ANALOG
DEVICES

00te-dSav

[enueln S.Jesn

- ADSP-2100
| |

User's Manual

Architecture

ADSP-2100

Users
Manual

ANALOG
DEVICES

You may contact the Digital Signal Processing Division in the following
ways.

+ By contacting your local Analog Devices Sales Representative
» For Marketing information, call (617) 461-3881 in Norwood,
Massachusetts, USA
» For Applications Engineering information, call (617) 461-3672 in
Norwood, Massachusetts, USA
« The Norwood office Fax number is (617) 461-3010
* The Norwood office may aiso be reached by
Telex: 924491
TWX: 710/394-6577
Cables: ANALOG NORWOODMASS
+ The DSP Division runs a Bulletin Board Service that can be reached at
300, 1200 or 2400 baud, no parity, 8 bits data, 1 stop bit by dialing:
(617) 461-4258
+ By writing to:
Analog Devices
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

ADSP-2100 User’s Manual

© 1989 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use; nor for any
infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices.

PRINTED IN U.S.A. FOURTH EDITION

Literature

ADSP-2100 FAMILY MANUALS

ADSP-2100 User’s Manual/Architecture
Complete description of architecture and system interface.

ADSP-2100 Cross-Software Manual
Complete programmer’s reference including optional C compiler.

ADSP-2100 Emulator Manual
User’s manual for the in-circuit Emulator.

ADSP-2100 Evaluation Board Manual
A guide to the Evaluation Board including schematics for prototyping.

ADSP-2101 User’s Manual/Architecture (preliminary)

Complete description of architecture and system interface.

APPLICATIONS INFORMATION

ADSP-2100 Applications Handbook, Volume 1
Topics include arithmetic, filters, FFTs, LPC, modem algorithms.

ADSP-2100 Family Applications Handbook, Volume 2
Topics include graphics, pulse-code modulation, multirate filters, DTMF.

ADSP-2100 Family Applications Handbook, Volume 3

Topics include optimized and 2D FFTs, memory interface, multiproces-
sing, host interface, sonar beamforming.

SPECIFICATIONS INFORMATION

ADSP-2100A/ADSP-2100 Data Sheet

ADSP-2101 Data Sheet (preliminary)

Contents

CHAPTER 1 INTRODUCTION

N
oo

GENERALDESCRIPTION.......ooveteeeeiereenerineeneeseeeseseseesseesesseeessneens 1-1
SUMMARY OF ADSP-2100 KEY FEATURESc.cocvevnenenecrnieeens 1-2
INTERNALARCHITECTURE.........ccooeiinreeinresstiecineecesenenisssie s 1-5
ADSP-2100 DEVELOPMENT SYSTEMcevuiierenirrecrnerrcreereecenne 1-8
MANUAL ORGANIZATIONcoviumiriiererintineirecineisinesecenessecsesssseecsnsens 1-9

CHAPTER2 COMPUTATIONAL UNITS

2.1
211
212
213
214
215
2.16
217
218
22
2.2.1
222
223
224
225
226
2.2.7
228
23
2.31
232
23.21
2322
2323
2324

ARITHMETIC ON THE ADSP-2100vvueereeiereeeeneirncereeseeeneeseeeseneneenns 2-1
BINGrY SN ..ottt een 2-1
Unsigned-Magnitude...........ccouueiriirereeierencenereee s 2-1
Signed Numbers: TWos-Complementceeenveccrenerineeeneene. 2-1
Fractional Representation: 1.15ocviieneencncnncncinicieneens 2-2
ALU ARTAMETIC ..ottt 2-2
MAC ARtRMELIC ...ttt 2-2
Shifter ATMELCcvvceceeceererceeeere e 2-3
SUMMATY ettt ss e 2-3

ARITHMETIC/LOGIC UNIT (ALU) ..ot 2-4
ALU Block Diagram DiSCUSSIONcvveererueecrenriieerrineinesieeeenens 2-5
Standard FUNCHONScceeveiicrce e 2-7
ALU Input/Output REGISENSeueeereeerieeneicreineecse e 2-8
Multiprecision Capabilityc.rveumeeereeremmneeereneeeeeerreereeseeieneenes 2-8
ALU Saturation MOGEccevevceriinieeerineineiecseseescscesecieei 2-8
ALU Overflow Latch MOdEcooevecereencenirneciecneec e 2-9
DIVISION oottt 2-9
ALU SEAEUS oervveeeneeerceeeseeeseeree e essesseesesse sttt enesaeees 2-13

MULTIPLIER/ACCUMULATOR (MAC).......covcurerrerneereinrenseeressesseemeens 2-13
MAC Block Diagram DiSCUSSIONccrevevererrmreeenererierneineinenes 2-13
MAC OPEIALIONS ...ovoevrveeereereircte et enee s sneeaeees 2-16

Standard FUNCHIONSc.oceceeeeeeeee e 2-16
INPUEFOIMALS ... 2-17
MAC Input/Output REGISIENScvvvecveereiecerirere e 2-18
MR Register Operationccoenmneenmrrcneenseniemnerersnenes 2-18

i

tents

2325 MAC Overflow and Saturationeeeereerrernesisnisniseenns 2-18
2326 Rounding Modeccveeururieeeeeee et 2-19
2.4 BARREL SHIFTER ...ttt seseesesssssss s 2-20
2.4.1 Shifter Block Diagram DiSCUSSIONccerereeierereenrereernieeenerrenees 2-21
242 Shifter OPErationscc.ceureerruereriirecereieceneiesere e sesnenes 2-26
2421 Shifter Input/Output REGISIErSccvevrcircrieiirireereircirenes 2-28
2422 Derive BIock EXPONENtoceeveevvnieeenireencenenine e, 2-28
2423 Immediate ShIftSccvevrereerereeerereere e 2-29
2424 DeNOIMAliZe ...t 2-30
24.25 NOIMANIZE ..ottt 2-32

CHAPTER 3 DATAMOVES

3.1 INTRODUCTION.....coueeeirremcircireeireeteeinesseeseessessecsenissse s sesssessesesssseesenes 3-1
32 DATA ADDRESS GENERATORS (DAGS)cvvereereenerererreeeeeeenereeneees 3-1
3.2.1 DAG Block Diagram DiSCUSSIONcvvverrreiereereereenierensesesnrenennns 3-1
322 MOAUIO AArESSING ...vvvvevereerceeiriec et sss s 3-3
3.2.2.1. Circular Buffer Base Address Example 1ccoverecereencenen. 3-4
3222 Circular Buffer Base Address Example 2c.c.cocovevveeiuneee 3-4
3.2.238. Circular Buffer Operation Example 1.......ccccoveuneiveninccrens 3-4
3.2.24. Circular Buffer Operation Example 2..........ccoovenrnrnrenirrirennne 3-5
323 Bit-Reverse AdAreSSing «...v.eeeeeucereeiieereriessereseseessesesses e e 3-5
33 PMD-DMD BUS EXCHANGEcoooonirrerineinneneereeeiseeesies s 3-6
3.3.1 PMD-DMD Block Diagram DiSCUSSIONcccuruirecreonercccirenenens 3-6

41 INTRODUCTION......coviteremeeeireeremseceriet s s eesesseeseees 4-1
42 PROGRAM SEQUENCER & STATUSc.vveeermeererireencrireeerecseneenens 4-1
421 Next Address Select LOGICcuurereeecerrieerreireesei e eeeeeeseenns 4-1
422 Program Counter and Stackccoceeevernecnereernirennerneineineneas 4-3
423 Down Counter and Stackc.covereceecerirmncemeernensiseenesesenees 4-4
424 Loop Comparator and Stackcccceeeeurerveerverececsere e, 4-5
425 INterrUPECONIONET ... 4-8
4251 Configuring INEEITUPLSeccereerecireiecr et 4-8
4252 Interrupt Handlingcoeeveeencrese s 4-9
426 Sequencer Operations lllustrated............covevceonenerneeneenreneeneonn. 4-10
4261 LINEAr FIOW ..o e 4-10
426.2 JUMP SEQUENCE ... 4-12
4.26.3 CALLSBQUENCEcvvvrererrceeereieissisessesesesse s ssnesssees 4-13
4264 INtErrUPE SEQUENCEuv et 4-14

4265 DO UNTILLOOP oocververiereiriniireireeeeieeesereeessse s senessens 4-16

4.2.6.6 Register INQIrect ..o 4-20
4.3 STATUS REGISTERS AND STACK ... 4-20
431 Arithmetic Status Register (ASTAT) ...c.vveirorerieieeieceeieeenns 4-21
432 Stack Status Register (SSTAT) ... 4-22
433 Mode Status Register (MSTAT) ..o 4-22
434 Interrupt Control Register (ICNTL)c.ovurvvvriricrece e 4-23
435 Interrupt Mask Register (IMASK)oooevinnnnneeeeee 4-24
4.3.6 CONAIIONLOGIC ... 4-25
4.4 INSTRUCTIONCACHE ... eeesseees 4-26
4.4.1 Cache Memory Operation ..., 4-26
442 Cache Memory MONIOT ..o 4-27
443 Programmers’ Guidelines For Cache Memory Usage 4-28
444 Cache Memory EXample.........cocvceininnirnenensenescie e, 4-28

CHAPTER5 SYSTEMINTERFACE

5.1 OVERVIEW ettt 5-1
5.1.1 Note On Timing DIagramsccoveereeereerieemeenesiseeeseeseeseseseseens 5-1
5.12 Clock Signals & Processor States..........curweeereeererieeeneemieenenneeens 5-2
513 Synchronization Delayccvrrennrinrnicrerreee s 5-3
5.2 BUS REQUEST / GRANT ..ottt 5-3
5.21 Bus Request at RESET ..o 5-6
53 PROGRAMMEMORY INTERFACE ..o 5-6
5.3.1 Program Memory Read CyCle.........oeeriernecineeeereeeneneies 5-7
532 Program Memory Write CYCleoeecrierreenric e 5-7
54 DATAMEMORY INTERFACEoiiieiecirinercrecnee e 5-9
5.4.1 Data Memory Read CyCle ..o 5-11
542 Data Memory Write CYCIE ..ot 5-12
55 CONTROLINTERFAGE ...ttt seeseseeenessensennns 5-12
55.1 RESET ettt 5-13
552 HALT ettt 5-13
553 TRAP et e 5-14
5.6 INTERRUPTOPERATIONooiiiiiiinineeeeee e 5-15
5.7 PINDESCRIPTION ..ot nesesisesseecissssesesesssessessseens 5-17

vii

CHAPTER 6 INSTRUCTION SET OVERVIEW

6.1 INTRODUCTIONoteeireereereerneennrs s eeiseeseeestseesessse st ssssssessssesssesseenns 6-1
6.2 INSTRUCTION TYPES ..ot seessseesse s s 6-2
6.2.1 MUIfuNCtion INSTUCHONS ..o 6-3
6.2.1.1 ALU/MAC with Data & Program Memory Readc.ccocoueee. 6-3
6.2.1.2 Data & Program Memory Readcccoccnenernerninnrninnennns 6-5
6.2.1.3 Computation With Memory Readccoecvervvceeenreneereenenns 6-5
6.2.14 Computation With Memory Writeccooeecuneenerneneencinies 6-5
6.21.5 Computation With Data Register Moveccovereenericenereen. 6-6
6.2.2 ALU, MAC and Shifter INStruCtONScceeveevveireeeeeerie e 6-8
6.2.2.1 ALU GIOUP oeveveieireees ettt 6-8
6222 MAC GIOUD ...ttt sse st ssb s s 8-9
6.2.2.2 Shifter GIOUD .vevveececeri ettt 6-11
6.2.3 MOVE: Read & WHIEcouvvreerrieeiieieeererecire et 6-12
6.2.4 Program FIow CONtrolc.ccvuiniminnecsesec e 6-13
6.25 Miscellaneous INStrUCHIONSccueeerirecrrcree e 6-14
6.3 DATASTRUCTURES ..ot sesssesssesssssessnesennes 6-15
6.3.1 AITAYS e e 6-15
6.3.2 Circular ArrayS/BUFfErS ..o 6-16
6.3.3 Ports & Memory-Mappingc.ccceueeereeerineeenimeernreeneeseeeseseenenes 6-17
6.4 PROGRAMEXAMPLEcooiieeireimcireieeenceeeirenteeescs e s 6-18
6.4.1 Example Program: Setup Routine DiscusSionccceveveeereenees 6-19
6.4.2 Example Program: Interrupt Routine Discussionccceeeeenn. 6-20
APPENDIX A INSTRUCTIONFORMATS

AAd OPCODES ettt A-1
A2 ABBREVIATIONCODINGoveeieeriierceneeresireeseeseesesessseesssessssseseens A-5
APPENDIX B DIVISION EXCEPTIONS

B.1 DIVISIONFUNDAMENTALSoreriereereermeeeiseemesssessee s srssesesseneeeen B-1
B.1.1 SIGNEA DIVISION ... ettt B-1
B.1.2 UNSIgned DIVISIONuieieriiceiccrec e B-2
B.1.3 OUIPULFOIMALS ... B-2
B.1.4 INtEQET DIVISIONceoeeveee et B-3
B.2 ERRORSITUATIONS......coooveieeicecictreeeeiee et sestsesssssenssesseseenes B-3
B.2.1 Negative DIVISOr EITOrvevieicrierisrene e B-3
B.2.2 Unsigned DIVISION EFFOrccuvvieriiceenerecnreniseeeseeseseeeesieees B-4
B.3 SOFTWARE SOLUTION ..ot seeseeseeeesseesseeseeeens B-4

INDEX

viii

FIGURES

1.1
1.2

ADSP-2100SYSIEM ...ttt 1-2
ADSP-2100 Internal ArchiteCture..........c.eveeeveeericiese e 1-4
ALU BIOCK DIagramccveeeeuirireieiceiecseeeiiesieeeesinesesessssesesesesnens
DIVS Block Diagram

DIVQ Block Diagram

QUOIENE FOMMAL ...ttt nen
Multiplier/Accumulator Block Diagramcoeeeeenninirecneriennnnns 2-14
Multiplier ReSult FOrmat ..o e 2-17
Shifter BIOCK Diagramccccrcimmnmneerescrecinsisesesneseseeneeneees 2-22
Data Address Generator Block Diagram...........cocoveenereeereniercinnmncnnenes 3-2
PMD — DMD Bus EXChangecvvveninciirrisnncsrescen e 3-7
Program Sequencer Block Diagramcceenincerenienineincinernes 4-2
LINEArFIOW et 4-11
JUMP SEOUENCE ...ttt 4-12
CALL Sequence4 - 13

INtEITUPE SEQUENCE ..vov ettt 4-14
DO UNTIL: Load COUNLET ..ot 4-15
DO UNTIL: Execute “DO UNTILooviieeeriririee et 4-16
DO UNTIL: Flow INSIAE LOOP ...vvvvvvreerieeiereniere et eeseesseesneseeseesssnninns 4-17
DO UNTIL: End of One Herationccceveeeeereirinsneeneseseese e 4-18
DO UNTIL: Final RErationccccevoevreriseriieie et 4-19
Register INAIrect SEQUENCEvvveiveeeeire et 4-20
Cache Memory Program EXample.........ccccvcemmnenriencrnceccnenneecnenens 4-28
Basic System Configurationcceeererrnernenerseeneeneensesceneeseesnenas 5-2
Clock Signals & Processor Statesccvuerrreercereiecrnereeererireeneeenns 5-3
Bus Grant FIOWCHArt ... e 5-4
BUS HOI / REIEASE ... 5-5
Program Memory Read / WITEccooviieiiiinnercneneecenee e 5-8
Data Memory Read / WHILEc.oveeeeierreeceie e 5-10
Data Memory Read Extended by DMACKc.ooveriernecirerrecs 5-11
Data Memory Read Flowchartooccenneniciin e 5-11
Data Memory Write FIOWCharccveivniieirrerenee s 5-12
TRAP FIOWCHAI ...t 5-15
Interrupt SErvice TIMINGovveeererviriierrie s 5-16
ADSP-2100 Pins, Top View, Pins DOWNccoiuivrieieiecreireieeeiseenn 5-21
ADSP-2100 Pins, Bottom View, PiInS Upccoevrieirireeecccreeenee 5-22
Listing B—1: Division Error ROULINEcoeereereevenieniinrenseneeneeneereereeneanne B-6-8

ix

Contents

TABLES

Arithmetic Formats Used by the ADSP-2100..........cccceevreerrereereereenrereeneens 2-4
ALU SAtUration MOGEcc.ccemveimmimriceninemeereenrnensese e seeneeseesesseeseenenns 2-8
MAC Saturation Instruction Effect..........c.coeeerrerrrervnrencnmcnsnsieneesinninns 2-19
Shifter Array CharaCteristic.......coveeereremrererererrereereerereerres e 2-25
Shifter Exponent Detector Characteristicovevrnrrneniesncenireninns 2-27
DO UNTIL CONItioN LOGICcvuvvrerrcereerrieireievesseeneiiseeeieceseeseeene s 4-6
IMASK Entering Interrupt Service ROUHNESc..eceeereirienereeenrieeenens 4-24
[F CONAItION LOGICeoovererirciineerect et 4-25
Summary of Valid Combinations For Muitifunction instructions 6-6
Multifunction INSErUCHIONSoceiei e 6-7
ALU INSIUCHIONS ...covvevcteneieereceseesces s ce e ess s sneen 6-8
MAC INSITUCHIONS ...ttt eeeb et 6-10
Shifter INSTUCHONSevvceveerceerirreeee et eeteseees 6-11
ADSP-2100 Register Set: reg & aregcocvvvmreeenirrerernsreesissssiniins 6-12
MOVE INSIIUCHIONSvocereeeieerceece e issisessee e e s e 6-12
Program Flow Control INStrUCHIONScevevivrercrenienrnecneinerineiecsenenee 6-14
Miscellangous INSHUCHONScceverrereeceeiee e 6-15
Program Example Listing 1, Main Routine & Constants File.................. 6-18

Program Example Listing 2, Interrupt Routingccovevevrvenieccnreenn. 6-20

Introduction

1.1 GENERAL DESCRIPTION

The ADSP-2100 is a programmable single-chip microprocessor optimized
for digital signal processing (DSP) and other high-speed numeric
processing applications. The ADSP-2100 incorporates computational
units, data address generators and a program sequencer in one device,
utilizing external data and program memories.

The ADSP-2100 contains three full-function and independent
computational units: an arithmetic/logic unit, a multiplier /accumulator
and a barrel shifter. The computational units process 16-bit data directly
and provide for multiprecision computation.

Two dedicated data address generators and a powerful program
sequencer supply addresses. The sequencer supports single-cycle
conditional branching and executes program loops with zero overhead.
Dual address generators allow the processor to output simultaneous
addresses for dual operand fetches. Together the sequencer and data
address generators allow computational operations to execute with
maximum efficiency. With the ability to store data in both program and
data memory, the ADSP-2100 is capable of fetching two operands on the
same instruction cycle.

Figure 1.1 is a simplified representation of the ADSP-2100 in a system
context. The figure shows the two external memories used by the
processor. Program memory stores instructions and is also used to store
data. Data memory stores only data. The data memory address space may
be shared with memory-mapped peripherals, if desired. Both memories
may be accessed by external devices, such as a system host, if desired.
Figure 1.1 also shows the processor control interface signals, (RESET,
HALT and TRAP) the four interrupt request lines, the bus request and bus
grant lines (BR and BG) and the clock input (CLKIN) and output
(CLKOUT). Complete interfacing information is presented in the chapter
“System Interface.”

The ADSP-2100 assembly language uses an algebraic syntax for ease of
coding and readability. The sources and destinations of computations

1 Introduction

and data movements are written explicitly in each assembly statement,
eliminating cryptic assembler mnemonics. Each assembly statement,
however, corresponds to a single 24-bit instruction, executable in one
cycle.

The ADSP-2100 architecture rivals the performance of a board level
solution implemented with bit-slice building blocks, without the difficulty
of microcode programming.

|

CLKIN CLKOUT]
I\ ADDR DATA
ADSP-2100 - / MEMORY
16K x 16
14 14
| Program Memory Data Memory | DATA
PROGRAM Address Address |
MEMORY
24 16
16/32K x 24 Program Memory Data Memory ya
Data Data 7
RESET HALT TRAP IRQ BR BG :> ADDR
PERIPHERALS
4 L
<'__-—_J\\/ DATA

Figure 1.1 ADSP-2100 System

1.2 SUMMARY OF ADSP-2100 KEY FEATURES

* Separate Program and Data Buses, Extended Off-Chip
» Single-Cycle Direct Access to 16K x 16 of Data Memory
¢ Dual Purpose Program Memory for Both Instruction and Data Storage

* Single-Cycle Direct Access to 16K x 24 (Expandable to 32K) of Program
Memory

Three Independent Computational Units:
Arithmetic/Logic Unit (ALU)
Multiplier/ Accumulator (MAC)
Barrel Shifter

Two Independent Data Address Generators

Powerful Program Sequencer

Internal Instruction Cache

Provisions for Multiprecision Computation and Saturation Logic

Single-Cycle Instruction Execution

Multifunction Instructions

Four External Interrupts

50 MHz Clock Speed

80 ns Cycle Time

Low Power Standby Mode

100-Pin Grid Array Package

1 Introduction

CACHE
MEMORY
] INSTRUCTION
REGISTER
DATA DATA L[
ADDRESS ADDRESS
GENERATOR GENERATOR — > SgggEGN“c‘gg
#
7 PMABUS 14, I L
[4]
7
DMA BUS 14, ANZ [
y4 1
7
PMD BUS 24,
[y A]
j E 7 ‘/[E
BUS
EXCHANGE
@ 167) \Z DMD BUS S ; ,
Z\ 4 {X Z\
INPUT REGS INPUT REGS INPUT REGS
ALU MAC SHIFTER
OUTPUT REGS N— OUTPUT REGS N— OUTPUT REGS Q‘_
ij ; R BUS ? g 16 , N L
4 |
7

Figure 1.2 ADSP-2100 Internal Architecture

DMA

PMD

DMD

1.3 INTERNAL ARCHITECTURE

This section gives a broad overview of the ADSP-2100 internal
architecture. The overview is based on Figure 1.2, on the facing page,
which shows the architecture of the ADSP-2100. Each component is
described in detail in the following chapters.

Component Chapter [Section
* Arithmetic/logicunit 2.2
¢ Multiplier/accumulator 2.3
¢ Barrel shifter 2.4
¢ Twodataaddress generators 3.2
¢ PMD-DMD bus exchange 3.3
* Programsequencer 4.2
® Status registers and stack 4.3
* Cachememory 44

These components are supported by five internal buses.

Program Memory Address (PMA) bus

Program Memory Data (PMD) bus

Data Memory Address (DMA) bus

Data Memory Data (DMD) bus

Result (R) bus (which interconnects the computational units)

The first four of these buses are extended off-chip for direct connection to
external memories.

The program memory data (PMD) bus serves primarily to transfer
instructions from off-chip memory to the internal instruction register.
Instructions are fetched and loaded into the instruction register during one
processor cycle and execute during the following cycle while the next
instruction is being fetched. The instruction register introduces a single
level of pipelining in the program flow. Instructions loaded into the
instruction register are also written into the cache memory, described
below.

The next instruction address is generated by the program sequencer
depending on the current instruction and internal processor status. This
address is output onto the program memory address (PMA) bus. The
program sequencer minimizes program flow overhead with features such
as conditional branching, loop counters and zero-overhead looping.

The program memory address (PMA) bus is 14 bits wide allowing direct
access of up to 16K words of instruction code and 16K words of data. The
PMDA pin distinguishes between code and data access of program
memory. The program memory data (PMD) bus is 24 bits wide to
accommodate the 24-bit instruction width.

The data memory address (DMA) bus is 14 bits wide allowing direct
access of up to 16K words of data. The data memory data (DMD) bus is 16
bits wide. The data memory data (DMD) bus provides a path for the
contents of any register in the processor to be transferred to any other
register or to any external data memory location in a single cycle. The data
memory address comes from two sources: an absolute value specified in
the instruction code (direct addressing) or the output of a data address
generator (indirect addressing). Only indirect addressing is supported for
data fetches via the program memory bus.

The program memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or via the PMD-
DMD bus exchange unit. The PMD-DMD bus exchange unit permits data
to be passed from one bus to the other. It contains hardware to overcome
the 8-bit width discrepancy between the two buses, if necessary.

The ADSP-2100 contains three computational blocks: an arithmetic/logic
unit (ALU), a multiplier /accumulator (MAC) and a barrel shifter. Each
unit functions independently of the others. All operate directly on 16-bit
input data with provision for multiprecision operations. See the section
“ADSP-2100 Arithmetic” in the next chapter.

All computational units contain a set of dedicated input and output
registers. Computational operations generally take their operands from
input registers and load the result into an output register. The registers act
as a stopover point for data between the external memory and the
computational circuitry, effectively introducing one pipeline level on
input and one level on output. The computational units are arranged side
by side instead of in a cascade fashion. To avoid excessive pipeline delays
when a series of different operations are performed, the internal result (R)
bus allows any of the output registers to be used directly as the input to
another computation.

For a wide variety of calculations, it is desirable to fetch two operands at
the same time; one from data memory and one from program memory.
‘Fetching data from program memory, however, makes it impossible to
fetch the next instruction on the same cycle. An additional cycle would be
required to fetch the next instruction. To avoid this overhead, the ADSP-
2100 incorporates an instruction cache which holds sixteen words. The
benefit of the cache architecture is most apparent when executing a
program loop totally contained in the cache memory. In this situation, the
ADSP-2100 functions like a three bus system with an instruction fetch and
two operand fetches taking place at the same time. Many algorithms can
be coded in loops of sixteen instructions or less because of the efficiency
and high-level syntax of the ADSP-2100 Assembly language. See the
chapter “Instruction Set Overview.”

Briefly, the cache functions in the following way. Every instruction loaded
into the instruction register is also written into cache memory. As
additional instructions are fetched, they overwrite the current contents of
cache in a circular fashion. When the current instruction does a program
memory data access, the cache automatically sources the instruction
register if its contents are valid. Operation of the cache is completely
transparent to user.

There are two independent data address generators (DAGs). Having two
DAGs allows the simultaneous fetch of data stored in program and in
data memory for executing dual-operand instructions in a single cycle.
Data address generator one (DAG1) can supply addresses to the data
memory only, but data address generator two (DAG2) can supply
addresses to either the data memory or the program memory. Each DAG
can handle linear addressing as well as modulo addressing for circular
buffers.

With its multiple bus structure, the ADSP-2100 supports a high degree of
operational parallelism. In a single cycle, the ADSP-2100 can fetch an
instruction, compute the next instruction address, perform one or two
data transfers, update one or two data address pointers and perform a
computation. All instructions execute in a single cycle.

1.4 ADSP-2100 DEVELOPMENT SYSTEM

The ADSP-2100 is supported with a complete set of software and
hardware development tools. The ADSP-2100 Development System
consists of the Cross-Software Development System to aid the software
design and the real-time Emulator to facilitate the debug cycle. An
Evaluation Board is available for evaluating the ADSP-2100. It is also
suitable for limited prototyping of hardware interfacing.

The Cross-Software Development System includes:
e System Builder

This module allows the designer to specify the amount of RAM and ROM
available, the allocation of program and data memory and any memory-
mapped I/O ports for the target hardware environment. It uses high-level
constructs to simplify this task. This specification is used by the other

modules in the Cross-Software Development System.
* Assembler

This module assembles your source code and data modules. It supports
the high-level syntax of the instruction set. To support modular code
development, the Assembler provides flexible macro processing and
include files. It provides a full range of diagnostics.

e Linker

The Linker links separately assembled modules. It maps the linked code
and data output to the target system hardware, as specified by the System
Builder output.

¢ Simulator

This module performs an instruction-level simulation. The user interface is
both interactive and symbolic. It supports a full symbolic assembly and
disassembly. The simulator fully simulates the hardware configuration
described by the System Builder module. It flags illegal operations and
provides several displays of the internal operations of the ADSP-2100.

¢ PROM Splitter

This module reads the Linker output and generates PROM burner
compatible files.

¢ CCompiler

The C Compiler reads ANSI (Draft Standard) C source and outputs
ADSP-2100 source code ready to be assembled. It also supports inline
assembler code.

e In-Circuit Emulator

The Emulator provides stand-alone real-time in-circuit emulation, using
the ADSP-2100 in a self-emulation mode. The Emulator design provides
execution with little or no degradation in processor performance. In
addition, there are interfaces to external instrumentation. The Emulator
virtually duplicates the Simulator’s interactive and symbolic user
interface.

For complete information on the Development System, consult the ADSP-
2100 Cross-Software Manual and the ADSP-2100 Emulator Manual.

1.5 MANUAL ORGANIZATION

The ADSP-2100 User’s Manual provides the information necessary for an
engineer to understand and evaluate the operation of the ADSP-2100.
Together with the ADSP-2100 Data Sheet, this manual provides all the
information required to design a hardware system with the ADSP-2100.
You must consult the ADSP-2100 Cross-Software Manual for complete
information on programming the chip. Additional applications
information may be found in the ADSP-2100 Applications Handbook,
Volume 1 and Volume 2.

Chapter 2, “Computational Units,” describes the internal architecture and
function of the ADSP-2100 computational units.

Chapter 3, “Data Moves,” describes the data address generators and the
PMD-DMD bus exchange units.

1

1-10

Introduction

Chapter 4, “Program Control,” describes the program sequencer,
instruction cache and status words.

Chapter 5, “System Interface,” describes the chip externally. It discusses
all major interfaces to the ADSP-2100: the program memory (PM)
interface, the data memory (DM) interface, the control interface and the
interrupt lines. This chapter gives a functional description of the interfaces
and their sequence of operations. For actual timing parameters, refer to the
ADSP-2100 Data Sheet. A summary of the pin descriptions is given in this
chapter.

Chapter 6, “Instruction Set Overview,” is an overview of the ADSP-2100

tona Natailad
T C. UClaula

instruction set. All instructions are grouped by major
programmer’s reference material is in the ADSP-2100 Cross-Software
Manual; this chapter gives enough information for you to understand the

capabilities and flexibility of the instruction set.

Appendix A, “Instruction Coding,” shows the complete set of opcodes and
gives the bit patterns for the choices for each field within the instruction
word.

Appendix B, “Division Exceptions,” discusses the details of signed and
unsigned division.

This edition also includes an Index at the end of the book.

Computational Units

2.1 ARITHMETIC ON THE ADSP-2100

This chapter describes the architecture and function of the three
computational units of the ADSP-2100: the arithmetic/logic unit, the
multiplier/accumulator and the barrel shifter.

To better understand the detailed discussion of these units you should
first understand how the ADSP-2100 handles binary arithmetic. The
ADSP-2100 is a 16-bit, fixed-point machine. Special features support
multiword arithmetic and block floating point. Most operations assume a
twos-complement number while others assume an unsigned-magnitude
number or a simple binary string. This section discusses the arithmetic
used by each computational unit or operation.

2.1.1 Binary String

This is the simplest form of binary notation. Sixteen bits are treated as a
bit pattern. The best examples of computation using this format are the
logical operations: NOT, AND, XOR. These ALU operations treat their
operands as binary strings with no provision for sign bit or binary point
placement.

2.1.2 Unsigned-Magnitude

Unsigned magnitude binary numbers have no sign bit. They are
frequently thought of as positive, having nearly twice the magnitude of a
signed number of the same bit length. The lower words of multiword
numbers are treated as unsigned-magnitude numbers.

2.1.3 Signed Numbers: Twos-Complement

Twos-complement is one of the most common ways to represent signed
binary numbers. It uses the MSB of a binary number as a sign bit. Twos-
complement provides a unique representation for zero, where some other
formats have both a positive and negative zero. In twos-complement the
largest negative magnitude is one LSB greater than the largest positive
magnitude.

2-2

In discussions of ADSP-2100 arithmetic “signed” refers to twos-
complement. Most ADSP-2100 operations presume or support twos-
complement arithmetic. The ADSP-2100 does not use signed-magnitude
formats.

2.1.4 Fractional Representation: 1.15

A large number of DSP algorithms use sinusoidal and cosinusoidal values
and coefficients. The ADSP-2100 is optimized for arithmetic values in a
fractional binary format denoted by 1.15 (“one dot fifteen”). (Referred to in
some contexts as 16.15.) This is a fixed-point format. Used with the MSB as
a sign bit, the 1.15 means one sign bit and fifteen fractional bits
representing values from -1 up to one LSB less than +1. In the ADSP-2100
the fractionai notation and twos-complement always occur together.

2.1.5 ALU Arithmetic

All operations on the ALU treat operands and results as simple 16-bit
binary strings, except the signed division primitive (DIVS). Various status
bits treat the results as signed: the overflow (AV) condition code, and the
zero (AZ) and negative (AN) flags.

The logic of the overflow bit (AV) is based on twos-complement. It is set if
the MSB changes in a manner not predicted by the signs of the operands
and the nature of the operation. For example, adding two positive
numbers must generate a positive result; a change in the sign bit signifies
an overflow and sets AV. Adding a negative and a positive may result in
either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude. It is set if
a carry is generated from bit 16 (the MSB). The (AC) bit is most useful for
the lower word portions of a multiword operation.

2.1.6 MAC Arithmetic

The multiplier array itself produces results that are simple binary strings,
but the inputs are “interpreted” according to the information given in the
multiplication instruction itself (signed by signed, unsigned by unsigned,
a mixture or round).

The number loaded into MR from the multiplier is assumed to be signed
in that it is always sign-extended across the full 40 bit width of the MR
register set.

There is a built-in shift left that occurs between the multiplier product (P)
and the multiplier result register (MR). Figure 2.6, in the MAC section of
this chapter, shows this graphically. This shift occurs because the ADSP-
2100 assumes that the operands are in 1.15 format. Without the shift the
32-bit result would be in 2.30 format. If a 2.30 value is rounded to 16-bits,
the result would be 2.14, which is incompatible with 1.15. For this reason,
the multiplier result is always shifted one bit to the left, producing a 1.31
result, which can be rounded to 1.15.

Therefore, to multiply twos-complement integers (16.0 not 1.15 format),
you must compensate for the shift that occurs. Typically, this would mean
shifting the result down (or right) one bit to get the correct 32-bit, twos-
complement value. Since the MAC output register set stores 40 bits, this
result is not lost and can be retrieved with the Shifter.

2.1.7 Shifter Arithmetic

Many operations in the Shifter are explicitly geared to signed (twos-
complement) or unsigned values: Logical Shifts assume unsigned-
magnitude or binary string values and Arithmetic Shifts assume twos-
complement.

The exponent logic assumes twos-complement numbers. The exponent
logic supports block floating point, which is also based on twos-
complement numbers.

2.1.8 Summary

In addition to the numeric types described in this section, the ADSP-2100
C Compiler supports a form of 32-bit floating-point in which one 16-bit
word is the exponent and the other 16-bit word is the mantissa. See the
discussion in the C Compiler chapter of the ADSP-2100 Cross-Software
Manual.

2-3

The table below summarizes some of the arithmetic characteristics of the
ADSP-2100 computational units and operations.

OPERATION ARITHMETIC FORMATS
Operands Result
ALU
Addition Signed or unsigned Interpret flags
Subtraction Signed or unsigned Interpret flags
Logical Operations Binary string same
Division Explicitly signed /unsigned same
ALU Overflow Signed same
ALU Carry Bit 16-bit unsigned same
ALU Saturation Signed same
MAC
Multiplication () 1.15 Explicitly signed /unsigned 32-bits
Multiplication (MR) 1.15 Explicitly signed /unsigned 2.30 shifted to 1.31
Mult+Cum. Add 1.15 Explicitly signed /unsigned 2.30 shifted to 1.31
Mult+Cum. Subtract 1.15 Explicitly signed /unsigned 2.30 shifted to 1.31
MAC Overflow Signed same
MAC Saturation Signed same
Shifter
Logical Shift Unsigned / binary string same
Arithmetic Shift Signed same
Exponent Detection Signed same

Table 2.1 Arithmetic Formats Used by the ADSP-2100

2.2 ARITHMETIC/LOGIC UNIT (ALU)

The Arithmetic/Logic Unit (ALU) provides a standard set of arithmetic
and logical functions. The arithmetic functions are add, subtract, negate,
increment, decrement and absolute value. These are supplemented by two
division primitives with which multiple cycle division can be constructed.
The logic functions are AND, OR, XOR (exclusive OR) and NOT.

2.2.1 ALU Block Diagram Discussion
Figure 2.1 shows a block diagram of the ALU.

PMD BUS 2,

7
Y 16 (UPPER)

AN

DMD BUS 16,

7

.

AY
REGISTERS
2x16

AX
REGISTERS
2x16

16

AZ REGISTER
AN

AC d—
AV <€ ALU

AQ @]

Figure 2.1 ALU Block Diagram

2-5

2-6

putational Units

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signal (CI) which is the carry
bit from the processor arithmetic status register (ASTAT). The ALU
generates six status signals: the zero (AZ) status, the negative (AN) status,
the carry (AC) status, the overflow (AV) status, the X-input sign (AS)
status, and the quotient (AQ) status. All arithmetic status signals are
latched into the arithmetic status register (ASTAT) at the end of the cycle.

The X input port of the ALU can accept data from two sources: the AX
register file or the result (R) bus. The R bus connects the output registers of
all the computational units, permitting them to be used as input operands
directly. The AX register file is dedicated to the X input port and consists
of iwo registers, AX0 and AX1. These AX registers are readable and
writable from the DMD bus. The AX register file outputs are dual-ported
so that one register can provide input to the ALU while either one

simultaneously drives the DMD bus.

The Y input port of the ALU can also accept data from two sources: the
AY register file and the ALU feedback (AF) register. The AY register file is
dedicated to the Y input port and consists of two registers, AY0 and AY1.
These registers are readable and writable from the DMD bus and writable
from the PMD bus. The ADSP-2100 instruction set also provides for
reading these registers over the PMD bus, but there is no direct
connection; this operation uses the DMD-PMD bus exchange unit. The AY
register file outputs are also dual-ported: one AY register can provide
input to the ALU while either one simultaneously drives the DMD bus.

The output of the ALU is loaded into either the ALU feedback (AF)
register or the ALU result (AR) register. The AF register is an ALU internal
register which allows the ALU result to be used directly as the ALUY
input. The AR register can drive both the DMD bus and the R bus. It is
also loadable directly from the DMD bus.

All the registers surrounding the ALU can be both read and written in the
same cycle. Registers are read at the beginning of the cycle and written at
the end of the cycle. All register reads, therefore, read values loaded at the
end of a previous cycle. A new value written to a register cannot be read
out until a subsequent cycle. This allows an input register to provide an
operand to the ALU at the beginning of the cycle and be updated with the
next operand from memory at the end of the same cycle. It also allows a

result register to be stored in memory and updated with a new result in
the same cycle. See the discussion of “Multifunction Instructions” in the
chapter “Instruction Set Overview” for an illustration of this same-cycle

read and write.

The ALU section contains a duplicate bank of registers, shown in Figure
2.1 as a “shadow” behind the primary registers. There are actually two
sets of AR, AF, AX, and AY register files. Only one bank is accessible at a
time. The additional bank of registers can be activated during an interrupt
service routine for extremely fast context switching. A new task, such as
an interrupt service routine, can be executed without transferring current

states to storage.

The selection of the primary or alternate bank of registers is controlled by
a bit in the processor mode status register (MSTAT). Toggling this bit
switches back and forth between the two register banks.

2.2.2 Standard Functions
The standard functions performed by the ALU are listed below with a

brief comment.
R=X+Y
R=X+Y+CI
R=X-Y
R=X-Y+CI-1
R=Y-X
R=Y-X+CI-1
R=-X

R=-Y
R=Y+1
R=Y-1
R=PASS X
R=PASSY
R=0 (PASS0)
R=ABSX
R=XANDY
R=XORY
R=XXORY
R=NOTX
R=NOTY

Add X and Y operands

Add X and Y operands and carry-in bit
Subtract Y from X operand

Subtract Y from X operand with “borrow”
Subtract X from Y operand

Subtract X from Y operand with “borrow”
Negate X operand (twos-complement)

Negate Y operand (twos-complement)
Increment Y operand

Decrement Y operand

Pass X operand to result unchanged

Pass Y operand to result unchanged

Clear result to zero

Absolute value of X operand

Logical AND of Xand Y operands

Logical OR of X and Y operands

Logical Exclusive OR of X and Y operands
Logical NOT of X operand (ones-complement)
Logical NOT of Y operand (ones-complement)

2-8

yutational Units

2.2.3 ALU Input/Output Registers

The sources of ALU input and output registers are shown below.

Source for X input port Source for Y input port Destination for R

output port
AX0, AX1 AY0, AY1 AR
AR AF AF
MRO, MR1, MR2
SRO, SR1

MRO, MR1 and MR2 are Multiplier/ Accumulator result registers; SRO and
SR1 are Shifter result registers.

2.2.4 Multiprecision Capability

Multiprecision operations are supported in the ALU with the carry-in (CI)
signal and ALU carry (AC) status bit. The carry-in signal is the AC status
bit that was generated by a previous ALU operation. The “add with carry”
(+CI) operation is intended for adding the upper portions of
multiprecision numbers. The “subtract with borrow” (CI-1 is effectively a
“borrow”) operation is intended for subtracting the upper portions of
multiprecision numbers.

2.2.5 ALU Saturation Mode

The AR register has an optional saturation mode of operation which
automatically sets it to plus or minus the maximum value if an ALU result
overflows or underflows. This feature is a “mode” and is enabled by
setting a bit in the processor mode status register (MSTAT). When
enabled, the value loaded into AR during an ALU operation depends on
the state of the overflow and carry status generated by the ALU on that
cycle. The following table summarizes the loading of the AR when the
saturation mode is enabled.

Overflow (AV) Carry (AC) AR Contents

ALU Output

ALU Output

0111111111111111 full-scale positive
1000000000000000 full-scale negative

0O O
— O —O

Table 2.2 Saturation Mode

The operation of the ALU saturation mode is in contrast to the Multiplier/
Accumulator saturation ability, which is enabled only on an instruction by
instruction basis. For the ALU, enabling saturation means that all
subsequent operations are processed this way.

2.2.6 ALU Overflow Latch Mode

The ALU overflow latch mode, enabled by a bit in the processor mode
status register (MSTAT), causes the AV bit to “stick” once it is set. In this
mode, when an ALU overflow occurs, AV will be set and remain set, even
if subsequent ALU operations do not generate overflows. In this mode,
AV can only be cleared by writing a zero to it directly from the DMD bus.

2.2.7 Division

The ALU section supports division. The divide function is achieved with
additional shift circuitry not shown in Figure 2.1, the block diagram.
Division is accomplished with two special divide primitives. These are
used to implement a non-restoring conditional add-subtract division
algorithm. The division can be either signed or unsigned, however, the
dividend and divisor must both be of the same type. Appendix B details
various exceptions to the normal division operation as described in this
section.

A single precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding 16-bit quotient, executes in 16 cycles.
Higher precision dividends can also be calculated. The divisor can be
stored in AX0, AX1 or any of the R registers. The upper half of a signed
dividend can be in either AY1 or AF. The upper half of an unsigned
dividend must be in AF. The lower half of any dividend must be in AY0.
At the end of the divide operation, the quotient will be in AYO.

The first of the two primitive instructions “divide-sign (DIVS)” is
executed at the beginning of the division when dividing signed numbers.
This operation computes the sign bit of the quotient by performing an
exclusive-OR of the sign bits of the divisor and the dividend. The AY0
register is shifted one place so that the computed sign bit is moved into
the LSB position. The computed sign bit is also loaded into the AQ bit of
the arithmetic status register. The MSB of AYO0 shifts into the LSB position
of AF, and the upper 15 bits of AF are loaded with the lower 15 R bits
from the ALU, which simply passes the Y input value straight through to
the R output. The net effect is to left shift the AF-AY0 register pair and
move the quotient sign bit into the LSB position. The operation of DIVSis
illustrated in Figure 2.2 (on the following page).

2-9

When dividing unsigned numbers, the DIVS operation is not used.
Instead, the AQ bit in the arithmetic status register (ASTAT) should be
initialized to zero by manually clearing it. The AQ bit indicates to the

following operations that the quotient should be assumed positive.

15

LEFT SHIFT
 —

L ae o

AX0 AX1 AY1 AF
B
| 16 LOWER
| DIVIDEND
3 | iy
MUX MUX
UPPER
DIVIDEND
_MSB
DIVISOR MSB I
v "
R-BUS X Y
ALU
R = PASS Y
15 LSBs
f/

2-10

Figure 2.2 DIVS Operation

The second primitive instruction is the “divide-quotient (DIVQ)”
operation which generates one bit of quotient at a time and is executed
repeatedly to compute the remaining quotient bits. For unsigned single
precision divides, the DIVQ instruction is executed 16 times to produce 16
quotient bits. For signed single precision divides, the DIVQ instruction is
executed 15 times after the sign bit is computed by the DIVS operation.
DIVQ instruction shifts the AY0 register left by one bit so that the new
quotient bit can be moved into the LSB position. The status of the AQ bit
generated from the previous operation determines the ALU operation to
calculate the partial remainder. If AQ =1, the ALU adds the divisor to the
partial remainder in AF. If AQ = 0, the ALU subtracts the divisor from the
partial remainder in AF. The ALU output R is offset loaded into AF just as
with the DIVS operation. The AQ bit is computed as the exclusive-OR of
the divisor MSB and the ALU output MSB, and the quotient bit is this
value inverted. The quotient bit is loaded into the LSB of the AYO0 register
which is also shifted left by one bit. The DIVQ operation is illustrated in

Figure2.3.
15
/
v
LEFT SHIFT
3 -+
L
AX0 AX1 AF [s Avo [¢
B

[| LOWER
DIVIDEND
PARTIAL
A REMAINDER
MUX
16
DIVISOR MSB \j > D
A
R-BUS X Y AQ
ALU
R=Y+X IF AQ=1
R=Y-X IF AQ=0
1MSB
/
7
15 LSBs
. . /
Figure 2.3 DIVQ Operation 7

2-11

2-12

The format of the quotient for any numeric representation can be
determined by the format of the dividend and divisor. Let NL represent
the number of bits to the left of the binary point, and NR represent the
number of bits to the right of the binary point of the dividend; DL
represent the number of bits to the left of the binary point, and DR
represent the number of bits to the right of the binary point of the divisor;
then the quotient has NL-DL+1 bits to the left of the binary point and
NR-DR-1 bits to the right of the binary point.

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format) and therefore the dividend must be smaller than
the divisor for a valid result. To divide two integers (dividend in 32.0
format and divisor in 16.0 format) and produce an integer quotient (in 16.0
format), you must shift the dividend one bit to the left (into 31.1 format)
before dividing. Additional discussion and code examples can be found in
the ADSP-2100 Applications Handbook, Volume 1.

Dividend BBBBB.BBBBEBBBBBBBBBBBBBBBBBBBBBBB
NL bits NR bits
Divisor BB.BBBBBBBBBBBBBB
DL bits DR bits
Quotient BBBB.BBBBBBBBBBBB

(NL-DL+1)bits (NR-DR-1) bits
Figure 2.4 Quotient Format

The algorithm overflows if the result cannot be represented in the format

of the quotient as calculated above or when the divisor is zero or less than
the dividend.

228 ALU Status

The ALU status bits in the ASTAT register are defined below. Complete
information about the ASTAT register and specific bit mnemonics and
positions is provided in Chapter 4, “Program Control.”

Flag ~ Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register.
True if ALU output equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is
negative.

AV Overflow Exclusive-OR of the carry outputs of the two most
significant adder stages. True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the
ABSinstruction.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ
instructions.

2.3 MULTIPLIER/ACCUMULATOR (MAC)

The Multiplier/ Accumulator (MAC) provides high-speed multiplication,
multiplication with cumulative addition, multiplication with cumulative
subtraction and clear-to-zero functions. A feedback function allows part of
the accumulator output to be directly used as one of the multiplicands on
the next cycle.

2.3.1 MAC Block Diagram Discussion

Figure 2.5, on the following page, shows a block diagram of the
multiplier /accumulator section.

The multiplier has two 16-bit input ports X and Y, and a 32-bit product
output port P. The 32-bit product is passed to a 40-bit adder/subtractor
which adds or subtracts the new product from the content of the
multiplier result (MR) register. The MR register is 40-bits wide. In this
manual, we refer to the entire register as MR. The register actually
consists of three smaller registers: MRO and MR1 which are 16 bits wide
and MR2 which is 8 bits wide. The adder/subtractor is greater than 32 bits
to allow for intermediate overflow in a series of multiply /accumulate
operations. The multiply overflow (MV) status bit is set when the
accumulator has overflowed beyond the 32-bit boundary, that is, when
there are significant (non-sign) bits in the top nine bits of the MR register
(based on twos-complement arithmetic).

2-13

PMD BUS 24,

7
Y16 (UPPER)
DMD BUS 16 /]
Z
. '

‘ T

MUX

MX My

REGISTERS REGISTERS
2x16 2x16

16

Y A
MUX
vy ¥
X Y
MULTIPLIER
P
40 2y 16)
ﬁﬁ / /7
A
ADD / SUBTRACT |, mv
R2 R1 RO
LR} (2R] v v
MUX MUX MUX
16)y
/]
MRO
REGISTER

xCc=

Yoo ¥ oY

Figure 2.5 Multiplier/Accumulator Block Diagram

2-14

The input/output registers of the MAC section are similar to the ALU.

The X input port can accept data from either the MX register file or from
any register on the result (R) bus. The R bus connects the output registers
of all the computational units, permitting them to be used as input
operands directly. There are two registers in the MX register file, MX0 and
MX1. These registers can be read and written from the DMD bus. The MX
register file outputs are dual-ported so that a single register can drive the
DMD bus at the same time it supplies operands to the multiplier.

The Y input port can accept data from either the MY register file or the MF
register. The MY register file has two registers, MY0 and MY1; these
registers can be read and written from the DMD bus and written from the
PMD bus. The ADSP-2100 instruction set also provides for reading these
registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The MY register file
outputs are also dual-ported so that a single register can drive the DMD
bus at the same time it supplies operands to the multiplier.

The output of the adder/subtractor goes to either the MF register or the
MR register. The MF register is a feedback register which allows bits
16-31 of the result to be used directly as the multiplier Y input on a
subsequent cycle. The 40-bit adder/subtractor register (MR) is divided
into three sections: MR2, MR1, and MRO. Each of these registers can be
preloaded directly from the DMD bus and output to either the DMD bus
or the R bus.

All the registers surrounding the MAC can be both read and written in the
same cycle. Registers are read at the beginning of the cycle and written at
the end of the cycle. All register reads, therefore, read values loaded at the
end of a previous cycle. A new value written to a register cannot be read
out until a subsequent cycle. This allows an input register to provide an
operand to the MAC at the beginning of the cycle and be updated with
the next operand from memory at the end of the same cycle. It also allows
a result register to be stored in memory and updated with a new result in
the same cycle. See the discussion of “Multifunction Instructions” in the
chapter “Instruction Set Overview” for an illustration of this same-cycle
read and write.

The MAC section contains a duplicate bank of registers, shown in Figure
2.5as a “shadow” behind the primary registers. There are actually two
sets of MR, MF, MX, and MY register files. Only one bank is accessible at a

2-15

2-16

time. The additional bank of registers can be activated during an interrupt
service routine for extremely fast context switching. A new task, such as
an interrupt service routine, can be executed without transferring current
states to storage.

The selection of the primary or alternate bank of registers is controlled by
a bit in the processor mode status register (MSTAT). Toggling this bit
switches back and forth between the two register banks.

2.3.2 MAC Operations

This section explains the functions of the MAC, its input formats and its
handling of overflow and saturation.

2.3.2.1 Standard Functions
The functions performed by the MAC are:

XY Multiply X and Y operands

MR+X*Y Multiply X and Y operands and add result to MR register

MR-X*Y Multiply X and Y operands and subtract result from MR
register

0 Clear result (MR) to zero

In performing a multiply /accumulate, the multiplier output P is fed into a
40-bit adder/subtractor which adds or subtracts the new product with the
current contents of the MR register to form the final 40-bit result R. The 32-
bit P output is format adjusted, that is, sign-extended and shifted one bit
to the left before being added to MR. Bit 31 of P lines up with bit 32 of MR
(which is bit 0 of MR2) and bit 0 of P lines up with bit 1 of MR (which is bit
1 of MRO). The LSB is zero-filled. The multiplier result format is shown in
Figure 2.6.

This is usually a more convenient format because it eliminates the
redundant sign bit from the lower 32 bits of the result when multiplying
signed numbers. This justification is maintained even if one or both of the
inputs are in unsigned format.

j¢—— PSIGN —>ple MULTIPLIER P OUTPUT

31]31][a1]s1]a1]a1[a1]a1Jao[20]28 27 [26 J25 [2a[23] 22 Jo1 Jeo [1o 18 T17 16 15 [1a [1a 2] 11 [10]o Je J7 Ts Is Ja [a Jo [+ To

0
7 Js Is T« I [2 [+ Jo [is[salsa]s2]s1]sofo [o [7 6 [s Ta [s To [+ To[is]ra]ssraviJrofo Je J7 Jo Is J« Ja Ja [+ To
[¢&—— MR2 MR1 < MRO —Mm——>

Figure 2.6 Multiplier Result Format

2.3.2.2 Input Formats

To facilitate multiprecision multiplications, the multiplier accepts X and Y
inputs represented in any combination of signed twos-complement format
and unsigned format.

Xinput Y input
signed X signed
unsigned X signed
signed X unsigned
unsigned X unsigned

The input formats are specified as part of the instruction. These are
dynamically selectable each time the multiplier is used.

The (signed x signed) mode is used when multiplying two signed single

precision numbers or the two upper portions of two signed multiprecision
numbers.

2-17

2-18

ts

The (unsigned x signed) and (signed x unsigned) modes are used when
multiplying the upper portion of a signed multiprecision number with the
lower portion of another or when multiplying a signed single precision
number by an unsigned single precision number.

The (unsigned x unsigned) mode is used when multiplying unsigned

single precision numbers or the non-upper portions of two signed
multiprecision numbers.

2.3.2.3 MAC Input/Output Registers
The sources of MAC input and output are:

Source for X input port Source for Y input port Destination for R output

port
MX0, MX1 MYO0, MY1 MR (MR2, MR1, MR0)
AR MF MF
MRO, MR1, MR2
SRO, SR1

2.3.2.4 MR Register Operation

As described, and shown on the block diagram, the MR register is divided
into three sections: MRO (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-39).
Each of these registers can be preloaded from the DMD bus and output to
the R bus or the DMD bus.

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2
is output onto the DMD bus or the R bus, it is sign extended to form a 16-
bit value. MR2 also has an automatic sign extend capability. When MR1 is
preloaded from the DMD bus, every bit in MR2 will be set equal to the
sign bit (MSB) of MR1, so that MR2 appears as an extension of MR1. To
preload the MR2 register with a value other than MR1’s sign extension,
you must load MR2 after MR1 has been loaded.

2.3.2.5 MAC Overflow and Saturation

The adder/subtractor generates an overflow status signal (MV) which is
loaded into the processor arithmetic status (ASTAT) every time a MAC
operation is executed. The MV bit is set when the accumulator result,
interpreted as a twos-complement number, crosses the 32-bit boundary.
That is, MV is set if the accumulator result crosses the MR1/MR2
boundary. Another way of stating this is that the MV bit is set if the upper
nine bits of the result register MR are not all ones or all zeros.

The MR register has a saturation capability which sets MR to plus or
minus the maximum value if an overflow or underflow has occurred. The
saturation operation depends on the overflow status bit (MV) in the
processor arithmetic status (ASTAT) and the MSB of the MR2 register. The
following table summarizes the MR saturation operation.

MV bit MSBof MR2 MR content after saturation

no change
no change
00000000 0111111111111111 1111111111111111 full-scale positive
11111111 1000000000000000 0000000000000000 full-scale negative

—m oo
—o o

Table 2.3 MAC Saturation Content

Saturation in the MAC is an instruction rather than a mode as in the ALU.
The saturation instruction is intended to be used at the completion of a
string of multiply /accumulates so that intermediate overflows do not
cause the accumulator to saturate.

Overflowing beyond the MSB of MR2 should never be allowed. The true
sign bit of the result is then irretrievably lost and saturation may not
produce a correct value. It takes more than 255 overflows (MV type) to
reach this state, however.

2.3.2.6 Rounding Mode

The accumulator has the capability for rounding the 40-bit result R at the
boundary between bit 15 and bit 16. Rounding can be specified as part of
the instruction code. The rounded output is directed to either MR or MF.
When rounding is invoked with MF as the output register, register
contents in MF represent the rounded 16-bit result. Similarly, when MR is
selected as the output, MR1 contains the rounded 16-bit result; the
rounding effect in MR1 affects MR2 as well and MR2 and MR1 represent
the rounded 24-bit result.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a slight positive net bias since the midway
value is always rounded upward. This problem is eliminated by detecting
this midway point and rounding half of the midway values upward and

half of them downward, yielding a zero net bias over a large number of
values. When the midway point is detected, bit 16 in the result output is
forced to zero. This is also known as round to even.

For example, using x to represent any bit pattern (not all zeros), here are
two examples of how this rounding scheme operates.

Example 1 MR2 MR1 MRO

Unroundedvalue: xxxxxxxx xxxxxxxx00100101 1:0ooooocooodoom

Bit15=1
Add 1 to bit 15 and carry 1
Rounded value: xXXRXRXK xxxxxxxx00100110 Oxcocsotoniotink

The first example illustrates the typical rounding operation. The
compensation to avoid net bias becomes visible when the lower 15 bits are
all zero and bit 15 is one, i.e. the midpoint value. This is shown below.

Example 2 MR2 MR1 MRO
Unrounded value: xxx01100110 1000000000000000
Bit 15 =1 and bits 0-14 =0

Add 1 to bit 15 and carry 1

Rounded value: XXXXXXXX ®xxxxxxxx01100111 0000000000000000

Since bit 16 = 1, force it to 0
XXXKXXXKXX xxxxxxxx01100110 0000000000000000

In this last case, bit 16 is forced to zero. This algorithm is employed on
every rounding operation, but is only evident when the bit patterns shown
in the last example are present.

2.4 BARREL SHIFTER

The shifter unit provides a complete set of shifting functions for 16-bit
inputs, yielding a 16-bit or 32-bit output. These include arithmetic shift,
logical shift, normalization, derivation of exponent and derivation of

common exponent for an entire block of numbers. These basic functions
can be combined to efficiently implement any degree of numerical format
control, including full floating point representation.

2.4.1 Shifter Block Diagram Discussion

Figure 2.7 (on the following page) shows a block diagram of the shifter
section. The shifter section can be divided into the following components:
the shifter array, the OR/PASS logic, the exponent detector, and the
exponent compare logic.

The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 32-bit output field, from off-scale right to off-scale
left, in a single cycle. This gives 49 possible placements within the 32-bit
field. The placement of the 16 input bits is determined by a control code
(C) and a HI/LO reference signal.

The shifter array and its associated logic are surrounded by a set of
registers. The shifter input (SI) register provides input to the shifter array
and the exponent detector. The Sl register is 16 bits wide and is readable
and writable from the DMD bus. The shifter array and the exponent
detector can also take any result registers from the R bus as inputs. The
shifter result (SR) register is 32 bits wide and is divided into two 16-bit
sections, SRO and SR1. The SR0 and SR1 registers can be preloaded from
the DMD bus and output to either the DMD bus or the R bus. The SR
register is also fed back to the OR/PASS logic to allow double-precision
shift operations.

The SE register (“shifter exponent”) drives the shifting operation itself. SE
is 8 bits wide and holds the exponent during the normalize and
denormalize operations. The SE register is loadable and readable from the
lower 8 bits of the DMD bus. It is a twos-complement, 8.0 value.

The SB register (“shifter block”) is important in block floating-point
operations where it holds the block exponent shift value, that is, the value
by which the block values must be shifted to conform to the actual
exponent. SB is 5 bits wide and holds the most recent block exponent
value. The SB register is loadable and readable from the lower 5 bits of the
DMD bus. It is a twos-complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are
sign-extended to form a 16-bit value.

2-21

DMD BUS

I — 1 XX

MUX S
REGISTER
sB
REGISTER
MUX
ss
[<
EXPONENT |@—¢
L_| compare DETECTOR v +
Q] X
- P HI/LO R SHIFTER
ARRAY
| 7 »>°
MUX ‘% ¢ 32
+T } OR/PASS
, L
NEGATE /vf/w i / 16;
? MUX MUX
SR1 SRO
F
,NSTR{J%?ION REGISTER REGISTER
y
A6 N6 Mux
R-BUS
16/
7

Figure 2.7 Shifter Block Diagram

2-22

The SI, SE and SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All register reads, therefore, read values loaded at the end of a
previous cycle. A new value written to a register cannot be read out until
a subsequent cycle. This allows an input register to provide an operand to
the Shifter at the beginning of the cycle and be updated with the next
operand from memory at the end of the same cycle. It also allows a result
register to be stored in memory and updated with a new result in the
same cycle. See the discussion of “Multifunction Instructions” in the
chapter “Instruction Set Overview” for an illustration of this same-cycle
read and write.

The shifter section contains a duplicate bank of registers, shown in Figure
2.7 as a “shadow” behind the primary registers. There are actually two
sets of SE, SB, SI, SR1, and SRO registers. Only one bank is accessible at a
time. The additional bank of registers can be activated during an interrupt
service routine for extremely fast context switching. A new task, such as
an interrupt service routine, can be executed without transferring current
states to storage.

The selection of the primary or alternate bank of registers is controlled by
a bit in the processor mode status register (MSTAT). Toggling this bit
switches back and forth between the two register banks.

The shifting of the input is determined by a control code (C) and a HI/LO
reference signal. The control code is an 8-bit signed value which indicates
the direction and number of places the input is to be shifted. Positive
codes indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content of
the shifter exponent (SE) register, the negated content of the SE register or
an immediate value from the instruction.

The HI/LO signal determines the reference point for the shifting. In the
HI state, all shifts are referenced to SR1 (the upper half of the output
field), and in the LO state, all shifts are referenced to SRO (the lower half of
the output field). The HI/LO reference feature is useful when shifting 32-
bit values since it allows both halves of the number to be shifted with the
same control code. HI/LO reference signal is dynamically selectable each
time the shifter is used.

2-23

2

2-24

Computational

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit (X). The
extension bit can be fed by three possible sources depending on the
instruction being performed. The three sources are the MSB of the input,
the AC bit from the arithmetic status register (ASTAT) or a zero. The AC
bit is used when constructing 32-bit results from successive multiword
operations in the ALU.

Table 2.4 gives a listing of shifter array output as a function of the control
code and HI/LO signal.

The OR/PASS logic allows the shifted sections of a multiprecision number
to be combined into a single quantity. When PASS is sclected, the shifter
array output is passed through and loaded into the shifter result (SR)
register unmodified. When OR is selected, the shifter array is bitwise
ORed with the current contents of the SR register before being loaded
there.

The exponent detector derives an exponent for the shifter input value. The
exponent detector operates in one of three ways which determine how the
input value is interpreted. In the HI state, the input is interpreted as a
single precision number or the upper half of a double precision number.
The exponent detector determines the number of leading sign bits and
produces a code which indicates how many places the input must be up-
shifted to eliminate all but one of the sign bits. The code is negative so that
it can become the effective exponent for the mantissa formed by removing
the redundant sign bits.

In the HI-extend state (HIX), the input is interpreted as the result of an add
or subtract performed in the ALU section which may have overflowed.
Therefore the exponent detector takes the arithmetic overflow (AV) status
into consideration. If AV is set, then a +1 exponent is output to indicate an
extra bit (the ALU Carry bit); if AV is not set, then HI-extend functions
exactly like the HI state. When performing a derive exponent function in
HI or HI-extend modes, the exponent detector also outputs a shifter sign
(SS) bit which is loaded into the arithmetic status register (ASTAT). The
sign bit is the same as the MSB of the shifter input except when AV is set;
when AV is set in HI-extend state, the MSB is inverted to restore the sign
bit of the overflowed value.

ABCDEFGHIJKLMNPR represents the 16-bit input pattern
X stands for the extension bit

Control Code Shifter Array Output
HI reference LO Reference

+16 to +127 +32 to +127 00000000 00000000 00000000 00000000
+15 +31 RO0O00000 00000000 00000000 00000000
+14 +30 PRO0O00O0O0 00000000 00000000 00000000
+13 +29 NPROOOOO 00000000 00000000 00000000
+12 +28 MNPROOOO 00000000 00000000 00000000
+11 +27 LMNPROOO 00000000 00000000 00000000
+10 +26 KLMNPROO 00000000 00000000 00000000
+9 +25 JKLMNPRO 00000000 00000000 00000000
+8 +24 IJKLMNPR 00000000 00000000 00000000
+7 +23 HIJKLMNP RO000000 00000000 00000000
+6 +22 GHIJKLMN PRO0O0C000 00000000 00000000
+5 +21 FGHIJKLM NPRO0O000O 00000000 00000000
+4 +20 EFGHIJKL MNPRO0O00O 00000000 00000000
+3 +19 DEFGHIJK LMNPROOO 00000000 00000000
+2 +18 CDEFGHIJ KLMNPROO 00000000 00000000
+1 +17 BCDEFGHI JKLMNPRO 00000000 00000000

0 +16 ABCDEFGH IJKLMNPR 00000000 00000000
-1 +15 XABCDEFG HIJKLMNP RO000000 00000000
-2 +14 XXABCDEF GHIJKLMN PRO00000O 00000000
-3 +13 XXXABCDE FGHIJKLM NPROO0O0OO 00000000
-4 +12 XXXXABCD EFGHIJKL MNPRO0O0OO 00000000
-5 +11 XXXXXABC DEFGHIJK LMNPROOO 00000000
-6 +10 XXXXXXAB CDEFGHIJ KLMNPROO 00000000
=7 +9 XXXXXXXA BCDEFGHI JKLMNPRO 00000000
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000
-9 +7 XXXXXXXX XABCDEFG HIJKLMNP R0O000000
-10 +6 XXXXXKXXX XXABCDEF GHIJKLMN PROO00OO
-11 +5 XXXXXXKXX XXXABCDE FGHIJKLM NPRO0OOOO
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPROOOO
-13 +3 XXXXXXXKX XXXXXABC DEFGHIJK LMNPROOO
-14 +2 XXKXXXXKXX XXXXXXAB CDEFGHIJ KLMNPROO
-15 +1 XXXXKKKKX XKXKXXXXXA BCDEFGHI JKLMNPRO
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
=17 -1 XXXXXXKXX XXKXAXXXX XABCDEFG HIJKLMNP
-18 -2 AAXKXXXKXX KXXXXXXX XXABCDEF GHIJKLMN
-19 -3 AXXXXKXKX XAKXXXXXK XXXABCDE FGHIJKLM
=20 -4 AXXXXXKX XAXXXXXX XXXXABCD EFGHIJKL
=21 -5 XXXXXXKXX XXXXXXXX XXXXXABC DEFGHIJK
=22 -6 AXXXXXXXX XXXXKAXXX XXXXXXAB CDEFGHIJ
=23 =7 XXXXXXXK XAXXXXKK XXXXXXXA BCDEFGHI
—-24 -8 XXXXXKXKXX XXXXKXKXKK XXXXXXXX ABCDEFGH
=25 -9 AXXXXKXKXX XXXXKKKX XXXXXXXX XABCDEFG
-26 -10 XXXXXKXKX KXKXXKXKKXKX XXXXXXXX XXABCDEF
=27 -11 AXXXXXXK XAKXXKKKK XXXXXXXX XXXABCDE
-28 -12 KXKXXKXKK XXXXKKXK XXXXXXXX XXXXABCD
-29 -13 XXXXXKXXK XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXKXKXX XXXXXXXX XXXXXXXX XXXKXXXAB
-31 -15):0:9.0.0.0:0.0.410:0.0:0.0.:0.0:0.815:0.0.0.0.0.9.9.419:9.:9:0.0.0.0.0

-32 o —128 -16 o —128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

Table 2.4 Shifter Array Characteristic

2-25

Computational Units

In the LO state, the input is interpreted as the lower half of a double
precision number. In the LO state, the exponent detector interprets the SS
bit in the arithmetic status register (ASTAT) as the sign bit of the number.
The SE register is loaded with the output of the exponent detector only if
SE contains —15. This occurs only when the upper half-which must be
processed first-contained all sign bits. The exponent detector output is
also offset by ~16 to account for the fact that the input is actually the lower
half of a 32-bit value. Table 2.5 gives the exponent detector characteristics
for all three modes.

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic in
comparator compares the exponent value derived by the exponent
detector with the value stored in the shifter block exponent (S5B) register
and updates the SB register only when the derived exponent value is
larger than the value in SB register. See the examples below.

2.4.2 Shifter Operations

The shifter performs the following functions (instruction mnemonics
shown in parenthesis):

Arithmetic Shift (ASHIFT)
Logical Shift (LSHIFT)
Normalize (NORM)

Derive Exponent (EXP)

Block Exponent Adjust (EXPAD]J)

These basic shifter instructions can be used in a variety of ways,
depending on the underlying arithmetic requirements. The following
sections present single and multiple precision examples for these
functions:

¢ Derivation of a Block Exponent
¢ Immediate Shifts

e Denormalization

e Normalization

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with PASS/OR and HI/LO modes so as to facilitate
multiprecision operations. PASS passes the value through to SR directly.
OR logically ORs the shift result with the current contents of SR. OR is

S = Sign bit
N = Non-sign bit
D = Don't care bit

HI Mode

Shifter Array Input

SNDDDDDD DDDDDDDD
SSNDDDDD DDDDDDDD
SSSNDDDD DDDDDDDD
SSSSNDDD DDDDDDDD
SSSSSNDD DDDDDDDD
SSSSSSND DDDDDDDD
SSSSSSSN DDDDDDDD
SSSSSSSS NDDDDDDD
SSSSSSSS SNDDDDDD
SSSSSSSS SSNDDDDD
SSSSSSSS SSSNDDDD
SSSSSSSS SSSSNDDD
SSSSSSSS SSSSSNDD
SSSSSSSS SSSSSSND
SSSSSSSS SSSSSSSN
SSSSSSSS SSSSSSSS

Qutput

-1
-2
-3
-4
-5
-6
=17
-8
-9
-10
-11
-12
-13
-14
-15

9]
w

nNnnunununnhnunununnhnnnnn

LO Mode
Shifter Array Input

NDDDDDDD DDDDDDDD
SNDDDDDD DDDDDDDD
SSNDDDDD DDDDDDDD
SSSNDDDD DDDDDDDD
SSSSNDDD DDDDDDDD
SSSSSNDD DDDDDDDD
SSSSSSND DDDDDDDD
SSSSSSSN DDDDDDDD
SSSSSSSS NDDDDDDD
SSSSSSSS SNDDDDDD
SSSSSSSS SSNDDDDD
SSSSSSSS SSSNDDDD
SSSSSSSS SSSSNDDD
SSSSSSSS SSSSSNDD
SSSSSSSS SSSSSSND
SSSSSSSS SSSSSSSN
SSSSSSSS SSSSSSSS

Output

-15
-16

-18

>
<

[eolelololalololololololololo el ol

HIX Mode
Shifter Array Input Output
DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD 0
SSNDDDDD DDDDDDDD —1
SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6
SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD —10
SSSSSSSS SSSSNDDD —11
SSSSSSSS SSSSSNDD —12
SSSSSSSS SSSSSSND —13
SSSSSSSS SSSSSSSN —14
SSSSSSSS SSSSSSSS -15
Table 2.5

Exponent Detector Characteristic

2-27

2

2-28

Computational Units

used to join two 16-bit quantities into a 32-bit value in SR. The HI and LO
modifiers reference the shift to the upper or lower half of the 32-bit SR
register. These shift functions take inputs from either the Sl register or any
other result register and load the 32-bit shifted result into the SR register.

2.4.2.1 Shifter Input/Output Registers

The sources of shifter input and output are:

Source for Destination for
Shifter input Shifter output
SI SR (SRO, SR1)
AR

MR0, MR1, MR2

SRO, SR1

2.4.2.2 Derive Block Exponent

This function detects the exponent of the number largest in magnitude in
an array of numbers. The EXPAD] instruction performs this function. The
sequence of steps for a typical example is shown below.

A. Load SB with -16

The SB register is used to contain the exponent for the entire block. The
possible values at the conclusion of a series of EXPAD]J operations range
from -15 to 0. The exponent compare logic updates the SB register if the
new value is greater than the current value. Loading the register with -16
initializes it to a value certain to be less than any actual exponents
detected.

B. Process the first array element:

Array(1)= 11110101 10110001

Exponent= -3

-3>5B (-16)

SB gets -3

C. Process next array element:
Array(2)= 00000001 01110110
Exponent= -6

-6<-3

SBremains -3

D. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been
processed, the SB register contains the exponent of the largest number in
the entire block. No normalization is performed. EXPAD]J is purely an
inspection operation. The value in SB could be transferred to SE and used
to normalize the block to maximum precision on the next pass through
the Shifter. Or it could be simply associated with that data for subsequent
interpretation.

24.2.3 Immediate Shifts

An immediate shift simply shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
Instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation. (See the chapter
“Instruction Set Overview” for an example of this instruction.) The data
value controlling the shift is an 8-bit signed number. The SE register is not
used or changed by an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SR1). This is the (HI) version of the shift.

Input 10110110 10100011
Shift value -5
SR XXXXX101 10110101 00011XXX XXXXXXXX

2-29

2

2-30

Computational

Here is the same input value shifted in the other direction, referenced to
the lower half (LO) of SR.

Input 10110110 10100011
Shift value +5
SR XXXXXXXX XXX10110 11010100 011XXXXX

In addition to the direction of the shifting operation, the shift may be
either arithmetic (ASHIFT) or logical (LSHIFT). For example, the following
shows a logical shift, relative to the upper half of SR (HI).

Input 10110110 10100011
Shift value -5
SR 00000101 10110101 00011000 00000000

This example shows an arithmetic shift of the same input and shift code.

Input 10110110 10100011
Shift value -5
SR 11111101 10110101 00011000 00000000

2.4.2.4 Denormalize

Denormalizing refers to shifting a number according to a predefined
exponent. The operation is effectively a block floating point to fixed point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of some previous operation. Next the shift itself is
performed, taking its shift value from the SE register, not from an
immediate data value.

There are two examples of denormalizing a double-precision number
below. The first shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Since computations
may produce output in either order, the second example shows the same
operation in the other order, i.e. lower half first.

Always select the arithmetic shift for the higher half (HI)of the twos-
complement input (or logical for unsigned-magnitude). Likewise, the first
half processed uses the PASS modifier.

Modifiers = HI, PASS Shift operation = Arithmetic, SE = -3

First Input 10110110 10100011 (upper half of desired result)

SR 11110110 11010100 01100000 00000000

Now the lower half is processed. Always select a logical shift for the lower
half of the input. Likewise, the second half processed must use the OR
modifier to avoid overwriting the previous half of the output value.
Modifiers = LO, OR Shift operation = Logical, SE = -3

SecondInput 01110110 01011101 (lower half of desired result)

SR 11110110 11010100 01101110 11001011

Here is the same input processed in the reverse order. The higher half is
always arithmetically shifted and the lower half is logically shifted. The
first input is PASSed through to SR, but the second half is ORed to create
one double-precision value in SR.

Modifiers = LO, PASS Shift operation = Logical, SE = -3

First Input 01110110 01011101 (ower half of desired result)

SR 00000000 00000000 00001110 11001011

Modifiers = HI, OR Shift operation = Arithmetic, SE = -3
SecondInput 10110110 10100011 (upper half of desired result)

SR 11110110 11010100 01101110 11001011

2-32

Computational Units

24.2.5 Normalize

Normalizing a number is the process of shifting a twos-complement
number within a field so that the rightmost sign bit lines up with the MSB
position of the field and recording how many places the number was
shifted. The operation can be thought of as a fixed to floating point
conversion, generating an exponent and a mantissa.

Normalizing is a two stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction which detects the exponent value and loads in into the SE
register. This instruction (EXP) recognizes a (HI) and (LO) modifier. The
second stage uses the NORM instruction. NORM recognizes (HI) and (LO)
and the PASS and OR modifiers as weil. NORM uses the negated value of
the SE register as its shift control code. The negated value is used so that
the shift is made in the correct direction, producing a mantissa
corresponding to the exponent value in SE.

Here is a normalization example for a single precision input.

Detect Exponent Modifier = HI

Input 11110110 11010100

SEsetto -3

Normalize, with modifier = HI Shift driven by value in SE

Input 11110110 11010100

SR 10110110 10100000 00000000 00000000

For a single precision input, the normalize operation can use either the
(HI) or (LO) modifier, depending on whether you want the result in SR1
or SRO, respectively.

Double precision values follow the same general scheme. The first stage
detects the exponent and the second stage normalizes the two halves of

the input. For double precision, however, there are two operations in each
stage.

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The
second exponent derivation, operating on the lower half of the number
will not alter the SE register unless SE = -15. This happens only when the
first half contained all sign bits. In this case, the second operation will load
a value into SE. (See Table 2.5) This value is used to control both parts of
the normalization that follows.
For the second stage, now that SE contains the correct exponent value, the
order of operations is immaterial. The first half (whether HI or LO) is
normalized with the PASS modifier and the second half with the OR
modifier to create one double precision value in SR. The (HI) and (LO)
modifiers identify which half is being processed.
Here is a complete example of a typical double precision normalization.
1. Detect Exponent, Modifier = HI

First Input 11110110 11010100 (Must be upper half)

SE set to -3
2. Detect Exponent, Modifier = LO

Second Input 01101110 11001011

SE unchanged, still -3
3. Normalize, Modifiers = HI, PASS, SE = -3 (negated)

First Input 11110110 11010100

SR 10110110 10100000 00000000 00000000
4. Normalize , Modifiers = LO, OR, SE = -3 (negated)

Second Input 01101110 11001011

SR 10110110 10100011 01110110 01011000

2-33

2 Computational Units

If the upper half of the input contains all sign bits, the SE register value is
determined by the second derive exponent operation as shown below.

1. Detect Exponent, Modifier = HI
First Input 11111111 11111111 (Must be upper half)
SE set to -15
2. Detect Exponent, Modifier = LO
Second Input 11110110 11010100
SEnowsetto -19
3. Normalize, Modifiers = HI, PASS, SE =-19 (negated)
First Input 11111111 11111111
SR 00000000 00000000 00000000 00000000

All values of SE less than -15 (resulting in a shift of +16 or more) upshift
the input completely off scale.

4. Normalize , Modifiers = LO, OR, SE = —19 (negated)

Second Input 11110110 11010100

SR 10110110 10100000 00000000 00000000
There is one additional normalization situation, requiring the HI-extended
(HIX) state. This is specifically when normalizing ALU results (AR) that
may have overflowed. This operation reads the arithmetic status word
(ASTAT) overflow bit (AV) and the carry bit (AC) in conjunction with the

value in AR. AV will be set (1) if an overflow has occurred. AC will retain
the true sign of the twos-complement value.

2-34

Computational Units

For example, given these conditions:

AR = 11111010 00110010
AV = 1,indicating overflow
AC = 0, the true sign bit of this value

1. Detect Exponent, Modifier = HIX
SE getssetto +1

2. Normalize, Modifier = HI, SE = 1
AR=11111010 00110010
SR= 01111101 00011001

The AC bit is supplied as the sign bit, shown in bold above.

2-35

2

2-36

Computational Units

The HIX operation executes properly regardless of whether there has
actually been an overflow. Consider this example.

AR = 11100011 01011011

AV

I

0, indicating no overflow
AC = 0, not meaningful if AV=0
1. Detect Exponent, Modifier = HIX
SEsetto -2
2. Normalize, Modifier = HI, SE = -2
AR = 11100011 01011011
SR = 10001101 0110100000000000 00000000

The AC bit is not used as the sign bit. A brief examination of Table 2.4
shows that the HIX mode is identical to the HI mode when AV is not set.

Data Moves

3.1 INTRODUCTION

This chapter describes sections of the ADSP-2100 that control the
movement of data to and from the processor. These are the Data Address
Generators (DAGs) and the unit for exchanging data between the
Program Memory Data bus and the Data Memory Data Bus, the PMD-
DMD Bus Exchange Unit.

3.2 DATA ADDRESS GENERATORS (DAGS)

The ADSP-2100 contains two independent data address generators so that
both program and data memories can be accessed simultaneously. The
DAGs provide indirect addressing capabilities. Both perform automatic
address modification. For circular buffers, the DAGs can perform modulo
address modification. The two DAGs differ: DAG1 only generates data
memory addresses, but provides an optional bit-reversal capability,
DAG2 can generate both data memory and program memory addresses,
but has no bit-reversal capability.

While the following discussion explains the internal workings of the
DAGs bear in mind that the ADSP-2100 instruction set and Cross-
Software System provide a direct method for declaring buffers as circular
or linear and managing the placement of the buffer in memory. Only the
initializing of DAG registers needs to be explicitly programmed. See the
discussion of data structures in Chapter 6, “Instruction Set Overview.”

3.2.1 DAG Block Diagram Discussion

Figure 3.1 (on the following page) shows a block diagram of a single data
address generator. There are three register files: the modify (M) register
tile, the indirect (I) register file, and the length (L) register tile. Each of the
register files contains four 14-bit registers which can be read from and
written to via the DMD bus.

The I registers (I0-3 in DAG1, 14-7 in DAG2) contain the actual addresses
used to access memory. When data is accessed in indirect mode, the
address stored in the selected I register is driven out onto the appropriate
address bus and becomes the memory address. With DAG1, the output

DMD BUS
FROM
INSTRUCTION MUX
2 14 14 "l 14
“t A / A FROM
INSTRUCTION
1 A A 2
L l . | "
REGISTERS MODULUS REGISTERS REGISTERS [*
ax14 LOGIC Pl GISTE
T 7
?
"y ADD
A
BIT
REVERSE DAG1 ONLY
ADDRESS

Figure 3.1 Data Address Generator Block Diagram

address can be bit-reversed before being driven onto the address bus by
setting the appropriate mode bit in the mode status register (MSTAT) as
discussed below. Bit-reversal facilitates radix-2 FFT addressing.

The data address generator employs a post-modify scheme; after an
indirect data access, the specified M register (M0-3 in DAG1, M4-7 in
DAG2) is automatically added to the specified I register, modifying it. The
choice of the I and M registers are independent within each DAG. In other
words, any register in the I0-3 set may be modified by any register in the
MO-3 set in any combination, but not by those in DAG2 (M4-7). The
modification values stored in M registers are signed numbers so that the
next address can be either higher or lower.

The address generators support both linear addressing and circular
addressing. The value of the L register determines which addressing
scheme is used. L registers and I registers are paired and the selection of
the L register (L0O-3 in DAG1, L4-7 in DAG?2) is determined by the I
register used. Each time an I register is selected, the corresponding L
register provides the modulus logic with the length information to wrap
the address around if necessary. For linear buffer addressing, the modulus
logic is disabled by setting the corresponding L register to zero. In this
case, the modified I register value is simply the sum of the M register
content and the I register content.

For circular buffer addressing, the L register is initialized with the length
of the buffer. If the sum of the M register content and the I register content
would cross the buffer boundary, the modified I register value is
calculated by the modulus logic using the L register value (see “Modulo
Addressing” below).

All data address generator registers (I, M, and L registers) are loadable
and readable from the lower 14 bits of the DMD bus. Since I and L register
contents are considered to be unsigned, the upper 2 bits of the DMD bus
are padded with zeros when reading them. M register contents are signed;
when reading an M register, the upper 2 bits of the DMD bus are sign-
extended.

3.2.2 Modulo Addressing

The modulus logic implements automatic pointer wraparound for
accessing circular buffers. To calculate the next address, the modulus logic
uses the following information.

The current location; found in the I register (unsigned)

The modify value; found in the M register (signed)

The buffer length; found in the L register (unsigned)

The buffer base address (implicitly defined by I and L registers)

To avoid having another set of “base address” registers, the processor
imposes the following restriction on the placement of circular buffers.

o If the buffer length requires N bits to represent in binary, then the lower N
bits of the buffer base address must be zero.

With the above rule the base address can be obtained by masking out the
lower N bits of the I register content in binary. Note that the ADSP-2100
Linker automatically places circular buffers at a proper address.

Data Moves

There is one additional restriction imposed by the modulus logic.
® The modify value must be less than or equal to the buffer length.

Therefore, in one operation, the modified address cannot wrap around the
buffer more than once.

The modified address is calculated with the formula below.

Modified address = (I + M - B) Modulo (L) + B

Where:

I = currentaddress

M = modify value (signed)
B = base address

L = bufferlength

M < L

For illustration, consider the following examples of base address
calculation.

3.2.2.1. Circular Buffer Base Address Example 1
You want a circular buffer of length 8, which requires four bits to
represent in binary. Valid base addresses, therefore, are multiples of 16,

requiring the lower four bits of the base address to be zero: H#0000,
H#0010, H#0020, H#0030 and so on (hexadecimal notation).

3.2.2.2. Circular Buffer Base Address Example 2

You want a circular buffer of length 7, which requires three bits to
represent in binary. Valid base addresses, therefore, are multiples of 8,
requiring the lower three bits of the base address to be zero: H#0000,
H#0008, H#0010, H#0018, H#0020 and so on (hexadecimal notation).

Here are two examples of circular buffer addressing operation.

3.2.2.3. Circular Buffer Operation Example 1

Suppose that I0 =5, M0 = 1 and LO = 3. A length of three takes two bits to
represent. By zeroing the lower two bits of the 10 register the processor
determines that the base address is at 4. The next address is calculated by
adding MO to I0, resulting in an address of 6. Successive data memory

loves

addresses using 10 for indirect addressing produce the sequence: 6,4, 5, 6,
4,5.... For M0 = -1 (H#3FFF), I0 would produce the sequence: 4, 6, 5,4, 6
5,4....

7

3.2.2.4. Circular Buffer Operation Example 2

Assume that I0 =9, M0 = -2 and L0 = 5. This example highlights the fact
that the address sequence does not have to result in a “direct” hit of the
buffer boundary. The 5 word buffer resides at locations 8 through 12
inclusive. The successive data memory addresses using 10 for indirect
addressing cycle through the sequence: 9,12, 10, 8, 11, 9....

3.2.3 Bit-Reverse Addressing

The bit-reverse logic is primarily intended for use in FFT computations
where inputs are supplied or the outputs generated in bit-reversed order.
Bit-reversing is available only on addresses generated by DAGL1. The
pivot point for the reversal is the midpoint of the 14-bit address, between
bits 6 and 7. This is illustrated in the following chart.

Individual DMA lines (DMAN)
Normal Order 13 12 11 10 09 08 07{06 05 04 03 02 01 00

Bit-reversed 00 01 02 03 04 05 06|07 08 09 10 11 12 13

Bit-reversed addressing is a mode, enabled and disabled by setting a
mode bit in the mode status register (MSTAT). When enabled, all
addresses generated using indirect registers I0-3 are bit-reversed upon
output. (The modified valued stored back after post-update remains in
normal order.) This mode continues until the status bit is reset.

It is possible to bit-reverse address values less than 14 bits. You must
determine the first address and also initialize the M register to be used

with a value calculated to modify the I register bit-reversed output to the
desired range. This value is:

2(14[~N)

Where N is the number of bits you wish to output reversed. For complete
information get the application note Variable Width Bit-Reversing on the

Data Moves

ADSP-1410 Address Generator; it has a general discussion of this procedure.
The ADSP-2100 Applications Handbook, Volume 1 also has a complete
example of this in the chapter on Fast Fourier Transforms.

3.3 PMD-DMD BUS EXCHANGE

This unit couples the program memory data bus and the data memory
data bus, allowing them to transfer data in both directions. Since the
program memory data (PMD) bus is 24 bits wide, while the data memory
data (DMD) bus is 16 bits wide, only the upper 16 bits of PMD can be
directly transferred. An internal register (PX) is always loaded with (or
supplies) the additional 8 bits. This register can be directly loaded or read
when the full 24 bits are required.

Note that when reading data from program memory and data memory
simultaneously, there is a dedicated path from the upper 16 bits of the
PMD bus to the Y registers of the computational units. This read-only path
does not use the bus exchange circuit; it is the path shown on the
individual computational unit block diagrams.

3.3.1 PMD-DMD Block Diagram Discussion

Figure 3.2 shows a block diagram of this circuit. There are two types of
connections provided in this section.

The first type of connection is a one-way path from each bus to the other.
This is implemented with two tristate buffers connecting the DMD bus
with the upper 16 bits of the PMD bus. One of these two buffers is
normally used when data is exchanged between the program memory and
one of the registers connected to the DMD bus. This is the path used to
write data to program memory; it is not shown in the individual
computational unit block diagrams.

The second connection is through the PX register. The PX register is 8-bits
wide and can be loaded from either the lower 8 bits of the DMD bus or the
lower 8 bits of the PMD bus. Its contents can also be read to the lower 8

bits of either bus.

PX register access follows the principles described below.
From the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read from
program memory to any register.

Data Moves

2. Read out automatically as the lower 8 bits when data is written to
program memory.

From the DMD bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are used
and the upper 8 are discarded.

2. Read with a data move instruction, explicitly specifying the PX register
as a source. The upper 8 bits of the value read from the register are all
zeroes.

Whenever any register is written out to program memory, the source
register supplies the upper 16 bits. The contents of the PX register are
automatically added as the lower 8 bits. If these lower 8 bits of data to be
transferred to program memory (through the PMD bus) are important, the
PX register should be loaded from DMD bus before the program memory
write operation.

PMD BUS

24

8 (LOWER) 16 (UPPER) 16 (UPPER)

: \4

xc=
Im-—H0-o0om>x

/8 (LOWER)

16

DMD BUS

Figure 3.2 PMD-DMD Bus Exchange

Program Control

41 INTRODUCTION

This chapter describes the sections of the ADSP-2100 that control and
influence the flow of your program’s execution: the program sequencer,
its associated status and interrupt logic and the cache memory.

4.2 PROGRAM SEQUENCER & STATUS

The program sequencer generates a stream of instruction addresses,
providing flexible control of program flow. It provides for zero-overhead
looping, single-cycle branching (both conditional and unconditional) and
sophisticated interrupt processing. Figure 4.1, on the following page,
shows a block diagram for the program sequencer and status sections of
the ADSP-2100. The sections immediately below discuss individual blocks
within the sequencer. The section “Sequencer Operations Illustrated”
shows how the individual blocks work together to implement program
flow control.

It is useful to be aware that the ADSP-2100 instruction set includes the
following instructions:

JUMP

CALL

RETURN FROM SUBROUTINE (RTS)
RETURN FROM INTERRUPT (RTI)
DO UNTIL

4.2.1 Next Address Select Logic

The sequencing logic controls the flow of ADSP-2100 program execution
by outputting a program memory address onto the PMA bus from one of
the following four possible sources.

PCincrementer

PC stack
Instructionregister
Interrupt controller

4 Program Control

DMD BUS 16,
7
COUNT STACK CONDITION CODE (4 bits)
ADDRESS of JUMP (14 bits)
FUNCTION FIELD
COUNTER ADDRESS of
LAST INSTRUCTION
LoGIC in LOOP (14 bits)
&
TERMINATION
DOWN CONDITION (4 bits)
COUNTER |
CE out
From INSTRUCTION REGISTER
18,
. |
4 LOOP STACK
4x18
STATUS
STACK 4, T
4X16 7
A
STATUS /
> 2
LOGIC CONDITION - LOOP
0GIC — COMPARATOR
STATUS
ARITHMETIC REGISTERS
M4
4 (mask)
[
4
INTERRUPT I
\RQ0-3 CONTROLLER —I—
PC STACK
Con 1s COUNTER
A
INCREMENT I Mux I
A
* 1 1 NEXT
ADDRESS
NEXT ADDRESS MUX j«— SOURCE
SELECT
. 14
Figure 4.1 PMA BUS 2

Program Sequencer Block Diagram

4-2

Program Control

The next address source selector in the diagram controls which of these
four sources are output from the next address multiplexer, based on
outputs from the instruction register, condition logic, loop comparator,
and interrupt controller. A fifth possibility for the next program memory
address, although not part of the program sequencer, is DAG2 when a
register indirect jump is executed.

The PC incrementer is selected as the source of the next program memory
address if program flow is sequential. This is also the case when a
conditional jump, return, or trap is not taken, and when a DO UNTIL loop
terminates (see below for a description of the DO UNTIL construct and
associated looping hardware).

The PC stack is used as the source for the next program memory address
when a return from subroutine or return from interrupt is executed. The
top stack value is also used as the next program memory address when
returning to the top of a DO UNTIL loop.

The instruction register is selected by the next address multiplexer when a
direct jump is taken. The jump address field of the instruction word itself
specifies the jump address.

The interrupt controller provides the next program memory address
when processing an external interrupt request. Upon recognizing an
interrupt, the processor jumps to the interrupt vector location (at program
memory address 0000-0003) corresponding to the active interrupt request
line IRQO-IRQ3. Control is then transferred to the interrupt service routine
by means of a jump instruction.

DAG2 sources the next program memory address when executing a
register indirect jump. In this case, since DAG2 is not an input to the next
address multiplexer, the program counter must be loaded from the PMA
bus. Note that DAG2 can also address data values in program memory
via the PMA bus.

4.2.2 Program Counter and Stack

The program counter (PC) is a 14-bit register which always contains the
address of the currently executing instruction. The output of the PC is fed
into a 14-bit incrementer which adds 1 to the current PC value. The output
of the incrementer can be selected by the next address multiplexer to fetch
the next contiguous instruction. Associated with the PC is a 14-bit by 16-
word PC stack that is pushed with the output of the incrementer when a
CALL instruction is executed. The PC stack is also pushed when an

Program Control

interrupt is processed. For interrupts, however, the incrementer is
disabled so that the current PC value (instead of PC+1) is pushed. This
allows the current instruction, which is aborted, to be refetched upon
returning from the interrupt service routine. The pushing and popping of
the PC stack occurs automatically in all of these cases. The stack can also
be manually popped.

The output of the next address multiplexer is fed back to the PC, which
normally reloads it at the end of each processor cycle. In the case of a
register indirect jump, however, DAG2 drives the PMA bus with the next
instruction address, and the PC is loaded from the PMA bus directly.
4.2.3 Down Counier and Siack

The down counter and associated count stack provide the program
sequencer with a very powerful looping mechanism. The down counter is
a 14-bit register with automatic post-decrement capability that is intended
for controlling the flow of program loops which execute a predetermined
number of times. Count values are 14-bit unsigned-magnitude values.

Before entering the loop, the counter is loaded from the lower 14 bits of
the DMD bus with the desired loop count by assigning to the system
variable, CNTR. The actual loop count N is loaded, as opposed to N-1
which is generally required by other microprocessors to execute a loop N
times. This is due to the operation of the counter expired (CE) status logic,
which tests CE (and automatically post-decrements the counter) at the end
of a DO UNTIL loop that uses CE as its termination condition. CE is tested
at the beginning and the counter is decremented at the end of a processor
cycle, therefore CE is asserted when the counter goes to 0001 so that the
loop executes N times.

The counter may also be tested and decremented by a conditional jump
instruction that tests CE.

The counter is not decremented when CE is checked as part of a
conditional return, conditional trap, or conditional arithmetic instruction.
The counter may be read directly over the DMD bus at any time without
affecting its contents. When reading the counter, the upper two bits of the
DMD bus will be padded with zeroes.

The count stack is a 14-bit by 4-word stack which allows the nesting of
loops by storing temporarily dormant loop counts. When a new value is
loaded into the counter from the DMD bus, the current counter value is
automatically pushed onto the count stack as program flow enters the

inner loop. The count stack is automatically popped whenever the CE
status is tested and is true, thereby resuming execution of the outer loop
(if any). The count stack may also be popped manually if an early exit
from a loop is taken.

There is an exception to the automatic pushing of the count stack. A
counter load from the DMD bus does not cause a count stack push if there
is no valid value in the counter, because a stack location would be wasted
on the invalid counter value. There is no valid value in the counter after a
system reset and also after the CE condition is tested when the count stack
is empty. The “count stack empty” status bit in the SSTAT register is set
whenever the number of pop operations is greater than or equal to the
number of push operations (four maximum) since the last reset (ignoring
overflows).

4.2.4 Loop Comparator and Stack

The DO UNTIL instruction executes a zero-overhead loop using the loop
comparator and loop stack.

The loop comparator continuously compares the address of the last
instruction in the loop (coded in the DO UNTIL instruction) against the
next address. The address of the first instruction in the loop is maintained
on top of the PC stack. When the last instruction in the loop is executed
the processor conditionally jumps to the beginning of the loop,
eliminating the branching overhead otherwise incurred in loop execution.

The loop stack stores the end addresses and termination conditions of
temporarily dormant loops. Up to four levels can be stored. The only
“extra” cycle associated with the nesting of DO UNTIL loops is the
execution of the DO UNTIL instruction itself, since the pushing and
popping of all stacks associated with the looping hardware is automatic.
When using the counter expired (CE) status as the termination condition
for the loop, another cycle is required for the initial loading of the counter.
Table 4.1, on the next page, shows the termination conditions that can be
used with DO UNTIL.

Program Control

Status Condition

Equal Zero

Not Equal Zero

Less Than Zero

Greater Than or Equal Zero
Less Than or Equal Zero
Greater Than Zero

ALU Carry

Not ALU Carry

ALU Overflow

Not ALU Overflow
MAC Overflow

Not MAC Overflow
XInput Sign Negative
XInput Sign Positive
Counter Expired

FOREVER Always

Table 4.1 DO UNTIL Condition Logic

Truelf:
AZ=1
AZ=0

AN XOR. AV =1

AN .XOR. AV =0

(AN XOR. AV) OR. AZ=1
(AN XOR. AV) .OR. AZ=0
AC=1

AC=0

AV =1

AV=0

MV=1

MV =0

AS=1

AS=0

CE =0 (at loop end)
Always True

These are the inverse of the conditions tested in an IF condition construct.
That is, the termination condition for DO UNTIL NE produces the same
opcode condition field (0000) as IF EQ JUMP. This difference is

transparent at the source code level. The IF conditions are given in Table
4.3 which is located on page 4-25.

When a DO UNTIL instruction is executed, the 14-bit address of the last
instruction and a 4-bit termination condition (both contained in the DO
UNTIL instruction) are pushed onto the 18-bit by 4-word loop stack.
Simultaneously, the PC incrementer output is pushed onto the PC stack.
Since the DO UNTIL instruction is located just before the first instruction
of the loop, the PC stack will contain the first loop instruction address, and
the loop stack will contain the last loop instruction address and
termination condition. The non-empty state of the loop stack activates the
loop comparator which compares the address on top of the loop stack with
the next address being fetched. When these two addresses are equal, the
loop comparator notifies the next address source selector that the last
instruction in the loop will be executed on the next cycle.

Program Control 4

There are two possible cases depending on the type of instruction at the
end of the loop. Case 1 illustrates the most typical situation. Case 2 is also
allowed but involves greater program complexity for proper execution.

Case 1

If the last instruction in the loop is not a jump, call, or return, then
the next address source selector will choose the next address based
on the termination condition contained on top of the loop stack. If
the condition is false, the top PC stack value is selected causing a
jump back to the beginning of the loop. If the termination condition
is true, the PC incrementer is chosen, causing execution to fall out
of the loop. The loop stack, PC stack, and counter stack, (if it is
being used) are then popped.

Note that conditional arithmetic instructions will be executed based
on the condition explicitly stated in the instruction, with the loop
sequencing controlled by the (implicit) termination condition
contained on top of the stack.

Case 2

If the last instruction in the loop is a jump, call, or return, the
explicitly stated instruction takes precedence over the implicit
sequencing of the loop. If the condition in the instruction is false,
normal loop sequencing takes place as described for Case 1.

If the condition in the instruction is true, however, program control
transfers to the jump/call/return address. Any actions that would
normally occur upon an end-of-loop detection will not take place:
jumping to the beginning of the loop, falling out of the loop and
popping the loop, PC, and counter stacks, or decrementing the
counter.

Note that for a return, control is passed back to the top of the loop
since the PC stack contains the beginning address of the loop.

Caution is required when ending a loop with a jump, call, or
return, or when making a premature exit from a loop. Since none of
the loop sequencing mechanisms are active while the jump/call/
return is being performed, the loop, PC, and counter stacks will
generally be left with the looping information (since they are not
popped). In this situation, a manual pop of each of the relevant
stacks is required to restore the original state of the processor.

Program Control

Subroutine calls only pose this problem when the call is the last
instruction in the loop, since a return causes program flow to
transfer to the instruction just after the loop. Calls within a loop that
are not the last instruction present no problem.

The only restriction concerning DO UNTIL loops is that nested loops
cannot terminate on the same instruction. Since the loop comparator can
only check for one loop termination at a time, falling out of an inner loop
by incrementing the PC would go beyond the end address of the outer
loop if they terminated on the same instruction.

4.2.5 Interrupt Controller

The interrupt controller of the ADSP-2100 allows the processor io respond
to one of four external interrupts within two cycles. Because of the efficient
stack and program sequencer, there is no additional latency when
processing unmasked interrupts, even when interrupting DO UNTIL
loops. Nesting of interrupts allows higher-priority interrupts to interrupt
any lower-priority interrupt service routines that may currently be
executing, also with no additional latency. Single-cycle context switching
is provided by the secondary register set, and maximum flexibility is also
afforded via the different modes associated with the interrupt control
logic. Consult the Chapter 5, “System Interface,” for more about the
interruptresponse.

The secondary data register set, selected by the MODE CONTROL
instruction allows the contents of the primary data register set (AX0, AX1,
AY0, AY1, AF, AR, MX0, MX1, MY0, MY1, MF, MR2, MR1, MRO, S, SE,
SB,SR1, and SRO) to be saved while a “fresh” set of registers may be
switched in for use by the interrupt service routine. The processor cannot
predict the requirements of each interrupt service routine. Consequently,
you must explicitly program a context switch between the primary and
secondary register banks if required.

4.2.5.1 Configuring Interrupts

There are two configuration parameters for interrupts: edge or level
sensitivity and masked or unmasked operation.

The four external interrupt inputs can be individually configured as either
edge- or level-sensitive. If an interrupt input is edge-sensitive, the
interrupt is recognized when two successive samples of the input reveal a
high-to-low transition (note that this is not, strictly speaking, a response to
the transition edge). All four interrupt inputs are sampled once each
processor cycle. Detection of this transition sets an internal latch

corresponding to the active interrupt request. The latch remains set until
the request is serviced, then is automatically cleared. Thus an edge-
sensitive interrupt signal need only be active for one processor cycle, or
can remain active indefinitely. Edge-sensitive inputs generally require less
external hardware than level-sensitive inputs, and allow “oddball” signals
such as sampling rate clocks to be used for interrupt sources.

Alevel-sensitive interrupt must remain asserted until the interrupt is
serviced. The interrupting device must then remove the interrupt request
so that this interrupt is not serviced again. Level-sensitive inputs allow
many interrupt sources to use the same interrupt level by ORing them
together into a single IRQ pin.

You may also select whether nesting of interrupt service routines is
allowed. All interrupt request levels may be automatically masked when
an interrupt service routine is entered. Or, if desired, only equal and lower
priority interrupts will be masked.

The interrupt control register ICNTL) is set to indicate these choices. The
automatic masking of interrupts described above occurs within the
interrupt mask (IMASK) register. Both are described later in this chapter.

4.2.5.2 |Interrupt Handling

The individual interrupt request signals are logically ANDed with the
four IMASK bits and then fed to a priority encoder which selects the
highest priority unmasked active request. The priorities are permanently
assigned, with IRQ3 being the highest and IRQO being the lowest. An
active output from the priority encoder causes a jump to the interrupt
location, program memory address 0000 through 0003 corresponding to
the interrupt level serviced.

Interrupt Interrupt Location

IRQO 0000 Lowest priority
IRQ1 0001

IRQ2 0002

IRQ3 0003 Highest priority

Jump instructions to the corresponding interrupt service routines are
typically stored at the interrupt location addresses, although any
instruction (such as return from interrupt) may be stored there. Note that
the 14-bit vector address to the interrupt service routine will be contained
within the jump instruction.

4

4-10

Program Control

Vectoring to an interrupt service routine in this manner incurs a two cycle
overhead. The first overhead cycle occurs because execution of the
instruction fetched during the previous cycle is aborted. (No data registers
are updated by the aborted instruction.) This instruction is aborted
because the PC and status stacks are pushed simultaneously with the
jump to the interrupt location, and any instruction that used these (such as
a CALL) would cause a conflict. For the same reason, the PC incrementer
is disabled so that the current PC value is pushed onto the stack, causing
the aborted instruction to be re-fetched upon returning from the interrupt
serviceroutine.

The second overhead cycle is incurred for the jump instruction (at the
interrupt location) that is executed to enter the interrupt service routine.

Interrupt vectoring pushes the status stack with the current arithmetic
status, mode status, and interrupt mask register contents: ASTAT, MSTAT
and IMASK. (The contents of the status stack may be examined with the
ADSP-2100 Simulator; ASTAT, MSTAT and IMASK are stored in this
order, with the MSB of ASTAT first, and so on.) When the interrupt mask
register is pushed, it is automatically loaded with a new value that reflects
the status of the interrupt nesting mode bit. There is no additional
overhead penalty for these operations.

After the interrupt service routine has been completed, the RTI (return
from interrupt) instruction returns control to the main routine by popping
the top PC stack value into the PC, while at the same time popping the
status stack to restore the original machine status.

4.2.6 Sequencer Operations lllustrated

In this section, each of the major sequencer operations is illustrated and
briefly described. The accompanying figures show only the parts of the
program sequencer that are used in the operation described.

4.2.6.1 Linear Flow

In Figure 4.2, the typical linear flow of the program sequencer is
illustrated. The instruction, identified by the instruction function field,
does not branch; sequential execution is correct. The program memory
address in the program counter is incremented and put on the PMA bus.
This incremented address is loaded back into the program counter, as
shown by the gray arrow, to begin the next cycle. This example is not
conditional.

Program Control 4

CONDITION CODE (4 bits)
ADDRESS of JUMP (14 bits)

FUNCTION FIELD

ADDRESS of

LAST INSTRUCTION
in LOOP (14 bits)

&

TERMINATION
CONDITION (4 bits)

From INSTRUCTION REGISTER

PROGRAM
COUNTER

INCREMENT

| 11 vy

l l NEXT
ADDRESS
NEXT ADDRESS MUX '4¢—| SOURCE
SELECT

PMA BUS

Figure 4.2 Linear Flow

4 -11

4 Program Control

4.2.6.2 JUMP Sequence

The JUMP sequence is shown in Figure 4.3. The JUMP instruction function
field indicates the action to be taken. The 14-bit JUMP address is contained
directly in the instruction word and is loaded directly into the next
address mux. The address is put on the PMA bus and fed back to the
program counter, as shown by the gray arrow, for the next cycle. This
example is not conditional.

CONDITION CODE (4 bits)
ADDRESS of JUMP (14 bits)

FUNCTION FIELD

ADDRESS of
LAST INSTRUCTION
in LOOP (14 bits)

&

TERMINATION
CONDITION (4 bits)

From INSTRUCTION REGISTER

14 vy

* ‘ ‘ NEXT
ADDRESS
NEXT ADDRESS MUX — SOURCE
SELECT

PMA BUS

\K:

Figure 4.3 JUMP Sequence

4-12

Program Contro

4.2.6.3 CALL Sequence

The CALL sequence, shown in Figure 4.4, is very similar to the JUMP
sequence. The address comes directly from the instruction and the
address put on the PMA bus is fed back to program counter to begin the
next cycle. In addition, however, the current value of the program counter
is incremented and then pushed on the PC stack. Upon return from the
subroutine, the PC stack is popped into the program counter and
execution resumes with what would have been the next instruction if the
CALL had not occurred. This example is not conditional.

CONDITION CODE (4 bits)
ADDRESS of JUMP (14 bits)

FUNCTION FIELD

ADDRESS of

LAST INSTRUCTION
in LOOP (14 bits)

&

TERMINATION
CONDITION (4 bits)

From INSTRUCTION REGISTER

'

PROGRAM
COUNTER

INCREMENT

PC STACK
16X 14

PUSH

BRE

NEXT
ADDRESS

!

NEXT ADDRESS MUX [€—] SOURCE
SELECT

PMA BUS 14
L

Figure 4.4 CALL Sequence

4-13

4 Program Control

4.2.6.4

Interrupt Sequence

The interrupt sequence, shown in Figure 4.5, aborts the current instruction
fetch. The interrupt is sensed by the interrupt controller and compared
with the interrupt mask, IMASK. If enabled, the interrupt sequence pushes
the current status registers (ASTAT, MSTAT and IMASK) onto the status

ARITHMETIC
STATUS

IRQO0-3

STATUS
STACK
4X16

STATUS
REGISTERS

PUSH

INTERRUPT
CONTROLLER

PUSH

Figure 4.5 Interrupt

4-14

PC STACK
16X 14

PROGRAM
COUNTER

l

!

NEXT ADDRESS MUX

NEXT
ADDRESS
SOURCE
SELECT

PMA BUS

Sequence

Program Control

stack. The current program counter is pushed onto the PC stack without
being incremented. This means that a return from the interrupt will
resume with the instruction that would have been executed when the
interrupt occurred, not the following one.

The interrupt controller controls the next address source selection and
drives the correct one of the four possible interrupt vector addresses via
the next address mux onto the PMA bus. The interrupt vector address is
loaded into the program counter for the next cycle, but since the next
instruction is virtually certain to be a JUMP, this action is not shown in the
figure.

Upon return from the interrupt routine, the PC and status stacks are
popped and execution resumes with the instruction whose fetch was
aborted by the original interrupt.

DMD BUS 8
7
COUNT STACK
4X14
PUSH
COUNTER
LOGIC
DOWN
COUNTER
CE o
\
STATUS
LOGIC CONDITION

Y

0GIC

Figure 4.6A DO UNTIL: Load Counter

4 Program Control

4.2,6.5 DO UNTIL Loop

The stages in a DO UNTIL loop are shown in Figures 4.6A through 4.6E.
The sequence shown does not cover every possible case, but serves as a
guide for understanding how this instruction is implemented in the
ADSP-2100 program sequencer.

The example shown illustrates a DO UNTIL CE (“counter expired”)
version of the loop. In this case, only the counter logicis involved. If a
different termination condition was used, the status logic would be used
instead (see Tables 4.1 and 4.3). The balance of the DO UNTIL instruction,
however, is unchanged.

ADDRESS of
In Figure 4.6A (on page 4-15), the instruction aon o N
loading the counter is shown. This assignment
statement, which is executed
prior to entering the loop, moves
the counter value over the DMD From INSTRUCTION REGISTER
bus into the counter logic section
of the program sequencer. The
previous count (if any) would be
pushed onto the count stack, as shown LOOP STACK
in Figure 4.6A. This push operation is x| PUSH
omitted if the counter is empty.

&
TERMINATION
ITION (4 bits)

|

PROGRAM
COUNTER

PC STACK
PUSH 16 X 14

INCREMENT

| ARE.

NEXT

ADDRESS
NEXT ADDRESS MUX j¢—| SOURCE

SELECT
i PMA BUS "
7

Figure 4.6B DO UNTIL: Execute “DO UNTIL”

4-16

Program Control

In Figure 4.6B on the facing page, the DO UNTIL instruction itself is
shown. The effect of the DO UNTIL instruction itself is only to set up the
conditions for looping; no other computation occurs while this instruction
is executed. This occurs only once, at the beginning of the loop.

Executing DO UNTIL pushes the output of the ADDRESS of
incremented program counter, that is, the in LOOP (14 bitg)
address of the instruction immediately following & AMINATION

the DO UNTIL itself, onto the PC stack. CONDITION (4 bits)
This is the first instruction o INSTRUCTION REGISTER'

inside the loop. On the same -

cycle, the loop stack is also

pushed with the address of the end of the loop

and the termination condition.

LOOP STACK
4X18

Within the loop, execution follows the normal
linear sequence, as in Figure 4.2 above, except
that the loop comparator checks the current
address against the address of the last instruction
loaded in the loop stack. As long as that address
has not yet been reached, linear flow continues.
This operation is represented in Figure 4.6C.

LOOP
——{ COMPARATOR

!

PC STACK Pt

e

ADDRESS
NEXT ADDRESS MUX '¢—| SOURCE
SELECT

PMA BUS

Figure 4.6C DO UNTIL: Flow Inside Loop

4 -17

4 Program Control

When the end of the loop is reached, the operations represented in Figure
4.6D. The loop comparator now finds that the current address equals the
last address in the loop. This output changes the next address source select

logic. Instead of using the ADDRESS of

incremented program counter, the LAST INSTRUCTION
termination condition is now ' LOOP {14 bite)
evaluated. Assuming that this is ' Z%?.’S:#.‘é’.l‘(’? bits)
only one of N passes through the |

loop, the termination condition is From INSTRUCTION REGISTER

false and execution continues with

the top of the loop. This selects the 18

top of the PC stack as the source of
the next address, effectively jumping
back to the beginning of the loop.
Note that the PC and Loop stacks are
not popped, only read.

The condition logic, as mentioned

before, may be driven by either the COMPARATOR
counter logic section or the status [
logic, depending on the termination

condition specified.
PROGRAM
PC STACK
16 X 14 COUNTER

\

INCREMENT

| iy

NEXT
ADDRESS
NEXT ADDRESS MUX [&—| SOURCE
SELECT

PMA BUS

Figure 4.6D DO UNTIL: End of One Iteration

4-18

The termination of the loop on the final pass is shown in Figure 4.6E. As
in the previous figure, the loop comparator signals the end of a pass
through the loop, i.e. the current address and the address of the last
instruction in the loop are the same. This time through, however, the
termination condition is true. This means that the PC stack is popped and
the next address comes from the incremented program counter, in other
words, the instruction immediately following the last instruction in the
loop. This carries the flow of execution out of the loop.

The loop stack and the count stack are also popped on this cycle.

COUNTER
LOGIC

DOWN
COUNTER

POP

ADDRESS of
LAST INSTRUCTION
in LOOP (14 bits)

&
TERMINATION
CONDITION (4 bits)

'COUNT STACK I

4x14

PC STACK
16 X 14

From INSTRUCTION REGISTER

CONDITION
LOGIC

LOOP
COMPARATOR

PROGRAM
COUNTER

INCREMENT

NEXT

ADDRESS
SOURCE
SELECT

NEXT ADDRESS MUX

PMA BUS

Figure 4.6E DO UNTIL: Final lteration

4-19

4

DAG 2 i

Program Control

4.2.6.6 Register Indirect

Figure 4.7 illustrates the case of a register indirect jump. In this case, the
address is actually not being supplied by the sequencer at all. Instead, the
processor is executing a jump to the label/address supplied by DAG2.
DAG2 drives the address onto the PMA bus. The program counter reads
the address from the PMA bus and continues normally from there.

PROGRAM
COUNTER

o

NEXT
ADDRESS
NEXT ADDRESS MUX [+— SOURCE
SELECT

Figure 4.7 Register Indirect

4.3 STATUS REGISTERS AND STACK

The status and mode bits of the ADSP-2100 are maintained internally
within five registers, each of which are independently readable over the
DMD bus, and four of which can be written to from the DMD bus. These
registers are:

ASTAT Arithmetic status register

SSTAT Stack status register (read-only)
MSTAT Mode status register

ICNTL Interrupt control register

IMASK Interrupt mask register

4.3.1 Arithmetic Status Register (ASTAT)

ASTAT is 8 bits wide and holds the status information generated by the
computational sections of the processor. The bits in ASTAT are defined as
follows:

Bit 0 AZ ALU result zero

Bit 1 AN ALU result negative
Bit2 AV ALU overflow

Bit 3 AC ALU carry

Bit4 AS ALU X input sign
Bit 5 AQ ALU quotient flag
Bit 6 MV MAC overflow

Bit 7 SS Shifter input sign

The bits which express a particular condition (AZ, AN, AV, AC, MV) are
all positive sense (1 = true, 0 = false). Each of the bits is automatically
updated when a new status is generated by an arithmetic operation. Each
bit is affected only by a subset of arithmetic operations, as defined by the
following table.

Status Bit Updated by
AZ,AN, AV, AC Any ALU operation except DIVS, DIVQ

AS ALU absolute value operation (ABS)
AQ ALU divide operations (DIVS, DIVQ)
MV Any MAC operation except saturate MR
SS Shifter EXP operation

Arithmetic status is latched into the status register at the end of the cycle
in which it was generated, and therefore cannot be used until the next

cycle.

Loading any ALU, MAC, or Shifter input or output registers directly from
the DMD bus does not affect any of the arithmetic status bits. Executing
the ALU instruction PASS will set the AZ and AN bits for a given X or Y
operand.

Program Control

4.3.2 Stack Status Register (SSTAT)
SSTAT is 8 bits wide and holds information regarding the four internal
stacks. The bits in SSTAT are defined as follows:

Bit 0 PC Stack Empty

Bit1 PC Stack Overflow
Bit2 Count Stack Empty
Bit 3 Count Stack Overflow
Bit 4 Status Stack Empty
Bit5 Status Stack Overftlow
Bit6 Loop Stack Empty
Bit7 Loop Stack Overtlow

All of the bits are positive sense (1 = true, 0= false). The empty status bits
indicate that the number of pop operations for the stack is greater than or
equal to the number of push operations (if no stack overflow has occurred)
since the last reset. The overflow status bits indicate that the number of
push operations for the stack has exceeded the number of pop operations
by an amount that is greater than the depth of the stack. When this occurs,
the item(s) most recently pushed will be missing from the stack (old data
is considered more important than new). Because of this “saturation” of
the stack pointer, the stack empty status bits can be set by N sequential
pop operations, where N is the depth of the stack, regardless of how many
more than N sequential push operations were performed.

Since a stack overflow represents a permanent loss of information, the
stack overflow status bits “stick” once they are set and subsequent pop
operations have no effect on them. It is possible to have both the stack
empty and stack overflow bits set for a given stack. Since SSTAT is a read-
only register, write operations will have no effect on the stack status bits
either. A processor reset must be executed to clear the stack overflow
status.

4.3.3 Mode Status Register (MSTAT)

MSTAT is a 4-bit register that defines various operating modes of the
processor. The bits in MSTAT are defined as follows:

Bit 0 Data Register Bank Select

Bit1 Bit Reverse Mode (Data Address Generator 1 only)
Bit 2 ALU Overflow Latch Mode

Bit 3 AR Saturation Mode

Program Control

All registers (including MSTAT) can be changed by moving a new value
into them with any of the MOVE instructions. In contrast to the other
status registers, MSTAT can also be changed with the MODE CONTROL
instruction.

The data register bank select bit determines which set of data registers is
currently active (0 = primary, 1 = secondary). The data registers include
all of the result and input registers to the ALU, MAC, and SHIFTER: AXO0,
AX1, AY0, AY1, AF, AR, MX0, MX1, MY0, MY1, MF, MR2, MR1, MRO, SI,
SE, SB, SR1, and SRO.

The bit-reverse mode, when enabled, bitwise reverses all addresses gener-
ated by data address generator one (DAG1). This is most useful for reor-
dering the input or output data to a radix-2 FFT algorithm. In addition to
the MODE CONTROL instruction, processor reset also disables it.

The ALU overflow latch mode causes the AV (ALU overflow) status bit to
“stick” once it is set. In this mode, AV will be set by overflow and remain
set, even if subsequent ALU operations do not generate overflows. AV
can then only be cleared by writing a zero into it from the DMD bus.

The AR saturation mode, when set, causes AR to be saturated to the
maximum positive (H#7FFF) or negative (H#8000) values when an ALU
overflow occurs.

4.3.4 Interrupt Control Register (ICNTL)

ICNTL is a 5-bit register that configures the interrupt modes of the
processor. These bits are all undefined after a processor reset. The bits in
ICNTL are defined as follows:

Bit 0 IRQO Sensitivity
Bit1 IRQ1 Sensitivity
Bit 2 IRQ?2 Sensitivity
Bit3 IRQ3 Sensitivity
Bit4 Interrupt Nesting Mode See Table 4.2

The IRQ sensitivity bits determine whether a given interrupt input is
edge- or level-sensitive (0 = level-sensitive, 1 = edge-sensitive).

Bit 4 determines whether nesting of interrupt service routines is allowed.
When set to zero, all interrupt levels are masked automatically IMASK
set to zero) when an interrupt service routine is entered. When set to one,
IMASK is set so that only equal and lower priority interrupts are masked,

4

4

Program Control

permitting higher priority interrupts to interrupt the current interrupt
service routine. This is graphically shown in Table 4.2 below.

4.3.5 Interrupt Mask Register (IMASK)

IMASK is a 4-bit register which enables and disables the individual inter-
rupt levels. The IMASK register contents are automatically pushed onto
the status stack when entering an interrupt service routine and popped
back when returning from the routine. The configuration of IMASK upon
entering the interrupt service routine is determined by bit 4 of ICNTL; it
may be altered, of course, as part of the interrupt service routine itself.

The bits in IMASK are defined as follows:

Bit0 IRQO Enable
Bit 1 IRQ1 Enable
Bit2 IRQ2 Enable
Bit 3 IRQ3 Enable

The bits are all positive sense (0 = disabled, 1 = enabled). IMASK is set to
zero upon a processor reset. When an interrupt is processed, the interrupt
nesting mode bit determines the state of IMASK upon entering the inter-
rupt, as shown in Table 4.2. IMASK may be read from or written to via the
DMD bus.

ICNTL bit 4 = 0 (nesting disabled)
IRQ # IMASK contents before, IMASK contents entering

Serviced pushed on stack interrupt service
0 DDDD* 0000
1 DDDD 0000
2 DDDD 0000
3 DDDD 0000

ICNTL bit 4 =1 (nesting enabled)
IRQ # IMASK contents before IMASK contents entering

Serviced pushed on stack interrupt service
0 DDDD 1110
1 DDDD 1100
2 DDDD 1000
3 DDDD 0000

**DDDD” represents any pattern of ones and zeroes.

Table 4.2 IMASK Entering Interrupt Service Routines

Program Control 4

4.3.6 Condition Logic

The condition logic of the ADSP-2100 is used to determine whether an
explicitly specified action in a conditional instruction is performed, such
as a jump, trap, call, return, MAC saturation, or arithmetic operation. It
also controls the implicit loop sequencing operations based upon the loop
continuation condition on top of the loop stack. The condition logic takes
raw status information from ASTAT and the down counter and derives a
set of sixteen composite status conditions. The 4-bit condition code field of
the instruction and the 4-bit loop continuation condition on the loop stack
then select two of these to control whether the explicit operation in the
instruction or implicit loop sequencing operation (or neither) is
performed. When both are attempted, the explicitly specified operation
takes precedence.

The sixteen composite status conditions, with their derivations and
instruction mnemonics are given below, are for the standard IF condition
statement. Consult the section on DO UNTIL and the opcodes in
Appendix A for details of the termination condition usage.

Syntax Status Condition True If:

EQ Equal Zero AZ=1

NE Not Equal Zero AZ =0

LT Less Than Zero AN XOR.AV =1

GE Greater Than or Equal Zero AN .XOR. AV =0

LE Less Than or Equal Zero (AN XOR.AV) OR. AZ =1
GT Greater Than Zero (AN XOR.AV).OR. AZ =0
AC ALU Carry AC=1

NOT AC Not ALU Carry AC=0

AV ALU Overflow AV=1

NOTAV Not ALU Overflow AV=0

MV MAC Overflow MV =1

NOTMV Not MAC Overflow MV =0

NEG XInput Sign Negative AS=1

POS XInput Sign Positive AS=0

NOT CE Not Counter Expired CE=0

TRUE Always True Always True

Table 4.3 IF Condition Logic

Program Control

Since arithmetic status is latched into ASTAT at the end of a processor
cycle, the condition logic outputs represent conditions generated on a
previouscycle.

4.4 INSTRUCTION CACHE

The instruction cache memory stores up to sixteen previously executed
instructions. When an instruction requires a Program Memory Data fetch
(which would conflict with the instruction fetch) the cache, if valid, is used
as the source of the instruction. This section discusses the operation and
programming implications of the cache.

4.4.1 Cache Memory Operation

Cache operation is transparent. No maintenance or overhead is required
for either the storage or use of instructions in cache memory. Because of
the significant of the ADSP-2100 cache, however, it is vital to understand
how it operates.

The cache is a 24-bit by 16-word memory array. While this is a small
memory space, the multifunctional nature of many ADSP-2100
instructions allows a wide variety of algorithms to be coded within this
restriction; see the discussion of the instruction set in Chapter 6 and the
example below.

The cache memory can be seen in the overall processor block diagram (in
Chapter 1) interacting with the program sequencer and instruction
register. Cache operation follows this scenario.

1. Innormal operation the ADSP-2100 fetches the (N+1)th instruction
while executing the Nth instruction. Each instruction fetched for the
instruction register is also written into the cache. It is stored at the
cache memory address specified by the four LSBs of the program
memory address.

2. When the PMD bus is busy with a data transfer, the instruction register
is loaded from cache. Note that, at this point, the validity of the loaded
instruction has not been determined.

3. If the loaded instruction is valid, it is executed on the next cycle. If the
instruction is not valid, the instruction register is cleared. An
additional cycle is now required to fetch the next instruction. Validity
is determined by the cache memory monitor described below.

Program Control 4

When data can be read from program memory, the ADSP-2100 becomes,
in effect, a processor with two data busses. For the multiply /accumulate
operations typical of digital signal processing algorithms, this gives
significant speed advantages. For program loops that can be stored
completely in cache, an additional cycle penalty is only incurred on the
first pass through the loop. After all instructions are in memory, the
ADSP-2100 can simultaneously fetch two items of data (using the DMD
and PMD busses) and one instruction (from the cache).

4.4.2 Cache Memory Monitor

The cache memory monitor logic keeps track of the program memory
address range currently stored in the cache memory. One monitor register
contains the number of instructions that are valid ahead of the currently
executing instruction, while another register contains the number of
instructions that are valid behind the currently executing instruction. The
cache addressing uses only the four LSBs of the Program Memory
Address.

While the cache generally contains sixteen previously executed
instructions, not all of them are necessarily valid instructions because the
cache memory monitor can only follow the execution of instructions that
are contiguous in program memory. In effect, the cache memory monitor
cannot “see” a region of memory bigger than sixteen words at a time. DO
UNTIL loops and JUMPs inside the cache allow efficient utilization of the
cache.

A JUMP to an address outside of the cache invalidates the entire cache.
The number of valid instructions in the cache then increases until the
cache fills or the program takes another out-of-cache jump. The cache
memory size compared to the size of DO UNTIL or other looping
constructs is one limit to keep in mind when writing programs with
program memory data transfers inside the loop.

Once the cache fills, newly fetched instructions write over the oldest
instructions in a circular manner due to the modulo-16 cache memory
addressing.

Program Control

4.4.3 Programmers’ Guidelines For Cache Memory Usage
Programmers need not be aware of how the instruction cache functions in
great detail. The important constraints for getting the benefit of the cache
can be summarized as follows.

1. The cache can contain no more than sixteen instructions. To take
advantage of the cache, loops should fit within this limit. The
multifunction instruction set allows many common algorithms to be
implemented within this limit.

2. Tobe valid, the instructions in the cache must be from a contiguous
region of program memory. This means that DO UNTIL and JUMP
ioops can be used as long as the JUMP or loop top is within the sixteen-
instructionregion.

3. Cache memory is only used as the instruction source when the PMD
bus is needed for data fetch that would conflict with the normal
instruction fetch.

4.4.4 Cache Memory Example

Below is an ADSP-2100 subroutine that implements a simple sum-of-
products FIR filter. This example illustrates three related advantages of the
ADSP-2100 architecture: zero overhead looping, compact code
requirements and execution speed resulting from use of the cache. This
example is discussed in more detail in the ADSP-2100 Applications
Handbook, Volume 1 in the chapter on fixed-coefficient filters.

{ FIR Transversal Filter Subroutine

Calling Parameters
I0 —> Oldest input data value in delay line
LO = Filter length (N)
I4 —> Beginning of filter coefficient table
L4 = Filter length (N)
M1,M5 =1
CNTR = Filter length - 1 (N-1)

}

A)
B)
C)
D)
E)
F)

fir:

sop:

Program Control 4 !

Return Values
MR1 = Sum of products (rounded and saturated)
I0 —> Oldest input data value in delay line
I4 —> Beginning of filter coefficient table
Altered Registers
MX0,MY0, MR
Computation Time
N -1+ 5+ 2 cycles
Coefficients & data values assumed to be 1.15 format.

MR=0, MX0=DM(IO0,M1), MYO=PM(I4,M5);
DO sop UNTIL CE;
MR=MR+MX0*MYO0 (SS), MX0=DM(I0,M1), MYO=PM(I4,M5);
MR=MR+MX0*MYO (RND) ;
IF MV SAT MR;
RTS;

Figure 4.8 Cache Memory Program Example

For the purposes of this discussion we focus on the lines that have been
labelled A) through F). The “A)” labels are not part of the ADSP-2100
instruction set and are used here only to identity each line of instruction
source in this example.

Here is a description of the function of each program line:

A) Clears MR register, loads X & Y registers of MAC with operands, one
from each memory. This example also uses the circular buffer
addressing capabilities of the ADSP-2100.

B)
O

D)
E)
B

Sets up DO UNTIL loop.

Executes a multiplication with accumulation and fetches two new
operands, one from each memory. Executes N-1 times.

Executes last multiplication with accumulation, rounding the result.

Checks for overflow and saturates if necessary.

Return from subroutine.

4

Program Control

Here is an overview of how this code executes a five tap FIR filter.

Cycle Program Bus Internal Operation Data Bus

1 Fetch A (Execute previous) (Previousactivity)
2 Fetchoperand1 Execute A Fetch operand 1
3 Fetch B Idle, waiting for B No activity

4 Fetch C Execute B No activity

5 Fetchoperand2 Execute C, 1st time Fetch operand 2
6 Fetchoperand 3 Execute C, 2nd time, from cache Fetch operand 3
7 Fetchoperand4 Execute C, 3rd time, from cache Fetch operand 4
8 Fetchoperand5 Execute C, 4th time, from cache Fetch operand 5
9 Fetch D Idle, waiting for D No activity

10 Fetch E Execute D No activity

11 Fetch F Execute E No activity

12 Fetch next Execute F No activity

Because the sequencer supports zero overhead looping, this single
instruction loop runs as fast as any non-looped or straight-line version
would on a different processor; in addition, two busses are available for
data fetches. This also results in code that is compact; the loop requires
one set-up instruction and no overhead instructions for each iteration. An
N-tap filter requires only N+1 cycles for the inner loop; straightline code
on another processor might require N * 2 cycles with loop overhead
included. Note that these ratios hold true for multiple instruction loops,
not just for a loop of one instruction, as in this example.

The effect of the cache is quite dramatic in cycles 5 through §; the
processor executes the MAC operation and fetches two operands. (DAGs
also update the address pointers to the circular buffer during each cycle.)
There is no penalty for fetching the operand from program memory. This
remains true for loop of up to sixteen instructions.

Finally, at the end of the loop, another cycle is consumed to load the
instruction following the loop.

System Interface

5.1 OVERVIEW

This chapter describes how the ADSP-2100 is interfaced to your system.
The chip has four major interfaces:

1. The program memory interface provides for the synchronous transfer
of both instructions and data between the program memory and the
processor.

2. The data memory interface provides for the synchronous transfer of
data to and from the processor and, using the data memory
acknowledge signal (DMACK), supports slow, memory-mapped
peripherals.

When the ADSP-2100 receives the bus request signal and responds
with the bus grant signal, it relinquishes control of both program and
data memory interfaces.

3. The control interface is used to halt and reset the processor and to
signal an internal trap.

4. The ADSP-2100 can respond to four external interrupts which are
internally prioritized, maskable and independently programmable as
either edge or level-sensitive. The controls for interrupt configuration
are described in Chapter 4 in the program sequencer section.

Figure 5.1, overleaf, is a basic system configuration for an ADSP-2100.

51.1 Note On Timing Diagrams

There are a number of “idealized” timing diagrams in this chapter; they
show the logical relationship between internal clock phases of the
ADSP-2100 and the external system. These timing diagrams do not show
the actual specifications which factor in propagation delays. You must
refer to the data sheet for that type of information. These ideal timing

diagrams only provide a framework for understanding the function of the
ADSP-2100.

5

System Interface

CLOCK
CLKIN CLKOUT -‘—————. CE
CE ’4———— PMS DMS |—— [———»| OF DATA
3 ri PMRD DMFD | —pi ™| WE MEMORY
PROGRAM WE |eg PR SR > ~ 16k x 16
MEMORY ————] ADDR
ADSP-2100 M
16/32k x 24 ——— Puoa DMACK |gt—— k—>| paTa
1 14
ADDR K—Z—1 pma DMA a
24 16
DATA PMD DMD ’< ya] o
- o 1 OF
RESET HALT TRAP IRQ BR BG -
WE PERIPHERALS
e} ACK
4 - > ADDR
) <—>|paTa

5-2

Figure 5.1 Basic System Configuration

5.1.2 Clock Signals & Processor States

The ADSP-2100 has two clock signals, CLKIN and CLKOUT. CLKIN is a
master input clock to the processor that operates at four times the
instruction cycle rate. The phases of CLKIN are used to define eight (1-8)
distinct time periods, called the processor states, that make up an
instruction cycle. This is shown in Figure 5.2. The eighth state of each
instruction cycle is a dead state that provides a neutral halting point for
the processor when operation is suspended. All timing diagrams annotate
the phases of CLKIN with these state numbers.

CLKOUT is an output clock from the ADSP-2100 that operates at the
instruction cycle rate. It is produced by dividing the frequency of CLKIN
by four. The phase of CLKOUT is such that it allows external
synchronization to the internal states of the processor. The falling
transition of CLKOUT always occurs at the transition between states three
and four while the rising edge always occurs at the transition between
states seven and eight. This relationship is shown in Figure 5.2, on the
facing page.

System Interface 5

CLKOUT / (
~>| L [
PROCESSOR 1 | > l 3 l 4 ' 5 | 6 | 7 | 8
STATE
PROCESSOR
CYCLE

Figure 5.2 Clock Signals & Processor States

5.1.3 Synchronization Delay

The ADSP-2100has severalasynchronous inputs, namely, RESET, HALT,
BR, DMACK and IRQO-3. These inputs can be asserted in arbitrary phase
to the processor clock, CLKIN. The ADSP-2100 resynchronizes them prior
to recognizing them. The delay associated with resynchronization and
eventual recognition is called the synchronization delay.

Different asynchronous inputs are recognized at different points in the
processor cycle. For example, HALT is recognized at the end of state three
but interrupt requests are recognized at the end of state seven.

Any asynchronous input must be valid prior to the recognition point. The
minimum time prior to recognition (the setup time) is given on the data
sheet. If an input does not meet the setup time on a given cycle, it will be
recognized during the next cycle if it is held valid. Therefore, to ensure
recognition of an asynchronous input, it must be asserted for at least one
full processor cycle.

5.2 BUS REQUEST / GRANT

Using the bus request, BR, and bus grant, BG, signals, the ADSP-2100 can
relinquish control of both the program and data memory interface giving
direct memory access to an external device, such as a host processor.

The external device requests the bus by asserting BR (bus request). BR is

5-3

5

System Interface

recognized at the end of the next state three and the ADSP-2100 halts in
state eight of that instruction cycle. BG (bus grant) is asserted at the end of
state three of what would have been the next instruction cycle, i.e. four
cycles of CLKIN after the bus request is recognized. This is the normal
synchronous mode of servicing this request.

CLKOUT I l | I

112)|3|4|5]|6|7|8]|1]2]|3|4]|5]|6]|7]|8]|1]2

CLKIN
HOLD SEQUENCE
BR \
BG

PMxx, DMxx :X XXXXX \

RELEASE SEQUENCE

R/

PMxx, DMxx

Figure 5.3 Bus Grant Flowchart
Note: PMxx = PMA, PMDA, PMD, PMWR, PMRD and PMS
DMxx = DMA, DMD, DMWR, DMRD and DMS.

Interfs

oysten

EXTERNAL DEVICE ADSP-2100

Assert BR

Halt execution
Assert BG
Tristate interface signals

Recognize BG
Perform direct
memory access

v

Release interface
Release BR

Release BG
Resume operation

Figure 5.4 Bus Hold / Release

The ADSP-2100 tristates all the bus driving lines: PMA, PMD, PMDA,

PMWR, PMRD and PMS on the program memory interfaceand DMA, DMD,

DMWR, DMRD and DMS on the data memory interface. Controlis then
transferred to the requesting device.

The ADSP-2100’s internal state is not affected by this operation. After the
interface is released by the external device, normal operation resumes
from the point at which it was halted. This applies uniformly to all
processor operations, including the extra cycle inserted by the processor
when a program memory data access is performed and the cache contents
are not valid. BR can be serviced between the two cycles required for that
operation if necessary.

The device returns control to the processor by releasing BR. Four cycles of
CLKIN after BRis recognized as released, the processor releases BG and

takes over the bus, resuming with state one of the next cycle. Figure 5.3 is
an operations flowchart. Figure 5.4 shows the relative timing of this cycle.

5

5-6

System Interface

5.21 Bus Request at RESET

Abus request can be made, i.e. BR may be asserted, during a RESET of the
ADSP-2100. The timing is different than shown in Figure 5.4. In this case,
BG will be asserted asynchronously some time after BR is recognized. The
delay is solely due to propagation delay and is much shorter than the
synchronization delay seen during normal operation. Releasing BR causes
BG tobe de-asserted asynchronously.

BR must be removed before or coincident with the removal of RESET to
ensure proper operation of the processor. In other words, BR can be
asserted “during” RESET but RESET should notbeasserted “during” (i.e.
ending before) a BR.

If the bus is requested during HALT or TRAP, the request is latched and
serviced after the normal synchronization delay. The processor remains
halted, but tristates the busses.

5.3 PROGRAM MEMORY INTERFACE

The program memory interface supports transfers between the ADSP-2100
and program memory using the control lines shown in Figure 5.1. The
processor supplies a 14-bit address on the program memory address
(PMA) bus. Data or instructions are then transferred across a 24-bit
program memory data (PMD) bus. A program memory select pin, PMS,
indicates that the address bus is being driven and memory can be selected.
PMS is asserted on processor cycles in which instructions or data are
fetched from program memory. Since the ADSP-2100 always fetches either
an instruction or data from program memory, in practice, PMS is asserted
continuously; the only exceptions are during HALT, TRAP or when the bus
is tristated.

Two control lines determine the direction of the transfer. Program
Memory Read, PMRD, isactive low indicating a memory read. PMRDis
timed so that it may be used as an output enable signal. Program Memory
Write, PMWR, corresponds to a memory write. PMWR is timed so thatit
may be used as a write strobe.

The program memory can be used to store both instructions and data. The
processor distinguishes between these two by asserting PMDA (program
memory data access) during a data transfer. The timing of PMDA is
similar to the PMA bus, allowing PMDA to be used as an additional
address bit. When used as the most significant address bit, the processor

System Interface 5

can address 32K words of program memory of which 16K is dedicated to
data storage. Systems requiring less than 16K of program memory may
allocate storage to mixed instructions and data without restriction. The
System Builder module of the ADSP-2100 Cross-Software system allows
you to define memory use in software during development. The Cross-
Software system uses this definition of code and data memory allocation
to drive the Simulator, Linker and PROM Splitter.

5.3.1 Program Memory Read Cycle
Program memory reads occur across the program memory interface as
follows.

¢ The ADSP-2100 places the address on the PMA bus, sets PMDA,
asserts PMS, then asserts PMRD. PMRD may be used asan output enable
signal. PMS remains asserted without a change of state if it was
asserted on the previous cycle.

¢ Within a specified time period (see data sheet), valid data must be
placed on the PMD bus by the memory.

e The ADSP-2100 reads the data on the PMD bus.
® The ADSP-2100removes PMRD and terminates the cycle.

A timing diagram for this operation is shown in Figure 5.5, on the next

page.
5.3.2 Program Memory Write Cycle

Program memory is written with the following sequence of operations.

* The ADSP-2100 places the address on the PMA bus, sets PMDA and
asserts PMS; PMSremainsasserted if already asserted.

e The ADSP-2100 places data on the PMD bus and asserts PMWR for
writing.

¢ The ADSP-2100 removes PMWR and terminates the cycle after a fixed
time period.

Figure 5.5, on the next page, depicts the timing diagram for the program
memory write operation. Note that PMWR may be used as a write strobe.

5 System Interface

s | s | e | 7

CLKOUT
CLKIN l T |2 [s
PMS \

PMA X

PMDA /

READ CYCLE

PMWR

XX

PMRD

PMD

WRITE CYCLE

PVWR \

PMRD

XX

PMD

5-8

7
AN

NS

Figure 5.5 Program Memory Read / Write

System Interface

5.4 DATA MEMORY INTERFACE

The data memory interface supports transfers between the ADSP-2100
and data memory using the control lines shown in Figure 5.1. The
processor supplies a 14-bit address on the data memory address (DMA)
bus, allowing it to address up to 16K words of data memory. Data is then
transferred across a 16-bit data memory data (DMD) bus. Its operation is
similar to the program memory interface operation with the following
exceptions.

1. There is no equivalent signal to PMDA since only data is stored in data
memory.

2. The data memory interface supports slow, memory-mapped
peripherals via the DMACK signal.

Data memory access cycles begin with the processor providing a 14-bit
address on the DMA bus. A data memory select pin, DMS, indicates that
the address bus is being driven and memory can be selected. DMS is
asserted on processor cycles in which data memory is accessed. DMS
remains asserted without a change of state or “glitch” on successive cycles
that access data memory. Two control lines determine the direction of the
transfer. Data Memory Read, DMRD, is active low indicating a memory
read. DMRD is timed so that it may be used as an output enable signal.
Data Memory Write, DMWR, corresponds toa memory write. DMWRis
timed so that it may be used as a write strobe.

The data memory access cycle is completed by returning DMACK (data
memory acknowledge) to the ADSP-2100. The processor checks DMACK
at the end of processor state six. If DMACK is not valid, state seven is
extended by one full processor cycle time. This is repeated until DMACK
is asserted. With this procedure the ADSP-2100 can readily share memory
with slow, memory-mapped peripherals. Of course, during normal full
speed memory accesses, DMACK is returned prior to the end of state six
and the access completes in a single processor cycle.

Note that the wait for DMACK can prevent the processor from
responding to other signals. Interrupts, bus requests and HALT are latched
but not serviced during extra cycles required while waiting for DMACK.

5

5-9

5 System Interface

Figure 5.6 shows the timing of typical data memory read and write cycles.
Figure 5.7 shows a read cycle stretched one cycle while waiting for

.

DMACK.
cLKOUT
CLKIN [1+ |2 |3 | a]s |6 |7
DMS

A\

DMACK XXXX}’

READ CYCLE
omwr XX/
DMRD

DMD :XXX><

WRITE CYCLE
DMWR

oD XXY
DMD

A

Figure 5.6 Data Memory Read / Write

5-10

Interface 5

cLKOUT I l L l

CLKIN [+ lefs s s]lel7lrafrolrelralzofreolze] 7 [s |+]
s\ /T
DMA x X

bMACK /XXX XKXX/ \QOXXX

omp — XXXXXXX XXX

Figure 5.7 Data Memory Read Extended by DMACK

5.4.1 Data Memory Read Cycle

Data memory reads occur across the data memory interface as follows.

ADSP-2100 MEMORY / PERIPHERAL

Place address on DMA bus
Assert DMS
Set DMRD to read

Decode address
Place data on DMD bus
Assert DMACK

Read data on DMD bus
Release DMS

Figure 5.8 Data Memory Read Flowchart

A timing diagram for this operation is shown in Figure 5.6.

5-11

5 System Interface

5.4.2 Data Memory Write Cycle

Data memory is written with the following sequence of operations.

Figure 5.6 depicts the timing diagram for the data memory write
operation. Note that DMWR may be used as a write strobe.

ADSP-2100 MEMORY / PERIPHERAL

Place address cn DMA bus
Assert DMS
Place data on DMD

Set DMWR to write

Decode address
Accept data on DMD bus
Assert DMACK

Release DMS

Figure 5.9 Data Memory Write Flowchart

5.5 CONTROL INTERFACE

The controlinterface consists of three asynchronoussignals, RESET, HALT
and TRAP. These signals allow external control over the activities of the
ADSP-2100.

5-12

5,5.1 RESET

RESET performs a hardware reset on the processor. It must be asserted
after power-up to initialize the processor to a known state prior to
initiating any program execution. RESET performs the following functions.

* Initializes the internal clock generator.

* Resets all stack pointers (PC stack, Counter stack, Status stack).
¢ (Clears cache memory monitor (invalidates contents).

¢ C(Clearsalllatches (IRQ,HALT).

e Ifthere is no pending BR, PMA is driven with 0004.

o IfBGisasserted,all busses remain tristated during RESET.

* Masks all interrupts (IMASK = 0000). Note: ICNTL is undefined.

* Clears the MSTAT register. This disables the ALU overflow bit, ALU
AR register saturation mode, bit-reversal of DAG1 addresses and use
of the alternate register bank.

RESET is recognized on any rising edge of CLKIN and must be asserted for
at least four CLKIN cycles. The processor remains in state four during
RESET. CLKOUT remainslow during this period. Uponreleasing RESET,
the processor goes from state four to state five on the second rising edge
of CLKIN following release.

Multiple processors operating from the same CLKIN can be synchronized
by employing a common RESET line, since then they will all go from state
four to state five simultaneously. However in this case, RESET must be
externally synchronized to CLKIN first.

See also the discussion of bus request and bus grant during RESET in
section 5.2 of this chapter.

552 HALT

HALT is used to temporarily suspend processor operation. It is recognized
at the end of state three of the processor cycle. The processor will stop in
state eight of the current cycle if it was performing a program memory
instruction fetch when the HALT was recognized or in state eight of the

5-13

5

5-14

System Interface

following processor cycle if it was performing a program memory data
fetch. In the latter case, the second cycle is a forced program memory
instruction fetch even if the instruction is available from cache. Hence, the
processor is always halted on a program memory instruction fetch and the
controlling device can observe the address where execution was
terminated on the PMA bus. Normal processor operation is resumed when
the HALT line isreleased. You must ensure that DMACK is HIlwhen HALT
isreleased.

HALT and RESET are recognized at different points in the processor cycle
but they share the common characteristic of synchronization delay
mentioned above.

If HALT is asserted during a bus grant, it is latched but not serviced until
the ADSP-2100 regains control of the bus; the processor is halted by the
bus grant already, of course. Likewise, if HALT is asserted during a wait
for DMACK, it is latched but not serviced. Once the processor is halted, BR
is latched and serviced normally.

553 TRAP

The TRAP signal is generated by the processor whenever a TRAP
instruction is executed. It is asserted on the transition between state seven
and eight of that cycle and the processor is halted in state eight. The PMA
bus provides the address of the instruction that follows the TRAP
instruction. The TRAP signal will remain active until HALT is asserted.
Upon recognition of HALT, the ADSP-2100 releases TRAP but remains ina
halt state.

If BRis asserted during TRAP it is latched and serviced in the normal
sequence, that is, after the required synchronization delay.

Normal operation is resumed when HALT is released as shown in Figure
5.10.

System Interface

ADSP-2100 EXTERNAL DEVICE

Assert TRAP
Halt processor operation

Recognize TRAP
Assert HALT

Remove TRAP l

Remove HALT

l Resume operation —|

Figure 5.10 TRAP Flowchart

5.6 INTERRUPT OPERATION

The ADSP-2100 supports four prioritized, individually maskable
interrupts that can be either level or edge-triggered. Additional
information about interrupt masking can be found in Chapter 4, “Program
Control.”

Level-sensitive interrupts operate by asserting an interrupt request line
(active low) until the request is recognized by the processor. The ADSP-
2100 checks the interrupt request lines in processor state seven. Once
recognized, the request must be negated before returning from the
interrupt service routine to prevent being reserviced.

In contrast, edge-triggered interrupt requests are recognized when an
inactive-to-active transition occurs on the interrupt line. The ADSP-2100
recognizes a transition by comparing the state of the request line in
processor state seven on two successive cycles. Therefore, to guarantee
recognition of an asynchronous interrupt, the request must be greater
than one processor cycle in duration. The request is latched internal to the
processor so that the request line may be held at any level for an
arbitrarily long period between interrupts. This latch is automatically
cleared when the interrupt is serviced.

5-15

9

CLKIN

IRQ

PMA

PROCESSOR
OPERATION

System Interface

Edge-triggered interrupts require less external hardware compared to
level-sensitive requests since there is never a need to hold or negate the
request. However, level-sensitive interrupts provide improved noise
immunity. Furthermore, many interrupting devices may share a single
level-sensitive request line on a wired-OR basis which allows for easy
system expansion.

An interrupt request is deemed valid if it is not masked (determined by
IMASK) and a higher priority request is not pending. Valid requests
invoke an interrupt service sequence that vectors the processor to address
0000 through 0003 for IRQO through IRQ3 respectively. The interrupt
request is recognized at the end of state seven of the processor cycle. There
is a synchronization delay associated with the interrupt request lines.

If an interrupt occurs during the two cycles required to execute a program
memory data access with invalid cache, it is not recognized between the
two cycles, only before or after. Interrupts are latched, but not serviced,
during HALT, TRAP, bus grant (BG) and while waiting for DMACK.
Remember that in order to service an interrupt, the processor must be
running and executing instructions.

The masking of interrupts upon entering the interrupt service routine is
determined solely by bit 4 of the ICNTL register; see the discussion and
Table 4.2 in Chapter 4.

Figure 5.11 shows the interrupt service timing. Edge-sensitive and level-
sensitive interrupt requests are serviced similarly except that in the former
case, the request line state must be compared on two successive processor
cycles to determine the occurrence of an edge. Edge-sensitive interrupts
may remain low indefinitely, while level-sensitive interrupts must be
removed before executing the RTI instruction.

Address of Instruction N + 1f Address of Instruction N + 2 X INTERRUPT VECTOR ADDRESS x

EXECUTE INSTRUCTION N EXECUTE INSTRUCTION N+ 1 IGNORE INSTRUCTION N+2 EXECUTE INSTRUCTION AT
VECTOR ADDRESS
FETCH INSTRUCTION N + 1 FETCH INSTRUCTION N +2 EXECUTE NOP
(will be ignored) FETCH NEXT INSTRUCTION

5-16

FETCH INSTRUCTION AT
VECTOR ADDRESS

Figure 5.11 Interrupt Service Timing

5.7 PIN DESCRIPTION

System Interface 5

This section summarizes the pin description of the processor by interface.
When groups of pins are identified with subscripts, as in PMD23-0, the
highest numbered pin (PMD23) is the MSB.

Pin Name Type
Clocks:
CLKIN Input

CLKOUT Output

Interrupt Request Lines:

IRQ3-0 Input
Control Interface:
RESET Input
HALT Input

Tristate?

No

Function

Master input clock operating at
four times the processor
instruction rate. Nominally 50%
duty cycle. The phases of CLKIN
define the eight internal
processor states making up one
instruction cycle.

Output clock operating at the
processor instruction rate with a
50% duty cycle. Synchronized to
the internal processor states.

Interrupt Request lines that may
be either edge triggered or level
sensitive. Interrupts are
prioritized and individually
maskable.

Master Reset must be asserted for
at least four CLKIN cycles to
assure proper reset. When RESET
is released, execution begins at
program memory location 0004.

Used to halt the processor. All
control signals become inactive
and the address and data buses
are driven for observation.

5-17

5 System Interface

5-18

Pin Name Type
TRAP Output
BR Input
B Output

Program Memory Interface:

PMA13-0 Output

PMD23-0 Bidirectional

ILYs Output

Tristate?

No

Yes

Yes

Yes

Function

Used to indicate the execution of
a Trap instruction. Remains
asserted untilHALTisasserted by
an external device.

Bus Request used by an external
device to request control of the
program and data memory
interface. Upon receiving BR the
processor halts execution at the
completion of the current cycle
and relinquishes the program
and data memory interface by
tristating PMA, PMD, PMS,
PMWR,PMRD,PMDA,DMA,
DMD, DMS,DMRDand DMWR.
The processor regains control
when BRis released.

Bus Grant. Acknowledges a bus
request (BR), indicating that the
external device may take control.
BG is held asserted until BRis
released.

Program Memory Address Bus;
tristated when BG is asserted.

Program Memory Data Bus;
tristated when BG is asserted.

Program Memory Select signals a
program memory access on the
PM interface. Also usable as a
chip select signal for external
memories. Tristated when BGis
asserted.

Pin Name Type
PMRD Output

PMWR Output

PMDA Output

Data Memory Interface:

DMA13-0 Output
DMD15-0 Bidirectional

DV Output

System Interface 5

Tristate?

Yes

Yes

Yes

Yes

Yes

Yes

Function

Program Memory Read indicates
aread operation on the PM
interface. Also usable as a read
strobe or output enable signal.
Tristated when BG is asserted.

Program Memory Write
establishes the direction of data
transfer on the PM interface.
Also usable as a write strobe.
Tristated when BG is asserted.

Program Memory Data Access
used to distinguish instruction
and data fetches from PM.
Asserted high when data, as
opposed to instruction, is
accessed. Also usable as a
fifteenth PM address bit.
Tristated when BG is asserted.

Data Memory Address Bus;
tristated when BG is asserted.

Data Memory Data Bus; tristated
when BGisasserted.

Data Memory Select signals the a
Data Memory Access on the Data
Memory interface. Also usable as
a chip select signal for external
memories. Tristated when BGis
asserted

5 System

Pin Name Type
DMRD Output
DVIWR Output
DMACK Input
Supply Rails:

VDD Supply
GND Ground

Interface

Tristate?

Yes

Yes

Function

Data Memory Read indicates a
read operation on the Data
Memory interface. Also usable as
a read strobe or output enable
signal. Tristated when BG is
asserted.

Data Memory Write indicates a
write operation on the Data
Memory interface. Also usable as
awrite strobe. Tristated when BG
is asserted

Data Memory Acknowledge
signal used for asynchronous
transfers across the DM interface.
Indicates that data memory or
memory-mapped peripheralsare
ready for data transfer. If
DMACK is not asserted when
checked by the processor, wait
states are automatically
generated until DMACK is
asserted.

Power supply rail nominally
+5VDC. There are four VDD pins

Power supply return. There are
nine GND pins

The ADSP-2100 has 100 pins plus an Index pin. Refer to Figure 5.12 and
5.13 for a detailed pinout.

5-20

System Interface 5

13 12 1 10 9 8 7 6 5 4 3 2 1
N | PMD18 | PMD20 | PMD21 | PMD23 | BG VDD GND | GND PMS | TRAP | HALT | RESET | DMAO
M| PmD16 | PMD17 | PMD19 | PMD22 | PMRD | BR | DMRD | DMWR | DMS | PMDA |DMACK| GND | DMA2
L 1 PMD14 PMD15| CLKO | CLKI | PMWR DMA1 | DMA3
K | PMD12 | PMD13 I DMA4 | DMA5

|

dJ | PMD10 | PMD11 DMA6 | GND
H1 GND | PMD8 | PMD9 DMA7 | DMA8 | VDD
G| vDD | PMD7 | PMD6 DMA10 | DMA11 | DMA9
F | PMD5 | PMD4 | PMD3 I DMD15 | DMA13 | DMA12
El onp | PMD2 DMD13 | DMD14
D | PMD1 | PMDO DMD11 | DMD12
C | PmA0 | PMA2 PMA11 | TRQ2 | RQD w,',?,fx DMD9 | DMD10
B pmAt1 | PMA4 | PMAG | PMA7 | PMAS | PMA12 | TRQ3 | TRQ1 | DMD? | DMD3 | DMDé | DMD7 | DMD8
A| PMA3 | PMAS | GND | PMA8 | PMA10 | PMA13 | VDD | GND | DMDO | DMD2 | DMD4 | DMD5 | GND

13 12 1 10 9 8 7 6 5 4 3 2 1

Figure 5.12 ADSP-2100 Pins, Top View, Pins Down

5-21

5 System Interface

1 2 3 4 5 6 7 8 9 10 1 12 13
DMAO | RESET | HALT | TRAP | PMS | GND | GND | vDD BG | PMD23 | PMD21 | PMD20 | PMD18
DMA2 | GND |DMACK| PMDA | DMS |DMWR | DMRD | BR | PMRD | PMD22 | PMD19 | PMD17 | PMD16
DMA3 | DMA1 PMWR | CLKI | CLkO PMD15 | PMD14
DMA5 | DMA4 PMD13 | PMD12
GND | DMA6 PMD11 | PMD10
vDD | DMA8 | DMA7 PMD9 | PMD8 | GND
DMA9 | DMA11 | DMA10 PMD6 | PMD7 | VDD
DMA12 | DMA13 | DMD15 PMD3 | PMD4 | PMD5
DMD14 | DMD13 PMD2 | GND
DMD12 | DMD11 PMDO | PMD1
DMD10 | DMD9 ,'",35" iRQO | iRQ2 | PMAT1 PMA2 | PMAO
DMD8 | DMD7 | DMDe | DMD3 | DMD1 | iRQ1 | IRQ3 | PMA12 | PMA9 | PMA7 | PMA6 | PMA4 | PMA1
GND | DMD5 | DMD4 | DMD2 | DMDO | GND | vDD | PMA13 | PMA10 | PMA8 | GND | PMAS | PMA3

1 2 3 4 5 6 7 8 9 10 1 12 13

5-22

Figure 5.13 ADSP-2100 Pins, Bottom View, Pins Up

[

Instruction Set Overview

6.1 INTRODUCTION

This chapter provides an overview of the instruction set used to program
the ADSP-2100 and the ADSP-2100 development system software. It
provides enough information to understand the nature of programming
the ADSP-2100 and the capabilities of the instruction set itself including a
programming example at the end of the chapter. This chapter is not a
complete programmer’s reference section.

For actual software development, you must have the ADSP-2100 Cross-
Software Manual which contains a detailed instruction reference section
and a complete guide to the development tools: System Builder,
Assembler, Linker, Simulator, PROM Splitter and C Compiler. The two
volume ADSP-2100 Applications Handbook presents many program
examples with source code and discussion; these programs are also
available on IBM PC diskettes.

The chip’s instruction set is tailored to the computation-intensive
algorithms common in DSP applications. For example, sustained single-
cycle multiplication / accumulation operations are possible. The
instruction set provides full control of the ADSP-2100’s three
computational units: the ALU, MAC and Shifter. Arithmetic instructions
can process single-precision 16-bit operands directly with provisions for
multiprecision operations.

The high-level syntax of the ADSP-2100 source code is both efficient and
readable. Unlike many assemblers, the ADSP-2100 source code uses an
algebraic notation for arithmetic operations and for data moves. There is
no performance penalty for this easy-to-read source code. Each program
statement assembles into one 24-bit opcode which executes in a single
cycle. There are no multicycle instructions in the ADSP-2100 instruction
set.

In addition to JUMP and CALL, the control instructions support
conditional execution of most arithmetic and a DO UNTIL looping
instruction. Two addressing modes are supported for external memory
fetches. Direct addressing uses immediate values; indirect addressing uses

Instruction Set Overview

the two data address generators (DAGs). All immediate instructions
provide the full width for an immediate data (16 bits) or address (14 bits)
field.

The 24-bit instruction word allows a high degree of parallelism in
performing operations. The instruction set allows for a single-cycle
execution of any of the following combinations:

e any ALU, MAC or Shifter operation (may be conditional)

* any register to register move

<
<

¢ acomputation with any register to register move
* acomputation with any memory read or write
* acomputation with a read from both of the two external memories.

The ADSP-2100 instruction set provides the programmer with maximum
flexibility. The instruction set provides unrestricted moves from any
register to any other register, or from almost any register to/from either
external memory. For combining operations, almost any ALU, MAC or
Shifter operation may be combined with any register-to-register move or
with a register move to or from either external memory.

6.2 INSTRUCTION TYPES
The ADSP-2100 instruction set is grouped into the following categories:

Multifunction

Computational: ALU, MAC, Shifter
Move

Program Flow /Control
Miscellaneous

The multifunction instructions best illustrate the power of the ADSP-2100
architecture. In this overview, we begin by examining this group of
instructions.

In each section of this chapter are find tables summarizing the syntax of
each instruction group. Here is the notation used in those tables.

Instruction Set Overview

Square Brackets [] Anything within square brackets is an optional
part of the instruction statement.

Parallel Lines | | Lists of parameters enclosed by parallel vertical
lines require the choice of one parameter from
among the operands listed.

CAPITALLETTERS denote reserved words. These are instruction
words, register names and operand selections.

parameters are shown in small letters and denote an operand
in the instruction for which there are numerous
choices. For example, the parameter yop might
have as its choices in the actual instruction: MYO,
MY1 or MF.

<data> denotes an immediate value. Immediate data
values may be symbolic names for constants or
literal numeric values in binary, octal,
hexadecimal or decimal format. The default is

decimal.
<reg> refers to any accessible register; see Table 6.6.
<dreg> refers to any data register; see Table 6.6.
<address> denotes an immediate value of an address to be

coded in the instruction. The address may be
either an immediate value or a LABEL.

6.2.1 Multifunction Instructions

Multifunction operations exploit the inherent parallelism of the ADSP-
2100 architecture by providing combinations of data moves, memory
reads and memory writes and computation in a single-cycle.

6.2.1.1 ALUMAC with Data & Program Memory Read

Perhaps the most common single operation in DSP algorithms is the sum
of products, like the following:

* Fetch two operands (such as a coefficient and a data point)

¢ Multiply them and sum the result with previous products

Instruction Set Overview

The ADSP-2100 can execute both data fetches and the multiplication/
accumulation in a single-cycle. Typically, such a repetitive series can be
expressed in ADSP-2100 source code in just a few program lines. Since the
cache memory stores up to sixteen contiguous instructions, most loops of
this type can execute with sustained single-cycle throughput. An example
of such an instruction is:

MR=MR+MX0*MYO0 (UU) , MX0=DM(I0,M1), MYO=PM(I4,M5) ;

The first clause of this instruction (up to the first comma) says that MR, the
MAC result register, gets the sum of its previous value plus the product of
the (current) X and Y input registers of the MAC (MX0 and MY0) both
treated as unsigned (LJLI). Note the simple assignment statement form of
the source code.

In the second and third clauses of this multifunction instruction two new
operands are fetched. One is fetched from the data memory (DM) pointed
to by index register zero (I0, post modified by the value in M1) and the
other is fetched from the program memory location (PM) pointed to by 14
(post-modified by M5 in this instance). Note that indirect memory
addressing uses a syntax similar to array indexing, with DAG registers
providing the index values. Any I register may be paired with any M
register within the same DAG.

As discussed in Chapter 2, “Computational Units,” registers are read at
the beginning of the cycle and written at the end of the cycle. The
operands present in the MX0 and MYO0 registers at the beginning of the
instruction cycle are multiplied and added to the MAC result register, MR.
The new operands fetched at the end of this same instruction overwrite
the old operands after the multiplication has taken place and are available
for computation on the following cycle. You may, of course, load any data
registers in conjunction with the computation, not just MAC registers with
a MAC operation as in our example.

The computational part of this multifunction instruction may be any
unconditional ALU instruction except division or any MAC instruction.
Certain other restrictions apply. The X operand must come from Data
Memory and the Y operand must come from Program Memory. The result
of the computation must go to the result register (MR or AR) not to the
feedback register (MF or AF).

Instruction Set Overview

6.2.1.2 Data & Program Memory Read
This instruction is a special case of the instruction above, in which the
computation is left out. It executes only the dual fetch as shown below.

AX0=DM(I2,M0), AYO=PM(I4,M6);

In this example, we have used the ALU input registers as the destination.
As with the previous multifunction instruction, X operands must come
from Data Memory and Y operands from Program Memory.

6.2.1.3 Computation With Memory Read

If a single memory read is performed, instead of the dual memory read of
the previous two multifunction instructions, a wider range of
computations can be executed. The legal computations include all ALU
operations except division, all MAC operations and all Shifter operations
except SHIFT IMMEDIATE. Computation must be unconditional.

An example of this instruction is:
AR=AX0+AY0, AX0=DM (I1I0,M3);

Here an addition is performed in the ALU while a single operand is
fetched from Data Memory. Similar restrictions apply to this instruction
as applied to previous multifunction instructions. The value of AX0, used
as a source for the computation, is the value at the beginning of the cycle.
The data read operation loads a new value into AX0 by the end of the
cycle. For this same reason, the destination register (AR in the example
above) cannot be the destination for the memory read. If that were legal,
the result of the computation would be overwritten by the memory read.

6.2.1.4 Computation With Memory Write

This instruction is quite similar to the immediately preceding one: the
order of the clauses in the instruction line, however, is reversed. First the
memory write is performed, then the computation as shown below.

DM (I0,M0)=AR, AR=AXO0+AYO0;

Again, the value of the source register for the memory write (AR in the
example) is the value at the beginning of the instruction. The computation
loads a new value into the same register; this is the value in AR at the end
of this instruction. Reversing the order of the clauses of the instruction is
illegal; it would imply that the result of the computation is written to

6

6-5

6-6

Instruction Set Overview

memory when, in fact, the previous value of the register is what is written.
There is no requirement that the same register be used in this way
although this will usually be the case in order to pipeline operands to the
computation.

The restrictions on computation operations are identical to those above.
All ALU operations except division, all MAC operations and all Shifter
operations except SHIFT IMMEDIATE are legal. Computation must be
unconditional.

6.2.1.5 Computation With Data Register Move

This final multifunction instruction performs a data register to data
register move in parallel with a computation. Most of the restrictions
applying to the previous two instructions apply to this instruction.

AR=AX0+AY0, AX0=MR2;

Here an ALU addition operation occurs while a new value is loaded into
AXO0 from MR2. As before, the value of AX0 at the beginning of the
instruction is the value used in the computation. The move may be from or
to all ALU, MAC and Shifter input and output registers except the
feedback registers (AF and MF).

The move loads the same register with the new value by the end of the
cycle. All ALU operations except division, all MAC operations and all
Shifter operations except SHIFT IMMEDIATE are legal. Computation
must be unconditional. A complete list of data registers is in Table 6.6.

Here is a table showing the legal combinations for multifunction
instructions.

Unconditional Computations DataMove Data Move
DM=DAG1 PM=DAG2
None or any ALU (except Division) or MAC DM read PM read
Any ALU except Division DM read —
Any MAC -— PM read
Any Shift except Immediate DM write —
-— PM write

Register To Register

Table 6.1 Summary of Valid Combinations For Multifunction Instructions

Instruction Set Overview 6

Multifunction Instructions

<ALU*> |, AXO0 = DM (10 |, | MO}, AY0 | = PM(| 4| , M4|);
<MAC> AX1 m |, | M1 AY1 5y, M5
MXO0 2 |, | M2 MYO0 Ie| , Mé6
MX1 3|, | M3 MY1 7|, |M7
AXO0 = DM (10 , MO)), AY0 | = PM(| 14 , M4));
AX1 11 , | M1 AY1 5|, M5
MXO0 12 , M2 MYO0 I6 , Meé
MX1 I3 , M3 MY1 17 , M7
<ALU> , dreg = DM (10 , MO|) ;
<MAC> 11 , M1
<SHIFT*> 12 , M2
I3 , M3
14 , M4
I5 , | M5
I6 , | Mé
17 , M7
PM (14 , | M4l);
15 , | M5
I6 , Meé
17 , M7
DM (10 , MO |) = dreg, <ALU> ;
11 , M1 <MAC>
12 , M2 <SHIFT>
13 , M3
14 , M4
15 , M5
I6 , Meé
17 , M7
PM (14 , M4 |)
15 , M5
I6 , Meé
17 , M7
<ALU> , dreg = dreg;
<MAC>
<SHIFT>

Table 6.2 Multifunction Instructions
*All computation is unconditional; ALU Division and Shift Inmediate operations prohibited

6

6-8

Instruction Set Overview

6.2.2 ALU, MAC and Shifter Instructions

This group of commands execute all the computation. All of these
instructions can be executed conditionally except the ALU division
instructions and the Shifter SHIFT IMMEDIATE instructions.

6.2.2.1 ALU Group
Here is a example of one of the ALU instructions, Add /Add with Carry:

IF AC AR=AX0+AY0+C;

The (optional) conditional expression, IF AC, tests the ALU Carry bit (AC);
if there is a carry from the previous instruction, this instruction executes,
otherwise a NOP occurs and execution continues with the next instruction.
The algebraic expression, AR=AX0+AY0+C, means that the ALU result
register (AR) gets the value of the ALU X input and Y input registers plus

the value of the carry-in bit.

Here is a summary list of all ALU instructions. In this list, condition stands
for all the possible conditions that can be tested and xop and yop stand for
the registers that can be specified as input for the ALU. The conditional
clause is optional and is enclosed in square brackets to show this.

ALU Instructions
[IF condition] AR = xop + yop ;
AF +C
+yop +C
[IF condition] AR = Xxop - yop ;
AF -yop+C-1
[IF condition] AR = yop - xop ;
AF -xop+C-1
[IF condition] AR = Xxop AND yop ;
AF OR
XOR
[IF condition] AR = PASS xop ;
AF yop
-1
0
1

Instruction Set Overview 6

[IF condition] AR = - xop ;
AF yop

[IF condition] AR = NOT xop ;
AF yop

[IF condition] AR = ABS Xop ;
AF

[IF condition] AR = yop +1 ;
AF

[IF condition] AR = yop -1 ;
AF

DIVS yop, xop ;
DIVQ xop ;

Table 6.3 ALU Instructions

6.2.2.2 MAC Group

Here is an example of one of the MAC instructions, Multiply/
Accumulate:

IF NOT MV MR=MR+MX0*MYO0 (UU) ;

The conditional expression, IF NOT MV, tests the MAC overflow bit. If
the condition is not true, a NOP is executed. The expression
MR=MR+MX0*MY0 is the multiply /accumulate operation: the multiplier
result register (MR) gets the value of itself plus the product of the Xand Y
input registers selected. The modifier in parentheses (UU) treats the
operands as unsigned. There can be only one such modifier selected from
the available set. (S5) means both are signed, while (US) and (SU) mean
that either the first or second operand is signed; (RND) means to round
the result.

6-9

6

6-10

Instruction Set Overview

Here is a summary list of all MAC instructions. In this list, condition stands
for all the possible conditions that can be tested and xop and yop stand for
the registers that can be specified as input for the MAC.

MAC Instructions
[IF condition] MR = xop*yop (SS);
MF SU
Us
[19)
RND
[IF condition] MR = MR + xop * yop (SS)
MF SU
us
UuU
RND
[IF condition] MR = MR -xop *yop (SS)
MF SU
us
[820)
RND
[IF condition] MR = 0
MF
[IF condition] MR = MR (RND)J;
MF
IF MV SAT MR;

Table 6.4 MAC Instructions

Instruction Set Overview 6

6.2.2.2 Shifter Group

Here is an example of one of the Shifter instructions, Normalize:
IF NOT CE SR = SR OR NORM SI (HI);

The conditional expression, IF NOT CE, tests the counter. If the condition
is not true, a NOP is executed. The destination of all shifting operations is
the Shifter Result register, SR. In this example, SI, the Shifter Input regis-
ter, is the operand. The amount and direction of the shift is controlled by
the signed value in the SE register in all shift operations except an imme-
diate shift.

The “SR OR” modifier (which is optional) logically ORs the result with the
current contents of the SR register; this allows you to construct a 32-bit
value in SR from two 16-bit pieces. “NORM” is the operator and “(HI)” is
the modifier that determines whether the shift is relative to the HI or LO
half of SR.

The “SR OR” modifier may be omitted. Omitting it is the “PASS” option,
although there is no actual PASS modifier.

Here is a summary list of all Shifter instructions. In this list, condition
stands for all the possible conditions that can be tested.

Shifter Instructions
[IF condition] SR = [SR OR] ASHIFT xop (HI);
LO
[IF condition] SR = [SR OR] LSHIFT xop (HI);
LO
[IF condition] SR = [SR OR] NORM xop (HI);
LO
[IF condition] SE = EXP xop (| HI);
LO
HIX
[IF condition] SB = EXPADJ xop;
SR = [SR OR] ASHIFT xop BY <data> (| HI);
LO
SR = [SR OR] LSHIFT xop BY <data> (| HI);
LO

Table 6.5 Shifter Instructions

6-11

6-12

Instruction Set Overview

6.2.3 MOVE: Read & Write

MOVE instructions move data to and from data registers and external
memory. ADSP-2100 registers may be viewed as divided into two groups,
referred to as reg which includes almost all registers and dreg or data
registers, which is a subset. Only the program counter (PC) and the ALU
and MAC feedback registers (AF and MF) are not accessible.

The Table 6.1 shows which registers belong to these groups.

Accessible Registers: reg

Data Registers: dreg

SB AX0, AX1, AY0, AY1, AR

PX MXO0, MX1, MY0, MY1, MRO, MR1, MR2
10-17,M0-M7,L0-L7 SI, SE, SR0, SR1

CNTR

ASTAT,MSTAT,SSTAT

IMASK, ICNTL

Table 6.6 ADSP-2100 Register Set: reg & dreg

MOVE Instructions
reg = reg;
reg = DM (<address>);
dreg = DM (| I0 , MO |);
1 M1
12 , M2
13 M3
14 M4
15 M5
I6 Mé6
17 M7
DM(| 10 | , | Mo|) = | dreg
11 M1 <data>
12 M2
13 , | M3
14 , | M4
15 , | M5
16 , | M6
17 M7

Instruction Set Overview 6

DM (<address>) = reg ;
reg = <data>;
dreg = PM(| 14 , M4 |);
15 , M5
16 , Me
17 , M7
PM (14 , M4 |) = dreg ;
15 M5
16 M6
17 M7

Table 6.7 MOVE Instructions

6.2.4 Program Flow Control

Program Flow Control on the ADSP-2100 is simple and powerful. The
discussion of the Program Sequencer in this manual gives an example of
each type of control statement. Here is an example of one such statement.

IF EQ JUMP my label;

JUMP, of course, is a familiar construct from many other processors.

My _label is any identifier you wish to use as a label for the entry point of
the code jumped to. Instead of the label, an index register in DAG2 may
be explicitly used.

If the counter condition (CE, NOT CE) is to be used, an assignment to
CNTR must be executed to initialize the counter value.

The default scope for any label is the module in which it is declared. The
Assembler directive . ENTRY makes a label “visible” as an entry point for
routines outside the module. Conversely, the . EXTERNAL directive
makes it possible to use a label declared in another module.

On the next page is the summary of all program flow control instructions.

6-13

6 Instruction Set Overview

Program Flow Control Instructions

[IF condition] JUMP (14) ;
15)
(16)
a7
<address>
[IF condition] CALL (14) ;
a5)
I6)
17)
<address>
[IF condition] RTS ;
[IF condition] RTI ;

DO <address> [UNTIL termination] ;

[IF condition] TRAP ;

Table 6.8 Program Flow Control Instructions

6.2.5 Miscellaneous Instructions

There are four Miscellaneous instructions. NOP, of course, is a no
operation instruction. The PUSH /POP instruction allows you to explicitly
set or control the status, counter, PC and loop stacks; interrupt servicing
automatically pushes and pops some of these stacks.

The Enable/Disable instruction turns on and off four modes of operation:
bit-reversal on DAG1, latching ALU overflow, saturating ALU results and
choosing the primary or shadow register set.

The MODIFY instruction modifies the address pointer in the I register
selected with the value in the selected M register, without performing any
actual memory access. As always, the I and M registers must be from the
same DAG; any of I0-I3 may be used only with one from M0-M3 and the
same for [4-17 and M4-M?7.

6-14

Instruction Set Overview

Miscellaneous Instructions

NOP;
PUSH | STS [, POP CNTRI [, POP PC] [, POP LOOP] ;
POP
ENA| BIT_REV , ENA|AV_LATCH ,|ENA| AR_SAT ,| ENA| SEC_REG ;
DIS DIS DIS DIS
MODIFY (10 , MO |);
11 , M1
12 , M2
13 , M3
14 , M4
15 , M5
16 , M6
17 , M7

Table 6.9 Miscellaneous Instructions

6.3 DATA STRUCTURES

The ADSP-2100 Cross-Software supports the declaration and use of a
simple set of data structures: one-dimensional arrays and ports. The array
may be a single value or multiple values. In addition, the array may be
used as a circular buffer. Here is a brief discussion of each instance with
an example of how they are declared and used. Complete syntax for these
and other directives is given in the ADSP-2100 Cross-Software Manual.

6.3.1 Arrays

Arrays are the basic data structure in the ADSP-2100 instruction set. In
ADSP-2100 literature, the words “array” and the expression “data buffer”
are used interchangeably. Arrays are declared with Assembler directives
and can be referenced indirectly and by name, can be initialized from
immediate values in a directive or from external data files and can be
linear or circular with automatic wraparound.

An array is declared with a directive such as

.VAR/DM coefficients[128];

6-15

6-16

Instruction Set Overview

This declares an array of 128 16-bit values located in data memory (DM).
The special operators * and % reference the address and length,
respectively, of the array. It could be referenced as shown below.

I0 = "coefficients; {point to address of buffer}
MX0=DM(I0,MO0); {load MX0 from buffer}

These instructions load a value into MX0 from the beginning of the
coefficients buffer in data memory. With the automatic post-modify of the
DAGs, you could execute the second of these instructions in a loop and
continuously advance through the buffer.

Alternatively, when you only need to address the first location, you can
directly use the buffer name as a label in many circumstances, such as

MX0=DM (coefficients) ;

The Linker substitutes the actual address for the label. It is also possible to
initialize a complete array/buffer from a data file, using the INIT
directive.

.INIT coefficients : <filename.dat>;

This reads the values from the file filename.dat into the array at link time.

An array or data buffer with a length of one behaves like a simple single-
word variable.

6.3.2 Circular Arrays/Buffers

A common requirement in DSP is the circular buffer. This is directly
implemented by the ADSP-2100 DAGs, using the L (Iength) registers.
First, you must declare the buffer as circular:

.VAR/DM/CIRC coefficients[128];
This identifies it to the Linker for placement on the proper address
boundary. Next, you must initialize the L register, typically using the %

operator (or a constant) and, in the example below, the I register.

LO
I0

scoefficients; {length of circular buffer}
~“coefficients; {point to address of buffer}

Instruction Set Overview

Now a statement like
MX0=DM(I0,MO0) ; {load MX0 from buffer}

in a loop, cycles continuously through coefficients and wraps around
automatically. L registers should be initialized to zero for buffers of any
length that are not circular.

6.3.3 Ports & Memory-Mapping

The .PORT directive in the System Builder module allows you to refer to a
specific hardware address with an identifier of your choosing as shown
here. This capability makes it easy to interface to memory-mapped
peripherals, such as converters.

.PORT/ABS=16382 converter in;

After declaring the same identifier in the Assembler, a value can be read
directly from the port with a statement like

SI = DM(converter in);

This loads the SI register with the value present at the address specified in
the System Builder. (The Linker reads the Architecture Description file
produced by the System Builder to obtain the actual address for the label.)
You can change the hardware address of the port without having to
rewrite your program.

6

6-17

6 Instruction Set Overview

6.4 PROGRAM EXAMPLE

Below are three listings, showing an example of an FIR filter program
written for the ADSP-2100 with discussion of each section of the program.
This FIR filter program demonstrates much of the conceptual power of the
ADSP-2100 architecture and instruction set. More complex programs
would, of course, exercise many additional features of the language.

.MODULE/ROM/ABS=0
A .INCLUDE
.VAR/DM/RAM/CIRC
B { .VAR/PM/RAM/CIRC
.GLOBAL

.EXTERNAL fir start;

LINIT

main_routine;
<const.h>;
data_buffer([taps];
coefficient[taps];
data_buffer, coefficient; {these buffers are global}
{external routine entry label}
coefficient:<coeff.dat>; {initialize with values in file}

{include file of constants}
{length “taps” defined in const.h}

{start code section}
{load interrupt vector addresses}

{initializations}

clear:

mainloop:

.ENDMOD;

JuMP fir start;
RTI;
RTI;
RTI;

LO=%data buffer;
L1=0;

L2=0;

L3=0;
L4=%coefficient;

= “data_buffer;
I4 = ~"coefficient;

CNTR = %data_buffer;
DO clear UNTIL CE;
DM (I0,M0)=0;

IMASK = B#1111;
JUMP mainloop;

Setup and Main Loop Routine

.CONST

taps = 15, taps_less one

Include File, Constant Initialization

6-18

{vectored address of interrupt 0}
{no interrupt 1}
{no interrupt 2}
{no interrupt 3}

{setup circular buffer length}

{setup circular buffer length}

{set modifier registers}
{point to buffer start}
{point to table start}

{set CNTR with buffer length}
{setup loop}

{initialize data buffer}

{now activate interrupts}
{infinite loop, waits for interrupts}

= 14;

Figure 6.10 Program Example Listing 1, Main Routine & Constants File

Instruction Set Overview 6

6.4.1 Example Program: Setup Routine Discussion

The setup and main loop routine, Figure 6.10, does initialization and then
loops continuously. The filter itself is interrupt-driven. When an interrupt
occurs (this example uses interrupt zero) control shifts to the subroutine.

Line A shows that the constant declarations are contained in a separate
file.

Section B shows the directives defining the two circular buffers: one in
data memory RAM (used to hold a delay line of samples) and one in
program memory RAM (used to store coefficients for the filter). The
coefficients are actually loaded from an external file by the Linker. These
values can be changed without reassembling; only another linking pass is
required.

Section C shows the setup of the interrupts. Interrupt vectors are the first
four memory locations in the ADSP-2100 program memory space. Since
this module (first line) is located at absolute address zero, the first four
instructions occupy these interrupt vector locations. Only the first location
is used; it jumps to the subroutine. The other three are placeholders;
program execution begins at address 004.

Section D sets up the Index, Length and Modify registers used to address
the circular buffer. A non-zero value for length activates the modulus
logic. Each time the interrupt occurs, the pointers advance one position
“around” the buffer.

6-19

6 Instruction Set Overview

E{

F
G

.MODULE /ROM fir routine; {relocatable fir interrupt module}
. INCLUDE <const.h>; {include constant declaration file}
.PORT ad sample; {AD port you defined in Systm Bldr}
.PORT da_data; {DA port you defined in Systm Bldr}
.ENTRY fir start; {make label visible outside module}
.EXTERNAL data buffer, coefficient; {make globals accessible in module}

{interrupt service routine code section}

FIR START:

CNTR = taps_less_one; {N-1 passes within DO UNTIL}
SI = DM(ad_sample); {read from port}
DM(IO,MO0) = SI; {transfer data to buffer}

MR=0, MYO=PM(I4,M4), MX0=DM(IO,MO0);
{set up multiplier for loop}

[

Lconvolution:

DO convolution UNTTT. CE: {CE = counter expired}

MR=MR+MXO0*MYO (SS), MYO=PM(I4,M4), MX0=DM(IO,MO);

. ENDMOD;

6-20

{MAC these, fetch next}

MR=MR+MX0*MYO (RND) ; {Nth pass with rounding}
IF MV SAT MR; {saturate if overflowed}
DM(da_data) = MR1; {write to port}

RTI; {return from interrupt}

Figure 6.11 Program Example Listing 2, Interrupt Routine

6.4.2 Example Program: Interrupt Routine Discussion

This subroutine reads the sample and transfers it to the next location in the
circular buffer (overwriting the oldest sample). Then all samples and
coefficients are multiplied and the products are accumulated to produce
the next output value. The subroutine checks for overflow and saturates
the output value to the appropriate full scale then writes the result to the
converter out port and returns.

The lines labelled with E declare the symbolic names used to reference the
A/Dand D/A ports. You select these names and define their hardware
locations with the System Builder, a tool described in detail in the ADSP-
2100 Cross-Software Manual.

The subroutine begins by loading the counter register CNTR. The new
sample is read from the port into the Sl register; the choice of Sl is of no
particular significance. Then, the data is written into the data buffer.
Because of the automatic circular buffer addressing, the new data
overwrites the oldest sample. The N most recent samples are always in the
buffer.

Instruction Set Overview

Line F zeroes the multiplier result register (MR) and fetches the first two
operands. Because this instruction access both memories, a one-cycle
overhead occurs to fetch the next instruction.

G labels the loop itself, consisting of only two lines, one setting up the
loop and one instruction “inside” the loop. The MAC instruction
multiplies and accumulates the previous set of operands while fetching
the next ones from each memory. This instruction also accesses both
memories and so another one cycle penalty will be incurred. However,
since the loop fits entirely the cache, this overhead penalty happens only
once. The loop executes out of cache after the instruction has been loaded
once.

The last MAC instruction (the first one outside the loop) performs the
final multiplication/accumulation using the round modifier (RND)
instead of the signed-by-signed modifier (SS).

6

6-21

Instruction Coding

A1 OPCODES

Here is a summary of the complete instruction set of the ADSP-2100.
Following the list of types and codes shown immediately below is a key to
the abbreviations used. Any instruction codes not shown are reserved for
future use.

Type 1: ALU / MAC with Data & Program Memory Read

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 10
1 1 PD DD AMF Yop Xop | PM | PM |DM | DM
I M I M

Type 2: Data Memory Write (Immediate Data)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
101|G‘ DATA |1]M

Type 3: Read /Write Data Memory (Direct Address)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7.6 5 4 3 2 1 0
1 0 0| p| rep | ADDR | rEG

Type 4: ALU / MAC with Data Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
o 1 1 | o] g AMF | vop | xop| DREG | 1| M

Type 5: ALU / MAC with Program Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
o 1 o]1] p| 7 AMF | yop| xop| DrREG | I] M

A Instruction Coding

Type 6: Load Data Register Immediate
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 87 6543210
0 1 0 o DATA DREG
Type 7: Load Non-Data Register Immediate
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 21 0
o 0o 1 1| rep DATA REG
Type 8: ALU / MAC with Internal Data Register Move
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210
0O 0 1 0 1} 2 AMF Yop Xop Dest Source
DREG DREG
Type 9: Conditional ALU/MAC
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 54 3210
0o 0 1 0 o 7 AMF yop | xop [0 00 0] conp
Type 10: Conditional Jump (Direct Address)
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 543210
0 0 0 1 1] s] ADDR COND
Type11: Do Until
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 10
0o 0 0 1 0 1f ADDR TERM
Type 12: Shift with Data Memory Read / Write
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 76 543210
o 0 0 1 0 o 1] | p] SF Xop | DREG | I [M

Type 13:

Shift with Program Memory Read / Write

23 22

20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 10

0 0

1 0 0 0 1] D SF Xop | DREG | I l M

Type 14:

Shift with Internal Data Register Move

23 22

20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0

0 O

1 0 0 0 0 x SF Xop Dest Source

DREG DREG

Type 15;

Shift Immediate

23 22

20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 10

0 0

001 1 1 1 ol SF

l Xop I exponent

Type 16:

Conditional Shift

23 22

20 19 18 17 16 15 14 13 12 11 10 9 3210

0 ©

87654
011100L SF ‘XOpLOOOO COND

Type 17:

Internal Data Move

23 22

20 19 18 17 16

15 14

1110 98 765 43210

0 0

o 1 1 0 1

0 0

DST |SRC | Dest Source

RGP

RGP

REG

REG

Type 18:

Mode Control

23 22

20 19 18 17 16

0 0

,,,,, 15 14 13 12 11 10 98 7 6 5 4 3 2
01 1 0 0 0 0 O 0| AS |OL|BR [SR [0 0
MCC [MCC MCC MCC

Type 19:

Conditional Jump (Indirect Address)

23 22

21

20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 10

OO0OlOllOOOOOOOOlIiOiS|COND

A Instruction Coding

Type20: Conditional Return

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0000101000000000000|T!COND
Type21: Modify Address Register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0000100100000000000[6[1{1%
Type22: Conditional Trap

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2.1 0
00 001 0 0 0 0 0 06 0 0 000O0OTO O |COND
Type23: DIVQ

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 00 01 1 1 00 0 1 0[xop [00000000
Type24: DIVS

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 001 1 0 0 0 0] Yop[Xop [00000000
Type25: Saturate MR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
00 00 0 1 0 1 0 0 0 0 0 0 00000O0DO0GO0O0O
Type26: Stack Control

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0

oooo010000ooooooooo’mp]cx>

Instruction Coding A

Type27: Reserved
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 543210
O 0 0 O 0 1 x x X x X X X X X X X
Type28: Reserved
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 210
o 0 0O 0 0 o0 0 x x x x X X X ¥ X X X X X
Type 29: Reserved
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76543210
O 0 O O 0 O 1 x x X X X X X X X X X X X
Type 30: NoOperation
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 10
o 0 0 0 0 o0 o 0 0 O 0O O O 0OO0OO0OOOODOODOO
A.2 ABBREVIATION CODING
AMF ALU/MAC Function codes

000 00 Nooperation

MAC Function codes

00001 X*Y (RND)

00010 MR+X*Y (RND)

00011 MR-X*Y (RND)

00100 X™Y (8S) Clearwheny=0

00101 X*Y (SU)

00110 X*Y (US)

00111 XY (UU)

01000 MR+X*Y (SS)

01001 MR+X*Y (SU)

01010 MR+X*Y (US)

01011 MR+X*Y (UU

A Instruction Coding

O O O o

e

I = S

PP OO

R O O

ALU Function codes

FR R RRRRRRPRRRPRRRRPRE

PR RPRPRFRPRPRPRPRPRPRPRPOOOOOOOOO

PR PR O0OO0O0ORRPEREPOOOO

PR OORFRRFRPOORFRRRPFPROORF P OO

PORrORPORORORFORORO

COND Status Condition codes

PR R R R R R R O000000 0O

HFRP PP OO0OO0ORRRLREHEHOOOO

PFRPOORPRFPFOORRRFPFOORKREFE OO

HPFORFRPORORFRORFRPRORRORFRORKFO

MR-X*Y (SS)

MR-X*Y (SU)

MR-X*Y (US)

MR-X*Y (UU)

Y Clearwheny =0
Y +1

X+Y+C

X+Y Xwheny =0
NOTY

- Y

X-Y+C-1

X-Y

Y -1

Y-X —Xwheny =0
Y-X+C-1

NOT X

XANDY

XORY

XXORY

ABS X

Equal EQ

Not equal NE
Greater than GT
Less than or equal LE

Less than LT
Greater than orequal GE

ALU Overflow AV

NOT ALU Overflow NOT AV
ALU Carry AC

Not ALU Carry NOT AC
Xinput sign negative NEG
Xinput sign positive POS
MAC Overflow MV

Not MAC Overflow NOT MV
Not counter expired NOT CE
Always TRUE

cp

DD

DREG

Instructi

Counter Stack Pop codes

0 No change
1 Pop

Memory Access Direction codes

0 Read
1 Write

Double Data Fetch Data Memory Destination codes

0 AX0
1 AX1

0 MXO0
1 MX1

P oo

Data Register codes

HFRPRPREREPRPERERPRPOOO0O0O0000O0

PP R P O0OO00O0ORRFRREFEOOOO

PR OORFRFOORRPOORRFE OO

PO OFRORORORORORO
(2]

SR1
Data Address Generator codes

0 DAG1
1 DAG2

h Coding A

A Instruction Coding

LP

MCC

PD

Index Register codes

G= 0 1

00 10 14
01 I 15
10 12 16
11 13 17
Loop Stack Pop codes

0 No Change

1 Pop

Modify Register codes

G= 0 1

00 MO M4
01 M1 M5
10 M2 M6
11 M3 M7

Mode Control codes

SR: Secondary register bank mode
BR: Bit-reverse mode

OL: ALU overflow latch mode

AS: AR register saturate mode

00 No change

01 No change

10 Deactivate

11 Activate

Double Data Fetch Program Memory Destination codes

AYO
AY1

MYO
MY1

== oo
— oo

PP

REG

PC Stack Pop codes

0
1

Instruction Coding A

No Change

Pop

Register codes

RGP = 00 01 10
0000 AX0 0] 14
0001 AX1 I 15
0010 MX0 12 16
0011 MX1 13 17
0100 AYO MO M4
0101 AY1 M1 M5
0110 MYO M2 Mé6
0111 MY+ M3 M7
1000 Si Lo L4
1001 SE L1 L5
1010 AR L2 L6
1011 MRO L3 L7
1100 MR1

1101 MR2

1110 SRO

1111 SR1

Jump Type codes

0 Jump

1 Jump Subroutine

11

ASTAT
MSTAT
SSTAT
IMASK
ICNTL
CNTR
SB

PX

A Instruction Coding

A-10

SF

SPP

Shifter Function codes

0000 LSHIFT (HI, PASS)
0001 LSHIFT (HI, OR)
0010 LSHIFT (LO, PASS)
0011 LSHIFT (LO, OR)
0100 ASHIFT (HI, PASS)
0101 ASHIFT (HI, OR)
0110 ASHIFT (LO, PASS)
0111 ASHIFT (LO, OR)
1000 NORM (HI, PASS)
1001 NORM (HI, OR)
1010 NORM (LO, PASS)
1011 NORM (LO, OR)
1100 EXP (HI)
1101 EXP (HIX)
1110 EXP (LO)
1111 Block Exponent Adjust

Status Stack Push/Pop codes

00 No change

01 No change

10 Push

11 Pop

Return Type codes

0 Return from Subroutine
1 Return from Interrupt

TERM Termination codes for DO UNTIL

0000 Not equal NE
0001 Equal EQ
0010 Less than or equal LE
0011 Greater than GT
0100 Greater than orequal GE
0101 Less than LT
0110 Not ALU Overflow NOT AV
0111 ALU Overflow AV
1000 Not ALU Carry NOTAC

1001 ALU Carry AC
1010 Xinput sign positive POS
1011 Xinput sign negative NEG
1100 Not MAC Overflow NOT MV
1101 MAC Overflow MV
1110 Counter expired CE
1111 Always FOREVER
X Operand codes

000 X0 (Sl for Shifter)
001 X1 (Not for Shifter)
010 AR

011 MRO

100 MR1

101 MR2

110 SRO

111 SR1

ALU/MAC Y Operand codes

00 YO

01 Y1

10 F (feedback register)
11 zero

ALU/MAC Result Register codes

0 Result register
1 Feedback register

A-11

Division Exceptions

B.1 DIVISION FUNDAMENTALS

The ADSP-2100’s instruction set contains two instructions for
implementing a non-restoring divide algorithm. These instructions take as
their operands twos-complement or unsigned numbers, and in 16 cycles
produce a truncated quotient of 16 bits. For most numbers and
applications, these primitives produce the correct results. However, there
are certain situations where results produced will be off by one LSB. This
appendix documents these situations, and presents alternatives for
producing the correct results.

Computing a 16-bit fixed point quotient from two numbers is accom-
plished by 16 executions of the DIVQ instruction for unsigned numbers.
Signed division uses the DIVS instruction first, followed by 15 DIVQs.
Whichever division you perform, both input operands must be of the
same type (signed or unsigned) and produce a result of the same type.

These two instructions are used to implement a conditional add /subtract,
non-restoring division algorithm. As its name implies, the algorithm
functions by adding or subtracting the divisor to/from the dividend. The
decision as to which operation is perform is based on the previously
generated quotient bit. Each add /subtract operation produces a new
partial remainder, which will be used in the next step.

The phrase non-restoring refers to the fact that the final remainder is not
correct. With a restoring algorithm, it is possible, at any step, to take the
partial quotient, multiply it by the divisor, and add the partial remainder
to recreate the dividend. With this non-restoring algorithm, it is necessary
to add two times the divisor to the partial remainder if the previously
determined quotient bit is zero. It is easier to compute the remainder
using the multiplier than in the ALU.

B.1.1 Signed Division

Signed division is accomplished by first storing the 16-bit divisor in an X
register (AX0, AX1, AR, MR2, MR1, MRO, SR1, or SR0). The 32-bit divi-
dend must be stored in two separate 16-bit registers. The lower 16-bits
must be stored in AY0, while the upper 16-bits can be in AY1 or AF.

B

Division Exceptions

The DIVS primitive is executed once, with the proper operands (ex. DIVS
AY1, AX0) to compute the sign of the quotient. The sign bit of the quotient
is determined by XORing (exclusive-or) the sign bits of each operand. The
entire 32-bit dividend is shifted left one bit. The lower 15 bits of the
dividend with the recently determined sign bit appended are stored in
AYO0, while the lower 15 bits of the upper word, with the MSB of the lower
word appended is stored in AF.

To complete the division, 15 DIVQ instructions are executed. Operation of
the DIVQ primitive is described below

B.1.2 Unsigned Division

Computing an unsigned division is done like signed division, except the
first instruction is not a DIVS, but another DIVQ. The upper word of the
dividend must be stored in AF, and the AQ bit of the ASTAT register must
be set to zero before the divide begins.

The DIVQ instruction uses the AQ bit of the ASTAT register to determine
if the dividend should be added to, or subtracted from the partial
reminder stored in AF&AYO0. If AQ is zero, a subtract occurs. A new value
for AQ is determined by XORing the MSB of the divisor with the MSB of
the dividend. The 32-bit dividend is shifted left one bit, and the inverted
value of AQ is moved into the LSB.

B.1.3 Output Formats

As in multiplication, the format of a division result is based on the format
of the input operands. The division logic has been designed to work most
efficiently with fully fractional numbers, those most commonly used in
fixed-point DSP applications. A signed, fully fractional number uses one
bit before the binary point as the sign, with 15 (or 31 in double precision)
bits to the right, for magnitude.

If the dividend is in M.N format (M bits before the decimal point, N bits
after), and the divisor is O.P format, the quotient’s format will be (M-
O+1).(N-P-1). As you can see, dividing a 1.31 number by a 1.15 number
will produce a quotient whose format is (1-1+1).(31-15-1) or 1.15.

Before dividing two numbers, you must ensure that the format of the
quotient will be valid. For example, if you attempted to divide a 32.0
number by a 1.15 number the result would attempt to be in (32-1+1).(0-15-
1) or 32.-16 format. This cannot be represented in a 16-bit register!

In addition to proper output format, you must insure that a divide
overflow does not occur. Even if a division of two numbers produces a

Division Exceptions

legal output format, it is possible that the number will overflow, and be
unable to fit within the constraints of the output. For example, if you
wished to divide a 16.16 number by a 1.15 number, the output format
would be (16-1+1).(16-15-1) or 16.0 which is legal. Now assume you
happened to have 16384 (H#4000) as the dividend and .25 (H#2000) as the
divisor, the quotient would be 65536, which does not fit in 16.0 format.
This operation would overflow, producing an erroneous results.

Input operands can be checked before division to ensure that an overflow
will not result. If the magnitude of the upper 16 bits of the dividend is
larger than the magnitude of the divisor, an overflow will result.

B.1.4 Integer Division

One special case of division that deserves special mention is integer divi-
sion. There may be some cases where you wish to divide two integers,
and produce an integer result. It can be seen that an integer-integer divi-
sion will produce an invalid output format of (32-16+1).(0-0-1), or 17.-1.

To generate an integer quotient, you must shift the dividend to the left
one bit, placing it in 31.1 format. The output format for this division will
be (31-16+1).(1-0-1), or 16.0. You must ensure that no significant bits are
lost during the left shift, or an invalid result will be generated.

B.2 ERROR SITUATIONS

Although the ADSP-2100 divide primitives work in most instances, there
are two cases where an invalid, or inaccurate result can be generated. The
first case involves signed division by a negative number. If you attempt to
use a negative number as the divisor, the quotient generated may be one
LSB less than the correct result. The other case concerns unsigned division
by a divisor greater than h#7FFF. If the divisor in an unsigned division
exceeds H#7FFF, an invalid quotient will be generated.

B.2.1 Negative Divisor Error

The quotient produced during a divide involving a negative divisor will
generally be one LSB less than the correct result. The divide algorithm
implement in ADSP-2100 hardware does not correctly compensate for the
twos-complement format of a negative number, causing this inaccuracy.

There is one case where this discrepancy does not occur. If the result of
the division operation should equal H#8000, then it will be correctly
represented, and not be one LSB off.

Division Exceptions

There are several ways to correct for this error. But before changing any
code, you should determine if one LSB error in you quotient is significant
problem. In some cases, the LSB is small enough to be insignificant. If you
find it necessary have exact results, two solutions are apparent.

One way would be to avoid division by a negative number. If your divisor
is negative, take its absolute value, and invert the sign of the quotient after
division. This will produce the correct result.

Another technique would be to check the result by multiplying the
quotient by the divisor. Compare this value with the dividend, if they are
off by more than the value of the divisor, increase the quotient by one.

B.2.2 Unsigned Division Error

Unsigned divisions can produce erroneous results if the divisor is greater
than H#7FFF. You should not attempt to divide two unsigned numbers if
the divisor has a one in the MSB. If it is necessary to perform a such a
division, both operands should be shifted right one bit. This will maintain
the correct orientation of operands.

Shifting both operands may result in a one LSB error in the quotient. This
can be solved by multiplying the quotient by the original (not shifted)
divisor. Subtract this value from the original dividend to calculate the
error. If the error is greater than the divisor, add one to the quotient, if it is
negative, subtract one from the quotient.

B.3 SOFTWARE SOLUTION

Each of the problems mentioned in this Appendix can be compensated for
in software. Listing 1 shows the module divide_solution. This code can be
used to divide two signed or unsigned numbers to produce the correct
quotient, or an error condition.

In addition to correcting the problems mentioned, this module provides a
check for division overflow and computes the remainder following the
division.

Since many applications do not require complete error checking, the code
has been designed so you can remove tests that are not necessary for your
project. This will decrease memory requirements, as well as increase
execution speed.

The module signed_div expects the 32-bit dividend to be stored in
AY1&AY0, and the divisor in AX0. Upon return either the AR register

Division Exceptions

holds the quotient and MRO holds the remainder, or the overflow flag is
set. The entire routine takes at most 27 cycles to execute. If an exception
condition exists, it may return sooner. The first two instructions store the
dividend in the MR registers, the absolute value of the dividend’s MSW in
AF, and the divisor’s absolute value in AR.

The code block labeled test_1 checks for division by H#8000. Attempting
to take the absolute value of H#8000 produces an overflow. If the AV flag
is set (from taking the absolute value of the divisor), then the quotient is
—AY1. This can produce an error if AY1 is H#8000, so after taking the
negative of AY1, the overflow flag is checked again. If it is set control is
returned to the calling routine, otherwise the remainder is computed. If it
is not necessary to check for a divisor of H#8000, this code block can be
removed.

The code block labeled test_2 checks for a division overflow condition.
The absolute value of the divisor is subtracted from the absolute value of
the dividend’s MSW. If the divisor is less then the dividend, it is likely an
overflow will occur. If the two are equal in magnitude, but different in
sign, the result will be H#8000, so this special case is checked. If your
application does not require an overflow check, this code block can be
removed. If you decide to remove test_2 be sure to change the JUMP
address in test_1 to do_divs, instead of test_2.

After error checking, the actual division is performed. Since the absolute
value of the divisor has been stored in AR, this is used as the X-operand
for the DIVS instruction. Fifteen DIVQ instructions follow, computing the
rest of the quotient. The correct sign for the quotient is determined, based
on the AS flag of the ASTAT register. Since the MR register contains the
original dividend, the remainder can be determine by a multiply subtract
operation. The divisor times the quotient is subtracted from MR to
produce the remainder in MRO.

The last step before returning is to clear the ASTAT register which may
contain an overflow flag produced during the divide.

The subroutine unsigned_div is very similar to signed_div. MR1 and AF are
loaded with the MSW of the dividend, MRO is loaded with the dividend
LSW and the divisor is passed into AR. Since unsigned division with a
large divisor (>H#7FFF) is prohibited, the MSB of the divisor is checked.
If it contains a one, the overflow flag is set, and the routine returns to the
caller. Otherwise test_11 checks for a standard divide overflow.

B Division Exceptions

In test_11 the divisor is subtracted from the MSW of the dividend. If the
result is less then zero division can proceed, otherwise the overflow flag is
set. If you wish to remove test_11, be sure to change the JUMP address in

test_10 to do_divg.

The actual unsigned division is performed by first clearing the AQ bit of
the ASTAT register, then executing 16 DIVQ instructions. The remainder
is computed, after first setting MR2 to zero. This is necessary since MR1
automatically sign-extends into MR2. Also, the multiply must be executed
with the unsigned switch. To ensure that the overflow flag is clear, ASTAT

is set to zero before returning.

In both subroutines, the computation of the remainder requires only one
extra cycle, so it is unlikely you would need to remove it for speed. If it is a
problem to have the multiply registers altered, remove the multiply/
subtract instruction just before the return, and remove the register
transfers to MRO and MR1 in the first two multifunction instructions. Be
sure to remove the MR2=0; instruction in the unsigned_div subroutine also.

.MODULE/ROM Divide solution;
{

This module can be used to generate correct results when using the divide primitives of
the ADSP-2100. The code is organized in sections. This entire module can be used to
handle all error conditions, or individual sections can be removed to increase

execution speed.

Entry Points

signed div Computes 16-bit signed quotient

unsigned div Computes 16-bit unsigned quotient
Calling Parameters

AX0 = 16-bit divisor

AY0 = Lower 16 bits of dividend

AY1l = Upper 16 bits of dividend
Return Values

AR = 16-bit quotient

MRO = 16-bit remainder .

AV flag set if divide would overflow
Altered Registers

AX0, AX1, AR, AF, AY0, AYl, MR, MYO
Computation Time: 30 cycles

}
Listing B.1 Division Error Routine (continues on next page)

B-6

Division

.ENTRY signed_div, unsigned div;

signed_div: MRO=AY0, AF=AX0+AY1;
MR1=AY1l, AR=ABS AX0;

test 1: IF NE JUMP test 2;
ASTAT=H#4;
RTS;

test_2: IF NOT AV JUMP test_ 3;

AYO=AY1l, AF=ABS MR1;

-Xceptions B

{Take divisor’s absolute value}
{See if divisor and dividend have}
{same magnitude, different sign}
{If divisor non-zero, do test 2}
{Divide by zero, so overflow}
{Return to calling program}

{If divisor H#8000, then the}
{quotient is simply -AYl}

IF NOT AV JUMP recover_ sign;

ASTAT=H#4;
RTS;

test_3: AF=PASS AF;
IF NE JUMP test 4;
AYO0=H#8000;
ASTAT=H#0;
JUMP recover_ sign;

test_4: AF=ABS MRI1;
AR=ABS AXO0;
AF=AF-AR;
IF LT JUMP do divs;
ASTAT=H#4;
RTS;

{H#8000 divided by H#8000,}
{so overflow}

{Check for division overflow}
{Not equal, jump test 4}
{Quotient equals -1}

{Clear AS bit of ASTAT}
{Compute remainder}

{Get absolute of dividend}
{Restore AS bit of ASTAT}
{Check for division overflow}
{If Divisor>Dividend do divide}
{Division overflow}

Listing B.1 Division Error Routine (continues on next page)

do_divs:

recover sign:

unsigned div:

test 10:

test 11:

do_divqg:

uremainder:

.ENDMOD;

B Division Exceptions

DIVS AY1l, AR; DIVQ AR;

DIVQ AR; DIVQ AR;
DIVQ AR; DIVQ AR;
DIVQ AR; DIVQ AR;
DIVQ AR; DIVQ AR;
DIVQ AR; DIVQ AR;
DIVQ AR; DIVQ AR;
DIVQ AR; DIVQ AR;

MYO0=AX0,AR=PASS AYO;
IF NEG AR=-AYO0;
MR=MR-AR*MYO0 (SS);
RTS:

MRO=AYO, AF=PASS AY1l;
MR1=AY1l, AR=PASS AXO0;

IF GT JUMP test_ 11;
ASTAT=H#4;
RTS;

AR=AY1-AXO0;

IF LT JUMP do divg;
ASTAT=H#4;

RTS;

ASTAT=0;

DIVQ AXO0; DIVQ AXO;
DIVQ AXO; DIVQ AXO0;
DIVQ AXO; DIVQ AXO0;
DIVQ AXO; DIVQ AX0;
DIVQ AXO; DIVQ AXO0;
DIVQ AXO; DIVQ AXO0;
DIVQ AX0O; DIVQ AXO0;
DIVQ AXO0; DIVQ AXO0;

MR2=0;

MY0=AX0, AR=PASS AYO;
MR=MR-AR*MY0 (UU);
RTS;

{Compute sign of quotient}

{Put quotient into AR}
{Restore sign if necessary}
{compute remainder dividend neg}

{Return

AT aTn

te ¢ 1§ program)

{Move dividend MSW to AF}
{Is MSB set?}

{No, so check overflow}
{Yes, so set overflow flag}
{Return to caller}

{Is divisor<dividend?}
{No, so go do unsigned divide}
{Set overflow flag}

{Clear AQ flag}
{Do the divide}

{MRO and MRl previous set}
{Divisor in MXO, Quotient in AR}
{Determine remainder}

{Return to calling program}

Listing B.1 Division Error Routine

GUIDE

Index

Boldface, in this index, denotes the major entry for the item indexed. The
notation “&c” means “and following pages.” Figures and tables appear in

italics.

A
AC (ALU Carry; see also ASTAT)
2-2, 2-6, 2-8, 2-13, 2-24, 2-34,
Tables 4.1 & 4.3

Addresses,
see DAG, PMA, DMA, Arrays, Bit-reversal

ADSP-2100 1-2
General Architecture 1-5
General Description 1-1
Instruction set 6-1, Appendix A
Internal Architecture 1-5
Internal Architecture Block Diagram 1-4
Key Features 1-2
Program examples 4-28, 6-18

AF register 2-6, 2-8, 6-4, 6-12
Alternate registers, see Shadow registers

ALU, block diagram 2-5
functions 2-7,4-21, 6-8, Table 6.3
General 2-5
Overflow, see also AV 2-9, 6-14
Registers 2-8

Saturation, see Saturation
AN (ALU Negative; see also ASTAT)
2-2,2-6,2-13, Tables 4.1 & 4.3
AND, see ALU functions
AQ (ALU quotient; see also ASTAT)

2-6, 2-9, 2-13
AR register 2-6, 2-8, 2-18, 2-28, 2-34, 6-4
Architecture Description File 6-17
Arithmetic ~ 2-1,2-8, 2-9, 2-12, 2-17, 2-21,

2-24, 3-2, 6-4, 6-9
Arrays, see also Circular buffers
Initializing 6-15, 6-19
Length operator (%) 6-16
AS (ALU input sign; see also ASTAT)
2-6, 2-13, Tables 4.1 & 4.3

Assembler 1-8, 6-1, 6-13, 6-15

ASTAT (Arithmetic Status)
2-6, 2-10, 2-13, 2-18, 2-34, 4-10, 4-14,
4-20, 4-21, 4-26, Tables 4.1
& 4.3,6-12
Asynchronous inputs
see also DMACK,RESET, HALT, BR,
IRQ, 5-3
AV (ALU Overflow; see also ASTAT)
2-2,2-6, 2-9, 2-13, 2-24, 4-23, Tables 4.1 &
4.3,5-13, 6-14
AX0, AX1 registers 2-6, 2-8, 6-12
AY0, AY1 registers 2-6, 2-8, 6-12
AZ (ALU Zero; see also ASTAT)
2-2,2-6,2-13, Tables 4.1 & 4.3

B
BG (Bus Grant) 1-1, 5-3, 5-13, 5-18
Binary Arithmetic, see Arithmetic
Binary string 2-1
Bit-reversal, see also DAG1

3-2, 3-5, 4-22, 5-13, 6-14
Block Exponent 2-26
Block Floating-Point 2-1, 2-26
BR (Bus Request) 1-1, 5-3, 5-9, 5-13, 5-18
Buffers, see Arrays, Circular Buffers

Cc

C Compiler 1-9, 2-3, 6-1

Cache Memory 4-26, 5-13, 6-4, 6-21
Example 4-28, 6-21

CALL instruction 4-1,4-7, 4-13

CE (counter expired) 4-4

CI (carry in) 2-6

CIRC directive, see Circular Buffers

Circular buffers 3-3, 6-16, 6-19&c
CLKIN 1-1, 5-2, 5-13, 5-17
CLKOUT 1-1, 5-2, 5-13, 5-17
CNTR register 4-4, 6-12, 6-13, 6-20

Index

Conditional
4-4, 4-25, Tables 4.1 & 4.3, 6-8, 6-10
Constants 6-19
Context switching, see Shadow Registers
Control interface 5-12
see also RESET, HALT, TRAP
Counter stack
Cycle, beginning/end
2-6, 2-15, 2-23, 4-21, 4-26, 5-2, 6-2, 6-4

4-4, 4-5

D

DAGs 3-1, 6-4, 6-14
DAGs, Block Diagram 3-2
DAGs, DAGI, see also Bit-reveisal 3-1, 6-14
DAGs, DAG2 4-3, 4-20, 6-13

Data Address Generators (DAGs) 3-1
Data Bus, see DMD, PMD

Denormalization 2-26, 2-30
Development System 1-8
Division, see also Arithmetic 2-9, App. B

DIVQ instruction, see Division
DIVS instruction, see Division
DM, see DMD bus,

Multifunction instructions
DMA bus 5-19
DMA bus, bit-reversed addresses 3-5
DMACK 5-1, 5-3, 5-9, 5-14, 5-20
DMD bus 2-6, 2-15, 2-21, 3-1, 3-6, 4-4, 4-16,

5-1, 5-19

DMD-PMD exchange, see PMD-DMD

DMRD 5-9, 5-20
DMS 5-9, 5-19
DMWR 5-9, 5-20
DO UNTIL 4-1, 4-4, 4-5, 4-16&c, 4-27
DO UNTIL, restrictions 4-8
Down counter 4-4
E

Emulator 1-9
ENTRY directive 6-13
EQ (equal condition) Tables 4.1 & 4.3
Evaluation Board 1-8
EXPADJ instruction 2-26, 2-28
Exponent, see also Arithmetic 2-3, 2-26
EXTERNAL directive 6-13

F
FFTs 3-2,3-6
FIR Filter examples 4-28, 6-18

Fixed-Point, see Arithmetic
Floating-Point

see Arithmetic, Block Floating-Point
FOREVER (No condition) Tables 4.1
Fractional, see also Arithmetic ~ Figure 2.6

G
GE (greater than/equal condition)

Tables 4.1 & 4.3
GND (ground pins) 5-20
GT (greater than condition)

Tables 4.1 & 4.3

H

HALT 1-1, 5-3, 5-6, 5-9, 5-13, 5-14, 5-17
HI/LO reference 2-21, 2-29, 6-11
HIX (Shifter) 2-24, 2-34

1 JK

I (Index) registers 3-1, 6-4, 6-12, 6-14, 6-19

ICNTL register 4-9, 4-20, 4-23, 5-13, 5-16,
6-12

IMASK register 4-9, 4-10, 4-14, 4-20, 4-24,
5-13, 5-16, 6-12

In-Circuit Emulator 1-9

INIT directive, see also Arrays 6-15, 6-16

Input Sign, see AS, SS, Tables 4.1 & 4.3

Instruction register 4-1
Interrupts
Controller 4-1, 4-8

4-8, 4-23, 5-15
4-8, 4-23, 5-15

Edge sensitive
Level sensitive

Operation 4-14, 5-9, 5-13, 5-15, 6-19&c
Priority 4-8, 4-23&c
Request 4-3, 4-10
Vector location 4-3
IRQ 4-9, 4-23, 5-16, 5-17
JUMP instruction 4-1, 4-7, 4-12, 4-15, 4-27,

6-13

L
L (Length) registers 3-1, 6-12, 6-16, 6-19
LE (less than/equal condition)

Tables 4.1 & 4.3
Linker 1-8, 3-3, 5-7, 6-1, 6-17, 6-19
Logical operators, see ALU functions

Loop Comparator 4-5, 4-18
Loops 4-4, 4-16, 4-27
Loops, last instruction 4-7
Loops, termination 4-19

LT (less than condition) Tables 4.1 & 4.3

M
M (modify) registers
3-1, 6-4, 6-12, 6-14, 6-19

MAC
Block diagram 2-14
Functions 2-16, 6-9, Table 6.4
General 2-13
Input output registers 2-18

Mantissa, see Arithmetic
Memory read

see Multifunction, PMRD, DMRD
Memory select, see PMS, DMS
Memory write

see Multifunction, PMWR, DMWR
Memory-mapped peripherals

5-1, 5-9, 6-17

MF register 2-15, 2-18, 6-4
Miscellaneous instructions 6-14, Table 6.9

MODE CONTROL instruction 4-8, 4-23,
6-14

MODIFY instruction 6-14

Modulo addressing 3-3

MOVE instructions 6-12, Table 6.7

MR register 2-2, 2-8, 2-13, 2-18, 2-28, 6-4,
6-12

MRO, see MR

MR1, see MR

MR2, see MR

MSTAT (mode status)2-7/9, 2-16, 3-2, 3-5,
4-10, 4-14, 4-20, 4-22, 5-13,
6-12

Multifunction instructions

6-2, 6-3, Table 6.1 & 6.2

Index

Multifunction instructions
6-3&c, Tables 6.1 & 6.2
Multiplier/ Accumulator, see MAC
MYV (multiplier overflow; see also ASTAT)
2-13, 2-18, Tables 4.1 & 4.3
MXO0, MX1 registers 2-15, 2-18, 6-4, 6-12
MY0, MY1 registers 2-15, 2-18, 6-4, 6-12

N

NE (not equal condition) Tables 4.1 & 4.3
NEG (negative condition) Tables 4.1 & 4.3

NOP instruction 6-8, 6-14
NORM instruction 2-26, 2-32
Normalization 2-26, 2-32

NOT AC (no carry condition)
Tables 4.1 & 4.3
NOT AV (no ALU overflow condition)
Tables 4.1 & 4.3
NOT MV (no MAC overflow condition)
Tables 4.1 & 4.3
NOT, see ALU Functions

0

OR, see ALU Functions
OR/PASS

Overflow, ALU, see AV
Overflow, MAC, see MV

2-21, 2-31, 6-11

P
P Output (MAC) 2-16, Fig.2.6
Package, PGA 1-3, 5-21/22

Package, PLCC 1-3
Parallel, see Multifunction
PASS (Shifter), see OR/PASS

PC (program counter) 4-1,4-3,6-12
PC stack 4-1, 4-3, 4-15
Pin configuration 5-21/22
PM

see PMD bus, Multifunction instructions
PMA bus 4-10, 4-12, 4-15, 4-20, 4-27, 5-13,
5-14, 5-18
PMD bus 3-6, 4-26, 5-1, 5-18
PMD-DMD bus exchange 2-6, 2-15, 3-6
PMD-DMD bus exchange diagram 3-7
PMDA 5-6, 5-19

Index

PMRD 5-6, 5-19
PMS 5-6, 5-18
PMWR 5-6, 5-19
Pointer operator (") 6-16
Pointer wraparound, see Circular Buffers

PORT directive 6-17

Ports, see also Memory-Mapped ~ 6-15, 6-17
POS (positive condition) Tables 4.1 & 4.3
Primary registers, see Shadow registers
Program Sequencer, see Sequencer

PROM Splitter 1-9, 5-7, 6-1
PUSH/POP 6-14
PX register 3-6, 6-12
Q
Quotient, see Division, Arithmetic
R
R Bus (internal) 2-6, 2-15, 2-21
Register indirect addressing 4-20
Register, move 6-6, 6-12
Registers Table 6.6
RESET 1-1, 4-22, 5-3, 5-6, 5-13, 5-17
Rounding, MAC 2-19, 6-9
RTI instruction 4-1, 4-7, 4-10, 5-16
RTS instruction 4-1, 4-7
S
Saturation

ALU 2-8, 4-23, 5-13, 6-14

MAC 2-18
SB register 2-21, 2-28, 6-12
SE register 2-21, 2-29, 2-30, 6-12
Sequencer, block diagram 4-2

functions 4-10&c, 5-13, 6-13, Table 6.3
Shadow registers
ALU 2-7
General 4-8,4-22, 5-13, 6-14
MAC 2-15
Shifter 2-23
Shifter, block diagram 2-22
Functions 2-26, 4-21, 6-11, Table 6.3
General 2-20
Input/output registers 2-28

SI register 2-21, 2-28, 6-12

Signed numbers, see Arithmetic
Simulator 1-8, 4-10, 5-7, 6-1
SR (Shifter result register)

2-8, 2-18, 2-28, 6-12

SRO, see SR

SR1, see SR

SS (Shifter Input Sign, see also ASTAT)

2-24, 4-21
SSTAT (Stack status) 4-10, 4-15, 4-20, 4-22,
5-13, 6-12

Stack
count 4-16, 5-13, 6-14
loop 4-16, 5-13, 6-14
overflow 4-5, 4-22, 6-14
PC 4-16, 5-13, 6-14

Stack, status, see SSTAT

Synchronization Delay 5-3, 5-6, 5-14

Syntax notation 6-2
System Builder 1-8, 5-7, 6-1, 6-1, 6-17, 6-20

T

Termination conditions
4-4, Table 4.1, Appendix A

TRAP 1-1, 5-6, 5-14, 5-18
Tristate, see also BR 5-5, 5-13
TRUE (Always true) Table 4.3

Twos-Complement, see Arithmetic

u-2

Unsigned numbers, see Arithmetic

VAR directive 6-15
vdd 5-20
XOR, see ALU functions

g ANALOG
DEVICES

Analog Devices

Digttal Signal Processing Division
One Technology Way :

PO Box9106

Norwood, MA 02062-9106
(617)329-4700

'E971c4-10/89
3 a v

o

