80286

High-Performance

Microprocessor with

Memory Management and Protection

DISTINCTIVE CHARACTERISTICS

® High performance processor (up to six times iAPX 86
when using the 8 MHz 80286)

® Large address space
- 16 megabytes physical
~ 1 gigabyte virtual memory per task

® Integrated memory management, four-level memory
protection and support for virtual memory and operating
systems

98208

® Two iAPX 86 upward compatible operating modes
- iAPX 86 real address mode
— Protected virtual address mode
® High bandwidth bus interface (8 megabyte/sec)
® Range of clock rates
- 10 MHz for 80286-10
- 8 MHz 80286-8
- 6 MHz 80286-6

GENERAL DESCRIPTION

The 80286 is an advanced, high performance microproces-
sor with specially optimized capabilities for multiple user
and multi-tasking systems. The 80286 has built-in memory
protection that supports operating system and task isola-
tion as well as program and data privacy within tasks. An 8
MHz 80286 provides up to six times greater throughput
than the standard 5 MHz 8086. The 80286 includes
memory management capabilities that map up to 230 bytes
(one gigabyte) of virtual address space per task into 224
bytes (16 megabytes) of physical memory.

The 80286 is upward compatible with iAPX 86 and 88
software. Using iAPX 86 real address mode, the 80286 is
object code compatible with existing iAPX 86, 88 software.

In protected virtual address mode, the 80286 is source
code compatible with iAPX 86, 88 software and may require
upgrading to use virtual addresses supported by the
80286's integrated memory management and protection
mechanism. Both modes operate at full 80286 performance
and execute a superset of the iAPX 86 and 88 instructions.

The 80286 provides special operations to support the
efficient implementation and execution of operating sys-
tems. For example, one instruction can end execution of
one task, save its state, switch to a new task, load its state,
and start execution of the new task. The 80286 also
supports virtual memory systems by providing a segment-
not-present exception and restartable instructions.

BLOCK

DIAGRAM

PHYSICAL
ADDRESS
ADDER

SEGMENT
BASES

F——— = — — = = == = == B
ADDRESS ! Az - Ao,
LATCHES AND

+ BHE.MT

P R
EXTENSION
INTERFACE

PEACK
PEREQ

READY. HOLD

PREFETCHER

BUS CONTROL

-————

SEGMENT SEGMENT

SIZES |

!
) DATA TRANSCEIVERS
[

1

6 BYTE !
PREFETCH |
t

N

Limir
CHECKER

QUEUE BUS UNIT (BU)
1 E i g —————l;—- ——————— .
! | 3oecooen [
- wsTRUCTION |NSTRUCTION S
QUEGE

—_————

REGISTERS | CONTROL

51, 50, CODAINTA
LOTK. HLDA

D15 - Do

}e— RESET
te— CLK
p—e Vss

} p-— Vecc

CAP

wal 11 Teusy
INTR ERROR

BD003960

Order #03552C

$221A2(O.IDIW P2OURAPY

G861 19qWaAON

CONNECTION DIAGRAMS

LCC
Component Pad Views - P.C. Board Views -
as viewed from underside of component on the P.C. as viewed from the component side of the P.C. board.
board.
c <8t T T
Au B)B|8|8|8]E|8!
Ves Aw
Do
D,
D,
0,
o,
Dy
Ax o, Ax
D,y Vss
o, Az
Dz Az
PEACK D PEACK
Dy so
D, &
Dy NC.
D, NC.
Dy L] BHE
g 5] BIEIBIZIBIBIEIEIBIEIBIE
PIN NO. 1 MARK PIN NO. 1 MARK
CD005613 CD005902
There are no electrical connections on the bottom of this
package.
PGA
|_ __________________ 1
X OO ®6e e : ®35°37 ©30 ®41 ®43 ®45 ®47 40 ®51
: ® 6 | ®34 ®36°38 ®40 42 %44 ®a6 %48 ®50 ®53°52
] ® ®® : ®32 ®33 ® 55 ®s54
I
| ®) : ®30 ®31 ®57 ®s6
! ; % o
80286 ® 1 o o 80286 .
! 1 26 27 61 60
! ®6 , o o . o
I 24 25 63 62
1
[@ @ 1 ° ° o o
I ® X 22 23 65 64
|
I CACLONONORONCACRORCAON *20°2 *67 %66
N OJONOXONOJORCKC KO I °18 ®19%16 ®14 %12 ®10 %8 %6 ®s4 2 ®cs
]

r/
1
1
1
1
1
|
|
|
I
|
|
I
1
1
|
1
|
o
-
3
©
-
(4]
°
-
w
°
-
by
°
©
°
~
°
(4]
°
w
°
-

PIN NO.1 MARK CD005802
CD005794

Pins pointing away from viewer Pins pointing toward viewer

PGA (continued)

Bottom View

(o)
o]
o)
0]
0]
©
o]
fes]

i

[0}©)
(0]
(0]
0]
(©]
®
(0]
(0]
3

(o oNoNoJoNoNONONO]
[cNoNoJoNoNoNoNoNO}
[cXoNoJoNoNoXC]

(0]
(0]
©
©
©
(O]
®
0]
(O]

[oXoNoNoNoJYoNoNON J
@@@@@@@@@/

=MD WA N® O
el
m
>
Q
X

LK JHGFEDCBA
CD005911

A1o
Ag
Ag
A7
As
As
A4
A3

RESET
Vce
CLK

A2
Aq
Ao

PAD PIN
1 B1
2 B2
3 C1
4 c2
5 D1
6 D2
7 E1
8 E2
9 F1

10 F2
11 G1
12 G2
13 H1
14 H2
15 J1
16 J2
17 K1
18 L2
19 K2
20 L3
21 K3
22 L4
23 K4
24 LS
25 K5
26 L6
27 K6
28 L7
29 K7
30 L8
31 K8
32 L9
33 K9
34 L10

NAME
Vss
Do

Dg

Dy

Dg

D2
D1o
D3
D14
D4
Di2
Ds
D13
De
D14
D7
Dis
CAP
ERROR
BUSY
NC
NC
INTR

PAD PIN
35 K11
36 K10
37 J11
38 J10
39 H11
40 H10
41 G11
42 G10
43 F11
44 F10
45 E11
46 E10
47 D11
48 D10
49 C11
50 Cc10
51 B11
52 A10
53 B10
54 A9
55 B9
56 A8
57 B8
58 A7
59 B7
60 A6
61 B6
62 A5
63 B5
64 A4
65 B4
66 A3
67 B3
68 A2

ORDERING INFORMATION

Commodity Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed

by a combination of:

A. Temperature Range

B. Package Type

C. Device Number

D. Speed Option (if applicable)
E. Optional Processing

80286 =10 £ Valid Combinations
-10, -10B
E. OPTIONAL PROCESSING| R, A, 80286 -8, -8B
Blank = Standard ~6 -6B
Processing -
B = Burn-in

D. SPEED OPTION
-10=10 MHz
-8=8 MHz
-6=6 MHz

'—— C. DEVICE NUMBER/DESCRIPTION
80286
High Performance Microprocessor

PACKAGE TYPE
R = 68-Pin Ceramic Leadless Chip Carrier
A =68-Pin Pin Grid Array

——— A. TEMPERATURE RANGE

Blank = Commercial (0 to +55°C)

Valid Combinations
Consult the local AMD sales office to confirm
availability of specific valid combinations, to
check on newly released valid combinations,
and to obtain additional data on AMD's standard
military grade products.

PIN DESCRIPTION

Active

Name | | Description
State /0 escrip
Active CLK | System Clock provides the fundamental timing for 80286 systems. It is a 16 MHz signal divided by two
HIGH inside the 80286 to generate the 8 MHz processor clock. The internal divide-by-two circuitry can be
synchronized to an external clock generator by a LOW-to-HIGH transition on the RESET input.
Active Do-D1s 170 Data Bus inputs data during memory, 1/0, and interrupt acknowledge read cycles; outputs data during
HIGH memory and I/O write cycles. The data bus is active HIGH and floats to three-state OFF during bus hold
acknowledge.
Active Azz-Ag (o} Address Bus outputs physical memory and 1/0 port addresses. Ag is LOW when data is to be transferred
HIGH on pins D7 _g. Ax3-A1e are LOW during 1/0 transfers. The address bus is active HIGH and floats to
three-state OFF during bus hold acknowledge.
Active BHE o Bus High Enable indicates transfer of data on the upper byte of the data bus Dis_g. Eight-bit oriented
LOW devices assigned to the upper byte of the data bus would normally use BHE to condition chip select
functions. BHE is active LOW and floats to three-state OFF during bus hold acknowledge.
BHE and Ap Encodings
BHE Value | Ag Value Function
0 0 Word Transfer
0 1 Byte transfer on upper half of data bus (D1s5_g)
1 0 Byte transfer on lower half of data bus (D7_q)
1 1 Reserved
Active ST, S0 o Bus Cycle Status indicates initiation of a bus cycle and, along with M/i0_and COD/INTA, defines the type
LOW of bus cycle. The bus is in a Tg state whenever one or both are LOW. ST and SO are active LOW and
float to three-state OFF during bus hold acknowledge.
80286 Bus Cycle Status Definition
COD/INTA |M/IO| ST | SO | Bus cycle initiated
0 (LOW) 0 0 0 Interrupt acknowledge
0 0 0 1 Reserved
0 0 1 0 Reserved
0 0 1 1 None; not a status cycle
0 1 0 0 IF Ay =1 then halt; else shutdown
0 1 0 1 Memory data read
0 1 1 0 Memory data write
0 1 1 1 None; not a status cycle
1 (HIGH) 0 0 o] Reserved
1 0 0 1 1/0 read
1 0 1 0 1/0 write
1 0 1 1 None; not a status cycle
1 1 0 0 Reserved
1 1 0 1 Memory instruction read
1 1 1 0 Reserved
1 1 1 1 None; not a status cycle

M/10 (o] Memory/IO Select distinguishes memory access from 1/0 access. If HIGH during Ts, a memory cycle or a
halt/shutdown cycle is in progress. If LOW, an I/O cycle or an interrupt acknowledge cycle is in progress.
M/IO floats to three-state OFF during bus hold acknowledge.

COD/INTA o Code/Interrupt Acknowledge distinguishes instruction fetch cycles from memory data read cycles. Also
distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/INTA fioats to three-state OFF during bus
hold acknowledge.

Active LOCK (o] Bus Lock indicates that_other system bus masters are not to gain control of the system bus following the

LOW current bus cycle. The LOCK signal may be activated explicitly by the "LOCK" instruction prefix or
automatically by 80286 hardware during memory XCHG instructions, interrupt acknowledge, or descriptor
table access. LOCK is active LOW and floats to three-state OFF during bus hold acknowledge.

Active READY | Bus Ready terminates a bus cycle. Bus cycles are extended without limit until terminated by READY LOW.

Low READY is an active LOW synchronous input requiring set-up and hold times relative to the system clock be
met for correct operation. READY is ignored during bus hold acknowledge.

Active HOLD, | Bus Hold Request and Hold Acknowledge control ownership of the 80286 local bus. The HOLD input allows

HIGH HLDA (0] another local bus master to request control of the local bus. When control is granted, the 80286 will float

its bus drivers to three-state OFF and then active HLDA, thus entering the bus hold acknowledge condition.
The local bus will remain granted to the requesting master until HOLD becomes inactive which results in the
80286 deactivating HLDA and regaining control of the local bus. This terminates the bus hold acknowledge

condition. HOLD may be asynchronous to the system clock. These signals are active HIGH.

PIN DESCRIPTION (Cont.)

Active
State

Name

170

Description

Active
HIGH

INTR

Interrupt Request requests the 80286 to suspend its current program execution and service a pending
external request. Interrupt requests are masked whenever the interrupt enable bit in the flag word is cleared.
When the 80286 responds to an interrupt request, it performs two interrupt acknowledge bus cycles to read
an 8-bit interrupt vector that identifies the source of the interrupt. To assure program interruption, INTR must
remain active until the first interrupt acknowledge cycle is completed. INTR is sampled at the beginning of
each processor cycle and must be active HIGH at least two processor cycles before the current instruction
ends in order to interrupt before the next instruction. INTR is level sensitive, active HIGH, and may be
asynchronous to the system clock.

Active
HIGH

NMI

Non-maskable Interrupt Request interrupts the 80286 with an internally supplied vector value of 2. No
interrupt acknowledge cycles are performed. The interrupt enable bit in the 80286 flag word does not affect
this input. The NMI input is active HIGH, may be asynchronous to the system clock, and is edge triggered
after internal synchronization. For proper recognition, the input must have been previously LOW for at least
four system clock cycles and remain HIGH for at least four system clock cycles.

Processor Extension Operand Request and Acknowledge extended the memory management and protection
capabilities of the 80286 to processor extensions. The PEREQ input requests the 80286 to perform a data
operand transfer for a processor extension. The PEACK output signals the processor extension when the
requested operand is being transferred. PEREQ is active HIGH and may be asynchronous to the system
clock. PEACK is active LOW.

Active
LOW

Processor Extension Busy and Error indicate the operating condition of a processor extension to the 80286.
An active BUSY input stops 80286 program execution on WAIT and some_ESC instructions until BUSY
becomes inactive (HIGH). The 80286 may be interrupted while waiting for BUSY to become inactive. An
active ERROR input causes the 80286 to perform a processor extension interrupt when executing WAIT or
some ESC instructions. These inputs are active LOW and may be asynchronous to the system clock.

Active
HIGH

RESET

System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be reinitialized at
any time with a LOW-to-HIGH transition on RESET which remains active for more than 16 system clock
cycles. During RESET active, the output pins of the 80286 enter the state shown below:

80286 Pin State During Reset

Pin Names

S0, 51, PEACK, Ap3-Ag, BHE, LOCK
M/IO, COD/INTA, HLDA

Di5-Do

Pin Value

1 (HIGH)

0 (LOW)
three-state OFF

Operation of the 80286 begins after a HIGH-to-LOW transition on RESET. The HIGH-to-LOW transition of
RESET must be synchronous to the system clock. Approximately 50 system clock cycles are required by
the 80286 for internal initializations before the first bus cycle to fetch code from the power-on execution
address is performed.

A LOW-to-HIGH transition of RESET synchronous to the system clock, will begin a new processor cycle at
the next HIGH-to-LOW transition of the system clock. The LOW-to-HIGH transition of RESET may be
asynchronous to the system clock; however, in this case it cannot be predetermined which phase of the
processor clock will occur during the next system clock period. Synchronous LOW-to-HIGH transitions of
RESET are only required for systems where the processor clock must be phase synchronous to another
clock.

Active
HIGH

Vss

System Ground: 0 VOLTS.

Active
HIGH

Vce

System Power: +5 Volt Power Supply.

Active
HIGH

CAP

Substrate Filter Capacitor: a 0.047uf £20% 12 V capacitor must be connected between this pin and ground.
This capacitor filters the output of the internal substrate bias generator. A maximum DC leakage current of
1 pa is allowed through the capacitor.

For correct operation of the 80286, the substrate bias generator must charge this capacitor to its operating
voltage. The capacitor charge-up time is 5 milliseconds (max.) after Vcc and CLK reach their specified AC
and DC parameters. RESET may be applied to prevent spurious activity by the CPU during this time. After
this time, the 80286 processor clock can be phase synchronized to another clock by pulsing RESET LOW
synchronous to the system clock.

FUNCTIONAL DESCRIPTION

Introduction

In iAPX 86 real address mode programs use real addresses
with up to one megabyte of address space. Programs use
virtual addresses in protected virtual address mode, also
called protected mode. In protected mode, the 80286 CPU
automatically maps 1 gigabyte of virtual addresses per task

The 80286 is an advanced, high-performance microprocessor
with specially optimized capabilities for multiple user and multi-
tasking systems. Depending on the application, the 80286's
performance is up to six times faster than the standard 5 MHz
8086's, while providing complete upward software compatibili-
ty with AMD's iAPX 86, 88, and 186 family of CPU's.

The 80286 operates in two modes: iAPX 86 real address mode
and protected virtual address mode. Both modes execute a
superset of the iAPX 86 and 88 instruction set.

into a 16 megabyte real address space. This mode also
provides memory protection to isolate the operating system
and ensure privacy of each task's programs and data. Both
modes provide the same base instruction set, registers, and
addressing modes.

The following pages describe first, the base 80286 architec-
ture common to both modes; second, iAPX 86 real address
mode; and third, protected mode.

80286 Base Architecture

The iAPX 86, 88, 186, and 286 CPU family all contain the
same basic set of registers, instructions, and addressing
modes. The 80286 processor is upward compatible with the
8086, 8088, and 80186 CPU's.

Register Set

The 80286 base architecture has fifteen registers as shown in
Figure 1. These registers are grouped into the following four
categories:

General Registers: Eight 16-bit general purpose registers
used to contain arithmetic and logical operands. Four of these
(AX, BX, CX, and DX) can be used either in their entirety as 16-
bit words or split into pairs of separate 8-bit registers.

Segment Registers: Four 16-bit special purpose registers
select, at any given time, the segments of memory that are
immediately addressable for code, stack, and data. (For
usage, refer to Memory Organization.)

Base and Index Registers: Four of the general purpose
registers may also be used to determine offset addresses of
operands in memory. These registers may contain base
addresses or indexes to particular locations within a segment.
The addressing mode determines the specific registers used
for operand address calculations.

Status and Control Registers: Three 16-bit special purpose
registers record or control certain aspects of the 80286
processor state. These include the Instruction Pointer, which
contains the offset address of the next sequential instruction
to be executed.

16-BIT SPECIAL ® o
REGISTER REGISTER cs CODE SEGMENT SELECTOR
NAME FUNCTIONS
7 o7 0 DS DATA SEGMENT SELECTOR
BYTE AX AH AL MULTIPLY/DIVIDE ss K
&Dﬂess ABLE ~ — } ARG STACK SEGMENT SELECTOR
SeesTen o= —) SoPET AEPERT COUNT ES EXTRA SEGMENT SELECTOR
LOOP/SHIFT'REPEAT COUN
NAMES SEGMENT REGISTERS
SHOWN)
BX BH BL
BASE REGISTERS 15 0
8P
F FLAGS
sI
INDEX REGISTERS P INSTRUCTION POINTER
ol
MSW MACHINE STAT
sp) STACK POINTER US WORD
" 3 STATUS AND CONTROL
GENERAL REGISTERS
REGISTERS
TB000085
TB000091
Figure 1. Register Set
STATUS FLAGS:
CARRY
PARITY
AUXILIARY CARRY
ZERO
SIGN
OVERFLOW

S\ B 8 I 3 W I . I W WIS

CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE

DIRECTION FLAG

SPECIAL FIELDS:

/0 PRIVILEGE LEVEL
NESTED TASK FLAG

3 2 1 0
Ts EM mMpP PE

RESERVED

PROCESSOR EXTENSION EMULATED
MONITOR PROCESSOR EXTENSION

PROTECTION ENABLE

TASK SWITCH '—t

DF003640

Figure 2. Status and Control Register Bit Functions

Flags Word Description

The Flags word (Flags) records specific characteristics of the

ADDITION

result of logical and arithmetic instructions (bits 0, 2, 4, 6, 7, ADD Add byte or word
and 11) and controls the operation of the 80286 within a given ADC Add byte or word with carry
opergting mode (bits 8 aqd 9)‘. Flags is a 16-bit register. The INC Increment byte or word by 1
function of the flag bits is given in Table 1. APA ASCIl adjust for addition
Table 1. Flags Word Bit Functions DAA | Decimal adjust for addition
SUBTRACTION
Pogiittion Name Eunction suB Subtract byte or word .
- - SBB Subtract byte or word with borrow
0 CF gg:z“ilacgl e_argg t&r;]gali'ls:grder bit carry or DEC Decrement byte or word by 1
2 PF_|Parity Flag— Set if low-order 8 bits of NEG | Negate byte or word
result contain an even number of 1 bits; CMP Compare byte or word
cleared otherwise AAS | ASCIl adjust for subtraction
4 AF gﬁe?r}oﬁ?rgt;mor? A?ll:; bg;?x;}}oottﬁswlzgé DAS Decimal adjust for subtraction
6 ZF |Zero Flag— Set if result is zero; cleared MULTIPLICATION
otherwise MUL Multiply byte or word unsigned
7 SF |Sign Flag — Set equal to high-order bit of IMUL Integer multiply byte or word
result (0 if positive, 1 if negative) AAM ASCIl adjust for multiply
11 OF | Overflow Flag — Set if result is a too-large DIVISION
large positive number or a too-small
negative number (excluding sign-bit) to fit DIV Divide byte or word unsigned
in destination operand; cleared otherwise DIV Integer divide byte or word
D R e
instruction executes. TF is cleared by the CBW Convert byte to word
single step interrupt. CWD Convert word to doubleword
9 IF |Interrupt-Enable Flag — When set,
Fareior “comral' o "an_ mermupt vedtor Figure 4. Arithmetic Instructions
spfecifie.d location - MOVS Move byte or word string
O R e e s ememmont tho input bytes of word sng
appropriate index registers when set. ouTS Output bytes or word string
Clearing DF causes auto increment. CMPS Compare byte or word string
SCAS Scan byte or word string
LODS Load byte or word string
GENERAL PURPOSE STOS Store byte or word string
MOV Move byte or word REP Repeat
PUSH Push word onto stack REPE/REPZ Repeat while equal/zero
POP Pop word off stack REPNE/REPNZ |Repeat while not equal/not zero
PUSHA Push all registers on stack
POPA Pop all registers from stack Figure 5. String Instructions
XCHG Exchange byte or word LOGICALS
XLAT Translate byte NOT "Not'" byte or word
INPUT/OUTPUT AND "And" byte or word
IN Input byte or word OR "Inclusive or' byte or word
ouT Output byte or word XOR "Exclusive or'" byte or word
ADDRESS OBJECT TEST "Test'" byte or word
LEA Load effective address SHIFTS
LDS Load pointer using DS SHL/SAL | Shift logical/arithmetic left byte or word
LES Load pointer using ES SHR Shift logical right byte or word
FLAG TRANSFER SAR Shift arithmetic right byte or word
LAHF Load AH register from flags ROTATES
SAHF Store AH register in flags ROL Rotate left byte or word
PUSHF Push flags onto stack ROR Rotate right byte or word
POPF Pop flags off stack RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word

Figure 3. Data Transfer Instructions

Figure 6. Shift/Rotate/Logical Instructions

CONDITIONAL TRANSFERS

UNCONDITIONAL TRANSFERS

JA/IJNBE Jump if above/not below nor equal CALL Call procedure
JAE/JNB Jump if above or equal/not below RET Return from procedure
JB/INAE Jump if below/not above nor equal JMP Jump
JBE/JNA Jump if below or equal/not above
JC Jump if carry ITERATION CONTROLS
JE/JZ Jump if equal/zero
JG/JINLE Jump if greater/not less nor equal LOOP Loop
JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/ING Jump if less or equal/not greater JCXZ Jump if register CX =0
JNC Jump if not carry
JNE/JNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even
JS Jump if sign
Figure 7. Program Transfer Instructions
FLAG OPERATIONS Memory Organization
STC Set carry flag Memory is organized as sets of variable length segments.
CLC Clear carry flag Each segment is a linear contiguous sequence of up to
CMC Complement carry flag 64K(216) 8-bit bytes. Memory is addressqd using a two_-
ST Set direction fiag component address (a poin.ter) that consists of a 16-bit
segment selector and a 16-bit offset. The segment selector
CLD Clear direction flag indicates the desired segment in memory. The offset compo-
STI Set interrupt enable flag nent indicates the desired byte address within the segment.
CLI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION ’?F '1\5
HLT Halt until interrupt or reset POINTER
WAIT Wait for BUSY not active —
ESC Escape to extension processor !TSEG"E"" 'sl‘s OFFSET !
LOCK Lock bus during next instruction i OPERAND
NO OPERATION ’ SeLeCTED |) SHSCTED
NOP No operation
EXECUTION ENVIRONMENT CONTROL
LMSW Load machine status word
SMSW Store machine status word
Figure 8. Processor Control Instructions ~ A
ENTER Format stack for procedure entry MEMORY DF003650
LEAVE Restore stack for procedure exit
BOUND | Detects values outside prescribed range Figure 10. Two-Component Address

Figure 9. High-Level Instructions

Table 2. Segment Register Selection Rules

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule
Instructions Code (CS) Automatic with instruction prefetch
Stack Stack (SS) All ;tack pushes and pops. Any memory reference which uses BP as a base
register.
Local Data Data (DS) All data references except when relative to stack or string destination
External (Global) Data Extra (ES) Alternate data segment and destination of string operation

All instructions that address operands in memory must specify
the segment and the offset. For speed and compact instruc-
tion encoding, segment selectors are usually stored in the high
speed segment registers. An instruction need specify only the
desired segment register and an offset to address a memory
operand.

Most instructions need not explicitly specify which segment
register is used. The correct segment register is automatically
chosen according to the rules of Table 2. These rules follow
the way programs are written (see Figure 11) as independent
modules that require areas for code and data, a stack, and
access to external data areas.

Special segment override instruction prefixes allow the implicit
segment register selection rules to be overridden for special
cases. The stack, data, and extra segments may coincide for
simple programs. To access operands that do not reside in
one of the four immediately available segments, either a full
32-bit pointer can be used or a new segment selector must be
loaded.

Addressing Modes

The 80286 provides a total of eight addressing modes for
instructions to specify operands. Two addressing modes are
provided for instructions that operate on register or immediate
operands:

Register Operand Mode: The operand is located in one of
the 8- or 16-bit general registers.

Immediate Operand Mode: The operand is included in the
instruction.

Six modes are provided to specify the location of an operand
in a memory segment. A memory operand address consists of
two 16-bit components: segment selector and offset. The
segment selector is supplied by a segment register either
implicitly chosen by the addressing mode or explicitly chosen
by a segment override prefix. The offset is calculated by
summing any combination of the following three address
elements:

the displacement (an 8- or 16-bit immediate value con-
tained in the instruction)

the base (contents of either the BX or BP base registers)
the index (contents of either the Sl or DI index registers)

Any carry out from the 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

Combinations of these three address elements define the six
memory addressing modes, here described.

Direct Mode: The operand's offset is contained in the
instruction as an 8- or 16-bit displacement element.

Register Indirect Mode: The operand's offset is in one of the
registers Sl, DI, BX, or BP.

Based Mode: The operand's offset is the sum of an 8- or 16-
bit displacement and the contents of a base register (BX or
BP).

r—=—7-1
1 !
CODE
MODULE A
DATA
| 1
1 |
P
CODE cPY
MODULE B |
DATA CODE
[} I I DATA
| |
STACK
PROCESS
STACK EXTRA
SEGMENT
REGISTERS
I |
' I
PROCESS
DATA
BLOCK 1
! 1
! 1
PROCESS
DATA
BLOCK 2
1 |
Lo——d
MEMORY
DF003660

Figure 11. Segmented Memory Helps
Structure Software

Indexed Mode: The operand's offset is the sum of an 8- or
16-bit displacement and the contents of an index register (S|
or DI).

Based Indexed Mode: The operand's offset is the sum of the
contents of a base register and an index register.

Based Indexed Mode with Displacement: The operand's
offset is the sum of a base register's contents, an index
register's contents, and an 8- or 16-bit displacement.

10

Data Types

The 80286 directly supports the following data types:

Integer: A signed binary numeric value contained

in an 8-bit byte or a 16-bit word. All op-

erations assume a 2's complement repre-

sentation. Signed 32- and 64-bit integers
are supported using the 80287 Numeric
Data Processor.
Ordinal: An unsigned binary numeric value con-
tained in an 8-bit byte or 16-bit word.

Pointer:
nent. Each component is a 16-bit word.

String:
A string may contain from 1 byte to 64K
bytes.

ASCII: A byte representation of alphanumeric

and control characters using the ASCII

standard of character representation.

BCD: A byte (unpacked) representation of the

decimal digits 0-9.

Packed BCD: A byte (packed) representation of two

decimal digits 0 -9 storing one digit in

each nibble of the byte.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. (Floating point operands

are supported using the iAPX 287 Numer-

ic Processor configuration.)

Figure 12 graphically represents the data types supported by
the 80286.

1/0 Space

The 1/0 space consists of 64K 8-bit or 32K 16-bit ports. 1/0
instructions address the 1/0 space with either an 8-bit port
address, specified in the instruction, or a 16-bit port address in
the DX register. 8-bit port addresses are zero extended such
that A15 - Ag are LOW. I/O port addresses 00F8(H) through
O00FF(H) are reserved.

A 32-bit quantity, composed of a segment
selector component and an offset compo-

A contiguous sequence of bytes or words.

7
SIGNED
BYTE

SIGN BIT J
MAGNITUDE

7
UNSIGNED
BYTE

L ms8
MAGNITUDE
s tt g7 0 o
SIGNED
WORD
SIGN BIT 2| -MsB
MAGNITUDE
siGNep 31 *3 *2 4615) 0 o
DOUBLE
WORD*
SIGN 81T EMSB)
MAGNITUDE
+7 o+ +5 +4 +3 +2 +1 0
SIGNED 63 48 47 3231 1615 [}
QUAD l
WORD* l l [l
SIGN BIT /|- MSB)
MAGNITUDE
P o
L S LEARARN ARRE LA
WORD I I |
MSB
MAGNITUDE
BINARY T N 7 1 oy 0
CODED oo
DECIMAL
(8cO) _BCD BCD BCD
DIGIT N DIGIT 1 DIGIT 0
7 *N 7 v o 0
ASCIl LEXY ’ ! | l
ASCH ASCIl ASClIl
CHARACTERN CHARACTER; CHARACTER(
+1 0
PACKED [+ - . uL :
BCD e I I I
| L i
—J L
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
715 TN 71s Y1 975 0 4
STRING I l I oo I l ! I
BYTE'WORD N BYTE’'WORD 1 BYTE/WORD 0
+3 +2 +1 0

31 1615 0

POINTER

|

SELECTOR OFFSET
79+9 +8 +7 +6 +5 +4 +3 +2 +1]

0

Mo [T T T T T T T 1 1]
SIGN BIT = L)
EXPONENT

MAGNITUDE

DF003670
*Support by iAPX 286/287 Numeric Data
Processor Configuration

Figure 12. 80286 Supported Data Types

Table 3. Interrupt Vector Assignments

Function I::::;:‘;t In:t:::tt?gns BZ:;r;nlrgfxzézn
Causing Exception?

Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 All
Breakpoint interrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC or WAIT Yes
Reserved 8-15
Processor extension error input 16 ESC or WAIT
Reserved 17-31
User defined 32-255

Interrupts

An interrupt transfers execution to a new program location.
The old program address (CS:IP) and machine state (Flags)
are saved on the stack to allow resumption of the interrupted
program. Interrupts fall into three classes: hardware initiated,
INT instructions, and instruction exceptions. Hardware initiated
interrupts occur in response to an external input and are
classified as non-maskable or maskable. Programs may cause
an interrupt with an INT instruction. Instruction exceptions
occur when an unusual condition, which prevents further
instruction processing, is detected while attempting to execute
an instruction. The return address from an exception will
always point at the instruction causing the exception and
include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0 -31,
some of which are used for instruction exceptions, are
reserved. For each interrupt, an 8-bit vector must be supplied
to the 80286 which identifies the appropriate table entry.
Exceptions supply the interrupt vector internally. INT instruc-
tions contain or imply the vector and allow access to all 256
interrupts. Maskable hardware initiated interrupts supply the 8-
bit vector to the CPU during an interrupt acknowledge bus
sequence. Non-maskable hardware interrupts use a prede-
fined internally supplied vector.

Maskable Interrupt (INTR)

The 80286 provides a maskable hardware interrupt request
pin, INTR. Software enables this input by setting the interrupt
flag bit (IF) in the flag word. All 224 user-defined interrupt
sources can share this input, yet they can retain separate
interrupt handlers. An 8-bit vector read by the CPU during the
interrupt acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

Further maskable interrupts are disabled while servicing an
interrupt by resetting the IF but as part of the response to an
interrupt or exception. The saved flag word will reflect the
enable status of the processor prior to the interrupt. Until the

flag word is restored to the flag register, the interrupt flag will
be zero unless specifically set. The interrupt return instruction
includes restoring the flag word, thereby restoring the original
status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided. NMI
has higher priority than INTR. A typical use of NMI would be to
activate a power failure routine. The activation of this input
causes an interrupt with an internally supplied vector value of
2. No external interrupt acknowledge sequence is performed.

While executing the NMI servicing procedure, the 80286 will
not service further NMI requests, INTR requests, or the
processor extension segment overrun interrupt until an inter-
rupt return (IRET) instruction is executed or the CPU is reset. If
NMI occurs while currently servicing an NM, its presence will
be saved for servicing after executing the first IRET instruc-
tion. IF is cleared at the beginning of an NMI interrupt to inhibit
INTR interrupts.

Single Step Interrupt

The 80286 has an internal interrupt that allows programs to
execute one instruction at a time. It is called the single step
interrupt and is controlled by the single step flag bit (TF) in the
flag word. Once this bit is set, an internal single step interrupt
will occur after the next instruction has been executed. The
interrupt clears the TF bit and uses an internally supplied
vector of 1. The IRET instruction is used to set the TF bit and
transfer control to the next instruction to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are pro-
cessed in a fixed order as shown in Table 4. Interrupt
processing involves saving the flags, return address, and
setting CS:IP to point at the first instruction of the interrupt
handler. If other interrupts remain enabled, they are processed
before the first instruction of the current interrupt handler is
executed. The last interrupt processed is therefore the first
one serviced.

Table 4. Interrupt Processing Order

Table 6. MSW Bit Functions

Order Interrupt Pogilttion Name| Function
1 INT instruction or exception
2 Single ste Protected mode Enable places the
9 P 0 PE 80286 into protected mode and cannot
3 NMI be cleared except by RESET.
4 Processor extension segment overrun Monitor Processor extension allows
WAIT instructions to cause a processor
5 INTR 1 MP extension not present exception
[number 7).
Initialization and Processor Reset ()

o . . . Emulate processor extension causes a
Processor initialization or start up is accomplished by driving processor extension not present
the RESET input pin HIGH. RESET forces the 80286 to 2 EM | exception (number 7) on ESC
terminate all execution and local bus activity. No instruction or instructions to allow emulating a
bus activity will occur as long as RESET is active. After RESET processor extension.
becomes machye and an |.nter.nal processing interval elgpses, Task Switched indicates the next
the 80286 begins execution in real address mode with the instruction using a processor extension
instruction at physical location FFFFFO(H). RESET also sets will cause exception 7, allowing
some registers to predefined values as shown in Table 5. 3 TS | software to test whether the current

processor extension context belongs to
Table 5. 80286 Initial Register State after RESET the current task.

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

Machine Status Word Description

The machine status word (MSW) records when a task switch
takes place and controls the operating mode of the 80286. It is
a 16-bit register of which the lower four bits are used. One bit
places the CPU into protected mode, while the other three
bits, as shown in Table 6, control the processor extension
interface. After RESET, this register contains FFFO(H) which
places the 80286 in iAPX 86 real address mode.

The LMSW and SMSW instructions can load and store the
MSW in real address mode. The recommended use of TS, EM,
and MP is shown in Table 7.

Halt

The HLT instruction stops program execution and prevents
the CPU from using the local bus until restarted. Either NMI,
INTR with IF = 1, or RESET will force the 80286 out of halt. If
interrupted, the saved CS:IP will point to the next instruction
after the HLT.

iAPX 86 Real Address Mode

The 80286 executes a fully upward-compatible superset of the
8086 instruction set in real address mode. In real address
mode the 80286 is object code compatible with 8086 and
8088 software. The real address mode architecture (registers
and addressing modes) is exactly as described in the 80286
Base Architecture section.

Table 7. Recommended MSW Encodings For Processor Extension Control

Instructions
TS MP | EM Recommended Use Causing
Exception
0 0 0 iAPX 86 real address mode only. Initial encoding after RESET. 80286 operation is None
identical to iAPX 86, 88.
0 0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 A processor extension exists. None
A processor extension exists. The current processor extension context may belong
1 1 0 to another task. The exception on WAIT allows software to test for an error pending| ESC or WAIT
from a previous processor extension operation.

Memory Size

Physical memory is a contiguous array of up to 1,048,576
bytes (one megabyte) addressed by pins Ag through A{g and
BHE. Agp through Apg are ignored.

Memory Addressing

In real address mode the processor generates 20-bit physical
addresses directly from a 20-bit segment base address and a
16-bit offset.

The selector portion of a pointer is interpreted as the upper 16
bits of a 20-bit segment address. The lower four bits of the 20-
bit segment address are always zero. Segment addresses,
therefore, begin on multiples of 16 bytes. See Figure 13 for a
graphic representation of address formation.

15 0
OFFSET OFFSET
ADDRESS
—_— —
15 0
SEGMENT
SEGMENT 0000} ApDRESS
ADDER
19 0
20-BIT PHYSICAL
MEMORY ADDRESS

DF003680

Figure 13. iAPX 86 Real Address Mode
Address Calculation

All segments in real address mode are 64K bytes in size and
may be read, written, or executed. An exception or interrupt
can occur if data operands or instructions attempt to wrap
around the end of a segment (e.g. a word with its low order
byte at offset FFFF(H) and its high order byte at offset
0000(H)). If, in real address mode, the information contained in
a segment does not use the full 64K bytes, the unused end of
the segment may be overlayed by another segment to reduce
physical memory requirements.

Reserved Memory Locations

The 80286 reserves two fixed areas of memory in real address
mode (see Figure 14): system initialization area and interrupt
table area. Locations from addresses FFFFO(H) through
FFFFF(H) are reserved for system initialization. Initial execu-
tion begins at location FFFFO(H). Locations 00000(H) through
003FF(H) are reserved for interrupt vectors.

FFFFFH
RESET BOOTSTRAP
PROG MP
RAM JU FFFFOH
~ . ~
’E . Y
3FFH
INTERRUPT POINTER
FOR VECTOR 255
3FOH
la, . ~
~ . ’}4
7H
INTERRUPT POINTER
FOR VECTOR 1 4H
INTERRUPT POINTER 3H
FOR VECTOR 0 o
H
DF003690

Figure 14. iAPX 86 Real Address Mode Ini-
tially Reserved Memory Locations

Table 8. Real Address Mode Addressing Interrupts

Function Interrupt Related Return Address
Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
. . ESC with memory operand extending

Processor extension segment overrun interrupt 9 beyond offset FFFF(H) No
Word memory reference with

Segment overrun exception 13 offset = FFFF(H) or an attempt to execute Yes
past the end of a segment

14

Interrupts

Table 8 shows the interrupt vectors reserved for exceptions
and interrupts which indicate an addressing error. The excep-
tions leave the CPU in the state existing before attempting to
execute the failing instruction (except for PUSH, POP, PUSHA,
or POPA). Refer to the next section on protected mode
initialization for a discussion on exception 8.

Protected Mode Initialization

To prepare the 80286 for protected mode, the LIDT instruction
is used to load the 24-bit interrupt table base and 16-bit limit
for the protected mode interrupt table. This instruction can
also set a base and limit for the interrupt vector table in real
address mode. After reset, the interrupt table base is initialized
to 000000(H) and its size set to 03FF(H). These values are
compatible with iAPX 86, 88 software. LIDT should only be
executed in preparation for the protected mode.

Shutdown

Shutdown occurs when a severe error is detected that

prevents further instruction processing by the CPU. Shutdown

and halt are externally signalled via a halt bus operation. They

can be distinguished by A{ HIGH for halt and Ay LOW for

shutdown. In real address mode, shutdown can occur under

two conditions:

© Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

o A CALL, INT, or POP instruction attempts to wrap around
the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the IDT
limit is at least 000F(H) and SP is greater than 0005(H);
otherwise, shutdown can only be exited via the RESET input.

Protected Virtual Address Mode

The 80286 executes a fully upward-compatible superset of the
8086 instruction set in protected virtual address mode (pro-
tected mode). Protected mode also provides memory man-
agement and protection mechanisms and associated instruc-
tions.

The 80286 enters protected virtual address mode from real
address mode by setting the PE (Protection Enable) bit of the
machine status word with the Load Machine Status Word
(LMSW) instruction. Protected mode offers extended physical
and virtual memory address space, memory protection mecha-
nisms, and new operations to support operating systems and
virtual memory.

All registers, instructions, and addressing modes described in
the 80286 Base Architecture section remain the same. Pro-
grams for the iAPX 86, 88, 186, and real address mode 80286
can be run in protected mode; however, embedded constants
for segment selectors are different.

Memory Size

The protected mode 80286 provides a 1 gigabyte virtual
address space per task mapped into a 16-megabyte physical
address space defined by the address pin Aoz — Ag and BHE.
The virtual address space may be larger than the physical
address space since any use of an address that does not map
to a physical memory location will cause a restartable excep-
tion.

Memory Addressing

As in real address mode, protected mode uses 32-bit pointers,
consisting of 16-bit selector and offset components. The
selector, however, specifies an index into a memory resident

table rather than the upper 16-bits of a real memory address.
The 24-bit base address of the desired segment is obtained
from the tables in memory. The 16-bit offset is added to the
segment base address to form the physical address as shown
in Figure 15. The tables are automatically referenced by the
CPU whenever a segment register is loaded with a selector.
All 80286 instructions which load a segment register will
reference the memory based tables without additional soft-
ware. The memory based tables contain 8 byte values called
descriptors.

CPU

31 16 15 0

POINTER |SELECTOR| OFFSET

1

PHYSICAL MEMORY
A ~
n; V]

MEMORY

OPERAND SEGMENT

PHYSICAL
ADDRESS
ADDER

T
T BASE T DESCRIPTOR
ADDRESS DESCRIPTOR | [7aBLE

23 o)

PPt
pP1

DF003700

Figure 15. Protected Mode Memory
Addressing

Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of control
and task switching. The 80286 has segment descriptors for
code, stack and data segments, and system control descrip-
tors for special system data segments and control transfer
operations. Descriptor accesses are performed as locked bus
operations to assure descriptor integrity in multi-processor
systems.

Code and Data Segment Descriptors

Besides segment base addresses, code and data descriptors
contain other segment attributes including segment size (1 to
64K bytes), access rights (read only, read/write, execute only,
and execute/read), and presence in memory (for virtual
memory systems)(see Figure 16). Any segment usage violat-
ing a segment attribute indicated by the segment descriptor
will prevent the memory cycle and cause an exception or
interrupt.

7 07 0
T
+7 RESERVED* +6
.
ACCESS s [o]om e 1A
RIGHTSBYTE F LiS VP BASE23-15 +4
+3 BASEjs-g +2
1
+1 LIMIT 5.0 o
1
15 87 o
DF003710

*Must be set to 0 for compatability with iAPX 386.

Access Rights Byte Definition

Bit .
. Name Function
Position
7 Present (P) P= Segment is mapped into physical memory.
P= No mapping to physical memory exists; base and limit are not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
. S=1 Code or Data segment descriptor
4 Segment Descriptor (S) S=0 Non-segment descriptor
3 Executable (E) E=0 Data segment descriptor type is:]
2 Expansion Direction ED = 0 Grow up segment, offsets must be < limit.
(ED) Data
ED =1 Grow down segment, offsets must be > limit. I Segment
Type 1 Writable (W) W =0 Data segment may not be written into.
Field W =1 Data segment may be written into. —
Definition |3 Executable (E) E=1 Code Segment Descriptor type is:]
2 Conforming (C) C=1 Code segment may only be executed when Code
CPL = DPL. — s t
1 Readable (R) R=0 Code segment may not be read. egmen
R=1 Code segment may be read.]
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register or used by selector
test instructions.

Figure 16. Code and Data Segment Descriptors

Code and data are stored in two types of segments: code
segments and data segments. Both types are identified and
defined by segment descriptors. Code segments are identified
by the executable (E) bit set to 1 in the descriptor access
rights byte. The access rights byte of both code and data
segment descriptor types have three fields in common:
present (P) bit, Descriptor Privilege Level (DPL), and accessed
(A) bit. If P = 0, any attempted use of this segment will cause a
not-present exception. DPL specifies the privilege level of the
segment descriptor. DPL controls when the descriptor may be
used by a task (refer to privilege discussion). The A bit shows
whether the segment has been previously accessed for usage
profiling, a necessity for virtual memory systems. The CPU will
always set this bit when accessing the descriptor.

Data segments (S = 1, E = 0) may be either read-only or read-
write as controlled by the W bit of the access rights byte.
Read-only (W =0) data segments may not be written into.
Data segments may grow in two directions, as determined by
the Expansion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment containing
a stack. The limit field for a data segment descriptor is
interpreted differently depending on the ED bit (see Figure 16).

A code segment (S=1, E=1) may be execute-only or
execute/read as determined by the Readable (R) bit. Code
segments may never be written into and execute-only code
segments (R = 0) may not be read. A code segment may also
have an attribute called Conforming (C). A conforming code
segment may be shared by programs that execute at different
privilege levels. The DPL of a conforming code segment
defines the range of privilege levels at which the segment may
be executed (refer to privilege discussion).

System Control Descriptors

In addition to code and data segment descriptors, the protect-
ed mode 80286 defines system control descriptors. These
descriptors define special system data segments and control
transfer mechanisms in the protected environment. The spe-
cial system data segment descriptors define segments which
contain tables of descriptors (Local Descriptor Table Descrip-
tor) and segments which contain the execution state of a task
(Task State Segment Descriptor).

The control transfer descriptors are call gates, task gates,
interrupt gates and trap gates. Gates provide a level of
indirection between the source and destination of the control
transfer. This indirection allows the CPU to automatically
perform protection checks and control the entry point of the
destination. Call gates are used to change privilege levels (see
Privilege); task gates are used to perform a task switch; and
interrupt and trap gates are used to specify interrupt service
routines. The interrupt gate disables interrupts (resets IF) while
the trap gate does not.

7 07 0
T
+7 RESERVED* +6
|
+5 PJ DPL l [| ITVl“EI I BASE23_16 +4
1
+3 BASE1s-0 +2
1
+1 LIMITy5_o [}
1
15 87 L]
TB000088

*Must be set to 0 for compatability with iAPX 386.

System Segment Descriptor Fields

Name Value Description
TYPE 1 Available Task State Segment
2 Local Descriptor Table Descriptor
3 Busy Task State Segment
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 [Descriptor Privilege Level
BASE 24-bit |Base Address of special system data
number [segment in real memory
LIMIT 16-bit |Offset of last byte in segment
number

Figure 17. System Segment Format

16

Figure 17 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit base
address of the segment and a 16-bit limit. The access byte
defines the type of descriptor, its state and privilege level. The
descriptor contents are valid and the segment is in physical
memory if P=1. If P=0, the segment is not valid. The DPL
field is only used in Task State Segment descriptors and
indicates the privilege level at which the descriptor may be
used (see Privilege). Since the Local Descriptor Table descrip-
tor may only be used by a special privileged instruction, the
DPL field is not used. Bit 4 of the access byte is 0 to indicate
that it is a system control descriptor. The Type field specifies
the descriptor type as indicated in Figure 17.

Figure 18 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to the
descriptor of the target segment and the entry point offset.
The destination selector in an interrupt gate, trap gate, and call
gate must refer to a code segment descriptor. These gate
descriptors contain the entry point to prevent a program from
constructing and using an illegal entry point. Task gates may
only refer to a task state segment. Since task gates invoke a
task switch, the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a
destination selector does not refer to the correct descriptor
type. The Word Count field is used in the call gate descriptor
to indicate the number of parameters (0-31 words) to be
automatically copied from the caller's stack to the stack of the
called routine when a control transfer changes privilege levels.
The Word Count field is not used by any other gate descriptor.

7 07]
T
+7 RESERVED* +6
WORD .
+5 PlDPLlOl TYPE X X Xl +4
1 L1y L1 COUNT4—
+3 DESTINATION SELECTORs, | X X|+2
1 !
+1 DESTINATION OFFSET15-¢ 0
!
15 87 0

TB000086
*Must be set to 0 for compatability with iAPX 386.

Gate Descriptor Fields

Name Value Description
4 -Call Gate
5 -Task Gate
TYPE 6 ~Interrupt Gate
7 -Trap Gate
P 0 -Descriptor Contents are not
valid
1 -Descriptor Contents are valid
DPL 0-3 Descriptor Privilege Level
WORD Number of words to copy from
COUNT 0_3q |callers stack to called
procedures stack. Only used
with call gate.
Selector to the target code
DESTINATION | 16-bit ﬁ.‘fg;"g‘;téfa"' Interrupt or
SELECTOR selector Selector to the target task
state segment (Task Gate)
DESTINATION 16-bit |Entry point within the target
OFFSET offset [code segment

Figure 18. Gate Descriptor Format

The access byte format is the same for all gate descriptors.
P =1 indicates that the gate contents are valid. P =0 indi-
cates the contents are not valid and causes exception 11 if
referenced. DPL is the Descriptor Privilege Level and specifies
when this descriptor may be used by a task (refer to privilege
discussion). Bit 4 must equal 0 to indicate a system control
descriptor. The Type field specifies the descriptor type as
indicated in Figure 18.

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each of the
four segment registers (CS, SS, DS, ES). Segment descriptors
are automatically loaded (cached) into a segment descriptor
cache register (Figure 20) whenever the associated segment
register is loaded with a selector. Only segment descriptors
may be loaded into segment descriptor cache registers. Once
loaded, all references to that segment of memory use the
cached descriptor information instead of reaccessing memory.
The descriptor cache registers are not visible to programs. No
instructions exist to store their contents. They only change
when a segment register is loaded.

Selector Fields

A protected mode selector has three fields: descriptor entry
index, local or global descriptor table indicator (Tl), and
selector privilege (RPL) as shown in Figure 19. These fields
select one of two memory based tables of descriptors, select
the appropriate table entry and allow high-speed testing of the
selector's privilege attribute (refer to privilege discussion).

SELECTOR
INDEX “l PRL |
N T A R R .
15 8 7 2 1 0
Bits Name Function
1-0 |REQUESTED |INDICATES SELECTOR PRIVILEGE
PRIVILEGE |LEVEL DESIRED
LEVEL
(RPL)
2 TABLE TI=0 USE GLOBAL DESCRIPTOR TABLE
INDICATOR (GDT)
(Tl TI=1 USE LOCAL DESCRIPTOR TABLE
(LDT)
15-3 |INDEX SELECT DESCRIPTOR ENTRY IN TABLE

Figure 19. Selector Fields

17

PROGRAM VISIBLE I_ PROGRAM INVISIBLE -]

: ACCESS !

SEGMENT SELECTORS i RIGHTS SEGMENT BASE ADDRESS SEGMENT SIZE :

cs] |

ps | 1

| |

ss] |

ES |]

15 0 : a7 40 39 16 15] :

SEGMENT REGISTERS] SEGMENT DESCRIPTOR CACHE REGISTERS]

(LOADED BY PROGRAM) l_ (LOADED BY CPU) _]
DF003720

Figure 20. Descriptor Cache Registers

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables, contain all
descriptors accessible by a task at any given time. A descrip-
tor table is a linear array of up to 8192 descriptors. The upper
13 bits of the selector value are an index into a descriptor
table. Each table has a 24-bit base register to locate the
descriptor table in physical memory and a 16-bit limit register
that confines descriptor access to the defined limits of the
table as shown in Figure 21. A restartable exception (13) will
occur if an attempt is made to reference a descriptor outside
the table limits.

One table, called the Global Descriptor Table (GDT), contains
descriptors available to all tasks. The other table, called the
Local Descriptor Table (LDT), contains descriptors that can be
private to a task. Each task may have its own private LDT. The
GDT may contain all descriptor types except interrupt and trap
descriptors. The LDT may contain only segment, task gate,
and call gate descriptors. A segment cannot be accessed by a
task if its segment descriptor does not exist in either descriptor

table at the time of access.
\/
-

MEMORY
A, MEMORY A

T

GDT

GDT LiMIT

23

GDT BASE

LOT LOTy
SELECTOR|
r——=S——- -1 B CURRENT
| ! | . Lot
| 2 LOT LIMIT [
| LT
| LDT BASE T
| ! LDTn
| PROGRAM INVISIBLE |
L e —— 1 s

~

~
DF003730

PP

™

Figure 21. Local and Global Descriptor
Table Definition

The LGDT and LLDT instructions load the base and limit of the
global and local descriptor tables. LGDT and LLDT are
protected. They may only be executed by trusted programs
operating at level 0. The LGDT instruction loads a six byte field
containing the 16-bit table limit and 24-bit base address of the
Global Descriptor Table as shown in Figure 22. The LLDT

instruction loads a selector which refers to a descriptor in the
Local Descriptor Table. This descriptor contains the base
address and limit for an LDT, as shown in Figure 17.

7 07 o
+5 RESERVED* | BASE23-16 +4
+3 BASEqs-0 .2

1
+1 LIMITy5-0 °
1
15 s 7)
TB000090

Figure 22. Global Descriptor Table and Inter-
rupt Descriptor Data Type

*Must be set to 0 for compatibility with iAPX 386.
Interrupt Descriptor Table

The protected mode 80286 has a third descriptor table, called
the Interrupt Descriptor Table (IDT) (see Figure 23), used to
define up to 256 interrupts. It may contain only task gates,
interrupt gates and trap gates. The IDT (Interrupt Descriptor
Table) has a 24-bit base and 16-bit limit register in the CPU.
The protected LIDT instruction loads these registers with a
six-byte value of identical form to that of the LGDT instruction
(see Figure 22 and Protected Mode Initialization).

~ MEMORY »\,
[aY) s,

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT #n-1

INTERRUPT
DESCRIPTOR
TABLE

(10T)

.
°
3

GATE FOR
INTERRUPT #1

GATE FOR
INTERRUPT #0

IDT LIMIT

iDT BASE

23 0

CC

bP1
C
pP 1

DF003740

Figure 23. Interrupt Descriptor Table
Definition

References to IDT entries are made via INT instructions,
external interrupt vectors, or exceptions. The IDT must be at
least 256 bytes in size to allocate space for all reserved
interrupts.

Privilege

The 80286 has a four-level hierarchical privilege system which
controls the use of privileged instructions and access to
descriptors (and their associated segments) within a task.
Four-level privilege, as shown in Figure 24, is an extension of
the user/supervisor mode commonly found in minicomputers.
The privilege levels are numbered 0 through 3. Level 0 is the
most privileged level. Privilege levels provide protection within
a task. (Tasks are isolated by providing private LDT's for each
task.) Operating system routines, interrupt handlers, and other
system software can be included and protected within the
virtual address space of each task using the four levels of
privilege. Tasks may also have a separate stack for each
privilege level.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be used.
Task privilege effects the use of instructions and descriptors.
Descriptor and selector privilege only effect access to the
descriptor.

APPLICATIONS

ENFORCED
SOFTWARE

INTERFACES OS EXTENSIONS

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

AF003230

Figure 24. Hierarchical Privilege Levels

Task Privilege

The task always executes at one of the four privilege levels. A
task privilege level at any specific instant is called the Current
Privilege Level (CPL) and is defined by the lower two bits of
the CS register. CPL cannot change during execution in a
single code segment. A task's CPL may only be changed by
control transfers through gate descriptors to a new code
segment (See Control Transfer). Tasks begin executing at the
CPL value specified by the code segment when the task is
initiated via a task switch operation. A task executing at Level
0 can access all data segments defined in the GDT and the
task's LDT and is considered the most trusted level. A task
executed at Level 3 has the most restricted access to data
and is considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privilege
Level (DPL) field of the descriptor access byte. DPL specifies
the least trusted privilege level (CPL) at which a task may
access the descriptor. Descriptors with DPL = 0 are the most
protected. Only tasks executing at privilege level 0 (CPL = 0)
may access them. Descriptors with DPL =3 are the least
protected (i.e. have the least restricted access) since tasks
can access them when CPL =0, 1, 2, or 3. This rule applies to
all descriptors, except LDT descriptors.

Selector Privilege

Selector privilege is specified by the Requested Privilege
Level (RPL) field in the least significant two bits of a selector.
Selector RPL may establish a less trusted privilege level than
the current privilege level for the use of a selector. This level is
called the task's effective privilege level (EPL). RPL can only
reduce the scope of a task's access to data with this selector.
A task's effective privilege is the numeric maximum of RPL
and CPL. A selector with RPL =0 imposes no additional
restriction on its use while a selector with RPL = 3 can only
refer to segments at privilege Level 3 regardless of the task's
CPL. RPL is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed to use
data at a more privileged level than the caller (refer to pointer
testing instructions).

Descriptor Access and Privilege Validation

Determining the ability of a task to access a segment involves
the type of segment to be accessed, the instruction used, the
type of descriptor used and CPL, RPL, and DPL. The two basic
types of segment accesses are control transfer (selectors
loaded into CS) and data (selectors loaded into DS, ES or SS).

Data Segment Access

Instructions that load selectors into DS and ES must refer to a
data segment descriptor or readable code segment descriptor.
The CPL of the task and the RPL of the selector must be the
same as or more privileged (numerically equal to or lower
than) than the descriptor DPL. In general, a task can only
access data segments at the same or less privileged levels
than the CPL or RPL (whichever is numerically higher) to
prevent a program from accessing data it cannot be trusted to
use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read from any
privilege level.

If the privilege checks fail (e.g. DPL is numerically less than
the maximum of CPL and RPL) or an incorrect type of
descriptor is referenced (e.g. gate descriptor or execute only
code segment), exception 13 occurs. If the segment is not
present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The descrip-
tor privilege (DPL) and RPL must equal CPL. All other
descriptor types or privilege level violation will cause exception
13. A not present fault causes exception 12.

Control Transfer

Four types of control transfer can occur when a selector is
loaded into CS by a control transfer operation (see Table 10).
Each transfer type can only occur if the operation which
loaded the selector references the correct descriptor type.
Any violation of these descriptor usage rules (e.g. JMP
through a call gate or RET to a Task State Segment) will
cause exception 13.

The ability to reference a descriptor for control transfer is also
subject to rules of privilege. A CALL or JUMP instruction may
only reference a code segment descriptor with DPL equal to
the task CPL or a conforming segment with DPL of equal or
greater privilege than CPL. The RPL of the selector used to
reference the code descriptor must have as much privilege as
CPL.

RET and IRET instructions may only reference code segment
descriptors with descriptor privilege equal to or less privileged
than the task CPL. The selector loaded into CS is the return
address from the stack. After the return, the selector RPL is

the task's new CPL. If CPL changes, the old stack pointer is
popped after the return address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task's CPL. Reference to a valid Task State
Segment descriptor causes a task switch (see Task Switch
Operation). Reference to a Task State Segment descriptor at
a more privileged level than the task's CPL generates excep-
tion 13.

When an instruction or interrupt references a gate descriptor,
the gate DPL must have the same or less privilege than the
task CPL. If DPL is at a more privileged level than CPL,
exception 13 occurs. If the destination selector contained in
the gate references a code segment descriptor, the code
segment descriptor DPL must be the same or more privileged
than the task CPL. If not, Exception 13 is issued. After the
control transfer, the code segment descriptor DPL is the task's
new CPL. If the destination selector in the gate references a

task state segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

- JMP or CALL direct to a code segment (code segment
descriptor) can only be to a conforming segment with DPL of
equal or greater privilege than CPL or a non-conforming
segment at the same privilege level.

— interrupts within the task or calls that may change privilege
levels can only transfer control through a gate at the same or a
less privileged level than CPL to a code segment at the same
or more privileged level than CPL.

- return instructions that don't switch tasks can only return
control to a code segment at the same or less privileged level.

— task switch can be performed by a call, a jump or an interrupt
which references either a task gate or task state segment at
the same or less privileged level.

Table 9. Descriptor Types Used for Control Transfer

. Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, Code Segment GDT/LDT
IRET*
Intersegment to the same or higher privilege level Interrupt CALL Call Gate GDT/LDT
within task may change CPL. Interrupt Instruction, Trap or IDT
Exception, External Interrupt
Interrupt Gate
Intersegment to a lower privilege level (changes task CPL) RET, IRET* Code Segment GDT/LDT
CALL, JMP Task State GDT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET
Interrupt Instruction,
Exception, External Task Gate DT
Interrupt

.INT (Nested Task bit of flag word) =0
NT (Nested Task bit of flag word) =1

Privilege Level Changes

Any control transfer that changes CPL within the task causes
a change of stacks as part of the operation. Initial values of
SS:SP for privilege levels 0, 1, and 2 are kept in the task state
segment (refer to Task Switch Operation). During a JMP or
CALL control transfer, the new stack pointer is loaded into the
SS and SP registers and the previous stack pointer is pushed
onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction operation. For
subroutine calls that pass parameters on the stack and cross
privilege levels, a fixed number of words, as specified in the
gate, are copied from the previous stack to the current stack.
The intersegment RET instruction with a stack adjustment
value will correctly restore the previous stack pointer upon
return.

Protection

The 80286 includes mechanisms to protect critical instructions
that affect the CPU execution state (e.g. HLT) and code or
data segments from improper usage. These mechanisms are
grouped under the term ''protection’ and have three forms:

Restricted usage of segments (e.g. no write allowed to read-
only data segments). The only segments available for use
are defined by descriptors in the Local Descriptor Table
(LDT) and Global Descriptor Table (GDT).

Restricted access to segments via the rules of privilege and
descriptor usage.

Privileged instructions or operations that may only be
executed at certain privilege levels as determined by the
CPL and 1/0 Privilege Level (IOPL). The IOPL is defined by
bits 14 and 13 of the flag word.

These checks are performed for all instructions and can be
split into three categories: segment load checks (Table 10),
operand reference checks (Table 11), and privileged instruc-
tion checks (Table 12). Any violation of the rules shown will
result in an exception. A not-present exception related to the
stack segment causes exception 12.

The IRET and POPF instructions do not perform some of their
defined functions if CPL is not of sufficient privilege (numeri-
cally small enough). No exceptions or other indication are
given when these conditions occur.

The IF bit is not changed if CPL > IOPL.
The IOPL field of the flag word is not changed if
CPL > 0.

20

N\

Table 10. Segment Register Load Checks

Error Description Exception
Number
Descriptor table limit exceeded 13
Segment descriptor not-present 11 or 12
Privilege rules violated 13
Invalid descriptor/segment type segment
register load:
—Read only data segment load to SS
—Special control descriptor load to DS, 13
ES, SS
—Execute only segment load to DS, ES,
SS

—Data segment load to CS
—Read/Execute code segment load to
SS

Table 11. Operand Reference Checks

. Exception
Error Description Nun:)b er
Write into code segment 13
Read from execute-only code segment 13
Write to read-only data segment 13
Segment limit exceeded’ 12 or 13

Note 1: Carry out in offset calculations is ignored.

Table 12. Privileged Instruction Checks

- Exception
escripti
Error Description Number
CPL #0 when executing the following
instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW, CTS,
HLT
CPL > IOPL when executing the following
instructions: 13
INS, IN, OUTS, OUT, STI, CLI, LOCK

Exceptions

The 80286 detects several types of exceptions and interrupts
in protected mode (see Table 13). Most are restartable after
the exceptional condition is removed. Interrupt handlers for
most exceptions receive an error code, pushed on the stack
after the return address, that identifies the selector involved (0
if none). The return address normally points to the failing
instruction, including all leading prefixes. For a processor
extension segment overrun exception, the return address will
not point at the ESC instruction that caused the exception;
however, the processor extension registers may contain the
address of the failing instruction.

Table 13. Protected

Mode Exceptions

Return
Error
Interrupt . Address Always
Vector Function At Failing Restartable? o ncgti‘::k?
Instruction?
8 Double exception detected Yes No Yes
9 Processor extension segment overrun No No No
10 Invalid task state segment Yes Yes Yes
1 Segment not present Yes Yes Yes
12 Stack segment overrun or segment not present Yes Yes! Yes
13 General protection Yes No Yes

Note 1: When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception will not

be restartable. This condition is identified by the value of the saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

All these checks are performed for all instructions and can be
split into three categories: segment load checks (Table 11),
operand reference checks (Table 12), and privileged instruc-
tion checks (Table 13). Any violation of the rules shown will
result in an exception. A not-present exception related to the
stack segment causes exception 12.

Special Operations
Task Switch Operation

The 80286 provides a built-in task switch operation which
saves the entire 80286 execution state (registers, address
space, and a link to the previous task), loads a new execution
state, and commences execution in the new task. Like gates,
the task switch operation is invoked by executing an inter-
segment JMP or CALL instruction which refers to a Task State
Segment (TSS) or task gate descriptor in the GDT or LDT. An
INT n instruction, exception, or external interrupt may also
invoke the task switch operation by selecting a task gate
descriptor in the associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 25)
containing the entire 80286 execution state while a task gate
descriptor contains a TSS selector. The limit field must
be > 002B(H).

Each task must have a TSS associated with it. The current
TSS is identified by a special register in the 80286 called the

Task Register (TR). This register contains a selector referring
to the task state segment descriptor that defines the current
T8S. A hidden base and limit register associated with TR are
loaded whenever TR is loaded with a new selector.

The IRET instruction is used to return control to the task that
called the current task or was interrupted. Bit 14 in the flag
register is called the Nested Task (NT) bit. It controls the
function of the IRET instruction. If NT = O, the IRET instruc-
tion performs the regular current task return; when NT =1,
IRET performs a task switch operation back to the previous
task.

When a CALL or INT instruction initiates a task switch, the old
and new TSS will be marked busy and the back link field of the
new TSS set to the old TSS selector. The NT bit of the new
task is set by CALL or INT initiated task switches. An interrupt
that does not cause a task switch will clear NT. NT may also
be set or cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a selector
that references a busy task state segment causes Exception
13.

Processor Extension Context Switching

The context of a processor extension is not changed by the
task switch operation. A processor extension context need

21

only be changed when a different task attempts to use the
processor extension (which still contains the context of a
previous task). The 80286 detects the first use of a processor
extension after a task switch by causing the processor
extension not present exception (7). The interrupt handler may
then decide whether a context change is necessary.

Whenever the 80286 switches tasks, it sets the Task Switched
(TS) bit of the MSW. TS indicates that a processor extension
context may belong to a different task than the current one.
The processor extension not present exception (7) will occur
when attempting to execute an ESC or WAIT instruction if

TS=1 and a processor extension is present (MP=1 in
MSW).

Pointer Testing Instructions

The 80286 provides several instructions to speed pointer
testing and consistency checks for maintaining system integri-
ty (see Table 14). These instructions use the memory manage-
ment hardware to verify that a selector value refers to an
appropriate segment without risking an exception. A condition
flag indicates whether use of the selector or segment will
cause an exception.

" ja¥)
t Y
cPu RESE
Jnvso TYPE | DESCRIPTION
TASK REGISTER D
SYSTEM PIP(ofTYPE BASEx-te 1| ANAVANABLE TASK STATE
™ —— =} > secuewr m SEGMENT. MAY BE USED AS
DESCRPTOR THE DESTINATION OF A TASK
15 0 BASE1s-0 bl SWITCH OPERATION.
Fr==—====-== hl 1 |
\ | 3 | ABUSYTASK STATE SEGMENT.
| PROGRAMBMSELE | UNTso ! CANNOT BE USED AS THE
| | [DESTINATION OF A TASK
LM | [SWITCH,
| [U P d_d
! BASE !
l I ~ ~
| B 0 | ™ X
[SRS QU ' BYTE
15 o] oFrser
TASK LOT SELECTOR @
DS SELECTOR © P_|DESCRIPTION
5 SELECTOR " BASE AND LIMIT FIELDS ARE VALID
0 |SEGMENT IS NOT PRESENT IN
CS SELECTOR MEMORY, BASE AND LIMIT ARE NOT
DEFINED
ES SELECTOR N
ol 2
s Y
BP 28 | CURRENT
TASK
sp 2 [STaTE
BX 2%
TASK oX 2
L& sme
SEGMENT cx 2
AX 18
FLAG WORD 1
1P (ENTRY POINT) 14
SSFORCPL2 12
SPFORCPL2 10
SSFORCPL1 8| INMAL
STACKS
SPFORCPL1 6| FORCPLO2
SSFORCPLO 4
SPFORCPLO 2
BACK LINK SELECTORTOTSS | 0
p
3 X

DF003750

Figure 25. Task State Segment and TSS Registers

22

Table 14. Pointer Test Instructions

Instruction | Operands Function
Adjust Requested Privilege Level:
adjusts the RPL of the selector to
ARPL Sele_ctor, the numeric maximum of current
Register |selector RPL value and the RPL
value in the register. Set zero flag
if selector RPL was changed.
VERIfy for Read: sets the zero
VERR Selector |(flag if the segment referred to by
the selector can be read.
VERIfy for Write: sets the zero
VERW Selector [flag if the segment referred to by
the selector can be written.
Load Segment Limit: reads the
LSL Register, |segment limit into the register if
Selector |privilege rules and descriptor type
allow. Set zero flag if successful.
Load Access Rights: reads the
LAR Register, [descriptor access rights byte into
Selector |the register if privilege rules allow.
Set zero flag if successful.

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80286 performs the double fault
exception (8). If an exception occurs during processing of the
double fault exception, the 80286 will enter shutdown. During
shutdown no further instructions or exceptions are processed.
Either NMI (CPU remains in protected mode) or RESET (CPU
exits protected mode) can force the 80286 out of shutdown.
Shutdown is externally signalled via a HALT bus operation with
Aq HIGH.

Protected Mode Initialization

The 80286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the top of
physical memory, A2z_pp will be HIGH when the 80286
performs memory references relative to the CS register, until
CS is changed. Ap3 - 2g will be zero for references to the DS,
ES, or SS segments. Changing CS in real address mode will
force Apz - Apg LOW whenever using CS thereafter. The initial
CS:IP value of FFOO:FFFO provides 64K bytes of code space
for initialization code without changing CS.

Before placing the 80286 into protected mode, several regis-
ters must be initialized. The GDT and IDT base registers must
refer to a valid GDT and IDT. After executing the LMSW
instruction to set PE, the 80286 must immediately execute an
intrasegment JMP instruction to clear the instruction queue of
instructions decoded in real address mode.

To force the 80286 CPU registers to match the initial protected
mode state assumed by software, execute a JMP instruction
with a selector referring to the initial TSS used in the system.
This will load the task register, local descriptor table register,
segment registers and initial general register state. The TR
should point at a valid TSS since a task switch operation
involves saving the current task state.

System Interface

The 80286 system interface appears in two forms: a local bus
and a system bus. The local bus consists of address, data,
status, and control signals at the pins of the CPU. A system
bus is any buffered version of the local bus. A system bus may
also differ from the local bus in terms of coding of status and
control lines and/or timing and loading of signals. The 80286
family includes several devices to generate standard system
buses such as the IEEE 796 Standard Multibus™.

Bus Interface Signals and Timing

The 80286 microsystem local bus interfaces the 80286 to
local memory and I/O components. The interface has 24
address lines, 16 data lines, and 8 status and control signals.

The 80286 CPU, 82284 clock generator, 82C288 bus control-
ler, 82289 bus arbiter, 8286/7 transceivers, and 8282/3
latches provide a buffered and decoded system bus interface.
The 82284 generates the system clock and synchronizes
READY and RESET. The 82C288 converts bus operation
status encoded by the 80286 into command and bus control
signals. These components can provide the timing and electri-
cal power drive levels required for most system bus interfaces
including the multibus.

Physical Memory and 1/0 Interface

A maximum of 16 megabytes of physical memory can be
addressed in protected mode. One megabyte can be ad-
dressed in real address mode. Memory is accessible as bytes
or words. Words consist of any two consecutive bytes
addressed with the least significant byte stored in the lowest
address.

Byte transfers occur on either half of the 16-bit local data bus.
Even bytes are accessed over D7 _g while odd bytes are
transferred over Dy5_-g. Even-addressed words are trans-
ferred over Dis_g in one bus cycle, while odd-addressed
words require two bus operations. The first transfers data on
D158, and the second transfers data on D7 —. Both byte
data transfers occur automatically, transparent to software.

Two bus signals, Ag and BHE, control transfers over the lower
and upper halves of the data bus. Even address byte transfers
are indicated by Ag LOW and BHE HIGH. Odd address byte
transfers are indicated by Ag HIGH and BHE LOW. Both Ag
and BHE are LOW for even address word transfers.

The 1/0 address space contains 64K addresses in both
modes. The /0 space is accessible as either bytes or words,
as is memory. Byte wide peripheral devices may be attached
to either the upper or lower byte of the data bus. Byte-wide 1/0
devices attached to the upper data byte (D15_g) are ac-
cessed with odd |I/0O addresses. Devices on the lower data
byte are accessed with even 1/0 addresses. An interrupt
controller such as the 8259A must be connected to the lower
data byte (D7-¢) for proper return of the interrupt vector.

Bus Operation

The 80286 uses a double frequency system clock (CLK input)
to control bus timing. All signals on the local bus are measured
relative to the system CLK input. The CPU divides the system
clock by 2 to produce the internal processor clock, which
determines bus state. Each processor clock is composed of
two system clock cycles named phase 1 and phase 2. The
82284 clock generator output (PCLK) identifies the next phase
of the processor clock. (See Figure 26.)

of Intel G

23

PHASE 1

[<&————— ONE PROCESSOR CLOCK CYCLE ——»|

l¢————————— ONE BUS T STATE ——— >

[— OF PROCESSOR—»{d—OF PROCESSOR —»~
CLOCK CYCLE CLOCK CYCLE

PHASE 2

ONE SYSTEM
CLK CYCLE

PCLK _/———___—/_

WF007830

Figure 26. System and Processor Clock Relationships

Six types of bus operations are supported: memory read,
memory write, 1/0 read, 1/0 write, interrupt acknowledge, and
halt/shutdown. Data can be transferred at a maximum rate of
one word per two processor clock cycles.

The 80286 bus has three basic states: idle (Tj), send status
(Ts), and perform command (T¢). The 80286 CPU also has a

fourth local bus state called hold (Th). Th indicates that the
80286 has surrendered control of the local bus to another bus
master in response to a HOLD request.

Each bus state is one processor clock long. Figure 27 shows
the four 80286 local bus states and allowed transitions.

HLDA o NEW CYCLE

READY e NEW CYCLE

NEW CYCLE o HLDA

AF003240

Figure 27. 80286 Bus States

Bus States

The idle (Tj) state indicates that no data transfers are in
progress or requested. The first active state, Ts, is signalled by
either status line ST or SO going LOW also identifying phase 1
of the processor clock. During Tg, the command encoding, the
address, and data (for a write operation) are available on the
80286 output pins. The 82C288 bus controller decodes the
status signals and generates Multibus compatible read/write
command and local transceiver control signals.

After Tg, the perform command (T¢) state is entered. Memory
or 1/0 devices respond to the bus operation during T, either
transferring read data to the CPU or accepting write data. T¢
states may be repeated as often as necessary to assure
sufficient time for the memory or 1/0 device to respond. The
READY signal determines whether T¢ is repeated.

During hold (Tp), the 80286 will float all address, data, and
status output pins, enabling another bus master to use the
local bus. The 80286 HOLD input signal is used to place the

80286 into the Ty state. The 80286 HLDA output signal
indicates that the CPU has entered Th.

Pipelined Addressing

The 80286 uses a local bus interface with pipelined timing to
allow as much time as possible for data access. Pipelined
timing allows bus operations to be performed in two processor
cycles, while allowing each individual bus operation to last for
three processor cycles.

The timing of the address outputs is pipelined such that the
address of the next bus operation becomes available during
the current bus operation. Or in other words, the first clock of
the next bus operation is overlapped with the last clock of the
current bus operation. Therefore, address decode and routing
logic can operate in advance of the next bus operation.
External address latches may hold the address stable for the
entire bus operation and provide additional AC and DC
buffering.

24

READ CYCLE N

| READ CVCLE N+1

PROC CLK

LTIL_K_FII_II__}\W

"—— 2 CLOCK CYCLE TRANSFER

+ il 2 CLOCK CYCLE TRANSFER ———-———%

————— 2.5 CLOCK CYCLE ADDRESS TO DATA VALID —— = — —|
i

A3 - Ay VALID ADDR (N)

X

X((((! XK

VALID ADDR (N + 1) /

I W W A

_/v

VALID READ VALID READ
DATA (N) DATA (N+1)
WF007840

Figure 28. Basic Bus Cycle

The 80286 does not maintain the address of the current bus
operation during all T¢ states. Instead, the address for the next
bus operation may be emitted during phase 2 of any T¢. The
address remains valid during phase 1 of the first T¢ to
guarantee hold time, relative to ALE, for the address latch
inputs.

Bus Control Signals

The 82C288 bus controller provides control signals: address
latch enable (ALE), Read/Write commands, data transmit/
receive (DT/R), and data enable (DEN) that control the
address latches, data transceivers, write enable, and output
enable for memory and I/O systems.

The Address Latch Enable (ALE) output determines when the
address may be latched. ALE provides at least one system
CLK period of address hold time from the end of the previous
bus operation until the address for the next bus operation
appears at the latch outputs. This address hold time is
required to support Multibus® and common memory systems.

The data bus transceivers are controlled by 82C288 outputs
Data Enable (DEN) and Data Transmit/Receive (DT/R). DEN
enables the data transceivers while DT/R controls transceiver
direction. DEN and DT/R are timed to prevent bus contention
between the bus master, data bus transceivers, and system
data bus transceivers.

Command Timing Controls

Two system timing customization options, command exten-
sion and command delay, are provided on the 80286 local
bus.

Command extension allows additional time for external de-
vices to respond to a command and is analogous to inserting
wait states on the 8086. External logic can control the duration
of any bus operation such that the operation is only as long as
necessary. The READY input signal can extend any bus
operation for as long as necessary.

Command delay allows an increase of address or write data
set-up time to system bus command active for any bus
operation by delaying when the system bus command be-
comes active. Command delay is controlled by the 82C288
CMDLY input. After Tg, the bus controller samples CMDLY at
each failing edge of CLK. If CMDLY is HIGH, the 82C288 will
not activate the command signal. When CMDLY is LOW, the
82C288 will activate the command signal. After the command
becomes active, the CMDLY input is not sampled.

When a command is delayed, the available response time
from command active to return read data or accept write data
is less. To customize system bus timing, an address decoder
can determine which bus operations require delaying the
command. The CMDLY input does not affect the timing of
ALE, DEN, or DT/R.

25

READ CYCLE N-1

READ CVCLE N

Te

1 *2

U *2 i
N

PROC
CLK

SR

J'fi\“é}if

A2~ Ao vu’un ADDR (u—})

XL/

/Y((((

VALID ADDR N

i
8

paa—
\—\‘

EX1

S

EX 2

]

WF007850

Figure 29. CMDLY Controls and Leading Edge of the Command

Figure 29 illustrates four uses of CMDLY. Example 1 shows
delaying the read command two system CLKs for cycle N-1
and no delay for cycle N, and example 2 shows delaying the
read command one system CLK for cycle N-1 and one system
CLK delay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the 80286 bus alternates between
the status and command states. The bus status signals
become inactive after Ts so that they may correctly signal the
start of the next bus operation after the completion of the
current cycle. No external indication of T exists on the 80286
local bus. The bus master and bus controller enter T directly
after Ts and continue executing T¢ cycles until terminated by
READY.

READY Operation

The current bus master and 82C288 bus controller terminate
each bus operation simultaneously to achieve maximum bus
bandwidth. Both are informed in advance by READY active
which identifies the last T¢ cycle of the current bus operation.
The bus master and bus controller must see the same sense

of the READY signal, thereby requiring READY be synchro-
nous to the system clock.

Synchronous Ready

The 82284 clock generator provides READY synchronization
from both synchronous and asynchronous sources (see Fig-
ure 30). The synchronous ready input (SRDY) of the clock
generator is sampled with the falling edge of CLK at the end of
phase 1 of each Tg. The state of SRDY is then broadcast to
the bus master and bus controller via the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are asynchro-
nous to the system clock. As a result, their ready outputs
cannot be guaranteed to meet the 82284 SRDY set-up and
hold time requirements. The 82284 asynchronous ready input
(ARDY) is designed to accept such signals. The ARDY input is
sampled at the beginning of each T cycle by 82284 synchro-
nization logic. This provides a system CLK cycle time to
resolve its value before broadcasting it to the bus master and
bus controller.

26

MEMORY CYCLE N-1 I MEMORY CYCLEN |
Ts | Te ' Ts | T | T |
! *2 l 3l | *2 l @1 | *2 I @t | ®2] *l] *2 I
ew | L] L L L\ L | N L L
PROC CLK \
A23 - Ao VALID ADDR / X<<<<<< / VALID ADDR / X<<<<<< V‘A'UD ADDR

N\ A7 | RN

(SEENOTE 1)) \\ﬁ\ ,

(SEENOTE 2))

S—\
2o L VLURLLAVAURNUELNVURRNURRLNRVRRRRVRRRRTRRWRNUAURRRRVRRERRRRRARR RN / A

(SEENOTE 3.)
WF007860

Figure 30. Synchronous and Asynchronous Ready

Notes: 1. SRDYEN is active LOW.

2. If SRDYEN is HIGH, the state of SRDY will not effect READY.

3. ARDYEN is active LOW.

Each ready input of the 82284 has an enable pin (SRDYEN
and ARDYEN) to select whether the current bus operation will
be terminated by the synchronous or asynchronous. ready.
Either of the ready inputs may terminate a bus operation.
These enable inputs are active low and have the same timing
as their respective ready inputs. Address decode logic usually
selects whether the current bus operation should be terminat-
ed by ARDY or SRDY.

Data Bus Control

Figures 31, 32, and 33 show how the DT/R, DEN, data bus,
and address signals operate for different combinations of
read, write, and idle bus operations. DT/R goes active (LOW)
for a read operation. DT/R remains HIGH before, during, and
between write operations.

The data bus is driven with write data during the second phase
of Ts. The delay in write data timing allows the read data

drivers, from a previous read cycle, sufficient time to enter
three-state OFF before the 80286 CPU begins driving the local
data bus for write operations. Write data will always remain
valid for one system clock past the last T¢ to provide sufficient
hold time for Multibus or other similar memory or I/0 systems.
During write-read or write-idle sequences the data bus enters
three-state OFF during the second phase of the processor
cycle after the last Te. In a write-write sequence the data bus
does 'not enter three-state OFF between T¢ and Ts.

Bus Usage

The 80286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus masters,
instruction fetching, processor extension data transfers, inter-
rupt acknowledge, and halt/shutdown. This section describes
local bus activities which have special signals or requirements.

27

READ CYCLE WRITE CYCLE
1.]

s Tc | Ts
| *2 ' @1 | *2 l @1 | @2 I @1 | @2

Te I i\ |

I @1 1 @2

CLK

A2z - Ap M VALID ADDR / X<<<< / VALID ‘ADDR

Dsys - Do

MRDC

E4
ol

DEN \

oT/R _n

WF007870
Figure 31. Back-to-Back Read-Write Cycles

| WRITE CYCLE |
—T" Ts | Tc Ts
| @1 | *2 I @1 | *2 I

READ CYCLE
I

Te I .
> | »2 I @1 I *2 I @l 2

—t

CLK

A2 - Ao

8l
L]
o

i~ Bo = —m = o e e e YR e e o T~

e \/ \ (,[/ (
o _& £

WF007880
Figure 32. Back-to-Back Write-Read Cycles

28

I T WRITE CYCLE N-1 I WRITE CYCLEN L

l
loZlol|¢2To||02lo||o2‘ol |ol|oz

CLK

A23-Ao

XU

VALID ADDR: N-1

01§00 = = — — — — = = — = «(/ VALID DATA N >>>>>—

VALID DATT’ N-1

MWTC

DEN A

oT/R (HIGH)

WF007890

Figure 33. Back-to-Back Write-Write Cycles

HOLD and HLDA A prefetch bus operation starts when at least two bytes of the
6-byte prefetch queue are empty.

HOLD and HLDA allow another bus master to gain control of

the local bus by placing the 80286 bus into the Th state. The

sequence of events required to pass control between the

80286 and another local bus master are shown in Figure 34.

The prefetcher normally performs word prefetches indepen-
dent of the byte alignment of the code segment base in
physical memory.

The prefetcher will perform only a byte code fetch operation
In this example, the 80286 is initially in the Tp, state as for control transfers to an instruction beginning on a numeri-
signaled by HLDA being active. Upon leaving Th, as signaled cally odd physical address.
by HLDA going inactive, a write operation is started. During the
write operation another local bus master requests the local
bus from the 80286 as shown by the HOLD signal. After

Prefetching stops whenever a control transfer or HLT instruc-
tion is decoded by the IU and placed into the instruction

completing the write operation, the 80286 performs one T; bus queue.

cycle, to guarantee write data hold time, then enters Ty, as In real address mode, the prefetcher may fetch up to 5 bytes

signaled by HLDA going active. beyond the last control transfer or HLT instruction in a code
segment.

The CMDLY signal and ARDY ready are used to start and stop
the write bus command, respectively. Note that SRDY must be
inactive or disabled by SRDYEN to guarantee ARDY will
terminate the cycle.

In protected mode, the prefetcher will never cause a segment
overrun exception. The prefetcher stops at the last physical
memory word of the code segment. Exception 13 will occur if
the program attempts to execute beyond the last full instruc-
tion in the code segment.

Instruction Fetching
If the last byte of a code segment appears on an even physical

The 80286 Bus Unit (BU) will fetch instructions ahead of the memory address, the prefetcher will read the next physical
current instruction being executed. This activity is called byte of memory (perform a word code fetch). The value of this
prefetching. It occurs when the local bus would otherwise be byte is ignored and any attempt to execute it causes exception
idle and obeys the following rules: 13.

29

82284

—

82C288

Notes: 1.

2.

w

[N

~

CMOLY

BUS HOLD

BUS HOLD ACKNOWLEDGE) WRITE CYCLE ACKNOWLEDGE
suscvcLeTvpe | T) ™ D N ' Te , e P T " T ‘
— R M P B P N RN 11 R I
o
(SEE NOTE 5,6.) |
HOLD \ (SEENOTE4) / {
HLDA Q\ / \ \/
8 (SEENOTE 1) 1 (SEENOTE 1,)
§ 5T 50
| (SEENOTE2)
A - Ao -+
L T - - - - - -~
\ (SEENOTE3)
BREIRR — =~ — = — = ——mm e e W I — — = = = = = = = = = -
D1 - Dp e = e e - - - — —'(VALID >»- ————————

" swov. v 7 T T~~~ T,

NOY READY NOT READY

Resasaalbrrmmmmmmmmmmmiiiiiy I/ INNN\\Ne /i I,

NOT READY NOT READY READY

T NN s,

DELAY ENABLE

WwiE AN /
oA
(SEENOTE 7)
DEN |
ALE / \

TS = STATUS CYCLE
TC = COMMAND CYCLE

WF007901

Figure 34. Multibus Write Terminated by Asynchronous Ready with Bus Hold

Status lines are not driven by 80286, yet remain high due to pull-up resistors in 82C288 and 82289 during
HOLD state.

Address, M/10 and COD/INTA may start floating during any TC depending on when internal 80286 bus arbiter
decides to release bus to external HOLD. The float starts in ¢2 of TC.

. BHE and LOCK may start floating after the end of any TC depending on when internal 80286 bus arbiter

decides to release bus to external HOLD.

. The minimum HOLD | to HLDA | time is shown. Max.imum is one Ty longer.

The earliest HOLD 1t time is shown which will always allow a subsequent memory cycle if pending.

The minimum HOLD t to HLDA 1t time is shown. Max.imum is a function of the instruction, type of bus cycle
and other machine status (i.e., Interrupts, Waits, Lock, etc.)

Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example.
Synchronous ready state is ignored after ready is signaled via the asynchronous input.

30

Processor Extension Transfers

The processor extension interface uses I/0 port addresses
00F8(H), 00FA(H), and 00FC(H) which are part of the 1/0 port
address range and is a reserved area. An ESC instruction with
EM =0 and TS = 0 will perform 1/0 bus operations to one or
more of these 1/0 port addresses independent of the value of
IOPL and CPL.

ESC instructions with memory references enable the CPU to
accept PEREQ inputs for processor extension operand trans-
fers. The CPU will determine the operand starting address and
read/write status of the instruction. For each operand transfer,
two or three bus operations, one word transfer with 1/0 port
address 00FA(H), and one or two bus operations with memory
are performed. Three bus operations are required for each
word operand aligned on an odd byte address.

Interrupt Acknowledge Sequence

Figure 35 illustrates an interrupt acknowledge sequence
performed by the 80286 in response to an INTR input. An
interrupt acknowledge sequence consists of two INTA bus
operations. The first allows a master 8259A Programmable
Interrupt Controller (PIC) to determine which if any of its slaves
should return the interrupt vector. An eight bit vector is read by
the 80286 during the second INTA bus operation to select an
interrupt handler routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the 82C288 is
used to enable the cascade address drivers, during INTA bus
operations (see Figure 35), onto the local address bus for
distribution to slave interrupt controllers via the system ad-
dress bus. The 80286 emits the LOCK signal (active LOW)
during Tg of the first INTA bus operation. A local bus "hold"
request will not be honored until the end of the second INTA
bus operation.

Three idle processor clocks are provided by the 80286
between INTA bus operations to allow for the minimum INTA
to INTA time and CAS (cascade address) out delay of the
8259A. The second INTA bus operation must always have at
least one extra T¢ state added via logic controlling READY.
A3 - Ag are in three-state OFF until after the first T state of
the second INTA bus operation. This prevents bus contention
between the cascade address drivers and CPU address

drivers. The extra T state allows time for the 80286 to resume
driving the address lines for subsequent bus operations.

Local Bus Usage Priorities

The 80286 local bus is shared among several internal units
and external HOLD requests. In case of simultaneous re-
quests, their relative priorities are:

(Highest) Any transfers which assert LOCK either ex-
plicitly (via the LOCK instruction prefix) or
implicitly (i.e., segment descriptor access, in-
terrupt acknowledge sequence, or an XCHG
with memory).

The second of the two byte bus operations
required for an odd aligned word operand.

Local bus request via HOLD input.

Processor extension data operand transfer
via PEREQ input.

Data transfer performed by EU as part of an
instruction.

An instruction prefetch request from BU. The
EU will inhibit prefetching two processor
clocks in advance of any data transfers to
minimize waiting by EU for a prefetch to fin-
ish.

(Lowest)

Halt or Shutdown Cycles

The 80286 externally indicates halt or shutdown conditions as
a bus operation. These conditions occur due to a HLT
instruction or multiple protection exceptions while attempting
to execute one instruction. A halt or shutdown bus operation is
signalled when ST, SO and COD/INTA are LOW and M/10 is
HIGH. A1 HIGH indicates halt, and Ay LOW indicates shut-
down. The 82C288 bus controller does not issue ALE, nor is
READY required to terminate a halt or shutdown bus opera-
tion.

During halt or shutdown, the 80286 may service PEREQ or
HOLD requests. A processor extension segment overrun
exception during shutdown will inhibit further service of PER-
EQ. Either NMI or RESET will force the 80286 out of either halt
or shutdown. An INTR, if interrupts are enabled, or a proces-
sor extension segment overrun exception will also force the
80286 out of halt.

31

«— INTA CYCLE l — <4————INTA CYCLE 2————»|

BUSCYCLETYPE | Tc¢ | T | T ! T N i n /] Ts Tc Tc s |
~ ln:s:!ﬂ:&l.mlazl.ml.n et bw bw 2 et tea ler el ta2 lu a2 .m'.:.:'*
CLK
el /
Wi, COOMRTE

R _seenores) k//////////////////////////////////J AL

2
~N
-3 (SEE NOTE 5.) (SEE NOTE 5
Az - Ao m ————— - < DON'T CARE e <
o T~ ===~ Y G " S —
(SEE NOTE 1)
D=0 whiTe CYCLE >' ______ D ''''''''''''''' --
(SEE NOTE 2) (SEENOTE 3)
rer WO 77777777777\
— NOT READY READY NOT READY READY
MCE / \ _/ -
g Naus M\
s

om [| W
oen / \ [\

WF007911

Figure 35. Interrupt Acknowledge Sequence

Notes: 1. Data is ignored.

2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width.

3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A2z~ Ao, BHE, and
LOCK until after the first TC state.
The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by
MCE | and address outputs.
Without the wait state, the 80286 address will not be valid for a memory cycle started immediately after the
second INTA cycle. The 8259A also requires one wait state for minimum INTA pulse width.

4. TOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a
muiti-master system.

5. Agg-Ag exits three-state OFF during 2 of the second T in the INTA cycle.

32

Vee
m XEN WRDT MEMORY READ
— W MEMORY WRITE
l"| Dl—\ = ORE VO READ
e owe VO WRITE
X % = WA INTERRUPT ACKNOWLEDGE
55 % ALE
RESEY
RES 5 33 MCE F————
PCLK READY DEN L b e = —> ADVANCED MEMORY
-—{PCL oLk y o sy | 14 —— -4 DECODE | -= ANDVOCHIP SELECTS
= 5;; | 82288 BUS F-q44444- r— 4 (OPTIONAL)
£ | S T
=] r—+ 4 —_————
| |
SYNC READY —————={ SABY RESET [~ _J ! 1 r -
ENABLE ————{ 1 ‘ I [
ASYNC READY ———-{ RRBYV | RESET MAD | [sT8
ENABLE ————a-{ ARDVEN R = | (!
ADDRESS BUS
82284 : : Lefcik coofTal — — [Sen %
cewnmton | 11 L - e
— or
L St Az - Ag > 29845
. 5 LATCH
e —={NMI BHE
:' S —e{HOLD
PR
~— HLDA
b CASo.; Ao
—————— | ERAGR ‘EK:
| r TS |— CHIP SELECT
X L ——{BUEY INTR I INT
g"|l' _____ {PEACK L dmm
|: b1 r= - —efeeRea cari ?7 W
| [80286 b | RO
[# | [+| |_]_ SPAEN
D15 - D = 1Ro = IR
bt .o — i -
| | 8259A
| PROCESSOR LA — - — = INTERRUPT
EXTENSION ﬁ CONTROLLER
: (OPTIONAL) R A
e - — 4 .
R
29833 oATA
> 29863 BUS
TRANS-
CEIVER

BD003972

Figure 36. Basic 80286 System Configuration

System Configurations

The versatile bus structure of the 80286 microsystem, with a
full complement of support chips, allows flexible configuration
of a wide range of systems. The basic configuration, shown in
Figure 36, is similar to an iAPX 86 maximum mode system. It
includes the CPU plus an 8259A interrupt controller, 82284
clock generator, and the 82C288 Bus Controller. The iAPX 86
latches (29843 and 29845) and transceivers (29833 and
29863) may be used in an 80286 microsystem.

As indicated by the dashed lines in Figure 36, the ability to add
processor extensions is an integral feature of 80286 microsys-
tems. The processor extension interface allows external
hardware to perform special functions and transfer data
concurrent with CPU execution of other instructions. Full
system integrity is maintained because the 80286 supervises
all data transfers and instruction execution for the processor
extension.

The 80286 with the 80287 numeric processor extension (NPX)
uses this interface. The iAPX 286/287 has all the instructions
and data types of an iAPX 86/87 or iAPX 88/87. The 80287
NPX can perform numeric calculations and data transfers

concurrently with CPU program execution. Numerics code and
data have the same integrity as all other information protected
by the 80286 protection mechanism.

The 80286 can overlap chip select decoding and address
propagation during the data transfer for the previous bus
operation. This information is latched into the 29843/45's by
ALE during the middle of a Ts cycle. The latched chip select
and address information remains stable during the bus opera-
tion while the next cycle's address is being decoded and
propagated into the system. Decode logic can be imple-
mented with a high-speed bipolar PROM.

The optional decode logic shown in Figure 36 takes advan-
tage of the overlap between address and data of the 80286
bus cycle to generate advanced memory and |/O-select
signals. This minimizes system performance degradation
caused by address propagation and decode delays. In addi-
tion to selecting memory and 1/0, the advanced selects may
be used with configurations supporting local and system buses
to enable the appropriate bus interface for each bus cycle.
The COD/INTA and M/10 signals are applied to the decode
logic to distinguish between interrupt, 170, code and data bus
cycles.

33

ADDRESS BUS

SYSB/RESB
' S BCLK fe——
RESET INIY |————
Vee 8 MULTIBUS
ANYRQOST BPRO ———
BUS ARBITRATION
50 BPAN [*————
5 BUSY [e——
r« READY TBRG [e—
] cLK {OTK [—
REN MAD [
82289
BUS ARBITER
Vee
Q REN MRGT MEMORY READ
r1 a ._] Wit MEMORY WRITE
iGRC VO READ
MOLY
P X cmou OWT VO WRITE
? 1 iNTA INTERRUPT ACKNOWLEDGE
— 50 50 ALE
|R
RESET €S 57 5 MCE
oLk READY READY DEN
€ CLK \ g cLK OTR
= —En 82C288 BUS
_L—. 23 ! CONTROLLER
= | MAG
. 1
SYNC READY ——{ SROY RESET T
ENABLE ——{ SADVEN [‘
—_—
ASYNC READY —————{ ARDY |y RESET WMAD le
ENABLE ———{ AROYEN
(1 oK ——H —
82284 L CLk
CLOCK [sEapy COOMNTAI—
GENERATOR |
1 5 A23- Ao
v $8 Y L
[—{ N BHE 1
:' J —{ HOLD
-—{ HLDA
(] CASo.; Ao
F=—————— —»| ERROR
i }e— CHIP SELECT
il | r=——— == -1 803V INTR INT & N
: : 1 fp=—===- {reacx NTA
| 1) r = — - —={PEREQ cap WA
[75
Vo b 80286 |
o | cPu :_E I_l SPEN
Dy ~ — 1Ro - IR
KR R 5 0o Moo e
| | 82594
| PROCESSOR o INTERRUPT
| extension k - CONTROLLER
, (oPTioNaL) : oo
b - - <

Figure 37. Multibus System Bus Interface

DATA BUS

BD003984

By adding the 82289 bus arbiter chip, the 80286 provides a each bus operation which uses the Multibus.
Multibus system bus interface as shown in Figure 37. The ALE
output of the 82C288 for the Multibus bus is connected to its
CMDLY input to delay the start of commands one system CLK
as required to meet Multibus address and write data set-up

times. This arrangement will add at least one extra T, state to interfacing.

A second 82C288 bus controller and additional latches and
transceivers could be added to the local bus of Figure 37. This
configuration allows the 80286 to support an on-board bus for
local memory and peripherals and the Multibus for system bus

34

'\
ADDRESS BUS A A
— v
Acr= A A A:o+ SELO, 1
A2A23 ,; ${ DECODER l Am2968
o< /
117 = RASI Qu t— Ag-A7
X 4 _
w pELAYf—»{ MSEL FASn|—f—{ RAS
5 CONTROL LINE Latcast .
LOGIC RFRG CASn|—4 TAS
A00 ¢ A »Mmcl Y
mPAL
meo DRAM
80286 BHE v Am9064
N Am3S0C256
16MHz
al —
> WE
CLK N [1 "l H >
82284 WE,
CLK
GENERATOR
READY
T3
D, Q
L[s2c2ss DEN fm
‘_’4'_-_
BUS EN
CONTROLLER - 2946
Dy -Dys DT/R o) TR
DATA BUS

BD005152

Figure 38. 80286 Interface with the Am2968 Dynamic Memory Controller

Figure 38 shows the interface of the 80286 with the Am2968
Dynamic Memory Controller. The interface is a timing control-
ler which consists of some control logic and a delay line. The
timing controller runs asynchronously to the CPU. It arbitrates
between memory requests and refresh requests by generating

the proper signals to the dynamic memory controller and
memory. The design described is a simple, cost-effective
solution to interfacing the 80286 with the Am2968. A further
description about DRAM selection based on processor speed
may be found in the Am2968 Application Note.

Table 15. 80286 Systems Recommended Pull-up Resistor Values

80286 Pin and Name Pull-up Value Purpose
457
5—350 20KQ£10% Pull S0, 57, and PEACK inactive during 80286 hold periods.
6 — PEACK
53 — ERROR 20K+ 10% Pull ERROR and BUSY inactive when 80287 not present (or temporarily
removed from socket).
54 — BUSY
63 — READY 910Q2+5% Pull READY inactive within required minimum time (C = 150pF, Ir <7mA).

Instruction Set

The instruction set is divided into seven categories: data
transfer, arithmetic, shift/rotate/logical, string manipulation,
control transfer, high level instructions, and processor control.
These categories are summarized in Figures 3 -9.

An 80286 instruction can reference zero, one, or two operands
where an operand resides in a register, in the instruction itself,
or in memory. Zero-operand instructions (e.g., NOP and HLT)
are usually one byte long. One-operand instructions (e.g., INC
and DEC) are usually two bytes long, but some are encoded in

only one byte. One-operand instructions may reference a
register or memory location. Two-operand instructions permit
the following six types of instruction operations:

- Register to Register
- Memory to Register
- Immediate to Register
- Memory to Memory
- Register to Memory
- Immediate to Memory

35

Two-operand instructions (e.g. MOV and ADD) are usually
three to six bytes long. Memory-to-memory operations are

provided by a special class of string instructions requiring one
to three bytes.

BYTE 1 BYTE 2 BYTE 3 BYTE4 BYTE 5 BYTE 6
7 65 4321076543210
[[TTTTTT) R . T b
LOW DISP/DATA HIGH DISP/DATA LOW DATA | HIGH DATA
OPCODE d{w|mod| reg rim | |
_______ e i T T S Y W — |
L REGISTER OPERAND/REGISTERS TO USE IN OFFSET CALCULATION
REGISTER OPERAND/EXTENSION OF OPCODE
REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH
WORD/BYTE OPERATION
DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE
DF003760
A. SHORT OPCODE FORMAT EXAMPLE
BYTE 1 BYTE 2 BYTE3 BYTE4 BYTES
7 65 4.3 2 107 65432 1076543210
EEERRRRERERERRRREREERRE N T k
LOW DISP HIGH DISP
LONG OPCODE mod| reg rrm | |
B B B I - - —— -
DF003770

B. LONG OPCODE FORMAT EXAMPLE

Figure 39. 80286 Instruction Format Examples

80286 INSTRUCTION SET SUMMARY
Instruction Timing Notes

The instruction clock counts listed below establish the maxi-
mum execution rate of the 80286. With no delays in bus
cycles, the actual clock count of an 80286 program will
average 5% more than the calculated clock count, due to
instruction sequences which execute faster than they can be
fetched from memory.

To calculate elapsed times for instruction sequences, multiply
the sum of all instruction clock counts, as listed in the table
below, by the processor clock period. An 8 MHz processor
clock has a clock period of 125 nanoseconds and requires an
80286 system clock (CLK input) of 16 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and is ready
for execution. Control transfer instruction clock counts
include all time required to fetch, decode, and prepare the
next instruction for execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or local bus
HOLD requests.

4. No exceptions occur during instruction execution.
Instruction Set Summary Notes

Addressing displacements selected by the MOD field are not
shown. If necessary they appear after the instruction fields
shown.

Above/below refers to unsigned value

Greater refers to positive signed value
Less refers to less positive (more negative) signed values

if d=1 then to register; if d=0 then from register

if w=1 then word instruction; if w=0 then byte instruc-
tion

if =0 then 16-bit immediate data to form the operand

if s=1 then an immediate data byte is sign-extended to
form the 16-bit operand

x =don't care
z=used for string primitives for comparison with ZF FLAG

If two clock counts are given, the smaller refers to a register
operand and the larger refers to a memory operand.

* =add one clock if offset calculation requires summing 3
elements

n = number of times repeated
m = number of bytes of code in next instruction
Level (L)—Lexical nesting level of the procedure

The following comments describe possible exceptions, side
effects, and allowed usage for instructions in both operating
modes of the 80286.

Real Address Mode Only

1. This is a protected mode instruction. Attempted execution in
real address mode will result in an undefined opcode
exception (6).

2. A segment overrun exception (13) will occur if a word
operand reference at offset FFFF(H) is attempted.

3. This instruction may be executed in real address mode to
initialize the CPU for protected mode.

4.The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt (9) will
occur if the operand exceeds the segment limit.

36

Either Mode

6. An exception may occur, depending on the value of the
operand.

7. LOCK is automatically asserted regardless of the presence
or absence of the LOCK instruction prefix.

Protected Virtual Address Mode Only

8. The destination of an INT, JMP, CALL, RET or IRET
instruction must be in the defined limit of a code segment or
a general protection exception (13) occurs.

9. A general protection exception (13) will occur if the memory
operand cannot be used due to either a segment limit or
access rights violation. If a stack segment limit is violated, a
stack segment overrun exception (12) occurs.

10. For segment load operations, the CPL, RPL, and DPL must
agree with privilege rules to avoid an exception. The
segment must be present to avoid a not-present exception
(11). If the SS register is the destination, and a segment
not-present violation occurs, a stack exception (12) oc-
curs.

11. All segment descriptor accesses in the GDT or LDT made
by this instruction will automatically assert LOCK to
maintain descriptor integrity in multiprocessor systems.

12.JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protection
exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL #0.
14. A general protection exception (13) occurs if CPL > IOPL.

15. The IF field of the flag word is not updated if CPL > IOPL.
The IOPL field is updated only if CPL =0.

16. Any violation of privilege rules as applied to the selector
operand do not cause a protection exception; rather, the
instruction does not return a result and the zero flag is
cleared.

17. If the starting address of the memory operand violates a
segment limit, or an invalid access is attempted, a general
protection exception (13) will occur before the ESC instruc-
tion is executed. A stack segment overrun exception (12)
will occur if the stack limit is violated by the operand's
starting address. If a segment limit is violated during an
attempted data transfer then a processor extension seg-
ment overrun exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET, or IRET
instruction must be in the defined limit of a code segment
or a general protection exception (13) will occur.

37

80286 INSTRUCTION SET SUMMARY

Immediate

POP = Pop:
Memory

Register

Segment register

[1o0001111]

mod 0 0 0 r/m

01011 reg

000Oreg111

(reg #01)

; '=Pop All
XCHG = Exchange:
Register/memory with register

Register with accumulator

IN = Input from:
Fixed port

Variable port

OUT = Output to:
Fixed port

Variable port

XLAT = Translate byte to AL
LEA = Load EA to register
LDS = Load pointer to DS
LES = Load pointer to ES
LAHF = Load AH with flags
SAHF = Store AH into flags
PUSHF = Push flags

POPF = Pop flags

I1000011w| mod reg r/m | 35
:
[1110010w] port | 5
5
[1110011w] port | a
;
:
|10001101| mod reg r/m | 3"
|110001oi| mod reg /m | (mod#11) 7
[11000100] modregrm | (mod=11) 7
e
:
:
:

27

24

CLOCK COUNT COMMENTS
Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode Mode Mode Mode
DATA TRANSFER
MOV = Move:
Register to Register/Memory [1000100w] modreg wm | 23 23" 2 9
Register/memory to register | 1000101 w | mod reg r/m] 25" 25" 2 9
Immediate to register/memory | 1100011w | mod 0 0 0 r/m l data | data if w=1 23" 23" 2 9
Immediate to register | 1011w reg | data I data if w=1 | 2 2
Memory to accumulator | 1010000w | addr-low | addr-high §| 5 5 2 9
Accumulator to memory | 1010001 w | addr-low | addr-high | 3 3 2 9
Register/memory to segment register | 10001110 | mod O reg r/m | 25" 17,19' 2 9,10,11
Segment register to register/memory | 10001100 I mod 0 reg r/m | 23" 23" 2 9
PUSH = Push:
Memory [11111111 [med110 wm| 5 5 2)
Register 01010 reg 3 3 2 9
Segment register 000reg110 3 3 2 9

9

9

9,10,11

7.9

9,10,11

9,10,11

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

All mnemonics copyright Intel Corp., 1983.

38

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode | Mode | Mode | Mode
ARITHMETIC
ADD = Add:
Reg/memory with register to cither [000000dw| mod reg /m | 27" 27 2 9
Immediate to register / memory I 100000sw | mod 0 0 0 r/m | data | data if siw =01 3,7 37" 2 9
Immediate to accumulator l 0000010w | data l data if w=1 | 3 3
ADC = Add with carry:
Reg/memory with register to either | 000100dw | mod reg r/m | 27" 27" 2 9
Immediate to register/memory [100000sw] modo10mm | data [data it sw=o01 37" 37 2 9
Immediate to accumulator | 0001010w ' data | data if w=1 | 3 3
INC = Increment:
Register/memory | 11111 11w | mod 0 0 0 r/m | 2,7' 2.7' 2 9
Register 2 2
SUB = Subtract:
Reg/memory and register to either | 001010dw | mod reg r/m | 2,7' 27" 2 9
Immediate from register/memory I 100000sw | mod 1 0 1 r/m | data I data if ssw =01 3,7 37 2 9
Immediate from accumulator [oo1or1ow] data [camitw=1 | 3 3
SBB = Subtract with borrow:
Reg/memory and register to either I 000110dw | mod reg r/m | 27" 27" 2 9
Immediate from register/memory | 100000sw ' mod 0 11 r/m | data | data if siw =01 3,7' 3,7' 2 9
Immediate from accumulator I 0001110w | data | data if w=1 | 3 3
DEC = Decrement:
Register/memory [1111111w] modoo1um | 27" 27" 2 9
Register 01001 reg 2 2
CMP = Compare:
Register/memory with register | 0011101w | mod reg r/m | 26 26 2 9
Register with register/memory | 0011100w | mod reg r/m | 27" 27" 2 9
Immediate with register/memory | 100000sw | mod 1 11 r/m | data | data if s:w =01 3,6' 3,6' 2 9
Immediate with accumulator | 0011110w | data | data if w=1] 3 3
NEG = Change sign I1111011w| mod 0 1 1 r/m | 2 7 2 7
AAA = ASCII adjust for add 00110111 3 3
DAA = Decimal adjust for add 00100111 3 3
AAS = ASCII adjust for subtract 3 3
DAS = Decimal adjust for subtract 3 3
MUL = Mulitiply (unsigned) [1171011w] mod100wum
Register-Byte 13 13
Register-Word 21 21'
Memory-Byte 16‘ 16. 2 9
Memory-Word 24 24 2 9
. I
Integer multiply (signed): 1111011w| mod101r/m
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16' 16. 2 9
Memory-Word 24 24 2 9

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

All mnemonics copyright Intel Corp., 1983.

39

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode Mode Mode Mode
ARITHMETIC (Continued)
IMUL = Integer immediate muliply ~ [011010s1] modregr/m [data dataif s=0 o2 | 2
 (signed) =
DIV = Divide (unsigned): [1111011w] mat110mm |
Register-Byte 14 14
Register-Word 22 22
Memory-Byte 17. 17. 26 6,9
Memory-Word 25 25 26 6,9
IDIV = Integer divide (signed): 111101t1w| mod111r/m
Register-Byte 17 17
Register-Word 25 25
Memory-Byte 20, 20, 2 9
Memory-Word 28 28 2 9
AAM = ASCII adjust for multiply [11010100]00001010] 16 16
AAD = ASCII adjust for divide [11010101]00001010] 14 14
CBW = Convert byte to word 10011000 2 2
CWD = Convert word to double word 10011001 2 2
LOGIC
Shift/Rotate Instructions:
Register/Memory by 1 [1101000w] modTrTm | 27" 27" 2 9
Register/Memory by CL | 1101001 w | mod TTT r/m] 5+n8+n [5+n8+n" 2 9
 Register/Memory by Count o [1100000w]| modTrTem | coumt
T Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
AND = And:
Reg/memory and register to either | 001000dw | mod reg r/m I 27 27" 2 9
Immediate to register/memory | 1000000w | mod 100 r/m] data | data if w=1 37" 37" 2 9
Immediate to accumulator | 0010010w | data l data if w=1 | 3 3
TEST = And function to flags, no result:
Register/memory and register | 1000010w | mod reg r/m l 26" 26" 2 9
Immediate data and register/memory | 111101 1w | mod 0 0 0 r/m l data | data if w=1 36" 36" 2 9
Immediate data and or [1010100w] data | daairw=1 | 3 3
OR=0r:
Reg/memory and register to either | 000010dw | mod reg r/m | 2,7' 27" 2 9
Immediate to register/memory | 1000000w I mod 0 0 1 r/m | data | data if w=1 37" 3,7 2 9
Immediate to accumulator | 0000110w I data | data if w=1 | 3 3
XOR = Exclusive or:
Reg/memory and register to either | 001100dw | mod reg r/m l 27" 27" 2 9
Immediate to register/memory | 1000000wW | mod 110 r/m | data | data if w=1 3,7' 3,7' 2 9
immediate to accumulator [oo11010w] cama [ataitw=1 | 3 3
NOT = Invert register/memory [1111011w] modot10vm | 27" 27 2 9

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

All mnemonics copyright Intel Corp., 1983.

40

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode Mode Mode Mode
STRING MANIPULATION:
MOVS = Move byte/word 1010010w 5 5 2 9
CMPS = Compare byte/word 8 8 2 9
SCAS = Scan byte/word 7 7 2 9
LODS = Load byte/wd to AL/AX 1010110w 5 5 2 9
STOS = Stor byte/wd from AL/A 1010101 w 3 3 2 9
INS = Input byte/wd from DX port 5 5 2 9,14
ut byte/wd to DX port 01101 11w 5 5 2 9,14
MOVS = Move string [1111oo1o|1o10010wJ 5+ 4n 544n 2 9
CMPS = Compare string |1111001z|1010011w| 5+9n 5+9n 2 9
SCAS = Scan string |1111001z|1010111w| 5+8n 5+8n 2 9
LODS = Load string ‘1111001o|101011ol| 5+4n 5+4n 2 9
STOS = Store string 11110010|1010101wl 4 +3n 4+3n 2 9
[11110010Jo110110w| 5+44n | 5+4n 2 9,14
[F1i10010fot10111w] S+4n | S+an 2
Direct within segment F1 101000 I disp-low | disp-high J 7+m 7+m 2 8
Register memory | 11111111 I mod 010 r/mJ 7+mit+m] 74m1t+m’| 2 8,9
indirect within segment
Direct intersegment [1o011010] segment offset | 13+m | 26+m 2 811,12
i [segment selector
Protected Mode Only (Direct intersegment):

- Via -call gate to same privilege level 41+m 8,11,12
Via call gate to different privilege level, no parameters 82+m 8,11,12
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12
Via TSS 177+m 8,11,12
Via task gate 182+m 8,11,12

Indirect intersegment 11111111 mod 0 11 r/rﬂ (mod #11) 16+m 29+m’ 2 8,9,11,12
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 44 + m* 8,9,11,12
Via call gate to different privilege level, no parameters 83 +m* 8,9,11,12
Via call gate to different privilege level, x parameters 90 +4x+m 8,9,11,12
Via TSS : 180 + m* 8,9,11,12
Via task gate 185 + m* 8,9,11,12
JMP = Unconditional jump:
Short/long ~ [11101011 [dispiow 74m 7+m 8
Direct within segment I 11101001 [disp-low l disp-high | 7+m 7+m 8
Register/memory indirect within segment F 1111111 | mod 1 0 0 r/m I 7+mit+m| 74 mit+m’ 2 8,9
Direct intersegment | 11101010 l segment affset | 11+m 23+m 8,11,12
i segment selector I
Protected Mode Only (Direct Intersegment):
Via call gate to same privilege level 38+m 8,11,12
Via TSS 175+m 8,11,12
Via task gate 180 +m 8,11,12
Indirect intersegment 11111111 | mod 1 0 1 r/m | (mod # 11) 15+m" 26+m’ 2 8,9,11,12

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

All mnemonics copyright Intel Corp., 1983.

4

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS

Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode Mode Mode Mode

CONTROL TRANSFER (Continued):
Protected Mode Only (Indirect Intersegment):

Via call gate to same privilege level 41+m 8,9,11,12
Via TSS 178 +m 8,9,11,12
Via task gate 183+ m 8,9,11,12

RET = Return from CALL:

Within segment 1100001 1 11+m M1+m 2 8,9

Within seg adding immed to SP [110000710 [catalow [datanign] M+m [11+m 2 89
Intersegment 11001011 15+m 25+m 2 8,9,11,12
Intersegment adding immediate to SP | 11001010 | data-low | data-high 15+m 2 8,9,11,12
Protected Mode Only (RET):
To different privilege level 55+m
JE/JZ = Jump on equal zero 01110100 disp 7+mor3 | 7+mor3 8
JL/JNGE=:::: on less not greater or 01111100 disp 7+mor3 | 7+mor3 8
JLE/JNG = Jump on less or equal not 01111110 disp | 7+mord | 7+mor3 8
greater
JB/JNAE=:|;:|; on below not above or I 01110010 l disp —I 7+mor3 | 74mor3 8
JBE/JNA =‘a':’:‘::°” below or equal not |i1 110110 disp | 7+mor3d | 74mor3 8
JP/JPE = Jump on parity/parity even [o1111010] disp 7+mor3 | 7+mors 8
JO = Jump on overflow 01110000| disp I 7+mor3 | 7+mor3 8
JS = Jump on sign |01111000| disp I 7+mor3 | 7+mor3 8
JNE/JNZ = Jump on not equal not zero | 01110101 I disp | 7+mor3 | 7+mor3 8
JNL/JGE = Jump on not less greater or I 01111101 | disp §I 7emor3 | 7+mor3 8
equal
JNLE/JG = Jump on not less or equal 01111111 | disp | 74mord | 7+mora 8
greater
""B/"AE=:::‘; on not below above of | 5 4 4 46011 , disp | 74mor3 | 74mor3| 8
JINBE/JA “:‘;’:\Zm ot below or equal , 01110111 | disp l 7+mord | 7+mor3 8
JINP/JPO = Jump on not par / par odd [o1111017] disp | T+mor3 | 7+mor3 8
JNO = Jump on not overliow [o1110001] disp | 74mord | 7+4mor3 8
JNS = Jump on not sign 01111001 disp | 7+mor3 | 7+mor3 8
LOOP = Loop CX times [11100010] dsp | B+mord [B+mord 8
LOOPZ/LOOPE = Loop while zero equal 11100001 | disp | B+mord | 8+mord 8
LOOPNZ/LOOPNE=:§::| whie not zero [| disp —I semord | 8amora s
JCXZ = Jump on CX zero [111000171] dsp | 8+mord | B+mora 8

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

All mnemonics copyright Intel Corp., 1983.
42

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS

Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode Mode Mode Mode
CONTROL TRANSFER (Continued):

INT = Interrupt:

Type specified | 11001101 | type 23+m 2

Type 3 11001100 23+m 2

24-mor3 | 24~ or 3 2

(3 if no) (3 if no)
(Interrupt) | (Interrupt)

INTO = Interrupt on overflow

Protected Mode Only:

Via interrupt or trap gate to same privilege level 40 +m 8,11,12

Via interrupt or trap gate to fit different privilege level 78 +m 8,11,12

Via Task Gate 167 + m 8,11,12
IRET = Interrupt return 11001111 17+m 31+m 2,4 8,9,11,12,15
Protected Mode Only:

To different privilege level 55+m 8,9,11,12,15

To different task (NT = 1) 169 + m 8,9,11,12

Detect value out of range [01100010 mod reg /m 137 13" 26 | 6891112
(Use INT
clock
count if
exception
5)
' PROCESSOR CONTROL
o CLC = Clear carry 11111000 2 2
CMC = Complement carry 11110101 2 2
CLD = Clear direction 2 2
STD = Set direction 11111101 2 2
CLI = Clear interrupt 11111010 3 3 14
STl = Set interrupt 11111011 2 2 14
HLT = Halt 11110100 2 2 13
WAIT = Wait 10011011 3 3
\
‘\ LOCK = Bus lock prefix 11110000 0 0 14
Jar task switched flag [oooo01111]o0o000110] 2 2 3 13
ESC = Processor Extension Escape I 10011 TTT I mod LLL r/m I 9-20* 9-20* 5 17

(LLL are opcode to processor extension)

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

All mnemonics copyright Intel Corp., 1983.
43

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Protected Protected
Real Virtual Real Virtual
Address | Address | Address | Address
FUNCTION FORMAT Mode | Mode | Mode | Mode
PROTECTION CONTROL e ‘ ! ; o
 LGDT = Load global descrtor able regsler | 00001 111]00000001 | mod 010 r/m | 1" 11
| SGDT = Store giobal descrplr able egiser [00001 111]00000001] mod000r/m | 1" 11 23
LIDT = Load interrupt deséﬁ&m table 1eg§sler loooo01111 { 00000001)] modO 11 r/m |

sioT —Storé interrupt kdescripior table register |oooo0111 mod 001 r/m |

1 Iooo'ooo,oy1¥|

LDT= Loau local descriptor &able reg|s|er i 00 bodidn | voonoosieolme 0\‘11‘6 m
o 1r0mreg|s|ermemo] o mleam T m
SLDT Stoe local descriptor table veg»ster 0|4 ‘0' soi s 0 ooooling 0'0 s
L veglster/memary Tt i S : aleEny G
i LTR Load task reg:ste(from regns(er/memory' | 00001111 l 0000 0;00}@;": mod 0 1 1 r/m l L
’s‘rn - Store fask reglsler m regnstef memory [0oo001111]o0000000] mdootwm |
! LMSW Load machine statis wofd fom bhs 11f1 el 0 0 0 Sioo hw 1 i Or/m
Iegsterlmemory s . e]

,f{':];pwo,o‘o’o‘jokod [me

VERR Venfy wnle acc

Shaded areas indicate instructions not available in iAPX 86, 88 mlcrosystems

Footnotes

The effective Address (EA) of the memory operand is
computed according to the mod and r/m fields:

if mod =11 then r/m is treated as a REG field

REG is assigned according to the following table:

16-Bit (w=1) 8-Bit (w = 0)

if r/m=111 then E

required)

if r/m=100 then EA=
if r/m=101 then EA=
if r/m=110 then EA =

(SI) + DISP
(DI) + DISP
(BP) + DISP*

= (BX) + DISP
DISP follows 2nd byte of instruction (before data if

*except if mod =00 and r/m = 110 then EA = disp-high: disp-low.
SEGMENT OVERRIDE PREFIX

001reg 110

REG is assigned according to the following:

Segment

REG Register
00 ES
01 Cs
10 Ss
11 DS

if mod =00 then DISP = 0*, disp-low and disp-high are 000 AX 000 AL
absent 001 CX 001 CL
if mod =01 then DISP = disp-low sign-extended to 16-bits, 010 DX 010 DL
disp-high is absent 011 BX 011 BL
if mod =10 then DISP = disp-high: disp-low 100 Sp 100 AH
if r/m =000 then EA = (BX) + (SI) + DISP 101 BP 101 CH
if r/m =001 then EA = (BX) + (DI) + DISP

if r/m=010 then EA = (BP) + (SI) + DISP 110 Sl 110 DH
if r/m=011 then EA = (BP) + (DI) + DISP 111 DI 111 BH

The physical addresses of all operands addressed by the
BP register are computed using the SS segment register.
The physical addresses of the destination operands of the
string primitive operations (those addressed by the DI
register) are computed using the ES segment, which may

not be overridden.

All mnemonics copyright Intel Corp., 1983.

44

ABSOLUTE MAXIMUM RATINGS

Storage Temperatureocoevveninnnnns -65 to +150°C
Voltage on Any Pin with
Respect to Ground...........ccocoeevnninnnns -1.0to +70 V

Power Dissipation 3.3 Watts

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

OPERATING RANGES

Temperature
Part Number Range Vee
80286-6
Ta=0 to 55°C 50V £5%
80286-8 Tcase =0 to 85°C
80286-10

Operating ranges define those limits over which the function-
ality of the device is guaranteed.

DC CHARACTERISTICS (To=0 to 55°C, Tcase =0 to 85°C; Vcc=5 V £5%)

6 and 8 MHz 10 MHz
Parameters Description Test Conditions Min. Max. Min. Max. Units
ViL Input LOW Voltage -5 8 -5 8 \
ViH Input HIGH Voltage 2.0 Veog + .5 2.0 Voo + .5 \
ViLe CLK Input LOW Voltage -5 6 -5 6 \
VIHC CLK Input HIGH Voltage 3.8 Vee +.5 3.8 Ve + .5 \
VoL Output LOW Voltage loL=2.0 mA .45 .45 \"
VoH Output HIGH Voltage loH =-400 pA 24 24 \"
L1 Input Leakage Current 0 VSVINSVce +10 +10 A
ILo Output Leakage Current .45 V<Vout <Vcc +10 10 MA
Icc Supply Current (turn on, 0°C) Note 1 600 600 mA
CoLk CLK Input Capacitance Fc=1 MHz 20 20 pF
CiNn Other Input Capacitance Fc=1 MHz 10 10 pF
Co Input/Output Capacitance Fc=1 MHz 20 20 pF
ILo Output Leakage Current 0 V<Vt <.045 V +1 +1 mA
m fbu Susiamng Surrent on Vin=0V 30 500 30 500 uA

Notes: 1. Low temperature is worst case.

45

SWITCHING CHARACTERISTICS (Ta =0 to 55°C, Tgagg =0 to 85°C)

AC timings are referenced to 0.8 V and 2.0 V points of signals as illustrated in datasheet waveforms, unless otherwise

noted.
6MHz 8MHz 10MHz
Parameters Description Test Conditions | Min. | Max. | Min. | Max. | Min. | Max. | Units
1 System Clock (CLK) Period 83 250 62 250 50 250 ns
2 System Clock (CLK) LOW Time at 1.0 V 20 225 15 225 11 232 ns
3 System Clock (CLK) HIGH Time at 3.6 V 25 230 25 235 18 239 ns
17 System Clock (CLK) Rise Time 1.0 Vto 36 V 10 10 8 ns
18 System Clock (CLK) Fall Time 36 Vto 1.0V 10 10 8 ns
4 Asynch. Inputs Set-up Time Note 1 30 20 20 ns
5 Asynch. Inputs Hold Time Note 1 30 20 20 ns
6 RESET Set-up Time 33 28 23 ns
7 RESET Hold Time 5 5 5 ns
8 Read Data Set-up Time 20 10 8 ns
9 Read Data Hold Time 8 8 8 ns
10 READY Set-up Time 50 38 26 ns
1 READY Hold Time 35 25 25 ns
12 Status/PEACK Valid Delay Note 2, Note 3 1 55 1 40 - - ns
12a Status/PEACK Active Delay Note 2, Note 3 - - - 1 28 ns
12b Status/PEACK Inactive Delay Note 2, Note 3 - - - - 1 30 ns
13 Address Valid Delay Note 2, Note 3 1 80 1 60 1 47 ns
14 Write Data Valid Delay Note 2, Note 3 0 65 0 50 0 40 ns
15 Address/Status/Data Float Delay Note 2, Note 4 0 80 0 50 0 47 ns
16 HLDA Valid Delay Note 2, Note 3 0 80 0 50 0 47 ns
B [e Nes s | s z -

Notes: 1. Asynchronous inputs are INTR, NMI, HOLD PEREQ, ERROR, and BUSY
assure recognition at a specific CLK edge.
Delay from 0.8 V on the CLK to 0.8 V or 2.0 V or float on the output as appropriate for valid or floating condition.

Output load: C|_ =100 pF.

. This specification is given only for testing purposes to

Delay measured from address either reaching 0.8 V or 2.0 V (valid) to status going active reaching 2.0 V or status going inactive
reaching 0.8 V.
For load capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz spec, and maximum 7 ns for 10 MHz.

2.
3.
4. Float condition occurs when output current is less than I o in magnitude.
5.
6.

82284 Timing Requirements

82284-6 82284-8 82284-10
Parameters Description Test Conditions | Min. | Max. | Min. | Max. | Min. | Max. | Units
11 SRDY/SRDYEN Set-up Time 25 17 15 ns
12 SRDY/SRDYEN Hold Time 0 0 0 ns
13 ARDY/ARDYEN Set-up Time Note 1 5 0 0 ns
14 ARDY/ARDYEN Hold Time Note 1 30 30 30 ns
CL=75 pF
19 PCLK Delay loL=5 mA 0 45 0 45 0 35 ns
loH =-1 mA

Note 1. These times are given for testing purposes to assure

a predetermined action.

46

82C288 Timing Requirements

82C288-6 82C288-8 82C288-10
Parameters Description Test Conditions | Min. | Max. | Min. [Max. [Min. | Max. | Units
12 CMDLY Set-up Time 25 20 15 ns
13 CMDLT Hold Time 1 1 1 ns
30 Command Delay |Command Inactive ICL = 33020 rgf\ mﬁ 3 30 3 25 3 20 ns
29 from CLK Command Active Ion=5 mA Max. 3 40 3 25 3 21
16 ALE Active Delay 3 25 3 20 3 16 ns
17 ALE Inactive Delay 35 25 19 ns
19 DT/R Read Active Delay 40 0 25 0 23 ns
22 DT/R Read Inactive Delay C =150 pF 5 45 5 35 5 20 ns
loL =16 mA Max.

20 DEN Read Active Delay loH =-1 mA Max. 5 50 5 35 5 21 ns
21 DEN Read Inactive Delay 3 40 3 35 3 21 ns
23 DEN Write Active Delay 35 30 23 ns
24 DEN Write Inactive Delay 3 35 3 30 3 19 ns

47

SWITCHING WAVEFORMS
MAJOR CYCLE TIMING

W, co;%# m VALIO ADORESS ~~ VALID ADORESS W VAU IF Ty

; By s

BRE.IOER VALID CONTROL VALID CONTROL x VALIO F Tg
! _:%. @:_l‘ U]
757 AT TN \\\\\\\\\\\‘3%& ;;V/// I //A VI
smev- R57ER LTI \\\\\\\,, AAARETIARIEET Y \—\q: ;F’/// T

(8]

—T®

. rroves N | 77T @\L\\\\\ A ARIAVARNNANNARA RN
IO)
| ./ T\ 1/ 1/ T\

82284

—

reix _/_\—/___

r e OlpalinalO)

e /—— _\ 1,-"-"\\

g ATEE 2
cmouy I N I/1/ UL
-.JF. ~ @
e 1

]

g
8 — @k —®
WSS R
!
——-4—-
(244 ! |7{
(o
&

-

WF007982
Note: 1. MWTC is valid at this point only if CMDLY is LOW.

SWITCHING

80286 ASYNCHRONOUS INPUT
SIGNAL TIMING

BUS CYCLE TYPE

Veu K h «@
ax _v/—:L/—s
“—» @ - @ -
(PSC‘E-EKNOTE 1) _\ 4 /
@ f-—

INTR,
e
ERROR,BUSY
(SEE NOTE 2.)

Notes:

1. PCLK indicates which processor cycle
phase will occur on the next CLK. PCLK
may not indicate the correct phase until
the first bus cycle is performed.

2. These inputs are asynchronous. The set-
up and hold times shown assure recogni-
tion for testing purposes.

WF009930

WAVEFORMS (Continued)

80286 RESET INPUT TIMING AND

SUBSEQUENT PROCESSOR CYCLE PHASE

WF007930

Note 1: When RESET meets the set-up time
shown, the next CLK will start or re-
peat ¢1 of a processor cycle.

EXITING AND ENTERING HOLD

BUS CYCLE TYPE T TsORT, N Tn
_ Veu é1 82 o1 02 #1 62 #1 42
o L/"__/_i:_f_"g;_/_\L/_‘
HLDA 3 ® —> @;’
(SEE NOTE 4.)
= 55 |
5155 (8EE NOTE 3 _h%* - »®I‘° (SEE NOTE 3.)
J@I: @R . !
—5
| — 9 _'®'<:w P O
————) (SEE NOTE 1.)
:: fo,“ (SEE NOTE 5.) ® £5 —~ @
T s R RO
(SEE NOTE 2.)
Dys — 0o (see m—a: 2 VALID
L W WRITE
i~/ _/ W —/

Notes: 1.
time is shown.

OO wWN

WF009942

These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float

. The data bus will be driven as shown if the last cycle before T; in the diagram was a write Tc.

. The 80286 floats its status pins during TH. External 20 k2 resistors keep these signals high (see Table 15).
. For HOLD request set-up to HLDA, refer to Figure 34.
. BHE and LOCK are driven at this time but will not become valid until Ts.
. The data bus will remain in three-state OFF if a read cycle is performed.

49

SWITCHING WAVEFORMS (Continued)
80286 PEREQ/PEACK TIMING REQUIRED PEREQ TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE
T Ts n
Ve)
cLK L /)
Vet VO READ W PROC. EXT. TO MEMORY MEMORY WRITE W PROC. EXT. TO MEMORY

/_ MEMORY READ IF MEMORY TO PROC. EXT. /‘ VO WRITE IF MEMORY TO PROC. EXT.

see TN/ T ./

MEMORY ADDRESS I PROC. EXT. TO MEMORY TRANSFER
VO PORT ADDRESS OOFA(H) IF MEMORY TO PROC. EXT. TRANSFER

COoRTA () —{(12) (<= _L vO PORT ADDRESS OOFA(H) IF PROC. EXT. TO MEMORY TRANSFER
(D) |e— - - MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER
PERCR ——'_3((SEENOTE 1.) 7(

[e——— (SEE NOTE 2) ——»} -—@
—

S IS/

WF007953

ASSUMING WORD-ALIGNED MEMORY OPERAND; IF ODD ALIGNED, 80286 TRANSFERS TO/FROM
MEMORY BYTE-AT-A-TIME WITH TWO MEMORY CYCLES.

Notes: 1. PEACK always goes active during the first bus operation of a processor extension data operand transfer se-
quence. The first bus operation will be either a memory read at operand address or I/O read at port address
OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (shown above)
is: 3X(® -~ @max—@min- The actual, configuration dependent, maximum time is: 3 x (D - @max - @min + Ax2x®.
A is the number of extra T states added to either the first or second bus operation of the processor extension
data operand transfer sequence.

INITIAL 80286 PIN STATE DURING RESET

BUS CYCLE TYPE

T Tx

Vou 92 81 02 o1 62 o
S SV W W W Wa W
Ve
ﬁ@'— (SEE NOTE 1.)
EeE < | ATieasT |
| 116 cLc PERIODS | e— @ —>
§1.50
e e 7
PEACK
Az — Ao
__ UNKNOWN
e
w/io
p— UNKNOWN
COD/NTA
£C
I 55
o= oo i
—»! () |e—seEnOTES)
DATA 2»2»222222222222»»222»222222}22222222 %5
IF HOLD I8 NOT ACTIVE (SEE NOTE 4)
HLDA UNKNOWN ‘e
t 55
WF007962

Notes: 1. Set-up time for RESET t may be violated with the consideration that ¢1 of the processor clock may begin one
system CLK period later.

2. Set-up and hold times for RESET | must be met for proper operation, but RESET | may occur during ¢1 or ¢2.
3. The data bus is only guaranteed to be in three-state OFF at the time shown.

4. HOLD is acknowledged during RESET, causing HLDA to go active and the appropriate pins to float. If HOLD
remains active while RESET goes inactive, the 80286 remains in HOLD state and will not perform any bus
accesses until HOLD is deactivated.

50

Important:

Option 1 — Electrical connection terminals exist
in both planes 1 and 2.

Option 2 — Electrical connection terminals exist
in plane 2 (top) only.

|

PHYSICAL DIMENSIONS

CA2068
(Option 2)

I

HH

““““ 0oooooooo oRER
l &/INDEXOR

3 .
N\\\W//////g i
— e
% % §— f oo 439

el (ToP) \:
= (I
EELE— 1' ______ — D”';;ﬁ;;"“‘ ¥
I
: | g
- t
K] :

PID # 07287A

The International Standard of
Quality guarantees a 005% AQL on all
electncal parameters, AC and DC,

52

NOTES

NOTES

NOTES

ADVANCED MICRO DEVICES
DOMESTIC SALES OFFICES

ALABAMA ... (205) 882-9122
ARIZONA,
(602) 242-4400
(602) 792-1200
CALIFORNIA,
El Segundo.......c.occeuviiiiiiiiiiiiniiiiiiians (213) 640-3210
Newport Beach.. ... (714) 752-6262
8aN DIegO . evniiniiiiii e (619) 560-7030
SUNNYVAIE ...t (408) 720-8811
Woodland Hills (818) 992-4155
COLORADD.....ceutiiiiiniiiiiceicie e (303) 691-5100
CONNECTICUT,
Southbury ...cceviiiiiii (203) 264-7800
FLORIDA,
Altamonte Springscccverviivenierninennenns (305) 339-5022
Clearwater (813) 530-9971
Ft. Lauderdale (305) 484-8600
Melbourne (305) 254-2915

GEORGIA. (404) 449-7920
ILLINOIS .. (312) 773-4422
INDIANA .. (317) 244-7207
KANSAS (913) 4513115
MARYLANDooovivieeeiineseieseeeeen e (301) 796-9310

MASSACHUSETTS.................

MINNESOTA
NEW JERSEYc.cocvviiniennnen,
NEW YORK,

Liverpoolccvevvenieniiniininns

Poughkeepsie ..

Woodburycocoiiiiiiiniinn,
NORTH CAROLINA,

Charlotte ..

Raleigh
OREGONccovvvniiniiniinninnns
OHIO,

Columbuscccevviiiiniinnnen.
PENNSYLVANIA,

Allentownoooiiiiniiinn,

Dallas ...
Houston
WASHINGTON
WISCONSIN ...ooiiiiiiiiiniiinnnns

INTERNATIONAL SALES OFFICES

HONG KONG,
Kowloonccoevvininiininnnnns

ITALY, Milanoccooeeevinnien,
JAPAN, TOKYO ...covvvviiinenennnen
LATIN AMERICA,

Ft. Lauderdale,

SWEDEN, Stockholm

UNITED KINGDOM,
Manchester area

London area

NORTH AMERICAN REPRESENTATIVES

BELGIUM,
Bruxelles..........cocvuveiniinnnnne. TEL: i, (02) 771 99 93
: 762-3716
............................ 61028
CANADA, Ontario,
Kanatacooceeviineiinennns ORI (613) 592-0060
Willowdale . (416) 224-5193
RPN (416) 224-0056
FRANCE,
Parisccovuvviiiiiiiiiien
GERMANY,
Hannover area (05143) 50 55
............ 5553
925287
Minchen.........ccooveviinnninnnne (089) 41 14-0
406490
523883
Stuttgart..........ceeeevieereeeinnnns (0711) 62 33 77
625187
721882
CALIFORNIA
2INC coieee e OEM (408) 988-3400
DIST! (408) 498-6868
CONNECTICUT
SCIENTIFIC COMPONENTSccooenviiniennees (203) 272-2963
IDAHO
INTERMOUNTAIN TECH MKGTc.cevneennes (208) 322-5022
INDIANA
SAl MARKETING CORPccoccviiniiinninnnin. (317) 241-9276
IOWA
LORENZ SALEScoviviiiiiiiiiicciieene (319) 377-4666
MICHIGAN
SAl MARKETING CORPccvvvniiiniiiniinniens (313) 227-1786
NEBRASKA
LORENZ SALEScovvviiiiiiiiiiiiiccceieanes (402) 475-4660

NEW JERSEY

TAlI CORPORATION..............
NEW MEXICO

THORSON DESERT STATES
NEW YORK

NYCOM, INC.......coevviiiinnnns
OHIO
Dayton

DOLFUSS ROOT & CO........
Strongsville

DOLFUSS ROOT & CO........
PENNSYLVANIA

DOLFUSS ROOT & CO........
UTAH

R2 MARKETINGcoveee...

(617) 273-3970
(612) 938-0001
(201) 299-0002

(315) 457-5400
(914) 471-8180
(516) 364-8020

(704) 525-1875
(919) 847-8471
(503) 245-0080

(614) 891-6455

(215) 398-8006
(215) 657-3101

(512) 346-7830
(214) 934-9099
(713) 785-9001
(206) 455-3600

................... (414) 782-7748
TEL: oo 3-695377
FAX: . 1234276
TLX: e 50426
TEL: (02) 3390541
FAX: coveveeereeseennnn 3498000
TLX: oo 315286
TEL: ..(03) 345-8241
[T 3425196
TLX: o J24064 AMDTKOJ
TEL: v, (305) 484-8600

FAX: ... (305) 485-9736
TEL: ...(08) 733 03 50
FAX: ..o 7332285
TLX: oo 11602
TEL: oo (0925) 828008

827693

...................... (609) 933-2600
...................... (505) 293-8555

...................... (315) 437-8343

...................... (513) 433-6776
...................... (216) 238-0300
...................... (412) 221-4420

...................... (801) 595.0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics
listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your
local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

[

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA © 1985 Advanced Micro Devices, Inc.

TEL: (408) 732-2400 ® TWX: 910-339-9280 ® TELEX: 34-6306 ® TOLL FREE: (800) 538-8450 Printed in U.S.A. AMT-WCP-10M-11/85-0

