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ATT92010 Hobbit™ Microprocessor

Features

= High performance: fast response time for = Low power consumption: smaller, longer-life

low power dissipation systems battery

— Single-cycle instruction execution for most — 250 mW at 3.3 V, 20 MHz with selection to
instructions higher speed

— Peak rate of better than one cycle per instruction — 900 mW at 5.0 V, 30 MHz with selection to

— Operand bypass mechanism that reduces higher speed

off-chip reads

— Branch prediction and branch folding to
minimize control transfer penalties

— No delayed branching or load delay slot

— Hardware-implemented complex instructions,
e.g., integer multiply and divide

On-chip integrated resources: lower-cost hardware

system design

— 3 Kbyte encoded instruction cache, organized
as three-way set associative

— 256 byte stack cache which holds top of
user stack

— 32-entry, direct-mapped, decoded instruction
cache

— Memory management unit (MMU), with dual
32-entry translation look-aside buffers (TLBs)
for text and data address translation

Big-endian/little-endian data byte ordering: /IBM*
PC and Macintosht data compatibility

— <50 pA in standby mode

High code density: less RAM and lower system
costs

— Rationalized instruction set

— Variable length instruction format

— Memory-to-memory architecture

Low /O traffic

— Integrated caches
— Operand bypass
— High code density

Simple programming model: faster software

development and lower development cost

— No user-visible registers

— Orthogonal instruction and addressing modes

— No code scheduling needed because of
hardware hazard detection and bypassing

= Glueless integration within the AT&T 92K Hobbit

family chip set

= |EEE 1149.1 JTAG compatible
s Advanced 0.9 um, 2LM CMOS technology
= 132-pin JEDEC plastic quad flat package (PQFP)

*IBM is a registered trademark of International Business
Machines Corporation.
1Macintosh is a trademark of Apple Computer, Inc.
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ATT92010 Hobbit Microprocessor

Description

The ATT92010 Hobbit Microprocessor is a high-
performance, 32-bit RISC microprocessor implemented
in the AT&T 0.9 um double-level metal CMOS
technology. The device’s unusual combination of high
performance, high code density, small die size, and low
power consumption makes it especially well suited in
battery-powered portable applications that are sensitive
to system performance, weight, and cost.

Incorporation of two independent pipelines, on-chip
caching, and many unique architectural features gives
this device high performance with better than single-
cycle peak execution, typical of RISC processors. A
variable length instruction format and a memory-to-
memory architecture result in high code densities,
typical of the best available from CISC processors.
On-chip integration of several caches, a memory
management unit (MMU), and dual TLBs, together with
high code density, enable development of less
expensive system configurations. Such configurations
require fewer support chips, less RAM, and less 1/0
traffic, resulting in less power dissipation and lower
system cost.

This high degree of on-chip integrated system
resources simplifies hardware development while the
programming model simplifies system software
development. Ultimately, product development is
simplified and design cycle time is reduced.

Inherent in the Hobbit architecture is the freedom to
scale on-chip caches transparently to software. This
allows for continued enhancement of the device's
performance both architecturally and with increased
clock frequency as more advanced processing
technologies become available. Furthermore, the
scaling of on-chip caches can be accomplished without
necessitating modification to system software and/or
hardware. Thus, the user’s investment in application
software and hardware is better protected as the
device is enhanced.
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Figure 1. Hobbit Block Diagram
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ATT92010 Hobbit Microprocessor

Pin Information

ATT92010
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Figure 2. 132-Pin PQFP Pin Diagram
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally

Table 1. Pin Descriptions

Pin

Symbol

Type*

Name/Description

57

CLK23

Phase 2 3 Clock. CLK23 is high during phases 2 and 3. The Hobbit
microprocessor makes use of CLK23, along with CLK34, to decode a
four-phase clocking system which serves as the basic reference.

55

CLK34

Phase 3 4 Clock. CLK34 is high during phases 3 and 4. The Hobbit
microprocessor makes use of CLK34, along with CLK23, to decode a
four-phase clocking system which serves as the basic reference.

56

Stop Clocks (Active-Low). STOP is issued to stop the master clock
decoder in phase 1. This input is asserted a setup time prior to phase 1 to
halt the device.

39

Bus Grant (Active-Low). BGRANT is used to grant exclusive use of the
bus. In a multiple bus master system, only one BGRANT is to be asserted
at any time to avoid bus contention. The bus arbiter asserts BGRANT to
the Hobbit microprocessor, indicating it is bus master for the next bus
transaction. While BGRANT is asserted, the Hobbit microprocessor
remains bus master. BGRANT is asserted or deasserted by the arbiter a
setup time prior to the rising edge of CLK23. When the arbiter deasserts
BGRANT, the Hobbit microprocessor relinquishes the bus after it
completes the current bus transaction.

36

Bus Request (Active-Low). BREQ is asserted when the Hobbit
microprocessor has a valid I/O transaction pending. BREQ is deasserted
when there are no pending I/O transactions. The ATT92010 Hobbit
microprocessor can deassert BREQ when there is I/O activity, but there
cannot be any /O transactions following the one in progress.

Bus Grant Acknowledge (Active-Low). The Hobbit microprocessor
asserts BGACK to indicate that it has ownership of the bus. It deasserts
BGACK to indicate that it has relinquished ownership of the bus.

Reset Signal (Active-Low). The Hobbit microprocessor can be reset by
asserting this signal for at least two consecutive clock cycles. For muttiple
masters, HRESET should be synchronous to ensure proper initialization.
In this mode, deassertion of HRESET should be a setup time prior to the
rising edge of CLK34.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

12/23/92



ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin

Symbol

Type*

Name/Description

42

BERR

Bus Error (Active-Low). The assertion of BERR indicates an errorin a
bus transaction of any type. An intemal /O fault is generated when BERR
is asserted and a DTACK is received. When BERR is asserted and DTACK
received, the exception taken depends upon the type of bus transaction
being terminated. BERR is asserted and deasserted by the slave device a
setup time prior to the rising edge of CLK34.

Hold (Active-Low). HOLD is asserted to suspend any further /O
transactions by the Hobbit microprocessor. HOLD is asserted or
deasserted a setup time prior to the rising edge of CLK23. After HOLD is
deasserted, bus transactions are allowed to start when the Hobbit
microprocessor obtains ownership of the bus as HOLD is orthogonal to
bus arbitration. In systems with slow 3-stating devices, assertion of HOLD
may be necessary to allow the device time to relinquish the bus after

59

Data 3-State (Active-Low). The assertion of DTRI causes the
asynchronous 3-stating of the data bus.

40

Retry (Active-Low). RETRY is asserted to retry the current bus
transaction. RETRY is asserted or deasserted a setup time prior to the
rising edge of CLK23. When RETRY is asserted during a valid bus
transaction, the Hobbit microprocessor aborts the current bus transfer
and masks the DTACK input. After RETRY is deasserted, the bus
transaction is rerun after the Hobbit microprocessor obtains ownership of
the bus as RETRY is orthogonal to bus arbitration. In systems with
gateways through which two buses communicate with each other, the
retry feature is required to break deadlock conditions when the two buses
have simultaneous requests for their respective bus.

32

O(3)

Start Cycle (Active-Low). Start cycle strobe is asserted by the current
master to indicate the start of a bus transaction. START is asserted for
only one clock cycle at the beginning of each bus transaction.

Data Transfer Acknowledge (Active-Low). During a normal bus
transfer, this signal is used to terminate the transaction (data latched
during read transaction, withdrawn during write transaction). DTACK is
asserted and deasserted by the slave device a setup time prior to the
rising edge of CLK34.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin Symbol | Type* Name/Description
77 HA2 O(3) | Address Bus—Bit 2.
71 HA3 Address Bus—Bit 3.
1 HA4 Address Bus—Bit 4.
5 HAS Address Bus—BIt 5.

129 HA6 Address Bus—Bit 6.

123 HA7 Address Bus—Bit 7.

114 HA8 Address Bus—Bit 8.

108 HA9 Address Bus—Bit 9.

102 HA10 Address Bus—Bit 10.
95 HA11 Address Bus—Bit 11.
89 HA12 Address Bus—Bit 12.
79 HA13 Address Bus—Bit 13.
73 HA14 Address Bus—Bit 14.
67 HA15 Address Bus—BiIt 15.
7 HA16 Address Bus—Bit 16.
1 HA17 Address Bus—Bit 17.

127 HA18 Address Bus—Bit 18.

105 HA19 Address Bus—Bit 19.
98 HA20 Address Bus—Bit 20.
92 HA21 Address Bus—Bit 21.
63 HA22 Address Bus—Bit 22.
16 HA23 Address Bus—Bit 23.
13 HA24 Address Bus—Bit 24.

121 HA25 Address Bus—Bit 25.

118 HA26 Address Bus—Bit 26.

116 HA27 Address Bus—Bit 27.

11 HA28 Address Bus—Bit 28.
86 HA29 Address Bus—Bit 29.
84 HA30 Address Bus—Bit 30.
82 HA31 Address Bus—Bit 31.

The 30-bit address bus indicates word-aligned physical addresses. The
byte enable signals, BE[3:0], are used for subword accesses.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin Symbol | Type* Name/Description
3 HDO VO(3) | Data Bus—Bit 0.
131 HD1 Data Bus—Bit 1.
128 HD2 Data Bus—Bit 2.
69 HD3 Data Bus—Bit 3.
65 HD4 Data Bus—Bit 4.
106 HD5 Data Bus—BIit 5.
104 HD6 Data Bus—BIt 6.
100 HD7 Data Bus—Bit 7.
17 HD8 Data Bus—Bit 8.
15 HD9 Data Bus—BIit 9.
12 HD10 Data Bus—Bit 10.
9 HD11 Data Bus—Blt 11.
6 HD12 Data Bus—Bit 12.
125 HD13 Data Bus—Bit 13.
122 HD14 Data Bus—Bit 14.
119 HD15 Data Bus—BIt 15.
117 HD16 Data Bus—Blt 16.
115 HD17 Data Bus—Bit 17.
112 HD18 Data Bus—Bit 18.
110 HD19 Data Bus—Bit 19.
96 HD20 Data Bus—Bit 20.
94 HD21 Data Bus—Blit 21.
90 HD22 Data Bus—Blit 22.
88 HD23 Data Bus—BIit 23.
85 HD24 Data Bus—Bit 24.
83 HD25 Data Bus—Bit 25.
81 HD26 Data Bus—Bit 26.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin

Symbol

Type*

Name/Description

78
75
72
62
61

HD27
HD28
HD29
HD30
HD31

VO(3)

Data Bus—Bit 27.
Data Bus—BIt 28.
Data Bus—Bit 29.
Data Bus—Bit 30.
Data Bus—Bit 31.

The 32-bit data bus conveys data to and from the Hobbit microprocessor.
On byte writes, the active byte is indicated by the BE[3:0] signals with that
byte replicated on the other inactive bytes. On half-word writes, the active
half-word is indicated by the BE[3:0] signals with that half-word replicated
on the inactive half-word. Looping back of the data bus is supported. After
completion of a read transaction, if the current bus master retains
ownership of the bus and there are no other transactions pending, the
data just read by the Hobbit microprocessor is looped back onto the data
bus to eliminate current leakage on the data bus.

20

O(3)

Read (Active-Low). When asserted (low), RD indicates a data read.
When deasserted (high), it indicates a data write. It is asserted at the
beginning of each bus transfer and is valid for the entire length of the
transaction.

30

0O(@3)

Bus Lock (Active-Low). Multiple transfer bus lock. This signal is
asserted to identify interlocked operations. The instruction set allows the
Hobbit microprocessor to run interlocked operations for communication
and message passing in a multiprocessor system. Also, the MMU asserts
LOCK during misprocessing. Interlocked transfers in the Hobbit
microprocessor are read-modify-write (RMW) cycles, altthough MMU
misprocessing may abort the interlocked operation before the write starts.
[OCK remains asserted through the write access. When the Hobbit
microprocessor begins an interlocked operation, loss of bus ownership
must not occur until COCK is deasserted. Effectively, a dead cycle is
inserted after a RMW operation. Interlocked transfers are not
interruptible. Interlocked transfers may not be retried after the read
completes. It is up to the system to enforce this restriction. If RETRY is
asserted any time during an interlocked transfer, the retry is honored. It is
illegal to assert RETRY after the read portion of the transfer since it
causes the Hobbit microprocessor to abort the operation and become
susceptible to bus arbitration, thus breaking the lock on the bus. Bus error
can be asserted in either the read or write portion of the interlocked
transfer. The interlocked operation is faulted with the appropriate
exception sequence executed. If the operands being read by the
interlocked instruction are in the stack cache, the lock signal is not
asserted.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin

Symbol

Type*

Name/Description

19

NCACHE

o)

Not Cache (Active-Low). The NCACHE output is provided for use with
external caches to indicate that an address cannot be cached. When the
PSW virtual/physical addressing mode bit is 1, the MMU uses the
NTACTHE output to indicate the status of the cache bit in various page
table entries. When the PSW virtual/physical addressing mode bit is 0,
NCACHE is asserted. When NCACHE is asserted, data should not be
cached.

28

I0C1

0O(@3)

/0 Count—Bit 0.
/0 Count—Bit 1.

These signals indicate the number of words remaining to be transferred.
10C[1:0] is used to determine the size of a block transfer being performed
by the Hobbit microprocessor. These block transfers look like a series of
bus transfers with START asserted for each and the new address
provided by incrementing the lower address bits for each word transfer.

18

DT

0(@3)

Data/Text (Active-Low). Indicates whether data or text is being
accessed. It is asserted (high for data, low for text) at the beginning of
each bus transfer and is valid for the entire length of the transaction.

22
23
24
26

o@)

Byte Enable 0 (Active-Low).
Byte Enable 1 (Active-Low).
Byte Enable 2 (Active-Low).
Byte Enable 3 (Active-Low).

BE[3:0] indicate which bytes are valid during a data transfer, which may be
either a read or a write. The bus supports 8-, 16-, 24-, or 32-bit data
transfers (although the instruction set uses only 8-, 16-, or 32-bit data
transfers). Combinations of the byte enable strobes are used to
accomplish the desired word or subword transfer. Either littie-endian or
big-endian byte encoding may be selected for data via the PSW user
little-endian bit or the CONFIG kernel little-endian bit for the user or
kernel, respectively. Text is always big-endian encoding.

Byte Enable Strobe Encoding
Pin Bits Active

BEO HD{[7:0]

BET HD[15:8]

BE2 HD[23:16]

BE3 HD[31:24]

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

10
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin

Symbol

Type*

Name/Description

48
46
45

ILO
L1
IL2

Interrupt Request—Bit 0.
Interrupt Request—Bit 1.
Interrupt Request—Bit 2.

The Hobbit microprocessor recognizes six levels of interrupts encoded
onto these lines. These signals should be supplied by an 8 to 3 priority
encoder. See Table 21 on page 28 for the interrupt level encoding. When
a valid interrupt is recognized, the Hobbit microprocessor requests
ownership of the bus if it is not bus master. After becoming the bus
master, the Hobbit microprocessor services the interrupt after aborting or
completing the current instruction, depending on the type of instruction
being executed. The internal latching of the interrupt is not predictable;
the interrupting device must maintain its interrupt assertion until it is
serviced. An external interrupt controller is required to resolve conflicts
between simultaneously occurring interrupts.

52

TCK

I(R)

Test Clock. An externally gated clock signal with a 50% duty cycle. The
changes on the TAP input signals (TMS and TDI) are clocked into the
TAP controller, instruction register, or selected test data register on the
rising edge of TCK. Changes at the TAP output signal (TDO) occur on the
falling edge of TCK. This signal does not conform to IEEE 1149.1/D5
requirement of TCK being a free-running clock at all times. TCK must be
stopped at 1 when internal BIT features are accessed. The TCK input has
a built-in pull-up resistor to ensure that a high signal value is seen on an
unterminated input.

49

TDI

I(R)

Test Data Input. TDI is clocked into the selected register data or
instruction on the rising edge of TCK. The TDI input has a built-in pull-up
resistor to ensure that a high signal value is seen on an unterminated
input.

50

™S

I(R)

Test Mode Select. TMS is a serial control input that is clocked into the
TAP controller on the rising edge of TCK. The TMS input has a built-in
pull-up resistor to ensure that a high signal value is seen on an
unterminated input.

51

I(R)

Test Reset Input (Active-Low). TRST is the reset input to the TAP
controller. Assertion of this input forces the TAP controller into the reset
state. The TRST input does not conform to IEEE 1149.1/D5 since it has a
built-in pull-down resistor to ensure that a low signal value is seen on an
unterminated input to force the TAP controller into the reset state.

TDO

O(3)

Test Data Output. The contents of the selected register data or
instruction are shifted out of the TDO on the falling edge of TCK. TDO is
3-stated except when scanning of data is in progress.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Functionally (continued)

Table 1. Pin Descriptions (continued)

Pin Symbol | Type* Name/Description

4,10, 21, 27, Voo P | +3Vto+5V Supply. There are 19 VoD pins.
33, 37,54, 60,
66, 70, 76, 87,

93, 99, 103,

109, 120, 126,

132

2,8,14, 25, Vss P | Ground. There are 20 Vss pins.
31,35, 41,47,
58, 64, 68, 74,

80, 91, 97,

101, 107,
113, 124, 130

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
Pins Grouped Numerically

Table 2. Pin Descriptions

Pin Symbol Type* Name
1 HA17 O(3) |Address Bus—Bit 17.
2 Vss P Ground.

3 HDO I/10(3) |Data Bus—BIit 0.

4 Voo P +3 Vto +5 V Supply.
5 HAS5 O(3) |Address Bus—Bit 5.
6 HD12 1/10(3) |Data Bus—Bit 12.

7 HA16 O(3) |Address Bus—Bit 16.
8 Vss P Ground.

9 HD11 1/10(3) |Data Bus—BIit 11.

10 VoD P +3 Vto +5 V Supply.

11 HA4 O(3) |Address Bus—Bit 4.

12 HD10 I/0(3) |Data Bus—Bit 10.

13 HA24 O(3) |Address Bus—Bit 24.

14 Vss P Ground.

15 HD9 I/0(3) |Data Bus—Bit 9.

16 HA23 O(3) |Address Bus—Bit 23.

17 HD8 /0(3) |Data Bus—Bit 8.

18 DT O(3) |Data/Text (Active-Low).

19 NCACHE O(3) |Not Cache (Active-Low).

20 RD O(3) |Read (Active-Low).

21 Vobp P +3 Vto +5V Supply.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

12

12/23/92



ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Numerically (continued)

Table 2. Pin Descriptions (continued)

Pin Symbol Type* Name
22 BEO O(3) |Byte Enable 0 (Active-Low).
23 BET O(3) |Byte Enable 1 (Active-Low).
24 BEZ O(3) |Byte Enable 2 (Active-Low).
25 Vss P Ground.

26 BE3 O(3) |Byte Enable 3 (Active-Low).
27 Vop P +3 V to +5 V Supply.

28 10C1 O(3) |VO Count—Bit 1.

29 10CO O(3) VO Count—Bit 0.

30 [OCK O(3) |Bus Lock (Active-Low).

31 Vss P Ground.

32 START O(3) Start Cycle (Active-Low).
33 Vop P +3 Vto +5 V Supply.

34 BGACK o) Bus Grant Acknowledge (Active-Low).
35 Vss P Ground.

36 BREQ (o] Bus Request (Active-Low).
37 Vop P +3 Vto +5 V Supply.

38 TDO O(3) |Test Data Output.

39 BGRANT I Bus Grant (Active-Low).

40 RETRY | Retry (Active-Low).

41 Vss P Ground.

42 BERR | Bus Error (Active-Low).

43 HOLD | Hold (Active-Low).

44 DTACK | Data Transfer Acknowledge (Active-Low).
45 L2 | Interrupt Request—Bit 2.
46 IL1 | Iinterrupt Request—Bit 1.
47 VSS P Ground.

48 ILO | Interrupt Request—Bit 0.
49 TDI I(R) Test Data Input.

50 T™MS I(R) |Test Mode Select.

51 TRST I(R) |TestReset Input (Active-Low).
52 TCK I(R)  |Test Clock.

53 HRESET I Reset Signal (Active-Low).
54 Vop P +3 V to +5 V Supply.

55 CLK34 | Phase 3 4 Clock.

56 STOP | Stop Clocks (Active-Low)
57 CLK23 | Phase 2 3 Clock.

58 Vss P Ground.

59 DRI I Data 3-State (Active-Low).

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Numerically (continued)

Table 2. Pin Descriptions (continued)

Pin Symbol Type* Name
60 Voo P +3 V to +5 V Supply.
61 HD31 I/0(3) |Data Bus—Bit 31.

62 HD30 /0(3) |Data Bus—Bit 30.

63 HA22 O(3) |Address Bus—Bit 22.
64 Vss P Ground.

65 HD4 I/0(3) |Data Bus—Bit 4.

66 Vobp P +3 V to +5 V Supply.
67 HA15 O(3) |Address Bus—Bit 15.
68 Vss P Ground.

69 HD3 I/0(3) |Data Bus—Bit 3.

70 Vob P +3 V to +5 V Supply.
71 HA3 O(3) |Address Bus—Bit 3.
72 HD29 I/0(3) |[Data Bus—Bit 29.

73 HA14 O(3) |Address Bus—Bit 14.
74 Vss P Ground.

75 HD28 I/0(3) |Data Bus—Bit 28.

76 Vbp P +3 V to +5 V Supply.
77 HA2 O(3) |Address Bus—Bit 2.
78 HD27 I/0(3) |Data Bus—Bit 27.

79 HA13 O(3) |Address Bus—Bit 13.
80 Vss P Ground.

81 HD26 I/0(3) |(Data Bus—Bit 26.

82 HA31 O(3) |Address Bus—Bit 31.
83 HD25 I/0(3) |Data Bus—Blit 25.

84 HA30 O(3) |Address Bus—Bit 30.
85 HD24 I/0(3) |Data Bus—Bit 24.

86 HA29 O(3) |Address Bus—Bit 29.
87 Voo P +3 Vto +5 V Supply.
88 HD23 /10(3) |Data Bus—Bit 23.

89 HA12 O(3) |Address Bus—Bit 12
90 HD22 I/0(3) [Data Bus—Bit 22.

91 Vss P Ground.

92 HA21 O(3) |Address Bus—Bit 21.
93 Voo P +3 V to +5 V Supply.
94 HD21 I/0(3) [Data Bus—Bit 21.

95 HA11 O(3) |Address Bus—Bit 11
96 HD20 I/0(3) |Data Bus—Bit 20.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.
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ATT92010 Hobbit Microprocessor

Pin Information (continued)

Pins Grouped Numerically (continued)

Table 2. Pin Descriptions (continued)

Pin Symbol Type* Name
97 Vss P Ground.

98 HA20 O(3) |Address Bus—Bit 20.
99 Vobp P +3 Vto +5 V Supply.
100 HD7 /O(3) |Data Bus—Bit 7.

101 Vss P Ground.

102 HA10 O(3) |Address Bus—Bit 10
103 Vop P +3 V to +5 V Supply.
104 HD6 /O(3) |Data Bus—Bit 6.

105 HA19 O(3) |Address Bus—BIt 19.
106 HD5 VO(3) |Data Bus—BIit 5.

107 Vss P Ground.

108 HA9 O(3) |Address Bus—Bit9.
109 Voo P +3 Vto +5 V Supply.
110 HD19 VO(3) |(Data Bus—Bit 19.

111 HA28 O(3) |Address Bus—Bit 28.
112 HD18 VO(3) |Data Bus—BIit 18.

113 Vss P Ground.

114 HA8 O(3) |Address Bus—Bit 8.
115 HD17 VO(3) |Data Bus—Bit 17.
116 HA27 O(3) |Address Bus—Bit 27.
117 HD16 I/O(3) |Data Bus—Bit 16.
118 HA26 O(3) |Address Bus—Bit 26.
119 HD15 I/0(3) |Data Bus—Bit 15.
120 Voo P +3 V to +5 V Supply.
121 HA25 O(3) |Address Bus—Bit 25.
122 HD14 /O(3) |Data Bus—Bit 14.
123 HA7 O(3) |Address Bus—Bit 7.
124 Vss P Ground.

125 HD13 ¥O(3) |Data Bus—Bit 13.
126 Voo P +3 V to +5 V Supply.
127 HA18 O(3) |Address Bus—Bit 18.
128 HD2 I/O(3) |Data Bus—BlHt 2.

129 HA6 O(3) [Address Bus—Bit 6.
130 Vss P Ground.

131 HD1 VO(3) |Data Bus—Bit 1.

132 VbD P +3 V to +5 V Supply.

* | = input; O = output; P = power; (3) = 3-state; (R) = on-chip pull-up or pull-down resistor.

12/23/92
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ATT92010 Hobbit Microprocessor

Instruction Set

Data Types

Six integer data types are supported: signed and
unsigned bytes (8 bits), signed and unsigned half-
words (16 bits), and signed and unsigned words

(32 bits). Nonword operands are properly aligned and
then expanded to 32 bits through sign extension (if
signed) or clearing high-order bits (if unsigned).

After alignment and expansion, the 32-bit ALU per-
forms the requested function. Carry and overfiow are
determined relative to the 32-bit result.

For destinations less than 32-bits, the least significant
bits of the 32-bit ALU result are selected. Changing a
value by truncation constitutes neither overflow nor
carry.

True three-operand (triadic) instructions are not pro-
vided, but instruction encodings which provide two
source operands and store the full 32-bit result in the
accumulator are provided (see the ATT92010 Stacks
section on page 30). This type of instruction is referred
to as a two-and-a-half-operand instruction. For exam-
ple, the mnemonic for an addition instruction of this
type is given as ADD3 where a two-operand (dyadic)
add is ADD. For this instruction, the two source oper-
ands are added and the full 32-bit result is stored in the
accumulator.

16

Operand Addressing Modes

There are seven addressing modes:
s Immediate

s Absolute

s Stack offset

s Stack offset indirect

s Absolute indirect

s Program counter relative

= Register

The arithmetic logic unit (ALU) operations generally
permit any of the first four of these addressing modes to
be used with either operand. The valid addressing
modes for each instruction are indicated in the detailed
instruction descriptions in the AT792010 Hobbit
Microprocessor Programmer’s Guide. Any mode which
is not explicitly mentioned for a given instruction should
not be used. The sections below briefly describe each
mode.

The operand can also have a suffix. The suffixes indi-
cate the size of data operands. A missing suffix implies
signed word operands.

» :B signed byte
:UB unsigned byte
s :H signed half-word

= UH unsigned half-word
s W word

Iimmediate

In the immediate addressing mode, the operand value
is stored in the instruction. Values up to 32 bits in
length are permitted. Shorter values are appropriately
sign or 0 extended before use.

Assembler language syntax: $data

12/23/92



ATT92010 Hobbit Microprocessor

Instruction Set (continued)

Operand Addressing Modes (continued)

Absolute

In the absolute addressing mode, the address of the
operand is stored in the instruction.

Assembler language syntax: *$addr:suffix

Stack Offset

In the stack offset addressing mode, a signed, two's
complement offset stored in the instruction (except for
CATCH and ENTER, see the ATT92010 Stacks section
onpage 30) is added to the current stack pointer (CSP)
value to obtain the operand address’.

Assembler language syntax: Roffset:suffix

Stack Offset Indirect

In the stack offset indirect addressing mode, an offset is
added to the CSP value to obtain the address of the
operand's address. The offset must be word aligned2.

Assembler language syntax: *Roffset:suffix

Absolute Indirect

In the absolute indirect addressing mode, the address
of the operand’s address is stored in the instruction.
This mode is only used for the JMP (conditional jump
instructions excluded), CALL, and LDRAA instructions,
so that the operand value should be an instruction
address which must be parcel (half-word) aligned.

Assembler language syntax: **$addr

Program Counter Relative

In the program counter relative addressing mode, a
signed, two's complement offset stored in the instruc-
tion is added to the address of the instruction to obtain
the operand value. This mode is only used for the JMP,
CALL, and LDRAA instructions.

Assembler language syntax: label

1. For negative offsets, off-chip stack accesses are performed and
cache coherency is not maintained.

2. An alignment fault, Ox4, is executed if the offset is not word
aligned.

12/23/92

Register

In the register addressing mode, the instruction in ques-
tion is preceded by a CPU instruction.

A CPU instruction is never directly executed, but it
serves to modify the next instruction's addressing
modes for both operands. Code 0x7 allows access to
the internal registers for use as data. The register
number is specified in the operand (source/destination
field). Only bits 3:0 are considered for determining the
register number.

The upper bits are ignored but should be 0 for compati-
bility with future versions of the Hobbit microprocessor.

At most, one register may be read per instruction. If
register 0x0 or 0xD through OxF is specified, an unim-
plemented register exception sequence, exception ID
0x6, is performed. Registers can be read in user mode,
but if there is a register write in user mode, a privilege
violation exception sequence, exception ID 0x5, is per-
formed.

Assembler language syntax: %REGISTER

Integer Arithmetic

The ATT92010 Hobbit microprocessor offers seven
arithmetic instructions:

s ADD a,b ;addatob

a DIV a,b divide b by a, signed

s MUL a,b ;multiplybbya

-a REM a,b ;calculate the remainder of signed

division of b by a

s SUB a,b ;subtractafromb

s UDIV a,b divide b by a, unsigned

s UREM a,b ;calculate the remainder of unsigned

division of b by a

REM and UREM are defined in terms of DIV and UDIV,
respectively. Operands a and b may be referenced
using a variety of addressing modes, with sign interpre-
tation given for byte and half-word arguments.

For the above instructions, the result is stored in b.
ADD, DIV, MUL, REM, and SUB as well as other
instructions also have a 2 1/2 address version (denoted
by a trailing 3) where the result is stored in the accumu-
lator (R4).

17



ATT92010 Hobbit Microprocessor

Instruction Set (continued)

Integer Arithmetic (continued)

The Carry Bit

The PSW carry bit indicates the occurrence of a borrow
during unsigned subtraction or of overflow during
unsigned addition or multiplication. Unsigned overflow
arises when a result exceeds unsigned(OxFFFFFFFF).
In terms of the operations above, the PSW carry bit is
set when:

Unsigned(b) — Unsigned(a) < 0
or unsigned overflow on an addition or multiplication:

Unsigned(b) {+ or *} Unsigned(a) >
Unsigned(OxFFFFFFFF)

Unsigned overflow cannot occur in UDIV and UREM.

In the ADD operation, the adder computes the sum of a
and b; the word result is delivered and, if carry-out
occurs, the PSW carry bit is set. In the SUB operation,
the two's complement of a is added to b, and the PSW
carry bit is set only if no carry-out occurs.

The Overflow Bit

Analogous to the PSW carry bit, the PSW overflow bit
signals the occurrence of signed overflow of the word
result of an arithmetic operation; this is a result outside
the interval:

[Signed(0x80000000) to Signed(0x7FFFFFFF))

In terms of the operations above, the PSW overflow bit
is set unless:

Signed(0x80000000) < (Signed(b) {+, —, or *}
Signed(a)) < Signed(0x7FFFFFFF)

Signed overflow cannot occur in REM. Signed overflow

does arise in DIV in precisely the case of 0x80000000
divided by -1 (i.e., OXFFFFFFFF).

18

Division and Remainder

Unsigned overflow does not apply to UDIV because its
dividend is at most unsigned(OxFFFFFFFF) and its
divisor is no less than 1 (except for a zero divisor, which
triggers a divide-by-zero exception), so its result is no
greater than its dividend. A similar argument applies to
DIV, except for the case of overflow.

Like UDIV, unsigned overflow does not apply to UREM.
UD and UR are the word results of the UDIV and UREM
operations, respectively. Apply these results to oper-
ands a and b. UDIV and UREM are related by the
formula:

b= (UD#*a) + UR,where 0 <UR < a

with all values unsigned. UR is no greater than a and
therefore no greater than unsigned(OxFFFFFFFF);
hence, overflow cannot occur. A similar argument
applies to REM.

Tagged Integer Arithmetic
s TADD a,b taggedaddaintob
s TSUB a,b tagged subtract a fromb

The tagged instructions ensure that the low 2 bits,
called tags, of both operands are 0, before the arith-
metic operation is performed. If either of the tags is
nonzero, the PSW flag bit is set to 1, and the result is
not stored. If both tags are zero, the result is stored
only if the operation doesn't result in an arithmetic
overflow. If the arithmetic overflow occurs, the PSW
flag bit is set to 1 and the result is not stored. These
instructions are useful in object-oriented languages
where a given variable may represent different data
types at different times during program execution.

12/23/92



ATT92010 Hobbit Microprocessor

Instruction Set (continued)

Fast Calling Sequence

The steps required for a function call are straightfor-
ward. Outgoing arguments are moved (or calculated)
onto the stack frame (see the ATT92010 Stacks on
page 30). In the event of word arguments, the first
argument is stored at current stack pointer (CSP) + 4,
the second at CSP + 8, etc. The CALL instruction per-
forms an atomic move and jump operation, saving the
return point at the CSP and loading the program
counter (PC) with the address of the first instruction of
the called function. The first instruction of the called
function is usually ENTER which adjusts the CSP to
allocate its new stack frame. The last instruction of the
called function, RETURN, readjusts the CSP to deallo-
cate its stack frame and then branches to the address
pointed to by the CSP. Customarily, a CATCH follows
the RETURN in user mode or when the user stack is
enabled to refill the stack cache.

This function call overhead—call, allocate, deallocate,
and return—can be as little as four clock cycles.

INCOMING ARGUMENT N HIGHER MEMORY
INCOMING ARGUMENT N - 1

INCOMING ARGUMENT 1/
INTEGER FUNCTION RETURN VALUE

SAVED PC OF CALLER
LOCAL VARIABLEN | DIRECTION OF
LOCAL VARIABLE N - 1 STACK (iROWTH

OLD SP >

LOCAL VARIABLE 1
TEMPORARY VARIABLES
OUTGOING ARGUMENT N

OUTGOING ARGUMENT N - 1

OUTGOING ARGUMENT 1
SP - EMPTY (PC SAVE AREA)

LOWER MEMORY

Figure 3. Typical Stack Frame (from the called
functions point of view)
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The stack grows downward in memory with the SP
always pointing to the top of the stack. This free slot is
where the PC is stored on a function call (or unimple-
mented instruction exception). This avoids having to
adjust the CSP to save or restore the PC. The PC is
the only machine register implicitly saved during a
function call. Above the saved PC slot in the stack
frame is an area large enough to store outgoing argu-
ments for any call from the current function. Above the
outgoing arguments are stored temporary values and
local variables. Thus, outgoing arguments may be cal-
culated in place with stack offset addressing modes.
This statically allocated stack-frame allows the CSP to
be updated only on function entry and function return.
Traditional PUSH or POP! instructions which automati-
cally adjust the CSP are intentionally avoided. There-
fore, side effects to the CSP are nearly eliminated and
operand address generation for subsequent instruc-
tions may smoothly proceed in a pipelined implementa-
tion.

Conditional Branches

Conditional branches are specified by first setting the
PSW flag bit using CMPEQ, CMPGT, CMPHI, TESTC,
or TESTV and then using a conditional jump (JMPTY,
JMPTN, JMPFY, and JMPFN).

The jump doesn't need to be the next instruction after
the flag is set. The pipeline runs more efficiently if three
instructions that don’t reference off-chip memory are
between them.

"The Y or N at the end of the conditional jump instruc-

tion is the prediction of the branch that will be taken
(Y-jump, N-continue).

1. POPN is provided to deallocate from the stack frame and is useful
in tail recursion.
19



ATT92010 Hobbit Microprocessor

Instruction Set (continued)

Instruction Format

Instructions are composed of 2 byte parcels and are
encoded in one-, three-, and five-parcel lengths. The
general instruction is encoded in five parcels, which
allows for the encoding of two complete 32-bit
addresses in each instruction. in general, the one- and
three-parcel instructions are more compact encodings
of five-parcel instructions. Instructions may have at
most two operands, which, in general, have four
addressing modes. For the dyadic instructions, one
source doubles as destination or the accumulator is
selected to serve as an implicit destination. The instruc-
tion formats are as follows:

s One-parcel formats (for zero-, one-, and two-oper-
and instructions)

s Three-parcel formats (for one- and two-operand
instructions)

s Five-parcel format (for two-operand instructions)

One-Parcel Formats

Many of the most common zero-, one-, and two-operand
instruction types may be encoded in one parcel:

NILADIC | o oxB SUBCODE

(NO OPERAND) | 45 |14 10]e 0
MONADIC| ¢ | OPCODE SOURCE

(ONE OPERAND) | 45 |14 10]9 0

SUB- |

stack| 0 o2 l SOURCE | cooe

15 14 10]9 211 0

DYADIC| o OPCODE SOURCE |DESTINATION

(TWO OPERANDS) | 45 |14 10lo sla 0

Figure 4. One-Parcel Instruction Formats

A 0 in the most significant bit distinguishes all one-parcel
instruction formats. The subcode field distinguishes
among the different niladic and stack instructions.

For operands, 5-bit immediate fields are sign extended,
while 5-bit stack offset fields are zero extended. All 10-bit
fields are zero extended except for CALL and JMP which
are sign extended. The 8-bit fields are zero extended,
except for ENTER, which is 1 filled.

20

Note that operand alignment restrictions allow some
address offsets to be scaled, thus extending the effec-
tive addressing range. The scaling of certain immediate
constants is made possible by the specific operand
value restrictions of the corresponding instructions.
Five-bit offset values are multiplied by four before they
are added to the SP. The 10-bit PC-relative offsets in
JMP and CALL instructions are multiplied by 2 before
they are used; the other 10-bit values are multiplied by
four before they are used.

Three-Parcel Formats

Three-parcel instructions are distinguished by a 10 in
the two most significant bits. The subcode field distin-
guishes among the different monadic instructions. The
notation operand-lo refers to the low-order 16 bits, and
operand-hi refers to the high-order 16 bits. A similar
convention applies to the source and destination oper-
ands of the five-parcel dyadic instructions.

1st PARCEL| 10 OPCODE SMODE |SUBCODE
15 1413 817 413 0

2nd PARCEL | _ OPERAND-HI .
3nd PARCEL | _ OPERAND-LO .

A. Monadic (One Operand)

1stPARCEL] 10 OPCODE SMODE | DMODE
15 14113 8l7 4|3 0
2nd PARCEL SOURCE
15 0
3and PARCEL DESTINATION
15 0

B. Dyadic (Two Operand)
Figure 5. Three-Parcel Instruction Formats

The 16-bit source and destination fields are sign
extended to 32 bits when they are used in immediate or
offset modes. When the 16-bit source and destination
fields are used as absolute addresses, extension of the
upper 16 bits depends on the setting of the CONFIG PC
extension bit. If the CONFIG PC extension bit is 1, bits
28:16 are replaced with 0 and bits 31:29 (the high-order
3 bits) are copied from bits 31:29 of the program
counter. If the CONFIG PC extension bit is 0, the upper
16 bits are set to 0. The source and destination
addressing mode fields are encoded in the same way
for both three- and five-parcel instructions.
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ATT92010 Hobbit Microprocessor

Instruction Set (continued)

Instruction Format (continued)

Five-Parcel Format

Five-parcel instructions are distinguished by a 11 in the
two most significant bits. Five-parcel instructions are
encoded similarly to three-parcel instructions.

1st PARCEY 11 OPCODE SMODE | DMODE

15 14]13 8|7 43 0
2nd PARCEL . SOURCE-HI .
3nd PARCEL . SOURCE-LO .
4nd PARCEL DESTINATION-HI

15 0
5nd PARCEL DESTINATION-LO

15 0

Table 4. Logical Instructions

Instruction Function
ANDI[3] Bitwise logical and
ANDI Bitwise logical and interlocked
ORI[3] Bitwise logical or

ORI Bitwise logical or interlocked

XOR[3] |Bitwise logical exclusive or
Table 5. Shift Instructions
Instruction Function
SHLI3] Left shift
SHRI[3] Arithmetic right shift
USHRI[3] |Logical right shift

Figure 6. Five-Parcel Instruction Format

Instructions

The general instruction format is:
Instruction source, destination

where the instruction can contain a 3 indicating that the
destination is the accumulator (R4). Otherwise, the
destination is also the second operand.

The instructions can be divided into eight categories.
The following special notations are used: [] and (|).
ADD{3], for example, indicates that both ADD and
ADD3 instructions exist. JMP (F|T)(Y|N) indicates that
JMPFY, JMPFN, JMPTY, and JMPTN instructions
exist.

Table 3. Arithmetic Instructions

Instruction Function

ADDI[3] Add
ADDI Add interlocked
DIVI[3] Divide

MUL[3] |Multiply

REM([3] |Remainder

SUB[3] |Subtract
ubiv Unsigned divide
UREM Unsigned remainder
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Table 6. Compare Instructions

Function
Equality comparison
Signed greater than comparison

Instruction
CMPEQ
CMPGT

CMPHI

High comparison (unsigned greater than)

Table 7. Move Instructions

Instruction
DQM

Function

Double-word move (destination suffix :B)
Quad-word move (destination suffix :W)

LDRAA |Load PC-relative address into the
accumulator
MOV Move
MOVA [Move address

Table 8. Tagged Instructions

Instruction Function
TADD Tagged addition
TSUB Tagged subtraction
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ATT92010 Hobbit Microprocessor

Instruction Set (continued)

Instructions (continued)

Table 9. Program Control Instructions

Instruction Function

CALL Call function
CATCH Fill stack cache
CRET Return from kernel with context
ENTER Allocate stack space
JMP Unconditional jump
JMP(F|T)(YIN) |Conditional jump based on PSW flag bit
KCALL Kernel call
KRET Return from kernel
POPN Free N entries from stack space
RETURN Free stack space and return from function

Table 10. Other Instructions

Instruction Function
CLRE Clear PSW enter guard bit
CPU Register mode addressing

FLUSHI Flush the decoded instruction cache

FLUSHP Flush the prefetch buffer cache

FLUSHPBE |Flush an entry in prefetch buffer cache

FLUSHPTE |Flush a page table entry in the TLBs or NPSRs

NOP No operation

TESTC Copy PSW carry bit to PSW flag bit and clear carry bit

TESTV Copy PSW overflow bit to PSW flag bit and clear overflow bit

22
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Instruction Set (continued)

Instruction (OPCODE/SUBCODE) Encodings
Table 11. One-Parcel Instruction Encodings, Monadics/Dyadics

opcode[2:0]
opcode[4:3]
000 001 010 011 100 101 110 111
00 KCALL CALL stack® JMP JMPFN | JMPFY | JMPTN | JMPTY
01 unimp? unimp! | MOV.WS | niladic | unimp? |ADD3.WS|AND3.CS| AND.SS
10 CMPEQ.CS|CMPGT.SS|CMPGT.CS|CMPEQ.SS| ADD.CS |ADD3.CS| ADD.SS |ADD3.SS
" MOV.SS MOV.IS MOV.SI MOV.II MOV.CS |MOVA.SS| SHL3.CS [ SHR3.CS
Notes:
C = 5-bit immediate
| = 5-bit indirect stack offset
S = 5-bit stack offset
W = 5-bit word-aligned immediate
* See Table 12.
1 The unimplemented instruction sequence is performed.
$ See Table 13.
Table 12. One-Parcel Instruction Encodings, Stack
subcode[1:0]
00 01 10 1"
ENTER CATCH RETURN POPN
Table 13. One-Parcel Instruction Encodings, Niladics
subcode[2:0]
subcode[9:3]
000 001 010 o011 100 101 110 11
0000000 CPU KRET NOP FLUSHI | FLUSHP | CRET | FLUSHD* | unimp*
0000001 TESTV | TESTC CLRE unimp* unimp* | unimp* unimp* unimp*
000001x unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
00001xx unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
0001 xxx unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
001 xxxX unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
01xxxxX unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
1XXXXXX trap? trap? trap? trap? trap? trap? trap? trap?
* The unimplemented instruction sequence is performed.
1 The niladic trap through VB + 8 is performed.
23
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Instruction Set (continued)

Instruction (OPCODE/SUBCODE) Encodings (continued)
Table 14. Three-Parcel Encodings

opcode[2:0]
opcode[5:3]
000 001 010 o011 100 101 110 11
000 monadic' | ORI ANDI ADDI MOVA UREM MOV DQM
001 unimp* unimp* unimp* unimp* TADD TSUB unimp* unimp*
010 unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
011 unimp* unimp* | unimp* unimp* unimp* | CMPGT | CMPHI | CMPEQ
100 SuB OR AND ADD XOR REM MUL DIV
101 unimp* unimp* unimp* unimp* SHR USHR SHL ubiv
10 SuUB3 OR3 AND3 ADD3 XOR3 REM3 MUL3 DIV3
1 unimp* unimp* unimp* unimp* SHR3 USHR3 SHL3 unimp*
* The unimplemented instruction sequence is performed.
t See Table 15.
Table 15. Three-Parcel Instruction Subcodings, Monadic
subcode[2:0]
subcode[9:3]
000 001 010 o011 100 101 110 11
0 KCALL | CALL | RETURN JMP JMPFN JMPFY JMPTN | JIMPTY
1 CATCH | ENTER | LDRAA | FLUSHPTE | FLUSHPBE | FLUSHDCE" | unimp* | POPN
* The unimplemented instruction sequence is performed.
Table 16. Five-Parcel Instruction Encodings
opcode[5:3] °p°°d.e[2 9l
000 001 010 on 100 101 110 11
000 unimp* ORI ANDI ADDI MOVA UREM MOV DQM
001 unimp* unimp* unimp* unimp* TADD TSUB | unimp* | unimp*
010 unimp* unimp* unimp* unimp* unimp* | unimp* | unimp* | unimp*
on unimp* unimp* unimp* unimp* unimp* | CMPGT | CMPHI | CMPEQ
100 SuB OR AND ADD XOR REM MUL DIV
101 unimp* unimp* unimp* unimp* SHR USHR SHL uUDIV
110 SuB3 OR3 AND3 ADD3 XOR3 REM3 MUL3 DIV3
m unimp* unimp* unimp* unimp* SHR3 | USHR3 | SHL3 | unimp*
* The unimplemented instruction sequence is performed. '
12/23/92
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Instruction Set (continued)

Table 19. CALL/JMP Addressing Mode Encodings

Addressing Mode (SMODE/DMODE) e e
Encodings *Roffset OxD | Stack offset indirect
Table 17. General Addressing Mode Encodings Label OxE | Program counter relative
*$addr OxF | Absolute
Mode Code Description
*$addr:B | Ox0 | Byte absolute Table 20. Source/Destination Register Encodings
*$addr:UB | Ox1 | Unsigned byte absolute
«$addrH | Ox2 |Half-word absolute Register Code
*$addr:UH | 0x3 | Unsigned half-word absolute MSP 0x1
Roffset:B | Ox4 |Byte stack offset ISP 0x2
Roffset:UB [ Ox5 [ Unsigned byte stack offset SP 0x3
Roffset:H | Ox6 |Half-word stack offset CONFIG 0x4
Roffset:UH | 0x7 [Unsigned half-word stack PSW 0x5
offset SHAD 0x6
+«Roffset:B | 0x8 |Byte stack offset indirect vB 0x7
*Roffset:UB | 0x9 | Unsigned byte stack offset STB 0x8
indirect FAULT 0x9
*Roffset:H | OxA |Half-word stack offset indirect ID OxA
*Roffset:UH | 0xB | Unsigned half-word stack TIMERH1 0xB
offset indirect TIMER2 0xC
*$addr:W | OxC |Word absolute unimp 0xD
Roffset:W | 0xD | Word stack offset unimp OXE
*Roffset:W | OxE | Word stack offset indirect unimp OxF
$data OxF | Immediate

Table 18. CPU Modified Addressing Mode

Encodings
Mode Code Description
register 0x7 CPU prefixed
*$addr:W 0xC Word absolute
Roffset:-W 0xD Word stack offset
*Roffset:W OxE Word stack offset indirect
$data OxF Immediate
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Prefetching Strategy

The ATT92010 Hobbit microprocessor provides two
types of instruction fetching selectable through the
CONFIG prefetch mode bit: aggressive prefetching and
demand fetching. When aggressive prefetching is
enabled (CONFIG prefetch mode bit = 1), the prefetch
unit on the microprocessor fetches text, which has not
been previously fetched and stored in the prefetch
buffer memory, in quad-word pieces consisting of two
double-word I/O requests. Text is prefetched
sequentially until a branch (predicted jump,
unconditional jump, CALL, CRET, KCALL, KRET, or
RETURN) is decoded. If the target of the branch is
encoded in the instruction (nonindirect), prefetching
then continues from the target (if it is not already in the
prefetch buffer); if the target is indirect, prefetching
stops and waits for a demand fetch request from the
execution unit. A demand fetch is requested if the
execution unit takes a mispredicted or indirect branch
and the target has not been previously decoded. If at
any time while the prefetch unit is prefetching
sequential code and following predicted branches a
demand fetch is requested, any I/O requested by the
unit will complete, and prefetching begins anew from
the execution unit requested target.

If demand fetching is enabled (CONFIG prefetch mode
bit = 0), the prefetch unit only issues an I/O request for
text when it is requested by the execution unit and is not
found in the prefetch buffer. The I/0 request is made for a
double word, and all instructions contained in the double
word and any subsequent instructions found in the
prefetch buffer are decoded, but prefetching ceases until
another demand fetch is requested by the execution unit.
Demand fetching is the default mode after reset.
Whether to use aggressive prefetching or demand
prefetching depends on the application.
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Static Branch Prediction and Branch
Folding

Branches break the flow of instruction execution and
can degrade the performance of a pipelined
microprocessor. Furthermore, the target of a
conditional jump is not known until the instruction is
executed. The Hobbit microprocessor solves these
problems in two ways. First, the instruction format
provides a static branch prediction field which is set at
compile time, indicating whether it is more likely for the
conditional branch to be taken or not. Since the
prefetch decode unit (PDU) continued prefetching
along the predicted path of a conditional jump, the
instructions can be issued and executed into the
pipeline without any discontinuity. Second, the PDU
assigns a next-PC and alternate-next-PC field for each
decoded instruction. Thus, for selected single-parcel
instructions or a three-parcel instruction, A, if the
following instruction, B, is a jump, the next-PC field for
the instruction A is the (predicted) target of the
instruction B and in the case B is conditional alternate-
next-PC is the nonpredicted target of B.
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Instruction Tracing

Instruction tracing is supported by the PSW trace basic
block or trace instruction bits. These bits control when
tracing is enabled. If an instruction is traceable, a trace
exception is taken after the instruction completes
execution. The PC saved on the interrupt stack is the
PC of the next instruction.

Instructions before folded branches cannot be traced
(i.e., if a jump is folded into the previous instruction, the
trace will occur after the jump). To circumvent this from
occurring, all jumps must be encoded as three-parcel
and, hence, will not be folded.

Event sequences are nontraceable. This includes
exceptions and interrupts. The unimplemented instruc-
tion sequence is traceable if the trace bits are not
altered. CRET, KCALL, and KRET are always non-
traceable.

Event Processing

There are several sequences which can be triggered in
the Hobbit microprocessor that are not usually invoked
by the regular instruction set. These events include, in
order of priority:

1. reset
2. interrupt
3. exception

The sequences executed by the Hobbit microprocessor
for each of these events are listed in the following
sections. In all cases, interrupts are inhibited while an
event processing sequence (the sequence that initiates
the event handler) is in progress.

As described in the following sections, the processing
of exceptions and interrupts includes the saving of the
PC and PSW on the interrupt stack. For instructions
that change the PC, the current PC is described below.

s CALL and JUMP: If the location pointed to by the
instruction cannot be referenced, a fetch-fault results
and the PC stored on the interrupt stack is the target
PC, not the PC of the instruction. If the indirection
word of an indirect instruction cannot be referenced,
a read-fault results and the PC stored on the inter-
rupt stack is that of the instruction.

s KCALL: If the location pointed to by the KCALL PC
entry in the vector cannot be referenced, a fetch-fault
results and the PC stored on the interrupt stack is the
target PC, not the PC of the original KCALL.
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s CRET, KRET, and RETURN: If the location pointed
to by the new PC value cannot be referenced, a
fetch-fault results and the PC stored on the interrupt
stack is the new PC value, not the address of the
instruction.

Reset

The ATT92010 Hobbit microprocessor enters the reset
sequence when:

s The extemal reset pin is asserted.

s Amemory fault, which is signaled either externally or
by the MMU,

— occurs when attempting to read or write the
interrupt stack during any event processing
sequence.

—occurs when attempting to read from the vector
table during any event processing sequence.

The reset sequence is:

1. Disable interrupts
2. Flush the PFB and IC

3. if (ARESET)
SHAD = 0x0

else
SHAD = PSW

. PSW = 0x0

. CONFIG = 0x0

. PC = 0x0

7. Enable NMI interrupts

[ IS I N

After a reset, SHAD is set to either 0x0 or the current

PSW depending upon which type of reset occurred.
Independent of the type of reset, the PFB and IC are
flushed and the PSW, CONFIG, and PC are initialized
to 0x0. 0x0 in the PSW register sets the execution level
to kernel, with physical addressing enabled, tracing
disabled, interrupts inhibited, and the ISP as the CSP.
0x0 in the CONFIG register disables all on-chip caches,
disables timer interrupts, and selects demand
prefetching. 0x0 in the PC register starts executing
instructions at physical address 0x0.

Note: If the reset sequence was initiated by HRESET
being asserted, the SP and the MSP are unde-
fined. The caches should not be enabled until
these registers are assigned values since the
range check circuitry would not know whether an
address should access the on-chip stack cache
or off-chip memory.
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Event Processing (continued)

Interrupt

An interrupt is signaled when an external device
requests service on the interrupt request input lines
IL[2:0] or either timer1 or timer2 overflows with the
respective interrupt enabled. The three input lines
associated with extemnal interrupts and the timer
interrupts, which are asserted at level 1, are compared
with the PSW interrupt priority level field and the
CONFIG timer interrupt enables. If the interrupt request
is less than the PSW interrupt priority level field, the
interrupt can be serviced. A PSW interrupt priority level
field of 7 allows interrupts at levels 6:0. A PSW interrupt
priority level field of 0 inhibits interrupts 6:1 and allows
only interrupts at level 0, which is referred to as a
nonmaskable interrupt (NMI).

Table 21. Interrupt Levels

IL[2:0] Iinterrupt Level
000 NMI

001 Level 1
010 Level 2
on Level 3
100 Level 4
101 Level 5
110 Level 6
111 No interrupt

The interrupt request input lines IL[2:0] must be
asserted with the same value for at least two cycles
before an interrupt is recognized by the Hobbit
microprocessor. The interrupt should remain asserted
until the interrupt handler clears it. If the interrupt is
accepted: the request enters at the top of the
execution-unit pipeline. Then all further interrupts are
disabled until completion of the interrupt sequence.
The ATT92010 Hobbit microprocessor does not
indicate when it is servicing an interrupt other than the
I/0 caused by the interrupt handler.
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An NMI can be generated by setting IL[2:0] to 0x0. An
interrupt at level 0 is edge sensitive in that when
asserted, it must be deasserted for at least two cycles
before another interrupt at any level is recognized.
When any interrupt enters the execution pipeline, all
interrupts are disabled, including NMI. After the interrupt
sequence completes, if the NMI is still asserted, it will be
serviced.

Most instructions complete execution before the inter-
rupt request enters the top of the execution-unit pipe-
line. CATCH, ENTER, MUL[3], DIV[3], REM[3], UDIV,
and UREM are interruptible. The CATCH portion of
CRET is interruptible. The PC stored on the interrupt
stack is the address of the interrupted instruction for
transparently resuming execution. CATCH, ENTER,
and the CATCH portion of CRET continue as opposed
to restarting.

Interrupt Sequence

When the interrupt is serviced, the sequence is as
follows:

1. Disable interrupts
2. if (CSP == ISP) ISP = SHAD
else SP =SHAD
3. *(ISP-8) = PC of interrupted instruction
/+ Becomes R8 with respect to new ISP */
4. *(ISP—4) = PSW
/+ Becomes R12 with respect to new ISP */
.ISP—=16
. SHAD = ISP
. PC = *(VB + 16 + (4 x interrupt level))
. PSW &= 0xFFFF0000
9. Enable NMI interrupts

where the interrupt level is the value of the IL[2:0] lines
producing the interrupt. Note that the interrupt
sequence is almost the same as the KCALL sequence.
In particular, the event frame left on the interrupt stack
is the same, so a KRET instruction is sufficient for
returning from an interrupt; interrupts are disabled dur-
ing this processing.

0 N O O,
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Event Processing (continued)

Exceptions

Exceptions signal an error in a program. The
exceptions recognized by the ATT92010 Hobbit
microprocessor are listed in Table 22.

Table 22. Exception Identifiers

Exception Code
Integer zero-divide Ox1
Trace 0x2
lllegal instruction 0x3
Alignment fault 0x4
Privilege violation 0x5
Unimplemented register 0x6
Fetch fault 0x7
Data read fault 0x8
Data write fault 0x9
Memory access I/O bus fault OxA
MMU table walk bus fault 0xB

The exception handler must always be present.

Exception Sequence

1. Disable interrupts
2. if (CSP == ISP) ISP = SHAD
else SP = SHAD
3. * (ISP-12) = exception identifier
/* Becomes R4 with respect to new ISP »/
4. *(ISP-8) = PC of faulted instruction
/* Becomes R8 with respect to new ISP */
5. *(ISP4) = PSW
/+* Becomes R12 with respect to new ISP */
.ISP—=16
. SHAD = ISP
.PC =+%(VB +4)
. PSW &= 0xFFFF0000
10. Enable NMI interrupts

The sequence is almost the same as that of KCALL. If
the target address of a CALL, CRET, JMP, KCALL,
KRET, or RETURN instruction, or of an interrupt,
causes a memory fault, the PC saved on the interrupt
stack is the target PC, not the address of the current
instruction.

©O© 0O NO
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In the case of exception IDs 0x8 and 0x9, the 32-bit
operand aligned virtual address of faulted access is
saved in the fault register. '

For a text fetch bus error or a data read bus error, the
PC placed on the interrupt stack is the address of the
instruction with the faulting address. For a data write
bus error, the PC placed on the interrupt stack is not
the PC of the instruction associated with the faulted
access. Due to the unhinged nature of the stores in the
Hobbit microprocessor, the PC stored is the PC of the
instruction which was at the bottom of the execution
pipeline when the fault occurred, and not the PC of the
instruction with which the faulted store is associated.

Unimplemented Instruction

An attempt to execute an unimplemented opcode
results in an unimplemented instruction sequence. This
sequence is faster than the exception sequence facili-
tating software emulation of extended instructions.
Since an unimplemented instruction can occur in either
execution mode, the unimplemented instruction handler
should be in both the user and kernel address space.

If an unimplemented instruction has an addressing
mode which is illegal for that instruction class, it is con-
sidered an illegal instruction (exception ID 0x3). Specif-
ically:

s Anunimplemented monadic instruction is considered
illegal if it has a nonword addressing mode (<0xC).

s An unimplemented instruction is considered illegal if
it follows a CPU instruction and contains an illegal
addressing mode, or combination of modes.

s RETURN with a negative operand.

There are no tests performed upon the addressing
modes of unimplemented dyadic instructions which do
not follow CPU instructions.

Unimplemented Instruction Sequence

1. *(CSP) = PC of unimplemented opcode
2. PC=%*(VB +12)

where CSP is either SP or ISP, debending upon the
state of the PSW current stack pointer bit.
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Event Processing (continued)

Trapped Niladics

An attempt to execute a one-parcel niladic with an
opcode in the range 0x200 through 0x3FF results in a
variant of the previously described unimplemented
instruction sequence called the trapped niladic excep-
tion. This sequence is the same as the unimplemented
instruction sequence except VB + 8 is used for the vec-
tor. The trapped niladic handler should be in both the
user and kernel address space. '

Trapped Niladic Sequence

1. *(CSP) = PC of unimplemented opcode
2. PC =*(VB +8)

where CSP is either SP or ISP, depending upon the
state of the PSW current stack pointer bit.

Event Processing Priority

The priorities assigned to each event type request are
as follows:

. Reset

. Interrupts

. Trace

. Instruction fetch faults

. lllegal instructions

. Unimplemented instructions/trapped niladics
. Unimplemented registers

. Alignment faults

. Data read and write and read bus error faults
. Privilege violation

11. Divide by zero

Events 3 through 11 are associated with a particular
instruction, while the higher-priority events (reset and
interrupts) can occur independent of the instruction
being executed. During some internal sequences,
interrupts are disabled. Many events are mutually
exclusive of each other and cannot occur at the same
time or within the same instruction.

© 0O NO O A WN =
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ATT92010 Stacks

The ATT92010 Hobbit microprocessor is equipped with
two stacks, the interrupt stack and the user stack. The
ISP register points to the interrupt stack, and the SP
register points to the user stack. The current stack
pointer (CSP) selects the current stack based on the
PSW current stack pointer bit. When an interrupt or
exception is serviced, the CSP automatically switches
to the ISP.

The interrupt stack resides in memory that should be
valid at all times. Part or all of the user stack resides in
the stack cache if it is enabled by the CONFIG stack
cache bit.

The Stack Cache

The goal of the stack cache is to keep the top elements
of the stack in high-speed registers (the stack grows to
lower addresses). The stack cache consists of a bank
of 64 registers (4 bytes wide) organized as a circular
buffer maintained by two registers: the maximum stack
pointer (MSP) and the stack pointer (SP). Both the
MSP and the SP are 28-bit registers holding quad-word
addresses. The MSP contains the address above the
highest address of the data that is currently kept in the
stack cache registers; the SP delimits the lowest
address of data in the stack cache. Therefore, only a
simple range check is needed to determine if an
address resides within the stack cache. If

SP < ADDR < MSP, it falls within the stack cache.
Although the stack cache limits are maintained on
quad-word boundaries, the stack cache is byte addres-
sable and appears as normal memory. All virtual
addresses generated to access data may freely refer-
ence the stack cache.

Since, the stack cache can contain the top 64 words of
the stack, most automatic variables and incoming and
outgoing arguments will be in the stack cache. The
stack cache is, therefore, a major factor in efficient
instruction execution.
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ATT92010 Stacks (continued)
Stack Cache Maintenance

Six instructions maintain the stack cache: CALL,
CATCH, CRET, ENTER, POPN, and RETURN. CALL
places the return address on the top of the stack and
branches to the target address. CATCH guarantees that
the stack cache is filled at least as deep as the number
of the bytes specified in its operand and is used after a
CALL instruction to ensure that an optimal portion of the
stack is on-chip. CRET is used by the kernel to load a
new SP and MSP and execute the function of CATCH
to fill the stack cache. CRET also loads a new PSW and
program counter address and is used for context
switches. ENTER allocates space on the new stack
frame by subtracting its operand, the size of the new
stack frame, fromthe SP. POPN deallocates the current
stack frame by adding its argument to the SP. RETURN
deallocates the current stack frame by adding its argu-
ment to the SP and then branching to the return address
on the top of the stack.

ENTER and CATCH are also used to handle the cases
where the stack cache circular buffer is not large
enough to accommodate the entire stack frame. When
a new procedure is entered, the ENTER instruction
attempts to allocate a new set of registers equal to the
size of the new stack frame. If free register space
exists in the circular buffer, then only the SP needs to
be modified. If not, then the entries nearest the MSP
are flushed back to main memory. Two cases exist:

s If the new stack frame size is less than 256 bytes,
then only the stack frame size minus the number of
free entries must be flushed.

a If the new stack frame size is 2256 bytes, then all
valid stack cache entries are flushed and only part of
the new stack frame nearest the SP is kept in the
stack cache.

A garbage collection function needs the PSW enter bit
for proper operation. When 1, this bit indicates that the
stack frame contains uninitialized data. After the data is
initialized, software should clear this bit.

After a procedure returns to the caller, the number of
stack cache entries that were flushed since the call is
unknown, so some entries may need to be restored
from off-chip memory. The argument of the CATCH
instruction specifies the number of stack cache entries
that must be valid before execution can continue effi-
ciently. The CATCH argument is used as a stack offset,
and a virtual address is generated. If this calculated
address resides within the stack cache, execution con-
tinues. However, if it lies outside the address range of
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valid stack cache entries, quad-words pointed to by the
MSP are restored from off-chip memory to the stack
cache, and the MSP is incremented until either CATCH
is satisfied or the stack cache is full. The CATCH
instruction behaves much like an assertion, since usu-
ally no entries need to be restored and CATCH takes
only one clock cycle.

Integer Accumulator

The integer accumulator is not a fixed hardware
register. It is the word in memory above the word
addressed by the CSP. The CSP is either the SP or the
interrupt stack pointer (ISP), as discussed above. The
integer accumulator normally resides on-chip in the
stack cache, but it may be off-chip if the SP = MSP or
CSP = ISP.

31 0

OXFFFFFFFC

ACCUMULATOR |«CSP + 4
PC SAVEAREA |«CSP

0

Figure 7. Integer Accumulator

Stack Precautions

The stack cache is conceptually a cache for memory. If

an address is generated in any processing stage, e.g.,
indirect address calculations, the stack cache is refer-
enced if that address is greater than or equal to the SP
and less than the MSP. This conceptual model is
violated when executing with CSP = ISP. There are no
problems with memory accesses as long as the stack
cache, based at the SP, and the interrupt stack, based
at the ISP, do not overlap. For similar reasons, the
fogowing addresses must not lie between the SP and
MSP:

= The vector table, defined by the vector base (VB)
s The address translation tables used by the MMU
s Any text address
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Control Registers
Table 23. ATT92010 Hobbit Microprocessor Control Registers

Name Description I Name Description
CONFIG |Configuration Register SHAD Shadow Register
FAULT Fault Register SP Stack Pointer
ID Identification Register STB Segment Table Base
ISP Interrupt Stack Pointer TIMER1 Timer1 Register
MSP Maximum Stack Pointer TIMER2 Timer2 Register
PC Program Counter VB Vector Base
PSW Program Status Word

CONFIG—Configuration Register

The configuration register (CONFIG) is set to 0x0 upon reset.

BIT(S)| 31:25 | 24:22 |21]20{19{18]17]16] 15:0 ]

LIESERVED
KERNEL LITTLE ENDIAN
PC EXTENSION
STACK CACHE ENABLE
INSTRUCTION CACHE ENABLE

PREFETCH BUFFER ENABLE
PREFETCH MODE
TIMER1 CONFIGURATION
TIMER2 CONFIGURATION

Figure 8. CONFIG—Configuration Register

Table 24. CONFIG—Configuration Register

Bit(s)

Description

31:25

Timer2 Configuration. A 7-bit field which configures timer2.
—Bit 29:25 select the intermal event which increments timer2.
Bit29 Bit28 Bit27 Bit26 Bit25 Event

0 0 0 0 0 Count clock cycles.

0 0 0 0 1 Count completed instructions (folded branches are not
counted).

1 1 1 1 1 Do not increment the timer, a low-power feature.

—Bit 30. If 0, timer2 is on all the time (with reference to bits 29:25). If 1, the timer only increments in
kernel mode (PSW execution level bit is 0).

—Bit 31. If 0, timer2 does not generate an interrupt. If 1, timer2 generates an interrupt using a timer2
vector when an overflow occurs (goes from OxFFFFFFFF to 0x0). This is a level one interrupt. An
external level one interrupt and a timer1 interrupt have priority over timer2.

Note: Special precautions must be taken when modifying the configuration register. The number of NOPs which must come after the register
write varies according to which bits are being modified and the number of wait-states being used by I/O transactions. The preferred
means of modifying CONFIG is to follow the CONFIG write by either a CRET or KRET.
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Control Registers (continued)

CONFIG—Configuration Register (continued)

Table 24. CONFIG—Configuration Register (continued)

BIit(s) Description

24:22 | Timer1 Configuration. A 3-bit field which configures timer1.

—Bit 22. If 0, timer1 counts clock cycles. If 1, timer1 counts completed instructions (folded branches
are not counted).

—Bit 23. If 0, timer1 is on all the time (with reference to bit 22). If 1, the timer only increments in kernel
mode (PSW execution level bit is 0).

—Bit 24. If 0, timer1 does not generate an interrupt. If 1, timer1 generates an interrupt using a timer1
vector when an overflow occurs (goes from OxFFFFFFFF to 0x0). This is a level one interrupt. An
external level one interrupt has priority over timer1.

21 Prefetch Mode. This bit controls prefetching of instructions. If 0, prefetching off-chip is not performed;

predecoding from the prefetch buffer into the instruction cache is performed. If 1, aggressive prefetch-

ing is performed. See the Prefetching Strategy section on page 26 for more information.

20 | Prefetch Buffer Enable. A 0 disables the prefetch buffer from hitting; a 1 enables it. The prefetch buffer

is neither flushed nor altered when this bit is modified.

19 | instruction Cache Enable. A 0 disables the instruction cache from hitting; a 1 enables it. The instruc-

tion cache is neither flushed nor altered when this bit is modified.

18 | Stack Cache Enable. A 0 disables the stack cache from hitting; a 1 enables it. The stack cache is nei-

ther flushed nor altered when this bit is modified.

17 | PC Extenslon. A0 selects 0 extension of 16-bit absolute addresses; a 1 selects the extension of 16-bit

absolute addresses where bits 31:29 are copied from bits 31:29 of the PC and bits 28:16 are set to 0.

16 | Kernel Little Endian. A 0 selects data as big endian in kernel mode; a 1 selects data as little endian in

kernel mode.

15:0 | Reserved. They return 0 when read and shouid be written with 0 on CONFIG writes.

Note: Special precautions must be taken when modifying the configuration register. The number of NOPs which must come after the register

write varies according to which bits are being modified and the number of wait-states being used by /O transactions. The preferred
means of modifying CONFIG is to follow the CONFIG write by either a CRET or KRET.

FAULT—Fault Register

This register reports the 32-bit operand aligned virtual address for the processing of exception IDs 0x8 and 0x9.

BIT(S)[ 31I 0 ]
FAULT ADDRESS

Figure 9. FAULT—Fault Register

Table 25. FAULT—Fault Register

Bit(s) Description
31.0 |Fault Address. This is the address causing the current exception for use by the exception handler.
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Control Registers (continued)
ID—JTAG ID Register

This register is the JTAG device identification register and is readable by serial shifting through the test access port
(TAP) and through normal register access. This register is read only. No operation is performed if this register is
written to.

BIT(S)| 3128 | 27:12 [ 11:0 |
[
MANUFACTURER CODE

PART CODE
VERSION CODE

Figure 10. ID—Identification Register

Table 26. ID—Identification Register

Bit(s) Description
31:28 | Version Code. This field is 0x0 for mask one and 0x1 for mask two.

27:12 | Part Code. This field is 0x0 for the ATT92010 Hobbit microprocessor.
11:0 | Manufacturer Code. This field is 0x3B for AT&T Microelectronics.

ISP—Interrupt Stack Pointer

The interrupt stack pointer (ISP) is used to generate addresses (i.e., as the base address in stack offset modes, to
locate the accumulator, and as the pointer manipulated by the instructions CALL, RETURN, POPN, and ENTER)
whenever the PSW current stack pointer bit is 0. The ISP is not associated with the stack cache. The instructions
CRET, KCALL, and KRET, and operating system sequences, interrupts, and exceptions use the ISP to maintain a
stack of event blocks. The ISP must be valid at all times. A fault on any ISP based address during event processing
results in the resetting of the ATT92010 Hobbit microprocessor. Address translation is performed if the MMU is
enabled by setting the PSW virtual/physical addressing mode bit to 1.

BIT(S)] 31:4 | 30 |

]
RESERVED
QUAD-ALIGNED INTERRUPT STACK POINTER

Figure 11. lSP—Ihterrupt Stack Pointer

Table 27. ISP—Interrupt Stack Pointer

Bit(s) Description

31:4 | Quad-Aligned Interrupt Stack Pointer. This is the address of the interrupt stack.
3:0 | Reserved. These bits return 0 when read.
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Control Registers (continued)
MSP—Maximum Stack Pointer

The maximum stack pointer (MSP), in conjunction with the SP, is associated with the on-chip stack cache. If the
current stack pointer is the SP then, any address which is greater than or equal to the SP and less than the MSP

hits in the stack cache.

Stack cache hits when SP < address < MSP.
On a memory access which hits in the stack cache, data is fetched or stored in the cache, not in external memory.

The MSP must be greater than or equal to the SP and less than or equal to SP + 256 (stack cache size), or the
result of stack cache accesses are dependent upon context and, therefore, are unpredictable.

Whenever the SP is the direct destination of an instruction, through a CPU-prefixed instruction with the SP as the

destination, the MSP is updated with the same value. This defines an empty stack cache (SP = MSP). The MSP is
manipulated implicitly by CATCH, CRET, ENTER, POPN, and RETURN. Hence, the MSP should only be modified
by stack manipulation instructions. Address translation is performed if the MMU is enabled by setting the PSW vir-

tual/physical addressing mode bit to 1.

BIT(S)| 314 | 30 |

|
RESERVED
QUAD-ALIGNED MAXIMUM STACK POINTER

Figure 12. MSP—Maximum Stack Pointer

Table 28. MSP—Maximum Stack Pointer

BIt(s) Description

31:4 | Quad-Aligned Maximum Stack Pointer. This is the address above top of user stack.
3:0 |Reserved. These bits return 0 when read.

PC—Program Counter

The program counter (PC) addresses the instruction which is currently being executed. Instructions are aligned on
parcel (half-word) boundaries. Since parcels are composed of 2 bytes, the PC is always a multiple of two and the
low-order bit is always 0. The PC cannot be directly manipulated by a general instruction. It can only be read or
modified by control-flow instructions CALL, CRET, JMP, KCALL, KRET, and RETURN and read by the move

instruction LDRAA.

BIT(S)| 31:1 [cla ]
" RESERVED

PROGRAM COUNTER
Figure 13. PC—Program Counter

Table 29. PC—Program Counter

BRI(S) Description
31:1 | Program Counter. This is the address of the current instruction.
0 Reserved.
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Control Registers (continued)

PSW—Program Status Word

The program status word (PSW) is set to 0x0 upon reset.

BIT(S)| 31:17 ~ |16[15] 14:12 [11]10]9]8]7]6]|5]4] 30 |

kESERVED
FLAG
CARRY
OVERFLOW
TRACE INSTRUCTION
TRACE BASIC BLOCK
CURRENT STACK POINTER
EXECUTION LEVEL
ENTER GUARD
INTERRUPT PRIORITY LEVEL
USER LITTLE ENDIAN
VIRTUAL/PHYSICAL ADDRESSING MODE

RESERVED

Figure 14. PSW—Program Status Word

Table 30. PSW—Program Status Word
Bit(s) Description
31:17 | Reserved.
16 | Virtual/Physical Addressing Mode. If 0, physical addressing (memory management disabled) is

enabled, and NCACHE is asserted. If 1, virtual addressing is enabled (memory management enabled).
Special precautions must be taken when explicitly modifying this bit. If it is explicitly modified, the sec-
tion of code executing must be mapped physical address = virtual address. The safest means of manip-
ulating this bit is through KRET.

15 | User Little Endian. If 0, data is selected as big endian in user mode. If 1, data is selected as little
endian in user mode.
14:12 | Interrupt Priority Level. Interrupts are accepted when the requesting device level (IL[2:0)) is less than
interrupt priority level or equal to 0. When these bits equal 7, all interrupts are enabled.
11 Enter Guard. Set on an uneventful ENTER. This bit is not cleared when the PSW is read.
10 | Execution Level. If 0, execution at the kernel level is performed. If 1, execution at the user level is per-

formed.

Note: The exception and interrupt sequences only alter the lower 16 bits of the PSW. To remain restartable, the carry and overflow bits are not
cleared on reading the PSW until the instruction completes. Reads of the PSW are not interlocked against flag setting. If an instruction
sets the flag, carry, or overflow bits, there must be at least two intervening instructions, which do not use or modify these bits, before the
PSW can be accurately read.
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Control Registers (continued)

PSW—Program Status Word (continued)
Table 30. PSW—Program Status Word (continued)

BIt(S) Description

9 Current Stack Pointer. If 0, the ISP is used as the CSP for stack operations. If 1, the SP is used as the
CSP for stack operations. If this bit is modified by a direct write to the PSW, thereby changing the CSP,
it is necessary to update SHAD to the value of the new SP. This update is handled automatically by
CRET, KCALL, and KRET. If this bit is set to 1, and it was previously 0, the instruction modifying the
PSW should be followed by the instruction MOV %SP,%SHAD. If this bit is set to 0 when it was previ-
ously 1, the next instruction should be MOV %ISP,%SHAD. Due to interrupts and exceptions, it is rec-
ommended that this bit not be modified by a direct write to the PSW since the above operations cannot
be guaranteed to be atomic.

8 Trace Basic Block. Controls basic block tracing. If 1, the Hobbit microprocessor executes instructions
until a CALL, RETURN, or any jump (folded or not) instruction, referred to as the N instruction, executes.
The instruction following instruction N, referred to as N + 1, is not permitted into the execution unit, and
a trace instruction is generated internally. This trace instruction blocks the pipeline and forces the Hobbit
microprocessor to take a trace exception using the PC of the N + 1 instruction as the exception PC. As
branch folding is performed prior to the trace identifier, folded branches are not explicitly traceable. If
both the trace instruction and the trace basic block bits are set to 1, the function is that of the trace
instruction.

7 Trace Instruction. Controls instruction tracing. When 1, the Hobbit microprocessor allows the next
instruction, N, to execute normally. The instruction following instruction N, referred to as N + 1, is not
permitted into the execution unit, and a trace instruction is generated on the fly. This trace instruction
blocks the pipeline and forces the Hobbit microprocessor to take a trace exception using the PC of the N
+ 1 instruction as the exception PC. As branch folding is performed prior to the trace identifier, folded
branches are not explicitly traceable. If both the trace instruction and the trace basic block bits are set to
1, the function is that of the trace instruction.

6 Overflow. If 0, this bit indicates that an operation did not generate a signed overflow. If 1, this bit indi-
cates that an operation generated a signed overflow. This bit is not cleared by a read of the PSW.

5 Carry. If 0, this bit indicates that an operation did not generate an unsigned overflow. If 1, this bit indi-
cates that an operation generated an unsigned overflow. This bit is not cleared by a read of the PSW.
4 Flag. Set/cleared by CMP, TADD, TESTC, TESTV, and TSUB instructions. This bit is not cleared by a
read of the PSW.

3:0 | Reserved. These bits are reserved. They return 0 when read and must be written with 0 on PSW writes.
Note: The exception and interrupt sequences only alter the lower 16 bits of the PSW. To remain restartable, the carry and overflow bits are not

cleared on reading the PSW until the instruction completes. Reads of the PSW are not interlocked against flag setting. If an instruction
sets the flag, carry, or overflow bits, there must be at least two intervening instructions, which do not use or modify these bits, before the

PSW can be accurately read.
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Control Registers (continued)

SHAD—Shadow Register

The shadow register (SHAD) is a copy of the CSP. It is maintained by the ATT92010 Hobbit microprocessor's inter-
nal sequences to facilitate restarting of instructions. In the course of CRET, ENTER, KCALL, KRET, and RETURN
instructions, or any time the CSP is modified, SHAD is automatically updated to be consistent with the CSP.

BIT(S)| 31:4 | 80 |
[
RESERVED

QUAD-ALIGNED CSP SHADOW
Figure 15. SHAD—Shadow Register

Table 31. SHAD—Shadow Register

BIt(S) Description

31:4 | Quad-Aligned CSP Shadow. These bits contain a copy of the CSP.
3:0 | Reserved. These bits return 0 when read.

Note: If the PSW current stack pointer bit is modified by a direct write to the PSW, thereby changing the CSP, it is
necessary to update SHAD to the value of the new SP. KCALL and KRET handle this automatically.

SP—Stack Pointer

The stack pointer (SP) addresses the top of the stack. The stack grows downwards toward memory location zero.
The SP is used to generate addresses (i.e., as the base address in offset modes, to locate the accumulator, and as
the pointer manipulated by CALL, ENTER, POPN, and RETURN) whenever the PSW current stack pointer bit is 1.
Address translation is performed if the MMU is enabled by setting the PSW virtual/physical addressing mode bit to 1.

BIT(S)| 31:4 | 30 |
I
RESERVED

QUAD-ALIGNED USER STACK POINTER
Figure 16. SP—Stack Pointer

Table 32. SP—Stack Pointer

Bit(s) Description

31:4 | Quad-Aligned User Stack Pointer. This is the address of the user stack.
3:0 | Reserved. These bits return 0 when read.
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Control Registers (continued)
STB—Segment Table Base

This register contains a pointer to the start of the segment table used in address translation when virtual addressing
is turned on by the PSW virtual/physical addressing mode bit. The base of the segment table is always page-size
aligned, 4 Kbyte boundary. The STB is only used during misprocessing, to fill entries in the on-chip TLB or segment
registers. When the STB is written, the TLBs and segment registers of the MMU are flushed, invalidating all entries.
Neither the physically addressed PFB, the virtually addressed IC, nor the virtually addressed SC are flushed. Cache
coherency is the responsibility of the user.

BIT(S) | 31:12 1] 10:0 |
LESERVED

CACHE BIT
SEGMENT TABLE BASE ADDRESS

Figure 17. STB—Segment Table Base

Table 33. STB—Segment Table Base

BRI(S) Description

31:12 | Segment Table Base Address. This is the page-aligned base address of the segment table.

1" Cache Bit. A cacheable bit that is copied to the cacheable pin whenever a segment table access is
made during misprocessing, indicating if segment table entries should be cached. If 1, NCACHE is
deasserted and caching of segment table entries is allowed.

10:0 | Reserved. Return 0 when read.
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Control Registers (continued)

TIMER1—Timer1 Register

This register can be configured by the CONFIG timer1 configuration bits to count various events.

BIT(S) [~ 310

I
TIMER1 VALUE

Figure 18. TIMER1—Timer1 Register

Table 34. TIMER1—Timer1 Register

BIt(s) Description
31:0 | Timer1 Value. These bits contain the count value for Timer1.
TIMER2—Timer2 Register

This register can be configured by the CONFIG timer2 configuration bits to count various events.

BIT(S)| 31:0

|
TIMER2 VALUE

Figure 19. TIMER2—Timer2 Register

Table 35. TIMER2—Timer2 Reglster

Bit(s)

Description

310

Timer2 Value. These bits contain the count value for Timer2.
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Control Registers (continued)
VB—Vector Base

BIT(S)| 31:4 | 30 |
I
RESERVED

QUAD-ALIGNED VECTOR TABLE BASE

Figure 20. VB—Vector Base

Table 36. VB—Vector Base

BR(S) Description

31:4 | Quad-Alignhed Vector Table Base. These bits are used as the base of a table which contains transfer
addresses used by KCALL, interrupts, and exceptions. Address translation is performed if the MMU is

enabled by setting the PSW virtual/physical addressing mode bit to 1. The vector table, as shown below,
should always be available. If an access to the vector table entry is faulted, the Hobbit microprocessor
resets.

The exception PC handler should be present in memory, since a memory fault would cause an infinite
loop until the interrupt stack is exhausted and the Hobbit microprocessor resets. Additionally, the niladic
trap and unimplemented instruction handlers must be in the user memory space since these handlers
can be accessed while in user mode.

VB + 52— FP EXCEPTION

VB + 48— TIMER2 INTERRUPT

VB + 44— TIMER1 INTERRUPT

VB + 40—» INTERRUPT 6

VB + 36— INTERRUPT5

VB + 32— INTERRUPT 4

VB + 28— INTERRUPT 3

VB + 24— INTERRUPT 2

VB + 20» INTERRUPT 1 o
VB + 165 NONMASKABLE INTERRUPT
VB + 12— UNIMPLEMENTED INSTRUCTION
VB + 8>  NILADIC TRAPS

VB +4—  EXCEPTION PC

VB - KCALL PC

3:0 |Reserved. These bits return 0 when read.
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Addressing and Alignment Restrictions

The numbering of bits within bytes and words corresponds to that in the DEC VAX', Intel? 80X86, and Motorola®
680X0. The numbering of bytes within data words is selectable independently for the user mode by the PSW user
little-endian bit and the kernel mode by the CONFIG kemel little-endian bit, respectively. When the PSW user little-
endian bit and CONFIG kernel little-endian bit equals 0, the numbering of bytes within data words corresponds to
that in the /BM* 370 and Motorola 680X0 in the user/kernel mode (see Figure 21.)

31 BYTEO 24J2a BYTE1 6[1s BYTE2 7 BYTE3 o

Figure 21. Big-Endian Byte Ordering

When the PSW user little-endian bit and CONFIG kernel little-endian bit equals 1, the numbering of bytes within
data words corresponds to that in the VAX and /nte/ 80X86 in the user/kernel mode (see Figure 22.)

{31+ BYTE3 24]23 BYTE2 e[is BYTE1 sz BYTEO o

Figure 22. Little-Endian Byte Ordering

Text is always in big-endian order. The ATT92010 Hobbit microprocessor fetches only words; bytes and half-words
are accessed by extracting them from the surrounding word. During reads, the byte enables indicate which bytes
are to be extracted from within the word being fetched. All writes are done to word addresses, with the appropriate

byte enables asserted.

All operand addresses should be naturally aligned for the operand type5. If an operand fetch or operand store is to
an address which is not properly aligned for the data type, an alignment exception is signaled. Instructions must be
aligned on half-word boundaries, although no exception is signaled. Alignment occurs as the least significant bit of
the address is ignored for text fetches.

Memory Management

The Hobbit microprocessor has an on-chip memory management unit (MMU), which translates virtual addresses (if
enabled), as seen by a programmer, into physical addresses. Two methods for address translation are provided:
paged and nonpaged segments (see Figure 23 and Figure 24, respectively.)

The 32-bit virtual address space is divided into 1,024 segments, each representing 4 Mbytes of virtual addresses
with a 4 Mbyte alignment. Paged segments are further divided into 4 Kbyte pages. Nonpaged segments provide a
variable-sized (4 Kbyte to 4 Mbyte in 4 Kbyte increments) contiguous segment of memory. In paged segment
address translation, each page can be mapped anywhere in the 32-bit physical address space on a 4 Kbyte

boundary.

Address translation is enabled by setting the PSW virtual/physical bit to 1. To speed paged segment address trans-
lation, the Hobbit microprocessor has two TLBs, one for text addresses and one for data addresses. Each TLB has
32 entries and is fully associative. Two nonpaged segment registers (NPSRs), one for a text address and one for a
data address, speed nonpaged segment address translation.

1. DEC and VAX are trademarks of Digital Equipment Corporation.

2. Intel is a trademark of Intel Corporation.

3. Motorola is a registered trademark of Motorola, Inc.

4. IBMis a registered trademark of International Business Machines Corporation.
5. Byte on byte, half-words on half-word, words on word address boundaries.
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Memory Management (continued)

Additionally, to provide a zero-cycle program counter translation, a micro-TLB is provided for text references in the
present page. This micro-TLB contains the last translation used by the prefetch unit and provides zero-cycle
address translation. If the micro-TLB misses, one cycle is required for update if the address translation hits in the
text TLB or text NPSR. If an address is not contained in the appropriate TLB or NPSR, the on-chip MMU automat-
ically fetches the appropriate entry by walking the memory management tables.

PAGED VIRTUAL ADDRESS|s1 SEGMENT # 2|21  PAGE# 12|11 PAGE OFFSET 0]

|

SEGMENT PAGE PAGE
TABLE TABLE FRAME
5
2
ISEGMENT TBL
ENTRY

— PAGE TABLEBASE ~ PAGE FRAME BASE
ISEGMENT TABLE BASE

Figure 23. Paged Segment Address Mapping

NONPAGED VIRTUAL ADDRESSESEGMENT #22121 SEGMENT OFFSET 0

SEGMENT
_ FRAME
SEGMENT  [BOUND
TABLE:
PHYSICAL
WORD
ISEGMENT T80
—> ENTRY [
BASE

[SEGMENT TABLE BASE

Figure 24. Nonpaged Segment Address Mapping
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Memory Management (continued)

Virtual Address Mapping

All addresses in the Hobbit microprocessor are
translated by walking a series of map tables (see
Figure 23 and Figure 24 on page 43). All map tables in
the memory mapping scheme are 4,096 bytes long
(one page frame). All addresses contained within a
memory management table are physical addresses, so
address translation is not recursive. Address mapping
checks the validity of virtual addresses and translates
them into physical addresses. A virtual address is
flagged as illegal if one of the following happens:

= There is no valid physical mapping.

s User execution level code attempts to access kemel
execution level addresses.

s Astore is attempted to read-only data.

Any violation is signaled as a memory fault as
described below:

Fetch fault: If, during an address translation for text,
there is no physical mapping or an attempt is made to
access a kernel only page while in user mode, this fault
is signaled. Note that a fetch fault is generated only on
demand fetches and only stops fetching, until a
demand fetch, if aggressive fetching is enabled by the
PSW prefetch bit.

Read fault: If, during an address translation for reading
data, there is no physical mapping or an attempt is
made to access a kernel only page while in user mode,
this fault is signaled. This fault can be ignored if the

read was requested because of a mispredicted branch.

Write fault: If, during an address translation for either
writing data or while executing one of the stack
manipulation instructions, there is no physical page, an
attempt is made to access a kernel only page in user
mode, or an attempt is made to write to a nonwritable
page, this fault is signaled.

44

Paged Segment Addresses

Apage frame is a contiguous region of 4,096 bytes,
beginning at an address evenly divisible by 4,096 (the
low 12-bits of the address are all 0). Because all page
frames begin on page boundaries, additions are not
necessary to calculate addresses. When paged
segment translation is in use, virtual addresses are
divided into the following three fields (see Figure 23 on

page 43):

s Segment number
= Page number

s Page offset

Nonpaged Segment Addresses

When nonpaged segment translation is in use, virtual
addresses are divided into the following two fields (see
Figure 24 on page 43):

= Segment number
s Segment offset
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Memory Management (continued)

Segment Tables

The segment number selects one entry from 1,024 entries in the segment table—a 4 Kbyte table located in one
page frame in physical memory. Each segment table entry is 4 bytes long and contains the base address of a page
table or the base address and size of a nonpaged segment. The base address of the segment table is contained in
the segment table base register (STB).

The address of a segment table entry is formed by concatenating the upper 20-bits of the segment table base reg

ister with the upper 10 bits of the virtual address: the base address field in the segment table base defines the
beginning of a segment table in physical memory, and the segment number field of the virtual address defines a

word within the segment table.

There are two possible formats for a segment table entry. Paged segments have referenced and modified bits for
enhanced memory management. Nonpaged segments only require the segment table to resolve references.

Paged Segment Table Entries

The segment table for paged segments defines 1,024 segments each 1,024 pages long (for a total of
4,294,967,296 bytes). Segments are defined as a series of pages, so there may be holes in a segment's address
space. There is no length specification for a segment: the validity of constituent pages defines a segment's extent.

Each paged segment table entry defines a page table.

BIT(S)[~ 31:12 ] 10:4 [3[ 21 ]0]
VALID
RESERVED
SEGMENT
RESERVED
CACHE
PAGE TABLE BASE ADDRESS

Figure 25. Paged Segment Table Entry

Table 37. Paged Segment Table Entry

BHI(S) Name/Description

31:12 | Page Table Base Address. The base address in physical memory of the page table.
11 Cache. If 1, NCACHE is deasserted when fetching page table entries.
104 | Reserved.
3 Segment. 0 for paged segment transiation.
21 Reserved.
0 Valid. If 1, the entry is valid.
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Memory Management (continued)

Segment Tables (continued)

Nonpaged Segment Table Entries
The segment table for nonpaged segments defines 1,024 segments each from 4,096 bytes to 4 Mbytes long.

BIT(S)[ 3122 | 21:12 [ 104 [3T2T7T0]
Vaup
WRITABLE
USER
SEGMENT
RESERVED
CACHE
SEGMENT BOUND
SEGMENT BASE ADDRESS

Figure 26. Nonpaged Segment Table Entry

Table 38. Nonpaged Segment Table Entry

BIt(S) Name/Description

31:22 | Segment Base Address. These bits contain the base address of the segment in physical memory.
21:12 | Segment Bound. These bits contain the size of the segment, ranging from 4,096 bytes (0x0) to
4 Mbytes (0x3FF) in increments of 4,096 bytes.
1 Cache. If 0, NCACHE is asserted when accessing this segment. Text fetches will not be cached in the
prefetch buffer cache, but they will be cached in the decoded instruction cache. If 1, NCACHE is deas-
serted when accessing nonpaged segments. This bit has no effect on the use of the stack cache.
10:4 | Reserved.

3 Segment. A 1 for nonpaged segment translation.

2 User. If 1, the segment can be accessed at user execution level (all valid segments can be accessed at
kernel level).
1 Writable. If 1, the segment can be written (all valid segments can be read).
Valid. If 1, the segment is valid.

The segment offset field of the virtual address defines the byte within the segment frame in which the virtual
address is mapped. The physical address consists of the segment base address from the segment table entry con-
catenated with the segment offset field of the virtual address. If a protection violation is detected, no memory
access is made and a memory fault exception is executed.

Mixed Paged and Nonpaged Segment Tables

Since the segment bit in the segment table entry controls if the segment table entry is paged or nonpaged, a seg-
ment table can contain both paged and nonpaged entries.
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Memory Management (continued)

Page Tables

The address of a page table entry is formed by concatenating the upper 20-bits of the segment table entry with bits
21:12 of the virtual address (which is the page number).

A page table entry defines the physical address corresponding to the virtual address and provides protection infor-
mation and other data available for paging algorithms. The reference and modified bits are automatically set by the
on-chip MMU, but they must be cleared by software when needed.

BT(s) [ 31:12 [ 105 Ta[3[2]1]0]
VALID
WRITABLE

USER
REFERENCED

MODIFIED

RESERVED
CACHE
PAGE FRAME BASE ADDRESS

Figure 27. Page Table Entry

Table 39. Page Table Entry

BH(S) Name/Description

31:12 | Page Frame Base Address. These bits contain the base address in physical memory of the page
frame.

1" Cache. If 0, NCACHE is asserted when accessing this page. Text fetches will not be cached in the
prefetch buffer cache, but they will be cached in the decoded instruction cache. If 1, NCACHE is
deasserted when accessing this page. This bit has no effect on the use of the stack cache.

10:5 | Reserved. .

4 Modified. Set to 1 when a write occurs within the page. On subsequent writes to this page, the memory
copy of the page table entry is not accessed to set this bit again. If a direct write to the memory copy of
the page table entry changes this bit, the entry should be flushed from the TLB using the FLUSHPTE
instruction.

3 Referenced. Set to 1 when a page is first referenced. On subsequent references to this page, the
memory copy of the PTE is not accessed to set this bit again. If a direct write to the memory copy of the
PTE changes this bit, the entry should be flushed from the TLB using the FLUSHPTE instruction.

2 User BHt. If 1, the page can be accessed at user execution level (all valid pages can be accessed by
the kernel).

1 Writable. If 1, the page can be written (all valid pages can be read).

0 Valid. If 1, the page is valid.

The page offset field of the virtual address defines the byte within the page frame in which the virtual address is
mapped. The physical address consists of the page frame base address from the page table entry concatenated
with the page offset field of the virtual address. If a protection violation is detected, no memory access is made and

a memory fault exception is executed.
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Memory Management (continued)

Memory Management Operations

Both TLBs and NPSRs are completely flushed whenever the ATT92010 Hobbit microprocessor is reset (either by
asserting the external reset pin, or the detection of an intemal event which causes the Hobbit microprocessor to
reset). The TLBs and NPSRs are also flushed whenever the segment table base register is written (see the STB—
Segment Table Base section on page 39).

Individual TLB and NPSR entries may be flushed with the FLUSHPTE instruction. If the effective address in the
FLUSHPTE instruction is cached in one or both of the TLBs or NPSRs, the TLB or NPSR entry is marked invalid,
so any subsequent access of that virtual address will be translated by the full memory map table walk. The
FLUSHPTE instruction is not privileged, so a user process may flush any or all entries in the on-chip TLBs or
NPSRs. Although this may degrade the performance of the process, it does not affect correctness, since the
memory management tables in physical memory define the address mapping and the FLUSHPTE instruction does
not alter the tables in memory.

[OCK is asserted when page table entries are fetched. If the R and M bits of the entry are current, COCK is cleared.
If either R or M bits must be updated, the page table entry is written back to memory with LOCK still asserted. COCK
is deasserted when the write completes.

If there is an external bus error signaled during the memory management table walk, the Hobbit microprocessor
will take an exception (see Table 22 on page 29).
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Bus Operation and Arbitration

To facilitate multiple bus masters, the bus arbitration
protocol does not make the ATT92010 the default bus
master. A centralized arbiter selects the current bus
master and controls transactions over the bus. A
synchronous bus protocol is used to exchange
ownership of the bus from one master to another. The
central bus arbiter must execute this protocol,
asserting and negating BGRANT to the various bus
masters in a consistent manner.

The signals involved in this protocol generated by the
central bus arbiter are HRESET, BGRANT, and RETRY.
There is a BGRANT for each bus master, with the other
signals shared among bus masters.

The signals involved in this protocol generated by the
bus masters are BREQ, START, I0C[1:0], and [LOCK.
There is a BREQ for each bus master, with the other
signals shared among bus masters.

Finally, the device being accessed generates DTACK.

Upon reset of the system, which must be synchronous,
the arbiter selects one of the requesting bus masters
as current bus master by asserting its BGRANT. Having
received BGRANT, the master takes ownership of the
bus. The bus arbiter monitors the bus, keeping track of
the state of the bus. The Hobbit microprocessor
asserts BREQ when an I/O transaction is pending
(upon reset, all Hobbit microprocessors want to start
execution at address 0x0).

The arbiter selects a new bus master by deasserting
BGRANT to the current bus master and asserting
BGRANT to the next bus master at the end of any
outstanding bus transactions. If the current bus master
loses BGRANT with an outstanding transaction on the
bus, that master remains on the bus until DTACK is
asserted with IOC[1:0] equal to zero and LOCK is
deasserted.
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The new bus master takes ownership of the bus at the
beginning of the next bus cycle after receipt of
BGRANT. The arbiter must assert BGRANT in a manner
which inserts a dead cycle between the end of the
previous bus owner's BGRANT and the beginning of the
next bus owner’s BGRANT.

The ATTT92010 asserts BGACK to indicate that it has
bus ownership, and it deasserts BGACK to indicate that
it has relinquished the bus.

Requesting the Bus

In Figure 28, bus cycles 1 through 4 show a typical bus
request and acquisition.

Surrendering the Bus

The arbiter signals the Hobbit microprocessor to
relinquish the bus by deasserting BGRANT. When
BGRANT is deasserted, the ATT92010 will relinquish
ownership of the bus and deassert BGACK. If the
Hobbit microprocessor is running a bus transaction and
BGRANT is deasserted, ownership of the bus will be
relinquished after receipt of DTACK with I0OC[1:0] equal
to zero and [LOCK is deasserted. If the Hobbit
microprocessor is not running a bus transaction and
BGRANT is deasserted, ownership of the bus will be
relinquished at the beginning of the next bus cycle.
BGACK is deasserted by the Hobbit microprocessor in
the same bus cycle that ownership of the bus is being
relinquished.

*'Most arbitration protocols will want to continue to grant

the bus to the current bus master if it continues to
request the bus by asserting its BREQ.

In Figure 28 on page 50, bus cycles 15 through 17
show a typical release of the bus.
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Figure 28 represents a cacheable single-word data read followed by a double-word text read. The accesses are

Bus Operation and Arbitration (continued)
not interlocked and don't produce bus errors.

ATT92010 Hobbit Microprocessor
Surrendering the Bus (continued)
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Figure 28. Read Bus Cycles with Bus Arbitration
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Bus Operation and Arbitration
(continued)

Bus Transaction Types

Normal bus transfers begin with the assertion of START
and end with the assertion of DTACK. In case of an
error during a bus transfer, the transaction may be
ended by the assertion of HRESET or BERR with
DTACK. Interlocked bus transfers end with the
deassertion of LOCK following a DTACK. Multiple word
transfers end when I0C[1:0] = 0 with assertion of
DTACK. Sub-word accesses are the same as single-
word accesses with the exception that only the
appropriate byte enables are asserted.

Read Transactions

Read transactions may fetch text or data. Text reads
are always double-word transfers. Data reads are
either single-, double- or quad-word transfers. After
completion of a read transaction, a loopback is
performed if the Hobbit microprocessor remains owner
of the bus and there are no pending bus transactions.
See Figure 28 on page 50 for the following example.

Bus cycles 4 through 6 show a typical read transaction.
In bus cycles 7 through 10, a loopback cycle is
performed. In bus cycles 11 and 15, a double-word
transaction is performed. In bus cycle 16, another
loopback cycle is performed. The ATT92010 holds all
bus signals at their previous values and loops back the
data read on the previous cycle.

Note: The bus transaction may be ended by HRESET
or BERR with DTACK to signal an error.
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Write Transactions

Write transactions are either single-, double-, or quad-
word transfers. See Figure 29 on page 52 for the
following example.

Bus cycles 4 through 7 show a typical write transaction.
In bus cycles 8 through 10, the microprocessor
maintains the previous bus cycles values on most
signals. In bus cycles 11 through 13 and bus cycles 14
through 15, two more write transactions are performed.

Note: The bus transaction may be ended by HRESET
or BERR with DTACK to signal an error.

interlocked Bus Transfer

This is a read-modify-write type bus operation. This
sequence of operations is noninterruptible. The bus
remains locked through the write. If BGRANT is de-
asserted during an interlocked operation, the operation
is completed and transfer of bus ownership is delayed
a clock cycle. See Figure 30 on page 53 for the
following example.

Bus cycles 2 through 4 show the read portion of the
RMW operation. Bus cycles 7 through 8 show the write
portion of the RMW operation. In bus cycle 9, COCK
remains asserted by the microprocessor adding a dead
cycle. In bus cycle 11, the next bus cycle begins.

Block Data Transfer

The block transfer sizes that are supported are double-
and quad-word. The block transfer looks like a series of

" 'single-word bus transfers with the microprocessor

incrementing address bits HA[3:2] and decrementing
10C[1:0] for each access. Block transfers are not
interruptible. Block transfers may be retried with the
transfer resuming where it was aborted when RETRY is
deasserted.
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Figure 29 represents a cacheable single-word data write followed by a double-word data write.

ATT92010 Hobbit Microprocessor
Bus Operation and Arbitration (continued)
Bus Transaction Types (continued)
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