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Introduction 

CHAPTER 1 
INTERFACING FUNDAMENTALS 

The AmZ8001 and AmZ8002 are initial members of the AmZ8000 

microprocessor family. This chapter discusses the CPU interface 

signals and suggested circuit implementation for clock generation, 

CPU initialization (reset), wait state generation, signal buffering 

and single stepping. 
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Interface Signal Description 

Figure 1.1 shows the CPU logic symbols and the following is a description 

of the signals. 

Vee: +SV Power Supply 

Vss: Ground 

AD0-AD15: Address/Data Bus (Bidirectional, 3-state) 

This 16 bit multiplexed address/data bus is used for all 1/0 and memory 

transactions. HIGH on the bus corresponds to 1 and LOW corresponds to 0. 

AD0 is the least significant bit position and so on and AD15 is the most 

significant. The AS output and OS output will indicate whether the bus 

is used for address or data. The status output lines ST0-ST3 will indicate 

whether address rnformation on the bus is intended for memory or 1/0. 

AS: Address Strobe (output, 3-state) 

LOW on this output indicates that the AD0-AD15 bus contains address infor­

mation. The address information is stable by the time of the LOW to HIGH 

transition of the AS output. The status outputs ST0-ST3 will indicate 

whether the bus contains a memory address or 1/0 address. 

OS: Data Strobe (output, 3-state) 

LOW on this output indicates that the AD0-AD15 bus is being used for data 

transfer. The R/W output indicates the direction of data transfer - read 

(or in) means data into the CPU and write (or out) means data from the CPU. 

During a read operation, data can be gated on to the bus when OS goes LOW. 

A LOW to HIGH transition on the OS output indicates that the CPU has accepted 

the data. During a write operation, LOW on the OS output indicates that 

data is setup on the bus. Data will be removed sometime after the LOW to 

HIGH transition of the OS output. 

R/W: Read/Write (output, 3-state) 

This output indicates the direction of data flow on the AD0-AD15 bus. HIGH 

indicates a read operation, i.e. data into the CPU and LOW indicates write 

operation, i.e. data from the CPU. This output is activated at the same time 

as AS going LOW and remains stable for the duration of the whole transaction. 
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Figure 1-1. CPU Logic Symbols. 
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ST0-ST3: Status (outputs, 3-state) 

These four outputs contain information regarding the current transaction 

in a coded form. The status line codes are shown below: 

ST3 ST2 STl ST~ 

L L L L Internal Operation 

L L L H Memory Refresh 

L L H L Normal 1/0 Transaction 

L L H H Special 1/0 Transaction 

L H L L Segment Trap Acknowledge in AmZ8001 
Reserved in AmZ8002 

L H L H Non-maskable Interrupt Acknowledge 

l; H H L Non-vectored Interrupt Acknowledge 

L H H H Vectored Interrupt Acknowledge 

H L L L Memory Transaction for Operand 

H L L H Memory Transaction for stack 

H L H L Reserved 

H L H H Reserved 

H H L L Memory Transaction for Instruction fetch 
(Subsequent word) 

H H L H Memory Transaction for Instruction fetch 
(First word) 

H H H L Reserved 

H H H H Reserved 
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B/W: Byte/word (output, 3-state) 

This output indicates the type of data transferred on the AD~-AD15 bus. 

HIGH indicates byte (8-bit) and LOW indicates word (16-bit) transfer. 

This output is activated at the same time as AS going LOW and remains 

valid for the duration of the whole transaction. The address generated 

by the CPU is always a byte address. However, the memory is organized 

as 16-bit words. All instructions and word operands are word aligned and 

are addressed by even addresses. Thus, for all word transactions with 

the memory the least significant address bit will be zero. When addressing 

the memory for byte transactions, the least significant address bit 

determines which byte of the memory word is needed; even address specifies 

the most significant byte and odd address specifies the least significant 

byte. In the case of 1/0 transactions, the address information on the 

AD0-AD15 bus refers to an 1/0 port and B/W determines whether a data word 

or data byte will be transacted. During 1/0 byte transactions, the least 

significant address bit AO determines which half of the AD0-AD15 bus will 

be used for the 1/0 transactions. The ST0-ST3 outputs will indicate whether 

the current transaction is for memory, normal 1/0 or special 1/0. 

VI: Vectored Interrupt (Input) 

LOW on this input constitutes vectored interrupt request. Vectored 

interiupt is next lower to the non-maskab1e interrupt in priority. The 

VIE bit in the Flag and Control Word register must be 1 for the vectored 

interrupt to be honored. The CPU will respond with Vectored Interrupt 

Acknowledge code on the ST0-ST3 outputs and will begin the interrupt 

sequence. The VT input can be driven LOW any time and is customarily 

held LOW until acknowledged. 

NV I: Non-Vectored Interrupt (Input) 

LOW on this input constitutes non-vectored interrupt request. Non-vectored 

has the lowest priority of the three types of interrupts. The NVIE bit in 

the Fiag and Controi Word register must be 1 for this request to be honored. 

The CPU will respond with Non-Vectored Interrupt Acknowledge code on the 

ST0-ST3 outputs and will begin the interrupt sequence. The NVI input can be 

driven LOW anytime and is customarily held LOW until acknowledged. 
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~: Micro-In (Input) 

This input participates in the resource request daisy chain. See the 

section on multi-microprocessor support facilities in this document. 

~0: Micro-Out {Output) 

This output participates in the resource request daisy chain. See the 

section on multi-microprocessor support facilities in this document. 

RESET: Reset {Input) 

LOW on this input initiates a reset sequence in the CPU. See the section 

on Initialization for details on reset sequence. 

BUSRQ: Bus Request (Input) 

LOW on this input indicates to the CPU that another device {such as OMA) 

is requesting to take control of the bus. The BUSRQ input can be driven 

LOW anytime. The CPU synchronizes this input internally. The CPU responds 

by activating BUSAK output LOW to indicate that bus has been relinquished. 

Relinquishing the bus means that the AD0-AD15, AS, OS, B/W, R/W, N/S, 

STO-ST3 and MREQ outputs will go to high impedance state. The requesting 

device should control these lines in an identical fashion to the CPU to 

accomplish transactions. The BUSRQ input must remain LOW as long as 

needed to perform all the transactions and the CPU will keep the BUSAK 

output LOW. After completing the transactions, the device must disable 

its AD0-AD15, AS, OS, B/W, R/W, N/S, ST0-ST3 and MREQ outputs into high 

impedance state and stop driving the BUSRQ input LOW. The CPU will make 

BUSAK output HIGH sometime later and take the bus control back. 

BUSAK: Bus Acknowledge (Output) 

LOW on this output indicates that the CPU has relinquished the bus in 

response to a bus request. 
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NM.I: Non-Maskable Interrupt (Input) 

HIGH to LOW transition on this input constitutes·non-maskable interrupt 

request. The CPU will respond with the non-maskab]e Interrupt Acknowledge 

on the ST0-ST3 outputs and will enter an interrupt sequence. The trans­

ition on the NMI can occur anytime. Of the three kinds of interrupts 

available~ the non-maskable interrupt has the highest priority. 

WAIT: Wait (Input) 

LOW on this input indicates to the CPU that memory or 1/0 is not ready 

for the data transfer and hence the current transaction should be 

stretched. The WAIT input is sampled by the CPU at certain instances 

during the transaction. If WAIT input is LOW at these instances, the 

CPU will go into wait state to prolong the transaction. The wait 

state will repeat until the WAIT input is HIGH at the sampling instant. 

N/S: Normal/System Mode (Output, 3-state) 

HIGH on this output indicates that the CPU is operating in Norma] Mode 

and LOW indicates operation in System Mode. This output is derived from 

the Flag Control Word (FCW) register. The FCW register is described under 

the program status information section of this document. 

MREQ: 

LOW on this output indicates that a CPU transaction with memory is taking 

place. 

CLK: Clock (Input) 

All CPU operations are controlled from the signal fed into this input. 

DECOUPLE: Output from the on-chip substrate bias generator. Presently 

not connected. 

STOP: Stop (Input) 

This active LOW input facilitates one instruction at a time operation. 

See the section on single stepping. 
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The following signals exist in AmZ8001 only. 

SN0-SN6: Segment number (Outputs, 3-state) 

These seven outputs contain the segment number part of a segmented memory 

address. SN6 is the most significant and SN~ the least significant bit. 

HIGH corresponds to 1 and LOW corresponds to ~. 

SEGT: Segment Trap (Input) 

LOW on this input constitutes a segmentation trap. This line is asserted 

by the memory management unit when an access violation has occured. The 

CPU will respond with the segment trap acknowledge code on the status line, 

and commence the trap sequence. The SEGT input can be driven low at any 

time and is customarily held LOW until acknowledged. 
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CLOCK GENERATION 

The CPU requires a single phase clock for its operation. Wigure 1.2 

shows a suggested circuit. The oscillator consists of an inverter biased 

into the linear region by the 390 ohm resistor. The frequency of 

oscillation is fixed by the 8MHz crystal. The oscillator output is 

divided by two in the toggling flip-flop to generate a square wave at 

4MHz. The flip-flop output is buffered by a pair of complementary 

transistors as shown to obtain the CPU clock signal. The buffering 

circuit shown ensures that clock signal amplitude satisfies the required 

specifications of the CPU device. In some applications, buffering the 

flip-flop output with a suitable 3-state buffer may be satisfactory. 

+SV 

22 

CLK 
D TO CPU 

Am74S04 Am74S04 Am74S04 

Am74LS74 

Li~ 1 
Figure 1-2. CPU Clock Generation. 
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CPU Initialization 

The CPU will be initialized when Its RESET input is LOW for a minimum 

of 5 clock periods. Figure 1.3 is a suggested initialization circuit. 

SWl is a single-pole-double-throw momentary contact switch debounced 

by the flip-flop formed by the cross coupled NANO gates. Depressing 

and releasing the switch will generate a debounced HIGH pulse at the 

output of the flip-flop. This output is connected to the LOAD input 

of the 74LS163 synchronous binary counter. When the LOAD input is HIGH 

the counter begins to count at the CPU clock rate since the CP input 

of the counter is driven by the CPU clock. The count starts from the 

initially loaded value of 15 and will go through 0 up to 8. At Count 8, 

the ENP input of the counter will be LOW because of the decoding by the 

two NANO gates monitoring the QA and QD outputs. The LOW level on the 

ENP input disables counting and the counter holds the value 8. When 

SWl is released, the LOAD input of the counter becomes LOW. This 

results in re-loading the initial value of 15 from the parallel data 

inputs. The QD output of the counter is the RESET signal for the CPU. 

+sv 

A QA 

B 
QB 74LSOO 

c 
D 

74LS163 QC 

+SV CLR QD RESET 
CLK 

CP 

LOAD ENl ENP 
74LSOO 

SW1 rr 
74LSOO 

+sv 

Figure 1-3. CPU Initialization Circuit. 
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CPU SIGNAL BUFFERING 

In general, signal buffering is required for two reasons: Capacitive 

load and fan out. Driving capacitive loads directly from a CPU output 

will degrade the signal waveform due to the high impedance nature of 

the MOS outputs. Buffering will isolate the load capacitance from the 

CPU output. The CPU outputs can sink 2mA current: corresponding to a 

fan out of 4 low-power Schottky loads. Higher fan out will require 

buffering. The CPU signals fall into two categories - bidirectional 

and unidirectional. The AmZ8104 is an octal buffer intended for buffering 

bidirectional signals while AmZ8144 is another octal buffer intended 

for unidirectional signals. 

Figure 1.4 is a bidirectional buffering scheme using the AmZ8104s. 

When the CD input is HIGH, the chip is disabled and both A0-A7 and B0-B7 

signals of the AmZ8104 will be in the high impedance state. When T/R 

input is HIGH A0-A7 signals of the AmZ8104 receive data and transmit 

it to the corresponding B0-B7 output. Thus in transmit mode information 

from A0 will appear on the B0 output and so on. On the other hand, if 

the T/R input is LOW, B0-B7 signals of the AmZ8104 will transfer information 

to the corresponding A0-A7 output. In Figure 1.4 the T/R input is derived 

from the R/W and OS outputs of the CPU. The AD0-AD15 outputs of the CPU 

are connected to the A-side of the AmZ8104 while the B-side is the 

buffered bus. 

When address information is present on the AD0-AD15 bus, the OS output 

from the CPU is HIGH. Thus the T/R input of the AmZ8104 is HIGH. Hence 

address information from the AD0-AD15 will appear on the buffered bus. 

If the CPU is performing a write operation, the R/W output from the CPU 

will be LOW. After removing the address information on the AD0-AD15 

outputs, the CPU will establish data on these outputs and activate the 

OS output LOW. Because the R/W is still LOW, the AmZ8104 will transmit 
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data from the CPU side to the buffered side. On the other hand, if 

the CPU is performing a read operation, the R/W will be HIGH. After 

removing the address information from the AD0-ADl5, the CPU will 

activate the OS output LOW. The resulting LOW on the T/R input of 

the AmZ8104 will transfer information from buffered side to the CPU 

side. 

It should be noted that the CD input of the AmZ8014 is driven by the 

inverted BUSAK output from the CPU. When CPU has relinquished the 

bus to a OMA device the BUSAK will be LOW, thus disabling the AmZ8104. 

One advantage of the scheme in Figure 1.4 should be pointed out. 

During write operation, OS output going HIGH signifies impending 

termination of the write cycle. The data is held stable on the AD0-AD15 

outputs for a fixed time after OS going HIGH. This provides data hold 

time when OS is used to generate write enable signal for the memory 

devices. Using the scheme shown in Figure 1.5 transfers the data hold 

time benefit to the buffered side also. 

Figure 1.5 shows unidirectional buffering using AmZ8144. Normally 

BUSAK is HIGH making TG and 2G inputs of the AmZ8144 LOW. This 

enables the chip and inputs lAl, 1A2 etc will be transferred to the 

corresponding output 1Y1, 1Y2 etc. During OMA operations, BUSAK wi 11 

be LOW and will disable the AmZ8144 into high impedance state. 
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ADDRESS LATCHING 

The AD~-AD15 bus from the CPU is time mu1tiplexed for address/data 

and is bidirectional in nature. The address information on this bus is valid 

only during the Tl state of a machine cycle. In many applications, 

the address must be latched externally so that it will remain stable for 

the whole transaction. The A~Z8173 octal latches are intended for this 

purpose. Figure 1.6 is a suggested circuit for address latching. 

Normally, BUSAK is HIGH; thus the OE input of the AmZ8173 is LOW 

enabling the internal 3-state buffers. The G input of the AmZ8173 

is driven by the AS through an inverter. When AS is LOW, the latches 

are enabled, hence the latch outputs Y0. Yl etc. will follow the 

corresponding inputs D0, Dl etc. Thus, the address provided by the 

CPU will appear at the latch outputs. After the address 

has become stable, the AS goes HIGH thus disabling the 

latches. The address that was present prior to AS going HIGH is stored 

in the latches. The latch outputs will be disabled into the high 

impedance state by LOW on the BTISAK. If such disabling is not 

required, the OE input of the AmZ8173 should be grounded. 

ADO ADD RO 
DO YO 
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D1 Y1 
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BUS 
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Figure 1-6. CPU Address Latching. 
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Single Stepping 

The STOP input is used to accomplish single instruction stepping. 

The CPU samples the STOP input during the last machine cycle of an 

instruction execution. If the STOP input is LOW, the CPU completes 

fetching the next instruction. Instead of executing this fetched 

instruction, a series of me"~ry refresh _,,_1.o.r -..-o l""\.o.-~nl""'morl 
\...Y'-''~;;;, c.::11v t""'-"'......,•••·--· The 

STOP input is repeatedly sampled by the CPU during these refresh cycles. 

If the STOP is found HIGH, one more final refresh cycle is performed 

and the CPU resumes execution of the instruction. Thus, by selectively 

activating and deactivating the STOP input, single instruction 

stepping can be accomplished. 

Figure 1.7 shows a suggested single step circuit. It uses two 

switches; SWl is a single pole single throw switch and SW2 is a single 

pole double throw momentary contact switch. SW1 in the RUN position, 

allows the CPU to operate normally. In the HALT position, it causes 

the CPU to stop and execute repetitive refresh cycles. SWl must be 

set to halt position for single stepping. One instruction will be 

executed for each activation of SW2. 

With SWl in the RUN position, the D-input of the flip-flop 02 is 

LOW. Thus, the LOW to HIGH transition of AS repeatedly clears the flip-

flop. Thus its Q output will be HIGH ~aking the STOP input of the CPU 

HIGH. When SWl is moved to HALT position, Q output of 02 goes LOW on 

the next AS transition. 

When SW2 is activated, the clock input of 01 flip-flop is connected 

the AS. Thus the Q output of 01 goes HIGH on the LOW to HIGH transition 

of AS. On the following AS transition, Q of 02 goes HIGH, thus deactivating 

the STOP. Once 01 flip-flop is set, it remains set. The subsequent AS 

transition will set 02 again, establishing LOW again on the STOP. Thus 

STOP was made HIGH for one machine cycle following activation of SW2. 

This allows the CPU to execute one instruction. 
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WAIT STATE GENERATION 

Any !/0 device or memory interfaced to the CPU must activate the WAii 

input LOW to request stretching of a machine cycle. Such stretching 

is needed if a device requires more time to complete a CPU transaction 

than is normally allowed in the CPU timing. 

A slow memory, when accessed by the CPU must request insertion of one 

or more wait states. The actual number of wait states required is known 

beforehand and will not vary from transaction to transaction. Such a 

situation is called fixed wait requirement. An 1/0 device may also 

require extra time to complete a CPU transaction. In the case of 1/0, 

the number of wait states to be inserted depends upon when the CPU 

attempts an access to the 1/0 device in relation to the latter's 

operating cycle. The device may be busy internally and cannot respond 

to the CPU access until it completes the internal operation. This 

is an illustration of what is called demand wait requirements. 

Figure 1. 8 shows a suggested circuit for fixed wait operations. It uses 

a 74LSl95A, a 4-bit parallel Load Shift Shift register. The shift 

register is clocked by the CPU clock connected to its CP input. The 

data inputs A, B and C are connected to jumpers as shown and Input D is 

grounded. Normally the MREQ output from the CPU is HIGH and goes LOW 

during memory transaction cycles. When MREQ is HIGH, the S/L input of 

the shift register is LOW. Thus, information present on the data inputs 

of the shift register will appear at its output. Hence the QD output 

will be HIGH. This output is connected to the WAIT input of the CPU. 

When the CPU is going to perform a memory transaction, the MREQ will be 

LOW' and hence the S/L input of the shift register will be HIGH i.e. 

shift mode. The next LOW to HIGH transition of the CP input will then shift 

the register one place to the right. If the jumper at the C input is 

not present, the QC output would have been HIGH prior to this shifting. 

Hence the QD will become LOW after the shift driving the WAIT input of 

the CPU LOW. The CPU recognizes this and inserts a wait state. The next 

CP transition will shift the register again as before. If there is no 

jumper at the B input, the QD will be still LOW and the CPU will insert 

a second wait state. Similarly, if there is no jumper at the A input 

also, the CPU will insert a total of 3 wait states. As the register is 
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shifting right, a 0 is being shifted into the register from J-K input 

of the register, thus on the 4th CP transition QD will go HIGH signalling 

the CPU to terminate wait state insertions and proceed with normal 

operations. In surrmary, the circuit shown in Figure 1.7 can be used 

for a programmable fixed wait generation. In Figure 1.7 MREQ output 

from the CPU is used to trigger the WAIT input. This implies that 

wait states will be introduced for every memory access irrespective 

of the memory address. It is possible to use an appropriately decoded 

value of the address to trigger the wait state generator when necessary 

rather than the MREQ signal. 

Demand Wait Implementation 

The fixed wait implementation described above is suitable wherever a 

fixed number of wait states are required. For example, an access to an 

EPROM memory may require the unconditional insertion of two wait states 

in every access. In some circumstances, however, the responding device 

may assert its own wait requirement to the CPU. If the device has no 

knowledge of the CPU clock, the WAIT request may be asynchronous. Thus 

some form of synchronization - leading to further delay in the wait path 

may be required. The time required for a responding device to assert its 

wait request to the CPU, may be too long for the request to be honored 

by the CPU since the latter samples the WAIT input at a certain point in 

the transaction. Also this time delay may be aggravated by the synchronization 

requirements making the device wait request too late in the CPU's machine 

cycle. Figure 1.9 shows an implementation of demand wait which overcomes 

these problems using one TTL package. As in the fixed wait generation, 

a 74LS195 Shift Register is used. The CPU AS signal, and the inverted CPU 

Clock (CLK)cause a programmed number of wait states to be implemented. 

In this example, however, a LOW on the QD output of the register signifies 

a WAIT request. The J and K inputs of the shift register are both 

driven HIGH to cause the shifting of HIGHs into the 

register. Thus a fixed number of wait states are programmable on register 

inputs A-D. The PAUSE or WAIT output from the responding device drives 

the CLR input of the register. Thus a LOW(= WAIT Required) on PAUSE 
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causes the QD register output (WAIT) to go LOW which in turn generates 

CPU wait states. When the responding device drives its PAUSE output 

HIGH, the register returns to the shift mode and subsquently shifts a 

HIGH into QD, releasing the CPU from the wait states. The shift register 

inputs A-0 should be programmed to hold the CPU in the WAIT STATES until 

the responding device is able to assert its PAUSE output. In this 

manner, most devices with a PAUSE output will be given sufficient time 

to make a wait/no wait decision, since the CPU will always be delayed 

by the fixed wait states. 

+5V 

b b 
+5V +5V +5V 

y y 

S/L A B c 

K 

Am74LS195A 

CP 

CLR 

QA QB QC QD 

WAIT 
TO CPU 

+5V 

D 

Figure 1-9. Demand Wait Implementation. 

19 

1 



CHAPTER 2 
MEMORY INTERFACING TECHNIQUES 

Int iOduct ion 

This chapter describes interfacing memory to the CPU. The CPU's 

have certain memory requirements, in terms of both timing and data format. 

These requirements are discussed in detail and this is followed by some 

examples of memory connection. Three types of memory are shown connected 

to the CPU. The first example shows the connection of a 16K byte memory 

employing Am9124 lK X 4 static RAMs. The second design interfaces the 

Am9016 16K X 1 dynamic RAMs providing a 64K byte memory. The final 

example describes the connection of the Am9716 16K X 1 EPROM which can 

be used to implement start-up facilities. 
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Memory Addressing 

The AmZ8001 and AmZ8002 CPU's have different memory addressing 

capabilities. The AmZ8002 address memory with a 16-bit address which 

is val id on AD!tl-ADl 5 during the first half of a memory cycle. Th:e 

address designates a byte in memory and thus up to 64Kb of memory can 

be directiy accessed. The AmZ800i, on the other hand, addresses memory with 

a 23-bit segmented address. Seven bits of this address designate a 

segment number and are valid on CPU outputs SN0-SN6 during the memory 

transaction. The remaining 16 bits of; address specify a byte offset 

within the segment. Thus each segment may be up to 64Kb in size, and 

up to 128 segments can be specified. Thus the AmZ8001 has an addressing 

range of 8Mb. The addressing range can be extended by incorporating 

the CPU ST~-ST3 lines in the memory address decode. As described in 

Chapter 1, the ST0-ST3 lines indicate the type of CPU transactions. Three 

memory spaces are defined; code, data and stack. If the CPU N/S line 

is included in this decode, six memory spaces are defined; code (system), 

data (system), stack (system), code (normal), data (normal) and stack 

{normal). Thus up to a six-fold increase in addressing range can be 

gained, by separating the memory spaces. In practice, there are several 

advantages to a partial decode of the ST0-ST3 lines in which data and 

stack memory are not separated. Since stacks are addressed using general 

purpose registers, addressing modes such as "Top of Stack+ n11 are 

avai iabie. The ST!D-ST3 i Ines indicate ;;datan in this case, but since the 

data and stack spaces are common, this is insignificant. 

The CPU address designates a byte location. The majority of CPU 

memory accesses, however, can be 16-bits wide and must be aligned on even 

byte boundaries. Instruction fetches from memory are all 16-bits wide, 

and operand accesses may be 8 or 16 bits wide. Thus the memory system 

should be 16 bits wide with a byte access capability. A conceptual memory 

system is shown in Figure 2. I. The memory consists of two byte banks; 

one bank contains all the even addressed bytes in memory and the other 

bank contains all the odd addressed bytes. When accessing a word, the 

memory address should always be even. See AMPUB086 - "The AmZ8001/2 

Processor Instruction Set" for details of memory addressing. 
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The two byte banks of memory have separate enables. (The nature 

of the enable may vary dependent upon the type of memory device used). 

Each enab 1 e is driven from a 1 og i ca 1 "OR11 of the CPU R/W 1 i ne, the B/W 

line, inverted, and the least significant memory address bit A0. The 

even bank enable is driven from the inverse of A0. During a word trans­

action, the CPU B/W line is LOW. Thus both banks will be enabled. For 

a memory read, the CPU inputs 16-bits of data from the even and odd 

banks which are connected to the upper and lower halves of the bus 

respectively. For a memory write, the CPU outputs data onto both halves 

of the bus. Both banks of memory are enabled and the 16-bit data is 

written into the memory. 

If a byte transaction is being executed, the B/W line is HIGH. For 

a memory read, the R/W line will be HIGH. Thus both banks of memory will 

be read. The required byte may be on the upper or lower half of the bus. 

The CPU steers either the even or odd byte to the byte destination, 

dependent upon the least significant address bit A0. If A0 is LOW, the 

upper (even) half of the bus will be read. If A0 is HIGH, the lower (odd) 

half of the bus will be read. Thus, during a byte read the memory need 

only respond with a 16-bit word containing the byte data. During a byte 

write, R/W will be LOW. Thus either the odd or even byte bank of memory 

will be enabled, dependent upon the value of the least significant address 

bit A0. If AC/J is LOW, the even byte bank wi 11 be enabled. If A'J is HIGH, 

the odd byte bank will be enabled. When writing a byte to memory, the 

CPU duplicates the byte data on both halves of the 16-bit data bus. Hence 

the memory can pick off the byte fiom either half of the bus, by enabling 

only the relevent (even or odd) bank. 
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Memory transaction timing 

The transactions between CPU and memory are referenced to the AS 

and OS CPU outputs. Figure 2.2 shows the memory transaction timing. 

The memory transaction commences with AS going LOW. The CPU status 

information (SH~-ST3, B/W, R/W) becomes val id at least 40ns before the 

trailing edge of AS, and indicate one of the several possible types of 

memory transaction discussed in the previous section, together with 

the size and direction of the transaction. The 16-bit address becomes 

valid on AD0-AD15 at least 55ns before the trailing edge of AS. 

Whereas the ST0-ST3 outputs are valid for the whole transaction, the 

address is not valid 60ns after the trailing edge of AS. This is due to 

the address bus being shared with the data bus. In many applications, 

the address will be required for the whole transaction. This can be 

imp 1 emented using externa 1 1 atches. Thus the address wi 11 1 at ch on the t ra i 1 i ng 

edge of AS, and remain valid until the next transaction. The SN0-SN6 

segment number output, in the AmZ8001, becomes valid in the Clock cycle 

preceeding the start of the memory transaction. This is to facilitate the 

connection of a memory management unit to the AmZ8001. In a memory read 

transaction, the CPU reverses the direction of lts AD0-AD15 lines, in 

preparation for receiving the incoming data. This reversal is indicated 

by OS going LOW. Thus the memory can use OS LOW to enable its output 

buffers to drive the data onto the CPU AD0-AD15 bus. The data is required 

by the CPU no later than 155ns after OS goes LOW. 

In terms of AS, the memory access time is 290ns while in terms of 

MREQ, this figure is 330ns~· Either AS or MREQ can be used to initiate 

the memory read cycle. In the dynamic memory example discussed below, MREQ 

is used to generate the row address strobe thus defining the access time 

at 330ns. 

In the memory write case, the address/data bus is not reversed in 

direction but the valid memory address is replaced by valid data. OS 

does not go LOW for a minimum of 55ns foiiowing vaiid data, to aiiow 

data to be set up at the memory inputs. OS remains LOW for a minimum 

of 160ns. Data is guaranteed valid 80ns after the rising edge of OS, 

23 



to enable hold times to be met where required. If the memory system 

cannot meet the response times required by the CPU, Wait States can 

be inserted in the CPU's memory transaction. See Chapter 1 for wait 

state generation circuit examples. 
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Am9124 Static Memory Design 

A static memory impiernentation empioying the Am9124 iK X 4 static 

RAM is shown in Figure 2.3. The memory has a 16 Kilobyte capacity and 

uses 32 Am9124's in an 8 X 4 array. The implementation makes use of the 

Am9124 power down feature. Since the CPU can access either bytes or 

words from memory, the array is organized into two separate banks, each 

8-bits wide. The byte banks can be accessed in parallel or separately. 

One bank is considered as the upper (even) bank and the other is referenced 

as the lower (odd) bank. Bank selectibn is determined by two 25Sl38 one-of­

eight decoders. Each decoder output is used to enable one row of 1K X 8 

bits. Two decoders are used, not only to select between the two banks, 

but to power down the inactive bank. The decoders use latched address 

bits All to Al3 to select which lK X 8 row is enabled. The AD0-AD15 bus 

is separated into address and data buses by 2 AmZ8104 octal 3-state 

transceivers and 2 AmZ8173 octal 3-state latches. The AmZ8104 buffer 

the data bus to the memory system and the AmZ8173's hold the address 

stable until the next transaction. 

During byte writes the least significant address bit A0 (latched) 

determines which bank of memory (even or odd) is written to. If A'/J is 

LOW, the upper or even byte (08-015) of the 16-bit memory word is addressed. 

The lower or odd byte (00-07) is addressed if A0 is HIGH. The signals 

controfling the write enables are HIGH Byte Write (HBW) and LOW Byte 

Write (iBW). The table below shows their relationship to the B/W line 

and address bit '/J. 

B/W 

H 

H 

L 

L 

A'/J 

L 

H 

L 

H 

L 

H 

L 

L 

H 

L 

L 

L 

Note that in normal circumstances, the bottom entry in the table 

shall not occur, since all memory word accesses should use even addresses 

i . e . A'/J = LOW . 
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The two bank select signals are also used in enabling the appropriate 

bidirectional tranceiver(s) to operate in conjunction with the enabled 

bank(s). The bank select signals are conditioned by the Data Strobe (os) 

and the Read/Write (R/W) signals. This produces the appropriate gating of 

the buffers and the data timing for the CPU. 

During a Read Cycle, the OS signal is used to produce the timing 

window for the data (refer to Figure 2.3). The enabling of the transceiver 

is actually determined by OS and R/W during Read Cycles and by R/W 

during Write Cycles. This method is used to prevent a bus contention problem 

that could exist between the memory and the transceivers. MREQ is used 

to indicate when a memory type operation is in process. After MREQ 

becomes active, data must be available to the CPU within 330ns. However, 

the 330ns should not be thought of as the total memory access time needed. 

Decoding and other logic times must be taken into account within 

the 330ns allowed. For example, the 25LS138 decoder needs approximately 

40ns for worst propagation delay. While the only other critical logic is 

the OR gate that produces the Data Board Enable (DBE) signal at an extra 

lOns delay. The DBE is used to enable the G2A input of the two 25LS138 

decoders. As for the bank select logic, the logic delay coincides within 

the MREQ high time and therefore can be neglected. Therefore, when using 

low-power Schottky, a 50ns delay should be subtracted from the time (330ns) 

data is required when MREQ goes low. Thus only 250ns is left for the memory 

CS low to data out valid. Both the Am9124C and Am9124E memory parts meet 

this parameter. Schottky 74S138 decoders may be used but the speed increase 

in this particular design does not enable the selection of the slower Am9124B 

part which requires 420ns for data access. During the write cycles, the 

data tranceivers are enabled by R/W being LOW. As in the read cycle, 

the direction of the data flow is controlled by R/W. Since the tranceivers 

never drive the CPU bus during a write cycle, there is no requirement to 

condition the tranceiver enable with OS, as in the read case. 
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The memories are still deselected until MREQ goes LOW thus avoiding 

the contention problem. The memory write cycle begins when both CS and 

WE overlap and terminates when one goes high. Within this design, CS 
is shorter than WE. Therefore CS conditionally starts and terminates 

the memory write cycle. Important memory parameters are the "Data In 

Val id to CS HIGH 11 and ' 1CS LOW Enable" time. If slower memory devices must 

be used, then a wait state can be inserted in the memory transaction. 

The generation of fixed wait states was discussed generally in Chapter 1. 

in the case of a memory transaction requiring one wait state, however, 

the implementation shown in Figure 2.3 can be used. It consists of a 

74LS74 D-type flip-flop and an OR gate. The flip-flop is normally set 

to produce a logical one at the Q output. When AS becomes low, the 

74LS74 Q goes low. Therefore, Q only becomes low once during a complete 

machine cycle. And if the board is enabled (DBE), a memory WAIT request 

is sent to the CPU for one extra clock cycle. The flip-flop is clocked 

with the inverted system clock. Thus the negative clock edge of the 

clock causes the 74LS74 Q output to reset. At the same edge, the CPU 

also samples the WAIT signal. Thus the WAIT flag is sampled and cleared 

in the same period and causes a 250ns wait state, at the nominal CPU 

clock frequency. 
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Am9016 Dynamic Memory Design 

The design of a 64kb dynamic memory is shown in Figure 2.4. The 

implementation employs Am9016E 16K dynamic RAMs. Thirty-two devices 

are used, organized in a 16 X 2 array. Thus the memory has a width of 

16-bits and a depth of 32K. The memory consists of two 8-bit wide 

banks. One bank contains all the even addressed bytes and the other 

contains all the odd bytes. 

The CPU address/data bus is buffered using two AmZ8104 octal tran-

ceivers. The CPU memory address is captured from the address/data bus 

using two AmZ8173 octal 3-state latches. The latches are strobed 

with AS inverted. Thus the address valid during the first part of the 

memory transaction is he 1 d valid unt i 1 the start of the next transaction. 

The Am9106 RAMs are operated in the 11early write" mode. That is write 

enable is applied to the device early in the transaction (if appropriate). 

The actual write into the device is timed from the column address strobe 

(CAS) going LOW. The write enable generation is implemented with a 74LS153 

4 input multiplexor. The multiplexor select lines are driven from B/W 

and R/W. Thus the four possible transactions are; 

R/W 

L 

L 

H 

H 

B/W 

L 

H 

L 

H 

L 

Af/J 

H 

H 

L 

A0 

H 

H 

word write 

byte write 

word read 

byte read 

ODSEL drives the lower (odd) bank write enables, and EVSEL drives 

the upper (even) bank write enables. The generation of a write enable is 

dependent upon the CPU accessing memory. This is defined by the ST0-ST3 

lines. A 74LSl39 2 to 4 decoder is enabled with STI and has the most 

significant select line driven by ST3. The least significant select 1 ine 

is grounded. Thus any memory access (data, stack or code) will generate 

a LOW on the third decoder output, Labelled MEMS.EL. In this implementation, 

there is no separation of memory spaces for data, stack and code. 
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The data tranceivers must be controlled to avoid bus contention, 

both between the CPU and the tranceiver and the tranceiver/memory inter­

face: The tranceiver T/R line is driven from R/W. When R/W is HIGH, 

the tranceiver drives from memory to CPU. The tranceiver enables are 

derived from a 74LS153 4 input multiplexor. The multiplexor select 

lines are driven from the R/W line and MEMSEL indicating a memory 

transaction. The four possible combinations are given below for MREQ 

driving the multiplexor enable LOW. 

R/W 

L 

L 

H 

H 

L 

H 

L 

H 

EVSEL 

H 

OS 

H 

ODS EL 

H 

OS 

H 

If MEMSEL is HIGH, then the memory is not being accessed. Thus both 

tranceiver enables are inactive (HIGH). If MEMSEL is LOW, and the memory 

is being read, then both tranceivers are enabled if OS is LOW. If the 

memory is being written, then either one or both tranceivers are enabled, 

by the write enable signals that are applied to the memory devices. Thus, 

during a byte write, only one tranceiver is enabled. This avoids contention 

between the other tranceiver and the bank of memory not being written to. 

The row and column address strobes are driven LOW sequentially, to 

strobe a 14-bit address into each device. One of two row address strobes 

are generated. RASl is applied to one of the two rows of devices, or 

RAS2 is applied to the other. Thus the row address strobe selects either 

the upper 16K words of memory or the lower 16K words of memory. A 74LS153 

four input multiplexor generates RASl and RAS2. The multiplexor select 

lines are driven from the most significant address bit (latched) ADDR15, 

and MEMSEL. The four possible combinations (subject to 'MREQ. enabling the 

mu 1 t i p 1 exo r) are; 

ADDR15 MEMS EL RASl RAS2 

L L L L 

L H L H 

H L L L 

H H H L 
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If MEMSEL is LOW, then the transaction is not a memory read or 

memory write. However, if MREQ is LOW, the transaction is a refresh 

cycle initiated from the CPU. Under these circumstances, each device 

is read. Thus both RAST and RAS2 are driven LOW. If MEMSEL is HIGH, 

then a memory read or write is being executed. Dependent upon ADDR15 

either the upper or lower half of memory is accessed. 

Fol lowing RASJ or ·RAS2 a column address strobe (CAS) is generated 

from OS. CAS is applied to all devices and strobes seven bits of 

column address into the device. 

The device address 1 ines must be driven with the current row and 

column addresses, synchronous with RAS and CAS generation. The latched 

address bits ADDR1-ADDR14 are split into a row address (ADDR8-ADDR14) 

and column address (ADDR1-ADDR7). The row and column addresses are 

applied sequentially to the memory devices through two 25LS157 2 input 

multiplexors. The multiplexor select 1 ine is driven by a logical OR 

of RASI and RAS2, delayed by 15ns. The 15ns delay ensures that the 

necessary row address hold time with respect to RAS is met. 
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Am9716 EPROM Interface 

As described in Chapter 1, the CPU loads new program status from 

memory following initialization. Thus the requirement arises for a set of 

initialization parameters to be available in memory. The solution given 

in this example employes non-volatile memory which occupies part of the 

memory addressing space. Other system parameters may also be stored 

in this area. The implementation using 2 Am9716 2K X 8 EPROMs is shown 

in Figure 2.5. Since the EPROMs may only be read by the CPU, and not 

written, the memory can be designed for word reads only and does not require 

knowledge of the CPU B/W line. The access time of the Am9716 EPROM does 

not meet the CPU's requirements if the latter is executing a three clock­

cycle memory read. Th.is means that a wait state is required during the 

transaction to give the EPROMs sufficient time to respond with the read 

data. 

The EPROM outputs are permanently enabled, by grounding the CS inputs, 

and are buffered from the CPU by 2 AmZ8144 octal 3-state drivers. The 

drivers are enabled if the current transaction is a memory read, the OS 

line is LOW and the CPU memory address is in the required range. The CPU 

memory address is latched using two AmZ8173 octal latches. The latch 

outputs are permanently enabled by grounding the output enable (OE) lines. 

The latch is strobed with AS, inverted and thus holds the address valid 

for the whole memory transaction. The EPROM is addressed by CPU addresses 

in the range OOOOH - OFFEH. The most significant four bits of latched 

address, together with ST3 and R/W are input to a 74LS138 3-8 decoder. If 

the most significant 4 address bits are LOW, ST3 is HIGH and R/W is HIGH, 

the 74LS138 generates a LOW on PSEL, which enables the AmZ8144 buffers 

when OS goes LOW. The remaining latched CPU address bits, with the excep­

tion of address bit 0, are applied directly to the EPROM devices to 

designate one of 2K word locations. The access time for the Am9716 EPROM 

is 450ns which exceeds the access time required by the CPU. The insertion 

of 1 wait state in the three clock cycle memory transaction, however, 

solves the problem. A 74LS74 flip-flop is set at the start of the memory 

transaction by the CPU AS signal going LOW. The flip-flop Q output is 

not driven LOW until the next falling clock edge which strobes a LOW from 

the 0 input to the Q output. 
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The Q output of the flip-flop drives the CPU WAIT line through a 

74502 enabled with PSEL and an inverter. If PSEL is LOW, indicating 

an EPROM access, the CPU WAIT line will be driven LOW until the falling 

clock edge in T2. This ensures the insertion of one 250ns wait state 

in the CPU/EPROM transaction. 

Figure 2-5. AmZSOOO to Am9716 Interface. 
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CHAPTER 3 
1/0 INTERFACING TECHNIQUES 

introduction 

This chapter discusses some techniques involved in interfacing 1/0 

devices to the AmZ8000 system. The initial discussions explore the 

nature of the AmZ8000 1/0 transaction, in terms of data format and timing. 

This is followed by a description of some interfacing techniques for 

three levels of 1/0 connection; programmed 1/0; programmed 1/0 with 

interrupts and programmed 1/0 with interrupts and OMA. The chapter 

concludes with some examples of 1/0 interfacing, which demonstrates how 

non-AmZ8000 peripherals can be connected to the AmZ8000 system. 
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Types of 1/0 Interface 

In general, an 1/0 device may interface to an AmZ8000 system with 

varying levels of privilege. The least privileged interface is the 

programmed 1/0 connection. The device may only communicate with the CPU 

when the latter initiates a transaction. The transactions are restricted 

to CPU reads and writes using addressable locations within the 1/0 

device. 

The interface is shown in Figure 3.1. The address decoding determines 

when the 1/0 device is being accessed. The CPU port address and/or the 

ST0-ST3 lines generate the necessary chip select requirements for the 

device. The interface buffers data between the AD0-AD15 bus and the 1/0 

device. In some instances this may be a straight connection between the 

1/0 device and the address/data bus. In other applications it may be 

bidirectional TTL buffers. The control section of the interface generates 

the required 1/0 commands from the CPU controls signals. 

The next level of 1/0 interface gives the 1/0 device more privilege. 

As well as communicating with the CPU by means of programmed 1/0 trans­

action, the 1/0 device can now interrupt the CPU to request a transaction. 

The interface is shown in Figure 3.2. It comprises the programmed 1/0 

section, described above, together with a section to handle interrupts. 

The interface must detect an interrupt requirement within the 1/0 device 

and generate an interrupt request to the CPU. The interface must also 

recognize an interrupt acknowledge from the CPU, encoded on the ST0-ST3 

lines and cause the necessary response from the 1/0 device. The response 

required from the 1/0 device may vary dependent upon the type of interrupt 

involved. A device generating a vectored interrupt, for example, must 

return information to the CPU during an acknowledge cycle. This information 

is interpreted as a vector by the CPU. 

The third and highest privileged 1/0 connection to the AmZ8000 system 

provides the 1/0 device with a direct memory access (OMA) capability, in 

addition to the facilities described above. Figure 3.3 shows the block 

diagram. 
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Figure 3-1. Programmed 1/0 Interface. 
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Figure 3-2. Programmed 1/0 and Interrupts. 
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The OMA interface must be capable of controlling transfers directly 

between the 1/0 device and memory. Facilities exist within the AmZ8000 

CPU's to inhibit the CPU from controlling the bus during the period that 

the OMA interface is conducting a transaction. The OMA interface gains 

control of the system, while causing the CPU to enter an inactive state. 

This is achieved using the bus arbitration signals described later in 

this chapter. The other portion of the OMA interface supports the gene­

ration of the necessary control signals that would normally be generated 

by the CPU, to enable the 1/0 device to perform direct transactions 

with memory. 

CPU 

CONTROL 
DATA 

BUFFERING 
ADDRESS 

DECODING 

INTERRUPT GENERATION 
+ ACKNOWLEDGE 
+ STATUS RETURN 

Figure 3-3. Programmed 1/0 and Interrupts and OMA. 
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Programmed 1/0 Address Formats 

During every programmed 1/0 transaction, the CPU outputs an I /n 
I/ V 

address on the AD0-AD15 bus. The 1/0 or port address ls 16 bits wide. 

The least significant address bit determines which half of the data bus 

will be used for the transaction. 

Programmed 1/0 Status Encoding 

Two types of prograrrmed 1/0 transaction are possible in the AmZ8000 

system: Normal 1/0 and Special 1/0. These are identical in operation 

but cause different values to appear on the status lines. A Normal 1/0 

transaction,which takes place whenever the CPU is executing a normal 1/0 

instruction, is indicated by LLHL on the ST3-ST0 lines respectively. A 

Special 1/0 transaction which takes place whenever a special 1/0 instruction 

is being executed is indicated by LLHH on the ST3-ST~ lines respectively. 

Programmed 1/0 Data Formats 

The CPU may communicate with an 1/0 device on either a word or byte 

basis, dependent upon the type of instruction being executed. The data 

formats on the address/data bus are shown in Figure 3.4. Word transactions 

for both input and output instructions take place on the AD~-AD15 bus. 

Byte transactions, however, are a little more complex. When inputting a 

byte, the CPU reads either the upper or lower half of the address/data bus 

dependent upon the least significant port address bit. If the least signi­

ficant bit is LOW (the port address is even), the CPU reads the upper half 

of the AD0-AD15 bus. If the least significant bit is HIGH (the port 

address is odd), the CPU reads the lower half of the AD~-AD15 bus. 

When outputting a byte, CPU operation is the same for both the odd or 

even port address; the byte output data is duplicated onto both the upper 

and lower halves of the AD0-AD15 bus. The designer must use the least 

significant port address bit and the B/W line to determine whether a device 

on the upper or lower half of the bus should be written to during a byte 

output instruction. To remain consistent with the Input operation, the 

designer should ensure that an even port address causes a byte write to a 

40 

' l 



INPUT 

OUTPUT 

l 

..._ _____ c_P_u_c_A-PT_u_R_E_s_1_s_B_l_Ts_o_F_D_A_r_A _____ ..... lwoRDINPUT 

CPU CAPTURES 8 BITS I BYTE INPUT 
..._ ____ o_F_DA_r_A ____ ..._ __________ ..... (EVENPORTADDRESS) 

CPU CAPTURES 8 BITS I BYTE INPUT 
.__ __________ ..._ ____ o_F_D_A_r_A ___ __,(ODDPORTADDRESS) 

.__ ______ c_Pu_o_u_T_P_u_Ts-1s_B_1T_s_o_F_D_A_r_A _____ __.I woRD OUTPUT 

CPU DUPLICATES BYTE DATA 
ONTO BOTH HALVES OF BUS 

CPU DUPLICATES BYTE DATA 
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Figure 3-4. Input/Output Data Formats. 
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device on the upper half of the address/data bus, and that an odd port 

address causes a byte write to a device on the lower half of the address/ 

data bus. 

Programmed 1/0 Cycle Timing 

1/0 Cycle timing in the AmZ8000 system can be described in terms of 

the two CPU bus timing signals, AS and OS. As with all CPU transactions, 

the AS signal has two functions. Firstly, it signifies the start of a 

new transaction and secondly, the trailing edge of AS indicates that an 

address has been set up on the AD~-AD15 bus for a minimum of 55nS, as 

shown in Figure 3.5. The val id address is held on the bus for a minimum 

of 60ns following the trailing edge of AS which also indicates that CPU 

signals ST~-ST3, B/W and R/W have been set up for 40ns minimum. These 

CPU output signals remain valid for the whole 1/0 transaction. In the 

input transaction, OS low indicates that the responding 1/0 device may 

drive the address/data bus with the input data. (In practical terms, 

OS will be used to turn on the responding devices output buffers.) The 

trailing edge of OS indicates that the CPU has captured the input data 

which need not be held valid by the responding device for any further time. 

The CPU requires a certain response time from the 1/0 device. Input 

data must be available on the address/data bus 315ns after the leading 

edge of OS, at the latest. In terms of the response time in relation to AS, 

data must be available 540ns after the trailing edge of AS, at the latest. 

If a responding device cannot meet this requirement, the CPU may be 

delayed from completing the 1/0 transaction by the insertion of wait cycles. 

Each wait cycle delays the completion of the transaction by 250ns (assuming 

a 4MHz CPU clock). Thus the responding unit is given extra time, in 

increments of 250ns, to complete the transaction. The CPU will execute 

a wait cycle when its WAIT line is driven LOW no later than 340ns after 

the trailing edge of AS. 
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Output transactions are similar to input transactions, but OS is 

interpreted differently in this case. The leading edge of OS now indi­

cates that the CPU has removed the port address off the address/data 

bus, and replaced it with valid data. The data is set up on the 

address/data bus for at least 55ns prior to the leading edge of OS, 
as shown in Figure 3.5. In practical terms, this edge can be used to 

strobe data into the 1/0 device, provided the required device set-up 

times are met. The trailing edge of OS indicates that data will be held 

valid on the address/data bus for a further 80ns minimum. 

WAIT ~} 
A5 

STO-ST3 
1/0 OR Sl/O aiw, RiW 

N/S 
LOW 

HIGH 
MREQ 

540 

AD 

INPUT 60 

~: 
315 

400 

Os 

480 

PORT ADDRESS DATA OUT 

OUTPUT 55 400 80 

Os 

Figure 3-5. Programmed 1/0 Timing. 
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Interrupt Protocol and Prioritization 

The AmZ8000 famiiy features three types of interrupts. In order 

of decreasing CPU priority, these are Non-Maskable Interrupt, Vectored 

Interrupt and Non-Vectored Interrupt. Each type of interrupt, howeve'") 

may have multiple sources and therefore requires prioritization which 

is implemented by means of a daisy chain external to the CPU i.e. 

permission to interrupt is passed from higher priority peripherals down 

to lower priority peripherals on the daisy chain. 

Figure 3.6 shows an example of an interrupt scheme on an AmZ8000 

system. Eight devices are shown and each device is capable of interrupting 

the CPU. Devices' A, B and C issue Non-Maskable Interrupts, devices D 

and E issue Vectored IRterrupts, and devices F, G and H issue Non-Vectored 

interrupts. As mentioned above, the CPU prioritizes the three interrupt 

types. Within one type of interrupt, however, a further prioritization 

takes place among the devices capable of issuing an interrupt of that 

type. This prioritization is implemented without CPU involvement, using 

a daisy chain. In the Figure shown, device D will take priority over 

device E when a vectored interrupt is issued. Devices A, B and C are 

similarly prioritized with respect to each other using another daisy 

chain and so on. 
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Figure 3-6. Interrupt Scheme. 
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To implement the priority scheme, four signals are defined for 

each of the interrupt types mentioned previously. 

Interrupt Request (Vl/NVl/NMI) 

Interrupt Acknowledge (INTACK) 

Interrupt Enable In/Interrupt 

Enable Out (IEl/IEO) 

One of these inputs to the CPU is driven LOW 
by a device requesting an interrupt. 

This output (encoded in ST0-ST3 on 
AmZ8001/2) is used to acknowledge the 
interrupt request. 

These input and output signals are 
used to implement the daisy chain 
for each device. IEI is an input to a 
device which grants the device permission 
to interrupt, and IEO is the permission 
grant output by a device to a lower 
priority device on the daisy chain. 
The IEI of a lower priority device is 
driven by the IEO of the next higher 
priority device on the chain. Under 
quiescent circumstances (no interrupts) 
IEO output by a device follows the IEI 
input to the device. 

Each device has a number of control bits which are also involved in 

the interrupt protocol. 

Interrupt Under Service (IUS) 

Interrupt Enable (IE) 

Interrupt Pending (IP) 

This control bit when HIGH indicates 
that a device is currently having an 
interrupt serviced. It is not reset 
until the service is complete. The 
IUS bit provides the mechanism for 
inhibiting lower priority interrupts 
during a service routine. This bit 
is writeable by programmed 1/0. 

This control bit inhibits the device 
from requesting an interrupt when LOW. 
It is writeable by programmed 1/0. 

This bit records the devices interrupt 
requirement. Under suitable conditions, 
IP HIGH generates an interrupt request. 
This bit is readable allowing the 
device to be polled by the system. The 
bit is also writeable for debugging 
purposes. 
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Disable Lower Chain (DLC) 

No Vector (NV) 

Vector Includes Status (VIS) 

This is a writeable bit which enables 
the device to unconditionally force 
its IEO line LOW, disabling all lower 
priority interrupts. 
H I GH = force I EO LOW 

When HIGH this bit inhibits the device 
from returning any form of status 
during an Interrupt Acknowledge cycle. 

A LOW on this bit sets the status returned 
by the device to a value pre-loaded into 
the device. A HIGH on this bit allows 
the status returned to be modified by 
the device's internal status. 

47 



DEVICE PROTOCOL 

Interrupt generation from any AmZ8000 device must commence with 

the setting of the IP bit within the device. The IP bit signals the 

interrupt requirement to the device's interrupt logic. The IP bit 

being set will cause an interrupt request (INT= LOW) if the following 

conditions are met. 

IE I HIGH; 

IUS LOW; 

IEI is the permission to interrupt, handed down via the 

daisy chain from a higher priority device. Any device 

currently being serviced denies permission to interrupt 

to devices lower on the daisy chain. 

If the device is presently undergoing an interrupt service 

(IUS =HIGH), the interrupt request is delayed until 

service completion. 

INTACK=HIGH; During an interrupt acknowledge cycle, the daisy chain is 

shielded from any further interrupt requests, to allow the 

Chain to settle. Thus a device requiring an interrupt 

during an acknowledge cycle must wait until the completion 

of the acknowledge before issuing the request. 

IE HIGH; The device may have an internal Interrupt Enable control 

bit, writeable from the CPU. This is a convenient feature 

for inhibiting a device from interrupting. 

When one or more devices have met the above conditions, an interrupt 

request is made to the CPU. The latter, after some delay, acknowledges 

the request by executing an interrupt acknowledge cycle. During the 

interrupt acknowledge cycle the CPU ST0-ST3 signals signify one of the 

three types of interrupt acknowledgements. The interrupt acknowledge 

cycle achJeves two results. Firstly, it freezes the daisy chain, allowing 

one device to have priority over the rest, and secondly it captures any 

status returned by the device for interrupt identification. 
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The device prioritization is achieved independently of the INT 

line that signified the interrupt request to the CPU. Instead, the IP 

bit is used in the prioritization. An interrupt device is given 

priority over all other devices on the chain (IUS=HIGH) if the following 

conditions are met. 

IE I HIGH 

IUS LOW; 

IE HIGH; 

During the interrupt acknowledge cycle, permission is given 

from a higher priority device to a lower priority device to 

allow its IUS bit to be set. This permission is denied 

(IEI =LOW) if a higher priority device has IP HIGH and 

IUS LOW, indicating that it requires service from the 

CPU. Note that the conditions driving IEI LOW are 

different during the INTACK cycle, than at all other times 

in the system operation. 

A device is only given priority if it does not have an 

interrupt currently being serviced. 

The same condition applies as that discussed above. 
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Interrupt Sequencing and Acknowledgement 

The AmZ8000 CPU's respond to an interrupt request with an interrupt 

acknowledge cycle. The interrupt acknowledge cycle must accomplish two 

tasks. It must freeze the daisy chain from further stimuli (interrupts) 

and capture an identifier from the interrupting device that has highest 

priority on the daisy chain, defined by its IUS bit being set HIGH. 

Any device requesting a non-vectored or vectored interrupt should 

maintain the interrupt request until the acknowledge cycle. The non­

maskable interrupt is edge detected by the CPU and therefore need not 

obey this requirement. The Interrupt Acknowledge is indicated on the 

ST3-ST0 outpu~s: Three values on ST3-ST0 correspond to the three types 

of interrupt acknowledgement. ST3-ST0 outputs of LHLH respectively 

indicate a Non-Maskable Interrupt Acknowledge. ST3-ST0 outputs of LHHL 

indicate a Non-Vectored Interrupt Acknowledge and ST3-ST0 outputs of 

LHHH indicate a Vectored Interrupt Acknowledge. Figure 3.7 shows the 

timing of an acknowledge cycle. 

The start of the acknowledge cycle is indicated by a LOW on the AS 

output. At this time, no further interrupts will be allowed ensuring that 

the daisy chain will settle. The next event in the acknowledge cycle is 

timed from the leading edge of OS. The interrupting device that has the 

highest priority on the daisy chain sets its IUS bit on the leading edge 

of OS. Thus the interval from the start of the acknowledge cycle to the 

leading edge of OS must be large enough to ensure that any rippling through 

the daisy chain has settled. At the nominal clock frequency this interval 

is 960ns. If more time is required, the CPU WAIT line can be driven LOW 

at the appropriate time to cause the CPU to enter a wait state. Each wait 

state increases the interval specified above by 250ns (at the nominal clock 

frequency) . 

Following the setting of IUS, the device can return an identifier to 

the CPU. This data must be available on the CPU address/data bus 420ns 

after the leading edge of OS at the latest. If the device requires more 

time to return the identifier, the CPU WA.IT line can be driven LOW at the 

appropriate time. The CPU indicates data capture by driving OS HIGH. 

The data need not be held val id by the device for any further time. 
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Figure 3-7. Interrupt Acknowledge Cycle. 
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OMA Operation 

The third type of 1/0 connection ls the direct memory access (OMA) 

interface. If a peripheral device requires attention, it does not interrupt 

the CPU, but requests service from a OMA Controller (DMAC). The DMAC 

then requests the bus from the CPU and performs the necessary system 

transaction with the CPU inactive. Following completion of the transaction, 

the DMAC returns the bus to the CPU. The advantages of such a scheme are 

two-fold. First, the DMAC may be able to perform transactions between 

1/0 and memory more efficiently than the CPU. Second, the overhead 

involved in obtaining the bus from the CPU may be significantly less than 

the overhead involved in a peripheral device directly interrupting the CPU. 

The main functions of a DMAC are bus arbitration to de-activate the 

CPU during a OMA transaction and bus manipulation, to effect the required 

transaction. In the bus environment, the CPU is the default bus master, 

and always regains control of the bus following OMA activity. The CPU 

cannot use the bus arbitration facilities to gain control of the bus, but 

can only give the bus away and passively wait for its return. The 

prioritization of devices requesting the bus from the CPU is implemented 

as a daisy chain. Figure 3.8 shows the daisy chain configuration, which 

is implemented as three signals. 

BRQ: Bus Request (Input). This CPU line is driven LOW by a 

device to gain control of the bus. It is also used as a 

status line by the peripheral device prior to the issuance 

of a request, to avoid clashes. 

Bus Acknowledge (Output). This signal is output by the 

CPU and when LOW informs the external devices that is has 

given up bus mastership. 
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Figure 3-8. Bus Request Daisy Chain. 
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BAO: 

BAI: 

Bus Acknowledge Out (Output). This signal is output by 

each peripheral device and is used in the implementation 

of the daisy chain. When LOW it signifies acknowledge. 

Bus Acknowledge In (Input). This peripheral input line 

is driven from the BAO of the next higher peripheral 

on the chain. When LOW it signifies Acknowledge. 

The BRQ line is bidirectional, and is used as both a status line 

and the request line. The daisy chain is implemented by means of the 

bus acknowledge in and bus acknowledge out signals which pass down the 

the acknowledge from a higher priority device to a lower priority device. 

The protocol each device must obey is shown in Figure 3.9. If a 

device detects a requirement to use the bus its first action is to 

examine the BRQ input. If this is active (LOW) then either another 

device is requesting or has control of the bus and a Bus request cannot 

be made. The device therefore requests at a later time. If the BRQ 

line is inactive, then the device is able to drive BRQ LOW, and request 

the bus. The bus acknowledge is given by the BUSAK signal LOW from the 

CPU. The acknowledge is given to the highest priority device on the 

bus and is passed down the daisy chain to the highest priority device 

that had requested the bus. A requesting device may only use the bus 

on receipt of the acknowledge. Until then the device remains with the 

request asserted LOW. After having used the bus, the device deactivates 

its request, releasing control of the bus and passing the acknowledge on 

down the daisy chain. In the initial contention for the bus, one or more 

lower priority devices may have contended unsuccessfully with the device 

that gained control of the bus. These devices continue to assert their 

request and will use the bus when it is released. The CPU does not regain 

the bus until all the devices involved in the contention have been granted 

the bus. Note that these multiple requests can only occur in the interval 

between a device inspecting the BRQ 1 ine and then asserting its BRQ 

output i.e. during this interval several devices can each assert their 

BRQ 1 i nes. 
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In addition to bus arbitration, the OMA interface must generate 

the control signals necessary for managing the transactions between the 

1/0 device and memory. When the CPU is rendered inactive by the bus 

arbitration, A00-A015, ST0-ST3, AS, OS, R/W, B/W, N/S andM'RE'Q all 

enter the high impedance state. At this point these signals must now 

be generated by the OMA interface, which must emulate the CPU in its 

control of the system. 

ACTIVATE 
BRO (OUTPUT) 

TERMINATE USE; 
DEACTIVATE BRO 

Figure 3-9. Bus Request Protocol. 

55 



Bus Request/Acknowledge Sequencing 

A OMA interface requests controi of the bus by driving the BUSRQ 

signal LOW. The CPU responds to the request by driving the BUSAK 

output LOW some time later, as shown in Figure 3. 10. The latency 

involved here will most frequently be between 3 and 6 clock cycles, 

with a possible worst case of 20 clock cycles. After this latency period, 

the CPU drives its BUSAK output LOW. At this time the CPU bus signals 

(AS, AD0-AD 15, MREQ, OS, ST0-ST3, B/W, R/W and N/$) wi 11 a 11 be in the 

high impedance state, allowing the OMA interface to take control of the 

bus. 

When the OMA interface has finished using the bus, it must drive 

the CPU BUSRQ input HIGH. After 1-2 clock cycles, the CPU responds by 

driving the BUSAK output HIGH. By this time the OMA interface should have 

ceased driving the bus signals allowing the CPU to regain control of the 

bus and recommence execution. 

ADO-AD15 

MREQ,Ds 
STO-ST3 eiW, RiW. NI'S ______________ , 

i------ CPU BUS SIGNALS ARE DRIVEN ------i 
INTO HIGH IMPEDANCE STATE 

Figure 3-10. Bus Request/Acknowledge Timing. 
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Resource Request Operation 

The AmZ8000 family offers facilities for resolving requests from 

multiple CPU's for a common shared resource, such as a memory or 

peripheral device. The prioritization of multiple requests is handled 

using a daisy chain as shown in Figure 3.11. Each of the boxes 

represents a CPU with some interface iogic to be described beiow. 

The daisy chain is implemented using four signals. 

A CPU, 

Multimicro request (output). A LOW on this line 

constitutes a resource request and is asserted by a CPU 

that requires the resource. 

Multimicro Status (Input). A LOW on this line signifies 

resource busy. This line is inspected by a CPU prior to 

making a request. If the line is LOW, no request is made. 

Multimicro Accept In (Input). A LOW on this line which is 

passed serially through each of the daisy chained CPU's 

constitutes acceptance of a resource request. Acceptance 

is passed down through the daisy chain following a request. 

Multimicro Accept Out (Output). A LOW on this output 

indicates that a daisy chained CPU is passing the accept 

accept down to a lower CPU in the chain. The__.)( AO line 

drives the .){Al line of the next lower CPU on t~e chain. 

before being able to gain the resource, must obey a protocol 

which commences with an inspection of the .AST 1 ine. If this 1 ine is LOW 

the resource is busy and no requests can be made. If the 1 ine is HIGH, 

the resource is not busy and the CPU can generate a request by driving 

the )(RQ line LOW. This has the effect of driving the .){ST inputs of each 
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CPU LOW, inhibiting them from making further requests. The LOW on~RQ 

drives the_,,l(AI line of the highest priority CPU LOW. This indicates that 

the highest priority CPU may use the resource, if it has requested. If 

it has not requested, it drives theA_AO 1 ine LOW, which in turn drives 

the _AAI 1 ine of the next lower CPU LOW. In this manner, the accept is 

passed down the chain until is reaches a CPU which did make a request. 

That CPU interprets the LOW on./(AI as the accept, confirming that it 

has gained the resource. The requesting CPU also blocks the accept from 

travelling any further down the daisy chain, by maintaining it~AO 

1 i ne HIGH. 

In practical terms, the implementation of this four wire chain is 

wasteful of CPU pins. The AmZ8000 CPU's implement this prioritization 

with just two lines . 

.A_O: 

~I: 

Multimicro Out (Output). A LOW on this CPU output 

signifies a multimicro request. It may be driven LOW by 

CPU instructions. (MREQ and MSET) . 

Multimicro In (Input). This input serves a dual purpose 

in the protocol. It is inspected by CPU instructions 

(MBIT, MREQ), to determine the state of the resource and 

whether a request is accepted. 

The mapping of the CPU lines to the daisy chain is shown in Figure 3. 12. 

The .::::fO" 1 ine from the CPU drives the _,)(RQ 1 ine, through an open collector 

'S07 buffer. This 1 ine also controls an 1 Sl57 quad two input multiplexer 

which drives the CPU){_I line. If a request has not been made by that CPU 

iJ<.O =HIGH~ /{I is driven from the ){_ST 1 ine of the daisy chain. If a 

request has been made (AO= LOW) ,.f{_I is driven from the .)(Al 1 ine of the 

daisy chain. This multiplexing function does not restrict the protocol 

described above since the requesting CPU only examines the ./(ST line prior 

to drivingJ(_O LOW and furthermore, only examines the _,...t(AI line after driving 

the_){O line LOW. The 1 Sl57 multiplexer is also used to gate the)(_AI line 

to the){ AO 1 ine. If th:J(O 1 ine is HIGH,A AO fol lows /{Al. If the.)(O 

1 ine is LOW,_).(AO is set unconditionally HIGH inhibiting the accept from 

futher propagation down the daisy chain. 
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The internal CPU protocol that implements the request/accept 

behaviour makes the assumption that the interface described above is 

present in the system. The resource request is made with the MREQ 

instruction. The function of this instruction is shown in Figure 3.13. 

The instruction sets program flags dependent upon the outcome of the 

request. In it i a 11 y, the fi I 1 i ne is tested. Si nee the A. 0 1 i ne is HIGH, 

_A.I reflects the state of the_)(..ST daisy chain line. lf,,,L(I is LOW, the 

resource is currently busy and the instruction is aborted. lf_,,i<J is 

HIGH, the resource is not currently being used and~O is driven LOW 

initiating the request. If /\.0 is LOW, fi_I now ref1 ects the state of 

the fiAI 1 ine. 

The CPU enters a loop in which the_,)(_! line is repeatedly tested. 

It remains in the loop until a designated general register, which is 

being decremented reaches zero. This delay permits the daisy chain to 

settle following the resource request. During this time any multiple 

request conflicts will be resolved. The necessary delay can be calcu­

lated, for a given position in the chain by the number of gates in the 

~Al//(AO chain. This delay is then implemented by programming the 

general register which is decremented at one seventh the clock rate. 

If the_..)-(AI line is not LOW when it is tested for the last time in 

the loop, the CPU terminates the request, having failed to gain the 

resource. This result occurs when multiple requests occur and a lower priority 

requester fails to gain the resource. The setting of the Sand Z flags 

following the instruction indicates the outcome of the request. 

Other instructions enable the manipulation and testing of~O and 

._...,l.\I. The MSET instruction unconditionally sets..,.t{O, and the MBIT instruction 

it~{! and sets program flags. The MRES instruction unconditionally resets 

the~,l(_O line and is used by a CPU to signify that it has finished with the 

resource. Should the multi-micro facilities not be required, the MSET, MBIT 

and MRES instructions enable the~I and~O lines to be used as a 1 bit 

dedicated 1/0 port. 
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FLAGS 
s z 
0 0 RESOURCE NOT AVAILABLE 

0 1 RESOURCE NOT AVAILABLE 
(NO ACKNOWLEDGE) 

RESOURCE AVAILABLE 
& ACKNOWLEDGED 

ACTIVE 

ACTIVATE µ() LINE 

ACTIVE 

=0 

=1 

END 

Figure 3-13. Multimicro Request Protocol. 
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Interface Examples 

The preceeding sections of this chapter described the principles 

of CPU input output operation and the characteristics of the 1/0 

transaction which enable efficient transfers between the CPU and a 

peripheral device. This efficiency is augmented by a set of block 1/0 

instructions. The 1/0 characteristics also facilitate the connection 

of a wide spectrum of peripheral devices. Since the 1/0 instructions 

can transfer byte or word operands, both 8 and 16 bit peripherals can 

be interfaced to the CPU. The remainder of this chapter is devoted to 

typical peripheral interfaces that are commonly needed. Implementations 

will be discussed for the connection of parallel 1/0, serial 1/0, 

counter/timers, DMA and interrupt controllers. 
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Am9551 Interface 

The Am9551 serial interface chip can be connected to the CPU at 

two levels. At the programmed 1/0 level, the Am9551 can be polled by 

the CPU using regular 1/0 instructions. However, the Am9551 can also 

be connected to the AmZ8000 system at the interrupt level. Under these 

circumstances, the CPU need not poii the Am955i but wiii be interrupted 

when the latter requires service from the CPU. The interface is shown 

in Figure 3.14 together with the logic required to perform the interrupts. 

The programmed 1/0 connection is implemented for a minimum system. 

This need not be the case in general, but for the purpose of this 

publication is illustrative. 

A linear address decoding scheme is used which avoids the decoding 

of the port address. Instead the sense of individual address bits 

is used to select the device. The CPU address/data bus is split into 

separate buses using an AmZ8104 Octal Bus Tranceiver to buffer the lower 

half of the data bus and two AmZ8173 Octal 3-state Latches to hold the 

address valid for the whole 1/0 transaction. In this system the buffer 

is permanently enabled by grounding the output enable. The address 

latches are strobed with the CPU AS inverted and the latch outputs are 

permanently enabled by grounding the output enable. Thus an address is 

captured by the latches on the rising edge of AS, and remains valid until 

the next time AS goes LOW. The transmit/receive input to the data buffer 

is cont ro 11 ed synchronously using the R/W line 'anded' with OS. Thus 

the buffers are only able to drive the CPU address/data bus during the 

latter half of the read transaction and drive data out from the CPU at all 

other times. The data buffer control (Ri))is also used as the read command 

for the Am9551. The CPU R/W line and OS are also used to generate the 

write command to the Am9551 (WR). Since a linear addressing scheme is 

being adopted, the Chip Select (CS) line of the Am9551 can be driven from 

one bit of the 1/0 address. In fact, two bits are used to select either the 

command .A.m9551. Since the device is driven by the 

lower half of the CPU data bus, the 1/0 address should be odd to ensure 

correct CPU access. The two port addresses are 0005H for data and 0007H 

for commands. The Am9551 chip select signal is generated conditionally on 

an i/0 access which is decoded from the CPU STi-ST3 iines using one half 
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Figure 3-14. AmZ8000 to Am9551 Interface. 
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of a 74LS139 2 to 4 decoder. Since the least significant status line 

ST~ is unused, only a partial decode is available. For example, no 

distinction can be made between an internal operation and a refresh cycle. 

In some small systems, however, this and the other compromises shown may 

be tolerable. The advantage of this implementation is that the other 

half of the decoder package is available for handling the memory trans­

action decode, for use in memory interfaces. 

The programmed 1/0 connection described above puts a requirement for 

polling on the CPU. If an interrupt connection between the Am9551 and the 

AmZ8000 system is more desirable then a number of options are available. 

In the most general case, the transmitter ready (TXRdy) and receiver ready 

(RXRdy) lines from the Am9551 must be connected to one or more CPU interrupt 

inputs. This may be achieved as shown in Figure 3. 14 by adding an Am9519 

interrupt controller. The Am9519 will enable prioritization of the RXRdy 

and TXRdy signals from the Am9551 as well as supply vectors following an 

interrupt. The interface between the Am9519 and CPU is described in a later 

section. 

In certain circumstances the Am9519 could be eliminated and replaced 

with a direct connection to the CPU. Now any simultaneous TXRdy and RXRdy 

interrupts will have to be resolved by the CPU and this may be done in the 

interrupt service routine. The CPU service routine must now also guard 

against repetitive interrupts from the same source since the TXRdy \Rdy 

lines from the Am9551 remain asserted after the interrupt acknowledge until 

the read/write data is transferred between the Am9551 and the CPU. This is 

most easily achieved by the correct programming of the interrupt masks within 

the flag and control word (FCW) in the new program status area that is loaded 

following the interrupt. 
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Am9511 Interface 

The Am9511 arithmetic processor is interfaced to CPU using the 

implementation shown in Figure 3. 15. The interface allows communication 

between the two units at both the programmed 1/0 level and the interrupt 

level. The design also illustrates the demand wait interface discussed in 

Chapter 1. The CPU address/data bus is buffered by a bidirectional octal 

buffer (AmZ8104). The direction of data flow through the buffers is 

controlled by R/W and OS. When the CPU is in the latter half of a read 

cycle Cos= LOW) the buffer drives data onto the CPU address/data bus. 

Otherwise the buffer is driving data into the Am9511. This implementation ensures 

that during a write, the write data is val id after the trailing edge of OS should 

it be required. The port address is latched through two AmZ8173 Octal Latches 

using AS inverted as the latch enable. The latches are transparent while AS 

is LOW and capture the valid address when AS goes HIGH. The address remains 

valid until AS goes LOW in the next machine cycle. The latched address 

passes to two AmZ8121 8-bit comparators which generate a match on port 

address OOllH or 0013H. Port 0013H is accessed as a command port to write 

a command or read device status for the Am9511 and port OOllH is accessed 

as a data port to read or write data from the Am9511. Since the comparator 

must match both addresses, address bit 1 is not included in the comparison. 

The match generates a chip select if the operation is a normal 1/0 trans-

action. The latter is decoded from the CPU ST0-ST3 outputs which are input 

to a 74LS138 decoder. The decoder also generates interrupt acknowledge 

signals for both the vectored and non-vectored interrupts. (VIACK and NVIACK 

respectively). The C/Dinput to the Am9511 is driven from latched address 

bit 1. If this bit is HIGH, the Am9511 interprets a transaction as write 

command or read status. If this bit is LOW, then the transaction is inter-

preted as a data transaction. Since both addresses are odd, data transfers 

will always take place on the lower half of the CPU address/data bus. This 

is appropriate to the data connection described above. 

The Am9511 requires a RD or WR command to indicate read or write trans­

actions respectively. As well as indicating the direction of data flow, these 

command lines also provide timing information. The signals are generated 

from the CPU OS line and the R/W line. If R/W is HIGH, indicating a read, 

OS enables the RD 1 ine. If R/W is LOW, indicating a write, OS enables the 

WR line. By clocking the Am9511 with the CPU clock (divided by 2) any 
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synchronization problems are eliminated. The division is achieved by 

means of a toggling 74LS74 clocked with a TTL version of the CPU clock. 

The Am9511 outputs a PAUSE signal to indicate that it is not ready 

for the completion of a transaction. The PAUSE signal is applied to the 

WAIT input of the CPU. The delay involved in the Am9511 asserting the 

PAUSE line is too large to cause the CPU to enter the required wait state. 

Thus a fixed wait implementation is included in addition to the demand 

wait and causes the CPU to execute one conditional wait cycle, following 

the unconditional wait cycle associated with 1/0 transaction, The fixed 

wait is implemented using a 74LS195A shift register. The shift register 

is clocked by the trailing edge of the CPU clock. When AS is LOW, the 

register is loaded. Thereafter the register shifts on each trailing clock 

edge. With the shift register inputs programmed as shown, one additional 

wait state is inserted in the CPU timing, if CS is active for the Am9511. 

This additional fixed wait cycle gives the PAUSE line enough time to cause 

the CPU to enter extra additional wait cycles, should they be required. 

This implementation includes necessary connections for the Am9511 to 

interrupt the CPU on completion of a task. The Am9511 END line is directly 

connected to the NVI line of the CPU. The NVIACK signals decoded from 

ST0-ST3 drives the Am9511 EACK line, enabling the CPU to acknowledge the 

Am9511 interrupt. A flip flop clocked by AS is included in this path to guard 

against spurious NVIACK pulses erroneously acknowledging the Am95ll Interrupt. 

The use of the Non-Vectored Interrupt is satisfactory in a system with only 

a few sources of interrupt. Since the interrupting device is not returning 

a vector, the CPU must poll each of the devices to determine the source of 

the interrupt. The greater the number of devices the larger the overhead 

spent in polling. Thus multiple devices could be interfaced to the AmZ8000 

using the Am9519 interrupt controller. This is shown in a later example. 
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Am9519 Interface 

The application involving the connection of the Am95ll to the 

AmZ8002 highlights the limitations of a direct interrupt connnection 

to the CPU. As the number of interrupting devices grows, the time spent 

by the CPU in determining the source of an interrupt becomes a significant 

overhead. The inciusion of the Am95i9 interrupt Controiier in the system 

relieves the CPU of a large part of this task and also serves to prioritize 

multiple interrupts. 

The implementation is shown in Figure 3. 16. As described previously, 

AmZ8173 latches and AmZ8104 bidirectional buffers are used to generate 

separate address and data buses from the CPU address/data bus. The latched 

address is input to two AmZ8121 8-bit comparators which generate a 

Chip Select (CS) for the Am9519 if the address is of value 0021H or 0023H 

and a normal 1/0 transaction is being executed. Latched address bit 

LADDRl is not included in the comparison, but drives the C/D input to the 

Am9519. This defines address 0021H as being the address for data trans­

actions and address 0023H as being the address for command/status transactions. 

The lower half of the buffered data bus drives the bidirectional 

data bus of the Am9519. As in previous interfacing applications, this is 

applicable with the choice of odd port addresses, should byte 1/0 operations 

be executed. The reader wi11 reca11 that in the above situation transactions 

take place on the lower half of the data bus. The read and write commands 

required by the Am9519 (RD and WR respectively) are generated with half of 

a 74LS139 decoder. OS is aplied to the enable input and R/W is applied to 

the least significant select line. The most significant select line is 

grounded. This is an alternative solution to the discrete gate implementation 

previously suggested. 

The Am9519 makes a vectored interrupt request to the CPU using the 

Group Interrupt line (GINT) which should be a LOW active output from the 

Am9519. GINT is reset by the CPU vectored interrupt acknowledge (VIACK). 

The latter is decoded from the status lines and strobed into a flip-flop 

on the trailing edge of AS. The inclusion of the flip-flop ensures that 

no spurious pulses from the status decode may erroneously cause an interrupt 

acknowledge. 
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The Am9519 should be programmed to respond to a single interrupt 

acknowledge which in turn results in the transfer of 1 byte of interrupt 

status to the CPU. This is sufficient since the vectored interrupt 

mechanism in the CPU requires only 1 byte of status to form the vector. 

Since the Am9519 returns unique vectors for each of the 8 possible interrupts 

it receives from the devices, the interrupt acknowledge cycle enables the 

CPU to determine the source of the interrupt without any further overhead 

The interrupts input to the Am9519 from the devices may be levels or pulses. 

If levels are employed, then some form of request reset will have to be 

included. In the implementation shown, pulsed interrupt requests are 

assumed, and should be connected to the IREQ inputs of the AM9519, which 

should be programmed for Low Active interrupt requests. Jn the case of the 

AM 9511 device, the interrupt request will be a pulse if the EACK 1 ine is 

grounded. (This line was connected to the CPU acknowledge output in earlier 

examples. 
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AM9555A Interface 

The AM9555A programmable 1/0 interface provides 24 programmable 1/0 

pins. Its interface with the CPU is shown in fig. 3. 17. The address/ 

data bus is divided into seperate busses by m.eans of AM78173 octal 3-state 

latches driven from the CPU AS signal, and AmZ8104 octal tranceivers. 

This technique has been employed extensively in this chapter and therefore 

is not reiterated here .. The Am9555A requires a chip select (cs) and this is 

derived from two AmZ8121 comparators. Selected address bits are compared 

against an address programmed by selectable jumpers, on the second input 

of the comparator. If the jumper is present, the comparator input is 

pulled LOW indicating a '0'. If the jumper is absent, the comparator 

input is pulled HIGH by the resistor connected to +SV. The latter con­

dition signifies a '1 '. The least significant address bit (ADDR0) must 

be HIGH to enable CS. This requirement arises since the peripheral is 

connected to the lower or odd half of the data bus. During a byte trans­

action, this half of the data bus is accessed by means of an odd port 

address i.e. ADDR~ is HIGH. Address bits ADDRl and ADDR2 are not included 

in the comparison but are used internally by the peripheral. The remaining 

13 address bits are user definable by means of the jumper connection to 

enable the appropriate CS. 

The Am9555A RD and WR command lines are driven by a 74LS139 2 to 4 decoder. 

The decoder enable is driven from OS and the R/W line selects one of two 

outputs. The second select 1 ine is grounded. The other half of the LS139 

decoder is used to decode an 1/0 transaction from the CPU status lines ST3-

STI. ST0 is omitted from the decode, which is now an OR function of Special 

1/0 and Nermal 1/0. However this is not a significant constraint in the 

example shown, which need not differentiate between a special and normal 1/0 

transaction. 
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Am9513 Interface 

The Am9513 system timing controller can be used in the AmZ8000 

system to implement many timing facilities. The implementation shown in 

Figure 3.18 includes a real-time interrupt facility, but other tasks 

such as baud-rate generation, can also be delegated to the Am9513. 

The device is capable of handling 16-bit transactions with the CPU, 

and thus the 16-bit CPU address/data bus is buffered through two AmZ8104 

tranceivers before driving the 16-bit data bus of the Am9513. The address 

present on the CPU address/data bus during the early part of the trans­

act ion is latched in AmZ81 73 3-state latches. The inverted AS signal 

drives the latch enable. Thus the address remains latched for the whole 

transactions until AS returns LOW in the following machine cycle. 

The three latched address bits LADDR4-LADDR2 are input to a 74Sl38 

3-8 decoder, which generates 8 LOW-active Chip Select signals (CS~-CS7). 

CS~ when LOW, selects the Am9513. The remaining 7 chip selects may be 

used in other areas of the system. The least significant latched address 

bit (LADDR0) when LOW enables the decoder which generates CS~-CS7. This 

ensures that the 16-bit transactions between the CPU and the Am9513 are 

carried out with an even port address (address bit 0 =LOW) The command/ 

data line of the peripheral is driven from LADDRl. Thus the control port 

is address 0002H and the data port is address OOOOH. The read and write 

commands (RD & WR) for the Am9513 are generated from R/W and OS. If R/W 

is HIGH indicating a read, OS generates a RD command. If R/W is LOW, 

indicating a write, OS generates a WR command. 

If the Am9513 chip is used to implement a real-time interrupt facility 

then some form of interrupt to the CPU must be provided from the peripheral. 

In this implementation one of the Am9513 OUT signals is connected through 

an inverter to the CPU NVI input. The Am9513 should be programmed to output 

a HIGH active OUT signal. Thus a HIGH or OUT causes a LOW on NVI interrupting 

the CPU. If vectored interrupts are required, then some form of interrupt 

controller such as the Am9519 should be employed in place of the direct 

connection between the Am9513 and the CPU NVI interrupt. 
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Am9517 Interface 

The A~9517 D.M.A Controller (DMAC) can provide some useful advantages 

to an AmZ8000 system, both in terms of increased throughput and reduced 

latency in responding to peripheral requests for attention. The DMAC 

performs transactions between memory and 1/0 (or memory to memory) by 

gaining bus mastership from the CPU. The DMAC then controls the bus by 

generating the necessary control and timing signals. The interface is 

shown in'Figure 3. 19. 

Bus Exchange: 

The bus exchanges between the CPU and DMAC are controlled by the 

Hold Request (HREQ) and Hold Acknowledge (HACK) signals at the DMAC, and 

the Bus request (BUSRQ) and BUS acknowledge (BUSAK) lines from the CPU. 

When the DMAC requires mastership of the bus, to perform a transaction, 

it drives HREQ HIGH. HREQ is inverted and drives the CPU BUSRQ line. Some 

time later, the CPU indicates that is has given away bus mastership and 

driven its bus control signals into the high impedance state by driving its 

BUSAK output Low. BUSAK is inverted and drives the DMAC HACK input HIGH. 

The DMAC responds to HACK going HIGH by enabling its bus control signals 

out of the high impedance state, and taking control of the bus. 
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Address and Data busses : 

The DMAC has seperate 8-bit data and 8-bit address busses. The 8-bit 

address bus is used for outputting the lower half of the 16-bit memory 

address. The 8-bit data bus, as well as handling all data into and out 

of the DMAC, is used for outputting the upper half of the 16-bit memory 

address, which is latched external to the DMAC by an AMZ8173 3-state latch. 

The latch is strobed by the DMAC address strobe (ADSTB) whenever the upper 

half of the address requires updating. Thus in a block transfer, for 

example, from sequential memory locations, the overhead associated with 

the address/data multiplexing only occurs once every 256 transfers. The 

8-bit data bus is buffered by two AmZ8104 tranceivers, which fan the byte 

data to both halves of the 16-bit system bus during a DMAC output trans­

action. Similarly the buffers are used to steer either the upper or 

lower half of the bus onto the 8 data lines of the DMAC during a DMAC 

input transaction. With this configuration, memory to memory transfers, 

which are inherently implemented using the DMAC dataflow, can take place 

between any two memory byte locations. The remaining types of transfer 

(memory to 1/0 and i/O to memory) are handled without using the DMAC 

dataflow. In this situation, peripherals on the lower half of the bus 

may only access odd memory byte locations, and peripherals on the upper 

half of the bus may only access even memory byte locations. Thus a 

block transfer from a peripheral device to memory may have to be followed 

by a byte pack routine, if the CPU requires the byte string to occupy 

contiguous odd and even byte locations in memory. 

The CPU shared address data bus is demultiplexed into separate address 

and data buses. Two AmZ8104 tranceivers drive the data bus and two AmZ8173 

latches strobed with the CPU AS output hold the address valid for the 

duration of the transaction. 

Chip Select Generation: 

A DMAC Chip Select (cS) is required for CPU access to the DMAC. This 

is generated from a comparison of the most-significant 12 address bits, 

since the least significant 4 address bits are input to the DMAC. The CS 
is only enabled when an 1/0 transaction is underway, decoded from the CPU 

status lines. 
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Bus Command Generation: 

The DMAC carries out transactions using a set of four commands. 

Memory read (MEMR) and memory write (MEMW) are DMAC outputs which are 

generated during memory accesses. 1/0 read (IOR) and 1/0 write (IOW) 

may be inputs or outputs for the DMAC. If the DMAC is in control of 

the bus, !OR and !OW are DMAC outputs generated during peripheral 

accesses. If the CPU is in control of the bus, IOR and IOW are inputs 

to the DMAC generated by the CPU when the latter is accessing the DMAC 

control registers. When the DMAC has control of the bus these commands 

are generated directly. However, they must be decoded from the CPU 

control signals when it is in command of the bus. 

The command signals are generated using a 74LS139 dual 2-4 decoder 

cascaded with a 74LS157 quad 2:1 multiplexor. The 74LS139 decodes the CPU 

status lines ST3-STi to generate NIOSIO or MEMACC, indicating peripheral 

or memory access respectively. The 74LS157 multiplexor generates one of 

four commands, dependent upon whether NIOSIO or MEMACC is LOW and whether 

R/W is indicating a read or a write. The command that is generated is 

enabled by OS, which is applied to the 74LS157 multiplexor enable. Thus 

the commands generated are synchronous with OS. This ensures the necessary 

data set up and hold times are met for the peripheral and memory devices 

on the bus. Finally, the four command lines are buffered by an AmZ8140 

3~state buffer, before being output onto the system bus= 

Address and Data Bus Buffer Control: 

In some circumstances, the DMAC is a responding device in the system, 

such as during CPU accesses. At other times the DMAC is the bus master, 

handling transactions between system components. The control requirements 

for the DMAC address and data buffers are different for both cases and thus 

the final stage of control generation is implemented through a 74LS153 

multiplexor. The multiplexor select lines are driven from the CPU BUSAK 

iine (which defines whether the CPU or DMAC 1s in control of the bus) and 

an OR of MEMW and IOW which defines a write transaction. 
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BUSAK = HIGH (CPU Controls bus) 

If the CPU has control of the bus, the DMAC data buffers on both 

halves of the bus are enabled if CS is LOW and MMRD is LOW. The 

latter signifies that neither IOW or MEMW are LOW but since CS is LOW 

IOR must be active. Thus the CPU can read byte data on either the upper 

or lower half of the bus. This requirement arises since the control 

locations for the DMAC must be at 16 sequential addresses. Thus the CPU 

may access the DMAC with both odd and even addresses and hence must be 

able to read data from both halves of the bus. 

If the CPU is writing into the DMAC, then MMRD will be HIGH since IOW 

is LOW. In these circumstances the bus buffer on the lower half of the bus 

is enabled if CS is LOW. Thus the data for the DMAC is always written from 

the lower half of the bus. The transmit/receive input to the buffer is 

derived from a 74LS258 quad 2 input multiplexer selected by BUSAK. T/R 

is LOW (data out of DMAC) when the CPU is performing an 1/0 read (IOR = LOW) 

and chip select (CS) is LOW. 

The corrmands generated by the CPU are enabled through an AmZ8140 

buffer if BUSAK is HIGH, indicating CPU control of the bus. 

BUSAK = LOW (DMAC controls the bus) 

If the DMAC has control of the bus, it must be able to perform byte 

writes or reads on either half of the bus for memory to memory transfer. During 

other transfers; between memory and 1/0 the DMAC data flow is not utilized. 

Memory to memory transfers are implemented in two transactions. A 

memory read followed by a memory write. Other transfers, however, are 

implemented in one transaction. If the read part of a memory-memory 

transfer is underway, MMRD will be LOW since both IOW and MEMW will be 

HIGH. Thus the 74LS153 outputs will be driven from the least significant 

address bit ADDR0. If ADDR0 is HIGH, the odd buffer will be enabled. 

If ADDR0 is LOW, the even buffer will be enabled. Thus the OMA will read 

data off the upper or lower half of the bus, dependent upon the least 
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significant address bit. If MMRD is HIGH, the either IOW or MEMW 

is LOW, and the 74LS153 outputs are driven from IOACC. If IOACC is 

HIGH, indicating an 1/0 transfe~ both buffers are disabled. If IOACC 

is LOW signifying the write part of a memory-memory transfer than both 

buffers are enabled and the DMAC writes the byte data onto both halves 

of the bus. If the DMAC controls the bus, the address latch holding 

is permanently enabled, the OE is driven 

from BUSAK. 

The control for the CPU address and data buffers is more straight 

forward. The AmZ8104 data buffers are enabled if the CPU BUSAK signal 

is HIGH indicating that the CPU has bus oontrol. The T/R buffer input 

is driven LOW (data into CPU) if an 1/0 or Memory read is taking place 

(IOR or MEMR =LOW). The address latches are strobed with the inverted 

AS line and the latch outputs are enabled if BUSAK is HIGH. 

Peripheral Connection: 

The data flow connection between the peripheral device and the AmZ8000 

system remains unaltered by the presence of the DMAC. However, the 

peripheral must now gain the attention of the DMAC when service is required. 

This is achieved by means of the DREQ and DACK lines which implement a 

request/acknowledge handshake with the peripheral device. For more 

detailed information on the DMAC - peripheral interface, see'AMPUB073 -
11The Am9517 Multimode Direct Memory Access Controller". 
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TELEX 0·524535 

U.S. and Canadian Sales Representatives 

ALABAMA 
Eleclrornc Manufacturers Agen!s 
2309 Starmount Circle S W 
Huntsville Alabama 35801 
Tel (205) 533-6440 
TWX 810·726·2110 

CALIFORNIA 
(Nol1hem) 
12 ln-::orpora1ed 
3350 Scon Boulevard 
Swte 1001 Bldg 10 
Santa Clara. Cahforr1a 95050 
Tel {406J 988-3400 
TWX 910·338·0192 

(Southern) 
Bestronics Inc 
7827 Convoy Coun 
Su11e 407 
San Diego. Calttorrna 921 1 1 

Tel :714)278-2150 
TWX 910·335·1267 

CANADA {Eastern) 
V1te1 E.1ec1ronics 
3300 Cote Vertu Suite 203 
S1 Lauren! Quebec 
Canada H4R 287 
TeJ 1$14)331-7393 
TWX 610-421-3124 
TLX 05-821762 

CANADA (Western) 
Venture Electronics 
PO Bo< 3034 
Bellevue. Washington 96009 
Tel (206) 454-4594 
TLX 32·8951 

Shtpp!f"IQ 
1645 Aambhng Lane 
Bellevue. Washington 98004 

COLORADO 
R2 Marketmg 
10018 No. Regency Place 
PO Box 554 
Parker. Colorado 80134 
Tel i303) ll41·5822 

CONNECTICUT 
Sc1en11fic Components 
1185 South Main Street 
Cheshire. Connecticut 064 1 O 
Tel (203) 272-2160 

FLORIDA 
Conley & Associates Inc 
PO Bo< 309 
235 SoU1h Central Ave 
Oviedo Florida 32765 
Tel !305/ 365-3283 
TWX 810·856·3520 

Conley & Assoc1a1es lnc 
1612 NW Second Ave 
PO Sox 700 
Boca Raton. Florida 33432 
Tel (3051 395-6108 
TWX 510·953·7548 

MID-AMERICA AREA 
Advanced Micro Devices 
1111 Plaza Drive Swte 420 
Schaumburg llhno1s 60195 
Tel (312) 882·8660 
T'NX 910-291-3589 

Advanced Micro Devices 
8009 34th Ave. S 
Bloomington, Minnesota 55420 
Tel (612) 854·6500 

1612) 854·6520 
TWX 910-576-0929 

Advanced Micro Devices 
50 McNauoh10I" Road 
Suite 201 -
Columbus. Ohio 43213 
Tel (614) 457-7766 
TWX 810·339·2431 

Advanced Micro Devices 
33150 Schoolcrah 
Livonia. M)Ch1gan 48150 
Tel (313) 425-3440 
TWX: 810-242-8777 

Advanced Micro Devices. S.A 
27 Blvd. General Vautnn 
06400 Cannes. France 
Tel· (093) 48.59.75 
TELEX 470966 

EBV-Elektronrk 
Oststr 129 
0-4000 Ouessek:iorf 
Tel. (0211) 84846 
TELEX: 0-8587267 

EBV-Elektrornk 
In der Memeworth 
0·3006 Burgw-1 1 
Tel. (05139) 45 70 
TLX 0·923694 

EBV-Elektronik 
Myhusstr 54 
0-6000 Frankfurt 1 
Tel: (0611) 72 04 16 
TELEX· 0·413590 

EBV-Elektronlk 
AlexaoderSlr 42 
0-7000 Stuttgart 1 
Tel (0711) 24 74 81 
TELEX 0·722271 

Elbatex GmbH 
C~llHmstrasse 24 
0-7100 Heilbronn 
Tel (07131) 69001 
TELEX 0-726362 

Nordelektrornk Vertneos GmbH 
Bahnhofstr. 14 
0-2301 Kiel-RalSdOrf 
Tel. (04307) 54 83 

Nordelektron1k Vertriebs GmbH 

~~~;'~~~38-240 
Tel· (04106) 40 31 
TELEX 0·214299 

MEV-Mikro Elektronlk Vertneb GmbH 
Muenchnerslrasse 16A 
D-8021 Deming 
Tel (08170) 7289 
TELEX. 0·527828 

HOLLAND 
Arcobel BV 
Van Atmondesnaat 6 
PO Bo<J<M 
Oss 
Tei (04120) 24200 

(0412012?574 
TELEX 50835 

HONG KONG 
Ace Enlerpnses 
Suite 1212 
363 Nathan Road 
Kowlooo 
Tel 3·302925 27 

Electrornc Manufacturers Agents 
6755 Peachtree lndus1ria! Blvd N E 
Sutte 103 
Atlanta. Georgia 30360 
Tel (404) 449.9430 
TWX 61O·766-0430 

ILLINOIS 
OastS Sales. lnc 
1101 Towne Road 
Elk Grove Village. Hlmo1s 60007 
Tel 1312) 640-1850 
TWX 910·222·1775 

INDIANA 
C-S Electronic Sales Inc 
2122-A M1arru Street 
South Bend, Indiana 46613 
Tel (219) 291-6258 
TWX 610·299-2535 

C·S Electronic Sales Inc 
1157-B South Jackson 
Frankfor1. Indiana 46041 
Tel \317)659-1674 

IOWA 
Lorenz Sales. Inc 
5270 No Park Pl. NE 
Cedar Rapids Iowa 52402 
Tel (319) 393·6912 

KANSAS 
Kebco Manufacturers 
7070 West 107th Slreer 
Suite 160 
Overland Park Kansas 662 1;:: 
Tel (913) 649·1051 
TWX 910-749-4077 

MID-ATLANTIC AREA 
Advanced Micro Devices 
40 Crossway Park Way 
Woodbury, New York 11797 
Tel. (516) 364·8020 
T'NX. 510-221-1819 
Advanced Micro Devices 
6806 Newbrook Ave 
E Syracuse, New York 13057 
Tel (3'5) 437-7546 
TELEX. 93-7201 
Advanced Micro Devices 
2 Kilmer Road 
Edison. New Jersey 06817 
Tel: 1201 I 985·6800 
TWX· 710-480-6260 
Advanced Micro Devices 
1 G1bralter Piaza, Suite 219 
110 Gibralter Road 
Horsham. Pennsytvarna 19044 
Tel (215) 441·8210 
TWX 510-665-7572 
Advanced Micro Devices 
82 Washington Street 
Poughkeepsie, New YM 12601 
Tel: (914) 471·8180 

GERMANY 
Advanced Micro Devices 
Mikro-Elektronik GmbH 
Aosenhe1rner Str. 139 
D-8000 Muenchen 80 
Tel: (089) 401976 
TELEX 0·523883 

INDIA 
SRI RAM Associales 
778 Blue Sage Drive 
Sunnyvale. CA 94086 
Tel: (408) 737·2692 
TELEX: 348369 

Hindustan Semiconductor 
24 Sayed Abdulla 
Brelvi Road 
Som tray 
Tel: 618105/812772 
TELEX. 011-2726 APAR IN BOMBAY 

ISRAEL 
Talv1ton Electronics 
P.O. Box 21104 
9, Bittmor Street 
Tel-Avtv 
Tel: 444572 
TELEX· VITKO 33400 

ITALY 
AMO-Elenrornca. S R L 
Via Pascoti. 70·4 
Ground Floor 
l-20133M1lan 
Tei. (02) 2364284 
TELEX.: AMO Elettrornca 

Via Pascot1 70-TF2364264 
via Mitan P.O TELEX 311250 PPMI 

lndelco. S.R L Rome 
Via C. Cok>ml:x>, 134 
1-00147 Rome 
Tel (06) 5140722 
TELEX 611517 

lndelc<l. S.R L ~ Milan 
Via S. Sunphcaano. 2 
1·20121 Milan 
Tel (02) 862963 

JAPAN 
Advanced Technology CorporatlOr 

of Japan 
Tashi Btdg., 3rd Fbot' 
No 8. M1nam Motomachi 
Shm1uku·ku. Tokyo 160 
Tel 103) 265-9416 

OamroEiedronics 
Kohraku Budding 
1·8 1·Cliome. KorcN<u 
Bunkyo-ku. Tokyo 
Tel 103) 813·6876 

Damteh1 Electronics 
K1ntetsu-Takama 8Utldtng 
38-3 Takama-cho 
Narash1 630 

ISi Ltd 
8-3. 4-Chome. Lldabash1 
C'1lyoda-ku. Tokyo 102 
Tel 1031 264·3301 

MICHIGAN 
S A I Marketing Corp 
PO.Bo<N 
Bnghton. M1chtgan 48116 
Tel (313) 227-1786 
TWX 810·242·1516 

Sh1ppmg 
First Federal Banio: Building 
Surte 109 
9880 E. Grand Atver Avenue 
Bnghlon. Mochigan 41!116 

MISSOURI 
Kebco Manufac1urers 
75Worth1ngton Drive. Ste 10 
Mariland Heights Missouri 63043 
Tel (314) 576·4111 
TWX 910·764·0826 

NEBRASKA 
Lorenz Sales 
2809 Garheld Avenue 
Lincoln. Nebraska 68502 
Tel (402) 475-4660 

NEW MEXICO 
The Thorson Company 
1101 Cardenas. NE 
Suite 109 
Albuquerque, New Mexico 87110 
Tel (505) 265·5655 
TWX 910-989-1174 

NEW YORK 
Nycom. ln<: 
lOAdler Dnve 
East Syracuse. New York 1305? 
Tel (315) 437-6343 
TWX 710·541-1506 

NORTH CAROLINA 
Burgin-K•eh Associates l"lt'.. 
PO Bo)( 19510 
Aa1e1gti North Carof;ra "7509 
Te' !919) 781·1100 
TW;( 510-928-054(' 

NORTHEAST AREA 
Advanced Mlcro Devices 
300 New Boston Park 
Woburn. Massachusetts 10801 
Tel (617) 933·1234 
TWX 710-348-~ 332 

JAPAN 
Advanced Micro Devices. K.K 
Dai-San Hoya Buildtng 
1·8-17, Kam1takau:lo 
Suginam1-ku, Tokyo 168 
Tel. (03) 329-2751 
TELEX: 2324064 

Kanematsu-Denshi K.K 
Takanawa Bkjg., 2nd Flcio!' 
19-26, 3-Chome. Takanawa 
Minatoku. Tokyo 108 

Microtek. Inc 
Nano BlMlding 
7-2.-~ NishishtllJukU 
Shm1uku-ku. Tokyo 160 
Tel· (03) 363·2317 
TELEX· J28497 

NORWAY 
NS KjeN Bakke 

~~6~~x~43 
N-2011 Stroemmen 
Tel: (02) 711-872 

(02) 715-330 
TELEX: 19407 

SOUTH AFRICA 
South Continental Devices (Pty.) Ltd 
Suile516.5thFIOOf 
Randover House 
Cof Hendrik Verwoerd 
Dover Rd .. Aanllurg. Tvl 

Mail Address: P.O Box 56420 
Ptnegowrie2123 

Tel. '8·7125 
TELEX· 63324 

SOUTH AMERICA 
lntectra 
2349 Charleslon Road 
Mountain Vtew. CA 94043 
Tel. (415) 967-8816125 
TELEX 345 545 

SPAIN 
Regula S.A 
Avda. de Ramdn y Caial. 5 
Madrid-16 
Tel 459 33 OQ,041oa 
TELEX 42 207 

SWEDEN 
Svensk T eletndustn AB 
Box 5024 
S-162 05 Va~ngby 
Tel (08) 890435 
TELEX 13033 

SWITZERLAND 
Kun Hirt AG 
Thurgauerstr 74 
CH-8050 Zuertch 
Tel· (00411) 512121 
TELEX. 0045·53461 

OHIO 
Dolfuss-Aoot & Co 
13477 Prospect Road 
StrongsvtHe. OhK> 44136 
Tel (216) 238-0300 
TWX. 610-427-9141! 

Oolfuss-Rool & Co 
354 Stlvertree Lane 
CenteMlle, Ohio 45459 
Tel (513) 433-6776 

PENNSYLVANIA 
(Weolem) 
Bacon Electronic Sales 
115 South High Streel 
Wa1erford. Pennsylvania 16441 
Tel 1614) 796·2381 
TWX 510·699-6870 

(EHtern) 
GCM Associates 
1014 8elh6ehem Pike 
Eraenhe1m. Pennsytvan1a 19118 
Tel (215) 233·4600 
TWX 510·661 ·9170 

TENNESSEE 
(Western) 
Burgm-Kreh Assoc1a1es Inc 
350 E Race Stree1 
K1ngslon. Tennessee 37i63 

EMA 
11305 Silver Springs Drive 
Knoxville. Tenr-essee 37922 

(Eastern) 
Burgin-Kreh Associates In(. 
PO Box 268 
12 $k',line Or 
Kingslon Heights 
K1·19stv1 Te'lnessee 
Te-· 1E151 690-13'00 

SOUTHEAST AREA 
Advanced Micro Devices 
793 Ellc.ndge Landing. #11N 
L1nth1cum,Maryland 21090 
Tel (301) 796-9310 

Advanced Micro Devices 
1001 NW. 62nd S1reet 
Surte 409 
Ft Lauderdale. Florida 33309 
Tel: (305) 771·6510 
TWX 510-955-9490 

Advanced Micro Devices 
6755 Peachtree lndustnal Boulevard 
Suite 104 
Atlanta, Georgia 30360 
Tel: (404) 449-7920 
TWX: 810-766·0430 

UNITED KINGDOM 
Advanced Micro Devices (U K l Ltd 
16, Grosvenor Place 
London SWl X 7HH 
Tel. (01) 235·6388 
TELEX· 886833 

TAIWAN 
Multitech ArnencaCo 
19046 Bonnet Way 
Saratoga, CA 95070 
Tel· (408) 867-6201 

Multttech lntematt0nal Corp 
2nd Floor 
977 MNi Shen E. Road 
Ta1pe1, 105. R.O.C 
Tel. 768-1232 
CABLE· MULTllC 

UNITED KINDOM 
Candy Electronic Components 
Eden House 
32 WeU Road 
Maidstone, Kent ME14 1XL 
Tei· (0622) 54051 
TELEX: 965633 

Cramer Components lid 
Hawke House 
Green Street 
Sunbury-on-Thames 
Middlesex TW 16 SAA 
Tel (01 I 979.7799 
TELn 923592 

Eurosem International ltd 
Haywood House 
64High Streel 
Pinner, M1ddleSex. HA5 50A 
Tel 101 I 868-0029 
TELEX 24506 

ITT Electronic SeMCes 
Edinburgh Way 

-- Esse• CM20 2DF 
Tel Harlow (0279126777 
TELEX 81146 

Memec. Ltd 
Thame Park lnclustnal Eslate 
Thame 
Oxon OX9 3RS 
Tel Thame (084) 421-3146 
TELEX 837508 

OuarndOn Eleetron1cs 
Siad< Lane 

~rbb~~ ~~2) 32651 
TELEX 37163 

TEXAS 
Bonser-Phrihower Sales 
13777 N Central Expressway 
Suite 212 
Dallas. Tex as 75243 
Tei (214) 234·8438 

Bonser-Phtlhow?.r 
3300 Chtmneyrock. Su11e 208 
Houston, Texas 77056 
Tei (713) 783-0063 

Bonser-Ptulhower Sales 
8330 Burnett Rd 
Suite 133 
Austin. Texas 78758 
Tel (512) 458-3569 

UTAH 
R2 
940 North 400 East. Sufle 8 
North Sah Lake. Utah 84054 
Tel (801) 290·2631 
TWX 910·925·5607 

VIRGINIA 
Burqin-Kreh Associa1es. tnc 
P.O Box 4254 
5521 Fort Avenue 
Lynchburg. V1rg1n1a 24502 
Tel 18041 239·2626 

WASHINGTON 
Venture Electron1Cs 
PO Bo' 3034 
Bellevue, Washington 98009 
Tel 1206) 454·4594 
TELEX 32·8951 

Shipping 
1645 Rambling Lane 
Bellevue. Wash1ng!on 98004 

WISCONSIN 
Oas;s Sales inc 
N 81 w 12920 LeO'l Read 
Suite 11 
~eriomonee Fa!ls -Ni<:;orn!=;n SJ0:-1 
"!"p. ,4'41445-6682 

9.5.79 



U.S. AND CANADIAN STOCKING DISTRIBUTORS 

ALABAMA 
Hamiltort Avnet Electronics 
805 Oster Dr. N.W 
Huntsville, Alabama 35805 
Tel: (205) 533-1170 

Hall-Mark Electronics 
4739 Commercial Drive 
Huntsville, Alabama 35805 
Tel: (205) 837-8700 

ARIZONA 
Liberty Electronics 
8155 North 24th Avenue 
Phoenix. Arizona 85021 
Tel: (602) 249-2232 

Hamilton/ Avnet Electronics 
2615 S. 21st Street 
Phoenix, Arizona 85034 
Tel: (602) 275-7851 
TWX: 910-951-1535 

CALIFORNIA 
Avnet Electronics 
350 McCormick Avenue 
Irvine Industrial Complex 
Costa Mesa, California 92626 
Tel (714) 754-6084 
TWX: 910-595-1928 

Bell Industries 
1161 N. Fairoaks Avenue 
Sunnyvale, California 94086 
Tel: (408) 734-8570 
TWX: 910-339-9378 

Hamilton Electro Sales 
10912 W. Washington Blvd 
Culver City, California 90230 
Tel: (213) 558-2100 

(714) 522-8220 
TWX: 910-340-6364 

910-340-7073 
TELEX: 67-36-92 

Hamilton/Avnet Electronics 
1175 Bordeaux 
Sunnyvale, California 94086 
Tel: (408) 743-3300 
TWX: 910-339-9332 

Hamilton/ Avnet Electronics 
8917 Complex Drive 
San Diego, California 92123 
Tel: (714) 279-2421 
TELEX: 69-54-15 

Liberty Electronics 
9525 Chesapeake Drive 
San Diego, California 92123 
Tel: (714) 565-9171 
TWX: 910-335-1590 

Schweber Electronics 
17811 Gillette 
Irvine, California 92714 
Tel: (213) 537-4320 
TWX: 910-595-1720 

Liberty Electronics 
124 Maryland Avenue 
El Segundo, California 90545 
Tel: (213) 322-8100 
TWX: 910-348-7140 

910-348-7111 

Wyle Distribution Group/Santa Clara 
3000 Bowers Avenue 
Santa Clara, California 95052 
Te!: (408) 727-2500 
TWX: 910-338-0296 

910-338-0541 

Wyle Distribution Group 
17981 Skypark Circle 
Suite M 
Irvine, California 92713 
Tel: (714) 751-9850 

CANADA 
Hamilton/Avnet Electronics 
2670 Paulus 
St. Laurent. Quebec. Canada H4S 1 G2 
Tel: (514) 331-6443 
TWX: 610-421-3731 

HamiltoniAvnet Electronics 
6291-16 Dorman Road 
Mississauga, Ontario, Canada L4V1 H2 
Tel: (416) 677-7432 
TWX: 610-492-8867 

Hamilton/Avnet Electronics 
1735 Courtwood Crescent 
Ottawa. Ontario. Canada K2C3J2 
Tel. (613) 226-1700 
TWX: 610-562-1906 

RAE Industrial Electronics. Ltd 
3455 Gardner Court 
Burnaby. British Columbia 
Canada V5G 4J7 
Tel (604) 291-8866 
TWX: 610-929-3065 
TLX 04-356533 

Future Electronics 
5647 Ferrier Street 
Montreal, Quebec, Canada H4P2K5 
Tel: (514) 731-7441 
TWX: 6101421-3251 

05-827789 

Future Electronics 
d.ROO n11ffgorin C:troat 

DO~n~;.~;·.··a~t~~.o· 
Canada M3H 5S9 
Tel: (416) 663-5563 

Future Electronics 
Baxter Centre 
1050 Baxter Ad 
Ottawa. Ontario 
Canada K2C 3P2 
Tel (613) 820-8313 

COLORADO 
Elmar Electronics 
6777 E. 50th Avenue 
Commerce City, Colorado 80022 
Tel: (303) 287-9611 
TWX: 910-936-0770 

Hamilton/Avnet Electronics 
5921 N. Broadway 
Denver, Colorado 80216 
Tel: (303) 534-1212 
TWX: 910-931-0510 

Bell Industries 
8155 W. 48th Avenue 
Weatridge, Colorado 80033 
Tel: (303) 424-1985 
TWX: 910-938-0393 

CONNECTICUT 
Hamilton/Avnet Electronics 
643 Danbury Road 
Georgetown, Connecticut 06829 
Tel: (203) 762-0361 

Schweber E!ectrcrncs 
Finance Drive 
Commerce Industrial Park 
Danbury, Connecticut 0681 O 
Tel: (203) 792-3500 

Arrow Electronics 
295 Treadwell Street 
Hamden, Connecticut 06514 
Tel: (203) 248-3801 
TWX: 710-465-0780 

Wilshire Electronics 
2554 State Street 
Hamden, Connecticut 06517 
Tel: (203) 281-1166 
TWX: 710-465-0747 

FLORIDA 
Arrow Electronics 
115 Palm Road N.W. 
Suite 10 
Palm Bay, Florida 22905 
Tel: (305) 725-1480 

Arrow Electronics 
1001 N .W. 62nd St., Suite 402 
Ft. Lauderdale, Florida 33300 
Tel: (305) 776-7790 

Hall-Mark Electronics 
7233 Lake Ellenor Dr. 
Orlando, Florida 32809 
Tel: (305) 855-4020 
TWX: 810-850-0183 

Hall-Mark Electronics 
1302 West McNabb Road 
Ft Lauderdale, Florida 33309 
Tel: (305) 971-9280 
TWX: 510-956-9720 

Hamilton/Avnet Electronics 
6800 N.W. 20th Ave. 
Ft. Lauderdale, Florida 33309 
Tel: (305) 971-2900 

Hamilton/Avnet Electronics 
3197 Tech Drive North 
St. Petersburg, Florida 33702 
Tel: (813) 576-3930 

Pioneer/Florida 
6220 S. Orange Blossom Trail 
Suite 412 
Orlando. Florida 32809 
Tel: (305) 859-3600 
TWX: 810-850-0177 

GEORGIA 
Arrow Electronics 
3406 Oak Cliff Road 
Doraville, Georgia 30340 
Tel: (404) 455-4054 
TWX: 810-757-4213 

Hamilton/Avnet Electronics 
6700 1-85 
Suite 2B 
Norcross, Georgia 30071 
Tel: (404) 448-0800 

ILLINOIS 
Arrow Electronics 
492 Lunt Avenue 
Schaumburg, Illinois 60193 
Tel: (312) 893-9420 

Hall-Mark Electronics 
180 Crossen Avenue 
Elk Grove Village, llliniois 60007 
TEL (312) 437-8800 
TWX: 910-222-2859 

Hamilton1 Avnet Electronics 
3901 North 25th Avenue 
Schiller Park. Illinois 60176 
Tel: (312) 678-6310 
TWX: 910-227-0060 

Pioneer Chicago 
1551 Carmen Dnve 
Elk Grove Village. Illinois 60007 
Tel: (312) 437-9680 
TWX 910-222-1834 

KANSAS 
~ail-MarW: EWeoi:~ron1i:-5 
11870 West 91 st Stteet 
Congleton Industrial Park 
Shawnee M1ss10n. Kansas 66214 
Tel: (913) 888-4747 
TW"!. · 5 rn-928-1831 

Hamilton Avnet Electronics 
9219 Quivira Road 
Overland Park, Kansas 66215 
Tel (913) 888-8900 

MARYLAND 
Arrow Electronics 
4801 Benson Avenue 
Baltimore. Maryland 21227 
Tel: (301) 247-5200 

Hall-Mark Electronics 
665 Amberto~ Drive 
Baltimore, Maryland 21227 
Tel: (301) 796-9300 
TWX: 710-862-1942 

Hamilton/Avnet Electronics 
7235 Standard Drive 
Hanover, Maryland 21076 
Tel: (301) 796-5000 
TWX: 710-862-1861 
TELEX: 8-79-68 

Pioneer/Washington 
91 00 Gaither Road 
Gaithersburg, Maryland 20760 
Tel: (301) 948-0710 
TWX 710-828-0545 

~ASSACHUSETTS 
Arrow Electronics 
96D Commerce Way 
Woburn, Massachusetts 01801 
Tel: (617) 933-8130 
TWX: 510-224-6494 

Hamilton/Avnet Electronics 
50 Tower Office Park 
Woburn, Massachusetts 01801 
Tel: (617) 935-9700 
TWX: 710-393-0382 

Schweber Electronics 
25 Wiggins Road 
Bedford, Massachusetts 01730 
Tel: (617) 275-5100 

Wilshire Electronics 
One Wilshire Road 
Burlington. Massachusetts 01803 
Tel: (617) 272-8200 
TWX: 710-332-6359 

MICHIGAN 
Arrow Electronics 
3921 Varsity Drive 
Ann Arbor, Michigan 48104 
Tel: (313) 971-8220 
TWX: 810-223-6020 

Hamilton/ Avnet Electronics 
32487 Schoolcraft 
Livonia, Michigan 48150 
Tel: (313) 522-4700 
TWX: 810-242-8775 

Pioneer/Michigan 
13485 Stamford 
Livonia, Michigan 48150 
Tel: (313) 525-1800 
TWX: 810-242-3271 

MINNESOTA 
Arrow Electronics 
9700 Newton Avenue South 

~~f'(J~~\°£s8~~~~~sota 55431 

Hall-Mark Electronics 
9201 Penn Avenue South 
Suite 10 
Bloomington, Minnesota 55431 
Tel: (612) 884-9056 
TWX: 9i0-576-3i87 

Hamilton/Avnet Electronics 
7 449 Cahill Ad. 
Edina, Minnesota 55435 
Tel: (612) 941-3801 

MISSOURI 
Hall-Mark Electronics 
13789 Aider Trail 
Earth City. Missouri 63045 
Tel: (314) 291-5350 
TWX: 910-760-0671 

Hamilton;Avnet Electronics 
364 Brookes Lane 
Hazelwood. Missouri 63042 
Tel: (314) 731-1144 
TELEX 44-23-48 

NEW JERSEY 
Arrow Electronics 
Pleasant Valley Road 
Moorestown, New Jersey 08057 
Tel: (609) 235-1900 ' 

Arrow Electronics 
285 Midland Ave. 
Saddle Brook. New Jersey 
Tel: (201) 797-5800 
T\NX: 710-988-2206 

Hamilton.Avnet Electronics 
1 O Industrial Road 
Fairfield, New Jersey 07006 
Tel (201) 575-3390 

HamittornAvnet Electronics 
1 Keystone Avenue 
Cherry Hill. New Jersey 08003 
Tel: (609) 424-0100 

~h':"!'eb€ir E!ec!rcu~1rs 
18 Madison Road 
Fairfield. New Jersey 07006 
Tel (201) 227-7880 
TWX· 710-480-4733 

Wilshire Electronics 
1111 Paulison Avenue 
Clifton. New Jersey 07015 
Tel. (201) 340-1900 
TWX 710·989-7052 

NEW MEXICO 
Bell Industries 
121 Elizabeth N.E. 
Albuquerque, New Mexico 87123 
Tel: (505) 292-2700 
TWX· 910-989-0625 

Hamilton/Avnet Electronics 
2450 Baylor Drive S.E 
Albuquerque, New Mexico 87119 
Tel: (505) 765-1500 

Electronic Devices Co .. Inc. 
3301 Juan Tabo N.E 
Albuquerque, New Mexico 87111 
Tel: (505) 293-1935 

NEW YORK 
Arrow Electronics 
900 Broad Hollow Road 
Farmingdale, New York 11735 
Tel: (516) 694-6800 
TWX: 510-224-6155 

HamiltornAvnet Electronics 
167 Ciay Road 
Rochester, New York 14623 
Tel: (716) 442-7820 

Hamilton/Avnet Electronics 
5 Hub Drive 
Melville, New York 11746 
Tel: (516) 454-6000 
TWX: 510-224-6166 

Hamilton/ Avnet Electronics 
6500 Joy Road 
E. Syracuse. New York 13057 
Tel: (315) 437-2642 
TWX: 710-541-0959 

Summit Distributors, Inc. 
916 Main Street 
Buffalo, NY 14202 
Tel: (716) 884-3450 
TWX 710-522-1692 

Wilshire Electronics 
11 O Parkway South 
Hauppauge 
Long Island, NY 11787 
Tel: (516) 543-5599 

Wilshire Electronics 
1260 Scottsville Road 
Rochester, New York 14623 
Tel: (716) 235-7620 
TWX: 510-253-5226 

Wilshire Electronics 
10 Hooper Road 
Endwell, New York 13760 
Tel: (607) 754-1570 
TWX: 510-252-0194 

NORTH CAROLINA 
Arrow Electronics 
13 77 -G South Park Drive 
Kernersville, North Carolina 27284 
Tel: (919) 996-2039 

Hall-Mark Electronics 
1208 Front Street, Building K 
Raleigh, North Carolina 27609 
Tel: (919) 832-4465 
TWX: 510-928-1831 

Hamilton/ Avnet Electronics 
2803 Industrial Drive 
Aaleioh. North Carolina 27609 
Tel: (919) 829-8030 

OHIO 
Arrow Electronics 
6238 Cochran 
Solon, Ohio 44139 
Tel: (216) 248-3990 

Arrow Electronics 
3100 Plainfield Road 
Kettering, Ohio 45432 
Tel: (513) 253-9176 
TWX: 810-459-1611 

Hamilton, Avnet Electronics 
954 Senate Drive 
Dayton, Ohio 45459 
Tel: (513) 433-0610 
TWX: 810-450-2531 

Ham1tton1 Avnet 
761 Beta Drive, Suite E 
Cleveland, OhlO 44143 
Tel: (216) 461-1400 

Arrow Electronics 
10 Knollcrest Drive 
Reading, OhlO 45237 
Tel (513) 761-5432 
TWX. 810-461-2670 

Pioneer•Cleveland 
4800 E. 131st S;ieet 
Cleveland. Ohio 44105 
Tel: (216) 587-3600 
TWX 810-422-2211 

OKLAHOMA 
Hall-Mark Electronics 
4846 South 83rd E. Avenue 
Tulsa. Oklahoma 74145 
Tel (918) 835-8458 
TWX 910·845·2290 

PENNSYLVANIA 
Hall-Mark Electronics 
458 Pike Road 
Pike Industrial Park 
Huntingdon Valley 
Pennsylvania 19006 
Tel. (215) 355-7300 
TWX 510-667-1750 

Schweber Electronics 
101 ·Aock Road 
Horsham. Pennsylvania 19044 
Tel: (215) 441-0600 

Pioneer.'Pi!tsburgh 
560 Alpha Drive 
Pittsburgh. Pennsylvania 15238 
Tel: (412) 782-2300 
TWX: 710-795-3122 

TEXAS 
Hall-Mark Electronics 
P 0 Box 22035 
11333 Page Mill Road 
Dallas. Texas 75222 
Tel: (214) 234-7300 
TWX: 910-867-4721 

Hall-Mark Electronics 
8000 Westglen 
Houston, Texas 77063 
Tel: (713) 781-6100 
TWX: 910-881-2711 

Hall-Mark Electronics 
10109 McKalla Drive 
Suite F 
Austin. Texas 78758 
Tel: (512) 837-2814 
TWX: 910-874-2010 

Ham1iton1 Avnet Electronics 
4445 Sigma Road 
Dallas, Texas 75240 
Tel: (214) 661-8661 
TELEX: 73-05-11 

Hamilton/Avnet Electronics 
3939 Ann Arbor Street 
P 0. Box 42802 
Houston, Texas 77042 
Tel: (713) 780-1771 

Hamilton/Avnet Electronics 
1 0508A Boyer Blvd. 
Austin, Texas 7875 7 
Tel: (512) 837-8911 

Schweber Electronics 
14177 Proton Road 
Dallas, Texas 75240 
Tel: (214) 661-5010 
TWX 910-860-5493 

Schweber Electronics 
7 420 Harwin Drive 
Houston, Texas 77036 
Tel: (713) 784-3600 

UTAH 
Bell Industries 
3639 W. 2150 South 
Salt Lake City, Utah 84120 
Tel: (801) 972-6969 
TWX: 910-925-5686 

Hamilton/ Avnet Electronics 
1585 West 2100 South 
Salt Lake City, Utah 84119 
Tel: (801) 972-2800 
TWX 910-925-4018 

WASHINGTON 
Hamilton1Avnet Electronics 
14212 N.E. 21st Street 
Bellevue, Washington 98005 
Tel: (206) 746-8750 
TWX: 910-443-2449 

L!berty E!ect!On!cs 
1750 132nd Avenue N.E 
Bellevue, Washington 98005 
Tel: (206) 453-8300 
TWX: 910-443-2526 

WISCONSIN 
Arrow Electronics 
434 W. Rawson Avenue 
Oak Creek. Wisconsin 53154 
Tel (414) 764-6600 
TWX 910-262-1193 

Hall Mark Electronics 
9657 S. 20th Street 
Oak Creek, Wisconsin 53154 
Tel (414) 761-3000 

Ham1lton1Avnet Electronics 
2975 Moorland Road 
New Berlin, Wisconsin 53151 
Tel (414) 784-4510 

ADVANCED 
MICRO 

DEVICES. INC. 
90 i Thompson Place 

Sunnyvale 
California 94086 
14081 732-2400 

TWX. 910-339-9280 
TELEX. 34-6306 

TOLL FREE 
9-5-79 (800) 538-8450 
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