

You may contact the Digital Signal Processing Division in the following
ways:

• By contacting your local Analog Devices Sales Representative
For Marketing information, call (617) 461-3881 in Norwood,
Massachusetts, USA
For Applications Engineering information, call (617) 461-3672 in
Norwood, Massachusetts, USA

• The Norwood office Fax number is (617) 461-3010
• The Norwood office may also be reached by

Telex: 924491
TWX: 710/394-6577
Cables: ANALOGNORWOODMASS

• The DSP Division runs a Bulletin Board Service that can be reached
at 300, 1200, or 2400 baud, no parity, 8 bits data, 1 stop bit by dialing:

(617) 461-4258
By writing to:

Analog Devices
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

ADSp·21 01/2102 User's Manual
February 1990

© 1990 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use; nor for any
infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices.

Printed in U.S.A. First Edition

Contents

CHAPTER 1 INTRODUCTION

1.1 GENERAL DESCRIPTION .. 1 - 1
1.2 SUMMARY OF ADSP-21 01 KEYFEATURES .. 1-4
1.3 INTERNAL ARCHITECTURE .. 1 - 5
1.4 ADSP-2101 DEVELOPMENT SYSTEM .. 1-8
1.5 MANUAL ORGANIZATION ... 1 - 9

CHAPTER 2 COMPUTATIONAL UNITS

2.1 ARITHMETIC ON THE ADSP-21 01 .. 2 - 1
2.1.1 Binary String ... 2 - 1
2.1.2 Unsigned ... 2 - 1
2.1.3 Signed Numbers: Twos-Complement ... 2 - 1
2.1.4 Fractional Representation: 1.15 .. 2 - 1
2.1.5 ALU Arithmetic .. 2 - 2
2.1.6 MAC Arithmetic ... 2 - 2
2.1.7 Shifter Arithmetic .. 2 - 2
2.1.8 Summary .. 2-3
2.2 ARITHMETIC/LOGIC UNIT (ALU) ... 2 - 4
2.2.1 ALU Block Diagram Discussion .. 2 - 4
2.2.2 Standard Functions ... 2 - 6
2.2.3 ALU Input/Output Registers .. 2 - 7
2.2.4 Multiprecision Capability ... 2 - 7
2.2.5 ALU Saturation Mode ... 2 - 7
2.2.6 ALU Overflow Latch Mode .. 2 - 8
2.2.7 Division ... 2 - 8
2.2.8 ALU Status .. 2 - 12
2.3 MULTIPLIER/ACCUMULATOR (MAC) ... 2-12
2.3.1 MAC Block Diagram Discussion ... 2 - 12
2.3.2 MAC Operations ... 2 - 15
2.3.2.1 Standard Functions .. 2 - 15
2.3.2.2 Input Formats ... 2 - 17
2.3.2.3 MAC Input/Output Registers .. 2 - 17
2.3.2.4 MR Register Operation .. 2 - 17

iii

2.3.2.5 MAC Overflow and Saturation ... 2 -18
2.3.2.6 Rounding Mode .. 2 - 18
2.4 BARREL SHIFTER .. 2 - 20
2.4.1 Shifter Block Diagram Discussion ... 2 - 20
2.4.2 Shifter Operations ... 2 - 26
2.4.2.1 Shifter Input/Output Registers .. 2 - 26
2.4.2.2 Derive Block Exponent.. ... 2 - 27
2.4.2.3 Immediate Shifts .. 2 - 28
2.4.2.4 Denormalize ... 2 - 29
2.4.2.5 Normalize ... 2 - 30

CHAPTER 3 DATA MOVES

3.1 INTRODUCTION ... 3-1
3.2 DATA ADDRESS GENERATORS (DAGs) ... 3 - 1
3.2.1 DAG Block Diagram Discussion ... 3-1
3.2.2 Modulo Addressing ... 3 - 3
3.2.3 Calculating the Base Address ... 3 - 4
3.2.3.1 Circular Buffer Base Address Example 1 3 - 4
3.2.3.2 Circular Buffer Base Address Example 2 3 - 4
3.2.3.3 Circular Buffer Operation Example 1 3 - 4
3.2.3.4 Circular Buffer Operation Example 2 3 - 5
3.2.4 Serial Ports ... 3 - 5
3.2.5 Bit-Reverse Addressing .. 3 - 5
3.3 PMD-DMD BUS EXCHANGE .. 3 - 6
3.3.1 PMD-DMD Block Diagram Discussion .. 3 - 6

CHAPTER 4 PROGRAM CONTROL

4.1 INTRODUCTION .~ .. .4-1
4.2 PROGRAM SEQUENCER .. 4 - 1
4.2.1 Next Address Select Logic .. 4 - 1
4.2.2 Program Counter and Stack .. .4 - 3
4.2.3 Down Counter and Stack4 - 4
4.2.4 Loop Comparator and Stack .. .4 - 5
4.3 INTERRUPT CONTROLLER .. 4 - 8
4.3.1 Configuring Interrupts .. .4 - 9
4.3.1.1 Interrupt Control Register (ICNTL) .. .4 - 9
4.3.1.2 Interrupt Mask Register (IMASK) .. .4 - 10
4.3.1.3 Interrupt Force & Clear Register (IFC)4 - 11
4.3.2 Interrupt Controller Operation4 - 12

iv

4.4 STATUS REGISTERS AND STACK .. .4 - 13
4.4.1 Arithmetic Status Register (AST AT) .. .4 - 14
4.4.2 Stack Status Register (SST AT)4 - 15
4.4.3 Mode Status Register (MST AT)4 - 16
4.5 IDLE ... 4-17
4.6 CONDITION LOGIC4 - 17

CHAPTER 5 TIMER

5.1 OVERVIEW ... 5 - 1
5.2 TIMER ARCHITECTURE .. 5-1
5.3 RESOLUTION ... 5 - 2
5.4 EXAMPLE ... 5 - 2
5.5 SUMMARy .. 5 - 4

CHAPTER 6 SERIAL PORTS

6.1 OVERVIEW ... 6-1
6.1.1 Basic Features of SPORTS .. 6 - 1
6.2 SERIAL CLOCKS .. 6 - 3
6.3 FRAMING OPTIONS ... 6 - 5
6.3.1 Framing Synchronization: RFSR / TFSR .. 6 - 5
6.3.2 External or Internal: IRFS / ITFS .. 6 - 6
6.3.3 Normal or Alternate Framing Mode: RFSW / TFSW 6 - 7
6.3.4 Active High or Inverse Sense: INVRFS / INVTFS 6 - 8
6.4 SPORT WORD LENGTH: SLEN ... 6 - 8
6.5 WAVEFORM EXAMPLES ... 6 - 9
6.6 DATA REGISTERS & COMPANDING .. 6 -13
6.6.1 Simple Operation Example ... 6 - 14
6.6.2 Companding & Data Format: DTYPE ... 6 - 14
6.6.2.1 Companding Internal Data ... 6 - 15
6.6.3 Companding Operation Example .. 6 - 15
6.6.4 Contention For Companding Hardware .. 6 - 16
6.7 INTERRUPTS & AUTOBUFFERING .. 6- 16
6.7.1 Autobuffering Operation .. 6 - 17
6.7.2 Autobuffering Control Register ... 6 - 18
6.8 MULTICHANNEL OPERATION .. 6 -19
6.8.1 Multichannel Set Up .. 6 - 19
6.8.2 Multichannel Operation ... 6 - 21
6.9 SPORT ENABLE AND CONFIGURATION ... 6 - 23
6.10 SPORT HARDWARE INTERFACiNG ... 6-24

v

ontents

CHAPTER 7 SYSTEM INTERFACE

7.1 INTRODUCTION ... 7 - 1
7.2 CLOCK SIGNALS & PROCESSOR STATES ... 7-1
7.2.1 Synchronization Delay .. 7 - 3
7.2.2 Clock Considerations .. 7 - 4
7.3 RESET ... 7-4
7.4 INTERRUPTS .. 7 - 6
7.4.1 Edge & Level Sensitivity ... 7 - 6
7.4.2 Interrupt Operation .. 7 - 7
7.5 FLAG IN & FLAG OUT PINS ... 7 - 7

CHAPTER 8 MEMORY INTERFACE

8.1 INTRODUCTION ... 8-1
8.2 BOOT MEMORY INTERFACE .. 8 - 3
8.2.1 Boot Pages ... 8 - 3
8.2.2 Powerup Boot and Software Reboot .. 8 - 3
8.2.3 Boot Memory Access .. 8 - 5
8.2.4 Boot Loading Sequence ... 8 - 5
8.3 PROGRAM MEMORY INTERFACE ... 8 - 7
8.3.1 Program Memory Read I Write ... 8 - 8
8.3.2 Program Memory Map .. 8 - 10
8.4 DATA MEMORY INTERFACE .. 8 -11
8.4.1 Data Memory ReadlWrite ... 8 - 12
8.4.2 Data Memory Map .. 8 - 12
8.4.3 Parallel & Memory-Mapped Peripherals 8 - 13
8.5 BUS REQUEST I GRANT ... 8 - 14
8.6 MEMORY INTERFACE SUMMARY .. 8 -16

CHAPTER 9 INSTRUCTION SET OVERVIIEW

9.1 INTRODUCTION ... 9-1
9.2 INSTRUCTION TYPES ... 9 - 2
9.2.1 Multifunction Instructions .. 9 - 4
9.2.1.1 ALU/MAC with Data & Program Memory Read 9 - 4
9.2.1.2 Data & Program Memory Read .. 9 - 5
9.2.1.3 Computation With Memory Read ... 9 - 5
9.2.1.4 Computation With Memory Write ... 9 - 6
9.2.1.5 Computation With Data Register Move 9 - 6

vi

9.2.2
9.2.2.1
9.2.2.2
9.2.2.3
9.2.3
9.2.4
9.2.5
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2

APPENDIX A

Contents

ALU, MAC and Shifter Instructions ... 9 - 9
ALU Group ... 9 - 9
MAC Group .. 9 - 10
Shifter Group .. 9 - 11

MOVE: Read & Write .. 9 -12
Program Flow Control ... 9 - 14
Miscellaneous Instructions .. 9 - 15

DATA STRUCTURES ... 9 - 17
Arrays ... 9 - 17
Circular Arrays/Buffers .. 9 - 18
Ports & Memory-Mapping .. '" 9 - 19

PROGRAM EXAMPLE .. 9 - 20
Example Program: Setup Routine Discussion 9 - 22
Example Program: Interrupt Routine Discussion 9 - 23

INSTRUCTION CODING

OPCODES .. A-1 A.1
A.2 ABBREVIATION CODING .. A - 6

APPENDIX B

B.1
B.1.1
B.1.2
B.1.3
B.1.4
B.2
B.2.1
B.2.2
B.3

APPENDIXC

C.1
C.2

APPENDIX 0

DIVISION EXCEPTIONS

DIVISION FUNDAMENTALS .. B-1
Signed Division ... B-1
Unsigned Division ... B-2
Output Formats .. B-2
Integer Division ... B-3

ERROR SiTUATIONS ... B-3
Negative Divisor Error .. B-3
Unsigned Division Error .. B - 4

SOFTWARE SOLUTION .. B - 4

PIN INFORMATION

PIN DESCRIPTION .. C-1
PINOUT .. C-2

CONTROL/STATUS REGISTERS

vii

FIGURES

1.1 ADSP-2101/2Internal Architecture ... 1 - 3

2.1 ALU Block Diagram ... 2 - 5
2.2 DIVS Operation Block Diagram ... 2 - 9
2.3 DIVQ Operation Block Diagram ... 2 - 10
2.4 Quotient Format ... 2 - 11
2.5 MAC Block Diagram .. 2 - 13
2.6 Fractional Multiplier Result Format .. 2 - 16
2.7 Integer Multiplier Result Format .. 2 - 16
2.8 Shiftei Block Diagiam .. 2 - 2;

3.1 Data Address Generator Block Diagram ... 3 - 2
3.2 PMD-DMD BusE)(change .. 3 - 7

4.1 Program Sequencer Block Diagram ,4 - 2

5.1 Timer Registers .. 5 - 2
5.2 Timer Block'Oia.gram .; ... 5 - 3

6.1 Serial Port BloCK Diagram ... 6 - 3
6.2 ISCLK Bit in 'SPORT Control Register ... 6 - 4
6.3 Framing Required Bits in SPORT Control Register 6 - 5
6.4 Internal Framing Bits in SPORT Control Register 6 - 6
6.5 Framing Width Bitsjn SPORT Control Register 6 - 7
6.6 Active High/Low Bits in SPORT Control Register 6 - 8
6.7 SLEN Field in SPORT Control Register .. 6 - 9
6.8 SPORT Receive, Normal Framing (Internal & External Shown) 6 - 9
6.9 SPORT Continuous Receive, Normal Framing (Internal & External) 6 -10
6.10 SPORT Receive, Alternate Framing (Internal & External Shown) 6 -1 0
6.11 SPORT Continuous Receive, Alternate Framing (Internal & External) .6 -10
6.12 SPORT Start Frameless Receive, Normal Framing 6 -11
6.13 SPORT Start Frameless Receive, Alternate Framing 6-11
6.14 SPORT Transmit, Normal Framing (Internal & External Shown) 6 -11
6.15 SPORT Continuous Transmit, Normal Framing (Internal & External) ... 6- 12
6.16 SPORT Transmit, Alternate Framing (Internal & External Shown) 6 -12
6.17 SPORT Continuous Transmit, Alternate Framing (Internal & External) 6 -12
6.18 SPORT Start Frameless Transmit, Normal Framing 6 -13
6.19 SPORT Start Frameless Transmit, Alternate Framing 6 -13
6.20 DTYPE Field in SPORT Control Register .. 6 - 14
6.21 SPORT Autobuffer Control Register .. 6 - 18

viii

Contents

6.22 SPORTO Control Register (Multichannel Version) 6 -19
6.23 SPORT Multichannel Frame Delay Examples 6 - 20
6.24 SPORTO Multichannel Word Enable Registers 6 - 21
6.25 Start of Multichannel Operation ... 6 - 22
6.26 Complete Multichannel Example ... 6 - 23
6.27 SPORT Enables in System Control Register .. 6 - 24
6.28 ADSP-2101 With Two Codecs .. 6 - 24
6.29 ADSP-21 01 s With T1 Interface in Multichannel Mode 6 - 25
6.30 Using Multichannel Mode for Interprocessor Communication 6 - 26

7.1 ADSP-2101 BasicSystem ... 7-2
7.2 Clock or Crystal Configuration ... 7 - 1
7.3 Clock Signals & Processor States ... 7 - 3
7.4 Interrupt Service Timing .. 7 - 7

8.1 ADSP-2101 System Block Diagram .. 8 - 2
8.2 EPROM Contents .. 8 - 4
8.3 Boot Control Fields in System Control Register 8 - 4
8.4 Boot Address ... 8 - 6
8.5 Boot Loading Order ... 8 - 7
8.6a Program & Data Memory Read & Write Operations, No Wait States 8 - 8
8.6b Program & Data Memory Read & Write Operations, One Wait States 8 - 9
8.7 Program Memory Wait State Field In System Control Register 8 - 9
8.8 Program Memory Configurations ... 8 - 10
8.9 Data Memory Wait State Control Register .. 8 - 12
8.10 Data Memory Configuration ... 8 - 13
8.11 Bus Hold / Release .. 8 - 15

9.1 Program Example Listing 1, Main Routine & Constants File 9 - 21
9.2 Program Example Listing 2, Interrupt Routine 9 - 23

B.1 Listing B.1: Division Error Routine .. B - 6/8

ix

Contents

TABLES

2.1 Arithmetic Formats Used by the ADSP-21 01 .. 2 - 3
2.2 ALU Saturation Mode .. 2 - 7
2.3 MAC Saturation Instruction Effect ... 2 -18
2.4 Shifter Array Characteristic .. 2 - 23
2.5 Shifter Exponent Detector Characteristic .. 2 - 25

4.1 DO UNTIL Termination Condition Logic4 - 6
4.2 Interrupts & Interrupt Vector Addresses4 - 8
4.3 IMASK Entering Interrupt Service Routines4 - 11
4.4 ! F Condition Logic .. 4 - 18

5.1 Timer Range & Resolution .. 5 - 2
5.2 Example of Timer Operation .. 5 - 3

6.1 SPORT External Signals and Pins .. 6 - 1
6.2 Formula for Internal SPORT Clock Frequency .. 6 - 3
6.3 Common SPORT Frequencies (Internally-Generated) 6 - 4
6.4 DTYPE Field Values .. 6 - 15
6.5 SPORT Interrupt Priorities ... 6 - 16

7.1 ADSP-2101 State After RESET or Software Reboot 7 - 5

8.1 Program Memory Restart /Interrupt Vectors ... 8 - 11

9.1 Summary of Valid Combinations For Multifunction Instructions 9 - 7
9.2 Multifunction Instructions ... 9 - 8
9.3 ALU Instructions ... 9 - 9/1 0
9.4 MAC Instructions ... 9 - 11
9.5 Shifter Instructions ... 9 - 12
9.6 ADSP-2101 Register Set: reg & dreg .. 9 - 13
9.7 MOVE Instructions .. 9 - 13/14
9.8 Program Flow Control Instructions .. 9 - 15
9.9 Miscellaneous Instructions .. 9 - 16

x

Introduction

1.1 GENERAL DESCRIPTION
The ADSP-2101 and ADSP-2102 are programmable single-chip
microcomputers optimized for digital signal processing (DSP) and other
high-speed numeric processing applications.

Both processors contain three computational units, two data address
generators and a program sequencer, along with two serial ports, a timer,
extensive interrupt capabilities and on-chip program and data memory.
The ADSP-2101 has lK words of 16-bit data memory on-chip and 2K
words of 24-bit program memory on-chip. The ADSP-2102 is a mask
programmable version offering any combination of RAM and ROM
within the 2K word limit of the on-chip program memory. Data memory
is all RAM in both versions.

In this manual, the /I ADSP-2101/l refers to both the ADSP-2101 and the
ADSP-2102 unless otherwise noted.

The ADSP-2101 is based on the ADSP-2100 microprocessor. Like the
ADSP-2100, the ADSP-2101 contains three full-function and independent
computational units: an arithmetic/logic unit, a multiplier / accumulator
and a barrel shifter. The computational units process 16-bit data directly
and provide for multiprecision computation.

Two dedicated address generators and a powerful program sequencer
supply addresses for on-chip or external memory access. The sequencer
supports single-cycle conditional branching and executes program loops
with zero overhead. Dual data address generators allow the processor to
output simultaneous addresses for dual operand fetches. Together the
sequencer and data address generators allow computational operations to
execute with maximum efficiency. On-chip the ADSP-2101 uses a
modified Harvard architecture in which data memory stores data and
program memory stores both instructions and data. The processor can
fetch an operand from on-chip data memory, an operand from on-chip
program memory and the next instruction from on-chip program memory
in a single cycle. (The speed of on-board memory access makes this
possible and eliminates the need for cache memory as on the ADSP-2100.)

1

1-1

1 Introduction

1-2

This scheme is extended off-chip via a single external memory address
bus and data bus which may be used for either program or data memory
access and for booting. Consequently, the processor can access external
memory once in any cycle.

Boot circuitry provides for loading on-chip program memory
automatically after reset with automatic wait state generation for
interfacing to a single low-cost EPROM. Multiple programs can be
selected and loaded from the EPROM with no additional hardware.

The memory interface supports memory-mapped peripherals with
programmable wait state generation. Extern a 1 devices can gain control of
buses with bus request/grant signals (BR and BG). An optional execution
mode allows the ADSP-2101 to continue running while the buses are
granted to another master as long as an external memory operation is not
required.

The ADSP-2101 can respond to six user interrupts. There can be up to
three external interrupts, configured as edge or level sensitive. Internal
interrupts can be generated from the Timer and the Serial Ports
("SPORTs"). There is also a master RESET signal.

The two serial ports provide a complete serial interface with hardware
companding (data compression and expansion). Both ~-law and A-law
companding are supported. The ports interface easily and directly to a
wide variety of popular serial devices. Each port can generate an internal
programmable clock or accept an external clock.

As a result of its architecture, the ADSP-2101 exhibits a high degree of'
parallelism, tailored to DSP requirements. In a single cycle, the ADSP-2101
can:

• generate the next program address
• fetch the next instruction
• perform one or two data moves
• update one or two data address pointers
• perform a computation
• receive and transmit data via the two serial ports.

I

Figure 1.1 ADSP·2101/2 Internal Architecture

rod

PROGRAM
SRAM

2KX24

CONTROL
LOGIC

SERIAL
PORTO

DATA
SRAM

1KX16

The instruction set is an upwardly-compatible superset of the ADSP-2100
instruction set. Chapter 9, "Instruction Set Overview" highlights the
capabilities of the ADSP-2101 instruction set and shows an example
program.

The ADSP-2101 instruction set provides flexible data moves and
multifunction (one or more data moves with computation) instructions.
Every instruction can be executed in a single processor cycle. The ADSP-
2101 assembly language uses an algebraic syntax for ease of coding and
readability. A comprehensive set of development tools supports program
development.

1

SERIAL
PORT 1

BOOT
ADDRESS

GENERATOR

TIMER

1-3

EXTERNAL
ADDRESS

BUS

1 Introduction

1-4

1.2 SUMMARY OF ADSP·2101 KEY FEATURES

• 2K words of 24-bit program memory RAM and/or ROM on-chip

• 1K words of 16-bit data memory RAM on-chip

• Separate program and data memory buses on-chip

• Single-cycle access to on-chip program and data memory

• Dual purpose program memory for both instruction and data storage

• Automatic program boot from single byte-wide EPROM

• Programmable wait states for external program, data and boot
memory spaces

• Three independent computational units: ALU, multiplier / accumulator
and barrel shifter

• Provisions for multiprecision computation

• ALU and MAC saturation logic

• Zero-overhead looping

• Two double-buffered serial ports with hardware companding for
J.!-law and A-law

• Automatic buffering of serial port data

• Sixteen-bit programmable interval timer with 8-bit prescaler

• On-chip oscillator which can be driven from an inexpensive crystal

• Code compatible with ADSP-2100/2100A

• Simple multiprocessor interface

• 80mW low power, wait for interrupt mode

• 12.5 MHz instruction rate, 80ns per instruction

• 68-Lead PLCC/68-Pin PGA

• Complete set of hardware and software development tools

Introducti

1.3 INTERNAL ARCHITECTURE
This section gives an overview of the ADSP-2101 internal architecture
based on Figure 1.1. Each component is described in detail in the
following chapters.

Component

• Arithmetic/logic unit
• Multiplier/accumulator
• Barrel shifter
• Two data address generators
• PMD-DMD bus exchange
• Program sequencer
• Status registers and stacks
• Timer
• Serial Ports

Chapter / Section

2.2
2.3
2.4
3.2
3.3
4.2
4.4
5
6

These components are supported by five internal buses.

• Program Memory Address (PMA) bus
• Program Memory Data (PMD) bus
• Data Memory Address (DMA) bus
• Data Memory Data (DMD) bus
• Result (R) bus (which interconnects the computational units)

n

The ADSP-2101 contains three full-function and independent
computational units: an arithmetic/logic unit (ALU), a multiplier /
accumulator (MAC) and a barrel shifter (Shifter). The computational units
process 16-bit data directly and provide for multiprecision computation.

The ALU performs a standard set of arithmetic and logic operations in
addition to division primitives. The MAC performs single-cycle multiply,
multiply / add and multiply / subtract operations. The Shifter performs
logical and arithmetic shifts, normalization, denormalization, and derive
exponent operations. The Shifter implements numeric format control
including multiword floating point representations. The computational
units are arranged side-by-side instead of serially so that the output of any
unit may be the input of any unit on the next cycle. The internal result (R)
bus directly connects the computational units to make this possible.

All three sections contain input and output registers which are accessible
from the internal Data Memory Data (DMD) bus. Computational
operations generally take their operands from input registers and load the

1

1-5

1 Introduction

1-6

result into an output register. The registers act as a stopover point for data
between memory and the computational circuitry. This feature introduces
one level of pipelining on input, and one level on output. The R bus
allows the result of a previous computation to be used directly as the
input to another computation. This avoids excessive pipeline delays when
a series of different operations are performed.

Two dedicated data address generators and a powerful program
sequencer ensure efficient use of these computational units.
The Data Address Generators (DAGs) provide memory addresses when
memory data is transferred to or from the input/ output registers. Each
DAG keeps track of up to four address pointers, When a pointer is used
for indirect addressing, it is post-modified by a value in a specified
register. With two independent DAGs, the processor can generate two
addresses simultaneously for dual operand fetches.

A length value may be associated with each pointer to implement
automatic modulo addressing for circular buffers. (The circular buffer
feature is also used by the serial ports for automatic data transfers. Refer
to the chapter on Serial Ports for additional information.) DAGI can
supply addresses to data memory only. DAG2 can supply addresses to
either the data memory or the program memory. Two independent
address generators allow for simultaneous access of data stored in the
program memory and data stored in the data memory.

The Program sequencer supplies instruction addresses to the program
memory. The sequencer is driven by the Instruction Register which holds
the currently executing instruction. The instruction register introduces a
single level of pipelining into the program flow. Instructions are fetched
and loaded into the instruction register during one processor cycle, and
executed during the following cycle while the next instruction is
prefetched. To minimize overhead cycles, the sequencer supports
conditional jumps, subroutine calls and returns in a single-cycle. With an
internal loop counter and loop stack, the ADSP-2101 executes looped code
with zero-overhead. No explicit jump instructions are required to loop.

The programmable interval timer provides periodic interrupt generation.
An 8-bit prescaler register allows the timer to decrement a 16-bit count
register over a range from each cycle to every 256 cycles. An interrupt is
generated when this count register reaches zero. The count register is
automatically reloaded from a 16-bit period register and the count
resumes immediately.

Introduction 1

The ADSP-2101 has two bidirectional double-buffered serial ports
(SPORTs) for serial communications. The SPORTs are synchronous and
use framing signals to control data flow. Each SPORT can generate its
serial clock internally or use an external clock. The framing sync signals
may be generated internally or by an external device. Word lengths may
vary from three to sixteen bits. One SPORT (SPORTO) has a multichannel
capability which allows the receiving or transmitting of arbitrary data
words from a 24-word or 32-word bitstream.

In addition, SPORTl may optionally be configured as two additional
external interrupt pins and the Flag Out (FO) and Flag In (FI) pins.

These components are supported by five internal buses: The PMA and
DMA buses are used internally for the addresses associated with Program
and Data Memory. The Program Memory Data (PMD) and Data Memory
Data (DMD) buses are used for the data associated with the memory
spaces. These two pairs of buses are multiplexed off chip to the external
address and data buses. The BMS, DMS and PMS signals select the
different address spaces. The R bus is an internal bus which serves to
transfer intermediate results directly between the various computational
sections.

The Program Memory Address (PMA) bus is 14 bits wide allowing direct
access of up to 16K words of mixed instruction code and data. The
program memory data (PMD) is 24 bits wide to accommodate the 24-bit
instruction width.

The Data Memory Address (DMA) bus is 14 bits wide allowing direct
access of up to 16 K words of data. The Data Memory Data (DMD) bus is
16 bits wide. The data memory data (DMD) bus provides a path for the
contents of any register in the processor to be transferred to any other
register or to any external data memory location in a single cycle. The data
memory address comes from two sources: an absolute value specified in
the instruction code (direct addressing) or the output of a data address
generator (indirect addressing). Only indirect addressing is supported for
data fetches from program memory.

The Program Memory data (PMD) bus can also be used to transfer data to
and from the computational units through direct paths or via the PMD­
DMD bus exchange unit The PMD-DMD bus exchange unit permits data
to be passed from one bus to the other. It contains hardware to overcome
the 8-bit width discrepancy between the two buses, if necessary.

1-7

1 Introduction

1-8

1.4 ADSP·2101 DEVELOPMENT SYSTEM
The ADSP-2101 is supported with a complete set of software and
hardware development tools. The ADSP-2101 Development System
includes the Cross-Software Development System for software design and
an Emulator for hardware debugging.

The Cross-Software Development System includes:

• System Builder

The System Builder defines the architecture of systems under
development. This includes the specificatiun uf the amount of externai
RAM/ROM memory available and any memory-mapped I/O ports for
the target hardware environment as well as the allocation of program and
data memory.

• Assembler

The Assembler assembles the source code and data modules as well as
supporting the high-level syntax of the instruction set. In addition to
supporting a full range of system diagnostics, the Assembler provides
flexible macro processing, include files, and modular code development.

• Linker

The Linker links separately assembled modules. It maps the linked code
and data output to the target system hardware, as specified by the System
Builder output.

• Simulator

The Simulator performs an interactive, instruction-level simulation of the
hardware configuration described by the System Builder. It flags illegal
operations and supports full symbolic assembly and disassembly.

• PROM Splitter

This module reads the Linker output and generates PROM burner
compatible files.

Introduction 1

• C Compiler

The C Compiler reads ANSI (Draft Standard) C source and outputs ADSP-
2101 source code ready to be assembled. It also supports inline assembler
code.

• In-circuit Emulator

The Emulator provides hardware debugging of the ADSP-2101 systems
with stand-alone in-circuit emulation, using an ADSP-2101 in self­
emulation mode. The Emulator design provides execution with little or no
degradation in processor performance.

For additional information on the Development System, refer to the
ADSP-2101 Cross-Software Manual.

1.5 MANUAL ORGANIZATION
The ADSP-2101 User's Manual provides the necessary information to
understand and evaluate the operation of the ADSP-2101. Together with
the ADSP-2101 Data Sheet, this manual provides all the information
required to design a ADSP-2101 hardware system. For information on
programming the chip, refer to the ADSP-2101 Cross-Software Manual.

The rest of this manual is organized as follows.

Chapter 2, "Computational Units," describes the internal architecture and
function of the three computational units of the ADSP-2101: the
arithmetic/logic unit, the multiplier / accumulator and the barrel shifter.

Chapter 3, "Data Moves," describes the data address generators (DAGs)
and the PMD-DMD Bus Exchange Unit.

Chapter 4, "Program Control," describes the program sequencer, interrupt
controller and status and condition logic.

Chapter 5, "Timer," explains the programmable interval timer.

Chapter 6, "Serial Ports," describes the two ADSP-2101 serial ports:
SPORTO and SPORTl.

1-9

1-10

I

Chapter 7 "System Interface," provides a description of the control
interface of the ADSP-2101. Information on the software reboot function is
also included.

Chapter 8, "Memory Interface," describes the three memory spaces on the
ADSP-2101: data memory, program memory and boot memory. For
timing characteristics, refer to the ADSP-2101 Data Sheet.

Chapter 9, "Instruction Set Overview," is an overview of the ADSP-2101
instruction set. All instructions are grouped by major type. Detailed
programmer's reference material is in the ADSP-2101 Cross-Software
Manual; this chapter gives enough information to understand the
capabilities and flexibility of the instruction set.

Appendix A, "Instruction Coding," shows the complete set of opcodes
and provides the bit patterns for the choices within each field of the
instruction word.

Appendix B, "Division Exceptions," describes signed and unsigned
division.

Appendix C, "Pin Information," describes the pinout of the 68-pin PGA
and PLCC packages.

Appendix D, "Control/Status Registers," summarizes the contents and
locations of all control and status registers in the ADSP-2101.

Computational Units

2.1 ARITHMETIC ON THE ADSP-2101
This chapter describes the architecture and function of the three
computational units of the ADSP-2101: the arithmetic/logic unit, the
multiplier / accumulator and the barrel shifter.

To better understand the detailed discussion of these units you should
first understand how the ADSP-2101 handles binary arithmetic. The
ADSP-2101 is a 16-bit, fixed-point machine. Special features support
multiword arithmetic and block floating point. Most operations assume a
twos-complement number while others assume an unsigned number or a
simple binary string. This section discusses the arithmetic used by each
computational unit or operation.

2.1.1 Binary String
This is the simplest binary notation; sixteen bits are treated as a bit
pattern. Examples of computation using this format are the logical opera­
tions: NOT, AND, OR, XOR. These ALU operations treat their operands as
binary strings with no provision for sign bit or binary point placement.

2.1.2 UnSigned
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least sig­
nificant words of multiple precision numbers are treated as unsigned
numbers.

2.1.3 Signed Numbers: Twos-Complement
In discussions of ADSP-2101 arithmetic "signed" refers to twos-comple­
ment. Most ADSP-2101 operations presume or support twos-complement
arithmetic. The ADSP-2101 does not use signed-magnitude, ones­
complement, BCD or excess-n formats.

2.1.4 Fractional Representation: 1.15
The ADSP-2101 is optimized for arithmetic values in a fractional binary
format denoted by 1.15 ("one dot fifteen"). (Referred to in some contexts
as 16.15 or QI5.) This is a fixed-point format. Used with the MSB as a sign

2

2-1

2

2-2

o putational Units

bit, the 1.15 means one sign bit and fifteen fractional bits representing
values from -1 up to one LSB less than +1.

2.1.5 ALU Arithmetic
All operations on the ALU treat operands and results as simple 16-bit
binary strings, except the signed division primitive (DIVS). Various status
bits treat the results as signed: the overflow (A V) condition code, and the
negative (AN) flag.

The logic of the overflow bit (A V) is based on twos-complement. It is set if
the MSB changes in a manner not predicted by the signs of the operands
and the natu.re of the operation. For example, adding two positive
numbers must generate a positive result; a change in the sign bit signifies
an overflow and sets AV. Adding a negative and a positive may result in
either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude. It is set if
a carry is generated from bit 16 (the MSB). The (AC) bit is most useful for
the lower word portions of a multiword operation.

2.1.6 MAC Arithmetic
The multiplier produces results that are binary strings. The inputs are
"interpreted" according to the information given in the instruction itself
(signed times signed, unsigned times unsigned, a mixture or round). The
32-bit result from the multiplier is assumed to be signed, in that it is sign­
extended across the full 40-bit width of the MR register set.

The ADSP-2101 supports two modes of format adjustment: the fractional
mode for fractional operands, 1.15 format (1 signed bit, 15 fractional bits),
and the integer mode for integer operands, 16.0 format. When multiplying
1.15 operands, the result is 2.30 (30 fractional bits). To correct this, in the
fractional mode, a left shift occurs between the multiplier product (P) and
the multiplier result register (MR). This shift (1 bit to the left) causes the
multiplier result to be 1.31 which can be rounded to 1.15. Figure 2.6, in the
MAC section of this chapter, shows this.

In the integer mode, the left shift does not occur. For example, if the
operands are in the 16.0 format, the 32-bit multiplier result would be in
32.0. A left shift would change the numerical representation. Figure 2.7 in
the MAC section of this chapter shows this.

2.1.7 Shifter Arithmetic
Many operations in the Shifter are explicitly geared to signed (twos-

o putational Units 2

complement) or unsigned values: Logical Shifts assume unsigned­
magnitude or binary string values and Arithmetic Shifts assume twos­
complement.

The exponent logic assumes twos-complement numbers. The exponent
logic supports block floating point, which is also based on twos­
complement fractions.

2.1.8 Summary
The table below summarizes some of the arithmetic characteristics of the
ADSP-2101 computational operations. In addition to the numeric types
described in this section, the ADSP-2101 C Compiler supports a form of
32-bit floating-point in which one 16-bit word is the exponent and the
other word is the mantissa. See the ADSP-2101 Cross-Software Manual.

OPERATION

ALU
Addition
Subtraction
Logical Operations
Division .
ALU Overflow
ALU Carry Bit
ALU Saturation

ARITHMETIC FORMATS

Operands

Signed or unsigned
Signed or unsigned
Binary string
Explicitly signed/ unsigned
Signed
16-bit unsigned
Signed

MAC, Fractional Mode [ADSP-2100 Compatible]

Multiplication (P)
Multiplication (MR)
Mult/ Add
Mult / Subtract
MAC Saturation

MAC, Integer Mode

Multiplication (P)
Multiplication (MR)
Mult/ Add
Mult / Subtract
MAC Saturation

Shifter

Logical Shift
Arithmetic Shift
Exponent Detection

1.15 Explicitly signed/unsigned
1.15 Explicitly signed/unsigned
1.15 Explicitly signed/unsigned
1.15 Explicitly signed/unsigned
Signed

1.15 Explicitly signed/unsigned
16.0 Explicitly signed/unsigned
16.0 Explicitly signed/unsigned
16.0 Explicitly signed/unsigned
Signed

Unsigned / binary string
Signed
Signed

Table 2.1 Arithmetic Formats Used by the ADSp·2101

Result

Interpret flags
Interpret flags
same as operands
same as operands
same as operands
same as operands
same as operands

32 bits (2.30)
2.30 shifted to 1.31
2.30 shifted to 1.31
2.30 shifted to 1.31
same as operands

32 bits (2.30)
32.0 no shift
32.0 no shift
32.0 no shift
same as operands

same as operands
same as operands
same as operands

2-3

2

2-4

o putational Units

2.2 ARITHMETIC/LOGIC UNIT (ALU)
The Arithmetic/Logic Unit (ALU) provides a standard set of arithmetic
and logical functions. The arithmetic functions are add, subtract, negate,
increment, decrement and absolute value. These are supplemented by two
division primitives with which multiple cycle division can be constructed.
The logic functions are AND, OR, XOR (exclusive OR) and NOT.

2.2.1 ALU Block Diagram Discussion
Figure 2.1 shows a block diagram of the ALU.

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signai (CI) which is the carry
bit from the processor arithmetic status register (ASTAT). The ALU
generates six status signals: the zero (AZ) status, the negative (AN) status,
the carry (AC) status, the overflow (A V) status, the X-input sign (AS)
status, and the quotient (AQ) status. All arithmetic status signals are
latched into the arithmetic status register (ASTAT) at the end of the cycle.

The X input port of the ALU can accept data from two sources: the AX
register file Or the result (R) bus. The R bus connects the output registers
of all the computational units, permitting them to be used as input
operands directly. The AX register file is dedicated to the X input port and
consists of two registers, AXO and AX1. These AX registers are readable
and writable from the DMD bus. The instruction set also provides for
reading these registers over the PMD bus, but there is no direct
connection; this operation uses the DMD-PMD bus exchange unit. The AX
register file outputs are dual-ported so that one register can provide input
to the ALU while either one simultaneously drives the DMD bus.

The Y input port of the ALU can also accept data from two sources: the
AY register file and the ALU feedback (AF) register. The AY register file is
dedicated to the Y input port and consists of two registers, A YO and A Yl.
These registers are readable and writable from the DMD bus and writable
from the PMD bus. The instruction set also provides for reading these
registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The AY register file
outputs are also dual-ported: one A Y register can provide input to the
ALU while either one simultaneously drives the DMD bus.

The output of the ALU is loaded into either the ALU feedback (AF)
register or the ALU result (AR) register. The AF register is an ALU
internal register which allows the ALU result to be used directly as the

111

I

ALU Y input. The AR register can drive both the DMD bus and the R bus.
It is also load able directly from the DMD bus. The instruction set also
provides for reading AR over the PMD bus, but there is no direct
connection; this operation uses the DMD-PMD bus exchange unit.

PMDBUS 24

AZ
AN
AC
AV
AS
AQ

16

Figure 2.1 ALU Block Diagram

x y

ALU

R

CI

16

AF
REGISTER

2-5

2

2-6

o putational Units

Any of the registers associated with the ALU can be both read and written
in the same cycle. Registers are read at the beginning of the cycle and
written at the end of the cycle. A register read, therefore, reads the value
loaded at the end of a previous cycle. A new value written to a register
cannot be read out until a subsequent cycle. This allows an input register
to provide an operand to the ALU at the beginning of the cycle and be
updated with the next operand from memory at the end of the same cycle.
It also allows a result register to be stored in memory and updated with a
new result in the same cycle. See the discussion of "Multifunction
Instructions" in the chapter "Instruction Set Overview" for an illustration
of this same-cycle read and write.

The ALU section contains a duplicate bank of registers, shown in Figure
2.1 behind the primary registers. There are actually two sets of AR, AF,
AX, and A Y register files. Only one bank is accessible at a time. The
additional bank of registers can be activated (such as during an interrupt
service routine) for extremely fast context switching. A new task, like an
interrupt service routine, can be executed without transferring current
states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a I, the secondary bank is selected.

2.2.2 Standard Functions
The standard ALU functions are listed below with a brief comment.

R=X+Y
R=X+Y+CI
R=X-Y
R=X-Y+CI-l
R=Y-X
R=Y-X+CI-l
R=-X
R=-Y
R=Y+l
R=Y-l
R=PASSX
R= PASS Y
R=O (PASSO)
R=ABSX
R=XANDY
R=XORY

Add X and Y operands
Add X and Y operands and carry-in bit
Subtract Y from X operand
Subtract Y from X operand with ''borrow''
Subtract X from Y operand
Subtract X from Y operand with "borrow"
Negate X operand (twos-complement)
Negate Y operand (twos-complement)
Increment Y operand
Decrement Y operand
Pass X operand to result unchanged
Pass Y operand to result unchanged
Clear result to zero
Absolute value of X operand
Logical AND of X and Y operands
Logical OR of X and Y operands

R=XXORY
R=NOTX
R=NOTY

IIIi

I I

Logical Exclusive OR of X and Y operands
Logical NOT of X operand (ones-complement)
Logical NOT of Y operand (ones-complement)

2.2.3 ALU Input/Output Registers
The sources of ALU input and output registers are shown below.

Source for
X input port

AXO,AX1
AR
MRO, MR1, MR2
SRO,SR1

Source for
Y input port

AYO,AY1
AF

Destination for
R output port

AR
AF

IIIi

I

MRO, MR1 and MR2 are Multiplier/Accumulator result registers; SRO and
SRI are Shifter result registers.

2.2.4 Multiprecision Capability
Multiprecision operations are supported in the ALU with the carry-in (CI)
signal and ALU carry (AC) status bit. The carry-in signal is the AC status
bit that was generated by a previous ALU operation. The "add with carry"
(+CI) operation is intended for adding the upper portions of multi­
precision numbers. The "subtract with borrow" (CI -1 is effectively a
"borrow") operation is intended for subtracting the upper portions of
multiprecision numbers.

2.2.5 ALU Saturation Mode
The AR register has a twos-complement saturation mode of operation
which automatically sets it to plus or minus the maximum value if an
ALU result overflows or underflows. This feature is enabled by setting bit
3 of the mode status register (MSTAT). When enabled, the value loaded
into AR during an ALU operation depends on the state of the overflow
and carry status generated by the ALU on that cycle. The following table
summarizes the loading of the AR when the saturation mode is enabled.

Overflow (AV)
o
o
1
1

Carry (AC)
o
1
o
1

Table 2.2 Saturation Mode

AR Contents
ALUOutput
ALUOutput
0111111111111111
1000000000000000

full-scale positive
full-scale negative

2-7

2-8

III

I I

The operation of the ALU saturation mode is in contrast to the Multiplier /
Accumulator saturation ability, which is enabled only on an instruction by
instruction basis. For the ALU, enabling saturation means that all
subsequent operations are processed this way.

2.2.6 ALU Overflow Latch Mode
The ALU overflow latch mode, enabled by setting bit 2 in the mode status
register (MSTAT), causes the AV bit to "stick" once it is set. In this mode,
when an ALU overflow occurs, A V will be set and remain set, even if
subsequent ALU operations do not generate overflows. In this mode, A V
can only be cleared by writing a zero to it directly from the DMD bus.

2.2.7 Division
The ALU section supports division. The divide function is achieved with
additional shift circuitry not shown in Figure 2.1, the block diagram.
Division is accomplished with two special divide primitives. These are
used to implement a non-restoring conditional add-subtract division
algorithm. The division can be either signed or unsigned, however, the
dividend and divisor must both be of the same type. Appendix B details
various exceptions to the normal division operation as described in this
section.

A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles.
Higher and lower precision quotients can also be calculated. The divisor
can be stored in AXO, AXl or any of the R registers. The upper half of a
signed dividend can start in either A Yl or AF. The upper half of an
unsigned dividend must be in AF. The lower half of any dividend must be
in A YO. At the end of the divide operation, the quotient will be in A YO.

The first of the two primitive instructions "divide-sign (DIVS)" is executed
at the beginning of the division when dividing signed numbers. This
operation computes the sign bit of the quotient by performing an
exclusive-OR of the sign bits of the divisor and the dividend. The A YO
register is shifted one place so that the computed sign bit is moved into
the LSB position. The computed sign bit is also loaded into the AQ bit of
the arithmetic status register. The MSB of AYO shifts into the LSB position
of AF, and the upper 15 bits of AF are loaded with the lower 15 R bits
from the ALU, which simply passes the Y input value straight through to
the R output. The net effect is to left shift the AF-AYO register pair and
move the quotient sign bit into the LSB position. The operation of DIVS is
illustrated in Figure 2.2.

R

II

I

When dividing unsigned numbers, the DIVS operation is not used.
Instead, the AQ bit in the arithmetic status register (AST A T) should be
initialized to zero by manually clearing it. The AQ bit indicates to the
following operations that the quotient should be assumed positive.

15

I

r- LEFT SHIFT
~

L
AXO AX1 AV1 AF S L- AVO

B

~L ~
LOWER

DIVIDEND

I MUX MUX I
UPPER

DIVIDEND

'--- " MSB ""-J DIVISOR I".... MSB

~ ,/-

I AQ I -BUS X V
ALU

R= PASS V

I 15 LSBs
I

I

Figure 2.2 DIVS Operation

The second primitive instruction is the "divide-quotient (DIVQ)"
operation which generates one bit of quotient at a time and is executed
repeatedly to compute the remaining quotient bits. For unsigned single
precision divides, the DIVQ instruction is executed 16 times to produce 16
quotient bits. For signed single precision divides, the DIVQ instruction is
executed 15 times after the sign bit is computed by the DIVS operation.
DIVQ instruction shifts the A YO register left by one bit so that the new
quotient bit can be moved into the LSB position. The status of the AQ bit

2-9

2

2-10

p I
III

I
III

I

generated from the previous operation determines the ALU operation to
calculate the partial remainder. If AQ = 1, the ALU adds the divisor to the
partial remainder in AF. If AQ = 0, the ALU subtracts the divisor from the
partial remainder in AF. The ALU output R is offset loaded into AF just as
with the DIVS operation. The AQ bit is computed as the exclusive-OR of
the divisor MSB and the ALU output MSB, and the quotient bit is this
value inverted. The quotient bit is loaded into the LSB of the A YO register
which is also shifted left by one bit. The DIVQ operation is illustrated in
Figure 2.3.

AXO AX1

PARTIAL
REMAINDER

16

MSB

v
ALU

R=V+X IF AQ=1
R=V-X IF AQ=O

Figure 2.3 DIVQ Operation

15 LSBs

15

7
LEFT SHiFT
~

AVO

LOWER
DIVIDEND

o III

10 I Units 2

The format of the quotient for any numeric representation can be
determined by the format of the dividend and divisor. Let NL represent
the number of bits to the left of the binary point, and NR represent the
number of bits to the right of the binary point of the dividend; DL
represent the number of bits to the left of the binary point, and DR
represent the number of bits to the right of the binary point of the divisor;
then the quotient has NL-DL+ 1 bits to the left of the binary point and
NR-DR-l bits to the right of the binary point.

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format) and therefore the dividend must be smaller than
the divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 format)
and produce an integer quotient (in 16.0 format), you must shift the
dividend one bit to the left (into 31.1 format) before dividing. Additional
discussion and code examples can be found in the ADSP-2100 Applications
Handbook, Volume 1.

Dividend BBBBB.BBBBBBBBBBBBBBBBBBBBBBBBBBB

NL bits NR bits

Divisor BB.BBBBBBBBBBBBBB

DL bits DR bits

Quotient BBBB.BBBBBBBBBBBB

(NL-DL+l) bits (NR-DR-l) bits

Figure 2.4 Quotient Format

The algorithm overflows if the result cannot be represented in the format
of the quotient as calculated above or when the divisor is zero or less than
the dividend in magnitude.

2-11

2-12

II

I I

2.2.8 ALU Status
The ALU status bits in the ASTAT register are defined below. Complete
information about the ASTAT register and specific bit mnemonics and
positions is provided in Chapter 4, "Program Control."

Flag

AZ

AN

AV

AC
AS

AQ

Name

Zero

Negative

Carry
Sign

Quotient

Definition

Logical NOR of all the bits in the ALU result register.
True if ALU output equals zero.
Sign bit of the ALU result. True if the ALU output is
negative.
Exclusive-OR of the carry outputs of the two most
significant adder stages. True if the ALU overflows.
Carry output from the most significant adder stage.
Sign bit of the ALU X input port. Affected only by the
ABS instruction.
Quotient bit generated only by the DIVS and DIVQ
instructions.

2.3 MULTIPLIER/ACCUMULATOR (MAC)
The Multiplier/Accumulator (MAC) provides high-speed multiplication,
multiplication with cumulative addition, multiplication with cumulative
subtraction, saturation and clear-to-zero functions. A feedback function
allows part of the accumulator output to be directly used as one of the
multiplicands on the next cycle.

2.3.1 MAC Block Diagram Discussion
Figure 2.5 shows a block diagram of the multiplier / accumulator section.

The multiplier has two 16-bit input ports X and Y, and a 32-bit product
output port P. The 32-bit product is passed to a 40-bit adder / subtractor
which adds or subtracts the new product from the content of the
multiplier result (MR) register, or passes the new product directly to MR.
The MR register is 40-bits wide. In this manual, we refer to the entire
register as MR. The register actually consists of three smaller registers:
MRO and MR1 which are 16 bits wide and MR2 which is 8 bits wide.

The adder / subtractor is greater than 32 bits to allow for intermediate
overflow in a series of multiply / accumulate operations. The multiply
overflow (MV) status bit is set when the accumulator has overflowed
beyond the 32-bit boundary, that is, when there are significant (non-sign)

PMD BUS 24

DMD BUS

Figure 2.5 MAC Block Diagram

x y

MULTIPLIER

P

MF
REGISTER

16

MV

M
U
X

II

I

2-13

2

2-14

o putatio al

bits in the top nine bits of the MR register (based on twos-complement
arithmetic).

The input/ output registers of the MAC section are similar to the ALD.

The X input port can accept data from either the MX register file or from
any register on the result (R) bus. The R bus connects the output registers
of all the computational units, permitting them to be used as input
operands directly. There are two registers in the MX register file, MXO and
MX1. These registers can be read and written from the DMD bus. The MX
register file outputs are dual-ported so that one register can provide input
to the multiplier while either one simultaneously drives the D1\1D bus.

The Y input port can accept data from either the MY register file or the MF
register. The MY register file has two registers, MYO and MY1; these
registers can be read and written from the DMD bus and written from the
PMD bus. The ADSP-2101 instruction set also provides for reading these
registers over the PMD bus, but there is no direct connection; this
operation uses the DMD-PMD bus exchange unit. The MY register file
outputs are also dual-ported so that one register can provide input to the
multiplier while either one simultaneously drives the DMD bus.

The output of the adder / subtractor goes to either the MF register or the
MR register. The MF register is a feedback register which allows bits 16-31
of the result to be used directly as the multiplier Y input on a subsequent
cycle. The 40-bit adder/subtractor register (MR) is divided into three
sections: MR2, MR1, and MRO. Each of these registers can be loaded
directly from the DMD bus and output to either the DMD bus or the R
bus.

Any of the registers associated with the MAC can be both read and
written in the same cycle. Registers are read at the beginning of the cycle
and written at the end of the cycle. A register read, therefore, reads the
value loaded at the end of a previous cycle. A new value written to a
register cannot be read out until a subsequent cycle. This allows an input
register to provide an operand to the MAC at the beginning of the cycle
and be updated with the next operand from memory at the end of the
same cycle. It also allows a result register to be stored in memory and
updated with a new result in the same cycle. See the discussion of
"Multifunction Instructions" in the chapter "Instruction Set Overview" for
an illustration of this same-cycle read and write.

Co I
III

I

The MAC section contains a duplicate bank of registers, shown in Figure
2.5 behind the primary registers. There are actually two sets of MR, MF,
MX, and MY register files. Only one bank is accessible at a time. The
additional bank of registers can be activated for extremely fast context
switching. A new task, such as an interrupt service routine, can be
executed without transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a 1, the secondary bank is selected.

2.3.2 MAC Operations
This section explains the functions of the MAC, its input formats and its
handling of overflow and saturation.

2.3.2.1 Standard Functions
The functions performed by the MAC are:

X*Y
MR+X*Y
MR-X*Y

o

Multiply X and Y operands
Multiply X and Y operands and add result to MR register
Multiply X and Y operands and subtract result from MR
register
Clear result (MR) to zero

The ADSP-2101 provides two modes for the standard multiply /
accumulate function: fractional mode for fractional numbers, (1.15) and
integer mode for integers (16.0). The mode is selected by bit 4 of the mode
status register (MSTAT). If this bit is a 1, the integer mode is selected; if it
is a 0, the fractional mode is selected. In both modes, the multiplier output
P is fed into a 40-bit adder / subtractor which adds or subtracts the new
product with the current contents of the MR register to form the final 40-
bit result R.

In the fractional mode, the 32-bit P output is format adjusted, that is, sign­
extended and shifted one bit to the left before being added to MR. For
example, bit 31 of P lines up with bit 32 of MR (which is bit 0 of MR2) and
bit 0 of P lines up with bit 1 of MR (which is bit 1 of MRO). The LSB is
zero-filled. The fractional multiplier result format is shown in Figure 2.6,
on the following page.

2

2-15

~ PSIGN

1 11

+

- PSIGN ~4

iii

I I
II

I

MULTIPLIER P OUTPUT

11 1

MR1 MRO

Figure 2.6 Fractional Multiplier Result Format

In the integer mode, the 32-bit P register is not shifted before being added
to MR, that is, the redundant sign bit is retained. Figure 2.7 displays the
integer ADSP-2101 result placement.

MULTIPLIER P OUTPUT

31 131 131 131 131 131 131 131 31 130129128127126125124123122121 120119 1181171161151141131121" 110 19 18 17 16 15 14 13 12 11 I 0

1 11 11 1
7 16 15 14 13 12 11 10 15114113112111 110 19 18 17 16 15 14 13 12 11 I 0 151141131121" 110 19 18 17 16 Is 14 13 12 11 I 0

-4--- MR2 MR1 MRO •

Figure 2.7 Integer Multiplier Result Format

2-16

WI!

I I
l1li

I

2.3.2.2 Input Formats
To facilitate multiprecision multiplications, the multiplier accepts X and Y
inputs represented in any combination of signed twos-complement format
and unsigned format.

X input Yinput

signed x signed
unsigned x signed
signed x unsigned
unsigned x unsigned

The input formats are specified as part of the instruction. These are
dynamically selectable each time the multiplier is used.

The (signed x signed) mode is used when multiplying two signed single
precision numbers or the two upper portions of two signed muItiprecision
numbers.

The (unsigned x signed) and (signed x unsigned) modes are used when
multiplying the upper portion of a signed multiprecision number with the
lower portion of another or when multiplying a signed single precision
number by an unsigned single precision number.

The (unsigned x unsigned) mode is used when multiplying unsigned
single precision numbers or the non-upper portions of two signed
multiprecision numbers.

2.3.2.3 MAC Input/Output Registers
The sources of MAC input and output are:

Source for
X input port

MXO,MX1
AR
MRO, MRl, MR2
SRO, SRI

Source for
Y input port

MYO,MY1
MF

2.3.2.4 MR Register Operation

Destination for
R output port

MR (MR2, MR1, MRO)
MF

As described, and shown on the block diagram, the MR register is divided
into three sections: MRO (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-
39). Each of these registers can be loaded from the DMD bus and output to
the R bus or the DMD bus.

2-17

2 omputational Units

MV MSBofMR2
o 0 or 1
1 0
1 1

2-18

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2
is output onto the DMD bus or the R bus, it is sign extended to form a 16-
bit value. MRI also has an automatic sign-extend capability. When MRI is
loaded from the DMD bus, every bit in MR2 will be set equal to the sign
bit (MSB) of MRl, so that MR2 appears as an extension of MRI. To load
the MR2 register with a value other than MRl's sign extension, you must
load MR2 after MRI has been loaded. Loading MRO affects neither MRI
nor MR2; no sign extension occurs in MRO loads.

2.3.2.5 MAC Overflow and Saturation
The adder / subtractor generates an overflow status signal (MV) which is
loaded into the processor arithmetic staruS (AST AT) every time a MAC
operation is executed. The MV bit is set when the accumulator result,
interpreted as a twos-complement number, crosses the 32-bit (MRl/MR2)
boundary. That is, MV is set if the upper nine bits of MR are not all ones
or all zeros.

The MR register has a saturation capability which sets MR to the
maximum positive or negative value if an overflow or underflow has
occurred. The saturation operation depends on the overflow status bit
(MV) in the processor arithmetic status (ASTAT) and the MSB of the MR2
register. The following table summarizes the MR saturation operation.

MR content after saturation
no change
00000000 0111111111111111 1111111111111111
11111111 1000000000000000 0000000000000000

Table 2.3 MAC Saturation Instruction Effect

fUll-scale positive
fUll-scale negative

Saturation in the MAC is an instruction rather than a mode as in the ALU.
The saturation instruction is intended to be used at the completion of a
string of multiplication/ accumulations so that intermediate overflows do
not cause the accumulator to saturate.

Overflowing beyond the MSB of MR2 should never be allowed. The true
sign bit of the result is then irretrievably lost and saturation may not
produce a correct value. It takes more than 255 overflows (MV type) to
reach this state, however.

2.3.2.6 Rounding Mode
The accumulator has the capability for rounding the 40-bit result R at the
boundary between bit 15 and bit 16. Rounding can be specified as part of

III

I I
II

I

the instruction code. The rounded output is directed to either MR or MF.
When rounding is invoked with MF as the output register, register
contents in MF represent the rounded 16-bit result. Similarly, when MR is
selected as the output, MR1 contains the rounded 16-bit result; the
rounding effect in MR1 affects MR2 as well and MR2 and MR1 represent
the rounded 24-bit result.

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a slight positive net bias since the midway
value is always rounded upward. This problem is eliminated by detecting
this midway point and rounding half of the midway values upward and
half of them downward, yielding a zero net bias over a large number of
(uniformly distributed) values. When the midway point is detected, bit 16
in the result output is forced to zero. This is called round to even ..

For example, using x to represent any bit pattern (not all zeros), here are
two examples of how this rounding scheme operates.

Example 1 MR2 MRl MRO

Unrounded value: xxxxxxxx xxxxxxxx00100101 1xxxxxxxxxxxxxxx

Bit 15 = 1
Add 1 to bit 15 and carry 1

Rounded value: xxxxxxxx xxxxxxxx00100110 Oxxxxxxxxxxxxxxx

The first example illustrates the typical rounding operation. The
compensation to avoid net bias becomes visible when the lower 15 bits are
all zero and bit 15 is one, i.e. the midpoint value. This is shown below.

Example 2 MR2 MRl MRO

Unrounded value: xxxxxxxx xxxxxxxx01100110 1000000000000000

Bit 15 = 1 and bits 0-14 = 0
Add 1 to bit 15 and carry 1

Rounded value: xxxxxxxx xxxxxxxx01100111 0000000000000000

Since bit 16 = 1, force it to a
xxxxxxxx xxxxxxxx01100110 0000000000000000

In this last case, bit 16 is forced to zero. This algorithm is employed on
every rounding operation, but is only evident when the bit patterns
shown in the lower 16 bits of the last example are present.

2-19

2-20

II

I I
!II

I

2.4 BARREL SHIFTER
The shifter unit provides a complete set of shifting functions for 16-bit
inputs, yielding a 32-bit output. These include arithmetic shift, logical shift
and normalization. The Shifter also performs derivation of exponent and
derivation of common exponent for an entire block of numbers. These
basic functions can be combined to efficiently implement any degree of
numerical format control, including full floating-point representation.

2.4.1 Shifter Block Diagram Discussion
Figure 2.8 shows a block diagram of the shifter section. The shifter section
can be divided into the following components: the shifter array, the OR/
PASS logic, the exponent detector, and the exponent compare logiC.

The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 32-bit output field, from off-scale right to off-scale
left, in a single cycle. This gives 49 possible placements within the 32-bit
field. The placement of the 16 input bits is determined by a control code
(C) and a HI/LO reference signal.

The shifter array and its associated logic are surrounded by a set of
registers. The shifter input (51) register provides input to the shifter array
and the exponent detector. The SI register is 16 bits wide and is readable
and writable from the DMD bus. The shifter array and the exponent
detector also takes as inputs AR, SR or MR via the R bus. The shifter result
(SR) register is 32 bits wide and is divided into two 16-bit sections, SRO
and SRl. The SRO and SRI registers can be loaded from the DMD bus and
output to either the DMD bus or the R bus. The SR register is also fed back
to the OR/PASS logic to allow double-precision shift operations.

The SE register ("shifter exponent") is 8 bits wide and holds the exponent
during the normalize and denormalize operations. The SE register is
loadable and readable from the lower 8 bits of the DMD bus. It is a twos­
complement, 8.0 value.

The SB register ("shifter block") is important in block floating-point
operations where it holds the block exponent value, that is, the value by
which the block values must be shifted to normalize the largest value. SB
is 5 bits wide and holds the most recent block exponent value. The SB
register is loadable and readable from the lower 5 bits of the DMD bus. It
is a twos-complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are
sign-extended to form a 16-bit value.

DMDBUS

From
INSTRUCTION

Figure 2.8 Shifter Block Diagram

I

R·BUS

2-21

2-22

I

Any of the SI, SE or SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All r~gister reads, therefore, read values loaded at the end of a
previous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This allows an input register to provide an operand to
the Shifter at the beginning of the cycle and be updated with the next
operand at the end of the same cycle. It also allows a result register to be
stored in memory and updated with a new result in the same cycle. See
the discussion of ''Multifunction Instructions" in the chapter "Instruction
Set Overview" for an illustration of this same-cycle read and write.

The shifter section contains a duplicate bank of reQ:isters; shown in Figure
2.8 behind the primary registers:There are actually two sets of SE, SB, SI,
SR1, and SRO registers. Only one bank is accessible at a time. The
additional bank of registers can be activated for extremely fast context
switching. A new task, such as an interrupt service routine, can then be
executed without transferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the
primary bank is selected; if it is a 1, the secondary bank is selected.

The shifting of the input is determined by a control code (C) and a HI/LO
reference signal. The control code is an 8-bit signed value which indicates
the direction and number of places the input is to be shifted. Positive
codes indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content of
the shifter exponent (SE) register, the negated content of the SE register or
an immediate value from the instruction.

The HI/LO signal determines the reference point for the shifting. In the HI
state, all s):Ufts are referenced to SR1 (the upper half of the output field),
and in the LO state, all shifts are referenced to SRO (the lower half). The
HI/LO reference feature is useful when shifting 32-bit values since it
allows both halves of the number to be shifted with the same control code.
HI/LO reference signal is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit (X). The
extension bit can be fed by three possible sources depending on the
instruction being performed. The three sources are the MSB of the input,
the AC bit from the arithmetic status register (ASTAT) or a zero.

Table 2.4 gives a listing of shifter array output as a function of the control
code and HI/LO signal.

Computational Units 2

Control Code Shifter Array Output ABCDEFGHIJKLMNPR

HI reference LO Reference
represents the 16-bit
input pattern

+16 to +127 +32 to +127 00000000 00000000 00000000 00000000
+15 +31 ROOOOOOO 00000000 00000000 00000000 X stands for the
+14 +30 PROOOOOO 00000000 00000000 00000000 extension bit
+13 +29 NPROOOOO 00000000 00000000 00000000
+12 +28 MNPROOOO 00000000 00000000 00000000
+11 +27 LMNPROOO 00000000 00000000 00000000
+10 +26 KLMNPROO 00000000 00000000 00000000
+9 +25 JKLMNPRO 00000000 00000000 00000000
+8 +24 IJKLMNPR 00000000 00000000 00000000
+7 +23 HIJKLMNP ROOOOOOO 00000000 00000000
+6 +22 GHIJKLMN PROOOOOO 00000000 00000000
+5 +21 FGHIJKLM NPROOOOO 00000000 00000000
+4 +20 EFGHIJKL MNPROOOO 00000000 00000000
+3 +19 DEFGHIJK LMNPROOO 00000000 00000000
+2 +18 CDEFGHIJ KLMNPROO 00000000 00000000
+1 +17 BCDEFGHI JKLMNPRO 00000000 00000000

0 +16 ABCDEFGH IJKLMNPR 00000000 00000000
-1 +15 XABCDEFG HIJKLMNP ROOOOOOO 00000000
-2 +14 XXABCDEF GHIJKLMN PROOOOOO 00000000
-3 +13 XXXABCDE FGHIJKLM NPROOOOO 00000000
-4 +12 XXXXABCD EFGHIJKL MNPROOOO 00000000
-5 +11 XXXXXABC DEFGHIJK LMNPROOO 00000000
-6 +10 XXXXXXAB CDEFGHIJ KLMNPROO 00000000
-7 +9 XXXXXXXA BCDEFGHI JKLMNPRO 00000000
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000
-9 +7 XXXXXXXX XABCDEFG HIJKLMNP ROOOOOOO
-10 +6 XXXXXXXX XXABCDEF GHIJKLMN PROOOOOO
-11 +5 XXXXXXXX XXXABCDE FGHIJKLM NPROOOOO
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPROOOO
-13 +3 XXXXXXXX XXXXXABC DEFGHIJK LMNPROOO
-14 +2 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPROO
-15 +1 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPRO
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 -1 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 -2 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 -3 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 -4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 -5 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 -6 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 -7 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 -8 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 -9 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

Table 2.4 Shifter Array Characteristic

2-23

2-24

III

I I
III

I

The OR/PASS logic allows the shifted sections of a multiprecision number
to be combined into a single quantity. When PASS is selected, the shifter
array output is passed through and loaded into the shifter result (SR)
register unmodified. When OR is selected, the shifter array is bitwise
ORed with the current contents of the SR register before being loaded
there.

The exponent detector derives an exponent for the shifter input value. The
exponent detector operates in one of three ways which determine how the
input value is interpreted. In the HI state, the input is interpreted as a
single precision number or the upper half of a double precision number.
The exponent detector determines the number of leading sign bits and
produces a code which indicates how many places the input must be up­
shifted to eliminate all but one of the sign bits. The code is negative so that
it can become the effective exponent for the mantissa formed by removing
the redundant sign bits.

In the HI-extend state (HIX), the input is interpreted as the result of an
add or subtract performed in the ALU section which may have
overflowed. Therefore the exponent detector takes the arithmetic overflow
(A V) status into consideration. If A V is set, then a +1 exponent is output to
indicate an extra bit is needed in the normalized mantissa (the ALU Carry
bit); if A V is not set, then HI-extend functions exactly like the HI state.
When performing a derive exponent function in HI or HI-extend modes,
the exponent detector also outputs a shifter sign (SS) bit which is loaded
into the arithmetic status register (ASTAT). The sign bit is the same as the
MSB of the shifter input except when A V is set; when A V is set in HI­
extend state, the MSB is inverted to restore the sign bit of the overflowed
value.

In the LO state, the input is interpreted as the lower half of a double
precision number. In the LO state, the exponent detector interprets the SS
bit in the arithmetic status register (ASTAT) as the sign bit of the number.
The SE register is loaded with the output of the exponent detector only if
SE contains -15. This occurs only when the upper half-which must be
processed first-contained all sign bits. The exponent detector output is
also offset by -16 to account for the fact that the input is actually the lower
half of a 32-bit value. Table 2.5 gives the exponent detector characteristics
for all three modes.

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic in
conjunction with the exponent detector derives a block exponent. The

II!

I I
lIIIl

I

S = Sign bit
N = Non-sign bit
D = Don't care bit

HI Mode HIX Mode

Shifter Array Input Output AV Shifter Array Input Output

1 DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD 0 0 SNDDDDDD DDDDDDDD 0
SSNDDDDD DDDDDDDD -1 0 SSNDDDDD DDDDDDDD -1
SSSNDDDD DDDDDDDD -2 0 SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3 0 SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4 0 SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5 0 SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6 0 SSSSSSSN DDDDDDD{) -6
SSSSSSSS NDDDDDDD -7 0 SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8 0 SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9 0 SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD -10 0 SSSSSSSS SSSNDDDD -10
SSSSSSSS SSSSNDDD -11 0 SSSSSSSS SSSSNDDD -11
SSSSSSSS SSSSSNDD -12 0 SSSSSSSS SSSSSNDD -12
SSSSSSSS SSSSSSND -13 0 SSSSSSSS SSSSSSND -13
SSSSSSSS SSSSSSSN -14 0 SSSSSSSS SSSSSSSN -14
SSSSSSSS SSSSSSSS -15 0 SSSSSSSS SSSSSSSS -15

LOMode

SS Shifter Array Input Output

S NDDDDDDD DDDDDDDD -15
S SNDDDDDD DDDDDDDD -16
S SSNDDDDD DDDDDDDD -17
S SSSNDDDD DDDDDDDD -18
S SSSSNDDD DDDDDDDD -19
S SSSSSNDD DDDDDDDD -20
S SSSSSSND DDDDDDDD -21
S SSSSSSSN DDDDDDDD -22
S SSSSSSSS NDDDDDDD -23
S SSSSSSSS SNDDDDDD -24
S SSSSSSSS SSNDDDDD -25
S SSSSSSSS SSSNDDDD -26
S SSSSSSSS SSSSNDDD -27
S SSSSSSSS SSSSSNDD -28
S SSSSSSSS SSSSSSND -29
S SSSSSSSS SSSSSSSN -30
S SSSSSSSS SSSSSSSS -31

Table 2.5 Exponent Detector Characteristics

2-25

2 Co putational Units

2-26

comparator compares the exponent value derived by the exponent
detector with the value stored in the shifter block exponent (SB) register
and updates the SB register only when the derived exponent value is
larger than the value in SB register. See the examples below.

2.4.2 Shifter Operations
The shifter performs the following functions (instruction mnemonics
shown in parenthesis):

• Arithmetic Shift (ASHIFT)
• Logical Shift (LSHIFT)
• Normalize (NORM)
• Derive Exponent (EXP)
• Block Exponent Adjust (EXPADJ)

These basic shifter instructions can be used in a variety of ways,
depending on the underlying arithmetic requirements. The following
sections present single and multiple precision examples for these
functions:

• Derivation of a Block Exponent
• Immediate Shifts
• Denormalization
• Normalization

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with PASS/OR and HI/LO modes so as to facilitate
multiprecision operations. PASS passes the value through to SR directly.
OR logically ORs the shift result with the current contents of SR. OR is
used to join two I6-bit quantities into a 32-bit value in SR. The HI and LO
modifiers reference the shift to the upper or lower half of the 32-bit SR
register. These shift functions take inputs from either the SI register or any
other result register and load the 32-bit shifted result into the SR register.

2.4.2.1 Shifter Input/Output Registers
The sources of shifter input and output are:

Source for
Shifter input
SI
AR
MRO, MRI, MR2
SRO, SRI

Destination for
Shifter output
SR (SRO, SRI)

I

2.4.2.2 Derive Block Exponent
This function detects the exponent of the number largest in magnitude in
an array of numbers. The EXP ADJ instruction performs this function. The
sequence of steps for a typical example is shown below.

A. Load SB with -16

The SB register is used to contain the exponent for the entire block. The
possible values at the conclusion of a series of EXPADJ operations range
from -15 to O. The exponent compare logic updates the SB register if the
new value is greater than the current value. Loading the register with -16
initializes it to a value certain to be less than any actual exponents
detected.

B. Process the first array element:

Array(1) = 11110101 10110001

Exponent = -3

- 3> SB (-16)

SB gets -3

C. Process next array element:

Array(2)= 00000001 01110110

Exponent = -6

-6<-3

SB remains - 3

D. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been processed,
the SB register contains the exponent of the largest number in the entire
block. No normalization is performed. EXP ADJ is purely an inspection
operation. The value in SB could be transferred to SE and used to
normalize the block on the next pass through the Shifter. Or it could be
simply associated with that data for subsequent interpretation.

2-27

2-28

III

I I
II

I

2.4.2.3 Immediate Shifts
An immediate shift simply shifts the input bit pattern to the right
(downshift) or left (upshift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation. (See the chapter
"Instruction Set Overview" for an example of this instruction.) The data
value controlling the shift is an 8-bit signed number. The SE register is not
used or changed by an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SRI). This is the (HI) version of the shift.

Input 10110110 10100011

Shift value -5

SR 00000101 10110101 00011 000 000000

Here is the same input value shifted in the other direction, referenced to
the lower half (La) of SR.

Input 10110110 10100011

Shift value + 5

SR 00000000 00010110 11010100 011 00000

In addition to the direction of the shifting operation, the shift may be
either arithmetic (ASHIFT) or logical (LSHIFT). For example, the
following shows a logical shift, relative to the upper half of SR (HI).

Input 10110110 10100011

Shift value - 5

SR 00000101 10110101 00011 000 00000000

This example shows an arithmetic shift of the same input and shift code.

Input 10110110 10100011

Shift value -5

SR 11111101 10110101 00011 000 00000000

111

I

2.4.2.4 Denormalize
Denormalizing refers to shifting a number according to a predefined
exponent. The operation is effectively a floating point to fixed point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of some previous operation. Next the shift itself is
performed, taking its shift value from the SE register, not from an
immediate data value.

There are two examples of denormalizing a double-precision number
below. The first shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Since computations
may produce output in either order, the second example shows the same
operation in the other order, i.e. lower half first.

Always select the arithmetic shift for the higher half (HI)of the twos­
complement input (or logical for unsigned). Likewise, the first half
processed uses the PASS modifier.

Modifiers = HI, PASS Shift operation = Arithmetic, SE = -3

First Input 1011 0 11 0 10100011 (upper half of desired result)

SR 11110110 11010100 01100000 00000000

Now the lower half is processed. Always select a logical shift for the lower
half of the input. Likewise, the second half processed must use the OR
modifier to avoid overwriting the previous half of the output value.

Modifiers = LO, OR Shift operation = Logical, SE = -3

Second Input 01110110 01011101 (lower half of desired result)

SR 11110110 11010100 01101110 11001011

Here is the same input processed in the reverse order. The higher half is
always arithmetically shifted and the lower half is logically shifted. The
first input is PASSed through to SR, but the second half is ORed to create
one double-precision value in SR.

2-29

2-30

III

I I
III

I

Modifiers = LO, PASS Shift operation = Logical, SE = -3

First Input 01110110 01011101 (lower half of desired result)

SR 00000000 00000000 00001110 11001011

Modifiers = HI, OR Shift operation = Arithmetic, SE = -3

Second Input 10110110 10100011 (upper half of desired result)

SR 11110110 11010100 01101110 11001011

2.4.2.5 Normalize
Numbers with redundant sign bits require normalizing. Normalizing a
number is the process of shifting a twos-complement number within a
field so that the rightmost sign bit lines up with the MSB position of the
field and recording how many places the number was shifted. The
operation can be thought of as a fixed to floating point conversion,
generating an exponent and a mantissa.

Normalizing is a two stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction which detects the exponent value and loads in into the SE
register. This instruction (EXP) recognizes a (HI) and (La) modifier. The
second stage uses the NORM instruction. NORM recognizes (HI) and (LO)
and the PASS and OR modifiers as well. NORM uses the negated value of
the SE register as its shift control code. The negated value is used so that
the shift is made in the correct direction.

Here is a normalization example for a single precision input.

Detect Exponent Modifier = HI

Input

SE set to

11110110 11010100

-3

Normalize, with modifier = HI Shift driven by value in SE

Input 11110110 11010100

SR 10110110 10100000 00000000 00000000

Computational Units 2

For a single precision input, the normalize operation can use either the
(HI) or (LO) modifier, depending on whether you want the result in SRI
or SRO, respectively.

Double precision values follow the same general scheme. The first stage
detects the exponent and the second stage normalizes the two halves of
the input. For double precision, however, there are two operations in each
stage.

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The
second exponent derivation, operating on the lower half of the number
will not alter the SE register unless SE = -15. This happens only when the
first half contained all sign bits. In this case, the second operation will load
a value into SE. (See Table 2.5) This value is used to control both parts of
the normalization that follows.

For the second stage, now that SE contains the correct exponent value, the
order of operations is immaterial. The first half (whether HI or LO) is
normalized with the PASS modifier and the second half with the OR
modifier to create one double precision value in SR. The (HI) and (LO)
modifiers identify which half is being processed.

Here is a complete example of a typical double precision normalization.

1. Detect Exponent, Modifier = HI

First Input 11110110 11010100

SE set to -3

2. Detect Exponent, Modifier = LO

Second Input 01101110 11001011

SE unchanged, still -3

3. Normalize, Modifiers = HI, PASS, SE =-3

First Input 11110110 11010100

(Must be upper half)

SR 10110110 10100000 00000000 00000000

2-31

2-32

I
III

I

4. Normalize, Modifiers = LO, OR, SE = -3

Second Input 01101110 11001011

SR 10110110 10100011 01110110 01011 000

If the upper half of the input contains all sign bits, the SE register value is
determined by the second derive exponent operation as shown below.

1. Detect Exponent, Modifier = HI

First Input 11111111 11111111 (Must be upper half)

SE set to -15

2. Detect Exponent, Modifier = LO

Second Input 11110110 11010100

SE now set to -19

3. Normalize, Modifiers = HI, PASS, SE = -19 (negated)

First Input 11111111 11111111

SR 00000000 00000000 00000000 00000000

All values of SE less than -15 (resulting in a shift of +16 or more) upshift
the input completely off scale.

4. Normalize, Modifiers = LO, OR, SE = -19 (negated)

Second Input 11110110 11010100

SR 10110110 10100000 00000000 00000000

I
III

I

There is one additional normalization situation, requiring the HI-extended
(HIX) state. This is specifically when normalizing ALU results (AR) that
may have overflowed. This operation reads the arithmetic status word
(ASTAT) overflow bit (A V) and the carry bit (AC) in conjunction with the
value in AR. AV is set 0) if an overflow has occurred. AC contains the
true sign of the twos-complement value.

For example, given these conditions:

AR = 11111010 00110010

A V = 1, indicating overflow

AC = 0, the true sign bit of this value

1. Detect Exponent, Modifier = HIX

SE gets set to + 1

2. Normalize, Modifier = HI, SE = 1

AR= 11111010 00110010

SR = 01111101 00011001

The AC bit is supplied as the sign bit, shown in bold above.

2-33

2

2-34

o putational Units

The HIX operation executes properly regardless of whether there has
actually been an overflow. Consider this example.

AR = 11100011 01011011

AV = 0, indicating no overflow

AC = 0, not meaningful if A V = 0

1. Detect Exponent, Modifier = HIX

SE set to -2

2. Normalize, Modifier = HI, SE = -2

AR= 11100011 01011011

SR = 10001101 0110100000000000 00000000

The AC bit is not used as the sign bit. A brief examination of Table 2.4
shows that the HIX mode is identical to the HI mode when A V is not set.
When the NORM, LO operation is done, the extension bit is zero; when
the NORM, HI operation is done, the extension bit is AC.

Data Moves

3.1 INTRODUCTION
This chapter describes sections of the ADSP-2101 that control the
movement of data to and from the processor. These are the Data Address
Generators (DAGs) and the unit for exchanging data between the Program
Memory Data bus and the Data Memory Data Bus, the PMD-DMD Bus
Exchange Unit.

3.2 DATA ADDRESS GENERATORS (DAGS)
The ADSP-2101 contains two independent data address generators so that
both program and data memories can be accessed simultaneously. The
DAGs provide indirect addressing capabilities. Both perform automatic
address modification. For circular buffers, the DAGs can perform modulo
address modification. The two DAGs differ: DAG1 only generates data
memory addresses, but provides an optional bit-reversal capability, DAG2
can generate both data memory and program memory addresses, but has
no bit-reversal capability.

While the following discussion explains the internal workings of the
DAGs bear in mind that the ADSP-2101 instruction set and Cross­
Software System provide a direct method for declaring buffers as circular
or linear and managing the placement of the buffer in memory. Only the
initializing of DAG registers needs to be explicitly programmed. See the
discussion of data structures in Chapter 9, "Instruction Set Overview."

3.2.1 DAG Block Diagram Discussion
Figure 3.1 (on the following page) shows a block diagram of a single data
address generator. There are three register files: the modify (M) register
file, the index (I) register file, and the length (L) register file. Each of the
register files contains four 14-bit registers which can be read from and
written to via the DMD bus.

The 1 registers (10-3 in DAG1, 14-7 in DAG2) contain the actual addresses
used to access memory. When data is accessed in indirect mode, the
address stored in the selected I register becomes the memory address.
With DAG1, the output address can be bit-reversed by setting the

3

3-1

ROM F
INSTR UCTION

2 /'

-
14 ~

/

L
REGISTERS

4 x 14

3-2

DMDBUS

i
/~ j

\ MUX

14 " 14 V 14 " ,I / ,I

L
MODULUS

I M
REGISTERS REGISTERS

LOGIC 4 x 14 4x 14

i ..1.

+
14 V

/ ADD

I

}DAG' 0'"
BIT

REVERSE

+
ADDRESS

Figure 3.1 Data Address Generator Block Diagram

-

~
F ROM

UCTION INSTR

2

appropriate mode bit in the mode status register (MSTAT) as discussed
below. Bit-reversal facilitates FFT addressing.

The data address generator employs a post-modify scheme, after an
indirect data access, the specified M register (MO-3 in DAG1, M4-7 in
DAG2) is added to the specified I register to generate the new I value. The
choice of the I and M registers are independent within each DAG. In other
words, any register in the 10-3 set may be modified by any register in the
MO-3 set in any combination, but not by those in DAG2 (M4-7). The
modification values stored in M registers are signed numbers so that the
next address can be either higher or lower.

The address generators support both linear addressing and circular
addressing. The value of the L register determines which addressing
scheme is used. For circular buffer addressing, the L register is initialized
with length of the buffer. For linear addressing, the modulus logic is
disabled by setting the corresponding L register to zero.

L registers and I registers are paired and the selection of the L register
(LO-3 in DAG1, L4-7 in DAG2) is determined by the I register used. Each
time an I register is selected, the corresponding L register provides the
modulus logic with the length information. If the sum of the M register
content and the I register content crosses the buffer boundary, the
modified I register value is calculated by the modulus logic using the L
register value.

All data address generator registers (I, M, and L registers) are loadable
and readable from the lower 14 bits of the DMD bus. Since I and L register
contents are considered to be unsigned, the upper 2 bits of the DMD bus
are padded with zeros when reading them. M register contents are signed;
when reading an M register, the upper 2 bits of the DMD bus are sign­
extended.

3.2.2 Modulo Addressing
The modulus logic implements automatic pointer wraparound for
accessing circular buffers. To calculate the next address, the modulus logic
uses the following information.

• The current location; found in the I register (unsigned)
• The modify value; found in the M register (signed)
• The buffer length; found in the L register (unsigned)
• The buffer base address

From these inputs, the next address is calculated with the formula:

Next address = (I + M - B) Modulo (L) + B

where:
I
M
B
L
M+I
IMI <L

current address,
modify value (signed)
base address
buffer length
modified address
(this insures that the next address cannot wrap around the
buffer more than once in one operation)

3-3

3

3-4

3.2.3 Calculating the Base Address
The above equation does not supply you with the base address. Given the
length of the buffer (L), the base address is 2n or a multiple of 2n, where n
satisfies the condition:

In practice, you do not need to calculate this yourself; the Linker
automatically places circular buffers at a proper address.

3.2.3.1 Circular Buffer Base Address Example 1
For example, let us as:sume that the buffer length is eight. According to
the rule, the length of the buffer (eight) must be less than or equal to some
value 2n; n therefore, must be three or greater. The left side of the
inequality specifies that the buffer length must be greater than the value
2n-1; n therefore must be three or less. The only value of n that satifies both
inequalities is three.

Valid base addresses are multiples of 2n , so in this example, valid base
addresses are multiples of eight: H#0008, H#0010, H#0018, and so on
(hexadecimal notation).

3.2.3.2 Circular Buffer Base Address Example 2
As a second example, assume a buffer length of seven. Solving the
inequalities again yields the same answer as example number one. Valid
bases addresses are multiples of 2n. In this example, valid base addresses
are also multiples of eight: H#0008, H#0010, H#0018, and so on.

Note that the buffer addresses for a buffer length of seven and eight are
the same. The calculation of the base address differs from the ADSP-2100.
The ADSP-2101 uses memory more efficiently for buffers whose lengths
are powers of two. For example, the base address for a buffer length of
eight in the ADSP-2100 must be a multiple of sixteen, rather than of eight.

3.2.3.3 Circular Buffer Operation Example 1
Suppose that 10 = 5, MO = 1 and LO = 3. Base addresses are multiples of 4.
The next address is calculated by adding MO to 10, resulting in an address
of 6. Successive data memory addresses using 10 for indirect addressing
produce the sequence: 6,4,5,6,4,5 For MO = -1 (H#3FFF), 10 would
produce the sequence: 4, 6, 5, 4, 6, 5, 4

Data oves 3

3.2.3.4 Circular Buffer Operation Example 2
Assume that 10 = 9, MO = 3 and LO = 5. This example highlights the fact
that the address sequence does not have to result in a "direct hit" of the
buffer boundary. The 5-word buffer resides at locations 8 through 12
inclusive. The successive data memory addresses using I for indirect
addressing cycle through the sequence: 9, 12, 10,8,11,9 ...

3.2.4 Serial Ports
The Serial Port autobuffering feature uses circular buffer addressing to
transfer data to or from memory and the serial ports. In this application,
the automatic pointer wraparound triggers the serial port interrupt. For
additional information, refer to the chapter on Serial Ports.

3.2.5 Bit-Reverse Addressing
The bit-reverse logic is primarily intended for use in FFT computations
where inputs are supplied or the outputs generated in bit-reversed order.
Bit-reversing is available only on addresses generated by DAGl. The pivot
point for the reversal is the midpoint of the 14-bit address, between bits 6
and 7. This is illustrated in the following chart.

Individual DMA lines (OMAN)

Normal Order 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Bit-reversed addressing is a mode, enabled and disabled by setting a
mode bit in the mode status register (MSTAT). When enabled, all
addresses generated using index registers 10-3 are bit-reversed upon
output. (The modified valued stored back after post-update remains in
normal order.) This mode continues until the status bit is reset.

It is possible to bit-reverse address values less than 14 bits. You must
determine the first address and also initialize the M register to be used
with a value calculated to modify the I register bit-reversed output to the
desired range. This value is:

where N is the number of bits you wish to output reversed. The ADSP-
2100 Applications Handbook, Volume 1 also has a complete example of this
in the chapter on Fast Fourier Transforms.

3-5

3-6

ata oves

3.3 PMD-DMD BUS EXCHANGE
This unit couples the program memory data bus and the data memory
data bus, allowing them to transfer data in both directions. Since the
program memory data (PMD) bus is 24 bits wide, while the data memory
data (DMD) bus is 16 bits wide, only the upper 16 bits of PMD can be
directly transferred. An internal register (PX) is loaded with (or supplies)
the additional 8 bits. This register can be directly loaded or read when the
full 24 bits are required.

Note that when reading data from program memory and data memory
simultaneously, there is a dedicated path from the upper 16 bits of the
PMD bus to the Y registers of the computationai units. This read-only path
does not use the bus exchange circuit; it is the path shown on the
individual computational unit block diagrams.

3.3.1 PMD-DMD Block Diagram Discussion
Figure 3.2 shows a block diagram of this circuit. There are two types of
connections provided in this section.

The first type of connection is a one-way path from each bus to the other.
This is implemented with two tristate buffers connecting the DMD bus
with the upper 16 bits of the PMD bus. One of these two buffers is
normally used when data is exchanged between the program memory and
one of the registers connected to the DMD bus. This is the path used to
write data to program memory; it is not shown in the individual
computational unit block diagrams.

The second connection is through the PX register. The PX register is 8-bits
wide and can be loaded from either the lower 8 bits of the DMD bus or the
lower 8 bits of the PMD bus. Its contents can also be read to the lower 8
bits of either bus.

PX register access follows the principles described below.

From the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read from
program memory to any register.

2. Read out automatically as the lower 8 bits when data is written to
program memory.

From the DMD bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are used
and the upper 8 are discarded.

2. Read with a data move instruction, explicitly specifying the PX register
as a source. The upper 8 bits of the value read from the register are all
zeroes.

Whenever any register is written out to program memory, the source
register supplies the upper 16 bits. The contents of the PX register are
automatically added as the lower 8 bits. If these lower 8 bits of data to be
transferred to program memory (through the PMD bus) are important,
you should load the PX register from DMD bus before the program
memory write operation.

24

8 (LOWER)

8 (LOWER)

R
E
G
I
S
T
E
R

16

PMDBUS

8 (LOWER)

DMD BUS

Figure 3.2 PMD-DMD Bus Exchange

16 (UPPER) 16 (UPPER)

16 16

3-7

Program Control

4.1 INTRODUCTION
This chapter describes the sections of the ADSP-2101 that control and
affect the flow of your program's execution: the program sequencer, its
associated interrupt controller and the status and condition logic.

4.2 PROGRAM SEQUENCER
The program sequencer generates a stream of instruction addresses, and
provides flexible control of program flow. It provides for zero-overhead
looping, single-cycle branching (both conditional and unconditional) and
sophisticated interrupt processing. Figure 4.l(on the next page) shows a
block diagram for the program sequencer and status sections of the ADSP-
2101. The sections immediately below discuss individual blocks within the
sequencer.

It is useful to be aware that the ADSP-2101 instruction set includes the
following instructions:

• JUMP
• CALL
• RETURN FROM SUBROUTINE (RTS)
• RETURN FROM INTERRUPT (RTI)
• DOUNTIL
• IDLE (Wait for interrupt)

4.2.1 Next Address Select Logic
The sequencing logic controls the flow of ADSP-2101 program execution
by outputting a program memory address onto the PMA bus from one of
the following four possible sources.

• PC incrementer
• PC stack
• Instruction register
• Interrupt controller

4

4-1

I

ADDRESS Of JUMP (14 bits)

CONDITION CODE (4 bits) FUNCTION FIELD

/ ADDRESS of DMDBUS 16

'J!
LAST INSTRUCTION
in LOOP (14 bits)
&
TERMINATION
CONDITION (4 bits)

I
From INSTRUCTION REGISTER

J I 18/ 4 X 14 COUNT STACK

&
,

COUNTER Loo!,.!,!~CK I
t-- "A lUi

I 4

+
,

14 - 7 X 21 STATUS STACK 1

& 1~ /
CONDITION 2"

LOOP /
STATUS REGISTERS , LOGIC r-- COMPARATOR

ARITHMETIC
STATUS

(Mask) , 14

6V ,

6 J INTERRUPT I , I CONTROLLER

111M I PC STACK I I PROGRAM I
COUNTER I I SPORTO Transmit 16X14 MUX

SPORTO Receive • SPORT1 Transmit or IRQ1 I INCREMENT I SPORTO Receive or IRoo

f
r- - From

TIMER FIPin

.~ t ,
NEXT

I ~
ADDRESS

NEXT ADDRESS MUX SOURCE
SELECT

1

Y PMABUS 14
,

Figure 4.1 Program Sequencer Block Diagram

4-2

rogra rol 4

The next address source selector in the diagram controls which of these
four sources are output from the next address multiplexer, based on
outputs from the instruction register, condition logic, loop comparator,
and interrupt controller. A fifth possibility for the next program memory
address, although not part of the program sequencer, is DAG2 when a
register indirect jump is executed.

The PC incrementer is selected as the source of the next program memory
address if program flow is sequential. This is also the case when a
conditional jump or return is not taken and when a DO UNTIL loop
terminates (see below for a description of the DO UNTIL construct and
associated looping hardware).

The PC stack is used as the source for the next program memory address
when a return from subroutine or return from interrupt is executed. The
top stack value is also used as the next program memory address when
returning to the top of a DO UNTIL loop.

The instruction register is selected by the next address multiplexer when a
direct jump is taken. The jump address field of the instruction word itself
specifies the jump address.

The interrupt controller provides the next program memory address when
processing an interrupt. Upon recognizing an interrupt, the processor
jumps to the interrupt vector location corresponding to the active
interrupt request. The interrupt vector locations are four program memory
locations apart; this allows short service routines to be coded in place. For
longer routines, control is transferred to the interrupt service routine by
means of a jump instruction at the interrupt vector.

DAG2 sources the next program memory address when executing a
register indirect jump. In this case, since DAG2 is not an input to the next
address multiplexer, the program counter must be loaded from the PMA
bus.

4.2.2 Program Counter and Stack
The program counter (PC) is a 14-bit register which always contains the
address of the currently executing instruction. The output of the PC is fed
into a 14-bit incrementer which adds 1 to the current PC value. The output
of the incrementer can be selected by the next address multiplexer to fetch
the next contiguous instruction.

Associated with the PC is a 14-bit by 16-word PC stack that is pushed with

4-3

4 Progra ontrol

4-4

the output of the incrementer when a CALL instruction is executed. The
PC stack is also pushed when DO UNTIL is executed and when an
interrupt is processed. For interrupts, however, the incrementer is
disabled so that the current PC value (instead of PC+1) is pushed. This
allows the current instruction, which is aborted, to be refetched upon
returning from the interrupt service routine. The pushing and popping of
the PC stack occurs automatically in all of these cases. The stack can also
be manually popped.

The output of the next address multiplexer is fed back to the PC, which
normally reloads it at the end of each processor cycle. In the case of a
register indirect jump, however, DAG2 drives the PMA bus with the next
instruction address, and the PC is loaded from the PMA bus directly.

4.2.3 Down Counter and Stack
The down counter and associated count stack provide the program
sequencer with a very powerful looping mechanism. The down counter is
a 14-bit register with automatic post-decrement capability that is intended
for controlling the flow of program loops which execute a predetermined
number of times. Count values are 14-bit unsigned-magnitude values.

Before entering the loop, the counter is loaded from the lower 14 bits of
the DMD bus with the desired loop count by loading the CNTR register.
The actual loop count N is loaded, as opposed to N-l which is generally
required by other microprocessors to execute a loop N times. This is due
to the operation of the counter expired (CE) status logic, which tests CE
(and automatically post-decrements the counter) at the end of a DO
UNTIL loop that uses CE as its termination condition. CE is tested at the
beginning and the counter is decremented at the end of a processor cycle,
therefore CE is asserted when the counter goes to 0001 so that the loop
executes N times.

The counter may also be tested and decremented by a conditional jump
instruction that tests CEo

The counter is not decremented when CE is checked as part of a
conditional return or conditional arithmetic instruction. The counter may
be read directly over the DMD bus at any time without affecting its
contents. When reading the counter, the upper two bits of the DMD bus
are padded with zeroes.

The count stack is a 14-bit by 4-word stack which allows the nesting of
loops by storing temporarily dormant loop counts. When a new value is

I

loaded into the counter from the DMD bus, the current counter value is
automatically pushed onto the count stack. The count stack is
automatically popped whenever the CE status is tested and is true,
thereby resuming execution of the outer loop (if any). The count stack may
also be popped manually if an early exit from a loop is taken.

There are two exceptions to the automatic pushing of the count stack. A
counter load from the DMD bus does not cause a count stack push if there
is no valid value in the counter, because a stack location would be wasted
on the invalid counter value. There is no valid value in the counter after a
system reset and also after the CE condition is tested when the count stack
is empty. The "count stack empty" status bit in the SSTAT register is set
whenever the number of pop operations is greater than or equal to the
number of push operations (four maximum) since the last reset (ignoring
overflows).

The second exception is provided explicitly by the special purpose register
mnemonic OWRCNTR. Writing a value to this register (allowed only by
register-to-register transfer) rather than CNTR overwrites the counter with
the new value, and nothing is pushed onto the count stack. See the
instruction set overview in Chapter 9 for more information.

4.2.4 Loop Comparator and Stack
The DO UNTIL instruction initiates a zero-overhead loop using the loop
comparator and loop stack.

The loop comparator continuously compares the address of the last
instruction in the loop (coded in the DO UNTIL instruction) against the
next address. The address of the first instruction in the loop is maintained
on top of the PC stack. When the last instruction in the loop is executed
the processor conditionally jumps to the beginning of the loop,
eliminating the branching overhead otherwise incurred in loop execution.

The loop stack stores the end addresses and termination conditions of
temporarily dormant loops. Up to four levels can be stored. The only
"extra" cycle associated with the nesting of DO UNTIL loops is the
execution of the DO UNTIL instruction itself, since the pushing and
popping of all stacks associated with the looping hardware is automatic.
When using the counter expired (CE) status as the termination condition
for the loop, another cycle is required for the initial loading of the counter.
Table 4.1, below, shows the termination conditions that can be used with
DO UNTIL.

4-5

4 Program Control

4-6

Syntax

EQ
NE
LT
GE
LE
GT
AC
NOTAC
AV
NOTAV
MV
NOT MY
NEG
POS
CE
FOREVER

Status Condition

Equal Zero
Not Equal Zero
Less Than Zero
Greater Than or Equal Zero
Less Than or Equal Zero
Greater Than Zero
ALUCarry
Not ALU Carry
ALU Overflow
~Jot i\.LU Overflow
MAC Overflow
Not MAC Overflow
X Input Sign Negative
X Input Sign Positive
Counter Expired
Always

Table 4.1 DO UNTIL Termination Condition Logic

True If:

AZ=1
AZ=O
AN .xOR. AV = 1
AN .XOR.AV=O
(AN .xOR. A V) .OR. AZ = 1
(AN .XOR. A V) .OR. AZ = 0
AC=1
AC=O
AV=1

MY=1
MV=O
AS=1
AS=O
CE=1
Always True

The conditions in Table 4.1 are the inverse of the conditions tested in an IF
condition construct. That is, the termination condition for DO UNTIL NE
produces the same opcode condition field (0000) as IF EQ JUMP. This
difference is transparent at the source code level. The IF conditions are
given in Table 4.4.

When a DO UNTIL instruction is executed, the 14-bit address of the last
instruction and a 4-bit termination condition (both contained in the DO
UNTIL instruction) are pushed onto the 18-bit by 4-word loop stack.
Simultaneously, the PC incrementer output is pushed onto the PC stack.
Since the 00 UNTIL instruction is located just before the first instruction
of the loop, the PC stack then contains the first loop instruction address,
and the loop stack contains the last loop instruction address and
termination condition. The non-empty state of the loop stack activates the
loop comparator which compares the address on top of the loop stack
with the address of the next instruction. When these two addresses are
equal, the loop comparator notifies the next address source selector that
the last instruction in the loop will be executed on the next cycle.

At this point, there are two possible results depending on the type of
instruction at the end of the loop. Case 1 illustrates the most typical

Program ontrol 4

situation. Case 2 is also allowed but involves greater program complexity
for proper execution.

Case 1
If the last instruction in the loop is not a jump, call, or return, then
the next address source selector will choose the next address based
on the termination condition contained on top of the loop stack. If
the condition is false, the top PC stack value is selected causing a
jump back to the beginning of the loop. If the termination condition
is true, the PC incrementer is chosen, causing execution to fall out
of the loop. The loop stack, PC stack, and counter stack, (if it is
being used) are then popped.

Note that conditional arithmetic instructions execute based on the
condition explicitly stated in the instruction, with the loop
sequencing controlled by the (implicit) termination condition
contained on top of the stack.

Case 2
If the last instruction in the loop is a jump, call, or return, the
explicitly stated instruction takes precedence over the implicit
sequencing of the loop. If the condition in the instruction is false,
normal loop sequencing takes place as described for Case 1.

If the condition in the instruction is true, however, program control
transfers to the jump/call/return address. Any actions that would
normally occur upon an end-of-loop detection does not take place:
jumping to the beginning of the loop, falling out of the loop and
popping the loop, PC, and counter stacks, or decrementing the
counter.

Note that for a return, control is passed back to the top of the loop
since the PC stack contains the beginning address of the loop.

Caution is required when ending a loop with a jump, call, or return,
or when making a premature exit from a loop. Since none of the
loop sequencing mechanisms are active while the jump/call/return
is being performed, the loop, PC, and counter stacks are generally
left with the looping information (since they are not popped). In
this situation, a manual pop of each of the relevant stacks is
required to restore the correct state of the processor. Subroutine
calls only pose this problem when the call is the last instruction in

4-7

4 Progra ontrol

4-8

the loop, since a return causes program flow to transfer to the
instruction just after the loop. Calls within a loop that are not the
last instruction present no problem.

The only restriction concerning DO UNTIL loops is that nested loops
cannot terminate on the same instruction. Since the loop comparator can
only check for one loop termination at a time, falling out of an inner loop
by incrementing the PC would go beyond the end address of the outer
loop if they terminated on the same instruction.

4.3 INTERRUPT CONTROLLER
The interrupt controller of the ADSP-2101 aliows the processor to respond
to one of six interrupts. Depending on the configuration of SPORTl, there
may be one or three interrupts generated by external devices and three or
five interrupts generated internally by the serial ports and the timer. The
processor responds to interrupts by shifting control to the instruction
located at the appropriate interrupt vector address. Table 4.2 shows the
interrupts and associated vector addresses.

SPORTl may be configured as a serial port or alternately as two external
interrupt pins, IRQO and IRQl (plus the Flag In and Flag Out pins and a
programmable clock). Clearing the SPORTl configuration bit in the
system control register enables the interrupts and flags. See the Chapter,
"System Interface," for more information about the alternate configuration
of these pins.

Source of Interrupt
IRQ2 (external pin)
SPORTO Transmit (internal)
SPORTO Receive (internal)
SPORTl Transmit (internal) or IRQl (external)
SPORTl Receive (internal) or IRQO (external)
Timer (internal)

Table 4.2 Interrupts & Interrupt Vector Addresses

Interrupt Vector
0004 (highest priority)
0008
OOOC
0010
0014
0018 (lowest priority)

Interrupts can also be forced under software control; see the discussion of
the IFC register in the following sections.

Because of the efficient stack and program sequencer, there is no latency
(beyond synchronization delay) when processing unmasked interrupts,
even when interrupting 00 UNTIL loops. Nesting of interrupts allows

Progra ontrol 4

higher-priority interrupts to interrupt any lower-priority interrupt service
routines that may currently be executing, also with no additional latency.

Single-cycle context switching is provided by the secondary register set.
The secondary data register set, selected by the MODE CONTROL
instruction allows the contents of the primary data register set (AXO, AXI,
AYO, AYI, AF, AR, MXO, MXI, MYO, MYI, MF, MR2, MRI, MRO, 51, SE,
SB, SRI, and SRO) to be saved while a "fresh" set of registers may be
switched in for use by the interrupt service routine. You must explicitly
program a context switch between the primary and secondary register
banks if required.

4.3.1 Configuring Interrupts
Interrupts may be edge-sensitive or level-sensitive. Pending edge-sensitive
interrupts may be cleared. Interrupts may also be individually masked.
These interrupt characteristics are controlled by the ICNTL, IMASK and
IFC registers.

If an interrupt input is edge-sensitive, the interrupt is latched whenever
any inactive to active transition occurs. The latch remains set until the
request is serviced, then is automatically cleared. It may also be cleared in
software by setting the clear bit in IFe.

Thus an edge-sensitive interrupt signal need only be active long enough to
be recognized or can remain active indefinitely. Edge-sensitive inputs
generally require less external hardware than level-sensitive inputs, and
allow signals such as sampling rate clocks to be used for interrupt sources.

A level-sensitive interrupt must remain asserted until the interrupt is
serviced. The interrupting device must then remove the interrupt request
so that this interrupt is not serviced again. Level-sensitive inputs allow
many interrupt sources to use the same interrupt input by ORing them
together into a single IRQ pin.

You may also select whether automatic nesting of interrupt service
routines occurs. All interrupt request levels may be automatically masked
when an interrupt service routine is entered. Or, if desired, only equal and
lower priority interrupts will be masked.

4.3.1.1 Interrupt Control Register (ICNTL)
ICNTL is a 5-bit register that configures the interrupt modes of the

4-9

4-10

rogra ntrol

processor. These bits are all undefined after a processor reset. The bits in
ICNTL are defined as follows:

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

IRQO Sensitivity
IRQl Sensitivity
IRQ2 Sensitivity
Zero
Interrupt Nesting Mode

(If configured)
(If configured)

See Table 4.3

The IRQ sensitivity bits determine whether a given interrupt input is
edge- or level-sensitive (0 = level-sensitive, 1 = edge-sensitive). Since the
timer and the SPORT interrupts are internally generated, there are no
sensitivity bits for these interrupts.

Bit 4 determines whether nesting of interrupt service routines is allowed
as detailed in the next paragraph. .

4.3.1.2 Interrupt Mask Register (IMASK)
IMASK is a 6-bit register which enables and disables the individual
interrupt levels. The IMASK register contents are automatically pushed
onto the status stack when entering an interrupt service routine and
popped back when returning from the routine. The configuration of
IMASK upon entering the interrupt service routine is determined by bit
four of ICNTL; it may be altered, of course, as part of the interrupt service
routine itself.

When nesting is disabled, all interrupt levels are masked automatically
(IMASK set to zero) when an interrupt service routine is entered. When
nesting is enabled, IMASK is set so that only equal and lower priority
interrupts are masked; higher priority interrupts remain configured as
they were prior to the interrupt. This is graphically shown in Table 4.3
below.

The bits in IMASK are defined as follows:

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
BitS

Timer enable
IRQO or SPORTl receive enable
IRQl or SPORTl transmit enable
SPORTO receive enable
SPORTO transmit enable
IRQ2 enable

lowest priority

highest priority

Progra ontrol 4

The bits are all positive sense (0 = masked, 1 = enabled). IMASK is set to
zero upon a processor reset. The interrupt nesting mode bit (ICNTL)
determines the state of IMASK upon entering the interrupt, as shown in
Table 4.3. IMASK may be read from or written to via the DMD bus.

ICNTL bit 4 = 0 (nesting disabled)

Interrupt
Level
Serviced

o (low)
1
2
3
4
5 (high)

IMASK contents before,
pushed on stack

ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF

ICNTL bit 4 = 1 (nesting enabled)

Interrupt
Level
Serviced

o (low)
1
2
3
4
5 (high)

IMASK contents before,
pushed on stack

ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF

IMASK contents entering
interrupt service

000000
000000
000000
000000
000000
000000

IMASK contents entering
interrupt service

ABCDEO
ABCDOO
ABCOOO
ABOOOO
AOOOOO
000000

"ABCDEF" represents any pattern of ones and zeroes.

Table 4.3 IMASK Entering Interrupt Service Routines

4.3.1.3 Interrupt Force & Clear Register: IFC
The 12-bit IFC register is write-only and contains a bit for clearing and a
bit for forcing each of the six possible interrupts in the ADSP-2101. The
bits in IFC are defined as follows.

4-11

4 Progra ontrol

4-12

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6
Bit 7
Bit 8
Bit 9
Bit 10
Bit 11

Timer interrupt cle~
SPORTl receive or IRQO interrupt clear
SPORTl transmit or IRQl interrupt clear
SPORTO receive interrupt clear
SPORTO transmit interrupt clear
IRQ2 interrupt clear

Timer interrupt for~
SPORTl receive or IRQO interrupt force
SPORTl transmit or IRQl interrupt force
SPORTO receive interrupt force
SPORTO transmit interrupt force
IRQ2 interrupt force

Pending edge-sensitive interrupts can be cleared by setting the
appropriate clear bit (0-5) in IPC. Edge-triggered interrupts are normally
cleared automatically when the corresponding interrupt service routine is
called.

Edge-sensitive interrupts can be forced under program control by setting
the force bit (6-11) corresponding to the desired interrupt. This causes the
interrupt to be serviced once, unless masked. An external interrupt (IRQO,
IRQl or IRQ2) must be edge-sensitive (as determined by bits in ICNTL) to
be forced. The timer and SPORT interrupts behave like edge-sensitive
interrupts and can be masked, cleared and forced.

4.3.2 Interrupt Controller Operation
The individual interrupt request signals are logically ANDed with the
IMASK bits and then fed to a priority encoder which selects the highest
priority unmasked active request. The priorities are permanently
assigned. An active output from the priority encoder causes a jump to the
interrupt vector location.

The latency from when an external interrupt occurs to when the first
instruction of the interrupt routine is executed is at least two full cycles.
The interrupt controller requires one full cycle after the cycle in which an
external interrupt occurs to synchronize the interrupt internally (assuming
that setup and hold times are met; see the ADSP-2101 Data Sheet for timing
requirements). Another cycle is needed to fetch the instruction at the
interrupt vector location. During this cycle, the ADSP-2101 executes a
NOP instead of the instruction that would have been executed in this
cycle. The address of the aborted instruction is pushed on the PC stack so
that it will be fetched when the interrupt service is completed.

p nt

Interrupt vectors are four locations apart. Because of the efficiency of the
ADSP-2101 assembly language, many simple service routines could be
contained entirely in this space. For a longer service routine, an overhead
cycle would be incurred for a JUMP instruction (at the interrupt location)
to the start of the longer routine.

Interrupt vectoring pushes the status stack with the current arithmetic
status, mode status, and interrupt mask register contents: ASTAT, MSTAT
and IMASK. (The contents of the status stack may be examined with the
ADSP-2101 Simulator; ASTAT, MSTAT and IMASK are stored in this
order, with the MSB of ASTAT first, and so on.) When the interrupt mask
register is pushed, it is automatically loaded with a new value that reflects
the status of the interrupt nesting mode bit.

After the interrupt has been serviced, the RTI (return from interrupt)
instruction returns control to the main routine by popping the top PC
stack value into the PC, while at the same time popping the status stack to
restore the previous machine status.

4.4 STATUS REGISTERS AND STACK
The status and mode bits of the ADSP-2101 are maintained internally
within six registers, each of which are independently readable over the
DMD bus, and five of which can be written to from the DMD bus. These
registers are:

ASTAT
SSTAT
MSTAT

ICNTL
IMASK
IFC

Arithmetic status
Stack status
Mode status

Interrupt control
Interrupt mask
Interrupt force and clear

(read-only)

(write-only)

The interrupt configuring status registers are described in the previous
section. The other three are discussed below.

The status stack is 7 locations deep by 21 bits wide. The current ASTAT,
MST AT and IMASK values are pushed on this stack when a jump to an
interrupt routine is executed and are popped upon the return from the
interrupt routine. The seven stack locations accommodate nesting of all six
interrupts plus one other that is used only by the ADSP-2101 Emulator.

4-13

4 Program ontrol

4-14

4.4.1 Arithmetic Status Register (ASTAT)
ASTAT is eight bits wide and holds the status information generated by
the computational sections of the processor. The bits in ASTAT are
defined as follows:

Bit 0 AZ ALU result zero
Bit 1 AN ALU result negative
Bit 2 AV ALU overflow
Bit 3 AC ALUcarry
Bit 4 AS ALU X input sign
Bit 5 AQ ALU quotient flag
Bit fi MV ?v1,,-\C overflovv
Bit 7 SS Shifter input sign

The bits which express a particular condition (AZ, AN, A V, AC, MV) are
all positive sense (1 = true, 0 = false). Each of the bits is automatically
updated when a new status is generated by an arithmetic operation. Each
bit is affected only by a subset of arithmetic operations, as defined by the
following table.

Status Bit

AZ, AN, AV, AC
AS
AQ
MV
SS

Updated by

Any ALU operation except DIVS, DIVQ
ALU absolute value operation (ABS)
ALU divide operations (DIVS, DIVQ)
Any MAC operation except saturate MR
Shifter EXP operation

Arithmetic status is latched into AST AT at the end of the cycle in which it
was generated, and therefore cannot be used until the next cycle.

Loading any ALU, MAC, or Shifter input or output registers directly from
the DMD bus does not affect any of the arithmetic status bits. Executing
the ALU instruction PASS sets the AZ and AN bits for a given X or Y
operand and clears AC.

Progra Control 4

4.4.2 Stack Status Register (SSTAT)
SST AT is 8 bits wide and holds information regarding the four internal
stacks. The bits in SST A T are defined as follows:

Bit 0 PC Stack Empty
Bit 1 PC Stack Overflow
Bit 2 Count Stack Empty
Bit 3 Count Stack Overflow
Bit 4 Status Stack Empty
Bit 5 Status Stack Overflow
Bit 6 Loop Stack Empty
Bit 7 Loop Stack Overflow

All of the bits are positive sense (1 = true, 0= false). The empty status bits
indicate that the number of pop operations for the stack is greater than or
equal to the number of push operations since the last reset.

The overflow status bits indicate that the number of push operations for
the stack has exceeded the number of pop operations by an amount that is
greater than the depth of the stack. When this occurs, the item(s) most
recently pushed will be missing from the stack (old data is considered
more important than new). Because of this "saturation" of the stack
pointer, the stack empty status bits can be set by N sequential pop
operations, where N is the depth of the stack, regardless of how many
more than N sequential push operations were performed.

Since a stack overflow represents a permanent loss of information, the
stack overflow status bits "stick" once they are set and subsequent pop
operations have no effect on them. It is possible to have both the stack
empty and stack overflow bits set for a given stack.

For example, the count stack (which is four deep) is overflowed by five
successive pushes. Five successive pops will restore the stack empty
condition, but cannot remove the overflow.

Since SSTAT is a read-only register, write operations have no effect on the
stack status bits either. The processor must be reset to dear the stack
overflow status.

4-15

4 Progra ontrol

4-16

4.4.3 Mode Status Register (MSTAT)
MSTAT is a seven-bit register that defines various operating modes of the
processor. The bits in MSTAT are defined as follows:

Bit 0 Data Register Bank Select
Bit 1 Bit Reverse Mode (Data Address Generator 1 only)
Bit 2 ALU Overflow Latch Mode
Bit 3 AR Saturation Mode
Bit 4 MAC Result Placement Mode
Bit 5 Timer Enable
Bit 6 Go Mode (Execute during Bus Grant)

MSTAT (like most registers) can be changed by moving a new value into it
with any of the MOVE instructions. In contrast to the other status
registers, MSTAT can also be changed with the MODE CONTROL
instruction. The MODE instruction offers a high-level, self-documenting
method for changing mode status bits; see Chapter 9, "Instruction Set
Overview," for more information.

The data register bank select bit determines which set of data registers is
currently active (0 = primary, 1 = secondary). The data registers include all
of the result and input registers to the ALU, MAC, and SHIFTER: AXO,
AX1, A YO, AY1, AF, AR, MXO, MX1, MYO, MY1, MF, MR2, MR1, MRO, SI,
SE, SB, SR1, and SRO.

The bit-reverse mode, when enabled, bitwise reverses all addresses
generated by data address generator one (DAG1). This is most useful for
reordering the input or output data to an FFT algorithm. In addition to the
MODE CONTROL instruction, processor reset also disables it.

The ALU overflow latch mode causes the AV (ALU overflow) status bit to
"stick" once it is set. In this mode, A V will be set by overflow and remain
set, even if subsequent ALU operations do not generate overflows. A V can
then only be cleared by writing a zero into it from the DMD bus.

The AR saturation mode, when set, causes AR to be saturated to the
maximum positive (H#7FFF) or negative (H#8000) values whenever an
ALU overflow occurs.

Prog ont I

The MAC result placement mode determines whether or not the left shift
is made between the multiplier product and the MR register. This mode is
fully discussed in Chapter 2, "Computational Units."

Setting the timer enable bit starts the timer decrementing logic. Clearing it
halts the timer.

The "GO" mode allows the ADSP-2101 to continue executing instructions
during a bus grant. In the microprocessor ADSP-2100 access to external
memory was essential for fetching instructions and/ or data. In the
microcomputer ADSP-2101 this is often not true. The GO mode allows the
processor to run; only if an external memory access is required does the
processor halt waiting for the bus to be released.

4.5 IDLE
The ADSP-2101 IDLE instruction causes the processor to wait indefinitely
in a low-power state until an interrupt occurs. When an interrupt occurs, it
is serviced; then execution continues with the instruction following IDLE.

4.6 CONDITION LOGIC
The condition logic of the ADSP-2101 is used to determine whether a
specified action in a conditional instruction is performed, such as a jump,
call, return, MAC saturation, or arithmetic operation. It also controls the
implicit loop sequencing operations based upon the loop continuation
condition on top of the loop stack. The condition logic takes raw status
information from AST A T and the down counter and derives a set of
sixteen composite status conditions. The four-bit condition code field of
the instruction and the four-bit loop continuation condition on the loop
stack then select two of these to control whether the explicit operation in
the instruction or implicit loop sequencing operation (or neither) is
performed. When both are attempted, the explicitly specified operation
takes precedence.

The sixteen composite status conditions, with their derivations and
instruction mnemonics, given in Table 4.4 on the next page, are for the
standard IF condition statement. In addition, the status of the Flag In (FI)
pin of the processor may be used as a condition for the JUMP and CALL
instructions only.

Consult the section on DO UNTIL and the opcodes in Appendix A for
details of the termination condition usage.

4-17

4 Program Control

Syntax

EQ
NE
LT
GE
LE
GT
AC
NOTAC
AV
NOTAV
MV
NOTMV
NEG
POS
NOTCE
TRUE
FLAG_IN*
NOT FLAG_IN*

Status Condition

Equal Zero
Not Equal Zero
Less Than Zero
Greater Than or Equal Zero
Less Than or Equal Zero
Greater Than Zero
ALUCarry
Not ALU Carry
ALU Overflow
Not ALU Overflow
MAC Overflow
Not MAC Overflow
X Input Sign Negative
X Input Sign Positive
Not Counter Expired
Always True
Flag In
Not Flag In

Table 4.4 IF Condition Logic

True If:

AZ=l
AZ=O
AN .XOR. AV = 1
AN .XOR.AV=O
(AN XOR. AV) .OR. AZ=l
(AN XOR. A V) .oR. AZ=O
AC=l
AC=O
AV=l
AV=O
MV=l
MV=O
AS= 1
AS=O
CE:t:O
Always True
PI pin last sampled 1
PI pin last sampled 0

*Only available on JUMP and CALL instructions

4-18

Timer

5.1 OVERVIEW
The ADSP-2101 programmable interval timer can generate periodic
interrupts based on multiples of the processor's cycle time. When enabled,
a 16-bit count register is decremented every n cycles, where n-l is a
scaling value stored in an 8-bit register. When the value of the count
register reaches zero, an interrupt is generated and the count register is
reloaded from a 16-bit period register.

The scaling feature of the ADSP-2101 timer allows the 16-bit counter to
generate periodic interrupts over a wide range of periods. Given a
processor cycle time of 80ns, the timer can generate interrupts with
periods of 80ns up to 5.24ms with a zero scale value. When scaling is used,
time periods can range up to 1.34 seconds.

Timer interrupts can be masked, cleared and forced in software if desired.
For additional information, refer to the section "Interrupts" in Chapter 4,
"Program Control."

5.2 TIMER ARCHITECTURE
The ADSP-2101 Timer includes two 16-bit registers, TCOUNT and
TPERIOD and one 8-bit register, TSCALE. The extended mode control
instruction enables and disables the timer by setting and dearing bit 5 in
the mode status register, MSTAT. For a description of the mode control
instructions, refer to the ADSP-2101 Cross Software Manual. The timer
registers, which are memory-mapped, are shown in Figure 5.1 (on the
following page).

TCOUNT is the count register. When the timer is enabled, it is
decremented as often as once every instruction cycle. When the counter
reaches zero, an interrupt is generated. TCOUNT is then reloaded from
the TPERIOD register and the count begins again.

5

5-1

5 Timer

5-2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

TPERIOD Period Register H#3FFD

TCOUNT Counter Register H#3FFC

Register H#3FFB

Figure 5.1 Timer Registers

TSCALE stores a scaling value that is one less than the number of cycles
between decrements of TCOUNT. For example, if the value in TSCALE
register is 0, the counter register decrements once every cycle. If the value
in TSCALE is 1, the counter decrements once every 2 cycles. Figure 5.2
shows the timer block diagram.

5.3 RESOLUTION
TSCALE provides the capability to program longer time intervals between
interrupts, extending the range of the 16-bit TCOUNT register. Table 5.1
shows the range and the relationship between period length and
resolution for TPERIOD = maximum.

Cycle Time = lOOns
TSCALE Interrupt Every ...
o 6.55ms
255 1.678s

Cycle Time = BOns
TSCALE Interrupt Every ...
o 5.24ms
255 1.34s

Table 5.1 Timer Range & Resolution

5.4 EXAMPLE

Resolution
lOOns
25.6~s

Resolution
80ns
20.48~s

Table 5.2 shows the effect of operating the timer with TPERIOD = five,
TSCALE = one and TCOUNT = five. After the timer is enabled (cycle n-l)
the counter begins. Because TSCALE is one, the decrementing occurs
every two cycles. The reloading of TCOUNT and continuation of the
counting occurs, as shown, during the interrupt service routine.

Ti

Cycle TCOUNT Action
n-4 TPERIOD loaded with 5
n-3 TSCALE loaded with 1
n-2 TCOUNT loaded with 5
n-l 5 ENA TIMER executed
n 5 since TSCALE = 1, no decrement
n+l 5 decrement TCOUNT
n+2 4 no decrement
n+3 4 decrement TCOUNT
n+4 3 no decrement
n+5 3 decrement TCOUNT
n+6 2 no decrement
n+7 2 decrement TCOUNT
n+8 1 no decrement
n+9 1 decrement TCOUNT
n+lO 0 no decrement
n+ll 0 zero reached, interrupt occurs

load TCOUNT from TPERIOD
n+12 5 no decrement
n+13 5 decrement TCOUNT
n+14 4 no decrement
n+15 4 decrement TCOUNT, etc ..

Table 5.2 Example of Timer Operation

DMDBus 16

Timer Enable

Figure 5.2 Timer Block Diagram

5-3

5 Timer

5-4

5.5 SUMMARY
Interrupts operate using this formula: one interrupt occurs every
(TPERIOD +1) * (TSCALE +1) cycles. To set the first interrupt at a different
time interval from subsequent interrupts, load TCOUNT with a different
value from TPERIOD. The formula for the first interrupt is
(TCOUNT + 1) * (TSCALE+ 1).

If you write a new value to TSCALE or TCOUNT, the change is effective
immediately. If you write a new value to TPERIOD, the change does not
take effect until after TCOUNT is reloaded.

Serial Ports

6.1 OVERVIEW
The ADSP-2101 has two serial ports, SPORTO and SPORTl, that support a
wide variety of serial data communications schemes and allow for several
possible interprocessor communication methods in multiple ADSP-2101
systems.

Discussion of the ADSP-2101's external interface is presented in three
parts. This chapter discusses the serial port interface. The next chapter
discusses the memory interface and associated control lines. The following
chapter discusses the control interface. Waveforms shown in this manual
describe only the relationships of the signals depicted. Consult the data
sheet for actual timing characteristics.

6.1.1 Basic Features of SPORTS
Each SPORT has a five-pin interface consisting of the following signal
names.

Name
SCLK
RFS
TFS
DR
DT

Function
Serial clock II 0
Receive frame synchronization
Transmit frame synchronization
Serial data receive
Serial data transmit

Table 6.1 SPORT External Signals and Pins

Here is a brief list of the capabilities of the ADSP-2101 SPORTs. Figure 6.1,
on page 6-3, shows a simplified block diagram of a single SPORT.

• Bidirectional: each SPORT has a separate transmit and receive section.

• Double-buffered: each SPORT section (both receive and transmit) has a
data register accessible to the user and an internal transfer register. The
double-buffering provides additional time to service the SPORT.

6

6-1

6 Serial Ports

6-2

• Flexible clocking: each SPORT can use an external serial clock or
generate its own in a wide range of frequencies.

• Flexible framing: each SPORT section (receive and transmit) can run
with or without frame synchronization signals for each data word;
with internally-generated or externally-generated frame
synchronization signals; with active high or inverted frame signals;
with either of two pulse widths / timing.

• Flexible word length: each SPORT supports serial data word lengths
from three to sixteen bits.

• Companding in hardware: each SPORT provides optional A-law and
J.L-law companding according to CCITT recommendation G.711.

• Flexible interrupt scheme: each SPORT section (receive and transmit)
can generate a unique interrupt upon completing a data word transfer
or after transferring an entire buffer (see next item).

• Auto-buffering with single-cycle overhead: using the ADSP-2101
DAGs, each SPORT can receive and/ or transmit an entire circular
buffer of data with an overhead of only one cycle per data word.
Transfers to and from the SPORT and the circular buffer are automatic
in this mode and do not require additional programming. An interrupt
is generated only when pointer wraparound occurs in the circular
buffer.

• Multichannel capability: SPORTO provides a multichannel interface for
selective receipt and transmission of arbitrary data channels from a
twenty-four or thirty-two word, time-division multiplexed, serial
bitstream. This is especially useful for Tl interfaces or as a network
communication scheme for multiple processors.

• Alternate configuration: SPORTl can be configured as two external
interrupt inputs, IRQO and IRQ1, and the Flag In and Flag Out signals
instead of as a serial port. The internally generated serial clock may
still be used in this configuration.

Serial Po s

DMD Bus
16

Companding
~ Hardware

'-----:::M=:----' 'v--V,----------,
160

Transmit Data Register

16

Serial I Transmit Shift Register I--
Control ,--.L Receive Shift Register - f--

I ..- Internal
Serial
Clock

Generator
DT TFS SCLK RFS DR

t t i
Figure 6.1 Serial Port Block Diagram

6.2 SERIAL CLOCKS
Each SPORT operates on its own serial clock signal. The serial clock
(SCLK) can be internally generated or received from an external source.

I

The ISCLK bit in the SPORT control register determines the SCLK source.
As shown in Figure 6.2 on the next page, ISCLK resets to zero, the external
clock mode. External clock frequencies may be as high as the processor's
cycle rate; internal clock frequencies may be as high as one-half the
processor's clock rate.

When ISCLK is set, internal generation of the SCLK signal begins, whether
or not the corresponding SPORT is enabled. The frequency of the
internally-generated SPORT clock is a function of the value of the 16-bit
serial clock divisor register, SCLKDIV, and CLKOUT. The formula is:

SCLKFREQUENCY =
CLKOUT FREQUENCY

2 x (SCLKDIV + 1)

Table 6.2 Formula for Internal SPORT Clock Frequency

6-3

6 Serial Po s

6-4

SPORTO Control Register: H#3FF6
SPORn Control Register: H#3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISCLK o = External (Default)
1 = Internal

Figure 6.2 ISCLK Bit in SPORT Control Register

Table 6.3 shows how some of the commonly required SCLK frequencies
can be derived from CLKOUT by SCLKDIV.

Processor Operating Frequency: 12.288MHz

SCLKDIV
20479
5119
639
95
3
2
a

SCLK Frequency
300Hz
1200
9600
64kHz
1.536 MHz
2.048
6.144

Table 6.3 Examples of Common SPORT Frequencies (Internally-Generated)

Note that the serial clock of SPORTl (the SCLK pin) still functions when
the port is being used in its alternate configuration (as Fa, FI and two
interrupts). In this case, SCLK is unresponsive to an external clock, but can
internally generate a clock as described above.

The 16-bit SCLKDIV registers are memory-mapped. SCLKDIV for
SPaRTa is located at H#3FF5 and for SPORTl at H#3FFI.

6.3 FRAMING OPTIONS
Framing signals identify the beginning of each serial word transfer. The
ADSP-2101 SPORTs have great flexibility in the ways framing signals are
handled. Each SPORT has its own control register containing the control
bit fields described in this section. Timing examples for the various
framing options described in this section are shown later in "Waveform
Examples."

Transmit and receive framing are independent of each other as well. The
mnemonics "TFS" and (transmit frame synchronization) and "RFS"
(receive frame synchronization) appear in the name of signals and control
bits governing framing.

6.3.1 Frame Synchronization: RFSR / TFSR
Communications may be with or without frame synchronization signals
for each data word. If the RFS required (RFSR) or the TFS required (TFSR)
bit is zero, a frame signal is necessary to initiate communications but is
ignored after the first bit is transferred. Words are then transferred
continuously, unframed. If the RFSR or TFSR bit is one, a frame signal is
required for every data word. These bits, shown in Figure 6.3, are both
zeros at reset, requiring no frame synchronization (unframed mode).

SPORTO Control Register: H#3FF6
SPORT1 Control Register: H#3FF2

15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

~ TFSR (Transmit Frame Sync Required)

RFSR (Receive Frame Sync Required)

Figure 6.3 Framing Required Bits in SPORT Control Register

6-5

6-6

I

6.3.2 External or Internal: IRFS / ITFS
The internal frame synchronization bits (IRFS and ITFS) determine
whether the frame synchronization signal is generated internally or
supplied externally. See Figure 6.4. Both of these bits are zeros at reset,
requiring external frame synchronization signals.

SPORTO Control Register: H#3FF6
SPORT1 Control Register: H#3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~IRFS
(Internal Receive Frame Sync Required)

ITFS
(Internal Transmit Frame Sync Required)

Figure 6.4 Internal Framing Bits in SPORT Control Register

For transmit operations, the internal framing signal is generated by the
presence of "fresh" data for transmission. After the data is loaded into the
transmit register from the data register, the internal framing signal occurs
at the time needed to ensure continuous data transmission after the last bit
of the current word is transmitted (the exact time depends on the framing
mode being used).

For receive operations, the internal framing signal is generated
periodically as a function of SCLK, based on the value in the 16-bit
RFSDIV register. The formula is:

Number of SCLK cycles between RFS assertions = RFSDIV + 1

Values of RFSDIV + 1 that are less than the word length are not supported
and may cause unpredictable operation.

The RFSDIV registers are memory-mapped. RFSDIV for SPORTO is
located at H#3FF4 and for SPORTl at H#3FFO.

I

Note that RFS may be generated internally even when SCLK is supplied
externally. This provides a way to divide external clocks for any purpose.

6.3.3 Normal or Alternate Framing Mode: RFSW I TFSW
In the normal framing mode, the framing signal is checked at the falling
edge of SCLK. If the framing signal is asserted, data is available on or
latched on the next falling edge of SCLK, and the framing signal is not
checked again until the word has been transmitted or received. If data
transmission or reception is continuous, i.e., the last bit of one word is
followed without a break by the first bit of the next word, then the
framing signal should occur in the same SCLK cycle as the last bit of each
word. See Figures 6.9 and 6.15.

The alternate framing mode is selected by setting the RFSW or TFSW bit
(shown in Figure 6.5) to one. RFS or TFS should be asserted in the same
SCLK cycle as the first bit of a word. The data bits are latched on the
falling edge of SCLK, but RFS or TFS is checked only on the first bit.
Internally-generated TFS and RFS signals remain asserted for the length of
the serial word. Externally-generated TFS and RFS signals are only
checked during the first bit time. See Figures 6.10, 6.11, 6.16 and 6.17.

SPORTO Control Register: H#3FF6
SPORT1 Control Register: H#3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~ TFSW (Transmit Frame Sync Width)

RFSW (Receive Frame Sync Width)

Figure 6.5 Framing Width Bits in SPORT Control Register

6-7

6-8

I

6.3.4 Active High or Inverse Sense: INVRFS / INVTFS
The INVRFS (invert RFS) and INVTFS (invert TFS) bits in the SPORT
control register are both zeros at reset, selecting the normal, active high
mode of operation. When one of these bits is set, the corresponding
framing signal (whatever other modes are selected) is inverted. This
applies equally to internally- or externally-generated frame signals.

SPORTO Control Register: H#3FF6
SPORn Control Register: H#3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LL,NVRFS
(Invert Receive Framing)

INVTFS / INVTDV
(Invert Transmit Framing or
Invert Transmit Data Valid)

Figure 6.6 Active High/Low Bits in SPORT Control Register

6.4 SPORT WORD LENGTH: SLEN
Each SPORT independently handles words of three to sixteen bits. The
SLEN (serial word length) field in the SPORT control register controls this
according to the simple formula:

Serial Word Length = SLEN value + 1

Do not set SLEN to zero or one; these SLEN values are not permitted.

ri I

SPORTO Control Register: H#3FF6
SPORT1 Control Register: H#3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SLEN (Serial Word Length)

Figure 6.7 SLEN Field in SPORT Control Register

6.5 WAVEFORM EXAMPLES
Following are signal waveform examples of some combinations of the
options described above. While these appear in the form of timing
diagrams, they are intended to convey the relative operation of the
signals, not the specifics of the actual timing. Consult the data sheet for
actual timing parameters and values.

All of the following figures assume a word length of four bits, that is,
SLEN = 3. Framing signals are the normal, active high form, that is,
INVRFS and INVTFS = O.

SCLK

RFSOU~~ ________________________ ~r--\~ ____________________ __

RFSINP~ \XXXXXXXXXXXXXXXXXXXXX\ / \XXXXXXXXXXXXXXXXXXXXX\
DR

Figure 6.8 SPORT Receive, Normal Framing (Internal Framing Option and External
Framing Option Both Shown)

6-9

ri I Po

SCLK

RFSOU~\'-_____ --1I\,-_____ ---,I\,-____ _

DR

SCLK

RFSOUTPUT /
------'

Figure 6.9 SPORT Continuous Receive, Normal Framing (Internal Framing Option
and External Framing Option Both Shown)

\ _---'/

RFS INP_UT ___ --I/ '&XXXXXX'tf..XXXXXX'tttll:\ / VAX'XXXXX'tl..XXXX'ttttt1t1:10.
DR

SCLK

RFSOUTPUT /

Figure 6.10 SPORT Receive, Alternate Framing (Internal Framing Option and
External Framing Option Both Shown)

RFS INP_UT __ ----I/ '&XXXXXX'!:iXXXXXX'ttt!llJ '\iXXXXXXXXXXXX~
DR

6-10

Figure 6.11 SPORT Continuous Receive, Alternate Framing (Internal Framing Option
and External Framing Option Both Shown)

I

SCLK

RFS I vt/..XX'tltll/..'tI..XXXX'It/..Y#IJ.XXXXX'tiXXXXXX'tlttI&XXXXXX'l:IJXXXXX~

DR

Figure 6.12 SPORT Receive, Unframed Mode, Normal Framing

SCLK

RFS __ --JI '&XXXXXX'l:i.XXXX'tl..'f.ttt/I:I.XXXXXX'liXXXXXX'tiX'tI/D.XXXXXXXXXXXXXXXX

DR

Figure 6.13 SPORT Receive, Unframed Mode, Alternate Framing

SCLK

TFSOUTPUT !\L.. __________ ---J!\\.... ________ _

TFS
INPUT I ~ 1-

DT -------j(83 X 82 X 81 X 80)~----I(1_~8~3 .JX 82 X 81 ~

Figure 6.14 SPORT Transmit, Normal Framing (Internal Framing Option and External
Framing Option Both Shown)

6-11

I Po

SCLK

TFSOU~ ,'---------'/ ,'--____ ---J! ,'------
TFSINP_UT_--,! _ _ ,'------

DT -----~B2XB1XBO~ B2X B1~

SCLK

TFS OUTPUT /
-------'

TFSINPUT /
-----'

DT

SCLK

TFSOUTPUT /
-----'

Figure 6.15 SPORT Continuous Transmit, Normal Framing (Internal Framing Option
and External Framing Option Both Shown)

,\-__ ---oJ! \

\Xxx~xxxxxx~

B3 BO B3 BO

Figure 6.16 SPORT Transmit, Alternate Framing (Internal Framing Option and
External Framing Option Both Shown)

TFS INP_UT __ --1/ WXXXXX'/..'&XXXXXX'lfJ.'fJ;fJ '\XXXXXXXXXXXXX'IltIJ.X'ltI0.
DT -------i(83 X 82 X 81 X 80 X 83 X 82 X 81 X,-_8_0 __

6-12

Figure 6.17 SPORT Continuous Transmit, Alternate Framing (Internal Framing
Option and External Framing Option Both Shown)

SCLK

TFS ~XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxXXXxxXXXCOOX

DT -----<~ B2 X B1 X BO X B3 X B2

Figure 6.18 SPORT Transmit, Unframed Mode, Normal Framing

SCLK

TFS I ~xxxcoox

DT ----~~ B1 ~ B2 X B1 X BO X B3 X B2

Figure 6.19 SPORT Transmit, Unframed Mode, Alternate Framing

6.6 DATA REGISTERS & COMPANDING
Each SPORT has a transmit and a receive register; SPORTO's registers are
RXO and TXO, SPORTl's are RX1 and TXl. Companding (a contraction of
COMpressing and exPANDing) is the process of logarithmically encoding
data to minimize the number of bits that must be sent. Both SPORTs share
the companding hardware: one expansion and one compression operation
can occur in each processor cycle. In the event of contention, SPORTO has
priority. The ADSP-2101 supports both of the widely used algorithms for
companding: A-law and Il-law. The type of companding can be
independently selected for each SPORT.

Figure 6.1 shows the two data registers associated with each SPORT.
These registers, TXn and RXn, are identified by name in the ADSP-2101
assembly language, not memory-mapped.

TXn and RXn can be read and written (like other non-data registers) with
the following instructions: read/write to data memory (direct address),
load non-data immediate, and internal (register-to-register) moves.

6-13

6-14

I

See Appendix A, Instruction Coding, for additional information and
consult the instruction set reference found in the ADSP-2101 Cross­
Software Manual.

6.6.1 Simple Operation Example
There are two ways to generate the SPORT interrupts, after the
transmisstion or receipt of 1) each data word or 2) each complete buffer of
data words. This section discusses the first method. Section 6.7,
"Interrupts & Autobuffering," discusses the second.

Writing to the TXn register readies the SPORT for transmission; the TFS
signal initiates it. The value in TXn is written to the internal transmit
register and, after framing synchronization has occurred (if required), the
bits are sent, MSB first.

When the first bit has been transferred, the SPORT generates the transmit
interrupt. TXn is now available for the next piece of data, even though the
transmission of the first is not complete.

In the receiving section, bits accumulate as they are received in an internal
receive register. When a complete word has been received, it is written to
the RXn register and the receive interrupt for that SPORT is generated.

6.6.2 Companding & Data Format: DTYPE
Companding is done according to the CCITT G.711 recommendation.
Companding and data format are controlled by the OTYPE field in the
SPORT control register (shown in Figure 6.20) and described in Table 6.4.

SPORTO Control Register: H#3FF6
SPORT1 Control Register: H#3FF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DTYPE (Data Format I Companding)

Figure 6.20 DTYPE Field in SPORT Control Register

DTYPE
00
01
10
11

Format of data
Right justify, zero fill unused MSBs
Right justify, sign extend into unused MSBs
Compand using Il-law
Compand using A-law

Table 6.4 DTYPE Field Values

6.6.2.1 Companding Internal Data
When companding is enabled, valid data in RXn is the right-justified,
sign-extended, expanded value of the eight LSBs received. Likewise, a
write to TXn causes the 16-bit value to be compressed to eight LSBs (sign­
extended to the width of the transmit word) before being written to the
internal transmit register. If the 16-bit value is greater than the 13-bit A­
law or 14-bit Il-law maximum, it is automatically compressed to the
maximum value.

Because the values in the RXn and TXn registers are actually companded
"in place" it is possible to use the companding hardware internally,
without any transmission at all, such as for debugging and testing. This
requires a single cycle of overhead.

With companding enabled:

1. Write data to TXn (compression is calculated).
2. Wait for one cycle (TXn is written with compressed value)
3. Read TXn (it returns the eight-bit compressed data)

Exactly the same approach works for expanding data, using RXn instead
of TXn.

6.6.3 Companding Operation Example
With hardware companding, interfacing to a codec requires little
additional programming effort. See the codec hardware interfacing
example in the last section of this chapter.

Here is a typical sequence of operations for transmitting companded data:

• Write data to the TXn register
• The value in TXn is compressed
• The compressed value is written back to TXn
• After the frame sync signal has occurred (if required), TXn is written to

the internal transmit register and the bits are sent, MSB first.

6-15

6-16

I

As soon as the SPORT has started to send the second bit of the current
word, TXn can be written with the next word, even though transmission
of the first is not complete. When the first bit has been transferred, the
SPORT generates the transmit interrupt to indicate that TXn is ready for
the next data word. If the framing signal is being provided externally, the
next word must be written to TXn early enough to allow for compression
before the next framing signal arrives.

Here is a typical sequence of operations for receiving companded data:

• Bits accumulate as received in the internal receive register
• When a complete word is received, it is written to RXn
• The value in Rxn is expanded
• The expanded value is written back to RXn

The receive interrupt for that SPORT is then generated.

6.6.4 Contention For Companding Hardware
Since both SPORTs share the companding hardware, only one
compression and one expansion operation can take place during a single
machine cycle. If contention arises, such as when two expansions need to
occur in the same cycle, SPORTO has priority, while SPORTl is forced to
wait one cycle.

The effects of contention, however, are usually small. The instruction set
does not support loading both Txa and TXl in the same cycle;
consequently these operations will be naturally out of phase for
contention in many cases. The overhead cycle for the receive operation
occurs prior to the receive interrupt and does not increase the time needed
to service the interrupt, although it does affect the interval between
interrupts.

6.7 INTERRUPTS & AUTOBUFFERING
Four interrupts (out of the six available) are assigned to serial port
activity: each SPORT has a receive and a transmit interrupt. The priority of
these interrupts is shown below in Table 6.5.

Highest

Lowest

SPORTa Transmit
SPORTa Receive
SPORTl Transmit
SPORTl Receive

Table 6.5 SPORT Interrupt Priorities

I

For complete details about how interrupts are handled in the ADSP-2101,
see the Interrupts section in Chapter 4, "Program Control."

6.7.1 Autobuffering Operation
Autobuffering provides a mechanism that allows an entire block of serial
data to be received or transmitted before an interrupt is generated. Service
routines can operate on the entire block of data, rather than on a single
word, resulting in a significant reduction of overhead. Autobuffering uses
the circular buffer addressing of the DAGs. (Refer back to Chapter 3,
"Data Moves," for information on the DAGs.)

With autobuffering enabled, each serial data word is transferred (if
multichannel operation is enabled, only active words are transferred) to or
from data memory in a single overhead cycle. (Autobuffering to program
memory is not supported.) This "overhead" cycle occurs independently of
the instructions being executed and effectively suspends execution for one
cycle (or more, if wait states are required) when it happens. No interrupt
is generated for these individual data word transfers.

This transfer is not an operation that can be executed directly in the
assembly language. The transfer could be expressed in ADSP-2101
assembly language as:

OM(I,M) = RXO
or

TXO = OM (I, M)
Equivalent Instructions Only

The I and M registers used in the transfer are selected by fields in the
SPORT's autobuffer control register.

The processor waits for the current instruction to finish before inserting
the overhead cycle. A delay in the autobuffer transfer occurs if the transfer
is required during an instruction executing in multiple cycles (for wait
states, for example). If the transfer is required when the ADSP-2101 is
waiting in an IDLE state, the transfer is executed and the processor returns
to IDLE.

When a data word transfer causes the circular buffer pointer to wrap, the
SPORT interrupt is generated. The interrupt occurs, in other words, after
the complete buffer has been transmitted or received.

6-17

6

6-18

alPo s

Aside from the completion of an instruction requiring multiple cycles, the
automatic transfer of individual data words has the highest priority of any
operation short of RESET, including all interrupts. Thus, it is possible for
an autobuffer transfer to increase the latency of an interrupt response if
the interrupt happens to coincide with the transfer. Up to four
autobuffered transfers can occur; they are prioritized exactly as the SPORT
interrupts shown in Table 6.5 above. In the worst case that all four
autobuffer transfers are required at about the same time, interrupt latency
could increase by four cycles.

6.7.2 Autobuffering Control Register
In autobuffering mode, the interrupt is only generated when the
modification of a specified I register (in the DAG) by the modify value in
the specified M register (in the DAG) causes a modulus overflow. This
corresponds to pointer wraparound in the circular buffer or, in other
words, detection of the end of the buffer.

SPORTO Autobuffer Control Register: H#3FF3
SPORT1 Autobuffer Control Register: H#3FEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~~~~I 
TBUF 

(Transmit Autobuffering Enable) 

RBUF 
(Receive Autobuffering Enable) 

Figure 6.21 SPORT Autobuffer Control Register 

The I and M registers are identified in the SPORTn autobuffer control 
register. Autobuffering is enabled separately for receive and transmit by 
the RBUF and TBUF bits in the same autobuffered control register. 



TIREG identifies the I register associated with the transmit buffer and TMREG 
identifies the M register for this same buffer. The rules governing the 
pairing of I and M registers are the same as for other DAG operations. You 
can only mix I and M registers within the same DAG, such as IO-13 with 
MO-M3. Consequently, once a specific (0-7) I register has been selected, 
only two bits are necessary to indicate the associated M register. 

6.8 MULTICHANNEL OPERATION 
SPORTO also supports a multichannel function. In the multichannel mode 
of operation the SPORT automatically selects enabled words from a 
twenty-four or thirty-two word block of time-division multiplexed serial 
data. 

In single-channel mode, receive and transmit framing identifies the start 
of a single word or continuous stream, with independent receive and 
transmit operation. In the multichannel mode, the receive frame synch 
signal, RFS, identifies the start of a twenty-four or thirty-two word block 
of serial data with the receiver and transmitter operating at the same time. 

6.8.1 Multichannel Set Up 
Multichannel operation is enabled by a bit in SPORTO's control register. 
Other control bits in this register have a meaning in multichannel mode 
that is different from single-channel operation, as shown in Figure 6.22. 

SPORTO Control Register (Multichannel Version) 

H#3FF6 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

MCE 

~ 
MFD 

(Multichannel 
Frame Delay) 

(Multichannel Enable) 
1 = Multichannel Operation 

INVTDV (Invert Transmit Data Valid) 

MCl (Multichannel length) 
0= 24 Words 
1 = 32 Words 

Figure 6.22 SPORTO Control Register (Multichannel Version) 

6-19 



SCLK 

6 erial Po 

Multichannel operation becomes active when a one is written into the 
multichannel enable bit of the control word, MCE. MCE is zero after 
RESET. 

The state of the multichannel length bit (MCL) determines whether the 
block length is twenty-four or thirty-two words. A zero selects twenty­
four word blocks, a one, thirty-two word blocks. 

Multichannel frame delay (MFD) is a four-bit field specifying the number 
of serial clock cycles between the frame signal and the first data bit. This 
allows the ADSP-2101 to work with T1 interfaces of different types. Figure 
6.23 shows a variety of delays. 

First Bit 
----------------------------------~{~~ 

RFS 

RFS 

RFS 

RFS 

RFS 

RFS 

RFS 

MFD=9 1\ 
MFD=8 1\ 
MFD=7 1\ 
MFD=6 1\ 
MFD=5 1\ 
MFD=1 

----------------------------------------~I\~-----
MFD=O 

-------------------------------------~ 

6-20 

Figure 6.23 SPORT Multichannel Frame Delay Examples 

You designate the active words for the receive and transmit operations 
independently by setting any combination of bits in the thirty-twa-bit 
receive and transmit enable register, each made up of two contiguous 
sixteen-bit registers, as shown in Figure 6.24. For example, setting bit zero 
selects word zero, bit twelve selects word twelve and so on. 



31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I I I I I I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I I I I I I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 
1 = Channel Enabled 
o = Channel Ignored 

Figure 6.24 SPORTO Multichannel Word Enable Registers 

6.8.2 Multichannel Operation 

H#3FFA 

H#3FF9 

H#3FF8 

H#3FF7 

Receive 
Word 
Enables 

Transmit 
Word 
Enables 

In general, most aspects of SPORTO control operate normally in the 
multichannel mode. Specifically word length (SLEN), internal or external 
framing (IRFS), inverting the frame signal (INVRFS), companding 
(DTYPE) and setting up and using autobuffering are all unchanged in 
their meanings when used in the multichannel mode. 

Receive word time slots which are not active are ignored; that is, no 
interrupts are generated for these words, no auto buffering occurs and no 
data is written to the RXO register. Transmit word time slots which are not 
active tristate the data transmit (DT) pin. 

The TFS signal functions as a transmit data valid (TDV) signal in 
multichannel mode. Whenever the processor transmits (an active word) 
TDV is asserted; its logic is controlled by the same invert bit (INVTFS) bit, 
referred to as INVTDV in this context. If INVTDV is one, TDV is active 
low. TDV can be used to enable additional buffer logic, if required. 

6-21 



DR 

RFS 

DT 

TOV 

6 rial Po 

Figure 6.25 shows the start of a multichannel transfer. As in our earlier 
examples, word length is four bits (SLEN=3) and framing is active high. 
Multichannel frame delay (MFD) is one SCLK cycle. For the purpose of 
illustration, words zero and two are selected for receiving and words one 
and two are selected for transmission. 

WORD 0 + WORD 1 ------~.I •• ----- WORD2 

------.,~ 80 XXXXXXXX IGNORED xxxxxxxroxxxx 83}-@)-

__ ~r-\~ ____________________ ___ 

---------------~~ 81 X 80 X 83 X,-_8_2~_ 

-----------~/ 

6-22 

Figure 6.25 Start of Multichannel Operation 

Figure 6.26 shows a complete twenty-four word cycle in the multichannel 
mode, with complete words represented in the waveforms instead of 
individual bits. Receiving is active for all words and transmitting is active 
for words 0-3, 8-11 and 16-19 only. 



I 

r-W16-19 -I r-W24-271 

RFS ~~ ________________________________________________________ __ 

DR XXXXXXX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X XXX 

OT (X X X ) ( X X X ) ( X X X) 

TOV I \ I \ I \ 

Figure 6.26 Complete Multichannel Example 

6.9 SPORT ENABLE AND CONFIGURATION 
SPORTO and SPORTl are enabled by bits 12 and II, respectively, in the 
system control register (see Figure 6.27 on the next page). Each bit must be 
set for its corresponding serial port to operate. 

SPORTl can be configured as two external interrupt inputs, IRQO and 
IRQl, and the Flag In and Flag Out signals instead of as a serial port. If bit 
10 of the sytem control register is a 0, the SPORTl pins are defined in the 
alternate configuration listed below, regardless of whether SPORTl is 
enabled or disabled. SCLK may still be used as internally generated serial 
clock in this configuration. 

Name 
SCLKI 
RFSI 
TFSI 
DRI 
DTl 

Alternate Function 
Serial clock (output only) 
IRQO 
IRQl 
PI (Flag In) 
FO (Flag Out) 

(X X X r--
I L 

6-23 



6-24 

I 

System Control Register 
#H3FFF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

SPORT1 Configure 
1 = serial port, 0 = FI, FO, IRQO, IRQ1, SCLK 

SPORT1 Enable 
1 = enabled, 0 = disabled 

'----- SPORTO Enable 
1 = enabled, 0 = disabled 

Figure 6.27 SPORT Enables in System Control Register 

6.10 SPORT HARDWARE INTERFACING 
Figure 6.28 below shows an ADSP-2101 communicating with two PCM 
codecs via the two SPORTs. In this example, each SPORT generates its 
own serial clock and framing signal. The transmit section of each SPORT 
is using the receive frame synch for framing. The two codecs operate 
independently and could be using different companding algorithms if 
necessary. 

RFS 
TFS .J 

SPORTO DT 
DR 

SCLK 

ADSP-2101 
RFS 
TFS I.J 

SPORT1 DT 
DR 

SCLK 

Figure 6.28 ADSP·2101 With Two Codecs 

FSr 
L; FSx 

PCMin 
PCMout 

~ 
CLKR 
CLKX 

FSr 
L; FSx 

PCMin 
PCMout 

~ 
CLKR 
CLKX 

f4--
f-+ 

4--

~ 

Analog In 
Analog Out 

Analog In 
Analog Out 



I 

Figure 6.29 shows the ADSP-2101 interfacing to a T1 PCM interface chip. 
This figure shows two ADSP-2101s, although even more can easily be 
added because of the simplicity of sharing channels in the multichannel 
operating mode. As many ADSP-2101s as necessary could be connected to 
handle the computation for all twenty-four channels of the T1 link. A 
similar ADSP-2101 configuration can be used for a 32-channel CEPT link. 

ADSP-2101 

ADSP-2101 

Optional 
Additional 
Processor(s) 

RFSO 

OTO 

ORO 

SCLKO 

RFSO 

OTO 

ORO 

SCLKO 

T1 Interface Chip 

Frame _. 
dataout 

datain 

Clk 

~ 
~ 

Figure 6.29 ADSP-2101s With T11nterface in Multichannel Mode 

~ ..-..-
T1 Out 

TlIn 

6-25 



6 erial Ports 

6-26 

Figure 6.30 shows three ADSP-2101 devices communicating through the 
multichannel function of SPORTO. All three devices must have their 
SPORTO control registers initialized in software for multichannel 
operation of the same length (32 or 24 channels). The topmost ADSP-2101 
illustrated is programmed to generate the RFSO and SCLKO signals for the 
other two, which are programmed to receive RFSO and SCLKO externally. 
Each device transmits on a different channel (software must ensure this to 
prevent contention on the common DTO/DRO line). For example, 
processor #1 may transmit on channel 0 and receive on channell. 
Processor #2 completes the bidirectional communication by receiving on 
channel 0 and transmitting on channel 1. Processor #3 may transmit on 
channel 12 to both #1 and #2, vlhich are set up to receive on channel 12. 
This type of multiprocessor communication can be expanded to more 
ADSP-2101 devices, up to the number that can be accommodated with the 
maximum of 32 channels available. 

RFSO ---.. 
OTO ,--b-ADSP-2101 ORO ~ 

SCLKO 

RFSO ~ 
ADSP-2101 OTO r--b-ORO ~ 

SCLKO 

RFSO ~ 
ADSP-2101 OTO 

~ ORO 
SCLKO 

Figure 6.30 Using Multichannel Mode for Interprocessor Communication 



System Interface 

7.1 INTRODUCTION 
This chapter describes the control interface of the ADSP-2101. The 
processor has clock input pin, CLKIN, a crystal output pin, XTAL and a 
clock output, CLKOUT, a RESET line for resetting the processor, a Flag In 
pin, PI, and a Flag Out pin, Fa, and interrupt lines. 

This chapter describes only the logical relationships of control signals; you 
must consult the data sheet for actual timing characteristics. 

The discussion of the ADSP-2101's external interface is presented in three 
parts. The following chapter discusses the memory interface and 
associated control lines, Bus Request and Bus Grant. The previous chapter 
on serial ports discusses the serial port interface. These interfaces are 
shown in Figure 7.1, on the next page. 

7.2 CLOCK SIGNALS & PROCESSOR STATES 
The ADSP-2101 may be operated with a clock oscillator input to the 
CLKIN pin or with a crystal connected across CLKIN (input) and XT AL 
(crystal output). If an oscillator is used, XTAL must not be connected. See 
Figure 7.2. The processor uses a phase-locked loop to generate internal 
phases and the clock output signal, CLKOUT. 

101 

Figure 7.2 Clock or Crystal Configuration 

7 

7-1 



I 

I Clock or Crystal I 
i i 1 l' 

SClK 
ClKIN XTAl ClKOUT V GND RFS DO Serial Device 

SERIAL TFS 

---- RESET PORTO DT (Optional) ---- IRQ2 DR 

---- BR 
ADSP-2101 

+- BG 
SClK 

RI-~ or iRQO 

---- MMAP 
SERIAL 

TFSor IRQl 
Serial Device 

PORT 1 
DTor FO (Optional) 

PMS RD WR ADDRESS DATA DMS BMS DRor FI 

14 " 
24 , 

/ " 

D 23-8 
D2~_22 

D1t.a 

24 f' 
16)' 

14,y 
~{ , 

A D CS A D CS A D CS 

(Optional) 

PROGRAM 
MEMORY 

-
OE 

WE 

OE .. OE 
BOOT 

WE MEMORY 

250ns 
(Optional) 

e.g., EPROM 
DATA 2764 

MEMORY 
& 

27128 
PERIPHERALS 27256 

27512 

NOTE: The two MSBs of the Boot EPROM Address are also the two MSBs of the 
Data Bus. This is only required for the 27256 and 27512. 

Figure 7.1 ADSP·2101 Basic System 

7-2 



I 

CLKIN is a master input clock to the processor that operates at the 
instruction cycle rate. CLKOUT is an output clock from the ADSP-2101 
that operates at the instruction cycle rate. The rising edge of CLKOUT is 
aligned with the rising edge of CLKIN. The relationship between the 
phases of CLKOUT and the four internal time periods, called the 
processor states, that make up an instruction cycle is shown in Figure 7.3. 
The falling transition of CLKOUT always occurs at the transition between 
states two and three while the rising edge always occurs at the transition 
between states four and one. 

ClKIN 

INTERNAL 
PROCESSOR 
STATE 

3 4 2 

PROCESSOR 
CYCLE 

3~4 

I 
ClKOUT 

__________ 1 

Figure 7.3 Clock Signals & Processor States 

7.2.1 Synchronization Delay 
The ADSP-2101 has several asynchronous inputs, namely, RESET, FI and 
IRQ0-2. These inputs can be asserted in arbitrary phase to the processor 
clock, CLKIN. The ADSP-2101 synchronizes them prior to recognizing 
them. The delay associated with recognition is called the synchronization 
delay. 

Any asynchronous input must be valid prior to the recognition point to be 
recognized in a particular cycle. If an input does not meet the setup time 
on a given cycle, it will be recognized during the next cycle if it is held 
valid. 

7-3 



7 Syste Inte 

7-4 

Therefore, to ensure recognition of an asynchronous input, it must be 
asserted for at least one full processor cyde plus setup and hold time. The 
minimum time prior to recognition (the setup and hold time) is given in 
the ADSP-2101 Data Sheet. 

7.2.2 Clock Considerations 
The ADSP-2101 requires only a IX frequency dock signal which is used by 
an on-chip phase-locked loop to generate the higher frequency internal 
processor dock signals and CLKOUT. Because these docks are generated 
based on the rising edge of CLKIN, there is no ambiguity about the phase 
relationship of two processors sharing the same input dock. Multiple 
processor synchronization is very easy as a result. 

Using a IX frequency input dock with the phase-locked loop to generate 
the various internal docks imposes certain restrictions. The CLKIN must 
be valid long enough to achieve phase lock before RESET can be removed; 
see the ADSP-2101 Data Sheet for details. Also, the CLKIN cannot be 
stopped or changed on the fly. 

7.3 RESET 
RESET halts execution and returns all registers to a state defined in Table 
7.1 below. The contents of all RAM are unchanged after RESET, except as 
shown in this table. 

When RESET is released the booting sequence described in the memory 
interface chapter (based on the state of the MMAP pin) takes place, except 
in ROM-based processors (ADSP-2102). 

It is possible to force the processor to reboot in software by setting the 
BFORCE bit to one. This is not the same as a RESET in that some registers 
and data values are preserved. 

During booting (and rebooting) all interrupts induding serial port 
interrupts are masked, and autobuffering is disabled. The serial ports 
remain active; one transfer - from internal shift register to data register -
can occur for each serial port before there are overrun problems. 

The timer runs during a reboot. A timer interrupt happening during the 
reboot is masked. Thus, if more than one occurs during the reboot, the 
processor latches only the first. A timer overrun can occur. 



I 7 

Table 7.1 shows the state of the processor control registers, fields and bits 
after a RESET and after a software reboot. The values of any registers not 
listed are undefined at reset and unchanged by a reboot. 

Control Field Description RESET Reboot 

Data Registers 
PX 

Status Registers 
lMASK 
ASTAT 
MSTAT 
SSTAT 
ICNTL 

PX register 

Interrupt service enables 
Arithmetic status 
Mode status 
Stack status 
Interrupt control 

Control Registers (Memory-mapped) 
BWAIT Boot memory wait states 
BP AGE Boot page 
SPORTl configure Configuration 
SPEO SPORTO enable 
SPEl SPORTl enable 
DWAITO-4 Data memory wait states 
PWAIT Program memory wait 
TCOUNT Timer count register 
TPERIOD Timer period register 
TSCALE Timer scale register 

undefined 

o 
o 
o 
H#55 
undefined 

3 
o 
1 
o 
o 
7 
7 
undefined 
undefined 
undefined 

Serial Port Control Registers (Memory-mapped, one set per SPORT) 
ISCLK Internal serial dock 0 
RFSR, TFSR Frame sync required 0 
RFSW, TFSW Frame sync width 0 
IRFS,ITFS Internal frame sync 0 
INVRFS, INVTFS Invert frame sense 0 
DTYPE Companding type, format 0 
SLEN Serial word length 0 
SCLKDIV Serial clock divide undefined 
RFSDIV RFS divide undefined 

Multichannel word enable bits 
MCE 
MCL 
MFD 
INVTDV 

FO 

RBUF, TBUF 
TIREG, RIREG 
TMREG, RMREG 

Multichannel enable 
Multichannel length 
Multichannel frame delay 
Invert transmit data valid 

Flag Out value 

Autobuffering enable 
Autobuffer I index 
Autobuffer M index 

Table 7.1 ADSP·2101 State After RESET or Software Reboot 

undefined 
o 
o 
o 
o 

undefined 

o 
undefined 
undefined 

undefined 

o 
o 
no change 
H#55 
no change 

no change 
no change 
no change 
no change 
no change 
no change 
no change 
operates during reboot 
no change 
no change 

no change 
no change 
no change 
no change 
no change 
no change 
no change 
no change 
no change 

no change 
no change 
no change 
no change 
no change 

no change 

o 
no change 
no change 

7-5 



7 Syste Inte ace 

7-6 

7.4 INTERRUPTS 
The ADSP-2101 supports one or three prioritized, individually maskable 
external interrupts that can be either level or edge-triggered. The 
processor also supports internal interrupts from the Timer and SPORTs, 
which are discussed in those chapters. Additional information about 
interrupt masking, set-up and operation can be found in Chapter 4, 
"Program Control." The IRQ2 interrupt is always supported; IRQl and 
IRQO are alternate uses of SPORTl' s interface, available when SPORTl is 
not being used as a serial port. 

7.4.1 Edge & Level Sensitivity 
Level-sensitive interrupts operate by asserting the interrupt request iine 
(active low) until the request is recognized by the processor. Once 
recognized, the request must be removed before unmasking the interrupt 
to prevent being reserviced. 

In contrast, edge-triggered interrupt requests are latched when any HI-to­
LO transition occurs on the interrupt line. The ADSP-2101latches the 
interrupt so that the request line may be held at any level for an arbitrarily 
long period between interrupts. This latch is automatically cleared when 
the interrupt is serviced. 

Edge-triggered interrupts require less external hardware compared to 
level-sensitive requests since there is never a need to hold or negate the 
request. However, many interrupting devices may share a single level­
sensitive request line which allows for easy system expansion. 

An interrupt request gets serviced when it is not masked (determined by 
IMASK) and a higher priority request is not pending. Valid requests 
invoke an interrupt service sequence that vectors the processor to the 
vector addresses shown in Table 4.2. There is a synchronization delay 
associated with the interrupt request lines (and with internal interrupts). 

If an interrupt occurs during the extra cycles required to execute an 
instruction that accesses external memory more than once, it is not 
recognized between the cycles, only: before or after. Interrupts are latched, 
but not serviced, during bus grant (BG) unless the GO mode is enabled. 
Remember that in order to service an interrupt, the processor must be 
running and executing instructions, if only the IDLE instruction. 

The masking of interrupts upon entering the interrupt service routine is 
determined by bit 4 of the ICNTL register; see the discussion and table in 
Chapter 4. 



7.4.2 Interrupt Operation 
Figure 7.4 shows the interrupt service timing. Edge-sensitive and level­
sensitive interrupt requests are serviced similarly. Edge-sensitive 
interrupts may remain La indefinitely, while level-sensitive interrupts 
must be removed before executing the RTI instruction or the same 
interrupt immediately recurs. 

IRQ \ I'NY.Y.Y.Y.Y. 

PMA Address of Instruction N + 1 X Address of Instruction N + 2 X INTERRUPT VECTOR ADDRESS X NEXT ADDRESS 

PROCESSOR 
EXECUTE INSTRUCTION N EXECUTE INSTRUCTION N + 1 

OPERATION FETCH INSTRUCTION N + 1 FETCH INSTRUCTION N + 2 

(will be ignored) 

Figure 7.4 Interrupt Service Timing 

7.5 FLAG IN & FLAG OUT PINS 

IGNORE INSTRUCTION N+2 

EXECUTE NOP 

FETCH INSTRUCTION AT 
VECTOR ADDRESS 

In addition to the IRQl and IRQO pins, the alternate configuration of 
SPORTl provides the ADSP-2101 with a Flag In (FI) and a Flag Out (Fa) 
pin. In the alternate configuration, the DRI pin is redefined as Flag In and 
the DTl pin as Flag Out. Clearing the SPORTl configuration bit in the 
system control register selects the alternate configuration. 

FI may be used to control the branching of your program, using the IF 
FLAG~IN and IF NOT FLAG~IN conditions for the JUMP and CALL 
instructions. These condition statements evaluate based on the last state of 
the FI pin; FLAG~IN is true if FI last sampled as one and false if zero. 

Fa may be set, toggled, or cleared in software to signal events or 
conditions to any other device such as a host processor. The flag out 
control instruction, which is conditional, supports the SET, RESET or 
TOGGLE actions. These operations allow programs executing on the 
ADSP-2101 to control the state of this output pin as needed. The state of 
Fa is also available as a read-only bit of the SPORTl control register. 

EXECUTE INSTRUCTION AT 
VECTOR ADDRESS 

FETCH NEXT INSTRUCTION 

7-7 





Memory Interface 

8.1 INTRODUCTION 
Figure 8.1 (on the next page) shows a complete ADSP-2101 system with 
external memories and peripherals. 

The ADSP-2101 has three separate memory spaces: data memory, 
program memory and boot memory. Boot memory is only active during 
the loading of program code from an external device (ROM, EPROM or 
RAM typically). Data memory is a single address space, some on the chip 
and the rest external. Likewise, program memory consists of a single 
address space, some on the chip and the rest external. 

The program memory address bus (PMA) and the data memory address 
bus (DMA) are multiplexed into one bus and driven off chip. Likewise, 
the program memory data bus (PMD) and the data memory data bus 
(DMO) are multiplexed into one bus and driven off chip. The sixteen 
MSBs of the external data bus are used as the DMD bus. In other words, 
D23_8 are used for DMDI5_0• 

The PMS, OMS and BMS signals indicate which memory is being 
accessed. Because program memory and data memory buses are shared, 
if more than one off-chip transfer needs to be made in the same instruction 
there will be an overhead cycle required. There is no overhead if just one 
off-chip access with no wait states occurs in any instruction. 

All external memories may have automatic wait state generation 
associated with them. Wait states - each equal to one cycle - are 
programmable; the defaults are given in each section of this chapter. The 
ADSP-2101 can ~nt control of the external buses to another device using 
the bus request (BR) and bus grant (BG) signals. 

The discussion of the ADSP-2101's external interface is presented in three 
parts. This chapter discusses the memory interface and associated control 
lines. The previous chapter discusses the system! control interface and the 
chapter on serial ports discusses the serial port interface. Only the 
relationships are described; you must consult the ADSP-2101 Data Sheet 
for actual timing characteristics. 

8 

8-1 



I 

I Clock or Crystal I 
~ T i 1 l' 

SClK 
ClKIN XTAl ClKOUT V GND RFS DO Serial Device 

-------
RESET 

SERIAL TFS 
-"" 

PORTO DT (Optional) 

-------
IRQ2 DR 

-------
BR ADSP-2101 

+- BG SClK I 
RFS orlRQO 

-------
MMAP 

SERIAL 
TFSor IRQ1 

Serial Device 
PORT 1 

DTor FO (Optional) 
PMS 

- -
OMS BMS RD WR ADDRESS DATA DR or FI-

14 , 
,- 24 ~ 

,-

0 23_8 D2~_22 
Dl8 

24 i;' 
16 "i.I 

14,y 8t ,-

-
A 0 CS A 0 CS A 0 CS 

- -
OE OE OE 

BOOT 
- - MEMORY 
WE WE 

250ns 
(Optional) (Optional) 

PROGRAM e.g., EPROM 
DATA 2764 MEMORY MEMORY 27128 

& 27256 PERIPHERALS 27512 

NOTE: The two MSBs of the Boot EPROM Address are also the two MSBs of the 
Data Bus. This is only required for the 27256 and 27512. 

Figure 8.1 ADSP·2101 System Block Diagram 

8-2 

I 



I 

8.2 BOOT MEMORY INTERFACE 
The ADSP-2101 has 2K of 24-bit (3-byte) wide internal program memory. It 
can load the entire 2K or some fraction of it during a boot sequence. To 
interface to inexpensive EPROM, the processor loads instructions one byte 
at a time. 

Booting is only possible when the MMAP pin is logical O. If the MMAP 
pin is logical 1, the boot sequence does not occur. 

BR is recognized during the booting se~nce. The bus is granted after 
completion of loading the current byte. BR during booting may be used to 
implement booting under control of a host processor. 

8.2.1 Boot Pages 
Although 2K words of 3-byte wide program memory require only 6K 
bytes of storage, boot memory is organized into eight pages which are 
each 8K bytes long. Every fourth byte of a page is an "empty" byte, except 
the first one, which contains the page length. The page length is read first 
and then bytes are loaded from the top of the page downwards. This 
results in shorter booting times for shorter pages. 

The length of the boot page is given as: 

pagelength::: (number of 24-bit PM words/8) - 1 

That is, a page length of 0 causes the boot address generator to generate 
byte addresses for 8 words which reside in 32 sequential EPROM 
locations. 

The ADSP-2101 PROM Splitter, part of the ADSP-2101 Cross-Software 
development tools, calculates the proper page length for your program 
and orders the bytes of your program as shown in Figure 8.2 on the next 
page. 

8.2.2 Powerup Boot and Software Reboot 
Upon reset, the ADSP-2101 boot sequence occurs if the MMAP pin is O. 
The boot sequence on powerup or hardware reset always loads boot page 
o. After reset, boot loading can occur from anyone of up to 8 different 
boot pages. The boot page select field (BPAGE) in the ADSP-2101 
memory-mapped register at location Ox3FFF (see Figure 8.3 on the next 
page) specifies which boot page is to be loaded. To boot the ADSP-2101 
from a specific boot page, set BP AGE to the desired page number and, in 

8-3 



8 

8-4 

e ory Inte ace 

Address 

0000 
0001 

0002 
0003 
0004 

~l! 
/' 

001B 

001C 

0010 
001E 
001F 

WordO: USB 
WordO: MSB 

Word 0: LSB 

Page Length 

Word 1: USB 

;;/ 
'/ 

Not Used 

\A/crd 7: USB 

Word 7: MSB 

Word7: LSB 

Not Used 

Figure 8.2 EPROM Contents 

System Control Register 
#H3FFF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

BFORCE 
(Boot Force Bit) 
J~~ 

I 
BWAIT (Boot Wait States) 

Default = 3 

BPAGE (Boot Page Select) 
Default = 0 

Figure 8.3 Boot Control Fields in System Control Register 



I 

the same memory-mapped register, set the boot force bit (BFORCE). When 
the boot force bit is set, the (software-forced) booting sequence starts. 
Except for the page selection, there is no difference between a software­
forced boot sequence and a reset boot sequence. 

Table 7.1, in the system interface chapter, shows the state of the processor 
control registers after a reset and after a software reboot. Essentially, the 
processor's control state is saved, but stacks are cleared and execution 
restarts at the restart vector. 

8.2.3 Boot Memory Access 
The ADSP-2101 can boot its internal memory from a single byte':wide 250 
ns EPROM, such as the 2764 and 27512. The number of wait states for the 
boot memory access is located in the BW AIT field of the ADSP-2101 
memory-mapped register located at address Ox3FFF (Figure 8.3). This field 
can be set to any value from 0 to 7 in order to generate 0 to 7 wait states. 
The default value at reset is three wait states. 

Timing of the boot memory access is identical to that of external program 
memory or external data memory accesses, except that the active strobe is 
BMS rather than PMS or DMS. To address eight pages of 8K bytes each, 16 
bits are needed. The least significant 14 bits are output on the 14-bit 
ADSP-2101 address bus, and the most significant 2 bits are output on the 2 
MSBs of the data bus during a boot memory access. Data is read from the 
data bus on the middle eight bits. 

8.2.4 Boot Loading Sequence 
The order in which the ADSP-21 01 loads data into its internal memory 
during a boot operation is unimportant in most applications. The boot 
loading sequence is explained in this section for those instances in which 
the order is relevant (when booting from a host instead of an EPROM, for 
example). 

To execute the boot operation, the boot address generator generates the 
appropriate byte addresses and loads the ADSP-2101 internal program 
memory with the contents of the EPROM. The ADSP-2101 internal 
program memory is loaded beginning with the high addresses. For 
example, assume that eight 24-bit words are loaded into the ADSP-2101 
during the booting process. The first word written into the ADSP-2101 
program memory is written to address 0007. The last word loaded is 
written to internal program memory address 0000. 

8-5 



8 

8-6 

e o Inte ace 

The boot address is made up of several values, as shown in Figure 8.4: the 
3-bit page number (from BPAGE in the system control register); the 8-bit 
page length, which is always read first, from the fourth byte of the page; 
three ones (111); and a 2-bit code whose value determines which byte of 
the word is being addressed. 

Word Pointer 
I 

15 14 13 12 11 10 9 8 7 6 

Figure 8.4 Boot Address 

5 4 3 2 1 0 

'-../ 

2-bit {~~~ ~ ~~ 
byte code LSB = 10 

The last 24-bit word (the last instruction or program memory data value) 
is loaded into the ADSP-2101 first. The byte loading order is: upper byte, 
lower byte, middle byte. The word pointer is then decremented. This 
addresses the second-to-Iast 24-bit word in the EPROM. 

For example, to boot from page 0 the shortest allowable page (eight 24-bit 
words corresponding to a page length of 0), the following addresses 
would be generated: 

• The first address generated is 0003 which reads the page length. 

• The next address generated in this example is address 001C. This is the 
upper byte of the last word. 

• The byte code is then updated to specify the lower byte (the final two 
bits are 10) and the address generated is 001E. 

• The byte address changes again, this time to address the middle byte 
(the two bit code is 01) and the address generated is 001D. 

• Once all three bytes are loaded, the word counter is decremented. The 
three succeeding byte addresses generated are 0018, 001A, and 0019. 

• The word counter is decremented again and the next set of byte 
addresses generated is 0014, 0016, and 0015. This process continues 
until word 0 is loaded. 



I 

The contents of the EPROM, the byte addresses and the order of addresses 
generated is summarized in Figure 8.5. 

Address 

0000 
0001 

0002 
0003 
0004 

0005 
0006 

0007 

;;/ 
'I 

0018 

0019 
001A 
0018 

001C 
0010 
001E 

001F 

EPROM 

Word 0: USB 

Word 0: MSB 

Word 0: LSB 

Page Length 

Word 1: USB 

Word 1: MSB 

Word 1: LSB 

Not Used 

Word 6: USB 

Word 6: MSB 

Word 6: LSB 

Not Used 

Word 7: USB 

Word 7: MSB 

Word 7: LSB 

Not Used 

Figure 8.5 Boot Loading Order 

.. 

~v. /' .. 
... 
... 
.. .. .. 

8.3 PROGRAM MEMORY INTERFACE 

Order 
Addressed 

1st! 

5th! 

7th! 

6th! 

2nd! 

4th! 

3rd! 

The ADSP-2101 addresses 16K of 24-bit wide program memory, 2K on­
board and up to 14K external using the control lines shown in Figure 8.l. 
The processor supplies a 14-bit address on the program memory address 
bus (PMA) which is multiplexed off-chip. Instructions or data are 
transferred across the 24-bit program memory data (PMD) bus which is 
also multiplexed off-chip. A program memory select pin, PMS, indicates 
that the address bus is being driven with a program memory address and 
memory can be selected. 

Two control lines indicate the direction of the transfer. Memory read (RD) 
is active low signaling a read and memory write (WR) is active low for a 

8-7 



8 

8-8 

e o Inte ace 

write operation. Typically, you would connect PMS to eE, RD to OE and 
WR to WE of your memory. 

8.3.1 Program Memory Read I Write 
The on-chip program memory access is transparent to the outside memory 
interface. Off-chip program memory acc~ss happens in this sequence: 

1. The ADSP-2101 places the address on the PMA bus, which is 
multiplexed off-chip. 

2. PMS and then RD or WR are asserted. 

3. Within a specified time, data is placed on the data bus, multiplexed to 
the internal PMD bus. 

4. The data is read or written and RD (or WR ) then PMS is deasserted. 

The basic read and write cycles are illustrated in Figure 8.6. Part A shows 
zero wait states and Part B shows the effect of one wait state. 

ClKIN 

ClKOUT ---.-! \ '-------J/ \~---'/ 
PMS 
~ or '-----~/ 

DMS 

Address --{ ) 

RD 
or 

WR 
\ / 

Data 
'/I..X xxx't/..'I.Xxxxxx In 

Data 
Out ) 

Figure 8.6a. Program & Data Memory Read & Write Operations, No Wait States 



I 

ClKIN 

ClKOUT 
~ \ / \ / \ / \ 

PMS 
or ~ / 

DMS 

Address } ~~-----------------------'------------------------
or 

\ / 
Data 
In 'tiXXXXXX'ltlJ..XXxm~xxx m~'t/..xxxxxxxm~'t/..XXXXXXXX 

Data 
Out ) 

Figure 8.6b Program & Data Memory Read & Write Operations, One Wait State 

External program memory has a programmable wait state field (PW AIT) 
in the system control register, as shown in Figure 8.7. PWAIT defaults to 
seven wait states for program memory access on power-up. 

System Control Register 
#H3FFF 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

PWAIT 

Figure 8.7 Program Memory Wait State Field In System Control Register 

8-9 



8-10 

I 

8.3.2 Program Memory Map 
Depending on the state of the MMAP pin, the program memory space is 
configured as one of the two layouts shown in Figure 8.8. 

INTERNAL 
RAM or ROM 

RAM 
LOADED from 

EXTERNAL 
BOOT 

0000 

I--_M_E_M_O_R_V_--I 07FF 
0800 

EXTERNAL 

~ ________ ~3FFF 

MMAP=O 

Figure 8.8 Program Memory Configurations 

0000 

EXTERNAL 

I-------~ 37FF 

INTERNAL 
RAM or ROM 

NOT 
LOADED 

3800 

'--_____ ...... 3FFF 

MMAP=1 

The 16K program memory space can hold instructions and data 
intermixed in any combination. The Linker determines where to place 
relocatable code and data segments. You may specify absolute address 
placement for any module or data structure, including the code for the 
restart and interrupt vector locations. 



Table 8.1 shows the location of these vectors. 

Program Memory 
Address Use 

Restart Vector 
IRQ2 
SPaRTa Transmit 
SPaRTa Receive 

I 

0000 
0004 
0008 
OOOC 
0010 
0014 
0018 

SPORTl Transmit or IRQl 
SPORTl Receive or IRQO 
Timer Interrupt 

Table 8.1 Program Memory Restart / Interrupt Vectors 

Internal program memory RAM is fast enough to supply an instruction 
and data in the same cycle eliminating the need for cache memory as in 
the ADSP-2100. Consequently, the ADSP-2101, if operating entirely from 
on-chip memories, can fetch two operands and the next instruction on 
every cycle. The ADSP-2101 can also fetch anyone of these three from 
external memory with no performance penalty. 

8.4 DATA MEMORY INTERFACE 
The ADSP-2101 addresses up to 16K of 16-bit data memory using the 
control signals shown in Figure 8.1. On-chip data memory is lK in size 
beginning at H#3800. In addition, control registers are memory-mapped 
into the upper lK of data memory address space. The top lK of data 
memory is reserved for future expansion; 14K of data memory is available 
for user data storage. 

The processor supplies a 14-bit address on the data memory address bus 
(DMA) which is multiplexed off-chip. Data is transferred across the upper 
16 bits of the 24-bit memory data bus which is also multiplexed off-chip. A 
data memory select pin, DMS, indicates that the address bus is being 
driven with a data memory address and memory can be selected. 

Two control lines indicate the direction of the transfer. Memory read (RD) 
is active low signaling a read and memory write (WR) is active low for a 
write operation. Typically, you would connect DMS to CE, RD to OE and 
WR to WE of your memory. 

8 -11 



8-12 

I 

8.4.1 Data Memory ReadlWrite 
The on-chip data memory access is transparent to the outside memory 
interface. Off-chip data memory access requires the same sequence as for 
off-chip program data memory, namely: 

1. The ADSP-2101 places the address on the DMA bus, which is 
multiplexed off-chip. 

2. DMS and then RD or WR are asserted. 

3. Within a specified time, data is placed on the data bus, multiplexed to 
the internal DMD bus. 

4. The data is read or written and RD (or WR) then DMS are deasserted. 

The basic read and write cycles are illustrated in Figure 8.6 in the 
preceding section. 

8.4.2 Data Memory Map 
Data memory configurations are shown in Figure 8.10, on the facing page. 
Each of the five zones of off-chip data memory has its own programmable 
wait state. Wait states are extra cycles that the ADSP-2101 either waits 
before latching data (on a read) or drives the data (on a write). This means 
that one zone of memory could be used for working with memory­
mapped peripherals of one speed while another zone was used with faster 
or slower peripherals. Similarly, slower and faster memories can be used 
for different purposes, as long as they are located in different zones of the 
data memory map. 

The data memory wait state control register, shown in Figure 8.9 has a 
separate field for each zone of external memory. Each 3-bit field contains 
the number (0-7) of wait states for the corresponding zone of memory. 

Data Memory Wait State Control Register 
#H3FFE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DWAIT4 DWAIT3 DWAIT2 DWAIT1 DWAITO 

Figure 8.9 Data Memory Wait State Control Register 



emo Inte ace 8 

EXTERNAL 
RAM 

1K External 
DWAITO 

1K External 
DWAIT1 

10K External 
DWAIT2 

1K External 
DWAIT3 

1K External 
DWAIT4 

1K Internal 

Memory Mapped 
Registers 

And Reserved 

Figure 8.10 Data Memory Configuration 

8.4.3 Parallel & Memory-Mapped Peripherals 

0000 

0400 

0800 

3000 

3400 

3800 

3COO 

3FFF 

Peripherals requiring parallel communications and other types of devices 
can be mapped into external data memory. Communication takes the form 
of reading and writing the memory locations associated with the device. 
Some AID and D I A converters require this type of interface. The PORT 
directives in the System Builder and Assembler modules of the Cross­
Software support this mapping. Communication with a memory-mapped 
device consists simply of reading and writing the appropriate locations. 
By matching the access times of the external devices to the wait states 
specified for their zone of data memory, you can easily interface a variety 
of devices. 

8-13 



8 

8-14 

I 

8.5 BUS REQUEST / GRANT 
Using the bus request, BR, and bus grant, BG, signals, the ADSP-2101 can 
relinquish control of the external memory interface giving access to an 
external device, such as a host processor. If the GO mode is enabled, the 
ADSP-2101 continues to execute instructions using on-chip program and 
data memory. The processor halts only when it must access external 
memory. If the GO mode is not enabled, the processor always halts before 
granting the bus. 

The external device requests the bus by asserting BR. BR is a synchronous 
input with s~ and hold requirements specified in the ADSP-2101 Data 
Sheet. When BR is recognized, the ADSP-2101 halts if necessary and _ 
tristates fourteen address bus lines, twenty-four data bus lines, WR, RD, 
PMS, DMS and BMS. Control is then transferred to the requesting device 
by asserting BG. If the processor is in the middle of an instruction 
requiring the access of both external program and external data memory 
(requiring two consecutiv~cles of external bus use) and the second 
access has not yet begun, BG is granted in between the two accesses. The 
second access is performed after the bus request is removed. 

Even if the processor has to halt, its internal state is not affected by 
granting the bus. After the bus request is released by the external device, 
normal operation resumes from the point at which it was halted. This 
applies uniformly to all processor operations. 

The external device returns control to the ADSP-2101 by releasing BR. 
After BR is recognized as released, the processor releases BG and takes 
over the bus. Figure 8.11 shows the relative timing of this cycle. 

During reset, BR is recognized and the bus is granted in the same manner 
as during normal operation. BR is also recognized during the booting 
sequence. The bus is granted after completion of loading the current byte, 
including any wait states. BR during booting may be used to implement 
booting under control of a host processor. 



I 

CLKOUT 

HOLD SEQUENCE 

BR 

BG !\~-----------+-----

PMxx, DMxx '--__ --f/ 

RELEASE SEQUENCE 

BR 

BG I 

PMxx, DMxx 

NOTE: PMXX stands for PMA, PMD, WR, RD and PMS. 

DMxx stands for DMA, DMD, WR, RD and DMS. 

Figure 8.11 Bus Hold I Release 

8-15 



8 e o Inte ace 

8.6 MEMORY INTERFACE SUMMARY 
Table 8.2 summarizes the states of the memory interface pins for various 
combinations of program memory and data memory accesses. Table 8.3 
summarizes the states of the memory interface and control pins during 
reset, booting and bus grant. 

Access PMS DMS BMS RD WR Address Data 

Internal program high high high high high tristated* tristated 
memory only 

Internal data high high high high high tristated tristated 
memory only "t." 

Internal program high low high low low DMaddress DMdata 
memory, external (for (for 
data memory read) write) 

Internal data low high high low low PM address PM data 
memory,external (for (for 
program memory read) write) 

* ADSP-2101 Emulator does not tristate the address bus. 

Table 8.2 Pin States During Memory Accesses 

Operation Address Data PMS RD CLKOUT SPORTs BG 
DMS WR FO 
BMS 

Reset tristated tristated high high active tristated high 

Auto Booting active active BMSactive RDactive active tristated high 
after Reset PMS,DMS WRhigh 

high 

BRAsserted tristated tristated tristated tristated active active low 
during Normal 
operation, Booting 
or Go Mode 

BRAsserted tristated tristated tristated tristated active tristated low 
during Reset 

Table 8.3 Pin States During Reset, Booting and Bus Grant 

8-16 



Instruction Set Overview 

9.1 INTRODUCTION 
This chapter provides an overview of the instruction set used to program 
the ADSP-2101 and of the ADSP-2101 development system software. It 
provides enough information to understand the nature of programming 
the ADSP-2101 and the capabilities of the instruction set itself including a 
programming example (at the end of the chapter). This chapter is not a 
complete programmer's reference. 

For software development, you must have the ADSP-2101 Cross-Software 
Manual which contains a detailed instruction reference section and a 
complete guide to the development tools: System Builder, Assembler, 
Linker, Simulator, PROM Splitter and C Compiler. The 3-volume ADSP-
2100 Applications Handbook presents many ADSP-2100 program examples 
with source code and discussion; these programs are also available on 
IBM PC diskettes. Individual Applications Notes detail ADSP-2101 
programs. 

The chip's instruction set is tailored to the computation-intensive 
algorithms common in DSP applications. For example, sustained single­
cycle multiplication/ accumulation operations are possible. The instruction 
set provides full control of the ADSP-2101's three computational units: the 
ALU, MAC and Shifter. Arithmetic instructions can process single­
precision 16-bit operands directly with provisions for multiprecision 
operations. 

The high-level syntax of the ADSP-2101 source code is both readable and 
efficient. Unlike many assemblers, the ADSP-2101 instruction set uses an 
algebraic notation for arithmetic operations and for data moves resulting 
in highly readable source code. There is no performance penalty for this; 
each program statement assembles into one 24-bit instruction which 
executes in a single cycle. There are no multicycle instructions in the 
ADSP-2101 instruction set. (If memory access times require it or 
contention for off-chip memory occurs, overhead cycles will be required, 
but all instructions can otherwise execute in a single cycle.) 

9 

9-1 



9-2 

I 
II 

I 
II 

I 

In addition to JUMP and CALL, the control instructions support 
conditional execution of most calculations and a DO UNTIL looping 
instruction. Return from interrupt (RTI) and return from subroutine (RTS) 
are also provided. 

The ADSP-2101 also provides the IDLE instruction for idling the processor 
until an interrupt occurs. IDLE puts the processor into a low-power state 
while waiting for interrupts. 

Two addressing modes are supported for memory fetches. Direct 
addressing uses immediate values; indirect addressing uses the two data 
-::torl~1"'OCC n-a1:"\rl ...... ...".f-" ..... ~ (nArro\ 
IU.'-'I.-. ... '-'....,...., b~..LL'"'.l.ULV.l..:w \.1JI-:1.'-..l'.::t/. 

The 24-bit instruction word allows a high degree of parallelism in 
performing operations. The instruction set allows for a single-cycle 
execution of any of the following combinations: 

• any ALU, MAC or Shifter operation (may be conditional) 

• any register to register move 

• any data memory read or write 

• a computation with any data register to data register move 

• a computation with any memory read or write 

• a computation with a read from two memories. 

The ADSP-2101 instruction set provides the programmer with maximum 
flexibility. The instruction set provides moves from any register to any 
other register, or from most registers to/from either memory. For 
combining operations, almost any ALU, MAC or Shifter operation may be 
combined with any register-to-register move or with a register move to or 
from either internal or external memory. 

9.2 INSTRUCTION TYPES 
The ADSP-2101 instruction set is grouped into the following categories: 

• Multifunction 
• Computational: ALU, MAC, Shifter 



Instruction 
III 

vervi 

• Move 
• Program Flow IControl 
• Miscellaneous 

The multifunction instructions best illustrate the power of the ADSP-2101 
architecture. In this overview, we begin by examining this group of 
instructions. 

In each section of this chapter you will find tables summarizing the syntax 
of each ADSP-2101 instruction group. Here is the notation used in those 
tables. 

Square Brackets [ ] 

Parallel Lines I 

CAPITAL LETTERS 

parameters 

<data> 

<reg> 

<dreg> 

<address> 

Anything within square brackets is an optional 
part of the instruction statement. 

Lists of parameters enclosed by parallel vertical 
lines require the choice of one parameter from 
among the operands listed. 

denote reserved words. These are instruction 
words, register names and operand selections. 

are shown in small letters and denote an operand 
in the instruction for which there are numerous 
choices. For example, the parameter yop might 
have as its choices in the actual instruction: MYO, 
MYlorMF. 

denotes an immediate value. Immediate data 
values may be symbolic names for constants or 
literal numeric values in binary, octal, 
hexadecimal or decimal format. The default is 
decimal. 

refers to any accessible register; see Table 9.6. 

refers to any data register; see Table 9.6. 

denotes an immediate value of an address to be 
coded in the instruction. The address may be 
either an immediate value or a LABEL. 

9 

9-3 



9-4 

I 
II 

I 

9.2.1 Multifunction Instructions 
Multifunction operations exploit the inherent parallelism of the AD5P-
2101 architecture by providing combinations of data moves, memory 
reads and memory writes and computation in a single-cycle. 

9.2.1.1 ALUlMAC with Data & Program Memory Read 
Perhaps the most common single operation in D5P algorithms is the sum 
of products, like the following: 

• Fetch two operands (such as a coefficient and a data point) 

• Multiply them and sum the result with previous products 

The AD5P-2101 can execute both data fetches and the multiplication/ 
accumulation in a single-cycle. Typically, a loop of multiply / accumulates 
can be expressed in ADSP-2101 source code in just two program lines. 
5ince the on-chip program memory is fast enough to provide an operand 
and the next instruction in a single cycle, loops of this type can execute 
with sustained single-cycle throughput. An example of such an instruction 
is: 

MR=MR+MXO*MYO(SS), MXO=DM(IO,MO), MYO=PM(I4,M5); 

The first clause of this instruction (up to the first comma) says that MR, 
the MAC result register, gets the sum of its previous value plus the 
product of the (current) X and Y input registers of the MAC (MXO and 
MYO) both treated as signed (55). Note the simple assignment statement 
form of the source code. 

In the second and third clauses of this multifunction instruction two new 
operands are fetched. One is fetched from the data memory (DM) pointed 
to by index register zero (10, post modified by the value in MO) and the 
other is fetched from the program memory location (PM) pointed to by 14 
(post-modified by M5 in this instance). Note that indirect memory 
addressing uses a syntax similar to array indexing, with DAG registers 
providing the index values. Any I register may be paired with any M 
register within the same DAG. 

As discussed in Chapter 2, "Computational Units," registers are read at 
the beginning of the cycle and written at the end of the cycle. The 
operands present in the MXO and MYO registers at the beginning of the 
instruction cycle are multiplied and added to the MAC result register, MR. 



III II! 

I I 

The new operands fetched at the end of this same instruction overwrite 
the old operands after the multiplication has taken place and are available 
for computation on the following cycle. You may, of course, load any data 
registers in conjunction with the computation, not just MAC registers with 
a MAC operation as in our example. 

The computational part of this multifunction instruction may be any 
unconditional ALU instruction except division or any MAC instruction 
except saturation. Certain other restrictions apply: the next X operand 
must be loaded into MXO from data memory and the new Y operand must 
be loaded into MYO from program memory (internal and external memory 
are identical at the level of the instruction set). The result of the 
computation must go to the result register (MR or AR) not to the feedback 
register (MF or AF). 

9.2.1.2 Data & Program Memory Read 
This instruction is a special case of the instruction above, in which the 
computation is left out. It executes only the dual fetch as shown below. 

AXO=DM(I2,MO), AYO=PM(I4,M6)i 

In this example, we have used the ALU input registers as the destination. 
As with the previous multifunction instruction, X operands must come 
from data memory and Y operands from program memory (internal or 
external memory in either case). 

9.2.1.3 Computation With Memory Read 
If a single memory read is performed, instead of the dual memory read of 
the previous two multifunction instructions, a wider range of 
computations can be executed. The legal computations include all ALU 
operations except division, all MAC operations and all Shifter operations 
except SHIFT IMMEDIATE. Computation must be unconditional. 

An example of this instruction is: 

AR=AXO+AYO, AXO=DM(IO,M3)i 

Here an addition is performed in the ALU while a single operand is 
fetched from data memory. The restrictions are similar to those for 
previous multifunction instructions. The value of AXO, used as a source 
for the computation, is the value at the beginning of the cycle. The data 
read operation loads a new value into AXO by the end of the cycle. For this 

9-5 



9 Instruction Set ve 

9-6 

same reason, the destination register (AR in the example above) cannot be 
the destination for the memory read. If that were legal, there would be a 
conflict. 

9.2.1.4 Computation With Memory Write 
The computation with memory write instruction is similar in structure to 
the immediately preceding one: the order of the clauses in the instruction 
line, however, is reversed. First the memory write is performed, then the 
computation as shown below. 

DM(IO,MO)=AR, AR=AXO+AYO; 

Again, the value of the source register for the memory write (AR in the 
example) is the value at the beginning of the instruction. The computation 
loads a new value into the same register; this is the value in AR at the end 
of this instruction. Reversing the order of the clauses of the instruction is 
illegal and invokes an assembler warning; it would imply that the result of 
the computation is written to memory when, in fact, the previous value of 
the register is what is written. There is no requirement that the same 
register be used in this way although this will usually be the case in order 
to pipeline operands to the computation. 

The restrictions on computation operations are identical to those above. 
All ALU operations except division, all MAC operations and all Shifter 
operations except SHIFT IMMEDIATE are legal. Computation must be 
unconditional. 

9.2.1.5 Computation With Data Register Move 
This final multifunction instruction performs a data register to data 
register move in parallel with a computation. Most of the restrictions 
applying to the previous two instructions apply to this instruction. 

AR=AXO+AYO, AXO=MR2; 

Here an ALU addition operation occurs while a new value is loaded into 
AXO from MR2. As before, the value ofAXO at the beginning of the 
instruction is the value used in the computation. The move may be from 
or to all ALU, MAC and Shifter input and output registers except the 
feedback registers (AF and MF) and SB. 

In the example, the data register move loads the AXO register with the 
new value at the end of the cycle. All ALU operations except division, all 



I 
III 

I 
!II 

I 

MAC operations and all Shifter operations except SHIFT IMMEDIATE are 
legal. Computation must be unconditional. 

A complete list of data registers appears in Table 9.6. A complete list of the 
permissible xops and yops for the computational operations is given in the 
ADSP-2101 Cross-Software Manual. 

Table 9.1 shows the legal combinations for multifunction instructions. You 
may combine operations on the same row with each other. 

Unconditional Computations Data Move 
DM=DAGl 

None or any ALU (except Division) or MAC DM read 

Any ALU except Division 
Any MAC 
Any Shift except Immediate 

DMread 

DM write 

Data Move 
PM=DAG2 

PM read 

PM read } { 
PM write 

Register To Register 

Table 9.1 Summary of Valid Combinations For Multifunction Instructions 

9-7 



I 
II 

I 

Multifunction Instructions 

<ALU*> , 
<MAC> 

AXO 
AXI 
MXO 
MXl 

= DM( 

AXO = DM( IO 
II 
12 
13 

AXI 
MXO 
MXl 

<ALU> 
<tv1:AC> 
<SHIFT*> 

DM( 

PM( 

I 
<ALU> 
<MAC> 
<SHIFT> 

10 
II 
12 
13 

,dreg 

MO 
Ml 
M2 
M3 

14 M4 
15 M5 
16 M6 
17 M7 

14 
15 
16 
17 

, dreg 

M4 
M5 
M6 
M7 

IO 
II 
12 
13 

MO ), 
Ml 
M2 
M3 

DM( 

PM( 

= dreg, 

dreg; 

Table 9.2 Multifunction Instructions 

MO ), 
Ml 
M2 
M3 

AYO = PM( 14 
AYI 15 
MYO 16 
MYI 17 

AYO = PM( 14 
AYI 15 
MYO 16 
MYI 17 

10 
II 
I2 
13 

MO ) ; 
Ml 
M2 
M3 

14 M4 
15 M5 
16 M6 
17 M7 

14 
15 
16 
17 

M4 
M5 
M6 
M7 

<ALU> 
<MAC> 
<SHIFT> 

M4 ); 
M5 
M6 
M7 

'AII computation is unconditional; ALU Division and Shift Immediate operations prohibited 

9-8 

M4 ); 
M5 
M6 
M7 



l' 

I 
III! 

I 
III! 

I 

9.2.2 ALU, MAC and Shifter Instructions 
This group of commands execute all the computation. All of these 
instructions can be executed conditionally except the ALU division 
instructions and the Shifter SHIFf IMMEDIATE instructions. 

9.2.2.1 ALU Group 
Here is an example of one ALU instruction, Add/ Add with Carry: 

IF AC AR=AXO+AYO+C; 

The (optional) conditional expression, IF AC, tests the ALU Carry bit (AC); 
if there is a carry from the previous instruction, this instruction executes, 
otherwise a NOP occurs and execution continues with the next 
instruction. The algebraic expression, AR=AXO+AYO+C, means that the 
ALU result register (AR) gets the value of the ALU X input and Y input 
registers plus the value of the carry-in bit. 

Here is a summary list of all ALU instructions. In this list, condition stands 
for all the possible conditions that can be tested and xop and yop stand for 
the registers that can be specified as input for the ALD. The conditional 
clause is optional and is enclosed in square brackets to show this. A 
complete list of the permissible xops and yops is given in the ADSP-2101 
Cross-Software Manual. A complete list of conditions is in Table 4.1 in this 
manual. 

ALU Instructions 

[IF condition] 

I 

AR 

I 

xop +yop 
AF +C 

+ yop + C 

[IF condition] 

I 
AR 

I 
xop -yop 

AF -yop+C-l 

[IF condition] 

I 
AR 

I 
yop -xop 

AF -xop + C-l 

[IF condition] 

I 

AR 

I 

xop AND yop 
AF OR 

XOR 

[IF condition] 

I 

AR 

I 

PASS xop 
AF yop 

0 

9-9 



9 Instru 
!II 

10 
111 

I 

9-10 

[IF condition] AR xop 
AF yop 

[IF condition] AR NOT xop 
AF yop 

[IF condition] AR ABS xop 
AF 

[IF condition] AR yop +1 
AF 

[IF condition] AR yop -1 
AF 

DIVS yop, xop ; 
DIVQ xop; 

Table 9.3 ALU Instructions 

9.2.2.2 MAC Group 
Here is an example of one of the MAC instructions, Multiply / Accumulate: 

IF NOT MY MR=MR+MXO*MYO(UU); 

The conditional expression, IF NOT MV, tests the MAC overflow bit. If the 
condition is not true, a NOP is executed. The expression 
MR=MR+MXO*MYO is the multiply / accumulate operation: the multiplier 
result register (MR) gets the value of itself plus the product of the X and Y 
input registers selected. The modifier in parentheses (UU) treats the 
operands as unsigned. There can be only one such modifier selected from 
the available set. (55) means both are signed, while (U5) and (5U) mean 
that either the first or second operand is signed; (RND) means to round 
the (implicitly signed) result. 

Here is a summary list of all MAC instructions. In this list, condition stands 
for all the possible conditions that can be tested and xop and yop stand for 
the registers that can be specified as input for the MAC. A complete list of 
the permissible xops and yops is given in the ADSP-2101 Cross-Software 
Manual. 



Instruction Set 

MAC Instructions 

[IF condition] I ~~ I 

[IF condition] I ~~ I 

[IF condition] I ~~ I 

[IF condition] I ~~ I 

[IF condition] I ~~ I 

IF MV SAT MR; 

Table 9.4 MAC Instructions 

9.2.2.3 Shifter Group 

xop *yop 55 
5U 
US 
UU 
RND 

MR + xop *yop ( 55 
5U 
US 
UU 
RND 

MR-xop*yop ( 55 
5U 
US 
UU 
RND 

0; 

MR[( RND )]; 

ve 

); 

); 

); 

Here is an example of one of the Shifter instructions, Normalize: 

IF NOT CE SR = SR OR NORM SI (HI); 

The conditional expression, IF NOT CE, tests the "not counter expired" 
condition. If the condition is false, a NOP is executed. The destination of 
all shifting operations is the Shifter Result register, SR. (The destination of 
exponent detection instructions is SE or SB, as shown below.) In this 
example, SI, the Shifter Input register, is the operand. The amount and 
direction of the shift is controlled by the signed value in the SE register in 
all shift operations except an immediate shift. Positive values cause left 
shifts; negative values cause right shifts. 

The "SR OR" modifier (which is optional) logically ORs the result with the 

9 

9 -11 



9-12 

I 
II 

I 
II 

I 

current contents of the SR register; this allows you to construct a 32-bit 
value in SR from two 16-bit pieces. "NORM" is the operator and U(HI)" is 
the modifier that determines whether the shift is relative to the HI or LO 
(16-bit) half of SR. If "SR OR" is omitted, the result is passed directly into 
SR. 

Here is a summary list of all Shifter instructions. In this list, condition 
stands for all the possible conditions that can be tested. 

Shifter Instructions 

[IF condition] SR [SR OR] ASHIFr xop HI ); 
LO 

[IF condition] SR [SR OR] LSHIFT xop HI ); 
LO 

[IF condition] SR [SR OR] NORM xop HI ); 
LO 

[IF condition] SE EXP xop 
HII 

); 
LO 
HIX 

[IF condition] SB EXPADJ xop; 

SR [SR OR] ASHIFT xop BY <data> HI ); 
LO 

SR [SR OR] LSHIFT xop BY <data> HI ); 
LO 

Table 9.5 Shifter Instructions 

9.2.3 MOVE: Read & Write 
MOVE instructions move data to and from data registers and external 
memory. ADSP-2101 registers are divided into two groups, referred to as 
reg which includes almost all registers and dreg or data registers, which is 
a subset. Only the program counter (PC) and the ALU and MAC feedback 
registers (AF and MF) are not accessible. 

Table 9.6 shows which registers belong to these groups. Many of the 
ADSP-2101 system control registers are memory-mapped; these registers 
are read and written as memory locations instead of with register names. 



Accessible Registers: reg 

SB 
PX 
10 - I7, MO - M7, LO - L7 
CNTR 
ASTAT, MSTAT, SSTAT 
IMASK, ICNTL 
TXO, TX1, RXO, RXl 
IFC 

II! 

I 

Data Registers: dreg 

AXO, AX1, A YO, A Yl, AR 
MXO, MX1, MYO, MY1, MRO, MR1, MR2 
SI, SE, SRO, SRl 

Table 9.6 ADSP·2101 Register Set: reg & dreg 

MOVE Instructions 
reg reg; 

reg OM «address» ; 

dreg OM( IO , 
I1 , 
I2 , 
I3 , 

14 , 
IS , 
16 , 
I7 . , 

OM( 10 , MO 
I1 , Ml 
I2 , M2 
I3 , M3 

I4 , M4 
IS , MS 
I6 , M6 
I7 , M7 

OM «address» = reg; 

reg <data> ; 

MO ); 
Ml 
M2 
M3 

M4 
MS 
M6 
M7 

dreg 
<data> 

III! 

I 

9-13 



9 Instructi n Set 
III 

vervle 

9-14 

dreg PM( 14 M4 ); 
15 M5 
16 M6 
17 M7 

PM( 14 M4 dreg; 
15 M5 
16 M6 
17 M7 

Table 9.7 MOVE Instructions 

9.2.4 Program F!ow Control 
Program Flow Control on the ADSP-2101 is simple but powerful. Here is 
an example of one statement. 

IF EQ JUMP my_label; 

JUMP, of course, is a familiar construct from many other processors. 
My_label is any identifier you wish to use as a label for the destination 
jumped to. Instead of the label, an index register in DAG2 may be 
explicitly used. The default scope for any label is the module in which it is 
declared. The Assembler directive .ENTRY makes a label "visible" as an 
entry point for routines outside the module. Conversely, the .EXTERNAL 
directive makes it possible to use a label declared in another module. 

If the counter condition (CE, NOT CE) is to be used, an assignment to 
CNTR must be executed to initialize the counter value. JUMP and CALL 
permit the additional conditionals "FLAG_IN" and "NOT FLAG_IN" to 
be used for branching on the state of the PI pin, but only with direct 
addressing, not with DAG2 as the address source. 

RTS (return from subroutine) and RTI (return from interrupt) provide for 
conditional return from CALL or interrupt vectors respectively. 

The FO pin (Flag Out) can be set, cleared or toggled; while this instruction 
does not alter the flow of your program, it provides a control structure for 
multiprocessor communication and is therefore included in this group. 

The IDLE statement provides a way to wait for interrupts. IDLE causes the 
processor to wait in a low-power state until an interrupt occurs. When an 
interrupt is serviced, control returns to the instruction following the IDLE 
statement. IDLE uses less power than loops created with JUMP. 



I 
II! 

I 
II! 

I 

Here is a summary of all program flow control instructions. Condition and 
termination are described in Chapter 4, Tables 4.1 and 4.4. 

Program Flow Control Instructions 

[IF condition) JUMP 

IF I FLAG IN I 
NOT FLAG_IN 

[IF condition) CALL 

IF I FLAG IN I 
NOT FLAG_IN 

I 
SET I RESET 
TOGGLE 

[IF condition) 

[IF condition) 

RTS; 

RTI; 

(14) 
(15) 
(16) 
(17) 

<address> 

JUMP 

(14) 
(15) 
(16) 
(17) 

<address> 

CALL 

DO <address> [UNTIL termination) ; 

IDLE; 

Table 9.8 Program Flow Control Instructions 

9.2.5 Miscellaneous Instructions 

<address> ; 

<address> ; 

There are several miscellaneous instructions. NOp, of course, is a no 
operation instruction. The PUSH/POP instruction allows you to explicitly 
control the status, counter, PC and loop stacks; interrupt servicing 
automatically pushes and pops some of these stacks. 

The Mode Control (enable/ disable) instructions turn on and off several 

9-15 



9-16 

I 

modes of operation. The instruction governs modes common to the ADSP-
2100 (bit-reversal on DAG1, latching ALU overflow, saturating the ALU 
result register, choosing the primary or shadow register set) and the 
ADSP-2101 extended mode controls (GO mode for continued operation 
during Bus Grant, multiplier shift mode for fractional or integer arithmetic 
and timer enabling). 

A single ENA or DIS can be followed by any number of mode identifiers, 
separated by commas; ENA and DIS can also be repeated. All seven 
modes can be enabled, disabled or changed in a single instruction. 

The :MODIFY instruction modifies the auuress pointer in the I register 
selected with the value in the selected M register, without performing any 
actual memory access. As always, the I and M registers must be from the 
same DAG; any of 10-13 may be used only with one from MO-M3 and the 
same for 14-17 and M4-M7. If circular buffering is in use, modulus logic 
applies (See Chapter 3, "Data Moves," for more information). 

Miscellaneous Instructions 

Nap; 

(~g~H I STS]L pop CNTR] [, pop PC] L pop LOOP] ; 

lENA I 
DIS 

MODIFY ( 

BIT_REV 
AV_LATCH 
AR_SAT 
SECREG 
G_MODE 
M_MODE 
TIMER 

10 , 
11 , 
12 , 
13 , 

14 , 
IS , 
16 , 
17 , 

[,] 

MO ); 
Ml 
M2 
M3 

M4 
MS 
M6 
M7 

Table 9.9 Miscellaneous Instructions 



II III 

I I 

9.3 DATA STRUCTURES 
The AOSP-2101 Cross-Software supports the declaration and use of a 
simple set of data structures: one-dimensional arrays and ports. The array 
may be a single value or multiple values. In addition, the array may be 
used as a circular buffer. Here is a brief discussion of each instance with 
an example of how they are declared and used. Complete syntax for these 
and other directives is given in the ADSP-2101 Cross-Software Manual. 

9.3.1 Arrays 
Arrays are the basic data structure in the AOSP-2101 instruction set. In 
AOSP-2101literature, the words "array" and the expression "data buffer" 
are used interchangeably. Arrays are declared with Assembler directives 
and can be referenced indirectly and by name, can be initialized from 
immediate values in a directive or from external data files and can be 
linear or circular with automatic wraparound. 

An array is declared with a directive such as 

.VAR/DM coefficients[128]; 

This declares an array of 128 16-bit values located in data memory (OM). 
The special operators A and % reference the address and length, 
respectively, of the array. It could be referenced as shown below. 

10 = Acoefficients {point to address of buffer} 
MXO=DM(10,MO); {load MXO from buffer} 

These instructions load a value into MXO from the beginning of the 
coefficients buffer in data memory. With the automatic post-modify of the 
OAGs, you could execute the second of these instructions in a loop and 
continuously advance through the buffer. 

Alternatively, when you only need to address the first location, you can 
directly use the buffer name as a label in many circumstances, such as 

MXO=DM(coefficients); 

9-17 



9-18 

I 
1& 

I 

The Linker substitutes the actual address for the label. It is also possible to 
initialize a complete array Ibuffer from a data file, using the INIT 
directive . 

. INIT coefficients: <filename.dat>; 

This reads the values from the file filename.dat into the array at link time. 
This feature is supported only in the ADSP-21OX Simulators even though 
data cannot be loaded directly into on-chip data memory by the hardware 
booting sequence. 

A n array or data buffer "'lith a lengfh of one behaves like a sirr'Lple sirlgle­
word variable. 

9.3.2 Circular Arrays/Buffers 
A common requirement in DSP is the circular buffer. This is directly 
implemented by the ADSP-2101 DAGs, using the L (length) registers. 
First, you must declare the buffer as circular: 

.VAR/DM/CIRC coefficients [128]; 

This identifies it to the Linker for placement on the proper address 
boundary. Next, you must initialize the L register, typically using the % 
operator (or a constant) and, in the example below, the I register and M 
register. 

LO 
10 
MO 

%coefficients; 
"coefficients; 
1; 

Now a statement like 

MXO=DM(IO,MO) ; 

{length of circular buffer} 
{point to address of buffer} 
{increment by 1 location each time} 

{load MXO from buffer} 

in a loop, cycles continuously through coefficients and wraps around 
automatically. L registers should be initialized to zero for buffers of any 
length that are not circular. 



In 
III 

I 
II 

Ion 

9.3.3 Ports & Memory-Mapping 
The .PORT directive in the System Builder module allows you to refer to a 
specific hardware address with an identifier of your choosing as shown 
here. This capability makes it easy to interface to memory-mapped 
peripherals, such as converters . 

. PORT/AB8= H#800 converter_in; 

After declaring the same identifier in the Assembler, a value can be read 
directly from the port with a statement like 

8I = DM(converter_in); 

This loads the SI register with the value present at the address specified hI. 
the System Builder. (The Linker reads the Architecture Description file 
produced by the System Builder to obtain the actual address for the label.) 
You can change the hardware address of the port without having to 
rewrite your program. 

9-19 



I 

9.4 PROGRAM EXAMPLE 
Below are three listings, showing an example of an FIR filter program 
written for the ADSP-2101 with discussion of each section of the program. 
This FIR filter program demonstrates much of the conceptual power of the 
ADSP-2101 architecture and instruction set. More complex programs 
would, of course, use many additional features of the language. 

{ADSP-2101 FIR Filter routine 
I/O uses serial port 0 
Internally generated serial clock 
12.288 MHz processor clock rate divided to 1.536MHz serial clock 
Serial clock divided to 8KHz [Ldme sampling rate} 

.MODULE/RAM/ABS=O main_routine; 

A . INCLUDE <const . h>; 

{program loaded ) 
{from EPROM MMAP=O) 

B .VAR/DM/RAM/ABS=H#3800/CIRC data buffer[taps]; 
.VAR/PM/RAM/CIRC coefficient[taps]; 

{data values internal) 

. GLOBAL 

. EXTERNAL 

.INIT 

{code starts here) 

data buffer, coefficient; 
fir start; 
coefficient:<coeff.dat>; 

{load interrupt vector addresses) 

C 

{initializations) 

o restarter: 

E 
clear: 

9-20 

JUMP 
RTI; 
RTI; 
JUMP 
RTI; 
RTI; 
RTI; 

LO 
L4 

MO 
M4 

10 
14 

restarter; nop; 
nop; nop; nop; 
nop; nop; nop; 
fir - start; nop; 
nop; nop; nop; 
nop; nop; nop; 
nop; nop; nop; 

%data buffer; 
%coefficient; 

1; 
1; 

Adata buffer; 
Acoefficient; 

CNTR = %data buffer; 
DO clear UNTIL CE; 
DM(IO,MO)=O; 

nop; nop; 

nop; nop; 

{restart interrupt) 
{sampling interrupt IRQ2) 
{SPORTO Transmit intI 
{SPORTO Receive intI 
{SPORTl Transmit intI 
{SPORTl Receive intI 
{TIMER interrupt) 

{setup circular buffer length) 
{setup circular buffer length) 

{modify=l for increment) 
{through buffers) 

{point to data start) 
{point to coeff start) 

{clear data buffer) 



I 

mainloop: 

.ENDMOD; 

Setup and Main Loop Routine 

II 

I 

11 = H#3FEF; 

DM(I1,MO)=H#0000 
DM(I1,MO)=H#0000 
DM(I1,MO)=H#0000 
DM(I1,MO)=H#0000 
DM(I1,MO)=H#0000 
DM (11, MO) =191; 
DM(Il,MO)=H#0003; 

DM(I1,MO)=H#6927; 

DM(I1,MO)=OOOO; 
DM (11, MO) =0000; 
DM(I1,MO) =0000; 
DM(I1,MO) =0000; 
DM (11, MO ) =0000; 
DM ( 11, MO ) =0000; 
DM(I1,MO)=OOOO; 
DM(I1,MO)=H#7000; 

DM(I1,MO)=H#1000 

ICNTL = H#OO; 
lMASK = H#0018; 
IDLE; 
JUMP mainloop; 

.CONST taps = IS, taps less one 

Include File, Constant Initialization 

III 

I 

{point to last DM reg.} 
{for initialization} 

{SPORTI AUTOBUFF Disabled} 
{SPORTI RFSDIV not used} 
{SPORTI SCLKDIV not used} 
{SPORT1 CNTL Disabled} 
{SPORTO AUTOBUFF Disabled} 
{Divide for 8KHz RFS} 
{1.S36MHz Internal Serial CLK} 

{Multichannel disabled} 
{into gen serial clock} 
{Receive frame sync required} 
{Receive width O} 
{Transmit frame sync required} 
{Transmit width O} 
{int Transmit frame sync disabled} 
{int Receive frame sync enabled} 
{u-Iaw companding} 
{8 bit words} 
{Transmit multichannels} 

{Receive multichannels} 

{Timer not used, cleared} 

{DM wait states } 
{H#3400 - H#37FF 7 waits} 
{all else 0 waits} 
{SPORTO enabled} 
{Boot page 0, 0 PM waits} 
{O Boot waits} 

{enable SPORTO interrupt only} 
{wait for interrupt} 

14; 

Figure 9.1 Program Example Listing 1, Main Routine & Constants File 

9- 21 



9 Instruction Set ve 
111 

Ie 

9-22 

9.4.1 Example Program: Setup Routine Discussion 
The setup and main loop routine, Figure 9.1, on the previous page, does 
initialization and then uses the IDLE instruction to wait continuously until 
the receive interrupt from SPORTO is received. The filter is interrupt­
driven. When the interrupt occurs control shifts to the subroutine. 

Line A shows that the constant declarations are contained in a separate 
file. 

Section B shows the directives defining the two circular buffers in on-chip 
memory: one in data memory RAM (used to hold a delay line of samples) 
and one in program memory RAM (used to store coefficients for the filter). 
The coefficients are actually loaded from an external file by the Linker. 
These values can be changed without reassembling; only another linking 
pass is required. 

Section C shows the setup of the interrupts. Since this module (first line of 
listing) is located at absolute address zero, the first instruction is placed at 
the restart vector: 0000. The first location is the restart vector instruction, 
which jumps to the routine restarter. Interrupts that are not used are filled 
with a return from interrupt instruction followed by NOPs. (Since only 
one interrupt will be enabled, this is only a thorough programming 
practice rather than a necessity.) The SPORTO receive interrupt vector 
jumps to the interrupt service routine, which is too long to fit in the four 
locations available. 

Section D, restarter, sets up the Index, Length and Modify registers used to 
address the circular buffer. A non-zero value for length activates the 
modulus logic. Each time the interrupt occurs, the pointers advance one 
position "around" the buffer. The routine, clear, zeroes all values in the 
data memory buffer. 

Section E, after clear, initializes all the system control registers. The use of 
the data address generator points out that most of the ADSP-2101 system 
control registers can be written in ascending order because of the memory 
map layout. Many bits are cleared for features that are not used in this 
example, including SPORTl, multichannel features, autobuffering 
features, etc. See Appendix D for a summary listing of control register 
initialization. 

SPORTO is set up to generate the serial clock internally at 1.536MHz, 
based on an assumed processor clock rate of 12.288MHz. The RFS and TFS 
signals are both required and the RFS signal is generated internally at 



I 
l1li 

I 

8kHz, while the TFS signal comes from the external device in 
communication with the processor. 

Finally, SPORTO is enabled and the interrupts are enabled. Now the IDLE 
instruction puts the processor into a wait for interrupts. After the return 
from interrupt instruction, execution resumes at the instruction following 
the IDLE instruction. Once these setup instructions have been executed, 
all further activity takes place in the interrupt service routine, described 
below. 

F .MODULE/ROM fir_routine; {relocatable FIR interrupt module} 

G 

HI 

. INCLUDE 

. ENTRY 

. EXTERNAL 

<const.h>; 
fir start; 
data_buffer, coefficient; 

{include constant declarations} 
{make label visible outside module} 
{make globals accessible in module} 

{interrupt service routine code section} 

FIR START: CNTR = taps less one; {N-l passes within DO UNTIL} 
-SI = -RXO; {read from SPORTO} 

DM(IO,MO) = SI; {transfer data to buffer} 
MR=O, MYO=PM(I4,M4), MXO=DM(IO,MO); 

{set up multiplier for loop} 
DO convolution UNTIL CE; ICE = counter expired} 

convolution: MR=MR+MXO*MYO(SS), MYO=PM(I4,M4), MXO=DM(IO,MO); 

RTI; 
.ENDMOD; 

{MAC these, fetch next} 
MR=MR+MXO*MYO(RND); {Nth pass with rounding} 
TXO = MR1; {write to sport} 

{return from interrupt} 

Figure 9.2 Program Example Listing 2, Interrupt Routine 

9.4.2 Example Program: Interrupt Routine Discussion 
This subroutine transfers the received data to the next location in the 
circular buffer (overwriting the oldest sample). Then all samples and 
coefficients are multiplied and the products are accumulated to produce 
the next output value. The subroutine checks for overflow and saturates 
the output value to the appropriate full scale then writes the result to the 
transmit section of SPORTO and returns. 

Section F identifies the module (which is relocatable rather than placed at 
an absolute address), includes the same file of constants, and makes the 

9-23 



9-24 

I 
III 

I 
III 

I 

entry point visible to the main routine with the .ENTRY line. Likewise, the 
.EXTERNAL line makes the main routine labels visible in the interrupt 
routine. 

The subroutine begins by loading the counter register CNTR. The new 
sample is read from SPORTO's receive data register, RXO, into the SI 
register; the choice of SI is of no particular significance. Then, the data is 
written into the data buffer. Because of the automatic circular buffer 
addressing, the new data overwrites the oldest sample. The N-most recent 
samples are always in the buffer. 

Line G zeroes the multiplier result register (MR) and fetches the first two 
operands. This instruction access both program and data memory but still 
executes in a single cycle because of the ADSP-2101 internal architecture. 

H identifies the loop itself, consisting of only two lines, one setting up the 
loop and one instruction "inside" the loop. The MAC instruction 
multiplies and accumulates the previous set of operands while fetching 
the next ones from each memory. This instruction also accesses both 
memories without overhead. 

The final value is transferred back to SPORTO, to the transmit data 
register, TXO, to be sent to the communicating device. 



Instruction Coding 

A.1 OPCODES 
Here is a summary of the complete instruction set of the ADSP-2101. 
Following the list of types and codes shown immediately below is a key to 
the abbreviations used. Any instruction codes not shown are reserved for 
future use. 

Type 1: ALU / MAC with Data & Program Memory Read 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 11 PD I DD I AMF l Yap J Xap J p~1 p~1 D~I D~ 

Type 2: Data Memory Write (Immediate Data) 

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 
DATA 

Type 3: Read /Write Data Memory (Immediate Address) 

17 16 15 14 13 12 11 10 
ADDR 

Type 4: ALU / MAC with Data Memory Read / Write 

17 16 15 14 13 
AMF 

Type 5: ALU / MAC with Program Memory Read / Write 

17 16 15 14 13 
AMF 

A 

A-1 



I 
III 

I ctio 

Type 6: Load Data Register Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
o 1 0 0 DATA 

Type 7: Load Non-Data Register Immediate 

23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
001 1 DATA 

Type 8: ALU / MAC with Internal Data Register Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o 0 1 0 11 Zl AMF I Yap I Xap I Dest I Source 
DREG DREG 

Type 9: Conditional ALU / MAC 

23 22 21 20 19 18 17 16 15 14 13 
00100Z AMF 

Type 10: Conditional Jump (Immediate Address) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 
o 0 0 1 1 S ADDR 

Type 11: Do Until 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
00010 1 ADDR 

Type 12: Shift with Data Memory Read / Write 

23 22 21 20 19 18 17 14 13 12 11 
o 0 0 1 001 SF 

A-2 



III l1li 

10 I 

Type 13: Shift with Program Memory Read / Write 

23 22 21 20 19 18 17 16 15 14 13 12 11 

0 0 0 1 0 0 0 1 D SF 

Type 14: Shift with Internal Data Register Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 43210 
0 0 0 1 0 0 0 0 

01 
SF 

1 

Xop I Dest 
I 

Source 
REG REG 

Type 15: Shift Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 65432 1 0 
0 0 0 0 1 1 1 1 0 SF exponent 

Type 16: Conditional Shift 

23 22 21 20 19 18 17 16 15 14 13 12 11 

0 0 0 0 1 1 1 0 0 SF 

Type 17: Internal Data Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 43210 
0 0 0 0 1 1 0 1 0 0 0 01 DST I SRCI Dest 

I 
Source 

RGP RGP REG REG 

Type 18: Mode Control 

23 22 21 20 19 18 17 16 
o 0 0 0 1 1 0 0 

Explanation of these codes can be found together alphabetically under "Mode Control" in 
the neX1 section. 

A-3 



I 
III! 

I 
II 

I 

Type 19: Conditional Jump (Indirect Address) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

Type 20: Conditional Return 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

Type 21 : Modify Address Register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

Type 22: Reserved 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 0 0 0 1 0 0 0 x x x x x x x x x x x x x x 

Type 23: DiVa 

23 22 21 20 19 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

Type 24: DIVS 

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Type 25: Saturate MR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A-4 



Instruction oding 

Type 26: Stack Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Type 27: Call or Jump on Flag In 

23 22 21 20 19 18 17 16 10 9 8 7 6 5 4 
0 0 0 0 0 0 1 1 

12 LSBs 2 MSBs 

Type 28: Flag Out Mode Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Type 29: Reserved 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 1 x x x x x x x x x x x x x x x x 

Type 30: No Operation 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Type 31: Idle 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A-5 



Instructi odin 

A.2 ABBREVIATION CODING 

AMF ALU / MAC Function codes 

o 0 0 0 0 No operation 

MAC Function codes 

o 000 1 X'Y (RND) 
o 0 0 1 0 MR+X'Y (RND) 
0 o 0 1 1 MR-X'Y (RND) 
o 0 100 X'Y (SS) Clear when y = 0 
0 0 1 0 1 X'Y (SU) 
0 0 1 1 0 X'Y (US) 
o 0 1 1 1 X'Y (UU) 
o 1 000 MR+X'Y (SS) 
o 1 o 0 1 MR+X'Y (SU) 
0 1 0 1 0 MR+X'Y (US) 
0 1 0 1 1 MR+X'Y (UU) 
o 1 100 MR-X'Y (SS) 
o 1 1 o 1 MR-X'Y (SU) 
0 1 1 1 0 MR-X'Y (US) 
011 1 1 MR-X'Y (UU) 

ALU Function codes 

1 o 0 o 0 Y Clear when y = 0 
1 000 1 Y + 1 
1 0 o 1 0 X+Y+C 
1 0 0 1 1 X+Y X when y = 0 
1 0 1 0 0 NOTY 
1 0 1 0 1 -Y 
1 0 1 1 0 X-Y+C-1 
1 0 1 1 1 X-V 
1 1 0 o 0 Y-1 
1 1 0 0 1 V-X -Xwhen y = 0 
1 1 0 1 0 Y-X+C-1 

A-6 



Instruction oding A 

1 1 0 1 1 NOTX 
1 1 1 0 0 XANDY 
1 1 1 0 1 XORY 
1 1 1 1 0 XXORY 
1 1 1 1 1 ABSX 

COND Status Condition codes 

0 0 o 0 Equal EQ 
0 0 0 1 Not equal NE 
0 0 1 0 Greater than GT 
0 0 1 1 Less than or equal LE 
o 1 o 0 Less than LT 
o 1 o 1 Greater than or equal GE 
o 1 1 0 ALU Overflow AV 
0 1 1 1 NOT ALU Overflow NOTAV 
1 0 0 0 ALU Carry AC 
1 0 0 1 Not ALU Carry NOTAC 
1 o 1 0 X input sign negative NEG 
1 0 1 1 X input sign positive POS 
1 1 o 0 MAC Overflow MV 
1 1 o 1 Not MAC Overflow NOTMV 
1 1 1 0 Not counter expired NOTCE 
1 1 1 1 Always FOREVER 

CP Counter Stack Pop codes 

0 No change 
1 Pop 

D Memory Access Direction codes 

0 Read 
1 Write 

A-7 



odi 

DD Double Data Fetch Data Memory Destination codes 

o 0 AXO 
o 1 AX1 
1 0 MXO 
1 1 MX1 

DREG Data Register codes 

o 0 o 0 AXO 
000 1 AX1 
o 0 1 0 MXO 
o 0 1 1 MX1 
o 1 0 0 AYO 
0 1 0 1 AY1 
0 1 1 0 MYO 
o 1 1 1 MY1 
1 0 o 0 SI 
1 001 SE 
1 0 1 0 AR 
1 o 1 1 MRO 
1 1 0 0 MR1 
1 1 0 1 MR2 
1 110 SRO 
1 III SR1 

Fie FI condition code 

1 latched FI is 1 FLAGJN 
0 latched FI is 0 NOT FLAGJN 

A-8 



I 
II 

I 
!II 

Ig 

FO Mode Control codes for Flag Out pin 

Fa: Set, clear, or toggle the output Flag. 

o 0 No change 
0 1 Toggle 
1 0 Clear 
1 1 Set 

G Data Address Generator codes 

0 DAG1 
1 DAG2 

Index Register codes 

G= 0 1 

o 0 10 14 
0 1 11 15 
1 0 12 16 
1 1 13 17 

LP Loop Stack Pop codes 

0 No Change 
1 Pop 

M Modify Register codes 

G= 0 1 
o 0 MO M4 
o 1 M1 MS 
1 0 M2 M6 
1 1 M3 M7 

A-9 



A Instruction oding 

A-10 

Mode Control codes 

SR: Secondary register bank 
BR: Bit-reverse mode 
OL: ALU overflow latch mode 
AS: AR register saturate mode 
MM: Alternate Multiplier placement mode 
GM: GOMode; enable means go if possible 
TI: Timer enable 

o 0 No change 
o 1 No change 
1 0 Deactivate 
1 1 Activate 

PD Double Data Fetch Program Memory Destination codes 

o 0 AYO 
o 1 AY1 
1 0 MYO 
1 1 MY1 

PP PC Stack Pop codes 

o 
1 

No Change 
Pop 



II II 

I I 

REG Register codes 
Codes not assigned are reserved for future use. 

RGP= 00 01 10 11 

o 0 0 0 AXO 10 14 ASTAT 
000 1 AX1 11 15 MSTAT 
001 0 MXO 12 16 SSTAT (read only) 
o 0 1 1 MX1 13 17 IMASK 
o 1 0 0 AYO MO M4 ICNTL 
010 1 AY1 M1 M5 CNTR 
0 110 MYO M2 M6 S8 
0 1 1 1 MY1 M3 M7 PX 
1 0 0 0 SI LO L4 RXO 
100 1 SE L1 L5 TXO 
101 0 AR L2 L6 RX1 
1 o 1 1 MRO L3 L7 TX1 
1 1 0 0 MR1 IFC (write only) 
1 1 o 1 MR2 OWRCNTR 
111 0 SRO 
1 1 1 1 SR1 

S Jump Type codes 

0 Jump 
1 Jump Subroutine 

SF Shifter Function codes 

o 0 o 0 LSHIFT (HI, PASS) 
o 0 0 1 LSHIFT (HI,OR) 
0 0 1 0 LSHIFT (LO, PASS) 
0 0 1 1 LSHIFT (LO,OR) 
o 1 0 0 ASHIFT (HI, PASS) 
o 1 0 1 ASHIFT (HI,OR) 
o 1 1 0 ASHIFT (LO, PASS) 
o 1 1 1 ASHIFT (LO,OR) 

A-11 



Instruction oding 

1 000 NORM (HI, PASS) 
1 o 0 1 NORM (HI,OR) 
1 0 1 0 NORM (LO, PASS) 
1 0 1 1 NORM (LO,OR) 
1 1 0 0 EXP (HI) 
110 1 EXP (HIX) 
1 1 1 0 EXP (LO) 
1 1 1 1 Derive Block Exponent 

SPP Status Stack Push/Pop codes 

o 0 No change 
o 1 No change 
1 0 Push 
1 1 Pop 

T Return Type codes 

0 Return from Subroutine 
1 Return from Interrupt 

X X Operand codes 

0 o 0 XO (SI for shifter) 
0 o 1 X1 (invalid for shifter) 
010 AR 
011 MRO 
1 o 0 MR1 
1 o 1 MR2 
110 SRO 
111 SR1 

'Y Y Operand codes 

o 0 YO 
0 1 Y1 
1 0 F (feedback register) 
1 1 zero 

Z ALU/MAC Result Register codes 

0 Result register 
1 Feedback register 

A-12 



Division Exceptions 

B.1 DIVISION FUNDAMENTALS 
The ADSP-2101's instruction set contains two instructions for 
implementing a non-restoring divide algorithm. These instructions take as 
their operands twos-complement or unsigned numbers, and in sixteen 
cycles produce a truncated quotient of sixteen bits. For most numbers and 
applications, these primitives produce the correct results. However, there 
are certain situations where results produced will be off by one LSB. This 
appendix documents these situations, and presents alternatives for 
producing the correct results. 

Computing a 16-bit fixed point quotient from two numbers is 
accomplished by 16 executions of the DIVQ instruction for unsigned 
numbers. Signed division uses the DIVS instruction first, followed by 
fifteen DIVQs. Regardless of which division you perform, both input 
operands must be of the same type (signed or unsigned) and produce a 
result of the same type. 

These two instructions are used to implement a conditional add/subtract, 
non-restoring division algorithm. As its name implies, the algorithm 
functions by adding or subtracting the divisor to/from the dividend. The 
decision as to which operation is perform is based on the previously 
generated quotient bit. Each add/subtract operation produces a new 
partial remainder, which will be used in the next step. 

The phrase non-restoring refers to the fact that the final remainder is not 
correct. With a restoring algorithm, it is possible, at any step, to take the 
partial quotient, multiply it by the divisor, and add the partial remainder 
to recreate the dividend. With this non-restoring algorithm, it is necessary 
to add two times the divisor to the partial remainder if the previously 
determined quotient bit is zero. It is easier to compute the remainder 
using the multiplier than in the ALU. 

B.1.1 Signed Division 
Signed division is accomplished by first storing the 16-bit divisor in an X 
register (AXO, AXl, AR, MR2, MRl, MRO, SRI, or SRO). The 32-bit 

B 

8-1 



B Divi 
ill 

Ion ions 

8-2 

dividend must be stored in two separate 16-bit registers. The lower 16-bits 
must be stored in A YO, while the upper 16-bits can be in either A Yl, or 
AF. 

The DIVS primitive is executed once, with the proper operands (ex. DIVS 
A Yl, AXO) to compute the sign of the quotient. The sign bit of the quotient 
is determined by XORing (exclusive-or) the sign bits of each operand. The 
entire 32-bit dividend is shifted left one bit. The lower fifteen bits of the 
dividend with the recently determined sign bit appended are stored in 
A YO, while the lower fifteen bits of the upper word, with the MSB of the 
lower word appended is stored in AF. 

To complete the division, 15 DIVQ instructions are executed. Operation of 
the DIVQ primitive is described below. 

B.1.2 Unsigned Division 
Computing an unsigned division is done like signed division, except the 
first instruction is not a DIVS, but another DIVQ. The upper word of the 
dividend must be stored in AF, and the AQ bit of the ASTAT register 
must be set to zero before the divide begins. 

The DIVQ instruction uses the AQ bit of the ASTAT register to determine 
if the dividend should be added to, or subtracted from the partial 
reminder stored in AF and A YO. If AQ is zero, a subtract occurs. A new 
value for AQ is determined by XORing the MSB of the divisor with the 
MSB of the dividend. The 32-bit dividend is shifted left one bit, and the 
inverted value of AQ is moved into the LSB. 

B.1.3 Output Formats 
As in multiplication, the format of a division result is based on the format 
of the input operands. The division logic has been designed to work most 
efficiently with fully fractional numbers, those most commonly used in 
fixed-point DSP applications. A signed, fully fractional number uses one 
bit before the binary point as the sign, with fifteen (or thirty-one in double 
precision) bits to the right, for magnitude. 

If the dividend is in MN format (M bits before the decimal point, N bits 
after), and the divisor is O.P format, the quotient's format will be 
(M-O+l).(N-P-l). As you can see, dividing a 1.31 number by a 1.15 
number will produce a quotient whose format is (1-1 + 1).(31-15-1) or 1.15. 

Before dividing two numbers, you must ensure that the format of the 
quotient will be valid. For example, if you attempted to divide a 32.0 



III iii 

I I 

number by a 1.15 number the result would attempt to be in 
(32-1 + 1).(0-15-1) or 32.-16 format. This cannot be represented in a 16-bit 
register! 

In addition to proper output format, you must insure that a divide 
overflow does not occur. Even if a division of two numbers produces a 
legal output format, it is possible that the number will overflow, and be 
unable to fit within the constraints of the output. For example, if you 
wished to divide a 16.16 number by a 1.15 number, the output format 
would be 06-1+1).06-15-1) or 16.0 which is legal. Now assume you 
happened to have 16384 (H#4000) as the dividend and .25 (H#2000) as the 
divisor, the quotient would be 65536, which does not fit in 16.0 format. 
This operation would overflow, producing an erroneous results. 

Input operands can be checked before division to ensure that an overflow 
will not result. If the magnitude of the upper 16 bits of the dividend is 
larger than the magnitude of the divisor, an overflow will result. 

8.1.4 Integer Division 
One special case of division that deserves special mention is integer 
division. There may be some cases where you wish to divide two integers, 
and produce an integer result. It can be seen that an integer-integer 
division will produce an invalid output format of (32-16+ 1).(0-0-1), or 
17.-1. 

To generate an integer quotient, you must shift the dividend to the left one 
bit, placing it in 31.1 format. The output format for this division will be 
(31-16+1).0-0-1), or 16.0. You must ensure that no significant bits are lost 
during the left shift, or an invalid result will be generated. 

8.2 ERROR SITUATIONS 
Although the ADSP-2101 divide primitives work in most instances, there 
are two cases where an invalid, or inaccurate result can be generated. The 
first case involves signed division by a negative number. If you attempt to 
use a negative number as the divisor, the quotient generated may be one 
LSB less than the correct result. The other case concerns unsigned division 
by a divisor greater than h#7FFF. If the divisor in an unsigned division 
exceeds H#7FFF, an invalid quotient will be generated. 

8.2.1 Negative Divisor Error 
The quotient produced during a divide involving a negative divisor will 
generally be one LSB less than the correct result. The divide algorithm 

8-3 



B 

8-4 

III II II !III 

IVI I n Ions 

implement in ADSP-2101 hardware does not correctly compensate for the 
twos-complement format of a negative number, causing this inaccuracy. 

There is one case where this discrepancy does not occur. If the result of the 
division operation should equal H#8000, then it will be correctly 
represented, and not be one LSB off. 

There are several ways to correct for this error. But before changing any 
code, you should determine if one LSB error in you quotient is significant 
problem. In some cases, the LSB is small enough to be insignificant. If you 
find it necessary have exact results, two solutions are apparent. 

One way would be to avoid division by a negative number. If your divisor 
is negative, take its absolute value, and invert the sign of the quotient after 
division. This will produce the correct result. 

Another technique would be to check the result by multiplying the 
quotient by the divisor. Compare this value with the dividend, if they are 
off by more than the value of the divisor, increase the quotient by one. 

B.2.2 Unsigned Division Error 
Unsigned divisions can produce erroneous results if the divisor is greater 
than H#7FFF. You should not attempt to divide two unsigned numbers if 
the divisor has a one in the MSB. If it is necessary to perform a such a 
division, both operands should be shifted right one bit. This will maintain 
the correct orientation of operands. 

Shifting both operands may result in a one LSB error in the quotient. This 
can be solved by multiplying the quotient by the original (not shifted) 
divisor. Subtract this value from the original dividend to calculate the 
error. If the error is greater than the divisor, add one to the quotient, if it is 
negative, subtract one from the quotient. 

B.3 SOFTWARE SOLUTION 
Each of the problems mentioned in this Appendix can be compensated for 
in software. Listing 1 shows the module divide_solution. This code can be 
used to divide two signed or unsigned numbers to produce the correct 
quotient, or an error condition. 

In addition to correcting the problems mentioned, this module provides a 
check for division overflow and computes the remainder following the 
division. 



D 
II II 

I I 
II 

I 

Since many applications do not require complete error checking, the code 
has been designed so you can remove tests that are not necessary for your 
project. This will decrease memory requirements, as well as increase 
execution speed. 

The module signed_div expects the 32-bit dividend to be stored in 
AYl&A YO, and the divisor in AXO. Upon return either the AR register 
holds the quotient and MRO holds the remainder, or the overflow flag is 
set. The entire routine takes at most twenty-seven cycles to execute. If an 
exception condition exists, it may return sooner. The first two instructions 
store the dividend in the MR registers, the absolute value of the 
dividend's MSW in AF, and the divisor's absolute value in AR. 

The code block labeled test_l checks for division by H#8000. Attempting 
to take the absolute value of H#8000 produces an overflow. If the A V flag 
is set (from taking the absolute value of the divisor), then the quotient is 
-A Yl. This can produce an error if A Yl is H#8000, so after taking the 
negative of AYl, the overflow flag is checked again. If it is set control is 
returned to the calling routine, otherwise the remainder is computed. If it 
is not necessary to check for a divisor of H#8000, this code block can be 
removed. 

The code block labeled test_2 checks for a division overflow condition. The 
absolute value of the divisor is subtracted from the absolute value of the 
dividend's MSW. If the divisor is less then the dividend, it is likely an 
overflow will occur. If the two are equal in magnitude, but different in 
sign, the result will be H#8000, so this special case is checked. If your 
application does not require an overflow check, this code block can be 
removed. If you decide to remove test_2 be sure to change the JUMP 
address in test_l to do_divs, instead of test_2. 

After error checking, the actual division is performed. Since the absolute 
value of the divisor has been stored in AR, this is used as the X-operand 
for the DIVS instruction. 15 DIVQ instructions follow, computing the rest 
of the quotient. The correct sign for the quotient is determined, based on 
the AS flag of the ASTAT register. Since the MR register contains the 
original dividend, the remainder can be determine by a multiply subtract 
operation. The divisor times the quotient is subtracted from MR to 
produce the remainder in MRO. 

The last step before returning is to clear the ASTAT register which may 
contain an overflow flag produced during the divide. 

B 

8-5 



II II 

I I n 

The subroutine unsigned_div is very similar to signed_div. MRl and AF are 
loaded with the MSW of the dividend, MRO is loaded with the dividend 
LSW and the divisor is passed into AR. Since unsigned division with a 
large divisor (>H#7FFF) is prohibited, the MSB of the divisor is checked. If 
it contains a one, the overflow flag is set, and the routine returns to the 
caller. Otherwise test_ll checks for a standard divide overflow. 

In test_ll the divisor is subtracted from the MSW of the dividend. If the 
result is less then zero division can proceed, otherwise the overflow flag is 
set. If you wish to remove test_ll, be sure to change the JUMP address in 
test_lO to do_divq. 

The actual unsigned division is performed by first clearing the AQ bit of 
the ASTAT register, then executing sixteen DIVQ instructions. The 
remainder is computed, after first setting MR2 to zero. This is necessary 
since MRl automatically sign-extends into MR2. Also, the multiply must 
be executed with the unsigned switch. To ensure that the overflow flag is 
clear, ASTA T is set to zero before returning. 

In both subroutines, the computation of the remainder requires only one 
extra cycle, so it is unlikely you would need to remove it for speed. If it is 
a problem to have the multiply registers altered, remove the multiply / 
subtract instruction just before the return, and remove the register 
transfers to MRO and MRl in the first two multifunction instructions. Be 
sure to remove the MR2=O; instruction in the unsigned_div subroutine also . 

. MODULE/ROM Divide_solution; 

This module can be used to generate correct results when using the divide primitives of 
the ADSP-2101. The code is organized in sections. This entire module can be used to 
handle all error conditions, or individual sections can be removed to increase 
execution speed. 

Entry Points 
signed_div Computes 16-bit signed quotient 
unsigned_div Computes 16-bit unsigned quotient 

Calling Parameters 
AXO 16-bjt divisor 
AYO Lower 16 bits of dividend 
AY1 Upper 16 bits of dividend 

Listing B.1 Division Error Routine (continues on next page) 

8-6 



Return Values 
AR = 16-bit quotient 
MRO = 16-bit remainder 

III 

I 

AV flag set if divide would overflow 

Altered Registers 
AXO, AX1, AR, AF, AYO, AY1, MR, MYO 

computation Time: 30 cycles 

. ENTRY 

test 1: 

MRO=AYO,AF=AXO+AY1; 
MR1=AY1, AR=ABS AXO; 

IF NE JUMP test_2; 
ASTAT=H#4; 
RTS; 

on 

{Take divisor's absolute value} 
{See if divisor, dividend have same magnitude} 

{If divisor non-zero, do test 2} 
{Divide by zero, so overflow} 
{Return to calling program} 

test 2: IF NOT AV JUMP test_3; {If divisor H#8000, then the} 

test 3: 

test 4: 

Listing B.1 

AYO=AY1, AF=ABS AY1; {quotient is simply -AY1} 
IF NOT AV JUMP recover_sign; 
ASTAT=H#4; {H#8000 divided by H#8000,} 
RTS; 

AF=PASS AF; 
IF NE JUMP test 4; 
AYO=H#8000; 
ASTAT=H#O; 
JUMP recover sign; 

AF=ABS AYl; 
AR=ABS AXO; 
AF=AF-AR; 
IF LT JUMP do_divs; 
ASTAT=H#4; 
RTS; 

{so overflow} 

{Check for division overflow} 
{Not equal, jump test 4} 
{Quotient equals -1} 
{Clear AS bit of ASTAT} 
{Compute remainder} 

{Get absolute of dividend} 
{Restore AS bit of ASTAT} 
{Check for division overflow} 
{If Divisor>Dividend do divide} 
{Division overflow} 

Division Error Routine (continues on next page) 

8-7 



B Division Exceptions 

do divs: DIVS AYl, AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR: 
DIVQ AR; DIVQ AR; 
DIVQ AR; DIVQ AR: 

recover_sign: MYO=AXO,AR=PASS AYO; 
IF NEG AR=-AYO; 
MR=MR-AR*MYO (SS); 
RTS; 

unsigned_div: MRO=AYO, AF=PASS AYl; 
MRl=AYl, AR=PASS AXO; 

test 10: IF GT JUMP test_II; 
ASTAT=H#4; 
RTS; 

test 11: AR=AYl-AXO; 

uremainder: 

.ENDMOD; 

IF LT JUMP do_divq; 
ASTAT=H#4; 
RTS; 

ASTAT=O; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 
DIVQ AXO; DIVQ AXO; 

MR2=O; 
MYO=AXO, AR=PASS AYO; 
MR=MR-AR*MYO (UU); 
RTS; 

{Compute sign of quotient} 

{Put quotient into AR} 
{Restore sign if necessary} 
{compute remainder dividend neg} 
{Return to calling program} 

{Move dividend MSW to AF} 
{Is MSB set?} 

{No, so check overflow} 
{Yes, so set overflow flag} 
{Return to caller} 

{Is divisor<dividend?} 
{No, so go do unsigned divide} 
{Set overflow flag} 

{Clear AQ flag} 
{Do the divide} 

{MRO and MRI previous set} 
{Divisor in MXO, Quotient in AR} 
{Determine remainder} 
{Return to calling program} 

Listing 8.1 Division Error Routine 

8-8 



Pin Information c 

C.1 PIN DESCRIPTION 
The ADSP-2101 is available in a 68-pin PGA and a 68-lead PLCe. Here is a 
description of each pin or group of pins. 

Pin Group Name # of Pins 
Address 14 

Data 24 

RESET 1 
IRQ2 1 
BR 1 
BG 1 
PMS 1 
DMS 1 
BMS 1 
RD 1 
WR 1 
MMAP 1 
CLKIN,XTAL 2 
CLKOUT 1 
SPORTO 5 

SPORTl 5 
or 

IRQ1 (TFSl) 1 
IRQO (RFS1) 1 
SCLK1 1 
FO (DTl) 1 
PI (DR1) 1 

GND 4 
VDD 3 

Table C.1 ADSP-2101 Pin List 

Function 
Address output for program, data and boot memory 
spaces 
Data I/O pins for program and data memories. Input 
only for Boot memory space, with two MSBs used as Boot 
space addresses. 
Processor reset input 
External interrupt request #2 input 
External bus request input 
External bus grant output 
External program memory select 
External data memory select 
Boot memory select 
External memory read enable output 
External memory write enable output 
Memory Map select 
External clock input or quartz crystal I/O 
Processor clock output 
Serial Port Zero I/O pins 

Serial Port One I/O pins 

External interrupt request #1 input 
External interrupt request #0 input 
Programmable clock output 
Flag output pin 
Flag input pin 

Ground pins 
Power Supply 



C-2 

Pin Infor ation 

C.2 PINOUT 
The ADSP-2101 pinouts for the 68-lead PGA package and the 68-contact 
PLCC package are listed below. For more package information, see the 
ADSP-2101 Data Sheet. 

PIN CONFIGURATION 

PGA Pin PGA Pin PLCC Pin PLCC Pin 

Number Name Number Name Number Name Number Name 

BI GND KII WR I DlI 35 AI2 

B2 Dl9 KIO RD 2 GND 36 AI3 

CI D20 jJJ DTO 3 DI2 37 PMS 

C2 D21 )10 TFSO 4 D13 38 OMS 
DI 022 HII RFSO 5 014 39 BMS 
D2 023 HIO GND 6 DIS 40 JiG 
EI VDD Gil DRO 7 Dl6 41 XTAL 

E2 MMAP GIO SCLKO 8 Dl7 42 CLKIN 

F1 BR FII DTJ 9 Dl8 43 CLKOUT 

F2 IRQ2 FlO TISI 10 GND 44 WR 

GI RESET Ell RFSI 11 Dl9 45 RD 
G2 AD EIO DRI 12 D20 46 DTO 

HI AI DII SCLKI 13 D21 47 TFSO 

H2 A2 DID VDD 14 D22 48 RFSO 

)1 A3 CII DO IS D23 49 GND 

)2 A4 CIO DI 16 VDD 50 DRO 

KI VDD BlI D2 17 MMAP 51 SCLKO 

L2 A5 AID D3 18 BR 52 DTI 

K2 A6 BIO D4 19 !RQ2 53 TISI 

L3 GND A9 OS 20 RESET 54 RFSI 

K3 A7 B9 D6 21 AO 55 DRI 

L4 A8 A8 D7 22 AI 56 SCLKI 

K4 A9 B8 DB 23 A2 57 VDD 

L5 AID A7 D9 24 A3 58 DO 

KS AlI B7 DID 25 A4 59 DI 

L6 AI2 A6 DlI 26 VDD 60 02 

K6 A13 B6 GND 27 A5 61 D3 

L7 PMS AS Dl2 28 A6 62 D4 

K7 DMS B5 Dl3 29 GND 63 D5 

L8 BMS A4 Dl4 30 A7 64 D6 

K8 JiG B4 DIS 31 A8 65 D7 

L9 XTAL A3 DI6 32 A9 66 DB 

K9 CLKIN B3 Dl7 33 AID 67 D9 

LID CLKOUT A2 DI8 34 AlI 68 DID 

C3 Index 



Control/Status Registers 

D.1 INTRODUCTION 
This appendix shows bit definitions for 1) the memory-mapped control 
registers and 2) other control and status registers in the ADSP-2101. The 
memory-mapped registers are listed in descending address order. Default 
bit values at reset are shown; if no value is shown, the bit is undefined at 
reset. Reserved bits are shown on a gray field. These bits should always be 
written with zeros. 

System Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

#H3FFF 

SPORTO Enable 
1 = enabled, 0 = disabled 

PWAIT 
SPORT1 Enable 
1 = enabled, 0 = disabled 

Program Memory 
Wait States 

SPORT1 Configure 
1 = serial port 
o = FI, FO, IROO, IR01, SCLK 

BFORCE 
Boot Force Bit 

BWAIT 
Boot Wait States 

BPAGE 
Boot Page Select 

Data Memory Wait State Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DWAIT4 DWAIT3 DWAIT2 DWAIT1 DWAITO 

#H3FFE 

D 

0-1 



0-2 

ontrol/Statu egisters 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

TPERIOD Period Register 

TCOUNT Counter Register 

SPORTO Multichannel Word Enable Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I I I I I I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I I I I I I I I I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 
1 = Channel Enabled 
o = Channel Ignored 

H#3FFD 

H#3FFC 

H#3FFB 

Receive 
Word 
Enables 

H#3FFA 

H#3FF9 

Transmit 
Word 
Enables 

H#3FF8 

H#3FF7 



SPORTO Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 :a I 0 : 0; 0; 0 I H#3FF6 

Multichannel Enable MCE 

Internal Serial Clock Generation ISClK 

Receive Frame Sync Required RFSR 

Receive Frame Sync Width RFSW 

Multichannel Frame Delay MFD 

Only If Multichannel Mode Enabled 

Transmit Frame Sync Required TFSR 

Transmit Frame Sync Width TFSW 

Jgf 
ITFS Internal Transmit Frame Sync Enable 
(or MCl Multichannel length; 1 = 32 words, 0 = 24 words) 
Only If Multichannel Mode Enabled 

SPORTO SCLKDIV 
Serial Clock Divide Modulus 

~ L LSl EN Serial Word length 

DTYPE Data For mat 
00 = right justify, Z era-fill unused MSBs 
01 = right justify, si gn extend into unused MSBs 

ng ~-Iaw 10 = compand usi 
11 = compand usin gA-law 

INVRFS Invert R 

INVTFS Invert Tra 

eceive Frame Sync 

nsmit Frame Sync 
Transmit Data Valid) 
nel Mode Enabled 

(or INVTDV Invert 
Only If Multichan 

IRFS Internal Re ceive Frame Sync Enable 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I : : : : : : : : : : : : : : : I H#3FF5 

SPORTO RFSDIV 
Receive Frame Sync Divide Modulus 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

I : : : : : : : : : : : : : : : I H#3FF4 

0-3 



D ontro us Registers 

SPORTO Autobuffer Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 
H#3FF3 

~~ '----r--'~ I 
TIREG TMREG RIREG RMREG 

TBUF Transmit Autobuffering Enable 

RBUF Receive Autobuffering Enable 

SPORT1 Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° 
11°1°1°1°1°1°1°1°1°1°:01«<°1 H#3FF2 

Flag Out (Read Only) 

Internal Serial Clock Generation ISCLK 

Receive Frame Sync Required RFSR 

Receive Frame Sync Width RFSW 

Transmit Frame Sync Required TFSR 

Transmit Frame Sync Width TFSW 

ITFS Internal Transmit Frame Sync Enab 

0-4 

J~ 

Ie 

~ L L SLE 

DTYPE Data Form 

N Serial Word Length 

at 
o-fill unused MSBs 00 = right justify, zer 

01 = right justify, sig n extend into unused MSBs 
It-law 10 = compand using 

11 = compand using A-law 

INVRFS Invert Re ceive Frame Sync 

INVTFS Invert Tran smit Frame Sync 

IRFS Internal Receive Frame Sync Enable 



Registers 

SPORn SCLKDIV 
Serial Clock Divide Modulus 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I : : : : : : : : : : : : : : : I H#3FF1 

SPORn RFSDIV 
Receive Frame Sync Divide Modulus 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I : : : : : : : : : : : : : : : I H#3FFO 

SPORT1 Autobuffer Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

H#3FEF 

~~~~I 
TBUF T"' Autobuf.,,'n. EnObl. J
RBUF Receive Autobuffering Enable

0-5

0-6

ontrol/Status

ICNTL

43210

1I111

Wl '''''" ~""..., ~ IRQ1 Sensitivity
IRQ2 Sensitivity

'--____ Interrupt Nesting

} 1 = edge,
0= level

1 = enable, ° = disable

egisters

IMASK

543210

1°1°1°1°1°1°1

II U;:,"=~~
SPORT1 Transmit or IRQ1
SPORTO Receive

L--____ SPORTO Transmit L-___________ IRQ2

1 = enable, ° = disable

IFC

11 10 9 8 7 6 5 4 3 2 °

INTERRUPT FORCE

IRQ2
SPORTO Transmit

SPORTO Receive
SPORT1 Transmit or IRQ1

SPORT1 Receive or IRQO

Timer

Source of Interrupt
IR02 (external pin)
SPORTO Transmit (internal)
SPORTO Receive (internal)
SPORT1 Transmit (internal) or IR01 (external)
SPORT1 Receive (internal) or IROO (external)
Timer (internal)

lillW INTERRUPT CLEAR

Timer
SPORT1 Receive or IRQO

SPORT1 Transmit or IRQ1
SPORTO Receive

'--_________ SPORTO Transmit
'--______ IRQ2

Interrupt Vector
0004 (highest priority)
0008
oooe
0010
0014
0018 (lowest priority)

7654320

1°1°1°1°1°1°1°1°1
SS MV AQ AS AC AV AN AZ

ALU Result Zero

ALU Result Negative

ALU Overflow
ALU Carry

L _______ ALU X Input Sign

L-________ ALU Quotient

MAC Overflow
Shifter Input Sign

PC Stack Empty

PC Stack Overflow
Count Stack Empty
Count Stack Overflow
Status Stack Empty

Status Stack Overflow
Loop Stack Empty

Loop Stack Overflow

Data Register Bank Select
o = primary, 1 = secondary
Bit Reverse Mode Enable (DAG1)
ALU Overflow Latch Mode Enable
AR Saturation Mode Enable
MAC Result Placement
o = fractional, 1 = Integer
Timer Enable
Go Mode Enable

III

I

ASTAT

SSTAT

MSTAT

0-7

Index

A o
ADSP-2100 .. 1-3 Data Address Generators (DAGs)
ADSP-2102 .. 1-1 ... 1-6,3-1
AF register ... 2-4 Data Memory Address (DMA) bus
Alternate registers 2--6, 2-15, 4--16 ... 1-7, 8-1
ALU instructions 9-9 Data Memory Data (DMD) bus 1-5, 8-1
ALU overflow latch mode 2-8, 4-16 Data memory interface 8--11
AR register .. 2-4 Data memory map 8-12
AR saturation mode 2-7, 4-16 Data memory wait state 8-12, D-l
Arithmetic formats 2-3 Denormalize ... 2-29
Arithmetic shift .. 2-3 Development System 1-8
Arithmetic/Logic Unit (ALU) 2-4 Division 2-2, 2-8, B-1
Arrays .. 9-17 Signed ... B-1
ASTAT register 2-4, 2-12, 4--14, D-7 UnSigned ... B-2
Autobuffering 6-2, 6-16 Integer .. B-3
AXO register .. 2-4 Software ... B-4
AXI register .. 2-4 00 UNTIL loop 4--3
AYO register ... 2-4 Down counter ... 4-4
AYI register ... 2-4

E
B Emulator .. 1-9
Binary string ... 2-1 EXPADJ instruction 2-27
Bit-reverse addressing 3--5, 4--16
Block exponent 2-27 F
Boot loading sequence 8-5
Boot memory interface 8-3
Boot pages ... 8-3
Bus grant ... 8--14
Bus request .. 8-14

Flag In (FI) 4--8, 6-2, 6-23, 7-7
Flag Out (Fa) 4--8, 6-2, 6-23, 7-7, 9-14
Format adjustment 2-2
Fractional binary format 2-1
Fractional mode 2-2, 2-15

C Frame synchronization 6-5

Circular buffers 3--3, 9-18
CLKIN ... 7-1
CLKOUT ... 7-1
Clock oscillator ... 7-1
Companding 6-2, 6-13

G,H
GO mode ... 4--17, 7--6
Harvard architecture 1-1
HI/La reference 2-22

Computational units 1-5
Conditions ... 4--17
Context switch .. 4--9
Count stack ... 4-4
Counter .. 4-4

X-1

Index

I,J, K N,O
I registers ... 3--3 NORM instruction 2-30
ICNTL register 4-9, 0-6 Normalize ... 2-30
IDLE instruction 4-17 9-14
IFC register 4-l(l 0-6
IMASK register 4-10: D-6

OR/PASS logic 2-24

p
Instruction set 9-1, A-I
Integer mode 2-2, 2-15
Interrupts,

Controller ... 4-8
External .. 7-6
Internal ... 7-6
Masking .. 7-6
Nesting ... 4-10
Sensitivity ... 7-6
Service .. 7-7
Vectors4-8, 4-13, D-6

Phase-locked loop 7-1
PMD-DMD bus exchange 3-6
Program Counter (PC) 4-3
Program flow control 9-14
Program Memory Address (PMA) bus

... 1-7,8-1
Program Memury Data (PMD) bus 1-7, 8-1
Program memory interface 8-7
Program memory map 8-10
Program sequencer 1-6, 4-1
PX register ... 3--6

L R
L registers .. 3--3
Logical shift ... 2-3
Loop comparator 4-5
Loop stack ... 4-5

R bus .. 1-6
Reset ... 7-4
Rounding ... 2-18

M s
M registers ... 3-3
MAC instructions 9-10
MAC result placement mode4-17
Memory-mapped peripherals 8-13, 9-19
Memory spaces ... 8-1
MF register .. 2-14
MMAP ... 8-3, 8-10
Mode control ... 9-15
MODIFY instruction 9-16
Modulo addressing 3-3
Move instructions 9-12
MR register 2-12, 2-14, 2-17
MR saturation ... 2-18
MRO register .. 2-12
MR1 register .. 2-12
MR2 register .. 2-12
MSTAT register 4-16, 0-7
Multichannel interface 6-2, 6-19
Multichannel word enable 0-2
Multifunction instructions 9-4
Multiply / Accumulator (MAC) 2-12
Multiprecision operations 2-7, 2-17
MXO register .. 2-14

Saturation,
AR ... 2-7
MR ... 2-18

SB register ... 2-20
SE register ... 2-20
Serial clock .. 6-3
Serial ports .. 1-6, 6-1
Serial word length 6-8
Shifter ... 2-20
Shifter instructions 9-11
SI register ... 2-20
Software reboot 7-4, 8-3
SPORT enable ... 6-23
SPORTO .. 6-1

Control register D-3
SPORTI4-8, 6-1

Control register D-4
SR register ... 2-20
SRO register ... 2-20
SRI register ... 2-20
SSTAT register 4-15, 0-7
Synchronization delay 7-3
System control register 0-1

MXl register .. 2-14
MYO register .. 2-14
MYI register .. 2-14

X-2

Index

T
TCOUNT register 5-1, 0-2
Trrner 1-6, 4-17,5-1,7-4
TPERIOD register 5-1, 0-2
TSCALE register 5-1, 0-2
Twos-complement format 2-1

u-z
Unsigned binary 2-1
Wait states ... 8-1, 8-5
XTAL .. 7-1

X-3

