
Advanced RISC Machines

ARM

Open Access - Preliminary

Document Number: ARM DDI 0077B

Issued: September 1996

Copyright Advanced  RISC Machines Ltd (ARM) 1996

All rights reserved

ARM 7500FE

Data Sheet

ENGLAND
Advanced RISC Machines Limited
90 Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@armltd.co.uk

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@armltd.co.uk

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com



Open Access - Preliminary

Preface-ii
ARM7500FE Data Sheet

ARM DDI 0077B

Proprietary Notice
ARM, the ARM Powered logo, BlackICE and ICEbreaker are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this specification may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this specification is subject to continuous developments and improvements. All particulars of
the product and its use contained in this datasheet are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss
or damage arising from the use of any information in this datasheet, or any error or omission in such information,
or any incorrect use of the product.

Key
Document Number

This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of
each subsequent page.

Document Status

The document’s status is displayed in a banner at the bottom of each page. This describes the document’s

confidentiality and its information status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only
Named Partner Confidential Distributable to the above and to the staff of named partner companies only
Partner Confidential Distributable within ARM and to staff of all partner companies
Open Access No restriction on distribution

Information status is one of:

Advance Information on a potential product
Preliminary Current information on a product under development
Final Complete information on a developed product

ARM XXX 0000 X - 00

(On review drafts only) Two-digit draft number

Release code in the range A-Z
Unique four-digit number

Document type

Change Log
Issue Date By Change
A Aug 1996 SKW Released as preliminary version
B-01 Sep 1996 SKW Amendments and update to general release



Open Access - Preliminary

Preface

Preface-iii
ARM7500FE Data Sheet

ARM DDI 0077B

ARM7500FE is a highly integrated, multi-media single-chip computer, based around the ARM RISC

microprocessor macrocell. ARM7500FE contains all the functionality required to create a complete computing

system with the minimum of external components.The wide range of features incorporated into ARM7500FE

makes it an extremely flexible device, which can be programmed according to the required application

to optimise for high performance or low power, or a combination of both.

Features
■ Highly integrated RISC computer

■ 36.3 Dhrystone 2.1 MIPS ARM7 core @ 40MHz CPU clock

■ 5.7 million SAXPY loops, or up to 6 double-precision Linpack MFLOPS (at 40MHz)

■ 4 Kbyte combined instruction and data cache

■ Flexible Memory Management Unit

■ Glueless memory interface (16 or 32 bits wide) for ROM, RAM and EDO DRAM

■ 128 MBytes/sec (peak) memory bandwidth using 64MHz memory clock

■ 3 channel DMA controller (for video, cursor and sound data)

■ I/O controller, including PC-style bus

■ 2 serial ports, 4 A/D channels

■ 32-bit CD quality serial sound channel

■ Video controller with up to 120MHz pixel clock; resolutions up to 1024 x 768 pixels

■ 16 million colours from 256-entry palette, and 16-level grey scales for LCD displays

■ Direct RGB drive of CRTs; support for interlaced TV displays

■ Suspend and stop power-saving modes

Block diagram of the ARM7500FE

Applications
ARM7500FE is ideally suited to applications requiring  a compact, low-cost, power-efficient, high-performance,

RISC computing system on a single chip. These include:

Multimedia Internet appliances and set-top boxes (see page iv)

Portable Computing Handheld test instrumentation

Games consoles Desktop computing

MMU

Write buffer

Data buffer

ARM processor

Address
Buffer

4Kbyte
cache

ARM7
CPU

I/O
Control

Video and Memory
ControlSound

FPA (Floating-point Accelerator)



Open Access - Preliminary

Preface

Preface-iv
ARM7500FE Data Sheet

ARM DDI 0077B

Application Example 1: Network Computer

Application Example 2: Set-top Box for Digital Interactive Television

SVGA Monitor
TV (direct or via

modulator)
Headphones Network

PSU

ROM

DRAM (4MBytes

Config memory

(non-vol)

Real Time Clock

Front Panel:

status LEDs, run/

standby switches

Keyboard Mouse

typ)

NETWORK I/F
(modem,
ethernet, ATM,
ADSL, coax/RF, ...)

PRINTER I/F

SMART CARD
I/F (eg PCMCIA)

INFRA-RED I/F
- remote control
- high speed

SOUND I/P
(for microphone)

Games Device
(analogue)

Games Device
(digital)

Main Bus

I/O Bus

Encoder
(PAL/NTSC) CD-DAC

Video o/p
(RGB)

I/O Port

2*PS/2 Ports 2*analogue i/ps

Audio o/p
(32-bit)

ARM7500FE

Computer

Set-top
Box

CD-Rom
player

(optional)

(optional)

ATM
Interface

Modem

ADSL tuner

QAM tuner

Network MPEG

DRAM

Keyboard
2-16MB
DRAM

2MB
ROM

modulator
Encoder/

ARM7500FE

Audio

RGB

UHF

Audio



Open Access - Preliminary

Preface

Preface-v
ARM7500FE Data Sheet

ARM DDI 0077B

Datasheet Notation
0x marks a Hexadecimal quantity

BOLD external signals are shown in bold capital letters

binary where it is not clear that a quantity is binary it is followed by the word binary



Open Access - Preliminary

Preface

Preface-vi
ARM7500FE Data Sheet

ARM DDI 0077B



ARM7500FE Data Sheet
ARM DDI 0077B

Contents-1

11
1

Open Access - Preliminary

1 Introduction 1-1

1.1 Introduction 1-2

1.2 Functional Block Diagram 1-2

1.3 ARM Processor Macrocell 1-2

1.4 FPA Macrocell 1-2

1.5 Video and Sound Macrocell 1-4

1.6 Clock Control and Power Management 1-4

1.7 Memory System 1-5

1.8 Other Features 1-6

1.9 Test Modes 1-6

1.10 Structure of ARM7500FE 1-7

1.11 Resetting ARM7500FE Systems 1-7

2 Signal Description 2-1

2.1 Signal Description for ARM7500FE 2-3

3 The ARM Processor Macrocell 3-1

3.1 Introduction 3-2

3.2 Instruction Set 3-2

3.3 Memory Interface 3-3

3.4 Clocks and Synchronous/Asynchronous Modes 3-3

3.5 ARM Processor Block Diagram 3-4

4 The ARM Processor Programmers’ Model 4-1

4.1 Introduction 4-2

4.2 Register Configuration 4-2

4.3 Operating Mode Selection 4-4

4.4 Registers 4-5

4.5 Exceptions 4-8

4.6 Configuration Control Registers 4-13

Contents



ARM7500FE Data Sheet
ARM DDI 0077B

Contents-2

Open Access - Preliminary

5 ARM Processor Instruction Set 5-1

5.1 Instruction Set Summary 5-2

5.2 The Condition Field 5-2

5.3 Branch and Branch with Link (B, BL) 5-3

5.4 Data Processing 5-4

5.5 PSR Transfer (MRS, MSR) 5-13

5.6 Multiply and Multiply-Accumulate (MUL, MLA) 5-16

5.7 Single Data Transfer (LDR, STR) 5-18

5.8 Block Data Transfer (LDM, STM) 5-24

5.9 Single Data Swap (SWP) 5-32

5.10 Software Interrupt (SWI) 5-34

5.11 Coprocessor Instructions on the ARM Processor 5-36

5.12 Coprocessor Data Operations (CDP) 5-36

5.13 Coprocessor Data Transfers (LDC, STC) 5-38

5.14 Coprocessor Register Transfers (MRC, MCR) 5-41

5.15 Undefined Instruction 5-43

5.16 Instruction Set Examples 5-44

5.17 Instruction Speed Summary 5-47

6 Cache, Write Buffer and Coprocessors 6-1

6.1 Instruction and Data Cache (IDC) 6-2

6.2 Read-Lock-Write 6-3

6.3 IDC Enable/Disable and Reset 6-3

6.4 Write Buffer (Wb) 6-3

6.5 Coprocessors 6-5

7 ARM Processor MMU 7-1

7.1 Introduction 7-2

7.2 MMU Program-accessible Registers 7-2

7.3 Address Translation 7-4

7.4 Translation Process 7-4

7.5 Translating Section References 7-8

7.6 Translating Small Page References 7-10

7.7 Translating Large Page References 7-11

7.8 MMU Faults and CPU Aborts 7-12

7.9 Fault Address & Fault Status Registers (FAR & FSR) 7-12

7.10 Domain Access Control 7-13

7.11 Fault-checking Sequence 7-14

7.12 External Aborts 7-16

7.13 Effect of Reset 7-17

8 The FPA Coprocessor Macrocell 8-1

8.1 Overview 8-2

8.2 FPA Functional Blocks 8-3

8.3 FPA Block Diagram 8-5



ARM7500FE Data Sheet
ARM DDI 0077B

Contents-3

Open Access - Preliminary

9 Floating-Point Coprocessor Programmer’s Model 9-1

9.1 Overview 9-2
9.2 Floating-Point Operation 9-2
9.3 ARM Integer and Floating-Point Number Formats 9-4
9.4 The Floating-Point Status Register (FPSR) 9-8
9.5 The Floating-Point Control Register (FPCR) 9-11

10 Floating-Point Instruction Set 10-1

10.1 Floating-Point Coprocessor Data Transfer (CPDT) 10-2
10.2 Floating-Point Coprocessor Data Operations (CPDO) 10-7
10.3 Floating-Point Coprocessor Register Transfer (CPRT) 10-11
10.4 FPA Instruction Set 10-14
10.5 Floating-Point Support Code 10-16
10.6 Instruction Cycle Timing 10-17

11 The Video and Sound Macrocell 11-1

11.1 Introduction 11-2
11.2 Features 11-2
11.3 Block Diagram 11-4

12 The Video and Sound Programmer’s Model 12-1

12.1 The Video and Sound Macrocell Registers 12-3
12.2 Video Palette: Address 0x0 12-5
12.3 Video Palette Address Pointer: Address 0x1 12-5
12.4 LCD Offset Registers: Addresses 0x30 and 0x31 12-6
12.5 Border Color Register: Address 0x4 12-7
12.6 Cursor Palette: Addresses 0x5-0x7 12-7
12.7 Horizontal Cycle Register (HCR): Address 0x80 12-8
12.8 Horizontal Sync Width Register (HSWR): Address 0x81 12-8
12.9 Horizontal Border Start Register (HBSR): Address 0x82 12-8
12.10 Horizontal Display Start Register (HDSR): Address 0x83 12-9
12.11 Horizontal Display End Register (HDER): Address 0x84 12-9
12.12 Horizontal Border End Register (HBER): Address 0x85 12-9
12.13 Horizontal Cursor Start Register (HCSR): Address 0x86 12-10
12.14 Horizontal Interlace Register (HIR): Address 0x87 12-10
12.15 Horizontal Test Registers: Addresses 0x88 & 0x8H 12-10
12.16 Vertical Cycle Register (VCR): Address 0x90 12-10
12.17 Vertical Sync Width Register (VSWR): Address 0x91 12-11
12.18 Vertical Border Start Register (VBSR): Address 0x92 12-11
12.19 Vertical Display Start Register (VDSR): Address 0x93 12-11
12.20 Vertical Display End Register (VDER): Address 0x94 12-12
12.21 Vertical Border End Register (VBER): Address 0x95 12-12
12.22 Vertical Cursor Start Register (VCSR): Address 0x96 12-13
12.23 Vertical Cursor End Register (VCER): Address 0x97 12-13
12.24 Vertical Test Registers: Addresses 0x98, 0x9A & 0x9C 12-13
12.25 External register (ereg): Address 0xC 12-14
12.26 Frequency Synthesizer Register (fsynreg): Address 0xD 12-15
12.27 Control Register (conreg): Address 0xE 12-16
12.28 Data Control Register (DCTL): Address 0xF 12-17
12.29 Sound Frequency Register: Address 0xB0 12-17
12.30 Sound Control Register: Address 0xB1 12-18



ARM7500FE Data Sheet
ARM DDI 0077B

Contents-4

Open Access - Preliminary

13 Video Macrocell Interface 13-1

13.1 Bus Interface 13-2

13.2 Setting the FIFO Preload Value 13-2

14 Video Features 14-1

14.1 Pixel Clock 14-2

14.2 The Palette 14-4

14.3 Cursor 14-5

14.4 Hi-Res Support 14-6

14.5 Liquid Crystal Displays 14-8

14.6 External Support 14-9

14.7 Analog Outputs 14-12

15 Sound Features 15-1

15.1 Sound 15-2

15.2 The Sound FIFO 15-2

15.3 The Digital Serial Sound Interface 15-2

16 Memory and I/O Programmers’ Model 16-1

16.1 Introduction 16-2

16.2 Summary of Registers 16-2

16.3 Register Description 16-6

17 Memory Subsystems 17-1

17.1 ROM Interface 17-2

17.2 DRAM Interface 17-8

17.3 DMA Channels 17-22

18 I/O Subsystems 18-1

18.1 Introduction 18-2

18.2 I/O Address Space Usage 18-3

18.3 Additional I/O Chip Select Decode Logic 18-4

18.4 Simple 8MHz I/O 18-4

18.5 Module I/O 18-11

18.6 PC Bus-style I/O 18-15

18.7 DMA During I/O Cycles 18-29

18.8 Clock Synchronization Conditions 18-29

18.9 Keyboard/mouse Interface 18-30

18.10 Analog to Digital Converter Interface 18-34

18.11 Timers 18-37

18.12 General-purpose, 8-bit-wide, I/O Port 18-38

18.13 ID and OD Open Drain I/O Pins 18-38

18.14 Version and ID Registers 18-39

18.15 Interrupt Control 18-39

19 Clocks, Power Saving, and Reset 19-1

19.1 Clock Control 19-2

19.2 Power Management 19-4

19.3 Reset 19-6



ARM7500FE Data Sheet
ARM DDI 0077B

Contents-5

Open Access - Preliminary

20 Bus Interface 20-1

20.1 Bus Arbitration 20-2

20.2 Bus Cycle Types 20-2

20.3 Video DMA Bandwidth 20-3

20.4 Video DMA Latency 20-4

21 Memory Map 21-1

21.1 ARM7500FE Memory Map 21-2

22 DC and AC Parameters 22-1

22.1 Absolute Maximum Ratings 22-2

22.2 DC Operating Conditions 22-2

22.3 DC Characteristics 22-3

22.4 AC Parameters 22-4

22.5 De-rating 22-6

23 Packaging 23-1

23.1 Pin Diagrams for the ARM7500FE 23-2

24 Pinout 24-1

24.1 Pin Details 24-2

A Initialization and Boot Sequence A-1

A.1 Introduction A-2

A.2 Sample Boot Sequence A-2

A.3 Other Methods A-3

B Dual Panel Liquid Crystal Displays B-1

B.1 Programming the Video Subsystem B-2

B.2 Configuring DMA within ARM7500FE B-3

B.3 Cursor B-3

C Using ASTCR at High MEMCLK Frequencies C-1

C.1 Using the ASTCR Register C-2

D Expanding PC-Style I/O to 32 Bit D-1

D.1 32-bit I/O D-2

E ARM7500FE Video Clock Sources E-1

E.1 Introduction E-2

E.2 Clock Sources E-2

E.3 Using the Phase Comparator E-3

E.4 Phase Comparator Reset E-6

F ARM7500FE Test Modes F-1

F.1 Introduction F-2

F.2 Test Modes Description F-2



ARM7500FE Data Sheet
ARM DDI 0077B

Contents-6

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

1-1

11
1

Open Access - Preliminary

This chapter introduces the ARM7500FE single-chip microprocessor.

1.1 Introduction 1-2

1.2 Functional Block Diagram 1-2

1.3 ARM Processor Macrocell 1-2

1.4 FPA Macrocell 1-2

1.5 Video and Sound Macrocell 1-4

1.6 Clock Control and Power Management 1-4

1.7 Memory System 1-5

1.8 Other Features 1-6

1.9 Test Modes 1-6

1.10 Structure of ARM7500FE 1-7

1.11 Resetting ARM7500FE Systems 1-7

Introduction1



Named Partner Confidential - Preliminary Draft

Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-2

Open Access - Preliminary

1.1 Introduction

ARM7500FE is a high-performance, low-power RISC-based single-chip computer

centered around the ARM microprocessor core. To maximize the potential of the ARM

processor macrocell, ARM7500FE contains memory and I/O control on-chip, enabling

the direct connection of external memory devices and peripherals with the minimum

of external components. A floating-point accelerator (FPA) is also integrated, resulting

in outstanding maths performance.

ARM7500FE includes features which also make it particularly suitable for low-power

portable applications. Both 32 and 16-bit wide memory systems are supported,

allowing a lower-cost 16-bit-based system to be designed. The ARM7500FE will drive

color CRT or color LCD panels. Monochrome single or dual panel LCDs with 16 levels

of greyscaling can also be driven. Power-management circuitry is included with two

power-saving states. The high level of integration achieved allows significant PCB

area saving, and results in a very cost-competitive system.

ARM7500FE is also particularly suited to any application requiring high-quality video,

sound and general I/O requirements, such as multimedia. The video controller

provides up to 16 million colors from a 256-entry palette, running at up to 120MHz pixel

clock rate. The sound subsystem includes a serial sound interface for CD quality 32-bit

sound. Four on-chip A to D converters allow the connection of analog joysticks or

similar control devices. The clocking scheme is very flexible, allowing either a very

cheap system to be built using a single oscillator, or separate asynchronous clocks to

be used for the CPU, memory and I/O subsystems, which gives an extremely flexible

system, able to take advantage of the fastest available DRAM memory.

The wide range of features incorporated into ARM7500FE make it an extremely

flexible device, which can be programmed according to the required application

to optimise for high performance or low power, or a combination of both.

1.2 Functional Block Diagram

Figure 1-1: Block diagram of the ARM7500FE on page 1-3 gives a more detailed view

of the functionality of the ARM7500FE single-chip computer.

1.3 ARM Processor Macrocell

The ARM processor contains an ARM7 core with MMU, 4K cache, and write buffer.

1.4 FPA Macrocell

The FPA is a fully IEEE-754 compliant floating-point accelerator, and supports single,

double and extended precision formats. It is connected to the ARM via

the coprocessor interface and provides the same floating-point functionality as

the FPA11.

Concurrent load/store and arithmetic units, and speculative execution are employed

to give good floating-point performance.



Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-3

Open Access - Preliminary

 Figure 1-1: Block diagram of the ARM7500FE

Video FIFO

and

serializer

Cursor FIFO

and

serializer

Video
palettes

Cursor
palettes

Analog

RGB

outputs

External

LCD

outputs

Address latch

Latched Address

Internal data

D
a
t
a
p
a
t
h

ARM7
CPU

Address
buffer

Write buffer

Horizontal and

vertical timing

and

clock control

Sound

FIFO

Digital

sound

MUX

Address

decode

I/O

control

Interrupts
and timers

Bus control
and

arbitration

Clock control,
power management,

and
reset

DMA
control

DRAM
control

ROM control

4 A to D
convertors

Internal
address

Data
buffer

Data buffer
Serial
port 1

Serial
port 2

MMU

4Kbyte
cache

Data latch

FPA

ARM processor

Video & Sound



Named Partner Confidential - Preliminary Draft

Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-4

Open Access - Preliminary

1.5 Video and Sound Macrocell

The video and sound macrocell gives the ARM7500FE the flexibility to drive high

specification CRT or low power LCD displays, and features the following:

• up to 120MHz pixel clock rate

• resolutions of up to 1024 x 768 pixels are directly supported

(greater if external serialization is used)

• fully programmable display parameters

• 256-entry by 28 bit video palette

• red, green and blue 8-bit linear DACs to drive CRT

• 1,2,4,8,16,32 bits/pixel CRT modes

• up to 16 million colors

• external bits in palette for supremacy, fading, Hi_Res

• single or dual panel LCD driving

• 16-level grey scaler for LCD

• power-management features

• hardware cursor for all display modes

• sound system — serial CD digital output

1.6 Clock Control and Power Management

The clocking strategy for ARM7500FE has been designed for maximum flexibility, and

includes separate clock inputs for the:

• CPU core clock

• Memory system clock

• I/O system clock (in addition to the video clock inputs).

Each of the three clock inputs has a selectable divide-by-two prescaler to generate an

internal 50/50 mark-space ratio if required. Throughout this datasheet, all timing

diagrams assume that CPUCLK, MEMCLK, and I_OCLK are divided by one.

There are two levels of power management included.

SUSPEND mode The clock to the CPU is stopped, but the display continues to
work normally, ie. DMA unaffected.

STOP mode All clocks are stopped. Two asynchronous wake-up event
pins are provided to terminate stop mode. Circuitry is
included on chip to stop external oscillators and restart them
cleanly when required.



Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-5

Open Access - Preliminary

1.7 Memory System

The memory system interface control logic is completely asynchronous in operation to

the I/O control logic. This means that the clock to the memory controller can be

increased in frequency to allow faster memory to be used. This implementation gives

maximum system flexibility.

ARM7500FE can control a 32 or 16-bit wide memory system. The width of each bank

of ROM or DRAM is selectable by programming appropriate register bits. Fast Page

Mode or EDO DRAM types are supported.

A DRAM controller is included which can directly drive up to 4 banks of DRAM.

Four nRAS strobes individually select one of the four banks, and four nCAS strobes

provide individual byte selection. The DRAM address multiplexing option provided

allows a wide variety of DRAM sizes from 256K to beyond 16MB to be used. Up to 256

page mode transfers may occur in one sequential burst. When configured for

operation with a 16-bit DRAM system, the DRAM controller will convert the access into

two DRAM cycles to access the two halves of the 32-bit word. Byte transfers will only

take one DRAM access cycle, even in 16-bit mode.

A programmable register allows one of four DRAM refresh rates to be selected.

In addition, a register is provided to enable direct software control of the nCAS and

nRAS lines for setting DRAM into a self-refresh state.

A ROM controller supports two 16MB banks of ROM with individually programmable

read cycle timings. Support is provided for burst mode reads. Each ROM bank can be

programmed to operate in 16-bit wide mode, and like the DRAM controller will convert

accesses into two ROM cycles for the two halves of the 32-bit word. The ROM

controller can be programmed to allow write cycles through this interface, allowing

FLASH to be programmed, for example.

1.7.1 DMA

Three fully programmable DMA channels are included, for video, cursor and sound

data. The DMA controller includes additional support for dual panel LCDs.

1.7.2 I/O control

The I/O bus of ARM7500FE is 16-bits wide but for some types of access can be

expanded to 32 bits by the use of external transceivers. The input clock I_OCLK

provides a reference for the I/O subsystem which is nominally 32MHz. The I/O

features of this device can be separated into 3 distinct cycle types:

• Simple I/O with fixed 8MHz timings

• Module I/O with variable length 8MHz timings

• PC bus style I/O with fixed 16MHz timings and support for 32-bit data

Simple I/O

The Simple I/O type of access is 16-bit only and has a selection of 4 different cycle

speeds selectable by address. When writing, the upper half-word of the ARM data bus

is written out on the I/O bus. When reading, the I/O bus data is read back onto

the lower half-word of the ARM data bus. During these accesses, a chip select is

asserted with the appropriate nIOR/nIOW read or write strobe, based on the 8MHz

clock CLK8.



Named Partner Confidential - Preliminary Draft

Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-6

Open Access - Preliminary

Module I/O

The Module I/O type of access is 16 bit only and its timing is controlled by a handshake

mechanism with the external hardware. The signals nIORQ (output) and nIOGT
(input) are used for this handshaking and are referenced to REF8M. When writing,

the upper half-word of the ARM data bus is written out on the I/O bus. When

reading, the I/O bus data is read back onto the lower half-word of the ARM data bus.

During these accesses, a chip select is asserted but the nIOR/nIOW read and write

strobes are not used, although the IORNW signal is active.

PC bus style I/O

The PC bus style I/O type of access routes the lower half-word of the ARM bus through

the device providing a direct 16-bit interface. Signals are generated to support

the addition of external latches/drivers to extend the I/O data by 16 bits. The upper

half-word of the ARM data bus is routed through these external devices if present.

There are 5 different address areas generating 5 different chip selects using the same

type of access. There are 4 fixed cycle types based on the 16MHz clock, although

the largest area only supports two of these cycle types. Any access may be held up

by external circuitry removing the READY signal before the end of the cycle.

During these accesses, the relevant chip select is asserted as well as read or write

strobes as appropriate.

Two special inputs are provided to allow external circuitry to route the full 32 bits

through the 16-bit I/O bus using multiplexing. This would allow, for example,

the execution of code from a 16-bit PCMCIA card with suitable external controller.

On a read I/O, if this latching signal is used, the data read back onto the ARM data bus

comes from the I/O bus instead of the external extension latches.

1.8 Other Features

ARM7500FE includes four analog comparators, which can be used to create four

A to D converter channels, and two serial keyboard/mouse ports.

There are 8 general-purpose open-drain I/O lines which can be used as inputs or open

drain outputs and as interrupt sources if required.

An interrupt handler processes a variety of internal and external interrupt sources

to generate the IRQ and FIQ interrupts for the ARM processor.

1.9 Test Modes

ARM7500FE has an nTEST pin which is used to invoke various test modes.

When nTEST is set LOW, the functionality of many of the pins will change depending

on the values applied to the nINT3, nINT6 and nINT8 pins. The nTEST pin includes

an on-chip pull-up, but it is recommended that the pin be pulled up to VDD externally

too. See Appendix F: ARM7500FE Test Modes.

Note: The nTEST pin should never be forced LOW during normal operation.



Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-7

Open Access - Preliminary

1.10 Structure of ARM7500FE

ARM7500FE includes three modified ARM macrocells:

• the ARM processor

• the FPA

• the video/sound macrocells

These macrocells are self-contained and the relevant control registers are contained

within them. This has the effect that there are four sets of programmable registers

within the ARM7500FE, which are accessed in different ways depending on their

location.

1.10.1 Register programming

The ARM processor register programming is described in Chapter 4: The ARM
Processor Programmers’ Model .

The FPA register programming is described in Chapter 9: Floating-Point Coprocessor
Programmer’s Model .

The video and sound macrocell's registers are programmed using only the internal

ARM7500FE data bus (the address bus is not passed to the macrocell). The address

0x03400000 is decoded to provide a write strobe for the video macrocell registers, and

the addressing of registers within the macrocell is decoded from the upper four or eight

bits of the data word. This system is described more fully in Chapter 12: The Video
and Sound Programmer’s Model .

The remaining ARM7500FE registers, associated with Memory, I/O and general

miscellaneous control, form a separate group and are programmed between

addresses 0x03200000 and 0x032001F8. The majority of the registers are only eight

bits wide, although all register addresses are word-aligned. These registers are

described in Chapter 16: Memory and I/O Programmers’ Model .

1.10.2 Interaction between macrocells

Interaction between the macrocells occurs mainly across the ARM7500FE's internal

32-bit data bus, which is routed to the ARM and video/sound macrocells, and most of

the other memory and I/O control logic. The ARM processor's address bus is routed

to an internal address decoder where memory space is decoded to determine required

cycle types and register addresses. The same address bus is latched and exported

from the chip as the LA[28:0] bus. Only these 29 bits of the address bus are available

externally.

1.11 Resetting ARM7500FE Systems

The ARM7500FE is designed to operate with both 16 and 32-bit wide ROM, which

means that it must be capable of booting from either. To achieve this, the chip is always

reset into 16-bit mode, which might be expected to cause difficulty when the chip is

being booted up from 32-bit ROM. However, Appendix A: Initialization and Boot
Sequence describes a simple code sequence which will allow the chip to be started

up without difficulty under these circumstances.



Named Partner Confidential - Preliminary Draft

Introduction

ARM7500FE Data Sheet
ARM DDI 0077B

1-8

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

2-1

11
1

Open Access - Preliminary

This chapter gives the name, type, and relevant details of each of the ARM7500FE

signals.

2.1 Signal Description for ARM7500FE 2-3

Signal Description2



Named Partner Confidential - Preliminary Draft

Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-2

Open Access - Preliminary

D[31:0]

LA[28:0]

Data
Bus

ARM7500FE

nROMCS

RA[11:0]

nCAS[3:0]

nRAS[3:0]

CLK2

CLK8

REF8M

CLK16

BD[15:0]

SETCS

nCCS

nCDACK

TC

nPCCS2

nPCCS1

nSIOCS1

nMSCS

nEASCS

nSIOCS2

nBLO

nBLI

nRBE

nWBE

nIORQ

nIOGT

nIOR

nIOW

IORNW

LNBW

nXIPLATCH

nXIPMUX16

READY

ROM Interface

I/O Clocks

Main I/O Bus

I/O Chip

Extended

Module I/O

I/O R/W

PCMCIA XIP

SNA

CPUCLK

MEMCLK

I_OCLK

nPOR

nRESET

RESET

HCLK

VCLKI

VCLKO

PCOMP

SCLK

WS

SDO

SDCLK

VIREF

HSYNC

VSYNC

ECLK

ED[7:0]

RGB OUTPUTS

nTEST

OD[1:0]

SYNC

ID

IOP[7:0]

nEVENT1

nEVENT2

OSCDELAY

OSCPOWER

nINT6

nINT3

nINT8

INT7

INT9

nINT4

INT5

nINT1

INT2

ATODREF

ATOD[3:0]

MSECLK

MSEDAT

KBCLK

KBDAT

Main
Clocks/Control

Reset

Video
Clocks and

Sound
System

Reference
Current

Video
Outputs

8-bit I/O port

Power
Management

External
Interrupt
Sources

A to D
Convertors

KBD/Mouse
Interface

DRAM
Interface

Support

Selects

Control

32-bit I/O

Latched
Address
Bus and

control

byte/word

nWE



Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-3

Open Access - Preliminary

2.1 Signal Description for ARM7500FE

Note: When output signals are placed in the high impedance state for long periods, care
must be taken to ensure that they do not float to an undefined logic level.

Key to signal types:

IC Input, CMOS threshold

OCZ Output, CMOS levels, tri-stateable

IT Input, TTL threshold

ICS Input, CMOS Schmitt

IA Input, analog

OA Output, analog

BTZ Bidirectional, CMOS output, TTL threshold input level

TOD Open drain, TTL input

CSOD Open drain, CMOS schmitt input

IAOD Input, analog with programmable internal pull-down transistor

For outputs and bidirectionals, drive strength is classified 1,2 or 3. See Chapter 22:
DC and AC Parameters  for DC and AC characteristics.

Pin allocation is described in Chapter 24: Pinout .

Name Type Description

LA[28:0] OCZ2 Latched address bus. This bus is the latched version of the ARM address for

memory accesses, changing on the falling edge of the internal MCLK signal.

LNBW OCZ2 Latched Not Byte word signal. This is a latched version of the internal NBW signal

from the ARM processor, changing on the falling edge of the internal MCLK signal.

D[31:0] BTZ2 The main data bus for the ARM7500FE. All external data transfers happen via this

bus. When the ARM7500FE is configured for operation in 16-bit mode, only the

lower 16 bits are used.

SnA IC Synchronous/not Asynchronous. This pin is set according to the relationship

required between the internal clock signals MCLK and FCLK for the ARM. If this pin

is set HIGH, both the memory system and the CPU are driven from the MEMCLK

pin, and the required synchronous timing relationship between the ARM processor

clocks is generated automatically on-chip. If different clocks are to be used, for the

MEMCLK and CPUCLK inputs, the SnA pin must be set LOW.

BOUT AO Blue Analog Output. The video signal analog outputs are designed to drive doubly-

terminated 75½ lines.

ECLK OCZ3 External Clock. When enabled, this clock validates the data on ED[7:0]. In normal

video mode, it runs at the pixel rate, but when LCD data is being produced, it runs

at a quarter of the pixel rate.

 Table 2-1: ARM7500FE signal description



Named Partner Confidential - Preliminary Draft

Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-4

Open Access - Preliminary

ED[7:0] OCZ2 External Data. This is the digital video output port of the ARM7500FE. From this, the

digital equivalent of the analog output may be produced in any color, or data from

the external palette may be produced. This may be used for a variety of purposes

such as fading or supremacy. Also, data for driving LCD panels is output from this

port. Data produced is validated by ECLK.

GOUT AO Green Analog Output. The video signal analog outputs are designed to drive doubly-

terminated 75Ω lines.

HCLK IT High speed Clock for use with video subsystem.

HSYNC OCZ3 Horizontal Synchronization. There are two synchronization outputs on

ARM7500FE, HSYNC and VSYNC. Dependent on the state of bits 17 and 16 in the

video External register, either a horizontal or a composite (NOR) sync may be output

on this pin, in either polarity. The width of the HSYNC pulse is definable in units of 2

pixels.

PCOMP OCZ1 Phase Comparator Output for use with VCLK pins.

ROUT AO Red Analog Output. The video signal analog outputs are designed to drive doubly-

terminated 75Ω lines.

SCLK IT Sound Clock. This signal can be used to clock the sound system, when a clock

asynchronous to the internal video reference clock is required.

SDCLK OCZ2 Serial Data Clock. This clock validates serial sound data on its rising edge.

SDO OCZ2 Serial Data Out. Serial sound data is output from this pin.

SYNC IT External SYNC. This signal is used to synchronize ARM7500FE with another video

system.

VCLKI IC Phase Comparator Clock In (for video subsystem).

VCLKO OCZ2 Phase Comparator Clock Out (for video subsystem).

VDD_Analog Positive (+5V) supply for analog video system.

VIREF IA Video Reference Current. The video DACs need a reference current in order to

calibrate them. A constant current source is recommended, although a resistor up to

VDD is sufficient for many applications. This current also generates the constant

source for the A to D comparators.

VSS_Analog Supply ground for analog video system.

VSYNC OCZ3 Vertical Synchronization. Dependent on the state of bits 19 and 18 in the external

register, either a vertical or a composite (XNOR) sync may be output on this pin, in

either polarity. The width of the VSYNC pulse may be defined in units of a raster.

WS OCZ2 Word Select. This signal denotes whether the output serial data is for the left hand

stereo channel or the right hand channel.

Name Type Description

 Table 2-1: ARM7500FE signal description  (Continued)



Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-5

Open Access - Preliminary

nTEST IT Test mode input. This pin should be held permanently HIGH.

It is only intended to be used during production test of the ARM7500FE. An on-chip

pull-up is included, but it is advisable to fit an external pull-up resistor to this pin.

nWE OCZ3 Write enable. Active low.

RA[11:0] OCZ2 DRAM row/column multiplexed address bus. Addresses for this bus are decoded

from the ARM processor address for normal memory accesses, and are generated

by the DMA controller for DMA.

nRAS[3:0] OCZ3 DRAM row address strobes. Each of these selects one of the four banks of DRAM

available.

nCAS[3:0] OCZ2 DRAM column address strobes. These select the byte within the word for DRAM

accesses.

VDD_ATOD power Positive 5V supply for the A to D converter comparators

VSS_ATOD power Analog ground for the A to D converter comparators

ATOD[3:0] IAOD Four A to D channel input voltages.

ATODREF IA Reference voltage for the A to D converter comparators.

OSCPOWER OCZ1 Enable signal for the system oscillator(s). When LOW, this signal can be used to

disable the external oscillator(s).

OSCDELAY CSOD1 Requires an RC network to generate a fixed delay when restarting the system

oscillator(s) on exit from STOP mode.

RESET OCZ1 Reset output, synchronized version of internal system reset signal.

nRESET CSOD2 Open drain output and ‘soft’ reset input. This pin is sampled every 1µs for reset

events, so to guarantee a successful reset, a reset pulse applied to this pin must be

longer than 1µs. (Note-1µs, assuming the internal I/O clock is 32MHz)

nROMCS OCZ1 ROM Chip select. Goes LOW to indicate a ROM access.

I_OCLK IC I/O system clock. This clock input should always be 32MHz when in divide by 1

mode, and 64MHz in divide by 2 mode.

MEMCLK IC Memory system clock. In synchronous mode, ARM processor FCLK is also driven

from this clock.

CPUCLK IC Clock used to create FCLK for the ARM CPU in asynchronous mode. When SnA is

HIGH this should be tied HIGH or LOW permanently.

BD[15:0] BTZ2 The main external 16-bit I/O bus.

MSCLK TOD2 Mouse clock. An open drain pin for the mouse PS/2 interface.

MSDATA TOD2 Mouse data. An open drain pin for the mouse PS/2 interface.

KBCLK TOD2 Keyboard clock. An open drain pin for the keyboard PS/2 interface.

Name Type Description

 Table 2-1: ARM7500FE signal description  (Continued)



Named Partner Confidential - Preliminary Draft

Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-6

Open Access - Preliminary

KBDATA TOD2 Keyboard data. An open drain pin for the keyboard PS/2 interface.

nPOR ICS Power on reset. Any LOW transitions on this pin are detected and stretched to

ensure full reset.

IOP[7:0] TOD1 8 bit wide I/O port. Each bit is directly controllable via an ARM7500FE register, and

can be used as an interrupt source if required.

ID TOD1 The ID pin can be used to activate a system ID chip. It is forced LOW during the

power on reset sequence.

OD[1:0] TOD1 Two open drain pins which (unlike the IOP[7:0] bus) cannot be used to generate

interrupts, but can be used as general purpose I/O pins, for example to communicate

with a real time clock chip.

SETCS IC SETCS selects between two address decoding options for the three main I/O chip

selects. It affects the outputs nEASCS, nMSCS and nSIOCS2.

nINT1 IT Falling edge triggered interrupt pin. This pin also has the feature that its value can

be read directly in the IOCR I/O control register.

INT2 IT Rising edge triggered interrupt pin. Can generate an IRQ interrupt.

nINT3 IT Active LOW interrupt pin. Can generate an IRQ interrupt.

nINT4 IT Active LOW interrupt pin. Can generate an IRQ interrupt.

INT5 IT Active HIGH interrupt pin. Can be used to generate either an IRQ or a FIQ interrupt,

depending on the status of the relevant mask register bits.

nINT6 IT Active LOW interrupt pin. Can generate either an IRQ or a FIQ depending on the

programming of the mask registers.

INT7 IT Active HIGH interrupt pin. Can generate an IRQ interrupt.

nINT8 IT Active LOW interrupt pin. Can be used to generate either a FIQ or an IRQ interrupt.

INT9  IT Active HIGH interrupt pin, which can only be used to generate a FIQ (highest priority)

interrupt.

nEVENT1 IC Active LOW asynchronous event pin 1. A falling edge is used to terminate STOP or

SUSPEND power saving modes.

nEVENT2 IT Active LOW asynchronous event pin 2. A falling edge is used to terminate STOP or

SUSPEND power saving modes.

READY IT Can be used to stretch I/O accesses when set LOW during a 16MHz PC-style I/O

cycle.

nIORQ OCZ2 I/O request signal used for Module type I/O for handshaking, together with nIOGT.

nIOGT IT I/O grant signal used for Module type I/O for handshaking, together with nIORQ.

nBLI IT Input used during Module-style I/O reads to cause the latching of data from the BD

port.

Name Type Description

 Table 2-1: ARM7500FE signal description  (Continued)



Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-7

Open Access - Preliminary

nBLO OCZ1 Latching signal for use with external latches on the upper 16 bits of the external

datapath to create a 32-bit wide I/O bus.

nRBE  OCZ1 Active LOW Read enable for an external transceiver attached to the upper 16 bits of

the I/O bus, to create a 32-bit wide I/O bus.

nWBE  OCZ1 Active LOW Write enable for an external transceiver attached to the upper 16 bits of

the I/O bus, to create a 32-bit wide I/O bus.

nXIPMUX16 IT For Execute in place (XIP) support. This signal multiplexes 16 bits of data from the

upper or lower halfword of the ARM7500FE internal data bus to the 16-bit I/O bus,

depending on its state during writes.

nXIPLATCH IC For XIP support. Latches the upper 16 bits of data from the I/O bus while the lower

16 bits are being read. Used in conjunction with nXIPMUX16 to enable XIP from, for

example, a 16-bit PCMCIA card.

nSIOCS1  OCZ1 Active LOW chip select for simple I/O.

nSIOCS2 OCZ1 Active LOW chip select for simple I/O, with address decode modified according to

the state of SETCS.

nMSCS OCZ1 Active LOW chip select for module type I/O, with address decode modified according

to the state of SETCS.

nEASCS OCZ1 Active LOW chip select for extended 16Mhz PC-style I/O, with address decode

modified according to the state of SETCS.

nCCS OCZ1 Not Combo Chip Select. Chip select signal for a PC Combo chip.

nCDACK OCZ1 Not Combo Dack. Chip select and Dack signal for PC Combo chip.

TC OCZ1 Active HIGH terminal count. Used in conjunction with the nCDACK signal for pseudo

DMA to a Combo chip.

nPCCS1 OCZ1 Active LOW chip select for an area of 16Mhz PC-style I/O space.

nPCCS2 OCZ1 Active LOW chip select for an area of 16Mhz PC-style I/O space.

IORNW OCZ2 I/O read/not write, HIGH during an I/O read, and LOW during an I/O write.

nIOR OCZ2 Not I/O read. This has two functions:

• It is LOW during simple and PC-style I/O reads.

Not used for Module type I/O.

• It is also asserted LOW during ROM read cycles to act as an Output Enable.

nIOW OCZ2 Not I/O write.This has two functions:

• It is LOW during simple and PC-style I/O reads.

Not used for Module type I/O.

• It is also asserted LOW during writes to ROM space, to act as a Write Enable,

if writes are enabled in the ROMCR register.

CLK2 OCZ2 2MHz I/O clock output.

Name Type Description

 Table 2-1: ARM7500FE signal description  (Continued)



Named Partner Confidential - Preliminary Draft

Signal Description

ARM7500FE Data Sheet
ARM DDI 0077B

2-8

Open Access - Preliminary

CLK8 OCZ2 8MHz I/O clock output, the inverted version of REF8M.

REF8M OCZ2 8MHz I/O clock output.

CLK16 OCZ2 16MHz I/O clock output, for PC-style I/O.

Name Type Description

 Table 2-1: ARM7500FE signal description  (Continued)



ARM7500FE Data Sheet
ARM DDI 0077B

3-1

11
1

Open Access - Preliminary

This chapter introduces the ARM processor 32-bit microprocessor macrocell.

3.1 Introduction 3-2

3.2 Instruction Set 3-2

3.3 Memory Interface 3-3

3.4 Clocks and Synchronous/Asynchronous Modes 3-3

3.5 ARM Processor Block Diagram 3-4

The ARM Processor Macrocell3



Named Partner Confidential - Preliminary Draft

The ARM Processor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

3-2

Open Access - Preliminary

3.1 Introduction

The ARM7500FE contains a 32-bit RISC ARM processor, similar to the ARM710C

macrocell. It has a 4Kbyte cache, write buffer, and a Memory Management Unit

(MMU). The ARM processor macrocell offers high-level RISC performance, yet its fully

static design ensures minimal power consumption. This makes it ideal for

incorporation into the ARM7500FE. The ARM7500FE aims to make maximum use of

the performance and flexibility offered by the ARM processor.

This part of the datasheet describes the features of the ARM processor macrocell

which are available to the user in its embedded state within the ARM7500FE single-

chip computer. It is not intended that this should be used as a stand-alone datasheet

for a separate ARM processor macrocell.

3.1.1 Architecture

The ARM processor architecture is based on 'Reduced Instruction Set Computer'

(RISC) principles, and the instruction set and related decode mechanism are greatly

simplified compared with microprogrammed 'Complex Instruction Set Computers'

(CISC).

The mixed data and instruction cache together with the write buffer substantially raise

the average execution speed and reduce the average amount of memory bandwidth

required by the processor. This allows the ARM7500FE bus structure to support Direct

Memory Access (DMA) channels with minimal performance loss.

The MMU supports a conventional two-level page-table structure and a number of

extensions which make it ideal for embedded control, UNIX and Object Oriented

systems.

3.2 Instruction Set

The instruction set comprises ten basic instruction types:

• two of these make use of the on-chip arithmetic logic unit, barrel shifter and

multiplier to perform high-speed operations on the data in a bank of 31

registers, each 32 bits wide

• three classes of instruction control data transfer between memory and the

registers, one optimized for flexibility of addressing, another for rapid context

switching and the third for swapping data

• two instructions control the flow and privilege level of execution

• three types are dedicated to the control of coprocessors which allow

the functionality of the instruction set to be extended in an open and uniform

way; the on-chip FPA is one such processor. However, as for the ARM710,

the facility to add external coprocessors to the ARM7500FE is not available,

and software emulation of coprocessor activity will be required if instructions

other than those for the on-chip FPA or control coprocessor #15, are to

perform a defined function.



The ARM Processor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

3-3

Open Access - Preliminary

The ARM instruction set is a good target for compilers of many different high-level

languages. Where required for critical code segments, assembly code programming

is also straightforward, unlike some RISC processors which depend on sophisticated

compiler technology to manage complicated instruction interdependencies.

3.3 Memory Interface

The memory interface has been designed to allow the performance potential to be

realized without incurring high costs in the memory system. Speed-critical control

signals are pipelined to allow system control functions to be implemented in standard

low-power logic, and these control signals permit the ARM7500FE to exploit the paged

mode access offered by industry-standard DRAMs.

3.4 Clocks and Synchronous/Asynchronous Modes

The ARM processor uses two independent clock sources, MCLK and FCLK. Both are

generated internally to ARM7500FE from MEMCLK and CPUCLK. The ARM7 core

CPU switches between MCLK and FCLK according to the operation being carried out.

For example, if the ARM7 core CPU is reading data from the cache it will be clocked

by FCLK, whereas if the core CPU is reading data from uncached memory then it will

be clocked by MCLK. The ARM processor’s control logic ensures that the correct clock

is used internally and switches between the two clocks automatically.

When SnA is tied high MEMCLK creates both FCLK and MCLK, with MCLK having

half the frequency of FCLK. This synchronous mode ensures that there are no

synchronization penalties whenever the ARM 7 core is switched between FCLK and

MCLK.

When SnA is tied low, MEMCLK creates MCLK and CPUCLK must be driven to supply

FCLK. MEMCLK and CPUCLK can be of unrelated frequency. There is a

synchronization penalty whenever the ARM7 core clock switches between MCLK and

FCLK. This penalty is symmetric, and varies between nothing and a whole period of

the clock to which the core is resynchronizing. Thus when changing there is an

average resynchronization penalty of half a clock period, MCLK or FCLK as

appropriate.



Named Partner Confidential - Preliminary Draft

The ARM Processor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

3-4

Open Access - Preliminary

3.5 ARM Processor Block Diagram

 Figure 3-1: ARM processor block diagram

MMU
 4KByte
 Cache

ARM7
 CPU

Write
Buffer

Address Buffer Clock

MCLK SNA FCLK NRESET

NMREQ

NIRQ

NFIQ

Internal Data Bus

D[31:0]DBE

Internal Address Bus

A[31:0] NR/W NB/W

CONTROL

CONTROL
COPROC

Connection to
FPA Coprocessor



ARM7500FE Data Sheet
ARM DDI 0077B

4-1

11
1

Open Access - Preliminary

This chapter details the ARM processor’s programmable registers.

4.1 Introduction 4-2

4.2 Register Configuration 4-2

4.3 Operating Mode Selection 4-4

4.4 Registers 4-5

4.5 Exceptions 4-8

4.6 Configuration Control Registers 4-13

The ARM Processor
Programmers’ Model4



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-2

Open Access - Preliminary

4.1 Introduction

The ARM processor supports a variety of operating configurations.

Some are controlled by register bits and are known as the configurations.

Others may be controlled by software and are known as operating modes.

4.2 Register Configuration

The ARM processor provides 3 register configuration settings which may be changed

while the processor is running. These are discussed below.

4.2.1 Big- and little-endian (the bigend bit)

The bigend bit, in the Control Register, sets whether the ARM7500FE treats words

in memory as being stored in big-endian or little-endian format. Memory is viewed as

a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first

stored word, bytes 4 to 7 the second, and so on.

Little-endian

In the little-endian scheme, the lowest-numbered byte in a word is considered to be

the least-significant byte of the word, and the highest-numbered byte is

the most-significant byte.

Byte 0 of the memory system should be connected to data lines 7 through 0 (D[7:0])
in this scheme.

Big-endian

In the big-endian scheme, the most-significant byte of a word is stored at

the lowest-numbered byte, and the least-significant byte is stored at the

highest-numbered byte.

Little-Endian

Higher

Address 31 24 23 16 15 8 7 0

Word

Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower

Address

 •   Least-significant byte is at lowest address

 •   Word is addressed by byte address of least-significant byte

 Figure 4-1: Little-endian addresses of bytes within words



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-3

Open Access - Preliminary

Byte 0 of the memory system should therefore be connected to data lines

31 through 24 (D[31:24]).

Load and store are the only instructions affected by the endiannism.

4.2.2 Configuration bits for backward compatibility

Two register bits, PROG32 and DATA32, select one of three processor configurations:

1 26-bit program and data space

(PROG32 LOW, DATA32 LOW).
This configuration forces ARM processor to operate like the earlier ARM
processors with 26-bit address space. The programmer's model for these
processors applies, but the new instructions to access the CPSR and SPSR
registers operate as detailed in 5.5 PSR Transfer (MRS, MSR) on page 5-13.
In this configuration it is impossible to select a 32-bit operating mode, and all
exceptions (including address exceptions) enter the exception handler in the
appropriate 26-bit mode.

2 26-bit program space and 32-bit data space

(PROG32 LOW, DATA32 HIGH).
This is the same as the 26-bit program and data space configuration, but with
address exceptions disabled to allow data transfer operations to access the
full 32-bit address space.

3 32-bit program and data space

(PROG32 HIGH, DATA32 HIGH).
This configuration extends the address space to 32 bits, introduces major
changes in the programmer's model and provides support for running existing
26-bit programs in the 32-bit environment.

(The fourth processor configuration (26-bit data space and 32-bit program space)

should not be selected.)

Big-Endian

Higher

Address

31 24 23 16 15 8 7 0 Word

Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower

Address

 •   Most-significant byte is at lowest address

 •   Word is addressed by byte address of most-significant byte

 Figure 4-2: Big-endian addresses of bytes within words



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-4

Open Access - Preliminary

26-bit program space

When configured for 26-bit program space, ARM7500FE is limited to operating in one

of four modes known as the 26-bit modes. These modes correspond to the modes of

the earlier ARM processors and are known as:

• User26

• FIQ26

• IRQ26

• Supervisor26

Note: The PROG32 and DATA32 bits are used only for backward compatibility with earlier

ARM processors and should normally be set to 1. The 32-bit mode is recommended

for compatibility with future ARM processors and all new code should be written to use

only the 32-bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32-bit

operation there are certain additional restrictions which programmers must note.

Refer to the ARM Application Notes “Rules for ARM Code Writers” and “Notes for
ARM Code Writers” available from your supplier.

4.3 Operating Mode Selection

The ARM processor has a 32-bit data bus and a 32-bit address bus. However, only 29

of the address bits are available at the ARM7500FE pins. The data types which

the processor supports are:

• Bytes (8-bits)

• Words (32-bits), which must be aligned to four-byte boundaries.

Instructions are exactly one word, and data operations (e.g. ADD) are only performed

on word quantities. Load and store operations can transfer either bytes or words.

ARM processor supports six modes of operation:

User mode (usr) The normal program execution state.

FIQ mode (fiq) Designed to support a data transfer or
channel process.

IRQ mode (irq) Used for general purpose interrupt handling.

Supervisor mode (svc) A protected mode for the operating system.

Abort mode (abt) Entered after a data or instruction prefetch
abort.

Undefined mode (und) Entered when an undefined instruction is
executed.

Mode changes may be made under software control or may be brought about by

external interrupts or exception processing. Most application programs execute in

User mode. The other modes, known as privileged modes, are entered to service

interrupts or exceptions, or to access protected resources.



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-5

Open Access - Preliminary

4.4 Registers

The processor macrocell has a total of 37 registers made up of:

• 31 general 32-bit registers

• 6 status registers

At any one time 16 general registers (R0 to R15) and one or two status registers are

visible to the programmer. The visible registers depend on the processor mode, and

the other registers (the banked registers) are switched in to support IRQ, FIQ,

Supervisor, Abort and Undefined mode processing.

The register bank organization is shown in Figure 4-3: Register organization.

The banked registers are shaded in the diagram.

 Figure 4-3: Register organization

General Registers and Program Counter Modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-6

Open Access - Preliminary

In all modes, 16 registers (R0 to R15) are directly accessible. All registers except R15

are general-purpose and may be used to hold data or address values. Register R15

holds the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2]

contain the PC. A seventeenth register (the CPSR - Current Program Status Register)

is also accessible. It contains condition code flags and the current mode bits and may

be thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch

and Link instruction is executed. It may be treated as a general purpose register at all

other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to

hold the return values of R15 when interrupts and exceptions arise, or when Branch

and Link instructions are executed within interrupt or exception routines.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ

programs will not need to save any registers.

User mode, IRQ mode, Supervisor mode, Abort mode and Undefined mode each have

two banked registers mapped to R13 and R14. The two banked registers allow these

modes to each have a private stack pointer and link register.

Supervisor, IRQ, Abort and Undefined mode programs which require more than these

two banked registers are expected to save some or all of the caller's registers

(R0 to R12) on their respective stacks. They are then free to use these registers which

they will restore before returning to the caller.

In addition, there are also five SPSRs (Saved Program Status Registers) which are

loaded with the CPSR when an exception occurs. There is one SPSR for each

privileged mode.

4.4.1 Program status registers

The format of the Program Status Registers is shown in Figure 4-4: Format of the
Program Status Registers (PSRs).

 Figure 4-4:  Format of the Program Status Registers (PSRs)

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow

Carry / Borrow / Extend

Zero

Negative / Less Than

Mode bits

FIQ disable

IRQ disable

. ..

flags control



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-7

Open Access - Preliminary

Condition code flags

The N, Z, C and V bits are the condition code flags. The condition code flags in

the CPSR may be changed as a result of arithmetic and logical operations in

the processor and may be tested by all instructions to determine if the instruction is

to be executed.

Interrupt disable bits

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it

is set and the F bit disables FIQ interrupts when it is set.

Mode bits

The M0, M1, M2, M3 and M4 bits (M[4:0]) are the mode bits, and these determine

the mode in which the processor operates. The interpretation of the mode bits is

shown in Table 4-1: The mode bits. Not all combinations of the mode bits define a valid

processor mode. Only those explicitly described shall be used.

Control bits

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as

the control bits. The control bits change when an exception arises and in addition can

be manipulated by software when the processor is in a privileged mode. Unused bits

in the PSRs are reserved and their state must be preserved when changing the flag

or control bits. Programs must not rely on specific values from the reserved bits when

checking the PSR status, since they may read as one or zero in future processors.

M[4:0] Mode Accessible register set

 10000 User PC, R14..R0 CPSR

 10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

 Table 4-1: The mode bits



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-8

Open Access - Preliminary

4.5 Exceptions

Exceptions arise whenever there is a need to break the normal flow of program

execution. For example, the processor can be diverted to handle an interrupt from

a peripheral. The processor state just prior to handling the exception must be

preserved so that the original program can be resumed when the exception routine

has completed. Many exceptions may arise at the same time.

The ARM processor handles exceptions by making use of the banked registers to

save state. The old PC and CPSR contents are copied into the appropriate R14 and

SPSR, and the PC and mode bits in the CPSR bits are forced to a value which

depends on the exception. Interrupt disable flags are set where required to prevent

otherwise unmanageable nestings of exceptions. In the case of a re-entrant interrupt

handler, R14 and the SPSR should be saved onto a stack in main memory before

re-enabling the interrupt.

Note: When transferring the SPSR register to and from a stack, it is important to transfer

the whole 32-bit value, and not just the flag or control fields.

When multiple exceptions arise simultaneously, a fixed priority determines the order in

which they are handled. The priorities are listed in 4.5.7 Exception priorities on page

4-12.

4.5.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is generated by the interrupt handler within

the ARM7500FE. This input is delayed by one clock cycle for synchronization before

it can affect the processor execution flow. It is designed to support a data transfer or

channel process, and has sufficient private registers to remove the need for register

saving in such applications (thus minimizing the overhead of context switching).

Note: The FIQ exception may be disabled by setting the F flag in the CPSR (but note that

this is not possible from User mode).

If the F flag is clear, the ARM processor checks for a LOW level on the output of

the FIQ synchronizer at the end of each instruction. When a FIQ is detected, the ARM

processor performs the following:

1 Saves the address of the next instruction to be executed plus 4 in R14_fiq;
saves CPSR in SPSR_fiq.

2 Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x1C.

Returning from FIQ

To return normally from FIQ, use SUBS PC, R14_fiq,#4, which will restore both the PC

(from R14) and the CPSR (from SPSR_fiq) and resume execution of the interrupted

code.



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-9

Open Access - Preliminary

4.5.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by the interrupt

handler within the ARM7500FE. It has a lower priority than FIQ, and is masked out

when a FIQ sequence is entered. Its effect may be masked out at any time by setting

the I bit in the CPSR (but note that this is not possible from User mode).

If the I flag is clear, the ARM processor checks for a LOW level on the output of the IRQ

synchronizer at the end of each instruction. When an IRQ is detected, the ARM

processor performs the following:

1 Saves the address of the next instruction to be executed plus 4 in R14_irq;
saves CPSR in SPSR_irq.

2 Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x18.

Returning from IRQ

To return normally from IRQ, use SUBS PC,R14_irq,#4, which will restore both the PC

and the CPSR and resume execution of the interrupted code.

4.5.3 Abort

An ABORT is signalled by the internal Memory Management Unit, and indicates that

the current memory access cannot be completed. For instance, in a virtual memory

system the data corresponding to the current address may have been moved out of

memory onto a disc, and considerable processor activity may be required to recover

the data before the access can be performed successfully.

The abort mechanism allows a demand paged virtual memory system to be

implemented when suitable memory management software is available.

The processor is allowed to generate arbitrary addresses, and when the data at

an address is unavailable, the MMU signals an abort. The processor traps into system

software which must work out the cause of the abort, make the requested data

available, and retry the aborted instruction. The application program needs no

knowledge of the amount of memory available to it, nor is its state in any way affected

by the abort.

The ARM processor checks for ABORT during memory access cycles.

When successfully aborted ARM processor responds in one of two ways:

• prefetch abort

• data abort

Prefetch abort

If the abort occurred during an instruction prefetch (a prefetch abort), the prefetched

instruction is marked as invalid but the abort exception does not occur immediately.

If the instruction is not executed, for example as a result of a branch being taken while

it is in the pipeline, no abort will occur. An abort will take place if the instruction reaches

the head of the pipeline and is about to be executed.



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-10

Open Access - Preliminary

Data abort

If the abort occurred during a data access (a data abort), the action depends on

the instruction type:

• single data transfer instructions (LDR, STR) write back modified base

registers and the Abort handler must be aware of this

• the swap instruction (SWP) is aborted as though it had not executed, though

externally the read access may take place

• block data transfer instructions (LDM, STM) complete, and if write-back is set,

the base is updated. If the instruction would normally have overwritten

the base with data (i.e. LDM with the base in the transfer list), this overwriting

is prevented. All register overwriting is prevented after the Abort is indicated,

which means in particular that R15 (which is always last to be transferred)

is preserved in an aborted LDM instruction.

Abort sequence

When either a prefetch or data abort occurs, ARM processor performs the following:

1 Saves the address of the aborted instruction plus 4 (for prefetch aborts)
or 8 (for data aborts) in R14_abt; saves CPSR in SPSR_abt.

2 Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from either:

• address 0x0C (prefetch abort) or

• address 0x10 (data abort)

Returning from an abort

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch

abort) or SUBS PC,R14_abt,#8 (for a data abort). This will restore both the PC and the

CPSR and retry the aborted instruction.

4.5.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode,

usually to request a particular supervisor function. When a SWI is executed, ARM

processor performs the following:

1 Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc.

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x08.

Returning from a SWI

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and

return to the instruction following the SWI.



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-11

Open Access - Preliminary

4.5.5 Undefined instruction trap

When the ARM processor comes across an instruction which it cannot handle, it takes

the undefined instruction trap. This includes all coprocessor instructions, except MCR

and MRC operations which access the internal control coprocessor.

The trap may be used for software emulation of a coprocessor in a system which does

not have the coprocessor hardware, or for general-purpose instruction set extension

by software emulation.

When the ARM processor takes the undefined instruction trap, it performs the

following:

1 Saves the address of the Undefined or coprocessor instruction plus 4 in
R14_und; saves CPSR in SPSR_und.

2 Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x04.

Returning from an undefined instruction trap

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und.

This will restore the CPSR and return to the instruction following the undefined

instruction.

4.5.6 Vector summary

These are byte addresses, and will normally contain a branch instruction pointing to

the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for

(and execution time of) a branch instruction.

Address Exception Mode on entry

0x00000000  Reset Supervisor

0x00000004  Undefined instruction Undefined

0x00000008  Software interrupt Supervisor

0x0000000C  Abort (prefetch) Abort

0x00000010  Abort (data) Abort

0x00000014  -- reserved --    --

0x00000018  IRQ IRQ

0x0000001C  FIQ FIQ

 Table 4-2: Vector summary



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-12

Open Access - Preliminary

4.5.7 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines

the order in which they will be handled:

1 Reset (highest priority)

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined Instruction, software interrupt (lowest priority)

Note: Not all exceptions can occur at once. Undefined instruction and software interrupt are

mutually exclusive since they each correspond to particular (non-overlapping)

decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag

in the CPSR is clear), the ARM processor will enter the data abort handler and then

immediately proceed to the FIQ vector. A normal return from FIQ will cause the data

abort handler to resume execution. Placing data abort at a higher priority than FIQ is

necessary to ensure that the transfer error does not escape detection; the time for this

exception entry should be added to worst-case FIQ latency calculations.

4.5.8 Interrupt latencies

Calculating the worst-case interrupt latency for the ARM processor is quite complex

due to the cache, MMU and write buffer and is dependent on the configuration of

the whole system.

4.5.9 Reset

When the ARM7500FE is reset, the ARM processor abandons the executing

instruction and then performs idle cycles from incrementing word addresses.

When the ARM7500FE comes out of reset, the ARM processor does the following:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and CPSR is not defined.

2 Forces M[4:0]=10011 (Supervisor mode); sets the I and F bits in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x00.



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-13

Open Access - Preliminary

End of reset sequence

At the end of the reset sequence:

• the MMU is disabled and the TLB is flushed, so forces “flat” translation

(i.e. the physical address is the virtual address, and there is no permission

checking)

• alignment faults are also disabled

• the cache is disabled and flushed

• the write buffer is disabled and flushed

• the ARM7 CPU core is put into 26-bit data and address mode, little-endian

mode

To make the ARM7 enter normal 32-bit operation, execute the following instructions at

the start of the reset code to which the reset vector branches:

MOV R0, #0x70

MCR P15, 0, R0, C1, C0 ;Set 32-bit program and data

;configuration

MOV R0, #0xD3 ;And enter Supervisor-32 mode with

MSR CPSR_c, R0 ;interrupts disabled

Also, make certain that this reset code lies within the first 32MB of memory to ensure

that the instruction at the reset vector branches to the expected place even though the

processor is operating in a 26-bit mode at the time.

4.6 Configuration Control Registers

The operation and configuration of the ARM processor is controlled both directly via

coprocessor instructions and indirectly via the Memory Management Page tables.

The coprocessor instructions manipulate a number of on-chip registers which control

the configuration of the Cache, write buffer, MMU and a number of other configuration

options.

Backwards compatibility

To ensure backwards compatibility of future CPUs:

• all reserved or unused bits in registers and coprocessor instructions should be

programmed to '0'.

• invalid registers must not be read/written.

• the following bits must be programmed to '0':

Register 1 bits[31:11]

Register 2 bits[13:0]

Register 5 bits[31:0]

Register 6 bits[11:0]

Register 7 bits[31:0]



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-14

Open Access - Preliminary

Note: The areas marked “Reserved” in the register and translation diagrams should be
programmed 0 for future compatibility.

4.6.1 Internal coprocessor instructions

The on-chip registers may be read using MRC instructions and written using MCR

instructions. These operations are only allowed in non-user modes and the undefined

instruction trap will be taken if accesses are attempted in user mode.

Refer to 5.14 Coprocessor Register Transfers (MRC, MCR) on page 5-41.

 Figure 4-5: Format of Internal Coprocessor Instructions MRC and MCR

4.6.2 Registers

The ARM processor contains registers which control the cache and MMU operation.

These registers are accessed using CPRT instructions to Coprocessor #15 with

the processor in a privileged mode.

Only some of registers 0-7 are valid:

• an access to an invalid register will cause neither the access nor an undefined

instruction trap, and therefore should never be carried out

• an access to any of the registers 8-15 will cause the undefined instruction trap

to be taken.

Register Register reads Register writes

0 CPU ID Reserved

1 Reserved Control

2 Reserved Translation Table Base

3 Reserved Domain Access Control

4 Reserved Reserved

 Table 4-3: Cache and MMU control registers

0

034781112151619202122272831 125691013141718232425262930

11 1Cond n CRn Rd 11 1 1 1

ARM condition codes

ARM Register

ARM Register

1 MRC register read

0 MCR register write



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-15

Open Access - Preliminary

5 Fault Status Flush TLB

6 Fault Address Purge TLB

7 Reserved Flush IDC

8-15 Reserved Reserved

Register Register reads Register writes

 Table 4-3: Cache and MMU control registers



Named Partner Confidential - Preliminary Draft

The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-16

Open Access - Preliminary

Register 1: Control

Register 1 is write-only and contains control bits. All bits in this register are forced LOW

by reset.

M Bit 0 Enable/disable

0 on-chip Memory Management Unit turned off
1 on-chip Memory Management Unit turned on.

A Bit 1 Address Fault Enable/Disable

0 alignment fault disabled
1 alignment fault enabled

C Bit 2 Cache Enable/Disable

0  Instruction / data cache turned off
1  Instruction / data cache turned on

W Bit 3 Write buffer Enable/Disable

0 Write buffer turned off
1 Write buffer turned on

P Bit 4 ARM 32/26-bit Program Space

0 26-bit Program Space selected
1 32-bit Program Space selected

D Bit 5 ARM 32/26-bit Data Space

0 26-bit Data Space selected
1 32-bit Data Space selected

B Bit 7 Big/Little-Endian

0 Little-endian operation
1 Big-endian operation

S Bit 8 System bit, which controls the ARM processor permission system.

R Bit 9 ROM bit, which controls the ARM processor permission system

Register 2: Translation Table Base

Register 2 is a write-only register which holds the base of the currently active

Level One page table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R S B 1 D P W C A M

31 14 13 0

Translation Table Base



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-17

Open Access - Preliminary

Register 3: Domain Access Control

Register 3 is a write-only register which holds the current access control for domains

0 to 15. See 7.10 Domain Access Control on page 7-13 for the access permission

definitions and other details.

Register 4: Reserved

Register 4 is Reserved.

Accessing this register has no effect, but should never be attempted.

Register 5: Fault Status/Translation Lookaside Buffer Flush

Read: Fault Status

Reading register 5 returns the status of the last data fault. It is not
updated for a prefetch fault. See Chapter 7: ARM Processor MMU  for
more details. Note that only the bottom 12 bits are returned. The
upper 20 bits will be the last value on the internal data bus, and
therefore will have no meaning. Bits 11:8 are always returned as zero.

Write: Translation Lookaside Buffer Flush

Writing Register 5 flushes the TLB. (The data written is discarded).

Register 6: Fault Address/ TLB Purge

Read: Fault Address

Reading register 6 returns the virtual address of the last data fault.

Write: TLB Purge

Writing Register 6 purges the TLB; the data is treated as an address
and the TLB is searched for a corresponding page table descriptor.
If a match is found, the corresponding entry is marked as invalid.
This allows the page table descriptors in main memory to be updated
and invalid entries in the on-chip TLB to be purged without requiring
the entire TLB to be flushed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 12 11 10 9 8 7 4 3 0

0 0 0 0 Domain Status

31 0

Fault address

31 14 13 0

Purge address



The ARM Processor Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

4-18

Open Access - Preliminary

Register 7: IDC Flush

Register 7 is a write-only register. The data written to this register is discarded and

the IDC is flushed.

Registers 8 -15: Reserved

Accessing any of these registers will cause the undefined instruction trap to be taken.



ARM7500FE Data Sheet
ARM DDI 0077B

5-1

11
1

Open Access - Preliminary

This chapter describes the ARM processor instruction set.

5.1 Instruction Set Summary 5-2

5.2 The Condition Field 5-2

5.3 Branch and Branch with Link (B, BL) 5-3

5.4 Data Processing 5-4

5.5 PSR Transfer (MRS, MSR) 5-13

5.6 Multiply and Multiply-Accumulate (MUL, MLA) 5-16

5.7 Single Data Transfer (LDR, STR) 5-18

5.8 Block Data Transfer (LDM, STM) 5-24

5.9 Single Data Swap (SWP) 5-32

5.10 Software Interrupt (SWI) 5-34

5.11 Coprocessor Instructions on the ARM Processor 5-36

5.12 Coprocessor Data Operations (CDP) 5-36

5.13 Coprocessor Data Transfers (LDC, STC) 5-38

5.14 Coprocessor Register Transfers (MRC, MCR) 5-41

5.15 Undefined Instruction 5-43

5.16 Instruction Set Examples 5-44

5.17 Instruction Speed Summary 5-47

ARM Processor Instruction Set5



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-2

Open Access - Preliminary

5.1 Instruction Set Summary

A summary of the ARM processor instruction set is shown in Figure 5-1: Instruction
set summary.

 Figure 5-1: Instruction set summary

Note: Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken; for instance, a Multiply instruction with bit 6 changed to a 1.
These instructions shall not be used, as their action may change in future ARM
implementations.

5.2 The Condition Field

 Figure 5-2: Condition codes

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Processing
PSR Transfer

cond 0 0 I opcode S Rn Rd operand 2

Multiply cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Single data swap cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

Single data transfer cond 0 1 I P U B W L Rn Rd offset

Undefined instruction cond 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x

Block data transfer cond 1 0 0 P U S W L Rn Register List

Branch cond 1 0 1 L offset

Coproc data transfer cond 1 1 0 P U N W L Rn CRd cp_num offset

Coproc data operation cond 1 1 1 0 CP opc CRn CRd cp_num CP 0 CRm

Coproc register transfer cond 1 1 1 0 CP opc L CRn Rd cp_num CP 1 CRm

Software interrupt cond 1 1 1 1 ignored by processor

31 28 27 0

cond

Condition Field

0000 = EQ  (equal) - Z set

0001 = NE  (not equal) - Z clear

0010 = CS (unsigned higher or same) - C set

0011 = CC (unsigned lower) - C clear

0100 = MI (negative) - N set

0101 = PL (positive or zero) - N clear

0110 = VS (overflow) - V set

0111 = VC (no overflow) - V clear

1000 = HI (unsigned higher) - C set and Z clear

1001 = LS (unsigned lower or same) - C clear or Z set

1010 = GE (greater or equal) - N set and V set, or N clear and V clear

1011 = LT (less than) - N set and V clear, or N clear and V set

1100 = GT (greater than) - Z clear, and either N set and Vset, or N clear and V clear

1101 = LE (less than or equal) - Z set, or N set and V clear, or N clear and V set

1101 = AL - always

1111 = NV - never



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-3

Open Access - Preliminary

All ARM processor instructions are conditionally executed, which means that their

execution may or may not take place depending on the values of the N, Z, C and V

flags in the CPSR.

The condition codes have meanings as detailed in Figure 5-2: Condition codes, for

instance code 0000 (EQual) executes the instruction only if the Z flag is set. This would

correspond to the case where a compare (CMP) instruction had found the two

operands to be equal. If the two operands were different, the compare instruction

would have cleared the Z flag and the instruction is not executed.

Note: If the always (AL - 1110) condition is specified, the instruction will be executed
irrespective of the flags. The never (NV - 1111) class of condition codes must not be
used as they will be redefined in future variants of the ARM architecture. If a NOP is
required it is suggested that MOV R0,R0 be used. The assembler treats the absence
of a condition code as though always had been specified.

5.3 Branch and Branch with Link (B, BL)

These instructions are only executed if the condition is true. The instruction encoding

is shown in Figure 5-3: Branch instructions.

 Figure 5-3: Branch instructions

Branch instructions contain a signed 2's complement 24-bit offset. This is shifted left

two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore

specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch

operation, which causes the PC to be 2 words (8 bytes) ahead of the current

instruction. Branches beyond +/- 32Mbytes must use an offset or absolute destination

which has been previously loaded into a register. In this case the PC should be

manually saved in R14 if a branch with link type operation is required.

5.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.

The PC value written into R14 is adjusted to allow for the prefetch, and contains

the address of the instruction following the branch and link instruction. Note that

the CPSR is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register

is still valid or use LDM Rn!,{..PC} if the link register has been saved onto a stack

pointed to by Rn.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch

1 = Branch with Link

Condition field



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-4

Open Access - Preliminary

5.3.2 Instruction cycle times

Branch and Branch with Link instructions take 3 instruction fetches. For more

information see 5.17 Instruction Speed Summary on page 5-47.

5.3.3 Assembler syntax

B{L}{cond} <expression>

Items in {} are optional. Items in <> must be present.

{L} requests the Branch with Link form of the instruction.
If *absent, R14 will not be affected by the instruction.

{cond} is a two-char mnemonic as shown in Figure 5-2: Condition
codes on page 5-2 (EQ, NE, VS etc). If absent then AL
(ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

5.3.4 Examples

here BAL here ;assembles to 0xEAFFFFFE (note effect of PC

;offset)

B there ;ALways condition used as default

CMP R1,#0 ;compare R1 with zero and branch to fred if R1

BEQ fred ;was zero otherwise continue to next instruction

BL sub+ROM ;call subroutine at computed address

ADDS R1,#1 ;add 1 to register 1, setting CPSR flags on the

BLCC sub ;result then call subroutine if the C flag is

;clear, which will be the case unless R1 held

;0xFFFFFFFF

5.4 Data Processing

The instruction is only executed if the condition is true, defined at the beginning of this

chapter. The instruction encoding is shown in Figure 5-4: Data processing instructions
on page 5-5.

The instruction produces a result by performing a specified arithmetic or logical

operation on one or two operands.

First operand  is always a register (Rn).

Second operand may be a shifted register (Rm) or a rotated 8-bit immediate
value (Imm) according to the value of the I bit in
the instruction.

The condition codes in the CPSR may be preserved or updated as a result of this

instruction, according to the value of the S-bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used

only to perform tests and to set the condition codes on the result and always have

the S bit set.

The instructions and their effects are listed in Table 5-1: ARM data processing
instructions on page 5-6.



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-5

Open Access - Preliminary

.

 Figure 5-4: Data processing instructions

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register

1st operand register

Set condition codes

Operation Code

0 = do not alter condition codes

1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1

0100 = ADD - Rd:= Op1 + Op2

0101 = ADC - Rd:= Op1 + Op2 + C

0110 = SBC - Rd:= Op1 - Op2 + C

0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2

1001 = TEQ - set condition codes on Op1 EOR Op2

1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2

1100 = ORR - Rd:= Op1 OR Op2

1101 = MOV - Rd:= Op2

1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register

shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1

- 1



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-6

Open Access - Preliminary

5.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical

operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action

on all corresponding bits of the operand or operands to produce the result.

If the S bit is set (and Rd is not R15):

• the V flag in the CPSR will be unaffected

• the C flag will be set to the carry out from the barrel shifter (or preserved when

the shift operation is LSL #0)

• the Z flag will be set if and only if the result is all zeros

• the N flag will be set to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each

operand as a 32-bit integer (either unsigned or 2’s complement signed, the two are

equivalent).

Assembler mnemonic OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

 Table 5-1: ARM data processing instructions



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-7

Open Access - Preliminary

If the S bit is set (and Rd is not R15):

• the V flag in the CPSR will be set if an overflow occurs into bit 31 of the result;

this may be ignored if the operands were considered unsigned, but warns of

a possible error if the operands were 2's complement signed

• the C flag will be set to the carry out of bit 31 of the ALU

• the Z flag will be set if and only if the result was zero

• the N flag will be set to the value of bit 31 of the result (indicating a negative

result if the operands are considered to be 2's complement signed).

5.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of

the barrel shifter is controlled by the Shift field in the instruction. This field indicates

the type of shift to be performed (logical left or right, arithmetic right or rotate right).

The amount by which the register should be shifted may be contained in an immediate

field in the instruction, or in the bottom byte of another register (other than R15).

The encoding for the different shift types is shown in Figure 5-5: ARM shift operations.

 Figure 5-5: ARM shift operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which

may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and

moves each bit by the specified amount to a more significant position. The least

significant bits of the result are filled with zeros, and the high bits of Rm which do not

map into the result are discarded, except that the least significant discarded bit

becomes the shifter carry output which may be latched into the C bit of the CPSR when

the ALU operation is in the logical class (see above). For example, the effect of LSL #5

is shown in Figure 5-6: Logical shift left on page 5-8.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left

01 = logical right

10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left

01 = logical right

10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-8

Open Access - Preliminary

 Figure 5-6: Logical shift left

Note: LSL #0 is a special case, where the shifter carry out is the old value of the CPSR
C flag. The contents of Rm are used directly as the second operand.

Logical shift right

A logical shift right (LSR) is similar, but the contents of Rm are moved to less

significant positions in the result. LSR #5 has the effect shown in Figure 5-7: Logical
shift right.

 Figure 5-7:  Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used

to encode LSR #32, which has a zero result with bit 31 of Rm as the carry output.

Logical shift right zero is redundant as it is the same as logical shift left zero, so

the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow

LSR #32 to be specified.

Arithmetic shift right

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits

are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement

notation. For example, ASR #5 is shown in Figure 5-8: Arithmetic shift right on

page 5-9.

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-9

Open Access - Preliminary

 Figure 5-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode

ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is

also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to

the value of bit 31 of Rm.

Rotate right

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right

operation by reintroducing them at the high end of the result, in place of the zeros used

to fill the high end in logical right operations. For example, ROR #5 is shown in Figure
5-9: Rotate right on page 5-9.

 Figure 5-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode

a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right

by one bit position of the 33 bit quantity formed by appending the CPSR C flag to

the most significant end of the contents of Rm as shown in Figure 5-10: Rotate right
extended on page 5-10.

contents of Rm

value of operand 2

31 0

carry out

5 430

contents of Rm

value of operand 2

31 0

carry out

5 4



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-10

Open Access - Preliminary

 Figure 5-10: Rotate right extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift

amount. Rs can be any general register other than R15.

Note: The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one

in this bit will cause the instruction to be a multiply or undefined instruction.

5.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift

operation on the 8 bit immediate value. This value is zero extended to 32 bits, and then

subject to a rotate right by twice the value in the rotate field. This enables many

common constants to be generated, for example all powers of 2.

Byte Description

0 Unchanged contents of Rm will be used as the second operand, and the old value of

the CPSR C flag will be passed on as the shifter carry output

1 - 31  The shifted result will exactly match that of an instruction specified shift with the same value

and shift operation

32 or more  The result will be a logical extension of the shift described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out as ROR
by n-32; therefore repeatedly subtract 32 from n until the amount is in the range
1 to 32 and see above.

 Table 5-2: Register specified shift amount

contents of Rm

value of operand 2

31 0

carry
out

1

C
in



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-11

Open Access - Preliminary

5.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be

updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation

is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and

the SPSR corresponding to the current mode is moved to the CPSR. This allows state

changes which atomically restore both PC and CPSR.

Note: This form of instruction must not be used in User mode.

5.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is

used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction

prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes

ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

5.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the

CPSR. An assembler shall always set the S flag for these instructions even if it is not

specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the

32-bit modes, the PSR transfer operations should be used instead. If used in these

modes, its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged

mode and to do nothing if in User mode.

5.4.7 Instruction cycle times

Data Processing instructions vary in the number of incremental cycles taken as

follows:

See 5.17 Instruction Speed Summary on page 5-47 for more information.

Instruction Cycles

Normal Data Processing 1instruction fetch

Data Processing with register specified shift 1 instruction fetch + 1 internal cycle

Data Processing with PC written 3 instruction fetches

Data Processing with register specified shift

and PC written

3 instruction fetches and 1 internal cycle

 Figure 5-11: Instruction cycle times



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-12

Open Access - Preliminary

5.4.8 Assembler syntax

1 MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

2 CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2>  is Rm{,<shift>} or,<#expression>

{cond} two-character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

{S} set condition codes if S present (implied for CMP, CMN, TEQ,
TST).

Rd, Rn and Rm are expressions evaluating to a register number.

<#expression> if used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression,
or RRX (rotate right one bit with extend).

<shiftname> is: ASL, LSL, LSR, ASR, ROR.
(ASL is a synonym for LSL; they assemble to the same code.)

5.4.9 Example

ADDEQ R2,R4,R5 ;if the Z flag is set make R2:=R4+R

TEQS R4,#3 ;test R4 for equality with 3

;(the S is in fact redundant as the

;assembler inserts it automatically)

SUB R4,R5,R7,LSR R2;

;logical right shift R7 by the number in

;the bottom byte of R2, subtract result

;from R5, and put the answer into R4

MOV PC,R14 ;return from subroutine

MOVS PC,R14 ;return from exception and restore CPSR

;from SPSR_mode



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-13

Open Access - Preliminary

5.5 PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are

defined in 5.2 The Condition Field on page 5-2.

The MRS and MSR instructions are formed from a subset of the Data Processing

operations and are implemented using the TEQ, TST, CMN and CMP instructions

without the S flag set. The encoding is shown in Figure 5-12: PSR transfer on

page 5-14.

These instructions allow access to the CPSR and SPSR registers. The MRS

instruction allows the contents of the CPSR or SPSR_<mode> to be moved to

a general register.

The MSR instruction allows the contents of a general register to be moved to

the CPSR or SPSR_<mode> register. The MSR instruction also allows an immediate

value or register contents to be transferred to the condition code flags (N,Z,C and V)

of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four

bits of the specified register contents or 32-bit immediate value are written to the top

four bits of the relevant PSR.

5.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only

the condition code flags of the CPSR can be changed. In other (privileged) modes

the entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution.

For example, only SPSR_fiq is accessible when the processor is in FIQ mode.

Note: R15 must not be specified as the source or destination register.

A further restriction is that you must not attempt to access an SPSR in User mode,

since no such register exists.

5.5.2 Reserved bits

Only eleven bits of the PSR are defined in the ARM processor (N,Z,C,V,I,F & M[4:0]);

the remaining bits (= PSR[27:8,5]) are reserved for use in future versions of

the processor.

Compatibility

To ensure the maximum compatibility between ARM processor programs and future

processors, the following rules should be observed:

1 The reserved bit must be preserved when changing the value in a PSR.

2 Programs must not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future
processors.

A read-modify-write strategy should therefore be used when altering the control bits of

any PSR register; this involves transferring the appropriate PSR register to a general

register using the MRS instruction, changing only the relevant bits and then

transferring the modified value back to the PSR register using the MSR instruction.



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-14

Open Access - Preliminary

 Figure 5-12: PSR transfer

Cond

01112151621272831

Condition field

P

2223

0 = CPSR

1 = SPSR_<current mode>

00010 000000000000s 001111 Rd

Destination register

Source PSR

Condition field

MRS

021272831 2223

MSR

RmPdCond 00010

4 3

Condition field

272831 2223

MSR

PdCond

1010011111 00000000

12 11

Source register

21 12

101000111100 I 10

011

Source operand

Immediate Operand

Rm

Rotate

Unsigned 8 bit immediate value

shift applied to Imm

Imm

11 8 7 0

03411

Destination PSR
0 = CPSR

1 = SPSR_<current mode>

Destination PSR
0 = CPSR

1 = SPSR_<current mode>

0 = Source operand is a register

1 = Source operand is an immediate value

00000000

Source register

(transfer PSR contents to a register)

(transfer register contents to PSR)

(transfer register contents or immediate value to PSR flag bits only)



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-15

Open Access - Preliminary

For example, the following sequence performs a mode change:

MRS R0,CPSR ;take a copy of the CPSR

BIC R0,R0,#0x1F ;clear the mode bits

ORR R0,R0,#new_mode ;select new mode

MSR CPSR,R0 ;write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be

written directly to the flag bits without disturbing the control bits. e.g. The following

instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#0xF0000000

;set all the flags regardless of

;their previous state (does not

;affect any control bits)

Note: Do not attempt to write an 8 bit immediate value into the whole PSR since such
an operation cannot preserve the reserved bits.

5.5.3 Instruction cycle times

PSR Transfers take 1 instruction fetch. For more information see 5.17 Instruction
Speed Summary on page 5-47.

5.5.4 Assembler syntax

1 MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2 MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

3 MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C
& V flags respectively.

4 MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolize a 32-bit value of which the most significant
four bits are written to the N,Z,C & V flags respectively.

where:

{cond} two-character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

Rd and Rm  expressions evaluating to a register number other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and
CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

<#expression> where used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-16

Open Access - Preliminary

5.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ;CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,Rm ;CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000;

;CPSR[31:28] <- 0xA

;(i.e. set N,C; clear Z,V)

MRS Rd,CPSR ;Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ;CPSR[31:0]  <- Rm[31:0]

MSR CPSR_flg,Rm ;CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000;

;CPSR[31:28] <- 0x5

;(i.e. set Z,V; clear N,C)

MRS Rd,CPSR ;Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ;SPSR_<mode>[31:0]  <- Rm[31:0]

MSR SPSR_flg,Rm ;SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000;

;SPSR_<mode>[31:28] <- 0xC

;(i.e. set N,Z; clear C,V)

MRS Rd,SPSR ;Rd[31:0] <- SPSR_<mode>[31:0]

5.6 Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in

Figure 5-13: Multiply instructions.

The multiply and multiply-accumulate instructions use a 2-bit Booth’s algorithm to

perform integer multiplication. They give the least significant 32-bits of the product of

two 32-bit operands, and may be used to synthesize higher-precision multiplications.

 Figure 5-13: Multiply instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be

set to zero for compatibility with possible future upgrades to the instruction set.

Cond 0 0 0 0 0 0 A S   Rd Rn   Rs 1 0 0 1   Rm

034781112151619202122272831

Operand registers

Destination register

Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-17

Open Access - Preliminary

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD

instruction in some circumstances.

The results of a signed multiply and of an unsigned multiply of 32-bit operands differ

only in the upper 32 bits; the low 32 bits of the signed and unsigned results are

identical. As these instructions only produce the low 32 bits of a multiply, they can be

used for both signed and unsigned multiplies.

Example

For example consider the multiplication of the operands:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

If the operands are interpreted as signed, operand A has the value -10, operand B has

the value 20, and the result is -200 which is correctly represented as 0xFFFFFF38

If the operands are interpreted as unsigned, operand A has the value 4294967286,

operand B has the value 20 and the result is 85899345720, which is represented as

0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

5.6.1 Operand restrictions

Due to the way multiplication was implemented, certain combinations of operand

registers should be avoided. (The assembler will issue a warning if these restrictions

are overlooked.)

The destination register (Rd) should not be the same as the operand register (Rm), as

Rd is used to hold intermediate values and Rm is used repeatedly during multiply. A

MUL will give a zero result if Rm=Rd, and an MLA will give a meaningless result. R15

must not be used as an operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use

the same register when required.

5.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction.

The N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to

bit 31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is

set to a meaningless value and the V (oVerflow) flag is unaffected.

5.6.3 Instruction cycle times

The Multiply instructions take 1 instruction fetch and m internal cycles, as shown in

Table 5-3: Instruction cycle times. For more information see 5.17 Instruction Speed
Summary on page 5-47.

Multiplication by Takes

any number between 2^(2m-3) and 2^(2m-1)-1 1S+mI cycles for 1<m>16.

Multiplication by 0 or 1 1S+1I cycles

 Table 5-3: Instruction cycle times



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-18

Open Access - Preliminary

m  is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs

The maximum time for any multiply is thus 1S+16I cycles.

5.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

where:

{cond}  two-character condition mnemonic, see Figure 5-2:
Condition codes on page 5-2

{S} set condition codes if S present

Rd, Rm, Rs, Rn are expressions evaluating to a register number other
than R15.

5.6.5 Examples

MUL R1,R2,R3 ;R1:=R2*R3

MLAEQS R1,R2,R3,R4 ;conditionally

;R1:=R2*R3+R4,

;setting condition codes

5.7 Single Data Transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-14: Single data transfer instructions.

The single data transfer instructions are used to load or store single bytes or words of

data. The memory address used in the transfer is calculated by adding an offset to or

subtracting an offset from a base register.

The result of this calculation may be written back into the base register if

“auto-indexing” is required.

any number greater than or equal to 2^(29) 1S+16I cycles.

Multiplication by Takes

 Table 5-3: Instruction cycle times



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-19

Open Access - Preliminary

 Figure 5-14:  Single data transfer instructions

5.7.1 Offsets and auto-indexing

The offset from the base may be either a 12-bit unsigned binary immediate value in

the instruction, or a second register (possibly shifted in some way). The offset may be

added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification

may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the

base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes.

The modified base value may be written back into the base (W=1), or the old base

value may be kept (W=0).

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register

Base register

Load/Store bit
0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value

Immediate offset

Immediate offset

Unsigned 12 bit immediate offset

1 = offset is a register
11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-20

Open Access - Preliminary

Post-indexed addressing

In the case of post-indexed addressing, the write back bit is redundant and is always

set to zero, since the old base value can be retained by setting the offset to zero.

Therefore post-indexed data transfers always write back the modified base. The only

use of the W bit in a post-indexed data transfer is in privileged mode code, where

setting the W bit forces non-privileged mode for the transfer, allowing the operating

system to generate a user address in a system where the memory management

hardware makes suitable use of this hardware.

5.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.

However, the register specified shift amounts are not available in this instruction class.

See 5.4.2 Shifts on page 5-7.

5.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between

an ARM processor register and memory. The following text assumes that the

ARM7500FE is operating with 32-bit wide memory. If it is operating with 16-bit wide

memory, the positions of bytes on the external data bus will be different, although, on

the ARM7500FE internal data bus the positions will be as described here.

The action of LDR(B) and STR(B) instructions is influenced by the 3 instruction

fetches. For more information see 5.17 Instruction Speed Summary on page 5-47. The

two possible configurations are described below.



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-21

Open Access - Preliminary

Little endian configuration

Byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. See Figure 4-1: Little-endian addresses of
bytes within words on page 4-2.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0.

Word load (LDR) will normally use a word aligned address. However, an
address offset from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that half-words accessed at offsets 0
and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in Figure 5-15: Little Endian offset addressing on
page 5-21.

A word store (STR) should generate a word aligned address.
The word presented to the data bus is not affected if the
address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

 Figure 5-15: Little Endian offset addressing

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-22

Open Access - Preliminary

Big endian configuration

Byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are
filled with zeros. Please see Figure 4-2: Big-endian
addresses of bytes within words on page 4-3.

Byte store (STRB)  repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0.

Word load (LDR) should generate a word aligned address. An address offset of
0 or 2 from a word boundary will cause the data to be rotated
into the register so that the addressed byte occupies bits 31
through 24. This means that half-words accessed at these
offsets will be correctly loaded into bits 16 through 31 of the
register. A shift operation is then required to move (and
optionally sign extend) the data into the bottom 16 bits. An
address offset of 1 or 3 from a word boundary will cause the
data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address.
The word presented to the data bus is not affected if the
address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

5.7.4 Use of R15

Do not specify write-back if R15 is specified as the base register (Rn). When using R15

as the base register you must remember it contains an address 8 bytes on from the

address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored

value will be address of the instruction plus 12.

5.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as

the base register, Rn, gets updated before the abort handler starts. Sometimes it may

be impossible to calculate the initial value.

For example:

LDR R0,[R1],R1

<LDR|STR> Rd, [Rn],{+/-}Rn{,<shift>}

Therefore a post-indexed LDR|STR where Rm is the same register as Rn shall not be

used.

5.7.6 Data aborts

A transfer to or from a legal address may cause the MMU to generate an abort. It is

up to the system software to resolve the cause of the problem, then the instruction can

be restarted and the original program continued.



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-23

Open Access - Preliminary

5.7.7 Instruction cycle times

For more information see 5.17 Instruction Speed Summary on page 5-47.

5.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic, see Figure 5-2: Condition codes
on page 5-2

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when
a pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of
index register, shifted by <shift>

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register,
shifted as by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15
then the assembler will subtract 8 from the offset value to
allow for ARM7500FE pipelining. In this case base write-back

Instruction Cycles

Normal LDR instruction 1 instruction fetch, 1 data read and 1 internal cycle

LDR PC 3 instruction fetches, 1 data read and 1 internal cycle.

STR instruction 1 instruction fetch and 1 data write incremental cycles.

 Table 5-4: Instruction cycle times



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-24

Open Access - Preliminary

shall not be specified.

<shift> is a general shift operation (see section on data processing
instructions) but note that the shift amount may not be
specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

5.7.9 Examples

STR R1,[R2,R4]! ;store R1 at R2+R4 (both of which are

;registers) and write back address to R2

STR R1,[R2],R4 ;store R1 at R2 and write back

;R2+R4 to R2

LDR R1,[R2,#16] ;load R1 from contents of R2+16

; Don't write back

LDR R1,[R2,R3,LSL#2]

;load R1 from contents of R2+R3*4

LDREQB

R1,[R6,#5] ;conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31

; with zeros

STR R1,PLACE ;generate PC relative offset to address

• ;PLACE

•

PLACE

5.8 Block Data Transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-16: Block data transfer instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of

the currently visible registers. They support all possible stacking modes, maintaining

full or empty stacks which can grow up or down memory, and are very efficient

instructions for saving or restoring context, or for moving large blocks of data around

main memory.

5.8.1 The register list

The instruction can cause the transfer of any registers in the current bank (and

non-user mode programs can also transfer to and from the user bank, see below).

The register list is a 16 bit field in the instruction, with each bit corresponding to a

register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause

it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction

is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM

instruction plus 12.



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-25

Open Access - Preliminary

 Figure 5-16: Block data transfer instructions

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register

Load/Store bit
0 = Store to memory

1 = Load from memory

Write-back bit
0 = no write-back

1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base

1 = up; add offset to base

0 = post; add offset after transfer

1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode

1 = load PSR or force user mode

Condition field



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-26

Open Access - Preliminary

5.8.2 Addressing modes

The transfer addresses are determined by:

• the contents of the base register (Rn)

• the pre/post bit (P)

• the up/down bit (U)

The registers are transferred in the order lowest to highest, so R15 (if in the list) will

always be transferred last. The lowest register also gets transferred to/from the lowest

memory address.

By way of illustration, consider the transfer of R1, R5 and R7 in the case where

Rn=0x1000 and write back of the modified base is required (W=1).

Figure 5-17: Post-increment addressing, Figure 5-18: Pre-increment addressing,

Figure 5-19: Post-decrement addressing, and Figure 5-20: Pre-decrement addressing
on page 5-28, show the sequence of register transfers, the addresses used, and the

value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would

have retained its initial value of 0x1000 unless it was also in the transfer list of a load

multiple register instruction, when it would have been overwritten with the loaded

value.

5.8.3 Address alignment

The address should always be a word aligned quantity.

 Figure 5-17: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-27

Open Access - Preliminary

 Figure 5-18: Pre-increment addressing

 Figure 5-19: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-28

Open Access - Preliminary

 Figure 5-20: Pre-decrement addressing

5.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not

R15 is in the transfer list and on the type of instruction. The S bit should only be set if

the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same

time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank

corresponding to the current mode. This is useful for saving the user state on process

switches. Base write-back shall not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather

than the register bank corresponding to the current mode. This is useful for saving the

user state on process switches. Base write-back shall not be used when this

mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register

during the following cycle (inserting a NOP after the LDM will ensure safety).

5.8.5 Use of R15 as the base register

R15 must not be used as the base register in any LDM or STM instruction.

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-29

Open Access - Preliminary

5.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle

of the instruction. During an STM, the first register is written out at the start of the

second cycle. An STM which includes storing the base, with the base as the first

register to be stored, will therefore store the unchanged value, whereas with the base

second or later in the transfer order, will store the modified value. An LDM will always

overwrite the updated base if the base is in the list.

5.8.7 Data aborts

Some legal addresses may be unacceptable to the MMU. The MMU will then cause

an abort. This can happen on any transfer during a multiple register load or store, and

must be recoverable if ARM7500FE is to be used in a virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, the ARM processor takes little

action until the instruction completes, whereupon it enters the data abort trap. The

memory manager is responsible for preventing erroneous writes to the memory. The

only change to the internal state of the processor will be the modification of the base

register if write-back was specified, and this must be reversed by software (and the

cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When the ARM processor detects a data abort during a load multiple instruction, it

modifies the operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved.

2 The base register is restored, to its modified value if write-back was
requested. This ensures recoverability in the case where the base register is
also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system

software must undo any base modification (and resolve the cause of the abort) before

restarting the instruction.

5.8.8 Instruction cycle times

For more information see 5.17 Instruction Speed Summary on page 5-47.

Instruction Cycles

Normal LDM instructions 1 instruction fetch, n data reads and 1 internal cycle

LDM PC 3 instruction fetches, n data reads and 1 internal cycle.

STM instructions instruction fetch, n data reads and 1 internal cycle, where n is the

number of words transferred.

 Table 5-5: Instruction cycle times



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-30

Open Access - Preliminary

5.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} is a two-character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (e.g. {R0,R2-
R7,R10}).

{!} (if present) requests write-back (W=1), otherwise W=0

{^} (if present) set S bit to load the CPSR along with the PC, or force
transfer of user bank when in privileged mode

5.8.10 Addressing mode names

There are different assembler mnemonics for each of the addressing modes,

depending on whether the instruction is being used to support stacks or for other

purposes. The equivalencies between the names and the values of the bits in

the instruction are shown in Table 5-6: Addressing mode names:

Key to table

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form

of stack required.

F Full stack (a pre-index has to be done before storing to the stack)

E Empty stack

A The stack is ascending (an STM will go up and LDM down)

D The stack is descending (an STM will go down and LDM up)

The following symbols allow control when LDM/STM are not being used for stacks:

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-31

Open Access - Preliminary

5.8.11 Examples

LDMFD SP!,{R0,R1,R2} ;unstack 3 registers

STMIA R0,{R0-R15} ;save all registers

LDMFD SP!,{R15} ;R15 <- (SP),CPSR unchanged

LDMFD SP!,{R15}^ ;R15 <- (SP), CPSR <- SPSR_mode (allowed

;only in privileged modes)

STMFD R13,{R0-R14}^ ;save user mode regs on stack (allowed

;only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it

efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14};

;save R0 to R3 to use as workspace

;and R14 for returning

BL somewhere ;this nested call will overwrite R14

LDMED SP!,{R0-R3,R15}

;restore workspace and return

Name Stack Other L-bit P-bit U-bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 5-6: Addressing mode names



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-32

Open Access - Preliminary

5.9 Single Data Swap (SWP)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-21: Swap instruction.

 Figure 5-21: Swap instruction

Data swap instruction

The data swap instruction is used to swap a byte or word quantity between a register

and external memory. This instruction is implemented as a memory read followed by

a memory write which are “locked” together (the processor cannot be interrupted until

both operations have completed, and the memory manager is warned to treat them as

inseparable). This class of instruction is particularly useful for implementing software

semaphores.

Swap address

The swap address is determined by the contents of the base register (Rn).

The processor first reads the contents of the swap address. Then it writes the contents

of the source register (Rm) to the swap address, and stores the old memory contents

in the destination register (Rd). The same register can be specified as both the source

and the destination.

ARM710 lock feature

The ARM7500FE does not use the lock feature available in the ARM710 macrocell.

You must take care to ensure that control of the memory is not removed from the ARM

processor while it is performing this instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register

Source register

Base register

Byte/Word bit
0 = swap word quantity
1 = swap byte quantity



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-33

Open Access - Preliminary

5.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between

an ARM processor register and memory. The SWP instruction is implemented as

a LDR followed by a STR and the action of these is as described in the section on

single data transfers. In particular, the description of Big and Little Endian

configuration applies to the SWP instruction.

5.9.2 Use of R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

5.9.3 Data aborts

If the address used for the swap is unacceptable to the MMU, it will cause an abort.

This can happen on either the read or write cycle (or both), and, in either case,

the Data Abort trap will be taken. It is up to the system software to resolve the cause

of the problem. The instruction can then be restarted and the original program

continued.

5.9.4 Instruction cycle times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal

cycle. For more information see 5.17 Instruction Speed Summary on page 5-47.

5.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

{B} if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

5.9.6 Examples

SWP R0,R1,[R2] ;load R0 with the word addressed by R2, and

;store R1 at R2

SWPB R2,R3,[R4] ;load R2 with the byte addressed by R4, and

;store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ;conditionally swap the contents of R1

;with R0



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-34

Open Access - Preliminary

5.10 Software Interrupt (SWI)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-22: Software interrupt instruction. The software interrupt instruction is used to enter

Supervisor mode in a controlled manner. The instruction causes the software interrupt

trap to be taken, which effects the mode change. The PC is then forced to a fixed value

(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably

protected (by external memory management hardware) from modification by the user,

a fully protected operating system may be constructed.

 Figure 5-22: Software interrupt instruction

5.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC

adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return

to the calling program and restore the CPSR.

Note: The link mechanism is not re-entrant, so if the supervisor code wishes to use software

interrupts within itself it must first save a copy of the return address and SPSR.

5.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used

to communicate information to the supervisor code. For instance, the supervisor may

look at this field and use it to index into an array of entry points for routines which

perform the various supervisor functions.

5.10.3 Instruction cycle times

Software interrupt instructions take 3 instruction fetches. For more information see

5.17 Instruction Speed Summary on page 5-47.

5.10.4 Assembler syntax

SWI{cond} <expression>

{cond} two-character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

<expression> is evaluated and placed in the comment field (ignored by
the ARM processor).

5.10.5 Examples

SWI ReadC ;get next character from read stream

SWI WriteI+”k” ;output a “k” to the write stream

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-35

Open Access - Preliminary

SWINE 0 ;conditionally call supervisor

;with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ;SWI entry point

EntryTable ;addresses of supervisor routines

DCD ZeroRtn

DCD ReadCRtn

DCD WriteIRtn

...

Zero EQU 0

ReadC EQU 256

WriteI EQU 512

Supervisor

;SWI has routine required in bits 8-23 and data (if any) in bits

;0-7.

;Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14}; save work registers and return address

LDR R0,[R14,#-4] ;get SWI instruction

BIC R0,R0,#0xFF000000;

;clear top 8 bits

MOV R1,R0,LSR#8 ;get routine offset

ADR R2,EntryTable ;get start address of entry table

LDR R15,[R2,R1,LSL#2];

;branch to appropriate routine

WriteIRtn ;enter with character in R0 bits 0-7

.  .  .  .  .  .

LDMFD R13,{R0-R2,R15}^;

;restore workspace and return

; restoring processor mode and flags



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-36

Open Access - Preliminary

5.11 Coprocessor Instructions on the ARM Processor

The core ARM processor in the ARM7500FE, unlike some other ARM processors,

does not have an external coprocessor interface. It supports 2 on-chip coprocessors:

• the FPA

• on-chip control coprocessor, #15, which is used to program the on-chip

control registers

For coprocessor instructions supported by the FPA, see Chapter 10: Floating-Point
Instruction Set .

Coprocessor #15 supports only the Coprocessor Register instructions MRC and MCR.

Note: Sections 5.12 through 5.14 describe non-FPA coprocessor instructions only.

All other coprocessor instructions will cause the undefined instruction trap to be taken

on the ARM processor. These coprocessor instructions can be emulated in software

by the undefined trap handler. Even though external coprocessors cannot be

connected to the ARM processor, the coprocessor instructions are still described here

in full for completeness. It must be kept in mind that any external coprocessor referred

to will be a software emulation.

5.12 Coprocessor Data Operations (CDP)

Use of the CDP instruction on the ARM processor (except for the defined FPA

instructions) will cause an undefined instruction trap to be taken, which may be used

to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-23: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal

operation. No result is communicated back to the processor, and it will not wait for

the operation to complete. The coprocessor could contain a queue of such instructions

awaiting execution, and their execution can overlap other activity allowing

the coprocessor and the processor to perform independent tasks in parallel.

 Figure 5-23: Coprocessor data operation instruction

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number 

Condition field

Coprocessor information 

Coprocessor operand register 

Coprocessor destination register 

Coprocessor operand register 

Coprocessor operation code 



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-37

Open Access - Preliminary

5.12.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor; the remaining bits are used

by coprocessors. The above field names are used by convention, and particular

coprocessors may redefine the use of all fields except CP# as appropriate. The CP#

field is used to contain an identifying number (in the range 0 to 15) for each

coprocessor, and a coprocessor will ignore any instruction which does not contain its

number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should

perform an operation specified in the CP Opc field (and possibly in the CP field) on the

contents of CRn and CRm, and place the result in CRd.

5.12.2 Instruction cycle times

All non-FPA CDP instructions are emulated in software: the number of cycles taken

will depend on the coprocessor support software.

5.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond}  two character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

p#  the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present, is evaluated to a constant and placed in the
CP field

5.12.4 Examples

CDP p1,10,c1,c2,c3 ;request coproc 1 to do operation 10

;on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2;

;if Z flag is set request coproc 2 to do

;operation 5 (type 2) on CR2 and CR3,

;and put the result in CR1



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-38

Open Access - Preliminary

5.13 Coprocessor Data Transfers (LDC, STC)

Use of the LDC or STC instruction on the ARM processor (except for the defined FPA

instructions) will cause an undefined instruction trap to be taken, which may be used

to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-24: Coprocessor data transfer instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a

coprocessors’s registers directly to memory. The processor is responsible for

supplying the memory address, and the coprocessor supplies or accepts the data and

controls the number of words transferred.

 Figure 5-24: Coprocessor data transfer instructions

5.13.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept

the data, and a coprocessor will only respond if its number matches the contents of

this field.

The CRd field and the N bit contain information for the coprocessor which may be

interpreted in different ways by different coprocessors, but by convention CRd is

the register to be transferred (or the first register where more than one is to be

transferred), and the N bit is used to choose one of two transfer length options.

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number 

Unsigned 8 bit immediate offset

Base register

Load/Store bit
0 = Store to memory

1 = Load from memory

Write-back bit
0 = no write-back

1 = write address into base

Coprocessor source/destination register 

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base

1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field

1 = pre; add offset before transfer



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-39

Open Access - Preliminary

For example:

N=0 could select the transfer of a single register

N=1  could select the transfer of all the registers for context switching.

5.13.2 Addressing modes

The processor is responsible for providing the address used by the memory system

for the transfer, and the addressing modes available are a subset of those used in

single data transfer instructions. Note, however, that the immediate offsets are 8 bits

wide and specify word offsets for coprocessor data transfers, whereas they are 12 bits

wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or

subtracted from (U=0) the base register (Rn); this calculation may be performed either

before (P=1) or after (P=0) the base is used as the transfer address. The modified

base value may be overwritten back into the base register (if W=1), or the old value of

the base may be preserved (W=0).

Note: Post-indexed addressing modes require explicit setting of the W bit, unlike LDR and

STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is

used as the address for the transfer of the first word. The second word (if more than

one is transferred) will go to or come from an address one word (4 bytes) higher than

the first transfer, and the address will be incremented by one word for each

subsequent transfer.

5.13.3 Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of

the address will appear on A[1:0] and might be interpreted by the memory system.

5.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes.

Base write-back to R15 must not be specified.

5.13.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will

be taken. The write-back of the modified base will take place, but all other processor

state will be preserved. The coprocessor is partly responsible for ensuring that the

data transfer can be restarted after the cause of the abort has been resolved, and must

ensure that any subsequent actions it undertakes can be repeated when the

instruction is retried.

5.13.6 Instruction cycle times

All non-FPA LDC instructions are emulated in software: the number of cycles taken will

depend on the coprocessor support software.



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-40

Open Access - Preliminary

5.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two-character condition mnemonic, see Figure 5-2: Condition codes
on page 5-2

p# the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor register number
that is placed in the CRd field

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid processor register number.
Note, if Rn is R15 then the assembler will subtract 8 from the offset
value to allow for processor pipelining.

{!} write back the base register (set the W bit) if ! is present

5.13.8 Examples

LDC p1,c2,table ;load c2 of coproc 1 from address table,

;using a PC relative address.

STCEQLp2,c3,[R5,#24]! ;conditionally store c3 of coproc 2

;into an address 24 bytes up from R5,

;write this address back to R5, and use

;long transfer

;option (probably to store multiple

;words)

Note: Though the address offset is expressed in bytes, the instruction offset field is in words.

The assembler will adjust the offset appropriately.



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-41

Open Access - Preliminary

5.14 Coprocessor Register Transfers (MRC, MCR)

Use of the MRC or MCR instruction on the ARM processor to a coprocessor other than

to the FPA or to coprocessor #15 will cause an undefined instruction trap to be taken,

which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in Figure
5-25: Coprocessor register transfer instructions.

This class of instruction is used to communicate information directly between the ARM

processor and a coprocessor. An example of a coprocessor to processor register

transfer (MRC) instruction would be a FIX of a floating point value held in a

coprocessor, where the floating point number is converted into a 32-bit integer within

the coprocessor, and the result is then transferred to a processor register. A FLOAT of

a 32-bit value in a processor register into a floating point value within the coprocessor

illustrates the use of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from

the coprocessor into the processor CPSR flags. As an example, the result of a

comparison of two floating point values within a coprocessor can be moved to the

CPSR to control the subsequent flow of execution.

Note: The ARM processor has an internal coprocessor (#15) for control of on-chip functions.
Accesses to this coprocessor are performed during coprocessor register transfers.

 Figure 5-25: Coprocessor register transfer instructions

5.14.1 The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor

is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the

interpretation presented here is derived from convention only. Other interpretations

are allowed where the coprocessor functionality is incompatible with this one. The

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number 

Coprocessor information 

Coprocessor operand register 

Coprocessor operation mode 

Condition field

Load/Store bit
0 = Store to Co-Processor

1 = Load from Co-Processor

ARM source/destination register

Coprocessor source/destination register 



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-42

Open Access - Preliminary

conventional interpretation is that the CP Opc and CP fields specify the operation the

coprocessor is required to perform, CRn is the coprocessor register which is the

source or destination of the transferred information, and CRm is a second coprocessor

register which may be involved in some way which depends on the particular operation

specified.

5.14.2 Transfers to R15

When a coprocessor register transfer to the ARM processor has R15 as the

destination, bits 31, 30, 29 and 28 of the transferred word are copied into the N, Z, C

and V flags respectively. The other bits of the transferred word are ignored, and the

PC and other CPSR bits are unaffected by the transfer.

5.14.3 Transfers from R15

A coprocessor register transfer from the ARM processor with R15 as the source

register will store the PC+12.

5.14.4 Instruction cycle times

Access to the internal configuration register takes 3 internal cycles. All non-FPA MRC

instructions default to software emulation, and the number of cycles taken will depend

on the coprocessor support software.

5.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

where:

MRC move from coprocessor to ARM7500FE register (L=1)

MCR move from ARM7500FE register to coprocessor (L=0)

{cond} two character condition mnemonic, see Figure 5-2: Condition
codes on page 5-2

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM processor register
number

cn and cm are expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in
the CP field



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-43

Open Access - Preliminary

5.14.6 Examples

MRC 2,5,R3,c5,c6 ;request coproc 2 to perform operation 5

;on c5 and c6, and transfer the (single

;32-bit word) result back to R3

MCR 6,0,R4,c6 ;request coproc 6 to perform operation 0

;on R4 and place the result in c6

MRCEQ 3,9,R3,c5,c6,2 ;conditionally request coproc 2 to

;perform

;operation 9 (type 2) on c5 and c6, and

;transfer the result back to R3

5.15 Undefined Instruction

 Figure 5-26: Undefined instruction

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction format is shown in Figure 5-
26: Undefined instruction on page 5-43.

If the condition is true, the undefined instruction trap will be taken.

5.15.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is

adopted in the future for some specified use, suitable mnemonics will be added to the

assembler. Until such time, this instruction shall not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-44

Open Access - Preliminary

5.16 Instruction Set Examples

The following examples show ways in which the basic ARM processor instructions can

combine to give efficient code. None of these methods saves a great deal of execution

time (although they may save some), mostly they just save code.

5.16.1 Using the conditional instructions

1 using conditionals for logical OR

CMP Rn,#p ;if Rn=p OR Rm=q THEN GOTO Label

BEQ Label

CMP Rm,#q

BEQ Label

can be replaced by
CMP Rn,#p

CMPNE Rm,#q ;if condition not satisfied try other

;test

BEQ Label

2 absolute value

TEQ Rn,#0 ;test sign

RSBMI Rn,Rn,#0 ;and 2's complement if necessary

3 multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2;

;multiply by 4

CMP Rb,#5 ; test value

ADDCS Rc,Rc,Ra ; complete multiply by 5

ADDHI Rc,Rc,Ra ; complete multiply by 6

4 combining discrete and range tests

TEQ Rc,#127 ;discrete test

CMPNE Rc,#” “-1;

;range test

MOVLS Rc,#”.” ;IF   Rc<=” “ OR Rc=ASCII(127)

;THEN Rc:=”.”

5 division and remainder

A number of divide routines for specific applications are provided in source form as

part of the ANSI C library provided with the ARM Cross Development Toolkit, available

from your supplier. A short general purpose divide routine follows.



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-45

Open Access - Preliminary

;enter with numbers in Ra and Rb

;

MOV Rcnt,#1 ;bit to control the division

Div1 CMP Rb,#0x80000000;

;move Rb until greater than Ra

CMPCC Rb,Ra

MOVCC Rb,Rb,ASL#1

MOVCC Rcnt,Rcnt,ASL#1

BCC Div1

MOV Rc,#0

Div2 CMP Ra,Rb ;test for possible subtraction

SUBCS Ra,Ra,Rb ;subtract if ok

ADDCS Rc,Rc,Rcnt;

;put relevant bit into result

MOVS Rcnt,Rcnt,LSR#1;

;shift control bit

MOVNE Rb,Rb,LSR#1;

;halve unless finished

BNE Div2

;

;divide result in Rc

;remainder in Ra

5.16.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient

algorithms are based on shift generators with exclusive-OR feedback rather like

a cyclic redundancy check generator. Unfortunately the sequence of a 32-bit

generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles

before repetition), so this example uses a 33-bit register with taps at bits 33 and 20.

The basic algorithm is newbit:=bit 33 or bit 20, shift left the 33-bit number and put in

newbit at the bottom; this operation is performed for all the newbits needed

(ie. 32 bits). The entire operation can be done in 5 S cycles:

;enter with seed in Ra (32 bits),

;Rb (1 bit in Rb lsb), uses Rc

;

TST Rb,Rb,LSR#1 ;top bit into carry

MOVS Rc,Ra,RRX ;33 bit rotate right

ADC Rb,Rb,Rb ;carry into lsb of Rb

EOR Rc,Rc,Ra,LSL#12;

;(involved!)

EOR Ra,Rc,Rc,LSR#20;

;(similarly involved!)

;

;new seed in Ra, Rb as before



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-46

Open Access - Preliminary

5.16.3 Multiplication by constant using the barrel shifter

1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; ;multiply by 3

MOV Ra,Ra,LSL#1; ;and then by 2

5 Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2; ;multiply by 5

ADD Ra,Rc,Ra,LSL#1; ;multiply by 2

;and add in next digit

6 General recursive method for Rb := Ra*C, C a constant:

a) If C even, say C = 2^n*D, D odd:

D=1: MOV   Rb,Ra,LSL #n

D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD   Rb,Ra,Ra,LSL #n

D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB   Rb,Ra,Ra,LSL #n

D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45

which is done by:

RSB Rb,Ra,Ra,LSL#2; ;multiply by 3

RSB Rb,Ra,Rb,LSL#2; ;multiply by 4*3-1 = 11

ADD Rb,Ra,Rb,LSL# 2; ;multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3; ;multiply by 9

ADD Rb,Rb,Rb,LSL#2; ;multiply by 5*9 = 45



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-47

Open Access - Preliminary

5.16.4 Loading a word from an unknown alignment

;enter with address in Ra (32 bits)

;uses Rb, Rc; result in Rd.

; Note d must be less than c e.g. 0,1

;

BIC Rb,Ra,#3 ;get word aligned address

LDMIA Rb,{Rd,Rc} ;get 64 bits containing answer

AND Rb,Ra,#3 ;correction factor in bytes

MOVS Rb,Rb,LSL#3 ;...now in bits and test if aligned

MOVNE Rd,Rd,LSR Rb ;produce bottom of result word

;(if not aligned)

RSBNE Rb,Rb,#32 ;get other shift amount

ORRNE Rd,Rd,Rc,LSL Rb; ;combine two halves to get result

5.16.5 Loading a halfword (Little-endian)

LDR Ra, [Rb,#2] ;get halfword to bits 15:0

MOV Ra,Ra,LSL #16 ;move to top

MOV Ra,Ra,LSR #16 ;and back to bottom

;use ASR to get sign extended version

5.16.6 Loading a halfword (Big-endian)

LDR Ra, [Rb,#2] ;get halfword to bits 31:16

MOV Ra,Ra,LSR #16 ;and back to bottom

;use ASR to get sign extended version

5.17 Instruction Speed Summary

Due to the pipelined architecture of the CPU, instructions overlap considerably.

In a typical cycle one instruction may be using the data path while the next is being

decoded and the one after that is being fetched. For this reason the following table

presents the incremental number of cycles required by an instruction, rather than

the total number of cycles for which the instruction uses part of the processor.

Elapsed time (in cycles) for a routine may be calculated from these figures which are

shown in Table 5-7: ARM instruction speed summary on page 5-48.

These figures assume that the instruction is actually executed.

Unexecuted instructions take one instruction fetch cycle.



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-48

Open Access - Preliminary

Where:

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1   takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles.
The maximum time for any multiply is thus 1S+16I cycles.

b is the number of cycles spent in the coprocessor busy-wait loop.

Instruction Cycle count

Data Processing - normal

    with register specified shift

    with PC written

    with register specified shift & PC written

1 instruction fetch

1 instruction fetch and 1 internal cycle

3 instruction fetches

3 instruction fetches and 1 internal cycle

MSR, MRS 1 instruction fetch

LDR - normal

    if the destination is the PC

1 instruction fetch, 1 data read and 1 internal cycle

3 instruction fetches, 1 data read and 1 internal cycle

STR 1 instruction fetch and 1 data write

LDM - normal

    if the destination is the PC

1 instruction fetch, n data reads and 1 internal cycle

3 instruction fetches, n data reads and 1 internal cycle

STM 1 instruction fetch and n data writes

SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal

cycle

B,BL 3 instruction fetches

SWI, trap 3 instruction fetches

MUL,MLA 1 instruction fetch and m internal cycles

CDP 1 instruction fetch and b internal cycles

LDC 1 instruction fetch, n data reads, and b internal cycles

STC 1 instruction fetch, n data writes, and b internal cycles

MCR 1 instruction fetch and b+1 internal cycles

MRC 1 instruction fetch and b+1 internal cycles

 Table 5-7: ARM instruction speed summary



ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-49

Open Access - Preliminary

The time taken for:

• an internal cycle will always be one FCLK cycle

• an instruction fetch and data read will be FCLK if a cache hit occurs, otherwise

a full memory access is performed.

• a data write will be FCLK if the write buffer (if enabled) has available space,

otherwise the write will be delayed until the write buffer has free space.

If the write buffer is not enabled a full memory access is always performed.

• memory accesses are dealt with elsewhere in the ARM7500FE datasheet.

• coprocessor instructions depends on whether the instruction is executed by:

the FPA See Chapter 10: Floating-Point Instruction Set  for

details of floating-point instruction cycle counts.

coprocessor #15 MCR, MRC to registers 0 to 7 only.

In this case b = 0.

software emulation For all other coprocessor instructions,

the undefined instruction trap is taken.



Named Partner Confidential - Preliminary Draft

ARM Processor Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

5-50

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

6-1

11
1

Open Access - Preliminary

The chapter describes the ARM processor instruction and data cache, and its write

buffer.

6.1 Instruction and Data Cache (IDC) 6-2

6.2 Read-Lock-Write 6-3

6.3 IDC Enable/Disable and Reset 6-3

6.4 Write Buffer (Wb) 6-3

6.5 Coprocessors 6-5

Cache, Write Buffer and
Coprocessors6



Named Partner Confidential - Preliminary Draft

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-2

Open Access - Preliminary

6.1 Instruction and Data Cache (IDC)

ARM processor contains a 4Kbyte mixed instruction and data cache. The IDC has 256

lines of 16 bytes (4 words), organized as a 4-way set associative cache, and uses the

virtual addresses generated by the processor core. The IDC is always reloaded a line

at a time (4 words). It may be enabled or disabled via the ARM processor Control

Register and is disabled on nRESET.

The operation of the cache is further controlled by the Cacheable or C bit stored in the

Memory Management Page Table (see the Memory Management Unit chapter). For

this reason, in order to use the IDC, the MMU must be enabled. The two functions may

however be enabled simultaneously, with a single write to the Control Register.

6.1.1 Cacheable bit

The Cacheable bit determines whether data being read may be placed in the IDC and

used for subsequent read operations. Typically main memory will be marked as

Cacheable to improve system performance, and I/O space as Non-cacheable to stop

the data being stored in ARM7500FE's cache. [For example if the processor is polling

a hardware flag in I/O space, it is important that the processor is forced to read data

from the external peripheral, and not a copy of initial data held in the cache]. The

Cacheable bit can be configured for both pages and sections.

6.1.2 IDC operation

In the ARM processor the cache will be searched regardless of the state of the C bit,

only reads that miss the cache will be affected.

Cacheable Reads C = 1

A linefetch of 4 words will be performed and it will be
randomly placed in a cache bank.

Uncacheable Reads C = 0

An external memory access will be performed and the
cache will not be written.

6.1.3 IDC validity

The IDC operates with virtual addresses, so care must be taken to ensure that its

contents remain consistent with the virtual to physical mappings performed by the

Memory Management Unit. If the Memory Mappings are changed, the IDC validity

must be ensured.

Software IDC flush

The entire IDC may be marked as invalid by writing to the ARM processor IDC Flush

Register (Register 7). The cache will be flushed immediately the register is written, but

note that the next two instruction fetches may come from the cache before the register

is written.



Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-3

Open Access - Preliminary

6.1.4 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address

maps to a different physical address. If the same physical location is accessed by

more than one virtual address, the cache cannot maintain consistency, since each

virtual address will have a separate entry in the cache, and only one entry will be

updated on a processor write operation. To avoid any cache inconsistencies, both

doubly-mapped virtual addresses should be marked as uncacheable.

6.2 Read-Lock-Write

The IDC treats the Read-Locked-Write instruction as a special case. The read phase

always forces a read of external memory, regardless of whether the data is contained

in the cache. The write phase is treated as a normal write operation (and if the data is

already in the cache, the cache will be updated). Externally the two phases are flagged

as indivisible by asserting the LOCK signal.

6.3 IDC Enable/Disable and Reset

The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable

read accesses will cause lines to be placed in the cache.

6.3.1 To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control

Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC

may be enabled simultaneously with a single control register write.

6.3.2 To disable the IDC

To disable the IDC, clear bit 2 in the Control Register and perform a flush by writing to

the flush register.

6.4 Write Buffer (Wb)

The ARM processor write buffer is provided to improve system performance. It can

buffer up to 8 words of data, and 4 independent addresses. It may be enabled or

disabled via the W bit (bit 3) in the ARM processor Control Register and the buffer is

disabled and flushed on reset.

The operation of the write buffer is further controlled by one bit, B, or Bufferable, which

is stored in the Memory Management Page Tables. For this reason, in order to use the

write buffer, the MMU must be enabled.

The two functions may however be enabled simultaneously, with a single write to the

Control Register. For a write to use the write buffer, both the W bit in the Control

Register, and the B bit in the corresponding page table must be set.



Named Partner Confidential - Preliminary Draft

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-4

Open Access - Preliminary

6.4.1 Bufferable bit

This bit controls whether a write operation may or may not use the write buffer.

Typically main memory will be bufferable and I/O space unbufferable. The Bufferable

bit can be configured for both pages and sections.

6.4.2 Write buffer operation

When the CPU performs a write operation, the translation entry for that address is

inspected and the state of the B bit determines the subsequent action. If the write

buffer is disabled via the ARM processor Control Register, bufferable writes are

treated in the same way as unbuffered writes.

Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area,

the data is placed in the write buffer at FCLK speeds and the CPU continues

execution. The write buffer then performs the external write in parallel. If however the

write buffer is full (either because there are already 8 words of data in the buffer, or

because there is no slot for the new address) then the processor is stalled until there

is sufficient space in the buffer.

Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the

processor is stalled until the write buffer empties and the write completes externally,

which may require synchronization and several external clock cycles.

Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even

if it is marked as buffered.

Note: A single write requires one address slot and one data slot in the write buffer; a
sequential write of n words requires one address slot and n data slots. The total of 8
data slots in the buffer may be used as required. So for instance there could be 3
non-sequential writes and one sequential write of 5 words in the buffer, and the
processor could continue as normal: a 5th write or an 6th word in the 4th write would
stall the processor until the first write had completed.

To enable the write buffer

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control

Register, then enable the write buffer by setting bit 3 in the Control Register. The MMU

and write buffer may be enabled simultaneously with a single write to the Control

Register.

To disable the write buffer

To disable the write buffer, clear bit 3 in the Control Register.

Note: Any writes already in the write buffer will complete normally.



Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-5

Open Access - Preliminary

6.5 Coprocessors

The on-chip FPA is a coprocessor and its operation is described in Chapters 8, 9, and

10.

The ARM processor also has an internal coprocessor designated #15 for internal

control of the device.

However, the ARM7500FE has no external coprocessor bus, so it is not possible to

add further external coprocessors to this device. All coprocessor operations other than

those implemented by the FPA, or MRC or MCR to registers 0 to 7 on

coprocessor #15, will cause the undefined instruction trap to be taken.



Named Partner Confidential - Preliminary Draft

Cache, Write Buffer and Coprocessors

ARM7500FE Data Sheet
ARM DDI 0077B

6-6

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

7-1

11
1

Open Access - Preliminary

This chapter describes the ARM processor Memory Management Unit.

7.1 Introduction 7-2

7.2 MMU Program-accessible Registers 7-2

7.3 Address Translation 7-4

7.4 Translation Process 7-4

7.5 Translating Section References 7-8

7.6 Translating Small Page References 7-10

7.7 Translating Large Page References 7-11

7.8 MMU Faults and CPU Aborts 7-12

7.9 Fault Address & Fault Status Registers (FAR & FSR) 7-12

7.10 Domain Access Control 7-13

7.11 Fault-checking Sequence 7-14

7.12 External Aborts 7-16

7.13 Effect of Reset 7-17

ARM Processor MMU7



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-2

Open Access - Preliminary

7.1 Introduction

The MMU performs two primary functions: it translates virtual addresses into physical

addresses, and it controls memory access permissions. The MMU hardware required

to perform these functions consists of a Translation Look-aside Buffer (TLB), access

control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages:

Sections are comprised of 1MB blocks of memory.

Pages Two different page sizes are supported:

Small Pages consist of 4KB blocks of memory.
Additional access control mechanisms are
extended within Small Pages to 1KB Sub-
Pages.

Large Pages consist of 64KB blocks of memory.
Additional access control mechanisms are
extended within Large Pages to 16KB
SubPages. Large Pages are supported
to allow mapping of a large region of
memory while using only a single entry in
the TLB.

The MMU also supports the concept of domains - areas of memory that can be defined

to possess individual access rights. The Domain Access Control Register is used

to specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB

provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic

determines whether access is permitted. If access is permitted, the MMU outputs

the appropriate physical address corresponding to the virtual address. If access is not

permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address),

the translation table walk hardware is invoked to retrieve the translation information

from a translation table in physical memory. Once retrieved, the translation information

is placed into the TLB, possibly overwriting an existing value. The entry to be

overwritten is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output

directly onto the physical address bus.

7.2 MMU Program-accessible Registers

The ARM processor provides several 32-bit registers which determine the operation

of the MMU. The format for these registers and a brief description is shown in Figure
7-1:MMU register summary on page 7-3. Each register will be discussed in more detail

within the section that describes its use.

Data is written to and read from the MMUs registers using the ARM CPU's MRC and

MCR coprocessor instructions.



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-3

Open Access - Preliminary

 Figure 7-1: MMU register summary

Translation table base register

The Translation Table Base Register holds the physical address of the base of

the translation table maintained in main memory. Note that this base must reside on

a 16KB boundary.

Domain access control register

The Domain Access Control Register consists of sixteen 2-bit fields, each of which

defines the access permissions for one of the sixteen Domains (D15-D0).

Note: The registers not shown are reserved and should not be used.

Fault status register

The Fault Status Register indicates the domain and type of access being attempted

when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was

being accessed when a fault occurred. Bits 3:1 indicate the type of access being

attempted. The encoding of these bits is different for internal and external faults

(as indicated by bit 0 in the register) and is shown in Table 7-4:Priority encoding of
fault status on page 7-13. A write to this register flushes the TLB.

Fault address register

The Fault Address Register holds the virtual address of the access which was

attempted when a fault occurred. A write to this register causes the data written to be

treated as an address and, if it is found in the TLB, the entry is marked as invalid.

(This operation is known as a TLB purge). The Fault Status Register and Fault

Address Register are only updated for data faults, not for prefetch faults.

Domain Access Control

0 Control 1 D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

TLB Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S BR



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-4

Open Access - Preliminary

7.3 Address Translation

The MMU translates virtual addresses generated by the CPU into physical addresses

to access external memory, and also derives and checks the access permission.

Translation information, which consists of both the address translation data and

the access permission data, resides in a translation table located in physical memory.

The MMU provides the logic needed to traverse this translation table, obtain

the translated address, and check the access permission.

There are three routes by which the address translation (and hence permission check)

takes place. The route taken depends on whether the address in question has been

marked as a section-mapped access or a page-mapped access; and there are two

sizes of page-mapped access (large pages and small pages). However, the translation

process always starts out in the same way, as described below, with a Level One fetch.

A section-mapped access only requires a Level One fetch, but a page-mapped access

also requires a Level Two fetch.

7.4 Translation Process

7.4.1 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for

the requested virtual address. The Translation Table Base (TTB) Register points to

the base of a table in physical memory which contains Section and/or Page

descriptors. The 14 low-order bits of the TTB Register are set to zero as illustrated in

Figure 7-2: Translation table base register; the table must reside on a 16KB boundary.

 Figure 7-2: Translation table base register

7.4.2 Level one fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of

the virtual address to produce a 30-bit address as illustrated in Figure 7-3:Accessing
the translation table first level descriptors on page 7-5. This address selects a

four-byte translation table entry which is a First Level Descriptor for either a Section or

a Page (bit1 of the descriptor returned specifies whether it is for a Section or Page).

0131431

Translation Table Base



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-5

Open Access - Preliminary

 Figure 7-3: Accessing the translation table first level descriptors

7.4.3 Level one descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section

Descriptor, and its format varies accordingly. The following figure illustrates the format

of Level One Descriptors.

 Figure 7-4: Level one descriptors

The two least significant bits indicate the descriptor type and validity, and are

interpreted as in Table 7-1:Interpreting level one descriptor bits [1:0] on page 7-6.

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-6

Open Access - Preliminary

7.4.4 Page table descriptor

Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain
Access Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table
index for the entry is derived from the virtual address as illustrated in
Figure 7-7:Small page translation on page 7-10).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is

initiated, as described below.

7.4.5 Section descriptor

Bits 3:2 (C, & B) control the cache- and write-buffer-related functions as
follows:

C - Cacheable data at this address will be placed in the
cache (if the cache is enabled).

B - Bufferable data at this address will be written through
the write buffer (if enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the
Domain Access Control Register) that contain the primary
access controls.

Bits 11:10 (AP) specify the access permissions for this section (see
Table 7-2:Interpreting access permission (AP) bits on
page 7-7). The interpretation depends upon the setting of
the S and R bits (control register bits 8 and 9). Note that
the Domain Access Control specifies the primary access
control; the AP bits only have an effect in client mode.
Refer to section on access permissions.

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for
the 1MB section.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 7-1: Interpreting level one descriptor bits [1:0]



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-7

Open Access - Preliminary

AP S R Supervisor

permissions

User

permissions

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission fault

11 x x Read/Write Read/Write All access types permitted in both modes.

xx 1 1 Reserved

 Table 7-2: Interpreting access permission (AP) bits



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-8

Open Access - Preliminary

7.5 Translating Section References

Figure 7-6: Section translation illustrates the complete Section translation sequence.

Note that the access permissions contained in the Level One Descriptor must be

checked before the physical address is generated. The sequence for checking access

permissions is described below.

7.5.1 Level two descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address

of the page table to be used. The page table is then accessed as described in Figure
7-7: Small page translation, and a Page Table Entry, or Level Two Descriptor, is

returned. This in turn may define either a Small Page or a Large Page access. Figure
7-5:Page table entry (level two descriptor) on page 7-8 shows the format of Level Two

Descriptors.

 Figure 7-5: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as

follows:

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64KB Page

 1 0 Small Page Indicates that this is a 4KB Page

 1 1 Reserved Reserved for future use

 Table 7-3: Interpreting page table entry bits 1:0

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-9

Open Access - Preliminary

 Figure 7-6: Section translation

Bit 2 (B - Bufferable) indicates that data at this address will be written
through the write buffer (if the write buffer is enabled).

Bit 3 (C - Cacheable) indicates that data at this address will be placed in
the IDC (if the cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in
Table 7-1:Interpreting level one descriptor bits [1:0] on page 7-6.

Bits 15:12 for large pages, these bits are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the

corresponding bits of the physical address - the physical page number. (The page

index is derived from the virtual address as illustrated in Figure 7-7:Small page
translation on page 7-10 and Figure 7-8:Large page translation on page 7-11).

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-10

Open Access - Preliminary

7.6 Translating Small Page References

Figure 7-7: Small page translation illustrates the complete translation sequence for a

4KB Small Page. Page translation involves one additional step beyond that of

a section translation: the Level One descriptor is the Page Table descriptor, and this is

used to point to the Level Two descriptor, or Page Table Entry. (Note that the access

permissions are now contained in the Level Two descriptor and must be checked

before the physical address is generated. The sequence for checking access

permissions is described later).

 Figure 7-7: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-11

Open Access - Preliminary

7.7 Translating Large Page References

Figure 7-8: Large page translation illustrates the complete translation sequence for a

64KB Large Page. Note that since the upper four bits of the Page Index and low-order

four bits of the Page Table index overlap, each Page Table Entry for a Large Page

must be duplicated 16 times (in consecutive memory locations) in the Page Table.

 Figure 7-8: Large page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-12

Open Access - Preliminary

7.8 MMU Faults and CPU Aborts

The MMU generates four types of faults:

• Alignment Fault

• Translation Fault

• Domain Fault

• Permission Fault

The access control mechanisms of the MMU detect the conditions that produce these

faults. If a fault is detected as the result of a memory access, the MMU will abort

the access and signal the fault condition to the CPU. The MMU is also capable of

retaining status and address information about the abort. The CPU recognizes two

types of abort: data aborts and prefetch aborts, and these are treated differently by

the MMU.

If the MMU detects an access violation, it will do so before the external memory access

takes place, and it will therefore inhibit the access.

7.9 Fault Address & Fault Status Registers (FAR & FSR)

Aborts resulting from data accesses (data aborts) are acted upon by the CPU

immediately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4-bit

encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual

processor address which caused the data abort is latched into the Fault Address

Register (FAR). If an access violation simultaneously generates more than one source

of abort, they are encoded in the priority given in Table 7-4:Priority encoding of fault
status on page 7-13.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags

the instruction as it enters the instruction pipeline. Only when (and if) the instruction is

executed does it cause an abort; an abort is not acted upon if the instruction is not

used (i.e. it is branched around). Because instruction prefetch aborts may or may not

be acted upon, the MMU status information is not preserved for the resulting CPU

abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls

supported by the MMU and detail how these are interpreted to generate faults.

In Table 7-4:Priority encoding of fault status on page 7-13, x is undefined, and may

read as 0 or 1.

Notes: Any abort masked by the priority encoding may be regenerated by fixing the primary
abort and restarting the instruction. In fact this register will contain bits[8:5] of
the Level 1 entry which are undefined, but would encode the domain in a valid entry.



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-13

Open Access - Preliminary

7.10 Domain Access Control

MMU accesses are primarily controlled via domains. There are 16 domains, and each

has a 2-bit field to define it. Two basic kinds of users are supported:

Clients Clients use a domain

Managers Managers control the behavior of the domain.

The domains are defined in the Domain Access Control Register. Figure 7-9: Domain
access control register format illustrates how the 32 bits of the register are allocated

to define the sixteen 2-bit domains.

 Figure 7-9: Domain access control register format

Table 7-5: Interpreting access bits in domain access control register defines how

the bits within each domain are interpreted to specify the access permissions.

Priority Source FS[3210] Domain [3:0] FAR

Highest Alignment 00x1 x valid

Translation (Section) 0101 Note 2 valid

 Translation (Page) 0111 valid valid

Domain (Section) 1001 valid valid

Domain (Page) 1011 valid valid

Permission (Section) 1101 valid valid

Lowest Permission (Page)  1111 valid valid

 Table 7-4: Priority encoding of fault status

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in

the Section or Page descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so

a Permission fault cannot be generated.

 Table 7-5: Interpreting access bits in domain access control register

012345678910111213141516171819202122232425262728293031

0123456789101112131415



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-14

Open Access - Preliminary

7.11 Fault-checking Sequence

The sequence by which the MMU checks for access faults is slightly different for

Sections and Pages. The figure below illustrates the sequence for both types of

accesses. The sections and figures that follow describe the conditions that generate

each of the faults.

 Figure 7-10: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

Get Level One Descriptor

Section Page

misaligned
Alignment

Fault

invalid
Section

Translation
Fault

get Page

Table Entry

Check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(11)

Check Access

Permissions

Check Access

Permissions

Physical Address

Section
Permission

Fault
violation

Sub-Page
Permission

Fault



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-15

Open Access - Preliminary

7.11.1 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate

an alignment fault on any data word access the address of which is not word-aligned

irrespective of whether the MMU is enabled or not; in other words, if either of virtual

address bits [1:0] are not 0.

Alignment fault will not be generated on any instruction fetch, nor on any byte access.

Note that if the access generates an alignment fault, the access sequence will abort

without reference to further permission checks.

7.11.2 Translation fault

There are two types of translation fault:

Section is generated if the Level One descriptor is marked as invalid.
This happens if bits[1:0] of the descriptor are both 0 or both 1.

Page is generated if the Page Table Entry is marked as invalid.
This happens if bits[1:0] of the entry are both 0 or both 1.

7.11.3 Domain fault

There are two types of domain fault: section and page. In both cases the Level One

descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains

in the Domain Access Control Register. The two bits of the specified domain are then

checked for access permissions as detailed in Table 7-2:Interpreting access
permission (AP) bits on page 7-7. In the case of a section, the domain is checked once

the Level One descriptor is returned, and in the case of a page, the domain is checked

once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section

Domain Fault or Page Domain Fault occurs.

7.11.4 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is

checked at the same time as Domain fault. If the 2-bit domain field returns client (01),

then the permission access check is invoked as follows:

Section

If the Level One descriptor defines a section-mapped access, then the AP bits of

the descriptor define whether or not the access is allowed according to

Table 7-2:Interpreting access permission (AP) bits on page 7-7. Their interpretation is

dependent upon the setting of the S bit (Control Register bit 8). If the access is not

allowed, a Section Permission fault is generated.

Sub-page

If the Level One descriptor defines a page-mapped access, then the Level Two

descriptor specifies four access permission fields (ap3..ap0) each corresponding to

one quarter of the page. Hence for small pages, ap3 is selected by the top 1KB of the

page, and ap0 is selected by the bottom 1KB of the page; for large pages, ap3 is



Named Partner Confidential - Preliminary Draft

ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-16

Open Access - Preliminary

selected by the top 16KB of the page, and ap0 is selected by the bottom 16KB of

the page. The selected AP bits are then interpreted in exactly the same way as for

a section (see Table 7-2:Interpreting access permission (AP) bits on page 7-7),

the only difference being that the fault generated is a sub-page permission fault.

7.12 External Aborts

The ARM7500FE does not support external aborts.

7.12.1 Interaction of the MMU, IDC and write buffer

The MMU, IDC and WB may be enabled/disabled independently. However there are

only five valid combinations. There are no hardware interlocks on these restrictions,

so invalid combinations will cause undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers

2 Program Level 1 and Level 2 page tables as required

3 Enable the MMU by setting bit 0 in the Control Register.

Note: Care must be taken if the translated address differs from the untranslated address as
the two instructions following the enabling of the MMU will have been fetched using
“flat translation” and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the following
code sequence:

MOV R1, #0x1

MCR 15,0,R1,0,0 ; Enable MMU

Fetch Flat

Fetch Flat

Fetch Translated

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 7-6: Valid MMU, IDC, and WB combinations



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-17

Open Access - Preliminary

To disable the MMU

1 Disable the WB by clearing bit 3 in the Control Register.

2 Disable the IDC by clearing bit 2 in the Control Register.

3 Disable the MMU by clearing bit 0 in the Control Register.

Note: If the MMU is enabled, then disabled and subsequently re-enabled the contents of
the TLB will have been preserved. If these are now invalid, the TLB should be flushed
before re-enabling the MMU.

Disabling of all three functions may be done simultaneously.

7.13 Effect of Reset

See Chapter 4: The ARM Processor Programmers’ Model .



ARM Processor MMU

ARM7500FE Data Sheet
ARM DDI 0077B

7-18

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

8-1

11
1

Open Access - Preliminary

This chapter gives an overview of the FPA coprocessor macrocell.

8.1 Overview 8-2

8.2 FPA Functional Blocks 8-3

8.3 FPA Block Diagram 8-5

The FPA Coprocessor Macrocell8



Named Partner Confidential - Preliminary Draft

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-2

Open Access - Preliminary

8.1 Overview

The FPA is a floating-point accelerator for the ARM family of CPUs. It has been

designed to maximize the performance/power, performance/cost and performance/die

size ratios while still providing a balanced floating-point versus integer performance for

ARM-based systems.

Typical performance in the range 3 to 8 MFlops is expected at a clock frequency of

40 MHz; actual performance is dependent on the:

• precision selected

• system configuration

• the degree to which the floating-point code is scheduled and otherwise

optimized

The FPA in the ARM7500FE is an on-chip floating-point coprocessor connected to

the ARM processor core. It is a fully static design and its low power consumption,

especially when in standby mode, makes it eminently suitable for portable and other

power- and cost-sensitive applications. When used in conjunction with its support

code, the FPA fully implements the IEEE Standard for Binary Floating-Point Arithmetic

(ANSI/IEEE Std 754-1985).

The design of the FPA is based on an 81-bit internal datapath, with autonomous

load/store and arithmetic units which can operate concurrently. Single, double and

extended precision IEEE formats are all supported. The FPA achieves its high

performance, whilst remaining a low cost and low power solution, by employing RISC

and other advanced design techniques. It is interfaced to the ARM CPU over a simple,

high-performance coprocessor bus. The ARM instruction pipeline is mirrored on

the FPA so that floating-point instructions can be executed directly with minimal

communication overhead. Pipelining, concurrent execution units and speculative

execution are all employed to improve performance without having a great impact on

power consumption.

A RISC approach has been taken in selecting between those floating-point

instructions which are candidates for implementation in the FPA and those which are

handled by software support. The FPA instruction repertoire includes only the basic

operations plus compare, absolute value, round to integral value and floating-point to

integer and integer to floating-point conversions. In addition, only normalized

operands and zeros are handled in hardware; operations on denormalized numbers,

infinities and NaNs are handled by the support code. Only the inexact exception is

dealt with by hardware; all other exceptions cause the software support code to be

called, whether or not the associated trap is enabled. This approach has helped to

minimize the die size whilst having a negligible effect on performance in most

applications.



The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-3

Open Access - Preliminary

8.2 FPA Functional Blocks

FPA consists of five main functional blocks:

• coprocessor interface

• instruction issuer

• load-store unit

• register bank

• arithmetic unit

These are described in the following sections

8.2.1 Coprocessor interface

This block is responsible for arbitrating instructions with the CPU and telling

the Load-Store unit when to go ahead with data transfers.

Like ARM integer instructions, all ARM floating-point instructions are conditional,

obviating the need for branches for many common constructs. If a failed condition

causes an instruction already issued to the Load-Store or Arithmetic unit to be

skipped, that instruction is cancelled and any results calculated thus far are discarded.

The same mechanism is used to cancel prefetched instructions if a branch is taken or

if the ARM CPU gets interrupted before an FPA instruction has been arbitrated.

8.2.2 Instruction issuer

The instruction issuer is responsible for examining the incoming instruction stream and

deciding whether any instructions are candidates for issuing to either the load-store

unit or the arithmetic unit.

Instructions can be selected from the fetch, decode or execute stages of the ARM

pipeline follower. Data anti-dependency hazards (write-after-write and

write-after-read) are dealt with by this unit by preventing issue until the hazard has

been cleared.

Instructions are issued strictly in order and only one can be issued per cycle.

8.2.3 The load-store unit

The load-store unit does the formatting and conversion necessary when moving data

between the 32-bit ARM databus and the 81-bit internal register format. It is also

responsible for checking all input operands and flagging any that are not normalized

numbers or zero.

Most subsequent operations on flagged data cause the instruction to be passed to

software which will then emulate the instruction. All internal operations are performed

to the internal 81-bit format.



Named Partner Confidential - Preliminary Draft

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-4

Open Access - Preliminary

8.2.4 The register bank

The register bank contains eight 81-bit dual read-access, dual write-access registers.

Data dependency hazards (read-after-write) are handled by the register control logic;

read requests from either unit are stalled until the hazard is cleared.

There is also a 33-bit temporary register, used by FIX, FLT and compare instructions

to transfer intermediate results between the Load-Store Unit and the Arithmetic Unit.

The register bank also contains logic for register-forwarding, allowing the result of one

calculation to be used directly as the source for the next.

8.2.5 The arithmetic unit

The arithmetic unit has a four-stage pipeline (Prepare, Calculate, Align and Round)

and can speculatively execute instructions up to, but not including, register writeback.

Writeback can only occur once the instruction has been arbitrated with the ARM CPU.

An unusual feature of the pipeline is that each of the pipeline stages is offset by one

half-cycle from the previous stage, allowing some instructions to traverse the pipeline

in 2 cycles.

The Calculate stage includes a 67-bit adder, iterative array multiplier and divide unit.

Fast barrel shifters are used for pre-alignment and post-normalization.

Arithmetic operations are normally performed asynchronously to the ARM instruction

stream so that an instruction is arbitrated with the CPU before the FPA has detected

whether an exception will occur. Arithmetic exceptions are therefore normally

imprecise. If precise exceptions are required (for example, in debugging), a mode bit

(the SO bit in the FPSR) can be set. This forces arbitration to be delayed until

the arithmetic operation has completed, at the expense of a reduction in performance.



The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-5

Open Access - Preliminary

8.3 FPA Block Diagram

Data bus

Control signals

To/from ARM

Clock signals

Load-store unit

Register bank
Coprocessor

Clock

ADD

MUL

DIVIDE

Arithmetic unit

interface

from ARM

from ARM

Instruction
issuer



Named Partner Confidential - Preliminary Draft

The FPA Coprocessor Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

8-6

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

9-1

11
1

Open Access - Preliminary

This chapter details the floating-point coprocessor programmer’s model

9.1 Overview 9-2

9.2 Floating-Point Operation 9-2

9.3 ARM Integer and Floating-Point Number Formats 9-4

9.4 The Floating-Point Status Register (FPSR) 9-8

9.5 The Floating-Point Control Register (FPCR) 9-11

Floating-Point Coprocessor
Programmer’s Model9



Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-2

Open Access - Preliminary

9.1 Overview

The ARM IEEE floating-point system has:

• 8 high-precision floating-point registers, F0 to F7

• a working precision of 80 bits, comprising:

- 64-bit mantissa

- a 15-bit exponent

- a sign bit

9.1.1 Floating-point status register

There is a floating-point status register (FPSR) which, like ARM's PSR, holds all

the necessary status and control information for the floating-point system that

an application should be able to access. It holds flags which indicate various error

conditions, such as overflow and division by zero. Each flag has a corresponding trap

enable bit, which can be used to enable or disable a trap associated with the error

condition. Bits in the FPSR allow a client to distinguish different implementations of

the floating-point system and to enable or disable special features of the system.

9.1.2 Floating-point control register

The FPA also contains a floating-point control register (FPCR). This is used to

communicate status and control information between the FPA and the FPA support

code.

Note: The definition of the FPCR may be different for other implementations of the ARM

IEEE floating-point system; the FPCR may not even exist in some implementations.

Software outside the floating-point system should therefore not use the FPCR directly.

9.2 Floating-Point Operation

All basic floating-point instructions operate as though the result were computed to

infinite precision and then rounded to the length and in the way specified by

the instruction. The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• Round to -infinity (M)

• Round to zero (Z)

The default is round to nearest: as required by the IEEE, this rounds to nearest even
for the tie case. If one of the other rounding modes is required it must be given in

the instruction.



Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-3

Open Access - Preliminary

The floating-point system architecture is a load/store architecture (like the ARM CPU);

the data-processing operations only refer to floating-point registers. Values may be

stored into ARM memory in one of five formats (only four of which are visible at any

one time since P and EP are mutually exclusive):

• IEEE Single Precision (S)

• IEEE Double Precision (D)

• IEEE Double Extended Precision (E)

• Packed Decimal (P)

• Expanded Packed Decimal (EP)

If it is required to preserve register contents exactly (including signalling NaNs),

the LFM and SFM instructions should be used. Note however that LFM and SFM

should only be used for register preservation within programs and not for data which

is to be transferred between programs and/or systems. The format of data stored

using SFM is implementation-dependent and can generally only be restored by

an LFM instruction from the same implementation.

Floating-point systems may be built from software only, hardware only, or some

combination of software and hardware and the results look the same to

the programmer. However, the supervising operating system will need to be aware of

which implementation is in use, in order to extract the best performance.

Similarly, compilers can be tuned to generate bunched FP instructions for the FPE and

dispersed FP instructions for the FPA to improve overall performance. The manner in

which exceptions are signalled is at the discretion of the surrounding operating

system.

Note: In the case of the FPA system, an exception caused by a floating-point data operation

or a FLT may be asynchronous (due to the nature of the ARM coprocessor interface.)

Such an exception is raised some time after the instruction has started, by which time

the ARM may have executed a number of instructions following the one that has failed.

This means that the exact address of the instruction that caused the exception may

not be identifiable. However, all the information about the exception that the IEEE

Standard recommends is available.

Furthermore, in the FPA a “fully synchronous, but slow” mode of operation is available

that allows the address of the faulting instruction to be determined; this is described in

 Bit 10 SO - Select Synchronous Operation of FPA on page 9-9.

9.2.1 Additional information

Familiarity with the IEEE Standard for Binary Floating-point Arithmetic: ANSI/IEEE Std
754-1985 will be helpful in reading this datasheet.



Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-4

Open Access - Preliminary

9.3 ARM Integer and Floating-Point Number Formats

9.3.1 Integer

9.3.2 IEEE single precision (S)

127 Normalized number exponent bias

126 Denormalized number exponent bias

9.3.3 IEEE double precision (D)

1023 Normalized number exponent bias

1022 Denormalized number exponent bias

Single and double values

31 0

msb 2’s complement lsb

31 30 23 22 0

sign exponent msb fraction lsb

31 30 20 19 0

First
word

sign exponent msb fraction (ms part) lsb

msb fraction (ls part) lsb

Sign Exponent Fraction Value represented

Quiet NaN x maximum 1xxxxxxxxx IEEE Quiet NaN

Signalling NaN x maximum 0 non-zero IEEE Signalling NaN

Infinity sign maximum 0000000000 (-1)sign * infinity

Zero sign 0 0000000000 (-1)sign * 0

Denormalized no sign 0 non-zero (-1)sign * 0.fraction * 2-(denorm. bias)

Normalized no. sign not 0 and not maximum xxxxxxxxxx (-1)sign * 1.fraction * 2(exponent  - norm. bias)

 Table 9-1: Single and double values



Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-5

Open Access - Preliminary

9.3.4 IEEE extended double precision (E)

J is the bit to the left of the binary point

16383 normalized and denormalized number exponent bias

Extended values

** In general, illegal values must not be used, although specific floating-point

implementations may use these bit patterns for internal purposes.

31 30 15 14 0

First
word

sign zeros fraction (ms part) lsb

Second
word

J msb fraction (ms part) lsb

Third
word msb fraction (ls part) lsb

Sign Exponent J Fraction Value represented

Quiet NaN x maximum x 1xxxxxxxxx IEEE Quiet NaN

Signalling NaN x maximum x 0 non-zero IEEE Signalling NaN

Infinity sign maximum 0 0000000000 (-1)sign * infinity

Zero sign 0 0 0000000000 (-1)sign * 0

Denormalized no sign 0 0 non-zero (-1)sign * 0.fraction * 2-(denorm.bias)

Normalized no. sign not max 1 xxxxxxxxxx (-1)sign * 1.fraction * 2(exponent - norm.bias)

** Illegal value x not 0 and not max 0 xxxxxxxxxx

** Illegal value x maximum 1 0000000000

 Table 9-2: Extended values



Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-6

Open Access - Preliminary

9.3.5 Packed decimal (P)

• the value is +/- d * 10^(+/- e)

• d18 and e3 are the most significant digits of d and e respectively

• sign contains both the number's sign (bit 31) and the exponent's sign (bit 30).

The other bits (29,28) are 0

• the value of d is arranged with the decimal point between d18 and d17, and is

normalized so that for an ordinary number 1<=d18<=9

• the guaranteed ranges for d and e are 17 and 3 digits respectively: e3 and d0,

d1 may always be zero in a particular system.

• the result is undefined if any of the packed digits is hexadecimal A through F

Packed decimal values

All other combinations are undefined.

31 0

First
word

sign e3 e2 e1 e0 d18 d17 d16

Second
word

d15 d14 d13 d12 d11 d10 d9 d8

Third
word d7 d6 d5 d4 d3 d2 d1 d0

Sign

(top bit)

Sign

(next bit) Exponent Digit values

Quiet NaN x x FFFF d18>7, rest non-zero

Signalling NaN x x FFFF d18<8, rest non-zero

+/- Infinity 0,1 x FFFF all 0

 +/- Zero 0,1 0 0000 all 0

Number 0,1 0,1 0000-9999 1-9.999999999999999999

 Table 9-3: Packed decimal values



Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-7

Open Access - Preliminary

9.3.6 Expanded packed decimal (EP)

• Value is +/- d * 10^(+/- e).

• d23 and e6 are the most significant digits of d and e respectively.

• Sign contains both the number's sign (bit 31) and the exponent's sign (bit 30).

The other bits (29,28) are 0.

• The value of d is arranged with the decimal point between d23 and d22, and

is normalized so that for an ordinary number 1<=d23<=9.

• The guaranteed ranges for d and e are 21 and 4 digits respectively: e6, e5, e4

and d2, d1, d0 may always be zero in a particular system.

• The result is undefined if any of the packed digits is hexadecimal A through F.

Expanded packed decimal values

All other combinations are undefined.

31 0

First
word

sign e6 e5 e4 e3 e12 e1 e0

Second
word

d23 d22 d21 d20 d19 d18 d17 d16

Third
word d15 d14 d13 d12 d11 d10 d9 d8

d7 d6 d5 d4 d3 d2 d1 d0

Sign

(top bit)

Sign

(next bit)

Exponent Digit values

Quiet NaN x x FFFFFFF d23>7, rest non-zero

Signalling NaN x x FFFFFFF d23<8, rest non-zero

+/- Infinity 0,1 x FFFFFFF all 0

+/- Zero 0,1 0 0000000 all 0

Number 0,1 0,1 0-9999999 1-9.99999999999999999999999

 Table 9-4: Expanded packed decimal values



Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-8

Open Access - Preliminary

9.4 The Floating-Point Status Register (FPSR)

The floating-point status register (FPSR) consists of:

• a system ID byte

• an exception trap enable byte

• a system control byte

• a cumulative exception flags byte

Note: The FPSR is not cleared on reset. It is typically cleared by the support code using
an appropriate WFS.

9.4.1 System ID byte

The 8-bit SysId allows a user or operating system to distinguish which floating-point

system is in use. The top bit (bit 31) is:

set for HARDWARE (i.e. fast) systems

clear for SOFTWARE (i.e. slow) systems

Note: The SysId is read-only.

List of system IDs

The following system IDs are defined:

Floating-point Emulator 01 (HEX)   (Software only)

FPA System 81 (HEX)

The following system IDs are also defined for backwards compatibility:

00(HEX) for pre-FPA software systems

80(HEX) for pre-FPA hardware systems

9.4.2 Exception trap enable byte

Each bit of the exception trap enable byte corresponds to one type of floating-point

exception. The exception types (IX,UF,OF,DZ,IO) are described below.

A bit in the cumulative exception flags byte is set as a result of executing a

floating-point instruction only if the corresponding bit is not set in the exception trap

enable byte; if the corresponding bit in the exception trap enable byte is set,

an exception trap will be taken instead of setting the exception flag. The trap handler

code can then set the relevant cumulative exception bit if desired.

Normally, reserved FPSR bits should not be altered by user code. However, they may

be initialized to zero.

31 24 0

SysId

31 23 21 20 19 18 17 16 0

Reserved IXE UFEOFEDZEIOE



Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-9

Open Access - Preliminary

9.4.3 System control byte

These control bits determine which features of the floating-point system are in use.

Because these control bits are in the FPSR, their state will be preserved across

context switches, allowing different processes to use different features if necessary.

The following five control bits are defined for the FPA system:

Bit 8 ND - No Denormalized Numbers Bit

If this bit is set, the software forces all denormalized numbers to zero
to reduce lengthy execution times when dealing with denormalized
numbers. (Also known as abrupt underflow or flush to zero.) This
mode is not IEEE-compatible but may be required by some programs
for performance reasons. If this bit is clear, then denormalized
numbers will be handled in the normal IEEE-conformant way.

Bit 9 NE - NaN Exception Bit

When this bit is clear, extended format is regarded as an internal
format for conversions of signalling NaNs: only conversions between
single and double-precision will produce an invalid operation
exception because of a signalling NaN operand. This is required for
compatibility with old programs which use STFE and LDFE to
preserve register contents. When the NE bit is set, all conversions
between single, double and extended precision will produce an invalid
operation exception if the operand is a signalling NaN.

Bit 10 SO - Select Synchronous Operation of FPA

If this bit is set, all floating-point instructions will execute
synchronously and ARM will be made to busy-wait until the instruction
has completed. This will allow precise exceptions to be reported but
at the expense of increased execution time. If this bit is clear, the class
of floating-point instructions that can execute asynchronously to ARM
will do so. Exceptions that occur as a result of these instructions may
then be imprecise.

Bit 11 EP - Use Expanded Packed Decimal Format

If this bit is set, the expanded (four word) format will be used for
Packed Decimal numbers. Use of this expanded format allows
conversion from extended precision to packed decimal and back
again to be carried out without loss of accuracy. If this bit is clear,
standard (three word) format is used for Packed Decimal numbers.

Bit 12 AC - Use Alternative definition for C-flag on compare operations

If this bit is set, the ARM C-flag has the following interpretation after
a compare:

C: Greater Than or Equal or Unordered

This interpretation of the C-flag allows more of the IEEE predicates
to be tested by means of single ARM conditional instructions than is
possible using the original interpretation of the C-flag as shown below.

15 13 12 11 10 9 8

Reserved AC EP SO NE ND



Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-10

Open Access - Preliminary

If this bit is clear, the ARM C-flag has the following interpretation after
a compare:

C: Greater Than or Equal

Normally, reserved FPSR bits should not be altered by user code. However, they may

be initialized to zero.

9.4.4 Cumulative exception flags byte

Whenever an exception condition arises and the corresponding trap enable bit is not

set, the appropriate cumulative exception flag in bits 0 to 4 will be set to 1.

If the relevant trap enable bit is set, an exception is delivered to the user's program in

a manner specific to the operating system.

Note: In the case of underflow, the state of the trap enable bit determines under which

conditions the underflow exception will arise.

These flags can only be cleared by a WFS instruction.

Normally, reserved FPSR bits should not be altered by user code. However, they may

be initialized to zero.

IO - invalid operation

The invalid operation exception arises when an operand is invalid for the operation

to be performed. The result (if the trap is not enabled) is a quiet NaN.

Invalid operations are:

• Any operation on a signalling NaN, except an LDF, LFM or SFM, or an MVF,

MNF, ABS or STF without change of precision.

• Magnitude subtraction of infinities, e.g. +infinity + -infinity.

• Multiplication of 0 by an infinity.

• Division of 0/0 or infinity/infinity.

• x REM y where x is infinity or y is 0.

• Square root of any number less than zero (but SQT(-0) is -0).

• Conversion to integer when overflow, infinity or NaN make it impossible.

If overflow makes a conversion to integer impossible, the largest positive or

negative integer is produced (depending on the sign of the operand) and

Invalid Operation is signalled.

• CMFE, CNFE when at least one operand is a NaN.

DZ - division by zero

The division-by-zero exception occurs if the divisor is zero and the dividend a finite,

non-zero number. A correctly-signed infinity is returned if the trap is disabled.

31 7 5 4 3 2 1 0

Reserved IXC UFCOFCDZCIOC



Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-11

Open Access - Preliminary

OF - overflow

The OFC flag is set whenever the destination format's largest number is exceeded in

magnitude by what would have been the rounded result if the exponent range were

unbounded. The untrapped result returned is either:

• the correctly signed infinity

• the format's largest finite number

depending on the rounding mode.

UF - underflow

Two correlated events contribute to underflow:

1 Tininess
The creation of a tiny non-zero result smaller in magnitude than the format's
smallest normalized number.

2 Loss of accuracy
A loss of accuracy due to denormalization that may be greater than would be
caused by rounding alone.

If the underflow trap enable bit is set, the underflow exception occurs when tininess is

detected, regardless of loss of accuracy. If the trap is disabled, then tininess and loss

of accuracy must both be detected for the underflow flag to be set (in which case

inexact will also be signalled).

IX - inexact

The inexact exception occurs if:

• the rounded result of an operation is not exact (different from the value

computable with infinite precision)

• overflow has occurred while the OFE trap was disabled

• underflow has occurred while the UFE trap was disabled.

OFE or UFE traps take precedence over IXE.

9.5 The Floating-Point Control Register (FPCR)

The floating-point control register (FPCR) is an implementation-specific register:

it may not exist in some versions of the ARM floating-point system and, when it does

exist, it may contain different information for different versions of the system.

When present, it is used for internal communication within the floating-point system

and, in particular, to allow software and hardware components of the system

to communicate with each other.

Use of the WFC and RFC instructions outside the floating-point system itself is

strongly discouraged. In the case of User mode programs, it is actually prohibited:

the WFC and RFC instructions will trap if executed in User mode.

The FPCR within the ARM7500FE has an FPCR. It is used to enable and disable

the chip and to communicate information about instructions the hardware cannot

handle to the support code.



Named Partner Confidential - Preliminary Draft

Floating-Point Coprocessor

ARM7500FE Data Sheet
ARM DDI 0077B

9-12

Open Access - Preliminary

The FPA FPCR bit allocation is as follows:

31 RU Rounded-up bit

30 Reserved

29 Reserved

28 IE Inexact bit

27 MO Mantissa overflow

26 EO Exponent overflow

25 Reserved

24 Reserved

23-20 OP AU operation code

19;7 PR AU precision

18-16 S1 AU source register 1

15 OP AU operation code

14-12 DS AU destination register

11 SB Store bounce: decode (R14) to get opcode

10 AB Arithmetic bounce: opcode supplied in rest of word

9 RE Rounding Exception: Arithmetic bounce occurred during
rounding stage and destination register was written

8 DA Disable FPA

6-5 RM AU rounding mode

4 OP AU operation code

3-0 S2 AU source register 2 (bit 3 set denotes a constant)

All defined bits are cleared on reset, except bits 8, 10, and 11 (DA, AB, and SB) which

are set.

Apart from by using the WFC instruction, the AB bit can only be set by the arithmetic

unit and the SB bit can only be set by the load-store unit.

Only the arithmetic unit can write bits 31, 28:26, 23:12, 9, 7:0 of the FPCR.

The behavior of the FPCR when the RFC and WFC instructions are executed is as

follows:

• A read of the FPCR by RFC clears the SB, AB and DA bits of the FPCR, and

leaves the other bits of the FPCR unchanged.

• A write of the FPCR by WFC writes the SB, AB, & DA bits of the FPCR, and

leaves the other bits of the FPCR unchanged.

Note: This information about the FPCR in the FPA is only supplied to aid with modifications

to the FPA support code. Using it for any other purpose is likely to lead to compatibility

problems and is strongly discouraged.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RU R R IE MO EO R R OP PR S1 OP DS SB AB RE DA PR RM OP S2



ARM7500FE Data Sheet
ARM DDI 0077B

10-1

11
1

Open Access - Preliminary

This chapter lists the floating-point instruction set.

Note: Not all of the instructions detailed in this chapter are implemented in hardware on

the FPA; the remainder are supported by software emulation.

10.1 Floating-Point Coprocessor Data Transfer (CPDT) 10-2

10.2 Floating-Point Coprocessor Data Operations (CPDO) 10-7

10.3 Floating-Point Coprocessor Register Transfer (CPRT) 10-11

10.4 FPA Instruction Set 10-14

10.5 Floating-Point Support Code 10-16

10.6 Instruction Cycle Timing 10-17

Floating-Point Instruction Set10



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-2

Open Access - Preliminary

10.1 Floating-Point Coprocessor Data Transfer (CPDT)

10.1.1 LDF/STF - load and store floating

Load or Store the high-precision value from or to memory, using one of the five

memory formats.

On store, the value is rounded using the round to nearest rounding method to

the destination precision, or is precise if the destination has sufficient precision.

Thus, other rounding methods may be used by having applied a suitable floating-point

data operation at some time before the store; this does not compromise

the requirement of rounding once only since no additional rounding error is

introduced by the store instruction.

Cond condition field

P pre/post-indexing bit:

0 post-indexing

1 pre-indexing

U/D up/down bit

0 down

1 up

T1 transfer length (see below)

Wb write-back bit

L/S load/store bit

0 store to memory

1 load from memory

Rn base register

T0 transfer length (see below)

Fd floating-point register number

offset unsigned 8-bit immediate offset

The length field is encoded into bits 22 (T1) and 15 (T0) as follows:

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110P U/D T1 Wb L/S Rn T0  Fd 0001 offset

Precision bit 22 bit 15 FPSR.EP Data format size Note

Single S 0 0 x 1 memory word

Double D 0 1 x 2 memory words

Extended E 1 0 x 3 memory words

Packed decimal P 1 1 0 3 memory words 1

Expanded packed decimal EP 1 1 1 4 memory words 1

 Table 10-1: Length field



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-3

Open Access - Preliminary

Note 1: LDFP and STFP are deprecated instructions and are intended for
backwards compatibility only. These functions should be
implemented by appropriate calls to a library.

The offset in bits [7:0] is specified in words and is added to (U/D=1) or subtracted from

(U/D=0) a base register (Rn), either before (P=1) or after (P=0) the base is used as

the transfer address. The modified base value may be written back into the base

register (Wb=1) or the old value of the base may be preserved (Wb=0).

Note: Post-indexed addressing modes require explicit setting of the Wb bit, unlike LDR and
STR which always write-back when post-indexed. The value of the base register,
modified by the offset in a pre-indexed instruction, is used as the address for
the transfer of the first word. The second word (if more than one is transferred) will go
to or come from an address one word (4 bytes) higher than the first transfer, and
the address will be incremented by one word for each subsequent transfer.

10.1.2 Assembler syntax

<LDF|STF>{cond}<S|D|E|P> Fd,[Rn]

[Rn, <#expression>]{!}

[Rn],<#expression>

Pre-indexed addressing specification

[Rn] offset of zero

[Rn, #<expression>]{!} offset of <expression> bytes

{!} Write back the base register (set the Wb bit)
if ! is present.

Note: If Rn is R15, writeback should not be specified.

Post-indexed addressing specification

[Rn],#<expression> offset of <expression> bytes

Note: The assembler automatically sets the Wb bit in this case.
R15 should not be used as the base register where post-indexed addressing is used.
The <expression> must be divisible by 4 and be in the range -1020 to 1020.



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-4

Open Access - Preliminary

10.1.3 Load and store multiple floating instructions (LFM/SFM)

The Load/Store Multiple Floating instructions allow between 1 and 4 floating-point

registers to be transferred from/to memory in a single operation. These operations

allow groups of registers to be saved and restored efficiently (e.g. across context

switches).

Cond Condition field

P Pre/post-indexing bit:

0 post-indexing

1 pre-indexing

U/D Up/down bit:

0 down

1 up)

N1 Register count (see below)

Wb Write-back bit

L/S Load/store bit

0 store to memory

1 load from memory

Rn Base register

N0 Register count (see below)

Fd Floating-point register number offset - unsigned 8-bit immediate offset

The values are transferred as three words of data for each register; the data format

used is not defined (and may change in future implementations), and the only legal

operation that can be performed on this data is to load it back into the FPA using

the same implementation's LFM instruction. The data stored in memory by an SFM

instruction should not be used or modified by any user process.

Note: Coprocessor number 2 (bits 11-8 in the instruction field) rather than the usual FPA
coprocessor number of 1 must be used for these instructions.

The offset in bits [7:0] is specified in words and is added to (U/D=1) or subtracted from

(U/D=0) a base register (Rn), either before (P=1) or after (P=0) the base is used as

the transfer address. The modified base value may be written back into the base

register (Wb=1) or the old value of the base may be preserved (Wb=0). Note that

post-indexed addressing modes require explicit setting of the Wb bit, unlike LDR and

STR which always write-back when post-indexed. The value of the base register,

modified by the offset in a pre-indexed instruction, is used as the address for

the transfer of the first word. The second word will go to or come from an address one

word (4 bytes) higher than the first transfer, and the address will be incremented by

one word for each subsequent transfer.

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110P U/D N1 Wb L/S Rn N0  Fd 0010 offset



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-5

Open Access - Preliminary

10.1.4 Assembler syntax - form 1

<LFM|SFM>{cond} Fd,<count>, [Rn]

[Rn, #<expression>]{!}

[Rn],#<expression>

The first register to transfer is specified as Fd.

The number of registers to transfer is specified in the <count> field and is encoded in

bit 22 (N1) and bit 15 (N0) as follows:

Registers are always transferred in ascending order and wrap around at register F7.

For example:

SFM F6,4,[R0]

will transfer F6,F7,F0,F1 to memory starting at the address contained in register R0.

Pre-indexed addressing specification

[Rn] offset of zero

[Rn, #<expression>]{!} offset of <expression> bytes

{!} Write back the base register (set the Wb bit)
if ! is present.

Note: If Rn is R15, writeback should not be specified.

Post-indexed addressing specification

[Rn],#<expression> offset of <expression> bytes

Note: The assembler automatically sets the Wb bit in this case.
R15 should not be used as the base register where post-indexed addressing is used.
The <expression> must be divisible by 4 and be in the range -1020 to 1020.

 bit 22 bit 15 No. of registers to transfer

0 1 1

1 0 2

1 1 3

0 0 4

 Table 10-2: Count field



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-6

Open Access - Preliminary

10.1.5 Assembler syntax - form 2

<LFM|SFM>{cond}<FD,EA> Fd,<count>,[Rn]{!}

This form of the instruction is intended for stacking type operations on the

floating-point registers. The following table shows how the assembler mnemonics

translate into bits in the instruction:

FD,EA define pre/post indexing and the up/down bit by reference to the form of stack

required. The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index has

to be done (full) before storing to the stack.

The A and D refer to whether the stack is ascending or descending. If ascending,

an SFM will go up and LFM down; if descending, vice-versa.

Note: Only EA and FD are permitted: the LFM/SFM instructions are not capable of
supporting empty descending or full ascending stacks.

{!} Write back the base register (set the Wb bit) if ! is present.

Note: If Rn is R15, writeback should not be specified.

 Name Stack L bit P bit U bit

post-increment load LFMFD 1 0 1

pre-decrement load LFMEA 1 1 0

post-increment store SFMEA 0 0 1

pre-decrement store SFMFD 0 1 0

 Table 10-3: Assembler mnemonics



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-7

Open Access - Preliminary

10.2 Floating-Point Coprocessor Data Operations (CPDO)

where:

abcd opcode

j dyadic/monadic:

0 dyadic

1 monadic

ef destination size

gh rounding mode

i constant /Fm

10.2.1 Dyadic operations

<ADF|SUF|RSF|MUF|DVF|RDF|>{cond}<S|D|E>{P|M|Z} Fd, Fn, <Fm|#value>

<FML|FDV|FRD|RMF>

10.2.2 Monadic operations

<ABS|URD|NRM|MVF|MNF|SQT|RND>{cond}<S|D|E>{P|M|Z} Fd, <Fm|#value>

10.2.3 Library calls

It is recommended that the following floating-point operations are implemented with

calls to an appropriate library (for example, the C library):

• power

• reverse power

• polar angle

• logarithm base 10

• logarithm base e

• exponent

• sine

• cosine

• tangent

• arc sine

• arc cosine

• arc tangent

However, for backwards compatibility with existing floating-point code, the following

floating-point mnemonics are defined in the ARM floating-point instruction set.

These opcodes are treated by the FPA as undefined instructions, and must be

handled by support code, which is less efficient than using library calls.

<POW|RPW|POL> {cond} <S|D|E>{P|M|Z} Fd, Fn, <Fm|#value>

<LOG|LGN|EXP|SIN|COS|TAN|ASN|ACS|ATN> {cond}<S|D|E>{P|M|Z} Fd, <Fm|#value>

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1110 abcd e Fn j  Fd 0001 fgh0 i Fm



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-8

Open Access - Preliminary

abcdj Mnemonic Description Operation Note

00000 ADF Add Fd := Fn + Fm

00010 MUF Multiply Fd := Fn * Fm

00100 SUF Subtract Fd := Fn - Fm

00110 RSF Reverse Subtract Fd := Fm - Fn

01000 DVF Divide Fd := Fn / Fm

01010 RDF Reverse Divide Fd := Fm / Fn

01100 POW Power Fd := Fn raised to the power of Fm 1

01110 RPW Reverse Power Fd := Fm raised to the power of Fn 1

10000 RMF Remainder Fd := IEEE remainder of Fn / Fm

10010 FML Fast Multiply Fd := Fn * Fm

10100 FDV Fast Divide Fd := Fn / Fm

10110 FRD Fast Reverse Divide Fd := Fm / Fn

11000 POL Polar angle (ArcTan2) Fd := polar angle of (Fn, Fm) 1

11010 --- trap: undefined instruction

11100 --- trap: undefined instruction

11110 --- trap: undefined instruction

00001 MVF Move Fd := Fm

00011 MNF Move Negated Fd := - Fm

00101 ABS Absolute value Fd := ABS ( Fm )

00111 RND Round to integral value Fd := integer value of Fm

01001 SQT Square root Fd := square root of Fm

01011 LOG Logarithm to base 10 Fd := log10 of Fm 1

01101 LGN Logarithm to base e Fd := loge of Fm 1

01111 EXP Exponent Fd := e ** Fm 1

10001 SIN Sine Fd := sine of Fm 1

10011 COS Cosine Fd := cosine of Fm 1

10101 TAN Tangent Fd := tangent of Fm 1

10111 ASN Arc Sine Fd := arcsine of Fm 1

 Table 10-4: Floating-point mnemonics



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-9

Open Access - Preliminary

11001 ACS Arc Cosine Fd := arccosine of Fm 1

11011 ATN Arc Tangent Fd := arctangent of Fm 1

11101 URD Unnormalized Round Fd := integer value of Fm, possibly in abnormal form

11111 NRM Normalize Fd := normalized form of Fm

abcdj Mnemonic Description Operation Note

 Table 10-4: Floating-point mnemonics

i Fm Value assigned Note

1000 0.0 3

1001 1.0 3

1010 2.0 3

1011 3.0 3

1100 4.0 3

1101 5.0 3

1110 0.5 3

1111 10.0 3

 Table 10-7: Constants

ef suffix Rounding precision Note

00 S IEEE Single precision 2

01 D IEEE Double precision 2

10 E IEEE Double Extended precision 2

11 trap: undefined instruction

 Table 10-5: Rounding precision

gh suffix  Rounding Mode

00 Round to Nearest (default)

01 P Round towards Plus Infinity

10 M Round towards Minus Infinity

11 Z Round towards Zero

 Table 10-6: Rounding mode

Note 1: Deprecated instruction:
included for backwards compatibility only.

Note 2: The precision must be specified;
there is no default.

Note 3: These are specified when i=1.



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-10

Open Access - Preliminary

Additional notes

• FML, FRD, FDV are only defined to work with single precision operands.

It is not guaranteed that any particular implementation will execute the “fast”

instructions any quicker than their respective “normal” versions (MUF, DVF,

RDF).

• Directed rounding is done only at the last stage of a SIN, COS etc;

the intermediate calculations to compute the value are done with

round-to-nearest using the full working precision.

• The URD instruction performs the IEEE round-to-integer-value operation,

but may leave its result in an abnormal unnormalized form. The NRM

instruction converts this abnormal result into a proper floating-point value.

• Direct use of the result of a URD instruction by any instruction other than NRM

may produce unexpected results and should therefore not be done.

However, there is an exception to this rule, where a URD result may safely be

preserved and restored by STFE/LDFE or SFM/LFM before being processed

by NRM. So there is no need, for instance, to disable interrupts around

a URD/NRM instruction sequence.

• Similarly, the NRM instruction should only be used on an URD result.

Again, use of it on other values may produce unexpected results.



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-11

Open Access - Preliminary

10.3 Floating-Point Coprocessor Register Transfer (CPRT)

FLT{cond}<S|D|E>{P|M|Z}  Fn, Rd

FIX{cond}{P|M|Z}         Rd, Fm

<WFS|RFS|WFC|RFC>{cond}  Rd

When L/S is:

1 the transfer is to an ARM register

0 the transfer is from an ARM register

Note 1: Supervisor-only Instructions

Definition of the efgh bits

The definition of the efgh bits is instruction-dependent:

FLT

ef destination size (10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7)

gh rounding mode (10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7)

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1110 abc L/S e Fn Rd 0001 fgh1 i Fm

abc L/S Mnemonic Description Operation Note

0000 FLT Convert Integer to Floating-Point Fn := Rd

0001 FIX Convert Floating-Point to Integer Rd := Fm

0010 WFS Write Floating-Point Status Register FPSR := Rd

0011 RFS Read Floating-Point Status Register Rd := FPSR

0100 WFC Write Floating-Point Control Register FPCR:= Rd 1

0101 RFC Read Floating-Point Control Register Rd := FPCR 1

011x trap: undefined instruction

1000 trap: undefined instruction

1010 trap: undefined instruction

1100 trap: undefined instruction

1110 trap: undefined instruction

 Table 10-8: Coprocessor register transfer



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-12

Open Access - Preliminary

FIX

ef these bits are reserved and should be zero.

gh rounding mode (10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7)

WFS,RFS,WFC,RFC

efgh these bits are reserved and should be zero.

Constants

Constants cannot be specified in the Fm field for the FIX instruction, as there is no

point FIXing a known value into an ARM integer register; it would be quicker to use

a MOV instruction.

10.3.1 Compare operations

Note: These are special cases of the general CPRT instruction, with Rd = 15 and L/S = 1.

<CMF|CNF|CMFE|CNFE>{cond}  Fn, Fm

abc operation

i constant ROM/Fm
(see 10.2 Floating-Point Coprocessor Data Operations (CPDO) on
page 10-7)

efgh are reserved and should be zero

Compares

Compares are provided with and without the exception that could arise if the numbers

are unordered. When testing IEEE predicates, the CMF instruction should be used

to test for equality (i.e. when a BEQ or BNE will be used afterwards) or to test for

unorderdness (in the V flag). The CMFE instruction should be used for all other tests

(BGT, BGE, BLT, BLE afterwards). CMFE produces an exception if the numbers are

unordered, i.e. whenever at least one operand is a NaN. CMF only produces

an exception when at least one operand is a signalling NaN.

31 28 27 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1110 abc 1 e Fn 1111 0001 fgh1 i Fm

abc Mnemonic Description Operation

100 CMF Compare floating compare Fn with Fm

101 CNF Compare negated floating compare Fn with -Fm

110 CMFE Compare floating with exception compare Fn with Fm

111 CNFE Compare negated floating with exception compare Fn with -Fm

 Table 10-9: Compare operations



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-13

Open Access - Preliminary

The ARM flags N, Z, C, V refer to the following after compares:

Note: That when two numbers are not equal N and C are not necessarily opposites:
if the result is unordered they will both be false.

Note: In this case, N and C are necessarily opposites.

Flag Description Clarification

N Less Than Fn less than Fm (or -Fm)

Z Equal

C Greater Than or Equal Fn greater than or equal to Fm

V Unordered

 Table 10-10: Flag settings when the AC bit in the FPSR is clear

Flag Description

N Less Than

Z Equal

C Greater Than or Equal or Unordered

V Unordered

 Table 10-11: Flag settings when the AC bit in the FPSR is set



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-14

Open Access - Preliminary

10.4 FPA Instruction Set

The FPA and support software together implement the ARM floating-point instruction

set as defined in the previous section. The FPA itself implements a subset of

the instruction set.

The FPA will not however execute arithmetic instructions in Table 10-12: Instructions
implemented in FPA on page 10-15 if one or more of the operands has one of

the following exceptional values (also known as uncommon values):

• Infinity

• NaN (Not a Number)

• Denormalized

• Illegal extended precision bit patterns

In this case the instruction will be 'bounced' to the software support code for emulation.

10.4.1 Infinities and NaNs

Infinities and NaNs should occur very rarely in normal code. Although not common,

there are a few 'normal' programs which frequently underflow and produce

denormalized numbers, in which case handling of denormalized operands in software

may cause a performance degradation. If necessary, this performance degradation

can be minimized by setting a bit in the status register which disables support for

denormalized numbers.

10.4.2 Exceptional conditions

Certain other exceptional conditions that arise during an operation will cause the FPA

to transfer that operation to the support code. These conditions include all cases of

the following IEEE exceptions:

• Invalid Operation

• Division by Zero

• Overflow

• Underflow

If the Inexact condition is detected, operation will only be transferred to the support

code if the Inexact trap enable bit is set in the Floating-Point Status Register. Some

other rare cases (such as mantissa overflow that occurs during the rounding stage of

a Store Floating instruction) that do not in fact produce an IEEE exception will also trap

to the support software.



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-15

Open Access - Preliminary

Mnemonic Instruction  IEEE Required

LDF(S/D/E)  Load (Single/Double/Extended) *

STF(S/D/E)  Store (Single/Double/Extended) *

ADF Add *

SUF Subtract *

RSF Reverse Subtract

MUF Multiply *

DVF Divide *

RDF Reverse Divide

FML Fast Multiply

FDV Fast Divide

FRD Fast Reverse Divide

ABS Absolute

URD Round to Integral Value, possibly producing abnormal value

NRM Normalize result of URD

MVF Move *

MNF Move Negated

FLT Integer to floating point conversion *

FIX Floating-point to integer conversion *

WFS Write Floating-Point Status *

RFS Read Floating-Point Status *

WFC Write Floating-Point Control

RFC Read Floating-Point Control

CMF Compare Floating  *

CNF Compare Negated Floating

CMFE Compare Floating with Exception  *

CNFE Compare Negated Floating with Exception

LFM Load Floating Multiple (new to FPA)

SFM Store Floating Multiple (new to FPA)

 Table 10-12: Instructions implemented in FPA



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-16

Open Access - Preliminary

10.5 Floating-Point Support Code

Software support for the FPA includes the FPA support code (FPASC) and a

software-only floating-point emulator (FPE).

The FPA system and the FPE produce identical results; both systems are fully

IEEE-conformant. Both systems seamlessly implement the ARM floating-point

instruction set.

The purpose of the FPASC is to:

1 Emulate in software those instructions rejected by the FPA because they
involve uncommon values.

2 Provide support for exception conditions reported by the FPA.

3 Emulate in software those instructions in the floating point instruction set that
are not implemented in the FPA (see list above).

4 Emulate in software any instructions that are included for backwards
compatibility only; see  However, for backwards compatibility with existing
floating-point code, the following floating-point mnemonics are defined in the
ARM floating-point instruction set. These opcodes are treated by the FPA as
undefined instructions, and must be handled by support code, which is less
efficient than using library calls. on page 10-7.

10.5.1 IEEE standard conformance

The full name of the IEEE Floating-Point Standard is as follows:

“IEEE Standard for Binary Floating-Point Arithmetic - ANSI/IEEE Std 754-1985”

This is referred to as the IEEE standard or merely as IEEE in this datasheet.

Note: The FPA hardware on its own is not IEEE-conformant.

Support software (the FPASC - FPA Support Code) is required to:

1 Implement the IEEE-required operations not provided by the FPA.

2 Handle operations on uncommon values which are bounced by the FPA.

3 Provide exception trap-handling capability.

Mnemonic Instructions  IEEE Required

SQT Square Root *

RMF Remainder *

RND Round to Integral Value *

 Table 10-13: Instructions supported by software support code (FPASC)



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-17

Open Access - Preliminary

10.6 Instruction Cycle Timing

The following table shows the number of cycles that the FPA takes in executing each

instruction. Two numbers are given:

• the instruction latency

• the maximum instruction throughput

Notes:

1 Cannot be sustained for more than 2 cycles out of every 3 cycles.

2 May be less if the division comes out exactly, causing early termination of
the division algorithm (minimum of 6 cycles throughput, 7 cycles latency).

3 The latency may be 2 or 3 cycles, depending on the previous instruction.

Instruction Precision No. registers Throughput Latency Note

LDF/STF S 2 3

LDF/STF D 3 4

LDF/STF E 4 5

LFM/SFM 1 4 5

LFM/SFM 2 7 8

LFM/SFM 3 10 11

LFM/SFM 4 13 14

MVF/MNF/ABS S/D/E 1 2 1

ADF/SUF/RSF/URD/NRM S/D/E 2 4

MUF S/D/E 8 9

FML S/D/E 5 6

DVF/RDF/FDV/FRD S 30 31 2

DVF/RDF/FDV/FRD D 58 59 2

DVF/RDF/FDV/FRD E 70 71 2

FLT S/D/E 6 8

FIX 8 9

CMF/CMFE/CNF/CNFE 5 6

RFS/RFC 3 4 3

WFS/WFC 3 3

 Table 10-14: Instruction cycle timing



Named Partner Confidential - Preliminary Draft

Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-18

Open Access - Preliminary

Throughput

Throughput is the number of cycles between the start of an instruction and the start of

a succeeding instruction of the same type, both instructions occurring in a long

sequence of instructions of the same type. To achieve the quoted throughput, register

dependencies and anti-dependencies must be avoided.

Latency

Latency is the number of cycles between the start of instruction execution and its

completion. The number of cycles taken by a sequence of floating point instructions,

each of which depends on the result of the preceding instruction in the sequence, can

generally be found by adding the latencies of the individual instructions. There may be

minor discrepancies from this rule for particular sequences.

The exact definition is dependent on the type of instruction being executed:

Arithmetic instructions From register read to register write.

LDF, LFM, FLT From start of instruction arbitration to
register write.

STF, SFM, CMF, FIX From register read to start of next instruction
arbitration.

WFS, WFC From start of instruction arbitration until
the next instruction would be deemed to start
by these rules.

RFS, RFC From the time that the previous instruction
would be deemed to end by these rules to
the start of the next instruction arbitration.

Note: Speculative execution, concurrent execution between arithmetic and load/store
instructions and concurrent execution between ARM integer instruction and FPA
instructions can significantly reduce the effective timings shown.

10.6.1 Instruction classification

Instructions can be classified into arithmetic, load/store and joint instructions:

Arithmetic Those instructions that execute completely within
the arithmetic unit. These include all the
hardware-implemented coprocessor data operations
(see 10.2 Floating-Point Coprocessor Data Operations
(CPDO) on page 10-7).

Load/store Those instructions that execute completely within
the load/store unit. These include LDF, STF, LFM and SFM.

Joint arithmetic and load/store instructions

FIX, CMF,CNF,CMFE,CNFE Arithmetic followed by load/store.

FLT Load/store followed by arithmetic.

WFS,RFS,WFC,RFC Occupy both arithmetic and load/store units,
since the arithmetic unit must be empty
before any of these instructions may be
executed.



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-19

Open Access - Preliminary

10.6.2 Performance tuning

The FPA is capable of executing load/store and arithmetic instructions concurrently

and is also capable of executing instructions speculatively - i.e. before they have been

committed to execution by the ARM CPU. Both of these features can be exploited to

maximize the performance of the FPA. The code fragment shown below is a good

example of how this can be achieved:

1   SFM  F0,4,[R0],#48

2   DVFS F0,F1,#3

3   SFM  F4,4,[R0],#48

4   MOV  R1,R2

5   MOV  R3,R4

 Figure 10-1: Performance tuning

The labels 1, 2, 3, 4 & 5 indicate the cycles in which these instructions are fetched on

the CPD[31:0] bus, while A, B & C indicate the cycles in which the floating-point

instructions are issued to their respective units in the FPA.

The first store multiple instruction (1) is issued (A) to the load/store unit, resulting in

12 words of data being transferred on CPD[31:0] as shown by the shaded boxes on

the timing diagram. Meanwhile, the divide instruction (2) is issued (B) to the arithmetic

unit (AU), which then begins execution speculatively; its progress through the Prepare,

Calculate, Align and Round stages of the AU pipeline is shown by the shaded boxes

on the timing diagram.

The second SFM instruction (3) is issued (C) to the load/store unit as soon as it is

ready. This second SFM executes while the AU is still busy on the divide instruction;

the second set of shaded boxes on the CPD[31:0] bus indicates the 12 words of data

being transferred for the second SFM instruction. This example shows how the divide

instruction’s execution time can effectively be hidden by other instructions.

Note: The concurrency between ARM integer unit execution and FPA execution can also be
exploited. Contact ARM Ltd. for further details on optimizing floating-point code for
the FPA.

CPD[31:0]

CPCLK

Store_issue

Store_accepted

AU_issue

Prepare

Calculate

Align

Round

1 2 3 4 5

A

B

C



Floating-Point Instruction Set

ARM7500FE Data Sheet
ARM DDI 0077B

10-20

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

11-1

11
1

Open Access - Preliminary

This chapter introduces the ARM7500FE video and sound system.

11.1 Introduction 11-2

11.2 Features 11-2

11.3 Block Diagram 11-4

The Video and Sound Macrocell11



Named Partner Confidential - Preliminary Draft

The Video and Sound Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

11-2

Open Access - Preliminary

11.1 Introduction

The ARM7500FE single chip computer contains a high performance video and sound

controller, capable of meeting the requirements of a wide range of configurations.

The video and sound macrocell handles all the video processing aspects of

the ARM7500FE functionality, making the ARM7500FE suitable for incorporation into

a wide range of end products ranging from portable hand-held LCD systems through

to higher performance SuperVGA desktop products.

The flexible bus interface provides hardware support for interfacing to DRAM memory

systems in conjunction with the ARM7500FE memory controller. The video and sound

macrocell obtains data from external DRAM under DMA control. The macrocell also

incorporates a stereo digital sound system, with a serial sound output port suitable for

connection to an external CD DAC.

Features include:

• VGA, SuperVGA, XGA resolution

• three 8-bit DACs giving 16M colors

• direct driving of LCD or CRT screens

• 1, 2, 4, 8, 16, 32 bits per pixel modes

• up to 120MHz pixel rate

• very low power consumption

11.2 Features

11.2.1 Flexible video system

The video and sound macrocell contains 288 write-only registers which offer a high

degree of flexibility to the system programmer. 256 of these are used as the 28-bit

video palette entries. These are programmed via an auto-incrementing address

pointer. The remaining registers are specific control registers and allow the user

to program the display parameters.

11.2.2 Hardware cursor

The video and sound macrocell has a hardware cursor for all its display modes:

• Normal

• Hi-Res

• LCD

By offering cursor support on chip the designer benefits in terms of speed and lower

software overhead. The cursor is 32 pixels wide and any number of pixels high and

can be displayed in 4 colors including transparent from its own 28-bit wide palette.

In this way a cursor of any shape and size can be defined within the 32-pixel wide limit.



The Video and Sound Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

11-3

Open Access - Preliminary

11.2.3 Palette

The video subsystem has a 28-bit wide 256-entry palette where each entry uses 8 bits

for Red, 8 for Green and 8 for Blue, and 4 bits for external data. These external bits

may be used outside the chip for a variety of purposes such as supremacy, fading,

Hi-Res and LCD driving.

Look Up Tables (LUT) allow for logical to physical translation and gamma

correction.The Red Green and Blue LUTs each drive their respective DACs, and

the Ext LUT is normally configured to drive the 4-bit output port.

There are three 8-bit linear monotonic DACs (Red, Green and Blue) which give a total

of 16M possible colors. The DACs are designed to operate up to 120 MHz and drive

doubly-terminated 75Ω lines directly.

11.2.4 Pixel clock

The ARM7500FE is capable of generating a display at any pixel rate up to 120MHz.

The pixel clock may be selected from one of 3 sources, and then the selected

frequency of this clock may be further divided down by a factor of between 1 and 8.

The video and sound macrocell contains an on-chip phase comparator which, when

used in conjunction with an external Voltage Controlled Oscillator (VCO), forms a

Phase Locked Loop. This configuration allows a single reference clock to generate all

the required frequencies for any display mode thus obviating the need for multiple

external crystals.

11.2.5 Display modes

Irrespective of the memory configuration used, the video subsystem is capable of

many different display formats. In addition to the normal linear CRT display, the video

subsystem can generate a display suitable for either very high resolution displays,

single or dual-panel LCDs.

For CRT displays, the video and sound macrocell is capable of operating in a variety

of pixel modes - 1,2,4,8,16,32 bits/pixel, and can also directly drive LCD displays in

1,2 or 4 bits per pixel via an internal 16-level grey scaler. The grey scaler algorithm

adopted is patented.

11.2.6 Power management

The macrocell is designed for power sensitive applications and incorporates design

features to minimize power consumption. A power down mode allows power savings

to be made when the device is not in use, for example, in conjunction with a battery

powered LCD system. Additional power sensitive features include the powering down

of functions of the device currently not in use, such as the video DACs and the LCD

grey scaler. In addition the palette design has been segmented such that only one

eighth of the palette is enabled and clocked at any one time. The power-down mode

can be used in conjunction with the ARM7500FE’s STOP mode to ensure minimum

power consumption when clocks are stopped.



Named Partner Confidential - Preliminary Draft

The Video and Sound Macrocell

ARM7500FE Data Sheet
ARM DDI 0077B

11-4

Open Access - Preliminary

11.2.7 On-chip sound system

The ARM7500FE supports a 32-bit serial sound output suitable for driving external CD

DACs. Enhanced 32-bit stereo sound is offered by the serial sound output, which

consists of a three-pin serial interface. Each 32-bit sample consists of 16 bits for

the left channel and 16 bits for the right channel.

11.3 Block Diagram

 Figure 11-1: Video and sound macrocell block diagram

Red

Blue

Green

ED[7:0]

Digital

VS

HS

Sound
Output

Red

Green

Blue

Ext

LCD

Clock GeneratorRegister

Cursor
Cursor

Video
Video

VerticalHorizontal
Bus

Sound FIFO Sound Control

Video Palette

Cursor Palette

Din[31:0]

Ext

Control

control

control

Serializer
FIFO
4x32

FIFO
32x32

Serializer

Timing
Chain

Timing
ChainInterface

256 x 32

Video
MUX

R

G

B

8

Red

Green

Blue

Ext

4 x 32

8

8

8

8

8

8

8

8

2

16, 32

1, 2,
4, 8,

32

32

4

32

32

32



ARM7500FE Data Sheet
ARM DDI 0077B

12-1

11
1

Open Access - Preliminary

This chapter details the video and sound macrocell programmable registers.

12.1 The Video and Sound Macrocell Registers 12-3

12.2 Video Palette: Address 0x0 12-5

12.3 Video Palette Address Pointer: Address 0x1 12-5

12.4 LCD Offset Registers: Addresses 0x30 and 0x31 12-6

12.5 Border Color Register: Address 0x4 12-7

12.5 Border Color Register: Address 0x4 12-7

12.6 Cursor Palette: Addresses 0x5-0x7 12-7

12.7 Horizontal Cycle Register (HCR): Address 0x80 12-8

12.8 Horizontal Sync Width Register (HSWR): Address 0x81 12-8

12.9 Horizontal Border Start Register (HBSR): Address 0x82 12-8

12.10 Horizontal Display Start Register (HDSR): Address 0x83 12-9

12.11 Horizontal Display End Register (HDER): Address 0x84 12-9

12.12 Horizontal Border End Register (HBER): Address 0x85 12-9

12.13 Horizontal Cursor Start Register (HCSR): Address 0x86 12-10

12.14 Horizontal Interlace Register (HIR): Address 0x87 12-10

12.15 Horizontal Test Registers: Addresses 0x88 & 0x8H 12-10

12.16 Vertical Cycle Register (VCR): Address 0x90 12-10

12.17 Vertical Sync Width Register (VSWR): Address 0x91 12-11

12.18 Vertical Border Start Register (VBSR): Address 0x92 12-11

12.19 Vertical Display Start Register (VDSR): Address 0x93 12-11

The Video and Sound
Programmer’s Model12



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-2

Open Access - Preliminary

12.20 Vertical Display End Register (VDER): Address 0x94 12-12

12.21 Vertical Border End Register (VBER): Address 0x95 12-12

12.22 Vertical Cursor Start Register (VCSR): Address 0x96 12-13

12.23 Vertical Cursor End Register (VCER): Address 0x97 12-13

12.24 Vertical Test Registers: Addresses 0x98, 0x9A & 0x9C 12-13

12.25 External register (ereg): Address 0xC 12-14

12.26 Frequency Synthesizer Register (fsynreg): Address 0xD 12-15

12.27 Control Register (conreg): Address 0xE 12-16

12.28 Data Control Register (DCTL): Address 0xF 12-17

12.29 Sound Frequency Register: Address 0xB0 12-17

12.30 Sound Control Register: Address 0xB1 12-18



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-3

Open Access - Preliminary

12.1 The Video and Sound Macrocell Registers

The video and sound macrocell contains 288 write-only registers. These are split into

2 categories; the 256 28-bit video palette entries, and the remaining control registers.

The video palette entries are written via an auto-incrementing address pointer. All the

other registers (including the 28-bit cursor palette) are written directly with the address

encoded in the top 4 or 8 bits of the data word. To program the registers, the

ARM7500FE address bus should be set to between 0x03400000 and 0x034FFFFF,

and the data word written should include the individual register address in the upper 4

or 8 bits, as appropriate.

In order to define the display format correctly, eleven registers need to be programmed

as shown in the diagram below:

 Figure 12-1: The video and sound macrocell display format definitions

                                                   —

HCR

HSWR
HBSR

HBER

HDSR

HCSR

HDER

VSWR

Border Display Cursor

V
C
R

V
B
E
R

V
D
E
R

V
C
E
R

V
C
S
R

V
D
S
R R

V
B
S

HSYNC

Horizontal back porch Horizontal front porch



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-4

Open Access - Preliminary

The register allocation is shown inTable 12-1: The video and sound macrocell register
allocation. An x denotes the actual data field, and any unused bit should be

programmed with a logic zero.

Do not access any register at any location other than that shown as the actual register

map is multiple-mapped.

The External Register, Control Register, Sound Control Register and Data Control

Register all contain bits that are not initialized at power up, and so must be

programmed before the video and sound macrocell will operate correctly.

Address (hex) Register Address (hex) Register

0xxxxxxx Video Palette 8C00xxxx Test Register

100000xx Video Palette Address Register 9000xxxx Vertical Cycle Register

20000000 RESERVED 9100xxxx Vertical Sync Width Register

300000xx LCD Offset register 0 9200xxxx Vertical Border Start Register

310000xx LCD offset register 1 9300xxxx Vertical Display Start Register

4xxxxxxx Border Color Register 9400xxxx Vertical Display End Register

5xxxxxxx Cursor Palette logical color 1 9500xxxx Vertical Border End Register

6xxxxxxx Cursor Palette logical color 2 9600xxxx Vertical Cursor Start Register

7xxxxxxx Cursor Palette logical color 3 9700xxxx Vertical Cursor End Register

8000xxxx Horizontal Cycle Register 9800xxxx Test Register

8100xxxx Horizontal Sync Width Register 9A00xxxx Test Register

8200xxxx Horizontal Border Start Register 9C00xxxx Test Register

8300xxxx Horizontal Display Start Register B00000x Sound Frequency Generator

8400xxxx Horizontal Display End Register B10000x Sound Control Register

8500xxxx Horizontal Border End Register C00xxxxx External Register

8600xxxx Horizontal Cursor Start Register D000xxxx Frequency Synthesis Register

8700xxxx Reserved E00xxxxx Control Register

8800xxxx Test Register F000xxxx Data Control Register

 Table 12-1: The video and sound macrocell register allocation



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-5

Open Access - Preliminary

12.2 Video Palette: Address 0x0

All entries of the video palette are written at address 0. In order to write any or all of

the palette locations, the address pointer must first be written, as described below.

The palette is programmed with a 28-bit word representing the physical data field

12.3 Video Palette Address Pointer: Address 0x1

The address pointer is programmed at address 1, and it may be programmed to any

value from 0 to 255. The first write to the palette will then occur at this location, and

the address pointer will post-increment so that the next palette write will occur

to the following location. The counter will wrap around from 255 to 0.

Once the address pointer has been written, any number of palette locations can be

programmed, and the pointer can be reprogrammed at any time if only part of

the whole palette is to be updated.

0 0 0 0

034781112151619202122272831

Red physical colour

Green physical colour

Blue physical colour

Ext physical colour

125691013141718232425262930

E E E E B B B B B B B B G G G G G G G G R R R R R R R R

0 0 0 1

034781112151619202122272831 125691013141718232425262930

X X X X X X X X

Palette location



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-6

Open Access - Preliminary

12.4 LCD Offset Registers: Addresses 0x30 and 0x31

These two, 8-bit registers define the offsets required for driving a dual panel LCD

screen. Register 0 defines the offsets for the five and two frame duty cycle grey scales,

as well as reset and test mode bits. Register 1 defines the offsets for the nine and

fifteen frame duty cycle grey scales.

The registers values are dependent upon the size of the LCD screen to be driven,

and are calculated in the following way:

Off_15 = (3xL + 8) mod 15

Off_9   = (7xL + 4) mod 9

Off_5   = (1xL + 3) mod 5

Off_2   = 0

Where L is the number of lines in the upper panel of the dual panel LCD screen.

Bits 7-4 of register 0 are only used in test mode, and must all be set to zero in normal

operation.

msel[2:0] are test bits and should be programmed LOW.

0 0 0 0

034781112151619202122272831

test bit (must be zero)

test bits (must be zero)

Off_5

Off_2

125691013141718232425262930

0 0 1 1 0 0 0 0 X X X X

0 0 0 1

034781112151619202122272831

Off_15

Off_9

125691013141718232425262930

0 0 1 1 X X X X X X X X



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-7

Open Access - Preliminary

12.5 Border Color Register: Address 0x4

This register defines the physical border color, and is programmed with a 28-bit word.

Note that this register is programmed directly, independent of the value of the video

palette address pointer.

12.6 Cursor Palette: Addresses 0x5-0x7

These three registers are programmed with the physical color of the three logical

cursor colors. Note that cursor logical color 00 is defined as being transparent (i.e. no

cursor display), and its location is used for the Border Color Register above.

0 0 0

034781112151619202122272831

Red physical color

Green physical color

Blue physical color

Ext physical color

125691013141718232425262930

E E E E B B B B B B B B G G G G G G G G R R R R R R R R1

0

034781112151619202122272831

Red physical color

Green physical color

Blue physical color

Ext physical color

125691013141718232425262930

E E E E B B B B B B B B G G G G G G G G R R R R R R R R1 X X

Logical color



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-8

Open Access - Preliminary

12.7 Horizontal Cycle Register (HCR): Address 0x80

This register defines the period, in pixels, of the horizontal scan, i.e. display time +

retrace time.

This is a 14-bit register of which the bottom 2 bits must be programmed to 0. If N pixels

are required in the horizontal scan period, then value (N-8) should be programmed into

the HCR. (N must be a multiple of 4).

12.8 Horizontal Sync Width Register (HSWR): Address 0x81

This register defines the period, in pixels, of the HSYNC pulse.

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in the HSYNC pulse, then value (N-8) should be programmed into

the HSWR. (N must be a multiple of 2).

12.9 Horizontal Border Start Register (HBSR): Address 0x82

This register defines the time, in pixels, from the start of the HSYNC pulse to the start

of the border display.

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-12) should be programmed into the HBSR.

(N must be a multiple of 2).

Note: This register must always be programmed, even when a border is not required.
If a border is not required, then the value in the HBSR must be such as to start the
border in the same place as the display start. i.e. NHBSR= NHDSR.

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X

HCR value

0 0 0 01 X X X X X 0 0

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HSWR value

0 0 01 X X X X X1 0

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HBSR value

0 0 01 X X X X X1 0



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-9

Open Access - Preliminary

12.10 Horizontal Display Start Register (HDSR): Address 0x83

This register defines the time, in pixels, from the start of the HSYNC pulse to the start

of the video display.

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-18) should be programmed into the HBSR.

(N must be a multiple of 2).

12.11 Horizontal Display End Register (HDER): Address 0x84

This register defines the time, in pixels, from the start of the HSYNC pulse to the end

of the video display. (i.e. the first pixel which is not display).

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-18) should be programmed into the HBER.

(N must be a multiple of 2)

12.12 Horizontal Border End Register (HBER): Address 0x85

This register defines the time, in pixels, from the start of the HSYNC pulse to the end

of the border display. (i.e. the first pixel which is not border).

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-12) should be programmed into the HBER.

(N must be a multiple of 2). Again, if no border is required, this register must still be

programmed such that N HBER = NHDER.

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HDSR value

0 01 X X X X X1 01

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HDER value

0 0 01 X X X X X1 0

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HBER value

0 01 X X X X X1 01



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-10

Open Access - Preliminary

12.13 Horizontal Cursor Start Register (HCSR): Address 0x86

This register defines the time, in pixels, from the start of the HSYNC pulse to the start

of the cursor display.

This is a 14-bit register of which all bits may be programmed. If N pixels are required

in this time, then value (N-17) should be programmed into the HCSR. The cursor can

thus be programmed to start on any pixel. In HiRes mode, the cursor can still only be

programmed to start on a normal pixel boundary. However, because the resolution of

the cursor can be defined to a micro-pixel, by using different cursor images it is

possible to position the cursor to any micro-pixel.

Note that only the cursor start position needs to be defined, as the cursor is

automatically disabled after 32 pixels in normal mode, or 16 pixels in HiRes mode. If a

cursor smaller than this is required, then the remaining bits in the cursor pattern should

be programmed to logical color 00 (transparent).

12.14 Horizontal Interlace Register (HIR): Address 0x87

Address 87H is reserved. Do not attempt to program this register.

12.15 Horizontal Test Registers: Addresses 0x88 & 0x8H

Two registers are provided for testing the chip in production. Neither of these registers

are intended to be used during normal operation of the device.

12.16 Vertical Cycle Register (VCR): Address 0x90

This 13-bit register defines the period, in units of a raster, of the vertical scan;

i.e. display time + flyback time.

If N rasters are required in a complete frame, then value (N-2) should be programmed

into the VCR.

If an interlaced display is selected, (N-3)/2 must be programmed into the VCR.

[N must be odd]. Here N is still the number of rasters in a complete frame, not a field.

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HCSR value

0 01 X X X X X1 1 X

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VCR value

0 01 X X X X X X0 01



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-11

Open Access - Preliminary

12.17 Vertical Sync Width Register (VSWR): Address 0x91

This 13-bit register defines the width, in units of a raster, of the VSYNC pulse.

If N rasters are required in the VSYNC pulse, then value (N - 2) should be programmed

into the VSWR. The minimum value allowed for N is 2.

12.18 Vertical Border Start Register (VBSR): Address 0x92

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the start of the border display.

If N rasters are required in this time, then value (N-1) should be programmed into

the VBSR.

If no border is required, this register must still be programmed, in this case to the same

value as the VDSR.

12.19 Vertical Display Start Register (VDSR): Address 0x93

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the start of the video display.

If N rasters are required in this time, then value (N-1) should be programmed into

the VDSR.

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VSWR value

01 X X X X X X0 01 1

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VBSR value

01 X X X X X X0 01 1

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VDSR value

01 X X X X X X01 1 1



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-12

Open Access - Preliminary

12.20 Vertical Display End Register (VDER): Address 0x94

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the end of the video display. (i.e. the first raster on which the display is not
present).

If N rasters are required in this time, then value (N-1) should be programmed into

the VDER.

12.21 Vertical Border End Register (VBER): Address 0x95

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the end of the border display. (i.e. the first raster on which the border is not

present).

If N rasters are required in this time, then value (N-1) should be programmed into

the VBER.

If no border is required, then this register must be programmed to the same value as

the VDER.

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VDER value

01 X X X X X X0 01 1

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VBER value

01 X X X X X X01 1 1



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-13

Open Access - Preliminary

12.22 Vertical Cursor Start Register (VCSR): Address 0x96

This is a 15-bit register. The lower 13 bits define the time, in units of a raster, from

the start of the VSYNC pulse to the start of the cursor display. If N rasters are required

in this time, then value (N-1) should be programmed into the VCSR. The upper 2 bits

are used to control the display of the cursor in duplex LCD mode. They should be

programmed to zero in all other modes.

When the upper 2 bits are programmed to be 11 (split screen) the meaning of   VCSR

and VCER   are altered as follows. The cursor is displayed in the lower half-screen

only from the value of VDSR to the value of VCSR, and again in the upper half screen

only from the value of VCER to the value of VDER. This allows a cursor to be

positioned across the boundary of the upper and lower half screens of an LCD.

12.23 Vertical Cursor End Register (VCER): Address 0x97

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the end of the cursor display. (i.e. the first raster on which the cursor is not

present).

 If N rasters are required in this time, then value (N-1) should be programmed into

the VCER.

12.24 Vertical Test Registers: Addresses 0x98, 0x9A & 0x9C

Three registers are provided for testing the chip in production. None of these registers

are intended to be used during normal operation of the device.

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VCSR value

01 X X X X X X01 1 1 X X

00 normal operation
01 upper half-screen only
10 lower half-screen only
11 split screen

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VCER value

01 X X X X X X1 1 11



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-14

Open Access - Preliminary

12.25 External register (ereg): Address 0xC

This register contains the control bits for the external functions of video and sound

macrocell. In particular it controls the DACs, the configuration of the External Port

ED[7:0], and the configuration of the sync lines.

EREG[1:0] are internally mapped to drive esel[1:0] by ARM7500FE.

EREG[7:4] are exported from the chip on ED[7:4] if EREG[1:0]=3. Refer to 14.6
External Support on page 14-9.

The use of pedon[2:0] and DAC is defined in 14.7 Analog Outputs on page 14-12.

The uses of lcd and hrm are defined in 14.6 External Support on page 14-9.

ARM7500FE can export a variety of sync configurations on the pins HSYNC and

VSYNC, as specified by the bits 16-17 and 18-19 respectively. For further explanation

see 14.6.3 Vertical and horizontal synchronization on page 14-11.

00

034781112151619202122272831 125691013141718232425262930

X X X X X X1 X X X X X1 X XX XX X

EREG[1:0]

0 ECLK off
1 ECLK on

EREG[7:4]

Red pedestal on
Green pedestal on
Blue pedestal on

0 DACs power-down
1 DACs on

0 lcd grey-scale off
1 lcd grey-scale on

0 HiRes mode off
1 HiRes mode on

00 HSYNC
01 nHSYNC
10 CSYNCnor
11 nCSYNCnor

00 VSYNC
01 nVSYNC
10 CSYNCxnor
11 nCSYNCxnor



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-15

Open Access - Preliminary

12.26 Frequency Synthesizer Register (fsynreg): Address 0xD

The ARM7500FE is able to drive a VCO to provide a suitable input frequency for

the pixel clock derived from a reference clock. This is achieved by dividing

the reference clock by modulus r, and the VCO clock by modulus v, and comparing

the resulting frequencies. Refer to 14.1 Pixel Clock on page 14-2 for a more detailed

explanation. The two moduli, r and v are each 6-bit values, and are programmed in

this register.

Each counter has 2 associated test bits which should normally be programmed to 0.

Setting bit[6] forces the phase comparator HIGH, which drives PCOMP
HIGH.

Setting bit[7] clears the r-modulus counter.

Setting bit[14] forces the phase comparator LOW, which drives PCOMP
LOW.

Setting bit[15] clears the v-modulus counter.

To reduce power consumption, program this register with large values when

the frequency synthesizer is not in use. In particular, bits [6] and [14] should not be set

at the same time.

To get a modulus of r, value (r-1) should be programmed into the fsynreg. Likewise for

the v-modulus.

0

034781112151619202122272831 125691013141718232425262930

XX X X X X1 X X X X X1 X X X X X1

modulus r
(ref clock)

r test bits

modulus v

(VCO clock)

v test bits



Named Partner Confidential - Preliminary Draft

The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-16

Open Access - Preliminary

12.27 Control Register (conreg): Address 0xE

The main control register determines the basic operation of the chip. In particular

the pixel clock source, the pixel rate, the number of bits/pixel, the control of the video

FIFO, and the data format are programmed here. In addition there is a 4-bit test

register which must be programmed to zero for normal operation.

Note The INT bit should always be set to zero.

The pixel clock (pixclk) is selected from one of 3 sources, corresponding to

the respective input pins, and the selected clock is then fed through a prescaler as

defined by the 3 bits conreg[4:2]. The output of this prescaler is the actual pixel clock.

SeeChapter 14: Video Features for more detail.

The Video FIFO can be programmed to have any number of quad words loaded into

it at the start of display. The value chosen should take into account the bandwidth of

the display as well as the latency of the DMA subsystem. Refer to Chapter 13: Video
Macrocell Interface before programming these values.

Setting the dup bit configures the display for dual-panel LCDs. This is described

further in Chapter 14: Video Features .

0

034781112151619202122272831 125691013141718232425262930

X X X X X X1 X X X X X1 X X0 00 01 X

Pixel source
01 HCLK
10 RCLK

Pixel rate

00VCLK

000 CK
001 CK/2
010 CK/3
011 CK/4
100 CK/5
101 CK/6
110 CK/7
111 CK/8

BITS/pixel 000 1
001 2
010 4
011 8
100 16
101 N/S
110 32
111 N/S

INT (must be set to zero)

DUP

Power down

Test Always set to 0000

FIFO loads 000 N/S
001 4
010 8
011 12
100 16
101 20
110 24
111 28



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-17

Open Access - Preliminary

Note: After a reset the Control Register should be the first register programmed.
The Powerdown bit (14) must immediately be programmed LOW. The test registers
bits (16 to 19) also should be programmed LOW, as any other setting will inhibit normal
operation.

The video macrocell uses dynamic logic structures for maximum performance. When

the powerdown bit is set HIGH, the main video data path will be set into a state where

it will not consume static current. This must be done before the ARM7500FE is set into

STOP mode.

12.28 Data Control Register (DCTL): Address 0xF

The horizontal display width is also defined in this register, and should be programmed

to be the number of words of data in a displayed raster. It must be programmed in most

configurations of the device, as it inhibits a DMA request near the end of a raster, when

there are enough words in the video FIFO for that raster. The request is uninhibited

after the HSYNC at the start of the next raster. When driving a dual panel LCD screen,

this register must be programmed with twice the number of words in a displayed raster.

Hdis should normally be programmed to zero. If Hdis is programmed to one,

the inhibition of DMA requests is disabled.

Note Bits 19:16 MUST be set to 0001 (binary).

12.29 Sound Frequency Register: Address 0xB0

This 8-bit register specifies the byte sample rate of the sound data. It is defined in units

of 1µS. See Chapter 15: Sound Features for more detail.

If a sample rate of N µs is required, then N-2 should be programmed into the SFR.

N may take any value between 3 and 256.

034781112151619202122272831 125691013141718232425262930

X X X X X X1 X X X X1 X0 10 01 X1

HDWR value

SnA - Must be synchronous (1)

Hdis

1 Disable

0 Enable

0

034781112151619202122272831 125691013141718232425262930

X X X X X X X0 01 X0 011

SFR value



The Video and Sound Programmer’s Model

ARM7500FE Data Sheet
ARM DDI 0077B

12-18

Open Access - Preliminary

12.30 Sound Control Register: Address 0xB1

This is a 4-bit register which defines various control bits for the sound system.

Bit 3: SCLR This bit should always be programmed LOW.

Bit 2: This bit should be written as zero.

Bit 1: serial sound This bit is used to select serial sound mode.

Bit 0: CLKSEL This bit is used to select which clock is used in the sound
system. When HIGH, the ARM7500FE’s internal 32MHz I/O
reference clock is used, when LOW the optional sound clock
is used.

0 0

034781112151619202122272831 125691013141718232425262930

X X01 X1 01 1 X

sclr
sdac

dss
clksel



ARM7500FE Data Sheet
ARM DDI 0077B

13-1

11
1

Open Access - Preliminary

This chapter describes the video macrocell interface within the ARM7500FE.

13.1 Bus Interface 13-2

13.2 Setting the FIFO Preload Value 13-2

Video Macrocell Interface13



Named Partner Confidential - Preliminary Draft

Video Macrocell Interface

ARM7500FE Data Sheet
ARM DDI 0077B

13-2

Open Access - Preliminary

13.1 Bus Interface

The video macrocell does not use the ARM address bus. The address for

programming video and sound registers (0x03400000 to 0x034FFFFF) is decoded

elsewhere in ARM7500FE and the internal nPROG signal is generated as a general

register write strobe. The specific register to be programmed is selected according to

the state of the upper bits of the 32-bit input data bus.

All video and sound data is then obtained by DMA under the control of the nVIDRQ

internal request signal. This signals to the main ARM7500FE bus arbitration logic that

a DMA request is pending, and the request will be serviced at the first available

opportunity. All DMA is quad word, so four complete data words will be read from

memory and stored in the appropriate video, cursor or sound FIFO for each DMA

burst. Note that video DMA may be read from memory in bursts of more than 4 words

allowing almost continuous DRAM page mode access to occur.

The system software should create a video frame buffer in DRAM memory, and

program the DMA address pointers to the start, end and desired initial location within

the buffer. All DMA pointer addresses should be quad word aligned. Once the display

has been enabled, video registers should only be programmed during the flyback

period to ensure flicker free updating of the screen. See Chapter 16: Memory and I/O
Programmers’ Model  for details of how to program the DMA controller.

13.2 Setting the FIFO Preload Value

The Video FIFO is a 32-entry, 32-bit wide FIFO. Words of video data are clocked into

the top of the FIFO under control of the internal ARM7500FE signals, BUSCLK and

nVIDAK. Words are clocked out of the bottom of the FIFO as the video system displays

the data, which is controlled by the pixel clock.

The FIFO is flushed during vertical flyback time, so before the start of the frame

the FIFO is empty. At the start of the frame a video request is made to the memory

subsystem by asserting the internal ARM7500FE signal, nVIDRQ. When a

predetermined number of words have been loaded into the FIFO the request is

removed. As the data in the FIFO is displayed, further video requests are made to refill

the FIFO to the desired level.

The Control Register includes a 3-bit field (bits 10:8) to set the preload value of

the Video FIFO. In this way the FIFO can be programmed to load 4,8,12,16,20,24 or

28 words of data into the FIFO at the start of frame. After the start of frame, the FIFO

will request more data when the number of words in it falls below the preloaded value.

The point at which the FIFO should request more data to be loaded is dependent upon

system considerations: if the FIFO is reloaded too late, there is a danger that it will run

out of data (underflow); if it is reloaded too early, then there is a danger that the data

will not fit into the FIFO (overflow). In general, the higher the bandwidth of the screen,

then the more words need to be preloaded into the FIFO. In a low bandwidth screen

mode, it is not always desirable to have a large preload value, as the bus traffic will

have long bursts of data transfer at the start of the frame.



Video Macrocell Interface

ARM7500FE Data Sheet
ARM DDI 0077B

13-3

Open Access - Preliminary

The optimum value to be preloaded depends upon the screen mode in use

(i.e. the rate at which data is read from the FIFO), and both the latency of the memory

controller and the rate at which data is provided to ARM7500FE. It is generally prudent

to program the minimum value possible to keep the bus traffic even.

Let:

n be the value programmed into the control register.

v (words/µs) be the rate at which video data is displayed

Lmax (µs) be the maximum latency in the memory system. (This is
the maximum time between ARM7500FE requesting more video data
and the memory system delivering the first word of that data.)

If the FIFO is almost empty then it takes 0.025µs for a word of data to reach the bottom

of the FIFO before it can be used.

The minimum value for n is deduced from the following condition to avoid the FIFO

underflowing:

There are 4n words in the FIFO when the FIFO requests more data, and if not refilled,

then the FIFO would be empty in 4n/v µs.

So n must be chosen such that 4n/v > (Lmax+ 0.025).

The maximum value for n is deduced from the following condition to avoid the FIFO

overflowing:

n may take the maximum value of 7, and the FIFO can never overflow, as there will

always be 4 words available in the top of the FIFO, even if the video request is serviced

immediately.

13.2.1 Example

For ARM7500FE, the value of v (words/µs) will change depending on the video mode

selected and the pixel clock rate chosen, and the worst case DMA latency Lmax will

alter depending on whether ROM accesses, DRAM accesses or internal programming

bursts are slowest, and the MEMCLK frequency used.

The memory subsystems chapter demonstrates how to calculate the worst case DMA

latency for a particular system using the ARM7500FE, and the value calculated there

should be imported as lmax into the formula in the previous section.

Assume that an 8 bit per pixel mode is being used with a pixel clock rate of 60MHz

(period = 16.7ns). In each pixel clock tick, 1/4 of a word will be used, so in a whole µs,

0.25 x 1/0.0167 = 14.9 words will be required.

Hence the value of n must be such that:

4n/v > (Lmax + 0.025)

 So, assuming an Lmax value of 1.0µs

n >  3.74(1.0 + 0.025)  => n > 3.83

So in this case the minimum value for n to prevent FIFO underflow is 4.



Named Partner Confidential - Preliminary Draft

Video Macrocell Interface

ARM7500FE Data Sheet
ARM DDI 0077B

13-4

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

14-1

11
1

Open Access - Preliminary

This chapter details the video capabilities available with the ARM7500FE.

14.1 Pixel Clock 14-2

14.2 The Palette 14-4

14.3 Cursor 14-5

14.4 Hi-Res Support 14-6

14.5 Liquid Crystal Displays 14-8

14.6 External Support 14-9

14.7 Analog Outputs 14-12

Video Features14



Named Partner Confidential - Preliminary Draft

Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-2

Open Access - Preliminary

14.1 Pixel Clock

The video and sound macrocell is capable of generating a display at any pixel rate up

to 120MHz. The pixel clock may be selected from one of three sources, and

the frequency of this clock may be further divided down by a factor of between 1 and

8. These attributes are programmed by the lower 5 bits of the control register,

CONREG.

If a maximum of three master frequencies are sufficient, then the clock inputs can be

used directly. However, it is often a requirement to have many different master clock

frequencies. In order to obviate the need for many crystals on the PCB, the video and

sound macrocell is designed to drive a Voltage Controlled Oscillator (VCO) to provide

the master frequency. The VCO and filter are external to ARM7500FE, but everything

else is built into the chip. Operation is described below:

An internal reference frequency of 32 MHz is supplied via the I_OCLK input of

ARM7500FE. The signal from the VCO is input into ARM7500FE on the pin VCLKI.
VCLKO is simply the inverse of VCLKI, and this may be used to bias the input signal

about the threshold if the VCO output is not a full amplitude signal. The mark-space

ratio of the VCO output should be as close as possible to 50-50 if operation at 120MHz

is to be achieved.

The reference clock is divided by a programmable number set by the r-modulus in

the fsynreg. The VCO clock is divided by a programmable number set by the

v-modulus in the fsynreg. Each of the moduli may be a 6 bit number. The output of

each of these dividers is fed into a phase comparator, and the result is output from

ARM7500FE as PCOMP. This pin should then be filtered and used to control the VCO

output frequency. In this way, the VCO can be set to have a frequency of v/r * Fref.

The phase comparator is of the phase-frequency type. The output PCOMP is normally

tri-state, but when the VCO frequency needs to be decreased the output is LOW, and

when the VCO frequency needs to be increased the output is HIGH. When

the 2 frequencies are in lock, PCOMP will normally be tri-state, but will be driven to

the midpoint for a very short time (a few ns) every r/Fref+ period. The output

impedance of this pin when it is driven is about 50Ω. Figure 14-1: ARM7500FE internal
subsystems for pixel clock generation on page 14-3.

The choice of filter and VCO is left to the user. It is important to avoid any

low-frequency modulation of the VCO frequency. It has been found that a suitable

VCO is a 74AC04 inverter element with feedback, with the supply voltage controlled

by the PCOMP output. (See Appendix E: ARM7500FE Video Clock Sources.)

With this approach, an enormous number of frequencies are possible. The 32MHz

reference frequency generated within ARM7500FE can be used to yield the following

common VCO frequencies in the table on the next page. For some frequencies, there

are many possible values of r and v. In this case it is sensible to choose a set of values

which favors the filter response. (Remember large moduli yield a lower comparison

frequency).



Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-3

Open Access - Preliminary

It may be best to limit the VCO range, and use the prescaler within video and sound

macrocell to get a lower pixel rate than the VCO frequency. It is expected that the VCO

range may have to be constrained so that it cannot provide the highest frequencies at

which the video and sound macrocell can operate. In this case, a single

high-frequency clock can be fed into ARM7500FE on the HCLK pin, and this can be

selected for the pixel clock.

 Figure 14-1: ARM7500FE internal subsystems for pixel clock generation

r-modulus v-modulus VCO frequency/MHz

8 2 8.0

16 6 12.0

4 2 16.0

8 6 24.0

2 2 32.0

8 9 36.0

16 35 70.0

4 15 120.0

 Table 14-1: Synthesized VCO frequency settings

ck

PCOMP

RCLK

HCLK

VCLKIN

VCLKOUT / v

/ r

conreg[1:0]

conreg[4:2]

/ n

PIXCK



Named Partner Confidential - Preliminary Draft

Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-4

Open Access - Preliminary

14.2 The Palette

ARM7500FE has a 28-bit wide 256-entry palette which is constructed out of three 8-bit

wide look-up-tables (LUTs), each with 256 entries, named Red, Green, and Blue, and

one 4-bit wide LUT with 16 entries, named Ext. The Red, Green and Blue LUTs each

drive their respective DACs, and the Ext LUT is normally configured to drive

the ED[3:0] output port, except when Hires mode or LCD mode is selected. These bits

may be used outside the chip for a variety of purposes such as supremacy, fading,

HiRes and LCD driving. The ED[7:4] output port is normally driven from the Ext

register, ereg[7:4], which may be written at any time, so these bits can be used as

a DC control port.

The mapping of the logical colors through the LUTs is dependent on the mode in use,

as follows:

• In 1,2,4 bits/pixel modes, the logical data is fed simultaneously to all 4 LUTs.

This gives a fully flexible palette with any logical color being mapped to any

physical color, and any ED[3:0] value. The palette will give 16 colors from a

selection of 224.

• In 8-bits/pixel modes, the logical data is fed simultaneously to all 4 LUTs.

This gives a fully flexible palette with any logical color being mapped to any

physical color. Logical colors 0-15 access the Next LUT, and logical colors

16-255 access location 0 of the Ext LUT. The Ext LUT again drives ED[3:0].
The palette will give 256 colors from a selection of 224.

• In the 16-bits/pixel mode, a patented technique has been developed.

This approach is highly flexible and allows many different addressing modes

e.g. 5-5-5, 5-6-5 etc. In this mode 216 colors are available from a selection of

224.

• In the 32-bits/pixel mode, 24 bits from the logical field will drive the 256 entries

in each of the color LUTs (8 bits to each LUT) and 4 bits will drive the Ext LUT.

The upper 4 bits are discarded.The palette will give the full range of 224 colors.

Note that where a logical field does not drive all the palette entries (such as in

4 bits/pixel mode) only the lower part of the palette is used. Unused sections need not

be programmed.

When HiRes mode or LCD mode is selected, the palette must be set up in

a predetermined configuration. This is explained in the chapters on hi-res support and

LCDs.

14.2.1 Palette updating

A signal FLYBK exists within ARM7500FE as an output from the video and sound

macrocell. FLYBK goes HIGH at the start of the first raster which is not displayed, and

goes LOW at the start of the first raster which is displayed. The rising edge of this

signal can cause an interrupt via the ARM7500FE IRQA interrupt registers, and

the palette should be updated at this time for flicker-free updating.



Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-5

Open Access - Preliminary

14.3 Cursor

ARM7500FE has a hardware cursor 32 pixels wide and any number of pixels high.

Its 2 bits per pixel allow 4 colors, which include “transparent” plus three other colors

from a selection of 224. It is possible to display the cursor in the horizontal border, but

not in the vertical border.

The cursor has a 3 entry palette which is 28 bits wide, allowing each cursor logical

color to be any physical color. In addition, there is a 28 bit wide border color register.

At the start of every frame, 16 bytes of cursor data are transferred to the video

subsystem during the horizontal retrace period. This is enough data for two raster's

worth of cursor. After they have been displayed, a request is made for another 16

bytes. Thus, in normal mode, requests are made on every other raster on which there

is cursor, and enough data is transferred for two rasters each. In Hi-Res mode,

a request is made every raster. Note that the cursor data is always transferred in

bursts of four words.

14.3.1 Cursor in hi-res mode

In order to allow micro-pixel resolution of the cursor in Hi-Res mode when operating

at 4 micro-pixels per normal pixel, it is necessary to define 2 bits per micro-pixel, or

8 bits per normal pixel. The 16 bytes of cursor data available for each raster can thus

generate 64µ-pixels of cursor. In Hi-Res mode the cursor palette is not used (though

the border may be programmed). Refer to the chapter on Hi-Res support.

The cursor is always positioned to align with a normal pixel. In order to position

the cursor to a µ-pixel horizontally, four different copies of the cursor are required:

each copy defines the cursor offset by a single µ-pixel. It is possible to define

transparency to a resolution of a µ-pixel, so by selecting the correct cursor image,

the required position can be achieved.

14.3.2 Cursor in LCD mode

The video subsystem is capable of displaying the hardware cursor in LCD mode.

However, because of the split-screen nature of duplex LCDs, the cursor needs special

attention. If the cursor is entirely in the upper or lower half-screen, then the cursor

should be programmed as normal, but VCSR[14:13] should be programmed

accordingly (0x10 = upper half-screen; 0x01 = lower half-screen). If the cursor

“straddles” the split screen, then the cursor image in memory must start at the top of

the lower half-screen, and end with the bottom of the upper half screen. Hence two

contiguous images of the cursor image are required, and the start pointer moved

accordingly. In practice, four images of the cursor are required, to ensure that

a resolution of one raster is maintained across the boundary. As the cursor moves

from one panel to the other, the pointer to the cursor image in memory must be moved.

For more details, refer to Appendix B: Dual Panel Liquid Crystal Displays.

In the case where the cursor straddles the split screen, the meaning of the VCSR and

VCER registers are changed. The VCER register now defines the start of cursor in

the upper half-screen, and the VCSR defines the end of the cursor in the lower

half-screen. Thus the cursor is actually displayed in the lower half-screen from

the start of display until VCSR, and then again in the upper half-screen from VCER



Named Partner Confidential - Preliminary Draft

Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-6

Open Access - Preliminary

until the end of display. This mode is selected by programming VCSR[14:13] = 0x11.

Further details of how to use ARM7500FE with dual panel LCD screens are given in

Appendix B: Dual Panel Liquid Crystal Displays.

14.4 Hi-Res Support

ARM7500FE is able to support color screens with resolutions above 1024 by 768

pixels. For higher resolutions, externally serializing the data is required to produce

monochrome (or grey-level) pictures. In this scheme one 16ns-pixel could theoretically

be serialized to make eight 2ns-pixels, ie. about 500MHz. However, this is dependent

on the availability of external hardware capable of generating a serial bitstream at this

frequency.

14.4.1 ARM7500FE support for hi-res mode

When the hrm bit in the Ext register is set, and EREG[1:0] is set to value 0x10,

ARM7500FE outputs 8 bits of data for every normal pixel on the ED[7:0] port.

These bits can then be serialized to form a high frequency monochrome pixel stream;

alternatively they can be serialized to 2 or 4 bits, which could then drive a high-speed

monochrome DAC for grey level displays. With the pixel clock running at

a fundamental frequency of about 100MHz, the external serial clock could be running

at up to several hundred MHz. In order for the external circuit to be able to synchronize

to the ARM7500FE output data, ARM7500FE also outputs a pixel clock synchronous

to the data stream when the hrm bit is set.

In this mode, with EREG[1:0] set to value 0x10, the video data is driven from the Blue

LUT, which outputs data BPD[7:0]. Depending on how the external serializer circuit is

arranged, the LUT must be set up to give a one-one correlation between the logical

address and the physical data value. So, for example, if 4 bits are externally serialized

into a single bit stream, then 4 bits/pixel mode should be selected, and ED[6,4,2,0]
should be used. The lower 16 words of the Blue LUT should be programmed to give

all 16 combinations of BPD[6,4,2,0]. If 8 bits are externally serialized to give a single

bit-stream, then 8 bits/ pixel mode should be selected, and all 256 values of the Blue

LUT should be programmed as a one-one mapping.

Hardware cursor support is provided as follows. The cursor palette is not used, though

the Blue border may be programmed. Eight bits of cursor data (CD[7:0]) are defined

for each normal pixel. The 8 bits are divided into 4 pairs, with the lsb (least significant

bit) of each pair defining whether the video data (BPD) or the msb (most significant bit)

of the cursor pair is displayed. Each cursor bit-pair operates on 2 bits of the video data

(BPD) according to the following tables.

So if the external circuit serializes ED[6,4,2,0] into a single bit stream, or ED[7:0] into

a 2-bit data stream then the cursor can be positioned and defined to any micro-pixel:

in each case the cursor can be transparent, black or white. If all 8 bits are serialized

into a single very high frequency bit stream, then the cursor can only be positioned and

defined to units of 2 micro-pixels.



Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-7

Open Access - Preliminary

CD[7] CD[6] ED[7] ED[6]

 0 0 BPD[7] BPD[6]

 0 1 0 0

 1 0 BPD[7] BPD[6]

 1 1 1 1

 Table 14-2: Deriving high-speed 2-bit cursor data
from the normal 8-bit output—CD[6&7]

CD[5] CD[4] ED[5] ED[4]

 0 0 BPD[5] BPD[4]

 0 1 0 0

 1 0 BPD[5] BPD[4]

 1 1 1 1

 Table 14-3: Deriving high speed 2-bit cursor data
from the normal 8-bit output - CD[4&5]

CD[3] CD[2] ED[3] ED[2]

 0 0 BPD[3] BPD[2]

 0 1 0 0

 1 0 BPD[3] BPD[2]

 1 1 1 1

 Table 14-4: Deriving high-speed 2-bit cursor data
from the normal 8-bit output—CD[2&3]

CD[1] CD[0] ED[1] ED[0]

 0 0 BPD[1] BPD[0]

 0 1 0 0

 1 0 BPD[1] BPD[0]

 1 1 1 1

 Table 14-5: Deriving high speed 2 bit cursor data
from the normal 8 bit output - CD[0&1]



Named Partner Confidential - Preliminary Draft

Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-8

Open Access - Preliminary

14.5 Liquid Crystal Displays

ARM7500FE is capable of driving single panel Liquid Crystal Displays at 1, 2, 4, 8, 16

or 32 bits per pixel, and dual panel LCDs at 1, 2 or 4 bits per pixel. Grey-scaling is

provided at up to 16 shades. ARM7500FE is also capable of driving single panel color

LCDs with no grey scaling in its normal (video) mode. Two control bits are provided for

LCD operation:

lcd (bit 13 in the Ext register) configures the external data port ED[7:0]
for LCD operation, and enables the grey-scaling logic (EREG[1:0]
must be set to 0x01);

dup (bit 13 in the control register) enables duplex mode, and should be set
for dual-panel LCDs.

14.5.1 LCD grey-scaling

To obtain a grey-scaled output from ARM7500FE, the lcd bit (bit 13 in the Ext register)

must be set. This configures the External port for LCD operation. The DACS should

be disabled to save power since ARM7500FE cannot drive both CRT and LCD

displays simultaneously. In order to get this data out of the ED[7:0] port, EREG[1:0]

must be set to value 0x01.

ARM7500FE provides a grey-scaling algorithm which modulates the data output.

Grey-scaling is possible at 1, 2 or 4 bits per pixel. The data is output from the chip as

one or two 4-bit quantities, depending on whether single or dual panel LCDs are used,

at one quarter of the pixel rate. The lower 4 bits of the Green LUT control the upper

panel (ED[7:4]), and the 4 bits of the Ext LUT control the lower panel (ED[3:0]).
Thus, the palette can still be used to provide a mapping of logical to physical color.

The cursor palette is used similarly, though the programming of the cursor position

needs special treatment - refer to Appendix B. If a single panel LCD is used, ED[7:4]
should be used, and the Green LUT programmed accordingly (ED[3:0] are held low

in this mode). The grey-scaling logic lies between the output of the video multiplexer

and the external port and works as described below.

There are effectively 16 physical grey levels available, and in 1,2, or 4 bits per pixel

mode the palettes are programmed to give a mapping of the logical color to physical

shade. The resultant 4 bit pixel value out of the video multiplexer is modulated

according to its value and the raster number and the point on the raster at which it is

generated. The result is a single bit which on average is HIGH for a time equal to

the actual 4-bit value. For a single panel screen, 4 of these bits are then collected

together and output as a nibble at one quarter of the pixel rate on ED[7:4]. ED[4]
represents the 4th pixel, and ED[7] represents the 1st pixel.

If duplex mode is selected, then the pixel stream for the upper half screen is obtained

from the Green LUT and that for the lower half screen is obtained from the Ext LUT.

Both these pixel streams are passed through the grey-scale logic simultaneously and

output as two nibbles on ED[7:4] (upper half screen) and ED[3:0]    (lower half screen).



Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-9

Open Access - Preliminary

14.5.2 Dual panel LCDs (duplex mode)

Duplex mode is configured by setting the dup control bit as well as the lcd control bit.

The screen parameters are set up according to the requirements of the LCD panel.

Note: Since the upper and lower panels are driven simultaneously, ARM7500FE only
produces data for half the total number of lines on the dual panel. Thus the vertical
registers must be programmed as if there were only one panel.

ARM7500FE requests data in units of two quad-words. The first quad word

the memory controller delivers is for the upper half-screen, and the second quad-word

is for the lower half-screen. ARM processor then serializes the data into two

simultaneous bit-streams as described above. 1, 2 or 4 bits/pixel may be selected.

For details of the ARM7500FE register programming requirements for duplex DMA,

see Chapter 16: Memory and I/O Programmers’ Model .

14.5.3 Single panel color LCDs

If neither dup nor lcd control bits are set, then the ED[7:0] port may be used to gain

access to all of the physical bits out of the video multiplexer. This would allow many

other types of display to be driven.

14.6 External Support

ARM7500FE has an 8-bit output port, ED[7:0] and a synchronous clock, ECLK, which

have different functions in different modes. The port is controlled by the 2 bits,

EREG[1:0], in the control register that essentially select which of the bytes from

the video multiplexer are chosen. Additionally, an ARM7500FE register bit (bit 1 of

the VIDMUX register) can be used to cause the data selection for the ED port to be

modified according to the state of the ECLK output. This feature is intended to be used

to increase the bandwidth for driving color LCD screens. When this control bit is set

LOW, the behavior of the ED port is as shown below. The bit is intended to be used

with ‘LCD’ set LOW. When the VIDMUX bit is HIGH, and EREG[1:0] is set LOW,

if ECLK is LOW, the Red LUT is output on ED[7:0]. If ECLK is high, the Green LUT is

output on ED[7:0].

When EREG[1:0] = 0:

the Red LUT is output on ED[7:0].

When EREG[1:0] = 1:

if lcd = 0, the Green LUT is output on ED[7:0].

If lcd = 1, the grey-scaled LCD signals are output. ED[7:4] carries
the data for the upper half screen from the Green LUT, and ED[3:0]
carries the data for the lower half screen from the Ext LUT.
Note that if lcd = 1, data is output at one-quarter of the ARM processor
pixel rate, since the data output actually represents 4 pixels for each
half-screen.



Named Partner Confidential - Preliminary Draft

Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-10

Open Access - Preliminary

When EREG[1:0] = 2:

if hrm = 0, the Blue LUT is output on ED[7:0].

If hrm = 1, the multiplexed Blue LUT and HiRes cursor data is output
on ED[7:0]. See 14.4 Hi-Res Support on page 14-6.

Also, ED[7:0] is re-timed, and delayed by one extra pixel.

When EREG[1:0] = 3:

if dac = 0, ED[3:0] are driven by the Ext LUT, and ED[7:4] are driven
by the value of the Ext Register,EREG[7:4], which is intended as a DC
control port in this mode.

If dac= 1, ED[3:0] are delayed by one pixel, so that they are exported
from the chip in the same pixel as the analog data to which they
correspond. In this configuration ED[3:0] bits may be used for
supremacy, for overlaying pictures on a pixel-by-pixel basis.
Because several bits are output, analog fading and mixing on a pixel
basis is possible.

14.6.1 ECLK

ECLK is output along with the data ED[7:0], so that the data can be externally latched

and multiplexed. ECLK is controlled by lcd and EREG[2]. If EREG[2] = 0, then ECLK
is output as logic 0. This should be configured whenever ECLK is not required, in order

to save power. If EREG[2] = 1, then if lcd = 0, ECLK is the pixclk, output synchronously

with the data stream. If lcd = 1, then ECLK is the LCD clock, which runs at a quarter

of the pixel rate. The lcd clock is only enabled whilst horizontal display data is being

output and is synchronous to the data stream. The timing diagrams below show

the relationship between ED and ECLK.

 Figure 14-2: Timing relationship between ECLK and ED in LCD grayscale mode

 Figure 14-3: Timing relationship between ECLK and ED in all other modes

ECLK

ED[7:0]

Teclk
Tlcded

ECLK

ED[7:0]

Ted



Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-11

Open Access - Preliminary

Note 1: ECLK mark space ratio is not always 1:1, depends on pixel clock divide.

14.6.2 Power-saving considerations

The External Port can consume a lot of power, but steps may be taken to minimize

power usage. In particular, it is very important not to load the signals heavily, especially

ECLK which can clock at the pixel rate. When it is not in use, it should not be putting

out the raw pixel data, but should be outputting static signals. This is done by selecting

EREG[1:0] = 3, and setting all entries of the Ext LUT to be all one value. ECLK should

be turned off by setting EREG[2] = 0.

If an LCD is fitted, but not operated, it may be necessary to power down the input

signals to it. This can be achieved by setting bit 13 low, which disables the grey scaler,

and by disabling the external port as described above.

14.6.3 Vertical and horizontal synchronization

Software control over the polarities of the synchronization pulses is provided.

Two types of Composite Sync may be output, each of either polarity. The logical OR

of Hsync and Vsync may be output on the Horizontal Sync (HSYNC) pin, and the XOR

of Hsync and Vsync may be output on the Vertical Sync (VSYNC) pin. Equalization

pulses in the composite synchronization signal are supported for interlace mode.

When LCD mode has been selected, the external HSYNC and VSYNC pulses are

modified in accordance to the requirements of an LCD screen.

The HSYNC and VSYNC pins are programmed with the Ext Register, EREG[19:16].

14.6.4 Genlocking

Genlocking is supported by ARM7500FE. A pin is provided to reset the vertical counter

to the first raster (SYNC).

Symbol Parameters Min Max Units Notes

Ted ECLK to ED delay 5 7 ns 1

Tlcded ECLK to ED delay—LCD mode Teclk/4 + 5 Teclk/4 + 7 ns

 Table 14-6: ARM7500FE ECLK and ED timing



Named Partner Confidential - Preliminary Draft

Video Features

ARM7500FE Data Sheet
ARM DDI 0077B

14-12

Open Access - Preliminary

14.7 Analog Outputs

ARM7500FE outputs analog R, G, and B signals. It is designed to drive

doubly-terminated 75Ω lines directly.

14.7.1 DAC control

There are 4 control bits in the Ext Register associated with the DACs. These are dac

and ped[2:0].

Power-save mode

When dac is HIGH, the DACs are all enabled and will generate a current proportional

to the digital values from the video multiplexer. When dac is LOW, the reference

current into all three DACs is turned off, so the DACs generate no output current, and

hence consume much less power. This is useful when operating in LCD mode, or at

any time when the screen should be blanked.

Pedestal current

The DACs may be programmed to generate a pedestal offset of 20 lsb equivalent

currents. These are controlled individually by pedon[2:0], though they will typically all

be programmed on or off together, depending on the monitor characteristics. pedon[0]

controls the red pedestal, pedon[1] the green pedestal, and pedon[2] the blue

pedestal. If pedon[n] is HIGH, the pedestal current is switched on as the border starts,

and is turned off as the border ends.

14.7.2 Video DAC currents

The DACs are each 8 bit resolution, so they source 256 units of current according to

the digital value from the video multiplexer. The current step is set by a common

reference current, VIREF. The recommended reference current is 0.56mA which gives

a DAC step of 69µA. Hence digital value 0 gives 0 current and digital value 0xFF gives

an output current of (255 * 69)=17.6mA. If pedon is set, then during display time, digital

value 0 will generate (20 * 69)=1.38mA, and digital value 0xFF will generate

(275* 69)=18.98mA. A 3.4kΩ resistor connected between VIREF and VDD will provide

the desired 0.56mA at about 3.0V; the actual value of resistor may need to be adjusted

to obtain the required video output levels.

DAC accuracy

At 120MHz the DACs are accurate to 8 bits absolute resolution. They will always be

monotonic.

14.7.3 Monochrome output

ARM7500FE does not generate a separate composite monochrome signal. This can

be generated by resistively mixing the R,G and B externally, if required.



ARM7500FE Data Sheet
ARM DDI 0077B

15-1

11
1

Open Access - Preliminary

This chapter details the sound capabilities available with the ARM7500FE.

15.1 Sound 15-2

15.2 The Sound FIFO 15-2

15.3 The Digital Serial Sound Interface 15-2

Sound Features15



Named Partner Confidential - Preliminary Draft

Sound Features

ARM7500FE Data Sheet
ARM DDI 0077B

15-2

Open Access - Preliminary

15.1 Sound

The video and sound macrocell has a digital sound system. This is a 32-bit serial

sound interface suitable for driving external CD DACs.

15.2 The Sound FIFO

At the core of the sound system is a 4-word FIFO and a byte-wide latch. When empty,

the FIFO fills completely by a DMA request. Data is then clocked out of the FIFO,

one byte at a time through the latch.

15.3 The Digital Serial Sound Interface

The serial sound interface offers a high quality 32-bit stereo sound, needing only

a small amount of external circuitry. The serial sound system consists of a three-pin

serial interface:

SDCLK is the Serial Data Clock output

SDO is the Serial Data output

WS is the Word Select output

When no sound is required, (sctl[2:1]=0), these outputs are stable (SDCLK=0,

SDO=0, WS=1).

When in this mode, bytes from the sound FIFO are output in most-significant first

order. This is because the serial sound output must go msb first to be compatible with

other serial sound devices. Each byte of data is loaded into a parallel-in, serial-out

register, and clocked out under control of the bit clock.

15.3.1 Timing formats

There are two timing formats available for the interface:

• normal

• Japanese

The selection of these is controlled by bit 0 of the VIDMUX register in the main part of

ARM7500FE.

Normal format

When configured for normal mode (VIDMUX bit 0=LOW), each 32-bit sample consists

of 16 bits for the left hand channel, and 16 bits for the right hand channel.

To distinguish between them, a 'word select' (WS) signal is produced. This signal

changes when the lsb of the previous word is output. When WS is HIGH,

the right-hand channel is being output.



Sound Features

ARM7500FE Data Sheet
ARM DDI 0077B

15-3

Open Access - Preliminary

 Figure 15-1: Serial sound output — normal format

Japanese format

In Japanese format, the WS signal changes when the msb of the new word is output.

In addition, the polarity of WS is reversed. This is shown in the diagram below.

 Figure 15-2: Serial sound output — Japanese format

Symbol Parameter Min Max Units

Tsdo SDCLK falling to SDO valid

(normal format)

0 5 ns

Tsdoj SDCLK falling to SDO valid

(Japanese format)

0 5 ns

 Table 15-1: Sound output timing

SDCLK

SDO

WS

Tsdo

bit1 lsb msb bit1 lsb msb

left channel right channel

SDCLK

SDO

WS

Tsdoj

lsb msb lsb msb

left channel right channel



Named Partner Confidential - Preliminary Draft

Sound Features

ARM7500FE Data Sheet
ARM DDI 0077B

15-4

Open Access - Preliminary

15.3.2 Using external SCLK input

The serial sound output can be used with any DAC with a serial sound input. Many

DACs require a 11.2896MHz input clock, and to reduce the number of on board

crystals required, the video and sound macrocell can cope with this frequency on

the SCLK input. When using this, the following parameters need to be programmed in

the registers.

serial sound (SCTL Register bit 1) 1

clksel (SCTL Register bit 0) 0

Sound Frequency Register 2

The sound system is not limited to operating with this frequency alone; however,

the Sound Frequency Register must be set to produce the necessary bit rate

accordingly.



ARM7500FE Data Sheet
ARM DDI 0077B

16-1

11
1

Open Access - Preliminary

This chapter details the programmable registers for the memory and I/O subsystem.

16.1 Introduction 16-2

16.2 Summary of Registers 16-2

16.3 Register Description 16-6

Memory and I/O
Programmers’ Model16



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-2

Open Access - Preliminary

16.1 Introduction

The ARM7500FE contains over 100 programmable registers (in addition to those in

the ARM processor, the FPA coprocessor and the 256 video palette entries), which

are grouped into three sets. Those inside the ARM processor are described fully in

Chapters 3 to 7 and those inside the FPA coprocessor in Chapters 8 to 10.

Those inside the video and sound macrocell are all programmed by writing to memory

locations 0x03400000 to 0x034FFFFF, with the upper bits of the programmed data

determining which video/sound register is to be programmed. All these registers are

write only, and are described in the video and sound chapters. The remaining

ARM7500FE registers are programmed by writing a full 32-bit data word to an address

between 0x03200000 and 0x032001F8. Although most of these registers are only

8 or 16 bits wide, all the register addresses are word aligned. All the ARM7500FE

registers which do not form part of the ARM processor, the FPA coprocessor, or the

video and sound macrocell are described in the following section.

16.2 Summary of Registers

All addresses are in hex and are relative to the base address 0x03200000.

In the following table:

✓ means can write or read

✗ means do not write or read

Name Address Size Read Write Function

IOCR 00 8 ✓ ✓ I/O control

KBDDAT 04 8 ✓ ✓ Keyboard data

KBDCR 08 8 ✓ ✓ Keyboard control

IOLINES 0C 8 ✓ ✓ General-purpose I/O lines

IRQSTA 10 8 ✓ ✗ IRQA status

IRQRQA 14 8 ✓ ✓ IRQA request/clear

IRQMSKA 18 8 ✓ ✓ IRQA mask

SUSMODE 1C 8 ✓ SUSPEND Enter SUSPEND mode

IRQSTB 20 8 ✓ ✗ IRQB status

IRQRQB 24 8 ✓ ✗ IRQB request

IRQNSKB 28 8 ✓ ✓ IRQB mask

STOPMODE 2C 8 ✗ STOP Enter STOP mode

FIQST 30 8 ✓ ✗ FIQ status

 Table 16-1: ARM7500FE registers



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-3

Open Access - Preliminary

FIQRQ 34 8 ✓ ✗ FIQ request

FIQMSK 38 8 ✓ ✓ FIQ mask

CLKCTL 3C 8 ✓ ✓ Clock divider control

T0LOW 40 8 ✓ ✓ Timer 0 LOW bits

T0HIGH 44 8 ✓ ✓ Timer 0 HIGH bits

T0GO 48 8 ✗ GO Timer 0 go command

T0LAT 4C 8 ✗ LATCH Timer 0 latch command

T1LOW 50 8 ✓ ✓ Timer 1 LOW bits

T1HIGH 54 8 ✓ ✓ Timer 1 HIGH bits

T1GO 58 8 ✗ GO Timer 1 go command

T1LAT 5C 8 ✗ LATCH Timer 1 latch command

IRQSTC 60 8 ✓ ✗ IRQC status

IRQRQC 64 8 ✓ ✗ IRQC request

IRQMSKC 68 8 ✓ ✓ IRQC mask

VIDMUX 6C 8 ✓ ✓ LCD and IIS control bits

IRQSTD 70 8 ✓ ✗ IRQD status

IRQRQD 74 8 ✓ ✗ IRQD request

IRQMSKD 78 8 ✓ ✓ IRQD mask

ROMCR0 80 8 ✓ ✓ ROM control bank 0

ROMCR1 84 8 ✓ ✓ ROM control bank 1

REFCR 8C 8 ✓ ✓ Refresh period

ID0 94 8 ✓ ✗ Chip ID number LOW byte

ID1 98 8 ✓ ✗ Chip ID number HIGH byte

VERSION 9C 8 ✓ ✗ Chip version number

MSEDAT A8 8 ✓ ✓ Mouse data

Name Address Size Read Write Function

 Table 16-1: ARM7500FE registers  (Continued)



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-4

Open Access - Preliminary

MSECR AC 8 ✓ ✓ Mouse control

IOTCR C4 8 ✓ ✓ I/O timing control register

ECTCR C8 8 ✓ ✓ Expansion card timing control

register

ASTCR CC 8 ✓ ✓ Asynchronous I/O timing control

DRAMCTL D0 8 ✓ ✓ DRAM control

SELFREF D4 8 ✓ ✓ Force CAS/RAS lines LOW

individually for self refresh

ATODICR E0 8 ✓ ✓ A to D interrupt control register

ATODSR E4 8 ✓ ✗ A to D status register

ATODCC E8 8 ✓ ✓ A to D convertor control register

ATODCNT1 EC 16 ✓ ✗ A to D counter 1

ATODCNT2 F0 16 ✓ ✗ A to D counter 2

ATODCNT3 F4 16 ✓ ✗ A to D counter 3

ATODCNT4 F8 16 ✓ ✗ A to D counter 4

SD0CURA 180 32 ✓ ✓ Sound DMA 0 CurA

SD0ENDA 184 32 ✓ ✓ Sound DMA 0 EndA

SD0CURB 188 32 ✓ ✓ Sound DMA 0 CurB

SD0ENDB 18C 32 ✓ ✓ Sound DMA 0 EndB

SD0CR 190 8 ✓ ✓ Sound DMA control

SD0ST 194 8 ✓ ✗ Sound DMA Status

CURSCUR 1C0 32 ✓ ✓ Cursor DMA current

CURSINIT 1C4 32 ✓ ✓ Cursor DMA Init

VIDCURB 1C8 32 ✓ ✓ Duplex LCD current register B

VIDCURA 1D0 32 ✓ ✓ Video DMA current A

VIDEND 1D4 32 ✓ ✓ Video DMA End

Name Address Size Read Write Function

 Table 16-1: ARM7500FE registers  (Continued)



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-5

Open Access - Preliminary

VIDSTART 1D8 32 ✓ ✓ Video DMA start

VIDINITA 1DC 32 ✓ ✓ Video DMA Init

VIDCR 1E0 8 ✓ ✓ Video cursor DMA control

VIDINITB 1E8 32 ✓ ✓ Duplex LCD init register B

DMAST 1F0 8 ✓ ✗ DMA interrupt status

DMARQ 1F4 8 ✓ ✗ DMA interrupt request

DMASK 1F8 8 ✓ ✓ DMA interrupt mask

Name Address Size Read Write Function

 Table 16-1: ARM7500FE registers  (Continued)



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-6

Open Access - Preliminary

16.3 Register Description

16.3.1 IOCR (0x00) - I/O control

This register is used to control various I/O functions. The value of the FLYBACK signal

from the video subsystem can be examined by reading bit 7 of this register, this would

be important for genlocking as FLYBACK will provide information about the vertical

timing of the display. The FLYBACK bit also gives information about when the video

palette registers can safely be reprogrammed without causing any visual effects.

This should only be done during the FLYBACK period, when this bit has been set

HIGH. Control of the open drain OD[1:0] and ID pins is provided from this register.

It is also possible to read the status of the nINT1 pin.

F FLYBACK value

N nINT1 value

I ID open drain pin control

C OD[1] open drain pin control

D OD[0] open drain pin control

Write bits[7:4,2] ignored

bit[3,1:0] open drain pin controls:

0 force pin LOW

1 pin is input only

Read bit[7] reads current FLYBACK value from video and sound macrocell

bit[6] reads current nINT1 pin value

bits[5:4,2] read one

bit[3] reads current ID pin value

bit[1] reads current OD[1] pin value

bit[0] reads current OD[0] pin value

Reset bits[3,1:0] set as inputs (HIGH)

16.3.2  KBDDAT (0x04) - keyboard data

D keyboard data

Write next byte to be sent over serial interface to keyboard

Read last byte of data received from keyboard

1 1

0347 1256

I 1 C DF N

0347 1256

DDDDDDDD



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-7

Open Access - Preliminary

16.3.3  KBDCR (0x08) - keyboard control

T transmit status

R receive status

E enable

P received parity

D data pin status

C clock pin status

Write bits[7:4,2] ignored

bit[3] enable:

0 state machine cleared

1 state machine enabled

bit[1] force KBDATA pin LOW:

0 don't force LOW

1 force LOW

bit[0] force KBCLK pin LOW:

0 don't force LOW

1 force LOW

Read bit[7] TXE shift register empty:

0 not ready

1 enabled and ready to transmit

bit[6] TXB, transmitter busy:

0 not busy

1 currently sending data

bit[5] RXF, receive shift register full:

0 not full

1 ready to read

bit[4] RXB, receiver busy:

0 not busy

1 currently receiving data

bit[3] ENA, state machine enable:

0 disabled

1 enabled

bit[2] RXP, receive parity bit, odd parity bit for last received data

bit[1] SKD, KBDATA pin value after synchronization

bit[0] SKC, KBCLK pin value after synchronization

0347 1256

D CT T R R E P



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-8

Open Access - Preliminary

16.3.4  IOLINES (0x0C) - IOP[7:0] port control

This register is the control for the 8-bit I/O port included in the ARM7500FE. Each bit

independently controls the state of one of the open drain I/O pins IOP[7:0]. On reset,

all the bits are configured to be inputs.

I IOP open drain pin

Write  corresponding pin:

0 force corresponding pin LOW

1 corresponding pin becomes an input

Read read value on corresponding pin

Reset set all as inputs

16.3.5  IRQSTA (0x10) - IRQ A interrupts status

This is the first of four sets of IRQ interrupt control, masking and status registers in

ARM7500FE. Not all the bits in each register are used. Note that this status register

contains a bit (7) which is always active, and this can be used to force an interrupt from

software by programming the corresponding bit in the IRQA mask register HIGH.

1 always active bit

T 2MHz timer 1, rising edge triggered

U 2MHz timer 0, rising edge triggered

R power on reset

F FLYBACK, rising edge triggered

N nINT1, falling edge triggered

P INT2, rising edge triggered

Write ignored

Read status

bit[7] is always 1

bits[6:2,0]

0 not triggered since last cleared

1 triggered since last cleared

bit[1] is always 0

Reset clear bits[6:5,3:2,0] to zero
power on reset sets bit[4] to 1
push button reset maintains the current bit[4] value

0347 1256

I I I I I I I I

0347 1256

T R1 U F N 0 P



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-9

Open Access - Preliminary

16.3.6 IRQRQA (0x14) - IRQ A interrupts request/clear

1 always active bit

T 2MHz timer 1, rising edge triggered

U 2MHz timer 0, rising edge triggered

R power on reset

F FLYBACK, rising edge triggered

N nINT1, falling edge triggered

P INT2, rising edge triggered

Write clear triggered interrupts

0 don't clear interrupt

1 clear interrupt

Read requests, as status, but bitwise ANDed with mask

16.3.7 IRQMSKA (0x18) - IRQ A interrupts mask

1 always active bit

T 2MHz timer 1, rising edge triggered

U 2MHz timer 0, rising edge triggered

R power on reset

F FLYBACK, rising edge triggered

N nINT1, falling edge triggered

P INT2, rising edge triggered

Write set mask for each interrupt source

0 don't form part of nIRQ

1 form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

0347 1256

T R1 U F N PX

0347 1256

T R1 U F N 0 P



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-10

Open Access - Preliminary

16.3.8  SUSMODE (0x1C) - SUSPEND mode

This register allows the CPU to set the ARM7500FE into SUSPEND mode. Only one

bit (0) is used, and writing to this bit will cause SUSPEND mode to be entered.

The value written to bit 0 determines whether the external I/O clocks, normally output

from the chip, are also disabled during SUSPEND mode. The value programmed will

depend on the nature of the peripherals being driven by those clocks.

S SUSPEND mode control of external I/O clocks.
Enter SUSPEND mode with MCLK,FCLK,I/O clocks and some
internal clocks stopped. DMA continues and the write to this location
completes on either wakeup event, nIRQ or nFIQ or reset.

Write turn off external I/O clocks when in this mode

0 turn off

1 don't turn off

Read return above value

Reset set to zero

16.3.9  IRQSTB (0x20) - IRQ B interrupts status

K keyboard receive interrupt

J keyboard transmit interrupt

P nINT3, active LOW

T nINT4, active LOW

I INT5, active HIGH

S nINT6, active LOW

C INT7, active HIGH

F nINT8, active LOW

Write ignored

Read status

0 inactive

1 active

0347 1256

X X X X X X X S

0347 1256

T FPK J I S C



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-11

Open Access - Preliminary

16.3.10  IRQRQB (0x24) - IRQ B interrupts request

K keyboard receive interrupt

J keyboard transmit interrupt

P nINT3, active LOW

T nINT4, active LOW

I INT5, active HIGH

S nINT6, active LOW

C INT7, active HIGH

F nINT8, active LOW

Write ignored

Read request, status bitwise ANDed with mask

16.3.11  IRQMSKB (0x28) - IRQ B interrupts mask

K keyboard receive interrupt

J keyboard transmit interrupt

P nINT3, active LOW

T nINT4, active LOW

I INT5, active HIGH

S nINT6, active LOW

C INT7, active HIGH

F nINT8, active LOW

Write set mask for each interrupt source:

0 don't form part of nIRQ

1 form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

0347 1256

T FPK J I S C

0347 1256

T FPK J I S C



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-12

Open Access - Preliminary

16.3.12  STOPMODE (0x2C) - STOP mode

This register exists only as an address decode and is used to enter STOP mode.

It is very important that DMA activity is stopped before this register is written to.

The value written to the register will be permanently forced out on the main data bus

during STOP mode, and for most systems it will be desirable to ensure that this value

is 0xFFFFFFFF. The address bus is automatically forced HIGH during STOP mode.

Write (any value), enter STOP mode with OSCPOWER set low.
The write to this register completes on either wakeup event, nEVENT,
nEVENT2, or reset

Read ignored

16.3.13  FIQST (0x30) - FIQ interrupts status

The FIQ control registers take a similar form to the IRQ registers previously described.

Again, bit 7 is always active so that a FIQ interrupt can be forced via software.

1 always active

F nINT8, active LOW

S nINT6, active LOW

I INT5, active HIGH

D INT9, active HIGH

Write ignored

Read status

0 inactive

1 active

16.3.14  FIQRQ (0x34) - FIQ interrupts request

1 always active

F nINT8, active LOW

S nINT6, active LOW

I INT5, active HIGH

D INT9, active HIGH

Write ignored

Read request, status bitwise ANDed with mask

0347 1256

X X X X X X X X

0347 1256

1 F 0 S 00 I D

0347 1256

1 F 0 S 00 I D



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-13

Open Access - Preliminary

16.3.15  FIQMSK (0x38) - FIQ interrupts mask

1 always active

F nINT8, active LOW

S nINT6, active LOW

I INT5, active HIGH

D INT9, active HIGH

Write set mask for each interrupt source:

0 don't form part of nFIQ

1 form part of nFIQ

Read value set by write

Reset set all zeros (none affect nFIQ)

16.3.16  CLKCTL (0x3C) - Clock control

On system power up, the clock control register will be reset such that all three main

clocks have a divide by 2 prescale at the inputs to the chip. This register will

sometimes need to be reprogrammed as part of the initial tasks of the operating

system, to set the prescalers into divide-by-1 mode.

Divide-by-2 mode allows faster oscillators to be used with less rigorous mark-space

requirements.

F FCLK divide control

M MEMRFCK divide control

I I/O clock divide control

Write bit[2]

0 FCLK x 2 = CPUCLK

1 FCLK = CPUCLK

bit[1]

0 MEMRFCK x 2 = MEMCLK

1 MEMRFCK = MEMCLK

bit[0]

0 IOCK32 x 2 = I_OCLK

1 IOCK32 = I_OCLK

Read return above value

Power On Reset only

set all to zero, i.e. divide by 2 clocks
Push button reset does not affect this register

0347 1256

1 F 0 S 00 I D

0347 1256

X X X X X F M I



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-14

Open Access - Preliminary

16.3.17  T0LOW (0x40) - timer 0 LOW bits

There are eight registers associated with the two 16-bit timers in ARM7500FE.

L LOW byte of timer

Write set LOW byte latch value which is loaded into timer when it reaches
end count

Read read value of LOW count latched by the ‘Latch’ command T0LAT

16.3.18  T0HIGH (0x44) - timer 0 HIGH bits

H high byte of timer

Write set HIGH byte latch value which is loaded into timer when it reaches
end count

Read read value of HIGH count latched by the ‘Latch’ command T0LAT

16.3.19  T0GO (0x48) - timer 0 Go command

Write load counter with HIGH and LOW latch values and start decrementing
(value ignored)

Read ignored

16.3.20  T0LAT (0x4C) - timer 0 Latch command

Write latch timer value in HIGH and LOW count latches (value ignored)

Read ignored

16.3.21  T1LOW (0x50) - timer 1 LOW bits

L LOW byte of timer

Write set LOW byte latch value which is loaded into timer when it reaches
end count

Read read value of LOW count latched by the ‘Latch’ command T1LAT

0347 1256

L L L L L L L L

0347 1256

H H H H H H H H

0347 1256

L L L L L L L L



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-15

Open Access - Preliminary

16.3.22  T1HIGH (0x54) - timer 1 HIGH bits

H HIGH byte of timer

Write set HIGH byte latch value which is loaded into timer when it reaches
end count

Read read value of HIGH count latched by the ‘Latch’ command T1LAT

16.3.23  T1GO (0x58) - timer 1 Go command

Write load counter with HIGH and LOW latch values and start decrementing
(value ignored)

Read ignored

16.3.24  T1LAT (0x5C) - timer 1 Latch command

Write latch timer value in HIGH and LOW count latches (value ignored)

Read ignored

16.3.25  IRQSTC (0x60) - IRQ C interrupts status

The IRQC set of control registers control the effect of the IOP[7:0] I/O port bits on

the main interrupts. Their functionality is identical to that described for IRQB.

I IOP[7:0] pins, active LOW

Write ignored

Read status

0 inactive

1 active

16.3.26  IRQRQC (0x64) - IRQ C interrupts request

I IOP[7:0] pins, active LOW

Write ignored

Read request, status bitwise ANDed with mask

0347 1256

H H H H H H H H

0347 1256

I I I I I I I I

0347 1256

I I I I I I I I



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-16

Open Access - Preliminary

16.3.27  IRQMSKC (0x68) - IRQ C interrupts mask

I IOP[7:0] pins, active LOW

Write set mask for each interrupt source

0 don't form part of nIRQ

1 form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

16.3.28  VIDMUX (0x6C) - Video LCD and serial sound mux control

This register has two functions:

Bit 1 allows selection of the type of serial sound interface to be supported.
The timing of the two possibilities is shown in the Sound Features
chapter.

Bit 0 controls the color LCD multiplexer which is used with the video pixel
clock to double the available bandwidth of color LCD data provided.

Further details of how to use this feature can be found in the video and sound

macrocell chapters.

L color LCD support Mux control

I Serial Sound Format selection

Write bit[0]

0 ESEL[0] = EREG[0]

1 ESEL[0] = ECLK

bit[1]

0 normal format

1 Japanese format

Read return above value

Reset set to zero (normal)

0347 1256

I I I I I I I I

0347 1256

X X X X X IX L



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-17

Open Access - Preliminary

16.3.29  IRQSTD (0x70) - IRQ D interrupts status

The IRQD control registers are used in an identical way to the IRQB and C registers.

2 nEVENT2, reads back HIGH during an active LOW wakeup event 2

1 nEVENT1, reads back HIGH during an active LOW wakeup event 1

A A to D, active HIGH

T mouse transmit active HIGH

R mouse receive active HIGH

Write ignored

Read status

bits[7:5] unused

bits[4:0]

0 inactive

1 active

16.3.30  IRQRQD (0x74) - IRQ D interrupts request

2 nEVENT2, active LOW wakeup event 2

1 nEVENT1, active LOW wakeup event 1

A A to D, active HIGH

T mouse transmit active HIGH

R mouse receive active HIGH

Write ignored

Read request, status bitwise ANDed with mask

0347 1256

X X X 2 1 A T R

0347 1256

X X X 2 1 A T R



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-18

Open Access - Preliminary

16.3.31  IRQMSKD (0x78) - IRQ D interrupts mask

2 nEVENT2, active LOW wakeup event 2

1 nEVENT1, active LOW wakeup event 1

A A to D, active HIGH

T mouse transmit active HIGH

R mouse receive active HIGH

Write set mask for each interrupt source

0 don't form part of nIRQ

1 form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

16.3.32  ROMCR0,1 (0x80,0x84) - ROM control

The ROM interface is very flexible, allowing the length of non sequential and burst

cycles to be programmed. These two registers allow this programming to take place.

The half-speed select bit is included so the interface can be used with slow ROMs

when fast DRAM is being used, and the memory system clock is running at a higher

frequency.

When the half-speed bit is set LOW, ARM7500FE doubles the length of all the timings

and will allow the ROM interface to function correctly with slower ROMs. In normal

operation with sufficiently fast ROM devices, this bit should be programmed to 1.

Each register also contains a bit (6) which (when set) allows a 16-bit wide ROM device

to be used for that bank, by performing two 16-bit fetches to form the 32-bit word

required by the ARM7500FE.

Bit 7 allows writes to occur to this address space; the data will be driven out, and

a write enable generated, if enabled.

N non-sequential access time (H=1):

000 7 MEMCLK cycles

001 6 MEMCLK cycles

010 5 MEMCLK cycles

011 4 MEMCLK cycles

100 3 MEMCLK cycles

101 2 MEMCLK cycles

0347 1256

X X X 2 1 A T R

0347 1256

W S H B B N N N



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-19

Open Access - Preliminary

B burst mode access time (H=1):

00 Burst Off

01 4 MEMCLK cycles

10 3 MEMCLK cycles

11 2 MEMCLK cycles

H half-speed select, ie. double the above delays when H=0.
Normally, the H bit should be programmed to 1 (normal speed)

S 16/32-bit mode

W Write Enable

Write bit[7]

0 writing disabled

1 writing enabled

bit[6]

0 32-bit

1 16-bit

bit[5]

0 half-speed mode

1 normal speed

Read return the above values

Reset set to 0x40, i.e. the 16-bit, slowest access time, to ensure all systems
can be booted from reset.

16.3.33 REFCR (0x8C) - refresh period

This register programs the DRAM refresh period. It is set to the fastest available rate

during reset, as refresh continues during reset to ensure that the requirements of

DRAM specification can be fully met.

R refresh period

Write bit[3:0]

0000 refresh off

0001 16us

0010 32us

0100 64us

1000 128us

all others are undefined

Read return the above values

Reset set to 0001 (fastest available refresh rate)

0347 1256

X X X RX RRR



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-20

Open Access - Preliminary

16.3.34  ID0 (0x94) - chip ID number LOW byte

The ID registers and the version register read back the ARM7500FE ID and version

numbers. These registers are read only and must NOT be written to, as they are used

to set the ARM7500FE into special modes during production test.

Write do not write to this location

Read LOW byte of chip ID: 0x7C

16.3.35  ID1 (0x98) - chip ID number HIGH byte

Write do not write to this location

Read HIGH byte of chip ID: 0xAA

16.3.36  VERSION (0x9C) - chip version number

Write ignored

Read chip version number byte

16.3.37  MSEDAT (0xA8) - mouse data

The Mouse data and control registers are identical to the keyboard data and control

registers, and are written to and read from in exactly the same way.

16.3.38  MSECR (0xAC) - mouse control

 As KBDCR register.

0347 1256

0 1 1 1 1 1 0 0

0347 1256

1 0 0 1 0 1 01



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-21

Open Access - Preliminary

16.3.39  IOTCR (0xC4) - I/O timing control

This register sets up the cycle types for two areas of I/O space.

C combo area access speed

S NPCCS1/2 area access speed

Write bits[7:4] reserved

bits[3:2]

00 Type A (slowest)

01 Type B

10 Type C

11 Type D (fastest)

bits[1:0]

00 Type A (slowest)

01 Type B

10 Type C

11 Type D (fastest)

Read read back the above values

16.3.40  ECTCR (0xC8) - I/O expansion card timing control

This register sets up the access speed for eight portions of extended address space

within the area of I/O space from 08FFFFFF to 0FFFFFFF. (Types A and C only).

E expansion card area access speed

Write bit[7] (0F00 0000 -> 0FFF FFFF)

0 Type A

1 Type C

bit[0] (0800 0000 -> 08FF FFFF)

0 Type A

1 Type C

Read read back above values

0347 1256

X X X X C SC S

0347 1256

E E E E E E E E



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-22

Open Access - Preliminary

16.3.41  ASTCR (0xCC) - I/O asynchronous timing control

This register is used where I/O is being used with a very fast memory system clock.

Normally it will always be programmed to zero to give the minimum delay for these

cycles; however, in some configurations it may be necessary to program the register

bit to one to slow down the internal synchronization between I/O clocks and memory

clocks and thus ensure sufficient address hold time for the I/O address.

A asynchronous timing control

0 minimal delay to I/O cycles

1 wait states to ensure address hold time

16.3.42 DRAMCTL (0xD0) - DRAM control

This register selects between 16 and 32-bit modes of operation for each of the four

available banks of DRAM. Each bank can be individually selected for 16 or 32-bit

operation. This allows a mixed 16/32-bit-wide system to be built. It also controls EDO

support and some timing options.

P  RAS Precharge time

0 3 memory clock cycles guaranteed RAS precharge

1 4 memory clock cycles guaranteed RAS precharge

R RAS to CAS delay on non-sequential cycles

0 2 memory clock cycles from falling nRAS to falling nCAS

1 3 memory clock cycles from falling nRAS to falling nCAS

E EDO memory

0 Fast Page memory

1 EDO memory

S 16/32-bit mode select, one for each bank

Write bit[3] bank 3 DRAM width

0 32-bit

1 16-bit

bit[2] bank 2 DRAM width

0 32-bit

1 16-bit

bit[1] bank 1 DRAM width

0 32-bit

1 16-bit

0347 1256

A X X X X X X X

0347 1256

X P R E S S S S



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-23

Open Access - Preliminary

bit[0] bank 0 DRAM width

0 32-bit

1 16-bit

Read reads above values

Reset set bits to zero (32-bit)

16.3.43  SELFREF (0xD4) - DRAM self-refresh control

Direct software control of the external NRAS[3:0] and NCAS[3:0] lines is provided by

this register. This is intended for use with self refresh DRAM, so that before

the ARM7500FE is forced into STOP mode, the banks of DRAM can be set into

a self-refresh state from software by forcing the NRAS and NCAS lines as specified in

the DRAM data sheet.

C force NCAS's LOW

R force NRAS's LOW

Write bits[7:4]

0 normal

1 force to zero

bits[3:0]

0 normal

1 force to zero

Read reads above values

Reset set bits to zero (normal)

0347 1256

R RC C R RC C



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-24

Open Access - Preliminary

16.3.44 ATODICR (0xE0) - A to D interrupt control

The A to D convertor interface is designed such that various combination of interrupts

from the channels can be used to generate an interrupt request in the IRQD interrupt

request register. It should be noted that the logical OR of all four basic enables is used

to power up the comparators. As the comparators consume static current, they must

be powered down by disabling all the A to D channels using this register before STOP

mode is entered.

1 channel 1 interrupt enable

2 channel 2 interrupt enable

3 channel 3 interrupt enable

4 channel 4 interrupt enable

C any combination of channels generates nIRQ

A only all channels enabled generates nIRQ

F first pair enabled generates nIRQ

S second pair enabled generates nIRQ

Write bit[7:0]

0 disabled

1 enabled

Read return above values

Reset reset to 0x0F

Note: The OR of bit[3:0] is used to power up all the comparators. Thus they reset to
the powered-up state.

16.3.45 ATODSR (0xE4) - A TO D status

This register shows which of the A TO D channels have been triggered and can have

their counters read to ascertain the analog value at the input to the channel.

The interrupt request status bits are generated from the stop flags logically ANDed

with the interrupt enables from the interrupt control register.

R[3:0] interrupt request state for channels 4 to 1

S[3:0] stop flag for channels 4 to 1

Write ignored

0347 1256

S F A C 4 3 2 1

0347 1256

R R R R S S S S



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-25

Open Access - Preliminary

Read bit[7:4]

0 not requesting

1 requesting

bit [3:0]

0 not stopped

1 stopped

Reset set all zero (not requesting or stopped)

16.3.46 ATODCC (0xE8) - A to D convertor control

The lower 4 bits of this register directly reset each of the four counters, so that they

can be set back to zero before a new analog to digital conversion cycle takes place.

The counter will start counting as soon as the relevant clear bit is set back to zero.

The discharge transistor controls causes the channel comparator input to be pulled

firmly down to Vss, thus discharging an external capacitor and ensuring zero volts

across the capacitor until the discharge bit is programmed LOW again.

With the system connected as it is expected to be used, the external capacitor will

begin charging as soon as the discharge bit is reset, so it is expected that

the discharge bit would be reset at the same time as the counter clear bit for that

channel is re-enabled.

D[3:0] discharge transistor control for channels 4 to 1

C[3:0] clear counter for channels 4 to 1

Write bit[7:4]

0 transistor off

1 transistor on (discharge)

bit[3:0]

0 clear counter

1 enable counter

Read return above values

Reset set all zero (clear counters and don't discharge)

16.3.47 ATODCNT1 (0xEC) - A to D counter 1

Write ignored

Read returns 16-bit counter value

16.3.48 ATODCNT2 (0xF0) - A to D counter 2

Write ignored

Read returns 16-bit counter value

0347 1256

C CC CD D D D



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-26

Open Access - Preliminary

16.3.49 ATODCNT3 (0xF4) - A to D counter 3

Write ignored

Read returns 16-bit counter value

16.3.50 ATODCNT4 (0xF8) - A to D counter 4

Write ignored

Read returns 16-bit counter value

16.3.51  SDCURA (0x180) - sound DMA current A

The operation of the sound DMA channel is described in the Memory Subsystems

chapter. The sound current registers are programmed with a page address and

the offset within that page to describe the precise location of the first DMA fetch.

The value in the register is then increased by 16 following each DMA access.

P page[16:0]

F offset[11:0]

Write bits[31:29] unused

bits[28:12] page of next DMA fetch

bits[11:4] offset within page of next DMA fetch

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] current DMA fetch location

bits[3:0] always zero

0 0 0 0

03411122831

X X X P P PP PP PP PP PP PP P P P F F F F F F F F

29



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-27

Open Access - Preliminary

16.3.52  SDENDA (0x184) - sound DMA end A

This register should be programmed with the offset within the page of the final quad

word. Bit 30 should always be programmed to zero unless the channel is being

initialized for a single transfer in which case it must be programmed HIGH.

S stop bit

L last bit

E end[11:0]

Write bit[31] stop bit:

0 don't stop after reaching End

1 stop after reaching End

bit[30] last bit

0 not last transfer

1 last quad word transfer

bits[11:4] last DMA location within page selected

bits[3:0] ignored

Read bits[31:30,11:4] value written

bits[3:0] always zero

16.3.53  SDCURB (0x188) - sound DMA current B

The 'B' pair of registers for the sound DMA channel are used in exactly the same way

as the 'A' pair, to enable DMA to continue from the page addressed by one set of

registers while the other set are being reprogrammed.

P page[16:0]

F offset[11:0]

Write bits[31:29] unused

bits[28:12] page of next DMA fetch

bits[11:4] offset within page of next DMA fetch

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] current DMA fetch location

bits[3:0] always zero

0 0 0 0

034111231 2930

S L X X E EE E E E E EXX X X X X X XX X XX X XX X

0 0 0 0

03411122831

X X X P P PP PP PP PP PP PP P P P F F F F F F F F

29



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-28

Open Access - Preliminary

16.3.54  SDENDB (0x18C) - sound DMA end B

This register is used in the same way as the SDENDA register.

S stop bit

L last bit

E end[11:0]

Write bit[31] stop bit

0 don't stop after reaching end

1 stop after reaching end

bit[30] last bit

0 not last transfer

1 last quad word transfer

bits[11:4] last DMA location within page selected

bits[3:0] ignored

Read bits[31:30,11:4] value written
bits[3:0] always zero

16.3.55  SDCR (0x190) - sound DMA control

This register controls the sound DMA channel and its state machine. Only two bits can

be written to:

• bit 7 clears the state machine into a state where it has overrun and is

requesting an interrupt.

• bit 6 enables the sound DMA channel.

C clear

E enable

Write bit[7] clear

0 don't clear state machine

1 clear state machine. Self clearing

bit[6] not used

bit[5] enable

0 disabled

1 enabled

bits[4:0] not used

Read bit[7] always reads zero

bit[6] always reads zero

0 0 0 0

034111231 2930

S L X X E EE E E E E EXX X X X X X XX X XX X XX X

0347 1256

C 0 E 1 0 0 00



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-29

Open Access - Preliminary

bit[5] enable

0 disabled

1 enabled

bits[4:0] read as 10000 (binary), historically signifying a quadword
transfer

Reset enable set to zero

16.3.56  SDST (0x194) - sound DMA status

The sound DMA status register shows the status of the state machine used to control

sound DMA accesses. It cannot be written to.

O overrun

I interrupt request

W A or B buffer indication

Write ignored

Read bits[7:3] unused

bits[2:0] direct state machine state

Reset set to 110 (binary)

16.3.57  CURSCUR (0x1C0) - cursor DMA current

The cursor current register need not normally be written to as the value in the init

register is transferred into it during the FLYBACK period. It is then updated

automatically in quad word increments during DMA.

C Current fetch location

Write bits[31:29] unused

bits[28:4] cursor current DMA fetch location

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] cursor current DMA fetch location

bits[3:0] always zero

0347 1256

X X X X X O I W

0 0 0 0

0342831

X X X

29

C C C C C C C C C C C C C C C C C C C C C C C CC



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-30

Open Access - Preliminary

16.3.58 CURSINIT (0x1C4) - cursor DMA init

This register is written with the initial location of the cursor data buffer.

I initial fetch location

Write bits[31:29] unused

bits[28:4] cursor initial DMA fetch location

bits[3:0] ignored

Read bit[31:29] undefined

bits[28:4] cursor initial DMA fetch location

bits[3:0] always zero

16.3.59  VIDCURB (0x1C8) - duplex LCD video DMA current B

The 'B' video DMA address registers are for use with dual panel LCDs. The current

registers do not normally need to be programmed as the value in the relevant INIT

register is loaded into the current register during the FLYBACK period. This register

gives the current location of the DMA data for the lower panel.

C current fetch location B

Write bits[31:29] unused

bits[28:4] video current B DMA fetch location

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] video current B DMA fetch location

bits[3:0] always zero

16.3.60  VIDCURA (0x1D0) - video DMA current A

C current fetch location A

Write bits[31:29] unused

bits[28:4] video current A DMA fetch location

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] video current A DMA fetch location

bits[3:0] always zero

0 0 0 0

0342831

X X X

29

I I I I I I I I I I I I I I I I I I I I I I I I I

0 0 0 0

0342831

X X X

29

C C C C C C C C C C C C C C C C C C C C C C C CC

0 0 0 0

0342831

X X X

29

C C C C C C C C C C C C C C C C C C C C C C C CC



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-31

Open Access - Preliminary

16.3.61 VIDEND (0x1D4) - video DMA end

The video END register should be loaded with the address of the final quadword of

the video frame buffer within memory

E end location

Write bits[31:24] unused

bits[23:4] video end location

bits[3:0] ignored

Read bits[31:24] undefined

bits[23:4] video end location

bits[3:0] always zero

16.3.62 VIDSTART (0x1D8) - video DMA start

The video start register should be loaded with the location of the first quadword at

the start of the video frame buffer. All the DMA control registers can only be loaded

with quadword-aligned values.

S start location

Write bits[31:29] unused

bits[28:4] video DMA start fetch location

bits[3:0] ignored

Read bit[31:29] undefined

bits[28:4] video DMA start fetch location

bits[3:0] always zero

16.3.63  VIDINITA (0x1DC) - video DMA init A

For normal CRT displays and single panel LCD data only the 'A' registers are used.

The init register should be loaded with the address within the frame buffer of the first

quad word to be displayed in the first raster at the top of the screen. In the case of dual

panel displays, this register should be loaded with the address of the first quadword in

the frame buffer to be displayed at the top left of the upper panel.

The last bit (30) should only be set if the init A register has been programmed to

the same value as the VIDEND register. Using an init register allows hardware

scrolling to be implemented by moving the position of the init register within the frame

buffer.

0 0 0 0

03431

E E E E E E E E E E E E E E E E E E E EEX X X X X X X X

0 0 0 0

0342831

X X X

29

S S S S S S S S S S S S S S S S S S S S S S S S S

0 0 0 0

0342831

X E

29

I I I I I I I I I I I I I I I I I I I I I I I I IL

30



Named Partner Confidential - Preliminary Draft

Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-32

Open Access - Preliminary

I initial fetch location A

Write bits[31,29] unused

bit[30] last bit

0 not last fetch location

1 last fetch location

bits[28:4] video initial A DMA fetch location

bits[3:0] ignored

Read bit[31] zero

bit[30] last bit

0 not last fetch location

1 last fetch location

bit[29] 'equal' - output of comparator

bits[28:4] video initial A DMA fetch location

bits[3:0] always zero

16.3.64  VIDCR (0x1E0) - video DMA control

This register gives overall control for video DMA. Bit 7 selects between dual and single

panel modes for LCD driving, and bit 5 enables video DMA.

Note: For driving normal CRT displays, bit 7 should be set to zero.

D dual panel mode

E enable video/cursor DMA

Write bit[7]

0 normal

1 dual panel mode

bit[6] ignored

bit[5]

0 disable

1 enable DMA

bits[4:0] ignored

Read bits[7,5] return above values

bit[6] always read back one, DRAM mode

bits[4:0] read as 10000 (binary), historically meaning quadword
transfer

Reset set to zero (disabled, normal mode)

0347 1256

E 1 0 0 001D



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-33

Open Access - Preliminary

16.3.65  VIDINITB (0x1E8) - duplex LCD video DMA init B

For normal CRT displays and single panel LCD data only the 'A' registers are used,

and this register should be programmed with all zeros. In the case of dual panel

displays, this register should be loaded with the address of the first quadword in

the frame buffer to be displayed at the top left of the lower panel. The last bit (30)

should only be set if the init B register has been programmed to the same value as

the VIDEND register.

I initial fetch location B

Write bits[31,29] unused

bit[30] last bit

0 not last fetch location

1 last fetch location

bits[28:4] video initial B DMA fetch location

bits[3:0] ignored

Read bit[31] zero

bit[30] last bit

0 not last fetch location

1 last fetch location

bit[29] 'equal' - output of comparator

bits[28:4] video initial B DMA fetch location

bits[3:0] always zero

16.3.66  DMAST/DMARQ/DMAMSK (0x1F0,0x1F4,0x1F8) - DMA interrupt control

These three registers each contain only one bit relating to the status of the interrupt

generated from the sound DMA state machine.

DMAST (0x1F0) - Sound DMA interrupt status

S sound interrupt status

Write ignored

Read status

bits[7:5,3:0] unused

bit[4]

0 inactive

1 active

0 0 0 0

0342831

X E

29

I I I I I I I I I I I I I I I I I I I I I I I I IL

30

0347 1256

X X X XS X X X



Memory and I/O Programmers’ Model

ARM7500FE Data Sheet
ARM DDI 0077B

16-34

Open Access - Preliminary

 DMARQ (0x1F4) - Sound interrupt request

S sound interrupt request

Write ignored

Read request, status ANDed with mask

bits[7:5,3:0] unused

bit[4]

0 inactive

1 active

 DMAMSK (0x1F8) - Sound interrupt mask

S sound interrupt mask

Write bits[7:5,3:0] unused

bit[4]

0 don't affect nIRQ

1 affect nIRQ

Read mask

bits[7:5,3:0] unused

bit[4] read value written above

0347 1256

X X X XS X X X

0347 1256

X X X XS X X X



ARM7500FE Data Sheet
ARM DDI 0077B

17-1

11
1

Open Access - Preliminary

This chapter describes the ROM and DRAM interfaces, and the DMA channels.

17.1 ROM Interface 17-2

17.2 DRAM Interface 17-8

17.3 DMA Channels 17-22

Memory Subsystems17



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-2

Open Access - Preliminary

17.1 ROM Interface

The ARM7500FE ROM interface supports both non sequential and burst mode read

and write cycles, with a range of programmable timings for each type. A single chip

select signal nROMCS is generated for addresses between 0x00000000 and

0x01FFFFFF, which can be externally split to give separate chip selects for two 16MB

banks of ROM. Each bank of ROM can be 16 or 32-bits wide. The ROM access time

depends on the MEMCLK frequency, and to enable slow ROMs to be used with

a high-frequency MEMCLK, there is a half speed bit available which causes all ROM

timings to take twice as many MEMCLK cycles, when the bit is set to zero.

The ROM interface of ARM7500FE can also support write cycles with the generation

of an output enable and a write enable. The feature is disabled on reset such that write

cycles will not:

• produce a chip select, nROMCS

• produce a write enable

• drive the data out onto the external data bus

When the feature is disabled, an output enable is still generated on read cycles.

The ability to write data to ROM space devices is primarily intended to allow

the programming of FLASH devices directly. With only one write enable, byte writes to

the 32 or 16-bit wide devices are not handled directly. External logic can be used

to decode address bits LA[1:0] and the write enable to enable a full SRAM interface

to be generated if required. However, the interface is not designed to provide

a high-performance interface to SRAM.

Assuming a MEMCLK frequency of 32MHz, the access time for a non-sequential cycle

can be varied from 220ns to 62.5ns in steps of 31.25ns. For burst mode cycles,

LA[3:2] of the latched address from ARM7500FE are incremented to allow up to four

sequential reads. The access time for burst mode cycles can be programmed from

125ns down to 62.5ns, again in steps of 31.25ns.

Note: Due to the timing of the write enable, the smallest cycle length for a write cycle is
3 MEMCLK cycles, ie. 93.75ns.

If a frequency other than 32MHz is used for MEMCLK, these timings will scale

accordingly.

Support for 16-bit wide ROMs is provided via a programmable bit in each of the ROM

control registers. If a 16-bit wide device is selected, then two memory system cycles

will be required to fetch the full 32-bit word required by the ARM. If burst mode is

disabled for that bank, then ARM7500FE will perform two non-sequential fetches

using the programmed non-sequential timing, latch the intermediate 16-bit value,

and present the full 32-bit word to the ARM processor macrocell.

If the burst mode timing bits are programmed into an enabled state, then the first 16-bit

read will be a standard non-sequential cycle, but the second will be a burst mode cycle

to minimize the total access time.

When a 16-bit-wide ROM bank is being addressed, the ROM address is shifted up by

one bit such that the LSB appears on LA[2], thus allowing the same PCB layout to be

used for 16-bit or 32-bit ROM banks.



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-3

Open Access - Preliminary

When using a 16-bit-wide ROM device, data must be stored so that

the least-significant bytes of a 32-bit word are stored at the lower memory address:

When this is read, the ARM will see:

17.1.1 ROM bank configuration and timing

There are two identical registers which control the configuration and timing of the two

ROM banks. Both registers default to read-only 16-bit mode and the slowest possible

non-sequential timings on reset, which means that one of the first actions when using

32-bit wide ROM must be to reprogram these registers for 32-bit wide operation.

A detailed description of how to boot up an ARM7500FE system using 32-bit-wide

ROM is contained in Appendix A: Initialization and Boot Sequence.

To program these registers, write a byte to 0x03200080 for the ROMCR0 register

(address range 0x00000000 to 0x00FFFFFF) or to 0x03200084 for the ROMCR1

register (address range 0x01000000 to 0x0FFFFFFF). The details of these registers

are shown below.

N non-sequential access time (H = 1):

000 7 MEMCLK cycles

001 6 MEMCLK cycles

010 5 MEMCLK cycles

011 4 MEMCLK cycles

100 3 MEMCLK cycles

101 2 MEMCLK cycles

B burst mode access time (H = 1):

00 Burst Off

01 4 MEMCLK cycles

10 3 MEMCLK cycles

11 2 MEMCLK cycles

H half-speed select, i.e. double the above cycle time when H=0

S 16/32-bit mode

W Write enable

0 0 0

03478111215 12569101314

0 0 0 0 00 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Contents Address

0 0x00000000

0x00000001

0 0 0

034781112151619202122272831 125691013141718232425262930

0 0 0 01 0 00 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MSB LSB

0347 1256

W S H B B N N N



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-4

Open Access - Preliminary

Write bit[7]

0 writes disabled

1 writes enabled

bit[6]

0 32-bit

1 16-bit

bit[5]

0 half speed mode

1 normal speed

Read return above values

Reset set to 0x40, ie. 16-bit, slowest access time, and writes disabled.

The output and write enable signals are output on the pins nIOR and nIOW
respectively. This reuse of I/O signals is not expected to cause any difficulties since

I/O chip selects will not be active during accesses to ROM space.

17.1.2 Timing examples

Note: All diagrams assume divide by 1 mode for MEMCLK.

Figure 17-1: ROM read access timing without burst mode (32-bit mode) shows

the timing of non-sequential and sequential 32-bit ROM accesses without burst mode.

 Figure 17-1: ROM read access timing without burst mode (32-bit mode)

LA[28:0]

MEMCLK

D[31:0]

nROMCS

nIOW (nWE)

nIOR (nOE)

TlaTla

Tds_rom Tdh_rom

Trcsl
Trcsh

Troel
Troeh

Address Address + 4



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-5

Open Access - Preliminary

Figure 17-2: ROM read access timing—burst mode (32-bit) shows the timing of

non-sequential and sequential 32-bit ROM accesses with burst mode.

 Figure 17-2: ROM read access timing—burst mode (32-bit)

Figure 17-3: ROM read access timing with burst mode—16-bit mode shows the timing

of non-sequential and sequential 16-bit ROM accesses with burst mode.

 Figure 17-3: ROM read access timing with burst mode—16-bit mode

LA[28:0]

MEMCLK

D[31:0]

nROMCS

nIOW (nWE)

nIOR (nOE)

Cycle type

Tla Tla

Tds_rom
Tdh_rom

Trcsl
Trcsh

Troel
Troeh

Address Address + 4 Address + 8

Non sequential Burst Burst

LA[28:0]

MEMCLK

D[15:0]

nROMCS

nIOW (nWE)

nIOR (nOE)

Cycle type

Tla Tla

Tds_rom
Tdh_rom

Tds_rom
Tdh_rom

Trcsl
Trcsh

Troel
Troeh

Address Address + 2 Address + 4 Address + 6

Non sequential Burst Burst Burst



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-6

Open Access - Preliminary

Figure 17-4: ROM write access with burst mode — (32-bit) on page 17-6 shows

the timing of non-sequential and sequential 32-bit ROM write cycles with burst mode.

 Figure 17-4: ROM write access with burst mode — (32-bit)

Figure 17-5: ROM write access with burst mode — (16-bit) shows a write cycle for

a 16-bit ROM.

 Figure 17-5: ROM write access with burst mode — (16-bit)

LA[28:0]

MEMCLK

D[31:0]

nROMCS

nIOW (nWE)

nIOR (nOE)

Cycle type

Tla Tla

Trda1
Trda2

Trdah

Trcsl
Trcsh

Trwel
Trweh

Address Address + 4 Address + 8

Non sequential Burst Burst

LA[28:0]

MEMCLK

D[15:0]

nROMCS

nIOW (nWE)

nIOR (nOE)

Cycle type

Tla Tla

Trda1
Trda3

Trda2
Trda3

Trdah

Trcsl
Trcsh

Trwel
Trweh

Address Address + 2 Address + 4 Address + 6

Non sequential Burst Burst Burst



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-7

Open Access - Preliminary

Note: The output delays above only include the intrinsic delay of the output pad driver. See
section 22.5 De-rating on page 22-6 to calculate the final delay dependent upon the
expected output load.

Symbol Parameters Min Max Units

Tla MEMCLK rising to LA[28:0] changing 22 ns

Tds_rom DATA setup to MEMCLK rising edge 0 ns

Trcsl MEMCLK rising to nROMCS falling 14 ns

Trcsh MEMCLK rising to nROMCS rising 14 ns

Tdh_rom DATA hold from MEMCLK rising edge 12 ns

Trda1 MEMCLK rising to write DATA valid 15 ns

Trda2 MEMCLK rising to write DATA valid 33 ns

Trda3 MEMCLK rising to write DATA valid 16 ns

Trdah Write DATA hold time after MEMCLK rising 11 ns

Troel MEMCLK rising to nIOR (nOE) falling 14 ns

Troeh MEMCLK rising to nIOR (nOE) rising 14 ns

Trwel MEMCLK rising to nIOW (nWE) falling 14 ns

Trweh MEMCLK rising to nIOW (nWE) rising 13 ns

 Table 17-1: ARM7500FE ROM timing



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-8

Open Access - Preliminary

17.2 DRAM Interface

The DRAM interface can directly drive four banks of DRAM to give a maximum of

64MB in each DRAM bank:

• four nRAS strobes to select the bank

• four nCAS strobes to select the byte within the word

• twelve multiplexed row/column address lines RA[11:0]

The nRAS strobes are decoded directly from bits 27 and 26 of the address, which

means that the DRAM address space will be non-contiguous if the full 64MB is not

used for each bank.

The DRAM controller supports page mode burst cycles with up to 255 sequential

accesses in a burst. Each of the four banks can be a 16 or 32-bit wide device.

The interface can be programmed to support either Fast Page or EDO type DRAMs.

When EDO DRAM has been selected, the data is latched into ARM7500FE one cycle

later, taking advantage of the data latches resident in the output stage of the DRAM.

The memory clock frequency can then be increased to realize the greater sequential

access bandwidth available with EDO DRAMs.

Note: With a lower frequency memory clock, the interface may support EDO DRAM even

without the configuration bit being set.

Support is provided for CAS before RAS refresh, and direct programmability of

the nRAS and nCAS outputs via a special register allows software to directly control

self-refresh DRAM.

DRAM cycle speed is controlled by the frequency of MEMCLK. Non-sequential DRAM

cycles require between five and nine MEMCLK cycles, depending on the selected

mode and RAS precharge requirements. Page mode sequential cycles require two

MEMCLK cycles.

17.2.1 DRAM control registers

There are three registers associated with DRAM control:

DRAMCTL has seven bits, including four (one for each bank) to allow selection
between 16 and 32-bit modes of operation for each bank. Of the 3
remaining bits:

• one selects EDO memory support

• one inserts an extra wait state between falling nRAS and falling
nCAS on non-sequential cycles to preserve Trac

• the final bit selects between 3 and 4 MEMCLK cycles of minimum
nRAS[x] precharge time, Trp

SELFREF allows direct forcing of the nRAS and nCAS outputs. The default
state of each of these bits is zero, which allows normal operation of
the nRAS and nCAS outputs. But, when a bit is set HIGH, the
relevant nCAS or nRAS output is immediately forced active (LOW).

REFCR controls the refresh rate for CAS before RAS refresh. There are four
possible refresh periods from 128µs to 16µs.



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-9

Open Access - Preliminary

17.2.2  DRAM address multiplexing

The multiplexing of the DRAM address onto the RA[11:0] outputs is slightly different

for 32 and 16-bit modes. The DRAM address requested by the ARM or DMA controller

must be shifted up by one bit in 16-bit mode, to enable two locations to be accessed

to read or write one 32-bit word. The row/column address multiplexing arrangements

are shown below, where the numbers in the table refer to the address bits provided by

the ARM or DMA controller.

32-bit wide DRAM bank:

16-bit wide DRAM bank:

* This bit is generated separately by DRAM controller to access each
16-bit half word in turn.

17.2.3 Selection between 16 and 32-bit DRAM

The DRAMCTL register at address 0x032000D0 allows the width of each of the four

DRAM banks to be defined for ARM7500FE. On reset, all banks are defined as 32 bits

wide, so if a 16-bit system is being used it is necessary to program this register before

any writes to DRAM occur. It is not possible to write to DRAM in 16-bit mode and read

back from the same bank in 32-bit mode, or vice versa.

S 16/32-bit mode select, one for each bank

Write bit[3] bank 3 DRAM width

0 32-bit

1 16-bit

bit[2] bank 2 DRAM width

0 32-bit

1 16-bit

01234567891011

101112131415161718192224

2345678920212325

RA[11:0]

Row address

Column address

01234567891011

101112131415161718

2224 234567820

RA[11:0]

Row address

Column address

92123

19 *

0347 1256

X P R E S S S S



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-10

Open Access - Preliminary

bit[1] bank 1 DRAM width

0 32-bit

1 16-bit

bit[0] bank 0 DRAM width

0 32-bit

1 16-bit

Read reads above values

Reset set bits to zero (32-bit)

17.2.4 EDO and timing mode selection

The DRAMCTL register at address 0x032000D0 also controls EDO mode and some

other timing features. On reset all these bits are set low, ie. inactive. In many systems

after reset these register bits will have to be programmed correctly before the DRAM

is used to ensure reliable operation.

Write:

P Precharge RAS control:

0 3 MEMCLK cycles minimum RAS precharge

1 4 MEMCLK cycles minimum RAS precharge

R RAS to CAS delay:

0 2 MEMCLK cycles RAS to CAS delay on non-sequential
cycles

1 3 MEMCLK cycles RAS to CAS delay on non-sequential
cycles

E EDO Control;

0 Fast Page DRAMs selected

1 EDO DRAMs selected

Read reads above values

Reset set all bits to zero (Fast page, no extra delays)

In order to take advantage of the faster page mode accesses provided by EDO

DRAMs, the memory clock frequency should be increased accordingly. For example,

a system using 80ns Fast Page DRAMs will need a memory clock in the region of

32MHz, whereas one using 80ns EDO DRAMs could use a memory clock of around

50MHz. This would improve the asymptotic DRAM bandwidth from 64MB/s to

100MB/s for a 32-bit wide system.

However, the increase in memory clock may cause some DRAM parameters such as

Trac and Trp to be violated at 4 and 3 MEMCLK cycles respectively (when EDO is

selected). The register configuration bits R and P allow each of these to be increased

by one MEMCLK cycle when appropriate.

0347 1256

X P R E S S S S



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-11

Open Access - Preliminary

The P bit controls the guaranteed minimum RAS precharge time. The minimum time

from rising nRAS[x] at the end of one access to the next falling nRAS[y] (different

bank) will be 2 MEMCLK cycles. If a new non-sequential access to the same bank

occurs, then with P=0 there will be 3 MEMCLK cycles of nRAS[x] high and with P=1

there will be 4 MEMCLK cycles of nRAS[x] high.

The R bit controls the number of ticks from the falling nRAS to the first falling nCAS
at the start of non-sequential cycles (reads and writes). If R=0 then there will be 2

MEMCLK cycles between falling nRAS and nCAS and if R=1 then there will be 3

MEMCLK cycles. For reads this will ensure that the DRAM datasheet parameter Trac

and Tcsh timings are not violated at faster memory clock frequencies. For writes this

will ensure the Tcsh time is not violated at faster memory clock frequencies.

The E bit controls whether EDO DRAMS are being used. When E=0 then it is assumed

fast page DRAMs are being used (or EDO with slow memory clock) and the data is

internally latched at the end of the nCAS low time giving one MEMCLK for read

access. When E=1 then it is assumed EDO DRAMs are being used and the data is

internally latched 2 MEMCLK cycles after the falling nCAS. For both reads and writes

the cycle will terminate with at least 1 MEMCLK where nRAS is still low but nCAS has

returned high. This ensures that the DRAM datasheet parameter Tras, Trsh and Tral

timings are met even for single non-sequential cycles.

17.2.5 DRAM interface timing specification

32-bit mode

In 32-bit mode, byte reads and writes have the same timing as word accesses, but only

one nCAS output is selected according to the decode of bits 1 and 0 of the address

Note: All timing diagrams assume divide by 1 is selected for MEMCLK.

Figure 17-6: Fast page DRAM read timing (32-bit mode), shows the timing of

non-sequential and sequential 32-bit DRAM read cycles.

Figure 17-7: Fast page DRAM write timing (32-bit mode) on page 17-12 shows the

timing of both types of 32-bit DRAM write cycles.

Figure 17-8: EDO DRAM read timing (32-bit mode) on page 17-13 shows the timing

of a multiple EDO read when bit 6 of DRAMCTL is set to extend the RAS to CAS delay.

Figure 17-9: Single word EDO DRAM write on page 17-13 shows the timing when bit

6 of DRAMCTL is set to extend the RAS to CAS delay.



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-12

Open Access - Preliminary

 Figure 17-6: Fast page DRAM read timing (32-bit mode)

 Figure 17-7: Fast page DRAM write timing (32-bit mode)

LA[28:0]

MEMCLK

D[31:0]

nRAS[x]

nCAS[3:0]

RA[11:0]

Tla Tla

Tds_dram
Tdh_dram

Trasl
Trash

Trp

Tcash Tcasl

Tra1
Tra2

Tca1
Tcah

Tcac

DRAM Address Address + 4 Address + 8

Row address Column address Column address+1Column address+2

LA[28:0]

MEMCLK

D[31:0]

nRAS[x]

nCAS[3:0]

RA[11:0]

nWE

Tda1 Tda2 Tda2 Twdh

Trasl
Trash

Tcasl Tcash
Tcas2l

Tcas2h

Tra1 Tca1 Tcah

Tnwel Tnweh

DRAM Address Address + 4 Address + 8

Row address Column address Column address+1 Column address+2



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-13

Open Access - Preliminary

 Figure 17-8: EDO DRAM read timing (32-bit mode)

 Figure 17-9: Single word EDO DRAM write

LA[28:0]

MEMCLK

Data bus contents

D[31:0]

nRAS[x]

nCAS[3:0]

RA[11:0]

Tla Tla

Tds_dram
Tdh_dram

Trasl
Trash

Tcash Tcasl

Tra1
Tra2

Tca1
Tcah

Tcac

DRAM Address Address + 4 Address + 8

Word 1 Word 2 Word 3

Row address
Column

address

Column

address+1

Column

address+2

LA[28:0]

MEMCLK

D[31:0]

nRAS[x]

nCAS[3:0]

RA[11:0]

nWE

Tda1 Twdh

Trasl
Trash

Trp

Tcasl Tcash

Tra1 Tca1 Tcah

Tnwel Tnweh

DRAM Address

Row address Column address



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-14

Open Access - Preliminary

16-bit mode

In 16-bit mode ARM7500FE must perform two reads or writes for each 32-bit word

DRAM access requested by the ARM processor or the DMA controller. Only nCAS[1]
and nCAS[0] are used, to access the two bytes of each word. nCAS[3:2] are held at

logic ONE. In 16-bit mode, the same number of physical addresses are available as

for 32-bit mode, which means that only 32MB of DRAM is supported per bank. Words

are stored in DRAM with the upper half-word at the lower address

When this is read, the ARM will see:

In 16-bit mode, byte reads and writes only require a single DRAM access, and the LSB

of the column address is decoded in conjunction with the nCAS[1:0] outputs to select

a single byte from four. Byte reads and writes for 16-bit wide DRAM thus have

the same timing as for the non-sequential 32-bit case as shown in Figures 14-4 and

14-5.

16-bit mode word accesses involve a non-sequential access for the upper halfword,

followed by a sequential access for the lower half word at the next memory location.

A non sequential 16-bit mode word access thus requires between 7 and 9 MEMCLK
cycles, after which sequential accesses can continue until a page boundary is

reached, taking 2 cycles for each half word.

Figure 17-10: Fast page DRAM read timing (16-bit mode) shows a 16-bit-mode read

cycle.

Figure 17-11: Fast page DRAM write timing (16-bit mode) on page 17-15 shows a 16-

bit mode write cycle.

Figure 17-12: EDO DRAM read timing (16-bit mode) on page 17-16 shows a multiple

read from 16-bit wide EDO RAM.

Figure 17-13: EDO DRAM write timing (16-bit mode) on page 17-16 shows a 16-bit

mode write, without bit [6] of DRAMCTL set.

0 0 0

03478111215 12569101314

0 0 0 0 00 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Contents Address

0 0x10000000

0x10000001

0 0 0

034781112151619202122272831 125691013141718232425262930

0 0 0 0 10 00 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MSB LSB



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-15

Open Access - Preliminary

 Figure 17-10: Fast page DRAM read timing (16-bit mode)

 Figure 17-11: Fast page DRAM write timing (16-bit mode)

LA[28:0]

MEMCLK

Data bus contents

D[15:0]

nRAS[x]

nCAS[1:0]

RA[11:0]

Tds_dram
Tdh_dram

Trasl Trash

Tcasl
Tcash

Tra1
Tra2

Tca1
Tcah

Tcac

DRAM Address Address + 4

Word 1 upper h/w Word 1 lower h/w Word 2 upper h/w Word 2 lower h/w

Row address Column address Column address+1 Column address+2 Column address+3

LA[28:0]

MEMCLK

Data bus contents

D[15:0]

nRAS[x]

nCAS[1:0]

RA[11:0]

nWE

Tda3
Tda3

Tda3
Tda2

Tda3
Twdh

Trasl Trash

Tcas2l Tcas2h

Tra1 Tca1 Tca2
Tcah

Tnwel
Tnweh

DRAM Address Address + 4Address + 4

Word 1

 upper h/w

Word 1

 lower h/w

Word 2

 upper h/w

Word 2

 lower h/w

Row address Column address Column address+1Column address+2 Column address+3



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-16

Open Access - Preliminary

 Figure 17-12: EDO DRAM read timing (16-bit mode)

 Figure 17-13: EDO DRAM write timing (16-bit mode)

LA[28:0]

MEMCLK

Data bus contents

D[15:0]

nRAS[x]

nCAS[1:0]

RA[11:0]

Tla Tla

Tds_dram
Tdh_dram

Trasl
Trash

Tcasl
Tcash

Tra1
Tra2

Tca1
Tcah

Tcac

DRAM Address Address + 4

Word 1

upper h/w

Word 1

lower h/w

Word 2

upper h/w

Word 2

lower h/w

Row address
Column

address

Column

address+1

Column

address+2

Column

address+3

LA[28:0]

MEMCLK

Data bus contents

D[15:0]

nRAS[x]

nCAS[1:0]

RA[11:0]

nWE

Tda3
Tda3

Tda3
Tda2

Tda3
Twdh

Trasl Trash

Tcas2l Tcas2h

Tra1 Tca1 Tca2
Tcah

Tnwel
Tnweh

DRAM Address Address + 4

Word 1

 upper h/w

Word 1

 lower h/w

Word 2

 upper h/w

Word 2

 lower h/w

Row address Column address Column address+1Column address+2Column address+3



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-17

Open Access - Preliminary

Note: The output delays above only include the intrinsic delay of the output pad driver. See
section 22.5 De-rating on page 22-6 to calculate the final delay dependent upon the
expected output load.

Symbol Parameters Min Max Units Note

Tcasl MEMCLK rising to Ncas[ ] falling 12 ns

Tcash MEMCLK rising to Ncas[ ] rising 11 ns

Tds_dram read DATA setup to MEMCLK rising -5 ns

Tdh_dram read DATA hold from MEMCLK rising 16 ns

Tcac_fp nCAS falling to data latched 21 ns 1

Tcac_edo nCAS falling to data latched 25 ns 2

Tda1 MEMCLK rising to write DATA valid 14 ns

Tda2 MEMCLK rising to write DATA valid 33 ns

Tda3 MEMCLK falling to write DATA valid 15 ns

Twdh write DATA hold from MEMCLK rising 9 ns

Trash MEMCLK rising to NRAS[ ] rising 10 ns

Trasl MEMCLK rising to NRAS[ ] falling 13 ns

Tra1 MEMCLK rising to RA[ ] valid (row address) 36 ns 3

Tra2 MEMCLK rising to RA[ ] valid (row address) 23 ns 4

Tca1 MEMCLK rising to RA[ ] valid (column address) 15 ns

Tca2 as Tca1 but MEMCLK falling 14 ns

Tcah column address, RA[ ], hold from MEMCLK rising 12 ns

Tnwel MEMCLK rising to NWE falling 12 ns

Tnweh MEMCLK rising to NWE rising 8 ns 5

Tcas2l as Tcasl but MEMCLK falling 12 ns

Tcas2h as Tcash but MEMCLK falling 12 ns

Trp RAS precharge times 3 MEMCLK

cycles

6

 Table 17-2: ARM7500FE DRAM timing



Named Partner Confidential - Preliminary Draft

Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-18

Open Access - Preliminary

In Table 17-2: ARM7500FE DRAM timing on page 17-17:

Note 1: Minimum nCAS access time for Fast Page mode DRAM across all
conditions with nCAS loading of 100pF or less, when MEMCLK =
32MHz.

Note 2: Minimum nCAS access time for EDO DRAM across all conditions
with nCAS loading of 100pF or less, when MEMCLK = 56MHz.

Note 3: CPU accesses.

Note 4: DMA accesses,

Note 5: nWE rising will not change while external nCAS signals are still LOW.

Note 6: The minimum RAS precharge time can be extended to 4 cycles by
setting bit 6 of the DRAMCTL register.

17.2.6 DRAM refresh

DRAM refresh is controlled by a small state machine and counter within ARM7500FE.

The refresh interval timer is clocked by a clock derived from the fixed frequency

I_OCLK, and thus the refresh intervals will remain the same even if the frequency of

MEMCLK is increased for use with faster DRAM. There are four timings available for

refresh, controlled by the REFCR refresh control register at address 0x0320008C.

During reset, the refresh timer is reset to the fastest value (16µs), and the counter and

state machine are clocked such that refresh continues even during reset.

R refresh period

Write bit[3:0]

0000 refresh off

0001 16µs

0010 32µs

0100 64µs

1000 128µs

all others are undefined

Read return above values

Reset set to 0001 (fastest available refresh rate)

The output states for DRAM refresh cycles are shown in Figure 17-14: Refresh cycle
timing on page 17-19.

Note: This assumes divide-by-1 mode for MEMCLK.

0347 1256

X X X RX RRR



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-19

Open Access - Preliminary

 Figure 17-14: Refresh cycle timing

Note: The output delays above only include the intrinsic delay of the output pad driver. See
section 22.5 De-rating on page 22-6 to calculate the final delay dependent upon the
expected output load.

Symbol Parameters Min Max Units

Trref1 MEMCLK rising to nRAS 12 ns

Trref2 MEMCLK falling to nRAS 11 ns

Tcrefl MEMCLK rising to nCAS[3:0] falling 16 ns

Tcrefh MEMCLK rising to nCAS[3:0] rising 16 ns

Trarf MEMCLK rising to RA[11:0] changing 22 ns

 Table 17-3: ARM7500FE refresh cycle timing

LA[28:0]

MEMCLK

nRAS[0]

nRAS[1]

nRAS[2]

nRAS[3]

nCAS[3:0]

RA[11:0]

Trref1

Trref2

Trref1

Trref2

Tcrefl
Tcrefh

Trarf Trarf Trarf

Address for next instruction

0xF 0x0 0xF

XXX XXX XXX



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-20

Open Access - Preliminary

17.2.7 DRAM self-refresh

The nCAS and nRAS lines can be forced active by programming bits in the SELFREF

register at address 0x032000D4. This is intended for use with self refresh DRAM, and

particularly in conjunction with STOP mode so that DRAM can retain state when all

the ARM7500FE clocks have been stopped. All DMA must be stopped and the code

which writes to this register must be executing from ROM.

C force nCAS’s LOW

R force nRAS’s LOW

Write bits[7:4]

0 normal

1 force to zero

bits[3:0]

0 normal

1 force to zero

Read reads above values

Reset set bits to zero (normal)

17.2.8 Non-sequential access time and RAS precharge

At the end of one DRAM access, the earliest the next access may start is two memory

clock cycles later. The new access must be to a different DRAM bank for this to be

allowed. If the new access is to the same bank as the previous, to maintain the RAS

precharge time (Trp), an extra clock cycle is inserted before the nRAS[x] signal is

asserted again.

Thus, the minimum RAS precharge time is guaranteed to be 3 MEMCLK cycles.

By setting bit 7 of the DRAMCTL register high this can be increased to 4 MEMCLK
cycles. These wait states will increase the access time of a non-sequential DRAM

access by 1 or 2 cycles.

In order to meet some DRAM parameters, such as RAS access delay (Trac), at higher

memory clock frequencies, bit 6 of the DRAMCTL register can be set. This will insert

a wait state between the falling nRAS and the first falling nCAS of a non-sequential

cycle.

Setting bit 5 of the DRAMCTL register delays the latching of data into ARM7500FE by

one cycle to support EDO DRAM and so increases non-sequential access time by one

cycle. It also keeps nRAS low for an extra cycle at the end of writes to meet some

DRAM parameters at speeds associated with EDO.

0347 1256

R RC C R RC C



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-21

Open Access - Preliminary

The following table shows how to calculate the non-sequential DRAM access time:

To preserve minimum RAS precharge times when one access closely follows another

to the same DRAM bank, the following must be added to these values

if bit 7 is low 0 or 1 cycles

if bit 7 is high 0, 1 or 2 cycles

DRAMCTL register

Bit 6 = 0 Bit 6 = 1

Fast Page (bit 5 = 0) 5 6

EDO (bit 5 = 1) 6 7

 Figure 17-15: Non-sequential DRAM access time



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-22

Open Access - Preliminary

17.3 DMA Channels

The ARM7500FE supports video, cursor and sound DMA to enable direct transfer of

quad words of data from DRAM to the video and sound processing interfaces. All DMA

is in units of four words (quad words) and data can be read from any of the four banks

of DRAM in either 16 or 32-bit mode. ARM7500FE contains a DMA Address

Generator, which has a number of programmable control registers associated with

each channel. Most of these registers contain 28-bit physical addresses. The DMA

controller also includes support for DMA to dual panel LCD screens.

All three of the DMA channels have at least one CURRENT register which contains

the address in memory of the next data to be fetched from DRAM on that channel.

Each channel uses START, INIT and END registers to define the size and location of

the buffer in memory from which the DMA will take place. However, all three channels

have slightly different methods of using these registers. Exact details of the contents

of all these registers can be found in the programmer’s model section of the datasheet.

17.3.1  Video DMA

The video DMA channel can be used in two modes. Duplex mode is used for fetching

DMA data for use with a dual panel LCD display, and involves fetching a quad word of

data for the top half of the display, followed by a quad word of data for the bottom half

of the display, then the next quad word for the top half and so on. This is implemented

using two parallel sets of registers which must be programmed accordingly.

A description of how to use the ARM7500FE with a dual panel LCD display can be

found in Appendix B: Dual Panel Liquid Crystal Displays.

Normal mode is used for standard CRT and LCD displays and data is fetched

sequentially from the frame buffer. Selection between normal and duplex mode of

operation is achieved via bit 7 of the VIDCR register at location 0x032001E0. Bit 5 of

the same register enables the video DMA channel. It should not be enabled until

the other address registers have been programmed to sensible values.

The registers associated with video DMA should only be programmed during

the FLYBACK period, to avoid corrupting data while DMA is in progress or while

the display is half way through a raster. The state of the internal FLYBACK signal is

available for polling in the IOCR register, and can create an interrupt by programming

the IRQA mask register appropriately.

There is a single VIDSTART register, which should be programmed with the location

in memory of the first quad word of video data at the start of the frame buffer.

The VIDEND register is programmed with the location in memory of the start of the last

quad word in the frame buffer image.

For normal mode operation, the VIDINITA register should be programmed with

the address in memory of the data which will be used to create the pixels at the top-left

corner of the display. This need not necessarily be at the same address as that

programmed into the VIDSTART register, thus allowing hardware scrolling by moving

the address in the VIDINITA register through the frame buffer. The value in

the VIDINITA register is automatically transferred into the VIDCURA register during

the FLYBACK period, so there is no need to program the current register separately.



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-23

Open Access - Preliminary

For normal operation, the VIDINITB register should be programmed to 0x00000000,

so that the value in the VIDCURB register is defined. All video channel registers

should be programmed with addresses which are quad word aligned (ie. bits 0 to 3 are

zero).

There is an extra bit (30) in the VIDINITA register, which must be programmed HIGH

if the address in the VIDINITA register is the same as the address in the VIDEND

register. At all other times it should be programmed LOW.

Once all bits have been programmed, the enable bit in the VIDCR register can be

written to, and the video DMA channel will become operational. The channel is then

controlled by a video request signal from the video controller part of ARM7500FE.

When a request for more video data arrives and the current bus cycle finishes, the bus

controller will arbitrate in favor of the DMA (which has the highest priority on the bus)

to fetch a quad word of data for the video sub system. Immediately after each DMA

access, the address in the current register is incremented by 16 (one quad word) and

the address is compared with the address in the VIDEND register. If they are the same,

the DMA controller knows that the next DMA will be the last one in the buffer, and after

the next DMA, the current register will be reloaded from the VIDSTART register. During

the FLYBACK period, the current register will be automatically reloaded with the value

in the VIDINITA register.

Programming of the DMA and video subsystem for use with dual panel LCDs is

described in full in Appendix B: Dual Panel Liquid Crystal Displays, and uses identical

principles, except there are two current registers and two init registers, one for each

panel. On each successive DMA access, the ARM7500FE will toggle between the two

sets of registers providing data first for the upper panel and then from the lower panel.

This means that the two init registers should always be programmed with addresses

with are equidistantly spaced through the wrapped-around frame buffer.

17.3.2  Cursor DMA

There are only two registers associated with the cursor channel, the CURSCUR

current register and the CURSINIT register. The channel is enabled under the control

of the video enable bit in the VIDCR video DMA control register. The operation of

the channel is the same for normal or duplex modes, but it is necessary to program

the cursor differently depending on which mode is being used. Details of

the programming required can be found in Appendix B: Dual Panel Liquid Crystal
Displays.

The CURSINIT register should be programmed with the address of the first word of

cursor data in memory. There is no END register as the width of the cursor is

predetermined (32 pixels) and the height of the cursor is defined by programming

the VCSR and VCER registers in the video sub system. Each quadword fetch will

result in two rasters’ worth of cursor data being transferred, except in Hi-Res Mode

(see 14.4 Hi-Res Support on page 14-6). At the end of each fetch, the value in

the CURSCUR register is increased by 16, to address the start of the next quadword.

The value programmed into the CURSINIT register must be quadword-aligned.



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-24

Open Access - Preliminary

17.3.3  Sound DMA

The Sound DMA channel provides data for the ARM7500FE sound interface.

There are two sets of pointer registers so that data transfers can be double buffered

to ensure that DMA data is always available even when the data in one buffer is

exhausted. One set of registers can be reprogrammed while the others are being

used.

Sound DMA transfers are constrained to a single 4KByte page, as only the lowest

12 bits of the DMA address are incremented and compared to check for the end of

the buffer. All sound DMA is quad word and must be from quad word aligned

addresses, so the lowest four bits of the registers are not used and should be

programmed to zero. Bit 30 of each of the END registers is the “last” bit, which must

be programmed HIGH if the initial value in the current register is the same as the end

register for that buffer, ie for a single transfer.

There is also an interrupt mask and status bit for the sound channel which allows

the status of the sound DMA state machine to be monitored. The state machine will

generate an interrupt when the end of the current buffer is reached, and it is up to

the system software to take appropriate action to reprogram that channel as required

while DMA continues from the location pointed to by the other set of buffers.

Sound data is requested by the ARM7500FE sound subsystem which asserts

a request signal, and the bus controller will arbitrate in favour of the sound DMA when

the current bus cycle has completed as long as there is not an outstanding video or

cursor DMA request.

17.3.4 The sound DMA state machine

The sound DMA channel is controlled by a simple state machine. The state machine

remains in an idle state when the enable bit in the sound DMA control register has not

been set. The state bits of the state machine are directly mapped to the Sound DMA

status register, where they are named Overrun, Int and A/B. On reset, the state

machine is set to state 110, such that the Overrun and Int bits are set. The Overrun bit

indicates when a channel has stopped because it has finished a transfer and the other

pointer pair has not been programmed. The Int bit indicates when the channel is

requesting an interrupt. The A/B bit indicates which pair of current/end pointers is in

use.

The state machine diagram in the figure below shows how the state machine transfers

between buffers A and B to allow DMA to continue uninterrupted when both sets of

DMA address registers have been programmed. The transitions between states occur

either when the ARM processor programs an pointer register pair, or when a buffer is

completed. To ensure correct operation, the current pointer must be programmed

before the end pointer as it is the action of programming the end pointer which causes

the state transition. The “stop” bit in the end register is used to terminate a sequence

of DMA, by forcing the state machine back into one of the idle states at the end of

the last buffer.



Memory Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

17-25

Open Access - Preliminary

During operation of the state machine, when the end of one buffer is reached, an

interrupt will be generated which can be used to signal to the ARM processor that it is

time to reprogram that pair of pointers. If one buffer’s address pointers have not been

reprogrammed before the other buffer is exhausted, then both the Int and Overrun bits

will be set, and DMA cannot continue until the pointers are reprogrammed.

 Figure 17-16: Hardware DMA state machine diagram

Idle or Write Buff B Busy (Buff A active) Busy (Buff A active)

OR

Int

Buff A

Int
Buff A Buff A

Write Buff A

Finished

Write Buff B

(110) (010) (000)

(001) (011) (111)

Finished

(StopB)

Finished

(not StopB)

Finished

(not StopA)

Finished

(StopA)

Write Buff A

Finished

Write Buff B

Busy (Buff B active) Busy (Buff B active) Idle or Write Buff A

Buff B
Int

Buff B

OR

Int

Buff B



ARM7500FE Data Sheet
ARM DDI 0077B

18-1

11
1

Open Access - Preliminary

This chapter describes the ARM7500FE I/O subsystems.

18.1 Introduction 18-2

18.2 I/O Address Space Usage 18-3

18.3 Additional I/O Chip Select Decode Logic 18-4

18.4 Simple 8MHz I/O 18-4

18.5 Module I/O 18-11

18.6 PC Bus-style I/O 18-15

18.7 DMA During I/O Cycles 18-29

18.8 Clock Synchronization Conditions 18-29

18.9 Keyboard/mouse Interface 18-30

18.10 Analog to Digital Converter Interface 18-34

18.11 Timers 18-37

18.12 General-purpose, 8-bit-wide, I/O Port 18-38

18.13 ID and OD Open Drain I/O Pins 18-38

18.14 Version and ID Registers 18-39

18.15 Interrupt Control 18-39

I/O Subsystems18



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-2

Open Access - Preliminary

18.1 Introduction

ARM7500FE has a 16-bit wide general I/O port, BD[15:0]. This allows slow I/O access

to continue independently of DMA activity on the ARM7500FE data bus. There are

three types of I/O access supported over the I/O bus:

• 16MHz PC-style I/O

• 8MHz request/grant-based I/O

• simple 8MHz-based fixed timing I/O

ARM7500FE also has a separate 8-bit wide general purpose open drain I/O port, each

bit of which can be configured as an interrupt source. There are four analog

comparators, each with a 16 bit 2MHz timer which can be used as a four channel

analog joystick interface. Two identical PS/2 serial mouse/keyboard ports are

included. There are two general-purpose 2MHz 16-bit counter timers, which can be

programmed to produce interrupts at timed intervals.

ARM7500FE includes an interrupt handler, with enable and mask bits for each

interrupt source, which can process potential interrupts from a number of internal and

external sources.

The 16MHz PC style I/O provides all the signals required to interface with a standard

PC Combo chip, enabling an industry standard part to be used to complete the I/O

interfaces to devices such as a floppy disc.

The facility is available to expand the width of the I/O bus externally by adding latches

and buffers to the upper 16 bits of the main external data bus and control signals for

these devices are provided from ARM7500FE.

Support is provided for Execute-in-place (XIP) from a 16-bit wide PCMCIA card

attached to the I/O bus, using an external PCMCIA controller.

Because the I/O clocks can be completely asynchronous to the memory system clock

(which is controlling the main bus arbitration state machine), there will be additional

synchronization penalties at the start and end of the I/O cycle. The exact additional

delay will depend on the actual phase of the clocks at the point in question, and

the timing diagrams do not attempt to show this in detail. However, the worst case

synchronization delays are indicated.



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-3

Open Access - Preliminary

18.2 I/O Address Space Usage

The main I/O address space is defined as being from address 0x03000000 to

0x03FFFFFF, as shown in Table 18-1: I/O address space usage on page 18-3.

In addition, there is an extended I/O address space for 16MHz PC style I/O from

address 0x08000000 up to 0x0FFFFFFF, divided into eight 16MB areas. The chip

select generated throughout this area is nEASCS.

I/O address Contents

0x03000000 Module space - asserts nMSCS

0x03010000 16MHz I/O - asserts nCCS (Combo chip select)

0x03012000 16MHz I/O - asserts nCDACK (Combo DACK)

0x0302A000 16MHz I/O - asserts nCDACK and TC (Combo DACK and TC)

0x0302B000 16MHz I/O - asserts nPCCS2

0x0302B800 16MHz I/O - asserts nPCCS1

0x0302C000 Reserved

0x03030000 Module space - asserts nMSCS

0x03040000 Reserved

0x03200000 ARM7500FE internal I/O and memory control registers

0x03210000 Simple I/O space - asserts nSIOCS1/2

0x03400000 ARM7500FE internal video and sound control registers

0x03500000 Reserved

 Table 18-1: I/O address space usage



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-4

Open Access - Preliminary

18.3 Additional I/O Chip Select Decode Logic

The SETCS input selects additional decode logic for some of the chip select outputs.

• When SETCS is HIGH:

nMSCS is asserted only in the following ranges of Module I/O space:

0x03000000 -> 0x03003FFF
0x03030000 -> 0x03033FFF

nEASCS is asserted only in the following range of Extended I/O space:

0x08000000 -> 0x08FFFFFF

nSIOCS2 is asserted only in the following ranges of Simple I/O space:

0x03240000 -> 0x03243FFF
0x032C0000 -> 0x032C3FFF
0x03340000 -> 0x03343FFF
0x033C0000 -> 0x033C3FFF

• When SETCS is LOW:

nMSCS is asserted over the whole of Module space

nEASCS is asserted over the whole of Extended I/O address space

nSIOCS2 is asserted only in the following ranges of simple I/O space:

0x03240000 -> 0x0324FFFF
0x032C0000 -> 0x032CFFFF
0x03340000 -> 0x0334FFFF
0x033C0000 -> 0x033CFFFF

18.4 Simple 8MHz I/O

The Simple I/O type of access is 16-bit only and has a selection of 4 different cycle

speeds selectable by bits 20 and 19 of the address. This type of I/O will be selected

for addresses in the range 0x3210000 to 0x32FFFFFF. When writing, the upper

halfword of the ARM7500FE data bus is written out on the I/O bus. When reading, the

I/O bus data is read back onto the lower half-word of the ARM7500FE data bus. This

type of I/O cycle is not affected by the READY signal.

During these accesses, the signal nSIOCS1 is always asserted with a read or write

strobe as appropriate based on the CLK8 8MHz clock. nSIOCS2 is asserted according

to the decoding in the section above. The read and write strobes are the nIOR and

nIOW output pins respectively. The four timings of the Simple 8MHz I/O accesses are

shown below:

Address [20:19] Name Minimum CLK8 cycles

0 0 slow 7

0 1 medium 6

1 0 fast 5

1 1 sync 5

 Table 18-2: Timings of the Simple 8MHz I/O accesses



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-5

Open Access - Preliminary

The “sync” timing is referenced to the 2MHz CLK2 output, and there will thus be

an additional possible synchronization penalty of up to 3 CLK8 cycles depending on

the phase of CLK2 and CLK8 at the commencement of the I/O cycle. This is in addition

to synchronization between the I/O and memory subsystem signals.

The diagrams below show the timing of the four different types of simple I/O cycles.

Note: All diagrams assume I_OCLK is running at 32MHz using divide-by-1 mode.

 Figure 18-1: ‘Fast’ 8MHz Simple I/O read cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1
Tadd2

Tclk8l Tclk8h

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_sio Tcsh_sio

Tniorl
Tniorh



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-6

Open Access - Preliminary

 Figure 18-2: ‘Medium’ 8MHz Simple I/O read cycle timing

 Figure 18-3: ‘Slow’ 8MHz Simple I/O read cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1

Tadd2

Tbds
Tbdh

Tiornwh
Tiornwl

Tcsl_sio
Tcsh_sio

Tniorl
Tniorh

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1
Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_sio Tcsh_sio

Tniorl Tniorh



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-7

Open Access - Preliminary

 Figure 18-4: ‘Sync’ 8MHz I/O read cycle timing

 Figure 18-5: ‘Fast’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

CLK2

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1s
Tadd2

Tclk2l Tclk2h

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_sio Tcsh_sio

Tniorl Tniorh

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1
Tadd2

Tbd1 Tbd2

Tcsl_sio
Tcsh_sio

Tniowl Tniowh

Write data



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-8

Open Access - Preliminary

 Figure 18-6: ‘Medium’ 8MHz Simple I/O write cycle timing

 Figure 18-7: ‘Slow’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1 Tadd2

Tbd1 Tbd2

Tcsl_sio Tcsh_sio

Tniowl Tniowh

Write data

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1 Tadd2

Tbd1 Tbd2

Tcsl_sio Tcsh_sio

Tniowl Tniowh

Write data



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-9

Open Access - Preliminary

 Figure 18-8: ‘Sync’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

CLK2

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1s Tadd2

Tclk8l

Tclk2h

Tclk8h

Tclk2l

Tbd1s Tbd2

Tcsl_sio Tcsh_sio

Tniowl Tniowh

Write data



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-10

Open Access - Preliminary

Note 1: Synchronization penalty is between 0 and 3 I_OCLK cycles

Note 2: Synchronization penalty is between 0 and 15 I_OCLK cycles

Note 3: Delay includes 4 MEMCLK cycles

Note 4: Synchronization penalty is between 1 and 4 I_OCLK cycles

Note 5: Synchronization penalty is between 1 and 16 I_OCLK cycles

Note 6: Delay includes 2 MEMCLK cycles

Symbol Parameters Min Max Units Notes

Tclk8l I_OCLK rising to CLK8 falling 13 ns

Tclk8h I_OCLK rising to CLK8 rising 12 ns

Tclk2l I_OCLK rising to CLK2 falling 16 ns

Tclk2h I_OCLK rising to CLK2 rising 16 ns

Tcsl_sio I_OCLK rising to nSIOCS1/nSIOCS2 falling 16 ns

Tcsh_sio I_OCLK rising to nSIOCS1/nSIOCS2 rising 16 ns

Tbd1 I_OCLK rising to BD write data valid 0 102 ns 1

Tbd1s I_OCLK rising to BD write data valid (SYNC cycles) 0 476 ns 2

Tbd2 I_OCLK rising to BD write data valid 133 152 ns 3,7

Tbd2 I_OCLK rising to BD write data valid 149 168 ns 3,8

Tbdh DATA hold from I_OCLK rising 10 ns

Tbds DATA setup to I_OCLK rising 0 ns

Tiornwh I_OCLK falling to IORNW rising 13 ns

Tiornwl I_OCLK rising to IORNW falling 16 ns

Tniorl I_OCLK rising to nIOR falling 16 ns

Tniorh I_OCLK rising to nIOR rising 16 ns

Tniowl I_OCLK rising to nIOW falling 17 ns

Tniowh I_OCLK rising to nIOW rising 16 ns

Tadd1 LA[] changing after I_OCLK rising before start 0 143 ns 4

Tadd1s LA[] changing after I_OCLK rising before start (SYNC cycles) 0 518 ns 5

Tadd2 LA[ ] changing after I_OCLK rising after end 74 89 ns 6,7

Tadd2 LA[ ] changing after I_OCLK rising after end 90 105 ns 6,8

 Table 18-3: Simple 8MHz I/O timing



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-11

Open Access - Preliminary

Note 7: Timings refer to the case where ASTCR bit=0.
See Appendix C: Using ASTCR at High MEMCLK Frequencies.

Note 8: Timings refer to the case where ASTCR bit = 1.

Note: The output delays above only include the intrinsic delay of the output pad driver. See
section 22.5 De-rating on page 22-6 to calculate the final delay dependent upon the
expected output load.

18.5 Module I/O

The Module I/O type of access is 16-bit only and its speed is controlled by

a handshake mechanism with the external hardware. The signals nIORQ (output) and

nIOGT (input) are used for this handshaking. When writing, the upper half-word of

the ARM7500FE data bus is written out on the I/O bus. When reading, the I/O bus data

is read back onto the lower half-word of the ARM7500FE data bus. The module type

of I/O will be initiated for addresses in the ranges 0x03000000 to 0x0300FFFF and

0x03030000 to 0x0303FFFF.

During these accesses, the signal nMSCS is asserted but read and write strobes are

not used, although the IORNW signal is active. READY does not affect this type of

access.

The nBLI is driven by the external hardware to indicate when the read or write data

should be latched from the BD I/O bus.

The I/O cycle will terminate when both nIORQ and nIOGT are LOW at the rising edge

of REF8M.

The following timing diagrams show the signal relationship for the nIORQ/nIOGT
module I/O type of access.



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-12

Open Access - Preliminary

 Figure 18-9: 8 MHz Module read I/O cycle

LA[28:0]

I_OCLK

REF8M

BD[15:0]

IORNW

nMSCS

nIORQ

nIOGT

nBLI

Tadd1 Tadd2

Tr8h Tr8l

Tiornwh Tiornwl

Tcsl_ms Tcsh_ms

Tniorql Tniorqh

Tgts
Tgth

Tbds1
Tbdh1



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-13

Open Access - Preliminary

 Figure 18-10: 8 MHz module write I/O cycle

LA[28:0]

I_OCLK

REF8M

BD[15:0]

IORNW

nMSCS

nIORQ

nIOGT

Tadd1 Tadd2

Tbd1 Tbd2

Tcsl_ms Tcsh_ms

Tniorql Tniorqh

Tgts
Tgth



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-14

Open Access - Preliminary

In Table 18-4: 8 MHz Module read and write I/O cycles on page 18-14:

Note 1: Synchronization penalty is between 0 and 3 I_OCLK cycles

Note 2: Delay includes 4 MEMCLK cycles

Note 3: Synchronization penalty is between 1 and 4 I_OCLK cycles

Note 4: Delay includes 2 MEMCLK cycles

Note 5: Timings refer to the case where ASTCR bit=0.
See Appendix C: Using ASTCR at High MEMCLK Frequencies.

Note 6: Timings refer to the case where ASTCR bit = 1.

Note: The output delays above only include the intrinsic delay of the output pad driver. See
section 22.5 De-rating on page 22-6 to calculate the final delay dependent upon the
expected output load.

Symbol Parameters Min Max Units Notes

Tbds1 Data setup up to nBLI falling 0 ns

Tbdh1 Data hold from nBLI falling 2 ns

Tcsl_ms I_OCLK falling to nMSCS falling 15 ns

Tcsh_ms I_OCLK falling to nMSCS rising 18 ns

Tiornwh I_OCLK falling to IORNW rising 13 ns

Tiornwl I_OCLK falling to IORNW falling 14 ns

Tbd1 I_OCLK rising to BD write data valid 0 102 ns 1

Tbd2 I_OCLK rising to BD write data valid 133 150 ns 2,5

Tbd2 I_OCLK rising to BD write data valid 164 181 ns 2,6

Tniorql I_OCLK rising to nIORQ falling 15 ns

Tniorqh I_OCLK rising to nIORQ rising 15 ns

Tr8ml I_OCLK rising to REF8M falling 13 ns

Tr8mh I_OCLK rising to REF8M rising 12 ns

Tgts setup of nIOGT to I_OCLK rising 0 ns

Tgth hold of nIOGT from I_OCLK rising 5 ns

Tadd1 LA[ ] changing after I_OCLK rising before start 0 143 ns 3

Tadd2 LA[ ] changing after I_OCLK rising at end 74 89 ns 4,5

Tadd2 LA[ ] changing after I_OCLK rising at end 105 120 ns 4,6

 Table 18-4: 8 MHz Module read and write I/O cycles



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-15

Open Access - Preliminary

18.6 PC Bus-style I/O

This type of I/O is designed to function in conjunction with a standard PC Combo chip,

and cycles are generated from a 16MHz clock.

The PC bus-style I/O type of access routes the lower halfword of the ARM7500FE bus

through the device providing a direct 16 bit interface. Additionally, signals are

generated to support the addition of external latches/drivers to extend the I/O data by

16 bits. The upper half-word of the ARM7500FE data bus is routed through these

external devices if present. This type of I/O access is used for the address space from

03010000 to 0302CFFF (five sections), and in the larger extended address space from

0x08000000 to 0x0FFFFFFF (eight sections). There are 4 fixed cycle types based on

the 16MHz clock, although the larger extended address area only supports two of

these cycle types. Any access may be held up by external circuitry removing

the READY signal before the end of the cycle.

The signals used to control the external buffers and latches required to implement

32-bit wide I/O are:

• nWBE

• nRBE

• nBLO

The timing diagrams in this section (Figure 18-12: 16 MHz Type D read I/O cycle and

Figure 18-11: 16 MHz Type D write I/O cycle) show the timing of these signals relative

to the external data bus.

For full details of the external circuitry and connections required to implement a 32-bit

wide I/O system using the ARM7500FE, refer to Appendix D: Expanding PC-Style I/O
to 32 Bit.

Two additional inputs are provided to allow external circuitry to route a full 32-bit data

word through the 16-bit I/O bus using multiplexing:

• nXIPLATCH

• nXIPMUX16

This would allow, for example, the execution of ARM code from a 16-bit-wide PCMCIA

card with a suitable external controller. The nXIPMUX16 signal directly controls

an internal multiplexer which maps either the upper or lower 16 bits of the internal data

bus through to the 16 bit wide I/O bus, for writes to an I/O peripheral.

When nXIPMUX16 is LOW, the upper 16 bits of the data bus are passed to BD[15:0],
and when nXIPMUX16 is HIGH, the lower 16 bits of the data bus are passed to

BD[15:0].

For reads from an I/O peripheral, the falling edge of the nXIPLATCH signal causes

the first 16 bits provided on the BD[15:0] bus to be latched as the upper halfword for

the main internal data bus, after which the lower 16 bits can be output from

the peripheral and the I/O cycle can be allowed to complete normally. If nXIPLATCH
has been driven low, the upper halfword of data is driven to the ARM processor

internally and not from the external transceivers if present.



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-16

Open Access - Preliminary

Figure 18-19: 16 MHz Type B read I/O cycle with PCMCIA and Figure 18-20: 16 MHz
Type B write I/O cycle with PCMCIA show the relevant timing details. Depending on

the cycle timing, it will usually be necessary for the external controller to use

the READY signal to stretch the I/O access to give sufficient time for both half words

to be read or written as appropriate. If an I/O access is to be stretched, the READY
signal must be set LOW before the end of the cycle as shown in the timing diagrams.

This will cause the nIOR or nIOW strobe and the chip select to be held LOW until

READY is set back to HIGH again, when the I/O cycle will complete as normal.

READY is sampled on the rising edge of the first 16MHz cycle before the I/O cycle is

due to complete.

The four address areas for 16MHz I/O within the main I/O address space can support

any of the four available cycle types A to D. The IOTCR register can be programmed

(at address 0x032000C4) to determine which type of cycle will be used for each group

of addresses. The addresses are grouped such that the nCCS and pseudo DMA

address spaces form one group, and the nPCCS1 and nPCCS2 address area forms

another group.

C nCCS + pseudo DMA access speed

N nPCCS1 and nPCCS2 area access speed

Write bits[7:6] unused

bits[5:4] unused

bits[3:2]

00 Type A (slowest)

01 Type B

10 Type C

11 Type D (fastest).

bits[1:0]

00 Type A (slowest)

01 Type B

10 Type C

11 Type D (fastest).

Read read back above values

Reset set to zero (slowest)

0347 1256

X X X X C NC N



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-17

Open Access - Preliminary

The extended address space from address 0x08000000 onwards for 16MHz I/O

accesses supports only cycle types A and C, and the ECTCR register should be

programmed to specify which cycle type is required for each of the eight 16MB areas

within the extended address space. The details of this register, at address

0x032000C8, are shown below:

E = expansion card area access speed

Write bit[7] (0F00 0000 -> 0FFF FFFF)

0 Type A

1 Type C

bit[0] (0800 0000 -> 08FF FFFF)

0 Type A

1 Type C

Read read back above values

Reset set to zero (slowest)

This type of I/O asserts a single chip select according to the area, except in Combo

DACK + TC space, where both the nCDACK and TC outputs are asserted to signal to

the PC Combo chip that the end of a pseudo DMA sequence has been reached.

In the extended address space the nEASCS chip select is asserted.

The timing diagrams in the figures below show the four types of 16 MHz I/O cycle.

Note: All diagrams assume divide by 1 mode for both MEMCLK and I_OCLK.

0347 1256

E E E E E E E E



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-18

Open Access - Preliminary

 Figure 18-11: 16 MHz Type D write I/O cycle

LA[28:0]

MEMCLK

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

nBLO

READY

D[31:16]

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl_pc Tcsh_pc

Tniowl Tniowh

Tnoh2 Tnol2

Trds
Trdh

Tdu
Tduh

Upper 16 bits of external data bus valid for 32 bit I/O



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-19

Open Access - Preliminary

 Figure 18-12: 16 MHz Type D read I/O cycle

LA[28:0]

MEMCLK

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

nBLO

nWBE

nRBE

READY

Tadd3 Tadd2

Tc16l
Tc16h

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_pc Tcsh_pc

Tniorl Tniorh

Tnoh1 Tnol1

Tnwbeh Tnwbel

Tnrbel Tnrbeh

Trds
Trdh



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-20

Open Access - Preliminary

 Figure 18-13: 16 MHz Type C read I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

READY

Tadd3 Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_pc Tcsh_pc

Tniorl Tniorh

Trds
Trdh



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-21

Open Access - Preliminary

 Figure 18-14: 16 MHz Type C write I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

READY

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl_pc Tcsh_pc

Tniowl Tniowh

Trds
Trdh



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-22

Open Access - Preliminary

 Figure 18-15: 16 MHz Type B read I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

READY

Tadd3 Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_pc Tcsh_pc

Tniorl
Tniorh

Trds
Trdh



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-23

Open Access - Preliminary

 Figure 18-16: 16 MHz Type B write I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

READY

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl_pc Tcsh_pc

Tniowl Tniowh

Trds
Trdh



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-24

Open Access - Preliminary

 Figure 18-17: 16 MHz Type A read I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

READY

Tadd3 Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl_pc Tcsh_pc

Tniorl Tniorh

Trds
Trdh



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-25

Open Access - Preliminary

 Figure 18-18: 16 MHz Type A write I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

READY

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl_pc Tcsh_pc

Tniowl Tniowh

Trds
Trdh



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-26

Open Access - Preliminary

 Figure 18-19: 16 MHz Type B read I/O cycle with PCMCIA

LA[28:0]

I_OCLK

CLK16

IORNW

nPCCS1

nIOR

READY

BD[15:0]

nXIPLATCH

Tadd3 Tadd2

Tiornwh Tiornwl

Tcsl_pc Tcsh_pc

Tniorl Tniorh

Trds
Trdh

Tbds
Tbdh

Txls
Txlh

upper lower



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-27

Open Access - Preliminary

 Figure 18-20: 16 MHz Type B write I/O cycle with PCMCIA

LA[28:0]

I_OCLK

CLK16

IORNW

nPCCS1

nIOW

READY

BD[15:0]

nXIPMUX16

Tadd3 Tadd2

Tcsl_pc Tcsh_pc

Tniowl Tniowh

Trds
Trdh

Tbd

Tnmxl
Tnmxh

lower upper lower



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-28

Open Access - Preliminary

Symbol Parameters Min Max Units Notes

Tnmxl nXIPMUX16 falling to upper data output on BD[15:0] 6 ns

Tnmxh nXIPMUX16 rising to lower data output on BD[15:0] 5 ns

Txls DATA setup to nXIPLATCH falling 1 ns

Txlh DATA hold from nXIPLATCH falling 2 ns

Tc16l I_OCLK rising to CLK16 falling 12 ns

Tc16h I_OCLK rising to CLK16 rising 12 ns

Tbdh Data hold from I_OCLK rising 10 ns

Tbds Data setup to I_OCLK rising 0 ns

Tiornwh I_OCLK falling to IONRW rising 13 ns

Tiornwl I_OCLK rising to IONRW falling 16 ns

Tcsl_pc I_OCLK rising to PC I/O chip select falling 17 ns 1

Tcsh_pc I_OCLK rising to PC I/O chip select rising 17 ns 1

Trds READY setup to I_OCLK rising 0 ns

Trdh READY hold from I_OCLK rising 8 ns

Tbd2 I_OCLK rising to BD write data valid 133 150 ns 2,6

Tbd2 I_OCLK rising to BD write data valid 164 181 ns 2,7

Tbd3 I_OCLK rising to BD write data valid 0 40 ns 3

Tniorl I_OCLK rising to nIOR falling 16 ns

Tniorh I_OCLK rising to nIOR rising 16 ns

Tnoh1 I_OCLK rising to nBLO rising, read 18 ns

Tnol1 I_OCLK rising to nBLO falling, read 18 ns

Tnoh2 MEMCLK rising to nBLO rising, write 18 ns

Tnol2 MEMCLK rising to nBLO falling, write 16 ns

Tnwbeh I_OCLK falling to nWBE rising 17 ns

Tnwbel I_OCLK rising to nWBE falling 13 ns

Trbel MEMCLK rising to nRBE falling 16 ns

Trbeh MEMCLK rising to nRBE rising 16 ns

Tniowl I_OCLK rising to nIOW falling 17 ns

 Table 18-5: 16 MHz I/O cycles



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-29

Open Access - Preliminary

In Table 18-5: 16 MHz I/O cycles on page 18-28:

Note 1: Timing is for all PC style I/O chip selects: nCCS, nCDACK, nPCCS1,
nPCCS2, nEASCS, TC

Note 2: Delay includes 4 MEMCLK cycles

Note 3: Synchronization penalty is 0 or 1 I_OCLK cycles

Note 4: Synchronization penalty is 1 or 2 I_OCLK cycles

Note 5: Delay includes 2 MEMCLK cycles

Note 6: Timings refer to the case where ASTCR bit=0.
See Appendix C: Using ASTCR at High MEMCLK Frequencies

Note 6: Timings refer to the case where ASTCR bit=1.

Note: The output delays above only include the intrinsic delay of the output pad driver. See
section 22.5 De-rating on page 22-6 to calculate the final delay dependent upon the
expected output load.

18.7 DMA During I/O Cycles

DMA to the Video and Sound Macrocell can continue during I/O cycles. Write data

from the ARM Processor is latched early, so that the data bus can be used freely for

DMA data. Thus, only the start of an I/O cycle needs to be added to any DMA latency

calculations.

18.8 Clock Synchronization Conditions

In a system using a MEMCLK frequency greater than I_OCLK, it may be necessary

to insert an extra I/O clock cycle to allow sufficient address hold time before the chip

select is taken away. The problem arises because the chip select is generated from

the fixed frequency I/O world clock, whereas the address changes according to

the memory system clock. When a faster MEMCLK is used, it is possible for

the synchronization to the memory clock to occur rapidly at the end of the cycle, and

thus for the I/O address to change before the chip select has been removed. This may

be a problem for some peripherals.

Tniowh I_OCLK rising to nIOW rising 16 ns

Tdu MEMCLK rising to D[31:16] valid 35 ns

Tadd3 LA[] changing after I_OCLK rising before start 0 82 ns 4

Tduh MEMCLK rising to D[31:16] invalid 10 ns

Tadd2 LA[ ] changing after I_OCLK rising at end 74 89 ns 5,6

Tadd2 LA[ ] changing after I_OCLK rising at end 105 120 ns 5,7

Symbol Parameters Min Max Units Notes

 Table 18-5: 16 MHz I/O cycles (Continued)

0347 1256

A X X X X X X X



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-30

Open Access - Preliminary

To avoid this, there is a register bit in the ASTCR register, at address 0x032000CC,

which is normally set to zero, but can be programmed to one to add an extra I/O clock

period to ensure that the address will not change before the chip select has been

de-asserted.

A asynchronous timing control

0 minimal delay

1 wait states to ensure address hold time

See Appendix C: Using ASTCR at High MEMCLK Frequencies.

18.9 Keyboard/mouse Interface

The keyboard and mouse interfaces are identical, differing only in the names of

the external pins. The interfaces are designed to communicate with a standard PS/2

keyboard or mouse, via a 2 pin serial link.

The keyboard interface uses the pins KBDATA, KBCLK, and the mouse interface uses

the pins MSDATA and MSCLK, all of which are open drain.

There is an 8-bit control register for each interface, which provides direct access to

the CLK and DATA outputs, an enable bit to enable the interface, and five status flags.

The KBDCR is programmed at address 0x03200008, and the MSECR (mouse control

register) at address 0x032000AC.

T transmit status

R receive status

E enable

P received parity

D data pin status

C clock pin status

Write bits[7:4,2] ignored

bit[3] enable

0 state machine cleared

1 state machine enabled

bit[1] force KBDATA/MSDATA pin LOW

0 don't force LOW

1 force LOW

bit[0] force KBCLK/MSCLK pin LOW

0 don't force LOW

1 force LOW

Read bit[7] TXE, shift register empty

0 not ready

1 enabled and ready to transmit

0347 1256

D CT T R R E P



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-31

Open Access - Preliminary

bit[6] TXB, transmitter busy

0 not busy

1 currently sending data

bit[5] RXF, receive shift register full

0 not full

1 ready to read

bit[4] RXB, receiver busy

0 not busy

1 currently receiving data

bit[3] ENA, state machine enable

0 disabled

1 enabled

bit[2] RXP, receive parity bit, odd parity bit for last received data

bit[1] KBDATA/MSDATA pin value after synchronization

bit[0] KBCLK/MSCLK pin value after synchronization

There is also a data register (KBDAT) which is used both to write bytes to be

transmitted across the serial link and to read bytes received. The KBDAT register is

programmed at address 0x03200004, and the MSEDAT (Mouse data register) is

programmed at address 0x032000A8.

The interfaces generate two interrupts each, one to indicate that the transmit buffer is

empty and thus that another byte can be transmitted, and one to indicate that a byte

has been received by the interface. These interrupt bits are processed by the IRQB

register set (for Keyboard) and the IRQD register set (for Mouse).

The keyboard interface is held in reset until the enable bit in the control register is set.

The interface can be controlled on the basis of the interrupts generated, or by polling

the status flags in the control register. The Tx interrupt is generated when the transmit

buffer has been emptied and the interface is ready to be programmed with another

character for transmission. The Rx interrupt is set when a complete character has

been received in the receive buffer, and the byte is ready to be read from the register.

The received data parity bit, RXP, is available in the control register at bit 2. Odd parity

is used. The keyboard and mouse interface state machines are clocked by the 8MHz

I/O system clock.

The KCLK/MSCLK signal is always driven by the keyboard/mouse, unless

ARM7500FE wishes to prevent the peripheral from transmitting (because it is about to

transmit some data itself). When data is received from the peripheral,

the KDATA/MSDATA line is pulled low as a start bit. Each data bit is set up to

the falling edge of the clock. Eight data bits are transmitted from the keyboard/mouse,

followed by a parity bit (odd parity) and a HIGH stop bit. The diagram below shows

the protocol of this transfer.



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-32

Open Access - Preliminary

 Figure 18-21: ARM7500FE Keyboard/mouse controller receive protocol

When ARM7500FE transmits a byte to the peripheral, the KCLK/MSCLK line is pulled

LOW, then allowed to float and the KDATA/MSDATA line is pulled LOW, as a request

to send. The keyboard/mouse then drives the clock, causing ARM7500FE to put eight

bits of serial data out onto the KDATA/MSDATA line. A parity bit is driven out, followed

by a stop bit, and the stop bit may be acknowledged by the peripheral

(the ARM7500FE does not check on the acknowledge). The timing requirements of

the interface are shown in Figure 18-22: Keyboard/mouse interface timing:

.

 Figure 18-22: Keyboard/mouse interface timing

KCLK

KDATA

Tkclk

1 2 3 4 5 6 7 8 9 10 11

Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Parity Stop

KCLK

KDATA receive

KDATA transmit

KCLK rq to send

KDATA rq to send

Tkckl
Tkckh

Tdhi
Tdsi

Tdso
Tdho

Tki
Tkrg

Tksb



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-33

Open Access - Preliminary

Symbol Parameters Min Typ Max Units Notes

Tkclk keyboard clock period 1 100 µs

Tkckl keyboard clock low time 0.5 50 µs

Tkckh keyboard clock high time 0.5 50 µs

Tdhi hold on DATA from CLK rising for Receive 1 Tkckh - 1µs µs

Tdsi setup on DATA to CLK falling for Receive 1 Tkckh - 1µs

Tdso setup on DATA to CLK rising for Transmit Tkckl - 1µs Tkckl

Tdho hold on DATA from CLK falling for Transmit 0ns 1µs

Tki time for which CLK is held low to request a send 63.5 64 64.5 µs

Tkrg clock low from ARM7500FE to clock low from

keyboard for request to send

1 µs

Tksb clock low to data low hold time for request to

send

1 µs

 Table 18-6: Keyboard/mouse cycles



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-34

Open Access - Preliminary

18.10 Analog to Digital Converter Interface

ARM7500FE contains four analog comparators with 16-bit timers, which are designed

primarily for the implementation of an analog joystick interface. Each converter is of

the slope integration type, using an external RC network attached to the appropriate

ATOD[3:0] pin to generate a variable ramp delay.

The time taken for the voltage at the input to the comparator to reach the comparator’s

threshold is measured by a 16-bit counter which is stopped when the threshold of

the comparator is reached. At this point an internal “stop” flag for that channel is set.

The value is held in the counter until it has been read and the channel is then reset.

Discharge transistors on the analog inputs are used to discharge the external

capacitor and to initiate a new integration cycle.

18.10.1 Counters

Each of the four counters can be reset by programming one of four bits in the ATODCR

register. The four counters cannot be written to but can be read at addresses as

follows:

CNT1 (0x032000EC) counter 1

CNT2 (0x032000F0) counter 2

CNT3 (0x032000F4) counter 3

CNT4 (0x032000F8) counter 4

The four counters have been implemented as simple asynchronous ripple counters,

and it is therefore important that they should not be read until the ‘stop’ flag for that

particular channel has been set, as seen in the status register, to indicate that

the counter has been stopped and the read back value will be stable.

18.10.2 Interrupt control

There is a single bit in the main ARM7500FE interrupt handling registers (bit 2 of

the IRQD set) which can accept an interrupt from the A to D converters. Thus, some

interrupt pre-processing is done to determine how this main interrupt is to be

generated. An interrupt control register is provided so that various combinations of

channels can generate the final interrupt.

There are four possible interrupt sources, one for each channel, and each channel

attempts to generate an interrupt when the comparator threshold is reached and the

‘stop’ flag is set internally.

Each of these interrupt sources can be individually enabled using the lower four bits

of the Interrupt Control register, and the upper four bits determine which combination

of bits will create the main interrupt which is passed to the IRQD registers.



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-35

Open Access - Preliminary

Address 0x032000E0 - Interrupt Control

1 channel 1 interrupt enable

2 channel 2 interrupt enable

3 channel 3 interrupt enable

4 channel 4 interrupt enable

C any combination of channels generates nIRQ

A only all channels enabled generates nIRQ

F first pair enabled generates nIRQ

S second pair enabled generates nIRQ

Write bit[7:0] 0: disabled, 1: enabled

Read return above values

Reset reset to 0x0F

Note: The OR of bit[3:0] is used to power-up all the comparators. Thus they reset to
the powered-up state.

18.10.3 Status of interface

The status of the 'stop' flag for each channel can be read directly from bits 0 to 3 of

the status register, as can the interrupt status, which is simply the logical AND of

the 'stop' flag values and the corresponding channel enables from the interrupt control

register.

This register should be read by the system software in a polled system to check

whether a channel has reached its final count value and is thus waiting to be read

before another conversion cycle can be initiated.

Address 0x032000E4 - Status

R[3:0] interrupt request state for channels 4 to 1

S[3:0] stop flag for channels 4 to 1

Write ignored

Read bit[7:4]

0 not requesting

1 requesting

Reset set all zero (not requesting)

0347 1256

S F A C 4 3 2 1

0347 1256

R R R R S S S S



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-36

Open Access - Preliminary

18.10.4 Control

The converter control register allows the discharge transistors and counters for each

channel to be enabled and disabled, to give full control over the resetting of the counter

and the timing of the start of a conversion cycle. Before a conversion can be started,

the discharge bit and the counter clear bit for the channel in question should be forced

one and zero respectively, and then the bits should be returned to zero and one

respectively to actually initiate a conversion cycle. This will cause the analog voltage

across the external capacitor to begin to ramp up, and simultaneously the 2MHz clock

to the counters will be enabled, thus starting the count.

Synchronization between the memory system clock which is used to program

the registers, and the 2MHz I/O world clock results in a small extra delay before

the counter is really enabled, but this is negligible against the 0.5µs period of the 2MHz

clock.

Address 0x032000E8 - Converter control

D[3:0] discharge transistor control for channels 4 to 1

C[3:0] clear counter for channels 4 to 1

Write bit[7:4]

0 transistor off

1 transistor on (discharge)

bit[3:0]

0 clear counter

1 enable counter

Read return above values

Reset set all zero (clear counters and don’t discharge)

18.10.5 Comparators

The comparators are accurate to 2.5mV resolution and require a stable reference

voltage of less than 2.5V to function correctly. The reference voltage is applied at

the ATODREF pin. The same reference voltage is routed to all four comparators.

In order for the comparators to function correctly, it is essential that the reference

current to the Video DACs on the VIREF pin is present, as this current is used

to generate the operating current used by the gain stages in the comparator.

The comparator reference currents are disabled to save power if all the interrupt

enables (bits 0 to 3 of the interrupt control register) are set to zero. So, at least one

channel must be enabled for any of the channels to function correctly.

0347 1256

C CC CD D D D



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-37

Open Access - Preliminary

18.10.6 Converter operation

The values of the capacitance and variable resistance used in the external RC circuit

determine the range of time delays which will be seen from the moment the capacitor

begins to charge to the moment that the comparator threshold is crossed.

The 16-bit counters are clocked by the 2MHz internal clock (derived from the 32MHz

I_OCLK), and thus the counter will count for 65536 values over 32.7ms before

returning to zero. In order to provide a meaningful reading from the converter, it is

important that the capacitor and variable resistor values are such that this time will not

be exceeded under the worst case conditions. The A to D converter is effectively

providing a digital count directly related to the value of the resistance in the RC circuit.

18.11 Timers

The ARM7500FE includes two general-purpose timers which can be used as interrupt

sources. Each timer is implemented as a 16-bit down counter, and has an input latch

and an output latch associated with it. The counter decrements continuously, clocked

at 2MHz. When it reaches zero, it is reloaded from the input latch and the downcount

restarts.

There are four 8-bit-wide registers associated with the two timers. Each timer has

• two eight bit registers corresponding to the 16-bits of the timer

• two further write-only registers which cause the GO and LATCH commands

to be issued to the appropriate timer when written to

The diagram below shows the timer configuration.

 Figure 18-23: Timer configuration

Control
Logic

2 MHz

GO

Latch

Count high Count low

16-bit counter

Latch high Latch low

Data[7:0]



Named Partner Confidential - Preliminary Draft

I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-38

Open Access - Preliminary

18.11.1 Programming the timers

The locations of the registers can be found in Chapter 16: Memory and I/O
Programmers’ Model .

Writing to the following registers updates the values as described below:

T0LOW register updates the value in the lower half of the timer 0 input latch

T0HIGH register updates the value in the upper half of the timer 0 input latch
with the written value.

T0GO register loads the counters immediately with the value programmed
into the input latch. If the counter is loaded with zero it will
continuously reload.

T0LATCH register places the current count value in the output latch.

Reading the following registers updates the values as described below:

T0HIGH register returns the upper 8 bits of the count value

T0LOW register returns the lower 8 bits of the count value.

18.11.2 Timer interrupts

Each timer will generate an interrupt when it reaches zero and is reloaded.

These interrupts are handled by the IRQA set of interrupt processing registers

(bits 5 and 6).

The timers can be used to generate timed interrupts at regular intervals T, where:

T = (T0LOW + (256 * T0HIGH)) * 0.5 µs.

18.12 General-purpose, 8-bit-wide, I/O Port

A general-purpose 8-bit-wide I/O port is included in the ARM7500FE. The eight open

drain output pins IOP[7:0] can be driven LOW or monitored as inputs by using

the IOLINES register at address 0x0320000C.

When read, this register will return the current value seen at the IOP[7:0] pins. When

written to, each bit will control the status of the corresponding IOP pin. When a one is

written to a bit, that pin's output enable is switched off and it can be driven as an input.

When a zero is written to a bit, the corresponding output pin is forced LOW.

There is a complete set of three interrupt control and status registers (IRQD) for

the IOP pins, which allow any bit to generate a unique interrupt. The interrupt is

generated when the corresponding IOP bit is LOW.

18.13 ID and OD Open Drain I/O Pins

There are three further open drain I/O pins:

ID is intended to be used with an ID chip, which outputs a unique system
ID when the ID pin is forced LOW. During Power On Reset the ID
output is forced LOW, and it then becomes tri-state on leaving reset.

OD[1:0] could be used to implement a simple serial link.



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-39

Open Access - Preliminary

These are written to via the IOCR register, and are not capable of generating

interrupts. Each pin is forced LOW by programming a zero to the appropriate bit in the

IOCR register. Programming a one to any bit causes the corresponding pin to be

tri-stated, and the value of the input level applied to the pin can then be read back from

the same bit of the IOCR register.

Note: These three pins do not have pull ups on-chip, and so it is advisable to fit them
externally if they are not connected to another device.

18.14 Version and ID Registers

The ID register is composed of two 8-bit hardwired registers which are read only.

The lower byte is accessed at location 0x03200094, and the upper byte at location

0x03200098. Together they should return the value 0xAA7C.

The Version register is accessed at location 0x0320009C, and this will read back

the version number of the device.

Note: Under no condition should either of these registers be written to, as this may cause the
chip to enter a test mode.

18.15 Interrupt Control

The ARM7500FE interrupt handler takes interrupts from a variety of sources and

generates the IRQ or FIQ interrupt signals required by the ARM processor, depending

on the settings of the control and enable bits in the five sets of interrupt registers.

The five sets are:

• FIQ

• IRQA

• IRQB

• IRQC

• IRQD

Each of these has a status, mask and request register associated with it, giving a total

of 15 registers.

Table 18-7: Interrupt table on page 18-40 shows the interrupt sources featuring in

each set of registers. The polarity entry refers to the level required at the external pin

to set the interrupt. ‘Internal’ means that the interrupt is generated as a result of

an internal state change, as opposed to change on an external pin.

When an interrupt signal is received from one of the interrupt sources, it causes

the corresponding bit in the status register to go HIGH. This bit is then logically ANDed

with the appropriate bit in the mask register, to create a value in the appropriate bit of

the request register. If any of the bits in any of the IRQ request registers are HIGH,

then the ARM7500FE will generate an internal IRQ interrupt to the ARM processor

macrocell, causing the IRQ exception to be taken. If any of the bits in the FIQ request

register are HIGH, the ARM7500FE will generate an internal FIQ interrupt to the ARM

processor, causing the FIQ exception to be taken.

The system software can then read the request registers to determine which sources

were requesting an interrupt. Reading the status registers will show which sources

were requesting interrupts, even if they were masked.



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-40

Open Access - Preliminary

The IRQA request register is slightly different in that some of the interrupt flags are

edge triggered and thus need to be cleared after they have been read. All other

request registers are read only, but the IRQRQA register can be written to clear

triggered interrupts. Writing a one to a bit clears that interrupt. Writing a zero causes

no action to be taken.

Register Bit Polarity/Type Name/Function

FIQ 7 Always active for software generated FIQ.

6 LOW nINT8 interrupt pin

5

4 LOW nINT6 interrupt pin

3

2

1 HIGH INT5 interrupt pin

0 HIGH INT9 interrupt pin

IRQA 7 Always active for software generated IRQ.

6 internal 2MHz timer 1

5 internal 2MHz timer 0

4 falling edge nPOR power on reset

3 internal Flyback from video subsystem

2 falling edge nINT1 interrupt pin

1

0 rising edge INT2 interrupt pin

IRQB 7 internal Keyboard Rx buffer full

6 internal Keyboard Tx buffer empty

5 LOW nINT3 interrupt pin

4 LOW nINT4 interrupt pin

3 HIGH INT5 interrupt pin

2 LOW nINT6 interrupt pin

1 HIGH INT7 interrupt pin

0 LOW nINT8 interrupt pin

IRQC 7 LOW IOP[7] interrupt pin

 Table 18-7: Interrupt table



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-41

Open Access - Preliminary

6 LOW IOP[6] interrupt pin

5 LOW IOP[5] interrupt pin

4 LOW IOP[4] interrupt pin

3 LOW IOP[3] interrupt pin

2 LOW IOP[2] interrupt pin

1 LOW IOP[1] interrupt pin

0 LOW IOP[0] interrupt pin

IRQD 7

6

5

4 LOW nEVENT2 wake-up event

3 LOW nEVENT1 wake-up event

2 internal A to D convertor interrupt

1 internal Mouse Tx buffer empty

0 internal Mouse Rx buffer full

Register Bit Polarity/Type Name/Function

 Table 18-7: Interrupt table  (Continued)



I/O Subsystems

ARM7500FE Data Sheet
ARM DDI 0077B

18-42

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

19-1

11
1

Open Access - Preliminary

This chapter describes clock control, power management, and reset.

19.1 Clock Control 19-2

19.2 Power Management 19-4

19.3 Reset 19-6

Clocks, Power Saving, and Reset19



Named Partner Confidential - Preliminary Draft

Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-2

Open Access - Preliminary

19.1 Clock Control

ARM7500FE has a clocking scheme designed to allow maximum flexibility for

the system designer. There are three main clock inputs:

CPUCLK CPU clock, used to generate the ARM processor’s FCLK

MEMCLK Memory subsystem clock, used to generate the memory system
clock, and the ARM processor’s MCLK

I_OCLK I/O system clock, which should be fixed at 32MHz (in divide by 1
mode) or 64MHz (in divide by 2 mode), and is used to generate all the
fixed frequency I/O clocks and refresh rates.

19.1.1 Video and sound subsystem clocks

The video sub-system has two separate external clock inputs and includes a phase

locked loop to enable the control of an external VCO.

The pixel clock source can be selected to be VCLKI (using an external VCO), HCLK,

which is driven directly in from the HCLK pin, or IOCK32 (also referred to as RCLK),

which is the internal I/O subsystem clock and is generated directly from the main

I_OCLK input pin as described below. The sound subsystem can be clocked either

from IOCK32 generated internally from I_OCLK, or by using an externally generated

clock connected to the SCLK pin.

Selection between these various clock sources is described in the video and sound

sub-systems section of this data sheet.

19.1.2 I/O clock outputs

Four fixed frequency I/O clocks are output by the ARM7500FE, all divided down from

the fixed frequency input I_OCLK which should be set to 32MHz in divide-by-1 mode.

These are:

CLK16 (16MHz)

REF8M (8MHz)

CLK8 (An inverted version of REF8M)

CLK2 (2MHz)

19.1.3 Synchronous/asynchronous mode for the ARM processor

The ARM processor macrocell can be configured to work in synchronous or

asynchronous mode, under the control of the SnA pin. Synchronous mode can only

be used within the ARM7500FE if the correct relationship is maintained between the

internal ARM processor clocks, FCLK and MCLK and in fact when SnA is set HIGH,

both FCLK and MCLK are derived from MEMCLK, with a suitable delay to ensure the

required phase relationship between FCLK and MCLK is held correctly, ie. CPUCLK
is ignored when SnA = 1. In particular, FCLK will be equal to MEMRFCK (see section

19.1.4 Clock prescalers on page 19-3) and MCLK will be equal to half MEMRFCK. If

the FCLK frequency is required to be different from the MEMRFCK frequency, the SnA
pin must be held LOW, and a suitable frequency applied to CPUCLK.



Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-3

Open Access - Preliminary

19.1.4 Clock prescalers

Each of the three main clock inputs CPUCLK, I_OCLK and MEMCLK has a selectable

divide by 2 prescaler available within ARM7500FE to enable a guaranteed 50:50

mark-space ratio internal clock to be produced using a higher frequency external

oscillator. The internal clocks, which will be referred to elsewhere in this data sheet,

are called FCLK, IOCK32 and MEMRFCK respectively.

On Power On Reset, all the prescalers will be set to divide by 2. The prescaling is

controlled by the CLKCTL register at address 0x0320003C, and there is one bit

to enable or disable each divide by 2 prescaler as required:

C CPUCLK divide control

M MEMCLK divide control

I I_OCLK divide control

Write bit[2]

0 FCLK x 2 = CPUCLK

1 FCLK = CPUCLK

bit[1]

0 MEMRFCK x 2 = MEMCLK

1 MEMRFCK = MEMCLK

bit[0]

0 IOCK32 x 2 = I_OCLK

1 IOCK32 = I_OCLK

Read return above value

Power On Reset

set all to zero, ie. divide by 2 clocks

19.1.5 Clocking schemes

The simplest mode of operation of the ARM7500FE has all three of the main clocks

driven by a single 32MHz oscillator, with the prescalers set to divide-by-1 mode.

However, it is possible to increase the speed of the memory and CPU clocks, noting

that if this requires FCLK and MEMRFCK frequencies to be different, the SnA input

must be set LOW for asynchronous operation and a suitable clock applied to

CPUCLK. The I_OCLK frequency must remain at 32MHz (or 64MHz if the divide by 2

prescalers are enabled).

Note: Nearly all timings in this datasheet assume that both I_OCLK and MEMCLK are
running at 32MHz (or 64MHz with the divide by 2 prescalers on).

Increasing the memory clock frequency allows the system designer to take advantage

of faster DRAM memory. The ARM7500FE includes full synchronization at

the interface between the memory and I/O sub-systems to ensure safe operation

under asynchronous conditions.

0347 1256

X X X X X M IC



Named Partner Confidential - Preliminary Draft

Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-4

Open Access - Preliminary

19.2 Power Management

The ARM7500FE includes power management circuitry which greatly enhances

its suitability for battery powered portable applications where power consumption is of

paramount importance. There are three power management modes:

NORMAL the default operating condition in which all clocks are running
and the chip is functioning normally.

SUSPEND the clocks to the CPU (FCLK and MCLK) are stopped, but all
other parts of the chip remain active so DMA can continue
and the display can continue to be refreshed. It is also
possible to stop some of the external I/O clock outputs to
save more power if this can be done safely without causing
problems for I/O peripherals connected to these clocks.

STOP allows all the clocks to the ARM7500FE to be stopped, and
the whole chip will then draw only leakage currents provided
all required registers have been appropriately programmed.
Outputs are provided from the ARM7500FE to enable
the oscillator(s) to be powered down, and circuitry to allow
the oscillator(s) to cleanly restart using an external RC delay
before the clocks inside the ARM7500FE are re-enabled.
Before STOP mode is entered, a number of registers need
to be programmed appropriately in the video sub-system,
and further details of the full sequence of events required
to make most effective use of the power management
features can be found in 19.2.2 STOP mode.

19.2.1 SUSPEND mode

Entry into SUSPEND mode is achieved by writing to the register location 0x0320001C.

Any value can be used, but the value written to bit 0 will determine whether

the external I/O output clocks CLK16, CLK8, REF8M and CLK2 are stopped.

DMA may continue unaffected, allowing the display and DRAM data to remain

refreshed.

Exit from SUSPEND mode is achieved by a falling edge on either of the asynchronous

input event pins, nEVENT1 and nEVENT2, or by any enabled interrupt source

generating a FIQ or IRQ interrupt for the ARM processor. The assertion of nRESET
will also cause exit from SUSPEND mode. It is important that the interrupt mask and

enable registers are programmed appropriately before SUSPEND mode is entered if

it is intended that an interrupt source be used to terminate the power saving mode.

The CPU will merely see SUSPEND mode as a write to a location in the memory and

I/O register area. It will be unaware of the duration of this write, as both MCLK and

FCLK are frozen, and it is a fully static device. The careful use of SUSPEND mode

when no CPU operations are required will have a significant effect on the device‘s

average power consumption. It could be used, for example, between key presses

while waiting for more user input. The keyboard controller is still clocked during

SUSPEND mode and so will be able to generate interrupts which will cause

the termination of the write cycle and then cause the CPU to take the interrupt

exception.



Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-5

Open Access - Preliminary

Details of the SUSMODE register (address 0x0320001C) are shown below:

S SUSPEND mode control of external I/O clocks

Write turn off external I/O clocks when in this mode

0 turn off

1 don't turn off

Enter Suspend mode with MCLK,FCLK,I/O clocks and some internal
clocks stopped. DMA continues and instruction completes on either
wake-up event, nIRQ or nFIQ.

Read return above value

Reset set to zero

19.2.2 STOP mode

Entry into STOP mode is achieved by writing to the register location 0x0320002C.

Any value can be written to the register to enter STOP mode, but the value written will

appear on the external data bus of the ARM7500FE while the chip is in STOP mode.

It is therefore recommended that the value 0xFFFFFFFF be written to this register as

this will mean that both D[31:0] and LA[28:0] are driven HIGH during STOP mode.

It is very important that all DMA activity is stopped, that all I/O activity is completed,

and that the video subsystem is powered down correctly before the STOP mode

register is written to. The OSCPOWER output is controlled by the power management

circuitry, and will be forced LOW a short time after the write cycle begins. This output

may be used to disable the external oscillator(s).

Exit from STOP mode can only be achieved by the use of the asynchronous wake-up

event pins nEVENT1 and nEVENT2. When either of these is forced LOW, a sequence

of events will be triggered which will cause the oscillator(s) to be restarted cleanly.

During STOP mode, a zero is driven out from the OSCDELAY pin, which ensures that

an external capacitor forming part of an RC network attached to the OSCDELAY pin

remains discharged. As soon as a wake up event occurs the OSCPOWER pin is set

HIGH again, and the open drain OSCDELAY pin is allowed to float and becomes

an input.

At this point, the external capacitor starts to charge, until the schmitt threshold of

the OSCDELAY input is exceeded. From this point, a further two rising edges must be

seen on the input clock from the oscillator before the clock is allowed through to

the internal ARM7500FE circuitry. The component values used in the RC circuit

should be chosen to ensure that the oscillator has sufficient time to stabilize before

the OSCDELAY input is triggered.

As the video subsystem is inherently dynamic for performance reasons, it is necessary

to set it into a special Powerdown mode before STOP mode is entered. To do this,

the video Ext register should be programmed with the data 0xC0000000, the Video

Control register should be programmed with the data 0xE00040xx (the last byte will

depend on the clock source and configuration), and the Sound Control register should

be programmed with the data 0xB1000000 (if the sound system is configured for use

0347 1256

X X X X X X X S



Named Partner Confidential - Preliminary Draft

Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-6

Open Access - Preliminary

with the SCLK pin as the clock source). If the sound system is being clocked from

the ARM7500FE’s internal 32MHz I/O clock, then the register should be programmed

with the value 0xB1000001. These actions will disable the video datapath and ensure

the entire macrocell is forced into a static state. To ensure that the comparators in

the A to D converters do not consume current, they should be shut down by

programming the value 0x00 into the ATODICR register at location 0x032000E0.

ARM7500FE includes support for self refresh DRAM, and it is intended that this

feature should be used during STOP mode to ensure that DRAM contents are

preserved. This DRAM mode is activated by allowing direct software control of

the nCAS and nRAS output pins. The SELFREF register (0x032000D4) can be used

to directly force the nRAS and nCAS output pins according to the protocol required for

a particular DRAM, in order to enter self-refresh mode. This programming must be

performed by code executing from ROM.

In STOP mode ARM7500FE will consume leakage currents only, and can be held

indefinitely without corruption of the internal registers, CPU cache, etc.

19.3 Reset

The ARM7500FE has three pins associated with reset. The nPOR pin is intended for

use with an external RC delay to generate a power-on-reset pulse when the chip is

switched on. The nRESET pin is an open drain I/O pin, which is intended to be used

to generate a “soft” reset. Both nPOR and nRESET are active LOW schmitt inputs.

The active HIGH RESET pin is a clean reset output, which is created from

the synchronized version of the nRESET input, and is also forced HIGH during nPOR.

A LOW state on the nPOR input sets the POR bit in the IRQA status register. This bit

can later be examined to show that the reset which occurred was an nPOR type rather

than nRESET. The POR bit in the IRQA status register is not reset until the POR clear

bit in the IRQA request register is written to. nPOR also causes the prescalers on

the clock inputs to be set to divide by 2. The nPOR input is passed through a pulse

stretcher which ensures that even a short pulse on the input will guarantee a full reset

of the whole of ARM7500FE. See Figure 19-1: nPOR timing diagram. During nPOR
reset, nCAS is forced low throughout and the nRAS outputs are changed according

to the sequence in Figure 17-14: Refresh cycle timing on page 17-19. While nPOR is

LOW, nRESET and ID (which are both open drain pins) are held LOW, and

an incrementing address value will be output on the LA address bus.

A LOW state on the nRESET input is used to generate a 'soft' reset. This does not set

any interrupt flags, and the nRESET LOW state must exist for longer than 2us to

guarantee that it is seen, as it is passed through a synchronizer before being used by

the internal circuitry. Figure 19-2: nRESET timing diagram below shows the required

timing of nRESET to ensure correct operation. At the start of the nRESET active

period, the whole ARM7500FE (including the DRAM refresh state machine and

counter) is reset for 1us, and for the remaining duration of the nRESET pulse, DRAM

refresh takes place at the highest selectable rate. During nRESET, the ARM processor

outputs an incrementing address on the LA bus.



Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-7

Open Access - Preliminary

 Figure 19-1: nPOR timing diagram

 Figure 19-2: nRESET timing diagram

1 Tpre = 2µs if I_OCLK is 64MHz. Tpre is 4µs if I_OCLK is 32 MHz as this reset
forces divide by 2 mode on the clock inputs.

2 DMA or writes from the ARM Processor prevent nRESET having any effect
for their duration. Thus the “soft” reset cannot break write cycles or cause
partial DRAM refresh.

3 Assuming IOCK32 is 32MHz.

Symbol Parameters Min Typ Max Units Notes

Tpr time for which nPOR must be held low to guarantee a reset 20 ns

Tpre length of internal reset 2 4 µs 1

 Table 19-1: nPOR and nRESET timing

Symbol Parameters Min Typ Max Units Notes

Tnr time for which nRESET must be held low to guarantee reset 2 µs 2, 3

Tre length of internal reset 2 µs 3

 Table 19-2: nRESET timing

nPOR

nRESET

RESET

Tpr

Tpre

nRESET

RESET

Tnr

Tre



Clocks, Power Saving, and Reset

ARM7500FE Data Sheet
ARM DDI 0077B

19-8

Open Access - Preliminary

 Figure 19-3: nRESET timing

When in STOP mode, nRESET will force the power management control circuitry

to revert to normal mode, without necessarily causing a reset sequence to occur.

Symbol Parameters Min Typ Max Units Notes

Tres nRESET setup to I_OCLK rising 0 ns

Treh nRESET hold from I_OCLK rising 30 ns

 Table 19-3: nRESET timing

IO_CLK

nRESET

Tres
Treh



ARM7500FE Data Sheet
ARM DDI 0077B

20-1

11
1

Open Access - Preliminary

This chapter describes the ARM7500FE bus interface.

20.1 Bus Arbitration 20-2

20.2 Bus Cycle Types 20-2

20.3 Video DMA Bandwidth 20-3

20.4 Video DMA Latency 20-4

Bus Interface20



Named Partner Confidential - Preliminary Draft

Bus Interface

ARM7500FE Data Sheet
ARM DDI 0077B

20-2

Open Access - Preliminary

20.1 Bus Arbitration

Arbitration for the main ARM7500FE data bus is carried out with the priorities shown

below:

1 Video/cursor DMA

2 Sound DMA

3 DRAM refresh

4 ARM processor memory cycles

As the ARM7500FE contains a cached processor, ARM internal cycles can continue

while DMA is in progress, but the CPU will stall when it suffers a cache miss and

wishes to fill a cache line from memory.

Once an external memory cycle has started, DMA has to wait until it is completed.

The exception is for I/O reads or writes and SUSPEND mode, where the write data is

latched internally at the start of the cycle, after which DMA requests can be serviced

even though the I/O access or SUSPEND mode is under way. The end of an I/O

access is held up until the current DMA access is completed. I/O read data is latched

internally when available, and is not enabled onto the ARM7500FE data bus until any

DMA transfers have completed.

20.2 Bus Cycle Types

There are a large number of different types of cycle which make use of

the ARM7500FE data bus. Except for DMA accesses, the cycle type is decoded

according to the address put out by the ARM processor macrocell, and the detailed

timing is controlled by the relevant section of the I/O or memory controller subsystem.

The ARM processor supports two basic types of external cycle:

non-sequential consists of an Idle cycle followed by a memory cycle

sequential consists simply of a memory cycle

The idle cycle allows the memory and I/O controller subsystems time to prepare for

a new cycle type. These two cycles are used as the basic building block for the more

complex I/O and memory access cycle timings generated by the ARM7500FE.

ARM processor external cycles are clocked by the internal Mclk signal which is

generated by the ARM7500FE’s memory controller according to the type of cycle.

Only the latched version of the ARM processor’s address is exported from

the ARM processor, and this can only change immediately after the falling edge of

the internal Mclk signal which clocks the ARM for external accesses. The timing

diagrams in this datasheet may include Mclk as a reference as it indicates the end of

a particular cycle. The ARM7500FE internal data bus is not always exported during

internal register programming, to save power.



Bus Interface

ARM7500FE Data Sheet
ARM DDI 0077B

20-3

Open Access - Preliminary

When the ARM processor requests an external memory access, it will do so for one of

a number of reasons:

• A cache linefetch will always consist of memory reads from four sequential

addresses.

• A level 1 translation fetch will consist of a read from memory followed by the

address translation such that the next address put out by the ARM will be the

translated physical address as generated from the read back section

descriptor.

• A level 2 translation fetch is always preceded by a level 1 fetch, and returns

the page table entry, which is then used to create the physical address for the

next cycle.

External buffered and unbuffered write cycles take place with indistinguishable bus

timing. When the ARM wishes to read from a location and the data is not in the cache

or is uncacheable (eg. for I/O), then an external read access is performed.

20.3 Video DMA Bandwidth

The maximum video DMA bandwidth depends on the MEMCLK frequency and

the DRAM width (16 or 32-bit), but can be calculated as follows.

The length of the non-sequential cycle at the start of a DRAM read will vary.

Assuming bit 5 of the DRAMCTL register is LOW:

• in Page Mode, each non-sequential cycle will take 5 cycles

• in EDO mode, each non-sequential cycle will take 6 cycles

This will be increased by 1 if Bit 5 is HIGH, and by a further 1 or 2 to preserve RAS

precharge times, depending on whether the access just finished was to the same bank

as the current one, and whether bit 6 of DRAMCTL is also set.

Assuming Fast Page Mode without further non-sequential delays, each quadword

DMA requires 5+2+2+2 = 11 MEMCLK cycles to complete. It is possible for DMA

requests for the video to be serviced sequentially such that the second and

subsequent quadword DMA bursts take only 2+2+2+2=8 MEMCLK cycles each.

However, all accesses will be broken up at page boundaries (every 256 words). So

every 64 DMA bursts, there will be three extra MEMCLK periods required.

Therefore, at 32MHz MEMCLK, with 32-bit wide DRAM, 64 quadwords would be

transferred approximately every 16us. The maximum theoretical DMA bandwidth is

thus 63.6MBytes/second. If a greater video DMA bandwidth than this is required,

a higher MEMCLK frequency will need to be used. In a real system, the average

bandwidth will not achieve this theoretical maximum.



Named Partner Confidential - Preliminary Draft

Bus Interface

ARM7500FE Data Sheet
ARM DDI 0077B

20-4

Open Access - Preliminary

20.4 Video DMA Latency

DMA latency is defined to be the time from the generation of the internal request for

more data from the video FIFO in the video macrocell, to the time at which the first

word of DMA data is clocked into the video macrocell.

There are several possible limiting factors which may determine the worst case DMA

latency, depending on the type of memory system with which ARM7500FE is

configured to be used. There are three possible limiting cases:

1 Internal register programming cycles

2 Burst mode ROM accesses, or very long non sequential ROM accesses

3 DRAM accesses in 16-bit mode

The following assumes that the internal MEMRFCK frequency is equal to

the MEMCLK frequency, ie the prescalers are set to divide-by-one. The above cases

determine the maximum period before arbitration for DMA occurs in different systems.

In addition to the latency resulting from these sequences, the worst case latency has

a possible 5.5 MEMCLK cycles factor for synchronization, such that the synchronized

request arrives just too late to be arbitrated for, and ARM7500FE commits to

a memory cycle. The 5.5 MEMCLK cycles also includes the ARM processor idle cycle

on which the arbitration (which was just missed) takes place.

From the clock edge at which arbitration finally takes place, to the time at which

the first word of DMA data is clocked into the video macrocell, is 5.5 MEMCLK cycles,

or 7.5 MEMCLK cycles if the preceding access was to DRAM in the same bank as this.

These values assume bits [7:5] in DRAMCTL are all set HIGH; ie. EDO memory.

Internal register programming bursts can occur in blocks of up to four before

re-arbitration takes place, and this will take 16 MEMCLK cycles. Burst mode ROM

cycles are re-arbitrated after every four, as are sequential DRAM accesses.

Successive non-sequential accesses will always allow DMA onto the bus, so it is

unlikely that these will be the cause of the worst case latency. However, it would be

possible to use the ROM interface in half speed mode, with the slowest ROM timing

and a 16-bit-wide ROM, in which case an access would take 28 MEMRFCK cycles.

Under these circumstances the ROM interface could be the limiting factor.

To determine the limiting factor in a system, calculate the number of cycles required

for a worst case ROM access. The number of cycles for each programmed value in

the ROMCR register is shown below:

For a non sequential access, programming bits 0-2:

000 - 7 cycles

001 - 6 cycles For all:

010 - 5 cycles Multiply by 2 if 16-bit mode set

011 - 4 cycles Multiply by 2 if half-speed bit set

100 - 3 cycles

101 - 2 cycles



Bus Interface

ARM7500FE Data Sheet
ARM DDI 0077B

20-5

Open Access - Preliminary

If the burst bits (3-4) are programmed to a value other than 00, then the total worst

case number of cycles will be one times the non-sequential number above, plus three

times the burst number from below:

01 - 4 cycles For all:

10 - 3 cycles Multiply by 2 if 16-bit mode set

11 - 2 cycles Multiply by 2 if half-speed bit set

Then calculate the number of cycles required for a worst case DRAM access. This can

only be the limiting factor when 16-bit wide DRAM is used, and in this case the delay

will be:

9 + (2x7) = 23 cycles

As described above, the worst case delay for four sequential internal register

programming cycles is 16 cycles. So the worst case delay is caused by internal

register access cycles, ROM or DRAM according to which of the above calculated

figures is worst.

DMA can continue over the top of I/O accesses, so these do not feature in the options

for worst case delay. So for a system which is limited by internal register access

cycles, the worst case latency will be:

3.5 + 2 + 16 + 5.5 = 27 MEMCLK cycles.

So if MEMCLK is running at 32MHz, the total worst case DMA latency will be 0.84µs.

As another example, suppose that the ROM interface non sequential access time is

programmed at 7 cycles, and the sequential programmed to 4, using 16-bit wide ROM.

Then the total latency would be:

3.5 + 2 + 14 + 8 + 8 + 8 + 5.5 = 49 MEMCLK cycles.

At 32MHz this corresponds to 1.5µs.



Named Partner Confidential - Preliminary Draft

Bus Interface

ARM7500FE Data Sheet
ARM DDI 0077B

20-6

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

21-1

11
1

Open Access - Preliminary

This chapter gives details of the ARM7500FE memory map.

21.1 ARM7500FE Memory Map 21-2

Memory Map21



Named Partner Confidential - Preliminary Draft

Memory Map

ARM7500FE Data Sheet
ARM DDI 0077B

21-2

Open Access - Preliminary

21.1 ARM7500FE Memory Map

All addresses featured in the ARM7500FE memory map table are physical addresses.

Only 29 bits of the address bus are available, which limits the total memory space to

512Mb.

Memory (Mbytes) Address (Hex) To (Hex) Device

0 00000000 00FFFFFF ROM bank 0

16 01000000 01FFFFFF ROM bank 1

32 02000000 02FFFFFF Reserved

48 03000000 0300FFFF Module I/O space

03010000 0302BFFF 16MHz PC style I/O

0302C000 0302FFFF Reserved

03030000 0303FFFF Further module I/O space

03040000 031FFFFF Reserved

03200000 0320FFFF ARM7500FE registers

03210000 033FFFFF Simple I/O space

03400000 034FFFFF Video registers

03500000 03FFFFFF Reserved

64 04000000 07FFFFFF Reserved

128 08000000 0FFFFFFF Extended I/O space

256 10000000 DRAM bank 0

320 14000000 DRAM bank 1

384 18000000 DRAM bank 2

448 1C000000 DRAM bank 3

512 20000000 ROM bank 0

(repeated)

 Table 21-1: ARM7500FE memory map table



ARM7500FE Data Sheet
ARM DDI 0077B

22-1

11
1

Open Access - Preliminary

This chapter gives the ARM7500FE DC and AC parameters.

22.1 Absolute Maximum Ratings 22-2

22.2 DC Operating Conditions 22-2

22.3 DC Characteristics 22-3

22.4 AC Parameters 22-4

22.5 De-rating 22-6

DC and AC Parameters22



Named Partner Confidential - Preliminary Draft

DC and AC Parameters

ARM7500FE Data Sheet
ARM DDI 0077B

22-2

Open Access - Preliminary

22.1 Absolute Maximum Ratings

Note: These are stress ratings only. Exceeding the absolute maximum ratings may
permanently damage the device. Operating the device at absolute maximum ratings
for extended periods may affect device reliability.

22.2 DC Operating Conditions

Notes:

1 Voltages measured with respect to VSS.

2 IC - CMOS inputs

3 IT - TTL inputs (includes BTZ, TOD, and IT pin types)

4 OCZ - Output, CMOS levels, tri-stateable (includes OCZ, BTZ, TOD,
and CSOD pin types)

5 IS - CMOS Schmitt inputs (includes ICS and CSOD pin types)

Symbol Parameters Min Max Units Notes

VDD Supply voltage VSS-0.3 VSS+7.0 V 1

Vip Voltage applied to any pin VSS-0.3 VDD+0.3 V 1

 Ts Storage temperature -40 125 deg C 1

 Table 22-1: ARM7500FE DC maximum ratings

Symbol Parameters Min Typ Max Units Notes

VDD Supply voltage 4.75 5.0 5.25 V

Vihc IC input HIGH voltage 0.8xVDD VDD V 1, 2

Vilc IC input LOW voltage 0.0 0.2xVDD V 1, 2

Viht IT input HIGH voltage 2.3V VDD V 1, 3

Vilt IT input LOW voltage 0.0 0.6V V 1, 3

Vihs IS input HIGH voltage 3.7 VDD V 1, 5

Vils IS input LOW voltage 0.0 1.6 V 1, 5

Vohc OCZ output HIGH voltage 0.9xVDD VDD V 1, 4

Volc OCZ output LOW voltage 0.0 0.1xVDD V 1, 4

Ta Ambient operating temperature 0 70 deg C

 Table 22-2: ARM7500FE DC operating conditions



DC and AC Parameters

ARM7500FE Data Sheet
ARM DDI 0077B

22-3

Open Access - Preliminary

22.3 DC Characteristics

Notes:

1 When the video subsystem is correctly powered down and ARM7500FE is in
STOP mode.

2 IS - Schmitt trigger input.

3 This does not apply to the video and sound analog pins: VIREF, ROUT,
GOUT, BOUT.

Symbol Parameter Min Typ Units Note

IDD Static Supply current 100 µA 1

Isc Output short circuit current 100 mA

Ilu DC latch-up current >500 mA

Iin IC input leakage current 1 uA

Ioh1 x1 Output HIGH current (Vout = VDD-0.8V) 4 mA

Iol1 x1 Output LOW current (Vout = VSS+0.4V) -4 mA

Ioh2 x2 Output HIGH current (Vout = VDD-0.8V) 12 mA

Iol2 x2 Output LOW current (Vout = VSS+0.4V) -12 mA

Ioh3 x3 Output HIGH current (Vout = VDD-0.8V) 24 mA

Iol3 x3 Output LOW current (Vout = VSS+0.4V) -24 mA

Vihst IS input rising voltage threshold 3.58 V 2

Vilst IS input falling voltage threshold 1.42 V 2

Cin Input capacitance 3.0 pF

ESD HMB model ESD 4 KV 3

 Table 22-3: ARM7500FE DC characteristics



Named Partner Confidential - Preliminary Draft

DC and AC Parameters

ARM7500FE Data Sheet
ARM DDI 0077B

22-4

Open Access - Preliminary

22.4 AC Parameters

 Figure 22-1: Clock timings with Divide-by-1 prescalers selected

 Figure 22-2: Clock timings with Divide-by-2 prescalers selected

 Figure 22-3: Video clock timing

 Figure 22-4: Sound clock timing

CPUCLK

MEMCLK

IO_CLK

Tcpck1l Tcpck1h

Tmck1l Tmck1h

Tiock1l Tiock1h

CPUCLK

MEMCLK

IO_CLK

Tcpck21 Tcpck2h

Tmck2l Tmck2h

Tiock2l Tiock2h

VCLKI

HCLK

Tvckl Tvckh

Thckl Thckh

SCLK

Tsckl Tsckh



DC and AC Parameters

ARM7500FE Data Sheet
ARM DDI 0077B

22-5

Open Access - Preliminary

Notes:

1 Divide-by-1 prescaler selected.

2 I_OCLK = 32MHz in divide-by-1 mode.

3 Divide-by-2 prescaler selected.

4 I_OCLK = 64MHz in divide-by-2 mode.

All other ARM7500FE AC parameters and the associated timing diagrams have been

included in the appropriate sections of the datasheet. The timing values shown are for

the following conditions, as appropriate:

worst case slow silicon, 100 deg junction temperature, VDD=4.75V

best case fast silicon, 0 deg junction temperature, VDD=5.25V

Symbol Parameter Min Nominal Units Note

Tcpck1l CPUCLK LOW time 12.5 ns 1

Tcpck1h CPUCLK HIGH time 12.5 ns 1

Tmck1l MEMCLK LOW time 7.8 ns 1

Tmck1h MEMCLK HIGH time 7.8 ns 1

Tiock1l I_OCLK LOW time 15.625 ns 1,2

Tiock1h I_OCLK HIGH time 15.625 ns 1,2

Tcpck2l CPUCLK LOW time 6.25 ns 3

Tcpck2h CPUCLK HIGH time 6.25 ns 3

Tmck2l MEMCLK LOW time 5 ns 3

Tmck2h MEMCLK HIGH time 5 ns 3

Tiock2l I_OCLK LOW time 7.8125 ns 3,4

Tiock2h I_OCLK HIGH time 7.8125 ns 3,4

Tvckl VCLKI LOW time 4 ns

Tvckh VCLKI HIGH time 4 ns

Thckl HCLK LOW time 4 ns

Thckh HCLK HIGH time 4 ns

Tsckl SCLK LOW time TBD ns

Tsckh SCLK HIGH time TBD ns

 Table 22-4: Clock timing



DC and AC Parameters

ARM7500FE Data Sheet
ARM DDI 0077B

22-6

Open Access - Preliminary

22.5 De-rating

The AC timings included with each timing diagram in this datasheet include only

the intrinsic delay through the output pads. In order to calculate actual delays when

designing the ARM7500FE into a system, it is necessary to add the load-dependent

element of the output pad delay.

The output pads of ARM7500FE are CMOS drivers which exhibit a propagation delay

that increases linearly with the increasing capacitance. An Output derating figure is

given for each of the three types of output pads, showing the increase in output delay

with increasing load capacitance.

Details of which driver is used for which output can be found in Chapter 2: Signal
Description.

De-rating figures are quoted for rising and falling edges.

Label Pad type Rising Falling Units

x1 Low drive capability pad 0.179 0.148 ns/pF

x2 Medium drive capability pad 0.054 0.052 ns/pF

x3 High drive capability pad 0.045 0.037 ns/pF

 Table 22-5: ARM7500FE Pad de-rating



ARM7500FE Data Sheet
ARM DDI 0077B

23-1

11
1

Open Access - Preliminary

This chapter describes the physical details of the ARM7500FE.

23.1 Pin Diagrams for the ARM7500FE 23-2

Packaging23



Named Partner Confidential - Preliminary Draft

Packaging

ARM7500FE Data Sheet
ARM DDI 0077B

23-2

Open Access - Preliminary

23.1 Pin Diagrams for the ARM7500FE

The following two diagrams illustrate the top and side views of the ARM7500FE.

All dimensions are given in millimeters.

 Figure 23-1: Pin diagram for the ARM7500FE

34.6 ± 0.40

32.0 ± 0.20

P
in

 1

P
in

 1
8
0

Pin 181Pin 240

ARM7500FE

Top View

3
4
.6

±
 0

.4
0

3
2
.0

±
 0

.2
0

P
in

 1
2
1

Pin 120Pin 61

P
in

 6
0



Packaging

ARM7500FE Data Sheet
ARM DDI 0077B

23-3

Open Access - Preliminary

 Figure 23-2: Side view of ARM7500FE chip

0.50 typ

0.23 ± 0.07

0
.2

5
 m

in

0.60 ± 0.15

3
.4

0
 ±

 0
.2

0
1.30 ref



Named Partner Confidential - Preliminary Draft

Packaging

ARM7500FE Data Sheet
ARM DDI 0077B

23-4

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

24-1

11
1

Open Access - Preliminary

This chapter describes the ARM7500FE pinout.

24.1 Pin Details 24-2

Pinout24



Pinout

ARM7500FE Data Sheet
ARM DDI 0077B

24-2

Open Access - Preliminary

24.1 Pin Details

The following table gives the signal name for each of the 240 pins of the ARM7500FE.

Pin number Signal name

1 LA[15]

2 LA[16]

3 LA[17]

4 LA[18]

5 LA[19]

6 LA[20]

7 LA[21]

8 VDD

9 LA[22]

10 VSS

11 LA[23]

12 LA[24]

13 LA[25]

14 LA[26]

15 LA[27]

16 LA[28]

17 D[31]

18 D[30]

19 D[29]

20 D[28]

21 VSS

22 D[27]

23 D[26]

24 VDD

25 D[25]

26 D[24]

27 D[23]

28 D[22]

29 D[21]

30 VSS_CORE

31 D[20]

32 VDD_CORE

33 D[19]

34 D[18]

35 VSS

36 D[17]

37 D[16]

38 D[15]

39 D[14]

40 D[13]

41 VDD

42 D[12]

43 D[11]

44 D[10]

45 D[9]

46 D[8]

47 VSS

48 D[7]

49 D[6]

50 D[5]

51 D[4]

52 D[3]

53 D[2]

54 D[1]

55 D[0]

56 VDD

Pin number Signal name

57 PCOMP

58 VSS

59 VCLKI

60 VCLKO

61 VDD

62 VDD

63 VSS

64 VSS

65 VDD_CORE

66 VSS

67 VSS_CORE

68 SDO

69 SCLK

70 SDCLK

71 WS

72 SYNC

73 ECLK

74 VSS

75 HCLK

76 ED[7]

77 ED[6]

78 ED[5]

79 VDD

80 ED[4]

81 ED[3]

82 ED[2]

83 ED[1]

84 ED[0]

Pin number Signal name



Pinout

ARM7500FE Data Sheet
ARM DDI 0077B

24-3

Open Access - Preliminary

85 VSS

86 VSYNC

87 VSS_CORE

88 HSYNC

89 VDD_CORE

90 VIREF

91 VDD_ANALOG

92 ROUT

93 BOUT

94 GOUT

95 VSS_ANALOG

96 nTEST

97 nINT8

98 nINT3

99 nINT6

100 INT7

101 RA[11]

102 RA[10]

103 RA[9]

104 VSS

105 RA[8]

106 VDD

107 RA[7]

108 RA[6]

109 RA[5]

110 RA[4]

111 RA[3]

112 RA[2]

113 RA[1]

114 RA[0]

Pin number Signal name

115 VSS

116 nRAS[3]

117 VDD

118 nRAS[2]

119 nRAS[1]

120 nRAS[0]

121 VDD_ATOD

122 ATODREF

123 ATOD[3]

124 ATOD[2]

125 ATOD[1]

126 ATOD[0]

127 VSS_ATOD

128 nCAS[3]

129 nCAS[2]

130 VSS

131 nCAS[1]

132 VDD

133 nCAS[0]

134 nWE

135 OSCPOWER

136 OSCDELAY

137 SnA

138 RESET

139 nRESET

140 nROMCS

141 BD[15]

142 BD[14]

143 I_OCLK

144 VSS

Pin number Signal name

145 nEVENT2

146 BD[13]

147 BD[12]

148 BD[11]

149 VDD

150 BD[10]

151 VSS_CORE

152 MEMCLK

153 VDD_CORE

154 BD[9]

155 BD[8]

156 BD[7]

157 BD[6]

158 BD[5]

159 VSS

160 BD[4]

161 BD[3]

162 BD[2]

163 BD[1]

164 BD[0]

165 MSCLK

166 VDD

167 MSDATA

168 KBCLK

169 KBDATA

170 VSS

171 nPOR

172 IOP[7]

173 IOP[6]

174 IOP[5]

Pin number Signal name



Named Partner Confidential - Preliminary Draft

Pinout

ARM7500FE Data Sheet
ARM DDI 0077B

24-4

Open Access - Preliminary

175 IOP[4]

176 IOP[3]

177 IOP[2]

178 IOP[1]

179 IOP[0]

180 ID

181 OD[1]

182 OD[0]

183 SETCS

184 INT9

185 nINT4

186 INT5

187 READY

188 nIOGT

189 nBLI

190 nXIPMUX16

191 nINT1

192 INT2

193 VSS

194 nEVENT1

195 nXIPLATCH

196 TC

197 nSIOCS2

198 VDD

199 nSIOCS1

200 nEASCS

201 nMSCS

202 nBLO

203 nRBE

204 nWBE

Pin number Signal name

205 CLK2

206 REF8M

207 CLK8

208 CLK16

209 nIORQ

210 VSS

211 nIOR

212 VSS_CORE

213 CPUCLK

214 VDD_CORE

215 nIOW

216 VDD

217 nCCS

218 nCDACK

219 IORNW

220 nPCCS2

221 nPCCS1

222 LNBW

223 LA[0]

224 LA[1]

225 LA[2]

226 VSS

227 LA[3]

228 LA[4]

229 LA[5]

230 LA[6]

231 LA[7]

232 LA[8]

233 VDD

234 LA[9]

Pin number Signal name

235 LA[10]

236 LA[11]

237 LA[12]

238 VSS

239 LA[13]

240 LA[14]

Pin number Signal name



ARM7500FE Data Sheet
ARM DDI 0077B

A-1

11
1

Open Access - Preliminary

This appendix describes the ARM7500FE initialization and boot sequence.

A.1 Introduction A-2

A.2 Sample Boot Sequence A-2

A.3 Other Methods A-3

Initialization and Boot SequenceA



Named Partner Confidential - Preliminary Draft

Initialization and Boot Sequence

ARM7500FE Data Sheet
ARM DDI 0077B

A-2

Open Access - Preliminary

A.1 Introduction

ARM7500FE is designed to operate with 16 or 32-bit-wide memory systems. In order

to avoid a hardware selection mechanism, the ARM7500FE is designed to always

power-up with bit 6 of the ROMCR0 register set to 1, such that the chip expects

to receive the first instructions from a 16-bit-wide ROM bank. For a system which is

actually using 16-bit wide ROM, no special action is required. For a system which uses

32-bit wide ROM, a software solution is needed to enable the chip to boot successfully.

A sample method of programming the first locations of ROM in order to boot the device

successfully is described in the following section. The example assumes that the reset

vector is to be located at physical memory address zero.

A.2 Sample Boot Sequence

The processor will start executing code from physical address 0. As ARM7500FE is

initially configured to operate with a 16-bit-wide ROM, it will fetch the lower half-word

of the first instruction from the lower 16 bits of address 0, and the upper half-word of

the instruction from the lower 16 bits of address 4.

If these first two locations have been programmed with instructions to load the PC with

the reset and undefined instruction vectors, then the combination of the lower

halfwords from the first and second location always creates an instruction with

a never-true condition code, and so execution will drop through to the next instruction.

This will be true for all the LDR PC instructions in the exception table. The exception

table occupying the first eight locations in ROM is shown below.

This vector table resides at physical address 0.

Immediately after the table, the ARM7500FE should be set into 32-bit mode. The eight

locations from address 20 to 3C must be programmed with eight halfwords in the lower

sixteen bits of each location, which will form the four required 32-bit instructions when

read in pairs by the ARM7500FE. The upper 16 bits of each location will be ignored by

the ARM7500FE while still in 16-bit mode.

Address Instruction

0 LDR PC, RESET_VEC

4 LDR PC, UNDEF_VEC

8 LDR PC, SWI_VEC

C LDR PC, PREF_VEC

10 LDR PC, DATA_VEC

14 LDR PC, RES_VEC

18 LDR PC, IRQ_VEC

1C LDR PC, FIQ_VEC

 Table A-1: Vector table



Initialization and Boot Sequence

ARM7500FE Data Sheet
ARM DDI 0077B

A-3

Open Access - Preliminary

The four instructions program the ROMCR0 register into 32-bit mode, and cause

program execution to jump back to the reset vector at physical address zero, which

will now be executed correctly. The MOV PC,#0 instruction which actually causes

execution to jump back to zero will have been prefetched in 16-bit mode, even though

it occurs after the ARM7500FE ROMCR0 register has been reprogrammed.

Table A-2: Instructions for programming the ROM register shows the data required at

memory locations 0x20 to 0x3C to implement this scheme.

The boot code above is a general example which will set the ROM interface to use

the slowest access timing, to ensure it will work with all systems. It is advisable

to program the ROM control registers early on with the fastest parameters usable by

the interface, as this will drastically speed up execution. In addition, on power-up

the default state of the CLKCTL register is for the CPUCLK, MEMCLK and I_OCLK

external clock inputs to be divided by 2, and these should be programmed

to divide-by-1 if appropriate. This will also speed up execution.

A.3 Other Methods

The above method is an example of how the ARM7500FE can be booted from

a system using 32-bit-wide ROM. There are other methods of doing this which may be

more appropriate for the required application. The main advantage of the method

described above is that it allows the exception vector table to reside at physical

address 0.

If this is not a requirement the instructions which reprogram the ROMCR0 register

could reside from location 0 onwards, and the vector table can be mapped into DRAM

by the operating system software.

Data Address Instruction Notes

0x0000B632 20

0x0000E3A0 24 MOV R11, 0x03200000 point at register base

0x00000000 28

0x0000E3A0 2C MOV R0, #&0 32b, slow, 218.75us,

no burst

0x00000080 30

0x0000E5CB 34 STRB R0, [R11,0x80] Program ROMCR0 &

switch mode

0x0000F000 38

0x0000E3A0 3C MOV PC, #0  Jump to 0

 Table A-2: Instructions for programming the ROM register



Named Partner Confidential - Preliminary Draft

Initialization and Boot Sequence

ARM7500FE Data Sheet
ARM DDI 0077B

A-4

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

B-1

11
1

Open Access - Preliminary

This appendix describes dual-panel LCD driving within the video and sound macrocell.

B.1 Programming the Video Subsystem B-2

B.2 Configuring DMA within ARM7500FE B-3

B.3 Cursor B-3

Dual Panel
Liquid Crystal DisplaysB



Named Partner Confidential - Preliminary Draft

Dual Panel Liquid Crystal Displays

ARM7500FE Data Sheet
ARM DDI 0077B

B-2

Open Access - Preliminary

B.1 Programming the Video Subsystem

The external register (address 0xC00xxxxx) bit 13 (lcd) must be programmed to one,

as for normal LCD operation.

Bit 13 of the control register (address 0xE00xxxxx) must be programmed to one.

This is the 'dup' bit to set duplex mode operational.

Video data will be channelled simultaneously to the top and bottom halves of

the screen. The first quadword received from memory will be interpreted for the first

part of the first raster in the top half of the screen, and the second quadword will be

interpreted for the identical part of the lower half of the screen. ARM7500FE will

handle the sequencing of DMA data so that the video buffer can still be programmed

as though there was only one panel.

When the cursor is moved, in addition to the programming of the Vertical Cursor start

(VCSR) and end (VCER) registers and the horizontal cursor start (HCSR) register as

described below.

Bits 13 and 14 of VCSR (address 0x9600xxxx) should be programmed to:

14:13

0 0 Dual Panel mode not activated

0 1 Cursor in upper half screen

1 0 Cursor in lower half screen

1 1 Cursor straddles both halves

Normally VCSR defines the number of rasters from Vsync to the start of the cursor,

and VCER defines the number of rasters from Vsync to the end of the cursor display.

See Chapter 12: The Video and Sound Programmer’s Model  for details of exactly how

these are programmed.

Split-screen operation

For split-screen operation, the programming of VCER and VCSR will be the same as

for a single panel LCD when the cursor is completely in the top or bottom half of

the screen, but when the cursor straddles the boundary, the values of these two

registers will have a different meaning. The value in the VCSR register will be

the number of rasters from the top of the lower panel to the end of the cursor image,

and VCER will be programmed with the number of rasters from the top of the display

to the start of the cursor image in the upper panel.

The cursor is displayed in the lower half screen from the value of VDSR to VCSR, and

in the upper half screen from the value of VCER to VDER. So, the start register is

effectively defining the “end” of the cursor in the bottom half, and the end register is

defining the “start” of the cursor in the top half. This is the case because the top of

the lower half of the screen will be written to before the bottom of the upper half.



Dual Panel Liquid Crystal Displays

ARM7500FE Data Sheet
ARM DDI 0077B

B-3

Open Access - Preliminary

B.2 Configuring DMA within ARM7500FE

The video and sound macrocell must first be programmed to drive dual panel LCDs as

above. When this has been done, the macrocell will always make quad-word DMA

requests in pairs. ARM7500FE is then set into dual panel mode by programming bit 7

(“dup”) of the Video Control register VIDCR (Address 0x1E0) to 1. The eight bits of

the Video Control register are now allocated as follows

VIDCR (address 0x 1E0)

X = Undefined

E = Enable

D = Duplex LCD

When duplex mode is enabled, ARM7500FE will DMA two quad words from memory,

offset by half the size of the video buffer, to enable two parallel data streams to be

output by the video and sound macrocell to the two panels of the LCD. All DMA is

quad-word only, so the auto increment of the DMA address is now always 0x10.

The VIDSTART and VIDEND registers will be programmed in the normal way, as for

a single panel, with the addresses of the first and last quad-words in memory.

The VIDINITA register should be programmed with the address of the first quadword

to be displayed on the upper panel of the LCD, and the VIDINITB register with

the address of the first quadword to be displayed on the lower panel of the LCD.

The difference between the two addresses should be half the number of bytes in

the video buffer. It is possible for VIDINITA to be pointing to an address in the lower

half of the buffer, in which case VIDINITB should be set to point to an address in

the top half of the buffer, offset by half the buffer size again.

If either of the INIT register values are equal to the END register, then bit 30 of

the relevant INIT register must be set HIGH for correct operation (the “last” bit).

Note: Both “last” bits should never be programmed HIGH at the same time.

B.3 Cursor

In order to ensure smooth transition of the cursor across the dual panel boundary, it is

necessary to have four images of the cursor stored in memory. This is because

the ARM7500FE DMA registers must only be programmed with quadword-aligned

addresses, but as the cursor is always 32 pixels wide at 2 bits per pixel, the address

of data corresponding to a particular row of the cursor may be aligned with a two-word

boundary.

The four images should be arranged as two pairs of contiguous images of the cursor.

Only alternate rows of each cursor image will start on quad word boundaries,

for reasons stated above, and so the two pairs of images are offset so that the first has

all its odd rows starting on quad-word boundaries, and the second has all its even rows

starting on quad word boundaries. This means that ARM7500FE can address any row

of the cursor using only quadword-aligned DMA pointers.

0347 1256

X X X X X XED



Named Partner Confidential - Preliminary Draft

Dual Panel Liquid Crystal Displays

ARM7500FE Data Sheet
ARM DDI 0077B

B-4

Open Access - Preliminary

Normally, only the first image will be used. However, when the cursor happens to be

straddling the split-screen boundary, a different strategy is adopted. The VCSR and

VCER registers in the video and sound macrocell are programmed differently as

described above, and the cursor init register must be set to point to the location

corresponding to the position of the row of the cursor which appears at the top of

the lower part of the screen. In conjunction with the different meaning of the vertical

cursor position registers in the video and sound macrocell, this will enable a smooth

transition across the boundary.

B.3.1  Video frame buffer restrictions

In order for the dual-panel LCD to be driven correctly, it is necessary for the video

frame buffer to contain an even number of quadwords, and to be aligned to

a quad-word boundary. The cursor buffer must also be aligned to a quadword

boundary.



ARM7500FE Data Sheet
ARM DDI 0077B

C-1

11
1

Open Access - Preliminary

This appendix describes the use of the ASTCR register.

C.1 Using the ASTCR Register C-2

Using ASTCR at
High MEMCLK FrequenciesC



Named Partner Confidential - Preliminary Draft

Using ASTCR at High MEMCLK Frequencies

ARM7500FE Data Sheet
ARM DDI 0077B

C-2

Open Access - Preliminary

C.1 Using the ASTCR Register

Whenever the ARM processor performs a memory cycle, it is clocked by MCLK which

is derived from MEMCLK. The I/O controller inside ARM7500FE is clocked by

derivatives of I_OCLK. Thus, when the ARM processor performs a read from or a write

to an area of I/O space, some synchronization must occur.

The ARM7500FE bus controller decodes the address of the ARM processor access

and if it recognizes it as an I/O access, must send an I/O cycle request signal to the I/O

controller. This is synchronized to the internal I/O clock, IOCK32. The I/O controller

then performs the necessary cycle asserting one (or more) of the I/O chip select

signals, eg. nCCS.

When the I/O controller knows the I/O cycle is about to finish, it asserts an I/O grant

signal which is synchronized back to the internal memory clock, MEMRFCK.

The Bus controller will then terminate the cycle by creating a falling edge on MCLK

which clocks the ARM processor.

The address from the ARM processor is latched when MCLK is LOW so that it is held

stable throughout I/O cycles (as well as ROM). It is therefore important that MCLK

should not fall too quickly after the end of the I/O chip select, else the address may

change too quickly violating the required hold time. ARM7500FE has been designed

to support MEMCLK running at a frequency much higher than I_OCLK.

In this situation, the I/O grant generated by the I/O controller will be synchronized

more quickly back to MEMRFCK and so the address will change sooner after the end

of the I/O chip select. Thus the I/O controller must delay the point at which it generates

the I/O grant to ensure the address hold time is maintained.

A technique using the ASTCR register bit, 0x032000CC, has been employed to allow

the address hold time to be maintained when MEMCLK frequency is greater than

I_OCLK frequency whilst not imposing greater than necessary wait states when

MEMCLK has the same or lower frequency than I_OCLK.

For a given system, the I_OCLK frequency should be fixed at 32MHz, while MEMCLK
frequency will be fixed according to the speed grade of DRAMs being used.

The amount of hold time required between the end of the I/O chip select and

the latched address changing should be determined and then ASTCR should be set

dependent on the following details.

C.1.1 ASTCR I/O cycle type and hold times

Note: This assumes divide-by-1 mode for the clocks, MEMCLK and I_OCLK.

When ASTCR is LOW (reset value):

 I/O cycle type Minimum Hold time

Simple I/O 2 MEMCLK periods minus 1 I_OCLK period

Module I/O 2 MEMCLK periods minus 1.5 I_OCLK periods

PC style I/O 2 MEMCLK periods minus 1.5 I_OCLK periods



Using ASTCR at High MEMCLK Frequencies

ARM7500FE Data Sheet
ARM DDI 0077B

C-3

Open Access - Preliminary

When ASTCR is HIGH:

I/O cycle type  Minimum Hold time

Simple I/O 2 MEMCLK periods minus 0.5 I_OCLK periods

Module I/O 2 MEMCLK periods minus 0.5 I_OCLK periods

PC style I/O 2 MEMCLK periods minus 0.5 I_OCLK periods

C.1.2 Example

For example, in a system with:

• I_OCLK=32MHz

• MEMCLK=40MHz

the minimum hold time for a PC-style access will be:

• 3.125ns if ASTCR=0

• 34.375ns if ASTCR=1

In addition there will be a small amount of extra hold time due to the delay from

the internal memory clock to the latch enable signal for the address.

It should be further noted that these times refer to the signals changes at the pad on

the inside of ARM7500FE. The relative capacitive loading of the latched address and

I/O chip select will determine the overall timing.



Using ASTCR at High MEMCLK Frequencies

ARM7500FE Data Sheet
ARM DDI 0077B

C-4

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

D-1

11
1

Open Access - Preliminary

This appendix describes the extension of PC-style I/O to 32 bit.

D.1 32-bit I/O D-2

Expanding PC-Style I/O to 32 BitD



Named Partner Confidential - Preliminary Draft

Expanding PC-Style I/O to 32 Bit

ARM7500FE Data Sheet
ARM DDI 0077B

D-2

Open Access - Preliminary

D.1 32-bit I/O

ARM7500FE provides 16-bit I/O accesses as standard using the BD[15:0] port for all

I/O types. The PC-style I/O accesses, however, can be extended to allow full 32-bit

accesses without any loss in access speed by the addition of external 16-bit

transceivers. ARM7500FE provides all the control signals necessary to support these

external devices.

During PC-style I/O write cycles, the I/O controller routes the lower 16-bit halfword

from the ARM processor's data bus onto BD[15:0] and drives the upper 16-bit halfword

onto D[31:16].

During read cycles, the ARM processor's data bus is driven from two sources:

• the lower halfword from the data latched from BD[15:0]

• the upper halfword from D[31:16]

If the external devices to provide the upper halfword of data are not present, or the I/O

peripheral does not support more than 16-bits, the software must ignore the upper

halfword read back into the ARM processor registers.

Figure D-1: 32-bit I/O interface shows an example of the system connections required

to provide a full 32-bit I/O interface.

 Figure D-1: 32-bit I/O interface

EN

G

EN

nWBE

nRBE

BD[15:0]

nBLO

D[31:16]
D Q

Q D
16

16

1616

16

nIOW

nIOR

eg. nCCS

I/O 

BDHI[15:0]

G

CLK16

10

LA[9:0]

ARM7500FE



Expanding PC-Style I/O to 32 Bit

ARM7500FE Data Sheet
ARM DDI 0077B

D-3

Open Access - Preliminary

The write and read path should each contain a 16-bit latch with tri-state output enable

control:

• The write latch should latch data from D[31:16] when nBLO is HIGH and drive

the latched data onto the expanded I/O bus, BDHI[15:0], when nWBE is

active LOW.

• The read latch should latch data from BDHI[15:0] when nBLO is HIGH and

drive the latched data onto D[31:16], when nRBE is active LOW.

Note: Like the BD[15:0] bus, the write enable nWBE remains active LOW by default.
It is de-asserted only during the read cycles, thus the I/O device must not attempt
to drive BD[15:0] or BDHI[15:0] except when a read cycle is taking place.



Expanding PC-Style I/O to 32 Bit

ARM7500FE Data Sheet
ARM DDI 0077B

D-4

Open Access - Preliminary



ARM7500FE Data Sheet
ARM DDI 0077B

E-1

11
1

Open Access - Preliminary

This appendix describes the ARM7500FE video clock sources.

E.1 Introduction E-2

E.2 Clock Sources E-2

E.3 Using the Phase Comparator E-3

E.4 Phase Comparator Reset E-6

ARM7500FE Video Clock SourcesE



Named Partner Confidential - Preliminary Draft

ARM7500FE Video Clock Sources

ARM7500FE Data Sheet
ARM DDI 0077B

E-2

Open Access - Preliminary

E.1 Introduction

In order to facilitate the high-resolution screen modes that ARM7500FE is capable of

producing, a suitable high-frequency clock must be applied. As screen mode is

changed, the pixel rate must also change. This can be done:

• via the various clock inputs

• by the on-chip pre-scaler

• by using an external voltage controlled oscillator in conjunction with

the on-chip phase comparator, to form a phase-locked-loop (PLL).

It is intended that most systems be built with a phase-locked-loop system.

The required circuitry is simple, and allows a high degree of flexibility. The advantages

are that all the necessary clock frequencies can be derived from the one circuit, and so

the requirement for multiple on-board crystals and clock-switching circuitry is

eliminated.

E.2 Clock Sources

ARM7500FE has three primary inputs for its pixel clock. These are:

• HCLK

• VCLKI

• RCLK (this is the internal 32MHz IOCK32, which is derived from I_OCLK)

The intention is that VCLKI and the internal IOCK32 signal (derived from I_OCLK)

be used to drive the phase comparator, and that HCLK would only be used to provide

the highest-frequency clock if this frequency is above the maximum VCO frequency.

The pixel clock source is selected by programming bits 0 and 1 of the control register.

The pixel clock selected can then be passed through a pre-scaler which can divide

the clock by between 1 and 8. This is done by programming bits 2 to 4 of the control

register. See 12.27 Control Register (conreg): Address 0xE on page 12-16.

SCLK

In addition to the pixel clock inputs, there is one other clock input, SCLK.

The sound system can be clocked from the internal 32MHz IOCK32 or a 16MHz SCLK
(there is a divide-by-2 in the sound system). The digital sound system may run at

a different frequency, (low MHz range), and this must be applied directly on SCLK.

Note: Any unused clock pin should be tied low.



ARM7500FE Video Clock Sources

ARM7500FE Data Sheet
ARM DDI 0077B

E-3

Open Access - Preliminary

 Figure E-1: Video and sound macrocell internal clock system

E.3 Using the Phase Comparator

The Video and sound macrocell contains a phase comparator which, in conjunction

with an external voltage controlled oscillator (VCO), can be used to build

a phase-locked-loop.

The phase comparator comprises:

• two counters

• a phase detector

The counters are pre-loadable down counters, one clocked from the internal IOCK32

signal, derived from I_OCLK, and the other clocked from VCLKI. The moduli of

the counters is programmed in the Frequency Synthesizer Register.

In this register, the test bits have the following meaning:

 bit [6] force PCOMP high and driven

 bit [7] clear r-modulus counter

 bit [14] force PCOMP low and driven

 bit [15] clear v-modulus counter

divide by N
pixck

con_reg[1:0] con_reg[4:2]

HCLK

VCLKI

VCLKO

PCOMP
Phase

Comparator

RCLK (internal IOCK32)



Named Partner Confidential - Preliminary Draft

ARM7500FE Video Clock Sources

ARM7500FE Data Sheet
ARM DDI 0077B

E-4

Open Access - Preliminary

 Figure E-2: Frequency Synthesizer Register

These bits are only programmed during test and at reset (see section E.4 Phase
Comparator Reset).

The internal IOCK32 signal, derived from the I_OCLK input, provides a reference

clock which is recommended to be 32MHz. The VCLKI input is driven from the output

of the VCO, and it is this which is selected as the pixel clock.

The VCO is driven by the ARM7500FE’s PCOMP output, which for most of the time is

at the tri-state value.

When the VCO’s frequency needs to be increased, PCOMP goes high, and vice-versa

when the frequency needs to be decreased. The PCOMP output needs to be filtered

before applying to the VCO.

The choice of filter and VCO are left to the user. A very simple and effective system

can be built using an 74AC04 inverter pack, and a very simple LC filter. The filtered

VCO output controls the operating voltage of the 74AC04 device. This system is

shown in Figure E-3: Suggested VCO/PLL circuit, and gives an enormous range of

frequencies (LF to hundreds of MHz).

Since the output of this VCO is AC coupled, VCLKI needs to be biased at the

mid-voltage point. This is done by connecting a large resistor between VCLKI and

VCLKO (VCLKO is the inversion of VCLKI).

Note: Low-power systems may want to use more complex circuitry here to avoid DC paths
during SUSPEND or STOP modes.

31 30 29 28 27 26 25 24 23  022 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1

01 x x x x x xx x x xx1 x x1 x

(VCO clock)

modulus r
(ref clock)

r test bits

modulus v

v test bits

xx



ARM7500FE Video Clock Sources

ARM7500FE Data Sheet
ARM DDI 0077B

E-5

Open Access - Preliminary

 Figure E-3: Suggested VCO/PLL circuit

The actual frequency of the VCO is determined by the ratio of the v-modulus to

the r-modulus as follows.

Note: For a modulus of r, r-1 is programmed, and likewise for the v modulus.

Table 24-1: Synthesized VCO frequency settings gives a list of useful frequencies with

corresponding values of r and v moduli, assuming a reference frequency of 32MHz.

Obviously there are many values of r and v which give the same ratio. The lower

the values, the more frequently the output of the VCO will be updated and so the r and

v values should be chosen to suit the response of the filter.

VCLKO

VCLKI

PCOMP

470R

470R

6M833nF

11pF

Vdd

33uH

100uF

F
VCO

F
REF

Vmodulus

Rmodulus
--------------------------×=



Named Partner Confidential - Preliminary Draft

ARM7500FE Video Clock Sources

ARM7500FE Data Sheet
ARM DDI 0077B

E-6

Open Access - Preliminary

E.4 Phase Comparator Reset

The phase comparator and VCO form a closed-loop feedback system which has

potential to become unstable. If the system powers up in the state where the PCOMP
output is trying to drive the VCO’s output higher and higher, it will very quickly reach

a frequency which the phase comparator cannot resolve and thus recovery is

impossible.

24.1.1 Reset procedure

To avoid this, the following reset procedure must be applied carefully.

The test bits in the Frequency Synthesizer Register can be used to force the phase

comparator's output either HIGH or LOW. Thus, soon after power-up, this register

must be programmed with:

• bits 15, 14 and 7 high

• bit 6 low

The r and v moduli can have anything programmed into them, but r must be greater

than v. This operation forces the VCO’s frequency to decrease.

When the real pixel rate is to be programmed, it should be done in two steps:

1 The values of the r and v moduli should be programmed, but the test bits left
in the initialization state.

2 All the test bits should be cleared.

The VCO will then ramp up to its operating frequency. Subsequently, a change of

frequency can be achieved simply by reprogramming the r and v moduli.

r-modulus v-modulus VCO frequency/MHz

8 2 8.0

16 6 12.0

4 2 16.0

8 6 24.0

2 2 32.0

8 9 36.0

16 35 70.0

4 15 120.0

 Table 24-1: Synthesized VCO frequency settings



ARM7500FE Data Sheet
ARM DDI 0077B

F-1

11
1

Open Access - Preliminary

This appendix describes the ARM7500FE test modes.

F.1 Introduction F-2

F.2 Test Modes Description F-2

ARM7500FE Test ModesF



Named Partner Confidential - Preliminary Draft

ARM7500FE Test Modes

ARM7500FE Data Sheet
ARM DDI 0077B

F-2

Open Access - Preliminary

F.1 Introduction

ARM7500FE has a pin, nTEST, which is used in combination with the nINT8, nINT3
and nINT6 pins to set the device into various test modes. Most of these are intended

only for use during production test to allow the individual macrocells within

ARM7500FE to be tested directly from the external pins using a mux isolation scheme.

F.2 Test Modes Description

When the nTEST pin is HIGH, ARM7500FE is in normal operating mode irrespective

of the states of nINT8, nINT3 and nINT6. However, when nTEST is set LOW, the chip

is set into one of five possible test modes dependent on the state of the three inputs

nINT8, nINT3 and nINT6. Four of these test modes are reserved for use on the tester.

However there is one test mode which, when selected, will cause all the ARM7500FE

outputs to be tri-stated. This test mode is accessed by setting nTEST=0, nINT8=0,

nINT3=1 and nINT6=1.

No other combinations should be selected by the user.



ARM7500FE Data Sheet
ARM DDI 0077B

i

11
1

Open Access - Preliminary

Index

A
A to D convertors 1-6

Abort mode 4-6

aborts 4-9, 5-22, 5-29, 5-33, 5-39

external 7-16

AC parameters 22-4

test conditions 22-6

address alignment 5-26, 5-39

address translation 7-4

addressing modes 5-26, 5-39

alignment faults 7-15

analogue outputs 14-12

analogue to digital convertors 18-34

ARM processor 1-2

assembler syntax 5-4, 5-12, 5-15, 5-18, 5-23, 5-30,

5-33, 5-34, 5-37, 5-40, 5-42, 5-43

asynchronous mode 19-2

auto-indexing 5-19

B
backward compatibility 4-4

floating-point code 10-7

banked registers 4-5

base registers

inclusion of 5-29

restrictions 5-22

Big Endian 4-2, 5-22, 5-47

block data transfer 5-24

block diagram

ARM704 3-4

branch 5-3

with link 5-3

branch instructions 5-3

bufferable bit 6-4

bufferable write 6-4

bus interface 13-2, 20-2

C
cache 6-2

cacheable bit 6-2

CD offset registers 12-6

clock control 1-4, 19-2

clock prescalers 19-3

clocking schemes 19-3

comment field 5-34

comparators 18-36

compilers 3-3

condition code flags 4-7

condition field 5-2

conditional instructions

using 5-44

configuration bits

for backward compatibility 4-3

configuration control registers 4-13



Index

ARM7500FE Data Sheet
ARM DDI 0077B

ii

Open Access - Preliminary

configurations 4-2, 4-13

control 4-16

control bits 4-7

control register 12-16, 18-36

convertor operation 18-37

convertors

analogue to digital 18-34

coprocessors 4-14, 6-5

data operations 5-36

data transfers 5-38

fields 5-37, 5-38, 5-41

instructions 5-36

ARM704 5-36

register transfers 5-41

counters 18-34

CPSR flags 5-6, 5-17

CPU

aborts 7-12

clock 19-2

cursor 14-5

Hi-Res mode 14-5

LCD mode 14-5

cycle times 5-11, 5-15, 5-17, 5-23, 5-29, 5-33, 5-34,

5-37, 5-39, 5-42

D
DAC control 14-12

pedestal current 14-12

power-save mode 14-12

data aborts 4-10, 5-22

data control register 12-17

data processing 5-4

DC

characteristics 22-3

operating conditions 14-11, 17-7, 17-17, 17-18,

18-10, 18-14, 18-28, 18-29, 18-33,

19-7, 19-8, 22-2

operation 6-2

validity 6-2

descriptors 7-5, 7-6

digital conversion 18-34

display modes 11-3

DMA 1-5

channels 17-22

video 17-22

domain access control 4-17, 7-13

domain access control register 7-3

domain faults 7-15

DRAM interface 17-8

address multiplexing 17-9

control registers 17-8

self-refresh 17-20

timing specification 17-11

dual panel LCDs 14-9, B-3

E
EDO DRAM 17-8

read timing (16-bit mode) 17-16

read timing (32-bit mode) 17-13

timing mode selection 17-10

exceptions 4-6, 4-8

priorities 4-12

external aborts 7-16

external register 12-14

external support 14-9

F
Fast Interrupt Request. See FIQ

faults

address register 7-3

addresses 7-12

checking sequences 7-14

status register 7-3

status registers 7-12

FIFO

setting preload value 13-2

FIQ 4-6, 4-8

floating-point accelerator. See FPA

FPA

backward compatibility 10-7

block diagram 8-5

Control Register 9-11

functional blocks 8-3

IEEE conformance 10-16

instruction cycle timing 10-17

instruction set 10-14

coprocessor data operations 10-7

coprocessor data transfer 10-2

coprocessor register transfer 10-11

load and store floating 10-2

load and store multiple floating 10-4

mnemonics 10-7



Index

ARM7500FE Data Sheet
ARM DDI 0077B

iii

Open Access - Preliminary

number formats 9-4

double-precision 9-4

extended double precision 9-5

extended packed decimal 9-7

packed decimal 9-6

single-precision 9-4

overview 8-2

Status Register 9-8

support code 10-16

frequency synthesizer register 12-15

functional block diagram 1-2

G
genlocking 14-11

H
hardware cursor 11-2

Hi-Res mode 14-5, 14-6

horizontal

border start register 12-8

cycle register 12-8

sync width register 12-8

I
I/O

address space usage 18-3

chip select decode logic 18-4

clock outputs 19-2

control 1-5

general purpose port 18-38

ID and open drain pins 18-38

lines 1-6

Module 18-11

PC bus style 18-15

Simple 8MHz 18-4

system clock 19-2

ID register 18-39

IDC 6-2

IDC flush 6-2

immediate operand rotates 5-10

Instruction and Data Cache 6-2

instruction set 5-2

ARM704 3-2

FPA 10-2

summary of ARM704 5-2

instructions

cycle times 5-4, 5-11, 5-15, 5-17, 5-23, 5-29,

5-33, 5-34, 5-37, 5-39, 5-42

multiply 5-16

specified shift amounts 5-7

speed summary 5-47

undefined 5-43

using conditional 5-44

interface

serial sound 15-2

status of 18-35

video and sound macrocell 13-2

internal coprocessor instructions 4-14

interrupt latencies 4-12

Interrupt Request. See IRQ

interrupts 4-6, 4-10

control 18-34, 18-39

disable bits 4-7

handler 1-6

in timers 18-38

latencies 4-12

IRQ 4-9

K
keyboard interface 18-30

L
large page translation 7-11

LCD mode 14-5

LCDs 14-8

dual panel 1-2, 14-9

grey-scaling 14-8

monochrome 1-2

single panel 1-2, 14-9

LDC 5-38

LDM 5-24

LDR 5-18, 5-22

LDRB 5-21, 5-22

level one descriptor 7-5

level one fetch 7-4

link bit 5-3

Liquid Crystal Displays 14-8

Little Endian 4-2, 5-21, 5-47

loading words from an unknown alignment 5-47



Index

ARM7500FE Data Sheet
ARM DDI 0077B

iv

Open Access - Preliminary

M
MCR 5-41

MEMCLK C-2

Memory Management Unit 7-2

memory map 21-2

memory subsystem clock 19-2

memory system 1-5

MMU 7-2

MMU faults 7-12

mode bits 4-7

modes

of operation 4-4

Module I/O 1-6, 18-11

monochrome output 14-12

mouse interface 18-30

MRC 5-41

multimedia 1-2

multiplication by constant

using the barrel shifter 5-46

multiply 5-16

instructions 5-16

multiply-accumulate 5-16

O
offsets 5-19

on-chip sound system 11-4

opcodes 5-11

operand restrictions 5-13, 5-17

operating mode selection 4-4

operating modes 4-2

P
Page Table Descriptor 7-6

Pages 7-2

palette 11-3, 14-4

updating 14-4

PC bus style I/O 1-6, 18-15

permission faults 7-15

permissions 7-2

physical addresses 7-2

physical details 23-2

pin details 24-2

pin diagrams 23-2

pixel clock 11-3, 14-2

power consumption 19-4

power management 1-4, 11-3, 19-4

power saving 14-11

prefetch abort 4-9

program-accessible registers

MMU 7-2

programmable registers 16-2

interface 18-30

pseudo random binary sequence generator 5-45

PSR transfer 5-13

R
R14 4-6

R15 4-6, 5-11, 5-22, 5-28, 5-33, 5-39, 5-42

using as an operator 5-11

writing to 5-11

read-lock-write 6-4

register configuration 4-2

registers 4-2, 4-5, 4-14, 7-2

configuration control 4-13

domain access control 7-3

fault 7-12

fault address 7-3

fault status 7-3

inclusion of the base 5-29

keyboard interface 18-30

list of 5-24

mouse interface 18-30

programmable 16-2

restrictions on the use of base registers 5-22

shifted offsets 5-20

specified shift amounts 5-10

version and ID 18-39

video and sound macrocell 12-3

reserved bits 5-13

reset 4-12, 7-17, 19-6

ROM interface 17-2

rotates 5-10

S
S bit 5-28

Sections 7-2

serial ports 1-6

serial sound interface 15-2

setting FIFO preload value 13-2

shifted register offsets 5-20

shifts 5-7



Index

ARM7500FE Data Sheet
ARM DDI 0077B

v

Open Access - Preliminary

signals

descriptions of 2-3

Simple I/O 1-5, 18-4

single data swap 5-32

single data transfer 5-18

single panel LCDs 14-9

small page translation 7-10

software IDC flush 6-2

software interrupt 4-10

software interrupts 4-10, 5-34

sound 15-2

core 15-2

serial interface 15-2

sound control register 12-18

sound frequency register 12-17

sound subsystem

clock 19-2

sound system 11-4

specified shift amounts 5-7

by registers 5-10

speed of instructions

summary 5-47

status

of interface 18-35

STC 5-38

STM 5-24

STOP mode 19-5

STR 5-18, 5-21, 5-22

STRB 5-21, 5-22

Supervisor mode 4-6, 4-10

SUSPEND mode 19-4

swap 5-32

SWI 4-10, 5-34

SWP 5-32

synchronization

vertical and horizontal 14-11

synchronous mode 19-2

T
table base 7-4

test modes 1-6

timers 18-37

interrupts 18-38

programming 18-38

translation 7-4

translation faults 7-15

translation table base 4-16

register 7-3

U
unbufferable writes 6-4

undefined instruction 5-43

undefined instruction trap 4-11

Undefined mode 4-6

using R15 as an operator 5-11

V
vectors 4-11

Version register 18-39

vertical registers 12-10

video and sound macrocell 1-4, 11-2

interface 13-2

sound features 15-2

video DAC currents 14-12

video DMA 17-22

video frame buffer restrictions B-4

video palette register 12-5

video subsystem

clock 19-2

video system 11-2

virtual addresses 7-2

W
wb 6-3

write buffer 6-3

disabling 6-4

enabling 6-4

operation 6-4

writing to R15 5-11



Index

ARM7500FE Data Sheet
ARM DDI 0077B

vi

Open Access - Preliminary


