

.-

=A'ft.T
'=' -

WE ® DSP16 and DSP16A

Digital Signal Processors

Information Manual

January 1989

A WORD ABOUT TRADEMARKS . ..

The following AT&T trademarks are used in this manual:

The following trademarks, owned by entities other than AT&T, are also used in this manual:

MS-DOS®

VMS®

AT &T reserves the right to make changes to the product(s), including any hardware, software and/or firmware described
herein without notice. No liability is assumed as a result of the use or application of this product(s). No rights under any
patent accompany the sale of any such product(s).

,
Copyright © 1989 AT&T. All Rights Reserved.
Printed in United States of America

MN88-18DMOS

FOREWORD

This manual contains detailed information regarding the design and applications of the WE
DSP16/DSP16A Digital Signal Processor that is essential to engineers designing systems using
this device. The WE DSP16 and DSP16A Support Software Library, WE DSP16 Development
System, and the WE DSP16A Development System are available to aid in developing software
for the devices and integrating them into system environments.

Additional information on the digital signal processor product line is available in the form of
manuals, data sheets, and application notes.

iii

iv

WE DSP16 AND DSP16A DIGITAL SIGNAL

PROCESSORS INFORMATION MANUAL

CONTENTS

CHAPTER 1. INTRODUCTION

1. INTRODUCTION ... 1-1
1.1 FEATURES... 1-1
1.2 DEVICE DESCRIPTION 1-1
1.2.1 Architecture..... 1-1
1.2.2 Instruction Set... 1-2
1.3 APPLICATION DEVELOPMENT ... 1-2
1.3.1 Support Software Library.. 1-3
1.3.2 Development System .. 1-3
1.4 DOCUMENTATION... 1-4
1.4.1 Other Applicable Documentation.. 1-4
1.5 ASSISTANCE... 1-5

CHAPTER 2. DSPI6/DSPI6A ARCHITECTURE

2. DSPI6/DSPI6A ARCHITECTURE.. 2-1
2.1 MEMORY ... 2-2
2.1.1 ROM... 2-2
2.1.2 RAM... 2-3
2.2 CACHE.. 2-3
2.3 CONTROL .. 2-3
2.4 ADDRESS ARITHMETIC UNITS ... 2-4
2.4.1 ROM Address Arithmetic Unit 2-4
2.4.2 RAM Address Arithmetic Unit ... 2-6
2.5 DATA ARITHMETIC UNIT... 2-6
2.5.1 Arithmetic and Precision... 2-9
2.6 SERIAL I/O... 2-13
2.7 PARALLEL I/O... 2-14
2.8 INTERRUPTS... 2-15
2.8.1 Hardware Description ... 2-16
2.8.2 Software Description.. ... 2-17

CHAPTER 3. DSPI6/DSPI6A INSTRUCTION SET

3. DSPI6/DSPI6A INSTRUCTION SET ... 3-1
3.1 NOTATION... 3-1
3.2 ADDRESSING MODES ... 3-2
3.2.1 Immediate Addressing .. 3-2
3.2.2 Indirect Addressing ... 3-2

v

3.2.3 Compound Addressing.. 3-3
3.3 PROCESSOR FLAGS... 3-4
3.4 MULTIPLY/ALUGROUP .. 3-6
3.4.1 Function Statements.. 3-9
3.4.2 Transfer Statements... 3-10
3.4.3 No Operation... 3-12
3.5 SPECIAL FUNCTION GROUP .. 3-12
3.5.1 Special Function Statements ... 3-13
3.6 CONTROL GROUP .. 3-14
3.6.1 Control Statements.. 3-15
3. 7 DATA MOVE INSTRUCTIONS .. 3-16
3.7.1 Data Move Instruction Statements .. 3-18
3.8 CACHE INSTRUCTIONS .. 3-18
3.8.1 Cache Statements .. 3-19
3.9 INSTRUCTION SET SUMMARY ... 3-20

CHAPTER 4. DSP16/DSP16A DEVICE PROGRAMMING

4. DSP16/DSPl6A DEVICE PROGRAMMING .. 4-1
4.1 DSP16/DSPl6A ASSEMBLY-LANGUAGE NOTATION .. 4-1
4.1.1 Integer Notation... 4-1
4.1.2 Comments... 4-1
4.1.3 Labels.. 4-2
4.1.4 Data Stored in ROM ... 4-2
4.1.5 RAM Variables... 4-2
4.1.6 DSP16/DSP16A Source-file Format... 4-3
4.2 PROGRAMMING TECHNIQUES ... 4-3
4.2.1 Instruction Set Ambiguities .. 4-3
4.2.2 Polling for I/O. 4-4
4.2.3 Modulo Addressing... 4-5
4.2.4 Random Number Generation .. 4-5
4.2.5 Programming Tips .. 4-5
4.2.6 Concurrent Interrupts 4-7
4.2.7 Interrupt Latency............................ 4-11

CHAPTER 5. SERIAL 110

5. SERIAL I/O... 5-1
5.1 SIO OPERATION ... 5-2
5.1.1 Input Section... 5-2
5.1.2 Output Section.. .. 5-2
5.1.3 Active Clock Generator... 5-3
5.2 USER-CONTROLLED FEATURES... 5-4
5.3 SERIAL I/O PIN DESCRIPTIONS ... 5-5
5.4 CODEC INTERFACE... 5-7
5.5 SERIAL I/O PROGRAMMING EXAMPLE... 5-7
5.5.1 Program Segment.. 5-9

vi

5.6 MULTIPROCESSOR MODE DESCRIPTION... 5-10
5.6.1 Suggested Multiprocessor Configuration....... 5-16
5.7 SERIAL I/O TIMING DIAGRAMS .. 5-17

CHAPTER6. PARALLELVO

6. PARALLEL I/O... 6-1
6.1 SOFfW ARE DESCRIPTION ... 6-1
6.1.1 pioc Register Settings ... 6-3
6.1.2 Latent Reads ... 6-5
6.2 HARDWARE DESCRIPTION.. 6-6
6.2.1 Parallel I/O Signals 6-6
6.2.2 Active Mode 6-7
6.2.3 Passive Mode.. 6-8
6.2.4 Status and Control Mode .. 6-8
6.3 INTERRUPTS AND THE PARALLEL I/O.. 6-9
6.4 PIO BUS TRANSACTIONS ... 6-9
6.4.1 Active Mode Input .. 6-10
6.4.2 Active Mode Output ;... 6-11
6.4.3 Passive Mode Input... 6-12
6.4.4 Passive Mode Output.. 6-13
6.4.5 Parallel I/O Interaccess Timing... 6-14

CHAPTER 7. INTERFACE GUIDE

7. INTERFACE GUIDE.. 7-1
7.1 PIN ASSiGNMENTS.. 7-1
7.1.1 Device Pins by Numerical Order... 7-2
7.1.2 Pins by Functional Group 7-7
7.2 ELECTRICAL CHARACTERISTICS .. 7-12
7.3 EXTERNAL MEMORy.. 7-13
7.4 RESET AND INTERRUPT CONTROL ... 7-14
7.5 DEVICE PACKAGE OUTLINE... 7-15

APPENDIX A. INSTRUCTION SET ENCODING

A. INSTRUCTION SET ENCODING .. A-I
A.l FORMATS ... A-I
A.2 REPLACEMENT TABLES FOR FORMAT FIELDS ... A-4

APPENDIX B. PROGRAMMING EXAMPLES

B. PROGRAMMING EXAMPLES... B-1
B.1 FIR FILTER.. .. B-2
B.2 IIR FILTER... B-5
B.3 MATRIX MULTIPLICATION ... B-7
B.4 FIND MAXIMUM VECTOR ELEMENT .. B-9

vii

APPENDIX C. DSP16/DSP16A INSTRUCTION SET SUMMARY

C. DSP16/DSP16A INSTRUCTION SET SUMMARy ... C-1

APPENDIX D. PROGRAMMABLE REGISTERS

D. PROGRAMMABLE REGISTERS ... D-1

GLOSSARY

LIST OF FIGURES

Figure 2-1. DSP16/DSP16A Digital Signal Processor Block Diagram 2-1
Figure 2-2. DSP16/DSPl6A Memory Maps .. 2-2
Figure 2-3. Control and Cache... 2-3
Figure 2-4. XAAU - ROM Address Arithmetic Unit.. 2-5
Figure 2-5. YAAU - RAM Address Arithmetic Unit .. 2-5
Figure 2-6. DAU - Data Arithmetic Unit .. 2-7
Figure 2-7. DSP16/DSP16A Arithmetic Bit Alignment When auc[l, O]=()() 2-11
Figure 2-8. DSP16/DSP16A Arithmetic Bit Alignment When auc[1, 0]=10 2-12
Figure 2-9. DSP16/DSPl6A Arithmetic Bit Alignment When auc[1, 0]=01 2-12
Figure 2-10. SIO - Serial I/O Unit... 2-14
Figure 2-11. PIO - Parallel I/O Unit.. 2-15

Figure 4-1. Case 1 - Internal Interrupt (PIDS) and !NT Occur
Before Assertion of lACK.. 4-8

Figure 4-2. Case 2 - INT Asserted During Service of Internal
Interrupt After pioc Status is Checked...... 4-9

Figure 4-3. Case 3 - Internal Interrupt Asserted While Servicing
an External Interrupt.... 4-10

Figure 5-1. Serial I/O Internal Data Path.. 5-1
Figure 5-2. SIO Active Clock and Load Generation.. 5-3
Figure 5-3. WE DSP16/DSP16A to AT&T T7500 Codec Interface ... 5-8
Figure 5-4. WE DSP16/DSP16A to AT&TT7520 or T7520 Codec Interface 5-8
Figure 5-5. DSP16/DSP16A Multiprocessor Connections... 5-11
Figure 5-6. DSP16/DSP16A Multiprocessor Communications ... 5-15
Figure 5-7. Serial Input Timing ... 5-17
Figure 5-8. Serial Output Timing - 8 Bits ... 5-18
Figure 5-9. Serial Output Timing - 16 Bits ... 5-19
Figure 5-10. Multiprocessor Timing .. 5-20

Figure 6-1. Parallel I/O Section 6-1
Figure 6-2. Active Mode Input Timing .. 6-10
Figure 6-3. Active Mode Output Timing ... 6-11
Figure 6-4. Passive Mode Input Timing... 6-12
Figure 6-5. Passive Mode Output Timing.. 6-13

viii

Figure 6-6. Parallel I/O Interaccess Timing 6-14

Figure 7-1. DSP16/DSP16A Digital Signal Processor - Pin Diagram........ 7-1
Figure 7-2. External Memory Interface Timing ... 7-13
Figure 7-3. Reset and Interrupt Timing.. 7-14
Figure 7-4. 84-Pin PLCC Device Outline .. 7-15

LIST OF TABLES

Table 2-1. Processor Status Word (psw) Register .. 2-9
Table 2-2. Arithmetic Unit Control (auc) Register... 2-10
Table 2-3. Parallel I/O Control (pioc) Register .. 2-16

Table 3-1. Compound Addressing Instructions.. 3-4
Table 3-2. Conditional Mnemonics.. 3-5
Table 3-3. Multiply/ALU Instructions ... 3-8
Table 3-4. Replacement Table for Multiply/ALU Instructions .. 3-8
Table 3-5. Special Function Instructions.. 3-13
Table 3-6. Replacement Table for Special Function Instructions 3-13
Table 3-7. Replacement Table for Control Function Instructions .. 3-15
Table 3-8. Replacement Table for Data Move Instructions 3-17
Table 3-9. Replacement Table for Cache Instructions.. 3-19

Table 4-1. Optional Mnemonics.. 4-4

Table 5-1. Serial I/O Control (sioc) Register ... 5-4
Table 5-2. Serial I/O Pins... 5-6
Table 5-3. Time-Division Multiplexed Slot (tdms) Register.. 5-12
Table 5-4. Serial Receive/Transmit Address (srta) Register... 5-13

Table 6-1. Parallel I/O Control (Pioc) Register 6-2
Table 6-2. Parallel I/O Signals... 6-6
Table 6-3. PIO Strobe Widths.. 6-7

Table 7-1. DSPI6/DSPI6A Pin Names ... 7-2
Table 7-2. DSPI6/DSPI6A Pin Descriptions .. 7-2
Table 7-3. External Memory Interface Group .. 7-7
Table 7-4. SIO Interface Group.. 7-8
Table 7-5. PIO Interface Group.. 7-9
Table 7-6. Miscellaneous Function Group... 7-10
Table 7-7. Power and Ground Group 7-11
Table 7-8. Electrical Characteristics... 7-12

Table C-l. Conditional Mnemonics... C-l
Table C-2. Instruction Group Characteristics... C-l
Table C-3. Multiply/ALU Instructions... C-2
Table C-4. Replacement Table for Multiply/ALU Instructions.. C-2
Table C-5. Special Function Instructions... C-3
Table C-6. Replacement Table for Special Function Instructions .. C-3

ix

Table C-7. Control Instructions C-4
Table C-S. Replacement Table for Control Function Instructions.. C-4
Table C-9. Oata Move Instructions C-4
Table C-lO. Replacement Table for Oata Move Instructions C-5
Table C-ll. Cache Instructions.. C-6
Table C-12. Replacement Table for Cache Instructions ... C-6

Table 0-1. Arithmetic Unit Control (auc) Register.. 0-1
Table 0-2. Processor Status Word (psw) Register ... 0-2
Table 0-3. Parallel I/O Control (Pioc) Register ... 0-3
Table 0-4. Serial I/O Control (sioc) Register... 0-4
Table 0-5. Serial Receiveffransmit Address (srta) Register.. 0-5
Table 0-6. Time-Division Multiplex Slot (tdms) Register .. 0-6

x

INTRODUCTION
Architecture

1. INTRODUCTION

The WE DSP16 and WE DSP16A Digital Signal Processors are l6-bit, high-perfonnance, CMOS
integrated circuits. These devices can be programmed to perfonn a wide variety of signal­
processing functions. They are the DSPs of choice for applications requiring low power, high
perfonnance, and low cost.

Both devices share the same architecture, instruction set, and I/O interfaces. The DSP16A offers
greater speed and more internal memory for applications that require those characteristics.

This manual is a reference guide for the DSP16 and DSP16A devices. It describes the
architecture, instruction set, and interfacing requirements of both devices.

1.1 FEATURES

The WE DSP16 Digital Signal Processor features:

• 55 or 75 ns instruction cycle
• 16 x l6-bit multiply/add in one instruction cycle
• Two 36-bit accumulators
• 2048 words of ROM, 512 words of RAM
• Complete set of ALU (arithmetic logic unit) operations
• Immediate, indirect, and compound addressing modes
• Instruction cache for high-speed, ROM-efficient vector operations
• Serial and parallel I/O ports with multiprocessor capability
• Low-power CMOS technology, 84-pin plastic chip-carrier package

In addition to the DSP16's features, the DSP16A offers:

• 25 or 33 ns instruction cycle
• 4096 words of ROM and 2048 words of RAM on-chip

1.2 DEVICE DESCRIPTION

1.2.1 Architecture

The arithmetic unit contains a 16 x 16-bit parallel multiplier that generates a full 32-bit product in
one instruction cycle. The product can be accumulated with one of two 36-bit accumulators. The
data in these accumulators can be directly loaded from or stored to memory in 16-bit words with
automatic saturation on overflow. The ALU supports a full set of arithmetic and logic operations
on either 16- or 32-bit data. A standard set of ALU conditions can be tested for conditional
branches and subroutine calls. This procedure allows the processor to function as a powerful
16- or 32-bit microprocessor for logical and control applications.

Two addressing units support high-speed, register-indirect memory addressing with
postmodification of the register. Four address registers can be used for either read or write
addresses to the RAM without restrictions. One address register is dedicated to the ROM for
table look-up. Direct and immediate addressing is supported at a cost of only one additional
instruction cycle and one ROM location.

1-1

INTRODUCTION
Application Development

The DSP16 on-chip memory includes 2048 words of ROM and 512 words of RAM. For
prototyping or for applications that require frequent program modification, the ROM can be
replaced with up to 64 Kwords of external memory. The DSP16A offers twice as much ROM
(4096 words) and 4 times as much RAM (2048 words) as the DSP16. The DSP16A ROM may
be replaced with up to 64 Kwords of external memory or augmented with an additional 60
Kwords of external memory. An on-chip cache memory can be selectively used to store such
repetitive operations as a filter section. The code in the cache can be repeated up to 127 times
with no looping overhead. In addition, operations in the cache that require a ROM access (for
example, reading fixed coefficients) execute at twice the nonnal rate. The cache greatly reduces
the need for writing in-line repetitive code and, therefore, conserves ROM storage.

The device has both serial and parallel I/O ports. The serial I/O unit is double-buffered and easily
interfaces with other DSP16 devices, commercially available codecs, and time-division
multiplexed (TDM) channels with few (if any) additional components. The parallel I/O unit is
capable of interfacing to a l6-bit bus containing other DSPl6 devices, microprocessors,
microprocessor peripherals, or other I/O devices.

The processor is implemented in low-power CMOS technology and is packaged in an 84-pin
plastic leaded chip carrier (PLCC) or a 133-pin ceramic pin-grid-array (PGA) package.

1.2.2 Instruction Set

The DSP16/DSP16A instructions fall into five possible categories: multiply/ALU, special
function, control, data move, and cache. All instructions are 16 bits wide and have a C-like
assembler syntax. Although some pipelining of DSPI6/DSPI6A instructions is necessary to
achieve the real-time perfonnance required in many signal processing applications, the degree of
pipelining has been reduced from previous generation DSPs to simplify programming. Latency
effects have been eliminated.

1.3 APPLICATION DEVELOPMENT

Application development is aided by the use of the WE DSP16 and DSP16A Support Software
Library, the WE DSP16 and DSP16A Application Library, and the WE DSP16/DSP16A Digital
Signal Processor Development Systems.

1-2

INTRODUCTION
Development System

1.3.1 Support Software Library

Support software tools to help create, test, and debug DSPI6/DSPI6A application programs are
available from the WE DSP16 and DSP16A Support Software Library. The suW?rt software
libr~ consists of an integrated assembler and simulator that run on the UNIX ,MS-DOS *, or
VMS Operating Systems.

The DSP16/DSP16A software simulator provides access to all registers and to memory and
allows program breakpointing. The simulator also provides the user interface to the WE
DSP16/DSP16A Development Systems. The hardware development systems have many of the
breakpointing capabilities of the software simulator and can also be used in a
simulator/accelerator mode to speed software simulations.

1.3.2 Development System

Application system hardware development and software testing are supported by the WE
DSP16/DSP16A Development Systems. Each development system provides in-circuit emulation
to facilitate real-time debugging of user hardware, as well as a simulator/accelerator to speed
software simulations. Up to 16 development systems can be cascaded when developing
applications that involve multiple DSPs.

While connected to the development system, the user may edit, assemble, and load programs, as
well as utilize the software simulator. An assembled program can be transferred from the host
into the development system's program memory through an internal bus of a parallel interface to
the AT&T PC 6300 (or compatible) Personal Computer.

The software simulator and the development system can be used in three different modes:

• Simulation Mode. In this mode, the development system is not being used; program execution
is being simulated in the host computer. This mode is used for program development and
testing.

• Hardware Mode. The program has been downloaded into the development system and is
being executed by the actual DSPI6/DSPI6A device. Hardware mode is used for real-time
program testing.

• Simulator/Accelerator Mode. The program is executed in the development system (as in the
hardware mode), but data is supplied to and from the host. The simulator/accelerator mode is
used to speed algorithm development by executing the program in the hardware of the
development system rather than in the host computer.

* Registered trademark of the Microsoft Coxporation
t Registered trademark of the Digital Equipment Corporation

1-3

INTRODUCTION
Other Applicable Documentation

1.4 DOCUMENTATION

This document is a reference guide for the DSPl6 and DSPl6A devices. It describes the
architecture, instruction set, and interfacing requirements of the both devices. Information on
DSPI6/DSPI6A programming techniques and several complete sample application programs are
provided. The remaining chapters of this manual are outlined below:

o Chapter 2. DSPI61DSPI6A Architecture - a detailed description of the DSPI6/DSPI6A
device, including separate sections describing the major elements of the architecture and how
they function.

o Chapter 3. Instruction Set -lists the complete instruction set of both devices and provides a
description of each instruction, including restrictions and normal uses. Addressing modes are
also discussed in detail.

o Chapter 4. Device Programming - discusses topics related to programming beyond the
syntax of the instruction set. Possible problems are discussed, along with solutions and advice.

o Chapter 5. Serial I/O - a detailed analysis of the operation of the serial I/O port. Information
specific to the serial I/O unit is provided that is essential to designs that utilize this port.

o Chapter 6. Parallel I/O - a detailed analysis of the operation of the parallel I/O port.
Information specific to the parallel I/O unit and detailed information regarding the interrupt
mechanism are provided that are essential to designs utilizing the parallel port.

o Chapter 7. Interface Guide - provides information regarding the physical design of the
devices, including pin assignments, electrical characteristics, external memory interfacing, and
reset and interrupt control.

o Appendix A. Instruction Set Encoding -lists the hardware-level encoding of the instruction
set.

o Appendix B. Programming Examples - presents four complete sample application programs
that demonstrate proper programming techniques.

1.4.1 Other Applicable Documentation

When designing application hardware and software, it is important to have accurate information.
A variety of documents exist to provide specific information on various members of the DSPl6
product family. Contact your AT&T Account Manager for the latest issue of any of the following
documents.

o The AT&T Digital Signal Processor Family Description introduces the AT&T DSP family of
products and provides a brief overview of the capabilities of its members.

o WE ® DSP 16 and DSP 16A Digital Signal Processor Information Manual (this manual) is a
reference guide for the DSPI6/DSPI6A/DSPI6-Military devices. It describes the architecture,
instruction set, and interfacing requirements. Information on programming techniques and
several complete sample application programs are provided.

1-4

INTRODUCTION
Assistance

• WE ® DSP 16 Digital Signal Processor Data Sheet provides up-to-date timing requirements and
specifications, electrical characteristics, and a summary of the instruction set and device
architecture.

• WE ® DSP 16A Digital Signal Processor Data Sheet provides up-to-date timing requirements
and specifications, electrical characteristics, and a summary of the instruction set and device
architecture.

• WE ® DSP 16 and DSP 16A Support Software Library User Manual provides the information
necessary to install and use the DSP16/DSP16A support software. TIlls manual is also
required when working with the DSP16 Development System or the DSP16A Development
System, as the support software provides an interface between the host computer and the
development system.

• WE ® DSP 16 and DSP 16A Development System User Manual provides the information
necessary to set up and use the DSP16 and DSP 16A Development Systems.

1.5 ASSISTANCE

Assistance is available during conception, development, and throughout the life of the product.
These services include:

• Technical documentation and product samples

• Information on determining and selecting the appropriate hardware and software

• The AT&T DSP Bulletin Board provides the latest and most up-to-date information about
AT&T DSP products and application assistance:

1200/2400 baud
7 data bits, even parity
1 stop bit
201-834-6068

For technical assistance or further information including ordering information and part numbers,
please contact the nearest office through the following phone numbers:

Domestic (USA & Canada)

Northeast Region
508-626-2161

North Central Region
612-885-4300

Rocky Mountain Region
303-850-2935

Mid-Atlantic Region
215-768-2626

South Central Region
214-869-2040

Pacific Northwest
408-522-5555

or
503-244-3883

Southeast Region
404-446-4700

Southwest Region
602-244-1100

Sou~hem California
818~902-0139

or
714-220-6223

1-5

INTRODUCTION
Assistance

International

Europe (except Spain
and Portugal)

+49 89 950 86 0
Telfax: +49 89 950 86 111

Japan
813-593-3301
Telex: 132562 A TIIJ

Fax: 813-593-3307

Internal (AT&T Customers)

Spain and Portugal
+34 1404 6012
Fax: +341404 6252

Pacific Rim
65-225-5233
Telex: RS 42898

Fax: 65-225-8725

AT&T internal customers should contact their local AT&T Account Management Office. If
the Account Management telephone number is not known, call1-S00-372-2447 and ask for the
telephone number of your account representative.

1-6

2. DSP16/DSP16A ARCHITECTURE

DSP16/DSP16A ARCHITECTURE
DSPI6/DSPI6A Architecture

The major elements of the DSP16/DSP16A architecture are the memories, ROM and RAM; the
cache; the address arithmetic units; the data arithmetic unit; the I/O, serial and parallel; and the
control unit that connects these elements in a pipeline. Figure 2-1 shows a block diagram.

ABOO-AB15

CKI

RSTB

EXM

RBOO-RBtS

110

IBF

00

OSE

SADD

aDEN

'NT

lACK

PSEL

PIDS

poas

t-t=
I
I

I
I

I

I

I
I " I
r
I

I

ADDRESS BUS (16) ,{. .,LJ..
r-- - I XAAU

--@T .- ROM
ADO

CONTROL ~ 15x16 2048X16 po
(4096XI6, OSP16A) p'

pi

- - I

i i ..,LJ..
EXTERNAL MEMORY DATA BUS (16)

DATA BUS (16)

" "t "

I~
1-

OAU
yh(16) yl(16)

SID .1" 16 x 16 MULl

G!i:iJ p (32) .. "
~ SHIFT (-2,0,2)

+ y--
~ MUX r-;;o-

IJ.. '-:t ~ ~ r--A. \ AlUISHIFT r-Hc-
~ • ~

aO(36)

~ at (36)

~ ~
EXTRACT/SAT

i ;-{-"
DATA BUS (16)

:1 It
P'O

I~
~

';" ~ RAM

~ S12x16
(2048xI6, DSP16A)

~

r3 fIl

Figure 2-1. DSPI6/DSPI6A Digital Signal Processor Block Diagram

2-1

DSP16IDSP16A ARCHITECTURE
ROM

r-- 16 BITS --..J
OxOOOO -

Ox07FF

Ox0800

ON-CHIP ROM

OR

EXTERNAL MEMORY'

r-- 16 BITS --..J
OxOOOO -

ON-CHIP ROM

OR

EXTERNAL MEMORY'

EXTERNAL MEMORY OxOFFF

Ox1000
EXTERNAL MEMORY

EXTERNAL MEMORY

OxFFFF - '--------'

DSP16 DSP16A

• When EXM signal is low.

Figure 2-2. DSP16/DSP16A Memory Maps

2.1 MEMORY

The DSP16/DSP16A device provides both on-chip program memory and on-chip data memory.
The program instructions and fixed operands are stored in the ROM. Instructions and immediate
values are 16 bits wide and are fetched in one memory access each. Such variable operands as
adaptive fIlter coefficients, state variables, intermediate results, and I/O data are stored in RAM.
The on-chip ROM can be replaced with up to 64 Kwords of off-chip program memory on the
DSP16. The DSP16A ROM may either be replaced with up to 64 Kwords or augmented with an
additional 60 Kwords of off-chip program memory.

2.1.1 ROM

The DSP16 device provides a 2K x l6-bit, on-chip ROM for program memory and immediate
data. The on-chip ROM for the DSP16 device can be replaced by off-chip memory. The 16-bit
address and ROM data buses are available off-chip for external program memory expansion. The
DSP16 device provides on-chip address bus and data bus latches and memory control signals to
allow for a zero chip interface to memory devices. The DSP16 device can execute programs
residing in either the 2 Kword on-chip ROM or in off-chip program memory (64 Kwords
maximum). A memory map for DSP16 program memory is provided in Figure 2-2.

The DSP16A features a larger 4K x 16-bit, on-chip ROM. Like the DSP16, the ROM of the
DSP16A can be replaced with up to 64 Kwords of external memory. The DSP16A also allows
the use of both internal ROM and up to 60 K words of external memory.

2-2

DSPI6/DSPI6A ARCHITECTURE
Control

2.1.2 RAM

The DSP16 device provides a 512 x 16-bit, on-chip, static RAM to store intermediate results of
calculations and I/O data. The DSP16A provides a 2048 x 16 on-chip, static RAM. RAM
expansion is supported by the parallel I/O unit (see Chapter 6).

2.2 CACHE

The on-board cache memory selectively stores repetitive operations to increase the throughput
and the coding efficiency of the DSPI6/DSPI6A device. The cache can store up to 15
instructions at a time. The DSPI6/DSPI6A device can be programmed to execute the
instructions in the cache up to 127 times without having to use branching instructions.
Instructions previously stored in the cache can be re-executed without reloading the cache.

Cache instructions eliminate the overhead when repeating a block of instructions. Therefore, the
cache reduces the need to implement a routine that uses in-line coding in order to maximize the
throughput. A routine utilizing the cache uses less ROM locations than an in-line coding of the
same routine.

For two-operand multiply/arithmetic logic unit (ALU) instructions that do not require a write
memory, decreasing the execution time from two instruction cycles to one instruction cycle
results in an increase in throughput

2.3 CONTROL

CONTROL CACHE
15 x 16

Figure 2-3. Control and Cache

The control block provides overall DSPI6/DSPI6A system coordination. The instructions are
decoded by hardware in the control block. The execution of the phases of an instruction is
controlled by hardware throughout the DSPI6/DSPI6A device. The hardware sequences
instructions through the pipeline and controls the I/O, the processing, the memory accesses, and
the timing necessary to perform each operation.

2-3

DSP16/DSP16A ARCHITECTURE
ROM Address Arithmetic Unit

2.4 ADDRESS ARITHMETIC UNITS

Separate address arithmetic units for the on-chip ROM and RAM are provided. Each address
arithmetic unit consists of static registers and an adder. Addresses are held by four of the
registers in each address arithmetic unit. The remaining registers hold values that can be used to
modify the address pointers. The adder is used to increment or decrement the addresses stored in
the registers.

2.4.1 ROM Address Arithmetic Unit

The ROM address arithmetic unit (XAAU) consists of a 12-bit adder; a 12-bit static offset
register, i; and four 16-bit static pointer registers: the program counter, pc; the program return,
pr; the program interrupt, pi; and the table pointer, pt. These registers are used to address the
ROM. The i register can be used to postmodify the pt register. The pt, pr, and i registers are
user-accessible and can be modified under program control.

The pc register can be loaded with the address of a subroutine or branch directly from the control
section. The program return address from a subroutine invoked using the call control instruction
is saved in the pr register. The program return address from an interrupt is saved in the pi
register. The pc register is loaded with the address in pr when returning from a subroutine or in pi
when returning from an interrupt. The pc register can also be loaded from the pt register.

The pt register is normally used to point to tables of fixed data in ROM. The contents of the pt
register can be modified by 1 or the value stored in the i register.

The i register contains a 12-bit, 2's complement signed number with a range of -2048 to +2047.
The adder in the XAAU is used to postmodify the contents of the pt register. The data in the i
register is sign-extended to 16 bits when transferred on the data bus. The XAAU has a 12-bit
adder. Therefore, the address space can be viewed as sixteen 4 Kword pages. The adder is used
to modify the 12 least significant bits (LSBs). The four most Significant bits (MSBs) of the
address may be changed by goto pt and call pt instructions.

Due to the XAAU 12-bit adder, pt can only be postincremented to 4095 by x = *pt++. But, since
pt is a 16-bit unsigned register, it can be loaded with values to 64K.

The pi register is a 16-bit "shadow" register. Each time the pc register is modified, its new value
is also loaded into the pi register. While in an interrupt service routine (lSR), this "shadowing"
is disabled, and pi holds the last value of pc before the interrupt was taken. The return from
interrupt instruction (ireturn) is simply a "goto pi" instruction.

The pi register may be read or written while in an ISR, but writing affects the return address.
When not in an ISR, writing to pi has no effect on the contents of pi (the write to pi resets the
pseudorandom sequence generator).

2-4

DSP16IDSP16A ARCHITECTURE
ROM Address Arithmetic Unit

ADDRESS
BUS
(16)

XAAU

pI (16)

pr (16)

pi (16)

Figure 2-4. XAAU - ROM Address Arithmetic Unit

YAAU

r2

r3

NOTE: All registers are 9 bits wide in the DSP16 and 16 bits wide in the DSP16A.

Figure 2-5. Y AAU - RAM Address Arithmetic Unit

2-5

DSP16/DSP16A ARCHITECTURE
Data Arithmetic Unit

2.4.2 RAM Address Arithmetic Unit

The RAM address arithmetic unit (Y AA U) consists of eight static registers and an adder. These
registers are 9 bits wide in the DSP16 and 16 bits wide in the DSP16A. The RAM is addressed
by the rtl-r3 pointer registers. The j and k offset registers can be used to postmodify registers
rtl-r3. The rb and re registers are used when a register addressing the RAM is used in a cyclical
(modulo) fashion. The eight YAAU registers are accessible to the user and can be loaded under
program control.

The registers rtl-r3 point to the RAM location that is the source of data to be loaded into the
destination specified in the instruction or to the RAM location that is the destination of data from
the source specified in the instruction. The rtl-r3 pointers may be automatically postmodified
by 0, +1, -1, +2, the contents of the j register, or the contents of the k register. The j and k
registers contain 9-bit, 2's complement signed numbers with a range of -256 to +255 in the
DSP16 and 16-bit, 2's complement signed numbers with a range of-32,768 to +32,767 in the
DSPI6A. The adder in the YAAU is used to postmodify the contents of the rtl-r3 registers.

Data in RAM can be addressed by using a virtual shift addressing mode. This addressing mode
forms the equivalent of a cyclic shift register within the RAM.

Virtual shift addressing realizes a shift register for the FIR filter tap values without moving the
data stored in RAM. The memory space allocated in RAM for the table of data to be addressed
by using virtual shift addressing is defined by the addresses loaded into rb and reo The rb
contains the physical address of the first location of the shift register; re points to the last entry.
When a pointer is used, its value is compared with the contents of reo If they are equal and the
postincrement is 1, the RAM address arithmetic unit writes the value of rb into the RAM pointer
after the memory access. The DSP16 device can support virtual shift addressing of shift registers
of up to 512 words in length. The DSP16A device can support virtual shift registers of up to
2048 words in length. The virtual shift addressing mode is disabled when the value in re is O.
Register re is cleared (0) on reset.

2.5 DATA ARITHMETIC UNIT

The data arithmetic unit (DAD) is the main execution unit for signal processing algorithms. The
DAU consists of a 16 x 16-bit multiplier, 36-bit ALU, and two 36-bit accumulators; aO and a1.
The DAU performs 2's complement, fixed-point arithmetic and is software configurable as a
multiply/accumulate or ALU structure. The DAU multiplier and adder operate in parallel, each
requiring one instruction cycle for their execution. Microprocessor-like instructions are executed
by the ALU.

The multiplier executes a 16 x 16-bit multiply and stores the 32-bit product in the product
register, p, in one instruction cycle. Data for the multiplier's inputs is stored in the 16-bit x
register and the upper 16-bits (high half) of the 32-bit y register. The x register may be directly
loaded from ROM, RAM, or the high half of an accumulator (bits 16-31 of the 36-bit word).
The high half of the y register may be directly loaded from RAM or the high half of an
accumulator.

2-6

<

DSP16IDSP16A ARCHITECTURE
Data Arithmetic Unit

) ROM DATA BUS (16) I

I DATA BUS (16)

• • L x (16) J yh (16) yl (16) I

L-f 16 x 16 MULTIPLY '1-16

32

I P (32) I

• D cO (8)
A I SHIFT (-2. O. 2) I
U +

01 (8)

" MUX /
c2 (8) ~ ..

~L
000(7) g

psw (16) II)
OJ

"'" ALU I SHIFT / '" ;!:
+ '" " I 00 (36) L

I 01 (36) I
t

I EXTRACT I SAT. I
I
• I DATA BUS (16)

Figure 2-6. DAU - Data Arithmetic Unit

In addition to being used as an adder in the multiply/accumulate instructions, the 36-bit ALU
provides the capability to implement functions and algorithms in the DSPI6/DSPI6A device that
conventionally would have been executed in a microcomputer or a microprocessor. Operands to
the ALU can be data in y, p, aO, or al. The ALU sign-extends 32-bit operands from y orp to 36

L bits and produces a 36-bit output (32 bits of data and 4 guard bits) in one instruction cycle. Either
accumulator can receive the 36-bit result. The ALU supports diadic functions with register y and
an accumulator, including addition, subtraction, and logical AND, OR, and XOR. Monadic
functions of an accumulator include rounding, negation, incrementation, and left and right shifts
of 1, 4, 8, or 16 bits.

The y register is 32 bits wide. To read or write the low half of the y register (bits 0-15), yl is
used in an assembly-language instruction. When y is used in an assembly-language instruction,
the DSPI6/DSPI6A device will read or write the high half (bits 16-31) of the y register.
Automatic clearing of yl may be selected (according to the CLR field of the auc register) to
simplify 16-bit operations. If clearing of the yl is enabled, the lower half of register y is cleared
(0) with a write to the high half of the y register. Writes to yl do not change the data in the high
halfofy.

The accumulators are 36 bits wide. The contents of either the high half of the accumulator (bits
16-31) or the low half of the accumulator (bits 0-15) may be transferred to the 16-bit data bus.
Automatic clearing of aOl or all may be selected (according to the CLR field of the auc register)
to simplify 16-bit operations. If clearing of the low half of the accumulator is enabled, the lower
half of the accumulator is cleared (0) with a write to the high half of the accumulator. Writes to
the low half of the accumulator do not change the data in the high half of the accumulator. When
the high half of an accumulator is loaded, the guard bits (35-32) are also loaded with the value

2-7

DSP16IDSP16A ARCHITECTURE
Data Arithmetic Unit

of bit 31 and, thereby, sign-extended. Access to the guard bits for reading and writing is provided
by the psw register.

The SAT field of the auc register allows the enabling of saturation on overflow when transferring
the contents of accumulators onto the data bus. If saturation on overflow is enabled and either
half of an accumulator is selected, the value transferred is saturated to 32 bits. If the selected
accumulator has overflowed, then either the positive or negative (based on bit 35) saturation value
is transferred.

231 _1 is the positive saturation value

_231 is the negative saturation value.

A write of the contents of a 32-bit register to RAM requires two instructions: a write of the data
in the high half of the register to RAM and a write of the data in the low half of the register to
RAM. The order of the two writes to memory is left to the programmer. A read of the contents of
RAM to a 32-bit register or accumulator also requires two instructions. If clearing of the low half
of the destination's 32-bit register is enabled (according to the auc register, CLR field), the read
of data in RAM to a 32-bit register must be done in the following order: load data to the high half
of the register and load data to the low half of the register. This order is necessary because a load
to the low half of a register does not change the data in the high half, while a load of the high half
of a register clears the data from the low half. If clearing of the low half of the register is
disabled, the two register loads may be performed in either order.

In addition to the registers already mentioned, the user has access to the arithmetic unit control
register, auc; the processor status word register, psw; and the counters, c0--<:2. The auc register
configures some features of the data arithmetic unit. The psw register contains status information
regarding the data arithmetic unit. Table 2-1 shows the contents of the psw register. The cO-c2
counters are 8 bits wide and may be used under program control to count events such as the
number of times the program has executed a sequence of code.

2-8

DSPI6/DSPI6A ARCHITECTURE
Arithmetic and Precision

Table 2-1. Processor Status Word (psw) Register

Bit 115 114 113 112111 110 I 9 181716151 4 131211101
Field I DAUFlags I X I X I a1[V] I a1[35-32] I aO[V] I aO[35-32] I

Bit(s) Field Value· ResultiDescription

Wxxx LMI -logical minus when set.

15-12 DAUFlags
xWxx LEQ -loltical eQual when set.

xxWx LL V -logical overflow when set.

xxxW LMV - mathematical overflow when set.
11,10 X - Reserved.

9 al[V] W Accumulator 1 (al) overflow when set.

Wxxx Accumulator 1 (al) bit 35.

8-5 al[35-32]
xWxx Accumulator 1 (al) bit 34.

xxWx Accumulator 1 (al) bit 33.

xxxW Accumulator 1 (al) bit 32.

4 aO[V] W Accumulator 0 (aO) overflow when set.

Wxxx Accumulator 0 (aO) bit 35.

3-0 aO[35-32]
xWxx Accumulator 0 (aO) bit 34.

xxWx Accumulator 0 (aO) bit 33.

xxxW Accumulator 0 (aO) bit 32.
* W indicates that the bit may be read or written.

2.5.1 Arithmetic and Precision

Fixed-point, 2's complement arithmetic is used throughout the DSPI6/DSPI6A devices. The
arithmetic bit alignment for the DSPI6/DSPI6A devices is shown in Figures 2-7, 2-8, and 2-9.
The 16-bit data in the x register and in the high half of the y register can be multiplied together
and the 32-bit result is stored in the p register. The data in the y or p registers can be operated on
by the ALU and the result stored in either of the 36-bit accumulators. The 32-bit data from the y
or p register is sign-extended to 36 bits when operated on by the ALU.

For notational convenience, the 36-bit accumulators can be thought of as having an implied
binary point to the right of bit 16. Bits 15--0 are then the fractional part, which is referred to as
aNI, where aN = aO, or aI, and bits 35-16 are the integer part. The ALU operates on all 36 bits
of the accumulators. The CLR field of the auc register controls automatic clearing of the low half
of aO, aI, and y, making it easy to perform 16-bit integer operations in the ALU by automatically
clearing the low half of the register when the high half is loaded.

The data transferred between an accumulator and memory or register must be scaled properly to
reflect the bit alignment between p and a[O, 1] determined by the auc word. The user can select
where the data in p is placed in the accumulator. Table 2-2 shows how two bits in the auc
register, auc[l, 0], determine the bit alignment of the data in p with respect to the data in the

2-9

DSP16/DSP16A ARCHITECTURE
Arithmetic and Precision

accumulators. The connection of the data bus to the RAM, the accumulators, and the remaining
registers in the DSPl6/DSPl6A device is fixed.

Table 2-2. Arithmetic Unit Control (aue) Register

Bit I 6 I 5 I 4

I
3 I 2 11 I 0 I

CLR SAT Field. . ALIGN.

Bit(s) Field Value ResuitiDeseription

lxx Clearing yl is disabled (enabled when 0).
6-4 CLR

rI xix ClearingaU is disabled (enabled when 0).
) Ix al saturation on overflow is disabled (enabled when 0).

3,2 SAT I xl aO saturation on overflow is disabled (enabled when 0).

00 p f- (xxy).

01 p f- (xxy) + 4.

1,0 ALIGN 10 p f- (xxy) x 4.

~
11 Reserved.

xxi Clearing aOl is disabled (enabled when 0).

Note: The auc register is not affected by reset.

If the auc[l, 0] bits are 00, the data in the p register is not shifted with respect to the bits in the
accumulator before p[31-O] is transferred into bits 31-0 of an accumulator. The sign of p is
extended by four bits, p[35-32], to provide overflow protection. The data transfer from p to an
accumulator moves the overflow bits of the product into the guard bits 35-32 of the accumulator
(see Figure 2-7 for the bit aligmnent in the DAU for auc[I,O]=OO). This mode is most often used
when both x and y operands are 16-bit integers.

If the auc[1, 0] bits are 10, the data in the p register is shifted two bits to the left with respect to
the bits in the accumulator before p[31-O] are transferred into bits 33-2 of an accumulator.
Bits 1 and ° of the accumulator are not changed by the load of the accumulator with the data in p,
since 00 is added to or copied into these accumulator bits as indicated in Figure 2-8. The sign of
p is extended by two bits, p[33-32], to provide overflow protection. The data transfer from p to
an accumulator moves the overflow bits of the product into guard bits 35-34 of the accumulator
(see Figure 2-8 for the bit aligmnent in the DAU for auc[I,O]=IO). This mode is often used in
filtering applications where coefficients in the x register are in Q14 format (2 magnitude bits, 14
fractional bits), and state variables in the y register are 16-bit integers. If the p register is not
shifted prior to accumulation, the accumulated result would have 4 guard bits, 18 magnitude bits,
and 14 fractional bits. Since it is often desirable to have the implied binary point to the right of
bit 16 (16 fractional bits), the setting auc[I,0]=2 automatically shifts the result 2 bit locations to
the left generating an accumulated result with 4 guard bits, 16 magnitude bits, and 16 fractional
bits.

2-10

DSP16/DSP16A ARCHITECTURE
Arithmetic and Precision

If the auc[1 ,0] bits are 01, the data in the p register is shifted two bits to the right with respect to
the bits in the accumulator before p[31-2] are transferred into bits 29-0 of an accumulator.
Bits p[1 ,0] are not saved in the accumulator by the load of the accumulator with the data in p in
this auc setting. The sign of p is extended by six bits, p[37-32], to provide overflow protection.
The data transfer to an accumulator from p moves the overflow bits of the product into the guard
bits 35-32 and bits 31-30 of the accumulator (see Figure 2-10 for the bit alignment in the DAU
for auc[1,O]=01). This setting is most useful when avoiding overflow is a primary consideration,
and the loss of the two LSBs of the product can be tolerated.

15 o

x (16)

16 115 o

y (32)

16 1 15 o

P (32)

35 32 131 16 115 o

aO, a1 (36)

Figure 2-7. DSP16/DSP16A Arithmetic Bit Alignment When auc[l,O]=OO

2-11

DSP16/DSP16A ARCHITECTURE
Arithmetic and Precision

15 0

x (16) I

131 16115 0

I y (32) I
21

31 129 0 1

I p (32)

I

35 1 131 16115 21 0

I
aO, a1 (36) I

Figure 2-8. DSP16IDSP16A Arithmetic Bit Alignment When auc[1,0]=10

15 0

x (16) I
113

1 o

y (32)

31 129

1

P (32)

35 30 129

aO, a1 (36)

Figure 2·9. DSP161DSP16A Arithmetic Bit Alignment When auc [1,0]=01

2·12

2.6 SERIAL I/O

DSP16/DSP16A ARCHITECTURE
Serial I/O

The serial I/O port (SIO) allows the DSP16/DSP16A device to interface serially to other devices
with few, if any, external chips (see Figure 2-10). The serial I/O port converts the serial input
data stream to a parallel input data word and the parallel output data word to a serial output data
stream. Serial I/O transfers are double-buffered to enable the DSP16/DSP16A device to handle
back-to-back serial transfers. The second serial transmission can begin before the data from the
first serial transmission has been processed. The external DSP16/DSP 16A serial I/O control
signals allow a zero chip interface to commercially available codecs and to the DSP16/DSP16A,
DSP32, and DSP32C devices for multiple DSP applications.

The serial I/O control register, sioc, allows the specification under program control of: the length
of the serial input and output data words; the mode, active or passive, of the serial bit clocks; the
mode, active or passive, of the serial load signals; bit ordering of the I/O; the active serial I/O bit
clock rate; and active load generated from either ICK or OCK. The length of serial input and
output data words can be 8 or 16 bits. The serial I/O bit clocks and the serial I/O load signals are
transmitted by the DSP16/DSP16A device to the rest of the external system in the active mode or
are generated by the external system and transmitted to DSP16/DSP16A device in the passive
mode. The mode of the input bit clock and load signal can be selected independent of the mode
for the output bit clock and load signal. Active serial I/O bit clock rates of CKI/4, CKl/12,
CKI/l6, and CKI/20 can be selected. The bit order of the serial input data can be specified to be
bit-reversed when the input is moved from the serial input buffer to the destination register or
RAM location; the bit order of the data can be specified to be bit-reversed when data is
transferred to the serial output buffer from the source register or RAM location. Bit reversal of
the data is necessary for IL-Iaw and A-law conversion and is performed in hardware rather than in
software. See Chapter 5.

The tdms register specifies the time slot of the DSP in a time-division multiplexed signal,
whether the DSP is operating in a single or multiple DSP16/DSP16A environment and the active
frame synchronization signal clock rate, f/128 or f/256.

The synchronization clock can be active or passive. In the multiple DSP environment, a
DSPI6/DSP16A device can directly address a maximum of seven other DSP16/DSP16A devices
via the serial I/O port. The 16-bit srta register is loaded with two 8-bit addresses. One address
specifies the receiving DSP identity; the second address identifies the destination DSP, where the
serial data is accepted. See Chapter 5 for more detailed information.

2-13

DSP16IDSP16A ARCHITECTURE
Parallel 110

ICK

OCK

SIO

-----t..(""""lSR(16)1

IBF

OSE

SYNC

SADD

DOEN

i£
~

Ul
:::J
CD
..:
!;;:
Cl

Figure 2-10. SIO - Serial Input/Output Unit

2.7 PARALLEL I/O

The DSP16/DSP16A parallel I/O port (PIO) provides a l6-bit, bidirectional data link to
microprocessors and other I/O devices (see Figure 2-11). The parallel I/O port supports
bidirectional communication with other devices over a wide range of data transfer rates.

The parallel I/O control word, pioc, allows the specification, under program control, of the
configuration of the PIO data pins; the mode, active or passive, of the parallel I/O data strobe
signals; and the width of the parallel I/O data strobe signals in the active mode. The l6-bit PIO
data bus can be configured to transmit and receive 8 bits simultaneously or, under program
control, either to input 16 bits or output 16 bits. The parallel I/O data strobe signals are
transmitted by the DSP16/DSP16A device to the external system in the active mode or are
generated by the external system and transmitted to the DSP16/DSP16A device in the passive
mode. The mode of the input data strobe signal can be selected independent of the mode for the
output data strobe signal. In the active mode, the pulse width of the strobe signals can be
selected. The contents of the pioc register can be read to determine the status of the
DSPI6/DSPI6A serial and parallel I/O ports. The pioc register contains a bit field with the status
of the serial and parallel I/O flags. Under program control, this bit field can be read to determine
the state of the I/O flags; the program cannot write this bit field in the pioc register.

The DSP16/DSP16A device can directly address two devices via the PIO ports, pdxO and pdxl.
The signal level on the PIO address line, psel, is low when data is written to pdxO and high when
data is written to pdxl. A DSP16 instruction writes to eitherpdxO or pdxl to output data via the
PIO port. A DSP16 instruction reads pdxO or pdxl to access the data input to the PIO port by
external devices. The PIO data strobe signals are asserted when data is written to the PIO port by
the DSP16/DSP16A device or by external devices. The PIO port can be used to interface the
DSP16/DSPI6A device with a large external RAM memory.

2-14

DSP16IDSP16A ARCHITECTURE
Interrupts

INT -I PIO
lACK ..

PDBOO- I pdx in (16)
PDB15

: !
I pdx out (16)

PIDS J ; PSEL pioe (16)

PODS

I

Figure 2-11. PIO - Parallel Input/Output Unit

2.8 INTERRUPTS

The DSP16/DSP16A device has one external interrupt request signal and four internal interrupt
request signals. Hence, it can respond to one external and four internal conditions. These
conditions are:

• INT - Interrupt by an External Device. An external device has requested service by
asserting the !NT pin.

• IBF - Input Buffer Full. Indicates that an external device has written data into the device's
serial input buffer.

• OBE - Output Buffer Empty. Indicates that an external device has read data from the SIO
serial output buffer.

• PIDS - Parallel Input Data Strobe. Indicates that an external device has written data into the
PIO parallel input register.

• PODS - Parallel Output Data Strobe. Indicates that an external device has read the data
from the PIO parallel output buffer.

Each interrupt is maskable; that is, by appropriately clearing bits in the pioc register, the
associated interrupt is ignored. The interrupt mask bits, pioc[5-9], are cleared (0) on reset,
thereby disabling all interrupts.

An interrupt causes a goto 1 instruction to be jammed into the instruction register. When in an
interrupt service routine, the shadowing of the pc register is disabled (see Section 2.4.1). The
DSPI6/DSP16A device also provides a software interrupt facility_ The instruction icall causes
the same sequence of events to occur as any other interrupt source, except the branch address of
the interrupt service routine is 2 rather than 1. Note that the branch address for interrupts is
always at location 1 or 2 (the branch is not limited to the current 4 Kword page).

2-15

DSP16IDSP16A ARCHITECTURE
Hardware Description

Table 2-3. Parallel I/O Control (pioc) Register

Bit 115 h41 13 I 12 I 11 110 I 9-5 I 4--0 I
FieldlmFlsTROBEI PODS IPIDS IS/ciINTERRUPTS I STATUS I

Bit(s) Field

15 IBF

14,13 STROBE

12 PODS

11 PIDS

10 SIC

9-5 INTERRUPTS

4---0 STATUS

* R indicates a read-only bit.

t T = 2 x tCKIHCKIH

2.8.1 Hardware Description

Value*
R

00
01
10
11

0
1

0
1

0
1

lxxxx
xlxxx

xxlxx
xxxIx

xxxxl
Rxxxx

xRxxx
xxRxx
xxxRx
xxxxR

ResultlDescription

IBF interrupt status bit (same as bit 4).
Strobe width of
PODS PIDS

Tt T
2T 2T
3T 3T
4T 4T

PODS is an input (passive mode).
PODS is an output (active mode).
PIDS is an input (passive mode).
PIDS is an output (active mode).

Not SIC mode.
SIC mode.
IBF interrupt is enabled (disabled when 0).
OBE interrupt is enabled (disabled when 0).

PIDS interrupt is enabled (disabled when 0).
PODS interrupt is enabled (disabled when 0).
INT interrupt is enabled (disabled when 0).
IBF status bit.

OBE status bit.
PIDS status bit.

PODS status bit.
INT status bit.

The external interrupt mechanism has two relevant signals: INT and lACK.

oINT - Interrupt Request. When asserted, this input indicates to the DSPI6/DSPI6A device
that an external device is requesting service. To guarantee that this request is serviced, the INT
signal must remain asserted for twice the period of the DSPI6/DSPI6A device's CKO signal
(Le., 4 x tCKIHCKIH) .

• lACK - Interrupt Acknowledge. When asserted, this output indicates that one of the internal
or the external interrupt requests has been recognized by the DSPI6/DSPI6A device. Once the
lACK signal has been asserted, it is negated upon completion of the interrupt service routine

2-16

DSP16/DSP16A ARCHITECTURE
Software Description

(Le., upon execution of an iretum instruction). lACK, when active, masks the interrupt request
signal (INT).

2.8.2 Software Description

After recognizing an interrupt, the DSPI6/DSPI6A device completes execution of the current
instruction and then branches to address 1. Branch and conditional branch instructions and
instructions executing within the cache are not interruptible. If an interrupt request occurs during
an uninterruptible instruction, the DSPI6/DSPI6A device does not recognize the request until an
interruptible instruction is encountered. See Chapter 3 for more information on the
DSPI6/DSPI6A instruction set.

The interrupt service routine entered should clear the respective status bit in the pioc register. If
this is not done, the DSPI6/DSPI6A device repeatedly recognizes the interrupt until the
appropriate status bit in the pioc is cleared. (This can be useful in certain applications.)

Individual status bits are cleared in the following manner:

• IBF - Input buffer full (pioc bits 4 and 15) is cleared by reading sdx, the serial input buffer.

• OBE - Output buffer empty (pioc bit 3) is cleared by writing to sdx, the serial output buffer.

• PIDS - Parallel input data strobe (pioc bit 2) is cleared by reading the parallel input buffer,
pdxO or pdxl.

• PODS - Parallel output data strobe (Pioc bit 1) is cleared by writing to the parallel output
buffer, pdxO or pxd l.

oINT - Interrupt by an external device (pioc bit 0) is cleared when lACK makes a high-to­
low transition (initiated by an ireturn instruction), indicating the end of the interrupt service
routine.

The interrupt status bits are also cleared on reset.

See Section 6.3 for more information on interrupts utilizing the PIO and Section 4.2.5 for
techniques on handling multiple interrupts.

2-17

2-18

DSPI6/DSPI6A INSTRUCTION SET
Notation

3. DSPI6/DSPI6A INSTRUCTION SET

All DSPI6/DSPI6A instructions are 16 bits wide and have a C-like syntax. Pipelining of the
instructions is necessary to achieve the real-time performance required by many signal-processing
applications. To facilitate programming, the degree of pipe lining in the DSPI6/DSPI6A device
has been reduced and the latency effects present in previous generation DSPs have been
eliminated. The instructions fall into one of five possible categories:

• Multiply/ALU instructions are the primary instructions used to implement signal-processing
programs. These instructions perform multiply/accumulate, logical, and other ALU functions
and also transfer data between memory and registers in the data arithmetic unit.

• Special Function instructions are used to perform such operations as rounding, negation, and
logical left shifts and arithmetic right shifts of accumulators. Special function instructions may
be conditionally executed on the basis of the state of internal flags.

• Control instructions are used to control program flow. The call, goto, and return instructions
are provided and may be conditionally executed on the basis of the state of internal flags.

• Data Move instructions are used to transfer data between registers, memory, and accumulators.
Immediate loads of certain registers are also possible.

• Cache instructions allow the implementation of low overhead loops by loading a set of
multiply/ALU and special function instructions into a cache memory and repetitively executing
them (up to 127 times).

The following sections describe in detail the notation used in the instruction set, the addressing
modes supported, the internal flags used by conditional instructions, and the five groups of
instructions.

Note: Only multiply/ALU and special function instructions set DAU flags.

3.1 NOTATION

The following operators are used to describe the instruction set:

Operator Meaning

* 16 x 16 -7 32-bit multiplication
(Denotes register-indirect addressing
when used as a prefix to an address register)

+ 36-bit addition
36-bit subtraction

+ + Register postincrement
Register postdecrement

» Arithmetic right shift
« Logical left shift

3-1

DSP16IDSP16A INSTRUCTION SET
Indirect Addressing

& 32-bit bitwise AND
I 32-bit bitwise OR
" 32-bit bitwise EXCLUSIVE OR

Compound addressing

For all instructions listed in this chapter, the following are true:

• Brackets, [], are not part of the instruction syntax, but indicate that the enclosed item is
optional.

• Parentheses, (), and braces, { }, are part of the instruction syntax and must appear where
shown in the instruction.

The valid instruction groups for the DSP16/DSP16A device are represented in Tables 3-3 to 3-12.
The items in Tables 3-3 to 3-12 and 3-14 to 3-23 that are written in lower-case letters are proper
statements and must appear where shown in the instruction. The items with capital letters are not
proper statements and are replaced with immediate data, a register name, or a condition.

3.2 ADDRESSING MODES

The DSP16/DSP16A Digital Signal Processor allows immediate, indirect, and compound
addressing modes. Instructions using indirect and compound addressing are typically used to
encode real-time, signal-processing algorithms and, hence, require less program memory and
execute faster than immediate addressing.

3.2.1 Immediate Addressing

In immediate addressing, the operand is supplied in the instruction. This situation is useful when
initializing registers and is provided at the expense of one additional ROM location and one
instruction cycle of execution time. A short immediate addressing mode is supplied to set the
YAAU registers, rO--r3, j, k, rb, and re which are 9 bits wide on the DSP16. The DSP16A
YAAU registers are 16 bits wide, so short immediate addressing may only be used when loading
values that are 9 bits long or less. Short immediate instructions execute in one cycle, use one
ROM location, and are cacheable.

3.2.2 Indirect Addressing

Indirect addressing allows a register to be used as a pointer to another location. The terms X and
Y specify the source of data from memory to registers or the destination of data from registers to
memory:

X = *pt++ or *pt++i

Y = one of: *rM, *rM++, *rM- -, *rM++j

Note: M=oneof: 0,1,2,3

The term X represents the ROM data to be copied into the x register. The term Y represents the
RAM data to be copied into the specified register or the data written to RAM from a register. The

3-2

DSP16/DSP16A INSTRUCTION SET
Compound Addressing

mnemonics for X and Y indicate register indirect addressing with a postmodification of the
address pointer. The asterisk preceding the RAM or ROM address register stands for "the data
pointed to by the address in the register." The mnemonics have the following meaning:

• *rM. This example means "the data pointed to by the address in the register." The contents of
the register are not altered by the operation.

• *rM++, pt++. The "++" following the address register indicates a postincrement of the address
register. This example means "the data pointed to by the address in the register; add 1 to the
contents of the register after the operation is complete."

• *rM=. The "=" following the address register indicates a postdecrement of the address
register. This example means "the data pointed to by the address of the register: subtract 1
from the contents of the register after the operation is complete."

• *rM-H-j. The "++j" following the address register indicates a postincrement of the address
register. This example means "the data pointed to by the address in the register; add the value
of register j to the contents of the address register after the operation is complete." Negative
values of j yield a postdecrement.

• *pt++i. The "++i" following the address register indicates a postincrement of the address
register. This example means "the data pointed to by the address in the register; add the value
of register i to the contents of the address register after the operation is complete." Negative
values of i yield a postdecrement.

Modulo (virtual shift) addressing uses indirect addressing to form the equivalent of a cyclic shift
register within the RAM. Addresses loaded into registers rb and re define the first and last
physical addresses of the modulo, respectively. When a register is used as a memory pointer. its
value is compared with reo If its value is equal to the contents of re and the postincrement is + I,
then the value in rb is copied into the register after the memory access is complete. See Section
4.2.3.

3.2.3 Compound Addressing

Compound addressing is a memory read/write operation using only one pointer register. The
term Z specifies a source and a destination for a compound RAM read followed by a write
sequence. The mnemonics for Z are a shorthand notation for the compound addressing functions
explained below and shown in Table 3-1. The term temp used in the descriptions is a
hypothetical register used for illustration only.

3-3

DSP16IDSP16A INSTRUCTION SET
Processor Flags

Table 3-1. Compound Addressing Instructions
Instruction Operations

Z:R Step 1 Step 2 Step 3
*rMzp:R temp=R; R=*rM; *rM++=temp;
*rMpz:R temp=R; R=*rM++; *rM=temp;
*rMm2:R temp=R; R=*rM-; *rM++2=temp;
*rMik:R temp::R; R=*rM++j; *rM++k=temp;

Notes:
Mcanbe 0,1,2,3.

R can be one of x, y, yl, rO, r1, r2, r3, pi, pr, i, j, k, cO, c1, c2, rb, Ie,

psw, auc, sioc, SIta, sdx, tdms, pioc, all, aOl, aI, all.

R and rM must not be the same register (i.e., rlpz:rl).

As with other instructions that use the y, aO, and al registers, the following rules apply when
using the compound addressing mode:

• If clearing of the low half of the register is enabled (according to the CLR field of the auc
register), the low half of the register is cleared when the high half is loaded.

• If saturation on overflow is enabled (according to the SAT field of the auc register), the value
in the accumulator is limited. See Section 2.5.1.

Virtual shift addressing may be used with compound addressing. The contents of the address
register are compared with the contents of register re during both the read and write cycles. If the
contents of the address register are equal to the contents of re during the read cycle and the
"*rMpz" mode is specified. rM is loaded with the contents of rh. If the contents of the address
register are equal to the contents of re during the write cycle and the "*rMzp" mode is specified,
rM is loaded with the contents of rh. See Section 4.2.3.

3.3 PROCESSOR FLAGS

Control and special function instructions may be conditionally executed on the basis of internal
flags set by the previous ALU operation, the condition of one of the counters, or the value of a
randomly set bit in the device. Multiply/ALU function statements and special function
instructions affect the flags; loading an accumulator with a multiply/ALU transfer statement or a
data move instruction does not affect the flags. The processor flags and their meanings are:

LMI Logical Minus - A logical minus is detennined by the state of bit 35 of the last DA U
operation result. lfbit 35=1, the result is a negative number and LMI is true.

LEQ Logical Equal- A logical equal is detennined by the sum of bits 35-0 of the last DAU
operation result. lfthe sum of the bits equals zero, the result is zero and LEQ is true.

LLV Logical Overflow (36-Bit Overflow) - LL V is true if the sign of the result of an
operation cannot be represented in a 36-bit accumulator.

3-4

DSP16/DSP16A INSTRUCTION SET
Processor Flags

LMV Mathematical Overflow (32.Bit Overflow) - LMV is true if the overflow bits (35-31)
of the accumulator used in the last DA U operation are not identical. This indicates a
number not representable in 32 bits.

Table 3·2 shows the mnemonics that are used in conditional instructions and their meanings. The
state of the internal flags that causes the condition to be true is enclosed in parentheses after the
description. For example, when testing the condition Ie, the result is true if either the logical
minus (LMl) or logical equal (LEQ) flags are true.

Table 3·2. Conditional Mnemonics
Test Meaning Test Meaning

pI Result is nonnegative (not mi Result is negative (LMI).
LMI).

eq Result is equal to zero (LEQ). ne Result is not equal to zero (not
LEQ).

gt Result is greater than zero (not Ie Result is less than or equal to
LMI and not LEQ). zero (LMI or LEQ).

lvs Logical overflow set (LL V). lvc Logical overflow clear (not
LLV).

mvs Mathematical overflow set mvc Mathematical overflow clear
(LMV). (notLMV).

cOge* Counter 0 greater than or equal cOlt* Counter 0 less than zero.
to zero.

clge* Counter I greater than or equal cllt* Counter I less than zero.
to zero.

headst Pseudorandom sequence bit set. taiist Pseudorandom sequence bit
clear.

true The condition is always false The condition is never satisfied
satisfied in an if instruction. in an if instruction.

* Testing each of these conditions increments the respective COlDlter being tested.

t The heads or tails condition is determined by a randomly set or cleared bit, respectively. The bit is randomly set
with probability of 0.5. The random bit is generated by a 10·state pseudorandom sequence generator that is
updated after either a heads or tails test The pseudorandom sequence may be reset by writing any value to the pi
register. Writing to the pi register does not affect the contents of the pi register except while in an interrupt service
routine. A random rounding function can be implemented by using either of these two conditions.

3·5

DSP16/DSP16A INSTRUCTION SET
Multiply/ALU Group

3.4 MULTIPLY/ALUGROUP

The multiply/ALU instructions are the primary instructions used to implement signal-processing
programs. Statements from this group can be combined to generate multiply/accumulate, logical,
and other ALU functions and to transfer data between memory and registers in the data arithmetic
unit. In the examples presented, the statements should be read from right to left, top to bottom.
Statements within a multiply/ALU instruction are executed essentially in parallel. The
multiply/ALU instructions usually consist of more than one part. Each part of an instruction is
called a statement. The general rule is that valid instructions can be formed by choosing one
statement from each statement column in Table 3-3. If either statement is not required, then a
single statement from either column also constitutes a valid instruction. Conversely, valid
instructions can be decomposed into separate statements, with each coming from a different
column in the Table 3-3.

The multiply/ALU instructions consist of two parts: a function and a transfer (see Table 3-3).
The statements in the function column can be separated into two types: those involving the
multiplier and those involving only the ALU in the data arithmetic unit. The multiply/accumulate
instructions typically used in signal-processing applications are assembled from statements from
the function column that include the multiplication of the data in x and y[31-16]. In a
multiply/accumulate instruction, the x and y registers are loaded with the operands, the product of
the previous operands is generated, and the previous product is accumulated in aO or a1.

The following example shows how a typical multiply/accumulate sequence is implemented.

Example:

Instruction #

(1) y=Y x=X
(2) p=x*y
(3) aD=aS+p

In the example presented, the data in the X source is copied into the x register and the data in the
Y source into bits 31-16 of the y register in line 1. In line 2, the product of the data in x and
y[31-16] is generated and stored in p. In line 3 the data in the source accumulator, as, and the
data in p are added and the result loaded into the destination accumulator. Note that lines 2 and 3
could also have specified memory transfer operations for later instructions.

3·6

The ALU instructions perform one of the following:

DSP16IDSP16A INSTRUCTION SET
Multiplyl ALU Group

• The logical operations of AND, OR, or XOR between an accumulator and the data in the Y
register.

• The addition or subtraction of the data in the y register from an accumulator.

• The load of an accumulator with the data in the y register.

The y register must be loaded prior to the ALU operation.

The following example shows how a typical logical operation is implemented.

(1) y=Y
(2) aD=aS&y

In this example, the data in the Y source is copied into the y register in line 1. In line 2, the
logical AND of the data in the source accumulator, as, and the data in y as a result of line 1 are
calculated and the result is loaded into the destination accumulator.

All multiply/ ALU instructions require 1 word of memory. The number of instruction cycles
required to execute an instruction in the multiply/ALU group is a function of the statement
selected from the transfer column in Table 3-3. Instructions with statements in the transfer
column involving a write to RAM are executed in two instruction cycles whether the instruction
is in or out of the cache. Instructions with statements in the transfer column involving a read
from the RAM and the ROM simultaneously are executed in two instruction cycles if not in the
cache and one instruction cycle if in the cache. An instruction with no transfer statement executes
in one instruction cycle either in or out of the cache. The remaining instructions are executed in
one instruction cycle either in or out of the cache. Table 3-3 gives the number of instruction
cycles for each case. The multiply/ALU instructions use one ROM location.

The no operation (nop) instruction is a special-case encoding of a multiply/ALU instruction and
is executed in one instruction cycle. The assembly-language notation representation of a no
operation instruction is either nop or a single semicolon (;).

3-7

DSP16/DSP16A INSTRUCTION SET
Multiply/ALU Group

Note that the function statements and transfer statements in Table 3-3 are chosen independently.
Any function statement may be combined with any transfer statement to form a valid
multiply/ALU instruction.

Table 3-3. Multiply/ALU Instructions
Transfer

Function Cycles
Statements Statements OutlIn Cache

p=x*y y=Y x=X 2/1
aD=p p=x*y y=aT x=X 2/1
aD=aS+p p=x*y y[l]=Y 1/1
aD=aS-p p=x*y aT[I]=Y 1/1
aD=p x=Y 1/1
aD=aS+p Y 1/1
aD=aS-p Y=y[I] 2/2
aD=y Y=aT[I] 2/2
aD=aS+y Z:y x=X 2/2
aD=aS-y Z: y[I] 2/2
aD=aS&y Z: aT[I] 2/2
aD=aSly
aD=aSl\y
as-y
as&y

Table 3-4. Replacement Table for Multiply/ALU Instructions
Replace Value Meaning

aD,aS, aT aO,aI One of two DAU accumulators.
X *pH+, *pt++i ROM location pointed to by pt.

pt is postmodified by + 1 and i,
respectively.

Y *rM, *rM++, RAM location pointed to by rM.
*rM-, *rM++j (M= 0, 1,2, 3).

rM is postmodified by 0,+1,-1, andj,
respectively.

Z *rMzp, *rMpz, Read/write compound addressing.
*rMm2, *rMjk rM (M = 0, 1,2,3) is used twice.

First, postmodified
by 0, + I, -I, and j respectively and
second, postmodified by + I, 0,+ 2, and k,
respectively.

3-8

DSP16/DSP16A INSTRUCTION SET
Function Statements

On the basis of the information given in Table 3-4, apply the following information to the
function and transfer statements in Table 3-3:

• Loads of aD, ai, and y clear the lower half of the selected register when the appropriate CLR
field bits in the auc register are zeroed.

• Loads of aOl, all, and yl do not change the data in the high half of the selected register.
• The y and p operands are sign-extended to match the width of the accumulators.

3.4.1 Function Statements

In the execution of these statements, the width of the number is extended to 36 bits, which is the
size of the accumulators. This extension is accomplished by extending the sign bit in the p
register to retain the correct 2's complement value. The multiplier performs a 2 's complement
multiply, using x and the high halfofy (bits 31-16).

The statements must be written in the exact format shown. If the statements are written in any
other way, for example, aD=p+aS instead of aD=aS+p, the assembler produces an error message.

• p=x*y. The contents of the x and the y (bits 31-16) registers are multiplied and the result is
placed in the p register.

• aD=p p=x*y. The contents of the p register are copied into the destination accumulator, aD.
The contents of the x and the y (bits 31-16) registers are multiplied and the result is placed in
the p register. The bit alignment of the p register is a function of the ALIGN field of the auc
register.

• aD=aS+p p=x*y. The contents of the source accumulator, as, are added to the contents of the
p register and the result is placed in the destination accumulator, aD. The bit alignment of the
p register is a function of the ALIGN field of the auc register. The contents of the x and the y
(bits 31-16) registers are multiplied and the result is placed in the p register.

• aD=aS-p p=x*y. The contents of the p register are subtracted from the contents of the source
accumulator, as, and the result is placed in the destination accumulator, aD. The bit alignment
of the p register is a function of the ALIGN field of the auc register. The contents of the x and
the y (bits 31-16) registers are multiplied and the result is placed in the p register.

• aD=p. The contents of the p register are copied into the destination accumulator, aD. The bit
alignment of the p register is a function of the ALIGN field of the auc register.

• aD=aS+p. The contents of the source accumulator, as, are added to the contents of the p
register, and the result is placed in the destination accumulator, aD. The bit alignment of the p
register is a function of the ALIGN field of the auc register.

• aD=aS-p. The contents of the p register are subtracted from the contents of the source
accumulator, as, and the result is placed in the destination accumulator, aD. The bit alignment
of the p register is a function of the ALIGN field of the auc register.

• aD=y. The contents of the y register are copied into the destination accumulator, aD.

o aD=aS+y. The contents of the source accumulator, as, are added to the contents of the y
register and the result is placed in the destination accumulator, aD.

• aD=aS-y. The contents of the y register are subtracted from the contents of the source

3-9

DSP16/DSP16A INSTRUCTION SET
Transfer Statements

accumulator, as, and the result is placed in the destination accumulator, aD.

o aD=aS&y. The contents of the source accumulator, as, are ANDed with the contents of the y
register, and the result is placed in the destination accumulator, aD.

o aD=aSly. The contents of the source accumulator, as, are ORed with the contents of the y
register, and the result is placed in the destination accumulator, aD .

• aD=aSl\y. The contents of the source accumulator, as, are XORed with the contents of the y
register, and the result is placed in the destination accumulator, aD.

o as-yo The contents of the y register are subtracted from the contents of the source
accumulator, as. The result is not placed in the destination accumulator, aD; however, the
ALU flags are affected by the results of the subtraction.

o as&y. The contents of the source accumulator, as, are ANDed to the contents of the y
register. The result is not placed in the destination accumulator, aD; however, the ALU flags
are affected by the results of the AND function.

3.4.2 Transfer Statements

The transfer statements allow the user to transfer data from memory to the x and y registers and
the accumulators, or from the y register and the accumulators to memory.

o y= Y x=X. The data from the specified Y source is loaded into the high half (bits 31-16) of
the y register. The data from the specified X source is loaded into the x register. If clearing of
yl is enabled (according to the CLR field of the auc register), then yl is cleared (0) when the
high half is loaded.

o y=aT x=X. The data in the high half (bits 31-16) of the specified accumulator is loaded into
the high half (bits 31-16) of the y register. The data from the specified X source is loaded
into the x register. If clearing of yl is enabled (according to the CLR field of the auc register),
then yl is cleared (0) when the high half is loaded.

o y= Y. The data from the specified Y source is loaded into the high half of the y register (bits
31-16). If clearing of yl is enabled (according to the CLR field of the auc register), then yl is
cleared (0) when the high half is loaded.

o yl=Y. The data from the specified Y source is loaded into the low half of the y register (bits
15--0). The data in the high half of Y is not altered.

o aT=Y. The data from the specified Y source is loaded into the high half (bits 31-16) of the
specified accumulator. The guard bits (35-32) are loaded with the value of bit 31. If clearing
of aTl is enabled (according to the CLR field of the auc register), the low half of the
accumulator is cleared (0) when the high half is loaded.

3-10

DSP16/DSP16A INSTRUCTION SET
Transfer Statements

o aTI=Y. The data from the specified Y source is loaded into the low half (bits 15-0) of the
specified accumulator. The data in the high half of the accumulator is not altered.

o x=Y. The data from the specified Y source is loaded into the x register.

o Y. No data is transferred. This transfer statement is used to modify the address register
specified.

o Y=y. The data in the high half of the y register (bits 31-16) is loaded into the specified Y
destination.

o Y=yl. The data in the low half of the y register (bits 15-0) is loaded into the specified Y
destination.

o Y=aT. The data in the high half (bits 31-16) of the specified accumulator is written into the
specified Y destination. If saturation on overflow is selected (according to the SAT field of the
auc register), the accumulator value is limited. See Section 2.5.1.

o Y=aTI. The data in the low half (bits 15-0) of the specified accumulator is written into the
specified Y destination. If saturation on overflow is selected (according to the SAT field of the
auc register), the accumulator value is limited. See Section 2.5 .1.

o Z: y x=X. The data from the specified X source is loaded into the x register. The data from
the specified Z source is loaded into the high half (bits 31-16) of the y register, and the old
data from the high half of the y register is loaded into the Z destination. If clearing of yl is
enabled (according to the CLR field of the auc register), then yl is cleared (0) when the high
half is loaded.

o Z:y. The data from the specified Z source is loaded into the high half (bits 31-16) of the y
register and the old data from the high half of the y register is loaded into the Z destination. If
clearing of yl is enabled (according to the CLR field of the auc register), then yl is cleared (0)
when the high half is loaded.

o Z:yl. The data from the specified Z source is loaded into the low half (bits 15-0) of the y
register and the old data of the low half of the y register is loaded into the Z destination. Data
in the high half of the y register is not altered.

o Z: aT. The data from the specified Z source is loaded into the high half (bits 31-16) of the
specified accumulator. If clearing of aTl is enabled (according to the CLR field of the auc
register), the low half of the accumulator is cleared (0) when the high half is loaded. The guard
bits (35-32) are loaded with the value of bit 31. The old data from the high half of the
accumulator is loaded into the Z destination. If saturation on overflow is enabled (according to
the SAT field of the auc register), the accumulator value is limited. See Section 2.5.1.

o Z:aTI. The data from the specified Z source is loaded into the low half (bits 15-0) of the
specified accumulator and the old data from the high half of the accumulator is loaded into the
Z destination. The data in the high half of the accumulator is not altered. If saturation on
overflow is enabled (according to the SAT field of the auc register), the accumulator value is
limited. See Section 2.5.1.

3-11

DSP/DSP16A INSTRUCTION SET
Special Function Group

3.4.3 No Operation

• nop. Single cycle no operation. N * nop (Le., 4 * nop) may be used to perform N no
operation instructions.

• ;. The semicolon is an optional no operation mnemonic. N * ; may also be used to perform N
no operation instructions.

3.5 SPECIAL FUNCTION GROUP

Instructions from the special function group are always executed in one instruction cycle. They
require one word of program memory. Using the special function instructions, the
DSP16/DSP16A device can be used to implement a number of algorithms, which include the
following nonlinear functions: absolute value, signum, minimum and maximum value finder, A­
law and Jl-Iaw conversions, division, half-wave and full-wave rectification, and rounding.
Special function instructions are executed either conditionally or unconditionally. Both the
condition and its complement are available for use in special function instructions. A special
function instruction uses one ROM location. Instructions from this group can be used in the
cache.

The special function instructions can be conditioned on the basis of the results of previous
multiply/ALU and special function instructions, the value of one of the counters (cO, c1), or the
value of a randomly set bit in the DSPl6 device. The result of the most recent accumulator
operation prior to the special function instruction establishes the state of the flags for the
conditions associated with logical or mathematical functions.

The special functions given in Table 3-5 can be conditionally executed as if CON instruction and
with an event counter as ife CON instruction, meaning that:

if CON is true then
cl = cl + 1
instruction
c2= cl

else
c1=c1+1

Note: When using the event counter (ife instruction), if CON is cOlt or cOgt, then cO is not
incremented; if CON is cllt or clgt, then cl is incremented once.

3-12

DSP/DSPI6A INSTRUCTION SET
Special Function Statements

Table 3-5. Special Function Instructions
Instruction Description

aD=aS»1
aD=aS>>4 Arithmetic right shift (sign preserved) of
aD=aS»8 36-bit accumulators.
aD=aS»16

aD=aS
aD=--aS -

aD=md(aS) Round upper 20 bits of accumulator.

aDh=aSh+l Increment high half of accumulator (lower half cleared).

aD=aS+l Increment accumulator.

aD=y
aD=p -

aD=aS«1
aD=aS«4 Logical left shift (sign-extended from bit 31) of the
aD=aS«8 least significant 32 bits of the 36-bit accumulators.
aD=aS«16

Table 3-6. Replacement Table for
Special Function Instructions

Replace Value Meaning
aD,aS aO,al One of two DAD accumulators.

CON mi, pI, eq, ne, gt, Ie, lvs, See Table 3-2 for defInitions
mvs, mvc, cOge, cOlt, clge, of processor flags.
c 11t, heads, tails, true, false _

3.5.1 Special Function Statements

The statements must be written in the exact format shown. If the statements are written in any
other way, for example, aD= 1 +as instead of aD=aS+ 1, the assembler produces an error message.

• al>=aS»I. The contents of the source accumulator, as, are divided by 2 and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

• al>=aS»4. The contents of the source accumulator, as, are divided by 24 and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

• al>=aS»8. The contents of the source accumulator, as, are divided by 28 and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

• aD=aS» 16. The contents of the source accumulator, as, are divided by 216 and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

• al>=aS«I. The contents of the source accumulator, as, are logically shifted one bit left and
the result is placed in the destination accumulator, aD. The sign bit is extended from bit 31.

3-13

DSP/DSP16A INSTRUCTION SET
Control Group

o aD=aS«4. The contents of the source accumulator, as, are logically shifted four bits left and
the result is placed in the destination accumulator, aD. The sign bit is extended from bit 31.

o aD=aS«8. The contents of the source accumulator, as, are logically shifted eight bits left and
the result is placed in the destination accumulator, aD. The sign bit is extended from bit 31.

o aD=aS<<16. The contents of the source accumulator, as, are logically shifted sixteen bits left
and the result is placed in the destination accumulator, aD. The sign bit is extended from bit
31.

o aD=aS. The contents of the source accumulator, as, are placed in the destination accumulator,
aD.

o aD=-aS. The 2's complement of the contents of the source accumulator, as, is placed in the
destination accumulator, aD.

o aD=rnd(aS). The contents of the source accumulator, as, are rounded to 16 bits, and the
sign-extended result is placed in aD[35 - 16] with zeros in aD[15 - 0].

o aDh=aSh+l. The value OXOOOO10000 is added to the contents of the source accumulator, as,
and the result is placed in the destination accumulator, aD. This statement increments by one
the data in the high half of the source accumulator. The low half of aD is cleared.

o aD=aS+l. The value OxOOOOOOOOI is added to the contents of the source accumulator, as, and
the result is placed in the destination accumulator, aD. This statement increments by one the
data in the source accumulator.

o aD=y. The contents of the y register are written to the destination accumulator, aD.

o aD=p. The contents of the p register are written to the destination accumulator, aD. The bit
alignment of the p register is a function of the ALIGN field of the auc register.

3.6 CONTROL GROUP

The control instructions allow the user to implement goto, call, and return commands. There is
no latency when branching, i.e., the instruction executed following the control instruction has the
address specified in the pc register after execution of the control instruction. Control instructions
are executed either conditionally or unconditionally. Both the condition and its complement are
available for use in control instructions. A control instruction uses one ROM location;
conditional control instructions require two ROM locations. The execution time for an
unconditional control instruction is two instruction cycles, and the execution time for conditional
control instructions is three instruction cycles. The icall instruction executes in three cycles.
Control instructions may not be executed in the cache.

The control instructions can be conditioned on the basis of the results of previous multiply/ALU
and special function instructions, the value of one of the counters (cO, c1), or the value of a
randomly set bit in the DSPI6/DSPI6A device. The result of the most recent accumulator
operation prior to the control instruction establishes the state of the flags for the conditions
associated with logical or mathematical functions.

3·14

DSP!DSPI6A INSTRUCTION SET
Control Statements

An example of a control instruction conditionally executed is if CON goto lA.

Control Instructions*

gotolA icallt
goto pt return (goto pr)
calllA ireturnt (goto pi)
call pt

* Control instructions cannot be used in the cache.
t ieall and ireturn can not be conditionally executed.

Table 3-7. Replacement Table for
Control Function Instructions

Replace Value Meaning

CON mi, pi, eq, ne, gt, Ie, lvs, See Table 3-2 for definitions
mvs, mvc, cOge, cOlt, c1ge, of processor flags.
c 11t, heads, tails, true, false

JA 12-bit value Least significant 12 bits of an
absolute address within the same
4 K word memory section.

3.6.1 Control Statements

• goto JA. The goto JA instruction moves the immediate value JA into the lower 12 bits of the
program counter (pc) register, when goto JA is executed. The upper 4 bits of pc remain
unchanged. The instruction with address JA is the next instruction executed. The goto JA
instruction does not affect the program return (pr) register, and can be used in a subroutine
without losing the return address of the subroutine.

• call JA. The call JA instruction moves the contents of the program counter (pc) register into
the program return (pr) register and the immediate data JA into the lower 12 bits of the pc
register. The upper 4 bits of pc remain unchanged. The pr register holds the return address of
the subroutine (the address of the instruction following call JA); i.e., if call JA is located at
address i, then the pr register is loaded with address i+ 1. The instruction with address N is the
next instruction executed.

• goto pt. The goto pt instruction moves the contents of pt into the program counter (pc)
register, when goto pt is executed. The instruction with address equal to the contents of pt is
the next instruction executed. Since pt is a 16-bit register, goto pt allows branches to any
location in the 64 Kword program space. The goto pt instruction does not affect the program
return register.

3-15

DSP/DSP16A INSTRUCTION SET
Data Move Instructions

• call pt. The call pt instruction moves the contents of the program counter (PC) register into the
program return (pr) register and the data in pt into the pc register. The pr register holds the
return address of the subroutine (the address of the instruction following call pt); i.e., if the call
pt is located at address i, then the pr register is loaded with the value i+ 1. The instruction with
address equal to the contents of pt is the next instruction executed.

• icall. The icall instruction moves the contents of the program counter (PC) register into the
program interrupt (pi) register and the address 2 into the pc register. The pi register holds the
return address of the interrupt routine (the address following the icall instruction); i.e., if the
icall instruction is located at address i, then the pi register is loaded with the value i+ 1. The
icall instruction is used by the DSP16/DSPI6A Development Systems for breakpointing and is,
therefore, reserved for that purpose when development system breakpoints are used.

• return Igoto pro The return instruction moves the contents of the program return (pr) register
into the program counter (pc) register. The pr register holds the return address of the
subroutine. Execution of the instruction with address equal to the contents of pr follows the
execution of the return instruction. The goto pr instruction works identically to the return
instruction.

• ireturn /goto pi. The ireturn instruction moves the contents of the program interrupt (pi)
register into the program counter (PC) register. The pi register holds the interrupt return
address. When an interrupt occurs, the value of the pc register is written into the pi register.
Execution of the instruction with address equal to the contents of pi follows the execution of
the ireturn instruction. The goto pi instruction works identically to the ireturn instruction.

3.7 DATA MOVE INSTRUCTIONS

Data move instructions transfer from a RAM location to a register, from a register to a RAM
location, from an accumulator to a register, from a register to an accumulator; and load immediate
data to a register. Data move instructions involving immediate data loaded into YAAU registers
use one ROM location and execute in one instruction cycle if the data can be encoded in the
instruction itself (R = M, M $; 9 bits) or two ROM locations if the data is not contained in the
instruction (R = N). All other data move instructions use one ROM location. Data move
instructions are executed in two instruction cycles except for those instructions in which the
immediate data is encoded in the instruction which are executed in one instruction cycle as noted
above (R = M). All data move instructions, with the exception of two-word immediate moves,
may be executed inside the cache.

Data Move Instructions

R =N aT=R
R=M Y=R
R =Y Z:R
R =as

3-16

Replace

R

aD,aS

Y

Z

N
M

Notes:

DSP!DSP16A INSTRUCTION SET
Data Move Instructions

Table 3·8. Replacement Table for Data Move Instructions

Value Meaning

x DAU register - signed, 16 bits.
y DAU register - signed, 16 bits.!
yl DAU register - unsigned, 16 bits.
auc DAU control register - unsigned, 7 bits.
cO DAU counter 0 - signed, 8 bits.
c1 DAU counter 1 - signed, 8 bits.
c2 DAU counter 2 - signed, 8 bits.

rO Y AAU ptr. reg. - unsigned, 9 bits (16 bits in DSP16A).
r1 Y AAU ptr. reg. - unsigned, 9 bits (16 bits in DSP16A).
r2 Y AAU ptr. reg. - unsigned, 9 bits (16 bits in DSP16A).
r3 Y AAU ptr. reg. - unsigned, 9 bits (16 bits in DSP16A).
rb Y AAU mod. addr. reg. - unsigned, 9 bits (16 bits in DSP16A).
re Y AAU mod. addr. reg. - unsigned, 9 bits (16 bits in DSP16A).
j Y AAU inc. reg. - signed, 9 bits (16 bits in DSP16A).
k Y AAU inc. reg. - signed, 9 bits (16 bits in DSP16A).

pt XAAU pointer register - unsigned, 16 bits.
pr XAAU program return register - unsigned, 16 bits.
pi XAAU program interrupt register - unsigned, 16 bits?
i XAAU increment register - signed, 12 bits.

psw Processor status word.

sioc Serial I/O control register?
sdx Serial I/O data register.
tdrns Serial I/O tdms control register.3

srta Serial receive/transmit address.3

pioc Parallel I/O control register.
pdxO Parallel I/O data register with PSEL = 0 (pin 72).
pdx1 Parallel I/O data register with PSEL = 1 (pin 72).

aO,al High half of accumulator.!

*rM,*rM++, Same as in multiply/ALU instructions.
*rM--,*rM++j

*rMzp,*rMpz, Same as in multiply/ALU instructions.
*rMm2,*rMjk

16·bit value Immediate data.

9·bit value Immediate data for Y AAU registers.

When reading signed registers less than 16 bits wide, their contents are sign-extended to 16 bits. When reading
unsigned registers less than 16 bits wide, their contents are zero-extended to 16 bits. When short immediate addressing
is used to write to YAAU registers in the DSPI6A, unsigned registers are zero-extended from 9 to 16 bits. Signed
registers (j,k) are sign-extended from 9 to 16 bits.

!Datamoves to y, aO, or alload the high half (bits 31-16) of the register. If clearing of the destination is enabled
(according to the CLR field of the auc register), the low half of the destination register is cleared (0) when the high
half is loaded.

2-rhe pi register acts as a "shadow" of the pc register. Each time the pc changes, its value is also loaded into pi.
"Shadowing" is disabled when executing an interrupt service routine, therefore, pi contains the contents of pc prior to
the interrupt. Writes to pi do not alter its contents, except during interrupt service routines.

3 sioc, tdms, and srta registers are not readable.

3-17

DSPIDSP16A INSTRUCTION SET
Data Move Instruction Statements

3.7.1 Data Move Instruction Statements

The data move instruction statements must be written in the exact fonnat shown. If the
statements are written in any other way, for example, R: Z instead of Z:R, the assembler generates
incorrect code and produces an error message. Data move instructions execute in two instruction
cycles and require 1 word of program memory (immediate loads, R = N, require two words of
program memory). Short immediate data move instructions require one word of program
memory and execute in one cycle.

• R=N loads the immediate data value, N, into the specified destination register, R. This fonn of
the data move instructions may not be executed in the cache.

• R=M loads a 9-bit immediate data value, M, into one of the YAAU registers (rb, re, rO, rl, r2,
or r3). This special case immediate instruction is often referred to as a "short immediate" or
"register set" instruction. Short immediate instructions require one word of program memory,
execute in one cycle, and may be executed inside the cache.

• R=Y loads the data contained in the specified Y source into the specified destination register,
R.

• R=aS loads the data contained in bits 31-16 of the specified transfer accumulator, as, into the
specified destination register, R. If saturation on overflow is enabled (according to the SAT
field of the auc register), then the accumulator is limited. (See Section 2.5.1.)

• Y=R loads the data contained in the specified source register, R, into the specified Y
destination.

• aT=R loads the data contained in the specified source register, R, into bits 31-16 of the
specified accumulator. If clearing of aTl is enabled (according to the CLR field of the auc
register), then aTl is cleared (0) when the high half is loaded. The guard bits are loaded with
the value of bit 31.

• Z: R writes data from the specified Z source to the specified R destination register and writes
the old data in the source register, R, to the Z destination (see Section 3.2.4 for an explanation
of this data transfer mode).

3.8 CACHE INSTRUCTIONS

The cache instructions allow the implementation of low overhead loops to conserve program
memory. When used, the cache instruction treats the specified NI instructions as a loop to be
executed K times. Both cache instructions use one ROM location. The do instruction executes in
one instruction cycle, while the redo instruction executes in two instruction cycles.

3-18

Replace

K

NI

3.8.1 Cache Statements

DSP/DSP16A INSTRUCTION SET
Cache Statements

Cache Instructions
do K { redoK
instruction 1
instruction2

instructionNI
}

Table 3-9. Replacement Table
for Cache Instructions

Value Meaning

2:::; K:::; 127 Number of times the
instructions are to be
executed.

1:::; N1:::; 15 1 to 15 instructions may
be included.

When the cache is used to repeat a block of NI instructions, the cycle timings of the instructions
are as follows:

1. The "first pass" does not affect cycle timings except for the last instruction in the block of
NI instructions. This instruction executes in two cycles.

2. During pass 2 through pass K + I, each instruction is executed "in the cache"
(see Table 3-3).

3. During the last (Kth) pass, the block of instructions executes "inside the cache," except for
the last instruction, which executes outside the cache.

The instructions remain in the cache memory and may be re-executed using the redo command
without the need to reload the cache .

• redo k. When the redo k instruction is used, the DSP executes the NI instructions currently in
the cache's memory k times. On the last iteration, the last instruction is executed outside the
cache.

Note: Control group instructions and two-word data move instructions may not be executed from
the cache.

3-19

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

3.9 INSTRUCTION SET SUMMARY

This section explains, in detail, the instruction set for the DSP 16/DSP16A. Refer to Appendix A
for instruction set fonnats and field encodings.

goto JA (branch direct)

Bit

Field

3-20

(PC) +- (PC bits 15-12)(JA)

Program control jumps to location JA (within the same 4 Kword page). The lower 12
bits of the PC are written with the 12-bit immediate value of JA. The upper 4 bits of the
PC remain unchanged (the goto pt instruction is used for branches outside the current 4
Kword page).

i5 12

o o o o

11

Words: 1
Cycles: 2
Group: Control

Addressing: Immediate
Flags affected: None

Interruptible: No
Cacheable: No

Fonnat: 4

o

JA

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

gotoB (branch direct)

(pc) ~ (B)

Program control jumps to the location pointed to by the register encoded in the B field.
The pc is written with the 16-bit value of the register. The following branch destinations
are specified in the B field:

BField
000
001
010
011
lxx

Action
return (same as goto pr)
ireturn (same as goto pi)
goto pt
call pt*
Reserved

* For this instruction, note that the current
pc is also saved in the pr register before the jump.

Bit 15 11 10 8 7 o

Field o 0 o B o 0 0 0 0 000

Words:
Cycles: 2
Group: Control

Addressing: Register
Flags affected: None

Interruptible: No
Cacheable: No

Format: 5

3-21

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

if CON (conditional branch qualifier)
go to/ call/return

Bit

Field

3-22

test CONdition;
if true, execute the following control statement

The condition CON is tested (encoded in the CON field). If the condition is true, the next
instruction (which must be a control instruction) is executed. If false, the control
instruction is not executed. The CON field is encoded as:

CON Flag CON Flag

00000 mi (negative result) 01001 tails (random bit c1ear)t
00001 pI (positive result) 01010 cOge (counterO ~ 0)*
00010 eq (result = 0) 01011 cOlt (counterO < 0)*
00011 ne (result ~ 0) 01100 c1ge (counter! ~ 0)*
00100 Ivs (logical overflow set) 01101 cllt (counter! < 0)*
00101 Ivc (logical overflow clear) 01110 true (always)
00110 mvs (math. overflow set) 01111 false (never)
00111 mvc (math. overflow clear) 10000 gt (result> 0)
01000 heads (random bit set)t 10001 Ie (result s 0)

* Using the cOge or cOlt conditions also causes the value of
the cO counter to be postincremented.
Using the clge or cUt conditions also causes the value of
the cl counter to be postincremented.

t The random bit is updated after each test of heads or tails.

The ensuing control opcode can be any of the following:

goto JA goto pt call JA call pt return (goto pr)

Note that ireturn and icall are the only control instructions that cannot be conditionally
executed.

15

word 1 1

word 2

5 4

1 0 1 0 0 0 0 0 0 0

CONTROL OPCODE

Words:
Cycles: 3 (including the branch!calVretum)
Group: Control

Addressing: None
Flags affected: None

Interruptible: No
Cacheable: No

Format: 6

0

CON

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

call JA (call subroutine direct)

Bit

Field

(pr) f- (pc + 1)
(pc) f- (pc bits 15-12)(JA)

The subroutine at address JA (within the same 4 Kword page) is called. First the return
address (the address of the first instruction following the call) is placed into the pr
register. Then the lower 12 bits of the pc are written with the 12-bit immediate value of
JA. The upper 4 bits ofpc remain unchanged (the call pt instruction is used for calling
subroutines out of the current 4 Kword page).

15 12

o o o

11

Words: 1
Cycles: 2
Group: Control

Addressing: Immediate
Flags affected: None

Interruptible: No
Cacheable: No

Format: 4

o

JA

3-23

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

icall (software interrupt)

(Pi) ~ (pc + 1)
(PC) ~ 2
lACK

The interrupt handler is called, just as it would be by an external interrupt. The interrupt
return register is set to next pc + 1, and the pc is set to 2, to start execution at the interrupt
handler. Note that external interrupts vector to location 1, and icall vectors to location 2.
The interrupt acknowledge pin (lACK) is set just as it would be by an external interrupt.

Bit 15 o

Field 1 0 o

3-24

o 0 000 0 1

Words: 1
Cycles: 3
Group: Control

Addressing: None
Flags affected: None

Interruptible: No
Cacheable: No

Fonnat: 6

1 o

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

doK{
instrl

Bit

Field

.
instrNI
}

(loop in cache; cache loaded with new contents)

execute the next NI instructions K times

The next NI instructions are loaded into the cache concurrent with their execution. They
are then executed within the cache K-l more times, at (potentially) higher speed.

The iteration count K can be between 2 and 127, inclusive, and the number of instructions
NI must be between 1 and 15, inclusive.

Notes on cache performance:

The do instruction executes in one cycle. When the cache is used to repeat a block of NI
instructions, the cycle timings of the instructions are as follows:

1. The "first pass" does not affect cycle timings except for the last instruction in the
block of NI instructions. This instruction executes in two cycles.

2. During pass 2 through pass K + 1, each instruction is executed "in the cache" (see
Table 3-3).

3. During the last (Kth) pass, the block of instructions executes "inside the cache"
except for the last instruction, which executes outside the cache.

The instructions remain in the cache memory and may be re-executed using the redo
command without the need to reload the cache.

15 11 10 7 6 0

0 1 1 0 NI K

Words: 1
Cycles: 1
Group: Cache

Addressing: Immediate
Flags affected: None

Interruptible: No
Cacheable: No

Format: 10

3-25

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

redoK (loop in cache; cache contents unaffected)

execute the current contents of the cache K times

The current contents of the cache (loaded with a previous do instruction) are executed
within the cache K additional times. The iteration count K can be between 2 and 127,
inclusive.

Notes on cache performance:

The redo instruction executes in two cycles. All instructions require the in-cache time to
execute, except the last instruction of the last iteration, which requires the out-of-cache
time to execute. Thereafter, instructions (fetched from ROM) require their normal out­
of-cache time to execute.

Bit 15 11 10 7 6 o

Field o 1 1 1

3-26

o o 000

Words: 1
Cycles: 2
Group: Cache

Addressing: Immediate
Flags affected: None

Interruptible: No
Cacheable: No

Format: 10

K

Bit

Field

Notes:

(short immediate load)

(R)~ (M)

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

The contents of register R are replaced with the 9-bit immediate value of M. The value of
R can be any of the following:

Re ister R Re ister R

j ()()() rt) 100
k 001 rl 101

rb 010 r2 110
re 011 r3 111

For the DSPI6, these registers are all 9 bits wide. For the DSPI6A, these registers are 16
bits wide and the j and k registers are sign-extended (2's complement). The others are
zero-extended.

15 12 11 9

I
8 0

0 0 0 R M

Words:
Cycles:
Group: Data Move

Addressing: Immediate
Flags affected: None

Interruptible: Yes
Cacheable: Yes

Format: 9

1) In Appendix A, this instruction is encoded using a 2-bit I field that corresponds to the two
LSBs of the R field shown above. The most significant bit of R is the least significant bit of
the T field used in the instruction set encodings in Appendix A.

2) When a DSP16A program is encoded, if the immediate value M is greater than 9 bits or if a
label is used for M, the assembler defaults to a two-word, two-cycle data move encoding. The
short immediate encoding can be forced by using the optional mnemonic set (if the value of
M is greater than 9 bits, it is truncated to 9 bits). For example:

set r3 = varl

forces a short immediate encoding.

3-27

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

R=N (16-bit immediate load)

Bit

Field

3-28

(R) f- (N)

The contents of register R are replaced with the 16-bit immediate value of N. The value
of R can be any of the following:

Re ister R Field Re ister RField

rO (u) 00000o yl 010010
r1 (u) 000001 auc (u) 010011
r2 (u) 000010 psw 010100
r3 (u) 000011 cO (s) 010101

j(s) 000100 c1 (s) 010110
k (s) 000101 c2 (s) 010111

rb (u) 000110 sioc 011000
re (u) 000111 srta 011001

pt 001000 sdx 011010
pr 001001 tdms 011011
pi 001010 pioc 011100

i (s) 001011 pdxO 011101
x 010000 pdx1 011110
y 010001

Register sources j, k, i, cO, c1, and c2 are less than 16 bits and are sign-extended (s).
Register sources rO, r1, r2, r3, rb, re, and auc are less than 16 bits and are zero-extended
(u). For the DSP16A, registers rO, r1, r2, r3,j, k, rb, and re are 16 bits wide and need no
sign- or zero-extension.

Note: writing the psw also writes the aO and a1 guard bits.

15 10 9 4 3 0

word 1 0 1 0 1 0 0 R 0 0 0 0

word 2 Immediate Value (N)

Words: 2
Cycles: 2
Group: Data Move

Addressing: Immediate
Flags affected: None

Interruptible: Yes
Cacheable: No

Format: 8

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

R=aS (load register from accumulator)

Bit

Field

(R) ~ (as)

The contents of register R are replaced with the current contents of bits 31-16 of
accumulator as. Registers which are less than 16 bits load from the low-order bits of
as[31-16].

The value of S can be 0 to select accumulator aO or 1 to select accumulator al. See
Appendix A for the possible values ofR.
Note: Writing the psw also writes the the aO and al guard bits.

15 10 11 4 3 o

o 1 0 S 1 o R o 0 0 0

Words: 1
Cycles: 2
Group: Data Move

Addressing: Register
Flags affected: None

Interruptible: Yes
Cacheable: Yes

Format: 7

3-29

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

aT=R Ooad accumulator from register)

3-30

(aT) +- (R)

The contents of bits 31-16 of accumulator aT are replaced with the current contents of
register R, zero- or sign-extended to 16 bits (if necessary). If clearing aT! is enabled
(with the CLR field of the auc register), bits 15-0 of accumulator aT will be cleared.
Bits 35-32 (the guard bits) will be loaded with copies of bit 31.

The value of liT can be 0 to select aI, or 1 to select aO. (aT is encoded as liT in the
instruction encodings in Appendix A.) The value ofR can be any of the following:

Re 'ster RField Re ister RField
rO (u) 00000o yl 010010
rl (u) 000001 auc (u) 010011
12 (u) 000010 psw 010100
r3 (u) 000011 cO (s) 010101

j(s) 000100 cl (s) 010110
k (s) 000101 c2 (s) 010111

rh (u) 000110 sioc 011000
re (u) 000111 srta 011001

pt 001000 sdx 011010
pr 001001 tdms 011011
pi 001010 pioc 011100

i (s) 001011 pdxO 011101
x 010000 pdxl 011110

Y 010001

Register sources j, k, i, cO, cl, and c2 are less than 16 bits and are sign-extended (s).
Register sources rO, rl, 12, r3, rh, re, and auc are less than 16 bits and are zero-extended
(u). For the DSP16A, registers rO, rl, 12, r3,j, k, rh, and re are 16 bits wide and need no
sign- or zero-extension.

Bit 15

Field o o 0

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Words: 1
Cycles: 2

R

Group: Data Move
Addressing: Register

Flags affected: None
Interruptible: Yes

Cacheable: Yes
Fonnat: 7a

4 3 0

000 0

Note: If Y is used as the register R, the assembler forces a special function encoding. The
resulting instruction moves all 32 bits (sign extended to 36 bits) of y into aT. All DAU flags are
affected, and the execution requires only one cycle. If a two-cycle data move is desired, the
optional mnemonic move may be used. Only the upper 16 bits ofy are transferred and no flags
are affected. Example:

moveaO=y

3-31

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

R=Y (load register from internal RAM)

Bit

Field

perform (R) f- (*rN); then
modify rN

The contents of register R are replaced with the current contents of the internal RAM
location pointed to by rN, where rN is specified by the two most significant bits of the Y
field.

00 - rl) 01 - rl 1O-r2 11 - r3

The value of rN is then postmodified, where the postmodification is specified by the two
least significant bits of the Y field.

2 LSBs
ofY Action Symbol
00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by (j) *rN++j

Code 11, in this case, means add the current value of the j register to rN (after accessing
*rN).

See Appendix A for the possible values of destination register R. Registers which are
less than 16 bits load from the low-order bits of the memory location. Note: writing the
psw also writes the aO and al guard bits.

15

o 1 1

Words: 1
Cycles: 2
Group: Data Move

4

R

Addressing: Register, Register Indirect
Flags affected: None

Interruptible: Yes
Cacheable: Yes

FOimat: 7

3 o

Y

Note: If y, yl, or x is the destination register, R, the assembler assembles this instruction as a
single-cycle muItiply/ALU instruction. If a two-cycle move encoding is necessary, the optional
mnemonic move may be used. For example:

movey = *rl

forces a move encoding.

3-32

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

(store register to RAM memory)

(*rN) f- (R); then
modify rN

The contents of the RAM memory location pointed to by rN are replaced with the current
contents of register R, zero- or sign-extended to 16 bits (if necessary). rN is specified the
two most significant bits of the Y field:

00 - rl) 01 - rl 1O-r2 11-r3

The value of rN is then postmodified, where the postmodification is specified by the two
least significant bits of the Y field.

2 LSBs
ofY Action S mbol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by (j) *rN++j

Code 11, in this case, means add the current value of the j register to rN (after accessing
*rN).

See Appendix A for possible values of R. Register sources j, k, i, cO, c1, and c2 are less
than 16 bits and are sign-extended. Register sources rl), r1, r2, r3, rb, re, and auc are less
than 16 bits and are zero-extended. For the DSP16A, registers rl), r1, r2, r3, j, k, rb, and
re are 16 bits and need no sign- or zero-extending.

15

o o

Words: 1
Cycles: 2
Group: Data Move

4

R

Addressing: Register, Register Indirect
Flags affected: None

Interruptible: Yes
Cacheable: Yes

Format: 7

3 o

Y

3-33

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

Z:R

3-34

(exchange register with RAM memory)

temp ~ (R); then
(R) ~ (*rN); then
modify rN (first action); then
(*rN) ~ temp; then
modify rN (second action)

The contents of the RAM memory location(s) pointed to by rN are exchanged with the
current contents of register R, which is sign- or zero-extended to 16 bits (if necessary).
The pointer rN is modified after each of the two memory accesses according to the M
field. rN is specified by the two most significant bits of the Z field:

oo-rO 01- rl 1O-r2 11-r3

The available options for the postmodification are specified by the two least significant
bits of the Z field as follows:

2 LSBs
S hot ofZ First Action Second Action
*rNzp 00 no action postincrement
*rNpz 01 postincrement no action
*rNm2 10 postdecrement postincrement by 2
*rNjk 11 postincrement by G) postincrement by (k)

Code II, in this case, means add the current value of the j register to rN after reading
*rN, then add the current value of the k registerto rN after writing *rN.

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

See Appendix A for possible values of R. Register sources j, k, i, cO, cl, and c2 are less
than 16 bits and are sign-extended. Register sources rO, rl, r2, r3, rb, re, and auc are less
than 16 bits and are zero-extended. For the DSPI6A, registers rO, rl, r2, r3, j, k, rb, and
re are 16 bits and need no sign- or zero-extension. Note: writing the psw also writes the
aO and al guard bits.

Bit 15

Field 0 1 0

Words: 1
Cycles: 2
Group: Data Move

4 3

R

Addressing: Register, Register Indirect
Flags affected: None

Interruptible: Yes
Cacheable: Yes

Fonnat: 7

o

z

Note: R and rM must not be the same register (Le., r2pz:r2). The two logical PIO registers,pdxO
and pdxl, cannot be used in compound data moves.

3-35

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

ifCONF2

test CONdition;

(If CONdition is true, then perfonn
special function instruction)

if true, then perfonn F2

The specified condition is tested. If it is true, the special function operation F2 is
perfonned. See Appendix A for the conditions that can be tested (encoded in the CON
field).

The F2 functions (special function group) that can be conditionally perfonned (encoded
in the F2 field) are as follows:

Bit 15

Field 0 0

3-36

F2 o eration
0000 aD= as» 1
0001 aD=aS« 1
0010 aD= as»4
0011 aD= as«4
0100 aD= as» 8
0101 aD= as« 8
0110 aD= as» 16
0111 aD= as« 16
1000 aD=p
1001 aDh= aSh + 1
1010 ReselVed
1011 aD= md(aS)
1100 aD=y
1101 aD=aS+1
1110 aD=aS
1111 aD=-aS

F2

Words: 1
Cycles: 1
Group: Special Function

Addressing: Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Fonnat: 3

5 4 o

CON

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

ifcCONF2 (if CONdition is true, then perfonn
special function instruction)

(modify counter1,2 accordingly)

counter c1 = c1 + 1;
test CONdition; if true then {perfonn F2; c2 = c1}

First, counter c1 is incremented. Next, the specified condition is tested. If the condition
is true, the special function operation F2 is perfonned and counter c2 is set to the value of
cl. The conditions that can be tested are encoded in the CON field (see Appendix A).

The possible F2 special functions that can be conditionally perfonned are:

F2 0 eration
0000 aD = as » 1
0001 aD = as « 1
0010 aD = as » 4
0011 aD = as « 4
0100 aD=aS»8
0101 aD = as « 8
0110 aD = as» 16
0111 aD = as« 16
1000 aD=p
1001 aDh = aSh + 1
1010 Reserved
1011 aD = md(aS)
1100 aD=y
1101 aD = as + 1
1110 aD= as
1111 aD=-aS

The D and S fields are used to specify aD and as.

Bit 15

Field 1 0 0 1

Words: 1
Cycles: 1

F2

Group: Special Function
Addressing: Register

Flags affected: All
Interruptible: Yes

Cacheable: Yes
Fonnat: 3

5 4

CON

o

3·37

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl Y (multiply/ALU operation with postmodification of pointer register)

3-38

perform operation Fl; then
access *rN; then
postmodify rN (the contents of *rN are not written to a destination)

This instruction performs the following three operations (effectively in sequence):

1. The operation Fl is performed. The possible Fl operations are:

Fl 0 eration
0000 aD=p p=x*y
0001 aD = as + p p = x*y
0010 p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD = as + p
0110 NOP
0111 aD=aS-p
1000 aD = as I y
1001 aD=aSAy
1010 as &y
1011 as-y
1100 aD=y
1101 aD= as + y
1110 aD=aS&y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select al. The value of D can be 0 to
select aO or 1 to select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended
to 36 bits before performing the operation (this includes logical operations).

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Access the internal RAM location pointed to by rN, where rN is specified by the
two most significant bits of the Y field as follows (the accessed location is not
written to a destination):

oo-rO 01- rl 1O-r2 ll-r3

3. Postmodify the value of rN, where the postmodification is specified by the two
least significant bits of the Y field.

Bit 15

2 LSBs
ory Action S bol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by G) *rN++j

Code 11, in this case, means add the current value of the j register to rN (after
accessing *rN).

Field 0 0 1 1 Fl Y

Words: 1
Cycles: 1
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 1

o

3-39

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl Y = aO[l]
Fl Y = al[1]

(multiply/ALU operation with parallel accumulator store)

3-40

write the value of aT[l] to *rN; then
modify rN; then
perfonn operation FI

This instruction perfonns the following three operations (effectively in sequence):

1. Write the (old) value of aO, ai, aOl, or all to the internal RAM location pointed to
by rN, where rN is specified by the two most significant bits of the Y field.

00-1'0 01 - rl 1O-r2 11-r3

The X field selects y or yl:

X=O ~ yl X=I ~ Y

2. Postmodify the value ofrN, where the postmodification is specified by the two
least significant bits of the Y field.

2 LSBs
ofY Action Symbol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by (j) *rN++j

Code II in this case means add the current value of the j register to rN (after
accessing *rN).

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

3. The operation F1 is perfonned. The possible operations for F1 are:

aO

a1

F1 0 eration
0000 aD = p p = x*y
0001 aD = as + p p = x*y
0010 P = x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD = as + p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD = as 1\ y
1010 as & y
1011 as-y
1100 aD=y
1101 aD= as + y
IllO aD = as & y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select al. The value of D can be 0 to
select aO or 1 to select al. Note: for all diadic operations involving the y register, y
is sign-extended to 36 bits before perfonning the operation (this includes logical
operations).

15

1 1 1

0 0 1

0

0

11 10

0 D

0 D

Words: 1
Cycles: 2

9 8 5

S F1

S F1

Group: Multiply/ALU
Addressing: Register Indirect, Register

Flags affected: All
Interruptible: Yes

Cacheable: Yes
Fonnat: I

4 3 0

X Y

X Y

3-41

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl X=Y (multiply/ALU operation with parallel load of x register)

3-42

perform operation F1; then
copy *rN to x; then
modify rN

This instruction performs the following three operations (effectively in sequence):

1. The multiply/ ALU operation F1 is performed. The possible operations for F1 are
as follows:

F1 o eration
0000 aD=p p=x*y
0001 aD=aS+p p=x*y
0010 p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD=aS+p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD=aSAy
1010 as &y
1011 as-y
1100 aD=y
1101 aD=aS+y
1110 aD=aS&y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select al. The value of D can be 0 to
select aO or 1 to select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

Bit

Field

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

2. Access the internal RAM location pointed to by rN, and write this value into the x
register. rN is specified by the most significant bits of the Y field:

OO-rlJ 01 - rl 1O-r2 11- r3

3. Postmodify the value of rN, where the postmodification is specified by the two
least significant bits of the Y field.

2 LSBs
ofY Action S bol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by G) *rN++j

Code II, in this case, means add the current value of the j register to rN (after
accessing *rN).

15

~I
10

I
9

I
8 5

I
4

I
3 0

1 0 1 D S Fl 0 Y

Words: 1
Cycles: 1
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 1

3-43

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl y[l] = Y (multiply/ALU operation with parallel load of y register)

3-44

perform operation Fl; then
copy *rN to y (or yl); then
modify rN

This instruction performs the following three operations (effectively in sequence):

1. The multiply/ALU operation Fl is performed. The possible Fl operations are as
follows:

F1 0 eration
0000 aD = p p = x*y
0001 aD = as + p p = x*y
0010 P =x*y
0011 aD = as - p p = x*y
0100 aD=p
0101 aD = as + p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD= as I\y
1010 as & y
1011 as-y
1100 aD=y
1101 aD=aS+y
1110 aD=aS&y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select al. The value of D can be 0 to
select aO or 1 to select a1. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Access the internal RAM location pointed to by rN, and write this value into the y
(oryl) register. rN is specified by the two most significant bits of the Y field:

00- IO 01 - rl to-r2 11-r3

The X field selects y or yl:

X= 0 --+ yl X=1 --+ Y

3. Postmodify the value ofrN, where the postmodification is specified by the two
least significant bits of the Y field:

Bit 15

2 LSBs
ofY Action Symbol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by G) *rN++j

Code 11, in this case, means add the current value of the j register to rN (after
accessing *rN).

o

Field 1 0 1 1 F1 Y

Words: 1
Cycles: 1
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 1

3-45

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

Fl y=Y x = *pt++[i] (multiply/ALU operation
with parallel load of

3-46

perfonn operation FI; then
(y) ~ (*rN); then
modify rN; then
(x) ~ (*pt); then
(pt)= (pt)+ [1 or i]

x and y registers)

This instruction perfonns the following operations (effectively in sequence):

1. The operation F1 is perfonned. The possible operations for F1 are:

F1 0 eration
0000 aD=p p=x*y
0001 aD=aS+p p=x*y
0010 p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD = as + p
0110 NOP
0111 aD=aS-p
1000 aD= as I y
1001 aD= as I\y
1010 as &y
1011 as-y
1100 aD=y
1101 aD=aS+y
1110 aD= as & y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select a1. The value ofD can be 0 to
select aO or 1 to select a1. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before perfonning the operation (this includes logical operations).

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Access the internal RAM location pointed to by rN, and write this value into the y
register. rN is specified by the two most significant bits of the Y field:

OO-rll 01 - rl 1O-r2 11 - r3

3. Postmodify the value of rN, where the postmodification is specified by the two
least significant bits of the Y field:

2 LSBs
ofY Action S bol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by (j) *rN++j

Code 11, in this case, means add the current value of the j register to rN (after
accessing *rN).

4. Access the ROM location pointed to by pt, and write this value into the x register.
Either internal or external ROM may be accessed, depending on the state of the
EXM pin (and the address, in the case of the DSPI6A).

5. Postmodify the value of the pt register by either lori, selected by the X field:

X=o ~ *pt++ X= 1 ~ *pt++i

15
111 I

10

I
9

I
8 5

i
4

I
3 0

I D S FI X Y

Words:
Cycles: 2 (1 cycle if in cache)
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 1

3-47

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl
Fl

3-48

y = aO
y =al

x = *pt++[i]
X = *pt++[i]

perform operation F1; then
(y) f- (aO) or (a1); then
(x) f- (*pt); then
(pt)= (pt)+ [lor i]

(multiply/ALU operation
with parallel load of
x and y registers)

This instruction performs the following operations (effectively in sequence):

1. The operation F1 is performed. The possible operations for F1 are:

Fl 0 eration

0000 aD = p p = x*y
0001 aD=aS+p p=x*Y
0010 p= x*y
0011 aD = as - p p = x*y
0100 aD=p
0101 aD=aS+p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD = as 1\ y
1010 as & y
1011 as-y
1100 aD= y
1101 aD = as + y
1110 aD=aS&y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select a 1. The value of D can be 0 to
select aO or 1 to select a1. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Copy the value in aO or al to the y register. Note that the value copied from aO or
al is the value before executing the FI operation, due to pipelining.

3. Access the ROM location pointed to by pt, and write this value into the x register.
Either internal or external ROM may be accessed, depending on the state of the
EXM pin (and the address, for the DSPI6A).

4. Postmodify the value of the pt register by either I or i, selected by the X field:

15

aO 1

al 1

X= 0 ~ *pt++ X= 1 ~ *pt++i

1 0

1 0

0

1

11 10 9 8

1 D S Fl

I D S FI

Words:
Cycles: 2 (1 cycle if in cache)
Group: Multiply/ALU

5

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Fonnat: 1

4 3 0

X 0 0 0 0

X 0 0 0 0

3-49

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl aT[l] = Y (multiply/ALU operation with parallel load
of accumulator register)

3-50

perform operation F1; then
copy *rN to aT (or aTl); then
modify rN by M

This instruction performs the following three operations (effectively in sequence):

1. The operation F1 is performed. The possible operations for F1 are:

Fl o eration
0000 aD=p p=x*y
0001 aD=aS+p p=x*y
0010 p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD=aS+p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD=aSAy
1010 as&y
1011 as-y
1100 aD=y
1101 aD=aS+y
1110 aD= as & y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select a1. The value of aT can be 0 to
select a1 or 1 to select aO. Since aD and aT must be different accumulators, aD
will be the opposite of aT. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Access the internal RAM location pointed to by rN, and write this value to the aT
(or aTl) register. aT is defined as the opposite of D for this instruction. Therefore,
if the FI field selects writing to aD, aD will be the opposite of aT. rN is specified
by the two most significant bits of the Y field:

oo-rO 01 - rl 1O-r2 11 - r3

The X field selects y or yl:

X=o ~ yl

3. Postmodify the value of rN, where the postmodification is specified the two least
significant bits of the Y field:

15

1

2 LSBs
ofY Action S mbol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by (j) *rN++j

Code 11, in this case, means add the current value of the j register to rN (after
accessing *rN).

111 I 10

I
9

I
8 5

I
4

I
3 0

0 1 aT S Fl X Y

Words: 1
Cycles: 1
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: la

3-51

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl Y = y[l] (multiply/ALU operation with parallel
store of y register)

3-52

perform operation Fl;
(*rN) ~ (y) or (yl); then
modify rN

This instruction performs the following operations (effectively in sequence):

1. The operation Fl is performed. The possible operations for Fl are:

F1 o eration
0000 aD=p p=x*y
0001 aD=aS+p p=x*y
0010 p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD=aS+p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD=aSl\y
1010 as&y
1011 as-y
llOO aD=y
1101 aD=aS+y
1110 aD=aS&y
llli aD=aS-y

The value of S can be 0 to select aD or I to select al. The value of D can be 0 to
select aO or 1 to select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Write the value of y or yl to the internal RAM location pointed to by rN, where N
is specified by the two most significant bits of the Y field:

oo-rO 01 - rl 1O-r2 11 - r3

The X field selects y or yl:

X = 0 --7 yl

3. Postmodify the value of rN, where the postmodification is specified by the two
least significant bits of the Y field:

15

2 LSBs
ofY Action Symbol

00 no action *rN
01 postincrement *rN++
10 postdecrement *rN--
11 postincrement by (j) *rN++j

Code II, in this case, means add the current value of the j register to rN (after
accessing *rN).

~I
10

I
9

I
8 5

I
4

I
3 0

0 1 0 D S Fl X Y

Words: 1
Cycles: 2
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Fonnat: 1

3-53

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Fl Z: y[l] (multiply/ALU operation with compound data move)

3-54

perfonn operation F1; then
temp ~ (y) or (yl); then
(y) or (yl) ~ (*rN); then
modify rN (first action); then
(*rN) ~ temp; then
modify rN (second action)

This instruction perfonns the following operations (effectively in sequence):

1. The operation F1 is perfonned. The possible F1 operations are:

F1 o eration

0000 aD=p p=x*y
0001 aD=aS+p p=x*y
00 to p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD=aS+p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD=aS"y
10 to as&y
1011 as-y
1100 aD=y
1101 aD=aS+y
1110 aD= as & y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select a1. The value of D can be 0 to
select aO or 1 to select a1. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register. y is sign-extended to
36 bits before perfonning the operation (this includes logical operations).

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Save either the y or yl register into an internal temporary location (temp). The X
field select y or yl:

X= 0 -7 yl

3. Access the internal RAM location pointed to by rN, and write this value into the y
(or yl) register. rN is specified by the 2 most significant bits of the Z field:

oo-rO 01 - rl 1O-r2 11 - r3

4. Postmodify the value of rN by the first action described by the two least significant
bits of the Z field (described below).

5. Write the value saved in the temporary register (temp) to the memory location now
pointed to by rN.

6. Postmodify the value of rN by the second action described by the two least
significant bits of the Z field. The available options for the postmodification are
specified as follows:

15

2 LSBs
Symbol ofZ First Action Second Action

*rNzp 00 no action postincrement
*rNpz 01 postincrement no action
*rNm2 10 postdecrement postincrement by 2
*rNjk 11 postincrement by G) postincrement by (k)

Code 11, in this case, means add the current value of the j (or) k register to rN
(after accessing *rN).

~1 I 10

I
9

I
8 5

I
4

I
3 0

0 0 D S Fl X Z

Words: 1
Cycles: 2
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 2

3-55

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

Fl Z: aT[l] (multiply/ALU operation with parallel
compound accumlator move)

3-56

perform operation F1; then
temp +- (aT) or (aTl); then
(aT) or (aTl) +- (*rN); then
modify rN (first action);
(*rN) +- temp;
modify rN (second action)

This instruction performs the following operations (effectively in sequence):

1. The operation F1 is performed. The possible operations for F1 are:

Fl Operation
0000 aD=p p=x*y
0001 aD = as + p p = x*y
0010 p=x*y
0011 aD = as - p p = x*y
0100 aD=p
0101 aD = as + p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD = as" y
1010 as & y
1011 as-y
1100 aD=y
1101 aD = as + y
1110 aD = as & y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select al. The value of aT can be 0 to
select a1 or 1 to select aO. Since aD and aT must be different accumulators, aD
will be the opposite of aT. Flags are modified based on the value computed by the
ALU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

2. Save either the aT or aTl register into an internal temporary location (temp). aT is
defined as the opposite of D for this instruction. Therefore, if the F1 field selects
writing to aD, aD will be the opposite of aT since the aT field must read/write aT,
and vice versa. Note that if as in the F1 operation is the same as aT, the value used
in the Fl operation will be the old value, due to pipelining. The X field selects aT
or aTl:

X=O ~ aTl X= 1 ~ aT

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

3. Access the internal RAM location pointed to by rN, and write this value to the aT
(or aTl) register. rN is specified by the two most significant bits of the Z field:

OO-rl> 01 - r1 1O-r2 11 - r3

4. Postmodify the value of rN by the first action described by the two least significant
bits of the Z field (described below).

5. Write the value saved in the temporary register (temp) to the memory location now
pointed to by rN.

6. Postmodify the value of rN by the second action described by the two least
significant bits of the Z field. The available options for the postmodification are
specified as follows:

15

0

2 LSBs
S mbol ofZ First Action Second Action
*rNzp 00 no action postincrement
*rNpz 01 postincrement no action
*rNm2 10 postdecrement postincrement by 2
*rNjk 11 postincrement by (j) postincrement by (k)

Code 11, in this case, means add the current value of the j (or) k register to rN
(after accessing *rN).

111 I
10

I

9

I

8 5

I

4

I

3 0

0 1 0 aT S F1 X Z

Words: 1
Cycles: 2
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 2a

3-57

DSP16IDSP16A INSTRUCTION SET
Instruction Set Summary

Fl Z: y x = *pt++[i] (multiply/ALU operation with
compound data move and
parallel load of x register)

3-58

perform operation Fl; then
temp ~ (y); then
(y) ~ (*rN); then
modify rN (first action); then
(*rN) ~ temp; then
modify rN (second action); then
(x) ~ (*pt); then
(pt)= (pt)+ [lor iJ

This instruction performs the following operations (effectively in sequence):

1. The operation Fl is performed. The possible operations for Fl are:

Fl 0 eration
0000 aD = p p = x*y
0001 aD = as + p p = x*y
0010 p= x*y
0011 aD = as - p p = x*y
0100 aD=p
0101 aD = as + p
0110 NOP
0111 aD=aS-p
1000 aD = as I y
1001 aD = as 1\ y
1010 as & y
1011 as - y
1100 aD= y
1101 aD = as + y
1110 aD=aS&y
1111 aD=aS-y

The value of S can be 0 to select aO or 1 to select al. The value ofD can be 0 to
select aO or 1 to select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

2. Save the y register into an internal temporary location (temp).

3. Access the internal RAM location pointed to by rN, and write this value into the y
register. rN is specified by the two most significant bits of the Z field:

oo-rO 01 - rl 1O-r2 11 - r3

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

4. Postmodify the value of rN by the first action described by the two least significant
bits of the Z field (described below).

5. Write the value saved in the temporary register (temp) to the memory location now
pointed to by rN.

6. Postmodify the value of rN by the second action described by the two least
significant bits of the Z field. The available options for the postmodification are
specified as follows:

2 LSBs
S mbol ofZ First Action Second Action
*rNzp 00 no action postincrement
*rNpz 01 postincrement no action
*rNm2 10 postdecrement postincrement by 2
*rNjk 11 postincrement by (j) postincrement by (k)

Code 11, in this case, means add the current value of the j (or) k register to rN
(after accessing *rN).

7. Access the ROM location pointed to by pt, and write this value into the x register.
Either internal or external ROM may be accessed, depending on the state of the
EXM pin (and the address, for the DSPI6A).

8. Postmodify the value of the pt register by either I or i, selected by the X field:

X=o ~ *pt++ X= 1 ~ *pt++i

15

1: I
10

I
9

I
8 5

I
4

I
3 0

1 0 D S FI X Z

Words: I
Cycles: 2
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: All

Interruptible: Yes
Cacheable: Yes

Format: 2

3-59

3-60

DSP16/DSP16A DEVICE PROGRAMMING
Comments

4. DSP16/DSP16A DEVICE PROGRAMMING

This chapter discusses various aspects of programming the DSP16 and DSP16A devices. Many of
the topics are illustrated in the complete sample programs presented in Appendix B. Techniques
for programming the serial and parallel I/O sections of the device may be found in Chapters 5 and
6, respectively.

Chapter 3 described the instruction set specific to the DSP16/DSP16A device. Programming
examples in this manual follow the assembler syntax of the WE DSP16/DSP16A Support
Software Library for DSP16/DSP16A source files. An overview of the DSP16/DSP16A
assembly language is provided in the following section.

4.1 DSP16/DSP16A ASSEMBLY-LANGUAGE NOTATION

A DSP16/DSPI6A source file exists as a text file and contains DSP16/DSP16A instructions,
directives to allow the assembler to interpret the instructions and data, and comments to clarify
the use of the program. The syntax of the assembler directives is described in this chapter; also
described are conventions and nomenclature used throughout the remainder of this manual.
Appropriate formats for DSP16/DSP16A source files are also discussed.

4.1.1 Integer Notation

Decimal, hexadecimal, or octal expressions may be freely mixed when specifying numerical data
in a source file. The syntax is identical to C-Ianguage programming.

• Decimal. Any string of normal digits (0-9) is interpreted as a decimal number, provided it
does not have a leading zero.

• Hexadecimal. A numerical string beginning with Ox is interpreted as a hexadecimal number
and may contain the digits 0-9, a-f, or A-F. For example, OxO is the same as O. OxOlO is
the same as Ox 10, which is the decimal number 16. And OxFF or Oxff is the decimal number
127.

• Octal. A numerical string beginning with the digit zero is interpreted as an octal number and
may contain the digits 0-7. For example, 07 is the decimal number 7 and 010 is the decimal
number 8.

• Fixed-Point. Numbers with a decimal point are interpreted as binary fixed-point numbers by
the DSP16/DSP16A assembler. The number of binary digits to the right of the decimal point is
14 by default, but may be changed (see the We® DSP 16 and DSP 16A Support Software
Library User Manua{).

4.1.2 Comments

Comments may be placed in the source file to enhance readability and to provide information for
other users. A comment may be placed on a line by itself or may appear at the end of a line
containing an instruction. The following lines are examples of valid comments:

4-1

DSPI6/DSPI6A DEVICE PROGRAMMING
Labels

/* This is a valid comment */
instruction
instruction /* this is a valid comment */

4.1.3 Labels

Labels in a source file serve two purposes: to give a descriptive name to a particular location and
to provide a destination for a branch instruction. Labels may consist of upper- and/or lower-case
alphanumeric characters and the underscore, although the first character may not be numeric. A
label must be terminated with a colon. Labels may be as long as necessary to be descriptive;
however, only the first eight characters are significant. The following lines show examples of
valid labels:

start 1: instruction
instruction

end: instruction

4.1.4 Data Stored in ROM

/* "start 1" is a valid label */

/* "end" is a valid label */

Data may be stored in a ROM location by using the int directive. The following lines of source
code are examples of how to store data in ROM:

table: int OxFF /* Initialize one ROM location
2*int OxlO OxA2 /* Initialize four ROM locations
3*int 23 /* Initialize three ROM locations

fixed: int 1.23 -1.634 /* Initialize two ROM locations
tab end: int 3.72l!lO /* Initialize one ROM location

As shown above, multiple ROM locations may be specified with a single statement. In the
second example, two ROM locations are replicated to initialize four ROM locations; however, in
the third example, all three locations are initialized to the same value.

Following the labeljixed, two ROM locations are initialized in a fixed-point notation. By default,
the DSPI6/DSP16A assembler assumes that fixed-point numbers are to be assembled with 14 bits
of precision and 2 bits of magnitude. An environment variable, precision, may be changed to
allow other values of precision.

The last example demonstrates another method to specify the precision of a fixed-point format.
The suffix !N (where N is the desired precision) can be used to force different precision encodings
"on the fly." In this case, 3.721 is encoded with 6 magnitude bits and 10 precision bits.

4.1.5 RAM Variables

RAM variables can be allocated similarly to data stored in ROM by surrounding the int directives
with the .ram and .endram directives. Note that RAM locations are allocated without being
initialized. The following sequence allocates six RAM variables:

4-2

*/
*/
*/
*/
*/

DSPI6/DSPI6A DEVICE PROGRAMMING
Instruction Set Ambiguities

.ram
datal: int 1* allocate 1 RAM variable *1
data2: 2*int 1* allocate 2 RAM variables *1
data4: 3*int 1* allocate 3 RAM variables *1
.endram

4.1.6 DSPI6/DSPI6A Source-File Format

A DSP16/DSP16A source flle is prepared as a text flle by using a text editor with the UNIX
Operating System or MS-DOS Operating System. (See Appendix B for complete
DSP16/DSP16A program listings.) When creating a source file, the following conventions
should be observed:

• The source flle name must end with ".s".

• Directives beginning with "." (such as.ram and .endram) must begin in the first column.

• White space is used to separate the fields of instructions. Either a space or a tab character
constitutes white space. Using tabs to separate and align the fields improves the readability of
source flles.

• Labels normally begin in the first column to enhance readability, but may be indented if
desired.

• It is customary, but not required, to place the title and a brief description of the program at the
top of the flle for reference.

4.2 PROGRAMMING TECHNIQUES

The following sections describe problems commonly encountered when programming the
DSP16/DSP16A device and their possible solutions. In general, many of the problems
encountered when programming other digital signal processors (such as latency and pipeline
effects) have been eliminated by the design of the DSP16 and DSP16A devices.

4.2.1 Instruction Set Ambiguities

Several instructions, which normally would be written identically, can be interpreted as various
types of instructions. This interpretation of the instructions determines the number of ROM
locations used to store the instruction, the number of instruction cycles used to execute the
instruction, and whether or not the instruction affects the flags. Hence, the interpretation can be
critical. For example, the instruction

aO = y

could be a multiply/ALU, special function, or data move instruction. When the instruction is
interpreted as a multiply/ALU or special function instruction, the instruction requires one ROM
location and executes in one instruction cycle. When the instruction is interpreted as a data move
instruction, the instruction requires one ROM location and executes in two instruction cycles.
The interpretation of the instruction is critical if conditional testing based on the results of the
instruction execution is performed. The DSP16/DSP16A flags are affected by the multiply/ALU
and special function instructions, but not by the data move instructions.

4-3

DSP16/DSP16A DEVICE PROGRAMMING
Polling for I/O

The WE DSPI6/DSPI6A Support Software Library provides optional mnemonics that may be
used with an instruction to specify its type. Table 4-1 shows the mnemonics that can be used to
specify the type of instruction. For example, the instruction

au aO = y

is interpreted as a multiply/ALU instruction.

Table 4-1. Optional Mnemonics

Use To Specify

au Multiply/ALU instruction
if true Special function instruction
set Short immediate instruction
move Data move instruction

If an instruction may be encoded several ways, the assembler chooses the encoding based on the
following priority:

1. Special function

2. Multiply/ALU

3. Short immediate

4. Data move

4.2.2 Polling for 110

When not using interrupt driven I/O, polling for input and output conditions is the simplest means
of handling I/O timing. The following segment of code continuously polls the pioc register to
determine if the condition IBF is true, meaning that there is data in the serial input register
waiting to be processed. When data is loaded into the serial input buffer from an external device,
program execution continues below the wait loop.

y = Ox01O /* place mask into y register */
wait: aO = pioc /* cheek pioe register for IBF */

aO & y /* - look only at bit 4 */
if eq goto wait ./* - if no input, wait. */

rO = sdx / move data into RAM */

This same code fragment can be used to poll any I/O condition by changing the value in register
y, which is used to mask the unwanted bits of the pioc register. For example, use Ox04 to check
only the condition PIDS, which indicates that a parallel input was performed.

4-4

4.2.3 Modulo Addressing

DSP16/DSP16A DEVICE PROGRAMMING
Programming Tips

Modulo addressing is provided to allow efficient implementation of cyclical memory accesses. To
use modulo addressing, the first RAM address of the modulo must be loaded into register rb and
the last RAM address into reo The register being used as the memory pointer must be
postincremented by + 1. Each time the pointer is used, its value is compared with the contents of
register re (before the postincrement is performed). If the two values are equal, the value of
register rb is loaded into the register being used to address the RAM and the cycle repeats.

It is important to note that whenever register re contains a value not equal to zero, modulo
addressing is active. On reset, the value of re is zero. Whenever modulo addressing is not used,
this register should contain zero and should not be used to store any number other than the
address of the end of a modulo.

4.2.4 Random Number Generation

The DAU includes a lO-state pseudorandom binary sequence (PRBS) generator, which is used to
toggle a bit in the DAU. The status of this bit may be determined by testing for the "heads" or
"tails" condition. The following segment of code generates a 16-bit random number in the high
half of accumulator aD by randomly setting each of the 16 bits:

do 16
if heads aOh = aOh + 1
aO = aO « 1

/* if heads, set bit to 1 */
/* shift left 1 position */

The pseudorandom sequence is incremented each time it is tested and may be reset by writing any
value to the pi register (writing to the pi register does not affect its contents except when in an
interrupt service routine). (See Section 4.2.5.)

4.2.5 Programming Tips

The following section describes several practical programming tips that may not be obvious to a
new user of the DSP16/DSP16A.

1) When loading count values into cO and c 1, the count value is 1 - count, where count is the
desired number of times the loop is to be executed. An easy way to assemble the loop counter
load is to let the assembler compute the 1 - count value. For example, if a loop is to be
repeated 10 times, the following code could be used:

cO = 1 - 10
loop: ...

if cOlt goto loop

The assembler correctly computes 1 - count, and the code is easier to read.

4-5

DSP16/DSP16A DEVICE PROGRAMMING
Programming Tips

2) If extra 16-bit registers are needed, there are several possible ways to "create" them.

a) Unot using interrupts or development system breakpoints, an icall instruction may be
placed at location O. This causes a branch to location 2 (where program execution begins)
and makes the DSP16/DSPI6A "think" that it is in an interrupt service routine (ISR).
While in an ISR, the DSP16/DSP16A no longer updates the pi register each time the pc
register changes, and the pi register may be written to (writes to pi do not affect its contents
when not in an ISR, but writing the pi register resets the pseudorandom sequence
generator). When in an ISR, the pi register is not used by the DSP16/DSP16A and is free
for use as a general-purpose 16-bit register.

b) While not in a subroutine, the pr register is available as a general-purpose 16-bit register.

c) While not doing ROM table lookups, the pt register is available as a general-purpose 16-bit
register. It can easily be incremented or modified using:

{y = Y, Y = aT, Z : y} x = *pt++

or

/* load of y necessary when */
/* loading x from ROM */

i = N /* or -N */
{y = Y, Y = aT, Z : y} x = *pt++i

Note: The XAA U adder is only 12 bits wide, therefore, modifying as above is modulo 4K,
i.e.,

pt
{y

However,

4095
Y, Y

aO = pt

aT, Z

aOh = aOh + 1
pt = aO

y} x = *pt++
/* pt is now 0, */
/* not 4096 (2**12) */

is no problem, except above 32767 unless saturation logic is disabled on aO (since a value
above 32767 appears to be an overflowed 2's complement value).

3) While not using modulo addressing (re = 0), the rb register is available as a general-purpose
register. The re register is not available since a non-zero value enables modulo addressing.
Note that all YAAU register are 9 bits wide in the DSP16 and 16 bits wide in the DSP16A.

4) If a write of 0 to a RAM location is required, and modulo addressing is not being used, the re
register can be used (re is zero by definition).

*rN [++, --, ++j) = re

clears the RAM location pointed to by rN with no setup required.

4-6

DSP16/DSP16A DEVICE PROGRAMMING
Concurrent Interrupts

5) If adding and subtracting accumulators without using y is desired, the following instructions
could be used to perfonn an add (assuming that only the high half of an accumulator is being
used or the high half is a whole number and the low half is a fraction):

aO = aO » 4
aOh = aOh + 1
aO aO« 4

aO = -aO
aOh = aOh + 1
aO = -aO

/* adds 16 (2**4) to aO */
/* (similarly, « 8 adds 256) */

/* subtracts 1 from aO */

Shifting left and adding can be used to add fractions.

6) The following two-cycle data move instructions can be coded as a single-cycle multiply! ALU
instruction (when executing in the cache) by doing a dummy load to x.

do 40
y = aN
}

/* 2-cyc1e data move */

This takes 81 machine cycles, while:

do 40
y = aN x = *pt++ /* single-cycle when in cache */
}

takes only 43 machine cycles (2 when it is loaded the first time and 2 the last time it is
executed). In both cases, the do instruction requires 1 cycle. Note that this is a trivial
example to make the cycle counts more obvious. This "trick" is most useful when the kernel
of an operation is in the cache and a result needs to be multiplied by a coefficient or operated
on by the ALU.

7) The above assumes that pt has already been set and that postincrementing pt does not affect
anything. If this is not true (postincrementing pt is not desired), the following can be done:

i = 0
do 40

y
}

aN x = *pt++i

This does not alter the value of pt.

4.2.6 Concurrent Interrupts

/* postincrement by 0 */

Consideration must be given to situations in which multiple interrupting conditions occur. The
DSP16/DSP16A device does not allow nesting of interrupts; however, there are other ways to
guarantee that all interrupts can be recognized and serviced.

4-7

DSP16IDSP16A DEVICE PROGRAMMING
Concurrent Interrupts

Case I

If an internal and external interrupt request occur at nearly the same time and before the execution
of the branch-to-one (start of interrupt service routine), the status field in the pioc register can be
examined. In this case, the status will indicate that both interrupts are pending. They can be
serviced accordingly.

RULE: An interrupt occurring after an internal interrupt occurs and before lACK is asserted
(in response to the internal interrupt) causes the !NT bit in the pioc register (bit 0) to
be set, providing that !NT meets its assertion time requirements.

The !NT signal is negated on the rising edge of lACK.

ABC D

I I

PIDS ----I'(i !

lACK __ --+-'~r-----i---;-------.{)

4-8

INT / !-l
______ -J I ~----------_+------~--------------

I

A. Branch-to-mle instruction executed. Beginning
of interrupt service responding to negation of PIDS.

B. pioc register has PIDS and INT status bits set.

C. ireturn instruction executed. End of interrupt service routine.

D. Next interruptible instruction.

Figure 4-1. Case I - Internal Interrupt (PIDS) and INT
Occur Before Assertion ofIACK

Case 2

DSP16/DSP16A DEVICE PROGRAMMING
Concurrent Interrupts

If !NT is asserted (high) when lACK is already asserted (i.e., when the DSP16 device is servicing
another interrupt), then !NT must remain asserted until the next rising edge of lACK. This is
because the internal interrupt request is cleared on the falling edge of lACK. This guarantees that
the interrupt request (assertion of INT) will be serviced at the next interruptible instruction after
the currently executing interrupt service routine has fmished.

RULE: To guarantee recognition of !NT when it is asserted during an interrupt service
routine (lACK high), !NT should not be negated until the next rising edge of lACK.
providing that !NT assertion time is met.

A B C D E F
I I I

PIDS~ I I I
I I I
I I I

lACK

INT

I I I

/: ~ /:
I
I
I

/ ~

A. Branch-to-one instruction executed in response to
internal interrupt (PIDS).

B. pioc register has PIDS status bit seL

C. iretom instruction executed.

D. Next interruptible instruction.

E. Branch-to-one instruction executed in response to INT.

F. pioc register has INT status bit set.

Figure 4·2. Case 2 - !NT Asserted During Service of Internal
Interrupt After pioc Status is Checked

4·9

DSP16IDSP16A DEVICE PROGRAMMING
Concurrent Interrupts

Case 3

Internal interrupt requests remain pending until the respective pdx or sdx registers are serviced.
Hence, if an external interrupt is being serviced and another internal interrupt request is
generated, the internal interrupt request remains pending and causes a second interrupt to be taken
at the next interruptible instruction. In this way, the internal interrupt is not missed if it occurs
during the servicing of another external interrupt.

INT

lACK

PIDS

4·10

A B c o E F

A. Branch-to-{)ne inslrUction.

B. pioc register has INT status bit set.

C. Read of pioc register status.

D. pioc register has PIDS status bit set.

E. ireturn inslrUction executed.

F. Next interruptible inslrUction.

G. Branch-to-{)ne inslrUction. Begin to service internal interrupt.

H. Service internal interrupt.

Figure 4·3. Case 3 - Internal Interrupt Asserted While
Servicing an External Interrupt

G H

DSP16IDSP16A DEVICE PROGRAMMING
Interrupt Latency

Case 4

If it is possible for two or more interrupt requests to be pending, the easiest method for servicing
these interrupts is to service the external interrupt first and then the internal interrupt requests
individually (by taking a new interrupt for each internal request) until no more interrupts are
pending. The drawback of this procedure is that if external interrupts are frequent, there may be a
large latency when servicing internal interrupts.

4.2.7 Interrupt Latency

Two classes of DSP16/DSP16A instructions are not interruptible. The first class contains all
branch instructions. The second class contains instructions that are executing in the cache (Le.,
any instruction when executing from the on-chip instruction cache cannot be interrupted).

Interrupt latency is bounded by the longest in-cache operation. In situations where interrupt
latency is critical, in-cache operations should be split into smaller cache operations whose
execution time is less than any critical latency requirements. In this situation, an interruptible
instruction must be placed between successive cache instructions.

For example:

do 93

nap
redo 50
nap
redo 50

instr
instr

instr

/* interruptible instruction */

/* interruptible instruction */

4-11

4-12

• .:' ',., ,> , :'

:<v. ~ ,: ~ ... :"' , <,<
'.".-. ',",

,,' , .'.\':.: '.

,', '.

"." '.' .', "
, \': .'.--

.. ;:
'\ ':,

~h8.pter.' 5
. --.,

" Serial I/O

:'

,-

.,- - ,- .-~ .. ;'_.' : .. .:

,-~.

',"

5. SERIAL I/O

SERIAL I/O
Serial I/O

The serial I/O port on the DSPI6/DSPI6A device provides a serial interface to many codecs and
signal processors with few if any external chips. The high-speed, double-buffered port supports
back-to-back transmissions. The output buffer empty (OBE) and input buffer full (lBF) flags
facilitate the reading and/or writing of the serial I/O port by program or interrupt driven I/O.
There are four selectable active clock speeds. A bit-reversal mode provides compatibility with
either most significant bit (MSB) first or least significant bit (LSB) first serial I/O formats. A
multiprocessor I/O configuration requiring no external chips is provided. Three registers, serial
I/O control (sioc), time-division multiplexed slot (tdms), and serial receive/transmit address (srta),
allow the modes of operation to be controlled.

Figure 5-1 shows a simplified block-level representation of the serial I/O data path. The double­
buffered inputs (isr and ibut) and outputs (obuf and osr) connect to the internal data bus. The
serial I/O uses a register-based implementation. The input and output buffer registers (ibuf and
obuf, respectively) are used to input and output the data through the port. Both registers are
referenced in the instruction set by the name sdx. Unlike other registers in the DSPI6/DSPI6A
device, the writing of sdx and the reading of sdx are performed on two distinct registers. The
ICK, OCK, ILD, and OLD interface is represented by the clock generator block. The signals
connected to this block are bidirectional and may be programmed via the sioc register. The ifsr
and ofsr provide flag signals for the input and output (lBF and OSE), respectively. The
multiprocessor I/O is not represented in Figure 5-1. The signals shown on the lower portion of
Figure 5-1 are described in Section 5.3.

"-
I DATA BUS I
"- lr ~>

INPUT OUTPUT
BUFFER BUFFER
(IBUF) (OBUF)

lr ~>
INPUT FLAG INPUT DATA OUTPUT DATA OUTPUT FLAG

SHIFT REGISTER SHIFT REGISTER SHIFT REGISTER SHIFT REGISTER
(lFSR) (ISR) (OSR) (OFSR)

: CLOCK GENERATOR :

t t
IBF ILD DI ICK OCK DO OLD OSE

Figure 5-1. Serial I/O Internal Data Path

5.1 SIO OPERATION

The following subsections describe the operation of the SIO input and output sections and the
, active clock generator.

5-1

SERIAL I/O
Output Section

5.1.1 Input Section

A typically free-running clock (lCK) synchronizes all events occurring within the input section of
the SIO. A high-to-Iow transition of the input load (lLD) signal followed by a rising edge of ICK
initiates the start of an input transaction. The first serial data bit is read from DI on the next rising
edge of ICK. Eight or sixteen bits later, when the input shift (isr) register fills, this data is
transferred to the input buffer (ibuf) register and the input buffer full (lBF) signal is asserted,
indicating that the buffer is full. The DSPI6/DSPI6A device may read the data at this time. The
read command is of the type aO = sdx, al = sdx, or Y = sdx. The IBF is negated when the input
buffer is read. Another serial input may begin before the input buffer read takes place since the
port is double-buffered. If the new transfer is completed before the previous input is read, then
the new data is transferred to the input buffer, overwriting the old data. The status of IBF may be
read from the pioc register, IBF status field (bit 4), or the IBF field (bit 15) - this is the sign bit
that can be tested without masking
(Le., aO = pioc \ aO = aO \ if pI goto loop). The IBF may also be used as an interrupting condition,
if the appropriate enable bit in the pioc register is set (Pioc register, bit 9).

5.1.2 Output Section

When the DSP16/DSPI6A device is reset (power-up or RSTB), the internal status flag output
buffer empty (OBE) is set, indicating that the buffer is empty. When data is written to the output
buffer by an instruction of the form sdx = aO, sdx = ai, sdx = Y, or sdx = value, OBE is cleared
and the serial output section is ready for a serial transmission. The status of the OBE flag may be
read from the pioc register (OBE status field, bit 3). The OBE may be used as an interrupting
condition if the appropriate enable bit in the pioc register is set (Pioc register, bit 8). A typically
free-running clock (OCK) synchronizes all events taking place within the output section. A
high-to-Iow transition of the output load (OLD) signal, followed by a rising edge of OCK,
initiates the start of an output transaction. This procedure causes the contents of the output buffer
register to be transferred to the output shift (osr) register, the internal flag OBE to be set
(indicating the need for more data), and a high-to-Iow transition of OSE (indicating that the shift
register is full). The first serial data bit is placed on the data output (DO) at this time. Eight or
sixteen bits later, when the serial output has been completed, the output shift register empty
(OSE) signal will be asserted, indicating that the last bit of the serial transmission has been sent
(OSE can be used by external hardware to latch a shift register.) If the output buffer has been
reloaded, another transfer begins immediately; otherwise, zeros are sent on the serial output until
the buffer is reloaded prior to a high-to-Iow transition of OLD beginning another transmission.
Double-buffering allows the output buffer to be reloaded while data is being shifted out of the
output shift register.

5-2

SERIAL I/O
Active Clock Generator

A serial address (SADD) transmits simultaneously with DO. This address is the transmit address
field of the srta register (see Table 5-4). The SADD output is active low. The SADD may also
be used as a second serial output (only) port. The SADD signal is valid whether or not the device
is in the multiprocessor mode (See Section 5.6). If SADD is to be used in this manner, the LD
field of the sioc register should be set high to synchronize SADD with 00.

5.1.3 Active Clock Generator

The active clock signals for the SIO section are derived from CKI, with a maximum frequency of
CKI + 4. A simplified representation of the SIO active clock and load generator is shown in
Figure 5-2. In the figure, the switches represent the user-programmable features. A closed switch
corresponds to the associated bit in the sioc or tdms register having a value of one.

The five signals ICK, OCK, ILD, OLD, and SYNC can be individually programmed to be either
inputs or outputs (passive or active). When using active clocks (generated by the
DSPI6/DSPI6A device), the speed of the clocks can be selected from four speeds: CKI divided
by 4, 12, 16, or 20. This selection determines the speed of both ICK and OCK. The speed of
ILD and OLD can be selected as either the ICK or OCK signals divided by 16. An active SYNC
signal is generated from this same source (ICK or OCK divided by 16) and is further divided by 8
or 16. The resulting SYNC signal is either the signal ICK or OCK divided by 128 or 256. The
SYNC signal can be configured to generate an 8 kHz sampling signal for codec applications.

eLK SPEED SELECT

OCK ICK

rot SERIAL
OUTPUT LD
SECTION

OCK ICK

CKI

TO

SERIAL 1 INPUT
SECTION

ILD OLD

SYNCSP
SPEED
SELECT

TO +----....... __ MULTIPROCESSOR
CIRCUITRY

SYNC

Figure 5-2. SIO Active Clock and Load Generation

5-3

SERIAL 110
User-Controlled Features

5.2 USER-CONTROLLED FEATURES

Programmable modes are controlled by the serial I/O control (sioc) register. Flexibility in
programming the functions of the serial I/O port allows the port to interface with a variety of
devices with little or no "glue logic." Table 5-1 shows the control bits of the sioc register.
During device reset, the sioc register bits are cleared.

Table 5-1. Serial I/O Control (sioc) Register

Bit 1 9 1
Field. LO .

8 I 71 6
CLK . MSB I O~O I ;0 I ~ I I~K I OL~ I ~N I

Field Value ResultiDescription
0 Active ILD/OLD = ICK+16,

LD Active SYNC = ICK+128/256.t

1 Active ILD/OLD = OCK+16,*
Active SYNC = OCK+128/256.U

00 Active clock = CKI+4.

CLK
01 Active clock = CKI+ 12.
10 Active clock = CKI+ 16.
11 Active clock = CKI+20.

MSB
0 LSB first
1 MSB first

OLD
0 OLD is an input (passive mode).

1 OLD is an output (active mode).

ILD
0 ILD is an input (passive mode).
1 ILD is an output (active mode).

OCK
0 OCK is an inl'ut Jpassive mode).
1 OCK is an output (active mode).

ICK
0 ICK is an input (passive mode).

1 ICK is an output (active mode).

OLEN
0 16-bit output.

1 8-bit output.

ILEN
0 16-bit input.

1 8-bit input.
t Either 128 or 256 - see tdms register SYNC field. * Select this mode when using SAOO (not necessary if ICK = OCK).

5-4

SERIAL I/O
Serial I/O Pin Descriptions

The following section describes each programmable mode in detail.

• LD - The LD field (sioc bit 9) allows the active (internally generated) lLD and OLD signals to
be derived from either ICK (LD = 0) or OCK (LD = 1). Active lLD and OLD always are
derived from the same source.

• CLK - The CLK field (sioc bits 8,7) allows one of four active I/O speeds to be selected: a
division of the input clock CKI by either 4, 12, 16, or 20. As an example, with a CKI of 8.192
MHz, 24.576 MHz, 32.768 MHz, or 40.960 MHz, using the appropriate divisor of 4, 12, 16, or
20, respectively, results in an active I/O rate of 2.048 MHz. Refer to Table 5-1 for the CLK
field encoding.

• MSB - The MSB field (sioc bit 6) determines the bit order of the serial transmissions: most
significant bit (MSB) first (MSB = 1) or least significant bit (LSB) first (MSB = 0). This mode
switch allows compatibility with devices that perform either MSB first or LSB first serial
transfers. This mode is also useful when performing IJ.-Iaw or A-law conversions. A minimal
amount of software is required to perform these conversions. Since this field allows the bit
order to be switched when an sdx read or write occurs, the MSB field can be switched
immediately before and/or after an sdx read or write. If this technique is used in other than an
interrupt service routine, care should be taken to insure that the proper mode is in effect in the
event of an interrupt.

• OLD - The OLD field (sioc bit 5) allows OLD to be either an input (OLD = 0) or an output
(OLD = 1).

• ILD - The lLD field (sioc bit 4) allows ILD to be either an input (lLD = 0) or an output
(lLD = 1).

• OCK - The OCK field (sioc bit 3) allows OCK to be either an input (OCK = 0) or an output
(OCK = 1).

• ICK - The ICK field (sioc bit 2) allows ICK to be either an input (lCK = 0) or an output
(lCK = 1).

• OLEN - The OLEN field (sioc bit 1) controls the length of the serial output: either 16-bit
(OLEN = 0) or 8-bit (OLEN = 1). When the data is sent in the 8-bit mode with the LSB first
(MSB = 0), the eight data bits should be placed in the least significant half of obuf; i.e.,
OxOODD (D = data). When the data is sent in the 8-bit mode with the MSB first (MSB = 1),
the eight data bits should be "packed" in the most significant half of obuf; i.e., OxDDOO
(D = data).

• ILEN - The !LEN field (sioc bit 0) controls the length of the serial input either 16-bit
(lLEN = 0) or 8-bit (lLEN = 1). When the data is sent in the 8-bit mode with the LSB first
(MSB = 0), the eight data bits are placed in the most significant half of ibuf; i.e., OxDDOO
(D = data). When the data was sent in the 8-bit mode with the MSB first (MSB = 1), the
eight data bits are placed in the least significant half of ibuf; i.e., OxOODD (D = data).

5.3 SERIAL I/O PIN DESCRIPTIONS

The physical serial I/O port consists of eleven signals: four are used for serial input, four are used
for serial output, and three are used in multiprocessor and/or TOM applications. Table 5-2 lists
each signal with its type, pin number, and description.

5-5

SERlALJ/O
Serial I/O Pin Descriptions

Symbol Type·

DI I

ICK I/Ot

ILD I/Ot

IBF Ot

DO Ot

DOEN I/ot

OCK I/Ot

OLD I/Ot

OSE Ot

'" I = Input; 0 = Output

t 3-stated.

5-6

Pin

56

58

57

53

61

64

59

60

52

Table 5-2. Serial I/O Pins
Name/Description

Data Input. Serial PCM data latched on rising edge of ICK, either
LSB or MSB first, according to the sioc register MSB field.

Input Clock. Clock for serial PCM input data. In active mode,
ICK is an output; in passive mode, ICK is an input, according to the
sioc register ICK field.

Input Load. Falling edge of ILD indicates the beginning of a serial
input word. In active mode, ILD is an output; in passive mode, ILD
is an input, according to the sioc register ILD field.

Input ButTer Full. mF is asserted when the input buffer is filled
and negated by a read of the buffer. mF is also negated by asserting
RSTB.

Data Output. Serial PCM data output from the output shift register
(osr), either LSB or MSB first - according to the sioc register MSB
field. DO changes on the rising edges of OCK. DO is 3-stated
when DOEN is high.

Data Output Enable (Active-Low). An input when not in the
multiprocessor mode. DO and SADD are enabled only if DOEN is
low. DOEN is an output when in the multiprocessor mode (tdms
register MODE field set). In the multiprocessor mode, DOEN
indicates a valid time slot for a serial output.

Output Clock. Clock for serial PCM output data. In active mode,
OCK is an output; in passive mode, OCK is an input, according to
the sioc register OCK field.

Output Load. Clock for loading the parallel-to-serial converter
from the output buffer (obut). A falling edge of OLD indicates the
beginning of a serial output word. In active mode, OLD is an
output; in passive, OLD is an input, according to the sioc register
OLDfield.

Output Shift Register Empty. Indicates the end of a serial
transmission. OSE is set either by the emptying of the output shift
register or by asserting RSTB. OSE is reset by the DSP16 writing a
word (two clock cycles after the falling edge of OLD) to the output
shift register. Ifno new word is written by the DSP16, OSE
remains high regardless of activity on OLD.

Symbol Type'"
SADD I/Ot

SYNC I/Ot

* I = Input; 0 = Output.

t 3-stated.

Pin

63

62

SERIAL I/O
Serial I/O Programming Example

Table 5-2. Serial I/O Pins (continued)
Name/Description

Serial Address (Active-Low). An 8-bit serial bit stream typically
used for addressing during multiprocessor communication between
multiple DSP16 devices. In multiprocessor mode, SADD is an
output when the tdms time slot dictates a serial transmission;
otherwise, it is an input. SADD is always an output when not in
multiprocessor mode and can be used as a second serial output.
SADD is 3-stated when DOEN is high.

Multiprocessor Synchronization. Typically used in the
multiprocessor mode, a falling edge of SYNC indicates the first
word of a TDM I/O stream and causes the resynchronization of the
active ILD and OLD generators. SYNC is an output when the tdms
register SYNC field is set; otherwise, it is an input. SYNC must be
tied low if it is not used as an output. When used as an output,
SYNC = ILD/OLD + 8 or 16, depending on the setting of the
SYNCSP field of the tdms register. This procedure can be used to
generate a slow clock for SIO operation.

5.4 CODEC INTERFACE

Figure 5-3 is the schematic showing the connections required to interface the DSPI6/DSP16A
device to an AT&T T7500 Il-law/A-law Codec. Figure 5-4 shows the connections necessary to
interface the DSPI6/DSPI6A device to an AT&T T7520 or T7522 High-Precision Codec. In
both examples, the SYNC signal is actively driving ILD, OLD, and the codec with an 8 kHz
signal.

5.5 SERIAL I/O PROGRAMMING EXAMPLE

The program segment shown in this section demonstrates the use of the serial I/O port's interrupt
facility. The advantage of using the interrupt on input buffer full (IBF) is that the input data is
read in immediately, making careful placement of the sdx read commands within the program
unnecessary. This program allows 128 inputs to be read into a buffer while another buffer already
loaded with data is used by the program. When the first buffer fiUs, the two buffers are switched
and the process repeats.

5-7

SERIAL 110
Serial I/O Programming Example

5-8

BCLK OCK

U It>-MCLK ICK

SYNC
T7500 DSP16

u-Iaw I A-law FS ILD IDSP16A
CODEC

OLD

DR DO

DX DI
DOEN

--L

Figure 5-3. WE ® DSP16IDSP16A to AT&T T7500 Codec Interface

R2048 OCK

U T2048 ICK

T7520
OR SYNC

T7522 DSP16
PRECISION RSYNC ILD IDSP16A

CODEC U TSYNC OLD

RPCM DO

TPCM DI
DOEN

--L

Figure 5-4. WE® DSPl61DSP16A to AT&T T7520 or
T7522 Codec Interface

5.5.1 Program Segment

SERIAL I/O
Program Segment

/* Ping pong I/O routine */

intrpt:

start:

mainprg:

goto start
*rO++ = sdx
ireturn
auc = OxO
pioc = Ox200
sioc = OxO
y = OxO
r1 = Oxfe
*r1 = y
r2 Oxfd
rO = Oxff
rl = Oxff
y = Ox17f
*r2 = y
goto loop

/* interrupt on IBF
/* passive I/O

*/
*/

/* initialize flag */
/* temp storage */
/* interrupt pointer */
/* program I/O pointer */
/* address of last sample in */
/* 128 point buffer */

/* Main program here; prog. must take less time than I/O! */

aO *r1++ /* read in data from buffer */

loop: aO rO /* rO is address of input ptr. */
y = *r2
aO - y /* check for 128 samples in buffer */
if ne goto loop /* loop if not full */
rl Oxfe
aO = *r1 /* get alternate buf flag */
aO = aO /* set DAU flags */
if eq goto buf /* alternate between buffers */
y = OxOO
r1 = y / set flag for buf1 */
rO = Oxff /* interrupt pointer to buf1 */
r1 = Ox17f /* program I/O pointer to buf2 */
y = Ox17f
r2 = y / address of last sample in buf1 */
goto mainprg

buf: y = Ox01
r1 = y / set flag for buf2 */
rO = Ox17f /* interrupt pointer to buf2 */
r1 = Oxff /* program I/O pointer to buf1 */
y = Ox1ff /* address of last sample in buf2 */
*r2 = y
goto mainprg

5-9

SERIAL 110
Multiprocessor Mode Description

5.6 MULTIPROCESSOR MODE DESCRIPTION

The multiprocessor mode allows up to eight DSP16/DSP16A devices to be connected together in
such a way as to provide data transmission to any of the individual DSP16/DSP16As in the
system. Two registers associated with the multiprocessor mode are the time division multiplexed
slot (tdms) register (see Table 5-3) and the serial receive and transmit address (srta) register (see
Table 5-4). This mode requires no external hardware and uses a TDM interface with eight time
slots per frame. A serial address on the SADD line is sent simultaneously with data on DO from
anyone device in a predetermined time slot, and the data is received only by other device(s)
having the address specified. Each device has a user-programmable receive address associated
with it.

In the multiprocessor mode, the following pins are connected together to form a four-wire bus, as
shown in Figure 5-5. The DI and DO form a single-wire data bus referred to as DATA; ICK and
OCK form a clock line referred to as CK; the SADD forms a single-wire address bus referred to
as ADD; and SYNC provides a synchronization line referred to as SYN. Typically, CK and SYN
are specified statically for one particular DSP16/DSP16A device to always generate, although CK
may also be generated by an external clock. The signals are generated by the DSP16/DSP16A
device having active SYNC and OCK signals, which occur when the tdms register SYNC field is
set and the sioc register OCK field is set The other devices use the SYNC and OCK signals in
the passive mode to synchronize operations. All DSPs have their ILD and OLD signals in active
mode. A high-to-low transition of SYNC delineates transmit slot O. Eight words are exchanged
within a SYNC frame, so the tdms register should have the SYNCSP field set low when in the
mUltiprocessor mode. This provides 128 active ICK and/or OCK cycles per SYNC frame (8
words x 16-bits/word). The multiprocessor mode is turned on by setting the tdms mode field to
one.

In the multiprocessor mode, each device can send data in a unique time slot designated by the
tdms register transmit slot field. The tdms register has fully decoded fielding in order to allow for
one DSP16/DSP16A device transmitting in more than one time slot. This procedure is useful for
multiprocessor systems with less than eight DSP16/DSP16A devices, when a higher bandwidth is
necessary between certain devices in that system. Each device also has an address specified by the
srta register transmit address field (Table 5-4), used to transmit the information regarding the
destination of the data and an address assignment made to it by the receive address field referring
to its own identity. In subsequent examples, the srta register receive address will be referred to as
the "device number." Note: It is possible to assign more than one receive address or a duplicate
receive address to a DSP16/DSP16A device, but the examples given assume a unique receive
address.

5-10

DSP16/DSPl6A

SERIAL I/O
Multiprocessor Mode Description

DI DO ICK OCK ILD OLD IBF OBE SADD SYNC DOEN

DATA CK NC NC NC NC ADD SYN NC

DSP16/DSP16A DSP16/DSP16A DSP16/DSP16A
0 1 7

• • •

DATA CK ADD SYN DATA CK ADD SYN DATA CK ADD SYN

Figure 5-5. DSPl61DSP16A Multiprocessor Connections

If the serial address coming from the bidirectional SADD line of the transmitting device matches
the address of one of the other devices, the input is loaded into that device's input buffer and its
IBF flag is set at the end of the transmission. In order to read in the new data, an interrupt could
take place based on the IBF flag. Note that the address is eight bits wide with eight
DSPI6/DSPI6A devices (maximum) in the multiprocessor configuration. This means there is
one address bit per DSPI6/DSPI6A device. The srta register has one address bit per device in
order to allow transmissions to more than one device at a time. A broadcast mode sending data
from one device to all others is accomplished by setting all bits high on the transmission field of
srta.

5·11

SERIAL I/O
Multiprocessor Mode Description

Table 5·3. Time·Division Multiplexed Slot (tdms) Register

Bit 1 9 1 8 171615141312111 0

I SYNCSP SYNC Field. MODE TRANSMIT SLOT

Field Value ResultlDescription

SYNCSP
0 SYNC = ICK/OCKt + 128. :j:

1 SYNC = ICK/OCKt + 256.

0 Multiprocessor mode off.

MODE DOEN is an input (passive mode).

1 Multiprocessor mode on.
DOEN is an output (active mode).

lxxxxxxx Transmit slot 7.

xlxxxxxx Transmit slot 6.
xx 1 xxxxx Transmit slot 5.

TRANSMIT SLOT xxxlxxxx Transmit slot 4.

xxxxlxxx Transmit slot 3.

xxxxxlxx Transmit slot 2.

xxxxxxlx Transmit slot 1.

xxxxxxxi Transmit slot O.

SYNC SYNC is an output (active mode).

xxxxxxxO SYNC is an input (passive mode).
t See sioc register. LD field.

:j: Select this mode when in multiprocessor mode.

Typically, the time-division multiplexed slot register (tdms) is set up at the beginning of a
program and does not change for each of the devices in the multiprocessor system. If the time
slot needs to be changed, it is imperative that each processor still have its own unique time slot.
The falling edge of SYNC (the TDM frame sync) is used to update all the new time slots except
time slot 0, which is updated in the next cycle of SYNC.

During reset, the tdms register resets to all zeros, disabling the multiprocessor mode by default.
The srta register is unaltered by reset.

5·12

Bit

SERIAL 110
Multiprocessor Mode Description

Table 5-4. Serial Receive/Transmit Address (srta) Register

I 15 I 14 I 13 I 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
Field I RECEIVE ADDRESS I TRANSMIT ADDRESS I

Field Value Result/Description
1xxxxxxx Receive address 7.
x1xxxxxx Receive address 6.
xx 1 xxxxx Receive address 5.
xxx1xxxx Receive address 4.

RECEIVE ADDRESS
xxxx1xxx Receive address 3.

xxxxx1xx Receive address 2.
xxxxxx1x Receive address 1.
xxxxxxxi Receive address O.
1xxxxxxx Transmit address 7.
x1xxxxxx Transmit address 6.
xx 1 xxxxx Transmit address 5.

TRANSMIT ADDRESS
xxx 1 xxxx Transmit address 4.
xxxx1xxx Transmit address 3.
xxxxx1xx Transmit address 2.
xxxxxx1x Transmit address 1.
xxxxxxxi Transmit address O.

Figure 5-6 shows the operation of a system using eight DSP16/DSP16A devices in a
multiprocessor configuration. The settings used for the tdms and srta registers are shown in order
to illustrate the current state of these registers during each I/O operation. The following describes
the operation shown in Figure 5-6.

Time Slot

o
Actions

In preparation for time slot 0 (left-most column), the tdms register of device
number 7 has been initialized so that it can transmit in time slot zero. This
situation also forces the device to generate the frame sync of the 1/0 stream. The
srta register of device 7 has been set so that it can transmit to device 3 and receive
address 7. The serial data register (SDX) of device 7 contains the data to be
transmitted.

During time slot 0, the data from device 7 is transmitted on the TDM channel.
Device 3 recognizes its address on the serial address line (SADD) and accepts the
data into its SDX register, which is subsequently read by the command *rO = sdx.
All other devices ignore this transaction, since the transmit address was not theirs.

1 No actions in time slot 1.

5-13

SERIAL I/O
Multiprocessor Mode Description

5-14

2 In preparation for time-slot 2, the tdms register of device 2 has been initialized so
that during time slot 2, device 2 will transmit to device 5.

During time slot 2, the data from device 2 is transmitted on the TDM channel.
Device 5 recognizes the address on the SADD and accepts the data into its sdx
register, which is then read by the command *r1 ++ = sdx.

3 No actions in time slot 3.

4 No actions in time slot 4.

5 In preparation for time slot 5, device 0 has been initialized so that it will transmit
in this time slot to all other devices. Devices 1,4, and 6, which have not been
previously mentioned, are ready to receive data assigned to their respective
addresses. Devices 2, 3,5, and 7, which were initialized earlier, are also ready to
receive data.

During time slot 5, the data in device 0 is transmitted on the TDM channel. Every
device address is represented on the SADD line, and all devices will accept the
data.

6 No actions in time slot 6.

7 No actions in time slot 7.

(/)
(/)
w a:
0
0 «
w

'" <::
w
()
w a:
«
f-a:
(/)

0 '" f-
(!l
z
<5 a:
0
()
()
« v
a:
w
en
::E
::l
Z
«
<0

c:: on
rn

~
c::
(/)
0

<0

••• I a

SRTA = Ox0800

orO = sdx

TOMS = ox101

SRTA = Ox8008
sdx = *rO++

SERIAL 110
Multiprocessor Mode Description

TIME SLOT NUMBER

2 3 4 5 6 7

TOMS = ox120

SRTA = ox01 FE f--
sdx = *r1++

SRTA = OX0200
f4---

aO = sdx

TOMS = ox104

SRTA = ox042O
sdx = aO

SRTA = ox0400
f4--

aO = sdx

SRTA = ox0800
f4---aO = sdx

SRTA = ox1000

f4--aO = sdx

SRTA = ox2000

*r1++ = sdx
SRTA = 0<2000

j4-
aO = sdx

SRTA = ox4000 r.-aD = sdx

SRTA = Ox8008

f.-aO = sdx

Figure 5-6. DSP16/DSP16A Multiprocessor Communications

5-15

I • • •

SERIAL I/O
Suggested Multiprocessor Configuration

5.6.1 Suggested Multiprocessor Configuration

In the suggested configuration, the DSP16/DSP16A device supplying the SYNC signal also
supplies the ICK and OCK signals; the remaining DSPs are configured for passive SYNC, ICK,
and OCK signals. All DSPs have active ILD and OLD signals.

For the DSP16/DSP16A device with the given transmit slot, the following parameters should be
configured as shown:

Transmit Transmit Slot
Parameter Slot 0 1-7

SYNC Active Passive
ICK Active Passive
OCK Active Passive
ILD Active Active
OLD Active Active

To achieve the configuration shown above, the following registers in the DSPs should be set as
shown:

Transmit Transmit
Register Slot 0 Slot 1-7

sioc Ox23C Ox230
tdms OxlOl OxlXX
srta OxXXX OxXXX

Note: An "X" indicates that the number is dependent on the specific application.

The interrupt on IBF must also be enabled in the pioc register of each DSPI6/DSP16A device to
allow the devices to detect and process an input.

5-16

SERIAL I/O
Serial I/O Timing Diagrams

S.7 SERIAL I/O TIMING DIAGRAMS

ICK

ILO

01

IBF

VIH­

VIL-

VOH-

tlCKHIBFH ---..J ~

------------------------~<~
Figure 5-7. Serial Input Timing

5-17

SERIAL I/O
Serial I/O Timing Diagrams

VIH -
OCK

VIL - __ ~

OLD

tOCKHDOV

OH-
DO

VOL -

tDOENLDOV

tDOENLSADDV

VIH -
DOEN

VIL -

tOCKHSADDV

VOH -
SADD

VOL -

VOH -
OSE

Figure 5-8. Serial Output Timing - 8 Bits

5-18

~\\\\\\\\\\
I

tOCKHOSEH

VIH-
OCK

OLD
VIL

VOH -

DO VOl. _

tDOENLDOV

tDOENLSADDV

DOEN
VIH -=-----"'\
VIL -

VOH -

SADD VOL _

VOH
OSE

tOCKHSADDV

SERIAL I/O
Serial I/O Timing Diagrams

Figure 5·9. Serial Output Timing - 16 Bits

5·19

en
~

VIH -
OCK

VIL -

D<~:===X d1S '~;...... __ -;-

SADD VIH -

VIL -

SYNC

tOCKLSADDV

tOCKHSYNCL

~.:~P.-

tOCKHSYNCH

j.- tSYNCLOCKH

VOH --If fo tOCKHDOENL tOCKHDOENH ----I t
DOEN ~It----------

VOL - U t

Figure 5-10. Multiprocessor Timing

1r rn
.,t'!j

5· '" -"'"4

§~
~8 J.
~

1

::C~t~~;

,p~~~·:It(/

'6:-8"
6·8

.................. , .. , .. " , , , _ .. ,.""~."....... \();(f
6"9

. ··.~~~.El;:.~t9:;:::::::::~=:::::::::~:;::;::~:::::::::~::~:::.:::::::;:::::::~:;:::;:~ .. ·t~~
'l::~\~~~.:a~~·;~:::~::~::~::::'::~;:::::::.:;::~::::~::~:::~:.:~~::::::::::.~;:::;:::~:::::::~~::: ."::~

PARALLEL I/O
Software Description

6. PARALLEL I/O

The WE DSP16/DSP16A Digital Signal Processor has a l6-bit parallel I/O interface with external
devices for rapid transfer of data. Access times are programmable via the strobe field in the pioc
register. Minimal or no additional logic is required to interface with memory or other peripheral
devices. Five maskable interrupts are included in the PIO unit.

Although there is only one physical PIO port, there are two logical PIO ports: pdxO and pdxl.
The two logical ports are distinguished by the state of the peripheral select line (PSEL). Figure
6-1 shows the DSP16/DSP16A PIO unit at the block level.

INT ----=----....,~~I
lACK

PDBOO·
PDB15

..
I

PIDS

PSEL

PODS : I I
I I

.1

I
pdx in (16)

I

I pdx out (16)

i pioe (16)

Figure 6-1. Parallel I/O Section

6.1 SOFTWARE DESCRIPfION

I
I I
I I I

J I
D

The parallel I/O port can be accessed via the data move group of instructions. The two logical
ports (pdx0 and pdx 1) correspond to the state of the PSEL pin (logical 0 or logical 1 ,
respectively). That is, an access to the logical port pdxO initiates a transaction with the PSEL
signal cleared (0), while an access to logical port pdxl initiates a transaction with the PSEL signal
set (1).

When programming the device, three PIO registers can be referenced:

• pioc - Parallel I/O control register.
• pdxO - Logical port O.
• pdxl- Logical port 1.

Note: pdxO and pdxl both reference the same physical register.

6-1

PARALLEL I/O
Software Description

The parallel I/O control (Pioc) register is a 16-bit, user-accessible register used to configure some
features of the parallel I/O:

• External device access time.
• Interrupt masks.
• Active/passive mode.
• Statuslcontrol (SIC) bit mode.

Table 6-1 shows the pioc register.

Table 6-1 Parallel I/O Control (pioc) Register

Bit l15 J14J 13 J 12 J 11 I 10 19181716151413121 do j
Field I mF I STROBE I PODS I PIDS SIC I INTERRUPTS 1 STATUS J

Field Value ResultlDescriI!tion

mF R mF interrupt status bit (same as bit 4).

Strobe width of
PODS PIDS

STROBE
00 T* T
01 2T 2T
10 3T 3T
11 4T 4T

0 PODS is an ~ut ~assive mode).
PODS

1 PODS is an output (active mode).

PIDS
0 PIDS is an input (passive mode).

1 PIDS is an o\l1Qut (active mode).

0 Not SIC mode.
SIC

1 SIC mode.

Wxxxx mF inte1'I'l!Qt enabled when set.

xWxxx OBE inteI'flllll: enabled when set.

INTERRUPTS xxWxx PIDS interrupt enabled when set.

xxxWx PODS interrupt enabled when set.

xxxxW !NT interrupt enabled when set.

Rxxxx mF status bit.

xRxxx OBE status bit.

STATUS xxRxx PIDS status bit.

xxxRx PODS status bit.

xxxxR !NT status bit.
* T = 2 x tCKIHCKIH.

6-2

PARALLELVO
pioc Register Settings

6.1.1 pioc Register Settings

From the system perspective, the DSPI6/DSPI6A device can be an active device (Le., initiates
transactions on the parallel data bus, PDB), or a passive device (Le., receives stimulus from
external devices). In the active mode, the DSPI6/DSPI6A device behaves as a bus master; in the
passive mode of operation, the DSPI6/DSPI6A device behaves as a peripheral to another device,
such as a microprocessor or another DSPI6/DSPI6A device. Bit 15 of the pioc register is the
same as bit 4. See the following description of bit 4.

Bits 14 and 13 of the pioc register control the duration of assertion of the PIDS and PODS
signals. This will be described in more detail in Section 6.2.2.

Bit 12 of the pioc register, when equal to logic 1, makes the PODS pin an output; hence, the
DSPI6/DSPI6A device can perform active mode write transactions to external devices. When bit
12 of the pioc register is equal to logic 0, the PODS pin is an input used for passive reads from
the DSPI6/DSP16A device by external devices.

Bit 11 of the pioc register, when equal to logic I, makes the PIDS pin an output; hence, the
DSP16/DSP16A device can perform active mode read transactions from external devices. When
bit 11 of the pioc register is equal to logic 0, the PIDS pin is an input used for passive writes to
the DSP16/DSP16A device.

Note: The external PSEL pin always reflects the last access of pdxO or pdxl by the
DSP16/DSPI6A program. PSEL is unaffected by the selection of active or passive PIDS or
PODS.

Bit 10 of the pioc register, when equal to logic I, places the PIO in status and control (SIC) mode.
In the SIC mode, the upper half of the parallel data bus (pDB15-PDB08) becomes an input
only; the lower half (pDB07-PDBOO) remains bidirectional (see Section 6.2.4).

Bits 9,8,7,6, and 5 of the pioc register are used to mask interrupts. There are five types of
interrupts that can occur:

• Interrupts caused by an external device writing to the DSPI6/DSPI6A device's serial port.
This type of interrupt is masked when bit 9 of the pioc register is set to logic O.

• Interrupts caused by an external device reading from the DSPI6/DSPI6A device's serial port. This
type of interrupt is masked when bit 8 of the pioc register is set to logic O.

• Interrupts caused by an external device writing to the DSPI6/DSPI6A device's parallel port
when the DSPI6/DSP16A device is in passive mode. This type of interrupt is masked when
bit 7 of the pioc register is set to logic o.

• Interrupts caused by an external device reading from the DSPI6/DSPI6A device's parallel port
when the DSP16 device is in passive mode. This type of interrupt is masked when bit 6 of the
pioc register is set to logic O.

• Interrupts caused by an external device asserting the !NT pin. This type of interrupt is masked
when bit 5 of the pioc register is set to logic O.

6-3

PARALLELVO
pioc Register Settings

Note: There is one instruction latency when altering the INTERRUPTS field of the pioc register.
For example, if interrupts are disabled with the command pioc=OxOO, the DSPI6/DSPI6A device
still responds to an interrupt during the next instruction. After this instruction has executed, the
interrupts are disabled. Therefore, to protect an instruction sequence from interrupts, follow the
command to mask the INTERRUPTS field of the pioc register with one instruction that may be
safely interrupted.

Bits 4, 3, 2, 1, and 0 of the pioc register indicate the serial and parallel VO buffers and the
interrupt pin. This portion of the pioc register can be used to determine which of the five
aforementioned interrupts are requesting service. These bits can be read by an interrupt service
routine to determine which interrupt(s) have occurred and, hence, how to proceed to service the
interrupt request. These status bits can also be used to perform programmed VO by polling some
condition when necessary. It is important to note that pending interrupt status bits are cleared
under the following conditions:

• pioc[4], which indicates that the serial VO input buffer is full, is cleared by reading from the
sdx (serial VO) register.

• pioc[3], which indicates that the serial output buffer is empty, is cleared when a write to the sdx
(serial I/O) register is performed.

• pioc[2], which indicates that an external device has written into the DSPI6/DSPI6A device's
pio register, is cleared when the DSPI6/DSPI6A device reads from the PIO register (either
pdxO or pdxl). Reading from the PIO register clears this bit irrespective of whether it is done
inside or outside an interrupt routine. Note that this interrupt can occur only when the
DSPI6/DSPI6A device is in the passive mode; hence, the DSPI6/DSPI6A device reading
from the PIO registers (to clear pioc[2]) does NOT cause an external read transaction to take
place.

• pioc[l], which indicates that an external device has read from the DSPI6/DSPI6A device's
PIO register, is cleared when the DSPI6/DSPI6A device writes to the PIO register (either pdxO
or pdxl). Writing to the PIO register clears this bit irrespective of whether it is done inside or
outside an interrupt routine. Note that this interrupt can occur only when the DSPI6/DSPI6A
device is in the passive mode; hence, writing to the PIO registers (to clearpioc[l]) does NOT
cause an external write transaction to take place.

• pioc[O], which indicates that an external device has asserted the INT signal, is cleared when the
interrupt acknowledge (lACK) signal makes a high-to-Iow transition, indicating that the
interrupt service routine has completed. If external interrupts are masked, this bit will NOT be
set when !NT is asserted. Recall that this bit can be cleared only when an ireturn instruction
causes the high-to-Iow transition ofIACK.

Note: The contents of the pioc register are cleared, except bit 3 which is set, when the RSTB
signal is asserted. Hence, the DSPI6/DSPI6A device is in passive mode, non-status and control
(S/C) bit mode, with all interrupts masked after a chip reset.

6-4

PARALLEL I/O
Latent Reads

6.1.2 Latent Reads

While in active mode, reading from a logical PIO port is accomplished by an actual read of the
single physical port on the DSPI6/DSPI6A device. When a read of the parallel input register
(Physical port) is performed, a transaction to the external system is performed on the logical port.
Reads from the logical port imply that:

• All reads take their data from the on-chip parallel input register.
• As data is read from the internal parallel input register, a read transaction to the external system

is initiated.
• Upon completion of the external read transaction, data received from the external system

(logical port 0 or I) is loaded into the parallel input register.

Since data is read from the internal parallel input register and then new data is accepted into the
parallel input register from a logical port, reads from the external system are latent. For example,
to read a string of four words of data (dO, d I, d2, d3) from the PIO port, the following actions are
required:

1. The first instruction reads meaningless data from the parallel input register and initiates the
transaction to bring the first datum (dO) from the external device.

2. The second instruction reads the first datum (dO) from the parallel input register and initiates
the transaction to bring the second datum (dl) from the external device.

3. The third instruction reads the second datum (dl) from the parallel input register and initiates
the transaction to bring the third datum (d2) from the external device.

4. The fourth instruction reads the third datum (d2) from the parallel input register and initiates
the transaction to bring the fourth datum (d3) from the external device.

5. The fifth and final instruction reads the fourth datum (d3) from the parallel input register and
initiates a transaction that reads another word of data from the external device and overwrites
the last datum (d3) in the parallel input register.

To fetch a vector of data of length N requires N+ I instructions and generates N+ I read
transactions to the external system. In order to fetch a single datum that is not already present in
the parallel input register, two instructions are required. Since both logical ports map into the
same physical port, a fetch from either logical port takes data from the parallel input register; the
external access then overwrites the contents of the parallel input register with the data from the
logical port specified in the instruction.

The parallel output register is distinct from the parallel input register. Writing to pdxO and pdxl
does not alter the contents of the parallel input register.

6-5

PARALLEL I/O
Hardware Description

6.2 HARDWARE DESCRIPTION

The parallel I/O bus is an asynchronous interface. Data strobes indicate when data may be put on
the bus during active mode reads and when data is available on the bus during active mode writes.
The PIO port characteristics are programmable and are controlled by the parallel I/O control
register (Pioc). The following sections describe the PIO signals and their functions.

6.2.1 Parallel I/O Signals

Table 6-2 describes the PIO signals of the DSPI6/DSPI6A device.

Symbol Type·
PDBOO
PDBOI
PDB02
PDB03
PDB04
PDB05
PDB06
PDB07 I/Ot
PDB08
PDB09
PDBlO
PDB11
PDBl2
PDBl3
PDBl4
PDBl5
PSEL Ot

* I = Input; 0 = Output.

t 3-stated.

6-6

Table 6-2. Parallel I/O Si2nals
Pin NamelDescription
11 Parallel Data Bus - Bit O.
10 Parallel Data Bus - Bit 1.
9 Parallel Data Bus - Bit 2_
8 Parallel Data Bus - Bit 3.
5 Parallel Data Bus - Bit 4_
4 Parallel Data Bus - Bit s.
3 Parallel Data Bus - Bit 6.
2 Parallel Data Bus - Bit 7.

84 Parallel Data Bus - Bit 8.
83 Parallel Data Bus - Bit 9.
82 Parallel Data Bus - Bit 10.
81 Parallel Data Bus - Bit 11.
78 Parallel Data Bus - Bit 12.
77 Parallel Data Bus - Bit 13.
76 Parallel Data Bus - Bit 14.
75 Parallel Data Bus - Bit 15.

72 Peripheral Select. PSEL is used to specify the logical port
to/from which data is to be conveyed. PSEL is high (logic I)
when pdx I is the register specified in the I/O instruction and low
when pdxO is the register specified.

Symbol Type·

PIDS I/Ot

PODS I/Ot

... I = Input; 0 = Output

t 3-stated.

6.2.2 Active Mode

PARALLEL I/O
Active Mode

Table 6-2. Parallel I/O Sienals (continued)
Pin NarneiDescription

73 Parallel Input Data Strobe (Active-Low). In active mode,
PIDS is an output. when PIDS is asserted, data may be placed
onto the PDB. Upon negation ofPIDS, data should be removed
from the PDB. PIDS is asserted by the DSP16/DSP16A device
during active mode read transaction

In passive mode, PIDS is an input. When asserted by an external
device, this signal indicates that data is available on the PDB.

In both passive and active modes, the trailing edge (low-to-high
transition) ofPIDS is the sampling point.

74 Parallel Output Data Strobe (Active-Low). In active mode,
PODS is an output. When PODS is asserted, data is available on
the PDB. PODS is asserted by the DSP16/DSP16A device
during an active mode write transaction.

In passive mode, PODS is an input. When PODS is asserted by
an external device, the DSP16/DSP16A device places the
contents of its parallel output register (pdxO or pdx 1) onto the
PDB .

The duration of parallel I/O strobe signals can be programmed using bits 14 and 13 of the pioc
register. Table 6-3 shows the possible configurations.

Table 6-3. PIO Strobe Widths
pioc Bits Strobe width
14 13 PIDS· PODS·

0 0 T T
0 1 2T 2T
1 0 3T 3T
1 1 4T 4T

... T = 2 x tCKIHCKIH

When minimum strobe widths are configured, parallel I/O transactions can occur at the
instruction rate. Consecutive parallel I/O instructions can be executed.

Note: When the strobe widths are not minimum, consecutive PIa instructions are
prohibited - other non-PIO instructions must be placed between two PIa
instructions.

6-7

PARALLELVO
Status and Control Mode

• When pioc[14, 13] = 01, one or more instructions must be placed between
PIO instructions.

• When pioc[14, 13] = 10, two or more instructions must be placed between
PIO instructions.

• When pioc[14, 13] = 11, three or more instructions must be placed
between PIO instructions.

Any interrupt seIVice routine must guarantee that these conditions are met.
As a simple rule, when pioc[14, 13] = II, the first instruction in an interrupt
service routine cannot be a PIO instruction.

6.2.3 Passive Mode

In passive mode, the DSP16/DSP16A device can be used as a peripheral to such other devices as
a microprocessor. Bits 12 and 11 of the pioc register are used to configure the passive mode.
When bit 12 of the pioc register is clear (0), the PODS signal becomes an input and the contents
of the DSP16/DSP16A device's parallel output register can be read by an external device
asserting PODS. When bit 11 of the pioc register is clear (0), PIDS is an input and the
DSP16/DSP16A device's parallel input register can be written by an external device asserting
PIDS.

Providing that their respective interrupt mask bits are set Oogic I), the assertion ofPIDS and
PODS by an external device causes the DSPI6/DSPI6A device to recognize an interrupt. This
mechanism is a means by which functional synchronization between the DSP16/DSPI6A device
and an external device can be achieved.

6.2.4 Status and Control (SIC) Mode

The (S/C) mode of the DSP16/DSPI6A device's parallel 1/0 is invoked by setting bit 10 of the
pioc register to logic 1. When this bit is set, the upper half of the parallel data bus (pDB 15-
PDB08) becomes an input only. The lower half of the parallel data bus (pDB07-PDBOO)
remains bidirectional. The lower half of the parallel data bus can be used as an 8-bit,
bidirectional port that behaves just as the 16-bit port does in both the active and passive modes.
The upper half of the parallel data bus, being an input only, can perform active and passive mode
input transactions.

The SIC bit mode may be used as follows:

• The upper bits (PDB 15-PDB08) can be used by devices external to the DSP16/DSP16A
device to control the behavior of the DSP16/DSP16A. The DSP16/DSP16A device can be
programmed to poll the parallel port and to respond according to the data there. An external
device can use the upper eight bits of the parallel I/O (in the passive mode) to write a control
byte into a DSP16/DSP16A device. Data on this upper byte must be clocked (using PIDS) into
the parallel 1/0 port. Furthermore, the DSP16/DSP16A device should have its PODS signal
configured in the passive mode (bit 12 ofpioc clear).

6-8

PARALLEL I/O
PIO Bus Transactions

• The lower eight bits of the parallel data bus (pDB07-PDBOO) can be used by external devices
to indicate some condition (status) internal to the DSP16/DSP16A device. The
DSP16/DSPI6A device, by writing to the pdx register enables these eight bits when PODS is
asserted.

6.3 INTERRUPTS AND THE PARALLEL I/O

There are two internal interrupts generated, based on parallel I/O events. An internal interrupt is
generated (provided it is unmasked) when an external device performs a passive mode write.
When the external device negates the PIDS signal (low-to-high transition), an internal interrupt
request is generated. When the DSP16/DSP16A device accepts this interrupt request, the lACK
signal is asserted. When the interrupt routine is completed, lACK is negated (becomes logic 0).
See Section 2.8 for more information on how the DSP16/DSP16A device reacts to interrupts.

Similarly, when an external device performs a passive read, an internal interrupt request is
generated upon negation (low-to-high transition) of PODS. When the DSP16/DSP16A device
accepts this interrupt request, the lACK signal is asserted. When the interrupt routine has
completed, lACK is negated (becomes logic 0).

When the DSPI6/DSPI6A device is in the passive mode, program synchronization can be
obtained by using the interrupt mechanism to synchronize a data source, with the program being
run by the DSP16/DSP16A device. Briefly, the DSP16/DSPI6A device can have its parallel I/O
configured in the passive mode. A data source provides data to the DSP16/DSP16A device via
passive writes. During the associated interrupt routine, the DSP16/DSP16A device program
performs 1/0 functions. The receipt of data by the DSP16/DSP16A device is indicated to the
external data source by the falling edge (high-to-Iow) transition of the lACK signal.

When the PIDS signal is active, the pdx in register is shadowed during interrupts. This allows
the parallel input to be used during interrupts without the possibility of destroying data previously
fetched via a latent PIO read. When the interrupt service routine is exited, pdx in is loaded with
its value prior to the interrupt. If the parallel input is changed from active to passive during the
interrupt, the shadowing feature is disabled.

6.4 PIO BUS TRANSACTIONS

In this section, the four types of parallel I/O transactions are described:

• Active mode input (active read)

• Active mode output (active write)

• Passive mode input (passive read)

• Passive mode output (passive write)

Note: For timing information, refer to the appropriate data sheet.

6-9

PARALLEL I/O
Active Mode Input

6.4.1 Active Mode Input

The active mode input transaction (shown in Figure 6-2) is initiated by the DSP16/DSP16A
device executing a data move instruction (e.g., *r2 = pdxO). When an active mode input occurs,
PIDS and PSEL are asserted, indicating that an external device can place data on the parallel data
bus (PDB). PSEL can be used to select one of two external sources for the data. The external
device must place valid data on the PDB before the negation ofPIDS. The access time for the
external data source is configurable via the pioc register. The external data source can remove
data from the PDB after negation of PIDS.

CKO

PSEL

PODS

PIDS

PDS

6-10

--d
VOH-

VOL-

VOH-

VOL-

VOH-

VOL-

VIH­

VIL -

\ ~~ tCKOHPIDSL

tPIDSLPSELV

tPIDSLPIDSH

,,,,,,,,," E::3: ,,,,,,"eo,,

Figure 6-2. Active Mode Input Timing

6.4.2 Active Mode Output

PARALLEL I/O
Active Mode Output

The active mode output transaction (shown in Figure 6-3) is initiated by the DSPI6/DSPI6A
device executing a data move instruction (e.g., pdxO = *r2). When an active mode output occurs,
PODS and PSEL are asserted. A short time later, the DSPI6/DSPI6A device places data onto the
PDB. This data remains valid until a short time after the negation of PODS. This write time is
configurable via the pioc register.

CKO

VOH -
PSEL ---~

VOL -

VOH -
PODS

VOL -

VOH -
PIDS

VOL -

ICKOLPODSL

tCKOHPSELV J ~<OlPODSH j-------
tPODSHPSELX

1+-- IPODSLPODSH --'*'I

__________ r..,.....,..-It-' __ 'P_O_D_S_LP_D_B_V ______ r IPODSHPDBX

PDB VOH- ~
VOL- ~

Figure 6-3. Active Mode Output Timing

6-11

PARALLELVO
Passive Mode Input

6.4.3 Passive Mode Input

The passive mode input transaction (shown in Figure 6-4) is initiated by an external device
asserting PIDS. The external device must place data onto the PDB prior to the negation of PIDS.
The external device may remove the data from the bus after the negation of PIDS.

VIH
PODS

6-12

PIDS

VIL -

VIH -

VIL -

VIH -
PDe

VIL -

i4-----tPIDSLPIDSH -----t~

\ /

<PDBVPIDSH r- -- ~ WIDSHPDBX

(Xl J
Figure 6-4. Passive Mode Input Timing

PARALLEL 110
Passive Mode Output

6.4.4 Passive Mode Output

The passive mode output transaction (shown in Figure 6-5) is initiated by an external device
asserting PODS. A short time later, the DSP16/DSP16A device places data from its pdx output
register onto the PDB. The data remains valid until a short time after the negation of PODS by
the external device.

PSEL

PODS

PIDS

PDB

VOH -

VOL -

VIH

V IL

VIH

V IL

VOH -

VOL -

~---- tPODSLPODSH

/

---- I tPODSLPDBV tPODSHPDBX ---- r
(Xll<....ll.....l-__ -----'

Figure 6-5. Passive Mode Output Timing

6-13

PARALLEL I/O
Parallel I/O Interaccess Timing

6.4.5 Parallel I/O Interaccess Timing

Figure 6-6 shows the timing of mixed active mode inputs and outputs. Refer to the previous
sections (6.4.1 and 6.4.2) on active mode input and output transactions for specific descriptions of
individual transactions.

PSEL VOH
VOL -

PODS VOH -
VOL -

PIDS VOH -
VOL -

I I

~ Xi X X
I I

I I

I I
I I I

~_----.I Lr---{
PDB ~:~ =< H H'-_---'~'--___ _

I ACTIVE WRITE I ACTIVE READ I ACTIVE READ I ACTIVE WRITE ACTIVE WRITE

Figure 6-6. Parallel I/O Interaccess Timing

6-14

" , '

"" ,

. , ' ,,' ~' '
"., ,

"/ , " "

" :' ',.<

" ~ .~

. ::' ~. ':
""

',. , \"

,,' w ,

',: '

, <,'

-:0-. : •• ,

" '

, ":: "'~

, ""
:'. OJ' ~ -' <

~. '
",,'

'.,'

0',.' : " ' .. ~ ,
".," : .,' , '''',

, "

" , ;,. .'
',: ,.

:;'

","

,' ..

',I

.f:

, '

':1.", "

, '
, "

... ' ""

,',

, "
, "

" ' , '

/, '.

','

<,',

": , "

.• ':, N~: .

" " .:

, '\' ",.,' ~
" :'.

"--, :._." ..

, ~" '

.' " '

\.',< "

" :

'J!hap~er'7,

"Interrace 'Guide . ~ . ,

", .',

-'
"b H'.

<, / ' "

: ~.':

, '".'" "

'<' <

... ,

< ,",

INTERFACE GUIDE
Pin Assignments

7. INTERFACE GUIDE

This chapter describes elements of the physical design of the DSP16 device that must be
considered when designing practical physical systems. For timing characteristics and
specifications, refer to an up-to-date WE ® DSP 16 Digital Signal Processor Data Sheet or WE ®
DSP 16A Digital Signal Processor Data Sheet. For information concerning the 133-pin PGA
package, refer to the WE® DSP16 Digital Signal Processor For Military Applications Data
Sheet.

Note: When working with critical information, be sure it is the latest available. The date of
publication can be found on the last page of data sheets and on the title page of manuals.
Normally, data sheets are updated more frequently than information manuals.

7.1 PIN ASSIGNMENTS

Figure 7-1 is the pin diagram for the DSPI6/DSPI6A device. Table 7-1 is an alphabetical list of
pin names.

PB1S 75

PB14 76

PB13 77

PB12 78

Voe 79

VS5 80

PB11 81

PB10 82

PB09 83

PBas 84

VDD

PBa7

PBDS

PBDS

74 73 72 71 70 69 68 67 68 65 84 83 82 61 eo 59 58 67 56 55 54

53 ISF

52 OSE

51 RB15

50 R614

RB13

48 RB12

47 RS11

RB10

45 RB09

44 RBOS

43 RB07

42 RBDS

VDD

RBDS

PB04 39 RB04

Voo 38 RB03

Vss 37 RB02

PB03 36 RBOl

PB02 35 RBOO

paal 10 EXM

PBOD 11

;::: ~ g
'" '" '" '" '" '"

w ~ ~ ~ ~ v ~ 0 ~ N ~ 0
~ 0 0 0 0 0 0 coo 0 0 > m m m m m > > m m m m

< < < < < < < < <

33 CKO

Figure 7-1. DSPI6/DSPI6A Digital Signal Processor - Pin Diagram

7-1

INTERFACE GUIDE
Device Pins by Numerical Order

Table 7-1. DSPI6/DSPI6A Pin Names
Symbol Pin Symbol

ABOO-AB15 32-29, 26-22, OLD
20-18, 15-12 OSE

CKI 67 PBOO-PB15
CKO 33
DI 56
DO 61 PIDS
DOEN 64 PODS
EXM 34 PSEL
lACK 68 RBOO-RB15
IBF 53 RSTB
ICK 58 SADD
ILD 57 SYNC
!NT 71 VDD
OCK 59

Vss

7.1.1 Device Pins by Numerical Order

Table 7-2. DSPI6/DSPI6A Pin Descriptions
Pin Symbol Type* Name/Description

1 VDD P 5V.
2 PB07 I/Ot Parallel I/O Data Bus - Bit 7.
3 PB06 I/ot Parallel I/O Data Bus - Bit 6.
4 PB05 I/Ot Parallel I/O Data Bus - Bit 5.
5 PB04 I/Ot Parallel I/O Data Bus - Bit 4.
6 VDD P 5V.
7 VSS P Ground.
8 PB03 I/Ot Parallel I/O Data Bus - Bit 3.
9 PB02 I/Ot Parallel I/O Data Bus - Bit 2.

10 PB01 I/Ot Parallel I/O Data Bus - Bit 1.
11 PBOO I/Ot Parallel I/O Data Bus - Bit O.
12 AB15 Ot ROM Address Bus - Bit 15.
13 AB14 Ot ROM Address Bus - Bit 14.
14 AB13 Ot ROM Address Bus - Bit 13.
15 AB12 Ot ROM Address Bus - Bit 12.

* I = Input; 0 = Output; P = Power Supply.
t 3-stated.

7-2

Pin
60
52

11-8,5-2
84-81,78-75

73
74
72

35-40,42-51
66
63
62

1,6,17,28,41,55,
70, 79

7, 16,21,27,54,
65,69,80

Pin Symbol
16 Vss

17 VDD

18 ABll
19 ABlO
20 AB09
21 vss

22 AB08
23 AB07
24 AB06
25 AB05
26 AB04
27 vss

28 VDD

29 AB03
30 AB02
31 AB01
32 ABOO
33 CKO

34 EXM

35 RBOO
36 RB01
37 RB02
38 RB03
39 RB04
40 RB05
41 VDD

42 RB06
43 RB07
44 RB08
45 RB09
46 RBlO

INTERFACE GUIDE
Device Pins by Numerical Order

Table 7-2. DSPI6/DSPI6A Pin Descriptions (Continued)
Type* Name/Description

P Ground.
P 5V.

Ot ROM Address Bus - Bit 11.
Ot ROM Address Bus - Bit 10.
Ot ROM Address Bus - Bit 9.
P Ground.

Ot ROM Address Bus - Bit 8.
ot ROM Address Bus - Bit 7.
Ot ROM Address Bus - Bit 6.
Ot ROM Address Bus - Bit 5.
Ot ROM Address Bus - Bit 4.
P Ground.
P 5V.

Ot ROM Address Bus - Bit 3.
Ot ROM Address Bus - Bit 2.
Ot ROM Address Bus - Bit 1.
Ot ROM Address Bus - Bit O.
0 Clock Out. Buffered clock at half the frequency of CKl.

I External Memory. When high, all instructions and coefficients
are fetched from external memory. When low:
DSP16 - forces use of internal ROM for instructions and
coefficients.
DSP16A - the first 4 Kwords of program memory are fetched
from internal ROM; addresses beyond 4 Kwords are fetched
from external memory.

I ROM Data Bus - Bit O.
I ROM Data Bus - Bit 1.
I ROM Data Bus - Bit 2.
I ROM Data Bus - Bit 3.
I ROM Data Bus - Bit 4.
I ROM Data Bus - Bit 5.
P 5V.
I ROM Data Bus - Bit 6.
I ROM Data Bus - Bit 7.
I ROM Data Bus - Bit 8.
I ROM Data Bus - Bit 9.
I ROM Data Bus - Bit 10.

* I = Input; 0 = Output; P = Power Supply.
t 3-stated.

7-3

INTERFACE GUIDE
Device Pins by Numerical Order

Table 7-2. DSPI6/DSPI6A Pin Descriptions (Continued)
Pin Symbol Type* Name/Description

47 RBll I ROM Data Bus - Bit 11.
48 RB12 I ROM Data Bus - Bit 12.
49 RB13 I ROM Data Bus - Bit 13.
50 RB14 I ROM Data Bus - Bit 14.
51 RB15 I ROM Data Bus - Bit 15.

52 OSE Ot Output Shift Register Empty. Indicates the end of a serial
transmission. OSE is set either by emptying the output shift
register or by asserting RSTB. OSE is reset by the DSP16
device writing a word to the output shift register.

53 IBF Ot Input Buffer Full. IBF is set when the input buffer is filled and
cleared by a read of the buffer. IBF is also cleared by asserting
RSTB.

54 VSS P Ground.

55 VDD P SV.
56 DI I Serial PCM data latched on rising edge of ICK, either LSB or

MSB first, according to the status of the sioc register MSB field.

57 ILD I/Ot Input Load. Falling edge of ILD indicates the beginning of a
serial input word. In active mode, ILD is an output; in passive
mode, ILD is an input, depending on the sioc register ILD field.

58 ICK I/Ot Input Clock. Clock for serial PCM input data. In active mode,
ICK is an output; in passive mode, ICK is an input, depending
on the I/O format.

59 OCK I/Ot Output Clock. Clock for serial PCM output data. In active
mode, OCK is an output; in passive mode, OCK is an input,
depending on the I/O format.

60 OLD I/Ot Output Load. Clock for loading the parallel-to-serial converter
from the output buffer (obuf). A falling edge of OLD indicates
the beginning of a serial output word. In active mode, OLD is an
output; in passive, OLD is an input, according to the sioc register
OLD field.

* I = Input; 0 = Output; P = Power Supply.
t 3-stated.

7-4

Pin Symbol

61 DO

62 SYNC

63 SADD

64 DOEN

65 VSS

66 RSTB

67 CKI

68 lACK

69 vss
70 VDD

INTERFACE GUIDE
Device Pins by Numerical Order

Table 7-2. DSP16/DSP16A Pin Descriptions (Continued)
Type* Name/Description

ot Data Output. Serial PCM data output from the output shift
(osr) register, either LSB or MSB first, according to the sioc
register MSB field. DO changes on the rising edges of OCK.

I/Ot Multiprocessor Synchronization. A falling edge of SYNC
indicates the first word of a TDM I/O stream. SYNC is an
output when the tdms register transmit slot 0 is set; otherwise, it
is input.

Ii0t Multiprocessor Address (Active-Low). An 8-bit serial bit
stream used for addressing during multiprocessor
communication between multiple DSP16 devices. SADD is an
output when the tdms time slot dictates a serial transmission;
otherwise, it is an input.

I/Ot Data Output Enable. An output when in the multiprocessor
mode (tdms register MODE field set) and an input otherwise.
DO is 3-stated when DOEN is high.

P Ground.

I Reset. A high-to-Iow transition causes entry into the reset state.
The sioc, pioc (except bit 3, which is set), tdms, rb, and re
register bits are cleared. Reset clears external flags lACK and
IBF and sets external flag OSE. DAD condition flags and the
auc register are not affected by reset. All output and
bidirectional pins are 3-stated during reset. A low-to-high
transition causes execution to begin at ROM location O.

I Clock In. Input clock at twice the frequency of internal
operations.

Ot Interrupt Acknowledge. lACK signals when an interrupt is
being serviced by the DSP16. The lACK remains high until
normal instruction operation resumes.

P Ground.

P 5V.

* I = Input; 0 = Output; P = Power Supply.
t 3-stated.

7-5

INTERFACE GUIDE
Device Pins by Numerical Order

Table 7-2. DSPI6/DSPI6A Pin Descriptions (Continued)
Pin Symbol Type'" Name/Description

71 INT I Processor Interrupt. Interrupt to DSP16. INT is acknowledged
when interrupts are enabled by the pioc register.

72 PSEL at Peripheral Select. PSEL is used in the input and output modes
to address external devices. PSEL is low when register pdxO is
referenced, and high when pdxl is referenced.

73 PIDS I/Ot Parallel Input Data Strobe. Active mode (output) is controlled
by data move instructions. Passive mode (input) is externally
controlled. On low-to-high transition, data from the parallel I/O
data bus is latched into the parallel input data register.

74 PODS I/Ot Parallel Output Data Strobe. Active mode (output) is
controlled by data move instructions. Passive mode (input) is
externally controlled. When low, data from the parallel data
output register is enabled into the parallel I/O data bus. The
rising edge may be used as a latching clock. When high, the
parallel I/O data bus is 3-stated.

75 PB15 I/Ot Parallel I/O Data Bus - Bit 15
76 PB14 I/Ot Parallel I/O Data Bus - Bit 14
77 PB13 I/Ot Parallel I/O Data Bus - Bit 13
78 PB12 I/Ot Parallel I/O Data Bus - Bit 12
79 VDD P 5V.
80 VSS P Ground

81 PBll I/Ot Parallel I/O Data Bus - Bit 11
82 PBlO I/Ot Parallel I/O Data Bus - Bit 10
83 PB09 I/Ot Parallel I/O Data Bus - Bit 9
84 PB08 I/Ot Parallel I/O Data Bus - Bit 8

* I = Input; 0 = Output; P = Power Supply.
t 3-stated.

7-6

INTERFACE GUIDE
Pins by Functional Group

7.1.2 Pins by Functional Group

Table 7-3. External Memory Interface Group

Pin Symbol Type * NamelDescription

32 ABOO
31 ABOI
30 AB02
29 AB03
26 AB04
25 AB05
24 AB06
23 AB07
22 AB08
20 AB09
19 ABlO
18 ABll
15 AB12
14 AB13
13 AB14
12 AB15
34 EXM

35 RBDO
36 RBOI
37 RB02
38 RB03
39 RB04
40 RB05
42 RB06
43 RB07
44 RB08
45 RB09
46 RBI0
47 RBll
48 RBl2
49 RB13
50 RBl4
51 RB15

* I = Input; 0 = OUlput
t 3-stated.

ROM Address Bus - Bit O.
ROM Address Bus - Bit 1.
ROM Address Bus - Bit 2.
ROM Address Bus - Bit 3.
ROM Address Bus - Bit 4.
ROM Address Bus - Bit 5.
ROM Address Bus - Bit 6.
ROM Address Bus - Bit 7.

Ot ROM Address Bus - Bit 8.
ROM Address Bus - Bit 9.
ROM Address Bus - Bit 10.
ROM Address Bus - Bit 11.
ROM Address Bus - Bit 12.
ROM Address Bus - Bit 13.
ROM Address Bus - Bit 14.
ROM Address Bus - Bit 15.

I External Memory. When high, all instructions and
coefficients are fetched from external memory. When low:
DSP16 - forces use of internal ROM for instructions and
coefficients.
DSP16A - the first 4 Kwords of program memory are
fetched from internal ROM; addresses beyond 4 Kwords
are fetched from external memory.

ROM Data Bus - Bit O.
ROM Data Bus - Bit 1.
ROM Data Bus - Bit 2.
ROM Data Bus - Bit 3.
ROM Data Bus - Bit 4.
ROM Data Bus - Bit 5.
ROM Data Bus - Bit 6.

I ROM Data Bus - Bit 7.
ROM Data Bus - Bit 8.
ROM Data Bus - Bit 9.
ROM Data Bus - Bit 10.
ROM Data Bus - Bit 11.
ROM Data Bus - Bit 12.
ROM Data Bus - Bit 13.
ROM Data Bus - Bit 14.
ROM Data Bus - Bit 15.

7-7

INTERFACE GUIDE
Pins by Functional Group

Pin Symbol Type*

52 OSE

53 IBF

56 DI

5? ILD

58 ICK

59 OCK

60 OLD

61 DO

* I = lnput; 0 = Output

t 3-stated.

7-8

Ot

Ot

I

IIOt

I/Ot

IIOt

I/Ot

Ot

Table 7·4. SIO Interface Group
NamelDescription

Output Shift Register Empty. Indicates the end of a
serial transmission. OSE is set either by emptying the
output shift register or by asserting RSTB. OSE is reset
by the DSP16 writing a word to the output shift register.

Input Buffer Full. IBF is set when the input buffer is
filled and cleared by a read of the buffer. IBF is also
cleared by asserting RSTB.

Data Input. Serial PCM data latched on rising edge of
ICK, either LSB or MSB first, according to the status of
the sioc register MSB field.

Input Load. Falling edge of ILD indicates the beginning
of a serial input word. In active mode, ILD is an output;
in passive mode, ILD is an input, depending on the sioc
register ILD field.

Input Clock. Clock for serial PCM input data. In active
mode, ICK is an output; in passive mode, ICK is an input,
depending on the I/O format.

Output Clock. Clock for serial PCM output data. In
active mode, OCK is an output; in passive mode, OCK is
an input, depending on the I/O format.

Output Load. Clock for loading the parallel-to-serial
converter from the output buffer (obut). A falling edge of
OLD indicates the beginning of a serial output word. In
active mode, OLD is an output; in passive mode, OLD is
an input, according to the sioc register OLD field.

Data Output. Serial PCM data output from the output
shift (osr) register, either LSB or MSB first, according to
the sioc register MSB field. DO changes on the rising
edges of OCK.

INTERFACE GUIDE
Pins by Functional Group

Table 7-4. SIO Interface Group (Continued)
Pin Symbol Type*
62 SYNC I/Ot

63 SADD IIOt

64 DOEN I/Ot

Pin Symbol Type*
11 PDBOO
10 PDBOI
9 PDB02
8 PDB03
5 PDB04
4 PDB05
3 PDB06
2 PDB07 I/Ot

84 PDB08
83 PDB09
82 PDBIO
81 PDB11
78 PDB12
77 PDB13
76 PDB14
75 PDB15

* I = Input; 0 = Output
t 3-stated.

Name/Description
Multiprocessor Synchronization. A falling edge of
SYNC indicates the first word of a TDM I/O stream.
SYNC is an output when the tdms register transmit slot 0
is set; otherwise, it is an input.

Multiprocessor Address (Active-Low). An 8-bit serial
bit stream used for addressing during multiprocessor
communication between multiple DSP16 devices. SADD
is an output when the tdms time slot dictates a serial
transmission; otherwise, it is an input.

Data Output Enable. An output when in the
multiprocessor mode (tdms register MODE field set) and
an input otherwise. DO is 3-stated when DOEN is high.

Table 7-5. PIO Interface Group
Name/Description

Parallel I/O Data Bus - Bit O.
Parallel I/O Data Bus - Bit 1.
Parallel I/O Data Bus - Bit 2.
Parallel I/O Data Bus - Bit 3.
Parallel I/O Data Bus - Bit 4.
Parallel I/O Data Bus - Bit 5.
Parallel I/O Data Bus - Bit 6.
Parallel I/O Data Bus - Bit 7.
Parallel I/O Data Bus - Bit 8.
Parallel I/O Data Bus - Bit 9.
Parallel I/O Data Bus - Bit 10.
Parallel I/O Data Bus - Bit 11.
Parallel I/O Data Bus - Bit 12.
Parallel I/O Data Bus - Bit 13.
Parallel I/O Data Bus - Bit 14.
Parallel I/O Data Bus - Bit 15.

7-9

INTERFACE GUIDE
Pins by Functional Group

Table 7-5. PIO Interface Group (Continued)
Pin Symbol Type· Name/Description

72 PSEL Ot Parallel Select. PSEL is used to address external devices.
PSEL is low when pdxO is referenced and high when pdxl
is referenced.

73 PIDS I/Ot Parallel Input Data Strobe. Active mode (output) is
controlled by the data move instructions. Passive mode
(input) is externally controlled. On low-to-high transition,
data from the parallel I/O data bus is latched into the
parallel input data register.

74 PODS I/Ot Parallel Output Data Strobe. Active mode (output) is
controlled by the data move instructions. Passive mode
(input) is externally controlled. When low, data from the
parallel data output register is placed into the parallel data
bus. The rising edge may be used as a latching clock.
When high, the parallel I/O data bus is 3-stated.

Table 7-6. Miscellaneous Function Group
Pin Symbol Type·

33 CKO

66 RSTB

67 CKI

68 lACK

71 !NT

* I = Input; 0 = Output
t 3-stated.

7-10

Ot

I

I

Ot

I

Name/Description
Clock Out. Buffered clock at half the frequency of CKI.

Reset. A high-to-low transition causes entry into the reset
state. The sioc, pioc (except bit 3, which is set), tdms, rb,
and re register bits are cleared. Reset clears external flags
lACK and IDF and sets external flag OSE. DAU
condition flags and the auc register are not affected by
reset. All output and bidirectional pins are 3-stated during
reset. A low-to-high transition causes execution to begin
at ROM location O.

Clock In. Input clock at twice the frequency of internal
operations.

Interrupt Acknowledge. Interrupt acknowledge signals
when an interrupt is being serviced by the DSPl6 device.
The lACK remains high until normal instruction operation
resumes.

Processor Interrupt. Interrupt to DSPl6 device. !NT is
acknowledged when interrupts are enabled by the pioc
register.

Pin Symbol
1 VDD
6 VDD

17 VDD
28 VDD
41 VDD
55 VDD
70 VDD
79 VDD

7 VSS
16 VSS
21 VSS
27 VSS
54 VSS
65 VSS
69 VSS
80 VSS

* P = Power Supply.

Table 7·7. Power and Ground Group
Type· Name/Description

SV.
SV.
SV.

P SV.
SV.
SV.
SV.
SV.
Ground.
Ground.
Ground.

P Ground.
Ground.
Ground.
Ground.
Ground.

INTERFACE GUIDE
Pins by Functional Group

7·11

INTERFACE GUIDE
Electrical Characteristics

7.2 ELECTRICAL CHARACTERISTICS

The parameters are valid for the following conditions: Tc = 0 to 85 ·C;
VDD = 5 V ± 10%; vss = 0 V; t = 2 x tCKIHCKIH.

Table 7·8. Electrical Characteristics
Parameter Sym Min Max Unit

Input Voltage
Low VIL - 0.8 V
High VIH 2.0 - V

Output Voltage
Low (l0L=2.0 rnA) VOL - 0.4 V
Higll (lOH= -2.0 rnA) VOH 2.4 - V

Output Current
Low (10L=0.4 V) 10L - 2.0 rnA
High (loH=2.4 V) 10H - -2.0 rnA

Output Short-Circuit Current lOS - -200 rnA
(VOH=OV)

Output 3-State Current
Low (VIL = 0.8) 10ZL -75 75 IlA
High (VIH = 2.0) 10ZH -75 75 IlA

Input Current
Low (VIL = 0.8) IlL - -25 IlA
High (VIH = 2.0) IIH - 25 J.l.A

Input Capacitance CI - 15 pF

Absolute Maximum Ratings

Voltage on any pin with respect to ground .. -0.5 V to +6 V
Power dissipation 1 W
Ambient temperature range ... -40·C to +120·C
Storage temperature range ... -65·C to +150·C

Maximum ratings are the limiting conditions that can be applied to all variations of circuit and
environmental conditions without the occurrence of permanent damage.

Bonding and soldering of the extemalleads of these devices can be performed safely at
temperatures up to 300 "C.

7·12

INTERFACE GUIDE
External Memory

7.3 EXTERNAL MEMORY

Figure 7-2 shows the external memory interface timing. Note that there are no read or write
signals. The external memory interface was primarily provided to allow users to place programs
in external ROM, rather than having to order mask-programmed devices. In some applications,
such as the DSP16 and DSP16A Development Systems, the external memory is RAM, which is
loaded by a microcomputer and then read by the DSPI6/DSPI6A device.

DSP16 Only

When the EXM pin is tied high, the internal ROM of the device can be replaced with up to 64
Kwords of external memory. The address space starts at address zero. Addresses are generated
by the XAAU (ROM addressing unit) and supplied off-chip on the address bus (ABOO-AB 15).

DSP16A Only

When the EXM pin is tied low, the processor augments the low 4 Kwords of on-chip program
ROM with up to 60 Kwords of external program memory. When the EXM pin is tied high, the
entire 64 Kword address space is mapped into external program memory.

CKI

CKO

AB

RB
VIH -

VIL -

~ ~ ~tCKOLRBX
tRBVCKOL c==x

Figure 7-2. External Memory Interface Timing

7-13

INTERFACE GUIDE
Reset and Interrupt Control

7.4 RESET AND INTERRUPT CONTROL

The DSP16/DSP16A device can be reset by the use of the RSTB input. Asserting RSTB (low)
causes all device outputs to 3-state. The next low-to-high transition causes the device to begin
program execution from address zero. Part A of Figure 7-3 shows the timing of the RSTB input
and device outputs.

Part B of Figure 7-3 shows the timing of the !NT (interrupt request) input When an external
device requests an interrupt, the DSP16 device recognizes an interrupting condition at the next
interruptible instruction (provided the !NT interrupt enable bit in the pioc register is set), the
interrupt acknowledge signal (lACK) is asserted, and program execution branches to address one.

At the end of the interrupt service routine, as determined by the iretum instruction, lACK is
negated.

'·14

VIH --------,
RSTB

VIL -

tRSTBHOUTV

VOH _------------'11
OUT ALL DEVICE OUTPUTS 1)-------(1 VOL - __________ --1

INT

lACK

A. Reset Timing

~:: ______ ...JP,om"" ~ ____ _
''''"''''J--t= ______ _ VOH­

VOL-

B. Interrupt Timing

Figure '·3. Reset and Interrupt Timing

7.5 DEVICE PACKAGE OUTLINE

0.042 (1.07) MIN
0.056 (1.42) MAX

~~Flll

~

1.150 (29.21) MIN
1.158 (29.41) MAX

1.185 (30.99) MIN
1.195 (30.35) MAX

0.001 (.025) MIN

1.185 (30.10)
MIN

1.195 (3035)
MAX

1.150 (29.21)
MIN

1.158 (29.41)
MAX

0.071 1.80 REF () 1 ' 0.025 (.635) MIN f .~-(""""
L- 0.040 (1.02) MAX

85°_ 89°

NOTES: ALL MEET JEDEC STANDARDS.

INTERFACE GUIDE
Device Package Outline

1.090 (27.69) MIN
1.135 (28.83) MAX

0.050 (1.27)
REF

0.090 (229) MIN
0.130 (3.30) MAX

PIN 1 INDEX MARK MAY BE A DIMPLE OR NUMBERIC LOCATED IN ZONES INDICATED.
DIMENSIONS ARE IN INCHES AND (MILLIMETERS).

Figure 7-4. 84-Pin PLCC Device Outline

7-15

7-16

A. INSTRUCTION SET ENCODING

INSTRUCTION SET ENCODING
Formats

This appendix defines the hardware-level encoding of the DSP16/DSP16A device instructions.

A.I FORMATS

MuItiply/ALU Instructions

Format 1: Multiply/ALU ReadIWrite Group.

Field
Bit

Format la: Multiply/ALU ReadIWrite Group.

Field

Bit

Format 2: Multiply/ALU ReadIWrite Group.

Field

Bit

Format 2a: Multiply/ALU ReadIWrite Group.

Field
Bit

Special Function Instructions

Format 3: Special Functions.

Field

Bit

A-I

INSTRUCTION SET ENCODING
Formats

Control Instructions

Fonnat 4: Branch Direct Group.

Field
Bit

Fonnat 5: Branch Indirect Group.

Field T B
Bit 15 14 13 12 11 10 I 9 8 7 6 5 4 3 2 1 0

Fonnat 6: Conditional Branch Qualifier/Software Interrupt (icall).
Note that a branch instruction immediately follows except
for a software interrupt (icall).

Field
Bit

Data Move Instructions

Fonnat 7: Data Move Group.

Field

Bit

Fonnat 7a: Data Move Group.

Field

Bit

A-2

Format 8: Data Move (Immediate Operand - 2 words).

Field

Bit 15

Format 9: Short Immediate Group.

Field
Bit

Cache Instructions

Format 10: Do - Redo.

Field
Bit

INSTRUCTION SET ENCODING
Formats

o

A-3

INSTRUCTION SET ENCODING
Replacement Tables for Format Fields

A.2 REPLACEMENT TABLES FOR FORMAT FIELDS

Field Descriptions

T Field. Specifies the type of instruction.

T Operation* Format
OOOOx gotoJA 4
00010 Short imm j, k, rb, re 9
00011 Short imm rO, rl,r2, r3 9
00100 Y = al[1] Fl 1
00101 Z: aT[l] Fl 2a
00110 Y Fl 1
00111 aT[l] = Y Fl la
01000 aT=R 7a
01001 R=aO 7
01010 R=N 8
01011 R=al 7
01100 Y=R 7
01101 Z:R 7
01110 do, redo 10
01111 R=Y 7
l000x callJA 4
10010 ifcCON F2 3
10011 if CON F2 3
10100 Y = y[1] Fl 1
10101 Z: y[l] Fl 2
10110 x=Y Fl 1
10111 y[l] = Y Fl 1
11000 Branch indirect 5
11001 y=aO x=X Fl 1
11010 Condo branch qualifier 6
11011 y=al x=X Fl 1
11100 Y = aO[I] Fl I
11101 Z:y x=X FI 2
11110 Reserved -
11111 y=Y x=X FI 1

* imm = immediate

A-4

D Field. Specifies a destination
accumulator.

D Register

0 Accumulator 0
I Accumulator I

aT Field. Specifies transfer accumulator.

aT Register

0 Accumulator I
I Accumulator 0

S Field. Specifies a source accumulator.

S Register

0 Accumulator 0
I Accumulator I

X Field. Specifies the addressing of
ROM data in two-operand multiply/ALU
instructions. Specifies the high or low
half of an accumulator or the y register in
one-operand multiply/ALU instructions.

x I Operation

Two-Operand MuItiply/ALU

0 I *pt++
I *pt++i

One-Operand MuItiply/ALU

0 I aT!, yl
I aTh, yh

F1 Field. Specifies the multiply/ALU
function.

F1 Operation
0000 aD=p p=x*y
0001 aD=aS+p p=x*y
0010 p=x*y
0011 aD=aS-p p=x*y
0100 aD=p
0101 aD=aS+p
0110 NOP
0111 aD=aS-p
1000 aD=aSly
1001 aD=aSl\y
1010 as&y
1011 as-y
1100 aD=y
1101 aD=aS+y
1110 aD=aS&y
1111 aD=aS-y

Y Field. Specifies the fonn of register
indirect.

Y Operation
0000 *rO
0001 *rD++
0010 *rO--
0011 *rD++i
0100 *r1
0101 *r1++
0110 *r1--
0111 *r1++i
1000 *r2
1001 *r2++
1010 *r2--
1011 *r2++i
1100 *r3
1101 *r3++
1110 *r3--
1111 *r3++i

INSTRUCTION SET ENCODING
Replacement Tables for Format Fields

Z Field. Specifies the fonn of register
indirect compound addressing with
postmodification.

Z O~eration

0000 *rOzp
0001 *rOpz
0010 *rOm2
0011 *rOjk
0100 *r1zp
0101 *r1pz
0110 *r1m2
0111 *r1jk
1000 *r2zp
1001 *r2pz
1010 *r2m2
1011 *r2jk
1100 *r3zp
1101 *r3pz
1110 *r3m2
1111 *r3jk

I Field. Specifies a register for short
immediate data move instructions.

I Register
00 rO/j
01 r1/k
10 r2/rb
11 r3/re

SI Field. Specifies when the conditional
branch qualifier instructions should be
interpreted as a software interrupt instruction.

SI Operation
0 Not a software interrupt
1 Software interrujl1:

A-5

INSTRUCTION SET ENCODING
Replacement Tables for Format Fields

F2 Field. Specifies the special function to be
performed.

F2 Operation

0000 aD= as» 1
0001 aD=aS« 1
0010 aD=aS»4
0011 aD=aS«4
0100 aD=aS»8
0101 aD=aS«8
0110 aD= as» 16
0111 aD=aS« 16
1000 aD=p
1001 aDh= aSh + 1
1010 Reserved
1011 aD=rnd(aS)
1100 aD=y
1101 aD=aS+l
1110 aD=aS
1111 aD=-aS

B Field. Specifies the type of branch
instruction (except software interrupt).

B Operation
000 return
001 ireturn
010 goto pt
011 call pt
lxx Reserved

A·6

R Field. Specifies the register for data move
instructions.

R Register

00000o rO
000001 rl
000010 I2
000011 r3
000100 j
000101 k
000110 rb
000111 re
001000 pt
001001 pr
001010 pi
001011 i

010000 x
010001 y
010010 yl
010011 auc
010100 psw
010101 cO
010110 cl
010111 c2
011000 sioc
011001 srta
011010 sdx
011011 tdms
011100 pioc
011101 pdxO
011110 pdxl

Other codes Reserved

C Field. Specifies the condition for special
functions and conditional control instructions.

CON Condition

00000 mi
00001 pI
00010 eq
00011 ne

00100 lvs
00101 lvc
00110 mvs
00111 mvc

01000 heads
01001 tails
01010 cOge
01011 cOlt
01100 clge
01101 cllt
01110 true
01111 false

10000 gt
10001 Ie

Other codes Reserved

INSTRUCTION SET ENCODING
Replacement Tables for Format Fields

NI Field. Number of instructions to be
loaded into the cache. Zero implies redo
operation.

K Field. Number of times the NI instruction
in cache are to be executed.

JA Field. 12-bitjump address.

A-7

A-8

.Appelldii B

. Programniing
· .. Exrunples . , , . .

B. PROGRAMMING EXAMPLES

PROGRAMMING EXAMPLES
Programming Examples

This appendix contains DSP16/DSP16A source-file listings for four complete sample programs.
These programs are intended to demonstrate the use of various programming techniques and may
be easily modified for use in various applications. Comments within the source files provide all
the information necessary to understand the program's function and to make minor modifications.

The programs included are:

• FIR filter

• IIR fIlter

• 4 x 4 matrix multiplication

• Find the maximum element in a vector

B-1

PROGRAMMING EXAMPLES
FIR Filter

B.l FIR FILTER

B-2

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

. ram

DSP16/DSP16A FIR filter design example:

The following code represents a 66th
order FIR filter. Linear inputs are provided
via the serial input. Linear outputs are sent
to the serial output.

The filter was designed using a Hamming
window on an ideal lowpass filter with the following
parameters.

f(cutoff)
f(stop) =

f(sample)

1000 Hz
1500 Hz
10000 Hz

The stopband attenuation is constrained to be
above 50 dB.

X66: 65*int
Xl: int
ibuf: int
.endram

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

66th order FIR filter

This FIR example uses a modulo addressed
delay line. Outputs are calculated from X(n-66)
toward X(n). The inner loop of the filter uses
67 mUltiplies and requires 89 cycles (6.7 ~s at 75 ns),
which easily meets the 10000 Hz requirement (100 ~s) .

aO: scratch calculations
rO: input buffer location
rl: delay line pointer
pt: coefficient pointer

Also modifies rb, re, i, x, y, p, sdx

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

fir66:

loop:

wait:

if eq

do 65 {

endl: goto

/*
/*
/*

H66: int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

auc=Ox02
pt=H66
rO=ibuf
i=-66
rb=X66
re=X1
r1=X66
y=Ox0010

aO=pioc
aO&y
goto wait
*rO=sdx

PROGRAMMING EXAMPLES
FIR Filter

/* Use fractional notation
/* Initialize pointers

/* Main loop

/* Wait for valid input

/* Input sample

/* Perform Convolution */

aO=p

aO=aO-p

aO=aO-p
aO=aO-p
aO=aO-p
sdx=aO
loop

p=x*y

p=x*y
p=x*y

y=*r1++ x=*pt++

y=*r1++

y=*rO
*r1++=y

x=*pt++

x=*pt++i

Coefficients from h(n-66) to h(n)

-0.000545
-0.000000
0.000641
0.001046
0.000876
-0.000000
-0.001275
-0.002184
-0.001864
-0.000000
0.002673
0.004485
0.003739
-0.000000
-0.005112
-0.008391
-0.006859
-0.000000
0.009085
0.014743
0.011954
-0.000000
-0.015755
-0.025682
-0.021038
-0.000000
0.028989

B-3

*/
*/

*/

*/

*/

*/
*/
*/

PROGRAMMING EXAMPLES
FIR Filter

int 0.049177
int 0.042713
int -0.000000
int -0.073628
int -0.157832
int -0.224610
int -0.250000
int -0.224610
int -0.157832
int -0.073628
int -0.000000
int 0.042713
int 0.049177
int 0.028989
int -0.000000
int -0.021038
int -0.025682
int -0.015755
int -0.000000
int 0.011954
int 0.014743
int 0.009085
int -0.000000
int -0.006859
int -0.008391
int -0.005112
int -0.000000
int 0.003739
int 0.004485
int 0.002673
int -0.000000
int -0.001864
int -0.002184
int -0.001275
int -0.000000
int 0.000876
inL 0.001046
int 0.000641
int -0.000000
int -0.000545

B-4

PROGRAMMING EXAMPLES
IIR Filter

B.2 IIR FILTER

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

DSP16/DSP16A IIR filter design example:

The following code represents a 5th
order IIR filter. It is implemented as 3 five
multiply second-order sections. (Thus the code is
actually the same as a 6th order filter). Linear
inputs are provided via the serial input and
prescaled with no loss of precision. Linear outputs
are sent to the serial output.

The filter was designed by performing a
bilinear transformation on a classical elliptic filter
designed with the following parameters.

f (cutoff)
f(stop) =
f(sample)

1000 Hz
1500 Hz
10000 Hz

The stopband attenuation is constrained to be
above 50 dB.

.ram
statev:
.endram

6*int /* Six state variables

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

The IIR coding example uses the following
DSP16/DSP16A resources:

aO:
r1:
pt:
j, k:

input/output for each section
state variable pointer
pointer to filter coefficients
for compound addressing mode

This coding example demonstrates the use of
compound addressing for maintaining the state
variable delay line. The form is direct form II.

B-5

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

PROGRAMMING EXAMPLES
IIR Filter

iir5:

loop:

wait:

if eq

auc=Ox02
j=-2
k=3

pt=coef
r1=statev
y=Ox0010

aO=pioc
aO&y
goto wait
aO=sdx
aO=aO»l
aO=aO»l

/* Use fractional notation
/* Initialize registers

/* Main program loop

/* Wait for valid input

/* Prescale input value

/* Perform three second-order sections

do 3 {

endl: goto

coef: int
int
int
int
int

int
int
int
int
int

int
int
int
int
int

B-6

aO=aO-p
aO=aO-p
aO=p
aO=aO+p
aO=aO+p

sdx=aO
loop

-0.759982
o .0
0.060045
0.0
0.060045

-1.508821
0.70049
-0.108068
0.245454
0.245952

-1.530470
0.905134
-1.976028
1.758388
1. 759004

p=x*y

p=x*y
p=x*y
p=x*y
p=x*y
p=x*y

y=*r1++
y=*r1--

y=*r1++
*r1zp:y
y=aO
*r1jk:y
y=*r1--

/* all
/* a21
/* bll
/* b21
/* b01

/* a12
/* a22
/* b12
/* b22
/* b02

/* a13
/* a23
/* b13
/* b23
/* b03

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

x=*pt++
x=*pt++

x=*pt++
x=*pt++
x=*pt++
x=*pt++
x=*pt++

*/
*/

*/

*/

*/

*/

/* all */
/* a21 */

/* b1 (n) *1
/* b2 (n) */
/* bO (n) *1
/* a1(n+l) */
/* a2 (n+l) */

B.3 MATRIX MULTIPLICATION

PROGRAMMING EXAMPLES
Matrix Multiplication

1* *1
1* DSP16/DSP16A 4x4 matrix multiply programming example: *1
1* *1
1* The following code implements a 4x4 matrix multiply. *1
1* In this example matrices A and B are input through */
1* the parallel ilo prior to being multiplied. The result *1
1* is stored in matrix C. Matrices are input row by row *1
1* and stored in row order. The resulting C matrix is *1
1* stored in the same fashion. *1
1* *1
1* The matrix multiply routine demonstrates the *1
1* use of "fast sets" to perform pointer arithmetic *1
1* both inside and outside of the cache. *1

1*
.ram
A:

Ram variables

B:
C:
.endram

1*
1*
1*
1*
1*
1*
1*
1*
1*

l6*int
l6*int
l6*int

aO, cl,
1* used.

Matrix

rl:
rO:
r2 :

where C

rb, re,

*1

Multiply

points to
points to
points to

= A >I< B

j, x, y

routine:

A
B
C

registers are also

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

B-7

PROGRAMMING EXAMPLES
Matrix Multiplication

Mmult:

/*

/*

loop:

stop:

B-8

do 32 {

do 4 {

if cllt

cl=-3 /* Initialize registers */
auc=OxOO /* Integer mode */

Read in Matrices * /

rO=A
aO=pdxO

aO=pdxO
*rO++=aO

rb=A
re=A+3
r2=C
rl=A

/* Reinitialize regs

Main program loop

rO=B
j=4

y=*rO++j
x=*rl++

p=x*y y=*rO++j
aO=p x=*rl++

p=x*y y=*rO++j
aO=aO+p x=*rl++
j=-ll

p=x*y y=*rO++j
aO=aO+p x=*rl++
j=4

p=x*y y=*rO++j
aO=aO+p x=*rl++

*r2++=aOl

j=3
*rl++j

aO=rl
rb=aO

*rl++j
aO=rl
re=aO

*rl++
goto loop

*/

*/

goto stop

B.4 FIND MAXIMUM VECTOR ELEMENT

PROGRAMMING EXAMPLES
Find Maximum Vector Element

/* The following segment of code will find the */
/* component of an input vector with maximum magnitude. */
/* Both the magnitude and index (offset) of the component */
/* are retained upon completion. */
/* This coding example demonstrates the use of */
/* conditional ALU monadic instructions and event counting */
/* using the c2 register. */
/* */

.ram
vector: 32*int
.endram

/*
/*
/*
/*
/*
/*

setup:

Read in the vector to be searched via PIO.
(It is assumed that the vector will be reused
after the determination of its maximum component.
Otherwise, a more efficient loop might be written
which determines the max component as the values
are read.)

do 32 {

auc=OxOO
r1=vector
aO=pdx1

aO=pdxl
*rl++=aO

*/
*/
*/
*/
*/
*/

/ * Begin search. * /
/* Upon completion, the magnitude of the component */
/* with maximum value is stored in aO, and the index */
/* of this component (its offset from the base address */
/* 'vector') is stored in c2. */
/* As written, if more than one component of the */
/* vector share the maximum value, then the first of these */
/* two is retained. The routine can easily be modified to */
/* retain the last of these components by replacing the */
/* test condition with 'le'. */

findmaxM:

do 31 {

r1=vector
c1=O
c2=O

aO=p

a1=aO-p
ifc mi aO=p

stop: goto stop

p=x*y

p=x*y

y=*r1
x=*rl++
y=*r1
x=*r1++

y=*r1
x=*r1++

B-9

B-lO

DSP16/DSP16A INSTRUCTION SET SUMMARY
DSPl6lDSPl6A Instruction Set Summary

C. DSP16/DSP16A INSTRUCTION SET SUMMARY

Tables 3-2 through 3-12 are repeated below for the convenience of the user, to provide quick
access to the DSPI6/DSPI6A instruction set See Section 3.9 for a more detailed desciption of
the instruction set.

Table Col. Conditional Mnemonics
Test Meaning Test Meaning

pi Result is nonnegative (sign bit mi Result is negative.
is bit 35).

eq Result is equal to zero. ne Result is not equal. to zero.

gt Result is greater than zero. Ie Result is less than or equal. to
zero.

lvs Logical overflow set (36-bit lvc Logical overflow clear.
overflow).

mvs Mathematical overflow set (32- mvc Mathematical overflow clear.
bit overtiow).

cOge Counter 0 greater than or equal cOlt Counter 0 less than zero.
to zero.

clge Counter I greater than or equal. cllt Counter 1 less than zero.
to zero.

heads Pseudorandom sequence bit set. tails Pseudorandom sequence bit
clear.

true The condition is always false The condition is never satisfied
satisfied in an if instruction. in an if instruction.

Note: Testing the state of cO or cl automatically increments the counter by 1.

Table C-2. Instruction Group Characteristics
Instruction Flags Execute From

Group Affected Within Cache Interruj>tible
Multiply/ALU DAU Yes Yes
Special Function DAU Yes Yes
Control None No No
Data Move 1/0 status only Yes· Yes

Cache None No No

• Two-word data immediate instructions may not be executed from within the cache.

C-I

DSP16/DSP16A INSTRUCTION SET SUMMARY
DSPl61DSP16A Instruction Set Summary

All multiply/ALU instructions require one word of memory.

Table C-3. Multiply!ALU Instructions

Transfer

Function Cycles
Statements Statements Out/In Cache

p=x*y y=Y x=X 2/1
aD=p p=x*y y=aT x=X 2/1
aD=aS+p p=x*y y[l]=Y 1/1
aD=aS-p p=x*y aT[l]=Y 1/1
aD=p x=Y 1/1
aD=aS+p Y 1/1
aD=aS-p Y=y[l] 2/2
aD=y Y=aT[l] 2/2
aD=aS+y Z:y x=X 2/2
aD=aS-y Z: y[l] 2/2
aD=aS&y Z: aT[l] 2/2
aD=aSly
aD=aSl\y
as-y
as&y

Table C-4. Replacement Table for Multiply! ALU Instructions

Replace Value Meaning

aD, as, aT aO, al One of two DAU accumulators.

X *pt++, *pt++i ROM location pointed to by pt.
pt is postmodified by + 1 and i,
respectively.

Y *rM, *rM++, *rM--, RAM location pointed to by
*rM++j rM. (M= 0, 1,2,3) rM is

postmodified by 0,+1,-1, andj,
respectively.

Z *rMzp, *rMpz, *rMm2, Read/write compound
*rMjk addressing. M=O, 1,2,3. rM

is used twice: first,
postmodified by 0, + I, -I, and
j, respectively; and second,
postmodified by +1, 0, +2, and
k respectively.

C-2

DSP16/DSP16A INSTRUCTION SET SUMMARY
DSP16/DSP16A Instruction Set Summary

All special function instructions (conditional and unconditional) require 1 word of program
memory and execute in 1 instruction cycle.

Table CoS. Special Function Instructions

Instruction Description

aD=aS»1
aD=aS»4 Arithmetic right shift (sign preserved) of
aD=aS»8 36-bit accumulators.
aD=aS»16

aD=aS
aD=-aS -

aD=md(aS) Round upper 20 bits of accumulator.

aDh=aSh+1 Increment high half of accumulator (lower half cleared).

aD=aS+1 Increment accumulator.

aD=y
aD=p -

aD=aS«1
aD=aS«4 Logical left shift (sign-extended from bit 31) of the
aD=aS«8 least significant 32 bits of the 36-bit accumulators.
aD=aS«16

The above special function instructions can be conditionally executed:

if CON instruction

and with an event counter:

ifc CON instruction

which means:

if CON is true then
cl = cl + 1
instruction
c2= cl

else
cl = cl + 1

Table C-6. Replacement Table for Special
Function Instructions

Replace Value MeanillJt
aD,aS aO,al One of two DAU accumulators.

CON mi, pI, eq, ne, gt, Ie, lvs, See Table C-l for definitions of
mvs, mvc, cOge, cOlt, processor flags.
c Ige, c1lt, heads, tails,
true, false

C-3

DSP16/DSP16A INSTRUCTION SET SUMMARY
DSPl6/DSP16A Instruction Set Summary

All unconditional control instructions (except icall) execute in 2 instruction cycles and require 1
word of program memory; conditional control instructions execute in 3 instruction cycles and
require 2 words of program memory. icall requires 1 word of program memory and executes in 3
instruction cycles.

Table C-'. Control Instructions
gotoJA icall
goto pt return (goto pr)
callJA iretum (goto pi)
call pt

The control instructions, with the exception of iretum and icall can be conditionally executed as
follows:

if CON instruction

Table CoS. Replacement Table for Control
Function Instructions

Replace Value Meaning

CON mi, pI, eq, ne, gt, Ie, Ivs, See Table 3-12 for
mvs, mvc, cOge, cmt, definitions of processor
clge, cllt, heads, tails, flags.
true, false

JA 12-bit value Least significant 12 bits
of an absolute address
within the same 4
Kword memory section.

Data move instructions execute in 2 instruction cycles. Immediate data move instructions require
two words of program memory; all other data move instructions require only 1 word. The only
exception is a special case immediate load (short immediate) instruction. If a Y AAU register is
loaded with a 9-bit, or smaller, value, the instruction requires only 1 word of memory and
executes in 1 instruction cycle.

Table C-9. Data Move Instructions

R =N R=M
R =Y Y=R
aT=R R=aS
Z:R

C-4

Replace

R

aD,aS

Y

Z

N
M

Notes:

DSP16/DSP16A INSTRUCTION SET SUMMARY
DSP16IDSP16A Instruction Set Summary

Table ColO. Replacement Table for Data Move Instructions

Value Meaning

x DAU register - signed, 16 bits.
y DAU register - signed, 16 bits. !
yl DAU register - unsigned, 16 bits.
auc DAU control register - unsigned, 7 bits.
cO DAU counter 0 - signed, 8 bits.
cl DAU counter 1 - signed, 8 bits.
c2 DAU counter 2 - signed, 8 bits.

rO Y AAU pointer reg. - unsigned, 9 bits (16 bits in DSPI6A).
rl Y AAU pointer reg. - unsigned, 9 bits (16 bits in DSPI6A).
r2 Y AAU pointer reg. - unsigned, 9 bits (16 bits in DSPI6A).
r3 Y AAU pointer reg. - unsigned, 9 bits (16 bits in DSPI6A).
rb Y AAU modulo addr. reg. - unsigned, 9 bits (16 bits in DSPI6A).
re Y AAU modulo addr. reg. - unsigned, 9 bits (16 bits in DSPI6A).
j Y AAU incr. register - signed, 9 bits (16 bits in DSPI6A).
k Y AAU incr. register - signed, 9 bits (16 bits in DSPI6A).

pt XAAU pointer register - unsigned, 16 bits.
pr XAAU program return register - unsigned, 16 bits.
pi XAAU program interrupt register - unsigned, 16 bits.2

i XAAU incrmient register - signed, 12 bits.

psw Processor status word.

sioc Serial I/O control register?
sdx Serial I/O data register.
tdms Serial I/O tdms control register.3

srta Serial receive/transmit address.3

pioc Parallel I/O control register.
pdxO Parallel I/O data register with PSEL = 0 (pin 72).
pdxl Parallel I/O data register with PSEL = 1 (pin 72).

aO,al High half of accumulator.!

*rM,*rM++, Same as in multiply/ALU instructions.
*rM--,*rM++j

*rMzp,*rMpz, Same as in multiply/ALU instructions.
*rMm2, *rMjk

16-bit value Immediate data.

9-bit value Immediate data for Y AAU registers.

When reading signed registers less than 16 bits wide. their contents are sign-extended to 16 bits. When reading
unsigned registers less than 16 bits wide, their contents are zero-extended to 16 bits. When short inunediate addressing
is used to write to YAAU registers in the DSPI6A. unsigned registers are zero-extended from 9 to 16 bits. Signed
registers (j,k) are sign-extended from 9 to 16 bits.

!Data moves to y, aO, or alload the high half (bits 31-16) of the register. If clearing of the destination is enabled
(according to the CLR field of the auc register), the low half of the destination register is cleared (0) when the high half
is loaded.

2rhe pi register acts as a "shadow" of the pc register. Each time the pc changes, its value is also loaded into pi.
"Shadowing" is disabled when executing an interrupt service routine, therefore, pi contains the contents of pc prior to
the interrupt. Writes to pi do not alter its contents, except during interrupt service routines.

3sioc, tdms, and srta registers are not readable.

C-s

DSP16IDSP16A INSTRUCTION SET SUMMARY
DSP16IDSP16A Instruction Set Summary

The do and redo instructions require 1 word of program memory. The do instruction executes in
1 instruction cycle, and the redo instruction executes in 2 instruction cycles.

Table C-H. Cache Instructions

do K {
instructionl
instruction2
instructionNl
}

redoK

Table C-l2. Replacement Table
for Cache Instructions

Replace Value Meaning
K 2 ::;;K::;; 127 Number of times the

instructions are to be
executed.

NI I::;;NI::;; 15 1 to 15 instructions may
be included.

When the cache is used to repeat a block of NI instructions, the cycle timings of the instructions
are as follows:

1. The "first pass" does not affect cycle timing except for the last instruction in the block of
NI instructions. This instruction executes in 2 cycles.

2. During pass 2 through pass K + 1, each instruction is executed "in the cache"
(see Table C-3).

3. During the last (Kth) pass, the block of instructions executes "inside the cache" except for
the last instruction which executes outside the cache.

The instructions remain in the cache memory and may be re-executed using the redo command
without the need to reload the cache. .

C-6

PROGRAMMABLE REGISTERS
Programmable Registers

D. PROGRAMMABLE REGISTERS

This reference section shows the six programmable control registers of the DSP16/DSP16A
device:

• Processor status word (psw)

• Arithmetic unit control (auc)

• Parallel I/O control (pioc)

• Serial I/O control (sioc)

• Serial receive/transmit address (srta)

• Time-division multiplexed slot (tdms)

All six registers are described in detail in other chapters in this manual. This section is provided
only as a quick reference for the programmable registers.

Table D-I. Arithmetic Unit Control (auc) Register

Bit 1 6 I 5 I 4 13 I 211 I 0 1
CLR Field . . SAT . ALIGN.

Field Value ResultlDescription

lxx Clearing yl is disabled (enabled when 0).

CLR xIx Clearing all is disabled (enabled when 0).

xxI Clearing aOl is disabled (enabled when 0).

SAT
Ix al saturation on overflow is disabled (enabled when 0).

xl aO saturation on overflow is disabled (enabled when 0).

00 p+- (xxy).

ALIGN
01 P +- (xxy) + 4.

10 p +- (xxy) x 4.

11 Reserved.

D-I

PROGRAMMABLE REGISTERS
Programmable Registers

Table D-2. Processor Status Word (psw) Register

Bit I 15-12 1111101 9 I 8-5 I 4 I 3-0 I
Field I DAU Flags I X I X I al[V] I al[35-32] I aO[V] I aO[35-32] I

Field Value Result/Description
Wxxx 1MI -logical minus when set.

DAUFlags
xWxx LEQ -logical equal when set.
xxWx LL V -logical overflow when set.
xxxW LMV - mathematical overflow when set.

al[V] W Accumulator 1 (al) overflow when set.
Wxxx Accumulator 1 (al) bit 35.

al[35-32]
xWxx Accumulator 1 (al) bit 34.
xxWx Accumulator 1 (al) bit 33.
xxxW Accumulator 1 (al) bit 32.

aO[V] W Accumulator 0 (aO) overflow when set.
Wxxx Accumulator 0 (aO) bit 35.

aO[35-32]
xWxx Accumulator 0 (aO) bit 34.
xxWx Accumulator 0 (aO) bit 33.
xxxW Accumulator O{aO) bit 32.

D-2

PROGRAMMABLE REGISTERS
Programmable Registers

Table D-3. Parallel I/O Control (pioc) Register

Bit I 15 I 14 I 13 I 12 I 11 I 10 I 9-5 I 4-0 I
Field I mF I STROBE I PODS I PIOS I SIC I INTERRUPTS I STATUS I

Field Value ResultlDescription
IBF R IBF interrupt status bit (same as bit 4).

Strobe width of
PODS PIDS

STROBE
00 T* T
01 2T 2T
10 3T 3T
11 4T 4T

PODS
0 PODS is an input (passive mode).

1 PODS is an output (active mode).

PIDS
0 PIDS is an input (passive mode).

1 PIDS is an output (active mode).

SIC
0 Not SIC mode.
1 SIC mode.

Wxxxx IBF interrupt enabled when set.

xWxxx OBE interrupt enabled when set.

INTERRUPTS xxWxx PIDS interrupt enabled when set.

xxxWx PODS interrupt enabled when set.
xxxxW !NT interrupt enabled when set.

Rxxxx IBF status bit.
xRxxx OBE status bit.

STATUS xxRxx PIDS status bit.

xxxRx PODS status bit.

xxxxR !NT status bit.

* T = 2xtCKIHCKIH.

D-3

PROGRAMMABLE REGISTERS
Programmable Registers

Table D-4. Serial I/O Control (sioc) Register

Bit I 9 I
Field. LD .

8 I 71 6
CLK • MSB I O~D I ~D I ~ I I~K I OL~ I ~ I

Field Value ResultlDescription

0 Active ILD/OLD = ICK+16,

LD Active SYNC = ICK+128/256t

1 Active ILD/OLD = OCK+ 16,+
Active SYNC = OCK+128/256.t.:J:

00 Active clock = CKI+4

CLK
01 Active clock = CKI+ 12
10 Active clock = CKI+ 16
1 1 Active clock = CKI+20

MSB
0 LSB first

1 MSB first

0 OLD is an input (passive mode).
OLD

1 OLD is an output (active mode).

0 ILD is an input (passive mode).
ILD

1 ILD is an output (active mode).

0 OCK is an input (passive mode).
OCK

OCK is an output (active mode). 1

ICK
0 ICK is an input (passive mode).

1 ICK is an output (active mode).

0 16-bit output
OLEN

8-bit output 1

0 16-bit input
ILEN

1 8-bit input

t Either 128 or 256 - see tdms register SYNC field.
:/: Select this mode when using SADD (not necessary if ICK = OCK).

D-4

PROGRAMMABLE REGISTERS
Programmable Registers

Table D-S. Serial ReceiveITransmit Address (srta) Register

Bit I 15 - 8 I 7 - 0 I
Field . RECEIVE ADDRESS . TRANSMIT ADDRESS .

Field Value ResultlDescription
lxxxxxxx Receive address 7
xlxxxxxx Receive address 6
xx 1 xxxxx Receive address 5

RECEIVE ADDRESS
xxxlxxxx Receive address 4
xxxxlxxx Receive address 3
xxxxxlxx Receive address 2
xxxxxxlx Receive address 1
xxxxxxxl Receive address 0
lxxxxxxx Transmit address 7
xlxxxxxx Transmit address 6
xxlxxxxx Transmit address 5

TRANSMIT ADDRESS
xxx 1 xxxx Transmit address 4
xxxxlxxx Transmit address 3
xxxxxlxx Transmit address 2
xxxxxxlx Transmit address 1
xxxxxxxl Transmit address 0

D-S

PROGRAMMABLE REGISTERS
Programmable Registers

Table D-6. Time-Division Multiplex Slot (tdms) Register

Bit I 9 I 8 I 7-1 I 0 I
Field : SYNCSP : MODE : TRANSMIT SLOT : SYNC :

Field Value ResultlDescription

SYNCSP
0 SYNC = ICK/OCKt + 128 :j:

1 SYNC = ICK/OCKt + 256
0 Multiprocessor mode off.

MODE DOEN is an input (passive mode).

1 Multiprocessor mode on.
DOEN is an output (active mode).

lxxxxxxx Transmit slot 7.
xlxxxxxx Transmit slot 6.
xx 1 xxxxx Transmit slot 5.

TRANSMIT SLOT xxx 1 xxxx Transmit slot 4.
xxxx 1 xxx Transmit slot 3.

xxxxxlxx Transmit slot 2.
xxxxxxlx Transmit slot 1.
xxxxxxxi Transmit slot O.

SYNC SYNC is an output (active mode).

xxxxxxxO SYNC is an input (passive mode).

t See sioc register, LD field in Table D-4.

:f: Select this mode when in mUltiprocessor mode.

D-6

<.. ; ;:1'<

:~;'ii~

A -law - A European standard for the
compression and expansion of the dynamic
range of a signal.

Active mode - Certain pins on the
DSP16/DSPl6A device are programmable as
either inputs or outputs. When one of these
signals is set as an output, it is in active
mode. When one of these signals is set as an
input, it is in passive mode.

ADD-Adder.

Addressing modes - The DSP16/DSPl6A
device supports various modes for addressing,
which include immediate, indirect, and
compound.

ALU - Arithmetic logic unit.

Arithmetic logic unit (ALU) - On-chip unit
that perfonns microprocessor-like arithmetic
operations.

Arithmetic unit control register (auc) - A
register that configures some features for the
data arithmetic unit.

Assembler - A program that translates
symbolically represented character input into
a fonn (binary) that the computer can
interpret.

auc - Arithmetic unit control register.

Breakpointing - The ability to have the
software simulator or hardware development
system halt and/or perfonn some command at
a present location or when some test
condition is met.

Byte - An 8-bit quantity that may appear at
any address in memory.

Cache - A small, high-speed memory that
can be used selectively to store repetitive
operations.

GLOSSARY

Compound Addressing - A memory
read/write operation using only one pointer.

CMP - Comparator.

Cyclical addressing - See Modulo
addressing.

Data arithmetic unit (DAU) - A 16-/32-bit
unit that is the main execution unit for signal
processing algorithms.

DAU - Data arithmetic unit.

Hardware mode - When using the DSPl6 or
DSP16A Development System, a mode in
which the program has been downloaded into
the development system and is being
executed by the actual DSPl6/DSP16A
device. Hardware mode is used for real-time
program testing.

I - Increment register in XAAU.

ibuf - Input buffer.

Input buffer (ibuf) - A register in the SIO
unit is used to accept input from an external
device.

Immediate addressing mode - An
addressing mode in which the operand
contains the value to be operated on. No
address reference is required.

Interrupt - A means by which external
devices may request service by the
microprocessor.

I/O - Input/output.

isr - Input shift register.

j - Increment register in Y AA U.

k - Increment register in Y AA U.

GLOSSARY

Latency - The time required for the
completion of a task once initiated.

Modulo addressing - Cyclical addressing
between upper and lower bounds.

Jl-Iaw - An American standard for
compression and expansion of the dynamic
range of a signal.

MUX - Multiplexer.

osr - Output shift register.

Overhead - A quantity in addition to the
minimum required. When transmitting data,
it is the bits other than information bits, e.g.,
check bits, framing bits, or some other
procedure or format bits. When executing a
program loop, it is the instructions needed to
control the program flow, those not involved
in the desired computation.

p - Product register.

Parallel I/O port (pio) - A group of registers
used to provide a bidirectional data link to
microprocessors and other I/O devices.

Parallel I/O control register (pioc) - A
register that allows the specification of the
configuration of the PIO data pins, the mode
of the parallel I/O data strobe signals, and the
width of the parallel I/O data strobe signals in
the active mode. The pioc also contains the
mask and status fields for interrupts.

Passive mode - Certain pins on the
DSP16/DSP16A device are programmable as
either inputs or outputs. When one of these
signals is set as an input, it is in passive
mode. When one of these signals is set as an
output, it is in active mode.

pc - Program counter.

pdx(in) - Parallel I/O input register.

pdx(out) - Parallel I/O output register.

pi - Program interrupt register.

pio - Parallel I/O port.

pioc - Parallel I/O control register.

Pipelining - Overlapping the execution of
instructions to increase the DSP's
performance.

pr - Program return register.

Processor status word register (psw) - A
register that contains the status information
for the data arithmetic unit.

Postmodification - The addition of an
increment/decrement value to a memory
pointer after each use.

psw - Processor status word.

pt - ROM table pointer.

RAM - Random access memory.

rb - Modulo addressing register containing
the beginning value of the modulo.

re - Modulo addressing register containing
the end value of the modulo. re contains zero
if modulo addressing is not active.

ROM - Read only memory.

sdx(in) - Serial I/O input register.

sdx(out) - Serial I/O output register.

Serial I/O (SIO) - A group of registers that
allows interfacing with other devices with
few, if any, external chips. It converts serial
input data into parallel data and parallel data
into serial output data.

Serial I/O control register (sioc) - A
register that allows specification of the length
of serial input and output data words, the
mode of serial bit clocks and serial load
signals, the bit ordering of I/O, the active
serial I/O bit clock rate, and active load
generated from either ICK or OCK.

Simulator - A highly specific program that
allows the simulation in software of the
logical functions of the DSP16/DSP16A
device.

SIO - Serial I/O unit.

sioc - Serial I/O control register.

srta - Serial receive/transmit address register.

Stack - An area of reserved memory used for
storing the program counter and contents of
registers during a program interrupt.

SHIFT - Shifter.

tdms - Serial I/O time-division multiplexed
slot register.

GLOSSARY

Throughput - A means of relating the speed
with which problems, programs, or segments
are performed.

Time-division multiplexed (TDM) - A
procedure for transmitting two or more
signals over a common channel through the
use of successive time intervals for different
devices.

x - Multiplier input register.

XAAU - ROM address arithmetic unit

YAAU - RAM address arithmetic unit.

yor yh - y(high) DAU register.

yl- y(low) DAU register.

2's complement - A method used in some
systems to represent positive and negative
integers. Positive integers are identical to
standard binary numbers; however, negative
integers are the 1 's complement of a standard
binary number plus one.

3-state - To place an output in a high­
impedance state.

A

accumulaU)rs(a~3),2-7

active clock generator, 5-3
active mode, 6-2, 6-5, 6-7

input, 6-10
output, 6-11

adder (XAAU), 2-4
adder (yAAU), 2-6
address arithmetic units, 2-4
addressing modes, 3-2
ALU, see arithmetic logic unit
application deve1opment, 1-2
architecture, 1-1,2-1
arithmetic, 2-9
arithmetic bit alignment, 2-9-2-12
arithmetic logic unit (ALU), 1-1,2-7,2-9

diadic functions, 2-7
monadic functions, 2-7

arithmetic unit control (auc) register,
2-8,2-10, D-l

CLR field, 2-9
SAT field, 2-8

assembly language, 4-1
AT&T Bulletin Board, 1-5
auc register, see arithmetic unit
control register

B

bit reversal, 2-13
bit-reversal mode, 5-1
block diagram, 2-1
broadcast mode, 5-11

c
cache, 1-2,2-3
cache instructions, 2-3, 3-1,

3-18-3-19, C-6
formats, A-3
statements, 3-19

CKI signal, 5-3
clock speed, 5-3
codec interface, 5-7, 5-8
comments, 4-1-4-2
compound addressing instructions, 3-4
concurrent interrupts,

see interrupts, concurrent
conditional mnemonics, 3-5, C-l
control block, 2-3

INDEX

control instructions, 3-1, 3-14-3-16, C-4
formats, A-2
statements, 3-15

counters cO-c2, 2-8

D

DAU, see data arithmetic unit
data arithmetic unit (DAU), 2-6
data move instructions, 3-1, 3-16--3-18,
C-4-C-5

formats, A-2-A-3
statements, 3-18

device number, 5-10
do instruction, C-6
documentation, 1-4
double-buffering, 5-2
DSPI6,1-1

development system, 1-3,7-13
DSPI6A,I-1

development system, 1-3,7-13

E

electrical characteristics, 7-12
EXM signal, 7-13
extemalmemory, 7-13

interface timing, 7-13

F

features,
DSPI6,1-1
DSPI6A,I-1

G

guard bits, 2-7

H

hardware mode, 1-3

I

i register, see static offset register
ibuf, see input buffer register
icall instruction, 2-15, 3-14, 4-6, C-4
mF signal, 5-2
ICK signal, 5-2, 5-3
if instruction, 3-12
ifc instruction, 3-12

INDEX

ifsr, see input flag shift register
ILD signal, 5-2,5-3
immediate addressing, 3-2
indirect addressing, 3-2
input buffer register, 5-1, 5-2
input data shift register, 5-2
input flag shift register, 5-1
instruction set, 1-2, 3-1

ambiguities, 4-3
characteristics, C-l
encoding, A-I
fonnats, A-I-A-3

replacement tables, A -4--A-7
notation, 3-1-3-2
mnemonics, 3-3
summary, 3-20:-3-59, C-l
syntax, 3-1

integer notation, 4-1
decimal, 4-1
fixed-point, 4-1
hexadecimal, 4-1
octal,4-1

interfacing, 7-1
interrupt conditions, 2-15

mF condition, 2-15, 4-4, 5-7
!NT condition, 2-15
OBE condition, 2-15
PIDS condition, 2-15
PODS condition, 2-15

interrupt hardware, 2-16
!NT signal, 2-16, 4-8, 4-9,6-3,

6-4,7-14
lACK signal, 2-16,4-8,4-9,6-4,

6-9,7-14
interrupt service routine (ISR), 2-17,
4-6,6-8

interrupt software, 2-17
mF bits (Pioc), 2-17
!NT bit (Pioc), 2-17, 4-8,7-14
OBE bit (pioc), 2-17
PIDS bit (pioc), 2-17
PODS bit (pioc), 2-17

interrupts, 2-15, 6-3
concurrent, 4-7---4-11
control, 7-14
internal, 6-9
latency, 4-11
masking, 6-3
paralIell/0, 6-9
timing, 7-14

I/O timing, 4-4
isr, see input data shift register
ISR, see interrupt service routine

J
j register, see offset registers

K

k register, see offset registers

L

labels, 4-2
latent reads, 6-5
LEQ, see logical equal
LLV, see logical overflow
LMI, see logical minus
LMV, see mathematical overflow
logical equal (LEQ), 3-4
logical minus (LMI), 3-4
logical overflow (LL V), 3-4

M

mathematical overflow (LMV), 3-5
maximum ratings, 7-12
memory, 1-2,2-2

maps, 2-2
on-chip, 1-2,2-2

modulo addressing, 3-3, 4-5
multiplier (DAU), 2-6
multiply/ALU instructions, 3-1,

3-6--3-12, C-2
fonnats, A-I
function statements, 3-6, 3-9
transfer statements, 3-6, 3-10

multiprocessor mode, 5-10
communications, 5-15
connections, 5-11
suggested configuration, 5-16

N

no operation instruction, 3-7, 3-12
nop instruction, see no operation

instruction
noninterruptible instructions, 2-17, 4-11

o
obuf, see output buffer register
OCK signal, 5-2, 5-3
offset registers

j register, 2-6, 3-2
k register, 2-6, 3-2

ofsr, see output flag shift register
OLD signal, 5-2, 5-3
optional mnemonics, 4-4
OSE signal, 5-2
osr, see output data shift register
output buffer register, 5-1
output data shift register, 5-2
output flag shift register, 5-1

p

p register, see product register
package outlme, 7-15
parallel input register, 6-5
parallel I/O (PIO), 6-1

access times, 6-1
bus transactions
data strobes, 2-14,6-6
interaccess timing, 6-14
signals, 6-6---6-7
strobe widths, 6-7

parallel 1/0 address line (psel), 2-14
parallel I/O control word (Pioc)

register, 2-14, 2-15, 2-16, 4-8, 6-1,
6-2-6-4,6-6, D-3

mF field, 5-2
mF status bit, 5-1, 5-2, 5-11
IN1ERRUPI'S field, 6-4
OBE status bit, 5-1, 5-2

parallel I/O data bus (PDB), 2-14, 6-6,
6-10,6-11,6-12,6-13

parallel I/O port, 1-2,2-14,2-15
passive mode, 6-2, 6-4, 6-8, 6-9

input, 6-12
output, 6-13

pc register, see program counter register
PDB, see parallel I/O data bus
pdxO and pdxl, 2-14, 6-1, 6-4, 6-5, 6-9
pi register, see program interrupt

register
PIDS signal, 6-3, 6-8, 6-10, 6-12

INDEX

pin descriptions, 7-2-7-11
external memory interface group, 7-7
miscellaneous function group, 7-10
numerical order, 7-2-7-6
PIO interface group, 7-9-7-10
power and ground group, 7-11
SIO interface group, 7-8-7-9

pin diagram, 7-1
pin names, 7-2
PIO, see parallel I/O
pioc, see parallel I/O control word

register
PODS signal, 6-3, 6-8, 6-9, 6-11, 6-13
polling I/O, 4-4
pr register, see program return register
PRBS, see pseudorandom binary

sequence
precision, 2-9,4-2
processor flags, 3-4
processor status word (psw) register, 2-8,
2-9,0-2

product (P) register, 2-6, 2-9, 2-10
programming, 4-1

examples, B-I-B-9
techniques, 4-3-4-11
tips, 4-5--4-7

program counter (PC) register, 2-4, 4-6
program interrupt (Pi) register, 2-4, 4-5,
4-6

program return (pr) register, 2-4, 4-6
PSEL signal, 6-1, 6-3, 6-10, 6-11
psel, see paralll/O address line
pseudorandom binary sequence (PRBS),
4-5

psw register, see processor status word
register

pt register, see table pointer register

R

rO-r3 pointer registers, 2-6, 3-2
RAM,2-3
RAM address arithmetic unit (YAAU),

2-5, 2-6, 4-6, C-4
RAM variables, 4-2-4-3
random numbers, 4-5
rb register, 2-6, 3-2, 3-3,4-5
re register, 2-6, 3-2, 3-3, 4-5
redo instruction, C-6
register loads, 2-8

INDEX

reset control, 7-14
reset timing, 7-14
ROM,2-2

data storage, 4-2
initialization, 4-2

ROM address arithmetic unit (XAAU),
2-4,2-5,4-6,7-13

RSTB signal, 6-4, 7-14

s
SADD signal, 5-3
saturation, 2-8
serial I/O (SIO), 5-1

bit clocks, 2-13
data length, 2-13
data path, 5-1
input section, 5-2
load signals, 2-13
pin descriptions, 5-5-5-7
operation, 5-2
output section, 5-2
programming example, 5-7
timing, 5-17-5-20
transfers, 2-13

serial I/O control (sioc) register, 2-13,
5-1,5-4, D-4

LD field, 5-3
serial I/O port, 1-2,2-13,2-14
serial receive/transmit address (srta)

register, 2-13, 5-1, 5-10, 5-13, D-5
shadow register, 2-4
simulation mode, 1-3
simulator/accelerator mode, 1-3
SIO, see serial I/O
sioc, see serial I/O control register
software simulator, 1-3

source file, 4-1, 4-3
special function instructions, 3-1,
3-12-3-14, C-3

formats, A-I
statements, 3-13

srta register, see serial receive/transmit
address register

static offset (i) register, 2-4
status and control mode, 6-3, 6-8
support software library, 1-3, 4-4
SYNC signal, 5-3, 5-12
synchronization clock, 2-13

T

table pointer (Pt) register, 2-4, 4-6, 4-7
tdms register, see time-division
multiplexed register

technical assistance, 1-5
time-division multiplexed slot (tdms)

register, 2-13,5-1,5-10,5-12, D-6
timing characteristics, 7-1

v
virtual shift addressing mode, 2-6, 3-3,

3-4

x
x register, 2-6
XAAU, see ROM address arithmetic unit

y

y register, 2-6, 2-7, 2-9, 4-4
Y AA U, see RAM address arithmetic unit
yl,2-7

