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Preface 

This manual is the primary source of technical information for the op­
eration and programming of the C-Cube CL450 MPEG Video Decoder. 

This manual is intended for: 

D System designers and managers who are evaluating the CL450 for 
possible use in a system. 

D Design, software and system engineers developing a video decod­
ing system using the CL450 for whom a comprehensive program­
ming background as well as a detailed understanding of MPEG 
compression is assumed. 

In particular, readers should understand the MPEG standard: Coded 
Representation of Picture, Audio and Multimedia/Hypermedia Informa­
tion, ISO/IEC JTC lISC 29, December 6,1991. 

As an aid to developing systems and applications based on the CL450, 
readers may also wish to obtain C-Cube's CL450 MPEG Video Decoder 
Sample Kit, which includes a sample development board, microcode 
and user's guide. 

This manual is divided into three main sections: 

D Section I, General Information, including an introduction to the 
CL450 and the MPEG standard that it implements. 

D Section II, Hardware Interface, including signal descriptions, op­
erational information for the main interfaces of the CL450, regis­
ters, and detailed electrical and mechanical specifications. 

Audience 

Related 
Publications 

Organization 

Preface iii 
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D Section III, Software Interface, including an overview of the fun­
damental mechanisms used to communicate between the host sys­
tem and the CL450's microapplication, and an alphabetical listing 
of all macro commands and interrupts available to the program­
mer. Note: the microapplication information in this manual ap­
plies to CL450 versions 2.00 through 2.FF only. 

Please note the following notation examples and conventions used in 
this manual: 

Notation 
Examples 

Ox1c3 

11011 2 

IMEM 

HOST_control 

CMEM_control 

VIE Res 

HMEM[3] 

CPU_control[O] 

HMEM[0][15] 

HMEM[3][2:0] 

RESERVED or 
Res 

leftBorder 
return ( ); 

Explanation 

"Ox" prefix indicates a hexadecimal number. 

"2"subscript indicates a binary number. 

Four-letter mnemonics indicate on-chip memories, starting with a letter to indi­
cate function of memory, and ending with "MEM."l For example, IMEM is the 
CL450's instruction memory. 

This format indicates a register name. The first part of a register name is a 
group specifier, given in all upper-case. The second part (separated from the 
first by an underscore and given in all lower-case) is a register specifier, indi­
cating the function performed by the register within the group. In the examples 
shown, HOST_control and CMEM_control are separate registers, even though 
both have the same register specifier, "control." 

Italicized acronyms or abbreviations (initial or all caps) indicate bit field names 
within registers or data words. 

Square bracket notation similar to C language array subscripting indicates 
words within memories, and bits within words and registers. HMEM[3], for ex­
ample, is the 16-bit word at address 3 within HMEM, whi Ie CPU_control[O] is 
bit 0 of the CPU_control register. Similarly, HMEM[O][15] is the most significant 
bit of the word at HMEM address O. 

Ranges of bits are indicated by numbers separated by a colon such as the three 
bits HMEM[3][2:0]. Ranges of words within a memory are indicated by numbers 
separated by a dash such as the eight words HMEM[0-7]. 

Indicates bit fields within registers which are not defined. RESERVED bit fields 
may return any value when read and must be written with 0 (or 1 if so speci­
fied). Writing the incorrect value to a RESERVED CL450 register bit will cause 
indeterminate behavior. In addition, all CL450 registers which are not explicitly 
given names are also RESERVED, and accessing these registers may cause in­
determinate results on current or future CL450 implementations. 

Bold-face type represents macro command arguments. 

C-style syntax presented in courier typeface represents program pseudocode 
and equations. 

Names presented in courier represent names of items within the MPEG bit­
stream taken from the MPEG standard. 

1. In some cases, this current reference scheme departs from the method used by the first edition 
of the CL450 MPEG Video Decoder User's Manua/which, for example, referred to CMEM as both 
the "Coded Data FIFO" and "C-FIFO." 
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Chapter 1 
Introduction 

The C-Cube CL450 ™ is the world's first single-chip MPEG video de­
coder. It is designed to provide full-motion video capability for cost­
sensitive consumer electronics products. The CL450 decompresses 
constrained-parameters MPEG bitstreams (typically SIF resolution) in 
real time. SIF resolution is 352 x 240 pixels at 30 Hz or 352 x 288 pixels 
at 25 Hz, with typical compressed data rates of 1.2 to 3 Mbits per sec­
ond. 

The CL450 interpolates decompressed pictures horizontally (typically 
to 704 pixels per scan line) before outputting them. The CL450 outputs 
decompressed pictures multiple times to increase the frame rate from 
24,25, or 30 Hz (coded frame rate) to 50 or 60 Hz (display frame rate). 
The CL450 can change the display position of decompressed pictures 
relative to its HSYNC and VSYNC inputs. 

The CL450 isa fully-integrated MPEG decoding engine whose func­
tionality is an intertwined combination of hardware and microapplica­
tion set provided by C-Cube, as explained in the software interface 
section of this manual, Section III. 

1.1 
General 
Description 

1.2 
The CL450 Product 
Family 



The CL450 Product Family 

1.2.1 CL450 Features 
The basic CL450 product includes these features: 

o Fully complies with all requirements of the MPEG standard (ISO 
CD 11172) 

o Performs real-time decoding of SIF-resolution bitstreams 
(352 x 240 pixels at 30 Hz or 352 x 288 pixels at 25 Hz) 

o Performs real-time horizontal pixel interpolation and frame dupli­
cation to produce output formats of 704 x 240 pixels at 60 Hz or 
704 x 288 pixels at 50 Hz 

o Provides either RGB or YCbCr video output using an on-chip col-
or-space converter 

o Supports NTSC and PAL video output timing formats 

o Interfaces to 680xO processors and DRAM with no external logic 

o Requires only 4 Mbits of 80-ns DRAM to decode SIF-resolution 
MPEG bitstreams 

o Provides hardware and microapplication support for audio/video 
synchronization 

o Decodes Huffman variable-length codes at a peak rate of 4 bits per 
clock (160 Mbits/second at 40 MHz) 

o Allows the active display window to be positioned relative to 
HSYNC and VSYNC inputs with one-pixel and one-HSYNC ac­
curacy, respectively 

o Displays all or part of decompressed pictures; displayed section 
can be selected to one-pixel accuracy (within the decoded picture) 
and can be changed every coded frame for panning motion video 

o Supports host access of local DRAM including byte writes 

o Supports both programmed I/O and DMA transfers of compressed 
bitstreams from the host 

o Is fabricated in a CMOS process 

o Is supplied in a 160-pin plastic quad flat-pack (PQFP) 
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1.2.2 Microapplication Features 
The CL450 microapplication includes these features: 

o 18 macro commands, allowing the host to control interactive play­
back, CL450 configuration, and audio/video synchronization: 

o AccessSCRO 

o DisplayStillO 

o FlushBitstreamO 

o InquireBufferFullnessO 

o NewPacketO 

o PauseO 

o PlayO 

o ResetO 

o ScanO 

o SetBlankO 

o SetBorderO 

o SetColorModeO 

o SetlnterruptMaskO 

o SetThresholdO 

o SetVideoFormatO 

o SetWindowO 

o SingleStepO 

o SlowMotionO 

o 11 interrupts, providing the host feedback on bitstream transition, 
display, and decoding processes 

o Bit rate up to 5.0 Mbits per second 

o Transcoding between NTSC and PAL input and output frame rates 

o System memory expansion capability 

o Support for 24-Hz film format input 

o Display window positioning within decoded picture to single-pix­
el accuracy 

o Flagged and unfIagged error concealment 

o MPEG double vertical-resolution still pictures 

The CL450 Product Family 
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Functional Description 
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Figure 1-1 shows a block diagram of the CL450, which has three inter­
faces: 

D The host interface: Connects directly to 680xO processors with no 
external logic. It can also be easily connected to 80x86 processors. 

D The DRAM interface: Reads from and writes to the local DRAM 
with no external logic . 

D The video interface: Outputs pixel data to a video monitor or other 
video processing device. 

Huffman 
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Central 
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Video I 
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DRAM Interface 
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Bitstream Buffer 
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Local DRAM 14 Mbits minimum) 

Figure 1-1 Block Diagram of the CL450 
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The host computer supplies compressed (coded) data to the CL450 via 
the host interface. The CL450 buffers up to 16 coded data words in an 
internal coded data FIFO, called CMEM, from which the data words are 
read by the DRAM controller and written into the bitstream buffer in the 
local 4-Mbit DRAM. 

The on-chip central processing unit (CPU) interprets commands issued 
by the host processor, works with the Huffman decoding engine to per­
form the decompression process, and writes decompressed pixel data 
into the frame buffer in the local DRAM. 

The video display unit reads decompressed pixel data from the frame 
buffer, sends it through the color-space converter if necessary, and out­
puts the pixel data on the video bus. 

Data Organization 

Though the CL450 can be used with many different processors, it has 1.4 
been optimized for use with the Motorola 68070 processor. Data Organization 

1.4.1 CL450 Registers 
Each of the 34 registers of the CL450 is 16 bits wide and is accessed by 
word operations which cover the entire 16-bit width. The least signifi­
cant bit of each address is bit 0, and the most significant bit is bit 15. 

Even though CL450 register addresses may be expressed as byte ad­
dresses, the CL450 does not support single-byte access to its internal 
registers; instead, all CL450 register accesses must be made using 16-
bit operations (i.e., 16 bits at a time) as shown below. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

MSB Word 0 

Word 1 

Word 2 

o 

LSB 
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Address Size 

1.4.2 CL450 Memories 
All on-chip memory transactions on the CL450 must be 16 bits (as 
shown in the previous figure), while the local (off-chip) DRAM may be 
accessed by the host through the CL450 using single-byte access. 

When byte-addressable access to local DRAM is performed, the higher­
order byte has an even address twice (2x) that of the word (shown be­
low), and the low-order byte has an odd address that is one count higher 
than twice the word address (2x + 1). The UDS (Upper Data Strobe) and 
the LDS (Lower Data Strobe) signals distinguish byte operations from 
word operations as explained in Chapter 4. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

1.5 
Address Size 

Byte 0 
Word 0 

Byte 1 
I 

Word 1 
Byte 2 

I 
Byte 3 

· · · 
Byte FFFFE 

Word 7FFFF 
Byte FFFFF 

I 

The size of CL450 addresses within a memory (on-chip memories or the 
off-chip DRAM) are given in units which are the same as the word size 
of the RAM in question. For example, the off-chip DRAM is configured 
as 256K or 512K words of 16 bits each, with DRAM addresses there­
fore being within the range 0 to Ox3ffff or Ox7ffff words and each dis­
tinct address containing a 16-bit value. 

The word size of the CL450 memories are shown in Table 1-1. 
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Table 1-1 Address Size of CL45D Memories 

Memory 
On-chip registers 

Off-chip (local) DRAM 

HMEM 
IMEM 
TMEM 
CMEM 

Address Unit Size 
16 bit 

16 bit 

16 bit 

32 bit 

24 bit 

16 bits 

Note: Writing host software to interact with the CL450 on 
byte-addressable processors may necessitate multiplying the 
given DRAM and register addresses by 2. 

The CL450 performs its higher-level functions by executing a microap­
plication. The microapplication must be loaded into the CL450 by a 
software driver before the CL450 is fully operational. C-Cube provides 
C-Ianguage source code for a loader, which users may modify and com­
pile on their target system. 

Application programs access the CL450 in two ways: 

o Registers: Some of the CL450' s internal registers are accessed by 
application programs to set key operating parameters during ini­
tialization and operation. Other CL450 registers are used to load 
command IDs and arguments for the macro commands described 
below and to determine the status of microapplication execution. 
Chapter 8, Registers, describes the use and format of the CL450' s 
registers. 

o Macro commands: Use of these commands is the primary method 
for communicating between the host software and the microappli­
cation executing on the CL450's CPU. Section 1.2.2 on page 1-3 
shows the macro commands implemented in the CL450 microap­
plication set. Section III of this manual, Software Interface, de­
scribes the syntax and use of each macro command. 

Programming Overview 

1.6 
Programming 
Overview 
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Typical Applications 

1.7 
Typical 

Applications 

The CL450 MPEG decoder is designed for low-cost consumer applica­
tions such as: 

D CD-I systems 

D Video games 

D Interactive multimedia systems 

D Point-of-sale/information kiosks 

D Interactive TV 

Figure 1-2 shows the CL450 in a typical system application. 
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Figure 1-2 Typical Cl450 System Application 
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2 
MPEG Overview 

This chapter presents an overview of the Moving Picture Experts Group 
(MPEG) standard that is implemented by the CL450. The standard is of­
ficially known as ISO/IEC Draft Standard Coded representation of pic­
ture, audio and multimedia/hypermedia information, CD 11172, 
December 6, 1991.1t is more commonly referred to as the MPEG stan­
dard. 

MPEG addresses the compression and decompression of video and au­
dio signals and the synchronization of audio and video signals during 
playback of decompressed MPEG data. The MPEG video algorithm can 
compress video signals to an average of about 112 to 1 bit per coded pix­
el. At a compressed data rate of 1.2 Mbits per second, a coded resolution 
of 352 x 240 at 30 Hz is often used, and the resulting video quality is 
comparable to VHS. 



MPEG Decoding 

2.1 
MPEG Decoding 

This section explains the general structure of an MPEG stream and in­
troduces some basic concepts used in the rest of the chapter. 

2.1.1 MPEG Stream Structure 
In its most general form, an MPEG stream is made up of two layers: 

o The system layer contains timing and other information needed to 
demultiplex the elementary audio and video streams and to syn­
chronize audio and video during playback. 

o The compression layers include the elementary audio and video 
streams. 

2.1.2 General Decoding Process 
Figure 2-1 shows a generalized decoding system using the CL450 as the 
decoder for the elementary video stream. 

The system decoder extracts the timing information from the MPEG 
system stream and sends it to the other system components. (Section 
2.4, Synchronization, has more information about the use of timing in­
formation for audio and video synchronization.) The system decoder 
also demultiplexes the elementary video and audio streams from the 
system stream and sends each to the appropriate decoder. In many ap­
plications, the system decoder function is implemented as a software 
program on the host computer. 

The video decoder decompresses the elementary video stream as spec­
ified in Part 2 of the MPEG standard. (See Section 2.2, Inter-picture 
Coding, and Section 2.3, Intra-picture Coding, for more information 
about video compression.) The CL450 performs the video decoding 
function. 

The audio decoder decompresses the audio stream as specified in Part 
3 of the MPEG standard. 
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video 
stream 

Video decompressed 
Decoder -.. video 
(CL450) 

MPEG System timing information 

stream ~ Decoder 
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stream Audio decompressed 

Decoder -.. audio 

Figure 2-1 General MPEG Decoding System 

2.1.3 Video Stream Data Hierarchy 
The MPEG standard defines a hierarchy of data structures in the video 
stream as shown schematically in Figure 2-2. 

Video Sequence 

Group of Pictures .1 

MPEG Decoding 

DDDDDDDD 
Block 

Slice Macroblock 

-t 
8 - .. I I lerJ=Q.. 

Figure 2-2 MPEG Data Hierarchy 
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MPEG Decoding 

Video Sequence 

A sequence begins with a sequence header (and may contain additional 
sequence headers), includes one or more groups of pictures, and ends 
with an end-of-sequence code. 

Group of Pictures (GOP) 

A header followed by a series of one or more pictures; intended to allow 
random access into the sequence. 

Picture 

The primary coding unit of a video sequence. A picture consists of three 
rectangular matrices representing luminance (Y) and two chrominance 
(Cb and Cr) values. The Y matrix has an even number of rows and col­
umns. The Cb and Cr matrices are each one-half the size of the Y matrix 
in both directions, horizontal and vertical. 

Figure 2-3 shows the relative x-y locations of the luminance and chrom­
inance components. Note that for every four luminance values, there are 
two associated chrominance values: one Cb value and one Cr value. 
(The location of the Cb and Cr values is the same, so only one circle is 
shown in the figure.) 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
o = Yvalue = Cb, Cr value 

Figure 2-3 Location of Luminance and Chrominance Values 
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Slice 

One or more "contiguous" macroblocks. The order of the macroblocks 
within a slice is from left to right and top to bottom. 

Slices are important in the handling of errors. If the bitstream contains 
an error, decoders may skip to the start of the next slice. Having more 
slices in the bitstream allows better error concealment but uses bits that 
could otherwise be used to improve picture quality. 

Macroblock 

A 16-pixel by 16-line section of luminance components and the corre­
sponding 8-pixel by 8-line sections of the two chrominance compo­
nents. See Figure 2-3 for the spatial location of luminance and 
chrominance components. A macroblock contains four Y blocks, one 
Cb block and one Cr block as shown in Figure 2-4. The numbers corre­
spond to the ordering of the blocks in the data stream, with block 1 first. 

y Cb Cr 

Figure 2-4 Macroblock Composition 

Block 

A block is an 8-pixel by 8-line set of values of a luminance or a chrom­
inance component. Note that a luminance block corresponds to one­
fourth as large a portion of the displayed image as does a chrominance 
block. 

MPEG Decoding 
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Inter-picture Coding 

2.2 
Inter-picture 

Coding 

Much of the information in a picture within a video sequence is similar 
to information in a previous or subsequent picture. The MPEG standard 
takes advantage of this temporal redundancy by representing some pic­
tures in terms of their differences from other (reference) pictures, or 
what is known as inter-picture coding. This section describes the types 
of coded pictures and explains the techniques used in this process. 

2.2.1 Picture Types 
The MPEG standard specifically defines three types of pictures used for 
inter-coding: intra, predicted, and bidirectional. 

Intra Pictures 

Intra pictures, or I-pictures, are coded using only information present in 
the picture itself. I-pictures provide potential random access points into 
the compressed video data. I-pictures use only transform coding (as ex­
plained in Section 2.3 on page 2-10) and provide moderate compres­
sion. I-pictures typically use about two bits per coded pixel. 

Predicted Pictures 

Predicted pictures, or P-pictures, are coded with respect to the nearest 
previous 1- or P-picture. This technique is called forward prediction and 
is illustrated in Figure 2-5. 

Like I-pictures, P-pictures serve as a prediction reference for B-pictures 
and future P-pictures. However, P-pictures use motion compensation 
(see Section 2.2.3) to provide more compression than is possible with 1-
pictures. Also unlike I-pictures, P-pictures can propagate coding errors 
because P-pictures are predicted from previous reference (1- or P-) pic­
tures. 

Forward Prediction 

Figure 2-5 Forward Prediction 
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Bidirectional Pictures 

Bidirectional pictures, or B-pictures, are pictures that use both a past 
and future picture as a reference. This technique is called bidirectional 
prediction and is illustrated in Figure 2-6. B-pictures provide the most 
compression and do not propagate errors because they are never used as 
a reference. Bidirectional prediction also decreases the effect of noise 
by averaging two pictures. 

Bidirectional Prediction 

Figure 2-6 Bidirectional Prediction 

2.2.2 Video Stream Composition 
The MPEG standard allows the encoder to choose the frequency and lo­
cation of I-pictures. This choice is based on the application's need for 
random accessibility and the location of scene cuts in the video se­
quence. In applications where random access is important, I-pictures are 
typically used two times a second. 

The encoder also chooses the number of B-pictures between any pair of 
reference (1- or P-) pictures. This choice is based on factors such as the 
amount of memory in the encoder and the characteristics of the material 
being coded. For a large class of scenes, a workable arrangement is to 
have two bidirectional pictures separating successive reference pic­
tures. A typical arrangement of 1-, P-, and B-pictures is shown in Figure 
2-7 in the order in which they are displayed. 

Inter-picture Coding 
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Inter-picture Coding 

1 second 

2 B-pictures between 
reference (P) pictures 

I-picture every 15th frame 
(1/2 second at 30 Hz) 

A 
Picture Type: I B B P B B P B B P B B P B BIB B P B B P B B P B B P B B 

Display order: 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 

Figure 2-7 Typical Display Order of Picture Types 

The MPEG encoder reorders pictures in the video stream to present the 
pictures to the decoder in the most efficient sequence. In particular, the 
reference pictures needed to reconstruct B-pictures are sent before the 
associated B-pictures. Figure 2-8 demonstrates this ordering for the first 
section of the example shown above. 

Display Order 

2 3 4 5 6 7 

Video Stream Order 

4 2 3 7 5 6 

Figure 2-8 Video Stream versus Display Ordering 

2.2.3 Motion Compensation 
Motion compensation is a technique for enhancing the compression of 
P- and B-pictures by eliminating temporal redundancy. Motion com­
pensation typically improves compression by about a factor of three 
compared to intra-picture coding. Motion compensation is performed at 
the macroblock level. 
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When a macroblock is compressed by motion compensation, the com­
pressed file contains this information: 

o One or two spatial vectors between the reference macroblock area 
and the macroblock being coded (motion vectors) 

o The content differences between the reference macroblock area 
and the macroblock being coded (error terms) 

However, not all information in a picture can be predicted from a previ­
ous picture. 

Consider a scene in which a door opens: The visual details of the room 
behind the door cannot be predicted from a previous frame in which the 
door was closed. When a case such as this arises-i.e., a macroblock in 
a P-picture cannot be efficiently represented by motion compensation­
the picture is coded in the same way as a macroblock in an I-picture us­
ing transform coding techniques (see Section 2.3, Intra-picture Coding). 

The difference between B- and P-picture coding is that macroblocks in 
a P-picture are coded using the previous reference (1- or P-picture) only, 
while macroblocks in a B-picture are coded using any combination of a 
previous and/or future reference picture. 

Four codings are therefore possible for each macroblock in a B-picture: 

o Intra coding: no motion compensation 

o Forward prediction: the previous reference picture is used as a ref­
erence 

o Backward prediction: the next reference picture is used as a refer­
ence 

o Bidirectional prediction: two reference pictures are used, the pre­
vious reference picture and the next reference picture 

Backward prediction can be used to predict uncovered areas that do not 
appear in previous pictures. 

Inter-picture Coding 
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Intra-picture (Transform) Coding 

2.3 
Intra-picture 

(Transform) Coding 

The MPEG transform, or intra-picture, coding algorithm includes these 
steps: 

D Discrete cosine transform (DCT) 

D Quantization 

D Run-length encoding 

Both image blocks and prediction-error blocks have high spatial redun­
dancy. To reduce this redundancy, the MPEG algorithm transforms 8 x 
8 blocks of pixels or 8 x 8 blocks of error terms from the spatial domain 
to the frequency domain with the Discrete Cosine Transform (DCT). 

Next, the algorithm quantizes the frequency coefficients. Quantization 
is the process of approximating each frequency coefficient as one of a 
limited number of allowed values. The encoder chooses a quantization 
matrix that determines how each frequency coefficient in the 8 x 8 block 
is quantized. Human perception of quantization error is lower for high 
spatial frequencies, so high frequencies are typically quantized more 
coarsely (i.e., with fewer allowed values) than low frequencies. 

The combination of DCT and quantization results in many of the fre­
quency coefficients being zero, especially the coefficients for high spa­
tial frequencies. To take maximum advantage of this, the coefficients 
are organized in a zigzag order to produce long runs of zeros (see Figure 
2-9). The coefficients are then converted to a series of run-amplitude 
pairs, each pair indicating a number of zero coefficients and the ampli­
tude of a non-zero coefficient. These run-amplitude pairs are then coded 
with a variable-length code, which uses shorter codes for commonly oc­
curring pairs and longer codes for less common pairs. 

Some blocks of pixels need to be coded more accurately than others. For 
example, blocks with smooth intensity gradients need accurate coding 
to avoid visible block boundaries. To deal with this inequality between 
blocks, the MPEG algorithm allows the amount of quantization to be 
modified for each macroblock of pixels. This mechanism can also be 
used to provide smooth adaptation to a particular bit rate. 
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Figure 2-9 

Frequency 
Coefficients 

Transform Coding Operations 

Run-amplitude 
Symbols 

The MPEG standard provides a timing mechanism that allows for syn­
chronization of audio and video. The standard includes two parameters 
in the systen layer of a bitstream which are used by the CL450: the sys­
tem clock reference (SCR) and the presentation time stamp (PTS). 

The MPEG-specified "system clock" runs at 90 kHz and generates 7.8 
x 109 clock ticks in a 24-hour day. System clock reference and presen­
tation time stamp values are coded in MPEG bitstreams using 33 bits, 
which can represent any clock period in a 24-hour period. 

2.4.1 System Clock References 
A system clock reference is a snapshot of the encoder system clock 
which is placed into the system layer of the bitstream, as shown in Fig­
ure 2-10. During decoding, these values are used to update the clock 
counter(s) in the system decoder before being sent to the audio and vid­
eo decoders. This is typically done in a system in which MPEG data is 
delivered at a fixed bit rate, and effectively locks the decoder's time 
base with that of the encoder and the bitstream transport mechanism. 

The CL450 contains an on-chip counter which it uses as its clock for 
performing synchronization. The host may update the CL450's clock 
with SCR information from the bitstream (in fixed bit-rate systems) or 
from some other accurate, decoder-wide time base. 

Synchronization 

2.4 
Synchronization 
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Synchronization 

Video 

ICL450) 
MPEG stream 

with SCRs / 

Decoder 

r------1 '------' 

MPEG 
Encoder 

t 
Encoder 
System 
Clock 

System 
---------J.~ Decoder 

Figure 2-10 SCR Flow in MPEG System 

2.4.2 Presentation Time Stamps 

SCRs 

~ Audio 
Decoder 

Presentation time stamps are samples of the encoder system clock that 
are associated with video or audio presentation units. A presentation 
unit is a decoded video picture or a decoded audio sequence. The PTS 
represents the time at which the video picture is to be displayed or the 
starting playback time for the audio time sequence. 

Elementary video or audio decoders use the PTS values associated with 
each presentation unit to adjust their decoding rate so that each presen­
tation unit is presented (displayed or played) at the correct time as mea­
sured by the decoder's system clock. 
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3 
Signal Descriptions 

This chapter describes the signals that comprise the external physical 
interface to the CL450. The information presented for each signal in­
cludes the signal mnemonic and name, type (input, output, or bidirec­
tional), and description. For information about the functional operation 
of the CL450, including functional waveforms, see Chapters 4, 5, and 
6. For timing information, see Chapter 7. 

This chapter is divided into three sections that correspond to the com­
ponents that interface to the CL450: 

o 3.1: Host Interface 

o 3.2: DRAM Interface 

o 3.3: Video Interface 

Figure 3-1 shows a diagram of the CL450 with the host, DRAM and 
video signals grouped together. 
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Figure 3-1 Bus Connection Diagram 

The host interface signals divide logically into these functional groups: 

o Data transfer signals: These signals comprise the address and data 
buses and the control signals used for data transfer handshaking. 

o DMA signals: The CL450 uses these signals to implement the 
SCC68070 DMA protocol. This is a subset of that used by the 
68000 family of DMA controllers. 

o Interrupt signals: These signals provide a request-acknowledge 
handshake used by the CL450 to request vectored interrupt service 
from the host. 

o Timing, control, and status signals: These signals include the­
clocks and reset signals, and the CMEM status signal. 
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Note: The following description of host interface signals is 
based on the Motorola MC680XOfamily of microprocessors, 
even though the CL450 works with a wide range of other 
processors and corresponding address widths. 

3.1.1 Data Transfer Signals 
These signals are used to communicate between the CL450 and the host 
processor. Figure 3-2 shows how the data transfer signals of the CL450 
connect to the host processor. The various modes of transferring data are 
discussed in Sections 4.2 through 4.5. 

UlJS 
IDS 

AS (Add. Strobel 
/ *A[23:21] .. 

/ 

A[20:1] 

0[15:0] -
R/W 

rrrACK ..... 

Host Processor 

*These bits pertain exclusively to the 
680XO example: the left-over bits of a 
24-bit address bus. Other bits may be 
chosen for other processors. 

I , , 
Comb. 
Logic** 

/ 
/ 

L 
/ 

I I I 
rrrACKfrom 
other devices 

Figure 3-2 Data Transfer Signals 

UDS - Upper Data Strobe 
LDS - Lower Data Strobe 

.. UlJS ~ 

---- IDS 

.. AS ~ 

.. A[20:1] ~ 

.. 0[15:0] ~ 

.. R/W ~ 

rrrACK 

CL450 

**If the host processor is a 680XO, we 
recommend qualifying the AS input of 
the CL450 with UDS or IDS so that set­
up time can be added on RfW. 

Input 
Input 

The host processor uses 'O'I)S" and r:::DS" to indicate the byte va­
lidity and transfer size of D[15:0] as shown in Table 3-1. The 
CL450's local DRAM (accessed when A[20] is 0) is the only 
CL450 resource which supports byte-wide accesses; at all other 
times Ui5S must equal LDS. 

Host Interface 
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Host Interface 

Table 3-1 

Table 3-2 
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Meaning of DDS and LDS 

ODS IDS Valid Size 

High High 0[15:0] not valid none 

Low High 0[15:8] (DRAM only) byte 

High Low 0[7:0] (DRAM only) byte 

Low Low 0[15:0] word 

AS - Address Strobe Input 
The host processor asserts A"S (active low) to select the CL450 
for a non-DMA read or write operation. In a 68070-based sys­
tem, A"S is derived by the combination of the host signal A"S and 
the address bits above A[20]. 

A[20:1] - Host Address Bus Inputs 
A[20: 1] are the address lines that the host processor uses to ad­
dress the CL450's CMEM, internal registers, and the local 
DRAM memory. A[20: 19] selects which of the CL450 internal 
modules will be addressed as shown in Table 3-2. 

Internal Module Selected by A[20:19] 

A20 A19 Internal Module 

0 0 DRAM bank 0 

0 1 DRAM bank 1 (optional) 

0 Internal registers 

CMEM (write only) 

A[O] and the address bits above A[20] are not connected to the 
CL450. Instead of A[O], the host processor uses 'UI)S" and [i')"S 

to indicate which byte is valid on the data bus. (Note that DDS 
and t:::i5'S must both be asserted for host access to the CL450 
when A[20] = 1.) Address bits above A[20] can be used to gen­
erate A"S to indicate that the CL450 is selected. 

D[15:0] - Host Data Bus Bidirectionals 
D[15:0] comprises the 16-bit bidirectional host data bus. The 
host processor uses D[15:0] to write data to the CL450's 
CMEM, internal registers, and local DRAM; and to pass data to 
the CL450 for DMA writes. The CL450 uses D[15:0] to send re­
quested data to the host processor. 



RiW - ReadlWrite Input 

The host processor asserts R/W (high) to initiate a read opera­
tion, and deasserts RIW (low) to initiate a write operation. 

DTACK - Data Transfer Acknowledge 

Open-Drain Output 

The CL450 asserts DTACK (active low) when it is ready to re­
ceive or output data on D[15:0]. When the CL450 responds to a 
read request, it holds DTACK deasserted (high) until the re­
quested data is ready. When the CL450 responds to a write re­
quest, it asserts DTACK when it has received and latched the 
write data. 

DTACK is an open-drain signal that allows it to be wire-ORed 
with other components on the host bus. It requires a pull-up re­
sistor of no less than 470 ohms. 

3.1.2 DMA Signals 
The CL450 operates as a DMA slave only. An external DMA controller 
performs the DMA transfer of bitstream data to CMEM according to the 
SCC68070 DMA protocol, which is a subset protocol of the 68000 fam­
ily of DMA controllers. 

Figure 3-3 shows how the CL450 DMA signals connect to an external 
DMA controller. DMA data transfers are discussed in full detail in Sec­
tion 4.7. 

Note: Be sure to consult the diagram shown in Section 4.6 
before connecting the DMAREQ line. 

Request 

Acknowledge 

Data Strobe 

DMA end 

Host DMA 

Controller 

~ ... 

* Consult the diagram shown on 
page 4-17 for how to connect the 
lJl\7IAREa signal line. 

Figure 3-3 DMASignals 

DMAREQ* 

DMAACK 

... nrc 

rmNE 

CL450 

Host Interface 
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Host Interface 

DMAREQ - DMA Request Output 

The CL450 asserts DMAREQ (active low) to request a DMA 
transfer. The CL450 asserts DMAREQ whenever CMEM has at 
least one free space, and the DMA enable flag (DE) in the 
CMEM_dmactrl register has been set correctly. (See the de­
scription of the DE bit in the CMEM_dmactrl register in Sec­
tion 8.3.1, CMEM Registers, for more information about 
enabling DMA.) 

DMAAcK - DMAAcknowledge Input 

The external DMA controller asserts DMAAcK (active low) in 
response to a DMA request from the CL450 on DMAREQ. 

DTC - DMA Transfer Complete Input 

The external DMA controller asserts I.ITC (active low) when a 
valid data word is present on D[15:0]. The CL450 latches the 
data word on the falling (active) edge ofDT'C. 

DONE - DMA Done Input 

The external DMA controller asserts 'DONE (active low) to in­
dicate that the DMA sequence is complete. When n<:::)N'E is as­
serted and CMEM is not full, the CL450 resets DE in the 
CMEM_dmactrl register and deasserts DMAREQ. 

3.1.3 Interrupt Signals 
The CL450 uses these signals to indicate an interrupt to the host. The 
CL450 can be programmed to implement an optional request-acknowl­
edge handshake for vectored interrupts. Figure 3-4 shows how the 
CL450 interrupt signals connect to a host or interrupt processor. Section 
4.8, Interrupt Cycle Timing, discusses interrupt processing in more de­
tail. 

Request .... I TNT I 

Acknowledge f---------l ... ~ lNTACK 

Host or Interrupt 
Processor 

Figure 3-4 Interrupt Signals 

CL450 
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INT - Interrupt Request Open-Drain Output 

The CL450 asserts rnT(active low) to request an interrupt from 
the host processor. INT is an open-drain signal. This allows it to 
be wire-ORed with other components on the host bus. It re­
quires a pullup resistor of no less than 470 ohms. 

INTACK - Interrupt Acknowledge Input 

The host processor asserts IN TAcK (active low) in response to 
TNT and begins the vectored interrupt sequence. The INTAcK 
pin is ignored unless vectored interrupts are enabled (see the 
VIE bit description in the HOST_control register, page 8-12, 
and the HOST_intvecw register, page 8-13). INTAcK is also 
used in conjunction with the TEST pin to 3-state the output pins 
for diagnostic purposes. 

3.1.4 Timing, Control, and Status Signals 
These signals provide the clock inputs, reset control, and CMEM status. 
Figure 3-5 shows these signals. The timing characteristics of these sig­
nals is described in Section 7.2. 

TIming Generator 

I GCLK 
optional .. SCLK ~ 

,It 
Clock ~ HCLK -

optional CFLEVEL 
-'" RESET 

TEST 

Host Processor CL450 

GND 
Reset Circuit 

Figure 3-5 Timing, Control, and Status Signals 

Host Interface 
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Host Interface 
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GCLK - Global Clock Input 
The CL450 uses GCLK to clock the internal processor and the 
DRAM controller. For proper operation of the CL450, this sig­
nal must have a nominal frequency of 40 MHz. All local 
DRAM accesses are synchronized to this clock. HCLK 
and VCLK are limited to half the frequency of GCLK. 

Note: The use of a precision 40.000 MHz crystal for GCLK 
is strongly recommended. Other statements in this manual 
regarding the performance and speed of the CL450 hard­
ware and microapplication are based on a 40-MHz GCLK 
frequency. 

SCLK - System Clock Input 
SCLK is an optional external clock input for the CL450 system 
timer (SCR counter). This is typically a 90-kHz signal, although 
higher frequencies can be used with internal prescaler values 
greater than I. 

The system timer (Figure 3-6) is a 33-bit counter that is used by 
the host processor to synchronize video generated in the CL450 
with other outside devices. These devices could include other 
CL450s, audio decoders, and other display devices within a 
multimedia system. 

The CL450 system timer contains a 9-bit prescaler that can be 
used to divide the selected source clock prior to incrementing 
the system timer. The source clock can be either the SCLK sig­
nal or (typically) the GCLK signal. 

In a typical system application using a 40-MHz GCLK, the di­
vider should be set to divide GCLK by 444. If an external 90-
kHz signal is used for the SCLK frequency, the divider can be 
set to divide by one. When the GCLK signal is used as a clock 
source, the SCLK pin must be pulled either HIGH or LOW. 

Note: The divider is hardware-programmable and may there­
fore be written to a value other than 444 if the microapplication 
is not running,. otherwise, the microapplication fixes the divider 
at a value of 444. 

The frequency of SCLK must be less than half the frequency of 
GCLK, and both the SCLK-LOW and SCLK-HIGH periods 
must be greater than the GCLK clock period. 



GCLK 

SCLK 

Figure 3-6 

Host Interface 

9 Bit Prescaler 33-Bit System Timer 

System Timer Block Diagram 

HCLK - Host Clock Input 
The clock signal HCLK (host clock) is the host bus interface 
reference signal. It is asynchronous with respect to both GCLK 
and VCLK. All host bus transfers to and from the CL450 are in­
ternally synchronized to GCLK. The CL450 supports a host 
processor with an HCLK of up to 20.0 MHz. 

CFLEVEL - CMEM Level Status Output 
The CL450 asserts CFLEVEL (active high) when CMEM be­
comes as full or more full than the threshold selected by the 
1 QE to 4QE bits in the CMEM_dmactrl register (see Chapter 
8). 

RESET - Hardware Reset Input 
An external device asserts RESET (active low) to force the 
CL450 to execute a hardware reset. To be fully recognized, RF­
SET must be asserted for at least 50 GCLK cycles. After a reset, 
the CL450 registers are in an indeterminate state and a complete 
re-initialization of the CL450 should be performed. 

TEST - Test Input 

When TEST (active high) and INTACK (active low) are assert­
ed simultaneously, the CL450 three-states all outputs for perfor­
mance of system diagnostics. For normal operation, TEST must 
be held LOW (deasserted). 
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DRAM Interface 

3.2 
DRAM Interface 

The CL450's internal DRAM controller generates the addressing and 
control signals to control up to one Mbyte of local DRAM. A minimum 
DRAM size of 512 Kbytes is required for MPEG decoding. This 
DRAM is typically configured as one or two banks of 256K by 16 bits. 

Figure 3-7 shows the signals that comprise the CL450's DRAM inter­
face. The signal descriptions are presented following the figure. See 
Section 5.2, Memory Bus Interface, for more information about DRAM 
memory architecture. 

MA[9:0] 
I Address 

MD[15:0] ~ / Data ... -
RAS[1:0] I .. RAS 

07L CAS 

I 
CAS* 

07L CASIN 

CL450 

Figure 3-7 

WE 

*The return CAS line should be connected 
as close to the DRAM as possible. If multi­
ple DRAMs are used, connect to the DRAM 
furthest away. 

DRAM Interface Signals 

MA[9:0] - Memory Address Bus 

.. WE ~ 

Local DRAM Array 

Outputs 

The CL450 multiplexes the row and column addresses on these 
signals to address up to one Mbyte of DRAM. See Section 5.2, 
Memory Bus Interface, for more information about how the ad­
dress signals are used with different DRAM components and 
DRAM array sizes. 

MD[l5:0] - Memory Data Bus Bidirectionals 

These signals comprise the memory data bus by which data is 
transferred between the CL450 and the local DRAM array. The 
direction of the data transfer is determined by the state of WE. 
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RAS[1:0] - Row Address Strobe Outputs 
The CL450 asserts these signals to latch the row address into the 
local DRAM array. R'f\S[I] (active low) latches the row address 
for bank I, and R:AS"[O] (active low) latches the row address for 
bank O. 

lJCAS - Upper Column Address Strobe 
:LeAS - Lower Column Address Strobe 

Output 
Output 

The CL450 asserts these signals to latch the column address 
into the local DRAM array. UCAS" (active low) latches the col­
umn address for the upper memory data byte, MD[l5:8], and 
r:t:AS" (active low) latches the address for the lower byte, 
MD[7:0]. For local DRAM accesses performed by the CL450 
for the host, UCAS" is generated in response to the U1JS'input, 
and u:::AS is generated in response to the LDS input. 

UCASIN - Upper Data Latch Enable 
LcAsIN - Lower Data Latch Enable 

Inputs 
Inputs 

When the CL450 reads data from the local DRAM array, the 
data on MD[15:0] is latched into the CL450 on the rising edge 
of the two CASlN signals. OCASIN latches data coming from 
the high data byte, MD[l5:8], and LCASIN latches data coming 
from the low data byte, MD[7:0]. Typically, these are connected 
to the CAS pines) of the local DRAM array. 

WE - Write Enable Output 
The CL450 asserts WE (active low) to request a write operation 
(data transfer from CL450 to DRAM). The CL450 deasserts 
WE to request a read operation (DRAM to CL450). 

The CL4S0's video interface outputs pixel data to the video display sub­
system in RGB or YCbCr format. Figure 3-8 shows the signals in the­
CL4S0's video interface. Operation of the video interface is discussed 
in Chapter 6. 

Note: CL450 video output is compatible with MPEG, CCJR 
601, and CD-J players and therefore uses a digital output 
range of 16-235 as opposed to 0-255. (See Section 6.1, Dig­
ital Video Standards, for more information.) 

Video Interface 

3.3 
Video Interface 
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Video Interface 

PD[23:0] 

HS"lf\JC 
VSYNC 

VOE 
VCLK 

CL450 

Figure 3-8 

23 

J .. , 

---.. -
.. -

Pixel Data 

Video 
Control 
Signals 

Video Display 
Subsystem 

Video Interface Signals 

PD[23:0] - Pixel Data Bus Outputs 

The CL450 transmits pixel data to the video display subsystem 
using these signals. The definition of the signal lines differs for 
RGB and YCbCr formats as shown in Figure 3-9 and Figure 3-
10. The format used is determined by the microapplication and 
can be changed using the SetColorModeO macro command de­
scribed in Chapter 11. 

When RGB format is used, each 24-bit word on PD[23:0] con­
tains eight bits each of blue, green, and red. The highest bit of 
each component is most significant; for example, BLUE[7] cor­
responds to PD[23]. 

16 15 8 7 o 
BLUE[7:0] GREEN[7:0] RED[7:0] 

Figure 3-9 
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Pixel Bus Definition. RGB Format 

When YCbCr format is selected, each 24-bit word on PD[23:0] 
contains eight bits of auxiliary register data, eight bits of lumi­
nance (Y), and eight bits of one of the chrominance components 
(Cb or Cr). The Cb and Cr coefficients alternate on successive 
VCLK periods. 

The AUX[7:0] signals have no predefined purpose and can be 
used for whatever the designer wishes. For example, they could 
be used to load the color map in a RAMDAC. The bits are con­
trolled by writing the desired data to the VrD _selaux register 
(see Section 8.6.2). 



23 16 15 8 7 o 
AUX[7:0J Y[7:0J Cb[7:0J or Cr[7:0J 

Figure 3-10 Pixel Bus Definition, YCbCr Format 

HSYNC - Horizontal Synchronization Input 

The CL450 begins counting the left border for a new horizontal 
line on the second VCLK after the rising (inactive) edge of 
HSYNC (active low). HSYNC must be synchronous to VCLK 
as shown in Section 6.3, Video Synchronization. 

VSYNC - Vertical Synchronization Input 

The CL450 begins outputting the top border of a new field on 
the first HSyNC after the rising edge of VSYNC. VSYNC is 
asynchronous with respect to VCLK, and is active high. See 
Section 6.3, Video Synchronization, for more information on 
the relationship of VSYNC to HSYNc. 

VUE - Video Output Enable Input 

VOE must be asserted (active low) to enable the CL450 to drive 
the pixel bus, PD[23:0]. When vm; is deasserted, the CL450 
holds the pixel bus in a high-impedance state. 

VCLK - Video Clock Input 

The CL450 outputs one pixel on PD[23:0] for each cycle of 
VCLK. VCLK cannot run faster than one-half the frequency of 
GCLK, although at frequencies below 15 MHz it does not need 
to be synchronous with GCLK. 

Reserved - Future Expansion Input 

C-Cube has reserved these pins for possible future use. They 
should be either pulled HIGH or LOW but should not be al­
lowed to float. 

Miscellaneous 

3.4 
Miscellaneous 
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4 
Host Interface 

The host interface on the CL450 is designed to interface to a variety of 
general-purpose microprocessors. While it is optimized for connection 
to members of the 680XO microprocessor family, it also connects easily 
to the 80X86 family and other host processors. 

The host processor can directly access any CL450 register or local 
DRAM location by reading and writing to specific addresses. Com­
pressed video data transfers are performed by writing the data into the 
CMEM on-chip memory using either processor writes or DMA trans­
fers. The CL450 host bus interface supports both vectored and polled in­
terrupts. 

This chapter is organized into the following sections which describe 
how the host interface is used: 

o 4.1: Overview 

o 4.2: Local DRAM or Register Read 

o 4.3: Local DRAM or Register Write 



o 4.4: CMEM Write Timing 

o 4.5: CMEM DMA Write Timing 

o 4.6: CMEM DMA Write Application Guidelines 

o 4.7: CMEM Level 

o 4.8: Interrupt Cycle Timing 

Figure 4-1 shows the pinout diagram of the CL450 host bus interface. 
The host interface signals include a 20-bit address bus, a l6-bit data bus, 
and the necessary control signals for performing data transfers and in­
terrupt handling. 

Note: Be sure to consult the diagram shown in Section 4.6 
before connecting the DMAREQ and CFLEVEL lines. 

Host System Bus CL450 

CFLEVEL 
CMEM 

~ (see Figure 4-3) 

0[15:0] ~ '" "'" -
A[20:1] -

HCLK . 
~ UTACK "'" 

UTIS" Data Transfer Logic 
[ITS" (see Figure 4-2) 
R/W 
AS 

"'" DlV'IARrn 
lJMAACK 

DTC OMA Logic 

ITUNE 
(see Figure 4-3) 

- TNT 
TNTACK 

Interrupt Logic 
(see Figure 4-3) 

450-101 

Figure 4-1 Host Interface Block Diagram 
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The host processor uses memory reads and writes to address the 
CL450's local DRAM, the internal registers, and CMEM. The host pro­
cessor indicates that a memory access is being performed by putting the 
address for the desired CL450 location on the address bus and asserting 
the AS (Address Strobe) pin. Then the CL450's internal address decoder 
determines which resource to access by decoding address lines 
A[20: 19] and the R/W line as shown in Table 4-1. 

Table 4-1 CL450 Memory Access Address Bits 

A[20] A[19] R/W Byte Description 
Addressable 

0 0 X Yes DRAM Bank 0 Access (Read/Write) 

0 1 X Yes DRAM Bank 1 Access (Read/Write) 

0 X No Register Access (ReadIWrite) 

0 No CMEM Access (Write Only) 

The AS (Address Strobe) signal on the CL450 performs like a chip se­
lect. In a typical system application, AS is a function of the address lines 
greater than A[20] and a signal indicating that a valid address has been 
placed on the address bus. (AS is the signal used in the 68070 systems.) 

Byte-wide memory accesses are performed by asserting either the LDS 
(Lower Data Strobe) or DDS (Upper Data Strobe) pin when AS is as­
serted as shown in Table 4-2. Word-wide (l6-bit) accesses are per­
formed by asserting both LDS and UDS simultaneously. Whenever the 
CL450 is the target of a byte-wide read (R/W=l), only the drivers for 
the byte being read are driven. The data read on the byte not selected is 
indeterminate. The local DRAM is the only CL450 resource which can 
be addressed using byte-wide accesses. 

Table 4-2 LOS and UDS Decoded Values 

IDS DDS Definition 

H H Data Not Valid 

H L DRAM only: 0[15:8] Valid (Upper byte, A[O] = 0) 

L H DRAM only: 0[7:0] Valid (Lower Byte, A[O] = 1) 

L L 0[15:0] Valid (Word access, A[O] = 0) 

4.1 
Overview 

Overview 
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Overview 

Byte accesses are provided to make the CL450 DRAM available as sys­
tem memory for the host when the CL450 is not being used. The LDS 
and UDS inputs to the CL450 may be tied together if this feature is not 
required. 

Note: In systems based on the 68000,68010, and 68070 pro­
cessors, the 1I5S and UT5S signals will be asserted in roughly 
the same cycle as AS; but when a write is being performed, 
LDS and UI5S will be delayed one or two cycles from the as­
sertion of AS to allow setup time for the data. 

4.1.1 Register Access 
When address lines A[20: 19] = I °2, the CL450 addresses its internal 
registers. The lower seven address lines, A[7: 1], determine which reg­
ister is being addressed, and the R/W signal determines whether the op­
eration is a read or a write. (The upper eleven address lines, A[ 18: 8], are 
in a "don't care" state at this time; the only time they matter is during a 
DRAM read or write, at which time they form part of the local DRAM 
address.) Internal register operations should always be full-word ac­
cesses as indicated by the assertion of both LDS (Lower Data Strobe) 
and UDS (Upper Data Strobe). Two UDSsynchronous state machines 
inside the host interface-one using HCLK, the other using GCLK­
control the data transfer as shown in Figure 4-2. Inputs to the two state 
machines are registered to synchronize them to the local clock. 

4.1.2 local DRAM Access 
When address line A[20] is LOW, the CL450 addresses the local 
DRAM array. The DRAM array is divided into two banks typically or­
ganized as 256K addresses by 16 bits. Address line A[19] selects wheth­
er Bank ° or Bank 1 is being addressed, and address lines A[18: 1] select 
the location to be accessed. The local DRAM array can be accessed us­
ing either byte-wide or word-wide reads and writes. The same two syn­
chronous state machines inside the host interface that are used for 
register read/writes are also used for local DRAM read/writes. The 
DRAM controller drives GSEL (see Figure 4-2) to complete the read or 
write operation. 
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Overview 

4.1.3 CMEM Access 
When address lines A[20:19] = 112, the CL450 addresses CMEM for 
writes; A[20:19] must be 112 before AS goes LOW. Writing a word to 
any address within the address range puts data into CMEM as shown in 
Figure 4-3. 

For CMEM writes, the input data is registered on the falling edge of the 
data strobes (LDS/UDS), and an internal CMEM write request is gener­
ated on the rising edge of the data strobes. The data is written into the 
CMEM on the first rising edge of GCLK following the activation of the 
write request. The CMEM address counters in CMEM_status are incre­
mented at the end of the write. 

Note: CMEM writes are asynchronous with respect to both 
HCLK and GCLK; the state machines used for CIA50 regis­
ter read/write and direct DRAM read/write are not used in 
either DMA or CMEM operations. Also, CMEM is a true 
dual-port memory; therefore, internal read and host write 
operations can occur in the same GCLK cycle. HCLK has no 
effect on CMEM writes. 

4.1.4 DMA Operation 
DMA writes are very similar to CMEM writes except that the 
DMAACK and DTC pins control the operation as shown in Figure 4-3. 
For DMA operation to work correctly, AS and R/W must both = 1. 
(HCLK, D[15:0] and A[20:1] do not affect DMA operation.) The input 
data is registered on the falling edge of DTC, and an internal CMEM 
write request is generated on the rising edge of DTC. The data is written 
into CMEM on the first rising edge of GCLK following the activation 
of the write request. The CMEM address counters in CMEM_status are 
incremented at the end of the write. 

4.1.5 Interrupt Vector Operation 
For interrupt vector operation to occur, HOST_control bit 14 (Vectored 
Interrupt Enable, VIE) must be 1. For a vectored interrupt operation, 
host address A[3:1] must be set up before INTACK goes low and hold 
until INTACK goes high. In addition, INT from the CL450 must be low. 
(Asserting INTACK while !NT is inactive will cause indeterminate be­
havior.) All of these operations are asynchronous with respect to GCLK 
and, like the other access modes described in Sections 4.1.3 and 4.1.4, 
do not affect the GDATA bus shown in Figure 4-3. 
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Local DRAM or Register Read 

4.2 
Local DRAM or 
Register Read 

The host processor accesses the internal registers of the CL450 and the 
CL450 local DRAM array by reading them as if they were memory lo­
cations. Because the resource being read might not be immediately 
available, the CL450 can insert wait states by delaying assertion of the 
DTACK signal until the read can be completed. 

Register and DRAM reads have a minimum delay of two GCLK cycles. 
Maximum DRAM latency is dependent on the operation of the mi­
croapplication. 

Figure 4-4 shows the sequence of signals for a local DRAM or internal 
register read. The circled numbers in the figure refer to the steps below. 

~ Wait States ~ 

HCLK 

A[20:1] 

R/W 

D[15:0] 

450-102 

Figure 4-4 Local DRAM or Register Read Timing 

1. The host processor sets the R/W line to the proper state for the 
read operation (HIGH). 

2. The host processor outputs the desired address on address lines 
A[20:1]. 

3. After the RIW line and the address lines have settled, the host 
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Local DRAM or Register Write 

processor asserts the control lines AS, LDS, and UDS to indi­
cate to the CL450 that a host bus read access is in progress. The 
data bus (D[15:0]) should be in a high-impedance state at this 
time. 

4. The CL450 holds DTAcK deasserted (high) until it can re­
spond to the read request. Because the CL450 is performing ar­
bitration of its internal data buses during memory or register 
accesses, DTACK assertion is delayed by at least one HCLK 
cycle. When the data is available, the CL450 asserts DTACK. 

5. The requested data becomes available on the data bus at the 
same time that DTACK is asserted. 

6. Once the host processor has read the data, it deasserts AS, LDS, 
and UDS. This completes the bus cycle. 

7. When the CL450 detects the deassertion of AS, LDS, and UDS, 
it releases the DTACK signal and the data bus. 

Figure 4-5 shows the sequence of signals for a local DRAM or internal 
register write. The circled numbers in the figure refer to the steps below. 

HCLK 

A[20:1] 

R/W 

0[15:0] 

Figure 4-5 Local DRAM or Register Write Timing with Delayed UDS and 
LDS Timing Shown 

4.3 
Local DRAM or 
Register Write 
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Local DRAM or Register Write 

1. The host processor sets the R/W line to the proper state for a 
write operation (LOW). 

2. The host processor outputs the desired address on address lines 
A[20:1]. 

3. After the address lines have settled, the host processor asserts 
AS. This indicates to the CL450 that a memory transfer is in 
progress. 

4. The host processor then puts the data to be written to the CL450 
on the data bus. 

5. UlJS" and LDS are asserted. (The host processor asserts:rJJS" or 
'O])S" if a byte-wide write is taking place, or both if it is a word­
wide write.) 

6. The CL450 generates a DTACK signal after UDS and LDS are 
asserted. 

7. The CL450 latches the data within 2 GCLK cycles after 
DTACK goes low. 

8. The host processor releases AS. 
9. The CL450 responds by releasing DT ACK. This completes the 

write cycle. 

Note: For register reads, the DTAcK output of the CL450 
provides a handshaking response to indicate to the host CPU 
that the CL450 is ready to terminate the current read or write 
operation. 

For local DRAM reads, the local DRAM is selected by host 
A[20}, and host bits A[19:1} are the DRAM word address. 
However, DTACK will not be asserted as quickly because the 
DRAM controller must acknowledge host interface request 
signals. 

The state diagrams for DTACK generation logic are shown in Figure 4-
6. Note that the states are drawn as event-driven and are not keyed to a 
particular clock. In the case of both reads and writes, ifA'S" is deasserted 
before DTACK is asserted, DTACK will not be asserted. On a read op­
eration, DTACK can be delayed due to internal DRAM arbitration. 
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Write Data 

Latches 

CMEM Write Timing 

Write 

Handshake 

Read Data Valid 

& Handshake 

AS =0 but not 
ready to ac-
knowledge 
access 

UlJS/IDS = 0 
AS=O 

AS=l 

AS=o 

Figure 4-6 DlACK State Logic Diagram 

While the CL450 is decompressing video, the bitstream buffer in the 
CL450's local DRAM must be supplied with a constant stream of 
MPEG video data. To speed up the transfer of compressed video data, 
CMEM (a coded data FIFO) has been included in the input data path. 
Write operations to CMEM can be performed with no added wait-states. 
The CL450 also supports no-wait-state Direct Memory Access (DMA) 
transfers of compressed video data into CMEM. The CL450 automati­
cally transfers the compressed data from CMEM into the local DRAM 

AS=Obutnot 
ready to ac-
knowledge 
access 

AS=o 

4.4 
CMEMWrite 
Timing 
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bitstream buffer whenever space is available. Writes to CMEM must al­
ways be 16-bits wide. Byte writes are not supported. 

The host processor can control the transfer of data to CMEM using one 
of the following two methods: 

D Polled: The host CPU monitors either the CFLEVEL signal or the 
empty status bits in the CMEM_dmactrl register; it writes data 
when CMEM has space. 

D DMA: The CL450 asserts the DMA Request signal (DMAREQ) 
whenever there is space in CMEM. The host DMA controller re­
sponds by acknowledging the request and transferring a word of 
data to the CL450. This method is desirable because the host does 
not need to be involved in the transfer of each data word or polling 
CMEM's fullness, leaving it free to perform other tasks. 

Direct CMEM write and DMA CMEM write operations are done by a 
GCLK-synchronous state machine in the host interface (see Figure 4-3), 
and the inherent speed of this interface is much faster than the maximum 
average transfer speed of 5.0 Mbits per second. The data is registered on 
the falling edge of UDS and LDS, and three GCLK cycles after the ris­
ing edge of AS the data is written into CMEM. UDS and LDS must not 
go LOW again during these 3 GCLK periods, and R/W must be LOW 
when UDS/LDS go LOW with a set-up time ofT9 (Table 7-4). 

For back-to-back transactions, AS HIGH from one cycle must precede 
UDS/LDS LOW in the following cycle by the sum of T129 and T130 
(see Table 7-5). For back-to-back CMEM writes, it would be best to 
leave R/W LOW. (The timing diagrams that follow are for a 68070 in 
which the normal state of RIW is high.) AS must stay HIGH for at least 
two GCLK cycles, and AS LOW must set up a short time before UDS 
and LDS go LOW (T129). 

In direct DMA mode, DMAACK has the same function as AS in direct 
CMEM writes, and DTC has the same function as UDS and LDS in di­
rect CMEM writes. This means that DMAACK LOW time can be very 
short and that DMAACK HIGH time must be two GCLK periods. 
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Figure 4-7 shows the timing diagram for CMEM writes, and Figure 4-
8 shows the timing diagram for DMA transfers to CMEM. The circled 
numbers in each figure refer to the steps that follow each figure. 

Figure 4-7 CMEM Write Timing 

1. The host processor outputs the desired address on address lines 
A[20:1]. To access CMEM, A[20: 19] must be 112 and A[18: 1] 
may be any value. 

2. The host processor sets the R/W line to the proper state for the 
write operation (LOW). 

3. After the address lines have had time to settle, the host proces­
sor asserts AS. This assertion indicates to the CL450 that a 
memory transfer is in progress. 

4. The host processor then puts the data to be written to the CL450 
on the data bus. 

5. After allowing time for the data bus to become valid, the host 
processor asserts both LDS and DDS. CMEM writes must al­
ways be 16-bits wide. 

6. The CL450 asserts the DTACK signal after the assertion of AS 
(LOW). Because no arbitration is necessary, no wait states are 
necessary for CMEM writes. 

CMEM Write Timing 
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4.5 
CMEM DMA Write 

Timing 

7. When the host processor recognizes the DT ACK signal, it re­
leases AS, LDS and UIJS". 

8. The CL450 responds by releasing DT ACK. This action com­
pletes the write cycle. 

The CL450 also supports DMA transfers of data into CMEM using the 
DMAACK, DTC and DONE control inputs. DMA transfers minimize 
the burden that the CL450 puts on the host processor. 

The host processor starts a DMA transaction by configuring the host 
DMA controller (to set up the DMA channel) and writing a 1 to the 
DMA enable bit (DE) in the CL450 CMEM_dmactrl register. The act 
of setting the DE bit while CMEM is at or below the threshold in 
CMEM_dmactrl will enable the CL450's internal DMA logic. Subse­
quently, when CMEM fullness is below the threshold, the CL450 as­
serts the DMAREQ (DMA Request) signal. 

When the host detects DMAREQ active, it asserts the DMAACK 
(DMAAcknowledge) signal and begins a block write to CMEM. Each 
time that a word is transferred, the DMA controller checks to see if an­
other DMAREQ pulse has been generated. If a DMAREQ pulse has 
been generated, the DMA controller generates another DMAACK pulse 
and writes a word of data. 

When CMEM reaches threshold before all of the data has been trans­
ferred, the CL450 releases the DMAREQ signal until space becomes 
available again. This continues until the transfer of data is complete. 

When the transfer is complete, the host may assert the DONE signal, 
which stops the transaction and clears the DMA enable bit (DE) in the 
CMEM_dmactrl register if the DONE pulse occurred when CMEM was 
not full. The host can abort the transaction at any point by clearing this 
bit. 

Note: The CL450 supports a host processor with an HCLK 
frequency of up to 20.0 MHz, or one-half the GCLKfrequen­
cy, whichever is less. DMA writes can provide two bytes ev­
ery six host processor clock cycles. 
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Figure 4-8 CMEM DMA Write Timing 

Figure 4-8 shows the sequence of signals during a typical DMA transfer. 
During this transfer, four words of data are transferred into CMEM, and 
the host terminates the transfer by asserting DONE. The circled num­
bers in the figure refer to the steps below. 

1. The CL450 asserts DMAREQ, indicating that space is available 
in CMEM. This request is asynchronous, and may occur during 
another CL450 access cycle. In this example, it occurs during a 
word read from the CL450. 

2. After completing the current operation, the host DMA control­
ler responds by asserting DMAACK and starting a word trans­
fer. 

CMEM DMA Write Timing 

Last DMA Cycle 

450-105 
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4.6 
CMEM DMA Write 

Application 
Guidelines 

3. The DMA controller drives the address bus and strobes the sys­
tem AS (not the CL450's AS input), causing the host memory 
subsystem to drive the data onto the bus. 

4. When the data is ready, the system memory responds by assert­
ing DTACK. Note that the host system is driving the address 
bus, R/W, AS, and DTACK during a DMA cycle, but that the 
CL450 is not using them. The CL450's AS and R/W input sig­
nals must remain HIGH during a DMA transfer. (In single-ad­
dress mode, the CL450' s AS and RIW signals will stay high 
without special logic due to the reads from system memory.) 

5. The host DMA controller asserts Data Transaction Complete 
(DTC) to indicate to the CL450 that the word is available. The 
CL450 stores the data on the falling edge of DTC. 

6. The host DMA controller completes the cycle by releasing 
DMAACK. At this point, the first word has been transferred 
into CMEM. 

7. Because the DMAREQ signal is still asserted, a second word of 
data is transferred into CMEM using timing identical to that of 
the first (repeat steps 2 through 6). 

8. The transfer of the third word into CMEM is identical to that of 
the second. 

9. During the transfer of the last word, the DMA controller in the 
host system asserts the DONE signal. 

10. When the CL450 detects the active DONE signal (CMEM is as­
sumed to not be full at this time), it clears the DMA enable bit 
(DE) in the CMEM_dmactrl register and releases the 
DMAREQ signal. 

11. The DMA controller releases DMAACK and DTC. This com­
pletes the DMA transfer. 

When designing a DMA controller to be used with the CL450, the fol­
lowing guidelines should be followed: 

o Both R/W and AS must remain HIGH throughout a DMA transfer. 
If the 68070 dual-address DMA transfer mode is used, external 
logic must be provided to ensure that these conditions are met. 
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o The behavior of both the DMAREQ and 'iJC)NE signals is condi­
tional on the fullness of internal CMEM. In systems in which the 
'iJC)NE signal does not have to be used, the deterministic operation 
of DMAREQ can be assured by correct operation of the host soft­
ware. Alternately, the host may program the CL450 to output the 
CFLEVEL signal so that it can be used to condition the DMAREQ 
signal before it is supplied to the host. 

For the CL450 to produce pulses on the DMAREQ signal, DMA 
operation must be enabled by the host writing the DMA Enable 
(DE) bit while CMEM is not full. This condition can be ensured 
by the host software polling the CMEM_dmactrl register prior to 
writing the DMA Enable bit in it. 

Alternately, if the DMAREQ signal is conditioned before being 
sent to the host, it can be ensured in hardware that CMEM never 
becomes full at all. To accomplish this, a circuit similar to the fol­
lowing should be used: 

DMA request to ...-_--( 
system (active low) 

r------j DMAREQ 

'--------l CFLEVEL 

---------'l_~ 1JONE 

CL450 

For this circuit to operate correctly, CFLEVEL must be pro­
grammed to become active if the 1 Q bit (in CMEM_dmactrl) be­
comes 1. This action can be accomplished by writing a value of 
10000000X2 to CMEM_dmactrl. Doing so reduces the effective 
size of CMEM from 16 to 12 words, so that the actual CMEM will 
never become completely full. Limiting the size of CMEM in this 
way ensures that writing a 1 to the DMA Enable bit (DE) in 
CMEM_dmactrl always activates the CL450's internal DMA log­
ic, and that a pulse on the DONE input signal will always cause 
DE to be cleared. 

o A DMA transfer allows a word of data to be written into CMEM 
every six HCLK cycles. Using direct memory writes, a word can 
be transferred every four HCLK cycles (8.75 Mbytes per second). 
If extremely high (instantaneous) data transfer rates are required, 
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4.7 
CMEM Level 

external hardware could be designed to take advantage of this. An 
example would be a state machine that loads the data from an ex­
ternal FIFO directly into the CL450' s CMEM. 

o AS" has a minimum pulse width of 40ns, and UDS/LDS have a 
minimum pulse width of 5ns (not tested). 

o AS" can be de-asserted on the same cycle where UDS/LDS get as­
serted if DTAcK is asserted. 

o During direct host writes to CMEM, data is registered on the fall­
ing edge of UDS/LDS. 

o No timing restriction exists on how fast back-to-back write trans­
actions can occur during CMEM data transfers; however, UDS 
and LDS should not go LOW until data has been written into 
CMEM on the third GCLK cycle after AS goes HIGH. 

o DT ACK is combinatorial during direct CMEM writes and vec­
tored interrupts but synchronous otherwise. 

CFLEVEL (CMEM level) is an output signal that the CL450 generates 
to inform the host processor of the fullness of CMEM. The host pro­
grams control bits in the CMEM_dmactrl register to set the point at 
which the CFLEVEL signal is asserted by the CL450. Table 4-3 shows 
how these bits are programmed. This signal can either be polled by the 
host processor or used to generate an external interrupt. 

Table 4-3 CMEM Level Control Bits 

1. 

Bit4 Bit3 Bit2 Bit 1 Assert CFLEVEL when FIFO is: 
1 0 0 0 1/4 empty 

0 1 0 0 1/2 empty 

0 0 1 0 3/4 empty 

0 0 0 Emptyl 

During normal operation, CMEM is not necessarily drained to empty. 

Note: The CMEM level must always be polled before data is 
written to it; otherwise, data may be lost. Typically, the 
CFLEVEL pin is set to 3/4 empty. The host polls for this con­
dition and sends 12 words before polling again. 
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The CL450 supports both polled and vectored interrupts using the 
680XO vectored interrupt sequence. 

Note: TNT is an open-drain output so that it can be wire­
ORed with other interrupt signals in the system. It should be 
pulled up to Vee with a resistor no smaller that 470 ohms. 

4.8.1 Polled Interupts 
Polled interrupt operation is straightforward. The CL450 microapplica­
tion generates an interrupt by writing the 1iii bit in the HOST_control 
register with zero, which asserts Interrupt Request (INT). (The interrupt 
bit in the HOST_control register directly connects to the INT output 
pin.) Typically, the host first services the interrupt and then clears it by 
setting the interrupt bit in the HOST_control register. This action auto­
matically deasserts INT. 

Note: The interrupt must also be logically cleared at some 
point by clearing the Interrupt Status location maintained by 
the microapplication in HMEM (see Section 14.2, Interrupt 
Status Location). 

4.8.2 Vectored Interrupts 
The vectored interrupt sequence is more complex. The microapplication 
sets the 1iii bit in the HOST_control register, asserting INT. The host re­
sponds by asserting Interrupt Acknowledge (INTACK) and broadcast­
ing the interrupt priority on address lines A[3: 1]. 

The CL450 compares the priority of this interrupt to the priority previ­
ously written into the IP ID bits of the HOST _intvecw register by the 
host. If the priorities match, the CL450 outputs the Interrupt Vector pro­
grammed into the IVect bits of the HOST_intvecw register on D[7:0] 
and signals its validity by asserting the DTACK signal. If the IPID and 
IVect bit fields are not written, the initial value of IPID is 0 and IVect = 
Oxf. 

The host processor receives the Interrupt Vector and ends the cycle by 
releasing the INTACK signal. This action automatically clears the Int 
bit in the HOST_control register if the AIC (Auto Interrupt Clear) bit is 
1. If AIC is not 1, the host must clear Trlt by writing to the HOST_control 

Interrupt Cycle Timing 
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register. For more information on interrupts and interrupt servicing, see 
Section 14.2.2, Interrupt Control Registers. 

Note: The CL450 requires AS to be inactive (HIGH) during 
an interrupt acknowledge cycle. This differs from the 680XO 
bus protocol in whichAYis active (LOW) during an interrupt 
acknowledge cycle. The 680XO system designer should 
therefore use INTACK in the AS generation combinatorial 
logic to make sure that INTAcK and AS are mutually exclu­
sive. 

Alternatively, the CL450 can be mapped into an address 
range that has at least one zero in the upper address bits 
(Al23:2]]). By doing this, the decoder for AS will not acti­
vate during an interrupt acknowledge cycle since the upper 
address bits must be all ones during this time. 

This problem does not exist when using non-vectored inter­
rupts. 

Figure 4-9 shows the timing for a vectored interrupt cycle with automat­
ic interrupt clearing. 
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Figure 4-9 Vectored Interrupt Cycle (with auto interrupt clearing) 

1. The CL450 requests an interrupt by asserting the INT signal. 

2. The host system broadcasts the Interrupt Priority ID on address 
lines A[3: 1]. 

3. The host system asserts the INT ACK signal to acknowledge the 
interrupt. 

4. The CL450 determines that the Interrupt Priority ID matches 
IPID, and drives the DTACK signal to indicate to the host pro­
cessor that the vector interrupt address is valid. 

5. The CL450 drives the vector interrupt address byte (/Vect) on 
D[7:0]. 

6. The host releases the INTACK line. (The host latches the inter­
rupt address on the rising edge of IN TACK.) This action signals 
the CL450 that the interrupt acknowledge cycle is complete. 

7. The CL450 completes the cycle by releasing the interrupt re­
quest line (if AIC=l), DTACK, and the address and data buses. 

Interrupt Cycle Timing 
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5 
Local DRAM 

Interface 

This chapter describes the local DRAM interface bus and how it is used. 
It details all of the signals necessary to connect the CL450 to a DRAM 
array and shows several example applications. The sections in this 
chapter are: 

D 5.1: General Description 

D 5.2: Memory Bus Interface 

D 5.3: Memory Bus Timing 



General Description 

5.1 
General 

Description 

In addition to the CL450's internal registers, the host has direct access 
to the CL450's external DRAM buffer. Typically, DRAM is initialized 
by the host with the CL450's microapplication (as described in Section 
10.2.2, Loading Sequence). After initialization, the host may access 
variables stored in DRAM (see Appendix A). The microapplication 
does not support any other host access to DRAM. 

Note: Access to off-chip DRAM is the only operation in 
which byte-wide rather than 16-bit access to the CL450 is 
possible. All other transactions with the CL450 must be 16 
bits. 

5.1.1 Amount of DRAM 
The CL450 can be connected to either four Mbits or eight Mbits of local 
dynamic RAM. However, only four Mbits of DRAM are needed. If a 
second four Mbits of DRAM are added, it may be used by the system 
but it will be ignored by the microapplication. 

The DRAM array is used to store: 

o Compressed video data waiting to be decoded by the bitstream 
buffer 

o The decoded video frame that is currently being displayed 

o Future and past decoded reference frames 

o CL450 microapplication instructions 

o Bitstream header parameters 

o The Command FIFO 

5.1.2 Type and Organization of DRAM 
The DRAM is organized as one or two banks of memory, each 256K lo­
cations deep by 16 bits wide, using 80ns fast-page-mode DRAMs. The 
CL450 can decode any MPEG constrained-parameter bitstream with a 
single bank of DRAM. However, designing the system so that it can be 
expanded to support the full amount of memory could allow the system 
to accommodate larger bitstream buffers and/or future enhanced mi­
croapplications. 

Note: DRAMs which are "write per bit" or have a write 
mask should not be used with the CL450. More specifically, 
the DRAM used must ignore the state of the WE signal dur-
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ing a r:AS -before-:[{}fS" refresh cycle. (See the next section for 
an explanation of these signals.) Aside from this restriction, 
any normal 256K x 16 fast-page-mode DRAM can be used, 
and either 8/10 or 9/9 RAS!CffS" may be used. 

Although this chapter primarily addresses the connections between the 
DRAM controller and external memory, it is also useful in understand­
ing some of the other functions that the controller performs. For exam­
ple, the DRAM controller acts as an intelligent peripheral to the 
CL450's internal CPU. It can be programmed in the microapplication 
to: 

o Extract data from CMEM and place it in DRAM 

o Move data from DRAM to the MPEG decoding engine 

o Move data from the MPEG decoding engine back into the DRAM 

o Move a decoded video frame from the DRAM to the video display 
unit 

o Arbitrate requests from the host interface for access to the local 
DRAM 

Once the CL450 CPU has instructed the controller to perform one or 
more of these functions, no more intervention is required until the pro­
cess is complete. The CL450 CPU is thus free to perform other impor­
tant functions. 

The memory interface on the CL450 consists of a lO-bit multiplexed ad­
dress bus, a l6-bit data bus, and the control lines necessary for reading 
and writing the DRAM: Write Enable (WE), Column and Row Address 
Strobes (LCAS, UCAS and RAS[1:0]), and the data latch enable signals 
(LCASIN and UCASIN). The high output drive of the CL450 allows it 
to directly drive the DRAMs without external buffers or logic. This low­
ers the system parts count and allows slower DRAMs to be used. 

Memory arrays designed to use 256K x 4 DRAMs should only use nine 
of the ten address lines, MA[8:0]. Memory arrays designed to use 256K 
x 16 DRAMs should use all ten bits,MA[9:0], because some 256K x 16 
DRAMs have asymmetrical row and column addresses (a ten-bit row 
address and an eight-bit column address). The CL450 supports both of 

Memory Bus Interface 
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these memory organizations by duplicating column address bit nine in 
the tenth location of the row address as shown in Figure 5-1. 

Row Address 

9 8 7 6 5 4 3 2 o 

Column Address 

9 8 7 6 4 3 2 o 

450·108 

Figure 5-1 DRAM Address Bus Configuration 

5.2.1 Memory Interface Connections 
Figure 5-2 shows how the memory bus interface is connected when us­
ing 256K x 16 DRAMs, and Figure 5-3 show how the interface is con­
nected when using 256K x 4 DRAMs. 

The host processor addresses the local DRAM whenever address line 
A[20] is LOW. A[19] is used to select Bank 0 or Bank 1 through asser­
tion of the RAS[O] or RAS[1] signal, respectively. Host address signals 
A[ 18: 1] map directly into the multiplexed row and column DRAM ad­
dresses. The host bus interface signal R/W maps directly to the DRAM 
interface WE signal. 

The host bus interface supports byte-wide accesses to the local DRAM 
by using the signals IJ)"S and UD5 to select LCAS and UCAS, respec­
tively. LCASIN and UCASIN are used to latch the data coming back 
from the DRAMs. 
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Figure 5-2 Local DRAM Implementation with 256K x 16 DRAMs 
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Figure 5-3 Local DRAM Implementation with 256K x 4 DRAMs 
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5.2.2 Memory Design Guidelines 
When designing DRAM arrays for use with the CL450, the following 
guidelines should be followed: 

D When using 256K x 16 DRAMs, connect all 10 address lines to the 
DRAMs. This allows DRAMs with either ten row and eight col­
umn address lines or nine row and nine column address lines to be 
used. The 10th address bit on 256K x 16 DRAMs is located on pin 
15 of SOJ packages, pin 17 of TSOP packages and pin 25 of ZIP 
packages. This pin has no effect on DRAMs with nine row and 
nine column addresses. 

D The r:cAS and'GCAS signals should be routed from the DRAM 
farthest from the CL450 to the LCASIN and UCASIN inputs. This 
gives the CASIN signal a delay path similar to the path of the 
DRAM read data to the CL450. 

D Series damping resistors may need to be placed between the 
CL450 and the DRAMs to reduce overshoot and undershoot on 
the address lines and control signals. This problem can occur when 
there is a large array with long traces, such as when eight 256K x 
4 DRAMs are used. The resistors should be connected as close to 
the CL450 as possible. The best value for the resistors depends on 
the board characteristics. The resistors are typically between 20 
and 40 ohms with 33 ohms being most common. 

D If the host bus byte-wide write capability is not used, only one of 
the CAS' signals needs to be connected to the DRAMs. Either 
r:cAS or UCAS can be used but must be connected to both the 
LCASIN and the UCASIN inputs. This allows 256K x 16 DRAMs 
with a single CAS input to be used. 

Note: The elimination of all possible DRAM noise is critical 
to proper DRAM layout for the CL450. Therefore, it is im­
portant that you keep the DRAM very close to the CL450, use 
terminations, and have a very "clean" ground and Vee plane 
below the DRAM and those portions of the CL450 that con­
nect to it./fpossible, do not pass any other signals or clocks 
anywhere under the DRAMs or their traces. 

Memory Bus Interface 
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5.3 
Memory Bus Timing 

The DRAM interface on the CL450 is designed to work with 80ns fast­
page-mode DRAMs. All DRAM accesses are synchronized to GCLK. 
Fast-page-mode DRAMs allow shorter read and write cycle periods 
within a DRAM row. During a set of fast-page-mode accesses, a row ad­
dress is strobed in using the'RA'S" line, followed by several column ad­
dresses strobed in by CAS". Releasing the RAS and CA'S" lines 
simultaneously completes the set of cycles. 

Refresh is accomplished by asserting the CAS" signal before the RAS 
signal (opposite of normal operation). This sequence starts a refresh cy­
cle within the DRAM using the DRAM's internal address counter. 

Refresh is performed at regular intervals determined by the value pro­
grammed into the DRAM_refcnt register (see page 8-23). Typical 
DRAM specifications require that all pages be refreshed each 8ms. The 
CL450 meets this specification by refreshing one page at a time. 

5.3.1 DRAM Page-Mode Read Timing 
Figure 5-4 shows the timing for a page-mode read. The circled numbers 
in the figure refer to the steps on the next page. 

GCLK 

MA[9:0] Row Address 

WE 

MD[15:0] 
---.J 

450-111 

Figure 5-4 Page-Mode Read Timing 
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1. The CL450 starts a read cycle by three-stating the memory data 
bus, MD[15:0], and setting the write enable (WE) line HIGH. 

2. The CL450 then drives the row address onto the memory ad­
dress (MA) bus. 

3. The CL450 asserts the 'RAS" line (LOW) to latch the row ad­
dress into the DRAM. 

4. The CL450 then outputs the column address of the first word to 
be read on MA. 

5. The CL450 latches the column address into the DRAM by as-
serting the CASline(s) (LOW). 

6. The DRAMs output the data from the selected address. 

7. The CL450 deasserts CAS. 

8. The data is loaded into the input latch of the CL450 on the rising 
edge of CAS IN. For a single-location read, the CL450 ends the 
cycle by deasserting RAS at this time. 

9. For a page-mode read cycle, the CL450 outputs the column ad­
dress of the next word to be read on MA[9:0]. 

10. The CL450 latches the address into the DRAM by asserting the 
CAS line. 

11. The DRAMs output the data from the selected address. 

12. The data is loaded into the input latch of the CL450 on the rising 
edge of CASIN. 

13. The CL450 deasserts RAS and CAS to complete the cycle. 

5.3.2 DRAM Page-Mode Write Timing 
Figure 5-5 shows the timing for a page-mode write. The circled num­
bers in the figure refer to the steps that follow. 

Memory Bus Timing 
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Figure 5-5 Page-Mode Write Timing 

1. The CL450 starts a write cycle by asserting the write enable 
(WE) line LOW. 

2. The CL450 then drives the row address on the memory address 
(MA) bus. 

3. The CL450 asserts the RAS line (LOW) to latch the row address 
into the DRAM. 

4. The CL450 then outputs the column address of the first word to 
be written on the MA bus, and outputs the data to be written into 
the first address on the MD bus. 

5. The CL450 asserts the CAS line (LOW) to write the data into 
the selected location of the DRAM. 

6. For a single-location write, the write operation is terminated by 
driving the RAS and CAS lines inactive (HIGH) at this point. 
For a page-mode write, the address and data for the next word 
to be written are output on the MA and MD buses, respectively. 

7. The CL450 asserts the 'CAS" line to write the data into the select­
ed location of the DRAM. 

8. When the last word is written, the write operation is terminated 
by driving the RAS and CAS lines HIGH. 
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5.3.3 DRAM Refresh Timing 
Figure 5-6 shows the timing for a memory refresh cycle. The circled 
numbers in the figure refer to the steps below. 

GCLK 

WE 

Figure 5-6 CAS-before-RAS Refresh Cycle 

1. The CL450 initiates a DRAM refresh cycle by asserting the 
CAS line while the RAS line is inactive. 

2. The CL450 asserts the RAS line to enable the refresh at the ad­
dress pointed to by the DRAM's internal address counter. 

3. The CL450 completes the refresh cycle by releasing RAS and 
CAS. 

Note: The CL450 WE signal does not necessarily go inactive 
during DRAM refreshes, so use DRAMs that do not acknowl­
edge the state of WE during DRAM refresh timing (i.e., when 
"CASis asserted while the RifS line is inactive). 

Memory Bus Timing 
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Memory Bus Timing 
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6 
Video Display 

Interface 

This chapter describes the operation of the video display unit. It as­
sumes that the reader is familiar with the way that television pictures are 
received, synchronized, and displayed. 

The purpose of the video display unit is to output the decompressed vid­
eo data in a form that can be either displayed on a television or video 
monitor, or mixed with computer-generated graphics to provide a video 
signal within a graphics window. 

To perform these functions, the video display horizontally interpolates 
decompressed video, optionally converts pixel data from YCbCr to 
RGB color spaces, synchronizes it to the video clock, and outputs it to 
a display device. 

The sections in this chapter are: 

o 6.1: Digital Video Standards 

o 6.2: Video Display Unit 

o 6.3: Video Synchronization 



Digital Video Standards 

6.1 
Digital Video 

Standards 

D 6.4: Video Output 

D 6.5: Video Output Enable Signal 

There are two primary standards for analog video transmission used in 
the world today: 

D NTSC (National Television Systems Committee) standard: Used 
by North America, Japan, Korea, and Taiwan. 

D PAL (Phase Alternating Line) standard: Used by Europe, China, 
and most of Africa. 

The NTSC video standard specifies a scanning system of 525 horizontal 
lines per frame. Each frame consists of two interlaced fields of 262.5 
horizontal lines. The field rate is 59.94 Hz. 

The start of the frame is synchronized with a vertical sync pulse fol­
lowed by an interval of 42 lines with no video, called vertical blanking. 
This leaves 480 lines in a frame for picture information (240 in a field). 

The horizontal lines are synchronized with a horizontal synchronization 
pulse followed by an interval with no video, called horizontal blanking. 
Horizontal synchronization pulses occur at a rate of 15,734 Hz. 

PAL video operates in much the same way, with these distinctions: 

D The field rate is 50 Hz. 

D There are 625 lines in a frame and 312.5 lines in a field. 

D The horizontal sync pulses occur at a rate of 15,626 Hz. 

D There are 576 lines of active video in a PAL frame and 288 lines 
in a field. 

The SIF (source input format) specification reflects these standards by 
defining two digital video formats: 352 pixels x 240 lines x 30 Hz for 
compatibility with NTSC, and 352 pixels x 288 lines x 25 Hz for com­
patibility with PAL. Because the SIF frame rates are half those of the 
standard field rates, the CL450 displays each decoded SIF picture nom­
inally for two field periods. 
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The actual video information may be represented using two data for­
mats: 

o YCbCr data: Consists of a Y value for the luminance, or bright­
ness, of a pixel and two color values, Cb and Cr, for the chromi­
nance. The Cb and Cr values represent color difference signals 
that can be converted into red, green, and blue values. 

o RGB (red, green, blue): The data output has a digital value that 
corresponds to the amplitude of the red, green, and blue signals. 
This digital value is converted to an analog signal before being 
displayed. 

In accordance with the MPEG standard, CL450 compressed video data 
is always stored in YCbCr format, with Y values ranging from 16 to 235 
as specified by MPEG. If RGB-encoded output video is needed, the 
YCbCr data is converted by the CL450 using a matrix which preserves 
the 220 discrete levels encoded by MPEG (as required by the CD-I stan­
dard), in which 16-16-16 RGB indicates the color black, while 235-235-
235 indicates the color white. 

Note: Your DAC should be set to the 16-235 values.lfyour 
DAC expects black at 0-0-0 and white at 255-255-255, then 
your output colors will not be as brilliant as expected. 

On the CIA50 development board or similar designs using 
the DAC in which the output of the CIA50 is being stored 
into memory, the following steps may be taken to convert 
from 16-235 to the full, dynamic range of 0-255: 

1. Subtract 16 to shift the RGB range to 0-219. 

2. Multiply by 2561220 (1.1634) to expand the range to 256 
levels. 

RGB will now equal (RGB-16) x (1.1634). 

Video Display Unit 

The CL450's video display unit accepts decompressed YCbCr data 6.2 
from the local DRAM and outputs it as either horizontally interpolated Video Display Unit 
YCbCr or RGB pixels. The pixels are clocked out by the VCLK (video 
clock) signal and are synchronized to external devices using the 
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Video Synchronization 

6.3 
Video 

Synchronization 

HSYNC (Horizontal Sync) and VSYNC (Vertical Sync) input signals. 
Figure 6-1 shows the video bus connections. 

Figure 6-1 

CL450 

PD[23:16] "-
"-

PD[15:8] "-
"-

"-PD[7:0] "-

~ 

VCLK 

HSV1\fC 

VSVNC -
vat 

Video DACs 
or VCbCr Mixer 

Blue-AUXreg 

Green-V 

Red-Cb/Cr 

Sync 

I 
System Video 
Control Unit 

VCLK 

HSYf\JC 

VSVNC 

VUE 

Typical Video Bus Connections 

~ 
Video and 
Sync to 
Monitor 

450-128 

The CL450 does not generate video synchronization signals, but rather 
is designed to be synchronized with external horizontal and vertical 
sync signals. This allows it to be easily integrated with other video com­
ponents in a multimedia system. 

In a typical video display, the video information is surrounded by a col­
ored border. The size and color of the border are programmed using the 
microapplication's SetBorderO command described in Chapter 11. 

If the CL450 is directly driving the video generation logic, the border 
can be programmed to emulate the horizontal and vertical blanking in­
tervals by selecting the appropriate border widths and setting the border 
color to black. 
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If the CL450 is being used to display video within a computer graphics 
window, the borders can be used to position the video window horizon­
tally and vertically within the graphics frame. The border color is then 
programmed to a value that can easily be multiplexed with the comput­
er-generated video color values. 

A video field example is shown in Figure 6-2. This example field has a 
I5-line top border, 240 lines of displayed video, and a I2-line bottom 
border. Horizontally it has a I3-pixelleft border, 320 pixels of displayed 
video, and a I5-pixel right border. 

Figure 6-2 Example Video Frame 

The display of the first of 15 lines of the top border of Figure 6-2 begins 
on the rising edge of the vertical synchronization pulse (VSYNC) re­
ceived from the system video controller as shown in Figure 6-3. The cir­
cled numbers of Figure 6-3 refer to the steps below. 

Video Synchronization 
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Video Synchronization 

15 Lines ---'1 Top Border I~ 

HSYNC 1111111111111111111111111111111111111111111111111111111111111 
(pulses) 

VSYNC ~~ _______________ _ 

10 20 30 40 

PD[23:0j Border Color 
@ (whole scan lines) 

12L· 15 Lines 
~ !nes ~~ Top Border---. 
I Bottom Border I of next field 1 

HSVNC 1111111111111111111111111111111111111111111111111111111111111111111 " I 
(pulses) 

VSYNC @ i"L 
210 220 230 240 

PD[23:0j YYVVYV'YY\IYY\IYY\/V.v~VY.v'VYYY.vVYYYYYV'VV'vIYY\IYY\/V~..:..Bo:.:..rd:.:e.:....:r C:.:o.:.:.lo~r __ 
(whole scan lines) @ 

450·130 

Figure 6-3 Vertical Timing 

1. The video field begins when the CL450 receives the first rising 
edge of HSYNC after the rising edge of the vertical sync 
(VSYNC) pulse. (VSYNC can occur asynchronously to 
VCLK.) 

2. At the end of the vertical border time, the CL450 starts to output 
active video lines on the pixel bus: in this example, 240 lines. 
Video lines start when the rising (inactive) edge of HSYNC is 
received. 

3. The CL450 continues to output video until the last line has been 
output. At this point, it outputs the border color again until the 
end of the video field. 

4. A rising edge on VSYNC starts a new field. 

Figure 6-4 shows the beginning and end of a typical horizontal line. 
This example line has a border at the left side of the field that is 13 
VCLKs wide, 320 active pixels, and a I5-pixel-wide border at the right 
side of the field. The circled numbers refer to the steps below. 
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Video Synchronization 

13 Pixels 
I~eft Bord~1 

VCLK 

(conti 
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@ 

Figure 6-4 Horizontal Timing 

1. A horizontal line begins when the CL450 receives an inactive 
(rising) edge on the horizontal sync signal (HSYNC). 

2. At the end of the left border time, the CL450 starts to output ac­
tive video on the pixel bus. In our example, this will continue 
for 320 VCLK pulse widths. 

3. The CL450 continues to output video until the last pixel has 
been transmitted. At that point, it will output the border color 
again until the end of the horizontal line. 

4. An inactive edge on HSYNC causes a new horizontal line to be 
displayed. 

To be reliably recognized, HSYNC falling edges must occur either less 
than 2 Ils or more than 20 IlS after the rising edge ofVSYNC. If this re­
striction is not met, the first HSYNC signal after VSYNC might be ig­
nored, causing the visible video window to randomly shift up and down 
by one line. 

HSYNC edges which occur less than 2 Its after the VSYNC edge are 
considered to have been received before the VSYNC edge, while 

450-131 
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Video Output 

6.4 
Video Output 

HSYNC edges which occur more than 20 f.lS after the rising edge of 
VSYNC are considered as being received after the VSYNC edge. 

Must be < 2.0!!s U 
IfooIIoII(f--- or> 20!!s ~ 

VSYNC 

Figure 6-5 VSVNC Timing Restriction 

The video display unit outputs pixel values on the 24-bit wide pixel bus, 
PD[23:0]. The pixels can be output as either YCbCr or ROB values. The 
display mode is selected by the RGB bit in the VID _selmode register as 
described in Chapter 8. 

In YCbCr mode, luminance values (Y) are output on PD[15:8] and 
chrominance (Cb and Cr) values are output on PD[7:0]. While lumi­
nance values are stored for every pixel, chrominance values Cb and Cr 
are only stored for every alternate pixel as shown in Figure 2-3. The rea­
son for this is that the eye is far less sensitive to changes in color 
( chrominance) than it is to changes in brightness (luminance). The 
MPEO standard takes advantage of that fact to increase the data com­
pression factor in this way. Because only a quarter as many Cb and Cr 
values (each) are stored as Yvalues, Cb and Cr are output by the CL450 
in alternate VCLK periods (as shown in Figure 6-6) and identical CbCr 
information is output for every pair of scan lines displayed. 

Note: The CL450 may begin output with a Cb or a Cr value. 
The determination as to whether the CL450 begins output 
with a decoded or interpolated value is, however, somewhat 
more complicated. That is, if the xOffset parameter of the 
SetWindow() command (see page 11-41) is an even number, 
the CL450 begins output with decoded (real Y) values; how­
ever, if the xOffset parameter is odd, the CL450 begins out­
put with an interpolated value. 
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PD[15:8] 
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PD[7:0] 
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450-132 

Figure 6-6 YCbCr Display Mode 

In YCbCr mode, PD[23:16] outputs the 8-bit value in the VID_selaux 
register. Since these pins have no predefined use, they can be used as 
general-purpose programmable outputs. 

Decompressed video data is always stored in YCbCr format in the 
CL450's local DRAM. If RGB outputs are required, the CL450 can be 
programmed to convert the data to RGB. The equation used to perform 
the conversion is shown in the description of the VID _sela and VID _­
selb registers in Chapter 8. Figure 6-7 shows the PD[23 :0] outputs when 
the CL450 is configured in RGB mode. 

VCLK 

PD[23:16] __________ ~I\---JI 

PD[15:8] 

PD[7:0] 

Border Pixel Pixel Pixel Pixel Pixel Pixel Pixel 
1 2 3 4 5 6 7 

Figure 6-7 RGB Display Mode 

Note: CL450 RGB mode is set to be compatible with CD-J 
players and therefore conforms to an output range of 16-235 
as opposed to a range of 0-255 values (see page 6-3). 

450-133 
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Video Output Enable Signal 

The VOE signal is used to enable or disable the pixel bus outputs. When 
6.5 VOE is active (LOW), the PD[23:0] signals are driven. When VOE is 

Video Output HIGH, the outputs are three-stated as shown in Figure 6-8. 
Enable Signal 

___ -II 
PD[23:16j Data 

----------' 
450-134 

Figure 6-8 Video Output Enable Signal 

In a typical video-within-a-window system, PD[23:0] outputs form a 
three-state bus along with the outputs of the system video controller. 
This bus is connected to the inputs to the video DACs. The system video 
controller disables its outputs and enables the CL450 outputs during the 
time that the CL450 window is being displayed. An example is shown 
in Figure 6-9. 

CL450 Video DACs 

RGB .. 
Outputs . 

VUE 

System Video 
Controller 

RGB 
Output -

Figure 6-9 Multiplexing Video Outputs Using VOE 
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7 
Electrical and 

Physical 
Specifications 

This chapter describes the CL450's electrical and mechanical character­
istics. The chapter is divided into three sections: 

o 7.1: Operating Conditions 

o 7.2: AC Timing Characteristics 

o 7.3: Package Specifications 

Note: These specifications represent an improvement over 
previously published specifications. 



Operating Conditions 

7.1 
Operating 

Conditions 

This section specifies the electrical characteristics of the CL450. 

Table 7-1 Absolute Maximum Ratings 1 

Parameter 

Supply Voltage (Voo) 

Input Voltage 

Output Voltage 

Storage temperature range 

Operating temperature range (case) 

Reflow Soldering temperature 

Value 
-0.5 to 6.5 V 

-1.0 to (Voo + 1.0) 

-0.5 to (VDo +0.5) 

-65°C to 150°C 

O°C to 90°C 

240°C for 5 Seconds Maximum 

1. Exposure to stresses beyond those listed in this table may result in device unreliability, perma­
nent damage, or both. 

Table 7-2 Operating Conditions 

Parameters 
Commercial 

Unit 
Min Max 

Voo Supply Voltage 4.75 5.25 V 

teAsE Operating Temperature 0 85 °C 

Table 7-3 DC Characteristics 

Parameters Test Conditions 
Commercial 

Unit 
Min Typ Max 

VIH High-level input voltage 1 Voo = MAX 2.4 V 

VIL Low-level input voltage 1 Voo = MIN 0.8 V 

VOH High-level output voltage Voo = MIN, IOH = -2.0 mA 2.8 V 

VOL Low-level output voltage Voo = MIN, IOL = 8.0 mA 0.5 V 

IIH High-level input current Voo = MAX, VIN = Voo 10 ~ 
IlL Low-level input current Voo = MAX, VIN = 0 V -10 ~ 
loz Output leakage current Hi-Z output driven to OV and -10 +10 ~ 

5.25 V 

1000 Supply Current Voo = MAX, GCLK = 40MHz 320 400 mA 
@Tj=O°C VIN = 0 or Voo, CL=50pF 

10085 Supply Current Voo = MAX, GCLK = 40MHz 300 350 mA 
@Tt85°C VIN = 0 or Voo, CL=50pF 

CIN Input Capacitance 1 10 pF 

COUT Output Capacitance 1 12 pF 

CI/O Output Capacitance 1 12 pF 

1. Not 100% tested, guaranteed by design characterization 
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This section describes the AC timing characteristics of the CL450. The 
timing characteristics are divided into related groups and depicted with 
one or more timing diagrams and a table of timing values. The groups 
are: 

o Host Bus Memory and Register Timing 

o Figure 7-1, Host Bus Local DRAM Read 

o Figure 7-2, Host Bus Register Read 

o Figure 7-3, Host Bus Local DRAM Write 

o Figure 7-4, Host Bus Register Write 

o Table 7-4, Local DRAM or Register Access 

o Host Bus CMEM Timing 

o Figure 7-5, CMEM Write 

o Figure 7-6, CMEM DMA Write 

o Table 7-5, CMEM Access 

o Host Bus Vectored Interrupt Cycle Timing 

o Figure 7-7, Vectored Interrupt Cycle with Auto Clear 

o Table 7-6 , Vectored Interrupt Cycle with Auto Clear 

o Local DRAM Bus Timing 

o Figure 7-8, Local DRAM Bus 

o Figure 7-9, Local DRAM CAS"-before-RAS Refresh 

o Table 7-7, Local DRAM Bus 

o GCLK, SCLK and RESET Timing 

o Figure 7-10, GCLK 

o Figure 7-11, IrnSET 

o Table 7-8, GCLK and IrnSET 

o Figure 7-12, SCLK Input 

o Table 7-9, SCLK Input 

o Video Bus Timing 

o Figure 7-13, Video Bus Inputs 

o Figure 7-14, VCLK 

o Table 7-10, Video Bus Inputs 

AC Timing Characteristics 

7.2 
ACTiming 
Characteristics 
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AC Timing Characteristics 

7.2.1 Host Bus Memory and Register Timing 
Host requests for access to the CL450's local DRAM and registers are 
not always honored immediately since higher priority operations within 
the CL450 may delay access. In such cases, the CL450 inserts wait 
states by holding off the assertion of DTACK. At least one wait state is 
inserted in every local DRAM or register access. Since register and lo­
cal DRAM accesses are made primarily during initialization of the 
CL450, and rarely during operation, the impact of these delays on sys­
tem performance are minimal. 

170 T1 Tr~ 1 J~r Wait 
States~ 

SO Sl S2 S3 SB SB SB SB SB SB S4 S5 SO Sl S2 

HCLK 

A[20:19] 

A[18:8] 

A[7:1] 

AS 

UITS" 
IDS 

AS+~ 
+TITS 

R!W 
T15-.i 

0[15:0] 

UTACK 
450-114 

Note: Please see Motorola's MC68070 Technical Summary for an explanation 
of cycle time naming conventions 58, SO, etc. 

Figure 7-1 Timing Diagram - Host Bus Local DRAM Read 
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HCLK 

A[20:19] 

A[18:8] 

A[7:1] 

r-- T36 

II 

R/W 

D[15:0] 

450·114 

1. CMEM does not support byte-wide writes. 

Note: Please see Motorola's MC68070 Technical Summary for an explanation 
of cycle time naming conventions S8, SO, etc. 

Figure 7-2 Timing Diagram - Host Bus Register Read 

AC Timing Characteristics 
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AC Timing Characteristics 

r-T1 .. 111( .... -1111( 
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r T49

-

II r--+-----I_ 

II r rno 

I I 

AS +-uus- I 
+ 1llS ~ 115 -I 

"'-T9~ 
R/W 
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Note: Please see Motorola's MC68070 Technical Summary for an explanation 
of cycle time naming conventions S8, SO, etc. 

Figure 7-3 Timing Diagram - Host Bus Local DRAM Write 
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1. The CL450's registers do not support byte-wide writes. 450-115 

Note: Please see Motorola's MC68070 Technical Summary for an explanation 
of cycle time naming conventions S8, SO, etc. 

Figure 7-4 Host Bus Register Write 

AC Timing Characteristics 
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AC Timing Characteristics 

Table 7-4 Timing Characteristics - Local DRAM or Register Access 1 

Time Description Min Max Units 
T1 HCLK Clock Period 2 (T31) ns 

T2 HCLK HIGH Pulse Width 3 20 ns 

T3 HCLK LOW Pulse Width 3 20 ns 

T4 A[20:19] valid setup to 7f.S LOW 10 ns 

T5 A[20:19] valid hold past 7f.S HIGH 0 ns 

T6 0[15:0] setup to AS + 1JI:Js-+ TITS LOW (write) 15 ns 

T7 0[15:0] hold past ys:g-+ 1IDS + IDS HIGH (write) 0 ns 

T8 7f.S + urrs-+ TITS HIGH to DTACK HIGH (write) 2 25 ns 

T9 R!W setup to UITS, IDS LOW (write) 20 ns 

T10 R!W hold past 7f.S HIGH (write) 0 ns 

T12 DTACK low to 0[15:0] valid (read) 3 15 ns 

T13 0[15:0! turn-off time from --rs::r + 1IDS + IDS HIGH 2 15 ns 
(read) .4 

T14 7f.S HIGH to DTACK HIGH (read) 2 ns 

T15 R!W setup to 7f.S LOW 10 ns 

T16 R!W hold past 7f.S HIGH (read) 10 ns 

T23 7f.S + urrs-+ TITS LOW to 0[15:0] driven 0 ns 

T48 HCLK HIGH to DTACR LOW 25 ns 

T49 R!W hold past HCLK HIGH (write)3 2 (T1) + 10 ns 

T105 A[18:1] hold time from TITACK LOW 0 ns 

T106 A[18:1] setup time to DTACK LOW TBO ns 

T107 A[7:1] hold time from 7f.S LOW 10 ns 

T108 A[18:1] hold time from DTACK LOW 3 (T31) + 10 ns 

T122 A[7:1] setup time to 7f.S LOW TBO 

1. Inputs switch between O.OV and 3.SV at lV/ns. Measurements are made at 1.SV. Output load ca-
pacitance = SO pF. 

2. Open-Drain Output. liming specification assumes an external pull-up resistor with a value of 
470 Ohms. 

3. Not 100% tested, guaranteed by design characterization. 
4. lime at which output achieves an open circuit condition; not referenced to an output voltage 

level. 
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AC Timing Characteristics 

7.2.2 Host Bus CMEM Timing 
CMEM logic has been optimized to minimize data transfer times. Direct 
writes and DMA transfers to CMEM are synchronized within the 
CL450 so no host bus wait states are necessary. 

HCLK 

A[20:19] 

A[18:8] 

A[7:1] 

uns 1 

IDS 

R!W 

D[15:0] 

~ ~'---------'\'--_---.J/,.---
1. CMEM does not support byte-wide writes. 

Figure 7-5 

Note: Please see Motorola's MC68070 Technical Summary for an explanation 
of cycle time naming conventions 58, SO, etc. 

Timing Diagram - CMEM Write 

450-116 
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AC Timing Characteristics 

HCLK 

A[20:19] 

A[18:8] 

A[7:0] 

R/W 

0[15:0] 

T131 

\'---__ --.--'LT21 

UUNt -------='j.. 122 Till --~J,,------
IOptional! t 1 

Note: DMAREQ will only be assertd by the CL450 after the DMA En­
able bit (DE, see page 8-11) has been correctly set by the host. Once 
set, any number of falling edges may be produced on DMAREQ until 
the bit is cleared. 

Figure 7-6 Timing Diagram - CMEM DMA Write 
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AC Timing Characteristics 

Table 7-5 Timing Characteristics - CMEM Access 

Time Description Min Max Units 
T11 A.S to TITACR LOW (CMEM write) TBO 30 ns 

T17 0[15:0] setup to TITC LOW 5 ns 

T18 0[15:0] hold from TITC LOW 10 ns 

T19 DTC LOW Pulse Width 15 ns 

T20 DMAACK hold to DTC LOW 10 ns 

T21 DMAACK to lJTV1AREIT HIGH (to end request) 20 ns 

T22 mJf\JE low to lJTV1AREIT HI G H 1 20 ns 

T36 DlAC"K LOW to A.S HIGH 0 ns 

T47 A.S HIGH to HCLK HIGH 10 ns 

n09 0[15:0] hold time from 7S!!; + UITS + ms LOW 10 ns 

T110 DMAACK HIGH time TBO ns 

T111 mJf\JE pulse width TBO ns 

T112 OMA cycle time TBO(T31 ) ns 

T113 A.S setup to DlV1AACK LOW TBO ns 

T114 A.S hold to DMAACK HIGH TBD ns 

T115 R!W HIGH to DlV1AACK LOW TBO ns 

T116 R/W hold to DMAACK HIGH TBO ns 

T129 A.S setup to UITSf[[JS LOW (CMEM write) TBO ns 

T130 A.S HIGH pulse width TBO ns 

T131 DMAACK setup to DTC LOW TBO ns 

1. Note: DnNE causes Dl'i7IAREIT to be come inactive only if CMEM is notfull when the mJfiJE 
pulse occurs. 
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AC Timing Characteristics 

7.2.3 Host Bus Vectored Interrupt Cycle Timing 
The CL450 supports the 680XO Vectored Interrupt Cycle. Shown is the 
Vectored Interrupt Cycle with the CL450's Auto Interrupt Clear enabled 
(Ale in HOST_control equal to 1, see page 8-10). 

A[3:1] 

R!W 

0[15:8] 

0[7:0] 

Figure 7-7 

1 ..... --- T119 -------1_ 

Note: fI\JTACK should be tied HIGH if not used. When used,­
TI\ITACK must not be asserted unless TNT is asserted. 

450-119 

Timing Diagram - Vectored Interrupt Cycle with Auto Clear 
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Table 7-6 Timing Characteristics - Vectored Interrupt Cycle with Auto 
Clear1 

Time Description Min Max Units 

T24 Tf\JTli.:CR HIGH to TNT HIGH (release) 30 ns 

T25 A[3:1] setup to Tf\JTli.:CR LOW 10 ns 

T26 Tf\JTli.:CR LOW to mACK LOW (vectored' interrupt) 2 30 ns 

T27 Tf\JTli.:CR LOW to 0[7:0] valid (vectored interrupt) 3 TBO 15 ns 

T28 0[7:0] turn-off from Tf\JTli.:CR HIGH (vectored interrupt) 3,4 TBO 15 ns 

T29 Tf\JTli.:CR HIGH to DTACK HIGH (vectored interrupt) 2 25 ns 

T30 A[3:1] hold past Tf\JTli.:CR HIGH 0 ns 

Tl19 Tf\JTli.:CR pulse width TBO ns 

T120 AS setup time to Tf\JTACK LOW TBO ns 

T121 AS hold time from Tf\JTli.:CR HIGH TBD ns 

1. Inputs switch between O.OV and 3.5V at lV/ns. Measurements are made at 1.5V. Output load 
capacitance = 50 pF. 

2. Open-Drain Output. Timing specification assumes an external pull-up resistor with a value of 
470 Ohms. 

3. Not 100% tested, guaranteed by design characterization. 
4. Time at which output achieves an open circuit condition; not referenced to an output voltage 

level. 

7.2.4 Local DRAM Bus Timing 
Local DRAM bus timing is specified differently than the other timing 
parameters. The DRAM interface times are specified at 0.8 Volts and 2.4 
Volts, instead of at 1.5 Volts. This allows the designer to easily cross ref­
erence CL450 timing values to DRAM specifications. The Timing 
Characteristics table also gives the industry-standard DRAM timing pa­
rameter names as well as the CL450 parameter names. 

AC Timing Characteristics 
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AC Timing Characteristics 

Table 7-7 Timing Characteristics - Local DRAM Bus 1 

Time Description Parameter Min Max Units 
T31 GCLK Period (tCYC) 25 ns 

T61 GCLK HIGH to RAS HIGH 2 TBD 30 ns 

T62 GCLK HIGH to "CAS HIGH 2 TBD 25 ns 
T63 GCLK HIGH to Memory Data HIGH or LOW (DRAM write) 2 TBD 30 ns 

T64 GCLK HIGH to WE HIGH or LOW 2 TBD 22 ns 

T65 GCLK HIGH to Memory Address HIGH or LOW 2 TBD 24 ns 

T66 Read Data Setup Time before CASlN HIGH 5 ns 
T67 Read Data Hold Time after CASTJ\f HIGH 5 ns 
T68 Row Address Setup Time 2 tASR tCYC -10 ns 

T69 Write Data Setup Time before "CAS LOW 2 tos tCYC -15 ns 

T70 Write Data Hold Time after "CAS LOW 2 tOH tCYC-10 ns 

T71 RAS Hold Time after "CAS LOW 2 tRSH tCYC - 5 ns 
T72 Read Command Hold Time from "CAS 2 tRRH tCYC -15 ns 

T73 Read Command Setup Time to""CAS LOW 2 tRCS 5*tCYC -10 ns 

T74 Column Address Setup Time to""CAS LOW 2 tASC tCYC-15 ns 

T75 Column Address Hold Time from "CAS LOW 2 tCAH tCYC-10 ns 
T76 Row Address Hold Time from RAS LOW 2 tRAH 2*tCYC -15 ns 
T77 "CAS LOW Time 2 tCAS tCYC - 5 ns 

T78 "CAS HIGH Time 2 tcp tCYC -10 ns 

T79 RAS HIGH Time 2 tRP 3*tCYC - 5 ns 

T80 RAS LOW Time 2 tRAS 4*tCYC - 15 TBD ns 
T81 Write Command Setup Time to""CAS LOW 2 twcs 2*tCYC -15 ns 

T82 Write Command Hold Time from""CAS LOW 2 tWCH 2*tCYC -10 ns 

T83 "CAS HIGH to Memory Data Driven 2.3 3*tCYC - 5 ns 

T84 Column Address to "CAS HIGH 2 tAA + T66 2*tCYC - 5 ns 
T85 RAS to "CAS delay 2 tRCO 3*tCYC -15 ns 

T86 "CAS Setup Time to liAS (Memory Refresh Cycle) 2 
tCSR tCYC -10 ns 

T87 "CAS Hold Time from RAS (Memory Refresh Cycle) 2 
tCHR 3*tCYC -15 ns 

T88 RAS HIGH to "CAS LOW delay (Memory Refresh Cycle) 2 
tRPc 2*tCYC - 10 ns 

T89 Column Address to RAS HIGH 2 tRAL 2*tCYC - 10 ns 

T90 RAS LOW to "CAS HIGH 2 tRAC + T66 4*tCYC -15 ns 

T91 RAS Hold Time from "CAS Precharge 2 tRHCP 2*tCYC - 5 ns 

T93 Read Command Hold Time from RAS tRRH,tRCH tCYC -15 ns 

T94 GCLK to MD three-state (write) TBD TBD ns 

1. Inputs switch between O.OV and 3.5V at 1V/ns and measurements are made at 0.8V and 2.4V. Output load capacitance 
= 50 pF. 

2. Not 100% tested, guaranteed by design characterization. 
3. MD[15:0] driven only when next cycle will be a write. 
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Table 7-7 Timing Characteristics - Local DRAM Bus (cont.) 

Time Description Parameter 

T95 CAS" HIGH to MO three-state (read) 

T96 CASlN LOW Time 

T97 CASlN HIGH TIME 

T98 CASlN HIGH to LAS LOW 

T123 GCLK HIGH to LAS LOW 

T124 GCLK HIGH to liAS" LOW 

7.2.5 GCLK, SCLK, and REm Timing 

I T31 tT32tT33~1 

GCLK 

Figure 7-10 GCLK Timing Diagram 

GCLK 

RESET \~ T125 ~I 
Figure 7-11 RESET Timing Diagram 

Table 7-8 Timing Characteristics - GCLK and RESET 1 

Time Description Min Max Units 
T31 GCLK frequency 40 MHz 

T31 GCLK Period (tCYC) 25 ns 

T32 GCLK HIGH Pulse Width 10 ns 
T33 GCLK LOW Pulse Width 10 ns 
T125 RESET Pulse Width 50(T31) ns 

1. Inputs switch between O.OV and 3.5V at lV/ns. Measurements are made at 1.5V. 

Min 

TBO 

TBO 

TBO 

TBO 

TBO 

TBO 

AC Timing Characteristics 

Max Units 

TBO ns 

ns 

ns 

ns 

TBO ns 

TBO ns 
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AC Timing Characteristics 

SCLK 

Figure 7-12 Timing Diagram - SCLK Input 

Table 7-9 Timing Characteristics - SCLK Input 1 

Time 
T51 
T52 
T53 

Description 
SCLK Period 2 

SCLK HIGH Pulse Width 2 

SCLK LOW Pulse Width 2 

Min 
2(T31) 

T31 
T31 

Max 

450-127 

Units 
ns 

ns 

ns 

1. Inputs switch between O.OV and 3.5V at Wins. Measurements are made at 1.5V: 
2. Not 100% tested, guaranteed by design characterization 

7.2.6 Video Bus Timing 

i T3S ·1 .. T39tT40 ·1 
VCLK 

PD[23:0j 

450-123 

Figure 7-13 Timing Diagram - Video Bus Inputs 
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GCLK 

T127·1 r:J 
T128 

T127·1 r:J 
T128 

VCLK 

T126 

Figure 7-14 VCLK Timing (20 MHz only) 

Table 7-10 Timing Characteristics - Video Bus Inputs 1 

Time Description Min Max Units 
T38 VCLK Period2 2(T31)+ 17 ns 

T39 VCLK HIGH Pulse Width 20 ns 

T40 VCLK LOW Pulse Width 20 ns 

T41 HSVI\JC setup to VCLK HIGH 10 ns 

T42 HSVI\JC hold from VCLK HIGH 0 ns 

T43 PO valid from VCLK HIGH 20 ns 

T44 \lITE LOW to PO[23:0] driven TBO 20 ns 

T45 PO [23:0] turn-off time from \lITE HIGH 3,4 TBO 20 ns 

T46 PO hold time from VCLK HIGH TBO ns 

T126 Alternate VCLK period 2(T31) 2(T31) ns 

Tl27 VCLK setup to GCLK5 TBO 

T128 VCLK hold from GCLK5 TBO 

1. Inputs switch between O.OV and 3.5V at 1V/ns. Measurements are made at 1.5V. Out­
put load capacitance = 50pF. 

2. Note: T126 may be substituted for T38 if additional timing constraints in Figure 7-14 
(T127 and T128) are met. 

3. Not 100% tested, guaranteed by design characterization. 
4. Time at which output achieves an open circuit condition; not referenced to an output 

voltage level. 
5. Must be met only when T126 is used in place of T38. 

AC Timing Characteristics 

Electrical and Physical Specifications 7-19 



Package Specifications 

7.3 
Package 

Specifications 

The CL450 is packaged in a plastic quad flat pack (PQFP). The package 
has an internal heat spreader and a copper-alloy lead frame to improve 
thermal conductivity. This section includes: 

o The CL450 Pinout Diagram 

o Tables of CL450 pin connections 

o Host Bus Interface Pins 

o DRAM Bus Interface Pins 

o Video Bus Interface Pins 

o Power and Miscellaneous Pins 

o Package Physical Dimensions 

The CL450 is shipped in a drypack with desiccant and a humidity mon­
itor. Do not use the parts if the humidity indicator indicates that the hu­
midity is greater than 30% at the initial opening of the drypack. To avoid 
cracking the plastic during soldering, the parts should be soldered with­
in three days after breaking the drypack seal. 

Note the following conventions used in this section: 

o "NO CONNECT" pins are not connected internally. 

o "RESERVED" pins are reserved for future use. They should be 
pulled either HIGH or LOW. 
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Package Specifications 

7.3.7 Pin List 

Table 7-11 Host 8us Interface Pins 

Function Group 110 Pin# Function Group I/O Pin# 
GCLK Host 102 A2 Host 66 
HCLK Host 76 Al Host 67 
SCLK Host I 123 R/W Host I 73 
00 1 Host 0 108 015 Host I/O 106 

TT'JTACK Host 109 014 Host I/O 105 
CFLEVEL Host 0 78 0[13 Host I/O 104 
RESET Host 71 012 Host I/O 103 
TEST Host 124 011 Host I/O 99 
AS Host 74 010 Host I/O 98 
A20 Host 70 09 Host I/O 97 
A19 Host 69 08 Host I/O 96 
A18 Host 48 07 Host I/O 93 
A17 Host 49 06 Host I/O 92 
A16 Host 50 05 Host I/O 91 
A15 Host 51 04 Host I/O 90 
A14 Host 52 03 Host I/O 87 
A13 Host 53 02 Host I/O 86 
A12 Host 55 01 Host I/O 85 
Al1 Host 56 DO Host I/O 84 
A10 Host 57 TITACR 1 Host 0 77 

A9 Host 58 illS Host 88 
A8 Host 59 lJITS Host I 100 
A7 Host 60 ITfV1AREIT Host 0 72 

A6 Host 62 DMAACK Host 118 
A5 Host 63 lTIC Host 94 
A4 Host 64 TIDNE Host 117 
A3 Host 65 

1. Open-Drain Output. 
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Package Specifications 

Table 7-12 DRAM Bus Interface Pins 

Function Group 1/0 Pin# Function Group 1/0 Pin# 

MA9 DRAM 0 3 MD8 DRAM I/O 28 
MA8 DRAM 0 4 MD7 DRAM I/O 26 
MA7 DRAM 0 5 MD6 DRAM I/O 25 
MA6 DRAM 0 7 MD5 DRAM I/O 24 
MA5 DRAM 0 8 MD4 DRAM I/O 23 
MA4 DRAM 0 9 MD3 DRAM I/O 20 
MA3 DRAM 0 10 MD2 DRAM I/O 19 
MA2 DRAM 0 12 MD1 DRAM I/O 18 
MA1 DRAM 0 13 MOO DRAM I/O 17 
MAO DRAM 0 14 RAS[O] DRAM 0 46 
M015 DRAM I/O 37 RAS[1] DRAM 0 45 
MD14 DRAM I/O 36 rcAS DRAM 0 44 

MD13 DRAM I/O 35 DCAS" DRAM 0 43 
MD12 DRAM I/O 34 rcASl1\f DRAM 22 
M011 DRAM I/O 31 UCASTf\J DRAM I 33 
MOlO DRAM I/O 30 WE DRAM 0 15 
MD9 DRAM I/O 29 
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Package Specifications 

Table 7-13 Video Bus Interface Pins 

Function Group I/O Pint Function Group I/O Pint 

P023 Video 0 158 P09 Video 0 139 

P022 Video 0 156 P08 Video 0 138 

P021 Video 0 155 P07 Video 0 136 

P020 Video 0 154 P06 Video 0 133 

P019 Video 0 153 P05 Video 0 132 

P018 Video 0 151 P04 Video 0 131 

P017 Video 0 150 P03 Video 0 130 

P016 Video 0 149 P02 Video 0 128 

P015 Video 0 148 P01 Video 0 127 

P014 Video 0 146 POO Video 0 126 

P013 Video 0 145 FIS'Yf\JC Video 134 

P012 Video 0 144 VN Video 143 

P011 Video 0 142 VCLK Video 137 

P010 Video 0 140 VSYNC Video 110 

Table 7-14 Power and Miscellaneous Pins 

Function Group I/O Pint Function Group I/O Pint 

VCC Power PWR 6 VSS Power GNO 32 

VCC Power PWR 16 VSS Power GND 47 

VCC Power PWR 27 VSS Power GNO 61 

VCC Power PWR 38 VSS Power GND 75 

VCC Power PWR 54 VSS Power GND 89 

VCC Power PWR 68 VSS Power GNO 101 

VCC Power PWR 83 VSS Power GND 112 

VCC Power PWR 95 VSS Power GNO 125 

VCC Power PWR 107 VSS Power GND 135 

VCC Power PWR 116 VSS Power GND 147 

VCC Power PWR 129 VSS Power GNO 157 

VCC Power PWR 141 NO CONNECT Mise 1 - 2 

VCC Power PWR 152 NO CONNECT Mise 39 - 42 

RESERVED Mise 111 NO CONNECT Mise 79- 82 

RESERVED Mise 113 -115 NO CONNECT Mise 119 -122 

VSS Power GND 11 NO CONNECT Mise 159 -160 

VSS Power GNO 21 
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Package Specifications 

7.3.8 Package Drawings 

1 ___ ------- E -------.......j Al 

nooonoonnonnnnnoono 

D E Non-Accum. 

z 450-125 

Figure 7-16 Plastic Quad Flat Pack Physical Dimensions 
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Package Specifications 

Table 7-15 Plastic Quad Flat Pack Physical Dimensions 

SYMBOL 
INCHES 

DIMENSIONS 
MM 

A 0.146 MAX. 3.7 MAX. 

Al OMIN. OMIN. 

0 1.10 ±O.OOS 2S.0 ±O.20 

E 1.259 ±O.016 32.0 ±O.40 

El 0.012 TYP. 0.30 TYP. 

E2 0.0256 TYP. 0.65 TYP. 

E3 0.006 TYP. 0.15 TYP. 

E4 0.031 ±O.OOB O.SO ±O.20 

H 0.157 MAX. 4.0 MAX. 

Z 0.052 TYP. 1.33 TYP. 
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8 
Registers 

This chapter describes each of the CL450 hardware registers. You 
should be familiar with the relation of these registers to the CL450's ex­
ternal signals as described in Chapter 3, Signal Descriptions. 

The sections in this chapter are: 

D 8.1: CL450 Register Categories 

D 8.2: CL450 Register Summary 

D 8.3: Host Interface Registers 

D 8.4: Internal CPU Registers 

D 8.5: DRAM Interface Register 

D 8.6: Video Interface Registers 



CL450 Register Categories 

8.1 
CL450 Register 

Categories 

The CL450 contains 34 registers. Typically, these registers perform 
low-level operations or act as part of the protocol for communicating 
with the microapplication executing on the CL450's internal CPU. For 
purposes of this reference, they are divided into three categories: 

D Normal: These registers are used routinely to configure/communi­
cate with the CL450 and its microapplication, although not all ap­
plications use all of these registers. 

D Diagnostic: These registers are used only when attempting to char­
acterize a problem as discussed in Appendix E, Troubleshooting. 
They are accessed by the host using an internal data bus which is 
shared with the CL450's internal CPU. Because host use of this 
bus may conflict with CL450 operations, diagnostic register ac­
cesses should be minimized to prevent degradation of CL450 per­
formance. 

D Internal: These registers are used exclusively by the CL450's in­
ternal CPU. They must not be accessed by the host any time the 
microapplication is executing; otherwise, indeterminate behavior­
can occur. 

D Initialization: These registers should only be accessed by the host 
prior to the beginning of microapplication execution as part of the 
chip initialization procedure. 

8.1.1 Direct-access Registers 
Of the CL450's 34 registers, 26 can be directly accessed using a single 
transfer across the CL450's host interface and are listed in Table 8-1. To 
access these registers, perform a host read or write with address bits 
A[20: 19] equal to 102 and address bits A[7: 1] set to the register address. 

Note: Register address values in this chapter are given in 
byte-wide address space. This is done for the convenience of 
programmers working with byte-addressable processors. 

The least significant bit of each address value corresponds to 
address bit AlO] (which is not supplied to the CL450) , and 
the remaining register address bits are driven to the CL450 
on address lines Al7: 1]. 
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Even though register addresses are expressed as byte ad­
dresses, the CL450 does not support single-byte access to in­
ternal registers; all registers must be accessed 16 bits at a 
time. 

Register address values not listed in Table 8-1 are reserved. Attempting 
to read or write these register addresses-or to read a write-only regis-
ter, or to write a read-only register-causes indeterminate results. 

Table 8-1 Direct-access Registers (listed by category) 

Category Register Address Category Register Address 

CL450 Register Categories 

Name (byte-wide) Name (byte-wide) 

CMEM_control Ox80 CPUjnt Ox54 

CMEM_dmactrl Ox84 Diagnostic CPUjntenb Ox26 

CPU_control Ox20 CPU_taddr Ox38 

CPUjaddr Ox3E CPU_tmem Ox46 

CPUjmem Ox42 CMEM_data Ox02 

CPU_pc Ox22 CMEM_status Ox82 

DRAM_refcnt OxAC HOST_scrO Ox92 

Normal HOST_control Ox90 Internal HOST_scrl Ox94 

HOSTjntvecr Ox9C HOST_scr2 Ox96 

HOSTjntvecw Ox98 VID_chroma OxOA 

HOST_newcmd Ox56 VID_y OxOO 

HOST_raddr Ox88 

HOST_rdata Ox8C 

VID_control OxEC 

VID_regdata OxEE 

Note that Table 8-1 gives addresses within an 8-bit address space; that 
is, the values given should be divided by two before being presented to 
the CL450 using address pins A[7:1J. This restriction applies because 
CL450 registers must be accessed using 16-bit operations. 
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CL450 Register Summary 

8.2 
CL450 Register 

Summary 

8.1.2 Indirect-access (Video) Registers 
The remaining eight registers, listed in Table 8-2, are accessed indirect­
ly by specifying the desired register number in bits 4: 1 of the VID _con­
trol register (the VRID field), and then reading or writing the 
VID_regdata register. Note that the "VRID Value" of Table 8-2 replaces 
the "Address" column of Table 8-1 but that the tables are otherwise 
identical. 

The procedure for accessing an indirect video register is described in 
Section 8.6.2, Indirect-access Video Registers. 

Table 8-2 Indirect-access (Video) Registers (listed by category) 

Category Register Name VRIOValue 

Normal VIO_selaux oxe 

VIO_sela OxO 

VIO_selactive Ox8 

VIO_selb Ox1 

Internal VIO_selbor Ox9 

VIO_seIGB OxB 

VIO_selmode Ox7 

VIO_seIR OxA 

Note: All register addresses and VRID values not shown in 
Table 8-1 and Table 8-2 are RESERVED, and attempting to 
access a register at a reserved location will cause indetermi­
nate results. Also, not all registers may be accessed at all 
times during CL450 operation. The limitations on when reg­
isters may be accessed are discussed in Chapter 10. 

Table 8-3 and Table 8-4 give a descriptive summary of the same CL450 
registers that were listed in Tables 8-1 and 8-2, respectively. Note that 
the registers in Table 8-3 that begin "CMEM_" are part of the host in­
terface module, and that 8 of the 12 video registers are listed separately 
in Table 8-4 because they are addressed indirectly using the VID _con­
trol register as a pointer. 
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CL450 Register Summary 

Table 8-3 Direct-access Registers (described) 

Register Addr. Used For: R/W Page # 

CMEM_control Ox80 Internal reset, byte swap (normal/initialization) R/W 8-8 
CMEM_data Ox02 CMEM read port (internal) R 8-9 
CMEM_dmactrl Ox84 CMEM status, CFLEVEL assertion, DMA enable (normal) R/W 8-9 
CMEM_status Ox82 CMEM counters (internal) R 8-11 
CPU_control Ox20 Run enable bit (normal) R/W 8-19 
CPUjaddr Ox3E IMEM write address (normal/initialization) R/W 8-21 
CPUjmem Ox42 IMEM write data (normal/initialization) W 8-21 
CPUjnt Ox 54 Internal interrupt status (diagnostic) R/W 8-19 
CPUjntenb Ox26 Internal interrupt enable (diagnostic) R/W 8-20 
CPU_pc Ox22 Program counter (normal/initialization) R/W 8-19 
CPU_taddr Ox38 TMEM address (diagnostic) R/W 8-22 
CPU_tmem Ox46 TMEM data (diagnostic) R/W 8-22 
DRAM_refcnt OxAC Refresh clock count (normal) R/W 8-23 
HOST_control Ox90 Interrupt control (normal) R/W 8-12 
HOST jntvecr Ox9C Read IVeet and {PID (normal) R 8-13 
HOST jntvecw Ox98 Write !Veet and {PID (normal) W 8-13 
HOST _newcmd Ox56 New command bit (normal) R/W 8-14 
HOST_raddr Ox88 Pointer to command/status register (normal) R/W 8-13 
HOST_rdata Ox8C Data port to command/status register (normal) R/W 8-14 
HOST_scrO Ox92 SCR -lower portion (internal) R/W 8-17 
HOST_scr1 Ox94 SCR - middle portion (internal) R/W 8-16 
HOST_scr2 Ox96 SCR - upper portion (internal) R/W 8-16 
VID_control OxEC Pointer to indirect video register (normal/initialization) R/W 8-25 

VI ° _regdata OxEE Data port for indirect video registers (normal/initialization) W 8-25 
VID_chroma OxOA Chrominance data port (internal) W 8-25 
VID_y OxOO Luminance data port (internal) W 8-26 

Table 8-4 Indirect-access (Video) Registers (~escribed) 

Register VRID Used For: R/W Pagel 
VID_sela OxO Conversion coefficients (internal) W 8-26 
VID_selactive Ox8 Width of active region (internal) W 8-28 
VID_selaux OxC Pixel data high byte (normal/initialization) W 8-29 
VID_selb Ox1 Conversion coefficients (internal) W 8-26 
VID_selbor Ox9 Left border size (internal) W 8-28 
VID_seIGB OxB Border green, blue values (internal) W 8-29 
VID_selmode Ox7 RGB or YCbCr mode (internal) W 8-27 
VID_seIR OxA Border red value (internal) W 8-28 
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Host Interface Registers 

Host 
Interface 
Signals 

8.3 
Host Interface 

Registers 

Figure 8-1 shows a conceptual model of the CL450's four logical regis­
ter interfaces. This model does not correspond exactly to the physical 
structure of the device; instead, it has been simplified to show the pro­
grammer's interface. 

Figure 8-1 

Internal 
CPU 

Host Interface 
Module 

DRAM 

Internal Register Structure of the CL450 

CL450 

DRAM 
Controller 

Video 
Interface 
Signals 

The sections that follow describe the registers contained in each CL450 
interface module. In the detailed definitions given for each register, note 
that bits marked Res are reserved. Reserved bits should be written as ze­
ros. Reading from reserved bits gives undefined data. 

This section describes the registers in the host interface module. Figure 
8-2 shows the internal structure of the host interface module. 

Note: Registers accessed by the host that are not contained 
on the host interface module are accessed through the host 
interface logic that connects across the CL450 internal bus. 
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Figure 8-2 Internal Structure of the Host Interface Module 
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Host Interface Registers 

8.3.1 CMEM Registers 
The host processor uses these registers to access CMEM for initializa­
tion, control, monitoring, and diagnostic purposes. 

(initialization) 

15 765 

Ox80 

43210 

Figure 8-3 

Res I Rst I BS I Res I CR I CRE I CRst I 

Rst Internal Reset (bit 6) RIW 
The host processor writes a 1 to this bit to cause the CL450 to 
perform a software reset. A software reset initializes the CL450 
in the same way as the hardware reset described in Chapter 4, 
with the exception that the host interface remains active to allow 
the host processor to clear this bit to O. The host processor must 
clear this bit before initiating another software reset; Rst is not 
cleared automatically. After any reset, the CL450 must be re­
initialized by the host. 

BS Byte Swap (bit 5) RIW 
When BS is 1, words of data written to the CL450's CMEM are 
byte-swapped. (Data written to other internal registers in the 
CL450 are not swapped regardless of the setting of this bit.) 

The byte-swapping capability is provided to ensure compatibil­
ity between the CL450, which uses the Motorola style of byte 
ordering, and host processors that use the Intel style. In the Mo­
torola style, a word address points to the more significant byte 
(MSB); the less significant byte (LSB) is located at the next 
higher address. In the Intel style, the byte ordering is reversed. 
Figure 8-3 shows the memory organization for the two styles. 

1..-1 byte ---.\ 

r 
1..-1 byte ---.\ 

LSB2 MSB2 

MSB2 LSB2 

LSB1 Increasing MSB1 

MSB1 
Memory 

LSB1 
Addresses 

Motorola Intel 

Motorola and Intel Byte Ordering 
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(internal) 

15 

(normal) 

15 

CR CMEM Request (bit 2) R 
When CRE (below) is 1, the CL450 sets CR to 1 when CMEM 
contains four or more entries, and clears CR to zero when 
CMEM contains one or no entries. The CL450's internal 
DRAM controller transfers data from CMEM to the bitstream 
buffer in the local DRAM when CR is 1. 

CRE CMEM Request Enable (bit 1) RIW 

When CRE is set to 1, CMEM requests a DRAM transfer to the 
bitstream buffer using CR as described above. The microappli­
cation sets this bit to 1 during initialization. When CRE is set to 
0, the DRAM controller is instructed not to consume any data. 

CRst CMEM Reset (bit 0) RIW 

When a 1 is written to CRst, the counters in the CMEM_status 
register are reset to 0, and any data stored in CMEM is deleted. 
CRst must be ° for normal operation. 

Ox02 

o 
CData 

CData CMEM Data (bits 15:0) R 

This 16-bit field is the read port from CMEM. The CMEM Read 
Counter (CRCnt) in the CMEM_status register points to the 
read address in CMEM. 

Ox84 

9 8 7 6 543 2 1 0 

Res I 1 Q I 2Q I 3Q I 4Q I 1 QE I 2QE I 3QE I 4QE I DE I 

lQ-4Q Empty Status (bits 8:5) R 

These four bits indicate the empty status of CMEM as shown in 
Table 8-5. When using programmed accesses to write data to 
CMEM, the application program must check this register or the 
CFLEVEL pin before writing to ensure that CMEM does not 
overflow. Note that each of bits [8:5] has a corresponding bit in 
the range [4:1] which is used as described below. 

Host Interface Registers 

Registers 8-9 



Host Interface Registers 

Table 8-5 

Table 8-6 
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CMEM Empty Status Bits 

7a 2a 3a 4a Empty Entries in Status 
CMEM 

0 0 0 0 0-3 Full/nearly full 

0 0 0 4-7 1/4+ empty 

0 0 8-11 1/2+ empty 

0 12-15 3/4+ empty 

16 Empty 

lQE-4QE Empty Status Enables (bits 4:1) R/W 

These four bits enable the assertion of the CL450's output sig­
nal CFLEVEL based on the state of the empty status bits 1 Q 
through 4Q described above. Table 8-6 shows how these bits 
control the assertion of CFLEVEL. 

CFLEVEL Assertion Control 

7aE 2aE 3aE 4aE CFLEVEL Asserted 
Upon Assertion of Bit: 

1 X X X 10 

0 1 X X 20 

0 0 1 X 30 

0 0 0 1 401 

0 0 0 0 CFLEVEL Not Asserted 

1. Note thatthis bit will not necessarily become 1 during nor-
mal operations. 

DE DMA Enable (bit 0) RIW 
When this bit is written with 1 by the host and CMEM is not 
full, the CL450's DMA capability is enabled. Writing a 1 to this 
bit if CMEM is full will not enable DMA. Writing a 0 to this bit 
always disables DMA, regardless of the CMEM fullness level. 
The value read from this bit will always be the last value written 
(or 0 if cleared by the ])()NE pin), and does not necessarily re­
flect whether or not DMA is enabled. 

When DMA is enabled, the CL450 generates a DMA request by 
asserting DMAREQ (active low) whenever CMEM has at least 
one empty space. Note that this bit is automatically cleared to 0 
by the CL450 when the IJONE pin is asserted by the host and 
CMEM is not full, as described in Section 4.5, CMEM Write 
Timing. 



(internal) 

15 

Res 

Ox82 

13 12 8 7 4 3 o 
CDCtr CWCtr CRCtr 

CDCtr Difference Counter (bits 12:8) R 

This five-bit field contains the count of the current number of 
words in CMEM (from 0 to 16). CDCtr is incremented when a 
word is written to CMEM (from the host using programmed ac­
cess or DMA) and decremented when a word is read from 
CMEM. 

CWCtr Write Counter (bits 7:4) R 

This four-bit field contains the CMEM write pointer. CWCtr is 
incremented when a word is written to CMEM from the host us­
ing programmed access or DMA. 

CRCtr Read Counter (bits 3:0) R 

This four-bit field contains the CMEM read pointer. CRCtr is 
incremented when a word is read from CMEM to the bitstream 
buffer in the CL4S0's local DRAM. 

8.3.2 Interrupt Control Registers 
The HOST_control, HOST_intvecr, and HOST_intvecw registers con­
trol the CL450's generation of external interrupts. The HOST_control 
register determines the interrupt mode and the state of the INT pin, and 
the other two registers provide access to the interrupt vector used when 
INTACK is asserted (LOW). 

The interrupt modes supported by the CL450 are: 

D Non-vectored interrupt 

D Vectored interrupt with no auto clear 

D Vectored interrupt with auto clear 

At device initialization, the host is responsible for ensuring that the Ale 
and VIE bits in the HOST _control register have the correct values for 
the desired operations (see Table 8-7) before the CL450 microapplica­
tion attempts to issue the first interrupt to the host. Subsequent writes to 
the register to reset Int must use a read-modify-write operation to pre­
serve the value of the other bits in the HOST_control register. 

Host Interface Registers 

Registers 8-11 



Host Interface Registers 

Note: Whether the CL450 produces interrupts to the host, 
and what events cause these interrupts, is controlled by the 
CL450 microapplication. See Chapter 12, Interrupts, for a 
description of the communications protocol between the host 
and the microapplication for selecting and servicing inter­
rupts. 

(normal) 

15 14 13 

I Ale I VIE I 

Table 8-7 

Ox90 

876 o 
Res Zeros I 1 I 

Ale Auto Interrupt Clear (bit 15) RIW 
When this bit is 1, the CL450 sets the lnt bit to 1, deactivating 
the interrupt request upon completion of the interrupt acknowl­
edge cycle (i.e., reception of a rising edge on the INTACK pin). 
If there are no transitions on the INTACK pin, or the VIE bit 
(mentioned next) is 0, the value of this bit has no effect on the 
operation of the CL450. 

VIE Vectored Interrupt Enable (bit 14) RIW 
When this bit is 1, the CL450 will respond to the interrupt ac­
knowledge signal, INTACK. If this bit is 0, the CL450 ignores 
all activity on the IN TACK pin and behaves as if INTACK were 
always inactive (HIGH). 

Interrupt Mode Values 

Interrupt Mode Ale VIE 

Non-vectored interrupt 0 0 

Vectored interrupt without auto clear 0 

Vectored interrupt with auto clear 

Interrupt Status (bit 7) RIW 
This bit controls the external interrupt signal INT. When lnt is 
0, the CL450 will assert INT, driving it LOW. When fur is 1, the 
CL450 does not drive INT, which will be pulled HIGH (inac­
tive) by an external pullup resistor. 

When auto clear is enabled (AIC is 1), Trii is set to 1 by the 
CL450 after the host acknowledges the interrupt by asserting 
INTACK. When auto clear is disabled (AIC is 0), the host pro­
cessor must explicitly write lnt by a read-modify-write opera­
tion. 
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(normal) 
(normal) 

15 

Res 

11 10 

IPIO 

8 7 

!Veet 

Read,Ox9C 
Write,Ox98 

o 

HOST _intvecr and HOST _intvecw allow the host to access the inter­
rupt vector and interrupt priority ID stored within the CL450. The host 
processor writes to HOST _intvecw and reads from HOST _intvecr. The 
information transferred is used only during the interrupt acknowledge 
cycle, which occurs when INTACK is asserted and VIE in HOST_con­
trol is 1. 

IPID Interrupt Priority ID (bits 10:8) 

During the interrupt acknowledge cycle, the CL450 compares 
bits A[3: 1] of the host address bus with this three-bit field. If 
they match, the CL450 outputs the interrupt vector contained in 
IVecton D[7:0]. IPID is forced to the value 0 by hardware reset. 
The host driver should set IPID to match the CL450's interrupt 
priority in the system hardware. IPID should be set once at ini­
tialization. 

IVec( Interrupt Vector (bits 7:0) 

The CL450 outputs the value in this eight-bit field during the in­
terrupt acknowledge cycle if the interrupt priority ID, IPID, 
matches A[3: 1]. IVect is forced to the value OxF by a hardware 
reset. 

8.3.3 Command/Status Registers 
These registers-HOST_raddr, HOST_rdata, and HOST_newcmd-al­
low the host processor to load commands and arguments into the CL450 
and to read the status of the microapplication. (See Chapter 11 for infor­
mation about the CL450 macro commands.) 

(normal) 

15 

Ox88 

4 3 o 
Res HAddr 

HAddr Register Address (bits 3:0) RIW 
This four-bit field points to one of the 16 locations of HMEM 
register space. The HMEM location which is selected by this 

Host Interface Registers 

HOST _intvecr 
HOST _intvecw 

Registers 8-13 



Host Interface Registers 

HOST_newcmd 

(normal) 

15 

(normal) 

15 

field may be accessed by the host reading or writing the HOS­
T_rdata register. After a write operation takes place, HAddr is 
automatically incremented by one. For read operations, the host 
processor must write the address each time before reading 
HOST_rdata. The arrangement of information in HMEM (un­
der microapplication control) is shown in section 11.1, Writing 
Macro Commands. 

Ox8C 

o 
HData 

HData Host Data (bits 15:0) RIW 
This 16-bit field accesses the location in the register file current­
ly pointed to by HAddr in the HOST _raddr register. 

Ox56 

o 
Res I Cmdl 

Cmd New Command (bit 0) RIW 

The host processor sets Cmd to 1 after writing the opcode and 
arguments for a new command to HMEM. The internal CPU re­
sets Cmd to 0 after reading the opcode and arguments of the new 
command. The host processor must not write to the command 
locations in HMEM if Cmd is set to 1. 

Command Write Data Flow 

Figure 8-4 shows the general flow for a command write. The circled 
numbers in the figure refer to the steps below. The syntax of the com­
mand words and the arguments are described in Chapter 11, Macro 
Commands. 
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HOST_raddr 
Ox88 

Host Interface 

HMEM 

t t t 
HOST_rdata 

Ox8C 
HOST_newcmd 

Ox 56 

Internal CPU 

Figure 8-4 Command Write Data Flow 

The sequence for writing commands to the CL450 is as follows: 

1. The host processor reads the new-command bit, Cmd, in 
HOST_newcmd (address Ox56). If Cmd is 1, the CL450 is ac­
cessing the command locations in HMEM and the host proces­
sor should not access them. When Cmd is 0, the host processor 
can proceed with writing a new command. 

2. The host processor sets HOST_raddr (address Ox88) to the 
HMEM address of the first location used for storing commands. 

3. The host processor performs successive write operations to 
HOST _rdata (address Ox8C) to write the command word and 
the arguments (if any). 

4. After the command word and all arguments have been written, 
the host processor sets Cmd to 1. 

5. The CL450's CPU reads the contents of the command registers. 

6. The CL450's CPU clears Cmd to 0 to indicate that it has com­
pleted rendering the command and that the host processor can 
initiate another command write operation. 

Host Interface Registers 

Registers 8-15 



Host Interface Registers 

HOST_scr2 

8.3.4 System Clock Reference Registers 
These registers provide access to the CL450's internal system clock 
counter. The system clock counter is 33-bits wide (MPEG bitstreams 
use 33-bit clock values) and is used when synchronizing the decom­
pressed video with other data, in particular decompressed audio. 

Typically, the host processor extracts system clock values (SCRs or 
PTSs) from the bitstream and updates the system timer with these val­
ues through use of the AccessSCRO macro command. (See page 11-13 
for a description of how the AccessSCRO command is used to write or 
read the CL450's internal counter.) The CL450 then compares the pre­
sentation time stamps (PTSs) associated with frames in the bitstream 
with the system clock counter to decide whether to display, skip, or re­
display each frame. 

The system clock counter is typically clocked by a 90 kHz signal. This 
signal can be derived either from GCLK or from an external reference 
on the SCLK input signal. The source of the 90 kHz signal is pro­
grammed by the CS bit in the HOST _scr2 register. Regardless of the 
source, the input signal is divided down by the divisor (Div) pro­
grammed in HOST_scr2 to create the 90 kHz signal. 

Note: The host must not access these registers while the mi­
croapplication is executing (to prevent access collisions be­
tween the host and the microapplication). The 
microapplication provides facilities for the host to update the 
system clock counter butforces CS and Div to 1 and 444, re­
spectively. 

(internal) Ox96 

15 13 12 11 3 2 0 

Res I CS I Div I SysClkHigh I 

(internal) Ox94 

15 14 0 

I Res I SysClkMid 
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(internal) 

15 14 

I Res I 

Ox92 

o 
SysClkLow 

CS Clock Source (bit 12) w 
This bit determines the source of the signal which will be used 
to generate the 90 kHz clock. When CS is 1, the clock is derived 
from GCLK.When CS is 0, the 90 kHz signal is derived from an 
external reference connected to the input signal SCLK. 

Div System Clock Divisor (bits 11:3) RIW 

This nine-bit field contains the divisor used to derive the 90 kHz 
input for the system clock counter from the source selected by 
CS. For example, to derive the system clock from a 40.000 MHz 
GCLK, the value of Div is given by 

( 40.000 x 10
6

\ 
Div = inti ) = 444 

\ 90 x 10
3 

When a 90 kHz signal is applied to SCLK and CS is set to 0, Div 
should be 1 (divide by 1). 

Note: The divisor may only be written to a value other than 444 
if the microapplication is not executing; otherwise, the mi­
croapplication fixes the divisor at a value of 444. 

SysClkHigh 
SysClkMid 
SysClkLow 

System Clock - Upper 
System Clock - Middle 
System Clock - Lower 

RIW 
RIW 
RIW 

These three fields taken together comprise a 33-bit value for the 
CL450's internal system timer. 

When these registers are read, HOST_scrO must be read first. When the 
HOST _scrO register is read, the CL450 loads the higher-order 18 bits 
into HOST_scd and HOST_scr2. The system clock continues to count 
while the registers are being read. 

These registers should be written in order starting with HOST_scr2. The 
internal timer is loaded with the new value when the last register is writ­
ten. When the internal timer counts past its maximum value of 233_1, 
the timer rolls over to O. 

Host Interface Registers 

HOST_scrO 
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Internal CPU Registers 

8.4 
Internal CPU 

Registers 

This next section describes the registers that allow application programs 
to communicate with the CL450's internal CPU. Figure 8-5 shows the 
registers in the CPU. 

IMEM 
(512 X 32) 

32 

24 

TMEM 
(128 X 24) 

Figure 8-5 

32 

16 

Internal CPU 
Core 

Internal CPU Registers 

8.4.1 CPU Execution Registers 

16 

Internal 
Bus 

These registers are used to enable the CPU and to monitor the execution 
of the internal microapplication. 

Note: The bits in the CPU_int and CPU_intenb registers and 
the IE bit in the CPU -pc register control interrupts from 
CL450 on-chip logic to the CL450 CPU and are unrelated to 
the interrupts which the CL450 issues to the host. 
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(normal) 

15 

Ox20 

o 
Res I CEn I 

CEn CPU Run Enable (bit 0) RIW 
When the host processor sets this bit to 1, the internal CPU is 
enabled and begins executing instructions. During a software or 
hardware reset, the CL450 clears CEn to 0, halting the CL450's 
CPU. 

(initialization) 

15 10 9 8 

Ox22 

o 
Res IE PC 

(diagnostic) 

15 

IE Interrupt Enable (bit 9) RIW 

When IE is 1, the internal CPU interrupts are enabled. When IE 
is 0, the internal CPU interrupts are disabled. Once the CL450 
is initialized and the microapplication is started, the microappli­
cation controls this bit. (Note that interrupts to the CL450's 
CPU are not related to the interrupts that the microapplication 
issues to the host.) 

PC Program Counter (bits 8:0) RIW 
PC is a nine-bit field that holds the current contents of the pro­
gram counter used by the internal CPU. When a new value is 
written to PC, the internal CPU executes the instruction at that 
address at the next instruction cycle. 

Ox54 

5 4 3 2 1 0 

Res Res I vss I Res I 

NCS New Command Interrupt Status (bit 4) R 

The internal CPU sets NCS to 1 to indicate that the new com­
mand interrupt is active. NCS is cleared to 0 when the interrupt 
service routine is completed. 

VSS VSYNC Interrupt Status (bit 1) RIW 
The CL450 sets VSS to 1 on the rising edge of VSYNC. This ac­
tion interrupts the internal CPU, which executes an interrupt 
service routine that clears VSS. 

Internal CPU Registers 

CPU_control 

CPU_int 
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Internal CPU Registers 

CPU_intenh 

CD 

-1 
CPU_control 

Ox20 

(diagnostic) 

15 

Ox26 
5 4 3 2 1 0 

Res I NeE I Res I VSE I Res I 

NeE New Command Interrupt Enable (4) RlW 

The microapplication sets NeE to 1 to enable the new command 
interrupt. 

VSE VSYNC Interrupt Enable (bit 1) RlW 
The microapplication sets VSE to 1 to enable the vertical sync 
interrupt. 

8.4.2 IMEM Access Registers 
The IMEM access registers, CPU_iaddr and CPU_imem, provide a 
mechanism by which the host processor can write 32-bit microapplica­
tion words into the internal instruction memory (IMEM) to initialize the 
CL450. IMEM can hold up to 512 32-bit microapplication words. The 
procedure for writing to IMEM is shown in Figure 8-6. The circled 
numbers refer to the steps that follow. 

o Host Interface 

1 IMEM 

CPUjaddr 
Ox3E 

L 
I 

Figure 8-6 IMEM Write Data Flow 

CD 

1 
CPUjmem 

Ox42 
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The sequence of events for writing to the IMEM is: 

1. Ensure that the CPU enable bit, CEn, is O. 

2. The host processor loads the IMEM address to be written into 
CPU_iaddr bits 9: 1. Note that this requires the address to be 
shifted left one bit (multiplied by 2) before the write. 

3. The host processor writes successive pairs of 16-bit words to 
the CPU _imem register. (Each pair of words makes up a single 
32-bit instruction.) The CL450 automatically increments 
CPU_iaddr with every other write to CPU_imem. 

(initialization) 

15 

Res 

WAdd 

10 9 

WAdd 

Write Address (bits 9:1) 

Ox3E 

o 
I Res I 

RIW 
This nine-bit field contains the address in the 1M EM to which 
the write operation is to be performed. WAdd is automatically 
post-incremented by the CL450 when 32-bit data is written to 
CPU_imem (two 16-bit writes). 

(initialization) 

15 

WData 

WData 

Write Data (bits 15:0) 

Ox42 

o 

W 

The host processor writes the IMEM data to this 16-bit field. 
The data written to WData is transferred internally to the IMEM 
address pointed to by CPU _iaddr. 

Note: Writes to this register must be done in pairs, with the first 
word written containing the most significant 16 bits of each in­
struction. If writes are not performed in pairs, the auto-incre­
ment feature of the CPU _iaddr register and the contents of 
IMEM will be left in an unknown state. 

Internal CPU Registers 

CPU_iaddr 

CPU_imem 
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DRAM Interface Register 

CPU_taddr 

CPU_tmem 

8.5 
DRAM Interface 

Register 

8.4.3 TMEM Access Registers 
These two registers, CPU_taddr and CPU_tmem, provide a mechanism 
by which the host processor can access the CL450's "temporary" mem­
ory (TMEM) that is normally used only by the internal CPU. The host 
processor only accesses these registers for diagnostic purposes. 

To avoid interfering with the normal operation of the microapplication, 
consult with a C-Cube Microsystems technical support specialist before 
using these registers . 

(diagnostic) 

15 

(diagnostic) 

15 

Ox38 

7 6 o 
Res TAddr 

TAddr TMEM Address (bits 6:0) R/W 

This seven-bit field contains the address in TMEM for read and 
write operations. After a read or write operation is completed, 
the value of TAddr is incremented by one. 

Ox46 

o 
TData 

TData TMEM Data (bits 15:0) RIW 

This 16-bit field is used to read data from and write data to 
TMEM. 

This section describes the register used by application programs to set 
the refresh time for the DRAM controller. Figure 8-7 shows the DRAM 
interface. 

Internal 
Bus 

Figure 8-7 

DRAM Controller 
Module 

DRAM Interface Register 

8-22 C-Cube Microsystems 



(normal) 

15 

Res 

OxAC 

12 11 o 
RefCnt 

RelCnt Refresh Clock Count (bits 11:0) w 
This 12-bit field sets the number of GCLK periods between 
DRAM refresh cycles. The CL450 refreshes a single page at a 
time rather than refreshing every page of DRAM in a single op­
eration. RefCnt should be set to a value that allows the CL450 
to refresh all of the pages (typically 512) within the refresh time 
required by the DRAMs in use (typically 8ms). 

RefCnt should only be written once after power-up. The value is 
calculated from the formula 

( 
(RP - 512 x GCLK) / (DR + 1)) 

RefCnt = floor 
GCLK 

where RP is the DRAM refresh period (tREP), GCLK is the 
GCLK period, and DR is the number of rows in each DRAM. 

In this formula, "512 x GCLK" represents the maximum time 
that the CL450 DRAM controller stays in page mode. DRAM 
refresh cycles do not interrupt page mode cycles, so the refresh 
period must be shortened to compensate. 

"DR + 1" represents the number of refresh cycles that must be 
done in a refresh period because the DRAM controller can delay 
one refresh request if other requests are pending. When there 
are two banks of local DRAM, both banks are refreshed at the 
same time. 

For a typical system with a local DRAM of 512 rows with a re­
fresh period of 8ms and a GLCK period of 25ns, the value of 
RefCnt should be 622. 

This section describes the registers in the video interface module. Fig­
ure 8-8 shows the internal structure of the video interface module. The 
registers shown in lightly shaded boxes are addressed directly by the 
host processor, while the registers shown in darker shaded boxes are ad­
dressed indirectly through the VID _control register. 

Video Interface Registers 

8.6 
Video Interface 
Registers 
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Video Interface Registers 

CL450 
Internal Bus 

Border 
Insert 

Figure 8-8 

liming Logic 

VMEM 

Interpolation and 
Color Conversion 

VCLK Synchronizer 

Output Latch 

Video Interface Registers 

B.6.1 Direct-access Video Registers 

VSYNC 

GCLK 

VCLK 

vat 
1-----. PD[23:0j 

These registers are directly accessed using a register read or register 
write operation. 
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(initialization) 

15 6 5 

OxEC 

o 

Table 8-8 

Res VRID I Res I 

VRID Video Register ID (bits 4:0) RIW 
This five-bit field points to one of the indirect video registers. 
To access one of the indirect video registers, the host processor 
loads the video register ID into VRID, then performs a read from 
or a write to the direct register VID_regdata. The video register 
IDs are listed in numerical order in Table 8-8. VRIDs not listed 
are reserved and should not be used. 

Video Register IDs 

VRIO Video Register VRIO Video Register 

a VID_sela 9 VID_selbor 

VID_selb A VID_seIR 

7 VID_selmode B VID_seIGB 

8 VID_selactive C VID_selaux 

(initialization) 

15 

OxEE 

o 

(internal) 

15 

VRData 

VRData Video Register Data (bits 15:0) w 
The host processor uses this 16-bit field to read from and write 
to the indirect video register pointed to by VRID in VID_con­
trol. 

OxOA 

o 
ChromaData 

ChromaData Chroma Data (bits 15:0) w 
Diagnostic programs may use this 16-bit field to write chromi­
nance (CbCr) data to the internal video FIFO (VMEM). 

Video Interface Registers 

VID _control 

VID _regdata 
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Video Interface Registers 

V1D-y 

VID_sela 

VID_selb 

(internal) 

15 

OxOO 

o 
YData 

YData Y Data (bits 15:0) w 

Diagnostic programs may use this 16-bit field to write lumi­
nance (Y) data to the internal video FIFO (VMEM). 

8.6.2 Indirect-access Video Registers 
These registers are accessed by first writing the appropriate video reg­
ister ID (VRID) to the VID_control register, then performing the desired 
operation by reading from or writing to VID _regdata. Application pro­
grams should only access these registers when the CL450's CPU is dis­
abled to avoid interfering with the video display. 

(internal) 

15 

(internal) 

15 

VRID = OxO [Indirect] 

8 7 o 
KO Kl 

VRID = Ox! [Indirect] 

8 7 o 
K2 K3 

K3- KO Conversion Coefficients W 

These four 8-bit fields set the coefficients for the YCbCr-to­
RGB conversion performed by the internal color-space convert­
er. The equations for the color-space conversion are: 

Red = Y+DxCr 

Blue = Y + B x Cb 

Green = Y + A x Cb + C x Cr 

where A, B, C, and Dare IO-bit two's-complement coefficients 
whose binary representations are given in Figure 8-9 (note the 
location of the binary point). 
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sign bit 

Figure 8-9 

(internal) 

15 

A I 1 I 1 I KO 

B I 0 1 I Kl 

C I 1 1 I K2 

D ~I _o~_1~I~ _________ K_3 ________ ~ 

~ Lbinary point 

Binary Representations of Conversion Coefficients 

To set the CL450 for CCIR 601 chromaticity as specified in the 
MPEG standard, the values of the coefficients should be set as 
shown below: 

RGB 

KO=OxA8 
Kl = OxC6 
K2 = Ox49 
K3 = Ox67 

VRID = Ox7 [Indirect] 

o 
Res I RGB I 

RGB Mode Select (bit 0) w 
When this bit is 1, the CL450 operates in RGB mode. When this 
bit is 0, the CL450 operates in YCbCr mode. 

Video Interface Registers 

VID _selmode 
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Video Interface Registers 

VID _selactive (internal) 

15 

Res 

VID_selbor (internal) 

15 

VRID = Ox8 [Indirect] 

11 10 4 3 o 
VWID OxF 

VWID Width of active region (bits 10:4) W 

VWID determines the width of the active region. The width in 
pixels of the active region is set to the following value after hor­
izontal interpolation (i.e., in CCIR 601 resolution): 

}vidth = 8 x VWID + 1 

VRID = Ox9 [Indirect] 

10 9 o 
Res BarLett 

VID_seIR (internal) 

15 
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BorLeft Left Border Size (bits 9:0) W 

This la-bit field contains the number of border pixels output on 
each line from the rising (inactive) edge of HSYNC to the first 
pixel of the active window. The number of left border pixels 
must be greater than or equal to 10 to ensure correct operation. 

VRID = OxA [Indirect] 

8 7 o 
Res BorRd 

BorRd Border, Red Component (bits 7:0) W 

This eight-bit field sets the red component of the border (in 
RGB operation) and the Cr component (in YCbCr operation). 



(internal) 

15 

VRID = OxB [Indirect] 

8 7 o 
BorGrn BorBI 

BorGrn Border, Green Component (bits 15:8) W 

This eight-bit field sets the green component of the border (in 
RGB operation) and the Y component (in YCbCr operation). 

BorBI Border, Blue Component (bits 7:0) W 

This eight-bit field sets the blue component of the border (in 
RGB operation) and the Cb component (in YCbCr operation). 

(initialization) 

15 8 7 

VRID = OxC [Indirect] 

o 
Res PixHData 

PixHData Pixel Data High Byte (bits 7:0) W 

When the CL450 is set for YCbCr operation, the upper eight 
bits of the output pixel data bus, PD [23: 16] , do not contain pixel 
data. In this case, this eight-bit value is output on PD[23:16]. 

Video Interface Registers 
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9 
Microapplication 

Overview 

The CL450 performs its higher-level functions by executing a microap­
plication on an internal CPU. The microapplication is supplied by C­
Cube Microsystems with the hardware and is considered an integral part 
of the product. 

The microapplication must be loaded into the CL450 by a software driv­
er; it needs to be located in specific sections of the local DRAM and on­
chip IMEM. Additional information on loading and executing this code 
is contained on the distribution disk that is provided with the CL450. 

The operation of the CL450 microapplication and the host processor 
can be described by a set of "process configurations" - each a named 
group of software processes, some executing within the host processor 
and some executing within the CL450's microapplication. Five differ­
ent process configurations occur at different times in a CL450 system. 
These process configurations are shown in Figure 9-1 and Figure 9-2. 

9.1 
Process 
Configurations 



Process Configurations 

Microcode-load Configuration (See Chapter 10.) Initialization Configuration (See Chapter 10.) 

Host 

Pause Configuration 

Figure 9-1 
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Idle Configuration 

Host 
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face 
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Registers 
CL450 
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(See Figure 9-2.) 
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Within each process configuration shown in Figure 9-1 and Figure 9-2, 
shaded ovals indicate individual but concurrently-running software pro­
cesses executed by the host or the CL450, rectangles indicate hardware 
resources, and arrows indicate logical data transfers. (Physical buses 
used for data transfers are not indicated.) The large arrows pointing to 
separate process configurations in Figure 9-1 indicate possible microap­
plication progress over time in a CL450-based system. 

A total of six separate software processes are shown (shaded ovals) in 
the five process configurations of Figure 9-1 and Figure 9-2. They are 
Microcode-load, Initialization, Command, Bitstream Input, Decode, 
and Display. The first two of these processes are described in Chapter 
10 (Initialization). The remainder of these processes execute simulta­
neously when the system is in the Decoding process configuration 
shown in Figure 9-2 and are described in more detail following this fig­
ure. 

Host 

Figure 9-2 

Host In­
terface 

CL450 

DRAM 
Variables 

Local DRAM 

Command 
FIFO 

CL450 Decoding Process Configuration 

Bitstream 
Buffers 

Process Configurations 

DRAM Interface 

Picture 
Buffers 
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9.1.1 Command Process 
The primary method by which the microapplication executing on the 
CL450's CPU receives direction from the host software is by means of 
macro commands, which are function codes and parameter values writ­
ten into HMEM by the host (see Table 9-1, Macro Command Summa­
ry). Once the function code and parameters are written, the 
microapplication takes these values and either immediately executes the 
operation corresponding to the function code or stores the complete 
macro command into the Command FIFO (see Figure 11-3) for later ex­
ecution. 

Table 9-1 Macro Command Summary 

Category Priority Effect on Name Description Function Page 
Command Code (Ox) 
State 

SetBlankO Blanks/unblanks output window 030f 11-29 

SetBorderO Sets output window location 0407 11-30 

SetColorModeO Enables/disables color-space converter 0111 11-34 

Set-type Low No Setlnterru ptMask() Enables/disables interrupts to host 0104 11-36 

SetThresholdO Specifies bitstream buffer emptiness 0103 11-38 

SetVideoFormatO Configures output resolution and timing 0105 11-40 

SetWindowO Sets output window size and contents 0406 11-42 

DisplayStiliO Decodes/displays single stili picture 1 OOOc 11-14 

PauseO Keeps last picture on display OOOe 11-25 

Play-type Low Yes PlayO Decodes and displays at normal rate DODd 11-26 

ScanO Decodes and displays next single I-picture 000 a 11-28 

SingleStepO Decodes and stores next single picture OOOb 11-45 

SlowMotionO Decodes and displays at slower rate 0109 11-46 

AccessSCRO Reads or writes internal SCR counter 8312 11-12 

FlushBitstreamO Discards contents of bitstream buffer 8102 11-16 

Control High2 No3 I nquireBufferFullnessO Measures data in bitstream buffer 8001 11-19 

NewPacket() Manages bitstream data 0408 11-20 

ResetO Reinitializes CL450 and its microcode 8000 11-27 

1. Allows display of a still image with double vertical resolution, but requires use of a specific subset ofthe MPEG syntax. 
2. Except for NewPacketO 
3. Except for ResetO 

9-4 C-Cube Microsystems 

Note: !fa macro command is issued and HMEM[O] contains 
a value other than one of the values listed in the Function 
Code column above, indeterminate behavior will occur. 



9.1.2 Bitstream Transfer Process 
MPEG coded bitstream data is transferred by the host system to the 
CL450 for decoding. The CL450 accepts MPEG elementary video 
streams only. System streams and elementary audio streams must be 
handled by the host prior to data arrival at the CL450. 

Data can be transferred from the host to the CL450 using either (l) di­
rect host writes to the input of the CL450's CMEM or (2) DMA. In both 
cases, the mode is selected by the host writing to the CMEM_dmactrl 
register, and the behavior of the CL450 (macro commands, interrupts, 
etc.) is the same for either method chosen. 

Once inside the CL450, data is buffered in CMEM and then transferred 
as a burst to the 47,104-byte bitstream buffer located in the local 
DRAM. (The bitstream buffer is called the rate buffer in the MPEG 
standard.) 

If the bitstream buffer is full, the CL450 does not transfer data from 
CMEM, so the host must ensure that the CMEM does not overflow. For 
direct host transfers (non-DMA), the host processor must monitor the 
fullness of CMEM. For DMA transfers, the DMA controller automati­
cally holds off transfers when CMEM is full. 

In addition to sending video information to the CL450, the host proces­
sor also extracts system clock references (SCRs) and presentation time 
stamps (PTSs) from the system layer of the MPEG bitstream. It uses 
these to provide the CL450 with the information required to synchro­
nize the video and audio decoding as described in Section 9.2. 

DMA Operation 

When DMA is used, the CL450 acts as a DMA slave and, once correctly 
enabled, asserts the DMAREQ pin any time it can accept another 16-bit 
DMA write. In this mode, the host does not have to monitor the fullness 
of CMEM or the bitstream buffer portion of DRAM unless the host 
needs this information to configure its DMA controller. The hardware 
protocol and timing used for DMA transfers is given in Chapter 4. 

Programmed Access 

During programmed access, the host writes 16-bit words of coded data 
into CMEM by addressing any location in a 256K-word area of the 

Process Configurations 
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#define BLOCK 

CL450's address space. These write operations put coded data into 
CMEM, a temporary holding FIFO with sixteen 16-bit locations be­
tween the host and the DRAM-resident bitstream buffer. 

When directly writing CMEM, the host must not only configure 
CMEM_dmactrl correctly during initialization but also continually poll 
CMEM to prevent overflow, since a high enough instantaneous transfer 
rate can cause CMEM to fill up even if the bitstream buffer is not full. 

Note: There is no data rate for which the host can avoid poll­
ing CMEMfullness; if the host does not ensure that CMEM 
can accept data before the data is written, CMEM overflow 
and data corruption will result. Because of this, the host 
must poll the fullness of CMEM while performing a data 
transfer. 

Pseudocode for a typical transfer loop is shown in Figure 9-3. Note that 
only the coded data transfer operation is shown. Other non-transfer op­
erations (not shown) need to be performed for most applications. 

< size of burst> /* typically 3/4 empty */ 

void SendDataToCL45 0 (void) 

int c; 

initialize CMEM_dmactrl; 

while (still more data to transfer) { 

get CMEM fullness; 

if (room in CMEM for BLOCK words) 

for (c=O;c < BLOCK; c++) 

write word of data to CMEM; 

/* see section 3.1 for the 

* proper timing of this write 

* with respect to other CL450 

* initialization */ 

/* see below */ 

Figure 9-3 Programmed Transfer of Coded Data to the CL450 
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The fullness of CMEM may be determined by one of the following two 
methods: 

o Using the CFLEVEL pin: This pin can be programmed by the 
CMEM_dmactrl register to go active at anyone of four different 
CMEM fullness levels. This pin can either be polled by the host 
(if it is accessible through a host I/O port) or wired directly to a de­
vice which is providing data to the CL450 instead of the host pro­
cesor. The "entirely empty" selection in CMEM_dmactrl (bit 1) 
should not be used because of the existence of operating modes in 
which CMEM never becomes entirely empty. 

o Performing a register read of CMEM_dmactrl: Note that while 
CMEM_status contains information similar to CMEM_dmactrl, 
CMEM_status is an internal register and should therefore not be 
used to determine CMEM fullness while the micro application is 
running. 

9.1.3 Decode Process 
The decode process is the process by which the CL450 decompresses 
the input bitstream using the MPEG decoding algorithm and places the 
decompressed frames in the picture buffers in the CL450's local 
DRAM. 

The decoding process reconstructs spatial frequency coefficients from 
the variable-length Huffman codes, dequantizes them, and applies the 
inverse discrete-cosine transform. It uses the motion vectors in the bit­
stream to select a predictor from the previously decompressed frames 
stored in the local DRAM. 

The decoding process pauses if the bitstream buffer is empty or if no 
space is available for writing the decoded frame. Such a condition could 
occur if the display of the previous frame was not completed before the 
decoding process was ready to begin writing to its frame buffer. 

9.1.4 Display Process 
The display process in the CL450's microapplication handles the trans­
fer of decoded pictures from the local DRAM picture buffers through 
the video bus from where data is passed to the display monitor. The 
CL450 supports clipping and positioning of the decoded video data any­
where on the display. 

Process Configurations 
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Synchronization 

9.2 
Synchronization 

15 

9.3 
Interrupts 

Res 

Images coded at 24, 25 or 30 Hz can be displayed at field rates of 50 or 
60Hz. 

1- and P-pictures are fully buffered before being displayed. B-pictures 
are written to and displayed from the frame buffer as they are being de­
coded, provided the presentation time stamp requirements are met as 
described in Chapter 13, Audio/Video Synchronization. 

The CL450 can synchronize its decoding operations with an external 
time reference such as an audio decoder. Synchronization is performed 
using the MPEG constructs of system clock references (SCRs) and pre­
sentation time stamps (PTSs}-both measured in terms of a 90-kHz 
time reference. When performing synchronization, the CL450 com­
pares the PTS value associated with each picture-either supplied by 
the host via the NewPacketO macro command or synthesized by the mi­
croapplication-with the current value of the CL450's internal SCR 
counter. 

If the presentation time stamp differs from the internal clock by more 
than the allowed jitter tolerance of 3000 clock periods (1I30th of a sec­
ond), the display rate is adjusted as follows: 

o If the presentation time stamp for a B-picture is less than the SCR 
by more than 3000, the picture is skipped. 

o If the presentation time stamp for a picture is greater than the SCR 
by more than 3000, the picture is repeatedly displayed. 

The CL450 provides an interrupt output pin (INT) to the host processor 
which allows the microapplication to alert the host when certain events 
occur. The host determines the hardware interrupt protocol by writing 
the HOST_control register. The host then selects the interrupt events of 
which it wishes to be informed by using the SetInterruptMaskO macro 
command (see page 11-36) to assign mask bits as shown in Figure 9-4. 

12 11 10 9 8 7 6 5 4 3 2 1 0 

I SCN I RDY I SEQ-DI UND I Res I PIC-D I END-DIEND-vl SEQ-Vi GOP I PIC-V I ERR I 

Figure 9-4 Mask Bit Allocation 
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There are Illogical interrupts which can be produced by the CL450 mi-
croapplication. Each belongs to one of three categories (based on when 
they are reported to the host) and is referenced by name and the event 
which causes it in Table 9-2. The interrupts and their categories are de-
scribed in Chapter 12, Interrupts. 

Table 9-2 CL450 Interrupt Summary 

Category Interrupt Event Mask Page 
Name Bit 

ENO-O sequence_end_code found 5 12-15 

ERR Bitstream data error 0 12-17 

Decode-time PIC-O New picture decoded 6 12-20 

SEQ-D sequence_header_code found 9 12-25 

SCN Picture decode complete in ScanO 11 12-24 

UNO Bitstream buffer underflow error 8 12-27 

ENO-V Last picture display before s equen- 4 12-16 
ce_end_code 

VSYNC GOP First I-picture display after group_ - 2 12-19 
start_code 

PIC-V New picture display 12-21 

SEQ-V First I-picture display after se- 3 12-26 
quence_header_code 

Display-time ROY Ready for data 10 12-22 

Note: The CIA50's internal CPU can also receive interrupts 
from on-chip sources. The host has no control over these in­
terrupts and they should not be confused with the host inter­
rupts generated by the CIA50. 

Interrupts 
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10 
Initialization 

The host processor executes an initialization sequence for the CL450. 
During the initialization sequence, the host: 

1. Loads the microapplication into the CL450 DRAM. 

2. Loads bootstrap code into the CL450's instruction memory 
(IMEM). 

3. Sets the program counter in the CPU _pc register to point to the 
starting address of the bootstrap code. 

4. Enables the CL450's CPU by setting the run enable bit, CEn 
(CPU_control [0]) , to 1. 

Once enabled, the CL450's CPU bootstraps itself by accessing internal 
instruction memory (IMEM) and executing code that was written by the 
host processor; it acts essentially as a microcontroller with on-chip pe­
ripherals used to aid MPEG decoding. 



Registers 

10.1 
Registers 

Note: Enabling the CPU is different than sending the Play() 
command. The enable bit, CEn, turns on the CL450's inter­
nal processor, while the Play() command is a specific macro 
command that runs a portion of code in the DRAM to read 
and decompress an MPEG bitstream. The Play ( ) command 
cannot be executed before the microapplication is running; 
the microapplication, once enabled, will not decode bit­
streams until the Play() command is executed. Other macro 
commands include those that change the border color and 
display size, and all are described in Chapter 11. 

When the CL450's micro application is first started, the contents of sev­
eral registers are written with default parameters. Similarly, when the 
ResetO macro command is issued, a subset of these registers is re-ini­
tialized. Because of these automatic defaults, some registers cannot be 
effectively written before micro application initialization. 

10.1.1 Default Settings 
Table 10-1 summarizes the registers that are modified when microappli­
cation is loaded and when the ResetO command is executed (uninitial­
ized registers are not included). Default values are given in binary, with 
" 1" and "0" representing bits which are set and cleared, "-" representing 
bits which are unmodified, "?" representing bits which are given inde­
terminate but acceptable values, and "R" indicating RESERVED bits. 
The space between each group of four bits is for ease of reading only­
these groupings do not indicate register fields. 

Note: If the host performs read-modify-write operations on 
registers in Table 10-1, the host must ensure that RE­
SERVED bits are written with the values specified in Chapter 
8, Registers, regardless of the value read for these bits. 
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Table 10-1 Automatic Register Defaults 

Register Name Use Initialization 1 ResetO 

HOST _newcmd Normal RRRR RRRR RRRR RRRO RRRR RRRR RRRR RRRO 

CMEM_control Normal RRRR RRRR R--R RR10 RRRR RRRR R--R RR10 

HOST_control Normal OORR RRRR 1RRR RRR1 OORR RRRR 1RRR RRRI 

VID_control Normal RRRR RRRR RR?? ???R No effect 

VID_sela Normal 1010 1000 1100 0110 No effect 

VID_selb Normal 0100 1001 0110 0111 No effect 

VID_selmode Internal RRRR RRRR RRRR RRR1 No effect 

VI ° _selactive Internal RRRR R101 0111 ???? No effect 

VID_selbor Internal RRRR RROO 0011 1100 No effect 

VID_seIR Internal RRRR RRRR 0000 0000 No effect 

VID_seIGB Internal 0000 0000 0000 0000 No effect 

HOST_scr2 Internal RRRI 1101 1110 0000 No effect 

HOST_scr1 Internal ROOO 0000 0000 0000 No effect 

HOST_scrO Internal ROOO 0000 0000 0000 No effect 

1. "R" indicates RESERVED bits, "-" indicates bits which are unmodified by the microapplication, "?" in-
dicates bits written with variable values, and "1" and "0" indicate fixed values written by the microap-
plication. 

In addition to initialization of the above registers, the following opera­
tions are performed on initialization or ResetO: 

o All 16 locations of HMEM are cleared to o. 
o CMEM is reset via the eRst bit of CMEM_control. 

o MPEG default parameters are restored. 

10.1.2 Loading Sequence 
In general, not all CL450 registers will be used by the host in all appli­
cations. Some of the registers can be accessed by the host at any time, 
while some may only be accessed when microapplication is not execut­
ing. In addition, there are some registers which the microapplication au­
tomatically writes with default values upon microapplication startup 
(shown in Table 10-1), negating any writes by the host which occurred 
previously. Because of these factors, the sequence with which registers 
are written is critical to the proper operation of the CL450. 

Registers 
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Specifically, the following four registers are the only registers that may 
be accessed at any time by the CPU without any interference from the 
microapplication: 

o CMEM_dmactrl 

o HOST _intvecw 

o HOST _intvecr 

o DRAM_refcnt 

In general, the host can access most Normal registers at any time (al­
though there may be undesirable side effects if an Internal register is ac­
cessed). However, there are three classes of exceptions: 

o Indirect video registers (see Table 8-4 on page 8-6): These regis­
ters can only be accessed by the host after a selection has been 
made using VID_control. In addition, the CL450 microapplication 
also uses VID_control to access these registers. Therefore, host 
access (read or write) to an indirect video register is prohibited 
while micro application is executing, and any access attempts will 
produce indeterminate results. 

o Registers for accessing HMEM (HOST_raddr and HOST_rdata): 
These registers are reserved for the exclusive use of the host. Be­
cause the CL450 microapplication does not use these registers, the 
host can use them at any time, making HMEM unlike the other on­
chip memories. However, while HMEM may be read at any time, 
HMEM writes performed while the microapplication is executing 
must occur in accordance with the protocols given in Section 11.2 
,Processing Macro Commands; and Section 12.2, Interrupt Status 
Location. 

o Registers for accessing other on-chip memories (IMEM, TMEM, 
etc.): These registers are shared by the CL450 and by the host. For 
this reason, indeterminate results will occur if on-chip memories 
other than HMEM are accessed while the microapplication is ex­
ecuting. 

The following text outlines the sequence in which registers should be 
written by the host relative to CL450 start-up if they are to be written at 
all: 

1. The VID _selaux register must be written prior to starting the ex­
ecution of the microapplication because it will be inaccessible 
afterwards. 
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2. The CMEM_control register may be written prior to starting the 
execution of the microapplication, although its value will be 
modified by microapplication initialization. 

3. The microapplication should be loaded and started by following 
the procedure given in Section 10.2.2. The following registers 
should be used only as part of the microapplication loading pro­
cess: 

o CPU_control 

o CPU_pc 

o CPU _iaddr, CPU _imem 

4. Once the microapplication has started execution, the following 
registers may be used by the host: 

o HOST_newcmd, as specified by Section 11.1, Writing Mac-
ro Commands 

o CMEM_control 

o HOST_raddr, HOST_rdata 

o HOST_control, as specified by Section 12.3, Handshaking 
Protocol 

5. Finally, several macro commands can be used to implicitly load 
values into registers. These commands and their corresponding 
registers are listed in Table 10-2 below. 

Table 10-2 Macro Commands for Loading Registers 

Macro Command Name(s) 

SetColorModeO 

SetBorderO, SetWindowO 

SetBorderO 

Register(s) Loaded 

VID_selmode 

VID_selactive, VID_selbor1 

VID_seIR, VID_seIGB 

1.Note that these registers may also be modified in response to new MPEG se­
quence-layer information. See Section 10.2.1, Default Settings; Section 14.2.2, Writ­
ing DRAM-resident Variables; and the descriptions of the SetBorderO and 
SetWindowO macro commands contained in Chapter 11. 

The CL450 microapplication is logically contained in a series of "seg­
ments," each of which is a block of numeric constants (constant data or 
microapplication) that the host must load into either the internal IMEM 
(instruction memory) or the external DRAM. 

Microapplication 

10.2 
Microapplication 
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All the segments of the CL450 microapplication are distributed in a sin­
gle microcode executable file. (The format of this file is defined in Ap­
pendix B.) In addition to micro application segments, the executable file 
also contains an information header which includes the initial program 
counter value for the CL450's CPU. 

10.2.1 Default Settings 
All of the programmable parameters used by the CL450 microapplica­
tion have defaults. This section lists these defaults, their functional re­
lationship and the event(s) which causes the CL450 to change from the 
default setting or return to it. 

Table 10-3 lists the macro commands which can be used to change set­
tings within the CL450 and the default values for these settings. Note 
that these defaults are set on microapplication initialization only and are 
not restored by execution of the ResetO macro command. 

Table 10-3 Macro Command Defaults 

Macro Com- Default Setting 
mand Name 

SetThresholdO threshold= 4096 bytes 

SetlnterruptMaskO mask= 0; no interrupts enabled 

SetVideoFormatO format= 4 (NTSC): 

SetWindowO 

SetBorderO 

SetBlankO 

SetColorModeO 

D 60Hz nominal VSYNC frequency 

D 30Hz nominal picture rate 

D 352 pixel (SIF) horizontal active display 

D 240 pixel (SIF) vertical active display 

xOffset = yOffset = 0 

width & height from sequence-layer parameters (horizontal_size 
and vertical_size) 

leftBorder= topBorder=auto-center based on sequence layer parameters 

border color is "sub-black" (R=G=B=Y=O) 

state= 0; video display not blanked 

mode= 1 (RGB output) 
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In addition to the default parameters which can be specified by macro 
commands, the CL450 contains default values for MPEG bitstream pa­
rameters as shown in Table 10-4 and Table 10-5. The decoder is restored 
to these defaults following microapplication initialization, the execu­
tion of the ResetO command, and detection of an MPEG sequen­
ce_end_code in the bitstream. These default values are used for 
decoding unless replaced by the host (see Section 14.2.2, Writing 
DRAM-resident Variables) or decoded from the bitstream. 

In general, the default values are not used for decoding if the decode op­
eration starts at the beginning of a legal MPEG bitstream. However, 
when performing random-access within a bitstream, the defaults are 
used if no other values are provided. Note that only parameters which 
are required for decoding have default values. 

Table 10-4 MPEG Decoding Defaults, Sequence Layer 

Bitstream Parameter 

horizontal_size 

vertical_size 

picture_rate 

loadjntra_quantizer_matrix 

I oad_nonj ntra_quantizer _matrix 

Default Setting 

352 pixels 

240 pixels 

4 (30Hz) 

o (use default from MPEG standard) 

o (use default from MPEG standard) 

Table 10-5 MPEG Decoding Defaults, GOP Layer 

Bitstream Parameter 

closed_gop 

broken_link 

Default Setting' 

o 

1. The CL450 makes no assumptions about whether the cur­
rent GOP follows the last GOP and waits for an I-picture be­
fore beginning to decode. 

Table 10-6 summarizes the bits in the CMEM_control, HOST_control 
and CMEM_dmactrl registers which control communication between 
the host and the CL450, plus their reset values, if any. For a complete 
list of all register bits which have default values, see Table 10-1. 

Note: Some of the register bits which control interaction with 
the host have no defaults. 

Microapplication 
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Table 10-6 Host/CL450 Interface Defaults 

Register Bit(s) Bit Default Description 
Name Name 

CMEM_control 5 BS unknown 1 Determines whether or not bytes are 
swapped when 16-bit words enter 
CMEM. 

CMEM_dmactrl 4:1 10Eto unknown These bits determine when the CL450 
40E will assert the CFLEVEL pin. 

0 DE unknown This bit (DMA Enable) is used to se-
lect whether bitstream data is provid-
ed to CMEM using DMA or 
programmed access (see Section 9.3, 
Bitstream Transfer Process). Note 
that this bit is cleared automatically if 
the ITITf\JE pin is asserted. 

HOST_control 15 Ale unknown Auto Interrupt Clear; determines 
whether bit 7 (Int) is set (00 pin inac-
tive) automatically when the fI\JTACR 
pin is asserted. 

14 VIE 0 Vectored Interrupt Enabled; deter-
mines if the current interrupt vector 
(written by the host through the HOS-
T jntvecw register) is driven onto the 
data bus when the Tf\JTACK pin is as-
serted. 

7 Int 0 00 pin inactive. 

1. The host should initialize these bits following hardware reset; they are unmodified by microap­
plication initialization or execution of the ResetO macro command. 

Finally, several of the DRAM-resident variables also have default val­
ues (see Chapter 14). Those variables which have defined defaults are 
listed in Table 10-7 below. DRAM-resident variables not listed in the ta­
ble do not have defaults. The DRAM-resident variables are restored to 
their defaults on both micro application initialization and ResetO. 

Table 10-7 DRAM-Resident Variable Defaults 

Group Name Value 

sequence group SEQ_SEM 0 

SEQ_CONTROL 0 

picture group PIC_SEM 0 
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10.2.2 Loading Sequence 
The microapplication loading sequence is as follows: 

1. Typically, microapplication loading starts with the host parsing 
the microcode executable file and writing the appropriate seg­
ments into DRAM. 

2. Some segments are also written to IMEM using the CPU_iaddr 
and CPU _imem registers. 

Note: The host must ensure that segment values are written to 
IMEM in an order such that the last value written goes to an 
IMEM address other than the initial program counter value. 
The segments in the executablejile are arranged such that, if the 
host writes IMEM locations in the same order the data appears 
in the jile, this restriction will always be met. 

3. Once both DRAM and IMEM have been completely loaded, the 
initial program counter value should be written to the CPU_pc 
register. 

Note: When the initial value is written to CPU -pc, the IE bit (bit 
9) must be O. This bit is the internal master interrupt enable for 
the CL450's CPU and is not related to interrupts from the 
CL450 to the host. 

4. After the CPU_pc register has been initialized, the host should 
write the value 1 to the CPU_control register to enable the 
CL450's CPU. 

After the on-chip CPU is enabled, the host must wait until the internal 
initialization is complete before issuing the first macro command. 

One way to determine if initialization is complete is to write a non-zero 
value to HMEM location 15 prior to enabling the CPU. Then the con­
tents of this HMEM location can be polled. Once this location becomes 
0, the CL450 has completed its internal initialization and is ready to ac­
cept macro commands. This method can also be used to determine when 
the execution of the ResetO macro command is complete (see ResetO 
on page 11-28). 

Microapplication 
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Microapplication 

10.2.3 Halting 
Microapplication execution may be halted from the host either by: 

o Resetting the CL450 

o Writing a 0 to the CPU_control register 

These two alternatives will produce different results on the display de­
pending on whether or not the CL450 was displaying a picture at the 
time the CPU was halted. 

If the CL450 is reset, then the last-specified border color will be dis­
played continually until the microapplication is reloaded and bitstream 
decoding is resumed. 

If the host writes a 0 to CPU_control, then the display depends on what 
the CL450 was doing when halted. If the output window was blanked 
or the CL450 was in vertical border time, the visual result will be the 
same as if the CL450 was reset. If CPU_control was cleared while the 
CL450 was displaying an active scan line, then that scan line will be re­
peatedly output (regardless of vertical timing) until the CL450 is reset 
or the microapplication re-loaded. 

Note: Once halted, it is not possible to resume microapplica­
tion execution without performing the entire microapplica­
tion loading sequence described above. 

When the microapplication is loaded, there are four DRAM locations 
(see Table A-6 on page A-3) which contain information describing the 
microapplication version. This information is duplicated in the mi­
croapplication executable file header but is loaded into DRAM to en­
sure that the microapplication version present in a running system can 
be determined. 
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11 
Macro Commands 

The host software and the CL450's microapplication use 18 macro com­
mands as their primary method of communication. Macro commands 
are function codes and parameter values written into the dual-ported 
HMEM by the host. Each command has a separate function code and 
may have 0 to 4 parameters. 

Once the function code and parameters are written, the microapplica­
tion acts on them according to their priority: 

o High-priority: These commands start execution as soon as the 
CL450' s microapplication detects their presence and complete ex­
ecution before the HOST_newcmd semaphore is cleared. 

o Low-priority: These commands are stored by the CL450 in the 
Command FIFO (see Section 11.4, Command Latency) and exe­
cuted by the CL450 in the order that they were received (see Sec­
tion 11.4, Command Latency). 



Writing Macro Commands 

11.1 
Writing Macro 

Commands 

Macro commands are written into HMEM by the host. HMEM is a 16-
word-by-16-bit memory within the CL450. It is accessed indirectly by 
writing the desired HMEM address (0 through Oxf) to HOST _raddr 
and then reading or writing the HOST _rdata register. 

When HOST _rdata is read, the contents of the currently selected 
HMEM location are returned to the host. When HOST_rdata is written 
by the host, the currently selected HMEM location is written with the 
same data. 

Note: Indeterminate behavior occurs if the host reads HOS­
T _rdata more than once without re-writing HOST _raddr. 

HMEM locations are allocated for (1) macro command use and (2) 
CL450 status information. Table 11-1 indicates the standard usage for 
each HMEM location. 

Table 11-1 HMEM Address Allocation 

HOST _raddr (Ox) Usage 

0 Macro Command, Function Code 

1 Macro Command, Argument 1 

2 Macro Command, Argument 2 

3 Macro Command, Argument 3 

4 Macro Command, Argument 4 

5 RESERVED 

6 RESERVED 

7 RESERVED 

8 RESERVED 

9 RESERVED 

a Interrupt Status 

b Buffer Fullness Status 

c RESERVED 

d RESERVED 

e RESERVED 

RESERVED 

The host should not use the reserved HMEM locations for scratch stor­
age because the CL450 may write to them at any time. Also, the host 
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should generally avoid writing to reserved locations within HMEM to 
facilitate upgrading to future microapplication versions. 

Because HMEM is dual-ported and contains quantities other than the 
current macro command (see InquireBufferFullnessO on page 11-19 
and Section 12.2, Interrupt Handshaking), it uses a semaphore to assure 
that only one of either the host or the CL450's CPU accesses the HMEM 
locations used for macro commands at anyone time. This semaphore is 
located in HOST _newcmd[O] . 

Any time the semaphore is 0, the host may read and write the macro 
command locations of HMEM (HMEM addresses 0 through 4). Once 
an entire new macro command has been written, the host should write 
a 1 to the semaphore. Once this has occurred, the host may not write to 
HMEM[ 4-0] or HOST _newcmd again until the CL450 has cleared the 
semaphore (i.e., HOST_newcmd[O] = 0). 

To ensure that a deadlock does not occur if the CL450 fails to acknowl­
edge a command, the host may use a time-out counter when polling 
HOST_newcmd. 

The mechanism for issuing a macro command is shown in the pseudo­
code example of Figure 11-1. 

ERROR_RETURN SendNewMacroCommand(arguments) 

write function code to HMEM[OJi 

write arguments (if any) to HMEM[4-1J, as appropriatei 

Writing Macro Commands 

HOST_newcmd= Ii /* tell microcode new macro 

while ( (HOST_newcmd&l == 1) 

(haven't timed-out yet) 

if (timed-out) 

return ERRORi 

else 

return NO_ERRORi 

&& 

Figure 11-1 Issuing a Macro Command to the CL450 

* command is ready */ 

/* wait for command to be 

* accepted */ 
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Command States 

11.2 
Command States 

In Figure 11-1 , note that the time-out processing could also be moved to 
the beginning of the function without violating the semaphore protocol: 
the host must not write to HMEM[ 4-0] when HOST _newcmd[O] is 1. In 
general, the host software will have better performance if the polling 
loop is moved up because the microapplication's acceptance of the new 
macro command will occur in parallel with the host's next processing 
task. 

The function shown provides advantages in the diagnostic process be­
cause it returns an error immediately upon determining that the CL450 
has stopped responding to commands. If the CL450 fails to accept a 
macro command, it indicates an incorrect microapplication loading pro­
cedure or an unrecoverable failure during operation. In either case, the 
microapplication must be reloaded. 

The CL450 operates in one of eight possible internal command process­
ing states which affect how future commands are interpreted and how 
the decode and display processes operate. 

Several command states correspond to a macro command which can 
cause a command state transition. The macro commands which can ex­
plicitly change the command state are the ResetO command and all of 
the Play-type commands. In addition to macro commands, several inter­
nal operations can also cause a command state transition. 

The command states and their relationships are shown in Figure 11-2. 
Within this figure, the eight command states are inscribed within ovals. 
The solid arrows indicate state transitions which occur due to the com­
pletion of internal processing, while shaded arrows indicate transitions 
caused by the execution of a macro command. 

The behavior of the IDLE and PLAY-SETUP states are described next, 
while the remainder of the command states are described with their cor­
responding macro commands listed in the second half of this chapter. 
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Start 

Completion of 
initialization 

IDLE 

. I f Execution 0 any Play-
type macro command 

t 
PLAY-SETUP 

Reset() 

(from any state) 

CL450 unable to accept bitstream data 

CL450 ready for bitstream data 

State transition caused 
by a macro command 

State transition caused 
by an external event 

Note: Play() transitions are based on the command 
that caused the departure from the IDLE state. 

Figure 11-2 Command State Transition Diagram 

Command States 

Execution of 
PI ay-type mac ro 4i,""--~""--,,""---"~,",,",-,,,,,~,,,,"',·,,, 

command ... 

Play() PLAY 

Pause() PAUSE 

SlowMotion() SLOW 

Scan() SCAN 

Completion of 
picture decode 

operation 

SingleStep() STEP 

DisplayStill() STILL 

L First picture decode after PLAY-SETUP 
complete; transition to state corre­
sponding to last Play-type command 
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Command States 

11.2.1 IDLE State 
The CL450 micro application is in the IDLE state immediately follow­
ing initialization or execution of the ResetO command and stays in the 
IDLE state until a Play-type macro command is executed. While in the 
IDLE state, the CL450's output window is blanked (the screen is filled 
with the current border color) and the CL450 does not accept bitstream 
data. Because of this, Display-time interrupts are not produced (see Sec­
tion l2.l.l, Display-time Interrupt), and the host must not send coded 
data to the CL450. However, the host may issue any macro command 
while the CL450 is in the IDLE state, although some arguments to the 
Set-type commands will not have an immediate effect. 

11.2.2 PLAY-SETUP State 
The PLAY-SETUP state is a transition state between IDLE and the re­
maining states. The CL450 microapplication spends only a short time in 
this state, during which it performs internal housekeeping to set up for 
reception of bitstream information. 

Once the operations associated with the PLAY-SETUP state are com­
plete, the microapplication immediately and always transitions to the 
PLAY command state, regardless of which Play-type macro command 
caused the transition from IDLE. Because of this, the first decoded pic­
ture after the microapplication is initialized will always be decoded in 
the PLAY state. Once this picture is decoded, the microapplication ef­
fectively "re-executes" the Play-type command and then transitions to 
the state corresponding to the macro command which caused the origi­
nal transition from IDLE to PLAY-SETUP. This occurs even when the 
first Play-type command is PauseO, SingleStepO, ScanO, Display­
StillO, etc. In addition to causing an "extra" picture to be decoded be­
fore entering the desired state, this also causes the execution of 
subsequent low-priority macro commands to be deferred one extra pic­
ture decoding time. Because all Play-type commands executed in the 
IDLE state are interpreted in the same way that a two-command se­
quence beginning with the PlayO command would be, two picture de­
codes must complete (one for the implicit PlayO command and one for 
the actual command issued) before other 'Commands from the Command 
FIFO are read and executed. 

11-6 C-Cube Microsystems 



Once the microapplication has left the PLAY-SETUP state, the CL450 
begins decoding incoming bitstream data as it is received. The output 
window is subsequently unblanked once enough of the bitstream has 
been decoded for display to begin. 

Note: Unblanking of the output window only occurs if the 
display has not been explicitly blanked by the host (see the 
SetBlankO macro command). If the display has been blanked 
by the host, then the output window is unblanked only when 
another SetBlank() is executed with the appropriate argu­
ment. 

The CL450 microapplication maintains a Command FIFO in DRAM. 
The Command FIFO occupies 630 words of DRAM and is used to store 
all low-priority (HMEM[0][15] == 0) macro commands issued by the 
host. Each macro command occupies five words of storage (loaded from 
HMEM[ 4-0]), so that the Command FIFO can accommodate up to 126 
entries. 

Typically, the number of pending commands in the Command FIFO is 
significantly less than 126. However, NewPacketO commands remain 
in the Command FIFO until sometime after the corresponding portion 
of the bitstream has been decoded, regardless of whether the other mac­
ro commands ahead of and behind them have been executed, which in­
creases the number of entries required. 

Note: The CL.450 microapplication cannot prevent the Com­
mand FIFO from overflowing. The host must ensure that the 
maximum number of possible entries in the Command FIFO 
is not exceeded. 

The Command FIFO is maintained as a circular buffer with one write 
pointer and two read pointers ("command read" and "packet read") as 
shown in Figure 11-3. Each time a new low-priority macro command is 
issued by the host, it is written into the circular buffer and the write 
pointer is incremented (wrapping if necessary). Each time a macro com­
mand other than NewPacketO is extracted and executed, the "command 
read pointer" is incremented. In addition, if a NewPacketO command is 
encountered when looking for another macro command, the command 
read pointer is incremented past the NewPacketO, effectively skipping 
it. 

Command FIFO 

11.3 
Command FIFO 
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Command FIFO 

Empty or already 
processed entries 

(a) 

SetWindow() 
~~~E~M~P~T~Y~~~~ 

~---------l""'-( packet read) 
SetBorderO 

~.,.."....,._P,..,.I",...a;..y.;.:.,O..,...--."...-+oIII-C--< command read 
Newfiacket() 

... .•.•. SetEUankO: 
N~wPacketO 

SetBcirderO 

After executing: 
SetBorder(), 

Play() 

(d) 

SetWil1dowO ~ ~ 
~-'"'-,",-::::-:-::-=:--:--'"-...,~ 

EMPTY 

~ command read) ~ command read) 

~--'-S-e-tB-o-r-d-e-r'-O'-· ~'c packet read) ~--::S=:-<e-t-::B:-():-r"""g-!3cr(;-'-l-.·."" •••• 'c packet read) 

PlayO ... ..... PlayQ· ...•. 
NewPacketON!3wPq¢l<.e~O ....• 
NeWPacketONewPackeW ... 
NewPacketO NewPacketO 

SetColorModeO SetGolorMcidel} 
SetBlimkO SetBlal1kO •. 

~""':=~E'::':M::'::P:'::T':"':'y:::.!.!..":""--I~ I··· NewPacketU .... 

Example starting 
configuration 

(b) 

SetVViodowO ~~~~~~~+4~~ 
EMPTY 

I---------I..-{ command read) 
NewPacket() 
NewPacketO 
NewPacket() 

Se~O:().tq~f\lJcide() 
·····SetB!ank(}. 

I
GAfter deCOding® packets (the first pic-

ture and the second 
picture's start code) 

(e) 

NewPacketO ..• 
SetBorder(};··.: 

I
@fterwriting the c~ 

mands: NewPacket(), 
NewPacket(), SetBor­

der, SetWindow() 

(c) 

SetWindowO ~ 
~--E-M-P-T-Y--"--'c command read) 

J."F.,..,..,.-, •• :7N-::-e-:vv..,.,.'.P==-..•. a,.,.,.c.,."k,.."j~-:-t-:70-... ..., .. ~ packet read ) 

SetBorderO 

After executin9:~et­
ColorMode(), Set-
Blank(), SetBorderO, 
SetWindowO 

(f) 

Figure 11-3 
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Each time a new pic t ure_s t art_c ode is detected during decode, 
the microapplication searches through the Command FIFO using the 
"packet read" pointer and looks for the NewPacketO command corre­
sponding to the packet which contains the start code of the picture 
which is about to be decoded. While this is done, the packet read pointer 
is incremented to skip macro commands other than NewPacketO. 

All low-priority macro commands are placed into the Command FIFO 
before the CL450 clears HOST _newcmd[O]. The delay before macro 
command execution is determined by the current command processing 
state. The microapplication operates according to the following rules: 

o NewPacketO commands have no impact on when other low-prior­
ity macro commands are executed. 

o When in the IDLE or PAUSE command states (see Section 11.4, 
Command Latency, and the PauseO command on page 11-25), 
macro commands are executed as they are received unless the host 
issues commands faster than they can be processed, in which case 
they accumulate in the Command FIFO. Command execution 
continues uninterrupted until a Play-type macro command is exe­
cuted, which changes the command state from IDLE or PAUSE to 
PLA Y -SETUP or a decoding state, respectively. 

o When not in the IDLE or PAUSE command states, macro com­
mands which have accumulated in the Command FIFO are execut­
ed each time the CL450 completes decoding a picture. Note that 
this rate is dependent on the output frame rate, the pic t u r -
e_rate sequence parameter, audio/video synchronization, and 
the last speed parameter if in the SLOW state. If a Play-type com­
mand is not encountered, the microapplication continues to exe­
cute commands until all commands in the Command FIFO have 
been consumed or until it is time to begin decoding the next pic­
ture, whichever is later. 

The host can issue more macro commands than the CL450 is able to 
process without falling behind in picture decoding. In general, the host: 

o Must ensure that the Command FIFO does not overflow. 

o May issue NewPacketO and any high-priority commands as fre­
quently as desired. 

o May issue one SetBorderO and one SetWindowO command per 
frame period (nominally every other VSYNC). 

Other low-priority commands should be issued only when necessary. 

Command Latency 

11.4 
Command Latency 
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Macro Command Groups 

Note that CL450 macro commands are divided into three functional cat-
11.5 egories: 

Macro Command 
Groups 0 Set-type 

-------- 0 Play-type 

o Control 

Each command group has distinct properties, which are described be­
low, in Table 11-2, and in Section 11.4. 

11.5.1 Set-type Commands 
The CL450 has seven Set-type macro commands, all of which: 

o Are low priority 

o Never affect the command state 

o May be issued regardless of the current command state 

o Have no effect on the decoding process, except for SetVideoFor­
matO, which helps determine if video sequences are transcoded 
(see SetVideoFormat on page 11-40) 

11.5.2 Play-type Commands 
The CL450 has six Play-type macro commands, each of which causes 
the: 

o Current command state to change 

o Macro command processing to be suspended 

o Microcode to transition into the PLAY-SETUP state and the 
CL450 to be configured to accept bitstream data (when issued in 
the IDLE state) 

11.5.3 Control Commands 
The CL450 has five Control macro commands (the least homogeneous 
of the three groups), each of which: 

o Can be issued regardless of the current command state 

o Is high priority, except for NewPacketO 

o Has no effect on the command state, except for ResetO 
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Macro Command Reference 

Table 11-2 Macro Command Summary 

Category Priority Effect on Name Description 
Command 
State 

SetBlankO Blanks/unblanks output window 

SetBorder() Sets output window location 

SetColorModeO Enables/disables color-space converter 

Set-type Low No SetlnterruptMaskO Enables/disables interrupts to host 

SetThresholdO Specifies bitstream buffer emptiness 

SetVideoFormatO Configures output resolution and timing 

SetWindowO Sets output window size and contents 

DisplayStillO Decodes/displays single still picture 

PauseO Keeps last picture on display 

Play-type Low Yes PlayO Decodes and displays pictures 

Sea nO Decodes and displays next single I-picture 

SingleStepO Decodes and stores next single picture 

SlowMotionO Decodes and displays at slower rate 

AccessSCRO Reads or writes internal SCR counter 

FlushBitstreamO Discards contents of bitstream buffer 

Control High1 N02 InquireBufferFu II nessO Calculates fullness of bitstream buffer 

NewpacketO Manages bitstream data 

ResetO Reinitializes CL450 and its microcode 

1. Except for NewPacketO 
2. Except for ResetO 

Note: If a macro command is issued and HMEM[O J contains 
a value other than one of the values listed in the Function 
Code column above, indeterminate behavior occurs. 

Function Page 
Code (Ox) 

030f 11-29 

0407 11-30 

0111 11-34 

0104 11-36 

0103 11-38 

0105 11-40 

0406 11-42 

OOOc 11-14 

OOOe 11-25 

OOOd 11-26 

OOOa 11-28 

OOOb 11-45 

0109 11-46 

8312 11-12 

8102 11-16 

8001 11-19 

0408 11-20 

8000 11-27 

All CL450 macro commands are listed alphabetically in the pages that 11.6 
follow. Macro Command 

Reference 

Macro Commands 11-11 



AccessSCR() 

Format: AccessSCR (timeStamp2, timeStamp1, timeStampO) 
Priority: High 
Category: Control 

Syntax: HMEM[O] AccessSCR Ox8312 

HMEM[1] timeStamp2 bit[15] = R/W flag 
bits[14:3] = 0 
bits[2:0] = SCR bits 32:30 

HMEM[2] timeStamp1 bit[15] = 0 
bits[14:0] = SCR bits 29: 15 

HMEM[3] timeStampO bit[15] = 0 
bits[14:0] = SCR bits 14:0 

HMEM[4] OxOOOO 

The AccessSCRO macro command is issued by the host to write or read 
the current value of the CL450's internal SCR (System Clock Refer­
ence) counter. The microapplication uses the contents of the SCR 
counter when performing audio/video synchronization. (For a full de­
scription of the CL450's synchronization mechanism, see Chapter 13, 
Audio/video Synchronization.) 

The R/W flag bit (HMEM[l][15]) determines whether the command 
performs a read or a write, as follows: 
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o R/W flag bit =1: The microapplication reads the SCR counter and 
places the results in HMEM[I], HMEM[2] and HMEM[3]. When 
a read operation is performed, the read completes before the mi­
croapplication clears HOST_newcmd[O]. 

The current counter value is written into HMEM in the format giv­
en above. However, the value written to the R/W flag bit and the 
bits to which the host is required to write O's is random, and the 
host should mask the values read back from HMEM before using 
them. 



AccessSCR() 

o RIW flag = O:When the host issues this command, the microappli­
cation writes the new SCR value from HMEM into the CL450's 
counter. Note that the contents of the SCR counter have no effect 
on the CL450's behavior unless audio/video synchronization is 
being performed. 

As the host processor extracts system clock references from the system 
layer of a bitstream, it updates the SCR counter by using an AccessS­
CRO macro command. The microapplication then updates the counter 
through the three HOST _scr registers shown in Figure 11-4: 
HOST_scr2, HOST_scd, and HOST_scrO. 

15 HOST_scr2 

32 30 29 
SysClkHigh I 

T~ 
~ 

3 2 0 

I I 

15 14 
IRes I 

SCR Counter 

15 14 
SysClkMid I 

o 

SysClkLow 

HMEM[1] 
T 
~ ~ 

15 14 HMEM[3] 0 3 2 0 
o I I 10 I 
~ 

15 14 HMEM[2] 0 

101 I 

Figure 11-4 AccessSCRO Arguments Block Diagram 

o 
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DisplayStiliO 

Format: DisplayStillO 
Priority: Low 
Category: Play-type 

Syntax: HMEM[O] DisplayStil1 OxOOOc 

HMEM[1] OxOOOO 

HMEM[2] OxOOOO 

HMEM[3] OxOOOO 

HMEM[4] OxOOOO 

The DisplayStillO macro command is used to decode and display a 
high-vertical-resolution still picture. When this command is executed, 
the microapplication enters the STILL state, possibly passing through 
the PLAY-SETUP and PLAY states. 

While in the STILL state, a single still picture from the incoming bit­
stream is decoded and posted for display. 

Note: Audio/video synchronization has no effect on the tim­
ing of picture decoding which occurs in the STILL state re­
gardless of whether or not NewPacket() commands are being 
used. 

Once decoding is complete, the microapplication automatically chang­
es to the PAUSE state (see the description of the PauseO command, 
page 11-25). 

A still picture must be constructed as follows: 
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DisplayStiliO 

/* optional */ 

/* optional */ 

sequence_header() 

group_of-pictures() 

picture () /* must be a single I-picture, supplies 

* image for upper field display */ 

picture () /* must be a single I-picture, supplies 

* image for lower field display */ 

/* optional */ 

Figure 11-5 Still Picture Bitstream Format 

The header and picture information within a high-vertical-resolution 
still picture is decoded normally as two separate images, one containing 
all of the scan lines for the upper display field and the other containing 
the lower scan lines. These two images are then displayed during the 
even and odd display fields (as appropriate) while the microapplication 
remains in the PAUSE state. 

Typically, both images in a still picture contain as many scan lines as a 
SIF image. Note that the yOffset argument to the SetWindowO macro 
command (see page 11-42) is interpreted as an offset both from the be­
ginning of the even field to the first even scan line to be displayed and 
from the beginning of the odd field to the first odd scan line displayed. 

Note that the microapplication clears the CL450's internal SCR counter 
to 0 each time a picture pair is decoded in the STILL state (see Section 
13.3.2, Automatic SCR Modifications). 
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FlushBitstream() 

Format: FlushBitstream(filter) 
High Priority: 

Category: Control 

Syntax: HMEM[O] 

HMEM[1] 

FlushBitstream Ox8102 

HMEM[2] 

HMEM[3] 

HMEM[4] 

filter bits[15:3] = 0 
bit[2] = restore default sequence parameters flag 
bits[1 :0] = filter parameter 

OxOOOO 

OxOOOO 

OxOOOO 

The FlushBitstreamO macro command causes the CL450 to: 

o Discard the current contents of the bitstream buffer (including any 
data currently in CMEM or the VLC Decoder) and any unproc­
essed NewPacketO commands in the Command FIFO (see 
page 11-9). 

o Allow the host to specify the conditions under which picture de­
coding and display should resume when new bitstream informa­
tion is received by the CL450. 

In all cases, the CL450 continues to display the most-recently decoded 
picture after FlushBitstreamO has been issued. 

When using this command, the host must ensure that the bitstream data 
which is sent following the command has the correct relationship with 
subsequent NewPacketO commands, if there are any. In particular, the 
following facts must be considered: 
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o When FlushBitstreamO is executed, all unprocessed NewPacketO 
commands are discarded, even if the CL450 has not yet received 
the bitstream data that corresponds to those packets. 

o The FlushBitstreamO command takes a finite amount of time to 
execute. If bitstream data transmission to the CL450 is not halted 



FlushBitstream() 
prior to issuing this command, it is impossible to determine what 
data will be flushed and what data will be considered to have ar­
rived after the command executed. 

o Because FlushBitstreamO is a high-priority command, all opera­
tions required to clear the bitstream buffer are completed before 
the CL450 clears HOST _newcmd[O]. 

o Because FlushBitstreamO is a high-priority command, it may be 
executed while in the middle of a picture decode operation. If this 
occurs, the CL450 may spuriously report a bitstream underflow 
(see page 12-26 for a discussion of the buffer underflow interrupt, 
UND). Also, because the on-going picture-decode operation must 
be terminated when the bitstream is flushed, the video display may 
tear if the picture being decoded is a B-picture. 

o When bitstream transmission resumes, the host must issue the 
NewPacketO command(s) which correspond to the beginning of 
the new bitstream data before the CL450 begins to receive it. This 
requirement is essentially the same as the requirement for begin­
ning to send a bitstream to the CL450 following initialization or 
ResetO. 

After the bitstream and pending NewPacketO commands have been 
flushed and the CL450 has started to receive new bitstream data, the de­
coding process resumes. How the decoding process behaves is con­
trolled by the filter argument of the FlushBitstreamO command. The 
filter argument contains two fields: 

oBit [2J - This bit determines whether or not the sequence-layer pa­
rameters should be restored to their defaults prior to resuming de­
code. (See Table 10-4 for a definition of the sequence defaults.) 
Typically, this bit would be set to 1 (causing defaults to be re­
stored) if decoding is to resume in a new video bitstream or in a 
different sequence within the current bitstream. 

If FlushBitstreamO is being used to skip a section within a bit­
stream, filter[2] is usually set to o. Note however that the quanti­
zation matrices in the sequence layer, if present, may change each 
time a sequence header is incorporated into the bitstream. 

When a bitstream is being accessed randomly, either following ex­
ecution of FlushBitstreamO or immediately following initializa­
tion or ResetO, the host must ensure that the correct quantization 
matrices are provided to the CL450 if the portion of the bitstream 
containing them is not decoded (see Section 14.2.2, Writing 
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DRAM-Resident Variables). Note that the GOP-layer defaults 
(Table 2-4) are always restored when FlushBitstreamO is issued. 

oBits! 1:01 - This field is used to specify the point in the bitstream 
at which the CL450 should resume decoding. The field is encoded 
as shown in Table 11-3. 

Table 11-3 

filter[1 :0] 

002 

01 2 

102 

112 

Filter Argument Encoding 

Meaning 

Resume decode/display with next I-picture 

Resume decode/display with first I-picture after the next GOP header 

Resume decode/display only after the next sequence header 

Resume decode/display at the earliest possible time 

If a fiIter[ 1 :0] value of 0 or 1 is selected, the host must provide the ap­
propriate sequence-layer parameters (either by setting fiIter[2] or as de­
scribed in Section 14.2.2, Writing DRAM-Resident Variables). 

Alternately, if a filter[1 :0] value of 2 is selected, the value of fiIter[2] is 
irrelevant because picture decoding will not resume until a sequence 
header is found within the bitstream, typically replacing the previous se­
quence parameters. 
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InquireBufferFullnessO 

Format: 
Priority: 
Category: 

Syntax: 

Inqu ireBufferFullnessO 
High 
Control 

HMEM[O] 

HMEM[1] 

HMEM[2] 

HMEM[3] 

HMEM[4] 

I nqu i reBufferFul1 ness OxS001 

OxOOOO 

OxOOOO 

OxOOOO 

OxOOOO 

When the host issues the InquireBufferFullriessO macro command, the 
CL450 calculates the amount of data currently stored in the bitstream 
buffer and updates the Buffer Fullness Status location, HMEM[Oxb]. 

Because this is a high-priority command, the microapplication com­
pletes updating HMEM before clearing HOST_newcmd[O]. Therefore, 
the host may read the updated data as soon as the microapplication is ca­
pable of accepting a new command. Note that HMEM[Oxb] will also be 
periodically updated by the CL450 approximately every eight video 
lines (see Section 12.1.1, Display-time Interrupt, for exact timing). 

The value placed in HMEM[Oxb] should be treated as accurate to ±32 
words. The uncertainty implicit in this range of values is due to the 
CL450 hardware moving blocks of data between DRAM, CMEM and 
the VLC Decoder's working buffer without intervention from the 
CL450's CPU. Values computed by the microapplication are based on 
an internal snapshot that may be slightly out of date before the buffer 
fullness computation is complete. 
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NewPacket() 

Format: 
Priority: 
Category: 

Syntax: 

NewPacket (length, timeStamp2, timeStamp1, timeStampO) 
Low 
Control 

HMEM[O] 

HMEM[1] 

HMEM[2] 

HMEM[3] 

HMEM[4] 

NewPacket Ox0408 

length bits[15:0] = packet length, in bytes (bit 0 always 0) 

timeStamp2 bit[15] = V/dflag 
bits[14:3] = 0 
bits[2:0] = PTS{32:30] (or "don't care" if V/d is 0) 

timeStamp1 bit[15] = 0 
bits[14:0] = PTS{29:15] (or "don't care" if V/d is 0) 

timeStampO bit[15] = 0 
bits[14:0] = PTS{14:0] (or "don't care" if V/dis 0) 

The NewPacketO command is used by the host to: 

D Supply MPEG system-layer bitstream information to the CL450. 

D Allow the CL450 microapplication to associate this information with 
the correct portions of the elementary video bitstream it is receiving as 
they pass through the circular bitstream buffer located in DRAM. 

NewPacketO commands do not "execute" in the same sense as other macro 
commands; instead, they are queued until the corresponding packet data has 
been decoded. That is, if a NewPacketO command is given immediately pre­
ceding a SetBorderO command, the SetBorderO command does not have to 
wait until the NewPacketO command "executes." 

The micro application assumes that the use of NewPacketO is modal when not 
in the IDLE command state. NewPacketO is modal because the host must ei­
ther (1) issue no NewPacketO commands at all or (2) issue NewPacketO com­
mands corresponding to all of the bitstream data. 

Following execution of the ResetO macro command or CL450 initialization, 
the host may choose whether or not NewPacketO commands are used by ei­
ther issuing or not issuing a NewPacketO command prior to transmitting its 
first word of data to the CL450 as shown in Figure 11-6. 
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NewPacket() 
Initialization 

Reset() Reset() 

NewPacketO 
command 
received 

First word of bitstream 
data received without 
receiving NewPacketO 
command beforehand 

Figure 11-6 CL450's State with Regard to Host NewPacketO Commands 

NewPacketO is considered an optional command from the point of view 
of the host. However, the following features are unavailable if New­
PacketO is not used: 

o The RDY (ready for data) interrupt: If RDY is not disabled, the 
micro application may still produce interrupts to the host, but with 
indeterminate timing. (See page 12-22.) 

o Audio/video synchronization: See Chapter 13, Audio/Video Syn­
cronization. 

If the NewPacketO macro command is used, then the following items 
are true: 

o Any number of NewPacketO commands may be issued ahead of 
the corresponding data arriving at the CL450, as long as the Com­
mand FIFO does not overflow (see Section 11.4, Command La­
tency). 

o The NewPacketO command which corresponds to a packet of data 
must be accepted by the CL450 (HOST _newcmd[O] returned to 0) 
before the first word of data from that packet enters CMEMfor ev­
ery packet. 

o The SCR counter must be initialized with the correct value before 
the first NewPacketO command that has HMEM[2][Vld] equal to 
1 is issued. 
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11.6.1 length Argument 
Each NewPacketO command issued corresponds to a specific portion of 
the elementary video bitstream, the size of which is specified by the 
length argument. Note that this value is in units of bytes and must be an 
even number because transfers from the host to CMEM must always be 
performed one word (two bytes) at a time. 

If the NewPacketO command is used, bitstream data received by the 
CL450 must be preceded by the corresponding NewPacketO command. 
This means that the sum of the length arguments of all NewPacketO 
commands which have been issued since the command state last 
changed from IDLE must be greater than or equal to the number of 
bytes of bitstream data that the CL450 has received. If at any time this 
condition is not met, the behavior of the CL450 is indeterminate until 
the command state next becomes IDLE. 

While it is typically most convenient for the host to create NewPacketO 
macro commands using information from the packets in the system-lev­
el portion of an MPEG bitstream, the host can also add or remove packet 
boundaries. In particular, if a host is playing an MPEG elementary vid­
eo stream and wishes to use the RDY interrupt, the host will have to cre­
ate NewPacketO commands. In any case, if the host constructs its own 
packets, the following criteria must still be met: 

o Packets sent to the CL450 must always have an even length. 

o Packet length arguments must be less than 64K bytes (because the 
length argument is only 16 bits). 

o PTSs (if provided) must be encoded consistent with the MPEG re­
quirements for system-level packets and satisfy the buffering con­
straints of a System Target Decoder (STD). 

11.6.2 timeStamp Arguments 
The remaining three arguments to NewPacketO make up the PTS asso­
ciated with the data corresponding to the NewPacketO command. Note 
that the PTS is optional for each particular NewPacketO command 
which is issued. Although, if the CL450 is to perform audio/video syn­
chronization (see Chapter 13), at least one PTS must be supplied. The 
host indicates that a valid PTS is provided with a NewPacketO com­
mand by setting the Vld bit (HMEM[2][15]) to 1. 
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Note that, as in the MPEG standard, the PTS is broken into three fields, 
the first two being 15 bits long, the third field being three bits long. For 
more information on how the CL450 uses PTSs, see Chapter 13. 

11.6.3 Loading and Removing NewPacket Commands 
New Pac ketO commands are placed in the Command FIFO as they are 
issued by the host. The CL450 buffers the commands in the Command 
FIFO and then applies the information found in each NewPacketO com­
mand to the number of coded data bytes specified by the length portion 
of the command. 

New Pac ketO commands are removed from the Command FIFO in 
groups each time a pic t u r e _ s tar t _ cod e is encountered while de­
coding the bitstream. 

An example of the relationship between NewPacketO commands stored 
in the Command FIFO and the corresponding data in the bitstream buff­
er is shown in Figure 11-7. 
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Read 

Bitstream 
Buffer 

Corresponding bit-
stream decoded and 

Empty 

NewPacket() 

/~~ 
Corresponding bit­

stream not yet received 
by the CL450 

Command 
FIFO 

CD Bitstream decoded but NewPacket() not yet discarded 

(3) Bitstream partially decoded 

® and 0 Bitstream resident in buffer; waiting for decode 

® Packet has not been entirely received by the CL450 

packet read 

Figure 11-7 Packet Representation in Command FIFO vs. Bitstream Buffer 
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Format: PauseO 
Priority: Low 
Category: Play-type 

Syntax: HMEM[Oj Pause OxOOOe 

HMEM[lj OxOOOO 

HMEM[2j OxOOOO 

HMEM[3j OxOOOO 

HMEM[4j OxOOOO 

When the PauseO macro command is executed, the microapplication 
enters the PAUSE state, passing through the PLAY-SETUP and PLAY 
states if necessary. In the PAUSE state, the last picture is kept on the dis­
play, and the CL450 continues to process macro commands as if it were 
in the IDLE state (i.e., without waiting for a picture decode to com­
plete). 

While in the PAUSE state, no bitstream decoding is performed. Because 
of this, the host must ensure that the bitstream buffer does not overflow 
either by (1) ending the transmission of coded data to the CL450 or by 
(2) periodically executing the FlushBitstreamO macro command (see 
page 11-16). Upon execution of another Play-type macro command, de­
coding will resume with the next unused bit from the bitstream buffer. 

Pictures are displayed while in the PAUSE state in the manner appropri­
ate to how they were decoded. Still pictures decoded while in the STILL 
state are displayed with data from two separate DRAM picture buffers 
in the even and odd display fields, while pictures decoded in other states 
are displayed with data from one DRAM picture buffer displayed in 
both the even and odd display fields. 

Pause() 
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Format: PlayO 
Priority: Low 
Category: Play-type 

Syntax: HMEM[O] Play OxOOOd 
HMEM[l] OxOOOO 
HMEM[2] OxOOOO 
HMEM[3] OxOOOO 
HMEM[4] OxOOOO 

When the PlayO macro command is executed, the microapplication en­
ters the PLAY state (passing through PLAY-SETUP if necessary). In 
this state, the CL450 decodes and displays pictures at the rate prescribed 
by the pic t ure_r ate parameter contained within the bitstream, and 
uses the time stamp information transmitted by the NewPacketO com­
mand, if any, to synchronize the video display to the SCR. 

While the micro application is in the PLAY state, bitstream data is con­
sumed at the normal rate. For systems in which the CL450 is supplied 
with bitstream data at a fixed rate, the host does not need to allow for 
bitstream buffer overflow, assuming that the bitstream is being trans­
ferred at the rate for which it was encoded. Note that the host must still 
prevent CMEM overflow if programmed access (rather than DMA) is 
being used (see Section 9.2, Bitstream Transfer Process). 

All audio/video synchronization options may be used with the PlayO 
command (see Chapter 13). 

The PlayO macro command should only be executed when the microap­
plication is not in the PLAY command state. 
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Format: ResetO 
Priority: High 
Category: Control 

Syntax: HMEM[O] Reset Ox8000 

HMEM[1] OxOOOO 

HMEM[2] OxOOOO 

HMEM[3] OxOOOO 

HMEM[4] OxOOOO 

ResetO is a high-priority macro command which is used to re-initialize 
the CL450 and its microapplication. When this command is executed: 

o The contents of the bitstream buffer, the Command FIFO, and the 
picture buffers are lost. 

o The video display process is re-initialized and the output window 
blanked (screen is filled with current border color). 

o The default settings given in Tables 10-1 and 10-3 are restored. 

This is the only high-priority macro command which has an effect on 
the command processing state. 

The ResetO macro command is typically used only to recover from er­
ror conditions. When suspending and resuming decode operations, or 
when changing from decoding one bitstream to another, some combina­
tion of the FlushB itstreamO (page 11-16), PauseO (page 11-25), and 
SetBlankO (page 11-29) commands should be used. Unlike the ResetO 
command, these commands allow the CL450 to continue to receive bit­
stream data and to continue to display the last picture decoded. 

Note that, unlike the other high-priority commands, the ResetO macro 
command has not been completely executed when HOST _newcmd[O] 
is cleared (see Section 10.2.2, Loading Sequence). Also, the ResetO 
command must not be executed while the host has a DRAM semaphore 
(SEQ_SEM or PIC_SEM) allocated. 

Reset() 
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Format: ScanO 
Priority: Low 
Category: Play-type 

Syntax: HMEM[O] Scan OxOOOa 

HMEM[1] OxOOOO 

HMEM[2] OxOOOO 

HMEM[3] OxOOOO 

HMEM[4] OxOOOO 

When the ScanO macro command is executed, the microapplication en­
ters the SCAN state, possibly passing through the PLAY-SETUP and 
PLAY states. While in the SCAN state, a single I-picture from the in­
coming bitstream is decoded and stored in the CL450's DRAM. 

Note: Whether or not NewPacket() commands are being 
used, audio/video synchronization has no effect on the timing 
of picture decoding which occurs in the SCAN state. 

Once decoding is complete, the microapplication will automatically 
transition to the PAUSE state (see the PauseO command, page 11-27) 
and issue the SCN interrupt, if enabled (see page 12-24). 

Coded data passed to the CL450 before an I -picture is either decoded 
normally (sequence and GOP header information) or discarded (P- and 
B-pictures). Once the first I-picture has been decoded, the microappli­
cation stops processing the bitstream until some other macro command 
causes the microapplication to leave the PAUSE state. 

The decoded I-picture is stored in one of the picture buffers in the 
CL450's DRAM and is immediately posted for display; it remains in 
DRAM until the next Play-type macro command is executed. 
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Format: 
Priority: 
Category: 

Syntax: 

SetBlank(state) 
Low 
Set-type 

SetBlank() 

HMEM[O] 

HMEM[1] 

SetBlank Ox03Of 

HMEM[2] 

HMEM[3] 

HMEM[4] 

state bits[15: 1] = 0 
bit[O] = 1 (output window blanked) or 0 (output 
window not blanked) 

OxOOOO 

OxOOOO 

OxOOOO 

The SetBlankO macro command is used to blank and unblank the out­
put window. The state argument determines whether the output window 
should be blanked (1) or unblanked (0). If the output window is un­
blanked, then the microapplication resumes displaying decoded pic­
tures. If the output window is to be blanked, the output window is filled 
with the border color. 

Note that blanking the output window has no effect on the border color, 
and the decoding process continues as though the output window were 
not blanked. 

Once a SetBlank(1) has been executed, the display is blanked after the 
first VSYNC following execution of the command. After a SetBlank(O) 
has been executed, the display is unblanked after the first VSYNC after 
the command is executed. 
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SetBorder() 

Format: 
Priority: 
Category: 

Syntax: 

SetBorder(leftBorder, topBorder, rBorder, gbBorder) 
Low 
Set-type 

HMEM[O] 

HMEM[1] 

HMEM[2] 

HMEM[3] 

HMEM[4] 

SetBorder Ox0407 

leftBorder bits[15:1 0] = 0 
bits[9:0] = distance from active FrS"'YI\fC to left edge 
of output window, in VCLK periods (min. 10) 

topBorder bit[15] = 0 
bits[14:0] = distance from active VSYNC to top edge 
of output window, in fiSY'l\JC periods 

rBorder bits[15:8] = 0 
bits[7:0] = Red or Cr (=Cb) component of border color 

gbBorder bits[15:8] = Green or Y component of border color 
bits[7:0] = Blue or Cb (=Cr) component of border color 

The SetBorderO macro command is used to set: 

o The color of the border 

o The size of the top and left borders around the output window 

Together with the SetWindowO command and the HSYNC and 
VSYNC input signals, the SetBorderO command is also used to deter­
mine the right and bottom borders as well as the size of the active win­
dow. The new values for both commands take effect on the active edge 
of VSYNC following command execution. 

Figure 11-8 shows the relationship of the SetBorderO command's four 
arguments to the arguments of the SetWindowO macro command 
(xOffset, yOffset, width, height) and the configuration of the CL450's 
display output. 

rBorder and gbBorder are 16-bit integers that determine the border 
color. The border color specified is encoded either in the RGB color 
space (if the CL450's color space converter is enabled; see page 11-34) 
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or the YCbCr color space. Note that both chrominance values must be 
the same (Cb = Cr) if the color space converter is not used. 
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Figure 11-8 Video Display Configuration 

leftBorder 

The leftBorder and topBorder arguments are encoded specially, so 
that a value of 0 in either causes the CL450 to automatically set the cor­
responding parameter such that the output window is centered within 
the video display. 

Generally, auto-centering should not be used if one extent of the decod­
ed picture is greater than the maximum output window size. If it is, then 
auto-centering causes the output window to be expanded to its maxi­
mum size in the corresponding direction and the corresponding offset 
(xOffset or yOffset) to be set by the SetWindowO command. xOffset 
will be computed so the horizontal center of the decoded image is dis­
played, and yOffset will be forced to O. 

Video Display 

filled with 
rBorder and 

gbBorder 
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Auto-centering is performed using the current display resolution set by 
the SetVideoFormatO macro command (see page 11-40). The microap­
plication also assumes that the correct leftBorder value to center a max­
imum-width output window is 60, and that the correct topBorder value 
to center a maximum-height output window is 18. If these values are not 
correct for the VSYNC and HSYNC timing used by the video display, 
auto-centering cannot be used. 

In general, the host must ensure that the dimensions of the display win­
dow do not exceed the dimensions of the decoded pictures, and that the 
display window is not positioned on the screen in such a way that the 
CL450 does not attempt to complete a B-picture display before B-pic­
ture decoding is guaranteed to complete (see Section 15.3.2.) 

The units and minimum/maximum values of the leftBorder and top­
Border arguments are shown in Table 11-4. 

Table 11-4 SetBorderO Argument Restrictions: leftBorder and topBorder 

Value 

Argument Units Minimum Maximum Equal to 0 Means: 

leftBorder 1 display pixel 10 Ox3ff Enable horizontal auto-centering 

topBorder 1 source pixel 6 Ox7fff Enable vertical auto-centering 

The size of the bottom and right border areas are determined by the cor­
responding video timing signal, opposite border size, and correspond­
ing output window size as shown in Table 11-5 below. Note that the 
video "Borders" defined in the table are the sum of the border and 
blanking times in the timing of the CL450's output. The actual size of 
the border seen on the video display varies depending on the relation­
ship between the individual monitor's timing and display area. 

Table 11-5 Video Border Sizes 

Border Size 

Left Border leftBorder 

Right Border FrSYf\JC period - (leftBorder + width) 

Top Border topBorder 

Bottom Border VSYNC period - (topBorder + height) 
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There are circumstances in which the CL450 does not decode all of the 
picture area specified by the picture_height and pic­
ture_width parameters; however, the following rules always apply: 

o The full width of the coded picture is always decoded. 

o Only the first 330 or 396 macroblocks (for NTSC or PAL video 
output formats, respectively) of any picture are decoded, regard­
less of the picture size. 

Note that when vertical auto-centering is used, the limited decoded pic­
ture height is accounted for, but not necessarily the picture decoding 
time requirements. 

For additional information on the timing of the SetBorderO macro com­
mand, see the description of the SetWindowO macro command on 
page 11-42 . 
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Format: SetColorMode(mode) 
Low Priority: 

Category: Set-type 

Syntax: HMEM[O] SetColorMode Ox0111 

HMEM[1] mode bits[15:1] = 0 
bit[O] = 1 (RGB) or 0 (YCbCr) 

HMEM[2] OxOOOO 

HMEM[3] OxOOOO 

HMEM[4] OxOOOO 

The SetColorModeO macro command is used to enable and disable the 
CL450's color-space converter; it configures the CL450 for either RGB 
or YCbCr video output. (The color-space converter operates using the 
method and coefficients included in the description of the VID _sela and 
VID_selb registers in Section 8.5.2, Indirect Video Registers.) 

The mode argument to SetColorModeO is a 16-bit parameter whose 
only allowed values are as follows: 

o mode 0: Puts the CL450 into YCbCr mode by disabling the color­
space converter. Decoded pixel values are output with a Y compo­
nent value output on PD[15:8] every VCLK, Cb and Cr are alter­
nately output on PD[7 :0], and the contents of VID _selaux are 
output on PD[23:16]. 

o mode 1: Puts the CL450 into RGB mode by enabling the color­
space converter. Converts each decoded pixel into R, G, and B 
components, which are output on the PD[7:0], PD[15:8], and 
PD[23: 16] pins, respectively. 

This command affects the encoding of the border color selected using 
the SetBorderO macro command (see page 11-30); the Cr and Cb com­
ponents of the border color must be equal if the color-space converter is 
disabled. 
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The SetColorModeO command must be used to enable and disable the 
CL450's color-space converter because the microapplication initializes 
the VID_selmode, VID_sela, and VID_selb registers when execution 
begins, and because these registers cannot be accessed by the host while 
the microapplication is executing. 
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SetlnterruptMaskO 

Format: 
Priority: 
Category: 

Syntax: 

SetlnterruptMask(maskj 
Low 
Set-type 

HMEM[O] 

HMEM[l] 

HMEM[2] 

HMEM[3] 

HMEM[4] 

SetlnterruptMask 

mask 

Ox0104 

bits[15:12] = 0 
bits[11 :0] = interrupt enable bits 

OxOOOO 

OxOOOO 

OxOOOO 

The SetlnterruptMaskO macro command is used to enable and disable 
CL450 interrupts to the host. Each bit in the argument to this command 
is either reserved or corresponds to a logical interrupt which the CL450 
can produce. The assignment of mask bits is given in Table 11-6. 

Table 11-6 Mask Bit Assignments 

Mask Interrupt Category Event Page 
Bit' Name 

10 ROY Display-time Ready for data 12-22 

5 END-D sequence_end_codefound 12-15 

0 ERR Bitstream data error 12-17 

6 PIC-D Decode-time New picture decoded 12-20 

9 SEQ-D sequence_header_codefound 12-25 

11 SCN Picture decode complete in SCAN state 12-24 

8 UNO Bitstream buffer underflow error 12-27 

4 END-V Last picture display before sequen- 12-16 
ce_end_code 

2 GOP VSYNC First I-picture display after group_ - 12-19 
start_code 

1 PIC-V New picture display 12-21 

3 SEQ-V First I-picture display after sequence_- 12-26 
header_code 

1. Interrupt bits 7 and 12-15 are reserved and must be written with zero only. 
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Argument bits which are reserved must always be 0 when the SetInter­
ruptMaskO command is issued or indeterminate behavior will result. 

A new mask value does not take effect until the SetInterruptMaskO 
command is executed (not accepted), and controls events only at the 
time the microapplication internally recognizes interrupt events. Sever­
al interrupts are delayed between the time when the interrupt event is 
recognized and the time when the interrupt is issued to the host. (See the 
rules governing command latency in Section 11.4.) 

In the case in which the host is enabling new interrupts with SetInter­
ruptMaskO, interrupt events which occur between the time the com­
mand is accepted and the time it is executed are not recognized, and 
therefore no corresponding interrupts are produced. 

In the case in which the host disables a previously enabled interrupt, the 
micro application issues interrupts for any events which are recognized 
before SetInterruptMaskO is executed, even those which are not issued 
immediately after being recognized. This case is discussed more fully 
in Chapter 12, Interrupts. 
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Format: 
Priority: 
Category: 

Syntax: 

SetThreshold(level) 
Low 
Set-type 

HMEM[O] 

HMEM[1] 

HMEM[2] 

HMEM[3] 

HMEM[4] 

SetThreshold Ox0103 

level bits[15:0] = bitstream buffer emptiness, in bytes 

OxOOOO 

OxOOOO 

OxOOOO 

The SetThresholdO macro command is used to specify the minimum 
number of bytes that must be empty in the DRAM bitstream buffer to 
cause the CL450 to issue the RDY interrupt (see page 12-22). The bit­
stream buffer threshold is checked when a new value for Buffer Fullness 
Status (HMEM[Oxb]) is automatically computed. 

The level argument is a 16-bit integer that specifies the number of empty 
bytes that must be exceeded to cause the generation of the RDY inter­
rupt. Level must be a value (in bytes) less than the size of the bitstream 
buffer. The default value of level is 4096 bytes, so that the CL450 will 
produce RDY interrupts as long as there are more than 4096 empty 
bytes in the bitstream buffer and the other conditions necessary for the 
production of the RD Y interrupt remain true. 

The computation of the contents of the bitstream buffer which is com­
pared against level is accurate to ±32 bytes (see page 11-19). However, 
the fullness of the bitstream buffer is only checked following approxi­
mately every eight active scan lines displayed, so the bitstream buffer 
may become considerably more "empty" before an interrupt is pro­
duced. (For a more detailed description of the timing with which buffer 
fullness is recomputed, see Section 12.1.1, Display-time Interrupt.) 
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Typically, a level value which is slightly less than the intended burst 
transfer size (possibly a mUltiple of the nominal average packet size) 
would be used. Such values range from below 2048 to below 10240, but 
level must be less than the size of the bitstream buffer and greater than 
255. 

Note that the internal variable which is used to generate the RDY inter­
rupt is changed when this command is executed, not issued. If level is 
changed dynamically, the host must be aware of the latency between the 
CL450 accepting a SetThresholdO command and the time at which it is 
executed. Also, once the command is executed, it affects thefuture gen­
eration of the RDY interrupt. If an RDY interrupt is already pending 
when this command is issued, it will not be cleared by the CL450. 
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SetVideoFormat() 

Format: 
Priority: 
Category: 

SetVideoFormat (format) 
Low 
Set-type 

Syntax: HMEM[O] 

HMEM[l] 

SetVideoFormat OxOl05 

HMEM[2] 

HMEM[3] 

HMEM[4] 

format bits[15:3] = 0 
bits[2:0] = 3 (PAL) or 4 (NTSC) only 

OxOOOO 

OxOOOO 

OxOOOO 

The SetVideoFormatO macro command is used to configure the output 
resolution and timing of the CL450 's video bus. Values 3 and 4 of the 
format argument correspond to PAL and NTSC resolution and timing 
values, respectively. The quantities which are set by this command are 
given in Table 11-7. 

Table 11-7 Video Format Summary 

Parameter1 

Maximum Horizontal Resolution 

Maximum Vertical Resolution 

Nominal VSYNC Frequency 

3 (PAL) Value 

352 pixels 

288 pixels 

50 Hz 

4 (NTSC) Value 

352 pixels 

240 pixels 

60 Hz 

1. All resolutions in this table are given in MPEG source pixels, notthe unsampled (inter­
polated) output pixels. 

The resolution values are used by the CL450 when SetWindowO and 
SetBorderO commands are executed (see page 11-42 and page 11-30, 
respectively) or when new sequence-layer parameters are processed 
(see Section 14.1.1, Sequence Variable Group). The VSYNC frequency 
is used in conjunction with the picture_rate sequence-layer pa­
rameter to determine if frame rate conversion must be performed (see 
Section 15.1, Frame Rate Conversion). 
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The new VSYNC frequency takes effect immediately after the com­
mand is executed. However, if auto-sizing (see SetWindowO on 
page 11-42) or auto-centering (see SetBorderO on page 11-30) are be­
ing used, then SetBorderO and/or SetWindowO must be explicitly exe­
cuted by the host, or new sequence header information processed, for 
the new display resolution to take effect. 
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SetWindow() 

Format: 
Priority: 
Category: 

Syntax: 

SetWindow (x Offset, yOffset, width, height) 
Low 
Set-type 

HMEM[O] 

HMEM[l] 

HMEM[2] 

HMEM[3] 

HMEM[4] 

SetWindow 

xOffset 

yOffset 

width 

height 

Ox0406 

bit[15] = 0 
bits[14:0] = horizontal offset of output window 
start from picture start 1 

bit[15] = 0 
bits[14:0] = vertical offset of output window 
start from picture start 

bit[15] = 0 
bits[14:0] = horizontal size of output window 

bit[15] = 0 
bits[14:0] = vertical size of output window 

1.See Table 11-8 for argument units. 

The SetWindowO macro command is used in conjunction with SetBor­
derO (see page 11-30) to determine the portion of the decoded image 
that the CL450 displays in the video window. 

Figure 11-9 shows the relationship of this command's four arguments to 
the configuration of the CL450's display output. Note that the quantities 
ieftBorder, topBorder, rBorder, and gbBorder shown in the figure 
are the arguments of the SetBorderO command. 

The width and height arguments are encoded specially, so that a value 
of 0 in either causes the CL450 to automatically set the corresponding 
parameter from the _8 i z e fields in the sequence-layer parameters (i.e., 
the output window becomes the full size of the decompressed picture). 
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Figure 11-9 Video Display Configuration - SetWindowO 

leftBorder 

The host must ensure that the combination of the arguments to this com­
mand does not cause areas outside of the decoded picture to be dis­
played. If the host provides arguments which specify that part of the 
output window falls outside of the decoded picture, then indeterminate 
data will appear in that portion of the output window in the video dis­
play. To avoid this occurrence, use argument values less than or equal to 
the maximums given in Table 11-8. 

The arguments to SetWindowO take effect upon the first active VSYNC 
edge after the command has executed. 

Video Display 

filled with 
rBorder and 

gbBorder 
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Table 11-8 SetWindow() Argument Restrictions 

Argument Unit 

xOffset 1 source pixel 

yOffset 1 source pixel 

width 1 display pixel 

height 1 source pixel 

Recommended Maximum Value 

horizontal_size-1 

vertical_size -1 

Smallest of: 

D 2 * (horizontal_size - xOffset) 

D 704 

Smallest of: 

D vertical_size - yOffset 

D Maximum Vertical Resolution, see Table 11-7 

Note that the arguments to the SetWindowO command use units of one 
source pixel for offsets within the decoded picture and for all vertical 
units, and one display pixel (half a source pixel) for the horizontal di­
mension of the video display, as shown in Table 11-8. Pixel dimension­
ing is done this way because each pixel in the decoded picture (source 
pixel) is horizontally interpolated upon display to provide two display 
pixels. Thus, the xOffset within the picture IS in source pixels (pre-in­
terpolation), while the left display border and the width of the output 
window are in display pixels (post-interpolation). 
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SingleStep() 

Format: SingleStep() 
Priority: Low 
Category: Play-type 

Syntax: HMEM[O] SingleStep OxOOOb 

HMEM[1] OxOOOO 

HMEM[2] OxOOOO 

HMEM[3] OxOOOO 

HMEM[4] OxOOOO 

When the SingleStepO macro command is executed, the microapplica­
tion enters the STEP state, possibly passing through the PLAY-SETUP 
and PLAY states. While in the STEP state, a single picture from the in­
coming bitstream is decoded and posted for display. 

Note: Audio/video synchronization has no effect on the tim­
ing of picture decoding which occurs in the STEP state, re­
gardless of whether or not NewPacket() commands are being 
used. 

Once decoding is complete, the microapplication automatically transi­
tions to the PAUSE state (see the PauseO command, page 11-25). 

Note that the picture most recently decoded is not necessarily the one 
which is displayed while in the PAUSE state. Because of the picture re­
ordering which is performed after 1- and P-pictures are posted for dis­
play, the picture which the SingleStepO command caused to be decoded 
can be stored within the CL450's DRAM, and another picture (earlier 
in the display order) can be displayed instead. This situation is particu­
larly apparent when SingleStepO is issued while in the IDLE command 
state. In this. case (for most bitstreams), two pictures must be decoded 
before the output window is unblanked and the first picture decoded is 
displayed. Typically, one picture will be decoded in the PLAY state, and 
the other one in the STILL state. 

Macro Commands 11-45 



SlowMotion() 

Format: 
Priority: 
Category: 

Syntax: 

SlowMotion(speed) 
Low 
Play-type 

HMEM[O] SlowMotion 

HMEM[1] speed 

HMEM[2] 

HMEM[3] 

HMEM[4] 

Ox0109 

bits[15:4] = 0 
bits[3:0] = 2 through 8, only 

OxOOOO 

OxOOOO 

OxOOOO 

When the SlowMotionO macro command is executed, the microappli­
cation enters the SLOW state, possibly passing through the PLAY-SET­
UP and PLAY states. In the SLOW state, pictures are decoded and 
displayed at a slower rate than prescribed by the pic t ure_r ate pa­
rameter contained within the bitstream. The decode and display rate is: 

picture_rate X 
speed 

where the speed argument to the SlowMotionO command ranges from 
2 through 8. This command may be issued to change the display rate as 
frequently as desired. 

Although the host must always ensure that neither the bitstream buffer 
nor its own buffers overflow, special attention must be given here since 
the CL450 s rate of coded data consumption drops while decoding is 
performed in the SLOW state. Audio/video synchronization has no ef­
fect on the rate of picture decoding while in the SLOW state. 

If synchronization has been performed prior to the execution of the 
SlowMotionO command (see Chapter 13, Audio/video Synchroniza­
tion), synchronization may be terminated using the ResetO macro com­
mand (see page 11-27) prior to SlowMotionO. Alternately, the 
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SlowMotion() 

AccessSCRO macro command and/or the FlushBitstreamO macro com­
mand may be used to correct the value of the SCR counter before tran­
sitioning back to the PLAY state. 

When in the SLOW state, every decoded picture is displayed for two 
times the speed argument field times. This function overrides both the 
microapplication frame rate transcoding mechanism and audio/video 
synchronization. 

Normally, the number of fields for which each decoded picture is dis­
played varies from I to 3 and is determined dynamically by the ratio of 
the pic t ure_ra t e coded in the bitstream and the current video out­
put format, controlled by the SetVideoFormatO macro command. 
While in the SLOW state, this comparison is disregarded, and the nom­
inal value of 2 field periods per picture for normal rate display is as­
sumed. Because of this, the actual play rate while in the SLOW state is 
derived from multiplying the speed argument times one of the values 
from Table 11-9. 

Table 11-9 Picture Decode Play Rate while in SLOW State 

Format picture_rate Scale Factor 

NTSC (30 Hz) 30Hz / 29.97Hz 1.00 

NTSC (30 Hz) 25 Hz .83 

NTSC (30 Hz) 24 Hz / 23.97 Hz 0.80 

PAL (25 Hz) 30 Hz / 29.97 Hz 1.20 

PAL (25 Hz) 25 Hz 1.00 

PAL (25 Hz) 24 Hz / 23.97 Hz 0.96 

For example, requesting a speed of 4 using SlowMotionO when display­
ing a bitstream coded at 25 Hz on a 30 Hz display will actually play at 
0.83 x 4, or 3.32 times slower than normal, rather than 4.00 times slow­
er. 
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12 
Interrupts 

The 11 logical host interrupts which the CL450 microapplication gen­
erates are produced within the micro application by polling internal con­
ditions while the decoding and display processes execute. Because of 
this, the times at which interrupts can be produced (the domain for in­
terrupts) is restricted. For example, the CL450 microapplication will not 
produce new interrupts in any of the following circumstances: 

D The microapplication is not executing (CPU_control[O] == 0). 

D The microapplication is in the IDLE state. 

D The SetInterruptMaskO macro command has executed with a 
mask argument of O. 

D The Interrupt Status location of HMEM is non-zero. 

Note: Although new interrupts (INTpin transitioning to low) 
cannot be generated during any of these conditions, it is pos­
sible for the INT pin to remain active during these condi­
tions. Once the INT pin is active, it will remain active until 
forced inactive by the host (see Section 12.2, Interrupt Hand-
shaking). 



Interrupt Types 

12.1 
Interrupt Types 

SetInterruptMaskO, used to enable and disable CL450 interrupts to the 
host, is a low-priority macro command. Rules given in Chapter 11, 
Macro Commands, explain how to determine the timing delay before a 
low-priority command is executed. Note that new mask bits won't be 
effective until SetInterruptMaskO is executed, not just accepted. 

Interrupts are divided into the following three separate classes based on 
when they are reported to the host: 

D Display-time Interrupt 

D Decode-time Interrupts 

D VSYNC Interrupts 

Each interrupt is referenced by the event which causes it in Table 12-1 
below, and is described in detail in Section 12.3. 

Table 12-1 CL450 Interrupt Summary 

Category Interrupt Event Mask 
Name Bit1 

Display-time ROY Ready for data 10 

END-D sequence_end_code found 5 

ERR Bitstream data error 0 

Decode-time PIC-D New picture decoded 6 

SEO-D sequence_header_code found 9 

SCN Picture decode complete in SCAN state 11 

UNO Bitstream buffer underflow error 8 

END-V Last picture display before sequen- 4 
ce_end_code 

VSYNC GOP First I-picture display after group_ - 2 
start_code 

PIC-V New picture display 1 

SEQ-V First I-picture display after sequence_ - 3 
header_code 

1. Interrupt bits 7 and 12-15 are undefined and must be setto zero only. 

Note: The CL450's internal CPU can also receive interrupts 
from on-chip sources. The host has no control over these in­
terrupts, and they should not be confused with the host inter­
rupts generated by the CL450. 

Page 
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12-20 

12-25 

12-24 

12-27 

12-16 

12-19 

12-21 

12-26 
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12.1.1 Display-time Interrupt 
The single Display-time interrupt may be issued any time the microap­
plication is in a command processing state other than IDLE and PLAY­
SETUP. In all cases, the event which causes a Display-time interrupt to 
be issued is the active (falling) edge of the HSYNC input to the CL450. 
Which HSYNCs can produce Display-time interrupts is determined dif­
ferently in each of the three different sections of the field display 
(VSYNC) period: the top border, vertical active region, and bottom bor­
der. Figure 12-1 shows these three sections in typical NTSC vs. PAL 
display environments. 

NTSC Display PAL Display 

VSYNC VSYNC 

~ top Border ~ topBorder Top 
border 

height I height 
Vertical 

Field active 
region period 

Bottom 
border 

Figure 12-1 VSVNC Field Period Display for NTSC vs. PAL Environments 

Within the top border, Display-time interrupts may be generated rough­
ly every eighth HSYNC. Within the vertical active region, Display-time 
interrupts may be generated at the end of each block row displayed, as 
shown in Figure 12-2. That is, after the display of the last scan line of a 
decoded block row, the microapplication checks to see if the Display­
time conditions are true. This check is done on block row boundaries, 
which means after the last (eighth, or seventh if counting from 0) scan 
line of one block row and before the first scan line of the next within the 
decoded picture. 

Interrupt Types 

Top 
border 

Vertical 
active 
region 

Bottom 
border 

Field 
period 
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Decoded Pictu re 
Video Display 

block row (8 scans) 
0 
7 

8 
15 

block row (8 scans) 

topSorde, ~ VSYNC 

1 
- ~ yOffset = 12 

15 
block row (8 scans) 1 

2 
6 
3 23 

height 
31 

height · · · 
block row (8 scans) 

1, 
~ , 

/ 
block row (8 scans) 

l ",ndka,es scan line afte, which 

, block cow 18 scans) j 
Indicates block row boundary an interrupt may be produced 

Figure 12-2 Display-time Interrupt Generation 

Top Border 

The internal counter used to determine when Display-time interrupts are 
to be produced is initialized at the active edge of VSYNC with the top­
Border value. Subsequently, each time an active HSYNC occurs, the 
counter is decremented, and if the least-significant three bits of the re­
sult are 0, then a Display-time interrupt may be produced. Thus the first 
possible time a Display-time interrupt can be produced in the top border 
will be 

(topBorder & 7) + I 

active HSYNC edges after active VSYNC. The last possible Display­
time interrupt in the top border will always occur on the HSYNC edge 
which marks the end of the last top border scan line and the beginning 
of the first scan line of the vertical active region. 

The block row boundary within the decoded picture which causes the 
first possible interrupt is dependent only on yOffset of the SetWindowO 
macro command. 
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Because of selected yOffset, the block row boundaries of the decoded 
picture are not necessarily the same as scan line numbers within the vid­
eo display. In fact, the output window could begin in the middle of a de­
coded picture block row as in the case of yOffset=12 of Figure 12-2, 
which causes the first possible interrupt to be delayed from the top of 
the output window by "8-(yOffset%8)" (4) scan lines. (Note that scan 
line numbers start at 0.) 

Bottom Border 

Within the bottom border, the number and location of opportunities for 
issuing Display-time interrupts depends on the height of the active dis­
play region and the current video display mode. As in the top border re­
gion, an internal counter is used to determine when and how many 
Display-time interrupts may be issued during the bottom border. This 
counter is initalized on the active HSYNC edge which separates the last 
scan line of the vertical active period from the first bottom border scan 
line, with the value: 

255 - (topBorder + height) 

If the initial value is less than or equal to 0, then no Display-time inter­
rupts will be generated during bottom border. Otherwise, the counter is 
decremented on subsequent active HSYNC edges, and interrupts may 
be produced each time the least significant three bits are O. The last Dis­
play-time interrupt during bottom border will occur when the counter 
decrements to 0, after which no Display-time interrupts will be generat­
ed until an active VSYNC edge is detected and the sequence begins 
again. 

Note: For proper operation of the video display, the active 
VSYNC edge must occur after this counter decrements to O. 
This creates an effective minimum field period requirement. 

When the video display is blanked, either because the first picture after 
leaving the IDLE state has not yet been displayed or due to the Set­
BlankO macro command, the entire field period is treated as if it were 
the bottom border and the sum of the height and topBorder parameters 
was 15. In this case, there will be exactly 30 possibilities for Display­
time interrupts to be issued (assuming a normal field period is used), and 

Interrupt Types 
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the first opportunity will occur 8 active HSYNC edges after each active 
VSYNC edge. 

12.1.2 Decode-time Interrupts 
Unlike the Display-time interrupt, which the microapplication periodi­
cally polls for, Decode-time interrupts are issued every time the appro­
priate bitstream element is decoded, if the interrupt is enabled. Thus, 
Decode-time interrupts are synchronous with picture decoding (which 
occurs in advance of picture display) and they may be issued as soon as 
the microapplication leaves the PLAY-SETUP state, even if the output 
window is not yet unblanked. 

Note: There may be a delay between the time that the bit­
stream construct which could cause a Decode-time interrupt 
event enters the CL450 's host bus and the time when the in­
terrupt occurs. This delay is due to the bitstream being stored 
in the CL450's internal bitstream buffer before decoding. 

12.1.3VSYNC Interrupts 
VSYNC interrupts are issued following the active (rising) edge of 
VSYNC which begins the top border time of a new display field. 
VSYNC interrupts are only issued at the beginning of those fields which 
are the first display of a newly-decoded picture. VSYNC interrupts are 
not issued at the start of field displays for pictures which have already 
been displayed once, including the second field display of a still picture, 
even though the pixel values being displayed have not been displayed 
before. 

Figure 12-3 shows an example of the relationship between the VSYNC 
pulses which divide field periods, the pictures which are displayed, and 
the times when VSYNC interrupts may be produced. Each box shown 
represents the display of a video field. The boxes are labeled using the 
standard MPEG nomenclature in which "B 16" indicates that the picture 
is type B (of I, P, and B) and number 16 (in display order) in a bitstream. 
In addition, each box also contains a label of the form "fn" in which n 
indicates the number of times that a field containing that picture has al­
ready been displayed. 

Figure 12-3 shows a bitstream with api ct ure_ra te of25 Hz being 
displayed at a nominal picture rate of 30 Hz (field rate 60 Hz), with pic­
ture B 16 therefore displayed for three field periods due to pull-down. 
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VSYNC interrupts are not produced while the output window is 
blanked because newly decoded pictures are not being displayed. 

VSYNC n n n n n 

~ ~EJ 6 ~[g ~ ~ 
VSYNC interrupts VSYNC interrupts 
may be produced may be produced 

Figure 12-3 VSVNC Interrupt Generation 

All interrupts cause the INT pin to be asserted. To determine which in­
terrupt(s) has occurred, the Interrupt Status location in HMEM is writ­
ten by the CL450 at the same time the INT pin is asserted. 

Each bit in Interrupt Status corresponds to a different logical interrupt 
source. These bits are allocated in the same order used for the mask ar­
gument to the SetlnterruptMaskO macro command, which is given in 
Table 12-1, CL450 Interrupt Summary. 

The host may read the Interrupt Status location at any time to determine 
which interrupts, if any, are pending. The host may also write to this lo­
cation to clear pending interrupts. However, writes to Interrupt Status 
must only occur as specified in this section. 

The same handshaking protocol is used for all CL450 interrupts, regard­
less of the logical interrupt source. When the CL450 issues an interrupt 
to the host, it makes the INT pin active (low) and sets one or more bits 
in the Interrupt Status location of HMEM. 

Because there is no semaphore to protect Interrupt Status from simulta­
neous access by both the host and the microapplication, the protocol for 
issuing interrupts is structured such that simultaneous access cannot oc­
cur for the following two reasons: 

o The microapplication only writes Interrupt Status when it is O. 

o The host is only allowed to write Interrupt Status when it is not O. 

Once the host writes a 0 to Interrupt Status, the host cannot write to In­
terrupt Status again (even a 0) until the microapplication sets one or 

Interrupt Handshaking 

n 

~[g 
VSYNC interrupts 
may be produced 

12.2 
Interrupt 
Handshaking 
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more bits. If the host violates this protocol, then interrupts may be lost 
or spuriously created. 

Excessive latency by the host in clearing the active bites) within Inter­
rupt Status could also prevent the microapplication from issuing subse­
quent interrupts as distinct events. 

12.2.1 Microapplication Behavior 
When an interrupt can be produced, the microapplication polls Interrupt 
Status. If Interrupt Status is 0, then all pending interrupts, if any, are 
posted to Interrupt Status and the INT pin is activated, if appropriate. If 
Interrupt Status is non-zero, then the new interrupts, if any, will be 
ORed into the microapplication's internal variable for storing pending 
interrupts. However, the microapplication will not re-check Interrupt 
Status until the next occasion in which it might post an interrupt, even 
if interrupts have been queued internally. 

Interrupt Status is checked and queued interrupts potentially issued ev­
ery time the timing for Display-time, VSYNC, or Decode-time inter­
rupts is satisfied. 

Note: If HMEM[Interrupt Status] is non-zero for an extend­
ed period, then multiple interrupt events of the same type 
may be ORed into the microapplication's internal variable 
for storing new interrupts, causing events to be lost. 

For example, assume that when the microapplication is in the PLAY 
state and in the midst of decoding and displaying a video sequence, the 
microapplication then decodes a new sequence_header_code. 
When this occurs, the current interrupt mask is checked to determine if 
the corresponding interrupt (SEQ-D) is enabled. If it is, the microappli­
cation checks the current state of Interrupt Status. If Interrupt Status is 
0, then the SEQ-D interrupt and any other already queued interrupts will 
be posted to Interrupt Status. If Interrupt Status is non-zero, then the 
SEQ-D interrupt is queued internally, and the next occasion when the 
microapplication checks Interrupt Status will depend on the other inter­
rupt sources. If SEQ-D was disabled in mask, but there were queued in­
terrupts, the queued interrupts would still be posted. 
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The microapplication's half of the interrupt handshaking protocol is 
shown in the pseudocode example of the "MaybeIssueInt" function of 
Figure 12-4. 

void MaybeIssueInt(unsigned short newInts) 

static unsigned short pendingInts= 0; 

pendingIntsl= newInts; 

if (HMEM[Interrupt Status] == 0) { 

HMEM[Interrupt Status]= pendingInts; 

INT pin= LOW; 

pendingInts= 0; 

Figure 12-4 CL450 Interrupt Posting Procedure (pseudocode 

The decision flow of the CL450 posting procedure of Figure 12-4 is 
shown from a block diagram viewpoint in Figure 12-5. Every time the 
microapplication reaches a point where it could issue a Display-time, 
Decode-time, or VSYNC interrupt, it performs equivalent operations. 

Interrupt Handshaking 
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VSYNC No 
Interrupt? 

Set bit(s) in 
pendinglnts 

Decoded line 8n 
has been dis­
played or 8th 

HS'Yf\JC received 

Display-time 
Interrupt? 

Yes 

Set bit(s) in 
pendinglnts 

No 

No 

o Data error detected while decoding 

o Bitstream buffer empty while decoding 

o Completed picture decoding in SCAN state 

o Decoded a sequence_header_code 

o Decoded new picture 

Decode-time 
No 

Interrupt? 

Yes 

Set bit(s) in 
pendinglnts 

HMEM[Oxa] = 0>---------, 

HMEM[Oxa] = pendinglnts; 

pendinglnts = 0 

TNT = LOW 

(HOST _control[7] = 0) 

Done 

Figure 12-5 CL450 Interrupt Posting Procedure (block diagram) 
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12.2.2 Host Behavior 
Each time the microapplication issues one or more new interrupts to the 
host, it always sets the corresponding bites) in Interrupt Status and 
makes the INT pin active. The microapplication performs these actions 
inseparably. However, the times at which the host may clear the Inter­
rupt Status location of HMEM and make the INT pin inactive may vary 
greatly from each other. 

For example, in a system in which the automatic interrupt clear feature 
is used (enabled by HOST_control[15]), the INT pin will become inac­
tive as soon as the hardware interrupt acknowledge cycle occurs. But 
even though the hardware interrupt acknowledge has occurred, the mi­
croapplication will not issue another interrupt until the host clears Inter­
rupt Status. 

Alternately, since many hardware interrupt controllers cannot be recon­
figured to receive a new interrupt until the interrupt signal has become 
inactive, the host may clear Interrupt Status (telling the CL450 that a 
new interrupt can be produced) but not deactivate INT or re-initialize 
the host's interrupt controller. In this case, the microapplication might 
issue another interrupt which would not be recognized by the host pro­
cessor, possibly resulting in lost interrupts or a deadlock in which it ap­
pears that no interrupts are being generated. 

Because the host typically needs to (1) clear Interrupt Status as soon as 
possible to minimize the interrupt latency added to the system by the 
host and (2) service multiple logical interrupts received with the same 
physical interrupt, it follows an interrupt handling procedure somewhat 
more complicated than that of the microapplication. 

Figure 12-6, for example, shows sample pseudocode for a host interrupt 
service routine for the CL450, which minimizes the amount of elapsed 
time between an interrupt being issued by the micro application and In­
terrupt Status being cleared. However, once entered, this routine holds 
the processor and does not allow any other interrupts to be serviced or 
any non-interrupt code to execute until all CL450 interrupts, even those 
issued while earlier interrupts are being processed, have been pro­
cessed. 

Interrupt Handshaking 
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INTERRUPT_SERVICE_ROUTINE_TYPE isr(void) 

static unsigned int unservicedInts= 0; 
unsigned int newInts; 
unsigned short temp; 

do 

if (TNT pin LOW) { 

temp= HOST_control; 
temp&= OxC001; 
templ= Ox80; 
HOST_control= temp; 

newInts= PMEM[Interrupt Status]; 
HMEM[Interrupt Status]= 0; 

if (newInts & unservicedInts) 
handle error condition; 

unservicedIntsl= newInts; 
switch (unservicedInts) { 

/* is new int pending? Or are 
* we servicing another logical 
* source from last physical int? 
*/ 

/* TNT pin = HIGH */ 

/* RESERVED bits must be written 
* with 0 regardless of value read 
*/ 

/* At this point the microcode is 
* able to issue another interrupt 
*/ 

/* we've received a new int and 

* still haven't serviced the last 
* one of the same type 
*/ 

/* might be a series of if-else's instead. Arrange cases so 
* that highest priority interrupt is checked first and 
* process one interrupt only for each pass through the switch. 
*/ 

/* For each pass: */ 

perform interrupt-specific processing; 
clear corresponding bit in unservicedInts; 

while (unservicedInts ! = 0 I I 
TNT pin == LOW); 

/* got mUltiple logical ints */ 

/* CL450 issued new physical int 
* while processing last int */ 

/* no more interrupts to process */ 

configure host's hardware interrupt controller to receive new ints; 

Figure 12-6 
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If the behavior shown in Figure 12-6 is undesirable (perhaps because 
there are higher-priority interrupt sources in the system), then an ap­
proach which takes advantage of the CL450's internal interrupt queuing 
can be used, as shown in Figure 12-7. This routine processes only one 
logical interrupt each time it is entered and uses Interrupt Status to hold 
unprocessed logical interrupts. 

Note: Figure 12-6 and Figure 12-7 should be treated as ex­
amples only; the optimal interrupt handling procedure for a 
given CL450-based system will probably be differentfrom ei­
ther of these. 

In addition to initializing the interrupt controller so a new CL450 inter­
rupt can be received (if the interrupt controller is edge sensitive), the 
host must use the HOST_control register to cause an inactive pulse on 
the CL450's INT pin (simulating a new physical interrupt) immediately 
before leaving the routine. However, with this method, it cannot be de­
termined if more than one of each logical interrupt has occurred before 
being serviced. 

In general, the host must ensure that all interrupts produced by the 
CL450 are produced when the rest of the system is ready to handle 
them. This responsibility not only includes configuration of the host in­
terrupt controller, but writing proper values to HOST_control[15: 14] 
and HOST_intvecw. 

Note: It is impossible to tell which values will be used if the 
host writes to one of these registers "simultaneously" with 
the microapplication issuing a new interrupt. In general, 
these registers should either be configured correctly as part 
of system initialization, or SetInterruptMask() should be 
used to disable all CL450 interrupts while the registers are 
being modified. 

Interrupt Handshaking 
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Interrupt Listing 

INTERRUPT_SERVICE_ROUTINE_TYPE isr(void) 

unsigned int newInts; 

unsigned short temp; 

newInts= HMEM[Interrupt Status]; 

switch (newInts) { 

/* might be a series of if-else's instead. Arrange cases so 

* that highest priority interrupt is checked first and 

* process one interrupt only for each pass through the switch. 
*/ 

/* For each pass: */ 

perform interrupt-specific processing; 

clear corresponding bit in newInts; 

HMEM[Interrupt Status]= newInts; /* put back ones we didn't process 

*/ 

configure host's hardware interrupt controller to receive new ints; 

if (! newInts) { 

temp= HOST_control; 

temp&= OxC001; 
templ= Ox80; 
HOST_control= temp; 

else 

maybe create TNT pulse; 

Figure 12-7 

/* TNT pin = HIGH */ 

/* see text */ 

Host Interrupt Handler Example 2 

12.3 
Interrupt Listing 

This section gives a detailed description of the CL450 Display-time, 
Decode-time, and VSYNC interrupts listed together in alphabetical or­
der. 
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Event: sequence_end_code found 
Category: Decode-time 
Mask Bit: 5 

An END-D interrupt event occurs if both of the following are true: 

o A sequence_end_code is detected in the coded data stream 
while decoding is being performed. 

o The END-D interrupt is enabled (mask[5] of the last Setlnterrupt-
MaskO macro command executed equals 1). 

END-D interrupts are issued to the host immediately after the s e­
quence_end_code is decoded. 

When an END-D event occurs, the microapplication performs the oper­
ations shown in Figure 12-4 and either issues an END-D interrupt or 
places an END-D interrupt in the pending interrupt queue. 

This interrupt can be used to warn the host of (1) a transition between 
video sequences, or (2) the end of a video stream (if the host knows how 
many sequences are in the stream). In particular, each time as equen­
ce_end_code is decoded, the microapplication returns the sequence 
parameters in DRAM to the default values unless SeqNoDef is 1 (see 
Section 14.1.1, Sequence Variable Group). 

Note: The END-V interrupt is also caused by detection of a 
sequence_end_code but is not issued until the VSYNC 
prior to the display of the last picture (in display order) 
found in the bitstream before the sequence_end_ code. 
(See Section 12.1.3, VSYNC Interrupts, and END-V on page 
12-16.) 

ENO-O 
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END-V Event: Last picture display before s equenc e_end_c ode 
Category: VSYN C 
Mask Bit: 4 

The END-V interrupt event occurs at the rising edge of VSYNC prior 
to the first display field of the last picture (in display order) decoded pri­
or to the detection of a s e qu e n c e _ en d_ cod e . Each time an END-V 
event occurs, the microapplication performs the operations shown in 
Figure 12-4 and either issues an END-V interrupt or places an END-V 
interrupt in the pending interrupt queue. 

An END-V interrupt event occurs if all of the following are true: 

D The timing for VSYNC interrupts is satisfied (see Section 12.1.3, 
VSYNC Interrupts). 

D A sequence_end_code has been decoded. 

D The picture which will be displayed in the following field time is 
the last picture (in display order) in the sequence terminated by the 
sequence_end_code. 

D The END-V interrupt is enabled (mask[ 4] of the last SetInterrupt­
MaskO macro command executed equals 1). 

Note: The END-D interrupt is also caused by defection of a 
sequence_end_code, but is issued as soon as the de­
code process detects it. (See Section 12.1.2, Decode-time In­
terrupts, and END-D on page 12-15.) 
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Event: Bitstream Data Error 
Category: Decode-time 
Mask Bit: 0 

The ERR interrupt (bitstream data error) event occurs each time the de­
coding process detects one of the following errors in the coded data: 

o An MPEG sequence_error_code 

o Invalid variable-length codes 

o marker bi t 's with 0 values 

o Header fields with illegal values 

The decoding process does not detect dropped or incorrect bits unless 
they cause one of these detectable conditions, in which case this inter­
rupt may be used by the host to take the appropriate action (possibly ap­
plying high-level error concealment techniques), if any. 

When an ERR event occurs, the microapplication performs the opera­
tions shown in Figure 12-4 and either issues an ERR interrupt or places 
an ERR interrupt in the pending interrupt queue. 

An ERR interrupt event occurs if both of the following are true: 

o An error is detected in the coded data stream while decoding is be­
ing performed. 

o The ERR interrupt is enabled (mask[O] of the last SetInterrupt-
MaskO macro command executed equals 1). 

Not all data errors can be detected, and the portion of the bitstream be­
ing decoded when an error is detected will not necessarily be the portion 
containing the error. For example, a dropped bit may cause an erroneous 
VLC (variable-length code) to be detected considerably later in the bit­
stream. 

Typically, the microapplication's internal error concealment operates by 
continuing to display the nearest (in display order) correctly-decoded 
reference frame until it finds a portion of the bitstream that it can de­
code. When this is occurring, undecodable portions of the bitstream 
(typically B-pictures and sometimes P-pictures) are discarded at a rapid 
rate. Because of this, the bitstream buffer can underflow temporarily, 
which may cause an additional interrupt. 

In a system using audio/video synchronization, the bitstream buffer 
eventually returns to the correct fullness level because the synchroniza­
tion mechanism causes the microapplication to wait until the proper 
system time before decoding the next picture. Similarly, in a fixed bit-

ERR 
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ERR Event: Bitstream Data Error 
Category: Decode-time 
Mask Bit: 0 

rate system, the CL450's decode process will underflow until the data 
source provides valid data, at which point the CL450 will become re­
synchronized. 

If pictures are discarded due to error recovery in a variable bit-rate sys­
tem in which synchronization is not being performed, the microapplica­
tion resumes decoding and display as soon as a decodable picture is 
found, which effectively reduces the playing time of the current video 
sequence by the number of pictures discarded. If this reduction is unde­
sirable, the host should use the ERR interrupt and generate appropriate 
PauseO commands. 
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Name: First I-picture display after group_s tart_code 
Category: VSYN C 
Mask Bit: 2 

The GOP interrupt event occurs at the rising edge of VSYNC prior to 
the first display field of the first I-picture decoded following the detec­
tion of a group_start_code. Each time a GOP event occurs, the 
microapplication performs the operations shown in Figure 12-4 and ei­
ther issues a GOP interrupt or places a GOP interrupt in the pending in­
terrupt queue. 

The microapplication uses an internal flag to produce the GOP interrupt. 
This flag is cleared each time the microapplication reaches the IDLE 
state, the FlushBitstreamO command is executed, or a GOP interrupt 
event occurs. The flag is set each time a group_s t art_code is de­
coded. 

A GOP interrupt event occurs if all of the following are true: 

o The timing for VSYNC interrupts is satisfied (see Section 12.1.3, 
VSYNC Interrupts). 

o The picture to be displayed in the following field time is an I-pic­
ture which has not been previously displayed. 

o The GOP interrupt flag is set. 

o The GOP interrupt is enabled (mask[2] of the last Setlnterrupt-
MaskO macro command executed equals 1). 

A group of pictures can be decoded and displayed without a GOP inter­
rupt event occurring (if it contains only P- and B-pictures), but GOP in­
terrupt events cannot occur more often than group_s tart_codes. 

GOP 
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PIC-D Event: New Picture Decoded 
Category: Decode-time 
Mask Bit: 6 

The PIC-D interrupt (new picture decoded) event occurs each time all 
of the following are true: 

D A coded picture is detected in the coded data stream and complete­
ly decoded without error. 

D The PIC-D interrupt is enabled (mask[6] of the last SetInterrupt-
MaskO macro command executed equals 1). 

Each time a PIC-D event occurs, the microapplication performs the op­
erations shown in Figure 12-4 and either issues a PIC-D interrupt or 
places a PIC-D interrupt in the pending interrupt queue. 

The PIC-D interrupt is closely related to the PIC-V interrupt because 
both are produced by the processing of newly coded pictures. However, 
while the PIC-D and other Decode-time interrupts are issued to the host 
immediately after the entire picture is decoded, the PIC-V interrupt is 
produced by the detection ofapi c t ure_s tart_code and is not is­
sued until the VSYNC prior to the display of the picture found in the bit­
stream after the picture_start_code. (See Section 12.1.3, 
VSYNC Interrupts, and PIC-Von page 12-21.) 

The order in which PIC-D and PIC-V interrupts are issued depends on 
the type of picture being decoded. If an 1- or P-picture is decoded, then 
the entire picture is completely decoded before display starts, and PIC­
D precedes PIC-V. If a B-picture is being decoded, then display will be­
gin after only half of the picture is decoded, and PIC-V precedes PIC-D 
by approximately one field time. In addition, bitstream errors may cause 
PIC-V interrupts to be produced without a corresponding PIC-D (if an 
error occurs while decoding a B-picture) or vice versa (if an error occurs 
which causes a completely decoded reference frame never to be dis­
played). 
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Event: New picture display 
Category: VSYN C 
Mask Bit: 1 

The PIC-V interrupt (new picture display) event occurs at the rising 
edge of VSYNC prior to the first display field of a newly-decoded pic­
ture. Each time a PIC-V event occurs, the microapplication performs 
the operations shown in Figure 12-4 and either issues a PIC-V interrupt 
or places a PIC-V interrupt in the pending interrupt queue. 

A PIC-V interrupt event occurs if all of the following are true: 

o The timing for VSYNC interrupts is satisfied (see Section 12.1.3, 
VSYNC Interrupts). 

o The picture to be displayed in the following field time has not been 
previously displayed. 

o The PIC-V interrupt is enabled (mask [ 1] of the last SetInterrupt-
MaskO macro command executed equals 1). 

Note that the second field of a picture decoded using the DisplayStillO 
command (page 11-14) is not considered a "new I y -decoded picture ," 
even though the data from that field has not been previously displayed. 
In other words, only one PIC-V interrupt will be produced per Display­
StillO command. 

PIC-V 
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ROY Event: Ready for data 
Category: Display-time 
Mask Bit: 10 

The RDY interrupt (ready for data) event occurs when the number of 
empty bytes in the bitstream buffer in DRAM is greater than a given 
threshold value. It can be used by the host: 

o To indicate that more data needs to be sent to the CL450. 

o With a larger threshold, as a warning that bitstream buffer under-
flow is about to occur. 

Each time a RDY event occurs, the microapplication either issues a 
RDY interrupt or places a RDY interrupt in the pending interrupt queue 
(See Figure 12-4). 

A RDY interrupt event occurs when the following conditions are true: 

o The timing for the Display-time interrupt is satisfied (see Section 
12.1.1, Display-time Interrupt). 

o The number of free bytes in the bitstream buffer meets or exceeds 
the threshold argument to the most recently executed SetThresh­
oldO macro command. 

o The number of data bytes which have been delivered to the CL450 
since the last occurrence of the IDLE state or execution of the 
FlushBitstreamO command is greater than or equal to the sum of 
all the length arguments to all the NewPacketO commands which 
have been accepted in the same interval minus 6. That is: 

total bytes received > ( .~ length ) - 6 

o At least one NewPacketO macro command has been issued. 

o The RDY interrupt is enabled (mask[IO] of the last SetInterrupt-
MaskO macro command is set equal to 1). 

The interlock between NewPacketO commands and the production of 
RDY interrupts is provided to minimize the interrupt traffic to the host. 
The microapplication assumes that if the host has issued a NewPacketO 
command, it knows that the corresponding data must be sent to the 
CL450 and the host does not have to be interrupted. The -6 bias is pro­
vided so that the interrupt will be produced slightly before the current 
data transfer completes. 

Note: For the second condition listed, the RDY interrupt is 
sensitive to the buffer emptiness being above threshold (level 
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Event: Ready for data 
Category: Display-time 
Mask Bit: 10 

sensitive), not becoming above threshold (not edge sensi­
tive). This means that, once an RDY interrupt is produced, 
new RDY interrupts are produced each time a Display-time 
interrupt can be issued until the host takes steps to make one 
of the other required conditions false. 

Typical host systems which use the RDY interrupt issue one or more 
NewPacketO macro commands within the interrupt handler that re­
sponds to the RDY interrupt. This procedure prevents redundant RDY 
interrupts from being produced but allows the actual transfer of data (if 
DMA is not used) to occur outside the interrupt handler, improving the 
overall interrupt latency of the system. 

If the RDY interrupt is to be used by the host to control data transfers to 
the CL450, the host must ensure that the latency between the times 
when the micro application polls to determine if an RDY interrupt 
should be produced does not cause bitstream buffer underflow. 

ROY 

Interrupts 12-23 



seN Event: Picture decode complete in SCAN state 
Category: Decode-time 
Mask Bit: 11 

The SCN interrupt (picture decode complete in SCAN state, see 
page 11-28) event occurs each time the decoding process finishes de­
coding an I-picture in the SCAN state. This interrupt event also marks 
the automatic transition between the SCAN and PAUSE states. 

Each time an SCN event occurs, the micro application performs the op­
erations shown in Figure 12-4 and either issues an SCN interrupt or 
places an SCN interrupt in the pending interrupt queue. 

An SCN interrupt event occurs if all of the following are true: 

D The microapplication is in the SCAN state. 

D Decoding of an I-picture has completed. 

D The SCN interrupt is enabled (mask[11] of the last Setlnterrupt­
MaskO macro command executed equals 1). 

This interrupt can be used to inform the host when a new picture is 
available to be displayed. 
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Event: sequence_header_code found 
Category: Decode-time 
Mask Bit: 9 

The SEQ-D interrupt (sequence_header_code found) event oc­
curs each time the decoding process detects a s e qu e n c e _h e a d e r _ -
code in the coded data. Each time a SEQ-D event occurs, the 
microapplication performs the operations shown in Figure 12-4 and ei­
ther issues an SEQ-D interrupt or places an SEQ-D interrupt in the 
pending interrupt queue. SEQ-D interrupts are issued to the host imme­
diately after the code is decoded. 

An SEQ-D interrupt event occurs if all of the following are true: 

D A sequence_header _code is detected in the coded data 
stream while decoding is being performed. 

D The SEQ-D interrupt is enabled (mask[9] of the last Setlnterrupt­
MaskO macro command executed equals 1). 

This interrupt can be used: 

D To warn the host of a transition into a new video sequence. 

D At the beginning of decode of the first sequence. 

D Any time that the decode parameters may have changed. 

When as e qu e n c e _h e a d e r _ cod e is decoded, the microapplication 
writes the sequence parameters in DRAM with the values contained in 
the bitstream unless SeqWP is 1. (See Section 14.1.1 on page 14-2, Se­
quence Variable Group.) 

Note: The SEQ-V interrupt is also caused by detection of a 
sequence_header_code, but is not issued until the 
VSYNC prior to the display of the first picture (in display or­
der) found in the bitstream after the sequence head­
er_code. (See Section 12.1.3, VSYNC Interrupts, and 
SEQ-Von page 12-25.) 

SEQ-O 
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SEQ-V Name: First I-picture display after s equenc e_heade r _code 
Category: VSYN C 
Mask Bit: 3 

The SEQ-V interrupt (first I-picture display after sequence_head­
er_code) event occurs at the rising edge ofVSYNC prior to the first 
display field of the first I-picture decoded following the detection of a 
sequence_header_code. Each time a SEQ-V event occurs, the 
micro application performs the operations shown in Figure 12-4 and ei­
ther issues an SEQ-V interrupt or places an SEQ-V interrupt in the 
pending interrupt queue. 

The microapplication uses an internal flag to produce the SEQ-V inter­
rupt. The flag is set each time a sequence_header _code is decod­
ed. This flag is cleared when the microapplication reaches the IDLE 
state, the FlushBitstreamO command is executed, a s equen­
ce_end_code is decoded, and each time an SEQ-V interrupt event 
occurs. 

An SEQ-V interrupt event occurs if all of the following are true: 

o The timing for VSYNC interrupts is satisfied (see Section 12.1.3, 
VSYNC Interrupts). 

o The picture to be displayed in the following field time is an I-pic­
ture which has not been previously displayed. 

o The SEQ-V interrupt flag is set. 

o The SEQ-V interrupt is enabled (mask[3] of the last Setlnterrupt­
MaskO macro command executed equals 1). 

Note: The SEQ-D interrupt is also caused by detection of a 
sequence_header_code, but is issued as soon as the 
decode process detects it. (See Section 12.1.2, Decode-time 
Interrupts, and SEQ-D on page 12-25.) 
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Name: Bitstream buffer underflow error 
Category: Decode-time 
Mask Bit: 8 

The UND interrupt (bitstream buffer underflow) event occurs when the 
number of valid bytes in the bitstream buffer in DRAM is O. This inter­
rupt can be used by the host to detect a bitstream buffer underflow error 
condition. Each time a UND event occurs, the micro application per­
forms the operations shown in Figure 12-4 and either issues a UND in­
terrupt or places a UND interrupt in the pending interrupt queue. 

A UND interrupt event occurs if all of the following are true: 

o The number of valid words in the bitstream buffer is 0, and a new 
word is needed by the decoder process. 

o The UND interrupt is enabled (mask[8] of the last Setlnterrupt­
MaskO macro command executed equals 1). 

Note: The UND interrupt is sensitive to the buffer's empti­
ness being 0, not becoming O. This means that, once a UND 
interrupt is produced, new UND interrupts will be produced 
continuously until the host takes steps to make the bitstream 
buffer non-empty. 

Unlike the RDY interrupt, the UND interrupt does not depend on the 
NewPacketO command, and production of the UND interrupt cannot be 
suppressed by issuing NewPacketO commands. UND interrupt produc­
tion can only be stopped by (1) transferring new data to the CL450 or 
(2) disabling the UND interrupt. And, as described in Section 15.2.3, 
During Bitstream Underflow, the micro application is unlikely to exe­
cute a SetlnterruptMaskO macro command if the bitstream buffer is 
empty since low-priority macro commands may only be executed after 
an entire picture has completed decoding. 

This section contains two examples of how the CL450's interrupts be­
have in relation to one another and the host's actions. Each example 

UNO 
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Interrupt Examples 

12.4 
Interrupt Examples 

This section contains two examples of how the CL450's interrupts be­
have in relation to one another and the host's actions. Each example 
consists of introductory text explaining the cases shown, a numbered 
list of events which occur in the example, and a corresponding figure il­
lustrating how those events relate to each other in time sequence. 

While reading the examples, remember that the situations and the ex­
ample host actions shown have been chosen to best illustrate the behav­
ior of the CL450. These situations are not necessarily typical, and the 
host's responses and actions may not be optimal in an actual system. 

The examples show some, but not necessarily all, of the macro com­
mands which the host issues during the period shown. In general, only 
those macro commands whose timing is important to the interrupts in 
the example are shown. For example, in a typical system the host would 
be issuing many more NewPacketO commands than are shown, and 
there are several other commands (SetBorder, SetWindow, Inquire­
BufferFullness, etc.) which would not substantively affect the examples 
if the host issued them at times not explicitly shown. However, all mac­
ro commands which can affect the microapplication's command pro­
cessing state or the interrupts which are enabled are explicitly shown. 

The figures in each example are arranged similar to timing diagrams, 
showing the timing relationship between changes in the CL450's state 
and output. All of the figures show the same state elements, although not 
all elements affect the outcome of each example. 

Figure 12-8 is a key to some of the items in the example figures. In par­
ticular, miniature versions of the display-field picture from Figure 12-2 
are used to represent the CL450's video output. However, because the 
example figures are organized with time passing from left to right, the 
video display has been rotated so the top of the display field appears on 
the left and scan lines run bottom-to-top within the field. 
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Figure 12-8 Key to Interrupt Examples 

12.4.1 Interrupt Example 1: RDY, UND, ERR 
This example shows how the RDY interrupt is produced, how a bit­
stream data error causes the ERR interrupt and triggers the microappli­
cation's error concealment, and how this in turn can cause both the RDY 
and UND interrupts. 

At the beginning of this example, the CL450 is in the middle of decod­
ing and displaying a bitstream and only the RDY, UND, and ERR inter­
rupts are enabled. (see Figure 12-9). 

1. The bitstream buffer's fullness increases until the host pauses 
the incoming data supply, which happens after the host sends all 
the data for all the NewPacketO commands that have been is­
sued. This pause satisfies one of the requirements for the cre­
ation of the RDY interrupt. 

2. As the microapplication continues to decode, the number of 
empty bytes exceeds the threshold value. However, because 
the microapplication polls the fullness level according to the 
constraints for Display-time interrupts, the RDY interrupt is not 
yet produced. 
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3. After the first block-row from the picture 115 is displayed, the 
microapplication recomputes the buffer fullness, and discovers 
that there are more empty bytes than threshold. Because the 
other interrupt requirements have also been satisfied, the mi­
croapplication recognizes an RDY interrupt event. Because 
HMEM[Oxa] (Interrupt Status) is 0, the RDY interrupt can be 
issued to the host. Therefore the microapplication makes the 
INT pin active and sets HMEM[Oxa] [10] equal to 1. No other 
bits are set because no other interrupts are pending. 

4. The host receives the interrupt and begins its interrupt service 
process by deactivating the INT pin. While the host may now be 
able to receive more interrupts, the microapplication cannot is­
sue another interrupt because Interrupt Status is still non-zero. 

5. For whatever reason, the host does not issue a NewPacketO 
command to begin transfer of more data before the end of dis­
play of the second block row ofl15 occurs. Therefore, the con­
ditions necessary for the RDY interrupt all become true again, 
so a second RDY interrupt event occurs. Because the host has 
also not yet cleared Interrupt Status, the RDY interrupt cannot 
be issued (even though INT is inactive) and is queued internally 
instead. 

6. The host then issues a NewPacketO command. While this does 
not directly add more data to the bitstream buffer, it does make 
one of the conditions required for the RDY interrupt false. 

7. The host then clears Interrupt Status. The host must do this after 
issuing the NewPacketO command if a new RDY interrupt can 
be issued between these two actions. 

8. Finally, coded data begins to be received by the CL450 again 
and the bitstream buffer fullness begins to rise. 

9. When the end of display of the third block row of 115 occurs, 
even though the number of empty bytes in the bitstream buffer 
is less than threshold, the microapplication issues a new (sec­
ond) RDY interrupt to the host. This interrupt is issued because 
the internal interrupt queue is examined each time a Display­
time interrupt could be produced, and because there is a queued 
RDY interrupt from the end of the previous block row. This in­
terrupt would not have been queued if the host had responded 
more quickly to the original RDY interrupt. 

Interrupt Examples 
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10. The host receives the interrupt and determines that it is a rem­
nant from the previous RDY interrupt (possibly by examining 
Buffer Fullness Status). Therefore, it deactivates the INT pin 
and clears Interrupt Status. Note that these operations should be 
done in that order because the microapplication will not modify 
the state of the INT pin unless Interrupt Status is O. 

11. The decode process discovers an error in the bitstream while de­
coding picture B 16. This error causes the microapplication to 
perform two actions. First, the microapplication attempts error 
recovery (see Section 15.2, Error Recovery and Concealment). 
Second, because the ERR interrupt is enabled, a ERR interrupt 
event occurs; and because Interrupt Status is 0, the interrupt is 
issued directly to the host, activating the INT pin and writing In­
terrupt Status with 1. 

12. The host receives the ERR interrupt. In response, the INT pin is 
made inactive and Interrupt Status is cleared. The host also sets 
an internal flag because it will have to interpret future RDY and 
UND interrupts differently than if the micro application were 
not performing error recovery. 

13. The host issues and the CL450 accepts a SetInterruptMaskO 
macro command. This command is issued with a mask argu­
ment of Ox503, leaving RDY, UND and ERR enabled, and add­
ing PIC-V. The host enables the PIC-V interrupt so that it will 
be informed when the first new picture is displayed, which 
roughly corresponds to the end of error recovery. Note that, be­
cause SetInterruptMaskO is a low priority command, the mi­
croapplication does not execute it until item number 18, below. 

14. The next time the timing requirements for Display-time inter­
rupts are satisfied (in this example, the end of the first block row 
of the third field time in which picture 115 is displayed), the mi­
croapplication issues both a UND and an RDY interrupt (as­
suming that an adequate number of bitstream words has been 
transferred to satisfy the RDY condition). 

15. The host receives the interrupts from the CL450. It ignores the­
UND interrupt, because it knows that the microapplication is in 
error recovery. It uses the RDY interrupt as it normally would. 
The INT pin is deactivated and Interrupt Status cleared. 



16. In this region, the microapplication will issue UND and/or RDY 
interrupts for every block row displayed. The host should con­
tinue to ignore the UND interrupts, and supply data as quickly 
as possible. Some or all of the RDY interrupts may be sup­
pressed by issuing NewPacketO commands one or more in ad­
vance of sending data to the CL450. 

17. The decode process finds a picture_start_code for a 
picture that it has the information to decode. At this point, it re­
sumes normal decoding operation. 

18. Microcode executes the SetInterruptMaskO command issued at 
item number 13, above. It is only at this point that the PIC-V in­
terrupt is actually enabled. 

19. The VSYNC prior to the first display of the newly-decoded pic­
ture P21 occurs. This creates a PIC-V interrupt event. The PIC­
V interrupt is immediately issued to the host because (in this ex­
ample) Interrupt Status is 0 when VSYNC occurs. The microap­
plication therefore activates INT and sets Interrupt Status[I]. 

20. The host receives the PIC-V interrupt. It clears Interrupt Status 
and deactivates the INT pin. In addition, the host clears its in­
ternal flag, indicating that the microapplication is performing 
error recovery. Subsequently, if the host receives a UND inter­
rupt, it will be indicative of a system error condition. The host 
may also subsequently issue another SetInterruptMaskO macro 
command to disable the PIC-V interrupt if the host has no other 
use for it. 

Interrupt Examples 
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12.4.2 Interrupt Example 2: PIC-V, SCN 
This example shows how the PIC-V interrupt is produced, how the 
ScanO macro command might be used, and how the SCN interrupt is 
produced. 

At the beginning of this example, the CL450 is in the middle of decod­
ing and displaying a bitstream in the PLAY state, and only the PIC-V 
and SCN interrupts are enabled. (See Figure 12-10.) 

1. The active edge of VSYNC preceding the first display of pic­
ture B15 occurs. This causes a PIC-V interrupt event and, be­
cause Interrupt Status was previously 0, the micro application 
issues the interrupt immediately. Therefore, the INT pin is acti­
vated and Interrupt Status[l] is set. 

2. The host issues and the CL450 accepts the ScanO command. 

3. When the decoding for picture B15 completes, the microappli­
cation processes accumulated low-priority macro commands. 
The previously-accepted ScanO command is executed, causing 
the micro application to transition from the PLA Y state to the 
SCAN state. 

4. The host finally receives and processes the PIC-V interrupt is­
sued in item 1. The host deactivates INT and clears Interrupt 
Status. 

5. The micro application finishes its internal SCAN initialization 
and begins to process the portion of the bitstream ahead of the 
I-picture at a very high rate. MPEG header information is still 
decoded and processed and only P- and B-pictures are discarded 
completely. 

6. When the decoding process encounters a picture_­
start_code for an I-picture (in this example, 138), it stops 
discarding bitstream data and begins normal picture decoding. 

7. When the decoding of 138 is complete, the microapplication au­
tomatically transitions to the PAUSE state (and stops consum­
ing bitstream data). In addition, the completion of decode 
causes an SCN interrupt event. Because Interrupt Status is 0, the 
interrupt is issued immediately and the INT pin is activated and 
Interrupt Status[ll] set. 
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8. The host then receives the SCN interrupt. In response, the host's 
interrupt handler sends a message to a portion of non-interrupt 
software (which will respond later), deactivates the !NT pin, 
and clears Interrupt Status. 

9. After the interrupt handler exits, the host issues a FlushBit­
streamO command, which the microapplication immediately 
executes because it is high priority. This macro command dis­
cards all of the bitstream data (and associated NewPacketO 
macro commands) which followed the I-picture and have been 
transmitted to the CL450 since the decoding of 138 completed 
(while the microapplication was in the PAUSE state). After this 
command has executed, the host begins transmitting bitstream 
information and New PacketO macro commands in preparation 
for the next ScanO command. 

10. When the next VSYNC occurs, the microapplication begins the 
display of 138 . Because this is the first display field of a new pic­
ture, it also causes a PIC-V interrupt event. The PIC-V interrupt 
is issued immediately (because Interrupt Status is 0), so the mi­
croapplication activates INT and sets Interrupt Status[I]. 

11. The host (continuing the non-interrupt processing which began 
in item # 9) then issues a new ScanO command, which the mi­
croapplication accepts and places in the Command FIFO. 

12. Because the micro application is in the PAUSE state and no oth­
er low priority macro commands are pending, the ScanO com­
mand issued in item #11 is executed almost immediately. This 
command causes the microapplication to transition back to the 
SCAN state and begin the rapid consumption of bitstream data. 

13. The host finally receives the PIC-V interrupt (issued in item 
#10) which indicates that display of 138 has begun. In response, 
the INT pin is deactivated and Interrupt Status cleared. 

14. When the decoding process encounters a picture_­
start_code for an I-picture (in this case 161 ), it stops dis­
carding bitstream data and begins normal picture decoding. 

15. When decoding of 161 is complete, the microapplication transi­
tions back to the PAUSE state and an SCN interrupt event oc­
curs. The interrupt is issued immediately; INT is activated and 
Interrupt Status[11] is set to 1. 



16. The host receives the SCN interrupt and begins its interrupt pro­
cessing by deactivating INT (rather than delaying processing as 
in item# 8). 

17. While the microapplication still thinks the SCN interrupt is 
pending (Interrupt Status[11] = 1 even though the host has de­
activated INT) , the active edge ofVSYNC occurs which begins 
the first field display of 161 , This edge causes a PIC-V interrupt 
event. However, because Interrupt Status is non-zero, the inter­
rupt is queued within the CL450 to be issued in the future. 

18. The host finally finishes its interrupt processing and clears In­
terrupt Status. 

19. At the end of display of the first block row from 161 , the mi­
croapplication checks for Display-time interrupts. Although 
RDY is not enabled, the bitstream buffer fullness is still recom­
puted (and written to Buffer Fullness Status, HMEM[Oxb]), and 
the microapplication checks for queued interrupts. The PIC-V 
interrupt event which occurred in item #17 is in the queue, and 
since Interrupt Status is now 0, the PIC-V interrupt is issued: 
INT is activated and Interrupt Status[2] set. 

20. The host receives the PIC-V interrupt, deactivates INT, and 
clears Interrupt Status. 

21. Finally, the host issues FlushBitstreamO to clean out any data in 
the bitstream buffer which was not consumed while 161 was be­
ing decoded or which was received since the decoding of 161 

completed. 

The following are the sequences for servicing non-vectored and vec­
tored interrupts. Note that these sequences assume that the host process­
es all CL450 logical interrupts simultaneously if they were received 
with the same physical interrupt. For other service mechanisms, see 
Section 12.2.2. 

The sequence for servicing a non-vectored interrupt is: 

1. The CL450 asserts external signal INT low by setting Int to 0 in 
the HOST_control register. 

2. The host reads the interrupt type from the Interrupt Status reg­
ister. 

Servicing Interrupts 

12.5 
Servicing Interrupts 
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3. The host executes an interrupt service routine (ISR) located at a 
pre-determined host internal address. 

4. The host sets the fur bit to 1 in the HOST_control register. 

5. The host writes 0 to the Interrupt Status register. 

The sequence for servicing a a vectored interrupt is: 
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1. The CL450 asserts external signal INT low by setting fur to 0 in 
the HOST_control register. 

2. The host acknowledges the interrupt by asserting INTACK. If 
the Ale bit in HOST_control is 1, the CL450 sets fur to 1 in the 
HOST_control register. 

3. The host broadcasts the interrupt priority ID (IPID) on A[3:1]. 

4. If the IPID on A[3: 1] matches the value of IPID in the 
HOST _intvecr register, the CL450 responds by driving the in­
terrupt vector IVect onto D[7:0]. 

5. The host executes the interrupt service routine (ISR) pointed to 
by the interrupt vector. As part of the ISR, the host reads the in­
terrupt type from the Interrupt Status location in HMEM. 

6. If the lnt bit was not set in item #3 above, then the host sets lnt 
to 1 in the HOST_control register. 

7. The host writes 0 to the Interrupt Status register. 



13 
AudioNideo 

Synchronization 

The MPEG standard includes information and restrictions intended to 
allow elementary audio and video decoders to be synchronized to: 

o Each other (so that audio data is played when the appropriate pic­
tures are on the video display and vice versa) 

o The bitstream source (to prevent bitstream buffer underflows or 
overflows in both decoders) 

MPEG synchronization is primarily based on the following two pieces 
of information which are present in the system level of an MPEG bit­
stream: 

o System clock references (SCRs), which serve as a time base for 
elementary decoders. 

o Presentation time stamps (PTSs) , which indicate the time relative 
to the SCR at which a picture should be displayed on the screen. 

13.1 
MPEG Conditions 
and Constraints 
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13.2 
CL450 

Synchronization 
Mechanism 

The CL450 provides support for each of these MPEG constructs, re­
spectively, through use of its on-chip SCR (System Clock Reference) 
counter, and its NewPacketO and AccessSCRO macro commands. 

13.2.1 CL450 SCR Counter 
The CL450 implements an on-chip 33-bit counter which it uses as a lo­
cal copy of the system clock (see Section 13.3). This counter must be 
initialized by the host, after which the CL450 will increment it at a nom­
inal frequency of 90 KHz. The host may also periodically read or write 
this counter to keep it in step with the decoder global SCR, if any, using 
the AccessSCRO macro command. 

It is recommended that the host update the CL450's SCR (if the CL450 
is not the SCR master for the system) at least every 0.7 seconds, which 
is the minimum rate at which the MPEG standard requires that SCR up­
date values be placed in a system bitstream. 

13.2.2 CL450 Presentation Time Stamps 
The CL450 receives PTS information from the host in the three timeS­
tamp arguments of the NewPacketO macro command. Each time the 
host issues a NewPacketO command, it may place a PTS in the timeS­
tamp arguments. Each PTS received by the CL450 is then associated 
with a pict ure_s tart_code in the corresponding packet accord­
ing to the requirements given in the MPEG standard. 

PTS values given to the CL450 may be created by the host or extracted 
from the packet headers in the system bitstream. All PTS values present 
in an MPEG system stream do not have to be passed to the CL450, but 
for smooth synchronization it is recommended that valid PTS values be 
given to the CL450 at least once every 0.7 seconds. 

Figure 13-1 illustrates the association between the parameters of the 
New PacketO command and pic t ur e_s t ar t_ code s within the bit­
stream. Note that the words "no PTS" are used to indicate the timeS­
tamp arguments to NewPacketO when the Vld bit (timeStamp2[l5]) is 
0, and "PTS" is used to represent the timeStamp arguments if Vld is 1. 
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Bitstream Data 

Figure 13-1 

CL450 Synchronization Mechanism 

~ 
NewPacket(length, PTS) 

NewPacket(length, no PTS) NewPacket(length, PTS) 

• Note that, while it is illegal to have a valid PTS (Vld equal to II associated with a data packet that 
does not contain a picture_start_code, the host may choose not to supply PTSs for 
packets which do contain picture_start_codes. 

Association of NewPacketO Commands and Bitstream 

13.2.3 CL450 Synchronization 
The CL450 performs synchronization as follows: Each time a pic­
t ure_s t art_c ode is detected in the bitstream, the microapplication 
determines if there is a valid PTS associated with that start code. There 
are three possible outcomes: 

o No valid PTSs have been received from the host since the last time 
the microapplication was in the IDLE state, the FlushBitstreamO 
command was executed, or a data error was detected. In this case, 
the microapplication takes no further action for synchronization 
and behaves as described in Section 13.5.3 on page 13-10 
(Unpacketed/Packeted Data Transfer without PTSs). 

o This picture does not have a valid PTS, either because none was 
supplied in the associated NewPacketO command or because this 
is not the first picture_start_code in this packet. In this 
case, the microapplication synthesizes a PTS for this picture based 
on the PTS for the previous picture and the current pic t ur­
e_r ate parameter. 

o This picture has a valid PTS which was supplied by the host via 
the NewPacketO command. 
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13.3 
Updating the CL450 

SCH Counter 

Once the microapplication has a PTS for the picture, it samples the val­
ue of the on-chip SCR counter. The value read is then biased (because 
this operation is being performed before the picture is decoded rather 
than at the instant of "presentation") and compared with the picture's 
PTS. If the PTS and the biased SCR match to within ±3000 SCR counts, 
then the picture is decoded and posted for display. 

If the PTS is more than 3000 counts greater than the SCR, then the 
CL450 has been decoding too quickly or there has been a discontinuity 
in the PTS sequence. In either of these cases, the microapplication posts 
the last picture displayed for display again, waits a frame time, and then 
repeats the synchronization operation. In this manner, pictures are re­
peated as many times as necessary to allow the SCR to catch up to the 
decoding and display processes. 

Alternately, if the PTS is more than 3000 counts less than the SCR, then 
the CL450 has been decoding too slowly or there has been a disconti­
nuity in the bitstream. In either of these cases - if and only if the next 
picture to be decoded is a B-picture-the CL450 discards the picture 
about to be decoded and advances to the next portion of the bitstream. 

Skipping the decode (and therefore the display) of a picture allows the 
CL450's decode process to catch up to the "actual time" as defined by 
the SCR counter. Only B-pictures are skipped to ensure that the CL450 
always has the necessary reference frames decoded for normal decod­
ing to continue following the skip. If the next picture to be decoded is 
an 1- or P-picture, the PTS/SCR mismatch is ignored and will be re­
solved the next time a B-picture is encountered. 

The host may initialize or update the value in the CL450's SCR counter 
by issuing the AccessSCRO macro command (see page 11-13). (The 
AccessSCRO command may also be used to read the current state of the 
SCR counter.) The counter is updated in the interval between when the 
host sets HOST_newcmd[O] and when the microapplication clears 
HOST _newcmd[O]. 

13.3.1 SCR Source and Drift 
The SCR counter is incremented based on the CL450's GCLK input, 
which is nominally 40 MHz. To generate the 90-KHz frequency at 
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which the SCR should be incremented, the CL450 divides GCLK by 
444, which produces a frequency of 90,090 Hz. Because this frequency 
is not exactly 90 KHz, the CL450's SCR counter will run fast by rough­
ly 0.1 % relative to an ideal SCR. Not counting any inaccuracies in the 
GCLK frequency, this difference causes a drift of +63 SCR counts in 0.7 
seconds. Since typical applications update the SCR counter at least ev­
ery 0.7 seconds, and 63 is much less than the built-in jitter tolerance of 
3000 SCR counts, this difference has no effect on the CL450's synchro­
nization. 

13.3.2 Automatic SCR Modifications 
Immediately before the microapplication transitions from the STILL 
command state to the PAUSE state upon completing the decode of a still 
picture (see page 11-15), the microapplication clears the SCR counter to 
O. The host should account for this and initialize the CL450 with the cor­
rect SCR before issuing a PlayO command (which will resume decod­
ing with synchronization). 

Systems that perform audio/video synchronization must have one mas­
ter time-base within the decoder (the "real" SCR) to which local SCRs, 
such as the SCR counter within the CL450, are locked. The following 
sections describe several alternatives for the master SCR. 

13.4.1 Synchronizing to the Bitstream 
The SCR values which are embedded in the pack headers in an MPEG 
system bitstream are intended to indicate the time (relative to the decod­
er's System Clock Reference) at which the SCR fields are received by 
the system-level decoder. In systems where the bitstream is delivered to 
the decoder with the timing indicated by the SCR fields (either because 
the bitstream is coming from a fixed bit-rate source or because some 
other system element is explicitly timing the delivery of MPEG packs), 
the SCR values can be used to update all of the SCR counters in the de­
coder. 

Note: The host, which serves as the system-level decod­
er and demultiplexer in systems containing the CL450, 
must minimize the timing skew introduced when the 

13.4 
Using SCH Masters 
for Synchronization 
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CL450 's SCR and any other SCRs in the system are up­
dated. 

13.4.2 Synchronizing to the Audio Decoder 
The CL450 (and the system-level decoder) can also be synchronized to 
the audio decoder. If the audio decoder contains its own SCR counter, 
then this counter can be initialized based on the first SCR contained in 
the bitstream. Subsequently, the audio decoder will synchronize its own 
operation to its SCR, and the host can update its SCR (if any) and the 
CL450's SCR with the contents of the audio decoder's SCR. Again, it 
is important that a minimal amount of SCR skew be introduced when 
updating the CL450. 

Alternately, if the audio decoder does not perform synchronization and/ 
or does not contain an SCR counter, SCR updates may be synthesized 
by the host based on the amount of audio data consumed by the audio 
decoder. Because MPEG-coded audio data is decoded at a fixed bit rate, 
the number of bits of coded data consumed by the audio decoder can be 
used to accurately calculate the amount of time elapsed since audio de­
coding began (relative to the decoder's clock source). This duration may 
be combined with an audio PTS to synthesize a value representing the 
System Clock Reference at the time the audio decoder's data consump­
tion was sampled. 

These methods effectively lock the entire decoder subsystem to the au­
dio decoder's output clock so that any instability in that clock will be 
reflected in the audio and video outputs. 

Note: Locking the decoder subsystem to the audio 
clock may cause bitstream underflow or overflow if 
drift occurs with bitstream delivery relative to the de­
coder. 

13.4.3 Synchronizing from the CL450's SCR 
The CL450 can also be used as the master SCR for the decoder. Assum­
ing that the audio decoder performs synchronization and accepts SCR 
updates, the CL450's SCR can be initialized using data from the bit­
stream and then periodically sampled to provide updates for the host, if 
necessary, and the audio decoder. 
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Note: The CL450's SCR runs O.l%fast (plus any insta­
bility in the GCLK source), so the host might wish to 
periodically adjust the CL450's SCR to correct this in­
accuracy. 

13.4.4 Synchronizing from the CL450 and VSVNC 
The CL450 can be used as an SCR master without using the CL450's 
internal synchronization mechanism. In this case, the NewPacketO 
commands sent to the CL450 by the host, if any, are never given vali­
dated PTS values. Instead, the host uses the t ime_c ode and tempo­
ral_reference information written into the CL450's DRAM vari­
able area when pictures are decoded to compute the amount of time 
which has elapsed since video decoding began. This timing information 
can then be combined with SCR or PTS information from the bitstream 
to create SCR updates for the host and/or audio decoder. 

Two significant differences between this method and using the CL450's 
SCR as the SCR master are: 

o This method locks the decoder subsystem to the CL450's VSYNC 
input via the CL450's transcoding algorithm, rather than GCLK. 

o If a bitstream error occurs which causes a large portion of the bit­
stream to be decoded, both the CL450 and the audio decoder will 
immediately jump forward in time together. In the alternate case 
where the CL450 is synchronizing to its SCR, the next picture 
from the bitstream which can be decoded would be delayed until 
the correct display time, as specified by the PTS. 

Data may be transferred to the CL450 either with or without the host is­
suing the NewPacketO macro command. However, most systems use 
NewPacketO because of the microapplication features (especially au­
dio/video synchronization) which are available only if the NewPacketO 
command is used. 

The host must decide whether or not the NewPacketO command will be 
used before the first word of coded data is transmitted to the CL450. 
Typically, the engineer writing the software controlling the host will 
make this decision based on the type of application and bitstreams to be 
decoded. 

13.5 
Transferring Coded 
Data to the CL450 
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However, there may be systems which will dynamically change be­
tween decoding bitstreams with and without using NewPacketO. For 
these systems, it is critical to remember that the microapplication is 
modal (when not in the IDLE state); it assumes that if it receives one 
NewPacketO command, NewPacketO's are associated with all coded 
data. 

13.5.1 Unpacketed Data Transfer 
MPEG coded data can be transferred to the CL450, correctly decoded, 
and be displayed without using the NewPacketO macro command. 
However, as stated in the description of this command (page 11-21), 
some microapplication functions cannot be performed without the addi­
tional system-level information provided by the NewPacketO com­
mand. 

13.5.2 Packeted Data Transfer 
When NewPacketO is used, the microapplication associates each New­
PacketO command with a section of the coded data stream. The com­
mand's length parameter specifies the amount of coded data. 

To associate data and NewPacketO commands, the microapplication 
simply starts counting coded data bytes and adding length parameters 
starting with the first word of coded data and the first NewPacketO com­
mand received, respectively. The NewPacketO command associated 
with a section of the bitstream must be accepted by the microapplication 
before the first word of data from that section is transmitted to the 
CL450. 

When using NewPacketO, bitstream data must be associated with a 
NewPacketO command. However, the host may issue any number of 
NewPacketO commands ahead of the arrival of bitstream data at the 
CL450, provided that the Command FIFO does not overflow (see Sec­
tion 11.2.2, Command FIFO). 

Figure 13-2 shows an example of how NewPacketO commands and bit­
stream data could be sent to the CL450. Note that the times marked as 
NewPacketO commands are the times when the CL450 accepts the 
macro command (microcode clears HOST_newcmd[O] to 0), not the 
earlier time when the host issued the macro command (host sets 
HOST_newcmd[O] to 1). 
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Items are represented in the figure as follows: 

o The horizontal dimension is the time axis. 

o The bitstream data is divided into numbered sections to show the 
portions which correspond to the similarly-numbered New­
PacketO commands. Note that the horizontal size of a marked sec­
tion of bitstream data has nothing to do with the size of that section 
in bytes but instead corresponds to the time within which it is 
transmitted to the CL450. 

o Stars indicate the acceptance of NewPacketO commands by the 
microapplication. 

o Arrows indicate the amount of time between the acceptance of a 
NewPacketO command and the reception of the associated data. 
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Bitstream/NewPacketO Association 

Commands for packets 5 and on issued as soon as 
required data (length and PTSsj is available. Typical 
of systems using disk storage or another data source 
without a fixed bit-rate. Here, NewPacketO com­
mands are issued as soon as the system-level bit­
stream is available (read from diskj, which occurs 
long before the elementary video stream data is sent 
to the CL450. 
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13.5.3 Unpacketed/Packeted Data Transfer without PTSs 
When unpacketed data is sent to the CL450 or when NewPacketO is 
used but the Vld bit in timeStamp2 is never 1, the microapplication 
does not have information to perform audio/video synchronization. In 
this case, the rate at which pictures are displayed (and therefore bit­
stream data consumed) is controlled solely by the nominal VSYNC fre­
quency specified by the host (see SetVideoFormatO on page 11-40) and 
by the current picture_rate parameter, as described in Section 
15.1. 

In general, if the VSYNC frequency is stable and the bitstream has been 
properly encoded and multiplexed and no bitstream errors are encoun­
tered, very little drift occurs between the CL450's video display and the 
output of an audio decoder operating from the same bitstream (depend­
ing on the transcoding case). However, there are several important rea­
sons why it is recommended that audio/video synchronization be 
performed: 

o If a bitstream error occurs, the CL450 will probably skip decoding 
one or more pictures. If synchronization is not being used, the 
decoding and display processes will jump ahead by an amount of 
time equal to the number of pictures skipped (potentially an entire 
GOP even for a single-bit error) times the nominal frame rate. This 
is sufficient to destroy "lip sync" with an associated audio decoder 
as well as potentially causing buffer fullness problems depending 
on how the system bitstream is demultiplexed and transferred to 
the CL450. 

o The quality achieved by letting both the CL450 and the audio de­
coder run independently is dependent on the stability of audio de­
coder timing. 

o Either the CL450 or the audio decoder could suffer from bitstream 
buffer underflow or overflow even if no errors occur. 

13.5.4 Packeted Data Transfer with one PTS 
The microapplication treats specially the first NewPacketO with a valid 
PTS (Vld bit equal to 1). Until the first picture with an associated valid 
PTS is decoded, the micro application does not perform audio/video 
synchronization and behaves as described above. Once a valid PTS is 
received, the microapplication assumes that the SCR counter contains a 
valid value. 
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In addition, the microapplication will subsequently synthesize PTS val­
ues for pictures which do not have PTSs supplied by the host, based on 
the last host-supplied PTS value. 

If the host supplies only a single valid PTS, then all pictures after the 
picture corresponding to the valid PTS will still be synchronized. Be­
cause the host does not provide any additional PTS values, the microap­
plication synthesizes PTSs for the rest of the pictures, causing them to 
be displayed with the exact timing specified by the picture_rate 
parameter. 

This approach is recommended for systems in which elementary video 
streams are being played (so the host does not have a system stream to 
retrieve PTS values from) unless the host wants the improved error re­
covery behavior that synchronization can provide. Note that the "syn­
chronized" display rate will be 0.1 % fast unless the host periodically 
updates the SCR counter. 

13.5.5 Packeted Data with Periodic PTSs 
This is the typical use for audio/video synchronization, and it occurs in 
two basic steps: 

1. PTS values are extracted from the system bitstream by the host 
as part of the system demultiplexing· function and given to the 
micro application as arguments to the NewPacketO command. 

2. The bitstream is reassembled without adding or deleting any 
bytes, and the reassembled coded data is transferred to the 
CL450 as 16-bit words. 

Generally, the SCR counter is periodically updated to prevent the 
CL450 from synchronizing to an SCR value which is divergent from the 
system SCR, and the host must still ensure that the SCR counter is ini­
tialized before synchronization begins. 

It is also important when demultiplexing an MPEG system bitstream to 
create CL450 NewPacketO commands to provide for the fact that (1) 
MPEG packets may be an odd number of bytes, and (2) the length ar­
gument to the NewPacketO command must be an even number of bytes. 
To do this, system demultiplexers may need to adjust packet boundaries, 
logically moving one byte of data between two adjacent packets. This 
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adjustment affects the length parameters of the two successive New­
PacketO commands but not the demultiplexed bitstream data. 

Note: It is particularly important when reassigning a 
byte from one packet to the next or previous packet to 
ensure that, if that byte is the first byte of a pic t u r­
e_start_code with an associated PTS, the PTS is 
moved to the correct packet as well. 

How this problem is resolved depends on the particular application 
area. For some applications, system-level packets are guaranteed to be 
an even number of bytes, eliminating the problem altogether. In other 
applications, the frequency of video PTS values in the system bitstream 
is significantly higher than minimum, or slightly less quality is required 
in audio/video synchronization. In these cases, the PTS values associat­
ed with modified-length packets can simply be discarded and not sent 
to the CL450. 
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14 
Host Access of 

DRAM Variables 

The host may access several variable locations in DRAM while the mi­
croapplication is executing. These areas include: 

D Scratch storage: 16 words of DRAM are allocated exclusively for 
this purpose. The host may read and write these locations at any 
time, provided that the restrictions in this section are met. 

D Semaphores for host/microcode communication 

D Bitstream parameters 

The precise organization of these locations is given in Appendix A, 
CL450 DRAM-variable Allocation. 

The DRAM locations containing bitstream parameters are divided into 
the following two groups, each of which uses a semaphore to arbitrate 
between the CL450 and the host for access to the variables: 

D The Sequence Variable Group: Contains information from the 
sequence_header of an MPEG bitstream and is accessed 
using the SEQ_SEM semaphore location. 

14.1 
Types of Variables 



Types of Variables 

o The Picture Variable Group: Contains information from the GOP 
and picture headers and is accessed using the PIC_SEM sema­
phore. 

14.1.1 Sequence Variable Group 
The sequence group contains the variables shown in Figure 14-1. Note 
that each entry occupies a separate word address, and that these address­
es are specified in Appendix A. 

All bits within the 16-bit DRAM words which do not correspond to a 
bit within the sequence header are 0 and must be written to 0 if these 
values are written by the host (see Section 14.2.2). 

The microapplication can write to all the locations in the sequence vari­
able group. However, writes to locations containing bitstream informa­
tion (locations other than SEQ_SEM and SEQ_CONTROL) are 
controlled by the SeqWP and SeqNoDefbits of SEQ_CONTROL. The 
microapplication sets NewSeq (in SEQ_CONTROL) each time a se­
quence_header_code or sequence_end_code is decoded, 
and clears NewSeq each time new information is read and digested (trig­
gered by decoding a group_start_code). 

Note: When the microapplication writes to SEQ_CON­
TROL, the values of SeqWP and SeqNoDefwill be retained. 
The host should never clear NewSeq. 
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SEQ_SEM 

SEtLCONTROL 

/* semaphore controlling access to variable group */ 

/* bit a NewSeq: new sequence information - need 

HORIZONTAL_SIZE 

VERTICAL_SIZE 

PICTURE_RATE 

FLAGS 

INTRA_Q [64] 

NON_INTRA_Q [64] 

* 
* bit 1 SeqWP: 

* 

update 

write-protect sequence information 

from bitstream 
* bit 2 SeqNoDef: write-protect sequence information 

* from default restoration 
*/ 

/* bit a == load_intra_quantizer_matrix 

* bit 1 == load_non_intra_quantizer_matrix */ 

/* 64-element intra_quantizer_matrix */ 

/* 64-element non_intra_quantizer_matrix */ 

Figure 14-1 DRAM-Resident Sequence Variable Group Variables 

Also note that the the elements of the INTRA_Q and NON_INTRA_Q 
matrices are not stored in DRAM in the same order they are stored in 
the bitstream. In particular: 

o Each matrix entry occupies a 16-bit word, not a byte, and the 
most-significant byte for all entries must be O. 

o Matrix entries are stored in row-major order, not in zig-zag order. 

Figure 14-2 below shows the word-address offset from the beginning of 
each matrix for each matrix element. 

+OxO +Ox1 +Ox2 +Ox3 +Ox4 +Ox5 +Ox6 +Ox7 
+Ox8 +Ox9 +Oxa +Oxb +Oxc +Oxd +Oxe +Oxf 
+Ox10 +Ox11 +Ox12 +Ox13 +Ox14 +Ox15 +Ox16 +Ox17 
+Ox18 +Ox19 +Ox1a +Ox1b +Ox1c +Ox1d +Ox1e +Ox1f 
+Ox20 +Ox21 +Ox22 +Ox23 +Ox24 +Ox25 +Ox26 +Ox27 
+Ox28 +Ox29 +Ox2a +Ox2b +Ox2c +Ox2d +Ox2e +Ox2f 
+Ox30 +Ox31 +Ox32 +Ox33 +Ox34 +Ox35 +Ox36 +Ox37 
+Ox38 +Ox39 +Ox3a +Ox3b +Ox3c +Ox3d +Ox3e +Ox3f 

Figure 14-2 INTRA_Q and NON_INTRA_Q Matrix Ordering 
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PIC_SEM 

TIME_CODE_O 

The contents of the sequence variable group are invalid from the time 
the microapplication is initialized or the ResetO command is executed 
until the micro application leaves the PLAY-SETUP state. 

When initialization or ResetO is complete, SEQ_SEM and SEQ_CON­
TROL are both O. Once initialized, the host may allocate SEQ_SEM 
and write to the sequence variable group at any time. 

While in the PLAY-SETUP state, the microapplication writes default 
values to the sequence variable group and sets the NewSeq bit, unless 
the SeqNoDefbit is 1. 

The contents of INTRA_Q and NON_INTRA_Q are invalid any time 
the corresponding bits of FLAGS are O. 

14.1.2 Picture Variable Group 
The picture group contains the variables listed in Figure 14-3, which in­
cludes information from both GOP and picture headers. Note that each 
entry occupies a separate word address and that each address is speci­
fied in Appendix A. All bits within the 16-bit DRAM words which do 
not correspond to a bit within the MPEG syntax are o. 

/* semaphore controlling access to variable group */ 

/* time_code: 

* [11] drop_frame_flag 
* [10: 6] time_code_hours 
* [5: 0] time_code_minutes 

*/ 

/* time_code: 
* [11: 6] time_code seconds 
* [5: 0] time_code-pictures 

*/ 

TEMPORAL_REFERENCE 

Figure 14-3 DRAM-Resident Picture Variable Group Variables 
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Note: The microapplication writes values into these loca­
tions at the time the picture and GOP headers are decoded. 



Access Synchronization Using Semaphores 

The contents of the picture variable group are invalid from the time the 
microapplication is initialized or the ResetO macro command is execut­
ed until the corresponding header information has been decoded. 

Because neither the CL450 nor the host has a "test -and-set" method for 
accessing DRAM locations, both the host and the microapplication 
must use a method in which a value is written to a semaphore and then 
the location is polled to determine if the value written is replaced. 

The semaphores for both variable groups are independent, and the host 
should allocate only one at a time. Each semaphore may be in one of 
three states, encoded according to Table 14-1. 

Table 14-1 PIC_SEM / SEQ_SEM DRAM Location Encoding 

Semaphore Meaning 
Value 

o Unallocated; neither host nor microapplication may access variables, but 
either may attempt to allocate the semaphore 

Ox4242 Allocated to host; microapplication may not access variables 

other Allocated to microapplication; host may not access variables 

When attempting to allocate the semaphore, the host must perform op­
erations equivalent to the pseudocode shown in Figure 14-4. 

14.2 
Access 
Synchronization 
Using Semaphores 
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#define Ox4242 

/* "semAddr" (the argument to the function defined below) is one of 

* the following: */ 

#define SEQ_SEM <see Appendix A> 

#define <see Appendix A> 

void AllocateSemaphore(unsigned long semAddr) 

do { 

while (CL450DRAM[semAddr] != 0) 

/* make sure microcode doesn't 

* already have semaphore 

* allocated */ 

CL450DRAM[semAddr]= HOST_CODE; /* try to allocate semaphore for 

* host*/ 

wait O.5~s or more; 

while (CL450DRAM[semAddr] != HOST_CODE); 

/* try again if we didn't win */ 

Figure 14-4 Allocate Semaphore Function Pseudocode 

Once allocated, either semaphore may be released simply by writing a 
o to the correct DRAM location. 
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Note: The total time between allocating the semaphore and 
releasing the semaphore should not exceed lOOfl,s; other­
wise, too much CL450 bandwidth is wasted in the case where· 
the CL450 has to wait for the host to release the semaphore 
before decoding can continue. Assuming the bitstream buffer 
does not underflow while the CL450 is performing decoding 
witha semaphore allocated, the CL450 will not hold a sema­
phore for longer than 51ts. 



Access Synchronization Using Semaphores 

The sequence header information (accessed by SEQ_SEM) is accessed 
by the CL450 each time a sequence_header_code, group_­
start_code,or sequence_end_code is found in the bitstream. 
Similarly, the CL450 accesses the information controlled by PIC_SEM 
eachtimeagroup_start_codempicture_start_codeis 
encountered in the bitstream. 

If the host can guarantee that it will not access a group of variables at 
the same time the microapplication does, then the maximum time that 
the semaphore is allocated can be ignored. However, the host should 
never access the DRAM variables without allocating the corresponding 
semaphore. 

14.2.1 Reading DRAM-Resident Variables 
Both variable groups may be read by the host any time the appropriate 
semaphore has been allocated (provided that the timing restrictions in 
Section 14.1 are met), although there are times when the data in the vari­
ables will be stale or invalid. The procedure for reading from either 
group of variables is the same and is outlined in the following pseudo­
code: 

#define 

#define 

<see Appendix A> 

<see Appendix A> 

/* "semaphore address" is either SEQ_SEM or PIC_SEM */ 

AllocateSemaphore(semaphore address); /* function in Figure 14-4 */ 

read from DRAM address (es) containing desired variable(s); 

CL450DRAM[semaphore addressJ= 0; /* release semaphore to allow 

* CL450 to access variables */ 

Figure 14-5 DRAM Variable Read Pseudocode 

14.2.2 Writing DRAM-Resident Variables 
The host may write values to the sequence variable group in DRAM. 
This can be done to provide sequence-layer parameters to the picture 
decode process when random-accessing a bitstream in a location which 
does not contain a sequence header. 
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#define 

Each time the microapplicationdecodes a group_start_code, the 
value of SEQ_CONTROL is read. If the NewSeq bit is set, the microap­
plication reads in the values from the sequence variable group and uses 
them to update internal variables which control the decoding and dis­
play processes. 

Note that the NewSeq bit is also used internally by the microapplication 
and is automatically set when new values are decoded from the bit­
stream (a sequence_header_code is decoded and SeqWPis 0) or 
when the default values have been restored (a s equence_end_code 
is decoded and SeqNoDefis 0). 

The procedure for writing to the sequence variable group is shown in 
Figure 14-6. 

SE<LSEM <see Appendix A> 

AllocateSemaphore(SEQ_SEM); /* function in Figure 14-4 */ 

write to DRAM address (es) containing desired variable(s); 

set SE<LCONTROL[NewSeq]; 

CL450DRAM[SEQ_SEM]= 0; /* release semaphore to allow 

14.3 
Timing Restrictions 

* CL450 to access variables */ 

Figure 14-6 DRAM Variable Write Pseudocode 

Note that the new values written do not take effect until the microappli­
cation decodes the next GOP header in the bitstream, at which point it 
observes that NewSeq is 1 and reads in the new sequence information. 

The microapplication does not support host access to DRAM locations 
other than those listed in Appendix A while microapplication is execut­
ing; attempting to access other locations will cause indeterminate re­
sults. 

For accessible locations, the following is true: 

D The maximum cycle time for host access to DRAM varies accord­
ing to the current state of microcode execution. 

D Some worst-case cycle times are too long to permit access to the 
CL450's DRAM in some host environments. 
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There are three different maximum cycle times for host access to 
DRAM, depending on the operations the microcode is currently per­
forming. Each of these maximum cycle times is determined by the max­
imum low time for the DTACK pin, which is used by the CL450 to 
extend access cycles. 

The three maximum DTACK-low times and their corresponding opera­
tions are given in Table 14-2. 

Table 14-2 Maximum DTACK Pulse Width 

Operating Mode Maximum 
D'mCK Pulse (ns) 

No microapplication executing (CPU_control[Oj == 0) TBD 

Microapplication executing: output window blanked or in vertical border time TBD 

Microapplication executing: in vertical active display time TBD 

Timing Restrictions 
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15 
CL450 Host­

independent 
Operations 

The CL450 microapplication uses two parameters to determine how 
many times each coded picture is displayed: 

o The display's nominal field rate: Supplied by the SetVideoFor­
matO macro command (see Chapter 11). 

o The coded picture rate (the sequence-layer parameter pictur­
e _ rat e): Supplied by default from the bitstream sequence head­
er (see Table 10-4), or from the host via the DRAM variable 
PICTURE_RATE (see Figure 14-1). 

Note that the display field rate for NTSC is treated as exactly 30 Hz. 
Similarly, picture_rates of 29.97 and 23.976 are treated as 30 Hz, 
and 24 Hz, respectively. 

The CL450 compares both field rate and picture_rate parameters 
to each other, with the following three possible outcomes: 

o When both the nominal field rate and the picture_rate are 
equal (30 Hz or 25 Hz), the display microapplication displays each 

15.1 
Frame Rate 
Conversion 



Frame Rate Conversion 

decoded picture for two field times (VSYNC periods). Note that 
audio/video synchronization continues to operate, possibly caus­
ing some pictures to be displayed for multiple frame times but 
always an even number of field times. 

D When the pic t u r e _r ate is higher than the nominal field rate 
(for example, a bitstream coded at 30 Hz displayed in a 25 Hz sys­
tern), the display microapplication causes some frames to be dis­
played for only one field time rather than two. 

D When the pic t u r e _r ate is slower than the nominal field rate 
(for example, a 25-Hz bitstream display with a 60-Hz VSYNC fre­
quency), the display microapplication causes some frames to be 
displayed for an extra field time (three fields per frame rather than 
two). 

Field repeating and skipping is done at the required frequency for the 
nominal pi ct ure_ra te to be correct. Note that, unlike synchroniza­
tion, these rate conversion operations take place at the field level rather 
than the frame level. 

For purposes of rate conversion, the CL450 microapplication treats 25 
Hz (either input pic t u r e _r ate or display frame rate) as 24 Hz. Be­
cause of this, bitstreams coded at 25 Hz and displayed at 30 Hz, or bit­
streams coded at 24 Hz and displayed at 25 Hz, will play at a slightly 
incorrect speed. Table 15-1 indicates the cases in which the actual play 
speed does not match the nominal speed, and the nominal number of 
synchronization events per second if A/V synchronization is being per­
formed. 

Table 15-1 Picture Display Rates: Play Speed vs. Nominal Speed 

Format picture rate Rate Error (%) Average Synchronizations per Second 

NTSC (30 Hz) 25 Hz 4.2 Slow 1.25 

PAL (25 Hz) 24 Hz/23.976 Hz 4.0 Fast 1.00 

Conceptually, the synchronization and rate conversion processes oper­
ate entirely independently. The synchronization process decides how 
many times a particular picture should be displayed, and the pull-down 
process decides for each picture time how many fields that picture 
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Error Recovery and Concealment 

should be repeated. Extra fields can be added to the second frame dis­
play of a picture as easily as the first, and if a picture is repeatedly dis­
played for enough frame times, it will have extra fields added to its 
display repeatedly. 

Note: When performing this kind of rate conversion, 
whether the first field displayed for a picture is odd or 
even depends solely on what has occurred before and 
is very difficult to predict. 

The CL450 handles signaled and unsignaled errors the same way. That 
is, when the CL450 detects an illegal (non-MPEG) construct (unsig­
naled error) or a s e qu en c e _ err 0 r _ cod e ( signaled error) in the bit­
stream, it assumes that a transmission or storage error has occurred and 
that a portion of the bitstream is corrupt. (A signaled error is denoted by 
a sequence_error_code hex value ofOxOOOOOlB4.) 

In general, the CL450's error-recovery strategy assumes that a relative­
ly small section of the bitstream has been corrupted. For example, if an 
error is detected while decoding a B-picture, the CL450 assumes that it 
may decode the next B-picture correctly. If, instead, the error resulted 
in an entire reference frame being lost, then all pictures decoded until an 
I-picture and a reference picture have been found and decoded will be 
in error. Similarly, if an error causes a sequence header to be lost, then 
subsequent decode operations may be conducted with incorrect dequan­
tization matrices, resulting in incorrect images. 

In practice, this error-recovery strategy allows the CL450 to resume de­
code and display as soon as possible. A strict algorithm which avoided 
all possibility of displaying an erroneous picture would very often have 
to wait until a new sequence header was found before resuming decode, 
which could be an arbitrarily long period. 

15.2.1 During Picture Decode 
If the error occurs while a picture is being decoded, the microapplica­
tion abandons that picture and begins scanning through the bitstream to 
find the next picture for which it has enough information to decode. Be­
cause of the forward and backward prediction linkages between pic­
tures, the kind of picture searched for depends on the picture which was 
being decoded when the error was detected. For example: 

15.2 
Error Recovery and 
Concealment 
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o If a B-picture was being decoded, then the microapplication 
resumes decoding and display with the next picture of any type 
found in the bitstream. Because B-pictures contain no information 
used for future decoding, decoding can resume with the next B-, 
P-, or I-picture found. 

o If a P- or an I-picture was being decoded when the error was 
detected, decoding does not resume until the next I-picture is 
found. Intervening P- and B-pictures are discarded because both 
kinds could contain motion vectors referring to the incompletely 
decoded reference picture. 

While the decode process is searching for the next picture to decode, se­
quence and GOP headers are decoded normally if encountered. 

15.2.2 During Header Decode 
If an error is encountered while decoding header information, the 
CL450 behaves as described above for errors detected in B-pictures. 
When an error occurs in a header, the corresponding variable area in 
DRAM may be corrupted. In particular, it is impossible to determine 
which values are from the new, partially-decoded header and which are 
old. It is also impossible to tell if the actual error occurred significantly 
before it was detected. 

15.2.3 During Bitstream Underflow 
Because bitstream buffer underflow ordinarily results only from cata­
strophic failure at the system level, the CL450 microapplication does 
not necessarily behave as otherwise indicated if bitstream buffer under­
flow occurs. In general, any time that the microapplication is in a com­
mand processing state in which bitstream decoding occurs and the 
bitstream buffer underflows, microapplication execution stalls in the 
middle of the decode operation. The most noticeable result is that low­
priority macro commands no longer are executed because the criteria 
for execution (given in Section 11.4, Command Latency) are based on 
the completion of picture decoding operations. 

Functions implemented by the CL450's internal interrupt handlers (in­
cluding video display, Display-time interrupt production, macro com­
mand acceptance, and high-priority macro command execution) 
continue even if the bitstream buffer has underflowed. 
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Note: The host could create behavior similar to a bit­
stream buffer underflow by retaining control of the 
DRAM variables for longer than the maximum speci­
fied time (see Section 14.1, Types of Variables). This ac­
tion blocks the decoding process and results in similar 
functional behavior. 

The CL450 is designed to work over a particular set of input data and 
parameters. The contents of the rest of this document is true only within 
this operating domain. The most significant restrictions on the operating 
domain are given in this section. 

15.3.1 Bitstream 
The CL450 is intended for use with "constrained parameters" video bit­
streams only. In general, only those bitstreams which have (or could 
have) the MPEG cons t r ained_paramet er s_f 1 ag set are con­
sistently decoded correctly. The only exceptions to this are: 

o Still pictures meeting the requirements of the MPEG standard for 
bitstreams which can be decoded by an STD and which contain 
individual field pictures which do not exceed the requirements for 
a constrained parameters bitstream 

o Bitstreams with coded data rates up to 5.0 Mbits/second but meet­
ing all other requirements for the con s t r a i n e d_p a r am e -
ters_flag. 

The bitstream's picture_rate parameter must have a value be­
tween 0001 2 (23.976 Hz) and 0101 2 (30.0 Hz), inclusive. 

The CL450 also cannot decode bitstreams consisting of D-pictures (DC 
intra-coded pictures, indicated by a picture_coding_type of 
1002), 

15.3.2 Output Window and Timing 
Because the CL450 microapplication begins the display of B-pictures 
before they have been completely decoded, there are some otherwise­
legal combinations of coded picture size and SetBorderO and SetWin­
dowO parameters which may produce incorrect visual results. 

Operating Restrictions 

15.3 
Operating 
Restrictions 
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Typically, the microapplication will have decoded approximately 55% 
of the macroblocks in a B-picture before the first possible time a scan 
line from the picture can be displayed. This condition is shown in Figure 
15-1, which assumes use of the tallest possible output window located 
at the top of the video display area (minimum topBorder). If the output 
window starts further down the display screen, a larger portion of the 
picture is decoded before display of the picture begins, assuming that 
display of the picture begins with the first scan line of the picture. 

Any combination of SetWindowO and SetBorderO parameters which 
cause scan lines to be displayed at or below their position on the screen 
shown in Figure 15-1 will function correctly. However, combinations of 
windowing parameters which cause scan lines to be moved up relative 
to their default positions may cause visual glitches. 

The host may compute the sections of the picture that will be complete­
ly decoded at a given time by assuming that: 

o 45% of the macroblocks in the picture remain to be decoded at the 
end of the top border before a B-picture is displayed. 

o Macroblocks are decoded at a constant rate through the remainder 
of the picture. 

o All macroblocks are decoded 16 scan lines before the beginning 
of the bottom border. 

For example, assume that an NTSC-resolution (15-macroblock high) 
picture is being decoded. In this case, 8.25 macroblock rows are com­
pletely decoded when the display of each B-picture begins (55% of 15). 
During picture display, macroblock rows are decoded at a rate of 0.03 
macroblocks per scan line (15-8.25 /240-16). Thus, when display scan 
line 150 occurs (counting from the top of the default output window), 
12.75 macroblock rows will be decoded (150 x 0.03 + 8.25). Note that 
this number should always be truncated because only completely de­
coded macroblock rows can be displayed without glitches. 
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Figure 15-1 B-picture Decode and Display 

The method just described is a conservative way of determining (1) 
which scan lines are available for display, and (2) which macroblock 
rows will always display correctly (based on the macroblock rows 
which this method indicates are completely decoded). However, this 
method will also show that the bottom macroblock row of a picture can 
never be displayed above its default location on the screen. This result 
is too conservative for many applications, so experimentation with the 
actual system and bitstream are recommended. 
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These restrictions are also present when decoding and displaying pic­
tures with extreme aspect ratios (very tall and narrow, or very short and 
wide). In these cases, the default window configuration does not cause 
all of the picture to be displayed. 

To calculate when portions of odd shaped pictures can be displayed, you 
can (1) assume that 55% of the picture is decoded before display begins, 
(2) compute the number of macroblocks per second (not scan lines) that 
are decoded in the NTSC case, and then (3) multiply this value by your 
HSYNC period to determine the number of macroblocks decoded per 
scan line. This should provide a conservative estimate of when macrob­
lock rows from the picture may be displayed. 
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Appendix A 
CL450DRAM­

Variable Allocation 

This appendix contains the DRAM addresses for each of the host-acces­
sible DRAM variables, starting with the host scratch storage listed in 
Table A-I. 

Table A-1 DRAM Addresses for Host Scratch Storage 

DRAM Address Variable Name 

OxO HOST_WORD_O 

Ox1 HOST_WORD_1 

Ox2 HOST_WORD_2 

Ox3 HOST_WORD_3 

Ox4 HOST_WORD_ 4 

Ox5 HOST_WORD_5 

Ox6 HOST_WORD_6 

Ox7 HOST_WORD_7 

Ox8 HOST_WORD_8 



DRAM Address Variable Name 

Ox9 HOST_WORD_9 

Oxa HOST_WORD_A 

Oxb HOST_WORD_B 

Oxe HOST_WORD_C 

Oxd HOST_WORD_D 

Oxe HOST_WORD_E 

Oxf HOST_WORD_F 

Table A-2 lists the locations of the scalar variables in the sequence 
group. 

Table A-2 DRAM Addresses for Sequence Variable Group 

DRAM Address Variable Name 

Ox10 SEQ_SEM 

Ox11 SEQ_CONTROL 

Ox12 HORIZONTAL_SIZE 

Ox13 VERTICAL_SIZE 

Ox14 PICTURE_RATE 

Ox15 FLAGS 

In TableA-3 and TableA-4, the INTRA_Q and NON_INTRA_Q matrix 
element addresses are shown arranged in the same physical order as the 
corresponding default matrices in the MPEG standard (given with the 
definitions of the load_intra_quantizer_matrix and 
load_non_intra_quant i zer_ma t r ixflags).Matrixelement 
(0,0) is located in the upper left, and the matrices are stored in row-ma­
jor format within DRAM. 
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Table A-3 DRAM Addresses for INTRA_Q Matrix 

Ox20 Ox2l Ox22 Ox23 Ox24 Ox25 Ox26 Ox27 

Ox28 Ox29 Ox2a Ox2b Ox2e Ox2d Ox2e Ox2f 

Ox30 Ox3l Ox32 Ox33 Ox34 Ox35 Ox36 Ox37 

Ox38 Ox39 Ox3a Ox3b Ox3e Ox3d Ox3e Ox3f 

Ox40 Ox4l Ox42 Ox43 Ox44 Ox45 Ox46 Ox47 

Ox48 Ox49 Ox4a Ox4b Ox4e Ox4d Ox4e Ox4f 

Ox 50 Ox5l Ox52 Ox53 Ox 54 Ox55 Ox 56 Ox 57 

Ox58 Ox59 Ox5a Ox5b Ox5e Ox5d Ox5e Ox5f 

Table A-4 DRAM Addresses for NON_INTRA_Q Matrix 

Ox60 Ox6l Ox62 Ox63 Ox64 Ox65 Ox66 Ox67 

Ox68 Ox69 Ox6a Ox6b Ox6e Ox6d Ox6e Ox6f 

Ox70 Ox7l Ox72 Ox73 Ox74 Ox75 Ox76 Ox77 

Ox78 Ox79 Ox7a Ox7b Ox7e Ox7d Ox7e Ox7f 

Ox80 Ox8l Ox82 Ox83 Ox84 Ox85 Ox86 Ox87 

Ox88 Ox89 Ox8a Ox8b Ox8e Ox8d Ox8e Ox8f 

Ox90 Ox9l Ox92 Ox93 Ox94 Ox95 Ox96 Ox97 

Ox98 Ox99 Ox9a Ox9b Oxge Ox9d Oxge Ox9f 

Table A-5 lists the DRAM word locations of variables in the picture 
group. 

Table A-5 DRAM Addresses for Picture Variable Group 

DRAM Address 

Ox16 

Ox17 

Ox18 

Ox19 

Variable Name 

PIC_SEM 

TIME_CODeO 

TIME_CODE_l 

TEM PO RAL_R EFER ENCE 

Table A-6 indicates the location in DRAM for the encoding of the mi­
croapplication-executable header information. 
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Table A-6 DRAM Addresses for Microapplication Version Information 
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DRAM Address 

OxaO[15:8] 

OxaO[7:0] 

Oxa1 [15] 

Oxa1[14:8] 

Oxal [7:0] 

Oxa2 

Oxa3 

Contents 

Microapplication version number, high byte (REV _HII. This 
contains the major version (should be Ox02 for the mi­
croapplication covered by this documentl. 

Microapplication version number, low byte (REV_LOI. This 
contains the minor version number. 

This bit is used to denote experimental microapplication 
executables. If this bit is set, it is indicative of an interme­
diate development version or a version with internal de­
bugging functionality. 

Extensions 10. Should be OxOO. Other values indicate that 
the microapplication is an experimental (debuggingl revi­
sion and/or contains functions not specified in this docu­
ment. 

Product 10. Should be Ox02. 

Initial value for CPU_pc register. 

RESERVED 



Appendix B 
Microapplication 

Executable File 
Format 

This appendix describes the format of the CL450 executable file and ap­
plies to microapplication versions 2.00 through 2.FF only. 

The CL450 microapplication executable is distributed in a single file 
with a ".BIN" extension. Once a microapplication executable file has 
been copied from the distribution disk, its name can be changed. 

The syntax for the file is represented with the same conventions used in 
the compressed bitstream syntax of the MPEG standard. In addition to 
the data-type symbols used in the MPEG standard, the new symbols 
shown in Table B-1 will be used. 

B.1 
Syntax Conventions 



File Structure 

B.2 
File Structure 

B.3 
File Header 

Structure 

Table 8-1 Executable File Syntax Symbols 

Symbol Definitions 

ubyte Unsigned integer, occupying a single byte 

uilsbf Unsigned integer, least-significant byte first 

silsbf Signed integer, least-significant byte first 

strfbf String, null-terminated, first (left-most) byte first 

It is assumed that the file is read one byte at a time, and that bit ordering 
within the file bytes is preserved when the executable file is read. 

The microapplication executable consists of a single header, followed 
by one or more code segments. The top-level syntax of the file is as fol­
lows: 

microcode_executable() 

file_header; 

for (c=O;c < num_segments;c++) 

code_segment() ; 

The file_header includes the total number of code segments in the exe­
cutable file (num_segments), information about the microapplication, 
and information needed to initialize the CL450 on-chip CPU's instruc­
tion memory (IMEM) and program counter. 

The code_segments contain the CL450 executable code, and must be 
loaded into the CL450's local DRAM by the host. In addition, one or 
more of the code segments must also be loaded into IMEM to serve as 
a bootstrap for the CL450's CPU. 

The file header contains 10 entries as shown below. Each entry is de­
scribed following the file_header syntax shown on the next page. 

8-2 C-Cube Microsystems 



file_header () 

magic_number 

rev_hi 

rev_lo 

productID 

init_PC 

imem_dram 

exe_length 

num_segments 

RESERVED 
comment_string 

16 uilsbf 

8 ubyte 

8 ubyte 

16 uilsbf 

16 uilsbf 

16 uilsbf 

32 ubyte 

16 uilsbf 

32 uilsbf 

80.8 strfbf 

magic_Dumber - This entry in the file_header contains the value 
OxC3C3 for all valid CL450 micro application files. If a file does not be­
gin with this value, then it is not a valid" .BIN" microapplication exe­
cutable. 

rev_hi - This 8-bit value gives the major version number of the mi­
croapplication executable contained in the file. For microapplication 
executables and executable files covered by this document, the value is 
Ox02. 

rev _10 - This .8-bit value gives the minor version number of the mi­
croapplication executable. Typically, larger values indicate later mi­
croapplication releases. 

productID - This value is used to encode the feature set of the mi­
croapplication executable. IfproductID[15] is 1, then the executable is 
an "experimental" microapplication release and should be regarded with 
caution. Experimental microapplication releases are typically made as 
part of the microapplication support and system debugging process and 
will not match the microapplication functional specification in one or 
more ways. Experimental microapplications should not be used except 
under the direction of C-Cube Microsystems technical support. 

File Header Structure 
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File Header Structure 

The least significant bits of productID are used to encode the feature set 
implemented by the microapplication. For a microapplication with a 
major version number (rev_hi) of Ox02, a productID with the lower bits 
equal to 2 indicates that the feature set described by this document is im­
plemented. Previous microapplication releases with major version 
numbers of OxO 1 used the values 0 and 1 to indicate the discontinued 
"CL450 Baseline" and "CL450i" feature sets. 

Finally, the high-order bits of productID (bit 14 down to the bits de­
scribed above) are reserved for the encoding of customer-specific mi­
croapplication modifications .. 

init_PC - This entry contains the value the host should write to the 
CL450's CPU_pc register during the microapplication loading process 
prior to enabling CPU execution. 

imem_dra~ - This value is a byte address in the CL450's DRAM at 
which the DRAM and IMEM address spaces are conceptually over­
lapped. All data from the code_segments which is written to the DRAM 
range from byte address "imem_dram" through byte address "imem_­
dram+2044" inclusive must also be written by the host to the corre­
sponding IMEM address. IMEM addresses can be computed from 
DRAM addresses within the "overlapped" range as follows: 

IMEMaddress= (DRAMaddress - imem_dram) / 4; 

Note that IMEM may only be written 32-bits at a time (requiring two 
sequential 16-bit write operations from the host). 

exe_length - This entry gives the length in bytes of the complete exe­
cutable file, including the header. 

num_segments - This entry gives the number of code_segments con­
tained in the file. If the end of the last code segment in the file and the 
actual end of the file do not coincide exactly, the executable file has been 
corrupted and should not be used. 
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RESERVED - This 32-bit quantity is reserved for future use and ex­
ecutable file readers should ignore its contents. 

comment_string - Thisfile_header:entries:magic_number string con­
tains ancillary information about the microapplication contained in the 
file. Typically this includes at least the microapplication copyright no­
tice. 

Each code segment contains two entries and an array of values, as 
shown below. Each entry is described following the code_segment syn­
tax: 

code_segment ( ) 

seg_length ; 

seg_address; 

for (c=O;c < (seg_length/4) ;c++) { 

instruction_word_1 

instruction_word_O 

32 uilsbf 

32 ubyte 

16 uilsbf 

16 uilsbf 

seg_Iength - This entry gives the length of the segment in bytes. Each 
CL450 microinstruction is 32-bits long, occupying four bytes. 

seg_address - The entry gives the DRAM byte address at which this 
segment should begin loading. The loaded segment should occupy 
DRAM byte addresses "seg_address" through "seg_address + seg_­
length - 1" inclusive. Note that if part or all of the DRAM area occupied 
by a segment coincides with the "DRAM/IMEM overlap" region (see 
imem_dram, above), then that part of the segment must be written to the 
appropriate portion of IMEM as well as DRAM. 

instruction_ word_l and instruction_ word_O - These values are the 
actual microapplication instructions. They should be loaded into the 
CL450's local DRAM (and possibly IMEM). The first value from the 
file (instruction_ word_I) is the most significant half of each CL450 in­
struction, and should be written to the CL450jirst. When writing code_­
segment data to the CL450's DRAM, the first word of data from the 

Code Segment Structure 

8.4 
Code Segment 
Structure 
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Code Segment Structure 

executable file (instruction_word_l) goes in the lower DRAM word ad­
dress, and instruction_word_O goes in the higher DRAM word address. 
When writing code_segment data to IMEM, instruction_ word_l is writ­
ten to the CPU_imem register first, followed by instruction_word_O. 

8-6 C-Cube Microsystems 



Appendix C 
CL450 Microapplication 

Distribution Disk 

This appendix describes the C-Cube Microsystems microapplication 
distribution disk, which contains the following files: 

o \DRAM450.BIN: This file contains the CL450 micro application 
executable in the format described in Appendix B. 

o \450DEMO .EXE: This file is a demonstration program, which 
runs under Microsoft Windows ™ and is compiled for execution 
on the CL450 development board. When executed, the microap­
plication executable located in the same directory in the file 
"DRAM- 450.BIN" is loaded, and the MPEG elementary video 
bitstream located in the same directory in the file "MPEG .NFL" is 
decoded and displayed. 

o \MPEGNFL: This file contains an MPEG elementary video bit­
stream. 

o \README.DOC: This file contains a complete description of the 
contents of the subdirectories, as well as release notes and errata 
(if any) for the particular micro application version contained on 
the disk. 



o \KERMIT .INI: This application contains a configuration file read 
by 450DEMO.EXE (by the C3VIO library) at program start-up for 
information on the configuration of the CL450 development 
boards. The version of this file supplied with the microapplication 
corresponds with the factory settings of the development board. 

The C-Cube Microsystems microapplication distribution disk also con­
tains the following directories: 

C-2 C-Cube Microsystems 

o \450DEMO: This directory contains the source, header, and make 
files used to compile 450DEMO.EXE. 

o \C3LIB: This directory contains the source, header, and make files 
for an example library of CL450 I/O routines. This library may be 
built either for DOS or Windows applications, although a version 
complied for DOS is supplied and is required to build 
450DEMO.EXE. By changing the routines in this library, it 
should be possible to port 450DEMO .EXE to any other CL450-
based subsystem. 



Appendix D 
CL450 Troubleshooting 

This appendix contains information which should be collected before 
reporting a suspected bug in the CL450 micro application to C-Cube Mi­
crosystems customer support: 

1. Determine the version number of your microapplication by ex­
amining the appropriate DRAM location (see Table A-6) while 
the microapplication is loaded. 

2. Determine the value of CPU _control [0] after the failure is ob­
served. 

3. If CPU_control [0] is 0, then either the host or the microapplica­
tion halted the CL450' s CPU. Capture the contents of CPU_pc. 
If CPU_control[O] is 1, then the CL450's CPU is still running. 
Read the contents of CPU_pc and attempt to determine if the 
microapplication is looping within one or more areas of 1M EM. 
Report the IMEM addresses (CPU_pc values) for these areas. 

4. Capture the contents of CPU_intenab and CPU_into 

5. Capture the contents of DRAM addresses OxO through Ox360. 



6. Capture the contents ofTMEM addresses OxO through Ox7f. 
Note that reading TMEM contents from the host only retrieves 
the least-significant 16 bits from each 24-bit TMEM word. This 
is sufficient for an initial bug report, but you may be asked to 
run a special microapplication which reads and dumps the full 
TMEM contents. 

7. Capture the contents of HMEM addresses OxO through Oxf. 

When reporting the content of a CL450 register, it is important to get all 
16 bits read from the CL450, not just the bits which are defined. 

Most of the items listed above may change while the microapplication 
is executing. Because of this, values should be captured twice. First, 
perform the operations which cause the suspected bug and capture the 
values while the microapplication is still executing. Second, reset and 
restart the system and execute until the bug occurs again. Then clear 
CPU_control[O] and capture all of the values. This will ensure that the 
microapplication is not changing the state while it is being captured. 

The registers which must be used to read from TMEM (CPU_taddr and 
CPU_tmem) are used by the microapplication. Because of this, reading 
TMEM while the microapplication is executing will not always be suc­
cessful. Sometimes the microapplication will interfere with the results 
of reading TMEM, and sometimes the act of reading TMEM will cause 
the microapplication to malfunction. 

Finally, a description of the host operations and/or bitstream which 
cause the suspected bug to occur should be supplied. It is possible that 
C-Cube Microsystems will request a copy of the bitstream to duplicate 
the problem. 
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A 
AC characteristics, 7-3 to 7-19 
AccessSCRO. See Macro commands 
Address Bus. See Host Address Bus 
Address size 

registers, 1-5 
other memories, 1-6 

Address Strobe, 3-4 
AlC bit, 4-19, 7-12, 8-11,8-12, 12-38 
:AS" (address strobe) 3-2,3-3,3-4,4-2,4-3, 

4-5,4-6,4-7,4-8,4-9,4-10 4-11 
4-12,4-13,4-15,4-16,4-18:4-20: 
4-21,7-4,7-5,7-12 

Audio decoder 
in MPEG standard, 2-2 
synchronizing to, 13-6 

Audio streams 
See bitstream transfer process 

Audio/video synchronization, 13-1 to 13-
12 

Auto interrupt clear. See AlC bit 

B 
Bank 0, 5-4 
Bank 1,5-4 

Index 

Bitstream 
demultiplexing, 13-11 
NewPacketO association, 13-9 
operating restrictions, 15-5 

Bitstream buffer 4-12, 5-2, 9-5, 9-6, 11-20, 
11-27,12-6,12-10,12-17,12-22, 
12-23, 12-27, 12-29, 12-31 

and DMA operation, 9-5 
and programmed access, 9-6 
flushing, 11-16 
fullness reading, 11-19 
setting threshold, 11-38 

Bitstream data 
example using NewPacketO, 13-8 

Bitstream data transmission 13-9 
Bitstream parameters 

accessing, 14-1 
default settings, 10-6 
picture variable group, 14-1, 14-4 
sequence variable group, 14-1 

Bitstream transfer process 
DMA operation, 9-5 
programmed access, 9-5 
pseudocode example, 9-6 

Bitstream underflow. See error recovery 
and concealment 

Index-l 



Block,2-5 
Block row boundaries, 12-2 
Bootstrap. See initialization 
Border positioning, 6-4 
Border 

blue component bits. See BorBI bits 
green component bits. See BorGrn 
bits 
left size. See BorLeft bits 
red component bits. See BorRd bits 

BorBI bits, 8-29 
BorGrn bits, 8-29 
BorLeft bits, 8-28 
BorRd bits, 8-28 
B-pictures. See Picture type (bidirectional) 
broken_link, 10-7 
BS bit, 8-8 
Buffer fullness status, 11-2 
Byte addressing 

with other memories, 1-6 
with registers, 1-5 

Byte swap bit. See BS, 8-8 

c 
CAS, 5-8,7-14,7-15 
CAS-before-RA:S', 5-3,7-15 
CASIN, 5-8, 7-14 
CDCtr bit, 8-11 
CEn bit, 8-19,8-21,10-1 
CFLEVEL, 3-2,3-7,3-9,4-2,4-7,4-12,4-

17, 4-18, 8-7, 8-9, 9-7 
CFLEVEL assertion control, 8-10 
ChromaData bits, 8-25 
CL450 

AC characteristics, 7-3 
bitstream transfer process, 9-5 
block diagram of, 1-4 
coded data transfer, 13-7 
command process, 9-4 
command states, 11-4 
command writing sequence, 8-15 
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deadlock avoidance, 11-3 
decode process, 9-7 
display process, 9-7 
DRAM interface, 3-9 
electrical specs, 7-1 to 7-19 
error recovery and concealment, 15-3 
executable file format, B-1 
features, 1-2 
functional description, 1-4 
general description, 1-1 
host interface, 4-1 
initialization, 10-1 to 10-10 
interrupts, 12-1 to 12-38,9-8 
macro command failure, 11-4 
macro command summary, 9-4 
macro commands, 11-1 to 11-47 
microcode distribution disk, C-l 
microcode features, 1-2, 9-1 to 9-10 
packaging specs, 7-20 to 7-26 
picture display rate. See frame rate 

conversion 
pinout, 7-21 
process configurations, 9-3 
product family, 1-1 
programming overview, 1-7 
registers, 1-7, 8-1 to 8-29 
restrictions, 15-5 
SCR counter, l3-2 
synchronizing from, l3-3, l3-7 
typical applications, 1-8 
typical system application, 1-8 
used as SCR master, 13-7 

CL450 microapplication. See microappli-
cation 

Clock timing, 7-17 
Clock source bit. See CS bit 
closed_gop, 10-7 
Cmdbit, 8-14,8-15 
CMEM 1-5, 1-7,3-2,3-4,3-5,3-7,4-1,4-

6, 4-7, 4-11, 4-12, 4-13, 4-14, 4 
15,4-17,4-18,5-3,8-7, 8-8, 8-9, 
9-5,9-6,9-7,103,11-16,11-20, 



11-22, 11-26 
back-to-back transactions, 4-12 
CFLEVEL signal, 4-18 
determining fullness of, 9-6 
diagram 4- 4-7 
fullness polling, 9-6 
how accessed, 4-6 
polled and DMA writes, 4-12 
pseudocode example, 9-6 
timing, 7-9 
when accessed, 4-6 
write timing, 7-9 
writing to, 4-11,9-6 

CMEM registers, 8-8 
CMEM request. See CR bit 
CMEM request enable. See CRE bit 
CMEM reset. See CRst bit 
CMEM_control. See registers 
CMEM_data register. See registers 
CMEM_dmactrl. 

"entirely empty" selection, 9-7 
determining fullness, 9-7 
See also registers 

CMEM_dmactrl register. See registers 
Coded Data FIFO. See CMEM 
Coded picture rate. See picture_rate 

15-1 
Color-space converter, 1-5, 11-30, 11-34 
Command FIFO, 5-2,9-4, 11-1, 11-7, ll-

9, 11-23, 11-27, 12-36 
command read pointer, 11-7 
example, 11-7 
latency, 11-9 
overflow, 11-9 
packet read pointer, 11-7 
write pointer, 11-7 

Command process, 9-4 
Command processing states, 11-4, 11-27 
Command read pointer, 11-7 
Command states 

how to change, 11-4 
IDLE, 11-4 

PLAY-SETUP, 11-6 
Command/Status Registers, 8-13 
Compression layers, 2-2 
Configuration file, C-2 
constrained_parameters_flag 

15-5 
Control signals, 3-7 

timing, 7-17 
RESET (hardware reset), 3-9 

Control-type macro commands, 11-10 
Conversion coefficients bits. See K3-KO 

bits 
CPU (internal) registers, 8-18 to 8-23 
CPU run enable bit. See CEn bit 
CPU_control register. See registers 
CPU _iaddr register. See registers 
CPU_imem register. See registers 
CPU_int register. See registers 
CPU _intenb register. See registers 
CPU_pc register. See registers 
CPU_taddr register. See registers 
CPU _tmem register. See registers 
CR bit, 8-9 
CRCtr bits, 8-11 
CREbit,8-9 
CRst bit, 8-9 
CS bit, 8-16, 8-17 
CWCtr bits, 8-11 

D 
DAC conversion, 6-3 
Data bus. See Host data bus 3-4 
Data organization 

in general, 1-5 
with all other memories, 1-6 

Data transfer 
packeted, 13-8 
signals, 3-3 
unpacketed,13-8 
using NewpacketO, 13-7 
with one PTS, 13-10 
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with periodic PTSs, 13-11 
without PTSs, 13-10 

Data transfer acknowledge, 3-5 
Data transfer signals 

A[20:1], 3-3,3-4 
AS"""(Address Strobe), 3-4 
D[15:0] 3-2,3-3,3-4,4-2,4-5,4-6,4-

7,4-8,4-9,4-13,4-15,7-4,7-5,8-
7, 4-21, 7-12 

""'D'I"I"I"tA"T'"c7"'fK'i'Y (Data transfer acknowledge) 
3-2,3-3,3-5,4-2,4-5,4-8,4-9,4-
1 0, 4-11, 4-13, 4-15, 4-18, 4-19, 
4-21,7-4,7-5,7-9,7-10,7-12,14-
9 
generation logic, 4-1 ° 
state logic diagram, 4-11 

r::JJS""(Lower Data Strobe) ,3-2,3-3 
R/W (Read/Write), 3-4, 3-5 
UlJS (Upper Data Strobe), 3-3 

DCT. See discrete cosine transform, 2-10 
DE bit, 4-14, 4-16, 8-10 
Debug. See registers, 8-2 
Decode process, 9-7 
Decoder 

audio, 2-2 
system, 2-2 
video, 2-2 

Decode-time interrupt, 12-10, 12-14 
Decoding process configuration, 9-3 
Decoding defaults. See bitstream parame-

ter (default settings) 
Default values 

bitstream parameters, 10-7 
DRAM-resident variables, 10-8 
registers, 10-8 

Demonstration program, C-l 
Demultiplexing system bitstream, 13-11 
Difference counter bits. See CDCtr bits 
Direct-access registers. See registers 
Discrete cosine transform, 2-10 
Display mode 

RGB,6-9 
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YCbCr, 6-9 
Display process, 9-7 
Display time stamps. See Presentation 

time stamps, 13-2 
DisplayStillO. See Macro commands 
Display-time (See Interrupts) 12-2, 12-10, 

12-14 
Div bits, 8-16, 8-17 
DMA transfers, 1-2,3-2,4-6,4-11,4-12, 

4-13,4-14,4-15,4-17,8-7,9-5, 
11-26, 12-23 

controller, 3-5 
signals, 3-5 

DMA acknowledge, 3-6 
DMA done, 3-6 
DMA enable bit. See DE bit 
DMA Request, 3-6 
DMA signals, 3-5 

DMAACK (DMA Acknowledge) 3-2, 
3-5,3-6,4-2,4-6,4-7,4-12,4-14, 
4-15,7-10 

DMAREQ (DMA Request), 3-2,3-5, 
3-6, 4-2,4-7,4-12,4-14,4-15,4-
17,7-10,8-10 

DONE (DMA Done), 3-2, 3-5,3-6 
D'fC (Data transfer complete), 3-6, 3-

2,3-5,3-6,4-2,4-6,4-7,4-12,4-
14,4-15 

DMA transaction, 4-14 
DMA transfer complete, 3-6 
DMA transfers, 4-1 
DMAACK. See DMA signals 
DMAREQ. See DMA signals 
l'JONE. See DMA Signals 
DRAM command FIFO. See command 

FIFO 
DRAM (local), 1-7,3-4,3-8,3-10,3-11,4-

1,4-8,4-10,4-11,5-1,5-2,5-3,5-
4,5-7,5-8,6-3,6-9, 7-4, 7-13, 7-
14, 8-6, 8-23, 9-7, 10-1, 10-2, 10-
9,10-10,11-19,11-20,11-25,11-
45,12-27,14-1,14-5,14-7,14-8 



256 x 16, 5-7 
256 x 4, 5-6 
accessing variables, 14-1 to 14-10 
amount recommended, 5-2 
design guidelines, 5-7 
eliminating noise from, 5-7 
example implementation, 5-5 
host access, 5-2 
interface registers, 8-22 
latency, 4-8 
matrix order, A-2 
microcode-programmable features 5-3 
page-mode read timing, 5-8 
page-mode write timing, 5-9 
parts to use, 5-8 
proper layout, 5-7 
read timing, 4-8 
refresh performed, 5-8 
semaphore access, 14-5 
timing showing CAS and RAS", 7-15 
type and organization, 5-2 
uses of, 5-2 
when accessed, 4-4 
write timing, 4-9 

DRAM addresses 
host scratch storage, A-I 
INTRA_Q matrix, A-3 
microcode version, A-4 
NON_INTRA_Q matrix, A-3 
picture variable group, A-3 
sequence variable group, A-2 

DRAM bank 0, 3-4 
DRAM bank 1, 3-4 
DRAM bus timing, 7-14 
DRAM interface, 3-9 
DRAM Interface signals 

LCAS (Lower column address strobe) 
3-11 

....... L""""Cr'l'"A""""S"""IN""" (Lower data latch enable), 3-
11 

MA (Memory address bus), 3-2, 3-9, 
3-10,5-5,5-6, 5-8,7-14 

MD (Memory data bus), 3-2, 3-9, 3-
10,5-5,5-6,7-14 

RAS (Row Address Strobe), 3-2, 3-10, 
5-4,5-5,5-6,5-6, 

UCAS" (Upper column address strobe), 
3-11 

.,....,O .... C ... A--..S ...... IN ...... (Upper data latch enable) 3-
3-11 

WE (write enable), 3-11 
DRAM variables 

reading, 14-7 
timing restrictions, 14-8 
writing, 14-7 

DRAM variables. See Chapter 14 
DRAM_refcnt register. See registers (di­

rect -access) 
DRAM-resident variables default values, 

10-8 
=D-T.,....,A,....,c ..... K....... See Data transfer signals 
'DT<:. See DMA signals 
dual-address, 4-16 

E 
Empty status bits. See 1 Q-4Q, 8-9 
Empty status enable bits. See lQE-4QE, 

8-10 
END-D. See interrupts (listed) 
ERR. See Interrupts (listed) 
Error recovery and concealment 

F 

during bitstream underflow, 15-4 
during header decode, 15-4 
during picture decode, 15-3 
signaled vs. unsignaled, 15-3 

FIFO. See Command FIFO or CMEM 
file_header 

described, B-2 
entries, 

commencstring, B-5 
exe_Iength, B-4 

Index-5 



imem_dram, B-4 
iniCPC, B-4 
instruction_word 0, B-5 
instruction_word 1, B-5 
magic_number, B-3 
num_segments, B-4 
productID, B-3 
RESERVED ,B-5 
rev_hi, B-3 
rev_Io, B-3 
seg_address, B-5 
seg_Iength, B-5 

filter argument, 11-16, 11-17 
FLAGS, 14-3 
FlushBitstreamO. See Macro commands 
format argument, 11-40 
Forward prediction, 2- 2-6 
Frame rate conversion, 15-1 

G 
gb~order, 11-28,11-30 
GCLK, 3-2,3-7,3-8,3-9,3-13,4-4,4-5,4-

6,4-7,4-8,4-11,4-12,4-14,5-8, 
7-14, 7-15, 7-17, 7-19, 8-7, 8-16, 
8-17,8-23 

timing, 7-17 
GCLK. See Timing signals, 3-8 
GDATA, 4-5, 4-7 
GDATA bus, 4-6 
GOP. See group of pictures 
GOP header, 11-28, 14-4 
group of pictures (GOP) 2-4 
group_of_pictures, 11-15 
group_start_code, 12-19, 14-8 
GRP Interrupt. See Interrupts (listed) 
GSEL, 4-4, 4-5, 4-7 

H 
Halting microcode, 10-10 
Handshaking protocol. See interrupts 
HCLK, 3-2,3-7,3-8,3-9,4-2,4-4,4-5,4-
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6,4-8,4-9,4-13,4-14,4-15,4-17, 
4-21, 7-4, 7-5, 7-6 
See also timing signals 

HData bits, 8-14 
height argument, 11-42, 12-3, 12-5 
HMEM 4-19,8-15,9-4,10-4,10-9,11-1, 

11-2,11-3,11-4,11-7,11-12,11-
13,11-19,12-1,12-7,12-10,12-
38 

access registers, 10-4 
address allocation, 11-2 
interrupt status location, 12-7 
macro command use, 11-3 
scratch storage use, 11-3 
semaphore use, 11-3 

Horizontal blanking, 6-2 
Horizontal synchronization. See HSYNC 
Horizontal timing (synchronization), 6-6 
HORIZONTAL_SIZE,14-3 
horizontaLsize, 10-7, 11-44 
Host 

access of DRAM variables, 14-1 
overflow responsibilities, 11-9 
time-out counter use, 11-3 

Host address bus, 3-4 
Host data bits. See HData 
Host data bus, 3-4 
Host Interface 

memory access, 4-3 
pinout diagram, 4-2 

Host interface 
description, 4-1 
diagram, 4-5 
registers, 8-6 

Host processor 
initialization sequence, 10-1 
writing bootstrap, 10-2 

HOST_control. See registers 
HOST _intvecw. See registers 
HOST_newcmd. See registers 
HOST _raddr register. See registers 
HOST _rdata. See registers 



HOST_scrO. See registers 
HOST_scrl. See registers 
HOST_scr2. See registers 
HSYNC 1-1,3-1,3-2,3-12,3-13,6-4,6-5, 

6-6,6-7,6-8,7-18,11-28,11-32, 
12-3, 12-5 

I 
IDLE command state, 11-4,11-6,11-9,11-

20, 11-45, 13-3 
Idle process configuration 9- 9-2 
IDLE. See command states 
IE bit, 8-18,8-19 
Images 

coding vs. display frequency, 9-8 
IMEM 1-7,8-18,8-20,9-1,10-1,10-4,10-

5, 10-9 
access registers, 8-20 
registers, 10-4 
used in bootstrap, 10-1 
write data flow, 8-20 

Indirect register access. See registers (indi­
rect) 

Indirect video registers. See registers (indi­
rect) 

Initialization, 10-1 to 10-10 
determining completeness, 10-9 
operations performed, 10-3 
process configuration, 9-2 
registers, 10-2 

Inputs, 1-1 
InquireBufferFullnessO. See Macro com­

mands 11-19 
INT, 3-2,3-6,3-7,4-2,4-6,4-7,4-19,4-

21,7-12,8-7,9-8,12-1,12-7,12-
8, 12-10, 12-36, 12-37 

hit bit, 4-19,8-11,8-12, 12-38 
INTACK, 3-2, 3-6,3-7,3-9,4-2,4-6,4-7, 

4-19,4-20,4-21, 7-12,8-7,8-12, 
8-13, 12-38 

Interface (video), 3-10 

Internal registers. See Registers (internal) 
Internal Reset. See Rst bit 
Inter-picture decoding. See Picture type 
Interrupt (vectored) timing, 7-12 
Interrupt priority ID. See IPID bit 
Interrupt signals 

INT (interrupt request), 3-7 
IN TAcK (Interrupt Acknowledge), 3-

7 
Interrupt status, 4-19, 11-2,12-7,12-8,12-

9, 12-11, 12-32, 12-33, 12-36 
Interrupt Status Location 

cleared by Host, 12-11 
host's responsibilities, 12-11 

Interrupt vector operation, 4-6 
Interrupts, 3-6, 9-8, 12-1 to 12-38 

CL450 internal queuing, 12-13 
control registers, 8-11 
examples, 12-28 
handshaking protocol, 12-7 
listed 

END-D,12-15 
END-V, 12-16 
ERR, 12-17, 12-29 
GRP, 12-19 
PIC-D, 12-20 
PIC-V, 12-21 
RDY, 12-22 
SCN, 11-28,12-24, 12-37 
SEQ-D,12-25 
SEQ-V, 12-26 
UND, 12-27 

PIC-V, SCN example, 12-34 
polled,4-19 
posting procedure, 12-9 
RDY, UND, ERR example, 12-29 
servicing, 12-37 
summary table, 12-2 
types 

decode-time, 12-6 
display-time, 12-2 
VSYNC, 12-6 
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vectored, 4-19 
Interrupts status 

latency concerns, 12-8 
Interupt enable bit. See IE bit 
INTRA_ Q, 14-4 
Intra-picture (Transform) coding, 2-10 
I-pictures. See Picture type 
IPID bit, 4-19, 8-13 
IVeet bits 4-19,8-13 

J 
Jitter tolerance, 9-8 

K 
K3-KO bits, 8-26 

L 
LCAS, 3-2, 3-10, 3-11, 5-3, 5-5,5-6,5-7 
LCASIN, 3-2,3-11,5-3,5-4,5-5,5-6,5-7 
IJ5""S, 1-6,3-2,3-3,3-4,4-2,4-4,4-6,4-8, 

4-9,4-13,4-15,4-21,5-4 
decoded values, 4-3 
shown with Write timing, 4-10 
See also data transfer signals 

Left border size bits. See BorLeft 
leftBorder argument, 11-31, 11-32 
length argument, 11-22,2-22,13-11,13-8 
level argument, 11-36, 11-38 
load_intra_quantizer_matrix, 10-7 
load_non_intra_quantizer_matrix, 10-7 
locations, 11-2 
Lower column address strobe. See LCAS. 
Lower data latch ena~le. See LCASIN 

M 
MA. See DRAM interface signals 
Macro commands 

default settings, 10-6 
discussed, 11-1 to 11-47 
effect on command state, 11-11 
for loading registers, 10-5 
function codes 11-1, 11-11 

Index-8 C-Cube Microsystems 

latency, 11-9 
listed 

AccessSCRO, 11-12 
DisplayStillO, 11-14 
FlushBitstreamO,11-16 
InquireB ufferFullnessO, 11-19 
NewPacketO,11-20 
PauseO,11-25 
PlayO,11-26 
ResetO,11-27 
ScanO,11-28 
SetBlankO,11-29 
SetBorderO, 6-4,11-30 
SetColorModeO,II-34 
SetInterruptMaskO,11-36 
SetThresholdO,II-38 
SetVideoFormatO,II-40 
SetWindowO, 6-8, 11-42 
SingleStepO,11-45 
SlowMotionO, 11-46 

overflow of, 11-9 
parameter values, 11-1 
polling HOST_newcmd, 11-3 
priority, 11-1 
summary, 9-4 
types, 11-10 
writing, 11-2 

Macroblock, 2-5 
marker_bits, 12-17 
mask argument, 12-8, 12-15, 12-21, 12-24, 

12-32 
mask bit assignment, 9-8, 11-36, 11-38 
MD, 5-8, 7-14 
Memory 

design guidelines, 5-7 
refresh cycle, 5-11 

Memory access 
byte-wide vs. word-wide, 4-3 
CMEM,4-6 
DMA operation, 4-6 
interrupt vectors, 4-6 
local DRAM, 4-4 



registers, 4-4 
Memory address bus. See DRAM interface 

signals 
Memory bus 

address lines, 5-3 
control lines, 5-3 

Memory data bus, 3-10 
Microapplication (CL450) 

bitstream transfer process, 9-5 
code segment structure, B-5 
command process, 9-4 
decode process, 9-7 
decoding process configuration, 9-3 
default settings, 10-6 
display process, 9-7 
distribution disk, C-l 
executable file, 10-5 
file structure, B-2 
frame rate conversion, 15-1 
halting, 10-10 
Idle process configuration, 9-2 
initialization process configuration, 

9-2 
loading process configuration, 9-2 
loading registers, 10-5 
loading sequence, 10-9 
Pause process configuration, 9-2 
relationship to hardware, 9-3 
segment blocks, 10-5 
synchronization, 9-8 

Miscellaneous signals, 3-13 
mode argument, 11-34, 12-5 
Motion compensation, 2-6, 2-8 
MPEG 

bitstream demultiplexing, 13-11 
decoding defaults. See bitstream pa­

rameters (default settings) 
10-7 

decoding process, 2-2 
defined, 2-1 
standard, iii 
stream structure, 2-2 

N 
NCE bit, 8-20 
NCS bit, 8-19 
New command bit. See Cmd bit 
New command interrupt status bit. See 

NCS bit, 8-19 
New command interupt enable bit See 

NCE bit, 8-20 
NewPacketO 9-8,11-16,13-7,13-11 

and RDY interrupt production, 12-22 
bitstream association, 13-3, 13-9 
Command FIFO vs. Bitstream buffer 

11-24 
example, 13-8 
length argument, 11-22 
timeStamp arguments, 11-22 
when to use, 13-7 

NewPacketO. See Macro commands 
NewSeq bit, 14-2, 14-8 
nominal field rate, 15-1 
NON_INTRA_Q, 14-4 
Normal. See registers (normal) 
NTSC, 1-2, 1-3, 1-8,6-2,15-1 

o 
Open-drain output, 7-13 
Output window. See window, 11-7 

p 
Packaging drawings, 7-25 
Packet. See NewPacketO 
Packet read pointer, 11-9 
Packeted data transfer. See data transfer 
PAL, 1-2, 1-3, 1-8,6-2 
PAUSE command state, 11-9, 11-15, 11-

25, 11-28, 12-34, 13-5 
Pause process configuration, 9-2 
PauseO. See Macro commands, 11-25 
PC bits, 8-19 
PIC_SEM, 108 
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PIC_SEM location encoding, 14-5 
PIC-D Interrupt. See Interrupts (listed) 
Picture, 2-4, 11-15 
Picture display rate. See frame rate conver-

sion, 15-1 
Picture group (of DRAM variables), 14-4 
Picture headers, 14-4 
Picture type 

bidirectional, 2-7,9-8 
intra, 2-6, 9-8, 11-18, 11-28 
predicted, 2-6 

Picture variable group 
See bitstream parameters, 14-4 

picture_coding_type, 15-5 
picture_height parameter, 11-33 
PICTURE_RATE sequence variable, 14-3 
picture_rate parameter, 10-7, 11-26, 

11-40, 11-47, 12-6, 13-3, 13-10, 
15-2, 15-5 

picture_start_code, 11-9, 11-23, 
12-20, 12-33, 12-34, 12-36, 13-2, 
13-3,13-12,14-7 

picture_width parameter, 11-33 
PIC-V interrupt. See Interrupts (listed) 
Pinout ofCL450, 7-21 
Pixel bus 

described, 3-12, 6-8 
disabling outputs, 6-10 

Pixel data high byte bits. See PixHData 
bits 

Pixels of displayed video, 6-5 
PixHData bits, 8-29 
PLAY command state, 11-28, 11-45, 11-47 
PlayO. See Macro commands 
PLAY-SETUP command state, 11-4 11-6, 

11-9, 11-26, 11-28, 11-46 
Play-type commands 11-4, 11-10 
Powerup. See initialization, 10-1 
P-pictures, 9-8 
P-pictures. See Picture types (predicted) 

2-6 
PQFP,7-20 
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Presentation time stamps (PTSs), 2-11, 2-
12,8-16,9-8,11-22,11-23,13-2, 
13-3, 13-4, 13-6, 13-12 

Process configurations, 9-1 , 9-3 
Program counter bits. See pe bits 
Programmed access, 9-5, 11-26 

pseudocode example, 9-6 
Programmed 1/0,1-2 
PTS. See Presentation time stamp 

R 
R/W, 3-2, 3-3, 3-5, 4-2, 4-4, 4-5, 4-6, 4-7, 

4-8,4-9,4-12,4-13,4-15,4-16,4-
21,5-4,7-4,7-5,7-12 

RO\S,3-11,5-3,5-8,7-14,7-15 
RAS/CAS, 5-3 
rate buffer, 9-5 
rBorder, 11-28, 11-30 
RDY interrupt. See Interrupts (listed) 
Read counter bits. See eRetr bits 
Read/write, 3-5 
REICnt bits, 8-23 
refresh clock countert bits. See Refent bits 
Refresh memory timing, 5-11 
Refresh on DRAM, 5-8 
Register (internal) 

read timing, 4-8 
write timing, 4-9 

Registers 
at startup, 10-2 
byte-wide vs. 16-bit, 8-3 
CMEM_status, See direct-access 
CPU_control, See direct-access 
CPU_iaddr, See direct-access 
CPU_imem, See direct-access 
CPU_int, See direct-access 
CPU_intenb, See direct-access 
CPU_pc, See direct-access 
CPU_taddr, See direct-access 
CPU_tmem, See direct-access 
Data organization, 1-5 



Debug, 8-2 
default parameters, 10-2 
default settings, 10-2 
default values, 10-7 
direct-access (listed) 

CMEM_control, 8-3, 8-5, 8-7,8-8 
CMEM_data, 8-3, 8-5, 8-7,8-9 
CMEM_dmactrl, 4-12, 4-14, 4-

16,4-17,4-18,8-3,8-5, 
8-7,8-9 

CMEM_status, 4-6,8-3,8-5,8-7, 
8-11 

CPU_control, 8-3, 8-5,8-19, 8-20 
CPU_iaddr, 8-3, 8-5, 8-20,8-21 
CPU_imem, 8-3, 8-5, 8-20, 8-21 
CPU_jnt, 8-3, 8-5, 8-18,8-19 
CPU_intenb, 8-3, 8-5, 8-18,8-20 
CPU_pc, 8-3, 8-5,8-19 
CPU_taddr, 8-3, 8-5,8-22 
CPU_tmem, 8-3, 8-5,8-22 
DRAM_refcnt, 5-8, 8-3, 8-5, 8-23 
HOST_control, 3-7,4-6,7-12,8-

7,8-11,8-12 
HOST _intvecr, 8-7, 8-11,8-13 
HOST_intvecw ,3-7,4-19,8-3,8-

5, 8-7, 8-11 , 8-13 
HOST_newcmd ,8-3,8-5,8-7,8-

14 
HOST_raddr ,8-3,8-5,8-7,8-13, 

8-15 
HOST_rdata, 8-3, 8-5, 8-7,8-14 
HOST_scrO, 3-9, 8-3, 8-5, 8-7,8-

17 
HOST_scd, 3-9, 8-3, 8-5, 8-16 
HOST_scr2, 3-9, 8-3, 8-5, 8-7, 8-

16 
VID_chroma, 8-3, 8-5,8-25 
VID_control" 8-3, 8-4, 8-5, 8-23, 

8-25 
VID_regdata, 8-3, 8-5,8-25 
VID_y,8-26 

DRAM interface, 8-22 

DRAM_refcnt. See direct-access 
for IMEM, TMEM, 10-4 
for loading microcode, 10-5 
host writing sequence, 10-4 
IMEM access, 8-20 
indirect-access (listed) 

VID_sela register, 8-4,8-5,8-26 
VID_selactive register, 8-4,8-28 
VID_selaux register, 3-12, 8-29 
VID_selb register, 6-9, 8-4,8-26 
VID_selbor register, 8-4,8-28 
VID_seIGB register, 8-4,8-29 
VID_selmode register, 8-4,8-27 
VID_seIR register, 8-4, 8-28 

indirect video. See indirect-access 
initialization, 10-2 
initialized by ResetO, 10-2 
internal (summary), 8-5 
internal CPU, 8-2, 8-18 
loaded by macro commands, 10-5 
loading sequence, 10-3 
microcode-independent ,10-3 
normal category, 8-2 
system clock reference, 8-16 
TMEM access, 8-22 
video (indirect), 8-26 
video interface, 8-23 
when accesed, 10-3 
type 

diagnostic, 8-2 
initialization, 8-2 
internal, 8-2 
normal, 8-2, 10-4 

release notes, C-l 
Reserved signals, 3- 3-13 
RESET, 3-2, 3-7,3-9,4-5, 7-17 
ResetO, See Macro commands 
Restrictions (CL450) 

bitstream, 15-5 
output window and timing, 15-5 

RGB bit, 8-27 
RGB (red, green, blue) 1-2,3-11,3-12,6- _ 
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1,6-3,6-8,6-9,6-27,8-26,8-27, 
11-28, 11-34 

RGB mode select bit. See RGB bit 
Row address strobe, 3-10 
Rst bit 8-8 
Run-length encoding, 2-10 

S 
Scan lines, 12-2 
ScanO. See Macro commands 
SCLK, 3-2, 3-7,3-8,3-9,4-5,7-17,7-18, 

8-7,8-16 
Also see timing signals 

SCN interrupt. See Interrupts (listed) 
SCR, 2-11, 3-8, 8-16,9-8, 11-12, 11-13, 

11-15,11-47,13-1,13-4,13-6 
See also memory bus, pixel bus 

SCR counter 13-2, 13-11 
automatic modifications, 13-5 
source and drift, 13-4 
synchronizing to bitstream, 13-5 
updating, 13-4 

SCR synchronization, 13-6 
Scratch storage (DRAM), 14-1 
Semaphore allocation, 14-1, 14-6, 14-7 

SEQ_CONTROL, 108, 14-2, 14-3, 14-4, 
14-8 

SEQ_SEM, 108, 14-2, 14-3, 14-4 
SEQ_SEM location encoding, 14-5 
SEQ-D interrupt. See Interrupts (listed) 
SeqNoDef bit, 14-2, 14-4 
Sequence group (of DRAM variables) 14-

14-2 
Sequence variable group. See bitstream 

parameters, 14-2 
sequence_end_code, 11-15, 12-10, 

12-15, 12-16, 12-26, 14-2, 14-7, 
14-8 

sequence_error_code, 12-17, 15-3 
sequence_header, 11-15, 14-1 
sequence_header_code, 12-8, 12-
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25, 12-26, 14-2, 14-7 
SEQ-V interrupt. See Interrupts (listed) 
SeqWP bit, 14-2 
SetBlankO. See Macro commands 
SetBorderO command 

used to synchronize video, 6-4 
SetBorderO. See Macro commands 
SetColorModeO. See Macro commands 
SetColorModeO. See Macro commands 
SetlnterruptMaskO. See Macro commands 
SetThresholdO. See Macro commands 
Set-type macro commands, 11-10 
SetVideoFormatO. See Macro commands 
SetWindowO. See Macro commands 
SIF (source input format), 6-2 
SIF resolution, 1-1, 1-2 
Signals 

data transfer, 3-3 
described, 3-1 
DRAM interface, 3-9 
host interface, 3-2 
timing, control, and status, 3-7 
video interface, 3-11 

SingleStepO. See Macro commands 
Slice, 2-5 
SLOW, 11-9, 11-46, 11-47 
SlowMotionO. See Macro commands 
SOJ,5-7 
source input format. See SIF, 6-2 
speed argument, 11-9, 11-46 
Status signals, 3-7 
STEP state, 11-45 
STILL state, 11-15, 11-25, 11-45, 13-5 
Synchronization, 

display time stamps, 9-8 
frame rate conversion, 15-1 
from the CL450 and VSYNC, 13-7 
from the CL450's SCR, 13-6 
horizontal,6-6 
of audio and video, 2-11 
system clock references, 9-8 
using PTSs (presentation time stamps) 



2-11 
using SCRs (system clock references) 

2-11 
using semaphores, 14-5 
vertical pixels, 6-5 
video, 6-4 

Synchronizion 
to audio decoder 13- 13-6 
to bitstream, 13-5 

SysClkHigh, 8-17,11-13 
SysClkLow, 8-17, 11-13 
SysClkMid, 8-17, 11-13 
System clock 

encoding for, 2-11 
speed, 2-11 

System clock divisor bits. See Div bits 
System clock references. See SCRs 
System decoder, 2-2 
System layer, 2-2 
System streams 

See Bitstream transfer process 
System target decoder (STD), 11-22 
System timer. See SCR counter 

T 
T Addr bits, 8-22 
TData bits, 8-22 
temporal reference, 13-7 
TEST pin, 3-2, 3-7, 3-9 
Test signal, 3-9 
threshold argument, 12-22, 12-31 
time stamps. See presentation time stamps 
time_code, 13-7 
timeStamp argument, 13-2 
timestampO, 11-12 
timeStampl,11-12 
timeStamp2, 11-12,13-10 

Timing 
clock and control signal, 7-17 
CMEM,7-9 

DRAM CAS""and R:A5, 7-14 
DRAM restrictions, 14-8 
GCLK (global clock), 3-8, 7-17 
HCLK (host clock), 3-9 
Local DRAM, 7-4 

bus, 7-14 
CAS and R:A5, 7-15 
register read, 7-4 
register write, 7-6 
Reset, 7-17 
SCLK Input, 7-17 
signals, 3-7 

SCLK (system clock), 3-8 
vectored interrupt wI auto clear, 7-12 
video bus input, 7-18 

TMEM, 1-7,8-18,10-4,10-5 
access registers, 8-22,10-4 
address bits. See TAddr bits, 8-22 
data bits. See TData bits, 8-22 

topBorder, 11-31, 11-32, 12-3, 12-4, 15-6 
Transform coding. See intra-picture cod­

ing,2-10 
Troubleshooting, D-1 

U 
~,3-2,3-11,5-3,5-5,5-6,5-7 

OCAsIN, 3-2,3-11,5-3,5-4,5-5,5-6,5-7 
tJIJS, 1-6,3-2,3-3,3-4,4-2,4-3,4-5,4-8, 

4-9,4-13,4-15,4-21,5-4 
"""O""D""'S/7'i'"[""F';D:?;"S 4-5,4-7,4-11,4-18,7-4,7-5,7-

12 
UND interrupt. See Interrupts (listed) 
Unpacketed data transfer. See data transfer 

(unpacketed) 
Upper column address strobe. See UCAS' 
Upper Data Latch Enable. See OcAsIN 

v 
Vee, 4-19,5-7 
VCLK, 3-2, 3-8, 3-12, 3-13, 6-3, 6-4, 6-7, 

6-8,6-9,7-18,7-19 
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VCLK. See Video clock, 3-13 
Vectored interrupt 

with automatic interrupt clearing 4-20 
Vectored interrupt enable. See VIE 
Vertical blanking, 6-2 
Vertical synchronization. See VSYNC 
Vertical timing (synchronization), 6-5 
VERTICAL_SIZE ,14-3 
verticaL size, 10-7, 11-44 
VID_chroma. See registers (direct) 
VID_control. See registers (direct) 
VID_regdata. See registers (direct) 
VID_selactive. See registers (indirect) 
VID_sela. See registers (indirect) 
VID_selaux. See registers (indirect) 
VID_selb. See registers (indirect) 
VID_selbor. See registers (indirect) 
VID_seIGB. See registers (indirect) 
VID_selmode. See registers (indirect) 
VID_selR. See registers (indirect) 
VID_y. See registers (direct) 
Video 

bus timing, 7-18 
field example, 6-5 
multiplexing outputs, 6-10 
synchronization, 6-4 

Video clock, 3-13 
Video decoder, 2-2 
Video display interface, 6-1 to 6-10 
Video display unit, 6-3 
Video interface, 3-10,8-23 
Video interface signals 

HSYNC (horizontal synchronization) 
3-13 

PD[23:0] 3-1,3-2,3-12,6-6,6-7,6-8, 
6-10,7-18,6-4,6-10 

VCLK (video clock), 3-13 
VOE (video output enable), 3-13 
VSYNC (vertical synchronization), 

3-13 
Video output enable. See VOE 
Video refresher, 6-2 

Index-14 C-Cube Microsystems 

Video register data bits. See VRData bits 
Video register ID bits. See VRID bits 
Video register IDs, 8-25 
Video registers 

direct, 8-24 to 8-25 
indirect, 8-26 to 8-29 

Video sequence, 2-4 
Video stream 

block, 2-5 
composition, 2-6, 2-7 
defined, 2-3 
display order, 2-7 
group of pictures, 2-4 
macroblock, 2-5 
picture, 2-4 
slice, 2-5 
video sequence, 2-4 

Video streams 
See bitstream data transfer 

VIE bit, 3-7,4-6,8-11,8-12 
VLC Decoder, 11-16, 11-19 
Vld bit, 11-20, 11-22, 13-2, 13-10 
VMEM,8-26 
VDE signal, 3-12,3-13,6-4,6-10,7-18 
VRData bits, 8-25 
VRID bit field, 8-4, 8-25 
VSE bit, 8-20 
VSS bit, 8-19 
VSYNC, 1-1,3-1,3-2,3-12,3-13,6-3,6-4, 

6-5,6-6,6-7,6-8,11-9,11-28,11-
32, 11-43, 12-3, 12-5, 12-6, 12-8, 
12-34, 12-37 

control of top border, 6-5 
synchronizing from, 13-7 
timing restriction, 6-7 

VSYNC frequency, 13-10 
VSYNC interrupt 12-10, 12-14 
VSYNC interrupt enable bit. See VSE bit 
VSYNC interrupt status bit. See VSS bit 
VWID bits, 8-28 



W 
WAdd bits, 8-21 
WData bits, 8-21 
~,3-2,3-10,3-11,5-2,5-3,5-4,5-5,5-6, 

5-8, 7-14 
width argument, 11-42 
Width of active region bits. See VWID bits 
Window blanking/unblanking, 11-7 
Write address bits. See WAdd bits 
Write counter bits. See CWCtr bits 
Write enable. See WE 
"Write per bit" DRAMs, 5-2 
Write pointer, 11-7 
Writing commands to the CL450, 8-15 
Write data bits. See WData bits 

X 
xOffset argument, 6-8, 11-31, 11-42 

y 
Y data bits. See YData bits 
YCbCr, 1-2,3-11,6-1,6-8, 11-34 

conversion coefficients, 8-26 
data, 6-3 
display mode, 6-9 
format, 3-12 

YData bits, 8-26 
yOffset argument, 11-15, 11-31, 11-42, 

12-4, 12-5 

Z 
ZIP packages, 5-7 
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Customer Feedback 

C-Cube Microsystems is always working to improve the quality of our 
documentation. If you have comments or suggestions about this docu­
ment, please send us a marked-up copy of the page or pages or send us 
an e-mail message. We will acknowledge all comments received. Our 
address is: 

Technical Publications Department 
C-Cube Microsystems 
1778 McCarthy Boulevard 
Milpitas, CA 95035 

phone: (408) 944-6300 
fax: (408) 944-6314 

e-mail: techpubs@c-cube.com 



Alabama 

M21 
1910 Sparkman Avenue 
Huntsville, AL 35816 
phone: 205-830-0498 
fax: 205-837-7049 

Arkansas 

TL Marketing 
14850 Quorum Dr., Suite 100 
Dallas, TX 75240 
phone: 214-490-9300 
fax: 214-960-6075 

California 

Bager Electronics 
519 Encinitas Blvd. 
Encinitas, CA 92024 
phone: 619-632-8816 
fax: 619-632-8810 

Bager Electronics 
17220 Newhope Street, Suite 209 
Fountain Valley, CA 92708 
phone: 714-957-3367 
fax: 714-546-2654 

Bager Electronics 
6324 Varie!, Suite 314 
Woodland Hills,CA 91367 
phone: 818-712-0011 
fax: 818-712-0160 

Norcomp 
2140 Professional Drive, #200 
Roseville, CA 95661 
phone: 916-782-8070 
fax: 916-782-8073 

Norcomp 
1267 Oakmead Parkway 
Sunnyvale, CA 94086 
phone: 408-733-7707 
fax: 408-774-1947 

Colorado 

Promotech Sales, Inc. 
2901 S. Colorado Blvd. 
Denver, CO 80222 
phone: 303-692-8484 
fax: 303-692-8416 

C-Cube Microsystems 

North American Representatives 

Florida 

M2I 
402 S. North Lake Blvd 
Suite 1016 
Altamonte Springs, FL 32701 
phone: 407-260-6422 
fax: 407-260-6460 

Georgia 

M2J 
3000 Northwoods Parkway # 11 0 
Norcross, GA 30071 
phone: 404-447-6124 
fax: 404-447-0422 

Hawaii 

Bager Electronics 
17220 Newhope Street, Suite 209 
Fountain Valley, CA 92708 
phone: 714-957-3367 
fax: 714-546-2654 

Illinois 

Beta Technology Sales, Inc. 
1009 Hawthorn Drive 
Itasca, IL 60143 
phone: 708-250-9586 
fax: 708-250-9592 

Iowa 

CahiIl, Schmitz & Howe 
226 Sussex Drive. N .E. 
Cedar Rapids, IA 52402 
phone: 319-377-8219 
fax 319-377-0958 

Louisiana 

TL Marketing 
14850 Quorum Dr., Suite 100 
Dallas, TX 75240 
phone: 214-490-9300 
fax: 214-960-6075 

Massach usetts 

Advanced Technical Services 
348 Park Street, Suite 102 
North Reading, MA 01864 
phone: 508-664-0888 
fax: 508-664-5503 

Minnesota 

Cahill, Schmitz & Cahill, Inc. 
315 N. Pierce Street 
St. Paul, MN 55104 
phone: 612-646-7217 
fax: 612-646-4484 

Mississippi 
M21 
1910 Sparkman Avenue 
Huntsville, AL 35816 
phone: 205-830-0498 
fax: 205-837-7049 

Montana 

Promotech Sales, Inc. 
2901 S. Colorado Blvd. 
Denver, CO 80222 
phone: 303-692-8484 
fax: 303-692-8416 

Nevada 

Clark County Only 
Bager Electronics 
6324 Varie!, Suite 314 
Woodland Hills, CA 91367 
phone: 818-712-0011 
fax: 818-712-0160 

Other 
Norcomp 
2140 Professional Drive, #200 
Roseville, CA 95661 
phone: 916-782-8070 
fax: 916-782-8073 

New Jersey 

Parallax 
734 Walt Whitman Road 
Melville, NY 11747 
phone: 516-351-1000 
fax: 516-351-1606 



North American Representatives (cont.) 

New York 

Empire Technical Associates 
29 Fennell Street, Suite A 
Skaneateles, NY 13152 
phone: 315-685-5703 
fax: 315-685-5979 

Empire Technical Associates 
349 W. Commercial Street 
Suite 2920 
East Rochester, NY 14445 
phone: 716-381-8500 
fax: 716-381-0911 

Parallax 
734 Walt Whitman Road 
Melville, NY 11747 
phone: 516-351-1000 
fax: 516-351-1606 

North Carolina 

M21 
1200 Trinity Road 
Raleigh, NC 27607 
phone: 919-851-0010 
fax: 919-851-6620 

North Dakota 

Cahill, Schmitz & Cahill, Inc. 
315 N. Pierce Street 
St. Paul, MN 55104 
phone: 612-646-7217 
fax: 612-646-4484 

Oklahoma 

TL Marketing 
14850 Quorum Dr., Suite 100 
Dallas, TX 75240 
phone: 214-490-9300 
fax: 214-960-6075 

South Carolina 

M21 
1200 Trinity Road 
Raleigh, NC 27607 
phone: 919-851-0010 
fax: 919-851-6620 

South Dakota 

Cahill, Schmitz & Cahill, Inc. 
315 N. Pierce Street 
St. Paul, MN 55104 
phone: 612-646-7217 
fax: 612-646-4484 

Tennessee 

M21 
3000 Northwoods Parkway #110 
Norcross, GA 30071 
phone: 404-447-6124 
fax: 404-447-0422 

Texas 

TL Marketing 
14850 Quorum Dr., Suite 100 
Dallas, TX 75240 
phone: 214-490-9300 
fax: 214-960-6075 

TL Marketing 
8100 Shoal Creek, Suite 250 
Austin, TX 78758 
phone: 512-371-7272 
fax: 512-371-0727 

TL Marketing 
14343 Tory Chase Blvd. Suite I 
Houston, TX 77014 
phone: 713-587-8100 
fax: 713-580-7517 

Wisconsin 

Western 
Cahill, Schmitz & Cahill, Inc. 
315 N. Pierce Street 
St. Paul, MN 55104 
phone: 612-646-7217 
fax: 612-646-4484 

Eastern 
Beta Technology Sales, Inc. 
9401 W. Beloit Road, Suite 409 
Milwaukee, WI 53227 
phone: 414-543-6609 
fax: 414-543-9288 

Canada 

Electrosource 
6875 Royal Oak 
Burnaby, BC 
Canada V 5J 413 
phone: 604-435-2533 
fax: 604-435-2538 

Electrosource 
230 Galaxy Blvd. 
Rexdale,ONT 
Canada M9W 5R8 
phone: 416-675-4490 
fax: 416-675-6871 

Electrosource 
340 March Road, Suite 503 
Kanata,ONT 
Canada 
K2K 2E4 
phone: 613-592-3214 
fax: 613-592-4256 

Electrosource 
6600 Trans Canada Highway, 
Suite 420 
Pointe Claire, Quebec 
H9R4S2 
phone: 514-630-7486 
fax: 514-630-7421 

Others (Not Listed) 
Contact nearest office of 
C-Cube Microsystems 

C-Cube Micro~ystems 



International Representatives and Distributors 
France 

NEWTEK (Rep/Dist.) 
8, rue de l'Esterel 
SILIC 583 
94663 Rungis Cedex 
phone: (33) 1-46.87.22.00 
fax: (33) 1-46.87.80.49 

United Kingdom 

Kudos Thame Ltd. (Rep/Dist.) 
55 Suttons Park, London Rd. 
Reading, BERKS RG6 lAZ 
phone: (44) 734-351010 
fax: (44) 734-351030 

Germany 

Metronik GmbH (Rep/Dist.) 
Leonhardsweg 2 
8025 Unterhaching 
phone: (49) 89-61108-0 
fax: (49) 89-6116858 

Australia 

ZATEK Components Pty Ltd. 
(Rep/Dist.) 
Suite 8, 1059 Victoria Rd. 
West Ryde 2114 
Sydney 
phone: (61) 2-874-0122 
fax: (61) 2-874-6171 

Hong Kong 

MEMEC Asia Pacific 
(Rep/Dist.) 
Unit No 2520-2525 
Tower 1 
Metroplaza 
Hing Fong Road 
Kwai Fong,N.T., 
phone: (852) 410-2780 
fax: (852) 418-1600 

Japan 

Kubota C-Cube Inc. 
Fuso Building, 7F, 2-12-8 
Shin-Yokohama 
Kohoku-Ku 
Yokohama, Kanagawa 222 
phone: (81) 45-474-7571 
fax: (81) 45-474-7570 

Korea 

MEMEC Asia Pacific 
(Rep/Dist.) 
4th Floor, Iae Woong Bldg 
176-11 Nonhyun-Dong 
Kangnam-ku 
Seoul 
phone: (82) 2-518-8181 
fax: (82) 2-518-9419 

Singapore 

Serial System Marketing 
(ReplDist.) 
11 Ialan Mesin 
Standard Industrial Bldg, #06-00 
Singapore 1336 
phone: (65) 280-0200 
fax: (65) 286-6723 

Republic of China 

MEMEC Asia Pacific(Rep) 
14F-l, 171 Section 58 
Min Sheng East Road 
Hai Hwa Building 
Taipei 
Taiwan, R.O.C. 
phone: (886) 2 760-2028 
fax: (886) 2 765-1488 

ALLY, Inc. (Dist.) 
7F, 18, Alley 1 Lane 768, Sec. 4 
Pa Teh Rd., 
Taipei 
Taiwan, R.O.C. 
phone: (886) 2 788-6270 
fax: (886) 2 786-3550 

C-Cube Microsystems Sales Offices 
Home Office 

C-Cube Microsystems 
1778 McCarthy Boulevard 
Milpitas, CA 95035 
phone: 408-944-6300 
fax: 408-944-6314 

Eastern Area Office 

C-Cube Microsystems 
One Kendall Square, Suite 220 
Cambridge, MA 02139 
phone: 617-621-7180 
fax: 617-621-7179 

C-Cube Microsystems 

Southwestern Area Office 

C-Cube Microsystems 
453 Bristol A venue 
Cardiff, CA 92007 
phone: 619-632-0864 
fax: 619-632-0864 

European Office 

C-Cube Microsystems 
44 Dartford Road 
Sevenoaks, Kent 
UK TN 133TQ 
phone: (44) 732743256 
fax: (44)732450151 

Japan Office 

Kubota C-Cube Inc 
Fuso Building 7F 
2-12-8 Shin-Yokohama 
Kohoku-ku 
Yokohama, Kanagawa 222 
phone: 81-45-474-7571 
fax: 81-45-474-7570 



C-Cube 
Mlcrosystems 

1778 McCarthy Blvd. 
Milpitas, CA 95035 
Tel: (408) 944-6300 

, Fax: (408) 944-6314 

90-1450-101 


