
Advance Data Sheet
December 1992 ,

ATs.T
Microelectronics

ATT9201 O Hobbit™ Microprocessor

Features

• High performance: fast response time for
low power dissipation systems
- Single-cycle instruction execution for rnost

instructions
- Peak rate of better than one cycle per instruction
- Operand bypass mechanism that reduces

off-chip reads
- Branch prediction and branch folding to

minimize control transfer penalties
- No delayed branching or load delay slot
- Hardware-implemented complex instructions,

e.g., integer multiply and divide

• On-chip integrated resources: lower-cost hardware
system design
- 3 Kbyte encoded instruction cache, organized

as three-way set associative
- 256 byte stack cache which holds top of

user stack
- 32-entry, direct-mapped, decoded instruction

cache
-Memory management unit {MMU), with dual

32-entry translation look-aside buffers {TLBs)
for text and data address translation

• Big-endian/little-endian data byte ordering: IBM*
PC and Macintosht data compatibility

*IBM is a registerecl trademark of International Business
Machines Corporation.

tMacintosh is a trademark of Apple Computer, lnc.

• Low power consumption: srnaller, longer-life
battery
- 250 mW at 3.3 V, 20 MHz with selection to

higher speed
- 900 mW at 5.0 V, 30 MHz with selection to

higher speed
- <50 µA in standby mode

• High code density: less RAM and lower system
costs
- Rationalized instruction set
- Variable length instruction format
- Mernory-to-mernory architecture

• Low 110 traffic
- lntegrated caches
- Operand bypass
- High code density

• Simple programming model: faster software
development and lower developrnent cost
- No user-visible registers
- Orthogonal instruction and addressing rnodes
- No code scheduling needed because of

hardware hazard detection and bypassing

• Glueless integration within the AT&T 92K Hobbit
f amily chip set

• IEEE 1149.1 JTAG compatible

• Advanced 0.9 µm, 2LM CMOS technology

• 132-pin JEDEC plastic quad flat package {POFP)

ATT9201 O Hobbit Microproce~sor

Table of Contents

Contents Page Contents Page

Features .. 1
Description ... 3
Pin Information .. 4

Pins Grouped Functionally 5
Pins Grouped Numerically 12

lnstruction Set .. 16
Data Types ... 16
Operand Addressing Modes 16
Integer Arithmetic 17
Fast Calling Sequence .. 19
Conditional Branches 19
lnstruction Format .. 20
lnstructions 21
lnstruction (OPCODE/SUBCODE) Encodings 23
Addressing Mode (SMODE/DMODE)

Encodings ... 25
Prefetching Strategy .. 26
Static Branch Prediction and Branch Folding 26
lnstruction Tracing ... 27
Event Processing 27

Reset ... 27
Interrupt 28
Exceptions 29
Unimplemented lnstruction 29
Trapped Niladics .. 30
Event Processing Priority 30

ATT92010 Stacks .. 30
The Stack Cache ... 30 ,
Stack Cache Maintenance 31
Integer Accumulator ... 31
Stack Precautions .. 31

Control Registers ... 32
CONFIG-Configuration Register 32
FAULT-Fault Register .. 33

2

10-JTAG ID Register .. 34
ISP-Interrupt Stack Pointer 34
MSP-Maximum Stack Pointer 35
PC-Program Counter ... 35
PSW-Program Status Word 36
SHAD-Shadow Register 38
SP-Stack Pointer ... 38
STB-Segment Table Base 39
TIMER1-Timer1 Register 40
TIMER2-Timer2 Register 40
VB-Vector Base ... 41

Addressing and Alignment Restrictions 42
Memory Management .. 42

Virtual Address Mapping 44
Segment Tables ... 45
Page Tables ... 47
Memory Management Operations 48

Bus Operation and Arbitration 49
Requesting the Bus ... 49
Surrendering the Bus ... 49
Bus Transaction Types .. 51
Exception Handling .. 54

Testability ... 54
Conformance ... 54
TAP Controller (TAPC) ... 54
IEEE Registers 1149.1/05 Registers 57

Absolute Maximum Ratings 59
Handling Precautions .. 59
Electrical Characteristics ... 60
liming Characteristics ... 61

Load Specifications .. 61
Timing Diagrams .. 62

Outline Diagram ... 68
132-pin PQFP .. 68

12123192

Description

The ATT9201 O Hobbit Microprocessor is a high­
performance, 32-bit RISC microprocessor implemented
in the AT&T 0.9 µm double-level metal CMOS
technology. The device's unusual combination of high
performance, high code density, small die size, and low
power consumption makes it especially well suited in
battery-powered portable applications that are sensitive
to system performance, weight, and cost.

lncorporation of two independent pipelines, on-chip
caching, and many unique architectural features gives
this device high performance with better than single­
cycle peak execution, typical of RISC processors. A
variable length instruction format and a memory-to­
memory architecture result in high code densities,
typical of the best available from CISC processors.
On-chip integration of several caches, a memory
management unit (MMU), and dual TLBs, together with
high code density, enable development of less
expensive system configurations. Such configurations
require fewer support chips, less RAM, and less 110
traffic, resulting in less power dissipation and lower
system cost.

,
PREFETCH BUFFER

CACHE

1024 X 3 bytes

~
PREFETCH/DECODE

UNIT

3-STAGE PIPELINE

~
DECODED INSTRUCTION

CACHE

32 X 192 bilS

~
]_ 191

STACK ~
EXECUTION

UNIT
CACHE

64x32x2 uu. 3-STAGE PIPELINE
bits 1

I ---

ATT9201 O Hobblt Microprocessor

This high degree of on-chip integrated system
resources simplifies hardware development while the
programming model simplifies system software
development. Ultimately, product development is
simplified and design cycle time is reduced.

lnherent in the Hobbit architecture is the freedom to
scale on-chip caches transparently to software. This
allows for continued enhancement of the device's
performance both architecturally and with increased
clock frequency as more advanced processing
technologies become available. Furthermore, the
scaling of on-chip caches can be accomplished without
necessitating modification to system software and/or
hardware. Thus, the user's investment in application
software and hardware is better protected as the
device is enhanced.

DATA IN (32)

.--L _IDR'f
RO -fiiCAcRE ~

IOCW:Ql ~
.Q!T ~

LOCK
HA(312) -..

VIRTUAL ADDRESS HD(31:0] ~

BE~:öi_ ~
DTRI

t
JllACK

110 BERR
MEMORY ~

MANAGEMENT
RöCD

UNIT PHYSICAL RETRY

AD DRESS BREO
2 x 32 PAGE TLB ~.wr --
2x 1 SEG NPSR BGACK

~

-. . IL(2:0)

... STOP

VIRTUAL ADDRESS -. HRESE;I

CLK23 -
CLK34

DATA OUT (32) :rEK.
TDI

JTAG TMS - ~AST
TDO -

Flgure 1. Hobblt Block Dlagram

12123/92 3

4

ATT9201 O Hobblt Mlcroprocessor

Pin Information

ATI92010

TOPVIEW

Flgure 2.132-Pln PQFP Pin Dlagram

12123192

Pin Information (continued}

Pins Grouped Functlonally

Table 1. Pin Descrlptlons

Pin Symbol 'fype*

57 CLK23 1

55 CLK34 1

56 'SmJ5 1

39 BGRANT 1

36 'BR'EO 0

34 BGÄCK 0

53 ARES ET 1

ATT9201 O Hobbit Microprocessor

Name/Descrlptlon

Phase 2 3 Clock. CLK23 is high during phases 2 and 3. The Hobbit
microprocessor makes use of CLK23, along with CLK34, to decode a
four-phase clocking system which serves as the basic reference.
Phase 3 4 Clock. CLK34 is high during phases 3 and 4. The Hobbit
microprocessor makes use of CLK34, along with CLK23, to decode a
four-phase clocking system which serves as the basic reference.
Stop Clocks (Actlve-Low). STOJ5 is issued to stop the master clock
decoder in phase 1. This input is asserted a setup time prior to phase 1 to
halt the device.
Bus Grant (Actlve-Low). BGRANT is used to grant exclusive use of the
bus. In a multiple bus master system, only one BGRANT is to be asserted
at any time to avoid bus contention. The bus arbiter asserts BGRANT to
the Hobbit microprocessor, indicating it is bus master for the next bus
transaction. While BGRANT is asserted, the Hobbit microprocessor
remains bus master. BGRANT is asserted or deasserted by the arbiter a
setup time prior to the rising edge of CLK23. When the arbiter deasserts
BGRANT, the Hobbit microprocessor relinquishes the bus after it
completes the current bus transaction.
Bus Request (Actlve-Low). 'BR'EO is asserted when the Hobbit
microprocessor has a valid 110 transaction pending. 'BR'EO is deasserted
when there are no pending 110 transactions. The ATT9201 O Hobbit
microprocessor can deassert 'BR'EO when there is 110 activity, but there
cannot be any 1/0 transactions following the one in progress.
Bus Grant Acknowledge (Actlve-Low). The Hobbit microprocessor
asserts BGÄCK to indicate that it has ownership of the bus. lt deasserts
BGÄCK to indicate that it has relinquished ownership of the bus.
Reset Slgnal (Actlve-Low). The Hobbit microprocessor can be reset by
asserting this signal for at least two consecutive clock cycles. For multiple
masters, HRESET should be synchronous to ensure proper initialization.
In this mode, deassertion of HRESET should be a setup time prior to the
rising edge of CLK34.

• 1 = input; 0 = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

12123/92 5

ATI9201 o Hobblt Mlcroprocessor

Pin Information (continued)

Pins Grouped Functlonally (continued)

Table 1. Pin Descrlptlons (continued)

Pin Symbol TYpe* Name/Descrlptlon
42 B'ERR 1 Bus Error (Actlve-Low). The assertion of BERR indicates an error in a

bus transaction of any type. An intemal VO fault is generated when BERR
is asserted and a ~ is received. When BERR is asserted and ~
received, the exception taken depends upon the type of bus transaction
being terminated. BERR is asserted and deasserted by the slave device a
setup time prior to the rising edge of CLK34.

43 ROm 1 Hold (Actlve-Low). Rörn is asserted to suspend any further 110
transactions by the Hobbit microprocessor. Röm is asserted or
deasserted a setup time prior to the rising edge of CLK23. After Rörn is
deasserted, bus transactions are allowed to start when the Hobbit
microprocessor obtains ownership of the bus as Röm is orthogonal to
bus arbitration. In systems with slow 3-stating devices, assertion of Rörn
may be necessary to allow the device time to relinquish the bus after
~-

59 OTA1 1 Data 3-State (Actlve-Low). The assertion of OTA1 causes the
asynchronous 3-stating of the data bus.

40 RETRY 1 Retry (Actlve-Low). RETRY is asserted to retry the current bus
transaction. RETRY is asserted or deasserted a setup time prior to the
rising edge of CLK23. When RETRY is asserted during a valid bus
transaction, the Hobbit microprocessor aborts the current bus transfer
and masks the ~ input. After RETRY is deasserted, the bus
transaction is rerun after the Hobbit microprocessor obtains ownership of
the bus as RETRY is orthogonal to bus arbitration. In systems with
gateways through which two buses communicate with each other, the
retry f eature is required to break de ad lock conditions when the two buses
have simultaneous requests for their respective bus.

32 mRT 0(3) Start Cycle (Actlve-Low). Start cycle strobe is asserted by the current
master to indicate the start of a bus transaction. 'STÄRT is asserted for
only one clock cycle at the beginning of each bus transaction.

44 DTACK 1 Data Transfer Acknowledge (Actlve-Low). During a normal bus
transfer, this signal is used to terminate the transaction (data latched
during read transaction, withdrawn during write transaction). ~ is
asserted and deasserted by the slave device a setup time prior to the
rising edge of CLK34.

• 1 = input; 0 = output; P "' power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

6 12/23/92

ATT9201 o Hobblt Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descrlptlons (continued)

Pin Symbol T)'pe* Name/Descrlptlon

n HA2 0(3) Address Bus-Bit 2.
71 HA3 Address Bus-Bit 3.
11 HA4 Address Bus-Bit 4.
5 HAS Address Bus-Bit 5.

129 HA6 Address Bus-Bit 6.
123 HA7 Address Bus-Bit 7.
114 HAB Address Bus-Bit 8.
108 HA9 Address Bus-Bit 9.
102 HA10 Address Bus-Bit 10.
95 HA11 Address Bus-Bit 11.
89 HA12 Address Bus-Bit 12.
79 HA13 Address Bus-Bit 13.
73 HA14 Address Bus-Bit 14.
67 HA15 Address Bus-Bit 15.
7 HA16 Address Bus-Bit 16.
1 HA17 Address Bus-Bit 17.

127 HA18 Address Bus-Bit 18.
105 HA19 Address Bus-Bit 19.
98 HA20 Address Bus-Bit 20.
92 HA21 Address Bus-Bit 21.
63 HA22 Address Bus-Bit 22.
16 HA23 Address Bus-BI~ 23.
13 HA24 Address Bus-Bit 24.

121 HA25 Address Bus-Bit 25.
118 HA26 Address Bus-Bit 26.
116 HA27 Address Bus-Bit 27.
111 HA28 Address Bus-Bit 28.
86 HA29 Address Bus-Bit 29.
84 HA30 Address Bus-Bit 30.
82 HA31 Address Bus-Bit 31.

The 30-bit address bus indicates word-aligned physical addresses. The
byte enable signals, ~. are used for subword accesses.

• 1 = input; 0 = output; P = power; (3) = 3-state; (R) = o~hip pull-up or pull-down resistor.

12123192 7

ATT92010 Hobblt Mlcroprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descrlptlons (continued)

Pin Symbol 'JYpe* Name/Descrlptlon

3 HDO 1/0(3) Data Bus-Bit o.
131 HD1 Data Bus-Bit 1.
128 HD2 Data Bus-Bit 2.
69 HD3 Data Bus-Bit 3.
65 HD4 Data Bus-Bit 4.
106 HD5 Data Bus-Bit 5.
104 HD6 Data Bus-Bit 6.
100 HD7 Data Bus-Bit 7.
17 HD8 Data Bus-Bit 8.
15 HD9 Data Bus-Bit 9.
12 HD10 Data Bus-Bit 10.
9 HD11 Data Bus-Bit 11.
6 HD12 Data Bus-Bit 12.

125 HD13 Data Bus-Bit 13.
122 HD14 Data Bus-Bit 14.
119 HD15 Data Bus-Bit 15.
117 HD16 Data Bus-Bit 16.
115 HD17 Data Bus-Bit 17.
112 HD18 Data Bus-Bit 18.
110 HD19 Data Bus-Bit 19.
96 HD20 Data Bus-Bit 20.
94 HD21 Data Bus-Bit 21.
90 HD22 Data Bus-Bit 22.
88 HD23 Data Bus-Bit 23.
85 HD24 Data Bus-Bit 24.
83 HD25 Data Bus-Bit 25.
81 HD26 Data Bus-Bit 26.

' 1 = input; 0"' output; P =power; (3) = 3-state; (R) • on-c:hip pull-up or pulklown resistor.

8 12123/92

ATT92010 Hobblt Microprocessor

Pin Information (continued)

Pins Grouped Functlonally (continued)

Table 1. Pin Descrlptlons (contlnued)

Pin Symbol 'fype* Name/Descrlptlon

78 HD27 110(3) Data Bus-Bit 27.
75 HD28 Data Bus-Bit 28.
72 HD29 Data Bus-Bit 29.
62 HD30 Data Bus-Bit 30.
61 HD31 Data Bus-Bit 31.

The 32-bit data bus conveys data to and f rom the Hobbit microprocessor.
On byte writes, the active byte is indicated by the 'B'E[3:öJ signals with that
byte replicated on the other inactive bytes. On haH-word writes, the active
haH-word is indicated by the 'BE[3:öJ signals with that half-word replicated
on the inactive haH-word. Looping back of the data bus is supported. After
completion of a read transaction, if the current bus master retains
ownership of the bus and there are no other transactions pending, the
data just read by the Hobbit microprocessor is looped back onto the data
bus to eliminate current leakage on the data bus.

20 RO 0(3) Read (Actlve-Low). When asserted (low), RO indicates a data read.
When deasserted (high), it indicates a data write. lt is asserted at the
beginning of each bus transfer and is valid for the entire length of the
transaction.

30 [OCR 0(3) Bus Lock (Actlve-Low). Multiple transfer bus lock. This signal is
asserted to identify interlocked operations. The instruction set allows the
Hobbit microprocessor to run interlocked operations for communication
and message passing in a multiprocessor system. Also, the MMU asserts
~ during misprocessing. lnterlocked transfers in the Hobbit
microprocessor are read-modify-write (RMW) cycles, although MMU
misprocessing may abort the interlocked operation before the write starts.
~ remains asserted through the write access. When the Hobbit
microprocessor begins an interlocked operation, loss of bus ownership
must not occur until I:O'öR is deasserted. Eff ectively, a dead cycle is
inserted after a RMW operation. lnterlocked transfers are not
interruptible. lnterlocked transfers may not be retried after the read
completes. lt is up to the system to enforce this restriction. lf REIBY is
asserted any time during an interlocked transfer, the retry is honored. lt is
illegal to assert RETRY atter the read portion of the transfer since it
causes the Hobbit microprocessor to abort the operation and become
susceptible to bus arbitration, thus breaking the lock on the bus. Bus error
can be asserted in either the read or write portion of ttie intertocked
transfer. The intertocked operation is faulted with the appropriate
exception sequence executed. lf the operands being read by the
interlocked instruction are in the stack cache, the lock signal is not
asserted.

• 1 = input; 0 = output; P = power; (3) • 3-state; (R) = on-chip pull-up or pull-down resistor.

12/23/92 9

ATT9201 o Hobblt Microprocessor

Pin Information (continued)

Pins Grouped Functlonally (continued)

Table 1. Pin Descrlptlons (contlnued)

Pin Symbol 'JYpe* Name/Descrlptlon

19 NöACAE 0(3) Not Cache (Actlve-Low). The NCACAE output is provided for use with
extemal caches to indicate that an address cannot be cached. When the
PSW virtuaVphysical addressing mode bit is 1, the MMU uses the
NCACAE output to indicate the status of the cache bit in various page
table entries. When the PSW virtuaVphysical addressing mode bit is 0,
NCAcAE is asserted. When NCAcAE is asserted, data should not be
cached.

29 IOCO 0(3) 110 Count-Bit 0.
28 IOC1 1/0 Count-Bit 1.

These signals indicate the number of words remaining to be transferred.
IOC[1 :0) is used to determine the size of a block transfer being performed
by the Hobbit microprocessor. These block transfers look like a series of
bus transfers with STÄRT asserted for each and the new address
provided by incrementing the lower address bits for each word transfer.

18 DIT 0(3) Data/Text (Actlve-Low). lndicates whether data or text is being
accessed. lt is asserted (high for data, low for text) at the beginning of
each bus transfer and is valid for the entire length of the transaction.

22 BEO 0(3) Byte Enable O (Actlve-Low).
23 B'E1 Byte Enable 1 (Actlve-Low).
24 ~ Byte Enable 2 (Actlve-Low).
26 SB" Byte Enable 3 (Actlve-Low).

~ indicate which bytes are valid during a data transf er, which may be
either a read or a write. The bus supports 8-, 16-, 24-, or 32-bit data
transfers (although the insfructlon set uses only 8-, 16-, or 32-bit data
transfers). Combinatlons of the byte enable strobes are used to
accomplish the desired word or subword transfer. Either little-endian or
big-endian byte encoding rnay be selected for data via the PSW user
little-endian bit or the CONFIG kernel little-endian bit for the user or
kemel, respectively. Text is always big-endian encoding.

Byte Enable Strobe Encodlng
Pin BltsActlve
BEO HD[7:0]
m HD[15:8]
m HD[23:16]
BE! HD[31:24)

• 1 = input; 0 = output; P = power; (3) = 3-state; (R) • orH:hip pull-up or pull-dcwn resislDr.

10 12123/92

ATT9201 O Hobblt Mlcroprocessor

Pin Information (continuecl)

Pins Grouped Functlonally (continued)

Table 1. Pin Descrlptlons (contlnued)

Pin Symbol 'JYpe* Name/Descrlptlon

48 ILO 1 Interrupt Request-Blt o.
46 IL1 Interrupt Request-Blt 1.
45 IL2 Interrupt Request-Blt 2.

The Hobbit microprocessor recognizes six levels of Interrupts encoded
onto these lines. These signals should be supplied by an 8 to 3 priority
encoder. See Table 21 on page 28 for the Interrupt level encoding. When
a valid Interrupt is recognizecl, the Hobbit microprocessor requests
ownership of the bus if it is not bus master. After becoming the bus
master, the Hobbit microprocessor services the Interrupt after aborting or
completing the current instruction, depending on the type of instruction
being executed. The intemal latching of the Interrupt is not predictable:
the interrupting device must maintain its Interrupt assertion until it is
servicecl. An extemal Interrupt controller is required to resolve conflicts
between simultaneously occuning Interrupts.

52 TCK l(R) Test Clock. An extemally gated clock signal with a 50% duty cycle. The
changes on the TAP input signals (TMS and TOI) are clockecl into the
TAP controller, instruction register, or selected test data register on the
rising eclge of TCK. Changes at the TAP output signal (TOO) occur on the
falling edge of TCK. This signal does not conform to IEEE 1149.1/05
requirement of TCK being a free-running clock at all times. TCK must be
stopped at 1 when intemal BIT features are accessed. The TCK input has
a built-in pull-up resistor to ensure that a high signal value is seen on an
unterminated input.

49 TOI l(R) Test Data Input. TOI is clocked into the selected register data or
instruction on the'rlsing edge of TCK. The TOI input has a bullt-in pull-up
resistor to ensure that a high signal value is seen on an unterminated
input.

50 TMS l(R) Test Mode Select. TMS is a serial control input that is clocked into the
TAP controller on the rising edge of TCK. The TMS input has a built-in
pull-up resistor to ensure that a high signal value is seen on an
unterminated input.

51 TR'ST l(R) Test Reset Input (Actlve-Low). TRST is the reset input to the TAP
controller. Assertion of this input forces the TAP controller into the reset
state. The TR'ST input does not conform to IEEE 1149.1/05 since it has a
bullt-in pull-down resistor to ensure that a low signal Vc;ilue is seen on an
unterminated input to force the TAP controller into the reset state·.

38 TOO 0(3) Test Data Output. The contents of the selected register data or
instruction are shifted out of the TOO on the f alling edge of TCK. TDO is
3-statecl except when scanning of data is in progress.

• 1 = input: 0 = output: P = power: (3) = 3-state: (R) = on-chip pull-up or pull-down resistor.

12123192 11

ATT92010 Hobblt Microprocessor

Pin Information (continued)

Pins Grouped Functlonally (continued)

Table 1. Pin Descrlptlons (continued)

Pin Symbol 'JYpe* Name/Descrlptlon

4, 10, 21, 27, Voo p +3 V to +5 V Supply. There are 19 Voo pins.
33, 37, 54, 60,
66, 70, 76, 87,
93, 99, 103,

109, 120, 126,
132

2, 8, 14, 25, Vss p Ground. There are 20 Vss pins.
31,35,41,47,
58, 64, 68, 74,

80, 91, 97,
101, 107,

113,124, 130

• 1 = input; 0 „ oulput; P „ power; (3) • 3-state; (R) • on-chip puU-up or pull-down resistor.

Pins Grouped Numerlcally

Table 2. Pin Descrlptlons

Pin Symbol Type* Name

1 HA17 0(3) Address Bus-BH 17.
2 Vss p Ground.
3 HDO 1/0(3) Data Bus-Bit o.
4 Voo p +3 V to +5 V Supply.
5 HAS 0(3) Address Bus-BH s.
6 HD12 110(3) Data Bus-Bit 12.
7 HA16 0(3) Address Bus-BH 16.

8 Vss p Ground.
9 HD11 1/0(3) Data Bus-Bit 11.
10 Voo p +3 V to +5 V Supply.
11 HA4 0(3) Address Bus-Bit 4.

12 HD10 1/0(3) Data Bus-Bit 10.
13 HA24 0(3) Address Bus-Bit 24.
14 Vss p Ground.
15 HD9 1/0(3) Data Bus-Bit 9.
16 HA23 0(3) Address Bus-Bit 23.

17 HD8 1/0(3) Data Bus-Bit 8.

18 DIT 0(3) Data/Text (Actlve-Low).
19 FJ~CRE 0(3) Not Cache (Actlve-Low).

20 RD 0(3) Read (Actlve-Low).
21 Voo p +3 V to +5 V Supply.

• 1 = input; O = oulput; P = power; (3) = 3-state: (R) = on-chip pull-up or pull-down resistor.

12 12123/92

ATT9201 O Hobblt Mlcroprocessor

Pin Information (continued)

Pins Grouped Numerlcally (continued)

Table 2. Pin Descrlptlons (continued)

Pin Symbol iype• Name

22 BEO 0(3) Byte Enable O (Actlve-Low).

23 BE1 0(3) Byte Enable 1 (Actlve-Low).
24 w 0(3) Byte Enable 2 (Actlve-Low).
25 Vss p Ground.

26 ID 0(3) Byte Enable 3 (Actlve-Low).
27 Voo p +3 V to +5 V Supply.
28 IOC1 0(3) 110 Count-Btt 1.
29 IOCO 0(3) 1/0 Count-Btt 0.

30 '[ööR 0(3) Bus Lock (Actlve-Low).
31 Vss p Ground.

32 mRT 0(3) Start Cycle (Actlve-Low).
33 Voo p +3 V to +5 V Supply.
34 BG~CR 0 Bus Grant Acknowledge (Actlve-Low).
35 Vss p Ground.

36 BREO 0 Bus Request (Actlve-Low).
37 Voo p +3 V to +5 V Supply.
38 TDO 0(3) Test Data Output.
39 BG~~T 1 Bus Grant (Actlve-Low).

40 RETRV 1 Retry (Actlve-Low).
41 Vss p Ground.
42 HERR 1 Bus Error (Actlve-Low).

43 Rrn:D 1 Hold (Actlve-Low).'

44 DlÄCR 1 Data Transfer Acknowledge (Actlve-Low).
45 IL2 1 Interrupt Request-Blt 2.
46 IL1 1 Interrupt Request-Blt 1.
47 vss p Ground.
48 ILO 1 Interrupt Request-Blt o.
49 TDI l(R) Test Data Input.
50 TMS l(R) Test Mode Select.

51 TRST l(R) Test -Reset Input (Actlve-Low).
52 TCK l(R) Test Clock.

53 RRESET 1 Reset Signal (Actlve-Low).
54 Voo p +3 V to +5 V Supply.
55 CLK34 1 Phase 3 4 Clock.

56 smr:s 1 Stop Clocks (Actlve-Low)
57 CLK23 1 Phase 2 3 Clock.

58 Vss p Ground.

59 DTFfl 1 Data 3-State (Actlve-Low).

• 1 = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

12123192 13

ATT92010 Hobblt Mlcroprocessor

Pin Information (contlnued)

Pins Grouped Numerlcally (continued)

Table 2. Pin Descrlptlons (continued)

Pin Symbol Type* Name

60 Voo p +3 V to +5 V Supply.
61 HD31 1/0(3) Data Bus-Bit 31.
62 HD30 110(3) Data Bus-Bit 30.
63 HA22 0(3) Address Bus-Bit 22.
64 Vss p Ground.
65 HD4 1/0(3) Data Bus-Bit 4.
66 Voo p +3 V to +5 V Supply.
67 HA15 0(3) Address Bus-Bit 15.
68 Vss p Ground.
69 HD3 110(3) Data Bus-Bit 3.
70 Voo p +3 V to +5 V Supply.
71 HA3 0(3) Address Bus-Bit 3.
72 HD29 1/0(3) Data Bus-Bit 29.
73 HA14 0(3) Address Bus-Bit 14.
74 Vss p Ground.
75 HD28 1/0(3) Data Bus-Bit 28.
76 Voo p +3 V to +5 V Supply.
77 HA2 0(3) Address Bus-Bit 2.
78 HD27 1/0(3) Data Bus-Bit 27.
79 HA13 0(3) Address Bus-Bit 13.
80 Vss p Ground.
81 HD26 1/0(3) Data Bus-Bit 26.
82 HA31 0(3) Address Bus-Bit 31.
83 HD25 1/0(3) Data Bus-Bit 25.
84 HA30 0(3) Address Bus-Bit 30.
85 HD24 1/0(3) Data Bus-Bit 24.
86 HA29 0(3) Address Bus-Bit 29.
87 Voo p +3 V to +5 V Supply.
88 HD23 1/0(3) Data Bus-Bit 23.
89 HA12 0(3) Address Bus-Bit 12
90 HD22 1/0(3) Data Bus-Bit 22.
91 Vss p Ground.
92 HA21 0(3) Address Bus-Bit 21.
93 Voo p +3 V to +5 V Supply.
94 HD21 1/0(3) Data Bus-Bit 21.
95 HA11 0(3) Address Bus-Bit 11
96 HD20 1/0(3) Data Bus-Bit 20.

• 1 = input; O = output; P =power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

14 12/23192

ATT92010 Hobblt Microprocessor

Pin Information (continued)

Pins Grouped Nurnerlcally (continued)

Table 2. Pin Descrlptlons (contlnued)

Pin Symbol 'JYpe* Name

97 Vss p Ground.
98 HA20 0(3) Address Bus-Bit 20.
99 Voo p +3 V to +5 V Supply.
100 HD7 V0(3) Data Bus-Bit 7.
101 Vss p Ground.
102 HA10 0(3) Address Bus-Bit 10
103 Voo p +3 V to +5 V Supply.
104 HD6 V0(3) Data Bus-Bit 6.
105 HA19 0(3) Address Bus-Bit 19.
106 HD5 V0(3) Data Bus-Bit 5.
107 Vss p Ground.
108 HA9 0(3) Address Bus-Bit 9.
109 Voo p +3 V to +5 V Supply.
110 HD19 V0(3) Data Bus-Bit 19.
111 HA28 0(3) Address Bus-Bit 28.
112 HD18 V0(3) Data Bus-Bit 18.
113 Vss p Ground.
114 HAB 0(3) Address Bus-Bit 8.
115 HD17 V0(3) Data Bus-Bit 17.
116 HA27 0(3) Address Bus-Bit 27.
117 HD16 V0(3) Data Bus-Bit 16.
118 HA26 0(3) Address Bus-Bit 26.
119 HD15 V0(3) Data Bus-Bit 15.
120 Voo p +3 V to +5 V Supply.
121 HA25 0(3) Address Bus-Bit 25.
122 HD14 V0(3) Data Bus-Bit 14.
123 HA7 0(3) Address Bus-Bit 7.
124 Vss p Ground.
125 HD13 V0(3) Data Bus-Bit 13.
126 Voo p +3 V to +5 V Supply.
127 HA18 0(3) Address Bus-Bit 18.
128 HD2 V0(3) Data Bus-Bit 2.
129 HA6 0(3) Address Bus-Bit 6.
130 Vss p Ground.
131 HD1 V0(3) Data Bus-Bit 1.
132 Voo p +3 V to +5 V Supply.

• 1 = input; 0 = output; P = power; (3) • 3-state; (R) = orK:hip pull-up or pull-down resistor.

12123192 15

ATT9201 O Hobblt Mlcroprocessor

lnstruction Set

Data Types

Six integer data types are supported: signed and
unsigned bytes (8 bits), signed and unsigned haH­
words (16 bits), and signed and unsigned words
(32 bits). Nonword operands are properly aligned and
then expanded to 32 bits through sign extension (if
signed) or clearing high-order bits (if unsigned).

After alignment and expansion, the 32-bit ALU per­
forms the requested function. Carry and overtlow are
determined relative to the 32-bit result.

For destinations less than 32-bits, the least significant
bits of the 32-bit ALU result are selected. Changing a
value by truncation constitutes neither overtlow nor
carry.

True three-operand (triadic) instructions are not pro­
vided, but instruction encodings which provide two
source operands and store the full 32-bit result in the
accumulator are provided (see the ATT9201 o Stacks
section on page 30). This type of instruction is referred
to as a two-and-a-haH-operand instruction. For exam­
ple, the mnemonic for an addition instruction of this
type is given as ADD3 where a two-operand (dyadic)
add is ADD. For this instruction, the two source oper­
ands are added and the full 32-bit result is stored in the
accumulator.

16

Operand Addressing Modes

There are seven addressing modes:

• Immediate

•Absolute

• Stack offset

• Stack offset indirect

• Absolute indirect

• Program counter relative

• Register

The arithmetic logic unit (ALU) operations generally
permit any of the first four of these addressing modes to
be used with either operand. The valid addressing
modes for each instruction are indicated in the detailed
instruction descriptions in the A TT9201 O Hobbit
Microprocessor Programmer's Guide. Any mode which
is not explicitly mentioned for a given instruction should
not be used. The sections below briefly describe each
rnode.

The operand can also have a suffix. The suffixes indi­
cate the size of data operands. A missing suffix implies
signed word operands.

• :B signed byte

• :UB unsigned byte

• :H signed half-word

• :UH unsigned haH-word

• :W w9rd

Immediate

In the immediate addressing mode, the operand value
is stored in the instruction. Values up to 32 bits in
length are permitted. Shorter values are appropriately
sign or O extended before use.

Assembler tanguage syntax: $data

12/23192

lnstruction Set (continued)

Operand Addressing Modes (continued)

AbSolute

In the absolute addressing mode, the address of the
operand is stored in the instruction.

Assembler language syntax: •Saddr:sutfix

Stack Offset

In the stack offset addresslng mode, a signed, two's
complement offset stored in the instruction (except for
CATCH and ENTER, seethe ATT92010 Stacks section
on page 30) is added to the current stack pointer (CSP)
value to obtain the operand address 1•

Assembler language syntax: Roffset:suffix

Stack Offset lndlrect

In the stack offset lndirect addressing mode, an offset is
added to the CSP value to obtain the address of the
operand's address. The offset must be word aligned2.

Assembler language syntax: •Roffset:suffix

Absolute lndlrect

In the absolute indirect addressing mode, the address
of the operand's address is stored In the instruction.
This mode is only used for the JMP (conditional jump
instructions excluded), CALL, and LDRAA instructions,
so that the operand value should be an instruction
address which must be parcel (half-word) aligned.

Assembler language syntax: ••$addr

Program Counter Relatlve

In the program counter relative addressing mode, a
signed, two's complement offset stored in the instruc­
tion is added to the address of the instruction to obtain
the operand value. This mode is only used forthe JMP,
CALL, and LDRAA instructions.

Assembler language syntax: label

1. For negative offsets, off-chip stack accesses are performed and
cache coherency is not maintained.

2. An alignment fault, Ox4, is executed if lhe offset is not word
aligned.

12123192

ATT9201 O Hobblt Mlcroprocessor

Register

In the register addressing mode, the instruction in ques­
tion is preceded by a CPU instruction.

A CPU instruction is never directly executed, but it
serves to modify the next instruction's addressing
modes for both operands. Code Ox7 allows access to
the intemal registers for use as data. The register
number is specified in the Operand (source/destination
field). Only bits 3:0 are considered for determining the
register number.

The upper bits are ignored but should be o for compati­
bility with future versions of the Hobbit microprocessor.

At most, one register may be read per instruction. lf
register OxO or OxD through OxF is specified, an unim­
plemented register exception sequence, exception ID
Ox6, is performed. Registers can be read in user mode,
but if there is a register write in user mode, a privilege
violation exception sequence, exception ID Ox5, is per­
formed.

Assembler language syntax: %REGISTER

Integer Arithmetlc

The A TT9201 O Hobbit microprocessor offers seven
arithmetic instructions:

• ADD a,b ;add a tob

•DIV a,b ;divide b by a, signed

• MUL a,b ;multiply b by a

. •REM a,b ;calculate the remainder of signed
division of b by a

•SUB a,b ;subtract a from b

• UDIV a,b ;divide b by a, unsigned

• UREM a, b ;calculate the remainder of unsigned
division of b by a

REM and UREM are defined in terms of DIV and UDIV,
respectively. Operands a and b may be referenced
using a variety of addressing modes, with sign interpre­
tation given for byte and half-word arguments.

For the above instructions, the result is stored in b.
ADD, DIV, MUL, REM, and SUB as wen as other
instructions also have a 2 1/2 address version (denoted
by a trailing 3) where the result is stored in the accumu­
lator (R4).

17

ATT9201 o Hobblt Microprocessor

lnstruction Set (continued)

Integer Arlthmetlc (continued)

The Csrry BH

The PSW carry bit indicates the occurrence of a borrow
during unsigned subtraction or of overflow during
unsigned addition or multiplication. Unsigned overflow
arises when a result exceeds unsigned(OxFFFFFFFF).
In terms of the operations above, the PSW carry bit is
set when:

Unsigned(b) - Unsigned(a) < o

or unsigned overflow on an addition or multiplication:

Unsigned(b) {+ or •} Unsigned(a) >
Unsigned(OxFFFFFFFF)

Unsigned overflow cannot oocur in UDIV and UREM.

In the ADD operation, the adder computes the sum of a
and b; the word result is delivered and, if carry-out
occurs, the PSW carry bit is set. In the SUB operation,
the two's complement of a is added to b, and the PSW
carry bit is set only if no carry-out occurs.

The Overflow Bit

Analogous to the PSW carry bit, the PSW overflow bit
signals the occurrence of signed overflow of the word
result of an arithmetic operation; this is a result outside
the interval:

[Signed(Ox80000000) to Signed(Ox7FFFFFFF)]

In terms of the operations above, the PSWoverflow bit
is set unless:

Signed(Ox80000000) s (Signed(b) {+, -, or •}
Signed(a)) s Signed(Ox7FFFFFFF)

Signed overflow cannot occur in REM. Signed overflow
does arise in DIV in precisely the case of Oxeooooooo
divided by -1 (i.e., OxFFFFFFFF).

18

Division and Remalnder

Unsigned overflow does not apply to UDIV because its
dividend is at most unsigned(OxFFFFFFFF) and its
divisor is no less than 1 (except for a zero divisor, which
triggers a divide-by-zero exception), so its result is no
greater than its dividend. A similar argument applies to
DIV, except for the case of overflow.

Like UDIV, unsigned overflow does not apply to UREM.
UD and UR are the word results of the UDIV and UREM
operations, respectively. Apply these results to oper­
ands a and b. UDIV and UREM are related by the
formula:

b == (UD•a) + UR, where O s UR < a

with all values unsigned. UR is no greater than a and
therefore no greaterthan unsigned(OxFFFFFFFF);
hence, overflow cannot occur. A similar argument
applies to REM.

Tagged Integer Artthmetlc

• TADD a, b ;tagged add a into b

• TSUB a, b ;tagged subtract a from b

The tagged instructions ensure that the low 2 bits,
called tags, of both operands are 0, before the arith­
metic operation is performed. lf either of the tags is
nonzero, the PSW flag bit is set to 1, and the result is
not stored. lf both tags are zero, the result is stored
only if the operation doesn't result in an arithmetic
overflow. lf the arithmetic overflow occurs, the PSW
flag bit is set to 1 and the result is not stored. These
instructions are useful in object-oriented languages
where a given variable may represent different data
types at different times during program execution.

12123/92

lnstruction Set (continued)

Fast Cslling Sequence

The steps required for a function call are straightfor­
ward. Outgoing arguments are moved (or calculated)
onto the stacl< frame (see the ATT92010 Stacks on
page 30). In the event of word arguments, the first
argument is stored at current stacl< pointer (CSP) + 4,
the second at CSP + 8, etc. The CALL instruction per­
forms an atomic move and jump operation, saving the
retum polnt at the CSP and loading the program
counter (PC) with the address of the first instruction of
the called function. The first instruction of the called
function is usually ENTER which adjusts the CSP to
allocate its new stacl< frame. The last instruction of the
called function, RETURN, readjusts the CSP to deallo­
cate its stacl< frame and then branches to the address
pointed to by the CSP. Customarily, a CATCH follows
the RETURN in user mode or when the user stacl< is
enabled to refill the stacl< cache.

This function call overhead-call, allocate, deallocate,
and retum-can be as little as four clocl< cycles.

INCOMING ARGUll.ENT N
INCOMING ARGUMENT N-1

...
INCOMING ARGUMENT 1/

INTEGER FUNCTION RETURN VALUE
a.osP-. SAVED PC OF CALLER

LOCALVÄR~N
LOCAL VARIABLE N - 1

...
LOCAL VARIABLE 1

TEMPORARY VARIABLES
OlJTGOING ARGUll.ENT N

OUTGOING ARGUll.ENT N - 1

...
OlJTGOING ARGUMENT 1

SP-. EMPTY (PC SAVE AREA)

HIGHER MEMORY

DIRECTION OF
STACK GROWTH

J.

LO'NER MEMORY

Flgure 3. iyplcal Stack Frame (from the called
functlons polnt of vlew)

12123192

ATT9201 o Hobbit Microprocessor

The stack grows downward in memory with the SP
always pointing to the top of the stack. This free slot is
where the PC is stored on a function call (or unimple­
mented instruction exception). This avoids having to
adjust the CSP to save or restore the PC. Th~ PC is
the only machine register implicitly saved durmg a
function call. Above the saved PC slot in the stacl<
frame is an area large enough to store outgoing argu­
ments for any call from the current function. Above the
outgoing arguments are stored temporary values and
tocal variables. Thus, outgoing arguments may be cal­
culated in place with stack offset addressing modes.
This statically allocated stack-frame allows the CSP to
be updated only on function entry and function retum.
Traditional PUSH or POP 1 instructions which automati­
cally adjust the CSP are intentionally avoided. There­
fore, side effects to the CSP are nearly eliminated and
operand address generation for subsequent instruc­
tions may smoothly proceed in a pipelined implementa­
tion.

Conditional Branches

Conditional branches are specified by first setting the
PSW flag bit using CMPEQ, CMPGT, CMPHI, TESTC,
or TESTV and then using a conditional jump (JMPTY,
JMPTN, JMPFY, and JMPFN) .

The jump doesn't need to be the next instruction after
the flag is set. The pipeline runs more efficiently if three
instructions that don't reference off-chip memory are
between them.

· lhe Y or N at the end of the conditional jump instruc­
tion is the prediction of the branch that will be taken
(Y-jump, N-continue).

1. POPN is provided to deallocate from the stacl< frame and is useful
in tail recursion.

19

ATT92010 Hobblt Microprocessor

lnstruction Set (continued)

lnstructlon Format

lnstructions are composed of 2 byte parcels and are
encoded in one-, three-, and five-parcel lengths. The
general instruction is encoded in five parcels, which
allows for the encoding of two complete 32-bit
addresses in each instruction. In general, the one- and
three-parcel instructions are more compact encoclings
of five-parcel instructions. lnstructions may have at
most two operands, which, in general, have four
addressing modes. For the dyadic instructions, one
source doubles as destination or the accumulator is
selected to serve as an implicit destination. The instruc­
tion formats are as follows:

• One-parcel formats (for zero-, one-, and two-oper­
and instructions)

• Three-parcel formats (for one- and two-operand
instructions)

• Five-parcel format (for two-operand instructions)

one-Parcel Fonnats

Many of the most common zero-, one-, and two-operand
instruction types may be encoded in one parcel:

NILAOICI 0 1 OxB
10111

SUBCOOE

ol (NO OPERAND) 1514

MONAOIC 1 0 ,. OPCOOE
1019

SOURCE

ol (ONE OPERAND) 1514

STACKI ~ 114
Ox2

1019
SOURCE

2l1 g~ ol

DYAOICI 0 1 OPCOOE
1019 SOURCE 51~STINATl~1 (TWO OPERANDS) 1514

Flgure 4. One-Parcel lnstructlon Fonnats

A O in the most significant bit distinguishes all one-parcel
instruction formats. The subcode field distinguishes
among the different niladic and stad< instructions.

For operands, 5-bit immediate fields are sign extended,
while 5-bit stad< offset fields are zero extended. All 10-bit
fields are zero extended except for CALL and JMP which
are sign extended. The 8-bit fields are zero extended,
except for ENTER, which is 1 filled.

20

Note that operand alignment restrictions allow some
address offsets to be scaled, thus extending the effec­
tive addressing range. The scaling of certain immediate
constants is made possible by the specific operand
value restrictions of the corresponding instructions.
Five-bit offset values are multiplied by four before they
are added to the SP. The 10-bit PC-relative offsets in
JMP and CALL instructions are multiplied by 2 before
they are used: the other 10-bit values are multiplied by
four before they are used.

Three-Parcel Formats

Three-parcel instructions are distinguished by a 1 O in
the two most significant bits. The subcode field distin­
guishes among the different monadic instructions. The
notation operand-lo ref ers to the low-order 16 bits, and
operand-hi refers to the high-order 16 bits. A similar
convention applies to the source and destination oper­
ands of the five-parcel dyadic instructions.

1stPARCE ~ 15
10

1j13
OPCODE J SMODE !SUBCODE

8 7 4 3 0

2nd PARCEL OPERAND-HI
15 0

3nd PARCEL OPERAND-LO
15 0

A. Monadlc (One Operand)

1stPARCE ~ 10 J OPCODE J SMODE ~ DMODE
15 14 13 8 7 4 3 0

2nd PARCE L SOURCE
15 0

''
3nd PARCEL DESTINATION

15 0

B. Dyadlc (Two Operand)

Flgure 5. Three-Parcel lnstructlon Formats

The 16-bit source and destination fields are sign
extended to 32 bits when they are used in immediate or
offset modes. When the 16-bit source and destination
fields are used as absolute addresses, extension of the
upper 16 bits depends on the setting of the CONFIG PC
extension bit. lf the CONFIG PC extension bit is 1, bits
28:16 are replaced with O and bits 31 :29 (the high-order
3 bits) are copied from bits 31 :29 of the program
counter. lf the CONFIG PC extension bit is O, the upper
16 bits are set to 0. The source and destination
addressing mode fields are encoded in the same way
for both three- and five-parcel instructions.

12123192

lnstruction Set (continued)

lnstructlon Format (continued)

Flv•Parcel Fonnat

Five-parcel instructions are distinguished by a 11 in the
two most significant bits. Five-parcel instructions are
encoded similarly to three-parcel instructions.

1stPARCE w 11 J OPCODE I SMODE ! DMODE
15 „ 13 8 7 4 3 0

2ndPARCEL SOURCE-HI
15 0

3ndPARCEL SOURCE-LO
15 0

4ndPARCEL DESTINATION-HI
15 0

5ndPARCEL DESTINATION-LO
15 0

Flgure 6. Flve-Parcel lnstructlon Fonnat

lnstructlons

ATT92010 Hobblt Mlcroprocessor

Table 4. Loglcal lnstructlons

lnstructlon Functlon

AND[3] Bitwise logical and
ANDI Bitwise logical anct interlocked

OR[3] Bitwise logical or
ORI Bitwise logical or interlocked

XOR[3] Bitwise logical exclusive or

Table 5. Shlft lnstructlons

lnstructlon Functlon

SHL[3] Left shift
SHR[3] Arithmetic right shift

USHR[3] Logical right shift

Table 6. Compare lnstructlons

lnstructlon Functlon

CMPEQ Equality comparison
CMPGT Signed greater than comparison
CMPHI High comparison (unsigned greater than)

The general instruction format is: Table 7. Move lnstructlons

lnstruction source, destination

where the instruction can contain a 3 indicating that the
destination is the accumulator (R4). Otherwise, the
destination is also the second operand.

The instructions can be divided into eight categories.
The following Special notations are used: ß and (1).
ADD[3], for example, indicates that both ADD and
ADD3 instructions exist. JMP (FIT)(YIN) indicates that

lnstructlon

DOM

LDRAA

MOV

MOVA

Functlon

Double-word move (destiliation suffix :B)
Ouad-word move (destination suffix :W)
Load PC-relative address into the
accumulator
Move
Move address

JMPFY, JMPFN, JMPTY, and JMPTN instructions Table 8. Tagged lnstructlons
exist.

lnstructlon Functlon

Table 3. Arlthmetlc lnstructlons TADD Tagged addition

lnstructlon Functlon TSUB Tagged subtraction

ADD[3] Add
ADDI Add interlocked
DIV[3] Divide

MUL[3] Multiply
REM[3] Rernainder

SUB[3] Subtract
UDIV Unsigned divide

UREM Unsigned remaincter

12/23/92 21

ATT92010 Hobblt Microprocessor

lnstruction Set (continued)

lnstructlons (continued)

Table 9. Program Control lnstructlons

lnstructlon Functlon

CALL Call function
CATCH Fill stack cache
CRET Return from kernel with context

ENTER Allocate stack space
JMP Unconditional jump

JMP(FIT)(YIN) Conditional jump based on PSW flag bit
KCALL Kernelcall
KRET Return from kernel
POPN Free N entries from stack space

RETURN Free stack space and return from function

Table 1 o. Other lnstructlons

lnstructlon Functlon

CLRE Clear PSW enter guard bit
CPU Register mode addressing

FLUSHI Flush the decoded instruction cache
FLUSHP Flush the prefetch buff er cache

FLUSHPBE Flush an entry in prefetch buff er cache
FLUSHPTE Flush a page table entry in the TLBs or NPSRs

NOP No operation
TESTC Copy PSW carry bit to PSW flag bit and clear carry bit
TESTV Copy PSW overflow bit to PSW flag bit and clea.r overflow bit

22 12123/92

ATT9201 O Hobblt Mlcroprocessor

lnstruction Set (continuect)

lnstructlon (OPCODE/SUBCODE) Encodlngs

Table 11. On•Parcel lnstructlon Encocllngs, Monadlcs/Dyadlcs

opcocle[4:3]
opcocle[2:0]

000

00 KCALL
01 unimpT
10 CMPEQ.CS
11 MOV.SS

Notes:
C = 5-bit immediate
1 • 5-bit indiract stack olfset
S • 5-bit stack olfset
W = 5-bit word-aligned immediate
•See Table 12.

001 010

CALL Stack*
unimpT MOV.WS

CMPGT.SS CMPGT.CS
MOV.IS MOV.SI

t The unimplemented instruction sequence is perfonned.
*See Table 13.

Table 12. On•Parcel lnstructlon Encodlngs, Stack

subeocle[1 :O]

00 01 10

011 100

JMP JMPFN
niladlCi unimpT

CMPEQ.SS ADD.CS
MOV.11 MOV.CS

11

ENTER CATCH RETURN POPN

Table 13. On•Parcel lnstructlon Encodlngs, Nlladlcs

subeocle[9:3]
000 001

0000000 CPU KRET
0000001 TESTV TESTC
000001x unimp* unimp*
00001xx unimp* unimp*
·0001xxx unimp* unimp*
001XXXX unimp* unimp*
01xxxxx unimp* unimp*
1xxxxxx trapT trapF

• The unimplemented instruclion sequence is perfonned.
t The niladic trap through VB + 8 is performed.

12123192

010

NOP
CLRE
unimp*
unimp*
unimp*
unimp*
unimp*
trapi

subeocle[2:0]

011 100

FLUSHI FLUSHP
unimp* unimp*
unimp* unimp*
unimp* unimp*
unimp* unimp*
unimp* unimp*
unimp* unimp*
trapt trapt

101 110 111

JMPFY JMPTN JMPTY
ADD3.WS AND3.CS AND.SS
ADD3.CS ADD.SS ADD3.SS
MOVA.SS SHL3.CS SHR3.CS

101 110 111

CRET FLUSHD* unimp*
unimp* unimp* unimp*
unimp* unimp* unimp*
unimp* unimp* unimp*
unimp* unimp* unimp*
unimp* unimp* unimp*
unimp* unimp* unimp*
trapt trapt trapt

23

ATT9201 O Hobblt Microprocessor

lnstruction Set (continued)

lnstruction (OPCODE/SUBCODE) Encodings (continued)

Table 14. Three-Parcel Encodlngs

opcode[5:3]
000 001 010

000 monadicT ORI ANDI
001 unimp* unimp* unimp*
010 unimp* unimp* unimp*
011 unimp* unimp* unimp*
100 SUB OR AND
101 unimp* unimp* unimp*
110 SUB3 OR3 AND3
111 unimp* unimp* unimp*

• The unimplemented instruclion sequence is performed.
t See Table 15.

opcode[2:0]

011 100

ADDI MOVA
unimp* TADD
unimp* unimp*
unimp* unimp*
ADD XOR

unimp* SHR
ADD3 XOR3
unimp* SHR3

Table 15. Three-Parcel lnstructlon Subcodlngs, Monadlc

subcode[9:3]
subcode[2:0]

000 001 010 011 100

0 KCALL CALL RETURN JMP JMPFN
1 CATCH ENTER LDRAA FLUSHPTE FLUSHPBE

• The unimplemented instruction sequence is performed.

Table 16. Flve-Parcel lnstructlon Encodlngs

opcode[5:3]
opcode[2 :O]

000 001 010 011 100

000 unimp* ORI ANDI ADDI MOVA
001 unimp* unimp* unimp* unimp* TADD
010 unimp* unimp* unimp* unimp* unimp*
011 unimp* unimp* unimp* unimp* unimp*
100 SUB OR AND ADD XOR
101 unimp* unimp* unimp* unimp* SHR
110 SUB3 OR3 AND3 ADD3 XOR3
111 unimp* unimp* unimp* unimp* SHR3

• The unimplemented instruction sequence is performed.

24

101 110 111

UREM MOV DOM
TSUB unimp* unimp*
unimp* unimp* unimp*

CMPGT CMPHI CMPEO
REM MUL DIV

USHR SHL UDIV
REM3 MUL3 DIV3

USHR3 SHL3 unimp*

101 110 111

JMPFY JMPTN JMPTY
FLUSHDCE* unimp* POPN

101 110 111

UREM MOV DOM
TSUB unimp* unimp*
unimp* unimp* unimp*
CMPGT CMPHI CMPEO

REM MUL DIV
USHR SHL UDIV
REM3 MUL3 DIV3

USHR3 SHL3 unimp*

12123/92

lnstruction Set (continued)

Addressing Mode (SMODE/DMODE)
Encodlngs

Table 17. General Addresslng Mode Encodlngs

Mode Code Descrlptlon

•$addr:B OxO Byte absolute
•$addr:UB Ox1 Unsigned byte absolute

•$addr:H Ox2 Half-word absolute
•$addr:UH Ox3 Unsigned half-word absolute
Roffset:B Ox4 Byte stack offset

Roffset:UB Ox5 Unsigned byte stack offset
Roffset:H Ox6 Half-word stack offset

Roffset:UH Ox7 Unsigned half-word stack
offset

•Roffset:B Ox8 Byte stack offset indirect
•Roffset:UB Ox9 Unsigned byte stack offset

indirect
•Roffset:H OxA Half-word stack offset indirect

•Roffset:UH OxB Unsigned half-word stack
offset indirect

•$addr:W OxC Word absolute
Roffset:W OxD Word stack offset
•Roffset:W OxE Word stack offset indirect

$data OxF Immediate

Table 18. CPU ModHied Addresslng Mode
Encodlngs

Mode Code Descrlptlon

register Ox7 CPU prefixed

•$addr:W OxC Word absolute

Roffset:W OxD Word stack offset

•Roffset:W OxE Word stack offset indirect
$data OxF Immediate

12123192

ATT9201 O Hobbit Microprocessor

Table 19. CALUJMPAddresslng Mode Encodlngs

Mode Code Descrlptlon

**Saddr OxC Absolute indirect

•Roffset OxD Stack off set indirect

Label OxE Program counter relative
•$addr OxF Absolute

Table 20. Source/Destlnatlon Register Encodlngs

Register Code

MSP Ox1
ISP Ox2
SP Ox3

CONFIG Ox4
PSW Ox5

SHAD Ox6
VB Ox7

STB Ox8

FAULT Ox9
ID OxA

TIMER1 OxB
TIMER2 OxC
unimp OxD
unimp OxE
unimp OxF

25

ATT92010 Hobblt Mlcroprocessor

Prefetching Strategy

The ATT9201 O Hobbit microprocessor provides two
types of instruction fetchlng selectable through the
CONFIG prefetch mode bit: aggressive prefetching and
demand fetching. When aggressive prefetching is
enabled (CONFIG prefetch mode bit = 1), the prefetch
unit on the microprocessor fetches text, which has not
been previously fetched and stored in the prefetch
buffer memory, in quad-word pieces consisting of two
double-word 1/0 requests. Text is prefetched
sequentially until a branch (predicted jump,
unconditional jump, CALL, CRET, KCALL, KRET, or
RETURN) is decoded. lf the target of the branch is
encoded in the instruction (nonindirect), prefetching
then continues f rom the target (if it is not already in the
prefetch buffer); if the target is indirect, prefetching
stops and waits for a demand fetch request from the
execution unit. A demand fetch is requested if the
execution unit takes a mispredicted or indirect branch
and the target has not been previousty decoded. ff at
any time while the prefetch unit is prefetching
sequential code and following predicted branches a
demand fetch is requested, any 110 requested by the
unit will complete, and prefetching begins anew from
the execution unit requested target.

lf demand fetching is enabled (CONFIG prefetch mode
bit = O), the prefetch unit only issues an 1/0 request for
text when it is requested by the execution unit and is not
f ound in the prefetch buffer. The 1/0 request is made for a
double word, and all instructions contained in the double
word and any subsequent instructions found in the
pref etch buffer are decoded, but prefetching ceases until
another demand fetch is requested by the execution unit.
Demand fetching is the default mode after reset.
Whether to use aggressive prefetching or demand
prefetching depends on the application.

26

Static Branch Prediction and Branch
Folding

Branches break the flow of instruction execution and
can degrade the performance of a pipelined
microprocessor. Furthermore, the target of a
conditional jump is not known until the instruction is
executed. The Hobbit microprocessor solves these
probtems in two ways. First, the instruction format
provides a static branch prediction field which is set at
compile time, indicating whether it is more likely for the
conditional branch to be taken or not. Since the
prefetch decode unit (PDU) continued prefetching
along the predicted path of a conditional jump, the
instructions can be issued and executed into the
pipeline without any discontinuity. Second, the PDU
assigns a next-PC and altemate-next-PC field for each
decoded instruction. Thus, for selected single-parcel
instructions or a three-parcel instruction, A, if the
following instruction, B, is a jump, the next-PC field for
the instruction A is the (predicted) target of the
instruction B and in the case B is conditional altemate­
next-PC is the nonpredicted target of B.

..

12123192

lnstruction Tracing

lnstruction tracing is supported by the PSW trace basic
block or trace instruction bits. These bits control when
tracing is enabled. lf an instruction is traceable, a trace
exception is taken after the instruction completes
exeaition. The PC saved on the interrupt stack is the
PC of the next lnstruction.

lnstructions before folded branches cannot be traced
(i.e., if a jump is folded into the previous instruction, the
trace will occur afterthe jump). To circumvent this from
occurring, all jumps must be encoded as three-parcel
and, hence, will not be folded.

Event sequences are nontraceable. This includes
exceptions and interrupts. The unimplemented instruc­
tion sequence is traceable if the trace bits are not
altered. CRET, KCALL, and KRET are always non­
traceable.

Event Processing

There are several sequences which can be triggered in
the Hobbit microprocessor that are not usually invoked
by the regular instruction set. These events include, in
order of priority:

1. reset
2. interrupt
3. exception

The sequences executed by the Hobbit microprocessor
for each of these events are listed in the following
sections. In all cases, interrupts are inhibited while an
event processing sequence (the sequence that initiates
the event handler) is in progress.

As described in the following sections, the processing
of exceptions and interrupts includes the saving of the
PC and PSW on the interrupt stack. For instructions
that change the PC, the current PC is described below.

• CALL and JUMP: lf the location pointed to by the
instruction cannot be referenced, a fetch-fault results
and the PC stored on the interrupt stack is the target
PC, not the PC of the instruction. lf the indirection
word of an indirect instruction cannot be referenced,
a read-fautt results and the PC stored on the inter­
rupt stack is that of the instruction.

• KCALL: lf the location pointed to by the KCALL PC
entry in the vector cannot be referenced, a f etch-f ault
results and the PC stored on the interrupt stack is the
target PC, not the PC of the original KCALL.

12123192

ATT9201 O Hobblt Mlcroprocessor

• CRET, KRET, and RETURN: lf the location pointed
to by the new PC value cannot be referenced, a
fetch-fault results and the PC stored on the interrupt
stack is the new PC value, not the address of the
instruction.

Reset

The A TT9201 O Hobbit microprocessor enters the reset
sequence when:

• The extemal reset pin is asserted.

• A memory fault, which is signaled either extemally or
bythe MMU,
- occurs when attempting to read or write the

interrupt stack during any event processing
sequence.

- occurs when attempting to read from the vector
table during any event processing sequence.

The reset sequence is:

1. Disable interrupts
2. Flush the PFB and IC
3. if (HRESET)

SHAD = OxO
eise
SHAD= PSW

4. PSW=OxO
5. CONFIG = OxO
6. PC= OxO
7. Enable NMI interrupts

After a reset, SHAD is set to either OxO or the airrent
PSW depending upon which type of reset occurred.
Independent of the type of reset, the PFB and IC are
flushed and the PSW, CONFIG, and PC are initialized
to OxO. OxO in the PSW register sets the execution level
to kemel, with physical addressing enabled, tracing
disabled, interrupts inhibited, and the ISP as the CSP.
OxO in the CONFIG register disables all on-chip caches,
disables timer interrupts, and selects demand
prefetching. OxO in the PC register starts executing
instructions at physical address OxO.

Note: lf the reset sequence was initiated by ARESET
being asserted, the SP and the MSP are unde­
fined. The caches should not be enabled until
these registers are assigned values since the
range check circuitry would not know whether an
address should access the on-chip stack cache
or off-chip memory.

27

ATT92010 Hobblt Mlcroprocessor

Event Processing (continued)

Interrupt

An interrupt is signaled when an extemal device
requests service on the interrupt request input lines
IL[2:0] or either timer1 or timer2 overflows with the
respective interrupt enabled. The three input lines
associated with extemal interrupts and the timer
interrupts, which are asserted at level 1, are compared
with the PSW Interrupt priority level field and the
CONFIG timer interrupt enables. lf the interrupt request
is less than the PSW interrupt priority level field, the
interrupt can be serviced. A PSW interrupt priority level
field of 7 allows Interrupts at levels 6:0. A PSW interrupt
priority level fleld of o lnhlbits interrupts 6:1 and allows
only interrupts at level 0, which is referred to as a
nonmaskable interrupt (NMI).

Table 21. Interrupt Levels

IL[2:0] Interrupt Level

000 NMI
001 Level 1
010 Level2
011 Level3
100 Level4
101 Levels
110 Level6
111 No interrupt

The interrupt request input lines IL[2:0] must be
asserted with the same value for at least two cycles
before an interrupt is recognized by the Hobbit
microprocessor. The interrupt should remain asserted
until the interrupt handler clears lt. lf the Interrupt ls
accepted: the request enters at the top of the
execution-unit pipeline. Then all further Interrupts are
disabled until completion of the Interrupt sequence.
The ATT9201 O Hobbit microprocessor does not
indicate when it is servicing an Interrupt other than the
1/0 caused by the interrupt handler.

28

An NMI can be generated by setting IL[2:0] to OxO. An
Interrupt at level 0 is edge sensitive in that when
asserted, it must be deasserted for at least two cycles
before another interrupt at any level is recognized.
When any Interrupt enters the execution pipeline, all
interrupts are disabled, including NMI. Afterthe interrupt
sequence completes, if the NMI is still asserted, it will be
serviced.

Most instructions complete execution before the inter­
rupt request enters the top of the execution-unit pipe­
line. CATCH, ENTER, MUL[3], DIV[3], REM[3], UDIV,
and UREM are interruptible. The CATCH portion of
CRET is interruptible. The PC stored on the interrupt
stack is the address of the interrupted instruction for
transparently resuming execution. CATCH, ENTER,
and the CATCH portion of CRET continue as opposed
to restarting.

Interrupt Sequence

When the interrupt is serviced, the sequence is as
follows:

1. Disable interrupts
2. if (CSP •= ISP) ISP = SHAD

eise SP =SHAD

3. •(ISP-8) = PC of interrupted instruction
!• Becomes R8 with respect to new ISP •/

4. •(ISP--4) = PSW
I• Becomes R12 with respect to new ISP •/

5. ISP-16
6. SHAD= ISP

7. PC= •(VB + 16 + (4 x Interrupt level))
8. PSW &= OxFFFFOOOO

9. Enable NMI Interrupts

where the interrupt level is the value of the IL[2:0] lines
producing the interrupt. Note that the interrupt
sequence is almost the same as the KCALL sequence.
In particular, th.e event frame left on the interrupt stack
is the same, so a KRET instruction is sufficient for
returning from an Interrupt; interrupts are disabled dur­
ing this processing.

12123/92

Event Processing (continued)

Exceptlons

Exceptions signal an error in a program. The
exceptions recognized by the ATT9201 O Hobbit
microprocessor are listed In Table 22.

Table 22. Exceptlon ldentlfiers

Exceptlon Code

Integer zero-clivide Ox1
Trace Ox2
Illegal instruction Ox3
Alignment fault Ox4
Privilege violation Ox5
Unimplemented register Ox6
Fetch fault Ox7
Data read fault Ox8
Data write fault Ox9
Memory access VO bus fault OxA
MMU table walk bus fault OxB

The exception handler must always be present.

Exceptlon Sequence

1. Disable interrupts
2. if (CSP == ISP) ISP = SHAD

eise SP = SHAD
3. • (ISP-12) = exception identifier

/• Becomes R4 with respect to new ISP •/
4. •(ISP-8) = PC of faulted instruction

I• Becomes AS with respect to new ISP •/
5. •(ISP-4) = PSW

/• Becomes R12 with respect to new ISP •/
6. ISP-= 16
7. SHAD= ISP
8. PC= •(VB +4)
9. PSW &= OxFFFFOOOO

10. Enable NMI Interrupts
The sequence is almost the same as that of KCALL. lf
the target address of a CALL, CRET, JMP, KCALL,
KRET, or RETURN instruction, or of an Interrupt,
causes a rnemory fault, the PC saved on the Interrupt
stacl< is the target PC, not the address of the current
instruction.

12123192

ATT92010 Hobblt Microprocessor

In the case of exception IDs Ox8 and Ox9, the 32-bit
operand aligned virtual address of faulted access is
saved in the fault register.

For a text fetch bus error or a data read bus error, the
PC placed on the Interrupt stack is the address of the
instruction with the faulting address. For a data write
bus error, the PC placed on the Interrupt stack is not
the PC of the instruction associated with the faulted
access. Due to the unhinged nature of the stores in the
Hobbit microprocessor, the PC stored is the PC of the
instruction which was at the bottom of the execution
pipeline when the fault occurred, and not the PC of the
instruction with which the faulted store is associated.

Unimplemented lnstruction

An attempt to execute an unimplemented opcode
results in an unimplemented instruction sequence. This
sequence is faster than the exception sequence facili­
tating software emulation of extended instructions.
Since an unimplemented instruction can occur in either
execution mode, the unimplemented instruction handler
should be in both the user and kemel address space.

lf an unirnplemented instruction has an addressing
mode which is illegal for that instruction class, it is con­
sidered an illegal instruction (exception ID Ox3). Specif­
ically:

• An unimplernented monadic instruction is considered
illegal if it has a noni.vord addressing mode (<OxC).

• An unirnplemented instruction is considered illegal if
. . it follows a CPU instruction and contains an illegal

addressing mode, or cornbination of modes.

• RETURN with a negative operand.

There are no tests performed upon the addressing
modes of unimplemented dyadic instructions which do
not follow CPU instructions.

Unlmplemented lnstructlon Sequence

1. •(CSP) - PC of unimplemented opcode
2. PC= •(VB+ 12)

where CSP is either SP or ISP, depending upon the
state of the PSW current stack pointer bit.

29

ATT92010 Hobblt Microprocessor

Event Processing (continued)

Trapped Nlladlcs

An attempt to execute a one-parcel niladic with an
opcode in the range Ox200 through Ox3FF results in a
variant of the prevlously described unimplemented
instructlon sequence called the trapped niladic excep­
tion. This sequence is the same as the unimplemented
instruction sequence except VB + 8 is used for the vec­
tor. The trapped niladic handler should be in both the
user and kemel address space.

Trappecl NllacHc Sequence

1. •(CSP) =PC of unimplemented opcode
2. PC= •(VB +8)

where CSP is either SP or ISP, depending upon the
state of the PSW current stack pointer bit.

Event Processlng Prlorlty

The priorities assigned to each event type request are
as follows:

1. Reset
2. Interrupts
3. Trace
4. lnstruction fetch faults
5. Illegal instructions

6. Unimplemented instructionsttrapped niladics
7. Unimplemented registers
8. Alignment faults
9. Data read and write and read bus error faults

10. Privilege violation
11. Divide by zero

Events 3 through 11 are associated with a particular
instruction, while the higher-prlority events (reset and
interrupts) can occur Independent of the instruction
being executed. During some intemal sequences,
interrupts are disabled. Many events are mutually
exclusive of each other and cannot occur at the same
time or within the same instructlon.

30

ATT9201'0 Stacks

The ATT9201 o Hobbit microprocessor is equipped with
two stacks, the interrupt stack and the user stack. The
ISP register points to the interrupt stack, and the SP
register points to the user stack. The current stack
pointer (CSP) selects the current stack based on the
PSW current stack pointer bit. When an Interrupt or
exception is serviced, the CSP automatically switches
tothe ISP.

The interrupt stack resides in memory that should be
valid at all times. Part or all of the user stack resides in
the stack cache if it is enabled by the CONFIG stack
cache bit.

The Stack Cache

The goal of the stack cache is to keep the top elements
of the stack in high-speed registers (the stack grows to
lower addresses). The stack cache consists of a bank
of 64 registers (4 bytes wide) organized as a circular
buffer maintained by two registers: the maximum stack
pointer (MSP) and the stack pointer (SP). Both the
MSP and the SP are 28-bit registers holding quad-word
addresses. The MSP contains the address above the
highest address of the data that is currently kept in the
stack cache registers; the SP delimits the lowest
address of data in the stack cache. Therefore, only a
simple range check is needed to determine if an
address resides within the stack cache. lf
SP s; ADDR < MSP, it falls within the stack cache.
Although the stack cache limits are maintained on
quad-word boundaries, the stack cache is byte addres­
sable and appears as normal memory. All virtual
addresses generated to access data may freely refer­
ence the stack cache.

Since, the stack cache can contain the top 64 words of
the stack, most automatic variables and incoming and
outgoing arguments will be in the stack cache. The
stack cache is, therefore, a major factor in efficient
instruction execution.

12/23/92

ATT92010 Stacks (continuect)

Stack Cache Maintenance

Six instructions maintain the stack cache: CALL,
CATCH, CRET, ENTER, POPN, and RETURN. CALL
places the retum address on the top of the stack and
branches to the target address. CATCH guarantees that
the stacl< cache is filled at least as deep as the number
of the bytes specified in lts operand and is used after a
CALL instruction to ensure that an optimal portion of the
stack is on-chip. CRET is used by the kemel to load a
new SP and MSP and execute the function of CATCH
to fill the stack cache. CRET also loads a new PSW and
program counter address and is used for context
switches. ENTER allocates space on the new stack
frame by subtracting its operand, the size of the new
stack frame, from the SP. POPN deallocates the current
stack frame by adding its argument to the SP. RETURN
deallocates the current stack frame by adding its argu­
ment to the SP and then branching to the retum address
on the top of the stack.

ENTER and CATCH are also used to handle the cases
where the stacl< cache circular buff er is not large
enough to accommodate the entire stack frame. When
a new procedure is entered, the ENTER instruction
attempts to allocate a new set of registers equal to the
size of the new stack frame. lf free register space
exists in the circular buffer, then only the SP needs to
be modified. lf not, then the entries nearest the MSP
are flushed back to main memory. Two cases exist:

• lf the new stack frame size is less than 256 bytes,
then only the stack frame size minus the number of
free entries must be flushed.

• lf the new stack frame size is ~256 bytes, then all
valid stack cache entries are flushed and only part of
the new stacl< frame nearest the SP is kept in the
stack cache.

A garbage collection function needs the PSW enter bit
for proper operation. When 1, this bit indicates that the
stack frame contains uninitialized data. After the data is
initialized, software should clear this bit.

After a procedure retums to the caller, the number of
stack cache entries that were flushed since the call is
unknown, so some entries may need to be restored
from off-chip memory. The argument of the CATCH
instruction specifies the number of stack cache entries
that must be valid before execution can continue effi­
ciently. The CATCH argument is used as a stack offset,
and a virtual address is generated. lf this calculated
address resides within the stack cache, execution con­
tinues. However, if it lies outside the address range of

12123/92

ATT92010 Hobbit Microprocessor

valid stack cache entries, quad-words pointed to by the
MSP are restored from off-chip memory to the stack
cache, and the MSP is incremented until either CATCH
is satisfied or the stack cache is full. The CATCH
instruction behaves much like an assertion, since usu­
ally no entries need tobe restored and CATCH takes
only one clock cycle.

Integer Accumulator

The integer accumulator is not a fixed hardware
register. lt is the word in memory above the word
addressed by the CSP. The CSP is either the SP or the
interrupt stack pointer (ISP), as discussed above. The
integer accumulator normally resides on-chip in the
stack cache, but it may be off-chip if the SP = MSP or
CSP =ISP.

OxFFFFFFFC

0

31 0

ACCUMUL.ATOR ~csP+4
PC SAVE AREA ~csp

....__ ____ _,

Flgure 7. Integer Accumulator

Stack Precautions

The stack cache is conceptually a cache for memory. lf
an address is generated in any processing stage, e.g.,
indirect address calculations, the stack cache is refer­
enced if that address is greater than or equal to the SP
and less than the MSP. This conceptual model is
violated when executing with CSP =ISP. There are no
problems with memory accesses as long as the stack
cache, based at the SP, and the interrupt stack, based
at the ISP, do not overlap. For similar reasons, the
following addresses must not lie between the SP and
MSP:

• The vector table, defined by the vector base (VB)

• The address translation tables used by the MMU

• Any text address

31

ATT92010 Hobblt Mlcroprocessor

Control Registers

Table 23. ATT92010 Hobb/tMlcroprocessor Control Registers

Name Descrlptlon Name Descrlptlon

CONFIG Configuration Register SHAD Shadow Register

FAULT Fault Register SP Stack Pointer
10 ldentification Register STB Segment Table Base

ISP Interrupt Stack Pointer TIMER1 limer1 Register
MSP Maximum Stack Pointer TIMER2 limer2 Register
PC Program Counter VB Vector Base

PSW Program Status Word

CONFIG-Conflguratlon Register

The configuration register (CONFIG) is set to OxO upon reset.

BIT(S)_ __ 3_,1 :_25 __ ..__ _ _.._--......,........,.,....._ ______ 1_,5_:0 _____ ___,

RESERVED
KERNEL LITTLE ENDIAN

PC EXTENSION
STACK CACHE ENABLE

INSTRUCTION CACHE ENABLE
REFETCH BUFFER ENABLE

PREFETCH MODE
IMER1 CONFIGURA TION

IMER2 CONFIGURA TION

Flgure 8. CONFIG-Conflguratlon Register

Table 24. CONFIG-Configuratlon Register

Blt(s) Descrlptlon

31:25 Tlmer2 Configuratlon. A 7-bit field which configures timer2.
-Bit 29:25 select the intemal event which increments timer2.

Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Event
0 0 0 0 0 Count clock cycles.
0 0 0 0 1 Count completed instructions (folded branches are not

counted).
1 1 1 1 1 Do not increment the timer, a low-power feature.

-Bit 30. lf O, timer2 is on all the time (with reference to bits 29:25). lf 1, the timer only increments in
kemel mode (PSW execution level bit is 0).

-Bit 31. lf 0, timer2 does not generate an interrupt. lf 1, timer2 generates an interrupt using a timer2
vector when an overflow occurs (goes from OxFFFFFFFF to OxO). This is a level one interrupt. An
extemal level one interrupt and a timer1 interrupt have priority over timer2.

Note: Special precautions must be taken when moclifying the configuration register. The number of NOPs which must come after the register
write varies according to which bits are being modified and the number of wait-states being used by 1/0 transactions. The preferred
means of modifying CONFIG is to follow the CONFIG write by either a CRET or KRET.

32 12123/92

ATI9201 O Hobblt Mlcroprocessor

Control Registers (continued)

CONFIG-Conflguration Register (continued)

Table 24. CONFIG-Configuratlon Register (continued)

Bn(s) Descrlptlon

24:22 Timen Configuratlon. A 3-bit field which configures timer1 .
-Bit 22. lf 0, timer1 counts clock cycles. lf 1, timer1 counts completed instructions (folded branches

are not counted).
-Bit 23. lf O, tirner1 is on all the time (with reference to bit 22). lf 1, the timer only increments in kernel

rnode (PSW execution level bit is 0).
-Bit 24. lf O, timer1 does not generate an interrupt. lf 1, timer1 generates an interrupt using a timer1

vector when an overflow occurs (goes from OxFFFFFFFF to OxO). This is a level one interrupt. An
extemal level one interrupt has priority over tirner1 .

21 Prefetch Mode. This bit controls prefetching of instructions. lf O, prefetching off-chip is not performed;
predecoding from the prefetch buffer into the instruction cache is performed. lf 1, aggressive prefetch-
ing is performed. See the Prefetching Strategy section on page 26 for more information.

20 Prefetch Buffer Enable. A O disables the prefetch buffer from hitting; a 1 enables it. The prefetch buffer
is neither flushed nor altered when this bit is modified.

19 lnstructlon cache Enable. A O disables the instruction cache from hitting; a 1 enables it. The instruc-
tion cache is neither flushed nor altered when this bit is modified.

18 Stack cache Enable. A O disables the stack cache from hitting; a 1 enables it. The stack cache is nei-
ther flushed nor altered when this bit is rnodified.

17 PC Extension. A o selects o extension of 16-bit absolute addresses; a 1 selects the extension of 16-bit
absolute addresses where bits 31 :29 are copied from bits 31 :29 of the PC and bits 28:16 are set to 0.

16 Kernel Lhtle Endlan. A O selects data as big endian in kernel mode; a 1 selects data as little endian in
kemel mode.

15:0 Reserved. They return O when read and should be written with O on CONFIG writes.

Note: Special prec:autions must be taken when modifying the configuration register. The number of NOPs which must come after the register
write varies according to which bits are being modified and the number of wait-states being used by VO transactions. The preferred
means of modifying CONFIG is to follow the CONFIG write by either a CRET or KRET.

FAULT-Fault Register

This register reports the 32-bit operand aligned virtual address for the processing of exception IDs Ox8 and Ox9.

BIT(S) .__ ____________ 3_,1_:0 ____________ _,

FAULT ADDRESS

Flgure 9. FAULT-Faun Register

Table 25. FAULT-Faun Register

Bn(s) Descrlptlon

31 :0 Fault Address. This is the address causing the current exception for use by the exception handler.

12123192 33

ATT92010 Hobblt Mlcroprocessor

Control Registers (continued)

10-JTAG ID Register

This register is the JT AG device identHication register and is readable by serial shHting through the test access port
(TAP) and through normal register access. This register is read only. No operation is performed H this register is
written to.

BIT(S)l.___3_1.,..:28_...._ _____ 2.,..7:_12 _____ __.... ____ 1 1:_0 ___ __.

1
1 ~NUFACTURER CODE
PART CODE

VERSION CODE

Flgure 1 o. ID-ldentlfication Register

Table 26. ID-ldentlflcatlon Register

Blt(s) Descrlptlon

31:28 Version Code. This field is OxO for mask one and Ox1 for mask two.
27:12 Part Code. This field is OxO for the ATT9201 O Hobbit microprocessor.
11:0 Manufacturer Code. This field is Ox3B for AT&T Microelectronics.

ISP-Interrupt Stack Pointer

The interrupt stack pointer (ISP) is used to generate addresses (i.e., as the base address in stack offset modes, to
locate the accumulator, and as the pointer manipulated by the instructions CALL, RETURN, POPN, and ENTER)
whenever the PSW current stack pointer bit is O. The ISP is not associated with the stack cache. The instructions
CRET, KCALL, and KRET, and operating system sequences, interrupts, and exceptions use the ISP to maintain a
stack of event blocks. The ISP must be valid at all times. A fault on any ISP based address during event processing
results in the resetting of the ATT9201 O Hobbit microprocessor. Ai;fdress translation is performed H the MMU is
enabled by setting the PSW virtuaVphysical addressing mode bit to 1.

BIT(S)._I ___________ 31,....:4 __________ _.__3,....:0_,

1 ~ESERVED
QUAD-ALIGNED INTERRUPT STACK POINTER

Flgure 11. ISP-Interrupt Stack Pointer

Table 27. ISP-Interrupt Stack Pointer

Blt(s) Descrlptlon

31:4 Quad-Allgned Interrupt Stack Pointer. This is the address of the interrupt stack.
3:0 Reserved. These bits retum O when read.

34 12123/92

ATT9201 O Hobbit Microprocessor

Control Registers (continued)

MSP-Maxlmum Stack Pointer

The maximum stack pointer (MSP), In conjunction with the SP, is associated with the on-chip stack cache. lf the
current stack pointer is the SP then, any address which is greater than or equal to the SP and less than the MSP
hits in the stack cache.

Stack cache hits when SP s address < MSP.

On a mernory access which hits in the stack cache, data is fetched or stored in the cache, not in extemal mernory.
The MSP rnust be greater than or equal to the SP and less than or equal to SP + 256 (stack cache size), or the
result of stack cache accesses are dependent upon context and, therefore, are unpredictable.

Whenever the SP is the direct destination of an instruction, through a CPU-prefixed instruction with the SP as the
destination, the MSP is updated with the same value. This defines an empty stack cache (SP = MSP). The MSP is
manipulated implicitly by CATCH, CRET, ENTER, POPN, and RETURN. Hence, the MSP should only be modified
by stack manipulation instructions. Address translation is performed if the MMU is enabled by setting the PSW vir­
tual/physical addressing rnode bit to 1.

BIT(S)l.__ __________ 3_,1_:4 _____________,3_:o__,

1 ~ESERVED
QUAD-ALIGNED MAXIMUM STACK POINTER

Flgure 12. MSP-Maxlmum Stack Pointer

Table 28. MSP-Maxlmum Stack Pointer

Blt(S) Descrlptlon

31:4 Quad·Allgned Maximum Stack Pointer. This is the address above top of user stack.
3:0 Reserved. These bits retum O when read.

PC-Program Counter

The program counter (PC) addresses the instruction which is currently being executed. lnstructions are aligned on
parcel (haH-word) boundaries. Since parcels are composed of 2 bytes, the PC is always a multiple of two and the
low-order bit is always 0. The PC cannot be directly manipulated by a general instruction. lt can only be read or
modified by control-flow instructions CALL, CRET, JMP, KCALL, KRET, and RETURN and read by the move
instruction LDRAA.

BIT(S) ._I ------------3-r-1:_1 ___________ l.,.....o1

1 . ~ESERVED
PROGRAM COUNTER

Flgure 13. PC-Program Counter

Table 29. Pc-Program COunter

Blt(s) Descrlptlon

31:1 Program Counter. This is the address of the current instruction.
0 Reserved.

12/23/92 35

ATT9201 O Hobblt Mlcroprocessor

Control Registers (continued)

PSW-Program Status Word

The program status word (PSW) is set to OxO upon reset.

BIT(S) ______ 3 1:_17 _____ _._1........,1....._1...,4 :12__..1 1.._10-9..._8 7.......,6 _ 3:0 _ _,

RESERVED

RESERVED
FLAG

CARRV
OVERFLOW

TRACE INSTRUCTION
TRACE BASIC BLOCK

CURRENT STACK POINTER
EXECUTION LEVEL

ENTERGUARD
INTERRUPT PRIORITV LEVEL

SER UTILE ENDIAN
VIRTUAUPHVSICAL ADDRESSING MODE

Flgure 14. PSW-Program Status Word

Table 30. PSW-Program Status Word

Blt(s) Descrlptlon

31:17 Reserveei.
16 Vlnual/Physlcal Addresslng Mode. lf 0, physical addressing (memory management disabled) is

enabled, and NCÄCHE is asserted. H 1, virtual addressing is enabled (memory management enabled).
Special precautions must be taken when explicitly modifying this bit. lf it is explicitly modified, the sec-
tion of code executing must be mapped physical address "' virtual address. The safest means of manip-
ulating this bit is through KRET.

15 User Llttle Endlan. lf 0, data is selected as big endian in user mode. lf 1, data is selected as little
endian in user mode.

14:12 Interrupt Prlorlty Level. Interrupts are accepted when the requesting device level (IL[2:0]) is less than
interrupt priority level or equal to 0. When these bits equal 7, all interrupts are enabled.

11 Enter Guard. Set on an uneventful ENTER. This bit is not cleared when the PSW is read.
10 Executlon Level. lf 0, execution at the kemel level is performed. lf 1, execution at the user level is per-

formed.
Note: The exception and interrupt sequences only alter the lower 16 bits of the PSW. Toremain restartable, lhe carry and overflow bits are not

cleared on reading the PSW until lhe instruction completes. Reads of lhe PSW are not interlocked against flag setting. lf an instruction
sets lhe flag, carry, or overflow bits, lhere must be at least two intervening instructions, which do not use or modify lhese bits, before the
PSW can be aca.irately read.

36 12123192

ATT9201 O Hobblt Mlcroprocessor

Control Registers (continued)

PSW-Program Status Word (continued)

Table 30. PSW-Program Status Word (continued)

Blt(S) Descrlptlon

9 CUrrent Staek Pointer. H O, the ISP is used as the CSP for stack operations. H 1, the SP is used as the
CSP for stack operations. lf this bit is modified by a direct write to the PSW, thereby changing the CSP,
it is necessary to update SHAD to the value of the new SP. This update is handled automatically by
CRET, KCALL, and KRET. H this bit is set to 1, and it was previously 0, the instruction modifying the
PSW should be followed by the instruction MOV %SP,%SHAD. lf this bit is set to O when it was previ-
ously 1, the next instruction should be MOV %1SP,%SHAD. Due to interrupts and exceptions, it is rec-
ommended that this bit not be modified by a direct write to the PSW since the above operations cannot
be guaranteed to be atomic.

8 Trace Basic Block. Controls basic block tracing. lf 1, the Hobbit microprocessor executes instructions
until a CALL, RETURN, or any jump (folded or not) instruction, referred to as the N instruction, executes.
The instruction following instruction N, referred to as N + 1, is not permitted into the execution unit, and
a trace instruction is generated intemally. This trace instruction blocks the pipeline and forces the Hobbit
microprocessor to take a trace exception using the PC of the N + 1 instruction as the exception PC. As
branch folding is performed prior to the trace identifier, folded branches are not explicitly traceable. lf
both the trace instruction and the trace basic block bits are set to 1, the function is that of the trace
instruction.

7 Trace lnstructlon. Controls instruction tracing. When 1, the Hobbit microprocessor allows the next
instruction, N, to execute normally. The instruction following instruction N, referred to as N + 1, is not
permitted into the execution unit, and a trace instruction is generated on the fly. This trace instruction
blocks the pipeline and forces the Hobbit microprocessor to take a trace exception using the PC of the N
+ 1 instruction as the exception PC. As branch folding is performed prior to the trace identifier, folded
branches are not explicitly traceable. lf both the trace instruction and the trace basic block bits are set to
1, the function is that of the trace instruction.

6 Overflow. lf 0, this bit indicates that an operation did not generate a signed overflow. lf 1, this bit indi-
cates that an operation generated a signed overflow. This bit is not cleared by a read of the PSW.

5 carry. lf 0, this bit indicates that an operation did not generate an unsigned overflow. lf 1, this bit indi-
cates that an operation generated an unsigned overflow. This bit is not cleared by a read of the PSW.

4 Flag. Set/cleared by CMP, TADD, TESTC, TESTV, and TSUB instructions. This bit is not cleared by a
read of the PSW.

3:0 Reserved. These bits are reserved. They return O when read and must be written with o on PSW writes.
Note: The exception and interrupt sequenc:es only alter the lower 16 bits of the PSW. To remain restartable, the carry and overflow bits are not

cleared on reading the PSW until the instruction completes. Reads of the PSW are not interlocked against !lag setting. lt an instruction
sets the !lag, carry, or overflow bits, there must be at least two intervening instructions, which do not use or modify these bits, before the
PSW can be accurately read.

12/23192 37

ATT9201 O Hobblt Microprocessor

Control Registers (continued)

SHAD-Shadow Register

The shadow register (SHAD) is a copy of the CSP. lt is maintained by the ATT9201 O Hobbit microprocessor's inter­
nal sequences to facilitate restarting of instructions. In the course of CRET. ENTER, KCALL, KRET, and RETURN
instructions, or any time the CSP is modified, SHAD is automatically updated to be consistent with the CSP.

BIT(S)._l ----------3..-1:4 __________ ...__3 :0___.I

LAD-ALIGNED CSP SHADOW ~ESERVED

Flgure 15. SHAD-Shadow Register

Table 31. SHAD-Shadow Register

Blt(S) Descrlptlon

31:4 Quad-Allgnec:I CSP Shadow. These bits contain a copy of the CSP.
3:0 Reserved. These bits retum O when read.

Note: lf the PSW current stack pointer bit is modified by a direct write to the PSW, thereby changing the CSP, it is
necessary to update SHAD to the value of the new SP. KCALL and KRET handle this automatically.

SP-Stack Pointer

The stacl< pointer (SP) addresses the top of the stack. The stacl< grows downwards toward memory location zero.
The SP is used to generate addresses (i.e., as the base address in offset modes, to locate the accumulator, and as
the pointer manipulated by CALL, ENTER, POPN, and RETURN) whenever the PSW current stacl< pointer bit is 1.
Address translation is perfonned if the MMU is enabled by setting t~~ PSW virtuaVphysical addressing mode bit to 1.

BIT(S) l __________ 3.,....1:4 _____________ 3..,.:0__.

LAD-ALIGNED USER STACK POINTER ~ESERVED
Flgure 16. SP-Stack Pointer

Table 32. SP-Stack Pointer

Blt(s) Descrlptlon

31:4 Quad-Allgned User Stack Pointer. This is the address of the user stack.
3:0 Reserved. These bits retum O when read.

38 12123/92

ATT92010 Hobbit Microprocessor

Control Registers (continued)

STB-Segment Table Base

This register contalns a pointer to the start of the segment table used in address translation when virtual addressing
is tumed on by the PSW virtuaVphysical addressing mode bit. The base of the segment table is always page-size
aligned, 4 Kbyte boundary. The STB is only used during misprocessing, to fill entries in the on-chip TLB or segment
registers. When the STB is written, the TLBs and segment registers of the MMU are flushed, invalidating all entries.
Neither the physically addressed PFB, the virtually addressed IC, nor the virtually addressed SC are flushed. Cache
coherency is the responsibility of the user.

BIT(S) ._I _______ 3..,..1 : ... 12 _______ ,_l1,...1l ___ __,10_:0 ___ __.

1
1 ~ESERVED
CACHE BIT

SEGMENT TABLE BASE ADDRESS

Flgure 17. STB-Segment Table Base

Table 33. STB-Segment Table Base

Btt(s) Descrlptlon

31:12 Segment Table Base Address. This is the page-aligned base address of the segment table.
11 Cache Bit. A cacheable bit that is copied to the cacheable pin whenever a segment table access is

made during misprocessing, indicating if segment table entries should be cached. lf 1, NCACAE is
deasserted and caching of segment table entries is allowed.

10:0 Reserved. Return O when read.

''

12123192 39

ATT92010 Hobblt Mlcroprocessor

Control Registers (continued)

TIMER1-Tlmer1 Register

This register can be configured by the CONFIG timer1 configuration bits to count various events.

BIT(S).__ ___________ 3.,..1:0 ___________ __.

TIMER1 VALUE

Flgure 18. TIMER1-Tlmer1 Register

Table 34. TIMER1-Tlmer1 Register

Blt(s) Descrlptlon

31 :0 Tlmer1 Value. These bits contain the count value for 1imer1.

TIMER2-Tlmer2 Register

This register can be configured by the CONFIG timer2 configuration bits to count various events.

BIT(S).__ __________;;.3°"'"1:0;;..._ __________ __.

TIMER2 VALUE

Flgure 19. TIMER2-Tlmer2 Register

Table 35. TIMER2-Tlmer2 Register

Blt(s) Descrlpt1o'n

31 :0 Tlmer2 Value. These bits contain the count value for 1imer2.

40 12123192

Control Registers (continued)

VB-Vector Base

ATT92010 Hobblt Microprocessor

BIT(S) I __________ 3_,1_:4 __________ _.____,3:0 _ _,

1 ~ESERVED
QUAD-ALIGNED VECTOR TABLE BASE

Flgure 20. VB-Vector Base

Table 36. VB-Vector Base

Btt(s) Descrlptlon

31 :4 Quad·Allgned Vector Table Base. These bits are used as the base of a table which contains transfer
addresses used by KCALL, interrupts, and exceptions. Address translation is performed if the MMU is
enabled by setting the PSW virtuaVphysical addressing mode bit to 1. The vector table, as shown below,
should always be available. lf an access to the vector table entry is faulted, the Hobbit microprocessor
resets.

The exception PC handler should be present in memory, since a memory fault would cause an infinite
loop until the interrupt stack is exhausted and the Hobbit microprocessor resets. Additionally, the niladic
trap and unimplemented instruction handlers must be in the user memory space since these handlers
can be accessed while in user mode.

VB + 52-+ FP EXCEPTION
VB + 48-+ TIMER2 INTERRUPT
VB + 44-+ TIMER1 INTERRUPT
VB + 40-+ INTERRUPT 6
VB + 36-+ INTERRUPT 5
VB + 32-+ INTERRUPT 4
VB + 28-+ INTERRUPT 3
VB + 24-+ INTERRUPT 2
VB + 20-+ INTERRUPT 1 ..
VB+ 16-+ NONMASKABLE INTERRUPT
VB+ 12-+ UNIMPLEMENTED INSTRUCTION
VB + 8-+ NILADIC TRAPS
VB + 4-+ EXCEPTION PC
VB -+ KCALL PC

3:0 Reserved. These bits retum 0 when read.

12123192 41

ATT9201 o Hobblt Mlcroprocessor

Addressing and Alignment Restrictions

The numbering of bits within bytes and words corresponds to that in the DEC VAX1, lntel2 80X86, and Motorola3
680XO. The numbering of bytes within data words is selectable independently for the user mode by the PSW user
little-endian bit and the kemel mode by the CONFIG kernet little-endian bit, respectively. When the PSW user little­
endian bit and CONFIG kemel little-endian bit equals 0, the numbering of bytes within data words corresponds to
that in the IBM4 370 and Motorola 680XO in the user/kemel mode (see Figure 21.)

BYTE3 ol

Flgure 21. Blg-Endlan Byte Orderlng

When the PSW user little-endian bit and CONFIG kernet little-endian bit equals 1, the numbering of bytes within
data words corresponds to that in the VAX and Intel 80X86 in the user/kemel mode (see Figura 22.)

ls1 BYTE 3 24123 BYTE 2 1sl 1s BYTE 1 BYTEO ol

Flgure 22. Llttle-Endlan Byte Orderlng

Text is always in big-endian order. The AIT92010 Hobbitmicroprocessorfetches only words; bytes and half-words
are accessed by extracting them from the surrounding word. During reads, the byte enables indicate which bytes
are to be extracted from within the word being fetched. All writes are done to word addresses, with the appropriate
byte enables asserted.

All operand addresses should be naturally aligned for the operand type5. lf an operand fetch or operand store is to
an address which is not property aligned for the data type, an alignment exception is signaled. lnstructions must be
aligned on half-word boundaries, although no exception is signaled. Alignment occurs as the least significant bit of
the address is ignored for text fetches.

Memory Management

The Hobbitmicroprocessor has an on-chip memory management unit (MMU), which translates virtual addresses (if
enabled), as seen by a programmer, into physical addresses. Two methods for address translation are provided:
paged and nonpaged segments (see Figura 23 and Figure 24, respectively.)

The 32-bit virtual address space is divided into 1,024 segments, each representing 4 Mbytes of virtual addresses
with a 4 Mbyte alignment. Paged segments are further divided into 4 Kbyte pages. Nonpaged segments provide a
variable-sized (4 Kbyte to 4 Mbyte in 4 Kbyte increments) contiguous segment of memory. In paged segment
address translation, each page can be mapped anywhere in the 32-bit physical address space on a 4 Kbyte
boundary.

Address translation is enabled by setting the PSW virtuaVphysical bit to 1. To speed paged segment address trans­
lation, the Hobbit microprocessor has two TLBs, one for text addresses and one for data addresses. Each TLB has
32 entries and is fully associative. Two nonpaged segment registers (NPSRs), one for a text address and one for a
data address, speed nonpaged segment address translation.

1. DEC and VAX are tradernarks of Digital Equipment Corporation.
2. Intel is a trademark of Intel Corporation.
3. Motorola is a registered trademark of Motorola, lnc.
4. IBM is a registered trademark of International Business Machines Corporation.
5. Byte on byte, haH-words on half-word, words on word address boundaries.

42 12/23192

ATT92010 Hobbit Microprocessor

Memory Management (continued)

Additionally, to provide a zero-cycle program counter translation, a micro-TLB is provided for text references in the
present page. This micro-TLB contains the last translation used by the prefetch unit and provides zero-cycle
address translation. H the micro-TLB misses, one cycle is required for update if the address translation hits in the
text TLB ortext NPSR. H an address is not contained in the appropriate TLB or NPSR, the on-chip MMU automat­
ically fetches the appropriate entry by walking the mernory management tables.

12123192

PAGED VIRTUAL AODRESS 31 SEGMENT# Z! 21 PAGE# 12 11 PAGE OFFSET o

SEGMENT PAGE PAGE
TABLE TABLE FRAME

PHYSICAL
WORD

PAGE FRAME BASE

SEGMENT TABLE BASE

Flgure 23. Paged Segment Address Mapplng

NONPAGED VIRTUAL ADDRESS 31SEGMENT # 21 SEGMENT OFFSET

SEGMENT
FRAME

SEGMENT
TABLE·

BOUND

BASE

SEGMENT TABLE BASE

PHYSICAL
WORD

Flgure 24. Nonpaged Segment Address Mapplng

0

43

ATI9201 O Hobblt Microprocessor

Memory Management (continued)

Virtual Address Mapping

All addresses In the Hobbit microprocessor are
translated by walking a series of map tables (see
Figure 23 and Figure 24 on page 43). All map tables in
the memory mapping scheme are 4,096 bytes long
(one page frame). All addresses contained within a
memory management table are physical addresses, so
address translation is not recursive. Address mapping
checks the validity of virtual addresses and translates
them into physical addresses. A virtual address is
flagged as illegal if one of the following happens:

• There is no valid physical mapping.

• User execution level code attempts to access kemel
execution level addresses.

• A store is attempted to read-only data.

Any violation is signaled as a memory fault as
described below:

Fetch fault: lf, du ring an address translation for text,
there is no physical mapping or an attempt is made to
access a kemel only page while in user mode, this fault
is signaled. Note that a fetch fault is generated only on
demand fetches and only stops fetching, until a
demand fetch, if aggressive fetching is enabled by the
PSW prefetch bit.

Read fault: lf, during an address translation for reading
data, there is no physical mapping or an attempt is
made to access a kemel only page while in user mode,
this fault is signaled. This fault can be ignored if the
read was requested because of a mispredicted branch.

Wrlte fault: lf, during an address translation for either
writing data or while executing one of the stack
manipulation instructions, there is no physical page, an
attempt is made to access a kemel only page in user
mode, or an attempt is made to write to a nonwritable
page, this fault is signaled.

44

Paged Segment Addresses

A page frame is a contiguous region of 4,096 bytes,
beginning at an address evenly divisible by 4,096 (the
low 12-bits of the address are all 0). Because all page
frames begin on page boundaries, additions are not
necessary to calculate addresses. When paged
segment translation is in use, virtual addresses are
divided into the following three fields (see Figure 23 on
page 43):

• Segment number

• Page number

• Page offset

Nonpaged Segment Addresses

When nonpaged segment translation is in use, virtual
addresses are divided into the following two fields (see
Figure 24 on page 43):

• Segment number

• Segment offset

12/23192

ATT9201 O Hobblt Microprocessor

Memory Management (continued)

Segment Tables

The segment number selects one entry from 1 ,024 entries in the segment table-a 4 Kbyte table located in one
page frame in physical memory. Each segment table entry is 4 bytes long and contains the base address of a page
table or the base address and size of a nonpaged segment. The base address of the segment table is contained in
the segment table base register (STB).

The address of a segment table entry is formed by concatenating the upper 20-bits of the segment table base reg­
ister with the upper 10 bits of the virtual address: the base address field in the segment table base defines the
beginning of a segment table in physical memory, and the segment number field of the virtual address defines a
word within the segment table.

There are two possible formats for a segment table entry. Paged segments have referenced and modified bits for
enhanced memory management. Nonpaged segments only require the segment table to resolve references.

Pagecl Segment Table Entrles

The segment table for paged segments defines 1,024 segments each 1,024 pages long (for a total of
4,294,967,296 bytes). Segments are defined as a series of pages, so there may be holes in a segment's address
space. There is no length specification for a segment: the validity of constituent pages defines a segment's extent.
Each paged segment table entry defines a page table.

BIT(S) L ________ 31.,....:1_2 _______ J...,.1~[__ 1..,.0_:4 __ I"T"3I 2:_1 I_o]

l ~ALID

CACHE
PAGE TABLE BASE ADDRESS

Flgure 25. Pagecl Segment Table Entry

RESERVED
SEGMENT

RESERVED

Table 37. Pagecl Segment Table Entry

BH(s) Name/Descrlptlon

31:12 Page Table Base Address. The base address in physical memory of the page table.
11 Cache. lf 1, filCÄCAE is deasserted when fetching page table entries.

10:4 Reserved.
3 Segment. O for paged segment translation.

2:1 Reserved.
0 Valld. lf 1, the entry is valid.

12123/92 45

ATT92010 Hobblt Mlcroprocessor

Memory Management (continued)

Segment Tables (continued)

Nonpaged 8egment Table Entrles

The segment table for nonpaged segments defines 1,024 segments each from 4,096 bytes to 4 Mbytes long.

BIT(S) [.__ ___ 3...,1 :_22 ___ I..__ ___ 2-r1 :_12 ___ J...,1,.....1_L __,10.-:4 __ l 3,.....l-r2 J..._1,...l"T"'Oj

1-iALID

CACHE
SEGMENT BOUND

SEGMENT BASE ADDRESS

WRITABLE
USER

SEGMENT
RESERVED

Flgure 26. Nonpaged Segment Table Entry

Table 38. Nonpaged Segment Table Entry

Blt(S) Name/Descrlptlon

31:22 Segment Base Address. These bits contain the base address of the segment in physical memory.
21:12 Segment Bound. These bits contain the size of the segment, ranging from 4,096 bytes (OxO) to

4 Mbytes (Ox3FF) in increments of 4,096 bytes.
11 Cache. lf 0, NCÄCHE is asserted when accessing this segment. Text fetches will not be cached in the

prefetch buffer cache, but they will be cached in the decoded instruction cache. lf 1, NCACHE is deas-
serted when accessing nonpaged segments. This bit has no effect on the use of the stack cache.

10:4 Reserved.
3 Segment. A 1 for nonpaged segment translation.
2 User. lf 1, the segment can be accessed at user execution level (all valid segments can be accessed at

kemel level).
1 Wrltable. lf 1, the segment can be written (all valid segments can be read).
0 Valld. lf 1, the segrnent is valid.

The segment offset field of the virtual address defines the byte within the segment frame in which the virtual
address is mapped. The physical address consists of the segment base address from the segment table entry con­
catenated with the segment offset field of the virtual address. lf a protection violation is detected, no memory
access is made and a memory fault exception is executed.

Mixed Paged and Nonpaged Segment Tables

Since the segment bit in the segment table entry controls if the segment table entry is paged or nonpaged, a seg­
ment table can contain both paged and nonpaged entries.

46 12123/92

ATT9201 O Hobblt Mlcroprocessor

Memory Management (continued)

PageTables

The address of a page table entry is formed by concatenating the upper 20-bits of the segment table entry with bits
21 :12 of the virtual address (which is the page number).

A page table entry defines the physical address corresponding to the virtual address and provides protection infor­
mation and other data available for paging algorithms. The reference and modified bits are automatically set by the
on-chip MMU, but they must be cleared by sottware when needed.

BIT(S).__ _______ 31 :1_2 _______ ...,1.,..1 __ 10 :s __ ...,4 3...,2,.........

CACHE
PAGE FRAME BASE ADDRESS

Flgure 27. Page Table Entry

WRITABLE
SER

EFERENCED
MODIFIED

RESERVED

Table 39. Page Table Entry

Blt(S) Name/Descrlptlon

31:12 Page Frame Base Address. These bits contain the base address in physical memory of the page
frame.

11 Cache. lf 0, NCACHE is asserted when accessing this page. Text fetches will not be cached in the
prefetch buffer cache, but they will be cached in the decoded instruction cache. lf 1, NCACHE is
deasserted when accessing this page. This bit has no effect on the use of the stack cache.

10:5 Reserved. ..
4 Modlfled. Set to 1 when a write occurs within the page. On subsequent writes to this page, the memory

copy of the page table entry is not accessed to set this bit again. lf a direct write to the memory copy of
the page table entry changes this bit, the entry should be flushed from the TLB using the FLUSHPTE
instruction.

3 Referenced. Set to 1 when a page is first referenced. On subsequent references to this page, the
memory copy of the PTE is not accessed to set this bit again. lf a direct write to the memory copy of the
PTE changes this bit, the entry should be flushed from the TLB using the FLUSHPTE instruction.

2 User Bit. lf 1, the page can be accessed at user execution level (all valid pages can be accessed by
the kemel).

1 Wrltable. lf 1, the page can be written (all valid pages can be read).
0 Valld. lf 1, the page is valid.

The page offset field of the virtual address defines the byte within the page frame in which the virtual address is
mapped. The physical address consists of the page frame base address f rom the page table entry concatenated
with the page offset field of the virtual address. lf a protection violation is detected, no memory access is made and
a mernory fault exception is executed.

12/23192 47

ATT92010 Hobblt Mlcroprocessor

Memory Management (continued)

Memory Management Operations

Both TLBs and NPSRs are co~letely flushed whenever the ATT9201 O Hobbit microprocessor is reset (either by
asserting the extemal reset pin, or the detection of an intemal event which causes the Hobbit microprocessor to
reset). The TLBs and NPSRs are also flushed whenever the segment table base register is written (see the STB­
Segment Table Base section on page 39).

Individual TLB and NPSR entries may be fh.Jshed with the FLUSHPTE instruction. lf the effective address in the
FLUSHPTE lnstruction is cached in one or both of the TLBs or NPSRs, the TLB or NPSR entry is marked invalid,
so any subsequent access of that virtual address will be translated by the full memory map table walk. The
FLUSHPTE instruction is not privileged, so a user process may flush any or all entries in the on-chip TLBs or
NPSRs. Although this may degrade the performance of the process, lt does not affect correctness, since the
memory management tables in physical memory define the address mapping and the FLUSHPTE instruction does
not alter the tables in memory.

~ is asserted when page table entries are fetched. lf the R and M bits of the entry are current, ~ is cleared.
lf either R or M bits must be updated, the page table entry is wrmen back to memory with ~ still asserted. n:mR
is deasserted when the write completes.

lt there is an extemal bus error signaled during the memory management table walk, the Hobbit microprocessor
will take an exception (see Table 22 on page 29).

48 12123/92

Bus Operation and Arbitration

To facilitate rrultiple bus masters, the bus arbitration
protocol does not make the ATT9201 O the default bus
master. A centralized arbiter selects the current bus
master and controls transactions over the bus. A
synchronous bus protocol is used to exchange
ownership of the bus from one master to another. The
central bus arbiter must execute this protocol,
asserting and negating BGRANT to the various bus
masters in a consistent manner.

The signals involved in this protocol generated by the
central bus arbiter are HRESET, BGRANT, and RETRY.
There is a BGRANT for each bus master, with the other
signals shared among bus masters.

The signals involved in this protocol generated by the
bus masters are 'BREO, ~ IOC[1 :0), and amR.
There is a tmrn for each bus master, with the other
signals shared among bus masters.

Finally, the device being accessed generates ~.

Upon reset of the system, which must be synchronous,
the arbiter selects one of the requesting bus masters
as current bus master by asserting its BGRANT. Having
received BGRANT, the master takes ownership of the
bus. The bus arbiter monitors the bus, keeping track of
the state of the bus. The Hobbit microprocessor
asserts 'BREO when an 1/0 transaction is pending
(upon reset, all Hobbit microprocessors want to start
execution at address OxO).

The arbiter selects a new bus master by deasserting
BGRANT to the current bus master and asserting
BGRANT to the next bus master at the end of any
outstanding bus transactions. lf the current bus master
loses BGRANT with an outstanding transaction on the
bus, that master remains on the bus until ~ is
asserted with IOC[1 :0) equal to zero and amR is
deasserted.

12123192

ATT9201 O Hobbit Microprocessor

The new bus master takes ownership of the bus at the
beginning of the next bus cycle after receipt of
BGRANT. The arbiter must assert BGRANT in a manner
which inserts a dead cycle between the end of the
previous bus owner's BGRANT and the beginning of the
next bus owner's BGRANT.

The ATTT9201 o asserts BGAck to indicate that it has
bus ownership, and it deasserts BGÄCK to indicate that
it has relinquished the bus.

Requestlng the Bus

In Figure 28, bus cycles 1through4 show a typical bus
request and acquisition.

Surrendering the Bus

The arbiter signals the Hobbit microprocessor to
relinquish the bus by deasserting BGRANT. When
BGRANT is deasserted, the ATT9201 O will relinquish
ownership of the bus and deassert BGAcK. lf the
Hobbit microprocessor is running a bus transaction and
BGRANT is deasserted, ownership of the bus will be
relinquished after receipt of DTJm'K with IOC[1 :O] equal
to zero and ~ is deasserted. lf the Hobbit
microprocessor is not running a bus transaction and
BGRANT is deasserted, ownership of the bus will be
relinquished at the beginning of the next bus cycle.
BGÄCK is deasserted by the Hobbit microprocessor in
the same bus cycle that ownership of the bus is being
relinquished.

· 'Most arbitration protocols will want to continue to grant
the bus to the current bus master if it continues to
request the bus by asserting its lrnrn.

In Figure 28 on page 50, bus cycles 15 through 17
show a typical release of the bus.

49

ATT92010 Hobblt Mlcroprocessor

Bus Operation and Arbitration (continued}

Surrenderlng the Bus (continued}

Figura 28 represents a cacheable single-word data read followed by a double-word text read. The accesses are
not interlocked and don't produce bus errors.

5 1 6 I 7 I 8 I 9 l 10 l 11 l 12 l 13 l 14 l 1s l 16 l 11 l 1a 19 20
1 1 1 1 1 1 1 1 1 1 :

1 1 : 1 : 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 r
1 ~ 1 1

1 1 1 1 1 1 1 1 1 1 1

'. '.
: oxo'. : : X : Ox~ X '.oxo: ~

~
1 1
1 :, 1

1 1 1

~
1

Flgure 28. Read Bus Cycles wlth Bus Arbltratlon

50 12123/92

Bus Operation and Arbitration
(continued)

Bus Transactlon Types

Normal bus transfers begin with the assertion of STÄRT
and end with the assertion of OTACK. In case of an
error during a bus transfer, the transaction may be
ended by the assertion of ARESET or 'BERR with
~. lnterlocked bus transfers end with the
deassertion of ID'CK following a ~. Multiple word
transfers end when IOC[1 :O] • O with assertion of
~. Sub-word aocesses are the same as single­
word accesses with the exception that only the
appropriate byte enables are asserted.

Read Transactlons

Read transactions rnay fetch text or data. Text reads
are always double-word transfers. Data reads are
either single-, double- or quad-word transfers. After
completion of a read transaction, a loopback is
performed if the Hobbit microprocessor rernains owner
of the bus and there are no pending bus transactions.
See Figure 28 on page 50 for the following example.

Bus cycles 4 through 6 show a typical read transaction.
In bus cycles 7 through 10, a loopback cycle is
performed. In bus cycles 11 and 15, a double-word
transaction is performed. In bus cycle 16, another
loopback cycle is performed. The ATI9201 O holds all
bus signals at their previous values and loops back the
data read on the previous cycle.

Note: The bus transaction may be ended by HRESET
or 'BERR with DTÄöR to signal an error.

12123192

ATT9201 O Hobblt Mlcroprocessor

wrne Transactlons

Write transactions are either single-, double-, or quad­
word transfers. See Figure 29 on page 52 for the
following example.

Bus cycles 4 through 7 show a typical write transaction.
In bus cycles 8 through 10, the microprocessor
rnaintains the previous bus cycles values on rnost
signals. In bus cycles 11through13 and bus cycles 14
through 15, two rnore write transactions are perfonned.

Note: The bus transaction may be ended by RAESET
or 'BERR with ~ to signal an error.

lnterlocked Bus Transfer

This is a read-modify-write type bus operation. This
sequence of operations is noninterruptible. The bus
rernains locked through the write. lf BGRANT is de­
asserted during an interlocked operation, the operation
is completed and transfer of bus ownership is delayed
a clock cycle. See Figure 30 on page 53 for the
following example.

Bus cycles 2 through 4 show the read portion of the
RMW operation. Bus cycles 7 through 8 show the write
portion of the RMW operation. In bus cycle 9, rneR
rernains asserted by the microprocessor adding a dead
cycle. In bus cycle 11, the next bus cycle begins.

Bloek Data Transfer

The block transfer sizes that are supported are double­
and quad-word. The block transf er looks like a series of

· · single-word bus transfers with the microprocessor
incrementing address bits HA[3:2] and decrementing
IOC[1 :O] for each access. Block transfers are not
interruptible. Block transfers may be retried with the
transfer resuming where it was aborted when RETRY is
deasserted.

51

ATI92010 Hobblt Mlcroprocessor

Bus Operation and Arbitration (continuect)

Bus Transactlon Types (continued)

Figure 29 represents a cacheable single-word data write followed by a double-word data write.

52

BUS
CYCLE 2 3 1 4 1 5 1 6 1 7 1 8 1

: 1 1 1 1 1

1 : 1 1 1 1
START t----+--. 1 1 1 1

1 1 1 1
1 1 1 1 Ri5 1 1 1 1
1 1 1 1
1 1 1 1

NCACHE !o---!-.-..l'--~
1 1 1 1
1 1 1 1

e j 10 j 11 j 12 l 13 l 14 j 1s l 1s l 11
1 1 1 1 1 1 1

:I""""!~'""'
1
1

~

18 19 20

~[1 ~ ! : : : ... : : : ~ : 0xj ~ : ~ ~>--+---t-+--4
-1 : : : : : : : : : : : ~ ... _____ _

D!TI 1 1 1 1 1 1 1 1 1 1 1 1
: 1 1 1 1 1 1 1 1 1 1 1 1

-LOCK! 1 1 1 1 1 1 1 1 1 1 1 ,
• 1 1 1 1 1 1 1 1 1 1 1 ,-...... ~--+---!

HA~1~) ! : : : : : : ~ : ! ~ : : ~,____-
-BE[3:0) _.....j ~ : : : : : : X : : : : : >,__.,________,

HD[3U>J 1 1 <: 1
: : : : : X : : : X : ;)>-+---+--+---4

'6TACK

HOLD

AETRv

BREär-'\'--+---+-~',._-!o--;...~;...--0---0--.\.~-+-!-'---+--'..-.;...--o---;.~...--....;...--;

BGRANT:
1

BGACK 1

IL[2:0]

STOP

15TR1

HRESET

CLK34

CLK23

Flgure 29. WrHe Bus Cycles wlth Bus Arbltratlon

12123192

ATT9201 O Hobblt Microprocessor

Bus Operation and Arbitration (continued)

Bus Transaction Types (continued)

12123/92

BUS
3 4 5 6 1 7 1 8 1 9 110111 112 13 14, 15 16 17 18 19 201 CYCLE 1 1 1 1 1 1 1 1 1 1 1 1

START 1 1
1 1 1 1 1 1

RD ;, 1
1 1 . 1

NCACHE
1
1

1

100(1:0)
1 r

oi'i'

LOCK

HA[31:21:::X : : : : : : : : x : : : >---
BEli:OJ :::X '. : '. : : : : : x '. : : >>---0-! __,__.....---.---.

HD[3U))~ i i {: 1

: X: : : : X: : : : >-! ---
öTACK:
~-~:~r--..;..__,;..-...;---.i~...;-_..,~,.__.,~.;-....... ~.;--o-~.;.--;-~;..-..;..__,;..-...;---;
BERR1

1

Hc5Lo:
1

RiffiW• 1

1 ,..-;..........;-~- 1 ~..;.-........ -' • ,..-;...--;.--..
BREO r_),' u- u ____, __ .__._..

BGRANT

IL[2:0)

STOP

öTRi

HRESET

CLK34

CLK23

Flgure 30. lnterlocked Bus Transfer wlthout and wlth Retry

53

ATT9201 O Hobblt Microprocessor

Bus Operation and Arbitration
(continued)

Exception Handling

The exception/error signals provide a means by which
external devices can inform the ATI9201 o of an
unusual condition which requires the processor to
deviate from its normal execution.

Bus Retry

RETRY is asserted to retry the current bus transaction.
When RETRY is asserted during a valid bus
transaction, the Hobbit microprocessor aborts the
current bus transfer and masks the ~ input. After
l1rnY is deasserted, the bus transaction is rerun after
the Hobbit microprocessor obtains ownership of the
bus as RETRY is orthogonal to bus arbitration. In
systems with gateways through which two buses
communicate with each other, the retry feature is
required to break deadlock conditions when the two
buses have simultaneous requests for their respective
counterpart bus.

Bus Error

The assertion of Bam indicates an error in a bus
transaction of any type. An intemal 1/0 fault is
generated when Bam is asserted and a ~ is
received. When Bam is asserted and ~ received,
the exception taken depends upon the type of bus
transaction being terminated.

AIT92010 Reset

lt HRESET is asserted, the ATI92010 is reset and any
current bus cycle is aborted.

Table 40. Bus Transactlon Termination Signals
Prlorlty Levels

Signal Prlorlty Level

ARESET Highest
RETRY J.
ITTACR Lowest

54

Testability

The Hobbit microprocessor is a highly testable design
providing access to all testability features via the IEEE
1149.1/05 interface. The features that are accessible
include:

• Single clock delay by-pass.

• Boundary-scan of UO signals.

• Embedded mernory built-in test (BIT) and scan
features.

• Embedded PLA BIT features.

Conformance

The test access port (TAP) provided conforms to all
aspects of the IEEE 1149.1/05 except for TCK and
TRST.

In IEEE 1149.1/05, TCK is required tobe a free­
running clock with any gating performed within the
device. This feature is not provided; therefore, TCK
must be gated extemally. Also, an unconnected TRST
is tobe terminated in the inactive mode. In the
ATI92010, an unconnected TRST is intemally
terminated in the active rnode holding the TAP state­
rnachine in reset.

TAP Controller (TAPC)

The TAPC is a synchronous finite state machine
whereby sequencing through the various operations of
the testability circuitry occurs under control of the TMS
signal.

The state diagram for the TAPC is shown in Figure 31
on page 56. There are 16 states in this state machine
with advancernent of state dependent upon the value
of TMS at the rising edge of TCK. All operations of the
test logic occur on the rising edge of TCK following the
entry into a controller state. Changes at TOO occur on
the falling edge of TCK following entry into a controller
state which selects TDO. The states of the TAPC are
defined in Table 41.

12123/92

ATT9201 O Hobbit Microprocessor

Testabillty (continued)

TAP Controller (TAPC) (continued)

Table 41. TAP Controller State Table

State Descrlptlon

OxO Exlt(2)-DR. This is a temporary controller state. All test data registers and the instruction register retain
their previous state. A high signal on the TMS line while in this state causes termination of the scanning
process; a low causes entry into the ShHt-DR state.

Ox1 Exlt(1)-DR. This is a temporary controller state. All test data registers and the instruction register retain
their previous state. TMS = 1 in this state causes termination of the scanning process; TMS = O causes
entry into the Pause-DR state.

Ox2 Shlft·DR. In this controller state, the selected data register shifts data one stage towards its serial output on
each rising edge of TCK. All registers other than the selected test data register retain their previous state.

Ox3 Pause-DR. This controller state allows shifting of the selected test data register to be ternporarily halted.
Alttestdata registers and the instruction register retain their previous state. The controller remains in this
state while TMS • 0. When TMS goes high, the controller advances to the Exit(2)-DR state.

Ox4 Select·IR·Scan. This is a temporary controller state in which all test togic retains its previous state. tf
TMS „ O when the controller is in this state, then a scan sequence for the instruction register is initiated.

Ox5 Update-DR. During this controller state, data is transferred from each shHt-register stage into the corre-
sponding parallel output tatch (if the selected test data register includes a parallel output latch). All shift-
register stages in the setected register retain their previous state.

Ox6 Cspture-DR. In this controller state, data is parallel loaded into the selected test data register. lf the regis-
ter does not have a parallel input, or if capturing is not required for the selected test, the register retains its
previous state unchanged.

Ox7 Select·DR·Scan. This is a temporary controller state in which all test logic retains its previous state. lf
TMS = O when the controller is in this state, then a scan sequence for the selected test data register is ini-
tiated.

Ox8 Exlt(2)-IR. This is a temporary controller state. All test data registers and the instruction register retain
their previous state. A high signal on the TMS line while in this state causes termination of the scanning
process; a low causes entry into the ShHt-IR state.

Ox9 Exlt(1)-IR. This is a temporary controller state. All test data registers and the instruction register retain
their previous state. lf TMS - 1 while in this state, the scanning process is terminated; if 0, the Pause-IR
state is entered.

OxA Shlft·IR. In this controller state, the instruction register shifts data one stage towards its serial output on
each rising edge of TCK.

OxB Pause-IR. This controller state allows shifting of the instruction register to be temporarily halted. All test
data registers and the instruction register retain their previous state. The controller remains in this state
while TMS = 0. When TMS goes high, the controller advances to the Exit(2)-DR state.

OxC Run-Test/ldle. The controller state between scan operations where an internal test previously selected by
setting the instruction register may be executed. Registers not involved in the applicatlon of the test retain
their previous state. ff the data in the instruction register does not indicate that a test should be executed,
then all test logic must retain their previous state. Once entered, the controller will remain in the Run-TesV
ldte state as tong as TMS = 0.

OxD Update-IR. During this controller state, the instruction is transferred from each shift-register stage of the
instruction register into the parallel output latch of the instruction register. All shift-register stages in the
instruction register retain their previous state.

OxE capture-IR. In this controller state, data is parallel loaded into the instruction register. lf the register does
not have a parallel input, or if capturing is not required for the selected test, the register retains its previous
state unchanged.

OxF Test-Loglc-Reset. While in this state, all test circuitry is disabled. The instruction register (IR) is reset to
select the by-pass register. The controller remains in this state as long as TMS = 1 or TR'ST is asserted.

12/23192 55

ATT9201 o Hobblt Mlcroprocessor

Testabllity (continued)

TAP Controller (TAPC) (continued)

Flgure 31. TAP Controller State Dlagram

56 12/23/92

ATT9201 O Hobblt Mlcroprocessor

Testability (continued)

IEEE Registers 1149.1/05 Registers

The following registers are described in the IEEE 1149.1/05 specification.

TAP lnstructlons and lnstructlon Register

The instruction register (IR) allows a test instruction to be shifted into the ATT9201 o Hobbit microprocessor. The IR
is used to select the test to be performed or the test data register to be accessed. The IR is 7 bits in length. Table
42 identifies the instruction encodings.

Table 42. The AIT92010 JTAG/1149.1 TAP lnstructlon Register Encodlngs

lnstructlon Register lnstructlon Descrlptlon S81ected Mnemonlc

0000000 BS EXTEST BS selected with BS extemal test.
0000001 BS SAMPLE BS selected with BS sample.
0000010 BS INTEST BS selected with BS intemal test.
0000011 PPLA IRPPLA PPLA selected with PPLA seH-test.
0000100 ICO IRICO lnstruction cache data selected with ICO self-test.
0000101 SC IRSC Stack cache selected with SC seH-test.
0000110 PFO IRPFO Prefetch cache data selected with PFO seH-test.
0000111 PFT IRPFT Prefetch cache tag selected with PFT seH-test.
0001xxx NA NA Reserved.
001xxxx BP BP BP selected with all seH-test.
01xxxxx BP BP BP selected and BS sample.
10xxxxx 10 10 10 selected and BS sample.
11xxxxx BP BP BP selected and BS sample.

Boundary-Scan Reg lster

The boundary-scan register (BS) allows testing of circuitry extemal to the Hobbit microprocessor. Additionally, BS
provides for sampling and examination of the 110 values without impacting the operation of the system logic. Ninety
shift elements are in the boundary-scan shift chain. Ninety-one TCKs are required to shift the entire chain from TDI
through to TOO. Position is given from TOI to TOO.

Table 43. Boundary-Scan Shlft Chaln

Position Name Descrlptlon Position Name Descrlptlon

1 RFU:SET 1 2 CLK23 Sample Only 1

3 'STC:5JS Sample Only 1 4 CLK34 Sample Only 1

5 OTRl 1 6 3-data Control for 1/0
7 031 1/0 8 H030 1/0
9 HA22 3-State 0 10 H04 110
11 HA15 3-State O 12 H03 1/0
13 HA3 3-State O 14 H029 1/0
15 HA14 3-State 0 16 H028 1/0
17 HA2 3-State O 18 H027 1/0

12/23/92 57

ATI92010 Hobblt Microprocessor

Testability (continued)

IEEE Registers 1149.1/05 Registers (continued)

Table 43. Boundary-Scan Shlft Chaln (continued)

Posttlon Name Descrlptlon Posttlon Name Descrlptlon

19 HA13 3-State 0 20 HD26 1/0
21 HA31 3-State O 22 HD25 1/0
23 HA30 3-State 0 24 HD24 1/0
25 HA29 3-State O 26 HD23 1/0
27 HA12 3-State O 28 HD22 1/0
29 HA21 3-State O 30 HD21 1/0
31 HA11 3-State O 32 HD20 1/0
33 HA20 3-State O 34 HD7 1/0

35 HA10 3-State o 36 HD6 1/0
37 HA19 3-State O 38 HD5 1/0

39 HA9 3-State o 40 HD19 1/0
41 HA28 3-State O 42 HD18 1/0

43 HA8 3-State O 44 HD17 1/0
45 HA27 3-State O 46 HD16 1/0
47 HA26 3-State O 48 HD15 1/0

49 HA25 3-State 0 50 HD14 110
51 HA7 3-State O 52 HD13 1/0

53 HA18 3-State O 54 HD2 1/0
55 HA6 3-State O 56 HD1 1/0

57 HA17 3-State O 58 HDO 1/0

59 HAS 3-State O 60 HD12 1/0

61 HA16 3-State O 62 HD11 1/0

63 HA4 3-State O 64 HDiO 1/0

65 HA24 3-State O 66 HD9 1/0

67 HA23 3-State O 68 HD8 1/0

69 D/T 3-State O 70 ~CÄCRE 3-State 0

71 RO 3-State O 72 SED 3-State O

73 B'Ei 3-State O 74 'SE2 3-State O

75 aß 3-State O 76 IOC1 3-State O

n IOCO 3-State O 78 r.öOR 3-State O

79 START 3-State O 80 BGÄCR 0

81 B'REO 0 82 3-bus Control for 3-State O

83 BGRA~T 1 84 RETRV 1

85 B'ERR 1 86 ROrn 1
87 DTÄCR 1 88 IL2 1

89 IL1 1 90 ILO 1

Notas:
3-data and 3-bus control the 3-stating of the output side of the data pins and output pins, respectively. A 1 3-states, and a 0 enables.

Position 1, the ~ bit, is closest to TDI. Position 90, the ILO bit, is closest to TDO.

58 12123/92

ATT92010 Hobblt Microprocessor

Testability (continued)

IEEE Registers 1149.1/DS Registers (continued)

ldentlflcatlon Register

Seepage 34 for a descriptlon of the identification register (10). The 10 register is accessible through both the TAP
and normal register access.

By-Pass Register

The by-pass (BP) register provides a single TCK delay path from TOI to TOO. When the BP register is selected, a
0 is loaded on the rising edge of TCK in the Capture-OR controller state. When the Test-Logic-Reset controller
state ls entered, the BP register retains its last value.

Absolute Maximum Ratings

Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are
absolute stress ratings only. Functional operation of the device is not implied at these or any other conditlons in
excess of those given in the operational sections of the data sheet. Exposure to Absolute Maximum Ratings for
extended periods can adversely affect device reliability.

Parameter Symbol Min Max Unlt
Storage Temperature Tsrg -40 125 oc
Supply Voltage Voo -0.5 7.0 V
Input Voltage VIN Vss-0.5 Voo+ 0.5 V
Ambient Operating Temperature TA 0 70 oc

Handling Precautions

All MOS devices rnust be handled with certain precautions· to avoid damage due to the accurnulation of static
charge. Although input protection circuitry has been incorporated into the devices to minimize the effect of this
statics buildup, proper precautions should be taken to avoid exposure to electrostatic discharge (ESO) during
handling and mounting. AT&T employs a human-body model (HBM) for ESO susceptibility testing. Since the failure
voltage of electrostatic devices is dependent on the current and voltage and, hence, the resistance and
capacitance, it is important that standard values be employed to establish a reference by which to compare test
data. Values of 100 pF and 1500 n are the most common and are the values used in the AT&T HBM test circuit.
The breakdown voltage for the Hobbit microprocessor is 1,000 V, according to the HBM, and it is 2,000 V,
according to the charged-device model (COM).

12123/92 59

ATT92010 Hobblt Microprocessor

Electrical Characteristics

The parameters In Tables ancl are valid for: TA = o °C to 70 °C

Table 44. Recommended Operating Condltlons (Voo = 3.3 V± 10%; CLK34 ancl CLK23 = 20 MHz)

Parameter Symbol Min TYP Max Unlt
Input High Voltage VIH 2.2 - Voo+ 0.3 V
Input Low Voltage VIL -0.3 - 0.6 V
OUtput High Voltage VOH 2.5 - - V

IOH • 5 mA (pins HD[31 :0))
IOH = 2 mA (all pins except HD[31 :0))

Qutput Low Voltage VOL - - 0.3 V
IOL = 5 mA (pins HD(31 :0))
IOl. • 2 mA (all pins except HD[31 :0))

TDI Input Low Current ITDI - - -1.73 mA
TMS Input Low Current ITMS - - -0.87 mA
TCK Input Low Current ITCK - - -0.87 mA
TRST Input High Current ITRST - - -1.16 mA
Input Leakage Current h -0.01 - 0.01 mA

0 VSVINSVoo
3-stated Output Leakage Current IOTI -0.01 - 0.01 mA
Supply Current

Output Load • 10 pF IDD - 75 95 mA
Output Load == 50 pF IDD - 125 150 mA

Standby Current lse 0 0.006 0.030 mA

Table 45. Recommended Operating Condltlons (Voo "" 5.0 V± 10%; CLK34 ancl CLK23 • 30 MHz)

Parameter Symbol Min TYP Max Unlt

Input High Voltage V1H 3.2 '• - Voo+ 0.4 V
Input Low Voltage VIL -0.4 - 0.8 V
Output High Voltage VOH 4.0 - - V

IOH - 7 mA (pins HD[31 :0))
IOH = 3 mA (all pins except HD[31 :0))

Output Low Voltage VOL - - 0.4 V
IOL • 7 mA (pins HD[31 :0))
IOL == 3 mA (all pins except HD[31 :0))

TDI Input Low Current ITDI - - -2.63 V
TMS Input Low Current ITMS - - -1.31 mA
TCK Input Low Current ITCK - - -1.31 mA'

TRST Input High Current ITRST - - -1.75 mA
Input Leakage Current II -0.01 - 0.01 mA

0 V s: V1N s: Voo
3-stated Output Leakage Current IOTI -0.01 - 0.01 mA
Supply Current

Output Load = 10 pF loo - 175 220 mA
Output Load = 50 pF IDD - 285 340 mA

Standby Current lse - 0.009 0.050 mA

60 12/23/92

ATT9201 O Hobblt Microprocessor

Timing Characteristics

All tlming is based on a 50 pF load under worst-case conditions, although the device is capable of driving heavier
loads.

Load Speclflcatlons

Table 46. Cepable Loadlng Speclflcatlons, Test Loadlng, and OUtput Deratlng Factors

OUtput Signal Max Load (pF) Test Load (pF)
Output Deratlng (ns/pF)

3.3V 5.0V

HA[31:2] 100 50 0.09 0.06
B~ÄOR 100 50 0.09 0.06
BE[3:öJ 100 50 0.09 0.06

DRm 100 50 0.09 0.06

D/T 100 50 0.09 0.06
IOC[1:0] 100 50 0.09 0.06

[O'CR 100 50 0.09 0.06

filcAcRE 100 50 0.09 0.06

STÄRT 100 50 0.09 0.06
TDO 100 50 0.09 0.06
RD 100 50 0.09 0.06

HD[31:0] 150 50 0.06 0.04

The output derating factors may be used to obtain an approximate rate of increase of output valid delay time with
increasing load capacitance up to the maximum loading specified.

12123192 61

ATT9201 O Hobblt Microprocessor

Timing Characteristics (continued)

Timing Dlagrams

The following figures give timing specifications.

Clock

Two 1 x clocks in quadrature are required by the ATT9201 o Hobbit microprocessor. The intemal clocks are decoded
from these inputs. The intemal clocks can be stopped in phase 1 by asserting 'STöP prior to phase 1 allowing for
burst-mode, single-stepping, and suspended operation.

Flgure 32. Clock Input Timing

Table 47. Clock Input Timing

3.3V 5.0V
Symbol Parameter Unlt

Min Max Min Max

t1 RiseTime - 3.0 - 3.0 ns
t2 Pulse High 22.5 27.5 14.5 18.5 ns
t3 Fall Time - 3.0 - 3.0 ns
t4 Pulse Low 22.5 27.5 14.5 18.5 ns
t5 Period 50.0 100 33.3 50.0 ns
t6 Delay 10.5 14.5 6.3 10.2 ns

62 12123192

ATT9201 O Hobblt Microprocessor

Timing Characteristics (contlnued)

Timing Dlagrams (continued)

Cl.K34-E 17---.i

18--I

HD(3U>J----'"-------.---------J•'-----
Cl.K23

te-11 111-

1

11;-J-11 iLrol:OJ----f-9 1

---------ft14~1153---------
Flgure 33. Synchronous Input Timing

Table 48. Synchronous Input Timing

3.3V 5.0V
Symbol Slgnal iype Reference

Min Max Min Max

t7 HD[31:0] Input Hold CLK34 Rise. 7.0 - 6.0 -
t8 DTAvl\ Input Hold CLK34 Rise 5.0 - 4.0 -

"BERR Input Hold CLK34 Rise 5.0 - 4.0 -
RRESET Input Hold CLK34 Rise 5.0 - 4.0 -

t9 HD[31 :0) Input Setup CLK34 Rise 3.0 - 2.0 -
~ Input Setup CLK34 Rise 3.0 - 2.0 -
"BERR Input Setup CLK34 Rise 3.0 - 2.0 -

HHt:~t:I Input Setup CLK34 Rise 3.0 - 2.0 -
t10 BG~f;iT Input Setup CLK23 Rise 3.0 - 2.0 -

Rö[[J Input Setup CLK23 Rise 3.0 - 2.0 -
RETRY Input Setup CLK23 Rise 3.0 - 2.0 -

t11 B~~r;iT Input Hold CLK23 Rise 5.0 - 4.0 -
Rö[[J Input Hold CLK23 Rise 5.0 - 4.0 -
RETRY Input Hold CLK23 Rise 5.0 - 4.0 -

t12 IL[2:0] Input Setup CLK23 Fall 3.0 - 2.0 -
t13 IL[2:0] Input Hold CLK23 Fall 5.0 - 4.0 -
t14 'STöJ5 Input Setup CLK34 Fall 5.0 - 4.0 -
t15 'STöJ5 Input Hold CLK34 Fall 3.0 - 2.0 -

12123192

Unlt

ns
ns
ns
ns
ns
ns
ns
ns

ns
ns

ns
ns
ns
ns

ns
ns
ns

ns

63

ATT92010 Hobbft Microprocessor

Timing Characteristics (continuect)

Timing Dlagrams (continuecl)

'-~~~~~~-;--

NCACHE

IOC[1:0)

Di'f

HA[31:2]

~

--------u --------

CLK23~--------1· 117~ 1--------
HD[31 :0) -------

Flgure 34. Output Timing

Table 49. Output Timing*

3.3V 5.0V
Symbol Signal iype Reference Unlt

Min Max Min Max

t16 START Output Valid CLK34 Rise - 23 - 18 ns
RO Output Valid CLK34 Rise - 23 - 18 ns

~~1'~RE Output Valid CLK34 Rise - 23 - 18 ns

IOC[1:0] Output Valid CLK34 Rise - 23 - 18 ns
D/T Output Valid CLK34 Rise - 23 - 18 ns
~ Output Valid CLK34 Rise - 23 - 18 ns

HA[31 :2) Output Valid CLK34 Rise - 19 - 15 ns

~3:<1 Output Valid CLK34 Rise - 23 - 18 ns

t17 HD[31 :0) Output Valid CLK23 Fall - 24 - 19 ns

"Tested at 50 pF load.

64 12123192

„

ATT9201 O Hobblt Mlcroprocessor

Timing Characteristics (continued)

Timing Dlagrams (continued)

\--.-~~~~~-r--

NCACHE

IOC[1:0)

oiT

HA[31:2)

~

-------n -------

CU<~~~~~~~~1~ „_! i--~~~~~­
H0[31:0) -------

Flgure 35. Bus Rellnqulsh Cycle Output Timing

Table 50. Bus Rellnqulsh Cycle Output Timing

3.3V 5.0V
Symbol Slgnal Type Reference Unlt

Min Max Min Max

t18 START Output Hi-Z CLK34 Rise - 26 - 22 ns
RU Output Hi-Z CLK34 Rise - 26 - 22 ns

Ni.;A,..;Ht: Output Hi-Z CLK34 Rise - 26 - 22 ns

IOC[1:0] Output Hi-Z CLK34 Rise - 26 - 22 ns
D/T Output Hi-Z CLK34 Rise - 26 - 22 ns

LOCK Output Hi-Z CLK34 Rise - 26 - 22 ns
HA[31:2] Output Hi-Z CLK34 Rise - 26 - 22 ns
'BE[3:0J Output Hi-Z CLK34 Rise - 26 - 22 ns

t19 HD[31:0] Output Hi-Z CLK23 Fall - 26 - 22 ns

12123192 65

ATT92010 Hobbit Microprocessor

Timing Characteristics (continued)

Timing Diagrams (continued)

DTRI 1 --------~~·~-
HD[31:0] ~ ~

Flgure 36. 1fl'FU to Data Output Tlmlng

· Table 51. 1fl'FU to Data Output Timing*

3.3V 5.0V
Symbol Signal type Reference Unlt

Min Max Min Max

t20 HD[31 :0) Output Hi-Z m'RlFall - 26 - 22 ns

t21 HD[31 :O] Output Valid m'RlRise - 24 - 19 ns

"Tested at 50 pF load.

BREO.___ ___________ _

CLK23 ~t22 \ ___________ r-

CLK34 _____ 1-.,.~-~----:--t--
BGACK ~

Flgure 37. B'Flm and BGACK Oµtput Tlmlng

Table 52. B'Flm and BGÄCK Output Tlmlng*

3.3 V 5.0V
Symbol Signal type Reference Unlt

Min Max Min Max

t22 BREO Output Valid CLK23 Rise - 23 - 18 ns

t23 BGA~K Output Valid CLK34 Rise - 32 - 25 ns

"Tested at 50 pF load.

66 '12123/92

Timing Characteristics (continued)

Timing Diagrams (continued)

Table 53. JTAG Bus Timing Speclficatlons

Slgnal TYpe Reference

TCK Period -
TCK Pulse High -
TCK Pulse Low -
TDI Input Setup TCK rise

TDI Input Hold TCK rise
TMS Input Setup TCK rise
TMS Input Hold TCK rise

TDO Output Valid TCKfall
TDO Output Hi-Z TCKfall

12123/92

Min

400.0
200.0
200.0
50.0
50.0
50.0
50.0

-
-

ATT9201 o Hobbit Mlcroprocessor

3.3 V s.ov
Unlt

Max Min Max

- 200.0 - ns

- 100.0 - ns

- 100.0 - ns
- 25.0 - ns

- 25.0 - ns

- 25.0 - ns

- 25.0 - ns

100.0 - 50.0 ns

100.0 - 50.0 ns

67

ATT9201 o Hobblt Mlcroprocessor

Outline Diagram

132-pln PQFP

All dimensions are in inches and (millimeters).

----------1J1117(27.16)/1.103(28.02:1----------
-----------1.01s (27.30)11.oas 121.511,1-------... --------0.1147 (24.05).o.953 (24.21)-------~ ·---------0.137 (23.80)I0.943 (23.115)-----oll

For additional information, contact your AT& T Account Manager or the following:
U.S.A.: AT&T Microelectronics, Dept AL-500404200, 555 Union Boulevard, Allentown, PA 18103

1-800-372·2447, FAX 215-778-4106 (In CANADA: 1-800·553·2448, FAX 215-778-4106)
ASIA PACIFIC: AT&T MicroelectronicsAsia/Pacific, 14 Science Park Drive, #03-02A/04 The Maxwell, Singapore 0511

Tel. (65) 778-8833, FAX (65) m-7495, Telex RS 42898ATTM
JAPAN: AT&T Microelectronics, AT&T Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan

Tel. (81) 3-5421-1600, FAX (81) 3-5421-1700
For data requests in Europa:

AT&T DATAUNE: Tel. (44) 732 742 999, FAX (44) 732 741 221
For technical inquires in Europe:

CENTRAL EUROPE: (49) 89 950 860 (Munich), NORTHERN EUROPE: (44) 344 48711 (Bracknell UK), FRANCE: (33) 47 67 47 67,
SOUTHERN EUROPE: (39) 266 011 800 (Milan) or (34) 1 807 1441 (Madrid)

AT& T _,,_ the rlght to mak8 c:hangas to the product(s) or Information contaJned herein wllhout notlce. No llablUty II assumed as a resun ol thelr use or appllcatlon. No rlghta under any
patent ~the saleof 111y auch piuduc:t(a) or lnfonnatlon. Habbltla atrademarkol AT&T.

Copyright C 11192 AT& T
All Rlghts Reaerved
Printed In U.S.A.

December 1992
DS91-214MCP 0

..;:;.ATaaT
~ Microelectronics

