
MACH™ Casebook
1991

Advanced .
Micro

Devices

MACH™ DESIGN CASEBOOK

A STUDY OF MACH IMPLEMENTATION

IN SYSTEM DESIGN

~
© 1991 Advanced Micro Devices, Inc. TEL: 408-732-2400

TVVX:910339-9280
TELEX: 34-6306

901 Thompson Place
P.O. Box 3453
Sunnyvale, CA 94088 TOLL FREE: 800-538-8450

APPLICATIONS HOTLINE: 800-222-9323

DOC VER 1.0 MACH DESIGN CASEBOOK

February 1991

Advanced Micro Devices reserves the right to make changes in specifications at any time and without
notice. The information furnished by Advanced Micro Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Advanced Micro Devices for its use, nor for any infringements
of patents or other rights of third parties resulting from its use. No license is granted under any patents
or patent rights of Advanced Micro Devices.

MACH™ is a trademark and PAL® and PALASM® are registered trademarks of Advanced Micro
Devices, Inc.

OrCAD/SDT™ is a trademark of OrCAD Incorporated

IBM® is a registered trademark of International Business Machines Corporation

MACH DESIGN CASEBOOK

ii February 1991

TABLE OF CONTENTS

Preface

MACH DESIGN CASEBOOK ... 1
1 DESIGN DESCRIPTION .. 4

1.1 FUNCTIONALITY ... 9
1.2 PERFORMANCE ... 9
1.3 DENSITY .. 10

2 DEVICE RESOURCES, DESIGN TOOLS AND PROCESS ... 11
2.1 MACH-DEVICE RESOURCES ... 11
2.2 MACH DESIGN TOOLS ... 12
2.3 DESIGN PROCESS ... 13

2.3.1 System Architecture Analysis .. 15
2.3.2 Data-Flow Analysis .. 15

Singular Feature Identification ... 16
Array Feature Identification .. 16
Feature Decomposition .. 17

2.3.3 Control-Flow Analysis .. 18
Singular Function Identification .. 18
Array Function Identification .. 19
Function Decomposition .. 19

2.3.4 1/0 and Speed Partitioning ... 20
2.3.5 Implementation ... 20

Entry ... 21
Compilation and Fitting ... 21
Simulation ... 22
Merging Designs .. 23

2.3.6 Tuning .. 24
Use Different MACH-Fitting Options ... 25
Enable Gate Splitting ... 26
Group Functions within a Specific MACH Block ... 27

3 LSA SYSTEM ARCHITECTURE ... 28
3.1 DERIVING THE LSA ARCHITECTURE ... 29

3.1.1 LSA Functions and Flow .. 30

MACH DESIGN CASEBOOK

February 1991 iii

3.1.2 MACH vs Non-MACH Devices ... 31
3.2 EXPANDING TO LSA DATA FLOW .. 33

3.2.1 Testability ... 34
3.2.2 Trace, Trigger, and User-Interface Control. ... 35
3.2.3 Data Display and Data Processing ... 35

3.3 DEFINING LSA ARCHITECTURAL PRIMITIVES ... 36
3.3.1 Performance Calculation ... 38

Edge Performance .. 39
Glitch Performance ... 40

4 LSA SYSTEM DESIGN, DATA FLOW .. 42
4.1 ARRAY FEATURES .. 43
4.2 SINGULAR FEATURES .. 46

5 LSA SYSTEM DESIGN, CONTROL LOGIC ... 49
5.1 SINGULAR CONTROL STATE MACHINES ... 51

5.1.1 Trigger Detection and Trace Control ... 52
5.1.2 State-Machine Assignment .. 56

Partitioning and Implementation .. 57
Relating Supervisory and Subsidiary State Machines 59
Merging Design Files ... 65
Simulation for Interim and Combined Designs ... 71

5.2 SINGULAR CONTROL FUNCTION ... 72
5.2.1 Trigger Detection Analysis .. 72
5.2.2 Singular Control Implementation ... 73
5.2.3 Adjusting Design-Portion Size .. 76

6 DATA AND CONTROL INTEGRATION .. 78
6.1 MACH CH IP INTEGRATION .. 82
6.2 TRADEOFFS AND REDESIGN STRATEGIES .. 86

7 TUNING .. 88
7.1 LSA RESOURCE-ALLOCATION SUMMARY .. 89
7.2 LOCATE AND CORRECT NON-OPTIMAL PIN ASSIGNMENTS ... 95
7.3 REORGANIZE NON-OPTIMAL LOGIC ASSIGNMENTS .. 96
7.4 REPOSITION NON-OPTIMAL PATH ASSIGNMENTS .. 96

8 COMPLETE LSA SYSTEM IMPLEMENTATION .. 97
8.1 IMPLEMENTATION ... 99
8.2 RE-ENGINEERING CONSIDERATIONS .. 101

9 DESIGN REVIEW .. 103
9.1 SYSTEM CONSIDERATIONS ... 103
9.2 LOGIC ASSIGNMENT .. 104
9.3 STATE MACHINES .. 105

APPENDIX A .. 4

A.1 INCLUDED FILES .. 5
l_MEMREG.SCH .. 5

MACH DESIGN CASEBOOK

iv February 1991

l_PPNB.SCH ... 6
LA_MERGE.PDS .. 7

A.2 OPTIONAL FILES .. 8
l_KB_INT.PDS .. 8
LA_BKCHG.PDS .. 8
LA_BKPIN.PDS .. 9
LA_COMB.PDS .. 9
LA_LD_GL.PDS ... 9
LA_RD_GL.PDS ... 9
LA_RLOAD.PDS .. 1 O

A.3 SCHEMATICS .. 10
LSA DATA FLOW ... 10
TRIGGER LOGIC ... 11
TRIGGER MASK MEMORY .. 12
TRIGGER DATA BLOCK, BYTE 0 .. 13
ATIRIBUTE MEMORY DATA REGISTERS ... 14
ATIRIBUTE MEMORY DATA REGISTERS ... 15
TRIGGER DAT A BLOCK, BYTE 1 16
ATIRIBUTE MEMORY .. 15
ATIRIBUTE MEMORY .. 16
PATIERN MEMORY ... 17
PRE-PROCESSOR BLOCKS, BYTE O .. 18
NIBBLE BLOCKS, BYTE 0 ... 19
PRE-PROCESSOR LOGIC, NIBBLE 0 .. 20
PRE-PROCESSOR LOGIC, NIBBLE 1 .. 21
NIBBLE BLOCKS, BYTE 1 ... 21
PRE-PROCESSOR LOGIC, NIBBLE 2 .. 22
PRE-PROCESSOR LOGIC, NIBBLE 3 .. 23
MEMORY BUFFERS AND BUS MULTIPLEXERS ... 24
MEMORY REGISTER LOGIC, BYTE O AND BUS MULTIPLEXER .. 25
MEMORY REGISTER LOGIC, BYTE 1 AND BUS MULTIPLEXER .. 26
USER PANEL KEYBOARD INTERFACE .. 27
~XTERNAL TIMING ... 28
CONTROL LOGIC .. 29
TRACE MEMORY, WORD LEVEL ... 29
TRACE MEMORY .. 30
HOST INTERFACE .. 31
INPUT BUFFERS ... 32
GLITCH MEMORY, WORD LEVEL ... 32
GLITCH MEMORY ... 33

INDEX .. 1·1

MACH DESIGN CASEBOOK

February 1991 v

vi

PREFACE

This casebook uses a complete logic state analyzer
(LSA) design to illustrate a bit-slice design method­
ology. The focus is on several design segments that
illustrate the considerations and tradeoffs associated
with MACH-device designs and demonstrate methods
you use repeatedly to implement the complete LSA.

Important: Designs that require up to 70% of MACH­
device resources can be achieved with very little effort.
The design in this case study shows that MACH-device
utilizations of greater than 70% can be achieved using
various combinations of language syntax and software
fitting options. The degree of fit varies from design to
design.

Also: The design in this study is a paper design that
has been implemented using the PALASM® 4 software;
however it has not_y_et been im_Qlemented in hardware.

Most abbreviations in this casebook are those defined
as standard by the IEEE. Abbreviations unique to
PALASM 4 and this design are defined at first use.

The reader is assumed to have a working knowledge of
programmable logic device (PLD) design, including
state-machine and microprocessor design. It is also
assumed you are familiar with a logic state analyzer.

MACH DESIGN CASEBOOK

February 1991

February 1991

Note: This case study does not provide steps to follow
at the workstation. However, the design files are
included on PALASM 4 installation diskettes, in the
\PALASM\EXAMPLES\CB directory, as discussed in
Appendix A.

MACH DESIGN CASEBOOK

vii

viii

ACKNOWLEDGEMENTS

For their help with the publication of this casebook,
Advanced Micro Devices (AMD) would like to thank the
following major contributors. AMD also extends thanks
to the many other people, too numerous to mention
here, for their help with, and commitment to the quality
of, this publication.

John Davis
Jana McNulty
Nick Schmitz

Vivian Kong
Gail Tiberi
Joe Walcek

Important: For answers to questions about any infor­
mation in this casebook, contact a customer support
representative at the AMD Applications Hotline: 800-
222-9323. The people acknowledged above are not
part of the customer support group and are not avail­
able to answer _questions.

MACH DESIGN CASEBOOK

February 1991

February 1991

MACH DESIGN CASEBOOK

This casebook uses a complete logic state analyzer
(LSA) design, implemented using both MACH 11 O and
MACH 21 O devices, to illustrate the interplay between
device attributes, design requirements, and architec­
tural considerations during a typical design cycle. As
you read about this design and its implementation,
you'll pick up tips and insights regarding

the MACH devices and supporting design tools,
an algorithmic flow for system-level designs, and

• the decisions and tradeoffs for logic partitioning,
device speed, and pin-out requirements for
MACH-device designs.

Techniques presented in this study, and some of the
circuits themselves, can be applied to other designs
and design tasks. The methodology presented here
has three major advantages.

Design flexibility: you can easily assign system
functions to minimize the number of chips.

Architectural flexibility: you can realize
system functions of varying word widths.

Optimization flexibility: separate data and
control domains enable you to independently
optimize system features for speed or logic
density.

MACH DESIGN CASEBOOK

1

2

The focus of each major discussion is identified below.1

The design description, 1, provides an overview
of the complete LSA design and includes details
about its functionality, performance, and density.

The topics under discussion 2 summarize
MACH-device resources, introduce design-tool
support, and explore a method to segment the
design to evaluate its requirements.

The architecture of this LSA design, 3, explains
how to convert an idea into an overall system
description that allows design elements to fall out
naturally into appropriate devices.

The data-flow discussion, 4, focuses on specific
design segments to show you how to divide the
data flow into subfeatures likely to fit in the
selected device initially.

The control-flow discussion, 5, focuses on spe­
cific design segments to show you how to divide
control logic into subfunctions likely to fit in the
selected chip initially.

The integration of data and control flows, 6,
explores how to connect control-flow and data­

flow domains using MACH 1/0 constructs.

The tuning summary, 7, introduces tuning tips for
this design and summarizes tuning strategies
you can use for other designs.

This guide does not illustrate all segments of the LSA design; it focuses on segments that identify
basic techniques and considerations for a large design. Design files for all segments of the LSA
design are available on the PALASM 4 installation diskettes. Files are identified in the text where
appropriate. Appendix A provides a complete list of all files. Refer to the MACH Design
Workbook for design examples that provide details about resolving specific fitting problems.

MACH DESIGN CASEBOOK

February 1991

February 1991

The complete LSA discussion, 8, presents the
design in the context of an add-in card
implementation.

The review, 9, retraces information pertinent to
this and other designs.

The discussions in Appendix A describe each
file, for this LSA design, included on the
PALASM 4 installation diskettes.

MACH DESIGN CASEBOOK

3

1 DESIGN
DESCRIPTION

The subject of this study is a 16-bit LSA design.2 The
next figure shows a sample LSA board; the shaded
boxes show design segments implemented using
MACH chips.

Excluding input buffers and RAM, the LSA functions
implemented for this study consist entirely of MACH
programmable logic.

The preprocessor logic requires four MACH 210
chips.

The memory registers are implemented in two
MACH 210 chips.

The LSA control is contained in a MACH 11 O
and a MACH 210.

All optional functions, such as the host interface,
keyboard support, and memory control, can be
implemented on either a MACH 11 O or a MACH
210 chip.

You can implement the input buffers, such as Schmitt
triggers, using any external logic you choose. This
design provides control lines for static RAM logic.
However, you can customize this part of the control
logic to use another type of RAM if you choose.

The two-page block diagram that follows the sample
board layout presents the LSA in the context of other
functional elements, such as RAM, signal input buffers,
and input control. Each block is labeled with a function
name and the name of the file where the logic is
implemented; a description follows the block diagram.

2 This study presents a paper design that has been implemented using the PALASM 4 software. It
has not yet been implemented in hardware.

MACH DESIGN CASEBOOK

4 February 1991

Connector ---+--CJ I
Area

~-----~

Preprocessor
Logic

Memory ---+­Registers

Trigger _ _,__
Pattern RAM

Sample Logic State Analyzer Board

February 1991

\Mt.fillWMli
::::::t:J:j:m:\~j:\fjf]:: ----+--~ Control Chip

l:,:::·::::::=:i~i~ilii·ij:jij:.:1:

II
@:U!UEM\d

MACH DESIGN CASEBOOK

5

6

Input
Buffers

(Signal Entry)

Sam.E!.e

Input
Signal

Pre-Processor .-... 4----1-
~-~INPr _r-jl-1-Pattern 16 ,__ ______ __.

Mach Chip: I_PPNB

~ Memory 1-
ADDR Static

.--~~~ RAM

~PM J
I' ~C1R PM GOE "-. 4 Input

I """""' Signal

16

4 HIT

GLIT

4 HIT

/PM_G_CS
VPM G WE

VPM_G_ADDR_CK v
~ Pre-Processor

I~ 1,.-1~~~~~~~~---G~LIT~ jll" I ti" 1--.-_ Mach Chip:I_PPNB

Attribute

ADDR n M;:;i:r
.--~~~ I RAM

I JQ!; AM J
V r-i CTR AM_G_OE

/AM G CS
VAM_G_WE

VAM_G_ADDR_CK v

80

AT1R

Input
Signal

I~ --1--- Pre-Processor

jll" v-11-:-,___M_a_ch_C_h_ip_:_r __ P_P_N_B__.

t-1-+--

Bus ~
Interface ~ :::::::;4=

Input
Signal

Pre-Processor

Control Signals

Buffers ~
~(in) (out) t-l~[J

Non Mach
Chips

16 INP

DI RST
(Reset)

Mach Chip:I_?PNB

INP
BUS 1--i
PAL INP_HIT

4 HIT

GLIT

4 HIT

GLIT

HIT

K[O .. 3]

oINP .'\

Logic Analyzer
Combined
Control I (State Variables)

Mach Chip:LA_COMBl

POR
J

RUN

Left Side: LSA Block Diagram

MACH DESIGN CASEBOOK

February 1991

16 Host Interface
~

4 HIT

"
16

l:_ ~ Memory
8 Trace 16 Trace

Buffers and Memory - 1-+- Registers
~ Static 1-:... u 1-

4 HIT

I
Mach Chip: I_MEMREG RAM

11 TM_G_CE ' ,---, TM
GUT c CTR

TM GOE
TM G WE~

TM G_ADDR_CK ~
POR~

~

4 HIT

'
l:_ '-:... Memory

~I Buffers and
4

Registers Glitch 8 GL_MEM 16
4

Mach Chip: I_MEMREG Memory
4 HIT Static

' µ RAM
ADDR

GM_G_OEJ
GUT

1..i
GM_G_AD~

GM
CTR /GM G CS

16 V:.GM_G_WE

HIT POR v
HIT v
PAL

Cl HIT

Logic Analyzer
K[0 .. 3] Combined Control S!a_nals

Control I/
Mach Chip: LA_COMB2

POR 1

Right Side: LSA Block Diagram

MACH DESIGN CASEBOOK

February 1991 7

8

The input preprocessing chips, which detect edges,
glitches, and levels, process inputs in nibble-sized
units. The nibbles are multiplexed into byte-sized incre­
ments by the memory-input register chips.

During operation, sample data enters the LSA via the
input buffers and is checked for specified combinations
of levels, edges, and glitches by the input-signal
preprocessor chips. All types of signal attributes are
checked. However, only attributes specified by a 1 in
the attribute mask are included in a comparison for
trigger events.

When a match occurs for a selected condition, it is
further masked by a pattern from the pattern memory.
The pattern allows only selected bits that match trigger
conditions to leave the chip as a hit. Glitch data also
leaves the chip and is stored in the glitch RAM. Hits
are ORed to gate the trigger state machine.

Glitch data that leaves the input-signal preprocessing
chips is directed to the glitch-memory static RAM by the
memory buffers and register chips. At the same time,
the input data on the Sample bus is directed to the
trace-memory static RAM. At the end of the trace
cycle, trace-memory data is read to the host RAM via
the host interface. The memory buffers and register
chips are then re-configured to allow the glitch data to
be read to the host.

MACH DESIGN CASEBOOK

February 1991

1.1 FUNCTION-
ALITY

1.2 PERFORMANCE

February 1991

The LSA implemented in this study has the following
functions.

Independent trigger conditions for each bit

Active-high and active-low trigger options
Rising-edge and falling-edge trigger options

Glitch detection

Eight levels of triggering before trace begins

Detection logic that can be used in either parallel
mode or serial mode

In addition to the usual practice of triggering on a pat­
tern across the entire trigger word, the independent trig­
gering conditions for each bit in this design allow you to
trigger on the activity of any single bit. Triggering on
the active level of a particular set of signals is fairly
standard. Edge triggering and glitch detection can be
found on most intermediate-level LSAs; the more
sophisticated instruments often allow bit-level triggering
for edges and glitches.

The MACH chips in which LSA functions were imple­
mented can be used either in parallel, to increase sam­
pling speed, or in serial, to implement more triggering
levels.

This LSA has a trigger rate of 20 MHz in serial mode.
When the triggering modules are configured in parallel,
the rate increases to 40 MHz. The limiting factor on the
available trigger rate is the number of trigger types
included in the design. The access time for fast RAM
chips is on the order of 35 ns; the 15 ns propagation
delay of the MACH device is not the most critical path.

MACH DESIGN CASEBOOK

9

1.3 DENSITY

10

This design requires a total of eight chips: seven to
implement the heart of the 16-bit LSA and one to
implement optional features, such as the keyboard and
host interfaces. Additional chips can be added to
customize the design for a particular platform. The
sample board layout shows the chips placed on a PC
add-in board. In this case, the user interface is handled
by the host PC.

In this design, one MACH 210 device independently
processes each bit of a 4-bit nibble of the input-data
stream. Four such chips are used in this design; each
has the following functions.

Store internal triggers.

Preprocess five attributes per bit: rising-edge,
falling-edge, glitch, active-high, and active-low
event trigger conditions.

Detect the occurrence of a trigger event.

Two memory-register chips are used in this design.
Each one, implemented in a MACH 21 O chip, contains
the path-routing and buffer registers used during
triggering and tracing. The paths are also used to
upload captured data.

The system-control chips contain the state machines
that control the trigger and trace operations. They are
implemented in both a MACH 11 O and a MACH 210.
For this particular design, a MACH 210 was chosen for
one chip to allow for future growth.

MACH DESIGN CASEBOOK

February 1991

2 DEVICE
RESOURCES,
DESIGN TOOLS
AND PROCESS

2.1 MACH-DEVICE
RESOURCES

Device Pins Macrocells

MACH 1 Family

MACH 110 44 32
MACH 120 68 48
MACH 130 84 64
MACH 2 Fami!Y_

MACH 210 44 64
MACH 220 68 96
MACH 230 84 128

Discussions below summarize MACH-device resources
and introduce design-tool support. The design process
used to evaluate and implement the entire LSA design
is also introduced.

MACH devices provide high-density programmable
logic combined with high pin-count modules to give you
high-logic density in an appropriate package for your
design. The MACH 11 O provides resources in both
15 ns and 20 ns speeds; any or all flip-flops can be
implemented as buried macrocells.

The electrical and physical characteristics of the
MACH 21 o are similar to those of the MACH 11 o. The
MACH 21 O provides twice the logic density in the same
physical package. This conserves board space and
avoids additional delays, which result when signals are
driven off-chip across the printed-circuit board and back
into another chip. In the MACH 21 O device, half of the
flip-flops are designated as buried macrocells. Both
devices provide up to 38 inputs and up to 32 outputs.

The table below summarizes specifications for all
MACH devices.

Gate Max Max Max Speed
i;g_ulvalents ln~ts Ou~ts Fl~Fl~s _in~

900 38 32 32 15,20
1200 58 48 48 15,20
1800 70 64 64 15,20

1800 38 32 64 15,20
2400 58 48 96 15,20
3600 70 64 128 15,20

MACH DESIGN CASEBOOK

February 1991 11

2.2 MACH DESIGN Complete support for MACH-device designs is provided
through the PALASM 4 software, which includes the
tools for entry, compilation and fitting, simulation and
documentation, and communication with a device­
programmer so you can create and process the design
and download JEDEC data to the chip.3

TOOLS

3

4

5

6

12

Several design-entry methods4 are supported within the
PALASM 4 environment.

Text-based Boolean-equation descriptions

Text-based state-machine language descriptions

Schematic-based designs

Mixed-mode designs

You begin a schematic-based design from the
PALASM 4 software, which automatically invokes
OrCAD/SDTfM Ill with the AMO-supplied MACH
library.5 Schematics are automatically converted to
Boolean equations during the compilation process and
the resulting PDS file is used to complete remaining
processes.

The compilation process includes fitting the design to
the MACH device and producing a machine-readable
JEDEC file, which represents the fuses to be pro­
grammed. 6 Though MACH devices are repro­
grammable, simulation is available to help you uncover
problems with the design before you build the chip.

Refer to the PALASM 4 User's Manual, Chapter 9, for complete details about commands, forms,
and options.

Refer to the PALASM 4 User's Manual, Chapter 2, for step-by-step tutorials that guide you
through design entry, Chapter 4, for entry strategies, and Chapter 10, for language syntax.

The OrCAD/SDT Ill software and the PALASM 4 interface to it must be purchased explicitly.

Refer to the PALASM 4 User's Manual, Chapter 1, for details about hardware requirements.

MACH DESIGN CASEBOOK

February 1991

2.3 DESIGN
PROCESS

7

6 Data-Flow
Analysis

The seven-level algorithmic process used for this
design helps you reduce the high-level LSA system
description into smaller pieces that fit into a single chip.
The next figure shows the flow of this approach.

System
Architecture

Analysis

Control-Flow
Analysis

5

Singular
Feature

Identification

Array
Feature

Identification

Singular
Function

Identification

Array
Function

Identification

4

3

2 Implementation for Mach 11 O and Mach 210

1
Pin Assignment

Tuning

Seven-Level Design Process

February 1991

Logic Assignment
Tuning

Path Assignment
Tuning

As you can see, there are seven vertical levels in the
process flow. Boundaries between levels are not
sharply defined because the design partitioning process
varies with technology and with the system to be
implemented.

MACH DESIGN CASEBOOK

13

14

You begin the process by evaluating the architecture for
the entire system and dividing the design into its data­
flow and control-flow domains. The left branch of the
process flow addresses the data-flow domain; the right
branch addresses the control-flow domain.

For each domain, you use splitting, decomposition, and
partitioning techniques to identify features and functions
that can fit into a single chip. MACH-device resource
considerations come into play during the manual
design-partitioning phase. Once the chip-sized and
smaller functions are isolated, you begin implementa­
tion and end the process with tuning. The last three
stages are the same for both design domains.

Note: If the design is small enough or simple enough
to partition mentally, you start development with device­
level considerations.

The tables below identify each level in the design
process. A generic discussion of each phase follows.
Details and specific LSA design considerations are
discussed under topics 3 through 7.

SYSTEM DESIGN CONSIDERATIONS

7 System Architecture Analysis
6 Data-Flow Analysis I Control-Flow Analysis
5 Feature I Function Identification: Singular & Arrays
4 Feature I Function Decomposition

DEVICE·LEVEL CONSIDERATIONS

3 Partitioning
2 Implementation
1 Tuning

MACH DESIGN CASEBOOK

February 1991

2.3.1 System
Architecture Analysis

2.3.2 Data-Flow
Analysis

When converting ideas to designs, you can start at the
conceptual stage and work down to the chip level on
paper. The objective here is to identify the most basic
elements you need to build the system, called architec­
tural primitives. In general, there are two kinds of
architectural primitives: data flow and control flow.
Initially, you review and evaluate the list of functions
specified for the entire design, then divide the design
into data-flow and control-flow domains.

Once this division is complete, the process flow,
discussed next, is similar for each domain. 7

The objective during this phase is to reduce the data
flow to a set of bit slices, each of which will usually fit
into a single MACH chip. Data flow is defined as the
sum of all system input paths that move through
storage and processing modules. Data-flow features
are treated separately from control functions and other
parts of the system.

There are two kinds of features in the data-flow domain,
which you must identify and isolate.

Array features
Singular features

The process can either be informal, where you mark up
a block diagram, or formal, where you list singular and
array features separately.

7 Refer to discussion 3 of this casebook for details about the system architecture of this LSA design.

MACH DESIGN CASEBOOK

February 1991 15

Singular Feature
Identification

Array Feature
Identification

16

Singular features are defined as all unique aspects of
the data flow that affect a limited number of the data
elements, and are usually characterized by a high
degree of internal interconnectivity. Serial data-channel
functions are an example of singular features in the
data flow. A classic example is bus demultiplexing. On
some microprocessors, the data bus carries both data
and address information at different times. A special,
singular data path must be created to route the bits
carrying address information to the address registers.

Look for examples of singular functions in your data
flow.

The most outstanding trait of the data flow is the large
number of arrays. An array feature can have multiple
pieces; each of these can be further subdivided during
decomposition.

Each array has specific speed and 1/0 require­
ments, which you can match to a particular
MACH device.

Each array represents an element of the LSA
you can design once as a bit slice and test for
chip fit.

Storage registers and multiplexers are examples of
array features in a data flow. The same array can
appear repeatedly in a design; however, each instance
must have a unique name. Other examples of array fea­
tures for this LSA design are listed below.

Rising-edge detector
Glitch detector
Multiple-triggering levels

MACH DESIGN CASEBOOK

February 1991

Feature Decomposition

February 1991

Once you have identified all array and singular features
in the data-flow domain, each becomes the root of a
tree with data types passing through the feature as
leaves. If a particular leaf has special features not
shared by all data types, the leaf is expanded as a
subtree.

For example, a sign bit on a data bus has features not
shared by the magnitude bits. The two modes of use
might result in data path additions. The data path tree
should be expanded to two leaves.

One leaf with no sign considerations
One leaf with sign considerations.

The leaves that result when all data-flow features are
expanded are the data-flow architectural primitives.

Once you choose the array elements, it's a simple mat­
ter of multiplication to find how much of the array will fit
into a single MACH chip. For example, the bit slice for
the rising-edge detector is repeated 16 times to produce
the detector for one word of the LSA. Singular-feature
bit slices usually fit into a chip immediately during imple­
mentation because they don't require an entire chip's
resources.

Choosing bit slices judiciously helps ensure a fit
either as a singular function or as a MACH-based com­
ponent you can chain. Most digital functions will fit into
MACH devices. However, design functions, such as
analog functions, not supported in MACH chips must be
separated for implementation outside MACH.

MACH DESIGN CASEBOOK

17

2.3.3 Control-Flow
Analysis

Singular Function
Identification

18

The control flow is defined as all signals, either input to
the system or generated by the system, which direct the
flow of data through the system or direct the transfor­
mation of data in the system. Data-transforming nodes
are part of the control flow though they appear in the
data-flow diagram.

The latter distinction is somewhat artificial yet reflects
common design practice. The distinction is practical
because data-transforming nodes generally have more
of the bit-to-bit interconnectivity associated with control
than the repeated, independent bit structure associated
with data flow.

System functions meeting this control-flow definition
should be separated from other system functions during
the function-identification phase. Choosing control
functions judiciously helps ensure a fit, either as a
single function or as a MACH-based component you
can chain. The control-flow domain contains two kinds
of functions.

Array functions
Singular functions

The most outstanding trait of the control flow is the
predominance of singular functions, which dominate
because control logic usually combines several inputs
to create a single output. The resulting output controls
either a single node in the data flow or a single path
through the data flow. The nodes are unique so an
array structure is needed only for parallel processing.

State machines are the primary examples of singular
functions in control logic. Each system function
becomes a state machine you can reduce to a set of
component state machines. The complete list of state
machines forms one list of singular functions ready
made for implementation in a MACH device. Again, a

MACH DESIGN CASEBOOK

February 1991

Array Function
Identification

Function Decomposition

February 1991

function can have multiple pieces you further subdivide
during decomposition.

A control-logic array occurs when data must be con­
verted from one form to another. The conversion
process generally involves creating new data, in an
arithmetic-logic unit or a parity generator, for example.
The key attribute of an array is different input and out­
put data. The data differs either in value or in the
number of bits of information contained. The logic that
defines a single bit is the logic selected to represent the
array.

Since the array functions in control logic generally come
from data-flow conversions, they usually consist of both
an array and a singular function. Thus, each control­
flow array can be decomposed to a pair of control
functions.

The input array typical of data flow

The output singular function that reduces the
number of bits

During decomposition, you assign each control opera­
tion to the root of a tree and assign specific subfunc­
tions to be performed as part of the operation to the
leaves. When a function has subfunctions, the leaf is
expanded as needed. In this way, final chip resources
are used more efficiently; fitting many small pieces
results in less unused space than fitting large pieces.

The final leaves define the control-flow architectural
primitives needed to implement the system control.
You use the leaves to define the basic elements
needed to build the system's control.

MACH DESIGN CASEBOOK

19

2.3.4 1/0 and Speed
Partitioning

2.3.5
ti on

20

lmplementa·

The two process paths become one in this phase,
during which you evaluate MACH-device resources and
assign basic elements of the design (the control- and
data-flow architectural primitives) to MACH chips. Two
tasks start this phase.

Determine 1/0 count for each bit slice

Determine speed of each bit slice

You use the 1/0 requirements to identify functions or
features exceeding the device pin-out for further
decomposition or assignment to multiple chips. If
further decomposition is possible, final chip resources
are used more efficiently.

The speed of a critical path can be achieved by
redesigning functional properties in stages. Functions
in which logic formerly overlapped are spread out into
separate logic implementations using this pipelining
technique.

During this phase, however, you need only identify
areas you think might need reconsideration. Actual
optimization occurs during the tuning phase, after the
entire design has been implemented and you have a
better idea of how much unused space remains.

The following steps outline implementation activities.

Enter each architectural primitive as either a text­
based or schematic-based design.

Compile and fit each architectural primitive and
review the MACH report; re-engineer the design
if needed.

Simulate each architectural primitive.

MACH DESIGN CASEBOOK

February 1991

Entry

Compilation and Fitting

February 1991

Merge into one design the architectural
primitives you know can fit on a single chip;
recompile the combined design.

You can enter designs as either text or schematic­
based information. Initially, you enter each architectural
primitive separately.

/Tip: It's a good idea to build up hierarchical schematic
/files for each array feature.

After you compile each hierarchical schematic, and
verify statistics in the MACH report, you can create a
single s;;hematic that references primary schematics.

For example, if a single architectural primitive requires
one eighth of the chip's resources, you create a
schematic that references the primitive either six or
eight times. Then you compile the six-bit or eight-bit
schematic, which allows you to quickly estimate the
amount of chip resources actually needed for candidate
word widths.

It is a good idea to compile and fit each architectural
primitive to ensure it is complete and correct before you
merge it with other designs for implementation on a
single chip.

Isolating control from data flow and singular functions
from array functions pays off here.

Control functions, such as state machines, and
singular functions often have many internal
interconnections.

Array functions often have few internal
interconnections.

MACH DESIGN CASEBOOK

21

Initially, you specify the following mode on the
Compilation Options form.

Run mode: Auto

Then you choose the MACH-fitting option below for
each design.

FITTING OPTIONS
When compiling Run all until first success

The software uses different fitting-option combinations
until the first fit is achieved. Device-utilization statistics
in the MACH report for each primitive show resource
requirements for that design. This leads directly to the
number of chips needed for an array or the number of
singular functions you can fit on one chip. Initially, a
good rule of thumb is to keep chip-resource assign­
ments for storage elements and product terms at or
below 70% of the device's available resources. 8 It
won't take long to determine whether a given function
will fit, and, if it won't, why. When the fit is close, you
can often use manual techniques to achieve success.

Simulation It is a good idea to simulate each architectural-primitive
design to ensure it is functionally correct and complete.
This is especially important before you merge designs.

8

22

Recommendation: Use an auxiliary simulation file
instead of the PDS simulation segment. If you enter the
design as a schematic, the PDS file is created with a
blank simulation segment during compilation, so each
time you compile, the segment is erased. If you merge
designs, simulation commands are removed from the
PDS simulation se ment durin the mer e rocess.

Designs that require up to 70% of MACH-device resources can be achieved with very little effort.
The design in this study shows that MACH-device utilizations of greater than 70% can be
achieved using various combinations of language syntax and software fitting options.

MACH DESIGN CASEBOOK

February 1991

Merging Designs Designs for architectural primitives must be combined
to yield preliminary MACH chip implementations. You
can merge any number of designs together using the
Merge design files command on the PALASM File
menu.9

Tip: You can merge schematic-based designs with
text-based designs using the schematic-based PDS file
created automatical!i'._ durin_g_ com_.Q!lation.

During the merge operation, you are advised of any
signal-name conflicts so you can change names
immediately. This prevents problems caused when the
same architectural primitive is being used repeatedly.

After merging two designs, you process the combined
design.

Compile the combined design

Simulate the combined design

Again, the MACH report identifies resources and other
fitting information so you can verify the design fits into
the chip. Since singular functions are independent of
one another, you can group unrelated functions
together to fill a chip.

Suppose the device-utilization statistics in various
MACH reports indicate function A requires 40% of a
chip, function B requires 20%, and two other functions
require 10% total. You can merge the four designs
together and resolve signal contention interactively as
you proceed. Then you compile the combined design.

9 Refer to the PALASM 4 User's Manual: Chapter 4 provides guidelines for the entry process,
Chapter 9 provides details about available commands, forms, and options.

MACH DESIGN CASEBOOK

February 1991 23

2.3.6 Tuning

24

During tuning, you optimize the design to achieve the
best overall fit using the fewest number of chips. This
includes both system fitting and fitting a particular
function in a specific chip. Several optimization tech­
niques are provided.

• Use different MACH-fitting options to optimize
results and to correct non-optimal path
assignments.

• Enable gate splitting to correct non-optimal logic
assignments.

Group functions in a particular MACH block to
correct non-optimal logic or pin assignments.

Product-term allocation techniques include product­
term steering, where product terms are automatically
allocated from adjacent macrocells in a single block,
and gate splitting, where product terms can be
allocated from non-adjacent macrocells, including those
in different blocks. These are useful when a MACH
device does not provide sufficient product term
resources within a macrocell for the logic being fit.
However, when the design fits, product-term allocation
is not likely to produce a better fit because the same
device resources are required.

Tip: When further decomposition is possible, final chip
resources are used more efficiently; fitting many small
pieces results in less unused space than fitting large
pieces. When a function fits in a chip, gate splitting can
actually upset the fit because it must use global wiring
channels to make the second pass through the array.
The rule in this case is if it fits, don't force it to be better.

MACH DESIGN CASEBOOK

February 1991

Use Different MACH­
Fitting Options

February 1991

After merging designs, you can use different fitting
options to squeeze as much logic onto each chip as
possible. You can also correct non-optimal path
assignments caused when logic-placement decisions
block routing paths to functions that must communicate.

Note: It is standard to use the Run all until first
success option in the MACH fitting options menu. This
option prompts the compiler to try various meaningful
combinations of the compilation flags until a first fit is
achieved. The descriptions below illustrate how the
flcm_s can be chosen manual~

For example, the need for internal connections in
control and singular functions is supported in this LSA
design by spreading out product terms as they are
placed on the chip. You can use the fitting options
below to allow room for internal local connections.

FITfING OPTIONS
When compiling

Expand small Pf spacing?

Select one combination

y

Array functions can be packed more densely because
they lack extensive interconnections. When you com­
pile array functions, you can disable product-term
expansion options using the options below.

FITfING OPflONS
When compiling

Expand small Pf spacing?
Expand all Pf spacing?

Select one combination

N
N

There is no permanent penalty if you disable expansion
options when compiling singular and control functions
or enable these options for array functions. You can
compile functions both ways to see which provides the
best fit. Using the initial design partition can usually
maximize the possibility of a fit. The logic impacts
which fitting options produce the best result.

MACH DESIGN CASEBOOK

25

Enable Gate Splitting

26

You can use gate splitting to improve non-optimal logic
assignments that can occur when the automatic
placement algorithm has inappropriate or inadequate
information. This results in logic groups not being
optimally placed; large blocks of logic may be placed in
areas of the chip that lack sufficient resources. Logic in
the corners of the chip can pose a problem.

Also, functions that require more product terms than a
MACH device provides within a group of adjacent
macrocells can be specified as a composite gate with
product terms split between macrocells in non-adjacent
locations.

To correct these kinds of problems, you enable gate­
splitting on the Logic Synthesis Options form, as
follows.

Use automatic gate splitting? Y Max=4

Intermediate logical functions are created as sets of
product terms with the maximum width specified, from
4, the default, to 16, then combined as a single output
function. Combining intermediate functions in this way
requires additional passes through the logic array so
the outputs can be used as inputs. Each additional
pass costs an additional propagation delay; wide
functions are supported but will be slower.

Gate splitting can be useful in state machines with
many conditions for next-state transitions. This
condition arises when there are many next states or
many variables in the state definition.

You can also use the Group command, discussed next,
to improve logic and pin assignments.

MACH DESIGN CASEBOOK

February 1991

Group Functions within a
Specific MACH Block

Non-optimal pin assignments can occur when
automatic resource allocation causes reduced logic
capacity due to wiring congestion. As a result, desired
pin-out paths, and paths to pins, may not be realizable.

To improve the logic assignments, you can use the
Group command to assign functions to particular blocks
in a MACH chip. You must use the appropriate
reserved word, MACH_SEG_b/ock, as a group name,
as shown beiow.10

GROUP MACH_SEG_A T[O] T[l] T[2]

Certain pins are associated with certain MACH logic
blocks. The objective is to place logic as close to the
desired pin as possible. You can achieve the objective
by moving logic to the block associated with the 1/0
pins you need.

Singular control-flow functions that appear as data-flow
nodes are the most likely candidates for grouping in a
specific MACH block. These functions have array
attributes, which make them large, and control
attributes, which cause lots of internal interconnections.
The latter indicates wiring considerations you may need
to improve.

Forcing the function into a certain block allows for better
wiring performance in other parts of the chip. This can
be useful in the control domain. In this design,
however, functions most likely to need this type of
tuning were separated. For example, singular control
functions were isolated from other control functions.
This LSA design does not include Group commands.

10 Refer to the PALASM 4 User's Manual, Chapter 10, for details about MACH_SEG_b/ock.

MACH DESIGN CASEBOOK

February 1991 27

3 LSASYSTEM
ARCHITECTURE

You start the design process with a preliminary system
architecture for a logic state analyzer, like the one
shown next. This architecture incorporates the
minimum requisites of pattern detection and the user
interface in the context of a system under test.

You mentally simulate its operation to ensure all the
major functions are accounted for before you convert it
to a data flow.

-----------------------i~9ic:-'i\~~;y;~;-s;,~i~;;,----------------------------,

Digital
System

' I .
I

Signal
Sampler

Pattern
Filter

Sample
Storage

Control
Logic

User
Controls

Sample
Display

•--

Block Diagram: Preliminary System Architecture

28

For example, the LSA user must specify, on a front
panel, the operating mode and identify which patterns
to look for. The LSA's run mode implies a supervisory
state machine, which enables the two major state
machines in the control-logic block: trigger checking
and data collection. During trigger checking, the
analyzer checks for signal patterns that indicate the
start of the specified test phase. When the patterns
occur and the Run button is pressed, data collection
begins.

MACH DESIGN CASEBOOK

February 1991

3.1 DERIVING THE
LSA ARCHITECTURE

February 1991

The sample board layout and the system block
diagram, in discussion 1, show an optimized LSA
implementation that results when you apply the seven­
level design process, in discussion 2, to a system
architecture description. When you start a design, you
do not always know the final data-flow logic to convert
to MACH chips. Even when you have a complete data
flow, it may not be optimally configured for the best
MACH implementation. The following discussion
begins the LSA design by deriving the system
architecture, which allows the seven-level process to
proceed in a top-down fashion.

If you look at the functional requirements of the design
shown in the previous figure, you begin to see how they
determine the overall system architecture. Two major
design requirements come to mind.

High-speed sampling

Pattern detection

The sample rate cannot appear on a block diagram, so
you leave this aspect until the implementation phase.
Pattern detection then becomes the most salient
architectural feature. It's best to consider functional
requirements in the context of normal use when
describing the system's architecture.

You begin deriving the architecture by specifying the
operating modes and the patterns to look for; these are
defined via the front panel by the user. The user
interface is the last piece of system architecture. For
this, you need two blocks.

A user input block

A user feedback display block

MACH DESIGN CASEBOOK

29

3.1 .1 LSA Functions
and Flow

30

During data collection, input-sample data must be
checked to isolate the occurrence of all trigger patterns.
The LSA design in this study allows for multiple triggers
rather than just one. The architecture of this design
allows data to flow from the signal sampler to the
pattern filter, which inhibits data storage until all triggers
are detected. Data in the sample-storage area are
passed to the sample display and presented to the
user. However, this scenario accounts only for samples
collected at regular intervals. Data changes between
clock edges are called glitches. The following occurs
between clock intervals.

If the data changes and remains changed, the
sample clock strobes changed data on the next
pass.

If the data changes and doesn't remain changed,
the sample clock does not record a change.

The second condition is a glitch. You provide a path for
glitches either by adding a new output from the sample­
storage box or by adding a new box to the system flow.
The LSA design in this study includes a glitch-detection
box to remind you the logic in the sample-storage box is
only valid on the clock edges. The glitch-detection box
must be active throughout the trace and trigger session.

Presenting data to the user is also a requirement
determined by the mental simulation of data flow and
operation. The most convenient way to accommodate
the conversion from hardware data samples to human­
readable data is to use some form of computer.

Either a microprocessor that's built into the LSA

Or a computer system with the LSA built in

In either case, the computer system is called the host
system, since it embodies higher-level functions than
the LSA. Adding this host system interface opens the

MACH DESIGN CASEBOOK

February 1991

possibility of LSA self-tests implemented as programs
in the computer.

The mental simulation results in an improved high-level
LSA architecture that includes both glitch detection and
a host interface that enables testability, as shown next.

:- --- --- --- --- --- --- --- --i.~gi~-x;~F;;~;5;~i~;,;-- --- --- --- --- --- --- --- -- --
I
I

Digital
System

I
I . .
I

Sample
Storage ---·ijJIJIJ!Jli~~s:; ----

111111111111111111111111---' llllJllllllllf-111111111

Can be
Built in
MACH

:::t:Jfi1iiMt::f:::
Controls

Improved LSA System Architecture Flow with Glitch Detection and Host Interface

3.1.2 MACH vs Non·
MACH Devices

February 1991

Any function comprised of combinatorial or sequential
logic is a candidate for implementation in a MACH
device. The shaded blocks in the previous figure indi­
cate the relative amounts of function types you can
implement in a MACH-device; complete shading indi­
cates all functions of that type can be implemented in
MACH. The only digital function you should not imple­
ment in a MACH device is sample storage.

MACH DESIGN CASEBOOK

31

32

Note: Regardless of the technology, programmable
chips are not efficient for large memories, which is why
RAM ch!Q_s are used with all technolo_g!es.

MACH devices are intended for digital subsystems; no
analog functions, such as oscillators and so forth, can
be realized. This design does not require any obvious
analog functions; however, it does require several
subtle analog functions, which are implemented using
non-PLO devices.

Single shots for strobing keyboard data are an
example of a subtle analog function in this
design.

Schmitt triggers for input lines are examples of
near analog functions in this design.

Speed may be considered a limiting factor when you
implement timing-critical functions, such as triggering.
However, at this point, it is not clear the control logic will
be the limiting factor in this design. The fastest parts of
the logic are the sample and storage cycles. Since fast
RAM chips have access times on the order of 35 ns,
the 15 ns propagation delay in the MACH device may
not be the most critical path. Should control logic prove
to be the limiting factor, a parallel-architecture tech­
nique can be used. The design must be refined more
before the critical paths can be determined.

MACH DESIGN CASEBOOK

February 1991

3.2 EXPANDING TO
LSA DATA FLOW

Input Channel

You can convert the LSA's system-level architecture to
a preliminary system data flow by increasing the detail
for required functions. To do this, you create a
functional block diagram to define the data-flow require­
ments of system functions without necessarily matching
the final interconnection of logic elements, as shown
next.

Host Interface

sample[0 .. 15]

Trace Memory Display Interface

_data[0 .. 15]

trace[0 .. 15]

Compare Memory

Glitch Memory

glit[0 .. 15]

User Panel
Trigger Detection

hit[0 .. 15]

External Input Control

LSA System Data Flow

MACH DESIGN CASEBOOK

February 1991 33

3.2.1 Testability

The LSA system flow not only expands the data flows
from the previous block diagram, it includes functionality
not readily apparent at the higher level. The most
important new feature is built-in testability.

In keeping with good design practice, all major func­
tions in this LSA are accessible from the host port.
From a manufacturing standpoint, testability is designed
in. The host port 11 allows writing data to specific parts
of the system and reading the data back again. Any
differences immediately indicate data-flow problems.
This is especially true for the memories where a stuck
bit would cause false readings for the system under
test.

Note: The host interface also accesses the control
logic, which means system manufacturing tests can be
optimized to verify functional operation by loading
specific states into the control registers. The benefit to
the manufacturing process is shorter test suites for
system validation and faster reduction of problem­
cause sets to a sinJI!e area of causali!Y:

The consideration of manufacturing testability adds the
option of increased product reliability. You could add
an on-board microprocessor to interface with the host
port for self-test compatibility. However, this LSA
design does not include that particular microprocessor
enhancement.

Observability from the host port is not universal; for
example, the glitch-detection memory cannot be
accessed from the host port. The LSA's functional
architecture does not readily lend itself to embedding
that particular data path in required data flows. How-

11 This optional interface is not discussed here in detail.

MACH DESIGN CASEBOOK

34 February 1991

3.2.2 Trace,
Trigger, and User·
Interface Control

3.2.3 Data Display
and Data Processing

ever, once the design is completed, observability won't
be a problem. At this point in the design cycle, you
merely note testability would be enhanced if the glitch­
detection memory were accessible for electronic
testing.

The LSA system flow shows a second trace memory
that expands functional options to include the following.

Comparison of traces taken at different times

Comparison of live traces against stored traces,
called signatures, which enter via the host port

External-timing signals consist of the clocks and trigger
signals that enter the system via the external timing
port.

The user panel includes a keyboard interface and an
array of segmented alphanumerics to display feedback
to the user. This design includes an optional keyboard
scanner.12

Some modes of LSA operation show samples as timing
diagrams while others require the data be interpreted
and shown as microprocessor instructions or hexadeci­
mal digits. The conversion of data for presentation is
not a real-time requirement. Data processing can be
done very well by a microprocessor. The architecture
of this design accounts for data processing through the
host interface.

12 See Appendix A for a list of all optional files provided for this LSA design.

MACH DESIGN CASEBOOK

February 1991 35

3.3 DEFINING LSA
ARCHITECTURAL
PRIMITIVES

At this point, you begin to identify the functional
primitives you need to create the individual bit slices of
data flow and control. You'll use these repeatedly to
create the overall LSA system. You can start with an
analysis of the logic under test.

Designers create digital systems from combinations of
logic levels and logic changes, and encode the required
function in these combinations. This LSA must detect
the sequences of combinations thereby decoding the
logic functions. The architectural primitives needed for
this LSA decode the following.

Logic true signals with a value of 1

Logic false signals with a value of O
Rising edges where O becomes 1
Falling edges where 1 becomes O
Pulses, momentary changes in level

Once the primitives are identified you can implement
each functional unit.

In some cases, you'll create schematics using
macros from the AM D-supplied MACH library.13

In other cases, you'll use Boolean or state­
machine syntax.

After you implement these primitives, you'll have an
architecturally-unique set of integrated functions that
provides the core you need to build the major blocks in
the LSA's logic flow. These unique aspects of the
design are as important to the efficient implementation
of your architecture as the basic logic primitives, such
as AND, OR, etc., in the MACH chip are to efficient
logic implementation at the function level.

13 Refer to the PALASM 4 User's Manual, Chapters 7 and 8, for details about the library.

MACH DESIGN CASEBOOK

36 February 1991

RESE1\

Rising-Edge Detector

RESE1\

Falling-Edge Detector

February 1991

The logic-true and logic-false signals can be detected
using schematic-based AND gates and inverters. The
following figures show the other architectural primitives
required for this LSA. To implement the control logic,
you just combine these primitives.

The next figure shows one slice of a rising-edge
detector.

Rise

The figure below shows one slice of the falling-edge
detector circuit.

Fall

The figures above illustrate a unique aspect of the
MACH architecture. Signal A should arrive at the two­
input gate slightly ahead of its inversion. In standard
logic design, the presence of the inverters and the

MACH DESIGN CASEBOOK

37

3.3.1 Performance
Calculation

38

buffer would ensure signal A precedes its inversion. In
MACH-device designs, all combinatorial logic is auto­
matically converted to two-level logic during compil­
ation; the standard implementation would not result in a
relative delay between signal A and its inversion.

Important: To ensure the appropriate delay, you
must add a NODE macro between signal A and the
gate as shown on the falling-edge detector, block N,
and discussed further under 5.1.2.

The architectural primitive for the glitch-detector circuit
is shown next. A glitch is detected if a rising edge and
a falling edge both occur between clock edges.

Rise

Glitch

Fall

Glitch Detector

Each MACH report provides propagation-delay
statistics for the specified chip, which identify the
minimum and maximum delays for signal paths for both
pure combinatorial paths and for latched paths.
However, there may be times when you need to
calculate timing for specific portions of the logic.

The following discussions explain how to make your
own timing calculations. The key to understanding
these calculations is to realize MACH-logic timing is
specified in units of propagation delay through the
combinatorial array; the array itself corresponds to two
levels of logic.

MACH DESIGN CASEBOOK

February 1991

Edge Performance

RESE1\

SIG

February 1991

The following figure shows a portion of the edge­
detection logic. Gates 01 and A2 form a latch that
indicates the detection of an edge. The latch only
stores data if the output of A 1 remains true long enough
for the true value to propagate through 01 and A2, then
back to the lower input of 01. If A1 goes false after­
ward, the true value from A2 is maintained by the true
value feeding back to 01. The time for the latch condi­
tion to become self-sustaining is called hold time in
digital circuit specification sheets. !n this design, it's
t_LATCH.

No Fall
Node

03

Since 11 and A1 present the input to 01, this portion of
logic must hold a true level for a period of time equal to
t_LATCH. Any signal held for a lesser interval is not
detected. The requirements for the minimum detect­
able signal can be expressed using the next equation.

t_LATCH = t_pd(Ol) + t_pd(A2)

The hold-time requirement gives an additional equation,
shown below.

t_h =tAl=t_pd(ll)

MACH DESIGN CASEBOOK

39

Glitch Performance

40

The minimum hold time is equal to the latch time
expressed in the following equation.

t_h = t_LA TCH
t_h = t_pd(Ol) + t_pd(A2)

t_h consists of two levels of logic, which are equivalent
to one MACH combinatorial delay, t_pd, shown next.

t_h = 1 t_pd

The calculated hold time could be a maximum of 15 ns
to 20 ns, depending on the chip you select. However,
in practice, the actual delay depends upon the charac­
teristic delay of the chip you select. So you can expect
to capture events much shorter than the maximum
delay characteristic of MACH devices. The best you
can expect is the minimum Tpd for the MACH device.

Calculating the time required to detect a glitch follows
the same approach as calculating edge performance;
the same principle of grouping levels of logic in pairs
applies. However, the glitch-detection circuitry is a little
more complex. The next figure shows glitch-detection
logic.

A glitch is detected in any sample interval that includes
at least one rising edge and one falling edge. Gate A5
implements the AND condition, which detects the
coincidence of both edge types.

Counting from input to output, there are six levels of
logic. This would lead you to suspect three propagation
delays are required for glitch detection. However, a
glitch event occurs when the last edge event becomes
true. Edge events appear at the input to A5. The
previous discussion shows t_EDGE = t_h =1 t_pd. The
additional delay from the input of A5 to the output of 03
corresponds to two levels of logic, or 1 t_pd. Glitch
detection time, t_ GLITCH, is the sum of these two
expressed in equation form as follows.

MACH DESIGN CASEBOOK

February 1991

RESE1\

SIG

N
No Fall
Node

RESE1\

SIG

t_GLITCH = t_EDGE + t_pd(03)
=t_two-level + t_two-level
=t_pd+ t_pd
=2t_pd

As was the case for the former analysis, you can expect
better performance than the maximum propagation
delay for the selected MACH device. The glitch calcu­
lation just performed allows you to check performance
for a specific portion of your logic. Since, in this case, it
also corresponds to a complete path through the chip,
its delay should be less than or equal to the delay you
find in the MACH report. A review of the MACH report
for the file named l_PPNB shows the maximum delay
for the chip is 2 Tpd, which agrees with this calculation.

AS

---------tEDGE-------~-t1WO-LEVEL-~

MACH DESIGN CASEBOOK

February 1991 41

4 LSASYSTEM You now divide the high-level data-flow arrays and
singular features into pieces suitable for a MACH
device. To ensure the pieces you select will fit in a
single device, adhere to the left side of the process flow
shown next. This discussion highlights the process for
data flows by applying it to selected portions of the
LSA.14 You'll repeat these basic techniques to imple­
ment features in the data-flow domain.

DESIGN, DATA
FLOW

7

6

4

3

2

System
Architecture

Analysis

Control-Flow
Analysis

• Singular
Function

Identification

Array
Function

Identification

Function
Decomposition

·.·:·:·'.·'.·>:·:-:-;.;. :'.:'.:'.::::::::::::<·:::::::::::::::::::::::::::::::::::::;: '.·:·>>'.·>'.·'.·'.'.·'.·'.<·:.:-:-:-:-:.:-:-: .·'.·'.·'.·'.::;:;:;:;:::::::::::: :::::::::::::::: ,·'.;>'.;'.;'.;'.;'.;'.;'.:;::::::;:-:-:-:····· .·:-:-:.:.: ·.·.·.;.:.:;:··-·.·.····

•:.:.:.•.•.:.1.•.1.:.1.:.1.:.1.:.1.:.1.:.1.•.i : = •·:!mP.t.~m~ar~iv·•@r:~iiffiiitirqii9.'.iim~1•;'!n·q••• .=.:.:.:.1.:.1.:.1.:.1.: .•• ·.=.••· .• ·.•.•=.••.••.••.••.••.i.i.: ::::::::::::::::::::: ·.·· -:-:.:-;.:-:-:::.::::: ::::::;:::;:;:;:: ;:;:;:;:;:;:::::::::::::::;:;:;:;:: ;:;:;:::;::::::::::::·=·: ·.

Pin Assignment
Tuning

Logic Assignment
Tuning

Path Assignment
Tuning

Design Process: Data-Flow Domain

14 Refer to Appendix A for a description of all text and schematic-based files for the complete LSA.

MACH DESIGN CASEBOOK

42 February 1991

4.1 ARRAY
FEATURES

It's fairly easy to identify and isolate an example of an
array structure in this LSA's data-flow domain. Just
locate a part of the flow that either stores or transfers
data and has more than one bit of information. One
example is the input channel to the system, which is
indicated by the shaded box in the following figure .

Host Interface •.. ; --~.
....___ _____ __.

sample[0 .. 15]

Trace Memory

g_data[0 .. 15)

trace[0 .. 15)

Compare Memory

Glitch Memory

glit[0 .. 15)

User Panel

hit[0 .. 15]

External Input Control

Input on LSA System Flow

MACH DESIGN CASEBOOK

February 1991 43

rdat[O .. 15]
[.>--

~ ir_nc ~
" - NC
~

data elk "

~
~
" ~

The register in the input channel samples the input-data
line whenever it's clocked. It's important to check setup
and hold times. These parameters must be observed if
the sample is to match the input.

However, what happens if the data changes as the
clock collects a sample? You can't tell. The data may
be collected correctly or it may not. Sometimes, the
collected data bounces around before settling down to
a final logic state. You live with this condition and give
the signal time to settle down by using two registers in
series, as shown next.

sample[O 15] ..

iT
~

iT ~
JI

D7 Q7 07 Q7
oc ,----<j oc
CLK CLK
74374 74374

i 1° iT
~
~

D7 Q7 07 Q7
oc t------q oc
CLK CLK

Schematic-Based Implementation of a Sample Register Array Feature

44

The input-channel implementation shown above
includes two registers in series. The second register
only loads stable signals to isolate the state machines
from bouncing signals. You could implement these
functions as a schematic-based design using the AMD-

MACH DESIGN CASEBOOK

February 1991

15

16

supplied TTL-type registers in the MACH 74xx library
for OrCAD/SDT 111.15

As you begin a schematic-based design, you must
specify a device type in the schematic control file.
Though you can easily change the specified device in
the schematic control file, you must specify one initially.

At first, the MACH 21 O looks like the best choice
because it has more storage elements, which this regis­
ter set uses in pairs. The advantage of the MACH 210
is its dedicated buried registers: the storage elements
that do not use 1/0 pins. In this case, however, every
input bit is paired with an output bit and you need the
pins for the function. You don't gain anything by using
buried registers in this pure data-flow application.

Upon further investigation, the MACH 110, at the
fastest speed possible, becomes the best choice.
Speed is a global constraint and is not determined by
this single element.

The 74374 octal-register set is suitable for input and
output requirements. The extra logic at the output of
the first register could be cause for concern. Since both
registers are on the same chip, there is no reason for
the output buffers normally found on a TTL 74374.

Note: During compilation you can have small amounts
of unused logic removed from a design automatically by
tying the unused I/Os to a MACH NC macro.16 This
can ease concerns about an additional propagation
del<!Y_ and use of additional chiQ_ resources.

Refer to the PALASM 4 User's Manual for details: Chapter 3 is a schematic design-entry tutorial,
Chapters 7 and 8 describe the library, and Chapter 9 describes all commands, options, and forms.

Refer to the PALASM 4 User's Manual, Chapter 7, for details about the NC macro.

MACH DESIGN CASEBOOK

February 1991 45

4.2 SINGULAR
FEATURES

46

An alternative to using the TTL 74374 would be to use
the TTL 74273 macro, which does not have output
buffers. This approach does not require the NC macro
to disable the output-enable, because the 74273 does
not have an output-enable terminal. The TTL 74273
has an active-low CLR terminal, which can be tied to
ground if you select that option. At this stage, it is
sufficient to know that the function can fit on the chip
without a major shortage of pins.

You can compile this function immediately and confirm
the fit on a single MACH chip. At this stage, you use
default logic-synthesis and MACH-fitting options to get
a first-order estimate of required resources. The MACH
report indicates the amount of device resources
required for the bit slice so you can calculate how many
bit slices will fit on a single chip.

Toward the end of the implementation phase, you'll
place several bit slices together in one schematic
design and compile them to see if the logic fits in a
single MACH chip. At that time, specific fitting options
can enhance the results. Using 32 of the 38 pin outs,
you should be able to fit 16 bits of double registers in a
single MACH 11 O device. This leaves six I/Os for any
isolated state-machine or data-flow bit slices.

Next you look for singular data-flow features. These
isolated pieces of data-flow logic can fit on array-based
chips that do not require all device resources for the
array. The external-timing signal logic, indicated by the
shaded block in the next figure, is just such a case.

These signals enter the system and are not trans­
formed as they traverse the data flow. This condition
matches the definition of data flow exactly, although the
signals are used in the control logic.

MACH DESIGN CASEBOOK

February 1991

Input Channel Host Interface

sample[0 .. 15]

Trace Memory

_data[0 .. 15]

trace[0 .. 15]

Compare Memory

Glitch Memory

glit[0 .. 15]

User Panel

hit[0 .. 15]

Control

External Timing Block on LSA System Flow

February 1991

As with most data-flow implementations, you begin this
bit-slice design using a schematic-based input format
because it's easier to place and name gates than to
track equations for data-flow design elements. Another
advantage of schematic entry for data-flow input is the
ability to work on several pieces simultaneously, without
losing track of where in the design you are or inadver-

MACH DESIGN CASEBOOK

47

en ext

e xckl
ext ckl

e ck2
ext ck2

e xtri 1
ext_tri 1

ext_trig2
e_xtri 2

tently leaving out signals. The implementation of a
singular data-flow slice, the external-timing block,
appears next.

ext tim

xckl

xck2

xtri 1

xtri 2

Schematic-Based External-Timing Singular Data Flow

17

48

Again, you must decide which device to use. The
MACH 11 o is chosen because this small piece of sin­
gular logic does not require its own chip. After entry,
you compile this singular feature using standard logic­
synthesis and MACH-fitting options, then review the
MACH report to determine the percentage of chip
resources needed by this feature You then set this
design aside until you find a chip with the appropriate
percentage of space left. If you are using a MACH 21 O
device, you find a chip with about half the percentage of
resources left.

The rest of the data-flow domain is implemented in the
same manner.17

Appendix A lists the schematic file names so you can print them for review or use them.

MACH DESIGN CASEBOOK

February 1991

5 LSASYSTEM
DESIGN,
CONTROL LOGIC

7

6
Data-Flow
Analysis

To develop the LSA's control logic, you separate the
singular functions and arrays for that part of the design.
This time, you use the right side of the design-process
flow as a guide.

System
Architecture

Analysis

5

Singular
Feature

Identification

Array
Feature

Identification - ~rr.~Mnr
lfi#'@@@?•

ltll#lrftf#.~i@ii

4

3

2

1

Feature
Decomposition

Pin Assignment
Tuning

Design Process, Control-Flow Domain

February 1991

Logic Assignment
Tuning

Path Assignment
Tuning

During the identification and decomposition processes,
you develop a tree for each function; the leaves identify
specific functions and subfunctions. The goal is to
ensure each identified function can fit on a single
MACH chip so you can make partitioning decisions
quickly.

MACH DESIGN CASEBOOK

49

18

50

If the control-flow domain were implemented in a single
PDS file, all states for the supervisory and subsidiary
machines would be implemented as a single set of
states. This may be a good strategy to minimize logic;
however, an important design consideration is how to
keep state definitions separate so you can observe the
behavior of the logic during manufacturing or field­
debugging.

To keep state definitions separate, you must implement
the supervisory and subsidiary state machines as
individual PDS files. Then you use the Merge design
files command on the PALASM File menu to combine
several state-machine designs together for implementa­
tion on a single MACH chip without blending the states.

Details in following discussions cover only the LSA
supervisory state machine and one subsidiary state
machine; 18 you repeat the basic techniques to imple­
ment all blocks in the control-flow domain. Each block
discussed next is initially implemented as a separate
PDS file using PALASM state-machine syntax.

Refer to Appendix A for details about all files required for the LSA implementation.

MACH DESIGN CASEBOOK

February 1991

5.1 SINGULAR
CONTROL STATE
MACHINES

Input Channel

User Panel

External Input

in

Control Block, LSA System Flow

February 1991

To identify the state machines required for this LSA,
you consider the sequences of data flow that occur
when the machine is operating. For example, the two
primary activity sequences, triggering and tracing, help
you identify the fundamental state machine. These
functions are located in the shaded control block in the
following LSA system-flow diagram.

Host Interface

sample[0 .. 15)

Trace Memory Display Interface

g_data[0 .. 15)

trace[0 .. 15)

Compare Memory

Glitch Memory

glit[0 .. 15)

Trigger Detection

hit[0 .. 15)

MACH DESIGN CASEBOOK

51

5.1 .1 Trigger
Detection and Trace
Control

52

A generalized diagram of the types of actions the LSA
control logic should manage is shown next as a state­
machine flow diagram.

The top-level block, Traced Trigger Control, represents
the supervisory state machine. Secondary blocks rep­
resent the beginning of the four operational modes
shown as vertical columns.

Trace During Detect

Trace Up to Detect

Trace After Detect
Trace Between Detect

For this design, every node of the supervisory state
machine is a separate subsidiary state machine. The
supervisory state machine is started by the user; sub­
sidiary machines are started by the supervisory
machine when they are needed.

MACH DESIGN CASEBOOK

February 1991

"'Tl
<D
O"
2
OJ

-<
c:o
c:o

en
c.>

~
~
~
15
<:
~
(/)

HJ
0

~

-I

!1
<.B"
<C
<D
()
0
::i

a
"'Tl

~I

raw During
Detect

I Trigger
Detection I

-.,Hit

Hit

•Hit II Final_ Cnt II
New_ Trigger

Traced
Trigger
Control

I Trace
Up to
Detect

I Trigger I
Detection

Wait
for I \•Hit
Hit

Hit II Final_ Cnt

Clear
State

I Trace
After
Detect

I Trigger
Detection

•Hit

•Final_ Cnt &
•New_ Trigger

Final_Cnt II
New_ Trigger

Trace
Between
Detect

(
Trigger

Detection

Wait
for
Hit

I Start
Trace

(
Trigger

Detection
~ d I

Wait
for
Hit

•Hit

•Hit &
•Final_ Cnt &
•New_ Trigger

Hit II Final_Cnt II
New_ Trigger

Clear
State

54

Each operational mode includes several subsidiary
states. To confirm this, you can look at the first node in
the third column of the previous figure, then look at the
expanded view of one of the nodes in the following
figure.

New_ Trigger

Trigger
Detection

Load
Trigger

Check
for

Trace

---, Hit

1 New_ Trigger

Trigger Detection Sequence

ACK

Clear
State

First, a trigger pattern is loaded, then a wait state is
invoked during which one of two things happens.

MACH DESIGN CASEBOOK

February 1991

February 1991

The wait continues if the patterns do not agree.

A hit occurs and the next state is invoked if the
patterns agree.

A new trigger is loaded after each hit and the load and
wait sequence repeats. When all triggers have been
matched and there are no new triggers, the acknowled­
gment signal is sent and the sample patterns are stored
in the trace memory for display.

This machine does not control the trace; the supervi­
sory machine does. The supervisory machine starts
the trace state machine when acknowledgement is
received from this machine. Trigger detection ends
with the subsidiary machine's local Clear State.

During the trace-control process, successive input
samples are loaded into the trace memory. This occurs
until either the memory is full or some other terminal
condition occurs, such as the final count for timing
offset from the trigger, which also requires a state
machine.

If you return to the entire traced-trigger control flow for
the supervisory state machine, you'll see the subsidiary
states represented by individual nodes on the figure are
similar for each operation; many are repeated. For
example, Trigger Detection initiates each operation,
which explains why the Trigger Detection node appears
at the beginning of each vertical column on the figure.

Each node consists of several states. This means you
can decompose the supervisory state machine into
submachines that influence special subfunctions only.
This approach simplifies the LSA's control-logic
synthesis and involves fewer states per machine. It
also simplifies the manufacturing and debug process
because specific failures can be associated with
specific parts of the design.

MACH DESIGN CASEBOOK

55

5.1.2 State-
Machine Assignment

56

Translating the supervisory flow diagram into actual
state machines involves assigning binary codes to each
node on the diagram and converting state assignments
to PALASM language syntax. Particular state assign­
ments are not critical when you use clocked logic,
provided you use a clock pulse long enough to allow
the next-state's decode logic to settle down.

If you decode the states to create output controls, the
decodes are subject to the transient values assumed by
the state variables.

Tip: When you do not assign adjacent states, ensure
that the output variables, decoded from state variables,
are also clocked. You will then avoid unwanted output
results durin_g_ state chaQQ.es.

In some cases, fewer flip-flops are required if you do
not make all next states adjacent. However, in other
cases, designing sequential logic from gates rather than
flip-flops can result in logic with a faster response time.

This LSA design uses the clocked flip-flop approach.
The following discussions focus on only two state
machines for the LSA because they embody the major
control-flow functions.

Traced trigger control is the supervisory
machine.

Trigger Detection is the first subsidiary machine.

All other nodes can be implemented using the tech­
niques discussed next.

MACH DESIGN CASEBOOK

February 1991

Partitioning and
Implementation

User Panel

External Input

Trigger Data Path

February 1991

The next two figures review the data flows the
supervisory and first subsidiary state machines will
control. Decodes on the states generate signals to
control the paths. The path for the input trigger­
detector control is highlighted in the following figure.

Host Interface

sample[0 .. 15]

Trace Memory

_data[0 .. 15]

trace[0 .. 15]

Compare Memory

Glitch Memory

....,m.....,......,....., ... ~.=::::;iglit[0 .. 151

hit 0 .. 15

MACH DESIGN CASEBOOK

57

The following figure highlights the path for the trace
data.

-~·!=· :::;:: ... ::;. :::!-~
.__ ______ __,

Host Interface

User Panel

External Input

Trace Data Path

58

sample[0 .. 15]

..._ _ _. Display Interface

g_data[0 .. 15]

trace[0 .. 15]

Compare Memory

Glitch Memory

glit[0 .. 15]

hit[0 . .15)

Control

MACH devices have many flip-flops; you don't have to
use valuable combinatorial logic to implement them. In
fact, if you use transition equations you don't even have
to assign states; you just name each state and specify

MACH DESIGN CASEBOOK

February 1991

Relating Supervisory and
Subsidiary State
Machines

February 1991

how to change from one state to the other. During
compilation, the state values are assigned automatically
and recorded in a table in the execution-log file so you
can review them.

Note: For this design, specific states were assigned to
retain separate state machines inside the MACH 210
chi after mer in multi le PDS files to ether.

As you begin partitioning, you note the maximum length
of any path in the supervisory flow is six nodes. You
could use three flip-flops for this number of states; how­
ever, four flip-flops allow for additional states you may
need in other operations.

Since each node is a subsidiary state machine, you can
decode the value of the supervisory state machine to
activate the subsidiary machine. This strategy ties the
supervisory machine to subsidiary machines. Two flip­
flops are assigned to the subsidiary trigger-loading
machine, which has three states.

A text-based state-machine design that describes the
supervisory state machine is discussed, and shown in
part, next. You can print the following file for review or
use the file at the workstation.

PALASM\EXAMPLES\CB\SAMPLES\LA_KMAIN.PDS

The first thing you do in any sequential design is ensure
it starts in the correct state. For this design, starting
with all flip-flops cleared to zero is enough, which is
facilitated using the statement below.

NODE 1 POR_INIT

Node 1 in a MACH device is a special buried node you
use to initialize the storage elements. If you allocate
Node 1 in the pin declarations, you can reset it in the
equations segment to clear the entire chip.

MACH DESIGN CASEBOOK

59

CHIP LA_KMAIN MACH 110

;---------------------------------PIN Declarations-------------------------------

PIN ? /POR COMBINATORIAL ; Power On Reset

NODE 1 POR_INIT

PIN35 CLKl

PIN ?MSW[O]

NODE ? K[0 . .3]

NODE? K_C0[0 .. 1]

NODE?K_Cl

REGISTERED

REGISTERED

REGISTERED

REGISTERED

;STRING DECLARATIONS.

STRING GL '(MWS[O])'

STRING S_KO '/K[3]*/K[2]*/K[l]*/K[O]'

STRING S_TDD '/TRl * ffRO'

; Default Clock on pin 3

;Main Control State Bits

; --Equations---------------------------

EQUATIONS

POR_INIT .RSTF = POR

STATE

M_KO = /K[3]*/K[2]*/K[l]*/K[O] ;Main Control State Definition

MOORE_MACHINE ;Main Trace Control State Machine

M_KO :=TDD-> M_Kl

+TTD->M_Kl

+TAD->M_Kl

+TBD->M_Kl

+->M_KO;

;--Conditions--------------------------

CONDITIONS

TDD= {fRl *ffRO*RUN*/POR

TTD = !fRl * TRO*RUN*/POR

;Operational Mode Bits

Supervisory State Machine, Partial Description

MACH DESIGN CASEBOOK

60 February 1991

States and Changes,
Strings and State
Definitions

February 1991

A partial listing of the first subsidiary machine is shown
next. Again, you can print the following file for review or
use it at the workstation.

PALASM\EXAMPLES\CB\SAMPLES\LA_ CO.PDS

The line below appears in the state segments of both
files to clear the entire chip.

POR_INIT.RSTF = POR

This LSA design uses POR, or Power On Reset, to
reset the system when power is first applied. It could
just as easily be a system reset or any legal name you
choose.

The states in this design are defined twice: once in the
string declarations and again in the state segment. You
use the string definitions in logic or condition equations.
State declarations are used by the transition equations
in the state segment of the PDS file. Strings can only
appear on the right side of an equation; state definitions
can appear only on the left side of an equation.

You define actual changes from one state to another
using transition equations in the state segment of the
PDS file. This is where you list the states and condi­
tions that cause changes to subsequent states.

All state definitions in this LSA design are
preceded by M_, which allows you to identify the
use of the variable in the design.

M_KO = /K[3]*/K[2]*/K[l]*/K[O] ;Main Control State

The same names are used in the string defini­
tions in this design, however, the prefix in this
case is s_.

STRING S_KO '/K[3]*/K[2]*/K[l]*/K[O]' ;MCS Bits

MACH DESIGN CASEBOOK

61

CHIP _LA_CO MACH 110

;---------------------------------PIN Declarations-------------------------------

PIN ? /POR COMBINATORIAL ; Power On Reset

NODE 1 POR_INIT

PIN35 CLKl

PIN?K_CLK COMBINATORIAL

PIN?KO REGISTERED

PIN?Kl REGISTERED
PIN? K2 REGISTERED

PIN?K3 REGISTERED

PIN? MSW[l] REGISTERED

PIN? MSW[2] REGISTERED

PIN ?MSW[3] REGISTERED

PIN? MSW[4] REGISTERED

;STRING DECLARATIONS

STRING S_KO '/POR*RUN*/K3*/K2*/Kl*/KO'

STRING S_Kl '/POR*RUN*/K3*/K2*/Kl* KO'

; Default Clock on pin 35

;Main Control State Bits

; --Equations---------------------------

EQU A TIO NS

--------------------Initialization

POR_INIT .RSTF = POR

STATE

MEALY_MACHINE

; Machine CO

M_CO_O = /K_CO_l */K_CO_O

M_CO_O := TR_RD -> M_CO_l

+->M_CO_O;

;Main Trace Control State Machine

;CO Control State Definition

M_CO_O.OUTF = /AM_G_CS*/AM_G_OE*/AM_G_ WE*/AM_G_ADDR_CK

/PM_G_CS/PM_G_OE*/PM_G_ WE*/PM_G_ADDR_CK

;--Conditions--------------------------

CONDITIONS

NULL_TR = /POR*/HIT*S_LSA

Subsidiary State Machine, Partial Description

MACH DESIGN CASEBOOK

62 February 1991

Buried Registers

February 1991

By using string and state definitions, you can keep the
state-machine definition and state-value definition
separate. If you have to add more states, you just
change the string and state definitions; in this case, you
simply change variables beginning with S_ and M_; the
types of equations listed below remain the same.

Transition equations in the state segment

Conditional equations in the state segment
following the condition keyword

Boolean equations in the equations segment,
which are based on the states

This strategy also applies if you can reduce variables
for greater density on the chip. If you implement the
control logic as multiple machines, only a few combina­
tions must be changed for any particular machine.

Allocation of storage for the state variables is a design
consideration you should not overlook. Each state
variable is declared as a node statement; this is how
you specify a buried register in a MACH device. Buried
registers do not have a direct connection to 1/0 pins.
Instead, they must be routed to 1/0 pins via other
macrocells with 1/0 connections.

Usually, the states in state machines must be decoded
to provide a control signal that typically leaves the chip.
Choosing a buried register for the state bits leaves a
layer of logic available to create the control signals
between the state machine and the 1/0 pin. Otherwise,
you'd have to use another pin to allow the control signal
to leave the chip.

The next figure shows details of state definitions for the
supervisory and subsidiary state machines, as defined
in the PDS file named LA_KMAIN.PDS.

MACH DESIGN CASEBOOK

63

Testing and Observability

64

The supervisory machine is identified using the
letter K as the first letter of the signal name.

The subsidiary machine is identified using the
letter K followed by an underscore, K_.

C# identifies which subsidiary machine corresponds to
the equations.

;LA_KMAIN

M_KO = /K3*/K2*/Kl */KO
M_Kl = */K3*/K2*/Kl *KO
M_K2 = /K3*/K2* Kl*/KO
M_K3 = /K3*/K2* Kl* KO
M_K4 = /K3* K2*/Kl */KO
M_K5 = /K3* K2*/Kl *KO
M_K6 = /K3* K2* Kl */KO
M_K7 = /K3* K2* Kl* KO
M K8 = K3*/K2*/Kl */KO

State Definitions for Supervisory State Machine

;LA_CO
M_CO_O = /K_CO_l */K_CO_O
M_CO_l = /K_CO_l * K_CO_O
M_C0_2 = K_CO_l */K_CO_O
M CO 3 = K CO 1 * K CO 0

State Definitions for Subsidiary State Machine

During LSA operations, it is important to know what the
state machine is doing so you can detect malfunctions.
All MACH devices can be placed in a test mode where
the internal states can be gated to the 1/0 pins for
observation. This option is only available to PLD
programmers.

MACH DESIGN CASEBOOK

February 1991

Floating and Fixed Pin
Locations

Merging Design Files

February 1991

To design the observability of internal states, you can
define a machine-state word connected to the 1/0 pins.
Each bit of the machine-state word for this LSA design,
MSW[O] through MSW[15], can be observed. These
high-level state indicators are allocated to 1/0 pins in
the declaration segments of the PDS files. One such
statement, from LA_CO.PDS, is shown below.

PIN? MSW[lO] REGISTERED

The question mark,?, in the location-number field of
certain pin and node statements specifies a floating pin
location.

PIN? /POR COMBINATORIAL

In this case, the signals are automatically assigned to
specific pins on the MACH device during compilation.
This strategy usually leads to a better use of chip
resources and the increased probability of a fit.

There are times, however, when you may want to
assign the signal to a specific pin number, as indicated
in the following clock-signal declaration.

PIN 35 CLKl COMBINATORIAL

After entering the supervisory state machine and one or
more subsidiary machines, you compile each to confirm
there are no syntax errors and to determine the
percentage of a single chip's resources required for
each. After you simulate each bit slice to determine it
operates as desired, you can merge two or more bit
slices into one design file for a single MACH chip.

Each design is automatically checked for syntax errors
when you initially get the file to merge. During this
check, state-machine syntax is converted to Boolean
equations.

MACH DESIGN CASEBOOK

65

Original

FILE1.PDS J
I

Compile
Simulate

\, Re-engineer

(FILE2.PDS J
I

Compile ' Simulate
Re-engineer

Iterative Merge Process

66

It's a good Idea to use an iterative approach that
includes creating interim files when you merge designs.
The approach illustrated next ensures the integrity of
converted state-machine designs before you merge
them into a single design file. In the long run, this
approach can save time you might otherwise spend
debugging the combined design.

Interim Final

Merge= FILE1.MRG
Compile/Simulate .. Merge= ALL.PDS

Re-engineer
r

+
Merge= FILE2.MRG' Compile ' Compile/Simulate Simulate

Re-engineer Re-engineer

The steps below produce the interim and final files.

1. Enter the original PDS file, compile, simulate,
and re-engineer as needed.

2. Initiate the merge process, name an interim file
where you'll store the single design slice, get the
design file, merge it into the interim file, and quit
the merge process.

MACH DESIGN CASEBOOK

February 1991

Recommendation: Compile and simulate 19
each interim file to ensure it operates as it did
before its conversion to Boolean equations; re­
el'lgineer each interim file if needed.

3. Initiate the merge process, again, and create the
final file for all state machines in a single MACH
chip, then get one interim file and merge it into
the final file.20

lmponant: Each time you merge an interim file
into the final file, quit the merge process and
recompile and resimulate the final design. This
ensures the addition did not adversely impact the
final combined des!g_n.

4. Repeat steps 1 through 3 for each bit slice until
the final file contains all slices for a single chip.

File Differences A partial listing of the final combined file for the
supervisory state and one subsidiary state appears
next. There is one major difference between this file
and the two original files: the state-machine definitions
now appear as Boolean equations for each state
variable, KO through K3. The combined file contains
Boolean descriptions beginning with KO :=. When
specified this way, subsequent compilation does not
combine equations.

19

20

Two things that may not be apparent are the
unchanged string definitions for states and conditions.
These definitions were removed during the merge

The simulation segment of each PDS file is removed during the merge process. Refer to the
Simulation for Interim and Combined Design discussion.

Refer to the Logic Assignment on a Single MACH Chip discussion.

MACH DESIGN CASEBOOK

February 1991 67

CHIP _LA_MERGE

process; copies from the original file were manually
placed in the combined file using a text editor. This
ensures that each stage of the multiple-machine
compilation sequence always refers to design variables
by the same name.

MACH 110

; ---------------------------------PIN Declarations-------------------------------

PIN? /POR COMBINATORIAL ; System On Reset

PIN? /PORl COMBINATORIAL ; Power On Reset

NODE 1 POR_INIT

PIN 35 CLKl COMBINATORIAL ; Default Clock on pin 3

PIN ?K_CLK COMBINATORIAL

PIN? MSW[O] REGISTERED

PIN ? MSW[l] REGISTERED

NODE ? KO REGISTERED

NODE ? Kl REGISTERED

;STRING DECLARATIONS.

STRING GL' (MWS[O])'

STRING DL' (MWS[l])'

;---Equations----------------------------

EQUATIONS

;------------------INITIALlZA TION

POR_INIT .RSTF=POR

;-----------------0 PERA TIO N

KO := /K3 */KO* ACK

+KO* /ACK

+ /K3 * /K2 * /Kl * /KO

Combined Design File

MACH DESIGN CASEBOOK

68 February 1991

Logic Assignment on a
Single MACH Chip

February 1991

During the merge process, the goal for logic assign­
ment is to determine how to combine individual designs
to maximize the functions on a single chip and to
reduce the overall number of chips. This is most
effective in data-flow design where you isolate bit slices
with the same topology and put them into a single chip
that will be used repeatedly.

In the control-logic domain, however, you have a much
lower probability of finding logic to be used repeatedly.
Consequently, the chief parameter of logic assignment
is the 1/0 count.

You look for functions on the basis of their 1/0 require­
ments and fit as many as possible in the space remain­
ing on a particular device. Variations on this theme
occur if the bit slices to be merged must communicate.
In this case, putting the logic on the same chip elimi­
nates the 1/0 pins required to effect the communication.
In general, it's enough to consider the inputs and
outputs for the control logic that direct a data flow,
which is the case for this design.

The key items that determine state change are the out­
puts required of the state machine and the inputs
received from other state machines. In most cases,
there are many more of these 1/0 variables than the
number of state variables in the control-logic implemen­
tation. This fact alone indicates the advantage of the
buried registers in MACH devices.

The state machine can be implemented from buried
registers without using an 1/0 pin. Both the MACH 11 O
and the MACH 210 support designs with buried reg­
isters. The MACH 11 O allows normal 1/0 registers to be
buried, which frees an 1/0 pin to be used for a signal
input instead of a state variable. The MACH 21 O has
dedicated buried registers in addition to the normal 1/0
registers.

MACH DESIGN CASEBOOK

69

***Timing Analysis for Signals

Parameter

TPD

Key:

Min

1
Max

2

The supervisory state machine and at least one
subsidiary state machine can fit on a single MACH chip
because of the 1/0 count and because you are using
just a few registers. You review the MACH report after
merging the two designs, LA_KMAIN and LA_CO, and
compiling the final design. The segments of the MACH
report, shown next, indicate the chip resources used by
the two state machines: only 36% of the pins and 24%
of the product terms are used.

Signal List (fhose having Max delay.)

DI_OUTO

Tpd - Combinatorial propagation delay, input to output

Tsu - Combinatorial setup delay before clock

Teo - Register thru oombinatorial logic to setup

Tcr - Register thru combinatorial logic to setup

All delay values are expressed in terms of array pac;ses

***Device Resource Checks

Available Used Remaining

Clocks: 2 0 2
Pins: 38 14 24 -> 36%
l/OMacro: 32 2 30
Total Macro: 32 6 26
Product Terms: 128 14 96 -> 24%

MACH-PLD Resource Chocks OK!

Partial MACH Report for Combined Design

70

The utilization statistics indicate you can merge another
bit slice into the final design to add more logic to this
chip. You enter, verify, and add the rest of the control

MACH DESIGN CASEBOOK

February 1991

Simulation for Interim
and Combined Designs

logic to the base chip in the same fashion. Each MACH
report, produced as you compile each individual bit
slice, tells you whether the new logic is likely to fit in the
space remaining on the chip. The sequence of iterative
steps is listed below.

Enter, compile, and simulate each design slice.

Initiate the merge process and create an interim
file for each design slice, then compile and
simulate each interim file individually.

Merge individual interim files into the final design
and validate the final design after each addition.

Simulate the final combined design when all
pieces have been merged.

During the merge process, simulation commands are
automatically removed from each file. It is best to
produce an auxiliary simulation file21 for each interim
file so you can test subsidiary state machines indepen­
dently.

To simulate interim files, you copy the simulation
segment from the original file into an auxiliary file
and simulate.

To verify the final design after each addition, you
create an auxiliary simulation file for the
combined design.

To verify the final design after merging all files,
create a single auxiliary simulation file to test the
entire chip.

21 Refer to the PALASM 4 User's Manual, Chapters 6 and 9, for details.

MACH DESIGN CASEBOOK

February 1991 71

5.2 SINGULAR
CONTROL FUNCTION

Digital Sam_e!.e
System

Trigger Detector Block Diagram

5.2.1 Trigger
Detection Analysis

72

Trigger-detection sequential state-machine logic must
be supported by combinational logic that transforms the
input samples into architectural primitives. The
following functional block diagram places the trigger­
decoding logic in the context of the LSA data flow. The
decode logic reduces multiple signals to a single
evaluation, detect-or-no-detect; an example of singular
control functions.

Data Preprocessor I--
Logic

..
Pattern Type

Selected Data

Trigger Mask
Memory

Trigger Pattern ~ Trigger Detect Hit_.
Memory Pattern Logic

~

-..

The Sample signal and Trigger Mask Memory block
feed two circuits in the Data Preprocessor block.
These two circuits are among the architectural
primitives mentioned earlier.

A decoder in the Data Preprocessor block must
translate the input-signal patterns to
combinations of signals that represent levels and
edges.

MACH DESIGN CASEBOOK

February 1991

5.2.2 Singular
Control lmple·
mentation

February 1991

A filter in the Data Preprocessor block, fed by the
Trigger Mask Memory, must screen for the
occurrence of rising edges, falling edges, high
levels, low levels, or glitches captured by the
preprocessor.

When a signal pattern matches the mask condition, the
pattern appears on the selected data bus. The Trigger
Pattern Memory stores patterns that indicate each sig­
nal to be considered. Trigger Detect Logic compares
input signals with user-defined patterns to determine
when they match. When a match occurs, the controller
looks for the next coincidence. Tracing begins when
the last coincidence occurs. Each match is called a hit.

The preceding figure has two blocks indicating logic.
The remaining blocks address memory or the external
system under test. This design explicitly excludes
memory functions as candidates for MACH implemen­
tation and the external system lies outside the scope of
LSA architecture. That leaves the Data Preprocessor
and Trigger Detect functions for current consideration.

The chief functions of the logic blocks are to convert
samples to architectural primitives and to compare
those primitive patterns. Since the basic architectural
primitives have already been identified, in discussion
3.3, the function of these logic blocks can be readily
implemented by combining the primitives in a single
logic circuit.

The Dual-Bit Condition/Decode Logic figure shows an
example of such a circuit. It is configured as the
circuitry required to detect the logic states for two bits of
the input signals. This logic is essentially a decoder in
the binary sense.

The output lines are labeled to show which type of
signal is detected.

MACH DESIGN CASEBOOK

73

74

Input signals are independent of one another.
Output signals are independent of one another.

Due to signal independence, the logic associated with a
single bit represents a unit, or, in other words, the bit­
slice of the logic that decodes input signals.

A small number of input signals fan out to a larger
number of output signals. The fanout property is the
attribute that informs you there is no chance for unit
reduction at this stage. Each output must be masked
with the user-specified trigger conditions. Including
more logic with this unit would increase the 1/0 count
because the mask bits also have to enter the chip.

From an 110 standpoint, the chosen partition uses six
pins per unit: one input pin and five output pins. You'd
expect to get six units in a MACH 11 O device. To get a
rough idea of how many actually fit in the device, you
define the two bits as a schematic-based design for the
device and compile it.

The logic in the next figure was generated using
OrCAD/SDT Ill with the AMO-supplied MACH library
and using the PALASM 4 software.

Note: As you can see in the figure, wherever you have
a feedback loop, you must add a node macro, such as
N_RISE or N_FALL, to ensure an extra pass around
the lo ic arra before com letin the loo .

MACH DESIGN CASEBOOK

February 1991

0 a,

Dual-Bit Condition/Decode Logic

February 1991

MACH DESIGN CASEBOOK

75

***Device Resource Checks

Available

Clocks: 2

Pins: 38

I/OMacro: 32

Total Macro: 64
Product Terms: 256

MACH-PLD Resource Cha:ks OK!

Device Utilization *:14%

The schematic was then compiled using the PALASM 4
software, as usual; the results of the compilation appear
next. The device-resource segments of the MACH
report show these two bits use about one third of the
resources for the entire MACH 11 O device or half that
for a MACH 21 O device. This verifies the earlier
estimate.

Used

2
7
4

14
14

Remaining
0

31 -> 18%

28

50

200 -> 20%

MACH Report Device-Utilization Statistics

5.2.3 Adjusting
Design-Portion Size

76

After choosing a portion of the design, either a function
leaf or a feature leaf, for implementation and verifying it
will fit in a MACH chip, you should ensure the size is
optimal. The input-decode logic fits in a MACH chip, as
shown by the trial compilation. You double check the
appropriateness of the initial choice by considering
changes to the pin count and logic content of the por­
tion selected.

Consider changing the size of the input-decode logic.
The LSA requires a mask to indicate which input­
sample bits to include in a trigger cycle. If you added
mask logic to the input-decode logic, the 1/0 count
changes only slightly. The five outputs would be
replaced by five inputs; one additional output,
bit_coincidence, would be added. Again, from an 1/0

MACH DESIGN CASEBOOK

February 1991

February 1991

standpoint, you could expect five units to fit in a single
MACH 11 O device.

However, the additional function increases the logic
count by six gates per bit, which is about a 50%
increase in the number of gates per bit. Such an
increase in logic reduces the number of bits per device
by three from the number you'd get if you did not add
the logic. Thus, the slight increase in I/Os would be
accompanied by a significant increase in logic
requirements. This indicates the unit count would be
smaller than you'd expect based on 1/0 count alone.

The MACH 21 O device supports twice as much logic as
the MACH 11 O device. You can fit the additional logic
and meet the optimum partitioning on a bits-per-device
basis using a MACH 21 O device. The resolution hinges
on the difference in dollar cost between the two
devices.

The next discussion focuses on integrating the two
domains.

MACH DESIGN CASEBOOK

77

6 DATAAND
CONTROL
INTEGRATION

78

After implementing both data-flow and control-flow
logic, you complete the design by integrating the two
domains. Again, only a segment of the design is dis­
cussed here; you repeat these techniques to complete
the integration.

The control logic for the trigger memory is an example
of a subsidiary state machine. You may recall, this
machine is implemented in the file named LA_CO.PDS,
shown earlier. In LA_CO.PDS, the sequences of state
changes required to load the trigger were implemented;
however, the actual signals that control the memory
chips were not. At this point, you integrate the total
design by implementing signals to control the memory
chips.

This design uses static RAM for the trace memory.
Static memory chips have two control inputs: a chip
select and a read/write line. The control circuitry also
regulates the trigger-address counter. Control lines are
identified below.

• G_CS
• G_WE

ADDR_CK

global chip select
global write enable
address clock

You add control outputs to pin declarations in the PDS
file by placing the name of the output line in appropriate
pin statements as follows.

PIN? G_CS COMBINATORIAL ;global chip select

Again, the question mark, ? , in the location-number field
specifies a floating pin number; the actual pin number is
assigned automatically during compilation. Using the
word combinatorial in the storage field defines the
output to be non-registered. Everything after the semi­
colon is a comment and is ignored during processing; in
the example above, the comment reminds you of the

MACH DESIGN CASEBOOK

February 1991

February 1991

global nature of the signal. In this case, global means
the signal affects more than one chip.

The control outputs become active at a certain time in
the memory-access cycle, which goes through the
steps below. Each step is a state in LA_CO; the outputs
occur at a specific state.

A. The address is presented to the memory.

B. A delay occurs, which allows the data to appear
on the memory outputs.

C. The data that appears is latched and the address
can change to select the next trigger.

The classical attributes of associating an output with a
state independent of input belong to a Moore-type state
machine. That's why you see the MOORE_MACHINE
keyword and a Moore-type output definition in the PDS
file.

MOORE_MACHINE ;Read Trigger State Machine
M_CO_O = /K_CO_l */K_CO_O ;CO Control State Defined

M_CO_l = /K_CO_l */K_CO_O
M_C0_2 = /K_CO_l */K_CO_O

M_C0_3 = /K_CO_l */K_CO_O

Moore Machine

Moore machines produce a single output per state.
The output may be the values of several variables.
There is no reason to limit the Moore-state output to a
single pin. You define the Moore output by using a
Boolean term to specify the output value associated
with the state. The memory-control equation for the
third state is shown next.

MACH DESIGN CASEBOOK

79

80

M_CO_O.OUTF = /G_CS*/G_ WE*/ADDR_CK

M_CO_l.OUTF= G_CS* G_WE*/ADDR_CK

M_C0_2.0UTF= G_CS* G_WE*ADDR_CK

M_C0_3.0UTF = /G_CS*/G_ WE*/ADDR_CK

Memory-Control Equation

The outputs with names on the right side of the
equation are true during the state, named M_C0_2.
Another way to interpret the equation is to realize you
are assigning active-high values to G_CS, G_WE, and
ADDR_CK. When G_CS has an active-high value, its
complement, /G_CS, has an active-low value required
at the static RAM.

Compilation and simulation show the output pins
assigned to the new signals do change at the proper
state. You repeat the techniques above for each point
in the data flow controlled by a state machine. Output
statements are defined in the PDS file that corresponds
to the controlling state machine. The next figure shows
the simulation results.

MACH DESIGN CASEBOOK

February 1991

ggg
CLKl xxxx

K_CLK

/POR

MSW[4] xl

MSW[3] x

MSW[15] x

ACK

K3

K2

Kl

KO

K_CO_O l 11__11

K_CO_l

/G_CS

/G_WE

ADDR_CK

Simulation Results

MACH DESIGN CASEBOOK

February 1991 81

6.1 MACH CHIP
INTEGRATION

LSA System Block Diagram

82

When you complete data- and control-flow domain
integration, the stage is set to integrate the design into
MACH chips. Shaded blocks on the next block diagram
represent areas for which you have created MACH
designs.

Host Interface

sample[0 .. 15]

Trace Memory

_data[0 .. 15]

trace[0 .. 15]

Compare Memory

Glitch Memory

glit[0 .. 15]

hit[0 .. 15]

MACH DESIGN CASEBOOK

February 1991

Functions in the previous figure are not yet associated
to particular chips, which is the next step.

The next figure shows the block diagram after removing
functions you can implement in the host system, using
software and host-system memory. The host system
can also take care of display needs. Remaining
memory-block data registers are still MACH candidates.

Host Interface

sample[0 .. 15] trace[0 .. 15]

Trace Memory

_data[0 .. 15]

Glitch Memory

glit[0 .. 15]

hit[0 .. 15]

LSA System without Host-System Functions

MACH DESIGN CASEBOOK

February 1991 83

The next figure shows the minimal block diagram for
MACH chip implementation, which results when you
remove the user-panel and external-input functions
from the previous system diagram. The host-interface
depends on the actual processor; the user-panel and
external-input functions are among the options you can
add. Design files for these functions are included on
the PALASM 4 installation diskettes.

sample[0 .. 15]

trace[0 .. 15] -----
Trace Memory

_data[0 .. 15]

Glitch Memory

hit[0 .. 15]

LSA System without User-Panel and External-Input Functions

MACH DESIGN CASEBOOK

84 February 1991

Metastability Registers

Multiple Trigger Registers

The remaining functions, shown next, are the complete
set to be implemented on MACH chips to realize this
LSAdesign.

sample[0 .. 15]

trace[0 .. 15]
...., __ _

Trace Memory

Memory Registers

glit[0 .. 15]

_data[0 .. 15]

Glitch Memory

Memory Registers

Upload Path

LSA System for MACH Implementation

MACH DESIGN CASEBOOK

February 1991 85

6.2 TRADEOFFS
AND REDESIGN
STRATEGIES

86

The fitting process is iterative and involves tradeoffs
and the following re-design strategies.

• TTL macro registers, the original choice for data
registers, were ultimately replaced with MACH
flip-flops to maximize functional density.

The drastic reduction of the data flow leaves no
path from the Glitch Memory to the Host, except
with additional logic.

The g_data bus [0 .. 15] was dropped altogether
and the glit[O .. 15] bus was changed to be three­
state and bidirectional to accommodate host
upload of Glitch Memory data.

The final results of integrating the LSA design to MACH
chips appears in the next block diagram. These chips
are used multiple times to realize the LSA design, as
shown in discussion 1 and in the LSA schematics
provided on the PALASM 4 installation diskettes.

MACH DESIGN CASEBOOK

February 1991

,,
<D
CJ
2
Ill
-<
~

ID
ID
~

=

s
2
~
G5
<!

~
~
OJ a
~

~
)>
()
I
O:i
Ill
CJ)

<D a..
r
U>
)>

Samo le 16

!!1,,'/~;~r:s1;~~tp;;:p;~~~~,;~;=:=:=:=:=::::,;,,,,,,,,,,,,,,,,,,,,,,,,::::

m Mach Chip: r_pPNB !:jj

!k Four 5-Attribute !i!!
Glitch, Level, Edge I

Detectors ::;:

Nibble Wide !i!1
Signal Type j;j:

Mask Gates !:!1

Nibble Wide ::::
Eight 4-Bit Pattern Match

Pattern Registers Comparison Logic

Eight4-Bit
Pattern Registers

Nibble Wide
Pattern Match

Comparison Logic

•Sample •HIT

• INP • • • > _..,,,"..,, -'K"f'(:;f.'., >

•ATIR
Logic Analyzer

Combined
Control/

Mach Chip: LA_COMBl

K[0 .. 3]

(State Variables)

Memory Buffers and Registers
Mach Chip: I_MEMREG

Trace •

Byte-Wide
Metastability and

Memory Data Registers

Tri-State
Buffers And
Multiplexer

Byte-Wide
Bus Isolation

Buffers

Tri-State
Buffers

1_ogic Analyzer
Combined
Control I/

GL_MEM

Mach Chip: LA_COMB2

7

7

6

5

4

3

2

1

TUNING Can some of the ideas you just used be applied to
optimize this LSA design? How can you tell if opti­
mization is even possible? Classically, at this point
you'd begin the tuning process by reviewing the MACH
report.

Singular
Feature

Identification

Data-Flow
Analysis

Again, the MACH report describes the results of the
fitting process and includes information you can use to
determine the degree to which each of the final designs
fits on the selected chips.

System
Architecture

Analysis

Control-Flow
Analysis

Array
Feature

Identification

Singular
Function

Identification

Array
Function

Identification

Implementation for Mach 110 and Mach 210

Tuning Phase of Design Process

MACH DESIGN CASEBOOK

88 February 1991

7.1 LSA
RESOURCE·
ALLOCATION
SUMMARY

February 1991

The tuning phase is typically divided into three stages.

Locate and correct non-optimal pin assignments.

Reorganize non-optimal logic assignments.

Reposition non-optimal path assignments.

Due to the bit-slice nature of this LSA design, tuning
occurs at a higher level. Discussion 7.1 summarizes
resource allocation for this design. General tuning
considerations are discussed under 7.2, 7.3, and 7.4.

You may recall, earlier partial-fitting processes were
used to develop the size of various bit slices. After
designing all bit slices for this LSA design, you look for
the optimal aggregation.

During the first attempt to fit an LSA bit-slice following
the integration of the two domains, a 16-bit word of
data-flow logic is compiled for a single MACH chip. The
word-sized aggregation is selected on the basis of pin
counts: one word yields 16 pins in and 16 pins out for
data flow. Data registers are chosen as the data-flow
elements because they fit on a single MACH chip and
leave lots of unused storage and logic resources. How­
ever, only six pins are left for use by other functions.

Although resource use is clearly not optimal, the trial
does allow for a quick sizing. It's obvious the chip
count can be improved by choosing another bit-slice
combination.

Based on the initial sizing of the two bits of preprocess­
ing logic, which require about one-third of a single
MACH 110, the next bit-slice combination that's chosen
is a byte. The rationale here is the array structure of
the design is sufficiently regular that the fitting algorithm
might be able to squeeze eight bits into a chip instead
of the expected six, or two bits per third. This is also a
good test of the degree of slack in the fitting algorithm.

MACH DESIGN CASEBOOK

89

90

The result is 98% use of MACH resources; however,
two signals could not be routed automatically. Subse­
quent runs reduce the number of unconnected signals
to one. The chip is upgraded to a MACH 21 O and a fit
occurs immediately.

After concluding the explorations above, the natural­
sized bit unit becomes a four-bit nibble. The nibble is
chosen because it is smaller than the optimal six bits
and because of its standardization in the digital world.

Fitting nibble-sized data and control flow on the chips
consists of creating and compiling files that contain
four-bit slices of the required elements rather than one.
Each time the fitting process is successful, you review
the MACH report to find out how much space remains
on the chip; then you use the percentage of remaining
resources to determine whether more logic can fit on
the chip. It is also important to look at the physical
layout of the chip presented in the feedback-map and
logic-map segments of the MACH report. These
pictures give you an idea of how well the logic is
clustered into the chip.

The partitioning technique used in this design was so
successful that subsequent additions of logic to a chip
barely disturbed portions that were already in place.
When 70% of the chip's resources are used, simply
adding logic and compiling can produce diminishing
returns. That's when you use specific MACH fitting
options to help with logic placement.

For example, most fitting options are initially disabled
for this LSA design and only the one below was used.

FITIING OJYI'IONS
When compiling Run until first success

More logic is added as long as the signals can be
routed during fitting. When no paths are available, the
following options were used.

MACH DESIGN CASEBOOK

February 1991

22

23

FITI'ING OPTIONS
When compiling Select one combination
Maximize packing of logic blocks? Y

More functions are added until paths are exhausted
again. Then another option is enabled, as shown
below. Empty parts of the placement map begin to fill
in, which results in an 85% utilization.22

FITI'ING OPTIONS
When compiling Seiect one combination
Maximize packing of logic blocks? Y
Expand small PT spacing? Y

The final option, Expand all PT spacing, is not needed
because no more logic is needed on the chip.

You can enable the gate-splitting option to automati­
cally split wide terms into sizes that match the maxi­
mum size for the selected chip.23

Another case of gate splitting you should know about is
a by-product of the minimization process during
compilation. The more product terms you can include
in a single pass through the logic array, the faster the
resulting implementation. Each pass through the array
adds a 15 or 20 ns propagation delay, which is sound
justification for meeting the objective of single-pass
minimization. The software ensures a single pass
through the array by converting all pure combinatorial
specifications, where no storage elements are involved,
to a sum of products. Each sum then corresponds to a
product term for the logic array.

Designs that require up to 70% of MACH-device resources can be achieved with very little effort.
This LSA design shows MACH-device utilizations of greater than 70% can be achieved using
various combinations of language syntax and software fitting options. The degree of fit varies from
design to design.

Refer to the PALASM 4 User's Manual, Chapter 9, for details about this option.

MACH DESIGN CASEBOOK

February 1991 91

EQUATIONS

This LSA design once included a 16-bit OR gate that
collected hit conditions to indicate the presence of a
trigger event. Each hit condition consisted of other
combinational terms. When the resulting Boolean
equation was reduced to a two-level sum of products,
the equation had more product terms than allowed for a
single equation. An error occurred when the design file
was compiled.

If a schematic-based file contains separate, distinct
gates that result in too many terms, an error occurs
when it is converted to Boolean equations.

The following figure shows a PDS file segment. The
equation for MATCH has too many terms.

MATCH== (((_3_M29_2 * NB_ATO) + ((_3_M29_2 * _3_M19_2) * NB_ATl) + (_3_M19_2

* NB_AT2) + (NB_INO * NB_AT3) + (NB_AT4 * /NB_INO)) * PATO) +

(((_3_M35_2 * NB_AT5) + ((_3_M35_2 * _3_M20_2) * NB_AT6)+ (_3_M20_2

* NB_ATI) + (NB_INl * NB_AT8) + (NB_AT9 * /NB_INl)) * PATl) +

(((_4_M29_2 * NB_ATlO) + ((_4_M29_2 * _4_M19_2) * NB_ATll)+

(_ 4_M19_2 * NB_AT12) + (NB_IN2 * NB_AT13) + (NB_AT14 * /NB_IN2)) *
PAT2) + (((_ 4_M35_2 * NB_AT15) + ((_ 4_M35_2 * _ 4_M20_2) * NB_AT16) +

(_ 4_M20_2 * NB_ATl 7) + (NB_IN3 * NB_AT18) + (NB_AT19 * /NB_IN3)) *
PAT3)

_3_M29 _2 == DI_RST * (/(NB_INO + /NB_INO) + _3_M29 _2)

_3_Ml9_2 == (_3_Ml9_2 + (NB_INO * /NB_INO)) * DI_RST

_3_M35_2 == DI_RST * (/(NB_INl + /NB_INl) + _3_M35_2)

_3_M20_2 == (_3_M20_2 + (NB_INl * /NB_INl)) * DI_RST

4 M29 2 == DI RST * J.{ili_B IN2 +!NB IN~+ 4 M29 2.2_

Too Many Product Terms for MATCH

MACH DESIGN CASEBOOK

92 February 1991

EQUATIONS

cmp_end =/patO+/patl +/pat3+/pat3

To correct this kind of situation, you can manually split
the equation into several distinct equations. The next
equation is an example of the fix.

MATCH= GRP1+GRP2+GRP3+GRP4

When the equation was converted from schematic­
based information, all the terms in each of the GRP1
through GRP4 equations were lumped into the MATCH
Boolean equation. Simple redefinition solves the
problem, as shown below.

MATCH =GRPl +GRP2+GRP3+GRP4

grpl= (((_3_M29_2 * NB_ATO) + ((_3_M29_2 * _3_M19_2) * NB_ATl) + (_3_M19_2

* NB_AT2) + (NB_INO * NB_AT3) + (NB_AT4 * /NB_INO)) * PATO)

grp2= (((_3_M35_2 * NB_AT5) + ((_3_M35_2 * _3_M20_2) * NB_AT6) + (_3_M20_2

* NB_ATI) + (NB_INl * NB_AT8) + (NB_AT9 * /NB_INl)) * PATl)

grp3= (((_ 4_M29_2 * NB_ATlO) + ((_ 4_M29_2 * _ 4_M19_2) * NB_ATll) +

(_ 4_M19_2 * NB_AT12) + (NB_IN2 * NB_AT13) + (NB_AT14 * /NB_IN2)) * PAT2)

grp4= (((_4_M35_2 * NB_AT15) + ((_4_M35_2 * _4_M20_2) * NB_AT16)+

(_4_M20_2 * NB_AT17) + (NB_IN3 * NB_AT18)+ (NB_AT19 * /NB_IN3)) *

PAT3)

_3_M29_2 = DI_RST * (/(NB_INO + /NB_INO) + _3_M29_2)

_3_M19_2 = (_3_M19_2 + (NB_INO * /NB_INO)) * DLRST

_3_M35_2 = DI_RST * (/(NB_INl + /NB_INl) + _3_M35_2)

3 M20 2 =(_ 3 M20 2 + J!:i.B INl */NB !Nill_* DI RST

Corrected Equations

MACH DESIGN CASEBOOK

February 1991 93

***Timing Analysis for Signals

Parameter Min Max

Tpd 2 3

Teo 1 2
Tcr 1

Key:

The result of grouping the inputs allows the compilation
process to finish. However, when you review the
MACH report you see that the propagation delay
increased by one unit from 2Tpd to 3Tpd, as shown
next.

Signal List (fhose having Max delay.)

MATCH

MATCH

_5_X9_D _S_XlO_D _S_Xll_D

_5_X12_D _5_X13_D BO
_8_X5_D PAT3

Tpd - Combinatorial propagation delay, input to output

Tsu - Combinatorial setup delay before clock

Teo - Register clock to combinatorial output

Tcr - Register thru combinatorial logic to setup

All del~ values are e~ressed in terms of arr~asses

Propagation Delay Increases After Grouping Inputs

94

The solution to the problem of added delay could well
have been re-engineering the comparison logic to use
pipeline parallel-processing techniques. In fact, the
logic contained signals that were needed off chip. So
both the match condition and the required signals were
assigned to pins. That reduced the on-chip delay to
2Tpd and opened options to use off-chip logic with
faster Tpd for the comparison. The lesson is to
consider the design globally, as well as on a chip­
by-chip basis. The next report segment shows the
result of the pin assignment on propagation delay.

MACH DESIGN CASEBOOK

February 1991

***Timing Analysis for Signals

Parameter Min Max Signal List (fhose having Max delay.)

Tpd 1 2 GLITO HITO GLITl

HITl GLIT2 HIT2

GLITI HIT3

Teo 1 1 HITO HITl HIT2

HIT3

Tcr 1 _2_X28_D _2_X29_D _2_X30_D

_2_X31_D _2_X32_D BO

5 X40 D PATI

Pin Assignment Changes Propagation Delay

7 .2 LOCATE AND
CORRECT NON·
OPTIMAL PIN
ASSIGNMENTS

February 1991

Non-optimal pin assignments occur when automatic
resource allocation causes reduced logic capacity due
to wiring congestion. You can often determine pin­
assignment problems by looking at the signal seg­
ments, tabular and equations, of the MACH report for
areas of the chip that contain the following.

More functions than fit in a single block
Functions associated with 1/0 pins that are not
nearby

To correct non-optimal pin assignments, you can group
logic into specific blocks of a MACH device using the
appropriate reserved word, MACH_SEG_A through
MACH_SEG_D, as a group name. This associates
logic with specific blocks that are more conveniently
located. Then you recompile the design.

MACH DESIGN CASEBOOK

95

7 .3 REORGANIZE
NON-OPTIMAL LOGIC
ASSIGNMENTS

7 .4 REPOSITION
NON-OPTIMAL PATH
ASSIGNMENTS

Non-optimal logic assignments occur when the
automatic-placement algorithm has inappropriate or
inadequate information. '(his results in logic groups not
being optimally placed; large blocks of logic may be
placed in areas of the chip that lack sufficient
resources.

You review the logic-map segment of the MACH report
to locate large blocks of logic placed in the corners of
the chip. Logic located toward the center of the chip
can be expanded in two directions. Logic in the corners
poses a problem due to lack of resources.

To correct the problem, you can move logic using the
Group command with the appropriate reserved word,
MACH_SEG_b/ock, as a group name. In addition, you
can enable the following logic-synthesis option during
compilation.24

Use automatic gate splitting? Y Max=#

Non-optimal path assignments occur when logic­
placement decisions block routing paths to functions
that must communicate. Usually, candidate functions
are optimally placed. However, placement may be less
than optimal when software algorithms do not identify
related functions.

This type of problem can be detected by reviewing the
fanout statistics and feedback map segments of the
MACH report. These data reveal the degree of com­
munication required by functions placed on the chip and
can help you determine if a better placement can result
in a fit.

24 Refer to the PALASM 4 User's Manual, Chapter 5, for details about gate splitting during
compilation and fitting, and to Chapter 11 for a detailed discussion on splitting functions.

MACH DESIGN CASEBOOK

96 February 1991

8 COMPLETE
LSASYSTEM
IMPLEMENTATION

The LSA design presented in this study includes the
key functions needed for state triggering and logic
tracing.25 However, a complete logic analyzer needs
other support functions, such as a keyboard interface,
memory storage for trace attributes, trigger patterns,
etc. You can add such functions to the logic analyzer in
this study to customize it.26

Key analysis and tracing design functions are contained
in two data-flow schematics and one control file,

l_PPNB.SCH
l_MEMREG.SCH
LA_COMB.PDS

Each schematic is a hierarchical file, which includes
sub-schematics that provide the details of a particular
aspect of the data flow. The control file is a PDS file
that contains the state-machine designs for the trigger
and trace operations. This too is a hierarchical design,
in the sense that a higher-level machine, LA_KMAIN,
controls the lower-level machines, LA_CO, LA_C1, etc.

To view design discussions from the perspective of a
completed design, you can assume that the final
vehicle for the logic analyzer is a PC add-in card, like
the one shown in the design description, under
discussion 1. In this case, you combine into a single
chip as much of the control function as possible and
configure the chip interface to be compatible with
microprocessor control. Generally, microprocessor­
controlled chips have a control register loaded by the
CPU via a command. The chip uses the data in the

25 Files that support these functions are introduced throughout this study and are provided on the
PALASM 4 installation diskette, as defined in Appendix A.

26 Files to support additional functions are introduced in Appendix A and are also provided on the
installation diskettes.

MACH DESIGN CASEBOOK

February 1991 97

98

control register to implement the function represented
by the code.

The control for this design is stored in a file named
LA_ COMB, which includes the six state-machine
functions listed below.

• Logic to implement each of the four logic
analyzer trigger and trace modes

One machine loads the attribute memory

Another machine loads the internal trigger
registers on the preprocessor chip

This LSA uses internal registers to optimize trigger­
detection speed and uses 5 attribute bits per trace
signal. The 5-bit attribute condition determines a
specific configuration for the attribute memory.
Embedding these control functions with the core logic­
analysis functions ensures the data-flow chips can be
properly loaded and unloaded.

The attribute memory has a 20 bit word width per
nibble sampled. Since the normal width of data
sources is eight bits, the machine that loads the
attribute memory assumes a data path composed of a
5-byte pipeline with taps for each bit's attribute set at
the output of each byte. The machine loads the
pipeline sequentially, then transfers the entire 20-bit
word to the attribute memory in parallel. The logic
accomplishing the attribute load is the same as the
logic in the file LA_LD_AT.PDS.

The preprocessor chip contains eight internal
registers that determine which bits of the input data to
use for trigger detection. The internal registers are
loaded from the pattern memory by the function in the
file named LA_RLOAD.PDS, which is embedded with
other logic in the combined file, LA_COMB.PDS. The

MACH DESIGN CASEBOOK

February 1991

8.1 IMPLEMENTA-
TION

February 1991

logic assumes patterns are a maximum of eight triggers
long. The final trigger of a sequence is followed by a
zero trigger pattern. Thus, to trigger on three patterns,
the pattern memory should be loaded with the three
patterns followed by an all zero pattern.

All functions embedded on the control chip can be
accessed by writing the following patterns to the MSW
bits: MSW[5], MSW[4], MSW[3].

MSW
543 FUNCTION
O O O Trace During Detect
0 O 1 Trace To Detect
O 1 o Trace After Detect
O 1 1 Trace Between Detects
1 O O Load Internal Registers
1 O 1 Load Attribute Memory
1 1 0 Reserved
1 1 1 Reserved

MSW Patterns

The key to a compact design is to find the basic
functions to build the total system. Attempts to
implement the functionality of the original preliminary
data flow immediately, without completing the iterative
process described herein, results in the use of more
chips than the final count.

The following figure shows the final implementation of
the logic analyzer using the chips defined in this study.
The final architecture embeds many of the functions,
such as metastability registers, attribute registers, and
pattern registers, into data flows internal to a chip. This
highlights the iterative nature of chip design and
resource fitting.

MACH DESIGN CASEBOOK

99

C B
a u
b f
I f
e e

r

Attribute
Memory

Pattern
Memory

Keyboard
110

(Option)

la_merge.pds

~_/_N_P ___ [=.: .. ~~::~~~::,]:

Sample

i_ppnb.pds

~ __ --+-__ --*'_ Hit

CMP 1111 Glitch

Registers

LSA Implementation on an Add-In Card

MACH DESIGN CASEBOOK

100

Host
Interface

(Option)

Trace
RAM

Glitch
RAM

Trace

February 1991

8.2 RE·
ENGINEERING
CONSIDERATIONS

Design assumptions determine the final chip implemen­
tation. If your LSA design involves a different set of
assumptions from those in this study, your final design
can differ subtly or dramatically from the previous
figure.

Slight differences mean you can probably re-engineer
the design using existing files as a basis for your work.
For example, you can change the logic to account for
the uses of different memory chips, or change the pin
out to account for layout constraints.

The ultimate in modification support lies in MACH­
device reprogrammability. Also, the PALASM 4 soft­
ware supports modification of MACH-resource use
even after fitting. Depending upon the available
resources, you can

Change the logic inside a chip design and keep
current pin assignments.

Keep the same internal logic and change pin
assignments.

Defining pin locations is called annotation. If you float
pin locations in a design, the PDS file contains a
question mark in the location-number field rather than a
specific pin location. During compilation and fitting,
specific pin assignments are made automatically and
recorded in one segment of the MACH report. Later,
you can back annotate27 to automatically write pin
assignments from the last successful placement in the
location field of pin and node statements in the PDS
file. If an error occurs, data is stored in a design.PBK
file and the PDS file is not updated.

27 Refer to the PALASM 4 User's Manual, Chapter 9, for details about the Back annotate signals
command.

MACH DESIGN CASEBOOK

February 1991 101

102

The files LA_BKCHG.PDS and LA_BKPIN.PDS are
back-annotated versions of the combined control file,
LA_ COMB. PDS.

LA_BKCHG.PDS shows the primary state­
machine logic of LA_KMAIN.PDS is changed.

LA_BKPIN.PDS shows the logic of the main
state machine is not changed but pins have been
swapped: Pin 17, /AM_G_WE and
Pin 21, /PM_G_WE.

In reviewing the MACH report for LA_BKCHG, you can
see the new design compiles, is assigned logic, and
fits in the chip while maintaining the same pin outs as
LA_COMB.PDS. LA_BKPIN also compiles, is assigned
to chip resources, and fits with the requested pin
changes.

Changes should be restricted to functions that use the
same block. In general, it is safe to change logic
because the software groups all logic that pertains to a
particular function. The same general rule applies to
pin changes. Thus, intra-block changes can usually be
achieved without problems. As the design grows and
uses more chip resources, macro cells, 1/0 cells, and
wiring channels, it becomes more difficult to change the
design and maintain pin assignments. In this case, it
may be necessary to move entire logic functions to
blocks adjacent to the target pins to maintain former pin
assignments.

For any particular design and resource-use com­
bination, it may not be possible to maintain a former pin
out. In such cases, the job may not be possible at all.
The way to approach it, however, is to successively
relax the constraint that all pins must remain as
assigned. You do this by converting one specific pin
assignment to a question mark, ?, then compile and fit.
Repeat this procedure with individual pins.

MACH DESIGN CASEBOOK

February 1991

9 DESIGN
REVIEW

9.1 SYSTEM
CONSIDERATIONS

February 1991

Previous discussions focused on the design process in
the context of a specific LSA implementation. Now it is
time to consider the forest rather than the trees. What
can be derived that is general and lasting? Following
discussions review the paths taken and highlight useful
items for this, and other, designs. Tuning to optimize
the design is also discussed.

During the course of this study, you have seen how to
take an idea and refine it successively to the point
where you can be sure parts of the design fit into a
single MACH chip. It's worth reviewing some of the
recurring themes in this design process, which can form
the basis of your personal design kit when you use
MACH devices to realize your own designs.

The lasting part of the system considerations lie in how
the structure leads to the chips. The entire purpose of
evaluating system-related factors was to find the pieces
that would fit into a single MACH chip. The fit is deter­
mined first by the pin count of the chosen pieces, then
by the product terms. If a function has more pins than
are supported on a chip, it doesn't matter that the logic
may require only a single gate.

Once the design is split into MACH-sized pieces in
terms of pin-out requirements, you can focus on the
logic requirements. In this case, logic refers to the com­
binatorial logic and storage elements. Logic must be
divided so the requirements of finished pieces are lower
than the resources available in a single device. It's
fairly easy to find parts of the design that do not over­
flow available resources. Given that, the entire design
can be implemented immediately. However, what is not
straightforward is finding pieces that minimize the
number of chips required to implement the design while
maximizing the obtainable speed.

MACH DESIGN CASEBOOK

103

9.2 LOGIC
ASSIGNMENT

104

The benefit of the system-partitioning technique in this
study is that it leads to design slices that are optimally
sized for the MACH device. If one bit-slice combination
does not result in the best fit, it's easy to scale the
design for another fit using fewer or different bit slices.
You use the following MACH fitting option for initial fits.

FITTING OPTIONS
When compiling Run until first success

During the tuning phase, you can use different options
to pack product terms as closely as possible and to
adjust spacing for product terms. For example, space
can be left for functions with lots of internal connections
by enabling one of the expand PT spacing options on
the MACH Fitting Options form.

Expand small PT spacing allocates an empty
macrocell between those that contain small
product terms, which means those with four or
fewer variables that fit into a single macrocell.

Large product terms have more than four
variables and require more than one macrocell.

Expand all PT spacing allocates an empty
macrocell between each used macrocell.

Design slices obtained from splitting the system data
flow according to array and singular function content
are already separated into two groups: those with
many internal connections and those with only a few.
Portions of the design are placed on certain areas of
the chip based on how much they communicate. This
design process helps you split the logic into pieces with
minimal communication, which ensures you can fit a
piece of the design into any MACH chip with enough
space remaining. Actual placement can be controlled
using logic-block assignment commands, such as
GROUP MACH_SEG_b/ock, followed by the signal list.

MACH DESIGN CASEBOOK

February 1991

9.3 STATE
MACHINES

February 1991

In addition, during the fitting process, a measure of
intra-function communication, called affinity, is
calculated automatically and used to assign logic to
areas of the MACH chip. Strong affinity keeps logic
grouped together; little or no affinity allows arbitrary
placement. Control-flow logic reflects logic with strong
affinity. Data-flow logic reflects low affinity. In the
lateral sense, data-flow signals do not cross one
another.

When designing state machines, partitioning is largely a
matter of personal style. Complex machines with many
states should generally be decomposed to multiple
state machines that cooperate to achieve the desired
operations. When you can mentally keep track of all
states in the machine, the simplest method is to use
state-transition equations, like the one shown below, to
create the design file.

M_C0_2 :=NULL_ TR-> M_C0_3

During compilation, variables are automatically
assigned to states, and default values are assigned to
unused states, according to the rules you set. When
you use state-transition equations, associated output
equations are activated during compilation according to
the states and your specifications. All states are
defined and all outputs are created accordingly. The
execution-log file tells you which values were assigned,
as shown next.

MACH DESIGN CASEBOOK

105

l>W ARNING El351 Automatically assigning state bit _STO to ?NODE

STATE REGISTERS USED

PIN NUMBER: PIN NAME:

?NODE STO -
?NODE STl -
?NODE ST2 -
?NODE ST3 -
STATE BIT ASSKiNMENT USED

STATE NAME: STATE REGISTERS VALUES:

- ST3 - ST2 -STl - STO

M_KO 0 0 0 0
M_Kl 0 0 0 1
M_K2 0 0 1 0
M_K3 0 0 1 1
M_K4 0 1 0 0
M_K5 0 1 0 1
M_K6 0 1 1 0
M_K7 0 1 1 1
M_K8 1 0 0 0

Partial Execution-Log File Detailing State Assignments

106

The entire MACH device is treated as a single entity for
state design; all state-machine flip-flops are considered
to be a part of one and the same machine. However,
there are times when all your state-machine flip-flops
are not part of the same state-machine design. And
there are times when you have too many states to track
easily. In such cases, you design individual state
machines in separate files and merge them into one
file. Each state machine alone is not likely to make
efficient use of a complete MACH device.

• Keeping some state machine values indepen­
dent is good practice when you need to know the
state of the system for status or debugging
purposes.

MACH DESIGN CASEBOOK

February 1991

February 1991

Keeping state-machine values independent was
essential for this design.

By implementing independent state machines in this
LSA design, machines could be placed into any MACH
chip with enough remaining space, regardless of the
presence of other state machines on the chip. In fact,
the main control chip was designed in just that fashion.

lmponant: Do not just copy all transition equations
into a single PDS file to merge designs. Errors will
occur when you compile the file.

You use the Merge design files command on the File
menu instead. During the merge process, state­
machine syntax is converted to Boolean equations.
You then copy string statements and transition
equations into the combined PDS file and compile. No
errors should occur and this won't force all state
machines to be treated as _Q_art of the same des!g_n.

This concludes the case study of an LSA design
implemented using MACH devices.

MACH DESIGN CASEBOOK

107

MACH DESIGN CASEBOOK

108 February 1991

APPENDIX A

FILE DESCRIPTIONS

MACH DESIGN CASEBOOK

February 1991 A·i

CONTENTS

APPENDIX A .. 1
A.1 INCLUDED FILES .. 2

l_MEMREG.SCH .. 2

l_PPNB.SCH ... 3

LA_MERGE.PDS .. 4

A.2 OPTIONAL FILES .. 5
l_KB_INT.PDS .. 5

LA_BKCHG.PDS .. 5

LA_BKPIN.PDS .. 6

LA_COMB.PDS .. 6

LA_LD_GL.PDS ... 6

LA_RD _ GL.PDS ... 6

LA_RLOAD.PDS .. 7
A.3 SCHEMATICS .. 8

LSA DATA FLOW ... 8

TRIGGER LOGIC ... 9

TRIGGER MASK MEMORY .. 1 O

TRIGGER DATA BLOCK, BYTE 0 .. 11

ATIRIBUTE MEMORY DATA REGISTERS ... 12

ATIRIBUTE MEMORY DATA REGISTERS ... 13

TRIGGER DATA BLOCK, BYTE 1 .. 14

A TIRIBUTE MEMORY.. 15

A TIRIBUTE MEMORY.. 16

PATIERN MEMORY ... 17

PRE-PROCESSOR BLOCKS, BYTE O .. 18

NIBBLE BLOCKS, BYTE 0 ... 19

PRE-PROCESSOR LOGIC, NIBBLE O .. 20

PRE-PROCESSOR LOGIC, NIBBLE 1 .. 21

NIBBLE BLOCKS, BYTE 1 ... 22

PRE-PROCESSOR LOGIC, NIBBLE 2 .. 23

MACH DESIGN CASEBOOK

A·ii February 1991

PRE-PROCESSOR LOGIC, NIBBLE 3 .. 24

MEMORY BUFFERS AND BUS MULTIPLEXERS ... 25

MEMORY REGISTER LOGIC, BYTE 0 AND BUS MULTIPLEXER .. 26

MEMORY REGISTER LOGIC, BYTE 1 AND BUS MULTIPLEXER .. 27

USER PANEL KEYBOARD INTERFACE .. 28

EXTERNAL TIMING ... 29

CONTROL LOGIC .. 30

TRACE MEMORY, WORD LEVEL. .. 30

TRACE MEMORY .. 31

HOST INTERFACE .. 32

INPUT BUFFERS .. ~ 33

GLITCH MEMORY, WORD LEVEL ... 33

GLITCH MEMORY ... 34

MACH DESIGN CASEBOOK

February 1991 A·iii

MACH DESIGN CASEBOOK

A-Iv February 1991

February 1991

APPENDIX A: FILE DESCRIPTIONS

Files you can print or review at the workstation are
stored on the PALASM 4 installation diskette under the
following directory. A readme file is included in this
directory to identify its organization.

PALASM\EXAMPLES\CB

Each file is described in this appendix, which is divided
as follows.

Included files, A1, discusses the designs
covered in this LSA study.

Optional files, A2, discusses files you can use for
a customized LSA implementation.

I Note: File descriptions are organized alphabetically.

MACH DESIGN CASEBOOK

A·1

A.1 INCLUDED
FILES

l_MEMREG.SCH

A·2

The following files are available on the PALASM 4
installation diskettes and are required for this LSA
design.

Schematics include two data-flow files,
l_MEMREG.SCH and l_PPNB.SCH.

Text files have been merged into one file,
LA_MERGE.PDS, which contains the state­
machine designs for trigger and trace operations
on the control chip.

Each schematic file is hierarchical and includes
subschematics that contain the details of a particular
aspect of the data flow. The state machine file is also
hierarchical. For example, one state machine,
LA_KMAIN, controls the operations of all subsidiary
state machines defined in individual PDS files.
Additional details are provided in the next three
discussions.

This memory-register schematic contains the sample
metastability registers and a multiplexer for the glitch
signals. The following occurs during sample collection.

Data must be collected from the input lines to
determine the state of the input.

Data must be collected from the preprocessor
logic to track glitches occurring during the
sample process.

Separate memories are used to track each sample type
since the data are collected at the same time. When
the trace completes, the multiplexer routes data from
the glitch memory to the host-interface bus. The host
processor then interleaves the glitch data and the
sample data for simultaneous presentation.

MACH DESIGN CASEBOOK

February 1991

l_PPNB.SCH

February 1991

This preprocessor schematic contains the logic to
detect digital events that occur on input-signal lines.
The chip processes four bits of input data. Each bit is
checked for five conditions.

Active-high level

Active-low level

Rising edge

Falling edge

Glitch conditions

Although all patterns are checked, the chip masks
reported events to correspond to the particular pattern
selected by the user.

The attributes to be checked enter the chip via
the NB_AT lines.

The bits to be checked enter the chip via the INP
lines.

The masks determining the bits to include in the
test enter the chip via the IN lines.

Coincidences are reported on the HIT output lines; the
GLIT output lines are used in the control logic for trigger
detection.

MACH DESIGN CASEBOOK

A-3

LA_MERGE.PDS

A·4

This text-based file contains all the control logic needed
to accomplish the trigger and trace operations dis­
cussed earlier. This file contains a full implementation
of the flow diagrams presented in discussion 5. There,
only a single path and a single subsidiary state machine
were discussed. By reviewing this file, you can cor­
relate the discussion to an actual file that implements
the flow diagrams presented earlier.

Each LA_Cx.PDS file corresponds to a node on the
main flow diagram. The machine, LA_KMAIN.PDS,
coordinates the operation of these subsidiary machines
by activating them as required to realize a vertical path
through the main flow diagram. When a subsidiary
machine is active, the main machine normally waits for
the active machine to complete its function. The
sequencing is controlled by a handshaking protocol
implemented in the machines LA_REQ.PDS, request,
and LA_RPL.PDS, reply.

LA_KMAIN starts a process and a request at the
same time.

LA_KMAIN waits for the process to signal
completion by starting a reply.

LA_KMAIN then goes to its next state.

MACH DESIGN CASEBOOK

February 1991

A.2 OPTIONAL
FILES

l_KB_I NT .PDS

LA_BKCHG.PDS

February 1991

Optional functions are included here to allow you to
customize the design to your particular needs. For
example, the sample board layout presented in the
design description, under discussion 1, shows the
profile of a PC add-in card that belongs to a major
computer vendor. IBM™ PC clones have a comparable
board area. In actually constructing the LSA, you can
use either a PC or a stand-alone configuration. The
optional functions discussed next serve as guidelines
for either path.

If you choose to implement the LSA on a PC add-in
card, you may not need a keyboard interface. This file
contains the logic to scan a keyboard for characters.
This is a 9-bit interface where the ninth bit serves as a
Shift indicator. This LSA design uses the Shift to signal
the occurrence of attribute settings, such as glitch,
active high, etc. In these cases, the logic substitutes a
pattern for the coded data appearing on the keyboard
input lines: COL_DAT, or column data. The complete
attribute mask for a particular data bit is assembled by
ORing the results of successive shifted keystrokes.

If the Shift bit is low, the other eight bits are clocked to
the INP bus, where the bits are loaded directly to
pattern memory as mask data. However, if the
keyboard data is encoded, for example, bit address and
bit value, the bits are presented to decode logic.

This file is a version of the LA_COMB.PDS in which
actual pin assignments have been back annotated to
the PDS file. This provides an example of re­
engineering the logic in a chip while maintaining
constant pin assignments.

MACH DESIGN CASEBOOK

A·S

LA_BKPIN.PDS

LA_COMB.PDS

LA_LD_GL.PDS

LA_RD_GL.PDS

A·&

This file is a version of the LA_COMB.PDS in which
actual pin assignments have been back annotated to
the PDS file. This provides an example of maintaining
the logic in a chip while changing pin assignments.

This file contains the control-machine designs
discussed in the study in addition to some optional
functions required for the add-in card version of the
LSA design. The design is divided among two chips,
LA_COMB1 .PDS and LA_COMB2.PDS, which
correspond to Control I and Control II on the sample
layout for the add-in card LSA implementation.

You can implement functions in a personal computer
and use the computer memory for data post
processing. In this case, you must upload data from
the glitch memory to the computer memory. This file
contains the state machine to effect that operation.
This function, along with other optional functions, such
as the keyboard scanning function, can be added to a
single additional MACH chip as identified in the figure
under discussion 1.

If you implement a glitch memory and want to upload
the data through the memory-register chip to the host
interface, you can use the LA_RD_GL.PDS file. This
file contains the state machine that controls both a
static RAM and the memory-register chip to effect an
upload operation to the host interface bus: the C_bus.
Since host interfaces vary in detail, this file assumes a
single-byte transfer.

MACH DESIGN CASEBOOK

February 1991

LA_RLOAD.PDS

February 1991

If you choose to implement a stand-alone LSA, you
must load the internal registers on the preprocessor
chip. The LA_RLOAD.PDS file contains the state
machine that loads the data from an external port to the
preprocessor chip. The port is assumed to be three­
stated to the INP[0 .. 7] bus.

MACH DESIGN CASEBOOK

A·7

A.3 SCHEMATICS The LSA schematics are included here for your review.

1 . buff a_m~t- ers la host interlace

wd_out[0 .. 15) ~
sample[0 . .15)

:=a[0 .. 15)
c_bus[0 . .15)~

la trace mem~

trace[0 .. 15) '"I

trace[0 .. 15)

la_use!:E.anel la_tri.n.er l~c
a[0 .. 15) la ,g_litch mem<>!Y_

c_bus[0 . .15) ~
inp[0 .. 7) = pr inp[0 .. 7)

g_bus[0 . .15) '"I
_gJ. memj_0 .. 151

I"' g_bus[0.15)
hi!LO •. lll k_trig[0 .. 15) =i

J inp[0 .. 7)

la_ext_timing la_control_logic
~ t k_trig[0 .. 3]

ext_tim[0 .. 3] ~
inp[0 .. 7)

ext[0 .. 3]
pr ext[0 .. 3]

LSA Data Flow

MACH DESIGN CASEBOOK

A-8 February 1991

sample[O .. 15): =e hit[0 .. 15)

trigger trace logic

~ wdO_in[0 .. 15)
wdO_out[0 .. 15) ...

di_rsi • ,.. di_rstO

1 ,. di_rstl

.,... wd_inp[0 .. 15)

trig_attr_memory II-glO_out[0 .. 15) I

l"' wdO_atlo[0 .. 39)

inp[0 .. 7] • inp[0 .. 7] ,. wdO_athi[0 .. 39)

at_lo[0 .. 39) ;

at_hi[0 .. 39) •

memory buffers

trigger memory L--jt sample_a[0 .. 15)
trace_a[0 .. 15) I 1--

""'"""
jt t_bus[0 .. 7]

~ glitch_a[0 . .15)
gl_mem_a[0 .. 15) !]

pat_lo[0 .. 15) I 1--

=a. trace[0 .. 15)

"* gl_mem[0 .. 15)

Trigger Logic

MACH DESIGN CASEBOOK

February 1991 A·9

"b d a_attn _ ata_~_o

attr[0 .. 7]
anr[S .. 15]

]~ inp[0 .. 7] attr[l6 .. 23]
attr[24 .. 31] 4t--

inp[0 .. 7

attr_a[O .. 7]

attr[32 .. 39] 41]
anr_b[0 .. 7]
anr_c[0 .. 7]

anr_c[0 .. 7]
anr_e[0 .. 7] G nm_la_anr_mem~~

jt at0[0 .. 7]
~atl[0 .. 7]

I"' atl[0 .. 7] wd_at[0 .. 39] ; --I"' at3[0 .. 7] --
~ at4[0 .. 7]

at_lo[0 .. 39]

la attrib data regs hi - - -
attr[0 .. 7]0

attr[S .. 15] ...
inp[0 .. 7] ... inp[0 .. 7] attr[l 6 .. 23] 0 Ir

attr[24 .. 31].,._

attr_f[0 .. 7]

attr[32 .. 39] 1
anr_g[0 .. 7]

attr_h[0 .. 7]
attrj[0 .. 7]

anrj[0 .. 7]

[nm_la_attr_mem~-~1
jt at0[0 .. 7]

--i. atl[0 .. 7]
I"' atl[0 .. 7] wd_at[0 .. 39] ; ---I"' at3[0 .. 7]
I"' at4[0 .. 7]

at_hi[0 .. 39]

Trigger Mask Memory

MACH DESIGN CASEBOOK

A·10 February 1991

inp[0 .. 7]

trigger_data_regs

---•attr[0 .. 39]

.._ ___ attrib[0 .. 7]
attr[0 .. 39] _______ _,,

Trigger Data Block, Byte 0

MACH DESIGN CASEBOOK

February 1991 A-11

inp[0 .. 7] attr[0 .. 7] attr[24 . .31]

M24
DO QO DO QO
Dl Ql Dl Ql
D'l Q2 D'l Q2
03 Q3 03 Q3
D4 Q4 D4 Q4
OS QS OS QS
D6 Q6 D6 Q6
rn Q7 rn Q7

pipe_oe oc oc
pipe_clk CLK CLK

74374 74374

attr[8 .. 15] attr[32 . .39]

M22 M25
DO QO DO QO
01 Ql 01 Ql
D'l Q2 D'l Q2
03 Q3 03 Q3
D4 Q4 D4 Q4
OS QS OS QS
D6 Q6 D6 Q6
rn Q7 rn Q7

oc oc

CLK CLK
74374 74374

M23
DO QO
Dl Ql
D'l Q2
03 Q3
D4 Q4
OS QS
D6 Q6
rn Q7

oc attr[16 .. 23]

CLK
74374

Attribute Memory Data Registers

MACH DESIGN CASEBOOK

A·12 February 1991

inp[0 .. 7] attr[40 . .4 7] attr[64 .. 71]

M31 M34
DO QO DO QO
DI QI DI QI
D2 Q2 D2 Q2
D3 Q3 03 Q3
D4 Q4 - D4 Q4
DS QS DS Q5
D6 Q6 D6 Q6
D? Q? D7 Q7

pipe_oe oc oc
pipe_clk CLK CLK

74374 74374

attr[48 .. 55] attr[72..79]

M32 M35
DO QO DO QO
DI QI DI QI
D2 Q2 D2 Q2
D3 Q3 03 Q3
D4 Q4 D4 Q4
05 Q5 05 Q5
D6 Q6 D6 Q6
07 Q7 07 Q7

oc oc
CLK CLK
74374 74374

M33
DO QO
DI QI
D2 Q2
D3 Q3
D4 Q4
05 Q5
D6 Q6
D7 Q7

oc attr[56 .. 63]

CLK

74374

Attribute Memory Data Registers

MACH DESIGN CASEBOOK

February 1991 A-13

inp[0 .. 7].........,

trigger_data_regs

~ attr[40 .. 79]

J ,.. attrib[0 .. 7]
attr[40 .. 79] :

Trigger Data Block, Byte 1

MACH DESIGN CASEBOOK

A-14 February 1991

t._addr [0 .. 10] ~

am_g_cs

arn.g_oo

am_g_we

... -... :: ...
Attribute Memory

February 1991

t addrO
t addrl
I addr2
I addr3
I addr4
I addr5
I addr6
I addr7
t addr8
I addr9
t addrlO

I addrO
I addrl
t addr2
I addr3
t addr4
t addr5
t addr6
t addr7
t addr8
t addr9
t addrlO

t addrO
t addrl
t addr2
t addr3
t addr4
t addr5
t addr6
t addr7
t addr8
t addr9
t addrlO

attr[0 .. 7J+--

U21

.JI.. AO DO ~ 7 Al Dl
:.&.: A2 D2 I H ; s A3 D3
4 A4 D4 ~ 3 AS DS

i A6 D6 ~ A7 D7
A AR
22 A9
l2_ AIO

18 -
CE

,----2llj OE
~ WE

2018

attr[8 .. 15] +--

U22

8 AO DO ~ .1.. Al DI
6 A2 D2 ~ ..i A3 D3 11~ ~ 4 A4 D4
3 AS DS pp2.. A6 D6
I A7 D7 f-12--/ 23 A8

....22. A9
19 AlO

18 rn
~ -OE

~ WE

2018

attr[l6 .. 23] +--
U25

.J!.. AO DO ~ 7 Al Dl
6 A2 D2

~ 3: A3 D3
4 A4 D4

-1 AS DS
I A6 D6 BB I A7 D7
23 A8

~ A9
AlO

18 rn
~ OE

~ WE

2018

MACH DESIGN CASEBOOK

attr[24 .. 31] +--i
U23

t addrO 8 AO DO I to ~ I addrl 7 Al Dl
I addr2 6 A2 D2 1-+.!--'1 I addr3 j_ A3 D3 11~ ~ I addr4 4 A4 D4
t addr5 i AS DS I l~ 1 tJ.ddrli A6 D6
I addr7 :i A7 D7 µL)

_..!.addr8 23 A8
Iaddr9 it A9
::IaddrlO AlO

18 CE

,----2llj OE
~ WE

2018

attr[32..39] +--j
U24

t addrO .JI.. AO DO I 190 j I addrl 7 Al DI
t addr2 6 A2 D2 pq t addr3 _s_ A3 D3

_taddr4 4 A4 D4 1-#---'1 t addr5 3: AS DS I t~ 1 t addr6 A6 06
t addr7 ~ A7 D7 µL/
t addr8 A8
t adcff 1t A9
t addrlO AIO

18 rn
~ 6E
~ WE

2018

A·15

t_addr[O .. l O]

am_g_cs

am_g_oe

am_g_we

... ..

• ... :: ..
Attribute Memory

A·16

t addrO
t addrl
t addr2
t addr3

.J..addr4
_!_addrS
t addr6
t addr7
t addr8
I addr9
I addr!O

I addrO
I addr!
I addr2
I addr3
I addr4
t addrS
t addr6
t addfl
I addr8
t addr9

addr!O

I addrO
t addr!
I addr2
t addr3
I addr4
t addrS
I addr6
I addr7
I addr8
I addr9
I addrlO

attr[40 .. 47) +--i
U21

8 AO DO ~ 7 Al DI
__fi._ A2 D2 ~ s A3 D3
A_ A4 D4 ~ -1. AS DS
~ A6 D6 ~ _l A7 D7

.2.3 A8
22 A9

12. AIO

18 -
CE

.---2-'Y OE
.----lli WE

2018

attr[48 .. 55] +--i
U22

8 AO DO ~ 7 Al DI

WU __fi._ A2 D2 s A3 D3
4 A4 D4 I l~ 1 3 AS DS

Jc A6 D6 I l~ j _l A7 D7
A A8
22 A9

12. AlO

18 -
CE

~ -OE
...._..1!., WE

2018

attr[S6 .. 63] +--i
U2S

8 AO DO Hrl 7 Al DI
6 A2 D2 LIU s A3 D3
4 A4 D4 HH 3 AS DS

::2: A6 D6 Etl3 l A7 D7
~ AB
22 A9 12:: AlO

18 -CE

~ OE
t---1!- WE

2018

MACH DESIGN CASEBOOK

attr[64 .. 71) +--i
U23

I addrO 8 AO DO ~ I addrl 7 Al DI
t addr2 ± A2 D2 In 1 I addr3 A3 D3
I addr4 4 A4 D4 ~
I addrS ::i AS DS ~ I addr6 _i A6 D6
I addr7 I A7 D7 1-.lL./ ...!.. addr8 23 AS
t addr9 1f A9
t addr!O AIO

18 rn
r--2'L OE

r----11- WE

2018

attr[72..79] +--i
U24

I addrO 8 AO DO ~ I addrl ± Al DI
I addr2 A2 D2 1-1!-J

...!.. addr3 3.: A3 D3 BB I addr4 4 A4 D4
t addrS ::i AS DS

~ t addr6 _i A6 D6
t addr7 1 A7 D7
t addr8 23 A8
I addr9 1f A9
I addrlO A!O

18 -
CE

~ OE
~ WE

2018

February 1991

pm_addr[0 .. 10]

pm__g_ce

pm__g_oe

pm_g_we

Pattern Memory

February 1991

-...

• -.. ..

U26

s AO
7 Al

" 6 A2 s A3

" 4 A4
3 AS

" 2 A6
1 A7

23 AS

" 22 A9

"" 19 AlO

lS -
CE

20
OE

21 -
WE

201S

U27

" s AO

" 7 Al

" 6 A2

" s A3
4 A4

" 3 AS

"' 2 A6
1 A7

23 AS

" 22 A9

' 19 AlO

lS -
CE

20 OE
21 WE

201S

MACH DESIGN CASEBOOK

DO 9 /

Dl 10

02 11

03 13

D4 14 ~

OS lS

D6 16 A
D7 17

DO 9 A

Dl 10 A

02 11 ,.-1

03 13 A
04 14 ...1
OS lS A
D6 16 ...1
07 17 ...1

4 pat_lo[o .. lS]

A-17

sample[0 .. 15]

byte_low _pproc

attr[0 .. 39] ------- nb_at[0 .. 39]
.-----1• di_rst

sample[O .. 7]
11----------+---ehy_in[0 .. 7]

by_inp[0 .. 7]

di_rst----e

byte_Jiigh_pproc

attr[40 .. 79] ----ito-11--e nb_at[0 .. 39]
'--It--• di_rst ------------+--- by_in[0 .. 7]

by_inp[0 .. 7]

inp[0 .. 15] ----

Pre-processor Blocks, Byte O

by_out[0 .. 7]

by_out[0 .. 7]

MACH DESIGN CASEBOOK

A-18

---.i~ wdO_out[0 .. 15]

glO_out[0 .. 15]

February 1991

nb_at[0 .. 39] ::':----

by_in[0 .. 7] .,_..,

_pproc nib 0

.,_ _____ attr[0 .. 19]

...... di_rst

t-+------i-.... sample[0 .. 3] -...-i• inp[0 .. 3]

di_rst •----tf--lr------..

_im_roc nib 1

____,_ attr[0 .. 19]

.____., di_rst

-----... -- sample[0 .. 3]
---· inp[0 .. 3]

by_inp[0 .. 7] ::':--------

Nibble Blocks, Byte O

MACH DESIGN CASEBOOK

February 1991

---=~ by_out[0 .. 7]

~ glit[0 .. 7]

hit[0 .. 3] ~---....

glit[0 .. 3] : ... -

hit[0 .. 3] =----
glit[0 .. 3] ~-----

A·19

AITR18

INP3

INPO
SAMPLEl

ATTR2

ATIR3
ATIR4

SAMPLEO

DI....RST
AITR15
AITRlO
ATIRl

SAMPLE2
ATIR9
ATIR8

ATIRO
INPl

INP2

ATIRS

AITR13

... ..-

.._ -

• • •

• ... : -.._
: : : -• ... : -
... : -
..

7
8
9
10

11
13
14

15
16

17

Pre-processor Logic, Nibble O

A-20

6 5 4 3 2 43 42 141 40

J/005 J/027

~~~~~ '8 '8 '8 '8 J/006 J/026 w WNN 

J/007 
..... 0\00C 

J/025 
INO J/024 
INl CL.Kl/INS 
CLKO/IN2 IN4 
J/008 IN3 
J/009 J/023 
J/010 '8 '8 '8 '8 '8 '8 '8 '8 '8 .................... ._. ._."""' ._. N 1/022 
1/011 N"'-!>- I.A 0\-..100-00 

J/021 

18 19 2021 2425 26j27 28 

MACH DESIGN CASEBOOK 

~ • • .... -
MACH__2 
39 .... 
38 .: 
37 -.... 
36 -... 
35 .... 
33 -... 
32 
31 

... .... 
30 ..:: 
29 _.; -
M210-15 

..... _; -..... 
_;. -

GLIT3 
HIT3 

HITO 
GLITO 

ATIRll 
ATIR12 

ATIR19 
SAMPLE3 

CMP_CLK 

ATIR17 

ATIR16 
ATIR7 
ATIR14 
ATIR6 

GLITl 
HITl 

HIT2 
GLm 

February 1991 



A1TR38 

INP7 

INP4 
SAMPLES 

ATIR22 

ATIR23 
ATIR24 

SAMPLE4 

DI_RST 
A1TR35 

A1TR30 
ATIR21 

SAMPLE6 

ATIR29 
A1TR28 

ATIR20 
INP5 

INP6 

ATIR25 

ATIR33 

... ... 

... ... 

.. 
• .. 

.. .. 
: .. .. .. 
• ... :: 
:. ...-... -
... : .. 
... .. 
... -... -

7 
8 
9 
10 

11 

13 
14 

15 
16 

17 

Pre-processor Logic, Nibble 1 

February 1991 

I 1 I 

65J 3 2 43 42~1 40 

1/005 J/027 

§§§§~ 8888 1/006 J/026 WWNN 

1/007 
..f!i.. W N""""" ...... 0\000 

I/025 
INO I/024 
INl CLK1/IN5 
CLKO/IN2 IN4 
1/008 IN3 
1/009 

§§§§ 88888 I/023 
1/010 

""""" .... ...,. """""N I/022 
1/011 NW_.,.. UI °'.....:J.00\00 J/021 

18 19 20 21 24 25 26 ~7 28 

MACH DESIGN CASEBOOK 

...... ..:. ... 
--_: --.. 

MACH_3 
39 ..... 
38 _.: -37 -41 
36 ..... 
35 -

-41 
33 .. 

_.: 32 
31 .: 
30 .:; 
29 ..; -
M210-15 

• _... -_... 
_; 
~ .. 

GLIT7 
HITT 

HIT4 
GLIT4 

ATIR31 

ATIR32 

ATIR39 
SAMPLE? 

CMP_CLK 

ATIR37 

ATIR36 
ATIR27 
ATIR34 
ATIR26 

GLIT5 
HITS 

HIT6 
GLIT6 

A·21 



attr[40 .. 79] ... --... ~ 
by_out[0 .. 7] 

~ glit[0 .. 7] 
by _in[S .. 15) ...,_ 

pproc nib 2 

attr[0 .. 19] 

,...., ~ di_rst 
hit[0 .. 3]: 

sample[0 .. 3] 
glit[0 .. 3] = inp[0 .. 3] 

di_rst .. .. 
pproc_ nib 3 

attr[0 .. 19] ..._, ~ di_rst hit[0 .. 3] = 
sample[0 .. 3] 
inp[0 .. 3] glit[0 .. 3] = 

by_inp[0 .. 7] .. -
Nibble Blocks, Byte 1 

MACH DESIGN CASEBOOK 

A·22 February 1991 



ATIRSS 

INP3 

INPO 
SAMPLE9 

ATIR42 

ATIR43 
ATIR44 

SAMPLES 
Dl_RST 

ATIR55 
ATIRSO 
ATIR41 

SAMPLElO 
ATIR49 
ATIR4S 

ATIR40 
INPl 

INP2 

ATIR45 

ATIR53 

... .. 
• 

It 
It 
It 

• ... : .. ... :: .. 
• ... : : :: .. 

... :. .. 
• -.. -.. 

7 
s 
9 
10 
11 

13 
14 
15 
16 

17 

Pre-processor Logic, Nibble 2 

February 1991 

I I I 
6 5 4 3 2 43 42 j41 40 

1/005 1/027 

§§~§~ 8888 1/006 1/026 WW N N 

1/007 
.j>. w .... ...... 0\000 

1/025 
INO 1/024 
INl CLK1/IN5 
CLKO/IN2 IN4 
I/OOS IN3 
I/009 

8888 88888 I/023 
1/010 ......................... ....... .-...- ..-N 1/022 
1/011 IV w -I>- v. a-...:aoo\OO 1/021 

lS 19 20 21 2425 26 ~ 2S 

MACH DESIGN CASEBOOK 

MACH_4 
39 
3S 

37 
36 

35 

33 

32 
31 
30 
29 

M210-15 

_.. 
_:: -.. _.. -

.... 
~ -
-4111 
-4111 

-4111 .... -
-4111 .... 
..; 
~ -
...... _; .. 
...... 
_:: -

GLITll 
HITll 

HITS 
GLITS 

A'ITR51 
A'ITR52 

A'ITR59 
SAMPLEll 
CMP_CLK 

A'ITR57 

A'ITR56 
A'ITR47 
ATIR54 
A'ITR46 

GLIT9 
HIT9 

HITlO 
GLITlO 

A·23 



ATIR.78 

INP3 

INFO 
SAMPLE13 

ATIR.62 

ATIR.63 
ATIR.64 

SAMPLE12 
DI_RST 
ATIR.75 
ATIR.70 
ATIR.61 

SAMPLE14 
ATIR.69 
ATIR.68 

ATIR.60 
INPl 

INP2 

ATIR.65 

ATIR.73 

• .. ... 

.. : :: ... 

.. : :: : : : :: :: :: ...-
• 

.. 
: ... 

.. ... 
• • 

7 
8 
9 
10 
11 
13 
14 
15 
16 
17 

Pre-processor Logic, Nibble 3 

A·24 

6 5 4 3 2 43 42 ~1 40 

0005 J/027 

~~~~~ 8888 J/026 0006 WW NN 

0007
.-.o\Ooo

1/025
INO 1/024
INl CLK1/IN5
CLKO/IN2 IN4
0008 IN3
0009 J/023
l/010 8888 88888 J/022 ~:iQc;tO~ l/011 "'""""""' J/021

18 19 20 21 24 25 26 ~I 28

MACH DESIGN CASEBOOK

MACH_5
39
38
37
36
35
33
32
31
30
29

M210-15

_...
___:: ...
.... _... ...

_,,.
..: -_,,.
..: --41 _,,. --4
~ ..:

_...
~ -• •

GLIT15
HIT15

HIT12
GLIT12

ATIR.71
ATIR.72
ATIR.79
SAMPLE15
CMP_CLK

ATIR.77
ATIR.76
ATIR.67
ATIR.74
ATIR.66

GLIT13
HIT3

HIT14
GLIT14

February 1991

sample_a[0 .. 15]

glitch_a[0 .. 15]

memoiy_buffers_O

sample[0 .. 7]
.,.. ___ ... _ glita[0 .. 3]

glitb[0 .. 3]

memoiy_buffers_l

sample[0 .. 7]
.,.. _____ glita[0 .. 3]

glitb[0 . .3]

Memory Buffers and Bus Multiplexers

tracea[0 .. 3]
traceb[0 . .3]

___ ..,. trace[0 .. 15]

--• gl_mem[0 .. 15]

gl_mema[0 .. 3] .. -
gl_memb[0 .. 3] .. -

tracea[0 .. 3]
traceb[0 .. 3]

gl_mema[0 .. 3] .. --..
gl_memb[0 .. 3] ____ ..

MACH DESIGN CASEBOOK

February 1991 A·25

GUf6
GLTI7
GLITO
GlJTl
GI.ITS
GUT2

SAMPLES
SAMPLE3
SAMPLE2

GUT4
CLKl

GLSEL
SAMPLE?

Z_G_MEM
GL_IE

Z_CBUS

GLIT3

SAMPLEO
SAMPLE!
SAMPLE4
SAMPLE6

.. :: ::
~ :: :: ::
:: ::
:: :: :: :: ..

• .. :: ..

~

.. ::
:: ;

6 5 14 3 2

~ J/005
~ l/006 ~~~~~ 9 l/001

10
!NO

11
!Nl

13
14

CLKO/IN2

15 l/008

16 l/009 8888 i-----r1 l/010
r--""- l/011 t::i t;; '.;;:::A

1819 2021

L

143 142 14114<>

IJ('Y].1

§§~~ IJ('Y].6
IJ(1].5
l/rn.4

CLKl/IN5
IN4
IN3

§§§§§ IJ('Y].3
l/rn.2

Q\...JOO\CO IJ('Y].1

24~5 26~7 28

Memory Register Logic, Byte O and Bus Multiplexer

MACH DESIGN CASEBOOK

A·26

J MACH_6
39
38
37
36
35
33
32

~ 30
29

Mll0-15

:!
_::
_::
_::
..::.
_::
_:: -

1RACE7
1RACE3
1RACE6
1RACEO
1RACE4
1RACE1
1RACE5
1RACE2

_. G
~G

L_MEM5
L_MEMl

_MEM4
_MEMO

...: GL

...: GL

...: G

...: GL

...: GL

L_MEM7
_MEM3
_MEM6
_MEM2 .. GL

February 1991

GLIT14
GLIT15
GUTS
GllT9

GLIT13
GLITlO

SAMPLE13
SAMPLEll
SAMPLElO

GLIT12
CLKl

GLSEL
SAMPLE15

Z_G_MEM

Gl..__IE
Z_CBUS

GLITll

SAMPLES
SAMPLE9

SAMPLE12
SAMPLE14

..
:: ::
:: :: ::-::
=-:: :: :: :: :: -
-::
:: ..

•

~
~ iii.. :: -

6 5 ~ 3 2

~ 1/005

~~~~~ '----91 I/006 

10 
1/007 
INO 

11 
INl 

13 CLKO/IN2 
14 

15 
1/008 

.--4-
1/009 

§§§§ 1/010 

~ 1/011 tJ I.#) ...... UI, 

181~21 
L 

Memory Register Logic, Byte 1 and Bus Multiplexer 

43 42 ~l 40 

I/027 
§'8§~ 
- I!!"" 

I/026 
I/025 
I/024 

CLK1/IN5 

IN4 

IN3 

~Hi '8 '8 '8 l/023 
I/022 Q;::jQ;\C)~ 
l/021 

2425 26~~28 

MACH DESIGN CASEBOOK 

February 1991 

J MACH_? 
39 
38 

37 
36 

35 

33 

32 

~ 
30 
29 

Mll0-15 

--'lRA 
~'lRA _:: 
~'lRA 

'lRA 
-i'lRA 
_ii. 'lRA __:: 
~'lRA 
-'lRA 

CEl5 
CEil 
CE14 
CF.8 
CE12 
CE9 
CE13 
CEIO 

_... GL 
_:: GL-
_: GL-

MEM13 
MEM9 
MEM12 
MEMS 
MEM15 
MEMll 
MEM14 
MEMlO 

:!: GL-
:.:: GL-
_:: GL-
_..: GL-
~GL-"" -

A·27 



M19 
row_sel[0 . .3] 

M18 
X2 

A PUP QA A YO 
B QB B Yl c QC Y2 
D QD G Y3 
ENP RCO 
ENT 

kb_clk CLK 
LOAD 

n_por CLR 
Xl NC3 

·II 1 74163 
NC2 NC 

PDWN NCl NC 
n_e_kb_row NC 

col_dat[0 .. 7] .. --- M20 ~-
inp[0 .. 7] 

"- DO QO ./1 

Dl Ql ./1 

D2 Q2 ./1 

D3 Q3 ./1 
D4 Q4 ./1 

D5 Q5 ./1 

D6 Q6 ./1 
D7 Q7 _/ 

n_e_col_dat • oc 
c .. J -str_col_dat 74373 

User Panel Keyboard Interface 

MACH DESIGN CASEBOOK 

A·28 February 1991 



en_ext ext_tim 

e_xckl 
M46 

xckl 
ext_ckl 

AND2 

e_ck2 M47 
xck2 

ext_ck2 
AND2 

M48 
xtrigl 

ext_trigl 
AND2 

e_xtri 2 
xtrig2 

ext_trig2 

AND2 

External Timing 

MACH DESIGN CASEBOOK 

February 1991 A·29 



MSW[3] ------------~ 

6 5 4 3 2 43 42 1 40 

7 
I/005 I/027 

8 ~~~~~ aaaa 
9 I/006 WWNN I/026 

..... 0\000 

10 
I/007 I/025 

/POR 
11 

INO I/024 
HIT 

13 
INl Cl.Kl/INS 

TC 
14 

CLKO/IN2 
!PM_G_CS 

15 
I/008 

GO I/009 16 §§§§ !PM_G_OE I/010 
17 

/AM_G_WE I/011 NW+. VI 

18 19 20 

/AM_G_CS -----------' 

/AM_G_OE -----------' 

PM_ADDR_CK -----------~ 
!PM_G_WE -----------~ 

21 

aaaaa 
.................... N °' -.J oc \0 0 

242526 728 

AM_ADDR_CK ----------------' 

Control Logic 

nm_la_trace_memory 

IN4 

IN3 
I/023 
I/022 
I/021 

MACH_l 

39 
38 

37 
36 

MSW[4] 

35 

33 
K_CLK 

DONE 
32 

MSW[15] 
31 
30 
29 

M210-15 

m_addr[0 .. 10) ~----•I"' m_addr[0 .. 10] trace[0 .. 15) ... ------.• trace[0 .. 15) 

Trace Memory, Word Level 

MACH DESIGN CASEBOOK 

A-30 February 1991 



t_addr[0 . .1 O] 

tm__g_cs 

tm_g_oe 

tm__g_we 

Trace Memory 

February 1991 

--

.. -• • 

trace[O .. lS] '"' 

U3 

" t addrO 8 AO DO ....2_ traceO ./I 

" t addrl 7 Al D1 10 tracel ./I 

" t addr2 6 A2 D2 11 trace2 

" t addr3 s A3 D3 13 trace3 ./I 

" t addr4 4 A4 D4 14 trace4 

" t addr5 3 AS DS lS trace5 ./I 
t, !.._addr6 2 A6 D6 16 trace6 

" t addr7 l A7 D7 17 trace7 ./I 

" t addrS 23 AS 
" t adc!!2_ 22 A9 
"ta~ 19 AlO 

18 -CE 
20 OE 
21 -WE 

201S 

U4 

t addrO s AO DO 9 traces ./I 

" t addrl 7 Al D1 10 trace9 ./I 

" t addr2 6 A2 D2 11 tracelO ./I 
t addr3 s A3 D3 13 tracel 1 ./I 

" t addr4 4 A4 D4 14 tracel2 ./I 
t addr5 3 AS DS IS trace13 ./I 

" t addr6 2 A6 D6 16 trace14 /I 
t addr7 l A7 D7 17 tracelS ./ 
t addrS 23 AS 

" t addr9 22 A9 
t~TIJ: 19 AlO 

lS -CE 
20 -OE 
21 WE 

2018 

MACH DESIGN CASEBOOK 

A·31 



IS] :: host_bus[O .. 

data_ 

host_s[O 

elk~ 

.. 2]_!:1 

host sO 

"- host sl 

"- host s2 

1 

-=-
X3 

PDWN 

host sO 
host sl 
host s2 

Host Interface 

A·32 

" 
"-

"-

" 

" 

U31 ~ sample[O .. IS] 
22 SIN Bl 21 ../I 
4 Al B2 20 ../I 
s 19 
6 A2 B3 

IS A3 B4 ./I 
7 

A4 BS 17 
s A5 B6 16 ../I 

_9 A6 B7 IS 
10 A7 BS 14 ../I 
11 AS QS i--lL 
iJ.. CLK 
1 so :.z.: SI 

...l S2 

74ASS77 

U29 
22 SIN Bl 21 
4 Al B2 20 
s A2 B3 19 
6 IS 
7 A3 B4 

17 
s A4 BS 

16 
...2.. 

AS B6 
IS A6 B7 ./ 

10 A7 BS 14 ./ 
11 AS QS r1L 
23 CLK 
1 so 
2 SI 
3 S2 

74ASS77 

MACH DESIGN CASEBOOK 

February 1991 



rdat[0 .. 15] sample[0 .. 15] 

5 

3 

9 

5 

11 

9 

13 

11 

13 

3 

5 

3 

9 

Input Buffers 

nm la_glitch memory 

m_addr[0 .. 10] ~-------m_addr[0 . .10] gl_mem[0 .. 15] 411-----...... 111! gl_mem[0 . .15] 

Glitch Memory, Word Level 

MACH DESIGN CASEBOOK 

February 1991 A-33 



g_addr[0 .. 10] 

gm_g_cs 

gm_g_oe 

gm_g_we 

Glitch Memory 

A·34 

.. 
r 

... -.. w .. 
w 

gl_mem[O .. lS] ..._ 

U3 

"- ..&. addi<> 8 AO DO 9 gl_memO ./ 
"- ..&. addrl 7 Al DI 10 ::i[_meml ./ 
I\. it_ addr2 6 A2 D2 11 glmem2 

_g_ addr3 s A3 D3 13 __g_mem3 
"- g_ addr4 4 A4 D4 14 __g mem4 

_g_ addr5 3 AS DS lS _g memS 
"- g_ addr6 2 A6 D6 16 __g_mem6 ./ 

_g_ addr7 1 A7 D7 17 _&mem7 
_g_ addr8 23 AS 

"- g_ !!!!!!!2. 22 A9 
_g_~ i2: AlO 

18 -
CE 

20 -
OE 

21 WE 

2018 

U4 

I\. _g_ addi<> 8 AO DO 9 g mem8 ./ 
"__&. addrl 7 Al DI 10 ~-mem9 ./! 

_g_ addr2 6 A2 D2 11 __g memlO 
"- _g_ addr3 s A3 D3 13 _&Jllemll ./ 

_g_ addr4 4 A4 D4 14 __g meml2 
I\....&. addr5 3 AS DS lS _g_meml3 ./' 

_g_ addr6 2 A6 D6 16 ::ii: meml4 
"- __&. addr7 1 A7 D7 17 ..&!__memlS ./ 
"- ..&. addr8 23 AS 

_&.add~ 22 A9 
'\.._&.~10 19 AlO 

18 -CE 
20 -

OE 
21 WE 

2018 

MACH DESIGN CASEBOOK 

February 1991 



A-C 
Adjusting design-portion size 76 
Affinity 105 
Annotation 101 
Architectural primitives 36 
Array feature identification 16 
Array features 43 
Array function identification 19 
Array functions 25 
Array structure 89 
Attribute memory 98 
Back annotation 101 
Bit-slice combinations 104 
Bit-slice size 89 
Blocked routing paths 96 
Buried registers 63 
Compare traces 35 
Compilation and fitting 21 
Complete LSA system implementation 97 
Control and data integration 78 
Control chips 99 
Control logic 49, 52 
Control outputs 79 
Control state machines 51 
Control-flow analysis 18 
Correct improper logic assignments 95 

D 
Data and control integration 78 
Data collection 30, 44 
Data display and data processing 35 
Data flow 42 

Array features 43 
Singular features 46 

Data flow analysis 15 
Data storage and transfer 43 
Data-flow logic 29 
Decode logic 72 
Defining LSA architectural primitives 36 
Delays94 
Design assumptions 101 

February 1991 

INDEX 

Design description 4 
Design entry 21 
Design process 13 

Array feature identification 16 
Array function identification 19 
Compilation and fitting 21 

Control-flow analysis 18 
Data flow analysis 15 
Feature decomposition 17 
Function decomposition 19 
1/0 and speed partitioning 20 
Implementation 20 
Merging designs 23 

Simulation 22 
Singular feature identification 16 
Singular function identification 18 
System architecture analysis 15 
Tuning 24 

Design review 103 
Design structure 103 
Design-methodology benefits 1 

E-G 
Edge performance 39 
Entry 21 
Expanding to LSA data flow 33 
External-timing signal logic 46 
Falling-edge detector 37 
Fanout statistics 96 
Feature decomposition 17 
Feedback map 96 
Final chip implementation 101 
Final LSA architecture 99 
Fitting logic to a chip 89 
Fitting options 25 
Floating and fixed pin locations 65 
Function decomposition 19 
Functions and flow 30 
Gate splitting 24, 26, 91, 96 

MACH DESIGN CASEBOOK 

1-1 



Glitch detection 30 
Glitch performance 40 
Glitch-detector circuit 38 
Group command 27 
Group command using MACH_Seg_block 95, 96, 

104 
Group functions within a specific MACH block 27 

1/0 and speed partitioning 20 
l_KB_INT.PDS A-7 
l_MEMREG.SCH 97 
l_MEMREG.SCH A-4 
l_PPNB.SCH 97 
l_PPNB.SCH A-5 
Implementation 20, 99 
Improper logic assignments 26, 96 
Improper path assignments 25, 96 
Improper pin assignments 27, 95 
Improved LSA architecture 31 
Included files A-4 
Input channel 43 
Integrate the design in MACH chips 82 
Integration of data and control 78 

L 
LA_BKCHG.PDS 102, A-7 
LA_BKPIN.PDS 102, A-8 
LA_CO.PDS 78, 97 
LA_COMB.PDS 97, 98, 102, A-8 
LA_Cx.PDS-6 
LA_KMAIN.PDS 97, 102, A-6 
LA_LO_GL.PDS A-8 
LA_MERGE.PDS -6 
LA_RO_GL.PDS A-8 
LA_REQ.PDS A-6 
LA_RLOAD.PDS 98, A-9 
LA_RPL.PDS A-6 
Locate and correct improper logic assignments 95 
Logic assignment 96, 104 
Logic division 103 
Logic placement 25, 90 
Logis state analyzer (See LSA) 
LSA architecture 31 
LSA array features 43 
LSA block diagram 4 
LSA control 98 
LSA control logic 49 
LSA control requirements 4 
LSA data-flow requirements 33 
LSA design density 10 

LSA design description 4 
LSA design for MACH chips 85 
LSA design review 103 
LSA final implementation 99 
LSA functionality 9 
LSA functions and flow 30 
LSA performance 9 
LSA resource allocation summary 89 
LSA sample board layout 4 
LSA singular features 46 
LSA system architecture 28, 29 
LSA system design, data flow 42 
LSA system implementation 97 
LSA testability 34 

M 
MACH application recommendations 32 
MACH chip implementation 85, 86 
MACH chip integration 82 
MACH design tools 12 
MACH fitting options 25, 90, 104 
MACH SEG_x 27 
MACH vs non-MACH devices 31 
MACH-device resources 11 
Memory register requirements 4 
Memory-block data registers 83 
Memory-control equation 79 
Merging design files 65 

File differences 67 
Merging designs 23 
Merging files 

Logic assignment on a single MACH chip 69 
Microprocessor-controlled chips 97 

N·R 
NODE macro 38 
Optional files A-7 
Pack product terms 104 
PALASM\EXAMPLES\CB A-3 
Partitioning 20, 90 
Pattern detection 29 
Pattern memory 98 
Performance calculation 38 
Placement 96 
Preprocessing chips 8 
Preprocessor chip 98 
Preprocessor logic requirements 4 
Product-term allocation 24, 26, 91, 104 
Propagation delays 38 
Re-engineering 94 

MACH DESIGN CASEBOOK 

1-2 February 1991 



Re-engineering considerations 101 
Redesign 94 
Redesign strategies 86 
Relating supervisory and subsidiary state machines 

59 
Reorganize improper logic assignments 96 
Reposition improper path assignments 96 
Resource allocation summary 89 
Rising-edge detector 37 
Routing paths blocked 96 

s 
Sequence detection 36 
Sequential state-machine logic 72 
Simulation 22 
Simulation for interim and combined designs 71 
Simulation results for a state machine 80 
Singular control function 72 
Singular control implementation 73 
Singular control state machines 51 
Singular control-flow functions 27 
Singular feature identification 16 
Singular features 46 
Singular function identification 18 
Speed 32 
Speed partitioning 20 
State definitions 61 
State machines 51, 105 

Buried registers 63 
Testing and observability 64 

State-independent input 79 
State-machine assignments 56 
State-machine flow 52 
State-machine partitioning and implementation 57 
States and changes, strings and state definitions 61 
Supervisory and subsidiary state machines 57, 59 
Supervisory state machine 52, 56 
System architecture 28, 29 
System architecture analysis 15 
System considerations 103 
System data flow 104 
System partitioning 104 

y.z 
Testability 34 
Testing and observability 64 
Timing-critical functions 32 
Trace, trigger, and user-interface control 35 
Tradeoffs and redesign strategies 86 
Trigger checking 28 

Trigger control 35 
Trigger detection 98 
Trigger detection and trace control 52 
Trigger sequence 98 
Trigger-detection 72 
Trigger-detection analysis 72 
Triggering and tracing 51 
Tuning 24, 88 

Improper logic assignments 96 
Improper path assignments 96 
Improper pin assignments 95 

User-interface control 35 
Wiring congestion 95 

MACH DESIGN CASEBOOK 

February 1991 1·3 



MACH DESIGN CASEBOOK 

1-4 February 1991 





•il'·lii!i§ll 
North American _________ _ 
ALABAMA ............................................................... (205) 882-9122 
ARIZONA ................................................................ (602) 242-4400 
CALIFORNIA, 

Culver City ......................................................... (213) 645-1524 
Newport Beach ..... , ........................................... (714) 752-6262 
Sacramento(Rosev11le) .................................... (916) 786-6700 
San Diego .......................................................... (619) 560-7030 
San Jose ..... _. ...................................................... (408) 452-0500 
Woodland Hills .................................................. (818) 992-4155 

CANADA, Ontario, . 
Kanata ................................................................ (613) 592-0060 
Willowdale ......................................................... (416) 224-5193 

COLORADO ........................................................... (303) 741-2900 
CONNECTICUT ..................................................... (203) 264-7800 
FLORIDA, 

Clearwater ......................................................... !813) 530-9971 
Ft. Lauderdale ................................................... 305) 776-2001 
Orlando (Longwood) ......................................... 407) 862-9292 

GEORGIA ............................................................... (404) 449-7920 
IDAH0 ..................................................................... (208) 377-0393 
ILLINOIS, 

Chicago (Itasca) ............................................... (708) 773-4422 
Naperville ........................................................... (708) 505-9517 

KANSAS .................................................................. (913) 451-3115 
MARYLAND ............................................................ (301) 381-3790 
MASSACHUSETTS ............................................... (617) 273-3970 
MINNESOTA .......................................................... (612) 938-0001 
NEW JERSEY, 

Cherry Hill .......................................................... (609) 662-2900 
Parsippany ......................................................... (201) 299-0002 

NEW YORK, 

~i~~~~e°~.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ig1 ~) )~~~=~~~g 
Rochester .......................................................... (716) 272-9020 

NORTH CAROLINA 
Harrisburg .......................................................... (704) 455-1010 
Raleigh ............................................................... (919) 878-8111 

OHIO, 
Columbus (Westerville) .................................... (614) 891-6455 
Dayton ................................................................ (513) 439-0268 

OREGON ................................................................ (503) 245-0080 
PENNSYLVANIA .................................................... (215) 398-8006 
TEXAS, 

~~~:~ ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: !~ 1 ~l g~t~ggg 
UT~Hu.~'..0.~.::!~6~! m:~gg~
International __________ _
BELGIUM, Bruxelles TEL (02) 771-91-42

FAX : (02) 762-37-12
TLX 846-61028

FRANCE, Paris TEL. (1) 49-75-10-10
FAX (1) 49-75-10-13
TLX ... 263282F

GERMANY,
Bad Homburg TEL (49) 6172-24061
MOnchen TEL (089) 4114-0

FAX (089) 406490
TLX ... 523883

HONG KONG, TEL (852) 865-4525
Wanchai FAX (852) 865-1147

TLX : .. 67955AMDAPHX
ITALY, Milan TEL (02) 3390541

JAPAN,

................................. (02) 3533241
FAX••. (02) 3498000
TLX 843-315286

Atsugi TEL (0462) 29-8460
FAX (0462) 29-8458

Kanagawa TEL (0462) 47-2911
FAX (\)462) 47-1729

Tokyo TEL (03) 3346-7550
FAX (03) 3342-5196
TLX J24064AMDTKOJ

Osaka TEL (06) 243-3250
FAX (06) 243-3253

International (Continued)
KOREA, Seoul .•................ TEL (82) 2-784-7598

LATIN AMERICA,
FAX (82) 2-784-8014

Ft. Lauderdale TEL (305) 484-8600
FAX (305) 485-9736
TLX 5109554261 AMDFTL

NORWAY, Hovik TEL (03) 010156
FAX (02) 591959
TLX ... 79079

SINGAPORE TEL 65-3481188
FAX 65-3480161
TLX 55650 AMDMMI

SWEDEN,
Stockholm TEL (08) 733 03 50
(Sundbyberg) FAX (08) 733 22 85

TLX ... 11602
TAIWAN .•.......................... TEL (886~ 2-7213393

FAX (886 2-7723422
. TLX 88 -2-7122066

UNITED KINGDOM,
Manchester area TEL (0925J 828008
(Warrington) FAX (0925 851219

TLX 85 -628524
London area TEL !0483! 7 40440
(Woking) FAX 0483 756196

TLX 851-859103

North American Representatives __ _
CANADA
Burnaby, B.C. - DAVETEK MARKETING (604) 430-3680
Calgary, Alberta - DAVETEK MARKETING (403) 291-4984
Kanata, Ontario - VITEL ELECTRONICS (613) 592-0060
Mississau.ga, Ontario - VITEL ELECTRONICS .. (416) 676-9720
Lachine, Quebec - VITEL ELECTRONICS (514) 636-5951
ILLINOIS

HEARTLAND TECH MKTG, INC (312) 577-9222
IN DIANA

Huntington - ELECTRONIC MARKETING
CONSULTANTS, INC (317) 921-3450
Indianapolis - ELECTRONIC MARKETING
CONSULTANTS, INC (317) 921-3450

IOWA
LORENZ SALES ... (319) 377-4666

KANSAS
Merriam - LORENZ SALES (913) 469-1312

KE~+tMRv LORENZ SALES (316) 721-0500

ELECTRONIC MARKETING
CONSULTANTS, INC (317) 921-3452

MICHIGAN
Birmingham - MIKE RAICK ASSOCIATES (313) 644-5040
Holland - COM-TEK SALES, INC (616) 392-7100
Novi - COM-TEK SALES, INC (313) 344-1409

MINNESOTA
Mel Foster Tech. Sales, Inc (612) 941-9790

MISSOURI
NE~~~§~~ SALES ... (314) 997-4558

NEW~~~fc~ALES ... (402) 475-4660

THORSON DESERT STATES (505) 883-4343
NEW YORK

East Syracuse - NYCOM, INC (315) 437-8343
Woodbury - COMPONENT

OHYc§>NSULTANTS, INC (516) 364-8020

Centerville - DOLFUSS ROOT & CO (513) 433-6776
Columbus - DOLFUSS ROOT & CO (614) 885-4844
Strongsville - DOLFUSS ROOT & CO (216) 899-9370

OREGON
ELECTRA TECHNICAL SALES, INC (503) 643-5074

PENNSYLVANIA
RUSSELL F. CLARK CO.,INC (412) 242-9500

PUERTO RICO
COMP REP ASSOC, INC (809) 746-6550

WASHINGTON
ELECTRA TECHNICAL SALES (206) 821-7442

WISCONSIN
HEARTLAND TECH MKTG, INC (414) 792-0920

Advanced Micro Devices reserves the right to make changes in its p·roduct without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details,
contact your local AMO sales representative. The company assumes no responsibility for the use of any circuits described herein.

Advanced Micro Devices, Inc. 901 Thompson Pia"!!, P.O. Box 3453, Sunnyvale, CA 94088, USA
Tel: (408) 732-2400 • TWX: 910·339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450
APPLICATIONS HOTUNE & LITERATURE ORDERING •TOLL FREE: (800) 222-9323 • (408) 749-5703

© 1991 Advanced Micro Devices, Inc.
315191

Printed in USA

