex task. The conventional method has. been
to use a "Bed of Nails" consisting of probes making
contact to the printed circuit board (PCB) in
specially assigned places. A master program in the
tester provides a stimulus and then checks the
response. These Bed of Nails test fixtures are com­
plex and costly and worst of all, are mechanically
interlinked in such a manner that a simple
movement of an IC on the PCB may cause a whole
fixture to be scrapped or at least reworked. Each
fixture may cost up to $10,000 and requires an
expensive tester to control it.

8.2 SSR FUNCTIONAL DESCRIPTION

AMD in conjunction with MMI pioneered a concept
called Serial Shadow Register (SSR). Typically in
state machines or microcoded CPUs, data is
latched into a register on one clock to drive the
logic and on the next clock, the result is latched
into a destination register. The SSR is an addi­
tional diagnostic register linked to the main device
register. It can load new information into the
device register and capture the response of the
device. Various test inputs are entered into the
SSR serially from a computer with the assistance of
a controller (FPC). The device executes the input
and returns the result into the SSR. The controller
serially extracts the result from the SSR and
transfers it to the computer. The computer then
checks the response with the known correct
response. Using serial input and output to the
SSR keeps the pin count down.

SSRs can be used in all phases of the product
testing because they are a part of the device and
therefore available at all times. They can be used
in engineering to debug the design, in manuf ac­
turing to test each device for compliance, and, in
field service, to diagnose faulty operation either at

8-1

the customer site or at the repair depot.

The controller's task is to convert the parallel IBM
PC bus, or equivalent, to a serial data stream to be
shifted into the SSRs. The SSR is driven from a
relatively inexpensive Personal Computer (PC)
that has a file of many stimulus patterns and the
corresponding response patterns. In operation,
the PC writes the first byte of the stimulus pattern
to the SSR controller, in parallel (See Figure 8-1).
The controller then shifts the pattern out to the
SSR (stimulus chain, N1 bits long, in the device to
be tested) and informs the PC through the
"DONE" flag that it can accept more parallel data.
This interchange goes on until the stimulus chain
in the device being tested is full (N1 bits shifted).

Then the PC changes the state from "SHIFT OUT"
to "EXECUTE" and the controller generates the
necessary clocks to compute the response. The
FPC then loads the first byte from the SSR
response chain into the PC read register and
informs the PC. The PC now examines, on a bit
for bit basis, the response pattern just read with
the known good response pattern in its file. Any
errors can be flagged and output to the printer or
displayed on the CRT screen, thereby helping
pinpoint the exact area of fault. This byte compare
goes on until the entire response chain of N2 bits
has been examined. This whole sequence can be
done as many times as necessary to fully check out
the PCB at the bit level.

8.3 ARCHITECTURE

The heart of the operation is the AMD
Am29PL 141, Fuse Programmable Controller. It
takes care of controlling the D clock, P clock, and
Mode of the serial chain. It shifts the 8 bits out and
then specifies "DONE". It monitors the "SHIFT
OUT" and "Go" control bits for status change.
Figure 8-2 gives pin level detail of the blocks or
units shown in the the block diagram. Figure 8-3
shows the user interface circuitry.

U1 serves as an address decode PAL Device
whose equations are given later. U2 is just a data
bus buff er to keep the loading to 1 LS TTL load.

U3 and U4 form the handshake flip flops for the
Am29PL 141 controller to the PC interface. U3

+5V

D LS174 a Am29PL141 ~MODE(U12)
IBMPC

INTERFACE
(U2)BD1 MODE SHIFTOUT To Po MODE

IOWR 1
18

P815
STAnJSWR GO --- Tt Pt D CU< ~DCU<(U12)

IORD 2
COuNTt5 BORROW

Tz Pz 19 PCLJ<

At 3 17
i5Ai'AiN READ DATA T3 P3 DONE -PC(U2) I ~LJ!!)-2--+ PCLK (U12)

Aa 4 16
DATA OUT NEW DATA T4 P4 Ci:ROO
i5BGN LS74 +5V

CLAIN =:-1 I I A1 s 18 D a (U10)
T, p, ~Si(U12)

As 6 14 c a cc Pa CLROUT- S38

A, 7
(U3)

(PC)CU< CU< P1 EXEC

A4 8 (PC) RESET RESET

+5V (U11)
A3 9

Az 11

At

~:~ I I l I I DATAOUTf 61 I I I I I I +SV
Ao

(U1) (U4)
""

,
~ SO(U12)

0) I I I STATUSRD I
I I I I

+5V

I
LS14

~ 5

DONE(U11) -r--
13 9 18

LS193 +SV LS16S 25LS23

Do LS24S BOO 4 12 16 BD7(U2)
(U2)

Dt BD1 (U2) BD3 9 s (U2)BD7 11 4 BD6

Dz BD2 BD2 10 14 BD6 12
+5V

BOS 1S

03 B03 BD1 1 -=- BD5 13 9 s BD4

o. B04 BOO 1S BD4 14 19(51) 14 BD3

Ds BOS (U6) B03 3 10 1(SO) 6 BD2
11

Ds BOB B02 4 s 13 BD1

07 BD7 BD1 s -=-
(U7) 7 BOO

DIRE CoONTLo 2 3
BOO 6 (US)

i5Ai'AiN

~·E I
RESET (U11)

i5ATA60T

4.7H.fiz CU< (U10,U11) 06591A 8-2

Figure 0.2. SSR Controller Circuitry

06591A 8-3

S240

-"-.>--- TO SHIFT IN INPUT OF "V 1STSSRREGISTER

5240

-~ FROMSOOUTOFLAST
SO 4 ~ REGISTERINSSRCHAIN

s)~---....... J_
+SV

~~·~' ~ TOPIPELINECLKONALL
REGISTERSANDCHIPS

~W3

l_ FROM INTERNAL
CLOCK SOURCE

JUMPER W2-W3 FOR NORMAL OPERATION
W1-W2 FOR DIAGNOSTIC MODE

Figure 8-3. User Equipment Interface Circuitry

8-5

SSRTO{
PCLK•1

PIPELINE PCLKaO

PCLK·1
RESULT' {
PIPELINE PCLK·O

TOSSR
DCLK·1

NO

RESET
(LOC 63)

YES

Figure 8-4. SSR Controller Program Flow Diagram

8-6

CREG+7

NCLRIN•1

DCLK•1

DCLK·O

06591A 8-4

DEVICE (PL141

DEFAULT = l ;

DEFINE
MODE SHIFTOUT TO
GO =-Tl
NBORROW = T2
READDATA = T3
NEWDATA = T4
vcc = cc
MODE = 007l#H
DCLK = 0072#H
PCLK = 0074#H
DONE = 0078#H
NCLRGO = 0060#H
NCLRIN = 0050#H
NCLROUT = 0030#H
EXEC = OOFO#H ;

DEFAULT_OUTPUT = 0070#H ;

BEGIN

EXECl EXEC + DONE , IF (MODE SHIFTOUT) THEN GOTO PL (EXEC2)
EXEC + DONE , IF (GO) THEN GOTO PL (RESP) ;
EXEC + DONE 1 IF (VCC) THEN GOTO PL (EXECl) ;

EXEC2 EXEC + DONE ,IF (NOT NEWDATA) THEN GOTO PL (EXECl

STIM NCLRIN , IF (VCC) THEN LOAD PL (07#H) ;
STIMl : DCLK 1 CONTINUE ;

1 CONTINUE ;
, IF (NOT NBORROW) THEN GOTO PL (STIM2) ;
, WHILE (CREG < > 0) LOOP TO PL (STIMl) ;

STIM2 : EXEC + DONE , IF (VCC) THEN GOTO PL (EXECl) ;

RESP : NCLRGO + MODE 1 CONTINUE
MODE + PCLK 1 CONTINUE
MODE 1 CONTINUE ;
MODE + PCLK 1 CONTINUE
MODE + DCLK , CONTINUE ;

RESPl NCLROUT 1 IF (VCC) THEN LOAD PL (07#H) ;
RESP2 DCLK 1 CONTINUE ;

I CONTINUE ;
1 WHILE (CREG < > 0) LOOP TO PL (RESP2) ;

RESP3 1 IF (READDATA) THEN GOTO PL (RESPl) ;

END.

1 IF (NOT MODE SHIFTOUT) THEN GOTO PL (RESP3
DONE + EXEC IF (VCC) THEN GOTO PL (EXECl)
.ORG 63#D
DONE + EXEC IF (VCC THEN GOTO PL (EXECl)

Figure 8-5. SSR Controller Source Program Listing

8-7

CHAPTER 9

QUARTER-INCH TAPE CARTRIDGE and SMALL COMPUTER SYSTEM
INTERFACE CONTROLLER USING Am29PL141

9.1 OVERVIEW

This application note describes the use of the
Am29PL 141 Fuse Programmable Controller
(FPC), to control both the Quarter Inch Tape
Cartridges via the QIC-02 industry standard and
the Small Computer Systems Interface (SCSI), also
an industry standard as defined by ANSI X3T9.2
subcommittee. This controller functions as the
"Host" to the QIC-02 interface and as an "Initiator"
to a SCSI system. This design provides the
capability to transfer data in both directions,
between the SCSI bus and QIC-02.

A practical use is to back up data on a hard disk
(SCSI) via Tape (QIC-02). The FPC functions as a
high performance (50 ns instruction cycle time) 1/0
Controller which is slave to the system CPU (host).
It supports the maximum data rates of both
interfaces (1 .5 Mbyte/Sec. asynchronous mode
for SCSI). This design uses the 80188
microprocessor, but any host microprocessor
could be interfaced to the FPC in a similar fashion.
The QIC-02 standard interface is fully supported
and the single initiator multiple target mode is
supported for SCSI. Although this application
does not include using all advanced features of
SCSI, the section on "Advanced Features of
SCSI" does provide insight into upgrading this
design.

In the fallowing discussions, it is assumed that the
reader is somewhat familiar with the 80188, FPC,
QIC-02, and SCSI. An overview of the QIC- 02 and
SCSI is given below. A discussion of the QIC-02
and SCSI, including timing diagrams, has been
included as an Appendix.

9.1.1 QIC-02 Overview

QIC-02 is an industry standard which defines the
interface between a host system and Quarter Inch
Cartridge Tape Drives. Read/write commands,
status and, of course, data are transmitted over this
interface, as depicted in Figure 9-1. The bus and
control signals between QIC-02 and host are all
standard TTL levels. Timing diagrams for this
interface are given in Appendix C. This interface
handshake timing is duplicated for the host side by
the FPC and two AmPAL22V1 Os.

9-1

The interface lines are used as follows:

ACKNOWLEDGE (ACK) is used with Transfer to
transfer data across the interface.

READY (ROY) indicates that the tape drive can
accept a command. It is used to handshake the
command across the interface. In the write mode,
READY indicates that the drive's internal buffer is
empty and ready to receive new data. In the read
mode, READY indicates the drive buffer can now
be accessed by the host.

EXCEPTION (EXP) alerts the host that the
execution of a command has been terminated.
This may be a normal completion or an interrupt
due to a fault (hard errors, write protected, etc.).
The response by the host must be READ
STATUS.

DIRECTION (DIRC) indicates direction of data flow.
This signal is used to enable/disable the data bus
transceievers in the HOST.

ON-LINE signal is deasserted at the beginning of a
read (from tape) or write (to tape) operation.

...... ACKNOWLEDGE

READY

i.- EXCEPTION

DIRECTION

HOST rr OIC-02

SYSTEM TAPE

0 8BITDATABUS JI.. DRIVE

t\.,,)
v

ONLINE
.......

RESET

REQUEST
TRANSFER

06591A 9-1

Figure 9-1. QIC-02 Interface

RESET initializes the tape drive. The drive
repositions the heads to track zero.

REQUEST indicates that a command is on the data
bus.

TRANSFER is used with ACKNOWLEDGE to
handshake data over the bus, see timing diagram.

9.1.2 SCSI Overview

Small Computer Systems lnterf ace (SCSI) is a disk
controller standard developed by the ANSI X3T9.2
subcommittee. SCSI defines an 8-bit parallel bi­
directional data bus with parity, plus nine control
lines. The SCSI protocol allows single or multiple
host computers (initiators) to share multiple
peripherals (targets, i.e. hard disk, floppy disks,
etc.). Up to eight daisy chained devices can
reside on the SCSI bus, with data transfer rates of
4 Mbytes/sec. synchronous and 1.5 Mbyte/sec.
asynchronous. The timing diagrams are given in
Appendix C.

The following is a summary of the interface signals:

1/0 is driven by a target to control the direction of
data movement. True indicates input to the
initiator.

MSG is driven by a target to indicate "Message
Phase". When MSG is asserted, REQ (Request) is
also asserted by the target for transfer of data byte

A AOORESSA>ATA ,._ PROGRAM J t'r-)t MEMORY
Y PROM

~· MAIN

J
MEMORY

80188
y RAM

MICRO-
PROCESSOR DATA BUS

indicating the end of the operational phase
("Message").

REQ is asserted by target to indicate that a data
byte is to be transferred on the data bus. Data byte
is transferred via handshake with ACK
(Acknowledge).

ATN (Attention) is driven by an initiator to indicate
to target an "attention" condition.

An initiator uses SEL along with asserting the
appropriate data (address) bits (0-7) to select a
target. Select line is deasserted after the target
asserts BSY to acknowledge selection.

RST (Reset) is a pulse asserted by the initiator to
stop the target's present operation and return
same to idle condition.

Data bus and control signals require open collector
drivers capable of sinking 48 mA each to support
SCSI mode of multiple initiators with multiple
targets. SCSI provides for either single ended (6
meter max. cable length) transmission or
differential (up to 25 meters).

9.2 FUNCTIONAL DESCRIPTION

Figure 9-2 shows the block diagram of the
Am29PL141 (FPC) QIC-02 and SCSI Controller.
This controller functions as a "Host" to the QIC-02

r---- -1\
r--- -v' SCSI

INTERRUPT DATA BUS
AND STATUS

~
-v' QIC-02

DATA BUS

~ Am29PL141_ -"'
SCSI

CONTROL -v' LINES
DUAL CHANNEL

BUS CONTROLLER AmPAL22V10

i... DMAREQ/INT/ARDY
~

~

-"'
QIC-02

CONTROL
LINES

AmPAL22V10

Figure 9-2. AmPL141 QIC-02 and SCSI Controller Block Diagram 06591A 9-2

9-2

interface and as an "Initiator" to a SCSI system.
This design is composed of three main functional
blocks: Microprocessing Unit, Dual Channel Bus
Controller, 1/0 Bus Interface.

The Microprocessing Unit is a straightforward
design centered around the 80188 micro­
processor which provides system level control to
the FPC through commands issued over its 8-bit
data bus and with feedback f ram the FPC via OMA
requests, interrupt, wait state insertion asynch­
ronous ready (ARDY), Interrupt Register, and a
Status Register.

The heart of the Dual Channel Bus Controller is the
Fuse Programmable Contra lier (Am29PL141)
which generates and monitors interface control
signals for both 1/0 bus interfaces (QIC-02 and
SCSI). The FPC is slave to the 80188, and
controls the transfers of commands, status, and
data to/from both 1/0 interfaces via single byte
OMA transfers to/from Main Memory. Interleaved
single byte transfer to/from both 1/0 devices is
provided. This approach supports maximum rates
for both 1/0 channels.

The 1/0 Bus lnterf ace provides single-ended drive
for both 110 channels (48 mA per line). Open
collector drivers are required for all SCSI generated
control signals; however, standard (Am29800
family) buffers and transceivers are satisfactory for
the QIC-02 and SCSI data bus.

Each of these functional blocks are now described
in detail.

9.2.1 80188 Microprocessing Unit

The Microprocessing Unit in this design performs
all of the high level system control and application
functions required when interfacing to tape and
disk. These functions include system and
application programs, direct memory access (OMA)
controllers, timers, interrupt controllers and chip
select decoders. The 80188 High Integration
Microprocessor was chosen for this design
because all of the above functions except the
programs and associated memory are contained in
a single chip. The 80188 provides two OMA
channels, three programmable timers, a
programmable interrupt controller and a
programmable chip select decoder. In this design,
both OMA channels, one timer, one external
interrupt and four peripheral chip selects (PCS1-4)
are dedicated to the SCSI and OIC-02 interfaces.

In order to configure the 80188 for this application,
certain operations must be performed prior to
executing any instructions which will access the
SCSI or QIC-02 interfaces. After reset, only the

Upper Memory Chip Select (UMCS) is active in
order to allow the 80188 to begin execution at
location FFFOH. At this time, UMCS is pro­
grammed for a block size of 1K bytes. To allow full
use of the Am27512, 64KX8 EPROM, the UMCS
register should be programmed with the value
F03DH. This sets UCMS for a 64K byte block size,
inserts one automatic wait state and ignores
external ROY in the range FOOOOH to FFFFFH.
Likewise, the Lower Memory Chip Select (LMCS)
must be programmed via the LMCS register.

Programming this register with the value 01 FCH
selects an SK byte block size, zero automatic wait
states and ignores external RDY in order to take full
advantage of the Am99C88-70, 70ns 8KX8 CMOS
Static RAM. Finally, the Peripheral Chip Selects
(PCSM) must be configured. Four of these PCSM
are used to select the SCSI and OIC-02 interfaces.
The PCSM are configured via MPCS and PACS
control registers. The MPCS register is
programmed with the value, 84B8H, which places
the PCSM in 110 address space, enables all seven
PCS lines, inserts no automatic wait state, and
uses external ROY. This value also configures the
Mid-Range Memory Selects (MCSM) for 8 Kbyte
block size The PACS register is programmed with
the value 0078H. This places the PCS block at 110
address OOOOH, inserts no automatic wait states,
and uses external RDY.

With the hardware now configured, the 80188 is
prepared to run applications utilizing the SCSI and
OIC-02 interfaces. An example of a simple
application is shown in Figure 9-3. This application
selects DISKO on the SCSI and reads 2000 bytes
into a data buffer. It then rewinds the tape on the
OIC-02 and writes the data buffer onto the tape.
As can be seen in Figure 9-3, there are several
support routines which perform the actual
communication with the SCSllOIC-02 interface.

SOFTWARE SUPPORT ROUTINES:

-FPC Control. This procedure outputs a function
and a code to the FPC command register. It also
reinitializes the watchdog timer via another
procedure (WD.lnit) not described here. The
watchdog timer is used to reset the Am29PL 141 in
the event that a device on either the SCSI or OIC-
02 fails to complete the proper handshake and
locks up the bus of 80188.

9-3

SCSl-lnit. This procedure uses the FPC Control
routine to assert and deassert the SCSI RST signal
in order to initialize the SCSI interface.

QIC2-lnit. This procedure asserts and deasserts
the QIC-02 RESET signal to initialize the interface.

?ROGRAM MAIN;

/*THIS PROGRAM IS AN EXAMPLE· OF THE ROUTINES NECESSARY TO
UTILIZE THE SCSI/QIC-02 INTERFACE. EACH ROUTINE IS DESCRIBED IN
THE ACCOMPANYING TEXT. THE MAIN PROGRAM PERFORMS THE SIMPLE
OPERATIONS OF READING A MULTI-SECTOR BUFFER, REWINDING THE TAPE
AND WRITING THAT BUFFER TO THE TAPE. */

CONST

VAR

DISK0 = l; /* DISK ADDRESS ON THE SCSI BUS */

DATN =
DRST =
INTl =
DTREQ
TPONL
TRINT =
TPRST =
DACK =

SET =
RESET = 0; /* CONTROL CODE FOR RESET OPERATION */

FPC COMMAND
SCSI = 128;
TAPE = 256;
!SR = 384;
STAT = 512;

= 0; /* FPC COMMAND REGISTER ADDRESS */
/* SCSI DATA PORT ADDRESS */
/* QIC-02 DATA PORT ADDRESS */
/* INTERRUPT STATUS REGISTER ADDRESS */
/* STATUS BUFFER ADDRESS */

READ_COMMAND BYTE [8, /* READ COMMAND CODE */
0, /* LUN 0, HEAD 0 , TRACK 0,

SECTOR 0 */
0,
0,
4, /* FOUR BLOCKS OF 512. TO BE
0] /* ENABLE RETRIES

CHAN0 = 0; /* OMA CHANNEL INDICATORS */
CHANl = l;

AND ERROR

EOI = 34 + 65280; /*. EOI REGISTER OFFSET PLUS CONTROL
BLOCK BASE ADDRESS */

INTl_IS 13; /* INTERRUPT 1 IDENTIFIER TO RESET
IN-SERVICE BIT IN EOI REGISTER */

DMAO_IS 10; I* OMA CHANNEL 0 IDENTIFIER TO RESET
IN-SERVICE BIT IN EOI REGISTER */

DMAl IS 11; /* DITTO FOR DMA CHANNEL l */

SCSI FLAG, TAPE FLAG, COUNT,
DATA-BUFFER [2000] : BYTE;
STATUS_BUFFER [2] : BYTE;

INTEGER;

PROCEDURE FPC CONTROL (FUNC, CODE);
CONST CMDMASK = BYTE 8;
VAR CMDACK : BYTE;

BEGIN

END;

WD INIT; /* INITIALIZE WATCHDOG TIMER */
CMDACK := 8;
DO WHILE CMDACK <> 0

CMDACK := CMDMASK AND INPUT(ISR);
OUTPUT(FUNC*8+CODE, FPC_COMMAND);

Figure 9-3. SCSl/QIC-02 Driver Example (Sheet 1 of 3)

9-4

READ */
CORRECTION */

PROCEDURE SCSI INIT;
BEGIN

END;

FPC CONTROL (SET, DRST); /*ASSERT SCSI RST */
DELAY (100); /* ~AIT 100 USECS */
FPC_CONTROL (RESET, DRST); /* DEASSERT SCSI RST */

PROCEDURE QIC2 INIT;
BEGIN -

END;

FPC CONTROL (SET, TPRST); /*ASSERT QIC-02 RESET*/
DELAY (100); /* WAIT 100 USECS */
FPC_CONTROL (RESET, TPRST); /* DEASSERT RESET */

PROCEDURE D SELECT (IDENT);
BEGIN -

WO INIT; /* INITIALIZE WATCHDOG TIMER */

END;

OUTPUT (IDENT, SCSI);/* OUTPUT THE IDENTIFIER TO THE
SCSI PORT */

PROCEDURE T_CMD (COMMAND);
BEGIN

WO INIT;
OUTPUT (COMMAND, TAPE);

END;

PROCEDURE D XFER (FUNC, BUFFER, COUNT);
BEGIN -

END;

IF FUNC = READ THEN
DMA SETUP (SCSI, BUFFER, COUNT, CHAN0);

ELSE
DMA_SETUP (BUFFER, SCSI, COUNT, CHANG);

WO INIT;
DMA_START (CHAN0);

PROCEDURE T_READ (BUFFER, COUNT);
BEGnJ

END;

DMA SETUP (TAPE, BUFFER, COUNT, CHANl);
WD INIT;
DMA_START (CHANl);

PROCEDURE T WRITE (BUFFER, COUNT);
BEGIN -

END;

OMA SETUP (BUFFER, TAPE, COUNT, CHANl);
WD INIT;
DMA_START (CHANl);

PROCEDURE FPC ISR;
VAR INTSTAT : BYTE;
BEGIN

END;

INTSTAT := INPUT (ISR); /* GET THE INTERRUPT STATUS */
IF INTSTAT AND TROY MASK THEN

BEGIN -

END;

FPC CONTROL (RESET, TRINT);
TAPE_FLAG := 0;

IF INTSTAT AND SCSI ERROR MASK THEN
SCSI INIT; - -

IF INTSTAT AND TAPE ERROR MASK THEN
QIC2 INIT; - -

FPC CONTROL (RESET, INTl);
OUTPUT (INTl_IS, EOI);

Figure 9-3. SCSl/QIC-02 Driver Example {Sheet 2 of 3)

9-5

PROCEDURE DMA0 !SR;
BEGIN -

SCSI FLAG := -;
OUTPUT (DMA0_IS, EOI);

END;

PROCEDURE DMAl !SR;
BEGIN -

TAPE FLAG := O;
OUTPUT (DMAl_IS, EOI);

ENO;

BEGIN /* MAIN PROGRAM BODY */
SCSI !NIT;

END;
END.

TAPE-IN IT;
D DELECT (DISK0);
SCSI FLAG := l; /* SHOW SCSI OPERATION IN PROGRESS */
D XFER (WRITE, READ COMMAND, 6); /*SEND READ COMMAND TO DISK*/
DO WHILE SCSI FLAG ~ l

I:= I+l;-/* WASTE TIME WAITING FOR COMPLETION */
SCSI FLAG := l; /* SHOW A NEW SCSI OPERATION IN PROGRESS */
D_XFER (READ, DATA_BUFFER, 2000); /* READ 2000 BYTES */

/* START AN OPERATION ON THE QIC-02 SIDE OF THE INTERFACE
TO RUN IN PARALLEL WITH THE SCSI OPERATION */

TAPE FLAG := l; /* SHOW QIC-02 OPERATION IN PROGRESS */
T CMD (REWIND); /* REWIND THE TAPE*/
FPC CONTROL (SET, TRINT); /*ENABLE INTERRUPT ON TAPE ROY*/
DO WHILE TAPE FLAG = OR SCSI FLAG = l

I := I+lT /* WAIT FOR THE OPERATIONS TO COMPLETE */

/* BOTH OPERATIONS ARE NOW COMPLETE */

SCSI FLAG := l;
D XFER (READ, STATUS BUFFER, 2); /* GET DISK STATUS */
DO WHILE SCSI FLAG =-1

I := I+lT
IF STATUS BUFFER [l] = GOOD STATUS THEN

BEGIN -

END;

TAPE FLAG := l;
T CMD (WRITE);/* PUT TAPE IN WRITE MODE*/
T-WRITE (DATA BUFFER, 2000); /* SEND OUT THE DATA */
DO WHILE TAPE-FLAG = l

I := I+lT

Figura 9-3. SCSl/QIC-02 Driver Example (Sheet 3 of 3)

D-Select. This procedure outputs an eight bit
select code to the SCSI interface. This process is
intercepted by the Am29PL141 which performs
the SELECT handshake.

T-Write. This procedure writes data from a
memory buff er to the QIC-02.

FPC-SR. This procedure is the interrupt service
routine for the Am29PL141. Upon entry it obtains
the interrupt status from the FPC Interrupt Status
Register (ISR). This status is examined to detect
the occurrence of any errors. If any are detected,
the offending interface is reinitialized. This is a
very rudimentary form of error handling and is used
only fdr purposes of this example. More elaborate
error handling is possible in actual applications.
Prior to exiting this procedure, the interrupt source
is reset and the in-service bit in the interrupt
controller is cleared.

T-CMD. This procedure outputs an eight bit
command to the QIC-02 interface. This process is
intercepted by the Am29PL141 which performs
the COMMAND handshake.

D-XFER. This procedure performs all data,
command and status transfers to and from the
SCSI interface.

T-Read. This procedure reads data from the QIC-
02 and places it in a memory data buffer.

9-6

RESET

RD

B0188
I ., ,.. v

<O
.!..i

PCS1

PCS2

PCS3

~~6
DROO

DR01 DTREQ

I!!!!_

RESET2

20MCLK

I
DATA BUS

~.u .
Am2950A C

COMMAND
REGISTER

c~

I

P.U.

~
Am22V10 f=: DACK

I ADDrift~BLE DATN

DRST

TAINT
CLK

L--,-
20MCLK

PCS3

RD

PCS4

RD

Arn2958
INTERRUPT

STATUS
BUFFER

RESET2 20MCLR

REm

Am29PL141

FUSE
PROGRMMABLE
CONTROLLER

CLK

cc

P(2) P(1) P(O)

TRINTPARJTY
ERROR

i.---------------;SCSI

EXP

BSYIN

TROY

DMSG

VCMD

DIRC

EXP

TACK

TROY

PCS1

iiEN

PCS2

DEN

PECLR

SCSI
DATA BUS

PARITY

QI~
DATA BUS

SCSI CONTROL

VO

MSG

CJD

REQ

BSY

OJ~CONTROL

ACK

ROY

EXP

DIRC

DACK

Am22V10

CONDITION
CODE
MUX

Ol~2 CONTROL

CLK

ARDY

ONE

TRJNT..-----ot

OMSG

VCMD

20MCLK

141TREQ

141XFER

ONLINE

RESET

REQUEST

XFER

SCSI CONTROL

BSY

Figure 9-4. Am29PL141 QIC-02 and SCSI Controller Circuitry

SCSI CONTROL

7438
o.c.

BUFFER

06591A 9-4

ACK

ATN

SEL

AST

DMAO-ISR, DMA1-ISR. These procedures signal
the completion of data transfers to other modules
by clearing the appropriate in-process flag (SCSI -

devices provide the intelligence to control SCSI
and OIC-02 interfaces, and required additional MSI
control logic off-loading these tasks from the
80188 (any host CPU). In this application, the FPC
can be thought of as a high speed microprocessor­
like controller with twenty-nine fixed instructions,
and sixteen programmable output control lines
(thirteen of which are used in this application).
Each instruction is executed during a single clock
cycle of 50 ns. Although it can operate as a stand-

FLAG, TAPE - FLAG).

9.2.2 Dual Channel Bus Controller Architecture

Refer to the complete schematic (Figure 9-4) for
the Am29PL 141 OIC-02 and SCSI Controller and
two AmPAL22V10s. These three programmable

JEVICE condi t ion_code_mux (AmPAL22Vl0) ;

"This device selects one of many input conditions to be tested
by the Am29PL141 and registers it in order to meet the CC setup
time requirement. It also collects two pieces of miscellaneous
logic necessary to produce the ARDY and DMSG signals."

PIN
elk = 1 vcmd = 2 trint = 3
dtreq 4 ddack = 5 dtack = 6
exp = 7 trdy = 8 tack = 9
bsyin 10 dreq = 11 c d bar = 13
msg = 14 dmsg = 15 ardy = 16
cc = 17 spare = 18 ardy_in = 19
cc mux sel 3 20 cc mux sel 2 21 - - -- - - 22 sel 0 23 cc _mux sel 1 cc _mux - -- -

BEGIN
ardy ardy_in + /ddack * /ardy_in ;

dmsg c_d_bar * msg ;

CASE (cc mux sel 3,cc mux sel 2,cc mux sel l,cc mux sel .0)
BEGIN - - - - - - - - - - - -

0) cc : = vcmd ;
1) cc : = ddack ;
2) cc : = dreq ;
3) cc : = tack ;
4) cc := dtack * dtreq ;
5) cc : = dtack * /dtreq ;
6) cc := msg * c _a_ bar + trint * trdy
7) cc : = exp ;
8) cc : = bsyin
9) cc : = 1 ,

10) cc : = dtack ;
11) cc : = dreq * ddack
12) cc : = trdy ;

END;
END.

Test_ vectors

IN

I 0
OUT

elk cc mux sel 3 cc mux sel 2 cc mux sel 1 cc_mux_sel_0
vcmd ddack-dreq tack dtack dtreq- -
msg c_d_bar trint trdy exp ardy_in bsyin ;

cc dmsg ardy ;

Figure 9-5. Condition Code MUX PAL Device Description (Sheet 1 of 2)

9-8

BEGIN

cc cc
cc cc

mm mm
uuuu c a
xx xx r

d dd d t db
ssss vddt tt rt ys d a

c eeee car a armb ire _y m r
1 1111 mcec cesa ndx ii c s d
k 3210 dkqk kqgr typ nn c g y

II

0 xx xx xx xx xx xx xxx lX x x H; "ardy"
0 xx xx XlXX xx xx xxx 0X x x L;
0 xx xx X0XX xx xx xxx 0X x x H;

0 xx xx xx xx XXll xxx xx x H X; "dmsg"
0 xx xx xx xx XX10 xxx xx x L x;
0 xx xx xx xx XX!ill xxx xx x L X;
0 xx xx xx xx XX01il xxx xx x L X;

c 0000 liJXXX xx xx xxx xx L x X; "cc vcmd"
c 01illillil lXXX xx xx xxx xx H x X;

c 0001 XliJXX xx xx xxx xx L x X; "cc ddack"
c lillil01 XlXX xx xx xxx xx H x x;

c 0010 XX0X xx xx xxx xx L x X; "cc dreq"
c 00113 XXlX xx xx xxx xx H x X;

c 0011 XXX0 xx xx xxx xx L x X; "cc tack"
c 0011 XXXl xx xx xxx xx H x X;

c 0100 xx xx llXX xxx xx H x X; "cc dtack * dtreq"
c 0lfJ0 xx xx 01XX xxx xx L x X;
c 0100 xx xx l0XX xxx xx L x X;
c 0100 xx xx 00XX xxx xx L x X;

c 0101 xx xx llXX xxx xx L x X; "cc dtack * /dtreq"
c 0101 xx xx lliJXX xxx xx H x X;
c 0101 xx xx 01XX xxx xx L x X;
c 0llil1 xx xx 00XX xxx xx L x X;

c 0110 xx xx XXll 00X xx H x X; "cc msg * c d bar + trint * trdy"
c fJ110 xx xx XX00 llX xx H x X;
c 0110 xx xx XX00 oox xx L x X;

c 0111 xx xx xx xx XX!il xx L x X; "cc exp"
c 0111 xxxx xxxx XXl xx H x x;

c 1000 xx xx xx xx xxx X0 L x X; "cc bsyin"
c llillillil xx xx xx xx xxx Xl H x X;

c lliJ liJ 1 xx xx xx xx xxx xx H x X; "cc l"

c 1010 xx xx ax xx xxx xx L x x; "cc dtack"
c lliJ lliJ xx xx lXXX xxx xx H x X;

c HJll XllX xx xx xxx xx H x X; "cc dreq * ddack"
c 1011 X01X xx xx xxx xx L x X;
c llill 1 xrnx xx xx xxx xx L x X;

c 1100 xx xx xx xx X0X xx L x X; "cc trdy"
c 1100 xx xx xx xx XlX xx H x X;

END.

Figure 9-5. Condition Code MUX PAL Device Description (Sheet 2 of 2)

9-9

alone controller, the FPC has been made a slave to
the 80188 uP, through the FPC test inputs (TO­
TS} and the Command Register (Am2950A}.

The processor (80188} writes to the Command
Register which contains valid system commands (6
bits} to the FPC. During the IDLE loop of the FPC
software, the FPC selects VCMD (by setting
output lines P3-P6} as its CC (condition code)
input through the condition code mux. If CC
(VCMD} is a "pass" condition (asserted) meaning
the Command Register has been updated, then
the FPC branches to the instruction whose
address is given by input TO-T5 (from command
register}. After the command has been proces­
sed, the FPC deasserts the VCMD bit (in the Com­
mand Register} and returns to the IDLE loop to
check for either another command from the proces­
sor or a function required by either SCSI or OIC-02.

Checking for a VCMD and then branching to the
processor's command address enables the FPC to
operate asynchronous to the processor, whose
bus T states (100 ns} are at one-half the FPC's
clock rate and skewed in time. The seventh bit in
the command register is used for the parity error
latch in the SCSI transceiver, Am29834A, (upper
right corner of schematic, Figure 9-4}.

The Condition Code Mux (CCM) selects the
appropriate input to "CC" of the FPC as defined by
the FPC's output lines P3-P6. This multiplexing is
not always a straight selection but does include
logical combinations of input signals in some cases
(see Figure 9-5, Condition Code Mux PAL
Definition File}.

The CCM provides two other outputs. ARDY
(asynchronous ready} to the processor is asserted
when instructed by the FPC and is used to
lengthen the processor's bus cycle time (amount
of time data remains valid on the 80188 bus) when
QIC-02 or SCSI data transfer timing requires it.

The remaining output from the CCM is DMSG (Disk
Message} which is an input to the Interrupt Status
Buffer. This is asserted when SCSI asserts both
MSG and CID. Under this condition, the FPC
generates an interrupt (INT1), through the
Addressable Latch (AmPAL22V1 O}, to the
processor indicating that the Disk (SCSI} is
requesting "Command" Data. The processor then
reads the Interrupt Status Buffer to determine this
condition (DMSG asserted}. The following inputs
are available to the CCM: VCMD, DTACK, and
DDACK signals (generated by the processor);
MSG, C/D, OREO, and BSYIN (generated by the
SCSI control bus}; TACK, TROY, and EXP
(generated by the QIC-02 control bus} and TRINT
from the Addressable Latch.

Since the outputs from the FPC are subject to
change on an instruction by instruction basis (each
clock cycle}, certain signals must be latched. The
AmPAL22V1 O serves as an addressable latch,
addressed by the FPC output lines P3-P8
(LADDR}. Note that output lines P4-P6 are over­
laid with the 3-bit field for the CCM. This technique
frees up three spare output lines at the expense of
instruction lines in the FPC. Lines P4-P6 select
which of the eight latches is selected. PS enables
all latches. P7 determines set or clear of the latch,
and P3 (ARESET} provides an asynchronous
reset to all latches. The eight outputs from LADDR
are: INT1 and DTREG to the processor; TPONL
and TPRST to the QIC-02 control bus; DACK,
DATN and DRST (control signals to SCSI}; and
TRINT (a feedback signal to the CCM}. Figure 9-6
describes this PAL (LADDR).

9.2.3 Am29PL 141 Microprogram

The Am29Pl141 is a single-chip Fuse Program­
mable Controller. It is used in this application as a
complex controller by programming the appro­
priate sequence of instructions. The available in­
struction set is quite rich. It includes jumps, loops,
waits, and subroutine calls, which can be condi­
tionally executed based on the test inputs (TO-TS}
or CC input (all of these are used in this appli­
cation}. The FPC flowcharts provide the details of
the FPC microprogramming used in this design.

As shown in Figure 9-7, the IDLE LOOP flow
diagram, the FPC continually cycles through this
loop from initial power-on reset (RESET2}, and
jumps to one of nine routines depending on the
task at hand. After completion of the task, control
returns to the idle loop. RESET2 initializes the
FPC to start at address sixty-three. RESET2 is
generated on system power-up and when the
processor's watchdog timer times out (TMROUT1 }.
This timer is programmed to time out if the disk or
tape accesses fail to complete the proper
handshake in a reasonable time or the FPC locks
up the bus of the 80188 because of some error
condition.

The first instruction (at address 63} is a NOOP. It is
used to assert ARESET (output line} to LADDR for
deasserting of latches and to deassert all other
output lines. The next instruction is the
return/entry point into the idle loop. It selects the
CCM to enable path for VCMD to CC input of FPC.

The next state is the first condition test. If CC is a
PASS condition, there is a valid command (VCMD
asserted). The FPC branches to the address
given in Command Register (TO-T5). If VCMD is
not asserted (CC = FALSE}, it selects DDACK as
an input for CC and continues to next incremental

9-10

DEVICE addressable_latch (AmPAL22VlO) ;
"This device is the addressable latch used by the Am29PL141 to expand
its I/O capabilities."

PIN

DEFINE

BEGIN

END.

elk 1 enable 2
al 4 a2 5
reset 7 spare[0:4] 8:11,13
/drst 15 intl 16
/tponl 18 /tr int 19
/dack 21 spare_out[O:l] = 22:23

set = function

IF (reset) THEN ARESET()
case (A2,Al,AO)
BEGIN

END;

0)
1)
2)
3)
4)
5)
6)
7)

datn := datn * /enable +
drst := drst * /enable +
intl := intl * /enable +
dtreq := dtreq * /enable
tponl := tponl * /enable
trint := trint * /enable
tprst := tprst * /enable
dack := dack * /enable +

set *
set *
set *
+ set
+ set
+ set
+ set
set *

Test_vectors
IN

I O;
OUT

elk enable a2 al ao function reset ;

ao
function
/datn
dtreq
/tprst

enable ;
enable ;
enable ;
* enable
* enable
* enable
* enable
enable ;

/datn /drst intl dtreq /tponl /trint /tprst /dack;

BEGIN
f
u

e n Ill
n c r II d ttt/
a t e ddit prpd

c b i s arnr oira
1 1 aaa 0 e tste nnsc
k e 210 n t ntlq lttk

II

x x xxx x 1 HHLL HHHH;
c 0 xxx x 0 HHLL HHHH;
c 1 000 1 0 LHLL HHHH;
c 1 000 0 0 HHLL HHHH;
c 1 001 1 0 HLLL HHHH;
c 1 001 0 0 HHLL HHHH;
c 1 010 1 0 HHHL HHHH;
c 1 010 0 0 HHLL HHHH;
c 1 011 1 0 HHLH HHHH;
c 1 011 0 0 HHLL HHHH;
c 1 100 1 0 HHLL LHHH;
c 1 100 0 0 HHLL HHHH;
c 1 101 1 0 HHLL HLHH;
c 1 101 0 0 HHLL HHHH;
c 1 110 1 0 HHLL HHLH;
c 1 110 0 0 HHLL HHHH;
c 1 111 1 0 HHLL HHHL;
c 1 111 0 0 HHLL HHHH;

Figure 9-6. Addressable Latch PAL Device

9-11

3
6
14
17
20

YES BRANCH TO
~--., ADDR. T0 - T5

SEE FIGURE 9-8

~Y-=Es;;;.__ CALL·sa·

YES

06591A 9-7

Figure 9-7. QIC-02 Controller Program Flow Diagram (Sheet 1of2)

9-12

06591A 9-7

WRXFER

CMDXFER

CALL
"SELL"

Figure 9·7. QIC-02 Controller Program Flow Diagram (Sheet 2 of 2)

9-13

GOTO IDLE GOTO IDLE GOTO IDLE

GOTO IDLE GOTO IDLE
GOTO IDLE

GOTO IDLE GOTO IDLE GOTO IDLE

GOTO IDLE GOTO IDLE

GOTO IDLE GOTO IDLE

06591A 9-8

Figure 9-8. Am29PL141 Valid Command Routines

9-14

device (pl141)
"Am29PL141 QIC-02 and SCSI controller"
default = l;
define

def = lOOO#h
vcmd = lOOO#h "condition code mux select lines"
ddack = lOlO#h
dreq = 1020#h
tack = 1030#h
dtareq = 1040#h
dtanreq = lOSO#h
mctirdy = 1060#h
exp = 1070#h
bsyin = lOBO#h
one = 1090#h
dtack = lOaO#h
drack = lObO#h
trdy lOcO#h

datn
drst
intl
dtreq
tponl
trint
tprst
dack =

lOOO#h
lOlO#h
1020#h

1030#h
1040#h
lOSO#h
1060#h

1070#h

"addressable latch lines"

cmdack = Olll#h "other output lines"
ddreq = lBOO#h
sel = 1400#h
bsyout = 1200#h
lsrccms = lOBO#h
len = llOO#h
ccmardy = lOOl#h
xf er = 1002#h
tpreq = 1004#h
lareset = lOOB#h;

test_condition = cc;

begin
idle:

nsel:
next:

vcmd, continue;
vcmd, goto tm(3f#h);
ddack, if (cc) then call pl(nsel);
dreq, goto pl(dmaxfer);
tack, goto pl(rdxfer);
dtareq, goto pl(wrxfer);
ddack, if (cc) then call pl(nsel);
dtanreq, goto pl(cmdxfer);
mctirdy, goto pl(dint);
exp, goto pl(tint);
one, goto pl (idle) ;
ccmardy+bsyin, if (cc) then goto pl(next) else wait;
one, goto pl(idle);

dmaxfer:ddreq+ddreq, if (cc) then goto pl(nextl) else wait;
nextl: ccmardy+dack+lsrccms+len, continue;

dreq, if (cc) then goto pl(next2) else wait;
next2: dack+len, goto pl(idle);

rdxfer: ccmardy+dtreq+lsrccms+len, continue;
ccmardy+dtack, if (cc) then goto pl(next3) else wait;

next3: dtreq + len, continue;
dtack, if (not cc) then goto pl(next4) else wait;

next4: xfer+ccmardy+tack, if (not cc) then goto pl(nextS) else wait;

Figure 9-9. QIC-02 Controller Source Program Listing {Sheet 1 of 2)

9-15

nextS: one, goto pl(idle);

wrxfer: xfer+dtreq+len,continue;
tack+xfer, if (cc) then goto pl(next6) else wait;

next6: tack, if (not cc) then goto pl(next7) else wait;
next7: dtreq+len+lsrccms, continue;

one,goto pl(idle);

cmdxfer: ccmardy+tpreq+drack, if (cc) then call pl(nsel);
trdy, if (cc) then goto pl(next8) else wait;

next8: trdy, if (not cc) then goto pl(idle) else wait;

dint: intl+len+lsrccms, continue;
one, goto pl(idle);

tint: intl+len+lsrccms, continue;
dtreq+len+lsrccms, continue;
one, goto pl(idle);

setatn: datn+len+lsrccms, continue;
one, goto pl(idle);

clratn: datn+len, continue;
one, goto pl(idle);

setdrst: drst+len+lsrccms, continue;
one, goto pl(idle);

clrdrst: drst+len, continue;
one, goto pl(idle);

clrint: intl+len, continue;
one, goto pl(idle);

sdtreq: dtreq+len+lsrccms, continue;
one, goto pl(idle);

cdtreq: dtreq+len, continue;
one, goto pl(idle);

stponl: tponl+len+lsrccms, continue;
one, goto pl(idle);

ctponl: tponl+len, continue;
one, goto pl(idle);

strint: trint+len+lsrccms, continue;
one, goto pl(idle);

ctrint: trint+len, continue;
one, goto pl(idle);

stprst: tprst+len+lsrccms, continue;
one, goto pl(idle);

ctprst: tprst+len, continue;
one, goto pl(idle);
.ORG 63#d
lareset,continue;

end.

Figure 9-9. QIC-02 Controller Source Program Listing (Sheet 2 of 2)

address (PC+1). The IDLE loop continues in this
fashion to select and test CCM input conditions
and branch accordingly.

Figure 9-8 shows the Valid Command (VCMO)
routines. Each command, f ram the processor will
branch to one of these thirteen valid routines. All
of these routines are single instructions which set
(assert) or clear (deassert) output control lines,
which always includes resetting the VCMO signal in
the Command Register and returning to idle.

Figure 9·9 is the FPC Microprogram source code
listing.

SCSI Interface: The second conditional test in the
idle loop is based on OOACK (disk OMA
acknowledge). This subroutine is called after the
FPC has generated OOREQ (Disk OMA Request)
and the processor responded appropriately. The
OOACK signal also enables the SCSI bus
transceivers for transfer of data. Figure 9-7 shows
this call routine (SEL). The FPC asserts AROY

9-16

output, to insure processor bus is open long
enough for transfer of SCSI data to main memory,
and selects BSYIN as CC test input. The FPC waits
for SCSI to assert BSYIN before proceeding.
BSYIN indicates that the disk is using the SCSI
bus. At this time, ARDY can be deasserted, since
the data byte is in main memory, and FPC can
return to idle at point of exit.

The IDLE Loop then conditionally tests the signal
OREO. If DREQ is asserted, then a jump to the
DMAXFER routine takes place. DREQ stands for
disk request for data. This signal is generated by
SCSI during data transfer, write to or read from
disk, as the handshake with acknowledge (ACK)
from the FPC. Detecting DREQ being asserted
causes the FPC to begin single byte DMA transfer
to/from main memory.

First, the FPC asserts DDREO (disk DMA request)
on DMA Request Channel 0 (DRQO) as an input to
Processor (80188). The processor acknowledges
this DMA request by asserting DDACK (disk DMA
acknowledge) which is an input to the CCM.
DDACK is the PCS1 (programmable chip select

#1) from the processor. PCS1 is qualified (gated)
with DEN, also from the processor, to enable the
SCSI transceiver onto the internal 8-bit data bus.
Direction of this transceiver is controlled by the
signal "l/O" from the SCSI control bus.

After detecting DDACK asserted, FPC then
deasserts DDREQ output, asserts output ARDY
(to extend 80188 DMA bus cycle) and sets output
to LADDR (addressable latch) which asserts DACK
(disk acknowledge). DACK is asserted to SCSI
(through LADDR) to continue the data byte
transfer handshake (refer to SCSI timing diagram
Figures in Appendix C). The CCM is selected for
DREO input. After OREO is again asserted by
SCSI, the transfer is complete. DACK and ARDY
are deasserted by the FPC and flow returns to idle
loop. This DMA transfer routine is used for both
writes to and reads from SCSI since the only
difference in timing signals is the 1/0 directional
signal which is controlled by SCSI.

QIC-02 Interface. The next conditional jump
instruction tests TACK (tape QIC-02
acknowledge). TACK from QIC-02 is the

80188 DATA BUS

06591A 9-10

Am29845A Am29845A

INTDTA (0:7)

16L8

EQU

Am29834A

SCSI DATA BUS

NODEADDRESS
COMPARATOR

8

Am29845A NODEADDRESS
REGISTER

8

7438 7438

Figure 9·10. SCSI Advanced Features Upgrade

9-17

handshake signal used with XFER from FPC to
transfer data (see OIC-02 timing diagrams in
Appendix C). With TACK asserted, a jump to
RDXFER (read transfer from tape) takes place. All
of the QIC-02 processing flow is shown in sheet 2
of Figure 9-7. In a similar fashion to SCSI data
transfer, OIC-02 data is a DMA to/from main
memory using DMA Request Channel 1 (DRE01)
of the processor. DTREO is asserted by the FPC
(through LADDR) and ARDY is asserted to the
processor through CCM. Next is a conditional wait
until the processor acknowledges this DMA REQ
via DTACK (input to CCM and QIC- 02 Data Bus
Transceiver enable). After CC = PASS (i.e.
DTACK condition asserted), DTREQ and ARDY
outputs are deasserted and the OIC-02 read timing
handshake continues with a return to the idle loop.

The next conditional test in the idle loop is for a
tape write cycle, indicated by both DTACK. and
DTREO being asserted. The WRXFER routine
shown in Figure 9-7 matches OIC-02 timing
requirements as discussed in Appendix C. The
flowcharts for FPC routines include the tape
transfer commands and processor interrupts on
tape exception conditions.

OIC-02 requires different timing during tape write,
read, command, and for tape rewind, which has
been divided into separate FPC routines which are
interactive with the processor. It begins a tape
access by issuing "set on line" (TPONL) valid
command and ends tape access with "clear on
line" (TPONL). The microprocessing unit section
above discusses this interaction.

EQU = INTDTAO * DEVADRO

+ INTDTAl * DEVADRl

+ INTDTA2 * DEVADR2

+ INTDTA3 * DEVADR3

+ INTDTA4 * DEVADR4

+ INTDTA5 * DEVADR5

+ INTDTA6 * DEVADR6

+ INTDTA7 * DEVADR7

9.3 ADVANCED FEATURES OF SCSI

This design can be upgraded to include SCSI bus
arbitration, initiator reselection and operation as
target as well as initiator. These features are
required in a multiple initiator, multiple target
environment.

The logic shown in Figure 9-10, when added to
the original design, accomplishes the above. ·it
also provides the means for transferring
commands, status, messages, and target selection
information via 80188 programmed 1/0 transfers.
For support of target mode operation, it is
necessary to provide SCSI bus drivers and
addressable latches for the following SCSI signals:
REO, C/D, 1/0, MSG, and SEL (not shown).

SCSI bus node addresses are one bit in length.
That is, each node is assigned one of eight
possible addresses corresponding to one of the
eight SCSI bus data lines. During the SELECT
phase of bus operation, a node must only test one
bit of the data bus to determine if it is being
selected. Similarly, during the ARBITRATION
phase, the node that is asserting the highest bit on
the data bus "wins" control of the bus.

Before allowing SELECTION or ARBITRATION,
the 80188 must first load the SCSI "Node Address
Register". This register is used as a mask register
to determine which bit of the SCSI data bus will be
tested during SELECT/RESELECT and which bit
will be asserted by this node during the
ARBITRATION phase.

9.3.1 Selection (Target reselecting Initiator I
selection as Target)

The SCSI bus SEL must now be tested in the
Am29Pl141's idle loop. If asserted, the·
Am29Pl141 tests the SCSI bus "address
compare bit - EOU" (16L8 shown in Figure 9-11)
and the SCSI bus BSY signal. If this SCSI node is
being addressed and BSY is not asserted; then,
the Am29PL141 branches to a routine that will
monitor SCSI BSY; else, it returns to its idle loop.
To monitor BSY, the Am29PL 141 uses one of its
internal counters to "time out" a 400 nsec bus free
period and then retests SCSI BSY. If the bus is still
free, this node is being SELECTED/
RESELECTED and the Am29PL 141 will interrupt
the 80188 which would then take the necessary
action. If the bus is not free, the Am29PL141
returns to its idle loop. The 80188 interrupt
handler should test the status of SEL and the

Figure 9-11. Node Address Comparator PAL Device "address compare bit" to determine that this is a
Equation SELECT/RESELECT interrupt.

9-18

9.3.2 Arbitration

To initate the ARBITRATION cycle, the 80188
issues a command to the Am29PL141 to set an
"arbitration request flip-flop ARBRQ". This is
another addressable latch bit controlled by the
Am29PL 141 and subsequently monitored in the
Am29PL 141's idle loop. If the ARBRQ bit is set,
the Am29PL141 will then test SCSI BSY, and if
asserted, the Am29PL141 returns to its idle loop.
If ARBRQ is asserted and the SCSI bus is not
busy, the Am29PL141 will interrupt the 80188,
assert the address for this node onto the SCSI
bus, assert BSY and begin monitoring SCSI SEL.
The address for this node is asserted onto the
SCSI bus via the 7438s and a new control bit
"ARB". (See Figure 9-10.)

The Am29PL141 will now continuously monitor
SCSI SEL and the ARBRQ signal. The asserting
of SEL during the arbitration process indicates that
another SCSI device has assumed control of the
bus and this node should abort the arbitration
process. The assertion of SEL causes an
"arbitration failed flip-flop" to be set by the
Am29 PL141. This bit wou Id be added to the
status bits readable by the 80188. Also, the
deassertion of ARBRQ indicates that the 80188
has terminated the arbitration process. In either
case, the Am29PL141 will deassert BSY, remove
this node's address from the bus, and return to its
idle loop.

The 80188 interrupt processing routine is
responsible for reading the SCSI data bus and
determining whether this node is the highest
currently requesting the bus. If this node has lost
the arbitration process, ARBRQ should be
deasserted to allow the Am29PL141 to return to
its idle loop and then reasserted to begin the
process again. If this node appears to have won
the arbitration process, the interrupt handler
should first check the "arbitration failed flip-flop"
before entering the SELECTION phase. This final
check is required to insure no other device issued
a SEL while the 80188 was responding to the
interrupt.

9.4 SUMMARY

This design solves the problem of interlacing older
generation tape drives (QIC-02) to modem
computer peripherals on the SCSI bus.

The use of the Fuse Programmable Controller and
two programmable array logic devices
(AmPAL22V1 Os), allows the implementation of
this complex controller with minimum component
count, off the shelf standard parts, (see Figure 9-
12) and is reconfigurable/upgradable through
reprogramming. This design should also give
insight into the versatility of the FPC and ease of
using this device for new designs.

DEVICE

Am29PL141
80188-1
Am2947
Am29843A
Am2958
AmPAL22V10

Am2950A
Am29834A

Am29864
Am29828A
7438
Am29827A

PARTS LIST

DESCRIPTION QUANTITY

Fuse Programmable Controller 1
1 OMHz, 8-bit Microprocessor 1
Octal Bidirectional Transceiver 1
9-bit Latch, Non-Inverting 2
Octal Buff er, Inverting 2
24-pin Programmable 2
Array Logic
8-bit 1/0 Port with Flags
Parity Bus Transceiver,
Inverting
9-bit Transceiver, Inverting
10-bit Buffer/Driver, Inverting
Open-Collector Drive
10-bit Buff er/Drive,
Non-Inverting

1
1
2

Am27512DC 512K-bit UV EPROM (250 ns)
*AmPAL16L8A 20-pin Programmable

Array Logic

*Use for the five 2-input "OR" gates and for the
one 2-input "AND" gate.

Figure 9-12. SCSI and QIC-02 Controller Parts List

9-19

CHAPTER10

HIGH SPEED OMA CONTROLLER USING Am29PL 141

10.1 SYSTEM OVERVIEW

In this application, the Am29PL 141 Fuse Program­
mable Controller (FPC) is used to control two hard­
ware blocks that are sequenced at a rate greater
than 1 O MHz. This application illustrates the power
and flexibility of the Am29PL 141 in distributed
control applications.

The subsystem controlled by the FPC is just a
small part of a large computer system. From the
viewpoint of the main central processing unit
(CPU), this subsystem is an asynchronous
peripheral. The peripheral's function is to control a
direct memory access (DMA) channel. This chan­
nel links the main CPU's memory to a digital signal
processor's (DSP) memory. Figure10-1 shows the
various hardware blocks which comprise the DMA
channel interface. All operations are initiated by
the main CPU. Once a command is passed to the
subsystem, the main CPU is free to do other tasks.
The DMA interface signals the completion of a task
by generating an interrupt in the main CPU. A
typical command consists of transferring data
(totally under the control of the Am29PL 141)
and/or processing data (controlled by the DSP
engine and the Am29PL 141).

The overall system can be viewed as a digital signal
processor (DSP). It performs high speed data
acquisition, digitizing several incoming analog
channels. The processor utilizes DSP techniques
to modify and/or extract information from this data,
and outputs results which are converted back to
analog signals.

By their nature, many DSP algorithms operate on
blocks of Data. In this particular application, the
incoming channels consist of various speech sig­
nals. After digitalization, the speech bandwidth is
compressed using linear predictive coding (LPC)
techniques. A 64 kbit/sec channel is compressed
to a 2.4 kbit/sec data stream using LPC. Six com­
pressed input channels are multiplexed over one
serial link. Simultaneously, the processor receives
a multiplexed LPC data stream. It demultiplexes
this data and expands the compressed data
resulting in analog speech output channels.

Real time constraints mandate a high speed DMA
controller to orchestrate the filling and emptying of
the LPC data RAM. Incoming channels of raw

speech data are stored in this RAM. Once avail­
able, the processor invokes an analysis routine
that extracts the LPC parameters. This parametric
information is multiplexed and transmitted over
one serial link. In the other direction, received LPC
parameters are demultiplexed. A synthesis routine
is then invoked which reconstructs the speech
signals. These reconstructed speech waveforms
are stored in the data RAM. The Am29PL 141 not
only controls the DMA channel, but also performs a
sequencing function assisting the subsystem's
DSP engine.

The following sections describe the CPU-FPC
interface, the FPC output lines, the use of 27818
and Am2940 for address generation, and finally
the microprogram for this application. A more
complete discussion of the Am29PL141 FPC is
given in Chapter 1 and Appendix F. Chapter 2
gives more detail about writing the microprogram
source code.

10.2 CPU-FPC INTERFACE

Whenever the CPU desires service from the DSP
subsystem, it issues a command by placing it in a 5-
bit instruction register. This register's outputs are
available to the FPC as T[4:0]. The CPU sets the
valid instruction flip flop to indicate the presence of
a new command. The flip flop output is connected
to the FPC's CC test input. While idle, the FPC
interrogates this flip flop. When a new command is
detected, the FPC commences execution of the
instruction. Upon completion, the valid instruction
flip flop is cleared (using P[11]), and a status bit is
output to the CPU. Data passes between the
main CPU data bus and the DSP data bus via a
specialized 16 bit bi-directional 1/0 port. In
addition to buffering data during transfers, the 110
port is used to initialize the DSP data RAM.

There are actually 14 different instructions
represented in bits T[3:0]. T[4] is used to tell the
DSP engine to perform calculations with the OMA
interface generating the addresses.

Three groups of CPU commands are defined:

1. Data Transfer In (to the DSP memory) - 6
2. Data Transfer Out (from the DSP memory) - 7
3. Data Memory Initialize - 1

10-1

The number following each group name denotes
the number of instructions within that group.

Any instruction in the Data Transfer In group can
additionally have T[4] as a qualifier. When T[4] is
negated, the DMA interface only transfers data in
to the DSP memory. When T[4] is asserted, the
OMA interface serves as the address generator for
the DSP engine for a particular task after the data
transfer is complete. By reexamining the CPU com­
mand, the FPC determines how many addresses it
needs to generate for the task.

Instruction decoding is a simple task in the
Am29PL 141 using its multiway branch instruction.
In this application T[3:0] are masked and a branch
to one of sixteen locations is taken as determined
by the pattern present on T[3:0]. Subsequent
paths taken are derived from this multiway branch.

10.3 Am29PL141 CONTROLLER

At the heart of the DMA interface is the
Am29PL141. Once the CPU passes a command,
the FPC takes over. All data transfer operations

FROM MAIN PROCESSOR

VALID INSTRUCTION
CLR

5

CC P11

...__ ______ TO-T4 P15

INSTRUCTION
STATUS

T5 P13, P14 i-----"

are under its control. When a new instruction is
detected, the 29PL 141 decodes it by reading it in
on its TO--T4 test inputs. The DONE output of the
Am2940 is connected to the FPC T5 test input for
signaling the completion of an address sequence.
When an input instruction is decoded, control
branches to the appropriate control sequence.

A 64 x 32 bit PROM resides on the Am29PL141.
The upper 16 bits of each word are used to control
the on-board sequencer. The functions of these
bits are defined by AMD and are not alterable by
the user. The lower 16 bits of each word are
brought out through a pipeline register as output
lines and are user-defined (P15--PO). Appendix F,
the Data Sheet, defines the microinstruction word
in detail.

The control data that appears at the outputs
(P[00:15]) of the FPC depends on the type of
instruction. Five bits (P[00:04]) are used as an
address to a 32 x 8 lookup PROM. Four bits
(P[06:09]) provide instructions and control to an
Am2940 high speed DMA address generator.
Two bits (P[10], P[12]) control the specialized
bidirectional 1/0 port between the two processor

DATA BUS

16

2

P121--------------+-----*

P1oi--------------+-----•

P09 i-------------
P06-P08 i-----...,"--------91

Am29PL141
POD-P04 __ _,,_ __

06591A 10-1

Figure 10-1. OMA Channel Interface

10-2

data buses. Finally, two bits (P[13], P[14]) are
used to control the clock source to the Am2940
address generator. P[15] signals the main CPU
when the execution of a command is complete.

Figure 10-2 illustrates the assignment of the 16
Am29PL141 output lines. These output lines are
controlled by the FPC microprogram instructions.
One-half of each microinstruction word is used to
specify these outputs. All but one of these lines
are used in this application. These 16 output lines
are grouped into eight fields of varying widths.
The specifics of each field, the field width, and the
type of micro-operations performed, are as follows:

Prom Address Control

The 5 bit field formed by P[4:0] is named A[4:0].
After a CPU command is decoded, the FPC
determines which block of data RAM is to be
accessed and its length. The starting address of
each block and its length are stored in the look-up
PROMs. A[4:0] provide the addresses to the
lookup PROMs for each new OMA operation.

OMA Address Generator Control

P[8:6] form a 3 bit field named 1[2:0]. These bits
are the instructions for the Am2940 address gen­
erator. Operations performed by the field include
reading and writing various data and control
registers on the Am2940.

OMA Count Control

P[9] is a one bit field named CNT wired to the ACI
and WCI inputs of the Am2940. The signal
enables the counting operation of the address
generator. This effectively provides clock control
in addition to the external clock circuitry.

Data Bus Interface Control

Bits P[1 O] and P[12] form two one-bit fields for this
function. P[1 O] is named BEN and controls data

transfers between the two CPU data buses. When
it is asserted, transfers are allowed. P[12] is named
ZEN (Zero Enable). When asserted, it overrides
BEN for transfers into the OSP data memory and
instead places zeroes on the data bus. This
feature is useful for initialization in certain tasks. By
having the OMA controller provide this function,
the OSP is offloaded and subsequently has more
time for performing calculations.

Instruction Status

P[11] and P[15] form two one-bit fields used in
conjunction with the CPU instruction interface.
P[11] is named CLR. This bit serves as the clear
signal to the valid instruction flip flop. This flip flop
can only be set by the main CPU and reset by the
OMA controller. When an instruction is completed
by the OMA controller, it resets this flip flop. The
FPC idles until the main CPU sets this flip flop
indicating the presence of a new instruction in the
instruction register.

P[15] is named ONE and is sent back to the main
CPU. When asserted by the FPC it indicates that
the OMA subsystem has completed the execution
of a command and is awaiting a new one.

Clock Control

P[14:13] form a two bit field named CK[1 :O].
These bits control the source of the clock to the
Am2940s. Three selections are possible: 1) Sys­
tem clock; 2) System clock shifted by 180°; and 3)
clock inhibit.

10.4 ADDRESS GENERATION

Several channels of data are stored in the DSP
data RAM. For each channel, the OMA controller
must input to and/or output from the proper sey­
tion of the memory. Generation of the appropriate
addresses is handled by two Am27S18SA PROMs
and two Am2940 address generators.

P15 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 P03 P02 P01 POO

06591A 10-2

ONE CK1 CKO ZEN CLR BEN CNT 12 11 10

INST
STATUS

CLOCK
SELECT

MEM BUS
INIT ENABLE

ENABLE

INST
ACK
CLR

2940
COUNT
CNTRL

2940
INSTRUCTION

CONTROL

A4 A3 A2 A1 AO

PROM ADDRESS
CONTROL

Figure 10-2. Format of User Output Portion of Am29PL 141 Microcode

10-3

The FPC determines a starting address and a block
length from a decoded instruction. The actual
values of this data are stored in the Am27S1 BSA
lookup PROMs. Two five-bit addresses, represen­
ting the starting address and block length are
presented to the PROMs. The data outputs of the
PROM are routed to the Am2940s on their data
inputs (D0-07) and loaded into the appropriate
registers. Once initialized with these "seed" val­
ues, the Am2940s provide sequential addresses
to the DSP data RAM until the word count expires.
The DONE signal from the Am2940s alerts the
FPC to this condition.

In addition to providing OMA addresses, this
section of the hardware generates addresses for
the DSP for certain processing steps that are time
critical. Some sections of the LPC algorithm

INSTRUCTION DECODE
WITH

MUL TIWAY BRANCH

LOADSTARTADDRESS
&WORDCOUNT

IN Am2940

sequentially step through the memory block
repeatedly. For these tasks, the FPC keeps track
of how many passes are required and issues con­
trol data to the address generators. Basically it
performs dummy OMA cycles where addresses are
generated but no data passes through the data
bus interface.

10.5 FPC MICROCODE

Figure 10-3 is the flowchart of the code
implemented for this application. A total of 45
words are used. This leaves ample room for future
modifications to the interface. Of the 45 locations
used, 30 are used for instruction decoding. How­
ever, while the FPC is decoding an instruction, its
control outputs are simultaneously loading values

YES

LOAD CREG WITH
WAIT STATES

LOAD1ST
WC IN2940

WAITWITH CREG

ENABLE BUS & COUNT

NO

B

06591A 10-3

Figure 10-3. OMA Controller Program Flow Diagram

10-4

into the Am2940s. This parallel operation allows
the data transfers to take place with a minimum of
overhead. By the time the instruction is decoded,
the Am2940 data and control registers are loaded
and ready to start the transfer operation.

After some wait states are executed the data
transfer commences. When finished, T[4] is
tested. If asserted the FPC goes back and looks at
T[3:0] to determine how many passes it must make
through the data for the OSP engine. It then
commands the Am2940s to start the dummy OMA
cycles and runs until its pass count expires. A pass
count is easily implemented using the C Register
on board the Am29PL141. Between each pass
the Am2940s are reinitialized to point at the start of

a data block. When all passes are complete, the
CPU is notified, and the FPC waits for the next
instruction.

Figure 10-4 is a listing of the microcode described
above. It is written using an assembler written
specifically for the Am29 PL 141 by AMO. This
software runs on an IBM PC/XT and is available
gratis to any designer using the Am29PL141.
Most of the code in this application was debugged
using a companion simulator also available from
AMO. Only real time timing aspects could not be
evaluated. Having this software available makes
the design engineer's job easier by minimizing the
amount of time is spent translating concept to
PROM data for the FPC.

A HIGH SPEED DMA CONTROLLER II

device (pl141)
default = 1 ;
define

11 The following mnemonics are the names assigned to the micro
operations in the eight different fields defined for P(15:0)

FIELD NAME = DNE

DONE = OOOO#H
NOONE = BOOO#H

11 FIELD NAME CS(2:0)

CLKl
CLK2
NOCLK

11 FIELD NAME = ZEN

OOOO#H
2000#H
6000#H

IMEM = OOOO#H
NOIMEM = lOOO#H

11 FIELD NAME = ICR

CLRINST = OOOO#H
NOCLR = OBOO#H

11 FIELD NAME = BEN

BUSON = OOOO#H
BUSOFF = 0400#H

11 FIELD NAME = CNT

CNTON = OOOO#H
CNTOFF = 0200#H

11 FIELD NAME = I(2:0)

WRCR OOOO#H
REIN OlOO#H
LDAD 0140#H
LDWC OlBO#H
ENCT OlCO#H

Figure 10-4. OMA Controller Source Program Listing {Sheet 1 of 4)

10-5

II

II

II

II

II

II

II

11 FIELD NAME = A(4:0)
II

ADDO OOOO#H
ADDl OOOl#H
ADD2 0002#H
ADD3 0003#H
ADD4 0004#H
ADDS OOOS#H
ADD6 0006#H
wco OOOB#H
WCl 0009#H
WC2 OOOA#H
WC3 OOOB#H
WC4 OOOC#H
wcs OOOD#H
WC6 OOOE#H
WC7 OOOF#H;

begin

11 The first 16 locations form the branch table for decoding the
instruction bits present on T(3:0) 11

ZERO: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDO,
IF (CC) THEN GOTO PL(DTil) ;

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDl,
IF (CC) THEN GOTO PL(DTI2);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD2,
IF (CC) THEN GOTO PL(DTI3);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD3,
IF (CC) THEN GOTO PL(DTI2);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD4,
IF (CC) THEN GOTO PL(DTI3);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDS,
IF (CC) THEN GOTO PL(DTI4);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDO,
IF (CC) THEN GOTO PL(DTOl);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDl,
IF (CC) THEN GOTO PL(DT02);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD2,
IF (CC) THEN GOTO PL(DT03);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD3,
IF (CC) THEN GOTO PL(DT04);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD4,
IF (CC) THEN GOTO PL(DTOl) ;

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDS,
IF (CC) THEN GOTO PL(DT02);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDl,
IF (CC) THEN GOTO PL(DT03);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+OOlF#H,
IF (CC) THEN GOTO PL(RESET);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+OOlF#H,
IF (CC) THEN GOTO PL(RESET);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+OOlF#H,
IF (CC) THEN GOTO PL(MEMINIT);

Figure 10-4. OMA Controller Source Program Listing (Sheet 2 of 4)

10-6

11 The next 4 instructions have identical internal control but different
outputs on P(lS:O). They are used for instructions in the DATA TRANS­
FER IN (DT!) group. They are also part of the instruction decoding."

DTil:

DTI2:

DTI3:

DTI4:

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCO,
IF (CC) THEN GOTO PL(DTIWAIT) ;

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCl,
IF (CC) THEN GOTO PL(DTIWAIT);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWq+wc2,
IF (CC) THEN GOTO PL(DTIWAIT) ;

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC3,
IF (CC) THEN GOTO PL(DTIWAIT);

11 The next 4 instructions have identical internal control but different
outputs on P(lS:O). They are used for instructions in the DATA TRANS­
FER IN (DTI) group. They are also part of the instruction decoding."

DTOl:

DT02:

DT03:

DT04:

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC4,
IF (CC) THEN GOTO PL(DTOWAIT) ;

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCS,
IF (CC) THEN GOTO PL(DTOWAIT);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC6,
IF (CC) THEN GOTO PL(DTOWAIT);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC7,
IF (CC) THEN GOTO PL(DTOWAIT);

II This instruction is executed for the DATA MEMORY INITIALIZE (DMI) group"

MEMINIT: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC7,
IF (CC) THEN GOTO PL(ZWAIT);

" Program FPC for DTI wait states using the CREG

DTIWAIT: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN LOAD PL(4);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN GOTO PL(WAITl);

11 Program FPC for DTO wait states using the CREG

DTOWAIT: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN LOAD PL(6);

WAITl: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
WHILE (CREG <> O) LOOP TO PL (WAITl) ;

NDONE+CLKl+NOIMEM+NOCLR+BUSON+CNTON+ENCT+OOlF#H,
IF (TS) THEN GOTO PL(CLEARCC) ELSE WAIT;

II Program FPC for MEMORY' INITIALIZE function

ZWAIT: NDONE+CLKl+IMEM+NOCLR+BUSOFF+CNTON+ENCT+OOlF#H,
IF (TS) THEN GOTO PL(CLEARCC) ELSE WAIT;

II Clear VALID INSTRUCTION flip flop (CC input to FPC)

Figure 10-4. OMA Controller Source Program Listing (Sheet 3 of 4)

10-7

II

II

II

II

CLEARCC: DONE+CLKl+NOIMEM+CLRINST+BUSOFF+CNTOFF+ENCT+OOlF#H,
CONTINUE;

" check for cc indicating the presence of an instruction to crack "

DONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN GOTO PL(GENADD) ELSE WAIT;

11 check for T4 active. If so, additional processing is required."

GENADD: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+OOlF#H,
IF (NOT T4) THEN GOTO PL(62#D);

" If T4 is asserted, then the OMA controller assists the DSP engine by
generating sequential addresses without passing data through the
data bus interface. Different pass counts are loaded depending on
Tl and TO values. "

LPC3:

LPCl:

LPC2:

WAIT2:

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD6,
IF (Tl) THEN GOTO PL(LPCl);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (NOT TO) THEN GOTO PL(LPC2);

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC4,
IF (CC) THEN LOAD PL(l2);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN GOTO PL(WAIT2);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCO,
IF (CC) THEN LOAD PL(lO);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN GOTO PL(WAIT2);

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC2,
IF (CC) THEN LOAD PL(B);

NDONE+CLK2+NOIMEM+NOCLR+BUSOFF+CNTON+ENCT+001F#H,
IF (TS) THEN GOTO PL(NXTPASS) ELSE WAIT;

11 Decrement pass c::ount

NXTPASS: NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
WHILE (CREG <> 0) LOOP TO PL(WAIT2);

"

11 When all passes are finished, clear cc and wait for next inst."

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+OOlF#H,
IF (CC) THEN GOTO PL(CLEARCC) ;

" This multiway branch is the first step of instruction cracking "

RESET:

END.

.ORG 62#0

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+OOlF#H,
IF (CC) THEN GOTO TM(OOllll#B);

NDONE+CLKl+NOIMEM+NOCLR+BUSOFF+CNTOFF+WRCR+OOlF#H,
IF (CC) THEN GOTO PL(62#D);

Figure 10-4. OMA Controller Source Program Listing (Sheet 4 of 4)

10-8

APPENDIX A

JEDEC STANDARD No.3

The fuse map generated by the Am29Pl141
Assembler adheres to the JEDEC standard No. 3
(October 1983) which is a standard data transferfor­
mat between a data preparation system and a
programmable logic device programmer.

The information to be sent to the device program­
mer is divided into the following categories:

1. The design specification identifier
2. The device to be programmed
3. Fuse links that must be blown to

implement the design
4. Information to perform a structured

functional test
5. Other information (e.g.,sumcheck)

A transmission must consist of the following legal
characters. Any other characters present in the
transmission file may result in invalid operation.

STX
ETX
LF
CR

02 hex
03 hex
OA hex
OD hex

start of text
end of text
line feed
carriage return

all printable
characters 20 hex to 7E hex inclusive

The Assembler forms the transmission file by
putting the STX character at the beginning of the
file, followed by the fuse link information, the fuse
checksum, the ETX character, and the trans­
mission sumcheck. An example Assembler trans­
mission (fuse map) file is:

<STX>F1*
LOOOO 0 10010 1 111 111111 1111111111111000 *
C02EF*
<ETX>OA94

Fuse Link Information

Each device fuse link is assigned a decimal
number. Each numbered fuse can have two
possible states: a Zero specifying a low-resistance
(unblown) link and a One specifying a high­
resistance (blown) link.

Fuse information is presented in three fields: F, L
and C.

F: This field specifies the state of the unspecified
fuses in the logic device. This field corre-

A-1

spends to the DEFAULT section in the
program source file. The default for this field is
'FO', all unspecified fuses unblown.

L: Each numbered link is addressed by the 'L'
field. The L is immediately followed by a
variable length decimal number indicating
address of the first link in the following string of
data. The string of data can be any convenient
length terminated by an •••. In the Assembler
each string is 32 characters long.

C: This is the checksum field for the link
information. It is computed by performing a 16-
bit unsigned addition of 8-bit words formed
from all the fuse link states specified in the file.

The 8-bit words are formed as in the following
diagram:

Example: Checksum Computation

<STX>F1*
LOOOO 01001011111111111111111111111000*
C02EF*
<ETX>OA94

link 7 0
1101 0010 ~ D 2 hex
1111 1111 F F hex
1111 1111 F F hex
0001 1111 1 F hex

0 2 E F hex = checksum

Note:

If the number of fuse links is not a multiple
of 8, then the last word will be formed by
setting Zeroes for all the bit locations more
significant than the last link. The 16-bit
checksum is specified as a C followed by 4
hex characters and an •••.

OTHER INFORMATION

The transmission format is ended by an ETX
character followed by the sumcheck. The
sumcheck is the 16-bit unsigned addition of the
ASCII values of all the characters in the
transmission file between and including STX and
ETX. The parity bit is excluded in this calculation.

APPENDIX B

ASSEMBLER ERROR MESSAGES

This appendix lists the Am29PL 141 Assembler
diagnostic error messages alphabetically. Each
message is also numbered as a part of the mes­
sage. Each message is followed by an explanation
of the message and suggested actions to remove
the error from subsequent runs of the assembler.

Errors generated during assembly are prefaced by
the error number and the source line where the
error occurred.

The symbol *** is used to indicate a keyword or
user-defined string which varies depending on the
context of the error message.

There are two error types: warning and fatal.
Warnings are displayed and assembly continues.
Fatal errors terminate assembly.

When errors occur in sequential lines, it normally
indicates a punctuation error on the line preceding
the error. Punctuation should always be examined
near the error that was detected.

ERR 1 29PL 141 Assembler : cannot open***
Fatal: The assembler cannot open the filename
specified in the command line.
User Action: Make sure the file exists or that there
is enough room on the disk

ERR 2 *** database file is incorrect
Fatal: The device database file *** may have been
accidentally modified, or cannot be found on the
same disk drive as the Assembler
User Action: Put the device database file on the
same working disk

ERR 3 *** In line *** has not been defined
Warning: The label *** is not defined
User Action: Define the label

ERR 4 *** is not supported by this Assembler
Fatal: The device *** does not have a database file
on the same drive as the Assembler
User Action: Put the database file on the same
disk as the assembler

ERR 5 Assembler : illegal option ***
Fatal: Unrecognized option
User Action: Use recognized options such as '-0'
for specifying an output file

ERR 6 assembler needs a valid device name
Fatal: This assembler recognizes only
'Am29Pl141'
User Action: Specify the part name Am29PL 141

ERR 7 assembler needs an opcode
Warning: Specify one of the opcodes or
commands listed in Section 2.3.5 Statement
Formats
User Action: Check for proper statement syntax

ERR 8 assign a number/name with the '=' sign
Warning: Use the '=' sign to separate identifiers
and their values
User Action: Put a '=' sign

ERR 9 beyond addressing range of device
Warning: A memory reference has been made
beyond the range of the device
User Action: Check statement label value

ERR 10 beyond the range of the machine
Warning: The number specified is too large
User Action: Check the value being used

ERR 11 cannot open the database

B-1

Fatal: The database file Am29Pl141 is missing
User Action: Put the database file on the same
disk with the assembler

ERR 12 check condition field
Warning: Check the condition field of the
statement
User Action: Use a valid condition test expression

ERR 13 Check the database
Fatal: The database has been modified or is not in
the correct format
User Action: Copy database file from master
diskette

ERR 14 close the data field with ')'
Warning: Mismatched parentheses
User Action: Match the opening '(' with ')' in
PL(data) or TM(data)

ERR 15 compare CREG with O only
Warning: GREG is compared with the value O only
User Action: Check CREG test condition

ERR 16 compare test condition with a binary
number
Warning: Test conditions are compared with 'O' or
'1' only
User Action: Check test condition

ERR 17 compare TM to PL
Warning: TM must follow CMP in a compare
statement
User Action: Check format of compare statement

ERR 18 default fuse map values should only be
binary numbers
Warning: DEFAULT should be equated with a
binary value of 'O' or '1' only
User Action: Specify only 'O' or '1'

ERR 19 default output value exceeds control
output limits
Warning: The default output value defined
exceeds device limits
User Action: Check the value of the default output

ERR 20 enclose the data field in '('
Warning: Use the opening parenthesis '(' as in
PL(data) or TM(data)
User Action: Put a '('

ERR 21 enclose the device name in parenthesis
Warning: The device name must be enclosed in
parenthesis
User Action: Use '(' and ')'

ERR 22 error in cleaning the STACK list
Warning: Invalid control output expression
User Action: Use '(', ')', '+' and '*' for logical
expressions

ERR 23 error in cleaning the OPERATOR list
Warning: Invalid control output expression
User Action: Check that the logical operators '+'
and '*' have operands

ERR 24 error in STACK PUSH
Warning: Will not accept this character as a logical
operator
User Action: Check format of logical expression

ERR 25 error in STK EVAL function
Warning: Invalid control output expression
User Action: Check format of logical expression

ERR 26 field limits exceeded for DATA field
Warning: The number specified is too large; it
must be in the range of o to 63 decimal for the
Am29PL141
User Action: Check value in DATA field

ERR 27 field limits exceeded for OUTPUT field
Warning: The number is too large; it must be in the
range O to 216 for the Am29PL 141
User Action: Check value in OUTPUT field

ERR 28 field limits have been exceeded for TEST
field
Warning: The test condition specified does not
exist; only 8 test conditions exist for the
Am29PL141
User Action: Check the numerical value of the test
condition

ERR 29 looking for'=' sign
Warning: Use a '=' in defining constants in the
DEFINE section and in setting up test conditions
User Action: Put a'='

ERR 30 looking for';'
Warning: End each program section (e.g.,
DEFAULT or SSR) or statement with a';'
User Action: Put a ';' to terminate this program
section

ERR 31 looking for ')'
Warning: Mismatched parentheses
User Action: Put a ')' to close the test condition or
data field

ERR 32 looking for a ')'to close the condition
Warning:: Mismatched parentheses
User Action: Put a ')' to close the test condition

ERR 33 looking for a binary number
Warning: Specify a binary number for this section
or test condition by putting the base '#b' after the
number
User Action: Use the binary radix symbol '#b'

ERR 34 looking for a constant or number after
OE/OD
Warning: OE or OD must be followed by a
constant defined in the DEFINE section or a valid
number
User Action: Put a predefined name or number
after OE or OD

ERR 35 looking for TM
Warning: CMP must be followed by TM
User Action: Check format of CMP statement in
your file

B-2

ERR 36 looking for the keyword BEGIN
Warning: The BEGIN-END block follows the
DEFINE, DEFAULT_OUTPUT or
TEST CONDITION section
User Action: Use the keyword BEGIN

ERR 37 looking for the keyword END
Warning: Unexpected end of file
User Action: Put an 'END.' to terminate the
program

ERR 38 looking for the keyword DEVICE
Warning: The first keyword must be the DEVICE
User Action: Start the source file with the keyword
DEVICE

ERR 39 missing input filename
Fatal: The option '-I' must be followed by an input
filename that already exists
User Action: Create an assembler source file

ERR 40 missing fusemap filename
Warning: The '-0' option needs a valid DOS
filename after it to hold the fuse map file generated
by the Assembler
User Action: Specify an output file

ERR 41 need a binary number
Warning: Put a binary number here
User Action: Specify the base '#b'

ERR 42 need a binary number (compare CREG
with Oonly)
Warning: CREG must be compared with a binary
number only
User Action: Check format of test condition

ERR 43 need a label, predefined constant,
number or OE I OD
Warning: Incorrect statement format
User Action: Begin a statement with a label,
constant, number or the output enable controls
OE or OD

ERR 44 need a number or constant to enable
Warning: A variable or constant must follow OE or
OD
User Action: Put a predefined name or number
after OE or OD

ERR 45 need an opcode here
Warning: Put one of the opcodes or commands
specified in Section 2.3.5
User Action: Check statement format

ERR 46 no default condition available
Warning: A default test condition was not
specified in TEST_CONDITION
User Action: Specify a test condition

ERR 47 no error filename given
Warning: The option '-E' needs a valid DOS
filename to contain the Assembler errors
generated
User Action: Specify a valid DOS filename

ERR 48 no such command available for this part
Warning: The statement combination formed does
not correspond to a valid opcode mnemonic in this
device
User Action: Check the available statement forms

ERR49nosuchcondllion
Warning: Use existing test conditions for this
device
User Action: Use one of the valid test conditions

ERR 50 not equal sign is'<>'
Warning: unknown operator
User Action: Use the '<>' as the 'not equal' sign for
the CREG tests

ERR 51 Note: this input is used for diagnostics
Warning: This test condition is being used for SSR
diagnostics
User Action: Use a different test condition

ERR 52 OPCODE field limits exceeded
Warning: The opcode specified is not valid for this
device
User Action: Check the device database

ERR 53 OUTPUT field can accommodate 16 bits
max
Warning: Only 16-bit numbers can be used for
control outputs
User Action: Use only 16-bit numbers

ERR 54 OUTPUT field is 16 bits long only
Warning: Only 16-bit numbers can be used for
control outputs
User Action: Use only 16-bit numbers

ERR 55 OUTPUT field limits exceeded
Warning: Only 16-bit numbers can be used for
control outputs
User Action: Use only 16-bit numbers

ERR 56 OUTPUT limits exceeded
Warning: Only 16-bit numbers can be used for
control outputs
User Action: Use only 16-bit numbers

8-3

ERR 57 PROM not large enough to hold
microprogram
Warning: Too many statements have been
defined
User Action: Check and remove redundant states

ERR 58 put a binary number for test comparisons
Warning: Only binary numbers allowed
User Action: Use the binary radix '#b'

ERR 59 put a number or a defined name here
Warning: Syntax error
User Action: Put a valid number or predefined
name here

ERR 60 put a constant or a number here
Warning: Syntax error
User Action: Put a valid number or predefined
constant here

ERR 61 put a '.' after END to terminate the
assembler file
Warning: Unexpected end of file
User Action: Include a '.' after the keyword END

ERR 62 put a':' for labels or',' for output
Warning: The punctuation symbols ':' or ',' are
necessary to separate sections in each statement
User Action: Use':' or','

ERR 63 put a',' to separate the output section
Warning: The',' symbol is required here
User Action: Put a','

ERR 64 put a';' here
Warning: The ';' symbol is necessary to separate
program sections or statements
User Action: Put a ';' as a statement separator

ERR 65 put a name here
Warning: A valid predefined constant is necessary
here
User Action: put a predefined name here

ERR 66 put a 'TO' here : loop TO PL
Warning: LOOP must be fallowed by the keyword
'TO'

ERR 71 put an operator between operands
Warning: Logical operators'*' and '+' cannot follow
each other
User Action: Check the logical expression/
equation

ERR 72 put PL , TM , or SREG here
Warning: Incorrect statement syntax
User Action: Put GOTO PL, GOTO TM or GOTO
(SREG)

ERR 73 redefinition of label
Warning: Label has been redefined
User Action: Check label names

ERR 74 separate the output section with a','
Warning: Syntax error
User Action: Put the necessary ',' here

ERR 75 Severe warning : redefinition of PROM
location*** See source line***
Warning: PROM location specified more than
once
User Action: Check the flow of your microprogram;
some statements may have overlapped due to the
use of numbers as labels

ERR 76 SOFTWARE error ... see WRITE WORD
module
Warning: The program cannot form the PROM
word properly
User Action: None

ERR 77 specify the pipeline data field
Warning: Syntax error
User Action: Specify a data field in PL(data)

User Action: put the keyword ''f O" ERR 78 Statement*** not supported in ***
Warning: This statement combination does not

ERR 67 put an operand between logical operators correspond to any device mnemonic
Warning: Logical expression is 'incorrect User Action: Check the list of available statements
User Action: Put an operand between '*' and '+'

ERR 68 put an operand between nested
operands
Warning: Logical expression is incorrect
User Action: Put an operand after the '('

ERR 69 put an operand here
Warning: Syntax error
User Action: Match an operand with this logical
operator

ERR 70 put an operand or')' to complete the
expression
Warning: Unmatched parenthesis or missing
operand
User Action: Check logical expression

B-4

ERR 79 this condition has not been defined
Warning: Undefined test condition
User Action: Pair this identifier with a test condition
in the DEFINE section

ERR 80 this is a keyword
Warning: Cannot use this keyword in this context
User Action: Use a different variable name

ERR 81 this is not a binary number
Warning: Not a binary number
User Action: use '#b'

ERR 82 this is not a decimal number
Warning: Not a decimal number
User Action: Use 'd'

ERR 83 this is not a defined output value
Warning: Output value undefined
User Action: Check the DEFINE section

ERR 84 this is not a hexadecimal number
Warning: Not a hexadecimal number
User Action: Use '#h'

ERR 85 this Is not an octal number
Warning: Not an octal number
User Action: use '#o'

ERR 86 this is not a valid test condition
Warning: Undefined test condition
User Action: Check the DEFINE section

ERR 87 this name has not been previously
defined
Warning: Undefined constant
User Action: Define this name in the DEFINE
section

ERR 88 this name Is too long, more than 29
characters
Warning: Identifiers and constant can only be 29
characters long
User Action: limit the size of the variables

ERR 89 this variable name has not been defined
Warning: Undefined name
User Action: Define this name in the DEFINE
section

ERR 90 too many operators
Warning: The logical equation contains too many
operators
User Action: Check the control output logical
expression

ERR 91 Unexpected end of file
Warning: Unexpected end of file
User Action: 'END.' was not encountered

ERR. 92 Unexpected end of file (close comments
In line***)
Warning: Unexpected end of file
User Action: Check to make sure that all the
comments have
matching""

ERR 93 unmatched parenthesis or missing
operand
Warning: Unmatched parenthesis
User Action: Match each parenthesis with its pair

ERR 94 use';' to separate statements
Warning: No statement separator
User Action: Check the source file for ';' between
different statements

ERR 95 use ')' to enclose SREG
Warning: Syntax error
User Action: Close SREG with ')'

ERR 96 use only predefined names or numbers
Warning: Undefined name
User Action: Check that the constant has been
defined in the DEFINE section or that a valid
number is being used

ERR 97 Warning : NOT has no effect on CREG
condition Refer to source line***

B-5

Warning: Any test condition using CREG is not
affected by NOT
User Action: Modify the CREG test condition

APPENDIX C

QIC-02 AND SCSI INTERFACE SIGNALS AND TIMING DIAGRAMS

QIC-02 INTERFACE

QIC-02 is an industry standard which defines the
interface between a host system and Quarter Inch
Cartridge Tape Drives. Read/write commands,
status and, of course, data are transmitted over this
interface, as depicted in Figure C-1. The bus and
control signals between QIC-02 and host are all
standard TIL levels. Timing diagrams for this
interface are shown in Figures C-2 through C-4.
This interface handshake timing is duplicated for
the host side by the FPC and two AmPAL22V1 Os.

ACKNOWLEDGE (ACK) is used with Transfer
to transfer data across the interface.

READY (ROY) indicates that the tape drive can
accept a command. It is used to handshake the
command across the interface. In the write mode,
READY indicates that the drive's internal buffer is
empty and ready to receive new data. In the read
mode, READY indicates the drive buffer can now
be accessed by the host.

EXCEPTION (EXP) alerts the host that the
execution of a command has been terminated.
This may be a normal completion or an interrupt
due to a fault (hard errors, write protected, etc.).
The response by host must be READ STATUS.

DIRECTION (DIRC) indicates direction of data
flow. Signal is used to enable/disable the data bus

transceivers in the HOST.

ON-LINE signal is deasserted at the beginning of a
read (from tape) or write (to tape) operation.

RESET initializes the tape drive. The drive recali­
brates the heads to track zero.

REQUEST indicates that a command is on the
data bus.

TRANSFER is used with ACKNOWLEDGE to
handshake data over the bus, see timing diagram.

SCSI INTERFACE

Small Computer Systems Interface (SCSI) evolved
from the disk controller standard developed by
Shugart Associates (SASI) in the late 1970s. The
SCSI standard was developed by ANSI X3T9.2
subcommittee starting in 1982. SCSI defines an 8-
bit parallel bi-directional data bus with parity, plus
nine control lines. SCSI protocol allows single or
multiple host computers (initiators) to share multi­
ple (expensive) peripherals (targets, i.e. hard disk,
floppy disks, etc.), as depicted in Figure C-5. Up to
eight Daisy Chained devices can reside on the
SCSI bus, with data transfer rates of 4 Mbytes/sec.
Synchronous and 1.5 Mbyte/sec. asynchronous.
The timing diagrams for the interface are shown in
Figures C-6 through C-8.

..... ACKNOWLEDGE

i... READY

EXCEPTION ..._

L.o.. DIRECTION

HOST OIC-02

SYSTEM TAPE

V1- ~
DRIVE

8 BIT DATA BUS
~ -0

ONLINE
RESET

REQUEST
r

TRANSFER
-.i

06591A C-1

Figure C-1. QIC-02 Interface

C-1

The interface signals are:

1/0 is driven by a target to control the direction of
data movement. True Indicates input to the
initiator.

MSG is drive by a target to indicate "Message
Phase". When MSG is asserted, REQ {Request) is
also asserted by the target for transfer of data byte
indicating the end of the operational phase
{"Message").

REQ asserted by target indicates that a data byte
is to be transferred on the data bus. Data byte is
transferred via handshake with ACK
{Acknowledge).

ATN (Attention) is driven by an initiator to indicate

to target an "attention" condition.

An initiator uses SEL along with appropriate data
{address) bits {0-7) being asserted to select a
target. Select line is deasserted after the target
asserts BSY to acknowledge selection.

RST (Reset) is a pulse asserted by the initiator to
stop target's present operation and return same to
idle condition.

Data bus and control signals require open collector
drivers capable of sinking 48 mA each to support
SCSI mode of multiple initiators with multiple
targets. SCSI provides for either single ended (6
meter Max. Cable Length) transmission or differ­
ential {if a distance up to 25 meters is required).

C-2

0
l>

ONLINE~-------------------------

REQUEST

READY ---+-...+-..

EXCEPTION --..J,.-..1

DATA BUS

SEND
REMAINING
STATUS
BYTES

'XFER------------~~~-----------

ACK~~~~~~~~~~-\-.f--~~~~~~~~-

DIRC-----~~-------~

RESET~~~~~~~~~~~~~~~~~~~~~~

ACTIVITY

T1 - HOST COMMAND TO BUS
T2 - HOST SETS REQUEST
T3 - CONTROLLER RESETS EXCEPTION
T4 -CONTROUER SETS READY
TS - HOST RESETS REQUEST
T6 - BUS DATA INVALID
T7 - CONTROLLER RESETS READY

CRITICAL TIMING

NIA
T1-T2>0µs
T3-T4>10 µs

T11 -HOST SETS REQUEST
T12-CONTROUER RESETS READY
T13-BUS DATA INVALID
T14 - HOST RESETS REQUEST
T15-LAST STATUS BYTE TO BUS
T16-SAMEAST10
T17-SAME AS T11
T18-SAMEAST12
T19-SAMEAST13
T20-SAME AS T14

LAST STATUS

TS - CONTROLLER CHANGES BUS DIRECTION
T9 - 1 ST STATUS BYTE TO BUS
T10- CONTROUER SETS READY

20< T2-T 4<500 µs *
T4-T5>0µs
T4-T6>0 µs
20<T5-T7<100 µs
NIA
NIA
T7-T10>20µs

T21 -CONTROLLER CHANGES BUS DIRECTION
T22 -CONTROLLER SETS READY

X - DON'T CARE

*NOTE: THIS MAY BE> 500 µs UNDER SOME CONDITIONS

Figure C-2. QIC-02 Read Status Command Timing Diagram

T21

NIA
T11-T12<1 µs
T11-T13>0 µs
T11-T14>20µs
NIA
SAMEAST10
SAMEAST11
SAMEAST12
SAMEAST13
SAMEAST14
NIA
T20-T21>0 µs
T21-T22>0 µsNIA
T11-T12<1 µs

06591A C-2

ONLiNE

REQUEST

R'EAOv

EXCEPTic5N

DATA BUS

'XFER

AC'K

I 0
j;,. DAc

RESEi'

06591A C-3

ACTIVITY

T1 - HOST COMMAND TO BUS
T2 - HOST SETS ONLINE
T3 - HOST SETS REQUEST
T4 - CONTROLLER RESETS READY
T5 - CONTROLLER SETS READY
TS - HOST RESETS REQUEST
T7 -BUS DATA INVALID
TB - CONTROLLER RESETS READY
T9 - CONTROLLER SETS READY
T10-HOSTDATATO BUS
T11- HOST SETS XFER
T12- CONTROLLER RESETS READY
T13- CONTROLLER SETS ACK
T14- HOST RESETS XFER

~

CRITICAL TIMING

NIA
NIA
T2-T3>0µs
T3-T4<1 µs
2D<T4-T5<500µs
T5-T6>0µs
T5-T7>0µs
2D<T6-TB<100µs
T8-T9>20µs
NIA
T10-T11>-40 ns
T11-T12<1 µs
0.5<T11-T13<100 µs
T13-T14>0 µs

ACTIVITY

T15- BUS DATA INVALID
Tl 6 - CONTROLLER RESETS ACK
T17- HOST DATA TO BUS
T18-SAME AS T11
T19- SAME AS T13
T20 SAME AS T14
T21-SAMEAST15
T22-SAME AS T16
T23 - CONTROLLER SETS READY
T24- HOST DATA TO BUS
T25- HOST SETS XFER
T26- CONTROLLER RESETS READY
T27- CONTROLLER SETS ACK

READY FOR
2NOBLOCK

T23

CRITICAL TIMING

T13-T15>0 µs
D< T14-T16<3 µs
NIA
SAMEAST11
SAMEAST13
SAMEAST14
SAMEAST15
SAMEAST16
T22-T23> 1 oo µs
NIA
SAMEAST11
SAMEAST12
SAMEAST13

T26

CONTROLLER WILL AUTOMATICALLY WAITE FILE
MARK AND REWIND TO BOT (MECHANICAL DElAY)

NEXT BLOCK J,,.v~ \
--,:_y=T39

ACTIVITY

T28 - HOST RESETS XFER
T29- BUS DATA INVALID
T30- CONTROLLER RESETS ACK
T31 - HOST DATA TO BUS
T32- HOST SETS XFER
T33 - CONTROLLER SETS ACK
T34 - HOST RESETS XFER
T35- BUS DATA INVALID
T36- CONTROLLER RESETS ACK
T37 -CONTROLLER SETS READY
T38 - HOST RESETS ONLINE
T39 -CONTROLLER RESETS READY
T40-CONTROLLERSETS READY

0 NOTE: THISTIMEMAYBE>500µs
UNDER SOME CONDITIONS

CRITICAL TIMING

SAMEAST14
SAMEAST15
SAMEAST16
NIA
SAMEAST18
SAMEAST19
SAMEAST20
NIA
SAMEAST22
SAMEAST23
NIA
NIA
NIA

Figure C3. QIC02 Write Data Command Timing Diagram

4:_

ONi:iNE

REQuEsT

REAoY

EXcEPTioN

DATA BUS

iFER READ
1STDATA

BLOCK
INTO

ACK
I BUFFER

I
DAC () --ilT9

0,

RESE1'

ACTIVITY CRITICAL TIMING ACTIVITY CRITICAL TIMING

T1 - HOST COMMAND TO BUS NIA T14- CONTROLLER RESETS READY T13-T14<1 µs
T2 - HOST SETS ONLINE NIA T15- CONTROLLER RESETS ACK 0.5<T13-T15<3 < µs
T3 - HOST SETS REQUEST T2-T3>0µs T16- BUS DATA INVALID T13-T16>0µs
T4 - CONTROLLER RESETS READY T3-T4<1 µs T17- HOST RESETS XFER T15-T17>0µs
T5 - CONTROLLER SETS READY 20<T4-T5<500 µs T18- BUS DATA VALID
T6 - HOST RESETS REQUEST T5-T6>0µs NIA
T7 - BUS DATA INVALID T5-T7>0µs T19 - CONCTROLLER SETS ACK SAMEAST12
TS - CONTROLLER RESETS READY 20<T6-T8<100 µs T20 - HOST SETS XFER SAMEAST13
T9 - CONTROLLER CHANGES DIRC NIA T21 - CONTROLLER RESETS ACK SAMEAST15
TIO- 1ST DATA BYTE TO BUS NIA T22- BUS DATA INVALID SAMEAST16
T11- CONTROLLER SETS READY NIA T23- HOST RESETS XFER SAMEAST17
T12- CONTROLLER SETS ACK T11-T12>70 ns T24- CONTROLLER SETS READY NIA
T13- HOST SETS XFER T12-T13>0 µs T25 - 1ST BYTE TO BUS NIA

T26 - CONTROLLER SETS ACK SAMEAST12

06591A C-4

Rgure C-4. QIC-02 Read Data Command Tuning Diagram

~~~~~~~~~~~~~~~~~~~~iioN 

ACTIVITY CRITICAL TIMING 

T27 - HOST SETS XFER SAMEAST18 
T28 -CONTROLLER RESETS READY SAMEAST14 
T29 - CONTROLLER RESETS ACK SAMEAST15 
T30 - BUS DATA INVALID SAMEAST16 
T31 - HOST RESETS XFER SAMEAST17 
T32 - LAST BYTE TO BUS NIA 
T33 - CONTROLLER SETS ACK SAMEAST12 
T34 - HOST STES XFER SAMEAST13 
T35 - CONTROLLER RESETS ACK SAMEAST15 
T36-BUS DATA INVALID SAMEAST16 
T37 - HOST RESETS XFER SAMEAST17 
T38 -CONTROLLER SETS EXCEPTION NIA 
T39 - CHANGE BUS DIRECTION NIA 

•NOTE: THIS TIME MAY BE> 500 µs 
UNDER SOME CONDITIONS 

STOPS 

HOST 
SENDS 
READ 
STATUS 
COMMAND 



COMPUTER 

COMPUTER 

COMPUTER 

COMPUTER 

COMPUTER 

CONTROLLER t---....----. 

SINGLE INITIATOR, SINGLE TARGET 

HOST 
ADAPTER 

HOST 
ADAPTER 

HOST 
ADAPTER 

HOST 
ADAPTER 

SINGLE INITIATOR, MULTI TARGET 

MUILTI INITIATOR, MULTI TARGET 

Figure C-5. Possible Bus Configurations 

C-6 

06591A C-5 



110 LOGIC ONE 

MSG LOGIC ONE 

cro\ r-
-· --\..____/ 

REQ~-t---/ 

ACR~~ 

DB0-7(P) .... x ___ x __ F_~~_+>J_X ___ x........,.::_ ..... x __ x_~YT_s~_x ___ x~ 
06591A C-6 

C-6 SCSI Command Phase Timing 

MSG LOGIC ONE 

CID 

1/0 \ _______________ _ 

REC~~\_ 

ACK -\_/-U-\__/~ 

DBO (P) x x ~~J x x :: x x ~~~ x x 
06591A C-7 

C-7 SCSI Data Read (from disk) Timing 

ltO LOGIC ONE 

MSG LOGIC ONE 

CID _J 

REQ~ I\ I \..____/ ~1---· 

ACK~~ 

DB0-7 (P) ,_X~_ .... x~~..:..:~i..::.J.X.._..,,.x~::1~x.__---'x......,;;..~¢5_/_E .... x .......... x 
06591A C-8 

C-8 SCSI Data Write (to disk) Timing 

C-7 



APPENDIXD 

REFERENCES 

1. Advanced Micro Devices Bipolar Microprocessor Logic and Interface Data Book, 1985. 

2. Advanced Micro Devices Programmable Array Logic Handbook, 1983. 

3. Advanced Micro Devices Bus Interface Product Specifications, October 1985. 

4. Advanced Micro Devices Am29PL 141 Data Sheet, December 1985. 

5. Advanced Micro Devices Am29PL 141Assembler,1985. 

6. Advanced Micro Devices Am29PL 141 User's Manual, 1985. 

7. Advanced Micro Devices 80188 Data Sheet, October 1985. 

8. Small Computer Systems Interface (SCSI) Specification as defined by ANSI X3T9.2 Committee. 

9. Quarter Inch Cartridge (Tape Interface) (QIC-02) Specification. 

10. PDP-11 Bus Handbook, Digital Equipment Corporation, 1979. 

11. Microsystems Handbook, Digital Equipment Corporation, 1985. 

D-1 



APPENDIX E 

GLOSSARY OF ABBREVIATIONS/MNEMONICS 

141SEL Am29PL141 Selection (SCSI) JED EC Joint Electronic Device Engineering 
141TPREQ Am29PL141 Tape Request Council 

(OIC-02) Signal 
141XFER Am29PL 141 Transfer LAD DR Addressable Latch 

(QIC-02) Signal LAN Local Area Network 
LMCS Lower Memory Chip Select 

ACK Acknowledge LPC Linear Predictive Coding 
ARDY Asynchronous Ready Line 
ARES ET Asynchronous Reset MCSM Mid-range Chip Select 
ATN Attention MSG Message SCSI Interface Signal 

(to Am29PL 141 from SCSI) 
BSYIN Busy Input (SCSI to FPC) MSI Medium Scale Integration 

CID Control or Data, SCSI Interface Signal NPR Non-processor Request 
cc Condition Code (Input to FPC} 
CCMUX Condition Code MUX to Am29PL 141 PCS Peripheral Chip Select 
CMDXFE~ Command Transfer Routine PL Pipeline 
CREG C Register in Am29PL 141 POL Polarity 

(Count Register} 
RDXFER Read Transfer Routine 

DACK Disk Acknowledge (SCSI} ROY Ready 
DATN Disk Attention (SCSI} RST Reset 
DCLK Diagnostics Clock 
DDACK Disk (SCSI) OMA Acknowledge SCSI Small Computer System Interface 

(to Am29PL 141 from 80188) SDI Serial Data In 
DDREQ Disk OMA Request SDO Serial Data Out 
DIRC Direction (QIC-02) SIC-02 Quarter-inch Tape Cartridge Interface 
OMA Direct Memory Access SSR Serial Shadow Register 
DMAXFER OMA Transfer Routine 
DMSG Disk (SCSI) Message = MSG C/D (to TACK Tape Acknowledge 

Int. Status Buffer from Am29PL 141) (to Am29PL 141 from QIC-02) 
OREO Disk (Data Transfer) Request TEST41 Am29PL141 Test Vector Generator 

(to Am29PL 141 from SCSI) Program 
DRST Disk Reset (SCSI} TOUT Time Out 
DSP Digital Signal Processor TPONL Tape On Line (QIC-02) 
OT ACK OMA Tape Acknowledge TPRST Tape Reset (QIC-02) 

(to Am29PL141 from 80188) TROY Tape Ready (OIC-02) 
DTREQ OMA Tape Request TRINT Tape Ready Interrupt (Addressable 

(to 80188 from Addressable Latch) Latch to Condition Code MUX) 

EXP Exception, QIC-02 Interface Signal UMCS Upper memory Chip Select 

FPC Fuse Programmable Controller VCMD Valid Command (to Am29PL141 
from 80188) 

1/0 Input or Output 
INT1 Interrupt Number One WRXFER Write Transfer Routine 
ISR Interrupt Status Register 

E-1 



APPENDIXF 

Am29PL 141 Data Sheet 

For your reference, the first five pages of the 29PL 141 data sheet are reprinted in this section. A 
complete copy of this 31 page document is available from the AMO sales offices listed on the last page. 
Copies are also available from authorized representatives. 

F-1 



Am29PL141 
Fuse Programmable Controller (FPC) 

DISTINCTIVE CHARACTERISTICS 

• Implements complex fuse programmable state ma-
chines 

• 7 conditional inputs, 16 outputs 
• 64 words of 32-bit-wide microprogram memory 
• Serial Shadow Register (SSR ™) diagnostics on chip 

(programmable option) 

• 29 high-level microinstructions 
- Conditional branching 
- Conditional looping 
- Conditional subroutine call 
- Multiway branch 

• 20 MHz clock rate, 28-pin DIP 

GENERAL DESCRIPTION 

The Am29PL 141 is a single-chip Fuse Programmable 
Controller (FPC) which allows implementation of complex 
state machines and controllers by programming the appro­
priate sequence of microinstructions. A repertoire of jumps, 
loops, and subroutine calls, which can be conditionally 
executed based on the test inputs, provides the designer 
with powerful control flow primitives. 

The Am29PL 141 FPC also allows distribution of intelligent 
control throughout the system. It off-loads the central 
controller by distributing FPCs as the control for various 

self-contained functional units, such as register file/ ALU, 
1/0, interrupt, diagnostic, and bus control units. 

A microprogram address sequencer is the heart of the FPC. 
It provides the microprogram address to an internal 64-
word by 32-bit PROM. The fuse programming algorithm is 
almost identical to that used for AMD's Programmable 
Array Logic family. 

As an option, the Am29PL 141 may be programmed to have 
on chip SSR diagnostics capability. Microinstructions can 
be serially shifted in, executed, and the results shifted out 
to facilitate system diagnostics. 

BLOCK DIAGRAM 

Part No. 

Am2914 

Am29100 

SSA is a trademark of Advanced Micro Devices, Inc. 

CONDITION 
TESTS 

BDR02340 

RELATED PRODUCTS 

Description 

Vectored Priority Interrupt Controller 

Controller Family Products 

Publication t ~ Amendment 
04179 E /0 

Issue Date: October 1986 

~ 
Qj 
:l n 
A 
0. 
~ -· n a 
0 
~ -· n 
A en 



CONNECTION DIAGRAMS 
Top View 

800/WiO Vee 

' ~ P(O) CUC ~ ~ ~ :13 ~ 
P(t) CC/SOI 

P(2) T[o] P(1) T(O) 

P(3) T(tj 

P(4) T(2] 
1'(4) 1'[1) 

P(S) T(3] 1'(5] 1'[2) 

lllODf/P(lj T(4] MOOEJP(ll) T[1) 

DCUC/P(7) T(Sj 

P(lj 
DaJ<JF{7J 1'[4) 

lllm 

P(t] P(15] P(I) 1'[5] 

P(10] P(14] P(I) ~ 

P(11] P(13] 

QNO P(12] 

~ ~ i ~ ~ ~ ~ 
CDR04480 CD009110 

Note: Pin 1 is marked for orientation. 

LOGIC SYMBOLS 

T[O] P[O] T[O) P[O) 
T[1) P[1) T(1] P[1) 
T[2) P[2) T[2) P[2) 
T[3) P(3] T[3) P[3) 
T(4] P(4) T[4) P[4) 
T[S) P[S] T(S] P[S) 
cc P[8) CC/SDI 

P(7] 
P[8) P[8) 

RESET P[9] l1ESET P[9] P[10] P[10) P[11] 
CLK P[12] P[11) 

P[13] CLK P[12) 
P(14] P[13) 
P[15) P[14) 

P[15) 

OCLK 

mm MODE 
SDO 

LS002131 LS002140 

Normal Configuration SSR TM Diagnostics Configuration 

METALLIZATION AND PAD LAYOUT 

CC'51JO 

=--------' 
GHO" 

~---~~ 

'------~·1 
'-------~OJ 

Die Size: 0.211" x 0.202" 
Gate Count: 600 Equivalent Gates and 2K of PROM 

2 



ORDERING INFORMATION 
Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: A. Device Number 

[ 

AM29PL141 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

i '-· -----E. OPTIONAL PROCESSING 
Blank - Standard processing 

B- Burn-in 

'----------D. TEMPERATURE RANGE 
c - Commercial (O to + 70°C) 

'--------------C. PACKAGE TYPE 
D - 28-Pin Ceramic DIP (CD 028) 
L = 28-Pin Ceramic Leadless Chip Carrier (CL 028) 
x- Dice 

...._----------------8. SPEED OPTION 
Not applicable 

'----A. DEVICE NUMBER/DESCRIPTION 
Am29PL141 
Fuse Programmable Controller (FPC) 

Valid Combinations 

Valid Combinations 

l AM29PL141 I DC, DCB, 
LC, XC 

Valid Combinations list cnfigurations planned to be supported 
in volume for this device. Consult the local AMD sales office 
to confirm availability of specific valid combinations, to check 
on newly released valid combinations, and to obtain additional 
data on AMD's standard military grade products. 

3 



ORDERING INFORMATION 
APL and CPL Products 

AMO products for Aerospace and Defense applications are available in several packages and operating ranges. APL 
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) 
products are processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, 
solderability, or surface treatment exceptions to those specifications. The order number (Valid Combination) is formed 
by a combination of: 

APL Products: A. Device Number CPL Products: A.Device Number 

AMttPL141 

B. Speed Option (if applicable) B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

C. Package Type 
D. Temperature Range 
E. CPL Status 

APL Products 

.XL=E. LEAD FINISH 
A - Hot Solder DIP 

D. PACKAGE TYPE (per 09-000) 
X - 28·Pin (Ceramic DIP (CD 028) 

....._------------C. DEVICE CLASS 
/B-Class B 

'------------------B. SPEED OPTION 
Not applicable 

'-A. DEVICE NUMBER/DESCRIPTION (Include revision letter) 
Am29PL141 
Fuse Programmable Controller (FPC) 

CPL Products 

ML=~ E. CPI. STATUS 
C • CPL Certified 

D. TEMPERATURE RANGE 
M - Military (-55 to + 125°C) 

....._------------c. PACKAGE TYPE(per Prod. Nomenclature/16-038) 
I L - 28-Pin Ceramic Leadless Chip Carrier (CL 028) 

'------------------B. SPEED OPTION 
Not applicable 

'--A. DEVICE NUMBER/DESCRIPTION (Include revision letter) 
Am29PL141 
Fuse programmable Controller (FPC) 

Valid Combinations 

APL J Am29PL141 l /BXA 

CPL j Am29PL141 1 /LMC 

4 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Group A Tests 
Group A tests consists of Subgroups: 

1, 2, 3, 7, 8, 9, 10, 11 



PIN DESCRIPTION 

CC[SDI] Condition Code ((TEsn Input) 
When the TEST (P[24:22]) field of the executing 
microinstruction is set to 6 (binary 110), CC is selected to be 
the conditional input. (Note: In SSA diagnostic configuration, 
CC is also the Serial Data Input SDI.) 

CLK Clock (Input) 
The rising edge clocks the microprogram counter, count 
register, subroutine register, pipeline register, and EQ flag. 

P[15:8] (Outputs) 
Upper eight, general-purpose microprogram control outputs. 
They are enabled by the OE signal from the microprogram 
pipeline register. When OE is HIGH, P[15:8J are enabled, 
and when LOW, P[15:8] are three-stated. 

P[7:0] [DLCK, MODE] (Outputs) 
Lower 

Lower eight, general-purpose microprogram control outputs. 
They are permanently enabled. (Note: in the SSA diagnostic 
configuration, P[7] becomes the diagnostic clock input 
DCLK and P[6] becomes the diagnostic control input 
MODE.) 

5 

RESET 
Synchronous reset input. When it is low, the output of the 
PC MUX is forced to the uppermost microprogram address 
(63). On the next rising clock edge, this address (63) is 
loaded into the microprogram counter, the microinstruction 
at location 63 is loaded into the pipeline register and the EQ 
flag is cleared. The CREG and SREG values are 
indeterminate on reset. 

T[5:0] 
Test inputs. In conditional microinstructions, the inputs can 
be used as individual condition codes selected by the TEST 
field in the pipeline register. The T[5:0] inputs can also be 
used as a branch address when performing a microprogram 
branch, or as a count value. 

ZERO [SDO] 
Zero output. A Low state indicates that the CREG value is 
zero. (Note: In the SSA diagnostic configuration, ZERO 
becomes the Serial Data output SDO. This change is only 
on the output pin; internally, the zero detect functions is 
unchanged.) 



ADVANCED MICRO DEVICES 

U.S. SALES OFFICES 

ALABAMA .............................. (205) 882-9122 
ARIZONA, . 

Tempe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (602) 242-4400 
Tucson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (602) 792-1200 

CALIFORNIA, 
El Segundo ......................... . 
Newport Beach ...................... . 
San Diego .......................... . 
Sunnyvale ........................... . 
Woodland Hills ....................... . 

COLORADO ........................... . 
CONNECTICUT ....................... . 
FLORIDA, 

Clearwater .......................... . 
Ft Lauderdale ....................... . 
Melbourne ........................... . 
Orlando ............................. . 

GEORGIA .........•.................... 
ILLINOIS .............................. . 
INDIANA .............................. . 
KANSAS .............................. . 
MARYLAND ........................... . 

213 640-3210 
714 752-6262 
619 560-7030 
408 720-8811 
818 992-4155 
303 741-2900 
203 264-7800 

813) 530-9971 
305) 484-8600 
305 729-0496 
305 859-0831 
404 449-7920 
312 773-4422 
317 244-7207 
913 451-3115 
301 796-9310 

MASSACHUSETIS .................... . 
MINNESOTA .......................... . 
MISSOURI ............................ . 
NEW JERSEY ......................... . 
NEW YORK, 

Liverpool ................•............ 
Poughkeepsie ...........•............ 
Woodbury ......... ,. .....•............ 

NORTH CAROLINA .................... . 
OREGON ............................. . 
OHIO, 

Columbus ...............•............ 
PENNSYLVANIA, 

Allentown ........................... . 
Willow Grove ........................ . 

TEXAS, 
Austin .............................. . 
Dallas .............................. . 
Houston ............................. . 

WASHINGTON ........................ . 
WISCONSIN ..............•............ 

1

6171273-3970 
612 938-0001 
314 275-4415 
201 299-0002 

315 457-5400 
914 471-8180 
516 364-8020 
919 847-8471 
503 245-0080 

(614) 891-6455 

(215) 398-8006 
(215) 657-3101 

512 346-7830 
214 934-9099 
713 785-9001 
206 455-3600 
414 782-7748 

INTERNATIONAL SALES OFFICES 

BELGIUM, 
Bruxelles ...................... TEL: . (02) 771 99 93 

FAX: .. (02) 762-3716 
TLX: ......... 61028 

CANADA, Ontario, 
Kanata ........................ TEL: . ~613i 592-0090 
Willowdale ..................... TEL: . 416 224-5193 

FAX: . 416 224-0056 
FRANCE, 

Paris .......................... TEL: (01) 45 60 00 55 
FAX: (01) 46 86 21 85 
TLX: ....... 202053F 

GERMANY, 
Hannover area ................. TEL: .. (05143) 50 55 

FAX: .. (05143) 55 53 
TLX: . . . . . . . . 925287 

MOnchen ...................... TEL: .. (089) 41 14-0 
FAX: . . . (089) 406490 
TLX: . . . . . . .. 523883 

Stuttgart .. . . . . . . . . . . . . . .. . . . . .. TEL: 
(0711) 62 33 77 

FAX: . . (0711) 625187 
TLX: . . . . . . . . 721882 

HONG KONG, 
Kowloon . . . . . . . . . .. . . . .. TEL: . . . . . . . . . . . . . 3-695377 

FAX: . . . . . . . . .. . . . . 1234276 
TLX: ................ 50426 

ITALY, Milano .............. TEL: .......... (02) 3390541 
FAX: .. . . . . . .. . (02) 3498000 
TLX: ............... 315286 

JAPAN, Tokyo . . . . . . . . . . . . . TEL: . . . . . . . . . (03) 345-8241 
FAX: .............. 3425196 
TLX: . . . . . J24064AMDTKOJ 

LATIN AMERICA, 
Ft. Lauderdale . . . . . . . . . . . TEL; . . . . . . . . (305) 484-8600 

FAX. . . . . . . . . (305) 485-9736 
TLX: .. 5109554261 AMDFTL 

SWEDEN, Stockholm ...... TEL: ........ (08) 733 03 50 
FAX: . . . . . . .. (08) 733 22 85 
TLX: ................ 11602 

UNITED KINGDOM, 
Manchester area . . . . . . . . . TEL: . . . . . . . . (0925) 828008 

FAX: . . . . . . . . (0925) 827693 
TLX: . . . .. . . . . . . . . . . 628524 

London area . . . . . . . . . .. . TEL: . . . .. . . . (04862) 22121 
FAX: . . . . . . . . (04862) 22179 
TLX: . . . .. . . . . . . . . . . 859103 

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance 
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and 
other practices common to the industry. For specific testing details, contact your local AMO sales representative. The company 
assumes no responsibility for the use of any circuits described herein. 

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA 
TEL: (408) 732-2400 •TWX: 910-339-9280 •TELEX: 34-6306 •TOLL FREE: (800) 5388450 

© 1986 Advanced Micro Devices, Inc. 
Printed in U.S.A. CBM·B·10M-7/86·1 





Order # 06591 A 

ADVANCED 
MICRO 

DEVICES, INC. 
901 Thompson Place 

P.O. Box 3453 
Sunnyvale, 

California 94088 
(408) 732-2400 

TWX: 910-339-9280 
TELEX: 34-6306 

TOLL FREE 
(800) 538-8450 

IH-MU-SM-11/86-0 




