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1.1 GENERAL

The Analogic Array Processor AP400 is a high speed
arithmetic computation unit designed to be operated in
conjunction with a general purpose microcomputer,
minicomputer, or a computer main frame. In combina-
tion with its host computer, the AP400 peripheral adds a
powerful computing capability, providing economical
signal and data processing at throughput rates 10 to 100
times faster than the stand alone computer.

The AP400 delivers cost-effective performance in
both dedicated and general purpose applications. It is
easily programmed, for example, for signal processing in
tomography, sonar, seismic exploration, speech analysis,
vibration analysis, image enhancement, and automatic
test equipment applications.

1
INTRODUCTION
& GENERAL DESCRIPTION

1.2 PHYSICAL DESCRIPTION

As shown in Figure 1-1, the AP400 is configured in
an EIA standard 19” (482.6mm) wide rack-mountable
assembly, only 5.257(133.35mm) high (also an EIA stan-
dard increment). The AP assembly includes the 1/O
board for the specified host, a Control Processor board,
Arithmetic Pipeline board, and Memory board. It also in-
cludes its own power supply, real time clock assembly,
and forced air cooling fans. In addition, as indicated in
Figure 1-1, this assembly is designed for expansion up to
the maximum data memory of 64K 24-bit words. Cabling
to the host computer bus and to an auxiliary bus is
ducted to the rear of the AP400 assembly. There is am-
ple depth behind the case assembly depth of 19 inches
(482.6mm) for rear cabinet interconnections.

AlR EXHAUST
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CIRCUIT CARDS

SLOTS FOR DATA
MEMORY EXPANSION

DIMENSIONS IN PARENTHESIS( )
ARE IN MILLIMETERS
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IDIEATOR G OUNTING

525( 133.35)
€| A STANDARD

Figure 1-1. AP400 Outline and Mounting Dimensions
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The AP400 front panel includes 12 status indicator
lights (including one to indicate the actuation and ap-
pearance of + 5-volt power). They provide a visual in-
dication of the relative operations of host computer and
the AP400, and are useful in evaluating program efficien-
cies and in elementary trouble-shooting and diagnosis.
Additional details are included in the functional descrip-
tions in Chapter 2.

Figure 1-1 also illustrates the convenient access to
the interior assembly. The assembly can slide forward
on extensions built in to the wire card cage. During this
operation a built-in “‘sleeve” also slides forward to main-
tain an efficient cooling configuration for the rear-
mounted fans so that the equipment may be operated
without damage in its extended position. Note, in Figure
1-1, that the extended position also permits access to
the spare slots in which the Memory expansion boards
are inserted.

1.3 AP490 CARD SET CONFIGURATION

The Array Processor may also be installed as an in-
tegral part of the host assembly. This is accomplished
by installing the plug-in assembly boards and back plane
within the computer main frame (or other peripheral).
The card-set installation does not include the front
panel, power supplies, or cage assembly.

1.4 AP400 DESIGN FEATURES

1.4.1 Operating Speeds.

The Analogic AP400 small-size, low-power array pro-
cessor features an arithmetic pipeline design that, along
with high speed memory components, buffered com-
mand and data ports, and multilevel programming,
results in efficient, real time, digital signal processing
previously available only in machines with many more
components and that require complex programming.
Typical processing times are listed in the table below.

Table 1-1
TYPICAL PERFORMANCE CHARACTERISTICS

Logarithm
Exponential
Magnitude squared

1.9usec/point
2.4usec/point
1.0usec/point

Multiplication rate up to 2.1
million/sec
Addition, Subtraction rate up t0 6.3
million/sec
512-Point Real FFT 1.5 msec
1024-Point Real FFT 3.6 msec
1024-Point Complex FFT 7.4 msec
Real Convolution (512 Data, 1024
Kernel) 7.3 msec
1024-Point Real Vector * Vector 0.5 msec
32 x 32 Complex Matrix Transposition 1.9 msec

1.4.2 Arithmetic Pipeline. (Figure 1-2)

The Arithmetic Pipeline is the basis for the high
speed processing ability of the AP400. Its operation is
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described in detail in Chapter 2. In brief, the pipeline is
internally programmed to receive eight 24-bit data words
at the input of each pipeline pass and to produce four
24.-bit data words at the output. The pipeline is struc-
tured into three stages of equal processing time. After it
is once filled, data outputs occur at a rate equal to one-
third of that required to fill the pipeline initially, as long
as data is continuously input at the same rate. Each
24-bit data word in a group of words for a programmed
pipeline operation represents the mantissa portion of a
scaled data value. A common 16-bit exponent is stored
for the group. The group of data words scaled for each
such exponent is a “block”, and the array processor
operates primarily in a “block floating point mode” .(The
block floating point mode is further described in Chapter
3.). Some of the arithmetic pipeline design features are:

* Normal Block Floating Point Data Format:

24-bit BFP 2’'s Complement Mantissa

16-bit BFP 2’'s Complement Exponent
* Eight 24-bit data words in; Four 24-bit data words out
* Up to 256 determinable Pipeline Arithmetic Commands
* Multiplication operation: 24 x 24-bit input; full 48-bit
result, truncated or rounded to 24 bits.
* Access to data-dependent table entries
« Eight accumulators internal to pipeline, accessed as
part of the pipeline operation without requiring external
program cycle
* Guard bits for overflow protection
* Zero pipeline reconfiguration delay

1.4.3 Memory (Figure 1-3)

The standard memory includes 2K words of 22-bit
program memory and 4K words of 24-bit data memory.
The data memory may be expanded with additional 4K
words on the standard board. Up to 64K data memory
words may be configured in 4K increments, using Expan-
sion Memory boards. It should be noted that the pro-
gram memory in the Array Processor may be augmented
by storage in the Host or Auxiliary peripherals, since it is
software configured. Some of the key features incor-
porated in the program and data memory, are listed
below:

PROGRAM MEMORY

* Standard Memory: 2048 x 22-bit, HMOS, 55 nsec RAM
* Address Register: 12 bits

* 8 locations for vectored interrupts

* Contents are downloaded from the Host

DATA MEMORY

* Standard Memory: 4096 words x 24-bit, HMOS, 55
nsec RAM

* Add-on Memory: 4096 additional words on board; Ex-
pansion Memory boards: up to 16K words (4K in-
crements)

* Maximum Data Memory: 64K words

* Program Stack: 64 words
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1.4.4 Control Processor (Figure 1-4)

The Control Processor is the Array Processor’s
manager. It interprets Host-generated com-
mands/instructions, and sets up the lists of addresses
and commands for arithmetic unit processing, links pro-
grams, and passes addresses for data and parameters.
In general, it functions to relieve the Host of the burden
of managing the AP400. Some of the performance
features designed into the AP400 Control Processor are:

* 19 classes of machine language instructions

* 16-bit computation word size

* 16 registers, 16-bits wide

* 8 levels of hardware vectored interrupts

* 8 special purpose hardware flags

* Single-word CP instruction cycle time: 160 nsec

* Maximum Host Memory and Auxiliary /O DMA rate:
1.5 million words /sec.

1.4.5 /O Assembly (Figure 1-5)

A single Input/Output (I/O) card provides all the com-
munications between the AP400 and the Host computer,
and between the AP400 and devices connected to the
AP400 via the Auxiliary Ports. A dedicated I/O card is re-
quired for each Host computer with which the AP 400 is
specified to interface. Each card contains the circuitry
to carry out the following /O tasks:

* Direct the AP400 status: Halt/Run, Single Step, etc.
* Transfer data to and from the Host under Program-
med I/O

» Transfer data to and from Host via DMA

* Access various nodes of the Array Processor for
diagnostic testing

* Transfer data in and out of Auxiliary Ports

1.4.6 Software

The AP400 Array Processor is fully supported with
software packages of the following types:
* Applications: for problem solutions and real-time
tasks

* Systems: for control of Host and AP400 activity
» Utilities: for software preparation and use

» Diagnostics: for hardware and software fault detec-
tion and isolation

Documentation for AP400 software packages and
AP400 installation are provided by:

AP400 Processor Handbook

AP400 Function Reference Manual

AP400 Host System Software Reference Manual
AP400 Interactive Debugging Tool Reference Manual
AP400 Linker Reference Manual

AP400 Diagnostic Reference Manual

AP400 PAC Reference Manual

Quick-Reference Card - AP Assembly Language

Quick-Reference Card -- AP400 Interactive Debugg-
ing Tool

AP400 Installation Manual

AP490 Installation Manual

1.5 HOST-ARRAY PROCESSOR COMMUNICATION

1.5.1 General

The following paragraphs describe a sequence of
Host-Array Processor operations involved in executing
an Array Processing function. This description il-
lustrates the communications performed across the in-
terfaces between the Host and the Array Processor. This
section also introduces additional design features that
contribute to the efficient operation of the AP400.

The scenario that follows is written from the view-
point of an “observer” located in the Host computer who
sees only the interface with the Array Processor and
does not become aware or concerned with the opera-
tions internal to the Array Processor. Later paragraphs
will consider the operation from the viewpoint of an
“observer” in the Array Processor with similar con-
straints.

This illustration of a typical operation assumes that
the AP400 is configured to interface with the designated
Host computer, that the Host computer operating
system FORTRAN compiler has been appended to in-
clude the AP FORTRAN calls. Also, that the Host
operating system has been supplemented to include the
AP Manager and AP Driver program modules. Normally.
these are initializing actions and are completed at the
time the AP400 is installed.

The sequence that is described includes many steps
that are invisible to the system user. Almost all are in-
visible to the FORTRAN user of the Array Processor. and
only very few are apparent to the Host Assembly
Language user. -

1.5.2 The General Sequence of Host-Array Processor
Operation

The Host-Array Processor interaction occurs by both
Programmed 1/O (PIO) and Direct Memory Access (DMA)
types of interface operation, and each of the interactions
below is identified as to the type involved. In general.
the DMA interface is accomplished with a single instruc-
tion for the transfer of a block of data at a transfer rate
limited only by the read/write speed of the memory and
buses involved. The PIO interface typically requires a
separate instruction for each of the handshake pro-
tocols.

1.5.3 A View from inside the AP400

The AP400 appears (from inside the interface boun-
dary) as an independent, stored-program minicomputer.
The Control Processor (CP) within the AP400 executes an
assembled program of machine instructions according to
the sequence called out by its program counter. In the
AP400, the program counter is the Program Memory Ad-
dress Register, PMAR. A program steps along at the
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clock-controlled interval of 160 nanoseconds. Machine
instructions may require a sequence of 2 or more such
clock intervals. Most are executed in one, but a few may
require up to 3 or 4, depending upon the arguments of
the instruction.

When the programmed AP instruction calls for the
use of the Pipeline Arithmetic unit (PA), the AP400 com-
pletes its control function by transferring four successive
Command and Address words to the Command and
Address Buffer (CAB). Its contents consist of the PA jobs
to be done, and in the sequence to be accomplished. The
CAB contents are continually changing as more pipeline
commands are added, and as the existing ones are with-
drawn to be processed.

The CAB has its own control pointer by which the
4-word instruction set is retrieved in the order stored.
These instructions (PACs) are decoded in the pipeline in
pre-programmed PROM's. The PAC’s set up pipeline
control signals and initial Data Memory addresses for
PA processing of blocks of data beginning at that ad-
dress. Addressed data is synchronously clocked through
the pipeline at 1.92 microseconds per PAC and is

COPYRIGHT 1979 - PRINTED IN U.S.A.

14

repeated for as many PACs as required for the complete
block. For each PAC, the address of the input data is in-
dexed until the block of data has been processed. The
PA operation proceeds independently of the CP opera-
tions (once the CP has transferred the command to the
CAB), retrieving data values from designated memory
locations or from a modified address location, and stor-
ing the results in programmed Data Memory locations.

The Command & Address Buffer (CAB) can store up
to 64 24-bit words, and, since 4 such words comprise a
pipeline instruction set, the CAB has the capacity to
store up to 16 PA instruction sets. When the CAB is
near full, it causes the CP clock to stop to prevent possi-
ble overflow of the CAB, and consequent loss of an in-
struction. (The PA clock is not stopped, and processing
through the PA continues.) When the CAB has been
emptied below the “full” level, the CP clock is restarted,
and the program continues its execution. When the CAB
is empty, the PA clock is stopped to prevent any errors
from timing offsets in the Pipeline and Data Memory
combination. Note that the operation is asynchronous
with the Host timing, but is rigorously controlled within
the AP400.
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Table 1-2

Typical Process (From Host Point of View)

STEP

ACTION

TYPE OF 110
TRANSFER

10.

11.

12.

Host loads the address of a Function Control Block
(FCB), which resides in Host Memory, into a location
in the AP Data Memory.

Host announces its need for the AP400 to perform a
function by loading the “Perform Function” message
into the AP400 Message Register, and then interrupts
the AP400.

AP400 responds to the interrupt and fetches the
message from the AP400 Interface.

AP400 retrieves the FCB address from the AP400 Data
Memory.

AP400 accesses the FCB in Host Memory and
transfers FCB to AP400 Data Memory.

The AP Function specified in the FCB is initiated, and
is executed based upon control information stored in
the FCB.

Any data required by the AP Function is retrieved by
the AP directly from Host Memory. Likewise, any AP
Function results to be directed to the Host Memory
are placed there directly by the AP.

When the AP Function is completed, the AP “‘marks”
the FCB in Host Memory and checks for another AP
Function FCB chained from this last one.

If another FCB is chained to the last one, the AP
retrieves it and the process described above
repeats...without an interruption of the Host unless
one is required for programmed synchronization of
Host and AP operation.

If no further FCB is chained, the AP places a “Func-
tion Done” message into the designated register,

and interrupts the Host.

When the interrupt is acknowledged, the Host may
resume execution of a task that was suspended while
awaiting the AP results, or may set a flag to indicate
“AP Done”, which a subsequent Host task may utilize
as necessary.

Meanwhile, the AP waits for another “Perform Func-
tion"” message, and may continue to perform its on-
going operations (e.g. real-time input through the
auxiliary 1/0 port).

PIO

PIO
(AP only)
(AP only)

DMA

(AP only)

DMA

DMA

DMA.

Interrupt

(HOST only)

(AP only)

1-5
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Figure 1-2. AP400 Arithmetic Pipeline Assembly

Figure 1-3. AP400 Data Memory and Expansion Memory Assemblies
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2

PRINCIPLES OF AP400 OPERATION

2.1 INTRODUCTION

This chapter describes the system architecture of
the AP400 and the implementation of the major func-
tions. The word format and block floating point im-
plementation in the AP400 are described in Chapter 3,
Programming Considerations.

2.2 SYSTEM ARCHITECTURE

As shown in Figure 2-1, The AP400 is essentially
four basic functional units interconnected by three
buses (identified in the illustration) and other dedicated
hardwired connections (not shown). The four functional
units and their short form abbreviations are:

Interface for Host and Auxiliary (1/O)
Control Processor (CP)

Pipeline Arithmetics (PA)

Data Memory (DM)

In some configurations, there may be one (or more)
Expansion Data Memory unit(s). Functionally, however,
these are only extensions of the basic Data Memory, and
their incorporation does not change the system block
diagram as shown in Figure 2-1. Each AP400 is supplied
with a Real Time Clock assembly, that is either
incorporated in an Expansion Memory assembly (if in-
stalled), or is installed as a small pc-card plugged into
the back plane assembly. The primary oscillator is
focated in the Control Processor unit.

The three AP400 internal buses and their short form
abbreviations are:

Command & Control Bus (CCB)
Register and Arithmetic Logic Unit Bus (RALU)
Data Bus (DB)

~ The AP400 has been designed so that related func-
tions are, for the most part, located in the same physical
assembly. Thus, the functional block subdivision shown
in Figure 2-1 is used for the pc-board assemblies in the
instrument, and appear on the board labels. The Inter-
face assembly is Host dependent, and is designed for
compatibility with a specific Host. By grouping the func-
tions in separate physical units, and keeping all the in-
terface functions on the 1/0 board, it is possible to adapt

the AP400 to a new Host by replacing only the 1/0 board
assembly.

21
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Figure 2-1. AP400 System Architecture

2.2.1 Unit Functions

The Interface (1/O) provides for all the communica-
tions between the AP400 and its Host or Auxilliary
peripherals. It provides for the transfer of data under
programmed I/O or DMA transfer modes, and for access-
ing specified nodes in the Array Procesor for diagnostic
testing.

The Control Processor (CP) is the manager of the
AP400. It is essentially a minicomputer, executing the
programmed tasks passed to it by the Host, and using
the AP400 Data Memory and Pipeline Arithmetics when
programmed to do so. |t contains its own micro-
processor unit to perform various register-to-register,
quantity-to-register, and register address modifications
to support pipeline setup requirements. It also contains
an Interrupt Vector structure for interrupt-driven pro-
cessor coding, as well as read/write type of Program
Memory.
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The Pipeline Arithmetic (PA) is the “number crun-
ching muscle” of the AP400. It processes 4 pairs of
24-bit input pairs (or 8 independent inputs) through three
programmed stages: data characterization (allowing for
input data-based modifications), multiplication, and
arithmetic/logic operations and accumulations. The PA
generates either 2 pairs of output values, or 4 indepen-
dent outputs. This unit also contains the PACs in fac-
tory programmed PROMS that provide the pipeline con-
trol signals.

The Data Memory DM provides a contiguous space
of 24-bit RAM locations for data storage and the three
registers for addressing the memory: CP-DMAR, {/O-
DMAR, and PA-DMAR. The Data Memory is expandable
up to 65K 24-bit words. The basic DM board is con-
figured with 4K RAM storage, and has the capability for
on-board addition of another 4K. Thereafter, additional
data memory storage in 4K increments are assembled on
Expansion Memory boards, with up to 16K per Expansion
Memory board. This unit also contains the Command &
Address Buffer CAB that stores up to €4 24-bit words of
instruction codes for the PA. A group of 4 words from
the CAB completely defines a pass through the pipeline.
The unit also contains the means for modifying the ad-
dresses of the input data for the pipeline.

2.2.2 AP400 Buses

The bus structure and operation within the AP400 are
essentially invisible to the user. Their descriptions are
included here to provide some reference for the unit
descriptions that follow.

The Command & Control Bus (CCB) is a bi-
directional bus, 8 bits wide. The commands put onto
this bus determine the routing of data within the AP400
by way of the other buses. After a transfer has occurred,
an address register may be incremented or a status bit
set as part of the same command action. The use of the
CCB minimizes the number of separate control signals
needed to coordinate the actions of the four functional
units ofthe AP400.

The CCB is also pipelined, so that the issue of one
command occurs while the previous command is being
executed. Every clock pulse (160 nanoseconds) a new
command can be issued on the command bus.
Transfers requiring more than 160 nanoseconds for ex-
ecution because of propagation delays, are accomplish-
ed by the hardware issuing the identical command for
two clock cycles.

When the CCB is not needed, a default command is
issued that allows the CP to execute instructions not us-
ing the RALU bus, and connects the PA to the DM for
pipeline operations.

The Data Bus DB is a bi-directional bus, 24 bits
wide. It is used by the /O when transferring data
to/from the Host and from/to data memory. The data bus
is actively used in the performance of the pipeline opera-
tions, transferring four pairs of data values from Data
Memory locations specified by the pipe setup addresses
to the pipeline. The pipeline outputs to Data Memory
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travel over a separate 8-bit wide connection and are for-
matted in 24-bit words for Data Memory and Data Bus.
Access to Data Memory via the Data Bus is shared by
the 110, CP, and PA, and the priority is in that order (PA
last). When either the 1/O or CP require the use of the
Data Bus, the PA operation is momentarily interrupted,
by stopping its clock. This is called cycle stealing.

The Register & Arithmetic /Logic Unit Bus (RALU) is
a bi-directional bus, 16 bits wide. It is used to transfer
addresses from the Control Processor and I/O to and
from the Data Memory. The RALU bus is also used to
transfer most of the information to the CAB from the CP.

The control bus structure used in the AP400 greatly
simplifies on-line program debugging and fault detection.
The CCB allows examination of the contents of most
storge elements inside the AP400 while any program is
either running or temporarily halted. In this mode the CP
can duplicate the actions of the HOST in issuing read
commands to the AP400 Host Computer’s request of the
Interface to do the same. Finally, the same paths and
control logic are used for loading and reading back pro-
grams and data as for normal program execution.

2.3 AP400 PIPELINE ARITHMETIC UNIT (PA)
2.3.1 Pipeline Arithmetics

One way to increase the throughput when process-
ing arrays of data is to parallel complete arithmetic units
and to partition the data among them. This technique is
costly in terms of hardware. It also causes programming
complexity associated with maintaining correct syn-
chronization among parallel units and in combining par-
tial and final results.

Another way to increase throughput is to partition
the arithmetic unit into stages and to introduce new data
inputs to the first stage when the previous data moves
to the second stage, etc. This is the technique used in
the AP400 and three such stages are used. They are:

Stage A: Data Characterization

Stage B: Data Multiplication

Stage C: Data Accumulation and Logical Manipula-
tion

To increase the efficiency of such a partitioning, the
configuration of each stage and passing of data between
stages are determined by program control. This flexibili-
ty meets the requirements for a wide range of process-
ing functions. The speed advantage of a 3-stage pipeline
is illustrated in Figure 2-2. As shown in the illustration,
the processing cycle time is A + B + C. When not
pipelined, the processing of n data sets requires n pro-
cessing cycle times, however fast or slow that may be.

In a 3-stage pipeline unit, the results of processing
the first data set will not appear until after the full time
of a processing cycle (A + B + C). But the second and
succeeding data set results appear at intervals of one-
third the processing cycle thereafter. Thus for n data
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pairs, the processing time is 1 + 1/3(n-1) cycles; and for
large “‘n”, the value approaches 1/3 the time. Note also
that the last data pair to enter the pipeline must be
“pushed out” in some manner if no other data pair
follows.

2.3.2 The AP400 Pipeline Stages

As shown in Figure 2-3, the 3-stage Pipeline
Arithmetic unit receives eight 24-bit values at the input
and delivers four 24-bit results at the output of the third
stage.

Each stage of the PA is designed to perform
several variations of that stage’s function. Control

signals decoded from the PIPE instruction of the AP pro-
gram configure each stage so that the appropriate in-
puts are selected, and the desired arithmetic com-
binatorial or logical operations are performed. In brief, a
programmed instruction in the AP Assembly Language
program is translated into a set of control signals. These
signals synchronize the configuring of each of the three
stages with the stepping of the numerical data through
the pipeline.

Typically, the numbers that are processed through
the pipeline for a given function have been ‘“normalized”
for a block floating point value. Thus, the 24-bit numbers
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Figure 2-2. Pipeline Timing Efficiencies
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are all mantissas of the same block exponent. The PA
includes a provision to examine the results and to keep
track of the change required in the block exponent to
normalize the block.

The three pipeline stages and their functions are:

Characterizer Stage: a versatile type of data condi-
tioner, that prepares multiplier and multiplicand inputs
from source data or from tabular data indexed by the
source data.

Multiplier Stage: performs multiplication of
selected multipliers and multiplicands with optional ac-
cumulation of partial products.

Accumulator/Logic Stage: peforms arithmetic and
logical operations on selected multiplier stage outputs.
These include accumulations, additions, subtractions,
logical comparisons, and block exponent normalization
functions.

Figure 2-3 also indicates an inter-stage storage and
selection block function. This acts as a type of control-
led cross-bar switching function, setting up appropriate
selection of the four pairs of multipliers and
multiplicands for the Multiplier stage from any set of in-
puts of the previous stage.

2.3.2.1 The Characterizer Stage

Figure 2-4 illustrates the Iogical operation of the PA
Characterizer Stage on the four source number pairs. As
noted earlier, these may be complex pairs or indepen-
dent values in adjacent addresses. As shown in the il-
lustration, control signals determine whether these
source numbers are passed through unchanged, or
whether some are used in a table lookup mode. When
they are passed through unchanged, then all 4 pairs
become possible multiple inputs. When the characterizer
is used in a lookup mode, then the data values of S1

PIPELINE ARITHMETIC
COMMAND (PAC) PIPE

CONTROLS

FROM
DATA MEMORY

—am—
8 INPUT VALUES

Yy v

\ y
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TO
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eve e e
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\
STORE
»| PROM .
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r*’ DECODE .
- .._._9
y
STORE
1 N
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\
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Figure 2-3. Pipeline Arithmetic (PA) Block Diagram
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Figure 2-4. PA Characterizer Stage Block Diagram

are used to modify the initial address of S3 (and the data
values of S2 modify those of S4). The algorithms that
generate the address modifier use either the four, six or
eight MSB’s of S1R (or S2R); or a combination of the 2 or
4 MSB’s of S1R and S1l (or S2R and S2I); or the leading
Zero count with or without the sign value of S1R (or S2R).

Table 2-1 indicates the codes (1 through 7) that are
used to examine the leading bits (MSBs) of S1 and S2 in
performing a modification of the address for S3 and/or
S4. Code 0 results in no modificiation.

Since the table data is addressable at any valid
memory iocation, this feature of the characterizer per-
mits the user to substitute data tables in any generic-
type algorithm. For example, a linear interpolation
algorithm can be used with a data table to obtain
generated functions (logarithms, trigonometric values,
etc), or to perform piecewise interpolation on incoming
data variables.

Table 2-1

ADDRESS MODIFIER SELECT

0 0 0 0 Ro R1 R2 R3
0 0 Ro R{ R2 R3 R4 Rs
Ro R{f R2 R3 R4 Rs Rg R7
0 0 lo 14 Ro Rq
lo 14 I2 13 Rgp R1 R2 Rsj
0 0 0 L1 L2 L3 Lg Ls
0 0 Ro L1 L2 L3 L4 Ls

NN D WN -
o
o

NOTE: Rg to R7 are MSBs of S1R or S2R.
lp to 13 are MSBs of S1l or S2l.
L's define the leading zero count.

2.3.2.2 The Multiplier Stage

The Multiplier Stage accepts eight (8) 24-bit input
operands and delivers four (4) 24-bit output results. The
result of the multiplication is a 48-bit word which is trun-
cated or rounded to 24 bits, according to the decoded
PAC instruction. When required, two 24-bit results may
represent the two parts of a 48-bit double precision
result. Figure 2-5 illustrates the logic flow for any one of
the four adjacent multipliers in this stage. As shown in
the illustration, decoded instructions develop control
signals that configure the multipliers in five main
groups:

1. To determine which input (S1R, S1l, S2R, S2I,
etc.) will be a multiplier, multiplicand, or bypass operand.
Recall that the S3 and/or S4 values ‘may be table lookup
data.

2. To determine whether the product will be round-
ed or truncated.

3. To determine whether the MSB’s or the LSB’s of
the output , or the bypass operand will be passed to the
Storage/Select for the next stage.

4. To determine whether an adjacent accumulator
result will be introduced into the accumulator.

5. To determine whether the result of the multiplica-
tion will be scaled (downshifted) before passing to the
next stage. The downshift may be 0, 1, 2, or 3 places.

2.3.2.3 Accumulator/Logic Stage

Figure 2-6 illustrates one of four processing units
making up the third stage of the PA. Each unit includes
two Arithmetic Logic Units (ALU’s) and some data selec-
tion. The data being processed in this stage are selected
from the four multiplier outputs (M1, M2, M3, and M4)
and from eight accumulator registers of 24-bits each,
labeled S1, S2, S3, and S4, and T1, T2, T3, and T4. These
accumulators may be loaded either by a “‘loading” PAC
prior to this PAC, or by the current PAC for use in the
next pass of this PAC. Sign information from one of the
multiplier outputs can also be used in the ALU opera-
tion, to provide conditional logic capabilities.
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Both ALU’s in each of the four processing units
receive the same inputs labeled P and Q, but can form
different functions of those inputs. Their arith-
metic/logical combinations are determined in com-
D!ementary pairs by the instruction-decoded control
signals. Table 2-2 defines he 16 possible functions in
each of the ALU’s that are controlied by the instruction.

The outputs of each of the four units in this stage
go to the PA output line and/or to replace an ac-
cumulator value in one of the eight accumulators.

A leading zero count function may be performed on
data leaving the Accumulator/Logic stage. When this
function is enabled by the decoded instruction, the
leading-zero-count of the present computation is com-

2-7

pared with the previous result of such a comparison, and
the lower of the two is set up as output for later com-
parisons. At the end of a function processing operation.,
the output value represents the number of shifts to nor-
malize, NSN, and may be used to modify the block expo-
nent for later processing. The function is programmable
so that it may be inhibited when the user knowledge of
the data and the operation provides assurance that such
a normalization would not be necessary.

2.4 THE PIPELINE ARITHMETIC COMMAND (PAC)

2.4.1 General

As shown in Figures 2-3 through 2-6, the Pipeline
Arithmetic unit stages are configured for each pass of

ANALOGIC E
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Table 2-2
ALU FUNCTION SELECT
HEX CODE| X ALU FUNCTION Y ALU FUNCTION

Q Q Q MINUS P
1 P Q
2 P PLUS Q Q
3 P PLUS Q Q MINUS P
4 P MINUS Q QPLUS P
5 P PLUS Q PLUS CARRY Q MINUS P PLUS CARRY -1
6 P MINUS Q PLUS CARRY -1 | Q PLUS P PLUS CARRY
7 PORAQ QORP
8 P AND Q QANDP
9 P EXOR Q Q EXOP P (=Q EXNOP P)
A IF MULT + IF MULT +

THEN P THEN Q

ELSE Q ELSE P
B IF MULT +

THEN P PLUS Q QORP

ELSE P MINUS Q
C SPARE SPARE
D IF MULT +

THEN P PLUS CARRY Q

ELSE P PLUS-CARRY -1
E Q IF MULT +

THEN Q PLUS CARRY -1
ELSE Q PLUS CARRY

F P MINUS Q Q

data through the “pipe” by a decoded command. The
controls for each stage are derived from the command
(shown in the sequence in Figure 2-7) by PROMs that are
factory-programmed for the designated pipeline func-
tions. If desired, a user may change these PROM’s, and
a documentation package is available to support this op-
tion. While the form of the command and its decoding
are transparent to the FORTRAN and Host Assembly
language programmer, brief descriptions of these items
are included here to clarify the pipeline concepts
described previously and to indicate the power of the
AP400 Assembly Language instruction set. Although the
AP400 Control Processor uses only 20 basic instructions,
the Pipe instruction is expandable into 256 different PAC
configurations. This macrocode expansion provides a
highly flexible and efficient instruction set when writing
AP400 Assembly Language code.

2.4.2 Elements of the PAC

Each PAC instruction in machine language consists
of tive instructions in the form of a PIPE, followed by
four PAD’s (setup instructions).

COPYRIGHT 1979 - PRINTED IN U.S.A.

2-8

The PIPE may include one or more arguments
identifying the PAC function, a scale factor operation,
and a leading-zero count operation.

The PAD arguments include address codes for
source and destination data. The actual memory ad-
dresses are computed from these codes, and are
described later.

It should be noted that the PAC specifies one pass
of a data set and associated commands through the
three stages of the pipeline. The application-program
structure determines the number of passes required as
well as the amount of data to be processed. It is possi-
ble to interleave PAC’s; one data set of 8 (or 4 pairs) of
values and commands pass through the pipeline as part
of function “A”, followed immediately by the data set
and commands for function “B”, followed by function
“A", etc.
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Figure 2.7. PAC Decoding Sequence, Hardware & Software
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2.4.3 Pipeline Timing

A complete pass through the pipeline requires a
number of discrete, well-defined operations: of fetching
operands, operating on them, and storing the results.
These are clocked through the pipeline at clock intervals
of 160 nanoseconds, and a total of 36 such intervals are
used for one pass. When the pipeline is kept busy, two
number-pair results appear at the pipe output every 1.92
microseconds.

Figure 2-8 indicates the sequence of cycles in a
pipeline pass. Twelve (12) cycles are used for read/write,
and the remaining 24 cycles are used to accomplish the
pipeline arithmatic operations. The 12 read/write time in-

READ WRITE
S1,82,83,54 D1, D2
0 1 2
S1R Sl —
INPUT 3 4] _ 5
DATA < S2R S21
ENTERS 6 7 3
PIPE S3R ]| -
9 10 1
S4R sS4l -
12 13 14
15 16 17
18 19 20
21 22 23
24 25! D1IR 26
OUTPUT 27 28| D11 29
DATA ¢
ENTERS 30 31|D2R 32
MEMORY
33 34| D21 35
LEGEND
PIPELINE
T CLOCK CYCLE
SEQUENCE
ADDRESS
OF
READ (SOURCE)
OR
WRITE (DESTINATION)

Figure 2-8. Read/Write Timing Sequence
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PAD NUMBER POSSIBLE MAPPINGS
ADDRESS 1 S1, D1R, D11, D1RI, D2R, D2I, D2RI
ADDRESS 2 S2, D1R, D11, D1RI, D2R, D2I, D2RI
ADDRESS 3 S3, S4, D1R, D11, D1RI, D2R, D2I, D2RI
ADDRESS 4 S4, D1R, D11, D1RI, D2R, D2I, D2RI

2-10

Figure 2:9. Mapping PAD Codes into Memory Addresses

tervals use the Memory Data Bus , and if that bus is re-
quired for an 1/O or CP operation the PA clock is tem-
porarily stopped.

2.4.4 Pipeline Addressing

As shown in Figure 2-7, the source and. destination
addresses are encoded in the Control Processor (CP) by
PAD set-up instructions. The four 22-bit words contain
codes for the arithmetic operation, the register ad-
dresses for source and destination, and codes identified
as D1 ADR and D2 ADR. The latter are used to control
the mapping of the source and destination addresses in-
to 16-bit address streams A1, A2, A3, and A4 as part of
the 24-bit words that are stored in the Data Memory
Command and Address Buffer. (The 16 bits address up
to 64K of Memory locations).

Figure 2-9 includes a table that describes the map-
ping. It should be noted, as shown in Figure 2-, that the
pipeline processsing accomplishes a ‘‘data replacement”
action. That is, the pipeline source data in memory ad-
dress S1 may be replaced by the D1 output at the end of
the pipeline pass. (D1R replaces S1R and D2l replaces
S21.) Note, also, that the addresses A3 and A4 may be
modified by the actions of the characterizing stage in
determining the location of S3 and S4.

2.4.5 Coding Considerations

The pipeline works at maximum efficiency by pro-
cessing PIPE instructions in a continuous sequence.
The Command & Address Buffer (CAB) queues up in-
structions for the pipeline, not only by storing up to 13
different PAC’s, or pipeline instructions, but also by
causing the same PAC to sequence through all the data
points in a block of data. This latter action is usually
more significant as far as elapsed time is concerned.
Both actions allow the programmer ample time to group
together any remaining coding instead of spreading it
around within the program. This makes coding, or
writing in AP Assembly Language, more straightforward
and allows existing code to be understood more easily.
At the same time, the pipeline can operate on a more
continuous basis.
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2.5 THE CONTROL PROCESSOR

2.5.1 Functional Overview

The Control Processor (CP) is the executive con-
troller of the AP400. It is, essentially, a minicomputer
that serves as central processing unit for the Array Pro-
cessor. The functions of the Control Processor are to
set up the lists of addresses and commands that the
Pipeline Arithmetic unit then executes, to link programs
(Including parameter and initial conditions passing), and
to handle programmed flag conditions and interrupts. As
shown in Figure 2-10, the Control Processor includes: a
16-Register File Arithmetic & Logic Unit (RALU)
microprocessor element, Program Counter, Program
Memory Address Register, Command and Instruction
Decoder blocks, Status Bits register, and the Interrupt
Vector encoder. Communication with other units of the
Array Processor is accomplished by the RALU and Com-
mand Code buses, as well as interconnecting wiring of
the Pipeline Command, External Status lines, and the In-
terrupt Signals. An internal (CP) Instruction Bus is also
used.

2.5.2 Program Memory

The Program Memory (PM) is 2048 words of 22 bits.
It is loaded by the Host prior to run time with the AP400
Executive and the Function Library required for the ap-
plications being proccessed. The Program Memory is
accessed by the Program Memory Address Register,
which advances the 12-bit address pointer one word at a
time. The PMAR receives inputs from the Vector Inter-
rupt Encoder, the Decoded Command and Instruction
bus, the RALU bus, and the Program Memory. Outputs
from Program Memory are stored in a Program Memory
Data Register which is used to implement overlapping
normal fetch/execute instructions. (One CP instruction
is being fetched from Program Memory while the
previous instruction is being executed.) This overlapping
is accomplished automatically within the Array Pro-
cessor, and is invisible to the programmer. When a jump
instruction is being executed, the fetched instruction is
cycled through, but not executed.

NOTE: The CP cannot modify its own Program Memory.
Thus, once a program is loaded by the Host computer, it

<:: COMMAND CODE BUS (8) ::>
PIPELINE COMMAND TO DM
>
COMMAND INSTRUCTION PM 11 PROGRAM
DECODE DECODE DATA MEMORY
REGISTER (PM) S
6] 1p
4} a 12,
R4| Rs 16 7
 J ‘ 12
RALU ;
— RO — R15 PROGRAM
MEMORY
ADDRESS »
REGISTER
(COUNTER)
16
4 }
Y I VECTOR
> INSTRUCTION BUS (IN CP ONLY) INTERRUPT
ENCODER
’ |
EXTERNAL STATUS
BITS 16, STATUS MASK
STATUS REGISTER [ 3 s
8%
y l y
< D-BUS (16) >
Figure 2.10. Control Processor Simplified Block Diagram
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remains unchanged. However, during execution of a pro-
gram, register values and Data Memory counters can
change, and may have to be reinitialized before restar-
ting program execution.

2.5.3 Register and Arithmetic & Logic Unit (RALU)

The RALU contains 16 registers, (RO through R15)
that are each 16 bits long. These are used to develop ad-
dresses of sources and destinations for the pipeline
arithmetic operations. Note that the RALU registers are
addressable with 4-bit words (16 register addresses), but
that their contents become 16-bit addresses for the Data
Memory locations (2'* = 64K, maximum memory size).
Calling out the memory locations for sources and
destinations of arithmetic data is accomplished by
register-to-register manipulation within the Control Pro-
cessor RALU. Repetition control for pipeline operations
is also executed by the Control Processor, and is ac-
complished by manipulation of index computations
along with conditional jump and skip instructions. Refer
to Chapter 5 for the machine instructions used to per-
form the register-to-register manipulations.

The CP can also access locations in Data Memory
as part of its Instruction set on a cycle-stealing basis.
This added capability enables the CP to manage its own
Data Memory allocation, and relieves the Host (and the
application programmer) of much of that burden. Another
feature of this capability allows the CP to complete the
“odds and ends” of a calculation that are scalar in
nature, and thus inefficient for the vector (array) process-
ing of the Arithmetic Pipeline (PA). For example, the CP
can use the leading zero count to change the block ex-
ponent before transferring data in normalized block
floating point format.

The CP accesses locations in the Host via the /O
board, with minimum Host burden. The CP tells the I/O
where a block of data can be found in the AP Data
Memory, where it is going in the Host memory, and how
many words to transfer as a block. The execution of this
data transfer to the Host is accomplished by the logic
and control residing in the 1/O board (refer to paragraph
2.7). Once the instructions are passed to the /O the CP
proceeds to perform its continuing tasks. The /O returns
a “‘transfer completed” signal when it has performed as
directed.

2.5.4 Stack Operation.

Register RO within the RALU is reserved as the
STACK POINTER, and stack operations are accomplish-
ed by specific instructions. There are 64 words reserved
for the stack. The CP automatically checks to see that a
stack instruction is valid, and within the allowable range

and location. The stack allows jumping to and from sub- -

routines, interrupts, passing subroutine parameters, etc.

2.5.5 Interrupts

Host-to-AP400 interrupts are handled within the
registers of the Vector Interrupt Encoder. Eight levels of
interrupt priority are provided. An interrupt mask allows
the inhibiting of individual or sets of interrupts. Interrupt
enable/disable operations are indirectly controlled by
software, using machine instructions.
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Design precautions have been incorporated so that
interrupt servicing cannot occur at times during the ex-
ecution of a program such that recovery would not be
possible. Instructions of more than one cycle must be
completed. For example, four pipeline instructions (com-
prising the PIPE and four-PAD set) cannot be interrupted.

Interrupts from the AP400 to the Host can be held
off as a consequence of the Host setting a bit in a
Status Register in the Interface board assembly. The
Control Processor can cause an interrupt request to the
Host only after this specific status bit is enabled.

Interrupts to the AP400 by inputs to the Auxiliary In-
terface input port are directed by the Status Register in
the Interface board assembly. Interrupts from the AP400
to the Auxiliary Port are implemented by setting status
bits that can be examined by the Host.

2.6 DATA MEMORY (DM)

As shown in Figure 2-11, the Data Memory assembly
interfaces with the other functional units of the AP400
via three buses (CCB, DB, and RALU), and via cable with
Expansion Memory assemblies, if installed. The basic
DM assembly provides 4096 contiguous words of
memory on a single board, and space for an additional
4096 words on the same board. Expansion beyond the 8K
available on one board is obtained by adding Expansion
Memory boards, which are plugged into the main
assembly backptane and cabled to the existing boards,
as indicated in the illustration.

The DM board performs two primary functions:

1. It provides a buffer (CAB) between the pipeline
commands (generated by the CP) and the pipeline execu-
tion control signals which control the pipeline proper.
The former are developed in a quasi-random sequence,
following the program instruction listing, while the latter
are developed in a rigidly controlled timing sequence
that synchronizes the pipeline setups with the read/write
sequence from/to the data memory. (See Fig. 2-7.)

2. It accesses specified data memory addresses
where the read/write operations are to be executed. The
memory addresses are independently controlied for the
Control Processor (CP-DMAR), the Interface (/O-DMAR),
and the Pipeline (PA-DMAR). These control signals
(enabling the address registers as shown in Figure 2-11)
are developed on a priority basis (PA lowest priority). The
PA-DMAR defines the addresses for data sources and
destinations in synchronism with PA operations. Thus,
when the bus is usurped for other functions, the PA
clock is stopped, stealing cycles from the PA operation
for other data transfers to and from Data Memory.

As shown in the illustration, the Data Memory also
includes the function of determining whether any of the
addressed locations exceeds the maximum data
memory. The maximum data memory size is determined,
by the amount of Expansion Memory installed, and that
number is translated into a wire-wrap jumper setting at
the back plane (detailed in the Installation Manual). The
Data Memory assembly compares the addressed loca-
tion and transmits an error signal if the address exceeds
the maximum memory.
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Figure 2-11. Data Memory Simplified Block Diagram

~ The Command and Address data of 24 bits for the
pipeline are received from the CP via the RALU bus (16
bits), as well as directly (8 bits). The 24 bits are latched

into the CAB Input Register at the end of the clock cycle.

They are then transferred into the CAB Buffer, which
can hold up to 64 24-bit words. A complete pipeline in-
struction set consists of 4 such 24-bit words, so that the
Buffer can hold up to 16 instructions for pipeline
“passes".

The status of the CAB buffer is monitored during
the program execution. When the buffer holds only 3
Pipeline instructions, it is “empty”. and the PA clock is
stopped, preventing any further pipeline operation. The
C_P clock continues. When the CAB buffer contains 15%:
Pipeline instructions (62 24-bit words), it is considered
“full”, and prevents the transfer of any more instructions
from the CP until it is emptied below the *“full”
threshold.
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2.7 INPUT/OUTPUT (l/O)

The Input/Output (I/0) card provides all the communica-
tions between the AP400 and the Host computer and bet-
ween the AP400 and devices connected to the Auxiliary
Port. A different 1/O card is required for each Host com-
puter with which the AP400 is specified to interface.
Each card contains the circuitry to carry out the follow-
ing 1/0 tasks:

a. Direct the AP400 status: Halt/run,single step,
etc.

b. Transfer data to and from the Host under pro-
grammed /O;

c. Automatic DMA transfer of data to/from Host
memory;

d. Automatic Auxiliary Port transfer;

e. Access various nodes of the Array Processor for
diagnostic testing.
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The sections that follow describe the circuitry for
the I/0 card used to interface the AP400 with a PDP11
computer via the Unibus, as well as the circuitry for us-
ing the Auxiliary Port. The Host dependent information
will change for particular Host computers. Detailed
descriptions of the I/O circuit operation, including detail-
ed schematics, provide a complete description of the /O
capabilities of the AP400.

2.7.1 /0 Block Diagram (PDP11 Interface).

Figure 2-12 is a simplified block diagram of the
PDP11-AP400 interface. The titles in the blocks are fur-

ther defined in the complete schematic, reproduced at
the end of this chapter as Figure 2-A, 2-B, and 2-C.

The AP400 requires two Host Memory addresses on
the Unibus for data and commands, and one Host
memory address for the Interrupt Vector.

The AP/Host Interface consists of bidirectional bus
transceivers for the Address Bus, and the Data Bus. In-
coming data is transferred to the internal memory bus
via buffers. Outgoing data is latched from the internal
bus in the data register.

< PDP-11 UNIBUS (HOST BUS) >
- __}Js - DATA_—D1_ I __Tn _ha__—__—%____ |
I TRANSCEIVERS [ ﬁ [ e [
{ ] ; ] NPR
l HOST BR ;
COMMAND SACK
& ejialesd MEMORY ADDRESS MSYN
MESSAGE REGISTER ADDRESS DECODE
| REGISTER REGISTER (
(HMAR)
‘ AP CLOCK A LoaD BUS REO I
& RESET CONTROL
| CONTROL SET
| WSYN |
1 SSYN I
‘ AP INTERFACE
STATUS CONTROL
REG SEQUENCER
1 sT12 1 ]
| 1/0 TO AP DMA & AUX AP l
5 CONTROL WORD/CONTROL
3 DRIVER/ENCODER REGISTER (WCR)
2| | |
2
2 LOAD
2| | { i !
3 i
| < AP COMMAND & CONTROL (8) >
‘ AP TO 1i0 ‘
CONTROL RCVR
2 DECODER
<™ auxiiuiary 1
. INPUT >
1
PORT |
i o
I < AP DATA BUS (241 >
24 1
0 AUXILLIARY INTERBUS 16
N outPuT e COUPLING
PORT ‘
A
] < AP RALU BUS {16) > ‘
| AP400 |

Figure 2-12. Interface (I/O) Simplified Block Diagram
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The Command Register stores the command the
Host wishes the Interface to execute. The Message
Register stores the message left for the Array Processor
by the Host. All commands originating in the Host af-
fect the Command and Message Registers.

A PROM-controlled Interface Control Sequencer
generates all the timing controls required by the Unibus
and the Array Processor interfaces.

The Auxiliary Input Port contains a holding register
and interface control logic for handshaking. The Auxiliary
Output Port also contains a holding register and
handshaking logic. Each port has an interrupt line to the
control processor.

The Host Memory Address Register (HMAR), and the
Word/Control Register (WCR), are utilized in Direct
Memory Access (DMA) operations. It should be noted
that the Word/Control Register is also used in the opera-
tion of the Auxiliary Ports.

The internal interface between the 1/O card and the Array
Processor is carried out by the Memory Bus , the RALU
Bus, and the Command Bus. The Interface Control uses
the Command Bus to route data between the Host, the
Data Memory, the Control Processor, and itself.

The status of the AP400 with respect to the communica-
tions across the interface is indicated on the AP400
front panel, as shown in Figure 2-13. The indicator lights
on the panel indicate the SET/RESET conditions of eight
of the 16 status bits in the STATUS/MESSAGE Register.
The functions controlled by these bits are described
below. (Bits 0 through 7 of the MESSAGE Register are
not brought out to the front panel).

The Status Register is a “‘software handshake” register .
Each bit is individually alterable by either the Host or the
AP400, according to the appropriate protocol. For exam-

ple, the Host may set the Host-to-AP Interrupt bit, but on-

ly the AP may clear it.
Both the Host and the AP may read the Status Register.

The functions controlled by th 8 status bits in the Status
Register, as displayed on the AP400 front panel, are
described below. The set condition is defined as a logic
1; the reset conditions as a logic 0.

Status Bit 8: AP RUN
When reset, this bit inhibits the clock in the Control
Processor and in the Pipeline. Thus the Host can stop

Figure 2.13. AP400 Front Panel Showing Status Register
Indicators

operation in the AP any time. The AP can use this bit to
halt itself.

Status Bit 9: AUXILIARY OUT

This bit is used as a programmable output bit for
the Auxiliary Output Port. It is not used internally in the
Array Processor. It is also available to the Auxiliary In-
put Port.

Status Bit 10: AUXILIARY IN

This bit is used as a programmable output bit for
the Auxiliary Input Port. It is not used internally in the
Array Processor. It is also available to the Auxiliary Out-
put Port.

Status Bit 11: INTERRUPT ENABLE
When set, this bit allows the AP to Interrupt the
Host.

Status Bit 12: AP-TO-HOST INTERRUPT PENDING

When set, and when Status Bit 11 is set, the INTR
REQ is set on the rise of Status Bit 12. Bit 12 is normal-
ly set by the Array Processor, and reset by the Host.

Status Bit 13: HOST-TO-AP INTERRUPT PENDING

This bit generates an interrupt in the Control Pro-
cessor. It is normally set by the Host, and reset by the
Control Processor.

Status Bit 14: HI/ILO

When set, this bit points to the high 16 bits of Data
Memory or the high 11 bits of Program Memory. When
reset, it points to the low 8 eight bits of Data Memory or
the low 11 bits of Program Memory.

Status Bit 15: (Not Assigned)
This bit may be assigned any function by the user.

2.7.2 Host/AP Communications.

There are three modes of communications between the
Host and the AP:

a. Programmed 1/0: Wherein each transfer re-
quires the execution of an I/O instruction in the
Host.

b. Direct Memory Access: Wherein data is
transferred to/from the Host Memory (or any other
addressed device) in bursts of up to 16 words.

c. Interrupt: Wherein the AP generates a Host pro-
cessor interrupt and transfers an Interrupt Vector.

2.7.3 Programmed 1/0.

In PROGRAMMED 1/O ,the PDP Unibus protocol re-
quires that the Host be the “bus master” and the AP be
the “bus slave”. The Host issues an I/O transfer to one
of two sequential device addresses that are decoded by
the AP. The low address is the AP Command Address,
while the high address is the AP Data Address. When
using the Command Address, the Host “‘writes” to the
Command Register and to the Message Register, and
‘“reads’” from the Message Register and the Status
Register. When using the Data Address, the Host
transfers data to/from the AP, as part of the standard
Unibus protocol.
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Figure 2-14 illustrates the word format and bit
assignment of the Command & Message Register for the
P10 transfers in the read and write operations.

There are two types of commands:

a. Immediate: Wherein the data word that is
transferred is interpreted and the command involv-
ed is executed during the actual transfer time.

b. Data or Non-Immediate: Wherein the transfer-
red command is stored and will be used to route
the data that will be transferred with a Data Ad-
dress.

Table 2-4 contains a listing of some of the commands
that can be transferred.

HOST WRITE TO AP (PIO)

|15I . [ . la l 7J [ [} o 0]
\_—\/—‘/W
MESSAGE
COMMAND
CODE CODE

HOST READ FROM AP (P10}

Bl o[ - - -
N ——— | ———— S ———  ————

STATUS MESSAGE
BITS CODE

Figure 2-14. Command & Memory Register Word Format

The Transfer Sequence begins when the Host places
one of the AP addresses on the bus and asserts MSYN.
The interface decodes this address and responds by set-
ting SQ SYN . This latter action stores a set of three bits
and starts the conrol sequencer. The stored bits define
the following:

a. Transfer initiated by the Host

b. Read or write; determined by a control bit (C1)
on the Unibus

c. Upper or lower of the two AP400 addresses;
determined by the LSB of the address.

The sequencer then generates control signals that
accomplish the following:
a. Assert SSYN and negate SSYN after the Host
negates MSYN. Performed by setting and clearing
WSYN.
b. Enable and clock buffer gates and registers to
implement the logic in the execution of the com-
mand.
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c. Generate and place on the Command bus the
necessary command code to direct the transfer of
the data in the Interface, the Control Processor, or
the Data Memory.

Figures 2-15 and 2-16 illustrate the timing relation-
ships among these control signals for immediate
transfer of data.

Table 2-3
HOST TO AP COMMAND CODES —
IN HEXADECIMAL

IMMEDIATE CODES (18) REGISTER READ

CODES (22)
RESET AP ....... FO
SINGLE STEP ... F2 RALURO ........ 65
CLEARBITO08 ... 80 STOPCLOCK RALURT ........ 64
SETBITO8 ...... 82 STARTCLOCK RALUR2 ........ 67
CLEARBITO09 ... 88 RALURS3 ........ 66
AUX OUT RALUR4 ........ 61
SETBITO09...... 8A
CLEARBIT 10 ... 90 RALURS ........ 60
AUX IN RALURG ........ 63
SETBIT10...... 92
RALUR7 ........ 62
CLEARBIT 11 ... 98 INTERRUPT RALURS ........ 6D
SETBIT11...... 9A ENABLE
CLEARBIT 12 ... AO RALURS ........ 6C
AP TO HOST RALUR10 ....... 6F
SETBIT12...... A2 ) INTER. PEND
RALUR11 ....... 6E
CLEARBIT 13 ... A8
HTO AP RALUR12....... 69
SETBIT13...... AA } INTR. PEND
RALUR13 ....... 68
CLEARBIT 14 ... BO
HI/LO RALUR14....... 6B
SETBIT14...... B2
RALUR15....... 6A
CLEARBIT 15 ... B8
NOT IN USE PMAR (PC) ...... 14
SETBIT15...... BA
FLAGS .......... 1C
REGISTER WRITE CODES: (5)
IO-DMAR ........ 74
IOCOUNT....... 71
10 ADDRESS .... 73 CP-DMAR ....... 77
PMAR (PC) ... BO 8D SCL/LZC/CNT ... 24
I0-DMAR ........ 75
SCL/LZC ........ 25

HI/LO (STATUS BIT 14) DEPENDENT CODES: (16)

READ DM, FLIP HI/LO, & INCREMENT IO * DMAR AFTER HI. .DD
READ DM, FLIP HI/LO, & INCREMENT IO « DMARAFTERLO. .DF
WRITE DM, FLIP HI/LO, & INCREMENT IO « DMAR AFTER HI..D5
WRITE DM, FLIP HI/LO, & INCREMENT |0 « DMAR AFTER LO. D7
READ PM, FLIP HI/LO, & INCREMENT PMAR AFTER LO. ... .. CcD
WRITE PM, FLIP HI/LO, & INCREMENT PMAR AFTERLO. .. .. C5
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SYSTEM CLOCK
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Figure 2-15. Host Read of Message & Status Register, Host Write of Immediate or Data Commands
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Figure 2-16. Host Read/Write of Data Memory
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2.7.3.1 IMMEDIATE Commands

immediate Commands contain two parts: a lower and an
upper byte. The lower byte contains the command code
to be stored in the Command Register, while the upper
byte contains the message (if one is required) which is
stored in the Message Register. When the Host executes
a READ of the Command Address, the contents of the
Status Register are loaded into the upper byte, and the
contents of the Message Register are loaded into the
lower byte.

Immediate Commands WRITTEN by the Host affect only
the Status Register bit written with the message register.
These commands set and reset the eight bits of the
Status Register on an individual basis.

Execution of an Immediate Command is accomplished in
the following sequence:

When the Host asserts MSYN, the interface
decodes the command address and initiates the se-
quence to transfer and to store the data on the
Host Data Bus in the Command and Message
Registers.

If Status Bit 7 is set while Bit 2 and Bit 0 are reset,
the sequencer gates the command code onto the
Ccommand Bus. PROMs decode the command and
generate the signals to change the Status Bits, or
cause a hardware reset of the AP, or single step
the AP.

Reading or writing the Status Register steals one cycle
from the AP Memory Bus.

The command RESET AP generates a hardware reset
signal internal to the AP.

The SINGLE STEP command gates a single clock cycle
to the Pipeline and causes the Control Processor to ex-
ecute the next instruction.

2.7.3.2 DATA (Non-Immediate) Commands.

The Data Commands (Non-immediate) are used to
transfer 16-bit words between the Host and the AP.
Therefore, they are “two-step” commands. In step 1, the
Host loads the command into the AP using the AP Com-
mand Address (lower). The Interface stores the command
in the Command Register. In step 2, the Host transfers a
data word using the AP Data Address (upper). The Inter-
face uses the command stored in the Command Register
to place the data onto the bus and to transfer the data
to/from the Host.

There are two classes of all the “‘Non-immediate” Data
Commands: Single word Read/Write, and Multipte word
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Read/Write. Multiple word commands are distinguished
by having command bits 7, 2, and 0 all set (1).

2.7.4 Direct Memory Access (DMA).

in the DMA mode, the Unibus protocol is reversed. The
AP becomes the master, and the Host becomes the
slave. However, before the AP can become the master, it
must first request and be granted the bus. The AP can
then hold the bus only long enough to transfer up to 16
words.

Before the Interface can be instructed to execute a DMA
transfer, the 1/O Data Memory Address (/0O DMAR) and
the Host Memory Address Register (HMAR) must be
loaded with certain values. The /O DMAR (which |
physically located in the AP Data Memory board) 1

be loaded with the starting address of the data bl

be transferred. The HMAR must be loaded with th. siar-
ting address in the Host Memory of the data block to be
transferred.

The Host Address Bus is an 18-bit bus. Bit A00O is a
“byte” control bit, and it is not driven by the AP. Bit A17
is driven by the designated bit in the WCTR (Word Con-
trol Register). This bit will be incremented in the event
the block transferred crosses the boundary at 65k words
of Host Memory.

To initiate a DMA transfer, the Word/Control Register
(WCTR) in the /O board must be loaded with the comple-
ment of the number of words to be transferred as well as
four control bits (See Figure 2-18). The complement of
the number of words to be transferred is referred to as
the “throttle count”, because it controls the rate at
which large blocks of data can be moved. The throttle
count in the WCTR is set by the AP400 in response to
the program demands for the transfer of data.

DATA FORMAT HOST TO AP DMA

[23r . . . l 8 l 7 I . . . ]J)]
HOST DATA ZERO
DATA FORMAT AP TO HOST DMA
|23l . 3 (3 l Bl 7I . . . 1 0]

HOST DATA LEFT IN AP DATA MEMORY

Figure 2-17. DMA Formats Host TO/FROM AP
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2 1 H w E A

l—-—— HMAR A17

1/0 ENABLE

THROTTLE COUNT
COMPLEMENT OF
NO. OF WORDS TO BE
TRANSFERRED

WRITE/READ w/R

HOST/AUX H/AUX

Figure 2-18. Word Count Register

CAUTION
When the throttie count goes to zero, A17, /O
ENABLE, HOST/AUX, and W/RC (Write/Read Con-
trol) are set to ZERO. The WCTR is reset by the
Power-On and the Reset Command.

The sequence of AP to HOST DMA Operations is il-
lustrated in the flow diagram of Figure 2-19. It is initiated
by a Non-Processor Request, asserted on the Unibus.
This can occur when the Word/Control Register (WCTR)
is loaded, and when the 1/0 EN bit and the HOST/AUX bit
are both set. The Host generates a Non-Processor Grant
(NPG) that sets the NPCY. As soon as the bus is idle,
the SQSYN is set and starts the Control Sequencer.

The Interface asserts BBSY on the bus and will hold
the bus for as long as BBSY is asserted.

On starting, the sequencer stores three control bits:
a. Transfer is not initiated by the Host

b. INTR CYC indicating it is not an interrupt cycle

c. Control defining whether the DMA is to or from
the Host (W/RC is 1 or O, respectively).

In the case of DMA to Host, the Interface places the
code on the Command Bus, which thereby accesses
Data Memory at the location pointed to by the I/O DMAR,
and stores the data in the Data Register. The /O DMAR
is incremented at the end of the Command bus cycle.

The sequencer has asserted MSYN on the Unibus
and has placed the HMAR and the Data Register on the
Unibus. Upon assertion of SSYN by the receiving slave
device, the MSYN is negated, and the HMAR and WCTR
are incremented. If the throttle count is not zero, the se-
quencer loops back and repeats the access of Data
Memory and transfer to the Host sequence until the
throttle count becomes zero.

When the throttle count does go to zero, NPCY is
reset, BBSY, NPR, and SACK are negated. After MSYN
is negated, the sequencer becomes idle.

DMA transfers from the Host are performed in a
similar manner, except that the flows are in the opposite
direction. The MSYN is not negated until after the data
is stored in the Data Memory.
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DMA transfers steal one cycle per word from the
Data Memory bus.

Figures 2-20 and 2-21 illustrate the timing for DMA
transfers.

< UNIBUS (CONTROL)

NPR
(NON-PROCESSOR REQUEST)

HMAR A17 BBSY
O ON=1 BUSY)

w/R
NO @ YES

H/ADX =1
THROTTLE
COUNT
NO HOST TO AP
werR DMA TRANSFER 110

(WORD CONTROL
REGISTER) RESPONSE

Figure 2-19. AP to Host in DMA Operation

2.7.5 Some Programming Considerations Implicit in /O
Transfer Implementation.

Because the Host data word is only 16 bits, only the
most significant 16 bits of the AP’s data memory are
transferred under DMA. There is no provision (as
distinct from PIO transfer), for transferring the low order
8 bits. Longer words (24-bit data, for example) must be
reformatted in the AP after loading, or prior to unloading
to the Host.

Some registers cannot be read. The HMAR and the
WCTR cannot be read by either the Host or the Control
Processor (AP). Therefore, a certain amount of care
should be exercised in their use.

The 11O DMAR and the HMAR registers are in-
cremented with each word transferred and are altered by
specific commands. The user is therefore permitted to
transfer many word blocks sequentially after setting
these two registers to their starting values.

The Control Processor can load the WCTR at any
time without regard to the status of the Interface Se-
quencer. This feature can be used advantageously:

1. To cause an early termination to a DMA
transfer;

2. To extend the block size to greater than 16
words.

By loading a throttle count of 15, the DMA in pro-
gress can be terminated reliably within one transfer
time. By monitoring the /0 DMAR, the Controi Pro-
cessor can transfer as large a block of data as desired
once the control of the Unibus has been given to the AP.
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SYSCLK

HOST ADDR BUS Y STABLE )\ STABLE

NPR

\
NPG 5
SACK

A
—
L
z
.

SQ SYN

73
NPCY AN 4
= > 2

AP
MSYN

SEQUENCER STATE 0 [1\ , 2 3\a/1 2 3

HOST SSYN

WSYN

ALTCNTDIS

DATA ON AP BUS

¥/!/ R\

)
DATA ON HOST BUS ¥ STABLE—~} ~ P/STABLE__»Y

INCR CTR / \ ’ \

Figure 2-20. Host to AP DMA Timing Diagram

SYSCLK
HOST ADDR/DATA BUS X staBLE X STABLE

NPR

X
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NPG -
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SACK

BBSY [\
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Figure 2-21. AP to Host 2-Word Transfer DMA Timing Diagram
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This is done by continuously loading the WCTR with a
throttie count of 0, and by checking the value of the /O
DMAR for the address of the last word to be transferred.
This operation locks out all other Host devices on the
Unibus.

Upon completeion of a DMA transfer, the interface
generates an interrupt to the Control Processor.

The 1/O BUSY bit is available to the Control Procesor
to monitor the status of the Interface during DMA opera-

tions.

The DMA must write to successive Host memory ad-
dresses when more than one word is being transferred in
each burst (throttle count not set to 1).

27.6 AP Interrupt of the Host

The AP will interrupt the Host when Status Bits 11
and 12 (for the status register) are set. Bit 11 is an
enabling bit that is set, or reset, only by the Host. Bit 12
is set by the AP400 as an Interrupt Request, and reset by
the Host. The protocol on the Unibus is similar to that
during DMA in that the Interface must request the bus.
When the bus is granted, only the Interrupt Vector is
placed on the data bus. The Vector is used by the Host
to locate the interrupt service routine.

The sequence of interrupt operation begins with the
rising edge of Status Bit 12. At that event, the INTR
REQ is set; and, if Status Bit 11 is also set, the Bus Re-
quest (BRn) is asserted. As in the DMA interrupt, when
the Host asserts Bus Grant (BGn), the INTR CY is set
which asserts SACK and sets SQ SYN. The sequencer
selects and stores 3 bits which control the sequence.
They are:

a. Transfer not initiated by Host;
b. INTR CY indicates an interrupt cycle;
c. Read/write control...not applicable

The sequencer controller then applies the Interrupt
Vector, and asserts the INTR Host bus and asserts
MSYN. Upon the assertion of SSYN by the Host,
the Interface negates MSYN, SACK, and BBSY and
returns to the idle state.

INTR REQ is reset upon the completion of the
transfer of the Interrupt Vector or by the resetting
of Status Bit 12.

The interrupt timing relationships are il-
lustrated in Figure 2-22.-

1 2 3 4 5 & 7 8 9 10 11 12 13
SYS CLK
BR Oy P
INTRREQ K {7
BG " }\ Loy
SR K |2l
= (s
INTRCY
SEQUENCE STATE /0 \ /T\,K 2 [ o
SQSYN \ﬂ/ T
WSYN
SSYN 4 "
e \ ¥
VECTOR ON BUS X staBLE X

——

Figure 2-22. AP Interrupt of Host Timing Diagram
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2.8 AUXILIARY PORT

The Auxiliary Port (AUX) provides a high speed digital in-
put/output for data to/from another device. The port is
composed of two 24-bit registers for input and output
and the necessary handshake control signals. The ports
may be used individually as unidirectional ports, or the
two buses can be connected to form a singel bi-
directional port.

Use of the AUX ports is similar to the use of the Inter-
face in the Host/DMA mode in that both require certain
registers to be set up prior to initiation of any transfer.

It should be noted, however, that the Host/DMA and AUX
operations are mutually exclusive. That is, only one or
the other can be accomplished at a given time.

However, programming can overlap Host/DMA with
AUX/DMA for more efficient throughput.

2.8.1 Sequence of Operations.

In preparing for an AUX transfer, the /O DMAR must be
loaded with the starting address of the table in the Data
Memory. The HMAR need not be loaded, and the con-
tents of the HMAR wiil NOT be affected by the AUX
operations.

When the WCTR is loaded with the throttle count and
the control bits, the Interface waits until the selected
port READY signal is negated. The AUX INTF SYN is
set for one cycle of the clock. During this time, the AUX
command is placed on the Command Bus, and the 24-bit
data word is transferred between the selected port and
the Data Memory. The affected READY flip-flop is set,
indicating to the port user that the next data word may
be loaded into or out of the port. The sequence of
operations takes 3 machine cycles to complete.

The throttlie count is incremented automatically with
Data Memory transfer. When the count reaches zero, the
IO ENABLE is reset, and an /O DMA Complete interrupt
is generated.

Although the WCTR in the Interface may be occupied
with the AUX operations, the Interface is still able to
handle PIO operations with the Host.

The I/O logic handles any conflict between the Control
Sequencer and AUX for use of the Command Bus (CCB)
by generating control signal ALT CTL DIS (reference
schematic B).

The AUX INTF SYN is reset one cycle after the Se-
quencer has released the Command Bus, and the AUX
command is placed on the Command Bus only after the
Sequencer removes its command from the CCB.

Contention for the Command Bus is not limited to the
AUX and Control Sequencer in the Interface. The Con-
trol Processor is also a HEAVY user of that Command
Bus.

In those cases where all three users attempt to access
the Command Bus, the priority is established as follows:

a. The Interface gets the bus (even though the
Control Processor is on it); forcing the Control Pro-
cessor off.

b. The Control Processor gets the bus immeditely
after the Interface releases it.

c. The CCBINST signal from the Control Processor
holds the AUX port off the bus until the bus is
released by the Control Processor.
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2.8.2 Input Port.

The Input Port consists of a 24-bit register which is
loaded by the external user when the TRS signal is
asserted low. The Input Port is always ready (AIP READY
is high). When TRS is asserted the AIP READY is reset,
causing AUX PORT ENABLED to be asserted. After the
data transfer is complete, the AIP READY is set. Refer to
the timing diagram in Figure 2-23.

Status Bit 10 is available to the user on the input port
connector, and the AUX IN Interrupt is available to the
Control Processor. These may be used in an “interrupt”
mode to synchronize the transfer of data in the /O ports
to an external event.

2.8.3 Output Port.

The Output Port contains a 24-bit register which is load-
ed by the Interface after the WCTR is loaded and the
AOP RDY is set, and the OP RDY is asserted low. An
on-board jumpering is used to establish the logic levels
for asserting or negating the output port control/status
signals. The jumper is field-installed, and may be chang-
ed at any time to interface the AP400 with new
peripherals having the opposite logic level protocol. The
timing diagram of Figure 2-24 shows the impact of strap-
ping on timing and the operation of OPTRS.

The OPTRS signal strapping option can select AC-
TIVE HIGH or ACTIVE LOW operation. The output data
is present only when OPTRS is in its active state. When
restored to the inactive state, the AOPRDY is reset until
the next word has been loaded from Data Memory.

Status Bit 9 and the AUX OUT Interrupt to the Control
Processor are made available to the user at the output
connector. They may be used, as for Status Bit 10, to im-
plement a handshake protocol.

2.8.4 Typical Use of the Auxiliary Port

The Auxiliary Input Port configured as shown in
Figure 2-25 can provide all the interface required bet-
ween an array processor based digital signal processing
system and a data acquisition system used to interface
to sensors or transducers. The Auxiliary Output Port can
be used to interface to a digital or analog subsystem
which in turn interfaces to either a display or a control
subsystem.

A more detailed example of the use of the input port
is provided in Figure 2-26. This configuration uses the
AP400 together with a PDP-11/04 Host computer to per-
form a spectrum analysis of two audio signals con-
nected to the input of a data acquisition subsystem. The
data acquisition subsystem consists of the anti-aliasing
filters for each channel, a multiplexer to switch between
channels, a sample and hold module, a 16-bit A/D con-
verter, and the associated timing and logic circuits. Also
shown is the controller and FIFO buffer used to provide
inputs to the AP400 for a specific I/O Service Routine
which requests 16 words at a time.

The overall sequence of operations is to digitize
continuously in real time each of the two audio signals,
transfer data to the AP400, perform an FFT on the
signals, calculate the complex magnitude of the signals,
compute the logarithm of the magnitudes, and con-
tinuously transfer the data to the Host computer. The
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Host computer can then transfer the results to a display
subsystem for presentation of the power spectral density
of each of the two original signals.

A consideration for interfacing to the Auxiliary Input
Port is the use of the control signals associated with the
port.

The Auxiliary Input Port consists of a 24-bit data
register and three control signals. For this example, the
8 least significant bits of the 24 bit data inputs are tied
to ground reference and the 16 most significant inputs
are used for the digitized signals. The use of the control
bits is explained by the following sequence of opera-
tions:

1. An End of Conversion (EOC) signal from the A/D
converter clocks 16-bit words into the FIFO buffer
(Refer to Figure 2-26).

2. When the FIFO has a word in it, a FIFO OUTPUT
RDY signal clocks the Input Controller, and
generates a IPTRS .

3. The trailing edge of the IPTRS/ clocks this first
word into the Auxiliary Input Port register and
causes IPRDY to go into its busy state.

4. Because the /O Interrupt Service Routine has
not yet acknowledged an interrupt, this first word
remains in the Auxiliary Input Port register and the
IPRDY signal does not toggle from its busy state.
5. No further_actions occur in the Auxiliary Input
Port until an IPINTRPT occurs.
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6. When the FIFO buffer contains 16 words, a FIFO
FULL signal clocks the Input Controller and causes
an IPINTRPT .

7. The IPINTRPT causes an interrupt of the AP400
Control Processor and the /O Interrupt Service
Routine transfers the first word (already in the in-
put register) into Data Memory.

8. After the input transfer from the Auxiliary Input
Port Register to Data Memory is complete, the
IPRDY signal is asserted (low).

9. When IPRDY is asserted, it causes the Input
Controller to clock IPTRS and transfers the second
word out of the FIFO buffer and into the Auxiliary
Input Port Register.

10. At the completion of this transfer, IPRDY goes
to its busy state until the second word is transfer-
red into Data Memory.

11. After the transfer to Data Memory, IPRDY is
again asserted and causes the next IPTRS to be
generated.

12. Since the input word count in the 1/O Interrupt
Service Routine has been set at 16, the process of
transferring words from the input register to Data
Memory will continue until 16 words have been
loaded.

13. After the transfer of 16 words, the I/O Interrupt
Service Routine disables the Auxiliary Input Port
and the 17th word remains in the Auxiliary Input
Port Register until the next TPINTRPT occurs.
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14, This in turn ceases transitions of IPRDY , and
hence IPTRS until the cycle is repeated.

15. The next FIFO FULL causes the cycle to
repeat.

It should be noted that provision for the time re-
quired for the 1/0 Interrupt Service Routine to set up for
the transfer of data to Data Memory is accounted for by
making the FIFO larger than 16 words. That is, the FIFO
buffer must be able to handle additional input words
from the A/D during the I/O setup time after the
{PINTRPT occurs. The high rate at which the Auxiliary
Input Port can accept data after setup (approximately 1.5
Megahertz) assures that an overflow in the FIFO will not
occur.

Another consideration when using the Auxiliary In-
put Port of the AP400 for real time continuous signal
processing is the timing associated with inputting, pro-
cessing, and outputting data. The composite processing
time will determine the maximum signal bandwidth that
can be used for this example. The AP400 Auxiliary 1/O
Port has been designed as a highly flexible interface
either to input or to output digital data directly to the
AP400 Data Memory. The use of this interface will
generally be specific to the application and data format
of the user. As an example, an application may require
using the interface in a burst mode rather than a con-
tinuous processing mode as in this example.

Both HOST and Auxiliary input/output operations
have been designed to overlap with processing opera-
tions going on in the pipeline. Overlapped operation
utilizes the concept of cycle stealing where pipeline pro-
cessing is delayed for one machine cycle every time an
I/O operation requires access to Data Memory. To deter-
mine the processing time with overlapped /O, it is first
neccessary to estimate the processing time required for
a given number of data points without the I/O stealing
cycles from the pipeline operations. This is done by
determining the number of PAC's, or passes through the
pipeline, for each processing function. Next, it is
necessary to determine the number of delayed cycles
caused by the overlapped process.

Each time a word is brought into Data Memory from
the Auxiliary Input Port, pipeline processing is delayed
for 1 cycle (160 nanoseconds).

Each time a word is transferred from Data Memory
to the HOST, the pipeline is again delayed for 1 cycle.

For each Data Memory access in the /O Interrupt
Service Routine, two cycles are stolen from the process-
ing time. This time is calculated by multiplying the
number of interrupt (NI) by the number of Data Memory
accesses. The number of interrupts is determined by:

NI = Number of Words to Transfer
Throttle Count

The number of Data Memory accesses is determined
from the actual /O Interrupt Service Routine, and the
throttle count for this example is 16 words.

Each time the I/O Interrupt Service Routine is act-
ivated, it interrupts the Control Processor servicing of
the pipeline for a corresponding number of cycles and
uses the CP to service the interrupt. The effect of the
lack of availability of the CP to service the pipeline is
determined by considering the possible states of the
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Command and Address Buffer (CAB) which is filled up by
the CP, and in turn supplies inputs for the pipeline.
These states are simply CAB full and CAB empty.

When the CAB is full, the pipeline is not dependent on
the CP and processing continues (except for the Data
Memory Accesses as previously discussed). When the
CAB is empty, the pipeline is stopped and waiting for
processing time is increased.

The number of lost cycles when the CAB is empty, is
equal to the total number of cycles used by the CP I/O
Interrupt Service Routine less those cycles that are used
to access Data Memory. This number, multiplied by NI,
and by the percent of time the CAB is empty, will be
equal to another increment of time that must be added
to overall processing time.

Below is a summary of processing time in microseconds
for this application. The processing consists of first sor-
ting the two channels and performing a 512 point real
FFT computation, on the incoming data. Next, the data
is reordered, the complex magnitude is computed, the
logarithm of the results are computed, and the results
are output to the Host.

A. Uninterrupted Processing Time:
1) SOrting . ....oooiiii s 491
2) 512 point real FFT (two channels). ........... 2940
3) Reordering (two channels). .................. 660
4) Magnitude Approximation (two channels). .. .. 1420
5) Logarithms (twochannels).................. 1000
6511

Pipeline Time Lost to AUX I/O Input to Data Memory
(% Pipe Activity x Number of Words x Cycle Time). . 130

. Pipeline Time Lost to AP/HOST /O
(% Pipe Activity x Number of Words x Cycle Time). . .66

. Data Memory Access by AUX I/O Interrupt Service
Routine
(Number of Interrupts x Number of Accesses x
CycleTiMme X 2). ...t

Time Used by CP to Execute Interrupt Service Routine
(Minus DM Accesses) when CAB is Empty
(Number of interrupts x % Empty x AUX I/O Cycles). 166

Total ProcessingTime. . ...

The effective increase in processing time caused by
overlapped I/O is approximately 9% for this example,
and it is apparent that the basic processing time
(uninterrupted) is the determining factor when
calculating overlapped I/O processing time.

The allowable input data rate for this example is
determined by dividing the total number of words pro-
cessed by the increment of time calculated for the pro-
cessing, or:

2x512
7007 x 107 | 44KHz

The corresponding input data rate per channel is then
72KHz, providing a maximum input signal bandwidth of
approximately 35KHz per channel.
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Another example of using the Auxiliary Input Port is
to operate in a burst mode rather than a continuous in-
put mode.

For stochastic signal processing applications, an
adequate sample of the data defines the information for
all time intervals, and a burst mode of inputting data to
the Auxiliary Port can be used without loss of informa-
tion.

An AUX 1/O Interrupt Service Routine that continual-
ly recycles for a predetermined number of cycles would
be used for this type of processing. The AUX /O inter-
face requires three machine cyclas or 480 nanoseconds
to transfer a 24 bit word to Data Memory. Because the
AUX /O is third in priorty for use of the Memory Bus, the
Bus will not always be available when AUX I/O wants to
transfer data. If the AUX 1/O always had to wait, it would

2-27

add 2 additional cycles to the transfer time. If the Bus is
available 50% of the time it is requested by the AUX 1/O,
then one additional cycle on the average would be added
and the allowable input data rate for this mode would
be:

1/640 nanoseconds = 1.5 Megahertz

The detail provided here for using the AUX input Port is
to show how the Auxiliary /O operations interact with
the AP400 processing and control operations. Many
alternatives are available to the user to implement effi-
cient Auxiliary 1/O routines the unburden the HOST com-
puter and provide real time data acquisition and process-
ing. Analogic is the leader in the field of high speed,
high precision data acquisition systems and can provide
complete real time data acquisition and signal process-
ing systems to meet user requirements.

ANALOGIC =



‘¥S'N NI QALNINd - 6261 LHOIHALOD

8¢¢c

—

-

1

I
{

b b
i\ 5
: | coMMAND IR i
¥ | & CONTROL 1 L e
i |Bus | A
i i .
i ! 213 752,
d output | 4g = e Loy =
H COMMAND| 232 A e > |
‘ DECODE Lo o e e - D Tk — |
H - — - = '
% ‘e, i
|
; ]
o e atea oy et oot oo 1
|
o
ALk Al cuc
<
Azp Ac Cm -
- 814} AIT 2
i - o
n B28 Arr CIN e sy
* = by 23
1 cis AW (43 c2N 100 2 !
1 c2h A2 21 NOTES: 2408 3
t . 1 UMLESS OTHERWISE SPECIFIED § _J 744500
= ch e cxr AL RESISTORS ARE 1/8W, 2.C. EXPRESSED 1 OHMS . Icr
] D2A] BIc DiC
i 817 pac
-~ +5V I
] e O or 2.F0R ASSEMBLY SE€ D7-8591.
H actriy o 3. FOR FARTS Lis? SEE€ Prio-859.
{
I
1 r 1L | " T 1 I 2 I " I I » I L
4

e

et s

o
wT

INTERFACE
CONTROL
SEQUENCER

——

L omw post

- T e iy eater

+5V
- 0F,002,C14-C22, cz4-<35 | o
238, 247, C5 ¢
GHD |
c

CONTROL _CIRCUITRY.

AT T T N TS
Lot OF WATERTAL

o

o
o

g s

Cnicaan
PR

ANALOGIC B “AKEFIELD, Maz 018%0

SCHEMATIC =
ARRAY PRCCESSOR PDP-11
WTERFACE BOARD

locv-g539¢ T — =1,
wexr aser | vseo om 2 2. %4 |DleEcay '
APFLICATION O =7
L] I 4 3 2 I s

= 1

Figure 2-A. Array Processor/PDP-11 Interface Board Schematic, Sheet 1

oovdv



6c-¢

B OIS0 TN\

. s .
7 L] 5 l a
6 | i \ 1 1 \E} l 2 | " | o | ° 1 e ] _ | ! 3 b | !
BT 5
o wIPTION can'arms] DaTE H
ZHE SHEET 1 <'l N
A =5
FROWM, NI
FROM/TO UNIBUS DATA BUS OM/TO UNIBUS ADDRESS BUS
% N
— ‘ . A 1% o3/ Dott pets DR/ ::I‘I sy o AT AbfAg Ay Ay Ay M Aol Aeaf ool vt/ et/ Aas] aovf ansf Forf Ae.]
frgediigid i ol B g P e 2.0 82581 B B2v CiB £26 2D o cE G oF CIF € Cam 1T CuCr Cix S
A P AR 5 I R R L LS )
L L i  EN T
A bl e A e doa 4 1 DEVICE
ST« A e < A T o A € NI 3 3 '
' s o 274 ese ens 220 i ome B2C m'e'r/ - sy s oo 228 l d eese gze 237 ADDRESS
g e ‘ PRV wihy ez | o 7| miemy  amese
..‘(7’.1 : T 0 [#73s] " afwy] o —
- ]
on o5
L] [ e - I__L H
- o Bus RESET
G G
— ) —
. Hicro 4 TeTer weematinp
! atids 3774/ 63 110
L
2N\ 74510] sty e .
A ] T
il quEs 1:13 IMESSAGE RS
af L4 WL - JREGISTER ] i
iowoera e xesice micciul/ | i - € e
' 1~
- me HARDWARE oo e ,,7‘5’01,,, e !L".u:‘:k", - N.::mm
i VECTORED A Compl bt | s 209 5L
INTERRUPT ar 3 PO
g N6 H Lc AA_R_
o -l e LT il ] —— s E
| @) ’ vrw R ety : e S -
Y PR 3 t
g 2! .- )
I L PP =} =t i —
r - SR — = o e
Tek dmtd e e d amen iy b St — 1t oy v
r" i o o2
— i o %ie \RALU c
1] 1 T - 8US
sl delibeal 5
pr T o s
Lot S n c2g |
] ':“PT et et vikes v
e P
I s
|
¢ : kst lmuer 8 Al 4 erirel 26 e madiag <
s . et ¥ ey b & bt r
IRer e | I o i A E R yury ) .
o o — Joe DAIA £ ADDRESS AND " STATUS CiRCUITRY]
3 —_ 510 . A SrET CLoek
comrs - .
Isma BzM
! 1 |
L | ———- o FanT WG| mcon svm] CESCRRTION | SCTSTSCI
? AP400 L | LIST OF MATERIAL
MEMORY - | ST T [ o [0 | ANALOGHES [3 Ao, wass oreso
DATA . [} RiTion © brcmass  pwours
: 8uS : FUs I e S SCHEMATIC
— 1 T e
- - = =gz Ml L s ARRAY PROCESSOR PDP-1I
M 1 S o llwers 1200 12 _
; a5boss |||t == INTER FACE BCARD
) el Baans 1en 11 S s - T o
4 ; if‘i‘“‘ B [ wexr asar | useo on 22 | D A
’ v o itan W aw Sur 07 o 5/
PR RS St TS S YR T Y o2 fid Roas prs prrrT. rrven ]uxm., = 2 -
' “To 1LY l 14 ] 13 T 12 l " I 10 I [ 1 . I 7 | . l [ I 4 I 3 I 2 l 1
! | . !

Figure 2-B. Array Processor/PDP-11 Interface Board Schematic, Sheet 2

NOILVYH3dO 00¥dV 40 S31dIONIHd




V'8N NI Q34NIYd - 6261 LHOIYAJOD

0€-c

1 | 1 I 2 | n | 1o | * 1 * | i 1 ° | d 1 4 ! e { 2 | !

Vo
ai [ies| SrscRPTION G S
T 1 57¢ cweer -~ =1

<

AUX INPUT PORT AUX OUTPUT PORT

J2
15300015 #
“shesmasota oo

i

- er
T3, mTEPY

- 556 _9 @) () 63 3
H _— -
; ettty Lo .

j H% S
: L Lol ool
H %y i Y B ORI TN
] s o > AP Ry . H
2 2s #uns T B S \ !
M & (2
i [Ap—
$ s R4
T, [
s B8iM e
bb q OPTRS o e
2 WAA readi3 STRAPPING “ ,
SoJa- ATe conr. 2s¢ \/ -
- reescq e T ] e
ALY F

-l' AUN AT
H AP o ATRE
—
. €

< L d

- » Tmnnannd Taamonnd Y o e

__ . S e me Tuamnand — €3] T e e

s 2/3 .
. E

La N 1 z
A - Sof s As st e wa farg de bkbene
INCE WEA TR v Gl Agrcmr PHzSOE

° " oo deik el f D
i ; s A orr
1} A% e
i w
— (1] —
! L5157,
: Ay e awes)
~c <
f AUX 1/0 INTERFACE
i

LiST OF MATERTAL

: em) PANT MO CmCuUIT SYM DEACRIPTION MATL $PEC a8
4 S

; C S wmnd 512178 ANALO STC WAKEFIELD, MASS. 01880
_, il Stk i SCHEMATIC
e ARRAY PROCE. SOR FDP-1/
o INTERFACE BOARD
s I == == fizall [ R
ArrLICATION e ) Tme < &
o e I 1 I 1 I [F] ‘i 12 I " I w0 | . I . ]7 7 1 - | [} ] -4 | 3 I 2 I !

oovdv

Figure 2-C. Array Processor/PDP-11 Interface Board Schematic, Sheet 3




INTRODUCTION

This chapter describes the AP400 Array Processor
software and includes discussions of system software,
application software, utility software, and diagnostic
software. Applications are discussed together with some
generalized programming considerations. This chapter is
an introduction to AP400 software. It is not intended to
be used in place of a programming manual. Separate
programming manuals provide detailed explanations and
programming techniques for each level of AP400
software.

The AP400 Array Processor has been designed to
allow the user to program in HOST FORTRAN, HOST
Assembly Language, or AP Assembly Language. A well
documented AP Assembler, AP Linker, and Interactive
Debugging Tool (IDT) provide the necessary tools for
rapid design, development, and debugging of user pro-
grams written in AP Assembly Language.

The complete AP400 Array Processor system in-
cludes all of the software at the following levels:

System Software

For control of the Host computer and
array processor activity.

Application Software

For problem solution and real-time tasks.
Utility Software

For software preparation and use.
Diagnostic Software

For hardware and software fault detection
and isolation.

3.1

3.2 SYSTEM SOFTWARE
The AP400 system software minimizes programming
complexity and provides maximum user flexibility. AP400
system software programs are resident in both the Host
computer and the Array Processor.
Host-Resident
AP Manager/Driver
AP400-Resident
AP Executive
AP Executive Service Subroutines

3.2.1 AP MANAGER

The AP Manager is one of the two programs resi-
dent in the Host that control access to the AP400 from
the Host and provide services to help maintain orderly
communication between the two systems.

__ The AP Manager interacts with Host Functions, pro-
viding certain error detection and handling services for
them. The design of the AP Manager is as independent
of a specific Host CPU Operating System as is possible.
Host Operating System dependencies are restricted
wherever possible, to the AP Driver.

3-1
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Host Functions and Host Assembly Language pro-
grams utilize identical call formats in calling the AP
Manager. The calling format is compatible to that used
to access FORTRAN program callable subroutines. In
many cases the user's FORTRAN program calls the AP
Manager directly, and additional Host Functions are not
required.

The AP Manager is a collection of modules that ex-
ist in a library, and as such only the routines the user ac-
tually requires need to be linked in by the Host Linker
(e.g. PDP-11 Linker). The AP Manager has a number of
subroutine-callable entry points, rather than a single en-
try point.

The FORTRAN calling sequence is as follows:

CALL subnam (arg1, arg2,...,argn)

On PDP-11 system, the HOST Assembly Language call-
ing format for the AP Manager is as follows:

MOV #ARGLST, R5
JSR PC, sqbroutine name
ARGLST:
BR 1% ;a calling
convention.
Parameter
address list

18$: (Program continues)

Given the following FORTRAN call:

CALL KEXFCB (FCBADR, STATUS)
The Assembly Language equivalent would be as follows:
MOV #1$,R5
JSR PC,KEXFCB
1$: BR 2%
WORD FCBADR
WORD STATUS
2%: ;(program continues)

The AP Manager determines the number of arguments in
the parameter list by examination of the “BR 1$”, and
verifies that the number of arguments is correct and
whether or not optional arguments are present.

ANALOGIC,E
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The AP Manager will vary according to the complexity of
the operating system, but is typically under 300 words.

3.2.2 AP Driver

The AP Driver is made up of several distinct com-
ponents, including both run-time (interrupt servicing) and
AP manipulation capabilities. The AP Driver performs
direct communication between the Host and AP, in-
cluding AP initialization, program loading, AP Function
initiation, interrupt handling, etc. The AP Driver performs
the actual load of Program and Data Memory contents.

Implementation of many of the AP Driver functions
and characteristics vary among Drivers for different
Hosts and Operating Systems. The following descrip-
tions refer to DEC RT-11.

The AP Driver under RT-11 is divided into two parts
to save Host Memory when possible. The Baseline Driver
(about 0.5K words) and the Full Driver (routines totalling
1K words). The Baseline Driver is common to all pro-
grams that use the AP400. The Full Driver is required (in
general) only by programs that need to load AP pro-
grams.

All calls to the Driver are followed with a check for an
error. Errors are denoted by a carry bit being set;
therefore, if the carry bit is not set, no error occurred.

Interrupts from the AP are handled by the Driver in
the following manner. If an interrupt is received from the
AP that is unsolicited, or unexpected, the Driver will just
record the error. The next call to the Driver will return an
error. The Driver will not output error messages, or Kill the
current program.

I1f the AP Driver receives a message from the AP that
it does not understand, it will record the fact that it got an
error. The Driver will then return an error on the next call
it receives.

3.2.3 AP Executive

The AP Executive is the AP-resident supervisory pro-
gram. It controls Host access to the AP, maintains order-
ly communication back and forth between the Host and
AP, and provides function dispatching, interrupt, real-
time and exception handling services.

The AP Executive may be linked fully, partially or not at
all with AP Functions before loading into the AP400,
depending upon the planned use of dynamic linking and
loading.

A version of the AP Executive which contains minimal
required services and no optional services is referred to
as the “Core” Executive.

The AP Executive has optional Interrupt/Trap
Handlers that provide various services for use when nor-
mal or abnormal interrupts or traps occur. In some cases
(as with the /O Done Interrupt), the Interrupt/Trap
Handler code is located within an AP Service Subroutine.

3.2.4 AP Service Subroutines

The AP Service Subroutines provide centralized ser-
vices for AP Functions such as Data Buffer finding and
allocation, Function Control Block fetching, parameter
list argument set-up, and memory zeroing.
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AP Service Subroutines are linked and loaded into the
AP with the AP Executive if they are needed by the AP
Functions being used.

3.3 APPLICATION SOFTWARE
3.3.1 General

The major segments of the Application Software are
functions or subroutines which reside in AP Program
Memory and AP Data Memory during run time. A library
of these functions is supplied with the AP400 from which
specific application programs may be assembled. For ex-
ample, the selection of the Hamming Window Function,
FFT Function, Magnitude Approximation Function, Log,,
Function, and appropriate management functions would
provide the user with all the subroutines or stored pro-
grams necessary to construct a spectrum analysis ap-
plication program. ’

Because the AP400 also has an Assembler which
operates in the Host, a user can develop other routines
for applications where additional or unique algorithms
must be implemented.

These routines require complementary routines to be
located in both the Host and the AP400. These are refer-
red to as Host Functions and AP Functions. A symmetry
exists between Host-based and AP-based application
software. For nearly every Host Function there exists one
or more AP Functions.

Host Functions are routines which call up AP Func-
tions in the AP400 or AP management functions in the
AP Manager. Host Functions may be called from Host
FORTRAN and/or Assembly Language programs. A con-
venient way of using the AP400 is via FORTRAN, calling
up selected Host Functions from a Host Function
Library.

When called, most Host Functions set up Function
Control Blocks (FCBs) to invoke specific AP Functions in
the AP400. The information placed in FCB’s constructed
by Host Functions comes from the Host Function call,
from defaults written into the Host Function, from
default parameters placed in the FCB originally, and
from control conditions established through prior Host
Function calls.

Once syntactical and certain logical checks have
been performed on the Host Function call, and the FCB
has been constructed, the Host Function calls up the AP
Manager to communicate the address of the FCB and
the “Execute FCB” command to the AP Executive.
Before, during, and after AP Function execution, the AP
Manager performs a variety of interactive operations be-
tween the calling task, the Host Operating System, and
the AP Driver.

3.3.2 Requirements

To utilize AP Host Functions, the Host Operating
System should support a FORTRAN compiler and a
Linker (or similar) program capable of accessing Host
Functions called by a user's FORTRAN program from
the library of Host Functions supplied by ANALOGIC.

AP400 Host Functions may be called from Host
Assembly Language as readily as from FORTRAN. If the
user’s system does not support a Linker (or similar) pro-
gram capable of library access, Analogic can supply
Host Functions as individual object modules rather than
as a single library module.
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While certain AP400 Host Function-related features
require peripherals in order to operate (e.g. run-time func-
tion loading requires a random access storage device),
most do not, and may be used on any system with
enough main memory to support a resident Host Operat-
ing System, the user’s program, the AP Host Functions
required, and the AP Manager/Driver.

The “average” AP Host Function requires (for most
systems) under 10 16-bit Host Memory words for a call to
the function and approximately 40 words for the function
itself.

Host Functions may be called either from FORTRAN
or from Host Assembly Language. Both calling methods
take full advantage of the ability of the Host Function to
set up a Function Control Block for access by the AP
and to screen for certain syntactical and logical errors in
the call.

The user may, of course, choose to bypass Host
Functions and set up single or linked FCB’s and call the
AP Manager directly.

3.3.3 Function Naming Conventions

Function names serve the purpose of identifying
functions, of organizing functions into related groups, of
distinguishing among function types or versions, and of
relating various levels of Host and AP function-type soft-
ware.

A 5 or 6-character Host Function name is made up of:
K [Name] [Version or Type]
3-4 chars. 1 digit
Where:

-The prefix K serves to make Host Function names
unique from standard or user-written FORTRAN
functions, and establishes that a returned status value
will be a 2's complement integer value.

-The Name is a descriptive 3- or 4-character name
which represents in mnemonic form the objective
of the Host Function. A small number of Host Functions
may have a Name of 5 characters.

-The Version or Type identifies the function uniquely
from other similar (yet different) functions. Other Host
and AP Functions may support different data types or
algorithms which perform the same task.

A 5 or 6-character AP Function name is made up of:
Q [Name] [Version or Type]
3 or 4 chars. 1 digit

Host and AP Function names relate to each other (for ex-
ample KMUL1 and QMULA1

3.3.3.1 Calling the Host Function

-In FORTRAN the Host Function is called by CALL
KMUL1 (parameter list).

-In Host Assembly Language the Host Function is
caled by JSR PC,KMUL1, with the parameter list pointed-
to by register R5 (PDP-11).

-The parameter list is identical in both cases.

3.3.3.2 Host Function Implementation (in Host Assembly
Language)
-Host Function module (file) name is KMUL1.
-Host Function entry-point label is KMUL1.
-Function is retrieved from a Host-specific-format
function library by the name KMULA1.
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-In the Host Function, the symbol IMUL1 is equated
to the value of the Function ID for this function.

-The symbol IMUL1 is then used in the Function
Control Block to supply the Function ID number itself.

3.3.3.3 AP Function Implementation (in AP Assembly
Language

-The AP Function module (file) name is QMUL1.

-The AP Function entry-point lable is QMULA1.

-The symbol IMUL1 is equated to the value of the
Function ID for the Function.

-The symbol IMUL1 and the entry point label QMUL1
are then used in the FUNC directive of the AP Function
to allow recognition of that AP Function by the AP Ex-
ecutive, from the Function ID retrieved from the FCB
which in turn is retrieved from Host memory.

Usually, the Function Subroutine(s) called by an AP
Function will be named similarly to the Host and AP
Function. In most cases, the Function Subroutine name
will be simply the Host or AP Function name, without
the K or Q. As with the Host and AP Functions, Func-
tion Subroutine names frequently terminate with a type
or version number from 1 to 9. This trailing digit in-
dicates feature variations among functions, such as
speed, accuracy, size, flexibility, etc.

In general, the AP Executive has the only access to
the AP Function’s Qxxxx entry point, through the AP
Assembly Language FUNC Directive in the AP Function.

3.4 UTILITY SOFTWARE

Since each Host CPU and Operating System is rela-
tively unique, the actual implementation of AP400 Utility
Software will differ somewhat among systems. Precau-
tions have been taken in the design and implementation
of all Utilities to minimize these system-to-system dif-
ferences. These include the use of a modular software
structure, that isolates system-dependent features (such
as file access and 1/0) from system-independent
features. The actual implementation of Utility code is in
an industry-compatible subset of ANSI-66 standard FOR-
TRAN.

3.4.1 AP Assembler

The AP Assembler allows the user to translate AP
Assembly Language programs to produce a link-
able/loadable object module and a program listing with
flagged errors and instruction-by-instruction machine
language code. The AP400 Machine Language code pro-
duced in the AP Object/Load Module is evenually stored
in either AP Program Memory and/or AP Data Memories.

The AP Assembler allows the user to specify one or
more AP source files to be assembled together to (op-
tionally) produce an AP Object/Load Module and (op-
tionally) a program listing with the output expressed in
Hexadecimal, Octal, or Decimal radix. The Object/Load
Module produced by the Assembler may be immediately
loaded into the AP400, or it may be linked with other O/L
Modules to produce another, single, O/L Module.

The user’s control of the AP Assembler is via
simple, one-line commands, which may be entered from
the keyboard or, on many systems, placed in indirect
command files. An example of the assembly of an AP
Assembly Language source module MUL1.APA and the
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production of an Object/Load Module and Assembly
Listing (PDP-11 RSX-11M) is:

>ASM MUL1, MUL1 = SYMDEF, MUL1

The leftmost-named file will be produced by the
Assembler and will be called MUL1.APO (AP Object/Load
Module); the next file will conatin the Assembly Listing
and will be called MUL1.LST. The two input files to be
assembled together are SYMDEF.APA and MUL1.APA.

3.4.2 AP Linker

The AP Linker combines two or more AP Object/-
Load Modules produced either by the Assembler or,
previously, by the AP Linker itself, and produces another,
single new O/L Module. The output of the AP Linker may
be loaded into the AP400 or it may be linked with other
AP O/L Modules.

For one version, the user supplies the AP Linker
with the names of the O/L Modules to be read, the name
of the single result O/L Module to be produced, and the
name of the file which is to contain the Object/Load Map
that is produced as a result of the linking operation.
Another version of the AP Linker also allows the user to
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form and manipulate entire libraries of AP O/L Modules,
and automatically selects modules implicitly called-for
by those modules explicitly specified in the AP Linker
command string.

3.4.3 Interactive Debugging Tool (IDT)

The AP400 IDT is useful for both software and hard-
ware debugging and fault detection and isolation. it pro-
vides the user with interactive access to internal
elements of AP400 architecture. Programs may be
single-stepped, run, or run under (very powerful) break-
point control. Memories, general registers, /O registers,
and flags may be inspected and modified at will. During
IDT execution, the user may specify or select Binary,
Octal, Decimal, and/or Hexadecimal radix for input and
output. IDT is controlled through the use of simple
2-character commands entered from the keyboard or
stored in macro commands. An example of a typical se-
quence of operations, where the user is about to debug a
newly-assembled (and/or linked) Object/Load Module,
follows. In the example, the user has selected the Hex-
adecimal radix for input and output. The user’s entries
are underlined in this example, and always follow the
IDT > prompt.
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TYPICAL SEQUENCE OF OPERATIONS
WITH IDT

IDT >RL ROUTN1

IDT>D 1

25,300

IDT>D 124

0124

IDT>D S

cooocoooco0o00O
L s o
MNNONNRNNNRNNNN
DOmPOONO O D

WWO MOoOOoOONHOoOOoO

IDT>R 7,

7 34F0

IDT>E

IDT > EX

IDT >PC

IDT>R 8

7 2D00

0054

8 O1FE

07F4A0
7F4A
0030
000F
0000
0000
0000
FFFF
0200
4000
5500
2D00

OO0 TM—=00 TOO

User reads program
ROUTN1.APO from the
default system device and
loads it into AP Program and
Data Memory.

User places the value 300
(Hex) into AP Data Memory
location 125 (Hex).

User requests the contents of
AP Data Memory location 124.

IDT responds.

The user requests that a
series of Data Memory loca-
tions be displayed.

The “S” argument, when used
with Data Memory, Program
Memory, or Register Manipu-
lation commands, indicates
that either the next 10
memory locations or all 16
general-purpose CP registers
should be displayed. In the
case of memories, the “S”
argument also causes IDT's
address pointer for that
memory to be stepped ahead
by 10 (Decimal).

The user displays the con-
tents of CP General Register
7, with the option to modify
its contents if necessary, or
leave it intact (option exercis-
ed).

The contents, if inspected
again, will have been chang-
ed.

IDT responds.

The user begins execution at
AP Program Memory location
20. IDT will return control to
the user immediately, so that
the running routine may be
monitored, halted, interacted-
with, etc.

The user examines the current
contents of the Program
Memory Address Register,
during execution.

As well, the user checks the
value of CP register #8, since
in this example, this program
should not be executing
beyond Program Memory loca-
tion 42 until the contents of
CP register #8 have gone
higher than 200.

IDT > HX

IDT>BK 2
PMAR'GT’ 42

R8'LE’200
END

IDT>PC 20

IDT>XB

BREAKPOINT 2 CONDITIONS ME

IDT>R 8

8 0023

IDT>PC

0043

Since this condition is unex-
pected by the user, he directs
IDT to halt AP Execution.

An IDT Breakpoint (#2) will be
set to rapidly determine the
cause of the routine executing
beyond Program Memory ad-
dress 42, with CP register #8
containing the proper value.

A defined Breakpoint may
contain any reasonable
number of conditions of many
types; their true/false states
will be continually AND’ed
together logically during
subsequent AP program ex-
ecution. If more than one
Breakpoint is defined, then
the T/F outcome of each will
be OR’ed together during ex-
ecution.

The user directs the IDT to set
the PMAR to 20, preparatory
to breakpoint execution.

The user directs IDT to begin
breakpoint execution. IDT will
rapidly single-step AP pro-
gram execution, each time
checking for a logical AND of
“true” for the set of break-
point conditions specified.

T!

IDT announces that the pro-
gram has attempted to ex-
ecute beyond Program
Memory address 42 before the
value in CP register #8 ex-
ceeded 200

A quick check of CP Register
8 shows that its contents are
not appropriate

for this program’s execution
beyond Program Memory loca-
tion 42.

A check of the PC shows ex-
actly where, during program
execution, the set of condi-
tions occurred. IDT replies
that the PMAR is now 43.

The user may now inspect
registers, Data Memory loca-
tions, flags, or other AP struc-
tures to determine the cause
of this error. As well, the user
might choose to continue ex-
ecution by single-stepping the
program by hand' and in-
specting the full machine
state after each instruction
execution.
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3.5 DIAGNOSTICS

3.5.1 General

A set of diagnostic software programs is included as
part of the standard software package delivered with
each AP400. These diagnostics provide a user capability
to check various parts of the AP400 and to isolate faults

if a malfunction within the AP400 is suspected. The
diagnostics allow the user to localize a suspected
malfunction to a board level and to determine the nature
of the malfunction.

3.5.2 Typical Diagnostic Program

A typical diagnostic summary is shown below:

TEST NAME: ADTO007
TEST TYPE: Data Memory Logic Test.
DESCRIPTION:

TWO ACCUMULATORS IN PIPELINE ARE IN-
ITIALIZED. THE PIPELINE THEN GENERATES
A SUCCESSION OF NUMBERS. THE CAB AD-
DRESSING PUTS THEM INTO SUCCESSIVE
MEMORY LOCATIONS. THE CONTROL PRO-
CESSOR CHECKS THAT EACH MEMORY
LOCATION HAS THE RIGHT CONTENTS.

THE TESTS REPEAT TO INSURE THAT EACH
CAB LOCATION IS TRIED FOR NEARLY ALL
VALID DATA MEMORY LOCATIONS.

HOST CPU REQUIREMENTS:

NONE (AP MEMORY SIZING
CONTAINED)

IS SELF-

OPERATION:
NO OPERATOR INTERVENTION REQUIRED
INTERPRETATION OF RESULTS:

FAILURE TO EXECUTE TO COMPLETION IS
LIKELY TO MEAN THAT THERE IS A HARD-
WARE FAILURE ON THE DATA MEMORY
CARD IN THE VICINITY OF THE SCRATCHPAD
CHIPS.

WHEN PROCESS TERMINATES ON ERROR,
THE FOLLOWING ARE REGISTER CONTENTS:

R2-LOCATION OF MEMORY WORD UNDER
TEST

R3--HIGHEST DATA MEMORY LOCATION TO
BE TESTED

R4--FLAG STEPPING FROM 8 DOWN TO 1 IN-
DICATING TEST VARIATION

R5--NUMBER OF NO-OP PACS BEFORE TEST
PACS

R6--VALUE READ FROM LO PART OF DM
WORD

R7-VALUE READ FROM HI PART OF DM
WORD

R8--EXPECTED VALUE OF TEST

EXECUTION TIME:
ABOUT 2 SECONDS PER 4K OF DATA MEMORY
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3.6 PROGRAMMING CONSIDERATIONS
3.6.1 Introduction

When implementing an application with an array
processor, there are certain choices available to the
user. Choices relating to overall application re-
quirements are typically: throughput speed, accuracy,
memory size, host burden, interfacing hardware, and
development time/cost. Complementing these are pro-
gramming choices relating to processing algorithms and
data integrity, and programming considerations in-
ctuding selection of rounding or truncating, required
number of processing iterations, scaling techniques, and
table-based function argument resolution.

After the key questions of AP400 hardware con-
figuration and computational specifications have been
answered, there are other software development choices
relating to programming level, selection of Host/AP 1/O
routines, and the use of Auxiliary I/0O. Some considera-
tions are included in this section to provide a better
understanding of the features of the AP400.

3.6.2 Programming Level Choice

The user has access to the full computational and
logical power of the AP400 on any or all of several pro-
gramming levels:

FORTRAN

Powerful FORTRAN higher-level language function calls
provide full access to the AP400 Function Library with a
minimum of user-programming and interaction with the
internal Array Processor Operation.

HOST ASSEMBLY LANGUAGE ..Two Key Methods

When system throughput speed, and flexibility must
be maximized, the user can make significant gains by
programming in Host Assembly Language. The user can
make calls to Host Functions from Host Assembly
Language (exactly as from Host FORTRANY); or, for fur-
ther improvement, the user can make calls to AP Func-
tions via chained Function Control Blocks, rather than
use individual calls to the AP by individual Host Func-
tions.

AP ASSEMBLY LANGUAGE ... Several Methods

When system performance must be optimized, or
unique capabilities not available in existing AP400 func-
tions are required, the user may readily achieve his ob-
jectives through program development in AP Assembly
Language. This may be done, simply, by combining two
or more existing AP Functions, with little or no actual
programming taking place or, bv using existing AP
Functions and Service Subroutines in different program
configurations. The user can also create his own func-
tions, directly accessing the AP400 Pipeline and even I/O
when necessary. Full flexibility in the use of AP400 com-
putational and logical resources is avalaible to the user
via the Assembly Language of the Array Processor. A
vertical architecture is used. Registers, flags, the
arithmetic pipeline, and all other internal structures are
available to the User via individual one to four-word in-
structions ranging from simple two-register operations to
more complex multi-operation macros. The result is a
familiar minicomputer type Machine and Assembly
Language with the benefit of powerful arithmetic
Capability.
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3.6.3 Number Formats

An arithmetic computation such as an algebraic ad-
dition can produce a result with one more bit in it than
in either operand. Hence, some attention must be paid to
how data gets scaled before, during, and after a series
of additions and subtractions. Recall, that ali floating
point numbers use two parts, fraction (sometimes called
value or mantissa) and exponent (sometimes called scale
factor or chracteristic). To represent numbers in full
floating point, each number in an array is represented
explicitly with both a fraction and an exponent. In block
floating point, a common exponent is extracted that ap-
plies equally to all numbers in the array or vector, and
the individual numbers in the array are represented
relative to that common exponent.

For example:

Real Number Array

(0.01592, 0.00375, 0.00048)

Full Floating Point

(10~ 'x 0.1592, 10 — 2 x 0.375, 10 —x 0.48)

Block Floating Point
10 ~ 'x (0.1592, 0.0375, 0.0048)

When full floating point numbers are added, before
the fractions can be combined, the exponents must be
compared to see which is the smaller number (assuming
both are normalized). Then the fraction of the smaller
number is downshifted by as many places as the dif-
ference in exponents to align the decimal points. Addi-
tional operations are sometimes needed afterward to
normalize the result. That is, to provide a full fraction for
the word size available and assign the corresponding ex-
ponent.

When two vectors are being added using full
floating point numbers, the comparison, calculation of
the amount of shift, and the actual shifting must be
done for each number pair for the two vectors. This is
not necessary with block floating point numbers as used
in the AP400. In block floating point, only a single expo-
nent comparison between the two vectors is needed and
then all decimal points within each vector will be align-
ed. Accumulating numbers within a vector, such as oc-
curs when implementing a moving average or approx-
imate integration, is simpler in block floating point,
since with only a single exponent, no comparison,
calculation of shift, or shifting need occur.

For the AP400, the precision of each word within a
vector is one part in 22 or 0.00001%. The dynamic range
within a block representing a vector, as measured for
variables such as level, amplitude, magnitude or linear
terms is 138 decibels. Additional dynamic range can be
obtained through use of double precision word formats,
for variables such as energy, power, magnitude squared,
or quadratic terms.

3.6.4 Block Floéting Point Implementation

Block floating point rather than full floating point
was selected for implementation in the AP400 to pro-
duce an array processor capable of executing high
speed vector computation with much simplified, and less
iterative hardware. This, in turn, provides a significant
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reduction in price for this new generation of array pro-
cessors with an inherent increased reliability resuiting
from fewer components. As well as a reduction in
arithmetic hardware, the elimination of the continual up
and down shifting realizes a significant reduction in
memory from what is required in full floating point.

Implementation of block floating point processing in the
AP400 causes each vector to be “tagged” with two
numbers: an exponent common to all elements of the
vector, and a count of how many upshifts are needed to
block-normalize the vector.

Block-normalizing provides for the maximum preci-
sion available within the vector. Although the “tag”
keeps track of the exponent required for block normaliz-
ing, the actual exponent for the block is selected after
downshifting within the block to prevent dropping higher
order bits in a pipeline computation. This exponent
selection is referred to as scaling and is based on the
minimum leading zero count (LZC) within the vector and
how much number growth can occur at each pipeline
pass of the algorithm being implemented.

After a block of data is processed in the pipeline,
the resultant vector has associated with it a new block
exponent as well as a new LZC. The AP400 is configured
so that a maximum number growth of three can occur in
a single pipeline pass. If there are to be multiple passes
and the scaling cannot be handled within the word for-
mat, a programmed routine (using one of the PAC’s) can
be used to automatically handie the number growth. This
is done by monitoring the LZC of the data as it leaves
tha pipeline and using this value to control a program-
mable shifter within the pipeline to operate on the next
pass through. The number of shift positions required in
this programmable shifter needs only to be large enough
to handle the largest number growth (three) that can oc-
cur in one pass of numbers through the pipeline. The
Control Processor, using a specified subroutine, does
the actual block exponent manipulation to respond to
the shifting required in the pipeline and keeps track of
how much shifting has been done via a “Pipeline Scaling
Register”.

This unburdening of the user is an example of the suc-
cessful implementation of a cost effective feature, the
user of block floating point.

Another example is the automatic conversion to
block floating point format. Function subroutines which
are callable either from Host FORTRAN of Host
Assembly Language, automatically convert the data be-
ing transferred to or from the Array Processor. For exam-
ple, Host FORTRAN function: CALL KHIAB (NSIG, 1,
1024),causes 1024 words of Host Integer data (NSIG) to
be transferred to the AP400 Data Memory and placed in
Data Buffer #1 in block floating point format. Also, CALL
KABHF (ANS, 20, 513) causes 513 words of block
floating point data to be transferred from Data Buffer
#20 (in AP400 Data Memory) to 513 locations in Host
memory defined as (ANS). This transfer includes the
automatic conversion from block floating point in the
AP400 to full floating point in the Host.

A final consideration in the implementation of block
floating point is the reduction in the number of machine
operations required relative to the use of full floating
point. As an example, the number of shift operations
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done in performing the “butterfly” in a RADIX 2 FFT is
reduced by more than two thirds when implemented in
block floating point rather than full floating point.

3.6.5 Sample HOST FORTRAN Program

Figure 3-1 is an AP400 application written in HOST FOR-
TRAN. The program sequence performs a real FFT on
1024 data points read from a file on disc, followed by a
3-point digital filler, a magnitude approximation, and an
averaging over 50 spectrum.

The key Function calls where the heaviest AP utilization
and HOST-AP interaction occur are:

CALL KHIAB
CALL KFVSC
CALL KTHPFC
CALL KCMGAR
CALL KADD

The program shown is in a non-linked format and
overhead time is required for every HOST Function call
to the AP. By linking or chaining together those calls
where the heaviest HOST and AP interaction occurs, a
single HOST Function call can be used to replace
several calls. The can be done by linking the HOST Func-
tions by a HOST Linker (e.g., DEC Linker) and the cor-
responding AP Functions by the AP Linker. This type of
linking requires the user to write AP Assembly Language
Code to perform the links and also requires the writing
of a new Function Control Block in HOST Assembly
Language. The overall result of this linking or chaining
will be an increase in throughput speed for the applica-
tion program.

The function KWAIT is appended to the program to allow
the AP to complete processing before the Host starts
printing out the answer. This is used to allow the AP to
run asynchronously at its fastest speed, while the Host
interrupts only after each AP processing stage is com-
pleted.

3.6.6 Table-Based Functions

The Characterizer Stage of the Pipelined Arithmetic
Unit can be used for high speed computation of table-
defined functions. For example, the same general pur-
pose linear interpolation formulae can be used on dif-
ferent tabular data to form functions such as logarithms,
square roots, sines, and reciprocals. In addition, table-
based functions can be used to calibrate or linearize
data that has been input to the AP400 from transducers
or sensors before using the data in a specific signal pro-
cessing function. In a real time signal processing opera-
tion, this provides the capability to calibrate ‘‘on-the-fly”
and the calibration tables can be updated as often as re-
quired.

An example of the use of a linear interpolation
algorithm to modify data that has been input to Data
Memory is presented to illustrate how table-based func-
tions are performed in the AP400. Figure 3-2 shows an
arbitrary function y = f(x), that is used to modify the data
(x). The function (y) could be a calibration compensation
curve to linearize a known non-linear response of a
transducer.

To begin, consider the function y = f(X) to have
been approximated by 64 linear segments, defined by
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1000

10

DIMENSION ANS(513), NSIG(1024), FLTR(2)

CALL KRESET
CALL KLOAD (1, ‘APPROG’)

N =50
FLTR(1) = .25
FLTR(2) = .25

CALL KSETIW(0)
CALL KHFAB (FLTR,4,2)

CALL KALDB (513,20)

CALL KZRDB (20)
XX = 1/FLOAT (N)
CALL KHFAB (XX,6,1)

CALL ASSIGN (7, 'INDAT.DAT’)
XXX
XXX

DEFINE FILE 7 (N,1024,U,IRECN)
DO 10001 = 1,N

READ (7) NSIG

CALL KHIAB (NSIG,1,1024)
CALL KFFTR1 (1024,2,1)

CALL KFVSC (10,2)
CALL KTHPFC (2,10,4)

CALL KCMGAR (3,2)

CALL KADD (20,3,20)

CONTINUE
CALL KMULS (20,20,6)

CALL KABHF (ANS,20,513)

CALL KWAIT
PRINT 10, ANS

FORMAT (5F16.7)
CALL KEXIT
END

Reset the AP400.
Load AP Program/Data Memories from an AP400 Ob-
ject/Load Module stored on disc.

Establish the number of iterations for this process.

The filter to be used will be
.25, 1., .25.

Transfer the two end-points of the filter into the AP; call
it Data Buffer #4 (DBF 4).

Allocate DBF 20 required later for summation of results;
DBF 20 has space for 513 values.

Zero-out DBF 20 before starting summation.

Compute reciprocal of number of points.

Transfer the reciprocal of the number of points into the
AP; call it Data Buffer #6.

Prepare to read data from a file on disc.

Perform the read-and-process operation “N” times.

Read 1024 points from an unformatted file into array
NSIG.

Transfer 1024 points into the AP.

Perform Forward FFT on contents of DBF 1, and place
results in DBF 2.

Re-order the data in DBF. 2, placing it in DBF 10.

Perform a three-point filtering operation on the data in
DBF 10; results go in DBF2.

Perform a complex magnitude operation on the contents
of DBF 2; results go to DBF 3.

Sum the results of the most recent operation (DBF 3) in-
to previous results (DBF 20). ’

End of the iterative procedure.

Multiply each point in data set (DBF 20) by the inverse of
N, thus averaging each of the 513 respective resuit
points.

Transfer the 513 result points from DBF 20 to the array
ANS in the Host.

Wait for the last AP operation to complete.
Print the resulit.

Exit from this program through the AP Manager.

Figure 3-1. Sample Host FORTRAN Program, Real FFT on 1024 Data Points and Average the Results
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break-points XT1, XT2, ... XT64. The Characterizer Stage
of the PA is programmed to operate on the first 6 bits
(25 = 64) of the truncated input data word and use these
leading bits to access Data Memory. Prior to accessing
Data Memory, an offset address To is added to the trun-
cated version of the data word. Since tabular data may
be loaded into any contiguous space in Data Memory,
this offset is the starting address of the tabular data.
(Refer to Figure 3-3 for a pictorial representation of the
operations being discussed). The combined address is
then used to access the slope m and the intercept b of
the straight line between X;, and Xy,.

The truncated data X+ is then the argument for the two
values m(X;) and b(X).

The pictorial of Figure 3-3 shows how the values of
m({Xy) and b(Xt) are used to compute the function
y = X'm(Xy1)+ b(X7) where X is now the original 24-bit data
word and (Xy) is the first 6-bits. 24-bit data is stored in
both S1R and S2R, since two table-based functions can
be performed in the PA at the same time. The table star-
ting address in Data Memory To is used as the source
address S3R.

It is also possible to perform a two-dimensional
table-based function with the Characterizer Stage con-
figured to use the leading bits of two input data values
S1R and S1l. The table data is loaded into Data Memory
so that the combined two-dimensional argument is the
address used, together with the offset To, to access table
parameters.

— — —

7~
b(XT1)

LINEAR SEGMENT
BETWEEN X4 AND X715

FUNCTION
y = f(X)

STARTING
ADDRESS
To

Y
P

Figure 3-2. A Typical Linear Approximation Function
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SOFTWARE

X T&o
S1R S1l S3R
e, e
MSB’s = X1
L —— +
\’\/w
TO

———— DATA MEMORY
ADDRESSOF m, b

X
X |t
FROM
{ X-m(Xy) DATA MEMORY
b(Xp)
+ —_—

{ y = Xem(Xp) + b(Xp)

Figure 3-3. Implementing A Linear Approximation Function by Table Lookup
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4.1 INTRODUCTION

This chapter lists some of the functions included in
the Standard Library of Host Functions that are supplied
by Analogic for use with the AP400 Array Processor.
This chapter also describes how the function call is im-
plemented by the use of Function Control Blocks. Refer
to the AP400 Function Reference Manual and AP4C0 Pro-
cessor Handbook for a complete list of these Functions
and instructions for their use with the AP400.

Although the functions described in this chapter are
presented in the standard one-line FORTRAN call format,
the same function may be called in the Host Assembly
Language. In the latter case, the arguments which make
up the parameter list are called in separate lines of in-
structions rather than on the one line. The format in this
chapter, however, uses only the one-line, FORTRAN for-
mat.

To execute array processor functions in response to
a Host function program, the AP400 Program Memory
must first be loaded with the AP-resident function. These
may be downloaded as a complete library before any
processing; or they may be selectively loaded before
their use in a particular program; or they may be loaded
“on the fly” as called in the program.

4.2 FUNCTION CONTROL BLOCKS

The elements of the standard function format are
represented in a Function Control Biock (FCB), used in
the communication between the Host and the AP400 in
implementing that function. When the Host program in-
struction calls one of these functions, the Host Func-
tion’s response is to set up a Function Control Block
and to move the arguments of the Host Function Call in-
to appropriate registers in this block. Then, when the
Host-resident AP Manager and Driver pass the call to the
AP400, the AP400 is able to retrieve the parameters
defined in the FCB and execute the function in the
AP400. (For more details on the sequence of this inter-
face, refer to the AP400 Function Reference Manual.)

4
HOST FUNCTION CALLS

4.2.1 FCB Structure

The structure of the FCB consists of two parts: a
main part in which the structure is fixed, and a secon-
dary part in which a variable structure provides the flex-
ibility to allow a variety of parameter list formats to be
communicated, Figure 4-1 illustrates the two parts of
the the FCB Format; the second part is typical of and
may vary from one function to another. The example of
Figure 4-1 is representative of a single FCB, where the
two parts are attached. An alternate FCB format “links”
the two parts.

4.2.2 FCB Elements

Each element of the FCB identified in Figure 4-1
represents one word in Host memory. On most systems,
each Host Memory word consists of 16 bits. Where the
element is a physical Host Memory address, it is possi-
ble that such an address can exceed the capacity of a
16-bit word. Therefore, an allowance is made for two
16-bit words to define the Host Memory Address. When
only one word is required for the address, the lower-
addressed word will be set to 0. Tabie 4-1 provides a
description of the Function Control Block word
elements.

Word Element Name

0 Function ID Number
1 Control Information
2 Done Flag
3-4 LinktoNextFCB
5 Parameter List Type
6 Number of Arguments
7 Parameter List Length
8-9 HostMemory Address \ Variable Secondary Structure
10-11 Data Buffer ID Number ( Example is Type 1
12 Other Argument
13 Other Argument

Fixed Main Structure

Figure 4-1. Function Contro! Block Contents
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Table 4-1

FUNCTION CONTROL BLOCK ELEMENTS — DESCRIPTION

FCB ELEMENT

DESCRIPTION

Function ID Number

Control Information

Done Flag

Link to Next FCB*

Parameter List Type

The Function ID Number is associated with, and recognized by, a
particular AP Function. It is a 16-bit positive numeric code,
where the values 0 -32767 are reserved for use by ANALOGIC,
and 32768 - 65535 are available for the user.

Individual bits in the Control entry specify AP action in a variety
of situations. A typical control instruction may require the AP to
interrupt the Host when the AP has finished with a function.

The Done Flag word is set to 0 by the AP while the AP is processing a FCB.
The Done Flag word is set to a positive, non-zero value if and when the AP
completes the individual FCB successfully. The Done Flag is set to a
negative value to reflect an error condition should an error occur during pro-
cessing.

Host Memory address of the first word of the next FCB in a linked list
(chain) of FCB’s. If this is a single FCB, or if it is the last FCB in a linked
list, this entry is set to 0.

Identification of the contents and format of the list of arguments that make
up the FCB Parameter List. (See “Paramter List Types”.)

Number of Arguments

Parameter List Length

Host Memory Address*

Data Buffer ID*

Other Arguments

Specifies the number of arguments in the FCB Parameter List. The Control
and Done Flag arguments (above) are NOT counted, since they are in the
fixed structure of the FCB and are always present.

Specifies the length of the following Parameter List, in Host Memory Words.
This information is useful to the AP Executive when it fetches an FCB from
Host Memory.

Host Memory Address of the first word of data, which may be a scalar, vec-
tor, matrix, complex pairs, etc. The AP Function will utilize this adddress in
accessing data. The first (lower-addressed) word contains the high-order
address bits, and the second (higher addresed) word contains the low-order
address bits. In application software, where it is known that a Host
Memory Address is restricted to 16 bits or less, and that the AP Function
does not use standad AP Executive Service Subroutines to handle the ad-
dress, only one word need be used.

The 8-bit ID of a Data Buffer which already resides in AP Data Memory, or
which is to be established by the AP Function called. The word following
the Data Buffer ID is ignored, but must be allocated if the standard
Parameter List Setup Service Subroutines of the AP Executive are used by
the AP Function called. In application software where it is known that the
AP Function does not use standard AP Executive Parameter List Setup Ser-
vice Subroutines to handle the ID, only one word need be used.

Miscellaneous arguments which are defined by the specific AP Function.
These may include actual values, pointers to AP Real-time Data Acquisition
Ports, etc.

*Requires two memory words.
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4.3 FUNCTION PARAMETER LIST TYPES
A number of standard parameter list types have

been defined for AP400 functions. These serve to limit

the variability that might otherwise appear among
parameter list types for various functions, and allow
Analogic to provide a reasonable number of parameter
list handling routines for use by AP Functions in the in-:
terpretation of Function Control Block parameter list

contents.

User-written AP Functions may utilize any of these

standard, supported, parameter list types; as well, they

may define and use unique types specially suited for a
particular application.

The following list describes each of the currently-
supported parameter list types. The VAL argument
always implies a single 16-bit value, for parameter list
types 1 through 8. The HMA argument always describes
a doubleword Host Memory Address, and the DBI argu-
ment always describes an 8-bit Data Buffer ID stored in
the first (lower-addressed) of two words.

PARAMETER LIST TYPES

TYPE | DESCRIPTION EXAMPLES
0 |No arguments, or one or more arguments defin- VAL
ed by and for a specific function. VAL, VAL
1 One or more Data Buffers in AP Data Memory DBla
DBla, DBIb, ...
2 | A single-word integer value, followed by one or VAL, DBla
more Data Buffer Identifiers VAL, DBIla, DBIb, ...
3 | A single-word integer value, followed by one or VAL, HMAa
more Host Memory addresses VAL, HMAa, HMAD, ...
4 | A single-word integer value, followed by one VAL, HMAa, DBla
Host Memory address and one or more Data Buf- | VAL, HMAa, DBia, DBIDb, ...
fer Identifiers
5 | A single-word integer value, followed by two VAL, HMAa, HMAD, DBla
Host Memory addresses and one or more Data VAL, HMAa, HMADb, DBla, DBID, ...
Buffer Identifiers
6 |A single-word value, followed by one Data Buffer | VAL, DBla, HMAa
Identifier, and one or more Host Memory ad- VAL, DBla, HMAa, HMAD, ...
dresses
7 |One Host Memory Address and a single Data HMAa, DBla
Buffer Identifier, followed by any number of HMAa, DBla, VALa
single-word integer values HMAa, DBla, VALa, VALD, ...
8 |One or More Host Memory addresses HMAa
HMAa, HMAD, ...

4-3
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4.4 CLASSIFICATION OF HOST FUNCTION
CALLS

Host (and AP) Functions may be classified by the
degree of demand on the computational/logical
resources of the AP. In the latter mode, the functions
can be grouped as indicated below:

AP Resource Management:

Functions that are generally used to control AP
operation and which determine certain status informa-
tion of and for the AP. These functions are actually part
of the AP Manager and Driver. Examples of functions in
this category are KSETIW and KWAIT.

AP Data Memory (Data Buffer) Management

These functions control the use of data buffers in
AP Data Memory or allow the retrieval of status informa-
tion regarding the Data Buffer area. Examples of func-
tions in this category are: KALDB and KDSBP.

Input-Output Operations

These functions are used in the transfer of data to
and from the AP400 and the Host and Auxiliary Ports.
They include the operations to transform the data into
compatible formats for the devices/computers involved.
Examples of functions in this category are KHFAB,
KABHI, and KABAX.

Logical Data Manipulation

These Functions are intensive in data movement
and logical operations, but perform little or no calcula-
tions. Examples of functions in this category are:
KDBDB, and KBRVR.

Straightforward Computation

These are functions which are gnerally
non-iterative,. and which perform limited calculations
without table lookup. Examples of functions in this
category are: KMUL, KMLCS, and KCONJ.

Most functions that operate upon two or more AP
Data Buffers, or that use at least one source and one
destination Data Buffer, may be performed upon the
same AP Data Buffer. For example, the contents of AP
Data Buffer 71 may be squared "’in place” from FOR-
TRAN, via

CALL KMUL(71,71,71).

Sophisticated Computation

These are functions which make extensive use of
the Arithmetic Pipeline and logical capabilities of the
AP400. They frequently use table lookup operations in
their implementation. Examples of functions in this
category are:KFFTR2, KTHPFC, and KSIN.

Host Functions may also be classified as simple,
where one Host Function call initiates one AP Function
Call; or as compound, where one Host Function Call in-
itiates two or more AP Functions, called individually, or
through linked FCB's.

These Host Functions may call upon a series of AP
Functions via linked FCB’s to accomplish frequently re-
quired multi-step operations. For example, in performing
the Convolution Function, the AP impiements the opera-
tion by multiplying the kernel and the FFT of the data
and then performing the inverse FFT of the product. Ac-
complishing these operations in response to the call for
a “Convolution” links the separate FCB’s that perform
the FFT of the data, the vector product, and the inverse
FFT, all independently of Host intervention.

AP RESOURCE MANAGEMENT

CALL KSETIW (WAITCD)

WHERE:
WAITCD =0
WAITCD # 0

COMMENT:

SET IMMEDIATE/WAIT RETURN MODE

to initiate “immediate-return” mode.
to initiate “wait-until-done” mode.

This function sets a flag in the AP Manager, which deter-
mines whether control is returned to the user program
after a Host Function has set up a Function Control
Block (FCB) or only after waiting for the task initiated by
the FCB to complete.

KSETIW

CALL KWAIT
COMMENT:

WAIT FOR ALL FCB’s TO COMPLETE

This function waits for all FCB’s in a chain to complete
before returning to the caller.

KWAIT

COPYRIGHT 1979 - PRINTED IN U.S.A.
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AP DATA MEMORY (DATA BUFFER) MANAGEMENT

KALDB

ALLOCATE AP DATA BUFFER
KALDB (VAL, DBIa)

WHERE:

VAL = Size of AP Data Buffer required, in AP Data Memory
words. “VAL"” must be a single-word integer variable or
constant. The DBF’s biock/exponent/NSN word is not
included in this count.

DBla= ID to assign to AP data buffer to be allocated. “DBla”
must be a single-word integer variable or constant, If
the DBF was previously allocated, it must be of size
equal to specified size (VAL).

COMMENT:

This Host function calls up a corresponding AP function
in the AP400, which in turn calls up the selected

“Allocate AP Data Buffer” routine.
KDBSP
DETERMINE AVAILABLE DATA BUFFER SPACE

KDBSP (HMA)
WHERE:
HMA = Is the location in Host Memory to place the result.
“HMA” must be a single word integer variable. The value
returned is a magnitude number, so if there is more than
32K words available, this number will appear negative.
COMMENT:

This Host function calls up a corresponding AP function
in the AP400, which determines the amount of. available
space in the AP for data buffers.
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INPUT-OUTPUT OPERATIONS

KHFAB

TRANSFER DATA: HOST (FLTG.PT) TO AP (BFP)

KHFAB (HMA, DBI, VAL)

WHERE:
HMA =
DBI=
VAL =

COMMENT:

Host Memory address of first word of data set to be
transferred to AP Data Memory.

ID to assign to AP Data Buffer to be allocated. “DBI”
must be a single-word integer variable or constant. If the
DBF was previously allocated, it must be of size equal to
specified size (VAL).

Size of AP Data Buffer required, in AP Data Memory
words. Equal to the number of floating point values to be
transferred. “VAL"” must be a single-word integer variable
or constant. The DBF’s block exponent/NSN word is not
included in this count.

This Host Function calls up a corresponding AP function
in the AP400 which in turn calls up the selected Data

Transfer Routine, Data is transferred from HOST Memory
in true floating point format to AP Data Memory in block

floating point format.
KABHI

TRANSFER DATA: AP(BFP) TO HOST (2-COMP.INTGR.)
CALL KABHI (HMA,DBI, ISIZE, SCL)

WHERE:
HMA =
DBI=
ISIZE =
SCL=

COMMENT:

The Host Memory address of the first word of the data
set to receive data.

The ID of the Data Buffer which contains the data to be
transferred.

The number of values to be transferred.

A scaling factor; a power of 2 by which the data should
be scaled before being transferred to the Host.

The Host Function calls up the corresponding AP Func-
tion, which in turn calls up the selected data transfer
routine. Data is scaled and converted into Host
2’s-complement integer format, and is transferred into

the Host.
KABAX

TRANSFER DATA: AP (BFP) TO AUX. I/0O PORT

CALL KABAX (DBI,ISIZE,SCL)

WHERE:
DBl =
ISIZE =
SCL=
COMMENT:

The ID of the Data Buffer which contains the data to be
transferred.

The number of values to be transferred.

A scaling factor; a power of 2 by which the data should
be scaled before being transferred out of the AP’s Aux-
iliary Output Port.

The Host Function calls up the corresponding AP Func-
tion, which in turn calls up the selected data transfer
routine. Data is scaled as necessary, and is transferred
through the Auxiliary Output Port.
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LOGICAL DATA MANIPULATION

KDBDB
KDBDB (DBla, DBIb)

WHERE:
DBla= ID of destination AP Data Buffer to “DBla” must be a
single-word integer variable or constant.
DBIb= ID of source Data Buffer “DBIb” must be a single-word
integer variable or constant.
COMMENT:

This Host function calls up a corresponding AP function
in the AP400, which move the contents of one data buf-
fer into another data buffer.

The data buffer being moved to does not need to be
allocated, but if it is it must be at least as large as the

source data buffer.
KBRVR

REAL BIT-REVERSED ORDER
KBRVR (DBla, DBIb)

WHERE:
DBla= ID of AP destination data buffer “DBla” must be a
single-word integer variable or constant.
DBIb= ID of source data buffer. “DBIb” must be a single-word
integer variable or constant.
COMMENT:

This Host Function calls up a corresponding AP function
in the AP400, which will place the result of the real bit-
reverse ordering of each element of one data buffer into
another data buffer.

The data buffer being moved to does not need to be
allocated, but if it is it must be at least as large as the
source data buffer.

The destination data buffer may be the same as the
source.
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STRAIGHTFORWARD COMPUTATION

KMUL

MULTIPLY TWO REAL VECTORS:
CALL KMUL (DBla,DBIb,DBIc)

WHERE:
DBla= The ID of the destination Data Buffer.
DBIb= The ID of source Data Buffer #1..
DBic = The ID of source Data Buffer #2.
COMMENT:

The Host Function calls the corresponding AP Function
which calculates the point-by-point product of two real
vectors and places the resulting vector in the destination
Data Buffer.

KMLSC

MULTIPLY A COMPLEX VECTOR BY A COMPLEX SCALER
CALL KMLSC (DBla,DBIb,DBIc)

WHERE:
DBla= The ID of the destination Data Buffer.
DBIb = The ID of the source Data Buffer containing the complex
scalar.
DBic= The ID of the source Data Buffer containing the complex
scalar.
COMMENT:

The Host Function calls the corresponding AP Function,
which calculates the product of a complex scalar and
each point of a complex vector and places the resulting

vector in the destination Data Buffer.
KCONJ

COMPLEX CONJUGATE
KCONJ (DBla, DBIb)

WHERE:
DBla= ID of AP destination Data Buffer. “DBla” must be a
single-word integer variable or constant.
DBIb= ID of source Data Buffer. “DBIb” must be a single-word
integer variable or constant.
COMMENT:

This Host Function calls up a corresponding AP function
in the AP400, which will place the result of the complex
conjugate of each element of one Data Buffer into
another Data Buffer.

The Data Buffer being moved to does not need to be
allocated, but if it is it must be at least as large as the
source Data Buffer.

The destination Data Buffer may be the same as the
source.
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SOPHISTICATED COMPUTATION

FORWARD FFT (INTERLACED REAL TO VARIANT-ORDER COMPLEXED)
CALL KFFTR2 (ISIZE, DBId, DBIs)

WHERE:

COMMENT:

ISIZE =
DBId =
DBIs =

KFFTR2

The size of the vector to be FFTed
The ID of the Data Buffer to receive the result
The ID of the Data Buffer containing the source vector.

The Host Function calls up a corresponding AP Func-
tion, which calls up the selected Fast Fourier Transform.
This function transforms the data in one Data Buffer and
places the result in another Data Buffer.

THREE POINT CONVOLUTION (REAL-BY-COMPLEX)

KTHPFC (DBla, DBIb, DBIc)

WHERE:

COMMENT:

DBla =

DBIb=

DBIc =

KTHPFC

ID of AP Data Buffer to hold result data, “A”. “DBla”
must be a single-word integer variable or constant. DBF
need not have been previously allocated. If not already
allocated, DBF will be allocated; size will equal that of
source Data Buffer “B”. If result DBF was previously
allocated, it must be of size equal to source Data Buffer
HBH'

ID of AP Data Buffer holding one source data set, “X".
“DBIb” must be a single-word integer variable or cons-
tant. DBF must have been previously allocated in AP
Data Memory.

ID of AP Data Buffer holding scalar source data set “B”.
It should contain two values. “DBIlc” must be a single-
word integer variable or constant. DBF must have been
previously allocated in AP Data Memory.

This Host Function calls up a corresponding AP function
in the AP400, which in turn calls up the selected “Three
Point Convolution (Real-by-Complex)” function
subroutine to perform the following operation:

Ar(l) = B(1)* Xr(I-1) + Xr(l) + B(2)* Xr(1 + 1),

Ai(l) = B(1)* Xi(l-1) + Xi(l) + B(2)* Xi(l + 1),
Where the subscripts refer to the real and imaginary
parts of a complex number.
This Host Function version assumes that source data
already resides in two AP Data Memory Data Buffers,
and that the result data will be placed in another AP
Data Memory Data buffer.
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TRIGONOMETRIC SINE
KSIN (DBla, DBIb)

WHERE:
DBla=

DBIb=

COMMENT:

KSIN

ID of AP destination Data Buffer. “DBla” must be a
single-word integer variable or constant.

ID of source Data Buffer. “DBIb” must be a single-word
integer variable or constant.

This Host Function calls up a corresponding AP Func-
tion in the AP400, which will place the trigonometric
sine of a Data Buffer into another Data Buffer.

The destination Data Buffer does not need to be
allocated, but if it is it must be at least as large as the
source Data Buffer.

The destination Data Buffer may be the same as the
source.
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4.5 HOST FUNCTION LIBRARY

The following list identifies Host Functions currently
being used in AP400 Array Processor applications.

HOST FUNCTION LIBRARY

KABORT — ABORT THE CURRENTLY EXECUTING AP KDNSN — DETERMINE EXACT NSN
OPERATION KFVSR — REORDER DATA FROM FFT VARIANT TO
KCTL — SET UP AP CONTROL WORD SEQNTL (REAL)
KDETCH — DETACH AP INTERRUPT VECTOR (UNDER KSCDB — SCALE A DATA BUFFER
© RT-11 V3B). KNEG — VECTOR NEGATE
KERREX — SPECIFY FATAL ERROR SERVICE KMUL — VECTOR MULTIPLY (REAL)
ROUTINE KMULC — VECTOR MULTIPLY (COMPLEX)
KEXFCB — EXECUTE FUNCTION CONTROL BLOCK KMULS — VECTOR-SCALAR MULTIPLY (REAL)
KEXIT — EXIT PROGRAM THROUGH AP DRIVER KMLSC — VECTOR-SCALAR MULTIPLY (COMPLEX)
KLOAD — LOAD A NAMED AP OBJECT MODULE KADD — VECTOR ADD (REAL AND COMPLEX)
KRESET — AP RESET (COMPLETE HARDWARE AND KADDS — VECTOR-SCALAR ADD (REAL)
SOFTWARE) KADSC — VECTOR-SCALAR ADD (COMPLEX)
KRINIT — REINITIALIZE AP (SOFTWARE RESTART) KSUB — VECTOR SUBTRACT (REAL AND COM-
KSETIW — RUN IN IMMEDIATE-RETURN VS. WHEN- PLEX)
AP-DONE MODE KSUBS — VECTOR-SCALAR SUBTRACT (REAL)
KSTAT — CHECK AP STATUS (FIP#, last status KSBSC — VECTOR-SCALR SUBTRACT (COMPLEX)
returned) KABS1 — VECTOR ABSOLUTE VALUE (#1)
KSYNC — SYNCHRONIZE FROM HOST TO AP (IM- KABS2 — VECTOR ABSOLUTE VALUE (#2)
MEDIATE) KDOTP — VECTOR DOT PRODUCT (REAL)
KWAIT — WAIT FOR LAST FUNCTION CALL TO KCONJ — COMPLEX CONJUGATE
COMPLETE KCMGS — COMPLEX MAGNITUDE SQUARED
KWTFCB — WAIT FOR COMPLETION OF A SPECIFIC KCMGAR — COMPLEX MAGNITUDE (BY APPROXIMA-
FCB TION; REPLACE DATA)
KTHRTL — ADJUST AP INTERFACE BUS THROTTLE KCMGAP — COMPLEX MAGNITUDE (BY APPROXIMA-
SETTING TION; PRESERVE DATA)
KALDB — ALLOCATE A DATA BUFFER KMLRC — VECTOR MULTIPLY (REAL*COMPLEX)
KRLDB — RELEASE A DATA BUFFER KFFTCt — FFT (FWD; SEQNTL CPLX IN; BIT-REV.
KRDBS — RELEASE ALL DATA BUFFERS CPLX OUT) (Same or different
KDBSP — DETERMINE AVAILABLE DATA BUFFER source/destination.)
SPACE KIFTC1 — FFT (INV; BIT-REV. CPLX IN; SEQNTL
KDBTS — SET DATA BUFFER ALLOCATION TABLE CPLX OUT) (Same or different
SIZE source/destination.) .
KHIAB — XFR DATA: HOST (2'S CMP INTEGER) TO KFFTR1 — FFT (FWD; SEQNTL REAL IN; VARNT-ORD
AP (BFP) CPLX OUT) (Different source/destination; N
KHMAB — XFR DATA: HOST (16-BIT MAGNITUDE) TO in, N + 2 out.)
AP (BFP) KFFTR2 — FFT (FWD; INTLCD REAL IN; VARNT-ORD
KABHI — XFR DATA: AP BFP TO HOST (2'S CMP CPLX OUT) (Same or different
INT) SCALED source/destination; N in, N+ 2 out.)
KABHB — XFR DATA: AP BFP TO HOST (1-WORD KIFTR1 —FFT (INV; VARNT-ORD CPLX IN; SEQNTL
BFP) REAL OUT) (Different source/destination;
KHFAB — XFR DATA: HOST (PDP-11 FLTG PT) TO AP N+ 2 in, N out.)
(BFP) KLOG2 — LOGARITHM (BASE 2)
KABHF — XFR DATA: AP (BFP) TO HOST (PDP-11 KLOGE — LOGARITHM (BASE ¢)
FLTG PT) KLOGD — LOGARITHM (BASE 10)
KZRDB — CLEAR A DATA BUFFER KSQRT — SQUARE ROOT
KDBDB — MOVE ONE DATA BUFFER TO ANOTHER KRCIP1 — RECIPROCAL (#1)
DATA BUFFER KRCIP2 — RECIPROCAL (#2)
KNRDB — NORMALIZE A DATA BUFFER KRCIP3 — RECIPROCAL (#3)
KBRVR — REORDER DATA IN BIT-REVERSED SE- KTHPFR — THREE-POINT FILTER (REAL-REAL)
QUENCE (REAL) KTPFR2 — THREE-POINT FILTER (#2)
KBRVC — REORDER DATA IN BIT-REVERSED SE- KTHPFC — THREE-POINT FILTER (REAL-COMPLEX)
QUENCE (CPLX) KSIN —SINE
KFVsc — REORDER DATA FROM FFT VARIANT TO KCOS — COSINE
SEQNTL (CPLX) KMAXS — MAXIMUM VALUE IN A VECTOR
KSFve — REORDER DATA FROM SEQNTL TO FFT KMAXV — MAXIMUM VALUES BETWEEN TWO VEC-
VARIANT (CPLX) TORS
4-11
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HOST FUNCTION LIBRARY (Continued)

KEXP2 — EXPONENTIAL (BASE 2)

KEXPE — EXPONENTIAL (BASE e)

KEXPD — EXPONENTIAL (BASE 10)

KPWLA1 — PIECEWISE LINEAR APPROXIMATION

(256 x 2 TABLE)

KPWLA2  — PIECEWISE LINEAR APPROXIMATION
(64 x 2 TABLE)

KPWLA3  — PIECEWISE LINEAR APPROXIMATION
(16 x 2 TABLE)

KCONV — CONVOLUTION

The Library of Host Functions is continually being
expanded to include additional functions for real time
signal processing applications, such as: image process-
ing, seismic data processing, and vibration analysis,
where array processors are vital to achieve the increased
processing speed. Examples of these functions currently
under development include:

Data Multiplex/De-Multiplex...

Separate one data set out of another. Useful for
selectively processing real/imaginary points from a com-
plex data set, or for retrieving acquired data from a set
of multiplexed readings.

Merge two data sets. Useful for combining, for ex-
ample, real and imaginary data points into a complex
data set.

Matrix Operation

Transposition of a square or rectangular matrix.
Invert a matrix.

Data Set Minimum/Maximum Operation...
Find minimum-valued point in a data set.
Find maximum-valued point in a data set.
Threshold all points of a data set.

COPYRIGHT 1979 - PRINTED IN U.S.A.
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Data Companding...

Compaction of a data set. Especially useful in im-
age storage and retrieval, where point-to-point value dif-
ferences are small, and the volume of data is large.

Expansion of a compacted data set.

Statistical Measures...

Mean and Root-Mean-Squared-Deviation (RMSD) for
a data sest.

Histogram of a data set (frequency of occurrence of
values, presented spectrally.).

Trigonometric Operations...
Arctangent.
Coordinate conversion.

FFT Variations... v

Forward, Inverse FFT’'s requiring fewer coefficient
table entries.

Fully AP-resident 2-dimensional FFTs.

/0 Operations...
General Host control of auxiliary input/output.
Additional special-purpose and general-purpose /O
routines.




5.1 INTRODUCTION

The AP400 has been designed with a straightfor-
ward, operation/operands type of Assembly Language.
Its style, usage, and even many instructions are familiar
to anyone experienced in Assembly Language program-
ming for most common minicomputer systems, such as
the Digital Equipment Corporation PDP-11 series or the
Data General NOVA or ECLIPSE series.

The AP400 Assembly Language evolves directly from
the AP400 Machine Language, a vertically-architectured,
powerful mechanism for control of AP400 operation via
programmed, sequential-instruction execution within the
AP400 Control Processor.

AP400 Assembly and Machine Language instruc-
tions are invisible to the user who is programming in
Host FORTRAN or Host Assembly Language. For the
user who chooses to program in AP400 Assembly
Language, though, this section presents an insight into
processor operation and the versatility and power of the
AP400 instruction set.

5.2 INSTRUCTION EXECUTION TIME

The Control Processor executes instructions se-
quentially, one-at-a-time, synchronized with the AP400’s
160-nanosecond Master Clock cycle. Execution time is a
multiple of 160 nanoseconds, with the majority of the in-
structions executing in a single 160-nanosecond cycle.
In general, instructions that require more than one cycle
in order to complete execution are those involving
references to AP Data Memory or registers that are not a
part of the 16-register CP General Register set. Branch-
and Skip-type instructions may take more than 1 cycle in
Certain cases, but frequently this time may be restricted
to 1 cycle by the use of the “deferred execution” form of
the branch-type instruction.

5.3 PROGRAM MEMORY

~ The AP400 Program Memory consists of 2048 loca-
tions of 22 bits each. Although Program Memory ad-
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dresses are always expressed as absolute quantities in
AP400 hardware, AP400 Assembly Language fully sup-
ports relative addressing, such that AP400 programs are
normally written in fully relocatable, linkable code.

The AP400 Program Memory Address Register (also
called the Program Counter or PC) is normally in-
cremented by + 1 upon execution of each instruction
during AP operation. However, a Branch- or Skip-type in-
struction will directly load the PMAR with a new value
when a branch is required.

AP400 Program Memory may not be modified by a
running program. (AP400 programs utilize whatever
space is required for constants, work areas, and the like,
in AP Data Memory). This simple design characteristic is
a highly effective mechanism to minimize debug time
and to enhance program reliability.

5.4 ASSEMBLY LANGUAGE INSTRUCTION
LISTING

In the pages that follow, each AP Assembly
Language instruction is briefly described. Its Assembly
Language mnemonic, an example of its typical use, and
its hexadecimal Machine Language instruction are also
presented. AP Assembly Language Assembler Direc-
tives, that control parameters of program assembly, are
also presented.

5.5 AP ASSEMBLY LANGUAGE PROGRAM
EXAMPLE

Figure 5-1 provides a listing of the AP Assembly
Language routine to change the sign of all data points in
a vector. This routine demonstrates the use of the
pipeline by the PIPE instruction. Reference is aiso
made, in this example, to the use of service subroutines
that provide a high degree of flexibility when using AP
Assembly Language to encode new functions.
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ASSEMBLER DIRECTIVES

RELATIVE PROGRAM MEMORY ORIGIN PMORG
The Relative Program Memory Origin Directive sets the relative address at which the
assembler will assemble the following code in Program Memory.

EXAMPLE: PMORG O No code generated.

RELATIVE DATA MEMORY ORIGIN DMORG
The Relative Data Memory Origin Directive sets the relative address at which the
assembler will assemble the following code in Data Memory

EXAMPLE: DMORG O No code generated.

ABSOLUTE PROGRAM MEMORY ORIGIN PMORGA
The Absolute Program Memory Origin Directive sets the absolute address at which
the assembler will assemble the following code in Program Memory.

EXAMPLE: PMORGA 10 No code generated.

ABSOLUTE DATA MEMORY ORIGIN DMORGA
The Absolute Data Memory Origin Directive sets the absolute address at which the
assembler will assemble the following code in data Memory.

EXAMPLE: DMORGA 40 No code generated.

ASSEMBLY LISTING CONTROL PRINT
The Assembly Listing Control Directive allows the user to list or not list portions of
his source code.

EXAMPLE: PRINT OFF No code generated.

NEW PAGE PAGE
The New Page Directive instructs the assembler to start a new printed page on the
listing.

EXAMPLE: PAGE No code generated.

PAGE TITLE TITLE
The Page Title Directive gives the assembler a title to print at the top of each page of
the listing.

EXAMPLE: TITLE SUBTRACT SUBROUTINE No code generated.

CONDITIONAL ASSEMBLY ASSEM
the Conditional Assembly Directive instructs the assembler to assembie or not
assemble portions of the user source code.

EXAMPLE: ASSEM OFF No code generated.

INTERNAL GLOBAL DEFINITION IGLOBL
The Internal Global Definition Directive informs the assembler that the given list of
symbols are defined in this module, and may be referenced by other modules.

EXAMPLE: ' IGLOBL ENTRY TABLE 1 No code generated.

EXTERNAL GLOBAL REFERENCE EGLOBL
The External Global Reference Directive informs the assembler that the given last of
symbols are not defined in this module, but are defined in another module, and will
be defined at link time.

EXAMPLE: EGLOBL ADD DMFREE No code generated.
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DEFAULT RADIX RADIX
The Default Radix Directive informs the assembler what radix is to be assumed
when no explicit radix specification is given in a numeric quantity.

EXAMPLE: RADIX H No code generated.

MODULE NAME NAME
The Module Name Directive tells the assembler what name and version to give to
the object module generated by the assembler.

EXAMPLE: NAME FFT, 001 No code generated.

FUNCTION ENTRY POINT FUNC
The Function Entry Point Directive informs the assembler of a function number and
its corresponding entry point in this module.

EXAMPLE: FUNC 100, QADD No code generated.
SYMBOL DEFINITION EQU
The Symbol Definition Directive assigns a value to a given symbol.

EXAMPLE: TABEND: EQU TABLE +10 No code generated.
REPEAT CODE REPEAT

The Repeat Code Directive directs the assembler to assemble in the following code
as many times as specified.
EXAMPLE: REPEAT 4 No code generated.

ASSEMBLY END END

The Assembly End Directive informs the assembler that the end of the source code
has been reached. :
EXAMPLE: END No code generated.
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INSTRUCTIONS

NO OPERATION NOP
The No Operation Instruction performs no function in the control processor, acting
only as a placeholder for one word in program memory.

EXAMPLE: NOP MACHINE INSTRUCTION: 000000

PIPELINE SETUP PIPE
The Pipeline Setup Directive informs the assembler of the PAC and other
parameters to be used in the pipeline instruction sequence to be generated. Used in
conjunction with PAD.

EXAMPLE: PIPE PREGMV, SCL0, LZCOFF No code generated

PIPELINE ADDRESS PAD
The Pipeline Address instruction sets up a pipeline instruction sequence, specifying
the addresses of the source and result data.

EXAMPLE: PAD R2=R2+R5,D2R1 MACHINE INSTRUCTION: 0A5002

SET REGISTER TO VALUE SETR
The Set Register to a Value Instruction stores the given value in the specified
register.

EXAMPLE: SETR R3 =200 MACHINE INSTRUCTION: 102003

SET REGISTER TO REGISTER EXPRESSION SET
The Set Register to Register Expression Instruction computes the value of the
specified expression and stores the computed value in the specified register.

FORMS:

Arithmetic Logical

Rs ‘COMP’'Rs \

—Rs Rs’AND’Rd or RdA’AND’Rs For th

Rs + 1 Rs’OR’Rd or RA’OR'Rs S‘E'T ne

Rs — 1 Rs’XOR'Rd or Rd’XOR'Rs stmc't’i‘('m

Rd + Rsor Rs + Rd Rs’BIC’'Rd only. these

Rd — Rs Rs’XNOR'RD 3 forr’:;s Ty

HS - Rd be u/2u or

Rs + Rd+ 1orRs + 1 + Rd e

Rd+ RS+ 10orRd+ 1+ Rs ’

Rd—Rs—-10orRd— 1 —Rs

Rs —Rd—10orRs — 1 —Rd Y,

Rs + quan Rs’AND’ quan

Rs — quan Rs’'OR’ quan

Rs + 1 + quan Rs'’XOR’'quan

Rs — 1 — quan

—Rs + quan

EXAMPLES: SETR2 =Rs — R5 MACHINE INSTRUCTION: 055102
SET R4 = R3’AND’%B11 223034
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SKIP ON GREATER THAN OR EQUAL TO ZERO SKIPGE

The Skip on Greater Than or Equal to Zero Instruction computes the value of the ex-

pression, optionally stores the result in a register, and skips the next instruction if

the computed value was greater than or equal to zero.

FORMS: All the Arithmetic Expression Forms specified for the SET instruction are

supported.

EXAMPLES: SKIPGE R1 = R1 — 60 MACHINE INSTRUCTION: 2DC601
SKIPGE R1 =R1 — R2 052701

SKIP ON LESS THAN ZERO SKIPLT
The Skip on Less Than zero Instruction computes the value of the expression, op-
tionally stores the result in a register, and skips the net instruction if the result was
less than zero.

FORMS: All the Arithmetic Expression Forms specified for the SET instruction are
supported.

EXAMPLE: SKIPLT R3=R3 MACHINE INSTRUCTION: 073E03

SKIP IF EQUAL TO ZERO SKIPEQ
The Skip if Equal to Zero Instruction computes the value of the expression, optional-
ly stores the result in a register, and skips the next instruction if the computed value
was equal to zero.

FORMS: Ali the logical expression forms specified for the SET Instruction are sup-
ported.

EXAMPLE: SKIPEQ R3=R3'OR’R5 MACHINE INSTRUCTION:  055F03

SKIP IF NOT EQUAL TO ZERO SKIPNE
The Skip if Not Equal to Zero Instruction computes the value of the expression, op-
tionally stores the result in a register and skips the next instruction if the computed
value was not equal to zero.

FORMS: All the logical forms specified for the SET Instruction are supported.
EXAMPLE: SKIPEQ R2’0OR’R3 MACHINE INSTRUCTION: 053C02

ACCESS TO INTERNAL AP REGISTERS MOVE
The MOVE Instruction gives the user access to many of the AP’s internal registers,
other than the 16 CP general registers.

EXAMPLE: MOVE REGHMA, R3 MACHINE INSTRUCTION: 300003

JUMP TO LOCATION JMP
The Jump to Location Instruction branches to the specified location.

EXAMPLE: JMP DONE MACHINE INSTRUCTION 350000
JUMP TO LOCATION DEFERRED JMPD

The Jump to Location Deferred Instruction branches to the specified location after
executing the instruction following the JMP instruction. The JMPD instruction may
also jump to an address specified in a register.

EXAMPLE: JMPD R1 MACHINE INSTRUCTION: 3F0001
JMPD LOOP 370000
TEST FLAG AND JUMP TFJ

The Test Flag and Jump Instruction compares the state of the given flag with the
desired state of the flag, and if the states are the same, then the jump is taken.

EXAMPLE: TFJ F1=0,FISO MACHINE INSTRUCTION: 350001
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TEST FLAG AND JUMP DEFERRED TFJD
The Test Flag and Jump Deferred Instruction is the same as the TFJ instruction ex-
cept that the instruction following the TFJD instruction is always executed whether
or not the branch is taken.

EXAMPLE: TFJD F6 =1,RDY MACHINE INSTRUCTION: 35000C

DECREMENT REGISTER AND BRANCH IF NON-ZERO DBNZ
The Decrement Register and Branch if Non-Zero Instruction decrements the
specified register and stores the result back in the register. If the resuit was not zero
then a branch to the. specified location occurs.

EXAMPLE: DBNZ R1, LOOP MACHINE INSTRUCTION: 310001

DECREMENT REGISTER AND BRANCH IF NON-

ZERO, DEFERRED DBNZD
The Decrement Register and Branch if Non-zero Deferred Instruction is the same as
the DBNZ instruction, except that the instruction following the DBNZD is executed
whether or not the branch is taken.

EXAMPLE: DBNZD R3, LOOP1 MACHINE INSTRUCTION: 330003

JUMP TO SUBROUTINE JSR
The Jump to Subroutine Instruction pushes the address of the next instruction onto
the stack, and branches to the specified address.

EXAMPLE: JSR FLSHWT MACHINE INSTRUCTION: 3C0000

RETURN FROM SUBROUTINE RTN
The Return from Subroutine Instruction pops the return address off the stack and
branches to that address.

EXAMPLE: RTN MACHINE INSTRUCTION: 3B0000

RETURN FROM SUBROUTINE AND SKIP RTNS
The Return from Subroutine and Skip Instruction pops the return address off the
stack, adds 1 to it, and then branches to the computed address.

EXAMPLE: RTNS MACHINE INSTRUCTION: 3B0800

RETURN FROM INTERRUPT RTNI
The Return From Interrupt Instruction returns control to the code that was executing
prior to the last interrupt.

EXAMPLE: RTNI MACHINE INSTRUCTION: 390000

INTERRUPT MASK LOAD LDMSK
The Interrupt Mask Load Instruction places the given value, or register contents, in
the interrupt mask. This enables or disables selected interrupts.

EXAMPLE: LDMSK R1 MACHINE INSTRUCTION: 3E0801

INTERRUPT MASK STORE STMSK
The Interrupt Mask Store Instruction places the current value of the Interrupt Mask
into the specified register.

EXAMPLE: STMSK R1 MACHINE INSTRUCTION: 3E0001
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INTERRUPT ENABLE AND DISABLE INTR
The Interrupt Enable/Disable Instruction will turn all interrupts off or on, or clear any
specified pending interrupts.

EXAMPLE: INTR ON MACHINE INSTRUCTIONS: 380800
INTRCLR 390800
LOAD REGISTER FROM DATA MEMORY LDREG

The Load Register From Data Memory Instruction allows the user to load the con-
tents of the high or low portion of a Data Memory word into a specified register.

EXAMPLE: LDREG R8,R2,LO MACHINE INSTRUCTION: 302988

LOAD REGISTER FROM DATA MEMORY AND
INCREMENT ADDRESSS REGISTER LDREGI

The Load Register From Data Memory and Increment Address Register Instruction
is the same as the LDREG instruction except that the address register is in-
cremented after use.

EXAMPLE: LDREGI R6,R5,LO MACHINE INSTRUCTION: 345986

DECREMENT ADDRESS REGISTER AND LOAD
REGISTER FROM DATA MEMORY LDREGD

The Decrement Address Register and Load Register from Data Memory Instruction
is the same as the LDREG instruction, except that the address register is
decremented before use.

EXAMPLE: LDREGD R6,R5 MACHINE INSTRUCTION: 325BF6

STORE REGISTER IN DATA MEMORY STREG
The Store Register in Data Memory Instruction allows the user to store a value from
a given register in Data memory at the address specified in another register.

EXAMPLE: STREG R6,R5 MACHINE INSTRUCTION: 305386

STORE REGISTER IN DATA MEMORY AND
INCREMENT ADDRESS REGISTER STREGI

The Store Register in Data Memory and Increment Address Register Instruction is
the same as the STREG instruction, except that the address register specified is in-
cremented after being used as an address.

EXAMPLE: STREGI R6,R5 MACHINE INSTRUCTION: 345386

DECREMENT ADDRESS REGISTER AND STORE
REGISTER IN DATA MEMORY STREGD

The Decrement Address Register and Store Register in Data Memory Instruction is
the same as the STREG instruction, except that the address register specified is
decremented before use.

EXAMPLE: STREGD R6,R5 MACHINE INSTRUCTION: 325386
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PUSH TO STACK PUSH
The Push to Stack Instruction pushes the value in the specified register onto the
stack.

EXAMPLE: PUSH R6 MACHINE INSTRUCTION: 340386
POP FROM STACK POP

The Pop from Stack Instruction removes the current value on the stack and places it
in the specified register.
EXAMPLE: POP R6 MACHINE INSTRUCTION: 320BF6

SKIP IF CONDITION IS TRUE SKIP
The Skip if Condition is True Instruction skips the next instruction if the given ex-
pression is true.
FORMS: Rd'GT'exp

Rd'GE’exp

RA’EQ’exp

RdA’'NE’exp

Rd’'LT’exp

Rd’LE’exp

EXAMPLES: SKIP R2’NE’'4E MACHINE INSTRUCTION: 2B04E2
SKIP R3'GE’R4 054503
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DATA STORAGE INSTRUCTIONS

DEFINE STORAGE DS

The Define Storage Instruction allows the user to place an arbitrary value in Pro-
gram or Data Memory.
EXAMPLE: DS 123456 DATA MEMORY CONTENTS 123456

DEFINE BYTE DB

The Define Byte Instruction allows the user to place 3 bytes in one word of Data
Memory.
EXAMPLE: DB 1,2,3 DATA MEMORY CONTENTS 010203

DEFINE PARTIAL WORD DP
The Define Partial Word Instruction allows the user to specify the high 16 bits, and
low 8 bits of a word in Data Memory.

EXAMPLE: DP 4586,1 DATA MEMORY CONTENTS 045601

DEFINE WORD DW
The Define Word Instruction allows the user to store a value in Data Memory. The
word may be expressed as a decimal fraction.

EXAMPLES: DW %F.5 DATA MEMORY CONTENTS 400000
DW -%F.125 F00000
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DATE 22-AUG-79 09:23:30 ASM VO2. 1P
001 TITLE FNCSUB: NEGATE
002
003 NAME  NEGI, 001 ;NAME AND VERSION FOR THE OBJECT MODULE.
004
005 RADIX H ;SPECIFY HEXADECIMAL RADIX FOR ASSEMBLY LISTING.
006
007 ; INTERNALLY DEFINED GLOBALIZED SYMBOLS: ( IGLOBL)
008
209 IGLOBL NEG ;SUBROUTINE ENTRY POINT.
e10
e11 ; EXTERNALLY DEFINED GLOBALIZED SYMBOLS: (EGLOBL)
012
013 EGLOBL EXIT1, SETSCL  ;SUBROUTINE ENTRY POINTS.
014
915 ;PIPELINE PAC SYMBOL DEFINITIONS:
916
017 00000054 PCHSMV: EQU %H34 ; CHANGE SIGN AND MOVE PAC.
018
019 00000000 PMORG @ ;START OF RELOCATABLE PROGRAM MEMORY CODE.
020
021 NEG: ;ENTRY POINT FOR CHANGE SIGN ROUTINE.
022
023 ; CALCULATE THE SMALLEST MULTIPLE OF FOUR GREATER
024 ; THAN OR EQUAL TO THE GIVEN LENGTH IN ORDER TO
025 ; PERFORM FOUR NEGATIONS PER PIPELINE COMMAND:
026 P00000O 00069204 SET R4= R9+1,2 s CALCULATE (L+1) /2. (REGISTER R4 WILL BE USED
027 P000001 00064204 SET R4= Rd+1,2 ;CALCULATE (L+3) /4. AS THE PIPELINE ITERATION
028 ; COUNTER.)
029
030 P000002 60307981 LDREG RI, R7, LO ;GET NSN OF SOURCE VECTOR.
031 P000003 003083C1 STREG  R1, R8, LO ;STORE IT IN THE RESULT VECTOR.
032 P000004 00307BF 1 LDREG R1, R? ;GET BEX OF SOURCE VECTOR.
033 P000005 00308381 STREG R1, R8 ;STORE IT IN THE RESULT VECTOR.
034
035 P000006 00100011 SETR  R1= 1 ;SET THE NUMBER OF GUARD BITS REQUIRED FOR THIS
036 i OPERATION BEFORE CALLING "SETSCL".
037 P0000O7 003C0000 JSR SETSCL ;CALL SERVICE SUBROUTINE IN ORDER TO ADJUST THE
038 ;i BEX/NSN OF THE RESULT DATA BUFFER AND PLACE
039 ; THE REQUIRED SETTING IN THE PIPELINE SCALING
040 i REGISTER.
041
042 P000008 00100022 SETR  R2= 2 ;SET THE PIPELINE ADDRESSING INCREMENT.
043 P000009 00037101 SET Rl= R? - 1 ;MODIFY THE SOURCE AND RESULT DATA ADDRESSES SO
044 PO0OA s 00038103 SET R3= R8 - 1 ; THE FIRST ADDRESSING INCREMENTS WILL CAUSE
045 ; THE ADDRESSES TO POINT TO THE FIRST POINTS IN
046 ; THE SOURCE AND RESULT AREAS. (-1 IS USED
047 ; SINCE THE ADDRESSES POINT TO THE BEX/NSN
048 ;i WORDS OF THE AREAS, INITIALLY.)
049
050 NEGL: PIPE  PCHSMV, SCLREG, LZCI2  ;USE THE CHANGE SIGN-AND-MOVE PAC
051 PAD R1= R1+R2, S1  ;SOURCE VECTOR. INCREMENT BY TWO.
052 PAD Rl= R1+R2, S2  ;SOURCE VECTOR. INCREMENT BY TWO.
053 PAD R3= R3+R2, DIRI ;RESULT VECTOR. INCREMENT BY TWO.
054 P0000OB 000A254 1 PAD R3= R3+R2, D2RI ;RESULT VECTOR. INCREMENT BY TWO.
000A2B91 000A2FB3 000A2003
055
056 POOOOOF 003100B4 DBNZ R4, NEGL s DECREMENT REGISTER AND BRANCH BACK IF NOT DONE.
057
058 P000010 00350000 JMP EXITI ;JUMP TO SERVICE SUBROUTINE WHICH WAITS FOR THE
059 3 PIPELINE TO FINISH, READS THE PIPELINE
060 ; LEADING-ZERO COUNT REGISTER, AND ADJUSTS THE
061 ; RESULT DATA BUFFER’'S NSN. ITS "RTN" WILL
062 ; CAUSE A RETURN TO THE CALLING ROUTINE.
063
064 END

Figure 5-1. Sample AP Assembly Language Program Listing, Negating Data Points in a Vector
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6.1 INTRODUCTION

This chapter lists the PAC (Pipeline Arithmetic Com-
mands) operations that are pre-programmed and reside
in the PROMs. The PAC operatons are implemented as
the PIPE instruction (up to 256 different variations), used
when programming in AP Assembly Language. Each PAC
is identified by an ID NUMBER (hexadecimal format) that
is unique for that PAC and a mnemonic name that is us-
ed when calling that PAC as a PIPE instruction. Refer to
the AP400 Assembler Reference Manual for details of us-
ing a PIPE instruction.

6.2 LISTING FORMAT

The list of PACs is prepared in PAC ID Number (hex-
adecimal format) sequence, and for each PAC the table
includes a description of the function performed,
Assembly Language Mnemonic, and the explicit formula
relationship between output number pairs (D1 and D2)
and input number pairs (S1, S2, S3, and S4).

Note the coding used to express the input and output
values; inputs are Xi, outputs are Oi.

Some PACs are “dual”, in that they provide for the pro-
cessing of data in a parallel mode. That is, the basic
arithmetic operation performed by the PAC requires only
two number pair inputs for a number pair output, so that
the AP400 pipeline with 4 number pair inputs and 2
number pair outputs is configured as a parallel proces-
ing operation for this function.

Some arithmetic operations require the interleaving of
two or more PACs. In this case, the processing ac-
complishes one pass with the first, or A PAC, and then
the results of this pass become the inputs to the
pipeline in a second, or B PAC, etc., before a computed
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output appears in the designated address locations (e.g.,
PACs #0F, &10).

The formula description may include an explicit
reference to the use of a table. In some cases this table
is to be supplied by the programmer (user) for each ap-
plication. In other PACs, the table is defined at the fac-
tory.

6.3 USER PROGRAMMINMG

User programming of the AP400 generally consists
of programming the Control Processor but can also in-
clude programming the pipeline. For the most part,
these two tasks are separate.- Control Processor, which
is programmed in Assembly Language, processes the
program, provides the pipeline with instructions, and
manages data flow and storage throughout the Array
Processor. The Pipeline takes in eight pices of data and
an instruction and puts out four pieces of data each 1.92
microseconds. Depending upon the instruction, the
Pipeline can perform any one of 256 operations. The
programming of the instructions for the Pipeline results
in the programming of a PROM set that is used to
decode the instruction. It is the decoded output from
the PROM that configures the Pipeline’s internal swit-
ching and logic matrix.

Although the AP400 is delivered to a user with a
PROM instruction set as described in this Section, the
user can, if required, develop a new or additional PROM
instruction set. This may be desired if the user has
specific algorithms that may be more efficiently im-
plemented with a PROM instruction set for a specific ap-
plication. An optional PAC Developmental Package is
available for users who may wish to perform Pipeline
programming.
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PACs

PIPELINE ARITHMETIC COMMANDS

LEGEND

Xi: Pipe Input for i=1, 2,..., 8 [S1R, S1l, etc]
Qi: Pipe Output for i=1,2,3,4 [D1R, D1l etc]
Si,Ti: Accomulators Sand T fori=1,2,3,4
Ti(Xk): Table Value with argument Xk

PAC
No.
(HEX) NAME MNEMONIC ALGORITHMS
01 Regular Move PREGMV Ot=Xi
02 Pairs-Swap Move PRSWAP 01=X1,02=X2, 03=X3, 04=X4
03 Four Subtractions PSUBT 01 =X1-X3, 02 = X2-X4, 03 = X5-X6, 04 = X7-X8
04 Four Additions PSUM Oi=Xi+Xi+2
05 Four Multiplications PMULT Oi=Xi*X (i +4)
06 Complex Multiplication PCPXML O1=X1*X3-X2*X4, 02 = X2* X4 + X1*X3
07 Radix 2 FFT Butterfly PR2FLY 01=51,02=82, 03=X3+ (X5*X7-X6*X8)
04 =X4+ (X6*X7 + X5 X8);
S1= (X7*X5-X6*X8), S2= (XB6*X7 + X5"X8)-X4
08 Sum of 4 Multiplications PMLAD2 03=04=(Xi*X(i+4), fori=1,23,4
09 Multiply-Add PMLADA1 03=X1*X5+ X3*X6, 04 =X2*X7 + X4*X8
0A Normalize Floating Pt. PNORM1 D1R (D2R)=F’, D1l (D2l)=FE’, where F’' and E’ are normalized
mantissa and exponent of input S1R and S1l.
0B Absolute Value of Real No. PABSR Qi = |Xi|, fori=1,23,4
0C Index Set Generator, Initial PINGNA Not Used
0D Index Set Generator, Iterative PINGNB Generate an index for an Input Data Set
0E 64-Segment Function FNC64P A 64-segment piecewise linear interpolator
OF Division-Initial Step PIVIDA Not Used
10 Division-lterative PIVIDB
11 Logarithm-Initial Step LOGARA See PAC #47
12 Logarithm-iterative Oi LOGARSB See PAC #47
13 Vector Signed-Squared PVSGSQ Oi =[sign Xi] (Xi)?, Oi + 1 =[sign Xi] (Xi)?, i=3;
14 Radix-4 FFT, A P4FFTA 01=S81+T3,02=52+T1, 03=T3-S1, 04 =T1-82;
S1=X6*X7 + X8*X5, S2 = X5*X7 + X8*X6
15 Radix-4 FFT, B P4FFTB 01=583, 02=54; S1=(X7*X6 + X8*X5)-S1,
S2 = (X8*X6-X7*X5) + S2, S3 = X3, S4 = X4,
T1=82-(X7*X8-X7*X5), T2 =51+ (X7* X6 + X8*X5)
16 Radix-4 FFT, C P4FFTC 02 =(X7*X5-X8*X6) + S3+ T1, 04 =(X7*X6 + X8*X5) + S4-T2;
T1=X7*X6+ X8*X5 + S4, T3 = S3-(X7*X5-X8* X6),
S3=T1+ S3+(X7*X5-X8*X6), S4 =T2 + S4 + (X7* X6 + X8"X5)
17 Vector Dot Product PVDPRD LSB — D2R, MSB — D2I
18 Magnitude Squared of Complex No. PMAGSQ 03 =X5"X5+ X6*X6, 04 = X3*X7 + X4*X8
19 Double Length Sum DLSMSX
1A Sum of 8 Inputs SUMOCT O4= X Xi
1B Four Adjacent Multiples PADJML Oi=Xi*X(i+ 1) fori=1,2,35,7
1C M.T.l. Type Fiiter PMTIFL Not Used
1D Larger/Smaller Ordering, 1 PLGSM1 01 = max[X1, X5], 03 = max[X3, X7]
1E Larger/Smaller Ordering, 2 PLGSM2 01=S1, 02 =max[X1, X5), O3 = min[X3, X7], 04 = min[X3, X7]:
S1=max[X3, X7]
1F 3rd Order Polynormal POLY3R
20 Clear All Accumulators PCLRAC Si=0,Ti=0,fori = 1to4
21 Load Accumulators
S1,82, T1, T2 PLAC12 1f X5=0, X1-T1, X2—-T2, 01 =X1, 02=X2;
1f X5 <0, 01=T1,02=T2;
If X6=0, X3—S1, S4—-82, 03=S1, 04=S2;
If X6<0, 03=X3, 04=X4
22 Load Accumulators
S3,54, T3, T4 PLAC34 1t X5=>0, X1-T3, X2-T4, 01=X1, 02=X2;
If X56<0,01=T3, 02=T4;
If X6=>0, X3—-S53, X454, 03 =53, 04 =S4,
If X6<0, 03=X3, 04=X4
23 Read Accumulators
T1, T2, S1, S2 PRAC12 01=T1,02=T2,03=51, 04=52
24 Read Accumulators
T3, T4, S3, S4 PRAC34 01=T3,02=T4, O3=53, 04=54
25 Left-Right Interpolation PLFINT If X1>0, than 03 =04 =(1-X1)*X4 + X1*X3;
If X1<0, than 03=04=(1+ X1)*X4 + X1*X5
26 Upshift Multiplication QDUPML —See PAC No. 65
27 Number of Shifts to Normalize PNLZPN
28 Block Floating Point to Floating
Point PNORM2
29 Double to Single Length Conversion DBSGCV
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PAC LISTINGS

PIPELINE ARITHMETIC COMMANDS
PACs

(Continued)

LEGEND

Xi: Pipe Input fori=1, 2,..., 8 [S1R, S1l, etc]
Oi: Pipe Output for i=1,2,3,4 [D1R, D1, etc)
Si,Ti: Accomulators S and T for i=1,2,3,4
Ti(Xk): Table Value with argument Xk

PAC
No.
(HEX) NAME MNEMONIC ALGORITHMS
2A Double Length to Floating Pt. Conv. DBFPCV
2B Double Length Sum, 6 Single No. PDLSMG IXifori=1to 6 04=MSB, 03=LSB
[2C Real FFT, A RLFFTA S1=X3-X4, 82 =(X5*X1-X6* X1)-(X7*X1-X8*X1),
T1=X4+ X3, T2=(X7*X1-X8*X1) + (X5*X1-X6*X1)
2D Real FFT, B RLFFTB 01=T2+8S2, 02=51+(X1+X2), 03=T2-S2,
04 = (X1-X2)-S1, S1=X1+ X2, S2=X3 + X4
2E Real FFT, C RLFFTC 01=S1+T1,03=T1-81
2F Radix-4, Real Wts and Inverse FFT RAWIFA — PAC No. 80
30 Radix-4, Real Wt, and FFT, B R4WIFB — PAC No. 4F
31 Radix-4, Real Wt, and FFT, C PR4IFL 01=53+T1, 02=584+T2,03=81-T4, 04 =52-S3;
S1=T4+851,52=T3+ 82, S3=T1-S3, S4=T2-S4
32 Inverse Tranform, Pass 1 PRLFTI 03 =X3*X7 + X2*X6 + X1*X5, 04 = X4* X7 + (X1*X5-X2* X6)
S1=X2*X6 + X1*X5-X3* X7, S2 = (X1*X5-X2*X6)-X4* X7
33 Radix 2, Real FFT PR2RLI 01=(X3"X5-X4*X6) + X1, 02 = X1-(X3* X5-X4* X6);
03 = X2 + (X4* X5 + X3*X6), 04 = X2-(X4* X5 + X3*X6)
34 Radix-2, Complex FFT Butterfly R2FTBF 01=81, 02=52, 03 = X3-(X5*X7-X6*X8),
04 = X4-(X6* X7 + X5*X8); S1=(X5*X7-X6"X8) + X3,
S2 =(X6*X7 + X5*X8) + X4
35 Load T Accumulators PLDTAC T1=X1,T2=X2, T3=X3, T4 =X4
36 Load S Accumulators PLDSAC S1=X1,82=X2, S3=X3, S4=X4
37 DEC to AP Floating Pt. Conv. PDECFP See PAC #5A
38 Real Modifies Imaginary PRMI8 Oi = Xi*T(Xi) (Table Lookup)
39 Double Subtraction, Positive PDBSBP If X2-X4-X6=0; 02 = X2-X4-X6
If X2-X4-X6 <0, 02 =0; O3 = X1-X3-X5
If X1-X3-X5=0, If X1-X3-X5<0, 03=0
3A Offset Vector Multiply POFMUL Oi=Xi*Xi+4+C,C=81
3B X Minus Table Value PSMINT 01 =X1-T5(X1), 02 = X3-T7(X3), 03 = T5(X1),
04 =T7(X3)
3C
3D Piecewise Linear Approx. 8 Bit PWLAPS8 —PAC No. 47
3E Sum of Products PSMPRD 03 =X1*X5+ X2*X6, 04 = X3*X7 + X4*X8
3F 3-Point Digital Filter PTHRPF 01=51+X1"X4, 03 =82+ (X1 + X2*X4);
S1=X2+ X1*X3, 82=X2*X3
40 Or All Members of Vector PORALL OR-S1
41 Upshift Multiplication PUPMLT Oi=LSB [Xi*X(i + 4)]
42 Upshift and Multiply PUNPAK 01=LSB (X1*X3) and S1, 02=LSB (X1*X4) and S2,
03 =LSB (X2*X3) and S1, 04 =LSB (X2*X4) and S2
43
44 Not Identified Reserved for Release #2
45
46
47 Piecewise Linear Approx, 8 Bit PWLP8R 01 =X1*T5(X1) + T6(X1), 02 = X3*T7(X3) + T8(X3}
03=01+X2,04=02+ X4
48 Piecewise Linear Approx, 6 Bit PWLAPS 01 =X1*T5(X1) + T6(X1), 02 = X3*T7(X3) + T8(X3),
O3 =T1*T5(X1) + T6(X1), O4 = X3*T7(X3) + T8(X3)
49 Piecewise Linear Approx, 4 Bit PWLAP4 01 =X1*T5(X1) + T6(X1), 02 = X3*X7(X3) + T8(X3),
03 = X1*T5(X1) + T6(X1), O4 = X3*T7(X3) + T8(X3)
4A APBFP to AP Floating Point PNRMFP 01=LSB [X1*T5(X1)), 02 = LSB [X3*X7(X3)},
03 =T6(X1), 04 =T8(X3)
4B Radix-2 Real FFT PRLFT2
4C Bound Below Zero PTHRSH Oi=0 if Xi-X5<0, Oi =2(Xi-X5) if Xi-X5>0 fori=2,4
4D Scale and Add PADDSH 01=51, 02=83, 03=X1*"X5+ LSB (X3*X6),
04 =X2*X5+ LSB (X4*X6); S1=LSB (X3*X6)-X1*X5,
S2 =LSB (X4*X6-X2*X5)
4E Pair Swap and Scaler Mult PSSMLT 01=X1*X5, 02=X3*X5, 03=X2"X5, 04 =X2*X5
4F Radix 4, Ral Wt, & FFT-! PR4FB2 01=53, 02=54; T3=X7*X4 + X8*X5, T4 = X8*X6-X7" X4,

S3 =X8*X5+ X7*X3, S4 = X8*X6 + X7* X4
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AP400

PACs

(Continued)

PIPELINE ARITHMETIC COMMANDS

LEGEND

Xi: Pipe Input fori=1, 2,..., 8 [S1R, S1l, etc]
Qi: Pipe Output for i=1,2,3,4 [D1R, D11, etc]
Si,Ti: Accomulators Sand T fori=1,2,3,4
Ti(Xk): Table Value with argument Xk

PAC
No.
(HEX) NAME MNEMONIC ALGORITHMS
50 Radix 4, Real Wt & FFT- PR4IFA 01=51, 02=S52; T=X4*X4 + X6* X7, S2 = X6*X7-X8* X4
51 Scaler Multiplication PSPRSW Oi= EXi*X5fori=1,2,3,4
52 Convolution, Initial PCONVS 03 =XXi(Xi+4),S1=03
53 Convolution, Iterative PCONVT 03=S+ ~ Xi (Xi+4), S1=S1, 03 =81
54 Change Sign and Move PCHSMV Qi=Xifori=1,23,4
55 BFP to DEC Fioating Pt PBFPDC Converts mantissa from AP to DEC format
56 Magnitude Scalar Mult. PMAGSC Oi=Xi*X5fori=1,2,3,4
57 Piecewise Linear Approx with Mag. PWLPMB8 03 = X1*T5(X1) + T6(X1), 04 = X3*X7(X3) + T8(X3)
58 Newton’s Method of 1/X PNTREC 01=2*"X1*X5-1, 02 =-2(X3*X7)
59 Three Point Filter (Complex) PTHPF1 01=X3*X6+X1+51,02=
5A DEC FP to AP Format PDCFP1 Convert DEC 24-bit mantissa to AP 24-bit 2's Complement.
5B Add & Subtract PADSBT O1=X1+ X3, 02 =X2+ X4, 03 = X1-X3, 04 =X2-X4
5C Separates Integer & Fraction Parts PINTFR
5D Leading-Zero-Dependent Shifts PLZSHF Reserved for 2nd Release
5E Address 1 Modifies Address 2 PA1MA2
5F Add & Subtract Adjacent PADJAD O1=X1+X2, 02=X3+ X4, 03=X1-X2, 04 = X3-X4
60 Radix-2 Real, FFT First Stage PRD2R1 01=51,02=52,03=S83, 04 =54,
S1=X2+ X4, S2=X1+ X3, S3=X2-X4, S4 = X1-X8
61 Radix-2, Real FFT, Second Stage PRD2R2 01=52, 02=X1+X3, 03=54, 04 =X1-X3;
S2 = X2 + X4, S4 = X2-X4
62 Multiply & Add a Constant PMLAD3 O1=Xi*X(i+4)+Si, fori=1,23,4
63 Complex Conjugate PCPXCJ 01=X1,02=-X2, 03=X3, 04=X4
64 Piecewise Linear Approx, 8-Bit PWLBMG 03 = X1*T5(X1) + T6(X1), 04 = X3*X7(X3) + T8(X3)
65 Double Length to Single Length PDLSLC 03 =T8(X3), 04 = T5(X1) and [X2*T6(X1)] or LSB [X3*T7(X3}]
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
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