Advanced

Micro

Computers

A subsidiary of
Advanced Micro Devices

P

LINK8000
AmZ8000 Linker

User’s Manual

00680148

$5.00

REVISION RECORD

REVISION

DESCRIPTION

01

Preliminary Issue

(1/18/80)

02

Manual Revised to correct documentation

(3/21/80)

A

Manual Released

(4/25/80)

B

Manual updated and reprinted to support AmZ8001.

(12/31/80)

Publication No.
00680148

REVISION LETTERS |, O, Q AND X ARE NOT USED

Copyright © 1980

Advanced Micro Computers

Printed in U.S.A.

Address comments concerning
this manual to:

ADVANCED MICRO COMPUTERS

Publications Department
3340 Scott Boulevard
Santa Clara, CA 95051

e

PREFACE

The AMC LINK800OO product is primarily intended for linking relocatable
code assembled by MACR0O8000. LINKBOOO 1is considered a supporting
product for MACR0O8000 wusers. The LINK800O directives, statement
structure, and general design are similar to MACRO8000. For instance,
the distinction between PROGRAM and MODULE is identical in MACRO8000
and LINK800O.

MACR08000 and LINK800O together support development of programs for
both the AmZ8001 and AmZ8002 processors.

The notations used in this manual are:

UPPERCASE In syntax indicates a name that is specified as
shown.
lowercase In syntax indicates that a name or value must be

supplied by the user.

eee In syntax indicates that an item can be repeated.
. In examples indicates that some part of the program
. is not shown.

Important related information can be found in the:
Manual Number

AMC MACRO8000 AmZ8000 Assembler User’s Manual 00680119

NOTE

The information in this publication is intended to
be accurate in all respects. However, Advanced
Micro Computers disclaims responsibility for any
errors and any consequences resulting from errors.
This product is intended for use as described in
this manual.

iii/iv

TABLE OF CONTENTS

Chapter

1.

OVerVieW Of LINKBOOOCO.Q.O.'.OCOI_I

The AmZ8000 Programming
Environmentececececcscecsccecsssel—l

Linking Operationeceecececcceesesl=2

Invoking the Linkereeseoeeosseeeel=D

General Purpose Linker
Directives.........Q.O.......Oz—l

Statement FOXrMeeceeccceccccesscesel—]l
Single Statementeeccecccceecsse2—1
Compound Statementeecececcsesee2=2
CoOmmeNtSesesosocescssscsccssel—2
DelimiterSeccececoscscsccccnsel=2
Identifierseecsecscceccessesse2=3

Statement BeginnersSeeeseecececeeces2=3
Directive NameSeeeeeeosssesse2=3
Macro NameSeeeseeoccescocassel=3

OperandSeeecccesscscccsccssssssssel=b
File NameSesesseooescccsseseesl=b
Names of Modules and

Software Segmenteecesseceees2=5
ConstantSeecececssssscocssscssel2=b
Numeric EXpressionScececescceee2=6
Logical ExpressionSececececsecee2=6
StringSecesceccccccccsccccesal=7
LiStSeescseeesccsseccscsssssel=]
SetSeesesscccscsscccsscsccsssel—8
Symbolic ConstantSeecescesecees2=8
Object VariableSeeeeececsesse2=9
Location Countereeeecececssecsse2=9

General Purpose Directives.....2-10
CONST Directiveeeececceceees2—10
VAR Directiveeesececseceecsseess2=10
IF Directiveeecececsccecsesess2—10
FOR Directiveeeececcccecosseel2—1l
PAGE Directiveeccesoeecesssee2—1l
EJECT Directiveeceecesccsveeel2—12
MACRO Directiveeceeccecsceseee2—12
PRINT Directiveceeceesoceessel=12

PRIN and TERPRI
DirectiVeSooooooo.ooooa-.002~13
Include Directive...........2—13

" Functional LINKER Directives..e.3-1

Type of LINKeeeeeoooeessoeooeeeald—2
PROGRAMeceoeecccsccocccnsceeeald—2
MODULE. eeeecececoscscscsncsceesl=3
LIBRARY ¢eeeescesccescccssesssld—t
ROMLIBecoecoocccocscsooscocssel=Dd
HEADER: ceeceeccccccccsccsseseal—b

Relocatable Inputecececccescecescsel3—b
FILEeeeeeooosocscossascscconsseld—/
SEARCH:ceooeecsocccccoscsaceee3—8
ATTACH: ceeveosccccccscssssssel—9d
DETACH: ¢eesececoccsacccccssseld—9

Linking Controlececececseeeseee3—10
ABSOLUTEceeeveocccoscsccssse3—10
OFFSET e ceeeececcacescccsccesli—ll
SEGMENT ¢eeeveccossocssosseesld—ll
SETLSEGeeecocccsscscsccccseel—12
COMBINE eeeeoosscocossssscceeld—13
XSPACE: ceeeesccessccsssnsesel—ld
ASSIGNeeeesocccsassoscsssssel—lb
RETAIN and OMITeeeceooccesss3—17
MAPeeeesssosocosacsccssssssssl—l8

A Sample Program
Run (AmZSOOZ).................4—1

A Sample Program
Run (AmZ8001).................5—1

MODULE Creationo00000000000000006-1

LIBRARY Creationoooo.ooto00000007-1

8.

TABLE OF CONTENTS (Cont.)

ROMLIB Creation.ooo.olo0000000008—1

APPENDIXES

A ASCII Character SetooocoooooooooA—l
B Hex File Format.................B—l
C Binary File Format..............c-l
D Error Messages.....-............D-l

vi

FIGURES

1-1 Source to Absolute File Paths.l1-3
3-1 PROGRAM Creation RuNeeceeocecoses3=3
3-3 MODULE Creation RuNesscecssceses3=4
3-3 LIBRARY Creation RuNeeceecesesss3=5
3-4 ROMLIB Creation RuNessscescese3=5

TABLES

1_1 LINK8000 Options LiSt.........l—6

=

CHAPTER 1
OVERVIEW OF LINK8000

LINK800O takes several modules of relocatable AmZ8000 code and combines
them into a single module of either absolute code or relocatable code.
Absolute code can be targeted for either the AmZ800l or the AmZ8002.
The relocatable output module can be either a library or a module to be
used in a later linking operation. The relocatable module can also be
used as input for a user-defined loader.

LINK800O requires 64K bytes of memory, either on an AmSYS 8/8 or System
29. LINK8000 itself requires more than 30K, AMDOS uses about 8K, and
the rest is symbol table space and working storage.

1-1. THE AmZ8000 PROGRAMMING ENVIRONMENT

The AmZ8000 programming environment is determined by the answer to one
fundamental question:

Does the source program or program module use any segmented
addresses?

A segmented address is represented by a pair of numbers, a 7-bit
segment number and a 16-bit offset; it is stored in a 32-bit register
pair. A non-segmented address, on the other hand, is represented by a
single, 16-bit number; it is stored in a word register. Segmented
addresses can be used only by the AmZ800l, while non-segmented
addresses can be used by either the AmZ8001 or the AmZ8002. (A bit in
the FCW of the AmZ8001 controls the type of addresses it uses. See the
AmZ8001/2 Instruction Set Manual for more details.)

The user assembles a program with MACRO8000 before calling the linker.
When the assembler is invoked, the S option controls the programming
environment. If the S option is not chosen, the output code will use
exclusively non-segmented addresses. If the S option is chosen, the
output code may use segmented addresses as well as non-segmented
addresses, and the code must be run on an AmZ8001. If the S option is
not chosen, the code will usually be run on an AmZ8002 (although with a
user—-supplied loader it is possible to run the code on an AmZ8001).
Hereafter in this manual and in the MACR08000 User’s Manual, we will
use such phrases as '"targeted for the AmZ8001" or "AmZ8001 code" to
mean that the assembler S option has been chosen, and conversely, we
will use "targeted for the AmZ8002" or '"AmZ8002 code" to mean that the
S option has not been chosen. Chapter 5 of the MACR0O8000 User’s Manual
contains a discussion of segmented an non-segmented addresses and how
nsers can specify which kind is generated by the assembler.

If the S option is chosen, relocatable code is produced, but either
relocatable or absolute code may be produced if the S option is not
chosen. Relocatable code must be further processed by LINK8000, which
takes one or more relocatable files and combines them into a single
absolute file or into another relocatable file. Figure 1-1 illustrates
all the possible paths from source file to absolute file.

An AmZ8000 program typically consists of one or more modules. The
module 1is the smallest programming wunit that can be assembled
separately. Each module is assembled using the assembler option O,
which generates relocatable code, and each module exists as a single,
relocatable file.

Programmers may subdivide modules into program segments; for example, a
module might be partitioned into a code segment and a data segment.
Segments cannot be assembled separately; they are simply used to
partition modules. However, once several modules have been assembled,
each containing several segments, LINK80OO can be used to rearrange and
combine the segments in an arbitrary manner. A segment is thus the
smallest programming unit that can be manipulated by the linker.

1-2. LINKING OPERATION

When the user calls the linker, the user provides linker directives
that tell the linker what to do. The linker directives tell the linker
what input to use, what to do with the input, what addresses to assign,
and what output to produce. The linker begins processing by accepting
linker directives. The user can:

Save the linker directives in a directive file (default file type
.DIR) that is read by the linker.

Enter linker directives interactively at the console.

The linker determines the general type of linking operation from the
first directive. The user can specify a:

PROGRAM directive to link relocatable code into absolute code for
downloading to an AmZ8001 or AmZ8002 processor.

MODULE directive to combine relocatable code 1into a single
relocatable module to be used in later linking operations.

LIBRARY directive to create a user library of relocatable code that
can be used in later linking operations.

ROMLIB directive to create a ROM 1library that contains only a
directory of globals associated with absolute code in hex or binary
(AMC Bin) file form (i.e., pre-defined entry points).

£-1

Macro 8000

/wg_’/ Hex File (.HEX)

or

m Binary File (.BIN)

AmZ8002
Targeted
Source File
(.ZSC)

Hex Flie ((HEX)

Macro 8000

No S Option

Link 8000

S Option

AmZ8001

Binary File (.BIN)

Targeted
Source File (Module Directive Only)
u e IV
(.ZSC) rodule Directive OMvZ Macro 8000

Link 8000 Binary File (.BIN)

(.-XXX) = File with Extention XXX

Figure 1-1.

Source to Absolute File Paths

The linker accepts input files for the 1linking operation. The
relocatable files can be modules containing program segments. The
relocatable files can also be combined relocatable modules or
libraries created in previous linking runs. The FILE directive accesses
relocatable files as input to the linker.

The linker also accepts directives that indicate the libraries to be
searched in the linking operation. The libraries have the default file
type .ZRL and are either regular libraries or ROM libraries. The SEARCH
directive accesses libraries for satisfying externals.

The linker resolves symbol references among the program segments
contained in the relocatable modules. This step is the main function of
the linker. A single global symbol, such as an entry point, might be
referenced in one or more other program segments as an external. In all
cases, the 1linker matches the externals to the global. Certain
externals might not be satisfied among the segments in the modules but
might be satisfied by routines in a library. The linker first attempts
to satisfy external references among the segments in the modules and
then checks any specified libraries. The user can also directly assign
absolute addresses to unsatisfied externals during the linking run.

NOTE
The externals and globals processed by the linker
are the symbols declared as EXTERNAL and as
GLOBAL in MACRO8000 modules. Since the modules
have already been assembled, the linker does not
have any record of the other identifiers used in
the MACR08000 program.

For some programs or modules targeted for an AmZ8001, the linker has
another important function: to assign program segments to hardware
segments. In order to explain this function we will have to explain
the notion of a segmented address.

The AmZ8001 processor generates two-component segmented addresses. The
first component, a seven-bit segment number, is generated on lines
SNo—-SNg (see the AmZ8000 Family Data Book). The second component,
a 16-bit offset, 1is generated on 1lines ADy-AD;g5. The AmZ8002
processor, which lacks 1lines SNp-SNg, generates one-component
non-segmented addresses that are 16-bits long. :

The address space of the AmZ8002 is thus a single, 64K linear space.
The AmZ8001 address space, on the other hand, consists of 2/=128
separate 64K 1linear address spaces, which we will call hardware
segments (to distinguish them from program segments). The linker
directive SETLSEG can be used to assign program segments to different
AmZ8001 hardware segments. In the AmZ8002, all program segments are
put into the same 64K address space. Read chapter 3 for more
information.

In this manual, whenever there could be confusion between hardware
segments and program segments, they will be explicitly distinguished.
Usually, the meaning is clear from the context.

1-3. INVOKING THE LINKER

The command to call the LINK800O linker specifies the location of the
linker directives and the other options for the linking run. The call
is:

LNKZ dirfile options overrides
The call is entered with a carriage return (new line key).
For interactive linking, the linker directives are supplied one by one
at the console. For a linking test, where defaults are used on all
options, the call is:

LNKZ
For an interactive linking run where other options on the product call
are needed, the specification * indicates that linker directives will
be entered from the console. For example:

LNKZ * B

calls for linking directives from the console, specifies the option B,
requests defaults for the other options, and ignores overrides.

For a file containing linker directives, the specification of dirfile
is:

Field Meaning Default

dev: Optionally specifies a Currently selected drive
device name, such as A:
or B:

filename Specifies the name of the -
directives file

.ext Optionally specifies the .DIR
file type of the directive
file

For example:
LNKZ DIR4

calls for 1linking according to the directives in file DIR4.DIR,
requests defaults for the options, and ignores overrides.

NOTE
Since LINK800O has free format statements, a number
of linker directives (separated by semicolons) can
be entered on a single line. This technique 1is
recommended for interactive input to the 1linker,
since it saves time and keystrokes.

The dirfile specification (or *) can be followed by at least one space
and then the selected options. The options listed in Table 1-1 are
similar to the MACRO8000 options. Options can be specified in any order
and are separated by commas or spaces.

For example:
LNKZ DIR5 L,B=XRPROC

calls for 1linking according to the directives on file DIR5.DIR,
requests a listing named DIR5.PRN, produces a file named XPROC.BIN that
is suitable for downloading, and ignores overrides.

The format of the hex file produced by the linker is described in
Appendix B. The binary file formats for both the AmZ8001 and the
AmZ8002 are described in Appendix C.

The product call line can optionally include overrides for one or more
symbolic constant values in the linker directives. The overrides follow
all of the other options and are separated by commas. The overrides
work in the same way as for MACR0O8000 (see the MACR0O8000 manual).

NOTE

When LNKZ is invoked with a directive file,
the display of directives encountered is
normally suppressed unless one of the L op-
tions is used. The L option causes the di-
rectives to be displayed on the named out-
put device.

TABLE 1-1. LINK8000 OPTIONS LIST

"~ Name Default Form Meaning
Listing | L=CON: L Send listing to dev:name.PRN

on currently selected drive,
with same name as dirfile

L=file Send listing to the file
dev:name.ext as specified

L=CON: Send listing to console device
(if printer is enabled with
CONTROL P, listing also prints)

L=LST: Send liéting to printer device

1-6

N

TABLE 1-1. LINK8000 OPTIONS LIST (Cont.)

Name Default Form Meaning

Object No object 0 Create object file dev:name.ZRL

(for file on same drive as dirfile,

MODULE, with same name as dirfile

LIBRARY,

ROMLIB O=file Create object file dev:name.ext

run only) as specified. The file type

‘ should not be $$$

Hex No hex file H Create hex file dev:name.HEX

(for for PROM on same drive as dirfile,

Amz8002 |burning with same name as dirfile

PROGRAM

only)

H=file Create hex file dev:name.ext

as specified

Binary No binary B Create binary file dev:name.BIN

(for file for on same drive as dirfile,

PROGRAM |downloading with same name as dirfile

run only)

B=file Create binary file dev:name.ext

as specified

ROMLIB No ROMLIB as R Create ROMLIB dev:ROMLIB.ZRL

(for linker output on same drive as dirfile

PROGRAM from RETAIN

run only)|or OMIT R=file Create ROMLIB file dev:name.ext
as specified. This file, which
is called a ROM library index or
ROMLIB, contains global symbol
definition. A ROMLIB might
contain entry points for shared
code (particularly in ROM), such
as for a shared set of floating
point routines which are always
resident and at a fixed address.
A ROMLIB can also be used to
supply addresses of global
symbols for symbolic debugging.

NOTE

When interactive input is specified (*) with
options L, O,
filename), a
supplied in lieu of dirfile.

H,
default

or B (without explicit
filename LINK 1is

1-7

\\
/,

'

PN

CHAPTER 2
GENERAL PURPOSE LINKER DIRECTIVES

Since LINK800O and MACRO8000 general purpose directives are similar in
many ways, this chapter makes frequent reference to features of
MACRO8000. Users should consult the MACRO8000 User’s Manual referred
to in the preface for more information.

The user should briefly check the information covered in this chapter
and then study the functional linker directives described in Chapter 3.
The sample PROGRAM run for the AmZ8002 (Chapter 4) and for the AmZ8001
(Chapter 5), the MODULE run (Chapter 6), the LIBRARY run (Chapter 7),
and the ROMLIB run (Chapter 8) should also be examined.

2-1. STATEMENT FORM

The statements in LINK800OO are linker directives, but the rules are the
same as for MACRO8000. For example:

PROGRAM START;
FILE MOD1, MOD2;
ABSOLUTE #4000
END.

is equivalent to:

PROGRAM START; FILE MOD1, MOD2; ABSOLUTE #4000 END.

2-2. SINGLE STATEMENT

The single statement consists of a statement beginner followed by zero
or more operands, as in MACRO8000. For example:

SEARCH LIBl, LIB2; %Z statement beginner is SEARCH
% operands are LIBl and LIB2

NOTE
For LINK800OO interactive input of directives, the
semicolon at the end of a line can and should be
omitted, since a carriage return (new line key)
indicates the end of a statement. The semicolon
must still be used between statements on the same
line.

For example:

FILE MOD1, MOD2
FILE MOD3; SEARCH LIB1l, LIB2

2-3. COMPOUND STATEMENT

A compound statement consists of BEGIN, single statements, and END, as
in MACR08000. For example:

BEGIN

FILE MOD1, MOD2;
SEARCH LIB1l, LIB2
END;

2-4. COMMENTS

Comments can be embedded anywhere in the source text (except within
literal strings) by enclosure between (* and *), as in MACR08000. For
example: '

SEARCH LIB1(*I/O ROUTINES*), LIB2;

A percent sign comment is terminated by end of line, as in MACR08000.
For example:

SEARCH LIBl, LIB2; % LIB1 is I/0 ROUTINES

2-5. DELIMITERS

Within statements, the standard delimiters are blanks, commas, and
parentheses, as in MACRO8000. Blanks can be used freely in statements.
Commas are used to separate operands. Parentheses are primarily wused
for lists.

NOTE

LINK800O additionally has brackets [and] that are
used in forming sets.

The keywords BEGIN and END are special delimiters used in compound
statements. The keywords THEN and ELSE are special delimiters used in
IF directives. The keywords IN and DO are special delimiters used in
FOR directives.

2-2

2-6. IDENTIFIERS

The identifiers that can be used in LINK800O directives are:

Linker directives (predefined statement beginners)
Macro names (user—defined statement beginners)
File names (operands)

Module names (operands)

Segment names (operands)

Symbolic constants (operands)

Object variables (operands)

The identifiers are similar to MACRO8000 identifiers and can be as long
as 80 characters. The characters A through Z, O through 5, underline,
and @ can be used in an identifier, but an identifier cannot start with
a digit or an underline. For example, valid symbols are:

DEX

FILE3

@B14INC
TEST FOR VALUE

2-7. STATEMENT BEGINNERS

The statement beginners are the identifiers that indicate the purpose
of the statement. A statement beginner can be a linker directive or the
name of a macro defined by the user.

2-8. DIRECTIVE NAMES

A directive is a special instruction to the linker. For instance,
directives are used to specify input files and library names. For
example:

FILE MODl, MOD2; % FILE directive is the statement beginner

The directives are statement beginners, but some directives are con-
sidered reserved words and some can be redefined. The directives CONST,
VAR, MACRO, IF, and FOR are considered reserved words. The names of all
the other directives can be redefined as macro names by the user.

2-9. MACRO NAMES

A macro is defined by the user with the MACRO directive (described
later in this chapter). The macro name is an identifier. A macro must
be defined before being referenced; that is, the macro definition must
precede any references to the macro. For example:

2-3

MACRO HL7 PARMI; % HL7 is defined as a macro
BEGIN

HL7 5; % HL7 macro name is the statement beginner

2-10. OPERANDS

In general, the operands in a statement always follow the statement be-
ginner. For directives, the operands are values required for the
directives. For macro references, the operands are the macro
parameters.

2-11. FILE NAMES

The file names used as operands can be specified in the same way as
file names in AMDOS commands. A complete file name has the general
form:

dev:name.type

where dev is the drive designator such as A: or B:. The
default is the same drive as for the directives file (for
interactive input, the current drive)

where name is the file name consisting of 1 to 8 characters.
Just as for AMDOS file names, the name can be * or can
include ? wild card characters. The * indicates any name of
any length; the ? indicates any character in that position

and where type is the file type (extension) consisting of 1 to
3 characters. Just as for AMDOS file names, the type can be *
or can include ? '"wild card" characters. The * indicates any
type; the ? indicates any character in that position. The
default is .ZRL for the file type

A complete file name, or any part of the full form, can be specified as
an identifier or as a string enclosed in apostrophes. Any part that
includes special characters (characters which cannot be used in an
identifier) must be specified as a string. Therefore, any file name
involving pattern matching with * or ? must be specified as a string.

The drive and extension can be specified or allowed to default. The :
and . in the full form are effectively delimiters and can be used
between the device, name, and extension. The following specifications
are equivalent to using the full FILE A:PROG.ZRL; form:

FILE PROG; % using one identifier and defaults

FILE ‘PROG’; % using one string and defaults
FILE A:PROG.ZRL; % using three identifiers

FILE A : PROG . ZRL; % using three identifiers

FILE “A:PROG.ZRL’; % using one string

FILE ‘A:” & ‘PROG.ZRL’; % using a concatenated string
CONST DRIVE = A,

NAME PROG,

TYPE = ZRL;

FILE DRIVE:NAME.TYPE; % using three symbolic constants

For more compact file name specifications, the user can take advantage
of the AMDOS-type file specification. For instance:

FILE “*’;

indicates that all files with file type .ZRL are to be used as
relocatable input. The files named X.ZRL and Y.ZRL would both be used.
As another example, the linker directive:

FILE ‘RF?.ZRL’;

indicates that all files with RF as the first two letters, any
character (or no character) for the next position, and file type .ZRL
are to be used. If present on the diskette, the files RFA.ZRL and
RF8.ZRL would both be used. See the FILE directive in chapter 3.

2-12. NAMES OF MODULES AND SOFTWARE SEGMENT

The module names used as operands in linker directives are the module
names assigned during MACRO8000 assemblies. The linker supports the use
of a single module name or a list of module names. The software segment
names used in the directives are just the segment names assigned during
MACRO8000 assemblies.

The module names and segment names can be identifiers, strings, or (in
certain cases, as noted below) as pattern strings containing the ? wild
card character. Just as for file names, module names and segment names
must be strings if the names include characters that cannot be used in
identifiers. For example:

COMBINE ‘CRT_IO’.DATA;

specifies module name ‘CRT IO’ and segment name DATA.

2-13. CONSTANTS

Numeric constants can be decimal, binary, oétal, hexadecimal, variable
base, or in K, just as for MACRO8000. For example:

5
11B
642Q
#6F
4#123
2K

are all valid numeric constants.

2-14. NUMERIC EXPRESSIONS

A numeric expression can be evaluated at link time to produce a 32-bit
signed value, just as for MACRO8000. For example:

5

4x / 8

5% 4 +1
5% (4+1)

are all valid numeric expressions.

2-15. LOGICAL EXPRESSIONS

A logical expression can be written in the IF directive for evaluation
at link time. The logical expressions are the same as for MACRO08000.
For example:)

NULL X
URT OR SWITCH
L123 LT 4

are all valid logical expressions, as long as they result in a true or
false value.

2-16. STRINGS

Strings can be used for file names, module names, or segment names in a
number of LINK8000 directives. Strings are specified just as in
MACRO8000. In all cases, a string or string expression can be used. For
example: /

2-6

"ABCDEF’

“00A0’

IITI Isl

‘B:’ & "ABCD’ & “.ZRL’

are all valid strings.

2-17. LISTS

A list is a composite object that represents a grouping of items, just
as for MACR08000. The primary uses of a list are in the FOR statement,
and in the COMBINE directive for a list of module names.

NOTE
In LINK80OO, the operator & is extended and can be

used for lists as well as strings.

The operator that can be used for building lists is:

Operator Meaning Example
& Concatenate A& (B, C, D)

The operators that can be used for manipulating lists are:

Operator Meaning Example

ATOM ATOM Y is TRUE if Y is ATOM LIST
neither a list nor a set
(that is, atomic) and FALSE
otherwise

FIRST Take and use the first item FIRST (X, Y, Z)
in a list; undefined if its
argument is not a list

REST Create a new list of all REST (X, Y, Z)
items in the list except the
first element; undefined if
the argument is not a list

For example, FIRST (X, Y, Z) has the value X, and REST (X, Y, Z) has
the value (Y, Z). (When REST is applied to a single-element list, the
result is NIL. For example, REST (A)=NIL.) For processing an item
that might be a file name or a 1list of file mnames, the user might
write:

VAR X: OBJECT;

IF ATOM PP
THEN FILE PP % uses the single file
ELSE FOR X IN PP
DO FILE X; % uses each file in the list

Sublists are possible, where an item is itself a list. For example:

(X1, x2, (Y1, Y2))

2-18. SETS
Like a list, a set is a composite object containing items. A set is
used to specify a group to be processed by the linker. Certain linker
directives accept a specification of a set of files, modules, segments,
or globals. A set with one item has the form:

[item]
A set with two or more items has the form:

[item,item...]

Each item in the set can be any valid operand, except another set or a
list. For example, a set of module names might be:

[CRT_IN, CRT OUT, CRT_STAT, PRINTER OUT, PRINTER STAT]
The operators that can be applied to sets are the Pascal operators:

Operator Meaning Example

+ Set union (combination of S1 + S2
all elements)

- Set disunion (removal of Sl - S2
selected elements)

* Set intersection (result S1 * S2
containing only elements
found in both sets)

The empty set has the special value NIL.

NOTE

Sets, as well as lists, can be used in a FOR loop.

2-19. SYMBOLIC CONSTANTS

A symbolic constant is an identifier that represents a constant value
during the 1linking process. Symbolic constants are declared by the
CONST directive (described 1later in this chapter). The CONST
declaration works just as in MACRO8000, and the same rules apply. For
example:

2-8

N

CONST DRIVE = B;

FILE DRIVE:XR.ZRL; %value B:XR.ZRL

2-20. OBJECT VARIABLES

An object variable is an identifier that represents a variable value
during the linking process. Object variables are declared with the VAR
directive (described later in this chapter). The VAR declaration works
just as in MACR08000, and the same rules apply. For example:

e

VAR LIB: OBJECT;
IF SWITCH
THEN LIB ::= LITH
ELSE LIB ::= LITH3;
SEARCH LIB;

LIB is initially undefined

LIB is defined as LITH
LIB is defined as LITH3
uses either LITH or LITH3

N9 8 e

NOTE

For interactive input to the linker, the special
value @INPUT is defined for object variables.

The special value @INPUT tells the linker to accept a value supplied
from the console during a linking run. For example:

VAR ANSWER: OBJECT;
PRIN ‘ENTER STACK SIZE: ’
ANSWER ::= @INPUT;
ABSOLUTE ($ + ANSWER);

-e

2-21. LOCATION COUNTER

The special symbol § represents the current value of the location
counter. The location counter changes with the assignment of base
addresses to the user segments. For example:

CONST STACK SIZE = #100;

L)
.

ASSIGN STACK := ($ + STACK SIZE)";

assigns a value #100 greater than the
location counter to identifier STACK
STACK is assumed to be an unsatisfied
external.

PRINT ‘LOCATION COUNTER IS NOW: ‘, $§;

N 8 e e

2-9

2-22. GENERAL PURPOSE DIRECTIVES

£

A number of linker directives are the same as for MACRO8000 or similar
to MACR0O8000. These directives can be used as needed for the 1linking
process and placed anywhere within the linker directives.

2-23. CONST DIRECTIVE

The CONST directive declares a symbolic constant (described earlier). A
symbolic constant is an identifier that represents a constant value.
The CONST directive has the same form as in MACRO8000. For example:

CONST ROM_OFFSET = #5000,
CRTSET = [CRT_IN, CRT OUT, CRT STAT],
PRNSET = [PRINTER OUT, PRINTER STAT],
IOSET = CRTSET + PRNSET;

2-24. VAR DIRECTIVE

The VAR directive declares an object variable (described earlier). The
VAR directive has the same form as in MACRO8000. For example:

VAR NAME: OBJECT; % declares NAME as object variable
NAME ::= XY; . % defines value of NAME e
FILE NAME; % identical to FILE XY;

2-25. IF DIRECTIVE

The IF directive can be used for conditional linking. In conditional
linking, linking operations are performed or not performed depending on
a particular condition. The IF directive has the same form as in 7
MACRO08000. , ~_/
NOTE

For LINK8000, the IF statement is always effective

at the time when the linking directives are being

processed. In this respect, the LINK800O IF is

like the MACR08000 assembly time IF and not 1like

the MACRO8000 run time IF.
The test for conditional linking is a logical expression that can be:

TRUE or FALSE
An expression with the NULL operator and an object variable

An arithmetic comparison

2-10 :

N

.<'

A string comparison
A logical operation with NOT
A logical comparison with AND or OR
For example:
IF SWITCH AND NOT NULL X
THEN BEGIN
SEARCH HRTLIB;
SEARCH FOLLIB

END
ELSE SEARCH USERLIB4;

2-26. FOR DIRECTIVE

The FOR directive is wused for repetitive 1linking, where

linking

directives are used repeatedly in a specific way. The FOR directive has

the same form as for MACR0O8000. For example:

CONST SEGLIST = (DATAl, DATA2, DATA3);
VAR X: OBJECT;

)
.

FOR X IN SEGLIST DO
BEGIN
SEGMENT X;
COMBINE .X
END;

NOTE
EXIT can be used to terminate a FOR loop. EXIT must
be used in the immediate context of the FOR 1loop.
When EXIT is encountered, repetitive linking
terminates and the linker moves on to the next
statement after the FOR statement.

2-27. PAGE DIRECTIVE

The PAGE directive sets the size of each listing page in the .PRN file

and has the same form as in MACRO8000. For example:

PAGE 48;

2-11

2-28. EJECT DIRECTIVE

The EJECT directive causes a page eject in the .PRN file and has the
same form as in MACR08000. For example:

EJECT;

2-29. MACRO DIRECTIVE

The MACRO directive declares a macro and takes the same form as in
MACR0O8000. In LINK8000, macros can be used for the expansion of linker
directives. Each linker directive macro has the same general form as in
MACR0O8000, and the macro parameters work in the same way. For example:

MACRO LOGICALSEGMENT SEGNAME, MODULELIST;
BEGIN
SEGMENT SEGNAME;
COMBINE MODULELIST.DATA, MODULELIST.CODE
END;

.
L]

LOGICALSEGMENT SEG4, (MAB,MAD,MAF,MAH);

NOTE

EXIT can be used to terminate a macro. EXIT must be
used in the immediate context of the macro. When
EXIT is encountered, macro expansion terminates and
the linker moves on to the next statement after the
macro call.

2-30. PRINT DIRECTIVE

The PRINT directive is used to display one or more objects or operands
at the console. The form is:

PRINT objectsequence;

where objectsequence is a sequence of one or more operands or
objects separated by commas.

Any strings to be displayed at the console are enclosed in apostrophes

in the PRINT directive but displayed at the console without
apostrophes. For example:

2-12

N

.

==> X :1:= 16

==> PRINT X
#00000010

==>Y ::= ‘SIZE = *
==> PRINT Y

SIZE =

==> PRINT Y,X

SIZE = #0000010

Note that PRINT displays the objects and then terminates the line with
a carriage return/line feed sequence.

2-31. PRIN AND TERPRI DIRECTIVES
PRIN has the same form as PRINT:
PRIN objectsequence;

but the display is not terminated with carriage return/line feed. The
TERPRI directive has the form:

TERPRI;

The TERPRI directive terminates the line and is normally used after one
or more PRIN directives:

==> VAR Z: OBJECT

==> FOR Z IN (THIS, IS, A, LIST) DO PRIN Z,’ ’;TERPRI
THIS IS A LIST

==> FOR Z IN (THIS, IS, A, LIST) DO PRINT Z

THIS

Is

A

LIST

2-32. INCLUDE DIRECTIVE

The INCLUDE directive specifies a file containing additional 1linker
directives and arguments to be used in the 1linking process. The
contents of the file are substituted for the directive in the linker
input. This directive can be nested to three levels. The INCLUDE
directive has the same form as in MACR08000. For example:

INCLUDE ‘I0_SET’;

2-13

/— ™~
S

Y

e

CHAPTER 3
FUNCTIONAL LINKER DIRECTIVES

The user supplies linker directives to describe the linking operation.
The general purpose directives (described in chapter 2) can be
interspersed with the functional linker directives described in this
chapter. The linking operation itself involves directives to:

e Specify the basic type of 1link to produce a program, module,
library or ROM library. A PROGRAM, MODULE, LIBRARY, or ROMLIB must
be the first directive.

e Specify the relocatable input to be used for the linking operation.
The relocatable input consists of files containing relocatable
code, as well as any libraries needed for the linking operation.
The linker must have access to the modules and segments before it
can manipulate them.

e Specify and control the actual linking process. The user can set
absolute addresses, define new relocatable software segments,
combine software segments in an arbitrary way, assign software
segments to AmZ8001 hardware segments, and assign absolute entry
points to specific unsatisfied externals.

e Specify any additional output from the linker. For an absolute
program, the user can generate an additional file (ROM 1library)
containing entry points to absolute code in PROM. At any time
during the linking run, the user can generate a variety of linker
maps.

In the linker directives, the specifications of link type, relocatable
input, linking control, and additional linker output should essentially
be in the order shown. The one exception is that maps can be requested
at any time.

Note that an AmZ8002 user does not necessarily need LINK800O to produce
absolute code suitable for PROM burning or downloading. A single
monolithic program can simply be assembled through MACRO8000 to produce
a hex file for PROM burning (H option on the MACZ call) or an AMC
binary file for downloading (B option on the MACZ product call). In
this case, PROGRAM is used as the first directive in the assembly
program and not run through the linker.

A user targeting for the AmZ800l must always use LINK800OO to produce
absolute code suitable for PROM burning or down-loading. Only binary
files can be produced; hex is not available for the AmZ80O0Ol.

If the user has a program structured into a number of interrelated
parts, MACRO8000 and LINK800O are used together to prepare the program.

In this case, MODULE is used as the first directive in each part of the
program, and the assembler produces files containing relocatable code
(0 option on the MACZ product call).

3-1. TYPE OF LINK

The choice of the basic type of link is required as the first linker
directive. In all cases, the user chooses one directive specifying the
type of link and supplies it as the first directive. Therefore, the
linker directives have the framework:

Program Module Library ROM library
creation creation creation creation
PROGRAM MODULE LIBRARY ROMLIB
through through through through
END. END. END. END.

The special terminator END. is used, just as in MACR08000, to mark the
end of the linking run.

3-2. PROGRAM

The PROGRAM directive specifies the creation of an absolute program
suitable for downloading. PROGRAM also specifies the main entry point,
which must be a global label defined in one of the relocatable input
modules. The PROGRAM directive has the form:

PROGRAM 1lab;
where PR is abbreviation of PROGRAM

and where lab is a label that specifies the main entry point
of the program. The label can also be specified as a string or
string expression

Appeafance of a PROGRAM directive indicates that the user 1is linking
relocatable code in order to produce absolute code.

The relocatable files produced by MACRO8000 and/or LINK800O are used as
input to LINK800O. From those input files targeted for the AmZ8002,
the Iinker can produce either a hex (option H) or a binary (option B)
output file. This output file can be used either for PROM burning or
down-loading. Input files targeted for the AmZ8001 can produce only a
binary output file. See figure 3-1. For a description of the hex and
binary file formats, refer to Appendices B and C.

3-2

™\

PROGRAM mode | _
directives | | optional
(required) | | binary file
| |
relocatable | ——— > LINK8000 ———=———=——— > | optional
input files | | hex file
(required) [| (AmZ8002 only)
| |
| | optional
optional | | ROM library
libraries to | | _creation
be searched 1

Figure 3-1. PROGRAM Creation Run

The user has separate assemblies of modular program parts. The program
parts reference each other in user-defined ways through the use of
global and external declarations in separate modules. The result of
the linking operation is simply to combine the separate modules and
produce a coherent program.

See Chapter 4 and 5 for examples of program creation runs for the
AmZ8002 and AmZ8001 processors.

3-3. MODULE

The MODULE directive specifies the creation of a combined module that
is still relocatable. The MODULE directive has the form:

MODULE modname;
where MOD is the abbreviation of MODULE

and where modname is an identifier, a string, or a string
expression to be used as the name of the combined module

The combined relocatable can be an intermediate step in the creation of
an absolute program. In this case, the module can be used for an
incremental 1linking operation. Incremental 1linking involves the
condensation of a set of input modules into a single relocatable module
that can be later combined with other single or combined relocatable
modules. Effectively, incremental linking represents a succession of
intermediate steps in the creation of a coherent program. In a final
PROGRAM creation run, the program would be set up for downloading to an
AmZ8002 processor. See figure 3-2.

MODULE mode

libraries to
be searched

|
directives |
(required) | _

| | combined
relocatable | =—————— > LINK8000 ==————————e > | relocatable
input files | |__ module file
(required) |

!
optional |

|

_

Figure 3-2. MODULE Creation Run

The MODULE directive can be used in any case where it is desired to
defer address resolution until a future time, for example, the case
where a user operating system is handling the loading.

See Chapter 6 for an example of a module creation run.

3-4. LIBRARY
The LIBRARY directive specifies the <creation of a 1library of
relocatable routines that can be accessed in subsequent linking
operations. The LIBRARY directive has the form:
LIBRARY libname;
where LIB is the abbreviation of LIBRARY

and where libname is an identifier, a string, or a string
expression to be used as the library name

A library can be constructed from an arbitrary collection of modules or
from subsets of other library files. The library as created contains:

A directory of globals and externals associated with the routines
in the library

The library routines in relocatable form
The user can choose to create relocatable libraries and access them
during creation of a particular program. In this case, the library can

be used at different times for the creation of any number of particular
programs. See figure 3-3.

3-4

-

A

i

LIBRARY mode
directives
(required)

relocatable | ====—- > LINK8000 ———m=—=——mm > | relocatable
input files | |_ library file
(required) |

Figure 3-3. LIBRARY Creation Run

See Chapter 7 for an example of library creation run.

3-5. ROMLIB

The ROMLIB directive specifies the creation of a ROM library index from
subsets of other ROM libraries or from a set of explicitly-defined
entry points assigned with the ASSIGN directive. The ROMLIB directive
has the form:

ROMLIB rlibname;
where RLIB is the abbreviation of ROMLIB

and where rlibname is an identifier, a string, or a string
expression to be used as the ROM library name

The ROMLIB directive is not normally used for the initial ROM library
creation (although it can be done using the ASSIGN directive). Note
that a ROM library index can be created with the R option as additional
linker output during a PROGRAM run. See figure 3-4. The library index
produced can be used to access a ROM resident library or used as input
for symbolic debugging.

ROMLIB mode

|
directives |
(required) |
l _
relocatable | === > LINK8000 ————==eemee > | new
ROM library | | ROM library
files (from | |_ file
|

PROGRAM runs) _

Figure 3-4. ROMLIB Creation Run

3-5

See Chapter 8 for an example of ROM library creation run.

3-6. HEADER

The HEADER directive supplies one or more header lines at the beginning
of the relocatable output file (file type .ZRL by default) produced as
the main linker output of a MODULE, LIBRARY, or. ROMLIB creation run.
The HEADER directive has the form:

HEADER strings;
where HDR is the abbreviation of HEADER
where strings is a sequence of strings separated by commas

and where each string is a string or string expression that
produces one identification line in the .ZRL file

The HEADER directive is highly recommended for supplying any additional
information the user wishes at the beginning of the .ZRL file. When a
«ZRL file is listed at the console with an AMDOS TYPE or DISPL command,
the header lines are displayed as part of the first block of
information in the .ZRL file. The other information in the relocatable
file is not displayed, unless the user dumps the entire file with the
AMDOS DUMP command.

For example:

HEADER “I/0 routines’;

3-7. RELOCATABLE INPUT

A number of linker directives specify the relocatable input to be used
for the linking operation. The directives that can be used are:

Program Module Library ROM library
creation creation creation creation
FILE FILE FILE FILE

SEARCH SEARCH

ATTACH ATTACH

DETACH DETACH

These directives are described in the following paragraphs.

3-6

3-8. FILE

One or more FILE directives specify the .ZRL files that are to be used
as relocatable input to the linking operation. The .ZRL files can be
assembled MACR08000 modules, combined modules, libraries, or ROM
libraries. The FILE directive has the form:

FILE filesequence;
where FL is the abbreviation of FILE

where filsequence is a list of one of more file specifications
separated by commas.

and where each file specification in the filesequence has one
of the forms:

name A relocatable module file. The name can be
in the form dev:name.ext. The default
drive 1is the current drive, and the
default file type is .ZRL

pattern A file name pattern of the AMDOS type,
where the name can contain * as a general
specification for any file name or file
type, and where ? can be used as a wild
card for any individual character in the
file name or file type.

1ib A relocatable library or ROM library file.
The name can be in the form dev:name.ext.
The default drive 1is the current drive,
and the default file type is .ZRL.

1ib * set A relocatable 1library file name followed
by * and set of module names. The entry
points to be used are restricted to the
ones that are both in the library and in
the set of modules specified

1ib - set A relocatable library file name followed
by - and a set of module names. The entry
points to be used are the ones in the
library, except that entry points in the
specified set of modules are omitted

The set of module names can be any set or parenthesized set expression
(see SETS, chapter 2). In this context, a module name in a non-empty
set can be an identifier, string, or a pattern string containing the ?
wild card character.

A standard example of the FILE directive for relocatable input is:

FILE X,Y; % specifies relocatable files X.ZRL and Y.ZRL

3-7

Some examples using patterns for the file names are:

FILE “*.ZRL’; % might specify files A.ZRL, B.ZRL, and F.ZRL
- % that exist on the current drive

CONST ALL = “#*7;
FILE ALL; % same as FILE “*.ZRL’

When the FILE directive is used for a library, all the routines in the
library are used as relocatable input to the linker. For a 1library
search, see the SEARCH directive. An example of the FILE directive for
a library might be:

FILE DEF; % specifies library file DEF.ZRL

An additional feature of the FILE directive for a 1library is the
ability to restrict entry points to be used or to omit selected entry
points. The special forms of the 1lib specification are:

FILE DEF * [DEF3]; specifies library DEF3, restricting the
entry points to the ones also contained in
the module DEF3.ZRL

e 9 e

specifies 1ibréry DEF.ZRL but omits the
% entry points in modules designated by the
pattern ‘DEF?’.

FILE DEF - [’DEF?’];

¢ e

3-5. SEARCH

The SEARCH directive accesses the library specified by providing access
to the entry points in the 1library routines. The SEARCH directive
initiates the process of satisfying any outstanding externals from the
modules in the library. The SEARCH directive has the form:

SEARCH libsequence;
where SR is the abbreviation of SEARCH

and where libsequence is a sequence of one or more relocatable
library and/or ROM library files separated by commas. The
library name has the form dev:iname:ext. The defaults are
current drive and file type .ZRL.

The SEARCH directive for a library simply uses the library directory to
satisfy externals. Note that the SEARCH directive is equivalent to an
ATTACH immediately followed by a DETACH directive. Therefore, the
library is accessed and then released.

For a library, a SEARCH is different from a FILE. Using the FILE
directive for a 1library moves in all of the 1library routines as
relocatable input; wusing the SEARCH directive moves in only those
routines required to satisfy outstanding externals.

3-8

.

For example:
SEARCH XREF.ZRL;

When two or more files are specified in on e SEARCH directive (e.g.,
SEARCH LIB1,LIB2), any new externals introduced by a module in one
library file can be satisfied by entry points in modules in the other
library. In other words, all libraries in a sequence specified in a
single SEARCH directive are ATTACHed before the corresponding DETACH.

3-10. ATTACH

The ATTACH directive accesses the library specified and leaves the
library attached until a subsequent DETACH directive is encountered.
The ATTACH directive has the form:
ATTACH libsequence;
where AT is the abbreviation of of ATTACH
and where libsequence is a sequence of one or more relocatable
libraries and/or ROM libraries separated by commas. The
library name has the form dev:name.ext. The defaults are the
current drive and file type .ZRL

For example:

ATTACH XREF.ZRL;

3-11. DETACH

The DETACH directive detaches the specified 1library. The DETACH

directive is only used for a library accessed with ATTACH. The DETACH

directive has the form:

DETACH libsequence;

where DT is the abbreviation of DETACH
and where libsequence is a sequence of one or more relocatable
libraries and/or ROM libraries separated by commas. The
library name has the form dev:name.ext. The defaults are the
current drive and file type .ZRL

For example:

DETACH XREF.ZRL;

DETACH removes (from the linker symbol table) all global and external
labels and module names associated with the specified files. The
reclaimed symbol table space may then be used in subsequent SEARCHs and
ATTACHs.

3-12. LINKING CONTROL

After the type of link has been chosen and the relocatable input has
been specified, the user can specify the linking operation itself in
detail with a set of linking control directives. The number of control
directives that can be used depends on the type of link chosen and
whether the target processor is an AmZ8001 or AmZ8002.

The directives that can be used are:

PROGRAM PROGRAM

link link MODULE LIBRARY ROMLIB
(AmZ8001) (Amz8002) link link link
OFFSET ABSOLUTE SEGMENT RETAIN RETAIN
SEGMENT ASSIGN COMBINE OMIT OMIT
SETLSEG COMBINE RETAIN MAP MAP
ASSIGN XSPACE OMIT
COMBINE RETAIN MAP
XSPACE OMIT
RETAIN MAP
OMIT
MAP

These directives are described in the following paragraphs.

3-13. ABSOLUTE

The ABSOLUTE directive can be used to specify an absolute destination
address. This directive may be used only during a PROGRAM link that is
targeted for an AmZ8002 processor. (For AmZ8001 links, the equivalent
directive is OFFSET.) This directive has the following form:

ABSOLUTE exp;
where ABS is the abbreviation of ABSOLUTE

and where exp is a numeric expression (usually hexadecimal)
specifying a memory address

In program creation runs, the user needs to assign a starting location
for the 1linked code. The user can also use ABSOLUTE directives to
specify a number of destination addresses. For example, the user might
assign absolute addresses to all globals in the program.

3-10

e Y

P

ABSOLUTE directives may also be intermixed with COMBINE directives to
define the placement of all program code and data by assigning a
destination address to each segment in the relocatable input.

For example:

ABSOLUTE #4200;

COMBINE .CODE; % all code segments
ABSOLUTE #5000;
COMBINE .DATA; % all data segments

The ABSOLUTE/COMBINE combination of directives in a program run
corresponds to the SEGMENT/COMBINE directives in a module creation run.

3-14. OFFSET

This directive is the AmZ8001 equivalent to the ABSOLUTE directive.
OFFSET 1is used to specify an 16-bit address offset in the current
hardware segment. (See section 3-16 SETLSEG for a discussion of the
current hardware segment.)

In one special case OFFSET can be used to specify a hardware segment
number as well as the offset. If OFFSET is used to specify an entry
point of an attached ROMLIB, then the hardware segment number of the
entry point address is assigned to the current output segment via an
implicit invocation of SETLSEG. (The current hardware segment number
counter is unaffected.)

This directive may be used only during a PROGRAM 1link that is targeted
for an AmZ8001 processor. It has the following form:

OFFSET exp;
where OFF is the abbreviation for OFFSET
and where exp is an expression specifying a 16-bit offset into
the current hardware segment or an entry point in an attached

ROMLIB.

For example, to specify an offset value of 1000 hex in the current
hardware segment, the following linker directive would be used:

OFFSET #1000;

3-15. SEGMENT

The SEGMENT directive can be used in PROGRAM links for the AmZ8001 or
in MODULE links for both processors. In both links, the directive
defines the name of an output software segment for incremental linking.
The SEGMENT directive has the following form:

3-11

SEGMENT segname;

SEGMENT [attr], ségname;

SEGMENT @PRIOR;
where SEG is the abbreviation of SEGMENT
ﬁhere segname is the segment name

where attr 1is an optional segment attribute: @COM common
common (MODULE links only)

and where @PRIOR indicates a reset to the segment previously
defined

The segment name can either be an identifier or a string. The common
attribute (@COM) will force the assignment of segments (with the same
name) in different modules to a common memory space. Common segments
in different modules should have the same size. A common segment is
analogous to a Fortran common block.

The set of input segments from the input modules have no necessary
relationship with the set of output segments defined by the SEGMENT
directive. For example, a set of input segments with the common
attribute may be combined into a single output segment:

SEGMENT COMDATA;
COMBINE .COMBLOCK;

The special indicator @PRIOR is used to reset to the previously defined
(that is, prior) segment. In this case, the segment offset is set to
the value last assigned. For example:

SEGMENT @PRIOR;

If no prior segment exists, SEGMENT G@PRIOR generates an informative
error and the current segment is used.

3-16. SETLSEG

This directive allows for explicit assignment of hardware segment
numbers to the software segment names defined in the SEGMENT directive.
SETLSEG can be used only in PROGRAM 1links for the AmZ800l. If a
SETLSEG directive is not given, the 1linker will assign consecutive
hardware segment numbers by default. The linker maintains an internal
hardware segment number counter in order to implement this directive.
The directive has the form:

3-12

‘)

A,

SETLSEG;
or
SETLSEG assignment sequence;

where assignment sequence is a series of expressions separated
by commas, each with the format

segment name := exp
or
segment_ name

where segment name is a software segment name and where exp is
an arithmetic expressions for the hardware segment number with
value 0-127.

The SETLSEG directive with no arguments simply assigns segment numbers
to the segment names in alphabetical order, beginning with the last
assigned number (initially zero).

The assignment expression segment name := exp sets the internal segment
number counter to the value exp, then assigns that value to the segment
named segment name. The assignment expression segment name assigns the
current value of the segment number counter to segment name. After
each assignment expressions, the linker increments the segment number
counter. Default segment number assignments begin with the most recent
segment counter value.

For example:

SETLSEG IOTASK := 1,DATABASETASK,SPACEMGRTASK;
assigns the software segment name IOTASK to hardware segment number 1,
DATABASETASK to 2, and SPACEMGRTSK to 3. Subsequent SETLSEG directives
will assign hardware segment numbers from 4 up, unless reset higher by

an explicit assignments.

Hardware segment number assignments must be strictly ascending.

3-17. COMBINE

The COMBINE directive specifies the combination of relocatable input
segments (either from a MACRO8000 assembly or a previous linker run) to
absolute addresses in the linker output. For program creation, COMBINE
directs the assignment of modules and/or segments to absolute addresses
(ABSOLUTE directive). For module creation, COMBINE directs the
assignment of segments to a named output segment (SEGMENT directive).
The COMBINE directive has the form:

COMBINE;

COMBINE BY MODULE;

3-13

COMBINE BY SEGMENT;

COMBINE segsequence;

where CMB is the abbreviation of COMBINE

and where segsequence is an optional sequence of one or more

segment sepcifications separated by commas. Each segment-

specification can take one of the forms:

mod

.seg

mod.seg

specifies a module name or list of module
names enclosed in parentheses. In this
form, each module name must be an
identifier or string.

specifies . followed by the segment name.
In this form, the segment name must be an
identifier or string.

specifies a module name, or list of module
names enclosed in parentheses, followed by
. and the segment name. In this form, each
module name can be an identifier, a
string, or a pattern string containing the
? wild card character.

When COMBINE is used with no operands, COMBINE means COMBINE BY MODULE
and specifies the grouping by module of the sequence of input segments

in the module.

The basic scheme for COMBINE with no operands or COMBINE BY MODULE is:

Relocatable input

Module X Segment
Module X Segment
Module Y Segment
Module Y Segment
Module Z Segment
Module Z Segment

The basic scheme for

Relocatable input

COMBINE or COMBINE BY MODULE

CODE —====——= > X.CODE
DATA ——==————- > X.DATA
CODE —=—==—==—= > Y.CODE
DATA —-—==———- > Y.DATA
CODE =—===—=—= > Z.CODE
DATA -——---——-> Z.DATA

COMBINE BY SEGMENT is:

COMBINE BY SEGMENT

Module X Segment
Module X Segment
Module Y Segment
Module Y Segment
Module Z Segment
Module Z Segment

When the COMBINE directive specifies a segsequence, the user is

CODE —-——--—-- > X.CODE
DATA . _ _-> Y.CODE
CODE >~ - Z.CODE
DATA —__~-"3 X.DATA
CODE =~ ~~=> Y.DATA
DATA —----=-- > Z.DATA

combining segments in an arbitrary way. For example:

3-14

i

P

COMBINE .DATA; % combines all segments with the name DATA

COMBINE SYMBOL TABLE.DATA, HASH TABLE.DATA;
% combines segments with the names sepcified

COMBINE (SYMBOL TABLE, HASH TABLE).DATA;
% same as the previous example

CONST PARSER = (SCAN, NEXT CHAR, FIND, ENTER, PURGE);

SEGMENT ‘PARSER’; %Z defines the relocatable output segment
RSER

DADOTD ANNMTe Y% cinna the svmbolic congtant

ANV TR DA AT A nn N
COMBINE CAROE A, PARSER.CCDE; X uses th ymbelice constant

% PARSER to specify the list of module names

If COMBINE has been used to combine some but not all segments, COMBINE
with no operands can be used to combine all remaining unassigned
segments. The user should request one or more link maps after every
COMBINE in order to manage this process effectively. If any input
segments remain unassigned at the end of the directive sequence (at
END.), an implicit COMBINE will be invoked.

3-18. XSPACE

The status lines of the AmZ8000 can be used to extend the address
space. For example, the status lines distinguish a data access from an
instruction access, thus allowing instructions and data to be stored in
different address spaces, if the memory hardware can decode the status
signals.

LINK8000 supports this extended address space concept through the
XSPACE directive. An XSPACE directive can appear only once in such
links. All program segments COMBINEd after the XSPACE directive are
assigned to extended space. For example:

COMBINE .CODE;
XSPACE;
COMBINE .DATA;

assigns all .CODE segments to regular address space and all .DATA
segments to extended space.

XSPACE can be used with both AmZ8002 and AmZ8001 code. The only output
file formed available is AMC binary format (option B). The directive
causes the location counter to be reset to zero. For the AmZ8001, any
previously unassigned output program segments are assigned hardware
segment numbers (via an implicit call to the SETLSEG directive).

The output file has several distinctive record types if XSPACE is used
in the link. These additional types hold the extended space values;
they are documented in Appendix C. Users must write software to read

the binary file and select the extended space record types. Users must
also write software to load the extended space information into the
correct memory locations, a procedure that will depend on how the user
has decoded the status lines. Contact your AMD Field Application
Engineer for additional information and support.

3-19. ASSIGN

The ASSIGN directive causes the assignment of absolute addresses to
identifiers. The ASSIGN directive has the form:

ASSIGN assignmentsequence;

and where assignmentsequence 1is a 1list of assignments
separated by commas. Each assignment takes the form:

lab := abs specifies a label that 1is set to the
absolute address constant specified. The
label cannot be a symbolic constant or
object variable. The absolute address
constant is either a single arithmetic
value (AmZ8002) followed by *~, or a pair
of values followed by ~, representing a
segment number and an offset (AmZ8001).

Constant is either a single arithmetic value (AmZ8002) or a pair of
values, representing a segment number and an offset (AmZ8001).

For example (AmZ8002):

CONST STACK SIZE = #500;

ASSIGN CRT STAT := #FF20",
CRT_IN := {#FF46",
CRT OUT := #FF80",

STACK := ($ + STACK_SIZE)‘;

(AmZ8001):

ASSIGN LAST ROM LOC := (3,#2000)";
For program creation, ASSIGN can be used to assign addresses for any
unsatisfied externals. For a ROM library creation, ASSIGN causes the
creation of global entry points with absolute addresses.
In the program mode, the ASSIGN directive may also be used to assign
(previously entered) globals to unsatisfied externals. For example, if

DISK_READ TEMP and DISK READ DIAG are entry points of a (previously
entered) module, then

3‘16&

o

IF DIAG THEN
ASSIGN DISK READ := DISK READ DIAG

ELSE
ASSIGN DISK READ := DISK READ DIAG

will equate DISK READ to one of two entry points depending on the value
of DIAG.

3-20. RETAIN AND OMIT

The RETAIN directive is used to retain a record of all or some giobals
in the program. The RETAIN directive has the form:

RETAIN globalsequence;
where RET is the abbreviation of RETAIN

and where globalsequence is an optional sequence of globals
separated by commas

The OMIT directive has the form:
OMIT globalsequence;

where globalsequence is a sequence of globals separated by
commas

A global may be specified as an identifier, a string, or a pattern
string containing the ? wild card character.

The RETAIN directive retains the selected globals and omits the rest.
The OMIT directive is used to omit selected globals but retain the
rest. RETAIN and OMIT are opposite in meaning, and the user chooses the
more convenient directive to use.

For a program run with the R option, RETAIN or OMIT causes creation of
a ROM library with a selected subset of (assigned) global entry points.
The ROM 1library is a directory of entry points to the absolute code
produced in the program run. Unlike a library, the ROM library contains
only the directory and not the library routines themselves. The library
entry points themselves are the main output of the 1link and are in
absolute form.

For a module run, RETAIN or OMIT affects the main linker output and
selects a subset of entry points in the relocatable output. The entry
points that remain, or are not omitted, can be used in a subsequent
linking operation. For incremental linking, the entry points that were
excluded are effectively hidden and are not available in any subsequent
link. This technique can be used to protect the integrity of selected
parts of the program. It can also be used to reduce the size of the
symbol table required for linking very large, modular programs.

3-17

For a 1library run, RETAIN or OMIT affects the main output by
restricting the set of globals that can be used to satisfy externals.

For a ROM library run, RETAIN or OMIT affects only the directory and
specifies a subset of the previously defined entry points for the ROM
libraries.

3-21. MAP

This directive produces a sorted list of globals, showing assigned
addresses, segment names, any unresolved externals, and other
significant information. For the AmZ800l, assigned segment numbers are
displayed as a pair of hex digits (if the segment number has been
assigned at the time the MAP directive was executed). The directive
has the following form:

MAP;
MAP BY option;
the map options are:

LABEL (same as MAP;) shows symbols, addresses, module
names, and segment names, in the same order in
which the relocatable files were accessed. For
unassigned symbols, the address is an offset
marked with * .

MODULE shows module names, mod.seg, sizes, and
assigned addresses, as well as unit sizes, in a
list sorted by module name

SEGMENT shows segments names, mod.seg, sizes, and
assigned addresses, as well as unit sizes, in a
list sorted by segment name

ADDRESS shows symbols and addresses in a list sorted by
address. Because of space constraints, this map
destroys some of the information in the MAP BY
LABEL display. Therefore, this map should be
the last map requested. (For a large number of
.entry points, there may be a noticeable
delay.)

LIBRARY shows library entry points
LIB_MOD shows library modules (LIBRARY run only)
OUT _SEG shows output segments (MODULE run only)

EXTERNAL shows symbols currently unassigned

3

.
\

R

o

PNy

CHAPTER 4
A SAMPLE PROGRAM RUN (AmZ8002)

This chapter contains a sample PROGRAM run for the AmZ8002 processor.
Separate parts are assembled as modules and then linked together to
produce absolute output. The absolute output is a binary file which is
then downloaded to the AmZ8002 evaluation board and executed.

AemtlE BUBEXED () €—— ?W Mbca:fa«w. ZRL fv&,

ELEEXEC MACROS0 00 AMZ8000 AnhHEMELER L0411

uoau
0000
nono
0000 GLOESL. START S
0oao

00un EXTERMAL FROMET S
0u0o0 Al BEALD
0oan Al
0000 . W

0000 - fw"{ EXTERMAL EXLT

D000 o 7 poA s
DO00 ~ SEGMENT ' CODE " M
D000 GART 3

aaan SFOUX000u Al FROmET

0004 SFO0xG000 Gl Pl &

00og (K RS CHAR COUNT FROM REMD %)
Q004 003 0001 TF R3S LE L OTHEN

oo 0 SE083x0000 M START

oLz SF00x0000 Gl GURT §

0016 SFO0x0000 Gl WIRITE 3

d01a SE00xR3000 Al EXXT ¢

001E

O01E BN

MU

CELERE ST

RLTE

FeMa s BURFRFT O

BUBFRFT MACROSB000 AMZB3000 ASSEMELER 1.0.1

0000
Qoo
Q000
gooo GLOBAL FROMPT§

Q000 .

0000 . EXTERMNAL BUFLENy EBUFFERS
o0 rrddf EXTERNAL, WRITE S

gooon

Qo000 ‘iﬁ;k

Q000 > EROMET ¢
goon 2104x0000 LI Rty MEUFFERS
agoo4 21L085x0020 ‘ L.D KRGy AMESSAGE + L

0008 HLO0GEXD01E LD Réy MESLEMS

0000 Ox MOVE MESSAGE INTO BUFFER #x
oo Eadh1 0640 LDIRE Rty ROy RO

0010 O SET BUFFER LENGTH x)
0010 6HLO06X001E LD Rés MESLENS
0014 HFO06X0000 LD EUFLE o~

0013 HFO0x0000 Al WIRTTE 3

B
D010 PE0S RET 3 W o~ ¢ X
00LE MESLENS
001E 00 e /JJ»'"

MODULE "ERUEBFRFT ' 3

GEGMENT ' CODE

[s

EYTE 03
Q01F MESSAGE. S
QOLF STRINGS 'ENTER CHARGUTERS TO BE 'y
QOLF 2E4E 4ESG 4558 HORTEDy THEN RETURN '3
Q0ES 2043 4841 SE4l
00ZE 4G4 4552 G320
0031 G 2042 4520
0037 H34F G254 4544
003D 2020 5448 4546
0043 2005 4554 HEESE
0049
0 04k
O 04 ENED o

NELTHER WARNING NOR ERROR MESSAGES

Fuea . BUBSORT O

ELESORT MACROBO 00 AMZ8000 assSEmMELER 1.0.1

goao
Qaon
noao
0000 GLOEAL SORTS
000

0000 EXTERNAL. BUFLEN, BUFFERS :
BOHG
0000 CONST LAST = RRr‘f”;J“Axb“ijl

0000 THIS m= Wy

aoon NEXT s 4ty Apb“JJ ji
qo0n0 LASTEOH = RS

MODULE

EUEBSORT ' 3

0aon THISEOH = RLEGy))
0000 COUNT = Ry y

0ogo ‘P&up R A TAT R I N
DOOon M

0000 GEGMENT ' CODE *
0000 S GoRr s

0000 (K CINITIALIZE FOR SORT %)
Q000 2107 0000 LD GSWAFGy 05

0004 (K CINITTALTZE FOTNTERS %)
00049 2103%0000 LD THIS s AEUFFERS
0008 AL34 LD NEXTy THIS S
DODG A TN NEXTy 13
000C (K ADJUST WORKING COUNT %)

D00 AL0EXD000 LD COUNT » BUFLENS

0010 AEGD DE: COUNT» 13

0012 Ok CY LATER USED FOR OV %0

00LE 8Des RESFLG CY3

D014 LOOK ¢

0019 EAYE 063E CRETRE THIS4s NEXTAs COUNTs LGTS
0018 TF OV Ok AT END OF STRING %) THEN
0018 ECOL BDhEL GETFLG CY3

D0LE TE 7ROCK SWAF NEEDED %) THEN

0010 EE0Y B G
00LE Ok GET FOINTER TO LAST X
00LE AL3E LD LASTs THISS

D0E0 AERO DEC LASTs 13

0022 (K SWAF LAST AND THIS %0
D0EE 20RS LDE: LASTECHy LASTA
00249 2030 LDE: THISECHy THISEA
D056 2EZD LDE: LAGTry THISEOH

0028 2E35 L.DE THIS M LASTECHS

00EM X INCREMENT SWakP COUNTER)
00En LN SWEFSs 1

0 0&a A7l BN 3

4-3

EUESORT MACROBO00 AMZEB000 ASSEMELER 1.0.1 .

D0 TF NG (k NOT AT END OF LINE %) THEN
0020 EY0L ESF2 K LOOK 5

DOE0 8%rY TF SWAFS NE 0 (k CHANGES MADE %) THEN
D052 E6UL ESES R GORT 5

0B PEO0S RET 5

0 038 ,

0059 ENEY o

NELTHEFR WaRNTNG NOR O ERROR MESSAGES

PUEMAE MTRREAD O

MTRREAD MACKROBO 00 AMZB000 ASSEMELER L0,

G000
Qg
gonao
goon GLOEAL READS 4
ooaa ’ ~_

0000 *ﬂ?ﬁl EXTERNAL BUFLENy BUFFERS
nooo

0000 lﬂdpt BEGMENT CODE " §

g000 —> EaD

agoan Ok SET UF CAl. BLOCK x5
HRIRIRY) ARDOSx0000 0100 LD CAaLL4ELOCK s 401005
Go0s AD0EX0002 0000 LD CALLESELOCK(E)» 03
0000 2L0EXT000 LD Ry AEUFFERS

0010 HF0Zx0004 LD CALLEELOCK (A » RES
Q014 ADOEXRO00SH 0050 LD CALLeBELDCK (60 805
Jola (ko SET UF FOINTER %0

00Le 2101x0000 LD Riy 2CALLEBLOCKS
O01E ZF00 &0 03

000 Ok GETy aADJUSTy SAVE COUNT X
000 GLOBX0006 LD R3y CALLSELOCK(S) S
004 AE30 DEC Ry 13

006 AHF03X0000 LD BEUFLEMy R35

00&A PEOE RET 5

0000

aqooo SEGMENT LRCOMITy 'CALLEBLK' 2

0008 Cald.eBLOCK
qo0a WOIRD (453 //;ﬂ

00d

000 ENED o Corwmwary ’ W
NELTHER WARNING NOR ERROR MESSAGES /JLWJV/“J /%4 3 N~

MODULE "MTRREAD ' 3

4-4

=

=N

AFMACE MTRRRIT O

MTRWRIT MACROS000 AMZB000 ASSEMELER 1.0.1

uooo
ooao
0ouo
aoon GLOEAL, WRITE S
0000

GUuu - LXTERNGL, BUFLEN: BUFFER:
[URIRVERY]

0000 GEGMENT ' CODE " §

0000 T WETE S

0000 K BET UF CALL EBLOGH)
0000 ADOSX0000 0200 LD ELOCHy #02003
0006 4AD0OSX0002 0000 LD ELOCK(E)Y s 03
0000 2L0Ex0000 LD Ry vRUFFERS

00L0 SF0ZX0004 LD COLLEBELOCK (4> y K3
0014 (K ADD CRALE AT END OF BUFFER %0
0014 &L03X0000 LD Fdy BUFLENS

0018 CHOD LDE ROy ¥0D3

001LA 26 0300 LD R2MCR3Y » RLOS

D0LE ¢ TG Fdy 13

0020 CEOA LDE: RLOy #0653

D0E2 7E2B 0300 LDk R24CREY s RLOG

0056 (X STORE ACTUAL COUNT %)
0056 AY30 TG Fdy 13

0028 SF03X0006 LD CALLEBELOCK (&) y RE3
P X BET U POLNTER %)

00ZC 2L01%0000 LD Fly AOALLEELOCK S
0030 FF0G G0 03

0032 YE0B RET 3

0000

0000 GEGMENT LRCOMI Yy 'thli!V“
0008 CALLEBLOCH ¢

0008 WORD (4)3

0008

0008 END +

MOBULE "MTRRRIT' 3

NETTHER WARNING NOR ERROR MESSAGES

4-5

AEMACE MTREXIT O

MTREXILT MAaCROSB000 AMZB000 ABEBEMELER 1,041

0000 “
00ao0 MODULE "HMTREXIT' &

S 0ono .
ooon GLOEAL XIS
ao0no M

Do00 \ GEGMENT ' CODE "
0000 T~ EXIT:

0000 FFAL GO 1613
0002

0002 \ ESNEY o

NETTHER WARNIMG NOR ERROR MESSAGES

AEMACE MTRDATA O

MTRODATA MACROBO00 AMZB000 ASSEMELER L.0.1

0000
gooaon
0000
gooo GLOBEAL BUFLENy BUFFER S
uoao0

Qo000 SEGMENT "DaTa s

0002 FUFLENS

0002 EYTE (2)s

00852 EUFFER €

0052 EYTE 805

0oao ‘

0000 GEGMENT LRCOMITy "CALLELK' 3
0008 CALL&BLOCK S

goog ‘ WORD (423

0008

0008 END . ﬁg:;:;::di
NETTHER WARNING NOR ERROR MESSAGES

MODUL.E

"MTRDATA ' 3

4-6

£

Pl NFE % Bl NEFR

LANFEODO R PRE-RELEASE

FROGRAM STaRT
FLLE ' EUE

ENTV& MODUL.
me FLLE TMTR#®!
IMNTVF MO

ENTER MODUL.LE

"""" 2o ABESOLUTE #500

R T
BUFFER 0 002%
UL N 000 0%

Q00 0%
¥ICIEN) D000x
] Q000
- Q000
n‘“'] whon
WETE GO00%
s e (COMENE
AT
EAUFF B 1 Ira T
B LM S0
ExXIT SOFC
FF b T SOLE
ek inid wOFE
GORT HO6A
GTalRT HO00
WETE KR A
S MdEe BY MODULE
EsUERE XL C
EUEEXEC o« CODE
LINIT GLZE =
EstIERE R T
ELHERFREFT o GODES
LINXT SLZ2E ==
EES ORT
ELIERSORT « CORE
LINET STk =

L MTRDATA

EWNTER MODULE S MTREXXT
o MR

ENTER MODULE? MTRWRXT

1]

COMETNE BUBEXEC

00 1LE

004C

0038

TEST VER

MTRDATH
MTRD®STA

MIHLKII

MTIRDATA
MTRDATA
MTREXTT
EUE R T
MTFREEAD
EUBSORT
EsLIEREXEC
MTRWRIET

"

001K

0040

0038

HSTON CLAZEEBY

LATA
DTy

« COIE

«LODE

« CODE
« CODE.
o« L CIDE
LLODE

DT
DT
« CODE
«LLODE
« GODE
<CODE
« CODE
<CODE

G000

S0LE

S0EM

4-7

LN w0 Bl NRFES

LENKEO0G02

ENTEFR MODLIL,
ENTEFR
ENTER
ENTEFR

sl QESOLUTE

COMETNE

COMECLNE

= MR

ENTRY POTN

STaRT
WRITE

K
w XGFACE
COMEELNE
S MG

ERTRY FOTN

EUFFER
EUFLEN
EXTT
FAROMET
e A
SORT
GTART
WRCLTE

........ Tt

PROGRAM STaF
PR ERLE
COMODRUILE
COMODULE
o MODLILE

L ’iiﬁih”?*'
mUbULu;

MODULES
MO

MU

LR
VIR

*

l"Uf.'oUh f

MT f&if-ﬂ\ Y
FHGO0
o GO
P T

T AbDRESS

IRVRYIS S
GOGOx
S
HOLE
Sl
S
SO00
S

INDICATES

ST0N

10/13/80 | N

dally

bt atl . CODE

g the CALLBLE prgranD

A /1urVwLL4L gdfhﬁ@i)

MODULE o GEGMENT

MTRDATA JATA
TROAT LDATA
S CODE
L CODE
L CODE
s CODE
GO -
S CODE

M ik
B Uhl
[E 8 A R
MTRWRIT

OFFSET

DATH €— Put all DATA W A=

T abhrESS

GOGEE
Goo0x
M
SLE
S
GlhHaE
SO0
Han

SIS

antinded ppocs

MODULE » SEGMENT

LDATA
LDATA } «
CUDE
 CUDE
 CODE
 CODE
 CODE
 CODE

ot X e

MTRDATS
MTRDST
thi%LY

EERS
ELHREED
MTRWRITT

Gy,

=

FUDULLE

BUBEXED
BUBEXEC « CODE
UNET STZE = 00LE
BABFRET
BUBFRET . CODE
UMIT SIZE = 0040
EUESORT
BB
LNIT
MTFDAT A

BT L CO0E
Bos D038

MTREXET
PMTEREXIT « COGBE
LINET S5T2ZE = 0002
MR AD
PMITERE A« Gl L
MTFRE A CODE
UNIT STEE = 00230
MTRWRIT
PMITRWRIT o Sl LB
PMTRRMRIT CODE
UNET SIEE =

0054

TOTAL PROGRAM GIZE ==

s NI
LD MODULE
LOAD MODULE
WAL DL
LOAD MODLL
LA MODUL
LOAD MODULE S MTRREAD
LOAD MODULE S MTRWRLT

s CEXECUTIVED

BB S ORT
MTREAT &
MTREXET

HILE

GO1E

oL

I RIRCH

IR AR

(e

e

0o0E
R MAW

Guos
00a4

15

PCHR L

ADDRESS

S000

SRE

S0an

WAL
LRI

S0eE

HNRIE
Sle

5104
SUD0

TERMINSTIONM

4-9

//

N
R

CHAPTER 5
A SAMPLE PROGRAM RUN (AmZ8001)

This chapter contains a sample AmZ8001 PROGRAM run. A Modules
containing several software segments are linked to produce an output
file. Each named software segment is assigned to a separate hardware
segment.

MACRO8000 : Version 2.0 9/19/80

MACZ B:BUBEXEC1 S O L=B:BUBEXEC1.PRN

BUBEXEC1

0000

0000 MODULE “BUBEXEC1 "
0000

0000 (* AMZ8001 VERSION *)
0000

0000 GLOBAL START;

0000

0000 EXTERNAL PROMPT;

0000 EXTERNAL READ;

0000 EXTERNAL SORT;

0000 EXTERNAL WRITE;

0000 EXTERNAL EXIT;

0000

0000 SEQMENT “CODE

0000 START:

0000 5F005S0002 0000 CALL PROMPT ;

0006 5F00S0003 0000 CALL READ;

000C (* R3 CHAR COUNT FROM READ *)
000C 0BO3 0001 IF R3 LE 1 THEN

0010 EA03 5E0850007 JP START;
0014 0000

ools SF00S0004 0000 CALL SORT ;

001E SF00S0005 0000 CALL WRITE;

0024 5F00S0006 0000 CALL EXIT;

002A

002A END.

MACROS8000: Version 2.0 9/19/80

MACZ B:BUBPRPT1 S O L=B:BUBPRPT.PRN <j‘
BUBPRPT1 —
0000
0000 MODULE “BUBPRPT1”;
0000
0000 (* AMZ8001 VERSION *)
0000
0000 GLOBAL PROMPT;
0000
- 0000 EXTERNAL BUFLEN, BUFFER;
0000 EXTERNAL WRITE; f& ,
0000 a»“v
0000 SEQVENT “CODE
0000 PROMPT : ﬁ7{/// ,4 e
0000 140450003 0000 LDL RR4 &/*BUFFER; .
0006 140650005 002C LDL RR6 ! "MESSAGE + 1
000C 610850005 002A LD R8, MESLEN;
0012 (* MOVE MESSAGE INTO BUFFER *)
0012 BA61 0840 LDIRB RR4", RR6", R8;
0016 : (* SET BUFFER LENGTH *)
0016 610850005 002A LD R8, MESLEN;
001C 6F08S0002 0000 LD BUFLEN, R8;
0022 5F00S0004 0000 CALL WRITE; :
0028 9E08 RET; s
002A MESLEN: _
002A 00 BYTE: 0; o
002B ME SSAGE :
002B STRING: ‘ENTER CHARACTERS TO BE ~,
002B 2B45 4ES54 4552 “SORTED, THEN RETURN *;

0031 2043 4841 5241
0037 4354 4552 5320
003D 544F 2042 4520
0043 534F 5254 4544
0049 2C20 5448 454E
004F 2052 4554 5552 ' {

0055 4E20 ~

0057

0057 END.
(ﬁ\
\\, e

MACRO8000: Version 2.0 9/19/80
MACZ B:BUBSORT1 S O L=B:BUBSORTI1.PRN

BUBSORT1

0000

0000 MODULE “BUBSORT1”;

0000

0000 (* AMZ8001 VERSION *)

0000

0000 GLOBAL SORT;

0000

0000 EXTERNAL BUFLEN, BUFFER;

nNnNN

0000 CONST LAST = RR2,

0000 THIS = RR4,

0000 NEXT = RR6,

0000 LAST CH = RHI1,

0000 THIS CH = RL1,

0000 COUNT - RS,

0000 SWAPS = R9;

0000

0000 SEGQMENT “CODE *

0000 SORT :

0000 (* INITIALIZE FOR SORT *)

0000 2109 0000 LD SWAPS, 0

0004 (* INITIALIZE POINTERS *)

0004 140450003 0000 DL THIS, “BUFFER;

000A 9446 LDL NEXT, THIS;

000C A970 INC R7, 1;

000E (* ADJUST WORKING COUNT *)

000E 610850002 0000 LD COUNT, BUFLEN;

0014 ABS8O DEC CONT, 1;

0016 (* CY LATER USED FOR OV *)

0016 8D83 RESFLG CY;

0018 LOOK :

0018 BA66 084B CPSIRB THIS", NEXT", COUNT, LGT;
001C IF OV (* AT END OF STRING *) THEN
001C ECO1 8D81 SETFLG CVY;

0020 IF ZR (* SWAP NEEDED *) THEN
0020 EEOQ7 BEGIN

0022 (* GET POINTER TO LAST *)
0022 9442 LDL LAST, THIS;

0024 AB30 DEC R3, 1;

0026 (* SWAP LAST AND THIS *)
0026 2021 LDB LAST CH, LAST";
0028 2049 LDB THIS CH, THIS";
002A 2E29 LDB LAST~, THIS CH;
002C 2E41 LDB THIS*, LAST CH;
002E (* INCREMENT SWAP COUNTER

5-3

MACRO8000: Version 2.0 9/19/80
MACZ B:BUBSORT1 S O L=B:BUBSORT1.PRN

BUBSORT1

002E INC SWAPS, 1

002E A990 END;

0030 IF NC (* NOT AT END OF LINE *) THEN
0030 E701 E8F2 JR LOOK 3

0034 8599 IF SWAPS NE 0 (* CHANGES MADE *) THEN
0036 E601 E8E3 IR SORT ;

003A 9EO08 RET;

003C

003C END.

A,

MACRO8000:

Version 2.0 9/19/80

MACZ B:MTRDATAL1 S O L=B:MTRDATAl.PRN

MTRDATAL

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0002
0002
0052
0052
0000
oooo
000A
000A

MODULE "MTRDATAL "
(* AMZ8001 VERSION *)
GLOBAL BUFLEN, BUFFER;
SEQVENT ‘DATA”;
BUFLEN:
BYTE (2);
BUFFER:
BYTE (80);
SEQVENT [@cav], “CALLBLK ;
CALL BLOCK:
WORD (5);

END.

ot Hutt bbock

MACRO8000: Version 2.0 9/19/80
MACZ B:MTREXIT1 S O L=B:MTREXIT1.PRN

MTREXIT1

0000

0000 o MODULE ‘MTREXIT1;
0000 ‘
0000 (¥ AMZB8001 VERSION *)
0000

0000 GLOBAL EXIT;

0000

0000 SEQVENT “CODE *;
0000 EXIT:

0000 7FAL sC 161;

0002

0002 END.

"

MACRO8000: Version 2.0 9/19/80
MACZ B:MTRREAD1 S O L=B:MTRREADI1.PRN

MTRREAD1

0000

0000 MODULE “MTRREAD1

0000

0000 (* AMZB8001 VERSION *)

0000

0000 GLOBAL READ;

0000

0000 EXTERNAL BUFLEN, BUFFER;
nNNNN

0000 SEQVENT “CODE *;

0000 READ:

0000 (* SET UP CALL BLOOK *)
0000 4D0550005 0000 LD CALL BLOCK, #0100;
0006 0100

0008 4D05S0005 0002 LD CALL_BLOK(2), O0;
000E 0000

0010 140250003 0000 LDL RR2, "BUFFER;

0016 500250005 0004 LDL CALL BLOCK(4), RR2;
001C 4D0550005 0008 LD CALL BLOCK(8), 80;
0022 0050

0024 (* SET UP POINTER *)

0024 140250005 0000 LDL RR2, “CALL BLOCK;
002A 7F00 sC 0;

002C (* GET, ADJUST, SAVE COUNT *)
002C 610350005 0008 LD R3, CALL BLOCK(8);
0032 AB30 DEC R3, 1;

0034 6F0350002 0000 LD BUFLEN, R3;

003A 9EO08 RET;

003C

003C SEGMENT [@COM], "CALLBLK;
0000 CALL BLOCK:

0000 WORD (5);

000A

000A END.

MACRO8000: Version 2.0 9/19/80

MACZ B:MTRWRIT1 S O L=B:MTRWRIT1.PRN

MTRWRIT1

0000

0000 MODULE "MTRWRIT1;

0000

0000 (* AMZB001 VERSION *)

0000 :

0000 GLOBAL WRITE;

0000

0000 EXTERNAL BUFLEN, BUFFER;
0000

0000 SEQVENT “CODE

0000 WRITE:

0000 (* SET UP CALL BLOCK *)
0000 4D0550005 0000 LD CALL_BLOCK, #0200;
0006 0200

0008 4D0550005 0002 LD CALL BLOCK(2), O;
000E 0000

0010 140250003 0000 LDL RR2, "BUFFER;

0016 5D0250005 0004 LDL CALL BLOCK(4), RR2;
001C (* ADD CR/LF AT END OF BUFFER *)
001C 610350002 0000 LD R3, BUFLEN;

0022 C80D LDB RLO, #0D;

0024 7228 0300 LDB RR2~(R3), RLO;
0028 A930 INC R3, 1;

002A CB8O0A LDB RLO, #0A;

002C 7228 0300 LDB RR2"(R3), RLO;
0030 (* STORE ACTUAL COUNT *)
0030 A930 INC R3, 1;

0032 6F03S0005 0008 LD CALL_BLOCK(8), R3;
0038 (* SET UP POINTER *)

0038 140250005 0000 DL RR2, “CALL BLOCK;
003E 7FO0O0 SC 0;

0040 9EO08 RET;

0042 :

0042 SEQVENT [@coM], “CALLBLK”;
0000 CALL BLOCK:

0000 WORD (5);

000A

000A END.

LNKE 0 B g LN,
LINKSOG0 VERSIOM Eo0e L0/ 10780

- PROGRAOM START 'tLL AxltediZlJuLﬂ
COFXLE YRR ZR L ‘ﬁ‘ L

EMTER MODLLES
ENTER MODULE
ENTER MO S
mmumle LR PEEMTE
ENTER MODULE
ENTER MOBULES
ENTER MODUELE
ENTER MODULE

AR OM L\lu, ofs 2 St ol et

Y SEGMENT

GEGMENT SLEE ARDDRESS OUTFLUT SBEGMENT

LIDF 10 T 2 T 4

BUa
HRTHIRE
Qi

K Oty
it G0A
00

MTFRWECLT L o CALLELK
UNIT SY7E = 0006
CODE

S0 CODE G052 ot faae addarasrs
T4 CODE 0058 H it Atcornt
. S
SUBSORTL » CODE 0030 ot .
COT L CODE 000z .CAULBLK e & Comuer-
MTREEADL . CODE 00ae
MTRWFCDT L o CODE D04 /l¢24“*~¢k7
UNET SILZE = 01538
DATE 4444"
MTRDETAL JDATH 00%2 R anne
UNIT SXZE = 0052

TOTAL FROGRAM STZE = 01%4 W AR a j;

NT CODESaRES €7 & ey 4 A
T #1000 tax MT"‘""':"'
. & M oL .Co

ELOCH §= 2 bE.
T €210 : W RS

Assiqm . CALLBLK hﬁrm Care ot
#2 Randirans o l

Fopel BY BEGMENT
GEGMENT SLZE ADDRESS QUTEFUT SEGMENT

Cal L
i”‘i?hi)n"t?ﬁl « Al LB G0 Gy G 000 COMMONEEL.OCK
MTRFEEADL « ColLELK G005 02 0600 COMMONGELOCK
MTRWRITL CAlLELK HRIRERY e onan COMMONEEL.OCK

LIRET SR = 0006 L SO ¢1“",* o
COTE > C
ELEBEXEC L o« CORE 0{EA L1000 O & e CALLRACK
T L DODE 005 102 (Hﬁ!(ﬁdtﬁ{n‘ bee
%UﬁTt«(UDi ooac Lo £UDﬁ¢ﬁhiﬁ
L4 CODE ooGe 1O o

3 CODE 0030 LOG0 PIDE ¢ AR E S Aﬂ—jw-'d
MTEWFTT 1 o CODE LY

004y LOF CODE ¢ ARER Auanliel)
UNIT SIZE = 013E

DTy . -
MTRDATAL . DATA gy ¢p~u144*7M‘JL
LINIT STEE = 005z

TOTAL FROGRAM STZE = 0196 :
s & puX W * ol

wo K alE
SEGMENT ,019

MAF Y

SEGMENT

AL
Wihbﬁiﬁioiﬁ!if
MTHR RIS 115 T
MTH IT!«(ﬁ!H
UMET SXEE = 0004
CODE
FRBEREC L » CODE GO 03 10040 CODE ¢ AREM
FRETE CODE a0unHE 03 1020 liUl(ﬁRFﬁ
iU SURT 4 . CODE 1 (30 03 La8z : &
MTREXIT L CODE 0002 03 1 0EE
MTRREAD L . CODE 00Ec 03 1000
MTRMRITL « CODE (04 03 10
LNIT STEE = 0L3E
DT

N 000a 0 00060 COMMOMEEL.O0K
3 0G0A 02 onon COMMONEELOCK
R HRITS 4 0a00 COMMONEEL.OCIK

il
i,
i

~i CODE e—AREA

-4LuuLuraA4_ /ngnwbit—

5-10

i, s .

presN

MTRDATAL . DATA
UNET SZE = 0052

TOTAL FROGRAM STZE =

CDATACARES £
LDATA

G DATACHRES

BY SEGHMENT

SEGHMENT

CALLELEK

YA A ERANE LD R
FRCS TP S I P A P S L S P

MTRREADT Cal L e

UINET SIEE =
CEI0E

aoon

D . S0DE

MTRMRIT L« CHDE

UIWNETYT GIZE = 0038
DTy

FTRDETAL L DATH

VNI SEE = 082

TOTaAL PROGRAM STEE =

T MR

ENTRY FOINT alDRESS
03 000EX
03 0o000x
03 LokE
3 1L0EA
FeE D 3 Laca
ST a3 o
STaRT 03 1oaon

OO

broatek

whiel

frirnn
HRRIES
BOOA

003a0
N TR 54

5z

198

MODULE

MTRDATHL

MTRDSTHE

MTREXITL

BB RFT L

MTRREADL

EUESORT L

B XEC L

IR
AP S

i
114

0e

3
03
nx
03
3
3

03

Sl g
el o

QUTEFUT SEGHMENT

aoog
0000
0000

KRIRERY
LOEm
LOEE
3 (D
10
LOFEG

GCODESAREA

CODESH

CODESCAREA

g0o0x

11;{i X 1"» o ded

/QPALLf

OUTFUT SEGMENT

DT sl i

2 SELMENT

ST DATAHECAREA
DATA DaTadnl
O CODRE€ARED
» CODE O
o ODE
o LICHDE
» CODE

CORE € ARE
COLE € ARE N

5-11

WIRXTE 03 10FC MTRMRITL o CODE

st FIND .
LG MODULE
LCialy MOTULE
LOAD MODULE
LOAD MOGDLILE
LOAD MODULE
LOAE MODULE T MTRREADL

LOAD MODULES MTRHRITI

AKX CEDCET DT IVED C NORMAL TERMINATION

Bh G TT S& CT Do T

5-12

CODECaRE D

)

CHAPTER 6
MODULE CREATION

This chapter contains a sample MODULE run. Module creation is used for
incremental linking, where the linking operation is done is done in two
or more steps. Typically, selected program parts are linked together in
a MODULE run that produces a combined relocatable module. The combined
module is then used in a later 1linking operation as part of the
relocatable input. The last step is a PROGRAM run that produces
absolute code suitable for downloading.

GrLNKE % Os=LINEMOD / WM

LINKBOO0O0 VERSION Z.0y 10/713/80

> MODULE "MONITOR®
HEADER ' COMEBINED RELOCATMAELE ' ZZ!Z kahit:
ENTER MODULES MTRDATA <// %f"" 'tgb W

FILE "MTRX!
ENTER MODULES MTREXLT
ENTER MODULE?S MTRREAD
ENTER MODULES MTRWRET

mos e M(_}“,J

EUFFER 0002x% MTRDATA JDATA
EUFLEN 00Q0x MTRDATA +DATEH
EXIT 0000x MTREXLT « CODE
RED 0000x MTREIEAD « LODE
WIRLTE 0000x% MTRWRIT + CODE
s BN o

L.OaAD MODULE: MTRDATA

L.OAD MODULES MTREXIT

LOAD MODULE: MTRREAD

LOAD MODULES MTRWRLT M MD‘/"LL'
A TYFE Tt ®IN ’%’v

L L NKMOD « 2R 43,———————

MODULE S MONITOR 46"’“' .
COMBINED RELGCATARE .Akquﬁ} dupdwlﬁﬂlv
LN ¥ Bl NEMOD 4&——‘_—_—‘fyde£A’

LINKB00O S VERSTON 2.0y 10/13/80
sl PROGRAM START

FILE *EUEX’ W M—f"‘f
XEL —" ?‘x

ENTER MODULES BRUEBE
ENTER MODULES EUEF I
ENTER MODULES BUBRSORT

6-1

s FLLED LLNKMOD

ENTER MODULES

EUFFER
ELIFLEN
EXXT
FROMFT
READ
GORT
START
WRCTE 0 068
s AEGOLUTE #5200
COMETNE EUEEXEC
M
CUFFER
ELFLEN
EXLT
FROMFT
R AL
GORT
START
WRITE

s COMEINE

000AX
0008x
0 05ax
Q00 0%
0 05E0x
Q00 0%
0000x%

0008x
D008
0 0%AXR
QOO0
U 0H0xK
0000
;.u.. U U

0088x

UFE
BUFLEN
EXLT
FROMFT
RE AL
GORT
GTART
WFCLTE

HAEN
Mk EBY MODULE
BRI ERE XEC
EUEBEXES « CODE
UNIT 8TZ2E =
EUEFRET
EUEFRFT . CODE
UNIT GLZE ==
EUEBSORT
EUEGORT CODE
UNIT SLZ2E =
MONITOR
MONLITOR MONTTOR
UNIT SIZE = Q0BEC
TOTAL

001
004

0038

el ENID o

LOAD MODULE $
LOAD MODULE §
LOAD MODULE §
LOAD MODULE §

EUEBSORT
MONITOR

6-2

FROGRAM STZE =

<L

PMONITOR

PMCNITOR
MONIT O
MONITOR
EsUEF T
MONT O
EUERSORT
ExL EC
FMONITTOR

MONITOR
MONITOR
M(IIU'T(JI\

MUN.I. TOR
EUBSORT
EUEBEXEC
MONYTOR

MAF €= O
ER 52AC
5260

MONITOR
MO l 1 (W]

MONITOR
001E
004C

0038

o MO O
« MONITOR

o MONITOR

CODE

« PAONIT O
« CODE

« CODE
PN O

MONITOR
«MONITOR
« MONXTOR
«LODE

« MONXTOR
« CODE

« CODE

[I(h‘!l ‘(Ji

«MONITOR
« MORNITOR
+ MONITOR
+ CODE
« MONIT R
« CODE
« CODE
MONITOR

G200

G21E

26

B

MW

e

/\W

<

ey

CHAPTER 7
LIBRARY CREATION

This chapter contains a sample LIBRARY run. A number of program parts
are collected into a library. The relocatable library is then used to
satisfy externals in a PROGRAM run that produces absolute code suitable
for downloadinge.

. - v
ALNKZ xtywﬂmuna"/’—Juljijitti:)ﬂxf
LINKS8000 VERSTON 2.0y 10/13/80
me LLERARY ' MONITOR

o HEADER ' STANDARD L IERARY
s FILE MR

e MAP S 3”t

EUFF ER MTRDATA
EUFLEN MTRDAT ¢
EXLT MTREXLT
RE AL MTRIE AL
WFCLTE MTRWFLT
sz DD

s
et T

AETYFE LNKLIE ZRL.
LALBERARY . MONITOR

.Y ﬂg)u.’BW
STANDARD | LERARY 4uﬁd”‘A’ l”zzzzilpuxL,
AELNKE X EslLNKLIE € f‘v

LINK800O0
male PROGRAM START
szl FUTLED CEsUJEaX !

VERSTON 2.0y 10713780

ENTER MODULES EUE
ENTER MODULES ELY
ENTER MODULES BRUERS

E

i MAF

EUFFER
BUFLEN

READ
SORT

START
WIRTTE

EXTERNAL.
EXTERNAL.
EXTERNAL.
000 0x
EXTERNAL.
0000
0000x
EXTERNAL.

EUEFRET

BUBSORT
EUEREXEC

<L ODE

« CODE
« CODE

sz GEARCH LNKL,

ENTER LIEBRSRY
ENTER MODULE
ENTER MODULE
ENTER MODULE
ENTER MODULE

o S 2 o

Lk

MONITOR
M lxl)f‘\] :‘\

MTRIRE HL)
MTRWRILT

:LH\‘
START
NHIH

- AERSOLUTE

0002%
000 0%
0000x
0000%
Q000
0000%
0000x
000 0%

#5100

MTREBATA
Mlkbﬁln

l*'ill\Nl\). T

cLINTEN
DT i
« CODE
ODE
» ODE
« CODE
» CODE
o L ODE

WWW

CUNED ERUEREXEC

Go02x
0000
Q000X
0000x
00X
0000x
G100

Q000x

MTRDATA
MTRDATA
MTREXTT
EUEFRET
MTRREAD
I LB BURT

"H I\Nl\}: T

DT
AT
« GODE
« DODE
« CODE
L ODE
« CODE:
<G ODE

TNE o pasin than amast

EUFFE
ELFLEN
EXTT

I l (Jl“il T SLLE

H1a0
p R AT

ol)lt.[

STaRT W100

wa s MAF B
ESLESE XE G
LB XEC « CODE
UNIT GIZE =
BB RFT
L FRET o CODE
UNIT SXZE =
BB QR
ELESORT » CODE

MODULE

00LE

004C

LINT
MTERDSTA
MTROATE CalLELK
MTRDATH DAETA
UNIT SIIE =

SLZE = (0038

005

MTERDATS
MTRDATA
MTIREXLT
BB FRET
MTIRIREAD
EUERGORT
4 XK
AT RWRT

001E

004C

0033

0008
0052

AT
L2ENT Y
o G ONDE
« CODE

o LODE

«ODE
« CODE
LODE

51,0 () €—— Y ‘”‘iéﬂr

HLLE

Gléa

W N2)4

RIS

IEE

N

MTREXLT

MTEREXTT « CODE oo SLFC

LINET
MTREE™MD

GLZE = 0002

PITRREAD » Gl BLE [UNERIE Sled
PR A4 o CORE 000 GAFE

UNIT
MTRWRILT

GILZE = 0020

MTRWRIT o« Gl LELK 0008 Sled

MTEWEILT

LINLT

L CIDE 0034 R
: 0034

TOTaL PROGRSM STZE = 018k

EEE I Y 0 DN

L.CAD MODULE
L.O@AD MOLULE
LGl MODULE
L.OAD MODULE
L.Oal MORULE
L.OAL MODULE
LGl MOGULE

eT et TT e D

et oa

7-3

8

CHAPTER 8
ROMLIB CREATION

This chapter contains a sample ROMLIB run. A ROM library can be created
as additional output from a PROGRAM run. The R or R=file option must be
used on the LNKZ product call, and the RETAIN or OMIT directive may be
used to specify a subset of entry points for the ROM library.

The absolute code referenced by the ROM library is a hex file that is
burned into PROMs. The ROM library itself remains as a file that can be
combined with other ROM 1libraries and used in a later 1linking

operation. .
ErLNKZ K Ml NHRGM » ResLNKROM & W—L rOM LJM%,

LINKB0O0O S VERSTION 2.0y 10713780
& PROGRAM MTROALLS

- FILE 'MTRX'
ENTER MODULES MTHDATQ<%——————'3pt /ULbycIinblx, ijyuf:
ENTER MODULE?S MTREXIT
ENTER MODULES MTE

ENTER

MTROCALLS

READ
WRITE

azm - MAF

BUFFER
EUFLERN
EXLT

MTROCALLS

READ
WRITE

EUFFER
EUFLERN
EXIT

MTRCALLS

READ
WFRLTE

ARSOLUTE
= COMETNE

Al SOLUTE
= COMETNE
Mk

MODUILES

MTRWRIT

0002
000 0x
000 0x

EXTERNAL.

000 0x
0000x%x

#1000
+CODE

0002x
0000%
1o00

EXTERNAL.

1002
LOEE

#4F 00
MTRDATA

4F 0 A
4F 08
1000

EXTERNAL

1002
1OZE

MTRDATA
MTRDATA
MTREXIT

MTRREAD
MTRWRIT

MTRDATA
MTEDATA
MTREXLT

MTRREAD
MTRWRIT

MTRDATA
MTRDATA
MTREXLT

MTRREAD
MTRWRIT

DETA
INT e
« CODE:

« CODE
<CODE

DT
DT
o CODE

« CODE
< CODE

(—'——'*aou?y\' » addrwaarc -{me

DATH
DATE
+ CODE

« CODE
« CODE

sl MAF BY MODULE

MTRDAT &
MTRDATA . CallBLK ooug 400
MTRDATA JDATH 0052 408
UNITT STZE = 00%A

MTREXIT
MTREXLT CODE aoone iogo
UNIT SLZE = 0004

MTRREAD
MTRREAD « CAlLELK 0008 400
MTEREAD CODE D0EC Lo0%
UNILT STZE = 0020

MTRWRILT
MTRRIRIT « CALLELIK goog 400
MTFWEIT « CODE 0034 1L OZE
UNITY STZE = 0034

TOTAL PROGRAM STZE = Q0RC

amu e EINEDY

1 UNDEFINED EXTERNALS

LOAD MODULE D MTRDATE

LOAD MODULES MTREXIT

LOaAD MODULE S MTREEAD

LOaAD MODULE S MTRWRIT

WETYFE LNKROM,HEX e— it

c0ZL000007FALCE

¢10100Z2004R054F 0001 004D0OSAH 0000021 024F 0a1LD
FLOLDLZ00AFOZAF 044D 0S4 06005021 01L4F007F 0023
SOCLOZEZ006HL 03 06AEIDAHF 034 08P 08EF

C1L0L0ZEOO4DOGAF000Z004D0E4H 020000210024 0e 0
$LULOBEQDSHF OZH (1461 034F 0BCEBODZ 2280300093008
CLOLOEOOCBOAYEZ2E80300A9306F 034 06210010400 L2

o W
W ROM

Jﬁn, Y

$04L0SE007F 00VE DESS
SO000000000 qunn .
TYFE LNKROM . ZF) e ﬂ‘ .A/m;t;*JAy)

AETYFE LNKROM . ZFL
FOMLIE S MTROALLS M

AFLNKE X E=LNKRAM €

LINKB00O0 VERSION 2.0y 10/:13/80
¥ OPROGRAM START

= FILE ' EUEX

ENTER MODULES BUBEXEC € 3
ENTER MODULES BUEBFRPT Mff

ENTER MODULES BUBSORT

8-2

Z/‘/“\\

/=

atable LK
= FILE MTRDATA g — 3;1- ailee

ENTER MODULES MTRDATA

w o MAR
BUFFER DO02K MTRDATA AT
EUFLEN 000 0% MTRDATA DATE

' EXTERNAL.

000 0% BUBFRET CODE
; EXTERNAL
SORT 000 0% : ODE
GTART 000 0% BELIEE XEC +CODE

LT X TERNAL. :
e e aren Lo /LLAAALJ oM lﬁLAAﬁﬁ-

<

ENTER ROMLIES MTRCALLS

i : 0002Ex MTRDATA AT
IU!!IN 0000 MTHRDATA T
EXLT 1000
IhUMll 0000 LI RFT o« CODE
" L0002
000 0% EUESORT « CODE
START 000 0x EUEEXEC «CODE
- COMEXME MTRDATS

WRCLTE LOZE
d&r——ﬂﬁ"“db44lj*“ o /¢L7rn~uxkf
Ml

=i ESOLUTE 4400

EUFFER “+ 08 MTRDATA DT
EUFLEN A 08 MTRDATA DT
EXT 1000

FROMPT 0000x ELEFRET « CODE:
RE @D 100

GORT 0000 BEUESORT « CODE
START UUUU# EUEEXED < LODE
Ntht LOZE

- AESOLUTE #5000
- COMEINE CODE "€ ’"‘41&4‘]7“ Code /LLZWNLﬂ:tb/

H 0 MTRDATA DEATA
. 4F 08 MTRDATA DT

EEXXT LoGo

FROMET G01E EsLIEFRET « CODE

READ 1002

SORT H06GA EUESORT o LODE

STaRT S000 EUEEXEG « CODE

WIRILTE LOZE

8-3

oAl BY MODULE

EUEE X . .
EUEEXEG « CODE 00LE 5000 € Mlew 1““”j:
LINIT SXZE = 001E

U RPT
ELEFRFT « CODE 0040 G0LE
UNIY GIZE = 004C

BURSORT
EUBSORT . CODE 0058 Hlén
UNIYT SIZE = (038

MTRD&ST A

MTRDATA Gl LELK 0008 400

MTERDATE DT 0052 A0

UNITT STZE = 00%5a

TOTAL FROGRAM SIZE = 00FC .
s END .

LOAD MODULE
L.OAk MODULE RET
L.OALR MODULE S T b
LOAD MODULE S MTRDETH

.///:;L&L A
FoelaUME LNFRAM BN éf/////

000 01 50 00 02 S50 00 03 10 S 00 S0 1 35F 00 10 02 FesFecsbalFadss

o e

goLo OB 03 060 01 Ea
D0E0 00 50 && BF 00
0030 21 04 4F O0a 21
0040 04 50 ZE 03 10
0050 2 o 00 28
00&0 41 52 41
0070 C20 42 A%
0080 03 0k 48
a0%0 03 10 21
00m0 408 02
000 3B EC 01 8D 81
00co 20 2% 20 3D 2E
00RO Y& 03 08 85 77
GOED 1a 1a Ia e LA
OO0 Lén déy 1é 1A 1A

08 0 S0 10 03 0E S0 00 5F ceveee®o ol es o eé
AECEF 00 10 00 02 S0 LE 03 L0 JFd€ie € es e aFens
i &L U6 50 30 EBa Bl 06 40 Polbo b ol (3. 02
5030 &F 06 A4 08 HF 00 L0 oFes e A0 Dok,
BE 03 L0 4% 4 54 4% BZ E0 et JENTER

4% HE B3 0E B0 4k 03 10 20 CHARACTERS FN.

4F 58 54 4% 44 20 20 S54 02 TO BE SORTEDy T,
20 92 4% 54 55 5HZ 4E 20 02 PA. JHEN RETURN .
00 21 03 4F 0a AL 24 A% 40 Fdesleeoat s 4@
03 10 & 60 8D 83 BA 46 06 A0 FZs e s@ooofF s
Al BE 02 50 8A 03 L0 A Z0 0 SeeecevedaFocas

35 A% 20 EZ 01 E8 F2 02 50 A S Ry P
EG ES 2B 08 00 00 14 16 1é cevelivscsvocses
ey Lé day Lén 1A 1 1a 1a LA Ry
1A 1léy Léa ey 1a Lé La Lén La CIE LI EEILIEIEIEDS

8-4

APPENDIX A
ASCIl CHARACTER SET

The ASCII character set is shown in the following table:

TABLE A-1. ASCIL

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char
00 0 NUL 20 32 SP 40 64 @ 60 96 N
01 1 SOH 21 33 ! 41 65 A 61 97 a
02 2 STX 22 34 " 42 66 B 62 98 b
03 3 ETX 23 35 i 43 67 C 63 99 c
04 4 EOT 24 36 $ 44 68 D 64 100 d
05 5 ENQ 25 37 % 45 69 E 65 101 e
06 6 ACK 26 38 & 46 70 F 66 102 £
07 7 BEL 27 39 ‘ 47 71 G 67 103 ¢
08 8 BS 28 40 (48 72 H 68 104 h
09 9 HT 29 41) 49 73 I 69 105 i
0A 10 LF 2A 42 * 4A 74 J 6A 106 j
0B 11 VT 2B 43 + 4B 75 K 6B 107 k
ocC 12 FF 2C 44 4C 76 L 6C 108 1
oD 13 CR 2D 45 - 4D 77 M 6D 109 m
OE 14 SO 2E 46 . 4E 78 N 6E 110 n
OF 15 SI 2F 47/ 4F 79 O 6F 111 o
10 16 DLE 30 48 0 50 80 P 70 112 p
11 17 DC1 31 49 1 51 81 Q 71 113 ¢q
12 18 DC2 32 50 2 52 82 R 72 114 r
13 19 DC3 33 51 3 53 83 S 73 115 s
14 20 DC4 34 52 4 54 84 T 74 116 t
15 21 NAK 35 53 5 55 85 U 75 117 u
16 22 SYN 36 54 6 56 86 \Y/ 76 118 v
17 23 ETB 37 55 7 57 87 W 77 119 w
18 24 CAN 38 56 8 58 88 X 78 120 x
19 25 EM 39 57 9 59 89 Y 79 121 y
1A 26 SUB 3A 58 : 5A 90 Z 7A 122 =z
1B 27 ESC 3B 59 3 5B 91 [7B 123 {
1C 28 FS 3C 60 < 5C 92 \ 7C 124 |
1D 29 GS 3D 61 = 5D 93] 7D 125 3}
1E 30 RS 3E 62 > 5E 94 - 7E 126 ~
1F 31 Us 3F 63 ? 5F 95 o 7F 127 DEL

) APPENDIX B
{ HEX FILE FORMAT

The linker can produce hex files suitable for putting code into PROMs.
Hex file creation is requested with the LINK800O H option, described in
chapter 1. The format of a hex file is the INTEL hex file format:

Colon, 1 character
Data length, 2 characters (00 for final record)

Record address, 4 characters (in final record, specifies entry
point)

Relocation map

Data, 2 through 32 characters representing 1 through 16
byte values (empty for final record)

Checksum, 2 characters

CR/LF (carriage
| return/line feed)

I
|
I
o
[
[
o
I
I
I
Il I

I !

1 |

I I

v v vV Vv

I

I
|

I

|

I

I

I

I

I

|
I

|
I

|
|
\'

I
I
I
I
I
I
I
\

=

@

N
N

PN

APPENDIX C
BINARY FILE FORMAT

The linker can produce binary files suitable for program downloading or
PROM burning. Binary file creation is requested with the LINK8000 B
option described in Chapter 1. The AMC binary file contains the same
type of information as that found in hex files, but the data is in the
more efficient hexadecimal representation.

Each binary file contains a main entry point group, a destination
address group followed by one or more data groups, any additional
destination address groups, each followed by one or more data groups,
and finally a terminator group. The format of each group is described
below for both processors.

C-1. AmZ8002 BINARY FILE FORMAT

01 signal for main entry point, 1 byte
I

| Main entry point (transfer) address, 2 bytes
[
vV Vv

101] [

02 signal for destination address, 1 byte
: Destination address for following data, 2 bytes
vy

10211

03 signal for data, 1 byte

I

| Data length, 1 byte

I

| | Data, 1 through 255 bytes
(.

v V. v

1031 |

00 signal for terminator, 2 bytes

[
\Y

10000

For AmZ8002 extended space groups (see section 3-18), the signals are
as follows: '

09 signal for main entry point (1 byte)
0A signal for destination address (1 byte)
0B signal for data (1 byte)
0000 signal for terminator (2 bytes)

C-2. Amz8001 BINARY FILE FORMAT

The AmZ8001 binary file format is very similar to the AmZ8002 format,
except for the address representation and the actual signal numbers.
The addresses in AmZ8001 binary files have the same format as AmZ8001
32-bit address operands:

I | | |
bits 31 23 15 0
1

contents segment 00000000 offset

05 signal for main entry point, 1l byte
I

| Main entry point (transfer) address, 4 bytes
[
vV Vv

1051 |

06 signal for destination address, 1 byte
|

| Destination address for following data, 4 bytes
I
v Vv

106 |

07 signal for data, 1 byte
Data length, 1 byte
Data, 1 through 255 bytes

I
I
I
[
[
v v Vv

1071 |

00 signal for terminator, 2 bytes
|
\

10000

For AmZ8001 extended space groups (see section 3-18), the signals are
as follows:

0D signal for main entry point (1 byte)
OE signal for destination address (1 byte)
OF signal for data (1 byte)
0000 signal for terminator (2 bytes)

,/'
//V .
-
N
‘\

N

APPENDIX D
ERROR MESAGES

The LINK8000 error messages are error description rather

numbers. The following messages exist.

RELATIVE ADDRESS OUT OF RANGE:
ODD ADDRESS BOUNDARY DETECTED:
UNDEFINED LABEL:

UNDEFINED MACRO:

INVALID NUMBER OF OPERANDS:
INVALID FILE NAME:

STRING TOO LONG:

MISSING OR INVALID IMMEDIATE (CONSTANT) OPERAND:
SYSTEM ERROR

IMMEDIATE OPERAND TOO LARGE:
PRODUCT CALL OVERRIDE:

DIGIT EXCEEDS RADIX

RADIX EQ O

MISSING (

RADIX TOO LARGE.

TOO MANY INVALID CHARS

INVALID NUMBER FORMAT

MISSING OR INVALID OPERAND:
MISSING)

MISSING]

INVALID LABEL IDENTIFIER:
UNRECOGNIZED STATEMENT FORM:
INVALUD LOCATION COUNTER RESET:
MISSING END

MISSING : OR (

MISSING OR INVALID STRING
MISSING OR INVALID CONST OBJECT
MISSING =

INVALID IN MACRO BODY OR CONDITIONAL LINK
MISSING OR INVALID INTEGER
INVALID MACRO STATEMENT
MISSING OR INVALID IDENTIFIER
REDEFINITION OF IDENTIFIER:
DIVISION BY 0

UNRECOGNIZED STATEMENT FORM:
MISSING DELIMITER:

INVALID DEFINITION

UNDEFINED EXPRESSION:

MISSING CONDITION CODE:
MISSING END. (OR EXTRA END)
INVALID STATEMENT BEGINNER:
MISSING STATEMENT TERMINATOR:

MISSING OR INVALID LINKING MODE (PROGRAM,MODULE, ETC.)

INVALID CHARACTER:
MISSING OR INVALID SEGMENT ATTRIBUTE SET:

than error

MISSING OR INVALID SEGMENT NAME:

SEGMENT STACK UNDERFLOW

SEGMENT STACK OVERFLOW

STATEMENT INAPPROPRIATE TO LINKING MODE
INVALID ASSIGNMENT:

SHORT ADDRESS OFFSET TOO LARGE

FATAL ERROR - LINK TERMINATED

FILE STACK ERROR

ERROR IN EXTENDING FILE -

FILE SPACE OVERFLOW -

DIRECTORY OVERFLOW

FILE CLOSE ERROR -

ATTEMPT TO READ UNWRITTEN DATA -

ATTEMPT TO READ BEYOND EOF -

UNABLE TO OPEN INPUT FILE -

OBJECT SPACE OVERFLOW

ILLEGAL SYSTEM FUNCTION (message should never appear)
DEREF SYSTEM ERROR: (message should never appear)
ATTEMPT TO COMPUTE ADDRESS DIFFERENCE

ACROSS SEGMENT BOUNDARY AT

ATTEMPT TO COMPUTE RELATIVE ADDRESS

ACROSS SEGMENT BOUNDARY AT

PHASE III ERROR

RELATIVE ADDRESS OUT OF RANGE:

ODD WORD BOUNDARY DETECTED:

UNDEFINED LABEL:

UNDEFINED EXTERNALS:

NORMAL TERMINATION

INVALID OPTION(S)

EMPTY INPUT FILE

INVALID OPTION(S)

ROMLIB NOT PERMITTED:

RELOCATABLE MODULE NOT ALLOWED IN ROMLIB EDIT:
DUPLICATE ENTRY POINT:

MISSING COMMON ATTRIBUTE:

WARNING: CURRENT ADDRESS + SEGMENT SIZE > 64K
RETAIN (OMIT) PATTERN STRING:

WARNING - "COMMON" SEGMENT SIZE ERROR:
PATTERN SPECIFIED COMBINE:

MAP VECTOR OVERFLOW

INVALID MODULE/SEGMENT SPECIFICATION (COMBINE)
INVALID ARGUMENT (RETAIN OR OMIT)
UNIDENTIFIED ENTRY

BINARY FILE RQRD -- 7Z8001 PROGRAM MODE
DUPLICATE ENTRY POINT:

MIXING SEGMENTED AND UNSEGMENTED MODULES PROHIBITED:
DUPLICATE ROMLIB LABEL:

DUPLICATE LIBRARY LABEL:

DUPLICATE MODULE NAME:

DUPLICATE LIBRARY MODULE:

UNABLE TO OPEN FILE:

INVALID MAP DIRECTIVE:

INVALID FILE DIRECTIVE (LIBRARY MODE)

COMBINE DIRECTIVE NOT ALLOWED

Vs

Address comments to:

Advanced Micro Computers
Publications Department
3340 Scott Boulevard
Santa Clara, CA 95051

COMMENT SHEET

TITLE: LINK800O User's Manual
PUBLICATION NO: 00680148B

COMMENTS: (Describe errors, suggested
additions or deletions, and
include page numbers, etc.)

From: Name:

Company:

Position:

Address:

e

Advanced
Micro
Computers

A subsidiary of
Advanced Micro Devices
3340 Scott Boulevard
Santa Clara,

California 95051

(408) 988-7777

TELEX: 171 142

©1981 Advanced Micro Computers, Inc.
Printed in U.S.A. 1/81 AMC-553

‘

