01012/0201¢-dSav

jenuey S,.138)

OO0TVNV :l

S30IA3d

ANALOG
DEVICES

.............................
e s esessesssssssssesssesssnee

.............................

.............................
.............................
..............................
.............................
.............................

ADSP-21020
ADSP-21010

User's
Manual

ADSP-21020
ADSP-21010

User’s Manual

ANALOG
DEVICES

You may contact the Digital Signal Processing Group in the following
ways.

* By contacting your local Analog Devices Sales Representative
» For Marketing information, call (617) 461-3881 in Norwood,
Massachusetts, USA
» For Applications Engineering information, call (617) 461-3672 in
Norwood, Massachusetts, USA
« The Norwood office Fax number is (617) 461-3010
» The Norwood office may also be reached by
Telex: 924491
TWX: 710/394-6577
Cables: ANALOG NORWOODMASS
« The DSP Group runs a Bulletin Board Service that can be reached at
300, 1200, 2400 or 9600 baud, no parity, 8 bits data, 1 stop bit by
dialing:
(617) 461-4258
+ By writing to:
Analog Devices
DSP
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

ADSP-21020/21010
User’s Manual

© 1993 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use; nor for any
infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices.

PRINTED IN U.S.A. SECOND EDITION

INTRODUCTION

COMPUTATION UNITS E

PROGRAM SEQUENCING B

DATA ADDRESSING n

TIMER E

MEMORY INTERFACE n

INSTRUCTION SUMMARY
ASSEMBLY PROGRAMMING TUTORIAL n

HARDWARE SYSTEM DESIGN E

INSTRUCTION SET REFERENCE u
COMPUTE OPERATION REFERENCE E

IEEE 1149.1 JTAG TEST ACCESS PORT

NUMERIC FORMATS E

CONTROL/STATUS REGISTERS E

Contents

CHAPTER 1 INTRODUCTION

1.1 GENERAL DESCRIPTIONcoiiceceeiseiseeieeeseetenseeseesessesssessssssessessssssscsenens 1-1
1.1.1 Key ENNANCEMENLSccovicieiriecire ettt 1-2
11.2 Why FI0ating-POINt?couriirircrtree ettt 1-3
1.1.3 Future Product Migration Pathccoccrirnincen s 1-4
1.2 ARCHITECTURE OVERVIEW ..o eceseisecsessnenns 1-4
1.2.1 COMPUEALION UNIES ..ottt s b et csns e esssssnes 1-4
1.2.2 Address Generators And Program SEQUENCETc..ccuevrcureeenemrersecesernnenne 1-6
1.2.3 INEEITUDES ...ttt e et 1-7
1.2.4 THMBE oot 1-7
1.2.5 Memory Buses And INerface ... s 1-7
1.2.6 Internal Data Transfers ... 1-8
1.2.7 Context SWItCRINGcoucereereicireercireessce et 1-8
1.2.8 INSHIUCHON SELcvireireisci e 1-8
1.3 DEVELOPMENT SYSTEM......iiririecreireinristineeesceseseesses st st sesssnenes 1-9
1.4 MANUAL ORGANIZATIONoocoiiiiimiiririiereireisieciese e enssesse o 1-11
CHAPTER 2 COMPUTATION UNITS

2.1 OVERVIEW ...ttt s ses st s 2-1
22 |EEE FLOATING-POINT OPERATIONSccooovmiicirireenrsersese e 2-2
221 Extended Floating-Point Precision (ADSP-21020 ONly)ccocveererneerceeenens 2-3
222 Floating-Point EXCEPLONSc..cveeerrieiierieecreerees e sieseiseeseeeeseiseesseseesesesaes 2-3
2.3 FIXED-POINT OPERATIONScooiireririiniecnsiceieeseeeiseseseesesisesseneenenseessnes 2-4
24 BROUNDING ...ttt ssse s ssees e eseseas sttt esesssnnen 2-4
25 ALU s 2-5
251 ALU OPEIAION ...ttt et s rassse s e 2-5
252 ALU Operating MOGESc.ovuierrerieieierienssieneie s esssssssssssssssssessssenns 2-6
25.2.1 SatUration MOGEcceeeeercercereiereeeere et 2-6
2522 Floating-Point Rounding MOGEScceueueineriniiniineniecniectseeneereneens 2-6
2523 Floating-Point Rounding Boundarycccceereneceninininineeneeenenne 2-7
253 ALU SatUS FIAGSvoverercreererrerecierieret et seter s scees st senseisneenans 2-7
2.5.3.1 ALU Zer0 Flag (AZ) ...coeveeeeerierrerenerseeecieieniee st sesessesssessssensennes 2-8
2532 ALU Underflow Flag (AZ, AUS)ocoriurneminnenrneneeseresensenessneeens 2-8

vi

Contents

2533 ALU Negative FIag (AN)ccovenirnircrennnsissssnsssesssesissiesessesssssssns 2-8
2534 ALU Overflow Flag (AV, AOS, AVS) ..ot iesiesiesienis 2-8
25.35 ALU Fixed-Point Carry Flag (AC)ccovvrenmirrrnrrsreereriesesses e ssseenens 2-8
2536 ALU Sign FIag (AS) ...euvererreecrnceenenreseirersenssseseessssesssssssssssssssssssssssens 2-9
25.3.7 ALU Invalid FIag (Al) ..o tsssesisssssseseenss 2-9
2538 ALU Floating-Point FIag (AF)ccvcueereminerirnereieeessinecenisneesssenssrnsenns 2-9
2.5.3.9 Compare ACCUMUIALONccvcruerrererreeeerencie et s eesennans 2-9
254 ALU INStruction SUMMAIYc.oeuerireuenirmrnnreeeeceneesensecssssseesesisesessssssnns 2-10
28 MULTIPLIER ...ttt snse st sen s sb s ssessesassnns 2-11
2.6.1 Multiplier OPErationc..ccerrucnrinereirineinse et ssss e sessssesens 2-11
26.2 FiXed-Point RESUILS ..ottt eesssesssssenees 2-12
2.6.2.1 MB REGISIEIS ...t sttt et 2-12
2.6. Fixed-Point OPErationsccccvvrrrrrinennicineerese e ssssssessnnns 2-13
2.6.3.1 Clear MR REGISIENccrereiieeererreieennecersasesseessetsssesssssss e ssssns 2-14
2.6.32 Round MB REQISIETccovireeiceeiersetnsiee e ssssessssssesssnsens 2-14
26.33 Saturate MR Register On Overflowcccoceeervcveiscrnesneecieseeenns 2-14
264 Floating-Point Operating MOdescccoeoreenmrneenrsinrieeesenssnsessssnenenns 2-15
26.4.1 Floating-Point Rounding MOdescceceueerereeneennenrceneenerseiresiens 2-15
2642 Floating-Point Rounding Boundarycccccueevecneennienernneesesenneneees 2-15
2.6.5 Multiplier STatuS FIAgSccvvevericeeerrireireen e seeeenees 2-15
2.6.5.1 Multiplier Underflow Flag (MU)ccccouveiinnercnr s 2-16
26.5.2 Multiplier Negative Flag (MN)c.cc.oorueenrreeeeree et 2-17
2653 Multiplier Overflow Flag (MV)covrirrreerereeeseesi s 2-17
2654 Multiplier Invalid Flag (M) ... innsseseeeseens 2-17
2.6.6 Multiplier Instruction SUMMAIY ..o 2-18
2.7 SHIFTER ..ottt et sttt st nen 2-19
2.71 Shifter OPEratioNc.ceeiverieerireircnisere e sassienss 2-19
272 Bit Field Deposit & Extract INSHUCHONScceverinrieeece s 2-20
2.7.3 Shifter Status FIagsc.cceurerininnincreesssseeesee s 2-24
2.7.31 Shifter Zero FIag (SZ).......c.oveveeeereuriereeriereeireereeeisessesesesseessessenees 2-24
2.7.32 Shifter Overflow Flag (SV).......cvvvnerernrrrccereireersennsenessseenns 2-24
2.7.3.3 Shifter Sign Flag (SS)......cccoreurererneenirriinerneinein e seesesssesnesans 2-24
274 Shifter INStruction SUMMAYccccevevvvirreiriere e 2-25 .
28 MULTIFUNCTION COMPUTATIONSoocomiereremreernereieerenensissescasenensssisenes 2-26
2.9 BREGISTERFILE ..ottt nsese et ssssssessnseens 2-27
2.9.1 Alternate (Secondary) REGIStErSc.ueeruecereenereinrenmnemneneneireesesessees 2-28

.
D
e
.
N

s
féx“

CHAPTER 3 PROGRAM SEQUENCING

3.1 OVERVIEW ..ottt ess s bbb 3-1
3.1.1 INSEUCHION CYCIE ..ot 3-2
312 Program Sequencer ArchiteCtureocnveneereeeinrniene e sceseenees 3-3
3.1.21 Program Sequencer Registers & System Registerscccouvennenen. 3-5
32 PROGRAM SEQUENCER OPERATIONS.........ccoonimmiierervcrisieerneis e 3-6
3.2.1 Sequential INStruCtion FIOWc.courieieiiiisesceeseese s 3-6
3.22 Program Memory Data ACCESSccovueriiinieeiiiniersisereeee e 36
323 BFaNCRESccoviecertce ettt 3-6
324 LOOPS ottt ettt 3-6
3.3 CONDITIONAL INSTRUCTION EXECUTIONccostumrrermrcnerneeniecneirecsneenennas 3-7
34 BRANCHES (CALL, JUMP, RTS, RTI) ...oveiirceeeecreineie e, 3-9
341 Delayed And Nondelayed Branchescccoericuncnincimnieceneininens 3-10
342 PC SHACK ... vttt e 3-12
35 LOOPS ..ottt bbbt 3-13
35.1 Restrictions And ShOrt LOOPSc.cuvieiiiriieiirecreieee i 3-14
35.1.1 General ReStHCHONSo.vvverireierieieiissiseeseiee e ssessssesenins 3-14
35.1.2 Counter-Based LOOPScc.ccvurirriiieniesnssiresnssissn s sseens 3-15
35.1.3 Non-Counter-Based LOOPSccuueierienierisiineiniessineseneseeeiseseenees 3-17
35.2 LOOP AQArESS STACKceeeceicercie ettt nnes 3-17
353 Loop Counters And SEACKc.ruiririeieir e 3-18
3.5.31 CURLCNTR ..ot eeeetietsemserinei et ceseis st s b sss bt 3-18
3532 LONTR ottt ettt bttt ettt 3-19
3.8 INTERRUPTS ...ttt bbb bt 3-20
3.6.1 INEITUPE LALENCY ..o oo 3-21
36.2 INEEITUPE LAICK . ..ot st 3-23
3.6.2.1 INEEITUPE PHOMIY ..o 3-24
3.6.2.2 SOftWAre INTEITUPES «..cecveeee et 3-25
3.6.3 Interrupt Masking And CONrOlcccuiiiereercrrcne s 3-25
3.6.3.1 INEEITUPE MASK ...ttt 3-25
3.6.32 Interrupt Nesting & IMASKPoorrenrese s 3-26
3.6.4 SHAIUS SEACK ...t 3-26
3.6.5 External Interrupt Timing & Sensitivitycooveeverernerrcrree e 3-27
3.6.5.1 Asynchronous External Interruptsccocoeveicnicnncniniceieenn, 3-28
37 STACK FLAGS ...ttt sne et sst st ssnsae 3-28
B8 IDLE b 3-29
3.9 INSTRUCTION CACHEcoevieirierneirmerieneineneeieeisiseeseeecs st et seniseiseecssees 3-30
3.9.1 Cache ArChItECIUNEovveveeeceecee s 3-30
392 Cache EffiCIENCYcvivereereiiireireicnc st nsees 3-32
393 Cache Enable And Cache Freezeccveieveeieinenesee e, 3-32

Vil

viii

itents

CHAPTER 4 DATA ADDRESSING
41 OVERVIEW ...ttt sens sttt ss st st s 4
4.2 DAG REGISTERSoosirrenceriiereteasineienssisss st ssesssessss st sssssssasens 41
421 Alternate DAG REJISEIScoueuieriirierieirissieissise s esssssesesessssssseesenns 4-3
4.3 DAG OPERATIONcovimireiuieriirirenrsesesresseesseiseessssise st ssessse st ssssssssssssssssesasees 4-4
431 Address Output And MOdIficationccouercviereninenrnsse e 4-4
43141 DAG Modify Instructions.............coe..... SR OTOTR 4-4
4312 Immediate MOAIfIErScccuvruiiccrenre e 4-6
432 Circular Buffer ADAreSSingccveeereeerenerernimecneenessemmenssensesesssessessesens 4-6
4.3.2.1 Circular Buffer Operation............ccoceeeeeenecrernemiesiensnesisersssmesssnresnessses 4-6
4322 Circular Buffer REGISErScoeverrereirieniniersineneseiss e seesssesenaseens 4-8
4323 Circuiar Buffer Overflow INTEITUPTScoveeeerirneerrneriesineiseseissesenaees 4-8
433 Bit-REVEISAlooiceeecee ettt 4-9
4.3.3.1 Bit-Reverse MOdeccouevirirrieieecrcisesesee e st esens 4-9
4.3.3.2 Bit-Reverse INStUCHON ... 4-10
44 DAG REGISTER TRANSFERScccosmermminernirineininenecsseesssssesssesssssessenes 4-10
4.41 DAG Register Transfer RESHACHONSc.ovevveeeruremnrnierinieniereesceisisennees 4-11
CHAPTER 5 TIMER
5.1 OVERVIEW ...ttt sttt 5-1
52 TIMER OPERATION ..ottt sentse et sessectseessenessssessssessenins 5-1
5.2.1 Timer Enable And Disableooceienierieriercce s 5-1
522 TIMEE INEEITUPE ... e 5-4
53 TIMERREGISTERScoosiririrircneireeeeine e sesssesssessesessesenes 5-4
CHAPTER 6 MEMORY INTERFACE
6.1 MEMORY MANAGEMENT AND INTERFACE..........ccoonenercnenerrene s 6-1
6.2 MEMORY BUSES AND CONTROL PINS......ccovumiiiineininemeeieneremienseeseieenens 6-2
6.3 MEMORY INTERFACE TIMINGccouovemeireiremeincrneiessnreeneiseesssesseeseessesessssenns 64
6.3.1 MEMOIY REAM ..o 6-4
6.3.2 MEMOTY WHIEovreeece et enr e e 6-5
6.3.3 Three-State CONIOISccurvererrireireirreeeire ettt sb s sesebs e ssenenas 6-6
8.4 MEMORY BANKSoooiirietririniriersetesinesisei s sesesisss st seesessssesssessssssnes 6-8
- 6.5 WAIT STATES (EXTENDED MEMORY CYCLES)cconvermerriiirineireceecerenene 6-9
6.5.1 Extended Data Memory Address Hold Timeccoorrenenercreeneenienenns 6-10
6.6 MEMORY PAGE BOUNDARY DETECTIONcccoevnimmriirnrirecenereneeeeneeseneees 6-12
6.6.1 PAGE SIZEcviiiei e 6-12
6.6.2 Wait States On Page Boundary CroSsingsc.ceereeereueerecsnnensinnesseennes 6-13
6.7 BUS REQUEST/BUS GRANTccortirrrirmrnmncirerneecsersesesensessensesssessensensenns 6-13
BUS EXCHANGE (PX REGISTERS)c.cocneeerernerreiceinsinesecrsensnessseseassensins 6-15

CHAPTER 7 INSTRUCTION SUMMARY

74 OVERVIEW ..ottt ettt 7-1
72 IMPORTANT PROGRAMMING REMINDERS........ [N ROOR 7-2
7.2.1 Extra Cycle CONAIIONS...........ccovurumeirreeireessireseeiree st 7-2
7211 Nondelayed BranChes ... eeens 7-2
7212 Program Memory Data Access With Cache MiSSccccoconereecnereins 7-2
7213 Program Memory Data Access In LOOPS........cc.cvuercerernenennicceenseneeens 7-2
7214 One- And TWO-INStruction LOOPSc.cceeveeenerienirnernernenniserceneesenseeneene 7-3
7215 DAG And Memory Control Register Writes ... 7-4
7216 WAt STALES ..ot 7-5
7217 Page Boundary CroSSingccceemeuerrceremnesemmcrmesiemescesesesssseneeeens 7-5
7218 Three-State ENables ... 7-5
7219 Bus Request/Bus Grant..............coveueeircernceeeiesese s eeesasesessssenes 7-5
722 Delayed Branch RESHACHONS..........cocururivrceereinieeecneneise et seeeeens 7-5
723 LOOP RESHACHIONS ...ttt e 7-6
724 INBEITUDES ...t 7-6
725 TRPTL .ottt et 7-7
726 Effect Latency And Read LatencCy...........ccocvveeeueceenineninieneeseeneinesesnnens 7-7
727 CURLCNTR Write & LCEcomeoiiriecsirei s 7-8
7238 Circular Buffer Initializationc.coceererinrecninrreeseeeseees s 7-8
729 Bit-Reverse Mode And Data Memory Bank Selectococoveveevivncinennnnnes 7-8
7.2.10 Disallowed DAG Register Transferscocveveevrvcrecneiecnenennersceneeneens 7-8
7.2.11 Two Writes To Register File ... 7-9
7.2.12 Stack StAtUS FIAGSvueecerreeeereee ittt 7-9
7213 Wait States And Three-State Enablesccocoevcvivrnnnninencsnn, 7-9
7.2.14 CompULAtioN UNIEScoevueieiieiirecineiseies e cecb s sesseseseiseneas 7-9
CHAPTER 8 ASSEMBLY PROGRAMMING TUTORIAL

8.1 INTRODUCTIONccovirineinesemne e esesisese s senssnsecnsessesineenen 8-1
82 EXAMPLE #1: DATA IN MEMORY, NO INTERRUPTSccccconemrmerrrnninen 8-2
8.2.1 File INVENTOTY ...ttt 8-5
822 Architecture Description File (generic.ach)cccvverrernsnecrnenenneenenne 8-5
8.2.3 External vs. Internal Address Decodingc.vervvereeeeriervrereeneineireneeneines 8-7
824 Specifying The LACH Filec..vvopm e 8-8
8.2.5 Main Program (ilfMem.asm)cc.coevereeurmeeireerenenrnaessessssess s ssessasessses 8-8
8.2.5.1 Initial Setups: Initialization Following Resetccccccoecvervmrrerveireincens 8-11
8252 Main ProceSSINg LOOPc.vvueureuierereeieieeneeressie e seseensesssssens 8-14
8.2.6 Creating The Executable Program...........cc.cocvnnninicnensenerneenoneons 8-15
8.2.7 SIMUIBLON ...t 8-15

ix

8.3 EXAMPLE #2—INTERRUPT-DRIVEN, WITH PORT /Occcecorvernreenernnene 8-16

8.3.1 File INVENTOTY .ot 8-16
8.3.2 Architecture Description File (ilfirg.ach)cccooeoveovnnniecncnininnsnnnes 8-16
8.3.3 Main Program (iifirg.aSm)ceeeeureereereenmenureerneneeienseesensssensenssssesssssnes 8-19
8.3.3.1 Initialization Following Reset (Initial SEtUpS)cccocvrvrrenererenrirnrennnns 8-23
8.3.3.2 Main Processing LOOPc.cueureieienieniericsineine e sescssssnssnens 8-28
8.3.3.3 Terminating The Main Processing LOOpP.....c..c.ocvrivevrenieencnienieneennes 8-29
834 Creating The Executable Program ..o 8-29
835 SIMUIBHON <. as 8-29
84 CALLED SUBROUTINES (Cascade.asm)cocecermurcenmuresmrsrsessnrsnseneessennens 8-31
8.4.1 WIiting LOOPEA COUE ..ottt 8-31
8.4.2 Rolling Loops For More Efficient Code ..o 8-32
8.4.3 Muitifunction Instructions And Register ReStrictionsccvvvveveereeneenne 8-34
8.5 DEVELOPING THE IIR FILTER AND COEFFICIENTSccccorermmimmmmiciiniennes 8-35
8.5.1 Normalized b Coefficient Biquad Filter Design Methodccooo.c.. 8-35
85.2 DSP Code GENETALIONccuirierernerirrireereseereseesesssse e ssenns 8-36
8.5.3 Coefficient FOrMAtingcc.euvveerirrerreerrineinnireesesenrie s ssissssesseesensenes 8-36
86 PROGRAMMING HINTS ..ottt ssesssessnns 8-37
8.6.1 System Considerations FOr SCOPING.........vuvueurrurreernieeernsireereisssesieeseenns 8-37
8.6.2 Delayed BranChes.........covrreuivcieeeceniieerisnse s reee s sesessnse s ssessssessnsssans 8-39
8.6.3 Multifunction InStruction COdINGcvereuruereereerreerese e eseseenecens 8-40
87 COMPLETE FFT EXAMPLEooiieieercreisensie et nsesssesnns 8-40
CHAPTER 9 HARDWARE SYSTEM DESIGN

9.1 OVERVIEW ...ttt ettt sttt 91
9.1.1 Basic System Configurationcccceuveeneennineesisssseessss e 9-1
9.12 More Complex Configurationscovereeieneneerecrccneinseseeeeseeeeenenens 9-2
9.2 CLOCKS & SYNCHRONIZATION.......ccvruereerirreerrinemrenmeisesssmnsisnsesessseesesineesens 9-3
9.2.1 Synchronization DEIAYc.veeeeerrerrnineieie e 9-3
9.3 POWERUP & RESETc.oiitiirirrircereeensineee e isessssssessessssssssssesssssssnssensens 9-4
9.4 ROOMP PIN ..ocoiiiiiiirireiiiinne st sssssses et 9-6
95 FLAGS oottt ettt st 9-7
9.5.1 FIAG DIFECHON ...ttt ettt 9-7
9.5.2 FIAQ INPUL ..ottt 9-7
953 FIaG OQULPUL ...ttt baeen 9-8
96 MEMORY CONFIGURATIONScootureirceneinrinriesnsersesssrseesessesesessseasenssenssess 9-8
9.6.1 Single Processor Configurations...........coevreeuecnencceennmenmsesesessenenns 9-8
9.6.1.1 ONe MEMOTY BaNKcoueviiiiicenieeceneinemeesesne e esesesssesesens 9-9
9.6.1.2 Several Memory Bankscinnereeneeseesesissesnscaees 9-10
9.6.1.3 Memory & 1/O DEVICEScvverrriirnirersirenieere s s sssnsss s 9-11

9.6.1.4 Hardware ACKNOWIEAGEc.ccvururirrereirceeeie e 9-12

Contents

9.6.1.5 Cache MEMOTY ..o e 9-13
9.6.16 DRAM With PagINGrvieenreriieneineieinseseceneesessesesesseeseessesseessesssssnees 9-14
9.6.1.7 Direct Memory Access (DMA) ... 9-16
9.6.2 Multiprocessor Configurationsccucuvcernrecnmecenemseeneeeeeseesennes 9-18
9.6.2.1 MUHIPOIt MEMOIY ...t 9-18
9.6.2.2 Serial Data FIOWcoioieieineneneneie e 9-20

BUFfEr LAtChES ... 9-20

FIFOS .ottt s eeenee 9-22

Dual-Port MEMOTY ...t 9-24
9.7 PROGRAM MEMORY BOOT AT RESEToenreenirerneeneerecnsnereenseseeensinenes 9-25
98 MEMORY INTERFACE CAPACITIVE LOAD.......ccconsiomimmerincrnnereinerreceereneneens 9-27
9.8.1 LA VANIBtONSo.vvivecieiniereireeeentsers e eeneen 9-27
9.8.2 Correcting The TIMING ...uevueerieiercrrire e 9-29
9.9 EZ-ICE EMULATOR CONSIDERATIONScccoovnineiireineeneieeeseereesseessenenes 9-30
9.9.1 Target Board Connector For EZ-ICE Probe..........c.ccocvcvenincnieninenennennnene 9-30
992 Other Hardware Considerationscovevenenenerinenerseeneenerecesnesennees 9-31
9.10 HOST PROCESSOR INTERFACEcocorimtmieeneiesneineceneisesieeesessessessnenns 9-32
9.10.1 Data Transfer SEQUENCEScovvrierurirrirerccre e seeseeees 9-32
9.10.2 Host Interface Code EXaMPIESco.ccovrvoiviiieiciiee et 9-37
9.10.2.1 BUFfEr TranSfers ..ot e 9-37
9.10.2.2 Interrupt-Driven TranSfers ... 9-37
9.10.2.3 High Speed Transfers ... sesssessseees 9-38

APPENDIX A INSTRUCTION SET REFERENCE

Al OVERVIEW ..ottt sttt A-1
A2 INSTRUCTION SYNTAX NOTATION........cooorierrrneiiireceneieriretesieeeseesecsacsnseeees A-2
A3 OPCODE NOTATIONcocovmerrrenernnnn
A4 CONDITION CODES
A5 UNIVERSAL REGISTERS
GROUP I.
COMPUTE AND MOVE INSTRUCTIONScooivrierienrieinsireereisseeseieisenenens A-11
compute/dreg <> DM/ dreg <> PM ... A-12
COMPUEE ettt et ns A-13
compute/ureg <> DMIPM, register modifyc.ccoeorevcrnrnrererecninnneens A-14
compute/dreg <> DMIPM, immediate modifycocouerrrernrrrerneirrennnnen, A-16
COMPUIB/UTEG € UTBJ ..eovercerrerrirrisenieeecesecsentssassssses s csessesssesssssessanen A-18
immediate shift / dreg <> DMIPM ..., A-20
compute/modify ..o A-22

xi

xii

GROUP 1.

PROGRAM FLOW CONTROLcoveriurnerrirerinreneenrersesiseserssssissssssssssssssssnsanns A-23
AireCt JUMPICAIL.......cveeee e A-24
indirect jumplcall / COMPULE ... A-26
return from subroutinelinterrupt / COMPULEcccceerennvneerienresrnisirinns A-28
do until counter EXPIFEdcvcrverercereeeee e A-30
A0 UNLE 1ot A-32
GROUP III.
IMMEDIATE MOVE ... en s A-33
ureg <> DMIPM (direCt addreSsing)cerveeeeereeeeeenmsmmeeneeseessennsncenens A-34
ureg <> DMIPM (indirect addressing)ccucvererveremerneennenernerneiserneenenns A-35
immediate data — DMIPM.......coiiiirncnee e A-36
immediate data —> Uregcccvuuvrninirrnence e A-37
GROUP V.
MISCELLANEQUS ...ttt sesssses e sessasssssnssensanes A-39
system register bit ManIpUlationcccvvvneirinre A-40
I register modify / DIt-TEVEISE ..o e A-42
PUSHIPOP SEACKS ...t A-44
NIOP oottt er et A-45
HAIB e e A-46
APPENDIX B COMPUTE OPERATION REFERENCE
Bl OVERVIEW ...ttt B-1
B2 SINGLE-FUNCTION OPERATIONSccoeircirecncririersrrsceneeseenerssssenecsseenns B-1
B.2.1 ALU OPEIAtioNSovvucreririnrirceniesceseeiseiseessie e s e B-2
BN = RX 4 RY oottt B-4
RN = RX = RY ottt ssns s s B-5
RN = BX 4+ RY # Gl sessensenens B-6
RNn=RX =Ry + Cl =1 e B-7
BN = (RX 4+ RYY2 oo B-8
COMP(RX, RY) oottt ecsnsesssrs e sesessennessssiessens B-9
RN = RX 4+ Gl B-10
RN = RX 4 Cl= 1 e saeeen B-11
RN = BX 4 1 ettt B-12

RN = mBX e st B-14
RN = ABS BX oottt ettt ssv s vttt nane B-15
BN = PASS RX ..ottt ssessssssessssssssses s s sssnses B-16
BN = RXAND RY ..o ssssnssns B-17
RN = BXOR RY oottt sessesenssesssssnenes B-18
RN = RX XOR BY ..ottt B-19
BN = NOT BX oot ssssssssss s sssssssssssnsens B-20
BN = MIN(RX, BY) vt B-21
RN = MAX(RX, BY) oot sssssnssnassannos B-22
RN = CLIP RXBY RY ..ottt ssessessessnens B-23
FNZ FX 4 FY oo B-24
FN 2 FX = FY e e B-25
FN = ABS (FX 4 FY) oot B-26
FN = ABS (FX = FY) oottt B-27
FN = (FX A+ FYY2 ettt B-28
COMP(FX, FY) vttt st sessssssssssssssasssens B-29
FN = mFX et B-30
FNU= ABS FX oottt nsannan B-31
FNUZPASS FX oot B-32
FNU= BND FX ottt seessssssss s raees B-33
Fn'= SCALB FX BY RY ..ot scsnsesssssessses s ssensesssseses B-34
BN = MANT FX oo sss s sesessessenens B-35
BN = LOGB FX ..ot ssses s cssssssens B-36
Rn = FIX FX BY RY/RN = FIX FX et ecnseeenes B-37
Fn = FLOAT Rx BY Ry/Fn = FLOAT BX ...c.oveveinrinineirieecneresneeseeneene B-38
FN = BECIPS FX oottt nsssssens B-39
FN = RSQRTS FXovenieiiicneireireeseseesesssesssssscsese e sresssssessnenns B-40
FN = FX COPYSIGN FY oot scseissisnseeeens B-41
FN = MIN(FX, FY) ot ssssse s s snssesssesnnes B-42
FN = MAX(FX, FY) oot B—43
FR = CLIP FXBY FY oottt B-44
B.2.2 Multiplier OPErationS........cccvecveuveeerriererissreereirsresesseesssesssssssseseessssssnsns B-45
RNIMR = BX ¥ RY oottt ssssssens B-47
RNIMB = MR + BX * RY coocvviieeiirrineis s s ssssssssssssnsens B-48
RNIMR = MB = RX * RY .ottt sss e tsssssesenens B-49
RNIMB = SAT MR ...t s s sssnesessssssenes B-50
RNIMB = BND MR ...t B-51
MR =0 oottt B-52
MRB=RN/BN=MR ..ottt seees B-52
FNUZ FX Y e B-53

xiii

Xiv

B.2.3 Shifter OPErations..........covvereeverucenrirereeerecnerne et eesseesesesens B-54
Rn = LSHIFT Rx BY Ryl<data8>cocvrrnemerirnrencenerncireneneenssnnnns B-55
Rn =Rn OR LSHIFT Rx BY Ryl<data8>ccccoorevvmmmnrenmrernrnnenes B-56
Rn = ASHIFT Rx BY Ryl<data8>.......c.ccocrmunininmerncrneneeneinreernennannens B-57
Rn = Rn OR ASHIFT Rx BY Ryl<data8>..........c.cccovoemerrmeninrcrnrnnnnns B-58
Rn = ROT Rx BY RYI<data8>c.cocnvvereenerencenrserecneieeieesenenns B-59
Rn = BCLR Rx BY Ryl<data8>cocouuriernmminneeseseececsiseieens B-60
Rn = BSET Rx BY Ryl<data8>ccccuvrrermrrmncrineriecirecinecineceneineeens B-61
Rn = BTGL Rx BY Ryl<data8>cccoverrrmmrrrimrirneensrnnrinesnesseensinnns B-62
BTST Rx BY Ryl<data8>cocvvuercenrmmeeneneieriseineciseiesineseseisecssesenens B-63
Rn = FDEP Rx BY Ryl<bit6>:<Ien6>ccococovmervereereneeinennieens B-64
Rn = Rn OR FDEP Rx BY Ryl<bit6>:<len6>cccccoevvurernrrreenernnn, B-65
Rn = FDEP Rx BY Ryl<bit6>:<len6> (SE)corureverercererercirnernrns B-66
Rn = Rn OR FDEP Rx BY Ryl<bit6>:<len6> (SE)cccnevecerrereunnn, B-67
Rn = FEXT Rx BY Ryl<bit6>:<len6>c.cocovernmenerecrnerineerenneens B-68
Rn = FEXT Rx BY Ryl<bit6>:<1en6> (SE)cccoumerrernecererncrnnerenncnes B-69
BN = EXP BX oot
RN = EXP BX (EX) 1cvorcvrececeeiecieeieeenesise e sscesesssessssssssessessnessns
Rn = LEFTZ Rx
Rn = LEFTO Rx
B.2.4 Multifunction Computations
Dual Add/Subtract (FIXed-PL.)ccoeueerrercecnirereeerssireseeenseeeneens B-75
Dual Add/Subtract (FIoating-Pt)cccevevrrrneirerenntnessseniceens B-76
Parallel Multiplier & ALU (FiXed-PL) ...cc.vvveiieereerinercrenennincinneenenns B-77
Parallel Multiplier & ALU (Floating-Pt.)c.coocveerrenvrrrncceeieees B-78
Parallel Multiplier & Dual Add/Subtractcceveeureneerecneinnreecneens B-80
APPENDIX C IEEE 1149.1 JTAG TEST ACCESS PORT
Cd OVERVIEW ..ottt sttt ensas C-
.2 TEST ACCESS PORT ..ottt iseeseiseesssnsiecssesssssesenessesssssens C-2
C.3 INSTRUCTION REGISTERcotieeiriiiircinrieessereisisss e iresise s ssnes s esscaneens C-2
C.4 BOUNDARY REGISTERcoovemreicinciecnienemeieniscisessssserenseesessssssssssesnsssnes C+4
C.5 DEVICE IDENTIFICATION REGISTER........ccccucvuenrunemmmmimsssereesemsesesieees C-11
C.6 BUILT-IN SELF-TEST OPERATION (BIST)ovvuevereereeercencnmenenereesenesnnenneenes C-11
C.7 PRIVATE INSTRUCTIONScooiimiinrenereerminissssensmsssessessessessessssssssssssssesns Cc-11
C.8 REFERENGESooiiicreecrcrinsere e snse sttt Cc-11

APPENDIX D NUMERIC FORMATS

D1 OVERVIEW ..ottt assesans D-1
D.2 IEEE SINGLE-PRECISION FLOATING-POINT DATA FORMATcccocnvvenenne D-1
D.3 EXTENDED FLOATING-POINT FORMATccovivimirereiirereneeecenirsessemsesesensesenns D-2
D.4 FIXED-POINT FORMATSottt isssse bt essssessssnesanes D-3
APPENDIX E CONTROL/STATUS REGISTERS

Ed OVERVIEW ..ottt sttt sttt st ssnns E-1
E2 SYSTEMREGISTERScoiiirie et ssese s E-1
E.2.1 System Register Bit Operationsc..cocuverenmenernrenncenniimeesseneessesessenenes E-2
E.2.1.1 Bit TESE FlAG ...t E-2
E22 USEI BEGISIEIS ..ottt sttt s snsen E-2
E3 MODET REGISTERcocitiiiririre ittt essesseseseesenssnssesssesnes E-3
E4 MODE2 REGISTERcooiiiiircereirecntinsieitsseet st ses ettt sess s sssnsnes E-4
E.5 ARITHMETIC STATUS REGISTER (ASTAT).....cccosimmeererrineieciresireresserienenne E-5
E.6 STICKY ARITHMETIC STATUS REGISTER (STKY) ..cvveirecnreienrreinnieeinnans E-6
E.7 INTERRUPT LATCH (IRPTL) & INTERRUPT MASK (IMASK)ccoccecurerercencer E-8
E.8 PROGRAM MEMORY INTERFACE CONTROL (PMWAIT)......ccvcovirrrvrrrnrrnns E-10
E9 DATA MEMORY INTERFACE CONTROL (DMWAIT) ...oovvreerrrereireereirnreeens E-11

REVISIONS FOR 2ND EDITION

INDEX

FIGURES

Figure 1.1 ADSP-21020 BIOCK Dia@ramccocueeveererenceneinreneineeneeensseessasssissannns 1-5
Figure 1.2 Program DevelOPMENt........ccveuierinierieieierceneesseseiss s ssessesnsens 1-9
Figure 2.1 CompULAtION UNIEScoevriiiecirireiiei st essees 2-2
Figure 2.2 Multiplier Fixed-Point Result Placement.........c.cocvvveveeiniirevenniernsineenns 2-12
Figure 2.3 MR Transfer FOrMAtScovrrerecnememimenneisessiisese e seisesseenes 2-13
Figure 2.4 Register File Fields for Shifter Instructionsccccvevereniniininiinnennns 2-20
Figure 2.5 Register File Fields for FDEP, FEXT INStructionscccccovevrevnevreenns 2-20
Figure 2.6 Bit Field Deposit INSTUCHONcceririneieecnincnenssssssiesinnsenns 2-21
Figure 2.7 Bit Field Deposit EXamPIEcc.ccvveueeeinrnenrneireieeeeeessisesssensens 2-22
Figure 2.8 Bit Field Extract EXamplecccoueeumrnirnrneensinninsnncenrnses e snenenns 2-23

X0

xvi

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8

Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Flgure 9.5

Program FIOW Variationscueeeeerininmenennnenceneensessessseseesesssssenns 3-2
Pipelined EXECUtION CYCIESoveeeveeeeireirereiretsee st eceseseneens 3-3
Program Sequencer Block Diagramcccvereemrnernenneennensnensesssenninns 34
Nondelayed BranChes ... 3-10
Delayed BranChes ... cenenessssseessssssns 3-11
LOOP OPEIatioNc..coiieireirei et 3-14
ONE-INSLIUCHION LOOPS ..vvovvvreireinircrrensecirsaseessesssssssssssssssnsessssse s ssessns 3-15
TWO-INSLIUCHION LOOPS ...vvvcerireerirsesnre e sninaas 3-16
Pushing the Loop Counter Stack for Nested LOOPScoccvcvcnirninnin. 3-20
INterrupt HANAINGoovveeecencrecr e 3-22
Instruction Cache ArChItECIUNEcoveureeerirrineinerercee s 3-31
Cache-INefficient Codecovuirrrrmenierniireesssssssses e sses 3-33
Data Address Generator Block Diagramccceeveenenenininrennrnnnn, 4-2
Alternate DAG REGISIENScvvurrurrireineireircineinsse et snsesienens 4-3
Pre-Modify and Post-Modify Operations...........c.ccccvermrerenrensirnrenrernennnnns 4-5
Circular Data BUFfErScc.ccnreneccneeeces e 4-7
DAG Register Transferscovrnmnennineeecrsenescssessessesnnes 4-11
Timer BIOCK DIagramc..ccvuercrmneiceisescs et menssssecssessesens 5-2
TIMEXP SIgNalccoverriiereeieereereiseeeessisssseesesssesessessssssessssssssessssssnsens 5-2
Timer Enable and DiSablecocvvveeeeinenescnneeecenecenee 5-3
Timer Interrupt TIMINGc.vecerceic s 5-4
Memory Read CYCIEc.vrrririeieeirieeeete sttt benaens 6-5
Memory WIite CYCIE ...ttt 6-6
Wait State Control REGISIENSccvvvrneerreerirnecsecnessere e 6-11
Bus Request/Bus Grant TIMINGc.ccererermeceninemeconmmnecseneeseeesenseeens 6-14
PX Register TranSfers ...t ssseiseeseessessessseneens 6-15
Program Flow for First EXampleccocoeeernninnccsneeninns 8-3
Program Flow for Second EXamplecoovrvcennrnrnnnc s 84
Physical Memory Architecture Described in “generic.ach”cccove.... 8-8
Memory Map Described in “generic.ach”.........cccoovivvvvccnccnnsiincnnns 8-9
Physical Memory Architecture Described in “fifirg.ach”ccccvvrvennen. 8-17
Memory Map Described in “iifirg.ach”...........ccoevvvericvnensescscressienns 8-18
Filling and Draining the PIPelingccreeverrnineenericeniereeesenneesienenes 8-33
Loop Code Before ROMNGccvcuueemeveercierneieeineiesieseis e 8-33
Basic ADSP-21020 System Configurationcccoeveneenenenieneencnsennens 9-2
Program Memory Interface Timing at Reset...........ccocoeveneencnncncnennes 9-6
Flag Output TIMING ...vuuveerreireiieeierrstiesise et ssseienenes 9-8
Interface to Single Data Memory Bankccoevnreerinceneinincensinnins 9-9
Interface to Three Data Memory Banks.........cccovvevneererrnnnnisenisenncennn, 9-10

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21
Figure 9.22
Figure 9.23
Figure 9.24

Figure A.1
Figure A.2

Figure C.1

Figure D.1
Figure D.2
Figure D.3
Figure D.4
Figure D.5

TABLES

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 7.1
Table 7.2
Table 7.3
Table 7.4

Interface to Three Data Memory Banks and Two I/O Devices 9-11

I/O Device Interface with Hardware Acknowledgec..ocoeuvevieennnes 9-12
Cache Memory INtEHaCecccouvvvrevciiree e 9-13
Timing 0N Cache MISS ..ot 9-14
Page-Mode DRAM INtErfACeccccieuncrcenieneineineneeecceneeressineeees 9-15
DMA Controller Interface Using Bus Requestccc.evenenecncereeneens 9-16
Bus Request Timing for DMAcccooiirnirner s 9-17
Four-Port RAM Configurationcccuueieeernerninineneeseneesenineeneens 9-19
Serial Data Flow Using BUFfErs...........ccoeueureueieeneinieninieee e 9-20
Serial Data Flow USiNg FIFOS ..o 9-22
Serial Data Flow Using Dual-Port RAM..........cc.cccoennirnerniincnnecninenens 9-24
Example Loader Program........cccvecnrncrnienccenenseeiees e s 9-26
Memory Configuration with Unequal Capacitive Loadsccooce.c..c.. 9-28
Effect of Unequal Capacitive Loadsccocververnernenieninireeeienecre e 9-29
Target Board Connector For EZ-ICE Probe (jumpers in place).............. 9-31
Host Interface BIOCK Diagramc.cceveeirnerneeneeneeneeeeneeesiesenns 9-33
Host Interface LOGIC.ccvvrmiiieiccnntnreni et 9-34
HOSEWIItE TIMING ...vocvvieirie e 9-35
HOSt REAd TIMING ..ottt e 9-36
Map 1 Universal Register AdAresseso.veeeernererncencnseceninenennenne A-9
Map 2 Universal Register AdAreSsesoverereeereeniuneeeisereeencneenins A-10
Serial SCAN PAthSc..vceireecerreerireinere ettt C-3
IEEE 32-Bit Single-Precision Floating-Point Formatc.ccovvreereneen. D-1
40-Bit Extended-Precision Floating-Point Formatcccooenniiiuninnnn. D-2
32-Bit Fixed-Point FOrMALSc.ccveurirrericrercecsce s D-3
64-Bit Unsigned Fixed-Point Product...........cc.cocuevverricrvininvnieereiennans D-4
64-Bit Signed Fixed-Point Productcccocvureurieerieerieesinesanneeesces D-5
Program Sequencer Registers & System Registers........ccooeervivnnnn. 3-5
CONItioN COUESvvveveerceeeierecrtrisse ettt snensans 3-8
Interrupt Vectors and PHOMILYc.oveererrirrreneneieeneneiseieeieeseceenieenens 3-24
States of Outputs DUNG IDLEcccooviimrirnenecnenencseeeece e 3-29
Syntax Notation CONVENHIONSccvveriueeriiirescrseere e resseeneas 7-10
Condition and Termination COdesccnwermrerrnenimnreenreeereenens 7-1
Universal Registers and System Registersc..cveurreerieneineerenennn. 7-12
ALU INSHIUCTIONS ...c.ovevcene et 7-13

xvii

XVl

Table 7.5
Table 7.6
Table 7.7
Table 7.8

Table 8.1
Table 8.2
Table 8.3

Table 9.1
Table 9.2

Tabie B.1
Table B.2
Table B.3
Table B.4
Table B.5
Table B.6
Table B.7

Table C.1
Table D.1
Table E.1

LISTINGS

Listing 8.1
Listing 8.2
Listing 8.3
Listing 8.4
Listing 8.5
Listing 8.6
Listing 8.7
Listing 8.8
Listing 8.9
Listing 8.10

Multiplier INSEUCHIONScoovveeceeiriecereeier st 7-14
Shifter and Shifter Immediate INStructions...........cccoeevrrnecnrcrneneieren, 7-15
Multifunction INStUCIONSc.ccvvevreeririrrrr e 7-16
Interrupt Vectors and PrOMLYccoevueererceeers e 7-17
Files Used for Memory-Based (No Interrupts) Programcccccocveunee. 8-5
Files Used for Interrupt-Driven Program using Port /O.............c.ccuu..... 8-16
Interrupt-Related REGISIENScovvuirireereeriireire e, 8-26
ADSP-21020 Register Values After RESetcoccvvvvurrneencineienncenenns 9-5
ADSP-21020 Pin States During Reset (while RESET=0)cccoovoen. 9-6
Fixed-Point ALU Operationsccvererernernnmneneenens et B-2
Floating-Point ALU Operationsc.c.eereueneenreenmeeeseensieesinesssssssenes B-3
Multiplier OPErationsccverueerermereernneemnsassess e B-45
Multiplier MOd2 OPHONScvueveermreereerirerecisnesseisceseeessssessseseeens B-46
Multiplier MOAT OPHONSc.cocerriereereirirsinrireecssesessssnesessessessssseseas B-46
Shifter OPErationsccovveririnie et enans B-54
Parallel Multiplier/ALU Computations.............eveeneeeenseenrueerseseceneeneeens B-79
TESINSIIUCHIONSocvececei e C-3
IEEE Single-Precision Floating-Point Data TYpesccocoveveererrenennes D-2
System REGiSters ... E-1
GENEMC.ACH ...ttt s 86
HPMEIMLASIN ...ttt nen 8-10
iirirg.ach '

iirirg.asm

AEf21020. 0ottt 8-21
Input Data Read by Input Port (Normalized Unit Impulse)c......... 8-30
Output Data Stored by Output Port (Impulse Response)ccvvven. 8-30
Final Rolled Loop Example in “cascade.asm’ccoveueererceeeneineenns 8-34
FDAS FilE oottt sttt ss st st sssssssssesns 8-35
“rCOBfS.dat” FIlEv.cvveeercerecercesceerec e 8-36

Introduction

1.1 GENERAL DESCRIPTION

The ADSP-21020 and ADSP-21010 are the two members of Analog
Devices” ADSP-21000 family of floating-point digital signal processors
(DSPs). The ADSP-21000 family architecture further addresses the five
central requirements for DSPs established in the ADSP-2100 family of 16-
bit fixed-point DSPs:

Fast, flexible arithmetic computation units

Unconstrained data flow to and from the computation units
Extended precision and dynamic range in the computation units
Dual address generators

Efficient program sequencing

Fast, Flexible Arithmetic. The ADSP-21020/21010 executes all
instructions in a single cycle. It provides both one of the fastest cycle times
available and the most complete set of arithmetic operations, including
Seed 1/X, Seed 1/VX, Min, Max, Clip, Shift and Rotate, in addition to the
traditional multiplication, addition, subtraction and combined addition/
subtraction. It is IEEE floating-point compatible and allows either
interrupt on arithmetic exception or latched status exception handling.

Unconstrained Data Flow. The ADSP-21020/21010 has a Harvard
architecture combined with a 10-port data register file. In every cycle:

¢ Two operands can be read or written off-chip to or from the register
file,
Two operands can be supplied to the ALU,
Two operands can be supplied to the multiplier, and
Two results can be received from the ALU and multiplier (three, if the
ALU operation is a combined addition/subtraction).

The processors’ 48-bit orthogonal instruction word supports fully parallel
data transfer and arithmetic operations in the same instruction.

1-2

40-Bit Extended Precision. The ADSP-21020 and ADSP-21010 handle
32-bit IEEE floating-point format as well as 32-bit integer and fractional
formats (twos-complement and unsigned), while the ADSP-21020 also
handles extended-precision 40-bit IEEE floating-point format. The
ADSP-21020 carries extended precision throughout its computation units,
limiting intermediate data truncation errors. When working with data
on-chip, the extended-precision 32-bit mantissa can be transferred to and
from all computation units. The 40-bit data bus may be extended off-chip
as desired. The fixed-point formats have an 80-bit accumulator for true
32-bit fixed-point computations.

Dual Address Generators. The ADSP-21020/21010 has two data address
generators (DAGs) that provide immediate or indirect (pre- and post-
modify) addressing. Modulus and bit-reverse operations are supported
with no constraints on buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
ADSP-21020/21010 supports single-cycle setup and exit for loops. Loops
are both nestable (six levels in hardware) and interruptable. The processor
supports both delayed and non-delayed branches.

1.1.1 Key Enhancements

The ADSP-21000 family enhances the core DSP architecture to enable
easier system development. The enhancements occur in four key areas:

¢ Architectural features for high-level language and operating system
support.

¢ Access to serial scan path (IEEE 1149.1 compatible) and on-chip
emulation features.

* Support of IEEE floating-point formats.

* Open memory system.

High Level Languages. The ADSP-21000 family architecture has several
features which directly support high-level language compilers and
operating systems:

General purpose data and address register files,
32-bit native data types,
* Large address spaces (16M words in program memory, 4G words in
data memory),
Pre- and post-modify addressing,
Unconstrained circular buffer placement, and
On-chip program, loop, and interrupt stacks.

o

Additionally, the ADSP-21000 family architecture is designed specifically
to support ANSI standard Numerical C—the first compiled language to
support vector data types and operators for numeric and signal
processing.

Serial Scan and Emulation Features. The ADSP-21020/21010 supports
the IEEE-standard 1149 Joint Test Action Group (JTAG) standard for
system test. This standard defines a method for serially scanning the I/O
status of each component in a system. This serial port is also used to gain
access to the ADSP-21020/21010 on-chip emulation features.

IEEE Formats. The ADSP-21020/21010 supports IEEE floating-point data
formats. This means that algorithms developed on IEEE-compatible
processors and workstations are portable across processors without
concern for possible instability introduced by biased rounding or
inconsistent error handling.

Open Memory System. No on-chip memory is included on the
ADSP-21020/21010 (aside from a high-performance cache) specifically to
avoid artificially constraining the development and upgrade of floating-
point signal processing applications. This approach also facilitates the use
of high-level languages and multitasking operating systems.

1.1.2 Why Floating-Point?

A processor’s data format determines its ability to handle signals of
differing precision, dynamic range, and signal-to-noise ratios. However,
ease-of-use and time-to-market considerations are often equally
important.

Precision. The precision of converters has been increasing and will
continue to increase. In the past several years, average precision
requirements have increased by 3 bits. A 20-bit audio A/D converter is
now available from Analog Devices, and the trend is for both precision
and sampling rates to increase.

Dynamic Range. Compression and decompression algorithms have
traditionally operated on signals of known bandwidth. These algorithms
were developed to behave regularly, to keep costs down and
implementations-easy. Increasingly, however, the trend in algorithm
development is not to constrain the regularity and dynamic range of
intermediate results. Adaptive filtering and imaging are two applications
requiring wide dynamic range.

Signal-to-Noise Ratio. Radar, sonar and even commercial applications
like speech recognition require wide dynamic range in order to discern
selected signals from noisy environments.

Ease-of-Use. In general, floating-point digital signal processors are easier
to use and allow a quicker time-to-market than processors that do not
support floating-point formats. The extent to which this is true depends
on the floating-point processor’s architecture. Consistency with IEEE
workstation simulations and the elimination of scaling are two clear ease-
of-use advantages. High-level language programmability, large address
spaces, and wide dynamic range allow system development time to be
spent on algorithms and signal processing problems rather than assembly
coding, code paging, and error handling.

1.1.3 Future Product Migration Path

Analog Devices offers the ADSP-21000 family architecture as the highest
performance for signal processing applications. Future processors based
on this architecture will offer higher speed and feature integration,
incorporating both internal memory and I/O peripherals on-chip.

1.2 ARCHITECTURE OVERVIEW

The following sections summarize the basic features of the ADSP-21020/
21010 architecture. These features are described in more detail in
succeeding chapters. Figure 1.1 shows a block diagram of the ADSP-21020
with it’s 40-bit data paths.

1.2.1 Computation Units

The ADSP-21020/21010 contains three independent computation units: an
ALU, a multiplier with fixed-point accumulator, and a shifter. For meeting
a wide variety of processing needs, the computation units process data in
three formats: 32-bit fixed-point, 32-bit floating-point and 40-bit floating-
point (ADSP-21020 only). The floating-point operations are single-
precision IEEE-compatible. The 32-bit floating-point format is the
standard IEEE format, whereas the 40-bit IEEE extended-precision format
has eight more LSBs of mantissa for additional accuracy.

The ALU performs a standard set of arithmetic and logic operations in
both fixed-point and floating-point formats. The multiplier performs
floating-point and fixed-point multiplication as well as fixed-point
multiply/add and multiply/subtract operations. The shifter performs
logical and arithmetic shifts, bit manipulation, field deposit and extraction
and exponent derivation operations on 32-bit operands.

I 3

DAG 1
8x4x32

]

DAG 2
8x4x24

PROGRAM
SEQUENCER

PMABUS 24, 4 L

JTAG TEST &
EMULATION

=

FLAGS =)

v 4

L4

AV

DMA BUS 32,
v 4

PMD BUS 48,

L d

L £z

L4
BUS CONNECT

AN

DMD BUS 40 ,
A

L4

FLOATING & FIXED-POINT

MULTIPLIER, FIXED-POINT
ACCUMULATOR

The computation units perform single-cycle operations; there is no
computation pipeline. The units are connected in parallel rather than
serially. The output of any unit may be the input of any unit on the next
cycle. In a multifunction computation, the ALU and multiplier perform
independent simultaneous operations. A 10-port register file is used for

7.

Figure 1.1 ADSP-21020 Block Diagram

!

1,

REGISTER
FILE
16 x 40

32-BIT
BARREL
SHIFTER

FLOATING-POINT
& FIXED-POINT
ALU

I'1

transferring data between the computation units and the data buses, and
for storing intermediate results. The register file has two sets (primary and
alternate) of sixteen registers each, for fast context switching. The registers
are 32 bits wide on the ADSP-21010 and 40 bits wide on the ADSP-21020.

1-5

1-6

Introduction

1.22 Address Generators And Program Sequencer

Two dedicated address generators and a program sequencer supply
addresses for memory accesses. Together the sequencer and data address
generators allow computational operations to execute with maximum
efficiency because the computation units can be devoted exclusively to
processing data. Because of its instruction cache, the ADSP-21020/21010
can simultaneously fetch an instruction and access data in both program
memory and data memory.

The data address generators (DAGs) provide memory addresses when
external memory data is transferred over the parallel memory ports to or
from internal registers. Dual data address generators enable the processor
to output simultaneous addresses for dual operand reads and writes.
DAGTI supplies 32-bit addresses to data memory. DAG2 supplies 24-bit
addresses to program memory for program memory data accesses.

Each DAG keeps track of up to eight address pointers, eight modifiers and
eight length values. A pointer used for indirect addressing can be
modified by a value in a specified register, either before (pre-modify) or
after (post-modify) the access. A length value may be associated with each
pointer to implement automatic modulo addressing for circular buffers,
which can be located on arbitrary boundaries. Each DAG register has an
alternate register that can be activated for fast context switching.

The program sequencer supplies instruction addresses to the program
memory. It controls loop iterations and evaluates conditional instructions.
With an internal loop counter and loop stack, the ADSP-21020/21010
executes looped code with zero overhead. No explicit jump instructions
are required to loop or to decrement and test the counter.

The ADSP-21020/21010 achieves its fast program execution rate by means
of pipelined fetch, decode and execute cycles. External memories have more
time to complete an access than if there were no decode cycle;
consequently, ADSP-21020/21010 systems can be built using slower and
therefore less expensive memories.

The program sequencer includes a 32-word instruction cache. The cache
allows the ADSP-21020/21010 to perform a program memory data access
and execute the corresponding instruction in the same cycle, without any
delay. The program sequencer fetches the instruction from the cache

- instead of program memory so that the processor can simultaneously

access data in program memory. Only the instructions whose fetches
conflict with program memory data accesses are cached.

1.2.3 Interrupts

The ADSP-21020/21010 has five external hardware interrupts (four
general-purpose interrupts and a special interrupt for reset), nine
internally generated interrupts and eight software interrupts. For the
general-purpose external interrupts and the internal timer interrupt, the
processor automatically stacks the arithmetic status and mode (MODET1)
registers in parallel with servicing the interrupt, allowing four nesting
levels of very fast service for these interrupts.

124 Timer

The programmable interval timer provides periodic interrupt generation.
When enabled, the timer decrements a 32-bit count register every cycle.
When this count register reaches zero, the ADSP-21020/21010 generates
an interrupt and asserts its TIMEXP output. The count register is
automatically reloaded from a 32-bit period register and the count
resumes immediately.

1.25 Memory Buses And Interface

The external memory interface supports memory-mapped peripherals and
slower memories with a user-defined combination of programmable wait
states and hardware acknowledge signals. Both program memory and
data memory addressing support page mode addressing of static column
DRAMSs.

The processor has four internal buses: the program memory address
(PMA) and data memory address (DMA) buses are used for the addresses
associated with program and data memory. The program memory data
(PMD) and data memory data (DMD) buses are used for the data
associated with the memory spaces. These buses are extended off chip.
The DMS and PMS signals select data memory and program memory,
respectively.

The program memory address (PMA) bus is 24 bits wide allowing direct
access of up to 16M words of mixed instruction code and data. The
program memory data (PMD) bus is 48 bits wide to accommodate the
48-bit instruction width. Fixed-point and single-precision floating-point
data is aligned to the upper 32 bits of the PMD bus.

The data memory address (DMA) bus is 32 bits wide allowing direct
access of up to 4G words of data. The data memory data (DMD) bus is 40
bits wide on the ADSP-21020 and 32 bits wide on the ADSP-21010. On the
ADSP-21020, fixed-point and single-precision floating-point data is
aligned to the upper 32 bits of the DMD bus. The DMD bus provides a

1-8

path for the contents of any register in the processor to be transferred to
any other register or to any external data memory location in a single
cycle. The data memory address comes from two sources: an absolute
value specified in the instruction code (direct addressing) or the output of
a data address generator (indirect addressing).

External devices can gain control of memory buses from the ADSP-21020/
21010 with bus request/grant signals (BR and BG). To grant its buses in
response to a bus request, the ADSP-21020/21010 halts internal operations
and places its program and data memory interfaces in a high-impedance
state. In addition, three-state controls (DMTS and PMTS) allow an external
device to place either program or data memory interface in a high-
impedance state without affecting the other interface and without halting
the processor unless it requires a program memory access.

126 Internal Data Transfers

Nearly every internal register of the ADSP-21020/21010 is classified as a
universal register. ADSP-21020/21010 instructions provide for transferring
data between any two universal registers or between a universal register
and external memory. This includes control registers and status registers,
as well as the data registers in the register file.

The PX registers permit data to be passed between the 48-bit PMD bus
and the 40-bit DMD bus or between the 40-bit register file and the PMD
bus. These registers contain hardware to handle the 8-bit width difference.

1.2.7 Context Switching

Many of the processor’s registers have alternate registers that can be
activated during interrupt servicing to facilitate a fast context switch. The
data registers in the register file, DAG registers and the multiplier result
register all have alternates. Registers active at reset are called primary
registers, and the others are alternate registers. Bits in a mode control
register determine the registers that are active at any particular time.

128 Instruction Set

The ADSP-21000 family instruction set provides a wide variety
programming capabilities. Multifunction instructions enable computations
in parallel with data transfers, as well as simultaneous multiplier and
ALU operations. The addressing power of the ADSP-21020/21010 gives
you flexibility in moving data both internally and externally. Every
instruction can be executed in a single processor cycle. The ADSP-21000
family assembly language uses an algebraic syntax for ease of coding and
readability. A comprehensive set of development tools supports program
development.

13 DEVELOPMENT SYSTEM
The ADSP-21020/21010 is supported with a complete set of software and
hardware development tools. The ADSP-21000 Family Development
System includes software tools for programming and debugging as well
as in-circuit emulators for system integration and debugging.

Figure 1.2 shows the process of developing an application using the
development tools. File name extensions ((ASM, .OBJ, etc.) at the input
and output of each step signify different types of files.

STEP 5:
MANUFACTURE FINAL SYSTEM

TESTED &
DEBUGGED
DSP BOARD

SYSTEM
STEP 1:
ARCHITECTURE
DESCRIBE ARCHITECTURE FILE
‘ASSEMBLER
ANSI EXECUTABLE
STEP 2: @—) € COMPILER SOURCE =)| ASSEMBLER LINKER FILE
GENERATE CODE FILE
O\
STEP3:
DEBUG SOFTWARE E2-LAB EVALUATION BOARD
oR SOFTWARE SIMULATOR <
THIRD-PARTY PC PLUG-IN CARDS
— p— E— —_ —_— — pa— }_ —_— — — — — — —_— —_— pa—— — — pu— — — — JE— — u— —
STEP4: TARGET
DEBUG IN TARGET SYSTEM] EZ-ICE EMULATOR — sommo

PROM SPUITTER

O -usenriLe or HaRDWARE
D - SOFTWARE DEVELOPMENT TOOL

O = HARDWARE DEVELOPMENT TOOL

Figure 1.2 DSP System Development

The development system includes the following:

C Compiler & Runtime C Library. The C Compiler reads source files
written in ANSI-standard C language. The compiler outputs ADSP-21xxx
assembly language files. It comes with a standard library of C-callable
routines.

Numerical C Compiler. DSP/C™ is Analog Devices’ implementation of
ANSI-standard Numerical C—a set of extensions to C that allow matrix
data types and operators. The compiler outputs ADSP-21xxx assembly
language files. With DSP/C, signal processing algorithms are easier to
program and the compiled code is more efficient because the compiler
directly translates matrix operations in Numerical C to the matrix
capabilities of the ADSP-21020/21010.

Assembler. The assembler inputs a file of ADSP-21xxx source code and
assembler directives and outputs a relocatable object file. The assembler
supports standard C preprocessor directives as well as its own directives.

Linker. The linker processes separately assembled object and library files
to create a single executable program. It assigns memory locations to code
and data in accordance with a user-defined architecture file, a text file that
describes the memory configuration of the target system.

Assembly Library/Librarian. The assembly library contains standard
arithmetic and DSP routines that can be called from your program, saving
development time. You can add your own routines to this library using
the librarian function.

Simulator. The simulator executes an ADSP-21020/21010 program in
software in the same way that the processor would in hardware. The
simulator also simulates the memory and I/O devices specified in the
architecture file. The simulator’s window-based user interface lets you
interactively observe and alter data contained in the processor’s registers
and in memory.

PROM Splitter. The PROM splitter translates an ADSP-21xxx executable
program into one of several formats (Motorola S2 and S3, Intel Hex
Record, etc.) that can be used to configure a PROM or be downloaded to a
target from a microcontroller.

In-Circuit Emulator. The EZ-ICE® emulator provides hardware
debugging capabilities for ADSP-21020/21010 systems with stand-alone
in-circuit emulation, running the target board processor in self-emulation
mode. The emulator design allows program execution with little or no
degradation in processor performance.

The emulator features the same window-based user interface as the
simulator, for ease-of-use and faster development cycles. The emulator
communicates with the target processor through the processor’s JTAG test
access port. This 7-wire interface allows for a probe that is smaller and less
intrusive than a traditional full-pinout emulator-to-target connector.

1.4 MANUAL ORGANIZATION

The chapters of this manual are organized as follows:

Chapter 2, Computation Units. Describes the capabilities and operation
of the ALU, multiplier and shifter.

Chapter 3, Program Sequencing. Describes the processor’s features for
executing various types of program structures: subroutines, loops and
interrupt service routines. Also describes the operation of the instruction
cache and the handling of interrupts.

Chapter 4, Data Addressing. Describes how to use the data address
generators to address data in data memory and program memory.

Chapter 5, Timer. Describes the operation of the programmable interval
timer.

Chapter 6, Memory Interface. Describes how the processor accesses
external data and program memory. Also describes the memory
management features of the processor.

Chapter 7, Instruction Summary. An overview of the ADSP-21000 family
instruction set. Use this chapter as a reference when writing programs in
assembly language. The chapter also contains a summary of programming
reminders and restrictions.

Chapter 8, Assembly Programming Tutorial. Presents two examples of
ADSP-21020/21010 programs and describes in detail how they were
written. Describes many techniques to take advantage of the processors’
architecture and instruction set.

1-11

Chapter 9, Hardware System Design. Presents numerous system
diagrams based on the ADSP-21020. Hardware considerations such as
clocking, reset, flags, capacitive loading and emulator access are also
addressed. Examples of a program memory boot at reset and a host
interface are shown.

Appendix A, Instruction Set Reference. Describes each instruction in
detail. Also details the instruction opcodes. The compute portion of
instructions are described in Appendix B.

Appendix B, Compute Operation Reference. Describes each compute
operation and its opcode field in detail.

Appendix C, IEEE 1149.1 JTAG Test Access Port. Describes the features
and operation of the IEEE 1149.1 (JTAG) test access port.

Appendix D, Numeric Formats. Shows all the floating-point and fixed-
point data formats supported by the ADSP-21020/21010.

Appendix E, Control/Status Registers. Summarizes the contents of all
ADSP-21020/21010 registers that contain control and/or status bits. Also
describes bit manipulation operations available.

Computation Units

2.1 OVERVIEW

The computation units of the ADSP-21020 and ADSP-21010 provide the
numeric processing power for performing DSP algorithms. The
ADSP-21020/21010 contains three computation units: an arithmetic/logic
unit (ALU), a multiplier and a shifter. Both fixed-point and floating-point
operations are supported by the processor. Each computation unit
executes instructions in a single cycle.

The ALU performs a standard set of arithmetic and logic operations in
both fixed-point and floating-point formats. The multiplier performs
floating-point and fixed-point multiplication as well as fixed-point
multiply /add and multiply /subtract operations. The shifter performs
logical and arithmetic shifts, bit manipulation, field deposit and extraction
operations on 32-bit operands and can derive exponents as well.

The computation units are architecturally arranged in parallel, as shown
in Figure 2.1 on the next page. The output of any computation unit may be
the input of any computation unit on the next cycle. The computation
units input data from and output data to a 10-port register file that
consists of sixteen primary registers and sixteen alternate registers. The
register file is accessible to the ADSP-21020/21010 program and data
memory data buses for transferring data between the computation units
and external memory or other parts of the processor.

The individual registers of the register file are prefixed with an “f” when
used in floating-point computations (in assembly language source code).
The registers are prefixed with an “r” when used in fixed-point
computations. The following instructions, for example, use the same

registers:

FO=F1 *F2; floating-point multiply
RO=R1 * R2; fixed-point multiply

The “f” and “r” prefixes do not affect the 40-bit (or 32-bit) data transfer;
they only determine how the ALU, multiplier, or shifter treat the data.

2-2

REGISTER
A A FILE A R A |
MULTIPLIER SHIFTER ALU
16 x 40-bit
(ADSP-21020) l [
T 16x32-bit
(ADSP-21010)

Figure 2.1 Computation Units

This chapter covers the following topics:

Data Formats and Rounding

ALU Architecture and Functions
Multiplier Architecture and Functions
Shifter Architecture and Functions
Multifunction Computations

Register File and Data Transfers

2.2 IEEE FLOATING-POINT OPERATIONS

The ADSP-21020/21010 multiplier and ALU support the single-precision
floating-point format specified in the IEEE 754 /854 standard. This
standard is described in Appendix D. The ADSP-21020/21010 is

IEEE 754/854 compatible for single-precision floating-point operations in
all respects except that:

e The ADSP-21020/21010 does not provide inexact flags.

¢ NAN (“Not-A-Number”) inputs generate an invalid exception and
return a quiet NAN (all 1s).

Computation Units

* Denormal operands are flushed to zero when input to a computation
unit and do not generate an underflow exception. Any denormal or
underflow result from an arithmetic operation is flushed to zero and
an underflow exception is generated.

¢ Round-to-nearest and round-toward-zero modes are supported.
Rounding to +Infinity and rounding to -Infinity are not supported.

In addition, the ADSP-21020 supports a 40-bit extended precision floating-
point mode, which has eight additional LSBs of the mantissa and is
compliant with the 754/854 standards; however, results in this format are
more precise than the IEEE single-precision standard specifies. The ADSP-
21010 does not offer this 40-bit format.

22.1 Extended Floating-Point Precision (ADSP-21020 Only)
Floating-point data can be either 32 or 40 bits wide on the ADSP-21020.
Extended precision floating-point format (8 bits of exponent and 32 bits of
mantissa) is selected if the RND32 bit in the MODEI register is cleared (0).
If this bit is set (1), then normal IEEE precision is used (8 bits exponent
and 24 bits of mantissa). In this case, the computation unit sets the eight
LSBs of floating-point inputs to zeros before performing the operation.
The mantissa of a result is rounded to 23 bits (not including the hidden
bit) and the 8 LSBs of the 40-bit result are set to zeros to form a 32-bit
number that is equivalent to the IEEE standard result.

On the ADSP-21010, the RND32 bit must be set to 1 at system powerup (at
the beginning of your program).

22.2 Floating-Point Exceptions

The multiplier and ALU each provide exception information when
executing floating-point operations. Each unit updates overflow,
underflow and invalid operation flags in the arithmetic status (ASTAT)
register and in the sticky status (STKY) register. An underflow, overflow
or invalid operation from any unit also generates a maskable interrupt.
Thus, there are three ways to handle floating-point exceptions:

* Interrupts. The exception condition is handled immediately in an
interrupt service routine. You would use this method if it was
important to correct all exceptions as they happen.

® ASTAT register. The exception flags in the ASTAT register pertaining
to a particular arithmetic operation are tested after the operation is
performed. You would use this method to monitor a particular
floating-point operation.

e STKY register. Exception flags in the STKY register are examined at the
end of a series of operations. If any flags are set, some of the results are
incorrect. You would use this method if exception handling was not
critical.

23 FIXED-POINT OPERATIONS

Fixed-point numbers are always represented in 32 bits and are left-
justified (occupy the 32 MSBs) in the 40-bit data fields of the ADSP-21020.
They may be treated as fractional or integer numbers and as unsigned or
twos-complement. Each computation unit has its own limitations on how
these formats may be mixed for a given operation. The computation units
read 32-bit operands from 40-bit registers, ignoring the 8 LSBs, and write
32-bit results, zeroing the 8 LSBs.

24 ROUNDING

Two modes of rounding are supported in the ADSP-21020 and
ADSP-21010: round-toward-zero and round-toward-nearest. The
rounding modes follow the IEEE 754 standard definitions, which are
briefly stated as follows:

Round-toward-Zero. If the result before rounding is not exactly
representable in the destination format, the rounded result is that number
which is nearer to zero. This is equivalent to truncation.

Round-toward-Nearest. If the result before rounding is not exactly
representable in the destination format, the rounded result is that number
which is nearer to the result before rounding. If the result before rounding
is exactly halfway between two numbers in the destination format
(differing by an LSB), the rounded result is that number which has an LSB
equal to zero. Statistically, rounding up occurs as often as rounding down,
so there is no large sample bias. Because the maximum floating-point
value is one LSB less than the value that represents Infinity, a result that is
halfway between the maximum floating-point value and Infinity rounds
to Infinity in this mode.

The rounding mode for all ALU operations and for floating-point
multiplier operations is determined by the TRUNC bit in the MODEL1
register. If the TRUNC bit is set, the round-to-zero mode is selected;
otherwise, the round-to-nearest mode is used.

For fixed-point multiplier operations on fractional data, the same two
rounding modes are supported, but only the round-to-nearest operation is
actually performed by the multiplier. Because the multiplier has a local
result register for fixed-point operations, rounding-to-zero is
accomplished implicitly by reading only the upper bits of the result and
discarding the lower bits.

25 ALU

The ALU performs arithmetic operations on fixed-point or floating-point
data and logical operations on fixed-point data. ALU fixed-point
instructions operate on 32-bit fixed-point operands and output 32-bit
fixed-point results. ALU floating-point instructions operate on 32-bit or
40-bit floating-point operands and output 32-bit or 40-bit floating-point
results.

ALU instructions include:

Floating-point addition, subtraction, add /subtract, average
Fixed-point addition, subtraction, add/subtract, average
Floating-point manipulation: binary log, scale, mantissa
Fixed-point add with carry, subtract with borrow, increment,
decrement

Logical AND, OR, XOR, NOT

Functions: Absolute value, pass, min, max, clip, compare
Format conversion

Reciprocal and reciprocal square root primitives

Dual add/subtract and parallel ALU and multiplier operations are
described under “Multifunction Computations,” later in this chapter.

2,51 ALU Operation

The ALU takes one or two input operands, called the X input and the Y
input, which can be any data registers in the register file. It usually returns
one result; in add/subtract operations it returns two results, and in
compare operations it returns no result (only flags are updated). ALU
results can be returned to any location in the register file.

Input operands are transferred from the register file during the first half of
the cycle. Results are transferred to the register file during the second half
of the cycle. Thus the ALU can read and write the same register file
location in a single cycle.

2-5

If the ALU operation is fixed-point, the X input and Y input are each
treated as a 32-bit fixed-point operand. The upper 32 bits from the source
location in the register file are transferred. For fixed-point operations, the
result(s) are always 32-bit fixed-point values. Some floating-point
operations (LOGB, MANT and FIX) can also yield fixed-point results.
Fixed-point results are transferred to the upper 32 bits of register file. The
lower eight bits of the register file destination are cleared.

The format of fixed-point operands and results depends on the operation.
In most arithmetic operations, there is no need to distinguish between
integer and fractional formats. Fixed-point inputs to operations such as
scaling a floating-point value are treated as integers. For purposes of
determining status such as overflow, fixed-point arithmetic operands and
results are treated as twos-complement numbers.

252 ALU Operating Modes

The ALU is affected by three mode status bits in the MODEI register; the
ALU saturation bit affects ALU operations that yield fixed-point results,
and the rounding mode and rounding boundary bits affect floating-point
operations in both the ALU and multiplier.

MODEI1

Bit Name Function

13 ALUSAT 1=Enable ALU saturation (full scale in fixed-point);
0=No ALU saturation

15 TRUNC 1=Truncation; 0=Round to nearest

16 RND32 1=Round to 32 bits; 0=Round to 40 bits
(RND32 must be set to 1 on ADSP-21010)

2.5.2.1 Saturation Mode

In saturation mode, all positive fixed-point overflows cause the maximum
positive fixed-point number (0x7FFF FFFF) to be returned, and all
negative overflows cause the maximum negative number (0x8000 0000) to
be returned. If the ALUSAT bit is set, fixed-point results that overflow are
saturated. If the ALUSAT bit is cleared, fixed-point results that overflow
are not saturated; the upper 32 bits of the result are returned unaltered.
The ALU overflow flag reflects the ALU result before saturation.

2.5.2.2 Floating-Point Rounding Modes

The ALU supports two IEEE rounding modes. If the TRUNC bit is set, the
ALU rounds a result to zero (truncation). If the TRUNC bit is cleared, the
ALU rounds to nearest.

2.5.2.3 Floating-Point Rounding Boundary

The results of floating-point ALU operations can be either 32-bit or 40-bit
floating-point data on the ADSP-21020. If the RND32 bit is set, the eight
LSBs of each input operand are flushed to zeros before the ALU operation
is performed (except for the RND operation), and ALU floating-point
results are output in the 32-bit IEEE format. The lower eight bits of the
result are cleared. If the RND32 bit is cleared, the ALU inputs 40-bit
operands unchanged and outputs 40-bit results from floating-point
operations, and all 40 bits are written to the specified register file location.

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

253 ALU Status Flags

The ALU updates seven status flags in the ASTAT register, shown below,
at the end of each operation. The states of these flags reflect the result of
the most recent ALU operation. The ALU updates the Compare
Accumulation bits in ASTAT at the end of every Compare operation. The
ALU also updates four “sticky” status flags in the STKY register. Once set,
a sticky flag remains high until explicitly cleared.

ASTAT

Bit Name Definition

0 AZ ALU result zero or floating-point underflow

1 AV ALU overflow

2 AN ALU result negative

3 AC ALU fixed-point carry

4 AS ALU X input sign (ABS and MANT operations)

5 Al ALU floating-point invalid operation

10 AF last ALU operation was a floating-point operation

31-24 CACC Compare Accumulation register (results of last 8
Compare operations)

STKY

Bit Name Definition

0 AUS ALU floating-point underflow

1 AVS ALU floating-point overflow

2 AOS ALU fixed-point overflow

5 AIS ALU floating-point invalid operation

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
or STKY register explicitly in the same cycle that the ALU is performing
an operation, the explicit write to ASTAT or STKY supersedes any flag
update from the ALU operation.

2.5.3.1 ALU Zero Flag (A2)

The zero flag is determined for all fixed-point and floating-point ALU
operations. AZ is set whenever the result of an ALU operation is zero. AZ
also signifies floating-point underflow; see the next section. It is otherwise
cleared.

2532 ALU Underflow Flag (AZ, AUS)

Underflow is determined for all ALU operations that return a floating-
point result and for floating-point to fixed-point conversion. AUS is set
whenever the result of an ALU operation is smaller than the smallest
number representable in the output format. AZ is set whenever a floating-
point result is smaller than the smallest number representable in the
output format.

2.5.3.3 ALU Negative Flag (AN)

The negative flag is determined for all ALU operations. It is set whenever
the result of an ALU operation is negative. It is otherwise cleared.

2.5.3.4 ALU Overflow Flag (AV, AOS, AVS)

Overflow is determined for all fixed-point and floating-point ALU
operations. For fixed-point results, AV and AOS are set whenever the
XOR of the two most significant bits is a 1; otherwise AV is cleared. For
floating-point results AV and AVS are set whenever the post-rounded
result overflows (unbiased exponent > 127); otherwise AV is cleared.

2.5.3.5 ALU Fixed-Point Carry Flag (AC)

The carry flag is determined for all fixed-point ALU operations. For fixed-
point arithmetic operations, AC is set if there is a carry out of most
significant bit of the result, and is otherwise cleared. AC is cleared for
fixed-point logic, PASS, MIN, MAX, COMP, ABS, and CLIP operations.
The ALU reads the AC flag in fixed-point addition with carry and fixed-
point subtraction with carry operations.

2.5.3.6 ALU Sign Flag (AS)

The sign flag is determined for only the fixed-point and floating-point
ABS operations and the MANT operation. AS is set if the input operand is
negative. It is otherwise cleared. The ALU clears AS for all operations
other than ABS and MANT operations; this is different from the operation
of ADSP-2100 family processors, which do not update the AS flag on
operations other than ABS.

2.5.3.7 ALU Invalid Flag (Al)

The invalid flag is determined for all floating-point ALU operations. Al
and AIS are set whenever

an input operand is a NAN

an addition of opposite-signed Infinities is attempted

a subtraction of like-signed Infinities is attempted

when saturation mode is not set, a floating-point to fixed-point
conversion results in an overflow or operates on an Infinity.

Al is otherwise cleared.

2.5.3.8 ALU Floating-Point Flag (AF)

AF is determined for all fixed-point and floating-point ALU operations. It
is set if the last operation was a floating-point operation; it is otherwise
cleared.

2.5.3.9 Compare Accumulation

Bits 31-24 in the ASTAT register store the flag results of up to eight ALU
compare operations. These bits form a right-shift register. When an ALU
compare operation is executed, the eight bits are shifted toward the LSB
(bit 24 is lost). The MSB, bit 31, is then written with the result of the
compare operation. If the X operand is greater than the Y operand in the
compare instruction, bit 31 is set; it is cleared otherwise. The accumulated
compare flags can be used to implement 2- and 3-dimensional clipping
operations for graphics applications.

2-9

254 ALU Instruction Summary
Instruction ASTAT Status Flags STKY Status Flags

Fixed-point: AZ AV AN AC AS Al AF CACC AUS AVS AOS AIS

¢ Rn=Rx+Ry *ox 0o 0 - - - ™ -

¢ Rn=Rx-Ry >

¢ Rn=Rx+Ry+CI

¢ Rn=Rx-Ry+CI-1
Rn = (Rx + Ry)/2
COMP(Rx, Ry)
Rn=Rx+CI
Rn=Rx+CI-1
Rn=Rx+1
Rn=Rx-1

¢ Rn=-Rx

R = AB5 Rx

Rn = PASS Rx

Rn = Rx AND Ry

Rn =Rx OR Ry

Rn = Rx XOR Ry

Rn = NOT Rx

Rn = MIN(Rx, Ry)

Rn = MAX(Rx, Ry)

Rn = CLIP Rx BY Ry

Floating—point:

*%
%

%
4
*%
*%
**
*3%

)

nnnnon
¥ X ¥ X X X X ¥ X ¥ X ¥ X ¥ K ¥ X X X ¥

OO OO LDODOODDODOOODODOOO
OO0 O OO OCOoOOoCoO
|
1
|
!

¥ ¥ ¥ ¥ X ¥ ¥ ¥O ¥ ¥ ¥ X X X X X ¥ %

OCDOOODODODOODO * % ¥ ¥ ¥ ¥OO ¥ % %

OO0 ODODOOOOO *xOOO *+rOOOODOOO COOOOODOO *XOOOOOOOOLOOO

OO OO COOOOOOOOQ % * ¥ ¥ ¥O % % ¥ ¥

Fn =Fx + Fy * * * * 1 _ PR _ .
Fn =Fx - Fy * * * * 1 — *% *% _ *%
Fn = ABS (Fx + Fy) * * 0 * 1 _ %k o aw
Fn = ABS (Fx - Fy) * * 0 * 1 — T %
Fn = (Fx + Fy)/2 * 0 * * 1 _ % s
COMP(Fx, Fy) * 0 * * 1 * - o
Fn =-Fx * * * * 1 — — *% — *%
Fn = ABS Fx * * 0 * 1 - _ ES _ %
Fn = PASS Fx * 0 * * 1 _ _ _ o
Fn = RND Fx o * * 1 - e
Fn = SCALB Fx BY Ry * * * * 1 _ Rk ek
Rn = MANT Fx S * 1 - _ o *ok
Rn = LOGB Fx * * * * 1 o o
Rn = FIX Fx BY Ry * * * * 1 - Wk w% e
Rn = FIX Fx oo * * 1 - I
Fn=FLOATRxBYRy * * * 0 1 kR
Fn = FLOAT Rx * 0 * o 1 - - - -
Fn = RECIPS Fx * * * * 1 - kR
Fn = RSQRTS Fx * * * * 1 — I o
Fn =Fx COPYSIGN Fy * 0 * * 1 - _ "
Fn = MIN(Fx, Fy) * 0 * * 1 - o=
Fn = MAX(Fx, Fy) * 0 * * 1 - _ o Ex
Fn = CLIP Fx BY Fy * 0 * * 1 - _ _ _ P

Rn, Rx, Ry = Any register file location; treated as fixed-point
Fn, Fx, Fy = Any register file location; treated as floating-point
¢ = ADSP-21xx-compatible instruction

* set or cleared, depending on results of instruction
** may be set (but not cleared), depending on results of instruction

2 - 10 - no effect

2.6 MULTIPLIER

The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply /accumulate operations. Fixed-point multiply/
accumulates may be performed with either cumulative addition or
cumulative subtraction. Floating-point multiply accumulates can be
accomplished through parallel operation of the ALU and multiplier, using
multifunction instructions. See “Multifunction Operations,” later in this
chapter.

Multiplier floating-point instructions operate on 32-bit or 40-bit floating-
point operands and output 32-bit or 40-bit floating-point results.
Multiplier fixed-point instructions operate on 32-bit fixed-point data and
produce 80-bit results. Inputs are treated as fractional or integer, unsigned
or twos-complement.

Multiplier instructions include:

Floating-point multiplication

Fixed-point multiplication

Fixed-point multiply /accumulate with addition, rounding optional
Fixed-point multiply /accumulate with subtraction, rounding optional
Rounding result register

Saturating result register

Clearing result register

26.1 Multiplier Operation

The multiplier takes two input operands, called the X input and the Y
input, which can be any data registers in the register file. Fixed-point
operations can accumulate fixed-point results in either of two local
multiplier result (MR) registers or write results back to the register file.
Results stored in the MR registers can also be rounded or saturated in
separate operations. Floating-point operations yield floating-point results,
which are always written directly back to the register file.

Input operands are transferred during the first half of the cycle. Results
are transferred during the second half of the cycle. Thus the multiplier can
read and write the same register file location in a single cycle.

If the multiplier operation is fixed-point, inputs taken from the register file
are read from the upper 32 bits of the source location. Fixed-point
operands may be treated as both in integer format or both in fractional
format. The format of the result is the same as the format of the inputs.
Each fixed-point operand may be treated as either an unsigned or a twos-

2-11

2-12

complement number. If both inputs are fractional and signed, the
multiplier automatically shifts the result left one bit to remove the
redundant sign bit. The input data type is specified within the multiplier
instruction.

2.6.2 Fixed-Point Results

Fixed-point operations yield 80-bit results. The location of a result in the
80-bit field depends on whether the result is in fractional or integer
format, as shown in Figure 2.2. If the result is sent directly to the register
file, the 32 bits that have the same format as the input data are transferred,
i.e. bits 63-32 for a fractional result or bits 31-0 for an integer result. The
eight LSBs of the 40-bit register file location are zero-filled. Fractional
resulis can be rounded-to-nearest before being sent to the register file, as
explained later in this chapter. If rounding is not specified, discarding bits
31-0 effectively truncates a fractional result (rounds to zero).

79

| overFLow | FRACTIONAL RESULT | UNDERFLOW |

| overFLow | OVERFLOW | INTEGER RESULT |

Figure 2.2 Multiplier Fixed-Point Result Placement

2.6.2.1 MR Registers

The entire result can be sent to one of two dedicated 80-bit result (MR)
registers. The MR registers have identical format; each is divided into
MR2, MR1 and MRO registers that can be individually read from or
written to the register file. When data is read from MR?2, it is sign-
extended to 32 bits (see Figure 2.3). The eight LSBs of the 40-bit register
file location are zero-filled when data is read from MR2, MR1 or MRO to
the register file. Data is written into MR2, MR1 or MRO from the 32 MSBs
of a register file location; the eight LSBs are ignored. Data written to MR1
is sign-extended to MR2, i.e. the MSB of MRI is repeated in the 16 bits of
MR?2. Data written to MRO, however, is not sign-extended.

The two MR registers are designated MRF (foreground) and MRB
(background); foreground refers to those registers currently activated by
the SRCU bit in the MODET1 register, and background refers to those that

16 bits 16 bits 8 bits

SIGN EXTEND

32 bits 8 bits

! 32 bits 8 bits

Figure 2.3 MR Transfer Formats

are not. In the case that only one MR register is used at a time, the SRCU
bit activates one or the other to facilitate context switching. However,
unlike other registers for which alternate sets exist, both MR register sets
are accessible at the same time. All (fixed-point) accumulation instructions
may specify either result register for accumulation, regardless of the state
of the SRCU bit. Thus, instead of using the MR registers as a primary and
an alternate, you can use them as two parallel accumulators. This feature
facilitates complex math.

Transfers between MR registers and the register file are considered
computation unit operations, since they involve the multiplier. Thus,
although the syntax for the transfer is the same as for any other transfer to
or from the register file, an MR transfer is placed in an instruction where a
computation is normally specified. For example, the ADSP-21020 can
perform a multiply /accumulate in parallel with a read of data memory, as
in:

MRF=MRF~-R5*R0, R6=DM(I1,M2);
or it can perform an MR transfer instead of the computation, as in:
R5=MR1F, R6=DM(I1,M2);

2,6.3 Fixed-Point Operations

In addition to multiplication, fixed-point operations include accumulation,
rounding and saturation of fixed-point data. There are three MR register
operations: Clear, Round and Saturate.

2-13

2

2-14

Computati

2.6.3.1 Clear MR Register

The clear operation resets the specified MR register to zero. This operation
is performed at the start of a multiply /accumulate operation to remove
results left over from the previous operation.

2.6.3.2 Round MR Register

Rounding of a fixed-point result occurs either as part of a multiply or
multiply/accumulate operation or as an explicit operation on the MR
register. The rounding operation applies only to fractional results (integer
results are not affected) and rounds the 80-bit MR value to nearest at bit
32, i.e. at the MR1-MRO boundary. The rounded result in MR1 can be sent
either to the register file or back to the same MR register. To round a
fractional result to zero (truncation) instead of to nearest, you would
simply transfer the unrounded result from MR1, discarding the lower 32
bits in MRO.

2.6.3.3 Saturate MR Register On Overflow

The saturate operation sets MR to a maximum value if the MR value has
overflowed. Overflow occurs when the MR value is greater than the
maximum value for the data format (unsigned or twos-complement and
integer or fractional) that is specified in the saturate instruction. There are
six possible maximum values (shown in hexadecimal):

MR2 MR1 MRO

Maximum twos-complement fractional number

0000 7FFF FFFF FFFF FFFF positive
FFFF 8000 0000 0000 0000 negative
Maximum twos-complement integer number

0000 0000 0000 7FFF FFFF positive
FFFF FFFF FFFF 80000000 negative

Maximum unsigned fractional number
0000 FFFF FFFF FFFF FFFF

Maximum unsigned integer number
0000 0000 0000 FFFF FFFF

The result from MR saturation can be sent either to the register file or back
to the same MR register.

2.6.4 Floating-Point Operating Modes
The multiplier is affected by two mode status bits in the MODEI register:

the rounding mode and rounding boundary bits, which affect operations
in both the multiplier and the ALU.

MODEI1

Bit Name Function

15 TRUNC 1=Truncation; 0=Round to nearest

16 RND32 1=Round to 32 bits; 0=Round to 40 bits

(RND32 must be set to 1 on ADSP-21010)

2.6.4.1 Floating-Point Rounding Modes

The multiplier supports two IEEE rounding modes for floating-point
operations. If the TRUNC bit is set, the multiplier rounds a floating-point
result to zero (truncation). If the TRUNC bit is cleared, the multiplier
rounds to nearest.

2.6.4.2 Floating-Point Rounding Boundary

Floating-point multiplier inputs and results can be either 32-bit or 40-bit
floating-point data on the ADSP-21020. If the RND32 bit is set, the eight
LSBs of each input operand are flushed to zeros before multiplication, and
floating-point results are output in the 32-bit IEEE format, with the lower
eight bits of the 40-bit register file location cleared. The mantissa of the
result is rounded to 23 bits (not including the hidden bit). If the RND32 bit
is cleared, the multiplier inputs full 40-bit values from the register file and
outputs results in the 40-bit extended IEEE format, with the mantissa
rounded to 31 bits not including the hidden bit.

2.6.5 Multiplier Status Flags

The multiplier updates four status flags at the end of each operation. All
of these flags appear in the ASTAT register. The states of these flags reflect
the result of the most recent multiplier operation. The multiplier also
updates four “sticky” status flags in the STKY register. Once set, a sticky
flag remains high until explicitly cleared.

2-15

2-16

Bit Name Definition

6 MN Multiplier result negative

7 MV Multiplier overflow

8 MU Multiplier underflow

9 MI Multiplier floating-point invalid operation
STKY

Bit Name Definition

6 MOS Multiplier fixed-point overflow

7 MVS - Multiplier floating-point overflow

8 MUS Multiplier underflow

9 MIS Multiplier floating-point invalid operation

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
or STKY register explicitly in the same cycle that the multiplier is
performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

2.6.5.1 Multiplier Underflow Flag (MU)

Underflow is determined for all fixed-point and floating-point multiplier
operations. It is set whenever the result of a multiplier operation is smaller
than the smallest number representable in the output format. It is
otherwise cleared.

For floating-point results, MU and MUS are set whenever the post-
rounded result underflows (unbiased exponent < —126). Denormal
operands are treated as Zeros, therefore they never cause underflows.

For fixed-point results, MU and MUS depend on the data format and are
set under the following conditions:

Twos-complement:
Fractional: upper 48 bits all zeros or all ones, lower 32 bits not all zeros
Integer: not possible

Unsigned:
Fractional: upper 48 bits all zeros, lower 32 bits not all zeros
Integer: not possible

If the fixed-point result is sent to an MR register, the underflowed portion
of the result is available in MRO (fractional result only).

tation Units

2.6.5.2 Muitiplier Negative Flag (MN)

The negative flag is determined for all multiplier operations. MN is set
whenever the result of a multiplier operation is negative. It is otherwise
cleared.

2.6.5.3 Multiplier Overflow Flag (MV)

Overflow is determined for all fixed-point and floating-point multiplier
operations.

For floating-point results, MV and MVS are set whenever the post-
rounded result overflows (unbiased exponent > 127).

For fixed-point results, MV and MOS depend on the data format and are
set under the following conditions:

Twos-complement:

Fractional: upper 17 bits of MR not all zeros or all ones

Integer: upper 49 bits of MR not all zeros or all ones
Unsigned:

Fractional: upper 16 bits of MR not all zeros

Integer: upper 48 bits of MR not all zeros

If the fixed-point result is sent to an MR register, the overflowed portion
of the result is available in MR1 and MR?2 (integer result) or MR2 only
(fractional result).

2.6.5.4 Multiplier Invalid Flag (MI)

The invalid flag is determined for floating-point multiplication. MI is set
whenever:

* aninput operand is a NAN.
¢ theinputs are Infinity and Zero. (Note: Denormal inputs are
treated as Zeros.)

MI is otherwise cleared.

2-17

2.6.6 Multiplier Instruction Summary

Instruction

Fixed-point:

MRF | =0

MRB

MRxF| =Rn

MRxB

Rn = | MRxF
MRxB

Floating-point:

Fn = Fx* Fy

Note: For floating-point multiply/accumulates, see “Multifunction Instructions” on page 23.

* set or cleared, depending on results of instruction
** may be set (but not cleared), depending on results of instruction

— no effect

Rn, Rx, Ry -R15-R0; register file location, treated as fixed-point
Fn, Fx, Fy -F15-F0; register file location, treated as floating-point

Rn | =Rx*Ry (IsHslp)

MRF uljul r

MRB

Rn =MRF + Rx*Ry (IsHsl
Rn = MRB uj |ju
MRF =MRF

MRB =MRB

Rn =MRF - Rx*Ry (sllsl
Rn =MRB ul lu
MRF =MRF

MRB =MRB

Rn =SAT MRF (SD

Rn =SATMRB (un

MRF =SAT MRF (SF)

MRB =SAT MRB (UF)

Rn =RNDMRF (SE)

Rn = RND MRB | (UF)

MRF = RND MRF

MRB =RND MRB

O

Ty~

ASTAT Flags STKY Flags

MU MN MV Ml MUSMOSMVS MIS

¥

*%

**

*F

%

*%

*%

MRxF -MR2F, MR1F, MROF; multiplier result accumulators, foreground

2-18

MRxB ~MR2B, MR1B, MROB; multiplier result accumulators, background

*%

*%

Multiplier Instruction Summary, cont.
Optional Modifiers for Fixed-Point:

(g aoa) S Signed input
5 5 g U Unsigned input
I3 2 é 5 1 Integer input(s)
T % £5 F Fractional input(s)
s 8 FR Fractional inputs, Rounded output
8 (SF) Default format for 1-input operations
(SSF) Default format for 2-input operations
2.7 SHIFTER

The shifter operates on 32-bit fixed-point operands. Shifter operations
include:

shifts and rotates from off-scale left to off-scale right

bit manipulation operations, including bit set, clear, toggle, and test
bit field manipulation operations including extract and deposit
support for ADSP-2100 family compatible fixed-point/floating-point
conversion operations (exponent extract, number of leading 1s or 0s)

2.7.1 Shifter Operation

The shifter takes from one to three input operands: the X-input, which is
operated upon; the Y-input, which specifies shift magnitudes, bit field
lengths or bit positions; and the Z-input, which is operated on and
updated (as in, for example, Rn = Rn OR LSHIFT Rx BY Ry). The shifter
returns one output to the register file.

Input operands are fetched from the upper 32 bits of a register file location
(bits 39-8, as shown in Figure 2.4) or from an immediate value in the
instruction. The operands are transferred during the first half of the cycle.
The result is transferred to the upper 32 bits of a register (with the eight
LSBs zero-filled) during the second half of the cycle. Thus the shifter can
read and write the same register file location in a single cycle.

2-19

The X-input and Z-input are always 32-bit fixed-point values. The Y-input
is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in the
register file as shown in Figure 2.4 below.

Some shifter operations produce 8-bit or 6-bit results. These results are
placed in either the shf8 field or the bit6 field (see Figure 2.5) and are sign-
extended to 32 bits. Thus the shifter always returns a 32-bit result.

39 7 0

32-Bit Y-Input or Result

8-Bit Y-Input or Result
Figure 2.4 Register File Fields for Shifter Instructions

2.7.2 Bit Field Deposit & Extract Instructions

The shifter’s bit field deposit and bit field extract instructions allow the
manipulation of groups of bits within a 32-bit fixed-point integer word.

The Y-input for these instructions specifies two 6-bit values, bit6 and len6,
positioned in the Ry register as shown in Figure 2.5. Bit6 and len6 are
interpreted as positive integers. Bit6 is the starting bit position for the
deposit or extract. Len6 is the bit field length, which specifies how many
bits are deposited or extracted.

39 19 13 7 0
12-Bit Y-Input
Figure 2.5 Register File Fields for FDEP, FEXT Instructions

The FDEP (field deposit) instructions take a group of bits from the input
register Rx (starting at the LSB of the 32-bit integer field) and deposit them
anywhere within the result register Rn. The bit6 value specifies the
starting bit position for the deposit. See Figure 2.6.

The FEXT (field extract) instructions extract a group of bits from anywhere
within the input register Rx and place them in the result register Rn
(aligned with the LSB of the 32-bit integer field). The bit6 value specifies
the starting bit position for the extract.

Rn=FDEP Rx BY Ry

39 19 13 7 0

Ry determines length of bit field to take from Rx and starting bit position for deposit in Rn

39 7 0

| ——

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

deposit field
bit6 reference point

bit6 = starting bit position for deposit, referenced from LSB of 32-bit field

Figure 2.6 Bit Field Deposit Instruction

The following field deposit instruction example is pictured in Figure 2.7:

RO=FDEP Rl BY R2;

RO=FDEP R1 BY R2;

R1=0x000000FF00
R2=0x0000021000

39 32 24 16 8
R2 | 00000000 | 00000000] 000000 0] 000710000 0x0000 021
T T len6=8
fenS bitd bit6 = 16
39 32 24 16 8 0
R1 | 00000000 | 00000000 | 00000000 {7777 11% 0x0000 00F

k-

S
gg%ﬁm%%f@ﬁ%g& i

39 32 E%" 24 16 8
Ro | 00000000]117 1] 00000000| 00000000} 0 | 0x0OFF 0000:00
24 16T 8 0T
starting bit reference
position for point
deposit

8 bits are taken from R1 and deposited in RO, starting at bit 16.
("Bit 16" is relative to reference point, the LSB of 32-bit integer field.)

Figure 2.7 Bit Field Deposit Example

2-22

ation Units

The following field extract instruction example is pictured in Figure 2.8:
R3=FEXT R4 BY R5;

R3=FEXT R4 BY R5;

R4=0x8788000000
R5=0x0000021700

39 32 24 16 8
R5 | 00000000] 00000000}0000 | " 0710117 0x0000 021
T T len6 = 8
len6 bit6 bit6 = 23
39 32 24 16 8 0
R4 | 17,5705 57170000000 I 00000000| 00000000 0x8788 000
16 8 0

reference

starting bit position ¢
point

for extract
39 32 24 16

R3 | 00000000 00000000 00000000]"," -

8 bits are extracted from R4 and placed in R3, aligned to the LSB of the 32-bit integer field.

Figure 2.8 Bit Field Extract Example

2.7.3 Shifter Status Flags

The shifter returns three status flags at the end of the operation. All of
these flags appear in the ASTAT register. The SZ flag indicates if the

output is zero, the SV flag indicates an overflow, and the SS flag indicates
the sign bit in exponent extract operations.

ASTAT

Bit Name Definition

11 SV Shifter overflow of bits to left of MSB

12 SZ Shifter result zero

13 SS Shifter input sign (for exponent extract only)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register

explicitly in the same cycle that the shifter is performing an operation, the

explicit write to ASTAT supersedes any flag update caused by the shift
operation.

2.7.3.1 Shifter Zero Flag (S2)

SZ is affected by all shifter operations. It is set whenever:

* the result of a shifter operation is zero, or
* a bit test instruction specifies a bit outside of the 32-bit fixed-point
field.

SZ is otherwise cleared.

2.7.3.2 Shifter Overflow Flag (SV)

SV is affected by all shifter operations. It is set whenever:

significant bits are shifted to the left of the 32-bit fixed-point field,
a bit outside of the 32-bit fixed-point field is tested, set or cleared,
a field that is partially or wholly to the left of the 32-bit fixed-point
field is extracted, or

¢ a LEFTZ or LEFTO operation returns a result of 32.

SV is otherwise cleared.

2.7.3.3 Shifter Sign Flag (SS)

5SS is affected by all shifter operations. For the two EXP (exponent
extract) operations, it is set if the fixed-point input operand is negative
and cleared if it is positive. For all other shifter operations, SS is
cleared.

2.7.4 Shifter Instruction Summary

Instruction

NNNOOHODONDON

Rn = LSHIFT Rx BY Ry

Rn = LSHIFT Rx BY <data8>

Rn = Rn OR LSHIFT Rx BY Ry

Rn = Rn OR LSHIFT Rx BY <data8>
Rn = ASHIFT Rx BY Ry

Rn = ASHIFT Rx BY<data8>

Rn = Rn OR ASHIFT Rx BY Ry

Rn = Rn OR ASHIFT Rx BY <data8>
Rn = ROT Rx BY RY

Rn = ROT Rx BY <data8>

Rn = BCLR Rx BY Ry

Rn = BCLR Rx BY <data8>

Rn = BSET Rx BY Ry

Rn = BSET Rx BY <data8>

Rn = BTGL Rx BY Ry

Rn = BTGL Rx BY <data8>

BTST Rx BY Ry

BTST Rx BY <data8>

Rn = FDEP Rx BY Ry

Rn = FDEP Rx BY <bit6>:<len6>

Rn = Rn OR FDEP Rx BY Ry

Rn = Rn OR FDEP Rx BY <bit6>:<len6>
Rn = FDEP Rx BY Ry (SE)

Rn = FDEP Rx BY <bit6>:<len6> (SE)
Rn = Rn OR FDEP Rx BY Ry (SE)

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
Rn = FEXT Rx BY Ry

Rn = FEXT Rx BY <bit6>:<len6>

Rn = FEXT Rx BY Ry (SE)

Rn = FEXT Rx BY <bit6>:<len6> (SE)
Rn = EXP Rx (EX)

Rn = EXP Rx

Rn = LEFTZ Rx

Rn = LEFTO Rx

* = Depends on data
Rn, Rx, Ry = Any register file location; bit fields used depend on instruction
¢ = ADSP-2100-compatible instruction

¥R X ¥ ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ ¥N]

Flags

E\%
*
*
*
*
*
*
*
*
0
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
*
*

wn

[=N=RR AR Il lololololoolololoololvlolelsjeolololelelelelelolaid)]

2.8 MULTIFUNCTION COMPUTATIONS

In addition to the computations performed by each computation unit, the
ADSP-21020 also provides multifunction computations that combine
parallel operation of the multiplier and the ALU, or dual functions in the
ALU. The two operations are performed in the same way as they are in
corresponding single-function computations. Flags are also determined in
the same way as for the same single-function computations, except that in
the dual add /subtract computation the ALU flags from the two
operations are ORed together.

Each of the four input operands for computations that use both the ALU
and multiplier are constrained to a different set of four register file
locations, as summarized below. For example, the X-input to the
multiplier can only be R8, R9, R10 or R11. In all other operations, the input
operands may be any register file locations.

Dual Add/Subtract

Ra=Rx+Ry, Rs=Rx-Ry
Fa=Fx+Fy, Fs=Fx-Fy

Fixed-Point Multiply/Accumulate and Add, Subtract or Average

Rm=R3-0 * R7-4 (SSFR) , Ra=R11-8 + R15-12
MRF=MRF + R3-0 * R7-4 (SSF) | , Ra=R11-8 - R15-12
Rm=MRF + R3-0 * R7-4 (SSFR) | , Ra=(R11-8 + R15-12)/2

MRF=MRF - R3-0 * R7-4 (SSF) |,
Rm=MRF - R3-0 * R7-4 (SSFR) | ,

Floating-Point Multiplication and ALU Operation
Fm=F3-0*F7-4, Fa=F11-8 + F15-12
Fa=F11-8 - F15-12
Fa=FLOAT R11-8 by R15-12
Fa=FIX R11-8 by R15-12
Fa=(F11-8 + F15-12)/2
Fa=ABS F11-8
Fa=MAX (F11-8, F15-12)
Fa=MIN (F11-8, F15-12)

Multiplication and Dual Add/Subtract
Rm =R3-0*R7-4 (SSFR), Ra=R11-8 +R15-12, Rs=R11-8-R15-12

Fm =F3-0*F7-4, Fa=F11-8+ F15-12, Fs=F11-8 -F15-12
Rm, Ra, Rs, Rx, Ry —Any register file location; fixed-point
Fm, Fa, Fs, Fx, Fy —Any register file location; floating-point
R3-0 -R3,R2, R1, RO F3-0 -F3, F2, F1, FO
R7-4 -R7, R6, R5, R4 F7-4 -F7, F6, F5, F4
R11-8 -R11, R10, R9, R8 F11-8 -F11, F10, F9, F8
R15-12 -R15,R14, R13, R12 F15-12 -F15, F14, F13, F12
SSFR -X-input signed, Y-input signed, Fractional input, Rounded-to-nearest output
SSF -X-input signed, Y-input signed, Fractional input

29 REGISTER FILE

The register file provides the interface between the main processor buses
(DMD and PMD) and the computation units. It also provides local storage
for operands and results. The register file consists of 16 primary registers
and 16 alternate (secondary) registers. All registers are 40 bits wide on the
ADSP-21020 and 32 bits wide on the ADSP-21010. On the ADSP-21020,
32-bit data from the computation units is always left-justified; on register
reads, the eight LSBs are ignored, and on writes, the eight LSBs are written
with zeros.

Program memory accesses and data memory accesses to the register file
occur on the PMD and DMD buses, respectively. One program memory
and/or one data memory access can occur in one cycle. Transfers between
the register file and the 40-bit DMD bus are always 40 bits wide on the
ADSP-21020. The register file transfers data to and from the 48-bit PMD
bus on the most significant 40 bits, writing zeros in the lower eight bits on
transfers to the PMD bus.

If the same register file location is specified as both the source of an
operand and the destination of a result or memory fetch, the read occurs
in the first half of the cycle and the write in the second half. Thus the old
data is used as the operand before the location is updated with the new
result data. If writes to the same location take place in the same cycle, only
the write with higher precedence actually occurs. Precedence is
determined by the source of the data being written; from highest to
lowest, the precedence is:

¢ Data memory or universal register
¢ Program memory

s ALU

e Multiplier

¢ Shifter

The individual registers of the register file are prefixed with an “f” when
used in floating-point computations (in assembly language source code).
The registers are prefixed with an “r” when used in fixed-point
computations. The following instructions, for example, use the same three
registers:

FO=F1 * F2; floating-point multiply
RO=R1 * R2; fixed-point multiply

The “f” and “r” prefixes do not affect the 40-bit (or 32-bit) data transfer;
they only determine how the ALU, multiplier, or shifter treat the data.

29.1 Alternate (Secondary) Registers

To facilitate fast context switching, the register file has an alternate register
set. Each half of the register file—the lower half, RO through R7, and the
upper half, R8 through R15—can independently activate its alternate
register set. Two bits in the MODE]1 register select the active sets. Data can
be shared between contexts by placing the data to be shared in one half of
the register file and activating the alternate register set of the other half.

MODE1

Bit Name Definition

7 SRRFH Register file alternate select for R15-R8 (F15-F8)
10 SRRFL Register file alternate select for R7-R0 (F7-F0)

Program Sequencing

3.1 OVERVIEW

Program flow in the ADSP-21020/21010 is most often linear; the processor
executes program instructions sequentially. Variations in this linear flow
are provided by the following program structures, illustrated in

Figure 3.1 on the following page:

* Loops. One sequence of instructions is executed several times with zero
overhead.

® Subroutines. The processor temporarily interrupts sequential flow to
execute instructions from another part of program memory.

* Jumps. Program flow is permanently transferred to another part of
program memory.

» Interrupts. A special case of subroutines in which the execution of the
routine is triggered by an event that happens at run time, not by a
program instruction.

¢ Idle. A special instruction that causes the processor to cease operations,
holding its current state. When an interrupt occurs, the processor
services the interrupt and continues normal execution.

Managing these program structures is the job of the ADSP-21020/21010’s
program sequencer. The program sequencer selects the address of the next
instruction, generating most of those addresses itself. It also performs a
wide range of related functions, such as

incrementing the fetch address,
maintaining stacks,

evaluating conditions,

decrementing the loop counter,
calculating new addresses,
maintaining an instruction cache, and
handling interrupts.

Address:n Instruction DO UNTIL JUMP
n+1 | Instruction Instruction Instruction
n+2 | Instruction Instruction ! Instruction
n+3 | Instruction Instruction N Times Instruction
n+4 | Instruction Instruction Instruction
n+5 | Instruction Instruction Instruction

Linear Flow Loop Jump
INTERRUPT
CALL \ Instruction IDLE D
—»= Instruction —| Instruction Instruction
Instruction Instruction Instruction
Instruction
Instruction
Instruction |- Instruction |- Instruction
Instruction Instruction
Instruction Instruction
RTS RTI
Subroutine Interrupt Idle

Figure 3.1 Program Flow Variations

3.1.1 Instruction Cycle
The ADSP-21020 processes instructions in three clock cycles:

* In the fetch cycle, the ADSP-21020 reads the instruction from either the
internal instruction cache or program memory.

® During the decode cycle, the instruction is decoded, generating
conditions that control instruction execution.

¢ In the execute cycle, the ADSP-21020 executes the instruction; the
operations specified by the instruction are completed.

These cycles are overlapping, or pipelined, as shown in Figure 3.2. In
sequential program flow, when one instruction is being fetched, the
instruction fetched in the previous cycle is being decoded, and the
instruction fetched two cycles before is being executed. Thus, the
throughput is one instruction per cycle.

time Fetch Decode Execute
(cycles)

1 0x08

2 0x09 0x08

3 Ox0A 0x09 0x08

4 0x0B 0x0A 0x09

5 0x0C 0x0B 0x0A
v

Figure 3.2 Pipelined Execution Cycles

Any non-sequential program flow can potentially decrease the
ADSP-21020’s instruction throughput. Non-sequential program
operations include:

Program memory data accesses that conflict with instruction fetches
Jumps

Subroutine Calls and Returns

Interrupts and Returns

Loops

3.1.2 Program Sequencer Architecture

Figure 3.3, on the next page, shows a block diagram of the program
sequencer. The sequencer selects the value of the next fetch address from
several possible sources.

The fetch address register, decode address register and program counter
(PC) contain, respectively, the addresses of the instructions currently
being fetched, decoded and executed. The PC is coupled with the PC
stack, which is used to store return addresses and top-of-loop addresses.

3-3

INTERNAL PMD BUS

-

LOOP LOGIC

-I ASTAT MODE1 l INTERRUPTS

A

LOOP COUNT e
STACK STATUS INTERRUPT LATCH
STACK CONTROLLER NTERRUPT INTERRUPT
VASK LOGIC

)

DIRECT
BRANCH

INSTRUCTION
cacre INTERRUPT
l CONTROLLER MASK POINTER
INPUT
INSTRUCTION LATCH I FLAGS
v 4
CONDITION
LOGIC
PROGRAM
COUNTER |
DECODE
ADDRESS INDIRECT
< PCSTACK |« -
FETCH BRANCH
ADDRESS INTERRUPT
VECTOR | [
q RETURN ADDRESS OR
TOP OF LOOP
v A

PC-RELATIVE
ADDRESS I A 3

NEXT ADDRESS MULTIPLEXER

l

PMA BUS

Figure 3.3 Program Sequencer Block Diagram

The interrupt controller performs all functions related to interrupt
processing, such as determining whether an interrupt is masked and
outputting the appropriate interrupt vector.

The instruction cache provides a means by which the ADSP-21020 can
access data in program memory and fetch an instruction in the same cycle.
The DAG2 data address generator (described in Chapter 4) outputs
program memory data addresses.

The sequencer evaluates conditional instructions and loop termination
conditions using information from the status registers. The loop address
stack and loop counter stack support nested loops. The status stack stores
status registers for implementing nested external interrupt routines.

3.1.2.1 Program Sequencer Registers & System Registers

Table 3.1 lists the registers located in the program sequencer. The
functions of these registers are described in subsequent sections of this
chapter. All registers in the program sequencer are universal registers and
are thus accessible to other universal registers as well as external data
memory. All registers and the tops of stacks are readable; all registers
except the fetch address, decode address and PC are writeable. The PC
stack can be pushed and popped by writing the PC stack pointer, which is
readable and writeable. The loop address stack and status stack are
pushed and popped by explicit instructions.

The system register bit manipulation instruction can be used to set, clear,
toggle or test specific bits in the system registers. This instruction is
described in Appendix A, Group IV-Miscellaneous instructions.

Due to pipelining, writes to some of these registers do not take effect on
the next cycle; for example, if you write the MODE1 register to enable
ALU saturation mode, the change will not occur until two cycles after the
write. Also, some registers are not updated on the cycle immediately
following a write; it takes an extra cycle before a read of the register yields
the new value. Table 3.1 summarizes the number of extra cycles for a write
to take effect (effect latency) and for a new value to appear in the register
(read latency). A “0” indicates that the write takes effect or appears in the
register on the next cycle after the write instruction is executed. A “1”
indicates one extra cycle.

Program Sequencer Read Effect
Registers Contents Bits latency latency
FADDR* fetch address 24 - -
DADDR* decode address 24 - -
PC* execute address 24 - -
PCSTK top of PC stack 24 0 0
PCSTKP PC stack pointer 5 1 1
LADDR top of loop address stack 32 0 0
CURLCNTR top of loop count stack (current loop count) 32 0 0
LCNTR loop count for next DO UNTIL loop 32 0 0
System Registers

MODE1 mode control bits 32 0 1
MODE2 mode control bits 32 0 1
IRPTL interrupt latch 32 0 0
IMASK interrupt mask 32 0 1
IMASKP interrupt mask pointer (for nesting) 32 1 1
ASTAT arithmetic status flags 32 0 1
STKY sticky status flags 32 0 1
USTAT1 user-defined status flags 32 0 0
USTAT2 user-defined status flags 32 0 0

* read-only

Table 3.1 Program Sequencer Registers & System Registers 3-5

3.2 PROGRAM SEQUENCER OPERATIONS

This section is an overview of the operation of the program sequencer. The
various kinds of program flow are defined here and described in detail in
subsequent sections.

3.2.1 Sequential Instruction Flow

The program sequencer determines the next instruction address by
examining both the current instruction being executed and the current
state of the processor. If no conditions require otherwise, the ADSP-21020
executes instructions from program memory in sequential order by simply
incrementing the fetch address.

3.22 Program Memory Data Access

Usually, the ADSP-21020 fetches an instruction from program memory on
each cycle. When the ADSP-21020 executes an instruction which requires
data to be read from or written to program memory, there is a conflict for
that memory space. The ADSP-21020 has an instruction cache to reduce
delays caused by this type of conflict.

The first time that the ADSP-21020 encounters an instruction fetch that
conflicts with a program memory data access, it must fetch the instruction
on the following cycle, causing a delay. The ADSP-21020 automatically
writes the fetched instruction to the cache to avoid the overhead should
the same instruction fetch occur again. The ADSP-21020 checks the
instruction cache on every program memory data access. If the instruction
needed is in the cache, the instruction fetch from the cache happens in
parallel with the program memory data access, without incurring a delay.

3.23 Branches

A branch occurs when the fetch address is not the next sequential address
following the previous fetch address. Jumps, calls and returns are the
types of branches which the ADSP-21020 supports. In the program
sequencer, the only difference between a jump and a call is that upon
execution of a call, a return address is pushed onto the PC stack so that it
is available when a return instruction is later executed. Jumps branch to a
new location without allowing return.

324 Loops

The ADSP-21020 supports loop instructions through the DO UNTIL
instruction. The DO UNTIL instruction causes the ADSP-21020 to repeat a
sequence of instructions until a specified condition tests true.

33 CONDITIONAL INSTRUCTION EXECUTION

The program sequencer evaluates conditions to determine whether to
execute a conditional instruction and when to terminate a loop. The
conditions are based on information from the arithmetic status (ASTAT)
register, mode control 1 (MODEI) register, flag inputs and loop counter.
The arithmetic ASTAT bits are described in Chapter 2 in the description of
each computation unit.

Each condition that the ADSP-21020 evaluates has an assembler
mnemonic and a unique code (number) that is used in a conditional
instruction’s opcode. For most conditions, the program sequencer can test
both true and false states, e.g., equal to zero and not equal to zero.

Table 3.2, on the following page, defines the 32 status conditions.

The bit test flag (BTF) is bit 18 of the ASTAT register. This flag is set (or
cleared) by the results of the BIT TST and BIT XOR forms of the

System Register Bit Manipulation instruction, which can be used to test the
contents of the ADSP-21020’s system registers. This instruction is
described in Appendix A, Group IV-Miscellaneous instructions. After BTF
is set by this instruction, it can be used as the condition in a conditional
instruction (with the mnemonic TF; see Table 3.2).

The two conditions that do not have complements are LCE/NOT LCE
(loop counter expired /not expired) and TRUE/FOREVER. The
interpretation of these condition codes is determined by context; TRUE
and NOT LCE are used in conditional instructions, FOREVER and LCE in
loop termination. The IF TRUE construct creates an unconditional
instruction (the same effect as leaving out the condition entirely). A DO
FOREVER instruction executes a loop indefinitely, until an interrupt or
reset intervenes.

Because the LCE condition checks the value of the loop counter
(CURLCNTR), an IF NOT LCE conditional instruction should not follow a
write to CURLCNTR from memory. Otherwise, because the write occurs
after the NOT LCE test, the condition is based on the old CURLCNTR
value.

No. Mnemonic

0
1

=m0 00NN U W N

[S
s WN = O

—
(9]

EQ
LT

LE

SZ
FLAGO_IN
FLAGI_IN
FLAG2_IN
FLAG3 IN
TF

LCE

NOT LCE

Description

ALU equal zero
ALU less than zero

ALU less than or equal zero

ALU carry

ALU overflow
Multiplier overflow
Multiplier sign
Shifter overflow
Shifter zero

Flag 0 input

Flag 1 input

Flag 2 input

Flag 3 input

Bit test flag

Reserved

Loop counter expired
(DO UNTIL term)
Loop counter not expired
(IF cond)

Bits 16-30 are the complements of bits 0-14

16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
31

NE
GE

GT

NOT AC

NOT AV

NOT MV

NOT MS

NOT sV

NOT SZ

NOT FLAGO_IN
NOT FLAG1_IN
NOT FLAG2_IN
NOT FLAG3_IN
NOT TF

FOREVER
TRUE

ALU not equal to zero

ALU greater than or equal zero

ALU greater than zero

Not ALU carry

Not ALU overflow

Not multiplier overflow
Not multiplier sign

Not shifter overflow
Not shifter zero

Not Flag 0 input

Not Flag 1 input

Not Flag 2 input

Not Flag 3 input

Not bit test flag
Reserved

Always False (DO UNTIL)
Always True (IF)

Table 3.2 Condition Codes

3-8

True If

AZ=1

[AF and (AN xor (AV and ALUSAT))
or (AF and AN and AZ)] =1

[AF and (AN xor (AV and ALUSAT))
or(AFand AN) JorAZ=1

AC=1

AV =1

MV =1

MN =1

SV=1

SZ=1

FI0=1

Fl1=1

FI2=1

FI3=1

BTF=1

CURLCNTR =1

CURLCNTR #1

AZ=0

[AF and (AN xor (AV and ALUSAT))
or (AF and AN and AZ)] =0

[AF and (AN xor (AV and ALUSAT))
or (AF and AN)]or AZ=0

AC=0

AV =0

MV =0

MN =0

SV=0

SZ=0

FI0 =0

FI1=0

FI2=0

FI3=0

BTF=0

always
always

34 BRANCHES (CALL, JUMP, RTS, RTI)

The CALL instruction initiates a subroutine. Both jumps and calls transfer
program flow to another part of program memory, but a call also pushes a
return address onto the PC stack so that it is available when a return from
subroutine instruction is later executed. Jumps branch to a new location
without allowing return.

A return causes the processor to branch to the address stored at the top of
the PC stack. There are two types of returns: return from subroutine (RTS)
and return from interrupt (RTI). The difference between the two is that the
RTI instruction not only pops the return address off the PC stack but also
pops the status stack if status registers (ASTAT and MODE1) have been
pushed as a result of an external interrupt.

There are a number of parameters you can specify for branches:

* Jumps, calls and returns can be conditional. The program sequencer
can evaluate any one of several status conditions to decide whether the
branch should be taken. If no condition is specified, the branch is
always taken.

¢ Jumps and calls can be indirect, direct, or PC-relative. An indirect
branch goes to an address supplied by one of the data address
generators, DAG2. Direct branches go to the 24-bit address specified in
an immediate field in the branch instruction. PC-relative branches also
use a value specified in the instruction, but the sequencer adds this
value to the current PC value to compute the address.

* Jumps, calls and returns can be delayed or nondelayed. In a delayed
branch, the two instructions immediately after the branch instruction
are executed; in a nondelayed branch, the program sequencer
suppresses the execution of those two instructions (no-operations are
performed instead).

* The JUMP (LA) instruction causes an automatic loop abort if it occurs
inside a loop. When the loop is aborted, the PC and loop address
stacks are popped once, so that if the loop was nested, the stacks still
contain the correct values for the outer loop. (This is similar to the break
instruction of the C programming language used to prematurely
terminate execution of a loop.)

3.4.1

NON-DELAYED JUMP OR CALL

Delayed And Nondelayed Branches
An instruction modifier (DB) indicates that a branch is delayed; otherwise,
it is nondelayed. If the branch is nondelayed, the two instructions after the
branch, which are in the fetch and decode stages, are not executed (see
Figure 3.4); for a call, the decode address (the address of the instruction
after the call) is the return address. During the two no-operation cycles,
the first instruction at the branch address is fetched and decoded.

CLOCK CYCLES —»
Execute]
Instruction n i
Decode]
Instruction n+1->nop n+2->nop j j+1
Fetch]]]
Instruction n+2 i i+ j+2
n+1 suppressed n+2 suppressed; for
call, n+1 pushed on
PC stack
NON-DELAYED RETURN
CLOCKCYCLES ——»
Execute
Instruction n r
Decode
Instruction n+1->nop n+2->nop r r+1
Fetch
Instruction n+2 r r+1 r+2

n+1 suppressed

n = Branch instruction
j = Instruction at Jump or Call address

r = Instruction at Return address

3-10

n+2 suppressed; r
popped from PC

stack

Figure 3.4 Nondelayed Branches

In a delayed branch, the processor continues to execute two more
instructions while the instruction at the branch address is fetched and
decoded (see Figure 3.5); in the case of a call, the return address is the
third address after the branch instruction. A delayed branch is more
efficient, but it makes the code harder to understand because of the
instructions between the branch instruction and the actual branch.

DELAYED JUMP OR CALL
CLOCKCYCLES —»
Execute]
Instruction n n+1 n+2 i
Decode]]
Instruction n+1 n+2 I j+1
Fetch . . .
2
Instruction n+ l i+ j+2
for call, n+3
pushed on PC
stack
DELAYED RETURN
CLOCKCYCLES ——»
Executq n ne1 a2 ;
Instruction
Decode' n+1 n+2 r r+1
Instruction
Fetch) n+2 ' el 2
Instruction
r popped from
PC stack

n = Branch instruction
j = Instruction at Jump or Call address

r = Instruction at Return address

Figure 3.5 Delayed Branches

3-11

3-12

Because of the instruction pipeline, a delayed branch instruction and the
two instructions that follow it in program memory must be executed
sequentially. Instructions in the two program memory locations
immediately following a delayed branch instruction can not be any of the
following;:

Other Jumps, Calls or Returns

Pushes or Pops of the PC stack

Writes to the PC stack or PC stack pointer
DO UNTIL instruction

IDLE instruction

These exceptions are checked by the ADSP-21020 assembler.

The ADSP-21020 does not process an interrupt in between a delayed
branch instruction and either of the two instructions that follow, since
these three instructions must be executed sequentially. Any interrupt that
occurs during these instructions is latched but not processed until the
branch is complete.

A read of the PC stack or PC stack pointer immediately after a delayed call
or return is permitted, but it will show that the return address on the PC
stack has already been pushed or popped, even though the branch has not
occurred yet.

34.2 PC Stack

The PC stack holds return addresses for subroutines and interrupt service
routines and top-of-loop addresses for loops. The PC stack is 20 deep by
24 bits wide.

The PC stack is popped during returns from interrupts (RTI), returns from
subroutines (RTS) and terminations of loops. The stack is full when all
entries are occupied, empty when no entries are occupied, and overflowed
if a call occurs when the stack is already full. The full and empty flags are
stored in the sticky status register (STKY). The full flag causes a maskable
interrupt.

A PC stack interrupt occurs when 19 locations of the PC stack are filled
(the almost full state). Entering the interrupt service routine then
immediately causes a push on the PC stack, making it full. Thus the
interrupt is a full interrupt, even though the condition which triggers it is
the almost full condition. The other stacks in the sequencer, the loop

%%i%

address stack, loop counter stack and status stack, are provided with
overflow interrupts that are activated when a push occurs while the stack
is in a full state.

The program counter stack pointer (PCSTKP) is a readable and writeable
register that contains the address of the top of the PC stack. The value of
PCSTKP is zero when the PC stack is empty, 1, 2, ..., 20 when the stack
contains data, and 31 when the stack is overflowed. A write to PCSTKP
takes effect after a one-cycle delay. If the PC stack is overflowed, a write to
PCSTKP has no effect.

3.5 LOOPS

The DO UNTIL instruction provides for efficient software loops, without
the overhead of additional instructions to branch, test a condition, or
decrement a counter. Here is a simple example of an ADSP-21020 loop:

LCNTR=30, DO label UNTIL LCE;
RO=DM (I0,M0), F2=PM(I8,M8);
R1=R0-R15;

label: F4=F2+F3;

Chapter 8 contains more examples of DO UNTIL loops.

When the ADSP-21020 executes a DO UNTIL instruction, the program
sequencer pushes the address of the last loop instruction and the
termination condition for exiting the loop (both specified in the
instruction) onto the loop address stack. It also pushes the top-of-loop
address, which is the address of the instruction following the DO UNTIL
instruction, on the PC stack.

Because of the instruction pipeline (fetch, decode and execute cycles), the
processor tests the termination condition (and, if the loop is counter-
based, decrements the counter) before the end of the loop so that the next
fetch either exits the loop or returns to the top based on the test condition.
Specifically, the condition is tested when the instruction two locations
before the last instruction in the loop (at location e-2, where e is the end-
of-loop address) is executed. If the termination condition is not satisfied,
the processor fetches the instruction from the top-of-loop address stored
on the top of the PC stack. If the termination condition is true, the
sequencer fetches the next instruction after the end of the loop and pops
the loop stack and PC stack. Loop operation is shown in Figure 3.6, on the
next page.

3-13

LOOP-BACK
CLOCKCYCLES —»

Execute

Instruction e-2 e-1 e b

Decode

Instruction e-1 e b b+1

Fetch

Instruction e b b+1 b+2
termination loop start
condition tests address is top of
false PC stack

LOOP TERMINATION
CLOCK CYCLES ——p

Execute

Instruction e-2 e-1 e e+l

Decode

Instruction e-1 e e+l e+2

Fetch

Instruction e e+l e+2 e+3
termination loop-back aborts;
condition tests PC and loop
true stacks popped

e = Loop end instruction
b = Loop start instruction

Figure 3.6 Loop Operation

3.5.1 Restrictions And Short Loops

This section describes several programming restrictions for loops. It also
explains restrictions applying to short (one- and two-instruction) loops,
which require special consideration because of the three-instruction fetch-

decode-execute pipeline.

3.5.1.1 General Restrictions

The last three instructions of a loop cannot be any branch except a jump
with loop abort (LA); otherwise, the loop may not be executed correctly.

Nested loops cannot terminate on the same instruction.

3-14

3.5.1.2 Counter-Based Loops

The third-to-last instruction of a counter-based loop (at e-2, where e is the
end-of-loop address) cannot be a write to the counter from external
memory.

Short loops terminate in a special way because of the instruction (fetch-
decode-execute) pipeline. Counter-based loops of one or two instructions
are not long enough for the sequencer to check the termination condition
two instructions from the end of the loop. In these short loops, the
sequencer has already looped back when the termination condition is
tested. The sequencer provides special handling to avoid overhead (no-
operation) cycles if the loop is iterated a minimum number of times. The
detailed operation is shown in Figures 3.7 and 3.8 (on the following page).
For no overhead, a loop of length one must be executed at least three
times and a loop of length two must be executed at least twice.

ONE-INSTRUCTION LOOP, THREE ITERATIONS

CLOCKCYCLES ——»

Execute n n+1 n+1 n+1 n+2
Instruction first iteration second iteration third iteration
Decode n+1 n+1 n+1 n+2 n+3
Instruction
Fetch ! n+2 n+1 n+2 n+3 n+4
Instruction
LCNTR <-3 opcode latch not loop-back aborts;
updated; fetch PC & loop stacks
address not popped

updated; count
expired tests true

ONE-INSTRUCTION LOOP, TWO ITERATIONS (Two Cycles of Overhead)

CLOCKCYCLES ——p

Execute n n+1 n+1
Instruction first iteration second iteration n+2
Decode
Instr:ction n+1 n+1 n+1 -> nop n+1—>nop n+2 n+3
Fetch n+2 n+1 n+1 n+2 n+3 n+4
Instruction :
LCNTR <~ 2 opcode latch not count expired loop-back aborts;

updated; fetch tests true PC & loop stacks

address not popped

updated

n = DO UNTIL instruction
n+2 = Instruction after loop

Figure 3.7 One-Instruction Loops

3-15

TWO-INSTRUCTION LOOP, TWO ITERATIONS

Loops of length one that iterate only once or twice and loops of length two
that iterate only once incur two cycles of overhead because there are two
aborted instructions after the last iteration to clear the instruction pipeline.

CLOCKCYCLES —&
Execute n+1 n+2 n+1 n+2
Instruction n first iteration first iteration second iteration second iteration n+3
Decode
Instruction n+1 n+2 n+1 n+2 n+3 n+4
Fetch _]]
Instruction n+2 n+i n+2 n+3 n+4 n+5
LCNTR <- 2 PC stack last instruction loop-back aborts;
supplies loop fetched, causes PC & loop stacks

start address

condition test;
tests true

popped

TWO-INSTRUCTION LOOP, ONE ITERATION (Two Cycles of Overhead)

CLOCKCYCLES —8»p
Execute n n+1 n+2 n+3
Instruction first iteration first iteration
Decode n+1 n+2 n+1->nop n+2->nop n+3 n+4
Instruction
Fetch . n+2 n+1 n+2 n+3 n+4 n+5
Instruction
LCNTR <- 1 PC stack last instruction loop-back
supplies loop fetched, causes aborts; PC &
start address condition test; loop stacks
tests true popped

n = DO UNTIL instruction
n+3 = Instruction after loop

3-16

Figure 3.8 Two-Instruction Loops

Processing of an interrupt that occurs during the last iteration of a one-

instruction loop that executes once or twice, a two-instruction loop that

executes once, or the cycle following one of these loops (which is a no-

operation) is delayed by one cycle. Similarly, in a one-instruction loop that

iterates at least three times, processing is delayed by one cycle if the
interrupt occurs during the third-to-last iteration.

3.5.1.3 Non-Counter-Based Loops

A non-counter-based loop is one in which the loop termination condition
is something other than LCE. When a non-counter-based loop is the outer
loop of a series of nested loops, the end address of the outer loop must be
located at least two addresses after the end address of the inner loop.

The JUMP (LA) instruction is used to prematurely abort execution of a
loop. When this instruction is located in the inner loop of a series of nested
loops and the outer loop is non-counter-based, the address jumped to
cannot be the last instruction of the outer loop. The address jumped to
may, however, be the next-to-last instruction (or any earlier).

Non-counter-based short loops terminate in a special way because of the
fetch-decode-execute instruction pipeline:

® In a three-instruction loop, the termination condition is tested when
the top of loop instruction is executed. When the condition becomes
true, the sequencer completes one full pass of the loop before exiting.

¢ In a two-instruction loop, the termination condition is checked during
the last (second) instruction. If the condition becomes true when the
first instruction is executed, it tests true during the second and one
more full pass is completed before exiting. If the condition becomes
true during the second instruction, however, two more full passes
occur before the loop exit.

* In a one-instruction loop, the termination condition is checked every
cycle. When the condition becomes true, the loop executes three more
times before exiting.

3.5.2 Loop Address Stack

The loop address stack is six levels deep by 32 bits wide. The 32-bit word
of each level consists of a 24-bit loop termination address, a 5-bit
termination code, and a 2-bit loop type code:

Bits Value
0-23 Loop termination address
24-28 Termination code
29 reserved (always reads 0)
30-31 Loop type code:
00 arithmetic condition-based (not LCE)
01 counter-based, length 1
10 counter-based, length 2
11 counter-based, length > 2

3-17

3-18

The loop termination address, termination code and loop type code are
stacked when a DO UNTIL or PUSH LOOP instruction is executed. The
stack is popped two instructions before the end of the last loop iteration or
when a POP LOOP instruction is issued. A stack overflows if a push
occurs when all entries in the loop stack are occupied. The stack is empty
when no entries are occupied. The overflow and empty flags are in the
sticky status register (STKY). Overflow causes a maskable interrupt.

The LADDR register contains the top of the loop address stack. It is
readable and writeable over the DMD bus. Reading and writing LADDR
does not move the loop address stack pointer; a stack push or pop,
performed with explicit instructions, moves the stack pointer. LADDR
contains the value OxFFFT FFFF when the loop address stack is empty.
Because the termination condition is checked two instructions before the
end of the loop, the loop stack is popped before the end of the loop on the
final iteration. If LADDR is read at either of these instructions, the value
will no longer be the termination address for the loop.

A jump out of a loop pops the loop address stack (and the loop count
stack if the loop is counter-based) if the Loop Abort option is specified for
the jump. This allows the loop mechanism to continue to function
correctly. Only one pop is performed, however, so the Loop Abort cannot
be used to jump more than one level of loop nesting,.

3.53 Loop Counters And Stack

The loop counter stack is six levels deep by 32 bits wide. The loop counter
stack works in synchronization with the loop address stack; both stacks
always have the same number of locations occupied. Thus, the same
empty and overflow status flags apply to both stacks.

The ADSP-21020 program sequencer operates two separate loop counters:
the current loop counter (CURLCNTR), which tracks iterations for a loop
being executed, and the loop counter (LCNTR), which holds the count
value before the loop is executed. Two counters are needed to maintain
the count for an outer loop while setting up the count for an inner loop.

3.5.3.1 CURLCNTR

The top entry in the loop counter stack always contains the loop count
currently in effect. This entry is the CURLCNTR register, which is
readable and writeable over the DMD bus. A read of CURLCNTR when
the loop counter stack is empty gives the value OXFFFF FFFF.

The program sequencer decrements the value of CURLCNTR for each
loop iteration. Because the termination condition is checked two
instruction cycles before the end of the loop, the loop counter is also
decremented before the end of the loop. If CURLCNTR is read at either of
the last two loop instructions, therefore, the value is already the count for
the next iteration.

The loop counter stack is popped two instructions before the end of the
last loop iteration. When the loop counter stack is popped, the new top
entry of the stack becomes the CURLCNTR value, the count in effect for
the executing loop. If there is no executing loop, the value of CURLCNTR
is OxFFFF FFFF after the pop.

Writing CURLCNTR does not cause a stack push. Thus, if you write a new
value to CURLCNTR, you change the count value of the loop currently
executing. A write to CURLCNTR when no DO UNTIL LCE loop is
executing has no effect.

Because the processor must use CURLCNTR to perform counter-based
loops, there are some restrictions on when you can write CURLCNTR. As
mentioned under “Loop Restrictions,” the third-to-last instruction of a DO
UNTIL LCE loop cannot be a write to CURLCNTR from external memory.
The instruction that follows a write to CURLCNTR from memory cannot
be an IF NOT LCE instruction.

3532 LCNTR

LCNTR is the value of the top of the loop counter stack plus one, i.e., it is
the location on the stack which will take effect on the next loop stack push.
To set up a count value for a nested loop without affecting the count value
of the loop currently executing, you write the count value to LCNTR. A
value of zero in LCNTR causes a loop to execute 232 times.

The DO UNTIL LCE instruction pushes the value of LCNTR on the loop
count stack, so that it becomes the new CURLCNTR value. This process is
illustrated in Figure 3.9, on the next page. The previous CURLCNTR value
is preserved one location down in the stack.

A read of LCNTR when the loop counter stack is full results in invalid
data. When the loop counter stack is full, any data written to LCNTR is
discarded.

If you read LCNTR during the last two instructions of a terminating loop,
its value is the last CURLCNTR value for the loop.

3-19

LCNTR
CURLCNTR

LCNTR —

CURLCNTR
LCNTR -

aaaa aaaa

OXFFFF FFFF

aaaa aaaa

Stack empty; no
loop executing;
load LCNTR with
aaaa aaaa

aaaa aaaa

bbbb bbbb

CCccc ccce

dddd dddd

eeee eeee

Four nested loops

in progress; load

LCNTR with
eeee eeee

3-20

CURLCNTR —| aaaa aaaa aaaa aaaa aaaa aaaa
LCNTR - bbbb bbbb CURLCNTR —{ bbbb bbbb bbbb bbbb
LCNTR - cccc ccee CURLCNTR —| cccc ccee
LCNTR — dddd dddd
Single loop in Two nested loops Three nested loops
progress; load in progress; load in progress; load
LCNTR with LCNTR with LCNTR with
bbbb bbbb ccee cecee dddd dddd
aaaa aaaa aaaa aaaa
bbbb bbbb bbbb bbbb
cccc ccce cccc ccce
dddd dddd dddd dddd
CURLCNTR —| eecee eeee eeee eeee
LCNTR — 1ff fiff CURLCNTR —| ffff fftf
Five nested loops Six nested
in progress; load loops in
LCNTR with progress;
fff fiff stack full

Figure 3.9 Pushing the Loop Counter Stack for Nested Loops

3.6

INTERRUPTS

An interrupt is caused by an external device asserting one of the ADSP-
21020’s interrupt inputs, by an internal exception such as a stack overflow,
or by a user-defined software interrupt. An interrupt forces a a call to a
predefined address, the interrupt vector. The ADSP-21020 assigns a
unique vector to each type of interrupt it recognizes.

Externally, the ADSP-21020 supports four prioritized, individually
maskable interrupts IRQ3-0, each of which can be either level or edge-

triggered. Among the internal interrupts are arithmetic, format, stack and
timer interrupts, and reset.

An interrupt request is deemed valid if it is not masked, if interrupts are
globally enabled (bit 12 in MODE] is set), and if a higher priority request
is not pending. Valid requests invoke an interrupt service sequence that

branches to the address reserved for that interrupt. Interrupt vectors are
spaced at 8-instruction intervals; longer service routines can be
accommodated by branching to another area of the memory space.
Execution returns to normal sequencing when a RTI (return from
interrupt) instruction is executed.

To process an interrupt, the program sequencer performs the following
actions:

1. Outputs the appropriate interrupt vector on the program memory
address.

2. Pushes the current PC value (return address) on the PC stack.

3. If the interrupt is either an external interrupt (IRQ3-0) or the internal
timer interrupt, the program sequencer pushes the current ASTAT and
MODET1 registers on the status stack.

4. Alters the interrupt mask pointer (IMASKP) to reflect the current
interrupt nesting state. The nesting mode (NESTM) bit in the MODE1
register determines whether all interrupts or only lower priority
interrupts are masked during the service routine.

All interrupt service routines, except for reset, should end with a return-
from-interrupt (RTI) instruction. After reset, the PC stack is empty, so
there is no return address. The last instruction of a reset service routine
should be a jump to the start of user code.

3.6.1 Interrupt Latency

The ADSP-21020 responds to interrupts in three stages: synchronization
and latching (1 cycle), recognition (1 cycle), and branching to the interrupt
vector (2 cycles). See Figure 3.10 on the next page. If an interrupt is forced
in software by a write to a bit in IRPTL, it is recognized in the following
cycle, and the two cycles of branching to the interrupt vector follow that.
Chapter 9 contains a discussion of synchronization for external interrupts
and other asynchronous signals.

Certain ADSP-21020 operations that span more than one cycle hold off
interrupts. If an interrupt occurs during one of these operations, it is
synchronized and latched, but its processing is delayed. The operations
that delay interrupt processing are:

® abranch (call, jump or return) and the following cycle, whether it is an
instruction (in a delayed branch) or no-operation (in a non-delayed
branch)

INTERRUPT, SINGLE-CYCLE INSTRUCTION

n = Single-cycle instruction

CLOCKCYCLES ——»
Execute n-1 .
Instruction
Decode ..
Instruction n n+1->nop n+2->nop v v+l
Fetch n+1 n+2 v v+l v+2
Instruction
interrupt occurs interrupt n+1 pushed onto
recognized PC stack; interrupt

INTERRUPT, PROGRAM MEMORY DATA ACCESS WITH CACHE MISS

CLOCKCYCLES —»p

vector output

n = Instruction coinciding with
program memory data access,

cache miss

INTERRUPT, DELAYED BRANCH

not processed;
program memory
data access

n = Delayed branch instruction

vector output

Execute n-1 n v
Instruction
Decode

n 1->n 1->0¢ 2->n v V4l
Instruction n+1->nop n+1->nop n+2->nop +
Fetch n+1 - n+2 v v+l V42
Instruction

interrupt occurs interrupt interrupt n+1 pushed onto
ized, but pi d PC stack; interrupt

CLOCK CYCLES ——p
Execute n-1 n n+1 n+2 v
Instruction
Decode i . v.
Instruction n n+1 n+2 j->nop j+1 ->nop v +1
Fetch :
Instruction n+1 n+2]).-r 1 v v+1 v+2
interrupt occurs interrupt for a call, n+3 Jj pushed onto
recognized, but pushed onto PC PC stack;
not processed stack; interrupt interrupt vector
processed output

v = Instruction at Interrupt vector

i = Instruction at bra

inch address

Figure 3.10 Interrupt Handling

e the first of the two cycles needed to perform a program memory data
access and an instruction fetch (when there is an instruction cache
miss).

¢ the third-to-last iteration of a one-instruction loop

* the last iteration of a one-instruction loop executed once or twice or of
a two-instruction loop executed once, and the following cycle (which is
a no-operation)

* the first of the two cycles needed to fetch and decode the first
instruction of an interrupt routine

* waitstates for memory accesses
* bus grant

The ADSP-21020 cannot service an interrupt unless it is executing
instructions or in the IDLE state. Interrupts are sampled, but not serviced,
during bus grant and while the processor is waiting for memory
acknowledge. IDLE is a special instruction that halts the processor until an
external interrupt or timer interrupt occurs.

For most interrupts, internal and external, only one instruction is executed
after the interrupt occurs and before the two instructions aborted while
the processor fetches and decodes the first service routine instruction.
Because of the one-cycle delay between an arithmetic exception and the
STKY register update, however, there are two cycles after an arithmetic
exception occurs before interrupt processing starts.

3.6.2 Interrupt Latch

The interrupt latch (IRPTL) register is a 32-bit register that latches
interrupts generated by an external event (one of IRQ3.¢) or an internal
processor event (e.g., multiplier exception). This register contains any
current interrupt or any pending interrupts. Because this register is
readable and writeable, any interrupt except for reset can be set or cleared
in software. Do not write to the reset bit (bit 1) in IRPTL because this puts
the processor in an illegal state.

IRPTL is cleared by a processor reset.

3-23

3-24

Table 3.3 shows the bits in IRPTL. The second column lists the address (in
hexadecimal) of the interrupt vector. Each interrupt vector is separated by
eight memory locations. The third column lists an interrupt mnemonic.
This name is provided for convenience; it is not required by the assembler.

Bit
(IR#)
0

O OO Ul W -

Address Name
0x00

0x08 RSTI
0x10

0x18 SOVFHI
0x20 TMZHI
0x28 IRQ3I
0x30 IRQ21
0x38 IRQ1I
0x40 TRQOI
0x48

0x50

0x58 CB71
0x60 CB15I
0x68

0x70 TMZLI
0x78 FIXI
0x80 FLTOI
0x88 FLTUI

0x90 FLTII
0x98-0xB8

0xCO0 SFTO0I
0xC8 SFT11
0xD0 SFT21
0xD8 SFT31
0xEOQ SFT41
0xE8 SFT5I
0xFO0 SFT6l
0xF8 SFT71

* Nonmaskable

Function

Reserved for emulation*

Reset (read-only)*

Reserved

Status stack or loop stack overflow or PC stack full
Timer =0 (high priority option)
TRQ;3 asserted

IRQ» asserted

IRQ; asserted

IRQq asserted

Reserved

Reserved

Circular buffer 7 overflow interrupt
Circular buffer 15 overflow interrupt
Reserved

Timer=0 (low priority option)
Fixed-point overflow
Floating-point overflow exception
Floating-point underflow exception
Floating-point invalid exception
Reserved

User software interrupt 0

User software interrupt 1

User software interrupt 2

User software interrupt 3

User software interrupt 4

User software interrupt 5

User software interrupt 6

User software interrupt 7

Table 3.3 Interrupt Vectors and Priority

3.6.2.1 Interrupt Priority

The interrupt bits in IRPTL are ordered by priority. The interrupt priority
is from O (highest) to 31 (lowest). Interrupt priority determines which
interrupt is serviced first when two occur in the same cycle. It also
determines which interrupts are nested when nesting is enabled (see
“Interrupt Nesting and IMASKP,” later in this chapter).

The arithmetic interrupts (fixed-point overflow and floating-point
overflow, underflow and invalid operation) are determined from flags in
the sticky status register (STKY). By reading these flags, the service
routine for one of these interrupts can determine which condition caused
the interrupt. The routine also has to clear the STKY bit so that the
interrupt is not still active after the service routine is done.

The timer reaching zero causes both interrupt 4 and interrupt 14. This
feature allows you to choose the priority of the timer interrupt. Unmask
the timer interrupt that has the priority you want, and leave the other one
masked. Unmasking both interrupts results in two interrupts when the
timer reaches zero. The processor would service the higher priority
interrupt first, then the lower priority interrupt.

3.6.2.2 Software Interrupts

The ADSP-21020 provides software interrupts that emulate interrupt
behavior but are activated through software instead of hardware. An
instruction that sets one of bits 24-31 in IRPTL (either a BIT SET
instruction or a write to IRPTL) activates a software interrupt. The
ADSP-21020 branches to the corresponding interrupt routine if that
interrupt is not masked and interrupts are enabled.

3.6.3 Interrupt Masking And Control

All interrupts except for reset can be enabled and disabled by the global
interrupt enable bit, IRPTEN, bit 12 in the MODET1 register. This bit is
cleared at reset. You must set this bit for interrupts to be enabled.

3.6.3.1 Interrupt Mask

All interrupts except for reset interrupt can be masked. Masked means the
interrupt is disabled. Interrupts that are masked are still latched, so that if
the interrupt is later unmasked, it is processed. Upon chip reset, all
interrupts except reset are masked.

The IMASK register controls interrupt masking. The bits in the IMASK
register correspond directly to the same bits in the IRPTL register; for
example, bit 10 in the IMASK register masks or unmasks the same
interrupt latched by bit 10 in the IRPTL register. If a bit is set, its interrupt
is unmasked (enabled); if the bit is cleared, the interrupt is masked
(disabled). The IMASK register prevents the interrupts from being
serviced but not from being latched in IRPTL for future recognition.

3-25

3.6.3.2 Interrupt Nesting & IMASKP

The ADSP-21020 supports the nesting of one interrupt service routine
inside another; that is, a service routine can be interrupted by a higher
priority interrupt. This feature is controlled by the nesting mode bit
(NESTM) in the MODE] register. When the NESTM bit is a 0, an interrupt
service routine cannot be interrupted; any interrupt that occurs will be
processed only after the routine finishes. When NESTM is a 1, higher
priority interrupts can interrupt if they are not masked; lower or equal
priority interrupts cannot. The NESTM bit should only be changed
outside of an interrupt service routine or during the reset service routine;
otherwise, interrupt nesting may not work correctly.

In nesting mode, the ADSP-21020 uses the interrupt mask pointer
(IMASKP) to create a temporary interrupt mask for each level of interrupt
nesting; the IMASK value is not affected. The ADSP-21020 changes
IMASKP each time a higher priority interrupt interrupts a lower priority

service routine.

The bits in IMASKP correspond to the interrupts in order of priority.
When an interrupt occurs, its bit is set in IMASKP. If nesting is enabled, a
new temporary interrupt mask is generated by masking all interrupts of
equal or lower priority to the highest priority bit set in IMASKP (and
keeping higher priority interrupts the same as in IMASK). When a return
from an interrupt service routine is executed, the highest priority bit set in
IMASKP is cleared, and again a new temporary interrupt mask is
generated by masking all interrupts of equal or lower priority to the
highest priority bit set in IMASKP. The bit set in IMASKP that has the
highest priority always corresponds to the priority of the interrupt being
serviced.

If nesting is not enabled, the processor masks out all interrupts and
IMASKP is not used, although IMASKRP is still updated to create a
temporary interrupt mask.

An interrupt routine cannot be nested within itself. The ADSP-21020
ignores and does not latch an interrupt that occurs while its service
routine is already executing.

3.64 Status Stack

For low-overhead interrupt servicing, the ADSP-21020 automatically
saves and restores the status and mode contexts of the interrupted
program. The four external interrupts and the timer interrupt

=

Wy

automatically push ASTAT and MODEI1 onto the status stack, which is
five levels deep. These registers are automatically popped from the status
stack by the interrupt return (RTI) instruction. Other interrupts require
explicit save and restore of the appropriate registers to data memory or
program memory.

Pushing ASTAT and MODE] preserves the status and control bit settings
so that if the service routine alters these bits, the original settings are
automatically restored upon the return from interrupt. Note, however,
that the Flag bits in ASTAT are not affected by status stack pushes and
pops; the values of these bits carry over from the main program to the
service routine and from the service routine to the main program.

The top of the status stack contains the current values of ASTAT and
MODEL1. Reading and writing these registers does not move the stack
pointer. The stack pointer is moved, however, by explicit PUSH and POP
instructions.

3.6.5 External Interrupt Timing & Sensitivity

Each of the four ADSP-21020 external interrupts, IRQ3-0, can be either
level- or edge-triggered.

The ADSP-21020 samples interrupts once every CLKIN cycle. Level-
sensitive interrupts are considered valid if sampled active (low). A level-
sensitive interrupt must go inactive (high) before the processor returns
from the interrupt service routine. If a level-sensitive interrupt is still
active when the processor samples it, the processor treats it as a new
request, repeating the same interrupt routine without returning to the
main program (assuming no higher priority interrupts are active).

Edge-triggered interrupt requests are considered valid if sampled high in
one cycle and low in the next. The interrupt can stay active indefinitely. To
request another interrupt, the signal must go high, then low again.

Edge-triggered interrupts require less external hardware compared to
level-sensitive requests since there is never a need to negate the request.
However, multiple interrupting devices may share a single level-sensitive
request line on a wired-OR basis, which allows for easy system expansion.

3-28

Program

A bit for each interrupt in the MODE2 register indicates the sensitivity
mode of each interrupt.

MODE2

Bit Name Definition

0 IRQOE IRQO 1=edge sensitive; O=level-sensitive
1 IRQIE TRQT 1=edge sensitive; O=level-sensitive
2 IRQ2E IRQ2 1=edge sensitive; O=level-sensitive
3 IRQ3E IRQ3 1=edge sensitive; O=level-sensitive

Interrupts are sampled during a bus grant, but remain pending until the
processor regains control of the bus and continues program execution. At
that time pending interrupts are serviced in order of priority.

3.6.5.1 Asynchronous External Interrupts

The processor accepts interrupts that are asynchronous to the ADSP-21020
clock; that is, an interrupt signal may change at any time. An
asynchronous interrupt must be held low at least one CLKIN cycle to
guarantee that it gets sampled. The delay associated with synchronizing
asynchronous signals is discussed in Chapter 9. Synchronous interrupts
need only meet the setup and hold time requirements relative to the rising
edge of CLKIN.

3.7 STACK FLAGS

The STKY register maintains stack full and stack empty flags for the PC
stack as well as overflow and empty flags for the status stack and loop
stack. Unlike other STKY bits, several of these flag bits are not “sticky.”
They are set by the occurrence of the condition they indicate and are
cleared when the condition is changed (by a push, pop or processor reset).

Bit Name Definition Sticky/Not Sticky Cleared By
21 PCFL PC stack full Not sticky Pop

22 PCEM PC stack empty Not sticky Push

23 SSOV Status stack overflow Sticky RESET

24 SSEM Status stack empty Not sticky Push

25 LSOV Loop stacks overflow* Sticky RESET

26 LSEM Loop stacks empty* Not sticky Push

* Loop address stack and loop counter stack

The status stack flags are read-only. Writes to the STKY register have no
effect on these bits.

The overflow and full flags are provided for diagnostic aid and are not
intended to allow recovery from overflow. Status stack or loop stack
overflow or PC stack full causes an interrupt.

The empty flags facilitate off-chip stack saves. You monitor the empty flag
when saving a stack to the external memory to know when all values have
been transferred. The empty flags do not cause interrupts because an
empty stack is an acceptable condition.

3.8 IDLE

IDLE is a special instruction that halts the processor in a low-power state
until an external interrupt or timer interrupt occurs. When the processor
encounters an IDLE instruction, it fetches the instruction at the fetch
address and then holds its outputs in the states shown in Table 3.4.

Output State
PMA23-0 Next Fetch Address
PMD47-0 High Impedance

PMSI-0 Driven; value depends on address (one is high, the other low)
PMRD High
PMWR High

PMPAGE Driven; value depends on address

DMA31-0 Driven; value undefined but stable
DMD39-0 High Impedance

DMS3-0 High

DMRD High

DMWR High

DMPAGE Low

FLAG3-0 Depends on internal state

BG Depends on BR

TIMEXP Depends on internal state

TDO Depends on TRST, TCK and internal state

Table 3.4 States of Outputs During IDLE

The clock continues to run during IDLE, as well as the timer if enabled.
When an interrupt occurs, either externally or from the timer, the
processor responds as normal, outputting the interrupt vector. After two
cycles needed to fetch and decode the first instruction of the interrupt
routine, the processor continues executing instructions normally. On
return from the interrupt, execution continues at the instruction after the
IDLE instruction.

3.9 INSTRUCTION CACHE

The instruction cache is a 2-way, set-associative cache with entries for 32
instructions. The operation of the cache is transparent to the programmer.
The ADSP-21020 caches only instructions that conflict with program
memory data accesses. This feature makes the cache considerably more
efficient than a cache that loads every instruction, because typically only a
few instructions access data from program memory.

Because of the three-stage instruction pipeline, if the instruction at address
n requires a program memory data access, there is a conflict with the
instruction fetch at address n+2, assuming sequential execution. It is this
fetched instruction (n+2) that is stored in the instruction cache, not the
instruction requiring the program memory data access.

If the instruction needed is in the cache, a “cache hit” occurs—the cache
provides the instruction while the program memory data access is
performed. If the instruction needed is not in the cache, a “cache miss”
occurs, and the external instruction fetch takes place in the cycle following
the program memory data access, incurring one cycle of overhead. This
instruction is loaded into the cache, if the cache is enabled and not frozen,
so that it is available the next time the same instruction requiring program
memory data is executed.

3.9.1 Cache Architecture

Figure 3.11 is a block diagram of the instruction cache. The instruction
cache contains 32 entries. An entry consists of a register pair containing an
instruction and its address. Each entry has a Valid bit that is set if the
entry contains a valid instruction.

The entries are divided into 16 sets (set 15-set 0) of two entries each, entry
0 and entry 1. Each set has an LRU (Least Recently Used) bit whose value
indicates which of the two entries contains the least recently used
instruction (1=entry 1, O=entry 0).

LRU Bit Instruction Address Valid Bit

Set 0 L___l """""""""""""""""" .
Set 1 |:| """""""""""""""""""]
Set 2 I:I """""""""""""""""" 1

Set 13 D --------------------------------- __‘

Set14 [| |------rrrmmem e ||

Set15 | | l--m-mrmm e ||

Figure 3.11 Instruction Cache Architecture

Every possible instruction address is mapped to a set in the cache by its 4
LSBs. When the processor needs to fetch an instruction from the cache, it
uses the 4 address LSBs as an index to a particular set. Within that set, it
checks the addresses of the two entries to see whether either contains the
needed instruction. A cache hit occurs if the instruction is found, and the
LRU bit is updated if necessary to indicate the entry that did not contain
the needed instruction.

A cache miss occurs if neither entry in the set contains the needed
instruction. In this case, a new instruction and its address are loaded into
the least recently used entry of the set that matches the 4 LSBs of the
address. The LRU bit is toggled to indicate that the other entry in the set is
now the least recently used.

Because instructions are mapped to sets by their 4 address LSBs, there is
no need to store these bits in the cache; the 4 LSBs are implied by the set in
which the instruction has been stored. Only bits 23-4 are actually stored in
a cache entry.

3-31

Program

3.9.2 Cache Efficiency

Usually, the cache operation and its efficiency is not a concern. However,
there are some situations that can degrade cache efficiency and can be
remedied easily in the program.

When a cache miss occurs, the needed instruction is loaded into the cache
so that if the same instruction is needed again, it will be there (a cache hit
will occur). However, if another instruction whose address is mapped to
the same set displaces this instruction, there will be a cache miss instead.
The LRU bits help to reduce this possibility since at least two other
instructions mapped to the same set must be needed before an instruction
is displaced. If three instructions mapped to the same set are all needed
repeatedly, cache efficiency (hit rate) can go to zero. The solution is to
move one or more of the instructions to a new address, one that is
mapped to a different set.

An example of some code that is cache-inefficient is shown in Figure 3.12.
The program memory data access at address 0x101 in the tight loop causes
the instruction at 0x103 to be cached (in set 3). Each time the subroutine
sub is called, the program memory data accesses at 0x201 and 0x211
displace this instruction by loading the instructions at 0x203 and 0x213
into set 3. If the subroutine is called only rarely during the loop execution,
the impact will be minimal. If the subroutine is called frequently, the effect
will be noticeable. If the execution of the loop is time-critical, it would be
advisable to move the subroutine up one location (starting at 0x201), so
that the two cached instructions end up in set 4 instead of 3.

3.9.3 Cache Enable And Cache Freeze

Freezing the cache prevents any changes to its contents; i.e., a cache miss
will not result in a new instruction being stored in the cache. Disabling the
cache stops its operation completely; all instruction fetches conflicting
with program memory data accesses are delayed by the access. These
functions are selected by the CADIS and CAFRZ (cache enable/disable
and cache freeze) bits in the MODE2 register. The cache is cleared
(contains no instructions), unfrozen and enabled after a reset.

MODE2 Name Function

Bit

4 CADIS Cache disable
19 CAFRZ Cache freeze

Address Instruction

100 LCNTR=1024, DO tight UNTIL LCE;
101 RO=DM (I0,M0), PM(I8,M8)=F3;
102 R1=R0O-R15;

103 IF EQ CALL (sub);
104 F2=FLOAT R1;

105 F3=F2*F2;

106 tight: F3=F3+F4;

107 PM(I8,M8)=F3;

[

[]

[]

200 sub: R1=R13;

201 R14=PM(I9,M9) ;

[]

o

[]

211 PM(I9,M9)=R12;

[]

[]

[

21F RTS;

Figure 3.12 Cache-Inefficient Code

Data Addressing

4.1 OVERVIEW

The ADSP-21020/21010’s two data address generators (DAGs) simplify
the task of organizing data by maintaining pointers into memory. The
DAG:s allow the processor to address memory indirectly; that is, an
instruction specifies a DAG register containing an address instead of the
address value itself.

Data address generator 1 (DAG1) produces 32-bit addresses for data
memory. Data address generator 2 (DAG2) produces 24-bit addresses for
program memory. The basic architecture for both DAGs is shown in
Figure 4.1, which can be found on the following page.

The DAGs also support in hardware some functions commonly used in
digital signal processing algorithms. Both DAGs support circular buffers,
which require advancing a pointer repetitively through a range of
memory. DAGI can also perform a bit-reverse operation, which places the
bits of an address in reverse order to form a new address.

4.2 DAG REGISTERS
Each DAG contains four types of registers: Index (I), Modify (M), Base (B)
registers, and Length (L) registers.

An I register acts as a pointer to memory, and an M register contains the
increment value for advancing the pointer. By modifying an I register
with different M values, you can vary the increment as needed.

B registers and L registers are used only for circular data buffers. A

B register holds the base (starting) address of a circular buffer. The same-
numbered L register holds the number of locations in (i.e. the length of)
the circular buffer.

DAG1: N =32
DAG2:N=24

Each DAG contains eight of each type of register:

DAGI registers (32-bit)

DAG2 registers (24-bit)

N
FROM
INSTRUCTION
N M
REGISTERS
8xN

=
i

ADD

Figure 4.1 Data Address Generator Block Diagram

BO - B7 B8 - B15
10-17 I8 - 115
MO - M7 M8 - M15
LO-L7 L8-L15
DMD BUS
N N
A
L B 1
REGISTERS REGISTERS REGISTERS
8xN 8xN 8xN
/ y
MODULUS
LOGIC <
/,N
, I
BIT-REVERSE
DAG1 only; optional /| A
\ MUX /
UPDATE
/
BIT-REVERSE
10 only; optional
DMA BUS (DAG1)
PMA BUS (DAG2)

421 Alternate DAG Registers

Each DAG register has an alternate register for context switching. For
activating alternate registers, each DAG is organized into high and low
halves, as shown in Figure 4.2. The high half of DAGI1 contains the I, M, B
and L registers numbered 4-7, and the low half, the registers numbered 0-
3. Likewise, the high half of DAG2 consists of registers 12-15, and the low
half consists of registers 8-11.

DAG1 Registers (Data Memory)
MODE1
Select Bit

-¢— SRD2L

-4¢— SRD2H

Figure 4.2 Alternate DAG Registers

Bits in the MODETI register determine for each half whether primary or
alternate registers are active (O=primary registers active,
1=alternate registers active):

MODEI1

Bit Name Definition

3 SRD1H DAGT1 alternate register select (4-7)

4 SRD1L DAGT alternate register select (0-3)

5 SRD2H DAGS2 alternate register select (12-15)
6 SRD2L DAG?2 alternate register select (8-11)

This grouping of alternate registers lets you pass pointers between
contexis in each DAG.

4.3 DAG OPERATION
DAG operations include:

¢ address output and modification,
* modulo addressing (for circular buffers), and
¢ bit-reversed addressing

43.1 Address Output And Modification

The processor can add an offset (modifier), either an M register or an
immediate value, to an I register and output the resulting address; this is
called a pre-modify without update operation. Or it can output the I register
value as it is, and then add an M register or immediate value to form a
new I register value. This is a post-modify operation. These operations are
compared in Figure 4.3. The pre-modify operation does not change the
value of the I register. The width of an immediate modifier depends on
the instruction; it can be as much as the width of the I register. The L
register and modulo logic do not affect a pre-modified address—
pre-modify addressing is always linear, not circular.

4.3.1.1 DAG Modify Instructions

In ADSP-21020/21010 assembly language, pre-modify and post-modify
operations are distinguished by the positions of the index and modifier (M
register or immediate value) in the instruction. The I register before the
modifier indicates a post-modify operation. If the modifier comes first, a
pre-modify without update operation is indicated. The following
instruction, for example, accesses the program memory location with an

PRE-MODIFY POST-MODIFY

Without I Register Update With I Register Update
PM (Mx, Ix) PM (Ix, Mx)
DM (Mx, Ix) DM (Ix, Mx)
1. output 2. update

-+

I+M 1+ M
output

Figure 4.3 Pre-Modify and Post-Modify Operations

address equal to the value stored in 115, and the value I15 + M12 is written
back to the I15 register:

R6 = PM(I15,M12); Indirect addressing with post-modify
If the order of the I and M registers is switched, however,
R6 = PM(M12,I15); Indirect addressing with pre-modify

the instruction accesses the location in program memory with an address
equal to I15 + M12, but does not change the value of I15.

Any M register can modify any I register within the same DAG (DAGO or
DAG1). Thus,

DM (MO, I2) = TPERIOD;

is a legal instruction that accesses the data memory location MO + 12;
however,

DM(MO, I14) = TPERIOD;

is not a legal instruction because the I and M registers belong to different
DAGs.

4.3.1.2 Immediate Modifiers

The magnitude of an immediate value that can modify an I register
depends on the instruction type and whether the I register is in DAG1 or
DAG2. DAG1 modify values can be up to 32 bits wide; DAG2 modify
values can be up to 24 bits wide. Some instructions with parallel
operations only allow modify values up to 6 bits wide. Here are two
examples:

32-bit modifier:
R1=DM (0x40000000,I1); DM address = I1 + 0x4000 0000

EPRE Ty S
6-bit ioaifier:

F6=F1+F2,PM(I8,0x0B)=ASTAT; PM address = 18, I8 = 18 + 0x0OB

4.3.2 Circular Buffer Addressing

The DAGs provide for addressing of locations within a circular data
buffer. A circular buffer is a set of memory locations that stores data. An
index pointer steps through the buffer, being post-modified and updated
by the addition of a specified value (positive or negative) for each step. If
the modified address pointer falls outside the buffer, the length of the
buffer is subtracted from or added to the value, as required to wrap the
index pointer back to the start of the buffer (see Figure 4.4). There is no
restriction on the value of the base address for a circular buffer.

Circular buffer addressing must use M registers for post-modify of I
registers, not pre-modify; for example:

F1=DM(I0,MO0) ; Use post-modify addressing for circular buffers,
F1=DM (MO, I0); not pre-modify.

4.3.2.1 Circular Buffer Operation

You set up a circular buffer in assembly language by initializing an

L register with a positive, nonzero value and loading the corresponding
(same-numbered) B register with the base (starting) address of the buffer.
The corresponding I register is automatically loaded with this same
starting address.

On the first post-modify access using the I register, the DAG outputs the I
register value on the address bus and then modifies it by adding the
specified M register or immediate value to it. If the modified value is

Length = 11
Base address =0
Modifier (step size) = 4

Sequence shows order in which locations are accessed in one pass.
Sequence repeats on subsequent passes.

10

11

O O NOL A WDN-= O

O 0O NO UL A WN =0
(3]

© O N P WwN =

© 0O NG A WDN-=0

-t
o
[y
o
[y
o
©
-
o

Figure 4.4 Circular Data Buffers

within the buffer range, it is written back to the I register. If the value is
outside the buffer range, the L register value is subtracted (or, if the
modify value is negative, added) first.

If M is positive,
I.=1,+M if I, + M < Buffer base + length (end of buffer)
[..=1,+M-L if I, + M = Buffer base + length (end of buffer)

If M is negative,
[.,=1,+M if I, + M = Buffer base (start of buffer)
[..=l,+M+L if I, + M < Buffer base (start of buffer)

n

4-8

4.3.2.2 Circular Buffer Registers

All four types of DAG registers are involved in the operation of a circular
buffer:

¢ The I register contains the value which is output on the address bus.

* The M register contains the post-modify amount (positive or negative)
which is added to the I register at the end of each memory access. The
M register can be any M register in the same DAG as the I register and
does not have to have the same number. The modify value can also be
an immediate number instead of an M register. The magnitude of the
modify value, whether from an M register or immediate, must be less
than the length (L register) of the circular buffer.

¢ The L register sets the size of the circular buffer and thus the address
range that the I register is allowed to circulate through. L must be
positive and cannot have a value greater than 23! — 1 (L0-L7) or 2% - 1
(L8-L15). If an L register’s value is zero, its circular buffer operation is
disabled.

o The B register, or the B register plus the L register, is the value that the
modified I value is compared to after each access. When the B register
is loaded, the corresponding I register is simultaneously loaded with
the same value. When I is loaded, B is not changed. B and I can be read
independently.

4.3.2.3 Circular Buffer Overflow Interrupts

There is one set of DAG registers for each memory space that can generate
an interrupt upon circular buffer overflow (i.e. address wraparound). For
data memory, the registers are B7, 17, L7, and for program memory they
are B15, 115, L15. Circular buffer overflow interrupts can be used to
implement a ping-pong (swap I/O buffer pointers) routine, for example.

Whenever a circular buffer addressing operation using these registers
causes the address in the I register to be incremented (or decremented)
past the end (or start) of the circular buffer, an interrupt is generated.
Depending on which register set was used, the interrupt is either:

DAG Registers ~ Vector ~ Symbolic
Interrupt To Use Address Name*
DAGTI circular buffer 7 overflow B7,17,L7 0x58 CB71
DAG?2 circular buffer 15 overflow B15,115, L15 0x60 CBI151

* These symbols are defined in the #include file def21020.h. See Listing 8.5 in the
section “Initialization Following Reset (Initial Setups)” of Chapter 8, Programmer’s
Tutorial, or the ADSP-21020/21010 Programmer’s Quick Reference.

Specifically, an interrupt is generated during an instruction’s address
post-modify when:

(for M<0) I+M<B
(forM=0) T1+M=2B+L

The interrupts can be masked by clearing the appropriate bit in IMASK.

There may be situations where you want to use I7 or I15 without circular
buffering but with the circular buffer overflow interrupts unmasked. To
disable the generation of these interrupts, set the B7/B15 and L7/L15
registers to values that assure that the conditions that generate interrupts
(as specified above) never occur. For example, when accessing the address
range 0x1000-0x2000, your program could set B=0x0000 and L=0xFFFF.
Note that setting the L register to zero will not achieve the desired results.

If you are using either of the circular buffer overflow interrupts, you
should avoid using the corresponding I register(s) (I7 and/or 115) in the
rest of your program, or be careful to set the B and L registers as described
above to prevent spurious interrupt branching.

The STKY status register includes two bits that also indicate the
occurrence of a circular buffer overflow, bit 17 (DAGI1 circular buffer 7
overflow) and bit 18 (DAG2 circular buffer 15 overflow). Rather then
remaining set until explicitly cleared, however, these bits are cleared by
the next subsequent memory access that uses the corresponding

I register (17, I15). Circular buffer interrupts, therefore, should be used
instead of these STKY register bits.

433 Bit-Reversal

Bit-reversal of data memory addresses can be performed in two ways: by
enabling the bit-reverse mode of DAG1 and using a specific I register (10),
or by executing the explicit bit-reverse instruction (BITREV).

4.3.3.1 Bit-Reverse Mode

In bit-reverse mode, DAG1 bit-reverses 32-bit address values output from
I0. This mode is enabled by the BRO bit in the MODEI register. Only
address values from I0 are bit-reversed. This mode affects both pre-modify
and post-modify operations.

MODEI1
Bit Name Definition
1 BRO Bit-reverse for I0 (uses DMS, only)

4-9

4-10

Important: Due to timing constraints, addresses output in bit-reverse
mode always activate DMS;; (Data Memory Select 0) and the number of
wait states associated with it, regardless of the actual address value. In
most systems, this means that a bit-reversed address must be within the
lowest bank of data memory space. (See Chapter 6 for more information
on memory banks.)

Bit-reversal occurs at the output of DAG1 and does not affect the value in
I0. In the case of a post-modify operation, the update value is not bit-
reversed. However, after a data memory access using 10, you can read the
bit-reversed address from universal register DMADR, which holds the last
data memory address output.

Example:

I10=0x80400000;
R1=DM (IO, 3); DM address = 0x201, 10 = 0x8040 0003

4.3.3.2 Bit-Reverse Instruction

The BITREV instruction modifies and bit-reverses addresses in any DAGI
index register (I0-I7) without accessing external data memory. This
instruction is independent of the bit-reverse mode (BRO bit in MODE1).
The BITREV instruction adds a 32-bit immediate value to a DAG1 index
register, bit-reverses the result and writes the result back to the same
index register. The bit-reversed value appears on the data-memory
address bus, but no strobes are active.

Example:

BITREV(I1,4); I1 = Bit-reverse of (I1 + 4)

44 DAG REGISTER TRANSFERS

DAG registers are part of the universal register set and may be written
from data memory, another universal register or an immediate field in an
instruction. Their contents may be written to data memory or a universal
register.

Transfers between 32-bit DAGI registers (7-0) and the 40-bit DMD bus are
aligned to bits 39-8 of the DMD bus. When 24-bit DAG2 registers (15-8)
are read to the 40-bit DMD bus, M register values are sign-extended to 32
bits, and I, L, and B register values are zero-filled to 32 bits. The results are

L

i

aligned to bits 39-8 of the DMD bus. When DAG2 registers are written
from the DMD bus, bits 31-8 are transferred and the rest are ignored.
Figure 4.5 illustrates these transfers.

44.1 DAG Register Transfer Restrictions

For certain instruction sequences involving transfers to and from DAG
registers, an extra (NOP) cycle is either automatically inserted by the
processor (1, 2) or must be inserted in code by the programmer (3). Certain

other sequences cause incorrect results and are not allowed by the
ADSP-21020/21010 Assembler (4).

1.) When an instruction that loads a DAG register is followed by an
instruction that uses any register in the same DAG for data addressing,
the ADSP-21020/21010 inserts an extra (NOP) cycle between the two
instructions. This happens because the same bus is needed by both
operations in the same cycle, therefore the second operation must be
delayed. An example is:

L2=8;
DM (IOQ,M1)=R1;

Because L2 is in the same DAG as I0 (and M1), an extra cycle is inserted
after the write to L2.

39 7 0 23
8 ZEROS 8 ZEROS ¢

| DAG1 Register (7-0)] | DAG2 L L, orB Register (15-8) |

39 23 23

|8 SIGNBITS] DAG2 M Register (15-8)] | DAG2 M Register (15-8) |

Figure 4.5 DAG Register Transfers

8 ZEROS

4-11

4-12

Data Addressing

2.) For the same reason, the ADSP-21020/21010 also inserts an extra cycle
after an instruction that writes a memory control register if it is followed
by an instruction that uses a register in the corresponding DAG (DAGTI for
data memory control registers, DAG2 for program memory control
registers). Data memory control registers are DMWAIT, DMBANKI1-3 and
DMADR. Program memory control registers are PMWAIT, PMBANK1
and PMADR. (Note that because the DAG2 registers are used to fetch
instructions or access data in every cycle, a write to a program memory
control register will always require an extra cycle to be inserted.)

Each of the following instruction sequences, for example,
PMWAIT=0x080000; or DMBANK1=0x10000000;
NOP; R15=DM(IO,M1);

cause the ADSP-21020 to insert an extra cycle between the two
instructions.

3.) An instruction that writes any L or M register of DAG2

(L8-L15, M8-M15), immediately followed by an instruction that reads the
corresponding I register will result in incorrect data being read from the
I register. The following instruction sequence, for example,

L8=24;
RO=1I8;

will cause incorrect data to be read from I8. To prevent this, add a NOP to
your program between the two instructions (i.e. the L or M register write
and the I register read):

L8=24;
NOP;
RO=1I8;

4.) The following kinds of instructions can execute on the processor, but
cause incorrect results; these instructions are disallowed by the ADSP-
21020/21010 Assembler:

® An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the index
register. The instruction writes the wrong data to memory or updates
the wrong index register.
Examples:
DM (M2,I1)=I0; or DM(I1,M2)=I0;

® An instruction that loads a DAG register from memory using indirect
addressing from the same DAG, with update of the index register. The
instruction will either load the DAG register or update the index
register, but not both.
Example:

L2=DM(I1,MO) ;

4-13

Timer

5.1 OVERVIEW

The ADSP-21020/21010 has a programmable interval timer that can
generate periodic interrupts. You program the timer by writing two
universal registers, and you control timer operation through a bit in the
MODE2 register. An external output, TIMEXP, signals to other devices
that the timer count has expired.

5.2 TIMER OPERATION

Figure 5.1, on the next page, shows a block diagram of the timer. Two
universal registers, TPERIOD and TCOUNT, control the timer interval.

Register Function Bits
TPERIOD Timer Period Register 32
TCOUNT Timer Counter Register 32

The TCOUNT register contains the timer counter. The timer decrements
the TCOUNT register each clock cycle. When the TCOUNT value reaches
zero, the timer generates an interrupt and asserts the TIMEXP output high
for 4 cycles (see Figure 5.2, also on the next page). On the next clock cycle
after TCOUNT reaches zero, the timer automatically reloads TCOUNT
from the TPERIOD register.

The TPERIOD value specifies the frequency of timer interrupts. The
number of cycles between interrupts is TPERIOD + 1. The maximum
value of TPERIOD is 2* - 1, so if the clock cycle is 50 ns, the maximum
interval between interrupts is 214.75 seconds.

5.2.1 Timer Enable And Disable

To start and stop the timer, you enable and disable it through a bit in the
MODE?2? register. With the timer disabled, you load TCOUNT with an
initial count value and TPERIOD with the number of cycles for the
interval you want. Then you enable the timer when you want to begin the
count.

Decrement

N

Figure 5.1 Timer Block Diagram

Interrupt; assert TIMEXP;
reload from TPERIOD

CLOCK —J

TIMEXP

|

TCOUNT =1

TCOUNT =0

Figure 5.2 TIMEXP Signal

At reset, the timer enable bit in the MODE?2 register is cleared, so the timer
is disabled. When the timer is disabled, it does not decrement the

TCOUNT register and it generates no interrupts. When the timer enable
bit is set, the timer starts decrementing the TCOUNT register at the end of
the next clock cycle. If the bit is subsequently cleared, the timer is disabled
and stops decrementing TCOUNT after the next clock cycle (see Figure 5.3).

MODE2
Bit Name Definition
5 TIMEN Timer enable

TIMER ENABLE

Set TIMEN in MODE2 Timer Active
CLOCK l
§
f TCOUNT =N TCOUNT =N TCOUNT = N-1 }
1

TIMER DISABLE

Clear TIMEN in MODE2 Timer Inactive
CLOCK I l
E TCOUNT = M-1 TCOUNT = M-2 TCOUNT = M-2 5
b

Figure 5.3 Timer Enable and Disable

522 Timer Interrupt

When the value of TCOUNT reaches zero, the timer generates two
interrupts, one with a relatively high priority, the other with a relatively
low priority. At reset, both are masked. You should unmask only the
timer interrupt that has the priority you want, and leave the other
masked.

IRPTL Name Vector Function

bit
4 TMZHI 0x20 Timer =0 (high priority option)
14 TMZLI 0x70 Timer=0 (low priority option)

Interrupt priority determines which interrupt is scrviced first when two

occur in the same cycle. It also affects interrupt nesting; when nesting is
enabled, only higher priority interrupts can interrupt a service routine.

Like other interrupts, the timer interrupt requires two cycles to fetch and
decode the first service routine instruction. The service routine begins
executing four cycles after the timer count goes to zero, as shown in
Figure 5.4.

NOP NOP i EXECUTE
(FETCH) | (DECODE) i FIRST

p I S e) S B s e D

i H

i TCOUNT=1 E TCOUNT=0 |
SERVICE
INSTRUCTION

Zgoness >< >< >< >< f X X

TIMER
INTERRUPT
VECTOR

Figure 5.4 Timer Interrupt Timing

5.3 TIMER REGISTERS

Both the TPERIOD and TCOUNT registers can be read and written
through universal register transfers. Reading the registers has no effect on
the timer function. An explicit write to TCOUNT has priority over both
the loading of TCOUNT from TPERIOD and the decrementing of
TCOUNT.

Neither TCOUNT nor TPERIOD are affected by a reset, so you should
initialize both registers after reset before enabling the timer.

Memory Interface

6.1 MEMORY MANAGEMENT AND INTERFACE

This chapter describes the memory management and interface capabilities
of the ADSP-21020/21010. In addition, Chapter 9 shows several example
systems with different memory configurations.

The ADSP-21020/21010 has two distinct but similar memory interfaces:
one for program memory, which contains both instructions and data, and
one for data memory, which contains data only. The processor is capable
of connecting to a number of different memory devices and memory-
mapped peripherals. Minimal external hardware is required for a variety
of configurations.

The ADSP-21020/21010 provides on-chip memory management. Program
and data memory spaces are user-configurable into banks (two for
program memory, four for data memory). Wait states for each bank are
independently programmable. The processor also detects page boundaries
to facilitate memory paging.

The bus request/bus grant protocol allows an external device to take
control of the processor’s memory buses. This is useful for transferring
data to its memory, for example. The ADSP-21020/21010 also has an
internal bus exchange path for transferring data between the program
memory and data memory spaces.

6.2

MEMORY BUSES AND CONTROL PINS

The ADSP-21020/21010 accesses program memory through its program
memory interface. Two types of accesses occur across the program
memory buses: instruction fetches and program memory data accesses.
The program memory interface consists of the following pins:

Pin
PMA,,,

PMD,,,

PMS, ,

PMRD
PMWR
PMACK

PMPAGE

PMTS

Type
O

I/0

O

Definition
Program Memory Address. The ADSP-21020/21010 outputs
an address in program memory on these pins.

Program Memory Data. The ADSP-21020/21010 inputs and
outputs data and instructions on these pins. 32-bit fixed-point
data and 32-bit single-precision floating-point data is
transferred over bits 47-16 of the PMD bus.

Program Memory Select lines 1 & 0. These pins are asserted
as chip selects for the corresponding banks of program
memory. Memory banks must be defined in the processor’s
memory control registers. These pins are decoded program
memory address lines and provide an early indication of a
possible bus cycle.

Program Memory Read strobe. This pin is asserted when the
ADSP-21020/21010 reads from program memory.

Program Memory Write strobe. This pin is asserted when the
ADSP-21020/21010 writes to program memory.

Program Memory Acknowledge. An external device deasserts
this input to add wait states to a memory access.

Program Memory Page Boundary. The ADSP-21020/21010
asserts this pin to signal that a program memory page
boundary has been crossed. Memory pages must be defined
in the processor’s memory control registers.

Program Memory Three-State Control. PMTS places the
program memory address, data, selects, and strobes in a high-
impedance state. If PMTS is asserted while a PM access is in
progress, the processor will halt and the memory access will
not be completed. PMACK must be asserted for at least one
cycle when PMTS is deasserted to allow any pending
memory access to complete properly. PMTS should only be
asserted (low) during an active memory access cycle.

O=Output, I=Input. When groups of pins are identified with subscripts,
e.g. PMD,, ,, the highest numbered pin is the MSB (in this case, PMD,,).

Memory Interface 6

The ADSP-21020/21010 accesses data memory through its data memory
interface. The data memory interface consists of the following pins:

Pin Type Definition
DMA (@) Data Memory Address. The ADSP-21020/21010 outputs an

31-0 h :
address in data memory on these pins.

DMD,,, I/O Data Memory Data (ADSP-21020). The ADSP-21020 inputs
and outputs data on these pins. 32-bit fixed-point data and
32-bit single-precision floating-point data is transferred over
bits 39-8 of the DMD bus.

DMD,, , 1/0 Data Memory Data (ADSP-21010). The ADSP-21010 inputs
and outputs data on these pins. (DMDj, , on the ADSP-21010
corresponds to DMD,, ¢ on the ADSP-21020. This should be
taken into account if upgrading is planned.)

DMS, , O Data Memory Select lines 0, 1, 2, & 3. These pins are asserted
as chip selects for the corresponding banks of data memory.
Memory banks must be defined in the processor’s memory
control registers. These pins are decoded data memory
address lines and provide an early indication of a possible
bus cycle.

DMRD O Data Memory Read strobe. This pin is asserted when the
ADSP-21020/21010 reads from data memory.

DMWR o Data Memory Write strobe. This pin is asserted when the
ADSP-21020/21010 writes to data memory.

DMACK I Data Memory Acknowledge. An external device deasserts
this input to add wait states to a memory access.

DMPAGE O Data Memory Page Boundary. The ADSP-21020/21010
asserts this pin to signal that a data memory page boundary
has been crossed. Memory pages must be defined in the
processor’s memory control registers.

DMTS I Data Memory Three-State Control. DMTS places the data
memory address, data, selects, and strobes in a high-
impedance state. If DMTS is asserted while a DM access is in
progress, the processor will halt and the memory access will
not be completed. DMACK must be asserted for at least one
cycle when DMTS is deasserted to allow any pending
memory access to complete properly. DMTS should only be
asserted (low) during an active memory access cycle.

O=Output, I=Input. When groups of pins are identified with subscripts,
e.g. DMD,, ,, the highest numbered pin is the MSB (in this case, DMD,,). 6-3

63 MEMORY INTERFACE TIMING

This section describes the relative timing of memory interface signals
during memory accesses. The descriptions apply to both program
memory and data memory accesses. The following generic signal names
represent the memory control signals; the signals actually used in a
particular access depend on whether program memory or data memory is
being accessed and which bank contains the address.

Signal Name Program Memory Data Memory
Address PMA,,, DMA, |
Data PMD,, DMD,
Memory select PMS 20

Read strobe PMRD

Write strobe PMWR DMWR
Acknowledge PMACK DMACK

6.3.1 Memory Read

Memory reads occur with the following sequence of events (see Figure 6.1):

1. The ADSP-21020 drives the read address and asserts a memory select
signal to indicate the selected bank. A memory select signal is not
deasserted between successive accesses of the same memory bank.

2. The ADSP-21020 asserts the read strobe (unless the memory access is
aborted because of a conditional instruction).

3. The ADSP-21020 checks whether wait states are needed. If so, the
memory select and read strobe remain active for additional cycle(s).
Wait states are determined by the state of the external acknowledge
signal, the internally programmed wait state count, or a combination
of the two (see “Wait States,” later in this chapter).

4. The ADSP-21020 latches in the data.
5. The ADSP-21020 deasserts the read strobe.

6. If initiating another memory access, the ADSP-21020 drives the
address and memory select for the next cycle.

Note that if a memory read is part of a conditional instruction that is not
executed because the condition is false, the ADSP-21020 still drives the
address and memory select for the read, but does not assert the read
strobe or read any data.

CLOCK / \ / A

ADDRESS X READ ADDRESS X

MEMORY

SELECT

READ

STROBE \ /

ACKNOWLEDGE 7 \ n
DATA “ READ DATA "

Figure 6.1 Memory Read Cycle

6.3.2 Memory Write

Memory writes occur with the following sequence of events (see Figure 6.2,
on the following page):

1. The ADSP-21020 drives the write address and asserts a memory select
signal to indicate the selected bank. A memory select signal is not
deasserted between successive accesses of the same memory bank.

2. The ADSP-21020 asserts the write strobe and drives the data (unless
the memory access is aborted because of a conditional instruction).

3. The ADSP-21020 checks whether wait states are needed. If so, the
memory select and read strobe remain active for additional cycle(s).
Wait states are determined by the state of the external acknowledge
signal, the internally programmed wait state count, or a combination
of the two (see “Wait States,” later in this chapter).

4. The ADSP-21020 deasserts the write strobe near the end of the cycle.
5. The ADSP-21020 tristates its data outputs.

6. If initiating another memory access, the ADSP-21020 drives the
address and memory select for the next cycle.

CLOCK ' / \ /

ADDRESS

X WRITE ADDRESS X

MEMORY
SELECT

WRITE
STROBE \ /
ACKNOWLEDGE / \
DATA { WRITE DATA \
\ /

6-6

Figure 6.2 Memory Write Cycle

Note that if a memory write is part of a conditional instruction that is not
executed because the condition is false, the ADSP-21020 still drives the
address and memory select for the write, but does not assert the write
strobe or drive any data.

6.3.3 Three-State Controls

The memory bus three-state enables, DMTS and PMTS, prevent the
ADSP-21020 from driving its external data memory port and program
memory port, respectively. The corresponding acknowledge signal
(DMACK or PMACK) is not sampled when a three-state enable is active.
DMTS and PMTS allow an external device, such as a cache controller, to
take control of the memory interface by first asserting a three-state enable
to keep the ADSP-21020 from driving the bus. When the external device
deasserts the three-state enable, the processor resumes driving its memory
port if it was executing a memory access.

These controls facilitate the implementation of an external cache system.
When the the processor tries to access data that is not in the cache, the
controller asserts the three-state control, writes the needed data into cache,
then releases the three-state control so that the ADSP-21020 can finish the
data access. Unlike with bus request (BR), the ADSP-21020 does not finish
its current instruction before it three-states the memory port.

You must use memory acknowledge (DMACK or PMACK) in conjunction
with DMTS or PMTS, whether or not the memory requires wait states. The
first reason is that there must be an extra cycle after the three-state enable
is deasserted for the memory cycle to complete; the acknowledge should
be deasserted (low) in the same cycle that the three-state enable is
deasserted in. The second reason is that the ADSP-21020 counts wait states
whether or not the memory outputs are enabled, so internally
programmed wait states cannot be used. If memory requires wait states,
use DMACK or PMACK to insert them after the extra cycle that follows
the deassertion of the three-state enable.

DMTS and PMTS do not halt the ADSP-21020 if the processor does not
require a memory access from the three-stated port. In practice, PMTS will
halt the ADSP-21020 because either an instruction fetch or program
memory data access needs to occur every cycle. When only DMTS is
asserted, however, the processor can continue running until it reaches a
data memory access.

DMTS controls the following pins:

DMA, ,

DMD,, . (DMD, , on the ADSP-21010)
%9-0 31-0

DMST

DMS2

DMS3

DMRD

DMWR

DMPAGE

PMTS controls the following pins:

PMA,,
PMD,
PMST
PMRD
PMWR
PMPAGE

6.4 MEMORY BANKS

Each address space on the ADSP-21020 can be divided into banks for
selection. The program memory address space is divided into two banks.
The data memory address space is divided into four banks. The relative
size of these banks is under user control through the registers PMBANKI,
DMBANK1, DMBANK?2 and DMBANK3.

Bank 0 of program memory spans address 0 up to but not including the
value in the 24-bit PMBANKI register. Program memory bank 1 starts at
the value in PMBANKTI1 and runs to the end of program memory space.
Each bank has a separate memory select pin (PMS and PMS)) that is
asserted when the ADSP-21020 outputs an address in the corresponding
memory bank. Wait states for the two banks are independently controlled,
as described under “Extending Memory Cycles with Wait States.”

Similarly, bank 0 of data memory spans address 0 up to but not including
the value in the 32-bit DMBANKTI register. Bank 1 runs from the value in
DMBANKT1 up to the value in DMBANK?2, bank 2 from DMBANK?2 up to
DMBANKS, and bank 3 from DMBANKS3 to the end of data memory
space. For proper operation, the address in DMBANK?2 should be greater
than or equal to that in DMBANKI, and the address in DMBANKS should
be greater than or equal to that in DMBANK2. As in program memory,
each data memory bank has its own memory select pin and independent
wait state control.

Note: When bit-reverse mode is enabled (bit 1 in MODE] is set), data
memory accesses that use I0 will activate DMS_ and insert the number of
wait states programmed for bank 0, regardless of the value of the bit-
reversed address. In most systems, this means that bit-reversed mode can
only be used to access bank 0.

If a memory access is aborted (because of a non-delayed branch, for
example), the memory select signal may be asserted even though there is
NO Memory access.

At reset, the memory bank address registers contain values as follows:

Register Value at Reset
PMBANKI1 0x800000
DMBANK1 0x20000000
DMBANK?2 0x40000000
DMBANK3 0x80000000

6.5

ry

WAIT STATES (EXTENDED MEMORY CYCLES)

To simplify the interface to slow off-chip peripherals and slow memories,
the ADSP-21020 allows a variety of methods for extending off-chip
IMemory accesses.

External. The ADSP-21020 samples its acknowledge input (DMACK or
PMACK) in each clock cycle. If it latches a low value, it inserts a wait
state by holding strobes and address on the interface valid an
additional cycle. If the value is high, the ADSP-21020 completes the
cycle.

Internal. The ADSP-21020 ignores the acknowledge input. Three bits in
a control register specify the number of wait states (zero to seven) for
the access. You can specify a different number for each bank of
memory.

Both. The ADSP-21020 samples its acknowledge input in each clock
cycle. If it latches a low value, the ADSP-21020 inserts a wait state. If
the value is high, the ADSP-21020 completes the cycle only if the
number of wait states specified internally have expired. In this mode,
the internal wait states specify a minimum number of cycles per access,
and an external device can use the acknowledge pin to extend the
access as necessary.

Either. The ADSP-21020 completes the cycle as soon as it samples the
acknowledge input high or the internally specified number of wait
states have expired, whichever occurs first. In this mode, a system with
two types of peripherals could shorten the cycle for the faster
peripheral using the acknowledge but use the internal wait states for
the slower peripheral.

The method selected for each bank of memory is independent of the other
banks. Thus, you can map different speed devices into different memory
banks for the appropriate wait state control.

6-10

Two bits specify the wait state method and three bits specify the number
of wait states (zero to seven) for each bank of each memory space. These
control bits are located in the DMWAIT and PMWAIT registers, shown in
Figure 6.3. The mode bits are decoded as follows:

Mode Description

00 External acknowledge only

01 Internal wait states only

10 Both internal and external acknowledge
11 Either internal or external acknowledge

Wait state control for the program memory interface is determined by the
following bits in the PMWAIT register:

PMWAIT

Bits Function

9-7 Number (in binary) of program memory bank 1 wait states
6-5 Wait state mode for program memory bank 1

4-2 Number (in binary) of program memory bank 0 wait states
1-0 Wait state mode for program memory bank 0

Wait state control for the data memory interface is determined by the
following bits in the DMWAIT register:

DMWAIT
Bits Function
19-17 Number (in binary) of data memory bank 3 wait states

16-15 Wait state mode for data memory bank 3
14-12 Number (in binary) of data memory bank 2 wait states
11-10 Wait state mode for data memory bank 2

9-7 Number (in binary) of data memory bank 1 wait states
6-5 Wait state mode for data memory bank 1
4-2 Number (in binary) of data memory bank 0 wait states
1-0 Wait state mode for data memory bank 0

6.5.1 Extended Data Memory Address Hold Time

The ADSP-21020 holds its data memory address outputs from one cycle to
the next until the next data memory access or BITREV instruction causes
the address to change. This feature simplifies the interface to peripherals
requiring long address hold times. The programmer ensures that the next
data memory access or BITREV instruction occurs after the address hold
requirement has been met. For example, inserting a NOP after a data memory
access instruction guarantees that the address will be held for two cycles.

DMWAIT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15
DRAM Memory Page Size Codes
ofefefe e[]e] P
000 256 Words
| | | 001 512 Words
010 1024 Words
Automatic DRAM Data Bank 3 Bank 3 o1 2048 Words
wait state memory number of wait state 100 4096 Words
on boundary page sizet wait states mode* 101 8192 Words
crossing 110 16384 Words
111 32768 Words
14 13 12 11 8 7 6 5 4 3 2 1 0
[1 ‘1 I‘I‘ |° |1 |1|1 |‘|°|1|1 |1 |1 |°| * Wait State Mode Codes
| | I | | 00 External acknowledge only
o1 Internal wait states only
Bank 2 Bank 2 Bank 1 Bank 1 Bank 0 Bank 0 10 Both external and internal required
numberof waitstate numberof waitstate number of wait state 1" Either external or internal sufficient
wait states mode* wait states mode* wait states mode*
PMWAIT Register
+ DRAM Memory Page Size Codes
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
000 256 Words
001 512 Words
010 1024 Words
011 2048 Words
100 4096 Words
101 8192 Words
110 16384 Words
m 32768 Words
13 12 11 10 9 1 0
folofe ol [[[T [P [[[+ o]
* Wait State Mode Codes

DRAM Bank 1 Bank 1 Bank 0 Bank 0
Program memory number of wait state number of wait state
page sizet wait states mode* wait states mode*

Automatic
wait state
on boundary
crossing

Figure 6.3 Wait State

Control Registers

.ot
10
11

External acknowledge only

Internal wait states only

Both external and internal required
Either external or internal sufficient

6-11

6-12

6.6 MEMORY PAGE BOUNDARY DETECTION

Applications that use large amounts of data may need to use dynamic
RAMs (DRAMSs) for bulk storage. To simplify its interface to page-mode
DRAMs, the ADSP-21020 detects page boundary crossings and outputs a
signal to a DRAM controller. Page boundaries are user-defined and are
determined by page size fields in the wait state control registers.

The ADSP-21020 detects boundary crossings by comparing each address it
outputs to the one just previously output (in the same memory space). For
instance, if a page is 1024 words long, any of the lower ten address bits
can change from one address to the next without addressing a different
page. If the upper 22 (for data memory) or 14 (for program memory)
address bits are the same, the addresses arc in the same memory page. If
any of the upper bits change, however, the ADSP-21020 signals a page
boundary crossing by asserting the PMPAGE pin (for program memory)
or the DMPAGE pin (for data memory).

If the memory access that crosses a page boundary is aborted (because of a
non-delayed branch, for example), the PAGE pin may be asserted even
though there is no memory access. In this case, the ADSP-21020 retains the
address from the previous access to use for comparison; that is, the ADSP-
21020 recognizes that the boundary was not actually crossed.

The PAGE pin is asserted only on the first access to a page. It is always
asserted on the first memory access after a reset. The PAGE pin has the
same timing as the address pins.

t is important to remember that memory pages and memory banks are
handled independently by the ADSP-21020. Page boundary checking
works the same way whether the same bank or a different bank is being
accessed.

6.6.1 Page Size

Three bits in PMWAIT and three in DMWAIT specify the memory page
size in program memory and data memory, respectively:

PMWAIT
Bits Function
12-10 Program memory page size

DMWAIT
Bits Function
22-20 Data memory page size

The page boundary detection logic interprets these bits according to the
following table:

Bit Values Page Size (Words)
000 256
001 512
010 1024
011 2048
100 4096
101 8192
110 16384
111 32768

6.6.2 Wait States On Page Boundary Crossings

One bit each in the DMWAIT and PMWAIT registers controls automatic
wait state generation for page boundary crossings. If this bitis a 1, the
ADSP-21020 inserts one wait state if the access crosses a page boundary
and if the access would not otherwise include a wait state. If the access
already includes at least one wait state, it is not affected.

PMWAIT

Bit Function

13 1=automatic wait state for access across page boundary;
0=no automatic wait state

DMWAIT

Bit Function

23 1=automatic wait state for access across page boundary;

0O=no automatic wait state

At reset, this bit is a 0 in both PMWAIT and DMWAIT, disabling
automatic wait states. The ADSP-21020 always performs page boundary
detection, whether or not the automatic wait states are enabled.

6.7 BUS REQUEST/BUS GRANT

The bus request (BR) and bus grant (BG) signals on the ADSP-21020 allow
an external processor to gain control of the program memory and data
memory buses in order to, for example, transfer data in or out of the
ADSP-21020’s external memory.

6-13

6-14

BRis an input pin that requests access to the buses. When BR is asserted,
the ADSP-21020 completes the current instruction and then places both
data buses, both address buses, read and write strobes, PMPAGE,
DMPAGE and all memory select pins in a high-impedance state. The
ADSP-21020 then asserts BG to indicate to the requesting device that it is
no longer driving its memory buses. The ADSP-21020 remains halted until
BR is deasserted, signalling the release of the buses. The ADSP-21020 then
continues from the instruction at which it halted.

The bus grant operation is shown in Figure 6.4. Detailed timing
requirements and characteristics are given in the ADSP-21020 Data Sheet.
If BRis asserted and then deasserted (in the next cycle) before BG is
asserted, the bus grant may or may not occur. For proper operation, BR
should be held at least until BG goes low.

Interrupts are sampled while the bus is granted, but remain pending until
the bus request is released. When the processor continues program
execution, pending interrupts are serviced in order of priority.

While the ADSP-21020 is in reset, a bus request is recognized immediately
because no instructions are being executed. The bus is granted just as in
normal operation. The clock must be active for bus request to be
recognized.

4L
P24

CLKIN

£

27

EXECUTING EXECUTING* HALTED HALTED HALTED EXECUTING
R
\ 55 g/
BG % N
AN /

&
MEMORY 27 . S
BUSES I ¥ -

Figure 6.4 Bus Request/Bus Grant Timing

* The ADSP-21020 will complete execution of this instruction before granting its buses.
Most instructions require only a single cycle to complete, but additional cycles may be
needed for memory waitstates, DMACK/PMACK, multicycle instructions such as
delayed branches (DB), etc.

6.8 BUS EXCHANGE (PX REGISTERS)

PX1 and PX2 are two registers used for transferring data between the
48-bit PMD bus and 40-bit register file locations or the 40-bit DMD bus.
PX1 is 16 bits wide, and PX2 is 32 bits wide. Either register can be read
from or written to the PMD bus, the DMD bus or the register file.

Data is aligned in PX register transfers as shown in Figure 6.5. When data
is transferred between PX2 and the PMD bus, the upper 32 bits of the
PMD bus are used. On transfers from PX2, the 16 LSBs of the PMD bus are
filled with zeros. When data is transferred between PX1 and the PMD bus,
the middle 16 bits of the PMD bus are used. On transfers from PX1, bits
15-0 and bits 47-32 are filled with zeros.

PMD TRANSFERS DMD OR REGISTER FILE TRANSFERS n

47

a7 15 [}

L PX2 | PX1 |

T
PX REGISTER

Figure 6.5 PX Register Transfers

6-15

6-16

When data is transferred between PX2 and the DMD bus or the register
file, the upper 32 bits of the DMD bus or the register file are used. On
transfers from PX2, the eight LSBs are filled with zeros. When data is
transferred between PX1 and the DMD bus or the register file, bits 23-8 of
the DMD bus or the register file are used. On transfers from PX1, bits 7-0
and bits 39-24 are filled with zeros.

PX1 and PX2 can also be treated as a single PX register, but only for reads
from and writes to program memory via the PMD bus. This allows the PX
pair to contain the entire 48 bits coming from or going to program
memory. PX2 contains the 32 MSBs of the 48-bit word while PX1 contains
the 16 LSBs. (Program memory data is 40 bits wide and left-justified in the
48-bit word.)

To write a 48-bit word to the program memory location named Port1, for
example, the following instructions would be used:

R0O=0x9A00; /* load RO with 16 LSBs */
R1=0x12345678; /* load Rl with 32 MSBs */
PX1=RO;
PX2=R1l;

PM (Portl)=PX; /* write 16 LSBs to PM bits 15-0 */
/* and 32 MSBs to PM bits 47-16 */

Instruction Summary

71 OVERVIEW

This section describes the ADSP-21000 Family instruction set in brief. For
more information, see Appendix A, Instruction Set Reference.

The instructions are grouped into four categories:

I. Compute and Move or Modify
II. Program Flow Control

III. Immediate Move

IV. Miscellaneous

The instructions are numbered; there are 22. Some instructions have more
than one syntactical form; for example, Instruction 4 has four distinct
forms. The instruction number has no bearing on programming, but
corresponds to the opcode recognized by the ADSP-21020/21010 device.

This section also contains several reference tables for using the instruction
set.

Table 7.1 describes the notation and abbreviations used in this section.
Table 7.2 lists all condition and termination code mnemonics.

Table 7.3 lists all register mnemonics.

Tables 7.4 through 7.7 list the syntax for all compute operations

(ALU, multiplier, shifter or multifunction).

¢ Table 7.8 lists interrupts and their vectors.

e o o o

7.2 IMPORTANT PROGRAMMING REMINDERS

This section summarizes information about the operation of the
ADSP-21020/21010 that you should keep in mind when writing
programs. Use it as a checklist for verifying that your program will
execute as you intend.

7.2.1 Extra Cycle Conditions

All instructions can execute in a single clock period but may take longer in
some cases. These cases are described in the following sections.

7.2.1.1 Nondelayed Branches
A nondelayed branch instruction (JUMP, CALL, RTS or RTI) fetches but
does not execute the two instructions that follow it in program memory.

Instead, these operations are aborted and the processor executes two
NOPs.

This two-cycle delay can be avoided by using delayed branches, which
execute the two instructions following the branch instruction. The tradeoff
is that the actual program flow does not match the apparent order of
operations in the program; you must remember that the two extra
instructions are executed before the branch is taken.

7.2.1.2 Program Memory Data Access With Cache Miss

The ADSP-21020 checks the instruction cache on every program memory
data access. If the instruction needed is in the cache, the instruction fetch
from the cache happens in parallel with the program memory data access
and the instruction executes in a single cycle. However, if the instruction
is not in the cache, the ADSP-21020 must wait for the program memory
data access to complete before it can fetch the next instruction. This results
in a minimum one-cycle delay, more if the program memory data access
uses wait states.

7.2.1.3 Program Memory Data Access In Loops

The ADSP-21020 caches an instruction that it needs to fetch during the
execution of a program memory data access. Because of the execution
pipeline, this instruction is usually two memory locations after the
program memory data access. If the program memory data access is in a
loop, there will usually be a cache miss on the first iteration of the loop
and cache hits on subsequent iterations, for a total of one extra cycle
during the loop execution.

However, there are certain cases in which different instructions are
needed from the cache at different iterations. In these cases the number of
cache misses, and therefore extra cycles, increases. These situations are
summarized below. Note that this table is based on the worst-case
scenario; the actual performance of the cache for a given program may be
better.

Cache Loop Length Location of Program
Misses (Instructions) Memory Data Access
1 >2 Not ateor (e—1)
2 22 Ateor(e—-1)
3 1 At the single loop location

e = loop end address

Two Misses: If the program memory data access occurs in the last two
instructions of a loop, there will usually be cache misses on the first and
the last loop iteration, for a total of two extra cycles. On the first iteration,
the ADSP-21020 needs to fetch from the top of the loop (the first or second
instruction). On the last iteration, the ADSP-21020 needs to fetch one of
the two instructions following the loop. At each of these points there will
be a cache miss the first time the code containing the loop is executed.

Three Misses: If a loop contains only one instruction, and that instruction
requires a program memory data access, there are potentially three cache
misses. On the first iteration, the processor needs to fetch the loop
instruction again (if the loop iterates three times or more). On the next-to-
last iteration, the processor needs to fetch the instruction following the
loop. On the last instruction, the processor needs to fetch the second
instruction following the loop. In each case, there will be a cache miss the
first time the code containing the loop is executed.

7.2.1.4 One- And Two-Instruction Loops

Counter-based loops that have only one or two instructions can cause
delays if not executed a minimum number of times. The ADSP-21020
checks the termination condition two cycles before it exits the loop. In
these short loops, the ADSP-21020 has already looped back when the
termination condition is tested. Thus, if the termination condition tests
true, the two instructions in the pipeline must be aborted and NOPs
executed instead.

Specifically, a loop of length one executed one or two times or a loop of
length two executed only once incurs two cycles of overhead because
there are two aborted instructions after the last iteration. Note that these

7-3

Instruc

overhead cycles are in addition to any extra cycles caused by a program
memory data access inside the loop (see previous section). To avoid
overhead, use straight-line code instead of loops in these cases.

7.2.1.5 DAG And Memory Control Register Writes

When an instruction that loads a DAG register is followed by an
instruction that uses any register in the same DAG for data addressing,
the ADSP-21020 inserts an extra (NOP) cycle between the two
instructions. This happens because the same bus is needed by both
operations in the same cycle, therefore the second operation must be
delayed. An example is:

L2=8;
DM(I0,M1)=R1;

For the same reason, the ADSP-21020 also inserts an extra cycle after an
instruction that writes a memory control register if it is followed by an
instruction that uses a register in the corresponding DAG (DAGTI for data
memory control registers, DAG2 for program memory control registers).
Data memory control registers are DMWAIT, DMBANK1-3 and DMADR.
Program memory control registers are PMWAIT, PMBANK1 and
PMADR. (Note that because the DAG2 registers are used to fetch
instructions or access data in every cycle, a write to a program memory
control register will always require an extra cycle to be inserted.)

Each of the following instruction sequences, for example, cause the
ADSP-21020 to insert an extra cycle between the two instructions:

PMWAIT=0x080000; or DMBANK1=0x10000000;
NOP; R15=DM(I0,M1) ;

An instruction that writes any L or M register of DAG2 (L8-L15, M8-M15),
immediately followed by an instruction that reads the corresponding

I register will result in incorrect data being read from the I register. The
following instruction sequence, for example, will cause incorrect data to
be read from I8:

L8=24;
RO=I8;

To prevent this, add a NOP between the two instructions:
L8=24;

NOP;
RO=I8;

7.2.1.6 Wait States

A memory access can be programmed to include a specific number of wait
states and/or to wait for an external acknowledge signal before
completing. If only internally programmed wait states are used, the delay
is the number of wait states (1 wait state = 1 cycle). If the external
acknowledge is used, either alone or in combination with programmed
wait states, the delay depends on the external system and can vary.

7.2.1.7 Page Boundary Crossing

The page detection logic in the ADSP-21020 can be configured to add a
wait state to any memory access that crosses a page boundary. This
feature facilitates the external memory page control, which may require
extra time on a change of page. If it does not, or if paging is not
implemented, the extra wait state does not need to be configured.

7.2.1.8 Three-State Enables

Both the program memory port and the data memory port include a three-
state enable input that an external device can assert to hold the ADSP-
21020 off the particular memory bus. See Chapter 6 for complete
information on these controls. The ADSP-21020 continues to execute
instructions while the three-state enable is active until it requires access to
the memory bus. At that point, the ADSP-21020 must wait, executing
NOPs, until the three-state enable is deasserted. The delay depends on the
external system and can vary.

If the ADSP-21020 is accessing the memory when the corresponding three-
state enable is asserted, it holds off completion of the memory cycle until
the three-state enable is deasserted. DMACK or PMACK must be used to
insert an extra cycle to complete the memory access.

7.2.1.9 Bus Request/Bus Grant

As with the three-state enables, an external device can assert the ADSP-
21020 bus request (BR) to gain control of the memory buses (in this case,
both buses at once). The ADSP-21020 responds to a bus request by
completing the current instruction, placing both memory ports in a high-
impedance state, and asserting its bus grant (BG) output. It executes NOPs
until the bus request is deasserted. As with the three-state enables, the
delay depends on the external system and can vary.

7.22 Delayed Branch Restrictions

A delayed branch instruction and the two instructions that follow it in
program memory must be executed sequentially. Any interrupt that
occurs in between a delayed branch instruction and either of the two
instructions that follow is not processed until the branch is complete.

7-5

7-6

Instructions in the two program memory locations immediately following
a delayed branch instruction can not be any of the following;:

Other Jumps, Calls or Returns

Pushes or Pops of the PC stack

Writes to the PC stack or PC stack pointer
DO UNTIL instruction

IDLE instruction

These exceptions are checked by the assembler.

723 Loop Restrictions

If any of the final three instructions of a loop are a jump without loop
abort, a call or a return, the loop may not be executed correctly. If an
interrupt occurs during the execution of the last three instructions of a

loop, its processing is delayed until after the last instruction is executed.

The third-to-last instruction of a counter-based loop cannot be a write to
CURLCNTR from external memory.

A non-counter-based loop three instructions long completes one full
iteration after the termination condition becomes true. If the loop has two
instructions, one or two full iterations occur after the condition becomes
true. If the loop has only one instruction, three more passes are executed
after the termination condition becomes true.

For no overhead, a counter-based loop of length one must be executed at
least three times and a counter-based loop of length two must be executed
at least twice. Loops of length one that iterate only once or twice and loops
of length two that iterate only once incur two cycles of overhead because
there are two aborted instructions after the last iteration.

Nested loops cannot terminate on the same instruction. For nested loops
in which the outer loop’s termination condition is not LCE, the end
address of the outer loop must be at least two locations after the end
address of the inner loop.

724 Interrupts

ADSP-21020 operations that span more than one cycle are not allowed to
be interrupted. If an interrupt occurs during one of these operations, it is
synchronized and latched, but its recognition is delayed:

* abranch (call, jump or return) and the following cycle, whether it is an
instruction (in a delayed branch) or no-operation (in a non-delayed
branch)

‘@% [
% &
|18

* the first of the two cycles needed to perform a program memory data
access and an instruction fetch (when there is an instruction cache miss).

¢ the third-to-last iteration of a one-instruction loop

¢ the last iteration of a one-instruction loop executed twice and the
following cycle (which is a no-operation)

* the last iteration of a two-instruction loop executed only once and the
following cycle (which is a no-operation)

» the first of the two cycles needed to fetch and decode the first
instruction of an interrupt routine

For most interrupts, internal and external, only one instruction is executed
after the interrupt occurs and before the two instructions aborted while
the processor fetches and decodes the first service routine instruction.
Because of the one-cycle delay between an arithmetic exception and the
STKY register update, however, there are two cycles after an arithmetic
exception occurs before interrupt processing starts.

725 IRPTL

IRPTL is in an indeterminate state at reset. You should clear IRPTL by
writing zeros to it before enabling interrupts or unmasking any interrupt.

7.26 Effect Latency And Read Latency

Writes to some registers require an extra cycle before taking effect. This
delay is called effect latency. Some registers require an extra cycle after a
write before a read of the register yields the new value. This delay is called
read latency. Effect latency and read latency for registers are listed below:

Register Read Effect
Name Latency Latency
PCSTK 0

PCSTKP 1 1
LADDR 0 0
CURLCNTR 0 0
LCNTR 0 0
MODE1 0 1
MODE2 0 1
IRPTL 0 0
IMASK 0 1
IMASKP 1 1
ASTAT 0 1
STKY 0 1
USTAT1 0 0
USTAT2 0 0

7-8

727 CURLCNTR Write & LCE

If an LCE instruction follows a write to CURLCNTR, the condition tested
will be based on the old CURLCNTR value. This is because the write of
CURLCNTR has a delay of one cycle.

7.2.8 Circular Buffer Initialization

You set up a circular buffer by initializing an L register with a positive,
nonzero value and loading the corresponding (same-numbered) B register
with the base (lowest) address of the buffer. The corresponding I register
is automatically loaded with this same starting address.

729 Bit-Reverse Mode And Data Memory Bank Select

Due to timing constraints, addresses output in bit-reverse mode always
activate DMS (Data Memory Select 0) and the number of wait states
associated with it, regardless of the actual address value. In most systems,
this means that a bit-reversed address must be within the lowest bank of
data memory space.

7.2.10 Disallowed DAG Register Transfers

The following instructions execute on the ADSP-21020, but cause incorrect
results. These instructions are disallowed by the assembler:

® Aninstruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the index
register. The instruction writes the wrong data to memory or updates
the wrong index register.

DM(M2, I1) = I0; or DM(I1, M2) = I0;

® Aninstruction that loads a DAG register from memory using indirect
addressing from the same DAG, with update of the index register. The
instruction will either load the DAG register or update the index
register, but not both.

L2 = DM(I1, MO);

7.211 Two Writes To Register File

If two writes to the same register file location take place in the same cycle,
only the write with higher precedence actually occurs. Precedence is
determined by the source of the data being written; from highest to
lowest, the precedence is:

Data memory or universal register
Program memory

ALU

Multiplier

Shifter

7.2.12 Stack Status Flags

The stack overflow/full and underflow flags in the STKY register are not
“sticky.” Writes to the STKY register have no effect on these bits.

7.2.13 Wait States And Three-State Enables

DMTS and PMTS should not be used in conjunction with internally
programmed wait states alone. The ADSP-21020 counts wait states
whether or not the memory outputs are enabled, so three-stating during a
memory access could cause the access to have too few wait states. You
should use memory acknowledge (DMACK or PMACK) to implement
wait states, if needed. The acknowledge can be conditioned by the three-
state enable so that the number of wait states depends on how long DMTS
or PMTS is asserted. DMACK and PMACK are not sampled when the
corresponding three-state enable is active.

o o o ¢ o

7.2.14 Computation Units

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

The ALU Zero flag (AZ) signifies floating-point underflow as well as a
zero result.

Transfers between MR registers and the register file are considered
multiplier operations.

7-10

Notation

UPPERCASE

7

italics
| between lines |

<datan>
<addrn>
<reladdrn>
<bit6>:<len6>

compute

shiftimm

condition
termination

ureg

sreg

dreg

Rn, Rx, Ry, Ra, Rm, Rs
Fn, Fx, Fy, Fa, Fm, Fs
R3-0

R7-4

R11-8

R15-12

F3-0

F7-4

F11-8

F15-12

Ia
Mb
Ic
Md

(DB)
(LA)

MROF
MRI1F
MR2F
MROB
MR1B
MR2B

Meaning

explicit syntax; assembler keyword
instruction terminator

separates parallel operations in an instruction
optional part of instruction

list of options (choose one)

n-bit immediate data value

n-bit immediate address value

n-bit immediate PC-relative address value
6-bit immediate bit position and length values
(for shifter immediate operations)

ALU, multiplier, shifter or multifunction operation

(from Tables 7.4-7.7)

shifter immediate operation (from Table 7.6)
status condition (from Table 7.2)
termination condition (from Table7. 2)
universal register (from Table 7.3)

system register (from Table 7.3)

R15-R0, F15-F0; register file location
R15-R0; register file location, fixed-point
F15-F0; register file location, floating-point
R3, R2, R1, R0

R7,R6,R5, R4

R11, R10,R9, R8

R15, R14, R13, R12

F3, F2, F1, FO

F7,F6,F5, F4

F11, F10, F9, F8

F15, F14, F13, F12

17-10; DAG1 index register
M7-M0; DAG1 modify register
115-18; DAG?2 index register
M15-M8; DAG2 modify register

Delayed branch
Loop abort (pop loop, PC stacks on branch)

Multiplier result accumulator 0, foreground
Multiplier result accumulator 1, foreground
Multiplier result accumulator 2, foreground
Multiplier result accumulator 0, background
Multiplier result accumulator 1, background
Multiplier result accumulator 2, background

Table 7.1 Syntax Notation Conventions

Name Description

EQ ALU equal zero

NE ALU not equal to zero

GE ALU greater than or equal zero
LT ALU less than zero

LE ALU less than or equal zero
GT ALU greater than zero

AC ALU carry

NOT AC Not ALU carry

AV ALU overflow

NOT AV Not ALU overflow

MV Multiplier overflow

NOT MV Not multiplier overflow
MS Multiplier sign

NOT MS Not multiplier sign

SV Shifter overflow

NOT sV Not shifter overflow

5Z Shifter zero

NOT SZ Not shifter zero

FLAGO_IN Flag 0

NOT FLAGO_IN Not Flag 0

FLAG1_IN Flag 1

NOT FLAG1_IN Not Flag 1

FLAG2 IN Flag 2

NOT FLAG2_IN Not Flag 2

FLAG3_IN Flag 3

NOT FLAG3_IN Not Flag 3

TF Bit test flag

NOT TF Not bit test flag

LCE Loop counter expired (DO UNTIL)
NOT LCE Loop counter not expired (IF)
FOREVER Always False (DO UNTIL)
TRUE Always True (IF)

In a conditional instruction, the execution of the entire instruction is based on the
specified condition.

Table 7.2 Condition and Termination Codes

7-11

7-12

Mnemonic
PC*
PCSTK
PCSTKP
FADDR*
DADDR*
LADDR
CURLCNTR
LCNTR
R15-R0O
F15-F0
115-18

17-10
M15-M8
M7-MO
L15-L8
L7-L0
B15-B8
B7-B0
DMWAIT
DMBANK1
DMBANK2
DMBANK3
DMADR
PMWAIT
PMBANK1
PMADR
PX

PX1

PX2
TPERIOD
TCOUNT

Contents

program counter

top of PC stack

PC stack pointer

fetch address

decode address

top of loop address stack

top of loop count stack

loop count for next loop

register file locations (fixed-point data)
register file locations (floating-point data)
DAGS2 index registers

DAGT! index registers

DAG2Z modify registers

DAG1 modify registers

DAG?2 length registers

DAGTI length registers

DAG?2 base registers

DAGT base registers

wait state and page size control for data memory
data memory bank 1 lower boundary
data memory bank 2 lower boundary
data memory bank 3 lower boundary
copy of last data memory address

wait state and page size control for program memory
program memory bank 1 lower boundary
copy of last program memory address
48-bit PX1 and PX2 combination

bus exchange 1 (16 bits)

bus exchange 2 (32 bits)

timer period

timer counter

System Registers (these are also Universal Registers):

MODE1
MODE2
IRPTL
IMASK
IMASKP
ASTAT
STKY
USTATI1
USTAT2

* read-only

mode control 1

mode control 2
interrupt latch
interrupt mask
interrupt mask pointer
arithmetic status
sticky status

user status reg 1

user status reg 2

Table 7.3 Universal Registers and System Registers

The system register bit manipulation instruction can be used to set, clear,

toggle or test specific bits in the system registers. This instruction is
described in Appendix A, Group IV-Miscellaneous instructions.

Examples:

BIT SET MODE2 0x00000070;

BIT TST ASTAT 0x00002000;

Fixed-point

Rn = Rx + Ry

Rn =Rx-Ry

Rn = Rx + Ry, Rm = Rx - Ry
Rn=Rx+Ry+CI
Rn=Rx-Ry+CI-1
Rn = (Rx + Ry)/2
COMP(Rx, Ry)

Rn = -Rx

Rn = ABS Rx

Rn = PASS Rx

Rn = MIN(Rx, Ry)
Rn = MAX(Rx, Ry)
Rn = CLIP Rx BY Ry
Rn =Rx + CI
Rn=Rx+CI-1
Rn=Rx+1
Rn=Rx-1

Rn = Rx AND Ry
Rn = Rx OR Ry

Rn = Rx XOR Ry

Rn = NOT Rx

Table 7.4 ALU Instructions

Floating-point
Fn=Fx+Fy

Fn =Fx-Fy

Fn =Fx + Fy, Fm = Fx - Fy
Fn = ABS (Fx + Fy)

Fn = ABS (Fx - Fy)

Fn = (Fx + Fy)/2
COMP(Fx, Fy)

Fn =-Fx

Fn = ABS Fx

Fn = PASS Fx

Fn = MIN(Fx, Fy)

Fn = MAX(Fx, Fy)

Fn = CLIP Fx BY Fy
Fn = RND Fx

Fn =SCALB Fx BY Ry
Rn = MANT Fx

Rn = LOGB Fx

Rn = FIX Fx BY Ry

Rn = FIX Fx

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx

Fn = RECIPS Fx

Fn = RSQRTS Fx

Fn = Fx COPYSIGN Fy

7-13

Rn :Rx*Ry(SHS'F) Fn =Fx*Fy
MRF ulial 1
MRB FR
Rn = MRF +Rx*Ry(SHS‘F) Rn = MRF —Rx*Ry(SHS'
Rn = MRB uliui I Rn = MRB uliu
MRF = MRF FR MRF = MRF
MRB = MRB MRB = MRB
Rn = SAT MRF]| |(SI) Rn = RND MRF| |(SF)
Rn = SAT MRB| |(UI) Rn = RND MRB| |(UF)
MRF = SAT MRF| |(SF) MRF = RND MRF
MRB = SAT MRB! [((UF) MRB = RND MRB|
MRF| =0
MRB
MRxF|= Rn Rn = |[MRxF
MRxB MRxB
(a9 Q) S Signed input

2 & ég 6) Unsigngd input

& 85 5% I Integer input(s)

X > 58 F Fractional input(s)

S FR Fractional inputs, Rounded output

Rn, Rx, Ry R15-R0; register file location, fixed-point
Fn, Fx, Fy F15-FO; register file location, floating-point
MRxF MR2F, MR1F, MROF; multiplier result accumulators, foreground
MRxB MR2B, MR1B, MROB; multiplier result accumulators, background
(SF) Default format for 1-input operations
(SSF) Default format for 2-input operations

Table 7.5 Multiplier Instructions

7-14

F
i
FR

)

-

Eo

7

Shifter Shifter Immediate

Rn = LSHIFT Rx BY Ry Rn = LSHIFT Rx BY <data8>

Rn = Rn OR LSHIFT Rx BY Ry Rn = Rn OR LSHIFT Rx BY <data8>

Rn = ASHIFT Rx BY Ry Rn = ASHIFT Rx BY <data8>

Rn = Rn OR ASHIFT Rx BY Ry Rn = Rn OR ASHIFT Rx BY <data8>
Rn = ROT Rx BY RY Rn = ROT Rx BY <data8>

Rn = BCLR Rx BY Ry Rn = BCLR Rx BY <data8>

Rn = BSET Rx BY Ry Rn = BSET Rx BY <data8>

Rn = BTGL Rx BY Ry Rn = BTGL Rx BY <data8>

BTST Rx BY Ry BTST Rx BY <data8>

Rn = FDEP Rx BY Ry Rn = FDEP Rx BY <bit6>:<len6>

Rn = Rn OR FDEP Rx BY Ry Rn = Rn OR FDEP Rx BY <bit6>:<len6>
Rn = FDEP Rx BY Ry (SE) Rn = FDEP Rx BY <bit6>:<len6> (SE)
Rn =Rn ORFDEP Rx BY Ry (SE) ~ Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
Rn = FEXT Rx BY Ry Rn = FEXT Rx BY <bit6>:<len6>

Rn = FEXT Rx BY Ry (SE) Rn = FEXT Rx BY <bit6>:<len6> (SE)
Rn = EXP Rx

Rn = EXP Rx (EX)

Rn = LEFTZ Rx

Rn = LEFTO Rx

Table 7.6 Shifter and Shifter Inmediate Instructions

7-15

Fixed-point

Rm=R3-0 * R7-4 (SSFR),
Rm=R3-0 * R7-4 (SSFR),
Rm=R3-0 * R7-4 (SSFR),

Ra=R11-8 + R15-12
Ra=R11-8 - R15-12
Ra=(R11-8 + R15-12)/2

MRF=MREF + R3-0 * R7-4 (SSF),
MRF=MREF + R3-0 * R7-4 (SSF),
MRF=MREF + R3-0 * R7-4 (SSF),
Rm=MRF + R3-0 * R7-4 (SSFR),
Rm=MRF + R3-0 * R7-4 (SSFR),
Rm=MRF + R3-0 * R7-4 (SSFR),
MRF=MREF - R3-0 * R7-4 (SSF),
MRF=MREF - R3-0 * R7-4 (SSF),
MRF=MRF - R3-0 * R7-4 (SSF),
Rm=MRF - R3-0 * R7-4 (SSFR),
Rm=MRF - R3-0 * R7-4 (SSFR),
Rm=MRF - R3-0 * R7-4 (SSFR),
Rm=R3-0 * R7-4 (SSFR),

Ra=R11-8 + R15-12
Ra=R11-8 - R15-12
Ra=(R11-8 + R15-12)/2
Ra=R11-8 + R15-12
Ra=R11-8 - R15-12
Ra=(R11-8 + R15-12)/2
Ra=R11-8 + R15-12
Ra=R11-8 - R15-12
Ra=(R11-8 + R15-12)/2
Ra=R11-8 + R15-12
Ra=R11-8 - R15-12
Ra=(R11-8 + R15-12)/2
Ra=R11-8 + R15-12, Rs=R11-8 - R15-12

Floating-point
Fm=F3-0 * F7-4,
Fm=F3-0* F7-4,
Fm=F3-0 * F7-4,
Fm=F3-0 * F7-4,
Fm=F3-0 * F7-4,
Fm=F3-0 * F7-4,
Fm=F3-0*F7-4, Fa=MAX (F11-8, F15-12)
Fm=F3-0*F7-4, Fa=MIN (F11-8, F15-12)
Fm=F3-0*F7-4, Fa=F11-8 + F15-12, Fs=F11-8 - F15-12

Fa=F11-8 + F15-12
Fa=F11-8 - F15-12
Fa=FLOAT R11-8 by R15-12
Fa=FIX R11-8 by R15-12
Fa=(F11-8 + F15-12)/2
Fa=ABS F11-8

Ra,Rm Any register file location (fixed-point)

R3-0 R3,R2, R1, RO

R7-4 R7, R6, R5, R4

R11-8 R11, R10, R9, R8

R15-12 R15,R14, R13, R12

Fa,Fm Any register file location (floating-point)

F3-0 F3,F2,F1, FO

F7-4 F7,F6, F5, F4

F11-8 F11, F10, F9, F8

F15-12 F15,F14, F13,F12

(SSF) X-input signed, Y-input signed, fractional inputs
(SSFR) X-input signed, Y-input signed, fractional inputs, rounded output

Table 7.7 Multifunction Instructions

7-16

E
L F oY %
E e B

No. Vector Function

0 0x00 Reserved

1* 0x08 Reset

2 0x10 Reserved

3 0x18 Status stack or loop stack overflow or PC stack full
4 0x20 Timer=0 (high priority option)
5 0x28 IRQ, asserted

6 0x30 IRQ, asserted

7 0x38 IRQ, asserted

8 0x40 IRQ, asserted

9 0x48 Reserved

10 0x50 Reserved

11 0x58 Circular buffer 7 overflow

12 0x60 Circular buffer 15 overflow

13 0x68 Reserved

14 0x70 Timer=0 (low priority option)
15 0x78 Fixed-point overflow

16 0x80 Floating-point overflow

17 0x88 Floating-point underflow

18 0x90 Floating-point invalid operation

19-23 0x98-B8 Reserved
24-31 0xCO-F8 User software interrupts
* Nonmaskable

Table 7.8 Interrupt Vectors and Priority

7-17

7 Instruction Sumn

ry

1. Compute and Move or Modify
1. compute, | DM(Ia, Mb) =dregl | , | PM(Ic, Md) =dreg?2 | ;
dregl = DM(Ia, Mb) dreg2 = PM(Ic, Md)

2. IF condition compute ;

3. a. IF condition compute, | DM(a, Mb) | = ureg;

PM(Ic, Md)

DMMb, Ia) | = ureg;
PMi(vid, ic) |

b. IF condition compute,

c¢. IFcondition compute, ureg= | DM(a, Mb) | ;
PM(c, Md)

d. IF condition compute, ureg= | DM(Mb, Ia) | ;
PM(Md, Ic)

4. a. IF condition compute, | DM(a, <data6>) | =dreg;

PM(Ic, <data6>)
b. IF condition compute, | DM(<data6>, Ia) | =dreg;
PM(<data6>, Ic)
c. IF condition compute, dreg = | DM(Ia, <data6>) | ;
PM(Ic, <data6>)
d. IF condition compute, dreg = | DM(<data6>,1a) | ;
PM(<data6>, Ic)
5. IF condition ~ compute, uregl = ureg?2;
6. a. IF condition shiftimm , |DM(Ia, Mb) =dreg ;
PM(Ic, Md)
b. IF condition shiftimm , dreg = | DM(Ia, Mb) | ;
PM(Ic, Md)
7. IF condition compute, MODIFY | (Ia, Mb) |;
(Ic, Md)

7-18

11.

12.

13.

Program Flow Control

IF condition | JUMP | <addr24> (| DB ;
CALL (PC, <reladdr24>) LA
DB,LA
IF condition | JUMP l | (Md, Io) | (| DB , compute ;
CALL (PC, <reladdr6>) LA
DB, LA
IF condition | RTS (| DB), compute ;
RTI LA
DB, LA
LCNTR = <datal6> , DO <addr24> UNTIL LCE;
| ureg ' (<PC, reladdr24>)
UNTIL termination ;

DO | <addr24>
(PC, <reladdr24>)

7-19

118
14.

15.

16.

17.

o

&

o

Immediate Move

DM(<addr32>) | = ureg;

PM(<addr24>)

ureg = | DM(<addr32>) | ;
PM(<addr24>)

DM(<data32>,1a) | = ureg;

PM(<data24>, Ic)

virac = | DM(da8220s T .

wils | ivi\suawavs~, lall 2
PM(<data24>, Ic)

DM(Ia, Mb) | = <data32>;

PM(Ic, Md)

ureg = <data32> ;

18.

19.

20.

21.

22,

Miscellaneous

BIT SET

CLR
TGL
TST

XOR

MODIFY '

BITREV

PUSH
POP

NOP;

IDLE ;

(Ia, <data32>)

l LOOP ,

PUSH
POP

sreg <data32> ;

(Ia, <data32>) |;
(Ic, <data32>)

’

|STS;

Assembly Programming
Tutorial

8.1 INTRODUCTION

This tutorial is for first-time ADSP-21020/21010 assembly-language
programmers. It explains basic techniques and conventions for good
programming. The approach described here can be applied to
ADSP-21020/21010 programming in general.

The tutorial makes use of the ADSP-21000 Family Development Software
(Assembler, Linker and Simulator programs). You must have this
software to complete the parts of the tutorial that create the executable
programs.

This tutorial demonstrates ADSP-21020/21010 programming by example.
It presents two completely working DSP systems based on the
ADSP-21020, highlighting:

* Architecture file
* Assembler preprocessor directives
* Calling subroutines in another file from the main program
* General processor initialization procedure
¢ Interrupt vector table placement and usage
* Programming memory wait states and bank selects
* Looping code, including;:
—Rolling a loop for more compact code
¢ Multifunction instructions, focusing on:
—Usage and restrictions
¢ Simulating I/O ports
¢ Using the interval timer
* How to use interrupts, including;:
—Vector table code
~Which registers are used
—What to do after processor reset
—Fast context switching
* Special features of the system registers
¢ Useable code examples
* Two turnkey, complete system examples
* An additional, efficient FFT code example

Both examples filter digital data using infinite impulse response (IIR)
filters. The examples consist of a main calling shell and called subroutines.
Technical information on the filters themselves is presented after the
examples.

The source files for the examples presented in this chapter can be obtained

by:

¢ Downloading the files from the DSP Applications Bulletin Board
Service (see © page at the front of this manual for BBS contact
information),

® Purchasing the ADSP-21000 Family Development Software, which
includes the example files, or

¢ Contacting Analog Devices DSP Applications Engineering directly (see
© page at the front of this manual for phone/FAX numbers).

The first example, called “iirmem”, (see Figure 8.1) reads a buffer of input
values stored in memory, passes the data through the filter, and writes the
results to another buffer in memory. The second example, called “iirirq”,
(see Figure 8.2, on page 8-4) reads input data via a memory-mapped 1/O
port and writes the filtered values to another port. The second program
also serves to demonstrate how the interval timer can be used to generate
processor interrupts at a desired sampling rate and how interrupts are
handled on the ADSP-21020/21010. The software aspects of I/O port
hardware are also described.

8.2 EXAMPLE #1: DATA IN MEMORY, NO INTERRUPTS

The first example (program flowchart shown in Figure 8.1) reads a buffer
of input values stored in memory, passes the data through the filter, and
writes the results to another buffer in memory. Because no interrupts are
used, execution progresses at the processor instruction rate until all input
values have been filtered. After filtering the input data set, execution
would normally continue, so in this example, the IDLE instruction is used
to halt execution. The example also shows how the input data is initialized
in memory.

IIRMEM.ASM CASCADE.ASM

(MAIN PROGRAM) (SUBROUTINES)

RESET PROCESSOR

CONFIGURE DSP
MEMORY BANKS,
WAIT STATES

DATA MEMORY

A~

INITIALIZE ADDRESS
AND DATA REGISTERS
T CALL SUBROUTINE INITIALIZE
| IR DELAY
RETURN LINE STORAGE
INBUF
READ INPUT
VALUE
CALL SUBROUTINE 6TH ORDER
300 SAMPLES RETURN Zfo%iicéffé’n
OUTBUF STORE RESULT
VALUE
300 RESULTS
N=300? NO
SNV, (i.e. DONE)

BREAKPOINT

Memory-resident input sample vector ("INBUF") is filtered, storing the resuit
vector in another data buffer ("OUTBUF"). No interrupts are used. Execution
ceases when done.

Figure 8.1 Program Flow for First Example

IIRIRQ.ASM CASCADE.ASM

(MAIN PROGRAM) (SUBROUTINES)

RESET PROCESSOR

CONFIGURE DSP MEMORY
BANKS, WAIT STATES

INITIALIZE ADDRESS
AND DATA REGISTERS

T CALL SUBROUTINE INITIALIZE
—»1 iR oELAY
- RETURN LINE STORAGE

INITIALIZE INTERVAL TIMER
FOR SAMPLING

/O PORTS ARE

MAPPED INTO (CONFIGURE INTERRUPTS >
DATA MEMORY
DATA MEMORY
/‘/\ ENABLE INTERRUPTS
WAIT FOR INTERRUPTS
| — INTERRUPT
_. — SERVICE
- REQUEST
CALL SUBROUTINE 6TH ORDER
IIR CASCADED
RETURN BIQUAD FILTER
OUT_CHANNEL STORE RESULT
VALUE
—
i —
— _a RETURN
hAVEANY/ FROM
INTERRUPT

Sampled data is read from a memory-mapped I/O port during execution under interrupt
control. Results are written out to another port. The DSP is interrupted at the sampling rate.
The DSP's interval timer is the sampling clock.

Figure 8.2 Program Flow for Second Example

Programming Tutorial 8

8.2.1 File Inventory

Let’s start by taking inventory of the files used in this system. Table 8.1
enumerates the files and gives a brief description of their functions:

Filename Function

generic.ach architecture description file

iirmem.asm main assembly program

cascade.asm cascaded biquad filter subroutine (called by main program)
iircoefs.dat filter coefficients

makefile.mem MS-DOS “make” file used to create executable program

Table 8.1 Files Used for Memory-Based (No Interrupts) Program

8.2.2 Architecture Description File (generic.ach)

Figure 8.3, on page 8-8, shows how actual external memory could be
connected, in hardware, to the ADSP-21020 in this example. Notice that
there are three physical memory banks, each 2048 (0x800) words in length.
Figure 8.4 shows the total addressable program and data memory map of
the ADSP-21020 and highlights the portions used in Figure 8.3. Listing 8.1,
on the following page, contains the description of the architecture found
in Figure 8.3. This file, called the architecture description file, is used by both
the linker and the simulator during the code development process. The
architecture description file guides the linker in placing code and data in
the ADSP-21020 memory map. This file is also used by the simulator in
order to simulate not only the processor itself, but also the memory
connected to it.

If you are familiar with the ADSP-2100 Family (16-bit fixed-point DSP)
development tools, you may be surprised that the ADSP-21000 Family
Development Software has no System Builder program. Instead, the
ADSP-21020/21010 software tools read the .ach text file directly for the
necessary information. In other words, you create the .ach file with a text
editor and that’s it—mno other actions are needed.

8-6

.SYSTEM generic;
.PROCESSOR = ADSP21020;
memory

directive type start address
.SEGMENT /RAM /BEGIN=0x000000
.SEGMENT /RAM /BEGIN=0x000008
.SEGMENT /RAM /BEGIN=0x000010
.SEGMENT /RAM /BEGIN=0x000018
.SEGMENT /RAM /BEGIN=0x000020
.SEGMENT /RAM /BEGIN=0x000028
.SEGMENT /RAM /BEGIN=0x000030
.SEGMENT /RAM /BEGIN=0x000038
.SEGMENT /RAM /BEGIN=0x000040
.SEGMENT /RAM /BEGIN=0x000048
.SEGMENT /RAM /BEGIN=0x000050
.SEGMENT /RAM /BEGIN=0x000058
.SEGMENT /RAM /BEGIN=0x000060
.SEGMENT /RAM /BEGIN=0x000068
.SEGMENT /RAM /BEGIN=0x000070
.SEGMENT /RAM /BEGIN=0x000078
.SEGMENT /RAM /BEGIN=0x000080
.SEGMENT /RAM /BEGIN=0x000088
.SEGMENT /RAM /BEGIN=0x000090
.SEGMENT /RAM /BEGIN=0x000098
.SEGMENT /RAM /BEGIN=0x0000A0
.SEGMENT /RAM /BEGIN=0x0000A8
.SEGMENT /RAM /BEGIN=0x0000B0
.SEGMENT /RAM /BEGIN=0x0000B8
.SEGMENT /RAM /BEGIN=0x0000CO
.SEGMENT /RAM /BEGIN=0x0000C8
.SEGMENT /RAM /BEGIN=0x0000DO
.SEGMENT /RAM /BEGIN=0x0000D8
.SEGMENT /RAM /BEGIN=0x0000EQ
.SEGMENT /RAM /BEGIN=0x0000E8
.SEGMENT /RAM /BEGIN=0x0000FO0
.SEGMENT /RAM /BEGIN=0x0000F8
.SEGMENT /RAM /BEGIN=0x000100
.SEGMENT /RAM /BEGIN=0x000800
.SEGMENT /RAM /BEGIN=0x000000
.SEGMENT /PORT
.ENDSYS;
Listing 8.1 generic.ach

end address

/END=0x000007
/END=0x00000F
/END=0x000017
/END=0x00001F
/END=0x000027
/END=0x00002F
/END=0x000037
/END=0x000047
/END=0x00004F
/END=0x000057
/END=0x00005F
/END=0x000067
/END=0x00006F
/END=0x000077
/END=0x00007F
/END=0x000087
/END=0x00008F
/END=0x000097
/END=0x00009F
/END=0x0000A7
/END=0x0000AF
/END=0x0000B7
/END=0x0000BF
/END=0x0000C7
/END=0x0000CF
/END=0x0000D7
/END=0x0000DF
/END=0x0000E7
/END=0x0000EF
/END=0x0000F7
/END=0x0000FF

/END=0x0007FF
/END=0x000FFF

memory
space

/PM
/PM
/PM
/PM
/PM
/PM

/PM
/DM

/2N

/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM
/PM

/PM
/PM

/END=0x0007FF
/BEGIN=0xF0000000 /END=0xFO00001lF /DM

/DM

segment
name

resrvdO;
rst_svc;
resrvdl;
sovf_sve;
tmzh_svc;
irqg3_svc;
irqg2_ svc;
irgl swvcy
irq0_svc;
resrvd2;
resrvd3;
cb7_svc;
cbl5 svc;
resrvd4;
tmzl_svc;
fix_svc;
flto_svc;
fltu_sve;
flti svc;
resrvdb;
resrvd6;
resrvd7;
resrvd8;
resrvd9;
sft0_svcy
sftl svc;
sft2_svcy;
sft3_svc;
sftd svc;
sft5_svc;
sft6_svc;
sft7_svc;

pm_code;
pm_data;

dm _data;
ports;

The .sysTeM and .EnDsvYs directives indicate the start and end of the
architecture description. Although the segment names are arbitrary, they
are chosen here to be self-documenting.

The first of the three physical 2K-word memory blocks is divided into 33
segments. The first 32 segments are mapped to the 256 (0x100) locations
reserved for the interrupt vector table, and the other segment named
pm_code contains the balance (0x700) for general instruction code storage.
This memory is connected to the program memory interface.

The second of the three physical 2K-word memory blocks is set aside for
data storage in program memory space. This block only contains one
segment named pm_data. This memory is also connected to the program
memory interface. See the following section for a description of how the
processor differentiates between this program memory block and the
previous one.

The third of the three physical 2K-word memory blocks is general-
purpose data memory. This block only contains one segment named
dm_data. This memory is connected to the data memory interface.

8.2.3 External vs. Internal Address Decoding

Figure 8.3, on the following page, shows how external hardware address
decoding logic arbitrates to select which program memory block drives
the program memory interface at a given time. The block titled “address
decode” is an address comparator. Depending on the value on the PMA
bus, the address decoder enables either one memory block or the other.

To avoid the need for this external logic, the ADSP-21020 incorporates
internal address decoding logic. Both the program memory and the data
memory spaces are divided into several banks, each of which has it own
select line (PMS0 and PMST for program memory, DMS0, DMSI, DMS?2
and DMS3 for data memory). When accessing memory, only the
appropriate select line becomes active, depending on the address value.
The boundary addresses are stored in special registers on the ADSP-21020
(PMBANKT1, and DMBANKTI, 2, 3). Example #2 “lirirq” makes use of these
bank selects. Compare Figure 8.4 for example #1 and Figure 8.6 for
example #2.

VDD VDD
Address
Decode | |
2K x 40 bit CE | DMACK PMACK CE 2K x 48 bit
SRAM Address [DMA PMA - B> Address SRAM
Data [“® 1 pmD PMD [#{ Data st
—_ R J— T ve"
vom data” WE [DMWR PMWR | WE . S—s;
im_data — _ JR—— — m_code"
- OE | = DMRD PMRD -1 OE pm_c
DMS0 PMST [— NIC
NeC — DMST PMSO |— N/C
N s TE 2K x 40 bit
—— bl X I
Nc —] DMS3
1 Address SRAM
ADSP-21020* =1 Daia
| WE
* other ADSP-21020 signals not shown oF "om_data"

8-8

Figure 8.3 Physical Memory Architecture Described in “generic.ach”

8.24 Specifying The .ACH File

The architecture file can be specified to the linker (Id21k) and the
simulator (sim21k) with the —a <filename> switch at invocation. For
example:

1d21k iirmem cascade -a generic -m
runs the linker using “generic.ach” as the architecture file, and

sim2lk -e iirmem -a generic
invokes the simulator loading “generic.ach” as the architecture file.
Although the filename extension “.ach” is explicitly specified in this
example, the linker and simulator assume this extension by default and it

need not be typed.

8.2.5 Main Program (iirmem.asm)

The main assembly program, called “iirmem.asm,” is shown in Listing 8.2.
This program performs the ADSP-21020’s initial setups after reset, then
proceeds into the main processing loop.

Program Memory Data Memory

0x00 0000 0x0000 0000
0x00 0008 "dm_data"
0x00 0010 0x0000 0800
0x00 0100
pm_code"
0x00 0800
'om_data" 0x4000 0000
(DMBANK1
0x00 1000 default address)
0x8000 0000
om0

default address)
default address) |

0xC000 0000
(DMBANK3
default address)
OxFF FFFF

I:I = accounted for in architecture description file OxFFFF FFFF

= address space unused in this example

-
m\ = addresses associated with interrupt vector table

Figure 8.4 Memory Map Described in “generic.ach”

The typical initial setups include:

Disabling interrupts, (default at processor reset)

Initializing the interrupt vector table,

Altering the values in the memory hardware configuration registers:
DMBANKTI, 2, 3, PMBANK1, DMWAIT, PMWAIT

Initializing address and data registers,

Initializing memory locations and buffers,

Configuring and initializing on-chip peripherals such as the timer,
Configuring interrupts, and

Enabling interrupts (done last).

The main processing loop is either:

* A list of tasks which eventually terminates, possibly with interrupts, or
* An endless loop, most often interrupted with interrupt-driven tasks.

.EXTERN cascaded biquad, cascaded biquad_init;
.GLOBAL coefs, dline;

.PRECISION=40;

-ROUND_NEAREST;

#define SAMPLES 300
#define SECTIONS 3

.SEGMENT /DM dm_data;

.VAR inbuf [SAMPLES] = 1.0, 0.0; { input = unit impulse }

.VAR outbuf [SAMPLES] ; { ends up holding impulse response }
. VAR dline [SECTIONS*2]; { w", w', NEXT w“, NEXT w', ... }
.ENDSEG;

.SEGMENT /PM pm_data;
. VAR coefs [SECTIONS*4]="iircoefs.dat”; { al2,all,bl2,bll,a22,a2l,... }
.ENDSEG;

.SEGMENT /PM rst_svc;
jump begin;
.ENDSEG;

.SEGMENT /PM pm_code;

initial setups :
begin: pmwait=0x0021;
dmwait=0x8421;
b3=inbuf; 13=0;
bd4=outbuf; 14=0;
10=0; 11=0; 18=0;
ml=1; m8=1;
call cascaded_biquad_init (db); { zero the delay line }
r0=SECTIONS;
bO=dline;

zero wait states for all of PM }
zero wait states for all of DM }

—_~

main processing loop :
lentr=SAMPLES, do filtering until lce;

£8=dm(i3,1);
call cascaded biquad (db); { input=F8, output=F8 }
bO=dline;
b8=coefs;
filtering: dm(i4,1)=£8;
done: idle;

.ENDSEG;

Listing 8.2 iirmem.asm

8-10

8.2.5.1 Initial Setups: Initialization Following Reset
This section describes each of the initial setups.

Disabling interrupts. Resetting the processor automatically disables
interrupts by setting the IMASK register to zero. IRPTL, the interrupt latch
register, is not affected by reset and therefore should be cleared before
enabling any interrupts. However, no interrupts are ever enabled in this
example. Therefore you do not need to do anything with these registers in
this case.

Initializing the interrupt vector table. At the beginning of instruction
memory space is the non-relocatable interrupt vector table as required by
the ADSP-21020 (see Figure 8.4). For any given interrupt signal, there is a
predetermined instruction address (called the interrupt vector) which is
branched to when the interrupt occurs. The instruction at this address is
often a jump to an interrupt service routine which resides outside the
interrupt vector table (see Listing 8.2).

Interrupt vector table addresses are spaced by eight locations. This allows
eight cycles of code to be executed for a given interrupt without a branch
and the associated overhead, providing quick interrupt servicing for short
routines. The only requirement is to terminate the instruction sequence
with a return from interrupt (RTI) instruction.

Interrupt service code within the interrupt vector table which extends
beyond the allotted eight locations is not advised. For example, it is
possible to extend into the space reserved for the next interrupt if that
interrupt is not being used, but this is a poor programming practice.

In addition, certain interrupt vector entries should not be used at all. The
first vector location PM[0x00] is reserved and should never be used by the
programmer. The remaining vectors labeled “reserved” could be used for
code, but this would be a poor programming practice. If those vector
locations are utilized by future members of the ADSP-21000 family, using
those locations on the ADSP-21020 today may result in code
incompatibility in the future.

By sectioning the interrupt table space (PM[0] - PM[0xFF]) into 32
segments of 8 Jocations each, both of these poor programming practices
are effectively discouraged.

8-11

8-12

This particular vector table simply causes the processor to branch after
reset to the beginning of the executable code, at the label begin, which
immediately follows the end of the vector table (PM[0x100]). In this
example, the only interrupt vector table instructions are stored in the
“rst_svc” segment:

.SEGMENT /PM rst_svc;
Jjump begin;
.ENDSEG;

All other vectors are left undefined.

Example #2 (“iirirq”) shows how other interrupts are incorporated into
the vector table.

Altering the values in the memory hardware configuration registers.
The first instructions executed after reset alter the ADSP-21020 memory
configuration registers, the DMWAIT and PMWAIT registers. These wait
state configuration registers contain default values at reset. In this
example, the registers are altered with values that set all software wait
states to zero. The wait state mode is set to software-programmed wait
only (i.e., the DMACK and PMACK hardware inputs are not used).

begin: pmwait=0x0021; { zero wait states for all of PM }
dmwait=0x8421; { zero wait states for all of DM }

The programmable memory bank boundaries are defined with
PMBANK1, DMBANK1, DMBANK?2 and DMBANKS registers. These
memory bank registers contain default address values at reset (see Figure
8.4). Since bank 0 of both program and data memory always starts at
address zero, there are no PMBANKO or DMBANKO registers. In this
example, the bank default addresses are left unchanged. Example #2
shows a more extensive memory configuration procedure.

Initializing address and data registers. Registers which reside in the data
address generators (DAGs) are used for addressing purposes. These
registers may be initialized during the initial setup period, especially in
short code examples such as this one, where DAG registers serve
unchanging functions. The instructions that initialize these registers are:

b3=inbuf; 13=0;

b4=outbuf; 14=0;

10=0; 11=0; 18=0;
ml=1; m8=1;

s

.

Notice that setting a B (base) register automatically also sets the associated
I (index) register to the same value. Although the B register is only
necessary in circular buffering applications, during initial setup it is a
good practice to set the B register instead of the I register even if the buffer
is not circular. That way, if you later decides to make the buffer a circular
buffer by setting the associated L (length) register to a certain value, there
will be no problems with having not initialized the B register.

It is especially important to preset the length (L) registers. Neglecting to
set the L registers may cause circular buffer addressing when nonzero
data appears in the L registers upon powerup. Where circular addressing
is NOT desired, set the appropriate L registers to zero. Where circular
addressing IS desired, set the appropriate L registers to the circular buffer
length.

The initialization of one of the B registers (B0) occurs in the program after
a delayed call instruction but it is actually executed before the call, with
the other initializations, since the call is delayed. This is shown in the next
section.

Initializing memory locations and buffers. The delay line storage
memory for the IIR filter is cleared to zero by calling the subroutine
cascaded_biquad_init. This memory initialization code resides in another
file called “cascade.asm.” Notice that delayed branching is used for
execution efficiency.

call cascaded bigquad_init (db); { zero the delay line }
r0=SECTIONS; { executed on the way }
b0=dline; { into the subroutine }

Configuring and initializing on-chip peripherals. No on-chip
peripherals are used. No setups are required in this case.

Configuring and enabling interrupts. Since interrupts are not used in this
example, they are neither configured nor enabled. Upon reset, the default
register values are such that if you are not planning on using interrupts,
you do not have to worry about interrupt configuration at all.

8-13

8-14

8.2.5.2 Main Processing Loop

Once the initial setups are complete, the filtering operation can begin.
Three hundred input samples reside in an input data buffer, and the
program must process each one via the filtering operation and store the
results in the output data buffer. The 300 iterations are automatically
managed in hardware by a zero-overhead DO UNTIL loop construct. The
loop is set up in conjunction with assigning the value 300 to the loop
counter register (LCNTR). Unlike in the ADSP-2100 family, these two
operations can be done in the same instruction cycle. For example:

#define SAMPLES 300
lentr=SAMPLES, do filtering until lce;

Five instructions are executed within the loop. First, an input data value is
read from the input buffer. Then the cascaded_biquad subroutine is called.
The subroutine code resides in a separate file called “cascade.asm.”
Because the call is a delayed branch, the two instructions that follow the
call instruction actually get executed before the call. This is indicated here
by indenting these two instructions. The next instruction after returning
from the subroutine stores the returned value from the subroutine in the
output buffer. For example:

f8=dm(i3,1);
call cascaded biquad (db); { input=F8, output=F8 }
b0=dline;
b8=coefs;
filtering: dm(i4,1)=£8;

Upon termination of the loop, the ADSP-21020 continues by executing
subsequent code. In this example, that code is an IDLE instruction, which
halts the processor. When using the simulator, you could set a breakpoint
at the instruction labeled done to halt execution. A breakpoint will not only
halt simulation when reached, but it will also display a message. For
example:

done: idle; { set breakpoint here! }

8.2.6 Creating The Executable Program

The executable program for this example is created using the following
commands to invoke the ADSP-21000 Family Assembler and Linker:

asm2lk iirmem
asm2lk cascade
1d21k iirmem cascade -a generic -m

The memory map file, created by linking the files using the —m switch,
shows how the linker loads the interrupt vector instructions, the main
program, the called subroutines, and all the associated data spaces into the
memory segments defined by the architecture file in Listing 8.1.

8.2.7 Simulation

This example system can be simulated by entering the following
command to invoke the ADSP-21020/21010 Simulator:

sim21lk -e iirmem -a generic

Look at the input buffer and the output buffer. Notice that the output
buffer does not contain the results yet. Set a breakpoint at the program
memory location labelled done. Allow the simulator to run (execute the
processor code). It will halt upon fetching the breakpoint instruction. Look
at the output buffer, which should now contain the result values. These
results may be dumped into a file using the memory dump command.

8-15

8-16

83 EXAMPLE #2—INTERRUPT-DRIVEN, WITH PORT /O

This second example (program flowchart shown in Figure 8.2) reads one
input value from a memory-mapped I/O port, passes the data through the
filter, and writes the result value to another port. This transaction occurs
whenever requested by an interrupt signal, in this case the timer interrupt.
This example uses the interval timer to generate periodic interrupts.
Specific topics which will be explored here are:

programming the interrupt vector table

setting up the ADSP-21020 to react to interrupts and configuring how
they are used

using memory-mapped I/O ports

simulating operation with the software development tools
benchmarking the execution efficiency of interrupt-driven code
interrupt debugging hints

Some information relevant to this example is presented in example #1
(iirmem). Instead of duplicating this information, example #2 highlights
new or different information only.

8.3.1 File Inventory

Table 8.2 lists the files and gives a brief description of their functions:

Filename Function

iirirg.ach architecture description file

def21020.h bit position definitions for ADSP-21020 system registers
iirirqg.asm main assembly program

cascade.asm cascaded biquad filter subroutine

iircoefs.dat filter coefficients

makefile.irqg MS-DOS “make” file used to create executable program
input.dat example input file for I/O port simulation
out300.dat example output file from I/O port simulation

Table 8.2 Files Used for Interrupt-Driven Program using Port I/0

8.3.2 Architecture Description File (iirirg.ach)

Figure 8.5 shows how actual external memory could be connected, in
hardware, to the ADSP-21020 in this example. Notice three physical RAM
memory banks, each 2048 (0x800) words in length, in conjunction with
two memory-mapped I/O ports. Figure 8.6 shows the total addressable
program and data memory maps of the ADSP-21020 and highlights which
portions are used by the system in Figure 8.5. Listing 8.3 contains the
description of the architecture found in Figure 8.5.

.SYSTEM TIRTIRQ example_ arch file;
.PROCESSOR = ADSP21020;
memory memory segment
directive type start address end address space name
.SEGMENT /RAM /BEGIN=0x000008 /END=0x00000F /PM rst_svc;
.SEGMENT /RAM /BEGIN=0x000020 /END=0x000027 /PM tmzh_svc;
.SEGMENT /RAM /BEGIN=0x000100 /END=0x0007FF /PM pm_code;
.SEGMENT /RAM /BEGIN=0x000800 /END=0x000FFF /PM pm_bankl;
.SEGMENT /RAM /BEGIN=0x00000000 /END=0x00000FFF /DM dm__bankO;
.SEGMENT /PORT /BEGIN=0x00001000 /END=0x00001000 /DM dm_bankl;
.SEGMENT /PORT /BEGIN=0x00002000 /END=0x00002000 /DM dm“bank2;
.ENDSYS;
Listing 8.3 iirirg.ach
VDD
VDD
4K x 40 bit CE = 1 DMACK PMACK
SRAM Address [DMA ss
Data [*% »{ DMD — —
%; DMWR PuSt I L> cE 2K x 48 b
— — PMA 1 Address SRA“
"dm_bank0" OE [« DMRD PMD Data st sve®
DMS0 PMWR WE "ts _: . "
h | CE r DuST PMRD OF ”mz _s;c"
out_channe Siss ‘'om_code
om bankt” e | —| owss
m_ban WE = N/C
ADSP-21020* pu—
in_channel CE | °F 2K x 40 bit
- Dat * other ADSP-21020 signals not shown] Address SRAM
ata >
"dm_bank2" — P Data
OE [%* —
1 WE
ACK g —
»1 OE "pm_bank1"

Figure 8.5 Physical Memory Architecture Described in “iirirg.ach”

8-17

Data Memory

0x00 0000 0x0000 0000
0x00 0008 "dm_bank0"
0x00 0010
0x00 0020
) (DMBANK1 0x0000 1000
0x00 0028 new address) "dm_bank1"
0x00 0100] ; 0x0000 1001
pom_code (DMBANK2 0x0000 2000
0x00 0800 0x0000 2001
(PMBANK1 "pm_bank1"
new address)
0x00 1000
0xC000 0000
(DMBANK3
default address)
OxFF FFFF
(all addresses are in hex)
|:| = accounted for in architecture description file OxFFFF FFFF

address space unused in this example

m = addresses associated with interrupt vector table

Figure 8.6 Memory Map Described in “iirirq.ach”

8-18

8.3.3 Main Program (iirirg.asm)

The main assembly program, called “iirirq.asm,” is shown in Listing 8.4.
Following the typical structure of any ADSP-21020 program as shown in
example #1, this program also performs the ADSP-21020’s initial setups
after reset, then proceeds into the main processing loop. Because
interrupts, the interval timer, and memory bank selects will be used, there
are more setup tasks to be done in this example than in example #1.

#include “def21020.h” { bit definitions }
#define SAMPLES 300
#define SECTIONS 3

.EXTERN cascaded biquad, cascaded biquad init;
.GLOBAL coefs, dline;

.PRECISION = 40;

.ROUND_NEAREST;

.SEGMENT /DM dm bank0;
.VAR dline[SECTIONS*2];
.ENDSEG;

selected by DMSO~ }
filter delay line: }
w", w', NEXT w“, NEXT w', ... }

.SEGMENT /DM dm _bankl;
.VAR in_channel;
.ENDSEG;

selected by DMS1~ }
memory-mapped I/0 port }

—

.SEGMENT /DM dm bank2;
VAR out_channel;
.ENDSEG;

selected by DMS2~ }
memory-mapped I/0 port }

.SEGMENT /PM pm_bankl;
.VAR coefs [SECTIONS*4]="iircoefs.dat”;

-~

selected by PMS1~ }

al2z,all,bl2,bll,a22,a21,... }
.ENDSEG;

.SEGMENT /PM rst_svc;
jump begin;
.ENDSEG;

—

processor RESET service }

.SEGMENT /PM tmzh_svc;
jump new_sample;
.ENDSEG;

timer interrupt service }

.SEGMENT /PM pm_code; { selected by PMSO~ }

(listing continues on next page)

8-19

Programming Tut

initial setups:
begin: pmwait = 0x0021;
dmwait = Oxc401;

pmbank1=0x000800;
dmbank1=0x00001000;
dmbank2=0x00002000;
10=0; 11=0; 18=0;
ml=1; m8=1;

call cascaded biquad_init (db);

r0=SECTIONS;
b0=dline;
tperiod=199;
tcount=199;
bit set imask TMZHI;
bit set mode2 TIMEN;
bit set model IRPTEN;

main processing loop:
wait: idle;
jump wait;

interrupt service routine which does the filtering:
new_sample:
f£8=dm(in_channel) ;
call cascaded biquad (db);
b0=dline;
b8=coefs;
rti (db);
dm (out_channel)=£8;
nop;
.ENDSEG;

Listing 8.4 iirirq.asm

{
{

RAM zero wait states }
RAM = zero wait states

in_channel = ext. hardware ACK
out_channel = 5 automatic waits }

{

~— -

— - —

—

~— -

.

first addr of pm bank 1 (PMS1l~) }
first addr of dm bank 1 (DMS1l~) }
first addr of dm bank 2 (DMS2~) }

zero the delay line }

100 kHz sampling if CLKIN=20.0 MHz}
allow timer interrupt }

turn on timer }
allow interrupts }

wait for interrupts indefinitely }
after rti, go wait for more }

simulate this channel with a file }
input=F8, output=F8 }

simulate this channel with file }

Programming Tutorial

{
def21020.h - STATUS REGISTER BIT DEFINITIONS FOR ADSP-21020

This include file contains a list of “defines” to enable the programmer to
use symbolic names for all of the system register bits for the ADSP-21020.

{ MODEl register }

#define BRO 0x00000002
#define SRCU 0x00000004
#define SRD1H 0x00000008
#define SRD1L 0x00000010
#define SRD2H 0x00000020
#define SRD2L 0x00000040
#define SRRFH 0x00000080
#define SRRFL 0x00000400
#define NESTM 0x00000800
#define IRPTEN 0x00001000
#define ALUSAT 0x00002000
#define TRUNC 0x00008000
#define RND32 0x00010000

Bit 1: Bit-reverse for IO (uses DMSO- only)
Bit 2: Alt. register select for comp. units
Bit 3: DAGl alt. register select (7-4)

Bit 4: DAGl alt. register select (3-0)

Bit 5: DAG2 alt. register select (15-12)

Bit 6: DAG2 alt. register select (11-8)

Bit 7: Register file alt. select for R(15-8)
Bit 10: Register file alt. select for R(7-0)
Bit 11: Interrupt nesting enable

Bit 12: Global interrupt enable

Bit 13: Enable ALU fixed-pt. saturation

Bit 15: 1=fltg-pt. truncation 0=Rnd to nearest
Bit 16: 1=32-bit fltg-pt.rounding 0=40-bit rnd

- o n - A o - —

{ MODE2 register }

#define IRQOE 0x00000001 Bit 0: IRQ0- l=edge sens. O=level sens.
#define IRQLE 0x00000002 Bit 1: IRQl- l=edge sens. 0O=level sens.
#define IRQ2E 0x00000004 Bit 2: IRQ2- l=edge sens. O=level sens.
#define IRQ3E 0x00000008 Bit 3: IRQ3- l=edge sens. O=level sens.
#define CADIS 0x00000010 Bit 4: Cache disable

Bit 5: Timer enable
Bit 15: FLAGO l=output O=input
Bit 16: FLAGl l=output O=input
Bit 17: FLAG2 l=output O=input
Bit 18: FLAG3 l=output O=input
Bit 19: Cache freeze

#define TIMEN 0x00000020
#define FLGOO 0x00008000
#define FLG1O 0x00010000
#define FLG20 0x00020000
#define FLG30 0x00040000
#define CAFRZ 0x00080000

e e e e -
e o e o

{ ASTAT register }

Bit 19: FLAGO value
Bit 20: FLAGl value

#define FLGO 0x00080000
#define FLG1 0x00100000

#define AZ 0x00000001 { Bit O0: ALU result zero or fltg-pt. underflow }
#define AV 0x00000002 { Bit 1: ALU overflow }
#define AN 0x00000004 { Bit 2: ALU result negative }
#define AC 0x00000008 { Bit 3: ALU fixed-pt. carry }
#define AS 0x00000010 { Bit 4: ALU X input sign (ABS and MANT ops) }
#define AI 0x00000020 { Bit 5: ALU fltg-pt. invalid operation }
#define MN 0x00000040 { Bit 6: Multiplier result negative }
#define MV 0x00000080 { Bit 7: Multiplier overflow }
#define MU 0x00000100 { Bit 8: Multiplier fltg-pt. underflow }
#define MI 0x00000200 { Bit 9: Multiplier fltg-pt. invalid operation }
#define AF 0x00000400 { Bit 10: ALU fltg-pt. operation }
#define SV 0x00000800 { Bit 11: Shifter overflow }
#define SZ 0x00001000 { Bit 12: Shifter result zero }
#define SS 0x00002000 { Bit 13: Shifter input sign }
#define BTF 0x00040000 { Bit 18: Bit test flag for system registers }

{ }

{ }

(listing continues on next page)

8-21

#define FLG2 0x00200000
#define FLG3 0x00400000
#define CACCO 0x01000000
#define CACC1 0x02000000
#define CACC2 0x04000000
#define CACC3 0x08000000
#define CACC4 0x10000000
#define CACCS 0x20000000
#define CACC6 0x40000000
#define CACC7 0x80000000

Bit 21: FLAG2 value

Bit 22: FLAG3 value

Bit 24: Compare Accumulation Bit
Bit 25: Compare Accumulation Bit
Bit 26: Compare Accumulation Bit
Bit 27: Compare Accumulation Bit
Bit 28: Compare Accumulation Bit
Bit 29: Compare Accumulation Bit
Bit 30: Compare Accumulation Bit
Bit 31: Compare Accumulation Bit

S U U ORI
~N oUW NP O

{ STKY register }

#define AUS 0x00000001 { Bit O: ALU fltg-pt. underflow

#define AVS 0x00000002 { Bit 1: ALU fltg-pt. overflow

#define AOS 0x00000004 { Bit 2: ALU fixed-pt. overflow

#define AIS 0x00000020 { Bit 5: ALU fltg-pt. invalid operation
#define MOS 0x00000040 { Bit 6: Multiplier fixed-pt. overflow

#define MVS 0x00000080 { Bit 7: Multiplier fltg-pt. overflow

#define MUS 0x00000100 { Bit 8: Multiplier fltg-pt. underflow

#define MIS 0x00000200 { Bit 9: Multiplier fltg-pt. invalid operation
#define CB7S 0x00020000 { Bit 17: DAGl circular buffer 7 overflow
#define CB15S 0x00040000 { Bit 18: DAG2 circular buffer 15 overflow
#define PCFL 0x00200000 { Bit 21: PC stack full

#define PCEM 0x00400000 { Bit 22: PC stack empty

#define SSOV 0200800000 { Bit 23: Status stack overflow (MODEl and ASTAT)
#define SSEM 0x01000000 { Bit 24: Status stack empty

#define LSOV 0x02000000 { Bit 25: Loop stack overflow

#define LSEM 0x04000000 { Bit 26: Loop stack empty

{ IRPTL and IMASK and IMASKP registers }

#define RSTI 0x00000002 { Bit 1: Address: 08: Reset

#define SOVFI 0x00000008 Bit 3: Address: 18: Stack overflow
#define TMZHI 0x00000010 Bit 4: Address: 20: Timer = 0 (high priority)
#define IRQ3I 0x00000020 Bit 5: Address: 28: IRQ3- asserted

#define IRQ2I 0x00000040 Bit 6: Address: 30: IRQ2- asserted

#define IRQLI 0x00000080 Bit 7: Address: 38: IRQl- asserted

#define TRQOI 0x00000100 Bit 8: Address: 40: IRQO- asserted

#define CB7I 0x00000800 Bit 11: Address: 58: Circ. buffer 7 overflow
#define CB15I 0x00001000 Bit 12: Address: 60: Circ. buffer 15 overflow
#define TMZLI 0x00004000 { Bit 14: Address: 70: Timer = 0 (low priority)
#define FIXI 0x00008000 Bit 15: Address: 78: Fixed-pt. overflow
#define FLTOI 0x00010000 Bit 16: Address: 80: fltg-pt. overflow
#define FLTUI 0x00020000 Bit 17: Address: 88: fltg-pt. underflow
#define FLTII 0x00040000 Bit 18: Address: 90: fltg-pt. invalid
#define SFTOI 0x01000000 Bit 24: Address: CO: user software int
#define SFT1I 0x02000000 Bit 25: Address: C8: user software int
#define SFT2I 0x04000000 Bit 26: Address: DO: user software int
#define SFT3I 0x08000000 Bit 27: Address: D8: user software int
#define SFT4I 0x10000000 Bit 28: Address: EO0: user software int
#define SFTSI 0x20000000 Bit 29: Address: E8: user software int
#define SFT6I 0x40000000 Bit 30: Address: F0: user software int
#define SFT7I 0x80000000 Bit 31: Address: F8: user software int

g S S

oy Ul W NP O

Listing 8.5 def21020.h

e o e e e e e e St e o e o

o e e e e e e v e e e e e o e o o e e e e

8.3.3.1 |Initialization Following Reset (Initial Setups)

This section describes each of the initial setups.

Disabling interrupts. A processor reset automatically clears the IMASK
register, effectively blocking any interrupts from interfering with
instruction execution. There is nothing the programmer is required to do
for this step.

Initializing the interrupt vector table. As in example #1, the beginning of
program memory is used to store the interrupt vector table. Part of the
initialized vector table can be found in Listing 8.4.

Altering the values in the memory hardware configuration registers.
Memory wait states are configured by the PMWAIT and DMWAIT
registers. Upon processor reset, these registers contain these default
values:

PMWAIT: 0x0000 03DE
DMWAIT: 0x000F 7BDE

In the example system in Figure 8.5, all RAM can operate with zero wait
states in both program memory and data memory spaces. The two I/O
channels mapped into data memory require wait states, however. The
input channel sends a hardware acknowledge when it is ready to end its
bus (read) cycle; thus, the input device controls the number of wait states.
The output channel functions properly with five wait states.

8-23

To set the wait state registers for this example system, execute the
following instructions:

pmwait=0x0021; {RAM = no waits}

dmwait=0xC401; {RAM = no waits,
in_channel = ext. hardware-generated ACK,
out_channel = automatic 5 cycle waits}

The on-chip memory bank select decoding simplifies the hardware
memory interface shown in Figure 8.5. Notice that three memory devices
are required on the data memory side: a RAM storage area, an input
device, and an output device. The two I/O channels could be A/D or
D/ A converters or buffers to a host computer bus, for example.

When the processor accesses a data memory location, one of four memory
select lines is activated. Program memory space is likewise divided into
two banks. Figure 8.4 shows the standard memory subdivision created by
the initial values of the PMBANK and DMBANK registers after processor
reset. In this example, the following lines of code modify this memory
configuration to the one shown in Figure 8.6.

pmbankl = 0x000800; {change PMSl~ start address}
dmbankl = 0x00001000; {change DMSl~ start address}
dmbank2 = 0x00002000; {change DMS2~ start address}

Initializing address and data registers. The same considerations
presented in example #1 apply here. In this example, circular addressing
is not used as reflected in the following code fragment:

10=0; 11=0; 18=0;
ml=1; m8=1;

The index (I) registers and the base (B) registers are set in this example
during the two instructions which immediately follow delayed call
instructions to the subroutines which use the DAG registers.

Initializing memory locations and buffers. In the software development
stage, RAM or ROM buffers in memory can be initialized by the assembler
using directives such as:

.VAR cosine[256] = “cos.dat”;
.VAR list[4] = 18.37, 1.0, -300.28769, 0.0;

In actual hardware, however, RAM sections cannot make use of these
assembly-time initializations. The PROM Splitter creates files which
PROM programmers use to initialize ROM memory. Emulation tools
allow downloading initialized values to RAM memory. In the latter case,
the initialization only occurs once—before processor reset. If the processor
changes the initialized memory, subsequent reset operations would not
re-initialize memory, causing the system to restart in a state that is
different than the original one.

A good programming practice is to write code which reliably reinitializes
your RAM memory buffers during the initial setup phase after processor
reset. In this example, a subroutine is called to zero out the biquad filter
delay element storage locations.

call cascaded_biquad init (db); {zero the delay line}
r0=SECTIONS;
b0=dline;

Here the B0 (and 10 automatically) registers are initialized as well.

Configuring and initializing on-chip peripherals. The timer on the
ADSP-21020 is utilized in this example for creating the sampling
interrupts which control the filtering operation. In our example, the
ADSP-21020 is clocked at a 20.0 MHz rate. The timer is configured for a
sampling interval such that the sampling frequency is 100 kHz. The
TPERIOD register is set accordingly as well as TCOUNT.

tperiod=199; {100 kHz intervals at 20.0 MHz CLKIN}
tcount=199;

The general formula for calculating the proper TPERIOD value is:
Interrupt Rate = CLKIN frequency /(TPERIOD+1)

An interrupt rate of 9.6 kHz, for example, with a 20 MHz CLKIN
frequency requires a TPERIOD value of 0x822. TCOUNT is the register
which decrements during every processor cycle, and TPERIOD holds the
value which is automatically reloaded into TCOUNT when the timer
expires (decrements to zero and causes an interrupt).

Configuring and enabling interrupts. Good programming practice
dictates that all setup operations should conclude before interrupts are
allowed to affect program execution. The last two setup tasks are to
configure the interrupting scheme and then enable interrupts to be
recognized. In this example, the only interrupt being used is from the
timer, which controls the sampling rate of the filter.

Table 8.3 shows all five registers in the ADSP-21020 which affect interrupt
configuration. Only some of the functions controlled by these registers are
used in this example; the others are left in their default states. See the
Interrupts section in Chapter 3 for complete information on these
registers. -

Name Function
IMASK which interrupts are to be recognized?
IMASKP what to do in the case of interrupt nesting?
(configured by processor automatically)
IRPTL which interrupts have occurred?
MODE1 bit 12 turns interrupts on or off
bit 11 turns interrupt nesting on or off
MODE2 bit 5 turns the interval timer on or off

bits 0-3 set IRQ0-3 edge- or level-sensitive

Table 8.3 Interrupt-Related Registers

These registers are set in this example as follows:

bit set imask 0x10;
bit set mode2 0x20;
bit set model 0x1000; {last initial setup}

Using standard definitions in the #include file called “def21020.h,” shown
in Listing 8.5, the bit positions specified by the values in these instructions
translate to more readable bit names:

#include “def21020.h" {place at top of file}

bit set imask TMZHI;
bit set mode2 TIMEN;
bit set model IRPTEN; {last initial setup}

The IMASK register is set in such a way to allow the timer to interrupt the
processor. This register is automatically cleared to zero during a procesor
reset. The timer has two different mask bits associated with it:

TMZHI (bit position 4 or 0x00000010)
TMZLI (bit position 14 or 0x00004000)

The timer interrupts are described in Chapter 5. You may select to either
use the higher priority or the lower priority interrupt. The higher priority
one was chosen in this example, but since no other interrupts are being
used, either position could have been selected.

The timer is enabled by setting TIMEN to 1 in the MODE2 register. Once
the timer is enabled, it automatically decrements the TCOUNT register
once during every processor cycle. During this initial setup phase, the
TCOUNT and the TPERIOD registers are typically set to the same value.
This gives the processor some time to finish the last few setup instructions
before going to the main loop and waiting there for interrupts. Keep in
mind that as soon as you enable the timer, it begins to decrement on the
next cycle.

8-28

The IRPTL register is where interrupt requests are latched and cleared.
This register is unaffected by a processor reset, and conseqently it is the
programmer’s responsibility to clear this register before enabling
interrupts. This can be done with any of the following equivalent
instructions:

irptl = 0;
bit clr irptl OxXFFFFFFFF;

It is good programming practice to execute this instruction just before
executing the instruction which enable interrupts (IRPTEN bit in the
MODET register).

The MODET1 register has two bits (NESTM, IRPTEN) which impact
interrupt operation. This register is automatically cleared to zero during a
processor reset. The NESTM bit enables interrupt nesting. This example
does not use nesting, so this bit is left unaltered after processor reset. The
IRPTEN bit is the global interrupt enable bit. In order for the ADSP-21020
to service any interrupts whatsoever, this bit must be set. It is the
programmer’s responsibility to set this bit to a 1. It is good programming
practice to only do so once all other initial setup operations are complete.
The last instruction before the main processing loop section of code
should be this:

bit set model 0x1000;

or
#include “def21020.h”

bit set model IRPTEN;

8.3.3.2 Main Processing Loop

Having completed all the necessary initial setup operations, the program
is ready to execute the main processing loop. The main processing loop
typically consists of either:

* a list of tasks which eventually terminates, possibly with interrupt
intervention, or

¢ an endless loop, waiting to be interrupted, in which most tasks are
performed during interrupt service routines.

In this example, the second method is implemented. The endless loop
consists of nothing more than:

wait: idle;
Jjump wait;

This keeps the ADSP-21020 in an idle state, waiting for an interrupt to tell
it to process the next sample. It is good programming practice to be
executing an IDLE instruction while waiting for interrupts (without doing
anything else) because this technique lowers the power consumption of
the processor in a system. The IDLE instruction is described in Chapter 9.

The total power budget is calculated by summing the power dissipated in
idle mode as well as the power dissipated in servicing interrupts. A
shorter interrupt service routine means that a greater percentage of time is
spent using less power.

8.3.3.3 Terminating The Main Processing Loop

This main processing loop runs indefinitely, without termination. To stop
execution during simulation, however, open the input port simulation file
and select Autowrap=NO as an option. This causes the simulator to stop
when the end-of-file (EOF) is reached in the input file. More details on this
follow.

8.3.4 Creating The Executable Program

The executable program for this system example is created using these
commands to invoke the ADSP-21000 Family Assembler and Linker:

asm2lk iirirqg NOTE: def21020.h must be in current directory
asm2lk cascade
1d21k iirirqg cascade -a iirirqg -m

8.3.5 Simulation
This example system can be simulated using these commands to invoke
the ADSP-21000 Family Simulator:

sim21k -e iirirq -a iirirg NOTE: input.dat must be in current directory

In this example, the input samples are read from an I/O port simulation
file. The file called “input.dat” is chosen as the input data. The contents of
this file (see Listing 8.6) represent a normalized unit impulse function.
Notice that the file can contain comments.

Once inside the simulation session, open the ports, and use the
Autowrap=NO option. After simulation is complete, the output file
generated by writing to the simulated output port should contain the
filter’s impulse response function (see Listing 8.7).

1.000 This is the input data
0.000 for the biquads

0.000

0.000

0.000

0.000 (300 samples total)

Listing 8.6 Input Data Read by Input Port (Normalized Unit Impulse)

.000000000
.787410300
.332763443
.832507949

B

042204879
0.047202070 (300 samples total)

o .

Listing 8.7 Output Data Stored by Output Port (Impulse Response)

8.4 CALLED SUBROUTINES (cascade.asm)

The two routines in the file “cascade.asm” perform the cascaded biquad
IIR filtering operations:

cascaded_biquad_init (clears delay line storage elements)
cascaded_biquad (passes a sample through filter)

Each routine begins with a program memory label (cascaded _biquad_init or
cascaded_biquad) and ends with an RTS instruction. These labels are global
(declared with the .croBalL directive), which makes their names known to
other files, for example, the main program which calls these subroutines.
The other labels (clear and quads) remain unknown outside cascade.asm
because they are not declared global. It is not possible to refer to them by
name from another file.

The routines in cascade.asm demonstrate several important programming
concepts, namely:

* Writing looped code
* “Rolling” loops for more efficient code
e Multifunction instructions and associated register restrictions

8.4.1 Writing Looped Code

Looped code is easily written using the nestable DO UNTIL construct. The
advantage of using the DO UNTIL construct is that the ADSP-21020
automatically tests termination status and branches appropriately—
without any programming or execution overhead. For counter-controlled
loops, the ADSP-21020 even allows setting the loop counter register
(LCNTR) in the same instruction cycle that the DO UNTIL instruction is
executed. Of course, the loop can terminate on conditions other than LCE
(loop counter expired), such as an arithmetic status flag. See Chapter 3 for
more details and for a list of loop restrictions.

8-

The RO register is set by the calling program to tell the cascaded_biquad
routine how many biquad sections to compute. For example, a sixth-order
structure (which consists of three cascaded biquads) is computed if R0O=3.
The DO UNTIL loop is set up by the instruction:

lentr=r0, do quads until lce;

The assembly source code within the loop is:

£12=f2%f4, £8=f8+f12, £3=dm(i0,ml), f4d=pm(i8,m8);
F12=£3*%f4, £8=f8+f12, dm(il,ml)=£f3, f4d=pm(i8,m8);
Fl2=f2*f4, £8=f8+f12, f£3=dm(i0,ml),. f4=pm(i8,m8);

guads: f12=£3*f4, £8=£8+f12, dm{il,ml)=£3, £4-pm{i8,m8);

Here is a cycle-by-cycle trace of the loop execution with r0=3:

lentr=r0, do quads until lce;

fl2=f2*f4, £8=£f8+f12, £f3=dm(i0,ml), £f4=pm(i8,m8);
£f12=£f3*f4, £f8=f8+f12, dm(il, ml)=£3, f4=pm(i8,m8) ;
fl2=f2*f4, £8=f8+f12, £f3=dm(iO,ml), £4=pm(i8,m8);
£f12=£3*f4, f8=f8+f12, dm(il,ml)=£3, f4=pm(i8,m8) ;
f12=f2%f4, £8=f8+f12, f£3=dm(i0,ml), f4=pm(i8,m8);
f12=f3*f4, f8=f8+f12, dm(il,ml)=£3, f4=pm(i8,m8) ;
fl12=f2*f4, £8=£f8+f1l2, £3=dm(iO,ml), £4=pm(i8,m8);
f12=£3*f4, f8=f8+f12, dm(il,ml)=£3, f4=pm (18, m8) ;
10 fl2=f2*f4, f8=£8+f12, f3=dm(i0,ml), f4=pm(i8,m8);
11 f12=£3*f4, £8=f8+f12, dm(il,ml)=£3, f4=pm (i8,m8) ;
12 f12=f2%f4, £8=f8+f12, £3=dm(iO,ml), f4=pm(i8,m8);
13 f12=f3*f4, £8=£f8+f12, dm(il,ml)=£f3, £f4=pm(i8,m8);
14 <next instruction after loop code>

15 <next instruction> , etc.

O O®IDUI R WN =

The above code is extremely efficient. Many resources are operating
concurrently during every instruction cycle. Guidelines for efficiency in
looped code are described in the following section.

8.4.2 Rolling Loops For More Efficient Code

“Rolling” a loop means pipelining operations to minimize instructions
within a loop, exploiting the ADSP-21020’s parallel architecture to
maximize concurrent operations. This involves scheduling operations and
adding some extra lines of code before and after the loop to “fill” and
“drain” the pipeline. The basic rolled structure is shown in Figure 8.7.

8-32

pipe(1)
pipe(1) pipe(2)
pipe(1) pipe(2)
pipe(1) pipe(2)
pipe(1) pipe(2)
pipe(1) pipe(2)
pipe(2)
Loop prologue
Loop body
Loop epilogue

pipe(3)
pipe(3)
pipe(3) pipe(n-1)
pipe(3) pipe(n-1) pipe(n)
pipe(3) pipe(n-1) pipe(n)
pipe(3) pipe(n-1) pipe(n)
pipe(n-1) pipe(n)
pipe(n-1) pipe(n)
pipe(n)

Instructions to fill the pipeline

loop prologue
loop prologue
loop prologue
loop prologue
loop prologue
loop body (iterate here)
loop epilogue
loop epilogue
loop epilogue
loop epilogue
loop epilogue

Instructions executed during looped steady state

Instructions to drain the pipeline

Figure 8.7 Filling and Draining the Pipeline

Figure 8.8 shows the instructions to be executed for the three biquad
sections in this example. The operations are listed in chronological order
and are vertically arranged according to the computation unit or memory
bus used. When these operations are consolidated into multifunction
instructions to match the model shown in Figure 8.7, the code in Listing

8.8 results.
1
2 £12=0;

f8=<input data>;

*** begin first section ***

3

4 f12=f2%f4,
5 f12=f3%f4,
6 fl2=f2%f4,
7 f12=£3%f4,
8

f2=dm(i0,ml),
£3=dm(i0,ml),

£8=f8+f12, dm(il,ml)=£3,
£8=F8+f12,
£8=£8+f12, dm(il,ml)=£8;
F8=f8+f12;

*** begin second section ***

F12=f2%f4,
f12=£3*f4,
f12=f2%f4,
f12=£3%f4,

f2=dm(i0, ml),
f3=dm(i0,ml),

F8=f8+f12, dm(il,ml)=£3,
£8=£8+f12,
£8=f8+f12, dm(il,ml)=f£8;
F8=f8+f12;

*** begin third section ***

f12=£f2*f4,
f12=£3*f4,
f12=£2*£4,
£f12=£3*f4,

f2=dm (i0,ml),
f3=dm(i0, ml),

£f8=f8+f12, dm(il,ml)=£3,
£f8=f8+f12,
£f8=f8+£f12, dm(il,ml)=£8;
£8=f8+f12;

<output data>=f8;

Figure 8.8 Loop Code Before Rolling

f4=pmn (18, m8) ;
f4=pm(i8,m8) ;
f4d=pm (18, m8) ;
f4=pm (i8,m8) ;

f4=pm(i8, m8);
f4=pm (18, m8) ;
f4=pm(18,m8);
f4=pm (18, m8) ;

f4=pm(i8,m8) ;
f4=pm(i8,m8) ;
f4=pm (18, m8) ;
f4=pm(i8,m8) ;

8.4.3 Multifunction Instructions And Register Restrictions

The 48-bit wide instruction word provides great single-cycle flexibility
and parallelism in the ADSP-21020 architecture. For example, the ALU,
multiplier, program sequencer and two separate address generators can
all function simultaneously on a wide selection of input and output
registers. There are, however, tradeoffs to be made when several blocks
are simultaneously active. For example, multifunction instructions require
indirect addressing using I and M registers because the instruction word
is not wide enough to accommodate multiple instructions and direct,
immediate address or modify amounts.

The multiport register file (FO-F15 or R0-R15) can normally be read from
and written to without restriction; however, in multifunction instructions,
the ALU and multiplier inputs are restricted to particular sets of registers,
while the outputs are unrestricted. The architecture dictates that when
ALU and multiply operations are concurrent, the multiplier X-input may
be either FO, F1, F2 or F3 while the multiplier Y-input is chosen from F4,
F5, F6 or F7. The ALU X-input may be F8, F9, F10 or F11 while the Y-input
is chosen from F12, F13, F14 or F15. In floating-point multiply /
accumulates, the destination of the ALU is typically the same register as
one of its input registers (i.e., the previous accumulated total).

In the quads loop in Listing 8.8, the register restrictions for multifunction
instructions do not deter efficient computation. Note also that for ease of
programming and legibility, the pipes of the multifunction instructions
are vertically aligned.

cascaded biquad:

bl=b0;

r8=r8 xor r8, f2=dm(iO,ml), f4=pm(i8,m8);

lentr=r0, do quads until lce;
£f12=f2*f4, £8=f8+f12, £f3=dm(iO,ml), f4=pm(i8,m8);
£f12=£3*f4, £f8=f8+f12, dm(il,ml)=£3, f4=pm(i8,m8);
fl2=f2+*f4, £8=£f8+f12, f2=dm(i0,ml), f4=pm(i8,m8);

quads: £12=f3*f4, f8=f8+f12, dm(il,ml)=£8, fd=pm(i8,m8);
rts (db), F8=F8+f12;
nop;
nop;

Listing 8.8 Final Rolled Loop Example in “cascade.asm”

8.5 DEVELOPING THE IIR FILTER AND COEFFICIENTS

The IIR filter can be developed using computer-aided filter design
software. In this example, FDAS (Filter Design and Analysis Software),
which is a product of Momentum Data Systems, was used. The file created
by FDAS is shown in Listing 8.9. This file lists the filter specifications
input by the user, as well as the filter coefficients computed by FDAS.

FILTER COEFFICIENT FILE

IIR DESIGN

FILTER TYPE BAND PASS
ANALOG FILTER TYPE ELLIPTIC
PASSBAND RIPPLE IN -dB -.1000
STOPBAND RIPPLE IN -dB -1.0000

PASSBAND CUTOFF FREQUENCIES .400000E+03 .500000E+03 HERTZ
STOPBAND CUTOFF FREQUENCIES .300000E+03 .600000E+03 HERTZ

SAMPLING FREQUENCY .800000E+04 HERTZ
FILTER DESIGN METHOD: BILINEAR TRANSFORMATION
FILTER ORDER 6 0006h
NUMBER OF SECTIONS 3 0003h

NO. OF QUANTIZED BITS 32 0020h
QUANTIZATION TYPE - FLOATING POINT
COEFFICIENTS SCALED FOR FLOATING POINT IMPLEMENTATION

.67730926E-02 /* overall gain */
.00000000 /* section 1 coefficient Bl */
-1.0000000 /* section 1 coefficient B2 */
1.8039191 /* section 1 coefficient Al */
-.92128010 /* section 1 coefficient A2 */
-1.7640328 /* section 2 coefficient Bl */
1.0000000 /* section 2 coefficient B2 */
1.8060702 /* section 2 coefficient Al */
-.96266572 /* section 2 coefficient A2 */
-1.9376569 /* section 3 coefficient Bl */
1.0000000 /* section 3 coefficient B2 */
1.8791107 /* section 3 coefficient Al */
~.97108089 - /* section 3 coefficient A2 */

Listing 8.9 FDAS File

8.5.1 Normalized b Coefficient Biquad Filter Design Method

Many digital filter design techniques exist for determining filter
coefficients. To minimize coefficient quantization effects, IIR filters of high
order are usually implemented as cascaded biquad sections. Each biquad
section requires five filter coefficients, three feedforward and two
teedback. These sections can be in normal order or transposed order. Refer
to texts on digital filters for further information.

8-36

The dynamic range offered by floating-point numbers allows us to
normalize the coefficients in this example to the bg coefficient. FDAS offers
bg normalization in its menu of filter design techniques. The value of bg
becomes unity (1.0) and therefore any multiplication by this coefficient
does not have to be carried out. The biquad rewritten without by
multiplication results in a four-coefficient, four-instruction-cycle per
biquad routine.

8.5.2 DSP Code Generation

Filtering routines are general-purpose; only coefficients and the length of
the coetficient and delay-line buffers need to change for different filters.
Buffer lengths are modified by changing the #define preprocessor
directives, and reassembling and relinking the source code. The filter
coefficients themselves are changed by simply extracting, using any
standard text editor, the floating-point coefficient values from the file
which FDAS generates, placing them in another file that the source code
references for coefficient buffer initialization. An alternative is to simply
delete all lines in the FDAS file which are not coefficient values. In that
case, make sure the filename is the one which the ADSP-21020 source code
references for coefficient buffer initialization. For example, Listing 8.2
refers to “iircoefs.dat.”

8.5.3 Coefficient Formatting

The coefficients in the coefficient buffer are initialized in the ADSP-21020
source code with the .VAR assembler directive. Note that this directive not
only defines the buffer, but also initializes its contents with the values in
the specified file, “iircoefs.dat.”

.var coefs[SECTIONS*4] = “iircoefs.dat”;

The contents of “iircoefs.dat” are shown in Listing 8.10. This file was
created by editing the FDAS file shown in Listing 8.9.

-.92128010
1.8039191
-1.0000000
.00000000
-.96266572
1.8060702
1.0000000
-1.7640328
-.97108089
1.8791107
1.0000000
~1.9376569

Listing 8.10 “iircoefs.dat” File

When saving the filter coefficients in FDAS, select the maximum allowable
bits per coefficient (i.e., the least amount of quantization error). The
floating-point coefficient values are stored in ASCII representation and
read in the ADSP-21020 initialization in ASCII representation. For this
reason, it is a good idea to use as many ASCII digits as possible.

8.6 PROGRAMMING HINTS

This section describes good and poor programming practices. Strict
adherence to these suggestions is not required but is strongly
recommended.

See Chapter 7 for a list of programming reminders and restrictions, as well
as an overview of the instruction set.

8.6.1 System Considerations For Scoping

The scope of variables and code labels refers to where they are declared
and which portions of software know of their existence. Variables and
code labels can be global or local in scope. They must always be declared
within a . SEGMENT definition. For example:

Do This:

.SEGMENT /DM dm data;

. VAR inbuf [SAMPLES];
. VAR outbuf [SAMPLES];
.ENDSEG;

By default, a .VAR declaration forces this variable to remain local within
the file in which it is declared. To make a variable or code label global, it
must be declared global using the .GLOBAL directive in the same file in
which the variable or code label is originally declared. Any other file must
use the EXTERN directive to make a global variable known to it.

The context in which a subroutine is used can suggest how to scope the
variables it references. For example, routines such as the IIR filtering ones
shown here may be used to implement many different filters. It may even
be included in a library of general-purpose routines. In such a case, the
variables the routine uses (coefs and dline) should be declared in the main
routine (iirmem.asm or iirirq.asm) and not in the called routine
(cascade.asm). This is because each filter has a unique set of coefficients
and delay line storage.

8

8-38

Programming Tutorial

Notice that the example subroutines in “cascade.asm” do not refer to coefs
or dline by name. For that reason, it is not necessary (nor desirable) to use
the GLOBAL or .EXTERN directives. The called subroutines only need to
know the start addresses of the coefs and dline buffers. These addresses are
passed to the subroutines by assignments to B or I registers in the calling
program. The routine then uses the I registers for data addressing. This
example shows those assignments being performed as the two
instructions executed following a delayed branch call to the subroutines.

Main Code:

.VAR coefsl [SECTIONS*4] “iirl.dat”;

.VAR coefs2 [SECTIONS*4] = “iir2.dat”;
.VAR coefs3 [SECTIONS*4] = “iir3.dat”;
. VAR dlinel [SECTIONS*2];
. VAR dline2 [SECTIONS*2];
.VAR dline3 [SECTIONS*2];
call readem (db);
b0=dlinel; {loads 10 register}
b8=coefsl; {loads 18 register}
Subroutine:
dm(il,ml)=£3, f4=pm(i8,m8); {10, 18 used}
e {no names referenced}
rts;

This approach has two advantages. It is simple and quick to edit the main
calling code only, allowing the subroutine to be general purpose. Also,
less overhead is incurred when branching to the subroutine using a
delayed branch. The two extra cycles following the delayed CALL
instruction are conveniently employed to pass the coefficient and delay
line buffer addresses to the subroutine.

For example:

Do This:

call cascaded biquad (db);
bO=dlinel;
b8=coefsl;

{takes 3 cycles}

Not This:

bO=dlinel;

b8=coefsl;

call cascaded biquad;

{takes 5 cycles}

The former shows a delayed branch, the latter depicts a normal branch.
The delayed branch saves two instruction cycles during execution. To use
the faster delayed branch subroutine call, simply take two instructions
from before the call and place them immediately after the delayed call. Do
not use any of the restricted instructions such as branches or looping
constructs as these two. See Chapter 3 for details on delayed branching.

8.6.2 Delayed Branches

Understanding delayed branches requires a non-intuitive leap.
Instructions following a branch instruction get executed before program
flow continues at the branch destination. For this reason, a good
programming practice is to highlight these two instructions. In the same
way that loop nesting is emphasized by indentation, we use indentation to
highlight the two instructions following a delayed branch instruction. This
convention is not confused with loop indentation in this example, because
this example uses only a single space indentation. When reading code, the
space reminds you that these instructions execute before the branch is
taken.

The two instructions after a delayed branch can be used to pass
parameters to the destination code branched to, especially when the
delayed branch is a subroutine call. If the branch is a delayed return from
a subroutine or interrupt, the two instructions associated with the delayed
branch may actually finish up the subroutine or interrupt service tasks.

8-39

Here is an example code fragment showing indentation used for nested
loops as well as for delayed branches. Note that for loops and delayed
branches, a different amount of indentation distinguishes from the other.

#define DATASETS 4
#define SAMPLES 300

lcntr=DATASETS, do sets until lce;
lcntr=SAMPLES, do filtering until lce;

£f8=dm(i3,1);

call biquad (db);

b0=dline; {executes BEFORE biquad routine begins}

b8=coefs; {executes BEFORE biquad routine begins}
filtering: dm(i4,1)=£8;
sets: nop;

8.6.3 Multifunction Instruction Coding

Multifunction instructions which activate the ALU, the muliplier and the
two DAGs simultaneously can be quite lengthy. To graphically depict
operations in progress as well as resource utilization, it is good
programming practice to write sequential multifunction instructions in
such a way that the parts of the multifunction instructions that use the
same resource (e.g., ALU operations) line up vertically. If the instruction
does not use a resource, the space for that resource is left blank. The quads
loop in Listing 8.8 in the cascaded_biquad subroutine shows this vertical
alignment.

This graphically shows resource utilization and, more importantly for
hand code compaction, resource non-utilization. The programmer may
find a way later to fill those blank spaces (i.e., use the unused resource)
and reduce the total instruction count. This is described in an earlier
section, “Rolling Loops.”

8.7 COMPLETE FFT EXAMPLE

In addition to the two IIR examples presented in this chapter, an FFT
program is presented in this section to show a larger example. This
program features efficient memory usage in conjunction with fast
computational throughput.

{
FFTRAD4.ASM ADSP-21020 Radix-4 Complex Fast Fourier Transform

This routine performs a complex, radix 4 Fast Fourier Transform (FFT). The FFT
length (N) must be a power of 4 and a minimum of 64 points. The real part of
the input data is placed in DM and the complex part in PM. This data is
destroyed during the course of the computation. The real and complex output of
the FFT is placed in separate locations in DM.

Since this routine takes care of all necessary address digit-reversals, the
input and output data are in normal order. The digit reversal is accomplished
by using a modified radix 4 butterfly throughout which swaps the inner two
nodes resulting with bit reversed data. The digit reversal is completed by
bit reversing the real data in the final stage and then bit reversing the
imaginary so that it ends up in DM.

To implement an inverse FFT, you only have to (1) swap the incoming data, real
and imaginary parts, (2) run the forward FFT, and (3) swap the outgoing data,

real and imaginary parts.

For this routine to work correctly, the program “twidrad4.C” must be used to
generate the special twiddle factor tables for this program.

Author: Karl Schwarz & Raimund Meyer, Universitaet Erlangen Nuernberg
Revision: 27-MAR-91, Ronnin Yee, Analog Devices, DSP div., (617) 461-3672

Calling Information:

costwid table at DM : cosine length 3*N/4

sintwid table at PM : sine length 3*N/4

real input at DM : redata length N, normal order

imag input at PM : imdata length N, normal order
Results:

real output at DM : refft length N, normal order

imag output at DM : imfft length N, normal order

(Note: Because the bit reversed addressing mode is used with the arrays
refft and imfft, they must start at addresses that are integer

multiples of the length (N) of the transform, (i.e. O,N,2N,3N,...).

This is accomplished by specifying two segments starting at those addresses
in the architecture file and placing the variables alone in their
respective segments. These addresses must also be reflected in the
preprocessor variables ORE and OIM in bit reversed format.)

Altered Registers:
All I, M, L and R registers.
Three levels of looping.

(listing continues on next page)

8-41

8-42

Benchmarks: radix-4, complex with digit reversal

FFT Length cycles ms @ 20 MHz CLK ms @ 25 MHz CLK

64 920 .046 .037

256 4044 .202 .162

1024 19245 .962 770

4096 90702 4.535 3.628

16384 419434 20.972 16.777
First Stage - 8 cycles per radix-4 butterfly

Other Stages - 14 cycles per radix-4 butterfly

Memory Usage:
pm code = 192 words, pm data = 1.75*N words, dm data = 3.75*N words

Assembler Preprocessor Variables:

N Number of points in FFT. Must be a power of four, minimum of 64.
STAGES Set to log4(N) or (log(N)/log(4))

OST = bitrev(32 bit N/2)

ORE = bitrev (32 bit addr of output real in dm), addr is 0,N,2N,3N,...

OIM

bitrev(32 bit addr of output imag. in dm), addr is O,N,2N,3N,...

{ include for symbolic definition of system regster bits }
#include “def21020.h”

{ The constants below must be changed for different length FFTs
N = number of points in the FFT
. STAGES = log4 (N))
©.0ST = bitrev (0x00000080=N/2), used as a modifier for bit reversal
ORE = bitrev (0x00000000=ocutput real in dm)
OIM = bitrev(0x00004000=output imag in dm)
}
#define N 256
#define STAGES 4
#define OST 0x01000000
#define ORE 0x00000000
#define OIM 0x00020000
. SEGMENT /DM dm_data;

.VAR cosine[3*N/4]="tc.dat”; {Cosine twiddle factors, from TWIDRAD4 program}
.VAR redata[N]="inreal.dat”; { Input real data }
.GLOBAL redata;

.ENDSEG;

.SEGMENT/DM dm rdat; { this segment is an integer multiple of N }
.VAR refft [N]; { Output real data }

.GLOBAL refft;

.ENDSEG;

.SEGMENT/DM dm idat; { this segment is an integer multiple of N }

.VAR imfft [N]; { Output imaginary data }

.GLOBAL imfft;

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR sine(3*N/4]="ts.dat”; { Sine twiddle factors, from TWIDRAD4 program}

.VAR imdata [N]="inimag.dat”; { Input imaginary data }
.GLOBAL imdata;

.ENDSEG;

.SEGMENT/PM rst_svc; { program starts at the reset vector }
pmwait=0x0021; {pgsz=0,pmwtstates=0, intrn.wtstates only}
dmwait=0x008421; {pgsz=0,dmwtstates=0, intrn.wtstates only}

call ffe;
stop: idle;

nop;
nop;

.ENDSEG;

.SEGMENT/PM pm_code;

fft:

{ first stage radix-4 butterfly without twiddles }

i0=redata;
il=redata+N/4;
i2=redata+N/2;
i3=redata+3*N/4;
14=1i0;

15=i1;

16=12;

17=13;

m0=1;

m8=1;

i8=imdata;
i9=imdata+N/4;
il0=imdata+N/2;
ill=imdata+3*N/4;

i12=18;

113=19;

i14=110;
115=111;
10 = 0;

11 = 10;
12 = 10;
13 = 10;
14 = 10;
15 = 10;
16 = 10;
17 = 10;
18 = 10;

(listing continues on next page)

8-43

19 = 10;

110 = 10;
111 = 10;
112 = 10;
113 = 10;
114 = 10;
115 = 10;
f0=dm(i0,m0) , fl=pm(i8,m8) ;
£2=dm(i2,m0), £3=pm (110, m8) ¢
f0=£0+£2, £2=£0-£2, f4=dm(il,m0), £5=pm (19, m8) ;
£f1=f1+£f3, £3=f1-£3, £6=dm(i3,m0), f7=pm (111, m8) ;
f4=f6+£4, f6=f6-£f4;
£5=£5+£7, £7=£5-£7;
£8=£0+£4, £9=£0-£4;
£10=£1+f£5, £f11=f1-£5;
lentr=N/4, do fstage until lce; { do N/4 simple radix-4 butterflies }
f12=£2+£7, £13=£2-£7, £0=dm (10, m0), fl=pm(i8,m8) ;
£14=£3+f6, £15=£3-f6, f2=dm(i2,m0), £3=pm (110, m8) ;
f0=£0+£2, f2=£f0-£2, f4=dm(il, m0), £5=pm (19, m8) ;
f1=£1+£3, £3=f1-£3, f6=dm(i3,m0), £7=pm (111, m8) ;
f4=fo+£4, fe=f6-£4, dm(i4,m0)=£8, pm(i12,m8)=£10;
£5=£5+£7, £7=£5-£7, dm(i5,m0)=£9, pm (113, m8)=£11;
£8=£0+£4, £9=£0-£4, dm(i6,m0)=£12, pm(il4,m8)=£14;
fstage:
£10=£f1+f£5, £f11=£f1-£5, dm(i7,m0)=£13, pm(il5,m8)=£15;
{ Middle stages with radix-4 main butterfly }

{ m0=1 and m8=1 is still preset }

ml=-2; { reverse step for twiddles }
m9=ml;
m2=3; { forward step for twiddles }
ml0=m2;
m5=4; { first there are 4 groups }
r2=N/16; { with N/16 butterflies in each group }
r3=N/16*3; { step to next group }
lentr=STAGES-2, do mstage until lce; { do STAGES-2 stages }

i7=cosine;
il5=sine;

first real twiddle }
first imag twiddle }

.

r8=redata;
r9=imdata;

i0=r8; { upper real path }
rl0=r8+r2; i8=r9; { upper imaginary path }

il=r10; { second real input path }
r10=r10+r2, 14=xr10; { second real output path }

8-44

r10=r10+r2,
r10=r9+r2,
r10=rl0+r2,

r10=rl10+r2,

r4=r3+1,

r2=r2-1,

lcentr=m5,

£8=£0*£5,
£9=£f0*f4;
£12=£1*£5,
f13=f1*f4,
£8=f0*f4,
£13=£1*£5;
£9=£0*£5,
f13=f1*f4,
f11=£0*£4;
£13=f1*£5,
f9=£f0*£5,
f13=f1*f4,

lentr=m7,

£8=£0*f4,
f12=f1*f5,
£8=£f0*£5,
f13=f1*f4,
£8=£0*f4,
£13=£f1*f£5,
£9=£0*£5,
f13=f1*£f4,
£11=£0*£f4,
£f13=f1*£5,
£9=£f0*£5,
mri4bfly:
£13=f1*f4,

i2=r10;
i5=r10;
i3=r10;
16=rl10;
19=r10;
112=r10;
110=r10;
113=r10;
ill=rl10;
i14=r10;
mé=r3;
ml2=r3;
mé=r2;
m3=r4;
mll=r4;
m7=r2;

do mgroup until

£12=£9+£f12,

£8=£8+£13,
f12=£8+f12,

£13=f11+f13,
£8=f11+4f13,

lce; {

£2=£8-£13;

£14=£8-£12,

£6=£9-f13;

f10=£11-£13;
Do m7 radix-4 butterflies

do mr4bfly until lce;

£2=£2+£6,
£3=F8+£12,
£9=£9+£13,
F12=£8+£12,
F9=£9+£13,

f11=f11+£14,
£8=£8+£13,
£12=£8+£12,
£3=£10+£15,
£13=f11+£13,

£8=£f11+£13,

End radix-4 butterfly
dummy for address update

£13=£9-£13,
£15=£2-£6,
f7=f8-f12,
f11=£9-£f13,

f6=£9-f13,
£2=£8-f13,
£7=£11-f14,

£f14=£8-f12,

£8=f10-£f15,
f6=£9-f13,

£10=£11-f13,

do m5 groups }

£0=dm(i7,m0) ,
f4=dm(il, m0),

f0=dm (i7,m0),
f4=dm (i3, m0),

£0=dm(i7,ml),
f4=dm(i2,m0),

£11=dm(i0,0);

f4=dm(il,m0),
£0=dm (i7,m0) ,

£13=£2;

£0=dm(i7,m0),
f4=dm(i3,m0),
dm(10,m0)=£3,
dm(14,m0)=£7,
£0=dm (17, ml),
f4=dm(i2,m0),

dm(i6,m0)=£8,
f11=dm(i0,0) ;

dm(i5,m0)=£3;
}

*

third real input path }

third real output path }
fourth real input path }
fourth real output path }
second imag input path }
second imag output path }
third imag input path }

third imag output path }
fourth imag input path }
fourth imag output path }

£5=pm(i9,m8) ;
fl=pm (115, m8) ;

f5=pm(ill, m8);
fl=pm(il5,m8) ;

£5=pm (110, m8) ;
fl=pm(il5,m9) ;

£5=pm(i9,m8) ;
fl=pm(il5,m8) ;
£9=pm(i8,0) ;

f5=pm(il1l,m8);
fl=pm(il5,m8) ;
pm(i8,m8)=£9;
pm(il2,m8)=£6;
f5=pm(i10,m8) ;
fl=pm(i15,m9) ;
pm(il3,m8)=£11;
pm(il4, m8)=£7;

*)

(listing continues on next page)

8-45

mgroup:

£2=£2+f6,
£3=£8+£12,
£9=£9+£13,
£9=£9+£2,

f11=£f11+£14,
£3=£f10+£15,

r3=ashift r3 by -2;
ri=ashitt rl by 2;

mstage: r2=ashift r2 by -2;

{

{ Includes bitreversal of the real data in dm }

bit set model BRO;
{ with: m0=m8=1 preset }
i4=redata;
il=redata+l;
i2=redata+2;
i3=redata+3;

10=ORE;
m2=0ST;

{ real output array base

i7=cosine;
i8=imdata;
i9=imdata+1l;
il10=imdata+2;
ill=imdata+3;
il2=imdata;
il5=sine;

ml=4;
m9=ml;

£8=£0*£5,
F9=£0*f4;
£12=£1%*f5,
f13=f1*f4,
£8=£0*f4,
£13=£1%*£5;
F9=£0*£5,
£13=f1*f4,
£11=£0*£4;
£13=f1*f5,

f12=£9+f12,

£8=£8+£13,
f12=£8+£12,

£13=£9-£13,
£15=£2-£6,
£7=£8-£12,
F11=£9-£13,
£6=£9-£2,

£f7=£f11-f14,
£8=£10-£f15,

r3=m4;
rl=m5;
r2=mé;

f0=dm(i7,m2),
fO0=dm(il,m4),

f0=dm(i2,m4) ;
£0=dm (i3, m4),
dm(i0,m3)=£3,
dm(i4,m3)=£7,

dm(i6, m3)=f8,
dm(15,m3)=£3,

{ groupstep/4 }
{ groups*4 }

mb=rl;

{ butterflies/4 }

Last radix-4 stage

fl=pm(il5,ml0) ;
fl=pm(i9,ml2) ;
£9=pm(18,0) ;

fl=pm(110,ml2) ;
pm(i8, m11)=£9;

pm(il2,mll)=£6;
pm(il3, mll)=£f11;
pm(il4,mll)=£7;
fl=pm(ill, ml2);

{ bitreversal in 10 }

£2=£8-£13;

f14=£8-f12,

f6=£9-f13;

input }

input }

output }

£0=dm (17, m0),
f4=dm(il,ml),

£0=dm (17, m0) ,
f4=dm(i3,ml),

£0=dm (17,m0),
f4=dm(i2,ml),

must be an integer multiple of N }

£5=pm(19,m9) ;
fl=pm(il5,m8) ;

f5=pm(i11l,m9) ;
fl=pm(il5,m8) ;

£5=pm (110, m9) ;
fl=pm(il5,m8) ;

£9=£f0*£5, f13=£f11+f13, fll=dm(i4,ml);

f13=f1*f4, £8=£f11+f13, f10=f11-£13;
{ Do N/4-1 radix-4 butterflies }
lentr=N/4-1, do lstage until lce;
£f13=£f9-£f13, f4=dm(il,ml), £5=pm(19,m9) ;
f2=£f2+fe, f15=f2-f6, £f0=cdm(i7,m0), fl=pm(il5,m8) ;
£8=f0*f4, £3=£8+f12, £f7=£8-£f12, £9=pm(i8,m9) ;
f12=£1*f£5, f9=f9+f13, f11=f9-£f13, £13=£2;
£8=f0*£5, £12=£8+£f12, £0=dm(i7,m0), f5=pm(i11,m9) ;
f13=f1*f4, £9=£9+£13, f6=£9-£13, f4=dm (i3, ml), fl=pm(i15,m8) ;
£8=£f0*f4, £2=£8-£13, dm(i0,m2)=£3, pm(il2,m8)=£9;
£13=£1*£5, f11=f11+f14, £f7=£f11-f14, dm(i0,m2)=£7, pm(il2,m8)=£6;
£9=£0~£5, £8=£8+£13, f0=cdm(i7,m0), £5=pm (110, m9) ;
f13=f1*f4, f12=£8+f12, f14=£8-f12, f4=dm(i2, ml), fl=pm(il5,m8);
fl11=f0*£4, £3=f10+£f15, f8=£10-£15, pm(il2, m8)=£11;
£f13=£f1*f£5, fo=£9-£13, dm(i0,m2)=£3, pm(il2,m8)=£7;
£f9=£0*£5, £13=f11+£13, fll=dm(i4,ml) ;
lstage:
f13=f1*f4, £f8=f11+f13, £10=f11-£13, dm(i0,m2)=£8;
£13=£9-£13;
f2=f2+f6, £15=£2-£6;
f3=£8+£f12, £7=£8-f12, f9=pm(i8, m9) ;
f9=f9+f13, £f11=£9-£13, dm(i0, m2)=£3;
f9=£9+£2, f6=£9-£2, dm (10, m2)=£7;
pm(il2,m8)=£9;
f11=£f11+£14, £f7=£f11-f14, pm(il2,m8)=£6;
£3=£10+£15, £8=£f10-£15, pm(il2,m8)=£f11;
dm(i0, m2)=£3, pm(il2,m8)=£7;
dm(i0,m2)=£8;
{ Do the bitreversal of the imaginary part from pm to dm }

i8=imdata;
i0=0IM; { image output array base must be an integer multiple of N }
f0=pm(i8,m8) ;

lentr=N-1, do pmbr until lce; { do N-1 bitreversals }
pmbr: dm(i0,m2)=£0, £f0=pm(i8,m8) ;
rts (db);
dm(i0,m2)=£0;
bit clr model BRO; { no bitreversal in i0 any more }

.ENDSEG;

Hardware System Design

9.1 OVERVIEW

This chapter describes considerations for designing hardware systems
based on the ADSP-21020/21010 processor. It also supplies examples of
some common configurations.

9.1.1 Basic System Configuration

Figure 9.1, on the following page, shows a basic configuration for a system
based on the ADSP-21020. The following two signals coordinate the
operation of the ADSP-21020 and other devices in the system:

® The CLKIN signal comes from a clock oscillator that provides clocking
for the ADSP-21020 and other devices operating synchronously with it.

e The RESET signal is provided by a circuit that resets all or part of the
system.

These signals are described in greater detail in later sections of this
chapter.

The basic configuration in Figure 9.1 features program memory, data
memory and peripherals that are mapped into data memory space. The
connections in each memory interface are:

Address buses (PMA23-0 and DMA31-0)
Data buses (PMD47-0 and DMD39-0)
Bank selects (PMS1-0 and DMS3-0)

Read signals (PMRD and DMRD)

Write signals (PMWR and DMWR)

Example memory configurations for both single and multiple processors
are shown later in this chapter.

PROGRAM
MEMORY

CLKIN RESET IRQ3-0
2
Selects [+~ PMS1-0 DMS3-0 Selects
OE PMRD DMRD OE
— PR— DATA
-t PMWR
WE [=— DMWR - MEMORY
ADDR |4 PMA DMA 7 »1 ADDR
40
patal«®. | pmp ADSP-21020 DMD[— DATA
— N L= Selects
—»| PMTS DMTS f=—o oE
-+—— PMPAGE DMPAGE |— WE
—»{ PMACK o DMACK |- ACK PERIPHERALS
a [l
X £ 8 »{ ADDR
c O = 8 S =
s @ E 8 &2 5 DATA
T I T %4 %5

Figure 9.1 Basic ADSP-21020 System Configuration

9.1.2 More Complex Configurations

Other signals shown in Figure 9.1 but not connected in this configuration
could be used in a system with more complex memory interface
requirements:

¢ Bus acknowledges (PMACK or DMACK), for hardware-controlled
wait states.

* Three-state enables (PMTS or DMTS), to hold the processor off the
memory bus during an external cache update (for example).

* Page fault indicators (PMPAGE or DMPAGE), for interfacing to page-
mode and static-column dynamic RAMs (DRAMs).

* Bus request (BR) and bus grant (BG), for granting the memory buses
and control signals to another master.

There are pins through which the ADSP-21020 sends and receives control
signals to and from other devices in the system. These pins may or may
not be used, depending on the system:

* Hardware interrupts (IRQ3-0) can come from devices that require the
ADSP-21020 to perform some task on demand. One of the memory-
mapped peripherals, for example, can use an interrupt to alert the
processor that it has data available. Interrupts are described in detail in
Chapter 3.

® The flags (FLAG3-0), each of which can be programmed to be an input
or an output, allow signalling between the ADSP-21020 and another
device. For example, the ADSP-21020 can raise an output flag to
interrupt some other device. Flags are described in detail later in this
chapter.

e The TIMEXP output is controlled by the on-chip timer. It indicates to
other devices that the programmed time period has expired. The timer
is described in detail in Chapter 5.

e The test access port (TCK, TMS, TDI, TDO and TRST) can be connected
to a controller that performs a boundary scan for test purposes or for
powerup boot loading of external program memory. This port is also
used by the ADSP-21020 EZ-ICE® Emulator to access on-chip
emulation features. Use of this emulator requires a connector for access
to the test access port. The connector is described in this chapter, in
section 9.9. The test access port is described in detail in Appendix C.

9.2 CLOCKS & SYNCHRONIZATION

The ADSP-21020 receives its clock input on the CLKIN pin. The processor
uses an on-chip phase-locked loop to generate its internal clock.

Because the phase-locked loop requires some time to achieve phase lock,
CLKIN must be valid for a minimum time period during reset before the
RESET signal can be deasserted; this time period is specified in the
ADSP-21020 Data Sheet.

9.2.1 Synchronization Delay

The ADSP-21020 has several asynchronous inputs, namely, RESET, TRST,
BR, IRQ3-0 and FLAG3-0 (when configured as inputs). These inputs can
be asserted in arbitrary phase to the processor clock, CLKIN. The ADSP-
21020 synchronizes them prior to recognizing them. The delay associated
with recognition is called the synchronization delay.

Any asynchronous input must be valid prior to the recognition point to be
recognized in a particular cycle. If an input does not meet the setup time
on a given cycle, it may be recognized in the current cycle or during the

next cycle.

Therefore, to ensure recognition of an asynchronous input, it must be
asserted for at least one full processor cycle plus setup and hold time
(except for RESET, which must be asserted for at least four processor
cycles). The minimum time prior to recognition (the setup and hold time)
is specified in the ADSP-21020 Data Sheet.

[Y] DAWEDIID 2. DEQET
.0 =

N o ¥

[BAS A LRSI LS T REN® O B |

RESET halts execution and returns all registers to a state defined in Table
9.1. On powerup, RESET must be asserted (low). After the clock is stable
for a minimum period (specified in the ADSP-21020 Data Sheet), RESET

can be deasserted.

Table 9.1 shows the states of the processor registers after reset. If a value is
unchanged, it is uninitialized at powerup. Table 9.2 shows the states of
outputs during reset (i.e. while RESET is low).

Pin Name Type
PMA23_0 Output
PMDy7.q Bidirectional
PMSy, PMS, Output
PMRD Output
PMWR Output
PMPAGE Output
DMA310 Output
DMD39 g Bidirectional
DMSy Output
DMS$S; Output
DMS; Output
DMS3 Output
DMRD Output
DMWR Output
DMPAGE Output
FLAGO Bidirectional
FLAG1 Bidirectional
FLAG2 Bidirectional
FLAG3 Bidirectional
BG Output
TIMEXP Output
TDO Output

State During Reset
Driven, Value Undefined
High Impedance

One High, the other Low
High

High

Low

Driven, Value Undefined
High Impedance

High

High

High

High

High

High

Low

High Impedance

High Impedance

High Impedance

High Impedance
Depends on BR

Low

Depends on TRST and TCK

Table 9.2 ADSP-21020 Pin States During Reset (while RESET=0)

Register
PC
PCSTK
PCSTKP
FADDR
DADDR
LADDR
CURLCNTR
LCNTR
R15-R0O
115-10
M15 - MO
L15-L0
B15 - BO

MODE1
MODE2

IRPTL
IMASK
IMASKP
ASTAT

STKY
USTAT1
USTAT2

DMWAIT
DMBANK1
DMBANK2
DMBANK3
DMADR
PMWAIT
PMBANK1
PMADR
PX

PX1

PX2
TPERIOD
TCOUNT

Value after Reset
0x0008
unchanged
0x0000 (cleared)
0x0008
unchanged
unchanged
unchanged
0x0000 (cleared)
unchanged
unchanged
unchanged
unchanged
unchanged

0x0000 (cleared)

0xn000 0000 (bits 28-31 are the device identification field,
identifying the silicon revision #)

0x0000 (cleared)

0x0003

0x0000 (cleared)

0x00nn 0000 (bits 19-22 are equal to the values of the
FLAGO-3 input pins; the flag pins are
configured as inputs after reset)

0x0540 0000

0x0000 (cleared)

0x0000 (cleared)

0x000F 7BDE
0x2000 0000
0x4000 0000
0x8000 0000
unchanged
0x0003DE
0x800000
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Table 9.1 ADSP-21020 Register Values After Reset

PMA23-0

PMPAGE

PMRD

PMS0

PMS1

The timing of the program memory interface for the first instruction fetch
after a reset is shown in Figure 9.2 below. The first address output is the
reset vector, 0x000008. PMPAGE is asserted because this is the first access
to this page of memory. PMSO is asserted and PMST deasserted because
0x000008 lies in bank 0 in the default configuration of memory banks.
During the first two memory accesses, which have seven wait states each
(due to the default value of the PMWAIT register), the first instruction is
fetched and decoded. It is executed when the fetch of the third instruction
begins.

First

Instruction

Executed
Wait State 0 Wait States 1-7 Wait State 0 Wait States 1-7 (0x000008)

r 1 r T] I] I] [— 5 — r
_ | J | | | l | [| l | I | l | | |
o | | | | | | L | |
e)/ | | | | | | | |
| | | | | |« | (I | |
' " Undefined ' " oxo00008 = i T ' A
} | : :X : i b X s : X |
| l I I / f 55 i \ l l |
T I | | | | | 55 T T
| | ! I T\ l s_/—l_\ | | |
; { /TN
l | | I l [l | | l
| | | DN I » | | | |
))
| | | | l L | L 1 |
— | | !)/ l l | [I |

9-6

Figure 9.2 Program Memory Interface Timing at Reset

9.4 RCOMP PIN

The ADSP-21020’s RCOMP pin is a compensation resistor input that
controls the processor’s output driver/buffers.

To reduce system noise at low temperatures when transistors switch
fastest, the ADSP-21020 employs compensated output drivers. These
drivers equalize slew rate over temperature extremes and process
variations. A 1.8 kQ resistor placed between the RCOMP pin and
EVDD (+5 V) provides a reference for the compensated drivers. Use of a
capacitor, approximately 100 pF, placed in parallel with the 1.8 kQ
resistor, is recommended.

Design

9.5 FLAGS

Four external pins on the ADSP-21020—FLAGO, FLAG1, FLAG2 and
FLAG3—allow single-bit signalling between processors. Many
instructions can be conditioned on a flag’s value, enabling efficient
communication and synchronization between multiple processors or in
other interfaces. Examples of flag use are included in the multiprocessing
memory examples later in this chapter. :

9.5.1 Flag Direction

The flags are bidirectional pins, each with the same functionality. Whether
or not each flag is an input or an output is controlled by bits in the
MODE?2? register. The control for each flag is independent. On reset, the
MODE2 register is cleared, so all the flags are inputs.

MODE2

Bit Name Definition

15 FLG0O FLAGO 1=output; O=input
16 FLG10 FLAGI1 1=output; O=input
17 FLG20 FLAG2 1=output; O=input
18 FLG30 FLAGS3 1=output; O=input

9.52 Flag Input

When a flag pin is programmed as an input, its value is stored in a bit in
the ASTAT register. These flag bits are not changed when the ASTAT
register is pushed onto or popped off the status stack. The bit is updated
each cycle with the input value from the pin. Flag inputs can be
asynchronous to the ADSP-21020 clock, so there is a one-cycle delay
before a change on the pin appears in the ASTAT bit if the rising edge of
the flag input misses the setup requirement for that cycle. The states of
ASTAT flag bits are conditions that you can specify in conditional
instructions.

ASTAT

Bit Name Definition

19 FLGO FLAGO value
20 FLG1 FLAGI1 value
21 FLG2 FLAG?2 value
22 FLG3 FLAG3 value

An ASTAT flag bit is read-only if the flag is configured as an input.
Otherwise, the bit is readable and writeable.

9

CLKIN l

9.5.3 Flag Output

When a flag is an output pin, the value on the flag pin follows the data bit
in the ASTAT register. These flag bits are not changed when the ASTAT
register is pushed onto or popped off the status stack. A program can set
or clear the ASTAT flag bit to provide a signal to another processor or
peripheral. The timing of a flag output is shown in Figure 9.3.

insiruction ° Sei Fiag to

|
' Instruction
Executing | Output in MODE2 | ASTAT | ASTAT | in MODE2 [Conditioned on
Flag Input
I I I
|
FLAGn Flag High Flag Low

o |
Set Fiag Bit in I Ciear Flag Bitin ' Set Flag to Input

Output Enabled l Output Valid l Output Valid I Output Disabled,
| | | Input Sampled

Figure 9.3 Flag Output Timing

9.6 MEMORY CONFIGURATIONS

The ADSP-21020 provides memory management and interface features to
support a variety of memory configurations. These features are described
in detail in Chapter 6. This section presents examples of several
configurations: systems based on a single ADSP-21020 processor and
systems based on multiple ADSP-21020s. These examples may serve as a
starting point for your hardware design.

9.6.1 Single Processor Configurations

The memory configurations in this section are based on a single ADSP-
21020 processor. The examples range from simple to complex. These
examples show general concepts only; the details of a specific design
would depend on the application.

9.6.1.1 One Memory Bank

Figure 9.4 shows the ADSP-21020 connected to a single bank of data
memory. Each memory device is a 15 ns static RAM (SRAM), which
allows the ADSP-21020 access with zero wait states. (Refer to the
ADSP-21020 Data Sheet for specific timing parameters.) The memory
devices are each 4 bits wide by 64K locations. The 64K locations require
only the lower 16 address bits of the ADSP-21020; the upper bits are
unused.

In this example, eight memory devices are used to provide 32-bit width
for IEEE standard floating-point data. (If extended 40-bit data were
needed, 10 devices would be used.) The lower eight bits of the data bus
(D7-0) are not connected. No pullup or pulldown resistors are needed on
these unused pins—this is taken care of on-chip. The ADSP-21020 drives
and reads these lower eight bits even when it is internally configured for
32-bit data (the computation units ignore the lower eight bits).

The DMWR output of the ADSP-21020 controls each memory device’s
write enable (WE), and the DMRD output controls each memory device’s
output enable (OE). The DMS0 signal, which in this case is the only
memory select ever activated, is connected to the chip enable (CE) of each
device. This particular memory device has a second chip enable, which is
not used (tied low) in this example.

ADSP-21020
30 ns

DMD39-8

DMA15-0 A15-0
DMWF WE -
DMRD OE fed
DMS0 CEl ==

CE2 =
L

Figure 9.4 Interface to Single Data Memory Bank

9-9

9.6.1.2 Several Memory Banks

Three banks of data memory are connected to the ADSP-21020 in the
example in Figure 9.5. As in the previous example, each memory device is
a 35 ns SRAM, for zero wait states. The memory devices are each 8 bits
wide by 32K locations, for a total of 96K locations. Five devices in each
bank are needed for 40-bit floating-point data.

Bank 0 extends from 0x0000 to 0x7FFF; bank 1 from 0x8000 to OxFFFF; and
bank 2 from 0x10000 to 0x17FFF. However, only the lower 15 address bits
of the ADSP-21020 are needed for addressing the 32K locations in each
bank because the data memory selects enable only one bank at a time.
DMS0, DMST, and DMS? are connected to the chip enables (CE) of banks
0, 1 and 2, respectively. The DM53 memory select, not used in this
example, could be used to select a fourth bank.

The DMWR output of the ADSP-21020 controls each memory device’s
write enable (WE), and the DMRD output controls each memory device’s

output enable (OE).
ADSP-21020
30 ns

DMD39-0

DMA14-0
DMWRI WE WE WE r
DMAD oF oF oF -
owiso) TE u TE u o -
DWST - -]
DMS2

Figure 9.5 Interface to Three Data Memory Banks

9-10

9.6.1.3 Memory & I/O Devices

The example in Figure 9.6 is identical to the previous one but shows
memory-mapped 1/0O devices added. These devices, one input-only and
one output-only, can be mapped to any location in bank 3 (any location
greater than 0x17FFF in this example), since there are no other devices in
that bank. The DMS3 signal selects the I/O devices for access; the read
and write strobes differentiate between the two, enabling the latch of the
output port on writes and the buffer of the input port on reads.

I/0 devices should be connected to the 32-bit integer field (the upper 32
bits) of the DMD or PMD data buses—bits 39-8 of the DMD bus, and bits
47-16 of the PMD bus.

B A= Input

74F244

|

D ap—

Output
Port

74F374
—J

Figure 9.6 Interface to Three Data Memory Banks and Two I/0 Devices

8
8 l._l_.. e —
ADSP-21020 8 I
30ns 8 [o70 D7-0 D70
SRAM SRAM SRAM
32Kx 8 32K x 8 32Kx 8
DMD39-0 _/ 15ns 15ns 15ns
DMA14-0 A14-0 A14-0 A14-0
DMWR| WE WE WE -
DMRD} OE OFE OF b
S0} o || TE u 53 -
DMSi - - -
DMS2

9-11

9-12

9.6.1.4 Hardware Acknowledge

Figure 9.7 shows the interface to a relatively slow I/O device that uses the
hardware acknowledge (DMACK, in this case) to insert wait states in the
memory cycle. This device is mapped to data memory bank 3. No other
devices are in the same bank, so the DMS3 signal can be used to gate the
strobe that enables the I/O device to read or write data (N bits).

DMACK [Q D [
DMRD ﬂ)oi K
DWS3 *
ADSP-21020 DMWR
WR RD RDY
DMD39.0 [#———/——1{ DATA
SLOW /0 DEVICE

Figure 9.7 1/0 Device Interface with Hardware Acknowledge

The latch on the RDY output of the I/O device synchronizes the signal to
the ADSP-21020. This latch is not needed if the RDY signal meets the
setup requirement for DMACK.

If the I/O device needs extra time to deassert RDY after an access is
initiated (so that DMACK will not be erroneously sampled high), the
ADSP-21020 can be programmed to require both internal wait states and a
hardware acknowledge to terminate the memory cycle. The programmed
wait states give the I/O device extra cycles in which to deassert RDY. But
the RDY signal will still determine the end of the memory cycle.

9.6.1.5 Cache Memory

Figure 9.8 shows how an external cache controller would use the three-
state enable (DMTS, for data memory). The cache controller monitors the
ADSP-21020 address to detect a cache miss. When a miss occurs, the
controller asserts DMTS in time to prevent the ADSP-21020 from
completing the access. The ADSP-21020 places the data memory interface
in a high-impedance state and halts. This allows the cache controller to
retrieve the needed data from main memory and load it into the cache. It
then deasserts DMTS and deasserts DMACK for one cycle to allow the
ADSP-21020 to complete the memory access.

The 20 kQ pullup resistors on DMRD, DMWR and DMS3 are needed to
hold these controls inactive (high) during the transition of control between
the ADSP-21020 and the cache controller.

<20k _
DMWR \ WR
<20k -
DMRD »1 OE
& 200 A - CACHE
DMS3 2 \ cs MEMORY
DMA31-0 [// \ »1 ADDRESS
32
DMD39-8 // \ »| DATA
Tristatable
ADSP-21020 Control
Outputs
CACHE
> CONTROLLER
BUFFER enable
To Main Memory
DMTS [
DMACK [

Figure 9.8 Cache Memory Interface

8-13

9-14

If the cache memory requires the ADSP-21020 to use wait states, the
processor can be programmed to recognize the AND of internal and
external acknowledges as the terminator of the memory cycle. After the
controller updates the cache, it holds DMACK low for the required
number of wait states plus one, the extra cycles allowing for the
completion of the access that caused the cache miss. The minimum timing
for DMACK is shown in Figure 9.9.

CLKIN _J
|

]

|

1

1
Three-State

Enable |

I

Strobe w
I

Ny /

|
| I
Address :X
X
I |

Acknowledge |

Figure 9.9 Timing on Cache Miss

9.6.1.6 DRAM With Paging

I

\

|
|
|
|
N\ |
/|
|
|

NN
N

Held low to complete cycle

The example in Figure 9.10 shows the ADSP-21020 interface to a page-
mode or static-column DRAM using a DRAM controller (which may be
implemented with PALs and PGAs). This example is similar to the cache
memory example in that it uses DMTS to hold off the memory access
while an external memory controller takes over.

The DRAM controller’s outputs are normally tristated. The DMPAGE
output signals a change of page to the controller. This can be accompanied
by an automatic wait state if the controller requires extra time. The DRAM
controller responds by latching in the address and by asserting DMTS to
prevent the ADSP-21020 from completing the access. It then controls the
DRAM to effect the page change, using the latched address, by driving the
10 MSBs of the address onto the 10 LSBs of the DRAM address input.
When finished, the DRAM controller tristates its memory controls and

deasserts DMTS and deasserts DMACK in the same cycle for the

appropriate number of wait state cycles plus one. This timing is the same

as for the cache controller, shown in Figure 9.9.

32,

DMD39-8 [7

DMRD
2

b 10

0
DMA19-0 %

DMWR

DMS3

ADSP-21020

.

DATA
OE DATA MEMORY
ADDRESS (DRAM)

1M x4

20,

DMPAGE

DMTS [

DMACK [

Figure 9.10 Page-Mode DRAM Interface

DRAM
CONTROLLER

9-15

9-16

9.6.1.7 Direct Memory Access (DMA)

The example shown in Figure 9.11 uses the bus request/bus grant
protocol of the ADSP-21020 to perform direct memory access (DMA) on
the ADSP-21020’s data memory. The DMA controller is driven by a host
processor (not shown) that occasionally needs to access the data memory
to read or write a buffer of data. When the host requests an access, the
DMA controller asserts bus request (BR) on the ADSP-21020. The ADSP-
21020 completes its current instruction, places its memory buses in a high
impedance state, and asserts bus grant (BG). The ADSP-21020 idles while
BR is asserted.

The bus grant allows the DMA controller to access the data memory,
using counters to generate the necessary addresses and clocking the data
to or from the host through the bidirectional latch. The DMA controller
must also provide the appropriate memory strobes.

<20k -
DMWR 1 WR
> 20k -
DMRD OE
é 20k DATA MEMORY
DMS3 > Cs 64K x 32
2,
DMD39-8 | 7% 1 DATA
DMA15-0 16/ »| ADDRESS
- Tristatabie Host To Host
ADSP-21020 < Control Control |ag—p
Outputs Interface
BR |
BG DMA
' CONTROLLER
BUFFER enable
To Host Data Bus
16
~=—{ counTen |e———{ control

Figure 9.11 DMA Controller Interface Using Bus Request

When the DMA access is complete, the controller deasserts BR and the
ADSP-21020 continues program execution from where it left off. Timing
for the bus request/bus grant cycle is shown in Figure 9.12. Note that
there is at least one cycle of delay after BR is asserted and before BG goes
low (more if the ADSP-21020 is executing an instruction requiring extra
cycles). After BG goes low, there may be one cycle of overhead during
which no instructions are executed and no data is transferred. There may
be another cycle of overhead when exiting bus grant if the DMA controller
cannot tristate its outputs before the ADSP-21020 drives the bus. In this
case, the controller must tristate its outputs in the previous cycle.

| e L

N R

(
)

|
T\ [« /
pomery,) = {__
|
\\ | /
CC
|))
|

I |
I [
I I
| |
BG I I
I l
| |
I |
I I

N

(¢4

P2
DMA Controller / L
Address and \ } S (
Control /

Figure 9.12 Bus Request Timing for DMA

9-17

9-18

9.6.2 Multiprocessor Configurations

This section describes several memory configurations featuring multiple
ADSP-21020s operating in the same system. In these examples, the
processors pass data between one another through shared memory. The
configuration appropriate for a specific application depends on the data
flow and timing required by the system.

9.6.2.1 Multiport Memory

Figure 9.13 shows the minimal hardware for connecting three ADSP-
21020s and a host processor to a 4-port RAM. The particular memory
device in this example is 8 bits wide by 2K locations. Four devices are
needed for 32-bit data in Figure 9.13; the number of devices actually used
depends on the data width to be supported.

The memory provides four identical interfaces consisting of address, data,
write strobe, output enable, and chip enable. In this example, each
processor maps accesses to this memory to bank 1 of data memory
(enabled by DMST). Only 11 of each processor’s 32 address lines are
needed to address the 2K locations. Also shown for each processor is local
data memory that may use all of the address lines. The local memory
would occupy a different bank of memory and thus be enabled by a
different memory select signal.

DMS1

ADSP-21020 DMRD -
DMWR >
32
DMA31-0 DMD39-8 [
o -
‘11
Ar
DATA | 32
MEMORY
DMSH -
ADSP-21020 DMRD o
DMWR »
32
DMA31-0 DMD39-8 [~#+—>
ot -
11
A
DATA | 32
MEMORY
DMS1
ADSP-21020 DMRD
DMWR
32
DMA31-0 DMD39-8 <>
11
y
DATA 32
MEMORY

CE1

OE1

WR1
DATA1
ADDRESS1

4-PORT RAM
2K X8

CE2

OE2

WR2
DATA2
ADDRESS2

CE4
OE4

WR4

DATA4
ADDRESS4

CE3

OE3

WR3
DATA3
ADDRESS3

HOST

PROCESSOR

10

HOST
MEMORY

Figure 9.13 Four-Port RAM Configuration

9-19

OCTAL
LATCH
'AC574

PMD

9.6.2.2 Serial Data Flow

If the flow of data in a multiprocessor system is serial, that is, data moves
in sequence along a linear path from one processor to the next, then
several configurations are suggested.

Buffer Latches

Figure 9.14 shows a simple, low-cost solution for synchronous transfers.
The linkage between every two processors in a serial path consists of a set
of buffer latches, the number of which is determined by the width of the
data to be transferred (8, 16, 24, 32 or 40 bits). Each processor in the serial
path outputs data to latches on its DMD bus, and the reads data from
latches on its PMD bus. Each processor also has local program memory
and data memory. Reads from and writes to the latches are distinguished

A

PMA PMSO i DMA DMSO

FLAG1 FLAGO Q Q FLAG1 -

PMS1

R DMWR ‘D.> LATCH
e ? bmsi AC574
WR

OCTAL

9-20

ADSP-21020 N M ADSP-21020 - >
WR RD o
DMWR ﬁf}—» cK OF (PMRD
DS ») & PMSi -
Faz OCTAL
] LATCH L
> "AC574 >
DMA DMSO PMA PMSO
»{ D Q
Y
DM | > ‘<——>| PM |
DMD PMD

Figure 9.14 Serial Data Flow Using Buffers

by the bank 1 selects (DMST and PMSI) in this case. Data is clocked into a
latch by the rising edge of the DMWR signal; the output of a latch is
enabled by the PMRD signal.

Two of each processor’s flags (FLAGO and FLAG1, programmed as
inputs) are used for synchronizing the data transfer between processors.
When one processor writes to the latch, it asserts the external semaphore
which in turn asserts the FLAG1 input of the next processor to indicate
that there is data in the latch. When the read occurs, the second processor
resets the signal on its FLAG1 input and also sets the FLAGO input of the
first processor to indicate that the data has been read. The first processor
then writes the latch again, resetting the signal on its FLAGO input.

A processor reads the latch only if FLAGI indicates that there is data to
read. The instruction would be a conditional instruction that reads
program memory:

IF FLAGl IN F3=PM(buffer); {"buffer" is a location }
{ in bank 1 }

Likewise, a processor would write the latch only if FLAGO indicates that
the previous data has been read.

In this configuration, a processor can read the latch in the cycle after it was
written. The maximum throughput is therefore one data transfer every
two cycles. High transfer rates, however, require the operations of all
processors in the system to be closely synchronized, since there is no
external storage in which to accumulate data.

The use of both memory interfaces is optional. Alternatively, both input
and output latches could be placed on the data memory interface. In this
case, the program memory interface would be used only for program
memory accesses.

9-21

FIFOs
Figure 9.15 shows an example similar to the previous one, except that the
buffer latches are replaced with FIFOs. This configuration has the
advantage that each processor does not have to wait for the next one to

read data before it can write data. The processors can operate at full speed,

and bottlenecks are avoided.

FIFO
256 X9

PMD

~— o |

3

PMA PMSO

FLAG1

DMD

PMS1 M

< ADSP-21020

PMRD

PMD DMWR

DMA DMSO

'F32

EF

A

R
FIFO
256 X 9

g

IDT 7200

(o |-

DMA DMSO

DMD

ADSP-21020

FLAG1

PMRD

(>
\k‘

1 .

PMS1

PMA PMSO

Figure 9.15 Serial Data Flow Using FIFOs

]

FIFO
256 X9

g, B
s@&aé‘%
1111

|]
#

In this configuration, a low FLAGO input indicates that the FIFO is full

(FF flag is asserted). Thus, writes to the FIFO should be conditioned on

FLAGO:

IF FLAGO _IN DM(fifo)=F7; {"fifo" is a location in bank 1}

or

DO loop UNTIL NOT FLAGO IN; ({loop is at least 5 instructions, so flag }

{ can go low before loop restarts. }
compute, DM(fifo)=F7; {"fifo" is a location in bank 1}
instruction 2 ; {FLAGO is low here on last loop!}

instruction 3 ;
instruction 4 ;
loop: instruction 5 ;

Similarly, when the FIFO is empty it asserts its EF flag which deasserts the
FLAGT1 input of the processor receiving data. FIFO reads should be
conditioned on FLAGI.

As in the previous example, the use of the program memory interface is
optional; both the input FIFO and output FIFO can be connected to a
processor’s data memory interface.

9-23

Dual-Port Memory

Figure 9.16 shows an example using dual-port RAM to transfer data
between processors. This configuration is similar to the previous one, but
has even more data storage and allows bidirectional data flow on the
serial path.

The INT pin is a general-purpose output that is set when location 0x3FE or
0x3FF of the dual-port RAM is written. These locations are mailbox
registers that can be used to pass messages. In this example, the INT
output is connected to a flag input on the ADSP-21020. The processor can
read the mailbox register if the flag is set. Alternatively, INT could trigger
an interrupt, with the service routine reading the mailbox.

DUAL
PORT
RAM
1K X8

pMD [] DMD
PM DM |e—>
A A
PMA PMSO DMA
| FLAG1 FLAGO |&- DUAL
S DMD PMD DMWR »| PORT
ﬁ M M DMRD - RAM
~ 'ﬂa.[_). DMS1 =1 1KX8
PMWR
= ADSP-21020 ADSP-21020 -—
- FLAGO |« INT INT »| FLAG1 -
DMWR RIW RW PMWR L
DMRD »| OE ‘OE PMRD
U DMS1 CE CE PMS1
IDT 7130
- DUAL
PORT
e RAM R
DMS0O DMA
10 1K X8 PMA PMSO
| A A
i & | D D . }
DM [~—| PM

Figure 9.16 Serial Data Flow Using Dual-Port RAM

The dual-port RAM has a BUSY output that it asserts if contention occurs
(both processors try to write the same location at the same time). If both
processors are operating with zero wait states, however, this function can
not be used. Contention can be avoided if each processor is constrained in
software to read only those locations that the other processor writes and to
write only those locations that the other processor reads. In this way, two
writes to the same location will never occur.

9.7 PROGRAM MEMORY BOOT AT RESET

After reset, the ADSP-21020 automatically fetches its first instruction from
location 0x08 of program memory. If program memory consists of ROM,
the instructions are available in memory at powerup. If program memory
is made up of RAM, however, there must be a mechanism for loading the
program into memory at powerup. A single RAM and no ROM is
frequently an attractive option because the addition of 8-bit ROMs would
require six more memory devices, resulting in a higher cost, more board
space and higher capacitive loads on the address lines than with RAM
alone.

In a boot operation the ADSP-21020 executes a minimal program that
loads the rest of program memory. A way to implement the boot
operation is to load the instructions of a boot program through the ADSP-
21020’s test access port. This port, which conforms to the IEEE 1149.1
specification, is described in Appendix C. It allows serial data to be shifted
into and out of the ADSP-21020. The internal serial path connects to every
input and output pin, so that the value of any pin can be read or written to
using the serial shift mechanism.

The boot operation can be controlled by a host processor or a dedicated
microcontroller. The operation would proceed generally as follows:

1. The host or controller shifts an instruction and address into the
program memory data inputs with PMWR deasserted.

2. The host or controller shifts the same instruction and address into the
program memory data inputs with PMWR asserted.

3. The host or controller shifts the same instruction and address into the
program memory data inputs with PMWR deasserted.

LOAD LP:

4. Steps 1-3 are repeated for a series of instructions and sequential
addresses that cause the processor to load a loader program into
program memory.

5. When the loader program has been loaded, RESET is deasserted, and
the processor begins executing the loader program from location 0x08
in memory to bring in the main program.

An example loader program is shown below in Figure 9.17. In this

example, data is read in byte-wise on DMD15-8. The 48-bit instructions
are reconstructed in the shifter, then transferred to the PMD bus and to
program memory usmg the PX registers. This routine assumes that data is
coming from an 8-bit EPROM. If a host is supplying the data, the address
lines can be ignored. This routine requires 18 instructions.

I8=START_ ADR;
M8=1;
L8=0;
I1=EPROM ADR;
Ml=1;
L1=0;

{load program at START ADR}

{M8 increments by 1}
{no circular buffer}

{pointer to EPROM}

{M1 increments by 1}
{no circular buffer}

LCNTR=LOAD COUNT, DO LOAD LP UNTIL LCE;

RO=DM(I1,M1);
R1=FDEP RO BY
R1=R1 OR FDEP
PX1=R1;

R1=FDEP RO BY
R1=R1 OR FDEP
R1=R1 OR FDEP
R1=R1 OR FDEP
PX2=R1;

PM(I8,M8)=PX;

JUMP START_ADR;

0:8, RO=DM(I1,M1);
RO BY 8:8, RO=DM(I1,M1);
0:8, RO=DM (I1,M1);
RO BY 8:8, RO=DM(I1,M1) ;

RO BY 16:8, RO=DM(I1,M1);

RO BY 24:8;

{write instr.
{begin execution}

Figure 9.17 Example Loader Program

to PM}

{load byte
{load byte
{load byte

{load byte
{load byte
{load byte

1 LSB}
3}
4}

6 MSB}

9.8 MEMORY INTERFACE CAPACITIVE LOAD

The timing parameters for the memory interfaces of the ADSP-21020 are
specified at capacitive loads of 100 pF on the address, memory select, page
boundary, read strobe and write strobe outputs. For the data and other
outputs, the nominal load is 50 pF. If the capacitive load on an output is
different than the nominal load, its switching characteristic is affected.
Specifically, as the capacitance on a pin increases, so do its rise and fall
times. If an output delay is measured at the point that the output reaches a
particular voltage level, then the delay increases for larger capacitive loads
and decreases for smaller ones. Consequently, pin-to-pin variations in
capacitive loading can alter the relative timing of outputs to the point
where they no longer meet the input requirements of the memory device.

The drive strength of the ADSP-21020 memory outputs is sufficient for
large capacitive loads, so most variations in loading will not change
relative timing enough to violate any memory device specifications. This
section describes how to determine whether load variations in your
system will cause timing problems and how to correct them.

9.8.1 Load Variations

A typical application that can contain large variations in loading between
pins is one that requires multiple banks of memory. Figure 9.18 (on page
9-28) shows an example with three banks of external data memory, one of
which is 32K words long and the other two which are 8K words each.
Address lines DMA12-0, DMRD and DMWR are loaded by all three banks
of memory, a total of 15 RAMs. The address lines DMA13 and DMA14
and memory selects DMS2-0 are connected to only one of the three
memory banks and have approximately a third the load of the other
outputs.

In this scenario, there are a number of RAM specifications that can be
negatively affected by the load variation. One of these is the address hold
from write end (write strobe deasserted), typically specified at 0 ns
minimum. The timing of the ADSP-21020 data memory address and
DMWR outputs is specified to guarantee a positive hold time at nominal
capacitive loads. However, if the load on an address line is much less than
that on the write strobe, which is the case for DMA13 and DMA14, the
address line switches faster relative to the strobe. If the result is that the
address line switches before the strobe does, then the address hold time is
negative, and the RAM input requirement is not met. This situation is
depicted in Figure 9.19.

9-27

There are other capacitive loading variations that can lead to violations of
RAM specifications. If data lines are more heavily loaded than the write
strobe, for example, the data may not be valid in time to meet the setup
requirement before the write end. Heavily loaded address lines can be
slowed enough to adversely affect the address-to-read-data-valid and
address-to-acknowledge requirements.

To determine whether capacitive loading variations in a particular
situation lead to specification violations, refer to graphs in the
ADSP-21020 Data Sheet that specify for each type of output how the delay
changes with capacitive load. Adjust the nominal delay for each output
based on its capacitive load, then assess whether the relative timing of
signals meets the input specifications of the RAM.

ADSP-21020 d x
DMWR > WE
DMRD > OE SRAM
BHMSG > oE 32K x 8
32, 15, (5)
DMA31-0 w 7" A14-0
DMD39-0 [/L‘ > b7-0 Am
DMS1 I|
DMS2 > WE
> oF SRAM
ol = 8Kx8
a, | (5)
7| A12-0
- > b7.0 I=
L
1
> WE
» OF SRAM
__ 8K x8
o, | & (5)
77| A12-0
- > D70 _"_
 /

Figure 9.18 Memory Configuration with Unequal Capacitive Loads

LOADS EQUAL:

DMWR \ 74
l Positive Hold Ti
— |<_ ositive Hold Time
|
DMA13 \ 71(
LOADS UNEQUAL:
DMWR \ 4
|
[Negative Hold Time
— H_
I
DMA13 \ l

Figure 9.19 Effect of Unequal Capacitive Loads

9.8.2 Correcting The Timing

Timing violations caused by load variations can be corrected by slowing
down the faster outputs. Two ways to accomplish this are adding discrete
capacitance or adding series resistance to the faster outputs. Each method
results in a longer delay, but discrete capacitance may add ringing
whereas series resistance may increase susceptibility to noise coupling. If
series resistance is chosen, the following formula yields the approximate
amount of resistance required:

R = At / Cioad

Thus, to increase the delay by 2 ns on an output that has a 40 pF load, add
about 50 Q of resistance in series between the output and the RAM input,
near the output pin. Access times may suffer if too much delay is added,
however.

9-30

Hardware Syst

9.9 EZ-ICE EMULATOR CONSIDERATIONS

The ADSP-21020 EZ-ICE® Emulator is a development tool for
debugging programs running in real time on your ADSP-21020 or
ADSP-21010 target system hardware.

The EZ-ICE provides a controlled environment for observing,
debugging, and testing activities in a target system by connecting
directly to the target processor through its JTAG interface. The
emulator can monitor system behavior while running at full speed. It
lets you examine and alter memory locations as well as processor
registers and stacks.

Because EZ-ICE controls the target system’s ADSP-21020 (or ADSP-
21010) through the processor’s IEEE 1149.1 (JTAG) Test Access Port,
non-intrusive in-circuit emulation is assured; the emulator does not
impact target loading or timing. The emulator’s in-circuit probe
connects to an IBM PC host computer with an ISA bus plug-in board.

Target system boards must have an 11-pin JTAG connector to accept
the EZ-ICE’s in-circuit probe (a 12-pin plug).

9.9.1 Target Board Connector For EZ-ICE Probe

The EZ-ICE uses the IEEE 1149.1 JTAG test access port of the ADSP-
21020/21010 to monitor and control the target board processor during
emulation. The EZ-ICE probe requires that CLKIN, TMS, TCK, TRST,
TDI, TDO, and GND be made accessible on the target system via a 12-
pin connector (pin strip header) such as that shown in Figure 9.20. The
EZ-ICE probe plugs directly onto this connector for chip-on-board
emulation; you must add this connector to your target board design if
you intend to use the EZ-ICE.

The 12-pin, 2-row pin strip header is keyed at the pin 1 location—you
must clip pin 1 off of the header. The pins must be 0.025 inch square
and at least 0.318 inch in length. Pin spacing is 0.1 x 0.1 inches. Pin
strip headers are available from vendors such as 3M, Samtec, and
McKenzie.

The tip of the pins must be at least 0.18 inch higher than the tallest
component on your board to allow clearance for the bottom of the
emulator’s probe.

The length of the traces between the EZ-ICE probe connector and the
ADSP-21020/21010’s test access port pins should be less than 1 inch.

The BMTS, BTCK, BTRST, and BTDI signals are provided so that the
test access port can also be used for board-level testing. When the
connector is not being used for emulation, place jumpers between the
BXXX pins and the XXX pins as shown in Figure 9.20. If you are not
going to use the test access port for board test, tie BTRST to GND and
tie or pullup BTCK to VDD. The TRST pin must be asserted (pulsed
low) after powerup (through BTRST on the connector) or held low for
proper operation of the ADSP-21020/21010.

9.9.2 Other Hardware Considerations

¢ The EZ-ICE probe adds two TTL loads to the CLKIN pin of the
ADSP-21020/21010.

o The target system design must use PMRD and DMRD to gate the
output enable of any device that can drive the ADSP-21020/21010
buses.

Key(NpPiM) x W | CLKIN
BTMS ™S
BTCK TCK
BTRST | [FRal®]| TRST
BTDI DI
GND | m m | TDO
Top View

Figure 9.20 Target Board Connector For EZ-ICE Probe (jumpers in place)

9-31

Ha

9.10 HOST PROCESSOR INTERFACE

In this section a bidirectional interface between an ADSP-21020 and a host
microprocessor is described. The interface consists of three channels: the
write channel, the read channel, and the status channel. The write channel
transfers data from the host to the ADSP-21020. The read channel transfers
data from the ADSP-21020 to the host. The status channel provides the
host with information regarding the state of the read and write channels.

The system configuration is shown in Figure 9.21. Figure 9.22 shows the
details of the interface logic.

When the host writes data to the port, the write channel valid flag (WCV)
goes active. This flag informs the ADSP-21020 that valid data is present in
the write channel. Similarly, when the ADSP-21020 writes data to the port,
the read channel valid flag (RCV) goes active. Both flags are cleared when
their respective channels are read. It is the channel valid flags that the host
accesses when it reads the status channel.

The channel valid flags are set and cleared on the rising edges of the
strobes. This ensures that the flags reflect the true state of the channels at
all times. For example, assume the flags are set on the falling edges of the
strobes and that the host is writing data to the port. If the ADSP-21020 is
much faster than the host, it may sense the flag and read the channel
before the host has had time to put its data into the port. By changing the
state of the flags on the rising edge of the strobes, we guarantee that the
flags change state only after the channels do.

9.10.1 Data Transfer Sequences

Described below are the two basic transfer sequences. See the timing
shown in Figures 9.23 and 9.24 for more information. In these figures, the
falling edges of WCV and RCV indicate the presence of valid data in the
host port latches. The rising edges indicate that the data has been read and
the buffer is empty. The data bus shows the host port latch data.

DMACK
FLAG1

FLAGO

IRQO

DMWR
DMRD

DMS3

ADSP-21020

DMS0

DM -

Dashed lines indi

RCV

wcv

DMWR

DMRD

DMS

DMOE

DMD

OCTAL POSITIVE EDGE TRIGGERED REGISTER

Figure 9.21 Host Interface Block Diagram

_ 1 _______ e HOST
F-—— - — — 1 Fo

HWR WR
o 5

HOST HRD 5
HSEL |- SEL

INTERFACE

HACK ACK

LOGIC A0 a0

2
DO,1 -~
HCK HOE DMCK
I Y
I 3
\v4 -1
MEMORY
N
- HOST BUS -
| 8,16,0r 32 bits
ig

9-33

DMOE DMCK

+5V +5V
D D
> R R <o
Q aB QB Q
WCV |
o 90_\ HACK
RST ‘
[A0
DMRD yg= HWR
‘ N N
— —
DMS HSEL
DMWR .—@— { | FRD
<
]
RCV $ 5 S
1 |
Q OB QB Q
—> R LR <
D D
+5V +5V
l\ DO
l/:i D1
L
HCK HOE
NOTES:

1. The latches shown are positive edge triggered D latches with asynchronous reset to 0.

2. Because the host acknowledge line (ACK) is shared by the memory system, HACK is
tristated except when either of the host strobes is low.

Figure 9.22 Host Interface Logic

9-34

Host Write (Host Data to ADSP-21020):

1. The host writes data to the port. The WCV flag is set on the rising edge
of the host write strobe.

2. The ADSP-21020 samples the WCV flag, either by polling or interrupt.

3. The ADSP-21020 reads the port, clearing the WCV flag.

Because the WCV flag is cleared by the ADSP-21020 read before the host
begins its write, the HACK line is asserted immediately after the host
write strobe is asserted, ending the host cycle without wait states. If the
host attempts to write the port again before the ADSP-21020 reads it, the
HACK line is deasserted immediately after the write strobe is asserted and
remains deasserted until the ADSP-21020 reads the data. Then the HACK
line is asserted, ending the host cycle. The previous host data is not
corrupted by the second host write because the data is clocked in on the
rising edge of the write strobe. The host can avoid hanging up by reading
_the status bits before each transfer.

new data latched

on this edge \

I
|
———— |
HWR |
|
— T
DMRD 1 x
|
W /T
/ | AcK asserted
(hiah i " \
HACK (high imp) |L < immediately
|
DATA N (olddata) [! N+1
|<-— new host cycle Host cycle ends without
ADSP-21020 read empties ! wait states

the latch on this edge

Figure 9.23 Host Write Timing

9-35

9-36

dware Sy:

Host Read (ADSP-21020 Data to Host):

1. The ADSP-21020 writes data to the port, setting the RCV flag on the
rising edge of the write strobe.

2. The host samples the RCV flag, either by being interrupted, or by
reading the status channel.

3. The host reads the port, clearing the RCV flag on the rising edge of the
read strobe.

Because the RCV fla§ is set by the ADSP-21020 write before the host
begins its read, the line is asserted immediately after the host read
strobe is asserted, ending the host cycle without wait states. If the host

3 A tha TTACT 1ina i
attempts to read the port before new data has arrived, the HACK line is

deasserted immediately after the host read strobe is asserted until the
ADSP-21020 writes data to the port. Then the HACK line is asserted,
ending the host cycle.

Since this is an asynchronous interface, the status of the channels may
change even as the host is reading the status. At worst, this could cause
the host to wait longer than necessary before initiating the next access.

Host cycle ends without
wait states

|
BWWR __/;\\i\

RCV 0
(high i 4 \ \ HACK asserted immediately (high impedance)———

[}
HACK P AR

1
HOST N (olddata) X 1 \ N+1 (new data)
DATA —\

new host cycle ———p{

1 new data from
ADSP-21020 latched
on this edge

Figure 9.24 Host Read Timing

9.10.2 Host Interface Code Examples
This section describes several ways to program data transfers using the
host port.

9.10.2.1 Buffer Transfers

The code segment below shows buffer transfers from the host while the
ADSP-21020 is executing a loop. It has minimal overhead for a transfer,
and the loop length is the same whether or not there is a transfer.

LCNTR=length, DO END UNTIL LCE; {Loop}

IF NOT FLAGO R3=DM(HOST), R1=LEFTZ R1l; {Read host if not flag0}
IF SZ DM(I0,M0)=R3, R2=LEFTZ R2; {Write buffer if SZ=1}
instruction 1 ; {Main part of loop}

instruction 2 ;

END: instruction N ;

The 10 register is the address pointer to the buffer in data memory. FLAGO
is low when data is ready to be read by the ADSP-21020. R1 is initialized
to OXFFFFFFFF, R2 to 0. The use of the SZ flag permits the read from the
host and the write to the buffer to be indivisible. If the shifter, which tests
R1 and R2 and sets and clears the SZ flag, is used elsewhere in the loop,
the SZ flag should not be left set prior to the FLAGO test.

9.10.2.2 Interrupt-Driven Transfers

Interrupt-driven transfers are useful because they allow the ADSP-21020
to continue processing without overhead until data is ready to be
transferred. This is desirable when communicating with a slow host.

The code below is a simple example of an interrupt-driven I/O driver.

transfer: RTI (DB); {Return (delayed)}
R15=DM (HOST ADDR); {Get data from port}
DM(I6,1)=R15; {Transfer data to buffer, incr pointer}

The transfer interrupt request is asserted by the host interface logic each
time the host writes to the port. An alternative to a host interrupt is a
timer interrupt (using the ADSP-21020 timer).

9-37

9-38

9.10.2.3 High Speed Transfers

For transfer rates comparable to the ADSP-21020 cycle time, the host
interface should be connected to the ADSP-21020’s program memory port.
Then data can be read from the host port and written to the data memory
on every cycle. This may even occur in parallel with a computation.

init: I5=HOST ADDR; {Load addr pointer to host port}
M5=0;
I6=DATA BUFFER; {Load addr pointer to buffer}
Mo6=1;

go: R15=PM(I5,0); {Get first data}
LCNTR=length, DO end UNTIL LCE;

end: compute, DM(I6,M6)=R15, R15=PM(I5,M5); {Write data, }

{then get data}

DM (I6,M6)=R15; {Write last data}

The dual fetch instruction in the loop transfers R15 to data memory first,
then loads R15 from program memory (the host port). In effect, it writes
the last value to data memory while reading the next value from the host
port. That is why R15 is loaded from the port prior to entering the loop,
and why R15 is written to data memory after the loop.

If transfers at the full clock rate are desired, then the host and ADSP-21020
should be synchronized (i.e., use the same clock). DMACK may be used to
control throughput in this case.

If a handshake with the host is needed, as shown in Figures 9.23 and 9.24,
then the maximum transfer rate will be half the ADSP-21020 clock rate.

Instruction Set Reference

A OVERVIEW

This appendix and the next one describe the ADSP-21020/21010
instruction set in detail. This appendix explains each instruction type,
including the assembly language syntax and the opcode that the
instruction assembles to. Many instruction types contain a field for
specifying a compute operation (an operation that uses the ALU,
multiplier or shifter). Because there are a large number of options
available for this field, they are described separately in Appendix B.
(Note that data moves between the MR registers and the register file are
considered multiplier operations.)

Each instruction is specified in this section. The specification shows the
syntax of the instruction, describes its function, gives one or two
assembly-language examples, and specifies and describes the various
fields of its opcode. The instructions are grouped into four categories:

I. Compute and move or modify instructions, which specify a compute
operation in parallel with one or two data moves or an index register
modify.

II. Program flow control instructions, which specify various types of
branches, calls, returns and loops. Some of these instructions may also
specify a compute operation and/or a data move.

III. Immediate data move instructions, which use immediate instruction
fields as operands, or use immediate instruction fields for addressing.

IV. Miscellaneous instructions, such as bit modify and test, no operation
and idle.

Many instructions can be conditional. These instructions are prefaced by
an “IF” plus a condition mnemonic. In a conditional instruction, the
execution of the entire instruction is based on the specified condition.

Several sections that appear before the instruction specifications explain
the notation conventions used in this instruction set reference (for both
Appendix A and Appendix B).

® Section A.2 describes the notation and abbreviations used in the syntax
description for each instruction.

e Section A.3 describes the notation and abbreviations used in the
opcode description for each instruction.

e Section A4 lists all condition and termination codes and their
assembly language mnemonics.

* Section A5 lists the assembly language mnemonics and opcode
addresses for all universal registers.

A2 INSTRUCTION SYNTAX NOTATION

The conventions in this section are used to describe the syntax of each

instruction.

Notation Meaning

UPPERCASE explicit syntax; assembler keyword

; instruction terminator

, separates parallel operations in an instruction
italics optional part of instruction

| between lines | list of options (choose one)

<datan> n-bit immediate data value

<addrn> n-bit immediate address value

<reladdrn> n-bit immediate PC-relative address value

<bit6>:<len6>

6-bit immediate bit position and length values
(for shifter immediate operations)

compute ALU, multiplier, shifter or multifunction operation
(see Appendix B)

shiftimm shifter immediate operation (see Appendix B)

condition status condition (see Condition Codes)

termination termination condition (see Condition Codes)

ureg universal register (see Universal Registers)

sreg system register (see Universal Registers)

dreg R15-R0, F15-F0; register file location

Rn, Rx, Ry, Ra, Rm, Rs R15-R0; register file location, fixed-point

Fn, Fx, Fy, Fa, Fm, Fs F15-F0; register file location, floating-point

R3-0 R3,R2,R1, R0

R7-4 R7, R6, R5, R4

R11-8 R11, R10, R9, R8

&
v

Notation Meaning

R15-12 R15, R14, R13, R12

F3-0 F3, F2, F1, FO

F7-4 F7,F6, F5, F4

F11-8 F11, F10, F9, F8

F15-12 F15, F14, F13, F12

Ia 17-10; DAGT1 index register

Mb M7-MO; DAG1 modify register

Ic 115-18; DAG2 index register

Md M15-M8; DAG2 modify register

(DB) Delayed branch

(LA) Loop abort (pop loop, PC stacks on branch)
MROF Multiplier result accumulator 0, foreground
MRI1F Multiplier result accumulator 1, foreground
MR2F Multiplier result accumulator 2, foreground
MROB Multiplier result accumulator 0, background
MR1B Multiplier result accumulator 1, background
MR2B Multiplier result accumulator 2, background

A3 OPCODE NOTATION

In ADSP-21020 opcodes, some bits are explicitly defined to be zeros or
ones. The values of other bits or fields set various parameters for the
instruction. The terms in this section define these opcode bits and fields.
Bits which are unspecified are ignored when the processor decodes the
instruction, but are reserved for future use.

A Loop abort code

0 Do not pop loop, PC stacks on branch
1 Pop loop, PC stacks on branch

ADDR Immediate address field
Al Computation unit register

0000 MROF

0001 MRIF

0010 MR2F

0100 MROB

0101 MRI1B

0110 MR2B

BOP

COMPUTE
COND

Cu

DATA

DEC

DMD

DMI

Branch type

0 Jump
1 Call

Bit Operation select codes

000 Set

001 Clear
010 Toggle
100 Test
101 XOR

Compute operation field (see Appendix B)
Status Condition codes
0 - 31 (see Condition Codes)

Computation unit select codes

00 ALU
01 Multiplier
10 Shifter

Immediate data field
Counter decrement code

0 No counter decrement
1 Counter decrement

Memory access direction

0 Read
1 Write

Index (I) register numbers, DAG1
0-7

DMM Modify (M) register numbers, DAGI

0-7

DREG Register file locations
0-15

G DAG/Memory select

0 DAGT1 or Data Memory
1 DAG?2 or Program Memory

INC Counter increment code
0 No counter increment
1 Counter increment
J Jump Type
0 Non-delayed
1 Delayed
LPO Loop stack pop code
0 No stack pop
1 Stack pop
LPU Status stack push code

0 No stack push
1 Stack push

NUM Interrupt vector

0-7
OPCODE Computation unit opcodes (see Appendix B)
PMD Memory access direction

0 Read

1 Write

PMM

RELADDR

SPO

SPU

SREG

TERM

UREG

RA, RM, RN,
RS, RX, RY

Index (I) register numbers, DAG2

8-15

Modify (M) register numbers, DAG2
8-15

PC-relative address field

Status stack pop code

—
-
£
Q
73]
r
Q
)
=

o
(@)
T

Loop stack push code

0 No stack push
1 Stack push

System Register address

0 - 15 (see Universal Registers)
Termination Condition codes

0 - 31 (see Condition Codes)
Update, index (I) register

0 Pre-modify, no update
1 Post-modify with update

Universal Register address
0 - 256 (see Universal Registers)

Register file locations for compute operands
and results

0-15

RXM

RYA

RYM

ALU x-operand register file location for multifunction
operations

8-11

Multiplier x-operand register file location for
multifunction operations

0-3

ALU y-operand register file location for multifunction
operations

12-15

Multiplier y-operand register file location for
multifunction operations

4-7

A4 CONDITION CODES
No. Mnemonic Description
0 EQ ALU equal zero
1 LT ALU less than zero
2 LE ALU less than or equal zero
3 AC ALU carry
4 AV ALU overflow
5 MV Multiplier overflow
6 MS Multiplier sign
7 SV Shifter overflow
g8 SZ Shifter zero
9 FLAGO_IN Flag 0 input
10 FLAGI1_IN Flag 1 input
11 FLAG2_IN Flag 2 input
12 FLAG3_IN Flag 3 input
13 TF Bit test flag
14 Reserved
15 LCE Loop counter expired
(DO UNTIL term)
15 NOTLCE Loop counter not expired

(IF cond)

Bits 16-30 are the complements of bits 0-14

16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
31

NE
GE

GT

NOT AC

NOT AV

NOT MV

NOT MS

NOT sV

NOT SZ

NOT FLAGO_IN
NOT FLAG1_IN
NOT FLAG2_IN
NOT FLAG3_IN
NOT TF

FOREVER
TRUE

A-8

ALU not equal to zero
ALU greater than or equal zero

ALU greater than zero

Not ALU carry

Not ALU overflow

Not multiplier overflow
Not multiplier sign

Not shifter overflow
Not shifter zero

Not Flag 0 input

Not Flag 1 input

Not Flag 2 input

Not Flag 3 input

Not bit test flag
Reserved

Always False (DO UNTIL)
Always True (IF)

True If

AZ=1

[AF and (AN xor (AV and ALUSAT))
or (AFand AN and AZ)] =1

[AF and (AN xor (AV and ALUSAT))
or (AFand AN)Jor AZ=1

AC=1

AV =1

MV =1

MN =1

SV=1

57 =1

FI0=1

Fl1=1

FI2=1

FI3=1

BTF=1

CURLCNTR =1

CURLCNTR # 1

AZ=0

[AF and (AN xor (AV and ALUSAT))
or (AF and AN and AZ)] =0

[AF and (AN xor (AV and ALUSAT))
or (AF and AN)]or AZ =0

AC=0

AV =0

MV =0

MN =0

SV=0

SZ=0

FI0=0

Fl1=0

FI2=0

FI3=0

BTF=0

always
always

struction Set Reference A

A5 UNIVERSAL REGISTERS

Map 1 registers:
PC* program counter System Registers:
PCSTK top of PC stack MODE1 mode control 1
PCSTKP PC stack pointer MODE?2 mode control 2
FADDR* fetch address IRPTL interrupt latch
DADDR* decode address IMASK interrupt mask
LADDR loop termination address IMASKP interrupt mask pointer
CURLCNTR current loop counter ASTAT arithmetic status
LCNTR loop counter STKY sticky status
R15-R0O register file locations USTAT1 user status reg 1
I5-10 DAG1 and DAG?2 index registers USTAT2 user status reg 2
M15 - MO DAGT1 and DAG2 modify registers
L15-L0 DAGI1 and DAG2 length registers
B15 - B0 DAGT1 and DAG2 base registers * read-only
System
(67=0) Registers
b7 b6 b5 b4 ——
b3 b2 b1 b0 0000 00010010 0011 0100 0101 0110 0111
0000 RO 10 Mo Lo BO FADDR USTAT1
0001 R1 " M1 L1 B1 DADDR USTAT2
0010 R2 12 M2 L2 B2
0011 R3 13 M3 L3 B3 PC
0100 R4 14 M4 L4 B4 PCSTK
0101 R5 15 M5 L5 BS PCSTKP
0110 R6 18 M6 L6 B6 LADDR
0111 R7 17 M7 L7 B7 CURLCNTR
1000 R8 18 M8 L8 B8 LCNTR
1001 R9 19 M9 L9 B9 IRPTL
1010 R10 110 | M10 | L10 B10 MODE2
1011 R11 11| M1 L11 B11 MODE!1
1100 R12 2 | M12 | L12 B12 ASTAT
1101 R13 113 | M13 | L13 B13 IMASK
1110 R14 4 | M14 | L14 B14 STKY
1111 R15 115 | M15 | L15 B15 IMASKP

Figure A.1 Map 1 Universal Register Addresses

A-10

Instruction Set Reference

Map 2 registers:
DMWAIT wait state and page size control for data memory
DMBANK1 data memory bank 1 upper boundary
DMBANK?2 data memory bank 2 upper boundary
DMBANK3 data memory bank 3 upper boundary
DMADR copy of last data memory address
PMWAIT wait state and page size control for program memory
PMBANK1 program memory bank 1 upper boundary
PMADR copy of last program memory address
PX 48-bit PX1 and PX2 combination
PX1 bus exchange 1 (16 bits)
PX2 bus exchange 2 (32 bits)
TPERIOD timer period
TCOUNT timer counter
(b7=1)
b7 b6 b5 b4
1000 1001 1010 1011 1100 1101 1110 1111
b3 b2 b1 b0
0000 PMWAIT | DMWAIT
0001 PMBANK1 | DMBANK1
0010 PMADR | DMBANK2
0011 DMBANK3
0100 DMADR
0101
0110
0111
1000
1001
1010
1011 PX
1100 PX1
1101 PX2
1110 TPERIOD
1111 TCOUNT

Figure A.2 Map 2 Universal Register Addresses

Group |. _
Compute and Move Instructions

1.

Parallel data memory and program memory transfers with register file, optional

COMPULE OPEIALION ...ttt e ser bbb A-12
Compute operation, optional CONAIIONccuirerirniricrer s A-13
Transfer between data or program memory and universal register, optional

condition, optional COMPULE OPEFALIoN............c.veererierrrieriere e reeneen A-14
PC-relative transfer between data or program memory and register file,

optional condition, optional compute Operationcc.courreneneeneecnnieeenneenens A-16
Transfer between two universal registers, optional condition, optional compute

(0] 0T £- 04SPPSR A-18
Immediate shift operation, optional condition, optional transfer between data or
program memory and register file ... s A-20
Index register modify, optional condition, optional compute operation...................... A-22

A-11

A

A-12

Compute and Move

compute / dreg<>DM / dreg<>PM

Syntax:

compute, | DM(la, Mb) = dregl

dregl = DM(la, Mb)

PM(Ic, Md) =dreg2 | ;
dreg2 = PM(Ic, Md)

7

Function:

Parallel accesses to data memory and program memory from the register
file. The specified I registers address data memory and program memory.
The I values are post-modified and updated by the specified M registers.
Pre-modify offset addressing is not supported.

Examples:
R7=BSET R6 BY RO, DM(I0,M3)=R5, PM(I11,M15)=R4;

R8=DM(I4,M1), PM(I12 M12)=RO;

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23
D P DM PM
001 {M| DM DMM |M| DREG | PMI PMM DREG
D D

222120191817 16 151413121110 9 8 7 6 56 4 3 2 1 O

COMPUTE

DMD and PMD select the access types (read or write). DMDREG and
PMDREG specify register file locations. DMI and PMI specify I registers
for data and program memory. DMM and PMM specify M registers used
to update the I registers. The COMPUTE field defines a compute
operation to be performed in parallel with the data accesses; this is a
NOP if no compute operation is specified in the instruction.

Compute and Move A
compute

Syntax:
IF condition ~ compute ;
Function:
Conditional compute instruction. The instruction is executed if the
specified condition tests true.
Examples:
IF MS MRF=0;

F6=(F2+F3)/2;

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00001 COND

22212019 18 17716 151413121110 9 8 7 6 56 4 3 2 1 0

COMPUTE

The operation specified in the COMPUTE field is executed if the condition
specified by COND is true. If no condition is specified in the instruction,
COND is the TRUE condition, and the compute operation is always
executed.

A-13

Compute and Move
compute / ureg<>DMIPM , register modify

Syntax:

a. IF condition compute, | DM(la, Mb) | = ureg;

PM(Ic, Md)
b. IF condition compute, | DM(Mb,la) | = ureg;
PM(Md, Ic)

c. IF condition compute, ureg =‘ DM(Ia, Mb) | ;
PM(Ic, Md)

d. IF condition compute, ureg =| DM(Mb, Ia) | ;
| PM(Md, 1) |

Function:

Access between data memory or program memory and a universal
register. The specified I register addresses data memory or program
memory. The I value is either pre-modified (M, I order) or post-modified
(I, M order) by the specified M register. If it is post-modified, the I register
is updated with the modified value. If a compute operation is specified, it
is performed in parallel with the data access. If a condition is specified, it
affects entire instruction.

Examples:
R6=R3-R11, DM(I0,M1)=ASTAT;

IF NOT SV F8=CLIP F2 BY F14, PX=PM(I12,M12);

A-14

Compute and Move

compute / ureg<>DMIPM , register modify

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

010 u | M COND G|D UREG

22 21 20 19 18 17 16 156 14 13 121110 9 8 7 6 56 4 3 2 1 0

COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

D selects the access type (read or write). G selects data memory or
program memory. UREG specifies the universal register. I specifies the

I register, and M specifies the M register. U selects either pre-modify
without update or post-modify with update. The COMPUTE field defines
a compute operation to be performed in parallel with the data access; this
is a no-operation if no compute operation is specified in the instruction.

A-15

A-16

Compute and Move
compute / dreg<>DMIPM , immediate modify

Syntax:
a. IF condition compute, | DM(la, <data6>) | =dreg;
PM(Ic, <data6>)
b. IF condition compute, \DM(<data6>, Ia) | =dreg;
PM(<data6>, Ic)
c¢. IFcondition compute, dreg =[DM(la, <data6>) | ;
PM(Ic, <data6>)

d. IF condition = compute, dreg =| DM(<data6>, Ia)l ;
| PM(<data6>, Ic) |

Function:

Access between data memory or program memory and the register file.
The specified I register addresses data memory or program memory. The I
value is either pre-modified (data order, I) or post-modified (I, data order)
by the specified immediate data. If it is post-modified, the I register is
updated with the modified value. If a compute operation is specified, it is
performed in parallel with the data access. If a condition is specified, it
affects entire instruction.

Examples:
IF FLAGO_IN F1=F5*F12, F11=PM(I10,40);

R12=R3 AND R1, DM(6,I1)=R6;

Compute and Move A
compute / dreg<>DMIPM , immediate modify

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

011 |0 | G|D (U COND DATA DREG

22 21 20 19 18 17 16 161413121110 9 8 7 6 56 4 3 2 1 0

COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

D selects the access type (read or write). G selects data memory or
program memory. DREG specifies the register file location. I specifies the
I register. DATA specifies a 6-bit, twos-complement modify value. U
selects either pre-modify without update or post-modify with update. The
COMPUTE field defines a compute operation to be performed in parallel
with the data access; this is a no-operation if no compute operation is
specified in the instruction.

A-17

A-18

Compute and Move
compute / ureg<>ureg

Syntax:

IF condition compute, uregl =ureg?2;
Function:
Transfer from one universal register to another. If a compute operation is
specified, it is performed in parallel with the data access. If a condition is
specified, it affects entire instruction.
Examples:

IF TF MRF=R2*R6 (SSFR), M4=RO;

LCNTR=L7;

Opcode:

Compute and Move

compute / ureg<>ureg

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

Source
011 1 UREG

COND

Dest
UREG

22 21 2019 18 177 16 151413121110 9 8 7 6 5 4 3 2 1 0

COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always

executed.

Source UREG identifies the universal register source. Dest UREG
identifies the universal register destination. The COMPUTE field defines a
compute operation to be performed in parallel with the data transfer; this
is a no-operation if no compute operation is specified in the instruction.

A-19

Compute and Move
immediate shift / dreg<>DMIPM

Syntax:
a. IF condition shiftimm , | DM(Ia, Mb) | =dreg ;
PM(Ic, Md)
b. IF condition shiftimm , dreg = DM(Ia, Mb) |;
PM(Ic, Md)

Function:

An immediate shift operation is a shifter operation that takes immediate
data as its Y-operand. The immediate data is one 8-bit value or two 6-bit
values, depending on the operation. The x-operand and the result are

magiabaum £31a Tanatinns
Tegister rue 10Cauions.

If an access to data or program memory from the register file is specified,
it is performed in parallel with the shifter operation. The I register
addresses data or program memory. The I value is post-modified by the
specified M register and updated with the modified value. If a condition is
specified, it affects entire instruction.

Examples:
IF GT R2=R6 LSHIFT BY 30, DM(I4,M4)=RO;

IF NOT SZ R3=FEXT Rl BY 8:4;

Compute and Move

immediate shift / dreg<>DMIPM

Opcode: (with data access)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

100 |0 | M COND G | D| DATAEX DREG

2221201918 17 16 151413121110 9 8 7 6 6 4 3 2 1 0

0 SHIFTOP DATA RN RX

Opcode: (without data access)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00010 COND DATAEX

22 212019 18 17 16 15 14131211 10 9 8 7 6 56 4 3 2 1 O

0 SHIFTOP DATA RN RX

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

SHIFTOP specifies the shifter operation. The DATA field specifies an 8-bit
immediate shift value. For shifter operations requiring two 6-bit values

(a shift value and a length value), the DATAEX field adds 4 MSBs to the
DATA field, creating a 12-bit immediate value. The six LSBs are the shift
value, and the six MSBs are the length value.

If a memory access is specified, D selects the access type (read or write).
G selects data memory or program memory. DREG specifies the register
file location. I specifies the I register, which is post-modified and updated
by the M register identified by M.

The COMPUTE field defines a compute operation to be performed in
parallel with the data access; this is a no-operation if no compute
operation is specified in the instruction.

Compute and Move
compute / modify
Syntax:
IF condition compute, MODIFY | (Ia, Mb) | ;
(Ic, Md)
Function:

Update of the specified I register by the specified M register. If a compute
operation is specified, it is performed in parallel with the data access. If a
condition is specified, it affects entire instruction.
Examples:

IF NOT FTAG2_IN RA=R6*R12(SUF), MODIFY({I10,M8);

IF NOT LCE MODIFY(I3,M1);

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 00100 G COND | M

2221201918 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

G selects DAG1 or DAG2. I specifies the I register, and M specifies the
M register. The COMPUTE field defines a compute operation to be
performed in parallel with the data access; this is a no-operation if no
compute operation is specified in the instruction.

Group II.
Program Flow Control

8. Direct or PC-relative branch, optional conditioncccovcmeininennenincnininnens A-24

9. Indirect or PC-relative branch, optional condition, optional compute operation A-26

11. Return from subroutine or interrupt, optional condition, optional compute

OPEIALION ...ttt bt bbbt A-28
12. Load loop counter, do loop until Ioop counter eXpired..............cccccccccereereesesesrssessses A-30
13. DO UNtiIEIMINGLIONovvevrveeeecireen ettt eb b naes A-32

Program Flow Control

direct jumpicall
Syntax:
IF condition JUMP <addr24> (| DB)
CALL (PC, <reladdr24>) LA
DB, LA

Function:

A jump or call to the specified address or PC-relative address. The PC-
relative address is a 24-bit, twos-complement value. If the delayed branch
(DB) modifier is specified, the branch is delayed; otherwise, it is non-
delayed. If the loop abort (LA) modifier is specified for a jump, the loop
stacks and PC stack are popped when the jump is executed. You should
use the (LA) modifier if the jump will transfer program execution outside
of the loop. If there is no loop, or if the jump address is within the loop,
you should not use the (LA) modifier. The (LA) modifier does not affect a
call. If a condition is specified, it affects entire instruction.

Examples:
IF AV JUMP (PC, 0x00A4) (LA);
CALL init (DB); {init is user-defined label}

Opcode: (with direct branch)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00110 BJA COND J

23 222120191817 16 151413121110 9 8 7 6 56 4 3 2 1 0

ADDR

Program Flow Control
direct jumplcall

Opcode: (with PC-relative branch)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 00111 B |A COND J

23 222120191817 161514131211 10 9 8 7 6 5 4 3 2 1 0

RELADDR

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

B selects the branch type, jump or call.] determines whether the branch is
delayed or non-delayed. The ADDR field specifies a 24-bit program
memory address. RELADDR is a 24-bit, twos-complement value that is
added to the current PC value to generate the branch address. The A bit
activates loop abort; a jump with loop abort pops the loop and PC stacks.
(For calls, A is ignored.)

A -26

Program Flow Control
indirect jumplcall / compute

Syntax:
IF condition | JUMP Md, Ic) (| DB) , compute ;
CALL (PC, <reladdr6>) LA
DB,
Function:

A jump or call to the specified PC-relative address or pre-modified I
register value. The PC-relative address is a 6-bit, twos-complement value.
If an I register is specified, it is modified by the specified M register to
generate the branch address. The I register is not affected by the modify
operation.

If the delayed branch (DB) modifier is specified, the branch is delayed;
otherwise, it is non-delayed. If the loop abort (LA) modifier is specified for
a jump, the loop stacks and PC stack are popped when the jump is
executed. You should use the (LA) moditier if the jump will transfer
program execution outside of the loop. If there is no loop, or if the jump
address is within the loop, you should not use the (LA) modifier. The (LA)
modifier does not affect a call.

If a compute operation is specified, it is performed in parallel with the
branch. If a condition is specified, it affects entire instruction.

Examples:
IF EQ JUMP (M8,I12), R6=R6-1;
CALL (PC,17) (DB), R12=MR2F;

Opcode: (with indirect branch)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01000 BlA COND PMI PMM |J

222120191817 16 151413121110 9 8 7 6 56 4 3 2 1 0

COMPUTE

Program Flow Control
indirect jumplcall / compute

Opcode: (with PC-relative branch)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01001 B|A COND RELADDR J

222120191817 16 151413121110 9 8 7 6 56 4 3 2 1 0

COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

B selects the branch type, jump or call.] determines whether the branch is
delayed or non-delayed. The A bit activates loop abort; a jump with loop
abort pops the loop and PC stacks. (For calls, A is ignored.)

RELADDR is a 6-bit, twos-complement value that is added to the current
PC value to generate the branch address. PMI specifies the I register for
indirect branches. The I register is pre-modified but not updated by the M
register specified by PMM.

The COMPUTE field defines a compute operation to be performed in
parallel with the data access; this is a no-operation if no compute
operation is specified in the instruction.

A

Program Flow Control
return from subroutinelinterrupt / compute

Syntax:

IF condition lRTS (DB) , compute ;
RTI

Function:

A return from a subroutine (RTS) or from an interrupt service routine
(RTT). If the delayed branch (DB) modifier is specified, the return is
delayed; otherwise, it is non-delayed.

If a compute operation is specified, it is performed in parallel with the
branch. If a condition is specified, it affects entire instruction.

Examples:
RTI, R6=R5 XOR R1;
IF NOT GT RTS(DB);

Opcode: (return from subroutine)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01010 COND J

22 21 2019 18 17 16 16 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

Program Flow Control
return from subroutinelinterrupt / compute

Opcode: (return from interrupt)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

000 01011 COND J

22 21 2019 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0

COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

J determines whether the return is delayed or non-delayed. The
COMPUTE field defines a compute operation to be performed in parallel
with the data access; this is a no-operation if no compute operation is
specified in the instruction.

Program Flow Control
do until counter expired

Syntax:

LCNTR = <data16>| , DO l <addr24> UNTIL LCE ;

ureg (<PC, reladdr24>)

Function:

Sets up a counter-based program loop. The loop counter LCNTR is loaded
with 16-bit immediate data or from a universal register. The loop start
address is pushed on the PC stack. The loop end address and the LCE
termination condition are pushed on the loop address stack. The end
address can be either a label for an absolute 24-bit program memory
address, or a PC-relative 24-bit twos-complement address. The LCNTR is
pushed on the loop counter stack and becomes the CURLCNTR value.
The loop executes until the CURLCNTR reaches zero.

Examples:
LCNTR=100, DO fmax UNTIL LCE; {fmax is a program label}
LCNTR=R12, DO (PC,16) UNTIL LCE;

Opcode: (with immediate loop counter load)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01100 DATA

23 22 21 20 19 1817 16 151413121110 9 8 7 6 56 4 3 2 1 0

RELADDR

Program Flow Control
do until counter expired

Opcode: (with loop counter load from a universal register)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01101 UREG

23 222120191817 161514 13121110 9 8 7 6 56 4 3 2 1 0

RELADDR

RELADDR specifies the end-of-loop address relative to the DO LOOP
instruction address. (The Assembler accepts an absolute address as well;
it converts the absolute address to the equivalent relative address for
coding.) The loop counter (LCNTR) is loaded with the 16-bit DATA value
or with the contents of the register specified by UREG.

A

Program Flow Control

do until
Syntax:
DO | <addr24> UNTIL termination ;
(PC, <reladdr24>)
Function:

Sets up a condition-based program loop. The loop start address is pushed
on the PC stack. The loop end address and the termination condition are
pushed on the loop stack. The end address can be either a label for an
absolute 24-bit program memory address or a PC-relative, 24-bit twos-
complement address. The loop executes until the termination condition
tests true.

Examples:
DO end UNTIL FLAGl_IN; {end is a program label}
DO (PC,7) UNTIL AC;

Opcode: (relative addressing)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

000 01110 TERM

23 22 21 20 19 1817 16 151413121110 9 8 7 6 5§ 4 3 2 1 0

RELADDR

RELADDR specifies the end-of-loop address relative to the DO LOOP
instruction address. (The Assembler accepts an absolute address as well; it
converts the absolute address to the equivalent relative address for
coding.) TERM specifies the termination condition.

ction Set Reference

Group Il
Immediate Move

14. Transfer between data or program memory and universal register, direct

addressing, iImmediate @ddressc.ovcvrecrecrnenenense e seees A-34
15. Transfer between data or program memory and universal register, indirect

addressing, immediate MOGIfIEr ..o A-35
16. Immediate data write to data Or program MEMOIYc.creeremreeererecenessecseraneens A-36
17. Immediate data write to Universal register ... A-37

A

A Immediate Move
ureg<>DMIPM (direct addressing)

Syntax:

a. 'DM(<addr32>) = ureg;
PM(<addr24>)

b. ureg =| DM(<addr32>) | ;

PM(<addr24>)

Function:

Access between data memory or program memory and a universal
register, with direct addressing. The entire data memory or program
memory address is specified in the instruction. Data memory addresses

are 32 bits wide (0 to 232-1). Program memory addresses are 24 bits wide
(0 to 224-1).
Examples:

DM (temp)=MODEL1; {temp is a program label}

DMWAIT=PM (0x489060) ;

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 100 |G|D UREG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 177 16 1514 1312 1110 9 8 7 6 56 4 3 2 1 O

ADDR

D selects the access type (read or write). G selects the memory type (data
or program). UREG specifies the number of a universal register. ADDR
contains the immediate address value.

immediate Move
ureg<>DMIPM (indirect addressing)

Syntax:

a. | DM(<data32>, Ia)
PM(<data24>, Ic)

= ureg;

b. ureg = | DM(<data32>, Ia)
PM(<data24>, Ic)

Function:

Access between data memory or program memory and a universal
register, with indirect addressing using I registers. The I register is
pre-modified with an immediate value specified in the instruction. The
I register is not updated. Data memory address modifiers are 32 bits
wide (0 to 232-1). Program memory address modifiers are 24 bits wide
(0 to 224-1).

Examples:
DM (24,I5)=TCOUNT;
USTAT1=PM(offs,I13); {offs is a defined constant}

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

101 |G | D UREG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 O

DATA

D selects the access type (read or write). G selects the memory type (data
or program). UREG specifies the number of a universal register. ADDR
contains the immediate address value. The I field specifies the I register.
The DATA field specifies the immediate modify value for the I register.

A-35

A Immediate Move
immediate data — DMIPM

Syntax:

DM(a, Mb) | = <data32>;
PM(Ic, Md)

Function:
A write of 32-bit immediate data to data or program memory, with
indirect addressing. The data is placed in the most significant 32 bits of the
40-bit memory word. The least significant 8 bits are loaded with 0s. The
I register is post-modified and updated by the specified M register.
Examples:

DM (14,M0)=19304;

PM(I14,M11)=count; {count is user-defined constant}

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

100 |1 | M G

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 56 4 3 2 1 0

DATA

I selects the I register, and M selects the M register. G selects the memory
(data or program). DATA specifies the 32-bit immediate data.

immediate Move
immediate data — ureg

Syntax:

ureg = <data32> ;
Function:
A write of 32-bit immediate data to a universal register. If the register is 40
bits wide, the data is placed in the most significant 32 bits, and the least
significant 8 bits are loaded with Os.
Examples:

IMASK=0xFFFC0060;

M15=modl; {modl is user-defined constant}

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 01111 UREG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 177 16 1514 13 121110 9 8 7 6 6 4 3 2 1 O

DATA

UREG specifies the number of a universal register. The DATA field
specifies the immediate data value.

A Instruction Set Reference

A-38

Instruction Set Reference A

Group IV.

Miscellaneous

18. System register bit ManIpUlationcoeeevenienrncneersr e A-40
19. Immediate | register modify, with or without bit-reversecccccovereerencneinnnnnnne A-42
20. Push or Pop of loop and/or status StACKSccccevurreererireesrnnessnnsiesseeseeraesenns A-44
21. NO 0peration (NOP) ...ttt A-45
22, TAIB vttt ettt A-46

Miscellaneous
system register bit manipulation

Syntax:
BIT SET sreg <data32> ;
CLR
TGL
TST
XOR
Function:

A bit manipulation operation on a system register. This instruction can set,
clear, toggle or test specified bits, or compare (XOR) the system register
with a specified data value. In the first four operations, the immediate
data value is a mask. The set operation sets all the bits in the specified
system register that are also set in the specified data value. The clear
operation clears all the bits that are set in the data value. The toggle
operation toggles all the bits that are set in the data value. The test
operation sets the bit test flag (BTF in ASTAT) if all the bits that are set in
the data value are also set in the system register. The XOR operation sets
the bit test flag (BTF in ASTAT) if the system register value is the same as
the data value.

See shifter instructions for bit manipulation of data in the register file. See
Appendix E for more information on system registers.

Examples:
BIT SET MODE2 0x00000070;

BIT TST ASTAT 0x00002000;

Miscellaneous
system register bit manipulation

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 10100 BOP SREG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 177 16 1514 13 1211 10 9 8 7 6 56 4 3 2 1 0

DATA

BOP selects one of the five bit operations. SREG specifies the system
register. DATA specifies the data value.

A Miscellaneous
| register modify / bit-reverse

Syntax:

a. MODIFY | (Ia, <data32>)

(Ic, <data24>)

7

b. BITREV (Ia, <data32>) ;

Function:

Modifies and updates the specified I register I by an immediate 32-bit
(DAGT1) or 24-bit (DAG2) data value. If the address is to be bit-reversed,
you must specify a DAGI register (I0-I7), and the modified value is
bit-reversed before being written back to the I register. No address is
output in either case.

Examples:
BITREV (I7,space); {space is a defined constant}
MODIFY (I4,304);

Opcode: (without bit-reverse)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 10110 G |

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15614 13 121110 9 8 7 6 6 4 3 2 1 0

DATA

Miscellaneous
| register modify / bit-reverse

Opcode: (with bit-reverse)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 10110 110 |

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0

DATA

G selects the address generator (DAG1 or DAG2). I selects the I register.
DATA specifies the immediate modifier.

Miscellaneous
pushipop stacks

Syntax:

IPUSH LOOP , |PLISH STS ;
POP POP

Function:
Pushes or pops the loop address and loop counter stacks, and/or pushes
or pops the status stack.

Examples:

PUSH LOOP, PUSH STS;

POP STS;
Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
LIL|S|S
000 10111 P|P[P|P
Ul Oju|o

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 56 4 3 2 1 O

LPU pushes the loop stacks. LPO pops the loop stacks. SPU pushes the
status stack, and SPO pops the status stack.

Miscellaneous
nop

Syntax:
NOP;

Function:
A null operation; only increments the fetch address.

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 00000 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

A Miscellaneous
idle

Syntax:
IDLE;

Function:

Executes a NOP and puts the processor in a low power state. The
processor remains in the low power state until an external interrupt
occurs.

On return from the interrupt, execution continues at the instruction
following the IDLE instruction.

Opcode:
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

000 00000 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 121110 9 8 7 6 56 4 3 2 1 0O

Compute Operation

Reference

B.1 OVERVIEW

Compute operations execute in the multiplier, the ALU and the shifter.
The 23-bit compute field is like a mini-instruction within the ADSP-21000
instruction and can be specified for a variety of compute operations. This
appendix describes each compute operation in detail, including its
assembly language syntax and opcode field.

A compute operation is one of the following:
¢ Single-function operations involve a single computation unit.

* Multifunction operations specify parallel operation of the multiplier and
the ALU or two operations in the ALU.

* The MR register transfer is a special type of compute operation
dedicated to accessing the fixed-point accumulator in the multiplier.
(See p. B-52).

The operations in each category are described in the following sections.
For each operation, the assembly language syntax, the function, and the
opcode format and contents are specified. Refer to the beginning of
Appendix A for an explanation of the notation and abbreviations used.

B.2 SINGLE-FUNCTION OPERATIONS

The compute field of a single-function operation looks like:

22 21 20 19 18 17 16 156 14 131211 10 3 8 7 6 5 4 3 2 1 O

D |CU OPCODE RN RX RY

An operation determined by OPCODE is executed in the computation unit
specified by CU. The x- and the y-operands are received from data
registers RX and RY. The result operand is returned to data register RN.

The CU (computation unit) field is defined as follows:

CU=00 ALU operations
CU=01 Multiplier operations
CU=10 Shifter operations

In some shifter operations, data register RN is used both as a destination
for a result operand and as source for a third input operand.

The available operations and their 8-bit OPCODE values are listed in the
following sections, organized by computation unit: ALU, multiplier and
shifter. In each section, the syntax and opcodes for the operations are first
summarized and then the operations are described in detail.

B.2.1 ALU Operations

The ALU operations are described in this section. Tables B.1 and B.2
summarize the syntax and opcodes for the fixed-point and floating-point
ALU operations, respectively. The rest of this section contains detailed
descriptions of each operation.

Syntax Opcode

Rn =Rx + Ry 0000 0001
Rn =Rx -Ry 0000 0010
Rn=Rx+ Ry +CI 0000 0101
Rn=Rx-Ry +CI-1 0000 0110
Rn = (Rx + Ry)/2 0000 1001
COMP(Rx, Ry) 0000 1010
Rn =Rx + CI 0010 0101
Rn=Rx+CI-1 00100110
Rn=Rx+1 0010 1001
Rn=Rx-1 0010 1010
Rn = -Rx 0010 0010
Rn = ABS Rx 0011 0000
Rn = PASS Rx 0010 0001
Rn = Rx AND Ry 0100 0000
Rn =RxOR Ry 0100 0001
Rn = Rx XOR Ry 0100 0010
Rn = NOT Rx 0100 0011
Rn = MIN(Rx, Ry) 0110 0001
Rn = MAX(Rx, Ry) 0110 0010
Rn = CLIP Rx BY Ry 0110 0011

Table B.1 Fixed-Point ALU Operations

Compute Operations B

Syntax Opcode

Fn=Fx +Fy 1000 0001
Fn=Fx-Fy 1000 0010
Fn = ABS (Fx + Fy) 1001 0001
Fn = ABS (Fx - Fy) 1001 0010
Fn = (Fx + Fy)/2 1000 1001
COMP(Fx, Fy) 1000 1010
Fn = -Fx 1010 0010
Fn = ABS Fx 1011 0000
Fn = PASS Fx 1010 0001
Fn = RND Fx 1010 0101
Fn = SCALB Fx BY Ry 1011 1101
Rn = MANT Fx 10101101
Rn = LOGB Fx 1100 0001
Rn = FIX Fx BY Ry 1101 1001
Rn = FIX Fx 1100 1001
Fn = FLOAT Rx BY Ry 1101 1010
Fn = FLOAT Rx 1100 1010
Fn = RECIPS Fx 1100 0100
Fn = RSQRTS Fx 1100 0101
Fn = Fx COPYSIGN Fy 1110 0000
Fn = MIN(Fx, Fy) 1110 0001
Fn = MAX(Fx, Fy) 1110 0010
Fn = CLIP Fx BY Fy 1110 0011

Table B.2 Floating-Point ALU Operations

ALU Fixed-Point
Rn =Rx + Ry

Syntax:
Rn =Rx + Ry

Function:

Adds the fixed-point fields in registers Rx and Ry. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all Os. In saturation mode (the ALU saturation mode bit in
MODE]1 set) positive overflows return the maximum positive number
(Ox7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status fiags:

AZ Is set if the fixed-point output is all Os, otherwise cleared

AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV Is set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC Is set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Iscleared

Al Is cleared

ALU Fixed-Point
Rn =Rx - Ry

Syntax:
Rn =Rx - Ry

Function:

Subtracts the fixed-point field in register Ry from the fixed-point field in
register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODET1 set) positive overflows return the
maximum positive number (0x7FFF FFFF), and negative overflows return
the minimum negative number (0x8000 0000).

Status flags:

AZ Is set if the fixed-point output is all Os, otherwise cleared

AU Iscleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV s set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC Isset if the carry from the most significant adder stage is 1,
otherwise cleared

AS Iscleared

Al Iscleared

ALU Fixed-Point
Rn =Rx + Ry + Cl

Syntax:

Rn = Rx + Ry + CI

Function:

Adds with carry (AC from ASTAT) the fixed-point fields in registers Rx
and Ry. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all Os. In saturation mode (the
ALU saturation mode bit in MODEI set) positive overflows return the
maximum positive number (Ox7FFF FFFF), and negative overflows return
the minimum negative number (0x8000 0000).

Status flags:

AZ
AU
AN
AV

AC

AS
Al

Is set if the fixed-point output is all Os, otherwise cleared

Is cleared

Is set if the most significant output bit is 1, otherwise cleared

Is set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

Is set if the carry from the most significant adder stage is 1,
otherwise cleared

Is cleared

Is cleared

ALU Fixed-Point
Rn=Rx-Ry+Cl-1

Syntax:
Rn=Rx-Ry +CI-1

Function:

Subtracts with borrow (AC - 1 from ASTAT) the fixed-point field in
register Ry from the fixed-point field in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODEI set) positive overflows return the maximum positive number
(Ox7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status flags:

AZ Is set if the fixed-point output is all Os, otherwise cleared

AU Is cleared

AN s set if the most significant output bit is 1, otherwise cleared

AV Is set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC Is set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Iscleared

Al Iscleared

B-7

ALU Fixed-Point
Rn = (Rx + Ry)/2

Syntax:
Rn = (Rx + Ry)/2

Function:

Adds the fixed-point fields in registers Rx and Ry and divides the result
by 2. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. Rounding is to nearest
(IEEE) or by truncation, as defined by the rounding mode bit in the
MODET1 register.

Status flags:

AZ s setif the fixed-point output is all Os, otherwise cleared

AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV s cleared

AC s set if the carry from the most significant adder stage is 1,
otherwise cleared

AS s cleared

Al Iscleared

ALU Fixed-Point

i

COMP(Rx, Ry)

\ma
ol

?&ma

Syntax:
COMP(Rx, Ry)

Function:

Compares the fixed-point field in register Rx with the fixed-point field in
register Ry. Sets the AZ flag if the two operands are equal, and the AN
flag if the operand in register Rx is smaller than the operand in register
Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24-31. These bits are shifted right (bit 24 is overwritten)
whenever a fixed-point or floating-point compare instruction is executed.
The MSB of ASTAT is set if the X operand is greater than the Y operand
(its value is the AND of ~AZ and ~AN); it is otherwise cleared.

Status flags:
AZ s set if the operands in registers Rx and Ry are equal, otherwise
cleared

AU Is cleared

AN Is set if the operand in the Rx register is smaller than the operand in
the Ry register, otherwise cleared

AV Iscleared

AC Iscleared

AS Iscleared

Al Iscleared

B-10

ALU Fixed-Point
Rn=Rx + Cl

Syntax:
Rn=Rx+CI

Function:

Adds the fixed-point field in register Rx with the carry flag from the
ASTAT register (AC). The result is placed in the fixed-point field in
register Rn. The floating-point extension field in Rn is set to all 0s. In
saturation mode (the ALU saturation mode bit in MODET1 set) positive
overflows return the maximum positive number (0x7FFF FFFF).

Status flags:

AZ s set if the fixed-point output is all Os, otherwise cleared

AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV s set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC Is set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Is cleared

Al Iscleared

ALU Fixed-Point
Rn=Rx +Cl -1

Syntax:
Rn=Rx+CI-1

Function:

Adds the fixed-point field in register Rx with the borrow from the ASTAT
register (AC — 1). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all Os. In saturation mode
(the ALU saturation mode bit in MODE]1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

Status flags:

AZ Is set if the fixed-point output is all Os, otherwise cleared

AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV Is set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC Is set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Iscleared

Al Iscleared

B

B-11

B-12

ALU Fixed-Point
Rn=Rx +1

Syntax:

Rn=Rx+1

Function:

Increments the fixed-point operand in register Rx. The result is placed in .
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all Os. In saturation mode (the ALU saturation mode bit in

MODET set), overflow causes the maximum positive number
(Ox7FFF FFFF) to be returned.

Status flags:

AZ
AU
AN
AV

AC

AS
Al

Is set if the fixed-point output is aii 0s, otherwise cleared

Is cleared

Is set if the most significant output bit is 1, otherwise cleared

Is set if the XOR of the carries of the two most significant adder,
stages is 1, otherwise cleared

Is set if the carry from the most significant adder stage is 1,
otherwise cleared

Is cleared

Is cleared

ALU Fixed-Point
Rn=Rx-1

Syntax:
Rn=Rx-1

Function:

Decrements the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODET set), underflow causes the minimum negative number

(0x8000 0000) to be returned.

Status flags:

AZ Is set if the fixed-point output is all Os, otherwise cleared

AU Iscleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV s set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC s set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Iscleared

Al Iscleared

B-13

B-14

ALU Fixed-Point
Rn =-Rx

Syntax:
Rn = -Rx

Function:

Negates the fixed-point operand in Rx by twos complement. The result is
placed in the fixed-point field in register Rn. The floating-point extension
field in Rn is set to all 0s. Negation of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU saturation
mode bit in MODET set), overflow causes the maximum positive number
(Ox7FFF FFFF) to be returned.

Status fiags:

AZ TIs set if the fixed-point output is all Os

AU Is cleared

AN Is set if the most significant output bit is 1

AV Is set if the XOR of the carries of the two most significant adder
stages is 1

AC Is set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Iscleared

Al Iscleared

Syntax:
Rn = ABS Rx

Function:

Determines the absolute value of the fixed-point operand in Rx. The result
is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s. ABS of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU saturation
mode bit in MODET set), overflow causes the maximum positive number
(Ox7FFF FFFF) to be returned.

Status flags:

AZ Is set if the fixed-point output is all Os, otherwise cleared

AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared

AV Is set if the XOR of the carries of the two most significant adder
stages is 1, otherwise cleared

AC Is set if the carry from the most significant adder stage is 1,
otherwise cleared

AS Isset if the fixed-point operand in Rx is negative, otherwise cleared

Al Iscleared

B-15

B ALU Fixed-Point
Rn = PASS Rx

Syntax:
Rn = PASS Rx

Function:
Passes the fixed-point operand in Rx through the ALU to the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all Os.

Status flags:

AZ s set if the fixed-point output is all Os, otherwise cleared
AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared

PN P |

AV Iscleared

AC Iscleared
AS Iscleared
Al Iscleared

B-16

ALU Fixed-Point B
Rn = Rx AND Ry

Syntax:
Rn = Rx AND Ry

Function:

Logically ANDs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all Os.

Status flags:

AZ s set if the fixed-point output is all Os, otherwise cleared
AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared '

AC s cleared

AS Is cleared

Al Iscleared

B-17

ALU Fixed-Point
Rn = Rx OR Ry

Syntax:
Rn = Rx OR Ry

Function:

Logically ORs the fixed-point operands in Rx and Ry. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is set
to all Os.

Status flags:

AZ s set if the fixed-point output is all Os, otherwise cleared
AU Iscleared

AN s set if the most significant output bit is 1, otherwise cleared
AV Is cleared

AC Iscleared

AS Iscleared

Al Iscleared

B-18

ALU Fixed-Point
Rn = Rx XOR Ry

Syntax:

Rn = Rx XOR Ry

Function:

Logically XORs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all Os.

Status flags:

AU

Is set if the fixed-point output is all 0s, otherwise cleared

Is cleared

Is set if the most significant output bit is 1, otherwise cleared
Is cleared

Is cleared

Is cleared

Is cleared

B-19

B-20

ALU Fixed-Point
Rn = NOT Rx

Syntax:

Rn = NOT Rx

Function:
Logically complements the fixed-point operand in Rx. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is set
to all Os.

Status flags:

Is set if the fixed-point output is all 0s, otherwise cleared

Is cleared

Is set if the most significant output bit is 1, otherwise cleared
Is cleared

Is cleared

Is cleared

Is cleared

ALU Fixed-Point B
Rn = MIN(RXx, Ry)

Syntax:
Rn = MIN(Rx, Ry)

Function:

Returns the smaller of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all Os.

Status flags:

AZ Is set if the fixed-point output is all Os, otherwise cleared
AU Is cleared

AN s set if the most significant output bit is 1, otherwise cleared
AV Is cleared

AC Iscleared

AS Is cleared

Al Is cleared

ALU Fixed-Point
Rn = MAX(Rx, Ry)

Syntax:
Rn = MAX(Rx, Ry)

Function:

Returns the larger of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all Os.

Status flags:

AZ s set if the fixed-point output is all Os, otherwise cleared
AU Is cleared

AN Is set if the most significant output bit is 1, otherwise cieared
AV Iscleared

AC Iscleared

AS Iscleared

Al Iscleared

ALU Fixed-Point
Rn = CLIP Rx BY Ry

Syntax:
Rn = CLIP Rx BY Ry

Function:

Returns the fixed-point operand in Rx if the absolute value of the operand
in Rx is less than the absolute value of the fixed-point operand in Ry.
Otherwise, returns | Ry | if Rx is positive, and —I Ry | if Rx is negative. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all Os.

Status flags:

AZ s set if the fixed-point output is all 0s, otherwise cleared
AU s cleared

AN s set if the most significant output bit is 1, otherwise cleared
AV s cleared

AC Iscleared

AS Is cleared

Al Iscleared

ALU Floating-Point
Fn=Fx +Fy

Syntax:

Fn =Fx + Fy

Function:

Adds the floating-point operands in registers Fx and Fy. The normalized
result is placed in register Fn. Rounding is to nearest (IEEE) or by
truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding
mode and rounding boundary bits in MODE1. Post-rounded overflow
returns Infinity (round-to-nearest) or tNORM.MAX (round-to-zero).
Post-rounded denormal returns +Zero. Denormal inputs are flushed to
+Zero. A NAN input returns an all 1s result.

Status flags:

AZ

AU
AN
AV

AC
AS
Al

Is set if the post-rounded result is a denormal

(unbiased exponent < -126) or zero, otherwise cleared

Is set if the post-rounded result is a denormal, otherwise cleared
Is set if the floating-point result is negative, otherwise cleared

Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared

Is cleared

Is cleared

Is set if either of the input operands is a NAN, or if they are
opposite-signed Infinities, otherwise cleared

ALU Floating-Point
Fn=Fx-Fy

Syntax:

Fn =Fx-Fy

Function:

Subtracts the floating-point operand in register Fy from the floating-point
operand in register Fx. The normalized result is placed in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODETL. Post-rounded overflow returns *Infinity (round-to-nearest) or
NORM.MAX (round-to-zero). Post-rounded denormal returns +Zero.
Denormal inputs are flushed to *Zero. A NAN input returns an all 1s
result.

Status flags:

AZ
- AU
AV

Is set if the post-rounded result is a denormal

(unbiased exponent < —126) or zero, otherwise cleared

Is set if the post-rounded result is a denormal, otherwise cleared
Is set if the floating-point result is negative, otherwise cleared

Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared

Is cleared

Is cleared

Is set if either of the input operands is a NAN, or if they are like-
signed Infinities, otherwise cleared

ALU Floating-Point
Fn = ABS (Fx + Fy)

Syntax:
Fn = ABS (Fx + Fy)

Function:

Adds the floating-point operands in registers Fx and Fy, and places the
absolute value of the normalized result in register Fn. Rounding is to
nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as
defined by the rounding mode and rounding boundary bits in MODEI.
Post-rounded overflow returns +Infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +Zero.
Denormal inputs are flushed to +Zero. A NAN input returns an all 1s

ragrild
ACTOouUIL.

Status flags:
AZ s set if the post-rounded result is a denormal
(unbiased exponent < —126) or zero, otherwise cleared
AU s set if the post-rounded result is a denormal, otherwise cleared
AN Is cleared
AV Is set if the post-rounded result overflows
(unbiased exponent > +127), otherwise cleared
AC Iscleared
AS Is cleared
Al Is set if either of the input operands is a NAN, or if they are
opposite-signed Infinities, otherwise cleared

ALU Floating-Point B
Fn = ABS (Fx - Fy)

Syntax:

Fn = ABS (Fx — Fy)

Function:

Subtracts the floating-point operand in Fy from the floating-point operand
in Fx and places the absolute value of the normalized result in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODE1. Post-rounded overflow returns +Infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +Zero.
Denormal inputs are flushed to +Zero. A NAN input returns an all 1s
result.

Status flags:

AZ

AU
AN
AV

AC
AS
Al

Is set if the post-rounded result is a denormal

(unbiased exponent < -126) or zero, otherwise cleared

Is set if the post-rounded result is a denormal, otherwise cleared
Is cleared

Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared

Is cleared

Is cleared

Is set if either of the input operands is a NAN, or if they are like-
signed Infinities, otherwise cleared

B-27

ALU Floating-Point
Fn = (Fx + Fy)/2

Syntax:
Fn = (Fx + Fy)/2

Function:
Adds the floating-point operands in registers Fx and Fy and divides the
result by 2, by decrementing the exponent of the sum before rounding,.
The normalized result is placed in register Fn. Rounding is to nearest
(IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by
the rounding mode and rounding boundary bits in MODEI. Post-rounded
overflow returns +Infinity (round-to-nearest) or tNORM.MAX (round-to-
zero). Post-rounded denormal results return Zero. A denormal input is
flushed to +Zero. A NAN input returns an ali 1s resuit.
Status flags:
AZ Is set if the post-rounded result is a denormal
(unbiased exponent < -126) or zero, otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the post-rounded result overflows
(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Iscleared
Al Is set if either of the input operands is a NAN, or if they are
opposite-signed Infinities, otherwise cleared

ALU Floating-Point
COMP(Fx, Fy)

Syntax:
COMP(Fx, Fy)

Function:

Compares the floating-point operand in register Fx with the floating-point
operand in register Fy. Sets the AZ flag if the two operands are equal, and
the AN flag if the operand in register Fx is smaller than the operand in
register Fy.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24-31. These bits are shifted right (bit 24 is overwritten)
whenever a fixed-point or floating-point compare instruction is executed.
The MSB of ASTAT is set if the X operand is greater than the Y operand
(its value is the AND of ~AZ and ~AN); it is otherwise cleared.

Status flags:
AZ Is set if the operands in registers Fx and Fy are equal, otherwise
cleared

AU Is cleared

AN Is set if the operand in the Fx register is smaller than the operand in
the Fy register, otherwise cleared

AV Iscleared

AC Iscleared

AS Iscleared

Al Is set if either of the input operands is a NAN, otherwise cleared

B

ALU Floating-Point
Fn=-Fx

Syntax:

Fn =-Fx

Function:

Complements the sign bit of the floating-point operand in Fx. The
complemented result is placed in register Fn. A denormal input is flushed
to +Zero. A NAN input returns an all 1s result.

Status flags:

AZ
AU

Is set if the result operand is a Zero, otherwise cleared

Is cleared

Is set if the floating-point resuit is negative, otherwise cleared
Is cleared

Is cleared

Is cleared

Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point
Fn = ABS Fx

Syntax:
Fn = ABS Fx

Function:

Returns the absolute value of the floating-point operand in register Fx by
setting the sign bit of the operand to 0. Denormal inputs are flushed to
+Zero. A NAN input returns an all 1s result.

Status flags:

AZ s set if the result operand is +Zero, otherwise cleared.
AU Is cleared

AN Is cleared

AV s cleared

AC Iscleared

AS Is set if the input operand is negative, otherwise cleared
Al Is set if the input operand is a NAN, otherwise cleared

B

ALU Floating-Point
Fn = PASS Fx

Syntax:

Fn = PASS Fx

Function:

Passes the floating-point operand in Fx through the ALU to the floating-
point field in register Fn. Denormal inputs are flushed to +Zero. A NAN
input returns an all 1s result.

Status flags:

AZ
AU

ANT

AN

Is set if the result operand is a *Zero, otherwise cleared

Is cleared

Is set if the floating-point result is negative, otherwise cleared
Is cleared

Is cleared

Is cleared

Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point
Fn = RND Fx

Syntax:
Fn = RND Fx

Function:

Rounds the floating-point operand in register Fx to a 32 bit boundary.
Rounding is to nearest (IEEE) or by truncation, as defined by the rounding
mode bit in MODE1. Post-rounded overflow returns +Infinity (round-to-
nearest) or tNORM.MAX (round-to-zero). A denormal input is flushed to
1Zero. A NAN input returns an all 1s result.

Status flags:
AZ s set if the result operand is a *Zero, otherwise cleared
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV s set if the post-rounded result overflows
(unbiased exponent > +127), otherwise cleared
AC s cleared
AS Is cleared
AI Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point

Fn

= SCALB Fx BY Ry

Syntax:

Fn = SCALB Fx BY Ry

Function:

Scales the exponent of the floating-point operand in Fx by adding to it the
fixed-point twos-complement integer in Ry. The scaled floating-point
result is placed in register Fn. Overflow returns *Infinity (round-to-
nearest) or tNORM.MAX (round-to-zero). Denormal returns +Zero.
Denormal inputs are flushed to +Zero. A NAN input returns an all 1s
result.

Qtatu

s flags:

LU

AZ

AU
AN
AV

AC
AS
Al

Is set if the result is a denormal (unbiased exponent < ~126) or zero,
otherwise cleared

Is set if the post-rounded result is a denormal, otherwise cleared

Is set if the floating-point result is negative, otherwise cleared

Is set if the result overflows (unbiased exponent > +127), otherwise
cleared

Is cleared

Is cleared

Is set if the input is a NAN, an otherwise cleared

ALU Floating-Point
Rn = MANT Fx

Syntax:
Rn = MANT Fx

Function:

Extracts the mantissa (fraction bits with explicit hidden bit, excluding the
sign bit) from the floating-point operand in Fx. The unsigned-magnitude
result is left-justified (1.31 format) in the fixed-point field in Rn. Rounding
modes are ignored and no rounding is performed because all results are
inherently exact. Denormal inputs are flushed to £Zero. A NAN or an
Infinity input returns an all 1s result (-1 in signed fixed-point format).

Status flags:

AZ Is set if the result is zero, otherwise cleared

AU Iscleared

AN Is cleared

AV Is cleared

AC Iscleared

AS Is set if the input is negative, otherwise cleared

Al Is set if the input operands is a NAN or an Infinity, otherwise
cleared

B

ALU Floating-Point
Rn = LOGB Fx

Syntax:
Rn = LOGB Fx

Function:

Converts the exponent of the floating-point operand in register Fx to an
unbiased twos-complement fixed-point integer. The result is placed in the
fixed-point field in register Rn. Unbiasing is done by subtracting 127 from
the floating-point exponent in Fx. If saturation mode is not set, a *Infinity
input returns a floating-point +Infinity and a +Zero input returns a
floating-point —Infinity. If saturation mode is set, a tInfinity input returns
the maximum positive value (Ox7FFF FFFF) and a *Zero input returns the

mavximum neoative value (OxR000 0000). Denormal innute are fliiched to
m negatve vaiue (UXSUUU VUUL). Denormal Inpuls are fiusheg 1o

p841-9,03 84181

t+Zero. ANAN input returns an all 1s result.

Status flags:

AZ s set if the fixed-point result is zero, otherwise cleared

AU Is cleared

AN s set if the result is negative, otherwise cleared

AV Is set if the input operand is an Infinity or a Zero, otherwise cleared
AC Iscleared

AS Iscleared

Al Is set if the input is a NAN, otherwise cleared

ALU Floating-Point
Rn = FIX Fx BY Ry / Rn = FIX Fx

Syntax:
Rn = FIX Fx BY Ry
Rn = FIX Fx
Function:

Converts the floating-point operand in Fx to a twos-complement 32-bit
fixed-point integer result. If a scaling factor (Ry) is specified, the fixed-
point twos-complement integer in Ry is added to the exponent of the
floating-point operand in Fx before the conversion. The result of the
conversion is right-justified (32.0 format) in the fixed-point field in register
Rn. The floating-point extension field in Rn is set to all 0s. In saturation
mode (the ALU saturation mode bit in MODET1 set) positive overflows
and +Infinity return the maximum positive number (0x7FFF FFFF), and
negative overflows and —Infinity return the minimum negative number
(0x8000 0000).

Rounding is to nearest (IEEE) or by truncation, as defined by the rounding
mode bit in MODE1. A NAN input returns a floating-point all 1s result. If
saturation mode is not set, an Infinity input or a result that overflows
returns a floating-point all 1s result. All positive underflows return zero.
Negative underflows that are rounded-to-nearest return zero, and
negative underflows that are rounded by truncation return

-1 (OxFF FFFF FF00).

Status flags:

AZ Is set if the fixed-point result is Zero, otherwise cleared

AU Is set if the pre-rounded result is a denormal, otherwise cleared

AN Is set if the fixed-point result is negative, otherwise cleared

AV Is set if the conversion causes the floating-point mantissa to be
shifted left, i.e if the floating-point exponent + scale bias is
> 157 (127 + 31 - 1) or if the input is +Infinity, otherwise cleared

AC Iscleared

AS Is cleared

Al Is set if the input operand is a NAN or, when saturation mode is not
set, either input is an Infinity or the result overflows, otherwise
cleared

ALU Floating-Point
Fn = FLOAT Rx BY Ry / Fn = FLOAT Rx

Syntax:

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx

Function:

Converts the fixed-point operand in Rx to a floating-point result. If a
scaling factor (Ry) is specified, the fixed-point twos-complement integer in
Ry is added to the exponent of the floating-point result. The final result is
placed in register Fn.

Rounding is to nearest (IEEE) or by truncatlon, as defined by the rounding
mode, to a 40-bit boundary, regardless of the values of the rounding
boundary bits in MODE1. The exponent scale bias may cause a floating-
point overflow or a floating-point underflow. Overflow causes a tInfinity
(round-to-nearest) or tNORM.MAX (round-to-zero) to be returned;

underflow causes a +Zero to be returned.

Status flags:

AZ Is set if the result is a denormal (unbiased exponent < -126) or zero,
otherwise cleared

AU Is set if the post-rounded result is a denormal, otherwise cleared

AN s set if the floating-point result is negative, otherwise cleared

AV Is set if the result overflows (unbiased exponent >127)

AC Is cleared

AS Is cleared

Al Iscleared

ALU Floating-Point
Fn = RECIPS Fx

Syntax:
Fn = RECIPS Fx

Function:

Creates an 8-bit accurate seed for 1/Fx, the reciprocal of Fx. The mantissa
of the seed is determined from a ROM table using the 7 MSBs (excluding
the hidden bit) of the Fx mantissa as an index. The unbiased exponent of
the seed is calculated as the twos complement of the unbiased Fx
exponent, decremented by one; i.e., if ¢ is the unbiased exponent of Fx,
then the unbiased exponent of Fn = —¢ — 1. The sign of the seed is the sign
of the input. +Zero returns tInfinity and sets the overflow flag. If the
unbiased exponent of Fx is greater than +125, the result is +Zero. A NAN
input returns an all 1s result.

The following code performs floating-point division using an iterative
convergence algorithm.* The result is accurate to one LSB in whichever
format mode, 32-bit or 40-bit, is set (32-bit only for ADSP-21010). The
following inputs are required: FO=numerator, F12=denominator, F11=2.0.
The quotient is returned in FO. (The two highlighted instructions can be
removed if only a +1 LSB accurate single-precision result is necessary.)

FO=RECIPS F12, F7=F0; {(Get 8 bit seed RO=1/D}
F12=F0*F12; (D' = D*RO}

F7=F0*F7, FO=F11-F12; {FO=R1=2-D', F7=N*R0}
F12=FO*F12; {F12=D'-D'*R1}

F7=FO0*F7, FO=F11-F12; (F7=N*RO*R1, FO=R2=2-D'}
F12=F0*F12; {F12=D'=D'*R2}

F7=FO*F7, FO=F11-F12; {F7=N*RO*R1*R2, FO=R3=2-D'}
FO=F0*F7; {F7=N*RO*R1*R2*R3}

Note that this code segment can be made into a subroutine by adding an
RTS (DB) clause to the third-to-last instruction.

Status flags:

AZ TIs set if the floating-point result is +Zero (unbiased exponent of Fx is
greater than +125), otherwise cleared

AU Is cleared

AN s set if the input operand is negative, otherwise cleared

AV Is set if the input operand is +Zero, otherwise cleared

AC Iscleared

AS Iscleared

Al Is set if the input operand is a NAN, otherwise cleared

* Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 284.

B-40

ALU Floating-Point
Fn = RSQRTS Fx

Syntax:
Fn = RSQRTS Fx

Function: Creates a 4-bit accurate seed for 1/VFx, the reciprocal square root
of Fx. The mantissa of the seed is determined from a ROM table using the
LSB of the biased exponent of Fx concatenated with the 6 MSBs (excluding
the hidden bit) of the mantissa of Fx as an index. The unbiased exponent
of the seed is calculated as the twos complement of the unbiased Fx
exponent, shifted right by one bit and decremented by one; i.e., if e is the
unbiased exponent of Fx, then the unbiased exponent of

Fn = -INTI[e/2] - 1. The sign of the seed is the sign of the input. +Zero
returns tInfinity and sets the overflow flag. +Infinity returns +Zero. A

NAN invut or a necative nonzero input returns an all 1s result.
NAN input or a negative nonzero input returns an all I1sre

The following code calculates a floating-point reciprocal square root
(1/Nx) using a Newton-Raphson iteration algorithm.* The result is
accurate to one LSB in whichever format mode, 32-bit or 40-bit, is set
(32-bit only for ADSP-21010). To calculate the square root, simply
multiply the result by the original input. The following inputs are
required: FO=input, F8=3.0, F1=0.5. The result is returned in F4. (The four
highlighted instructions can be removed if only a +1 LSB accurate single-
precision result is necessary.)

F4=RSQRTS F0; {Fetch 4-bit seed}

F12=F4*F4; {F12=X0"2}

F12=F12*F0; {F12=C*X0"2}

F4=F1*F4, F12=F8-F12; {F4=.5*X0, F12=3-C*X0"2}

F4=F4*F12; {F4=X1=.5%X0 (3-C*X0"2) }

F12=F4*F4; {F12=X1"2}

F12=F12*F0; {F12=C*X1"2}

F4=F1*F4, F12=F8-F12; {F4=.5%X1, F12=3-C*X1"2}
F4=F4*F12; {F4=X2=_5%X1 (3-C*X1"2) }
F12=F4*F4; {F12=x2~2}

F12=F12*F0; {F12=C*X2+2}
F4=F1*F4, F12=F8-F12; {F4=.5*X2, F12=3-C*X2~2}

F4=F4*F12; {F4=X3=.5*X2 (3-C*X2"2) }

Note that this code segment can be made into a subroutine by adding an
RTS (DB) clause to the third-to-last instruction.

Status flags:

AZ Is set if the floating-point result is +Zero (Fx = +Infinity), otherwise cleared

AU Iscleared

AN Is set if the input operand is —Zero, otherwise cleared

AV s set if the input operand is +Zero, otherwise cleared

AC Iscleared

AS Iscleared

AI Is set if the input operand is negative and nonzero, or a NAN, otherwise
cleared

* Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 278.

ALU Floating-Point B
Fn = Fx COPYSIGN Fy

Syntax:
Fn = Fx COPYSIGN Fy

Function:

Copies the sign of the floating-point operand in register Fy to the floating-
point operand from register Fx without changing the exponent or the
mantissa. The result is placed in register Fn. A denormal input is flushed
to *Zero. A NAN input returns an all 1s result.

Status flags:

AZ s set if the floating-point result is *Zero, otherwise cleared

AU Is cleared

AN s set if the floating-point result is negative, otherwise cleared
AV Is cleared

AC Is cleared

AS Is cleared

Al Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
Fn = MIN(Fx, Fy)

Syntax:
Fn = MIN(Fx, Fy)

Function:

Returns the smaller of the floating-point operands in register Fx and Fy. A
NAN input returns an all 1s result. MIN of +Zero and —Zero returns
—Zero. Denormal inputs are flushed to +Zero.

Status flags:

AZ Is set if the floating-point result is +Zero, otherwise cleared.

AU Iscleared

AN Is set if the floating-point result is negative, otherwise cleared
AV Iscleared

AC Iscleared

AS Is cleared

Al Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
Fn = MAX(Fx, Fy)

Syntax:
Fn = MAX(Fx, Fy)

Function:

Returns the larger of the floating-point operands in registers Fx and Fy. A
NAN input returns an all 1s result. MAX of +Zero and —Zero returns
+Zero. Denormal inputs are flushed to +Zero.

Status flags:

AZ Is set if the floating-point result is +Zero, otherwise cleared.

AU s cleared

AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared

AC Iscleared

AS Is cleared

Al Is setif either of the input operands is a NAN, otherwise cleared

B

ALU Floating-Point
Fn = CLIP Fx BY Fy

Syntax:
Fn = CLIP Fx BY Fy

Function:

Returns the floating-point operand in Fx if the absolute value of the
operand in Fx is less than the absolute value of the floating-point operand
in Fy. Else, returns | Fy | if Fx is positive, and —| Fy | if Fx is negative. A
NAN input returns an all 1s result. Denormal inputs are flushed to +Zero.

Status flags:

AZ Is set if the floating-point result is +Zero, otherwise cleared.

AU Iscleared

AN Is set if the floating-point result is negative, otherwise cleared
AV Iscleared

AC Iscleared

AS Iscleared

Al Is set if either of the input operands is a NAN, otherwise cleared

ons B

rat

B.2.2 Multiplier Operations

The multiplier operations are described in this section. Table B.3
summarizes the syntax and opcodes for the fixed-point and floating-point
multiplier operations. The rest of this section contains detailed
descriptions of each operation.

Fixed-point:

Syntax Opcode
Rn = Rx*Ry mod2* 01yx fOOr
MRF = Rx*Ry mod2* 01yx f10r
MRB = Rx*Ry mod2* Olyx f11r
Rn = MRF +Rx*Ry mod2* 10yx f00r
Rn = MRB +Rx*Ry mod2* 10yx f01r
MRF = MRF +Rx*Ry mod2* 10yx f10r
MRB = MRB +Rx*Ry mod2* 10yx f11r
Rn = MRF -Rx*Ry mod2* 11yx fO0r
Rn = MRB -Rx*Ry mod2* 11yx fO1r
MRF = MRF -Rx*Ry mod2* 11yx f10r
MRB = MRB -Rx*Ry mod2* 11yx fllr
Rn =SATMRF mod1** 0000 £f00x
Rn =SATMRB modl** 0000 f01x
MRF =SATMRF modI** 0000 f10x
MRB =SATMRB modIl** 0000 f11x
Rn =RND MRF mod1** 0001 100x
Rn =RND MRB mod1** 0001 101x
MRF =RNDMRF mod1** 0001 110x
MRB =RNDMRB modl** 0001 111x
MRF =0 0001 0100
MRB =0 0001 0110
MR =Rn
Rn =MR
Floating-point:
Syntax Opcode
Fn=Fx*Fy 0011 0000
* Gee Table B4 y y-input; 1=signed, O=unsigned
** Gae Table B.5 x x-input; 1=signed, O=unsigned

f format; 1=fractional, O=integer

r rounding; 1=yes, 0=no

Table B.3 Multiplier Operations B-45

Compute Operations

Mod?2 in Table B.3 is an optional modifier, enclosed in parentheses,
consisting of three or four letters that indicate whether the x-input is
signed (S) or unsigned (U), whether the y-input is signed or unsigned,
whether the inputs are in integer (I) or fractional (F) format and whether
the result when written to the register file is to be rounded-to-nearest (R).
The options for mod2 and the corresponding opcode values are listed in
Table B.4.

Mod?2 Opcode

(SSI) --11 0--0
(suUDn --01 0--0
usn --100--0
(uun --00 0--0
(SSF) --11 1--0
(SUF) --011--0
(USF) --10 1--0
(UUF) --00 1--0
(SSFR) --111--1
(SUFR) --011--1
(USFR) --10 1--1
(UUFR) -001--1

Table B.4 Multiplier Mod2 Options

Similarly, mod1 in Table B.3 is an optional modifier, enclosed in
parentheses, consisting of two letters that indicate whether the input is
signed (S) or unsigned (U) and whether the input is in integer (I) or
fractional (F) format. The options for mod1 and the corresponding opcode
values are listed in Table B.5.

Mod1 Opcode
(SD (for SAT only) —0-1
(UD) (for SAT only) - 0--0
(SF) —1-1
(UB) 10

Table B.5 Multiplier Mod1 Options

Multiplier Fixed-Point
RnIMR = Rx * Ry

Syntax:
Rn = Rx*Ry mod2
MRF = Rx*Ry mod2
MRB = Rx*Ry mod2
Function:

Multiplies the fixed-point fields in registers Rx and Ry. If rounding is
specified (fractional data only), the result is rounded. The result is placed
either in the fixed-point field in register Rn or one of the MR accumulation
registers. If Rn is specified, only the portion of the result that has the same
format as the inputs is transferred (bits 31-0 for integers, bits 63-32 for
fractional). The floating-point extension field in Rn is set to all 0s. If MRF
or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:

MN Is set if the result is negative, otherwise cleared

MV s set if the upper bits are not all zeros (signed or unsigned result) or
ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
RnIMR = MR + Rx * Ry

Syntax:
Rn = MRF +Rx* Ry mod2
Rn = MRB + Rx*Ry mod2
MRF = MRF + Rx*Ry mod2
MRB = MRB + Rx*Ry mod2
Function:

Multiplies the fixed-point fields in registers Rx and Ry, and adds the
product to the specified MR register value. If rounding is specified
(fractional data only), the result is rounded. The result is placed either in
the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31-0 for integers, bits 63-32 for fractional).
The floating-point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:

MN
MV

MU

MI

Is set if the result is negative, otherwise cleared

Is set if the upper bits are not all zeros (signed or unsigned result) or
ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

Is cleared

¥ ®

Muitiplier Fixed-Point

RnIMR = MR - Rx * Ry

Syntax:
Rn = MRF -Rx*Ry mod2
Rn = MRB -Rx*Ry mod2
MRF = MRF -Rx*Ry mod2
MRB = MRB -Rx*Ry mod2
Function:

Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the
product from the specified MR register value. If rounding is specified
(fractional data only), the result is rounded. The result is placed either in
the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31-0 for integers, bits 63-32 for fractional).
The floating-point extension field in Rn is set to all Os. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:

MN Is set if the result is negative, otherwise cleared

MV Is set if the upper bits are not all zeros (signed or unsigned result) or
ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
RnIMR = SAT MR

Syntax:
Rn =SATMRF modl
Rn =SATMRB modl

MRF =SATMRF modl
MRB =SATMRB modl

Function:

If the value of the specified MR register is greater than the maximum
value for the specified data format, the multiplier sets the result to the
maximum value. Otherwise, the MR value is unaffected. The result is
placed either in the fixed-point field in register Rn or one of the MR
accumulation registers, which must be the same MR register that provided
the input. If Rn is specified, only the portion of the result that has the same
format as the inputs is transferred (bits 31-0 for integers, bits 63-32 for
fractional). The floating-point extension field in Rn is set to all Os. If MRF
or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:

MN Is set if the result is negative, otherwise cleared

MV Is cleared

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Muitiplier Fixed-Point
RnIMR = RND MR

Syntax:
Rn =RNDMRF modl
Rn =RNDMRB modl

MRF =RNDMRF modl
MRB =RNDMRB modl

Function:

Rounds the specified MR value to nearest at bit 32 (the MR1-MRO0
boundary). The result is placed either in the fixed-point field in register Rn
or one of the MR accumulation registers, which must be the same MR
register that provided the input. If Rn is specified, only the portion of the
result that has the same format as the inputs is transferred (bits 31-0 for
integers, bits 63-32 for fractional). The floating-point extension field in Rn
is set to all 0s. If MRF or MRB is specified, the entire 80-bit result is placed
in MRF or MRB.

Status flags:

MN s set if the result is negative, otherwise cleared

MV Is set if the upper bits are not all zeros (signed or unsigned result) or
ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

B

B Multiplier Fixed-Point Multiplier Fixed-Point
MR=0 MR=Rn/Rn=MR

MR=0
Syntax: MRF
MRB

0
0

Function: Sets the value of the specified MR register to zero. All 80 bits (MR2,
MR1, MRO) are cleared.

Status flags:

MN Is cleared
MV Iscleared
MU Is cleared
MI Iscleared

MR=Rn/Rn=MR

Function: A transfer to an MR register places the fixed-point field of register Rn in
the specified MR register. The floating-point extension field in Rn is ignored. A
transfer from an MR register places the specified MR register in the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all Os.

Syntax: MROF = Rn Rn = MROF
MRI1F = Rn Rn = MR1F
MR2F = Rn Rn = MR2F
MROB = Rn Rn = MROB
MR1B = Rn Rn = MR1B
MR2B = Rn Rn = MR2B
Compute Field:

22212019 181716 151413121110 9 8 7 6 56 4 3 2 1 O

1 00000 T Al RK

The MR register is specified by Ai and the data register by Rk. The direction of
the transfer is determined by T (O=to register file, 1=to MR register).

Ai MR Register Status flags:

0000 MROF MN Iscleared
0001 MR1F MV Iscleared
0010 MR2F MU Iscleared
0100 MROB MI Is cleared
0101 MR1B

B -52 0110 MR2B

Multiplier Floating-Point B
Fn=Fx*Fy

Syntax:
Fn = Fx *Fy

Function:
Multiplies the floating-point operands in registers Fx and Fy. The result is
placed in the register Fn.

Status flags:

MN Is set if the result is negative, otherwise cleared

MV Is set if the unbiased exponent of the result is greater than 127,
otherwise cleared

MU Is set if the unbiased exponent of the result is less than 126,
otherwise cleared

MI Is set if either input is a NAN or if the inputs are *Infinity and
+Zero, otherwise cleared

B

o

Compute Ope

B.2.3 Shifter Operations

Shifter operations are described in this section. Table B.6 summarizes the
syntax and opcodes for the shifter operations. The rest of this section
contains detailed descriptions of each operation.

The shifter operates on the register file’s 32-bit fixed-point fields (bits 39-
8). Two-input shifter operations can take their y-input from the register
file or from immediate data provided in the instruction. Either form uses
the same opcode. However, the latter case, called an immediate shift or
shifter immediate operation, is allowed only with instruction type 6,
which has an immediate data field in its opcode for this purpose. All other
instruction types must obtain the y-input from the register file when the
compute operation is a two-input shifter operation.

Syntax Opcode

Rn = LSHIFT Rx BY Ry | <data8> 0000 0000
Rn = Rn OR LSHIFT Rx BY Ry | <data8> 0010 0000
Rn = ASHIFT Rx BY Ry | <data8> 0000 0100
Rn = Rn OR ASHIFT Rx BY Ry | <data8> 0010 0100
Rn = ROT Rx BY RY | <data8> 0000 1000
Rn = BCLR Rx BY Ry | <data8> 1100 0100
Rn = BSET Rx BY Ry | <data8> 1100 0000
Rn = BTGL Rx BY Ry | <data8> 1100 1000
BTST Rx BY Ry | <data8> 1100 1100
Rn = FDEP Rx BY Ry | <bit6>:<len6> 0100 0100
Rn = Rn OR FDEP Rx BY Ry | <bit6>:<len6> 0110 0100
Rn = FDEP Rx BY Ry | <bit6>:<len6> (SE) 0100 1100
Rn = Rn OR FDEP Rx BY Ry | <bit6>:<len6> (SE) 0110 1100
Rn = FEXT Rx BY Ry | <bit6>:<len6> 0100 0000
Rn = FEXT Rx BY Ry | <bit6>:<len6> (SE) 0100 1000
Rn = EXP Rx 1000 0000
Rn = EXP Rx (EX) 1000 0100
Rn = LEFTZ Rx 1000 1000
Rn = LEFTO Rx 1000 1100

Instruction modifiers:
(SE) Sign extension of deposited or extracted field
(EX) Extended exponent extract

Table B.6 Shifter Operations

Shifter B
Rn = LSHIFT Rx BY Ryl<data8>

Syntax:

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8>

Function:

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The floating-
point extension field of Rn is set to all Os. The shift values are twos-
complement numbers. Positive values select a left shift, negative values
select a right shift. The 8-bit immediate data can take values between —128
and 127 inclusive, allowing for a shift of a 32-bit field from off-scale right
to off-scale left.

Status flags:

SZ Isset if the shifted result is zero, otherwise cleared

SV Is set if the input is shifted to the left by more than 0, otherwise
cleared

SS Is cleared

Shifter
Rn = Rn OR LSHIFT Rx BY Ryl<data8>

Syntax:

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8>

Function:

Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all Os. The shift values are twos-complement numbers. Positive
values select a left shift, negative values select a right shift. The 8-bit
immediate data can take values between —128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

Status flags:

SZ Is set if the shifted result is zero, otherwise cleared

SV Isset if the input is shifted left by more than 0, otherwise cleared
SS Iscleared

Shifter
Rn = ASHIFT Rx BY Ryl<data8>

Syntax:

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8>

Function:

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The floating-
point extension field of Rn is set to all 0s. The shift values are twos-
complement numbers. Positive values select a left shift, negative values
select a right shift. The 8-bit immediate data can take values between -128
and 127 inclusive, allowing for a shift of a 32-bit field from off-scale right
to off-scale left.

Status flags:

SZ Is set if the shifted result is zero , otherwise cleared

SV Isset if the input is shifted left by more than 0, otherwise cleared
SS Iscleared

Shifter
Rn = Rn OR ASHIFT Rx BY Ryl<data8>

Syntax:

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8>

Function:

Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all 0s. The shift values are twos-complement numbers. Positive
values select a left shift, negative values select a right shift. The 8-bit
immediate data can take vaiues between —128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

Status flags:

SZ Is set if the shifted result is zero, otherwise cleared

SV Is set if the input is shifted left by more than 0, otherwise cleared
SS Iscleared

Shifter B
Rn = ROT Rx BY Ryl<data8>

Syntax:

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8>

Function:

Rotates the fixed-point operand in register Rx by the 32-bit value in
register Ry or by the 8-bit immediate value in the instruction. The rotated
result is placed in the fixed-point field of register Rn. The floating-point
extension field of Rn is set to all Os. The shift values are twos-complement
numbers. Positive values select a rotate left; negative values select a rotate
right. The 8-bit immediate data can take values between —128 and 127
inclusive, allowing for a rotate of a 32-bit field from full right wrap around
to full left wrap around.

Status flags:

SZ Is set if the rotated result is zero, otherwise cleared
SV Iscleared

SS Is cleared

Shifter
Rn = BCLR Rx BY Ryl<data8>

Syntax:

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8>

Function:

Clears a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all Os. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can
take values between 31 and 0 inclusive, allowing for any bit within a 32-bit
field to be cleared. If the bit position value is greater than 31 or less than 0,

1) PR |
no bits are cleared.

Status flags:

SZ Is set if the output operand is 0, otherwise cleared

SV Isset if the bit position is greater than 31, otherwise cleared
SS Iscleared

Note: This compute operation affects a bit in a register file location. There
is also a bit manipulation instruction that affects one or more bits in a
system register. This BIT CLR instruction should not be confused with the
BCLR shifter operation. See Appendix E for more information on BIT
CLR.

Shifter B
Rn = BSET Rx BY Ryl<data8>

Syntax:

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>

Function:

Sets a bit in the fixed-point operand in register Rx. The result is placed in
the fixed-point field of register Rn. The floating-point extension field of Rn
is set to all 0s. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can
take values between 31 and 0 inclusive, allowing for any bit within a 32-bit
field to be set. If the bit position value is greater than 31 or less than 0, no
bits are set.

Status flags:

SZ Is set if the output operand is 0, otherwise cleared

SV Is set if the bit position is greater than 31, otherwise cleared
SS Is cleared

Note: This compute operation affects a bit in a register file location. There
is also a bit manipulation instruction that affects one or more bits in a

system register. This BIT SET instruction should not be confused with the
BSET shifter operation. See Appendix E for more information on BIT SET.

Shifter
Rn = BTGL Rx BY Ryl<data8>

Syntax:

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8>

Function:

Toggles a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can
take values between 31 and 0 inclusive, allowing for any bit within a 32-bit
field to be toggled. If the bit position value is greater than 31 or less than 0,
no bits are toggied.

Status flags:

SZ Is set if the output operand is 0, otherwise cleared

SV Is set if the bit position is greater than 31, otherwise cleared
SS Is cleared

Note: This compute operation affects a bit in a register file location. There
is also a bit manipulation instruction that affects one or more bits in a
system register. This BIT TGL instruction should not be confused with the
BTGL shifter operation. See Appendix E for more information on BIT
TGL.

Shifter B
BTST Rx BY Ryl«data8>

Syntax:

BTST Rx BY Ry
BTST Rx BY <data8>

Function:

Tests a bit in the fixed-point operand in register Rx. The SZ flag is set if the
bit is a 0 and cleared if the bit is a 1. The position of the bit is the 32-bit
value in register Ry or the 8-bit immediate value in the instruction. The
8-bit immediate data can take values between 31 and 0 inclusive, allowing
for any bit within a 32-bit field to be tested. If the bit position value is
greater than 31 or less than 0, no bits are tested.

Status flags:

SZ Is cleared if the tested bit is a 1, is set if the tested bit is a 0 or if the
bit position is greater than 31

SV Is set if the bit position is greater than 31, otherwise cleared

SS Iscleared

Note: This compute operation tests a bit in a register file location. There is
also a bit manipulation instruction that tests one or more bits in a system
register. This BIT TST instruction should not be confused with the BTST
shifter operation. See Appendix E for more information on BIT TST.

B - 64

Shifter
Rn = FDEP Rx BY Ryl<bit6>:<len6>

Syntax:
Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6>

Function:

Deposits a field from register Rx to register Rn. The input field is right-aligned
within the fixed-point field of Rx. Its length is determined by the len6 field in
register Ry or by the immediate len6 field in the instruction. The field is
deposited in the fixed-point field of Rn, starting from a bit position determined
by the bit6 field in register Ry or by the immediate bité6 field in the instruction.
Bits to the left and to the right of the deposited field are set to 0. The floating-pt.
extension field of Rn (bits 7-0 of the 40-bit word) is set to all 0s. Bit6 and len6 can
take values between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits, and to bit positions ranging from 0 to off-scale left.

39 19 13 7 0

39 7 0

& = —

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

39

deposit field

bit6é = starting bit position for deposit,
referenced from LSB of 32-bit field
bité reference point

Example: If len6=14 and bit6=13, then the 14 bits of Rx are deposited in Rn bits
34-21 (of the 40-bit word).

39 31 23 15 7 0
| === | = |-—abcdef |ghijklmn|~-——~--- | Rx
\——mmmm e /
14 bits
39 31 23 15 7 0
|00000abc | defghijk|1lmn00000|00000000| 00000000 Rn
I /

bit position 13 (from reference point)
Status flags:
SZ Issetif the output operand is 0, otherwise cleared
SV Issetif any bits are deposited to the left of the 32-bit fixed-point output
field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Iscleared

Shifter
Rn = Rn OR FDEP Rx BY Ryl<bit6>:<len6>

Syntax:
Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6>

Function:

Deposits a field from register Rx to register Rn. The field value is logically ORed
bitwise with the specified field of register Rn and the new value is written back
to register Rn. The input field is right-aligned within the fixed-point field of Rx.
Its length is determined by the lené6 field in register Ry or by the immediate len6
field in the instruction. The field is deposited in the fixed-point field of Rn,
starting from a bit position determined by the bit6 field in register Ry or by the
immediate bit6 field in the instruction. Bit6 and lené can take values between 0
and 63 inclusive, allowing for deposit of fields ranging in length from 0 to 32 bits,
and to bit positions ranging from 0 to off-scale left.

Example:
39 31 23 15 7 0
| ===~ |- | ~—abcdef |ghijklmn|----~---- | Rx
B /
len6 bits
39 31 23 15 7 0
|abcdefgh|ijklmnop|grstuvwx|yzabcdef | ghijklmn| Rn old
\mm—mmm e /
|
bit position bité (from reference point)
39 31 23 15 7 0
|abcdeopq| rstuvwxy | zabtuvwx | yzabcdef | ghijklmn| Rn new
|
OR result
Status flags:

SZ Is setif the output operand is 0, otherwise cleared

SV Is setif any bits are deposited to the left of the 32-bit fixed-point output
field (i.e., if len6 + bit6 > 32), otherwise cleared

SS Iscleared

B

B -66

Shifter
Rn = FDEP Rx BY Ryl<bit6>:<len6> (SE)

Syntax:
Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE)

Function:

Deposits and sign-extends a field from register Rx to register Rn. The input field
is right-aligned within the fixed-point field of Rx. Its length is determined by the
lené field in register Ry or by the immediate len6 field in the instruction. The
field is deposited in the fixed-point field of Rn, starting from a bit position
determined by the bit6 field in register Ry or by the immediate bit6 field in the
instruction. The MSBs of Rn are sign-extended by the MSB of the deposited field,
unless the MSB of the deposited field is off-scale left. Bits to the right of the
deposited field are set to 0. The floating-point extension field of Rn (bits 7-0 of the
40-bit word) is set to all 0s. Bit6 and len6 can take values between § and 63
inclusive, allowing for deposit of fields ranging in length from 0 to 32 bits into bit
positions ranging from 0 to off-scale left.

39 19 13 7

39
Rx |

len6é = number of bits to take from Rx, starting from LSB of 32-bit field

39
Rn| sign bitextension | deposit field

bit6 = starting bit position for deposit,
referenced from LSB of 32-bit field

bité reference point
Example:
39 31 23 15 7 0
| === | ———===—= | --abcdef|ghijklmn|---—---- | Rx
\mmmmmmmm oo /
len6é bits
39 31 23 15 7 0
|aaaaaabc|defghijk|1mn00000|00000000|00000000]| Rn
\==m=/\mmmmmmm oo /
sign |
extension bit position bité (from reference point)
Status flags:

SZ Issetif the output operand is 0, otherwise cleared

SV Issetif any bits are deposited to the left of the 32-bit fixed-point output
field (i.e., if len6 + bit6 > 32), otherwise cleared

SS Iscleared

Shifter B
Rn = Rn OR FDEP Rx BY Ryl<bit6>:<len6> (SE)

Syntax:
Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)

Function:

Deposits and sign-extends a field from register Rx to register Rn. The sign-
extended field value is logically ORed bitwise with the value of register Rn and
the new value is written back to register Rn. The input field is right-aligned
within the fixed-point field of Rx. Its length is determined by the lené6 field in
register Ry or by the immediate len6 field in the instruction. The field is
deposited in the fixed-point field of Rn, starting from a bit position determined
by the bit6 field in register Ry or by the immediate bit6 field in the instruction.
Bit6 and len6 can take values between 0 and 63 inclusive, allowing for deposit of
fields ranging in length from 0 to 32 bits into bit positions ranging from 0 to off-
scale left.

Example:
39 31 23 15 7 0
[-=====—- | === | --abcdef |ghijklmn|--=--~-- | Rx
N\ /
len6é bits
39 31 23 15 7 0
|aaaaaabc|defghijk | 1lmn00000|00000000| 00000000
\====/\==—m— /
sign |
extension bit position bité (from reference point)
39 31 23 15 7 0
|abcdefgh|ijklmnop|grstuvwx|yzabcdef|ghijklmn| Rn old
39 31 23 15 7 0
|vwxyzabc|defghijk|lmntuvwx|yzabcdef|ghijklmn| Rn new
|
OR result
Status flags:

SZ Issetif the output operand is 0, otherwise cleared

SV Issetif any bits are deposited to the left of the 32-bit fixed-point output
field (i.e., if len6 + bit6 > 32), otherwise cleared

SS Iscleared

Shifter
Rn = FEXT Rx BY Ryl<bit6>:<len6>

Syntax:
Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6>

Function:

Extracts a field from register Rx to register Rn. The output field is placed right-
aligned in the fixed-point field of Rn. Its length is determined by the lené6 field in
register Ry or by the immediate len6 field in the instruction. The field is extracted
from the fixed-point field of Rx starting from a bit position determined by the
bit6 field in register Ry or by the immediate bit6 field in the instruction. Bits to
the left of the extracted field are set to 0 in register Rn. The floating-point
extension field of Rn (bits 7-0 of the 40-bit word) is set to all 0s. Bit6 and len6 can
take values between 0 and 63 inclusive, allowing for extraction of fields ranging
in length from 0 to 32 bits, and from bit positions ranging from 0 to off-scale left.

39 19 13 7 0

extract field

bit6é = starting bit position for extract,
referenced from LSB of 32-bit field

bité reference point

39 7

] ~—— —

extracted bits placed in Rn, starting at LSB of 32-bit field

Example:
39 31 23 15 7 0
[—==== abc|defghijk|lmn----- | === [-==—==—= | Rx

\=mmmmmm oo /

len6 bits |
bit position bité (from reference point)

39 31 23 15 7 0
|00000000|00000000|00abcdef |ghijklmn|00000000]| Rn
Status flags:

SZ Is set if the output operand is 0, otherwise cleared

SV Isset if any bits are extracted from the left of the 32-bit fixed-point, input
field (i.e., if len6 + bit6 > 32), otherwise cleared

SS Iscleared

Shifter
Rn = FEXT Rx BY Ryl<bit6>:<len6> (SE)

Syntax:
Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE)

Function:

Extracts and sign-extends a field from register Rx to register Rn. The output field
is placed right-aligned in the fixed-point field of Rn. Its length is determined by
the lené field in register Ry or by the immediate len6 field in the instruction. The
field is extracted from the fixed-point field of Rx starting from a bit position
determined by the bit6 field in register Ry or by the immediate bit6 field in the
instruction. The MSBs of Rn are sign-extended by the MSB of the extracted field,
unless the MSB is extracted from off-scale left. The floating-point extension field
of Rn(bits 7-0 of the 40-bit word) is set to all Os. Bit6 and len6 can take values
between 0 and 63 inclusive, allowing for extraction of fields ranging in length
from 0 to 32 bits and from bit positions ranging from 0 to off-scale left.

Example:
39 31 23 15 7 0
|===== abc|defghijk|lmn----- | === | === | Rx

\m—mmm e /

len6 bits |
bit position bité6 (from reference point)

39 31 23 15 7 0
|aaaaaaaalaaaaaaaalaaabcedef |ghijklmn| 00000000]| Rn
R /

sign extension

Status flags:

SZ Isset if the output operand is 0, otherwise cleared

SV Issetif any bits are extracted from the left of the 32-bit fixed-point input
field (i.e., if len6 + bit6 > 32), otherwise cleared

SS Iscleared

B

B-70

Shifter
Rn = EXP Rx

Syntax:
Rn = EXP Rx

Function:

Extracts the exponent of the fixed-point operand in Rx. The exponent is
placed in the shf8 field in register Rn. The exponent is calculated as the
twos complement of:

leading sign bits in Rx — 1
Status flags:

SZ Issetif the extracted exponent is 0, otherwise cleared

SV Iscleared

SS Is set if the fixed-point operand in Rx is negative (bit 31isa 1),
otherwise cleared

Shifter B
Rn = EXP Rx (EX)

Syntax:
Rn = EXP Rx (EX)

Function:

Extracts the exponent of the fixed-point operand in Rx, assuming that the
operand is the result of an ALU operation. The exponent is placed in the
shf8 field in register Rn. If the AV status bit is set, a value of +1 is placed
in the shf8 field to indicate an extra bit (the ALU overflow bit). If the AV
status bit is not set, the exponent is calculated as the twos complement of:

leading sign bits in Rx - 1

Status flags:

SZ Is set if the extracted exponent is 0, otherwise cleared

SV Iscleared

SS Is set if the exclusive OR of the AV status bit and the sign bit (bit 31)
of the fixed-point operand in Rx is equal to 1, otherwise cleared

Shifter
Rn = LEFTZ Rx

Syntax:
Rn = LEFTZ Rx

Function:
Extracts the number of leading Os from the fixed-point operand in Rx. The
extracted number is placed in the bit6 field in Rn.

Status flags:

SZ Is set if the MSB of Rx is 1, otherwise cleared
SV Is set if the result is 32, otherwise cleared

SS Iscleared

B-72

Shifter
Rn = LEFTO Rx

Syntax:
Rn = LEFTO Rx

Function:
Extracts the number of leading 1s from the fixed-point operand in Rx. The
extracted number is placed in the bité field in Rn.

Status flags:

SZ Is set if the MSB of Rx is 0, otherwise cleared
SV Isset if the result is 32, otherwise cleared

SS Iscleared

B

B.24 Multifunction Computations

Multifunction computations are of three types, each of which has a
different format for the 23-bit compute field:

* Dual add/subtract
¢ Parallel multiplier/ALU
¢ Parallel multiplier and add/subtract

Multifunction

Dual Add/Subtract (Fixed-Pt.)

The dual add/subtract operation computes the sum and the difference of
two inputs and returns the two results to different registers. There are
fixed-point and floating-point versions of this operation.

Fixed-Point:

Syntax:

Ra = Rx + Ry, Rs = Rx - Ry

Compute Field:

222120191817 16 151413121110 9 8 7 6 5 4 3 2 1 0
0]00 0111 RS RA RX RY
Function:

Does a dual add /subtract of the fixed-point fields in registers Rx and Ry.
The sum is placed in the fixed-point field of register Ra and the difference
in the fixed-point field of Rs. The floating-point extension fields of Ra and
Rs are set to all 0s. In saturation mode (the ALU saturation mode bit in
MODETI set) positive overflows return the maximum positive number
(Ox7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status flags:

AZ Is set if either of the fixed-point outputs is all 0s, otherwise cleared

AU Is cleared

AN Is set if the most significant output bit is 1 of either of the outputs,
otherwise cleared

AV s set if the XOR of the carries of the two most significant adder
stages of either of the outputs is 1, otherwise cleared

AC Is set if the carry from the most significant adder stage of either of
the outputs is 1, otherwise cleared

AS Iscleared

Al Iscleared

Multifunction

Dual Add/Subtract (Floating-Pt.)

Floating-Point:
Syntax:
Fa = Fx + Fy, Fs = Fx - Fy

Compute Field:

222120191817 16 151413121110 9 8 7 6 5 4 3 2 1 0
0{o00 1111 FS FA FX FY
Function:

Does a dual add/subtract of the floating-point operands in registers Fx
and Fy. The normalized results are placed in registers Fa and Fs: the sum
in Fa and the difference in Fs. Rounding is to nearest (IEEE) or by
truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding
mode and rounding boundary bits in MODE1. Post-rounded overflow
returns *Infinity (round-to-nearest) or tNORM.MAX (round-to-zero).
Post-rounded denormal returns *Zero. Denormal inputs are flushed to
*Zero. A NAN input returns an all 1s result.

Status flags:

AZ Is set if either of the post-rounded results is a denormal (unbiased
exponent < —126) or zero, otherwise cleared

AU s set if either post-rounded result is a denormal, otherwise cleared

AN Is set if either of the floating-point results is negative, otherwise
cleared

AV s set if either of the post-rounded results overflows (unbiased
exponent > +127), otherwise cleared

AC Iscleared

AS Iscleared

Al Isset if either of the input operands is a NAN, or if both of the input
operands are Infinities, otherwise cleared

Multifunction B
Parallel Multiplier & ALU (Fixed-Pt.)

The parallel multiplier/ ALU operation performs a multiply or

multiply /accumulate and one of the following ALU operations: add,
subtract, average, fixed-point to floating-point or floating-point to fixed-
point conversion, or floating-point ABS, MIN or MAX.

For detailed information about a particular operation, see the individual
descriptions under Single-Function Operations.

Fixed-Point:

Syntax: See Table B.7

Compute Field:

22 21 20 19 18 17 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0
R| R|R [R

1 OPCODE RM RA X1 Y[|X|Y
M| M|A |A

Multifunction
Parallel Multiplier & ALU (Floating-Pt.)

Floating-Point:
Syntax: See Table B.7

Compute Field:

2221201918 1716 151413121110 9 8 7 6 54 3 2 1 0
FIF|F|F

1 OPCODE FM FA x|y |x|Y

M| M|A A

The multiplier and ALU operations are determined by OPCODE. The
selections for the 6-bit OPCODE field are listed in Table B.7. The
multiplier x- and y-operands are received from data registers RXM (FXM)
and RYM (FYM). The multiplier result operand is returned to data
register RM (FM). The ALU x- and y-operands are received from data
registers RXA (FXA) and RYA (FYA). The ALU result operand is returned
to data register RA (FA).

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a particular set of four
data registers.

Input Allowed Sources
Multiplier X: R3-RO (F3-F0)
Multiplier Y: R7-R4 (F7-F4)
ALU X: R11-R8 (F11-F8)

ALUY: R15-R12 (F15-F12)

Syntax

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12
Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 — R15-12
Rm=R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2

MRF=MREF + R3-0 * R7-4 (S55F), Ra=R11-8 + R15-12
MRF=MREF + R3-0 * R7-4 (SSF), Ra=R11-8 - R15-12
MRF=MREF + R3-0 * R7-4 (SSF), Ra=(R11-8 + R15-12)/2

Rm=MREF + R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12
Rm=MREF + R3-0 * R7-4 (SSFR), Ra=R11-8 - R15-12
Rm=MREF + R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2

MRF=MREF - R3-0 * R7-4 (SSF), Ra=R11-8 + R15-12
MRF=MRF - R3-0 * R7-4 (SSF), Ra=R11-8 - R15-12
MRF=MREF - R3-0 * R7-4 (SSF), Ra=(R11-8 + R15-12) /2

Rm=MREF - R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12
Rm=MREF - R3-0 * R7-4 (SSFR), Ra=R11-8 - R15-12
Rm=MREF - R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12

Fm=F3-0 * F7-4, Fa=F11-8 - F15-12

Fm=F3-0 * F7-4, Fa=FLOAT R11-8 by R15-12
Fm=F3-0 * F7-4, Fa=FIX R11-8 by R15-12
Fm=F3-0 * F7-4, Fa=(F11-8 + F15-12)/2
Fm=F3-0 * F7-4, Fa=ABS F11-8

Fm=F3-0 * F7-4, Fa=MAX (F11-8, F15-12)
Fm=F3-0 * F7-4, Fa=MIN (F11-8, F15-12)

Table B.7 Parallel Multiplier/ALU Computations

Opcode

000100
000101
000110

001000
001001
001010

001100
001101
001110

010000
010001
010010

010100
010101
010110

011000
011001
011010
011011
011100
011101
011110
011111

Multifunction

Parallel Multiplier & Dual Add/Subtract

The parallel multiplier and dual add/subtract operation performs a
multiply or multiply /accumulate and computes the sum and the
difference of the ALU inputs. For detailed information on the multiplier
operations, see the individual descriptions under Single-Function
Operations. For information on the dual add/subtract operation, see the
Dual Add/Subtract section.
Fixed-Point:
Syntax:

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12, Rs=R11-8 — R15-12
Compute Field:

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R| R
1110 RS RM RA XY
M| M

> XD

R
Y
A

Floating-Point:
Syntax:
Fm=F3-0 * F7-4, Fa=F11-8 + F15-12, Fs=F11-8 - F15-12

Compute Field:

22212019 1817 161514 13121110 9 8 7 6 5 4 3 2 1 0
FIF|F|F

1] 11 FS FM FA X1Y | X Y
M| MI[A A

The multiplier x- and y-operands are received from data registers RXM
(FXM) and RYM (FYM). The multiplier result operand is returned to data
register RM (FM). The ALU x- and y-operands are received from data
registers RXA (FXA) and RYA (FYA). The ALU result operands are
returned to data register RA (FA) and RS (FS).

Multifunction

Parallel Multiplier & Dual Add/Subtract

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a different set of four
data registers.

Input Allowed Sources
Multiplier X: R3-RO (F3-F0)
Multiplier Y: R7-R4 (F7-F4)
ALUX: R11-R8 (F11-F8)
ALUY: R15-R12 (F15-F12)

|IEEE 1149.1 JTAG

Test Access Port

C.1 OVERVIEW

A boundary scan allows a system designer to test interconnections on a
printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long
shift register so that data can be read from or written to them through a
serial test access port (TAP). The ADSP-21020/21010 contains a test access
port compatible with the industry standard IEEE 1149.1 (JTAG)
specification.

Only the IEEE 1149.1 features specific to the ADSP-21020/21010 are
described here. For more information, see the IEEE 1149.1 specification.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the ADSP-21020/21010. Each input has a latch
that monitors the value of the incoming signal and can also drive data into
the chip in place of the incoming value. Similarly, each output has a latch
that monitors the outgoing signal and can also drive the output in place of
the outgoing value. For bidirectional pins, the combination of input and
output functions is available.

Every latch associated with a pin is part of a single serial shift register
path. Each latch is a master/slave type latch with the controlling clock
provided externally. This clock (TCK) is asynchronous to the ADSP-
21020/21010 system clock (CLKIN).

Cc2 TEST ACCESS PORT

The test access port of the ADSP-21020/21010 controls the operation of the
boundary scan. The TAP consists of five pins that control a state machine,
including the boundary scan. The state machine and pins conform to the
IEEE 1149.1 specification.

TCK (Input) Test Clock. Used to clock serial data into scan latches
and control sequencing of the test state machine. TCK
can be asynchronous with CLKIN.

TMS (Input) Test Mode Select. Primary control signal for the state
machine. Synchronous with TCK. A sequence of
values on TMS adjusts the current state of the TAP.

TDI (Input) Test Data Input. Serial input data to the scan latches.
Synchronous with TCK.

TDO (Output) Test Data Output. Serial output data from the scan
latches. Synchronous with TCK.

TRST (Input) Test Reset. Resets the test state machine. Can be
asynchronous with TCK.

C3 INSTRUCTION REGISTER

The instruction register allows an instruction to be shifted into the
processor. This instruction selects the test to be performed and/or the test
data register to be accessed. The instruction register is 4 bits long with no
parity bit. A value of 0001 binary is loaded (LSB nearest TDO) into the
instruction register whenever the TAP reset state is entered.

Table C.1 lists the binary code for each instruction. Bit 1 is nearest TDI and
bit 4 is nearest TDO. An x specifies a don’t-care state. No data registers are
placed into test modes by any of the public instructions. The instructions
affect the ADSP-21020/21010 as defined in the 1149.1 specification. The
optional instructions RUNBIST, IDCODE and USERCODE are not
supported by the ADSP-21020/21010.

Instruction

Bits Register

1234 Name (Serial Path) Type
xxx1 BYPASS Bypass Public
0000 EXTEST Boundary Public
1000 SAMPLE/PRELOAD Boundary Public
1100 INTEST Boundary Public
0100 Reserved for emulation Private
xx10 Reserved for emulation Private

Table C.1 Test Instructions

The entry under “Register” is the serial scan path, either Boundary or
Bypass in this case, enabled by the instruction. Figure C.1 shows these
register paths. The 1-bit Bypass register is fully defined in the 1149.1
specification. The Boundary register is described in the next section.

No special values need be written into any register prior to selection of
any instruction. As Table C.1 shows, certain instructions are reserved for
emulator use. See section C.7 for more information.

/3 ———284\

2 285

/ Boundary Register \

1 286

Bypass Register

\ .

Figure C.1 Serial Scan Paths

Instruction Register

C4

BOUNDARY REGISTER

The Boundary register is 286 bits long. This section defines the latch type
and function of each position in the scan path. The positions are
numbered with 286 being the first bit output (closest to TDO) and 1 being

the last (closest to TDI).

Scan

Position* Latch Type
1 Input

2 Output

3 Input

4 Output

5 Clock**

6 Output Controltt
7 Input

8 Output Controltt
9 Output

10 Input

11 Output

12 Input

13 Output Controltt
14 Input

15 Output

16 Input

17 Output

18 Input

19 Output

20 Input

21 Output

22 Input

23 Output

24 Input

25 Output

26 Input

27 Output

28 Input

29 Output

30 Input

31 Output

32 Input

33 Output

34 Input

35 Output

Signal Name
DMTS
DMWR
DMACK

DMRD
CLKIN

ANl

DMRD/DMWR Output Enable
RESET
PMRD/PMWR Output Enable
PMRD

PMACK

PMWR

PMTS

PMD Output Enable
PMDA47 Input Latch
PMD47 Output Latch
PMD46 Input Latch
PMD46 Output Latch
PMD45 Input Latch
PMD45 Output Latch
PMD44 Input Latch
PMD44 Output Latch
PMD43 Input Latch
PMD43 Output Latch
PMDA42 Input Latch
PMD42 Output Latch
PMD41 Input Latch
PMD41 Output Latch
PMD40 Input Latch
PMD40 Output Latch
PMD39 Input Latch
PMD39 Output Latch
PMD38 Input Latch
PMD38 Output Latch
PMD37 Input Latch
PMD37 Output Latch

Scan
Position*
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Latch Type

Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input

Output

Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input

Signal Name

PMD36 Input Latch
PMD36 Output Latch
PMD35 Input Latch
PMD35 Output Latch
PMD34 Input Latch
PMD34 Output Latch
PMD33 Input Latch
PMD33 Output Latch
PMD32 Input Latch
PMD32 Output Latch
PMD231 Input Latch
PMD31 Output Latch
PMD30 Input Latch
PMD30 Output Latch
PMD29 Input Latch
PMD29 Output Latch
PMD28 Input Latch
PMD28 Output Latch
PMD27 Input Latch
PMD27 Output Latch
PMD26 Input Latch
PMD26 Output Latch
PMD25 Input Latch
PMD25 Output Latch
PMD24 Input Latch
PMD24 Output Latch
PMD23 Input Latch
PMD23 Output Latch
PMD22 Input Latch
PMD22 Output Latch
PMD21 Input Latch
PMD21 Output Latch
PMD20 Input Latch
PMD20 Output Latch
PMD19 Input Latch
PMD19 Output Latch
PMD18 Input Latch
PMD18 Output Latch
PMD17 Input Latch
PMD17 Output Latch
PMD16 Input Latch

IEEE 1149.1 JTAGT.

Scan
Position*
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

Latch Type
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Qutput
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Output Controltt
Input
Output
Input
Output
Input
Output
Input

Signal Name
PMD16 Output Latch
PMD15 Input Latch
PMD15 Output Latch
PMD14 Input Latch
PMD14 Output Latch
PMD13 Input Latch
PMD13 Output Latch
PMD12 Input Latch
PMD12 Output Latch
PMD11 Input Latch
PMD11 Output Latch
PMD10 Input Latch
PMD10 Output Latch
PMD?9 Input Latch
PMD?9 Output Latch
PMDS8 Input Latch
PMDS8 Output Latch
PMD?7 Input Latch
PMD? Output Latch
PMD6 Input Latch
PMDé6 Output Latch
PMDS5 Input Latch
PMD5 Output Latch
PMD4 Input Latch
PMD4 Output Latch
PMD3 Input Latch
PMD3 Output Latch
PMD2 Input Latch
PMD2 Output Latch
PMD1 Input Latch
PMD1 Output Latch
PMDO Input Latch
PMDO Output Latch
DMD Output Enable
DMDO Input Latch
DMDO0 Output Latch
DMD1 Input Latch
DMD1 Output Latch
DMD2 Input Latch
DMD2 Output Latch
DMD3 Input Latch

Scan
Position*
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Latch Type

Output
Input
Output
Input
Output
Input
Output

Input

Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output

Signal Name

DMD3 Output Latch
DMD4 Input Latch
DMD4 Output Latch
DMDS5 Input Latch
DMD5 Output Latch
DMDE6 Input Latch
DMDé6 Output Latch
DMD?7 Input Latch
DMD7 Output Latch
DMDS8 Input Latch
DMDS8 Output Latch
DMD?9 Input Latch
DMD9 Output Latch
DMD10 Input Latch
DMD10 Output Latch
DMDI11 Input Latch
DMD11 Output Latch
DMD12 Input Latch
DMD12 Output Latch
DMD13 Input Latch
DMD13 Output Latch
DMD14 Input Latch
DMD14 Output Latch
DMD15 Input Latch
DMD15 Output Latch
DMD16 Input Latch
DMD16 Output Latch
DMD17 Input Latch
DMD17 Output Latch
DMD18 Input Latch
DMD18 Output Latch
DMD19 Input Latch
DMD19 Output Latch
DMD20 Input Latch
DMD20 Output Latch
DMD21 Input Latch
DMD21 Output Latch
DMD22 Input Latch
DMD22 Output Latch
DMD23 Input Latch
DMD23 Output Latch

.

E

Scan
Position* Latch Type

Signal Name

159 Input DMD24 Input Latch
160 OQutput DMD24 Output Latch
161 Input DMD25 Input Latch
162 Output DMD25 Output Latch
163 Input DMD26 Input Latch
164 Output DMD26 Output Latch
165 Input DMD27 Input Latch
166 Output DMD27 Output Latch
167 Input DMD28 Input Latch
168 Output DMD28 Output Latch
169 Input DMD29 Input Latch
170 Output DMD29 Output Latch
171 Input DMD30 Input Latch
172 Output DMD30 Output Latch
173 Input DMD231 Input Latch
174 Output DMD31 Output Latch
175 Input DMD32 Input Latch
176 Output DMD32 Output Latch
177 Input DMD233 Input Latch
178 Output DMD33 Output Latch
179 Input DMD34 Input Latch
180 Output DMD34 Output Latch
181 Input DMD35 Input Latch
182 Output DMD35 Output Latch
183 Input DMD36 Input Latch
184 Output DMD36 Output Latch
185 Input DMD37 Input Latch
186 Output DMD37 Output Latch
187 Input DMD38 Input Latch
188 Output DMD38 Output Latch
189 Input DMD39 Input Latch
190 Output DMD39 Output Latch
191 Output DOMS+

192 Output DMS3 Output Latch
193 Output DMS2 Output Latch
194 Output DMST Output Latch
195 Output DMS0 Output Latch
196 Output BG

197 Input BR

198 Output DMPAGE

199 Output Controltt DMA Output Enable

Scan
Position*
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

Latch Type
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output Controltt
Output
Output
Qutput
Output
Output Controltt
Input
Output
Input
Output
Input
Output
Input

Signal Name
DMA31

DMA30

DMA29

DMAZ28

DMAZ27

DMAZ26

DMA25

DMA24

DMA23

DMA22

DMAZ21

DMA20

DMA19

DMAI18

DMA17

DMA16

DMA15

DMA14

DMA13

DMA12

DMAT11

DMA10

DMA9

DMAS

DMA7

DMAG6

DMAS5

DMA4

FLAGS3 Output Enable
DMA3

DMA2

DMA1

DMAO

FLAG2 Output Enable
FLAGS3 Input Latch
FLAG3 Output Latch
FLAG2 Input Latch
FLAG2 Output Latch
FLAGI1 Input Latch
FLAGT1 Output Latch
FLAGO Input Latch

Scan

Position* Latch Type Signal Name
241 Output FLAGO Output Latch
242 Output Controltt FLAG1 Output Enable
243 Input IRQO

244 Input IRQ1

245 Input IRQ2

246 Input IRQ3

247 Output IASt

248 Output Controltt FLAGO Output Enable
249 Output CAVt

250 Output CA4t

251 Output CA3t

252 Output CA2t

253 Output CAlt

254 Output CAOt

255 Output EXABt

256 Output TIMEXP

257 Output PMAO

258 Output PMA1

259 Output PMA2

260 Output PMA3

261 Output PMA4

262 Output PMA5

263 Output PMA6

264 Output PMA7

265 Output PMAS8

266 Output PMA9

267 Output PMA10

268 Output PMAL11

269 Output PMAI12

270 Output PMA13

271 Output PMA14

272 Output PMA15

273 Output PMA16

274 Output PMA17

275 Output PMAI18

276 Output PMA19

277 Output PMA20

278 Output PMA21

279 Output PMA22

280 Output PMA23

281 Output Controltt PMA Output Enable
282 Output PMS1

283 Output PMS0

C-10

Scan

Position* Latch Type Signal Name
284 Output PMPAGE
285 Output POMSO+t

286 Output POMST+

* Position 1 = closest to TDI (scan in last); position 286 = closest to TDO (scan in first)
** CLKIN can be sampled but not controlled (read-only). CLKIN continues to clock the
ADSP-21020/21010 no matter which instruction is enabled.
t+ Signals reserved for emulator use. Can be set to any state during scan.
tt 1= Drive the associated signals during the EXTEST and INTEST instructions
0 = Tristate the associated signals during the EXTEST and INTEST instructions

C5 DEVICE IDENTIFICATION REGISTER
No device identification register is included in the ADSP-21020/21010.

C.6 BUILT-IN SELF-TEST OPERATION (BIST)
No self-test functions are supported by the ADSP-21020/21010.

C7 PRIVATE INSTRUCTIONS

Loading a value of 01xx into the instruction register enables the private
instructions reserved for emulation. The ADSP-21020/21010 EZ-ICE
emulator uses the TAP and boundary scan as a way to access the
processor in the target system. Use of the EZ-ICE emulator requires a
target board connector for access to the TAP. See “EZ-ICE Emulator
Considerations” in Chapter 9 for information on this connector.

cs8 REFERENCES

IEEE Standard 1149.1-1990. Standard Test Access Port and Boundary-Scan
Architecture. To get a copy, contact IEEE at: 1-800-678-IEEE.

Evanczuk, Stephen. “IEEE 1149.1—A Designer’s Reference.” High
Performance Systems, Aug. 1989, pp. 52-60.

Maunder, C.M. and R. Tulloss. 1991. Test Access Ports and Boundary Scan
Architectures. IEEE Computer Society Press.

Quinnell, Richard A. “Adding Testability Also Aids Debugging.” EDN,
Aug. 2, 1990, pp.67-74.

c-11

Numeric Formats

D.1 OVERVIEW

The ADSP-21020 and ADSP-21010 support the 32-bit single-precision
floating-point data format defined in the IEEE Standard 754/854. In
addition, the ADSP-21020 supports an extended-precision version of the
same format with eight additional bits in the mantissa (40 bits total). Both
the ADSP-21020 and ADSP-21010 also support 32-bit fixed-point
formats—fractional and integer—which can be signed (twos-complement)
or unsigned.

D.2 IEEE SINGLE-PRECISION FLOATING-POINT DATA FORMAT

IEEE Standard 754/854 specifies a 32-bit single-precision floating-point
format, shown in Figure D.1. A number in this format consists of a sign
bit s, a 24-bit significand, and an 8-bit unsigned-magnitude exponent e.
For normalized numbers, the significand consists of a 23-bit fraction f and
a “hidden” bit of 1 that is implicitly presumed to precede fp7 in the
significand. The binary point is presumed to lie between this hidden bit
and fp5. The least significant bit (LSB) of the fraction is f(; the LSB of the
exponent is e. The hidden bit effectively increases the precision of the
floating-point significand to 24 bits from the 23 bits actually stored in the
data format. It also insures that the significand of any number in the IEEE
normalized-number format is always greater than or equal to 1 and less
than 2.

31 30 23 22 0

s | e RN 1.f22 f0

Hidden Bit Binary Point
Figure D.1 IEEE 32-Bit Single-Precision Floating-Point Format

The unsigned exponent e can range between 1 < e < 254 for normal
numbers in the single-precision format. This exponent is bigsed by +127
(254 + 2). To calculate the true unbiased exponent, 127 must be subtracted

from e. D-1

The IEEE Standard also provides for several special data types in the
single-precision floating-point format:

* An exponent value of 255 (all ones) with a nonzero fraction is a Not-A-
Number (NAN). NANSs are usually used as flags for data flow control,
for the values of uninitialized variables, and for the results of invalid
operations such as 0 ®co.

¢ Infinity is represented as an exponent of 255 and a zero fraction. Note
that because the fraction is signed, both positive and negative Infinity
can be represented.

® Zero is represented by a zero exponent and a zero fraction. As with
Infinity, both positive Zero and negative Zero can be represented.

The IEEE single-precision floating-point data types supported by the
ADSP-21020 and ADSP-21010 and their interpretations are summarized in
Table D.1.

Type Exponent Fraction Value

NAN 255 Nonzero Undefined
Infinity 255 0 (-1)s Infinity
Normal 1<e<254 Any (=1)8 (1.£55) 28127
Zero 0 0 (-1)s Zero

Table D.1 IEEE Single-Precision Floating-Point Data Types

D3 EXTENDED FLOATING-POINT FORMAT

The extended precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the standard format but a 32-bit significand.
This format is shown in Figure D.2. In all other respects, the extended
floating-point format is the same as the IEEE standard format.

39 38 31 30 0
s |e RN 1.f30 e fo
Hidden Bit Binary Point

Figure D.2 40-Bit Extended-Precision Floating-Point Format

D4 FIXED-POINT FORMATS

The ADSP-21020 and ADSP-21010 support two 32-bit fixed-point formats:
fractional and integer. In both formats, numbers can be signed (twos-
complement) or unsigned. The four possible combinations are shown in
Figure D.3. In the fractional format, there is an implied binary point to the
right of the most significant magnitude bit. In integer format, the binary
point is understood to be to the left of the LSB. Note that the sign bit is
negatively weighted in a twos-complement format.

Bit 31 30 29 2 1 0
31 30 29 2 1 0
Weight | -2 2 2 e 2 2 2
Sign
Bit

Signed Integer

Bit 31 30 29 2 1 0
0 -1 -2 -29| -30| -31
Weight | -2 2 2 A 2 2 2
Sign
Bit

Signed Fractional

Bit 31 30 29 2 1 0

31 30 29 2 1 0
Weight 2 2 2 e 2 2 2

Unsigned Integer

Bit 3 30 29 2 1 0

-1 2| -3 30| -31| -32
Weight | 2 2 2 A 2 2 2

Unsigned Fractional
Figure D.3 32-Bit Fixed-Point Formats

ALU outputs always have the same width and data format as the inputs.
The multiplier, however, produces a 64-bit product from two 32-bit
inputs. If both operands are unsigned integers, the result is a 64-bit
unsigned integer. If both operands are unsigned fractions, the resultis a
64-bit unsigned fraction. These formats are shown in Figure D.4.

Bit 63 62 61 2 1 0

63| 62| 61 2 1 0
Weight | 2 2 2 oo 2 2 2

.............

Bit 63 62 61 2 1 0

| 2| -3 -62| -63| -64
Weight | 2 2 2 v L 2 2 2

Unsigned Fractional
Figure D.4 64-Bit Unsigned Fixed-Point Product

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit position.
Normally bit 63 and bit 62 are identical when both operands are signed.
(The only exception is full-scale negative multiplied by itself.) Thus, the
left shift normally removes a redundant sign bit, increasing the precision
of the most significant product. Also, if the data format is fractional, a
single-bit left shift renormalizes the MSP to a fractional format. The signed
formats with and without left shifting are shown in Figure D.5.

The multiplier has an 80-bit accumulator to allow the accumulation of 64-
bit products. The multiplier and accumulator are described in detail in
Chapter 2.

Bit 63 62 61 2 1 0

63 62 61 2 1 0
Weight | -2 2 2 R 2 2 2

Sign
Bit
Signed Integer, No Left Shift

Bit 63 62 61 2 1 0
62| 61| 60 1 0 -1
Weight | -2 2 2 s 2 2 2
A
Sign T
Bit
Signed Integer With Left Shift 0
Bit 63 62 61 2 1 0
0 1| -2 61| 62| -63
Weight | -2 2 2 oo 2 2 2
Sign
Bit

Signed Fractional, No Left Shift

Bit 63 62 61 2 1 0
0 2| -8 -62| -63| -64
Weight | -2 2 2 e 2 2 2
Sign *
Bit
Signed Fractional With Left Shift 0

Figure D.5 64-Bit Signed Fixed-Point Product

Control/Status Registers

E.1 OVERVIEW

This appendix describes the subset of universal registers known as system
registers and the operations that can be performed on them. It also
summarizes the bit definitions of the system registers that contain control
or status information. For convenience, two other control registers,
PMWAIT and DMWALIT, are also summarized here, but these registers are
not system registers.

The bit names that appear with each definition are used by convention
only; they are not part of the instruction set.

E.2 SYSTEM REGISTERS

System registers are the universal registers listed in Table E.1. The system
registers are a subset of the universal register set. They can be written
from an immediate field in an instruction or they can be loaded from or
stored to data memory. They can also be transferred to or from any other
universal register in one cycle.

Register Function Value After Reset

MODE1 mode control 1 (see E.3) 0x0000 (cleared)

MODE2 mode control 2 (see E.4) 0xn000 0000 (bits 28-31 are the device identification
field, identifying the silicon revision #)

IRPTL interrupt latch (see E.7) 0x0000 (cleared)

IMASK interrupt mask (see E.7) 0x0003

IMASKP interrupt mask pointer 0x0000 (cleared)

ASTAT arithmetic status (see E.5) 0x00n7 0000 (bits 19-22 are equal to the values of the
FLAGO-3 input pins; the flag pins are
configured as inputs after reset)

STKY sticky status (see E.6) 0x0540 0000
USTAT1 userstatus 1 0x0000 (cleared)
USTAT2 user status 2 0x0000 (cleared)

Table E.1 System Registers

A write to any system register except USTAT1 or USTAT2 has one cycle of
latency before any changes are effective. No wait states are inserted. If a
write to a system register is immediately followed by a read, the value
read is the new one, except for IMASKP which requires a extra cycle
before the value is updated.

E.2.1 System Register Bit Operations

The system registers differ from other universal registers in that
individual groups of bits can be set, cleared, XORed, toggled or tested
using an immediate field in the bit manipulation instruction to specify the
affected bits. See the instruction description in Appendix A for specifics.
Although the shifter and ALU have bit manipulation capabilities, these
computations operate on register file locations only. System register bit
manipulation instructions eliminate the overhead of transferring system
registers to and from the register file.

Bit Instruction Shifter Operation

(System Registers) (Register File Locations)

BIT SET register data Rn = BSET Rx BY Ry | data
BIT CLR register data Rn = BCLR Rx BY Ry | data
BIT TGL register data Rn = BTGL Rx BY Ry | data
BIT TST register data BTST Rx BY Ry | data
(result in BTF flag) (result in SZ status flag)

E.2.1.1 BitTest Flag

The test and XOR operations of the bit manipulation instruction store the
result in the bit test flag (BTF, bit 18 in the ASTAT register). The state of
BTF is a condition that you can specify in conditional instructions. The test
operation sets BTF if all specified bits in the system register are set. The
XOR operation sets BTF if all bits in the system register match the
specified bit pattern.

E.22 User Registers

Two undedicated 32-bit status registers, USTAT1 and USTAT?2, are user-
defined. Bits in these registers can be set and tested using system register
instructions. You can use these registers for low-overhead, general-
purpose software flags or for temporary storage of data.

E3 MODE1 REGISTER

Bit Name Definition

0 Reserved

1 BRO Bit-reverse for I0 (uses DMSO0 only)

2 SRCU Alternate register select for computation units

3 SRD1H DAGTI alternate register select (7-4)

4 SRD1L DAGTI alternate register select (3-0)

5 SRD2H DAG?2 alternate register select (15-12)

6 SRD2L DAG?2 alternate register select (11-8)

7 SRRFH Register file alternate select for R(15-8)

8-9 Reserved

10 SRRFL Register file alternate select for R(7-0)

11 NESTM Interrupt nesting enable

12 IRPTEN Global interrupt enable

13 ALUSAT Enable ALU saturation (full scale in fixed-point)

14 Reserved

15 TRUNC 1=Floating-point truncation; 0=Round to nearest

16 RND32 1=Round floating-point data to 32 bits; 0=Round to 40 bits
(must be set to 1 for ADSP-21010)

17-31 Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODE1

15 14 13 12 11

0=Floating-Point Round-to-Nearest TRUNC ——| }

10 9 8 7 6 5 4 3 2

LRND& 0=Round Floating-Point to 40 Bits

1=Round Floating-Point to 32 Bits
(must be set to 1 for ADSP-21010)

BRO O=Disable I0 Bit Mode

1=Floating-Point Truncation

1=Enable 10 Bit-Reverse Mode

0=Disable ALU ALUSAT
1=Enable ALU Saturation
=Disable IRPTEN

1=Enable Interrupts

0=Disable Interrupt Nesting NESTM
1=Enable Interrupt Nesting

0=Enable R7-RO Primary SRRFL
1=Enable R7-R0 Alternate

0=Enable R15-R08 Primary SRRFH

1=Enable R15-R8 Alternate

SRCU 0=Enable MR Primary
1=Enable MR Alternate

SRD1H 0=Enable DAG1 7-4 Primary
1=Enable DAG1 7-4 Alternate

SRD1L O=Enable DAG1 3-0 Primary
1=Enable DAG1 3-0 Alternate

SRD2H O=Enable DAG2 15-12 Primary
1=Enable DAG2 15-12 Alternate

SRD2L 0=Enable DAG2 11-8 Primary

1=Enable DAG2 11-8 Alternate B

E-3

MODE2

E4 MODE2 REGISTER
Bit Name Definition
0 IRQOE IRQO 1=edge sensitive; O=level-sensitive
1 IRQ1E IRQI 1=edge sensitive; O=level-sensitive
2 IRQ2E IRQ2 1=edge sensitive; O=level-sensitive
3 IRQ3E IRQ3 1=edge sensitive; O=level-sensitive
4 CADIS Cache disable
5 TIMEN Timer enable
6-14 Reserved
15 FLGOO FLAGO 1=output; O=input
16 FLGI1O FLAGI1 1=output; O=input
17 FLG20 FLAG2 1=output; O=input
18 FLG30O FLAGS3 1=output; O=input
19 CAFRZ Cache freeze
20-27 Reserved
28-31 Device Identification Field (silicon revision #)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
X [x {x|x 0j0|o0

Device Identification Field
(silicon revision #)

0=Cache Updates CAFRZ ‘-|

1=Cache Freeze (No Updates)

l— FLG10

FLG20

0=FLAG1 Input
1=FLAG1 Output

0=FLAG3 Input FLG30

0=FLAG2 Input
1=FLAG3 Output

1=FLAG2 Output

15 14 13 12 11

M 9 8 7 6 5 4 3 2 1 0

0=IRQO Level-Sensitive
1=IRQO0 Edge-Sensitive

0=FLAGO Input FGOO
1=FLAGO Output

0=Disable Timer TIMEN

IRQIE

1=Enable Timer

O=Enable Cache CADIS

IRQ2E

1=Disable Cache

E-4

IRQ3E

0=IRQ1 Level-Sensitive
1=IRQ1 Edge-Sensitive

0=IRQ2 Level-Sensitive
1=IRQ2 Edge-Sensitive

0=IRQ3 Level-Sensitive
1=IRQ3 Edge-Sensitive

E.5 ARITHMETIC STATUS REGISTER (ASTAT)

Bit Name Definition
0 AZ ALU result zero or floating-point underflow
1 AV ALU overflow
2 AN ALU result negative
3 AC ALU fixed-point carry
4 AS ALU X input sign (ABS and MANT operations)
5 Al ALU floating-point invalid operation
6 MN Multiplier result negative
7 MV Multiplier overflow
8 MU Multiplier floating-point underflow
9 Ml Multiplier floating-point invalid operation
10 AF ALU floating-point operation
11 SV Shifter overflow
12 Sz Shifter result zero
13 SS Shifter input sign
14-17 Reserved
18 BTF Bit test flag for system registers
19 FLGO FLAGO value
20 FLG1 FLAGI value
21 FLG2 FLAG2 value
22 FLG3 FLAGS3 value
23 Reserved
24-31 CACC (Compare Accumulation) bits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0000000|0 xxxxO
CACC = |
Comp Shift Reg} l—BTF Bit Test Flag for System Registers
ASTAT FLAGS Value FLG3 FLGO FLAGO Value
FLAG2 Value FLG2 FLG1 FLAG1 Value
1312 11 10 9 8 7 6 5 4 3 2 1 0
ofoJojojlojlofo|o|o]|ofo oo |0
Shifter Input Sign SS —J l—AZ ALU Zero/Floating-Point Underflow
Shifter Zero SZ AV ALU Overflow
Shifter Overflow SV AN ALU Neg
ALU Floating-Point O| AF AC ALV Fixed-Point Carry
F g-Point MI - AS ALU X Input Sign (for ABS and MANT)
invalid Operation
aPoint W Al ALU Floating-Point Invalid Operation
o ™ MN multiptier

E-5

E Control/Status Registers

E.6

26
27-31

STICKY ARITHMETIC STATUS REGISTER (STKY)

Name
AUS
AVS
AOS

AIS
MOS
MVS
MUS
MIS

CB7S

/o

CB15S

PCFL
PCEM
SSOV
SSEM
LSOV
LSEM

Definition

ALU floating-point underflow

ALU floating-point overflow

ALU fixed-point overflow

Reserved

ALU floating-point invalid operation
Multiplier fixed-point overflow
Multiplier floating-point overflow
Multiplier floating-point underflow
Multiplier floating-point invalid operation
Reserved

DACG1T circular buffer 7 overf!

Axark
DAG?2 circular buffer 15 overflow*
Reserved
PC stack full (not sticky)
PC stack empty (not sticky)
Status stack overflow (MODE1 and ASTAT)
Status stack empty (not sticky)
Loop stack overflow (Loop Address and Loop Counter)
Loop stack empty (not sticky)
Reserved

(Bits 21-26 are read-only. Writes to the STKY register have no effect on these bits.)

* Bit 17 (DAGI circular buffer 7 overflow) and Bit 18 (DAG2 circular buffer 15
overflow) indicate the occurrence of a circular buffer overflow. Rather then
remaining set until explicitly cleared, however, these bits are cleared by the next
subsequent memory access that uses the corresponding I register (I7, I15).
Circular buffer interrupts, therefore, should be used instead of these STKY
register bits. See Section 4.3.2.3, “Circular Buffer Overflow Interrupts,” in
Chapter 4.

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16

CB7S DAG1 Circuiar

Loop Stack Empty (Read-Only) LSEM Buffer 7 Overfiow

CB15S DAG2 Circular
Buffer 15 Overflow

PCFL pc stack Full (Read-Only)

Loop Stack Overflow (Read-Only) LSOV

STKY Status Stack Empty (Read-Only) SSEM

Status Stack Overflow (Read-Only) SSOV PCEM pc stack Empty (Read-Only)

15 14 13 12 11 10 9 8 7 6
T .

Muitiplier Floating-Point MIS —J I_
Invalid Operation AUS ALU Floating-Point Undertiow
Multiplier Floating-Point Underfiow MUS AVS ALU Floating-Point Overflow
Multiplier Floating-Point Overflow MVS AOS ALU Fixed-Point Overflow

AlS ALUF g-Point invalid Op

Multiplier Fixed-Point Overfiow MOS

E.7 INTERRUPT LATCH (IRPTL) & INTERRUPT MASK (IMASK)

Bit

(Int#) Address Name
0 0x00

1 0x08 RSTI

2 0x10 _
3 0x18 SOVFI
4 0x20 TMZHI
5 0x28 TRQ3I
6 0x30 IRQ2I
7 0x38 IRQ1I
8 0x40 IRQOT
9 0x48

10 0x50

11 0x58 CB71
12 0x60 CB15I
13 0x68

14 0x70 TMZLI
15 0x78 FIXI
16 0x80 FLTOI
17 0x88 FLTUI
18 0x90 FLTII
19-23 0x98-0xB8

24 0xCO0 SFTO0I
25 0xC8 SFT1I
26 0xDO0 SFT21
27 0xD8 SFT3I
28 0xEQ SFT41
29 OxE8 SFT5I
30 0xFO SFTél
31 0xF8 SFT71

Function

Reserved for emulation

RESET

Reserved

Status stack or loop stack overflow or PC stack full
Timer =0 (high priority option)
IRQ3 asserted

IRQ> asserted

IRQ) asserted

TRQq asserted

Reserved

Reserved

Circular buffer 7 overflow interrupt
Circular buffer 15 overflow interrupt
Reserved

Timer=0 (low priority option)
Fixed-point overflow
Floating-point overflow exception
Floating-point underflow exception
Floating-point invalid exception
Reserved

User software interrupt 0

User software interrupt 1

User software interrupt 2

User software interrupt 3

User software interrupt 4

User software interrupt 5

User software interrupt 6

User software interrupt 7

For IMASK: 1=unmasked (enabled), 0=masked (disabled)
(interrupts 0 and 1 are not maskable)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

o(ofofogojo0foO

User Software Interrupts L
FLTO! Floating-Point Overflow

FLTUI Floating-Point Underflow

IRPTL & IMASK

FLTIl Floating-Point Invalid Operation

15 14 13 12 11 10 9 8 7 6 5 4 3

0 oj(o0ojojofo
Fixed-Point Overflow FIXI —|
Timer Expired (Low Priority) TMZLI RSTI Reset (Non-Maskable)
DAG2 Circular Buffer 15 Overflow CB15l SOVFI Stack Full/Overflow
DAG1 Circular Buffer 7 Overtiow CB7I TMZHI Timer Expired (High Priority)
TR0 A 1RQOI IRQ3! 1RQ3 Asserted
RQ1 A IRQ1I IRG2l IRQ2 Asserted

Default values for IMASK only; IRPTL is cleared after reset.

E Control/Status

E.8 PROGRAM MEMORY INTERFACE CONTROL (PMWAIT)

Bit Definition

13 1=Automatic wait state for access across page boundary

0=No automatic wait state

12-10 Memory page size:

000 256 words

001 512 words

010 1024 words

011 2048 words

100 4096 words

101 8192 words

110 16384 words

111 32768 words
9-7 Number of program memory bank 1 wait states (0-7)
6-5 Wait state mode* for program memory bank 1
4-2 Number of program memory bank 0 wait states (0-7)
1-0 Wait state mode* for program memory bank 0
* Wait state mode bits:

00 External acknowledge only

01 Internal software wait states only
10 Both Internal and External acknowledge
11 Either Internal or External acknowledge

31 30 29 28 27 26 25 24 23 22 21

P L L]
| j [I I

DRAM Bank 1 Bank 1 Bank 0 Bank 0
Program memory number of wait state number of wait state
page sizet wait states mode* wait states mode*

Automatic
wait state
on boundary
crossing

E-10

20 19 18 17 16 15 14

1 DRAM Memory Page Size Codes
000 256 Words

001 512 Words

010 1024 Words

011 2048 Words

100 4096 Words

101 8192 Words

110 16384 Words

111 32768 Words

* Wait State Mode Codes

01
10
1

External acknowledge only

Internal wait states only

Both external and internal required
Either external or internal sufficient

Control/Status Registers E

E.9 DATA MEMORY INTERFACE CONTROL (DMWAIT)

Bit Definition

23 1=Automatic wait state for access across page boundary
0=No automatic wait state

22-20 Memory page size:

000 256 words
001 512 words
010 1024 words
011 2048 words
100 4096 words
101 8192 words
110 16384 words
111 32768 words

19-17 Number of program memory bank 3 wait states (0-7)
16-15 Wait state mode* for program memory bank 3
14-12 Number of program memory bank 2 wait states (0-7)
11-10 Wait state mode* for program memory bank 2
9-7 Number of program memory bank 1 wait states (0-7)

6-5 Wait state mode* for program memory bank 1

4-2 Number of program memory bank 0 wait states (0-7)
1-0 Wait state mode* for program memory bank 0

* Wait state mode bits:

00 External acknowledge only

01 Internal software wait states only

10 Both Internal and External acknowledge
11 Either Internal or External acknowledge

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15
DRAM P i
0|0|0|0|1|1|1|1|0| t Memory Page Size Codes
000 256 Words
| l l 001 512 Words
010 1024 Words
Automatic DRAM Data Bank 3 Bank 3 o011 2048 Words
wait state memory number of wait state 100 4096 Words
on boundary page sizet wait states mode* 101 8192 Words
crossing 110 16384 Words
111 32768 Words
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]1 |1|1 [o |1 {1'1 K |o|1[1 |1 |1jo| + Wait State Mode Codes
| r | | I I 00 | External acknowiedge only
o1 Internal wait states only
Bank 2 Bank 2 Bank 1 Bank 1 Bank 0 Bank 0 10 | Both external and internal required
numberof waitstate numberof waitstate number of wait state 1" Either external or internal sufficient
wait states mode* wait states mode* wait states mode*

E-11

ADSP-21020/21010 User’s Manual, 2nd Edition (1993)
Revisions from 1st Edition (1991)

Key
Text deleted from 1st Edition is crossed-out: “
New text added in 2nd Edition is underlined: “SS is cleared”

7

page (2nd Ed.) revision

p. 1-7, para. 5 “Fixed-point and single-precision floating-point
data is aligned to the upper 32 bits of the PMD
}M-”

p- 1-7, para. 6 “Fixed-point and single-precision floating-point
data is aligned to the upper 32 bits of the DMD
bus.”

12

p- 2-1, last para. The individual registers of the register file are

prefixed with an “f” when used in floating-point
computations (in assembly language source code).
The registers are prefixed with an “r” when used
in fixed-point computations. The following
instructions, for example, use the same three

registers:

F0=F1 * F2; floating-point multiply
RO=R1 * R2; fixed-point multiply

The “f” and “r” prefixes do not affect the 40-bit
data transfer; they only determine how the ALU,
multiplier, or shifter treat the data.”

p-2-10 ALU Instruction Summary table now shows
effects of ALU instructions on all status bits of
ASTAT and STKY status registers.

p- 2-17, para. 6 Twos-complement-Fractional: “upper 33 17 bits of
MR not all zeros or all ones”

p. 2-17, para. 7 Unsigned-Fractional: “upper 32 16 bits of MR not
all zeros”

p.- 2-18 Multiplier Instruction Summary table now shows
effects of multiplier instructions on status bits of
ASTAT and STKY status registers.

p- 2-20, para. 1

p. 2-20, Figure 2.4

p. 2-20

p- 2-24, para. 1

p- 2-24, last para.

p. 2-25

“The X-input and the Z-input are always 32-bit
fixed-point values. The Y-input is a 32-bit fixed-
pomt value or twe-6-bitfields; bitG-andtent an 8-

bit field (shf8), positioned in the register file as
shown in Figure 2.4.

EenG-hdds-a-ﬁeleHengthﬂvah:e.

Some shifter operations produce 6-bit or 8-bit
results. These results are placed in either the bit6
or shf8 field, shewninFigure2+4, (see Figure 2.5)
and are sign-extended to 32 bits. Thus the shifter
always returns a 32-bit resuit.”

12-bit Y-Input (Ien6, bit6) representation is deleted
from Figure 2.4 and is shown in (new) Figure 2.5
instead

New section added: “2.7.2 Bit Field Deposit &
Extract Instructions”

“The SZ flag indicates if the output is zero, the SV
flag indicates an overflow, and the SS flag
indicates the sign bit in exponent extract
operations.”

“SS is affected only-by-thetwoEXP-operations by
all shifter operations. For the two EXP (exponent
extract) operations, it is set if the fixed-point input
operand is negative and cleared if it is positive.
For all other shifter operations, SS is cleared.”

In Shifter Instruction Summary table, SS flag is
now shown as being cleared by all instructions
except EXP Rx and EXP Rx (EX).

p. 2-27, last para.

p- 3-5, para. 2

p-3-5

p- 3-7, para. 3

“The individual registers of the register file are
prefixed with an “f” when used in floating-point
computations (in assembly language source code).
The registers are prefixed with an “r” when used
in fixed-point computations. The following
instructions, for example, use the same three

registers:

EQ=F1 * F2; floating-point multiply
RO=R1 * R2;: fixed-point multiply

The “f” and “r” prefixes do not affect the 40-bit (or
32-bit) data transfer; they only determine how the
ALU, multiplier, or shifter treat the data.”

“The system register bit manipulation instruction can
be used to set, clear, toggle or test specific bits in
these registers. This instruction is described in
Appendix A, Group IV-Miscellaneous
instructions.”

Table 3.1 now shows which registers are defined
as System Registers.

“The bit test flag (BTF) is bit 18 of the ASTAT

register. The-state-of BTF-is-one-of theconditions

the-ADSP-21026-evaluates—This-read-only flag-is
ffected-by-t i sterbi LXOR

. This flag is set (or cleared) by
the results of the BIT TST and BIT XOR forms of
the system register bit manipulation instruction,
which can be used to test the contents of the
ADSP-21020’s system registers. This instruction is
described in Appendix A, Group IV-Miscellaneous
instructions. After BTF is set by this instruction, it
can be used as the condition in a conditional
instruction (with the mnemonic TF; see Table
3.2).”

p. 3-8, Table 3.2 LCE Loop Cntr Expired (loop term) CURLCNTR =-6- 1
NOT LCE Loop Cntr Expired (condition) CURLCNTR #-6- 1

p. 3-9, last para. “This is similar to the break instruction of the C
programming language used to prematurely

terminate execution of a loop.”

p. 3-13, para. 3 “Here is a simple example of an ADSP-21020 loop:

LCNTR=30, DO label UNTIL LCE;
RO=DM (I0,M0), F2=PM(I8,M8):
R1=RO-R15;

label: F4=F2+F3:

”

p- 3-13, last para. “If the termination condition is true, the sequencer
fetches the next instruction after the end of the
loop and pops the loop stack and PC stack.”

p. 3-15, Figure 3.7 The One-Instruction Loop, Three Iterations table is
modified in third, fourth, and fifth clock cycle
columns.

p- 3-17, para. 1 “For-nestedHoopsinwhich-theoutertoops

A non-counter-based loop is one in which the loop
termination condition is something other than
LCE. When a non-counter-based loop is the outer
loop of a series of nested loops, the end address of
the outer loop must be located at least two
addresses after the end address of the inner loop.

p- 3-17, para. 2

p-3-23

p. 3-23, last para.

p- 3-27

p- 3-28, para. 5

The JUMP (LA) instruction is used to prematurely

abort execution of a loop. When this instruction is
located in the inner loop of a series of nested loops
and the outer loop is non-counter-based, the
address jumped to cannot be the last instruction of
the outer loop. The address jumped to may,
however, be the next-to-last instruction (or any

earlier).”

“Non-counter-based short loops terminate in a
special way because of the fetch-decode-execute
instruction pipeline:”

4

‘e waitstates for memory accesses

® bus grant ”

RP Tt irnd . _y

Sho]“*]d. clear IR by ““‘“'g! zeros toit bef‘"e.

IRPTL is cleared by a processor reset.”

“The STKY register maintains stack overflow/fuit

full and staz:k empty
flags for the PC stack as well as overflow and

empty flags for the status stack and loop stack.
Unlike other STKY bits, the-stack everflow/Afull

several of these flag bits are
not “sticky.” They are set by the occurrence of the
condition they indicate and are cleared when the
condition is changed (by a push, pop or processor
reset).

Bit Name
21 PCFL
22 PCEM
23 SSOV
24 SSEM
25 LSOV
26 LSEM

Definition Sticky/Not Sticky ~ Cleared By
PC stack full Not sticky Pop

PC stack empty Not sticky Push
Status stack overflow Sticky RESET
Status stack empty Not sticky Push
Loop stacks overflow* Sticky RESET
Loop stacks empty* Not sticky Push

* Loop address stack and loop counter stack

p- 3-30, para. 1

p. 4-4, para. 6

p- 4-6, para. 3

p- 48

p. 4-11, para. 2

“On return from the interrupt, execution continues
at the instruction after the IDLE instruction.”

“The L register and modulo logic do not affect a
pre-modified address—pre-modify addressing is
always linear, not circular.”

“Circular buffer addressing must use M registers
for post-modify of I registers, not pre-modify; for

example:

F1=DM(I0,MO) ;

Use post-modify addressing for

circular buffers,
not pre-modify. ”

New section added: “4.3.2.3 Circular Buffer
Overflow Interrupts”

1= MO, I

“For certain instruction sequences involving
transfers to and from DAG registers, an extra
(NOP) cycle is either automatically inserted by the

processor (1, 2) or must be inserted in code by the
programmer (3). Certain other sequences cause

incorrect results and are not allowed by the ADSP-

21020 Assembler (4).”

p- 4-12, para. 1

p- 4-12, para. 3

p- 6-2

“(Note that because the DAG2 registers are used
to fetch instructions or access data in every cycle, a
write to a program memory control register will
always require an extra cycle to be inserted.)

Each of the following instruction sequences, for
example,

RES=PMAETOME2

PMWAIT=0x080000; or DMBANKI1=0x10000000;
NOP; R15=DM(IQ,M1); ”

“3.) An instruction that writes any L or M register
of DAG2 (1.8-1.15, M8-M15), immediately followed
by an instruction that reads the corresponding I
register will result in incorrect data being read
from the I register. The following instruction

sequence, for example,

1.8=24;

RO=I8;

will cause incorrect data to be read from I8. To
prevent this, add a NOP to your program between
the two instructions (i.e. the L or M register write
and the I register read):

L8=24;
NOP ;
RO=I8; ”

“PMD,,, Program Memory Data. The ADSP-
21020 inputs and outputs data and instructions on
these pins. 32-bit fixed-point data and 32-bit
single-precision floating-point data is transferred
over bits 47-16 of the PMD bus.”

“PMS,—ProgramMemory-Select 8-—Fhis-pinris
asserted-to-select-bank-6-of program-memory-
M bard tefimeos
controlregisters:

p- 6-3

“PMS,, Program Memory Select lines 1 & 0.
These pins are asserted as chip selects for the
corresponding banks of program memory.
Memory banks must be defined in the processor’s
memory control registers. These pins are decoded
program memory address lines and provide an
early indication of a possible bus cycle.”

“PMACK Program Memory Acknowledge. An
external device asserts this .’;E] SP-21626 mp]ttt :O ¢

for. An external
device deasserts this input to add wait states to a

memory access.”

“PMTS Program Memory Three-State Control.

Anractive signalenthis-input-places-program
i . :
;’.mlm. Ty adidt ess;data anldl ce]ntt of srg] “aP}Si ‘;: aEiE

;ﬁ ;bs- places the program memory address, data,

selects, and strobes in a high-impedance state. If
PMTS is asserted while a PM access is in progress,
the processor will halt and the memory access will
not be completed. PMACK must be asserted for at
least one cycle when PMTS is deasserted to allow
any pending memory access to complete properly.

PMTS should only be asserted (low) during an

active memory access cycle.”

“DMD,,, Data Memory Data. The ADSP-21020
inputs and outputs data on these pins. 32-bit
fixed-point data and 32-bit single-precision
floating-point data is transferred over bits 39-8 of
the DMD bus.”

PMS5,—DataMemory-Seleet 3—Fhis-pirris-asserted
toselect-bank-3-of datamemory—vemory-banks
Lefimod Lreoi B

“DMS,,, Data Memory Select lines 0,1, 2, & 3.
These pins are asserted as chip selects for the
corresponding banks of data memory. Memory
banks must be defined in the processor’s memory
control registers. These pins are decoded data
memory address lines and provide an early

indication of a possible bus cycle.”

“DMACK Data Memory Acknowledge. An

external-device-asserts-this ADSP-21626-input-to
terminate a .memat;. :Hac.ces.s Fhis isone 1]r]retl.:o c]l of

torr. An external
device deasserts this input to add wait states to a

memory access.”

“DMTS Data Memory Three-State Control. An

active-signal-onthis-input-places-program
tdress-d] L siorats

DMTS places the data memory address, data,

selects, and strobes in a high-impedance state. If
DMTS is asserted while a DM access is in

progress, the processor will halt and the memory

R-10

p- 6-4, para. 3

p- 6-5, para. 2

p- 6-7, para. 1

p- 6-7, para. 3

p. 6-7, last para.

p. 6-14

access will not be completed. DMACK must be
asserted for at least one cycle when DMTS is
deasserted to allow any pending memory access to
complete properly. DMTS should only be asserted
(low) during an active memory access cycle.”

“1. The ADSP-21020 drives the read address and
asserts a memory select signal to indicate the
selected bank. A memory select signal is not
deasserted between successive accesses of the
same memory bank.

2. The ADSP-21020 asseris the read strobe (uniess
the memory access is aborted because of a
conditional instruction).”

“1. The ADSP-21020 drives the write address and
asserts a memory select signal to indicate the
selected bank. A memory select signal is not
deasserted between successive accesses of the
same memory bank.

2. The ADSP-21020 asserts the write strobe and

drives the data (unless the memory access is
aborted because of a conditional instruction).”

“... the acknowledge should be deasserted (low) in
the same cycle after that the three-state enable is
deasserted in.”

lll;eq A(;I(I!
III!P! A(;l(lf
Figure 6.4, “Bus Request/Bus Grant Timing,” is

revised to show possible multicycle instruction
execution completion before buses are granted.

p- 6-16, last para.

p- 7-4, para. 2

p- 7-4, para. 3

“To write a 48-bit word to a program memory
location named Port1, for example, the following
instructions would be used:

R1=0x 45678; /* Rl wi 2 *
PX1=R0;
PX2=Rl;
T =PX: * wri L PM bi 15-0 *

* and 32 MSBs to PM bits 47-16 *

“

An example is:

1.2=8;
DM(I0,M1)=R1; ”

“(Note that because the DAG2 registers are used
to fetch instructions or access data in every cycle, a
write to a program memory control register will
always require an extra cycle to be inserted.)

Each of the following instruction sequences, for
example, cause the ADSP-21020 to insert an extra
cycle between the two instructions:

PMWATT=0x080000:; or DMBANK1=0x1000 0z
NOP; R15=DM(IQ,M1); ”

An instruction that writes any L or M register of
DAG2 (1.8-1.15, M8-M15), immediately followed
by an instruction that reads the corresponding I
register will result in incorrect data being read
from the I register. The following instruction
sequence, for example, will cause incorrect data to
be read from I8:

18=24;
R0O=I8;

R-11

p-7-14

p-7-19

p. 8-6
. SEGMENT
. SEGMENT
. SEGMENT
. SEGMENT
. SEGMENT
.SEGMENT

p. 8-20

p. 8-27, para. 2
p- 8-27, para. 4
p- 8-28, para. 2

R-12

To prevent this, add a NOP between the two
instructions:

18=24:
NOP;
RO=I8;:

”

Table 7-14 is simplified (but no changes made in
instruction definitions).

Instruction type 10 deleted.

In Listing 8.1, several segment addresses are
corrected as follows: :

/RAM /BEGIN=0x000100 /END=8x863FFF /PM pm_code;
/RAM /BEGIN=0x866666 /END=0xFFFFFF /PM pm_data;
/RAM /BEGIN=0x00000000 /END=8x86FFFFFF /DM dm data;

/RAM /BEGIN=0x000100 /END=0x0QQ7FF /PM pm_code;
/RAM /BEGIN=0x000800 /END=0xQ0QFFF /PM pm_data;
/RAM /BEGIN=0x00000000 /END=0xQQQQ7FF /DM dm data;

The next-to-last instruction of the initial
setups: portion of Listing 8.4 is deleted:

p. 8-34

p- 9-4, para. 2

p- 9-4, para. 4

p- 94
p- 9-5, Table 9.1

p. 9-6, para. 1

p. 9-6, Fig. 9.2

In Listing 8.8, the

portion of the second instruction is replaced by:
ro=r XY I

Therefore, to ensure recognition of an
asynchronous input, it must be asserted for at least
one full processor cycle plus setup and hold time
(except for RESET, which must be asserted for at

least four processor cycles).

Table 9.2 shows the states of outputs after during
reset (i.e. while RESET is low).

New section added: “9.4 RCOMP Pin”

The following reset values are corrected:

PC Ynchanged 0x0008

LCNTR Ynchanged 0x0000 (cleared)
IRPTL Ynchanged 0x0000 (cleared)
IMASK 6 0x0003

STKY e 0x0540 0000
MODE2 6 0xn000 0000

(bits 28-31 are the device
identification field, identifying the
silicon revision #)

ASTAT 0 0x00nn 0000
(bits 19-22 are equal to the values of

the FLAGO-3 input pins; the flag pins
are configured as inputs after reset)

“During the first two memory accesses, which
have eight seven wait states each due to the
default value of the PMWAIT register, ...”

One additional CLKIN cycle is added between
rising edge of RESET and start of first instruction
fetch (0x000008 driven onto PMA bus).

R-13

R-14

p. 9-9, para. 2

p- 9-9, Fig. 9.4

p- 9-10, Fig. 9.5

p- 9-11, para. 2

p. 9-11, Fig. 9.6

p.9-13, Fig. 9.8
p- 9-15, Fig. 9.10
p. 9-16, Fig. 9.11
p. 9-19, Fig. 9.13
p. 9-18 (1st Ed)

“No pullup or pulldown resistors are needed on
these unused pins—this is taken care of on-chip.”

Data bus lines corrected: BPMPo-3+ DMD39-8

Faster ADSP-21020 device: 56ns 30 ns
Memories relabeled: 7&196-35 SRAM
64K x 4
15ns
Faster ADSP-21020 device: 56ns 30 ns
Memories relabeled: 7&199-35 SRAM
32K x 8
18 ne

FSO L te]

“1/0O devices should be connected to the 32-bit
integer field (the upper 32 bits) of the DMD or PMD
data buses—bits 39-8 of the DMD bus, and bits 47-
16 of the PMD bus.”

Faster ADSP-21020 device: 56ns 30ns

Memories relabeled: 72199-35 SRAM
32K x 8
15 ns

Data bus lines corrected: DBMBP3+6 DMD39-8
Data bus lines corrected: BMBP31+-6 DMD39-8
Data bus lines corrected: PMBP31+-6 DMD39-8
Data bus lines corrected: BM™MB8-39 DMD39-8

Section 9.5.2.2 “Shared Single-Port Memory”
deleted.

p. 9-30

p- A-8

p- A-23
p- A-28,29 (1st Ed)
p- A-30

p- A-32, Do Until

p. A-46, Idle

p- B-2, para.l

Section 9.8 “EZ-ICE EMULATOR
CONSIDERATIONS” is revised. In Figure 9.20
“Target Board Connector For EZ-ICE Probe” the

signals BTRST and TRST are now shown as active
low: BTRST TRST

LCE Loop Cntr Expired (loop term) CURLCNTR = -6
NOT LCE Loop Cntr Expired (condition) CURLCNTR # 8-

Instruction type 10 deleted.

Instruction type 10 deleted.

“The end address can be either a label for an
absolute 24-bit program memory address, or a PC-
relative, 24-bit twos-complement address.”

“The end address can be either a label for an
absolute 24-bit program memory address, or a PC-
relative, 24-bit twos-complement address.”

“Examples:

DO 6x2F66 end UNTIL FLAGLl IN;
{end is a program labell

DO (PC, emd 7) UNTIL AC;
; s e fs ket

r”

“On return from the interrupt, execution continues
at the instruction following the IDLE instruction.”

“The CU (computation unit) field is defined as

follows:

CU=00 ALU operations

CU=01 Multiplier operations |
CU=10 Shifter operations”

R-15

R-16

p- B-39, para.2

p- B-40, para.2

“The following code performs floating-point
division using an iterative convergence
algorithm.* The result is accurate to one LSB in
whichever format mode, 32-bit or 40-bit, is set (32-
bit only for ADSP-21010). Fhis-code-executes-in8
eyeles: It requires these inputs: F0=numerator,
F12=denominator, F11=2.0. It returns the quotient
in FO. (The two highlighted instructions can be
removed if only a 1 LSB accurate single-precision
result is necessary.)

FO0=RECIPS F12, F7=F0; {Get 8 bit seed RO=1/D}
F12=F0*F12; {D’ = D*R0}

F7=F0*F7, FO=F11-F12; {FO=R1=2-D’, F7=N*R0}
F12=F0*F12; {F12=D’-D’ *R1}

F7=F0*F7, FO=F11-F12; {F7=N*RO*R1, F0=R2=2-D’}
RES—PBY F12=FO*F12; {F12=D’=D’ *R2}

F7=F0*F7, FO0=F11-F12; {F7=N*RO*R1*R2, FO0=R3=2-D’}
FO=F0*F7; {F7=N*RO*R1*R2*R3}

Note that this code segment can be made into a

subroutine by adding an rts (p8) clause to the
third-to-last instruction.”

“The following code calculates a floating-point
reciprocal square root (1/Vx) using a Newton-
Raphson iteration algorithm.* The result is
accurate to one LSB in whichever format mode,
32-bit or 40-bit, is set (32-bit only for ADSP-21010).
To calculate the square root, simply multiply the
result by the original input. Fhi i

. It requires these inputs: FO=input,
F8=3.0, F1=0.5. It returns the result in F4. (The four

highlighted instructions can be removed if only a
*1 LSB accurate single-precision result is

necessary.)

p. B-46

p- B-52

p- B-55 to B-69,
B-72,73

p. B-64, 66, 68, 69

p. B-64, 66, 68

F4=RSQRTS FO;
F12=F4*F4;
F12=F12*F0;

F4=F1*F4, F12=F8-F12;
F4=F4*F12;

F12=F4*F4;
F12=F12*F0;

F4=F1*F4, F12=F8-F12;

F4=F4*F12;
F12=F4*F4;
RES—EBY F12=F12*F0;

F4=F1*F4, F12=F8-F12;

F4=F4*F12;

{Fetch 4-bit seed}
{F12=X0"2}

{F12=C*X0"2}

{F4=.5*X0, F12=3-C*X0"2}
{F4=X1=.5*X0 (3-C*X0"2) }
{F12=X1"2}

{F12=C*X1"2}

{F4=.5*X1, F12=3-C*X1"2}

{F4=X2=_5%X1 (3-C*X142) }
{F12=X2+2}

{F12=C*x22}

{F4=.5*X2, F12=3-C*X2°2}

{F4=X3=.5*X2 (3-C*X2"2) }

Note that this code segment can be made into a
subroutine by adding an rTs (DB) clause to the
third-to-last instruction.”

In Table B.4, the following Mod2 options are
deleted:

S5y —1o—t
(SHR)y —6+6—1
UsiRy —166—1
TRy —660—t

MR Register Transfer instruction is moved to this
page (from p. B-81 in 1st Edition).

“SS Isnotaffected
Is cleared”

“The floating-point extension field of Rn (bits 7-0
of the 40-bit word) is set to all 0s.”

New figures added for FDEP, FEXT instructions.

p. B-71 In the shifter operation Rn=EXP Rx (EX), the
definition of the SS status flag is changed:

g
fsset .ﬂ thHe .h:é:d. P m;}'f GF] mm.d m]IE: 15 v

“SS Is set if the exclusive OR of the AV status
bit and the sign bit (bit 31) of the fixed-

point operand in Rx is equal to 1, otherwise
cleared”

p. C-3, Table C.1 Instruction

Bits KRegister

1234 Name (Serial Path) Type

81 Reserved-foremulation Private

0100 Reserved for emulation Private

xx10 Reserved for emulation Private
p-C-9,10 Scan Latch Signal

Position Type Name

234 ©utput Input FLAG3 Input Latch

235 Input Output FLAG3 Output Latch

236 Output Input FLAG2 Input Latch

237 Input Output FLAG2 Output Latch

238 Output Input FLAGI Input Latch

239 Input Output FLAG1 Output Latch

240 Sutput Input FLAGO Input Latch

241 Input Output FLAGO Output Latch
p- C-11 tt 1 = Drive the associated signals during the EXTEST

and INTEST instructions

0 = Tristate the associated signals during the
EXTEST and INTEST instructions

R-18

p. D-1, para.l

p- D-2, para.5

p. E-1, Table E.1

p.- E-2, para.l

p- E-2, para.5
p.-E-3

“The ADSP-21020 and ADSP-21010 support two
single-preciston-floating-point-dataformats the 32-
bit single-precision floating-point data format
defined in the IEEE Standard 754 /854. In addition
the ADSP-21020 supports an extended-precision
version of the same format with eight additional
bits in the mantissa (40 bits total). Both the ADSP-
21020 and ADSP-21010 also support 32-bit fixed-
point formats—fractional and integer—which can
be signed (twos-complement) or unsigned.

“The IEEE single-precision floating-point data
types supported by the ADSP-21020 and ADSP-
21010 and their interpretations are summarized in
Table D.1.

Type Exponent Fraction Value
Normal 1<e<254 Any (<1)s €0:H 2e-127
Normal 1<e<254 Any (-1)s (1fpy o) 287127

Register values after reset are specified.

“BFF-is-read-onty.”

In the MODET Register bit definitions, the
following text is added:

Bit Name Definition

89 Reserved

16 RND32 1=Round floating-point data to 32 bits;
0=Round to 40 bits

(must be set to 1 for ADSP-21010)

R-19

p.E-5

In the ASTAT Register bit definitions, the
following text is deleted:

Bit Name Definition

18 BTF Bit test flag for system registers (Read-onty}

and the following footnote is added:

* Bit 17 (DAGI circular buffer 7 overflow) and Bit 18 (DAG2
circular buffer 15 overflow) indicate the occurrence of a
circular buffer overflow. Rather then remaining set until
explicitly cleared, however, these bits are cleared by the next
subsequent memory access that uses the corresponding I
register (I7, I15). Circular buffer interrupts, therefore, should

be used instead of these STKY register bits. See Section
4.3.2.3, “Circular Buffer Overflow Interrupts,” in Chapter 4.

A
Abbreviations A-2
ABS B-15, B-31, B-77
Absolute valueB-15, B-23, B-26, B-27, B-31, B-44
ACflagccouurrenee 2-8, 3-8, A-8, B-6, B-7, B-10, B-11
Accumulator 2-12
.ACH file 8-5,8-8
Acknowledge; see also DMACK
and PMACK 6-9,9-12
Add with carry B-6
Addition B4, B-6, B-12, B-24, B-26, B-75, B-77
Address decoding 8-7
AF flag 2-9
Al flag 2-9
AlS flag 2-7
Alternate registersc..o.ovueeersesesnneens 1-8,2-28,4-3
ALU 14, A-8
Input operands 2-5
Opcodes B-2,B-3
Operationsccccveevene 2-5,2-10,7-13, B-2, B-3
Status 2-7
ALU saturation 2-6
ALUSAT bit 2-6
AN flag 2-8, B-9, B-29
AND B-17
AOS flag 2-8
Architecture description filec...coue.... 8-5, 8-8, 8-16
Arithmetic shift B-57, B-58
Arithmetic status 3-7
AS flag 2-9
ASHIFT B-57, B-58
A bler 1-10, 8-15, 8-29
Assembly library/librarian .
ASTAT register ...

Default value at reset ..

Q.

Y
Ureg address
Asynchronous inputs 94
Asynchronous interruptsc..cmmeeserrevssssseissanns 3-28
AUS flag 2-8
Autowrap 8-29
AV flag 2-8,3-8, A-8
Average B-8, B-28, B-77
AVS flag 2-8
AZ flag 2-8,B-9, B-29

Index

B
B registers
Default value at reset ...
Ureg address
Background MR register
Base register
BCLR
BG; see also Bus grantc...cooeeecevreeerinnennennns
Binary logarithm
Bit operationcc.ccoceeuverieernnens 7-20, A4, A—42, E-2
Bit test A-8,B-63, E-2
Bit-reverse 4-9, A-42
Instruction 4-10, A42
Mode 4-9,6-8,7-8
Bit6 2-20, A-2
BITREYV instructionc...... 4-10, 6-10, 7-20, A—42
Booting 9-25
Borrow B-7, B-11
Boundary register C-4
Boundary scan C-1
BRO bit 4-9
BR; see also Bus request/bus grant 6-13,9-3
Branchoceeevierenreenenrennens 3-6,3-9, A4, A-24, A-26
BSET B-61
BTF flag 3-7, A-42,E-2
BTGL B-62
BTST B-63
Buffer latches 9-20
Built-in self-test (BIST) .C-11

Bus exchange (PX registers)... 6-15
Bus grant 3-23
Bus request/bus grant
.................................... 1-8, 6-6, 6-13, 7-5, 9-2, 9-16
Timing 6-14
c
C compiler 1-10
CACC 2-7,E-5
Cache, instruction 3-30
Efficiency 3-32
Enable/disable 3-32
Freeze 3-32
Cache, external 6-6,9-13
CADIS bit 3-32
CAFRZ bit 3-32
Call3-6,3-9, A—4, A-24, A-26
Capacitive loads 9-27

In

Carry A-8,B-6,B-10
CB71 3-24
CB151 3-24
Circular bufferscovuverereenrurercrnirererecrenne 4-1,4-6,7-8
Clear bit A4, A-42, B-60
Clear MR 2-14, B-52
CLIP B-23, B44
CLKIN 9-1,9-3
CLR A-42
Compare accumulation;

see also CACCcvvciencirrennnns
Compare
Complement sign ...

Computation unit...

Computation unit registercoeecsmrinerunne A-3
Compute field B-1
Compute operation A-1,B-1
Conditions 3-7

COdES ..o 3-8,7-11, A4, A-8

Mnemonics 3-8, A-8
Conditional branch
Conditional instruction

Context switch
Conventjons, notation A-2
Conversion

Fixed-point-to-floating-point
Floating-point-to-fixed-point
COPYSIGN

Counter A-4, A-5
Counter-based 100PScccoererrrernnnne 3-15,7-3, 8-31
CURLCNTRoouneee ..3-5,3-7,3-18,7-6,7-8

Default value at resetc..cccoverrvreervciereincennnns 9-5

Ureg address A-9
D
DADDR 3-5

Default value at resetc...coc.oerienrrvvcriecernnnns 9-5

Ureg address A-9
Data address generatorcccoecvvrnniuecunns 1-6,4-1

DAG architecture 42

DAG register transfers ...

DAG registers ...

DAG restrictions 411
DAG1 41,A4
DAG2 41
Data memory access 64, 6-5, A-12, A-14,

A-16, A-20, A-34, A-35, A-36
Data memory address hold timec..ccc.euuuee. 6-10

Data memory interface
Data memory read cycle
Data memory write cycle
DB; see also Delayed branch

3-10, A-5, A-24, A-26

Decode cycle 3-2
Decrement B-13
DEF21020.H 8-21,8-22
Delayed branch 3-9,3-11, 3-22, 7-5, 8-39, A-5
Denormal numbers 2-3

Deposit field
Development software
Device identification registercc....ccevvrvevnn. C-11
Direct branch 3-9, A-24
Direct memory access (DMA)ccc.ooeueirnerecrnnne 9-16
Division B-39
DMA bus 1-7
DMA controller 9-16
DMA31-0 ... 6-3,6-7,9-1,9-4
DMACK 6-3,6-7,6-9,9-2,9-12,9-13, 9-14
DMADR 4-10,4-12
Default value at resetc.cecveuveeeemreerereineeneen 9-5
Ureg address A-10
DMBANK1 4-12, 6-8,8-12
Default value at resetccovevreiorrcivrcnennnns 9-5
Ureg address A-10
DMBANK2
Default value at reset ...
Ureg address
DMBANK3
Default value at resetoocorevermereemecrsvvensecns
Ureg address
DMD bus 1-7,6-15
DMD39-0 ... 6-3,6-7,9-1,94

DMPAGE

.6-3,6-7,6-12,9-2,94
..6-3,6-7,9-1, 94, 9-10, 9-31
4-10,7-8,9-9

Summary E-11
A-10
....... 6-3,6-7,9-1,9-4,9-9
3-6,3-13, 3-19, 8-14, 8-31
DRAM interface 9-14
Dreg A-2
Dual add/subtractccccceveveeneecnene 2-26, B-75, B-80
Dual-port RAM 9-24
Dynamic RAM (DRAM)........ccoomvnrvnvrrnernnnnnns 6-12,9-2
E
Edge-sensitive interruptsccoooceemervrensrennnnnns 3-27
Effect latency 3-5,7-7,E-2
Emulator 1-11
.ENDSYS directive 8-7
EQ 3-8, A-8
EX (extended exponent)...........ooeueeverivnnrnnnninnns B-71
Exceptions 2-3
Execute cycle 3-2
EXP 2-24, B-70, B-71
Exponent extraction B-36, B-70, B-71
Extended floating-point format
EXTERN directive
External interruptsc.o..oeveeeevvesnrinivnniinns
Extra cycle conditions
Extract field

EZ-ICE® emulatorc.ocovvveerercerernersnsnnees

F
F3-0 A-3
F7-4 A-3
F11-8 A-3
F15-12 A-3
Fa A-2
FADDR

Default value at reset

Ureg address A9
FDEPcoviiiniirineicreereveneneenaens B-64, B-65, B-66, B-67
Fetch cycle 3-2
FEXT B-68, B-69
Field depositccceovue....... B=64, B=65, B—66, B-67
Field extract B-68, B-69
FIFOs 9-22
Filter coefficientsccccoeeeeevenencecrrirennns 8-35, 8-36
FIX B-37

Fixed-point format
Fixed-point-to-floating-point
FIXI 3-24
Flags (FLAG3-0)ccocounne. 3-27,9-3,9-7,9-21, A-8

Direction

Timing

Value
FLAGO_IN
FLAGI_IN
FLAG2_IN
FLAG3_IN
FLGO
FLG0O
FLG1
FLG10
FLG2
FLG20
FLG3
FLG30
FLOAT
Floating-point format
Floating-point precision .
Floating-point-to-fixed-point
FLTII
FLTOI
FLTUIL
Fm
Fn
Foreground MR register.......c..ccoeeunirinnrinniinniennes
FOREVER
Fractional formatcccocvvvnnriiiincininnnns
Fractional result
Fs
Fx

Fy

GE 3-8, A-8
GENERIC.ACH 8-6
.GLOBAL directiveccoccosuirerrrvercurnnes 8-31, 8-37

Index

GT 3-8, A-8
High-level programming language...........c.ccco....... 1-2
Host processor 9-32
|
Iregisters 4-1
Default value at resetcocvrrvvneruierensriensrannns 9-5
Ureg address A-9
1/0 devices 9-11
la A-3
Ic A-3
IDLE instruction3-29, 7-20, 8-1, 8-14, 8-29, A-46
Idle state 3-1,3-23,3-29
IEEE 754/854 standard
IEEE 1149.1 specification .
IF
IIR filter
IIRCOEFS.DAT
IIRIRQ.ACH
IIRIRQ.ASM
IIRMEM.ASM
IMASK
Default value at resetcccovvvcinviniinciniinninnes
Summary
Ureg address
IMASKP
Default value at resetcoc.vccveereerrierirenrrrens
Ureg address A-9
Immediate address 7-20, A-34
Immediate data .. 7-20, A-1, A-36, A-37
Immediate modify7-20, 4-6, A-16, A-35, A—42
Immediate shift operation A-2, A-20, B-54
Increment B-12
Index registercoouvirrvvniiinerunciiniisenns 4-1, A4, A-6
Indirect addressing 41
Indirect branch 3-9, A-26
Inexact flags 2-2
Infinity D-2
Initial setups 8-8,8-19
Input operands
ALU 2-5
Multiplier 2-11
Shifter 2-19
Instruction cache ...1-6, 3-6, 3-30
Instruction groups7-1, A-1, A-11
Instruction pipeline
. ...1-6, 3-3, 3-5, 3-12, 3-13, 3-15, 3-30
Instruction register C-2
Instruction set 1-8,7-1
Instruction type 7-1, A-1
Integer format B-46, D-3
Integer result 2-12,D4
Interrupt-driven operation 8-16

Interrupt-driven data transfers ..

Inde

Interrupts
.............. 1-7,3-1, 3-20, 6-14, 7-6, 8-11, 8-13, 8-26
External 3-20, 3-27
Latency 3-21
Masking 3-25
PriOTItY coocevveeiiierinenisesisianns 3-20,3-21,3-26
Sensitivity 3-27
Service routine 3-21
VECtOTS weuvrversreraireerinsrnnnnnes 3-21,7-17,8-11, A-5

IRPTEN bit 3-25

IRPTL3-5,3-21, 3-23, 3-24, 3-25, 7-7, 8-28
Default value at resetc.cocovvvrvverrivnrecrvnienns 9-5
Summary E-8
Ureg address A-9

IRQOE 3-28

IRQOI 3-24

IRQIE 3-28

IRQ11 3-24

IRQ2E 3-28

IRQ2I 3-24

TRQ3-0; see also Interrupts, externalcccoooeu... 9-3

IRQ3E 3-28

IRQ3I 3-24

J-K-L

JTAG C-1

Jump s 3-1,3-6, A4, A-5, A-24, A-26

L registers 4-1,8-12
Default value at resetcccoevurervnerneriuensinenns 9-5
Ureg address A9

LA; see also Loop abort............. 3-9, A-3, A-24, A-26

LADDR 3-5,3-18
Default value at resetcocueicerieceriniinninnes
Ureg address

LCE
Default value at reset ..
Ureg address

LE

Leading ones

Leading zeros

LEFTO

LEFTZ

Lené

Length register

Level-sensitive interrupts ...

Linker

Load variations 9-27

Loader program 9-26

LOGB B-36

Logical shift B-55, B-56

LOOPSounrrurrrrncrarianens 3-1,3-6,3-13,7-2, 8-14, 8-31
Loop-back 3-14
Nesting 3-14,3-17
Restrictions 3-14,7-6
SEACKS ..oevveeserrennieiernnie s A-3, A-5, A-6, A-44
Termination 3-14

Loop abort ..o 3-9,3-14, 3-18, A-3
Loop address stack 3-17
Loop counter 3-18, A-8
Loop counter stack 3-18
Looped code 8-31
Low power A-46
LRU bit 3-30
LSEM 3-28
LSHIFT B-55, B-56
LSOV 3-28
LT 3-8, A-8
M

M registers
Default value at reset ...

Ureg address
MANT
Mantissa extraction
Map 1 A-9
Map 2 A-10
MAX B-22, B43, B-77
Maximum B-22, B43
Mb A-3
Md A-3
Memory
Access A4, A-5
6-8,8-7,9-9,9-10
Configurations 9-8
Initialization 8-13,8-25
Interface capacitive 10adcc.cccoviveiininnenaae 9-27
Maps 8-9,8-18
Paging 6-12
Segments 8-7
Memory-mapped I/O ... 9-11
Memory-resident data 8-2
M flag 2-17
MIN B-21, B-42, B-77
Minimum B-21,B-42
MIS flag 2-16
Miscellaneous instructionscc.cc.cc..... A-1, A-39
MN flag 2-17
Mod1
Mod2
MODE1
Default value at reset
Summary
Ureg address
MODE2
Default value at resetc..ccooeeveinvrerrcrirnriannns 9-5
Summary
Ureg address
Modify operation ...
Modify register
Modify, immediate
Modulo addressing 4-6
MOS flag 2-17
MR clear B-52

MR register 2-12,B-1
MR register transferc...cooounnn. 2-13, A-1, B-52
MR rounding B-51
MR saturation B-50
MRO register 2-12
MROB A-3,B-52
MROF A-3,B-52
MR1 register 2-12
MR1B A-3,B-52
MR1F A-3,B-52
MR2 register 2-12
MR2B A-3,B-52
MR2F A-3,B-52
MRB 2-12
MRF 2-12
MS flag 3-8, A-8
MU flag 2-16

Multifunction computations

....1-5,1-8, 2-26, 7-16, 8-34, 8-40, A-7, B-1, B-74
Multlpllcatlon, fixed-point
Multiplication, floating-point

Multiplier

Input operands

Opcodes

Operations ...

Status
Multiplier result (MR)
Multiplier/ ALU operation ..
Multiply/accumulateccccooeunne 2-11, B-48, B-49
Multiport memory 9-18
Multiprocessor configurationscccveeveevevnns 9-18
MUS flag 2-16
MV flag 2-17,3-8, A-8
MVS flag 2-17
N
NAN (Not-A-Number)cccoocrrrnnrerrrerennnns 2-2,D-2
NE 3-8, A-8
Negate B-14, B-30
Nested 100PSccovvciirireicrn 3-21,3-26,7-6
NESTM bit 3-21,3-26
Nondelayed branchcccccooeeune. 3-9,3-10,7-2, A-5
NOP 7-20, A—45
NOT AC 3-8,A-8
NOT AV 3-8, A-8
NOT B-20
NOT FLAGO_IN 3-8, A-8
NOT FLAG1_IN 3-8, A-8
NOT FLAG2_IN 3-8, A-8
NOT FLAG3_IN 3-8, A-8
NOT LCE 3-8, A-8
NOT MS 3-8, A-8
NOT MV 3-8, A-8
NOT sV 3-8, A-8
NOT SZ 3-8, A-8
NOT TF 3-8, A-8
Notation conventions A-2
Numerical C compiler ... 1-10

Index

0-P-Q

Opcodes A-1,A-5
ALU B-2,B-3
Multiplier B—45
Notation A-3
Shifter B-54

OR ..ot B-18, B-56, B-58, B-65, B-67

Overflow A-8

Page boundary detection

Page size

Parallel memory accesses
Parallel multiplier/ ALU operation
PASS

PC
PC register address
PC Stackccocuvcmeuveceremenserienenas 3-12, 3-13, 3-21, A-3
PC stack pointer 3-13
PC-relative address A-2, A-6, A-24, A-26
PC-relative branch 3-9
PCEM 3-28
PCFL
PCSTK (PC stack)

Default value at reset ...

Ureg address

PCSTKP (PC stack pointer)
Default value at reset

Ureg address
PMA bus

PMA23-0 6-2,6-7,9-1,94
PMACK 6-2,6-7,6-9,9-2
PMADR 4-12
Default value at resetccocvcuevveivieccienicnicnnas 9-5
Ureg address A-10
PMBANK1 4-12,6-8
Default value at resetcccoccvvemiiinnnniininnns 9-5
Ureg address A-10
PMD bus . 1-7,6-15
PMD47-0 6-2,6-7,9-1,94
PMPAGE ... 6-2,6-7,6-12,9-2,9-6
6-2, 6-7,9-1, 94, 9-31
...................................... 6-2, 6-7,6-8,9-1,9-6
6-2, 6-6, 9-2
PMWAIT 4-12,6-10, 8-23
Default value at resetccocuiieerennincciicnnnns 9-5
Summary E-10
Ureg address A-10
6-2,6-7,9-1,94
Pointers 4-1
Pop loop stack 3-18
Pop stack 7-20, A-44
Post-modify 44
Powerup 9-4,9-25
Pre-modify 4-4, A-26
Private instructions C-11
Probe connector 9-30
Program counter (PC) 3-3
Program flowcccooeveiueniennnnns 3-2,7-19, A-1, A-23

Ind

Program memory accessco..oevvees 6-4,6-5, A-12,
A-14, A-16, A-20, A-34, A-35, A-36
Program memory boot

Program memory data access3-6, 3-23, 3-30, 7-2
Program memory interface .

Program memory read cycle
Program memory write cycle ..

Program sequencer

Architecture

Registers
Programmable wait states ... 6-9
Programming ..
PROM splitter
Pullup resistors
Push loop stack
Push stack
PX

Default value at reset

Ureg address
PX1

Default value at reset

Ureg address
PX2

Default value at reset ..

Ureg address
R
R3-0 A-2
R7-4 A-2
R11-8 A-2
R15-12 A-3
Ra A-2
Read latency 3-5,7-7
Reciprocal seed B-39
Reciprocal SqUAre rOOtourreesmsreesssisesesessnns B-40
RECIPS B-39
Register fileccoo.... 2-1,2-27,7-9,9-5, A-5, A-6
Register transfers1-8, 4-10, 54, 6-15, A-18, B-52
RESET 9-1,9-3,9-4
Reset 6-14, 8-8, 94, 9-25
Return 3-6,3-9
Return address 3-21
Rm A-2
Rn A-2
RND B-33
RND32 bit 2-3,2-7,2-15
Rolling loops 8-32
ROT B-59
Rotate B-59
Round MR 2-14
Roundingcocueeermneierenienninninienns B-33, B—46, B-51

Boundary 2-15

Modes 2-4,2-6,2-15
Rs A-2
RSQRTS B-40
RSTI 3-24
Rx A-2

RXA A-7,B-78, B-79
RXM A-7,B-78, B-79
Ry A-2
RYA A-7,B-78, B-79
RYM A-7,B-78, B-79
S
Saturate MR 2-14
Saturation 2-6,2-14, B-50
SCALB B-34
Scaling B-34
Scope of variables 8-37
SE (sign extension)cee..eevennnne B-66, B-67, B-69
Segments 8-7
Serial data flow 9-20
Serial scan path 1-3,C4
Set bit A-4, A-10,B-61
SFT0I 3-24
SFT11 3-24
SFT2I 3-24
SFT3I 3-24
SFT41 3-24
SFT5L 3-24
SFTé6I 3-24
SFT71 3-24
Shf8 2-20
Shifter 14, A-8
Fields 2-20
Input operands 2-19
Opcodes B-54
Operations 2-25,7-15, B-54
Shifter immediate operationA-2, A-20,B-54
Shiftimm A-2, A-20
Short loops 3-14,7-3
Signed formatcc.cccevervriieininnniicinns B-46, D-3, D4
Simulator 1-10, 8-15, 8-29
Single-function operationc..ccoeeeeuvernrinnris B-1
Software interrupts 3-25
SOVFI 3-24
Square root B—40
SRCU bit 2-13
SRD1H bit 4-4
SRDI1L bit 44
SRD2H bit 44
SRD2L bit 44
Sreg; see also System register A-2,A-6, A40
SRRFH bit 2-28
SRRFL bit 2-28
SS flag 2-24
SSEM 3-28
SSOV 3-28
Stack flags 3-28,7-9
Stack operation A—44
Stack overflow 3-18,3-28
Static RAM (SRAM) 9-9
Status flags 2-3
Status stackceeeeeeerrennne 3-21, 3-26, A-5, A~6, A-44

STKY registerccocoeueieerernnnns 2-4,3-5,3-23,3-25
Default value at resetccooeurierecinerieincnnnns 9-5
Summary E-6
Ureg address A-9

Subroutines 3-1

Subtract with borrow B-7

Subtraction............... B-5, B-7, B-25, B-27, B-75, B-77

SV flag 2-24, 3-8, A-8

Synchronization delay 9-3

Syntax A-1

Syntax notation 7-10, A-2

SYSTEM directive 8-7

System registers

..................... 3-5,7-12, A-2, A-6, A-9, A-40, E-1

SZlag....ovverrrenrineiriiiiiis 2-24, 3-8, A-8, B-63
T
TCK 9-3,9-30, C-1,C2
TCOUNT 5-1
Default value at resetccoocuvmvveriveriecnennns 9-5
Ureg address A-10
TDI 9-3,9-30, C-2
TDO 9-3, 94, 9-30, C-2
Termination address (for 100ps)ccoevureviennes 3-17
Termination code (for 100ps)ccoccveuens 3-17,7-11
Test access port (TAP) C-2
Test bit A-4, A-40
TF 3-8, A-8
TGL A-40
Three-state enableccccoeveereuenne 1-8, 6-6, 7-5, 7-9
TIMEN bit 5-2,8-27
Timer 1-7,3-30, 5-1, 8-25
Enable/disable 5-1
Interrupt 3-25,5-4
TIMEXP 5-1,9-3,9-4
T™S 9-3,9-30,C-2
TMZHI 3-24,5-4,8-27
TMZLI 3-24, 5-4, 8-27
Toggle bit A4, A-40, B-62
TPERIOD 5-1

Default value at reset

.9-5

Ureg address A-10
9-3,9-30, G2

TRUE 3-8, A-8
TRUNC bit 2-4,2-6,2-15
TST A-40

Universal register
.................... 1-8,7-12, A-2, A6, A-9, A-18, A-37
Unsigned format ..B-46, D-3, D4

Ureg; see also Universal register .. .A-2, A-6,
User status registers E-2
USTAT1 3-5,E-2
Default value at resetc.ccovvnrviceriicinicinnnas 9-5
Ureg address A-9
USTAT2 3-5,E-2
Default value at resetocoeveuevecrrivicceriecreennes 9-5
Ureg address A-9
Valid bit 3-30
.VAR directive 8-37
Vector A-5
W-X-Y-Z
Wait state modes 6-9
Wait states 6-7,6-9,6-13,7-5,7-9, 8-23, 9-13
XOR bit A4, A-40
XOR B-19
Zero D-2

ANALOG
DEVICES

Analog Devices

Digital Signal Processing Division
One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

(617) 329-4700

42-000538-02

E1798a-5-5/93

