
Advanced
Micro
Computers
A subsidiary of
Advanced Micro Devices

AmZ8002 C
System Interface

User's Manual

REVISION

01 Prelimiary Issue

(4/22/81)

02 Manual Updated

(5/8/81)

A Manual Released

(5/29/81)

Publication No.
05991061()-001

REVISION LETTERS I, 0, Q AND X ARE NOT USED

© 1981 Advanced Micro Computers
Printed in U.S.A.

ii

REVISION RECORD
DESCRIPTION

Address comments concerning
this manual to:

ADVANCED MICRO COMPUTERS

Publications Department
3340 Scott Boulevard
Santa Clara, CA 95051

(
PREFACE

This document covers the host- and target-dependent features of
Advanced Micro Computer's C language compiler for the AmZ8002*, which
is hosted under AMDOS. The document has five main parts:

1. Chapter 1 contains an overall guide to the C programming process,
from source program (through compilation, assembly, and linking)
to execution. All the AMC utility software used in the process is
described. At each stage references are made to the relevant
manuals for more details. Also included is an overview of the C
language itself and descriptions of the host and target
environmPnts.

2. Chapter 2 contains a description of the assembly language code
generated by the C compiler, including a discussion of certain
dynamic run-time structures that are used by C programs (for in
stance, stacks). This information is useful in writing assembly
language subroutines to interface with C programs.

3. Chapter 3 describes the differences among the execution environ
ments of the three principal system configurations for which C
programs may be targeted.

4. Chapter 4 contains an annotated example, taken from source code
through each step of the process.

5. Appendices A-E contain reference information on differences
between AMC C and Standard UNIX** C, invocation procedures, the
libraries, error messages, and differences between successive
releases of the C Compiler product.

This manual should be used in conjunction with the following document:

• The C Programming Language, by Brian w. Kernighan and Dennis M.
Ritchie, Prentice-Hall, 1978.

and the following AMC manuals:

MANUAL TITLE

MACR08000 Assembler User's Manual
LINK8000 Linker User's Manual
Am96/4016 Evaluation Board User's Manual
MIDOS Operating System User's Manual
RTE16/8050 Real-Time Emulator Support Package

User's Manual

*Z8000 is a Trademark of Zilog, Inc.
**UNIX is a Trademark of Bell Telephone Laboratories

PUBLICATIONS NUMBER

00680119
00680148
00680131

059910425-001

059910320-001

iii/iv

./

TABLE OF CONTENTS

1. HOW TO USE THE AmZ8002 C COMPILER

Introduction ••••.•••.•••••••••• 1-1
Overview of the C Language ••••• 1-1

Data Types ••••••••••••••••••• 1-2
Operators •••••••••••••••••••• 1-2

Functions and Program
Organization •••••••••••••••• 1-2
Storage ••••••••••••••••••••• 1-4

M1DOS Host Environment and
AmZ8000 Target Environment •••• 1-4

The AHC C Software Package ••••• 1-5
Preprocessor (Pass 0) •••••••• 1-7
Parser (Pass 1) •••••••••••••• 1-7

Code Generator (Pass 2) •••••• 1-8
MACR08000 Assembler •••••••••• 1-8
Run-Time Library Files ••••••• 1-8
LINK8000 Linker ••••••••••••• 1-10

The Compilation Process ••••••• 1-10
The Submit File ACC.SUB ••••• 1-11
The Directive File ACC.DIR •• 1-12

Execution of .BIN Files ••••••• 1-12
4630 Environment •••••••••••• 1-13

Stand-Alone Environment ••••• 1-13
User-Supplied Monitor

Environment •••••••••••••••• 1-13

2. COMPILER CODE GENERATION

Introduction ••••••••••••••••••• 2-1
Representation of Data Types ••• 2-1
Representation of Operators •••• 2-1
Representation of Control

Flow Statements ••••••••••••••• 2-1
Representation of Functions •••• 2-3

Function Calls and Returns ••• 2-3
Stack Format ••••••••••••••••• 2-6
Registers •••••••••••••••••••• 2-9

Representation of Storage
Classes ••••••••••••••••••••••• 2-9
Allocating Storage •••••••••• 2-10
Addressing •••••••••••••••••• 2-10

3. TARGET DEPENDENCIES

Introduction ••••••••••••••••••• 3-1
The Directive File ACC.DIR ••••• 3-1
Memory Organization •••••••••••• 3-2

Using the 4016 Evaluation
Board •••••••.•••••.••••••••• 3-3

ROM and RAM Systems •••••••••• 3-3
Libraries •••••••••••••••••••••• 3-3
Initialization ••••••••••••••••• 3-4

4620 Monitor Environment ••••• 3-4
Stand-Alone Environment •••••• 3-5
User-Supplied Monitor

Environment ••••••••••••••••• 3-5

4. AN ANNOTATED EXAMPLE

The C Source Program ••••••••••• 4-1
AC exch Function •••••••••••••• 4-2
Output From A Submit ••••••••••• 4-2
An Assembly Language exch

Function •••••••••••••••••••••• 4-4
The Linker Load Map •••••••••••• 4-5
Execution •••••••••••••••••••••• 4-7

A. DIFFERENCES BETWEEN ACC AND
STANDARD C

Introduction ••••••••••••••••••• A-1
Restrictions ••••••••••••••••••• A-1
Extensions ••••••••••••••••••••• A-1

B. PROGRAMMING TIPS

C. INVOCATION PROCEDURE UNDER MIDOS

Introduction ••••••••••••••••••• C-1
The Preprocessor ••••••••••••••• C-1
The Parser ••••••••••••••••••••• C-2
The Code Generator ••••••••••••• C-2
The Assembler •••••••••••••••••• C-3
The Linker .•••••••••••••••••••• C-4

v

D. THE RUN-TIME LIBRARY

The File ACCSTD.H •••••••••••••• D-2
The File CLIB.ZRL •••••••••••••• D-3

I/O Functions •••••••••••••••• D-7
The File MLIB.ZRL ••••••••••••• D-12

Port I/O •••••••••••••••••••• D-12
C@SAV and C@SWITCH •••••••••• D-14

The File MLIB4630.ZRL ••••••••• D-15
C@ABORT ••••••••••••••••••••• D-15

The File C@INIT ••••••••••••••• D-21

E. ERROR MESSAGES

Preprocessor Error Messages •••• E-1
Parser Error Messages •••••••••• E-2
Code Generator Error Messages •• E-3

F • RELEASE INFORMATION

Release l F-1

vi

FIGURES

1-1.
1-2.
2-1.
2-2.
4-1.
4-2.
4-3.
4-4.

Compiler Environments •••••••• 1-6
Compiling a C Program •••••••• 1-7
Stack Organization ••••••••••• 2-6
Stack Operation •••••••••••••• 2-7
Bubblesort Function •••••••••• 4-1
C exch Function •••••••••••••• 4-2
Compiler Output •••••••••••••• 4-3
Assembly Language exch

Function •••••••••••••••••••• 4-5
4-5. Linker Load Map •••••••••••••• 4-6

TABLES

1-1.
2-1.
2-2.

2-3.
C-1.
C-2.
D-1.

INDEX

C Operators •••••••••••••••••• 1-3
Data Types ••••••••••••••••••• 2-2
C Operators and AmZ8002
Operators ••••••••••••••••••• 2-3

Control Flow Statements •••••• 2-4
MACR08000 Options •••••••••••• c-3
Linker Options ••••••••••••••• c-5
Library Functions •••••••••••• C-1

{
.'(

(_,

CHAPTER 1

HOW TO USE THE AmZ8002 C COMPILER

INTRODUCTION

The AmZ8002 C Compiler (ACC) translates programs written in the C
programming language into AmZ8002 assembly language. The compiler
itself executes on the AmSYS™8/8 under the AMDOS operating system. The
C language is defined in The C Prcgranuning Language, by Brian \\'.
Kernighan and Dennis M. Ritchie. (Differences between ACC and the
standard definition of Care outlined in Appendix A.) AmZ8002 assembly
language is defined in the AmZ8001/2 Processor Instruction Set,
published by Advanced Micro Devices, and in the AMC document, The
MACR08000 Assembler User's Manual. AMDOS is described in the AMDOS
Operating System User's Manual.

Assembly language modules generated by ACC can be translated by the
AmZ8000 Assembler, MACR08000, into corresponding modules of relocatable
AmZ8000 object code. These relocatable modules, together with various
AMC-supplied library functions can then be linked by the AmZ8000
Linker, LINK8000, into executable AmZ8000 binary files. (MACR08000 is
described in the MACR08000 User's Manual; LINK8000 is described in the
LINK8000 User's Manual.)

The HOST program allows binary files to be downloaded to the Am96/4016
Evaluation Board or the Am96/4116 MonoBoard Computer for execution.
RTE16 software allows users to download executable object code to an
RTE16/8050 real-time emulator system for testing and debugging. The
programs PREHEAT, PPROG, and PLPROG are used to burn debugged programs
into PROMs. (HOST is described in the Evaluation Board User's Manual
PROM-burning software is described in the AMDOS User's Manual, and
RTE16 software is described in the RTE16/8050 User's Manual.)

The remaining sections of this chapter describe the C language itself;
the AMDOS development system environment and the AmZ8000 target
environment; the programs that make up the AMC C Software Package
(compiler, assembler, run-time library, and linker); and the sequence
of steps users must follow to compile, assemble, link, and execute C
programs.

OVERVIEW OF THE C LANGUAGE

The C programming language was originally developed at Bell Telephone
Laboratories as a systems implementation language for the UNIX
operating system. Virtually all of UNIX itself, as well as its
utilities, compilers, and other support software, has been written in

1-1

c. The AMC C Compiler is compatible with Version 7 UNIX C (with a few
exceptions described in Appendix A) and is designed to produce code for
the AmZ8002 16-bit microprocessor.

C is a low-level programming language in the sense that important
aspects of the hardware can be directly manipulated from within the
language, but it includes many features of higher-level languages. For
example, it supports a number of data types, and it offers structured
control flow and a wide variety of operators.

DATA TYPES

C recognizes several elementary data types: bit fields, signed and
unsigned characters (8 bits), signed and unsigned integers (16 bits),
pointers (16 bits), signed and unsigned long integers (32 bits),
single-precision floating point numbers (32 bits), and double-precision
floating point numbers (64 bits). From these elementary data types
more complex collections can be created: arrays of objects, each
having the same data type; and structures (called records in some
languages) of objects with arbitrary types.

The set of data types simultaneously covers all the hardware-supported
data types of the AmZ8002 and also offers mechanisms for extension to
more complex cases. C also provides a facility called typedef for
creating new data type names; for example, using typedef COLOR can be
defined as a data type. The names RED, GREEN, and YELLOW can then be
declared as objects of the type COLOR.

OPERATORS

C provides an unusually rich set of operators to manipulate the
elementary data types. These operators are listed in table 1-1.

C permits extensive manipulation
contain the addresses of operands.
can be combined with the arithmetic
direct and efficient a manner as in

of pointers, i.e. variables that
In C, the unary operators * and &

operators to reference memory in as
assembly language programming.

FUNCTIONS AND PROGRAM ORGANIZATION

The basic organizational unit of C programs is the function. Every C
program is a function in its own right, called main, and makes use of
both predefined functions (such as abs -- find the absolute value of a
number) and user-defined functions (which fill the same role as
subroutines or procedures in other languages). Functions can be
compiled independently and later linked together for execution. C
functions can easily be made recursive and re-entrant.

1-2

/

(
TABLE 1-1. C OPERATORS

Arithmetic Binary Operators

+

*
I
%

Addition
Subtraction
Multiplication
Division
Modulus

Relational Binary Operators

> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To
== Equal To
!= Not Equal To
&& Logical AND
11 Logical OR

Bitwise Binary Operators

& Bitwise AND
I Bitwise OR (inclusive)

Bitwise OR (exclusive)
« Left Shift
>> Right Shift

Unary Operators

*
&

++

(type)
sizeof

Contents of Address
Address of Operand
Arithmetic Negate
Logical Negate
One's Complement
Increment
Decrement
Cast (Type Conversion)
Size of Object (bytes)

Assignment Operators

= Simple Assignment
+= Add, then Assign
-= Subtract, then Assign
*= Multiply, then Assign
/= Divide, then Assign
%= Modulus, then Assign
<<= Left Shift, then Assign
>>= Right Shift, then Assign
&= Bitwise AND, then Assign
A= Bitwise Exclusive OR,

then Assign
1= Bitwise Inclusive OR,

then Assign

All functions in C are called by value, that is, the value of the
parameter is passed to the function. In most languages, parameters are
passed only. by reference; the address of the parameter is passed to the
function or procedure. However, since a pointer can be a parameter
value, call by reference is also available in C.

Within functions, control flow statements specify the order in which
computations are to be done. C has a number of structured control flow
constructs, including if-else, else-if, while, do-while, for, and
switch-case, as well as three varieties of jumps: continue, break, and
goto.

1-3

STORAGE

The language C gives programmers explicit control over the way values
are stored. Variables can be specified as local to the current
invocation of a function, global to all functions in a separately
compiled source file, or global to all functions in a program. When C
programs execute, local variables are stored on a stack. When a local
variable is known to be frequently used, the programmer can request
that it be held in an AmZ8002 register; if the resources are available,
the request will be honored.

ENVIRONMENT

A fundamental distinction is made between the system under which
programs are developed (i.e. written, compiled, assembled, and linked)
and the system under which these programs are executed. The former is
called the host system, while the latter is called the target system.
The host computer need not be the same type of computer as the target
computer. A cross compiler is a compiler that is hosted on one type of
computer and is targeted (i.e. generates code) for another type. ACC
is a cross compiler for C that is hosted on the AmSYS8/8 development
system and is targeted for the AmZ8002.

The term environment is used to refer to the combination of the
hardware configuration and the operating system. Thus, the host
environment of a cross compiler is the host computer along with its
operating system. The compiler can access the resources of the host
environment (in particular the compiler can use the host operating
system), but since the code generated by the compiler will execute on
the target system, this code can use only the resources of the target
environment.

The host environment for ACC is defined by the AmSYS8/8 hardware, the
AMDOS Operating System, and associated utility programs, including the
MACR08000 Assembler and the LINK8000 Linker. The target environment
for ACC is defined by the AmZ8002 processor, the associated support
hardware on the target board or boards, and the operating system (if
any) available on the target system.

Certain functions in the Run-time Library (described later, see also
Appendix D) make use of operating system resources; for example,
getchar (a function that reads a character from the console) requires
an I/O system. These functions are not available to C programs unless
they are supported by the target environment. If the target
environment does not include an operating system, or if the operating
system is not integrated with the Run-time Library, these functions
cannot be referenced at all in C programs (unless explicitly supported
by user-written functions).

1-4

\"··· /.

'('·. '

The minimal configuration for hosting the C compiler is an AmSYS8/8
with 64K bytes of memory, two floppy disks, and the AMDOS Operating
System. The target processor for code generated by the C compiler is
an AmZ8002 microcomputer. No operating system is required on the
target system, but if the Am96/4016 Evaluation Board or Am96/4116
MonoBoard is used as a target, the ROM-based 96/4630 Monitor can be
accessed from C programs.

Effectively, three different target environments can be defined for
ACC:

• Stand-alone Environment. Any AmZ8002 system or board with no
target operating system (for example; the 4116 board without the
4630 monitor).

• AMC supplied Monitor Environment. Any AmZ8002 system incorpora
ting an AMC supplied target operating system. For example, the
4630 Monitor environment, which is either the 4016 Evaluation
Board or a combination of the 4116 MonoBoard Computer and the 4630
Monitor.

• User supplied Monitor Environment. Any AmZ8002 system or board
with a user-written operating system running on the target proces
sor.

Figure 1-1 shows the host and target environments for ACC.

Later in this chapter, and also in Chapter 3, it will be shown that the
choice of the target environment has implications for the functions
that can be used in C programs and affects the procedures that are used
to link and execute these programs.

THE AMC C SOFTWARE PACKAGE
The transformation of a C source program into an executable object
module is accomplished by invoking in succession the C Compiler, the
MACR08000 Assembler, and the LINK8000 Linker.

The C compiler consists of three sequentially invoked components: the
preprocessor, the parser, and the code generator; they each perform one
pass of the compilation process. Each pass reads the output of the
previous pass (or the source itself in the case of the first pass),
makes the necessary transformation, and writes output into an
intermediate file that can then be read by the next pass.

The output of the compiler's code generation pass is an AmZ8002
assembly language file that constitutes the input to the assembler,
whose output is relocatable object code. This assembler output, along
with several previously assembled library programs, in turn constitutes
the input to the linker, which outputs executable code. This code can
be downloaded into the target processor or PROM by using RTE16
software, PROM burning software, or the HOST program. Figure 1-2 shows
a schematic overview of this process.

1-5

....
I

°'

(

\,

I

{ Application
Software

Development

{ Software

Operating

{ System
Software

Hardware {

!

{ Application
Software

I
I A

Am96/4016

I Evaluation Board

C Compiler I Operating

{
or

MACR08000 I System Am96/4116

LINK8000 I
Software MonoBoard Computer

+
Am96/4630 Monitor

{
ODD c::::::I

(.aunnQA '

Hardware DD c::::::1

I DD

Ll:D I c:::::::J I downloading or I
---·----- Any. AmZ8002 board

c:::::J PROMs or RTE 16 I oaa c::::::I
DD c:::J

I DD
AmSYS 8/8 l

I "" AppHcation { Software

Operating

{ (User :;onitor)
Any AmZ8002 board

System +
Software operating User-supplied monitor

{ l].= Hardware c::::::J

a
Wlll

HOST ENVIRONMENT TARGET ENVIRONMENT

Figure 1-1. Compiler Environments

/.
\,
J

- \.

\.

~
. I
\ ~

(--

C ao .. ce

ACCPO = C preproceHor

ACCP1 = C parser

ACCP2 = C code generator

MACZ = MACR08000 assembler

LNKZ = LINKBOOO !Inker

AmZ8002
Aaaembly Lenguaga

Source

Figure 1-2. Compiling a C Program

I
(.)

c ...
0

~
~
w

The AMC C Software Package contains the programs required to carry out
this process. They are described in the following paragraphs.

PREPROCESSOR (PASS 0)

The preproccesor performs a lexical analysis, that is, it converts the
input source text into a sequence of tokens for use by the parser.
Tokens are the smallest program units; they fall into four categories:
identifiers, reserved words, special characters, and literal values.
The preprocessor also supports conditional compilation, macro
expansion, symbolic constants, and file inclusion.

Besides its use as pass 0 of the C compiler, the preprocessor can be
used independently to produce, from multiple input streams, a single
combined source file. For more details on the preprocessor, consult
Appendix C.

PARSER (PASS 1)

Each programming
characterize the
The parser of
preprocessor and

language has its own set of grammatical rules which
correct form of a program written in that language.
the C compiler reads the token stream from the
verifies that the source program satisfies the

1-7

grammatical rules of C. The parser is said to perform a syntactical
analysis. It uses the top-down method of syntax analysis known as
recursive descent to parse everything except expressions, for which
operator precedence is used.

The result of the syntax analysis is an intermediate code file, which
is used as input by the code generator. Intermediate code consists of
encoded representations of C language statements (parse trees) and of
the flow of control in a function (flow graphs). See Appendix C for
more information on the parser.

CODE GENERATOR (PASS 2)

The code generator reads the intermediate code from the parser and
produces a .ZSC file containing assembly language code for MACR08000.

The flow graph and the parse trees of the intermediate code are
reconstructed into a flow and code graph in memory. All paths in the
graph are traversed to eliminate jumps to jumps, jumps to code
sequences that are otherwise unreachable, and other extraneous code.
This process is repeatedly performed until no more improvement can be
attained. Finally the assembly language code for the function is
generated from the graph. Code generation is performed by an algorithm
that looks through tables to find the correct code sequence for a given
subexpression.

The code generator produces an assembly language module consisting of
three segments, named CODE, LITS, and DATA. The first of these
contains the actual instructions generated by pass 2; the second
contains all literal values (character strings or string constants)
appearing anywhere in the source program; the third segment contains
space that is reserved for the values of external and static variables.
See also Appendix C for more information on the code generator.

MACR08000 ASSEMBLER

The assembler MACR08000 reads the assembly language file from the code
generator and generates a relocatable binary (.ZRL) file that can be
targeted for the AmZ8002. MACR08000 preserves the three-segment
structure of the module generated by pass 2. See Appendix C and the
MACR08000 User's Manual for more information on the assembler.

RUN-TIME LIBRARY FILES
Input and output facilities are not part of the C language, instead I/O
is performed by separate functions that are called by C programs. The
ACC Run-time Library is a collection of functions designed to provide,
among other things, a standard I/O system for C programs.

1-8

, ___ /

The functions in the Run-time Library can be separated into a standard
set that is common to all target environments and a number of functions
that are dependent in some way on the characteristics of the target.
The functions in the standard set are collected together into one
library file (CLIB). The machine dependent functions are grouped into
several different library files (MLIBs), one for each target
environment.

The file CLIB.ZRL on the distribution diskette is a LINK8000 library
file containing a number of compiled and assembled C functions. These
functions perform string manipulation, character and integer
conversion, standard I/O, and several other useful operations. The
functions in l-L.lti do not depend airectly on the target environment
(although four functions gets, puts, scanf, and printf , call functions
in the machine dependent library). They have exactly the same effect
as the equivalent functions in the Version 7 UNIX I/O library. (A
complete list of the functions in CLIB is provided in Appendix D). A
group of macros contained in the file ACCSTD.H are related to the CLIB
functions. These macros perform certain tests on characters; they can
be accessed from a C program if a #include statement is used at the
beginning of the source file. The preprocessor performs the macro
expansion.

The distribution diskette contains several target dependent library
files, two of which are MLIB.ZRL and MLIB4630.ZRL. The first of these
consists of functions that can be called in the stand-alone
environment. The second contains functions that can be used in the
4630 Monitor environment.

MLIB .ZRL contains four functions (inbyte, outbyte, inword, and
outward) that were written in assembly language and perform simple
character or word I/O on a specified AmZ8002 I/O port. (See the
AmZ8001/2 Processor Instruction Set Manual for a description of port
I/O.) None of the functions in this set is comparable to any of the
Version 7 UNIX functions; they are unique to the AmZ8002 environment.
Two other assembly language functions (C@SAV and C@SWITCH) are also
found in MLIB.ZRL. They are used by the compiler and cannot be called
by user C programs.

Although it is not technically in a library file, the function C@INIT
can be grouped with the functions in MLIB.ZRL. C@INIT is found in the
file CINIT.ZRL; it is used by the compiler to start the user program
and cannot be called by users directly. All the functions in MLIB.ZRL
and CINIT.ZRL are described in Appendix D, where their code is listed.

MLIB4630.ZRL contains all the functions in MLIB.ZRL along with five
others. Two C functions (getchar and putchar), which perform terminal
I/O, and two assembly language functions (moncall and exit) can be
called from user C programs. All these functions depend on the 4630
Monitor environment for their proper execution. The function moncall
is used to call the 4630 Monitor, while exit is used to terminate user
program execution and return to the Monitor. One other assembly
language function is found in MLIB4630.ZRL: C@ABORT, which is used to
process stack overflows. (See Chapter 2 for a discussion of stacks.)

1-9

C@ABORT cannot be called from user C programs. All the functions in
MLIB4630.ZRL are described in Appendix D; their listings are also
provided.

LINKSOOO LINKER

The LINK8000 linker takes the relocatable .ZRL file produced by the
assembler, combines it with the file CINIT .ZRL, with modules from the
library file CLIB.ZRL and from some MLIB to produce an executable
absolute (.BIN) output file. The three segments, CODE, DATA, and LITS,
can be combined into a single memory-image, or else CODE and LITS can
be separated from DATA for later burning into PROM.

The linker can also be used interactively to create a new target
dependent library file (MLIB) when the target environment is based on a
user-supplied monitor (see Chapter 3). For more information on the
linker, consult Appendix C and the LINK.8000 User's Manual.

THE COMPILATION PROCESS

This section describes the commands that should be used in order to
invoke the compilation process for C programs. The Stand-alone
environment and AMDOS files written for this environment will be used
to illustrate compiling for a typical target environment. Chapter 3
shows in detail the changes that are required to run in other
environments.

In the discussion that follows, it is assumed that Drive A has a
diskette containing the following files:

e AMDOS.SYS
e SUBMIT.COM

e MACZ.COM
e LNKZ.COM

e ACCPO.COM
e ACCPl .COM
e ACCP2.COM

• CLIB.ZRL
• MLIB.ZRL
• CINIT.ZRL
• ACCSTD.H

• ACC.SUB
e ACC.DIR

The AMDOS system file
An executable file containing the SUBMIT program

MACR08000
LINK.8000

pass 0 of ACC
pass 1 of ACC
pass 2 of ACC

The standard library file
A target-dependent library file
The function C@INIT
The standard header file

An example submit file
An example linker directive file

These files virtually fill a single-density diskette, so all source
files should be saved on Drive B.

1-10

THE SUBMIT FILE ACC.SUB

Appendix C shows how each of the five programs described above is
invoked. However, it can be tedious to sequentially type in each of
these five command lines, so, ordinarily, users will make use of the
Af1DOS submit file facility. Consult the AMDOS User's Manual for a
description of the use of the submit files.

The example submit file ACC .SUB can compile, assemble, and link a
single C program. The contents of ACC.SUB are as follows:

ACCPO -X -! ACC -0 .::1 'T'Ml'I .:: 1 r
y y ""

ACCPl -C -0 $1.TMl $1.TMO
ERA $1. TMO
ACCP2 -0 $1.ZSC $1.TMl
ERA $1. TMl
MACZ $1 0=$1,1=$1.PRN
ERA $1.ZSC
;DELETE NEXT TWO STATEMENTS FOR COMPILE - ONLY SUBMIT
LNKZ ACC B=$1, 1=$1.LPR CZRL=$1
ERA $1.ZRL

Consulting Appendix C, we can interpret each of these lines. The
filename B:SOURCE is substituted for the parameter $1. The final
output file is B:SOURCE.BIN, with an assembler listing B:SOURCE.PRN and
a linker load map B: SOURCE .LPR. Notice that the intermediate files
B:SOURCE.TMO, B:SOURCE.TMl, and B:SOURCE.ZSC are erased from Drive Bas
soon as they have served their purpose. (The last entry in the LNKZ
line is a symbolic constant override. Its function is described in
Chapter 3.)

ACC.SUB can be invoked by typing the following command (it is assumed
that the source file is SOURCE.C and that it is contained on Drive B):

A> SUBMIT ACC B:SOURCE

(A> indicates the AMDOS prompt. The current drive is A.)

An abnormal termination occurs when an error is encountered during any
of the passes of the compiler or during the assembly. The messages
produced by the compiler when an error is encountered are documented in
Appendix E. The submit file continues to process, even if errors are
encountered. Complete termination can be forced by typing CONTROL-C
after any pass. (Careful timing is required: the CONTROL-C must be
entered between the end of one pass and the beginning of the next.)

This submit file assumes a single source file. If it is desired to
link together separately compiled modules, the submit file can be split
in two (where the comment indicates), with the first half used for
compilation and assembly of user programs and the second half used for
the final linking of separate source files.

1-11

NOTE
Very large source files (more than 300 lines) or
files with a large number of symbols can cause the
compiler to run out of memory (see Appendix E for
error messages). This situation can be avoided by
using shorter source files (200-300 lines) and
#include files for global symbol definitions.

Nothing in the submit file commands reveals that the output code is
targeted for the Stand-alone environment. All the environment-dependent
information is stored in the linker directive file, which is referenced
in the linker command line. The example directive file ACC.DIR is
discussed in the following section.

THE DIRECTIVE FILE ACC.DIR

As described in the LINK8000 User's Manual, the linker can be operated
either interactively or via a command file with the .DIR extension.
The linker command line in the submit file shown earlier referenced the
file ACC.DIR.

The directive file contains commands to the linker that:

1. Specify a PROGRAM (absolute) link,

2. Specify the .ZRL files to be linked,

3. Request that the library files CLIB and MLIB be entered to resolve
externals,

4. Specify the order in which CODE, DATA, and LITS segments are to be
linked,

5. Specify the absolute starting address for each group of segments,
and

6. Specify the memory location of the stack(s). (See Chapter 2 for
discussion of stacks.)

Proper use of the linker and the DIR file is the key to targeting ACC
code toward different environments. Since it is difficult to interpret
the DIR file without an understanding of stacks (explained in Chapter
2), further explanation of ACC.DIR is deferred until Chapter 3.

EXECUTION OF .BIN FILES

The output
executable
downloading
among these
targeted.

1-12

produced by the SUBMIT command (or LNKZ command) is an
(.BIN) file. AMC provides several mechanisms for
this file to the AmZ8002 system for execution. The choice
mechanisms depends on the environment for which the code is

'

~'

j

"'- /

(

4630 ENVIRONMENT

The AMDOS utility HOST can be used to download programs to boards
supporting the 4630 Monitor. To invoke this utility, type

HOST

Then type the HOST command LDPR followed by the name of the .BIN file.
For example:

LDPR B:SOURCE.BIN

This command loads SOURCE.BIN over a parallel link to the AmZ8002 board
and transfers control to the Monitor.

NOTE
HOST does not use Multibus for downloading.

To begin execution of SOURCE, type the Monitor command

G

When the SOURCE program teminates, control returns to the Monitor.
For more documentation on HOST and the Monitor, consult the Am96/4016
Evaluation Board User's Manual.

The AMDOS User's Manual also describes the PROM burning utilities
PREHEAT, PPROG, and PLPROG. These programs can be used to refomat the
.BIN file and download it over a serial link to a PROM-programming
device (either a Data I/O or Pro-log PROM Programmer). Consult the AMC
Application Note, Building PROM-Based C Systems, for more details on
burning C programs into PROM.

ST AND-ALONE ENVIRONMENT

The PROM-programming utilities can be used to burn PROMs for user
boards as well as the AMC-supplied boards, but of course HOST is not be
available for downloading in this environment.

Instead, the RTE16 support package can be used to load binary files
down to their execution vehicle. In addition, RTE16 has several
debugging facilities that enable programs to be tested. RTE16 software
is described in the RTE16/8050 Real-Time Emulator Support Package
User's Manual.

USER-SUPPLIED MONITOR ENVIRONMENT

The facilities for downloading and executing are identical in the
Stand-Alone environment and in the User-Supplied monitor environment.

1-13

_ ~/

(

INTRODUCTION

CHAPTER 2

COMPILER CODE GENERATION

The C Compiler translates programs written in C into AmZ8002 assembly
language. Consequently, the characteristic features of C programs -
data types, operators, control flow statements, functions, and storage
classes -- are all mapped into the more restricted set of AmZ8002
operators and operands. When debugging a C program using RTE16, it is
invariably necessary to look at selected sections of the assembler code
that was produced, because the RTE16 debugging facilities operate at
the assembly language level. In this chapter we will explore the code
generation strategies of ACC.

REPRESENTATION OF DAT A TYPES

C recognizes the following basic data types: bi tfield, character
(signed or unsigned), integer (short or long, signed or unsigned),
floating point (standard precision or double precision). The AmZ8002
architecture provides operators that can manipulate bits, eight-bit
bytes, words of two bytes, and long words of four bytes. The AMC C
compiler provides a mapping between the data types of C and the data
types of the AmZ8002. Table 2-1 illustrates this mapping.

REPRESENTATION OF OPERATORS

The C operator set was shown in table 1-1 of Chapter 1. Expressions
involving these operators generally map into several AmZ8002
instructions because it usually takes several Loads to set up registers
for the actual operation. By and large, however, for most C operators
a single, unique AmZ8002 instruction performs the basic operation. The
set of AmZ8002 operators is thus a fairly close match for the set of C
operators.

Table 2-2 shows the same operators as table 1-1, but shown along with
each one is the corresponding AmZ8002 operator that is produced by the
compiler.

REPRESENTATION CONTROL FLOW STATEMENTS

The C language includes several structured control flow statements.
The general code generation strategy for these statements is a test
then a jump conditional. The differences in the statements result in
different positions for the test and different targets for the jump.
The chart in table 2-3 shows the skeleton code produced by the main
control flow statements.

2-1

TABLE 2-1. DATA TYPES

C DATA TYPE AmZ8002 REPRESENTATION

field

bit field

signed char

unsigned char-----~

(short) int

unsigned int

long int ------1 ... ~311 s l..__ _______ __,116
15l Io

unsigned long int ---l ... ~311 116
151 10

float ------1•~311 s 130 23122 - 161 ~ . . exponent fraction

fraction

double ____ ~631 s 162 exponent 52 j51 fraction 148

fraction

fraction

fraction

'
/ ' ' ',

j "- -

2-2

TABLE 2-2. C OPERATORS AND AmZ8002 OPERATORS

Arithmetic Binary Operators

+

*
I
%

ADD, ADDB, ADDL
SUB, SUBB, SUBL
MULT, MULTL
DIV, DIVL
DIV, DIVL

Relational Binary Operators

> All these have the
>= general format:
<
<:;: CP expression
-- JR test
!= where:
&& test GE, LT, LE,
II NZ, NE, Z,

Bitwise Binary Operators

& AND
I OR

XOR
« SLA, SDA, SDL
>> SRA, SDA, SDL

same

GT,
EQ, etc.

REPRESENTATION OF FUNCTIONS

Unary Operators

*
&

++

LD RnA
LD '\iddress
NEG
code sequence
COM
INC
DEC

Assignment Operators

LD, LDB, LDL
+= ADD, ADDB, ADDL

SUB, SUBB, SUBL
*= MULT, MULTL
I= DIV, DIVL
%= DIV, DIVL
<<= SLA, SLL
»= SRA, SRL
&= AND

XOR
I= OR

To an assembly language or FORTRAN programmer, the run-time
representation of functions in C can appear somewhat unusual. As
functions are called, function variables are allocated memory, but when
the function is exited, the allocated space is freed. If another
function is called immediately thereafter, the same physical memory
location might now hold the value of another variable used in the new
function. To someone accustomed to looking in a fixed, absolute
location for a variable's value, a dynamic language like C presents a
very different view of memory.

FUNCTION CALLS AND RETURNS

Whenever a function is used in a C source program, for example in the
statement

func (a, b, c);

the compiler produces a standard sequence of assembly language
instructions, called the function calling sequence.

2-3

2-4

TABLE 2-3. CONTROL FLOW STATEMENTS

Control Flow Statement

if (expression)
statement!;

else
statement2;

while (expression)
statement

for (expression!; expression2;

LAB!:
LAB2:

LAB!:

LAB2:

expression3) LAB!:
statement;

do
statement!

while
expression

break

continue

goto

switch (c)
case 'char!'
case 'char2'
etc.

LAB2:

LAB!:

Skeleton Code

CP expression
JR test, LAB!

statement!
JR LAB2

statement2
(next statement)

CP expression
JR test, LAB2

statement
JR LAB!

(next statement)

expression!
CP expression2
JR test, LAB2

statement
expression3

JR LAB!
(next statement)

statement!
CP expression
JR test, LABl

---cnext statement)

JR LAB

JR LAB

JR LAB

JP C@SWITCH

(See Appendix D)

test = GE, LT, LE, GT, NZ, NE, Z, EQ, etc.

..

(

The first few instructions in the function calling sequence get the
values of each parameter (a, b, and c are parameters of the function
func, in the above example) and store them on a dynamic memory
structure called a stack. Figure 2-1 shows a diagram of the C run-time
stack structure. Notice that there are actually two stacks, a
downward-growing stack referenced by R15 and an upward-growing stack
referenced by R12.

The upward-growing stack is called the frame stack and the downward
growing stack the return stack. Register R15 is called the stack
pointer and R12 the frame pointer. Arguments are stored on the frame
stack, as the diagram indicates. (Before the parameters are stored on
the frame stack, the register variables, if any, of the calling
function are pushed on this stack. Pushes move the frame pointer,
whereas stores do not.) The return stack is used to hold the return
address of the calling function and the previous frame pointer, as
described in the next section.

The highest memory location in the return stack is called STACK@TOP,
while the lowest location in the frame stack is called STACK@BTI1.
These two parameters set the size and location of the stack area of
memory. These parameters are initialized by the linker DIR file
(Chapter 3).

Parameters are passed by value, that is, a copy of the value of the
parameter is stored on the stack, not the address of the parameter
(except in the case of arrays). Passing parameters by value allows the
called function to modify the parameters without changing the original
values. Parameters of type char and float are expanded to int and
double, respectively. Array names are converted to pointers if they
appear as parameters.

Finally, after all the parameters have been stored on the frame stack,
the function is called via the CALL instruction. Hence, an example of
a function calling sequence might have the following form:

LD R7, ARG3: %Get value of ARG3
Sample LD (6)"'(R12), R7; %Store it on the Stack
Calling LD R7, ARG2; %Get value of ARG2
Sequence LD (4)"'(R12), R7; %Store it on the Stack

LD R7, ARGl; %Get value of ARGl
LD (2)"'(R12), R7; %Store it on the Stack
CALL func; %Call the Function

(For simplicity, the addresses of the parameters are given as ARGl,
ARG2, and ARG3 and each is assumed to be one word long. Actually, they
would probably be referenced as a displacement from some location and
their size could vary from one word to four words.) Notice that
addresses on the frame stack are referenced as offsets from R12.

2-5

r-~~~--~~~~~~-STACK@TOP (assigned
at LNKZ time)

return stack

+ Stack Pointer (SP)~~ ------------1
R.15

Frame Pointer (FP)
Rl2

STACK FORMAT

arg n

===ar.s__~== ___ ...!_I'.s__ __ _

frame stack t

.__ __________ ,,...f--~TACK@BTM (assigned
at LNKZ time)

Figure 2-1. Stack Organization

The fundamental unit of organization on the frame stack is the frame,
consisting of a contiguous block of storage used to hold all the data
needed by one function, including the parameters passed to it and all
local variables. A frame is allocated from the frame stack at function
invocation and released when the function returns to its caller.

2-6

"\

~ t

The fundamental unit of organization on the return stack is the return
block, consisting of storage for a pair of addresses: the return
address of the calling function and the calling function's frame
pointer.

The frame stack and the return stack are both maintained by the
subroutine c@SAV, which is found in CLIB, the Run-time library. (See
Appendix D.)

Figure 2-2 shows a sequence of diagrams that illustrate how the two
stacks appear during each stage of a function call.

SP

FP

SP

FP

diagram 1

return info for
current function

current
function's

frame

diagram 3

return address -------

-----arg n

=-arg i ==
- __ a.!&. .Q_ _

SP

FP

SP

new FP

Figure 2-2. Stack Operation

diagram 2

diagram 4

-----return address -----_ _.Q.!£._FP _

-~rg ~-
-~lJLl __
__E".a._0 __

2-7

Diagram 1: executing the original function

Initially the frame pointer points to the top location in the
frame of the current function. TI:ie stack pointer points to the
bottom location in the current function's return block (the old
frame pointer).

Diagram 2: just before the CALL to the new function

Parameters are stored on the stack before the function is called
(see the previous section). They appear just above the frame
pointer of the calling function.

Diagram 3: immediately after the CALL, but before C@SAV is called

The CALL instruction has the effect of pushing the return address
of the calling function on the return stack.

Diagram 4: after C@SAV is called

2-8

The first two assembly language instructions of any C function
are:

LD
CALL

RO, framesize;
C@SAV;

The function C@SAV then has the responsibility of allocating a
frame for the called function by adding to the frame pointer a
number equal to the size of the new frame. The old frame pointer
value is then pushed on the return stack. · (The actual assembly
language code for C@SAV is shown in Appendix D.)

Automatic variables (see the section entitled Representation of
Storage Classes) are stored immediately above the parameters in
the same order that they appear in the variables list of the
called function. Any temporaries generated by the compiler follow
the automatic variables.

Functions written in assembly language which are to be interfaced
with C programs (see Chapter 4 for an example) need not call
C@SAV. Any arguments passed to that function can be altered by
the function, but no changes can be made any lower than the loca
tion of argument O.

(
REGISTERS

The following AmZ8002 registers are used by functions or to support
function calls.

• Register RlS contains a downward growing stack pointer that always
points to the last item pushed onto the return stack.

• Register Rl2 contains the upward growing current frame pointer; it
always points to the end of the current frame; that is, to the
highest location in the current frame. Most references to items
on the frame stack are by displacements from the current frame
pointer.

• Registers RB, R9, and RlO are allocatable; that is, they can hold
variables of the storage class register.

• Register R7 contains the result
no more than a word in length).
in the register pair RR6; float
RQ4.

of the function call (when it is
Long integer results are returned
and double values are returned in

• Registers RO-R7 are used for expression evaluation and for tempo
rary storage.

REPRESENTATION OF STORAGE CLASSES

The C concept of the storage class really involves two different but
related notions: the scope of a variable, and where that variable is
stored. Variables can have three possible scopes:

• Available to all functions in the program (global scope).

• Available to all functions in the module currently being compiled
(modular scope).

• Available only within the defining function (local scope).

There are three places where variables can be stored:

• On the stack, allocated dynamically (automatic storage).

• In the DATA segment produced by the compiler (static or external
storage, depending on the scope).

• In an AmZ8002 register (register storage).

2-9

Combining scope and storage location yields the four different storage
classes for variables:

• register variables are stored in registers, their scope is limited
to the current function (i.e. they are local variables).

• automatic variables are stored on the frame stack, their scope is
also local.

• external variables are stored in the DATA segment, their scope is
global.

• static variables are stored in the DATA segment; however, their
scope depends on whether they were declared inside or outs'ide of a
function. If inside, their scope is local; if outside, their
scope is modular.

ALLOCATING STORAGE

The ACC strategy for allocating storage for variables is fairly simple:

• Externals. Storage is allocated in the DATA segment corresponding
to the module where the variable is initialized.

• Static variables (both kinds). Storage is allocated exactly as
with externals, but these variables are not declared external to
the linker.

• Automatic. Storage is allocated on the frame stack by C@SAV when
the function is called. Storage is deleted at the return.

• Register. Storage is allocated in R8, R9, and RIO as they become
available.

ADDRESSING

The ACC strategy for addressing variables is also straight-forward.

• Externals and static variables are both addressed using direct ad
dressing. However, the assembly language code addressing exter
nals .can reference the user-defined name of the variable, while
statics are referenced using a unique (but sometimes cryptic)
compiler-generated label.

• Automatic variables are addressed via the indexed addressing mode,
using R12 as the base.

• . Register variables are accessed through the register addressing
mode.

2-10

(
"'· /

(---

INTRODUCTION

CHAPTER 3

TARGET DEPENDENCIES

In Chapter 1, three classes of target environments were defined:

• Stand-alone (no monitor) environment

• AMC. i:;1_1pplied monitor (e.g. 4630) environment

• User supplied monitor environment

At the end of Chapter 1, an example submit file was used to compile,
assemble, and link a C program targeted for the Stand-alone
environment. The actual target-dependent information used by the
submit file was contained in a linker directive file. The purpose of
this chapter is to examine that directive file in detail and to show
how .DIR files and other files must be modified to produce code
targeted for other environments. Consult the LINK.8000 User's Manual
for more information on linking.

THE DIRECTIVE FILE ACC.DIR

The following listing includes a line-by-line commentary on the
directive file ACC.DIR that was referenced in the submit file example
ACC.SUB of Chapter 1. The target environment specified is the
Am96/4116 MonoBoard Computer without 4630 Monitor (i.e., a Stand-alone
environment).

PROGRAM C@INIT;

CONST CZRL

FILE CINIT,
CZRL;

CTMP;

SEARCH
SEARCH

CLIB;
MLIB;

This is an absolute link; the start
ing address of the program is the
label C@INIT.

Set CZRL to a dummy value, CTMP,
which is overridden by the parameter
$1 from the linker command line.

Link files CINIT and CZRL (which
evaluates to $1) in that order, so
the function in CINIT will be the
lowest in memory.

Search the target-independent library
(CLIB) and the target-dependent
library (MLIB) for any unresolved
external values.

3-1

ABSOLUTE 118 l 00;
COMBINE BY SEGMENT;

ASSIGN STACK@BTM :=$A;

Set the first memory location to
118100. Link all segments with the
same name; then link the groups of
segments in alphabetical order.

Set the stack bottom to the current
instruction pointer value. (i.e. the
highest location reached after all
the segments have been linked.)

ASSIGN STACK@TOP := llFEOOA; Set the stack top to location llFEOO.

MAP; Display the link map.

END. End the link.

The target dependencies specified by the directives in this file can be
grouped into three classes:

• memory organization

• library functions supported

• initialization

MEMORY ORGANIZATION

The directives beginning with ABSOLUTE /18100 and ending with ASSIGN
STACK@TOP llFEOOA are concerned with specifying the memory
organization in the target system. Consult the Am96/4116 MonoBoard
Computer User's Manual for a description of the memory layout of the
4116. Addresses 0000 through 7FFF are reserved for ROM. Addresses
8000 through 80FF are RAM space required by the Monitor (when it is
present). Thus 8100 is the first available RAM address. The highest
memory location on the 4116 is FEOO, which has been assigned to the top
stack. This directive file, therefore, locates all segments and the
stack into RAM. RAM is organized as follows (from highest location to
lowest):

FEOO
Stack
LITS
DATA
CODE 8100

(ROM)

0000

3-2

(

(

USING THE 4016 EVALUATION BOARD

When the 4016 Evaluation Board is the target environment,
parameters must be used in the ABSOLUTE and ASSIGN
directives. Edit the DIR file so that these directives read:

ABSOLUTE 114100;
ASSIGN STACK@TOP :=llSFFEA;

different
STACK@TOP

The directive file now generates a memory image with the following
format:

Stack
LITS
DATA

5FFE

CODE 4100

(ROM)

0000

ROM AND RAM SYSTEMS

No matter what monitor (if any) exists on the target system, when PROMs
are to be burned, the directives must to be changed. For example, the
following directive file fragment illustrates the directives that
should be used to locate the CODE and LITS segments in ROM:

ABSOLUTE starting address in ROM;
COMBINE .CODE;
COMBINE .LITS;

ABSOLUTE starting address in RAM;
COMBINE .DATA;
ASSIGN STACK@BTM := $A;
ASSIGN STACK@TOP := highest RAM address;

(For more information on ROM/RAM systems, see the AMC Application Note,
Building PROM-Based C Systems.)

LIBRARIES

SEARCH directives in DIR files specify the libraries to be entered and
searched in order to resolve externals. As stated in Chapter 1, the
library functions can be classified into a standard set of functions
that are common to all target environments (CLIB), and a number of
different MLIBs, each containing those functions that are specific to a
particular environment.

3-3

The SEARCH directives in ACC.DIR reference CLIB and MLIB, the
target-dependent library specific to the Stand-alone environment.
MLIB4630 could be substituted for MLIB if the program called the
functions getchar , putchar , moncall , exit , or c@ABORT. The code for
these functions is shown in Appendix D. Notice that moncall , exit ,
and C@ABORT are assembly language functions that all result in an SC
(System Call) instruction. On the other hand, getchar and putchar are
c functions that simply call moncau.

The four CLIB functions scanf, printf, puts, and gets all call the
functions put(:har and getchar to do low-level I/O. So, for MLIB to be
used as the target library, no calls can be made to printf, scant,
puts, and gets, as well as to the five MLIB4630 functions described
above.

In order for programs that call any of these four functions to operate
successfully, they must be linked with a target-dependent library that
includes putchar and getchar. In lieu of a 4630 monitor, getchar and
putchar must be interfaced to a user-supplied monitor. The same
requirement holds for exit (if it is referenced) and C@ABORT (called by
C@SAV in case of stack overflow). The specifications for putchar,
getchar, exit, and C@ABORT replacements can be determined from the code
shown in Appendix D.

INITIALIZATION

After a C program has been compiled, assembled, linked, and down-loaded
to an execut¥tn board, the last step is to execute the code. The
initialization issue arises here. Before the code can be executed, a
certain amount of preliminary housekeeping work must be done. The
stack pointer and frame pointer must be loaded with their correct
starting values (STACK@TOP and STACK@BTM, respectively) and the Program
Counter must be loaded with the starting address of main. The
function that performs this initialization needs to know details about
the target environment, such as where the stack is to be placed in
memory and where execution normally begins. Consequently, the
initialization function is very target dependent.

4630 MONITOR ENVIRONMENT

In the 4630 environment, the function that performs this initialization
is called C@INIT; it is specified as the program entry point in the
PROGRAM directive of the file ACC.DIR, and its .ZRL file is also
specified in the FILE directive. The Monitor itself calls C@INIT,
which sets up the stack and calls main. The assembly language code of
4630 C@INIT is shown in Appendix D. Notice that the values of STACK@TOP
and STACK@BTM are external (They are supplied at link time by the DIR
file). Notice also that main is called, which means that when the
user program completes, control will return to C@INIT. The last
instruction in C@INIT will return to the Monitor. (SC with non-zero
parameter is interpreted by the 4630 Monitor as a return.)

3-4

(

This C@INIT works for RAM-based 4630 systems, but it is not sufficient
for most ROM-based systems. In ROM code, external variables must be
initialized at execution time instead of compile time, so C@INIT must
perform this initialization. The AMC Application Note, Building
PROM-based C Systems, describes how to write a modified C@INIT that can
initialize external variables.

ST AND-ALONE ENVIRONMENT

In the stand-alone environment, C@INIT has a number of additional
responsibilities beyond those described above. Besides handling the
initialization of the C program, C@INIT has to do all the hardware
initialization jobs that are normally performed by a monitor. For
example, setting the memory refresh counter, if the CPU is used to
refresh RAM; handling the power start-up sequence; setting system or
normal mode; initializing I/O devices; and anything else that the board
requires.

USER-SUPPLIED MONITOR ENVIRONMENT

The tasks performed by C@INIT in the 4630 environment will have to be
done by some function in the user-monitor environment; so will the
additional tasks performed by C@INIT in the stand-alone environment.
But the division of labor between the monitor and C@INIT will be
entirely dependent on the user's system.

3-5

(

CHAPTER 4

AN ANNOTATED EXAMPLE

The following section is organized around five listings: the C source
listings of a bubblesort program and an exchange function, the AmZ8000
assembly language listing produced by using a submit file, the source
code for an assembly-language exchange function that will be
substituted for the equivalent C function, and the linker load map for
the new optimized sort. From these annotated listings, it is easy to
understand the run-time environment of this program; thus, debugging at
the assembly language level should be straight-forward.

THE C SOURCE PROGRAM

The source code shown in figure 4-1 implements a bubblesort routine.
Notice that the function exch (&a,&b) is called in the innermost loop
to exchange items a and b. This function is not shown in the source
code; it is external.

/* This program reads a line from the console, sorts it, and */
/* prints out the sorted line on the console. */

#define BUFSIZE 80

main() !
char buf[BUFSIZE+1];
int i,j,n;

gets(buf);
n = strlen(buf) - 1;
for (i=1; i<=n;++i) l

for (j=n;j>=i;--j)l
if (buf[j-1]>buf[j])
exch(&buf[j], &buf[j-1]);

f
puts(buf);

Figure 4-1. Bubblesort Function

4-1

A C exch FUNCTION

Figure 4-2 shows the source code for one implementation of exch• This
implementation is written in C. Notice that the parameters passed to
exch are pointers to the items being swapped, not the items
themselves. Pointers are used because of the call-by-value convention
of C functions. Remember that when parameters are passed, only copies
of the actual values are sent; so if the called function modified the
parameters, the original values will not be affected. Thus, if the
actual items to be swapped were passed, the array buf would not be
modified at all.

/* This function interchanges the two characters pointed to */
/* by ps and pt */

exch(ps, pt)

register char *ps, *pt;

char temp;

temp = *ps;
*ps = *pt;
*pt = temp;

Figure 4-2. C exch Function

OUTPUT FROM A SUBMIT

Figure 4-3 shows the .PRN file produced when main and ex ch (&a,&b) are
compiled in one module, using the submit file explained in Chapters 1
and 3.

The marginal annotations identify C control flow statements and
operators that were translated into AmZ8002 code.

4-2

/

/

MACR08000: Version 2.0 9/19/80 Page 1
MACZ B:BUB O=B:BUB,L=B:BUB.PRN
VER 1.0

0000
0000
0000
0000
0000
0000
0004
0008
oooc
0010
0014
0018
001C
0020
0022
0026
002C
002C
0030
0034
0036
003A
003E
003E
0042
0046
0048
004C
004E
0052
0056
005A
005C
005E
0060
0064
0066
006A
006E
0072
0076
007A
007E
0080
0080

2100 0058
5FOO*OOOO
76C7*FFB1
6FC7*0002
5FOO*OOOO
76C7*FFB1
6FC7*0002
5FOO*OOOO
AB70
6FC7*FFAA
4DC5*FFAE 0001

61C7*FFAE
4BC7*FFAA
EA25
61C7*FFAA
6FC7*FFAC

61C7*FFAC
4BC7*FFAE
E124
61C7*FFAC
81C7
0307 0050
76C6*FFB1
41C6*FFAC
207F
OA6F
E21B
61C7*FFAC
81C7
0307 0050
6FC7*0004
76C7*FFB1
41C7*FFAC
6FC7*0002
5F00*009C
E80B

76C7*FFB1

MODULE 'B:BUB';
TITLE 'VER 1 ,Q';

SEGMENT l@CUMJ, 'CODE';
EXTERNAL C@SAV, C@SWITCH;

MAIN:;
LD R0,88;
CALL C@SAV;
LD R7,A((-79)A(R12));
LD (2)A(R12),R7;
CALL GETS; '<--
LD R7,A((-79)A(R12));
LD (2)A(R12),R7;
CALL STRLEN; ~<:---
DEC R7,1;
LD (-86)A(R12),R7;
LD (-82)A(R12),1;

@ 1: % 152; ~~--
-LD R7,(-82)A(R12);

CP R7,(-86)A(R12);
JR GT, @ 3;
LD R7,(-S6)A(R12);
LD (-84)A(R12),R7;

@ 11 : % 1 52; <!<"'----
-LD R7,(-84)A(R12);

CP R7,(-82)A(R12);
JR LT, @ 5;

· LD R7,(-B4)A(R12);
ADD R7,R12;
SUB R7,80;
LD R6,A((-79)A(R12));
ADD R6,(-84)A(R12);
LDB RL7,R7A;
CPB RL7 ,R6A; ?
JR LE, @ 51; J

shr-t ot 011.f P~ loep

+o..- (i __)

for- (j __)

i+ ()

SUB R7,80; c~lci./c-Je.. ro:,,.J.~rs
LD R7,(-B4)A(R12); j
ADD R7,R12;

LD (4)A(R12),R7; .+o b11t[j) 4 ,,_..(_
LD R7,A((-79)A(R12));
ADD R7,(-84)A(R12); h . .f[j-1]
LD (2)A(R12),R7;
CALL EXCH; .t--_

JR @ 51; . -----
@ 3: %-152;
-LD R7,A((-79)A(R12));

Figure 4-3. Compiler Output

4-3

MACR08000: Version 2.0 9/19/80 Page 2
MACZ B:BUB O=B:BUB,L=B:BUB.PRN
VER 1 .O

0084 6FC7*0002 LD (2) A (R 1 2) 'R7;
0088 5FOO*OOOO CALL PUTS; <'. p1.th (b .. f)
008C 97FC POP R12, R15";
008E 9E08 RET; ~ re-tu .. "' fo Mo°':+0 ..-0090 @ 5: % 152;
0090 69CO*FFAE -INC (-82)ft(R12),1;
0094 E8CB JR @ 1 ; oE c"""rl~te.. Ok.fr loe(' 0096 @_51: % 152;
0096 6BCO*FFAC DEC (-84) ft (R12), 1;
009A E8D1 JR @ 11 ; ~ C•""' r£c.i:c... ,,,",. lo•r 009C EXTERNAL PUTS;

) 009C GLOBAL EXCH;
009C EXTERNAL STRLEN; ~~~,,.,. ... Is for txc~ 009C EXTERNAL GETS;
009C GLOBAL MAIN;
009C EXCH:;
009C BD06 LDK R0,6;
009E 5FOO*OOOO CALL C@SAV;
OOA2 61CA*FFFC LD R10,(0-42.(R12);
OOA6 61C9*FFFE LD R9,(2-4) (R12);
OOAA 20AF LDB RL7 R10"· c omr; ''f'"' OOAC 6ECF*0001 LDB (1)'" (R1 2 ~ , RL7;
OOBO 209F LDB RL7,R9"; ·he" ()
OOB2 2EAF LDB R10.,RL7;
OOB4 60CF*0001 LDB RL 7 , (1) ft (R 1 2) ; fi.,.c 4:-:o"' OOB8 2E9F LDB R9",RL7;
OOBA 97FC POP R12, R15·;
OOBC 9E08 RET;
OOBE END.;

Figure 4-3. Compiler Output (continued)

AN ASSEMBLY LANGUAGE exch FUNCTION

Figure 4-4 shows an assembly language version of exch that has been
hand-coded. Notice that a few bytes have been saved by not calling
c@SAV. (Since exch makes no function calls, it is not necessary for
it to call C@SAV.)

The marginal annotations identify the features necessary for
interfacing this assembly language function with a C program.

4-4

/ '\

./

/ "
'"- ,.../

/
('J

~i,

'
'{

(

MODULE 'B:EXCH';

% The function exch interchanges two elements
% in a character array.
%
% Exch can be called from C as follows:
%
%
% exch(ps,pt)
%
%
% where ps and pt are pointers to the two
% elements of a character array that are to
% be swapped.
%
%
%
% This Z8002 assembly language module
% implements the C callable exch function.
% The two pointer arguments are located at
% offsets 2 and 4 from the frame pointer R12.
% No value is returned by this functLon.

TITLE 'EXCH';
GLOBAL EXCH; ~

SEGMENT I CODE';
"'""'~'t. EXCH -.11'l;),..lilt.+'°

oJ~pr /u"'cf_,·o,,,s

EXCH: LD R5,
LDB RH6,
LD R4,

(2)"(R12);
R5";

(4)"(R12);

~ u e.. -.Jol,.us of c),,,. ... e1".r ~o f?f>
4- RH(, ~ei) f;,..~t ci..a.-c~tr..-

LDB RL6,
LDB R4",
LDB R5",
RET;
END.

R4";
RH6;
RL6;

~ m•U(. """"'"e'~ rt(. •""-~rel,~,.. ~o RLI
~ RL lo ~efs i:>l-J.t'v- c1' ... ,..<ld·-r ...

l s."'"'r cl,, ... s ;,...f:r.,c-l, t.-~ ... o ... ,"

R.11 "'"cJ RS'

~ reh1..-"- +o c .. 11:"'1 Pw .. ct;o..,_

Figure 4-4. Assembly Language exch Function

THE LINKER LOAD MAP

Figure 4-5 shows a linker load map for the interactive link used to
build a .BIN file from the file containing main and the file containing
the assembly language exch. The bubblesort itself was recompiled
first, using a compile-only submit file. Then EXCH.ZSC was assembled
separately and linked with the new bubblesort (EBUB.ZRL).

4-5

LNKZ * B=B:EBUB,L=B:EBUB
LINK8000: Version 2.0, 10/13/80

==> PROGRAM C@INIT
==> FILE CINIT

ENTER MODULE: C@INIT
==> FILE B:EBUB

ENTER MODULE: B:EBUB
==> FILE B:EXCH

ENTER MODULE: B:EXCH
==> SEARCH CLIB ~

ENTER LIBRARY: CLIB
ENTER MODULE: GETS
ENTER MODULE: PUTS ~
ENTER MODULE: STRLEN

==> SEARCH MLIB4630
ENTER LIBRARY: MLIB4630
ENTER MODULE: CSAVRET
ENTER MODULE: GETCHAR
ENTER MODULE: MONCALL
ENTER MODULE: PUTCHAR
ENTER MODULE: CABORT

==> ABSOLUTE #8100 ~
==> COMBINE BY SEGMENT -----
==> ASSIGN STACK@BTM :=$A 1
==> ASSIGN STACK@TOP := #FEOOA
==> MAP

ENTRY POINT ADDRESS

.J'.':r5l: """'d ... i.lt RAM ~JJ'""-.5 ,,,,
l•"I<it ... l.cs +•1eHe..-

C@1N1r "s~s He)<. fe1 <>d
r111n-f;""-e._ st ... c..k5

LJ /} ~

C@ABORT
C@INIT
C@SAV
C@SWITCH
EXCH

8386
8100
8266
8274
81AA
8288
81BC
810E
8322
8330
8202
83DE
FEOO
8244

MODULE

CABORT
C@INIT
CSAVRET
CSAVRET
B:EXCH
GET CHAR
GETS
B:EBUB
MONCALL
PUT CHAR
PUTS

.SEGMENT

.CODE

.CODE

.CODE

.CODE

.CODE

.CODE

.CODE

.CODE

.CODE

.CODE

.CODE

P"'J~;t I ,.,.,{°....,D .. J
O.dolf"-tS'>H • . GET CHAR

GETS
MAIN
MON CALL
PUT CHAR
PUTS
STACK@BTM
STACK@TOP
STRLEN

==> END.
LOAD MODULE: B:EBUB
LOAD MODULE: B:EXCH
LOAD MODULE: C@INIT
LOAD MODULE: CABORT
LOAD MODULE: CSAVRET
LOAD MODULE: GETCHAR
LOAD MODULE: GETS
LOAD MODULE: MONCALL
LOAD MODULE: PUTCHAR
LOAD MODULE: PUTS
LOAD MODULE: STRLEN

****(EXECUTIVE)

4-6

STRLEN .CODE

NORMAL TERMINATION

Figure 4-5. Linker Load Map

f

f
\~

(

EXECUTION

This example used the system dependent functions gets and puts, so it
must be executed under a target operating system. In the 4630
environment, HOST can be used to download BUB.BIN to the Monitor.
Follow the procedure described in Chapter 1. (The file ACC.DIR must be
modified to search the library MLIB4630 instead of MLIB.)

4-7

(\
l
\.__

(

(

APPENDIX A

DIFFERENCES BETWEEN ACC AND STANDARD C

INTRODUCTION

The AMC implementation of C (ACC) di-ffers in several ways from the C
standard defined in The C Programming Language, by B.W. Kernighan and
D.M. Ritchie. These diffe~ences fall into two categories, restrictions
on the standard and extensions to the standard.

RESTRICTIONS

1. ACC requires that each external declaration be initialized exactly
once in the set of files that comprise a C program. Standard C
allows external declarations to remain uninitialized.

2. ACC requires that a macro's name and its arguments fit on one
line. In standard C, a piece of text requiring macro expansion
can span several consecutive lines.

3. ACC does not allow the use of the sizeof operator in /lif construc
tions. This usage is allowed in standard C.

4. ACC requires that all parameters that might be passed to a func
tion must be explicitly declared in the function body. (In other
words, the maximum number of arguments must be specified.) Stan
dard C allows functions with an unlimited number of arguments.

EXTENSIONS

1. ACC allows multiple-line text
backslash, newline convention.
be used only in strings.

strings through the use of the
In standard C, this convention may

2. ACC allows zero or more letters to be enclosed in single quotes
(') and thereby converted to their ASCII binary codes. These
binary codes are stored in bytes of memory. Standard C permits
only single characters to be enclosed in quotes.

3. ACC will enforce strict member specification rules on the direct
and indirect structure memory reference operators • and -> if so
requested by use of the -m invocation option (see Appendix C).

4. A union may be initialized with ACC. The type of the first member
of the union governs the interpretation of the initialization
list. Standard C does not allow unions to be initialized.

S. The new types unsigned long and unsigned char have been added.

A-1

(

(

f

(

APPENDIX B

PROGRAMMING TIPS

Large source files sometimes present a problem for ACC. The size of a
source file is a function of the number of symbols defined, the
complexity of expressions, and the number of lines of code. In
general, individual functions should be no more than a page or two in
length (approximately 100 lines of code). Functions longer than this
may cause the compiler's memory requirements to exceed the available
storage on the AmSYS8/8, thus generating either a pass 2 error message
or a system crash. (Good programming practice also suggests the use of
small, easy-to-understand functions.)

B-1

\

(

APPENDIX C

INVOCATION PROCEDURE UNDER AMDOS

INTRODUCTION

The three passes of the compiler and the associated programs must be
activated individually in the proper order, either manually by the user
or by a command procedure submitted in the form of an submit file. The
commands to activate these programs are the subject matter of the
remainder of this appendix.

THE PREPROCESSOR

The preprocessor is
#include, and other
compilation begins.

used by the C compiler
functions signaled by

to perform #define,
a #, before actual

The command to invoke the preprocessor has the form

accpO option-string input-filename-string

accpO is the preprocessor. It accepts several types of options and a
sequence of one or more input source files identified by the given file
names. The options and input filenames must be separated by one or
more spaces.

The options are:

-c

-dname=def

Don't strip out /* comments *I nor continue lines
that end with \.

Define name with the definition string def before
reading the input; if =def is omitted, the definition
is taken as "l". Embedded blanks must be enclosed in
single quote marks. The name and def must be in
the same argument unless the argument is quoted. Up
to ten definitions can be entered in this fashion.

-i prefix Add prefix to all files used in #include(filename).

-o file Write the output to the specified file and write
error messages to console. Default is the console.

-pcharacter Change the preprocessor control character from '#' to
character.

-x Put out tokens for input to the parser, not lines of
text.

C-1

THE PARSER

Pass 1 is the parsing pass of the C compiler. It accepts a sequential
file of tokens from the preprocessor and writes a sequential file of
flow graphs and parse trees, suitable for input to the
machine-dependent code generator. The operation of pass 1 is largely
independent of any target machine.

The command to invoke the parser has the form

accpl option-string input-filename

accpl is the parser. It accepts input from the file identified by the
given name.

The flag options are:

-m treat each structure/union as a separate name space, and
require x.m to have x a structure with m one of its
members.

-o file Write the output to the specified file and write error
messages to the console. Default is the console.

-c Map all external symbols into uppercase. Normally exter
nals are case sensitive; local symbols always are.

THE CODE GENERATOR

Pass 2 is the code generating pass of the C compiler. It accepts a
sequential file of flow graphs and parse trees from pass 1 and writes a
sequential file of AmZ8000 assembly language statements, suitable for
input to the MACR08000 assembler.

As much as possible, the compiler generates free-standing code; but for
those operations which cannot be done compactly, it generates inline
calls to a set of machine-dependent library routines.

The command to invoke the code generator has the form

accp2 option input-filename

accp2 is the code generator. Input comes from the file identified by
the given name.

The only option is

-o output-filename

This option directs the output from the code generator to the file
named in the option and error messages to the console. If no output
files is named, the console is assumed.

C-2

~/

(THE ASSEMBLER

MACR08000 is the assembler. It accepts a file of AmZ8002 source code
from pass 2 and produces a relocatable (.ZRL) output file.

The command to invoke the assembler has the form:

MACZ source options overrides

MACZ is the assembler itself. Input comes from the identified source.
The options are shown in table C-1. Overrides are explained in the
MACR08000 User's Ma nua 1.

NAME

Dots

Error

TABLE C-1. MACR08000 OPTIONS

DEFAULT FORM

No first pass list- D
ing

Full program listing E

MEANING

Produce a first pass listing
that shows a dot for each
statement assembled.

Suppress full program listing
and produce only a listing of
errors.

Warning No warnings w Enable listing of warning mes
sages.

Listing L=CON: L Send listing to dev:name.PRN
on same drive as source, with
same name as source.

Object

L=file Send listing to the file
dev:name.ext as specified.

L=CON: Send listing to console device
(if printer is enabled with

L=LST: CONTROL P, listing also
prints).

No object file for 0
input to LINK8000

Create object file
dev:name.ZRL on same drive as
source, with same name as
source.

O=file Create object file
dev:name.ext as specified.

C-3

THE LINKER

LINK8000 is the linker. It accepts .ZRL files from the assembler and
the run-time library and produces an executable object (.BIN) file.
The command to invoke the assembler has the form:

LNKZ dirfile options overrides

LNKZ is the linker itself. The input, output, and a number of other
parameters are specified in the dirfile.

The options are shown in table C-2. The overrides are explained in the
LINK8000 User's Manual.

C-4

(~

NAME

Li sting

Object (for

MODULE, LIBRARY,

Ra.1LIB run only)

Hex (for AmZ8002

PROGRAM on I yl

Binary (for

PROGRAM run

only

Ra.1L IB C for

PROGRAM run
on I y)

TABLE C-2. LINKER OPTIONS

DEFAULT FORM

L=CON: L

L=file

L=CON:

L=LST:

No object f i le 0

O=f I le

No hex f 11 e for H

PRa.1 burning

H=f i le

No binary file B

for down loading

No ROMLIB as B=f 11 e

I Inker output

fr an RETAIN

or a.1 IT R

R=f 11 e

NOTE

MEAN I~

Send listing to dev:name.PRN on

currently selected drive, with

same name as dirfl le

Send listing to the file

dev:name.ext as specified.

Send listing to console device (if

printer is enabled with CONTROL P,

listing also prints)

Send listing to printer device

Create object f I le dev: name.ZRL on

same drive as dirfl le, with same

name as dirfl le

Create object file dev:name.ext as

specified. The file type should

not be $$$

Create hex f I le dev: name.HEX on

same drive as dirfl le, with same

name as dlrfl le

Create hex fl le dev:name.ext as

specified

Create binary file dev:name.BIN on

same drive as dlrflle, with same

name as dlrfi le

Create binary file dev:name.ext as

spec! fled

Create ROMLIB dev:ROMLIB.ZRL on

same drive as dirf l le

Create ROMLIB file dev:name.ext as

specified. This file, which is

ca I led a ROM I i brary Index or

ROMLIB, contains global symbol

definition.

When Interactive input ls specified C*l with

options L, O, H, or B (without explicit fl I e
namel, a default fl lename LINK ls supplied in

lieu of dirfile.

C-5

.

APPENDIX D

THE RUN-TIME LIBRARY

Table D-1 shows the functions that are described in
They are found in several different disk files and can
four categories, based on their implementation
accessibility.

this appendix.
be grouped into

language and

MACROS

c
functions

c
ca I I able

assembly

language

assembly

I anguage

i sa I pha

isupper

islONer

isdigit

i sa I num

TABLE D-1. LIBRARY FUNCTIONS

ACCSTD.H GLIB

i sspa ce i sasci i

ispunct

ispr int

i scntr I

strcat strlen abs

strcat index max

strcmp rindex min

strncmp atof printf

strcpy atoi scant

strncpy atol puts

gets

ML I B4630 MLIB CINIT

getchar

put char

-------- -------

exit i nbyte

monca 11 out byte

(+ML I Bl in word -------
outword

Ce ABORT CO.SAV COINIT

CCSWITCH

This appendix covers the functions in library files, in the standard
header file, and the CINIT file. Macros and most C language functions
are described using a simple three-part structure:

1. The NAME subsection lists the names of the functions and gives a
brief description of each function's purpose.

2. The SYNOPSIS subsection summarizes the definition of each func
tion.

3. The DESCRIPTION subsection describes the function in detail.

Asser:ibly language functions are documented by providing source code.
(The source code of two C functions, getchar and putchar, is also
provided.)

D-1

THE FILE ACCSTD.H

This file contains ten macro definitions. Macros are expanded by the
preprocessor at compile time, so they cannot be called by
assembly-language functions, nor can their addresses be taken with the
& operator.

NAME:
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct,
isprint, iscntrl, isascii - character classification

SYNOPSIS:
/!include
isalpha(c)

(STD.H)

DESCRIPTION:

D-2

These macros classify ASCII-coded integer values by table lookup.
Each is a predicate returning nonzero for true, zero for false.
isascli is defined on all integer values; the rest are defined
only where lsascii is true and on the single non-ASCII value EOF.

isalpha

isupper

is lower

isdigit

isalnum

is space

ispunct

is print

iscntrl

isascii

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor alpha
numeric)

c is a printing character, code 040(8) (space) through
0176 (tilde)

c is a delete character (0177) or ordinary control
character (less than 040)

c is an ASCII character, code less than 0200

_j

/ ·"'·
/

\.

(

THE FILE CLIB.ZRL

CLIB .ZRL contains object code for 19 C-language functions. These
functions can be divided into three groups: string handling functions,
ASCII/Number conversion functions, integer functions, and I/O
functions.

D-3

NAME:
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index,
rindex - string operations

SYNOPSIS:
char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl,
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncrnp(sl, s2, n)
char *sl, *s2;

s2, n)

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s;

DESCRIPTION:

D-4

These functions operate on null-terminated strings.
check for overflow of any receiving string.

They do not

strcat appends a copy of string s2
strncat copies at most n characters.
the null-terminated result.

to the end of string sl.
Both return a pointer to

strcmp compares its arguments and returns an integer greater
than, equal to, or less than 0, according as sl is lexicograph
ically greater than, equal to, or less than s2.
strncmp makes the same comparison but looks at, at most, n
characters.

strcpy copies string s2 to sl, stopping after the null character
has been moved. strncpy copies exactly n characters, truncating
or null-padding s2; the target can not be null-terminated if the
length of s2 is n or more. Both return sl.

strlen returns the number of non-null characters in s.

index (rindex) returns a pointer to the first (last) occurrence
of character c in string s, or zero if c does not occur in the
string.

/
/

~

' ', /

(

NAME:
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS:
double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION:
These functions convert a string pointed to by nptr to floating,
integer, and long integer representation respectively. The first
unrecognized character ends the string.

atof recognizes an optional string of tabs and spaces, then an
optional sign, then a string of digits optionally containing a
decimal point, then an optional 'e' or 'E' followed by an option
ally signed integer.

atoi and atol recognize an optional string of tabs and spaces,
then an optional sign, then a string of digits.

D-5

NAME:
abs - find absolute value of an integer
max - find the maximum of two integers
min - find the minimum of two integers

SYNOPSIS:
int abs(i)

int i:

int max(il, i2)
int il, i2:

int min(il, i2)
int i1, i2:

DESCRIPTION:

D-6

abs returns the absolute value of its integer argument.

max determines and returns the greater of the two integer
arguments.

min determines and returns the smaller of the two integer
arguments.

(

(

1/0 FUNCTIONS

NAME:
gets -- get a string from the console

SYNOPSIS:
char *gets(s)
char *s;

DESCRIPTION:

NAME:

gets reads a string into s from the console. The string is
terminated by a newline character, which is replaced in s by a
null character. gets returns its argument.

puts - put a string to the console

SYNOPSIS:
puts(s)
char *s;

DESCRIPTION:

NAME:

Puts copies the null-terminated string s to the console and
appends a new-line character.

This routine does not copy the terminal null character.

scanf - formatted console input

SYNOPSIS:
scanf(format [, pointer] •••)
char *format;

DESCRIPTION:

- Limit of 10 arguments.

scant reads characters from the console, interprets them
according to a format, and stores the results in its arguments.
It takes as arguments a format specifier, described below, and a
set of pointer arguments indicating where the formatted input
should be stored. (No more than 10 arguments can be passed.)

The format specifier contains:

• Blanks, tabs, or newlines, which match optional white space
in the input.

• A character (not %) which must match the next character of
the input stream.

D-7

D-8

e Interpretation specifications, consisting of the character %,
an optional assignment-suppressing character (•), an optional
numerical maximum field width, and an interpretation charac
ter.

An interpretation specification directs the interpretation and
assignment of the next input field; the result is placed in the
variable pointed to by the associated pointer, unless assignment
suppression was indicated by *. An input field is defined as a
string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is
exhausted.

The interpretation character directs the actual interpretation of
the input field; the corresponding pointer argument must be of an
allowed type. The following interpretation characters are legal:

% a '%' character occupies the input field;

d a decimal integer occupies the input field; the corresponding
pointer must be an integer pointer.

o an octal integer occupies the input field; the corresponding
pointer must be an integer pointer.

x a hexadecimal integer occupies the input field; the corre
sponding pointer must be an integer pointer.

s a character string occupies the input field; the correspond
ing pointer must be a character pointer pointing to an array
of characters large enough to accept the string and a
terminating '\O', which will be added. The input field is
terminated by a space character or a newline.

c a character occupies the input field; the corresponding
pointer must be a character pointer. The normal skip over
space characters is suppressed in this case; to read the next
non-space character, use '%ls'. If a field width is given,
the corresponding argument should refer to a character array,
and the indicated number of characters is read.

e a floating point number occupies the input field; the next
f field is converted accordingly and stored through the cor

responding pointer, which must be a pointer to a float. The
input format for floating point numbers is an optionally
signed string of digits possible containing a decimal point,
followed by an optional exponent field consisting of an E or
e followed by an optionally signed integer.

(

NA11E:

The interpretation characters d, o, and x can be capitalized or
preceded by 1 to indicate that a pointer to long rather than to
int is in the argument list. Similarly, the interpretation char
acters e or f can be capitalized or preceded by 1 to indicate a
pointer to double rather than to float. The interpretation char
acters d, o, and x can be preceded by h to indicate a pointer to
short rather than to int.

The scanf function returns the number of successfully matched and
assigned input items. This can be used to decide how many input
items were found. The constant EOF is returned upon end of input;
note that this is different from 0, which means that no interpre
tation was done; if interpretation was intended, it was not al
lowed because an inappropriate character appeared in the input.

Example:

The call

inti; float x; char name[SO];
s canf ("%d%f%s", &i, &x, name);

with the input line

13 23.16-2 schmitlap

will assign to i the value 13, x the value .2316 and name will
contain 'schmitlap\O'. Or;

inti; float x; char name[SO];
scanf("%2d%£%*d%s", &i, &x, name);

with input

12345 6789 Olb23 h

will assign 12 to i, 345.0 to x, skip '6789', and place the string
'01623' in name. The next call to getchar will return 'b'.

print£ - formatted console output

SYNOPSIS:
printf(format [, arg] •••)
char *format;

DESCRIPTION:

- Limit of 10 arguments

printf converts, formats, and prints on the console its argu
ments (those following the first argument) under control of the
first argument. The first argument is a format spec.;ifier which
contains two types of objects: characters, which are simply
copied to the output stream, and interpretation specifications,
each of which causes interpretation and printing of the next suc
cessive arg of printf • no more than 10 arguments can be passed.

D-10

Each interpretatioq specification is introduced by the character
%. · Following the %, there can be:

• an optional minus sign '-' which specifies left justification
of the value in the indicated field;

• an optional digit string specifying a field width; if the
value has fewer characters than the field width it will be
padded with blanks on the left (or right, if the
left-justification indicator has been given) to mate up the
field width; if the field width begins with a zero,
zero-padding will be done instead of blank-padding;

• an optional period '•' which serves to separate the field
width from the next digit specifies;

• an optional digit string specifying a precision which deter
mines the number of digits to appear after the decimal point,
for e- and f-formats, or the maximum number of characters to
be printed from a string;

• the character 1 specifying that a following d, o, x, or u
corresponds to a long integer arg, (A capitalized interpre
tation character has the same meaning.)

• a character which indicates the type of interpretation to be
appli.ed.

A field width or precision can be '*' instead of a digit string.
In this case an integer argument supplies the field width or pre
cision.

The interpretation characters and their meanings are:

d
0

x

The integer argument is interpreted as dedmal, octal, or
hexadecimal notation respectively.

f The float or double argument is interpreted as decimal
in the style '[-]ddd.ddd' where the number of d's after the
decimal point is equal to the precision specification for the
argument. If the precision is missing, 6 digits are given;
if the precision is explicitly 0, no digits and no decimal
point are printed.

e The float or double argument is interpreted in the style
' [-] d .ddde±_dd' where there is one digit before the decimal
point and the number after is equal to the precision specifi
cation for the argument; when the precision is missing, 6
digits are produced.

g The flo1;1t or double argument is printed in style d, in style
f, or in style e, whichever gives full precision in minimum
space.

/
I

/

/

(

(

c The character argument is printed.
ignored.

Null characters are

s The argument is taken to be a string (character pointer) and
characters from the string are printed until a null character
is reached or until the number of characters indicated by the
precision specification is reached; however, if the precision
is 0 or missing all characters up to a null are printed.

u The unsigned integer argument is interpreted as decimal and
printed (the result will be in the range 0 to 65535).

0/
to Print a I Of I •

lo ' no argument

In no case does a non-existent or small field width cause
truncation of a field; padding takes place only when the specified
field width exceeds the actual width. Characters generated by
prlntf are printed by putchar.

Example:

To print a date and time in the form 'Thursday, April 24, 11:45',
where weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour,
min);

To print to S decimals:

printf ("square= %.Sf", 4*abs(3.14159));

D-11

THE FILE MLIB.ZRL

This file contains two classes of functions: port I/O functions and
the C non-callable functions C@SAV and C@SiJITCH.

PORT 110

Low-level input and output
assembly language functions.
port.

NA11E:

(I/O)
All

operations are provided by four
of them require a user-specified

inbyte, outbyte, inword, outword - port I/O functions

SYNOPSIS:
int inbyte(port)
unsigned port;

int outbyte(port, c)
unsigned port;
char c;

int inword(port)
unsigned port;

int outword(port, w)
unsigned port;
int w;

DESCRIPTION:
inbyte inputs a byte from the given port.

outbyte inputs a word from the given port.

outword outputs the given word to the given port.

The functions inbyte and inword return the byte or word fetched.

D-12

(

(

MODULE
%
%
%

%
SEGMENT
%
%
%
INBYTE:

%
INWORD:

%
%
%
OUTBYTE:

"J,
OUTWORD:

'CPORTIO';
C RUN TIME ROUTINES
FOR 4016/4116 EVALUATION

GLOBAL INBYTE,
INWORD,
OUTBYTE,
OUTWORD;

[@CUM], 'CODE';

EXECUTE IN(PORT)

LO R 1 , R 12"' (2) ;
INB RL7, R1;
CLRB RH7;
RET

LO
IN
RET

R 1 , R 1 2"' (2) ;
R'l, R1;

EXEC OUT(PORT, DATA)

LO
LOB
OUTB
CLRB
RET

LD
LD
OUT
RET;

END.

R 1 , R 1 2"' (2) ;
RL 7, R 12"' (5) ;
R 1 , RL 7;
RH7;

R 1 , R 1 2"' (2) ;
R7, R12"'(4);
R 1, R7;

BOARD

D-13

C@ SA V AND C@ SWITCH

The assembly language functions C@SAV and C@SWITCH cannot be accessed
from C programs; they are used by ACC itself. C@SAV is used to manage
the frame stack and return stack; C@SWITCH is used to implement the
switch - case control flow statement.

D-14

MODULE
%
%
%

'CSAVRET';
C RUN TIME ROUTINES
FOR Z8002

GLOBAL C@SAV,
C@SWITCH;

EXTERNAL C@ABORT;
%
SEGMENT [@CUM1, I CODE I ;

%
% C FUNCTION ENTRY ROUTINE
%
C@SAV:

LD
LD
ADD
CP
JP
JP

R1, R15A;
R15A, R12;
R12, RO;
R12, R15;
LLT, R1A;
C@ABORT;

SWITCH SELECT ROUTINE

%ALLOCATE NEW FRAME
%STACK OVERFLOW?
%JUMP IF NOT

%
%
%
%

R1 POINTS TO SWITCH TABLE, R7 HAS CASE VALUE

C@SWITCH:

%
C@SWEND:

TEST
JR
INC
CP
JR
DEC

LD
JP

END.

R1A;
ZR, C@SWEND;
R1, 4;
R7, (-2)A(R1);
NE, C@SWITCH;
R1, 6;

%DEFAULT CASE?
%JUMP IF SO
%BUMP TO NEXT
%THIS IT?
'f,JUMP IF NOT

CASE

%LOAD JUMP ADDRESS

(

THE FILE MLIB4830.ZRL

This file contains four groups of functions. The first group is
identical to the HLIB functions described in the previous section. The
second group consists of the two functions moncall and exit, which are
used to call or return to the 4630 Monitor. The third group consists
of the functions getchar and putchar which are used for character I/O
to the terminal. The final group consists of the single function
C@ABORT, which may not be called from C programs, but is used to
recover from stack overflows.

C@ABORT

This function can be dealt with very quickly. It is called by C@SAV
whenever a stack overflows. When it is called, it executes a SC
(System Call) instruction with parameter 99.

%
%

%

%
C@ABORT:

MODULE 'CABORT';
STACK OVERFLOW ROUTINE

GLOBAL C@ABORT;

SEGMENT r@CUM],

SC
END.

99;

I CODE';

D-15

NAME:
moncall - do monitor service call

SYNOPSIS:
struct monstr {

char

int
{ ;

II define HCRD
tfdefine HCWR
I/define HPWR
//define HDOPN
//define HDCLS
//define lfDCRE
lldefine MDRD
lldefine lIDvlR

moncall(rp)
struct monstr *rp;

mfunc,
mresp,
*mfnp,
*mstp;
mstl;

1
2
3
4
5
6
7
8

I* function code *I
I* response *I
I* filename pointer */
I* string pointer */
I* string length */

I* console read */
I* console write */
I* print */
I* open file */
I* close file */
I* create a file *I
I* read next sector *I
I* write next sector */

DESCRIPTION:

D-16

The structure monstr describes the monitor's I/O control block
(see Am96/ 4016 AmZ8000 Evaluation Board User's Manual). moncall
loads its argument into register 1 and issues system call zero
instruction. Function codes 3-8 are available only on systems
with HOST.

It returns the response code from the request block.

The structure and function codes are defined in the standard in
clude file "accstd.h".

NAME:
exit - terminate a process or program

SYNOPSIS:
exit (status)
int status;

DESCRIPTION:
exit terminates a program and, depending on the implementation
and the system, may perform other termination duties.

MODULE I EXIT I ;

GLOBAL EXIT;
SEGMENT [@CUM] , 'CODE';

EXIT:
SC 1;
END.

D-17

NA.HE:
getchar - get a character from the console
putchar - put character to console

SYNOPSIS:
int getchar()

int putchar(c)
char c;

DESCRIPTION:
get char
terminal.

obtains and returns the next character from the

putchar copies the character c to the console.

D-18

/* File: getchar.c */

//include "accstd .h"
#define CTRLZ OxlA

I*
External routines in this compilation unit;

getchar reads and returns character entered at console

*I

#define LINESIZE 80

static char inbuf[LINESIZE] {'\O'};
static int inptr = -1, incnt = O;
static int eofset = O; /* FALSE */

char getchar() /* return a character buffered from console */

{

if (eofset) return(EOF);
if (inptr < 0 I lincnt <= inptr) { /* need to read new line */

incnt = getln(inbuf);

}

inptr = O;
if (inbuf[O] == CTRLZ)

{
eofset = 1; /* TRUE */
return(EOF);
}

}
return(inbuf[inptr++]);

static int getln(buf)
char buf [];

{

{

struct monstr rb;

rb.mstp = buf;
rb.mstl = LINESIZE;
rb.mfunc = MCRD;
moncall (&rb) ;
buf[rb.mstl-1] = '\n';
return(rb.mstl);

D-19

/* File: putchar.c */

I/include "accstd .h"

I*
Routine in this compilation unit:

putchar writes a character to the console

*I

char putchar(c)
register char c;

{

}

D-20

char cbuf;
struct monstr rb;

if (C == I \ n I)

putchar('\r');

cbuf = c;
rb.mfunc = UCWR;
rb.mstp = &cbuf;
rb.mstl = l;
moncall(&rb) ;
return(c);

(
THE FILE C@INIT

This file contains one function, C@INIT.
STACK@TOP and STACK@BTI1 and calls main.

This function sets up

MODULE
%
%
%

%

I C@INIT I;
C STARTUP ROUTINE
FOR 4016/4116 EVALUATION BOARD

GLOBAL C@INIT;
EXTERNAL STACK@TOP,

STACK@BTM,
MAIN;

SEGMENT [@CUM], 'CODE';

% C RUN-TIME ZERO ROUTINE
%
C@INIT:

LD R15, ASTACK@TOP;
LD R12, ASTACK@BTM;
CALL MAIN;
SC 1 ;

END.

D-21

/

(

tf

1!1

(

APPENDIX E

ERROR MESSAGES

Error messages can be divided into four broad categories based on where
they are generated: compiler messages, assembler messages, and
run-time messages. In this appendix, only compiler error messages are
documented. Assembler error messages can be found in the MACR08000
User's Manual, linker error messages in the LINK.8000 User's Manual.
Run-time error reporting is the responsibility of the user program or
the run-time monitor.

All three passes of the compiler generate error messages.
messages are described in the through sections that follow.

These

PREPROCESSOR ERROR MESSAGES

MESSAGE

bad llxxx
bad lldefine arguments
bad flags
bad macro arguments
bad output file
can't llinclude xxx

can't open xxx

illegal #if expression
illegal #if syntax
illegal ? : in If if
illegal character: x
illegal constant xxx
illegal floating constant
illegal number in If if
illegal operator in /lif
illegal unary op in llif
line too long
misplaced /lxxx

missing llendif

missing) in /lif
missing */
string too long
too any -d arguments
unbalanced x

MEANING (if not obvious)

Unrecognizable II control line
Cannot parse /ldef ine line
See Appendix B for pO options
Cannot parse macro definition
Cannot create output file
Cannot open file specified by
llinclude
Cannot open file specified in
command line

Not a recognizable token in C
Not a recognizable numeric form

More than 512 characters
Preprocessor control line out of
place
Unbalanced /lif, /lifdef, or
f/ifndef

Unbalanced /* comment
More than 128 characters
More than 10 arguments
When x is a delimiter, i.e. '
(, <, or {

II

E-1

PARSER ERROR MESSAGES

MESSAGE

arithmetic type required
array size unknown
bad declaration
bad field width

bad flag
bad output file
cannot initialize
constant required
declaration too complex
function redefined: xxx
function required

function size undefined
identifier not allowed: xxx
illegal &
illegal =+
illegal assignment
illegal bit field
illegal break
illegal case
illegal cast
illegal comparison
illegal continue
illegal default
illegal double initializer
illegal field
illegal field initializer
illegal indirection
illegal integer initializer
illegal member
illegal operand type
illegal pointer initializer
illegal return type
illegal storage class
illegal structure reference
illegal use of typedef: xxx
integer type required
!value required
member conflict: xxx
member redefined: xxx
missing argument
missing expression
missing goto label
missing label: xxx
missing member name
missing: xxx
no structure definition
not an argument: xxx
redeclared: xxx

E-2

UEANING (if not obvious)

Either integer or float necessary

Contents of () unrecognizable
Either negative or larger than
word size (16 bits)
See Appendix B for parser options
Cannot create output file

More than five modifiers ·

Arguments declared, but no func
tion body

Unary address of operator

Unary + operator

Between structures
Within a structure

Identifier must follow • or ->
Keyword or punctuation

- ---------------~-----~

/ \

/

'(i

(-

PARSER ERROR MESSAGES (continued)

MESSAGE

redeclared argument: xxx
redeclared external: xxx
redeclared local: xxx
redeclared typedef: xxx
redefined: xxx
redefined label: xxx
redefined tag: xxx
structure size unknown
undeclared: xxx
unexpected EOF
unknown member; xxx
useless expression

MEANING (if not obvious)

Result unused, no side effect

CODE GENERATOR ERROR MESSAGES

HES SAGE

panic can't write
panic FLOAT not implemented
panic eval fail or lost regs
panic excess refs
panic too many refs
panic can't do arg
panic NO CC
panic bad flag
panic bad input file
panic bad output file
panic no FUNC
panic BAD INPUT
panic CHREAD
panic EOF
panic funerr

HEANING (if not obvious)

internal compiler
internal compiler
internal compiler
internal compiler
internal compiler

bad input file
bad input file
internal error
bad input file
internal error

error
error
error
error
error

E-3

(

APPENDIX F

RELEASE INFORMATION

The information contained in this appendix pertains to individual
releases of the C Software Package. ,

RELEASE 1

1. External names are not case-sensitive, because in this release
MACR080UU and LlNK8000 do no distinguish upper case lettt:!n; frum
lower case letters. All external identifiers are shifted by the
compiler to upper case.

2. MACR08000 reserved words can not be used as external names. The
words affected include SWAP, HIGH, LOW, SHR, SHL, AND, NOT, OR, EX
XOR, HOD, CONST, and all the register names (Rn, RRN, RQn, RHn,
and RLn, where n is an integer between 0 and 15).

3. Floating point arithmetic is not supported, so the float and
double data types can not be used and atoft) is not included in
CLIB.

4. Multiplicative operators(*,/,%) involving unsigned long objects
treat the operands as signed.

S. Underscores may not appear as the leading character of an identi
fier when used with V.2.0 of HACR08000 or LINK.8000.

F-1

(
/

1..., _ _/

(

(

4630 Monitor environment 1-5, 3-4

A

abs
ACC.DIR
ACC.SUB

1-2, D-6
1-10, 3-1

1-10
ACCSTD.H
AHDOS

1-9,
1-1,

arguments ..••••••••••••••••••••••
arrays ••••••••••••••••• 1-2, 2-1,
atof
atoi
atol
auto

B

bit field
bubblesort

c

C@ABORT
C@INIT

function
1-2, 2-1,

1-9,
1-9,

D-2
1-4
2-5
2-3
D-5
D-5
D-5

2-10

2-3
4-1

D-15
D-12

C Language definition • . . . • . . . • • . • 1-1
C@SAV
C@SWITCH •••••••••••••••••••

1-9,
1-9,

D-14
D-14

. 1-3 call-by-reference
call-by-value •••••••••••••••
cast
char
CLIB
CODE

1-2,
1-2,

1-8,

1-3,
2-1,
2-1,
1-9,

1-10,

2-5
2-3
2-3
3-4
3-2

Code Generator •••••••••• (see Pass 2)
control flow constructs 1-3, 2-1
cross compiler 1-4

D

DATA •••••••••••••••••• 1-8, 1-10,
. • . . 1-2 , data types

directive file ••••••• 1-10, 1-12,
double ••••••••••••••••• 1-2, 2-1,
downloading

3-2
2-1
3-1
2-3
1-5

INDEX

E

error messages ••••••••••••••
Evaluation Board (Am96/4016) 1-1,
exch function ••••••••••••••••••••
execution
exit
extensions •••••••••••••••••••••••
external

F

. 1-2, 2-1, float
frame
frame pointer ••••••••••••••••••••
frame stack ••••••••••••••••••••••
function calling sequence ••••••••
functions ••••••••••••••••••• 1-2,

G

get char
gets

H

HOST
host environment

I

I/O

1-1,

1-9,
1-9,

1-5,

lnbyte ••••••••••••••••••••• 1-9,
initialization •••••••••••••• 1-9,
int •••••••••••••••••••• 1-2, 2-1,
intermediate files •••••••••••••••
invocation
inword •••.•.••••••••••••••• 1-9,

E-1
1-5
4-1

1-12
1-9
4-1

2-10

2-3
2-5
2-5
2-5
2-5
2-3

D-18
D-7

1-13
1-4

1-8
D-12

3-4
2-3
1-5
C-1

D-12

Index-I

L

LINK.8000 ••••••••••••••••••••
LITS 1-8,

1-1,
1-10,

linker load map ••••••••••••••••••
linking •••••••••••••• 1-10, 1-12,

M

1-8
3-2
4-5
3-1

MACR08000
MLIB4630

••••••••••••••••••• 1-1, 1-8
••••••••• 1-5, 1-9, 3-4, D-15

MLIBs 1-9, 3-4
macros ••••••••••••••••• 1-7, 1-9,
main •••••••••••••••••••••••••••••

D-2
1-2
D-6
D-6
1-9

max •••••••••••••••••••••••••••••• min
moncall·
MonoBoard Computer

(Am96/4116) •••••••••••••••• 1-1, 1-5

0

object code •••••••••••••••••••••• 1-4
operators
outbyte
outword

••••••••••••••••••• 1-2, 2-1
. • . . • . . • • • . • . • 1-9, D-12
•••••••••••••••••••• 1-9, D-12

p

Parser
Pass 0
Pass 1

2

•••••••••••••••••• (see Pass 2)
•••••••••••••••••••••• 1-5, 1-7
•••••••••••••••••••••• 1-5, 1-8
•••••••••••••••••••••• 1-5, 1-8
••••••••••••••••••••• 1-1, 1-13

Pass
PLPROG
PPROG
PREHEAT

•••••••••••••••••••••• 1-1, 1-13
•••••••••••••••••••• 1-1, 1-13
••••••••••••••• 1-2, 2-1, 2-3 pointers

port I/O ••••••••••••••••••• 1-9, D-12
•••••••••••• (see Pass 0)

• 1-9 , D-9
Preprocessor
printf
PROM-burning •••••••••• 1-1, 1-5, 1-13
putchar
'puts

•••••••••••••••••••• 1-9, D-18 1-9, D-7

Index-2

R

register ••••••••••••••••••• 1-4, 2-10
registers •••••••••••••••••••••••• 2-9
release information •••••••••••••• F-1
restrictions
return stack

• A-1
. • 2-5

ROM/PROM - based systems
RTE16/8050 Real-Time

••••••••• 3-3

Emulator •••••••••••••• 1-1, 1-5,
Run-time Library ••••••• 1-4, 1-8,

s

scant ••••••••••••••••••••••• i ... 9,
STACK@BTM ••••••••••••••••••• 2-5,
stack organization •••••••••• 2-5,
stack pointer ••••••••••••••••••••
STACK@TOP ••••••••••••••••••• 2-5,

1-13
3-3

D-7
3-2
3-2
2-5
3-2

Stand-alone environment 1-5, 3-1
static •••••••••••••••••••••••••• 2-10
storage classes ••••••••••••• 1-4, 2-9
string-handling functions ••• 1-9, D-4
structures ••••••••••••• 1-2, 2-1, 2-3
submit file ••••••••••••••••••••• 1-10
syntactcal analysis •••••••••••••• 1-7

T

target environment •••••••••••••••
termination •••••••••••••••••••••
tips
tokens
typedef

u

..........................

UNIX •••••••••••••••••••••••••••••
User-supplied monitor

environment •••••••••••••••• 1-5,

1-4
1-11
B-1
1-7
1-2

1-1

3-5

/

." _/

/

/

(

•

Address comments to:

Advanced Micro Computers
Publications Department
3340 Scott Boulevard
Santa Clara, CA 95051

TITLE: AmZ8002 C SYSTEM INTERFACE

PUBLICATION NO. 059910610-001

COMMENTS: (Describe errors, suggested
additions or deletions, and
include page numbers, etc.)

From: Name:

Company:

Address:

COMMENT SHEET

REVISION A

Position:

Advanced
Micro

Computers

A subsidiary of
Advanced Micro Devices

3340 Scott Boulevard
Santa Clara,

California 95051
(408) 988-7777

TELEX: 171 142

'/ ""',

i
I

\'-

ADVANCED MICRO COMPUTERS
3340 Scott Boulevard

Santa Clara, California 95051
Distributed by

Advanced Micro Devices

\

