
Am486'MDXlDX2 Microprocessor
Hardware Reference Manual

Advanced
Micro

Devices

Am486™DX/DX2
Microprocessor Hardware Reference

Manual

Rev. 1,1993

ADVANCED MICRO DEVICES;r1

© 1993 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for
a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice.
AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and Am386 are registered trademarks of Advanced Micro Devices, Inc.

Am486 is a trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

TABLE OF CONTENTS

Chapter 1 Am486DX/DX2 Microprocessor Features
1.1 General Description. 1-1
1.2 Distinctive Characteristics "'................... 1-1
1.3 Pin Descriptions 1-3

Chapter 2 Am486DX/DX2 Architectural Overview
2.1 Introduction 2-1
2.2 Register Set 2-2

2.2.1 Base Architecture Registers.. " 2-2
2.2.2 System Level Registers 2-8
2.2.3 Floating-Point Registers 2-14
2.2.4 Debug and Test Registers 2-21
2.2.5 Register Accessibility. 2-21
2.2.6 Compatibility With Future Processors 2-21

2.3 Instruction Set 2-21
2.4 Memory Organization ... 2-22

2.4.1 Address Spaces 2-25
2.4.2 Segment Register Usage 2-25

2.5 I/O Space ... 2-27
2.6 Addressing Modes .. 2-27

2.6.1 Register and Immediate Modes 2-28
2.6.2 32-Bit Memory Addressing Modes 2-28
2.6.3 Differences Between 16- and 32-Bit Addresses 2-29

2.7 Data Formats .. 2-30
2.7.1 Data Types .. 2-30
2.7.2 Little Endian vs Big Endian Data Formats 2-33

2.8 Interrupts .. 2-34
2.8.1 Interrupts and Exceptions 2-34
2.8.2 Interrupt Processing. 2-35
2.8.3 Maskable Interrupt ... 2-35
2.8.4 Non-Maskable Interrupt 2-35
2.8.5 Software Interrupts. 2-36
2.8.6 Interrupt and Exception Priorities 2-36
2.8.7 Instruction Restart ... 2-38
2.8.8 Double Fault .. 2-38
2.8.9 Floating-Point Interrupt Vectors 2-38

Chapter 3 Real Mode Architecture
3.1 Introduction ... 3-1
3.2 Memory Addressing ... 3-2
3.3 Reserved Locations .. 3-2
3.4 Interrupts ... 3-3
3.5 Shutdown and Halt .. 3-3

Chapter 4 Protected Mode Architecture
4.1 Introduction ... 4-1
4.2 Addressing Mechanism .. 4-1
4.3 Segmentation ... 4-1 I:

I

Table Of Contents

~ AMD

4.3.1 Introduction .. 4-1
4.3.2 Terminology ... 4-3
4.3.3 Descriptor Tables ... 4-3
4.3.4 Descriptors .. 4-5

4.4 Protection 4-11
4.4.1 Protection Concepts .. 4-11
4.4.2 Rules of Privilege .. 4-12
4.4.3 Privilege levels .. 4-12
4.4.4 Privilege level Transfers 4-17
4.4.5 Call Gates .. 4-19
4.4.6 Task Switching ... 4-19
4.4.7 Initialization and Transition to Protected Mode 4-21

4.5 Paging .. 4-22
4.5.1 Paging Concepts .. 4-22
4.5.2 Paging Organization .. 4-23
4.5.3 Page level Protection (R/w, U/S Bits) 4-25
4.5.4 Page Cacheability (PWT and PCD Bits) 4-25
4.5.5 Translation lookaside Buffer 4-26
4.5.6 Paging Operation .. 4-27
4.5.7 Operating System Responsibilities 4-2S

4.6 Virtual SOS6 Environment .. 4-29
4.6.1 Executing SOS6 Programs 4-29
4.6.2 VirtualSOS6 Mode Addressing Mechanism 4-29
4.6.3 Paging in Virtual Mode , 4-29
4.6.4 Protection and 1/0 Permission Bit-map 4-30
4.6.5 Interrupt Handling .. 4-32
4.6.6 Entering and leaving Virtual SOS6 Mode 4-32

Chapter 5 On-Chip Cache
5.1 Cache Organization .. 5-1
5.2 Cache Control .. 5-2
5.3 Cache Line Fills ... 5-2
5.4 Cache Line Invalidations ... 5-3
5.5 Cache Replacement ... 5-3
5.6 Page Cacheability ... 5-3
5.7 Cache Flushing ... 5-5
5.S Caching Translation lookaside Buffer Entries 5-6

Chapter 6 Hardware Interface
6.1 Introduction ... 6-1
6.2 Signal Descriptions .. 6-2

6.2.1 Clock (ClK) .. 6-2
6.2.2 Address Bus (A31-A2, BE3-BEO) 6-3
6.2.3 Data Lines (031-00) .. 6-3
6.2.4 Parity .. 6-4
6.2.5 Bus Cycle Definition ... 6-4
6.2.6 Bus Control .. 6-6
6.2.7 Burst Control ... 6-6
6.2.S Interrupt Signals (RESET, INTR, NMI) 6-7
6.2.9 Bus Arbitration Signals 6-7
6.2.10 Cache Invalidation .. 6-9
6.2.11 Cache Control .. 6-9
6.2.12 Page Cacheability (PWT, PCD) 6-10
6.2.13 Numeric Error Reporting (FERR, IGNNE) 6-10
6.2.14 Bus Size Control (BS16, BS8) 6-11
6.2.15 Address Bit 20 Mask (A20M) 6-11
6.2.16 Boundary Scan Test Signals 6-12

6.3 Write Buffers ... 6-13

Ii Table Of Contents

AMD~
6.3.1 Write Buffers and 1/0 Cycles "" 6-14
6.3.2 Write Buffers Implications on Locked Bus Cycles 6-14

6.4 Interrupt and Non-maskable Interrupt Interface 6-15
6.4.1 Interrupt Logic .. 6-15
6.4.2 NMI Logic ... 6-15

6.5 RESET And Initialization .. 6-16
6.5.1 Pin State During RESET , 6-16

Chapter 7 Bus Operation
7.1 Data Transfer Mechanism .. 7-1

7.1.1 Memory and I/O Spaces ... " , 7-2
7.1.2 Memory and I/O Space Organization 7-2
7.1.3 Dynamic Data Bus Sizing , 7-3
7.1.4 Interfacing with 8-, 16-, and 32-Bit Memories 7-4
7.1.5 Dynamic Bus Sizing During Cache Line Fills 7-6
7.1.6 Operand Alignment ... 7-7

7.2 Bus Functional Description .. 7-9
7.2.1 Non-Cacheable Non-Burst Single Cycle , 7-9
7.2.2 Multiple and Burst Cycle Bus Transfers 7-10
7.2.3 Cacheable Cycles .. 7-13
7.2.4 Burst Mode Details ... 7-16
7.2.5 8- and 16-Bit Cycles ... , 7-20
7.2.6 Locked Cycles ... 7-21
7.2.7 Pseudo-Locked Cycles 7-22
7.2.8 Invalidate Cycles ... 7-24
7.2.9 Bus Hold , .. 7-27
7.2.10 Interrupt Acknowledge 7-27
7.2.11 Special Bus Cycles .. 7-29
7.2.12 Bus Cycle Restart , 7-29
7.2.13 Bus States .. 7-30
7.2.14 Floating-Point Error Handling 7-30
7.2.15 Floating-Point Error Handling In AT Compatible Systems 7-33

Chapter 8 Am486DX/DX2 CPU Testability
8.1 Built-in Self Test (BIST) ... 8-1
8.2 On-chip Cache Testing , 8-1

8.2.1 Cache Testing Registers TR3, TR4, and TR5 8-2
8.2.2 Cache Testability Write 8-3
8.2.3 Cache Testability Read 8-4
8.2.4 Flush Cache ... 8-4

8.3 TLB Testing ... 8-4
8.3.1 Translation Lookaside Buffer Organization 8-4
8.3.2 TLB Test Registers (TR6 and TR7) 8-6
8.3.3 TLB Write Test .. 8-8
8.3.4 TLB Lookup Test .. 8-8

8.4 Three-state Output Test Mode , 8-9
8.5 Am486DXlDX2 Microprocessor Boundary Scan (JTAG) 8-9

8.5.1 Boundary Scan Architecture 8-9
8.5.2 Data Registers .. 8-10
8.5.3 Instruction Register .. 8-11
8.5.4 Test Access Port (TAP) Controller 8-13
8.5.5 Boundary Scan Register Cell , 8-17
8.5.6 Tap Controller Initialization 8-17

Chapter 9 Debugging Support
9.1 Breakpoint Instruction .. 9-1
9.2 Single-step Trap ... 9-1
9.3 Debug Registers .. 9-1

Table Of Contents III

~ AMD

9.3.1 Linear Address Breakpoint Registers (DR3-DRO) 9-2
9.3.2 Debug Control Register (DR?) 9-2
9.3.3 Debug Status Register (DR6) 9-5
9.3.4 Use oj Resume Flag (RF) in Flag Register 9-6

Chapter 10 Instruction Set Summary
10.1 Microprocessor Instruction Encoding And Clock Count

Summary ... 10-1
10.1.1 Instruction Clock Count , 10-1
10.1.2 Instruction Clock Count Assumptions 10-1

10.2 Instruction Encoding .. 10-20
10.2.1 32-Bit Extensions of the Instruction Set 10-21
10.2.2 Encoding of Integer Instruction Fields. 10-21
10.2.3 Encoding of Floating-Point Instruction Fields " ,. 10-29

Chapter 11 Comparison of Am486DX/DX2 CPU and the 386 CPU with Math Coprocessor

Chpater 12 Converting An Existing Am486DX CPU Design

iv Table Of Contents

AMD ~
LIST OF FIGURES

Figure 1-1

Figure 1-2

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Am486DXlDX2 CPU Pipelined 32-Bit Microarchitecture Block Diagram .. 1-2

Logic Symbol 1-3

Base Architecture Registers

Flags Register

Am486 Microprocessor Segment Registers and Associated
Descriptor Cache Registers

System Level Registers

Control Register 0

Control Registers 2 and 3

Floating-Point Registers

FPU Tag Word

...... 2-3

.... 2-4

2-8

. 2-9

2-9

.2-13

.2-14

............ 2-15

Figure 2-9 FPU Status Word 2-15

Figure 2-10 Protected Mode FPU Instruction and Data Pointer Image In Memory,
32-Bit Format 2-19

Figure 2-11 Real Mode FPU Instruction and Data Pointer Image in Memory.
32-Bit Format 2-19

Figure 2-12 Protected Mode FPU Instruction and Data Pointer Image in Memory,

Figure 2-13

Figure 2-14

Figure 2-15

Figure 2-16

Figure 2-17

Figure 2-18

Figure 3-1

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-13

Figure 4-14

Figure 4-15

Figure 4-16

Figure 4-17

Figure 4-18

Figure 4-19

16-Bit Format 2-20

Real Mode FPU Instruction and Data Pointer Image in Memory,
16-Bit Format 2-20

FPU Control Word ... 2-23

Debug and Test Registers .. 2-23

Address Translation 2-26

Addressing Mode Calculations 2-26

Big vs Little Endian Memory Format 2-34

Real Address Mode Addressing 3-1

Protected Mode Addressing .. 4-2

Paging and Segmentation ... 4-2

Descriptor Table Registers ... 4-4

Interrupt Descriptor Table Register Usage 4-5

General Format of Segment Descriptors 4-6

Code and Data Segment Descriptors 4-6

System Segment Descriptors 4-8

Gate Descriptor Formats ... 4-9

80286 Code and Data Segment Descriptors 4-10

Example Descriptor Selection 4-11

Segment Descriptor Caches lor Real Address Mode
(Segment Limit and Attributes are Fixed) 4-12

Segment Descriptor Caches for Protected Mode
(Loaded per Descripto r) .. 4-13

Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are fixed) 4-14

Four-level Hierarchical Protection 4-15

Sample I/O Permission Bit Map , ... " 4-15

Am486 CPU TSS and TSS Registers ... , .. '" , 4-16

80286 TSS ... 4-20

Simple Protected System ... 4-22

GDT Descriptors for Simple System 4-22

Table Of Contents v

~ AMD

Figure 4-20

Figure 4-21

Figure 4-22

Figure 4-23

Figure 4-24

Figure 4-25

Figure 4-26

Figure 5-1

Figure 5-2

Figure 5-3

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figure 7-7

Figure 7-8

Figure 7-9

Figure 7-10

Figure 7-11

Figure 7-12

Figure 7-13

Figure 7-14

Figure 7-15

Figure 7-16

Figure 7-17

Figure 7-18

Figure 7-19

Figure 7-20

Figure 7-21

Figure 7-22

Figure 7-23

Figure 7-24

Figure 7-25

Figure 7-26

Figure 7-27

Figure 7-28

Figure 7-29

Figure 7-30

Figure 7-31

Figure 8-1

Figure 8-2

vi

Paging Mechanism """"""""" "". "."."" .. .

Page Directory Entry (Points to Page Table) .. .

Page Table Entry (Points to Page) ."."." .".

"" .. " .. 4-23

.". ".".4-24

""""" .. "" 4-24

Translation Lookaside Buffer ""."."" .. """."""". " .. " " " .. " . 4-27

Page Fault Error Code Format" "" """ .. " " .. "" .. ".. .." .. ".". 4-28

Virtual 8086 Environment Memory Management "" ... " " "4-30

Virtual 8086 Environment Interrupt and Call Handling. " .. " 4-34

On-Chip Cache Physical Organization " 5-1

On-Chip Cache Replacement Strategy .. "." .""" "" " "" 5-4

Page Cacheability " "."... " . ". "."" " .. 5-5

Functional Signal Groupings ." " .. ".............. 6-2

ClK Waveform ... 6-3

Internal Cache Example , 6-13

Internal Cache Example X No Longer Cached , " ." 6-14

Pin States During RESET 6-19

Physical Memory and I/O Spaces , , 7-2

Physical Memory and 110 Space Organization 7-3

Am486 Microprocessor with 32-Bit Memory 7-5

Addressing 16- and 8-Bit Memories "7-5

Logic to Generate A 1, BHE, and BlE lor 16-Bit Buses 7-5

Data Bus Interface to 16- and 8-bit Memories " 7-7

Basic 2-2 Bus Cycle " 7-10

Basic 3-3 Bus Cycle .. 7-11

Non-Cacheable, Non-Burst, Multiple Cycle Transfers 7-13

Non-Cacheable, Burst Cycle 7-14

Non-Burst, Cacheable Cycles 7-15

Burst Cacheable Cycle ... 7-16

Effect of Changing KEN " " .. " 7-17

Slow Burst Cycle .. 7-17

Burst Cycle Showing Order of Addresses 7-18

Interrupted Burst Cycle ... 7-19

Interrupted Burst Cycle with Unobvious Order of Addresses 7-20

8-Bit Bus Size Cycle ... 7-21

Burst Write as a Result of B88 or 8816 " " 7-22

Locked Bus Cycle ... 7-23

Pseudo Lock Timing ... 7-23

Fast Internal Cache Invalidation Cycle 7-25

Typical Internal Cache Invalidation Cycle 7-25

System with Second level Cache , , 7-26

Cache Invalidation Cycle Concurrent with Line Fill 7-27

HOlD/HlDA Cycles .. 7-28

Interrupt Acknowledge Cycles 7-28

Restarted Read Cycle .. 7-31

Restarted Write Cycle .. 7-32

Bus State Diagram ... 7-33

DOS Compatible Numerics Error Circuit 7-35

Cache Test Registers ... 8-2

Sample Assembly Code for Cache Testing 8-5

Table Of Contents

Figure 8-3

Figure 8-4

Figure 8-5

Figure 8-6

Figure 8-7

Figure 9-1

Figure 9-2

Figure 10-1

Figure 12-1

Figure 12-2

TLB Organization

TLB Test Registers

AMD ~
.. 8-6

.8-6

Logical Structure of Boundary Scan Register 8-11

Format of Device Identification Register 8-11

TAP Controller State Diagram. 8-14

Debug Registers

Debug Registers Breakpoint Fields

9-2

...... 9-3

General Instruction Format 10-22

Flowchart for Am486DX CPU to Am486DX2 CPU Conversion .. 12-3

Performance of 50-MHz Am486DX2 CPU vs. 33-MHz Am486DX CPU .. 12-4

Table Of Contents vii

~ AMD

viii

LIST OF TABLES

Table 1-1
Table 1-2

Table 1-3

Table 1-4

Table 1-5

Table 2-1

Table 2-2

Table 2-3

Table 2-4

Table 2-5

Table 2-6

Table 2-7

Table 2-8

Table 2-9

Table 2-10

Table 2-11

Table 2-12

Table 2-13

Table 2-14

Table 2-15

Table 2-16

Table 2-17

Table 3-1

Table 3-2

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

Table 5-1

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 7-1

Table 7-2

Table 7-3

Table 7-4

Table 7-5

Table 7-6

Table 7-7

Table 7-8

Table 7-9

Table 7-10

Table 8-1

Output Pins 00000000000.0.0 00000 1-9

Input Pins 0 0 0 0 0 .. ' . 0 0 O. 0 0 0 0 0 0 , '0' 0 0 0 , . , , 0 0 , 0 0 , ... 0 , , , 0 0 . 0 1-9

InpuVOutpul Pins ., 0 0 . 0 0 0 0 0 .. 0 0 , 0 0 0 0 0 . , 0 0 ' , 0 0 , o , 0 1-10

Bus Cycle Definition, 0 , 0 , .. , 0 , , ... , .. , , , . 0 , . 0 0 00 1-10

Test Pins ', .. , .. 0 , , .. ' , , , , .. , 0 , .. 0 o •• 0 " . ' .. , 0 , .. , ... 1-10

Data Type Alignment Requirements ' . 0 0 . 0 . 0 0 " , 0 0 " . " " 0 0 2-6

Processor Operating Modes" . 0 . 0 "0 '0"

On-Chip Cache Control Modes ... "" .. "".

On-Chip Floating-Point Unit Control """. 0 0 0

FPU Condition Code Interpretation , . , ' . " "

'00' """",." .. '02-10

• " " 0 .. 0 " 2-11

" " " .. " .. 2-11

.2-17

Condition Code Interpretation after FPREM and FPREM1 Instructions 2-18

Condition Code Resulting from Comparison , . , .. ' , , , , . , . ' , , , ' ... ' , " . 2-18

Condition Code Defining Operand Class " ' , . ' . , . ' , , , , . , . ' , , 0 , , , 2-18

FPU Exceptions . .,' .. ". 0 0 . 0 0 ... " ' .. , ... , " " " ... ' " . , . " .. 0 " ' . 2-24

Register Usage , , ' , , " ... ' , , '0 , .. " ' . , , 2-24

Segment Register Selection Rules "' .. , ... ,", " ,', 2-27

BASE and INDEX Registers for 16- and 32-Bit Addresses .. '0" . , 2-30

Am486DXlDX2 Microprocessor Data Types 0 . 2-32

String and ASCII Data Types 0 0 0 " 0 0 , , , " , . , " .. 0.'" 0 0 . , " 0 . " . " , " 0 . , 0 . 2-33

Pointer Data Types 0 0 . 0'" "02-34

Interrupt Vector Assignments " . ' . , . " .. 0 0 , , 0 ... " , . , . , 0 " 0 ... " 2-37

Interrupt Vectors Used by FPU 2-39

Legal LOCK Prefix Instruction Forms , " , , , .. 0 . , . , , 00 ... 0 . " . , . ' . 0 .. 3-2

Exceptions with Different Meanings in Real Mode (see also Table 2-16) 3-3

Access Rights Byte Definition for Code and Data Descriptions 0' . ' .. 0 , . , 4-7

Pointer Test Instructions 0"", 0 , .. 0 " . 0 0 , ... 0 ... , , . " 0 . 0 . 0 " . 0 0 , . " 0 0 0 . 4-17

Descriptor Types Used for Control Transfer .,", ,',.. 4-18

Page Level Protection Attributes , . , . , .. ' , , , , , , , .. , . , , , , ... , , , , , .. , , 4-26

Type of Access Causing Page Fault ' . , , , , . , " ,', ... , 4-28

Cache Operating Modes , ' ... , .. '" 0 0 . ' , ' 0 0 ' , , . ' 5-2

ADS Initiated Bus Cycle Definitions ... 0 ' , , 0 .. " 0 0 .. 0 " " .. " " . " 0 " , . 6-5

Register Values After Reset, .' ., ... " , , 6-17

FERR Pin State , ,"',., ... ,"', , , 6-17

Am486DXlDX2 CPU Revision ID " .. , " ,6-18

Byte Enables and Associated Data and Operand Bytes ... ' , " ... 7-1

Generating A31-AO from BE3-BEO and A31-A2 , , ., , ,. , , 7-1

Next Byte Enable Values for BSn Cycles ' ' , , 7-4

Data Pins Read with Different Bus Sizes 7-4

Generating A 1, BHE, and BLE for Address for 16-Bit Devices ... , , 7-6

Generating AO, A 1, and BHE from the Am486DXlDX2
Microprocessor Byte Enables , , " ... 7-8

Transfer Bus Cycles for Bytes, Words, and Dwords 7-8

Burst Order ... ' , , '" 7-18

Special Bus Cycle Encoding , "." "., , ",7-29

Bus State Description , ,", , , 7-32

Cache Control Bit Encoding and Effect of Control Bits on Entry Select and
Set Select Functionality , 8-3

Table Of Contents

Table 8-2

Table 8-3

Table 8-4

Table 8-5

Table 8-6

Table 8-7

Table 9-1

Table 9-2

Table 10-1

Table 10-2

Table 10-3

Table 10-4

Table 10-5

Table 10-6

Table 10-7

Table 10-8

AMD~
Meaning of a Pair of TR6 Protection Bits 8-7

TR6 Operation Bit Encoding .. 8-7

Encoding of Bit 4 of TR7 on Writes 8-8

Encoding of Bit 4 of TR7 on Lookups 8-8

Component Codes 8-10

Boundary Scan Instruction Codes. 8-12

Debug Registers LENi Encoding 9-3

Debug Registers RW Encoding 9-4

Am486DXlDX2 Microprocessor Integer Clock Count Summary 10-3

Task Switch Clock Counts Table 10-14

Interrupt Clock Counts Table 10-14

Am486DXlDX2 Microprocessor 1/0 Instructions Clock Count Summary 10-15

Am486 Microprocessor Floating-Point Clock Count Summary 10-16

Fields within Am486 Microprocessor Instructions. 10-22

Encoding of the Operand Length (w) Field 10-22

Encoding of the reg Field (w Field not Present Instruction) 10-23

Table 10-9 Encoding of the reg Field (w Field is Present, Instruction 16 Bits) 10-23

Table 10-10 Register Specified by the reg Field (w Field is Present,
Instruction 32 Bits) ... 10-23

Table 10-11 2-Bit sreg2 Field ... 10-24

Table 10-12 3-Bit sreg3 Field ... 1 0-24

Table 10-13 Encoding of 16-Bit Address Mode with "mod rIm" Byte 10-25

Table 10-14 Encoding of 32-Bit Address Mode with "mod rIm" Byte
(No "s-i-b" Byte Present) .. 10-26

Table 10-15 Encoding of 32-Bit Address Mode

Table 10-16

Table 10-17

Table 10-18

Table 10-19

Table 10-20

("mod rIm" byte and "s-i-b" byte present) .. 10-27

Encoding of d Field .. 10-28

Encoding of s Field .. 1 0-28

Encoding of tttn Field .. 10-28

Encoding of eee Field .. 10-29

Encoding of Floating-Point Instruction Fields 10-30

Table Of Contents ix

p;gaia-

1 Am486DX/DX2 MICROPROCESSOR
FEATURES

1.1 GENERAL DESCRIPTION
The Am486DX and Am486DX2 CPUs offer the highest performance for DOS, OS/2,
Windows, and UNIX applications. They are 100% binary compatible with the 386
architecture. One million plus transistors integrate cache memory, floating-point hard­
ware, and memory management on-chip while retaining binary compatibility with previous
members of the x86 architectural family. Frequently used instructions execute in one
cycle, resulting in RISC performance levels. An 8-Kbyte unified code and data cache
combine with a burst bus to ensure high system throughput.

New features enhance multiprocessing systems. New instructions speed manipulation of
memory-based semaphores. On-chip hardware ensures cache consistency and
provides hooks for multilevel caches.

The Am486DX/DX2 microprocessors feature boundary scan test signals. This provides
additional testability features compatible with the IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Standard 1149.1 JTAG).

The built-in self test extensively tests on-chip logic, cache memory, and the on-chip
paging translation cache. Debug features include breakpoint traps on code execution and
data accesses.

This manual, when combined with the Am486DX Microprocessor Data Sheet (order #
17852), and the Am4,86DX2 Microprocessor Data Sheet (order # 17914), provides
complete design documentation.

1.2 DISTINCTIVE CHARACTERISTICS
• Binary Compatible with Large Software Base

- MS-DOS, OS/2, Windows

- UNIX, Windows NT

• High Integration On-Chip

- 8-Kbyte code and data cache

- Floating-point unit

- Paged, virtual memory management

• Easy To Use

- Built-in self test

- Hardware debugging support

- Extensive third-party software support

• IEEE 1149.1 Boundary Scan Compatibility on all versions

• High-performance Design

- Frequent instructions execute in one clock

- 0.7-micron CMOS process technology

Am486DX/DX2 Microprocessor Features 1-1

~AMD
- Dynamic bus sizing for 8-, 16-, and 32-bit buses

• Complete 32-bit Architecture

- All registers

- 8-, 16-, and 32-bit data types

• Multiprocessor Support

- Multiprocessor instructions

- Cache consistency protocols

- Support for second-level cache

Figure 1·1 Am486DX/DX2 CPU Pipelined 32·Bit Microarchitecture Block Diagram

~ 64 Bit Interunit Transfer Bus
I I

I 32-Bit Data Bus I , , 32

32-Bit Data Bus I
, 32

Unear Address Bus I .1
J H PCD ~~i!

Basel
Segmentation i

Barrel Shifter Index 12 Cache Unit
Bus Unit

Paging Unit I

~ Descriptor
Register File

Registers I 20
8-Kbyte

Limit and Translation Physical
Cache

AlU Attribute look-Aside Address

PLA Buffer

... ~ .. ~

li128

Micro-instruction
Displacement Bu s Prefetcher

, 32 ... Code
32-Byte ~

~
Code Queue

Floating- Central and 2 x 16 Bytes .=: Point Protection Instruction 24

Unit Test Unit Decode

'-----0 Decoded
Floating- Instruction

Point Control Path
Register ROM

File

1-2 Am486DX/DX2 Microprocessor Features

: Core
: Clock+- Clock

Doubler '--., , , , ,
L _____ .. ____

Bus Interface

~
Address
Drivers

~ Write Buffers
4 x80 ----

Data Bus

Pirh Transceivers

Bus Control
¢::- Request

Sequencer

Burst Bus

Control ----
Bus Size
Control ----
Cache
Control ,------
Parity

Generation
and Control ----

Boundary
Scan

Control

-...... -

A31-

o
ClK' ,

,
-_ ..

A2
BEO BE3-

+-+

D31-

+-+
ADS,
MIlO,
PWT

DO

wrR, DIG
PCD,
ROY,

LOC
BOF
BRE
HlD

--K,PLOCK
F, A20M,
QHOLD,
A, RESET,

INTR, NMI
--R,lGNNE
~
BRDY

1+-+
, BLAST

BSI6,

~
KEN,

~
PCHK
DP3-DPO
+-+

TOI, TOO
TCK ~

17852A-OOt

Figure 1·2

Clock

Address Mask

Address Bus {

{ Bus Cycle
Control

{ Bus Cycle
Definition

'm,,,"", {

1.3

Logic Symbol

ClK

A20M

A31-A4

A3-A2

BE3-BEO

BSe

BS16

ADS
READY

M/15

DIG
W/Fi.

LOCK

PLOCK

INTR
NMI

RESET

HOLD BOFF
BREQ HlDA

Bus Arbitration

PIN DESCRIPTIONS

Am486DX/DX2
CPU

IGNNE FERR

Numeric Error
Reporting

031-00

DP3-DPO

PCHK

BRDY
BLAST

PWT
PCD

KEN
FLUSH

AHOlD
EADS

TCK TDI
TMS TOO

IEEE Test
Port Access

AMD~

Data Bus

} Data Parity

} Burst
Controi

} Page
Cacheabilily

} C~h, Co"'roO
Invalidation

17852B-114

The following paragraphs define the pins (signals) of the Am486DX/DX2 microprocessor.

A31-A4/A3-2
Address Lines (Inputs/OutputS)/(Outputs)

Pins A31-A2, together with the byte enable pins BE3-BEO, constitute the address bus
and define the physical area of memory or input/output space accessed. Address lines
A31-A4 are used to drive addresses into the microprocessor to perform cache line
invalidations. Input signals must meet setup and hold times t22 and t23 • A31-A2 are not
driven during bus or address hold.

Am486DX/DX2 Microprocessor Features 1·3

~AMD

1·4

A20M
Address Bit 20 Mask (Active low; Input)

When the address mask is asserted, the Am486DXlDX2 microprocessor masks physical
address bit 20 (A20) before performing a lookup to the internal cache or driving a
memory cycle on the bus. A20M emulates the address wraparound at 1 Mbyte, which
occurs on the 8086. A20M is active Low and should be asserted only when the proces­
sor is in Real Mode. This pin is asynchronous but should meet setup and hold times t20
and t21 for recognition in any specific clock. For proper operation, A20M should be
sampled High at the falling edge of RESET.

ADS
Address Status (Active low; Output)

This pin is used to indicate that a valid bus cycle definition and address are available on
the cycle definition lines and address bus. ADS is driven active in the same clock as the
addresses are driven. ADS is active Low and is not driven during bus hold.

AHOlD
Address Hold (Active High; Input)

An address hold request allows another bus master access to the Am486DX/DX2
microprocessor's address bus for a cache invalidation cycle. The Am486DXlDX2
microprocessor stops driving its address bus in the clock following AHOLD going active.
Only the address bus is floated during address hold; the remainder of the bus remains
active. AHOLD is active High and is provided with a small internal pull-down resistor. For
proper operation, AHOLD must meet setup and hold times t'8 and t,9 .

BE3-BEO
Byte Enables (Active Low; Outputs)

The address bus byte-enable pins indicate active bytes during read and write cycles.
During the first cycle of a cache fill, the external system should assume that all byte
enables are active. BE3 applies to D31-D24, BE2 applies to D23-D16, BE1 applies to
D15-D8, and BEO applies to D7-DO. BE3-BEO are active Low and are not driven during
bus hold.

BS8/BS16
Bus Size 8 (Active Low; Input)/Bus Size 16 (Active Low; Input)

The bus sizing pins cause the Am486DXlDX2 microprocessor to run multiple bus cycles
to complete a request from devices that cannot provide or accept 32 bits of data in a
single cycle. The bus sizing pins are sarnpled every clock. The state of these pins in the
clock before ROY is used by the Am486DX/DX2 microprocessor to determine the bus
size. These signals are active Low and are provided with internal pull-up resistors.
These inputs must satisfy setup and hold times t'4 and t '5 for proper operation.

BLAST
Burst Last (Active Low; Output)

This pin indicates that the next time BRDY is returned then the burst bus cycle is
complete. BLAST is active for both burst and non-burst bus cycles. BLAST is active Low
and is not driven during bus hold.

BOFF
Backoff (Active Low; Input)

This input pin forces the Am486DXlDX2 microprocessor to float its bus in the next clock.
The microprocessor floats all pins normally floated during bus hold, but HLDA is not
asserted in response to BOFF. BOFF has higher priority than ROY or BRDY; if both are
returned in the same clock, BOFF takes effect. The microprocessor remains in bus hold
until BOFF is negated. If a bus cycle is in progress when BOFF is asserted, the cycle is

Am486DX/DX2 Microprocessor Features

AMD~
restarted. BOFF is active Low and must meet setup and hold times t18 and t19 for proper
operation.

BRDY
Burst Ready Input (Active Low; Input)

The BRDY signal performs the same cycle during a burst cycle that RDY performs
during a non-burst cycle. BRDY indicates that the external system has presented valid
data in response to a read, or that the external system has accepted data in response to
write. BRDY is ignored when the bus is idle and at the end of the first clock in a bus
cycle.

BRDY is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus is strobed into the microprocessor when BRDY is sampled
active. If RDY is returned simultaneously with BRDY, BRDY is ignored and the burst
cycle is prematurely aborted.

BRDY is active Low and is provided with a small pull-up resistor. BRDY must satisfy the
setup and hold times t16 and t17 •

BREQ
Internal Cycle Pending (Output)

BREQ indicates that the Am486DX/DX2 microprocessor has internally generated a bus
request. BREQ is generated whether or not the Am486DX/DX2 microprocessor is driving
the bus. BREQ is active High and is never floated, except during three-state test mode
(see FLUSH).

eLK
Clock (Input)

The ClK input provides the fundamental timing and the internal operating frequency for
the Am486DXlDX2 microprocessor. All external timing parameters are specified with
respect to the rising edge of ClK,

031-00
Data Lines (Inputs/Outputs)

Lines D7-DO define the least significant byte of the bus while lines D31-D24 define the
most significant byte of the data bus. These signals must meet setup and hold times t22
and t23 for proper operation on reads. These pins are driven during the second and
subsequent clocks of write cycles.

OIC
Data/Control (Output)

This bus cycle definition pin distinguishes data cycles, either memory or I/O, from control
cycles. These control cycles are: interrupt acknowledge, halt, and instruction fetching.

OP3-0PO
Data Parity (Inputs/Outputs)

Data parity is generated on all write data cycles with the same timing as the data driven
by the Am486DXlDX2 microprocessor. Even parity information must be driven back into
the microprocessor on the data parity pins with the same timing as read information; this
ensures that the correct parity check status is indicated by the Am486DX/DX2 micropro­
cessor. The signals read on these pins do not affect program execution.

Input signals must meet setup and hold times t22 and t23. DP3-DPO should be con­
nected to Vee through a pull-up resistor in systems not using parity. DP3-DPO are active
High and are driven during the second and subsequent clocks of write cycles.

Am486DX/DX2 Microprocessor Features 1-5

~ AMD

1-6

EADS
Valid External Address (Active Low; Input)

This address indicates a valid external address has been driven onto the Am486DXlDX2
microprocessor address pins. This address is used to perform an internal cache invalida­
tion cycle. EADS is active Low and is provided with an internal pull-up resistor. EADS
must satisfy setup and hold times t12 and t13 for proper operation.

FERR
Floating-Point Error (Active Low; Output)

Driven active when a floating-point error occurs, FERR is similar to the ERROR pin on a
387 math coprocessor. FERR is included for compatibility with systems using DOS-type
floating-point error reporting. FERR is active Low and is not floated during bus hold,
except during three-state test mode (see FLUSH).

FLUSH
Cache Flush (Active Low; Input)

FLUSH forces the Am486DX/DX2 microprocessor to flush its entire internal cache. This
input pin is active Low and need only be asserted for one clock. FLUSH is asynchronous
but setup and hold times t20 and ~1 must be met for recognition in any specific clock.
FLUSH being sampled Low in the clock before the falling edge of RESET causes the
Am486DX/DX2 microprocessor to enter the three-state test mode.

HLDA
Hold Acknowledge (Output)

The HLDA signal is activated in response to a hold request presented on the HOLD pin.
HLDA indicates that the Am486DX/DX2 microprocessor has given the bus to another
local bus master. HLDA is driven active in the same clock in which the Am486DXlDX2
microprocessor floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is
active High and remains driven during bus hold. HLDA is never floated except during
three-state test mode (see FLUSH).

HOLD
Bus Hold Request (Input)

HOLD gives another bus master complete control of the Am486DX/DX2 microprocessor
bus. In response to HOLD going active, the Am486DXlDX2 microprocessor floats most
of its output and input/output pins. HLDA is asserted after completing the current bus
cycle, burst cycle, or sequence of locked cycles. The Am486DX/DX2 microprocessor
remains in this state until HOLD is deasserted. HOLD is active High and is not provided
with an internal pull-down resistor. HOLD must satisfy setup and hold times t18 and t19
for proper operation.

IGNNE
Ignore Numeric Error (Active Low; Input)

When this pin is asserted, the Am486DX microprocessor ignores a numeric error and
continues executing non-control floating-point instructions. When IGNNE is deasserted,
the Arn486DXlDX2 microprocessor freezes on a non-control floating-point instruction if a
previous floating-point instruction caused an error. IGNNE has no effect when the NE bit
in Control Register 0 is set. IGNNE is active Low and is provided with a small internal
pull-up resistor. IGNNE is asynchronous but setup and hold times t20 and t21 must be
met to ensure recognition on any specific clock.

INTR
Maskable Interrupt (Input)

When asserted, this signal indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing is initiated. The

Am486DX/DX2 Microprocessor Features

AMD~
Am486DX/DX2 microprocessor generates two locked interrupt acknowledge bus cycles
in response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to ensure that the interrupt is recognized. INTR is
active High and is not provided with an internal pull-down resistor. INTR is asynchronous,
but must meet setup and hold times t20 and h, for recognition in any specific clock.

KEN
Cache Enable (Active Low; Input)

KEN is used to determine whether the current cycle is cacheable. When the
Am486DX/DX2 microprocessor generates a cacheable cycle and KEN is active one
clock before ROY or BROY during the first transfer of the cycle, the cycle becomes a
cache line fill cycle. Returning KEN active one clock before RDY during the last read in
the cache line fill causes the line to be placed in the on-chip cache. KEN is active low
and is provided with a small internal pull-up resistor. KEN must satisfy setup and hold
times t'4 and t '5 for proper operation.

LOCK
Bus Lock (Active Low; Output)

This pin indicates that the current bus cycle is locked. The Am486DX/DX2 microproces­
sor does not allow a bus hold when LOCK is asserted (but address holds are allowed).
LOCK goes active in the first clock of the first locked bus cycle and goes inactive after the
last clock of the last locked bus cycle. The last locked cycle ends when ROY is returned.
LOCK is active low and is not driven during bus hold. Locked read cycles will not be
transformed into cache fill cycles if KEN is returned active.

MIiO
Memory (Input/Output) (Output)

This bus cycle definition pin distinguishes memory cycles from input/output cycles.

NMI
Non-maskable Interrupt (Input)

The NMI request signal indicates that an external non-maskable interrupt has been
generated. NMI is rising edge sensitive. NMI must be held low for at least four ClK
periods before this rising edge. NMI is not provided with an internal pull-down resistor.
NMI is asynchronous, but must meet setup and hold times t20 and h, for recognition in
any specific clock.

PCD/PWT
Page Cache Disable/Page Write-Through (Outputs)

These pins reflect the state of the page attribute bits, PWT and PCD, in the page table
entry or page directory entry. If paging is disabled or for unpaged cycles, PWT and PCD
reflect the state of the PWT and PCD bits in Control Register 3. PWT and PCD have the
same timing as the cycle definition pins (MIlO, Ole, and W/f5.). PWT and PCD are active
High and are not driven during bus hold. PCD is masked by the Cache Disable Bit (CD) in·
Control Register O.

PCHK
Parity Status (Active Low; Output)

Parity status is driven on the PCHK pin the clock after ROY for read operations. The
parity status is for data sampled at the end of the previous clock. A parity error is
indicated by PCHK being low. Parity status is only checked for enabled bytes as
indicated by the byte enable and bus size signals. PCHK is valid only in the clock
immediately after read data is returned to the microprocessor; at all other times PCHK is
inactive High. PCHK is never floated, except during three-state test mode (see FLUSH).

Am486DX/DX2 Microprocessor Features 1-7

~AMD

1-8

PLOCK
Pseudo-Lock (Active Low; Output)

PLOCK indicates that the current bus transaction requires more than one bus cycle to
complete. Examples of such operations are floating-point long reads and writes (64 bits),
segment table descriptor reads (64 bits), and cache line fills (128 bits). The Am486DXlDX2
microprocessor drives PLOCK active until the addresses for the last bus cycle of the
transaction have been driven, regardless of whether ROY or BROY have been returned.

Normally, PLOCK and BLAST are inverse of each other. However, during the first bus
cycle of a 64-bit floating-point write, both PLOCK and BLAST are asserted. PLOCK is a
function of the BS8, BS16, and KEN inputs. PLOCK should be sampled on if the clock
ROY is returned. PLOCK is active Low and is not driven during bus hold.

RESET
Reset (Active High; Input)

RESET forces the Am486DX/DX2 microprocessor to begin execution at a known state.
The microprocessor cannot begin execution of instructions until at least 1 ms after Vee
and CLK have reached their proper DC and AC specifications. The RESET pin should
remain active during this time to ensure proper microprocessor operation. RESET is
active High. RESET is asynchronous but must meet setup and hold times t20 and t21 for
recognition in a specific clock.

ROY
Non-Burst Ready (Active low; Input)

This pin indicates that the current bus cycle is complete. ROY indicates that the external
system has presented valid data on the data pins in response to a read, or that the
external system has accepted data from the Am486DXlDX2 microprocessor in response
to a write. ROY is ignored when the bus is idle and at the end of the bus cycle's first clock.

ROY is active during address hold. Data can be returned to the processor while AHOLD
is active.

ROY is active Low and is not provided with an internal pull-up resistor. ROY must satisfy
setup and hold times t16 and t17 for proper chip operation.

TCK
Test Clock (Input)

Test Clock is an input to the Am486 CPU and provides the clocking function required by
the JTAG boundary scan feature. TCK is used to clock state information and data into
and out of the component. State select information and data are clocked into the
component on the rising edge of TCK on TMS and TDI, respectively. Data is clocked out
of the component on the falling edge of TCK on TDO.

TOI
Test Data Input (Input)

TDI is the serial input used to shift JTAG instructions and data into the component. TDI
is sampled on the rising edge of TCK during the SHIFT-IR and the SHIFT-DR TAP (Tap
Access Port) controller states. During all other tap controller states, TDI is a "don't care."

TOO
Test Data Output (Output)

TDO is the serial output used to shift JTAG instructions and data out of the component.
TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP
controller states. At all other times, TDO is driven to the high impedance state.

Am486DX/DX2 Microprocessor Features

Table 1·1

Table 1·2

AMD~
TMS
Test Mode Select (Input)

TMS is decoded by the JTAG TAP to select the operation of the test logic" TMS is
sampled on the rising edge of TCK. To guarantee deterministic behavior of the TAP
controller, TMS is provided with an internal pull-up resistor.

UP
Upgrade Present (Input) (PQFP package only)

The Upgrade Present pin forces the Am486DX2 CPU to three-state all its outputs and
enter the power-down mode. When the Upgrade Present pin is sampled asserted by the
CPU in the clock before the falling edge of RESET, the power-down mode is enabled.
UP has no effect on the power-down status expect during this edge. The CPU is also
forced to three-state all of its outputs immediately in response to this signal. The UP
signal must remain asserted in order to keep the pins three-stated. UP is active Low and
is provided with an internal pull-up resistor.

Note: The UP pin is for the Am486DX2 CPU.

W!R
Write/Read (Output)

A bus cycle definition pin, W!Fi. distinguishes write cycles from read cycles.

Output Pins

Name Active level Floated At

BREQ High
HLDA High
--
BE3-BEO Low Bus Hold
PCD/PWT High Bus Hold

W/R, DIG, MilO High Bus Hold
LOCK Low Bus Hold

PLOCK Low Bus Hold
ADS Low Bus Hold

BLAST Low Bus Hold
PCHK Low
FERR Low
A3-A2 High Bus, Address Hold

Input Pins

Name Active level Synchronousl Asynchronous

eLK
RESET High Asynchronous
HOLD High Synchronous

AHOLD High Synchronous
EADS Low Synchronous
BOFF Low Synchronous
FLUSH Low Asynchronous
A20M Low Asynchronous

BS16, BS8 Low Synchronous
KEN Low Synchronous
ROY Low Synchronous

BRDY Low Synchronous
INTR High Asynchronous
NMI High Asynchronous

IGNNE Low Asynchronous

Am486DX/DX2 Microprocessor Features 1·9

~AMD
Table 1·3 Input/Output Pins

Name Active level Floated At

031-00 High Bus Hold
OP3-0PO High Bus Hold
A31-A4 High Bus, Address Hold

Table 1·4 Bus Cycle Definition

MOO D/e W!R Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 I/O Read
0 1 1 I/O Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Table 1·5 Test Pins

Name Input or Output Sampled/Driven On

TCK Input N/A
TOI Input Rising Edge of TCK

TOO Output Falling Edge of TCK

TMS Input Rising Edge of TCK

1·10 Am486DX/DX2 Microprocessor Features

2 Am486DX/DX2 CPu ARCHITECTURAL
OVERVIEW

2.1 INTRODUCTION
The Am486DX/DX2 microprocessor is a 32-bit architecture with on-chip memory
management, floating-point, and cache memory units.

The Am486DXIDX2 microprocessor contains all the features of the 386 microprocessor
with enhancements to increase performance. The instruction set includes the complete
386 microprocessor instruction set along with extensions to serve new applications. The
on-chip Memory Management Unit (MMU) is completely compatible with the 386 MMU.
The Am486DX/DX2 microprocessor brings the functions of a math coprocessor on-chip.
All software written for the 386 microprocessor, 387 math coprocessor, and previous
members of the x86/x87 architectural family can run on the Am486DX/DX2 microproces­
sor without any modifications.

Several enhancements have been added to the Am486DX/DX2 microprocessor to
increase performance. On-chip cache memory allows frequently used data and code to
be stored on-chip, thereby reducing accesses to the external bus. RiSe design tech­
niques have been used to reduce instruction cycle times. A burst bus feature enables fast
cache fills. All of these features combined lead to performance greater than twice that of a
386 microprocessor.

The Am486 microprocessor MMU consists of a segmentation unit and a paging unit
Segmentation allows management of the logical address space by providing easy data
and code relocatibility and efficient sharing of global resources. The paging mechanism
operates beneath segmentation and is transparent to the segmentation process. Paging is
optional and can be disabled by system software. Each segment can be divided into one
or more 4-Kbyte segments. To implement a virtual memory system, the Am486DX/DX2
microprocessor supports full restartability for all page and segment faults.

Memory is organized into one or more variable length segments, each up to 4 Gbytes
(232 bytes) in size. A segment can have attributes associated with it. These attributes
include its location, size, type (i.e., stack, code, or data), and protection characteristics.
Each task on an Am486DX/DX2 microprocessor can have a maximum of 16,381
segments, each up to 4 Gbytes in size. Thus, each task has a maximum of 64 Tbyte
(terabytes) of virtual memory.

The segmentation unit provides four levels of protection for isolating and protecting
applications and the operating system from each other. The hardware enforced protection
allows high integrity system deSigns.

The Am486DX/DX2 microprocessor has two modes of operation: Real Address Mode (Real
Mode) and Virtual Address Mode (Protected Mode). In Real Mode, the Am486DX/DX2
microprocessor operates as a very fast 8086. Real Mode is required primarily to set up
the processor for Protected Mode operation. Protected Mode provides access to the
sophisticated memory management paging and privilege capabilities of the processor.

Within Protected Mode, software can perform a task switch to enter into tasks deSignated
as Virtual 8086 Mode tasks. Each Virtual 8086 task behaves with 8086 semantics, allow­
ing 8086 software (an application program or an entire operating system) to execute.

Am486DXlDX2 CPU Architectural Overview 2-1

I

I:
I

~AMD
The on-chip floating-point unit (FPU) operates in parallel with the arithmetic and logic unit
and provides arithmetic instructions for a variety of numeric data types. The FPU executes
numerous built-in transcendental functions (e.g., tangent, sine, cosine, and log functions)
and conforms to the ANSI/IEEE standard 754-1985 for floating-point arithmetic.

The on-chip cache is 8 Kbytes. It is four-way set associative and follows a write-through
policy. The on-chip cache includes features that provide flexibility in external memory
system design. Individual pages can be designated as cacheable or non-cacheable by
software or hardware. The cache can also be enabled and disabled by software or
hardware.

Finally, the Am486DX/DX2 microprocessor has features that facilitate high-performance
hardware designs. The 1X clock on the Am486DX CPU eases high frequency board
level designs. The 2X clock doubler on the Am486DXlDX2 CPU improves execution
performance without increasing the board design complexity. This 2X clock doubler
enhances all operations operating out of the cache and/or not blocked by external bus
assesses. The burst bus feature enables fast cache fills.

2.2 REGISTER SET

2.2.1

2·2

The Am486DXlDX2 microprocessor register set includes all the registers contained in .
the 386 microprocessor and the 387 math coprocessor. The register set can be split into
the following categories:

• Base Architecture Registers

- General Purpose Registers

- Instruction Pointer

- Flags Register

- Segment Registers

• Systems Level Registers

- Control Registers

- System Address Registers

• Floating-Point Registers

• Data Registers

• Tag Word

• Status Word

• Instruction and Data ~ointers

• Control Word

• Debug and Test Registers

The base architecture and floating-point registers are accessible by the applications
program. The system level registers are only accessible at privilege level 0 and are used
by the systems level program. The debug and test registers are also only accessible at
privilege level O.

Base Architecture Registers
Figure 2-1 shows the Am486DXlDX2 microprocessor base architecture registers. The
contents of these registers are task-specific and are automatically loaded with a new
context upon a task switch operation.

Am486DXlDX2 CPU Architectural OVerview

2.2.1.1

Figure 2·1

AMO~
The base architecture includes six directly accessible descriptors, each specifying a seg­
ment up to 4 Gbytes in size. The descriptors are indicated by the selector values placed in
the Am4860X/OX2 microprocessor segment registers. Various selector values can be
loaded as a program executes. The selectors are also task specific, so the segment regis­
ters are automatically loaded with new context upon a task switch operation.

General Purpose Registers

The eight 32-bit general purpose registers (see Figure 2-1) hold data or address quanti­
ties. The general purpose registers can support data operands of 1 , 8, 16, and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16 and 32 bits are supported. The
32-bit registers are named EAX, EBX, ECX, EOX, ESI, EOI, EBP, and ESP.

The least significant 16 bits of the general purpose registers can be accessed separately
by using the 16-bit names of the registers: AX, BX, CX, OX, SI, 01, BP, and SP. The
upper 16 bits of the register are not changed when the lower 16 bits are accessed
separately.

Base Architecture Registers

General Purpose Registers

31 24123 16 15 81 7

AH AX AL

BH BX BL

CH CX CL

DH DX DL

SI

DI

BP

SP

Segment Registers
15

Instruction Pointer
31 16 15

IP

Flags Register
31 16 15

FLAGS

Am4860XlOX2 CPU Architectural Overview

0

0

0

0

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

CS

SS

DS } ES

FS

GS

EIP

Code Segment

Stack Segment

Data Segments

17852A-004

EFLAGS

2·3

~AMD

2.2.1.2

2.2.1.3

Finally, 8-bit operations can individually access the lower byte (bits 7-0) and the higher
byte (bits 8-15) of the general purpose registers AX, BX, CX, and OX. The lowest bytes
are named AL, BL, CL, and DL, respectively. The higher bytes are named AH, BH, CH,
and DH, respectively. The individual byte accessibility offers additional flexibility for data
operations, but is not used for effective address calculation.

Instruction Pointer

The instruction pOinter (see Figure 2-1) is a 32-bit register named EIP. EIP holds the
offset of the next instruction to be executed. The offset is always relative to the base of
the code segment (CS). The lower 16 bits (bits 15-0) of the EIP contain the i6-bit
instruction pOinter named IP, which is used for 16-bit addressing.

Flags Register

The flags register is a 32-bit register named EFLAGS. The defined bits and bit fields
within EFLAGS control certain operations and indicate the Am486DX/DX2 microproces­
sor's status. The lower 16 bits (bits 15-0) of EFLAGS contain the i6-bit register named
FLAGS, which is most useful when executing 8086 and 80286 code. EFLAGS is shown
in Figure 2-2.

EFLAGS bits 1,3,5, 15, and 19-31 are "undefined". When these bits are stored during
interrupt processing or with a PUSHF instruction (push flags onto stack), a 1 is stored in
bit 1 and Os in bits 3, 5, 15, and 19-31.

Figure 2·2 Flags Register

EFLAGS I

Note:

FLAGS
J.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved (Do Not Use) I ~ I ~ I ~ I 0 I ~ IIOPL I ~ I ~ I ~ I ~ I ~ I ~ I 0 I ~ I 0 I ~ 11 I ¥ I

Alignment Check

Virtual BOB6 Mode

Resume Flag

Nested Task

I/O Privilege Level

Overflow Flag

Direction Flag

Interrupt Enable Flag

Trap Flag

Sign Flag

Zero Flag

Auxiliary Carry Flag

Parity Flag

Carry Flag

Bit positions shown as 0 or 1 are Reserved (Do Not Use). Always set them to the value previously read.
17852A-{)05

2-4 Am486DXlDX2 CPU Architectural Overview

AMO~
The EFLAGS register in the Am486DX/DX2 microprocessor contains a new bit not
previously defined in the Am386@ CPU. The new bit, AC, is defined in the upper 16 bits
of the register and it enables faults on accesses to misaligned data.

AC (Alignment Check, bit 18)

The AC bit enables the generation of faults if a memory reference is to a misaligned
address. Alignment faults are enabled when AC is set to 1. A misaligned address is a
word access to an odd address, a dword access to an address that is not on a dword
boundary, or an 8-byte reference to an address that is not on a 64-bit word boundary.
See Section 7.1.6 for more information on operand alignment.

Alignment faults are only generated by programs running at privilege level 3. The AC
bit setting is ignored at privilege levels 0, 1, and 2. Note that references to the descrip­
tor tables (for selector loads) or the task state segment (TSS) are implicitly level a ref­
erences, even if the instructions causing the references are executed at level3. Align­
ment faults are reported through interrupt 17 with an error code of O. Table 2-1 gives
the alignment required for the Am486DX/DX2 microprocessor data types.

Implementation Note: Several Am486DXlDX2 microprocessor instructions generate misaligned
references, even if their memory address is aligned. For example, on the Am486DXlDX2 micro­
processor. the SGDT/SIDT (store global/interrupt descriptor table) instruction reads/writes two
bytes, and then reads/writes four bytes from a "pseudo-descriptor" at the given address. The
Am486DXlDX2 microprocessor generates misaligned references unless the address is on a 2
mod 4 boundary. The FSAVE and FRS TOR instructions (floating-point save and restore
state) generate misaligned references for one-half of the register savelrestore cycles.
The Am486DXlDX2 microprocessor does not cause any AC faults if the effective address given
in the instruction has the proper alignment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within Protected Mode. If set while the
Am486DX/DX2 microprocessor is in Protected Mode, the Am486DX/DX2 micropro­
cessor switches to Virtual 8086 operation. Virtual 8086 Mode handles segment loads
as the 8086 does, but generates exception 13 faults on privileged opcodes. The VM bit
can be set only in Protected Mode, by the IRET instruction (if current privilege level = 0)
and by task switches at any privilege level. The VM bit is unaffected by POPE PUSHF
always pushes a a in this bit, even if executing in Virtual 8086 Mode. The EFLAGS
image pushed during interrupt processing or saved during task switches contains a 1 in
this bit if the interrupted code was executing as a Virtual 8086 Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the debug register breakpoints. It is checked at
instruction boundaries before breakpoint processing. When RF is set, any debug fault
is ignored on the next instruction. RF is then automatically reset at the successful
completion of every instruction (no faults are signaled) except the IRET instruction
and the POPF instruction, (also JMP, CALL, and INT instructions that cause a task
switch). These instructions set RF to the value specified by the memory image. For
example, at the end of the breakpoint service routine, the IRET instruction can pop an
EFLAGS image having the RF bit set and resume the program's execution at the break­
point address, without generating another breakpoint fault on the same location.

Am4860XlOX2 CPU Architectural Overview 2-5

~AMD
Table 2-1

2-6

Data Type Alignment Requirements

Memory Access Alignment
(Byte Boundary)

Word 2

Dword 4

Single Precision Real 4

Double Precision Real 8

Extended Precision Real 8

Selector 2

48-bit Segmented Pointer 4

32-Bit Flat Pointer 4

32-Bit Segmented Pointer 2

48-Bit "Pseudo Descriptor" 4

FSTENV/FLDENV Save Area 4/2 (On Operand Size)

FSAVE/FRSTOR Save Area 4/2 (On Operand Size)

Bit String 4

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is setto indicate thatthe execution ofthis task
is nested within another task. If set, it indicates that the current nested task's Task
State Segment (TSS) has a valid back link to the previous task's TSS. NT is set or
reset by control transfers to other tasks. The value of NT in EFLAGS is tested by the
IRET instruction to determine whether to do an inter-task return or an intra-task return.
POPF or an IRET instruction affects the setting of this bit according to the image
popped, atany privilege level.

10PL (Input/Output Privilege Level, bits 13-12)

This two-bit field applies to Protected Mode. 10PL indicates the numerically maximum
CPL (current privilege level) value permitted to execute I/O instructions without gener­
ating an exception 13 fault or consulting the I/O Permission Bit-map. It also indicates
the maximum CPL value that allows alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register. POPF and IRET instruction can
alter the 10PL field when executed at CPL = O. Task switches can always alter the
10PL field when the new flag image is loaded from the incoming task's TSS.

OF (Overflow Flag, bit 11)

OF is set if the operation resulted in a signed overflow. Signed overflow occurs when the
operation resulted in carrylborrow into the sign bit (high-order bit) of the result, but did
not result in a carry/borrow out of the high-order bit, or vice versa. For 8-, 16-, and 32-bit
operations, OF is set according to overflow at bit 7, 15, and 31, respectively.

DF (Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers post decrement or post increment during
the string instructions. Post increment occurs if DF is reset. Post decrement occurs if
DF is set.

Am486DXlDX2 CPU ArchHectural Overview

2.2.1.4

2.2.1.5

AMD~
IF (INTR Enable Flag, bit 9)

When set, the IF flag allows recognition of external interrupts signaled on the INTR pin.
When IF is reset, external interrupts signaled on the INTR are not recognized. IOPL
indicates the maximum CPL value that allows alteration of the IF bit when new values
are popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap when Single-stepping through code.
When TF is set, the Am486 DX/DX2 microprocessor generates an exception 1 trap after
the next instruction is executed. When TF is reset, exception 1 traps occur only as a
function of the breakpoint addresses loaded into debug registers DR3-DRO.

SF (Sign Flag, bit 7)

SF is set if the high-order bit of the result is set; it is reset otherwise. For 8-, 16-, and
32-bit operations, SF reflects the state of bit 7, 15, and 31 respectively.

ZF (Zero Flag, bit 6)

ZF is set if all bits of the result are 0; otherwise, it is reset.

AF (Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addition and subtraction of packed BCD
quantities. AF is set if the operation resulted in a carry outofbit3 (addition) or a borrow
into bit 3 (subtraction); otherwise, AF is reset. AF is affected by carry out of, or borrow
into bit 3 only, regardless of overall operand length: 8,16, or 32 bits.

PF (Parity Flags, bit 2)

PF is set if the low-order eight bits of the operation contain an even number of "is"
(even parity). PF is reset if the low-order eight bits have odd parity. PF is a function of
only the low-order eight bits, regardless of operand size.

CF (Carry Flag, bit 0)

CF is set if the operation resulted in a carry out of (addition), or a borrow into (subtrac­
tion) the high-order bit; otherwise, CF is reset. For 8-, 16-, or 32-bit operations, CF is
set according to carry/borrow at bit 7, 15, or 31, respectively.

Note: In these descriptions, "set" means "set to 1," and "reset" means "reset to 0."

Segment Registers

Six 16-bit segment registers hold segment selector values that identify the currently
addressable mernory segments. In Protected Mode, each segment can range in size
from one byte up to the entire linear and physical address space of the machine, 4
Gbytes (232 bytes). In Real Address Mode, the maximum segment size is fixed at 64
Kbytes (216 bytes).

The six addressable segments are defined by the segment registers CS, SS, DS, ES,
FS, and GS. The selector in CS indicates the current code segment; the selector in SS
indicates the current stack segment; the selectors in DS, ES, FS, and GS indicate the
current data segments.

Segment Descriptor Cache Registers

The segrnent descriptor cache registers are not prograrnmer-visible, yet understanding
their content is very useful. A programmer-invisible descriptor cache register is
associated with each prograrnmer visible segment register (see Figure 2-3). Each

Am486DXlDX2 CPU Architectural Overview 2·7

i
1-

~ AMD

2.2.2

descriptor cache register holds a 32-bit base address, a 32-bit segment limit, and other
necessary segment attributes.

When a selector value is loaded into a segment register, the associated descriptor cache
register is automatically updated with the correct information. In Real Address Mode,
only the base address is updated directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes are fixed in Real Mode. In Pro­
tected Mode, the base address, the limit, and the attributes are all updated per the
contents of the segment descriptor indexed by the selector.

Whenever a memory reference occurs, the segment descriptor cache register
associated with the segment being used is automatically involved with the memory
reference. The 32-bit segment base address becomes a component of the linear
address calculation, the 32-bit limit is used for the limit-check operation, and the
attributes are checked against the type of memory reference requested.

System Level Registers
The system level registers (see Figure 2-4) control operation of the on-chip cache, the
on-chip floating-point unit (FPU), and the segmentation and paging mechanisms. These
registers are only accessible to programs running at privilege level 0, the highest
privilege level.

The system level registers include three control registers and four segmentation base
registers. The three control registers are CRO, CR2, and CR3. CR1 is reserved for future
AMD processors. The four segmentation base registers are the Global Descriptor Table
Register (GDTR), the Interrupt Descriptor Table Register (IDTR), the Local Descriptor
Table Register (LDTR), and the Task State Segment Register (TR).

Figure 2·3 Am486 Microprocessor Segment Registers and Associated Descriptor Cache
Registers

15

2-8

Segment Registers
A

Selector

Selector

Selector

Selector

Selector

Selector

,
o

CS-

Descriptor Registers (Automatically Loaded)

rr----------------------~A~----------------------~
Other

Physical Base Address Segment Limit
Segment

Attributes from Descriptor

~----------~--------+_~_4--+_~_4--~~_+~
SS-

DS-

ES-

FS-
~----------~--------+_~_4--+_~_4--~~_+~

GS-

17852A-006

Am486DXlDX2 CPU Architectural Overview

AMD~
Figure 2·4 System Level Registers

GDTR

IDTR

TR

LDTR

31 24 123 16 115 81 7

Page Fault Linear Address Register

Page Directory Base Register I
System Address Registers

a
CRa

CR2

CR3

47 32-Bit Linear Base Address Limit a

Descriptor Registers (Automatically loaded)
System Segment Registers

~ __________ ~' ____ ~A~ __________________ ~\

15 a 32-Bit Linear Base Address 20-Bit Segment Limit Attributes

Selector

II II Selector

17852A-007

Figure 2·5 Control Register 0

31 24 23 18 16 15 8753210

~--------------~y~--------------~

Note: MSW

1 indicates AMD Reserved (Do Not Define); see Section 226. 17852A--{)08

2.2.2.1 Control Registers

Control Register 0 (CRO)

CRO (see Figure 2-5) contains 10 bits for control and status purposes. Five of the bits
defined in the Am486DX/DX2 microprocessor's CRO are newly defined, The new bits are
CD, NW, AM, WP, and NE. The function of the bits in CRO can be categorized as
follows: -

• Am486DX/DX2 Microprocessor Operating Modes: PG, PE (see Table 2-2)

• On-Chip Cache Control Modes: CD, NW (see Table 2-3)

• On-Floating-Point Unit Control: TS, EM, MP, NE (see Table 2-4)

• Alignment Check Control: AM

• Supervisor Write Protect: WP

The low-order 16 bits of CRO are also known as the Machine Status Word (MSW), for
compatibility with the 80286 Protected Mode. LMSW and SMSW (load and store MSW)
instructions are taken as special aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. The LMSW and SMSW instructions in the
Am486DXlDX2 microprocessor work the same as the LMSW and SMSW instructions in
the 80286 (I.e., they only operate on the low-order 16 bits of CRO and they ignore the

Am486DXlDX2 CPU Architectural Overview 2·9

~ AMD

Table 2-2

2·10

new bits). New Am486DX/DX2 microprocessor operating systems should use the MOV
CRO, Reg instruction. The defined CRO bits are described below:

PG (Paging Enable, bit 31)

The PG bit is used to indicate whether paging is enabled (PG = 1) or disabled (PG = 0)
(see Table 2-2).

CD (Cache Disable, bit 30)

The CD bit is used to enable the on-chip cache. When CD = 1 , the cache is not filled on
cache misses. When CD = 0, cache fills can be performed on misses (see Table 2-3).

The state of the CD bit, the cache enable input pin (KEN), and the relevant page cache
disable (PCD) bit determine if a line read in response to a cache miss is installed in the
cache. A line is installed in the cache only if CD = 0 and KEN and PCD are both zero.
The relevant PCD bit comes from either the page table entry, page directory entry, or
control register 3. Refer to Section 5.6 for more details on page cacheability.

CD is set to one after RESET.

NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-throughs and write-invalidate cycles (NW =
0). When NW = 0, all writes, including cache hits, are sent out to the pins. Invalidate
cycles are enabled when NW = O. During an invalidate cycle a line will be removed
from the cache if the invalidate address hits in the cache (see Table 2-3).

When NW = 1, write-throughs and write-invalidate cycles are disabled. A write will not
be sent to the pins if the write hits in the cache. With NW = 1 , the only write cycles that
reach the external bus are cache misses. Write hits with NW = 1 will never update
main memory. Invalidate cycles are ignored when NW = 1.

AM (Alignment Mask, bit 18)

The AM bit controls whether the alignment check (AG) bit in the flag register
(EFLAGS) can allow an alignment fault. AM = 0 disables the AC bit. AM = 1 enables
the AC bit. AM = 0 is the 386 microprocessor compatible mode. 386 microprocessor
software can load incorrect data into the AC bit in the EFLAGS register. Setting AM = 0
will prevent AC faults from occurring before the Am486DX/DX2 microprocessor has
created the AC interrupt service routine.

Processor Operating Modes

PG PE Mode

0 0 Real Mode. Exact 8086 semantics, with 32-bit extensions available with prefixes.

0 1 Protected Mode. Exact 80286 semantics, plus 32-bit extensions through both pre-
fixes and "default" prefix setting associated with code segment descriptors. Also, a
submode is defined to support a Virtual 8086 within the context of the extended
80286 protection model.

1 0 UNDEFINED. Loading CRO with this combination of PG and PE bits raises a GP
fault with error code o.

1 1 Page Protection Mode. AI.I the facilities of Protected Mode, with paging enabled
underneath segmentation.

Am486DXlDX2 CPU Architectural Overview

Table 2·3

Table 2-4

AMD~
On·Chip Cache Control Modes

CD NW Operating Mode

1 1 Cache fills disabled, write-through and invalidates disabled"

1 a Cache fills disabled, write-through and invalidates enabled"

a 1 INVALID. If CRa is loaded with this combination of bits, a GP fault with error
code is raised.

a a Cache fills enabled, write-through and invalidates enabled"

On·Chip Floating.Point Unit Control

CRO BIT Instruction Type

EM TS MP Floating Point Wait

a a a Execute Execute
a a 1 Execute Execute
a 1 a Trap 7 Execute
a 1 1 Trap 7 Trap 7
1 a 0 Trap 7 Execute
1 a 1 Trap 7 Execute
1 1 a Trap 7 Execute
1 1 1 Trap 7 Trap 7

WP (Write Protect, bit 16)

WP protects read-only pages from supervisor write access. The 386 microprocessor
allows a read-only page to be written from privilege levels 0-2. The Am486DX/DX2
microprocessor is compatible with the 386 microprocessor when WP = O. WP = 1
forces a fault on a write to a read-only page from any privilege level. Operating sys­
tems with Copy-on-Write features can be supported with the WP bit. Refer to Section
4.5.3 for further details on the WP bit.

NE (Numerics Exception, bit 5)

The NE bit controls whether unmasked floating-point exceptions (UFPE) are handled
through interrupt vector 16 (NE = 1) or through an external interrupt (NE = 0). NE = 0
(default at reset) supports the DOS operating system error reporting scheme from the
8087,80287, and 387 math coprocessor. In DOS systems, math coprocessor errors
are reported via external interrupt vector 13. DOS uses interrupt vector 16 for an oper­
ating system call. Refer to Sections 6.2.13 and 7.2.14 for more information on
floating-point error reporting.

For any UFPE, the floating-point error output pin (FERR) is driven active.

For NE = 0, the Am486DX/DX2 microprocessor works in conjunction with the ignore
numeric error input (IGNNE) and the FERR output pins. When a UFPE occurs and the
IGNNE input is inactive, the Am486DX/DX2 microprocessor freezes immediately
before executing the next floating-point instruction. An external interrupt controller
supplies an interrupt vector when FERR is driven active. The UFPE is ignored if
IGNNE is active and floating-point execution continues.

Note: The CPU freeze mentioned above does not take place if the next instruction is one
of the control instructions: FNCLEX, FNiNIT, FNSAVE, FNSTENV, FNSTCW, FNSTSW,

Am486DXlDX2 CPU Architectural Overview 2-11

~AMD

2·12

FNSTSW AX, FNENI, FNDISI, and FNSETPM. The freeze does occur if the next instruc­
tion is WAIT.

For NE = 1, any UFPE results in a software interrupt 16 immediately before executing
the next non-control floating-point or WAIT instruction. The IGNNE signal is ignored.

TS (Task Switched, bit 3)

The TS bit is set when a task switch operation is performed. Execution of a floating-point
instruction with TS = 1 causes a device not available (DNA) fault (trap vector 7). If TS = 1
and MP = 1 (monitor coprocessor in CRO), a WAIT instruction causes a DNA fault (see
Table 2-4).

EM (Emulate Coprocessor, bit 2)

The EM bit determines whether floating-point instructions are trapped (EM = 1) or
executed. If EM = 1, all floating-point instructions cause fault 7.

Note: WAIT instructions are not affected by the state of EM (see Table 2-4).

MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit to determine if WAIT instructions
should trap. If MP = 1 and TS = 1, WAIT instructions cause fault 7 (see Table 2-4). The
TS bit is set to 1 on task switches by the Am4860X/OX2 microprocessor. Floating-point
instructions are unaffected by the state of the MP bit. It is recommended that the MP bit
be set to 1 for the normal operation of the Am486DX/DX2 microprocessor.

PE (Protection Enable, bit 0)

The PE bit enables the segment-based protection mechanism. If PE = 1, protection is
enabled. When PE = 0, the Am486DX/DX2 microprocessor operates in Real Mode,
with segment-based protection disabled and addresses formed as in an 8086 (see
Table 2-2).

All new CRO bits added to the Am386 CPU and Am486DX/DX2 microprocessors, except
for ET and NE, are upward compatible with the 80286. These new bits are in register bits
not defined in the 80286. For strict compatibility with the 80286, the LMSW instruction is
defined to not change the ET or NE bits.

Control Register 1 (CR1)

CR1 is reserved for use in future AMD microprocessors.

Control Register 2 (CR2)

CR2 holds the 32-bit linear address that caused the last page fault detected (see
Figure 2-6). The error code pushed onto the page fault handier'S stack when it is invoked
provides additional status information on this page fault.

Control Register 3 (CR3)

CR3 contains the physical base address of the page directory table (see Figure 2-6).
The Am486DX/DX2 microprocessor page directory is always page aligned (4 Kbyte­
aligned). This alignment is enforced by only storing bits 31-20 in CR3.

In the Am486DX/DX2 microprocessor, CR3 contains two new bits, page write-through
(PWT) (bit 3) and page cache disable (PCD) (bit 4). The page table entry (PTE) and page
directory entry (PDE) also contain PWT and PCD bits. PWT and PCD control page
cache ability. When a page is accessed in external memory, the state of PWT and PCD
are driven out on the PWT and PCD pins. The source of PWT and PCD can be CR3, the
PTE, or the PDE. PWT and PCD are sources from CR3 when the PDE is being updated.

Am486DXlDX2 CPU Architectural Overview

2.2.2.2

When paging is disabled (PG = 0 in CRO), PCD and PWT are assumed to be 0,
regardless of their state in CR3.

AMD~

A task switch through TSS that changes the values in CR3, or an explicit load into CR3
with any value invalidates all cached page table entries in the translation lookaside buffer
(TLB).

The page directory base address in CR3 is a physical address. The page directory can be
paged out while its associated task is suspended, but the operating system must ensure
that the page directory is resident in physical memory before the task is dispatched. The
entry in the TSS for CR3 has a physical address, with no provision for a present bit. This
means that the page directory for a task must be resident in physical memory. The CR3
image in a TSS must point to this area before the task can be dispatched through its TSS.

System Address Registers

Four special registers are defined to reference the tables or segments supported by the
80286, 386, and Am486DX/DX2 microprocessor protection model. These. tables or
segments are

• GDT (Global Descriptor Table)

• IDT (Interrupt Descriptor Table)

• LDT (Local Descriptor Table)

• TSS (Task State Segment)

The addresses of these tables and segments are stored in special registers, the System
Address and System Segment Registers (see Figure 2-4). These registers are GDTR,
IDTR, LOTR, and TR, respectively. Chapter 4, Protected Mode Architecture, describes
the use of these registers.

System Address Registers (GOTR and IOTR)

The GDTR and IDTR hold the 32-bit linear base address,and 16-bit limit of the GDT and
IDT, respectively.

Since the GDT and IDT segments are global to all tasks in the system, the GDT and IDT
are defined by 32-bit linear addresses (subject to page translation if paging is enabled)
and 16-bit limit values.

System Segment Registers (LDTR and TR)

The LDTR and TR hold the 16-bit selector for the LDT descriptor and the TSS descrip­
tor, respectively.

Figure 2·6 Control Registers 2 and 3

~13_1 ______________________ p_~_e_F_a_UH_L_in_e_ar_A_d_dr_e_ss_R_e_g_i~_e_r ____________________ ~OI CR2

31

Page Directory Base Register CR3

Note:
o indicates AMD Reserved (Do Not Define); see Section 2.2.6.

17852A-009

Am486DXlDX2 CPU Architectural OvervIew 2·13

~ AMD

2.2.3

2.2.3.1

Figure 2·7

2·14

Since the LOT and TSS segments are task specific segments, the LOT and TSS are
defined by selector values stored in the system segment registers.

Note: A programmer-invisible segment descriptor register is associated with each system seg­
ment register.

Floating.Point Registers
Figure 2-7 shows the floating-point register set. The on-chip floating-point unit (FPU)
contains eight data registers, a tag word, a control register, a status register, an instruc­
tion pOinter, and a data pOinter.

The operation of the Am4860X/OX2 microprocessor's on-chip FPU is exactly the same
as the 387 math coprocessor, Software written for the 387 math coprocessor runs on the
on-chip FPU without any modifications.

Data Registers

Floating-point computations use the Am4860X/OX2 microprocessor's FPU data
registers. These eight 80-bit registers provide the equivalent capacity of twenty 32-bit
registers. Each of the eight data registers is divided into fields corresponding to the
CPU's extended-precision data type.

The FPU's register set can be accessed either as a stack, with instructions operating on
the top one or two stack elements, or as a fixed register set, with instructions operating
on explicitly designated registers. The TOP field in the status word identifies the current
top-of-stack register. A "push" operation decrements TOP by 1 and loads a value into the
new top register. A "pop" operation stores the value from the current top register and
then increments TOP by 1. Like other Am4860X/OX2 microprocessor stacks in memory,
the FPU register stack grows "down" toward lower-addressed registers.

Instructions can address the data registers either implicitly or explicitly. Many instructions
operate on the register at the TOP of the stack. These instructions implicitly address the
register at which TOP pOints. Other instructions allow the programmer to explicitly
specify which register to use. This explicit register addressing is also relative to TOP.

Floating·Point Registers

79 78

RO Sign Exponent

Rl

R2

R3

R4

R5

R6

R7

15 a
Control Register

Status Register

Tag Word

64 63

Significand

47

Instruction Pointer

Data Pointer

Tag
Field

o 1 0

o

Am486DXlDX2 CPU Architectural Overview

17852A-Ol0

AMD~
2.2.3.2 Tag Word

The tag word marks the content of each numeric data register (see Figure 2-8). Each
two-bit tag represents one of the eight data registers. The principal function of the tag
word is to optimize the FPU's performance and stack handling by making it possible to
distinguish between empty and non-empty register locations. Tag words also enable
exception handlers to check the contents of a stack location without necessitating
complex decoding of the actual data.

2.2.3.3 Status Word

The 16-bit status word reflects the overall state of the FPU. The status word is shown in
Figure 2-9 and is located in the status register

Figure 2·8 FPU Tag Word

1

Note:

The index i oftag(i) is not top-relative. A program typically uses the rap field of status word to determine which tag (i) field refers to
logical top-of-stack.

TAG VALUES:
00 Valid
01 Zero
10 QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 Empty

Figure 2·9 FPU Status Word

Jd liln
Error Summary Status _______ -J

Stack Flag -----------'

EXCEPTION FLAGS:
Precision ------------'

Underflow -------------1
Overflow

Zero Divide --------------'
Denormalized Operand

Invalid Operation -----------------'

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.5 for interpretation of condition code.
TOP Values:

000 = Register a is Top-of-Stack
001 = Register 1 is Top-of-Stack

• • • 111 = Register 7 is Top-of-Stack
For definitions of exceptions, refer to the Section entitled
"Exception Handling".

Am486DXlDX2 CPU Architectural Overview

a

17852A-Oll

Busy
Top-ol-Stack Pointer

Condition Code

17852A-012

2·15

~AMD

2·16

The B bit (Busy, bit 15) is included for 8087 compatibility. The B bit reflects the contents
of the ES bit (bit 7 of the status word).

Bits 13-11 (TOP) point to the FPU register that is the current top-of-stack.

The four numeric condition code bits, C3-CO, are similar to the flags in EFLAGS.
Instructions that perform arithmetic operations update C3-CO to reflect the outcome.
The effects of these instructions on the condition codes are summarized in Table 2-5
through Table 2-8.

Bit 7 is the error summary (ES) status bit. The ES bit is set if any unmasked exception
bit (bits 5-0 in the status word) is set; ES is clear otherwise .. The FERR (floating-point
error) signal is asserted when ES is set

Bit 6 is the stack flag (SF). This bit is used to distinguish invalid operations due to stack
overflow or underflow. When SF is set, bit 9 (C1) distinguishes between stack overflow
(C1 = 1) and underflow (C1 = 0).

Table 2-9 shows the six exception flags in bits 0-5 of the status word. Bits 0-5 are set to
indicate that the FPU has detected an exception while executing an instruction.

The six exception flags in the status word can be individually masked by mask bits in the
FPU control word. Table 2-9 lists the exception conditions and their causes in order of
precedence. Table 2-9 also shows the action taken by the FPU if the corresponding
exception flag is masked.

An exception not masked by the control word causes three things to happen: the
corresponding exception flag in the status word is set, the ES bit in the status word is
set, and the FERR output signal is asserted. When the Am486DX/DX2 microprocessor
attempts to execute another floating-point or WAIT instruction, either exception 16
occurs, or an external interrupt occurs if NE = 1 in control register O. The exception
condition must be resolved via an interrupt service routine. The FPU saves both the
address of the floating-point instruction that caused the exception, and the address of
any memory operand required by that instruction in the instruction and data pOinters
(see Section 2.2.3.4).

Note: When a new value is loaded into the status word by the FLOENV (load environment) or
FRSTOR (restore state) instruction, the value of ES (bit 7) and its reflection in the B bit (bit 15)
are not derived from the values loaded from memory. The values of ES and B are dependent
upon the values of the exception flags in the status word and their corresponding masks in the
control word. If ES is set in such a case, the FERR output of the Am4860XlOX2 microprocessor
is activated immediately.

Am486DXlDX2 CPU Architectural Overview

AMD~
Table 2-5 FPU Condition Code Interpretation

Instruction CO (5) I C3 (Z) C1 (A) C2 (C)

FPREM,FPREM1 Three least significant bits
(see Table 2-3) of quotient Reduction

0= complete
02 00 01 1 = incomplete

orO/D

FCOM, FCOMP, FCOMPP, FTST, Result of comparison Zero Operand is not
FUCOM, FUCOMP, FUCOMPP,

(see Table 2-7) or OlD comparable
FICOM, FICOMP (Table 2-7)

FXAM Operand class Sign Operand class
(see Table 2-9) orO/D (Table 2-9)

FCHS, FABS, FXCH, FINCTOP,
FDECTOP, Constant loads, UNDEFINED Zero UNDEFINED
FXTRACT, FLD, FILD, FBLD, FSTP orO/D
(ext real)

FIST, FBSTP, FRNDINT, FST, FSTP,
FADD, FMUL, FDIV, FDIVR, FSUB, UNDEFINED Roundup UNDEFINED
FSUBR, FSCALE, FSORT, FPATAN, orO/D
F2XM1, FYL2X, FYL2XP1

FPTAN, FSIN, Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/D, 0= complete

undefined
ifC2 = 1

1 = incomplete

FLDENV, FRSTOR Each bit loaded from memory.

FINIT Clears these bits.

FLDCW, FSTENV, FSTCW, FSTSW, UNDEFINED
FCLEX, FSAVE

When both IE and SF bits of status word are set, indicating a
OlD stack exception, this bit distinguishes between stack overflow

(C1 = 1) and underflow (Ci = 0).

If FPREM or FPREM 1 produces a remainder that is less than the
modulus, reduction is complete. When reduction is incomplete,
the value at the top of the stack is a partial remainder that can be

Reduction used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS. the reduction bit is set if the operand at the top of the
stack is too large. In this case, the original operand remains at
the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates
whether the last rounding in the instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

Am486DXlDX2 CPU Architectural Overview 2-17

,.'
I

~ AMD

Table 2·6

C2

1

0

Table 2·7

Table 2·8

2.2.3.4

2-18

Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code

C3 C1 CO
Interpretation after FPREM and FPREM1

Incomplete Reduction:
X X X further interaction required

for complete reduction.

01 00 02 o MOD8

0 0 0 0
0 1 0 1
1 0 0 2 Complete Reduction:

1 1 0 3 CO, C3, and C1 contain three least

0 0 1 4 significant bits of quotient.

0 1 1 5
1 0 1 6
1 1 1 7

Condition Code Resulting from Comparison

Order C3 C2 CO

TOP> Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Condition Code Defining Operand Class

C3 C2 C1 CO Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN
0 0 1 0 - Unsupported
0 0 1 1 -NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 - Empty
1 1 0 0 + Denormal
1 1 1 0 - Denormal

Instruction and Data Pointers

Because the FPU operates in parallel with the Arithmetic Logic Unit (ALU) (in the
Am486DX/DX2 microprocessor the ALU consists of the base architecture registers), any
errors detected by the FPU may be reported after the ALU executed the floating-point
instruction that caused it. To allow identification of the failing numeric instruction, the
Am486DX/DX2 microprocessor contains two pointer registers that supply the address of
the failing numeric instruction and the address of its numeric memory operand (if
appropriate).

Am486DXlDX2 CPU Architectural Overview

2.2.3.5

AMD~
The instruction and data pOinters are provided for user-written error handlers. These registers
are accessed by the FLOENV (load environment), FSTENV (store environment), FSAVE
(save state), and FRSTOR (restore state) instructions. Whenever the Am4860X/OX2
microprocessor decodes a new floating-point instruction, it saves the instruction (including
any prefixes that might be present), the address of the operand (if present), and the
opcode.

The instruction and data pointers appear in one of four formats depending on the
operating mode of the Am4860X/OX2 microprocessor (Protected Mode or Real Address
Mode) and depending on the operand-size attribute in effect (32-bit operand or 16-bit
operand). When the Am4860XlOX2 microprocessor is in the Virtual 8086 Mode, the Real
Address Mode formats are used. The four formats are shown in Figure 2-10 through
Figure 2-13. The floating-point instructions FLDENV, FSTENV, FSAVE, and FRSTOR are
used to transfer these values to and from memory. Note that the data pOinter value is
undefined if the prior floating-point instruction did not have a memory operand.

Note: The operand size attribute is the D bit in a segment descriptor.

FPU Control Word

The FPU provides several processing options that are selected by loading a control
word from memory into the control register. Figure 2-14 shows the format and encoding
of fields in the control word.

Figure 2-10 Protected Mode FPU Instruction and Data Pointer Image In Memory,
32·Bit Format

32-bit Protected Mode Format

31 23 15

Reserved

Reserved

Reserved

IP mset
00000 I Opcode 10 .. 0

Data Operand Offset

Reserved

7

Control Word

Status Word

Tag 'word

CS Selector

Operand Selector

o

o
4

8

C

10

14

18

17852A-013

Figure 2-11 Real Mode FPU Instruction and Data Pointer Image in Memory, 32·Bit Format

32-bit Real Address Mode Format

31 23 15 7

Reserved Control Word

Reserved Status Word

Reserved Tag Word

Reserved Instruction Pointer 15 .. 0

0000 I Instruction Pointer 31 .. 16 I 0 Opcode 10 .. 0

Reserved Operand Pointer 15 .. 0

0000 I Operand Pointer 31 .. 16 I 0000 I 00000000

Am486DXlDX2 CPU Architectural Overview

o
o
4

8

C

10

14

18

17852A-014

2·19

,..

~AMD
Figure 2-12 Protected Mode FPU Instruction and Data Pointer Image in Memory,

16·Bit Format

15
16-bit Protected Mode Format

7

Control Word

Status Word

Tag Word

IP Offset

CS Selector

Operand Offset

Operand Selector

o
o
2

4

6

B

A

C
17852A-015

Figure 2·13 Real Mode FPU Instruction and Data Pointer Image in Memory,
16·Bit Format

2·20

15

16-bit Real-address Mode And
Virtual-80S6 Mode Format

7

Control Word

Status Word

Tag Word

Instruction Pointer 15 .. 0

IP19.16 101 Opcode 10 .. 0

Operand POinter15 .. 0

DP 19.161 01 o 0 0 0 a a 0 0 a 0 0

o
o
2

4

6

B

A

C 17852A-016

The low-order byte of the FPU control word configures the FPU error and exception
masking. Bits 5-0 of the control word contain individual masks for each of the six
exceptions that the FPU recognizes.

The high-order byte of the control word configures the FPU operating mode, including
precision and rounding.

RC (Rounding Control, bits 11-10)

The RC bits provide for directed rounding and true chop, as well as the unbiased
round to nearest even mode specified in the IEEE standard. Rounding control affects
only those instructions that perform rounding at the end of the operation (and thus can
generate a precision exception); namely, FST, FSTP, FIST, all arithmetic instructions
(except FPREM, FPREM1, FXTRACT, FA8S, and FCHS), and all transcendental
instructions.

PC (Precision Control, bits 9-8)

The PC bits can be used to set the FPU internal operating precision of the significand
at less than the default of 64 bits (extended precision). This can be useful in providing
compatibility with early generation arithmetic processors of smaller precision. PC
affects only the instructions ADD, SUB, DIV, MUL, and SORT. For all other instruc­
tions, either the opcode determines the precision or extended precision is used.

Am486DXlDX2 CPU Architectural Overview

2.2.4

2.2.4.1

2.2.4.2

2.2.5

2.2.6

AMD~
Debug and Test Registers

Debug Registers

The six programmer accessible debug registers (see Figure 2-15) provide on-chip
support for debugging. Debug registers DR3-DRO specify the four linear breakpoints.
The Debug control register DR? is used to set the breakpoints. The Debug status
register DR6 displays the breakpoint's current state. The use of the Debug registers is
described in Chapter 9.

Test Registers

The Am486DX/DX2 microprocessor contains five test registers (see Figure 2-15). TR6
and TR? are used to control the TLB testing. TR3, TR4, and TR5 are used for testing the
on-Chip cache. The use of the test registers is discussed in Chapter 8.

Register Accessibility
There are a few differences regarding the accessibility of the registers in Real and
Protected Mode (see Table 2-10). See Chapter 4, Protected Mode Architecture, for
further details.

Compatibility With Future Processors
In the proceeding register descriptions, note certain Am486DX/DX2 microprocessor
register bits are AMD reserved. When reserved bits are called out, treat them as fully
undefined. This is essential for software compatibility with future processors! Follow these
guidelines:

• Do not depend on the states of any undefined bits when testing the values of defined
register bits. Mask them out when testing.

• Do not depend on the states of any undefined bits when storing them to memory or
another register.

• Do not depend on retaining information written into any undefined bits.

• When loading registers, always load the undefined bits as zeros.

• However, registers that have been previously stored can be reloaded without masking.

Depending upon the values of undefined register bits makes software dependent upon
the unspecified Am486DX/DX2 microprocessor handling of these bits. Depending on
undefined values risks making software incompatible with future processors that define
usage for the Am486DX/DX2 microprocessor undefined bits.

AVOID ANY SOFTWARE DEPENDENCE UPON THE STATE OF UNDEFINED
Am486DX/DX2 MICROPROCESSOR REGISTER BITS.

2.3 INSTRUCTION SET
The Am486DX/DX2 microprocessor instruction set can be divided into eleven categories
of operations:

• Data Transfer

• Arithmetic

• Shift/Rotate

• String Manipulation

• Bit Manipulation

Am486DXlDX2 CPU Architectural Overview 2-21

~AMD
• Control Transfer

• High Level Language Support

• Operating System Support

• Processor Control

• Floating Point

• Floating-Point Control

The Am486DX/DX2 microprocessor instructions are listed in Chapter 10. Note that all
floating-point unit instruction mnemonics begin with an F.

All Am486DXlDX2 microprocessor instructions operate on either 0, 1, 2, or 3 operands;
where an operand resides in a register, in the instruction itself, or in memory. Most 0
operand instructions (e.g., CLI, STI) take only one byte. Generally, 1 operand instruc­
tions are two bytes long. The average instruction is 3.2 bytes long. Since the
Am486DX/DX2 microprocessor has a 32-byte instruction queue, an average of 10
instructions is prefetched. Using two operands permits the following types of common
instructions:

• Register to Register

• Memory to Register

• Memory to Memory

• Immediate to Register

• Register to Memory

• Immediate to Memory

The operands can be either 8, 16, or 32 bits long. As a general rule, when executing the
Am486DX/DX2 or 386 microprocessor's code (32-bit code), operands are 8 or 32 bits;
when executing existing 80286 or 8086 code (16-bit code), operands are 8 or 16 bits.
Prefixes can be added to all instructions that override the default length of the operands
(I.e., use 32-bit operands for 16-bit code, or 16-bit operands for 32-bit code).

2.4 MEMORY ORGANIZATION

2·22

Memory on the Am486DX/DX2 microprocessor is divided up into 8-bit quantities (bytes),
16-bit quantities (words), and 32-bit quantities (dwords). Words are stored in two consecu­
tive bytes in memory with the low-order byte at the lowest address, the high-order byte at
the high address. Dwords are stored in four consecutive bytes in memory with the
low-order byte at the lowest address, the high-order byte at the highest address. The
address of a word or dword is the byte address of the low-order byte.

Am486DXlDX2 CPU Architectural Overview

Figure 2-14 FPU Control Word

RESERVED

EXCEPTION MASKS:
Precision

Underflow
Overflow

Zero Divide _____________ ----l

Denormalized Operand
Invalid Operation ________________J

Precision Control
24-00 bits (single precision)
01-(reserved)
53-10 bits (double precision)
64-11 bits (extended precision)

Figure 2·15 Debug and Test Registers
Debug Registers

Linear Breakpoint Address 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

Reserved

Reserved

Breakpoint Status

Breakpoint Control

Test Registers

Cache Test Data

Cache Test Status

Cache Test Control

TLB Test Control

TLB Test Status

AMD~

• "0" after RESET or FINIT
changeable upon loading the control word
(CW). Programs must ignore this bit.

Rounding Control
DO-Round to nearest or even
01-Round down (toward - =)
10-Round up (toward + =)
II-Chop (truncate toward zero)

17852A--D17

ORO

DRI

DR2

DR3

DR4

DR5

DR6

DR7

TR3

TR4

TR5

TR6

TR7 17852A--D17

Am486DXlDX2 CPU Architectural Overview 2·23

~AMD
Table 2-9 FPU Exceptions

Default Action
Exception Cause (If exception Is masked)

Invalid
Operation on a signaling NaN, unsupported format,

Result is a quiet NaN, integer indeterminate form (0* 00 , 0/0, (+ 00) + (- 00), etc.), or stack
Operation overflow/underflow (SF is also set). indefinite, or BCD indefinite.

Denormalized At least one of the operands is denormalized (Le., it has the Normal processing
Operand smallest exponent but a nonzero significand). continues.

Zero Divisor The divisor is zero while the dividend is a noninfinite, nonzero Result is 00.
number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or 00.

The true result is nonzero but too small to be represented in
Result is denormalized or Underflow the specified format, and, if underflow exception is masked,

denormalization causes loss of accuracy. zero.

Inexact The true result is not exactly representable in the specified
Normal processing Result format (e.g., 1/3); the result is rounded according to the

(Precision) rounding mode. continues.

Table 2-10 Register Usage

Use in Use in Use In
Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes

Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL IOPL*

Control Registers Yes Yes PL = 0 PL = 0 No Yes

GDTR Yes Yes PL = 0 Yes No Yes

IDTR Yes Yes PL = 0 Yes No Yes

LDTR No No PL = 0 Yes No No

TR No No PL = 0 Yes No No

FPU Data Registers Yes Yes Yes Yes Yes Yes

FPU Control Registers Yes Yes Yes Yes Yes Yes

FPU Status Registers Yes Yes Yes Yes Yes Yes

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes

FPU Data Pointer Yes Yes Yes Yes Yes Yes

Debug Registers Yes Yes PL = 0 PL = 0 No No

Test Registers Yes Yes PL = 0 PL = 0 No No

Notes:
PL = 0: The registers can be accessed only when the current privilege level is zero.

*IOPL: The PUSHF and POPF instructions are made 110 Privilege Level sensitive in Virtual BOB6 Mode.

2·24 Am486DXlDX2 CPU Architectural Overview

2.4.1

2.4.2

AMD~
In addition to these basic data types, the Am486DX/DX2 microprocessor supports two
larger units of memory: pages and segments. Memory can be divided up into one or
more variable length segments that can be swapped to disk or shared between pro­
grams. Memory can also be organized into one or more 4-Kbyte pages. Finally, both
segmentation and paging can be combined, gaining the advantages of both systems.
The Am486DX/DX2 microprocessor supports both pages and segments in order to
provide maximum flexibility to the system designer. Segmentation and paging are
complementary. Segmentation is useful for organizing memory in logical modules and is a
tool for the application programmer, while pages are useful for the system programmer for
managing the physical memory of a system.

Address Spaces
The Am486DX/DX2 microprocessor has three distinct address spaces: logical, linear,
and physical. A logical address (also known as a virtual address) consists of a selector
and an offset. A selector is a segment register's contents. An offset is formed by
summing all of the addressing components (BASE, INDEX, and DISPLACEMENT),
discussed in Section 2.6.2, into an effective address. Since each task on the
Am486DX/DX2 microprocessor has a maximum of 16K (214_1) selectors, and offsets
can be 4 Gbytes (232 bits), this gives a total of 246 bits (or 64 Tbytes) of logical address
space per task. The programmer sees this virtual address space.

The segmentation unit translates the logical address space into a 32-bit linear address
space. If the paging unit is not enabled, then the 32-bit linear address corresponds to the
physical address. The paging unit translates the linear address space into the physical
address space. The physical address is what appears on the address pins.

The primary difference between Real Mode and Protected Mode is how the segmenta­
tion unit performs the translation of the logical address into the linear address. In Real
Mode, the segmentation unit shifts the selector left four bits and adds the result to the
offset to form the linear address. While in Protected Mode, every selector has a linear
base address associated with it. The linear base address is stored in one of two
operating system tables (I.e., the Local Descriptor Table or Global Descriptor Table). The
selector's linear base address is added to the offset to form the final linear address.
Figure 2-16 shows the relationship between the various address spaces.

Segment Register Usage
The main data structure used to organize memory is the segment. On the
Am486DX/DX2 microprocessor, segments are variable sized blocks of linear addresses
that have certain attributes associated with them. There are two main types of seg­
ments: code and data, the segments are of variable size and can be as small as 1 byte
or as large as 4 Gbytes (232 bytes).

In order to provide compact instruction encoding and increased processor performance,
instructions do not need to explicitly specify which segment register is used. A default
segment register is automatically chosen according to the Segment Register Selection
Rules (see Table 2-11). In general, data references use the selector contained in the DS
register; stack references use the SS register, and instruction fetches use the CS
register. The contents of the instruction Pointer provide the offset. Special segment
override prefixes allow the explicit use of a given segment register and override the
implicit rules listed in Table 2-11. The override prefixes also allow the use of the ES, FS,
and GS segment registers.

Am486DXlDX2 CPU Architectural Overview 2-25

~AMD
Figure 2·16 Address Translation

Effective Address Calculation

Index J

I Base ~ I Displacement I
Scale I 1,2,4,8

.A .Y'.
15 3 2 0

1321 Effective Address

R Logical or Segmentation 34

Selector P Virtual Address Unit
L 13, Linear

bescri tor Index
Address

Segment Register
p

Figure 2-17 Addressing Mode Calculations

Segment Registers

SS
G S~" FS

ES :"I"",n.
DS Selector I CS

Descriptor Registers

Access Rights SS I
Access Rights GS I

Access Rights FS J
Access Rights ES I

Access Rights DS I
Access Rights CS

Limit

Base Address

Y+.1
Effective
Address

Linear 40-Address

I

Paging Unit
(Optional Use)

Base Register

Index Register

<?
Scale I 1,2,4, or 8

Displacement I (In Instruction)

Target Address

31 0

BE3-8EO

A31-A2

Physical
Memory

1 32

I' Physical
Address

17852A-018

I

I

Segment
Limit

,/

Selected
Segment

Segment Base Address

17852A-019

2-26 Am486DXlDX2 CPU Architectural Overview

AMD~
Table 2-11 Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL, PUSHA
SS None instructions

Source of POP, POPA, POPF, IRET, RET instructions SS None

Destination of STOS, MOVS, REP
STOS, REP MOVS instructioils ES None
(DI is Base Register)

Other Data References with Effective Address Using
Base Register of:

[EAX]
[EBX]
[ECX]
[EDX]
[ESI]
[EDI]
[EBP]
[ESP]

DS
DS
DS All DS
DS
DS
SS
SS

There are no restrictions regarding the overlapping of the base addresses of any
segments. Thus, all six segments can have the base address set to 0 and create a
system with a 4-Gbyte linear-address space. This creates a system where the virtual
address space is the same as the linear address space. Further details of segmentation
are discussed in Section 4.3.

2.5 I/O SPACE
The Am486DX/DX2 microprocessor has two distinct physical address spaces: Memory
and I/O. Generally, peripherals are placed in I/O space although the Am486DX/DX2
microprocessor also supports memory mapped peripherals. The I/O space consists of
64 Kbytes and can be divided into 64K 8-bit ports, 32K 16-bit ports, 16K 32-bit ports, or
any combination of ports that total less than 64 Kbytes. The 64K 1/0 address space refers
to physical memory rather than linear address since I/O instructions do not go through the
segmentation or paging hardware. The MIlO pin acts as an additional address line, thus
allowing the system designer to easily determine which address space the processor is
accessing.

The 1/0 ports are accessed via the IN and OUT I/O instructions, with the port address
supplied as an immediate 8-bit constant in the instruction or in the DX register. All 8- and
16-bit port addresses are zero extended on the upper address lines. The I/O instructions
cause the MIlO pin to be driven Low.

I/O port addresses OOF8H through OOFFH are reserved for use by AMD.

2.6 ADDRESSING MODES
The Am486DX/DX2 microprocessor provides a total of 11 addressing modes for
instructions to specify operands. The addressing modes are optimized to allow the
efficient execution of high-level languages such as C and FORTRAN, and they cover the
vast majority of data references needed by high-level languages.

Am486DXlDX2 CPU Architectural Overview 2·27

~AMD
2.6.1

2.6.2

Register and Immediate Modes
Two of the addressing modes provide for instructions that operate on register or
immediate operands:

Register Operand Mode: The operand is located in one of the 8-, 16-, or 32-bit general
registers.

Immediate Operand Mode: The operand is included in the instruction as part of the
opcode.

32·Bit Memory Addressing Modes
The remaining nine modes provide a mechanism for specifying the effective address of
an operand. The linear address consists of two components: the segment base address
and an effective address. The effective address is calculated by using combinations of
the following four address elements:

DISPLACEMENT: An 8- or 32-bit immediate value following the instruction.

BASE: The contents of any general purpose register. The base registers are generally used by
compilers to point to the start of the local variable area.

INDEX: The contents of any general purpose register except for ESP. The index registers are
used to access the elements of an array or a string of characters.

SCALE: The index register's value can be multiplied by a scale factor: either 1, 2,4, or 8. Scaled
index mode is especially useful for accessing arrays or structures.

Combinations of these four components make up the nine additional addressing modes.
There is no performance penalty for using any of these addressing combinations, since
the effective address calculation is pipelined with the execution of other instructions. The
one exception is the simultaneous use of Base and Index components which requires
one additional clock.

The effective address (EA) of an operand is calculated according to the following formula
(see Figure 2-17).

EA = Base Reg + (Index Reg' Scaling) + Displacement

Direct Mode: The operand's offset is contained as part of the instruction as an 8-, 16-, or
32-bit displacement.

Example: INC Word PTR [500]

Register Indirect Mode: A BASE register contains the address of the operand.

Example: MOV [ECX], EDX

Based Mode: A BASE register's contents are added to a DISPLACEMENT to form the
operand's offset.

Example: MOV ECX, [EAX + 24]

Index Mode: An INDEX register's contents are added to a DISPLACEMENT to form the
operand's offset.

Example: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register's contents are multiplied by a scaling factor that
is added to a DISPLACEMENT to form the operand's offset.

Example: IMUL EBX, TABLE[ESI*4],7

2·28 Am486DXlDX2 CPU Architectural Overview

2.6.3

AMD~
Based Index Mode: The contents of a BASE register are added to the contents of an
INDEX register to form the effective address of an operand.

Example: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an INDEX register are multiplied by a
SCALING factor. The result is added to the contents of a BASE register to obtain the
operand's offset.

Example: MOV ECX, [EOX*S] [EAX]

Based Index Mode with Displacement: The contents of an INDEX register, a BASE
register's contents, and a DISPLACEMENT are added together to form the operand's
offset.

Example: ADD EOX, [ESI] [EBP+OOFFFFFOh)

Based Scaled Index Mode with Displacement: The contents of an INDEX register are
multiplied by a SCALING factor. The result is added to the contents of a BASE register
and a DISPLACEMENT to form the operand's offset.

Example: MOV EAX. LOCALTABLE[EOI*4] [EBP + SO]

Differences Between 16- and 32-Bit Addresses
In order to provide software compatibility with the 80386, 80286, and the 8086, the
Am486DX/DX2 microprocessor can execute 16-bit instructions in Real and Protected Modes.
The processor determines the size of the instructions it is executing by examining the Default
Operation Size (D) bit in the CS segment descriptor. If the D bit is 0, then all operand lengths
and effective addresses are assumed to be 16 bits long. If the D bit is 1 , then the default
length for operands and addresses is 32 bits. In Real Mode the default size for operands and
addresses is 16-bits.

Regardless of the default precision of the operands or addresses, the Am486DXlDX2
microprocessor is able to execute either 16- or 32-bit instructions. This is specified via the use
of override prefixes. Two prefixes, the Operand Size Prefix and the Address Length Prefix,
override the value of the D bit on an individual instruction basis. These prefixes are automati­
cally added by the assemblers.

Example: The processor is executing in Real Mode and the programmer needs to access the EAX reg­
isters. The assembler code for this might be MOV EAX, 32-bit MEMORYOP. The AMS486
Macro Assembler automatically determines that an Operand Size Prefix is needed and gener­
ates it.

Example: The 0 bit is 0 and the programmer wishes to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of MOV OX, TABLE[ESI*2]. The assembler
uses an Address Length Prefix.since, with 0 = 0, the defauH addressing mode is 16-bits.

Example: The 0 bit is 1 and the program wants to store a 16-bit quantity. The Operand Length Pre-
fix is used to specify only a 16-bit value; MOV MEM16, OX.

The Operand Length and Address Length Prefixes can be applied separately or together
to any instruction. The Address Length Prefix does not allow addresses over 64 Kbytes
to be accessed in Real Mode. A memory address exceeding FFFFH results in a General
Protection Fault. An Address Length Prefix only allows the use of the additional
Am486DXlDX2 microprocessor addressing modes.

When executing 32-bit code, the Am486DXlDX2 microprocessor uses either 8- or 32-bit
displacements, and any register can be used as a base or index register. When execut­
ing 16-bit code, the displacements are either 8 or 16 bits, and the base and index
registers conform to the 80286 model (see Table 2-12).

Am486DXlDX2 CPU Architectural Overview 2-29

I

~
I

~ AMD

Table 2·12 BASE and INDEX Registers for 16· and 32·Bit Addresses

16·8il Addressing 32·8it Addressing

BASE REGISTER BX.BP Any 32-bit GP Register

INDEX REGISTER SI.DI Any 32-bit GP Register Except ESP

SCALE FACTOR none 1.2.4.8
DISPLACEMENT D. 8.16 bits D. 8. 32 bits

2.7 DATA FORMATS

2.7.1 Data Types

2.7.1.1

2.7.1.2

2.7.1.3

2-30

The Am486DX/DX2 microprocessor supports a wide variety of data types. In the
following descriptions. the on-chip FPU consists of the floating-point registers. The CPU
consists of the base architecture registers.

Unsigned Data Types

The FPU does not support unsigned data types (see Table 2-13).

Byte: Unsigned 8-bit quantity

Word: Unsigned i6-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit O. The most significant bit (MSB) is 7.

Signed Data Types

All signed data types assume 2s complement notation. The signed data types contain
two fields. a sign bit and a magnitude. The sign bit is the MSB. The number is negative if
the sign bit is 1. The number is positive if the sign bit is O. The magnitude field consists
of the remaining bits in the number (see Table 2-13).

8-bit integer:

i6-bit integer:

32-bit integer:

Signed 8-bit quantity

Signed i6-bit quantity

Signed 32-bil quantity

64-bit integer: Signed 64-bit quantity

The FPU only supports 16-,32-, and 64-bit integers. The CPU only supports 8-, 16-, and
32-bit integers.

Floating.Point Data Types

Floating-point data type in the Am486DX/DX2 microprocessor contains three fields: sign,
significand, and exponent. The sign field is one bit and is the MSB of the floating-point
number. The number is negative if the sign bit is 1. The number is positive if the sign bit
is O. The significand gives the significant bits of the number. The exponent field contains
the power of 2 needed to scale the significand (see Table 2-13).

Only the FPU supports floating-point data types:

• Single Precision Real: 23-bit significand and 8-bit exponent. 32 bits total.

• Double Precision Real: 52-bit significand and 11-bit exponent. 64 bits total.

• Extended Precision Real: 64-bit significand and is-bit exponent. 80 bits total.

Am486DXlDX2 CPU Architectural Overview

2.7.1.4

2.7.1.5

2.7.1.6

AMD~
BCD Data Types

The Am486DX/DX2 microprocessor supports packed and unpacked binary coded
decimal (BCD) data types. A packed BCD data type contains two digits per byte; the
lower digit is in bits 3-0 and the upper digit is in bits 7-4. An unpacked BCD data type
contains 1 digit per byte stored in bits 3--0.

The CPU supports 8-bit packed and unpacked BCD data types. The FPU only supports
80-bit packed BCD data types (see Table 2-13).

String Data Types

A string data type is a contiguous sequence of bits, bytes, words, or dwords. A string can
contain between 1 byte and 4 Gbytes (see Table 2-14).

String data types are only supported by the CPU:

• Byte String: Contiguous sequence of bytes.

• Word String: Contiguous sequence of words.

• Dword String: Contiguous sequence of dwords.

• Bit String: A set of contiguous bits. In the Am486DX/DX2 microprocessor, bit strings
can be up to 4-Gbits long.

ASCII Data Types

The Am486DX/DX2 microprocessor supports ASCII (American Standard Code for
Information Interchange) strings and can perform arithmetic operations (such as addition
and division) on ASCII data (see Table 2-14).

Am486DXlDX2 CPU Architectural Overview 2·31

~AMD
Table 2-13 Am486DX/DX2 Microprocessor Data Types

Supported by Supported by
Base Registers FPU

11
Data Format

Byte X

Word X

Dword X

a-Bit Integer

16-Bit Integer

32-Bit Integer

64-Bit Integer

a-Bit
Unpacked BCD X

a-Bit
Packed BCD X

aO-Bit
Packed BCD

Single
Precision Real

Double
Precision Real

Extended
Precision Real

Range

0-255

0-64K

0-4G

0-9

0-9

X ±10±18

X ±10±38

X ±10±308

X ±10±4932

Precision

a bits

16 bits

32 bits

a bits

16 bits

32 bits

64 bits

1 Digit

2 Digits

1a Digits

24 Bits

53 Bits

64 Bits

7 01 7 ~7 ~7

63

~7 ~7

Least Significant Byte

~
01 7 01 7 01 7 ~7 a

I
31

7 a

C
15 0

I
0

Two's 7 0
Complement rr­
Sign Bit Of

15 0
Two's
Complement I I
Sign Bit '-,-'-----1

31 0 Two's
Complement I I
Sign Bit '-='t'-----------1

o
Two's .1 I
Complement1y _________________ -I
Sign Bit t

79 72

Ilgnoredl

t Sign Bit

63 52

79 Sign Bit t63

t Sign Bit

7 0

One BCD Digit per Byte C
7 0

Two BCD Digits per Byte C
o

31 23 o
Significand

Sign Bit t
o

Significand

o
Significand

2-32 Am486DXlDX2 CPU Architectural Overview

AMO~

Table 2-14 String and ASCII Data Types

String Data Types

Address A+N A+1 A

Byte String ~ •• ·17
1

017 a 01

A + 2N + 1 A+ 2N A ... 3 A+2 A+l A

Word String 115 ~ 01- - -115 ~ Oh5
I

01 a

A+4N+3 A+4N+2A+4N+1 A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+1 A
I I I I I I Dword I

String 31 ~ 01- - ·131 ~ 0131 b 01

A + 268, 435, 455 A - 268, 435, 456

Bit
~ A+3 A+2 A+ 1 A A-1 A-2 A-3 ~

String
17 017 011117 017 017 01 7 1017 01 7 017 0111 17 017 01

t f tt t
+2,147, 483, 647 +7 +1 0 - 2,147, 483, 648

ASCII Data Types

ASCII Character D

2.7.1.7 Pointer Data Types

2.7.2

A pointer data type contains a value that gives the address of a piece of data, The
Am486DX/DX2 microprocessor supports two types of pointers (see Table 2-15).

48-bit pointer: 16-bit selector and 32-bit offset

32-bit pointer: 32-bit offset

Little Endian vs Big Endian Data Formats
The Am486DXlDX2 microprocessor, as well as all other members of the Am486
architecture, use the "Iittle-endian" method for storing data types that are larger than one
byte. Words are stored in two consecutive bytes in memory; the low-order byte is at the
lowest address, the high-order byte is at the highest address. Dwords are stored in four
consecutive bytes in memory with the low-order byte at the lowest address and the
high-order byte at the highest address. The address of a word or dword data item is the
byte address of the low-order byte.

Figure 2-18 illustrates the differences between the big-endian and little-endian formats
for dwords. The 32 bits of data are shown with the low order bit numbered bit 0, and the
high order bit numbered 32. Big endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored with the high-order bits in the highest
addressed byte.

The Am486DX/DX2 microprocessor has two instructions that can convert 16- or 32-bit
data between the two byte orderings. BSWAP (byte swap) handles four byte values and
XCHG (exchange) handles two byte values.

Am4860XlOX2 CPU Architectural Overview 2·33

~AMO

Table 2-15 Pointer Data Types

2.8

2.8.1

Least Significant Byte,

Data Format I I I I I I I I I
47 31 0

48-Bit l Selectoj Offset Pointer

31 0
32-Bit I Offset Pointer

INTERRUPTS

Interrupts and Exceptions
In order to handle external events, interrupts and exceptions alter the normal program
flow to report errors or exceptional conditions. The difference between interrupts and
exceptions is that interrupts are used to handle asynchronous external events, excep­
tions handle instruction faults. Although a program can generate a software interrupt via
an INT n instruction, the processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external event and are classified into two
types: maskable or non-maskable. Interrupts are serviced after the execution of the
current instruction. After the interrupt handler is finished servicing the interrupt, execu­
tion proceeds with the instruction immediately after the interrupted instruction. Sections
2.8.3 and 2.8.4 discuss the differences between Maskable and Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts depending on the way they are
reported, and whether or not restart of the instruction that caused the exception is
supported. Faults are exceptions that are detected and serviced before the execution of
the faulting instruction. A fault occurs in a virtual memory system when the processor
references a page or a segment that is not present. The operating system fetches the
page or segment from disk and the Am486DX/DX2 microprocessor restarts the instruc­
tion. Traps are exceptions that are reported immediately after the execution of the
instruction that caused the problem. User-defined interrupts are examples of traps.
Aborts are exceptions that do not permit the precise location of the instruction causing
the exception to be determined. Aborts are used to report severe errors, such as a
hardware error or illegal values in system tables.

Figure 2·18 Big vs Little Endian Memory Format

m +2 m

31 24 23 16 15 8 7 o

Dword in Little-Endian Memory Format

m m + 1

31 24 23 16 15 8 7 o

Dword in Big-Endian Memory Format 17852A-020

2-34 Am4860XlOX2 CPU Architectural Overview

2.8.2

2.8.3

2.8.4

AMD~
Thus, when an interrupt service routine has been completed, execution proceeds from the
instruction immediately following the interrupted instruction. On the other hand, the return
address from an exception fault routine always points to the instruction causing the
exception and includes any leading instruction prefixes. Table 2-16 summarizes the possible
interrupts for the Am486DX/DX2 microprocessor and shows where the return address
pOints.

The Am486DX/DX2 microprocessor can handle up to 256 different interrupts/exceptions.
In order to service the interrupts, a table with up to 256 interrupt vectors must be
defined. The interrupt vectors are simply pOinters to the appropriate interrupt service
routine. In Real Mode (see Section 3.1), the vectors are 4-byte quantities, a Code
Segment plus a 16-bit offset; in Protected Mode, the interrupt vectors are 8-byte
quantities that are put in an Interrupt Descriptor Table (see Section 4.3.3.4). Of the 256
possible interrupts, 32 are reserved for use by the Am486DX/OX2 microprocessor, the
remaining 224 can be used by the system designer.

Interrupt Processing
When an interrupt occurs the following actions happen. First, the current program
address and the Flags are saved on the stack to allow resumption of the interrupted
program. Next, an 8-bit vector is supplied to the Am486DX/DX2 microprocessor which
identifies the appropriate entry in the interrupt table. The table contains the starting
address of the interrupt service routine. Then, the user-supplied interrupt service routine
is executed. Finally, when an IRET instruction is executed, the old processor state is
restored and program execution resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am486DX/DX2 microprocessor in several
different ways: exceptions supply the interrupt vector internally; software INT instructions
contain or imply the vector; maskable hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maskable hardware interrupts are assigned to
interrupt vector 2.

Maskable Interrupt
Maskable interrupts are the most common way the Am486DX/OX2 microprocessor
responds to asynchronous external hardware events. A hardware interrupt occurs when
the INTR is pulled High and the Interrupt Flag bit (IF) is enabled. The processor only
responds to interrupts between instructions, (REpeat String instructions have an "interrupt
window" between memory moves. This allows interrupts during long string moves). When
an interrupt occurs, the processor reads an 8-bit vector supplied by the hardware. This
vector identifies the source of the interrupt, (one of 224 user defined interrupts). The exact
nature of the interrupt sequence is discussed in Section 7.2.10.

The IF bit in the EFLAG registers is reset when an interrupt is being serviced. This effec­
tively disables servicing additional interrupts during an interrupt service routine. However, the
IF can be set explicitly by the interrupt handler to allow the nesting of interrupts. When an
IRET instruction is executed, the original state of the IF is restored.

Non·Maskable Interrupt
Non-maskable interrupts (NMI) provide a method of servicing very high priority inter­
rupts. A common example of the use of a NMI is activating a power failure routine. When
the NMI input is pulled High, it causes an interrupt with an internally supplied vector
value of 2. Unlike a normal hardware interrupt, no interrupt acknowledgment sequence
is performed for an NMI.

Am486DXlDX2 CPU Architectural Overview 2-35

~AMD

2.8.5

2.8.6

2-36

While executing the NMI servicing procedure, the Am486DX/DX2 microprocessor does
not service further NMI requests until an interrupt return (IRET) instruction is executed,
or the processor is reset. If NMI occurs while currently servicing an NMI, its presence is
saved for servicing after executing the first IRET instruction. The IF bit is cleared at the
beginning of an NMI interrupt to inhibit further INTR interrupts.

Software Interrupts
A third type of interrupt/exception for the Am486DX/DX2 microprocessor is the software
interrupt. An INT n instruction causes the processor to execute the interrupt service
routine pOinted to by the nth vector in the interrupt table.

A special case of the two-byte software interrupt INT n is the one-byte INT 3, or break­
point interrupt. By inserting this one-byte instruction in a program, the user can set
breakpoints in the program as a debugging tool. A final type of software interrupt is the
Single step interrupt. It is discussed in Section 9.2.

Interrupt and Exception Priorities
Interrupts are externally-generated events. Maskable Interrupts (on the INTR input) and
Non-Maskable Interrupts (on the NMI input) are recognized at instruction boundaries.
When NMI and maskable INTR are both recognized at the same instruction boundary,
the Am486DX/DX2 microprocessor invokes the NMI service routine first. If, after the NMI
service routine has been invoked, maskable interrupts are still enabled, then the
Am486DX/DX2 microprocessor invokes the appropriate interrupt service routine. The
priority for invoking service routines in case of simultaneous external interrupts is

1. NMI

2.INTR

Exceptions are internally-generated events. Exceptions are detected by the
Am486DXlDX2 CPU if, in the course of executing an instruction, the Am486DX/DX2
microprocessor detects a problematic condition. The Am486DX/DX2 microprocessor
then immediately invokes the appropriate exception service routine. The state of the
Am486DX/DX2 microprocessor is such that the instruction causing the exception can be
restarted. If the exception service routine has taken care of the problematic condition, the
instruction executes without causing the same exception.

It is possible for a single instruction to generate several exceptions (for example,
transferring a single operand can generate two page faults if the operand location spans
two "not present" pages). However, only one exception is generated upon each attempt
to execute the instruction. Each exception service routine should correct its correspond­
ing exception and restart the instruction. In this manner, exceptions are serviced until the
instruction executes successfully.

As the Am486DX/DX2 microprocessor executes instructions, it follows a consistent cycle
in checking for exceptions, as shown in the following paragraphs. This cycle is repeated
as each instruction is executed and occurs in parallel with instruction decoding and
execution.

Am486DXlDX2 CPU Architectural Overview

AMD~
Table 2·16 Interrupt Vector Assignments

Interrupt Instructions That Return Address
Function Can Cause Points to Fault· Type Number Exception Ing Instruction

Divide Error 0 DIV,IDIV YES FAULT

Debug Exception 1 Any Instruction YES TRAP'

NMI Interrupt 2 INT 2 or NMI NO NMI

One-Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid Opcode 6 Any illegal instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8 Any Instruction That Can Generate ABORT An Exception

Reserved 9

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code Fetch YES FAULT

Reserved 15

Floating-Point Error 16 Floating Point, WAIT YES FAULT

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT

Reserved 18-31

Two-Byte Interrupt 0-255 INTn NO TRAP

'Some debug exceptions can report both traps on the previous instruction, and faults on the next instruction.

Consider the case of the Am486DX/DX2 microprocessor having just completed an
instruction. It then performs the following checks before reaching the point where the
next instruction is completed:

1. Check for exception 1 Traps from the instruction just completed (single-step via Trap
Flag, or Data Breakpoints set in the Debug Registers).

2. Check for exception 1 Faults in the next instruction (Instruction Execution Breakpoint
set in the Debug Registers for the next instruction).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevented fetching the entire next instruction (excep­
tions 11 or 13).

5. Check for Page Faults that prevented fetching the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception
6 if in Real Mode or in Virtual 8086 Mode and attempting to execute an instruction for
Protected Mode only (see Section 4.6.4); or exception 13 if the instruction is longer
than 15 bytes, or privilege violation in Protected Mode (I.e., not at IOPL or at CPL = 0)).

7. If WAIT opcode, check if TS = 1 and MP = 1 (exception 7 if both are 1).

Am486DXlDX2 CPU Architectural Overview 2-37

~AMD

2.8.7

2.8.8

2.8.9

2·38

8, If opcode for FPU, check if EM = 1 or TS = 1 (exception 7 if either are 1).

9, If opcode for FPU, check FPU error status (exception 16 if error status is asserted).

10. Check in the following order for each memory reference required by the instruction:

A. Check for Segmentation Faults that prevent transferring the entire memory quan­
tity (exceptions 11,12,13).

B. Check for Page Faults that prevent transferring the entire memory quantity (exception
14).

Note: The order stated supports the concept of the paging mechanism being "undemeath" the seg­
mentation mechanism. Therefore, for any given code or data reference in memory, segmentation
exceptions are generated before paging exceptions are generated.

Instruction Restart
The Am486DX/DX2 microprocessor fully supports restarting all instructions after faults, If
an exception is detected in the instruction to be executed (exception categories 4
through 10), the Am486DX/DX2 microprocessor invokes the appropriate exception
service routine. The Am486DX/DX2 microprocessor is in a state that permits restart of
the instruction for all cases but those in the following paragraph. All such cases are
easily avoided by proper design of the operating system.

An instruction causes a task switch to a task whose Task State Segment is partially "not
present". (An entirely "not present" TSS is restartable.) Partially present TSSs can be
avoided either by keeping the TSSs of such tasks present in memory, or by aligning TSS
segments to reside entirely within a Single 4K page (for TSS segments of 4 Kbytes or
less).

Note: These conditions are avoided by using the operating system designs mentioned above.

Double Fault
A Double Fault (exception 8) results when the processor attempts to invoke an excep­
tion service routine for the segment exceptions (10, 11, 12, or 13), but in the process of
doing so, detects an exception other than a Page Fault (exception 14).

A Double Fault (exception 8) is also generated when the processor attempts to invoke
the Page Fault (exception 14) service routine, and detects an exception other than a
second Page Fault. In any functional system, the entire Page Fault service routine must
remain "present" in memory.

When a Double Fault occurs, the Am486DXlDX2 microprocessor invokes the excep­
tion service routine for exception 8.

Floating.Point Interrupt Vectors
Several interrupt vectors of the Am486DX/DX2 microprocessor are used to report
exceptional conditions while executing numeric programs in either Real or Protected
Mode. Table 2-17 shows these interrupts and their causes.

Am486DXlDX2 CPU Architectural Overview

AMD~
Table 2-17 Interrupt Vectors Used by FPU

Interrupt Cause of Interrupt Number

A floating-point instruction is encountered when EM or TS or the processor control register

7 zero (CRD) was set. EM = 1 indicates that software emulation of the instruction is required.
When TS is set, either a floating-point or WAIT instruction causes interrupt 7. This indicates
that the current FPU context might not belong to the current task.

The first word or dword of a numeric operand is not entirely within the limit of its segment.
The return address pushed onto the stack of the exception handler points to the floating-point

13 instruction that caused the exception, including any prefixes. The FPU has not executed this
instruction; the instruction pointer and data pointer register refer to a previous, correctly
executed instruction.

The previous numerics instruction caused an unmasked exception. The address of the fauHy
instruction and the address of its operand are stored in the instruction pointer and data
pointer registers. Only floating-point and WAIT instructions can cause this interrupt. The

16 Am486 processor return address pushed onto the stack of the exception handler points to a
WAIT or floating-point instruction (including prefixes). This instruction can be restarted after
clearing the exception condition in the FPU. The FNINIT, FNCLEX, FNSTSW, FNSTENV, and
FNSAVE instructions cannot cause this interrupt.

Am486DXlDX2 CPU Architectural Overview 2-39

3 REAL MODE ARCHITECTURE

3.1 INTRODUCTION
When the processor is reset or powered up, it is initialized in Real Mode. Real Mode has
the same base architecture as the 8086, but allows access to the Am486DX/DX2
microprocessor's 32-bit register set. The addressing mechanism, memory size, and
interrupt handling are all identical to the Real Mode on the 80286 (see Figure 3-1).

All of the Am486DX/DX2 microprocessor instructions are available in Real Mode (except
those instructions listed in Section 4.6.4). The Real Mode default operand size is 16 bits,
just like the 8086. In order to use the 32-bit registers and addressing modes, override
prefixes must be used. In addition, the segment size of the Am486DX/DX2 microproces­
sor in Real Mode is 64 Kbytes, so 32-bit effective addresses must have a value less than
OOOOFFFFH. The primary purpose of Real Mode is to set up the processor for Protected
Mode Operation.

The LOCK prefix on the Am486DX/DX2 microprocessor, even in Real Mode, is more
restrictive than on the 80286. This is due to the addition of paging on the Am486DXIDX2
microprocessor in Protected Mode and Virtual 8086 Mode. Paging makes it impossible to
guarantee that repeated string instructions can be LOCKed. The Am486DX/DX2 microprocessor
cannot require that all pages holding the string be physically present in memory. Hence, a
Page Fault (exception 14) might have to be taken during the repeated string instruction.
Therefore, the LOCK prefix cannot be supported during repeated string instructions.

Table 3-1 shows the only instruction forms where the LOCK prefix is legal on the
Am486DX/DX2 microprocessor.

An exception 6 is generated if a LOCK prefix is placed before any instruction form or
opcode not listed in Table 3-1. The LOCK prefix allows indivisible read/modify/write
operations on memory operands using the instructions in Table 3-1 . For example, even

Figure 3·1 Real Address Mode Addressing

15 0 .---------....,

19,~ ____________ ~.-__ ~

Segment Selector

Max Limit Fixed at

/ 64K '" Rool Modo

~------~----

Memory Operand

Selected
Segment

1
~----~---------~------~r----

Segment Base

17852A-021

Real Mode Architecture 3-1

~AMD
the ADD Reg, Mem is not LOCKable, because the Mem operand is not the destination
(and therefore no memory read/modify/operation is being performed).

Since, on the Am486DX/DX2 microprocessor, repeated string instructions are not
LOCKable, it is impossible to LOCK the bus for a long time. Therefore, the LOCK prefix
is not IOPL-sensitive on the Am486DX/DX2 microprocessor. The LOCK prefix can be
used at any privilege level, but only on the instruction forms listed in Table 3-1.

3.2 MEMORY ADDRESSING
In Real Mode the maximum memory size is limited to 1 Mbyte. Thus, only address lines
A19-A2 are active. (Exception: after RESET, address lines A31-A2 are High during CS­
relative memory cycles until an intersegment jump or call is executed (see Section 6.5).

Since paging is not allowed in Real Mode, the linear addresses are the same as physical
addresses. Physical addresses are formed in Real Mode by adding the contents of the
appropriate segment register, which is shifted left by four bits to an effective address.
This addition results in a physical address from OOOOOOOOH to 0010FFEFH and is
compatible with 80286 Real Mode. Since segment registers are shifted left by 4 bits,
Real Mode segments always start on i 6-byte boundaries.

All segments in Real Mode are exactly 64 Kbytes long and can be read, written, or
executed. The Am486DX/DX2 microprocessor generates an exception 13 if a data
operand or instruction fetch occurs past the end of a segment (I.e., if an operand has an
offset greater than FFFFH; for example, a word with a low byte at FFFFH and a high
byte at OOOOH).

Segments can be overlapped in Real Mode. Thus, if a particular segment does not use
all 64 Kbytes, another segment can be overlayed on top of the unused portion of the
previous segment. This overlapping lets the programmer minimize the physical memory
needed for a program.

3.3 RESERVED LOCATIONS

Table 3-1

3-2

There are two fixed areas in memory that are reserved in Real Address Mode: system
initialization area and the interrupt table area. Locations OOOOOH through 003FFH are
reserved for interrupt vectors. Each of the 256 possible interrupts has a 4-byte jump
vector reserved for it. Locations 00000009H-FFFFFFFFH are reserved for system
initialization.

Legal LOCK Prefix Instruction Forms

Operands
Opcode (Dest, Source)

BIT Test and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB, Mem, Reg/immed AND, SUB, XOR

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

Real Mode Architecture

3.4

AMD~
INTERRUPTS
Many of the exceptions covered in Table 3-2 and Section 2.8 are not applicable to Real
Mode operation; in particular, exceptions 10, 11, 14, and 17 do not happen in Real
Mode. Other exceptions have Slightly different meanings in Real Mode (see Table 3-2).

3.5 SHUTDOWN AND HALT

Table 3-2

The HLT instruction stops program execution and prevents the processor from using the
local bus until restarted. Either NMI, INTR with interrupts enabled (IF = 1), or RESET
forces the Am486DX/DX2 microprocessor out of halt. If interrupted, the saved CS:IP
pOints to the next instruction after the HLT.

Like Protected Mode, the shutdown occurs when a severe error is detected that
prevents further processing. In Real Mode, shutdown can occur under two conditions:

1. An interrupt or an exception occurs (exceptions 8 or 13) and the interrupt vector is
larger than the Interrupt Descriptor Table (i.e., there is not an interrupt handler for the
interrupt).

2. A CALL, INT, or PUSH instruction attempts to wrap around the stack segment when
SP is not even (Le., pushing a value on the stack when SP = 0001, resulting in a
stack segment greater than FFFFH).

An NMI input can bring the processor out of shutdown if the Interrupt Descriptor Table
limit is large enough to contain the NMI interrupt vector (at least 0017H), and the stack
has enough room to contain the vector and flag information (Le., SP is greater than
OOOSH). If these conditions are not met, the Am486DX/DX2 CPU is unable to execute
the NMI and executes another shutdown cycle. In this case, the processor remains in
shutdown and can only exit via the RESET input.

Exceptions with Different Meanings in Real Mode

Function Interrupt Related Instruction Return Address
Number Location

Interrupt table limit too small 8 INT Vector is not within table limit Before Instruction

CS, DS, ES, FS, GS Word memory reference beyond offset =

Segment overrun exception 13 FFFFH. An attempt to execute past the end of Before Instruction
CS segment.

SS Segment overrun exception 12 Stack Reference beyond offset = FFFFH. Before Instruction

Real Mode Architecture 3-3
I
I,

4 PROTECTED MODE ARCHITECTURE

4.1 INTRODUCTION
The complete capabilities of the Am486DX/DX2 microprocessor are unlocked when the
processor operates in Protected Virtual Address Mode (Protected Mode). Protected
Mode vastly increases the linear address space to 4 Gbytes (232 bytes) and allows the
running of virtual memory programs of almost unlimited size (64 Tbytes or 246 bytes). In
addition, Protected Mode allows the Am486DX/DX2 microprocessor to run all existing
8086, 80286, and 386 microprocessor software, while providing a sophisticated memory
management and a hardware-assisted protection mechanism. Protected Mode allows
the use of additional instructions especially optimized for supporting multitasking
operating systems. The Am486DX/DX2 microprocessor base architecture remains the
same; the registers, instructions, and addressing modes described in the previous
sections are retained. The main difference between Protected Mode and Real Mode
from a programmer's view is the increased address space and a different addressing
mechanism.

4.2 ADDRESSING MECHANISM

4.3

4.3.1

Like Real Mode, Protected Mode uses two components to form the logical address. A
16-bit selector determines the linear base address of a segment and the base address is
added to a 32-bit effective address to form a 32-bit linear address. The linear address is
then either used as the 32-bit physical address or, if paging is enabled, the paging
mechanism maps the 32-bit linear address into a 32-bit physical address.

The difference between the two modes lies in calculating the base address. In Protected
Mode, the selector specifies an index into an operating system defined table (see
Figure 4-1). The table contains the 32-bit base address of a given segment. The physical
address is formed by adding the base address obtained from the table to the offset.

Paging provides an additional memory management mechanism that operates only in
Protected Mode. Paging provides a means of managing the very large segments of the
Am486DX/DX2 microprocessor. As such, paging operates beneath segmentation. The
paging mechanism translates the protected linear address that comes from the seg­
mentation unit into a physical address. Figure 4-2 shows the complete Am486DX/DX2
microprocessor addressing mechanism with paging enabled.

SEGMENTATION

Introduction
Segmentation is one method of memory management. Segmentation provides the basis
for protection. Segments encapsulate regions of memory that have common attributes.
For example, all of the code of a given program can be contained in a segment, or an
operating system table can reside in a segment. All segment information is stored in an
8-byte data structure called a descriptor. All descriptors in a system are contained in
tables recognized by hardware.

Protected Mode Architecture 4-1

I'"

~AMD
Figure 4·1 Protected Mode Addressing

48132 Bit Pointer

Selector Offset

47 31 15 0

I +,.., Memory Operand

Access Rights

Limit

4 Base Address -
Segment

Segment Base Descriptor
Address

Figure 4·2 Paging and Segmentation

48-Bit Pointer

/ \
Segment Offset

15 31 0

Am486 CPU

Access Rights Paging Physical Mechanism
Limit ~ 7 Address

L:> I ~
Base Address ~

Page
Frame

Segment 32 Linear
Address

Descriptor Address

Protected Mode Architecture

Segment L imit

/
1
Up To

4 Gbytes

1

Physical Address

Memory Operand

Selected
Segment

17852A-022

!
1

!
!

4 Kbytes

4 Kbytes

4 Kbytes

Physical
Page:

4 Kbytes

4 Kbytes

4 Kbytes

4 Kbytes

17852A-023

4.3.2

4.3.3

4.3.3.1

4.3.3.2

AMD~
Terminology
The following terms are used throughout the discussion of descriptors, privilege levels,
and protection:

PL: Privilege Level

One of the four hierarchical privilege levels. Level 0 is the most privileged and level 3
is the least privileged. More privileged levels are numerically smaller than less privi­
leged levels.

RPL: Requester Privilege Level

The privilege level of the original supplier of the selector. RPL is determined by the
two least significant bits of a selectoL

DPL: Descriptor Privilege Level

This is the least privileged level where a task can access that descriptor (and the
segment associated with the descriptor). DPL is determined by bits 6-5 in the
Access Right Byte of a descriptor.

CPL: Current Privilege Level

The privilege level where a task is currently executing. CPL equals the privilege level
of the executing code segment. CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming code segments.

EPL: Effective Privilege Level

The effective privilege level is the least privileged of the RPL and DPL. Since smaller
privilege level values indicate greater privilege, EPL is the numerical maximum of
RPL and DPL.

Task: One instance of the program execution. Tasks are also referred to as processes.

Descriptor Tables

Introduction

The descriptor tables define all the segments that an Am486DX/DX2 microprocessor
system uses. Three types of tables on the Am486DX/DX2 microprocessor hold descrip­
tors: the Global Descriptor Table (GDT), Local Descriptor Table (LDT), and the Interrupt
Descriptor Table (IDT). All three tables are variable length memory arrays. They range in
size between 8 bytes and 64 Kbytes. Each table holds up to 8192 8-byte descriptors.
The upper 13 bits of a selector are used as an index into the descriptor table. The tables
have registers associated with them that hold the 32-bit linear base address and the
16-bit limit of each table.

Each table is associated with a register: the GDTR, LDTR, and the IDTR (see
Figure 4-3). The LGDT, LLDT, and LlDT instructions load the base and limit of the GDT,
LDT, and IDT, respectively, into the appropriate register. The SGDT, SLDT, and SIDT
instructions store the base and limit values. These tables are manipulated by the
operating system. Therefore, the load descriptor table instructions are privileged
instructions.

Global Descriptor Table

The GDT contains descriptors that are possibly available to all of the tasks in a system.
The GDT can contain any type of segment descriptor, except for descriptors that are
used for servicing interrupts (Le., interrupt and trap descriptors). Every Am486DXlDX2

Protected Mode Architecture 4·3

~AMD
Figure 4-3 Descriptor Table Registers

4.3.3.3

4.3.3.4

4·4

~---------------~
15 o • 15 0:-------. ,...-----.., I

LOTR

15

LOT OEseR
Selector

lOT Limit

IOTR lOT Base
Linear Address

15

GOT Limit

GOTR GOT Base
Linear Address

o ,

LOT Limit

LOT Base
Linear Address

Program Invisible.

I

, .
0' , .

Automatically loaded :
from LOT descriptor o ~ ______ e~ _______ 8

o

o 17852A--{)24

microprocessor system contains a GOT. Generally the GOT contains code and data
segments used by the operating systems and task state segments, and descriptors for
the LOTs in a system.

The first slot of the GOT corresponds to the null selector and is not used. The null
selector defines a null pointer value.

Local Descriptor Table

LOTs contain descriptors that are associated with a given task. Generally, operating
systems are designed so that each task has a separate LOT. The LOT can contain only
code, data, stack, task gate, and call gate descriptors. LOTs allow a mechanism to
isolate a given task's code and data segments from the rest of the operating system,
while the GOT contains descriptors for segments that are common to all tasks. A
segment cannot be accessed by a task if its segment descriptor does not exist in either
the current LOT or the GOT. This provides both isolation and protection for a task's
segments, while still allowing global data to be shared among tasks.

Unlike the 6-byte GOT or lOT registers that contain a base address and limit, the visible
portion of the LOT register contains only a 16-bit selector. This selector refers to an LOT
descriptor in the GOT.

Interrupt Descriptor Table

The third table needed for Am4860X/OX2 microprocessor systems is the lOT (see
Figure 4-4). The lOT contains the descriptors that point to the location of up to 256
interrupt service routines. The lOT can contain only task gates, interrupt gates, and trap
gates. The lOT should be at least 256 bytes in size in order to hold the descriptors for
the 32 Reserved Interrupts. Every interrupt used by a system must have an entry in the
IDT. The lOT entries are referenced via INT instructions, external interrupt vectors, and
exceptions. (See Section 2.8, Interrupts).

Protected Mode Architecture

AMD~
Figure 4·4 Interrupt Descriptor Table Register Usage

4.3.4

4.3.4.1

4.3.4.2

-p

r--+

CPU

15 0

I IDT Limit

I IDT Base

Memory

Gate For

Interrupt #n

Gate For
Interrupt #n - 1

· · ·
Gate For

Interrupt #1

Gate For
Interrupi #0

-p

Interrupt
Descriptor
Table
(IDT)

llncreasing
Memory
Addresses

31 0 :::-::: :::-::: 17852A-025

Descriptors

Descriptor Attribute Bits

The object the segment selector pOints to is called a descriptor. Descriptors are 8-byte
quantities that contain attributes about a given region of linear address space (Le., a
segment). These attributes include the 32-bit base linear address of the segment, the
20-bit length and granularity of the segment, the protection level, read, write, or execute
privileges, the default size of the operands (16 bit or 32 bit), and the type of segment. All
of the attribute information about a segment is contained in 12 bits in the segment
descriptor. Figure 4-5 shows the general format of a descriptor. All segments on the
Am486DXlDX2 microprocessor have three attribute fields in common: the P bit, the DPL
bit, and the 8 bit. The Present (P) bit is 1 if the segment is loaded in physical memory, if
P = 0 then any attempt to access this segment causes a not present exception (excep­
tion 11). The DPL is a two-bit field that specifies the protection level 0-3 associated with
a segment.

The Am486DXlDX2 microprocessor has two main segment categories: system seg­
ments and non-system segments (for code and data). The segment (8) bit in the
segment descriptor determines if a given segment is a system segment or a code or
data segment. If the 8 bit is 1, then the segment is either a code or data segment; if it is
0, then the segment is a system segment.

Am486DX/DX2 CPU Code, Data Descriptors (S = 1)

Figure 4-6 shows the general format of a code and data descriptor and Table 4-1
illustrates how the bits in the Access Rights Byte are interpreted.

Code and data segments have several descriptor fields in common. The accessed (A)
bit is set whenever the processor accesses a descriptor. The A bit is used by operating

Protected Mode Architecture 4-5

~AMD
Figure 4-S General Format of Segment Descriptors

31 o Byte Address

o Base Address 15 ... 0 Segment Limit 15 ... 0

A
Base 31 ... 24 G D 0 V Lim~ 19 ... 16 P DPL S Type A Base 23 ... 16

L I I I

o Bit must be zero (0) for oompatibility with future processors
A Accessed B~
AVL Available field for user or operating system
Base Base Address of the segment
D Default Operation size (reoognized in code segment descriptors only)

1 = 32-bit segment; 0 = 16-b~ segment
DPL Descriptor Privilege Level 0-3
G Granular~y B~: 1 = Segment length is page granular; 0 = Segment length is byte granular
Lim~ Length of the segment
P Present Bit: 1 = Present; 0 = Not Present
S Segment Descriptor: 0 = System Descriptor; 1 = Code or Data Segment Descriptor
Type Type of Segment

Note:
In a maximum-size segment (i.e., a segment with G = 1 and segment limit 19-0 = FFFFFH),
the lowest 12 bits of the segment base should bezera (i.e., segment base 11-0 = OOOH).

+4

17852A-026

Figure 4-6 Code and Data Segment Descriptors

31 o Byte Address

Base Address 15 ... 0 Segment Lim~ 15 ... 0 o
A

Base 31 ... 24 G D 0 V Limit 19 ... 16 Access Rights Byte Base 23 ... 16 +4
L

DIB 1 = Default Instruction Attributes are 32 bits
o = Delau~ Instruction Attributes are 16 b~s

AVL Available field for user or operating system
G Granular~y Bit: 1 = Segment length is page granular; 0 = Segment length is byte granular
o Bit must be zero (0) for oompatibility with future processors.

17852A-027

systems to keep usage statistics on a given segment. The granularity (G) bit specifies if
a segment length is byte-granular or page-granular. Am486DXlDX2 microprocessor
segments can be 1 Mbyte long with byte granularity (G = 0), or 4 Gbytes with page
granularity (G = 1), (Le., 220 pages each page is 4 Kbytes in length). The granularity is
totally unrelated to paging. An Am486DXlDX2 microprocessor system can consist of
segments with byte granularity and page granularity, whether or not paging is enabled.

The executable (E) bit tells if a segment is a code or data segment. A code segment (E
= 1, S = 1) can be execute-only or execute/read as determined by the Read (R) bit.
Code segments are execute only if R = 0, and execute/read if R = 1. Code segments
can never be written into.

Note: Code segments can be modified via aliases. Aliases are writable data segments that
occupy the same range of linear address space as the code segment.

Protected Mode Architecture

Table 4-1

Bit Position

7

6-5

4

3
2

1

3
2

1

0

4.3.4.3

AMD~
Access Rights Byte Definition for Code and Data Descriptions

Name Function

Present (P) P=1 Segment is mapped into physical memory
P=O No mapping to physical memory exits. Base and limit are

not used.
Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
Segment Descriptor (S) S=1 Code or Data (includes stacks) segment descriptor.

S=O System Segment Descriptor or Gate Descriptor.

Executable (E) E=O D",,;plo, type ;, dota ,,,,moot j If Data
Expansion Direction (ED) ED= 0 Expand up segment. offsets must be $; limit. Seg-

ED = 1 Expand down segment. offsets must be > limit. ment
Writable (W) W=O Data segment cannot be written into. (S = 1.

W= 1 Data segment can be written into. E = 0)

Executable (E) E=1 D.~ripto' typo ;, "d. ,,,,m.ot_ } If Data
Conforming (C) C = 1 Code segment may only be executed when Segment

CPL ~ DPL and CPL remains unchanged. (S = 1.
Readable (R) R=O Code segment cannot be read. E = 1)

R = 1 Code segment can be read.

Accessed (A) A=O Segment has not been accessed.
A=1 Segment selector has been loaded into

segment register or used by selector test
i nstructio ns.

The 0 bit indicates the default length for operands and effective addresses. If 0 = 1 then
32-bit operands and 32-bit addressing modes are assumed. If 0 = 0 then 16-bit oper­
ands and 16-bit addressing modes are assumed. Therefore, all existing 80286 code
segments execute on the Am4860X/OX2 microprocessor, assuming the 0 bit is set O.

Another attribute of code segments is determined by the conforming (C) bit. Conforming
segments, C = 1 , can be executed and shared by programs at different privilege levels.
(See Section 4.4, Protection.)

Segments identified as data segments (E = 0, S = 1) are used for two types of
Am4860X/OX2 CPU segments: stack and data segments. The expansion direction (ED)
bit specifies if a segment expands downward (stack) or upward (data). If a segment is a
stack segment, all offsets must be greater than the segment limit. On a data segment all
offsets must be less than or equal to the limit. In other words, stack segments start at the
base linear address plus the maximum segment limit, and grows down to the base linear
address plus the limit. On the other hand, data segments start at the base linear address
and expand to the base linear address plus limit.

The write (W) bit controls the ability to write into a segment. Data segments are read­
only if W = O. The stack segment must have W = 1.

The B bit controls the size of the stack pOinter register. If B = 1, then PUSHes, POPs,
and CALLs all use the 32-bit ESP register for stack references and assume an upper
limit of FFFFFFFFH. If 8 = 0, stack instructions all use the 16-bit SP register and assume
an upper limit of FFFFH.

System Descriptor Formats

System segments describe information about operating system tables, tasks, and gates.
Figure 4-7 shows the general format of system segment descriptors and the various
types of system segments. Am4860XlOX2 CPU system descriptors contain a 32-bit base

Protected Mode Architecture 4·7

I

r'
I

~AMD

4.3.4.4

4.3.4.5

4.3.4.6

linear address and a 20-bit segment limit. 80286 system descriptors have a 24-bit base
address and a 16-bit segment limit. 80286 system descriptors are identified by the upper 16
bits all being zero.

LDT Descriptors (S = 0, TYPE = 2)

LOT descriptors (S = 0, TYPE = 2) contain information about Local Descriptor Tables. LDTs
contain a table of segment descriptors, unique to a particular task. Since the instruction to
load the LDTR is only available at privilege level 0, the DPL field is ignored. LDT descriptors
are only allowed in the GOT.

TSS Descriptors (S = 0, TYPE = 1,3,9, B)

A TSS descriptor contains information about the location, size, and privilege level of a Task
State Segment. A TSS is a special fixed format segment that contains all the state information
for a task and a linkage field to permit nesting tasks. The TYPE field is used to indicate if
either the task is currently BUSY (i.e., on a chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a 80286 or an Am4860X/OX2 micropro­
cessor TSS. The Task Register (TR) contains the selector that points to the current TSS.

Gate Descriptors (S = 0, TYPE = 4-7, C, F)

Gates are used to control access to entry pOints within the target code segment. The various
types of gate descriptors are call gates, task gates, interrupt gates, and trap gates. Gates
provide a level of indirection between the source and destination of the control transfer. This
indirection allows the processor to automatically perform protection checks. It also allows
system designers to control entry pOints to the operating system. Call gates are used to
change privilege levels (see Section 4.4, Protection), task gates are used to perform a task
switch, and interrupt and trap gates are used to specify interrupt service routines.

Figure 4-8 shows the format of the four types of gate descriptors. Call gates are primarily
used to transfer program control to a more privileged level. The call gate descriptor consists of
three fields: the access byte, a long pOinter (selector and offset) that points to the start of a
routine, and a word count that specifies how many parameters are to be copied from the
caller's stack to the called routine stack. The word count field is only used by call gates when
there is a change in the privilege level. Other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector and destination offset fields of the
gate descriptor as a pOinter to the start of the interrupt or trap handler routines. The

Figure 4·7 System Segment Descriptors

31 16 o Byte Address

Base Address 15 ... 0 Segment LimiI15 ... 0 o

Base 31 ... 24 G 0 0 0 limit 19 ... 16 P OPL 0
I Tyre i

Base 23 .. .16
I

Type Defines Type Defines
o Invalid 8 Invalid
1 Available 80286 TSS 9 Available Am486 CPU TSS
2 LOT A Undefined (reserved)
3 Busy 80286 TSS B Busy Am486 CPU TSS
4 80286 Call Gate C Am486 CPU Call Gate
5 Task Gate (for 80286/Am486 CPU Task) o Undefined (reserved)
6 80286 I nterrupl Gate E Am486 CPU Interrupt Gate
7 80286 Call Gate F Am486 CPU Trap Gate

17852A-028

4·8 Protected Mode Architecture

AMD~
Figure 4-8 Gate Descriptor Formats

31 24 16 8 5 o Byte Address

o

Name
Type

P

DPL

Destination
Selector

Destination
Offset

4.3.4.7

Selector

Offset 31 ... 16

Value
4
5
6
7
C
E
F
o
1

16-bit
selector

offset
16-bit 80286

Offset 15 ... 0

P

Description
80286 Call Gate

DPL

I
0 Type

I I I

Task Gate (for 80286 or Am486 CPU Task)
80286 Interrupt Gate
80286 Call Gate
Am486 CPU Call Gate
Am486 CPU Interrupt Gate
Am486 CPU Trap Gate
Descriptor contents are not valid
Descriptor contents are valid

0
Word Count

0 0 4 ... 0

I I I
+4

Least privileged level at which a task may access the gate. Word Count 0-31
The number of parameters to copy from caller's stack to the called procedure's
stack. The parameters are 32-bit quan@es for Am486 CPU gates and 16-bit
quantities for 80286 gates.

Selector to the target code segment
or
Selector to the target task state segment for task gate
Entry point within the target code segment

32-bit Am486 CPU 17852A-<l29

difference between interrupt gates and trap gates is that the interrupt gate disables
interrupts (resets the IF bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates can only refer to a task state segment
(see Section 4.4.6, Task Switching); therefore, only the destination selector portion of a
task gate descriptor is used and the destination offset is ignored.

Exception 13 is generated when a destination selector does not refer to a correct
descriptor type (Le., a code segment for an interrupt, trap, or call gate, a TSS for a task
gate).

The access byte format is the same for all gate descriptors. P = 1 indicates that the gate
contents are valid. P = 0 indicates the contents are not valid and causes exception 11 if
referenced. DPL is the descriptor privilege level and specifies when this descriptor can
be used by a task (see Section 4.4, Protection). The S field, bit 4 of the access rights
byte, must be 0 to indicate a system control descriptor. The type field specifies the
descriptor type as indicated in Figure 4-8.

Differences Between Am486DX/DX2 CPU and 80286 Descriptors

In order to provide operating system compatibility between the 80286 and Am486DXlDX2
microprocessor, the Am486DXlDX2 microprocessor supports all 80286 segment descriptors.
Figure 4-9 shows the general format of an 80286 system segment descriptor. The only
differences between 80286 and Am486DXlDX2 microprocessor descriptor formats are that
the values of the type fields, and the limit and base address fields, have been expanded for
the Am486DXlDX2 microprocessor. The 80286 system segment descriptors contained a
24-bit base address and 16-bit limit. The Am486DXlDX2 microprocessor system segment
deSCriptors have a 32-bit base address, a 2-bit limit field, and a granularity bit.

Protected Mode Architecture 4-9

~AMD

4.3.4.8

4.3.4.9

4.3.4.10

By supporting 80286 system segments, the Am486DX/DX2 microprocessor can execute
80286 application programs on an Am486DX/DX2 microprocessor operating system. This is
possible because the processor automatically distinguishes between 80286-style descriptors
and Am486DX/DX2 microprocessor-style descriptors. In particular, if the upper word of a
descriptor is 0, then that descriptor is a 80286-style descriptor.

The only other differences between 80286-style descriptors and Am486DX/DX2 microproces­
sor descriptors is the interpretation of the word count field of call gates and the B bit. The
word count field specifies the number of i6-bit quantities to copy for 80286 call gates and
32-bit quantities for Am486DX/DX2 microprocessor call gates. The B bit controls the size of
PUSHes when using a call gate. If B = 0, PUSHes are 16 bits; if B = 1, PUSHes are 32 bits.

Selector Fields

A selector in Protected Mode has three fields: Local or Global Descriptor Table Indicator (TI),
Descriptor Entry Index (Index), and Requester (the selector's) Privilege Level (RPL) (see
Figure 4-1 0). The TI bits select one of two memory-based tables of descriptors (the Global
Descriptor Table or the Local DeSCriptor Table). The Index selects one of 8K descriptors in the
appropriate descriptor table. The RPL bits allow high speed testing of the selector's privilege
attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register is associated with a segment
deSCriptor cache register. Whenever a segment register's contents are changed, the 8-byte
descriptor associated with that selector is automatically loaded (cached) on the chip. Once
loaded, all references to that segment use the cached deSCriptor information instead of
reassessing the descriptor. The contents of the descriptor cache are not visible to the
programmer. Since deSCriptor caches only change when a segment register is changed,
programs that modify the descriptor tables must reload the appropriate segment registers after
changing a descriptor's value.

Segment Descriptor Register Settings

The contents of the segment descriptor cache vary depending on the mode the
Am486DX/DX2 microprocessor is operating in. When operating in Real Address Mode, the
segment base, limit, and other attributes within the segment cache registers are defined as
shown in Figure 4-11 .

For compatibility with the 8086 architecture, the base is set to 16 times the current selector
value, the limit is fixed at OOOOFFFFH, and the attributes are fixed to indicate the segment is
present and fully usable. In Real Address Mode, the internal privilege level is always fixed to
the highest level, level 0, so 1/0 and other privileged opcodes can be executed.

Figure 4·9 80286 Code and Data Segment Descriptors

31

Segment Base 15 ... 0

Reserved-Set to Zero (0)

Base Base Address of the Segment
Limit The length of the segment
P Present Bit: 1 = Present; 0 = Not Present

P

o Byte Address

Segment limit 15 ... 0 o

DPL S I Tyre I Base 23 ... 16

I
+4

DPL Descriptor Privilege Level 0-3
S System Descriptor: 0 = System; 1 = User
Type Type of Segment

17852A-030

4-10 Protected Mode Architecture

AMD~
Figure 4-10 Example Descriptor Selection

Selector

rr--------------~A~--------------~,
15 4 3 2 1 a

Segment Register
10 1

0-0 I a 11 11 I ~II RPL I

4.4

4.4.1

\ j
Table Indicator y

Index TI = 1 TI = 0 1

Descriptor
N # Number N #

.'. # .. ,
6 6

5 5

4 4

3 Descriptor 3

2 2

1 1

a 0 Null

Local Descriptor Table Global Descriptor Table

17852A--031

When operating in Protected Mode, the segment base, limit, and other attributes within the
segment cache registers are defined as shown in Figure 4-12. In Protected Mode, each of
these fields are defined according to the contents of the segment descriptor indexed by the
selector value loaded into the segment register.

When operating in a Virtual 8086 Mode within the Protected Mode, the segment base, limit,
and other attributes within the segment cache registers are defined as shown in Figure 4-13.
For compatibility with the 8086 architecture, the base is set to 16 times the current selector
value, the limit is fixed at OOOOFFFFH, and the attributes are fixed so as to indicate the
segment is present and fully usable. The virtual program executes at lowest privilege, level 3,
to allow trapping of all 10PL-sensitive instructions and level-O-only instructions.

PROTECTION

Protection Concepts
The Am486DX/DX2 microprocessor has four levels of protection. They are optimized to
support the needs of a multitasking operating system to isolate and protect user programs
from each other and the operating system. The privilege levels control the use of privileged
instructions, I/O instructions, and access to segments and segment descriptors. Unlike
traditional microprocessor-based systems where this protection is achieved only through
complex external hardware and software, the Am486DX/DX2 CPU provides the protection as
part of its integrated MMU. The Am486DX/DX2 microprocessor offers an additional type of
protection on a page basis when paging is enabled (see Section 4.5.3, Page Level Protec­
tion).

The four level hierarchical privilege system is illustrated in Figure 4-14. It is an extension of
the user/supervisor privilege mode commonly used by minicomputers; in fact, the user/super­
visor mode is fully supported by the Am486DX/DX2 microprocessor paging mechanism. The
privilege levels (PL) are numbered 0 through 3. Level 0 is the most privileged or trusted level.

Protected Mode Architecture 4·11

~AMD
Figure 4-11 Segment Descriptor Caches for Real Address Mode

(Segment Limit and Attributes are Fixed)

Segment Descriptor Cache Register Contents
32-Bit Base

(Updated during Selector
Load into Segment Register)

32-Bit Limit
(Fixed)

Other Attributes
(Fixed)

Conforming Privilege ---------------------------,

Stack Size

Executable ---------------------------,

Writeable

Readable

Expansion Direction

~~~~~~~-~-~--v-e-I----B~-A=-S~E~~~~~~~~~~~~~~LI~M~IT~~~~~~~~~~-l--l--'l 
CS 16X Current CS Selector' OOOOFFFFH Y 0 Y B 

SS 16X Current SS Selector OOOOFFFFH Y 0 Y B 

DS 16X Current DS Selector OOOOFFFFH Y 0 Y B 

ES 16X Current ES Selector OOOOFFFFH Y 0 Y B 

FS 16X Current FS Selector OOOOFFFFH Y 0 Y B 

GS 16X Current GS Selector OOOOFFFFH Y 0 Y B 

U Y Y 

U Y Y 

U Y Y 

U Y y 

U Y Y 

U y Y 

Y -

N W 

N -

N -

N -

N -

'Except the 32-bit CS, base is initialized to FFFFFOOOH after reset until first intersegment control transfer 
(i.e., intersegment CALL, or intersegment JMP, or INT)-see Figure 4-13. 

Key: Y = Yes 
N = No 

4.4.2 

o Privilege level 0 
1 = Privilege level 1 
2 = Privilege level 2 
3 = Privilege level 3 
U = Expand up 

Rules of Privilege 

D = Expand down 
B = Byte granularity 
P = Page granularity 
W = Push/pop 16-bil words 
F = Push/pop 32-bit Dwords 

Does not apply to that segment cache register 

N 

-

-
-

-

-

17852A-032 

The Am486DX/DX2 microprocessor controls access to both data and procedures 
between task levels, according to the following rules: 

4.4.3 

4.4.3.1 

4·12 

• Data stored in a segment with privilege level p can be accessed only by code execut­
ing at a privilege level at least as privileged as p. 

• A code segment/procedure with privilege level p can only be called by a task execut­
ing at the same or a lesser privilege level than p. 

Privilege Levels 

Task Privilege 

At any point in time, a task on the Am486DX/DX2 microprocessor always executes at 
one of the four privilege levels (PLs). The Current Privilege Level (CPL) specifies the 
task's privilege level. A task's CPL can only be changed by control transfers, through 

Protected Mode Architecture 



AMD~ 
Figure 4-12 Segment Descriptor Caches for Protected Mode (Loaded per Descriptor) 

Segment Descriptor Cache Register Contents 

32-Bit Base 
(Updated during Selector 

Load into Segment Register) 

32-Bit Limit Other Attributes 
(Updated during Selector (Updated during Selector 

Load into Segment Register) Load into Segment Register) 

Conforming Privilege ----------------------------, 

Stack Size 

Executable ----------------------------, 

Writeable 

Readable 

Expansion Direction 

Granularity --------------------, 

Accessed 1 
Privilege Level-------,l 1 
Present-----------------,l 

BASE LIMIT + 
CS 

SS 

OS 

ES 

FS 

Base per Segment Descriptor 

Base per Segment Descriptor 

Base per Segment Descriptor 

Base per Segment Descriptor 

Base per Segment Descriptor 

Limit per 
Segment 
Descriptor 

p d d 

p d d 

p d d 

p d d 

p d d 

d 

d 

d 

d 

d 

d d N 

d r w 

d d d 

d d d 

d d d 

Y - d 

N d -

N - -

N - -

N - -

GS Base per Segment Descriptor p d d d d d d N - -

Key: Y = Fixed Yes 
N = Fixed No 
d per segment descriptor 
p per segment descriptor; but descriptor must indicate "present" to avoid exception 11 

(exception 12 in case of SS) 
per segment descriptor; but descriptor must indicate "readable" to avoid exception 13 
(special case for SS) 

w = per segment descriptor; but descriptor must indicate 'writable" to avoid exception 13 
(special case for SS) 

- = does not apply to that segment cache register 
17852A-033 

4.4.3.2 

gate descriptors, to a code segment with a different PL. (See Section 4.4.4, Privilege 
Level Transfers). Thus, an application program running at PL = 3 can call an operating 
system routine at PL = 1 (via a gate) that causes the task's CPL to be set to 1 until the 
operating system routine is finished. 

Selector Privilege (RPL) 

The PL of a selector is specified by the RPL field. The RPL is the two least significant 
bits of the selector. The selector's RPL is only used to establish a less trusted privilege 
level than the current privilege level for the use of a segment. This level is the task's 
effective privilege level (EPL). The EPL is defined as the least privileged (I.e., numeri­
cally larger) level of a task's CPL and a selector's RPL. Thus, if the selector's RPL = 0, 
then the CPL always specifies the privilege level for making an access. On the other 
hand, if RPL = 3, then a selector can only access segments at level 3 regardless of the 
task's CPL. The RPL is usually used to verify that pOinters passed to an operating 
system procedure do not access data that is of higher privilege than the procedure that 

Protected Mode Architecture 4·13 

i 
1-



~AMD 
Figure 4-13 Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode 

(Segment Limit and Attributes are fixed) 

Segment Descriptor Cache Register Contents 
32-Bit Base 

(Updated during Selector 
Load into Segment Register) 

32-Bit Limit 
(Fixed) 

Other Attributes 
(Fixed) 

Conforming Privilege ---------------------------, 

Stack Size 

Executable ----------------------------, 

Writeable 

Readable 

Expansion Direction 

Granularity --------------------, 

Accessed 1 
Privilege Level----.1 1 
Present----------------.l 

BASE LIMIT + 
CS 16X Current CS Selector OOOOFFFFH Y 3 Y 

SS 16X Current SS Selector OOOOFFFFH Y 3 Y 

DS 16X Current DS Selector OOOOFFFFH Y 3 Y 

ES 16X Current ES Selector OOOOFFFFH Y 3 Y 

FS 16X Current FS Selector OOOOFFFFH Y 3 Y 

GS 16X Current GS Selector OOOOFFFFH Y 3 Y 

B 

B 

B 

B 

B 

B 

U Y Y 

U Y Y 

U Y Y 

U Y Y 

U Y Y 

U Y Y 

Y - N 

N W -

N - -
N - -

N - -

N - -

Key: Y = Yes 
N = No 

D = Expand down 
B = Byte granularity 
P = Page granularity o Privilege level 0 

1 Privilege level 1 
2 = Privilege level 2 
3 = Privilege level 3 
U = Expand up 

W = Push/pop 16-bit words 
F Push/pop 32-bit dwords 

Does not apply to that segment cache register 17852A--{)34 

originated the pointer. Since the originator of a selector can specify any RPL value, the 
Adjust RPL (ARPL) instruction forces the RPL bits to the originator's CPL. 

4.4.3.3 1/0 Privilege and 1/0 Permission Bit.map 

4·14 

The 1/0 privilege level (IOPL, a 2-bit field in the EFLAG register) defines the least privi­
leged level at which I/O instructions can be unconditionally performed. I/O instructions can 
be unconditionally performed when CPL::; 10PL. (The I/O instructions are IN, OUT, INS, 
OUTS, REP INS, and REP OUTS.) When CPL :<: 10PL and the current task is associated 
with a 286 TSS, attempted I/O instructions cause an exception 13 fault. When CPL :<: 
10PL and the current task is associated with an Am486DX/DX2 microprocessor TSS, the 
I/O Permission Bit-map (part of an Am486DX/DX2 microprocessor TSS) is consulted on 
whether I/O to the port is allowed, or if an exception 13 fault is to be generated instead. 
For diagrams of the I/O Permission Bit-map, refer to Figure 4-15 and Figure 4-16. For fur­
ther information on how the I/O Permission Bit-map is used in Protected Mode or in Virtual 
8086 Mode, refer to Section 4.6.4, Protection and I/O Permission Bit-map. 

The 10PL also affects whether several other instructions can be executed or cause an 
exception 13 fault instead. These instructions are "IOPL-sensitive" instructions and they 

Protected Mode Architecture 



AMD~ 
Figure 4-14 Fou .... level Hierarchical Protection 

CPU 
Enforced 
Software 
Interfaces 

High Speed 
Operating 
System 
Interface 17852A--D35 

Figure 4-15 Sample 1/0 Permission Bit Map 

31 

63 

95 

127 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1 7 1 6 15 14 13 12 11 1 a 9 8 7 6 5 4 3 2 1 a 

1 1 1 1 a 1 1 a a a a a 1 1 1 1 a 1 a a 1 1 a 0 a a a a a a 1 1 

a a 1 a a a 1 1 1 1 a a 1 a 1 a 1 1 1 1 1 1 a a 1 1 1 1 100 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

a a a a a a a a a a a a a a a a a 0 a 0 a a a a a a a a a a a a 
1 1 1 1 1 1 1 1 

f'\.J 
f'\.J 

110 Ports Accessible: 2 --> 9,12,13,15,20 --> 24,27,33,34,40,41,48,50,52,53,58 --> 60,62,63,96 --> 127 
17852A--D36 

4.4.3.4 

are CLI and STI. (Note that the LOCK prefix is not IOPL sensitive on the Am486DX/DX2 
microprocessor.) 

The IOPL also affects whether the interrupts enable flag (IF) bit can be changed by 
loading a value into the EFLAGS register. When CPL ::; IOPL, then the IF bit can be 
changed by loading a new value into the EFLAGS register, When CPL > IOPL, the IF bit 
cannot be changed by a new value POPed into (or otherwise loaded into) the EFLAGS 
register; the IF bit merely remains unchanged and no exception is generated, 

Privilege Validation 

The Am486DX/DX2 microprocessor provides several instructions to speed pointer 
testing and help maintain system integrity, These instructions verify that the selector 
value refers to an appropriate segment. Table 4-2 summarizes the selector validation 
procedures available for the Am486DX/DX2 microprocessor. 

Pointer verification prevents the common problem of an application at PL = 3 calling an 
operating system's routine at PL = 0 and passing the operating system's routine a "bad" 
pointer that corrupts a data structure belonging to the operating system. If the operating 
system routine uses the ARPL instruction to ensure that the RPL of the selector has no 
greater privilege than that of the caller, then this problem can be avoided. 

Protected Mode Architecture 4-15 



;t1 AMD 

Figure 4-16 Am486 CPU TSS and TSS Registers 

4-16 

Note: 
BIT MAP OFF-
SET -
must be"; DFFFH 

------_ .. --. 
Acce~~ TSS .;.. 
Riohts Limit ' 

Base -:-, 
31 Program 0' , 

Invisible 
, , , 

----------~ 
Task Register 

TR I Selector ~ 

15 0 

31 16 15 

0000000000000000 

ESPO 

0000000000000000 I 
ESP! 

0000000000000000 I 
ESP2 

0000000000000000 I 
CR3 

EIP 

EFLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0 

Back Link 

SSO 

SSI 

SS2 

ES 

CS 

SS 

OS 

FS 

GS 

LOT 

0....J 

4 

8 

C 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 

60 

TSS 
Base 

Initial 
Stacks 
forCPL 
0,1,2 

Current 
Task 
State 

BIT MAP OFFSET(15:0) 0000000000000000 In 64 Debug 
Trap 
Bit ~~Available Syslem Status, elc. 

in Am486 CPU TSS 

31 24 23 16 15 

63 56 55 48 47 

95 88 87 80 79 

~ 110 Permission Bitmap 

65407 (One bit per byte 1/0 port. 
65439 Bitmap can be truncated 

65471 using TSS limit.) 

65503 

65535 

8 7 

40 39 

72 71 

........ 

~, 

3~~· 
64 

96 Ollse 

Ollse 

~ 
Ollse 

Ollse 

Ollse 

65472 

t+1FEC 

t + lFFO 

t + lFF4 

t + lFF8 

t+ lFFC 

t + 2000 

Ollse 

65504 Ollse 

FFH Ollse 

• TSS LIMIT ~ Offset + 2000H 
Am486 CPU TSS Descriptor (in GOT) 

Segment Base 15 ... 0 Segment Limit 15 ... 0 

III )1 )1)1 Limit ~ Base31 ... 24 GOO 0 19 .... 16 pi DPLI 01 Type I Base 23 ... 16 

Type ~ 9: Available Am486 CPU TSS 
Type = B: Busy Am486 CPU TSS 

Protected Mode Architecture 

17852A-037 



Table 4-2 

Instruction 

ARPL 

VERR 

VERW 

LSL 

LAR 

4.4.3.5 

4.4.4 

AMD~ 
Pointer Test Instructions 

Operands Function 

Selector, Adjust Requested Privilege Level: adjusts the RPL of the selector to the 
numeric maximum of current selector RPL value and the RPL value in the Register register. Set zero flag if selector RPL is changed. 

Selector VERify for Read: sets the zero flag if the segment referred to by the selector 
can be read. 

Selector VERify for Write: sets the zero lIag if the segment referred to by the selector 
can be written. 

Register, Load Segment Limit: reads the segment limit into the register if privilege rules 
Selector and descriptor type allow. Set zero flag if successful. 

Register, Load Access Rights: reads the descriptor access rights byte into the register if 
Selector privilege rules allow. Set zero flag if successful. 

Descriptor Access 

There are basically two types of segment accesses: those involving code segments such as 
control transfers, and those involving data accesses. Determining a task's ability to access a 
segment involves the type of segment to be accessed, the instruction used, the type of 
descriptor used, and CPL, RPL, and DPL as described above. 

Any time an instruction loads data segment registers (DS, ES, FS, and GS), the 
Am486DX/DX2 microprocessor makes protection validation checks. Selectors loaded in 
the DS, ES, FS, and GS registers must refer only to data segments or readable code 
segments. The data access rules are specified in Section 4.4.2, Rules of Privilege. The 
only exception to these rules is readable conforming code segments that can be 
accessed at any privilege level. 

Finally the privilege validation checks are performed. The CPL is compared to the EPL, and if 
the EPL is more privileged than the CPL, an exception 13 (general protection fault) is 
generated. 

The stack segment rules are slightly different than data segment rules. Instructions that load 
selectors into SS must refer to data segment descriptors for writable data segments. The DPL 
and RPL must equal the CPL. All other descriptor types or a privilege level violation cause 
exception 13. A stack not present fault causes exception 12. Note that an exception 11 is 
used for a not-present code or data segment. 

Privilege Level Transfers 
Inter-segment control transfers occur when a selector is loaded in the CS register. For a 
typical system, most of these transfers are simply the result of a call or a jump to another 
routine. There are five types of control transfers (see Table 4-3). Many of these transfers 
result in a privilege level transfer. Changing privilege levels is done only via control transfers, 
by using gates, task switches, and interrupt or trap gates. 

Control transfers can only occur if the operation that loaded the selector references the 
correct descriptor type. Any violation of these descriptor usage rules causes an exception 13 
(e.g., JMP through a call gate, or IRET from a normal subroutine Call). 

To provide further system security, all control transfers are subject to the privilege rules. The 
privilege rules require that 

Protected Mode Architecture 4·17 



~ AMD 

Table 4-3 

• Privilege level transitions can only occur via gates. 

• JMPs can be made to a non-conforming code segment with the same privilege, or to 
a conforming code segment with greater or equal privilege. 

• CALLs can be made to a non-conforming code segment with the same privilege, or 
via a gate to a more privileged level. 

• Interrupts handled within the task obey the same privilege rules as CALLs. 

• Conforming Code segments are accessible by privilege levels that are the same or 
less privileged than the conforming-code segment's DPL. 

• Both the RPL in the selector pointing to the gate and the task's CPL must be of equal or 
greater privilege than the gate's DPL. 

• The code segment selected in the gate must be the same or more privileged than the 
task's CPL. 

• Retum instructions that do not switch tasks can only retum control to a code segment with 
same or less privilege. 

• Task switches can be performed by a CALL, JMp, or INT, which references either a task 
gate or task state segment who's DPL is less privileged or the same privilege as the old 
task's CPL. 

Any control transfer that changes CPL within a task causes a change of stacks as a result of 
the privilege level change. The initial values of SS:ESP for privilege levels 0, 1, and 2 are 
retained in the task state segment (see Section 4.4.6, Task Switching). During a JMP or CALL 
control transfer, the new stack pointer is loaded into the SS and ESP registers and the 
previous stack pOinter is pushed onto the new stack. 

Descriptor Types Used for Control Transfer 

Control Transfer Types Operation Types Descriptor Descriptor 
Referenced Table 

Intersegment within the same 
privilege level 

Intersegment to the same or higher 
privilege level interrupt within task 
can change CPL 

Intersegment to a lower privilege 
level (changes task CPL) 

Task Switch 

Note: 
'NT (Nested Task bit of flag register) = 0 

"NT (Nested Task bit of flag register) = 1 

4·18 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, Exception, 
External Interrupt 

RET,IRET' 

CALL, JMP 

CALL, JMP 

IRET" 
Interrupt Instruction, Exception, 
External Interrupt 

Protected Mode Architecture 

Code Segment GOT/LOT 

Call Gate GOT/LOT 

Trap or Interrupt lOT 
Gate 

Code Segment GOT/LOT 

Task State Segment GOT 

Task Gate GOT/LOT 

Task Gate lOT 



4.4.5 

4.4.6 

AMD~ 
When RETuming to the original privilege level, use of lower-privileged stack is restored as 
part of the RET or IRET instruction operation. For subroutine calls that pass parameters on 
the stack and cross privilege levels, a fixed number of words (as specified in the gate's 
word count field) are copied from the previous stack to the current stack. The inter-seg­
ment RET instruction with a stack adjustment value correctly restores the previous stack 
pointer upon return. 

Call Gates 
Gates provide protected, indirect CALLs. One of the major uses of gates is to provide a 
secure method of privilege transfers within a task. Since the operating system defines all 
the gates in a system, it can ensure that all gates only allow entry into a few trusted 
procedures (such as those that allocate memory or perform I/O). 

Gate descriptors follow the data access rules of privilege; that is, gates can be accessed 
by a task if the EPL is equal to or more privileged than the gate descriptor's DPL. Gates 
follow the control transfer rules of privilege and therefore can only transfer control to a 
more privileged level. 

Call gates are accessed via a CALL instruction and are syntactically identical to calling a 
normal subroutine. When an interlevel Am486DX/DX2 microprocessor call gate is 
activated, the following actions occur: 

1. Load CS:EIP from gate check for validity. 

2. SS is pushed zero-extended to 32 bits. 

3. ESP is pushed. 

4. Copy Word Count 32-bit parameters from the old stack to the new stack. 

5. Push Return address on stack. 

The procedure is identical for 80286 call gates, except 16-bit parameters are copied and 
16-bit registers are pushed. 

Interrupt gates and trap gates work like the call gates, except there is no copying of 
parameters. The only difference between trap and interrupt gates is that control transfers 
through an Interrupt gate disable further interrupts (I.e., the IF bit is set to 0), and Trap 
gates leave the interrupt status unchanged. 

Task Switching 
A very important attribute of any multitasking/multiuser operating system is the ability to 
rapidly switch between tasks or processes. The Am486DX/DX2 microprocessor directly 
supports this operation by providing a task switch instruction in hardware. The 
Am4860X/OX2 microprocessor task switch operation saves the entire state of the 
machine (all of the registers, address space, and a link to the previous task), loads a 
new execution state, performs protection checks, and commences execution in the new 
task, all in about 10 microseconds. Like transfer of control via gates, the task switch 
operation is invoked by executing an inter-segment JMP or CALL instruction that refers 
to a TSS, or a task gate descriptor in the GOT or LOT. An INT n instruction, exception, 
trap, or external interrupt can also invoke the task switch operation if there is a task gate 
descriptor in the associated IDT descriptor slot. 

The TSS descriptor pOints to a segment (see Figure 4-16) containing the entire 
Am486DX/OX2 microprocessor execution state while a task gate descriptor contains a 
TSS selector. The Am486DX/DX2 CPU supports both 80286- and Am486DX/DX2 
microprocessor-style TSSs. Figure 4-17 shows an 80286 TSS. The limit of an 
Am486DX/OX2 CPU TSS must be greater than 0064H (002BH for a 80286 TSS), and 

Protected Mode Architecture 4-19 



~AMD 
can be as large as 4 Gbytes. In the additional TSS space, the operating system is free to 
store additional information such as the reason the task is inactive, time the task has 
spent running, and open files belong to the task. 

Each task must be associated with TSS. The current TSS is identified by a special 
register in the Am486DX/DX2 microprocessor, the Task State Segment Register (TR). 
This register contains a selector referring to the task state segment descriptor that 
defines the current TSS. A hidden base and limit register associated with TR are loaded 
whenever TR is loaded with a new selector. Returning from a task is accomplished by 
the IRET instruction. When IRET is executed, control is returned to the task that was 
interrupted. The current executing task's state is saved in the TSS and the old task state 
is restored from its TSS. 

Several bits in the flag register and machine status word (CRO) give information about 
the state of a task that is useful to the operating system. The Nested Task (NT) (bit 14 in 
EFLAGS) controls the function of the IRET instruction. If NT = 0, the IRET instruction 
performs the regular return; when NT = 1, IRET performs a task switch operation back to 
the previous task. The NT bit is set or reset as shown in Figure 4-17. 

When a CALL or INT instruction initiates a task switch, the new TSS is marked busy and 
the back link field of the new TSS is set to the old TSS selector. The NT bit of the new 
task is set by CALL or INT initiated task switches. An interrupt that does not cause a task 

Figure 4-17 80286 TSS 

15 0 

Back Link Selector to TSS 0 

SPfor CPLO 2 

SSforCPLO 4 
Initial 

SP for CPL 1 6 Stacks 

SSforCPL 1 8 forCPL 
0,1,2 

SPforCPL2 A 

SSforCPL2 C 

I P (Entry Point) E 

Flags 10 

AX 12 

CX 14 

OX 16 

BX 18 Current 
SP 1A Task 

State 
BP 1C 

SI 1E 

01 20 

ES Selector 22 

CS Selector 24 

SS Selector 26 

OS Selector 28 

Task's LOT Selector 2A 

,.. J Available 
rv 

17852A-<l38 

4-20 Protected Mode Architecture 



4.4.7 

AMD~ 
switch clears NT. (The NT bit is restored after execution of the interrupt handler) NT can 
also be set or cleared by POPF or IRET instructions. 

The Am4860X/OX2 microprocessor TSS is marked busy by changing the descriptor type 
field from TYPE 9H to TYPE BH. An 80286 TSS is marked busy by changing the 
descriptor type field from TYPE 1 to TYPE 3. Using a selector that references a busy TSS 
causes an exception 13. 

The Virtual Mode (VM) bit 17 is used to indicate if a task is a Virtual 8086 task. If VM = 1, 
then the tasks use the Real Mode addressing mechanism. The Virtual 8086 environment 
is only entered and exited via a task switch (see Section 4.6, Virtual Mode). 

The FPU's state is not automatically saved when a task switch occurs because the 
incoming task may not use the FPU. The Task Switched (TS) bit (bit 3 in the CRO) helps 
deal with the FPU's state in a multitasking environment. Whenever the Am4860X/OX2 
microprocessor switches tasks it sets the TS Bit. The Am4860X/OX2 CPU detects the 
first use of a processor extension instruction after a task switch and causes the processor 
extension not present exception 7. The exception handler for exception 7 can then decide 
whether to save the state of the FPU. A processor extension not present (exception 7) 
occurs when attempting to execute a floating-point or WAIT instruction if the Task 
Switched and Monitor coprocessor extension bits are both set (I.e., TS = 1 and MP = 1). 

The T bit in the Am4860X/OX2 microprocessor TSS indicates that the processor should 
generate a debug exception when switching to a task. If T = 1, then upon entry to a new 
task, a debug exception 1 is generated. 

Initialization and Transition to Protected Mode 
Since the Am4860X/OX2 microprocessor begins executing in Real Mode immediately 
after RESET, initializing the system tables and registers with the appropriate values is 
necessary. 

The GOT and lOT registers must refer to a valid GOT and lOT. The lOT should be at 
least 256 bytes long, and GOT must contain descriptors for the initial code and data 
segments. Figure 4-18 shows the tables and Figure 4-19 shows the descriptors needed 
for a simple Protected Mode Am4860X/OX2 CPU system. It has a single code and 
single data/stack segment (each 4 Gbytes long) and a single privilege level PL = O. 

The actual method of enabling Protected Mode is to load CRO with the PE bit set, via the 
MOV CRO, RIM instruction. This puts the Am4860X/OX2 microprocessor in Protected 
Mode. 

After enabling Protected Mode, the next instruction should execute an intersegment JMP 
to load the CS register and flush the instruction decode queue. The final step is to load 
all the data segment registers with the initial selector values. 

An alternate approach to entering Protected Mode is especially appropriate for multitask­
ing operating systems. This method uses the built-in task switch to load all the registers. 
In this case, the GOT contains two TSS descriptors in addition to the code and data 
descriptors needed for the first task. The first JMP instruction in Protected Mode jumps 
to the TSS, causing a task switch and loading all of the registers with the values stored 
in the TSS. The TSS Register should be initialized to point to a valid TSS descriptor 
since a task switch saves the current task state in a TSS. 

Protected Mode Architecture 4-21 



~AMD 
Figure 4-18 Simple Protected System 

15 0 
SS 100101 

GS 100101 

FS 100101 

ES 100101 

DS 

CS 

GDTR 

31 o 
r---R-es-e-t -Ro-u-ti-ne-s"'" FFFFFFFF 
t-------i FFFFFFFO 

Initialization 
Routines 

User Memory 

Data Descriptor 

Code Descriptor 

Null Selector 

Interrupt 
Descriptors (32) 

00000118} 
00000110 

GDT 
00000108 

00000100 ... 
IDT 
+ 

00000000 17852A-039 

Figure 4-19 GDT Descriptors for Simple System 

2 

Data 
Descriptor 

Base 
23 ... 16 
00 (H) 

t---------r--r-~r-r--------;-,---,-,------;-~~B~a-s-e--~ 

23 ... 16 
00 (H) 

Code Segment Base 15 ... 0 Segment Limit 15 ... 0 
Descriptor 0118 (H) FFFF (H) 

4.5 

4.5.1 

4-22 

o 

r-----------~~---------+------------~~------~ 
Null Descriptor 

31 24 16 15 8 o 
17852A-040 

PAGING 

Paging Concepts 
Paging is another type of memory management useful for virtual memory multitasking 
operating systems. Unlike segmentation, which modularizes programs and data into 
variable length segments, paging divides programs into multiple uniform-size pages. 
Pages bear no direct relation to the logical structure of a program. While segment 
selectors can be considered the logical "name" of a program module or data structure, a 
page most likely corresponds to only a portion of a module or data structure. 

By taking advantage of the locality of reference displayed by most programs, only a small 
number of pages from each active task must be in memory at anyone moment. 

Protected Mode Architecture 



4.5.2 

4.5.2.1 

4.5.2.2 

AMD~ 
Paging Organization 

Page Mechanism 

The Am486DX/DX2 microprocessor uses two levels of tables to translate the linear 
address (from the segmentation unit) into a physical address. There are three compo­
nents to the paging mechanism of the Am486DX/DX2 microprocessor: the page 
directory, the page tables, and the page itself (page frame). All memory-resident 
elements of the Am486DX/DX2 microprocessor paging mechanism are the same size, 4 
Kbytes. A uniform size for all the elements simplifies memory allocation and reallocation 
schemes, since there is no problem with memory fragmentation. Figure 4-20 shows how 
the paging mechanism works. 

Page Descriptor Base Register 

CR2 is the Page Fault Linear Address register. It holds the 32-bit linear address that 
caused the last page fault detected. 

CR3 is the Page Directory Physical Base Address Register. It contains the physical 
starting address of the page directory. The lower 12 bits of CR3 are always zero to 
ensure that the page directory is always page aligned. Loading it via a MOV CR3, REG 
instruction causes the page table entry cache to be flushed, as does a task switch 
through a TSS that changes the value of CRO. (See Section 4.5.5, Translation Looka­
side Buffer). 

Figure 4-20 Paging Mechanism 
Two level Paging Scheme 

31 22 12 0 

linear L Directory J Table I Offsetl 

Address 

I 
10 V 10 V 

12 / 
, 

User I I 
Memory 

Am486 CPU 31 0 ~ Address 

31 0 31 0 Y. 
CRO I 
CR1 ~ -----CR2 

Page Table 

CR3 Root 

Control Registers 
Directory 

1785 2A-<l41 

Protected Mode Architecture 4-23 



~AMD 
4.5.2.3 

4.5.2.4 

4.5.2.5 

Page Directory 

The page directory is 4 Kbytes long and allows up to 1024 page directory entries. Each 
page directory entry contains the address of the next level of tables, the page tables, and 
information about the page table. The contents of a page directory entry are shown in 
Figure 4-21. The upper 10 bits of the linear address (A31-A22) are used as an index to 
select the correct page directory entry. The actual method of enabling Protected Mode is to 
load CRO with the PE bit set, via the MOV CRO, RIM instruction. 

Page Tables 

Each page table is 4 Kbytes and holds up to 1024 page table entries. Page table entries 
contain the starting address of the page frame and statistical information about the page 
(see Figure 4-22). Address bits A21-A12 are used as an index to select one of the 1024 
page table entries. The 20 upper-bit page frame address is concatenated with the lower 
12 bits of the linear address to form the physical address. Page tables can be shared 
between tasks and swapped to disks. 

Page DirectorylTabie Entries 

The lower 12 bits of the page table entries and page directory entries contain statistical 
information about pages and page tables respectively. The P (Present) bit = 0 indicates 
if a page directory or page table entry can be used in address translation. If P = 1, the 
entry can be used for address translation; if P = 0, the entry cannot be used for transla­
tion and all the other bits are available for use by the software. For example, the 
remaining 31 bits could be used to indicate where on the disk the page is stored. 

The A (accessed) bit 5 is set by the Am486DX/DX2 microprocessor for both types of 
entries before a read or write access occurs to an address covered by the entry. The D 

. (dirty) bit 6 is set to 1 before a write to an address covered by that page table entry 
occurs. The D bit is undefined for page directory entries. When the P, A, and D bits are 
updated by the Am486DXlDX2 microprocessor, the processor generates a read-modify­
write cycle that locks the bus and prevents conflicts with other processors or peripherals. 
Software that modifies these bits should use the LOCK prefix to ensure the integrity of 
the page tables in multimaster systems. 

The three bits marked "aS Reserved" in Figure 4-21 and Figure 4-22 (bits 9-11) are 
software definable. ass are free to use these bits for whatever purpose they wish. One 
use of the as Reserved bits could be storing information about page aging. By keeping 

Figure 4-21 Page Directory Entry (Points to Page Table) 

31 12 11 10 9 8 7 6 5 4 3 2 o 

08 P P U R 
Page Table Address 31 ... 12 Reserved 0 0 0 A C W - - P 

0 T 8 W 

17852A-042 

Figure 4-22 Page Table Entry (Points to Page) 

31 12 11 10 9 8 7 6 5 4 3 2 o 

08 P P U R 
Page Frame Address 31 ... 12 Reserved 0 0 0 A C W - - P 

0 T 8 W 

17852A-043 

4-24 Protected Mode ArchHecture 



4.5.3 

4.5.4 

AMD~ 
track of how long a page has been in memory since being accessed, an operating 
system can implement a page replacement algorithm like Least Recently Used. 

The (User/Supervisor) U/S bit 2 and the (ReadlWrite) R/W bit 1 are used to provide 
protection attributes for individual pages. 

Page Level Protection (R/W, U/S Bits) 
The Am486DX/DX2 microprocessor provides a set of protection attributes for paging 
systems. The paging mechanism distinguishes between two levels of protection: user, 
which corresponds to level 3 of the segmentation-based protection, and supervisor, 
which encompasses all of the other protection levels (0, 1, and 2). 

The R/W and U/S bits are used in conjunction with the WP bit in the flags register 
(EFLAGS). The 386 microprocessor does not contain the WP bit. The WP bit has been 
added to the Am486DX/DX2 microprocessor to protect read-only pages from supervisor 
write accesses. The 386 microprocessor allows a read-only page to be written from 
protection levels 0, 1, or 2. WP = ° is the 386 microprocessor-compatible mode. When 
WP = 0, the supervisor can write to a read-only page as defined by the U/S and R/W 
bits. When WP = 1, supervisor access to a read-only page (RIW = 0) causes a page 
fault (exception 14). 

Table 4-4 shows the affect of the WP, U/S, and RIW bits on accessing memory. When 
WP = 0, the supervisor can write to pages regardless of the state of the RIW bit. When 
WP = 1 and RIW = 0, the supervisor cannot write to a read-only page. A user attempt to 
access a supervisor-only page (U/S = 0), or write to a read-only page causes a page 
fault (exception 14). 

The R/W and U/S bits provide protection from user access on a page-by-page basis since 
the bits are contained in the page table entry and the page directory table. The U/S and 
RIW bits in the first level page directory table apply to all entries in the page table pointed 
to by that directory entry. The U/S and RIW bits in the second level page table entry apply 
only to the page described by that entry. The most restrictive of the U/S and RIW bits from 
the page directory table and the page Table entry are used to address a page. 

Example: If the U/S and RIW bits for the page directory entry are 10 (user read/execute) 
and the U/S and RIW bits for the page table entry are 01 (no user access at all), the 
access rights for the page is 01, the numerically smaller of the two. 

Note: A given segment can be easily made read-only for level 0, 1, or 2 via use of segmented 
protection mechanisms. (See Section 4.4, Protection.) 

Page Cacheability (PWT and PCD Bits) 
PWT (page write through) and PCD (page cache disable) are two new bits defined in 
entries in both levels of the page table structure, the page directory table, and the page 
table entry. PCD and PWT control page cacheability and write policy. 

PWT controls write policy. PWT = 1 defines a write-through policy for the current page. 
PWT = ° allows the possibility of write-back. PWT is ignored internally because the 
Am486DX/DX2 microprocessor has a write-through cache. PWT can be used to control 
the write policy of a second level cache. 

PCD controls cacheability. PCD = ° enables caching in the on-chip cache. PCD alone 
does not enable caching; it must be conditioned by the KEN (cache enable) input signal, 
and the state of the CD (cache disable bit) and NW (no write-through) bits in control 
register ° (CRO). When PCD = 1, caching is disabled regardless of the state of KEN, CD, 
and NW. (See Chapter 5, On-Chip Cache). 

Protected Mode Architecture 4·25 



~AMD 
Table 4-4 

4.5.5 

Page Level Protection Attributes 

U/S RfW WP User Access Supervisor Access 

0 0 0 None Read/Write/Execute 

0 1 0 None Read/Write/Execute 

1 0 0 Read/Execute Read/Write/Execute 

1 1 0 Read/Write/Execute Read/Write/Execute 

0 0 1 None Read/Execute 

0 1 1 None Read/Write/Execute 

1 0 1 Read/Execute Read/Execute 

1 1 1 Read/Write/Execute Read/Write/Execute 

The state of the PCD and PWT bits are driven out on the PCD and PWT pins during a 
memory access. 

The PWT and PCD bits for a bus cycle are obtained either from control register 3 (CR3), 
the page directory entry, or the page table entry, depending on the type of cycle run. 
However, when paging is disabled (PG = 0 in CRO) or for cycles that bypass paging (Le., 
1/0 (input/output) references, INTR (interrupt request) and HALT cycles), the PCD and 
PWT bits of CR3 are ignored. The Am486DX/DX2 CPU assumes PCD = 0 and PWT = 0 
and drives these values on the PCD and PWT pins. 

When paging is enabled (PG = 1 in CRO), the bits from the page table entry are cached in 
the TLB and are driven any time the page mapped by the TLB entry is referenced. For 
normal memory cycles run with paging enabled, the PWT and PCD bits are taken from 
the page table entry. During TLB refresh cycles when the page directory and page table 
entries are read, the PWT and PCD bits must be obtained elsewhere. The bits are taken 
from CR3 when a page directory entry is being read. The bits are taken from the page 
directory entry when the page table entry is being updated. 

The PCD or PWT bits in CR3 are initialized to zero at reset, but can be set to any value 
by level 0 software. 

Translation Lookaside Buffer 
The Am486DX/DX2 microprocessor paging hardware is designed to support demand­
paged virtual memory systems. However, performance would degrade substantially if 
the processor is required to access two levels of tables for every memory reference. To 
solve this problem, the Am486DX/DX2 microprocessor keeps a cache of the most 
recently accessed pages, this cache is called the Translation Lookaside Buffer (TLB). 
The TLB is a four-way set-associative 32-entry page table cache. It automatically keeps 
the most commonly used page table entries in the processor. The 32-entry TLB coupled 
with a 4K page size results in coverage of 128 Kbytes of memory addresses. For many 
common multitasking systems, the TLB has a hit rate of about 98%. This means the 
processor only has to access the two-level page structure on 2% of all memory refer­
ences. Figure 4-23 illustrates how the TLB complements the Am486DX/DX2 microproces­
sor's paging mechanism. 

Reading a new entry into the TLB (TLB refresh) is a two step process handled by the 
Am486DX/DX2 microprocessor hardware. The sequence of data cycles to perform a TLB 
refresh are 

1. Read the correct page directory entry, as pointed to by the page base register and 
the upper 10 bits of the linear address. The page base register is in CR3. 

4-26 Protected Mode Architecture 



AMD~ 
Figure 4-23 Translation Lookaside BuHer 

32 Entries Physical 
ry 

4.5.6 

1a. 

2. 

2a. 

.. 

Linear 
Address Translation 

~ Lookaside 
Buffer 

Miss 

31 

Page 
Directory 

0 

v---. 
r-

e 98% Hit Rate 

Hit 

Page 
Table 

r---

Memo 

17852A-044 

Optionally, perform a locked read/write to set the accessed bit in the directory entry. 
The directory entry actually gets read twice if the Am486DX/DX2 microprocessor 
needs to set any of the bits in the entry. If the page directory entry changes between 
the first and second reads, the data returned for the second read will be used. 

Read the correct entry in the page table and place the entry in the TLB. 

Optionally, perform a locked read/write to set the accessed and/or dirty bit in the page 
table entry. Again, note that the page table entry actually gets read twice if the 
Am486DX/DX2 microprocessor needs to set any of the bits in the entry. Like the 
directory entry, if the data changes between the first and second read, the data 
returned for the second read is used. 

Note: The directory entry must always be read into the processor since directory entries are 
never placed in the paging TLB. Page faults can be signaled from either the page directory read 
or the page table read. Page directory and page table entries can be placed in the Am486DXlDX2 
on-chip cache just like normal data. 

Paging Operation 
The paging hardware operates in the following fashion. The paging unit hardware 
receives a 32-bit linear address from the segmentation unit. The upper 20 linear address 
bits are compared with all 32 entries in the TLB to determine if there is a match. If there 
is a match (i.e., a TLB hit), then the 32-bit physical address is calculated and is placed 
on the address bus. 

However, if the page table entry is not in the TLB, the Am486DX/DX2 microprocessor 
reads the appropriate page directory entry. If P = 1 on the page directory entry indicating 
that the page table is in memory, then the Am486DX/DX2 microprocessor reads the 
appropriate page table entry and sets the Access bit. If P = 1 on the page table entry 
indicating that the page is in memory, the Am486DX/DX2 microprocessor updates the I' 
Access and Dirty bits as needed and fetches the operand. The upper 20 bits of the linear I 
address, read from the page table, are stored in the TLB for future accesses. However, if 
P = 0 for either the page directory entry or the page table entry, then the processor 
generates a page fault, an exception 14. 

Protected Mode Architecture 4-27 



~AMD 
The processor also generates an exception 14 page fault if the memory reference violated 
the page protection attributes (Le., U/S or R/w) (e.g., trying to write to a read-only page). 
CR2 holds the linear address that caused the page fault. If a second page fault occurs 
while the processor is attempting to enter the service routine for the first, then the 
processor invokes the page fault (exception 14) handler a second time, rather than the 
double fault (exception 8) handler. Since exception 14 is classified as a fault, CS: EIP 
points to the instruction causing the page fault. The 16-bit error code pushed as part of 
the page fault handler contains status bits that indicate the cause of the page fault. 

The 16-bit error code is used by the operating system to determine how to handle the 
page. Figure 4-24 shows the format of the page-fault error code and the interpretation of 
the bits. . 

Note: Even though the bits in the error code (VIS, WIR, and P) have similar names as the bits in 
the page directoryltable entries, the interpretation of the error code bits is different. Table 4-5 indi­
cates what type of access caused the page fault. 

Figure 4-24 Page Fault Error Code Format 

Table 4-5 

4.5.7 

4-28 

15 3 2 1 0 

17852A-045 

Type of Access Causing Page Fault 

UlS R/W Access Type 

0 0 Supervisor" Read 

0 1 Supervisor Write 

1 0 User Read 

1 1 User Write 

Note: • Descriptor table access will fault with VIS = 0, even if the program is executing at level 3. 

U/S: The U/S bit indicates whether the access causing the fault occurred when the proces­
sor was executing in User Mode (U/S = 1) or in Supervisor Mode (U/S = 0). 

W/R: The W/R bit indicates whether the access causing the fault was a Read (W/R = 0) or a 
Write (W/R = 1). 

P: The P bit indicates whether a page fault was caused by a not-present page (P = 0), or 
by a page level protection violation (P =1). 

U: Undefined 

Operating System Responsibilities 
The Am486DX/DX2 microprocessor takes care of the page address translation process, 
relieving the burden from an operating system in a demand-paged system. The operat­
ing system is responsible for setting up the initial page tables and handling any page 
faults. The operating system also is required to invalidate (Le., flush) the TLB when any 
changes are made to any of the page table entries. The operating system must reload 
CR3 to cause the TLB to be flushed. 

Protected Mode Architecture 



4.6 

4.6.1 

4.6.2 

4.6.3 

AMD~ 
Setting up the tables is simply a matter of loading CR3 with the address of the page 
directory and allocating space for the page directory and the page tables. The primary 
responsibility of the operating system is to implement a swapping policy and handle all the 
page faults. 

A final concern of the operating system is to ensure that the TLB cache matches the 
information in the paging tables. In particular, any time the operating system sets the P 
present bit of page table entry to 0, the TLB must be flushed. Operating systems may 
want to take advantage of the fact the CR3 is stored as part of a TSS, to give every task 
or group of tasks its own set of page tables. 

VIRTUAL 8086 ENVIRONMENT 

Executing 8086 Programs 
The Am486DX/DX2 microprocessor allows the execution of 8086 application programs 
in both Real Mode and in the Virtual 8086 Mode (Virtual Mode). Of the two methods, 
Virtual 8086 Mode offers the system designer the most flexibility. The Virtual 8086 Mode 
allows the execution of 8086 applications while still allowing the system designer to take 
full advantage of the Am486DX/DX2 microprocessor protection mechanism. In particular, 
the Am486DX/DX2 microprocessor allows the simultaneous execution of 8086 operating 
systems and its applications, as well as an Am486DX/DX2 microprocessor operating 
system and both 80286 and Am486DX/DX2 microprocessor applications. Thus, in a 
multiuser Am486DX/DX2 microprocessor computer, one person could be running an 
MS-DOS spreadsheet, another person using MS-DOS, and a third person could be 
running multiple UNIX utilities and applications. Each person in this scenario would 
believe he had the computer completely to themselves. Figure 4-25 illustrates this 
concept. 

Virtual 8086 Mode Addressing Mechanism 
One of the major differences between the Am486DX/DX2 microprocessor Real and 
Protected Modes is how the segment selectors are interpreted. When the processor is 
executing in Virtual 8086 Mode, the segment registers are used in an identical fashion to 
Real Mode. The contents of the segment register are shifting left four bits and are added 
to the offset to form the segment base linear address. 

The Am486DX/DX2 microprocessor allows the operating system to specify which 
programs use the 8086 style address mechanism, and which programs use Protected 
Mode addreSSing, on a per task basis. Through the use of paging, the 1-Mbyte address 
space of the Virtual Mode task can be mapped to anywhere in the 4 Gbyte linear 
address space of the Am486DX/DX2 microprocessor. Like Real Mode, Virtual Mode 
effective addresses (i.e., segment offsets) that exceed 64 K byte cause an exception 13. 
However, these restrictions should not prove to be important, because most tasks 
running in Virtual 8086 Mode are simply existing 8086 application programs 

Paging in Virtual Mode 
The paging hardware allows the concurrent running of multiple Virtual Mode tasks, and 
provides protection and operating system isolation. Although it is not strictly necessary to 
have the paging hardware enabled to run Virtual Mode tasks, it is needed in order to run 
multiple Virtual Mode tasks or to relocate the address space of a Virtual Mode task to 
physical address space greater than 1 Mbyte. 

The paging hardware allows the 20-bit linear address produced by a Virtual Mode 
program to be divided into up to 256 pages. Each page can be located anywhere within 
the maximum 4 Gbyte physical address space of the Am486DX/DX2 microprocessor. In 

Protected Mode Architecture 4-29 



t1 AMD 

Figure 4-25 Virtual 8086 Environment Memory Management 

4.6.4 

4-30 

Virtual Mode 
8086 Task 

Empty 

Task 2 
Page 
Table 

Page Directory 
Task 2 

• Task 1 
Memory 

OOOOOOOO(H) 

Illfll ~Oe8~o~S 
177] Task 2 ~ 386 CPU as 
k:::L.J Memory ~ Memory 

17852A--{)46 

addition, since CR3 (the Page Directory Base Register) is loaded by a task switch, each 
Virtual Mode task can use a different mapping scheme to map pages to different 
physical locations. 

Finally, the paging hardware allows the sharing of the 8086 operating system code 
between multiple 8086 applications. Figure 4-25 shows how the Am486DX/DX2 
microprocessor paging hardware enables multiple 8086 programs to run under a virtual 
memory demand paged system. 

Protection and 1/0 Pennission Bit.map 
All Virtual 8086 Mode programs execute at privilege level 3, the level of least privilege. 
As such, Virtual 8086 Mode programs are subject to all of the protection checks defined 
in Protected Mode. (This is different from Real Mode which implicitly is executing at 
privilege level 0, the level of greatest privilege.) Thus, an attempt to execute a privileged 
instruction when in Virtual 8086 Mode causes an exception 13 fault. 

The following are privileged instructions, which may be executed only at privilege level O. 
Therefore, attempting to execute these instructions in Virtual 8086 Mode (or anytime 
CPL > 0) causes an exception 13 fault: 

LIDT; MOV DRn, reg; MOV reg, DRn; 
LGDT; MOV TRn, reg; MOV reg, TRn; 
LMSW; MOV CRn, reg; MOV reg, CRn. 

Protected Mode Architecture 



CLTS; 
HLT; 

AMD~ 

Several instructions, particularly those applying to the multitasking model and protection 
model, are available only in Protected Mode. Therefore, attempting to execute the 
following instructions in Real Mode or in Virtual 8086 Mode generates an exception 6 
fault: 

LTR; 
LLDT; 
LAR; 
LSL; 
ARPL. 

STR; 
SLDT; 
VERR; 
VERW; 

The instructions that are 10PL-sensitive in Protected Mode are 

IN; STI; 
OUT; CLI 
INS; 
OUTS; 
REP INS; 
REP OUTS; 

In Virtual 8086 Mode, a slightly different set of instructions are made 10PL-sensitive. The 
following instructions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; STI; 
PUSHF; CLI; 
POPF; IRET 

The PUSHF, POPF, and IRET instructions are 10PL-sensitive in Virtual 8086 Mode only. 
This provision allows the IF flag (interrupt enable flag) to be virtualized to the Virtual 
8086 Mode program. The INT n software interrupt instruction is also 10PL-sensitive in 
Virtual 8086 Mode. Note, however, that the INT 3 (opcode OCCH), INTO, and BOUND 
instructions are not 10PL-sensitive in Virtual 8086 Mode (they are not 10PL sensitive in 
Protected Mode either). 

Note that the 110 instructions (IN, OUT, INS, OUTS, REP INS, and REP OUTS) are not 
10PL-sensitive in Virtual 8086 Mode. Rather, the 1/0 instructions become automatically 
sensitive to the 1/0 Permission Bit-map contained in the Am486DXlDX2 microprocessor 
Task State Segment. The 1/0 Permission Bit-map, automatically used by the 
Am486DX/DX2 microprocessor in Virtual 8086 Mode, is illustrated by Figure 4-15 and 
Figure 4-16. 

The 1/0 Permission Bit-map can be viewed as a 0-64 Kbit bit string, which begins in 
memory at offset Bit _ Map _ Offset in the current TSS. Bit _ Map _ Offset must be :::; 
DFFFH so the entire bit map and the byte FFH that follows the bit map are all at offsets 
:::;FFFFH from the TSS base. The 16-bit pointer Bit _ Map _ Offset (15 ... 0) is found in the 
word beginning at offset 66H (102 decimal) from the TSS base, as shown in Figure 4-16. 

Each bit in the 110 Permission Bit-map corresponds to a single byte-wide 110 port, as 
illustrated in Figure 4-16. If a bit is 0, 1/0 to the corresponding byte wide port can occur 
without generating an exception; otherwise, the 1/0 instruction causes an exception 13 
fault. Since every byte-wide 110 port must be protectable, all bits corresponding to a 
word-wide or dword-wide port must be 0 for the word-wide or dword-wide 1/0 to be 
permitted. If all the referenced bits are 0, the I/O is allowed. If any referenced bits are 1, 
the attempted 1/0 causes an exception 13 fault. 

Protected Mode Architecture 4-31 



it1 AMD 

4.6.5 

4.6.6 

4-32 

Due to the use of a pointer to the base of the I/O Permission Bit-map, the bit-map can be 
located anywhere within the TSS, or can be ignored completely by pointing the Bit-map 
_ Offset (15 ... 0) beyond the limit of the TSS segment. In the same manner, only a small 
portion of the 64K I/O space needs to have an associated map bit, by adjusting the TSS 
limit to truncate the bit-map, This eliminates the commitment of 8K of memory when a 
complete bit-map is not required, while allowing the fully general case if desired. 

EXAMPLE OF BITMAP FOR 1/0 PORTS 0-255: 

Setting the TSS limit to {BiCmap _ Offset + 31 + 1 **}(**see note below) allows a 32-byte 
bit-map for the I/O ports #0-255, plus a terminator byte of all 1's (** see note below). 
This allows the I/O bit-map to control 110 Permission to I/O ports 0-255 while causing an 
exception 13 fault on attempted I/O to any 1/0 port 256 through 65,565. 

Note: .. Beyond the last byte of I/O mapping information in the I/O Permission Bit-map must be 
a byte containing all 1·s. The byte of all 1 's must be within the limit of the Am486DXlDX2 micro­
processor TSS segment (see Figure 4-15). 

Interrupt Handling 
In order to fully support the emulation of an 8086 machine, interrupts in Virtual 8086 
Mode are handled uniquely. When running in Virtual Mode, all interrupts and exceptions 
involve a privilege change back to the host Am486DX/DX2 microprocessor operating 
system. The Am486DX/DX2 microprocessor operating system determines if the interrupt 
comes from a Protected Mode application or from a Virtual Mode program by examining 
the VM bit in the EFLAGS image stored on the stack. 

When a Virtual Mode program is interrupted and execution passes to the interrupt 
routine at level 0, the VM bit is cleared. However, the VM bit is still set in the EFLAG 
image on the stack. 

The Am486DX/DX2 microprocessor operating system in turn handles the exception or 
interrupt and then returns control to the 8086 program. The Am486DX/DX2 microproces­
sor operating system can choose to let the 8086 operating system handle the interrupt 
or it may emulate the function of the interrupt handler. For example, many 8086 operat­
ing system calls are accessed by PUSHing parameters on the stack and then executing 
an INT n instruction. If the 10PL is set to 0, then all INT n instructions are intercepted by 
the Am486DX/DX2 microprocessor operating system, The Am486DX/DX2 microproces­
sor operating system can emulate the 8086 operating system's call. Figure 4-26 shows 
how the Am486DX/DX2 microprocessor operating system can intercept an 8086 
operating system's call to "Open a File". 

An Am486DX/DX2 microprocessor operating system can provide a Virtual 8086 
environment that is totally transparent to the application software via intercepting and 
then emulating 8086 operating system's calls, and intercepting IN and OUT instructions. 

Entering and Leaving Virtual 8086 Mode 
Virtual 8086 Mode is entered by executing an IRET instruction (at CPL = 0) or Task 
Switch (at any CPL) to an Am486DX/DX2 microprocessor task. The Am486DX/DX2 
microprocessor TSS has a FLAGS image containing a 1 in the VM bit position while the 
processor is executing in Protected Mode. That is, one way to enter Virtual 8086 Mode is 
to switch to a task with an Am486DX/DX2 microprocessor TSS that has a 1 in the VM bit 
in the EFLAGS image. The other way is to execute a 32-bit IRET instruction at privilege 
level 0, where the stack has a 1 in the VM bit in the EFLAGS image. POPF does not 
affect the VM bit, even if the processor is in Protected Mode or level 0, and so cannot be 
used to enter Virtual 8086 Mode. PUSHF always pushes a a in the VM bit, even if the 

Protected Mode Architecture 



4.6.6.1 

4.6.6.2 

AMD~ 
processor is in Virtual 8086 Mode, so that a program cannot tell if it is executing in Real 
Mode, or in Virtual 8086 Mode. 

The VM bit can be set by executing an IRET instruction only at privilege level 0, or by any 
instruction or Interrupt that causes a task switch in Protected Mode (with VM = 1 in the 
new FLAGS image); the VM bit can be cleared only by an interrupt or exception in Virtual 
8086 Mode. IRET and POPF instructions executed in Real Mode or Virtual 8086 Mode do 
not change the value in the VM bit. 

The transition out of Virtual 8086 Mode to Am486DX/DX2 microprocessor Protected 
Mode occurs only on receipt of an interrupt or exception (such as due to a sensitive 
instruction). In Virtual 8086 Mode, all interrupts and exceptions vector through the 
Protected Mode IDT and enter an interrupt handler in protected Am486DX/DX2 micro­
processor mode. That is, as part of interrupt processing, the VM bit is cleared. 

Because the matching IRET must occur from level 0, if an interrupt or trap gate is used 
to field an interrupt or exception out of Virtual 8086 Mode, the gate must perform an 
inter-level interrupt only to level O. Interrupt or trap gates through conforming segments, 
or through segments with DPL > 0, raise a GP fault with the CS selector as the error 
code. 

Task Switches To/From Virtual 8086 Mode 

Tasks that can execute in Virtual 8086 Mode must be described by a TSS with the new 
Am486DX/DX2 microprocessor format (TYPE 9 or 11 descriptor). 

A task switch out of Virtual 8086 Mode operates exactly the same as any other task 
switch out of a task with an Am486DX/DX2 microprocessor TSS. All of the programmer 
visible state, including the FLAGS register with the VM bit set to 1, is stored in the TSS. 
The segment registers in the TSS contain 8086 segment base values rather than 
selectors. 

A task switch into a task described by an Am486DX/DX2 microprocessor TSS has an 
additional check to determine if the incoming task should be resumed in Virtual 8086 
Mode. Tasks described by 80286 format TSSs cannot be resumed in Virtual 8086 Mode, 
so no check is required there (the FLAGS image in 80286 format TSS has only the 
low-order 16 FLAGS bits). Before loading the segment register images from an 
Am486DX/DX2 microprocessor TSS, the FLAGS image is loaded so that the segment 
registers are loaded from the TSS image as 8086 segment base values. The task is now 
ready to resume in Virtual 8086 Execution Mode. 

Transitions Through Trap and Interrupt Gates, and IRET 

A task switch is one way to enter or exit Virtual 8086 Mode. The other method is to exit 
through a trap or interrupt gate as part of handling an interrupt; and to enter as part of 
executing an IRET instruction. The transition out must use an Am486DX/DX2 micropro­
cessor trap gate (TYPE 14), or Am486DX/DX2 microprocessor interrupt gate (TYPE 15), 
which must point to a non-conforming level 0 segment (DPL = 0) in order to permit the 
trap handler to IRET back to the Virtual 8086 program. The gate must point to a 
non-conforming level 0 segment to perform a level switch to level 0 so that the matching 
IRET can change the VM bit. Am486DX/DX2 microprocessor gates must be used, since 
80286 gates save only the low 16 bits of the FLAGS register, so that the VM bit is not 
saved on transitions through the 80286 gates. Also, the 16-bit I RET (presumably) used 
to terminate the 80286 interrupt handler pops only the lower 16 bits from FLAGS and 
does not affect the VM bit. The action taken for an Am486DX/DX2 microprocessor trap 
or interrupt gate, if an interrupt occurs while the task is executing in Virtual 8086 Mode, 
is given by the following sequence. 

Protected Mode Architecture 4-33 



~AMD 
Figure 4-26 Virtual 8086 Environment Interrupt and Call Handling 

4-34 

Notes: 
8086 Application makes "Open File Call" ---> causes General Protection Fault (Arrow #1) 
Virtual 8086 Monitor intercepts call. Calls Am486 CPU as (Arrow #2) 
Am486 CPU as opens file returns control to 8086 as (Arrow #3) 
8086 as returns control to application (Arrow #4) 
Transparent to Application 17852A-047 

1. Save the FLAGS register in a temp to push later. Turn off the VM and TF bits, and if 
the interrupt is serviced by an Interrupt Gate, turn off IF also. 

2. Interrupt and Trap gates must perform a level switch from 3 (where the Virtual Mode 
8086 program executes) to level 0 (so IRET can return). This process involves a 
stack switch to the stack given in the TSS for privilege level O. Save the Virtual 8086 
Mode SS and ESP registers to push in a later step. The segment register load of SS 
is done as a Protected Mode segment load since the VM bit was turned off above. 

3. Push the 8086 segment register values onto the new stack, in the order: GS, FS, OS, 
ES. These are pushed as 32-bit quantities with undefined values in the upper 16 bits. 
Then, load these four registers with null selectors (0). 

4. Push the old 8086 stack pointer onto the new stack by pushing the SS register (as 
32-bits, high bits undefined), then pushing the 32-bit ESP register saved above. 

5. Push the 32-bit FLAGS register saved in step 1. 

6. Push the old 8086 instruction pointer onto the new stack by pushing the CS register (as 
32-bits, high bits undefined), then pushing the 32-bit EIP register. 

7. Load up the new CS:EIP value from the interrupt gate and begin execution of the 
interrupt routine in Protected Am486DX/DX2 microprocessor Mode. 

The transition out of Virtual 8086 Mode performs a level change and stack switch, in 
addition to changing back to Protected Mode. In addition, all of the 8086 segment 
register images are stored on the stack (behind the SS:ESP image) and then loaded 

Protected Mode Architecture 



AMOt1 

with null (0) selectors before entering the interrupt handler. This permits the handler to 
safely save and restore the OS, ES, FS, and GS registers as 80286 selectors. This is 
needed so that interrupt handlers that do not care about the mode of the interrupted 
program can use the same prologue and epilogue code for state saving (Le., push all 
registers in prologue pop all in epilogue) regardless of whether or not a "native" mode or 
Virtual 8086 Mode program is interrupted. Restoring null selectors to these registers 
before executing the IRET does not cause a trap in the interrupt handler. Interrupt 
routines that expect values in the segment registers, or return values in segment 
registers, have to obtain/return values from the 8086 register images pushed onto the 
new stack. They need to know the mode of the interrupted program in order to know 
where to find/return segment registers, and also to know how to interpret segment 
register values. 

The IRET instruction performs the inverse of the above sequence. Only the extended 
Am4860X/OX2 microprocessor's IRET instruction (operand size = 32) can be used and 
must be executed at level 0 to change the VM bit to 1. 

1. If the NT bit in the FLAGS register is on, an intertask return is performed. The current 
state is stored in the current TSS and the link field in the current TSS is used to locate 
the TSS for the interrupted task that is to be resumed. Otherwise, continue with the 
following sequence. 

2. Read the FLAGS image from SS:[ESP] into the FLAGS register. This sets VM to the 
value active in the interrupted routine. 

3. Pop off the instruction pOinter CS:EIP. EIP is popped first, then a 32-bit word is popped 
that contains the CS value in the lower 16 bits. If VM = 0, this CS load is done as a pro­
tected mode segment load. If VM = i, this is done as an 8086 segment load. 

4. Increment the ESP register by 4 to bypass the FLAGS image that was popped in 
Step 1. 

S. If VM = 1, load segment registers ES, OS, FS, and GS from memory locations 
SS:[ESP + 8], SS:[ESP + 12], SS:[ESP + 16], and SS:[EXP + 20], respectively, where 
the new value of ESP stored in Step 4 is used. Since VM = 1, these are done as 8086 
segment register loads. Else, if VM = 0, check that the selectors in ES, OS, FS, and 
GS are valid in the interrupted routine. Null out invalid selectors to trap if any attempt is 
made to access through them. 

6. If (RPL(CS) > CPL), pop the stack pointer SS:ESP from the stack. The ESP register 
is popped first, followed by 32-bits containing SS in the lower 16 bits. If VM = 0, SS is 
loaded as a Protected Mode segment register load. If VM = 1, an 8086 segment reg­
ister load is used. 

7. Resume execution of the interrupted routine. The VM bit in the FLAGS register (restored 
from the interrupt routine's stack image in Step 1) determines whether the processor 
resumes the interrupted routine in Protected Mode or Virtual 8086 Mode. 

Protected Mode Architecture 4-35 





5 

5.1 

Figure 5·1 

ON·CHIP CACHE 

To meet its performance goals, the Am486DX/DX2 microprocessor contains an 8-Kbyte 
cache. The cache is software transparent to maintain binary compatibility with previous 
generations of the Am386 CPU architectures. 

The on-Chip cache is designed for maximum flexibility and performance .. The cache has 
several operating modes offering flexibility during program execution and debugging. Memory 
areas can be defined as non-cacheable by software and extemal hardware. Protocols for 
cache line invalidations and replacement are implemented in hardware, easing system design. 

CACHE ORGANIZATION 
The on-chip cache is a unified code and data cache. The cache is used for both 
instruction and data accesses and acts on physical address. 

The cache organization is four-way set associative and each line is 26-bytes wide. The 
8-Kbytes of cache memory are logically organized as 128 sets, each containing four lines. 

The cache memory is physically split into four 2-Kbyte blocks, each containing 128 lines 
(see Figure 5-1). Associated with each 2-Kbyte block are 128 21-bit tags. There is a 
valid bit for each line in the cache. Each line in the cache is either valid or not valid. 
There are no provisions for partially valid lines. 

The write strategy of on-chip cache is write-through. All writes drive an external write bus 
cycle, in addition to writing the information to the internal cache if the write was a cache 
hit. A write to an address not contained in the internal cache is only written to external 
memory. Cache allocations are not made on write misses. 

On·Chip Cache Physical Organization 

D 
D 
D 

--I 16-Byte-1 
Line Size 

EJ~ets 

EJ 
EJ 
EJ 

1...3 LRU +- 4 Valid --1 r Bits Bits I 

On·Chlp Cache 

17852A-048 

5·1 



t1 AMD 

5.2 CACHE CONTROL 
Cache control is provided by the CD and NW bits in Control Register 0 (CRO). CD 
enables and disables the cache. NW controls memory write-through and invalidates. 

The CD and NW bits define four operating modes of the on-chip cache (see Table 5-1). 
These modes provide flexible on-chip cache operation. 

CD = 1, NW = 1 

The cache is completely disabled by setting CD = 1 and NW = 1 and then flushing the cache. 
This mode can be useful for debugging programs where it is important to see all memory 
cycles at the pins. Writes that hit in the cache do not appear on the external bus. 

It is possible to use the on-chip cache as fast static RAM by "pre-loading" certain 
memory areas into the cache, and then setting CD = 1 and NW = 1. Pre-loading can be 
done by carefully choosing memory references with the cache turned on, or by using the 
testability functions (see Section 8.2). When the cache is turned off, the memory 
mapped by the cache is "frozen" into the cache since fills and invalidates are disabled. 

CD = 1, NW = 0 

Cache fills are disabled but write-throughs and invalidates are enabled. This mode is the 
same as if the KEN pin was strapped High, disabling cache fills. Write-throughs and 
invalidates can still occur to keep the cache valid. This mode is useful if the software 
must disable the cache for a short period of time, and then re-enable it without flushing 
the original contents. 

CD = 0, NW = 1 

INVALID. If CRO is loaded with this bit configuration, a General Protection fault with an error 
code of 0 is raised. Note that this mode implies a non-transparent write-back cache. A future 
processor might define this combination of bits to implement a write-back cache. 

CD = 0, NW = 0 

This is the normal operating mode. 

Completely disabling the cache is a two step process. First, CD and NW must be set to 1 
and then the cache must be flushed. If the cache is not flushed, cache hits on reads still 
occur and data is read from the cache. 

5.3 CACHE LINE FILLS 

Table 5-1 

5-2 

Any area of memory can be cached in the Am486DXlDX2 microprocessor. Non-cache­
able portions of memory can be defined by the external system or by software. The 
external system can inform the Am486DX/DX2 microprocessor that a memory address is 
non-cacheable by returning the KEN pin inactive during a memory access (refer to 
Section 7.2.3). Software can prevent certain pages from being cached by setting the 
PCD bit in the page table entry. 

Cache Operating Modes 

CD NW Operating Mode 
1 1 Cache fills disabled, write-through and invalidates disabled 
1 0 Cache fills disabled, write-through and invalidates enabled 

0 1 INVALID. If CRO is loaded with this configuration of bits, a GP fault with error 
code of 0 is raised. 

0 0 Cache fills enabled, write-through and invalidates enabled 

On-Chip Cache 



AMD~ 
A read request can be generated from program operation or by an instruction prefetch. 
The data is supplied from the on-chip cache if a cache hit occurs on the read address. If 
the address is not in the cache, a read request for the data is generated on the external 
bus. 

If the read request is to a cacheable portion of memory, the Am486DX/DX2 microproces­
sor initiates a cache line fill. During a line fill, a 16-byte line is read into the 
Am486DX/DX2 microprocessor. 

Cache fills are generated only for read misses. Write misses never cause a line in the 
internal cache to be allocated. If a cache hit occurs on a write, the line is updated. 

Cache line fills can be performed over 8- and 16-bit buses using the dynamic bus sizing 
feature. Refer to Section 7.1.3 for a description of dynamic bus sizing. 

Refer to Section 7.2.3 for further information on cacheable cycles. 

5.4 CACHE LINE INVALIDATIONS 
The Am486DX/DX2 microprocessor contains both a hardware and software mechanism 
for invalidating lines in its internal cache. Cache line invalidations are needed to keep the 
Am486DX/DX2 microprocessor's cache contents consistent with external memory. 

Refer to Section 7.2.8 for further information on cache line invalidations. 

5.5 CACHE REPLACEMENT 
When a line needs to be placed in its internal cache, the Am486DX/DX2 microprocessor 
first checks to see if there is a non-valid line in the set that can be replaced. If all four 
lines in the set are valid, a pseudo least recently used (LRU) mechanism is used to 
determine which line is replaced. 

A valid bit is associated with each line in the cache. When a line needs to be placed in a 
set, the four valid bits are checked to see if there is a non-valid line that can be replaced. 
If a non-valid line is found, that line is marked for replacement. 

The four lines in the set are labeled 10, 11, 12, and 13. The valid bits are checked during 
an invalidation in the order 10,11,12, and 13. All valid bits are cleared when the processor 
is reset or when the cache is flushed. 

Replacement in the cache is handled by a pseudo LRU mechanism when all four lines in 
a set are valid. Three bits, BO, B1, and B2, are defined for each of the 128 sets in the 
cache. These bits are the LRU bits and are updated for every hit or replace in the cache. 

If the most recent access to the set was to 10 or 11, BO is set to 1. BO is set to 0 if the 
most recent access was to 12 or 13. If the most recent access to 10:11 was to 10, B1 is set 
to 1, else B1 is set to O. If the most recent access to 12:13 was to 12, B2 is set to 1, else 
B2 is set to O. 

The pseudo LRU mechanism works in the following manner. When a line must be 
replaced, the cache first selects which of 10:11 and 12:13 was least recently used. Then 
the cache determines which of the two lines was least recently used and marks it for 
replacement. This decision tree is shown in Figure 5-2. When the processor is reset or 
when the cache is flushed, all 128 sets of three LRU bits are set to O. 

5.6 PAGE CACHEABILITY 
Two bits for cache control, PWT and PCD, are defined in the page table and page 
directory entries. The state of these bits are driven out on the PWT and PCD pins during 
memory access cycles. 

On-Chip Cache 5-3 



~ AMD 

Figure 5·2 OnoChip Cache Replacement Strategy 

5·4 

, All four lines in the set valid? 

80 = a? 

No - Replace non-valid line 

No: 12 or 13 least recently used 

81 = a? 82 = a? 

A A 
Replace 

10 
Replace 

11 
Replace 

12 
Replace 

13 
17852A-049 

The PWT bit controls write policy for second level caches used with the Am486DX/DX2 
microprocessor. Setting PWT = 1 defines a write-through policy for the current page, 
while PWT = 0 allows the possibility of write-back. The state of PWT is ignored internally 
by the Am486DX/DX2 microprocessor since the on-chip cache is write through. 

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally 
ANDed with the KEN signal to control cacheability on a cycle-by-cycle basis (see 
Figure 5-3). PCD = 0 enables caching while PCD = 1 forbids it. Note that cache fills are 
enabled when PCD = 0 AND KEN = O. This logical AND is implemented physically with a 
NOR gate. 

The state of the PCD bit in the page table entry is driven on the PCD pin when a page in 
external memory is accessed. The state of the PCD pin informs the external system of 
the cacheability of the requested information. The external system then returns KEN, 
telling the Am486DX/DX2 microprocessor if the area is cacheable. The Am486DX/DX2 
microprocessor initiates a cache line fill if PCD and KEN indicate that the requested 
information is cacheable. 

The PCD bit is masked with the CD bit in control register 0 to determine the state of the 
PCD pin. If CD = 1, the Am486DX/DX2 microprocessor forces the PCD pin High. If CD = 
0, the PCD pin is driven with the value for the page table entry/directory (see 
Figure 5-3). 

The PWT and PCD bits for a bus cycle are obtained from either CR3, the page directory 
entry, or page table entry. These bits are assumed to be 0 during Real Mode, whenever 
paging is disabled, or for cycles that bypass paging (1/0 references,interrupt acknowl­
edge, and Halt cycles). 

When paging is enabled, the bits from the page table entry are cached in the TLB and 
are driven any time the page mapped by the TLB entry is referenced. For normal 
memory cycles, PWT and PCD are taken from the page table entry. During TLB refresh 
cycles where the page table and directory entries are read, the PWT and PCD bits must 
be obtained elsewhere. During page table updates the bits are obtained from the page 
directory. When the page directory is updated, the bits are obtained from CR3. 

On-Chip Cache 



AMD~ 
Figure 5·3 Page Cacheability 

CRO 
C N 
D W 

~J 
Cache Control Logic 

F 

kl K 

Cache Memory 

t---- ... -------------------------------------- .. 

· · , 31 22 12 0 0 , 
I Table I Offset I , 

, l Directory 
, 

, Linear " , 
Address 

10{ 
: PCD .......... · 10 ~ , .- :r=u · 0 

PCD 

, · , 31 0 31 0 " " 31 0 , , 
PWT 

, CRO " , " 
0 " 
0 CR1 <r PCD, PWT · , <r PCD, PWT · , , 
, CR2 · , " · · , CR3 PCD, PWT Page Table 

, 
• CD 0 Directory , (From CRO) , , Control Registers 
, 

, · .. ___________ ...... ___________ .. __________________ J 

17852A-050 

5.7 CACHE FLUSHING 
The on-chip cache can be flushed by external hardware or by software instructions. 
Flushing the cache clears all valid bits for all lines in the cache. The cache is flushed 
when external hardware asserts the FLUSH pin. 

The flush pin needs to be asserted for one clock if driven synchronously, or for two 
clocks if driven asynchronously. The flush input is asynchronous but setup and hold 
times must be met. The flush pin should be deasserted after the cache flush is complete. 
Failure to deassert the pin causes execution to stop as the processor repeatedly flushes 
the cache. If external hardware activates flush in response to an I/O write, flush must be 
asserted for at least two clocks prior to ready being returned for the I/O write. This 
ensures that the flush completes before the CPU begins execution of the instruction 
following the OUT instruction. 

Flush is recognized during HOLD, just like EADS. 

The instructions INVD and WBINVD cause the on-chip cache to be flushed. External 
caches connected to the Am486DX/DX2 microprocessor are signaled to flush their 
contents when these instructions are executed. 

On-Chip Cache 5·5 



~AMD 
WBINVD causes an external write-back cache to write back dirty lines before flushing its 
contents. The external cache is signaled using the bus cycle definition pins and the byte 
enables (refer to Section 6.2.5 for the bus cycle definition pins and Section 7.2.11 for 
special bus cycles). 

The results of the INVD and WBINVD instructions are identical for the operation of the 
Am486DX/DX2 microprocessor's on-chip cache since the cache is write-through. Note 
that the INVD and WBINVD instructions are machine dependent Future members of the 
Am486DX/DX2 microprocessor family might change the definition of this instruction. 

5.8 CACHING TRANSLATION LOOKASIDE BUFFER ENTRIES 

5-6 

The Am486DX/DX2 microprocessor contains an integrated paging unit with a translation 
lookaside buffer (TLB). The TLB contains 32 entries. The TLB has been enhanced over 
the 386 microprocessor's TLB by upgrading the replacement strategy to a pseudo-LRU 
algorithm. The pseudo-LRU replacement algorithm is the same as that used in the 
on-chip cache. 

The paging TLB operation is automatic whenever paging is enabled. The TLB contains 
the most recently used page table entries. A page table entry translates the linear 
address pointing to a particular page, to the physical address where the page is stored 
in memory (refer to Section 4.5, Paging). 

The paging unit looks up the linear address in the TLB in response to an internal bus 
request The corresponding physical address is passed on to the on-chip cache or the 
external bus (in the event of a cache miss) when the linear address is present in the TLB. 

The paging unit accesses the page tables in external memory if the linear address is not 
in the TLB. The required page table entry is read into the TLB and then the cache or bus 
cycle for the actual data takes place. The process of reading a new page table entry into 
the TLB is called a TLB refresh. 

A TLB refresh is a two step process. The paging unit must first read the page directory 
entry that points to the appropriate page table. The page table entry to be stored in the 
TLB is then read from the page table. Control register 3 (CR3) points to the base of the 
'page directory table. 

The Am486DX/DX2 microprocessor allows page directory and page table entries 
(returned during TLB refreshes) to be stored in the on-chip cache. Setting the PCD bits in 
CR3 and the page directory entry to 1 prevents the page directory and page table entries 
from being stored in the on-chip cache (see Section 5.6, Page Cacheability). 

On-Chip Cache 



6 HARDWARE INTERFACE 

6.1 INTRODUCTION 
The Am486DX/DX2 microprocessor bus is designed similar to the 386 microprocessor 
bus whenever possible. Several new features have been added to the Am486DX/DX2 
microprocessor bus, resulting in increased performance and functionality. New features 
include a 1X clock, a burst bus mechanism for high-speed internal cache fills, a cache 
line invalidation mechanism, enhanced bus arbitration capabilities, a BS8 bus sizing 
mechanism, and parity support. 

The Am486DX/DX2 microprocessor is driven by a 1X clock as opposed to a 2X clock in 
the 386 microprocessor. A 25-MHz Am486DX/DX2 microprocessor uses a 25-MHz clock 
in contrast to a 25-MHz 386 microprocessor that requires a 50-MHz clock. A 1X clock 
allows simpler system design by cutting in half the clock speed required in the external 
system. 

Like the 386 microprocessor, the Am486DX/DX2 microprocessor has separate parallel 
buses for data and addresses. The bidirectional data bus is 32-bits wide. The address 
bus consists of two components: 30 address lines (A31-A2) and four byte enable lines 
(BE3-BEO). The address bus addresses external memory in the same manner as the 
386 microprocessor: The address lines form the upper 30 bits of the address and the 
byte enables select individual bytes within a 4-byte location. The address lines are 
bidirectional for use in cache line invalidations. 

The Am486DX/DX2 microprocessor's burst bus mechanism enables high-speed cache 
fills from external memory. Burst cycles can strobe data into the processor at a rate of 
one item every clock. Non-burst cycles have a maximum rate of one item every two 
clocks. Burst cycles are not limited to cache fills: all bus cycles requiring more than a 
single data cycle can be bursted. 

The Am486DX/DX2 microprocessor has a bus hold feature similar to that of the 386 
microprocessor. During bus hold, the Am486DX/DX2 microprocessor relinquishes 
control of the local bus by floating its address, data, and control buses. 

The Am486DX/DX2 microprocessor has an address hold feature in addition to bus hold. 
During address hold, only the address bus is floated, the data and control buses can 
remain active. Address hold is used for cache line invalidations. 

Section 6.2 has a brief description of the Am486DX/DX2 microprocessor input and 
output signals arranged by functional groups. Before beginning the signal descriptions, a 
few terms need to be defined. The overbarring of a signal name indicates the active, or 
asserted, state occurs when the signal is at a low voltage. When the signal name is not 
overbarred, the signal is active at the high voltage level. The term "ready" is used to 
indicate that the cycle is terminated with RDY or BRDY. 

Chapters 6 and 7 discuss bus cycles and data cycles. A bus cycle is at least two clocks 
long and begins with ADS active in the first clock and RDY active in the last clock. Data 
is transferred to or from the Am486DX/DX2 microprocessor during a data cycle. A bus 
cycle contains one or more data cycles. 

Hardware Interface 6·1 



~ AMD 

6.2 

6.2.1 

SIGNAL DESCRIPTIONS 

Clock (ClK) 
elK provides the fundamental timing and the internal operating frequency for the 
Am486DX/DX2 microprocessor. All external timing parameters are specified with respect 
to the rising edge of elK. 

The Am486DX/DX2 microprocessor can operate over a wide frequency range, but elK's 
frequency cannot change rapidly while RESET is inactive. elK's frequency must be 
stable for proper chip operation since a single edge of elK is used internally to generate 
two phases. elK only needs TTL levels for proper operation. Figure 6-2 illustrates the 
elK waveform. 

Figure 6·1 Functional Signal Groupings 

ClK 

32-Bit Data { 031-0 O~ 
" v 

Bus { Control 

ADS 

RDY 

Interrupt { Signals 

INTR ... 
RESET 

NMI 
r 

Cache { Invalidation 

AHOLD 

EADS 

Cache { Control 

KEN 

FLUSH 

Page { Caching Control 

PWT 

PCD 

FERR 
Numeric { Error Reporting IGNNE 

Address Bit A20M 

20 Mask 

6·2 

.... ... 
K ...... .... 

BE3 

BE2 

BEl 

BEO 

Am486DXlDX2 M/iO 
Microprocessor 

Die 

W/R 

LOCK 

PLOCK 

HOLD 

HLDA 

BOFF 

BREQ 

BRDY 

BLAST 

BSe 

BS16 

DP3 

DP2 

DPl 

DPO 

PCHK 

Hardware Interface 

} 

} 
} 

} 

A3l-A2 

Byte 
Enables 

Bus Cycle 
Definition 

Bus Arbitration 

Bus Control 

Bus Size 
Control 

Parity 

32-Bit 
Address 

Bus 

17852A--051 



AMD~ 
Figure 6·2 elK Waveform 

12 

tx = input setup times 

ty = input hold times, output float, valid and hold times 

6.2.2 

6.2.3 

17852A-052 

Address Bus (A31-A2, BD-BEO) 
A31-A2 and BE3-BEO form the address bus and provide physical memory and I/O port 
addresses, The Am4860X/OX2 microprocessor is capable of addressing 4 Gbytes of 
physical memory space (OOOOOOOOH through FFFFFFFFH) and 64 Kbytes of I/O 
address space (OOOOOOOOH through OOOOFFFFH). A31-A2 identify addresses to a 
4-byte location. BE3-BEO identify which bytes within the 4-byte location are involved in 
the current transfer. 

Addresses are driven back into the Am4860X/OX2 microprocessor over A31-A4 during 
cache line invalidations. The address lines are active High. When used as inputs into the 
processor, A31-A4 must meet the setup and hold times t22 and t23' A31-A2 are not 
driven during bus or address hold. 

The byte enable outputs, BE3-BEO, determine which bytes must be driven valid for read 
and write cycles to external memory. 

BE3 applies to 031-024 
BE2 applies to 023-016 
BE1 applies to 015-08 
BEO applies to 07-00 

BE3-BEO can be decoded to generate AO, Ai, and BHE signals used in 8- and 16-bit 
systems (see Table 7-5). BE3-BEO are active Low and are not driven during bus hold. 

Data Lines (D31-DO) 
The bidirectional lines, 031-00, form the data bus for the Am4860X/OX2 microproces­
sor. 07-00 define the least significant byte and 031-024 the most significant byte. Oata 
transfers to 8- or 16-bit devices are possible using the data bus sizing feature controlled 
by the B88 or B816 input pins. 

031-00 are active High. For reads, 031-00 must meet the setup and hold times t22 and 
t23. 031-00 are not driven during read cycles and bus hold. 

Hardware Interface 6·3 

j' 



~AMD 
6.2.4 

6.2.4.1 

6.2.4.2 

6.2.5 

6.2.5.1 

6·4 

Parity 

Data Parity Input/Outputs (DP3-DPO) 

DP3-DPO are the data parity pins for the microprocessor. There is one pin for each byte 
of the data bus. Even parity is generated or checked by the parity generators/checkers. 
Even parity means there is an even number of High inputs on the eight corresponding 
data bus pins and parity pin. 

Data Parity is generated on all write data cycles with the same timing as the data driven 
by the Am486DX/DX2 microprocessor. Even parity information must be driven back to 
the Am486DX/DX2 microprocessor on these pins with the same timing as read informa­
tion. This ensures that the correct parity check status is indicated by the Am486DX/DX2 
microprocessor. 

The values read on these pins do not affect program execution. It is the system's 
responsibility to take appropriate actions if a parity error occurs. 

Input signals on DP3-DPO must meet setup and hold times t22 and b for proper 
operation. 

Parity Status Output (PCHK) 

Parity status is driven on the PCHK pin and a parity error is indicated by this pin being 
Low. PCHK is driven the clock after ready for read operations to indicate the parity status 
for the data sampled at the end of the previous clock. Parity is checked during code 
reads, memory reads, and I/O reads. Parity is not checked during interrupt acknowledge 
cycles. PCHK only checks the parity status for enabled bytes as indicated by the byte 
enable and bus size Signals. It is valid only in the clock immediately after read data is 
returned to the Am486DX/DX2 microprocessor. At all other times it is inactive High. 
PCHK is never floated. 

Driving PCHK is the only effect bad input parity has on the Am486DX/DX2 microproces­
sor. The Am486DX/DX2 microprocessor does not vector to a bus error interrupt when bad 
data parity is returned. In systems that do not employ parity, PCHK can be ignored. In 
systems not using parity, DP3-DPO should be connected to Vee through a pull-up 
resistor. 

Bus Cycle Definition 

MJRJ, DIe, W/R Outputs 

MOO, Die, and W!Fi. are the primary bus cycle definition signals. They are driven valid as 
the ADS signal is asserted. MOO distinguishes between memory and I/O cycles. DIe 
distinguishes between data and control cycles and W/Fi. distinguishes between write and 
read cycles. 

Bus cycle definitions as a function of MIlO, Ole, and w/Fi. are given in Table 6-1. Note 
there is a difference between the Am486DX/DX2 microprocessor and Am386 micropro­
cessor bus cycle definitions. The halt bus cycle type has been moved to location 001 in 
the Am486DX/DX2 microprocessor from location 101 in the Am386 microprocessor. 
Location 101 is now reseNed and will never be generated by the Am486DX/DX2 
microprocessor. 

Hardware Interface 



Table 6-1 

6.2.5.2 

6.2.5.3 

AMD~ 
IDS Initiated Bus Cycle Definitions 

MOO D/C W/R Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Halt/Special Cycle 
0 1 0 1/0 Read 
0 1 1 ! 1/0 Write 
1 0 0 Code Read 
1 0 1 Reserved 

--~~--c-------- -------
1 1 0 Memory Read 
1 1 1 Memory Write 

Bus Lock Output (meK) 

LOCK indicates that the Am486DX/DX2 microprocessor is running a read-modify-write 
cycle where the external bus must not be relinquished between the read and write 
cycles. Read-modify-write cycles are used to implement memory-based semaphores. 
Multiple reads or writes can be locked. 

When LOCK is asserted, the current bus cycle is locked and the Am486DX/DX2 
microprocessor should be allowed exclusive access to the system bus. LOCK goes 
active in the first clock of the first locked bus cycle and goes inactive after ready is 
returned, indicating the last locked bus cycle. 

The Am486DX/DX2 microprocessor does not acknowledge bus hold when LOCK is 
asserted (though it does allow an address hold). LOCK is active Low and is floated 
during bus hold. Locked read cycles are not transformed into cache fill cycles if KEN is 
returned active. Refer to Section 7.2.6 for a detailed discussion of locked bus cycles. 

Pseudo·Lock Output (PJ:OCK) 

The pseudo-lock feature allows atomic reads and writes of memory operands greater 
than 32 bits. These operands require more than one cycle to transfer. The 
Am486DX/DX2 microprocessor asserts PLOCK during floating-point long reads and 
writes (64 bits). segment table descriptor reads (64 bits), and cache line fills (128 bits). 

When PLOCK is asserted no other master is given control of the bus between cycles. A bus 
hold request (HOLD) is not acknowledged during pseudo-locked reads and writes, with one 
exception. During non-cacheable non-bursted code prefetches, HOLD is recognized on 
memory cycle boundaries even though PLOCK is asserted. The Am486DX/DX2 micropro­
cessor drives PLOCK active until the addresses for the last bus cycle of the transaction 
have been driven, regardless of whether BRDY or RDY is retumed. 

A pseudo-locked transfer is meaningful only if the memory operand is aligned and if its 
completely contained within a single cache line. A 64-bit floating-point number must be 
aligned to an 8-byte boundary to guarantee an atomic access. 

Normally PLOCK and BLAST are inverse of each other. However, during the first cycle 
of a 64-bit floating-point write, both PLOCK and BLAST are asserted. 

Since PLOCK is a function of the bus size and KEN inputs, PLOCK should be sampled 
only if the clock ready is returned. This pin is active Low and is not driven during bus 
hold. Refer to Section 7.2.7 for a detailed discussion of pseudo-locked bus cycles. 

Hardware Interface 6-5 



~AMD 
6.2.6 

6.2.6.1 

6.2.6.2 

6.2.7 

6.2.7.1 

6.2.7.2 

6-6 

Bus Control 
The bus control signals allow the processor to indicate when a bus cycle has begun, and 
allow other system hardware to control burst cycles, data bus width, and bus cycle 
termination. 

Address Status Output ("ADS) 

The ADS output indicates that the address and bus cycle definition signals are valid. 
This signal goes active in the first clock of a bus cycle and goes inactive in the second 
and subsequent clocks of the cycle. ADS is also inactive when the bus is idle. 

ADS is used by external bus circuitry as the indication that the processor has started a 
bus cycle. The external circuit must sample the bus cycle definition pins on the next 
rising edge of the clock after ADS is driven active. 

ADS is active Low and is not driven during bus hold. 

Non·Burst Ready Input (ROY) 

RDY indicates that the current bus cycle is complete. In response to a read, RDY 
indicates that the external system has presented valid data on the data pins. In response 
to a write request, RDY indicates that the external system has accepted the 
Am486DX/DX2 microprocessor data. RDY is ignored when the bus is idle and at the end 
of the first clock of the bus cycle. Since RDY is sampled during address hold, data can 
be returned to the processor when AHOLD is active. 

RDY is active Low and is not provided with an internal pull-up resistor. This input must 
satisfy setup and hold times t16 and t17 for proper chip operation. 

Burst Control 

Burst Ready Input (IJRDY) 

BRDY performs the same function during a burst cycle that RDY performs during a 
non-burst cycle. BRDY indicates that the external system has presented valid data on 
the data pins in response to a read, or that the external system has accepted the 
Am4860X/OX2 microprocessor data in response to a write. BRDY is ignored when the 
bus is idle and at the end of the first clock in a bus cycle. 

During a burst cycle, BRDY is sampled each clock, and if active, the data presented on 
the data bus pins is stored into the Am4860X/OX2 microprocessor. ADS is negated 
during the second through last data cycles in the burst, but address lines A3-A2 and 
byte enables change to reflect the next data item expected by the Am4860X/OX2 
microprocessor. 

If RDY is returned simultaneously with BRDY, BRDY is ignored and the burst cycle is 
prematurely aborted. An additional complete bus cycle is initiated after an aborted burst 
cycle if the cache line fill was not complete. BRDY is treated as a normal ready for the 
last data cycle in a burst transfer or for non-burstable cycles. Refer to Section 7.2.2 for 
burst cycle timing. 

BRDY is active Low and is provided with a small internal pull-up resistor. BRDY must 
satisfy the setup and hold times t16 and t17• 

Burst Last Output (B"UST) 

BLAST indicates that the next time BRDY is returned it is treated as a normal RDY, 
terminating the line fill or other multiple-data-cycle transfer. BLAST is active for all bus 

Hardware Interface 



6.2.8 

6.2.8.1 

6.2.8.2 

6.2.8.3 

6.2.9 

6.2.9.1 

AMD~ 
cycles regardless of whether they are cacheable or not. This pin is active low and is not 
driven during bus hold. 

Interrupt Signals (RESET, INTR, NMI) 
The interrupt signals can interrupt or suspend execution of the processor's current 
instruction stream" 

Reset Input (RESET) 

RESET forces the Am486DX/DX2 microprocessor to begin execution at a known state. 
For a power-up (cold start) reset, Vee and ClK must reach their proper DC and AC 
specifications for at least 1 ms before the Am486DX/DX2 microprocessor begins 
instruction execution. The RESET pin should remain active during this time to ensure 
proper Am486DX/DX2 microprocessor operation" However, for a warm boot-up case, 
RESET is required to remain active for a minimum of 15 clocks. The testability operating 
modes are programmed by the falling (inactive going) edge of RESET. (Refer to Chapter 
8 for a description of the test modes during reset) 

Maskable Interrupt Request Input (INTR) 

INTR indicates that an external interrupt has been generated. Interrupt processing is 
initiated if the IF flag is active in the EFlAGS register" 

The Am486DX/DX2 microprocessor generates two locked interrupt acknowledge bus 
cycles in response to asserting the INTR pin. An 8-bit interrupt number is latched from 
an external interrupt controller at the end of the second interrupt acknowledge cycle. 
INTR must remain active until the interrupt acknowledges have been performed to 
ensure program interruption. (Refer to Section 7.2" 10 for a detailed discussion of 
interrupt acknowledge cycles.) 

The INTR pin is active High and is not provided with an internal pull-down resistor. INTR 
is asynchronous, but the INTR setup and hold times t20 and t21 must be met to ensure 
recognition on any specific clock. 

Non·maskable Interrupt Request Input (NMI) 

NMI is the non-maskable interrupt request signal. Asserting NMI causes an interrupt with 
an internally supplied vector value of 2. External interrupt acknowledge cycles are not 
generated since the NMI interrupt vector is internally generated. When NMI processing 
begins, the NMI signal is masked internally until the IRET instruction is executed. 

NMI is rising edge sensitive after internal synchronization. For proper operation, NMI 
must be held low for at least four ClK periods before this rising edge. NMI is not 
provided with an internal pull-down resistoL NMI is asynchronous, but setup and hold 
times t20 and t21 must be met to ensure recognition on any specific clock. 

Bus Arbitration Signals 
This section describes the mechanism by which the processor relinquishes control of its 
local bus when requested by another bus master. 

Bus Request Output (1fA"EQ) 

The Am486DX/DX2 microprocessor asserts BREQ whenever a bus cycle is pending 
internally. Thus, BREQ is always asserted in the first clock of a bus cycle, along with 
ADS. Furthermore, if the Am486DX/DX2 microprocessor is currently not driving the bus 
(due to HOLD, AHOlD, or BOFF), BREQ is asserted in the same clock that ADS would 
have been asserted if the processor was driving the bus. 

Hardware Interface 6-7 



~AMD 

6.2.9.2 

6.2.9.3 

6.2.9.4 

6·8 

After the first clock of the bus cycle, BREQ can change state. It will be asserted if 
additional cycles are necessary to complete a transfer (via BS8, BS 16, KEN), or if more 
cycles are pending internally. However, if no additional cycles are necessary to complete 
the current transfer, BREQ can be negated before ready comes back for the current 
cycle. External logic can use the BREQ signal to arbitrate among multiple processors. 
This pin is driven regardless of the state of bus hold or address hold. BREQ is active 
High and is never floated. During a hold state, internal events may cause BREQ to be 
deasserted prior to any bus cycles. 

Bus Hold Request Input (HOLD) 

HOLD allows another bus master complete control of the Am486DX/DX2 microprocessor 
bus. The Am486DX/DX2 microprocessor responds to an active HOLD signal by assert­
ing HLDA and placing most of its output and input/output pins in a High impedance state 
(floated) after completing its current bus cycle, burst cycle, or sequence of locked cycles. 
In addition, if the Am486DX/DX2 CPU receives a HOLD request while performing a 
non-cacheable, non-bursted code prefetch and that cycle is backed off (BOFF), the 
Am486DX/DX2 CPU recognizes HOLD before restarting the cycle. The BREQ, HLDA, 
and PCHK pins are not floated during bus hold. The Am486DX/DX2 microprocessor 
maintains its bus in this state until the HOLD is deasserted. Refer to Section 7.2.9 for 
timing diagrams for a bus hold cycle. 

Unlike the 386 microprocessor, the Am486DX/DX2 microprocessor recognizes HOLD 
during reset. Pull-up resistors are not provided for the outputs that are floated in 
response to HOLD. HOLD is active High and is not provided with an internal pull-down 
resistor. HOLD must satisfy setup and hold times t18 and t19 for proper chip operation. 

Bus Hold Acknowledge Output (HLDA) 

HLDA indicates that the Am486DX/DX2 microprocessor has given the bus to another 
local bus master. HLDA goes active in response to a hold request presented on the 
HOLD pin. HLDA is driven active in the same clock that the Am486DX/DX2 microproces­
sor floats its bus. 

HLDA is driven inactive when leaving bus hold and the Am486DX/DX2 microprocessor 
resumes driving the bus. The Am486DX/DX2 microprocessor does not cease internal 
activity during bus hold since the internal cache satisfies the majority of bus requests. 
HLDA is active High and remains driven during bus hold. 

Backoff Input (B"OFF) 

Asserting the BOFF input forces the Am486DXlDX2 microprocessor to release control of 
its bus in the next clock. The pins floated are exactly the same as in response to HOLD. 
The response to BOFF differs from the response to HOLD in two ways: First, the bus is 
floated immediately in response to BOFF while the Am486DX/DX2 microprocessor 
completes the current bus cycle, before floating its bus in response to HOLD. Second, 
the Am486DXlDX2 microprocessor does not assert HLDA in response to BOFF. 

The processor remains in bus hold until BOFF is negated. Upon negation, the 
Am486DXlDX2 microprocessor restarts the bus cycle aborted when BOFF was 
asserted. To the internal execution engine, the effect of BOFF is the same as inserting a 
few wait states to the original cycle. Refer to Section 7.2.12 for a description of bus cycle 
restart. 

Any data returned to the processor while BOFF is asserted is ignored. BOFF has higher 
priority than RDY or BRDY. If both BOFF and ready are returned in the same clock, 
BOFF takes effect. If BOFF is asserted while the bus is idle, the Am486DXlDX2 

Hardware Interface 



6.2.10 

6.2.10.1 

6.2.10.2 

6.2.11 

6.2.11.1 

AMD~ 
microprocessor floats its bus in the next clock. BOFF is active Low and must meet setup 
and hold times t18 and t19 for proper chip operation. 

Cache Invalidation 
The AHOLD and EADS inputs are used during cache invalidation cycles. AHOLD 
conditions the Am486DX/DX2 microprocessor's address lines, A31-A4, to accept an 
address input. EADS indicates that an external address is actually valid on the address 
inputs. Activating EADS causes the Am486DX/DX2 microprocessor to read the external 
address bus and perform an internal cache invalidation cycle to the address indicated. 
Refer to Section 7.2.8 for cache invalidation cycle timing. 

Address Hold Request Input (AHOLD) 

AHOLD is the address hold request. It allows another bus master access to the 
Am486DX/DX2 microprocessor address bus for performing an internal cache invalidation 
cycle. Asserting AHOLD forces the Am486DX/DX2 microprocessor to stop driving its 
address bus in the next clock. While AHOLD is active, only the address bus is floated 
and the remainder of the bus can remain active. For example, data can be returned for a 
previously specified bus cycle when AHOLD is active. The Am486DX/DX2 microproces­
sor does not initiate another bus cycle during address hold. Since the Am486DX/DX2 
microprocessor floats its bus immediately in response to AHOLD, an address hold 
acknowledge is not required. If AHOLD is asserted while a bus cycle is in progress, and 
no readies are returned while AHOLD is asserted, the Am486DX/DX2 CPU red rives the 
same address (that it originally sent out) once AHOLD is negated. 

AHOLD is recognized during reset. Since the entire cache is invalidated by reset, any 
invalidation cycles run during reset are unnecessary. AHOLD is active High and is 
provided with a small internal pull-down resistor. It must satisfy the setup and hold times 
t18 and t19 for proper chip operation. This pin determines whether or not the built-in self 
test features of the Am486DX/DX2 microprocessor are exercised on assertion of RESET. 

External Address Valid Input (EADS) 

EADS indicates that a valid external address has been driven onto the Am486DX/DX2 
CPU address pins. This address is used to perform an internal cache invalidation cycle. 
The external address is checked with the current cache contents. If the specified address 
matches any areas in the cache, that area is immediately invalidated. 

An invalidation cycle can be run by asserting EADS, regardless of the state of AHOLD, 
HOLD, and BOFF. EADS is active Low and is provided with an internal pull-up resistor. 
EADS must satisfy the setup and hold times t12 and t13 for proper chip operation. 

Cache Control 

Cache Enable Input (KEN) 

KEN is the cache enable pin. KEN is used to determine whether the data being returned 
by the current cycle is cacheable. When KEN is active and the Am486DX/DX2 micropro­
cessor generates a cacheable cycle (most any memory read cycle), the cycle is 
transformed into a cache line fill cycle. 

A cache line is 16-bytes long. During the first cycle of a cache line fill, the byte-enable 
pins should be ignored and data should be returned as if all four byte enables were 
asserted. The Am486DX/DX2 microprocessor runs between 4 and 16 contiguous bus 
cycles to fill the line, depending on the bus data width selected by BS8 and BS16. Refer 
to Section 7.2.3 for a description of cache line fill cycles. 

Hardware Interface 6-9 



~AMD 

6.2.11.2 

6.2.12 

6.2.13 

6.2.13.1 

6·10 

The KEN input is active Low and is provided with a small internal pull-up resistor. It must 
satisfy the setup and hold times t14 and t15 for proper chip operation. 

Cache Flush Input (FrUSH) 

The FLUSH input forces the Am486DX/DX2 microprocessor to flush its entire internal 
cache. FLUSH is active Low and need only be asserted for one clock. FLUSH is 
asynchronous but setup and hold times t20 and t21 must be met for recognition on any 
specific clock. 

FLUSH also determines whether or not the three-state test mode of the Am486DX/DX2 
microprocessor is invoked on assertion of RESET. 

Page Cacheability (PWT, PC D) 
The PWT and PCD output signals correspond to two user attribute bits in the page table 
entry. When paging is enabled, PWT and PCD correspond to bits 3 and 4 of the page 
table entry respectively. For cycles that are not paged when paging is enabled (for 
example I/O cycles), PWT and PCD correspond to bits 3 and 4 in control register 3. When 
paging is disabled, the Am486DX/DX2 CPU ignores the PCD and PWT bits and assumes 
they are 0 for the purpose of caching and driving PCD and PWT. 

PCD is masked by the CD bit in control register 0 (CRO). When CD = 1 (cache line fills 
disabled), the Am486DX/DX2 microprocessor forces PCD High. When CD = 0, PCD is 
driven with the value of the page table entry/directory. 

The purpose of PCD is to provide a cacheable/non-cacheable indication on a page by 
page basis. The Am486DX/DX2 microprocessor does not perform a cache fill to any 
page in which bit 4 of the page table entry is set. PWT corresponds to the write-back bit 
and can be used by an external cache to provide this functionality. PCD and PWT bits 
are assigned to be 0 during Real Mode or whenever paging is disabled. Refer to 
Sections 4.5.4 and 5.6 for a discussion of non-cacheable pages. 

PCD and PWT have the same timing as the cycle definition pins (MilO, Die, and W/R). 
PCD and PWT are active High and are not driven during bus hold. 

Numeric Error Reporting (FERR, IGNNE) 
To allow PC-type floating-point error reporting, the Am486DX/DX2 microprocessor 
provides two pins, FERR and IGNNE. 

Floating.Point Error Output (FERR) 

The Am486DX/DX2 microprocessor asserts ITRR whenever an unmasked floating-point 
error is encountered. FERR is similar to the ERROR pin on the 387 math coprocessor. 
FERR can be used by external logic for PC-type floating-point error reporting in 
Am486DX/DX2 microprocessor systems. FERR is active Low, and is not floated during 
bus hold. 

In some cases, FERR is asserted when the next floating-point instruction is encountered, 
and in other cases it is asserted before the next floating-point instruction is encountered, 
depending upon the execution state of the instruction causing the exception. 

The following class of floating-point exceptions drive FERR at the time the exception 
occurs (I.e., before encountering the next floating-point instruction). 

1. The stack fault, invalid operation, and denormal exceptions on all transcendental 
instructions, integer arithmetic instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, 
FBLD, and FBSTP. 

Hardware Interface 



6.2.13.2 

6.2.14 

6.2.15 

AMD~ 
2. Any exceptions on store instructions (including integer store instructions). 

The following class of floating-point exceptions drive FERR only after encountering the 
next floating-point instruction. 

1. Exceptions other than on all transcendental instructions, integer arithmetic instruc­
tions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP. 

2. Any exception on all basic arithmetic, load, compare, and control instructions (Le., all 
other instructions). 

Ignore Numeric Error Input (JGliIHE) 

The Am486DX/DX2 microprocessor ignores a numeric error and continues executing 
non-control floating-point instructions when IGNNE is asserted; FERR is still activated. 
When deasserted, the Am486DX/DX2 microprocessor freezes on a non-control floating­
point instruction if a previous instruction caused an error. IGNNE has no effect when the 
NE bit in control register 0 is set. 

The IGNNE input is active Low and is provided with a small internal pull-up resistor. This 
input is asynchronous, but must meet setup and hold times t20 and t21 to ensure 
recognition on any specific clock. 

Bus Size Control (1JS16, 1iS8) 
The BS16 and Bsa inputs allow external 16- and 8-bit buses to be supported with a 
small number of external components. The Am486DX/DX2 CPU samples these pins 
every clock. The value sampled in the clock before ready determines the bus size. When 
asserting BS16 or 8Sa. only 16 or 8 bits of the data bus need be valid. If both 8S16 and 
8S8 are asserted, an 8-bit bus width is selected. 

When 8S 16 or 8sa is asserted, the Am486DX/DX2 microprocessor converts a larger 
data request to the appropriate number of smaller transfers. The byte enables are also 
modified appropriately for the bus size selected. 

8S16 and 8sa are active Low and are provided with small internal pull-up resistors. 8S16 
and 8sa must satisfy the setup and hold times t14 and t15 for proper chip operation. 

Address Bit 20 Mask (HOM) 
Asserting the A20M input causes the Am486DX/DX2 microprocessor to mask physical 
address bit 20 before performing a lookup in the internal cache and before driving a 
memory cycle to the outside world. When A20M is asserted, the Am486DX/DX2 
microprocessor emulates the 1-Mbyte address wraparound that occurs on the 8086. 
A20M is active Low and must be asserted only when the processor is in Real Mode. The 
A20M is not defined in Protected Mode. A20M is asynchronous but should meet setup 
and hold times t20 and t21 for recognition in any specific clock. For correct operation of 
the chip, A20M should be sampled High two clocks before and two clocks after RESET 
goes Low. 

When A20M is asserted synchronously, A20M should be High (non-active) at the clock 
prior to the falling edge of RESET. A20M exhibits a minimum 4 clock latency, from time 
of assertion to masking of the A20 bit. A20M is ignored during cache invalidation cycles. 
1/0 writes require A20M to be asserted a minimum of 2 clocks prior to ROY being 
returned for the 1/0 write. This ensures recognition of the address mask before the 
Am486DX/DX2 microprocessor begins execution of the instruction following OUT. If 
A20M is asserted after the ADS of a data cycle, the A20 address signal is not masked 
during this cycle but is masked in the next cycle. During a prefetch (cacheable or not), if 

Hardware Interface 6-11 



~ AMD 

6.2.16 

6.2.16.1 

6.2.16.2 

6.2.16.3 

6.2.16.4 

6·12 

A20M is asserted after the first ADS, A20 is not masked for the duration of the prefetch; 
even if 8S16 or SS8 is asserted, 

Boundary Scan Test Signals 

Test Clock (TCK) 

TCK is an input to the Am486DX/OX2 CPU and provides the clocking function required by 
the JTAG boundary scan feature. TCK is used to clock state information and data into and 
out of the component. State select information and data are clocked into the component 
on the rising edge of TCK on TMS and TOI, respectively. Oata is clocked out of the part 
on the falling edge of TCK on TOO, 

In addition to using TCK as a free running clock, it may be stopped in a Low, 0, state 
indefinitely, as described in IEEE 1149,1. While TCK is stopped in the Low state, the 
boundary scan latches retain their state, 

When boundary scan is not used, TCK should be tied High or left as an NC (this is 
important during power up to avoid the possibility of glitches on the TCK that could 
prematurely initiate boundary scan operations). TCK is supplied with an internal pull-up 
resistor. 

TCK is a clock signal and is used as a reference for sampling other JTAG signals. On 
the rising edge of TCK, TMS and TOI are sampled. On the falling edge of TCK, TOO is 
driven. 

Test Mode Select (TMS) 

• TMS is decoded by the JTAG TAP (Tap Access Port) to select the operation of the test 
logic, as described in Section 8.5.4, 

To guarantee deterministic behavior of the TAP controller, TMS is provided with an 
internal pull-up resistoL If boundary scan is not used, TMS may be tied High or left 
unconnected. TMS is sampled on the rising edge of TCK. TMS is used to select the 
internal TAP states required to load boundary scan instructions to data on TO!. For 
proper initialization of the JTAG logic, TMS should be driven High, ''1'', for at least four 
TCK cycles following the rising edge of RESET. 

Test Data Input (TDI) 

TOI is the serial input used to shift JTAG instructions and data into the component. The 
shifting of instructions and data occurs during the SHIFT-IR and SHIFT-OR controller 
states, respectively. These states are selected using the TMS signal as described in 
Section 8.5.4. 

An internal pull-up resistor is provided on TOI to ensure a known logic state if an open 
circuit occurs on the TOI path. Note that when "1" is continuously shifted into the 
instruction register, the BYPASS instruction is selected. TOI is sampled on the rising 
edge of TCK during the SHIFT-IR and the SHIFT-OR states. During all other TAP 
controller states, TOI is a "don't care". 

Test Data Output (TOO) 

TOO is the serial output used to shift JTAG instructions and data out of the component. 
The shifting of instructions and data occurs during the SHIFT-IR and SHIFT-OR TAP 
controller states, respectively. These states are selected using the TMS Signal as 
described in Section 8.5.4. When not in SHIFT-IR or SHIFT-OR state, TOO is driven to a 
High impedance state to allow connecting TOO of different devices in parallel. 

Hardware Interface . 



AMD~ 
TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP 
controller states. At all other times, TDO is driven to the High impedance state. 

6.3 WRITE BUFFERS 
The Am486DX/DX2 microprocessor contains four write buffers to enhance the perfor­
mance of consecutive writes to memory. The buffers can be filled at a rate of one write 
per clock until all four buffers are filled. 

When all four buffers are empty and the bus is idle, a write request propagates directly to 
the extemal bus, bypassing the write buffers. If the bus is not available at the time the 
write is generated internally, the write is placed in the write buffers and propagates to the 
bus as soon as the bus becomes available. The write is stored in the on-chip cache 
immediately if the write is a cache hit. 

Writes are driven onto the external bus in the same order they are received by the write 
buffers. Under certain conditions, a memory read goes onto the external bus before the 
memory writes pending in the buffer, even though the writes occurred earlier in the 
program execution. 

A memory read is only reordered in front of all writes in the buffers under the following 
conditions: If all writes pending in the buffers are cache hits, and the read is a cache miss. 
Under these conditions, the Am486DX/DX2 microprocessor does not read from an 
external memory location that needs to be updated by one of the pending writes. 

Reordering of a read with the writes pending in the buffers can only occur once before all 
the buffers are emptied. Reordering read once only maintains cache consistency. 
Consider the following example: 

The CPU writes to location X. Location X is in the internal cache so it is updated there 
immediately. However, the bus is busy so the write out to main memory is buffered (see 
Figure 6-3). At this pOint, any reads to location X would be cache hits and most up-to-date 
data would be read. 

The next instruction causes a read to location Y. Location V is not in the cache (a cache 
miss). Since the write in the write buffer is a cache hit, the read is reordered. When 
location V is read, it is put into the cache. The possibility exists that location V will 
replace location X in the cache. If this is true, location X would no longer be cached (see 
Figure 6-4). 

Cache consistency has been maintained up to this point. If a subsequent read is to 
location X (now a cache miss) and it was reordered in front of the buffered write to 
location X, stale data would be read. This is why only one read is allowed to be reor­
dered. Once a read is reordered, all the writes in the write buffer are flagged as cache 
misses to ensure that no more reads are reordered. Since one of the conditions to 
reorder a read is that all writes in the write buffer must be cache hits, no more reordering 

Figure 6·3 Internal Cache Example 

CPU Cache Write Buffer Main Memory 

xl "~d.t"' I EJ~ data x 

X new data x ~ ,--_da_ta_y_....I 

17852A--{)53 

Hardware Interface 6-13 



~AMD 
Figure 6-4 Internal Cache Example X No Longer Cached 

6.3.1 

6.3.2 

6·14 

CPU Cache Wr~e Buffer Main Memory 

vB xl "Wd.m'I~B 
17852A-054 

is allowed until all of these flagged writes propagate to the bus. Similarly, if an invalidation 
cycle is run, all entries in the write buffer are flagged as cache misses. 

For multiple processor systems and/or systems using DMA techniques such as bus snooping, 
locked semaphores should be used to maintain cache consistency. 

Write Buffers and I/O Cycles 
1/0 cycles must be handled in a different manner by the write buffers. 

1/0 reads are never reordered in front of buffered memory writes. This ensures that the 
Am486DXlDX2 microprocessor updates all memory locations before reading status from an 
1/0 devices. 

The Am486DXlDX2 microprocessor never buffers single 1/0 writes. When processing an 
OUT instruction, intemal execution stops until the 1/0 write actually completes on the external 
bus. This allows time for the extemal system to drive an invalidate into the Am486DX/DX2 
microprocessor or to mask interrupfs before the processor progresses to the instruction 
following OUT. REP OUTS instructions are buffered. 

1/0 device recovery time must be handled slightly differently with the Am486DX/DX2 
microprocessor than with the 386 microprocessor. 1/0 device back-to-back write recovery 
times could be guaranteed by the 386 microprocessor by inserting a jump to the next 
instruction in the code that writes to the device. The jump forces the 386 microprocessor to 
generate a prefetch bus cycle that cannot begin until the 1/0 writes complete . 

. Inserting a jump to the next write does not work with the Am486DX/DX2 microprocessor 
because the prefetch could be satisfied by the on-chip cache. A read cycle must be explicitly 
generated to a non-cacheable location in memory to guarantee that a read bus cycle is 
performed. This read is not allowed to proceed to the bus until after the 1/0 write has 
completed, because 1/0 writes are not buffered. The 1/0 device has time to recover to accept 
another write during the read cycle. 

Write Buffers Implications on Locked Bus Cycles 
Locked bus cycles are used for read-modify-write accesses to memory. During a read-modify­
write access, a memory base variable is read, modified, and then written back to the same 
memory location. It is important that no other bus cycles, generated by other bus masters or 
by the Am486DX/DX2 microprocessor, be allowed on the external bus between the read and 
write portion of the locked sequence. 

During a locked read cycle the Am486DXlDX2 microprocessor always accesses external 
memory. It never looks for the location in the on-chip cache, but for write cycles. Data is 
written in the intemal cache (if cache hit) and in the extemal memory. All data pending in the 
Am486DXlDX2 microprocessor's write buffers are written to memory before a locked cycle is 
allowed to proceed to the external bus. 

Hardware Interface 



AMD~ 
The Am486DX/DX2 microprocessor asserts the LOCK pin after the write buffers are emptied 
during a locked bus cycle. With the LOCK pin asserted, the microprocessor reads the data, 
operates on the data, and places the results in a write buffer. The contents of the write buffer 
are then written to external memory. LOCK becomes inactive after the write part of the locked 
cycle. 

6.4 INTERRUPT AND NON·MASKABLE INTERRUPT INTERFACE 

6.4.1 

6.4.2 

The Am486DX/DX2 microprocessor provides two asynchronous interrupt inputs, INTR 
(interrupt request) and NMI (non-maskable interrupt input). This section describes the 
hardware interface between the instruction execution unit and the pins. For a description of 
the algorithmic response to interrupts refer to Section 2.8. For interrupt timings, refer to 
Section 7.2.10. 

Interrupt Logic 
The Am486DX/DX2 microprocessor contains a two clock synchronizer on the interrupt line. 
An interrupt request reaches the internal instruction execution unit two clocks after the INTR 
pin is asserted, if proper set up is provided to the first stage of the synchronizer. 

There is no special logic in the interrupt path other than the synchronizer. The INTR signal is 
level sensitive and must remain active to be recognized by the instruction execution unit. The 
interrupt is not seNiced by the Am486DX/DX2 microprocessor if the INTR signal does not 
remain active. 

The instruction execution unit looks at the state of the synchronized interrupt signal at specific 
clocks during the execution of instructions (if interrupts are enabled). These specific clocks are 
at instruction boundaries, or iteration boundaries in the case of string move instructions. 
Interrupts are only accepted at these boundaries. 

An interrupt must be presented to the Am486DX/DX2 microprocessor INTR pin three clocks 
before the end of an instruction for the interrupt to be acknowledged. Presenting the interrupt 
three clocks before the end of an instruction allows the interrupt to pass through the two clock 
synchronizer, leaving one clock to prevent the initiation of the next sequential instruction and 
to begin interrupt seNice. If the interrupt is not received in time to prevent the next instruction, 
it is accepted at the end of the next instruction, assuming INTR is still held active. The 
interrupt seNice microcode starts after two dead clocks. 

The longest latency between when an interrupt request is presented on the INTR pin and 
when the interrupt seNice begins is: longest instruction used + the two clocks for synchroniza­
tion + one clock required to vector into the interrupt seNice microcode. 

NMI Logic 
The NMI pin has a synchronizer like that used on the INTR line. Other than the synchronizer, 
the NMllogic is different from that of the maskable interrupt. 

NMI is edge triggered as opposed to the level triggered INTR signal. The rising edge of the 
NMI signal is used to generate the interrupt request. The NMI input need not remain active 
until the interrupt is actually seNiced. The NMI pin only needs to remain active for a single 
clock if the required setup and hold times are met. NMI operates properly if it is held active for 
an arbitrary number of clocks. 

The NMI input must be held inactive for at least four clocks after it is asserted to reset the 
edge triggered logic. A subsequent NMI may not be generated if the NMI is not held inactive 
for at least two clocks after being asserted. 

Hardware Interface 6-15 



~AMD 
The NMI input is intemally masked whenever the NMI routine is entered. The NMI input 
remains masked until an IRET (retum from interrupt) instruction is executed. Masking the NMI 
signal prevents recursive NMI calls. If another NMI occurs while the NMI is masked off, the 
pending NMI is executed after the current NMI is done. Only one NMI can be pending while 
NMI is masked. 

6.5 RESET AND INITIALIZATION 

6.5.1 

6-16 

The Am486DX/DX2 microprocessor has a built-in self-test (BIST) that can be run during 
reset. The BIST is invoked if the AHOLD pin is asserted in the clock prior to RESET going 
from High to Low. RESET must be active for 15 clocks with or without BIST being enabled. 
Refer to Chapter 8 for information on Am486DX/DX2 microprocessor testability. 

The Am486DX/DX2 microprocessor registers have the values shown in Table 6-2 after 
RESET is performed. The EAX register contains information on the success or failure of the 
BIST if the self test is executed. The DX register always contains a component identifier at 
the conclusion of RESET. The upper byte of DX (DH) contains 04 and the lower byte (DL) 
contains a stepping identifier (see Table 64). The floating-point registers are initialized as if 
the FINIT/FNINIT (initialize processor) instruction was executed if the BIST was performed. If 
the BIST is not executed, the floating-point registers are unchanged. 

The Am486DXlDX2 microprocessor starts executing instructions at location FFFFFFFOH and 
RESET. When the first Intersegment Jump or Call is executed, address lines A31-A20 drop 
Low for CS-relative memory cycles, and the Am486DX/DX2 microprocessor only executes 
instructions in the lower 1 Mbyte of physical memory. This allows the system designer to use 
a ROM at the top of physical memory, to initialize the system, and take care of RESETs. 

RESET forces the Am486DX/DX2 microprocessor to terminate all execution and local bus 
activity. No instruction or bus activity occurs as long as RESET is active. 

All entries in the cache are invalidated by RESET. 

Pin State During RESET 
The Am486DXlDX2 microprocessor recognizes and can respond to HOLD, AHOLD, and 

. BOFF requests, regardless of the RESET state. Thus, even though the processor is in 
RESET, it can still float its bus in response to any of these requests. 

While in RESET, the Am486DXlDX2 microprocessor bus is in the state shown in Figure 6-5 if 
the HOLD, AHOLD, and BOFF requests are inactive. Note that the address (A31-A2, 
BE3-BEO) and cycle definition (MIiO, DIC, and WIR) pins are undefined from the time 
RESET is asserted up to the start of the first bus cycle. All undefined pins (except FERR) 
assume known values at the beginning of the first bus cycle. The first bus cycle is always a 
code fetch to address FFFFFFFOH. 

FERR reflects the state ofthe error summary status (ES) bit in the floating-point unit status 
word. The ES bit is initialized whenever the floating-point unit state is initialized. The 
floating-point unit's status word register can be initialized by BIST or by executing FINIT/FNI­
NIT instruction. Thus, after RESET and before executing the first FINIT or FNINIT instruction, 
the values of the FERR and the numeric status word register bits 7-0 depend on whether or 
not BIST is performed. Table 6-3 shows the state of FERR signal after RESET and before the 
execution of the FINIT/FNINITinstruction. 

After the first FINIT or FNINIT instruction, FERR pin and the FPU status word register 
bits (7-0) will be inactive irrespective of the BIST. 

Hardware Interface 



AMD~ 
Table 6-2 Register Values After Reset 

Register Initial Value (BIST) I Initial Value (No Blst) 

EAX Zero (Pass) Undefined 

ECX Undefined Undefined 

EDX 0400 + Revision ID 0400 + Revision ID 

EBX Undefined Undefined 

ESP Undefined Undefined 

EBP Undefined Undefined 
--

ESI Undefined Undefined 

EDI Undefined Undefined 

EFLAGS 00000002h 00000002H 

EIP OFFFOH OFFFOH 

ES OOOOH OOOOH 

CS FOOOH FOOOH 

SS OOOOH OOOOH 

DS OOOOH OOOOH 

FS OOOOH OOOOH 

GS OOOOH OOOOH 

IDTR Base = 0, Base = 0, 
Limit = 3FFH Limit = 3FFH 

CRO 60000010H 60000010H 

DR7 OOOOOOOOH 100000000H 

CW 037FH Unchanged 

SW OOOOH Unchanged 

TW FFFFH Unchanged 

FIP OOOOOOOOH Unchanged 

FEA OOOOOOOOH Unchanged 

FCS OOOOH Unchanged 

FDS OOOOH Unchanged 

FOP OOOH I Unchanged 

FSTACK Undefined Unchanged 

Table 6-3 FERR Pin State 

BIST Performed FERR Pin FPU Status Word Register Bits 7-0 

YES Inactive (High) Inactive (Low) 

NO Undefined (Low or High) Undefined (Low or High) 

Hardware Interface 6·17 



~AMO 
Table 6-4 Am486DX/DX2 CPU Revision ID 

CPU Stepping Name Revision 10 

B3 01 
B4 01 
B5 01 
B6 01 
CO 02 
DO 04 

CA2 10 
CA3 10 
eBO 11 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

Must be Will be 
Steady Steady 

\\\\\ May Change Will be 
from H to L Changing 

from H to L 

IIIII May Cha~e Will be 
from Lto Changing 

from [to H 

'!Xt!XX Don't Care, Chantn~ 
Any Change State n nown 
Permitted 

}}) EK Does Not Center 
Apply Line is High 

Impedance 
"Off" State 

KSOOOO10 

6·18 Hardware Interface 



AMD~ 
Figure &-5 Pin States During RESET 

Cl v-v----L 
- 217 ClKs ~ no seH-test -

RESET-
1--- - 220 ClKs if seH-lest -

AHOLD 
~L-_________________________________ 0_ 

'5 
Co 

FLUSH 
(syn) 

rrr----------------------------------£-\\\@1Il 
FLUSH 
(asyn) 

@ 07 \\\ 
A20M 
(sync) _____________ t~V@~~~~-------------------­
A20M 

(async) 

ADS 

BREQ 

A31-A4, 
M/iO, BLAST 

BE3-BEO, 
PWT, PCD 

A3--A2, PLOCK 

DIG, W/R 
PCHK 

LOCK 

1/7 @ 

IIIl 
\\\\ 

1117 

\\\ 

UNDEFINED 

UNDEFINED 

\\\\ 
00 

00 

\\\\ 

D31-DO, 
DP3-DPO 

__________________ ~>t~}}--------------.-.-------------------~------
HlDA (§) 

Notes: 

1. RESET is an asynchronous input. t20 must be met only to guarantee recognition on a specific clock edge. 

2a. When A20M is driven synchronously, it must be driven High (inactive) for the eLK edge prior to thlfJ falling edge of RESET. 
This ensures proper operation. A20M setup and hold times must be met. 

2b. When A20M is driven asynchronously, it must be driven High (inactive) for two eLKs prior to and two eLKs after the falling 
edge of RESET to ensure proper operation. 

3a. When FLUSH is driven synchronously, it should be driven Low (active) for the eLK edge prior to the falling edge of RESET 
to invoke the Three-State Output Test Mode. All outputs are guaranteed three-stated within ten eLKs of RESET being 
deasserted. FLUSH setup and hold times must be met. 

3b. When FLUSH is driven asynchronously, it must be driven Low (active) for two eLKs prior to and two eLKs after the falling 
edge of RESET to invoke the Three-State Output Test Mode. All outputs are guaranteed three-stated within ten eLKs of 
RESET being deasserted. 

4. AHOLD should be driven High (active) for the eLK edge prior to the falling edge of RESETto invoke the Built-In Self-Test 
(BIST). AHOLD setup and hold times must be met. 

5. HOLD is recognized normally during RESET. 

6. 15 eLKs RESET pulse width for warm resets. Power-up resets require RESETto be asserted for at/east 1 ms after V", and 
eLK are stable. 

17852A--055 

Hardware Interface 6-19 

I 
I'· 
: 





7 BUS OPERATION 

7.1 DATA TRANSFER MECHANISM 

• Table 7·1 

Table 7·2 

All data transfers occur as a result of one or more bus cycles. Logical data operands of 
byte, word, and dword lengths can be transferred without restrictions on physical 
address alignment. Data can be accessed at any byte boundary, but two or three cycles 
can be required for unaligned data transfers. (See Section 7.1.3, Dynamic Data Bus 
Sizing, and Section 7.1.6, Operand Alignment.) 

The Am486DX/DX2 microprocessor address signals are split into two components. 
High-order address bits are provided by the address lines, A31-A2. The byte enables, 
BE3-BEO, form the Low-order address and provide linear selects for the four bytes of 
the 32-bit address bus. 

The byte enable outputs are asserted when their associated data bus bytes are involved 
with the present bus cycle, (see Table 7-1). Byte enable patterns that have a negated 
byte enable separating two or three asserted byte enables never occur (see Table 7-5). 
All other byte enable patterns are possible. 

Address bits AD and A 1 of the physical operand's base address can be created when 
necessary. (Using the byte enables to create AD and Ai is shown in Table 7-2). The byte 
enables can also be decoded to generate BLE (Byte Low Enable) and BHE (Byte High 
Enable). These signals are needed to address i6-bit memory systems (see Section 7.1.4. 
Interfacing with 8- and i6-bit memories) . 

Byte Enables and Associated Data and Operand Bytes 

Byte Enable Signal Associated Data Bus Signals 

BED 07-00 (byte O-Ieast significant) 

BE1 015-08 (byte 1) 

BE2 023-016 (byte 2) 

BE3 031-024 (byte 3 most significant) 

Generating A31-AO from BE3-B"EO and A31-A2 

CPU Address Signals 

A31-A2 BE3 BE2 BE1 BEO 

Physical Base Address 
A31 ...... A2 Ai AO 
A3i ...... A2 0 0 X X X Low 
A31 ...... A2 0 1 X X Low High 
A3i ...... A2 1 0 X Low High High 
A31 ... "' . A2 1 1 Low High High High 

Bus Operation 7·1 



;t1 AMD 

7.1.1 

7.1.2 

Memory and 1/0 Spaces 
Bus cycles can access physical memory space or I/O space. Peripheral devices in the 
system can either be memory-mapped, or I/O-mapped, or both. Physical memory 
addresses range from OOOOOOOOH to FFFFFFFFH (4 Gbytes). I/O addresses range 
from OOOOOOOOH to OOOOFFFFH (64 Kbytes) for programmed I/O (see Figure 7-1). 

Memory and 1/0 Space Organization 
The Am4860X/OX2 microprocessor data path to memory and I/O spaces can be 32-, 
16- or 8-bits wide. The byte enable signals, BE3-BEO, allow byte granularity when 
addressing any memory or I/O structure whether 8-,16-, or 32-bits wide. 

The Am4860XlOX2 microprocessor includes bus control pins, B816 and B88, that allow 
direct connection to 16-, and 8-bit memories and I/O devices. Cycles to 32-, 16-, and 
8-bit memories can occur in any sequence, since the B88 and B816 signals are 
sampled during each bus cycle. 

32-bit wide memory and I/O spaces are organized as arrays of physical 4-byte words. 
Each memory or I/O 4-byte word has four individually addressable bytes at consecutive 
byte addresses (see Figure 7-2). The lowest addressed byte is associated with data 
signals 07-00; the highest-addressed byte with 031-024. Physical4-byte words begin at 
addresses divisible by 4. 

16-bit memories are organized as arrays of physical 2-byte words. Physical 2-byte 
words begin at addresses divisible by 2. The byte enables, BE3-BEO, must be decoded 
to A 1, BLE, and BHE to address 16-bit memories (see Section 7.1.4). 

Figure 7·1 Physical Memory and I/O Spaces 

FFFFFFFFH 

~ 
Physical • Memory 

• 
4 Gbytes 

OOOOFFFFH 

~"';bI'~ 
Accessible 

64 Kbytes Programmed 

OOOOOOOOH OOOOOOOOH 
110 Space 

Physical Memory Space 110 Space 
17852A-056 

7·2 Bus Operation 



AMOt1 

Figure 7·2 Physical Memory and 1/0 Space Organization 

7.1.3 

32·Blt Wide Organization 

FFFFFFFFH FFFFFFFCH 

00000003H I I I I I OOOOOOOOH 

16-Bit Wide Organization 

FFFFFFFFH CD FFFFFFFEH 

00000001H OOOOOOOOH 

BHE BLE 
17852A--{)57 

To address a-bit memories, the two low-order address bits, AO and A 1, must be decoded 
from 8E3-8EO. The same logic can be used for 8- and 16-bit memories, since the decoding 
logic for 8LE and AO are the same (see Section 7.1.4). 

Dynamic Data Bus Sizing 
Dynamic data bus sizing is a feature allowing processor connection to 32-,16-, or 8-bit buses 
for memory or VO. A processor can connect to all three bus sizes. Transfers to or from 
32-,16-, or 8-bit devices are supported by dynamically determining the bus width during each 
bus cycle. Address decoding circuitry can assert 8S16 for 16-bit devices, or 8SB for 8-bit 
devices during each bus cycle. 8SB and 8S16 must be negated when addressing 32-bit 
devices. An 8-bit bus width is selected if both 8S16 and 8SB are asserted. 

8S16 and 8SB force theAm4860X/OX2 microprocessor to run additional bus cycles to 
complete requests larger than 16 or 8 bits. A 32-bit transfer is converted into two 16-bit 
transfers (or three transfers if the data is misaligned) when 8S16 is asserted. Asserting 
8SB converts a 32-bit transfer into four 8-bit transfers. 

Extra cycles forced by 8S16 or 8SB should be viewed as independent bus cycles. 8S16 or 
8SB must be driven active during each extra cycle unless the addressed device has the 
ability to change the number of bytes it can return between cycles. 

The Am4860X/OX2 microprocessor drives the byte enables appropriately during extra cycles 
forced by 88B and 8S16. A31-A2 do not change if accesses are to a 32-bit aligned area. 
Table 7-3 shows the set of byte enables that are generated on the next cycle for each of the 
valid possibilities of the byte enables on the current cycle. 

The dynamic bus sizing feature of the Am4860XlOX2 microprocessor is significantly different 
than that of the 386 microprocessor. Unlike the 386 microprocessor, the Am4860Xl0X2 
microprocessor requires that data bytes be driven on the addressed data pins. The simplest 
example of this function is a 32-bit align9d, 8S16 read. When the Am4860XlOX2 micropro­
cessor reads the two high-order bytes, they must be driven on the data bus pins 031-016. 
The Am4860Xl0X2 microprocessor expects the two low-order bytes on 015-00. The 386 
microprocessor expects both the high- and low-order bytes on 015-00. The 386 micropro­
cessor always reads or writes data on the lower 16 bits of the data bus when 8S 16 is 
asserted. 

The external system must contain buffers to enable the Am4860X/OX2 microprocessor 
to read and write data on the appropriate data bus pins. Table 7-4 shows the data bus 

Bus Operation 7·3 

I" 



~AMD 

7.1.4 

Table 7·3 

BE3 

1 

1 

1 

0 

1 

1 

0 

1 

0 

0 

Note: 

lines where the Am486DX/DX2 microprocessor expects data to be returned for each 
valid combination of byte enables and bus sizing options. 

Valid data is only driven onto data bus pins corresponding to active byte enables during 
write cycles. Other pins in the data bus are driven but they do not contain valid data. 
Unlike the 386 microprocessor, the Am486DXlDX2 microprocessor does not duplicate 
write data onto parts of the data bus for which the corresponding byte enable is negated. 

Interfacing with 8·, 16·, and 32·Bit Memories 
In 32-bit physical memories (such as Figure 7-3), each 4-byte word begins at a byte 
address that is a multiple of 4. A31-A2 are used as a 4-byte word select. BE3-BEO 
select individual bytes within the 4-byte word. BS8 and BS16 are negated for all bus 
cycles involving the 32-bit array. 

Next Byte Enable Values for 8Si1 Cycles 

Current Next with BS8 Next with BS16 

BE2 BE1 BEO BE3 BE2 BE1 BEO BE3 BE2 BE1 BEO 

1 1 0 n n n n n n n n 

1 0 0 1 1 0 1 n n n n 
0 0 0 1 0 0 1 1 0 1 1 

0 0 0 0 0 0 1 0 0 1 1 

1 0 1 n n n n n n n n 

0 0 1 1 0 1 1 1 0 1 1 

0 0 1 0 0 1 1 0 0 1 1 

0 1 1 n n n n n n n n 

0 1 1 0 1 1 1 n n n n 

1 1 1 n n n n n n n n 

Un" means another bus cycle is not required to satisfy the request. 

Table 7·4 Data Pins Read with Different Bus Sizes 

BE3 BE2 BE1 BEO w/o BS81 BS16 wBS8 wBS16 

1 1 1 0 07-00 07-00 07-00 

1 1 0 0 015-00 07-00 015-00 

1 0 0 0 023-00 07-00 015-00 

0 0 0 0 031-00 07-00 015-00 

1 1 0 1 015-08 015-08 015-08 

1 0 0 1 023-08 015-08 015-08 

0 0 0 1 031-08 015-08 015-08 

1 0 1 1 023-016 023-016 023-016 

0 0 1 1 031-016 023-016 031-016 

0 1 1 1 031-024 031-024 031-024 

7-4 BuS Operation 



AMD~ 
16- and 8-bit memories require external byte swapping logic for routing data to the 
appropriate data lines and logic for generating BHE, BLE, and A 1. In systems where 
mixed memory widths are used, extra address decoding logic is necessary to assert 
B816 or B88. 

Figure 7-4 shows the Am486DX/DX2 microprocessor address bus interface to 32-,16-, 
and 8-bit memories. To address 16-bit memories, the byte enables must be decoded to 
produce A 1, BHE, and BLE (AO). For 8-bit wide memories the byte enables must be 
decoded to produce AO and A 1. The same byte select logic can be used in 16- and 8-bit 
systems since BLE is exactly the same as AO (see Table 7-5). 

BE3-BEO can be decoded as shown in Table 7-5 to generate Ai, BHE, and BLE. The 
byte select logic necessary to generate SHE and BLE is shown in Figure 7-5. 

Figure 7·3 Am486 Microprocessor with 32·Bit Memory 

32/ Data Bus (031-00) 

Am4B6 
Address Bus (BE3-BEO, A31-A2) 32-Bit 

CPU Memory 

T BSB 1BS16 

High High 
17852A-058 

Figure 7·4 Addressing 16- and 8·Bit Memories 

Address Bus (A31-A2, BE3-BEO) 
32-Bit 

I 
Memory 

Am4B6 

I Microprocessor 

BSB BS16 A31-A2 

16-Bit 

BHE, BLE, AI Memory 

I 
Address 
Decoder BE3-BEO J Byte 

~ Select 
I Logic AO (BLE), AI 

B-Bit 

A31-A2 Memory 

17852A-059 

Figure 7·5 Logic to Generate Ai, lIRE, and BIE for i6·Bit Buses 

BE0D--{:>o AI 

BE1 

Bus Operation 

BEl D--{:>o BHE 

BE3 

BLE (or AO) 

1 7852A-060 i ' 

7·5 



~AMD 

Table 7·5 

7.1.5 

7-6 

Combinations of BE3-BEO that never occur are those in which two or three asserted 
byte enables are separated by one or more negated byte enables. These combinations 
are "don't care" conditions in the decoder. A decoder can use the non-occurring 
BE3-BEO combinations to its best advantage .. 

Figure 7-6 shows an Am486DX/DX2 microprocessor data bus interface to 32-,16- and 
8-bit wide memories. External byte swapping logic is needed on the data lines so that 
data is supplied to, and received from, the Am486DX/DX2 microprocessor on the correct 
data pins (see Table 7-4). 

Generating Ai, lIRE, and JI[E for Address for i6-Bit Devices 

CPU Signals 8-, 16-Bit Bus Signals 

BE3 BE2 BE1 BEO A1 BHE 

H* H* H* H* x 

H H H L L 

H H L H L 

H H L L L 

H L H H H 

H* L* H* L* x 

H L L H L 

H L L L L 

L H H H H 

L* H* H* L* x 
L* H* L* H* x 

L* H* L* L*, x 

L L H H H 

L* L* H* L* x 

L L L H L 

L L L L L 

Note: 
SlE asserted when 07-00 of 16-bit bus is active. 
SHE asserted when 015-08 of 16-bit bus is active. 
A 1 Low for all even words; A 1 High for all odd words. 

Key: 
x don't care 
H High voltage level 
L Low voltage level 

x 

H 

L 

L 

H 

x 

L 

L 

L 

x 

x 

x 

L 

x 

L 

L 

BlE 
(AD) 

x 

L 

H 

L 

L 

x 

H 

L 

H 

x 

x 

x 

L 

x 

H 

L 

Comments 

x-no active bytes 

x-non-contiguous bytes 

x-non-contiguous bytes 

x-non-contiguous bytes 

x-non-contiguous bytes 

x-non-contiguous bytes 

a non-occurring pattern of Byte Enables; either none reasserted, or the pattern has 
Byte Enables asserted for non-contiguous bytes 

Dynamic Bus Sizing During Cache Line Fills 
BS8 and BS16 can be driven during cache line fills. The Am486DX/DX2 microprocessor 
generates enough 8- or 16-bit cycles to fill the cache line. This can be up to 16 8-bit 
cycles. 

The external system should assume that all byte enables are active for the first cycle of 
a cache line fill. The Am486DX/DX2 microprocessor generates proper byte enables for 

Bus Operation 



7.1.6 

AMD~ 
subsequent cycles in the line. Table 7-6 shows the appropriate AO (BlE), A 1, and BHE 
for the various combinations of the Am486DX/DX2 microprocessor byte enables on both 
the first and subsequent cycles of the cache line fill. The u*" marks all combinations of 
byte enables that are generated by the Am486DX/DX2 microprocessor during a cache 
line fill. 

Operand Alignment 
Physical 4-byte words begin at addresses that are multiples of 4. It is possible to transfer 
a logical operand that spans more than one physical 4-byte word of memory or 1/0 at the 
expense of extra cycles. Examples are 4-byte operands beginning at addresses that are 
not evenly divisible by 4, or 2-byte words split between two physical4-byte words. These 
are referred to as unaligned transfers. 

Operand alignment and data bus size dictate when multiple bus cycles are required. 
Table 7-7 describes the transfer cycles generated for all combinations of logical operand 
lengths, alignment, and data bus sizing. When multiple cycles are required to transfer a 
multibyte logical operand, the highest-order bytes are transferred first. For example, when 
the processor does a 4-byte unaligned read beginning at location x11 in the 4-byte aligned 
space, the three high-order bytes are read in the first bus cycle. The low byte is read in a 
subsequent bus cycle. 

Figure 7·6 Data Bus Interface to 16- and 8-bit Memories 

07 00 4 ~ 

Am486 
015-08 '" 4 32-Bit 

Microprocessor 023-016 '~ 4 Memory 

031-024 ' ~ 4 , 
B 

B816 
(A31-A2, BE3-BEO) 

.....--
Byte 

" 16 Swap 16-Bit 
Logic 

, 
Memory 

1 
T 

'---
Byte 

I 
Swap ~ 8 8-Bit 

Address Logic 
, Memory 

Oecode 

17852A-061 

Bus Operation 7·7 



~AMD 
Table 7·6 Generating AO, A 1, and IJHE from the Am486DXJDX2 Microprocessor Byte 

Enables 

First Cache Fill Cycle Any Other Cycle 

BE3 BE2 BE1 BEO AO Ai BHE AO A1 BHE 

1 1 1 0 0 0 0 0 0 1 

1 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

'0 0 0 0 0 0 0 0 0 0 

1 1 0 1 0 0 0 1 0 0 

1 0 0 1 0 0 0 1 0 0 

'0 0 0 i 0 0 0 1 0 0 

1 0 1 1 0 0 0 0 1 1 

'0 0 1 1 0 0 0 0 1 0 

'0 1 1 1 0 0 0 1 1 0 

Note: 
• All combination of byte enables that are generated by the CPU during a cache line fill. 

Table 7·7 Transfer Bus Cycles for Bytes, Words, and Dwords 

Byte-Length of Logical Operand 

1 2 4 

Physical Byte Address in Memory xx 00 01 10 11 00 01 10 11 
(Low-Order Bits) 

Transfer Cycles over 32-Bit Bus b w w w hb d hb hw h3 
Ib 13 Iw Ib 

Ib hb Iw hb hw mw 
Transfer Cycles over 16-Bit Data Bus b w hb w Ib hw ~ Iw hb = BS16 Asserted r---- - ~ mw 

Transfer Cycles over 8-Bit Data Bus Ib hb mhb mlb 

= BS8 Asserted b Ib Ib Ib hb mlb ----rb hb mhb 

hb hb hb Ib mhb mlb ~ hb 

hb mhb mlb ---u;-
Key: 
b byte transfer 

4-byte Operand Ib mlb I mhb I hb 
w 2-byte transfer 
3 3-byte transfer T T d 4-byte transfer 
h high-order portion byte with byte with 

I low-order portion lowest highest 

m= mid-order portion address address 

7·8 Bus Operation 



AMD~ 
The function of unaligned transfers with dynamic bus sizing is not obvious. When the 
external systems assert BS16 or BS8 and force extra cycles, low-order bytes or words 
are transferred first (opposite to the example in Table 7-7). When the Am486DX/DX2 
microprocessor requests a 4-byte read and the external system asserts BS16, the lower 
two bytes are read first followed by the upper two bytes. 

In the unaligned transfer described above, the processor requested three bytes on the 
first cycle. If the external system asserted BS 16 during this 3-byte transfer, the lower 
word is transferred first followed by the upper byte. In the final cycle the lower byte of the 
4-byte operand is transferred as in the 32-bit example in Table 7-7. 

7.2 BUS FUNCTIONAL DESCRIPTION 

7.2.1 

7.2.1.1 

The Am486DX/DX2 microprocessor supports a wide variety of bus transfers to meet the 
needs of high-performance systems. Bus transfers can be single cycle or multiple cycle, 
burst or non-burst, cacheable or non cacheable, 8, 16, or 32 bit, and pseudo-locked. To 
support multiprocessing systems there are cache invalidation cycles and locked cycles. 

This section begins with basic non-cacheable non-burst single cycle transfers. It moves 
on to multiple cycle transfers and introduces the burst mode. Cacheability is introduced 
in Section 7.2.3. The remaining sections describe locked, pseudo-locked, invalidate, bus 
hold, and interrupt cycles. 

Bus cycles and data cycles are discussed in this section. A bus cycle is at least two 
clocks long and begins with ADS active in the first clock and ready active in the last 
clock. Data is transferred to or from the Am486DX/DX2 microprocessor during a data 
cycle. A bus cycle contains one or more data cycles. 

Refer to Section 7.2.13 for a description of the bus states shown in the timing diagrams. 

Non-Cacheable Non-Burst Single Cycle 

No-Wait States 

The fastest non-burst bus cycle that the Am486DX/DX2 microprocessor supports is two 
clocks long. These cycles are called 2-2 cycles because reads and writes take two 
cycles each. The first 2 refers to reads and the second to writes. For example, if a wait 
state needs to be added to a write, the cycle would be called 2-3. 

Basic two clock read and write cycles are shown in Figure 7-7. The Am486DX/DX2 
microprocessor initiates a cycle by asserting the address status signal (ADS) at the 
rising edge of the first clock. The ADS output indicates that a valid bus cycle definition 
and address is available on the cycle definition lines and address bus. 

The non-burst ready input (ROY) is returned by the external system in the second clock. 
ROY indicates that the external system has presented valid data on the data pins in 
response to a read, or the external system has accepted data in response to a write. 

The Am486DXlDX2 microprocessor samples ROY at the end of the second clock. The 
cycle is complete if ROY is active (Low) when sampled. Note that ROY is ignored at the 
end of the first clock of the bus cycle. 

The burst last signal (BLAST) is asserted (Low) by the Am486DX/DX2 microprocessor 
during the second clock of the first cycle in all bus transfers illustrated in Figure 7-7. This 
indicates that each transfer is complete after a single cycle. The Am486DX/DX2 
microprocessor asserts BLAST in the last cycle of a bus transfer. 

The timing of the parity check output (PCHK) is shown in Figure 7-7. The Am486DX/DX2 
microprocessor drives the PCHK output one clock after ready terminates a read cycle. 

Bus Operation 7-9 

I 
~". 



~ AMD 

Figure 7·7 

elK 

ADS 

A31-A2, 
W/R, Ole, 
BE3-BEO 

W/R 

RDY 

BLAST 

Data 

PCHK 

7.2.1.2 

7.2.2 

7-10 

Basic 2·2 Bus Cycle 

Ti T1 , T2 T1 " T2 , T1 T2 T1 T2 , Ti 

X X X X 

I \ / I \ / 

" . 
: ~ CC\ CD CC\ " C 

To From CPU To From CPU CPU CPU 

CD 'CjJ 

READ WRITE READ WRITE 

17852A-062 

PCHK indicates the parity status for the data sampled at the end of the previous clock. 
The PCHK signal can be used by the external system. The Am486DX/DX2 microproces­
sor does nothing in response to the PCHK output. 

Inserting Wait States 

The external system can insert wait states into the basic 2-2 cycle by driving ROY 
inactive at the end of the second clock. ROY must be driven inactive to insert a wait 
state. Figure 7-8 illustrates a simple non-burst, non-cacheable signal with one wait state 
added. Any number of wait states can be added to an Am486DX/DX2 microprocessor 
bus cycle by maintaining ROY inactive. 

The burst ready input (BROY) must be driven inactive on all clock edges where ROY is 
driven inactive for proper operation of these simple non-burst cycles. 

Multiple and Burst Cycle Bus Transfers 
Multiple cycle bus transfers can be caused by internal requests from the Am486DX/DX2 
microprocessor or by the external memory system. An internal request for a 64-bit 
floating-point load or a 128-bit prefetch must take more than one cycle. Internal requests 
for unaligned data can also require multiple bus cycles. A cache line fill requires multiple 
cycles to complete. The external system can cause a multiple cycle transfer when it can 
only supply 8 or 16 bits per cycle. 

Only multiple cycle transfers caused by internal requests are considered in this section. 
Cacheable cycles and 8- and 16-bit transfers are covered in Sections 7.2.3 and 7.2.5. 

Bus Operation 



AMD~ 
Figure 7·8 Basic 3·3 Bus Cycle 

7.2.2.1 

elK 

A31-A2, 
MIlO, Die, 
SE3-SEQ 

Wif5. 

Data 

Ti T1 T2 " T2 T1 T2 T2 0 T1 

~' 

____ ~x~--~--~----~x~~--~----~--~ 
, \1---;._--;_--;'--/1 

o 

C: 
---_--_--_---{@}-_---<_-~<. From CPU' ~ 

READ: , WRITE , , 17852A--D63 

Burst Cycles 

The Am486DX/DX2 microprocessor can accept burst cycles for any bus requests that 
require more than a single data cycle. During burst cycles, a new data item is strobed 
into the Am486DX/DX2 microprocessor every clock, rather than every other clock as in 
non-burst cycles. The fastest burst cycle requires two clocks for the first data item with 
subsequent data items returned every clock. 

The Am486DX/DX2 microprocessor is capable of bursting a maximum of 32 bits during a 
write. Burst writes can only occur if BS8 or BS 16 is asserted. For example, the 
Am486DX/DX2 microprocessor can burst write four 8-bit operands or two 16-bit oper­
ands in a single burst cycle. But the Am486DX/DX2 microprocessor cannot burst 
multiple 32-bit writes in a single burst cycle. 

Burst cycles begin with the Am486DX/DX2 microprocessor driving out an address and 
asserting ADS in the same manner as non-burst cycles. The Am486DXlDX2 micropro­
cessor indicates it is willing to perform a burst cycle by holding the burst last signal 
(BLAST) inactive in the second clock of the cycle. The external system indicates its 
willingness to do a burst cycle by returning the burst ready signal (BRDY) active. 

The addresses of the data items in a burst cycle all fall within the same 16-byte aligned 
area (corresponding to an internal Am486DX/DX2 microprocessor cache line). A 16-byte 
aligned area begins at location XXXXXXXOH and ends at location XXXXXXXFH. During 
a burst cycle, only BE3-BEO, A2, and A3 can change. A31-A4, MIlO, Die, and W/R. 
remain stable throughout a burst. Given the first address in a burst, external hardware 
can easily calculate the address of subsequent transfers in advance. An external 
memory system can be designed to quickly fill the Am486DX/DX2 microprocessor 
internal cache lines. 

Burst cycles are not limited to cache line fills. Any multiple cycle read request by the 
Am486DXlDX2 microprocessor can be converted into a burst cycle. The Am486DXlDX2 
microprocessor only bursts the number of bytes needed to complete a transfer. For 
example, eight bytes are bursted in for a 64-bit floating-point non-cacheable read. 

Bus Operation 7·11 

I 



~ AMD 

7.2.2.2 

7.2.2.3 

7-12 

The external system converts a multiple cycle request into a burst cycle by returning 
BROY active rather than ROY (non-burst ready) in the first cycle of a transfer. For cycles 
that cannot be bursted, such as interrupt acknowledge and halt, BROY has the same 
effect as ROY. BROY is ignored if both BROY and ROY are returned in the same clock. 
Memory areas and peripheral devices that cannot perform bursting must terminate 
cycles with ROY. 

Terminating Multiple and Burst Cycle Transfers 

The Am486DX/DX2 microprocessor drives BLAST inactive for all but the last cycle in a 
multiple cycle transfer. BLAST is driven inactive in the first cycle to inform the external 
system that the transfer could take additional cycles. BLAST is driven active in the last 
cycle of the transfer, indicating that the next time BROY or ROY is returned, the transfer 
is complete. 

BLAST is not valid in the first clock of a bus cycle. It should be sampled only in the 
second and subsequent clocks when 'ROY or BROY is returned. 

The number of cycles in a transfer is a function of several factors, including the number 
of bytes the microprocessor needs to complete an internal request (1, 2, 4, 8, or 16), the 
state of the bus size inputs (8S8 and BS16), the state of the cache enable input (KEN), 
and alignment of the data to be transferred. 

When the Am486DX/DX2 microprocessor initiates a request, it knows how many bytes 
will be transferred and if the data is aligned. The external system must teli the micropro­
cessor whether the data is cacheable (if the transfer is a read) and the width of the bus 
by returning the state of the KEN, BS8, and BS16 inputs one clock before ROY or BROY 
is returned. The Am486DX/DX2 microprocessor determines how many cycles a transfer 
will take based on its internal information and inputs from the external system. 

BLAST is not valid in the first clock of a bus cycle because the Am486DX/DX2 micropro­
cessor cannot determine the number of cycles a transfer will take until the external 
system returns KEN, BS8, and BS16. BLAST should only be sampled in the second and 
subsequent clocks of a cycle when the external system returns ROY or BROY. 

The system can terminate a burst cycle by returning ROY instead of BROY. BLAST 
remains deasserted until the last transfer. However, any transfers required to complete a 
cache line fill follow the burst order (e.g., if burst order was 4, 0, C, 8 and ROY was 
returned at after 0, the next transfers are from C and 8). 

Non-Cacheable, Non.Burst, Multiple Cycle Transfers 

Figure 7-9 illustrates a 2 cycle non-burst, non-cacheable multiple cycle read. This 
transfer is simply a sequence of two single cycle transfers. The Am486DX/DX2 micro­
processor indicates to the external system that this is a multiple cycle transfer by driving 
BLAST inactive during the second clock of the first cycle. The external system returns 
ROY active, indicating that it will not burst the data. The external system also indicates 
that the data is not cacheable by returning KEN inactive one clock before it returns ROY 
active. When the Am486DX/DX2 microprocessor samples ROY active, it ignores BROY. 

Each cycle in the transfer begins when ADS is driven active, and the cycle is complete 
when the external system returns ROY active. 

The Am486DX/DX2 microprocessor indicates the last cycle of the transfer by driving 
BLAST active. The next ROY returned by the external system terminates the transfer. 

Bus Operation 



AMD~ 
Figure 7·9 Non·Cacheable, Non·Burst, Multiple Cycle Transfers 

Ti T1 T2 T1 T2 Ti 

elK 

ADS \ I 
A31-A2, 

MIlO, DIG, 
WIR, BE3-BEO 

X X 

7.2.2.4 

7.2.3 

RDY 

BRDY 

I I 
I I 

KEN I I 
I I 

X 7 I \ ~ 
I / BLAST I I 

I I 

Data ~ rn 
I I 17852A-064 

181 Data 2nd Data 

Non·Cacheable Burst Cycles 

The external system converts a multiple cycle request into a burst cycle by returning 
BROY active rather than ROY in the first cycle of the transfer (see Figure 7-10). 

There are several features to note in the burst read. AOS is only driven active during the first 
cycle of the transfer. ROY must be driven inactive when BROY is returned active. 

BLAST behaves exactly as it does in the non-burst read. BLAST is driven inactive in the 
second clock of the first cycle of the transfer, indicating more cycles to follow. In the last 
cycle, BLAST is driven active, telling the external memory system to end the burst after 
returning the next BROY. 

Cacheable Cycles 
Any memory read can become a cache fill operation. The external memory system can 
allow a read request to fill a cache line by returning KEN active one clock before ROY or 
BROY during the first cycle of the transfer on the external bus. Once KEN is asserted 
and the remaining three requirements described below are met, the Am486DX/DX2 
microprocessor fetches an entire cache line, regardless of the state of KEN. KEN must 
be returned active in the last cycle of the transfer for the data to be written into the 
internal cache. The Am486DX/DX2 microprocessor only converts memory reads or 
prefetches into a cache fill. KEN is ignored during write or I/O cycles. Memory writes are 
only stored in the on-chip cache if there is a cache hit. I/O space is never cached in the 
internal cache. 

To transform a read or a prefetch into a cache line fill, the following conditions must be 
met: 

1. The KEN pin must be asserted one clock prior to ROY or BROY being returned for 
the first data cycle. 

Bus Operation 7-13 



~AMD 
Figure 7·10 Non·Cacheable, Burst Cycle 

Ti I T1 I T2 T2 Ti Ti 
I I 

elK 

ADS \ / 
A31-A2, 

M/TO, D(e, X X 

7.2.3.1 

7-14 

W/R, BE3-BEO 

RDY 

BRDY 

KEN 

BLAST X I \ ~ r= 
Data ~ CPU CPU 

I I 

17852A-065 

2. The cycle must be the type that can be internally cached. (Locked reads, I/O reads, 
and interrupt acknowledge cycles are never cached). 

3. The page table entry must have the PCO bit set to O. To cache a page table entry, the 
page directory must have PCO = O. To cache reads or prefetches when paging is dis­
abled, or to cache the page directory entry, control register 3 (CR3) must have PCO = O. 

4. The CO bit in control register 0 (CRO) must be clear. 

External hardware can determine when the Am4860X/OX2 microprocessor has trans­
formed a read or prefetch into a cache fill by examining the KEN, MilO, Ole, W/R, 
LOCK, and PCO pins. These pins convey to the system the outcome of conditions 1-3 in 
the above list. In addition, the Am4860X/OX2 microprocessor drives PCO High when­
ever the CD bit in CRO is set, so that external hardware can evaluate condition 4. 

Cacheable cycles can be burst or non-burst. 

Byte Enables During a Cache Line Fill 

For the first cycle in the line fill, the state of the byte enables should be ignored. In a 
non-cacheable memory read, the byte enables indicate the bytes actually required by 
the memory or code fetch. 

The Am4860X/OX2 microprocessor expects to receive valid data on its entire bus (32 
bits) in the first cycle of a cache line fill. Data should be returned with the assumption 
that all the byte enable pins are driven active. However, if BS8 is asserted, only one byte 
need be returned on data lines 07-00. Similarly, if BS16 is asserted, two bytes should 
be returned on 015-00. 

The Am4860XlOX2 microprocessor generates the addresses and byte enables for all 
subsequent cycles in the line fill. The order in which data is read during a line fill depends 
on the address of the first item read. Byte ordering is discussed in Section 7.2.4. 

Bus Operation 



7.2.3.2 

7.2.3.3 

AMO;t1 

Non·Burst Cacheable Cycles 

Figure 7-11 shows a non-burst cacheable cycle. The cycle becomes a cache fill when 
the Am486DX/DX2 microprocessor samples KEN active at the end of the first clock, The 
Am486DX/DX2 microprocessor drives BLAST inactive in the second clock in response to 
KEN. BLAST is driven inactive because a cache fill requires three additional cycles to 
complete. BLAST remains inactive until the last transfer in the cache line fill. KEN must 
be returned active in the last cycle of the transfer for the data to be written into the 
internal cache. 

Note that this cycle would be a single bus cycle if KEN was not sampled active at the 
end of the first clock. The subsequent three reads would not have happened since a 
cache fill was not requested. 

The BLAST output is invalid in the first clock of a cycle. BLAST can be active during the 
first clock due to earlier inputs. Ignore BLAST until the second clock. 

During the first cycle of the cache line fill, the external system should treat the byte 
enables as if they are all active. In subsequent cycles in the burst, the Am486DX/DX2 
microprocessor drives the address lines and byte enables (see Section 7.2.4.2, Burst 
and Cache Line Fill Order). 

Burst Cacheable Cycles 

Figure 7 -12 illustrates a burst mode cache fill. As in Figure 7-11, the transfer becomes a 
cache line fill when the external system returns KEN active at the end of the first clock in 
the cycle. 

The external system informs the Am486DX/DX2 microprocessor that it will burst the line 
in by driving BRDY active at the end of the first cycle in the transfer. 

Figure 7·11 Non·Burst, Cacheable Cycles 

elK 

ADS 

A31-A2, 

Ti T1 T2 

',---+---,1 

T1 T2 

',---+---,1 

T1 T2 T1 T2 Ti 

''---i---,I ',---+---,1 
BEs-g/Eg---..L.----X X X X 

MliO, W/R '---r---r-...I~--r---_r_--' '---r---,--' '--,---_r_--

I I I I I I 

W I I I 
I I I w: 

I I I I I I 

X i 7 I 
~ 7 I ~ 7 I 

I I I \ i , : c BlAST ___ -I--I 

I I I I I 

~ Data'----r----r---{ ab Qb r----r:-~~ 
I I I I I 

17852A--{)66 

Bus Operation 7-15 



~ AMD 

7.2.3.4 

7.2.4 

7.2.4.1 

Figure 7·12 

elK 

ADS 

A31-A4, M/TO, 
DIG, W/Fi 

A3-A2, 
BE3-BEO 

RDY 

BRDY 

KEN 

BLAST 

Data 

PCHK 

7·16 

Note that during a burst cycle, ADS is only driven with the first address. 

Effect of Changing KER during a Cache Line Fill 

KEN can change multiple times as long as it arrives at its final value in the clock before 
ROY or BROY is returned (see Figure 7-13). Note that the timing of BLAST follows that 
of KEN by one clock. The Am486DX/DX2 microprocessor samples KEN every clock and 
uses the value returned in the clock before ROY to determine if a bus cycle would be a 
cache line fill. Similarly, it uses the value of KEN in the last cycle before early ROY to 
load the line just retrieved from the memory into the cache. KEN is sampled every clock 
and must satisfy setup and hold time. 

KEN can also change multiple times before a burst cycle, as long as it arrives at its final 
value one clock before ready is returned active. 

Burst Mode Details 

Adding Wait States to Burst Cycles 

Burst cycles need not return data on every clock. The Am486DX/DX2 microprocessor 
only strobes data into the chip when either ROY or BROY are active. 

Driving BROY and ROY inactive adds a wait state to the transfer. A burst cycle where 
two clocks are required for every burst item is shown in Figure 7-14. 

Burst Cacheable Cycle 

Ti Tl T2 T2 T2 T2 Ti 

\ / 

X 

X X X X 

I I 

'-+-I '-+-I 
I I 

X : 7 \ c= 
I 
I 

\ X X ~ 
17852A-067 

Bus Operation 



AMD~ 
Figure 7·13 Effect of Changing KEN 

Ti T1 T2 T2 T2 T1 T2 

ClK 
I I 

ADS 
, I i, 

I 
II 
I 

A31-A4, MIlO, 
X ! i Ole, W/R 

A3-A2, 
X X X BE3-BEO 

RDY I 
I I I I 

UJ UJ I I 
KEN I I 

I I I I 

X : 7 \ : 7 I \ 7 I 
BLAST I I 

I I I I 
I I ct> ctr-Data I 

I I I 
17852A-068 

Figure 7·14 Slow Burst Cycle 

Ti T1 T2 T2 T2 T2 T2 T2 T2 

ClK 

ADS 
, I 

A31-A4, MIlO, 
X Ole, W/R 

A3-A2, 
X X X X BE3-BEO 

RDY 

BRDY I 
I I I I I I 

\.lJ I I I \...U I 
KEN I I I I 

I I I I I I 

i 
I I I I I 

BLAST X 7 I I I , I I 
I I I I I up ~ up I up Data I 

I 

17852A--{)69 

Bus Operation 7·17 



~ AMD 

7.2.4.2 

Table 7·8 

Figure 7·15 

elK 

ADS 

A31-A2 

ROY 

BRDY 

KEN 

BLAST 

Data 

7-18 

Burst and Cache Line Fill Order 

The burst order used by the Am486DX/DX2 microprocessor is shown in Table 7-8. This 
burst order is followed by any burst cycle (cache or not), cache line fill (burst or not), or 
code prefetch. 

The microprocessor presents each request for data in an order determined by the first 
address in the transfer. For example, if the first address is 104, the next three addresses 
in the burst will be 100, 1 ~C, and 108. An example of burst address sequencing is 
shown in Figure 7-15. 

The sequences shown in Table 7-8 accommodate systems with 64-bit buses, as well as 
systems with 32-bit data buses. The sequence applies to all bursts, regardless of 
whether the purpose of the burst is to fill a cache line, do a 64-bit read, or do a prefetch. 
If either 8S8 or 8S16 is returned active, the Am486DX/DX2 microprocessor completes 
the transfer of the current 32-bit word before progressing to the next 32-bit word. For 
example, a 8S16 burst to address 4 has the following order: 4-6-0-2-C-E-8-A. 

Burst Order 

First Address Second Address Third Address Fourth Address 

0 4 8 C 

4 0 C 8 

8 C 0 4 

C 8 4 0 

Burst Cycle Showing Order of Addresses 

Ti T1 T2 T1 T2 T2 T2 

\ / 

X 104 X X X 108 

I I 

'-lJ '-lJ 
I I 

X : 7 I \ c= I 
I I 
I 

17852A-070 

Bus Operation 



7.2.4.3 

AMD~ 
Interrupted Burst Cycles 

Some memory systems might not be able to respond with burst cycles in the order 
defined in Table 7-8. To support these systems, the Am4860X/OX2 microprocessor 
allows a burst cycle to be interrupted at any time. 

The Am4860X/OX2 microprocessor automatically generates another normal bus cycle 
after being interrupted to complete the data transfer. This is called an interrupted burst 
cycle. The external system can respond to an interrupted burst cycle with another burst 
cycle. 

The external system can interrupt a burst cycle by returning RDY instead of BRDY. RDY 
can be returned after any number of data cycles terminated with BRDY. 

An example of an interrupted burst cycle is shown in Figure 7-16. The Am4860X/OX2 
microprocessor immediately drives ADS active to initiate a new bus cycle after RDY is 
returned active. BLAST is driven inactive one clock after ADS begins the second bus 
cycle, indicating that the transfer is incomplete. 

KEN need not be returned active in the first data cycle of the second part of the transfer 
in Figure 7-16. The cycle was converted to a cache fill in the first part of the transfer and 
the Am4860XlOX2 microprocessor expects the cache fill to be completed. Note that the 
first half and second half of the transfer in Figure 7-16 are each two cycle burst trans­
fers. 

The order in which the Am4860X/OX2 microprocessor requests operands during an 
interrupted burst transfer is determined in Table 7-8. Mixing RDY and BRDY does not 
change the order in which the Am4860X/OX2 microprocessor requests operand 
addresses. 

Figure 7·16 Interrupted Burst Cycle 

Ti T1 T2 T2 T1 T2 T2 Ti 

ClK 
I 
I 

/ I \ 
I 

'---+---,/ ,\.---+---' 

A31-A2 104 X 10;0 X L-~ ___ 10_C __ T-~XL __ +-1~0~8 __ _ 

I I 

W W 
I I 

X : 7 \ 7 I \ / I 
I I 
I 

Data 

17852A--{)71 

Bus Operation 7-19 



~ AMD 

7.2.5 

Figure 7·17 

elK 

ADS 

A31-A2 

RDY 

BRDY 

KEN 

BLAST 

Data 

7-20 

An example of the order in which the Am486DX/DX2 microprocessor requests operands 
during. a cycle, in which the external system mixes RDY and BRDY, is shown in 
Figure 7-17. The Am486DX/DX2 microprocessor initially requests a transfer beginning at 
Location 104. The transfer becomes a cache line fill when the external system returns 
KEN active. The first cycle of the cache fill transfers the contents of location 104 and is 
terminated with RDY. The Am486DX/DX2 microprocessor drives out a new request (by 
asserting ADS) to address 100. If the external system terminates the second cycle with 
BRDY, the Am486DXlDX2 microprocessor then requests/expects address 10C. The 
correct order is determined by the first cycle in the transfer, which might not be the first 
cycle in the burst if the system mixes RDY with BRDY. 

8· and i6·Bit Cycles 
The Am486DX/DX2 microprocessor supports both 16- and 8-bit external buses through 
the BS 16 and BSB inputs. BS 16 and BSB allow the external system to specify, on a 
cycle-by-cycle basis, whether the addressed component can supply 8, 16, or 32 bits. 
BS16 and BSB can be used in burst cycles as well as non-burst cycles. If both BS16 and 
BSB are returned active for any bus cycle, the Am486DX/DX2 microprocessor responds 
as if only BSB were active. 

The timing of BS16 and BSB is the same as that of KEN. BS16 and BSB must be driven 
active before the first RDY or BRDY is driven active. 

Driving the BS16 and BSB active can force the Am486DXlDX2 microprocessor to run 
additional cycles to complete what would have been only a single 32-bit cycle. BSB and 
BS16 can change the state of BLAST when they force subsequent cycles from the 
transfer. 

Figure 7-18 shows an example in which BSB forces the Am486DX/DX2 microprocessor to 
run two extra cycles to complete a transfer. The Am486DX/DX2 microprocessor issues a 

Interrupted Burst Cycle with Unobvious Order of Addresses 

Ti I T1 I T2 I T1 I T2 I T2 I T2 Ti 
I I I I I I 

\ / \ / 

X 104 X 100 X X 108 

I I 

W W 
I I 

X I / \ / I \ / I 
I I 
I 

17852A-072 

Bus Operation 



7.2.6 

AMD~ 
request for 24 bits of information. The external system drives BS8 active, indicating that 
only eight bits of data can be supplied per cycle. The Am486DX/DX2 microprocessor 
issues two extra cycles to complete the transfer. 

Extra cycles forced by the BS16 and BS8 should be viewed as independent bus cycles. 
BS16 and BS8 should be driven active for each additional cycle, unless the addressed 
device has the ability to change the number of bytes it can return between cycles. The 
Am486DX/DX2 microprocessor drives BLAST inactive until the last cycle before the 
transfer is complete. 

Refer to Section 7.1.3 for the sequencing of addresses while BS8 or BS16 are active. 

BS8 and BS16 operate during burst cycles exactly the same as non-burst cycles. For 
example, a single non-cacheable read can be transferred by the Am486DX/DX2 micropro­
cessor as four 8-bit burst data cycles. Similarly, a single 32-bit write can be written as four 
8-bit burst data cycles. An example of a burst write is shown in Figure 7-19. Burst writes 
can only occur if BS8 or BS16 is asserted. 

Locked Cycles 
Locked cycles are generated in software for any instruction that performs a read-modify­
write operation. During a read-modify-write operation, the processor can read and 
modify a variable in external memory and be assured that the variable is not accessed 
between the read and write. 

Locked cycles are automatically generated during certain bus transfers. The exchange 
(xchg) instruction generates a locked cycle when one of its operands is memory based. 
Locked cycles are generated when a segment or page table entry is updated and during 
interrupt acknowledge cycles. Locked cycles are also generated when the LOCK 
instruction prefix is used with selected instructions. 

Figure 7·18 8·Bit Bus Size Cycle 

elK 

A31-A2, 
MIlO, DIG, 

WIR 

Data 

Ti I T1 I T2 T1 T2 T1 T2 Ti 
I I 

'I.-----i----J/ 'I.-----i----J/ 'I.-----i----J/ L 

____ ~X~~--~----~--~--~--~~~ 
____ -r~X~~----~~X~~----~~X~_+----~~ 

I I I 

'-lJ W W 
I I I 

X : 7 \ : 7 \ : , 
I I I 
I ~ I 
I CPU I ~~----~:--~~~----
I I I I I I 

17852A-073 

Bus Operation 7·21 



~AMD 
Figure 7·19 Burst Write as a Result of trS8 or IJS"'t6 

7.2.7 

7-22 

ClK 

ADDR 
SPEC 

Data 

Ti T1 T2 T2 T2 T2 Ti 

\ / 

X 'L-

X X X X 'L-

'~T----r---T----~/ 
__ -+-....JX'---+-....J! '\.--I-...L.r= _ 
-------t------t--{==~====JF~r~om~c~pQu~======~~}____ 

17852A-074 

Locked cycles are implemented in hardware with the LOCK pin. When LOCK is active, the 
processor is performing a read-modify-write operation and the external bus should not be 
relinquished until the cycle is complete. Multiple reads or writes can be locked. A locked cycle 
is shown in Figure 7-20. LOCK goes active with the address and bus definition pins at the 
beginning of the first read cycle and remains active until RDY is returned for the last write 
cycle. For unaligned 32-bit read-modify-write operation, the LOCK remains active for the entire 
duration of the multiple cycle. It goes inactive when RDY is returned for the last write cycle. 

When LOCK is active, the Am486DX/DX2 microprocessor recognizes address hold and 
backoff but does not recognize bus hold. It is left to the external system to properly 
arbitrate a central bus when the Am486DXlDX2 microprocessor generates LOCK. 

Pseudo·Locked Cycles 
Pseudo-locked cycles ensure that no other master is given control of the bus during 
operand transfers that take more than one bus cycle. 

Pseudo-locked transfers are indicated by the PLOCK pin. The memory operands must 
be aligned for correct operation of a pseudo-locked cycle. 

PLOCK need not be examined during burst reads. A 64-bit aligned operand can be 
retrieved in one burst (note: this is only valid in systems that do not interrupt bursts). 

The system must examine PLOCK during 64-bit writes since the Am486DX/DX2 
microprocessor cannot burst write more than 32 bits. However, burst can be used within 
each 32-bit write cycle if BS8 or BS16 is asserted. BLAST is deasserted in response to 
BS8 or BS 16. A 64-bit write is driven out as two non-burst bus cycles. BLAST is 
asserted during both writes since a burst is impossible. PLOCK is asserted during the 
first write to indicate that another write follows. This behavior is shown in Figure 7-21. 

Bus Operation 



AMD~ 
Figure 7·20 Locked Bus Cycle 

Ti T1 T2 T1 T2 Ti 

ClK 

ADS \ I \ I 
A31-A2, 

MIlO, Ole, X X 
BE3-BEO 

WIR \ / 

ROY 

I I 

Data QJ ( From: CPU}--

I I 

\ I I r-LOCK I I 
I I 

Read Write 
17852A-075 

Figure 7·21 Pseudo Lock Timing 

Ti T1 T2 T1 T2 Ti 

ClK 

ADS \ / \ / 
A31-A2, 

MIlO, Ole, X X 
BE3-BEO 

W/R 7 
PLOCK X ~ / \ 

RDY 
I I 
I I / BLAST X ~ I L ~ I 
I I 

Data (From: CPU ) ( From :CPU }--

I I 
Wrtte Write 17852A-076 

During all of the cycles where PLOCK is asserted, HOLD is not acknowledged until the cycle 

I 
completes. This results in a large HOLD latency, especially when BS8 or BS16 is asserted. To 
reduce the HOLD latency during these cycles, windows are available between transfers to I 

allow HOLD to be acknowledged during non-cacheable, non-bursted code prefetches. 
I 

Bus Operation 7·23 



~AMD 

7.2.8 

7.2.8.1 

7-24 

PLOCK is asserted since BLAST is negated, but it is ignored and HOLD is recognized during 
the prefetch. 

PLOCK can change several times during a cycle, settling to its final value when the clock 
RDY is retumed. 

Invalidate Cycles 
Invalidate cycles are needed to keep the Am486DX/DX2 microprocessor's intemal cache 
contents consistent with extemal memory. The Am486DX/DX2 microprocessor contains a 
mechanism for listening to writes by other devices to extemal memory. When the processor 
finds a write to a section of extemal memory contained in its intemal cache, the processor's 
intemal copy is invalidated. 

Invalidations use two pins, address hold request (AHOlD) and valid extemal address (EADS). 
There are two steps in an invalidation cycle. First, the extemal system asserts the AHOlD 
input, forcing the Am486DX/DX2 microprocessor to immediately relinquish its address bus. 
Next, the extemal system asserts EADS, indicating that a valid address is on the 
Am486DX/DX2 microprocessor's address bus. Figure 7-22 shows the fastest possible 
invalidation cycle. The Am486DX/DX2 CPU cycle recognizes AHOlD on one ClK edge and 
floats the address bus in response. To allow the address bus to float and avoid contention, 
EADS and the invalidation address should not be driven until the following ClK edge. The 
microprocessor reads the address over its address lines. If the microprocessor finds this 
address in its internal cache, the cache entry is invalidated. Note that the Am486DX/DX2 
microprocessor's address bus is input/output, unlike the 386 microprocessor's bus which is 
output only. 

The Am486DX/DX2 microprocessor immediately relinquishes its address bus in the next 
clock upon assertion of AHOlD. For example, the bus could be three wait states into a read 
cycle. If AHOlD is activated, the Am486DXlDX2 microprocessor immediately floats its 
address bus before ready is returned, terminating the bus cycle. 

When AHOlD is asserted only the address bus is floated, the data bus can remain active. 
Data can be returned for a previously specified bus cycle during address hold (see 
Figure 7-22 and Figure 7-23). 

EADS is normally asserted when an external master drives an address onto the bus. AHOlD 
need not be driven for EADS to generate an intemal invalidate. If EADS alone is asserted 
while the Am486DX/DX2 microprocessor is driving the address bus, it is possible that the 
invalidation address comes from the Am486DX/DX2 microprocessor itself. 

Note that it is also possible to run an invalidation cycle by asserting EADS when HOLD or 
BOFF is asserted. 

Running an invalidation cycle prevents the Am486DX/DX2 microprocessor cache from 
satisfying other internal requests, so invalidations should be run only when necessary. The 
fastest possible invalidation cycle is shown in Figure 7-22, while a more realistic invalidation 
cycle is shown in Figure 7-23. Both examples take one clock of cache access from the rest of 
the Am486DXlDX2 microprocessor. 

Rate of Invalidate Cycles 

The Am486DX/DX2 microprocessor can accept one invalidate per clock except in the 
last clock of a line fill. One invalidate per clock is possible as long as EADS is negated in 
ONE or BOTH of the following cases: 

1. In the clock, RDY or BRDY is returned for the last time. 
2. In the clock following, RDY or BRDY is being returned for the last time. 

Bus Operation 



AMD~ 
Figure 7·22 Fast Internal Cache Invalidation Cycle 

Ti T1 T2 Ti Ti T1 T2 T1 

ClK 
I I 
I I 

ADS \ / \ I I \ I '-i I 

ADDR X 
I 

~ CPU ! q 
I 

AHOlD / I \ I 
I 
I 

EADS W 
I 

RDY 
I I 

Data Gi} QJ 
I I 

/ I \ : ~ BREQ I 
I 

17852A-077 

Figure 7·23 Typical Internal Cache Invalidation Cycle 

Ti T1 T2 Ti Ti Ti T1 T2 

ClK 
I 

\ 
I 

I ADS / I \ 
I 

ADDR X 
I 

~ 
I 

AHOlD / I \ I 
I 
I 

EADS '--V 
I 

RDY 
I 

Data QJ 
I 

BREQ / \ : \ / 

17852A--078 

Bus Operation 7·25 



~AMD 

7.2.8.2 

This definition allows two system designs. Simple designs can restrict invalidates to one 
every other clock. The simple design need not track bus activity. Alternatively, systems 
can request one invalidate per clock if the bus is monitored. 

Running Invalidate Cycles ConculTently with Line Fills 

Precautions are necessary to avoid caching stale data in the Am486DX/DX2 microproces­
sor's cache in a system with a second level cache. An example of a system with a second 
level cache is shown in Figure 7-24. An external device can be writing to main memory 
over the system bus while the Am486DXlDX2 microprocessor is retrieving data from the 
second level cache. The Am486DX/DX2 microprocessor needs to invalidate a line in its 
internal cache if the external device is writing to a main memory address also contained in 
the Am486DXlDX2 microprocessor's cache. 

A potential problem exists if the external device is writing to an address in external 
memory, and at the same time the Am486DX/DX2 microprocessor is reading data from 
the same address in the second level cache. The system must force an invalidation 
cycle to invalidate the data that the Am486DXlDX2 microprocessor has requested during 
the line fill. 

If the system asserts EADS before the first data in the line fill is returned to the 
Am486DX/DX2 microprocessor, the system must return data consistent with the new 
data in the external memory upon resumption of the line fill after the invalidation cycle. 
This is illustrated by the asserted EADS signal labeled in Figure 7-25. 

If the system asserts EADS at the same time or after the first data in the line fill is 
returned (in the same clock that the first RDY or BRDY is returned or any subsequent 
clock in the line fill), the data is read into the Am486DX/DX2 microprocessor's input 
buffers but is not stored in the on-chip cache. This is illustrated by the asserted EADS 
signal labeled 2 in Figure 7-25. The stale data is used to satisfy the request that initiated 
the cache fill cycle. 

Figure 7·24 System with Second Level Cache 

7·26 

Am486 
Microprocessor 

Address, Data, & 
Control Bus .--_----:IIC..-_----. 

Second 
Level 

Cache 

Bus Operation 

17852A~79 



AMD~ 
Figure 7-25 Cache Invalidation Cycle Concurrent with Line Fill 

Ti T1 T2 T2 T2 T2 T2 T2 Ti 

elK 

'\......---r-...JI 

ADDR -------r-JXL--+----'~--~~~---t------t-~===r====== 
I I 

AHOlD 
I I 

, ..... +------__ -+-_...JI I I 
I I 

\1J\.V 
I I 

I 

LV 
I 

Data 

Notes: 
1. Data returned must be consistent if its address equals the invalidation address in this clock. 
2. Data returned is not cached if its address equals the invalidation address in this clock. 

17852A--{l80 

7.2.9 

7.2.10 

Bus Hold 
The Am486DX/DX2 microprocessor provides a bus hold, hold acknowledge protocol 
using the bus hold request (HOLD) and bus hold acknowledge (HLDA) pins. Asserting 
the HOLD input indicates that another bus master desires control of the Am486DX/DX2 
microprocessor's bus. The processor responds by floating its bus and driving HLDA 
active when the current bus cycle or sequence of locked cycles is complete. An example 
of a HOLD/HLDA transaction is shown in Figure 7-26. Unlike the 386 microprocessor, 
the Am486DX/DX2 microprocessor can respond to HOLD by floating its bus and 
asserting HLDA while RESET is asserted. 

Note that HOLD is recognized during unaligned writes (less than or equal to 32 bits) with 
BLAST being active for each write. For greater than 32-bit or unaligned write, HOLD 
recognition is prevented by PLOCK getting asserted. 

The pins floated during bus hold are: BE3-BEO, peD, PWT, WfF{, Ole, MIlO, LOCK, 
PLOCK, ADS, BLAST, 031-00, A31-A2, and DP3-DPO. 

Interrupt Acknowledge 
The Am486DX/DX2 microprocessor generates interrupt acknowledge cycles in response 
to maskable interrupt requests. These requests are generated on the interrupt request 
input (INTR) pin. Interrupt acknowledge cycles have a unique cycle type generated on 
the cycle type pins. 

Bus Operation 7-27 



~AMD 
An example interrupt acknowledge transaction is shown in Figure 7-27. Interrupt acknowl­
edge cycles are generated in locked pairs. Data returned during the first cycle is ignored. 
The interrupt vector is returned during the second cycle on the lower eight bits of the data 
bus. The Am486DX/DX2 microprocessor has 256 possible interrupt vectors. 

The state of A2 distinguishes the first and second interrupt acknowledge cycles. The 
byte address driven during the first interrupt acknowledge cycle is 4 (A31-A3 Low, A2 
High, BE3-BE1 High, and BED Low). The address driven during the second interrupt 
acknowledge cycle is 0 (A31-A2 Low, BE3-BE1 High, and BED Low). 

Figure 7·26 HOLD/HLDA Cycles 

ClK 

A31-A2, M/TO, 
DIG, WIR, 
BE3-BEO 

Data 

HOLD 

HLDA 

7·28 

Ti Ti T1 T2 Ti Ti T1 

I 

\~-r~1 ,~:---~~~_ 
I 
I 

----r---~X[=t===t~~--~I~c== 

I 
( From :cpu) 

I 

I I 
I 
I 
I / I 
I 

Bus Operation 

I 

\ 

17852A-080 

T1 T2 Ti 

\ / 

r---_+~x~~r---_+-----

, 
~--+---~--~ 

, 

I, r-----r-----+-----+,-J , 
17852A-082 



Table 7·9 

7.2.11 

7.2.11.1 

7.2.11.2 

7.2.12 

AMD~ 
Special Bus Cycle Encoding 

BE3 BE2 BE1 BEO Special Bus Cycle 

1 1 1 0 Shutdown 

1 1 0 1 Flush 

1 0 1 1 Halt 

0 1 1 1 Write Back 

Each of the interrupt acknowledge cycles are terminated when the external system 
returns ROY or BROY. Wait states can be added by withholding ROY or BROY. The 
Am486DX/DX2 microprocessor automatically generates four idle clocks between the first 
and second cycles to allow for 8259A recovery time. 

Special Bus Cycles 
The Am486DX/DX2 microprocessor provides four special bus cycles to indicate that 
certain instructions were executed or certain conditions have occurred internally. The 
special bus cycles in Table 7-9 are defined when the bus cycle definition pins are in the 
following state: 

MIlO = 0, DIe = 0 and wi"R = 1. During these cycles the address bus is driven Low while 
the data bus is undefined. 

Two of the special cycles indicate halt or shutdown. Another special cycle is generated when 
the Am486DXlDX2 microprocessor executes an INVD (invalidate data cache) instruction and 
could be used to flush an external cache. The Write Back cycle is generated when the 
Am486DX/DX2 microprocessor executes the WBINVD (write-back invalidate data cache) 
instruction and could be used to synchronize an extemal write-back cache. 

The external hardware must acknowledge these special bus cycles by retuming ROY or 
BRDY. 

Halt Indication Cycle 

The Am486DX/DX2 microprocessor halts as the result of HALT instruction. Signaling its 
entrance into the halt state, a halt indication cycle is performed. The halt indication cycle is 
identified by the bus definition signals in special bus cycle state and a byte address of 2. BED 
and BE2 are the only signals distinguishing halt indication from shutdown indication, which 
drives an address of O. During the halt cycle, undefined data is driven on D31-00. The halt 
indication cycle must be acknowledged by ROY or BROYasserted. 

A halted Am486DXlDX2 microprocessor resumes execution when INTR (if interrupts are 
enabled), NMI, or RESET is asserted. 

Shutdown Indication Cycle 

The Am486DX/DX2 microprocessor shuts down as the result of a protection fault while 
attempting to process a double fault. Signaling its entrance into the shutdown state, a 
shutdown indication cycle is performed. The shutdown indication cycle is identified by the bus 
definition signals in special bus cycle state and a byte address of o. 

Bus Cycle Restart 
In a multimaster system, another bus master can require the use of the bus to enable the 
Am486DX/DX2 microprocessor to complete its current bus request. In this situation the 

Bus Operation 7·29 



~AMD 

7.2.13 

7.2.14 

7-30 

Am486DXlDX2 microprocessor needs to restart its bus cycle after the other bus master 
completes its bus transaction. 

A bus cycle can be restarted if the external system asserts the backoff (BOFF) input. The 
Am486DX/DX2 microprocessor samples the BOFF pin every clock. The Am486DX/DX2 
microprocessor immediately (in the next clock) floats its address, data, and status pins when 
BOFF is asserted (see Figure 7-28). Any bus cycle in progress when BOFF is asserted is 
aborted, and any data returned to the processor is ignored. The same pins that are floated in 
response to HOLD are floated in response to BOFF. HLDA is not generated in response to 
BOFF. BOFF has higher priority than RDY or BRDY. If either RDY or BRDY is returned in the 
same clock as BOFF, BOFF takes effect 

The device asserting BOFF is free to run any cycles it wants while the Am486DX/DX2 
microprocessor bus is in its high impedance state. If backoff is requested after the 
Am486DX/DX2 microprocessor has started a cycle, the new master should wait for memory 
to retum RDY or BRDY before assuming control of the bus. Waiting for ready provides a 
handshake to ensure that the memory system is ready to accept a new cycle. If the bus is 
idle when BOFF is asserted, the new master can start its cycle two clocks after issuing BOFE 

The external memory can view BOFF in the same manner as BLAST. Asserting BOFF tells 
the external memory system that the current cycle is the last cycle in a transfer. 

The bus remains in the high impedance state until BOFF is negated. Upon negation, the 
Am486DX/DX2 microprocessor restarts its bus cycle by driving out the address and status 
and asserting ADS. The bus cycle then continues as usual. 

Asserting BOFF during a burst, BS8, or 8S16 cycle forces the Am486DXIDX2 microproces­
sor to ignore data returned for that cycle only. Data from previous cycles is still valid. For 
example, if BOFF is asserted on the third BRDY of a burst, the Am486DX/DX2 microproces­
sor assumes the data returned with the first and second BRDYs is correct and restarts the 
burst beginning with the third item. The same rule applies to transfers broken into multiple 
cycle by BS8 or 8S16. 

Asserting BOFF in the same clock as ADS causes the Am486DX/DX2 microprocessor to 
float its bus in the next clock and leaves ADS floating Low. Since ADS is floating Low, a 
peripheral might think a new bus cycle has begun, even though the cycle is aborted. There 
are two possible solutions to this problem. The first is for all devices to recognize this 
condition and ignore ADS until RDY comes back. The second approach is to use a ''two 
clock" backoff: in the first clock AHOLD is asserted, and in the second clock BOFF is 
asserted. This guarantees that ADS is not floating Low. This is only necessary in systems 
where BOFF can be asserted in the same clock as ADS. 

Bus States 
A bus state diagram is shown in Figure 7-30. A description of the signals used in the diagram 
is given in Table 7-10. 

Floating.Point Error Handling 
The Am486DXlDX2 microprocessor provides two options for reporting floating-point errors. 
The simplest method is to raise interrupt 16 whenever an unmasked floating-point error 
occurs. This option can be enabled by setting the NE bit in control register 0 (CRO). 

The Am486DX/DX2 microprocessor also provides the option of allowing external hardware to 
determine how floating-point errors are reported. This option is necessary for compatibility with 
the error reporting scheme used in DOS-based systems. The NE bit must be cleared in CRO 
to enable user-defined error reporting. User-<:lefined error reporting is the default condition 
because the NE bit is cleared on reset. 

BuS Operation 



AMD~ 
Two pins, floating-point error (FERR) and ignore numeric error (IGNNE), are provided to direct 
the actions of hardware if user-defined error reporting is used. The Am486DX/DX2 micropro­
cessor asserts the FERR output to indicate that a floating-point error has occurred. FERR 
corresponds to the ERROR pin on the 387 math coprocessor. However, there is a difference 
in the behavior of the two. 

In some cases FERR is asserted when the next floating-point instruction is encountered, and 
in other cases it is asserted before the next floating-point instruction is encountered, depend­
ing upon the execution state of the instruction causing the exception. 

The following class of floating-point exceptions drive FERR at the time the exception occurs 
(I.e., before encountering the next floating-point instruction). 

1. The stack fault, invalid operation, and denormal exceptions on all transcendental instruc­
tions, integer arithmetic instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and 
FBSTP. 

2. Any exceptions on store instructions (including integer store instructions). 

The following class of floating-point exceptions drive FERR only after encountering the next 
floating-point instruction. 

1. Exceptions other than on all transcendental instructions, integer arithmetic instructions, 
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP. 

2. Any exception on all basic arithmetic, load, compare, and control instructions (I.e., all other 
instructions). 

Figure 7·28 Restarted Read Cycle 

Ti T1 T2 Tb Tb T1b T2 T2 T2 T2 

elK 

\ / 
I I I 

/ I I I 
I I I 
I I I 

X 100 100 X 10~ X 1~8 ~ 
I I 1 

A31-A2 -----i-~ 
BE3--BEO 

DIG, MIlO ----+--' 

I I I 1 I 

'---4---1 
1 4-J 4-r: I 
1 

I I I I I 
1 \1 / 1 1 1 
I I I I I 
I 1 I 1 I 

X i 7 i 7 U 
I I I 
I I 

Data 

17852A--083 

Bus Operation 7-31 



~AMD 
Figure 7·29 Restarted Write Cycle 

Ti T1 

ClK 

\ 
ADDR ----+---, 
SPEC ----r~ X 

T2 

/ 

100 

Tb Tb T1b T2 T1 

\ / L , 
100 'L-

I 

\ ....... 1 ---7----11 
I 

-~-+~!~~~~B! Data ( From CPU ) ( From CPU }--

I I 17852A-084 

Table 7·10 Bus State Description 

State 

Ti 

T1 

T2 

T1b 

Tb 

7·32 

Means 

Bus is idle. Address and status signals can be driven to undefined values, or the bus can be floated to 
a high impedance state. 

First clock cycle of a bus cycle. Valid address and status are driven and ADS is asserted. 

Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is 
expected if the cycle is a read. RDY and BRDY are sampled. 

i First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS is asserted. 

Second and subsequent clock cycles of an aborted bus cycle. 

For both sets of exceptions above, the 387 math coprocessor asserts ERROR when the error 
occurs and does not wait for the next floating-point instruction to be encountered. 

IGNNE is an input to the Am486DX/DX2 microprocessor. 

When the NE bit in CRO is cleared and IGNNE is asserted, the Am486DX/DX2 microproces­
sor ignores a user floating-point error and continues executing floating-point instructions. 
When IGNNE is negated, the Am486DX/DX2 microprocessor freezes on floating-point 
instructions that get errors (except for the control instructions FNCLEX, FNINIT, FNSAVE, 
FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI, and FNSETPM). IGNNE can 
be asynchronous to the Am486 DX/DX2 microprocessor clock. 

In systems with user-defined error reporting, the FERR pin is connected to the interrupt 
controller. When an unmasked floating-point error occurs, an interrupt is raised. If IGNNE is 
High at the time of this interrupt, the Am486DX/DX2 microprocessor freezes (disallowing 
execution of a subsequent floating-point instruction) until the interrupt handler is invoked. By 
driving the IGNNE pin Low (when clearing the interrupt request), the interrupt handler allows 
execution of a floating-point instruction, within the interrupt handler, before the error condition 
is cleared (by FNCLEX, FNINIT, FNSAVE, or FNSTENV). If execution of a non-control 

Bus Operation 



AMD~ 
Figure 7·30 Bus State Diagram 

(RDY Asserted + (BRDY • BLAST) Asserted) • 
(HOLD + AHOLD + No Request) • 

BOFF Negated 

Request Pending. 
(RDY Asserted + (BRDY • BLAST) Asserted) • 

HOLD Negated. 

Request Pending • 
HOLD Negated. 
AHOLD Negated. 

BOFF Negated 

AHOLD Negated. 
BOFF Negate~d _--__ 

BOFF Negated 

BOFF Asserted 

BOFF Asserted BOFF Negated 

• HOLD is only factored into this state 
transition if Tb is entered while a non­
cacheable, non-bursted, code prefetch 
is in progress. Otherwise, ignore 
HOLD. 

AHOLD Negated • 
BOFF Negated. 
(HOLD Negated·) 

7.2.15 

17852A-{)85 

floating-point instruction within the floating-point interrupt handler is unnecessary, the 
IGNNE pin can be tied High. 

Floating·Point Error Handling In AT Compatible Systems 
The Am486DX microprocessor provides special features to allow the implementation of 
an AT compatible numerics error reporting scheme. These features DO NOT replace the 
external circuit. Logic is still required that decodes the OUT FO instruction and latches 
the FERR signal. What follows is a description of the use of these Am486DXlDX2 
microprocessor features. 

The features provided by the Am486DX/DX2 microprocessor are the NE bit in the 
Machine Status Register, the IGNNE pin, and the FERR pin. 

The NE bit determines the action taken by the Am486DX/DX2 microprocessor when a 
numerics error is detected. When set, this bit signals that non-DOS compatible error 
handling will be implemented. In this mode the Am486DX/DX2 microprocessor takes a 
software exception (16) if a numerics error is detected. 

If the NE bit is reset, the Am486DX/DX2 microprocessor uses the IGNNE pin to allow an 
external circuit to control the time at which non-control numerics instructions are allowed 

Bus Operation 7·33 



~AMD 

7-34 

to execute. Note that floating-point control instructions such as FNINIT and FNSAVE can 
be executed during a floating-point error condition regardless of the state of IGNNE. 

To process a floating-point error in the DOS environment, the following sequence must 
take place: 

1. The error is detected by the Am486DX/DX2 microprocessor which activates the 
FERR pin. 

2. FERR is latched so that it can be cleared by the OUT FO instruction. 

3. The latched FERR signal activates an interrupt at the interrupt controller. This interrupt 
is usually handled on IRQ13. 

4. The Interrupt Service Routine (ISR) handles the error and then clears the interrupt by 
executing an OUT instruction to port FO. The address FO is decoded externally to clear 
the FERR latch. The IGNNE Signal is also activated by the decoder output. 

5. Usually the ISR then executes an FNINIT instruction or other control instruction 
before restarting the program. FNINIT clears the FERR output. 

Figure 84 illustrates the circuit required to perform this function. Note that this circuit has 
not been tested. It is included as an example of the required error handling logic. 

Note that the IGNNE input allows non-control instructions to be executed prior to the time 
the FERR signal is reset by the Am486DX/DX2 microprocessor. This function is imple­
mented to allow exact compatibility with the AT implementation. Most programs reinitialize 
the floating-point unit before continuing after an error is detected. The floating point unit 
can be reinitialized using one of the following four instructions: FCLEX, FINIT, FSAVE, 
FSTENV. 

Bus Operation 



AMD~ 
Figure 7·31 DOS Compatible Numerics Error Circuit 

RESET 

1/0 PORT Fa 
Address decoder 

I 1 1 d 
Processor Bus 

1 -'1 JV 
CLR 

Q D 

'"" 
FERR 

a 
PR 

L 5V 

A 5V Am486DXlDX2 

CLR ~ CPU 

Q D 

"" 
r-- a 

PR - L 5V - 8259A IGNNE 
Programmable - Interrupt INTR 

IQR13 Controller 

Bus Operation 7·35 





8 Am486DX/DX2 CPU TESTABILITY 

Testing the Am486DX/DX2 microprocessor can be divided into three categories: Built-In 
Self Test (BIST), Boundary Scan, and external testing. BIST performs basic device 
testing on the Am486DX/DX2 CPU, including the non-random logic, control ROM 
(CRaM), translation lookaside buffer (TLB), and on-chip cache memory. Boundary Scan 
provides additional test hooks that conform to the IEEE Standard Test Access Port and 
Boundary Scan Architecture (IEEE Std. 1149.1). The Am486DX/DX2 microprocessor 
also has a test mode in which all of its outputs are three-stated. Additional testing can be 
performed by using the test registers within the Am486DX/DX2 CPU. 

8.1 BUILT·IN SELF TEST (BIST) 
The BIST is initiated by asserting AHOLD (address hold) on the falling edge of RESET. 
AHOLD is a synchronous signal only. It should be asserted in the clock prior to RESET 
going from High to Low to start BIST. FLUSH must also be asserted (driven Low) prior to 
the falling edge of RESET to start BIST. FLUSH must be deasserted (driven High) during 
BIST. A20M must be deasserted (driven High) during the falling edge of RESET to start 
BIST. The BIST takes approximately 2**20 clocks, or approximately 42 milliseconds with 
a 25-MHz Am486DX/DX2 microprocessor. No bus cycles are run by the Am486DX/DX2 
microprocessor until the BIST is concluded. Note that for the Am486DX/DX2 micropro­
cessor, the RESET must be active for 15 clocks with or without BIST being enabled for 
warm resets. 

The results of BIST are stored in the EAX register. The Am486DXlDX2 microprocessor 
has successfully passed the BIST if the contents of the EAX register are zero. If the 
results in EAX are not zero, then the BIST has detected a flaw in the microprocessor. 
The microprocessor performs reset and begins normal operation at the completion of the 
BIST. 

The non-random logic, control ROM, on-chip cache, and TLB are tested during the BIST. 

The cache portion of the BIST verifies that the cache is functional and that it is possible 
to read and write to the cache. The BIST manipulates test registers TR3, TR4, and TR5 
while testing the cache. These test registers are described in Section 8.2. 

The cache testing algorithm writes a value to each cache entry, reads the value back, 
and checks that the correct value was read back. The algorithm may be repeated more 
than once for each of the 512 cache entries using different constants. 

The TLB portion of the BIST verifies that the TLB is functional and that it is possible to 
read and write to the TLB. The BIST manipulates test registers TR6 and TR7 while 
testing the TLB. TR6 and TR7 are described in Section 8.3. 

8.2 ON-CHIP CACHE TESTING 
The on-chip cache testability hooks are designed to be accessible during the BIST and 
for assembly language testing of the cache. 

The Am486DXlDX2 microprocessor contains a cache fill buffer and a cache read buffer. 
For testability writes, data must be written to the cache fill buffer before it can be written 
to a location in the cache. Data must be read from a cache location into the cache read 

Am486DXlDX2 CPU Testability 8-1 

I 

r 



~AMD 

8.2.1 

8.2.1.1 

8.2.1.2 

8.2.1.3 

buffer before the microprocessor can access the data. The cache fill and cache read 
buffer are both 128 bits wide. 

Cache Testing Registers TR3, TR4, and TR5 
Figure 8-1 shows the three cache testing registers: the Cache Data Test Register (TR3), 
the Cache Status Test Register (TR4), and the Cache Control Test Register (TRS). 
External access to these registers is provided through MOV reg, TREG, and MOV 
TREG, reg instructions. 

Cache Data Test Register: TR3 

The cache fill buffer and the cache read buffer can only be accessed through TR3. Data 
to be written to the cache fill buffer must first be written to TR3. Data read from the 
cache read buffer must be loaded into TR3. 

TR3 is 32 bits wide while the cache fill and read buffers are 128 bits wide. 32 bits of data 
must be written to TR3 four times to fill the cache fill buffer. 32 bits of data must be read 
from TR3 four times to empty the cache read buffer. The entry select bits in TRS 
determine which 32 bits of data TR3 accesses in the buffers. 

Cache Status Test Register: TR4 

TR4 handles tag, LRU, and valid bit information during cache tests. TR4 must be loaded 
with a tag and a valid bit before a write to the cache. After a read from a cache entry, 
TR4 contains the tag and valid bit from that entry, as well as the LRU bits and four valid 
bits from the accessed set. 

Cache Control Test Register: TR5 

TRS specifies which testability operation is performed and the set and entry within the set 
that is accessed. 

The 7 -bit set select field determines which of the 128 sets is accessed. 

The functionality of the two entry select bits depends on the state of the control bits. 
When the fill or read buffers are being accessed, the entry select bits point to the 32-bit 
location in the buffer being accessed. When a cache location is specified, the entry 
select bits point to one of the four entries in a set (see Table 8-1). 

Figure 8·1 Cache Test Registers 

31 0 

I I TR3 
Data Cache Data 

'-______________________________ ~ Test Register 

31 11 10 9 8 7 6 5 4 3 2 1 0 

Tag 

~----------------------------~--~~~~~--~--~~~~ 

31 11 10 4 3 2 0 

TR4 
Cache Status 
Test Register 

<-rz--:~/::=---</::'----'/::'--.....c../::---L/::----"/::'----/::"--......L/1----<'-'-----S-el_s_e_,ec_t __ .... I_i_;_,~ry_c,_I'_C_o_n_tro~,1 ~:~h~~fs~~~1 
~ = unused 

8·2 Am4B6DXlDX2 CPU Testability 



Table 8-1 

Control Bfts 

Bit 1 Bit 0 

0 0 

0 1 

1 0 

1 1 

8.2.2 

AMD.:1 

cache Control Bit Encoding and Effect of Control Bits on Entry Select and Set 
Select Functionality 

Operation Entry Select Bfts Functions Set Select Bfts 

Enable { Fill Buffer Write Read Select 32-bit location in filII 
Buffer Read read buffer. -

Periorm Cache Write Select an entry in set. Select a set to write to. 

Periorm Cache Read Select an entry in set. Select a set to read from. 

Periorm Flush Cache - -

Five testability functions can be performed on the cache. The two control bits in TRS 
specify the operation to be executed. The five operations are 

1. Write the cache fill buffer 

2. Perform a cache testability write 

3. Perform a cache testability read 

4. Read the cache read buffer 

S. Perform a cache flush 

Table 8-1 shows the encoding of the two control bits in TRS for the cache testability. 
Table 8-1 also shows the functionality of the entry and set select bits for each control 
operation. 

The cache tests attempt to use as much of the normal operating circuitry as possible. 
Therefore, when cache tests are being performed, the cache must be disabled (the CD 
and NW bits in control register must be set to 1 to disable the cache, see Section S). 

Cache Testability Write 
A testability write to the cache is a two step process. First, the cache fill buffer must be 
loaded with 128 bits of data and TR4 loaded with the tag and valid bit. Next, the contents 
of the fill buffer are written toa cache location. Sample assembly code to do a write is 
given in Figure 8-2. 

Loading the fill buffer is accomplished by first writing to the entry select bits in TRS and 
setting the control bits in TRS to 00. The entry select bits identify one of four 32-bit 
locations in the cache fill buffer to put 32 bits of data. Following the write to TRS, TR3 is 
written with 32 bits of data that are immediately placed in the cache fill buffer. Writing to 
TR3 initiates the write to the cache fill buffer. The cache fill buffer is loaded with 128 
bits of data by writing to TRS and TR3 four times, using a different entry select location 
each time. 

TR4 must be loaded with the 21-bit tag and valid bit (bit 10 in TR4) before the contents 
of the fill buffer are written to a cache location. 

The contents of the cache fill buffer are written to a cache location by writing TRS with a 
control field of 01 , along with the set select and entry select fields. The set select and 
entry select field indicates the location in the cache to be written. The normal cache LRU 
update circuitry updates the internal LRU bits for the selected set. 

Note that a cache testability write can only be done when the cache is disabled for 
replaces (the CO bit in control register 0 is reset to 1). Also note that care must be taken 
when directly writing to entries in the cache. If the entry is set to overlap an area of 

Am486DXlDX2 CPU Testability 8-3 



~AMD 

8.2.3 

8.2.4 

memory that is being used in external memory, that cache entry could inadvertently be 
used instead of the external memory. Of course, this is exactly the type of operation that 
one would desire if the cache were to be used as a high speed RAM. 

Cache Testability Read 
A cache testability read is a two step process. First, the contents of the cache location 
are read into the cache read buffer. Next, the data is examined by reading it out of the 
read buffer. Sample assembly code to do a testability read is given in Figure 8-2. 

Reading the contents of a cache location into the cache read buffer is initiated by writing 
TR5 with the control bits set to 10 and the desired seven-bit set select and two-bit entry 
select. In response to the write to TR5, TR4 is loaded with the 21-bit tag field and the 
single valid bit from the cache entry read. TR4 is also loaded with the three LRU bits and 
four valid bits corresponding to the cache set that was accessed. The cache read buffer 
is filled with the 128-bit value that was found in the data array at the specified location. 

The contents of the read buffer are examined by performing four reads of TR3. Before 
reading TR3, the entry select bits in TR5 must be loaded to indicate which of the four 
32-bit words in the read buffer to transfer into. TR3 and the control bits in TR5 must be 
loaded with 00. The register read of TR3 initiates the transfer of the 32-bit value from the 
read buffer to the specified general purpose register. 

Note that it is very important that the entire 128-bit quantity from the read buffer, and 
also the information from TR4, be read before any memory references are allowed to 
occur. If memory operations are allowed to happen, the contents of the read buffer are 
corrupted. This occurs because the testability operations use hardware that is used in 
normal memory accesses for the Am486DX/DX2 microprocessor, whether the cache is 
enabled or not. 

Flush Cache 
The control bits in TR5 must be written with 11 to flush the cache. None of the other bits 
in TRS have any meaning when 11 is written to the control bits. Flushing the cache 
resets the LRU bits and the valid bits to 0, but does not change the cache tag or data 
arrays. 

When the cache is flushed by writing to TR5, the special bus cycle indicating a cache 
flush to the external system is not run (see Section 7.2.11, Special Bus Cycles). The 
cache should be flushed with the INVD (Invalidate Data Cache) instruction or the 
WBINVD (Write-back and Invalidate Data Cache) instruction. 

8.3 TLB TESTING 

8.3.1 

8·4 

The Am486DX/DX2 microprocessor TLB testability hooks are similar to those in the 386 
microprocessor. The testability hooks have been enhanced to provide added test 
features and to include new features in the Am486DX/DX2 microprocessor. The TLB 
testability hooks are designed to be accessible during the BIST and for assembly 
language testing of the TLB. 

Translation Lookaside Buffer Organization 
The Am486DX/DX2 microprocessor's TLB is four-way set associative and has space for 
eight entries. The TLB is logically split into three blocks (see Figure 8-3). 

The data block is physically split into four arrays, each with space for eight entries. An 
entry in the data block is 22 bits wide, containing a 20-bit physical address and two bits 
for the page attributes. The page attributes are the PCD (page cache disable) bit and the 

Am486DXlDX2 CPU Testability 



Figure 8-2 Sample Assembly Code for Cache Testing 

An example assembly language sequence to perform a cache write is 

eax. ebx. ecx. edx contain the cache line to write 
edi contains the tag information to load 
CRO already says to enable reads/write to TR5 

fill 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 

the cache 
esi,O 
tr5,esi 
tr3,eax 
e8i,4 
tr5,esi 
tr3,ebx 
esi,8 
tr5,esi 
tr3,ecx 
esi,Och 
tr5,esi 
tr3,edx 

buffer 
set up command 
load to TR5 
load data into cache fill buffer 

load the Cache Status Register 

mov tr4,edi load 21-bit tag and valid bit 

perform the cache write 

move8i 1 1 
mov tr5,esi ; write the cache (set 0, entry 0) 

An example assembly language sequence to perform a cache read is 

data into eax, ebx, ecx, edx; status into edi 

read the cache line back 

mov e8i,2 
mov tr5,esi ; do cache testability read (set 0, entry 0) 

read the data from the read buffer 

mov e8i,O 
mov tr5,esi 
mov eax,tr3 
mov esi,4 
mov tr5,esi 
mov ebx,tr3 
mov esi,8 
mov tr5,esi 
mov ecx,tr3 
mov esi,Och 
mov tr5,esi 
mov edx,tr3 

read the status from TR4 

mov edi, tr4 

AMD~ 

17852A--087 

PWT (page write-through) bit. Refer to Section 4.5.4 for a discussion of the PCO and 
PWT bits. 

The tag block is also split into four arrays, one for each of the data arrays. A tag entry is 
21 bits wide, containing a 17 -bit linear address and four protection bits. The protection 
bits are valid (V), user/supervisor (U/S), read/write (R/w) , and dirty (0). 

The third block contains eight three-bit quantities used in the pseudo LRU replacement 
algorithm. These bits are the LRU bits. The LRU replacement algorithm used in the TLB 

Am486DXlDX2 CPU Testability 8-5 



~AMD 

8.3.2 

is the same as that used by the on-chip cache. For a description of this algorithm, refer 
to Section 5.5. 

TLB Test Registers (TR6 and TR7) 
The two TLB test registers are shown in Figure 8-4, TRS is the command test register 
and TR7 is the data test register, External access to these registers is provided through 
MOV reg, TREG, and MOV TREG reg instructions. 

8.3.2.1 Command Test Register (TR6) 

TRS contains the tag information and control information used in a TLB test. Loading 
TRS with tag and control information initiates a TLB write or lockup test. 

Figure 8·3 TLB Organization 

T Tag Page 
17 Bits Protection 

8 Tags Bits -*-- ~ ________ -L_4_B_it_s __ ~ 

Physical 
Address 
20 Bits 

Page 
Attributes 

2 Bits 

~II~ 
~II~ 
~I 11-------1 

~T 
L:rTS 

T 
8 Entries 

-*--

Figure 8-4 TLB Test Registers 

31 12 11 10 9 8 7 6 5 4 0 

Linear Address 

31 12 11 10 9 8 7 6 5 4 320 

17852A--088 

Physical Address I ~CD I PWTI L2L 1 ~ ~!~t~O V/? V / ~ +~~ Data 
~ __________________________ ---'. __ --L. __ -1... ___ ~I-...L. __ ...Ltz1L-.L...Lr-I--r---'VL1~;......,o:.....J Test Register 

f f 
Replacement Pointer Select (Writes) Replacement Pointer (Writes) 

Hit Indication (Lookup) Hit Location (Lookup) = unused 

17852A--089 

8-6 Am486DXlDX2 CPU Testability 



8.3.2.2 

Table 8-2 

Table 8-3 

AMD~ 
TR6 contains three bit fields: a 20-bit linear address (bits 12-31), seven bits for the TLB 
tag protection bits (bits 5-11), and one bit (bit 0) to define the type of operation to be 
performed on the TLB. 

The 20-bit linear address forms the tag information used in the TLB access. The lower 
three bits of the linear address select which of the eight sets are accessed. The upper 
17 bits of the linear address form the tag stored in the tag array. 

The seven TLB tag protection bits are described below. 

V: The valid bit for this TLB entry 

D, 5: The dirty bit for/from the TLB entry 

U, D: The user/supervisor bit for/from the TLB entry 

W, W: The read/write bit for/from the TLB entry 

Two bits are used to represent the D, UlS, and RIW bits in the TLB tag to permit the 
option of a forced miss or hit during a TLB lookup operation. The forced miss or hit 
occurs regardless of the state of the actual bit in the TLB. The meaning of these pairs of 
bits is given in Table 8-2. 

The operation bit in TR6 determines if the TLB test operation is a write or a lockup. The 
function of the operation bit is given in Table 8-3. 

Data Test Register (TR7) 

TR7 contains the information stored or read from the data block during a TLB test 
operation. Before a TLB test write, TR7 contains the physical address and the page 
attribute bits to be stored in the entry. After a TLB test lookup hit, TR7 contains the 
physical address, page attributes, LRU bits, and entry location from the access. 

TR7 contains a 20-bit physical address (bits 31-12), two bits for PCD (bit 11 ) and PWT 
(bit 10), and three bits for the LRU bits (bits 9-7). The LRU bits in TR7 are only used 
during a TLB lookup test. The functionality of TR7 bit 4 differs for TLB writes and 
lookups. The encoding of bit 4 is defined in Table 8-4 and Table 8-5. Finally, TR7 
contains two bits (bits 3-2) to specify a TLB replacement pointer or the location of a TLB 
hit. 

Meaning of a Pair of TR6 Protection Bits 

TR6 Protection TR6 Protection Meaning of TLB Meaning of TLB Lookup 
Bit (B) Bit# (B#) Write Operation Operation 

0 0 Undefined Miss any TLB TAG Bit B 

0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0 

1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1 

1 1 Undefined Match any TLB TAG Bit B 

TR6 Operation Bit Encoding 

TR6 Bit 0 TLB Operation to Be Performed 

0 TLB Write 

1 TLB Lookup 

Am486DXlDX2 CPU Testability 8-7 



~AMD 
Table 8-4 

Table 8-5 

8.3.3 

8.3.4 

8-8 

Encoding of Bit 4 of TR7 on Writes 

TR7 Bit 4 Replacement Pointer Used on TLB Write 

0 Pseudo-LRU Replacement Pointer 

1 Data Test Register Bits 3-2 

Encoding of Bit 4 of TR7 on Lookups 

TR7Bit4 Meaning after TLB Lookup Operation 

0 TLB Lookup Resulted in a Miss 

1 TLB Lookup Resulted in a Hit 

A replacement pointer is used during a TLB write. The pointer indicates which of the four 
entries in an accessed set is to be written. The replacement pOinter can be specified to 
be the internal LRU bits or bits 2-3 in TR7. The source of the replacement pointer is 
specified by TR7 bit 4. The encoding of bit 4 during a write is given in Table 8-4. 

Note that both testability writes and lookups affect the state of the internal LRU bits 
regardless of the replacement pOinter used. All TLB write operations (testability or 
normal operation) cause the written entry to become the most recently used. For 
example, during a testability write with the replacement pointer specified by TR7 bits 
2-3, the indicated entry is written and that entry becomes the most recently used as 
specified by the internal LRU bits. 

There are two TLB testing operations: write entries into the TLB, and perform TLB 
lookups. One major enhancement over TLB testing in the 386 microprocessor is that 
paging need not be disabled while executing testability writes or lookups. 

Note that any time one TLB set contains the same linear address in more than one of its 
entries, looking up that linear address do.es not result in a hit. Therefore, a single linear 
address should not be written to one TLB set more than once. 

TLB Write Test 
To perform a TLB write, TR7 must be loaded followed by a TR6 load. The register 
operations must be performed in this order since the TLB operation is triggered by the 
write to TR6. 

TR7 is loaded with a 20-bit physical address and values for PCD and PWT to be written 
to the data portion of the TLB. In addition, bit 4 of TR7 must be loaded to indicate 
whether to use TR7 bits 3-2 or the internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRy bits in TR7 are not used in a write test. 

TR6 must be written to initiate the TLB write operation. Bit 0 in TR6 must be reset to 0 to 
indicate a TLB write. The 20-bit linear address and the seven page protection bits must 
also be written in TR6 to specify the tag portion of the TLB entry. Note that the three 
least significant bits of the linear address specify which of the eight sets in the data block 
are loaded with the phYSical address data. Thus, only 17 of the linear address bits are 
stored in the tag array. 

TLB Lookup Test 
To perform a TLB lookup, it is only necessary to write the proper tags and control informa­
tion into TR6. Bit 0 in TR6 must be set to 1 to indicate a TLB lookup. TR6 must be loaded 
with a 20-bit linear address and the seven protection bits. To force misses and matches of 

Am486DXlDX2 CPU Testability 



AMD~ 
the individual protection bits on TLB lookups, set the seven protection bits as specified in 
Table 8-2, 

A TLB lookup operation is initiated by the write to TR6, TRl indicates the result of the 
lookup operation following the write to TR6, The hit/miss indication can be found in TRl 
bit 4 (see Table 8-5). 

TRl contains the following information if bit 4 indicates that the lookup test resulted in a 
hit. Bits 2-3 indicate in which set the match occurred, The 22 most significant bits in TRl 
contain the physical address and page attributes contained in the entry. 

Bits 9-1 contain the LRU bits associated with the accessed set The state of the LRU 
bits is previous to their being updated for the current lookup. 

If bit 4 in TRl indicated that the lockup test resulted in a miss, the remaining bits in TR7 
are undefined. 

Again, it should be noted that a TLB testability lookup operation affects the state of the 
LRU bits. The LRU bits are updated if a hit occurred. The entry that was hit becomes the 
most recently used. 

8.4 THREE·STATE OUTPUT TEST MODE 
The Am4860X/OX2 microprocessor provides the ability to float all its outputs and 
bidirectional pins. This includes all pins floated during bus hold, as well as pins that are 
never floated in normal operation of the chip (HLOA, BREQ, FERR, and PCHK), When 
the Am4860X/OX2 microprocessor is in the three-state output test mode, external 
testing can be used to test board connections. 

The three-state test mode is invoked by driving FLUSH Low for two clocks before and 
two clocks after RESET goes Low. The outputs are guaranteed to three-state no later 
than ten clocks after RESET goes Low (see Figure 6-4). The Am4860X/OX2 micropro­
cessor remains in the three-state test mode until the next RESET. 

8.5 Am486DX/DX2 MICROPROCESSOR BOUNDARY SCAN (JTAG) 
The Am4860X/OX2 microprocessor provides additional testability features compatible 
with the IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 
1149.1). The test logic provided allows for testing to ensure that components function 
correctly, that interconnections between various components are correct, and that 
various components interact correctly on the printed circuit board. 

8.5.1 

The boundary scan test logic consists of a boundary scan register and support logic that 
are accessed through a test access port (TAP). The TAP provides a simple serial 
interface that makes it possible to test all Signal traces with only a few probes. 

The TAP can be controlled via a bus master. The bus master can be either automatic 
test equipment or a component (PLD) that interfaces to the four-pin test bus. 

Boundary Scan Architecture 
The boundary scan test logic contains the following elements: 

• TAP, consisting of input pins TMS, TCK, and TOI; and output pin TOO. 

• TAP controller, which interprets the inputs on the test mode select (TMS) line and per­
forms the corresponding operation. The operations performed by the TAP include 
controlling the instruction and data registers within the component. 

Am486DXlDX2 CPU Testability 8-9 



~ AMD 

8.5.2 

8.5.2.1 

8.5.2.2 

• Instruction register (IR), which accepts instruction codes shifted into the test logic on 
the test data input (TOI) pin. The instruction codes are used to select the specific test 
operation to be performed or the test data register to be accessed. 

• Test data registers: The Am4860XIDX2 microprocessor contains three test data reg­
isters: Bypass register (BPR), Oevice Identification register (010), and Boundary 
Scan register (BSR). 

The instruction and test data registers are separate shift-register paths connected in 
parallel that have a common serial data input and a common serial data output connected 
to the TAP signals, TOI and TOO, respectively. 

Data Registers 
The Am4860X/OX2 CPU contains the two required test data registers; bypass register 
and boundary scan register. In addition, they also have a device identification register. 

Each test data register is serially connected to TOI and TOO, with TOI connected to the 
most significant bit and TOO connected to the least significant bit of the test data 
register. Oata is shifted one stage (bit position within the register) on each rising edge of 
the test clock (TCK). 

In addition, the Am4860X/OX2 CPU contains a RUNBIST register to support the 
RUNBIST boundary scan instruction. 

Bypass Register (BPR) 

The BPR is a one-bit shift register that provides the minimal length path between TOI and 
TOO. This path can be selected when no test operation is being performed by the 
component to allow rapid movement of test data to and from other components on the 
board. While the BPR is selected, data is transferred from TOI to TOO without inversion. 

Boundary Scan Register (BSRl 

The BSR is a single shift register path containing the boundary scan cells that are 
connected to all input and output pins of the Am4860X/OX2 CPU. Figure 8-5 shows the 
logical structure of the BSR. While output cells determine the value of the signal driven on 
the corresponding pin, input cells only capture data; they do not affect the normal 
operation of the device. Oata is transferred without inversion from TOI to TOO through the 
BSR during scanning. The BSR can be operated by the EXTEST and SAMPLE instruc­
tions. The boundary scan register order is described in Section 8.5.5. 

8.5.2.3 Device Identification Register (DID) 

The 010 contains the manufacturer's identification code, part number code, and version 
code in the format shown in Figure 8-6. Table 8-6 lists the codes corresponding to the 
Am4860X/OX2 CPU. 

8.5.2.4 RUNBIST Register 

The RUNBIST register is a one-bit register used to report the results of the Am4860X/OX2 
CPU BIST when it is initiated by the RUNBIST instruction. This register is loaded with a 
"1" prior to invoking the B 1ST and is loaded with "0" upon successful completion. 

Table 8-& Component Codes 

Component Code Version Code Part Number Code Manufacturer Identity 
Am4B6 CPU (Ax) OOH 0410H 09H 

Am4B6 CPU (8x) OOH 0411H 09H 

8·10 Am486DXlDX2 CPU Testability 



AMD~ 
Figure 8·5 Logical Structure of Boundary Scan Register 

System 
Logic 
Input 

TCK 

TDI 

Boundary Scan Register 

--------------------------, I 

System 
Logic 

TDO 

System 
Bidirectional 
Pin 

System 
Three-State 

, Output 

17B52A-090 

Figure 8-6 Fonnat of Device Identification Register 

/31 302928/2726 2524 23 2221201918171615 1413J2 11 10 9 8 7 6 5 4 3 2 1/0/ 

Version 

8.5.3 

8.5.3.1 

Part Number 
Manufacturer 

1 Identity 

/ 17852A-091 

Instruction Register 
The IR allows instructions to be serially shifted into the device. The instruction selects the 
particular test to be performed, the test data register to be accessed, or both. The instruction 
register is four bits wide. The most significant bit is connected to TDI and the least 
significant bit is connected to TDO. There are no parity bits associated with the IR. Upon 
entering the Capture-IR TAP controller state, the instruction register is loaded with the 
default instruction "0001 ", SAMPLE/PRELOAD. Instructions are shifted into the instruction 
register on the rising edge of TCK while the TAP controller is in the Shift-IR state. 

Am486DX/DX2 CPU Boundary Scan Instruction Set 

The Am486DXlDX2 CPU supports all three mandatory boundary scan instructions 
(BYPASS, SAMPLE/PRELOAD, and EXTEST) along with two optional instructions 
(IDCODE and RUNBIST). Table 8-7 lists the Am486DXlDX2 CPU boundary scan 
instruction codes. The instructions listed as PRIVATE cause TDO to become enabled in 
the Shift-DR state and cause "0" to be shifted out of TDO on the rising edge of TCK. 
Execution of the PRIVATE instructions does not cause hazardous operation of the 
Am486DX/DX2 CPU. 

Am486DXlDX2 CPU Testability 8-11 



;t1 AMD 

Table 8-7 

8-12 

Boundary Scan Instruction Codes 

Instruction Code Instruction Name 

0000 EXT EST 
0001 SAMPLE 
0010 IDCODE 

0011 PRIVATE 
0100 PRIVATE 
0101 PRIVATE 
0110 PRIVATE 
0111 PRIVATE 
1000 RUNBIST 
1001 PRIVATE 
1010 PRIVATE 
1011 PRIVATE 
1100 PRIVATE 
1101 PRIVATE 
1110 PRIVATE 
1111 BYPASS 

EXT EST 
The instruction code is "0000". The EXTEST instruction allows testing of circuitry external 
to the component package, typically board interconnects. It does so by driving the values 
loaded into the Am486DXIDX2 CPU's BSR out on the output pins corresponding to each 
boundary scan cell. It then captures the values on Am486DX/DX2 CPU input pins to be 
loaded into their corresponding BSR locations. I/O pins are selected as input RUNBIST or 
output depending on the value loaded into their control setting locations in the BSR. Val­
ues shifted into input latches in the BSR are never used by the internal logic of the 
Am486DX/DX2 CPU. 

Note: 
After using the EXTEST instruction, the Am486DX/DX2 CPU must be reset before normal (non­
boundary scan) use. 

SAMPLE/PRELOAD 
The instruction code is "0001". The SAMPLE/PRELOAD has two functions that it per­
forms. When the TAP controller is in the Capture-DR state, the SAMPLE/PRELOAD 
instruction allows a "snapshot" of the normal operation of the component without inter­
fering with that normal operation. The instruction causes BSR cells associated with out­
puts to sample the value being driven by the Am486DXlDX2 CPU. It causes the cells 
associated with inputs to sample the value being driven into the Am486DX/DX2 CPU. 
On both outputs and inputs, the sampling occurs on the rising edge of TCK. When the 
TAP controller is in the Update-DR state, the SAMPLE/PRELOAD instruction preioads 
data to the device pins to be driven to the board by executing the EXTEST instruction. 
Data is preloaded to the pins from the BSR on the falling edge of TCK. 

IDCODE 
The instruction code is "0010". The IDCODE instruction selects the DID to be connected 
to TDI and TDO, allowing the device identification code to be shifted out of the device on 
TDO. Note that the DID is not altered by data being shifted in on TDI. 

BYPASS 
The instruction code is "1111". The BYPASS instruction selects the bypass register to be 
connected to TDI or TDO, effectively bypassing the test logic on the Am486DX/DX2 

Am486DXlDX2 CPU Testability 



8.5.4 

8.5.4.1 

8.5.4.2 

AMOr. 

microprocessor by reducing the shift length of the device to one bit. Note that an open 
circuit fault in the board level test data path causes the bypass register to be selected fol­
lowing an instruction scan cycle due to the pull-up resistor on the TDI input. This has been 
done to prevent any unwanted interference with the proper operation of the system logic. 

RUNBIST 
The instruction code is "1000", The RUNBIST instruction selects the one (1) bit runbist 
register, loads a value of "1" into the runbist register, and connects it to TDO. It also initi­
ates the built-in self test (BIST) feature of the Am486DX/DX2 CPU, which is able to 
detect approximately 60% of the stuck-at faults on the Am486DX/DX2 CPU. The 
Am486DX/DX2 CPU AC/DC specifications for Vee and ClK must be met and RESET 
must have been asserted at least once prior to executing the RUNBIST boundary scan 
instruction. After loading the RUNBIST instruction code in the instruction register, the 
TAP controller must be placed in the Run-Test-Idle state. BIST begins on the first rising 
edge of TCK after entering the Run-Test-Idle state. The TAP controller must remain in 
the Run-Test-Idle state until BIST is completed. It requires 1.2 million ClK cycles to com­
plete 81ST and report the result to the runbist register. After completing the 1.2 million 
ClK cycles, the value in the runbist register should be shifted out on TDO during the 
Shift-DR state. A value of "0" being shifted out on TDO indicates BIST successfully com­
pleted. A value of "1" indicates a failure. After executing the RUNBIST instruction, the 
Am486DX/DX2 CPU must be reset prior to normal operation. 

Test Access Port (TAP) Controller 
The TAP controller is a synchronous, finite state machine. It controls the sequence of 
operations of the test logic. The TAP controller changes state only in response to the 
following events: 

1. a rising edge of TCK 

2. power-up 

The value of the test mode state (TMS) input signal at a rising edge of TCK controls the 
sequence of the state changes. The state diagram for the TAP controller is shown in 
Figure 8-7. Test designers must consider the operation of the state machine in order to 
design the correct sequence of values to drive on TMS. 

Test.Logic·Reset State 

In this state, the test logic is disabled so that normal operation of the device can 
continue unhindered. This is achieved by initializing the instruction register such that the 
IDCODE instruction is loaded. No matter what the original state of the controller, the 
controller enters Test-logic-Reset state when the TMS input is held High (1) for at least 
five rising edges of TCK. The controller remains in this state while TMS is High. The TAP 
controller is also forced to enter this state at power-up. 

Run·Test·ldle State 

This is controller state between scan operations. Once in this state, the controller 
remains in this state as long as TMS is held low. In devices supporting the RUNBIST 
instruction, the BIST is performed during this state and the result is reported in the 
runbist register. For instruction not causing functions to execute during this state, no 
activity occurs in the test logic. The instruction register and all test data registers retain 
their previous state. When TMS is High and a rising edge is applied to TCK, the 
controller moves to the Select-DR state. 

Am4860XlOX2 CPU Testability 8·13 



~AMD 
Figure 8·7 TAP Controller State Diagram 

8.5.4.3 

8.5.4.4 

8·14 

17852A-092 

Select·DR·Scan State 

This is a temporary controller state. The test data register selected by the current 
instruction retains its previous state. If TMS is held Low and a rising edge is applied to 
TCK when in this state, the controller moves into the Capture-DR state and a scan 
sequence for the selected test data register is initiated. If TMS is held High and a rising 
edge is applied to TCK, the controller moves to the Select-IR-Scan state. 

The instruction does not change in this state. 

Capture· DR State 

In this state, the BSR captures input pin data if the current instruction is EXTEST or 
SAMPLE/PRELOAD. The other test data registers, which do not have parallel input, are 
not changed. 

Am486DXlDX2 CPU Testability 



8.5.4.5 

8.5.4.6 

8.5.4.7 

8.5.4.8 

8.5.4.9 

AMO~ 
The instruction does not change in this state" 

When the TAP controller is in this state and a rising edge is applied to TCK, the control­
ler enters the Exit1-DR state if TMS is High, or the Shift-DR state if TMS is Low" 

Shift· DR State 

In this controller state, the test data register connected between TDI and TOO as a 
result of the current instruction shifts data one stage toward its serial output on each 
rising edge of TCK. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-DR state if TMS is High, or remains in the Shift-DR state if TMS is Low. 

Exit1·DR State 

This is a temporary state. While in this state, if TMS is held High, a riSing edge applied to 
TCK causes the controller to enter the Update-DR state, which terminates the scanning 
process. If TMS is held Low and a rising edge is applied to TCK. the controller enters the 
Pause-DR state. 

The test data register selected by the current instruction retains its previous value during 
this state" The instruction does not change in this state" 

Pause· DR State 

The pause state allows the test controller to temporarily halt the shifting of data through 
the test data register in the serial path between TDI and TOO. An example of using this 
state could be to allow a tester to reload its pin memory from disk during application of a 
long test sequence. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

The controller remains in this state as long as TMS is Low. When TMS goes High and a 
riSing edge is applied to TCK, the controller moves to the Exit2-DR state" 

Exit2-DR State 

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to 
TCK causes the controller to enter the Update-DR state, which terminates the scanning 
process" If TMS is held Low and a rising edge is applied to TCK, the controller enters the 
Shift-DR state. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

Update· DR State 

The BSR is provided with a latched parallel output to prevent changes at the parallel 
output while data is shifted in response to the EXT EST and SAMPLE/PRELOAD 
instructions. When the TAP controller is in this state and the BSR is selected, data is 
latched onto the parallel output of this register from the shift-register path on the falling 
edge of TCK. The data held at the latched parallel output does not change other than in 
this state" 

All shift-register stages in test data register selected by the current instruction retain their 
previous values during this state. The instruction does not change in this state. 

Am4860XlOX2 CPU Testability 8-15 



~ AMD 

8.5.4.10 

8.5.4.11 

8.5.4.12 

8.5.4.13 

8.5.4.14 

8.5.4.15 

8·16 

Select·IR·Scan State 

This is a temporary controller state. The test data register selected by the current 
instruction retains its previous state. If TMS is held Low and a rising edge is applied to 
TCK when in this state, the controller moves into the Capture-IR state and a scan 
sequence for the instruction register is initiated. If TMS is held High and a rising edge is 
applied to TCK, the controller moves to the Test-Logic-Reset state. 

The instruction does not change in this state. 

Capture·IR State 

In this controller state the shift register contained in the instruction register loads the 
fixed value "0001" on the rising edge of TCK. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

When the controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-IR state if TMS is held High, or the Shift-IR state if TMS is held Low. 

Shift·IR State 

In this state the shift register contained in the instruction register is connected between 
TDI and TOO, and shifts data one stage towards its serial output on each rising edge of 
TCK. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

When the controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-IR state if TMS is held High, or remains in the Shift-IR state if TMS is 
held Low. 

Exit1·IR State 

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to 
TCK causes the controller to enter the Update-IR state, which terminates the scanning 
process. If TMS is held Low and a rising edge is applied to TCK, the controller enters the 
Pause-IR state. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

Pause·IR State 

The pause state allows the test controller to temporarily halt the shifting of data through 
the instruction register. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

The controller remains in this state as long as TMS is Low. When TMS goes High and a 
rising edge is applied to TCK, the controller moves to the Exit2-IR state. 

Exit2-IR State 

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to 
TCK causes the controller to enter the Update-IR state, which terminates the scanning 
process. If TMS is held Low and a rising edge is applied to TCK, the controller enters the 
Shift-IR state. 

Am486DXlDX2 CPU Testability 



8.5.4.16 

8.5.5 

8.5.6 

AMD~ 
The test data register selected by the current instruction retains its previous value during 
this statec The instruction does not change in this state. 

Update·IR State 

The instruction shifted into the instruction register is latched onto the parallel output from 
the shift-register path on the falling edge of TCK. Once the new instruction has been 
latched, it becomes the current instruction. 

Test data registers selected by the current instruction retain the previous value. 

Boundary Scan Register Cell 
The BSR contains a cell for each pin, as well as cells for control of liD and three-state 
pins. 

The following is the bit order of the Am486DX/DX2 CPU BSR: (from left to right and top to 
bottom). 

TDI -->WRCTL ABUSCTL BUSCTL MISCCTL 
ADS BLAST PLOCK LOCK PCHK 
(BRDY BOFF BS16 BS8 RDY KEN) 
HOLD AHOlD ClK HlDA W/Fi. BREQ BED 
BE1 BE2 BE3 MilO Die PWT PCD 
EADS A2DM RESET FLUSH INTR NMI 
FERR IGNNE D31 D30 D29 D28 D27 D26 
D25 D24 DP3 D23 D22 D21 D20 D19 D18 D17 
D16 DP2 D15 D14 D13 D12 D11 D10 D9 D8 
DP1 D7 D6 D5 D4 D3 D2 D1 DO DPO A31 A30 
A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 
A19 A18 Ai7 A16 A15 A14 A13 A12 A11 A10 
A9 A8 A7 A6 RESERVED A5 A4 A3 
A2-->TDO 

"RESERVED" corresponds to no connect "NC" signals on the Am486DX/DX2 CPU. 

All the CTL cells are control cells that are used to select the direction of bidirectional pins 
or three-state output pins. If "1" is loaded into the control cell (CTl), the associated 
pin(s) are three-stated or selected as input. The following lists the control cells and their 
corresponding pins. 

1. WRCTL controls the D31-DO and DP3-DPO pins. 

2. ABUSCTl controls the A31-A2 pins. 

3. BUSCTL controls the ADS, BLAST, PLOCK, LOCK, W/Fi., BED, BE1, BE2, BE3, MilO, 
Die, PWT, and PCD pins. 

4. MISCCTl controls the PCHK, HLDA, and BREQ pins. 

Tap Controller Initialization 
The TAP controller is automatically initialized when a device is powered up. In addition, 
the TAP controller can be initialized by applying a high signal level on the TMS input for 
five TCK periods. 

Am486DXlDX2 CPU Testability 8-17 





""QP'!' 
9 DEBUGGING SUPPORT 

The Am486DX/DX2 microprocessor provides several features that simplify the debug­
ging process. The three categories of on-chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH) 

2. The single-step capability provided by the TF bit in the flag register 

3. The code and data breakpoint capability provided by the Debug Registers DR3-DRO, 
DR6, and DR? 

9.1 BREAKPOINT INSTRUCTION 
A single-byte-opcode breakpoint instruction is available for use by software debuggers. 

The breakpoint opcode is OCCH and generates an exception 3 trap when executed. In 
typical use, a debugger program can "plant" the breakpoint instruction at all desired code 
execution breakpoints. The single-byte breakpoint opcode is an alias for the two-byte 
general software interrupt instruction, INT n, where n = 3. The only difference between 
INT 3 (OCCH) and INT n is that INT 3 is never IOPL-sensitive but INT n is IOPL-sensitive 
in Protected Mode and Virtual 8086 Mode. 

9.2 SINGLE·STEP TRAP 
If the single-step flag (TF, bit 8) in the EFLAGS register is found to be set at the end of 
an instruction, a single-step exception occurs. The single-step exception is auto 
vectored to exception number 1. Precisely, exception 1 occurs as a trap after the 
instruction following the instruction that set TF. In typical practice, a debugger sets the 
TF bit of a flag register image on the debugger's stack. It then typically transfers control 
to the user program and loads the flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it occurs after the instruction has already 
executed), the CS:EIP pushed onto the debugger's stack points to the next unexecuted 
instruction of the program being debugged. An exception 1 handler, merely by ending 
with an IRET instruction, can therefore efficiently support single-stepping through a user 
program. 

9.3 DEBUG REGISTERS 
The Debug Registers are an advanced debugging feature of the Am486DX/DX2 
microprocessor. They allow data access breakpoints as well as code execution break­
pOints. Since the breakpoints are indicated by on-Chip registers, an instruction execution 
breakpoint can be placed in ROM code or in code shared by several tasks, neither of 
which can be supported by the INT 3 breakpoint opcode. 

The Am486DXlDX2 microprocessor contains six Debug Registers, providing the ability to 
specify up to four distinct breakpoint addresses, breakpoint control options, and read 
breakpoint status. Initially after reset, breakpoint are in the disabled state. Therefore, no 
breakpoints occur unless the debug registers are programmed. Breakpoints set up in the 
Debug Registers are autovectored to exception number 1. 

Debugging suppon 9·1 



~AMD 
9.3.1 

9.3.2 

9.3.2.1 

Linear Address Breakpoint Registers (DR3-DRO) 
Up to four breakpoint addresses can be specified by writing into Debug Registers 
DR3-DRO, shown in Figure 9-1, The breakpoint addresses specified are 32-bit linear 
addresses. Am486DX/DX2 microprocessor hardware continuously compares the linear 
breakpoint addresses in DR3-DRO with the linear addresses generated by executing 
software. (A linear address is the result of computing the effective address and adding 
the 32-bit segment base address.) Note that if paging is not enabled, the linear address 
equals the physical address. If paging is enabled, the linear address is translated to a 
physical 32-bit address by the on-chip paging unit. However, regardless of whether 
paging is enabled or not, the breakpoint registers hold linear addresses. 

Debug Control Register (DR7) 
A Debug Control Register, DR?, (see Figure 9-1), allows several debug control functions 
such as enabling the breakpoints and setting up other control options for the break­
points. The fields within the DR? are as follows: 

Breakpoint Length Specification Bits (LENi) 

A 2-bit LEN field exists for each of the four breakpoints. LEN specifies the length of the 
associated breakpoint field. The choices for data breakpoints are: 1 byte, 2 bytes, and 4 
bytes. Instruction execution breakpoints must have a length of 1 (LENi = 00), Encoding 
of the LENi field is shown in Figure 9-1, 

The LENi field controls the size of breakpoint field i by controlling whether all low-order 
linear address bits in the breakpoint address register are used to detect the breakpoint 
event. Therefore, all breakpoint fields are aligned; 2-byte breakpoint fields begin on word 
boundaries, and 4-byte breakpoint fields begin on dword boundaries (see Table 9-1), 

Figure 9-2 is an example of various size breakpoint fields. Assume the breakpoint linear 
address in DR2 is 00000005H. In that situation, Figure 9-2 indicates the region of the 
breakpoint field for lengths of 1, 2, or 4 bytes. 

Figure 9·1 Debug Registers 

31 1615 

Breakpoint 0 Linear Address 

Breakpoint 1 Linear Address 

Breakpoint 2 Linear Address 

Breakpoint 3 Linear Address 

Reserved. Do Not Define. 

Reserved. Do Not Define. 

B B B 
0 T S 0 o 0 a a a 

LEN IR I~I LEN I ~I ~ LEN IR Iwl LEN I Rlw a 0 G a 0 oG L 
333222111000 0 E E 

31 1615 

Note: 
o indicates AMO reserved: Do not define: see Section 2.3.10 

9·2 Debugging Support 

B a a a a 3 

G L G L G 
3 3 2 2 1 

o 

B B B 
2 1 a 

L G L 
1 a a 

a 

ORO 

DRI 

DR2 

DR3 

DR4 

DR5 

DR6 

DR? 

17852A-093 



AMD~ 
Table 9-1 Debug Registers LENi Encoding 

LENi Encoding Breakpoint Field Width Use of Least Significant Bits in Breakpoint Address Register i, (i = 0-3) 

00 1 byte All 32-bits used to specify a single-byte breakpoint field. 

01 2 bytes A31-A 1 used to specify a two-byte, word-aligned breakpoint field. AO in 
Breakpoint Address Register is not used. 

10 Undefined-do not use this 
encoding 

11 4 bytes A31-A2 used to specify a four-byte, dword-aligned breakpoint field. AO and 
A 1 in Breakpoint Address Register are not used. 

Figure 9·2 Debug Registers Breakpoint Fields 

9.3.2.2 

DR2 = 00000005H; LEN2 = OOB 

1

31 
1 1 b~,"~ 1 1 

DR2 = 00000005H; LEN2 = 01 B 

1

31 
1 I_bk"!'~~ 

DR2 = 00000005H; LEN2 = 11 B 

131~ 
+"' ~l 

RWi (Memory Access Qualifier Bits) 

00000008H 

00000004H 

OOOOOOOOH 

00000008H 

00000004H 

OOOOOOOOH 

00000008H 

00000004H 

OOOOOOOOH 1 7852A-{l93 

A 2-bit RW field exists for each of the four breakpoints. The 2-bit RW field specifies the 
type of usage that must occur in order to activate the associated breakpoint (see 
Table 9-2). 

RW encoding 00 is used to set up an instruction execution breakpoint. RW encodings 01 
or 11 are used to set up write-only or read/write data breakpoints. 

Note: Instruction execution breakpoints are taken as faults (i.e., before the instruction executes), 
but data breakpoints are taken as traps (i.e., after the data transfer takes place). 

Debugging Support 9-3 



~AMD 
Table 9-2 

9.3.2.3 

9.3.2.4 

9.3.2.5 

9.3.2.6 

9·4 

Debug Registers RW Encoding 

RWEncoding Usage Causing Breakpoint 

00 Instruction execution only 

01 Data wr~es only 

10 Undefined-do not use this encoding 

11 Data reads and writes only 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear address into DRi (i = 0-3). For data 
breakpoints, RWi can = 01 (write-only) or 11 (write/read). LEN can = 00, 01, or 11. 

If a data access falls entirely or partly within the data breakpoint field, the data break­
point condition has occurred, and if the breakpoint is enabled, an exception 1 trap then 
occurs. 

Using LENi and RWi to Set Instruction Execution Breakpoint i 

An instruction execution breakpoint can be set up by writing the address of the begin­
ning of the instruction (including prefixes, if any) into DRi (i = 0-3). RWi must = 00 and 
LEN must = 00 for instruction execution breakpoints. 

If the instruction beginning at the breakpoint address is about to be executed, the 
instruction execution breakpoint condition has occurred; and if the breakpoint is enabled, 
an exception 1 fault occurs before the instruction is executed. 

Note: An instruction execution breakpoint address must equal the beginning byte address of an 
instruction (including prefixes) in order for the instruction execution breakpoint to occur. 

Global Debug Register Access Detect (GD) 

The Debug Registers can only be. accessed in Real Mode or at privilege level 0 in 
Protected Mode. The GD bit, when set, provides extra protection against any Debug 
Register access, even in Real Mode or at privilege level 0 in Protected Mode. This 
additional protection feature guarantees that a software debugger can have full control 
over the Debug Register resources when required. The GD bit, when set, causes an 
exception 1 fault if an instruction attempts to read or write any Debug Register. The GD 
bit is then automatically cleared when the exception 1 handler is invoked, allowing the 
exception 1 handler free access to the debug registers. 

Exact Data Breakpoint Match Global (GEl and Exact Data Breakpoint Match 
Local (LE) 

The breakpoint mechanism of the Am486DXlDX2 microprocessor differs from that of the 
Am386 CPU. The Am486DX/DX2 microprocessor always does exact data breakpoint 
matching, regardless of GE/LE bit settings. Any data breakpoint trap is reported exactly 
after completion of the instruction that caused the operand transfer. Exact reporting is 
provided by forcing the Am486DX/DX2 microprocessor execution unit to wait for 
completion of data operand transfers before beginning execution of the next instruction. 

When the Am486DX/DX2 microprocessor performs a task switch, the LE bit is cleared. 
Thus, the LE bit supports fast task switching out of tasks that have enabled the exact 
data breakpoint match for their task-local breakp.oints. The LE bit is cleared by the 
processor during a task switch to avoid having exact data breakpoint match enabled in 

Debugging Support 



9.3.2.7 

9.3.3 

9.3.3.1 

AMD~ 
the new task. Note that exact data breakpoint match must be re-enabled under software 
control. 

The Am486DX/DX2 microprocessor GE bit is unaffected during a task switch. The GE bit 
supports the exact data breakpoint match that is to remain enabled during all tasks 
executing in the system. 

Note: Instruction execution breakpoints are a/ways reported exactly. 

Breakpoint Enable Global (Gi) and Breakpoint Enable Local (Li) 

If either Gi or Li is set, then the associated breakpoint (as defined by the linear address 
in DRi, the length in LENi, and the usage criteria in RWi) is enabled. If either Gi or Li is 
set and the Am486DX/DX2 microprocessor detects the ith breakpoint condition, then the 
exception 1 handler is invoked. 

When the Am486DX/OX2 microprocessor performs a task switch to a new Task State 
Segment (TSS), all Li bits are cleared. Thus, the Li bits support fast task switching out of 
tasks that use some task-local breakpoint registers. The Li bits are cleared by the 
processor during a task switch to avoid spurious exceptions in the new task. Note that 
the breakpoints must be re-enabled under software control. 

All Am486DX/DX2 microprocessor Gi bits are unaffected during a task switch. The Gi 
bits support breakpoints that are active in all tasks executing in the system. 

Debug Status Register (DRS) 
A Debug Status Register, DR6, (see Figure 9-1), allows the exception 1 handler to easily 
determine why it was invoked. Note the exception 1 handler can be invoked as a result 
of one of several events: 

1. DRO Breakpoint fault/trap 

2. DR1 Breakpoint fault/trap 

3. DR2 Breakpoint fault/trap 

4. DR3 Breakpoint fault/trap 

5. Single-step (TF) trap 

6. Task switch trap 

7. Fault due to attempted debug register access when GO = 1 

The Debug Status Register contains single-bit flags for each of the possible events 
invoking exception 1. Note below that some of these events are faults (exceptions taken 
before the instruction is executed), while other events are traps (exceptions taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never cleared by hardware. Exception 1 
handler software should clear DR6 before returning to the user program to avoid future 
confusion in identifying the source of exception 1. 

The fields within the DR6 are as follows: 

Debug Fault/Trap Due to Breakpoint 0-3 (Bi) 

Four breakpoint indicator flags, B3-BO, correspond one-to-one with the breakpoint 
registers in DR3-DRO. A flag Bi is set when the condition described by DRi, LENi, and 
RWi occurs. 

Debugging Support 9·5 



~AMD 

9.3.3.2 

9.3.3.3 

9.3.3.4 

9.3.4 

9·6 

If Gi or Li is set and if the ith breakpoint is detected, the processor invokes the exception 
1 handler. The exception is handled as a fault if an instruction execution breakpoint 
occurred, or as a trap if a data breakpoint occurred. 

Note: A flag Bi is set whenever the hardware detects a match condition on enabled breakpoint i. 
Whenever a match is detected on at least one enabled breakpoint i, the hardware immediately 
sets all Bi bits corresponding to breakpoint conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler can see that multiple Bi bits are set, but only set Bi bits 
corresponding to enabled breakpoints (Li or Gi set) are true indications of why the exception 1 
handler was invoked. 

Debug Fault Due to AHempted Register Access when GD Bit Set (BD) 

This bit is set if the exception 1 handler is invoked due to an instruction attempting to 
read or write to the debug registers when GD bit was set. If such an event occurs, then 
the GD bit is automatically cleared when the exception 1 handler is invoked, allowing 
handler access to the debug registers. 

Debug Trap Due to Single·Step (BS) 

This bit is set if the exception 1 handler is invoked due to the TF bit in the flag register 
being set (for single-stepping). 

Debug Trap Due to Task Switch (BT) 

This bit is set if the exception 1 handler is invoked due to a task switch occurring to a 
task having an Am486DX/DX2 microprocessor TSS with the T bit set. Note the task 
switch into the new task occurs normally, but before the first instruction of the task is 
executed, the exception 1 handler is invoked. With respect to the task switch operation, 
the operation is considered to be a trap. 

Use of Resume Flag (RF) in Flag Register 
The Resume Flag (RF) in the flag word can suppress an instruction execution break­
point. This occurs when the exception 1 handler returns to a user program at a user 
address that is also an instruction execution breakpoint. 

Debugging Support 



1 0 INSTRUCTION SET SUMMARY 

This section describes the Am486DX/DX2 microprocessor instruction set. Table 10-1 
through Table 10-5 list all instructions along with instruction encoding diagrams and clock 
counts. Further details of the instruction encoding are then provided in Section 10.2, 
which completely describes the encoding structure and the definition of all fields occurring 
within the Am486DX/DX2 microprocessor instructions. 

10.1 MICROPROCESSOR INSTRUCTION ENCODING AND CLOCK COUNT 
SUMMARY 

10.1.1 

10.1.2 

To calculate elapsed time for an instruction, multiply the instruction clock count, as listed 
in Table 10-1 through Table 10-5, by the processor clock period. 

For more detailed information on the encodings of instructions, refer to Section 10.2, 
Instruction Encodings. Section 10.2 explains the general structure of instruction encodings 
and defines the exact encodings of all fields contained within the instruction. 

Instruction Clock Count 
The Am486DX/DX2 microprocessor instruction clock count tables give clock counts, 
assuming data and instruction accesses hit in the cache. A separate penalty column 
defines clocks to add if a data access misses in the cache. The combined instruction and 
data cache hit rate is over 90%. 

A cache miss forces the Am486DXlDX2 microprocessor to run an external bus cycle. 
The Am486DX/DX2 microprocessor 32-bit burst bus is defined as r-b-w. 

Where: 

r = The number of clocks in the first cycle of a burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and subsequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the Am486DXlDX2 microprocessor can support is 2-1-2, assuming 0 
wait states. The clock counts in the cache miss penalty column assume a 2-1-2 bus. For 
slower buses, add r-2 clocks to the cache miss penalty for the first dword accessed. 
Other factors also affect instruction clock counts. 

Instruction Clock Count Assumptions 
1. The external bus is available for reads or writes at all times. Else, add clocks to 

reads until the bus is available. 

2. Accesses are aligned. Add three clocks to each misaligned access. 

3. Cache fills complete before subsequent accesses to the same line. If a read misses 
the cache during a cache fill due to a previous read or prefetch, the read must wait 
for the cache fill to complete. If a read or write accesses a cache line still being filled, 
it must wait for the fill to complete. 

Instruction Set Summary 10-1 



~AMD 
4. If an effective address is calculated, the base register is not the destination register of 

the preceding instruction. If the base register is the destination register of the preced­
ing instruction, add 1 to the clock counts shown. Back-to-back PUSH and POP 
instructions are not affected by this rule. 

5. An effective address calculation uses one base register and does not use an index 
register. However, if the effective address calculation uses an index register, one 
clock may be added to the clock count shown. 

6. The target of a jump is in the cache. If not, add r clocks for accessing the destination 
instruction of a jump. If the destination instruction is not completely contained in the 
first dword read, add a maximum of 3b clocks. If the destination instruction is not 
completely contained in the first i6-byte burst, add a maximum of another r+3b 
clocks, 

7. If no write buffer delay, w clocks are added only in the case in which all write buffers 
are full. This case rarely occurs. 

8. Displacement and immediate are not used together. If displacement and immediate 
are used together, one clock can be added to the clock count shown. 

9. No invalidate cycles. Add a delay of one clock for each invalidate cycle if the invalidate 
cycle contends for the internal cache/external bus when the Am486DXlDX2 CPU needs 
to use it. 

10. Page translation hits in TLB. A TLB miss adds 13, 21, or 28 clocks to the instruction, 
depending on whether the accessed and/or dirty bit in neither, one, or both of the 
page entries needs to be set in memory. This assumes that neither page entry is in 
the data cache and a page fault does not occur on the address translation. 

11. No exceptions are detected during instruction execution. Refer to Table 10-3 for 
extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data items (Le., task switch, paPA, etc.) 
and miss the cache are assumed to start the first access on a i6-byte boundary. If 
not, an extra cache line fill might be necessary and might add up to (r+3b) clocks to 
the cache miss penalty. 

10-2 Instruction Set Summary 



AMD~ 
Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary 

Penalty 
if 

Cache Cache 
INSTRUCTION FORMAT Hit Miss Notes" 

INTEGER OPERATIONS 

MOV=Move: 

regl to reg2 1000100W 11 regl reg2 1 

reg2 to regl 1000101w 11 regl reg2 1 

memory to reg 1000101w mod reg rim 1 2 

reg to memory 1000100w mod reg rim 1 

Immediate to reg 1100011w 11000reg immediate data 1 

or 1011 wreg immediate data 1 

Immediate to Memory 1100011w mod 000 rim displacement immediate 1 

Memory to Accumulator 1010000w full displacement 1 2 

Accumulator to Memory 1010001w full dsplacement 1 

MOVSXlMOVZX = Move with SignlZero Extension 

reg2 to reg 1 00001111 1011 z11w 11 regl reg2 I 3 

Memory to reg 00001111 1011 z11w mod reg rim I 3 2 

z Instruction 
o MOVZX 
1 MOVSX 

PUSH = Push 

reg 11111111 11 110 reg 4 

or 01010 reg 1 

memory 11111111 mod 110rlm 4 1 I 

immediate 011010s0 immediate data 1 

PUSHA = Push All 01100000 11 

POP = Pop 

reg 10001111 11 000 reg 4 1 

or 01011 reg 1 2 

memory 10001111 mod 000 rim 5 2 1 

POPA=popAn 01100001 9 7115 16/32 

XCHG = Exchange 

regl with reg2 1000011w 11 regl reg2 3 2 

Accumulator with reg 10010 reg 3 2 

Memory with reg 1000011w mod reg rim 5 2 

NOP = No Operation 10010000 1 

LEA = Load EA to Register 10001101 mod reg rim J 
No index register 1 
With index register 2 

Instruction TTT 

ADD-Add 000 

ADC=Add with Carry 010 

AND=Logicai AND 100 

OR=Logical OR 001 

SUB=Subtract 101 

SBB=Subtract with Borrow 011 

XOR=Logicai Exclusive OR 110 

Instruction Set Summary 10·3 



~AMD 

Table 10.1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes' 

INTEGER OPERAnONS (continued) 

regl to reg2 OOTTTOOw 11 regl reg2 1 

reg2 to reg 1 OOTTTOlw 11 regl reg2 1 

memory to register OOTTTOlw mod reg rim 2 2 

register to memory OOTTTOOw mod reg rim .3 6/2 U/L 

immediate to register 100000sw l1TTTreg immediate data 1 

immediate to accumulator 00TTT10w immediate data 1 

immediate to memory 100000sw mod TTT rim immediate data 3 6/2 UIL 

Instnlction TTT 

INC = Increment 000 

DEC = Decrement 001 

reg l111111w 11 TTT reg 1 

or 01 TTT reg 1 

memory lllllllw mod TTT rim 3 6/2 UIL 

Instl1lction TTT 

NOT = Logical Complement 010 
NEG = Negate 011 

reg 1111011w 11 TTT reg 1 

memory 1111011 w I mod TTT rim 3 6/2 U/L 

CMP = Compsre 

reg 1 with reg2 0011100w 11 regl reg2 1 

reg2 with reg 1 0011101w 11 regl reg2 1 

memory with register 0011100w mod reg rim 2 2 

register with memory 0011101w mod reg rim 2 2 

immediate with register 100000sw 11111 reg immediate data 1 

immediate with acc. 0011110w immediate data 1 

immediate with memory 100000sw modlll rim immediate data 2 2 

TEST = Logical Compare 

reg 1 and reg2 1000010w 11 regl reg2 1 

memory and register 1000010w mod reg rim 2 2 

immediate and register 1111011w 11 000 reg immediate data 1 

immediate and ace. 1010100w immediate data 1 

immediate and memory 1111011w mod 000 rim I immediate data 2 2 

MUL = Multiply (unsigned) 

ace. with register I 1111011w I 11 100 reg I 
Multiplier-Byte 13/18 MNlMX,3 

Word 13/26 MNlMX,3 

Dword 13/42 MN/MX,3 

ace. with memory I 1111011w I mod 100 rim I 
Multiplier-Byte 13/18 1 MNlMX,3 

Word 13/26 1 MNlMX,3 

10-4 Instruction Set Summary 



AMD~ 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

il 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Noles'" 

INTEGER OPERATIONS (continued) 

Oword 13/42 1 MN/MX,3 

IMUl = Integer Multiply (signed) 

ace. with register I 1111011w I 11 101 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

acc. with memory I 1111011 w I modl01r/m I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

reg 1 with reg2 I 0000 1111 I 10101111 I 11 regl reg2 I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

register with memory I 00001111 I 10101111 I mod reg rim I 
Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 

Oword 13/42 1 MN/MX,3 

regl with imm. to reg2 I 011010 s 1 I 1 1 regl reg2 I immediate data 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

memo with imm. to reg. I 011010 s 1 I mod reg rim I immediate data 

Multiplier-Byte 13/18 2 MN/MX,3 

Word 13/26 2 MN/MX,3 

Oword 13/42 2 MN/MX,3 

DIV = Divide (unsigned) 

acc. by register I 1111011 w I 11 1 10 reg I 
Oivisor- Byte 16 

Word 24 

Dword 40 

ace. by memory I 1111011 w I mod 110r/m I 
Oivisor- Byte 16 

Word 24 

Oword 40 

IDIV = Integer Divide (signed) 

ace. by register I 11110 11 w I 11 1 11 reg I 
Oivisor- Byte 19 

Word 27 
Oword 43 

ace. by memory I 1111011 w I modl11 rim I 
Oivisor- Byte 20 

Word 28 

Oword 44 

Instruction Set Summary 10·5 



~ AMD 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes· 

INTEGER OPERATIONS (continued) 

CBW = Convert Byte to Wordl 

Convert Word to Dword 10011000 3 

CWD = Convert Word to Dwordl 10011001 3 

Convert Dword to Quad Word 

Instruction Instruction TTT 

ROL = Rotate Left 000 

ROR = Rotate Right 001 

RCL = Rotate through Carry Left 010 

RCR = Rotate through Carry Right 011 

SHUSAL = Shift Logical/Arithmetic Left 100 

SHR = Shift Logical Right 101 

SAR = Shift Arithmetic Right 111 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

reg by 1 1101000w llTTTreg 3 

memory by 1 1101000w mod TTT rim 4 6 

reg by CL 1101001 w 11 TTT reg 3 

memory by CL 1101001 w mod TTT rim 4 6 

reg by immediate count 1100000w l1TTTreg imm. S-bit data 2 

mem by immediate count 1100000w mod TTT rim imm. S-bit data 4 6 

Through Carry (RCL and RCR) 

reg by 1 1101000w l1TTTreg 3 

memory by 1 1101000w mod TTT rim 4 6 

reg by CL 1101001 w 11 TTT reg 8/30 MN/MX,4 

memory by CL 1101001 w mod TTT rim 9/31 MN/MX,5 

reg by immediate count 1100000w 11 TTT reg immediate 8-bit data 8/30 MN/MX,4 

mem by immediate count 1100000w mod TTT rim immediate 8-bit data 9/31 MN/MX,5 

Instruction TTT 

SHLD = Shift Left Double 100 

SHRD = Shift Right Double 101 

register with immediate 00001111 10TTT100 11 reg2 regl immed. 8-bit data 2 

memory by immediate 00001111 10TTT100 11 reg2 regl immed. 8-bit data 3 6 

register by CL 00001111 10TTT10l 11 reg2 regl 3 

memory by CL 00001111 10TTT10l mod reg rim 4 5 

BSWAP = Byte Swap I 00001111 I 11001 reg I 1 

XADD = Exchange and Add 

regl, reg2 00001111 1100000w 1 1 reg2 regl 3 

memory, reg 00001111 1100000w mod reg rim 4 6/2 U/L 

10-6 Instruction Set Summary 



AMD~ 

Table 10-1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes< 

INTEGER OPERATIONS (continued) 

CMPXCHG = Compare and Exchange 

reg 1 , reg2 00001111 1 1011000w I 11 reg2 regl I 6 

memory, reg 00001111 1 1011000w I mod reg rim I 7/10 2 6 

CONTROL TRANSFER (within segment) 

NOTE: TImes are jump taken/not taken 

Jecc = Jump on ecc 

8-bit displacement 0111 TTTn j 8-bitdisp. J 3/1 T/NT,23 

full displacement 00001111 1 1000lttn J full displacement 311 T/NT,23 

NOTE: TImes are jump taken/not taken 

SETcccc = Set Byte on ecce (Times are cccc true/false) 

reg 0000111111001TTTn I 11 000 reg I 413 

memory 00001111 1 100 1TTTn I mod 000 rim I 3/4 

Mnemonic Condition ttn 
eccc 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
EIZ Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
UNGE Less Than/Not Greater or Equal 1100 
NUGE Not Less Than/Greater or Equal 1101 
LE/G Less Than or Equal/Greater Than 1110 
NLEIG Not Less Than or Equal/Greater Than 1111 

LOOP = LOOP CX Times I 11100010 I 8-bitdisp. I 7/6 UNL,23 

LOOPZlLOOPE 

= Loop while Not Zero I 11100001 I 8-bitdisp. I 9/6 UNL,23 

LOOPNZlLOOPNE 

= Loop while Not Zero I 11100000 I 8-bitdisp. I 9/6 UNL,23 

JCXZ = Jump on CX Zero I 11100011 I 8-bitdisp. I 8!5 T/NT,23 

JECXZ = Jump on ECX Zero I 11100011 I 8-bitdisp. I 8/5 T/NT,23 

(Address Size Prefix Differentiates JCXZ for JECXZ) 

JMP = Unconditional Jump (within segment) 

Short 11101011 i 8-bitdisp. I 3 7,23 

Instruction Set Summary 10-7 



~AMD 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes' 

CONTROL TRANSFER (within segment) (continued) 

Direct 11101001 full displacement 3 7,23 

Register Indirect 11111111 11 100 reg 5 7,23 

Memory Indirect 11111111 mod 100 rim 5 5 7 

CALL = Call (within segment) 

Direct 11101000 full displacement 3 7.23 

Register Indirect 11111111 11 010 reg 5 7,23 

Memory Indirect 11111111 modOl0rlm 5 5 7 

RET = Return from CALL 

(within segment) I 11000011 I 5 5 

Adding immediate to SP I 11000010 I 16-bit disp. I 5 5 

ENTER = Enter Procedure I 11001000 liS-bit dispJ B-bit level I 
Level=O 14 
Level=1 17 
Level (L) > 1 17+3L 8 

LEAVE = Leave Procedure I 11001001 I 5 1 

MULTIPLE-SEGMENT INSTRUCTIONS 

MOV= Move 

reg. to segment reg. 10001110 11 sreg3 reg 3/9 0/3 RV/P,9 

memory to segment reg. 10001110 mod sreg3 rim 3/9 2/5 RV/P,9 

segment reg. to reg. 10001100 1 1 sreg3 reg 3, 

segment reg. to memory 10001100 mod sreg3 rim 3 

PUSH = Push 

segment reg. 1000sreg2110 I 3 

(ES, CS, SS, or OS) 

segment reg. (FS or GS) I 00001111 I 1 Osreg3 000 I 3 

POP = Pop 

segment reg. 1000sreg2111 I 3/9 215 RV/P, 9 

(ES, SS, or OS) 

segment reg. (FS or GS) 00001111 10 sreg300 1 3/9 215 RV/P,9 

LOS = Load Pointer to OS 11000101 mod reg rim 6/12 7/10 RV/P, 9 

LES = Load Pointer to EO 11000100 mod reg rim 6/12 7/10 RV/P, 9 

LFS = Load Pointer to FS 00001111 10110100 mod reg rim 6/12 7/10 RV/P, 9 

LGS = Load Pointer to GS 00001111 10110101 mod reg rim 6/12 7/10 RV/P, 9 

LSS = Load Pointer to SS 00001111 10110010 mod reg rim 6/12 7/10 RV/P, 9 

CALL = Call 

Direct intersegment I 100 11010 I unsigned full offset, selector 18 2 R, 7, 22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
to inner level, x parameter (d) words 77-f4X 17+n P. 11.9 
toTSS 37+TS 3 P, 11,9 
thru Task Gate 38+TS 3 P, 1 0,9 

10-8 Instruction Set Summary 



AMD~ 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes* 

MULTIPLE·SEGMENT INSTRUCTIONS (continued) 

Indirect intersegment I 11111111 I mod 011 rim I 17 8 R,7 

to same level 20 10 P,9 
thru Gate to same level 35 13 P,9 
to inner level, no parameters 69 24 P,9 

to inner level, x parameter (d) words 77+4X 24+n p, 11,9 

toTSS 37+TS 10 P, 1 O. 9 
thru Task Gate 38+TS 10 P. 1 0, 9 

RET = Return from CALL 

intersegmeni I 11001011 I 13 8 R,7 

to same level 17 9 P,9 
to outer level 35 12 P.9 

intersegment adding I 11001010 I 16-bit disp. I 
imm. toSP 14 8 R,7 
to same level 18 9 P,9 

to outer level 36 12 P,9 

JMP = Unconditional Jump 

Direct intersegment I 11101010 I unsigned full offset, selector 17 2 R, 7, 22 

to same level 19 3 P,9 
thru Call Gate to same level 32 6 P,9 
thru TSS 42+TS 3 P, 1 0, 9 

thru Task Gate 43+TS 10 P, 1 0, 9 

Indirect intersegment I 1111111 I mod 101 rim I 13 9 R. 7, 9 

to same level 18 10 P.9 
thru Call Gate to same level 31 13 P,9 

thru TSS 41+TS 10 P, 1 0,9 
thru Task Gate 42+TS 10 P, 1 0,9 

BIT MANIPULATION 

BT = TEST BIT 

register, immediate 00001111 10111010 11100reg immed. 8-bit data 3 

memory, immediate 00001111 10111010 mod 100 rim immed. 8-bit data 3 1 

regl, reg2 00001111 10100011 1 1 reg2 regl 3 

memory, reg 00001111 10100011 mod reg rim 8 2 

Instruction TTT 

BTS= Test Bit and Set 101 

BTR= Test Bit and Reset 110 

BTC= Test Bit and Compliment 111 

register, immediate 00001111 10111010 l1TTTreg immed. 8-bit data 6 

memory, immediate 00001111 10111010 mod TTT rim immed. 8-bit data 8 210 U/L 

regl, reg2 00001111 10111100 1 1 reg2 regl 6 

memory, reg 00001111 10111100 mod reg rim 13 3/1 U/L 

BSF = Scan Bit Forward 

regl, reg2 00001111 10111 100 1 1 reg2 regl 6/42 MN/MX,12 

memory, reg 00001111 10111100 mod reg rim 7/43 2 MN/MX,13 

Instruction Set Summary 10·9 



~ AMD 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes' 

BIT MANIPULATION (continued) 

BSR = Scan Bit Reverse 

regl, reg2 00001111 10111101 I 1 1 reg2 reg1 I 6/103 MN/MX,14 

memory, reg 00001111 10111101 I mod reg rim I 711 04 1 MN/MX,15 

STRING INSTRUCTIONS 

CMPS = Compare By1e Word 1010011 w 8 6 16 

LODS = Load ByteiWord 1010110w 5 2 
to AUEX/EAX 

MOVS = Move By1eiWord 1010010w 7 2 16 

SCAS = Scan By1eiWord 1010111 w 6 2 

STOS = Store ByteIWord 1010101 w 5 
from AUEXlEAX 

XLAT = Translate String I 11010111 I 4 2 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C = Count in CX or ECX) 

REPE CMPS = Compare String 
(Find Non-Match) 

I 11110011 I 1010011 w I 
C=O 5 
C>O 7+7c 16,17 

REPNE CMPS = Compare String I 11110010 I 1010011 w I 
(Find Match) 
C =0 5 
C >0 7+7c 16,17 

REP LODS = Load String I 11110011 I 1010110w I 
C =0 5 
C >0 7+4c 16,18 

REP MOVS = Move String I 11110011 I 1010010w I 
C =0 5 
C = 1 13 1 16 
C > 1 12+3c 16,19 

REPE SCAS = Scan String I 11110011 I 1010111w I 
(Find Non-AUAX/EAX) 
C =0 5 
C >0 7+5c 20 

REPNE SCAS = Scan String I 11110010 I 1010111 w I 
(Find Non-AUAX/EAX) 

C=O 5 
C>O 7+5c 20 

REP STOS = Store String 
C =0 

I 11110011 I 1010101 w I 
5 

C>O 7+4c 

FLAG CONTROL 

CLC = Clear Carry Flag 11111000 2 

STC = Set Carry Flag 11111001 2 

CMC = Complement Carry Flag 11110101 2 

CLD = Clear Direction Flag 11111100 2 

10·10 Instruction Set Summary 



AMD~ 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes'" 

REPEATED STRING INSTRUCTIONS (continued) 

STD = Set Direction Flag 11111101 2 

ell = Clear Interrupt Enable Flag 11111010 5 

STI = Set Interrupt Enable Flag 11111011 5 

LAHF = Load AH into Flag 10011111 3 

SAHF = Store AH into Flags 10011110 2 

PUSHF = Push Flags 10011100 4/3 RV/P 

POPF = Pop Flags 10011101 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA = ASCII Adjust for Add 00110111 3 

AAS = ASCII Adjust for Subtract 00110111 3 

AAM = ASCII Adjust for Multiply 11010100 00001010 15 

AAD = ASCII Adjust for Divide 11010101 00001010 14 

DAA = Decimal Adjust for Add 00100111 2 

DAS = Decimal Adjust for Subtract 00101111 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT=Halt I 11110100 I 4 

MOV = Move To and From Control/DebuglTest Registers 

CRO from register 00001111 00100010 11 000 reg 17 2 

CR2/CR3 from register 00001111 00100010 11 eee reg 4 

Reg from CR0-3 00001111 00100000 11 eee reg 4 

DRO--3 from register 00001111 00100011 11 eee r89 10 

DRS-7 from register 00001111 00100011 11 'eee reg 10 

Register from DR6-7 00001111 00100001 11 eee reg 9 

Register from DR0-3 00001111 00100001 11 eee reg 9 

TR3 from register 00001111 00100110 11011 reg 4 

TR4-7 from register 00001111 00100100 11 eee reg 4 

Register from TR3 00001111 00100100 11011 reg 3 

Register from TR4-7 00001111 00100100 11 eee reg 4 

CLTS = Clear Task Switched Flag 00001111 00000110 7 2 

INVD = Invalidate Data Cache 00001111 00001000 4 

WBINVD 00001111 00001001 5 

= Write-Back and Invalidate Data Cache 

INVLPG = Invalidate TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 rim I 1211 1 H/NH 

PREFIX BYTES 

Address Size Prefix 01100111 1 

LOCK = Bus Lock Prefix 11110000 1 

Operand Size Prefix 01100110 1 

Segment Override Prefix 

CS: 00101110 1 

DS: 00111110 1 

Instruction Set Summary 10·11 



~AMD 

Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes« 

PROCESSOR CONTROL INSTRUCTIONS (continued) 

ES: 00100110 1 

FS: 00100110 1 

GS: 01100 1 a 1 1 

SS: 00 110 11 a 1 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From register a 11 000 11 1 1 regl reg2 I 9 

From memory 01100011 mod reg rim I 9 

LAR = Load Access Rights 

From register 0000 1111 00000010 I 11 regl reg2 I 11 3 

From memory 0000 1111 00000010 I mod reg rim I 11 5 

LGDT = Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 rim I 12 5 

LlDT = Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I modOll rim I 12 5 

LLDT = Load Local Descriptor 

Table register from reg. 00001111 00000000 I 11010 reg I 11 3 

Table registerfrom memo 00001111 00000000 I mod 010 rim I 11 6 

LMSW=Load Machine Status Word 

From register 00001111 00000001 I 11110 reg I 13 

From memory 00001111 00000001 I mod 110 rim I 13 1 

LSL = Load Segment Limit 

From register 0000 1111 00000011 I 11 regl reg2 I 10 3 

From memory 00001111 00000011 I mod reg rim I 10 6 

LTR = Load Task Register 

From Register 00001111 00000000 I 11011 reg I 20 

From Memory 00001111 00000000 I modOll rim 20 

SGDT 

= Store Global Descriptor Table I 00001111 I 00000001 I mod 000 rim I 10 

SlOT = Store 

Interrupt Descriptor Table I 00001111 I 00000001 I mod 001 rim I 10 

SLOT = Store Local Descriptor Table 

To register 00001111 00000000 I 11000 reg I 2 

To memory 00001111 00000000 I mod 000 rim I 3 

SMSW = Store Local Machine Status 

To register 00001111 00000001 I 11 100 reg I 2 

To memory I 0000 1111 00000001 I mod 100 rim I 3 

STR = Store Task Register 

To register I 0000 1111 00000000 I 11 001 reg I 2 

To memory I 0000 1111 00000000 I mod 001 rim I 3 

10-12 Instruction Set Summary 



AMD~ 

Table 10-1 Am486DXJDX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes" 

PROTECTION CONTROL (continued) 

VERR = Verify Reed Access 

Register 00001111 00000000 I l1100r/m I 11 3 

Memory I 00001111 00000000 I mod 100 rim I 11 7 

VERW = Verify Write Access 

To register I 00001111 00000000 I 11101 reg I 11 3 

To memory I 00001111 00000000 I mod 101 rim I 11 7 

INTERRUPT INSTRUCTIONS 

INTn = Interrupt Type n 11001101 type I INT+410 RVlP, 21 

INT3 = Interrupt Type 3 11001100 INT+O 21 

INTO = Interrupt 4 if 11001110 

Overftow Flag Set 

Taken INT+2 21 

NotTaken 3 21 

BOUND = Interrupt 5 if Detect 

Value Out Range I 01100010 I mod reg rim I • 
If in range 7 7 21 

If out of range INT+ 24 7 21 

IRET = Interrupt Return I 11001111 I 
Real ModeMrtuai Mode 15 B 

Protected Mode 

To same level 20 11 9 

To outer level 36 19 9 

To nested task (EFLAGS.NT =1) TS+32 4 9,10 

External Interrupt INT+l1 21 

NMI = Non-Makable Interrupt INT+3 21 

Page Fault INT+24 21 

VM86 Exceptions 

eLi INT+B 21 

STI INT+B 21 

INTn INT+9 

PUSHF INT+9 21 

POPF INT+8 21 

IRET INT+9 

IN 
Fixed Port INT+50 21 

Variable Port INT+51 21 

OUT 
Fixed Port INT+50 21 

Variable Port INT+51 21 

INS INT+50 21 

OUTS INT+50 21 

REP INS INT+51 21 

REP OUTS INT+51 21 

Note: 
• Notes for Table 10-1 can be found following Table 10-3, 

Instruction Set Summary 10-13 



~AMD 
Table 10·2 Task Switch Clock Counts Table 

Value forTS 
Method 

Cache Hit Miss Penalty 

VM/Am486 CPU/286ITSS To Am486 CPU TSS 

VM/Am486 CPU/2861 TSS To 286 VMS 

VM/Am486 CPU/286 TSS To VM TSS 

Table 10·3 Interrupt Clock Counts Table 

NOTES 

Method 

Real Mode 
Protected Mode 

InterruptlTrap gate, same level 
InterruptlTrap gate, different level 
Task Gate 

Virtual Mode 
InterruptlTrap gate, different level 
Task Gate 

(Table 10·1 through Table 10·3) 
Abbreviations: 
16/32 
UlL 
MN!MX 
UNL 

Definition: 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 

Cache Hit 
26 

44 
71 

37 + TS 

82 
37+TS 

RV/P 
R 

Real and Virtual Mode/Protected Mode 
Real Mode 

P Protected Mode 
T/NT taken/not taken 
H/NH hit/no hit 

Notes: 

162 

143 

140 

Value for INT 

Miss Penalty 
2 

6 
17 

3 

17 

3 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks 10 + max(log2 (fmj),n) 

m multiplier value (min clocks for m = 0) 
n 3/5for±m 

4. Clocks (quotient(count/operand length)} '7+9 
8 if count S. operand length (8/16/32) 

5. Clocks (quotient(count/operand length)} '1+9 
9 if count S. operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

55 

31 

37 

Notes 

9 
9 

9, 10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different 
cache sets. 

8. Penalty for cache miss: add six clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 
10. Refer to Table 10-2 for value of TS. 
11. Add four ex1ra clocks to the cache miss penalty for each 16 bytes. 

10·14 Instruction Set Summary 



AMD~ 
NOTES (continued) 

For notes 12-13: (b = 0-3, non-zero byte number); 
(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks 8+4 (b+1) + 3(i+1) + 3(n+1) 
6 if second operand = 0 

13. Clocks 9+4(b+1) + 3(i+1) + 3(n+1) 
7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 +3(32-n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add six clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add two clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add four clocks for every 16 bytes moved. 

(One clock for the first operation and three for the second) 
20. Cache miss penalty: add four clocks for every 16 bytes scanned. 

(Two clocks each for first and second operations) 
21. Refer to Table 10-3 for value on INT 
22. Clock count includes one clock for using bother displacement and immediate. 
23. Refer to assumption 6 (see Section 10.1.2) in the case of a cache miss. 

Table 10·4 Am486DX/DX2 Microprocessor 1/0 Instructions Clock Count Summary 

Protected Protected Virtual 
Real Mode Mode 8086 

INSTRUCTION FORMAT Mode (CPl.$IOPL) (CPl>IOPL) Mode 

VO INSTRUCTIONS 

IN = Input from: 

Fixed Port I 111001 Ow I port number I 14 9 29 27 

Variable Port I 111011 Ow I 14 8 28 27 

OUT = Output to: 

Fixed Port I 1110011 w I porI number I 16 11 31 29 

Variable Port I 1110111 w I 16 10 30 29 

INS = Input ByteIWord I 0110110w I 17 10 32 30 

from DXPort 

OUTS = Output ByteIWord I 0110111 w I 
to DXPort 17 10 32 30 

REP INS = Input String I 11110011 10110110W I 16+8c 10+8c 30+8c 29+8c 

REP OUTS = Output String I 11110011 10110111 w I 17+5c 11+5c 31+5c 3O+5c 

Notes: 
1. Two clock cache miss penalty in all cases. 
2. c = count in CX or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 

Instruction Set Summary 

Notes 

1 

2 

3 

1D-15 



~AMD 

Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary 

Concurrent 
Cache Hit Execution 

Avg (lower Avg (lower 
Range-- Penalty if Range--
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Noles 

DATA TRANSFER 

FLO = Real load to ST (0): 

32-bit memory 11011 001 mod 000 rim s-i-b/disp. 3 2 

64-bil memory 11011 101 mod 000 rim s-i-b/disp. 3 3 

SO-bit memory 11011 011 mod 101 rim s-i-b/disp. 6 4 

ST(i) 11011 011 11000 ST(i) 4 

FllD = Integer load to ST(O) 

16-bit memory 11011 111 mod 000 rim s-i-b/disp. 14.5(13--16) 2 4 

32-bit memory 11011 011 mod 000 rim s-i-b/disp. 5(9---12) 2 4(2-4) 

64-bit memory 11011 1 11 mod 101 rim s-i-b/disp. 316.S(10-1S) 3 7.S(2--8) 

FBlD = BCD Load to ST(O) 111011 111 I mod 100 rim I s-i-b/disp. I 75(70-103) 4 7.7(2--8) 

FST = Store Real from ST(O) 

32-bit memory 11011 110 mod 010 rim s-i-b/disp. 7 1 

64-bit memory 11011 101 mod 010 rim s-i-b/disp. I S 2 

ST(i) 11011 101 11010 ST(i) 3 

FSTP = Store Real from ST(O) and Pop 

32-bit memory 11011 001 mod 011 rim s-i-b/disp. 7 1 

64-bit memory 11011 101 mod 011 rim s-i-b/disp. a 2 

aO-bit memory 11011 011 mod 111 rim s-i-b/disp. 6 

ST(i) 11011 101 11001 ST(i) 3 

FIST = Store Integer from ST(O) 

16-bit memory 11011 1 11 mod 101 rim s-i-b/disp. 33.4(29---34) 

32-bit memory 111011 011 I mod 010 rim s-i-b/disp. I 32.4(29---34) 

FISTP = Store Integer from ST(O) and Pop 

16-bit memory 11011 111 mod 011 rim s-i-b/disp. 33.4(29---34) 

32-bit memory 11011 011 mod 011 rim s-i-b/disp. 33.4(29-34) 

64-bit memory 11011 1 11 mod 111 rim s-i-b/disp. 33.4(29-34) 

FBSTP = 111011 111 I mod 110 rim I s-i-b/disp. I 175( 172-176) 

Store BCD from ST(O) and Pop 

FXCH = Exchange ST(O) and ST(i) 111011 001 I 11001 ST(i) I 4 

COMPARISON INSTRUCTIONS 

FCOM = Compare ST(O) with Real 

32-bit memory 11011 000 mod 010 rim s-i-b/disp. 4 2 1 

64-bit memory 11011 100 mod 010 rim s-i-b/disp. 4 3 1 

ST(i) 11011 000 11010 ST(i) 4 1 

FCOM P = Compare ST(O) with Real and Pop 

32-bit memory 11011 000 mod 011 rim s-i-b/disp. 4 2 1 

64-bit memory 11011 100 mod 011 rim s-i-b/disp. I 4 3 1 

ST(i) 11011 000 1 1 0 1 1 ST(i) 4 1 

10·16 Instruction Set Summary 



AMD~ 

Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary (continued) 

Concurrent 
Cache Hit Execution 

Avg (Lower Avg (lower 
Rang&- Penalty if Range-
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Notes 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP = Compare ST(O) 111011 110 11 101 
with ST(i) and Pop Twice 

1001 1 5 1 

FICOM = Compare ST(O) with Inleger 

16-bit memory 111011 1 10 I mod 010 rim I s-i-b/disp. I 18(16--20) 2 1 

32-bit memory 11011 010 mod 010 rim s-i-b/disp. I 16.5(15~17) 2 1 

FICOM P = Compare ST(O) with Inleger 

16-bit memory 111011 1 10 I mod all rim s-I-b/disp. I 18(16~20) 2 1 

32-bit memory 11011 010 mod all rim s-i-b/disp. I 16.5(15-17) 2 1 

FTST = Compare ST(O) with 0.0 111011 001 11 1 10 0100 I 4 1 

FUCOM = Unordered 
compare ST(O) with ST(i) 

111011 001 111110 ST(i)! 4 1 

FUCOMP = Unordered compare 111011 101 
ST(O) with ST(i) and Pop 

11 1101 ST(i) I 4 1 

FUCOMPP = Unordered compare 
ST(O) with ST(i) and Pop Twice 

111011 010 11 1 10 1001 I 5 1 

FXAM = Examine ST(O) 111011 001 11 1 10 0101 1 8 

CONSTANTS 

FlDZ = load + 0.0 into ST(O) 11011 001 1 1011 1110 4 

FlDl = load + 1.0 into ST(O) 11011 001 110 11 10 a 0 4 

FlDPl = load 1t into ST(O) 11011 001 11011 1011 B 2 

FlDL2T = load log,,(10) inlo ST(O) 11011 001 1101 1 1001 8 2 

FLDL2E = load log,,(e) into ST(O) 11011 001 11011 1011 8 2 

FlDlG2 = load log,,(2) into ST(O) 11011 001 1 1011 1100 B 2 

FlDLN2 = Load 10g.(2) into ST(O) 11011 001 110 11 1101 8 2 

ARITHMETIC 

FADD = Add Real with ST(O) 

ST(O)~ ST(O) + 32-bit memory 11011 000 mod 000 rim s-i-b/disp. I 10(8~20) 2 7(5-17) 

ST(O)~ ST(O) + 64-bit memory 11011 100 mod 000 rim s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d)~ ST(i) ~ ST(O) 11011 dOD 11000 ST(i) 10(8-20) 7(5-17) 

FADD = Add real with ST(O) and 11011 110 110 00 ST(i) 10(8~20) 7(5-17) 
Pop (ST(i) ~ ST(O) - ST(i» 

FSUB = Subtract real from ST(O) 

ST(O)~ ST(O) ~ 32-bit memory 11011 000 mod 100 rim s-i-b/disp. I 10(8~20) 2 7(5-17) 

ST(O)~ ST(O) ~ 64-bit memory 11011 100 mod 100 rim s-i-b/disp. J 10(8-20) 3 7(5-17) 

ST(d)~ ST(O) ~ ST(i) 11011 dOO 1 110 1 ST(i) 10(8-20) 7(5-17) 

FSUBP = Subtract real from ST(i) 
and Pop (ST(ij ~ ST(O) - ST(i» 

111011 110 11 110 1 ST(i) I s-i-b/disp. I 10(6--20) 7(5-17) 

Instruction Set Summary 10-17 



it1 AMD 

Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Sunvnary (continued) 

Concurrent 
Cache Hit Execution 

Avg (Lower Avg(Lower 
Range- Penalty if Range-
Upper Cache Upper 

INSTRUCTIPN FORMAT Range) Miss Range) Notes 

ARITHMETIC (Continued) 

FSUB R = Subtract real from ST(O) 

ST(O)- 32-bit memory - ST(O) 11011 000 mod 000 rim s-i-b/disp. I 10(8--20) 2 7(5--17) 

ST(O)- 64-bit memory - ST(O) 11011 100 mod 000 rim s-i-b/disp. I 10(8-20) 3 7(5--17) 

ST(d)- ST(i) - ST(O) 11011 dOO 1110 10ST(i) 10(8--20) 7(5--17) 

FSUBRP = Subtract real reversed 
and Pop from (ST(i) -

111011 110 11 1 100 ST(i) I s-i-b/disp. I 10(8--20) 7(5--17) 

ST(i) -ST(O» 

FMUL = Multiply real with ST(O) 

ST(O)- ST(O) x 32-bit memory 11011 000 mod 000 rim s-i-b/disp. I 11 2 8 

ST(O)- ST(O) x 64-bit memory 11011 100 modOOOr/m s-i-b/disp. I 14 3 11 

ST(d)- ST(O) x ST(i) 1 1011 dOO 11001 ST(i) 16 13 

FMULP = Multiply ST(O) with ST(i) 
and Pop (ST(l) - ST(O) x ST(i» 

111011 110111001 ST(i) I s-i-b/disp. I 16 13 

FDIV = Divide ST(O) by Real 

ST(O)- ST(0)/32-bit memory 11011 000 mod 110 rim s-i-b/disp. i 73 2 70 3 

ST(O)- ST(0)/64-bit memory 11011 100 mod 110r/m s-i-b/disp. I 73 3 70 3 

ST(d)- ST(O)/ST(i) 11011 dOO 1111 d ST(i) 73 70 3 

FDIVP = Divide ST(O) by ST(i) 111011 110 111111 ST(i) I 
and Pop (ST(i) - ST(O) /ST(i)) 

s-i-b/disp. I 73 70 3 

FDIVR = Divide real reversed (ReaIIST(O» 

ST(O)- 32-bit memory/ST(O) 11011 000 mod 111 rim s-i-b/disp. J 73 2 70 3 

ST(O)- 64-bit memory/ST(O) 11011 100 mod 111 rim s-i-b/disp. I 73 3 70 3 

ST(d)- ST(i)/ST(O) 11011 dOO 1111 d ST(i) 73 70 3 

FDIVRP = Divide real reversed 11 1011 110 11 1110 ST(i) 1 s-i-b/disp. I 73 70 3 
and Pop (ST(i) - ST(O) /ST(i» 

FIADD = Add Integer to ST(O) 

ST(O)- ST(O) + 16-bit memory 11011 110 mod OOOr/m s-i-b/disp. I 24(20-'35) 2 7(5--17) 

ST(O)- ST(O) + 32-bit memory 111011 010 mod 000 rim I s-i-b/disp. I 22.5(19-32) 2 7(5--17) 

FISUB = Subtract Integer from ST(O) 

ST(O)- ST(O) - 16-bit memory 11011 110 mod 100r/m s-i-b/disp. I 24(20-'35) 2 7(5--17) 

ST(O)- ST(O) - 32-bit memory 1 110 11 010 I mod 100 rim I s-i-b/disp. I 22.5(19-32) 2 7(5--17) 

FISUBR = Integer Subtract LReversed 

ST(O)- 16-bit memory - ST(O) 11011 110 mod 101 rim s-i-b/disp. I 24(20-'35) 2 7(5--17) 

ST(O)- 32-bit memory - ST(O) 11 1 011 010 I mod 101 rim I s-i-b/disp. I 22.5(19-32) 2 7(5--17) 

FIMUL = Multiply Integer with ST(O) 

ST(O)- ST(O) + 16-bit memory 11011 110 mod 001 rim s-i-b/disp. I 25(23--27) 2 8 

ST(O)- ST(O) + 32-bit memory 11011 010 mod 001 rim I s-i-b/disp. J 23.5(22-24) 2 8 

FIDIV = Integer Divide 

ST(O)- ST(0)/16-bit memory 11011 110 mod 110 rim s-i-b/disp. I 87(85--89) 2 70 3 

ST(O)- ST(0)/32-bit memory 111011 010 mod 110 rim I s-i-b/disp. I 85.5(84--86) 2 70 3 

10-18 Instruction Set Summary 



AMD~ 

Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary (continued) 

Concurrent 
CacheHil Execution 

Avg (Lower Avg(Lower 
Range- Penalty if Range- i 
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Notes 

ARITHMETIC (Continued) 

FIDlVR = Integer Divide Reversed 

ST(O)- 16-bit memoryIST(O) 11011 110 mod 111 rim s-i-b/disp. 87(85-89) 2 70 3 

ST(O)- 32-bit memoryIST(O) 110 11 010 mod 111 rim s-i-b/disp. 85.5(84-86) 2 70 3 

FSQRT = Square Root 110 11 001 1111 1010 s-i-b/disp. 85.5(83-87) 70 

Fscale = Scale ST(O) by ST(i) 1110 11 111 11111 1101 1 s-i-b/disp. I 31(30-32) 2 

Fxtract = 1110 11 001 11111 0100 I s-i-b/disp. I 19(16-20) 4(2-4) 
Extract components of ST(O) 

FPREM = Partial Reminder 11011 001 1111 1000 s-i-b/disp. 84(70-138) 2(2-8) 

FPREMI = Partial Reminders (IEEE) 11011 001 1111 0101 s-i-b/disp. 94.5(72-167) 5.5(2-18) 

FRNDINT = Absolute value of ST(O) 110 11 001 1111 1100 s-i-b/disp. 29.1 (21-M) 7.4(2-8) 

FABS = Absoulte value of ST(O) 110 11 001 1111 0001 s-i-b/disp. 3 

FCHS = Change sign of ST(O) 11011 1001 1111 0000 s-i-b/disp. 6 

TRANSCENDENTAL 

FCOS = Cosine of ST(O) 110 11001 1111 1111 s-i-b/disp. 241(193-279) 2 6,7 

FPTAN = Partial tangent of ST(O) 110 11 001 1111 0010 s-i-b/disp. 244(200-273) 70 6,7 

FPATAN = Partial arctangent 11011 001 1111 00 11 s-i-b/disp. 289(218-303) 5(2-17) 6 

FSIN = Sine of ST(O) 110 11 001 1111 1110 s-i-b/disp. 241(193-279) 2 6,7 

FSINCOS = Sine and cosine of ST(O) 11011 001 1111 1011 s-i-b/disp. 291 (243-829) 2 6,7 

F2XMl = :zST(O) - 1 110 11 001 1111 0000 s-i-b/disp. 2429140-279) 2 6 

FLV2X = ST(I) x IogiST(O» 110 11 001 1111 0001 s-i-b/disp. 311(196-329) 13 6 

FLV2XPI = ST(I) x log. 110 11 001 1111 100 1 s-i-b/disp. 313(171-'326) 13 6 
(ST(O) + 1.0) 

PROCESSOR CONTROL 

FINIT = Initialize FPU 11011 all 1110 0011 s-i-b/disp. 17 4 

FSlSW AX = Stare status word Into AX 11011 111 1110 0000 s-i-b/disp. 3 5 

FSTSW = Stare status word into memory 11011 101 mod 111 rim s-i-b/disp. 3 5 

FLDCW = Load control word 11011 001 mod 101 rim s-i-b/disp. 4 2 

FSTCW = Load control word 11011 111 mod 111 rim s-i-b/disp. 3 5 

FCLEX = Clear exceptions 11011 all 1110 0 a 1 a s-i-b/disp. 7 4 

FSTENV= Store environment 11011 001 mod 110 rim s·i-b/disp. 

Real and Virtual Modes 16-bit Address 67 4 
Real and Virtual Modes 32-bit Address 67 4 
Protected Mode 16-bit Address 56 4 
Protected Mode 32-bit Address 56 4 

FLDEVN = Load environment 111011 001 I mod 100 rim I s-i-b/disp. I 
Real and Virtual Modes 16-bit Address 44 2 
Real and Virtual Modes 32-bit Address 44 2 
Protected Mode 16-bit Address 34 2 
Protected Mode 32-bit Address 34 2 

Instruction Set Summary 1()"19 



~AMD 

Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary (continued) 

Concurrent 
Cache Hit Execution 

Avg (lower Avg(lower 
Range- Penalty if Range-
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Notes 

PROCESSOR CONTROL (Continued) 

FSAVE = Save state 111011 101 I mod 100 rim I s-i-b/disp. I 
Real and Virtual Modes 16-bit Address 154 
Real and Virtual Modes 32-bit Address 154 
Protected Mode 16-bit Address 143 
Protected Mode 32-bit Address 143 

FRSTOR = Restore state 111011 101 I mod 100 rim I s-i-bl I 
Real and Virtual Modes 16-bit Address 131 23 
Real and Virtual Modes 32-bit Address 131 27 
Protected Mode 16-bit Address 120 23 
Protected Mode 32-bit Address 120 27 

FINCSTP = Increment Stack Pointer I 1 1 0 1 1 001 11111 0111 1 3 

FDECSTP= 
Decrement Stack Pointer 

111011 001 11 1 1 1 0110 1 3 

FFREE = Free ST(i) 111011 1 01 11 1 000 ST(i) I 3 

FNOP = No operations 111011 001 11101 0000 I 3 

WAIT = Wait until FPU ready 110011011 I 1/3 
(Minum/Maximum) 

Notes: 
1. If operand is 0, clock counts = 27. 
2. If operand is 0, clock counts = 28. 
3. If CWPC indicates 24 bit precision then subtract 38 clocks. 

If CWPC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction, add 17 clocks. 
5. If there is a numeric error pending from a previous instruction, add 18 clocks. 
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency. 
7. If ABS (operand) is greater than rc/4 then add n clocks. Where n = (operand/(rc/4)). 

10.2 Instruction Encoding 
All instruction encodings are subsets of the general instruction format shown in 
Figure 10-1. Instructions consist of one or two primary opcode bytes, possibly an 
address specifier conSisting of the "mod rim" byte and "scaled index" byte, a displace­
ment if required, and an immediate data field if required. 

4 
4 
4 
4 

Within the primary opcode or opcodes, smaller encoding fields can be defined. These 
fields vary according to the class of operation. The fields define such information as 
direction of the operation, size of the displacements, register encoding, or sign extension. 

10-20 

Almost all instructions referring to an operand in memory have an addressing mode byte 
following the primary opcode byte(s). This byte, the mod rim byte, specifies the address 
mode to be used. Certain encodings of the mod rim byte indicate a second addressing 
byte, the scale-index-base byte, follows the mod rim byte to fully specify the addressing 
mode. 

Instruction Set Summary 



10.2.1 

10.2.2 

AMD~ 
Addressing modes can include a displacement immediately following the mod rim byte, or 
scaled index byte. If a displacement is present, the possible sizes are 8, 16, or 32 bits. 

If the instruction specifies an immediate operand, the immediate operand follows any 
displacement bytes. The immediate operand, if specified, is always the last field of the 
instruction. 

Figure 10-1 illustrates several of the fields that can appear in an instruction, such as the 
mod field and the rim field, but Figure 10-1 does not show all fields. Several smaller fields 
also appear in certain instructions, sometimes within the opcode bytes themselves. 
Table 10-6 is a complete list of all fields appearing in the Am486DX/DX2 microprocessor 
instruction set. Detailed tables for each field follow Table 10-6. 

32·Bit Extensions of the Instruction Set 
With the Am486DX/DX2 microprocessor, the 8086/801861 80286 instruction set is 
extended in two orthogonal directions: 32-bit forms of all i6-bit instructions are added to 
support the 32-bit data types, and 32-bit addressing modes are made available for ali 
instructions referencing memory. This orthogonal instruction set extension is accom­
plished having a Default (D) bit in the code segment descriptor, and by having two 
prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 bits or 32 bits depends on the 
setting of the 0 bit in the code segment descriptor, which gives the default length (either 
32 bits or 16 bits) for both operands and effective addresses when executing that code 
segment. In the Real Address Mode or Virtual 8086 Mode, no code segment descriptors 
are used, but a 0 value of 0 is assumed internally by the Am486DX/DX2 microprocessor 
when operating in those modes (for 16-bit default sizes compatible with the 
8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effective Address Size Prefix, individually 
allow overriding the Default selection of operand size and effective address size. These 
prefixes can precede any opcode bytes and affect only the instruction they precede. If 
necessary, one or both of the prefixes can be placed before the opcode bytes. The 
presence of the Operand Size Prefix and the Effective Address Prefix toggles the operand 
size or the effective address size, respectively, to the value "opposite" from the Default 
setting. For example, if the default operand size is for 32-bit data operations, then the 
presence of the Operand Size Prefix toggles the instruction to 16-bit data operation. 
Another example, if the default effective address size is 16 bits, the presence of the 
Effective Address Size prefix toggles the instruction to use 32-bit effective address 
computations. 

These 32-bit extensions are available in all Am486DXlDX2 microprocessor modes, 
including the Real Address Mode or the Virtual 8086 Mode. In these modes the default is 
always 16 bits, so prefixes are needed to specify 32-bit operands or addresses. For 
instructions with more than one prefix, the order of prefixes is not important. 

Unless specified otherwise, instructions with 8-bit and i6-bit operands do not affect the 
contents of the high-order bits of the extended registers. 

Encoding of Integer Instruction Fields 
Within the instruction are several fields indicating register selection, addressing mode, and 
so on. The exact encodings of these fields are defined immediately ahead. 

Instruction Set Summary 10-21 

I" 



;t1 AMD 

Figure 10·1 General Instruction Format 

ITT T T T T TTl T T T T T T TTl mod T T T rim I ss index base I d321161 81 none data32 1 161 81 none 

7 07 0765320765320 .. ... .... ----,.; ... _--_ ... 

10.2.2.1 

10.2.2.2 

opcode 
(one or two bytes) 
(T represents an 

opcode bit) 

"mod rim" "s-i-b" 
byte byte 

register and address 
mode specifier 

Encoding of Operand Length (w) Field 

address 
displacement 
(4,2, 1 bytes 

or none) 

immediate 
data (4, 2, 1 

bytes or 
none) 

17852A--094 

For any given instruction performing a data operation, the instruction is executing as a 
32-bit operation or a 16-bit operation. Within the constraints of the operation size, the w 
field encodes the operand size as either one byte or the full operation size, as shown in 
Table 10-7. 

Encoding of the General Register (reg) Field 

The general register is specified by the reg field, which can appear in the primary opcode 
bytes, or as the reg field of the "mod rIm" byte, or as the rIm field of the "mod rIm" byte. 
The encoding of the reg field when the w field is not present in the instruction is shown in 
Table 10-8. 

The encoding of the reg field when the w field is present in the instruction during 16-bit 
data operations is shown in Table 10-9. 

The register specified by the reg field when the w field is present in the instruction during 
32-bit data operations is shown in Table 10-10. 

Table 10·6 Fields within Am486 Microprocessor Instructions 

Field Name Description Number of Bits 
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 bits) 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign-Extended 1 

reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 3 lor rim 

ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 3 

tin For Conditional Instructions, Specifies a Condition Asserted or a Condition 4 
Negated 

Table 10·7 Encoding of the Operand Length (w) Field 

wField Operand Size During 16-Bit Data Operations Operand Size During 32-Bit Data Operations 
0 8 bits 8 bits 
1 16 bits 32 bits 

Note: 
Table 10-1 through Table 10-5 show encoding of individual instructions 

10-22 Instruction Set Summary 



AMD~ 
Table 10·8 Encoding of the reg Field (w Field not Present Instruction) 

reg Register Selected During Register Selected During 
Field 16-blt Data Operations 32·blt Data Operations 
000 AX EAX 
001 CX ECX 
010 DX EDX 
011 BX EBX 
100 SP ESP 
101 BP EBP 
110 SI ESI 
111 01 EDI 

Table 10·9 Encoding of the reg Field (w Field is Present, Instruction 16 Bits) 

Register Specified by reg Field During 16·bH Data Operations 
Function of w Field 

reg 
(when w= 0) (whenw= 1) 

000 AL AX 
001 CL CX 
010 OL OX 
011 BL BX 
100 AH SP 
101 CH BP 
110 OH SI 
111 BH 01 

Table 10·10 Register Specified by the reg Field (w Field is Present, Instruction 32 Bits) 

10.2.2.3 

Register Specified by reg Field During 32·bH Data Operations 
Function of w Field 

reg 
(when w = 0) (when w = 1) 

000 AL EAX 
001 CL ECX 
010 DL EOX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 OH ESI 
111 BH EDI 

Encoding of the Segment Register (sreg) Field 

The sreg field in certain instructions is a 2·bjt field, allowing one of the four 80286 
segment registers to be specified. The sreg field in other instructions is a 3·bit field, 
allowing the Am486DX/DX2 microprocessor's FS and GS segment registers to be 
specified. 

Instruction Set Summary 10-23 



~AMD 
Table 10·11 2·Bit sreg2 Field 

2-Bit sreg2 Field Segment Register Selected 
00 ES 
01 CS 
10 SS 
11 OS 

Table 10·12 3-Bit sreg3 Field 

10.2.2.4 

1()"24 

3-Bit sreg3 Field Segment Register Selected 
000 ES 
001 CS 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

Encoding of Address Mode 

Except for special instructions such as PUSH or POP, where the addressing mode is 
predetermined, the addressing mode for the current instruction is specified by addres­
sing bytes following the primary opcode. The primary addressing byte is the "mod rIm" 
byte, and a second byte of addressing information, the "s-i-b" (scale-index-base) byte, 
can be specified. 

The s-i-b byte is specified when using 32-bit addressing mode and the "mod rIm" byte 
has rIm = 100 and mod = 00, 01, or 10. When the s-i-b byte is present, the 32-bit 
addressing mode is a function of the mod, ss, index, and base fields. 

The primary addressing byte, the "mod rIm" byte, also contains three bits (shown as TIT 
in Figure 10-1) sometimes used as an extension of the primary opcode. The three bits, 
however, can also be used as a register field (reg). 

When calculating an effective address, either 16-bit addressing or 32-bit addressing is used. 
16-bit addressing uses 16-bit address components to calculate the effective address, 
while 32-bit addressing uses 32-bit address components to calculate the effective 
address. When 16-bit addressing is used, the "mod rIm" byte is interpreted as a 16-bit 
addressing mode specifier. When 32-bit addressing is used, the "mod rIm" byte is 
interpreted as a 32-bit addressing mode specifier. 

Table 10-13 through Table 10-15 define all encodings of all 16-bit addressing modes and 
32-bit addressing modes. 

Instruction Set Summary 



AMD~ 
Table 10·13 Encoding of 16·Bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address 
00000 OS:[BX + SI] 
00001 OS:[BX+ 01] 
00010 SS:[BP +SIJ 
00011 SS:[BP + 01] 
00100 OS:[SI] 
00101 OS:[OI] 
00110 OS:d16 
00 111 OS:[BX] 

01000 OS:[BX + SL + d8] 
01 001 OS:[BX + 01 + d8) 
01 010 SS:[BP + SI + d8] 
01 011 S8:[BP + 01 + d8] 
01 100 08:[SI + d8] 
01 101 OS:[OI + d8) 
01 110 SS:[BP + d8] 
01 111 OS:[BX+ d8] 

10000 08:[BX + 81 + d16] 
10001 OS:[BX + 01 + di6] 

10010 SS:[BP + SI + di6) 
10011 SS:[BP + 01 + d16J 
10100 OS:[81 + di6) 
10101 OS:[OI + di6] 
10110 S8:[BP + d16] 

10 111 OS:[BX + d16] 

Register Specified by rIm During 16-Bit Data Operations 

mod rIm 
Function of w Field 

(when w = 0) (when w = 1) 
11 000 AL AX 

11 001 CL CX 
11 010 OL OX 

11 011 BL BX 
11 100 AH SP 

11 101 CH BP 

11 110 OH SI 

11 111 BH 01 

Register Specified by rIm During 32-Bit Data Operations 

mod rIm 
Function of w Field 

(when w = 0) (when w = 1) 
11 000 AL EAX 

11 001 CL ECX 

11 010 OL EOX 

11 011 BL EBX 

11100 AH ESP 

11 101 CH EBP 

11 110 OH ESI 

11 111 BH EOI 

Instruction Set Summary 10-25 



~AMD 
Table 1()"14 Encoding of 32-Bit Address Mode with "mod rIm!' Byte (No "s·i·b" Byte Present) 

mod rIm Effective Address 
00000 DS:[EAX] 
00001 DS:[ECX] 
00010 DS:[EDX] 
00011 DS:[EBX] 
00100 s-i-b is present 
00101 DS:d32 
00110 DS:[ESI] 
00111 DS:[EDI] 

01000 DS:[EAX + d8] 
01 001 DS:[ECX + d8] 
01 010 DS:[EDX + d81 
01011 DS:[EBX + d8] 
01 100 s-i-b is present 
01 101 SS:[EBP + d8] 
01110 DS:[ESI + d8] 
01 111 DS:[EDI + d8] 

10000 DS:[EAX + d32] 
10001 DS:[ECX + d32] 
10010 DS:[EDX + d32] 
10011 DS:[EBX + d32] 
10100 s-i-b is present 
10101 SS:[EBP + d32] 
10110 DS:[ESI + d32] 
10111 DS:[EDI + d32] 

Register Specified by reg or rIm During 16·8ft Data Operations: 

mod rIm 
Function of w field 

(whenw= 0) (when w = 1) 
11 000 AL AX 
11 001 CL CX 
11 010 DL DX 
11 011 BL BX 
11 100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by reg or rIm During 32·81t Data Operations: 

mod rIm 
Function of w field 

(whenw=O) (when w = 1) 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11 100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 

10·26 Instruction Set Summary 



AMD~ 
Table 10·15 Encoding of 32·Bit Address Mode ("mod rIm" byte and "s·j·b" byte present) 

mod base Effective Address 
00000 DS:[EAX + (scaled index]] 

00001 DS:[ECX + (scaled index)] 

00010 DS:[EDX + (scaled index)] 

00011 DS:[EBX + (scaled index)) 

00100 SS:[ESP + (scaled index)] 

00101 DS:[d32 + (scaled index)] 

00110 DS:[ESI + (scaled index)] 

00111 DS:[EDI + (scaled index)] 

01000 DS:[EAX + (scaled index) + d8] 

01 001 DS:[ECX + (scaled index) + d8] 

01 010 DS:[EDX + (scaled index) + d8] 

01 011 DS:[EBX + (scaled index) + d8] 

01 100 SS:[ESP + (scaled index) + d8] 

01 101 SS:[EBP + (scaled index) + d8) 

01 110 DS:[ESI + (scaled index) + d8] 

01 111 DS:[EDI + (scaled index) + d8] 

10000 DS:[EAX + (scaled index) + d32] 

10001 DS:[ECX + (scaled index) + d32j 

10010 DS:[EDX + (scaled index) + d32) 

10011 DS:[EBX + (scaled index) + d32) 

10100 SS:[ESP + (scaled index) + d32) 

10101 SS:[EBP + (scaled index) + d32) 

10110 DS:[ESI + (scaled index) + d32] 

10 111 DS:[EDI + (scaled index) + d32] 

Note: 
Mod field in mod rim byte; ss, index, base fields in s-i-b byte. 

ss Scale Factor 

00 xi 

01 x2 

10 x4 

11 x8 

index Index Register 
000 EAX 

001 ECX 

010 EDX 

011 EBX 

100 no index reg" 

101 EBP 

110 ESI 

111 EDI 

""Important Note: 
When the index field is 100, indicating "no index register," then the ss field MUST equal 00. If the 
index is 100 and ss does not equal 00, the effective address is undefined. 

Instruction Set Summary 10·27 



~AMD 
10.2.2.5 Encoding of Operation Direction (d) Field 

In many two-operand instructions, the d field is present to indicate which operand is 
considered the source and which is the destination. 

Table 10.16 Encoding of d Field 

10.2.2.6 

d Direction of Operation 

0 Register/Memory <-Register "reg" Field indicates Source Operand; "mod r/m" or "mod 
ss index base" indicates Destination Operand 

1 Register <-Register/Memory "reg" Field indicates Destination Operand; "mod r/m" or 
"mod ss index base" indicates Source Operand 

Encoding of Sign.Extend (5) Field 

The s field occurs primarily to instructions with immediate data fields. The s field has an 
effect only if the size of the immediate data is 8 bits and is being placed in a 16-bit or 
32-bit destination. 

Table 10·17 Encoding of 5 Field 

10.2.2.7 

5 Effect on Immediate Data 8 Effect on Immediate Data 16/32 

0 None None 

1 Sign-Extend Data None 
8 to fill 16-Bit or 32-Bit Destination 

Encoding of Conditional Test (tUn) Field 

For the conditional instructions (conditional jumps and set on condition), tttn is encoded 
with "n" indicating to use the condition (n = 0) or its negation (n = 1), and ttt giving the 
condition to test. 

Table 10.18 Encoding of tUn Field 

Mnemonic Condition mn 

0 Overflow 0000 

NO No Overflow 0001 

B/NAE Below/Not Above or Equal 0010 

NBIAE Not Below/Above or Equal 0011 

E/Z Equal/Zero 0100 

NElNZ Not Equal/Not Zero 0101 

BEINA Below or EquaVNot Above 0110 

NBE/A Not Below or Equal/Above 0111 

S Sign 1000 

NS Not Sign 1001 

PIPE Parity/Parity Even 1010 

NP/PO Not Parity/Parity Odd 1011 

UNGE Less Than/Not Greater or Equal 1100 

NUGE Not Less Than/Greater or Equal 1101 

LEIG Less Than or Equal/Greater Than 1110 

NLEIG Not Less or EquaVGreater Than 1111 

10-28 Instruction Set Summary 



AMD~ 
Table 10-19 Encoding of eee Field 

10.2.2.8 

10.2.3 

When Interpreted as Control Register Field 

eee Code Reg Name 

000 CRO 

010 CR2 

011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 ORO 

001 ORt 

010 OR2 

011 OR3 

110 OR6 

111 OR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 

100 TR4 

101 TR5 

110 TR6 

111 TR7 

Do not use any other encoding 

Encoding of Control or Debug or Test Register (eee) Field 

This field is used to load and store the Control, Debug, and Test registers; 

Encoding of Floating-Point Instruction Fields 
Instructions for the FPU assume one of the five forms shown in the following table. In all 
cases, instructions are at least two bytes long and begin with the bit pattern 11011 B. 

OP = Instruction opcode, possible split into two fields; OPA and OPB 

MF = Memory Format 

00~2-bit real 

01~2-bit integer 

10-64-bit real 

11-16-bit integer 

P = Pop 

0-00 not pop stack 

1-Pop stack after operation 

d = Destination 

Instruction Set Summary 10-29 

I 

~ 



~AMD 
O-Destination is ST(O) 

1-Destination is ST(i) 

R XOR d = O-Destination (op) Source 

R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 

000 = Stack top 

001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

mod (Mode field) and rIm (Register/Memory specifier) have the same interpretation as 
the corresponding fields of the integer instructions. 

S-i-b (scale index base) byte and disp (displacement) are optionally present in instruc­
tions that have mod and rIm fields. Their presence depends on the values of mod and 
rim, as for integer instructions. 

Table 10·20 Encoding of Floating·Point Instruction Fields 

Instruction 

First Byte Second Byte Second 
Optional Fields Byte 

1 11011 OPA 1 mod 1 I OPS rIm s-i-b I disp 

2 11011 MF OPA mod OPS rIm s-i-b I disp 

3 11011 d P OPA 1 1 OPS ST(i) 

4 11011 0 0 1 1 1 1 I OP 
5 11011 0 1 1 1 1 1 I OP 

15-11 10 9 8 7 6 5 4 3 2 1 0 

10·30 Instruction Set Summary 



11 COMPARISON OF Am486DXJDX2 CPU AND 
THE 386 CPU WITH MATH COPROCESSOR 

The differences between the Am486DX/DX2 microprocessor and the 386 microproces­
sor are due to performance enhancements. The differences between the microproces­
sors are listed below. 

1. Instruction clock counts have been reduced to achieve higher performance. See 
Section 10. 

2. The Am486DX/DX2 microprocessor bus is significantly faster than the 386 micro­
processor bus. Differences include a 1X clock, parity support, burst cycles, cache­
able cycles, cache invalidate cycles, and 8-bit bus support. The Hardware Interface 
and Bus Operation Sections (see Chapters 6 and 7 of this manual) should be care­
fully read to understand the Am486DX/DX2 microprocessor bus functionality. 

3. To support the on-chip cache, new bits have been added to control register 0 (CD 
and NW) (see Section 2.2.2.1), new pins have been added to the bus (see Chapter 
6), and new bus cycle types have been added (see Chapter 7). The on-chip cache 
needs to be enabled after reset by clearing the CD and NW bit in CRO. 

4. The complete 387 math coprocessor instruction set and register set have been 
added. No 1/0 cycles are performed during floating-point instructions. The instruc­
tion and data pOinters are set to 0 after FINIT/FSAVE. Interrupt 9 can no longer 
occur, interrupt 13 occurs instead. 

5. The Am486DX/DX2 microprocessor supports new floating-point error reporting 
modes to guarantee DOS compatibility. These new modes require a new bit in con­
trol register 0 (NE) (see Section 2.2.2.1) and new pins (FERR and IGNNE) (see 
Sections 6.2.13 and 7.2.14). 

6. In some cases FERR is asserted when the next floating-point instruction is encoun­
tered; and in other cases, it is asserted before the next floating-point instruction is 
encountered, depending upon the execution state of the instruction causing exception 
(see Sections 6.2.13 and 7.2.14). For both of these cases, the 387 math coprocessor 
asserts ERROR when the error occurs and does not wait for the next floating-point 
instruction to be encountered. 

7. Six new instructions have been added: 

- Byte Swap (BSWAP) 

- Exchange-and-Add (XADD) 
- Compare and Exchange (CMPXCHG) 

- Invalidate Data Cache (INVD) 

- Write-back and Invalidate Data Cache (WBINVD) 

- Invalidate TLB Entry (INVLPG) 

8. There are two new bits defined in control register 3, the page table entries and page 
directory entries (PCD and PWTj (see Section 4.5.2.5). 

9. A new page protection feature has been added. This feature requires a new bit in 
control register 0 (WP) (see Sections 2.2.2.1 and 4.5.3). 

10. A hew Alignment Check feature has been added. This feature requires a new bit in 
the flags register (AC) (see Section 2.2.1.3) and a new bit in control register 0 (AM) 
(see Section 2.2.2.1). 

Comparison of Am486DXlDX2 CPU and the 386 CPU with Math Coprocessor 11-1 



~AMD 
11. The replacement algorithm for the TLB has been changed from a random algorithm 

to a pseudo least recently used algorithm, like that used by the on-chip cache. See 
Section 5.5 for a description of the algorithm. 

12. Three new testability registers, TR3, TR4, and TR5, have been added for testing the 
on-chip cache. TLB testability has been enhanced (see Section 8). 

13. The prefetch queue has been increased from 16 bytes to 32 bytes. A jump always 
needs to execute after modifying code to guarantee correct execution of the new 
instruction. 

14. After reset, the ID in the upper byte of the DX register is 04. The contents of the 
base registers, including the floating-point registers, can be different after reset 

11·2 Comparison of Am486DX/DX2 CPU and the 386 CPU with Math Coprocessor 



I1:MilH' 1 2 CONVERTING AN EXISTING Am486DX 
CPU DESIGN 

Converting an Am486DX CPU system design to an Am486DX2 CPU design provides 
more performance for a small difference in cost. Migrating from a 33-MHz Am486DX CPU 
to a 50-MHz Am486DX2 CPU could increase performance by 35%. Conversion can be as 
easy as replacing one or two devices. 

A few system details should be checked first to be sure the design is ready for the 
Am486DX2 CPU. Check with your BIOS vendor to be sure any BIOS issues have been 
resolved. The BIOS for the Am486DX CPU may have timing loops. Since the Am486DX2 
CPU runs instructions twice as fast as the Am486DX CPU, timing loops may no longer 
retum the required results. Most of the timing loops have been removed from a standard 
BIOS, but there may be some versions that need updating. Another BIOS issue that may 
not be critical is the processor identification code. There are different ID codes in the 
Am486DX CPU and the Am486DX2 CPU. The BIOS may need to be modified to identify 
the Am486DX2 CPU code properly. 

Other system parameters to watch out for are the thermal and power supply specifica­
tions. Refer to the Am486 device data sheets, order numbers 17914 and 17852. Since the 
processor core runs twice as fast for the same input clock, the Am486DX2 CPU uses 
more power and generates more heat than the Am486DX CPU. Be sure there is ade­
quate cooling and adequate power built into the design. A heat sink is a recommended 
method to help provide cooling for the Am486DX2 CPU. 

The system checks mentioned above are common to all conversions from an Am486DX 
CPU to an Am486DX2 CPU regardless of the speed of the processor or system. 

Migrating from a 33-MHz Am486DX CPU to a 50-MHz Am486DX2 CPU is a two step 
process. The first step is to change the frequency source for the CPU from 33 MHz to 25 
MHz. The Am486DX2 CPU can then be inserted into the system. Without any tuning of 
the memory and depending on the application, only a modest performance improvement 
may be observed. For programs running entirely out of the on-chip cache, however, 
performance can increase up to 50%. There are many factors that contribute to the 
performance of an application, including whether there is a second-level (L2) cache, the 
cache size (if present), the memory subsystem design, and many other factors beyond 
the scope of this introduction. 

Because the Am486DX2 CPU core runs twice as fast as its external bus, it is more 
sensitive to wait states. The Am486DX2 CPU needs to be fed instructions and data 
quickly. Either a high performance memory subsystem is needed or an external cache 
should be added. An external cache benefits the Am486DX2 CPU even more than it 
benefits the Am486DX CPU and helps to hide the effects of a slower memory subsystem. 
The Am486DX CPU gains an average of 3-9% performance by the addition of a second­
level cache, but the Am486DX2 CPU gains an average of 20-30% performance by 
adding a second level cache. It should be noted however, that an external cache does not 
preclude the benefits of tuning the memory subsystem. 

The graph shown in Figure 12-2 shows a set of benchmarks known to have a poor cache 
hit rate. This is shown for memory tuning purposes and is not to be taken as absolute 
performance. 

Converting An Existing Am486DX CPU Design 12·1 

I 

~ 
i 



~AMD 

12·2 

With the absence of a second-level cache, the memory subsystem becomes critical to 
gaining performance when converting from a 33-MHz Am486DX CPU to a 50-MHz 
Am486DX2 CPU. For slow memory systems without tuning, the 50-MHz Am486DX2 CPU 
can possibly run slower than the 33-MHz Am486DX CPU (see Figure 12-2). By tuning the 
memory design, the 50-MHz Am486DX2 CPU can reach equivalent performance to the 
33-MHz Am486DX CPU running applications with low cache hit rates, and increase 
performance for applications with higher hit rates. Tuning the memory design can be done 
easily by either removing a wait state from the memory design (if timing permits), and/or 
adding faster DRAM and removing wait state(s) from the memory design. 

Changing the wait state configuration for the system is often done by programming the 
DRAM controller in the chip set on the motherboard. Each chip set is programmed 
differently at the BIOS level, requiring a BIOS modification. For testing purposes, the chip 
set may be programmed on the fly from a DOS program if the register locations are 
known. 

A typicallSA chip set (such as the PCnet'" ISA Am79C960 device with an L2 cache), 
allows 6-4-4-4 bus cycles at 33-MHz with 80-ns DRAMs for the Am486DX CPU. Without 
modifying the memory subsystem, the 50-MHz Am486DX2 CPU achieved an average of 
7-12% improvement over the 33-MHz Am486DX CPU. By reducing the bus cycles at 
25-MHz to 5-2-2-2 (still with 80-ns DRAMS), Am486DX2 CPU improved to achieve an 
average of 15-20% more performance than the 33-MHz Am486DX CPU. By replacing the 
DRAMs with faster devices (70 ns) bus cycles could be reduced to 4-2-2-2 at 25-MHz, 
improving the performance of the 50-MHz Am486DX2 CPU even more. 

Converting An Existing Am486DX CPU Design 



Figure 12·1 Flowchart for Am486DX CPU to Am486DX2 CPU Conversion 

2S-MHz Am486DX CPU 33-MHz Am486DX CPU 

Remove Remove 
Am486DX Am486DX 

CPU CPU 

Replace 
33-MHz CPU 

Install crystal 

new BIOS with 25-MHz CPU 

version 

Modify 
power and 

cooling 

Insert 
Am486DX2 

CPU 

Insert 
Am486DX2 

CPU 

Convening An Existing Am486DX CPU Design 

Install 
new BIOS 

version 

Modify 
power and 

cooling 

Tune 
memory 
system 

17914A-001 

AMD~ 

12-3 



~AMD 
Figure 12-2 Performance of 50-MHz Am486DX2 CPU vs. 33-MHz Am486DX CPU 

Q) 
0 c 

'" E 
0 

"t: 
Q) 

a.. 
Q) 
0> 
e! 
Q) 

~ 

12-4 

__ 33-MHz 
Am486DX 
CPU 

~ 33-MHz 
Am486DX 
CPU 
w/cache 

+ 50-MHz 
Am486DX2 
CPU 

-¢-50-MHz 
Am486DX2 
CPU 
w/cache 

140.00% 

120.00% 

100.00% 

80.00% 

60.00% 

40.00% 

20.00% 

0.00% 

-v--==..:::;~""--v-",,::::---------------

0000(0) 3121(6) 3121(6) 3222(7) 3222(8) 4222(8) 4333(8) 6444(9) 
0(0) 2(6) 3(6) 2(6) 3(6) 3(6) 3(6) 4(7) 

Decreasing Memory Subsys1em Performance - Read Bus 
Cycles (Page Miss) I Write Bus cycles (Page Miss) 

Converting An Existing Am486DX CPU Design 





North American _________ _ 
ALABAMA ....... . ............... (205) 882-9122 
ARiZONA ........................................ . . ........... (602) 242-4400 
CALIFORNIA, 

Culver City .......... .... ... .... ........... ..... . .... (310) 645-1524 
Newport Beach ................................................. (714) 752-6262 
Sacramento(Roseville) .................................... (916) 786-6700 
San Diego .......................................................... (619) 560-7030 
San Jose .......................................... . ... (408) 922-0500 
Woodland Hills................................ . ............ (818) 878-9988 

CANADA, Ontario, 
Kanata ....................... . ... (613) 592-0060 
Willowdale ............... . . ......... (416) 222-7800 

COLORADO .................. . . .......... (303) 741-2900 
CONNECTICUT ..................... . . .. (203) 264-7800 
FLORIDA, 

Clearwater .......................... . . .......... (813) 530-9971 
Boca Raton ............... . . ..... (407) 361-0050 
Orlando (Longwood) .......... . . .... (407) 862-9292 

GEORGIA. . .......... (404) 449-7920 
IDAHO ......... . . ... (208) 377-0393 
ILLINOIS, 

Chicago (Itasca) .......................... . . .... (708) 773-4422 
Naperville ......................... . . ... (708) 505-9517 

MARyLAND .......................... . . .............. (301) 381-3790 
MASSACHUSETTS. . ........ (617) 273-3970 
MINNESOTA ......................... . . .......................... (612) 938-0001 
NEW JERSEY, 

Cherry Hill. ............................ . ..... (609) 662-2900 
Parsippany ............................... . ................. (201) 299-0002 

NEW YORK, 
Brewster ............................................................. (914) 279-8323 
Rochester ......................................................... (716) 425-8050 

NORTH CAROLINA 
Charlotte ................................ . ............ (704) 875- 3091 
Raleigh ....................................................... : ...... (919) 878- 8111 

OHIO, 
Columbus (Westerville) ................................... (614) 891-6455 
Dayton ................................................................ (513) 439-0268 

OREGON ........................... . .... (503) 245-0080 
PENNSyLVANIA............... . ......... (215) 398-8006 
TEXAS, 

Austin ............................ . . .................. (512) 346-7830 
Dallas ...................... . 
Houston .................. .. 

. .......... (214) 934-9099 
(713) 376-8084 

International __________ _ 
BELGIUM, Antwerpen ..... TEL ............................. (03) 248 43 00 

FAX .............................. (03) 248 46 42 
FRANCE, Paris ............... TEL ............................ (1) 49-75-10-10 

FAX.......... . ...... (1) 49-75-10-13 
GERMANY, 

Bad Homburg ............. TEL ............................. (06172)-24061 
FAX ............................ (06172)-23195 

MOnchen ...................... TEL ......... (089) 45053-0 
FAX ... . ........ (089) 406490 

HONG KONG, ................... TEL ............................... (852) 865-4525 
Wanchai FAX ............................. (852) 865-4335 

ITALY, Milano .................. TEL ................................ (02) 3390541 
FAX .............................. (02) 38103458 

JAPAN, 
Tokyo ........................... TEL ............................. (03) 3346-7550 

FAX ............................. (03) 3342-5196 
Osaka ........................... TEL ............................... (06) 243-3250 

FAX ............................... (06) 243-3253 
KOREA, Seoul ................. TEL ......... . ........ (82) 2-784-0030 

FAX ............................ (82) 2-784-8014 

International (Continued) ________ _ 

LATIN AMERICA, 
Ft. Lauderdale ............ TEL ............................ (305) 484-8600 

FAX ............................ (305) 485-9736 
SINGAPORE ........... .. TEL ........ . ................... (65) 3481188 

FAX ............................... (65) 3480161 
SWEDEN, 

Stockholm area . TEL ....... . ........... (08) 9861 80 
(Bromma) FAX ............................... (08) 98 09 06 

TAIWAN, Taipei ............... TEL ........................... (886) 2-7153536 
FAX ........................... (886) 2-7122183 

UNITED KINGDOM, 
Manchester area . TEL .................... (0925) 830380 
(Warrington) FAX .... . .......... (0925) 830204 
London area ............... TEL .... (0483) 740440 
(Woking) FAX............ (0483) 756196 

North American Representatives __ _ 
CANADA 

Burnaby, B.C. - DAVETEK MARKETING ..... (604) 430-3680 
Kanata, Ontario - VITEL ELECTRONICS .... (613) 592-0060 
Mississauga, Ontario -
VITEL ELECTRONICS ................ (905) 564-9720 

Lachine, Quebec - VITEL ELECTRONICS .... (514) 636-5951 
ILLINOIS 

Skokie - INDUSTRIAL 
REPRESENTATIVES, INC 

IOWA 
LORENZ SALES .. 

KANSAS 

........ (708) 967-8430 

. ........... (319) 377-4666 

Merriam - LORENZ SALES ........................... (913) 469-1312 
Wichita - LORENZ SALES. . ............... (316) 721-0500 

MEXICO 
Chula Vista - SONIKA ELECTRONICA ........ (619) 498-8340 
Guadalajara - SONIKA ELECTRONICA ....... (523) 647-4250 
Mexico City - SONIKA ELECTRONICA ........ (523) 754-6480 
Monterrey - SONIKA ELECTRONICA ........... (523) 358-9280 

MICHIGAN 
Holland - COM-TEK SALES, INC '" ..... (616) 335-8418 
Brighton - COM-TEK SALES, INC. . .......... (313) 227-0007 

MINNESOTA 
Mel Foster Tech. Sales, Inc. . ..... (612) 941-9790 

MISSOURI 
LORENZ SALES .... . ............................. (314) 997-4558 

NEBRASKA 
LORENZ SALES ....... . 

NEW MEXICO 
THORSON DESERT STATES .. 

NEW YORK 
East Syracuse - NYCOM, INC ... 
Hauppauge - COMPONENT 
CONSULTANTS, INC ....... . 

OHIO 

.. (402) 475-4660 

. .... (505) 883-4343 

. ... (315) 437-8343 

. ........ (516) 273-5050 

Centerville - DOLFUSS ROOT & CO ............ (513) 433-6776 
Westlake - DOLFUSS ROOT & CO ........ (216) 899-9370 

PENNSYLVANIA 
RUSSELL F. CLARK CO.,INC ....................... (412) 242-9500 

PUERTO RICO 
COMP REP ASSOC, INC.. . ...................... (809) 746-6550 

UTAH 
FRONT RANGE MARKETING ........................ (801) 288-2500 

WASHINGTON 
ELECTRA TECHNICAL SALES ..................... (206) 821-7442 

WISCONSIN 
Brookfield - INDUSTRIAL 
REPRESENTATIVES, INC ................................. (414) 574-9393 

Advanced Micro Oevioes reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance 
characteristics listed in this document are guaranteed by specific tests, guard banding, design and otherpraclioes common to the industry. For specific testing details, contact 
your local AMD sales representative. The company assumes no responsibility tor the use of any circuits described herein. RECYQ..ro " 

RECYClAO.E 

~ Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA 
Tel: (408) 732·2400 • TWX: 910·339·9280 • TELEX: 34·6306 • TOLL FREE: (800) 538·8450 

'" APPUCATIONS HOTUNE & LITERATURE ORDERING • TOLL FREE: (800) 222·9323 • (408) 749-5703 

© 1994 Advanced Micro Devices, Inc. 
17965A 4/7/94 
BAN·2.6M·5J94·1 Printed in USA 



ADVANCED 
MICRO 

DEVICES, INC. 
One AMD Place 

P.o. Box 3453 
Sunnyvale, 

California 94088-3453 
(408) 732-2400 
(800) 538-8450 

TWX: 910-339-9280 
TELEX: 34-6306 

APPLICA nONS HOTLINE & 
LITERA TURE ORDERING 

USA (408) 749-5703 
JAPAN 3346-7550 

UK & EUROPE 44-(0)256-811101 
TOLL FREE 

USA (800) 222-9323 
FRANCE 0590-8621 

GERMANY 0130-813875 
ITAL Y 1678-77224 

RECYCLED & 
RECYClABLE 

Printed In USA 

Ban-2.6M-S/94-1 

17965A 


