60T

Emﬂ{x?qpc:h'ﬁﬁwﬁ§fam

CH™ SEl._.
3&!&&‘&#‘!

. sl lwmmmAsmmujfﬁ

. ,.auuann 8 ik ‘N

4&“&; é & -
- i iﬁ

Sz

wﬁ’“ﬁw o i ¥ Lt
§ < ¥

B 3
af:_ +
G
3 *
-

32 INTERFACE AGE DECEMBER 1976

This article is the first one of a series of four articles
covering AMI's S6800 microcomputer chip set, EVK
Microcomputer Prototyping boards and EVK proto-
typing board PROTO & (RS)® program development
software.

The first article in this series covers the S6800 MPU
in detail and summarizes the microcomputer support-
ing IC’s in order to lay the ground work for next months
article on AMI's EVK Prototyping boards.

AMI's S6800 FAMILY OF MICROCOMPUTER IC's

AMI's S6800 family of microcomputer, IC's is com-
posed of a series of matched MOS large scale inte-
grated (LS!) circuits for, configuring into micro-
computer systems. This series of microcomputer MOS
LS! functional building block logic circuits include a
MPU, ROM, EPROM, RAM, PIA, ACIA, USRT, and
Digital Modem Logic circuits.

S6800 — 8-BIT MICROPROCESSOR
FUNCTIONAL DESCRIPTION

S6800 MICROPROCESSOR {MPU) — an 8-bit parallel
processor, with the ability to address up to 65K bytes
of memory, and execute instructions in 2 micro-

seconds. It is manufactured using N-channel MOS
technology and operates on a single +5V power
supply. All inputs and outputs are TTL compatible. The
MPU has six internal registers, four types of vectored
interrupts and 72 basic instructions. The basic instruc-
tions can be used in different addressing..modes to
save instruction execution time and memory space.

FEATURES

® Eight-Bit Parallel Processing

e Bi-Directional Data Bus

® Sixteen-Bit Address Bus —
Addressing

® 72 Instructions — Variable Length

e Seven Addressing Modes — Direct,

Immediate, Indexed, Extended,

Accumulator

Variable Length Stack

Vectored Restart

2 Microsecond Instruction Execution

Maskable Interrupt Vector

Separate Non-Maskable

Registers Saved in Stack

65536 Bytes of

Relative,
Implied and

Interrupt — Internal

INTERNAL COI\C‘B})TE'DN
ADDRESS REGISTER
BUS (LO)
ALU
B @BaiTs) A
SUM
ACCUMULATOR
A
8 8ITS)
: ACCUMULATOR|
¥ B8
(8 81TS)

ADDRESS
BUS HI

INDEX REGISTER

@ BITS HI) l @ BITS LO)

STACK POINTER

@asHy | @eirsio)

PROGRAM COUNTER

(8 BITS HI) L 18 8ITS LO)

& INCREMENTER DECREMENTER
(8 BITS HI) l 8 BITS LD)

TPORARY
REGISTER
(8 BITS)

INTERNAL
DATA
8US
136)
0OBE
133)
== 0
TRISTATE -l 02
- 30)
DATA D
BUFFER P
QU o
~e-i28lem p7
INSTRUCTION
REGISTER
ALU AND
REGISTER —l® Ve
CONTROL _ GND
LINES —_— 1 Gno
INSTRUCTION
DECODER AND
CTRL.LOGIC
INTERRUPT (a0 RESET
AND RESTART = Nl
LOGIC iRQ
TIMING 3 @1
GENERATOR L2} 62
(34)
BUS CONTROL 1 A
8US AND HALT 71 BA
L i
DISABLE ~ | oaic 2 ——HATY
[(39) TSC
19)
A0
(10!
ADDRESS T Al
BUFFER E a2
(8 BITS LO) 13! A4
il AS
15
(16) :.6’
a7
A8
\18) A9
(19)
ADDRESS o) A
BUFFER 22) a2
(8 BITS HI) B Al3
2 14
25) 15

FIGURE 1. BLOCK DIAGRAM OF $6800 MICROPROCESSOR

DECEMBER 1976

INTERFACE AGE 33

e Six Internal Registers — Two Accumulators, Index
Register, Program Counter, Stack Pointer and
Condition Code Register

e Direct Memory Access (DMA) and Multiple
Processor Capability

e Clock Rates as High as 1 MHz

e Simple Bus Interface Without TTL

® Halt and Single Instruction Execution Capability

S6800 MICROPROCESSOR ARCHITECTURE

The S6800 Microprocessor (MPU) is an 8-bit parallel pro-
cessor. It contains an 8-bit arithmetic unit (ALU), two
8-bit accumulators, one condition code register, and
three 16-bit address storage registers, all of which are
available for program use (see Figure 1). In addition,
there are the following non-accessible registers: a 16-
bit address incrementer/decrementer, an 8-bit tem-
porary register and an 8-bit instruction register. There
is also an instruction decode ROM and cycle control
logic, interrupt and restart logic, bus control and halt
logic, and a timing generator.

MPU PROGRAM ACCESSIBLE REGISTERS

Accumulators A and B — Two separate 8-bit accu-
mulators that are used to hold operands and results of
operations in the ALU.

Index Register — A 16-bit register used for memory ad-
dress storage in Indexed Addressing operations.

Program Counter — A 16-bit register that holds the
current program instruction address. Once the initial
program starting address is loaded into the program
counter, it is incremented under control of the MPU
hardware.

Stack Pointer — A 16-bit register used for storage of
the next available location in an external push-
down/pop-up stack.

Condition Code Register — An 8-bit register that stores
certain results of operations in the ALU. These bits are
used as testable conditions for the conditional branch
instructions. In addition, one bit position stores the
interrupt mask bit and the two high order bits are un-
used. See Figure 2.

CONDITION CODE
REGISTER

x
2
N
<
o

l— Carry-Borrow (from bit 7)

b Overflow

Zero

—— e Negative

Interrupt Mask Bit
Half Carry (from bit 3)

FIGURE 2.

EXTERNAL =STACK MEMORY REGISTER — a push-
down/pop-up stack that can be located anywhere in
RAM and be of any convenient size. It is accessed with
the stack pointer address and has several uses. First, it
always stores the. MPU register contents following an

34 INTERFACE AGE

interrupt and return addresses during sub-routine exe-
cution. Second, it can also be used by the programmer
to store data during program execution.

MPU HARDWARE REGISTERS (NOT ACCESSIBLE BY
PROGRAM)

Instruction Register — 8-bit register used to receive and
store all program instructions input into the MPU (via
the data bus lines DO-D7).

Temporary Register — 8-bit register typically used to
store the high order address bits prior to their output
from the MPU onto the external address bus lines A8-
A15.

Incrementer — 16-bit auxiliary address register, used
by the MPU internal control logic, in conjunction with
the program counter, to maintain and output the cur-
rent program address.

MPU INTERNAL BUSSES

Within the MPU all data and address transfers be-
tween the registers, as well as to and from the ALU,
are made across three internal 8-bit busses. The first is
a data bus, the second is an address bus for the low
order bits, and the third is an address bus for high order
bits.

MPU INTERFACE DESCRIPTION

Signal Pin Function

01 (3) Clocks Phase One and Phase Two — Two
pins are used for a two-phase non-
overlapping clock that runs at the Vec

02 (37) voltage level.

RESET (40) BReset — This input is used to reset and
start the MPU from a power down
condition, resulting from a power
failure or an initial start-up of the
processor. If a positive edge is
detected on the input, this will signal
the MPU to begin the restart se-
quence. This will start execution of a
routine to initialize the processor from
its reset condition. All the higher order
address lines will be forced high. For
the restart, the last two (FFFE, FFFF)
locations in memory will be used to
load the program that is addressed by
the program counter. During the
restart routine, the interrupt mask bit
is set and must be reset before the
MPU can be interrupted by TRQ.

Reset must be held low for at least
eight clock periods after VCC reaches
4.75 volts (Figure 4). If Reset goes
high prior to the leading edge of 02,
on the next @1 the first restart
memory vector address (FFFE) will
appear on the address. lines. This

NENCAIDED 4nve

VMA (5)

AOD (9)
A15 (25)
TSC (39)
DO (33)
D7 (26)
DBE (36)

DECEMBER 1976

location should contain the higher
order eight bits to be stored into the
program counter. Following, the next
address FFFF should contain the lower
order eight bits to be stored into the
program counter.

Valid Memory Address — This output in-
dicates to peripheral devices that
there is a valid address on the address
bus. In normal operation, this signal
should be utilized for enabling
peripheral interfaces such as the PIA
and ACIA. This signal is not three-
state. One standard TTL load and 30
pF may be directly driven by this ac-
tive high signal.

Address Bus — Sixteen pins are used
for the address bus. The outputs are
three-state bus drivers capable of driv-
ing one standard TTL load and 130 pF.
When the output is turned off, it is es-
sentially an open circuit. This permits
the MPU to be used in DMA
applications.

Three-State Control — This input causes
all of the address lines and the
Read/Write line to go into the off or
high impedance state. This state will
occur 500 ns after TSC = 2.4 V. The
Valid Memory Address and Bus
Available signals will be forced low.
The data bus is not affected by TSC
and has its own enable (Data Bus
Enable). In DMA applications, the
Three-State Control line should be
brought high on the leading edge of
the Phase One Clock. The @1 clock
must be held in the high state and the
@2 in the low state for this function
to operate properly. The address bus
will then be available for other devices
to directly address memory. Since the
MPU is a dynamic device, it can be
held in this state for only 5.0 us or
destruction of data will occur in the
MPU.

Data Bus — Eight pins are used for the
data bus. It is bi-directional, transferr-
ing data to and from the memory and
peripheral devices. It also has three-
state output buffers capable of driving
one standard TTL load at 130 pF.

Data Bus Enable — This input is the
three-state control signal for the MPU
data bus and will enable the bus
drivers when in the high state. This
input is TTL compatible; however in
normal operation, it can be driven by
the phase two clock. During an MPU
read cycle, the data bus drivers will be
disabled internally. When it is desired
that another device control the data

R/W

HALT

BA

@]

(34)

(2)

(7)

(4)

bus such as in Direct Memory Access
(DMA) applications, ‘DBE should be
held low.

Read/Write — This TTL compatible out-
put signals the peripherals and
memory devices whether'¥he MPU s
in a Read (high) or Write (low) state.
The normal standby state of this signal
is Read (high). Three-State Control
going high will turn Read/Write to the
off (high-impedance) state. Also,
when the processor is halted, it will be
in the off state. This output is capable
of driving one standard TTL load and
130 pF.

Halt — When this input is in the low
state, all activity in the machine will be
halted. This input is level sensitive. In
the halt mode, the machine will stop
at the end of an instruction, Bus
Available will be at a one level, Valid
Memory Address will be at a zero, and
all other three-state lines will be in the
three-state mode.

Transition of the Halt line must not
occur during the last 250 ns of phase
one. To insure single instruction
operation, the Halt line must go high
for one Phase One Clock cycle.

Bus Available — The Bus Available
signal will normally be in the low
state; when activated, it will go to the
high state indicating that the
microprocessor has stopped and that
the address bus is available. This will
occur if the Halt line is in the low state
or the processor is in the WAIT state
as a result of the execution of a WAIT
instruction. At such time, all three-
state output drivers will go to their off
state and other outputs to their
normally inactive level. The processor
is removed from the WAIT state by
the occurrence of a maskable {mask
bit | = @) or nonmaskable interrupt.
This output is capable of driving one
standard TTL load and 30 pF.

Interrupt Request — This level sensitive
input requests that an interrupt se-
quence be generated within the
machine. The processor will wait until
it completes the current instruction
that is being executed before it
recognizes the request. At that time, if
the interrupt mask bit in the Condition
Code Register is not set, the machine
will begin an interrupt sequence. The
Index Register, Program Counter, Ac-
cumulators, and Condition Code
Register are stored away on the stack.
Next the MPU will respond to the in-
terrupt request by setting the inter-

“rupt mask bit high so that no further

interrupts may occur. At the end of the
cycle, a 16-bit address will be loaded

INTERFACE AGE 35

that points to a vectoring address
which is located in memory locations
FFF8 and FFF9. An address loaded at
these locations causes the MPU to
branch to an interrupt routine in
memory.

The Halt line must be in the high state
for interrupts to be recognized.

The IRQ has a high impedance pullup
device internal to the chip; however a
3 kQexternal resistor to Vec should be
used for wire-OR and optimum control
of interrupts.

of interrupts. :
Inputs TRQ and NMI are hardware in-
terrupt lines that are acknowledged
during @2 and will start the interrupt
routine on the @1 following the com-
pletion of an instruction.

MPU EXTERNAL BUSSES

The MPU communicates with its external memory
and all /0 devices across an 8-bit bidirectional data
bus, DO through D7, and 16 address lines, AO through
A15. The MPU can be disconnected from either bus by
two control signals DBE and TSC. In addition, a con-
trol bus maintains control of the bi directional Data

NMI (6) N;n-Maskarl:l_e Interrupt — A Low-gomg Bus and provides access for control signals between
ﬁwfsek?r?t;r:i”;ps:t rueeqr:Jceestbset :;er:t):c; the MPU and all external logic, .
within the procgssor As gwith the The MPU 1/0 bus relegates control to the
' % B | h programmed |/O devices, provides memory mapped
nterrupt Request signal, the I/0 addressing and uses memory and register instruc-
processor wnll_complete the current in- tions to control all 1/0 operations. The MPU bus
struction _that IS be_ln_g__exgcuted befqre configuration is shown in Figure 3.
it recognizes the NMI signal. The in-
terrupt mask bit in the Condition Code Programmed 1/0 Devices — The MPU relegates most of
Register has no effect on NMI. the 1/0 control to such I/0 interfaces as the PIA or
The Index Register, Program Counter, ACIA. Each of these circuits is programmable and can
Accumulators, and Condition Code interface with peripheral devices without directly in-
Register are stored away in the stack. volving the MPU. For example, the MPU can prepro-
At the end of the cycle, a 16-bit gram a PIA to either output data to the MPU or to re-
address will be loaded that points to a ceive it. Thereafter, the PIA circuits assume all func-
vectoring address which is located in tions of interfacing with the peripherals and the MPU
memory locations FFFC and FFFD. An never has to look at the interface until service is re-
address loaded at these locations quired. It must service interrupts from the PIA, but
causes the MPU to branch to a non- never needs to wait for input data to become available
maskable interrupt routine in memory. or for output data to be accepted.
NMI has a high impedance pullup MEMORY MAPPED 1/0 Addressing — The /0
resistor internal to the chip; however a interfaces and memory are both located in the same
3 kQexternal resistor to Vce should be address space within the S6800 system. The MPU can
used for wire-OR and optimum control access any I/0 device the same as a memory location

I orven sesoo Fam.
o810 s810 s6350 | Soonimar |
L JAORT)
CONTROL LINES
MU ADDRESS BUS $6800 g:h}t?.:f)NEVICES
ROM ROM PIA
$6830 $6830 $6820

. FIGURE 3. S6800 BUS SYSTEM

36 INTERFACE ACE

~

NECFMRED 1078

— with address lines, instead of separate 1/0 control
lines. Therefore, it can manipulate data in the 1/0 inter-
face registers with the same programmed instructions
as it uses for memory locations. This adds flexibility
and increases system efficiency.

No Special 1/0 Instructions — The S6800 Instruction
Set complements the above I/0 addressing capability
with specific instructions that can be used to access
memory as well as 1/0 circuit registers and perform di-
rectly various manipulations on the data.

BUS INTERFACE — The bus interface consists of the
Data Bus (DO-D7). the Address Bus (A0-A15),
Read/Write (R/W), and Valid Memory Address (VMA).
There are other signals which further control the oper-
ation of the MPU and thus affect the bus without ac-
tually being properly part of the bus interface; these in-
clude Data Bus Enable (DBE), Three-State Control
(TSC), Halt and the interrupt control signals IRQ and
NMI.

DATA BUS — The Data Bus comprises eight bidirec-
tional data lines, which connect the MPU, all of the
memory, and any |/O devices which may be ad-
dressed by the MPU. The MPU normally controls this
bus during @2 time for the transfer of instructions and
data into the MPU and the transfer of data out of the
MPU. The direction of the data on the bus is a func-
tion of the R/W line generated by the MPU; a high on
R/W constitutes a read, and the MPU accepts data
during the latter portion of @2; a low on the R/W line is
defined as a write out of the MPU, and the MPU drives
the bus with the write data shortly after the low-to-
high transition of DBE. Control of the Data Bus may be
preempted from the MPU for Direct Memory Access
(DMA) operations during @2 by operating the Halt line
(Bus Available will go high when the bus is available
for other than MPU-controlled use), or during 01 while
DBE is low, and the MPU is not concerned with the
contents of the data bus. When the MPU is not driving
the data bus in a write operation, these lines are placed
in @ high impedance state to minimize the interference
with other devices driving the bus; similarly when a
memory or I/0 device is not driving the bus in a read
operation for which that device is selected, the bus
lines 'in that device are placed in a high impedance
state. At any one time only one device should be driv-
ing the bus, with all other connected system com-
ponents in the high impedance state.

Address Bus — The Address bus comprises 16 address
lines, by which the MPU identifies which of the 65,536
possible memory locations is to be read out or written
into. In normal operation the MPU sets an address on
the bus during @1 while TSC is low; this remains stable
throughout @02 for the memory access operation. For
DMA and other circumstances in which it is desired to
control the Address Bus apart from the MPU, 01 may
be extended during which time TSC may be set high;
the MPU will respond by taking the Address Bus and
R/W outputs to the high impedance state and out-
putting a low on VMA. A high on TSC also forces BA
low.

The Valid Memory Address (VMA) output from the
MPU should always be used in conjunction with the
address on the Address Bus to determine whether the
MPU is actually accessing memory (or peripheral regis-
ters), since in some circumstances the MPU will issue

DECEMBER 1976

INTERFACE AGE 37

a temporary address in a read or write cycle which
might be interpreted as a “false read” or a “false write”
to some memory location. VMA may be thought of as
a 17th bit of address, where only half of the addres-
sable memory (i.e. the VMA bit = 1) is usable, al-
though occasionally the MPU will attempt to read or
write some location in the other half (i.e. VMA = 0).
Thus it can be combined with the higher order address
bits to select or deselect memory and peripherals, as
required by the MPU at that time.

Bus Control Signals — If the VMA signal is not used to
deselect memory and 1I/0 registers (PIAs and ACIAs),
false reads or false writes may result in ambiguous
operation. These are of particular concern in the case
of RAM memories and the I/0 devices register (PlAs
and ACIAs), since in the case of the ROM any false
reads are ignored by the MPU and have no other
effect, and false writes have no effect on the ROM. In
the case of the RAM a false read also is of no concern,
but if TSC or Halt is used or the MPU executes a WAI
instruction the R/W line floats in the high impedance
state which could be interpreted as a write by the
RAM; the TST instruction actually results in a false
write, but the data and address are the same as an
immediately previous read, so the contents of RAM are
not thus altered. For PIAs and ACIAs the VMA signal
must be used in the selection logic, since a read from a
PIA or ACIA register is used to clear an interrupt condi-
tion, and the failure to disable false reads could result
in a missing interrupt. In the case of the PIA, VMA
should not be used in the form of VMA-@2 for the
Enable (E) input, since at least one E pulse is required
before each active transition of the CA1 (or CB1, etc.)
to detect the interrupt; a WAl instruction depending on
this transition may thus lock out interrupts by setting
VMA low. It is better to apply VMA to one of the Chip
Select inputs to the PIA (CS0. CS1, or inverted to CS2),
or to specify the design to preclude the requirement
that interrupts be detected on the trailing edge of a
pulse.

Read/Write (R/W) is a control signal generated by
the MPU to define the direction of the Data Bus. When
low, the MPU is driving the Data Bus, and the selected
memory or peripheral should accept the data written
into it; when R/W is high, the selected memory or peri-
pheral is being read into the MPU, and should be driv-
ing the bus. This control goes into the high impedance
state when the Address Bus is disabled by TSC.

R/W is routed to the various memory and peripheral
components as part of the system control. ROMs
should be disabled when R/W is low, since they can-
not be written into. RAMs and PIAs use the R/W sig-
nal to distinguish read and write operations. The ACIA
has four internal registers, of which two are selected
in the read operation, and two are selected for write
operations, by the connection of R/W to the
appropriate ACIA input.

MPU Operating Cycle

Instructions are executed within the MPU in incre-
mental time, periods (MPU cycles), each consisting of
one 01 clock period and one @2 clock period. When the
MPU is operating on a 1 MHz input clock, each MPU
cycle is 1 microsecond long. It takes a minimum of two
MPU cycles or 2 microseconds to execute a single

38 INTERFACE AGE

word instruction.

During the @1 period the MPU typically outputs a
memory address to access (fetch) one 8-bit program
instruction or data byte and then, during @2, loads the
byte into an internal register. During the next 01 period
the MPU executes the associated internal operation
with the ALU and the registers. With this fetch-exe-
cute sequence an instruction may be completed in only
two MPU cycles, or may require as many as 12. While
the MPU is executing successive cycles, it is also com-
mon for it to overlap functions. For example, during
any given clock period the MPU may be executing one
instruction in the ALU or registers; while at the same
time a fetch is being performed with the address in the
program counter.

Program Control

These internal operations of the MPU, as well as the
output of address, data, and control signals, are all
managed by the instruction decode and control logic.
For example, to perform the execute part of any
instruction, the control logic circuits generate signals
that cause the ALU to perform addition, subtraction, or
some Boolean logic function. These signals can also
cause the contents of one register to be transferred
into another, a register to be simply incremented or
decremented, or some other similar function to occur.
Such ALU and register operations are used to execute
all of the S6800 instructions.

MPU Addressing Modes

The S6800 eight-bit microprocessing unit has
seven address modes that can be used by a program-
mer, with the addressing mode a function of both the
type of instruction and the coding within the instruc-
tion. During the fetch part of any MPU cycle a memory
address is required in order to access a particular loca-
tion in the external memory. This address is normally
stored in the program counter. The program counter is
16 bits wide and therefore, can address any one of a
maximum of 65,536 bytes.

At the beginning of a program sequence the MPU is
initialized and the beginning address is loaded into the
program counter. From there on the program counter
is incremented automatically, so that at the end of any
instruction cycle it stores the next instruction address.
If the program contains an instruction to branch or
jump to a different memory location, the op code must
be followed by two bytes which load the new address
into the program counter. There are, however, address-
ing techniques with which the jump can be accom-
plished by fetching only one new address byte out of
the memory. For example, if the destination of a
branch is within 129 locations forward of 125 loca-
tions back of the current program counter contents,
Relative Addressing can be used. In this mode only the
op code and one signed 8-bit byte is fetched from the
memory and is added to the program counter con-
tents.

In Indexed Addressing, a single byte is added to the
contents of the index register and the result is trans-
ferred into the program counter. Thus, the above ad-
dressing variations can be used to reduce the number
of bytes that need be fetched to generate a new
address. This reduces the number of MPU cycles and

DECEMBER 1976

speeds up program execution.

The various addressing modes can also be used in a
similar manner to generate the source or destination
addresses for data. MPU addressing modes are
summarized in the following;

INSTRUCTION FORMAT

ONE

WORD
BYTE #1 INSTRUCTION
TWO

WORD
[BYTE # 1] BYTE # 2 J INSTRUCTIONS

r BYTE # 1 I BYTE #2 J INSTRUCTIONS

ACCUMULATOR ADDRESSING (ACCX)

OP CODE

A single byte instruction addressing operands only
in accumulator A or accumulator B.

IMPLIED ADDRESSING

OP CODE

Single byte instruction where the operand address
is implied by the instruction definition (i.e., Stack
Pointer, Index Register or Condition Register).

IMMEDIATE ADDRESSING

IMMEDIATE
OP CODE OPERAND
IMMEDIATE
HIGHER IMPMER?AEQBE OPERAND
OPE LOWER

Two or three byte instructions with an eight or six-
teen bit operand respectively. For accumulator opera-
tions the eight bit operand is contained in the second
byte of a two byte instruction. For Index Register oper-
ations (e.g. LDX) sixteen bit operand is contained in the
second and third byte of a three byte instruction.

DIRECT ADDRESSING

ADDRESS

OP CODE 0-255

Two byte instructions with the address of the
operand contained in the second byte of the instruc-
tion. This format allows direct addressing of operands
within the first 256 memory locations.

40 INTERFACE AGE

EXTENDED ADDRESSING

ADDRESS
LOWER

ADDRESS

OP CODE HIGHER

Three byte instructions with the higher eight bits of
the operand address contained in the second byte and
the lower eight bits of address contained in the third
byte of the instruction. This format allows direct
addressing of all 65,536 memory locations.

INDEXED ADDRESSING

INDEX

OP CODE ADDRESS

Two byte instructions where the 8 bit unsigned
address contained in the second byte of the instruc-
tion is added to the sixteen bit Index Register result-
ing in a sixteen bit effective address. The effective ad-
dress is stored in a temporary register and the con-
tents of the Index Register are unchanged.

RELATIVE ADDRESSING

RELATIVE

OP CODE ADDRESS

Two byte instructions where the relative address
contained in the second byte of the instruction is
added to the sixteen bit program counter plus two. The
relative address is interpreted as a two’'s complement
number allowing relative addressing within a range of
—125 to +129 bytes of the present instruction.

Interrupts.

The S6800 MPU can be interrupted by any of
several signals and program instructions, each of
which initiates a different sequence in the MPU.
Including the Reset signal, there are four interrupts —
three hardware interrupts (signal lines connected to
the MPU) and one software interrupt (SWI instruc-
tion). Each class of interrupt is described in the follow
ing;

Nonmaskahle Interrupt (NMI) — initiated by a low-going
signal on the NMI line to the MPU; always interrupts
the MPU — even while another interrupt is being pro-
cessed and the interrupt mask bit is set. Therefore,
NMI can be considered to the highest priority inter-
rupt. It causes the following sequence of events:

1. At the completion of the instruction being exe-
cuted, the contents of the program accessible
registers (Figure 3) are stored in the stack.

2. The interrupt mask bit is set.

3. Starting with its next cycie, the MPU accesses
locations FFFC and FFFD in the memory and
loads the contents into the program counter.

DECEMBER 1976

Interrupt Request (IRQ) — initiated by a logic low signal
on the IRQ line; interrupts the MPU as long as the
interrupt mask bit is not set. It causes the following se-
quence of events:

1. At the completion of the instruction being ex-
ecuted, the interrupt mask bit is tested. If the bit is
set the interrupt must wait; if it is not set, con-
tents of the program accessible registers are
stored in the stack.

2. The interrupt mask bit is set.

3. Starting with the next cycle, the MPU accesses
locations FFFA and FFFB in the memory and loads
the contents into the program counter.

Software Interrupt (SWI) — initiated by the SWI
instruction and causes the following sequence of
events:

1. Contents of the program accessible registers are
stored in the stack.

2. The interrupt mask bit is set.

3. Starting with the next cycle, the MPU accesses
locations FFFE and FFFF in the memory and loads
the contents into the program counter.

Reset — initiated by a positive going edge on the
RESET line to the MPU. It causes the following se-
quence of events:

1. All program accessible registers are cleared and
other circuits in the MPU are initialized.

2. The interrupt mask bit is set.

3. Starting with the next cycle, the MPU accesses
locations FFFE and FFFF in the memory and loads
the contents into the program counter.

Wait (WAI) — an instruction that causes the MPU to
stop all processing and wait for a hardware interrupt.
This instruction is not an interrupt in itself because it
does not cause branching to any memory address,
however, it does cause contents of the program
accessible registers to be stored into the stack, in
preparation for an interrupt.

All interrupts are vectored — they cause the MPU
to automatically access a predetermined location in
the memory and fetch a branch address of the routine
or program to which the MPU is to go to service the
interrupt. All interrupts except Reset also cause the
contents of each program accessible MPU register
(with the exception of the stack pointer) to be trans-
ferred to the external stack and thus be saved for later
processing. The IRQ interrupt is also maskable — it
cannot interrupt the MPU as long as bit 4 in the condi-
tion code register is set.

The S6800 requires a 16-bit vector address to indi-
cate the location of routines for Restart, Non-maskable
Interrupt, and Maskable Interrupt. Additionally an
address is required for the Software Interrupt
Instruction (SWI). The processor assumes the upper-
most eight memory locations, FFF8 — FFFF, are
assigned as interrupt vector addresses as defined in
Figure 4.

FIGURE 4. MEMORY MAP FOR INTERRUPT VECTORS

Vector Description
2MS LS
FFFE FFFF Restart
FFFC FFFD Non-maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

42 INTERFACE AGE

After completing the current instruction execution
the processor checks for an allowable interrupt request
via the IRQ or NMI inputs as shown by the simplified
flow chart in Figure 5.

START SEQUENCE
FFFE, FFFF

YES

YES

ON

E l EXECUTE
FETCH INSTRUCTION INTERRUPT ROUTINE

EXECUTE
INSTRUCTION

FIGURE 5. MPU FLOW CHART

| |

|

cc [

ACCB
ACCA

|

3 33333333
|
A NWAOON®O

m-2 - IXL (55
m-—1 - PCH }‘E
m ~——SP m PCL @
m+ 1 m+1
m+ 2 5 m+ 2
/\ ﬁ
(0| l
| | 1 | I
BEFORE AFTER

SP = Stack Pointer
CC = Condition Codes (Also called the Processor Status Byte)
ACCB = Accumulator B
ACCA = Accumulator A
IXH = Index Register, Higher Order 8 Bits
IXL = Index Register, Lower Order 8 Bits
PCH = Program Counter, Higher Order 8 Bits
PCL = Program Counter, Lower Order 8 Bits

FIGURE 6 SAVING THE STATUS OF THE
MICROPROCESSOR IN THE STACK

DECEMBER 1976

Recognition of either external interrupt request or a
Wait for Interrupt (WAI) or Software Interrupt (SWI)
instruction causes the contents of the Index Register,
Program Counter, Accumulators and Condition Code
Register to be transferred to the stack as shown in
Figure 6.

S6800 INSTRUCTION SET

The S6800 MPU has a set of 72 basic instructions,
listed in alphabetical order in Table 1. These include
binary and decimal arithmetic functions, as well as
logical, shift, rotate, load, store, branch, interrupt, and
stack manipulation functions. Most of the instructions
have several variations and most can be used with
several memory addressing modes. Thus, the total
complex of instructions available to the programmer
actually is 197.

An instruction can be from one to three bytes long,
depending on the addressing mode used with the in-
struction. The first byte always contains the operation
code, which designates the kind of operation the MPU
will perform. In single byte instructions no memory
address is required, because the operation is per-
formed on one of the internal MPU registers. In multi-
ple byte instructions the second and third byte can be
the operand, or a memory address for the operand.

A noteworthy feature of the S6800 MPU is that
some of the instructions can operate directly on any
memory location. In other computer systems it is com-
mon that the processor fetches an operand from
memory, stores it in the accumulator, then executes

Add Accumulators
Add with Carry

Add

Logical And
Arithmetic Shift Left
Arithmetic Shift Right

Branch if Carry Clear
Branch if Carry Set

Branch if Equal to Zero
Branch if Greater or Equal Zero
Branch if Greater than Zero
Branch if Higher

Bit Test

Branch if Less or Equal
Branch if Lower or Same
Branch if Less than Zero
Branch if Minus

Branch if Not Equal to Zero
Branch if Plus

Branch Always

Branch to Subroutine
Branch if Overflow Clear
Branch if Overfiow Set

ABA

ADD
AND
ASL
ASR

BCC
BCS
BEQ
BGE
BGT
BHI
BIT
BLE
BLS
BLT
BMI
BNE
BPL
BRA

BVC
BVS

CBA
CLC
CLi
CLR
cLv
CMP
com
CPX

DAA
DEC
DES
DEX

FOR
INC

Compare Accumulators
Clear Carry

Clear Interrupt Mask
Clear

Clear Overflow
Compare

Complement

Compare Index Register

Decimal Adjust
Decrement

Decrement Stack Pointer
Decrement Index Register

Exclusive OR

Increment

INS
INX

JMP
JSR

LDA
LDS
LDX
LSR

NEG
NOP

ORA

PSH
PUL

ROL
ROR
RTI

RTS

SBA
SBC
SEC
SE!

SEV
STA
STS
STX
suB
Swi

TAB
TAP
TBA
TPA
TST
TSX
TXS

WAI

Increment Stack Pointer
Increment Index Register

Jump
Jump to Subroutine

Load Accumulator
Load Stack Pointer
Load Index Register
Logical Shift Right

Nagate
No Operation

Inclusive OR Accumulator

Push Data
Pull Data

Rotate Left

Rotate Right

Return from Interrupt
Return from Subroutine

Subtract Accumulators
Subtract with Carry
Set Carry

Set Interrupt Mask

Set Overflow

Store Accumulator
Store Stack Register
Store Index Register
Subtract

Software Interrupt

Transfer Accumulators

Transfer Accumulators to Condition Code Reg.
Transfer Accumulators

Transfer Condition Code Reg. to Accumulator
Test

Transfer Stack Pointer to Index Register
Transfer Index Register to Stack Pointer

Wait for lnte}rupt

TABLE 1. $6800 MICROPROCESSOR INSTRUCTION SET

DECEMBER 1976

INTERFACE AGE 43

the operation in the ALU, and finally writes the result
back into the memory. The S6800 is able to accom-
plish the same with only a single instruction, because it
operates with any external location in the same
manner as with an internal register. For example, it can
directly increment or decrement the contents of a
memory location. Because the MPU addresses I/0 de-
vices just like a memory location, it can do the same
with registers inside the PIA or ACIA. The ASL, ASR,
LSR, and ROL are other examples of instructions
which operate in this manner.

$6810 — 128 X 8 STATIC
READ/WRITE MEMORY

FUNCTIONAL DESCRIPTION

The S6810 is a static 128 X 8 Read/Write Memory
designed and organized to be compatible with the
S6800 Microprocessor. Interfacing to the S6810 con-
sists of an 8 Bit Bidirectional Data Bus, Seven Address
Lines, a single Read/Write Control line, and six Chip
Enable lines, four negative and two positive.

For ease of use, the S6810 is a totally static
memory requiring no clocks or cell refresh. The S6810
is fabricated with N channel silicon gate technology to
be fully DTL/TTL compatible with only a single +5 volt
power supply required.See Figure 7 for Funtional Block
Diagram.

(2) 00
A0 (23— (3301
A1 (zz»-—-—l] 4) D2
A2 (21— L MEMORY TRI-STATE (5) 03
DRESS MATRIX B1.DIRECTIONAL
A3 (20) Sgcoos > 128X 8 TTL BUFFERS (61 04
A4 (19) > mos
A5 (18) }—] (8106
A6 (17)——1 (9) 07
oo 0 000 0
READ/ (16)— MEMORY CONTROL
write (18 EMO
€3 (13—
£0 (10—
B0
£ (10
€2 12)
£ (1) —+——o L1

(1) (24)
GND Vce (+5V)

FIGURE 7. FUNCTIONAL BLOCK DIAGRAM

FEATURES

® QOrganized as 128 Bytes of 8 Bits
Static Operation
Bi-Directional Three-State Data Input/Output
Six Chip Enable Inputs (Four Active Low, Two
Active High)
Single 5-Volt Power Supply
TTL Compatible :
® Maximum Access Time = 1.0us for S6810
575 ns for S6810-1

44 INTERFACE AGE

S6820 — PERIPHERAL INTERFACE
ADAPTER (PIA)

FUNCTIONAL DESCRIPTION

" The $S6820 Peripheral Interface Adapter provides

the universal means of interfacing peripheral equi-
ment to the S6800 Microprocessing Unit (MPU). This
device is capable of interfacing the MPU to peri-
pherals through two I/0 8-bit bidirectional peripheral
data buses and four control lines. No external logic is
required for interfacing to most peripheral devices.

The functional configuration of the PIA is pro-
grammed by the MPU during system initialization.
Each of the peripheral data lines can be programmed
to act as an input or output, and each of the four con-
trol/interrupt request lines may be programmed for one
of several control modes. This allows a high degree of
flexibility in the over-all operation of the interface.

The PIA interfaces to the S6800 MPU with an
eight-bit bidirectional data bus, three chip select lines,
two register select lines, two interrupt request lines,
read/write line, enable line and reset line. These
signals, in conjunction with the S6800 VMA output,
permit the MPU to have complete control over the PIA.
VMA may be utilized to gate the input signals to the
PIA. See Figure 8 for Funtional Block Diagram.

|— © cat
TROA 3 INTERRUPT STATUS
{—___——— CONTROL A lele » caz
N conrrou
00 1 e REGISTER A
o1 2 -t v l
D2 31 w—te 1 N oama
DATA BUS REGISTER A
03 01l purreRs [‘ Y e
o4 29 =] (881 A
05 28 <—fomd A CUTPUT BUS
08 77 wted ir
D7 28 <a—tet ot 2 PO
N OouTPUT fotom 3 PAT
REGISTER A
A ©ra]
PERIPHERAL 5 ras
INTERFACE =T
2 L fot-o-8 Pas
BUS INPUT 3
REGISTER — |2 fot-om 7 PAS
(BIR) 12 L 3 8
- oo Pa?
Vec-PIN 20 loto10 o0
GND=PINY fat-o- 11 P81
A N
REGISTER B fat-o 12 PR2
A R
(oR8) PERIPHERAL lete 13 23
cso 22—t INTERFACE DE DR
cst 2 —ye lato- 15 ro5
&= —1 CHIP . roe
] SELECT — et
R0 3 o fat-o 7 P87
RS1 % —I%™1 conTRoL TF
Aw 21—t
enaBLE 25—t
RESEY 2 —— & 4 DATA
[REGISTER B
s A
CONTROL (boRB)
REGISTER B
Y (cRe)
L1 cm
INTERRUPT STATUS
CONTROL B
o 3 o9 cm2

FIGURE 8. FUNCTIONAL BLOCK DIAGRAM

DFCFMRFR_ 1078

FEATURES

e 8-Bit Bidirectional Data Bus for Communication
with the MPU

® Two Bidirectional 8-Bit Buses for Interface to Peri-
pherals

e Two Programmable Control Registers

Two Programmable Data Direction Registers

e Four Individually-Controlled Interrupt Input Lines;
Two Usable as Peripheral Control Outputs

® Handshake Control Logic for Input and Output
Peripheral Operation

¢ High-Impedance 3-State and Direct Transistor Drive
Peripheral Lines

e Program Controlled Interrupt and Interrupt Disable
Capability

$6830 — 1024 X 8 READ ONLY
MEMORY

FUNCTIONAL DESCRIPTION

The S6830 is a mask programmable read only
memory organized 1024 words x 8 bits for application
in byte organized systems. The S6830 is totally bus
compatible with the S6800 microprocessor. Inter-
facing to the S6830 consists of an 8 bit three-state
data bus, four mask programmable chip selects and
ten address lines.

The S6830 is a totally static memory requiring no
clocks. Access time is compatible with maximum data
rates in a S6800 microprocessor system. The device
operates from a single +5 volt power supply and is
fabricated with N channel silicon gate technology. See
Figure 9 for Function Block Diagram.

Tan 2
a0 200
a2z 301

A3 402

a2 ADDRESS MEMORY 3STATE 503
ADDRES: MATRIX BUFFER
x5 19 (1024 % 8) TTL BUFFER 604

A 18 705
SRt 806

A8 16 907
a9 15

YR | T
T
i)
E3" W4T
vee » Pin 12

*Active teve! defined by the customer. God=Pun 1

FIGURE 9. FUNCTIONAL BLOCK DIAGRAM

FEATURES

Organized as 1024-Bytes of 8 Bits

Static Operation

Three-State Data Output

Four Chip Enable Inputs {Mask Programmable)
Single 5-Volt Power Supply

TTL Compatible Input/Output

Maximum Access Time = 575 ns

DECEMBER 1976

S6831/A/B/C — 2048 X 8 READ
ONLY MEMORY ‘

FUNCTIONAL DESCRIPTION

The S6831/A/B/C is a 16,384 bit mask
programmable MOS Read Only Memory organized 2K
words x 8 bits. This ROM has been designed to supply
large bit storage, high performance memory for micro-
processors and other demanding applications with
simple interface requirements. The device will operate
from a single +5V supply and is manufactured with a
N-channel silicon gate depletion load technology. This
device is available in all common high density ROM
pinouts. See Figure 10 for Functional Block Diagram.

00

o1

MEMORY 3ISTATE 02
BUFFER 03

MATRIX

0EconE TTLBUFFER

™ ADORESS

06

07

El:_—
€2 —t

*Active level defined by the customer.

FIGURE 10. FUNCTIONAL BLOCK DIAGRAM

INTERFACE AGE 45

FEATURES

Mask programmable

Maximum Access Time = 450 nsOCL = 130 pF

Low Power 150 mW avg.

Organized as 2048-Bytes of 8 Blts

Static Operation

Three-State Data Output

3 Chip Enable Inputs (Mask Programmable)

The S6831 is pinout similar with the S6830

The S6831A is pinout compatible with the 2316A,

8316A

* The S6831B is pinout compatible with the Intel
2316B, MC68317

® The S6831C is pinout compatible with the EA4600

® Single 5-Volt Power Supply

¢ TTL Compatible Input/Output

$6834 — 512 X 8 BIT EPROM

FUNCTIONAL DESCRIPTION

The S6834 is a high speed, static, 512 x 8 bit,
erasable and electrically programmable read only
memory designed for the in bus-organized systems.
Both input and output are TTL compatable during both
read and write modes. Packaged in a 24 pin herme-
tically sealed dual in-line package the bit pattern can
be erased by exposing the chip to an ultra-violet light
source through the transparent lid, after which a new
pattern can be written. See Figure 11 for Funtional
Block Diagram.

Vee GND VGG

Ao

Ay .

Az o e

A X-DECODER Pyt
3

64 X 64 BIT
PROM ARRAY

Y-DECODER

CSo

RW OR CS

CONTROL
LOGIC

VPROG ——

Y-GATING

SENSE AMPLIFIERS
3STATE
INPUT/OUTPUT
BUFFERS

.

Do Y D21 D41 Dg
Dy D3 Dg Dy

FIGURE 11. FUNCTIONAL BLOCK DIAGRAM

FEATURES

® On-Board Programmability

® Fast Access Time — 575 ms Max.

* Pin Configuration Similar to the S6830 1K x 8 Bit
ROM

®* High Speed.Programming — Less than 1 Minute for
all 4096 Bits

® Programmed with R/W, CS and VPROG Pins

* Completely TTL Compatible — Excluding the VPROG
Pin

46 INTERFACE AGE

Ultraviolet Light Erasable — Less than 10 Minutes
Static Operation — No ‘Clocks Required
Three-State Data I/0

Standard Power Supplies +5V and —12V
Mature P-Chan Process

S6850 — ASYNCHRONOUS
COMMUNICATION INTERFACE
ADAPTER (ACIA)

FUNCTIONAL DESCRIPTION

The S6850 Asynchronous Communications
Interface Adapter (ACIA) provides the data formatting
and control to interface serial asynchronous data
communications to bus organized systems such as the
S6800 Microprocessing Unit.

The S6850 includes select enable, read/write, inter-
rupt and bus interface logic to allow data transfer over
an eight bit bi-directional data bus. The parallel data of
the bus system is serially transmitted and received by
the asynchronous data interface, with proper format-
ting and error checking. The functional configuration of
the ACIA is programmed via the data bus during sys-
tem initialization. Word lengths, clock division ratios
and transmit control through the Request to Send out-
put may be programmed. For modem operation three
control lines are provided. These lines allow the ACIA
to interface directly with the S6860 0-600 bps digital
modem. See Figure 12 for Functional Block Diagram.

o) { cLock I
™ Sen
ol] TRANSMIT ™
TRANSMIT SUFT ™
cso 2] 1 oata REGISTER
REGISTER
"
et 4 seecr {}
w2 nw
T TRANSMIT
an] | contaoL T e
as L
aw' 12
STATUS
REGISTER
™o
o022 T
o121
o]] TS
oz‘ﬂs—- g $
039! N CONTROL
s : OATA REGISTER
Ll BUS
] eurrens
08—+ RECEIVE PARITY
6! CONTROL CHECK
s -
o728 1
L—q Receve RECEIVE @
b —J4 Dara <: SHIFT RXD
REGISTER REGISTER
3 CLOCK ° SYNC
cRX GEN LoGic
Vec - PIN 12
GROUND = PIN 1

FIGURE 12. FUNCTIONAL BLOCK DIAGRAM

FEATURES

® Eight and nine-bit transmission with optional even
and odd parity.

® Parity, overrun and framing error checking.

ArEArLsameE~ aa~~

Programmable control register.

Optional1,¥16, and+64 clock modes.

Up to 500,000 bps transmission.

8 Bit Bidirectional Data Bus for Communication
with MPU.

False start bit deletion.

Peripheral/modem control functions.

Double buffered Receiver and Transmitter.

One or two stop bit operation.’

$2350 — UNIVERSAL
SYNCHRONOUS
RECEIVER/TRANSMITTER (USRT)

FUNCTIONAL DESCRIPTION

The S2350 Universal Synchronous Receiver
Transmitter (USRT) is a single chip MOS/LSI device
that totally replaces the serial to parallel and parallel to
serial conversion logic required to interface a word
parallel controller or data terminal to a bit-serial, syn-
chronous communication network.

The USRT consists of separate receiver and trans-
mitter sections with independent clocks, data lines and
status. Common with the transmitter and receiver are
word length and parity mode. Data is transmitted and
received in a NRZ format at a rate equal to the respec-
tive input clock frequency.

Data messages are transmitted as a contiguous
character stream, bit synchronous with respect to a
clock and character synchronous with respect to
framing or "“sync’ characters initializing each message.
The USRT receiver compares the contents of the inter-
nal Receiver Sync Register with the incoming data
stream in a bit transparent mode. When a compare is
made, the receiver becomes character synchronous
formatting a 5, 6, 7, or 8 bit character for output each
character time. The receiver has an output buffer
register allowing a full character time to transfer the
data out. The receiver status outputs indicate received
data available (RDA), receiver overrun (ROR), receive
parity error (RPE) and sync character received {(SCR).
Status bits are available on individual output lines and
can also be multiplexed onto the output data lines for
bus organized systems. The data lines have tri-state
outputs.

The USRT transmitter outputs 5, 6, 7, or 8 bit
characters with correct parity at the transmitter serial
output (TSO). The transmitter is buffered to allow a full
character time to respond to a transmitter buffer empty
(TBMT) request for data. Data is transmitted in a NRZ
format changing on the positive transition of the trans-
mitter clock (TCP). The character in the transmitter fill
register is inserted into the data message if a data
character is not loaded into the transmitter after a
TBMT request. See Figure 13 for Functional Block
Diagram.

FEATURES

500 KHz Data Rates

Internal Sync Detection

Fill Character Register
Double Buffered Input/Output
Bus Oriented Outputs

5-8 Bit Characters

Odd/Even or No Parity

DECEMBER 1976 INTERFACE AGE 47

e Error Status Flags
e Single Power Supply (+5v)
¢ |nput/Output TTL Compatible

GND Vcc

D, Dg Dg Dy D3 D, Dy D
(L (03] (22) §(21) }(20) 19) }(18) J(17) |(16) }(15)

INPUT DATA BUS

L

.ras-(ﬂ) * {;

& S TRANSMITTER TRANSMITTER
(39) HOLDING
NDBy —j— REGISTER REGISTER
nosg ‘2 | conTroL
REGISTER
POE —{—

MULTIPLEXER I
3] ’ !

TRANSMITTER |

(6)

(36)
Ter u;— [~ [SHIFT REGISTER g Tso
AR -
np 2.
11
RECEIVER Q
© TIMING SYNC
TemMT '— REGISTER (23)
(7,'— AND COMPARATOR ASS
FCT '— CONTROL
8) I 1 ?
scr]
(10
RPE —1+ I RECEIVER SHIFT REGISTER J
o L
ROR ——4
(12)
ADA —

(34
I I RECEIVER OUTPUT REGISTER m:

} OUTPUT TRI-STATE DRIVERS RDE

) IS (N D N D N B |

@5 26) @7 28)] (29)] 30i] 31| 321} (330}

RSI RDy RDg RDg RD4 RD3 RD RD; RDg
TBMT FCT SCR RPE ROR RDA

g3

RESET ——mdl
(14)

mi

FIGURE 13. FUNCTIONAL BLOCK DIAGRAM

S6860 — 0-600 BPS DIGITAL

MODEM

FUNCTIONAL DESCRIPTION

The S6860 is a 0-600 bps Digital Modem circuit
designed to be integrated into a wide range of equip-
ment utilizing serial data communications.

The modem provides the necessary modulation,
demodulation and supervisory control functions to
implement a serial data communications link, over a
voice grade channel, utilizing frequency shift keying
(FSK) a bit rates up to 600 bps. The S6860 can be
implemented into a wide range of data handling sys-
tems, including stand alone modems, data storage de-
vices, remote data communication terminals and /0
interfaces for minicomputers.

N-channel silicon gate technology permits the
S6860 to operate using a single voltage supply and be
fully TTL compatible.

The modem is compatible with the S6800 micro-
computer family, interfacing directly with the
Asynchronous Communications Interface Adapter
(ACIA) to provide low-speed data communications
capability. See Figure 14 for Functional Block
Diagram.

FEATURES

® TTL compatible terminal interfaces

® Crystal/External reference control

e Compatible functions for 100 series data sets and
1001 A/B data couplers

Full or half duplex operation

48 INTERFACE AGE ~

® QOriginate and answer mode
® Auto answer and disconnect
* Modem self test

DTR ANPH
2
cTs AUTO » AT
TERMINAL AN;JWER/
5RKR 2 CONTROL : AN
LoeC DISCONNECT
3 LOGIC 15
RXBRK MODE
TXBRK ? TD

2
TXDATA MODULATOR

10
TXCAR

24
RXDATA

DE-
MODULATOR

14
RXRATE

LIL,

17
RXCAR

13
XTAL osc
18
TST TIMING

!

L -
]1 |12 16 |22 |s
GND Vec ST ED &S E

4
al "o

FIGURE 14. FUNCTIONAL BLOCK DIAGRAM

TYPICAL S6800 MICROCOMPUTER
CONFIGURATION

The S6800 microcomputer functional IC com-
ponents may be assembled in a modular building block
manner into a very simple microcomputer system, or
into any of progressively more complex systems, which
can be used in many general or special purpose appli-
cations. The important feature of the S6800 family is
that all microcomputer system components are directly
compatible in signal functions, circuit performance
characteristics, and logic levels. All operate on a single
+5 Volt power supply.

A basic microcomputer system built with the
S6800 functional components is shown in Figure 15.
This basic microcomputer configuration includes a
S6800 Microprocessor (MPU), IK bytes of ROM
program storage, 128 bytes of RAM working storage
and a two part input/output peripheral interface cir-
cuit.

Two-Phase Clock Circuitry and Timing — The MPU
requires a two-phase non-overlapping clock which has
a frequency range as high as 1 MHz. In addition to the
two phases, this circuit should also generate an enable
signal E, and its complement E, to enable ROMs,
RAMs, PlAs and ACIAs. This Enable signal and its
complement is obtained by ANDing @2 and VMA
(Valid Memory Address).

' DECEMBER 1976

DECEMBER 1976

TWO-PHASE

PAD-PA?

PIA
§6820

RS0-RS1

cst
csz

Cso

CLOCK
GENERATOR
02
92 ol VMA
A0-A15 | AB-AT5 AO-AIM AO-AS D0-D? <DO-D7
NY 1024 x 8
DBE ROM
POWER-UP RES A5 J e S6830
RESET Al4
CIRCUIT T8¢ —* E £l
MPU
$6800 AT
Al4
™ p0-07 A1S
VMA
Vee—] FALT AW 1
RW
A0-ASY| AG-A6 D0-D7 f 00-D7
[- 128x 8
iRQ » E2 £3
- €2 pam B3
o ET S6810 E%
Vee E0 13 q

%am

RW pBo-PB7

[4:]]
00-07 Ce2

iROA__ iRQ8

DATA BUS D0-D7

FIGURE 15. MINIMUM MICROCOMPUTER SYSTEM CONFIGURATION

T0
PERIPHERAL

Nt

<:> T0

PERIPHERAL
B

INTERFACE AGE 49

Chip Selection and Addressing — The minimum system
configuration permits direct selection of the ROM,
RAM, ACIA and PIA without the use of special TTL
select logic. This is accomplished by simply wiring the
address lines A13 and A14 to the Enable or chip select
lines on the memories and PIA. This permits the de-
vices to be addressed as follows:

DEVICE A14 A13 HEX ADDRESSES

RAM 0 0 0000-007F
PIA 0 1 2004—-2007 (Registers)
ROM 1 1 6000—-63FF

Other addressing schemes can be utilized which use
any combination of two of the lines A10 through A14
for chip selection.

Peripheral Control — All control and timing for the peri-
pherals that are connected to the PIA is accomplished
by software routines under the control of the MPU.

Restart and Non-Maskable Interrupt — Since this basic
system does not have a nonvolatile RAM, special cir-
cuitry to handle loss of power using NMI is not re-
quired. Circuitry is, however, required to insure proper
initialization of the MPU when power is turned on. This
circuit should insure that the Restart signal is held low
for eight @1 clock cycles after the VcC power supply
reaches a voltage of approximately 4.75 volts DC.
Also, in order to insure that a PIA or ACIA is not in-
advertently selected during the power-on sequence,
Three-State Control (TSC) should be held high until the

52 INTERFACE AGE

positive transition of Restart.

HALT — The Halt line is tied to Vcc and will
automatically place the MPU in the run state when
power is turned on. This signal may be used to halt the
MPU if a switch is used to tie the line to ground for
HALT and to Vcc for RUN.

The basic microcomputer system can be altered or
expanded on in many different ways. For example, the
S6850 Asynchronous Communication Interface
Adapter (ACIA) can be substituted for a PIA, to enable
the microcomputer to interface with a telecommuni-
cations modem. Or, additional memory can be added —
either RAM or ROM — to expand the processing capa-
bility of the MPU. In general, the system can be
expanded in a modular manner, by adding onto the bus
as many as ten devices out of the S6800 family of
modules. These additional modules can be any com-
bination of memory or I/0 IC circuits. In this manner a
system of nearly any complexity and configuration can
be assembled. Microcomputer system configurations
requiring more than ten devices on the MPU bus re-
quire the addition of address and data bus buffers to
operate at full speed.

By building your microcomputer from the S6800
family of devices, you take full advantage of the com-
patibility of the devices. They all conform to the MPU
bus discipline, all are compatible in load levels, and the
entire system runs on a common system clock. In
effect you eliminate most all circuit design, save for the
simple clock and power-up restart circuits. Because
you are dealing with only a small number of integrated
circuits, PCB circuit layout is simple and the entire
microcomputer can be located on a single small circuit
card.

ARTICLE BACKGROUND MATERIAL

The majority of the material for this article was
gleaned from AMI's excellent documentation with the
intent of not redoing good work just for the sake of it.
Hopefully | have organized this material and clarified it
to the extent of making it clearer and easier to under-
stand which was the intent.

Next month | will cover the hardware mechanization
of the AMI, EVK Microcomputer Prototyping boards.

Want more information on AMI’'s microcomputer
chip set? Write or call:

American Microsystems, Inc.
3800 Homestead Road
Santa Clara, Calif. 95051
Phone (408) 246-0330

DECEMBER 1976

AMTI’s EVK Series
Microcomputer
Prototyping Boards

By Robert A. Stevens

328

INTRODUCTION

PR

This article ig par:(migﬁof a series of articles on the
EVK Microcomputer hardware, firmware and sup-
porting software. This month’s article covers the EVK
Microcomputer board architecture while last month's
article described the functional architecture and
characteristics of AMI’'s Microcomputer IC chip set.

EVK CONFIGURATIONS — The AMI EVK
Microcomputer is a single board microcomputer
mechanized with a standard S6800 MPU. The EVK
Microcomputer comes in four basic configurations:
EVK99, EVK100, EVK209, & EVK300, all of which use

the same 10" x 12" printed circuit board. EVK99 is a
kit that includes the PCB and Microcomputer ICs con-
sisting of one 6800 MPU, four 6810 RAM's, one 6820
PIA, two 6830 ROM, and one 6850 ACIA. EVK100 &
EVK200 are kit configurations that include PCB,
Microcomputer & T2L IC’s and differ fromzeach other
by the amount of hardware, memory and firmware
(software in ROM) included with each configuration.
EVK300 is the EVK200 kit with more EPROM memory
and is factory assembled and tested. A Tiny BASIC
Interpreter program is also available at no charge for
the EVK300 Microcomputer board. Table 1, EVK
Microcomputer Configuration Summary, shows the
comparison between the different EVK configurations.

ROM

EVK BOARD CHARACTERISTICS EVK S99 EVK 100 EVK200 EVK300

CPU S6800 $6800 56800 S6800

WORD SIZE . 8BITS 8 BITS 8 BITS 8 BITS

ADDRESS BUS 16 BITS (84K) 16 BITS (64K) 16 BITS (64K) 16 BITS (64K)

ROM 2K BYTES S6831 2K BYTES S6831 2K BYTES S6831 2K BYTES S6831
ROM ROM

ROM

EPROM — VIRGIN

512 BYTES S6834
EPROM

2K BYTES S6834
EPROM

STATIC RAM 512 BYTES S6810

512 BYTES S6810

1K BYTES S6810

1K BYTES S6810

ROM RESIDENT

ROM RESIDENT

ROM RESIDENT

RAM RAM RAM RAM

EPROM PROGRAMMING PROGRAMS S6834 PROGRAMS S6834

EPROM's EPROM's
1/0 PORTS 1 PIA=2 PORTS — 3PIA's=6 PORTS 3PIA's=6 PORTS

8 BITS/PORT 8 BITS/PORT 8 BITS/PORT
ASR 33/35 TTY SERIAL INTERFACE ACIA 56850 ACIA S6850 WITH ACIA S6850 WITH ACIA 6850 WITH
20ma CURRENT LOOP 20ma CURRNET LOOP 20 ma CURRENT LOOP

RS232C EIA SERIAL INTERFACE ACIA S6850 ACIA S6800 ACIA SB850 WITH ACIA S6850 WITH

EIA RS232C EIA RS232C
INTERVAL TIMER (CRYSTAL) 1 ms & 100 ps 1 ms & 100 us

TIME INTERVALS TIME INTERVALS
MPU CRYSTAL CLOCK INCLUDED INCLUDED
CLOCK OUTPUTS (CRYSTAL) 16X BAUD RATE 2.4576 MHz, 2.4576 MHz,

1MHz & 1 MHz & .

16X BAUD RATE 16X BAUD RATE ’
DMA MODES HALT MPU MODE, HALT MPU MODE,

CYCLE STEAL MODE CYCLE STEAL MODE

& MUX MODE & MUX MODE
RESTART ADDRESS SELECTION TWO 8 BIT DIP TWO 8 BIT DIP TWO 8 BIT DIP

o ——
TOGGLE SWITCHES TOGGLE SWITCHES TOGGLE SWITCHES

TTY MONITOR SOFTWARE PROTO PROTO PROTO PROTO

ROM RESIDENT

SUBROUTINE PROGRAM LIBRARY SOFTWARE Rs3 Rs3 Rs3 Rs3

ROM RESIDENT ROM RESIDENT ROM RESIDENT ROM RESIDENT
ROM RESIDENT ASSEMBLER 33590 opTiON $3520 opTiON $3529 opTION $3590 OPTION
OEM SINGLE QUANTITY PRICE $13300 529590 $495.00 576590

z

TABLE 1 EVK MICROCOMPUTER CONFIGURATION SUMMARY

JANUARY 1977

INTERFACE AGE 33

39V JOV4HILNI ve

pivog 1eindwodoially seueg YAJ ‘| endig

LL6L AHYNNYP

=)
o
50V a Q T
- a) > >k
TWO 0‘2 X Q wZ z 75
T™WO TWO © = I 8 & ¥8 k=
1/0 PORTS 1/0 PORTS Z 1/0 PORTS " © °
=d
FEIREEE P | L t it
OF—pFax Q__
£82 “Eo3 TTY ASR 33/35
528 <] | RS232C
a0 T INTERFACE 20 MU CURRENT
o RFAC WOP INTERFACE
4K 2K K PIA PIA PIA
6831 56834 56810 56820 56820 568020 ACIA S6850
ROM EPROM RAM 110 110 EPROM 1/0

(LI

L ffl A T e

—| [~

ADDRESS BUS BAUD RATE 24576
l L] l | | [3 | cenerator [~ Mr:
ROM DATA BUS
RAM DATA BUS ﬂ
BAUD RATE
: DIP SWITCH
N }/ o
> ADDRESS BUS >
N N
$5800 /
WPU \ DATA BUS "
2
@©
A
AN | | v g
.y w
Nt 2
g
b
CONTROL BUS
92 o1 < 7
I 2 N T [91 CLOCK
R 1 SYSTEM] .
_If' - RESTART RESET
TWO PHASE VECTOR SW#1 RESET
D CLOCK ADDRESS o1 LOGIC
GENERATOR SWITCHES =
y st
L 1 Mz 1 MHz
. N
INTERVAL
TIMER

. e

v

;.« ’{"{i {Fx__a,:g

: {—’;-‘.53.4

2 -l dds
L L

MAJOR EVK MICROCOMPUTER FEATURES
The common denominator EVK Microcomputer PCB
provides the following on board major features when
fully populated with hardware and software including
options;

e 4K Bytes S6831 ROM memory (2K using S6831
ROM'’s)

2K Bytes S6834 EPROM memory

1 K Bytes S6810 Static RAM memory

On board S6834 EPROM programming

Six 8 bit PTA 1I/0 ports

20 ma serial TTY current loop port interface
-RS232C EIA serial I/0 port

Switch selected baud rates to 19,200 bauds

1 MHz crystal or variable one shot MPU clock

5 crystal controlled timing signals available at PCB
interface '
(2.4756 MHz 1MHz 16x baud rate, 100 us & 1 ms)
ms)

Interrupt internal timing (100us & 1 ms)

Switch selectable MPU restart address

200 ms Power On Reset delay

3 DMA modes (HALT MPU, CYCLE STEAL & MUX)
TTY PROTO Monitor System resident in ROM
RS?® ROM Subroutine Library resident in ROM
ROM Resident Assembler — option

Up to 40 ma @ 0.4V external bus loading

8T97 three state MPU bus drivers

All MPU signal lines isolated & buffered

System expansion via two 86 pin connectors

JANUARY 1977

o
3;., 81

i
t

TYPICAL EVK MICROCOMPUTER APPLICATIONS

The EVK Microcomputer board allows the hardware
development engineer, the logic designer, the
programmer, the systems engineer, the
mathematician, the scientist, the chemist or the
hobbyist to have a complete working Microcomputer
system, including development software by adding a
low cost power supply and an ASR 33 TTY to the EVK
Microcomputer board. The EVK series of Micro-
computers boards allows the owner/user to use one of
these boards to:

® Evaluate the complete set of AMl's family of
Microcomputer IC’'s at a low investment of time &
money — no design time is required.

® Serve as a general purpose Microcomputer for low
volume systems to which the systems engineer can
easily add additional 1/0 ports and memory.

® Serve as a low cost quick turn around prototype
system to evaluate total system mechanization
concept (hardware & software) and market
acceptance prior to committing to a custom design
system for large volume production.

® Serve as a low cost minimal 6800 Microcomputer
application software development system.

® Serve as a.low cost general purpose Micro-
computer to run numerous application software
programs.

INTERFACE AGE 35

3OV JOVIHILINI 9¢

a anewaydg pieog BuidAloiord 0089S INY “Z 0inbiy

wesber

2161l AHYNNYP

Rs7
RESET, 4-7K [
sw:sc’;«ﬁ - o » : c28
R20 5C20 $R23 Ri4 é ci8) % 15
£ STEAL AT~ 470 § 8p 3k 4709 8p =
- R 2543 T
SWITCH 9 o
Qs 2
R2247K ™ 2NSTTI 2NST71
R25 RIS CH_ xTAL2
c19 Sin Sia ’—”—
8 56p {R26 4702 7
P 24 Rig 35 mmeas™ ¢ M 16 X BAUD
22a 33n _C'ao | MEG CON (1)
| Qa3 | Qi r EBLIEEE EE/
Roraax MANOTT2L TRia M ansTr2 56p l] CRX /CTX ()
MHZ
DMA = KT 24576
To 34702 SWITCH SETTINGS
321 T6X FOR
P2 TTL " ‘l‘ .L.w m RESET 1 S3 Sz S So BAUD RATE
] 1 1] 110 BAUD
MA:]] ! Q 129 BAUD
o 4 g2 m o[300 BAUD
. T G 1 0o 2400 BAUD
[¢] 1] 1200 BAUD
)] 9] 1800 BAUD
o PUL (D) [¢] Q] 4800 BAUD
Ve Al Tl Te s dolslalsTe . Lhilkl L 0 ? (" 9igg B:Sg
10pS' e P 10 2
[0] 50 TCtelEY s 1[G £T 52 T o 1 [) 600 AUD
> |-e—ims 4>
BAM FoRET zaiso [P 82kp 7aie0 [5] At 7ae0 [TS s ST T T ol 200 AUD
;33 —_IR‘R ﬁ" ZJMR [I B) 7345 AUD
T | - T
1 [eD oo | 111 75 AUD
010 1 [¢) 50 BALUD
0] 0o 1 [} BAUD
100ps C4) 01 0] QJO 19200 8AUD
4 | = SWITCH OPEN
0= SWITCH CLOSED (GND>
CI1IVMA 15V
R35 34.7K —CED WA CRANT
o .
—CAED DELAYED DMA GRANT
) 1l %
| \8 [n S
)39 =ED) g 5 —CEED R5T SW DS
CHRIW (—~—MA9N :)‘A)TA BUS 1 ?;5.) MEMORY DISABLE
r- g 7 LSB 3 S
1 T
[2
| 9oL q
1 I 6 6"—:" a . MEMORY SPACE MAP
B DO 5] @ EF EFld T T TTT] REST [——
L HE SR SR TS BESTART__VECTOR M54
Vs 1 oI~ FrE Tl T T T BT BYTZS RA '
13 e] ;
i Bl)X A 000000000 512 _BYTES AA B
43, r'é’“ 9 F SLITLIT il /0 AREA
15 2] [sl “ D Fa o TI000103000000]
B oan I 4 “29/ 3 , - ?go Hony {8k rom “1”
S aos T > S oo S04 ek nou gy,
[SR ; - GOUCaToncaGg] 8% ROM "0 eg30
S-SR L1 NN SN
RGN ' Lo apteny 16K ROM 0 gg3,
NG E o XRso) COU00 000
ol OO i iaa PP .
32| ~.‘°§/Z T : AR LDV PROM 2% 3 ee
Bus " s K maERayest o O oma
=] ry o1 COQQIT i1y 1y B5TZ-BYTE RAM “*0,1,273%
s 2l N (0] JQCool0000Ua00 MOVABLE 6810
LR T ~ Q Al A4 A3 A2 Al ﬁA'Q VFVBé)AEgE; £ iR
B S i SrBT T Re ARy R
=) Qe j ; t ;8'7 g 4 -) Ngo SPARE ;R CtON’I'éjL
= 1L L L. M T 3 SOLEYTY
8 7654321;;575'5432.} 3-5-4°% 4 —FL20-3 e 22 FLOPPY DISK
232l ; ! I L T RE]
27 oliof nfrafisfralfreft lp_ql.zz,w_'?JLJ 42 5 O R LT Lck%%ﬁk“ﬁia—_—
9 27K h FREG - 1 R i i) .
L EFTEE (o B) HoC
- " <) fIEseEEEESEION. L
BFQ— 8
s el Bttt
- 1
:Eg‘fc—r 1 | IRSTIRS) PAl P{:.» CH

4L61 AYVYNNYP

L& IOV JOV4HILNI

AQ Al AZ A3 A4 AS A6 AT AB ASAIOAIIAIZAIBAI4AIS
% @@ g @@@@@@g@ eTs7
. / AO AI5 MAIN ADDRESS BUS
_—— 1305 12
c2) DMA GRANT 3o 1079 A T0 RESTART CIRCUITS
8T9e? ng Al
@ o1 —3e-g a0l 2p3 14 4 Toapon a2
arlo TN 4 a5, Lr A3
@ o2 —29 3y, Az A5 4 ps e
12 AN A 6NT]
36/ s 13 ordl 7 15 A 10, a5 rs
DBE Aa D A6
e 5! 1ol o l»]’ = >————MEMORY ADDRESS BUS (3
- +5V As = 4 S A7
=1)
< R'S% As > 33 G‘}:»’Jf A8
. 33K
& 75 G e—3al0 Blrse ark B2 4 > A9
' 7
w +5v +5v Al B 4 o e Al0
= RAO% ERSB A9 18 IS 4 ZE Al
_ 47K 4.7K _ \
Z RaarD 2 Hima o = 6%7 4 Loq}j 2
; +5V e T 101{9 "J J——us
=] R32 niof22 109 /1 52 —
S BB o] — 25 61 b i
=Xl NMI A3 g 3_4q14
24 K: + q ot
ot Al4 A5 5/[14 N
? Ask2s zla_,is 4 02
15
] 1) \rj " ka2 03
=1 2 21 TI >———ROM DATA BUS (3)
< +5V lapd 13 ¢ D4
E. $| 9}!0 D%
& et D apps 5 i o6
8T97
g 4 13 d 14 = o7/
o — = : ROM BUS ENBL (3)
EIRESET GED- il 20lREser oop3 32 342 5o
Py l o132 T4 s B0 o1
& (2> RESET " s Jaa R
2
= e iRa b2 0
@ 8 30 ﬁl 2 5 14 3
3 \ +5Vom——rqV, D3 ,LT‘ F — b
B 29 7)6 7 He—<— \
=1 D4 re 3 } 04 > RAM DATA BUS (3)
e = con s 20 3;_4 3j; - 05
o [¥5) 16 27 13 A <) 7 Be
= D6 —< 06
P=1 p7}28 N 2 S !0 07
- 15 D all T —/
= EE] N C ot} RAM DATA IN (3)
=3 38, sall Lo 2{}3 ZBV3]
NC
GN| ' __{3 140513 NS
21 57 ¥
GND VMA arl s a5
3 N 14 [‘:\ Iy
= 14 12Nt 1201
! I L) 6r87 6
60 o T) 15> i RAM DATA OUT (3)
-h &
&) IO[; 9
= 6 T Y [
€3 VMA +5v 5 H J.{ﬁ 4
, 1 sn&e% 1 als xz;;tu
€2 VMA . = c2) ‘—I@O{ 4 15
3 R/W [BA 87927 % g 8797’
R 5D 0O DI D2 D3 D4 D5 D6 D7
BA A&

MAIN DATA BUS

c2)

3OV JOV4HILNI 8¢

weibeig anewaysg preeg GuidAjo1014 §08SS AV "t 8anfig

<

LL61L AHYNNYP

RAM DATA BuUS CI)

e

ADDRESS BUS
[4P] A7

A8 A

A9 /

A0 A

Al
Al2

Al3 A

Al4 /1

AlS

ROM DATA BUS CI)

R/W (1)

MEMORY DISABLE
(3]

NPV A UN -0

JOSELECT
Q@RI

ROM BUS ENBL CI)

2 2 2 2 2 2 2 2
3\ 3 3 3N\ 3N 3 N\ 3 3
4 N a4 N a N a N a N a4 N 4 N 4 N
5 N 5 N 5 N 5 N\ 5N 5 N 5 N 5 N
6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N
7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N
8 N s N 8 N s N\ 8\ g_\\ __a\\ _g\\
9 N s N 9 N 5 N 9 \)) 9
1N N\ 1N N 11\ N N 1N
]] 1] 1 | 1 1
o= 6= #5V s o |5V o o o |+sv 6 145V s s 22, s
= Hear,
Z Z 2 £ 4
1"
iz 2 13 vel2 2] _:_% A0 Vee :i vsv
AOE3 14 Vcc% :—:?4 n Al Vee [
Vef2 12 v PROGI 1) A2V PROG}
enol! ' _izvlo_grav 10 l2v 16 J2v A3 —i2vpQgiav
:L U |]]
A4 = = GND'—-‘] | 1 A4 GND'j
2556830, = = = as =
I ! $6834 . 56834
2 2 2 2 2 2
0o 0o 2 < a7 Dof5
10 o2 2 6 o1 S o
4 4 4 4 4 A8 4
D2 Y} D2
5 s s 5 5 5
D3 032 P 2 o3
D4 : ? 04t2 5 - Dafs
DS 05 DS
oef2 8 D62 8 13 8 Hrw [P 8
o7} _10] S p7p2 N 2 S 190¢s ., o7f2
0 3
| 4 | —)
5
r3
3
2
| e
o
5 s RAM DATA OUT CI)
> RAM DATA IN (1)
5 LID
7

LL6L AHYNNYP

6¢ 39V JOV4HILNI

weiBeiq snewsysg pisog BuidAyoyoid Y g einbig

W] +5v
RAM 1/0. gi §-~ﬂr§,"‘~° N\n ~ Nmgn o +ov T
L oo P4 = .
nu:.n)us D4 ggeees 3 g3x20ep222)3 l
os €820 49 1 o S6820 48 - = ===
0 BE = 3 GREL 293P a3 2 o.nnzaen .
o7 FIEE W moaomooo E1% o wr O Do o335 858
BREBEEE A’,“‘I))//y]))y)) REEPEEEREEEE a!.‘# y;}iyy
(2) RESET vsy L l
(45] 1RQ +5Vv -
@ Rs/w .
@ g2 —),5 ,'489A
) AG-al Al AL LRQ fgig 0 Z—f;’ﬁhaascﬂ_—-—CEEEDDCC'
C —1ea 148¢
arw Oy CEED CTS
- RXD
i -RXxD
€2) CRX /7 CTX CRX Y OIN ®
S cTx cR
170 SEL (3) R8 03
[5 S6850 TIY INO
€3) V™A op=— g& Rs
%
8 22 2{cso
a
0 ‘a5 3he 174 B e
+5v @
M P 37
R28 = Lo 00
33K [TL 21
13 P7 02
24 g:
21
2> tms aol 7Y onnf 0s .
(2310045 Il 1 %
N o8 T2 = o7 TTY OUT @
p25 2 5182 mEseT A
) 20
23] 3 vee l5a
PAL TROA
-1 22 Aonz RO +7) —
2V > o wappd BT
PA3 RS 35
+5v 20 &lpna e ©
ac 9 7 RSG B8 -
* 2 PAS £l
2Nz gtsv 18] 8lohe
J d oar Csi 3 4oV EDGE CONNECTOR
o oo ol)
RSIQIK [R54S224 oY j 1P oor- DEVICE 5PI'DE __RESERVED 2
, 2 Iala¥athl ’\ﬁ ~
R50 berg 5]h82 O Diny oo m.n o~ VOQ 1|
VA D3 PB3 N D2 z;""h'“ ooaogooooobﬁr)don 5|
1K L g a8 4loge @ o530 SO+t + 5020000
Q © = orYs)
2N5a00 SR2 x D5 - Slogs & pale /] "'""""Oﬁ"—"f?o IR BRNT BRI IRRNTERBBT BN OGIES
a 82 ‘3 PB6 s) e e o o
264 07?— es7 D6 2; — e 22 QQNN»4N7annmnq%q-1mmmmmo@www~,\y\r SooD
a 29, 2 1
CR9 R/WE r{cA2 o7 z?m?:\mﬁ?o YogeerD 0 -0y, JHEEHTE N
IN40O3 SO, - (<L <IITIqqS 2;‘,&{‘{“)
AR 3 ud
-50v 8 ST
RS3 [MJE340 TRACE SIDE g R (=5
| Y 3
&
552 9923233988538 888553
E2X333333> o
= 100V Eggégggggggggoggéggg
>FEFEFEdaca i EEEEE

+ 12V
€56

%

22 cri

EDGE CONNECTOR

B

DE VICE SIDE 3
EPROM SOCKET 3
z
u*" H
8 nr::
STTITITITITITITITINIEOO
ALLERT T - >>_ .00
3 o OO ggm.n AN O NI > r > 2 2R T 200
>2<<<2«(<<waaaanoaa ERAR SRS S L Tr e 1055
VOO 0% O AL O N W ONT ODONT VDO N
N T O N R T T g S A BA R G 808 68 SRR RRSDD S
o B ISo PORD Zme
—nwso:T"f’:gmm\.qumﬂmn—vvqqqmlﬁ RN
OO 3 NN NN NI N N N N A RN 0555 »> > 00
onoaoooo\ EERRER l vy | | U XD annZZ
|] o e RS B e LY P dte N T
B E“" 232 << <2 T ++
- Sodataatannaaacanasy|
\\(.
EPROM SOCKET
TRACE SIDE RSL32

EVK MICROCOMPUTER FUNCTIONAL

DESCRIPTION
FUNCTIONAL CONFIGURATION

The following functional description is directed
towards the fully populated EVK 300 Microcomputer
board and is functionally applicable to the complete
series of EVK boards limited only by the degree of
board hardware-software population.

No attempt will be made to functionally describe the
characteristics of AMI's Microcomputer IC chip set as
this was undertaken in the first article entitled AMI
6800 Microcomputer Chip Set published fast month in
INTERFACE AGE. instead, we will describe the general
architecture of the EVK Microcomputer board and its
general characteristics in order to provide an insight
into EVK board utilization.

GENERAL ORGANIZATION

The EVK Microcomputer functional configuration is
composed of the following major functional sections:
MPU, clock, internal timer, memory, EPROM
programmer, internal bus, expansion bus, 1/0 bus, 170,
and control logic sections. This functional inter-
relationship is shown in Fig. 1, EVK Microcomputer
Functional Block Diagram while the detailed logic and
circuit information is shown in Fig. 2, 3.4, & 5, EVK
Microcomputer Logic Diagrams.

MPU — The MPU is mechanized with AMI’'s S6800
Microprocessor chip. All MPU data address and con-
trol lines are buffered, and in addition are available at
the board edge connector.

MPU TWO-PHASE CLOCK — The basic MPU two
phase clock is derived from a 96S02 dual one-shot
(IC12) connected either in a regenerative feedback
loop or driven by a 1 MHz crystal controlled oscillator
circuit (IC14). Switch #SW 2 is used to select either
the one-shot regenerative feedback or the crystal os-
cillator mode of operation. Phase one and two timing
is controlled by potentiometers connected to the one-
shot RC timing networks and controls the phase pulse
widths. These two phase additive pulse widths deter-
mine the MPU clock rate when the one-shot
regenerative feedback configuration mode is con-
nected. In this regenerative feedback mode, MPU clock
frequency may be adjusted from 300 KHz up to 1
MHz. The phase timing outputs of the one-shots in
both modes of operation drive 2N5771-2N5772 tran-
sistor amplifier circuits which in turn drive the two
phase clocks of the MPU. In addition, both clock
phases are buffered and available at the board edge
connector. The fixed frequency 1 MHz crystal oscillator
circuit output is also buffered and available at the
board edge connector.

The two phase clock can be halted in either phase 1
or phase 2 for cycle-steal, DMA or slow memory
applications. Phase 1 is halted (held HIGH) by driving
the CYCLE STEAL control line LOW. Phase 2 is halted
(held HIGH) by driving the MEMORY READY line low.
Because the S6800 internal registers are dynamic and
must be _refreshed periodically CYCLE STEAL and
MEMORY READY line outputs to the one-shots cannot
be held LOW for more than 5 us. This time limit protec-
tion, regardless of control input conditions, is provided
by open collector 7407 (IC65) Hex non-inverting

40 INTERFACE AGE

drivers, disconnect diodes and one-shot RC pull-up
timing networks.

INTERNAL TIMER — A crystal controlled interval
timer provides 100us and 1 ms time periods for inter-
rupting the MPU for real time clock applications. The 1
MHz crystal clock output drives a three decade divide-
by-ten 74160 counters (IC50, 51, & 52) which in turn
provide the 100us and 1 ms time intervals. The 100 us
time interval pulse sets bit 7 of I/O address FBC7 via
the S6820 PIA (IC47) while the 1 ms time interval
puise sets bit 7 of I/0 address FBC5 via the S6820
PSA. These two time interval signals are used for tim-
ing EPROM programming.

MICROCOMPUTER BUS ARCHITECTURE — The EVK
Microcomputer in essence has three sets of busses,

. namely the MPU bus, the Microcomputer bus and the

on board memory-1/0 bus. Each bus set consists of an
8-bit bidirectional data bus, a 16-bit unidirectional
address bus and a control bus. The MPU bus is isolated
from the Microcomputer bus in order to keep MPU
signal loading to a minimum. The on board memory-
I/0 bus is isolated from the Microcomputer bus in
order to assure that the on board memory and 1/0
devices do not load down the Microcomputer bus. As a
result of this load isolation 40 ma drive current is
available to drive external expansion hardware. The
bus isolation buffers are non-inverting 3-state hex
buffers (8T97). All of the controls to and from the
S6800 are available at the board edge connector. This
allows the user-complete access and control of the
MPU. Bus logic polarity is the same on all three busses
(logic true = voltage high = ""1”). The enable control
signals to the MPU are always active. Control signals
for the address bus are gated by the DMA GRANT line.
The data bus is controlled by the DMA and R/W Lines.

MEMORY — The onboard memory includes 1K bytes
static RAM, 4K bytes ROM and 2K bytes EPROM.

MEMORY ADDRESS ASSIGNMENTS — Address
assignments have been made such that all com-
ponents on the card can run in the upper 8K bytes of
memory. An address assignment map is shown in
Figure 6.

Address decoding is made by use of three 745138
one-of-eight decoders (IC 44, 45, 54). The first
decoder (IC 54) selects one 1K-byte block of the upper
eight 8K-bytes of memory. The output of this decoder
is for RAM, I/0, ROM, or PROM enabile lines. The sec-
ond decoder (IC 44) selects one of eight RAM memory
chips. The third (IC 45) selects I/O devices on the
board.

A MEMORY DISABLE line is available at the Bus edge
connector. This line, when LOW, deselects the first
address decoder disabling all 1/0 and memory devices
on the board. An I/0 ENABLE line is derived from the
first adress decoder and is available at the Bus edge
connector. It must be noted that I/0 ENABLE on the
backplane is not valid when MEMORY DISABLE is
LOW. '

READ ONLY MEMORY — The Prototyping Board has
assigned locations for two 1K byte S6830 ROMs and
for four 512 x 8 S6834 EPROMs. The ROM circuits
are designed such that the locations will also accept
two 2K byte 16K ROMs (S6831). Thus, maximum
memory allocation for ROM and EPROM is 6K bytes.
The prototyping operating system program (PROTO) is
assigned to the ROM with a starting address of FOOO.

JANUARY 1977

ADDRESS

FFFF

FIXED RAM FEOO

Klbeerm e e e
"MOVEABLE RAM (HIGH) | E2EF

FBFF

F800
r F7FF

ROM

1K 1/0

F400
F3FF

ROM
4K t F000

EFFF
ROM

ECO00
EBFF

ROM

N

E800
E7FF

EPROM (HIGH)
2K < E400

E3FF
EPROM (LOW)
E000
DFFF

L

56K 4 —————————— - =] 7DFF

MOVEABLE RAM (LOW)

- 0000

FIGURE 6. MEMORY ASSIGNMENT MAP
FOR THE AMI PROTOTYPING BOARD

The four EPROM locations may contain any user
program. Execution can start from beginning EPROM
location either by selecting EPROM starting address of
EOOO in the restart switches or by branching to that
address using the "G command in the PROTO
program.

RANDOM ACCESS MEMORY — The RAM is divided
into two parts, 512 bytes fixed in the highest memory
locations and 512 bytes of moveable memory.

Since the highest memory locations (FFFE, FFFF)
are used for restart address, the address circuits
disable the RAM using a memory disable line and force
the 16 bit switch address on the data bus whenever a
Reset occurs. This allows the user to vector to any
address as his restart address.

The PROTO program assigns restart vectors for IRQ,
NMI, and SWI whenever it is started (usually via
Reset). It is therefore important to note that the user
program must do the same thing if he does not use
PROTO and restarts from a power down mode.

The stack pointer is assigned to address FF8F in
PROTO. This allows the remaining RAM to be used as
stack if so desired.

A switch option allows 512 bytes of RAM to be
relocatable. When in the upper portion of memory, the
RAM is assigned to addresses FCOO to FDFF making
all 1K-bytes of RAM on the board contiguous (FCOO to

JANUARY 1977

FFFF). When in the lower portion of memory, the 512
bytes are addressed whenever A9 and A15 are not
true (0000 — O1FF for example). It is thus
recommended that RAM be assigned to the low
address only if the user does not add other RAM to his
development system.

1/0 — On board I/0 includes parallel PIA I/0 ports
and serial ACIA TTY and RS232C 1/0 ports.

PARALLEL I/0— Three S6820 PIA’s give the user a
wide range of I/0 flexibility. The PIA’'s are assigned
addresses as shown in Table 2. Interface pins of these
devices are directly connected to the I/0 edge con-
nector. The CA2 pin for the PIA at addresses FBC4 is
also connected to the VPROG input (pin 11) to the
EPROM socket (IC 46) through a +5V to —50V driver.
The user is cautioned to use this line such that it will
not interfere with his I/0 function if programming an
EPROM. For example, if the CA2 line is connected to
an external control function, this function may be
erroneously activated while programming an EPROM.

TABLE 2. 1/0O ADDRESS ASSIGNMENT

1/0 PORT ADDRESS | ASSIGNMENT
S6850 ACIA Serial I/O = TTY
FBCE Status/Read
FBCF Control/Write
S6820 PIA 1 Unassigned
FBC8 Peripheral Register A
FBC9 Control Register A
FBCA Peripheral Register B
FBCB Control Register B
S6820 PIA 2 Keyboard/Unassigned
FBCO Peripheral Register A
FBC1 Control Register A
FBC2 Peripheral Register B
FBC3 Control Register B
S6830 PIA 3 PROM Burner
FBC4 Peripheral Register A
FBCS Control Register A
FBC6 Peripheral Register B
FBC?7 Control Register B

SERIAL 1/0 — One S6850 ACIA allows the system
to communicate bi-directionally with serial data 1/0
peripherals such as a TTY. A baud rate generator gen-
erates all standard communication frequencies by
switch selection. This frequency operates inde-
pendently of the system clock so the MPU frequency
can be changed without altering the 1/0 clock rate. See
Table 3 for switch setting and associated frequencies.
A 20 mA current loop interface and an RS-232
interface are both available at the I/0 edge connector.

Address assignments for the ACIA are given in
Table 3, “Bit Rate Generator Switch Settings.”

EPROM PROGRAMMER — A unique feature of the
Prototyping Board is its ability to program AMI S6834
EPROMs. A third PIA latches the address and data
information for programming the EPROM. The EPROM
socket programs only the S6834 EPROM, however, an
adapter plug is available to also program the AMI
S5204A EPROM. Except for the VPrOG input, all
address, chip select, R/W and data 1/0 pins on both
EPROMs are completely TTL compatible and are
driven directly from the PIA outputs. The outputs are
also available on the 1/0 edge connector for
convenience in using another EPROM programming
socket.

INTERFACE AGE 41

TABLE 3. BIT RATE GENERATOR
SWITCH SETTINGS,

0=CLOSED, 1=OPEN

SW POSITION BIT RATE
4 3 2 1

0 0] 0 (4] 19,200 baud
0 0 0 1 0 baud
0 0 1 0 50 baud
0 0 1 1 75 baud
0 1 0 (o] 134.5 baud
(4] 1 0 1 200 baud
0 1 1 0 600 baud
0 1 1 1 2,400 baud
1 0 0 0 9,600 baud
1 0 o 1 4,800 baud
1 0 1 0 1,800 baud
1 0 1 1 1,200 baud
1 1 0 0 2,400 baud
1 1 0 1 300 baud
1 1 1 0 150 baud
1 1 1 1 110 baud

Programming is achieved by pulsing the VPROG pin
with —50 volts through the CA2 line of the PIA at
address FBC4. This line drives the transistor that gates
the —50 volt source to the VPROG pin. The —50 volt
source is switched ON or OFF via the VPROG switch.

CONTROL — The Microcomputer control section
includes system reset logic, addressable reset logic
and DMA control logic. In addition, an external logic
circuit may be added to provide selection between
RUN and single step modes.

RESET — The Reset circuit provides a timed reset for
Power On Reset timing and for the Reset switch. The
circuit is a timed oscillator which provides a 200 ms
reset pulse.

RESTART — The starting address of an S6800 is
FFFE/FFFF. The contents of these memory locations
are put into the Program Counter register each time
the MPU is reset. The Evaluation Board traps the
FFE/FFFF addresses and puts the contents of the two
8-bit switch sets (IC 32, 43) on the data bus for each
address and disabling memory, then gating the first set
of switches to the Data Bus during FFFE time and the
second set during FFFF time. The user is thus allowed
to select any restart address by simply selecting a two
byte address on the 16 bits of switch settings. The two
DIP switches may be replaced with four hex thumb-
wheel switches mounted on a front panel and inter-
connected via a flat ribbon cable and DIP plug
connectors providing front panel Hex restart control.

DMA — Three types of DAM implementation are
possible on the Prototyping Board, a halt processor
mode, a cycle steal mode and a multiplex mode. A
switch selects these DMA modes. The switch must be
in the DMA position for the multiplex DMA moede. A
delayed clock gives the DMA GRANT line to the bus
after the “Data Hold” time has passed for a multi-
plexed type of DMA operation. The control lines for the
halt processar and cycle steal modes are available at
the Bus edge connector.

RUN/HALT & SINGLE STEP EMBELLISHMENTS — A
simple low cost three IC RUN/HALT-Single Step
instruction logic may be added external to the EVK

42 INTERFACE AGE

board to provide these capabilities if required. Figure 7,
RUN/HALT & Single Cycle Instruction Logic Diagram
and Figure 8, Single Step Timing Diagram depicts this
added logic mode.

POWER REQUIREMENTS

The EVK board is mechanized so that nominally only
a +5 volt @ 3.5 amp power supply is required. A —12
volt supply is required when using S6834 EPROM ICs.
In addition, a —50 supply is required when program-
ming these EPROMs. The RS232C Interface requires
both the +12V and —12V supplies for proper oper-
ation. The following is the total power and voltage level
requirement for a complete operational EVK 300
Microcomputer board; :

+5V @ 4 Amps
—12V @ 150 ma
+12V @ 50 ma
—50V @ 50 ma

SOFTWARE

The EVK 300 Prototyping Board Software is
comprised of a TTY Operating Program (PROTO) and is
supported by a ROM Subroutine Library (RS)3.

PROTO— The EVK 300 is supplied with a pro-
totyping operating system program (PROTO). The
program resides in ROM with a starting address of
FOQQ. The various routines within PROTO are called by
entering via the TTY keyboard one of the commands. A
command consists of one character command identi-
fier followed by additional parameters, if needed,
separated by blanks or commas. All commands end
with a carriage return. Since no action is taken before
the carriage return, an input line may be deleted by the
use of the TTY ESCAPE key. The PROTO program
operates on the following commands:

L Load Memory from TTY paper tape (HEX For-
mat)

P Punch a Memory location to TTY paper tape
(HEX Format)

S Set (write) Memory to a given value

D Display the contenis of a memory location in
HEX

G Go to user program at specific address and
begin program execution

R Print contents of MPU C, B, A, X, P & S register
on the TTY

B Burn (program) an EPROM from Memory
location indicated

V Verify the contents of an EPROM with a
specified memory location

I Input (copies) contents of EPROM in the
programming socket into memory.

M Move a specific block of memory to a
designated location

E End of transmission (EOT) character terminates
the record and punches EOT on paper tape.

The commands will operate on a single character op
code plus address parameters from the TTY keyboard.

JANUARY 1977

o —{j 7400 Yo

+5V

+5V
1K
SW#2
SWITCH 7400
+5V r'\’

SINGLE
STEP 1K
ALT 1
ACTION = 7400
sw

1K b1
7 LOCK
L J Q] J Q
»d ck | spuLse o cx

7473 7473
K a SONE P a

CLR

'8 y
SS

TOGGLE
sw N HALT

——

SPULSE

LOCK

m’f————l

— |
~]

i (vs

SINGLE}_)A/'
STEP 1 Run

HALT) MODE
MODE

Figure 8. Single Step Timing Diagram

JANUARY 1977

R sero HALT @)—b TO HALT

Figure 7. Run/Halt and Single Cycle Instruction Logic Diagram

(RS)’ SUBROUTINES — The 2K X 8 ROM provided
with the PROTO prototyping system includes a set of
(RS)® subroutines with a slightly different linkage from
the standard (RS)® form, although the calling sequence
is the same. In particular, the provision for additional
subroutines in the of other (RS)® ROMs is limited to a
total of 127 subroutines. The first additional (RS)’
ROM address must be placed in RAM location FFF4
(which can be set via the Set Memory command or
modified by an initialization code in a user program).
Also, since it is incorporated into a larger program, the
whole of which very nearly fills the 2K bytes of its
ROM, the (RS)? part of the ROM does not start on an
even page boundary, making it awkward for isolated
use. However, the 24 subroutines included in this
ROM are available to user program calls with the SWI
calling sequence, as described.

The ROM Subroutine Library (RS)® operates on a
single SWI (3F) command and a second byte of offset
giving the S6800 an additional set of two-byte in-
structions. Specific subroutines (offsets) are as follows.

INTERFACE AGE 43

ud

= g

- = '

S: £

>

G4 u FUNCTION

22 =

0 PUSHALL All registers are pushed on to user stack.

1 POPALL All registers on user stack are loaded into MPU.

2 TXAB Contents of Index Register are transferred to A & B
Accumulators.

3 TABX Contents of A & B Accumulators are transferred to
Index Register.

4 XABX Contents of A & B Accumulators are exchanged with.
contents of Index Register.

5 PUSX Contents of Index Register are pushed onto user
stack.

6 PULX Index Register is loaded with contents of user stack.

7 ADDXAB Contents of Index Register are added to contents of
A & B Accumulators. Sum is in A & B Accumulators.

8 ADDABX Contents of A & B Accumulators are added to con-
tents of Index Register. Sum is in Index Register.

9 ° ADDAX Contents of Accumulator A are added to contents of
Index Register. Sum is in Index Register.

10 ADDBX Contents of Accumulator A are added to contents of
Index Register. Sum is in Index Register.

11 SUBXAB Contents of Index Register are subtracted from con-
tents of A & B Accumulators. Remainder is in Ac-
cumulators A & B.

12 SUBABX Contents of Accumulators are subtracted from con-
tents of Index Register. Remainder is in Index
Register.

13 SUBAX Contents of Accumulator A are subtracted from con-
tents of Index Register. Remainder is in Index
Register.

14 SUBBX Contents of Accumulator B are subtracted from con-
tents of Index Register. Remainder is in Index
REgister.

15 P2HEX Two Hexidecimal Characters (one MPU byte) are
printed on the TTY.

16 P4HEX Four Hexidecimal Characters (two MPU bytes) are
printed on the TTY.

17 PRINTA ASCII Character designated is printed on TTY.

18 PMESS Message designated is printed on TTY.

19 VALAN Character (byte) is checked to see if it is a valid
alpha/numeric character.

20 INPUTA ASCIll Character at TTY is input to MPU.

21 CONHB ASCII Character string is scanned looking for a valid
Hexidecimal number.
Binary equivalent is returned in Accumulators A & B.

22 INDEX Contents of Accumulator A are multiplied with the
contents of Accumulator B and the product is added
to the contents of the Index Register.

23 MuULS Contents of Accumulator A are multiplied with the

contents of Accumulator B. Product remains in both

Accumulators. .
$6800 MICRO ASSEMBLER/DISASSEMBLER (MA/D) —
An optiompgl ROM resident Micro Assem-
bler/Disassembler is available for the EVK Mi-
crocomputer board at an additional cost of $30.00.
Where this option is provided for those applications it
may be desirable to debug programs using the

44 INTERFACE AGE

mnemonic instruction codes instead of hexadecimal
values. MA/D is designed to accomplish this by inter-
facing with a user via a keyboard and display (TTY or
equivalent). The required 6800 environment must in-
clude:

Character in routine at location 0
Character out routine at location 3
No. nulls after carriage return at location 6
RAM at locations 7- 78 10

The 1/0 routines must transfer the characters in
Register A and return with a RTS. It is expected that
location O will just include a JMP to the actual
character in routine, or, in the case of AMl's proto
board:

00 swi
01 FCB 20
02 RTS

The stack pointer must also be initialized before MA/D
is entered. MA/D itself can execute from ROM, located
anywhere in the system. MA/D may be started at its
beginning address +2, in which case it will set up its
environment for the AMI proto board.

After entering MA/D, the line length may be
changed. The line length is in location 7 and is initially
set to (20)10=14 hex. The line buffer itself begins in
location (58)10=3A hex.

After displaying a header message MA/D prompts
the user for a command by displaying MA/D’s current
location counter followed by a colon (:). The com-
mands available to the user allow for disassembly of
instructions in memory and assembly (mnemonic
translation and operand insertion with relative offset
computation) of instructions directly into memory.

MA/D is also very useful for writing short test
programs. The instruction format for assembly is iden-
tical to the S6800 Assembler except:

1) operands must be in hexadecimal without the $,
and no more than four digits long

2) no symbols can be defined or referenced

3) relative addresses are specified as absolute
addresses, the offset is computed

in those instructions having both direct and
extended addressing modes, extended
addresses must have at least three digits. Thus,
LDA A 10 assemblies as 96 10

LDA A 010 assemblies as B6 00 10

in those instructions not having a direct address-
ing mode, the operand may be two or more
digits. Thus,

INC 10 assembles as 7C 00 10
an operand may be a single hex digit only if the
op code indicates an A or B register, or im-
mediate mode addressing. Thus,

INC 01 INC 1

LDA A 1 LDX 1

LDX #1 ’

—are legal—

—~

4

~

5

~

6

~—~

—are not—
(This makes it easier to distinguish between, for
instance, INC A and INC OA))
Anywhere a number is used, the construction

‘character may be used instead, and is
equivalent to the ASCII code for the character.

7

~

JANUARY 1977

The commands to MA/D are buffered and not
processed until the <RETURN> key is depressed. The
(BACKSPACE» key can be used to delete the last
character input. If errors are detected on user input the
line is ignored, ???? is displayed, and another prompt is

MA/D Command Summary

@newloc o . . issued
@ newloc z?%vict@h sg?ann:ollgp\:;?:to(lrr)ng;ezlaht:)l(\-/ The defaqlt command is “assemble” atd MA/D, if
adecimal address initializes the not recognizing the input as one of the folloyvmg com-
- mands, generates the machine code for the instruction
current location counter to the new -
. mnemonic.
address. MA/D automatically up- . .
dates the location counter as in- Next month we will publish the complete PROTO
structions are assembled or dis- Assembly Listing for the EVK Microcomputer board.
assembled.
$count
$ count The $ sign followed by a one or two
digit (hexadecimal) count results in
the disassembly of “count” instruc-
tions. Zero = infinity.
laddress >
! address The exclamation mark followed by >G E002
an address causes MA/D to call a AM.I. 6800 MICRO ASSEMBLER/DISASSEMBLER — 1.0
subroutine at the given address. |f (C) 1976. AM.I.
the subroutine returns with the 002A:@80
carry flag set, MA/D will print 0080:"THIS 1S LOOP NO.
3979 00900000
. 0094:04
! Exclamation mark with no address ggg;’f:ﬁé: 93
given causes MA/D to call the sub- oogs;sTA A 93
routine starting at the current 00SA:CMP A #3A
location. . 009C:BNE 110
009E:LDA A 0
“string Assembles the ASCIl characters 00AQ:@SE
following the double quote mark 009€E:
. - 009E-> 96 LDA A 30
into successive bytes of memory 00AO: @9E
starting at the current location. The QO9E:LDA A #°0
current location is updated. 00AO:STA A 93
O0A2:LDA A 92
XX 00A4:INC A
X OO0A5:STA A 92
‘character A one or two digit hexadecimal 00A7:BRA 110

00A9:@110

number is placed into the current
location, and the current location is
incremented by one. A single quote
mark followed by a single character
causes the ASCIl code for that
character to be placed in the
current location.

This command may appear several
times on the same line, the
numbers or quoted characters
separated by spaces or commas.

0110:LDX #0080
0113:LDA A 00.X
0115:CMP A #04
0117:BEQ 120
0119:JSR E003
011C:@119
0119:JSR 0003
O11C:INX
011D:BRA 113
011F:NOP
0120:LDA A #0D
0122:JSR 0003

0125:LDA A $0A???7?

0125:LDA A #0A

&address,count 0127:JSR 0003
012A:JMP 095

& address,count 012D-@95

&address count 0095:$3

& address count Ampersand followed by a hex- 0095-> 96 LDA A 93
adecimal address and count (from 1 gg:;'; gg Islif\:\\ o3
to 4 digits each) causes “count” 009A:195THIS IS LOOP NO.0001
bytes to be moved frpm address THIS IS LOOP NO.0002
to the current location. On com- THIS IS LOOP NO.0003
pletion, the current location is

THIS IS LOOP N0.0004
incremented by “count”. THIS IS LOOP NO.0005

THIS IS LOOP NO.0006

<RETURN> Carriage return is equivalent to THIS IS LOOP NO.000
$01, disassemble a single instruc- ; '
tion.

JANUARY 1977 INTERFACE AGE 45

SOFTWARE SECTION

AMlI's EVK SERIES
MICROCOMPUTER PROTOTYPING BOARDS

MICROCOMPUTER DEVELOPMENT SOFTWARE

INTRODUCTION
This article is Part Three of a series on the EVK

By Robert A. Stevens

Tl

o

SNy LAl
. | i o =ty
- 140 LR D) e
o S SRt - e
RPN Ty
t s 4

VYV YY

[e

sMicrocomputer hardware, firmware and supporting
- software. This month's subject covers the ROM resi-
«~==dent Prototyping TTY MONITOR Operating System,
‘PROTO.

"% 'PROTO SOFTWARE

The resident PROTO software program includes the
- |following commands:

L LOAD HEX paper tape program into RAM memory

PUNCH HEX paper tape from memory

SET (write) specified data string characters into
consecutive memory locations

DISPLAY (prints) in HEX to TTY contents of
specified memory locations

GO TO user program at specified address and ex-
ecute

13
%
11

R PRINTS contents of MPU register (C, B, A, X, P &
S) on TTY at time the user's program was last
interrupted

BURN (copies) the contents of specified memory
into the EPROM in the programming socket

V VERIFY (compares) contents of specified memory
with EPROM or ROM in the programming socket

I INPUT (copies) contents of the EPROM or ROM in
the programming socket into specified RAM
memory locations

M MOVE (copies) contents of memory block from
specified location to designated RAM memory
location

E END of transmission (EOT) character terminates

the end of punch paper tape record and punches
EOT on paper tape.

S 2

s

| &oenp (D eectttds) e
-~}

P] ° 3 e | RS R

e ';,_‘ P The commands will operate on a single character
== n 4 dOP CODE plus address parameters from the TTY
o o e

keyboard.

PROTO COMMAND DESCRIPTIONS

The EVK 300 board will be supplied with a proto-
typing operating system program (PROTO). The
program resides in ROM with a starting address of
FOOO. The various routines within PROTO are called by
entering via the TTY keyboard one of the commands
described in the following paragraphs. A command
consists of one character command identifier followed
by additional parameters, if needed, separated by
blanks or commas. All commands end with a carriage

' FEBRUARY 1977 °

110 INTERFACE AGE

SOFTWARE SECTION

MICROCOMPUTER DEVELOPMENT SOFTWARE

return. Since no action is taken before the carriage
return, an input line may be deleted by the use of the
TTY ESCAPE key.

L, ADDL, ADDH, OFFSET

The Load tape command loads data from a hex
formatted tape (see paragraph on 6800 HEX tape for-
mat at end of article) into the user’'s memory between
ADDL and ADDH, inclusive. The OFFSET is added to
the memory address specified on the tape to form the
actual memory starting address for the data stored. If a
byte to be stored into memory has an address outside
of the range ADDL, ADDH, it is not entered into
memory, but a Delete character (H'FF) is transmitted
to the terminal.

Example: L 0100 O2FF FFFA

The address range in the L command is optional,
and if omitted is assumed to be the full range of
memory (0000-FFFF). The offset parameter is also op-
tional, and if omitted is assumed to be zero (0000).
Thus the L command with no parameters loads the
tape into the memory locations specified on the tape
with no offset. The offset value in the L command is a
two’s complement signed number, entered in unsigned
hexadecimal. For example, an offset of —6 is entered
as FFFA.

If an attempt is made to load non-existent memory,
or ROM, the loading operation will terminate, typing
out the address and the message “BAD ADR.”

In- operating the Load command, PROTO turns on
the tape reader and scans the tape for the first ASClI
“S.,” which indicates start of record. It is not necessary
to position the tape at the first record of a tape file
since each record contains its own starting address.

PROTO will load data records until it encounters an
end of file (EOF) record or a tape error (Check Sum or
illegal character). When PROTO reads a header record
(start of record and address), it translates the header
into ASCII characters and prints the result. The Check
Sum is the binary sum of all characters in the block.

PROTO does not list the tape contents as the tape is
being read.

When PROTO encounters an end of file record or a
tape error, it turns off the reader and prints “EOF" or
"“CKSM ERR" respectively.

P, ADDL, ADDH, OFFSET

The Punch hex format command causes PROTO to
punch on the TTY paper tape the contents of memory
between ADDL and ADDH, inclusive. Each record is

FEBRUARY 1977

Good Software and Support are to a
computer as the driver is tq.his car.
One without the other and you have

a magnificent paperweight.

punched with a four-digit hex address of the starting
byte of the record. This address is derived from the
memory address of the byte being punched, plus the
offset value, OFFSET. The offset is optional, and if
omitted is assumed to be zero.

All data records are punched in hex format. Records
using this command (except the last record) contain 16
bytes of data plus the start code, byte count, address,
and the checksum.

The P command does not cause an EOF record to be
punched so that several disjoint blocks of memory can
be combined on one tape file.

Example: P FOOO FO7F OFOO
S, ADDR, BYTE1, BYTE2, ———, BYTEN

The Set memory command writes the 8-bit data
words specified by BYTE1 to BYTEN into consecutive
memory locations starting at ADD.

If ADD has more than 4 (hexadecimal) characters or
if any of the data bytes have more than 2 characters
each, only the last 4 or 2 characters are used respec-
tively.

Example:S 0000 86 05 97 28

Memory locations at 0000 through 0003 are loaded
as shown.

D, ADDL, ADDH

The Display memory command prints the contents
of memory between ADDL and ADDH, inclusive, in
hex format. Up to sixteen bytes per line are printed,
preceded by the hexadecimal address of the first byte
of the line. A carriage return is forced after a byte hav-
ing a low order digit of F in its memory address is
printed.

Example: D FCOO FCIF

Two lines of memory contents are printed as
follows:

FCOO 00 01 02 03 04 . . . OEOF

FC10 10 11 12 13 14 . . . 1E1F

G, ADDR

The Go command starts execution of the user
program at the address specified by the input
parameter. To insure that all registers contain the same
information they held before the user program was in-
terrupted, PROTO pushes into the stack the copy of
the user registers that it keeps at locations FFEB—
FFE3 (CC, B, A, X, P, S) then executes an RTI instruc-
tion. The user can change the initial values of the

INTERFACE AGE 111

SOFTWARE SECTION

MICROCOMPUTER DEVELOPMENT SOFTWARE

registers by changing the contents of these locations.
Example: G 300

Program will branch to address 0300 and start ex-
ecution from that point.

The Registers command prints the contents of
memory locations FFEF—FFF3 which contain the
values that were in the user's C, B, A, X, P, and S
registers (in that order) when the user’'s program was
last interrupted.

B, ADDL, ADDH, ROMAD

The Burn command copies the contents of user
memory into the EPROM in the programming socket,
beginning with memory location ADDL through
ADDH, inclusive, to EPROM locations beginning with
address ROMAD. Each byte is burned in with 20 3-ms
pulses of =50V on the Veros pin (pin 11) of the EPROM.
Before attempting to write into the EPROM, the con-
tents of the EPROM are compared with the user
memory data byte to verify that the EPROM will take
the byte (PROTO will not attempt to program a EPROM
location to logic LOW which already contains logic
HIGH). After the 20 pulses, the new contents of the
EPROM are verified against the memory byte to be
sure the data was indeed written. If the byte did not
program, a NAK code is typed out on the terminal, and
another try is made, up to a maximum of three tries.

If the preverify encounters a EPROM location con-
taining HIGHs where the memory byte has zeros,
PROTO will type out the memory address, the memory
byte in binary, the EPROM byte in binary, and the
EPROM address (if different from the memory
address), then stop. If after attempting to write data
into the EPROM, the data does not program, or
erroneous bits show up, a similar display occurs for the
failing location, with the additional message “BAD
ADR"” typed on the same line.

The EPROM address ROMAD is optional, and if
omitted, ADDL is ised, with only the least significant
nine bits of the address being used. If the address
range ADDL, ADDH is omitted, the 512 bytes begin-
ning at FCOO are used, and the EPROM is checked to
insure it contains all LOWSs before any locations are
written. If not, four question marks are typed and the B
command is aborted.

V, ADDL, ADDH, ROMAD

The Verify command compares user memory be-
tween ADDL and ADDH, inclusive, with the corres-
ponding locations in the EPROM in the prgramming
socket, beginning with EPROM address ROMAD. Each
location that does not match is typed out in the follow-
ing format:

aaaa mmmmmmmm pppppppp rrrr

where “aaaa” represents the user memory address,
“mmmmmmmm’” represents the memory byte, in
binary, and “rrrr” represents the EPROM address, if
different from the memory address (in the low nine
bits). Nothing is typed for matching locations. The
typeout may be aborted by typing an ESC key during

112 INTERFACE AGE

the typeout.

If the ROMAD parameter is omitted, ADDL is
assumed. If no parameters are supplied in the com-
mand, the whole EPROM is compared to the contents
of FCOO — FDFF. _

I, ADDL, ADDH, ROMAD

The Input command copies the contents of an
EPROM in the programming socket into memory
beginning at the address ADDL through ADDH, in-
clusive, from the EPROM address ROMAD. If ROMAD
is omitted, ADDL is assumed. If no parameters are
supplied, the entire EPROM is copied into the RAM
area, FCOO — FDFF. An attempt to copy an EPROM
into non-existent memory will abort the command with
the message "BAD ADR.”

M. ADDL, ADDH, DEST

The Move command copies memory from the range
ADDL — ADDH, inclusive, to the RAM locations start-
ing at DEST. This copy begins at the lower address, so
if DEST lies within the range ADDL — ADDH, some of
the original data will be lost, and other parts will be
duplicated.

The End of Transmission command is used to cause
an EOT character to be punched on the paper tape.
After a field has been punched, an EOT will terminate
the record and punch a trailer tape. When reading a
record, the reader will stop at the EOT character. If no
EOT character is present, the reader must be manually
turned off and the Reset switch must be pressed to
enter the operating system program.

THE SUBROUTINE ROM

Many of the monitor’'s functions are accomplished
with the help of the Re-Entrant Self-Relative Sub-
routine ROMs (RS)?. This standard ROM, which can
be considered a software extension to the 6800 in-
struction set, is also available to be used by the user
both on the prototype board and in his final produc-
tion system. The user can call one of the 25 {(RS)? sub-
routines with an SWI instruction followed by the
number of the desired subroutine.

The user should be aware of the fact that the (RS)3
pushes from 7 to 10 bytes of data onto the stack,
depending upon which subroutines are called. This
means that if the user calls (RS)® routines, he must
make sure that the necessary memory space is avail-
able for stack expansion.

Since PROTO assigns its own stack area, the user
need hot be concerned about how (RS)® is used.

INTERRUPTS

Of the four available interrupt vectors, IRQ, RESET
and SWI are used by PROTO while NMI is left for the
user. The vectors are in RAM (except for RESET which
is switch controlled) so the user writing his own
program can completely control the system.

The upper memory locations are RAM. If the user

FEBRUARY 1977

SOFTWARE SECTION

MICROCOMPUTER DEVELOPMENT SOFTWARE

expects either NMI or IRQ interrupts to occur, he must
initialize the vector addresses to the starting address of
the IRQ and NMI handler routines.

PROTO must have contro! of the RESET vector so
that the RESET switch on the Prototyping Board can
return program control to PROTO at any time.

The reset routine copies the contents of the B, A, X,
CC, and S registers into a fixed ‘area of memory. This
means that the program can be aborted at any time by
using the reset switch while still saving all the registers
except the program counter. Unfortunately, the con-
tents of the program counter are lost.

It is possible for the user to use the NMI interrupt to
abort a program execution without losing the contents
of the P and C registers. This condition is auto-
matically set in the NMI handling routine when PROTO
is called. This interrupt vector will cause the contents
of the user’s registers to be printed when the NMI line
goes low.

Since the SWI instruction is used to call sub-
routines between 00 and H'18 from (RS)® the user is
somewhat limited in the ways he can use SWI instruc-
tions. However, he can access an SWI| handler routine
in his own program by an SWI instruction followed by
a byte containing the decimal number less than H'80
but greater than H'19 < n < H'80 sequence, PROTO
passes control at address FFF4. If the user expects to
access his own SWI routine and use PROTO, he must
use the Set Memory command to store the address of
this routine at locations FFF4 and FFF5.

PROTO makes sure that the user's SWI routine is
entered from the stack with all registers containing the
same information that they would hold if the routine
were entered directly through the SWI vector.

BREAKPOINTS

Breakpoints allow the user to halt his program and
examine the contents of the internal registers.
PROTO provides two types of breakpoints. In this
system, breakpoints are actually debugging routines
that can be called from the user’'s program just like
(RS)? routines.

Each breakpoint requires a two byte calling se-
quence: and SWI instruction followed by a number.

Breakpoints may be inserted either by reassembling
the program with the extra SWI instructions added or
the Set Memory command may be used to replace
parts of the code with SWI instructions. Note that the
second method is not satisfactory for the snapshot
option (described below) since the replaced code must
be restored before execution can be continued. When
using the second method, the user must make sure
that he replaces the first two bytes of an instruction. If
the SWI replaces the second or third byte of an instruc-
tion, it may be interpreted as an address rather than an
opcode.

The different types of breakpoints are:

1. Print registers (SWI, H'80)

2. Snapshot (SWI, H'81)

The sequence SWI, H'80 saves the user’s registe:s
at the vector stored in FFF4 — FFF5, prints their con-
tents (in the order CC BB AA XXXX PPPP SSSS),
then returns control to PROTO.

The sequence SWI, H'81 prints out the contents of

FEBRUARY 1977

the user’s registers then continues executing the user’s
program starting at the address following the byte
containing the number H'81. Note that if this address
does not contain a valid opcode, unpredictable results
will occur.

6800 PAPER TAPE HEX FORMAT

The AMI 6800 Hex Tape format provides a com-
pact representation of binary data patterns for trans-
mission using ASCIl communication terminals.

The Hex tape is organized into data records with
each record containing information in the same format.
The record information consists of type., length,
address, data and checksum. All records begin with an
‘S’ character for start of record identification. All infor-
mation on the tape which is not between a start of
record and the checksum is ignored.

TAPE FORMAT

ASCII
Character Description
1 Start of record (S)
2 Type of record
O — Header record
1 — Data record
9 — End of file record
3—4 Byte Count

Since each data byte is repre-
sented as two hex characters,
the byte count must be multi-
plied by two to get the number

INTERFACE AGE 113

SOFTWARE SECTION MICROCOMPUTER DEVELOPMENT SOFTWARE

of characters to the end of the Data Record Contents
record. (This includes checksum
and address data.) Character Tape
5,6, 7.8 Ad.lgiress Value 1 Start of record 53 S
he memory location where this
record is to be stored. 2 Type of record 31 !
9 N Data 3 Byte count 30 0
Each data byte is represented by 4 37 7
two hex characters. 5 41 A
N+1, N+2 Checksum 6 30 0
The one's complement of the
additive summation (without 7 Address 30 0
carry) of the data bytes, the 8 301_0 £
address, and the byte count. 9 Data byte 1 31 1 3
10 3] o § &
Example Data Record 11 Data byte 2 31 1 5 5
12 M| A 3
Memory Contents 13 Data byte 3 32 2 g
Address Data 14 30 0 ?
A000 10 15 Data byte 4 32 2
A001 1A 16 ag_A
A002 20 17 Checksum 38 8
A003 2A 18 Mdy_4
The format for all hex tape records is diagrammed below.
Header Data " End-of-File
Character Record Record Record
1 Start of Record 53 S 53 S 53 S
2 Type of Record 30 0 31 1 39 9
3 31 12 31 30
16 3
4 Byte Count 39 26 123 0
5 30 31 30
6 Address 30 0000 31 1100 30 0000
7 (if any) = 30 30 30
8 30 30 30
9 Data 34 . 39 98 46 FC
10 38 38 43 (Checksum)
34 30
® 02
. 34 32
° 35
° 32
. 41
) 48 A8 {Checksum)
N Check 39 .
_ ecksum oE
-~ 45

114 INTERFACE AGE - FEBRUARY 1977

SOFTWARE SECTION MICROCOMPUTER DEVELOPMENT SOFTWARE

SEE MICROCOMPUTER SOFTWARE DEPOSITORY
PROGRAM INDEX FOR COPIES OF THIS PROGRAM.

PAGE 1 PRUTY 01709770 9322 PwuTu PHDTD PROGRAM :

STMT LOC OBJECT M SUURCE STATEMENT STMI LOC OBJECT M SUURCE STATEMENT
1 TETLE PROTD 140 0040 Bo FulF A LOA A AClAD DUMP TTY INPUT DATA
2 (34 LSkP 187 5050 6o St LDA A &'> PROMPT USER
3 D T L TR LRI LR L I I I Ty :“: 0052 B0 V2oV I Jan outcn
“ . b .
5 o PROTOTYPE BUAKD MONITOR PROGRAM 150 * READ TIY LINE (BUFPTR)
Y - 151 * STOKE TTy INPUT IN BUF UNTIL CR 1S WIT
] * VERSION 2.0 01708/ 152 .
H o veRsion 2 1/08s78 153 0055 CE HFNO A Lk wsoF INITIALIZE BUFPTR
° o COPYRISHT 1976 BY AMERICAN MICR TEm . 154 0058 FF FFEO A S1x BUFPTR
. 3 CUPTRIGHT 1976 BY AMERICAW MICROSYSTEMS InC 1S5 0058 00 stC SET ECHC FLAG
. 156 G0SC 79 FFE9 & ROL ECHD
D L P P PP PP PP PP PP TS 157 *BELIN UNTIL LULP
. 158 00SF BC FFUT A KT1U CPx aBUFeTL TEST FOR BUF OVERFLOW
* ULFINITIONS 159 oue2 25 02 BNE RT20 NU OVERFLOW
. 160 Oues 20 47 BRA ABIRT
Foce Ao aCIAC Euy SFHCE ACIA CONTROL REG 1e1 v0ob B QWuu I RICO Jox WALTTY READ NEXT ChAR
FBCF A ACIAD EQu SFCF ACIA DATA REG 162 0069 A7 00 RT30 STA & 0,x INSERT CHAR INTU BUF
FBCE A ACIAS M SFACE ACIA STATUS REG 103 0068 08 Inx INC BUFPIR
0020 A BLANK Euu 320 BLANK CHAR 164 * anlit CONDLTIUN 3
0000 & CH oy $00 CARRIAGE RET CHAR 165 oueC 81 0L ®190 CuP 4 WCR CARRIAGE RETURN ?
0UlB A ESC Eou 813 R80RT CHAR 166 OweE 2o EF Bt RT10 NO, CONTINUE LOOP
0004 A EUT EQu 304 END OF MSG TO BE PKINTED tolk atnv OF LUGP
FREFE A LAST tOU SFFFF HIGHEST ROM ADORESS 108 .
000A & LF EGu 30A LINE FEED le9 * DECODE 1 CHAK COWMAND
OUIF A RUBLUT Eau SIF 170 . CUMPAKE CrHAK wITW TABLE OF VALID CHARS FOLLOWMED BY
N in . ADUWKESSES UF APPROPRIATE ROUTINES,
* EXTERWALS ¢ R AND PROM BURN 172 .
o EXTENWALS buk RSRSK AND PRIM BURNER 173 0070 B) 0365 1 JSR PxISTS GET IST CHAR
DEF MONENT,GETRNG,NXTADR,PXISTS,RNGERR,PBADR 174 0075 98 Inx INC SuFPTR
DEF PCALF,0UTCH,PSPACE, SETMEM, ABORT 175 0074 FF FhLy A STx buretR
DEF PRIMAD, ADR , ADDL » ADUM, COUNT ,MONT TR :;; 0077 CE vosC 1 tol bg; SCTABLE START OF TABLE
REF RSASK, BURN, MOVE »READ, vF ¥, P » otGIn L
. i1 SRSK, BURN, MOVE +READ, VF Y, PINIT 178 007a a1 we oo tCRe & o0ux CUMPARE
aRSHSK WUUTINE VEFINITIUNSS 179 007C 20 v BNE oL10
. 180 * FOUND CHAK. GET ADDRESS IMMEDIATELY FOLLUWING CHAR.
0008 4 SuBXAW EQu RACT X FROM & 181 007E EE 1 Lox 1,
2008 & soossr tau 3! SonTaagTp Rrom e 182 0080 oE 0V Jnp X G0 TO PROPER ROUTINE
0012 & PR3 £ou s SRlIny’ use 183 * NO CUMPARE. MOVE 10 NEXT CMAR,
OU0F A Pertx EGu 15 PRINT BYTE AS 2 WEX CHAKS tea vos2 o8 outo nx
0Ulu A PuREX tQU 1s PRINT WORD AS 4 mEX CrARS 185 ool we Lhx
0015 A COMRE EGu 21 CONVERT HEX TO BINARY 186 0084 08 1Nx
0011 &4 PUTA v 17 OUTPUT 10 ACIA 187 0085 8C 00Av I CPx #CTEND END UF TABLE?
0014 A GETA taou 20 INPUT FROM TTY 188 0088 20 FO BNE oLI0P NO. REPEAT
0013 & ALPNUM EQU 19 TEST FOR ALPHANUNERIC 189 * END LOUP,
00u9 A PRIZG EQu 9 CONV. X TO DEC. & PRINT ey e @ BHA ABIRT NOT IN TABLE.
. N
#"SUBR IS 4 MACKD TO CALL RSRSR KOUTINES ::i OV4T | MONEND EQU MONITR
. .
SUBR MACRO PARAM 194 M
Sn 195 * CTABLE: TABLE OF VALID 1 CHARACTER COMMANDS,
BYTE PAKAM 190 - EACH EWTKY CONSISTS OF § BYTES., BYTE 1
MWD 197 - CUNTAINS THE ASCIT CHAR, HYTES 2,3 CONTAIN THE
- 198 - ADDRESS UF THE APPROPRIATE ROUTINE,
sseee 199 .
. ; 200 008C I LTABLE EQu #
® MUNITOR RAM ‘ 201 008C “c BYTE "w
. . 202 0080 0140 I WORD LOAD
FF0 URG SFFEE=110 22aCHANGE IF RAM USAGE CHANGES 203 o0eF b4 8YTE ¢
FFOu A bASE [. GASE ADR USED aITW INDEX UPS 20a 0090 V19F 1 a0RD GO
PFUF A BOS QU eet BOTTOM OF MONITOR STACK 205 0092 50 BYre 'p
M 200 0093 0308 1 wORD PUNCH
FFo0 00as buf Rup 72 LINE OF TTY INPUT 207 0095 a2 SYTE '8
. 208 00% 0001 K AORD BURN
FFDS &4 PRUMAD EUU . ADURESS IN PHOM 209 0098 4u BYTE ‘M .
FFD8 Ouve OFFSET Mg 2 OFFSET FOR LOADER/PUNCH 210 0099 9002 # AURD wOVE
FFOA 0002 ADR nug 2 PARAM, ENTERED BY USER 211 0098 Se BYTE 'v
FFOC 0002 ADDL RMB 2 212 009c 0004 R WORD VFY
FFOE 0002 ADUR Hus 2 213 009€ 9 BYTE
FFEQ 0002 BUFPTR WMg 2 POINTER 10 LAST CHAR SCANNED 218 00eF 0008 & MURD READ
FrE2 0uel RECTYP R 1 TAPE WECIRD TYPE 215 ooat 53 sriE '3
(1131 0001 CUUNT WMs 1 COUNT FIELD FROM Tapt 216 o0a2 U3€s 1 AOKO S
FFEa [TT'FY CRSm Hug 1 CALCULATED CxS™ 217 00aAa 4q BYTE 'o
FFES 0002 SAVESP Ams 2 TEMP STORAGE FUR § REG 218 o0as o136 1 MORD DM
FFE? 0002 SAVEX A8 2 TEMP STORAGE FOR x REG 219 0047 se 8YTE 'R
FFEQ 0001 ECRO RMp 1 126Cn0 TTv, 02W0 ECHO 220 00A8 VoLe 1 AOkD PREGS
FFEA 0001 TCOUNT wms TEMP LOC FOR COUNT 221 00AA " BYie ‘e
* USER REGISIEKS 2z2 00Ap visv ¢ wURD EOF
FFES 00u1 CREG Mg ' 223 00AD I CTEND EQU
FFEC 0001 BKEG we 1 224 .
FFED 0001 AREG RMg 1 225 .
FFEL VUU2 XNEG kMo 2 220 *
FFFO 0002 PHEG wmg 2 221 .
FFre 000e SKEG kMg 2 228 N
s 229 L T PP
FFFa o0ve uSwl RMB 2 USER Sal VECTUR (MAY NOT BE [MPLEMENTED) 230
FFFo 0002 ACIAL RMB 2 INDIRECT PUINTER TO ACIA FOR RSASR 231 0UAD I ABORT EQu .
FFF8 [TTH IRQVEC Rmp 2 INTERRUPT REJUEST VECTUR 232 00AD 1 BALINP EWV N
FEEA 0002 SmiveC(Rmg 2 SOF TwARE INTERRUPT VECTOR 233 00AD CE 0273 I LOX sMQUES PRINT 2227
FFFC ouo2 NRIVEC Ry 2 WYUN=MASKABLE INTERWRUPT vELTOR 234 .
PYPTPOe - asatannnn :i: * PRINT MSG ANU RETURN TO MONITOR
. .
+ sas MUNITUR ENTRY VECTOR & 237 0080 I MSGMON Eau #
- 238 V0BV 1 MSGABT EOQU
* RESTART INTERRUPT WANDLER g:: :::g BE FFEF A $EBOTTOM OF STACK
. RRUP REA! Al R
INTERRUPT BREAX HANOLE 201 0085 20 8A
aeasennancannas 282 .
0000 Is eaa . AR EARARR AR AR AR R RN RN ANN
0000 I START EQu " MESET INTERRUPT HANULER 2us .
,0000 20 0S5 BRA STARTL 240 * SAl RANDLER:
0002 1 BREAK EQu = WREAK ON INTERRUPT ROUTINE 27 & UETEKAINE WHETWER Sal IS WONITOR CALL, RSRSK CALL,
0002 7E ous? | JMP BREAKY 2ue * Ok USER Skl (43T IMPLEMENTED).
v00S FBCE A ACIAA AURY ACIAC POINTER 1O ACIA 249 .
. 250 . avanene sarratrankaaeRRRRRRRAR
00e7 1 STAKT1 Euu . 251 .
0007 3& PSH A SAVE A REG IF STACK EXISTS 252 . Que? 1 dkbAR] (30 - BREAKPOINT ENTRY
0008 07 TPA SAVE COUNDITION COOES 253 0087 BV VULS W ISR PIvIT CLEAR PROM BURNER .
0009 87 FFEb 4 STA A CREG 254 woBA b6 BU LoA 4 w128 PRETEND TO BE Sl 128
900C 32 PUL A 255 0usC 20 1a BRA Swld0 SAVE HEGS
0000 87 FFLD & STA A AREG SAVE CURRENT VALUE OF REGS 25 .
0010 F7 FFEC A STA B BREG es57 VUBE | SwiMAN EGU +
0013 FF FFEEL & STX XREG SAVE X 258 * FINu INDEX BYTE (BYTE AFTER Swl THAT GUT US HERE)
V016 BF FFF2 A SIS SREG SAVE SP 259 OUBE 30 TSa
001 8E FF&F A LDS *8JS INIT. SREG TQ ™ON. STPCK 260 Q0BF EE ¢S Lox Sex A3=RET. ADR,
001C CE vove 1 LOx 283EAK HREAKPOINT ROUTINE 201 00CI As VU LOA A 0,1 A:2INDEX BYTE
001F FF FFFC A STX NWIVEC STORE IN INTERRUPT VECTURS 262 woC3 23 oC BM SwIs0 SREAKPOINT?
0022 FF FFFB & $T4 1RIVEC 203 * I} USER HAS AUDITIONAL (RS)e#3 ADDR UF FIRST+2 MUST BE IN FFF4
0025 CE vo0l I LOx 5Sa130 264 0UCS 80 o Sub & s24 RSRSR CALL?
0028 FF FFF4 A Six usal 265 V0Ll oA 08 BRL Sal20 Ny -e
0028 CE vust § Lox #SalHAN SUFTWARE INTERRUPT WANDLER 266 00C9 7E 0000 W Jup RSRSR
Q02E FF FFFA & STx SwlvEC 207 .
0031 CE 0005 1 Lox sACIAR SET uP ACIA PTR 268 * USER Swl
0034 FF FFFo A STa aclag 289 »
0037 #6 03 LDA A &3 RESET ACIA 210 OOCC FE FrFu A Swl20 Lox usal
0039 o7 Fouck & STA A acias 2an QUCF oF vu Jup Vox GO 00 IV
. . 212 .
003C 8o 01 LA a sy SET aCIa C® an * MUNITUR CALL. COPY REGS FRUM STACK
VO3E o7 FBCE A& st ac 274 .
* PRINT CH,LFs & RETURN TU MONLIQR 279 0QuDl . SV Salsv TSx INCREMENT RET, ADOR.
- L 2ls Q002 oC Vo INC B X
004l I mMUNENT Eou . 211 qUDe 28 w2 BNE Sald0
0udl 1 MUNENI EQu ¢ 2718 0006 oC US INC S,
004l BD veOS R JSR PINIT 279 0UD8 CE FFEo A Snidu Lox SCREG DEST. FUR IST REG
Vudd 8D U30e) ISk PCALF 280 * BEGIN LUOP
. 281 o0ovs 35 Sw150 PUL B GET REG
R atsanasnene searseenara 282 000C E7 00 Sta 8 0,x coPY
283 000E 08 INx MQVE TU NEXT REG
. 284 VOUF 8C FFFQ A oPx SCREG+T END UF LDUP?
& MONITUR EWinY POINT 285 002 26 F7 BNE SWI50
. 280 * END LOOP
TRMaaaaeEasENeteitteaceraetatanastakasitatatantan 287 .
Ous? I MUNITR Euu | = 288 * S NUm CUNTAINS ITS vALUE BEFORE Swl
0047 BE Frof A ws se3s INDT “ON, STACK 289 * WAS EXECUTED. SAVE IT,
Q044 B0 03wp 1 JSR KDRUFF TURN UFF REAVER 290 .

FEBRUARY 1977 INTERFACE AGE 115

SOFTWARE SECTION

SOFTWARE EDITORIAL

291 00E4
292

293

294

295 0vEL
296 00EB
297 Q0EA
298 00EC
299

300

301

302

303

308

305

306

307 00EE
308 00F0
309

310 00F3
314

52 00F6
313

314 00F8
31s 00FA
3te 00FD
317 00FE
316

319

320 0100
321

322 0102
323 0105
324 0106
325

326 o108
327 o108
328

330

331

352

353

334

3385

336

537

338 010C
339 wyoF
34y

341 0112
3ue vire
ELE) 0115
sua ulle
$45 0119
3o

347 vile
349

350

351

35¢

353

354

355 .
356

357

350

359

360

361

3o o11c
303 011F
S64 wl20
505 (2731
30 0124
367 p1es
Son vide
S0 0128
370

3n viey
3re viza
573 o128
3¢ 0120
15 0130
576 0138
3n

578

319

360

381

s8e2

$83

384 0136
385

580

s87 V136
LT 0138
389

390 (%13
591 0141
392 0143
393 o14e
394 0149
595 014C
396 0l4E
397 0151
98 0153
399

w00 015%
4“0l 0158
4“oe

403 0154
aga

405

406

407

408

“09

410 0150
411 viel
412

405

406

w7

408

w9

410 0150
611 0100
412

413

414

415 01e2
ute

uy7 Vied
“18 0165
419 0168
w0 0169
421

w22 viek
423

w24

aes

426

et

428

“e9

430

43

432

433

CEYY Vi
435 0170
4l 0173
437 0176
uls 0179
wse oy
440

441 017t
44e 9181
a3

a4d 0184

AF 00 sTS 0,
.
* A STILL CONTAINS Sal INDEX, TEST IT
.
81 81 CHMP & 5129
26 04 ONE PREGS NOT 1293 uﬁzl(
80 v7 BSR PR1 1293 SNAPSNO
20 1€ BRA RESTAK AND RETURN vo USER PROGRAM
.
T YT TIIIT I I TS
.
* PREGST PRINT USER REGISTERS
.
.
O0EE 1 PREUS 1311 -
80 03 BSH PRY
7€ 0047 I Jmp MONEND
00F3 I PRI €qQu . SUBROUTINE TO PRINT REGCS
CE FFEB A LOox #CREG X POINTS TO 1ST BYTE OF AREA
* PRINT 3 1-BYTE REGS
C6 03 LoA B a3 SET UP COUNT
.
PR1O SUBR PZHEX
8D 0380 1 JSR PSPACE
SA DEC B
2E F8 86T PR1O
.
®* PRINT 3 2-BYTE REGS
€6 03 LDA B8 #3 SEV UP COUNT
.
8D 037C I PR20 JSR PUNEXS
SA OEC 8
2E FA 86T PR20
.
60 0304 | JSR PCRLF PRINT CRLF
39 RTS RETURN
.
D P P R ST
* WESTUKE USEX STATUS AND RETURN FROM MONITUR
N
L L LTI
.
» RESTUKE USEK'S STATUS
.
ot FEb2 A4 KESIAR DS SREG TUP OF USER STACK
CE FFF1 A v #CREGYS USER REGS.
*bEGIN LUuP
Ao 00 RUS1O Loa A 0,x GET USER REG
36 PSn 4 PUSH INTO USER STACK
03 Vex MOVE TO NEXT REG
BC-kFLA & tex WCAEG=1 LAST REG 2
éo Fi oL RUS10 Nio CONTINUE LOOP
*END OF LuuP
8 "1l RETURN TO USER PHOG
Anseseennanasennane
.
» CUMMANDS ANWD SUBROUTINES:
.
D P TP T PP TY
BRSSP R A RN RN R AT S AR IR R IR RARE PR AR AR R R AR E RN AR R ARl
.
* CHERSM(CKSH)
* VALIDATE CKSM
.
AARessaaanAsA SR AN taNRR AR RRT R AR AR ARS
011C 1 CHEXSM Ewy
bo FFtu & LUL A CKSM SAVE CALC. CKSW
3o PsH 4
80 Ue9t I JSK NEXT2D A3z NEXT BYTE FROM TAPE
33 PUL 8
53 (4] B3=CALC, CxS™
11 CBa BEXTAPE CKSMZ
26 01 oNE cst NO.
s RTS
N
30 cst 15 X13ADR UFCALC. CKSM
09 LEX
SuBk P2WEX PRINT CALC, CrSM
B0 v3v0 1 JSK PSPACE
Ce 0278 | Lo #uMCSER PRINT "CXSM ERR"
7€ vugo | Jmp usGAsT
.
tnranareneeanantan sheanas
.
* UM AUDL,ADDR COMMAND
.
P T P T T TT YT T Y TTORee
0130 I DM (0
80 35 oSk GETRNG GET ADQ RANGE FROM BUF
* RETURNS ADDL,ADOAeL
*bELIN UUTER LUUP
CE FFUC & wmiv LDX *AJ0L
8O 037¢) JSR PUHEXS PRINT ADDL, SPACE
* DEGIN LwNER LUOP
FE FroL A DMZO ox ADDL
SUBR P2MEX PRINT MEM(X),SPACE,INC X
8O 0360 | JSR PSPACE
FFFFOC A STx 4D0L
B8C FFUE A Px ADUK IF ADOL=ADDH¢1, END UF RANGE
27 oC 8e0 DwS0 EXIT OUTER LOUP
86 Frob & LDA A 4DDL#Y IF LS8'S OF ADOLZO, END OF LINE
84 OF Auo A nsr
26 E9 “20 NOT END OF LINE. CONTINUE
* ENU U lNNtk LDD?
8D 630u4 | Jbﬂ PCRLF PRINT CR/LF
20 ot DMI0 ExIT INWER LOOP
* END UF uuviu Loop
TE el I uMbo Jmp MOVENT CR,LF, BACK TU MINITOR
. .
KAAmAsaAsRAERessasEANRRAN R e ssAN R At R AR RRRS
»
*% PUNLH END OF FILE AND 60 NULLS
-
ARAANKRARARARARRIRaatRREARR A et RIORRIR Y aenn
CE 0264 1 EUF Loa #MPEOF PUNCH LOF RECORD
Sugk PuSG
.
AR KA RARATANRARA KR ANRS AP RC TR RRERAAAR AR
. N
** PUNLW END UF FILE AND 60 NULLS
.
P I I L T I T I T LTI T T T PO PO YO PR R T
CE 0ema | EUF Lox SMPEDF PUNCH EUF RECURD
Susk PMSG
.
= PUNCR 80 AULLS
.
Co s8 NULLS LDA 8 #59 LOAD COUNTER
» BEGIN LIOP
aF nuLLl CLk 4 LOAD NULL
B0 0eVD 1 ISR outcn PRINT ONE NULL
Sk OEC 8 DECREMENT COUNTER
26 F9 BNE NULLE DONE
. END OF LOO?
29 Ev BRA 0450 CHoLF,BACK 10 MONITOR
BT T L T YL L I
* GETKANGE (ALOL,ADDH,BUFPTR)
% GET AUDKESS RANGE FRUM BUF
* AbUKT IF invALID
. SET apun ODAel TU SIMPLIFY COMPARISONS
% RETUWNS AUDL & ADDHe1
* ALTERS AURIK,A,8
.
S AR RAE RN RS AR AR TRR R RARRR AR AR R RR AR AR R
Olou [SGETRNG EUU *
60 0les I Jsw NXTADR GET ADDL
FE Frua & (9723 aDw
FF FFUC & STx ADOL STORE AODL
FF FFDL A sTx ADDN MAY BE UNLY 1 PARAM
BO Oces I ISR N2TADA GET ADDHW
27 ve Btw GETRGS UNLY 1 PARaM
.
FE FFOA & GETRGE LD apR
FF FFOE A STx ADDW SAVE A0DN
* THE NEXT S [nSTR Vﬁsl ADDN=AODL
CE FF9u A GEIRL3 DX aga REF m.R.T, BASE OF RAM

INTERFACE AGE

585
586

587
588

589
590

591
S92

593
5%4

595
5¢6

vis/
u1ay
visg
ule
OloF
0191
014

u197
019

0198
019E

019F
01a2

014
01A7

014a

o2aa

0240
0250

0258
0254

gesc

13
e

b
¥F
39

80

vaus

21 vo

80
20

1
26

FFuA
FFFO

vivc

0140
0000
FFup
FruC

FFOL
vews
1t

Froa
FFUB
oess

FFUB
FFUC
0000
FFO8

FRUE
09

0345

0suu
S0
F1

Free
FFea
029t

oe%t

FFDA
03aF

FFDA
FFE3
EE

04
39
13
(3314
FFE2

39
A&

0398
02eF
0080
0398

o281

FFE9

ouuo
FB

3
Fo

1

a

>»

>

-

>

>

1

-

RS T

> > =

>

-

1

LDA & aUOM=BASE,x MSBYTE

LOA b ADOneleBASE,X

Sub © ADIL+l=gASE,X

SHC A4 ADDL=-BASE,X

8CC GETRGH AVUH,LGELADOL

RNGEKRK Lo BMRNGER RANGE ERR MSG

Jme vSGAST PRINT M5G & AHORT
LKLY Lux ADDM INC ADDH

INX

81X ADDH

RIS

.
* LU CumManp
.

L T LY T YT TP YT
.

60 ISR NXTADR GET PARAM
ste 610 NO PARAM, CONTINUE EXECUTION
.
Lox ADR AORZPARAM FROM WXTADR
STX PREG
B
G1u Jup RESTAK (IN INTERRUPT WANDLER)
.

*
LR L L L T LI LTI Y T T Y PR PP uey
.

* LUAD CUMMAND
N

L L T Y TTTYIY I
.

Luap £Qu .
LOX .0 INITIALIZE RANGE & OFFSETY
STx OFFSET 10 0000<FFFF,0000
Six ADDL
LUUFST DEX
Six ADDH
JSR NXTAOR ANY OPERANDS?
BEQ LNF2 NO, USE DEFAULT.
Lox ADR YES
Six OFFSET IF ONE, 1T'S OFFSET
JSR NXTADR ANOYNEQ
L1Y) LHF2
L0x OFFSET vLs. FIRST TAO ARE WANGE
Six ADDL
Lox 0
STX OFFSET
BSK GETRGY
LDI ADDH
LOJFST GO ThY AGAIN FOR UFFSET
. ucblu uu'LR Luop
LHF JSR ROR TUKN UN READER
. SnOR' LUUV w 3(1v noa RECORDS
nupﬁg FIND START OF RECORD
SETS (ECHD):z0 ON ENTRY
JsR NALTTY RETURNS (A):=2TTY /P
CmP A %0 1GNORE HOR RECORDS
SEU RDPRE
* END SWURT LUUP
STA A RECTYP SAVE RECIRD TYPE
[[
Jsi NEXT2D READ BYTt COUNT FROM TAPE
DEC A VEDUCT ADR & CKSw
DEC A
OEC A
STA A COUNT SAVE BYTE COUNT
JsR NEXT2D READ ADR FIELD FROW TAPE
STA A ADR 181 BYTE
JSR NEXT2D
ADD A OFF3SETe)
STA & Aoa-l 2ND B
LDA A CAnav 10 FIRSY BYTE
AQDC A OFfSEY
STA A
LOA A RECYVP GEY RECORD TYPE (0,1,9)
LnE3 CHP A DATA RECORD ?
BNE LNFI NO

.
« LOAD DATA RECORD
‘BEBIN UN‘IL Lour

NEXT20 READ 2 HEX Dl‘l's FROM
&° TAPE, RETURNS IN A
L0X ADR
JSR SETOFF STORE IN MEM(X), VERIFY
INx
STx ADR
DEC COUNT DOES COUNT=O?
8GT LOR1O NO. CONTINVE LOOP
*END UNTIL LOUP
8RA LHF9
LHFa CHP A #'9 EOF RECURD ?
BNE BADTAP JLLEGAL RECORD TYPE
.
LHF9 JSR CHEXSM CHECK CKSM
LDA A RECTYP GET RECORD TYPE
CHP A #'9 EOQF RECORD ?
8NE LHF2 NO. CONTINUE LOOP

.
*END UF OUTER LOOP
.

JSR RDROFF

Lox SMEQF PRINT SEQF®

Pl MIGMON AND RETURN TO MONITR LOOP
.
BADTAP JSR ROROFF
.

LOX SMTAPER PRINT *TAPE ERR*

Susr PHSG

.
ACCEPT NO COMMANDS UNTIL USER PRESSES ESC
N

INC ECHS SET ECHD
.
811 JSR WNAITTY ESC CAUSES ABORT
RA 8T1
.
.
.
* FINO §
CMP A m'S CHAR = §
BNE Fs10 L]

*END LOUP
RTS

.
* MESSAGES
.

MBADR CMAR /8AD ADR/
BYTE @

MRNGER CHAR /RANGE ERR/
AL]

MEOF CHAR /EQF/
BYIE &

MUUES CHAR /27227
8YTE &

MCSER CrHar /CK8% ERR/
BYTE .

MIAPER CHAR /TAPE ERR/
SYTE @ ’

MPEOF CHAR /39030000FC/

FEBRUARY 1977

SOFTWARE SECTION MICROCOMPUTER DEVELOPMENT SOFTWARE

o26E 3030 °70 aennn
0290 3030 o711 *
0292 rrees er2 % QUTCh = PRINT CHAR IN A
597 0294 04 BYTE & . ol3 * QUTCHX = PRINT CrAR AT MEM(X)
598 0295 0D0A MCRLFS BYTE CR/LF/0,0,000,'8,"1,8 :;; 4 BF CHAR = CRY, FOLLOW WITH LF & & NULLS
sz ogae HH
0298 5331 en .
9290 o8 :;: 0208 A 00 ouTCHX LDA A 0.x ENTRY 1
.
z;; . 680 0200 I OuTCH
M1 . 681 * FIRST :nm for £sc
o + NEXT 2 DIGITS== . 682 0200 37 Pon B
03 * READ NEXT 2 CHAR FROM TTY TAPE AND CONVERT 683 020t Fo FHCE A LOA & ACIAS ACIA INPYT STATUS
ovd « TU MEX NUMBER N A REG. UPDATE CKSM. e8s 02e1 57 Ask 8 C1nRDRF
o 4 RETURN UPDATED CA3M IN B REG. 685 0262 24 0A ecC oc10 N0 INPUT
woe . 686 02E4 Fo FBCF A LOA 8 ACIAD READ ACIA
hedd | eeeessaanagens 687 0267 C1 18 P B WESC
bl 029t I NEXT2D Eau = ©88 0269 26 03 BNE oc10 NOT ESC
609 029¢ B0 040U I JSR WALTTY GET CHAR ©89 0268 7€ 00AD | L4 ABORT
610 0241 16 TAB SAVE CHAR In & 090 .
611 0242 BD 0400 1 JSR WAITTY 691 02EE ocio SUBR PUTA PRINT CHAR
a2 . 692 02F0 81 0» CHP A #CR
613 * SET UP PARAMS FOR CONVERSION ROUTINE. 693 02F2 26 ¢E BNE DC20 NOT CR. RETURN
614 * PUSK ASCII CHARS INTO STACK, POINT X AT STA [.
815 * SET A=TYPE UF CONVERSION AND Ba# OF CWARS to CONVERT. ©95 02fFa 86 0A LDA & aLF PRINT LF
ol . 696 02F6 SUBR PUTA
617 02A5 3e PSH A 097 Q2F8 4F CLR & PRINT & NULLS
018 024e 37 PSH B 698 02F9 Co 04 LOA B sa
019 0247 30 Tsx . 599 * BEGIN LOOP
620 0248 Cb 02 LDA B w2 700 ueFB OCLOUP SUBR PuUTA
021 02A% SUBR CONHB CONVERT FROM ASCII TO BINARY 701 02FD SA VEC ¢
622 02AC 24 94 8eC BADTAP IF NON=HEX CHAR, ABORT 702 02Ft 26 FB BNE ocLoor
623 . 103 * END LOOP
624 02aE 17 TBA UPDATE CKSM 708 0300 86 00 LDA & sCR RESTORE A -
025 C2AF F8 FFEG A ADD 8 CKSM 705 .
626 0282 FT FFE4 A STA 8 CK3M 700 0302 33 uc20 PUL &
627 0285 31 INS RESTORE STACK PTR 707 0303 39 RIS
628 0286 31 INS 708 .
629 0287 39 RTS 109
630 * 710 .
o3l m * PRINT CR.LF,nULL
s32 . n2 .
633 * NEXT ADRUBUFPTR,40R) ns sasessasassnsanens
o34 - 718 0304 86 VD PCRLF LOA A sCR
635 . SET ADRSO OR NEXT NUMBER STRING STARTING 1S 0306 20 DS BRA DUTCH OUTCH PRINTS LF AFTER CR
36 . AT BUFPTR T1e .
637 . LEAVES BUFPTR AT cn.otuun:a.u- FIRST nr
638 . CHAR WETMEEN G = 718 ersnarannsnstanne
039 - LEAVES (A)Z LAST cmn SCANNEO, 719 .
040 . LEAVES (B)% LS BYTE OF ADR 120 * PUNCH ADDL,ALDH
641 . 121 » PUNCH MEMORY CONTENTS BETAEEN AODL & ADDW
042 - . HETURNST CCs 2 FOR ND PARAMETER 122 . IN HEX FORMATY ,
043 . ABORTS If NON-HEX PARAMETER 723 .
Py . 124 sereenrenanane eescctanannnse
645 . 725 0308 HD Vlev 1 PUNCH JSR GETRNG READ ADOL & ADDHe)
o4 Arsunasannnnnan 726 0308 CE 0000 A Lox %0
bt 0288 1 NXTADR EQU » 727 030E FF FFDB A STa OFFSET
648 0288 7F FFDA A CLR ADR ADRI® O . 728 0511 8D AS BSR NXTADR ANY OFFSET?
649 0288 TF FFDB A CLR ADRel 729 0313 27 oo BEG PHFIS NO.
650 O02BE BD 0385 1 JSR PxisTs 1S THERE & PARAMETER? 730 0315 FE FFOA A Lox ADR vES.
851 02C1 26 01 BNE NAL YES 731 V318 FF FFDB 4 STa OFFSET
852 02C3 39 nis RETURN #/NO PARAM CCSZ 732 .
pés . 133 * PUNCH DATA RECORDS UNTIL ADDL = ADOW
656 - 734 "
655 * SET UP PARAMS FOR ASCII TO MEX CONVERSION 735 0318 1 Pueis - €QU e
ot . 736 * BEGIN LUOP
657+ 02C4 Co 47 NAL Loa 8 871 MAX, CHARS TO SCAN 137 .
o8 0206 SUBR COWNB 738 * CALCULATE DATA LENGTH 2 MIN(30, ADDMe1=ADR)
659 02CB FF FFEV A STx BUFPTR 739 :
660 02CB BT FFOA A STA A ADR SAVE RESULT 740 031E Fe FFOF A PHF20 LOA & ADDHe#} 83%ADOH=A0DL
661 V2CE FT FFOB A STA 8 ADRel 741 031t FO FFDOO A SuB B ADDLe1
662 0201 As 0V LA A 0,x CHECK TERMINATOR 742 0321 8o FFULE A LDA A ADDM
663 0203 SubR ALPNUM IS CHMAR ALPHA? 743 032¢ B2 FFOC 4 SBC A ADDL
o664 0205 25 01 BCS NA3 YES Ju44 vs27 26 0@ BNE PUNDIO DIFF .GT. 250
865 0207 39 RTS 785 0329 €1 it CMP 5 830 LS 8YTE .6T. 307
066 . T4e 0328 23 02 6Ls PUND20
067 0208 7€ 00AD I NA3 JMP ABORT ~O 747 .
ot . 748 0320 Co 1E PUNDIO LDA 8 830 DIFF .GT.30
poes . 749 .
750 032F SC PUND20 INC B COUNTZ2COUNT S
751 0330 SC INC b +e<INCLUDES ADDR & CX3SM
752 0331 SC INC ® :
793 0332 F7 FFE3 A *STA 8 COUNT
754 0335 CE 0295 1 L0X SMCRLFS
755 0338 SUBR PMSG
756 0334 SF © CR B 8 HOLDS Cx3M
757 0338 CE FFE3 A Lox SCOUNT PUNCH COUNT
758 033E 8D 34 BSR PUNBYT -
759 0330 37 PSH 8
Te0 0341 FE FFOC A Lox ADOL COMPUTE DFFSET AODRESS
761 033a 86 FFOB8 A LDA A OFFSET
762 03a7 Fb FFD9 A LDA B OFFSETel
763 03aA SUBR ADDABX
Tea 034C FF FFDA A sTx ADR PUNCH FROM ADR °
76S 03¢F CE FFOA & Lox #ADR
Te6 0352 33 PuL 8
167 .
To8 0353 80 IF BSR PUNSYT CINCREMENTS X)
769 0355 8D 10 BSR PuNBYT
;10 03S7 FE FFDC A - Lox ADDL RESTORE X
7 .
;;2 * PUNCW BYTES FROM MEMORY UNTIL COUNT IS EXHAUSTED
3 .
778 « BEGIN LUOP
775 0354 80 18 PRECI0 BSR PUNBYT (CC20 IF COUNT=0)
Tle 035C 2€ FC (3 PREC10O
142 * END LOOP
T78 03SE FF FFDC A STx ADOL SAVE X
779 0361 CE FFea A LDx #CKSM PUNCH CxSe
780 0364 53 Com B
781 0365 E7 0G $TA B 0,x CksMiz
782 0307 80 0B BSR PUNBYT
783 0369 FE FFUC A Lox ADOL
784 036C BC FFOE A cPx ADDH
785 036F 26 AA BNE PHF20
786 * END LOOP
787 0371 7E 004l I NP MONEND
788 »
789 .
790 *
791 * PUNBYT (MEM{X),COUNT,CXSM)
792 » PUNCH BYTE AT WEM(X) AND ADJUST CIUNT AND CKSM.
793 . CCeZ 1F COUNT=0
79a .
795 ann " e
796 0374 EB 00 PUNBYT ADD 8 0,x CRSM3ZCRSMeMEM(X)
797 0376 SUBR P2HEX PRINT MEM(X) AS 2 CHAR
798 0378 7A FFE3 A DEC COuNT
799 0378 39 RIS
800 srannran
801 »
802 » PUREXST PRINT 2 BYTES AT X AS & MEX CHARS + 2 SPACES
803 .
804 ERANRSRANSRERAN NS AR AR R AR SRR EARRSNRIAS
805 »
806 037¢* PunExS Susw PanEX
807 037 8D G0 8SK PSPACE .
808 .
809 cersxnannsaannnn .
810 .
81t * PSPACE===PRINT 1 BLANK
812 3
813 B P P
814 0380 86 20 PSPACE LOA & #BLANK
815 0382 SuBkR PuTA
816 0384 39 RTS
817 N
818 asneaanne erannre ceasne
819 D .
820 .
821 * PARAM EXISTS(BUFPTR) (BBUFPTR) 3 BUFPIR
822 . (X) = BUFPTR
823 - * INC BUFPTR UNTIL CHAR 3 ALPMA OR CR
824 * LEAVE A = MEM(BUFPTR)
.

825 SET I IF NO PARAMETER EXISTS

82e *

821 Artzanapnnan

828 0385 1 PxISTS Eou . ENTRY FOR (sBUFPTR)SBUFPTR

118 INTERFACE AGE . FEBRUARY 1977

SOFTWARE SECTION

MICROCOMPUTER DEVELOPMENT SOFTWARE

0385 FE FFEO A LOX BUFPTR ROF90 039D Is RON9O O3A7 Ie RSASR 0000 R RTI0 005F [
0388 1 PXISTX EGU « ENTRY FOR (X) & BUFPTR RT20 00e6 1 RI30 0069. 1+ RT90 006C Is RUBOUT 0O7F 4
0388 s 00 -IEHN LJD;‘ .o 18 CHAR ALPHANUH T RUSI0 0112 I SAVESP FFES Aa SAVEX FFE7 As SETMI 03E2 I
3 u SETMEW U3CC 1 SETOFF 0SAF 1 SETOUT 03C4 I SETPUL 03CB I
03ea 8UBR ALPNUM ™ 03E3 I SMI0 03kC I SM30 O3FD I SMS 03t6 I«
o3sc 25 07 ocs x2 yes, ex11 1008 SREG FFF2 A START 0000 e STARTI 0007 I SUBXAB 000K A
0386 81 00 cHP A sCR 1S CHAR $w120 00CC I Sm[30 00D1 1 Swia0 0008 I SwiS50 0008 I
0390 27 03 BEQ Px2 Vese Ex1y \.uor Snidkw O0GE [SaIveC FFFA A TCOUNT FFEA At USw FFF4 4
0392 08 INX MOVE TO NEXT CHAR 0004 R al0 0400 1 20 0uo9 1 3o 0415 I
393 20 3 BRA Px1 -Aun 0800 I AREL FFEE A -~
*END LOOP —
0395 FF FFEO A Pxe STX BUFPTR ,
a3es 81 00 CHP A (R SET Z IF NO PARAMETER CHECKSUM = OTSE
P T T L T T P YT T I I LENGTH UF DSECT = v 6000)
% fok OFF LENGTA OF ISECT = 104s (0416)
* TURNS TAPL RDR OFF3
. ACIA RTS J/P HIGM NU ERKORS, NO @AHNINGS, THIS ASSEMBLY
. ACIA CHAR 313 (OC3)
.
T T Ty T T T PP P PP PP P PP PP
9398 1 KOKUFF Equ
9398 8o LOA & #4501 RIS HIGH
0390 b7 u(t A KOF90 STA A ACIAC SET ACIA CONT REG PAGE 1 PRUM ©1/09/76 9126 PRUM BURNER ADDITION TO PROTO
0340 8o LOA A #5013 SEND TTY ROR CONT CHAR
e s ST4T LOC 08JECT SOURCE STATEMENT
03aa 39 RTS “ L t L] 0] TEMEN
D T YT P P SRR
. 1 B PP E T T TTYRTN sananrenns
* RDR ON 2 J .
* * TURNS TAPL READER ON 3 TITLE PROW BURNER ADDITION Tu PROTO
. ACIA W13 0/P LOm . . .
. ACIA CWAR 311 (DC1) z * PKOM BURNER
. .
DT T T T T T T PP PP P P PP PPPPPS NS 7 * VERSIUN 2.0 01/08/70
un 1 RORON £QU o .
03a5 8o LOA A sS4 RTS LOw * COPYRIGHT 1976 By AMERICAN MICROSYSTEMS INC,
03A7 87 uck A RUN9O STA A aCIAC SET ACIA CUNT REG .
03an 86 LDA A" #511 SEND TTY ROR CONT CHAR .
03ac S0BR buTa BT P P P PPPP
03AE 39 RTS8 .
. * ASSEMBLY OPTIONS
SNanERRARAn »
0001 A MOVER EGU 1 03 MOVE ROUTINE EXCLUDED
SETMEM(X) 00UA A DELLAY EQU 10 POST PROGRAM DELAY, BEFORE VFY (M3)
* SETS MEM(X)I®A AND VERIFY 2000 ?:: LSXP,LMAC
N v
. 04te ORG sute
. pemanes NEF MONENT,GETANG,NXTADR,PXISTS,RNGERR, PHADR
03AF 1 SETURF EQU e NEF PCRLF,PSPACE,SETMEM, ABORT , MONL TR
03aF 3o Psn & FIRST CHECK RANGE: REF PHOMAD,AOR, ADDL, ADOH, COUNT
0380 He FFUC 4 LDA A a0DL LOW LIMIT DEF BUIN/MOVE,READ,VFY,PINIT
0385 Fo FFOD 4 LDA 8 ADOLeL .
9sue SUBR Sudxan le=81T SUBTRACT 3 PRIA LaCATIONS:
L] A
oes ee Froe 4 b+ v niontLintr Feco A pla Eauw noFeco
0380 Fo FFOF A LDA & ADDMelL 0001 & v50 Eay wirsciepld
03¢0 Sosk” Susees 0004 A PRUM EQU N'FBCU-PIA
03z 24 07 8CC SETAUL ox .
osce 32 SETuUT AUL A OUTSIDE RANGE LINITS 2 STANDARD RAM BUFFER (DEFAULT)
03C5 8o FF LOA A 8255 TYPE DELETE (RUBJUT)
ok o suee pua 10 SIGNAL FACT TO USER Feoo 4 Ran EQu n'Fcoo
0 BRA vl OTHERWISE IGNORE STORE WEQUEST
03cs 82 sETbuL PUL A T CHARACTER TYRING WACRQ
05CC 1 SETMEM EWy .
03cC A7 0v STA A 0,x Tt l:‘g:‘:k CHar
V3CE A1l 00 (P oA o.: VERIFY
0300 27 1o 8EW SET ERROR 7 ""“ scHAR
« VERIFY CRMOR o PAlNT ADR NO
0502 FF FFOA A STa ADR SET PARAM FOR PaMEX “L‘- PrINTA
9ios CE Froa u Lox madR . . N
0508 80 Ci BSH RDRIFF
0:0‘ 8D a0 6SR PUHEXS : RSRSR CALL MACRD
030C CE 02950 I PbaLR Lox SM3ADR PRINT *dAD aDR'
030F 7€ 0080 1 JMP MSGAST PRINT MSG & ABORT CALL wacko 1Tem
.
03c2 §9 SETMY (3F] BYTE ITEM
@avAssreteNENT I LAt aracatarta Tt RN AN AR RN rare R MEND
.
© SMADH BYTEL/BYTE2,... 5 3SR CALL LUCATIONS
.
aRRRRANRAS AT T YY) LAY - LELL] 0011 A PRINTA €ou 17
0363 1 oo e 0010 A PanEx EQu 16
0 N .
03E3 68D veds I . ISR NXTADR ADR1® NEXT PARAM « INITIALIZE PNOM BURNER PIA'S
03to Ft FFOA & SMS x 4 AVE AOR IN A M
S3Ee FF Froc A oo SAVE AOR IN A0DL 0416 Ck FBCU A PINIT LOX Pl
0419 85 38 LDAA $8:00111000 TURN OFF SOV
. snu et Looe 0418 AA 01 ORAA V50,
03LC ®D 0288 1 SM NXTADR A0RIz NEXT PARAM 0810 A7 01 STAA - ¥50,X .
Q3EF 27 oL s " Q41F 8o 3A LOAA #B8°'00111010
o sab END OF LINE, EXIT LUOP. b v+ S el a/a 10 READ
03F1 FE FFUC A LOx ApDL X1z 400 TO BE SET : N 14 Jued X . €
03Fe 17 Tea AtsLs BeTE 0423 a7 07 STAA PROWES,X (MOPE NO DUUBLE=DRIVE HERE)
03FS 8D US BSR SETMEM MEM(X)13A, VERIFY 0425 oF 06 CLR PROM#2, X PROM DATA SET TQ INPUTS
03F7 08 Inx MOVE 10 WEXT ADD o427 eF 04 CLR PRIMX
03F8 FF FFOC & STa apoL 0429 63 04 COM PROM,X SELECT ADDRESS AS OUTPUTS
03F8 20 EF aRA sm16 0428 B 3t LDAA #B'00111110
« w0 UF LOUP 042D A7 05 STAA PROMe1,x POINT TO ADDRESS QUTPUT REG.
. 042F 39 RTS8

QSFD TE 0047 |

“ [l .
Jup ONEND ®= TYPE A IN BINARY, ENCLOSED BY SPACES
.

eavennnen
- IAH FOR TTY(CHAR,ECHO) (SECHO)ZECHY 0a3o 37 PBBIN PSHY SAVE ©
RETURN NEXT TTY CHAR IN A 0431 3o PShHA
N 1F (SECHU) NJT 0 , ECHO CHAR Q432 8y OF BSR PSP PRINT LEADING SPACE
. 0434 32 PULA
AR AR RN AR AR AR RN C AN IR AN R AR RARRN RN RARI AR RN 00:3 Co 08 LDI: L1 8 DIGIT COUNTER
Va00 I mAlTTY EQu 04 4“9 18 ROL
*) oNE. RUBOUT 0438 3 PSHA
0400 '\I.B\JP Y ':\Llu‘m‘u' ¥ ueoy READ TTY 0439 8o 18 LOAA Lrdl (21/2 ASCII "0")
0402 81 18 CMP A SESC ESCAPE ? vaig 49 ROLA
0808 26 03 BNE w20 NO 043¢ TYPE
Q406 7E 00AD I Jup ABIRT YES, ABDRV o . IF [
0409 81 7¢ nv CMP A ®RUBOUT RUBU 3 LDAA
QauB 27 F3 9EQ o YES CON”NUE Looe . Ien0
‘ *END UNTIL LOUP QusC i3 CALL PRINTA
0400 70 FFEY A £ ECHD 043C SF * Sel
0810 27 03 BEG 30 NO ECHO 0430 11 . BYTE PRINTA
0412 8D 0200 1 JSR ouTcH ECHO A Qu3e s2 PuLA
0415 39 n3o RTS 043F SA DECY
END 0440 26 FS BNE 18
Que2 3 PULSB
- 0443 TE 0007 R PSP IMp PSPACE PRINT ONE MORE SPACE
A .
SrusoL TABLES * HAM/PROM ADURESS SETUP & VALIDATION
ABORT 00AD I ACIAA 0005 1 ACIAC FBCE A ACIAD FHCF A .
ACIAL FFFo A ACIAS FBCE A AUDABX U008 A ADDW FFDE A Quue C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>