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Preface 

This manual is the primary users guide for the C-Cube CL550 and 
CL560 JPEG Compression Processors. It contains detailed information 
about the CL550 and CL560 hardware and also provides general infor­
mation on how to program the parts. 

This manual is intended for: 

D System designers and managers who are evaluating the CL550 
and CL560 for possible use in a system 

D Designers and hardware engineers who are designing a system 
based on the CL550 and CL560 

D Programmers and software engineers who are writing application 
programs that interact with the CL550 and CL560 

This manual is divided into these chapters: 

D Chapter 1, Introduction, presents an introduction to the architec­
ture of the CL550 and CL560 

Audience 

Organization 
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o Chapter 2, JPEG Overview, provides a brief overview of the JPEG 
algorithm used by the compression processors. 

o Chapter 3, Signal Descriptions, describes the function of each of 
the external signals on the CL550 and CL560. 

o Chapters 4 and 5, Host Interface and Video Interface, present 
functional descritions for the main interfaces of the CL550 and 
CL560. 

o Chapter 6, Specifications, includes detailed electrical and me­
chanical specifications. 

o Chapter 7, Registers, describes in detail each of the internal regis­
ters of the CL550 and CL560. 

o Chapter 8, System Designer's Guide, provides a general overview 
on programming the CL550 and CL560 with initialization proce­
dures and compression/decompression procedure flowcharts. 

Conventions Please note the following conventions that are used in this manual: 

o Hexadecimal numbers are indicated by the prefix Ox, for example, 
OxFF. Binary numbers are indicated by a subscript, for example, 
102. Otherwise, all numbers used in this guide are decimal num­
bers unless otherwise noted. 

Revision History This manual, part # 90-1556-101 Rev A., supersedes the previous revi­
sion by the same name. The major content changes include: 

iv C-Cube Microsystems 

o Chapter 6, Specifications: AC timing parameters are listed for 7 
products and speed grades: 

o CPGA package (3): CL550-35, CL550-30, CL560-30 

o MQUAD package (4): CL550-10, CL550-30, CL560-15~ 
CL560-30 

o Chapter 8, System Designer's Guide, is new. 
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1 
Introduction 

The C-Cube CL550 and CL560 are high-performance single-chip com­
pression/decompression processors that implement the baseline 
CCITTIISO Joint Photographic Experts Group (JPEG) digital image 
compression algorithm. The CL550 and CL560 processors are designed 
for applications that require manipulation of high-quality digital pic­
tures and motion sequences. 

These parts can encode and decode grayscale and color images at video 
rates. The image compression ratio is controlled by the on-chip quanti­
zation tables. Compression ratios from 8: 1 to 100: 1 are possible de­
pending on the quality, storage and bandwidth requirements of each 
application. 

The CL550 and CL560 have on-chip video and host bus interfaces. The 
video interface supports 8-bit grayscale, RGB, CMYK or 4:4:4:4, and 
YUV (4:2:2 and 4:4:4) input and output. The host bus interface provides 
a direct interface to the system bus for ease of system integration. 
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CL550 Features 

1.1 
CL550 Features 

The CL550 compression/decompression processor features the follow­
ing: 

o Compressed output conforms to the JPEG Baseline Process as de­
fined by ISO IS 10918-1 

o Real-time compression and decompression of CIF (320 x 240 x 30 
fields per second) and 112 CCIR 601 video (640 x 240 x 25 or 30 
fields per second. 

o Up to 2 Mbytes/second sustained compressed data rate (CL550-
35) 

o Highly pipelined DCT/IDCT processor running at up to 35 Mhz 
(CL550-35) 

o Support for 8-bit grayscale, RGB, CMYK or 4:4:4:4, and YUV 
color space input and output 

o User-accessible quantizer and Huffman tables 

o Frame-by-frame adjustment of compression ratios 

o High integration 

o On-chip DCTIIDCT processor 

o On-chip quantizer and Huffman tables 

o On-chip video interface 

o On-chip l6-bit or 32-bit host bus interface 

o Standard l44-pin MQUAD and ceramic PGA packages 

o CMOS technology 

1.2 The CL560 Compression processor has all of the features of the CL550, 
CL560 with these improvements: 

Improvements 0 Up to 60 Mbytes/second sustained compression rate 

1-2 C-Cube Microsystems 

o Up to 15 million pixels/second processing rates 

o Highly pipelined DCTIIDCT processor runs at up to 30 MHz 

o Real-time compression of CCIR 601 video frames at broadcast­
quality levels 

o Improved Huffman table architecture allows the same table to be 
used for compression and decompression, allowing faster switch-



ing between modes 

o Single cycle per 32-bit word Huffman CODEC 

o Synchronous or asynchronous video interface operation 

DOn-chip 128 x 32 compressed data FIFO supports burst access 

o Improved interrupt structure and DMA support 

o Compression rates as high as 50: 1 for real-time video applications 

o Compression rates as low as I: 1 for high-quality printer, copier 
and professional video applications 

The CL560 pinout is a superset of the CL550 pinout. Although the func­
tion of two pins has changed, most CL550 users can upgrade to the 
CL560 with only minor changes to printed circuit board layouts. 

These JPEG processors can be used in any of the following applica­
tions: 

o Multimedia 

o Video editing 

o Color publishing and graphics arts 

o Image-processing, storage and retrieval 

o Color printers, scanners and copiers 

o High-speed image transmission systems for LAN s, modem and 
color facsimile 

o Digital cameras 

The CL550 and the CL560 are the two members in the JPEG compres­
sion/decompression processor family. The CL560 is an enhanced ver­
sion of the CL550. 

The CL550 is the first product in the family. It is designed for use in PC 
multimedia and still-image based systems where cost is a factor. 

The CL560 is a new-generation JPEG processor designed for high-end 
still image and real-time video compression and decompression. The 
CL560 can compress and decompress full CCIR 601-resolution video 
frames in real time,at compression ration as high as 50: 1 or as low as 

Applications 

1.3 
Applications 

1.4 
Product Family 

Introduction 1-3 



CL550 Functional Description 

.. 
~ 

1.5 
CL550 Functional 

Description 

1: 1. The CL560 is ideally suited for used in high-end printing and scan­
ning systems, high-speed digital copiers and printers, and a wide range 
of broadcast-quality video editing applications. 

This section describes the functional characteristics of each block with­
in the C-Cube CL550 processor. Figure 1-1 shows the processor's major 
functional blocks. The CL550 is a highly pipelined machines: there are 
over 320 processing stages in the data path. Each stage in the JPEG 
Baseline Sequential Process is implemented within this pipeline. 

JPEG Compression Pipeline 

Huffman CO-
Zero Zig-zag 

Quant- DCT/ Packer/ Scan 
t--

Host ... - Interface 

--

-DEC f-- FIFO Unpacker Unit izer IOCT 

Video 
I J I 

__ --.lIoo. 

Interface 
-- -

Huffman Q Block 
-Tables Tables Storage 

I Utility Bus I "" -
Figure 1-1 CL550 Block Diagram 

During compression operations, uncompressed pixel data is written into 
the Video interface. The first operation that the video interface performs 
is a raster-to-block conversion of the pixel data. This is necessary be­
cause video generation and display devices normally deal with pixel 
data as raster lines, while the JPEG compression algorithm requires that 
the pixel data be organized as 8 x 8 blocks. Logic in the CL550 device 
performs that conversion. 

The next step is the optional RGB-to-YUV color space conversion. This 
is also done in the video interface. Video generation and display devices 
frequently present data to the CL550 as RGB pixels. The CL550 can 
also perform the color space conversion. Other functions done by the 
Video interface are pixel formatting and window sizing. 
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Cl550 Functional Description 

Once the Video interface has formatted the pixel data, it writes the data 
into the Block Storage unit. The Block Storage unit stores the 8 x 8 
blocks until the JPEG compression pipeline is ready to process them. It 
then sequences them into the pipeline one block at a time. 

Each component block is then processed by the Discrete Cosine Trans­
form (DCT) unit. The resulting DCT coefficients are quantized by the 
quantizer according to user-programmable quantization matrices. The 
CL550 allows up to four 64-word quantization matrices to be stored on­
chip, and provides programmable sequence registers to allow the user 
to select the appropriate matrix for each component block. 

The quantized terms are then serialized by the Zig-zag scan unit and the 
AC terms are run-length coded by the Zero Packer/Unpacker unit be­
fore being loaded into the FIFO. The FIFO serves as an intermediate 
buffer between the Zero Packer/Unpacker unit and the Huffman Coderl 
Decoder (CODEC) unit. 

The Huffman CODEC draws the packed symbols from the FIFO, per­
forms Differential Pulse Code Modulation (DPCM) calculations on the 
DC terms, and performs Huffman coding of both the DC and the AC 
terms. Huffman codes are specified by the user, and stored in on-chip 
table RAM that is loaded at initialization. 

The Huffman codes are finally sent to the Host interface as JPEG com­
pressed data. The Host interface is designed to operate in either slave 
mode or master mode. In slave mode, the CL550 acts as a peripheral de­
vice to the host processor, using a data request/data available handshake 
to control the transfer of data. In master mode, the CL550 works in con­
junction with an external DMA controller chip to allow high-speed 
DMA transfers of data. The Host interface is explained in detail in 
Chapter 4, Host Interface. 

Compression operations follow the opposite procedure. JPEG com­
pressed data is written to the Host interface. The Host interface then 
transfers the data to the Huffman CODEC, where it is decoded. The 
packed symbols are put back into the FIFO. The Zero Packer/Unpacker 
Unit accesses the FIFO symbols, generates the AC values, and passes 
them to the Zig-zag Scan unit for reordering into 8 x 8 block format. The 
DC terms are treated separately. Dequantization and Inverse DCT 
(IDCT) are then performed on the reassembled blocks before they are 
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1.6 
CL560 Functional 

Description 

-I CODEC t FIFO 

Host __ --110. 

Interface 
-- -

.. 
--

sent to the Block Storage unit. The Video interface optionally performs 
YUV-to-RGB color space conversion of the pixel data, realigns the 8 x 
8 block data as raster lines, and outputs the lines to the external video 
display device. 

With this architecture, it is possible to construct very high-performance 
compression systems for still-frame applications or motion video. The 
CL550 parts can be reinitialized on a frame-by-frame basis, allowing 
the programmer to change compression ratios at the end of each frame. 
It also allows systems to be designed where the CL550 switches back 
and forth between compressing and decompressing frames for half-du­
plex image communication. 

This section describes the functional characteristics of each block with­
in the C-Cube CL560 processor. Figure 1-2 shows the processor's major 
functional blocks. The CL560 is a highly pipelined machine with over 
320 processing stages in the data path. Each stage in the JPEG Baseline 
Sequential Process is implemented within this pipeline. The major dif­
ference between the CL560 architecture and the CL550 architecture is 
in the Huffman CODEC. The synchronous CODEC in the CL560 al­
lows data to be encoded or decoded in a single clock cycle, whereas the 
asynchronous CODEC in the CL550 takes several clock cycles, thus al­
lowing higher throughput. 

J PEG Compression Pipeline 

1 Ping- ~ Pong Zero Zig-zag 
Huffman Buffer Packer/Un- Scan Quant- DCTI 
CODEC I- f- Unit izer IOCT 

~ Ping- ~ packer 
Pong 

I 
Buffer Video 

I 1 .. Interface 

Huffman Q Block 
Tables Tables Storage I--

I Utility Bus I ... 
~ 

Figure 1-2 CL560 Block Diagram 
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CL560 Functional Description 

During compression operations, uncompressed pixel data is written into 
the Video interface. The first operation that the Video interface performs 
is a raster-to-block conversion of the pixel data. This operation is nec­
essary because video generation and display devices normally deal with 
pixel data as raster lines, while the JPEG compression algorithm re­
quires that the pixel data be organized as 8 x 8 blocks. Logic in the 
CL560 device performs that conversion. 

The next step is the optional RGB-to-YUV color space conversion, also 
performed by the Video interface. Video generation and display devices 
frequently present data to the CL560 as RGB pixels. The CL560 also 
performs optional color space conversion. Other functions done by the 
Video interface are pixel formatting and window sizing. 

Once the video interface is through formatting the pixel data, it writes 
the data into the Block Storage unit. The Block Storage unit stores the 
8 x 8 blocks until the JPEG compression pipeline is ready to process 
them. It then sequences them into the pipeline one block at a time. 

Each component block is then processed by the Discrete Cosine Trans­
form (DCT) unit. The resulting DCT coefficients are quantized by the 
quantizer according to user-programmable quantization matrices. The 
CL560 allows up to four 64-word quantization matrices to be stored on­
chip, and provides programmable sequence registers to allow the user 
to select the appropriate matrix for each component block. Up until this 
point, the CL560 compression process has been identical to the CL550 
compression process. 

The quantized terms are then serialized by the Zig-zag scan unit and the 
AC terms are run-length coded by the Zero Packer/Unpacker unit be­
fore being loaded into the Ping-pong buffer. The Ping-pong buffer is a 
pair of synchronous 64-word registers used to smooth the flow of data 
to and from the Huffman CODEC. 

The Huffman CODEC draws the packed symbols from the Ping-pong 
buffer, performs Differential Pulse Code Modulation (DPCM) calcula­
tions on the DC terms, and performs Huffman Coding of both the DC 
and the AC terms. Huffman codes are specified by the user, and stored 
in on-chip table RAM that is loaded at initialization. 

The Huffman codes are then stored in a 128 x 32 CODEC FIFO. The 
FIFO acts as a rubber-band buffer between the synchronous JPEG com-
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CL560 Functional Description 

pression pipeline and the asynchronous Host Bus interface. The FIFO is 
used to filter out fluctuations in the data rate. It allows fast-burst access 
to the CL560 to minimize the time needed to transfer data. 

The Host interface is designed to operate in either register access mode 
or DMA access mode. In register access mode, the CL560 acts as a pe­
ripheral device to the host processor, using a data request/data available 
handshake to control the transfer of data. In DMA access mode, the 
CL560 works in conjunction with an external DMA controller chip to 
allow high-speed DMA transfers of data. The Host interface is ex­
plained in detail in Chapter 4, Host Interface. 

Compression operations follow the opposite procedure. JPEG com­
pressed data is written to the Host interface. The Host interface then 
stores the compressed data in the CODEC FIFO until it can be trans­
ferred to the Huffman CODEC for decoding. After decoding, the packed 
symbols are stored in the Ping-pong buffer. The Zero Packer/Unpacker 
Unit reads the Ping-pong buffer to retrieve the packed symbols, gener­
ates the AC values, and passes them to the Zig-zag Scan unit for reor­
dering into 8 x 8 block format. The DC terms are treated separately. 
Dequantization and Inverse DCT (IDCT) are then performed on the re­
assembled blocks before they are sent to the Block Storage unit. The 
Video interface optionally performs YUV -to-RGB color space conver­
sion of the pixel data, realigns the 8 x 8 Block data as raster lines, and 
outputs the lines to the external video display device. 

With this architecture, it is possible to construct very high-performance 
compression systems for both video and still-frame applications. The 
CL560 parts can be reinitialized on a frame-by-frame basis, allowing 
the programmer to change compression ratios at the end of each frame. 
It also allows systems to be designed where the CL560 switches back 
and forth between compressing and decompressing frames for half-du-
plex image communication. " 
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2 
JPEG Overview 

This chapter presents an overview of the JPEG video compression stan­
dard. The chapter is divided into these sections: 

D 2.1, JPEG Background Information 

D 2.2, Operation of the JPEG Algorithm 

D 2.3, Discrete Cosine Transform 

D 2.4, Quantization 

D 2.5, Zero Run-Length Coding 

D 2.6, Entropy Encoding 

D 2.7, Summary of JPEG Baseline 
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JPEG Background Information 

2.1 
JPEG Background 

Information 

The obvious advantages of digital image compression led to the forma­
tion of an international standards group: the Joint Photographic Experts 
Group (JPEG). JPEG is a joint ISO/CCITT technical committee (ISO/ 
IEC JTC l/SC2IWG 1 0, Photographic Image Coding) whose goal has 
been to develop a general-purpose international standard for the com­
pression of continuous-tone (grayscale or true color) digital images. 
The overall standard sets requirements and implementation guidelines 
for the image coding and decoding processes and for the coded repre­
sentation of the compressed image data. 

The standard defined by JPEG has usefulness in a broad range of appli­
cations. Because each application has different compression require­
ments, several processes for compression and decompression are 
specified within the JPEG standard. The processes fall into three general 
categories: the Baseline Sequential Process, the Extended DCT-Based 
Processes, and the Lossless Process. All JPEG coders and decoders 
must support the Baseline Sequential Process. All other processes are 
optional extensions that can be useful in specific applications. For de­
tailed information on each of the processes, refer to the ISO Committee 
Draft document, ISOIIEC CD 10918-1. 

The Baseline Sequential Process is based on the Discrete Cosine Trans­
form (DCT) followed by variable-word-Iength coding (Huffman cod­
ing). This process provides substantial compression (up to 100: 1) while 
maintaining a high degree of visual fidelity in the reconstructed image. 
DCT-based processes, however, are lossy processes. The reconstructed 
images are not byte-for-byte equivalent to the source images. Further, 
the level of loss in the image varies with the compression ratio. Typical­
ly, the Baseline Sequential Process can compress image data to about 1 
bit!pixel or less with very good visual quality in the reconstructed im­
age. For example, a 24-bit RGB color image can be compressed to 1 bit! 
pixel (less than 5% of the original size), and th~ reconstructed image 
will be nearly indistinguishable from the original. The C-Cube CL550 
is a VLSI implementation of the Baseline Sequential Process. 
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Operation of the JPEG Algorithm 

The operation of the Baseline JPEO algorithm can be divided into three 
basic stages, as shown in Figure 2-1: 

1. The removal of the data redundancy by means of the discrete 
cosine transform (DCT). 

2. The quantization of the DCT coefficients using weighting func­
tions optimized for the human visual system. 

3. The encoding of the data to minimize the entropy of the quan­
tized DCT coefficients. The entropy encoding is done with a 
Huffman variable-word-Iength encoder. 

RGB to YUV 
Translation 

YUVto RGB 
Translation 

Forward 
OCT 

Reverse 
OCT 

Quantization Encoding 

De-Quantization Decoding 

Figure 2-1 Basic Image Compression Scheme for Coder and Decoder 

Although color conversion is a part of the redundancy removal process, 
it is not part of the JPEG algorithm. It is the goal of JPEG to be inde­
pendent of the color space. JPEO handles colors as separate compo­
nents. Therefore, it can be used to compress data from different color 
spaces, such as ROB, YCbCr, and CMYK. 

However, the best compression results are achieved if the color compo­
nents are independent (noncorrelated), such as in YCbCr, where most of 
the information is concentrated in the luminance and less in the chrom­
inance. RGB color components can be converted via a linear transfor­
mation into YCbCr components, as shown in Table 2-1. 

2.2 
Operation of the 
JPEG Algorithm 
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Discrete Cosine Transform 

2.3 
Discrete Cosine 

Transform 

Table 2-1 

y 

Cb 

Cr 

Converting RGB Components to YCbCr Components 

0.299 0.587 0.144 R 

-0.169 -0.3316 0.0500 G 

0.500 -0.4186 -0.0813 B 

Another advantage of using the YCbCr color space comes from reduc­
ing the spatial resolution of the Cb and Cr chrominance components. 
Because chrominance does not need to be specified as frequently as lu­
minance, every other Cb element and every other Cr element can be dis­
carded. As a consequence, a data reduction of 3 to 2 is obtained by 
transforming RGB into YCbCr 4:2:2. The conversion in color space is 
a first step toward compressing the image. 

For each separate color component, the image is broken into 8 x 8 
blocks that cover the entire image. These blocks form the input to the 
DCT. 

In the 8 x 8 blocks, typically the pixel values vary slowly. Therefore, the 
energy is of low-spatial frequency. A transform that can be used to con­
centrate the energy into a few coefficients is the two-dimensional 8 x 8 
DCT. This transform, studied extensively for image compression, is ex­
tremely efficient for highly correlated data. 

Conceptually, a one-dimensional DCT can be thought of as taking the 
Fourier Transform and retaining only the real (the cosine) part. The two­
dimensional DCT can be obtained by performing a one-dimensional 
DCT on the columns and then a one-dimensional DCT on the rows. The 
transformed output from the two-dimensional DCT is ordered such that 
the mean value, the DC coefficient, is in the upper left corner of the 8 x 
8 coefficient block and the higher frequency coefficients progress by 
distance from the DC coefficient. Higher vertical frequencies are repre­
sented by higher row numbers, and higher horizontal frequencies are 
represented by higher column numbers. 
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The next step is the quantization of the frequency coefficients. The co­
efficients are quantized to reduce their magnitude and increase the num­
ber of zero-value coefficients. A uniform quantizer was selected for the 
JPEG baseline method. The step size is varied according to the coeffi­
cient location and tuned for each color component. This is shown in Fig­
ure 2-2 and Figure 2-3. Figure 2-3 illustrates two functional matrices 
that have been optimized for CCIR 601 imagery. 

Quantized Output 

--'---------r-+--"------- OCT Coefficient 

Figure 2-2 Quantizer Stepping (Uniform Quantization) 

The coding model rearranges the quantized frequency coefficients into 
a zigzag pattern, with the lowest frequencies first and the highest fre­
quencies last. The zigzag pattern (shown graphically in Figure 2-4 and 
numerically in Table 2-2) is used to increase the run-length of zero co­
efficients found in the block. The assumption is that the lower frequen­
cies tend to have larger coefficients and the higher frequencies are, by 
the nature of most pictures, predominantly zero. As illustrated in Figure 
2-4, the first coefficient (0,0) is called the DC coefficient and the re­
maining coefficients are AC coefficients. The AC coefficients are tra­
versed by the zigzag pattern from the (0,1) location to the (7,7) location. 

Quantization 

2.4 
Quantization 
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Quantization 

8x8 OCT Coefficient Block 

Y Component Matrix 
16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 58 68 109 103 77 

24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

Cb Cr Component Matrix 
17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

Figure 2-3 Psychovisual Weighting Functions for the Luminance and 
Chrominance Components 
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DC Value 

7 

Figure 2-4 

Table 2-2 

0 5 
2 4 7 
3 8 12 
9 11 18 
10 19 23 
20 22 33 
21 34 37 
35 36 48 

6 
13 
17 
24 
32 
38 
47 
49 

AC Coefficient Start 
7 

AC Coefficient End 

Zigzag Pattern for Reordering the 8 x 8 OCT Coefficients 

Zigzag Sequence of Quantized OCT Coefficients 

14 15 27 28 
16 26 29 42 
25 30 41 43 
31 40 44 53 
39 45 52 54 
46 51 55 60 
50 56 59 61 
57 58 62 63 

The DC coefficients of subsequent blocks often vary only slightly. 
Therefore, differences between successive DC coefficients are small. 
The coding of the DC coefficient exploits this property through Differ­
ential Pulse Code Modulation (DPCM). This technique codes the differ­
ence (Delta) between the quantized DC coefficient of the current block 
and the DC coefficient of the previous block. The formula for the encod­
ing of the DC code is: 

Deltak= DC(O,O)k - DC(O,O)k_1 

The inverse calculation takes place at the decoder. 

The quantized AC coefficients usually contain runs of consecutive ze­
ros. Therefore, a coding advantage can be obtained by using a run­
length technique, where the upper four bits of the code symbol indicate 

Zero Run-length Coding 

2.5 
Zero Run-length 
Coding 
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Entropy Encoding 

2.6 
Entropy Encoding 

2.7 
Summary of JPEG 

Baseline 

the number of consecutive zeros before the next coefficient and the low­
er four bits indicate the number of significant bits in the next coefficient. 

Following the code symbol are the significant bits of the coefficient, the 
length of which can be determined by the lower four bits of the code. 
The inverse run-length coder translates the input coded stream into an 
output array of AC coefficients. It takes the current code and appends to 
the output array the number of zeros corresponding to the four bits used 
for the run-length code. The coefficient placed in the output array has 
the number of bits determined by the lower four bits of the run-length 
code and a value determined by the number of trailing bits. 

The block codes from the DPCM and run-length models can be further 
compressed using entropy encoding. For the baseline JPEG method, the 
Huffman coder is used to reduce entropy. One reason for using the Huff­
man coder is that it is easy to implement by means of a look-up table in 
hardware. To compress data symbols, the Huffman coder creates shorter 
codes for frequently occurring symbols and longer codes for occasion­
ally occurring symbols. Many applications may use predefined Huff­
man tables. Therefore, the baseline encoder can operate as a one-pass or 
two-pass system. In the one-pass system, predetermined Huffman ta­
bles are used, whereas in the two-pass system, Huffman tables are cre­
ated that are specific to the image to be encoded. 

The first step in creating the Huffman codes is to create a table assigning 
a frequency count to each symbol. Symbols with a higher probability 
are assigned shorter codes than the less frequently occurring symbols. 

The baseline system provides efficient lossy image compression. It sup­
ports four color components simultaneously, with a maximum number 
of eight input bits for each color pixel component. 

The basic data entity is a block of 8 x 8 pixels. However, this block can 
represent a large sub-sampled image area (for example, sub-sampled by 
decimated chrominance signals). The blocks of the different color com­
ponents are sent interleaved, thereby allowing the decoder to create the 
decompressed image and translate back to the original color space on 
the fly. 
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3 
Signal Descriptions 

This chapter describes the signals that comprise the external physical 
interface to the CL550 and CL560. The information presented for each 
signal includes the signal name and mnemonic, type (input, output, or 
bidirectional), and description. For information about the functional op­
eration of these parts, see Chapters 4 and 5. For timing information, see 
Chapter 6. 

This chapter is divided into two sections that correspond to the compo­
nents that interface to the CL550 and CL560: 

o 3.1, Host Interface 

o 3.2, Video Interface 

Figure 3-1 shows a diagram of each of the parts with the various signals 
grouped together by function. 
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Figure 3-1 CL550 and CL560 Logic Diagrams 
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The CL550 external interface differs from the CL560 by only two pins: 

Table 3-1 CL550 and CL560 Redefined Signal Pins 

CL560 CL550 CPGA MQUAD 
Signal Signal Pint Pint 

lRITf NKilRTI 70 013 

IRQ2 HALF_FULL 135 L2 

The Host Interface signals divide logically into these functional groups: 

o Data transfer signals: These signals comprise the address and 
data bus and various control signals used to complete the data 
transfer handshake. 

o DMA signals: These signals are used to implement a handshake 
during a DMA transfer. 

o Interrupt signals: These signals provide interrupt requests to the 
host processor. 

o Timing, control and status signals: These signals include the 
clocks and reset signals. 

3.1.1 Data Transfer Signals 

Table 3-2 

HBUS[31:0] Host Bus Bidirectionals 
HBUS is the multiplexed host processor data and address bus. 
The width of both the address bus and the data bus can be pro­
grammed to be 16-bits or 32-bits wide. The signals HBUS_32 
and ID[3:0] determine the widths as shown in Table 3-2. 
HBOS_32 and ID[3:0] are discussed later in this section. 

Address and Data Bus Configuration 

10[3:0] H8US_32 Description 

0000 a 16-bit address, 32-bit data 

0000 16-bit address, 16-bit data 

1 h - Eh a 32-bit address, 32-bit data 

1 h - Eh 1 32-bit address, 16-bit data 

1111 (Fh) 0/1 Chip disabled 

Host Interface 

3.1 
Host Interface 
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Host Interface 

HBODT Host Bus Output Output 
The Host Bus Output signal controls the direction of the host 
bus transfer. The CL550 and CL560 do not have sufficient drive 
capability to be connected directly to most computer host bus­
ses. When external drivers are used, HBaDT controls the direc­
tion of these buffers. When this signal is low (0), the transceiver 
direction is from the CL550 or CL560 to the host bus (output). 
When this signal is high 0), the direction is from the host bus 
to the CL550 or CL560 (input). 

Host Bus Width = 32-bits Input 
HB OS_32 is a static signal used to configure the width of the 
host bus data path during CODEC accesses. When HBUS_32 is 
low (0), reads and writes to the CODEC register are 32-bits 
wide. When HBUS_32 is high (1), reads and writes to the CO­
DEC register are 16-bits wide. The data path to all on-chip reg­
isters except the CODEC register is always 16-bits wide. 

ID[3:0] Address Space ID Signals Inputs 
The address space identification signals, ID[3:0], are inputs that 
select the address range of the chip. Setting ID[3:0] to Ox! 
through OxE selects an address region for the CL550 or CL560. 
The ID signals allow the CL550 or CL560 to be placed in one 
of fourteen locations in the upper 1116 of the memory. 

3.1.2 DMA Signals 
The CL560 is capable of acting as either a bus slave for CODEC trans­
fers, or a bus master when used with an external DMA controller. DMA 
transfers are fully discussed in Chapter 4, Host Interface. 

DMARequest Open-Drain Output 
The DRQ signal is an output that provides chip status for DMA 
interface control. The DRQ output is controlled by the Flag 
Register bits, and enabled using the DMA mask register de­
scribed in Chapter 7, Registers. The DRQ output is an open­
drain output and should be tied to VCC through a resistor of at 
least 625 ohms. 

DMA_MSTR DMA Master Input 
DMA_MS1R is an input that allows the CL560 to work with a 
DMA controller functioning as a bus master for CODEC trans-
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fers. It is sampled on the falling edge of HBCLK when the 
START signal is active. DMA transfers are fully discussed in 
Chapter 4, Host Interface. 

Note: The CL550 does not work correctly in the DMA master 
mode, and in systems that use the CL550, DMA_MSTR 
should always be held HIGH. Refer to Chapter 4, Host Inter­
face for a solution to this problem. 

3.1.3 Interrupt Signals 

NMRQ Interrupt Request Open-Drain Output 

Note: NMRQ is a CL550 signal only. The CL560 uses TJ[(;[I 
instead. 

Interrupt Request (NKiIRQ) is an unlatched output signal, syn­
chronous to HBCLK, that provides an indicator of both FIFO 
and video field status. It can be programmed to selectively indi­
cate active status flags as specified in the Interrupt Mask Regis­
ter. This signal is an open-drain output and should be tied to 
VCC through a resistor of at least 625 Ohms (4.7K Ohms rec­
ommended). On power-up, the CL550 or CL560 should be 
hardware reset to prevent the generation of spurious interrupts. 

HALF_FULL FIFO HALF_FULL Output 

Note: HALF _FULL is a CL550 signal only. The CL 560 uses 
IRQ2 instead. 

The HALF_FULL signal is an output that indicates the status of 
the internal FIFO. A value of 1 (HIGH) indicates that the FIFO 
contains alleast 64 entries out of 128. Transitions of HALF_­
FULL are synchronous to PXCLK. 

IRQI 
IRQ2 

Interrupt Request 
Interrupt Request 

Open-Drain Output 
Output 

Note: TJ[(;[I and IRQ2 are CL560 signals only. The CL550 
uses NMRQ and HALF _FULL instead. 

IRQI and IRQ2 are general-purpose status outputs from the 
CL560. The assertion of these signals is programmable based 
on masks contained in the IRQI and IRQ2 mask registers de­
scribed in Chapter 7, Registers. Transitions of IRQ2 are syn-

Host Interface 

Signal Descriptions 3-5 



Host Interface 

chronous to HBCLK. IRQl is an open-drain output while IRQ2 
has a totem-pole output. 

3.1.4 Timing and Control Signals 
A host bus transaction consists of two (or more) bus clock cycles. Dur­
ing the first cycle, the Start cycle, the host processor must indicate to the 
CL550 or CL560 what kind of transaction will occur (bus slave mode 
read, bus master mode write, etc.) by placing specific values on 
TM[2:0] and DMA_MSTR. m[2:0] act as outputs during the last bus 
clock cycle of the transaction, called the Acknowledge cycle. The value 
output on m[2:0] indicates either that the transfer completed success­
fully or that an error occurred. In between the start and the acknowledge 
cycle, an indeterminate number of wait cycles can occur. Host bus 
transactions are fully discussed in Chapter 4, Host Interface. 

START Start a Transfer Input 
The START input signal begins a data transfer. When asserted 
LOW, it indicates that there is a valid address on the host bus 
(HBUS[3l:0]). START is sampled on the falling edge of HB­
CLK, and should not be asserted for more than one HBCLK pe­
riod. 

Transfer Mode 0 Bidirectional 
In bus slave mode operation, TMU is an output line that transi­
tions to 0 (along with TMT) during the bus transaction acknowl­
edge cycle to indicate that the transaction completed. In CL550 
bus master mode only, TMU is an input, sampled during the as­
sertion of TM2 (along with TMT), to determine whether a bus 
error has occurred. The value of TMU is ignored during a Start 
cycle. 

TMI Transfer Mode 1 Bidirectional 
The CL550 and CL560 sample the TMT input during the Start 
cycle to determine whether the transaction is a read or a write. 
A low value (0) indicates a write cycle, and a high value (l) in­
dicates a read cycle. During a bus slave cycle, TMI returns to 0 
during the acknowledge cycle. During a bus master mode Start 
cycle, the sense of this signal is inverted so that a low value in­
dicates a write cycle and a high value indicates a read cycle. 
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Transfer Mode 2 Bidirectional 
TN.f2 is the acknowledge signal that is driven active LOW (0) 
by the CL550 or CL560 during a bus slave mode acknowledge 
cycle. In bus master mode, this signal is driven by an external 
source to indicate that the transfer is complete. 

TMOUT Transfer Mode Output Output 

The TMOUT signal provides transceiver directional control for 
the transfer mode control lines TM[2:0]. If this signal is low (0), 
the transceiver direction is from CL550 or CL560 out to the host 
bus. If the signal is high 0), the transceiver direction is from the 
host bus into the CL550 or CL560. 

FRMEND Frame End Open-Drain Output 

The FRMEND signal is an output that indicates that the end of 
an image has been reached. This signal is an open-drain output 
and should be tied to VCC through a resistor of at least 625 
Ohms (recommended value = 4.7K Ohms). In the CL550, dur­
ing compression, FRMEND goes active when the Huffman 
coder has removed the last word from the FIFO. During decom­
pression, FRMEND indicates that the last word has been re­
moved from the Strip buffer RAM. This signal can be disabled 
by setting bit I of the Configuration register to a zero (See 
Chapter 7, Registers). In the CL560 this signal is also controlled 
by the Frame End Enable register (See Chapter 7, Registers). 
Transitions of FRMEND are synchronous to HBCLK. 

HBCLK Host Bus Clock Input 

HBCLK is the clock signal used to synchronize host bus data 
transfers. The falling edge of HBCLK is used to sample the host 
bus data and control signals, while the rising edge of HBCLK is 
used to drive the output signals. HBCLK must be the same rate 
or slower than PXCLK. 

RESET Reset Input 

The RESET signal is an input that forces a hardware reset of the 
CL550 or CL560. When the RESET signal is asserted LOW, 
most of the internal registers are forced to a known state. The 
values in the Huffman tables, DCT table, and Quantizer tables 
are unaffected. HBCLK and PXCLK must be running during 
RESET. The CL550 or CL560 will not acknowledge any access 
until the end of the third cycle after RESET has been deasserted. 

Host Interface 
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Video Interface 

TEST Test Input 
The TEST signal is an input the forces all CL550 or CL560 out­
puts to a high-impedance state. This feature is provided to sim­
plify board-level diagnostics. TEST should be tied low for 
normal operation. 

3.2 The Video Interface signals divide logically into these functional 

Video Interface groups: 

D Pixel Bus Data Transfer Signals: These signals comprise the vid­
eo data bus, the Strip Buffer address bus, and the handshake sig­
nals necessary to transfer data. 

D Video Synchronization Signals: These are the signals used to con­
trol the horizontal and vertical placement of the video frame. 

D Video Clock Signals: These are the timing signals necessary for 
the CL550 and CL560 to operate. 

3.2.1 Pixel Data, Address and Handshake Signals 
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PXDAT[23:0] Pixel Data Bus Bidirectionals 

PXDAT is a bidirectional 24-bit bus that handles uncompressed 
or decompressed pixel data. In the compression mode, uncom­
pressed video data is input on PXDAT[23:0] and compressed 
data is output on the host bus. In the decompression mode, com­
pressed data is input on the host bus and decompressed video 
data is output on PXDAT[23:0]. PXDAT is also used to transfer 
data to and from the strip buffer RAM. In some modes (Gray­
scale, YUV 4:2:2 and CMYK), only 16 of the 24 bits are used. 
The unused pins should be tied to ground through 10K-ohm re­
sistors. 

PXADR[15:0] Pixel Address Outputs 
PXADR is the address bus for the strip buffer RAM. The 16 bits 
of address support a strip buffer of up to 64K entries. 

PXRE Pixel Read Output 
The PXRE output signal is designed to directly control the out­
put enable pin of the strip buffer RAMs. During compression, 
PXRE is active only when the CL550 or CL560 is reading pixel 
data from the strip buffer RAM. During decompression, PXRE 



is active only when pixels are being read from the strip buffer 
RAM out to the pixel destination. 

PXWE Pixel Write Output 
The PXWE output is designed to directly control the write en­
able input to the strip buffer RAMS. During compression, 
PXWE is active only during PXIN cycles when pixel data is be­
ing written from the active portion of the video field into the 
strip buffer RAM. During decompression, PXWE is active only 
when active pixels are being written from the CL550 or CL560 
into the strip buffer RAM. 

CL550 or CL560 
To Host 

Processor 

PXDAT[23:0j ~ .. .... 
~ 

, 

Strip Buffer RAM 

64K x 32 

PXADR[15:0j 
t 

Figure 3-2 

PXWE 
PXRE 

Strip Buffer RAM Connections 

Pixel Input Control Output 
The PXIN signal is used to activate an input buffer on the Pixel 
Data bus, PXDAT, during input cycles. It is asserted (LOW) 
only when pixel data is being input from the active portion of 
the video field into the Strip buffer RAM. 

pxOUt Pixel Output Control Output 
The PXOUT signal can be used to load the active pixel into a 
register as it is read out of the Strip buffer RAM. It is asserted 
(LOW) only when pixels from the active region of the field are 
being read from the Strip buffer RAM. 

Video Interface 
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Video Interface 

StALL Stall Input 

This input signal, when asserted (LOW), will stop all activity on 
the Video Interface in its current state. Signals affected by 
STAII include PXADR[l6:0], PXDAT[23:0], PXRE, PXWE, 
PXIN, PXOO'C BLANK, VSYNC and HSYNC. Use of the 
STAII signal in discussed completely in Chapter 5, Video In­
terface. 

3.2.2 Video Synchronization Signals 
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HSYNC Horizontal Sync Bidirectional 

HSYNC is a bidirectional signal used to indicate the start of a 
horizontal line. When the CL560 is programmed for master 
mode operation (Configuration register bit 3 = 1), the HSYNC 
signal functions as an output and is asserted (LOW) when the 
CL560 is about to begin a new line. The duration of the pulse is 
programmed using the HSYNC register. 

When in slave mode (Configuration register bit 3 = 0), the 
HSYNC line functions as an input, and the external pixel inter­
face must assert this signal to begin the next line. The HSYNC 
input is negative-edge triggered. 

VSVNC Vertical Sync Bidirectional 

VSYNC is a bidirectional signal used to indicate the start of a 
frame. When the CL560 is programmed for master mode oper­
ation (Configuration register bit 3 = 1), the VSYNC signal func­
tions as an output and is asserted (LOW) when the CL560 is 
about to begin a compression or decompression operation. The 
duration of the pulse is programmed using the VSYNC register. 

When in slave mode (Configuration register bit 3 = 0), the 
YSYNC line functions as an input, and the external pixel inter­
face must assert this signal after writing to the HVEnable and 
Start registers to begin a compression or decompression opera­
tion. The YSYNC input is negative-edge triggered. 

BLANK Blanking Output 

This signal is an output that indicates that there are no active 
pixels on the Pixel Data bus. BLANK changes state at the same 
time as the PXADR bus (at the beginning of the Strip buffer 
read cycle, when PXPHASE is HIGH). During compression, 
BLANK goes HIGH one PXCLK before the first pixel in a line 



is written to the Strip buffer, and goes LOW again after the last 
pixel is written. During decompression, BLANK negates simul­
taneously with the first active pixel read, and asserts one PX­
CLK after the last pixel read. 

3.2.3 Video Clock Signals 

PXCLK Pixel Clock Input 

The PXCLK signal is the main clock for the compression pro­
cessor. All circuits except those directly related to the host bus 
interface are driven by this clock. 

PXPHASE Pixel Phase Input 

The value of the PXPHASE input signal indicates whether a 
Strip buffer read or write operation is occurring on the pixel bus. 
This signal should be one-half the frequency of PXCLK. If PX­
PHASE is high during the rising edge of PXCLK, the cycle is a 
Strip buffer write operation. 

CLK3 Clock Three Input 

The CLK3 input is one-half the frequency of PXPHASE. This 
signal is used only in 4:4:4 and 4:4:4:4 modes. In all other cases 
it can be tied to ground. 

Video Interface 
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4 
Host Interface 

The Host interface on the CL550 and CL560 is designed to be connect­
ed to a variety of general-purpose microprocessors with a minimum of 
external logic. The host processor can directly access any CL550/560 
register or memory address by reading or writing specific memory ad­
dresses. The host can also access CL560 data using DMA transfers. 
DMA transfers are provided as a fast method of transferring data to and 
from the CODEC FIFO. The host bus interface also includes signals for 
timing and control, status and interrupt processing. 

This chapter is divided into sections which describe how the host inter­
face is used. These sections are: 

D 4.1, Register Access Timing 

D 4.2, DMA Access Timing 

D 4.3, Control Signals 

Figure 4-1 shows the host bus pinout diagram of the CL550 and CL560 
(CL550 signal names are enclosed in parenthesis). The host interface 
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signals include a 32-bit wide dual purpose data and address bus and the 
control signals necessary to perform data transfers and interrupt han­
dling. 

Host Computer CL550/560 

CODEC 

11_ ,...... .1 D[31:01 1 Data [31:0] ~ --- ,. 

- Host Interface Address [31 :0] "" ,. 
v. "" D[15:0] -

HBUOT - HBUOT 
HBUS::]2 HBUS::]2 

Output Bits [3:0] "'" 10[3:0] -
DMA Logic 

Dma Request <I URTI -
Dma Master o Mj'CMSTR 

Timing and Control 

Interrupt 1 TRTIf[NMRIT] 

Interrupt 2 <I IRQ2 [HALF FULL] -
Output Bit START 

I/O Bits ~ ... ~ I ~ i ... TM[2:0] - ,. 
I - ,. 

+ TMTIUT 
Input Bit ~ fRMEI'\JIT -

Clock ~ HBCLK 

Reset .. RtS"ET 
.. TEST 

[CL550 Signals] J-
-

Figure 4-1 CL550 and CL560 Host Interface Block Diagram 

The CL560 host bus interface differs from the CL550 interface in sev­
eral ways: 
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o The CL550 signals NMRQ and HALF_FULL were replaced with 
the general-purpose interrupts IRQT and IRQ2 in the CL560. The 
function of IRQT and IRQ2 is programmed using the IRQT and 



IRQ2 Interrupt Mask registers (See Chapter 7, Registers). 

o The CL550 signals DRQ (data request) and FRMBND (frame end) 
operate differently in the CL560, although they retain the same 
name. These differences are described in Chapter 3, Signal De­
scription. 

o The CL560 samples the input data at a different point than the 
CL550. This difference is described in Chapter 6, Specifications. 

o The signals TMU, TIVIT and TML have timing differences between 
the CL550 and the CL560. These differences are described in 
Chapter 6, Specifications. 

o The signals HBOOT and TMOOT have timing differences be­
tween the CL550 and the CL560. These differences are described 
in Chapter 6, Specifications. 

If you are designing a system that will accept both the CL550 and the 
CL560, the only signals that have had their external function redefined 
are: 

Table 4-1 

CL560 
Signal 
mrrr 
IRQ2 

CL550 and CL560 Redefined Signal Pins 

CL550 
Signal 
Nl\ifRTI 

HALFJULL 

CPGA 
Pint 

70 
135 

MQUAD 
Pint 
013 

L2 

Register Access Timing 

This section describes the timing for register accesses. It is divided into 4.1 
these subsections: 

o 4.1.1, Signal Descr.1Ptions 

o 4.1.2, Register Access Timing 

o 4.1.3, Host Bus Register Access 

o 4.1.4, Host Bus Register Write 

4.1.1 Signal Descriptions 
All CL550/560 family registers and memory are accessed using register 
accesses except the CODEC register. The CODEC register can be ac­
cessed using either register accesses (described in this section) or DMA 
transfers (see Section 4.2). The following signals are used to access the 
CL550/560 part in register access mode: 

Register Access 
Timing 
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Register Access Timing 

D HBCLK, Host Bus Clock: All host bus accesses are synchro­
nized to the Host Bus Clock. The falling edge of HBCLK is used 
to sample the host bus data and control signals, while the rising 
edge of HBCLK is used to drive the output signals. 

D HBUS[31:0], Host Bus: HBUS[31 :0] is a multiplexed data and 
address bus. The signal START is used to indicate that an address 
is present on the bus. The width of the host bus can be either 16 or 
32-bits wide depending on the signals ID[3:0] and HBOS_32. 

D START, Transaction Start: The START signal begins a data 
transfer. When asserted, it indicates that there is a valid address on 
HBUS[31 :0]. START is sampled on the falling edge of HBCLK, 
and should not be asserted for more than one HBCLK period. 

D ID[3:0], Address Space Identification Signals: ID[3:0] are in­
puts that select the address range of the chip. When the part re­
ceives a START signal, it compares the value on ID[3:0] with the 
address on HBUS[31 :0] bits 27 through 24. If a match occurs, an 
internal chip select signal is generated. 

Figure 4-2 10[3:0] Chip Select Address Format 

To generate a valid chip select, the contents of HBUS [31: 16] should be 
as shown in Figure 4-2, where X = Don't Care. This allows the CL550/ 
560 part to be placed in anyone of fourteen locations in the upper 1116th 
of memory. 

Setting ID to OxO overrides the decoding of the upper 16-bits of the ad­
dress, putting the CL550/560 part into a 16-bit address mode. Setting ID 
to OxF disables the host bus interface. 

D HBUS_32, 32-bit Host Bus: HBOS_32 is a static signal used to 
configure the host bus data path width during CODEC accesses. 
When HBOS_32 is low, the read/write path to the CODEC regis­
ter is 32-bits wide. When HBUS_32 is high, the read/write path to 
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the CODEC register is 16-bits wide. The data path to all on-chip 
registers and tables except for the CODEC register is always 16-
bits wide. In the 16-bit data mode, HBUS[31:16] remain disabled 
(three-stated) at all times and transfers take place over 
HBUS[l5:0]. 

HBOS_32 and ID[3:0] combine to control the address and data modes 
as shown in Table 4-2. 

Table 4-2 Address and Data Bus Configuration 

10[3:0] HBUS_32 Description 
0000 0 16-bit address, 32-bit data 

0000 1 16-bit address, 16-bit data 

0001-1110 0 32-bit address, 32-bit data 

0001-1110 32-bit address, 16-bit data 

1111 o or 1 Chip Disabled 

D TMU, Transfer Mode 0: In register access mode operation, TMU 
is an output line that transitions to 0 (along with TMI) during the 
bus transaction acknowledge cycle to indicate that the transaction 
completed. The value of TMU is ignored during a Start cycle. 

D TID, Transfer Mode 1: The CL550/560 part samples the TMT 
input during the Start cycle to determine whether the transaction 
is a read or a write. TM 1 changes sense between register access 
cycles and DMA access cycles. During register access cycles, a 
low value (0) on TMI indicates a write cycle, and a high value (1) 
indicates a read cycle. During DMA cycles, a high value (1) on 
TM 1 indicates a write cycle, and a low value (0) indicates a read 
cycle. During a register access cycle, TMT returns to 0 during the 
acknowledge cycle. 

D TID, Transfer Mode 2: TM2 is the acknowledge signal that is 
driven active (0) by the CL550/560 family during a register access 
acknowledge cycle. 

D TMOUT, Transfer Mode Control Lines = Outputs: The 
TMOOT signal provides transceiver directional control for the 
transfer mode control lines TM[2:0]. If this signal is low (0), the 
transceiver direction is from the CL550/560 part out to the host 
bus. If the signal is high (1), the transceiver direction is from the 

Register Access Timing 
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Register Access Timing 

host bus into the part. 

The tables below show the values of the CL550/560 control signals dur­
ing each of the three bus access cycles. Table 4-3 and Table 4-4 show 
the CL550 control signals, and Table 4-5 through Table 4-8 show the 
CL560 control signals. The shaded areas indicate that the signals are 
driven as outputs. 

Table 4-3 TM Signals During a Host Bus Register Read (CL550 to Host) 

Signal 
OMA_MSTR 

TMO 
TM1 
1M2 

TMOUT 

Start Cycle 
HIGH 

Don't Care 

HIGH 

Wait State(s) Acknowledge Cycle 
HIGH HIGH 

Table 4-4 1M Signals During a Host Bus Register Write (Host to CL550) 

Signal 
oMA_MSTR 

TMO 
TM1 
1M2 

TMOUT 

Start Cycle 
HIGH 

Don't Care 

LOW 

Wait State(s) Acknowledge Cycle 
HIGH HIGH 

Table 4-5 TM Signals During a Host Bus Register Read (CL560 to Host) 

Signal 
oMA_MSTR 

TMO 
TM1 
1M2 

TMOUT 

Start Cycle 
HIGH 

Wait State(s) Acknowledge Cycle 
HIGH HIGH 

Table 4-6 TM Signals During a Host Bus Register Write (Host to CL560) 

Signal 
oMA_MSTR 

TMO 
TM1 

Start Cycle 
HIGH 

Don't Care 

LOW 

Wait State(s) 
HIGH 

Don't Care 

Don't Care 

Acknowledge Cycle 
HIGH 
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Table 4-6 TM Signals During a Host Bus Register Write (Host to CL560) 

Start Cycle Wait State(s) Acknowledge Cycle 
---=~-----------------------------

Table 4-7 WSignals During a DMA Read (CL560 to Host) 

Signal Start Cycle Wait State(s) Acknowledge Cycle 

DMA_MSTR LOW HIGH HIGH 

TMD Don't Care Don't Care Don't Care 

TMf LOW Don't Care Don't Care 

TM2 HIGH HIGH LOW 

TMOUT 

Table 4-8 TM Signals During a DMA Write (Host to CL560) 

Signal Start Cycle Wait State(s) Acknowledge Cycle 

DMA_MSTR LOW HIGH HIGH 

TMD Don't Care Don't Care Don't Care 

TMf HIGH Don't Care Don't Care 

TM2 HIGH HIGH LOW 

TMOUT 

D BBOUT, Host Bus = Output: The HBOOT signal is used to con­
trol the direction of the host bus transfer. The CL550/560 does not 
have sufficient drive capability to be connected directly to most 
computer host buses. When external drivers are used, HBOOT is 
used to control the direction of these buffers. When this signal is 
low (0), the transceiver direction is from the CL550/560 to the 
host bus (output). When this signal is high 0), the direction is 
from the host bus to the part (input). 

4.1.2 Register Access Timing 
A host bus transaction consists of two or more HBCLK clock cycles. 
Memory or register accesses (except accesses to the CODEC register) 
always take three cycles: start, wait and acknowledge. Accesses to the 
CODEC register can take from 2 to n cycles depending on the availabil­
ity of the CODEC register. 

Register Access Timing 
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Register Access Timing 

The first cycle is called the start cycle, and is initiated by the host pro­
cessor. For all register and table locations (except the CODEC), the start 
cycle is followed by exactly one wait state. During an access to the 
CL550 CODEC register, the start cycle is followed by several wait 
states. The last cycle is called the acknowledge cycle, and is initiated by 
the CL550/560 to show that it is through reading or writing data. The 
acknowledge cycle is indicated by TNf2 being asserted low (0). 

A start cycle is initiated by asserting the START input. START is sam­
pled on the falling edge of HBCLK, and should never be asserted for 
more than one HBCLK period. It should also never be asserted twice 
before an acknowledge cycle occurs. When START is sampled LOW, 
the CL550/560 samples HBUS for the register address, TIVIT to deter­
mine the direction of the transfer, and TM1 which must be HIGH during 
the START cycle. If TN.I2 is low during start, the cycle will be ignored 
and no acknowledge will be returned. Typical system designs use a pull­
up resistor on TNf2 for this purpose. 

The CL560 has a CODEC FIFO, but the CL550 only has a CODEC reg­
ister. However, the timing for accessing either is identical. Where the 
following section refers to the CODEC FIFO, substitute CODEC regis­
ter when working with the CL550. 

The CL550/560 always inserts at least one wait state between the start 
cycle and the acknowledge cycle during register mode accesses. If the 
register being addressed is any register other than the CODEC FIFO, 
then exactly one wait state is inserted. CODEC register or FIFO access­
es can contain zero or more wait states, depending on the condition of· 
the CODEC FIFO at the time of the access. If the host performs a reg­
ister read of the CODEC FIFO when the CL560 is in the compression 
mode, and there is data available in the FIFO, no wait states will be in­
serted. Otherwise, wait states will be inserted until a data word is avail­
able. If the host performs a register write of the CODEC FIFO when the 
560 is in the decompression mode, and there is an empty location avail­
able in the FIFO, no wait states will be inserted. Otherwise, wait states 
will be inserted until an empty location becomes available. 

Note: Refer to Section 4.2.7, Operational Considerations, for more in­
formation on using the CODEC FIFO and Register. 
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In the CL550 only, TM[2:0] are used during the acknowledge cycle to 
transmit status information. In register access mode, the CL550 outputs 
TM[ 1 :0] = 00 to indicate that the transaction is complete. In DMA 
transfer mode, the CL550 reads TM[ 1 :0] looking for error information 
coming back from the host bus. If either TMI or TNID = one, the CL550 
sets the internal Bus Error Flag. The bus error flag status is determined 
as follows: 

Table 4-9 CL550 Bus Error Conditions 

TM[1:0] TM2 Operation 

00 0 Transaction Complete 

01 0 Bus Error 

10 0 Bus Error 

11 0 Bus Error 

4.1.3 Host Bus Register Access 
Host bus register access transactions consist of a start cycle and an ac­
knowledge cycle. The host begins a start cycle by driving the address on 
HBUS[31:0], driving TMI to indicate whether the cycle is a read or a 
write, and asserting START. For the CL550 write cycles only, the bus 
master must change HBUS[31:0] to the data to be written before the 
HBCLK falling edge following the START cycle. For a CL560 write 
cycle, the data must be stable before the HBCLK falling edge in the ac­
knowledge cycle. When the cycle is complete, the CL550/560 family 
part drives the TM signals to indicate status. 

Figure 4-3 shows a typical register read transaction. The circled num­
bers in the figure refer to the steps below. 

1. The host places the address to be read on HB US. 

2. The host indicates that a read operation is to take place by set­
ting mr = 1. TN.r2 must also be set high at this time. 

3. The host starts the transaction by asserting sTART. 

4. On the falling edge of HBCLK, the CL550/560 part samples 
START, TID, and TM2. If TID is not sampled high at this 
time, the part will ignore START and not return an acknowl­
edge. 

5. Because the direction ofTM[2:0] changes at this point, the 
CL550/560 part must assert TMOOT to change the direction of 

Register Access Timing 
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Start Cycle Wait State(s) Acknowledge 

HBCLK ~ I, I ®~~ CD I 
CD ® @ 

HBUS--< Host Address X Invalid Data ).0 CL550/560 Data >--
HB1JUT \ B 

;-
® 

H 
START~ / 

~------~V~------~i~CV 
T\'ii12---f ~ 

® ® 
11ii'l"[1:0]--< Host 11iil[1:0] =lX X ))r--H--'oS=-:t11iil=[l-:0-]=-OO-------->--

~~5 ____ ~li.~ ________ ~;-
IS 

Figure 4-3 Register Read Transaction 
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the bus buffers. 

6. An indefinite number of wait states can be added between the 
Start Cycle and the Acknowledge Cycle. 

7. When the CL550/560 part has the data available, it places it on 
HBUS. 

8. The CL550/560 part indicates to the host that the data is avail­
able by asserting TNI2. 

9. The CL550 indicates that no errors occurred by placing 00 on 
TM[1:0]. 

10. The host samples the data on the falling edge of HBCLK. 



4.1.4 Host Bus Register Write 
Figure 4-4 shows a typical register write transaction. The circled num­
bers in the figure refer to the steps below. 

Start Cycle I Wait Statelsl I Acknowledge I 
HBCLK -.J I I ~®l~ I I I 

CD CD ® @ @ 
HBUS --< Host Address X ~ CL550/560 Data >--

® 
START ~'----_---'/ 

H 

,-------. r--------ll~® TIiif2---.1 V 
~ ___ ---'I 

® ® 
m[l :0] --< HostTlVl[l :0] =OX X )) HostTlVl[l :0] =00 >--

® 
~--------~\ ;---

~------~Bt------------~ 

H 

Figure 4-4 Register Write Transaction 

1. The host places the address to be written on HBUS. 

2. The host indicates that a write operation is to take place by set­
ting TNII = O. TM2 must also be set HIGH at this time. 

3. The host starts the transaction by asserting START. 
4. On the falling edge of HBCLK, the CL550/560 part samples 

START, TNII, and TN.I2. IfTM2 is not sampled HIGH at this 
time, the part will ignore START and not return an acknowl­
edge. 

5. The host places data on HBUS and waits for an acknowledg­
ment from the CL550/560 part. 

6. Because the direction of TM[2:0] changes at this point, the 
CL550/560 part must assert TMOOT to change the direction of 
the bus buffers. 
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7. If this is a CL550 write cycle, the data to be written must be sta­
ble before the falling edge of the HBCLK cycle following the 
start cycle. 

8. An indefinite number of wait states can be added between the 
Start Cycle and the Acknowledge Cycle. 

9. When the CL550/560 part is ready for data, it puts the acknowl­
edge on TNI2. 

10. The CL550 puts a result code on TM[l :0]. If no errors occurred, 
this result code = OOh. 

11. The CL560 samples the data on the falling edge ofHBCLKdur­
ing the acknowledge cycle. 

12. The host must drive data until the end of the acknowledge cycle. 

4.2 The CL560 is capable of accepting data in DMA mode in conjunction 
DMA Access with an external DMAcontroller (see Figure 4-5). The CL560 relies on 

Timing the DMA controller to generate the start cycle and provide the address 
-------- and R/W signals. 

The signals used in DMA mode transfers are identical to those used in 
register mode transfers with these additions: 
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o DRQ, Data Request: The DRQ signal is an output, synchronous 
to HBCLK, that provides CODEC status for DMA interface con­
trol. When DRQ is low, the part is ready to send or receive data. 

o DMA_MSTR, DMA Master: The DMA_MSTR signal is an in­
put that allows the CL560 to work with a DMA controller for CO­
DEC data transfers only. It is sampled on the falling edge of 
HBCLK when the START signal is active. When DMA_MSTR is 
sampled LOW during START, an internal chip select is generated 
to the CL550 CODEC Register or the CL560 CODEC FIFO. At 
this point, the address on HB[31:0] becomes a "don't care". Dur­
ing this time, the m[0:2] lines remain as inputs, and it is the re­
sponsibility of the host to drive TM2 LOW to complete the 
transaction. For the CL550, the host should also drive TM[l :0] 
when it drives TNI2 LOW, or the Bus Error flag will be set. 

Note: The CL550 has DMA capability built in, but it does not 
work correctly during decompression operations, and will 



not be fixed (it does work correctly in compression only ap­
plications). Section 4.2.4, Alternative Method of CL5501560 
DMA Transfers, shows an alternative method of implement­
ing transfers that allows you to achieve DMA transfer speeds 
using conventional memory access techniques. DMA_MSTR 
on the CL550 should always be pulled HIGH during decom­
pression. 

DMA Controller DMA Logic JPEG Encoder 
-

Control 
Signals I----J~ 

.. 

Address '----

TMTI 
1------=-==----l~~11V1O 

I---=.TIiiff..:..:..:....:.l --l~TIiiff 
1----,-TM2..=..2 --I:.~TM2 
-

Generator ~ 

Datal1~_"" __ +--~ ... ~'" HBUS 
Bus r - ~ 

, r f 1, 
Address R/W Data 

Bus Bus 

Memory Array) 

Figure 4-5 DMA Mode Operation 

The CL560 samples the signal connected to TNIT during the start cycle 
to determine whether the operation being performed is a read or a write. 

If the CL560 senses a write to the memory, it provides the data during 
the cycle following the start cycle and holds that data until it receives an 
acknowledge (1liI2 asserted) from the memory. 

DMA Access Timing 
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Table 4-10 External Buffers Direction Control 

START Tfilff DlUULMSTR RBlJOT Buffer Direction Operation 

H X X X X No Transaction 

L L L L CL560 to Host DMA Read Cycle 

L L H H Host to CL560 Normal Write Cycle 
L H L H Host to CL560 DMA Write Cycle 
L H H L CL560 to Host Normal Read Cycle 

1. Note thatthe polarity of Tl'\iff changes sense between normal reads and writes, and DMA reads 
and writes. 

In DMA mode, all bus transfers are to and from the CL560 CODEC 
FIFO. The DMA_MSTR signal must be asserted only when the CO­
DEC is prepared to accept or source data. A qualified DMA_MSTR can 
be generated by using DRQ from the CL560 to qualify DMA_REQ 
from the DMA controller. 

4.2.1 CL560 DMA Transfers 
The CL560 indicates that the CODEC FIFO has room for data (or data 
to be read) by asserting DRQ low. The amount of space (data) that is 
available is determined by which flag is set in the DMA Request Inter­
rupt Mask Register (See Chapter 7). The CL560 can transfer as many 
words as is necessary to fill or empty the FIFO in a single DMA burst. 

The host indicates that a DMA operation to the CL560 is going to take 
place by asserting DMA_MSTR low. The host then initiates the transfer 
by asserting Tm LOW for a read (CODEC to Host) or HIGH for a 
write (Host to CODEC). 

When the CL560 samples DMA_MSTR and S1ARt low, it assumes 
that the data is being read from or written to the CODEC register, thus 
the host processor does not need to supply an address. 
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4.2.2 CL560 DMA Write Transaction Timing 
Figure 4-6 shows a typical DMA mode write transaction, where the host 
processor (DMA controller) is writing data to the CL560 CODEC reg­
ister (Decompression). In this example, the host is going to transfer 64 
words of information into the CL560 CODEC. The circled numbers in 
the figure refer to the steps below. 

DMA Access Timing 

I 
Start Cycle 

#1 
Ack. Cycle 

#1 
Start Cycle 

#2 
Ack. Cycle I 61 Cycles I Start Cycle 

#2 Not Shown #64 
Ack. Cycle 

#64 

HBCLK 

HBUS[31:0] _+--_+------!. 

10[3:0] 

1liiW -+----If-----{ 

nvrr 

Figure 4-6 CL560 DMA Write (Decompression - Host Write to CODEC) 

1. The CODEC FIFO is not 114 full, and the CL560 generates a 
DMA request by asserting DRQ LOW. 

2. The host processor recognizes the DRQ, and initiates a DMA 
write cycle by asserting START LOW. 
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3. The host informs the CL560 that the DMA operation will be a 
write by asserting mT HIGH. 

4. The host starts the DMA operation by asserting START LOW. 

5. Steps 2 through 4 must take place before the falling edge ofHB­
CLK. 

6. The CL560 releases DRQ upon recognizing the start cycle. 
DRQ may change states unpredictably during the DMA transfer 
because the CL560 is removing data from the FIFO at the same 
time that the host is filling it. However, DRQ can be ignored un­
til the end of the transfer. 

7. The CL560 drives HBOOT HIGH to change the direction of the 
buffers to "write". 

8. The host (memory) puts the data to be written to the CL560 on 
HBUS. 

9. The DMA controller terminates this cycle by asserting TM2 
LOW. 

10. The CL560 clocks the data into the CODEC register on the fall­
ing edge of HBCLK. 

11. The data bus and the control lines must be held valid until the 
end of the data cycle. 

12. The DMA controller starts the second transfer by asserting 
DMA_MSTR LOW (DMA_MSTR can remain LOW through­
out the transfer, if desired). 

13. The 61 intervening cycles are not shown. 

14. The DMA controller starts the last (64th) transfer by asserting 
DMA_MSTR LOW. 

15. The DMA controller terminates the transfer by asserting 
DMA_MSTR HIGH at the end of the start cycle. The CL560 
will automatically complete the current transfer. 



4.2.3 CL560 DMA Read Transaction Timing 
Figure 4-7 shows a typical DMA mode read transaction, where the host 
processor (DMA controller) is reading data from the CL560 CODEC 
register (Compression). In this example, the CL560 is going to transfer 
64 words of information. The circled numbers in the figure refer to the 
steps below. 

DMA Access Timing 

Start Cycle Ack. Cycle Start Cycle Ack. Cycle I 61 Cycles I Start Cycle Ack. Cycle 
#1 #1 #2 #2 Not Shown #64 #64 

HBCLK 

START 

H BU S[31 :0] -i----i--------{ 

10[3:0] 

TMO -i----f----{ 

TM1 

TM2 

TMOUT 

HBOUT 

RESET 

DRO 

Figure 4-7 CL560 DMA Read (Compression - Host Read from CODEC) 

1. The CODEC FIFO is 3/4 full, and the CL560 generates a DMA 
request by asserting DRQ LOW. 

2. The host processor recognizes the DRQ, and initiates a DMA 
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read cycle by asserting START LOW. 

3. The host informs the CL560 that the DMA operation will be a 
read by asserting TMT LOW. 

4. The host starts the DMA operation by asserting sTART ~OW. 
5. Steps 2 through 4 must take place before the falling edge of HB­

CLK. 

6. The CL560 releases URQ upon recognizing the start cycle. 
URQ may change states unpredictably during the DMA transfer 
because the CL560 is removing data from the FIFO at the same 
time that the host is filling it. However, URQ can be ignored un­
til the end of the transfer. 

7. The CL560 drives HBOOT LOW to change the direction of the 
data bus buffers to "read". 

8. The CL560 outputs the requested data on HBUS. 

9. The DMA controller terminates this cycle by asserting TNI2 
LOW. 

10. The CL560 will hold the data stable until after the next rising " 
edge of HBCLK. 

11. The data bus and the control lines must be held valid until the 
end of the data cycle. 

12. The DMA controller starts the second transfer by asserting 
DMA_MSTR LOW (DMA_MSTR can remain LOW through­
out the transfer, if desired). 

13. The 61 intervening cycles are not shown. 

14. The DMA controller starts the last (64th) transfer by asserting 
DMA_MSTR LOW. 

15. The DMA controller terminates the transfer by asserting 
DMA_MSTR HIGH at the end of the start cycle. The CL560 
will automatically complete the current transfer. 



4.2.4 Alternative Method of CL5501560 DMA Transfers 
The DMA transfer function on the CL550 does not work correctly dur­
ing decompression, and will not be fixed. This section shows an alter­
native method using burst mode transfers that will allow you to achieve 
DMA transfer speeds using conventional memory access techniques. 
Burst mode transfers are similar to register accesses, except that HB15 
is pulled LOW to indicate that the CODEC register or FIFO is being ac­
cessed. This method can be used with either the CL550 or the CL560. 

The CL550 and CL560 allow two-cycle (StartiAck) accesses to the CO­
DEC register. The host must indicate that a CODEC register access is 
about to occur by pulling HB 15 LOW during the Start cycle. If the 
CL550/560 is in the 32-bit address mode, the host must also supply an 
address on HB [31: 16] that meets the requirements shown in Figure 4-2. 
When these conditions occur, the CL550/560 will allow a no-wait-state 
access to the CODEC register. 

The CL550/560 part indicates that the CODEC register has room for 
data by asserting DRQ low (because the CL550 has a CODEC register 
instead of a CODEC FIFO, the assertion ofDRQ indicates that only one 
DMA transfer cycle can be performed). The host initiates a burst mode 
memory transfer by pulling HB 15 LOW, providing a valid address 
space identification code on HB[31:16], and asserting START LOW. 

If the transfer is to be a read (CL550/560 transfer to host), TMT should 
be held HIGH during the start cycle, and if the transfer is to be a write 
(host data transfer to CL550), then lMI should be held LOW during the 
start cycle. DMA_MSTR must always be held HIGH during assertion 
of the START signal. 

DMA Access Timing 
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4.2.5 CL550 Burst-mode Write Transaction Timing 
Figure 4-8 shows a typical burst-mode write transaction, where the host 
processor (DMA controller) is writing data to the CL550 CODEC reg­
ister. The circled numbers in the figure refer to the steps below. 

Start Cycle I Ack. Cycle I I Start Cycle I Wait State(s) I Ack. Cycle I 
HBCLK 

HBUS[31:0] 

10[3:0] 

HBOUT 

RESET 

Figure 4-8 CL550 DMA Write (Decompression - Host Write to CODEC) 
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1. The CL550 asserts DRQ to notify the host that there is space (1 
empty word) in the CODEC register. 

2. DMA_MSTR must be held HIGH. 

3. The host processor controller drives TNIT LOW and Tl\iI2 
HIGH to indicate that a write operation is going to be per-



formed. 

4. In 32-bit address mode, the host processor puts the following on 
HBUS[31:0]: 

D HBUS[31: 16] = as shown in Figure 4-2 

D HBUS15 = 0 (LOW) 

D HBUS[14:0] = Don't Care 

In 16-bit mode, HBUS[31:16] are not used, and are Don't 
Cares. 

5. The host processor asserts sTART to initiate the transfer. 

6. Steps 2, 3 4, and 5 above must all occur before the falling edge 
ofHBCLK. 

7. The CL550 releases DRQ upon recognizing the start cycle. 

8. The CL550 drives HBOOT HIGH to change the direction of the 
HBUS buffers to "write". 

9. The host (memory) puts the data to be written to the CL550 on 
HBUS. 

10. The CL550 terminates the transfer on the next cycle by assert­
ing TM[I:0] and TID LOW. No wait states were inserted. 

11. The CL550 clocks the data into the CODEC register on the fall­
ing edge of HBCLK. 

12. The data bus and the control lines must be held valid until the 
end of the data cycle. 

The second cycle shown is identical to the first, except that the host has 
inserted an optional wait state at Step 12 by holding TNI2 HIGH until 
the data is available. 

DMA Access Timing 
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4.2.6 CL550 Burst-mode Read Transaction Timing 
Figure 4-9 shows a typical burst-mode read transaction, where the host 
processor (DMA controller) is reading data from the CL550 CODEC 
register. The circl.ed numbers in the figure refer to the steps below. 

Start Cycle I Ack. Cycle I I Start Cycle I Wait State(s) I Ack. Cycle I 
HBClK 

HBUS[31:0] 

10[3:0] 

TIV10 -r--I----i 

HBOUT 

RESET 

Figure 4-9 CL550 DMA Read (Compression - Host Read from CODEC) 
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1. The CL550 asserts DRQ to notify the host that there is a word 
in the CODEC register. 

2. DMA_MSTR must be held HIGH. 

3. The host processor drives TMT HIGH to indicate that a read is 
going to be performed. 



4. In 32-bit address mode, the host processor puts the following on 
HBUS[31:0]: 

o HBUS[31:16] = as shown in Figure 4-2 

o HBUS15 = 0 (LOW) 

o HBUS[14:0] = Don't Care 

In 16-bit mode, HBUS[31:16] are not used, and are Don't 
Cares. 

5. The host processor asserts START to initiate the transfer. 

6. Steps 2, 3 4, and 5 above must all occur before the falling edge 
ofHBCLK. 

7. The CL550 releases DRQ upon recognizing the start cycle. 

8. The CL550 drives HBOOt LOW to change the direction of the 
HBUS buffers to "read". 

9. The CL550 puts the data that is being read on HBUS. 

10. The host processor terminates the transfer by asserting TM[ 1 :0] 
andTMLLOW. 

11. The data bus and the control lines must be held valid until the 
end of the acknowledge cycle. 

The second cycle shown is identical to the first, except that the host has 
inserted an optional wait state at Step 11 by holding TML HIGH until 
the data has been accepted. 

4.2.7 Operational Considerations 
The following operational considerations should be noted when design­
ing host bus interfaces: 

o Wait States: Access to all registers within the CL550/560 (except 
the CODEC) takes three HBCLKcycles (one wait state). Accesses 
to the CODEC take a minimum of two HBCLK cycles, but the 
CL550 (only) can insert wait states of up to 70 pixel clocks in 
length under worst case conditions. This delay can be avoided by 
polling the Flags register or checking the DRQ signal to determine 
the CODEC state prior to accessing the CODEC (see Chapter 7). 

o Drive Capability: The HB US and TNr signals do not have 
enough drive to meet the specifications of most system buses. An 
external transceiver must be used to buffer these signals from the 
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system bus. The signals HBaOT and TMaOt are provided to 
control these transceivers. 

D Compression Mode: The CODEC register is read-only in com­
pression mode. If the host attempts to write this register, the 
CL550/560 will not return an acknowledge on TM2 and the 
HBUS will remain in a locked state until a hard reset is issued. 

D Compression Mode: When the CL550 is in the compression 
mode, the Huffman coder will not begin to operate until the FIFO 
reaches the 114 full mark. If the host attempts to read the CODEC 
register before this point, the data stream will become corrupt. 

D Decompression Mode: When in decompression mode, the CO­
DEC register is write-only. If the host attempts to read from this 
register, the CL550/560 will not return an acknowledge on TNI2 
and the HBUS will remain in a locked state until a hard reset is is­
sued. When in the decompression mode, if the FIFO is full and the 
host attempts to write data to the CODEC register, the acknowl­
edge on TIJ2 will be delayed until the FIFO is not full. If the de­
vice is not actively decompressing (START register = 0), the bus 
will remain locked, and a reset will be needed. Therefore, the host 
should never fill the FIFO past 3/4 full. When, in decompression 
mode, the CL550/560 detects a marker code (value OxFFXX) in 
the compressed data, the decoder will stop processing and the 
"mark" bit in the Fs register will be set. If the host attempts to 
write to the CODEC register before writing either a 0 or 1 to the 
Decoder Resume register, the CL550/560 will not return an ac­
knowledge on TM2 and the HBUS will remain in a locked state 
until a hard reset is issued. Normally, the only marker codes that 
are allowed within the JPEG data scan field are the RST markers 
(OxFFDO through OxFFD7). These markers are automatically de­
tected and stripped off by the CL550/560 with no external inter­
vention required. 

D Handshake: When performing any access to the CL550/560 host 
bus, the TNI2 line must be at logic level one during the assertion 
of START. If it is not, the CL550/560 will not recognize the ac­
cess, and no acknowledge will be given on TM1. A pull-up resis­
tor on Tm could be used for this purpose. 

D DMA_MSTR Mode: The DMA_MSTR input on the CL550/560 



allows the CL550/560 to behave as a bus master for CODEC ac­
cesses. Once a DMA_MSTR transfer occurs, ACK from the ad­
dressed slave terminates the transfer. However, a subsequent ACK 
from a non-CL550/560 access (a "foreign ACK") will cause the 
CODEC to malfunction. The workaround is to prevent foreign 
ACKs from reaching the CL550/560 after the DMA_MSTR trans­
fer completes. Once the DMA_MSTR transfer ACK occurs, the 
ACK signal to the CL550/560 must be suppressed until one of the 
following occurs: 

D The next DMA_MSTR transfer occurs (START and 
DMA_MSTR) 

D A valid CL550/560 access occurs (START and valid CL5501 
560 Address) 

This workaround is necessary only if other devices besides the CL5501 
560 and the CL550/560 DMA slaves can drive ACK. 

D FIFO Level Control: In the CL560 only, it is possible to lose data 
if you try to either write to the CODEC FIFO when it is full, or 
read from the CODEC FIFO when it is empty. It is recommended 
that when writing to the FIFO, you set the DRQ trigger point so 
that a DRQ is generated when the FIFO is down to 114 full, and 
then only send enough data to bring it up to the 3/4 full point. 
When reading the FIFO, set the DRQ trigger point so that a DRQ 
is generated when the FIFO is up to 3/4 full, and then only read 
enough data to bring it down to the 114 full point. This will prevent 
either an overflow or underflow condition. 

Timing and control signals are used to control the operation of the 
CL550/560, synchronize data transfers and provide information to the 
host processor. 

4.3.1 RESET 
The RESET signal is an input that forces a hardware reset of the device. 
When the signal is asserted, most of the internal registers are forced to 
a known state. However, the values in the Huffman tables, DCT table 
and Quantizer tables are unaffected. HBCLK must be running during 
RESET. The part will not acknowledge any access until the third HB­
CLK cycle after RESET is deasserted. 

Control Signals 

4.3 
Control Signals 
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4.3.2 NMRlI 
Note: NMRQ is a CL550 signal only. The CL560 uses TJ[(JI instead. 

Interrupt Request (NMRQ) is an unlatched output signal, synchronous 
to HBCLK, that provides an indicator of both FIFO and video field sta­
tus. It can be programmed to selectively indicate active status flags as 
specified in the Interrupt Mask Register. This signal is an open drain 
output and should be tied to VCC through a resistor of at least 625 ohms. 
On power-up, the CL550 or CL560 should be hardware reset to prevent 
the generation of spurious interrupts. 

4.3.3 HALF_FULL 
Note: HALF _FULL is a CL550 signal only. The CL560 uses TJ[(l2 in­
stead. 

The HALF_FULL signal is an output that indicates the status of the in­
ternal FIFO. A value of 1 indicates that the FIFO contains alleast 64 en­
tries out of 128. Transitions of HALF_FULL and synchronous to 
PXCLK. 

4.3.4 Dmf, IRQ2 
Note: TJ[(JI and IRQ2 are CL560 signals only. The CL550 uses NMRQ 
and HALF _FULL instead. 

IRQI and IRQ2 are general-purpose status outputs of the CL560. The 
assertion of these signals is programmable based on masks contained in 
the IRQI and IRQ2 mask registers described in Chapter 7, Registers. 
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5 
Video Interface 

This chapter describes the Video interface to the CL550 and CL560 (re­
ferred to as CL550/560). The Video interface is used to input uncom­
pressed video data in the compression mode, or to output decompressed 
video data in the decompression mode. 

This chapter is divided into sections that describe how the Video inter­
face is used. These sections are: 

o 5.1, Overview 

o 5.2, Video Interface Logic 

o 5.3, Basic System Configurations 

o 5.4, Timing Diagrams Compression Mode 

o 5.5, Timing Diagrams Decompression Mode 
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5.1 
Overview 

The Video interface is used to input uncompressed video data during the 
compression process, and output decompressed video data during the 
decompression process. A block diagram of the Video interface is 
shown in Figure 5-1. 

CL550/560 
Video 
Interface 

PXADR[15:0] +--------..... 

PXRE f----~JC 
Strip Buffer RAM 

Data 

B uffe r /Latc h 

PXDAT[23:0] ~------...... ----_--+ 
~~----------------------~--~ 

~~--------------------~ 

Figure 5-1 

Video 
Interface 

Logic 

Video Interface Block Diagram 

Buffer/Latch 

Pixels In 

Pixels Out 

During compression, the strip buffer RAM is used to store the incoming 
pixels until 8 complete lines of video have been received. The CL5501 
560 then uses the strip buffer RAM to perform a raster to 8 x 8 block 
conversion of the pixel data. 

During decompression, the strip buffer RAM is used to store the decom­
pressed 8 x 8 blocks until 8 complete lines of pixel data have been de­
compressed. The CL550/560 then uses the strip buffer RAM to perform 
an 8 x 8 block to raster conversion of the pixel data. 
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5.1.1 Signal Descriptions 
The Video interface consists of the following signals: 

o PXDAT [23:0], Pixel Data Bus: The Pixel data bus is a 24-bit 
wide bus that handles uncompressed or decompressed pixel data. 
It is also used to transfer data to and from the strip buffer RAM. In 
some modes (Grayscale, YUV 4:2:2 and CMYK), only 16 of the 
24-bits are used. 

o PXADR [15:0], Pixel Address Bus: PXADR is the address bus 
for the strip buffer RAM. The 16 bits of address support a strip 
buffer of up to 65,536 entries. 

o PXRE, Pixel Read: PXRE is an output signal designed to directly 
control the Output Enable (00) pin of the strip buffer RAMs. Dur­
ing compression, PXRE is active only when the CL550/560 is 
reading pixel data from the strip buffer RAM. During decompres­
sion, PXRE is active only when pixels are being read from the 
strip buffer RAM out to the pixel destination. 

o PXWE, Pixel Write: pxWB is an output is designed to directly 
control the Write Enable (WE) input of the strip buffer RAMs. 
During compression, PXWB is active only during PXIN cycles; 
when pixel data is being input from the active portion of the video 
field into the strip buffer RAM. During decompression, PxWB is 
active only when active pixels are being written from the CL550I 
560 into the strip buffer RAM. 

o PXIN, Pixel Input Control: PXIN is used to activate an input 
buffer on the Pixel Data bus, PXDAT, during input cycles. It is ac­
tive only when pixel data is being input from the active portion of 
the video field into the strip buffer RAM. 

o PXOUT, Pixel Output Control: pxOOT is used to load the ac­
tive pixel into a register as it is read out of the strip buffer RAM. 
It is active only when pixels from the active region of the field are 
being read from the strip buffer RAM. 

o STALL, Stall: Asserting the sTALL input signal stops all activi­
ty on the Video interface. Signals affected by STALL include PX­
DAT[23:0], PXADR[15:0], PXRE, PXWE, PXIN, PXOOT, 
BLANK, VSyNC and HSYNc. 

Overview 
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o RSYNC, Horizontal Synchronization: HSYNC is a bidirection­
al signal used to indicate the start of a horizontal line. This signal 
acts as an output in Master mode operation, and as an input in 
Slave mode. 

o VSYNC, Vertical Synchronization: VSYNC is a bidirectional 
signal used to indicate the start of a frame. This signal acts as an 
output in Master mode operation, and as an input in Slave mode. 

o BLANK, Blanking: This signal is an output that indicates that 
there are no active pixels on the Pixel Data bus. 

5.1.2 Video Interface Clocks 
The Video interface uses three clocks to synchronize its operation: 

o PXCLK, Pixel Clock: PXCLK is the main clock for the compres­
sion processor. All circuits except those directly related to the host 
bus interface are driven by this clock. In single-component mode 
(Grayscale), this clock is equal to the pixel rate. In 4:2:2 modes, 
this clock is twice the actual pixel rate, and in 4:4:4 (YUV and 
RGB) and 4:4:4:4 modes (CMYK), this clock is four times the ac­
tual pixel rate (see Table 5-1). 

Note: For correct CL550 operation, HBCLK must be the 
same rate or slower than PXCLK. The CL560 will work with 
HBCLK timing up to 2 times Jaster than PXCLK. 

o PXPHASE, Pixel Phase: The value of the PXPHASE input sig­
nal, together with CLK3 in some modes, indicates whether a Strip 
buffer read or write operation is occurring on the pixel bus. This 
signal should be one-half the frequency of PXCLK. For all modes 
except 4:4:4 mode, if PXPHASE is HIGH during the rising edge 
of PXCLK, the ensuing cycle will be a strip buffer read operation. 
If PXPHASE is LOW during the rising edge of PXCLK, the cycle 
is a strip buffer write operation. Timing for 4:4:4 mode is dis­
cussed in the CLK3 section. 

o CLK3, Clock 3: The CLK3 input is one-half the frequency ofPX­
PHASE. This signal is used only in 4:4:4 and 4:4:4:4 modes. In all 
other cases it can be tied to ground. In 4:4:4:4 video modes, CLK3 
indicates which pair of components from a 4:4:4:4 pixel mode is 
on the Pixel Data bus. If CLK3 is HIGH during the rising edge of 
PXCLK, it indicates that the first pair of components will be on the 
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Pixel Data bus. If CLK3 is LOW during the rising edge of PX­
CLK, it indicates that the second pair of components will be on the 
Pixel Data bus. In 4:4:4 video modes, a HIGH on CLK3 during the 
rising edge of PXCLK indicates that the cycle will be a strip buffer 
RAM read cycle, and a LOW indicates that the cycle will be a strip 
buffer RAM write cycle. 

Note: When the CL550 (only) is used in single-component mode 
(Grayscale) or 4:4:4:4 mode, there is a restriction on the skew between 
PXCLK and HBCLK when setting the configuration register (see Fig­
ure 5-2). If this restriction is not satisfied, the CL550 may not operate 
correctly until a hardware or software reset is issued to the CL550. In 
this invalid state, the CL550 is unable to correctly convert raster-for­
matted pixels to and from block-formatted pixels. The designer must 
guarantee that the skew between the falling edge of HBCLK and the ris­
ing edge of PXCLK never falls within the failure window. This problem 
does not exist in the CL560, and there are no restrictions on CL560 
clock skew. 

HBClK 

PXClK 

HBUS[31:0] 

Figure 5-2 

-----+-' 
I 

Failure Window = T ±3ns 

Grayscale mode, T =27ns 

4:4:4:4 mode, T =19ns 

CL550 Host Bus Write Timing for the Configuration Register 
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Table 5-1 CL550/560 Color Modes and Pixel Data Configurations 

Two Pixels per Two PXCLKs Mode PXCLKO PXCLK2 PXCLK4 PXCLK6 
Single Component (Grayscale) 

PXDAT[23: 16] xx xx xx xx 

PXDAT[15:8] X1[7:0] X3[7:0] X5[7:0] X7[7:0] 

PXDAT[7:0] XO[7:0] X2[7:0] X4[7:0] X6[7:0] 

One Pixel per Two PXCLKs Mode PXCLKO PXCLK2 PXCLK4 PXCLK6 
YUV 4:2:2 

PXDAT[23: 16] xx xx xx xx 

PXDAT[15:8] UO[7:0] VO[7:0] U1[7:0] V1[7:0] 

PXDAT[7:0] YO[7:0] Y1[7:0] Y2[7:0] Y3[7:0] 

YUV 4:4:4 to YUV 4:2:2 

PXDA T[23: 16] VO[7:0] V1[7:0] V2[7:0] V3[7:0] 

PXDAT[15:8] UO[7:0] U1[7:0] U2[7:0] U3[7:0] 

PXDAT[7:0] YO[7:0] Y1[7:0] Y2[7:0] Y3[7:0] 

RG8 4:4:4 to YUV 4:2:2 

PXDAT[23: 16] 80[7:0] B1[7:0] B2[7:0] 83[7:0] 

PXDAT[15:8] GO[7:0] G1[7:0] G2[7:0] G3[7:0] 

PXDAT[7:0] RO[7:0] R1[7:0] R2[7:0] R3[7:0] 

One Pixel every Fourth PXCLK Mode PXCLKO PXCLK4 PXCLK8 PXCLK 12 
(Half Rate Timing) 

4:4:4 (YUV Pixel Example) 

PXDAT[23: 16] VO[7:0] V1[7:0] V2[7:0] V3[7:0] 

PXDAT[15:8] UO[7:0] U1[7:0] U2[7:0] U3[7:0] 

PXDAT[7:0] YO[7:0] Y1[7:0] Y2[7:0] Y3[7:0] 

4:4:4 (RGB Pixel Example) 

PXDAT[23:16] 80[7:0] 81[7:0] B2[7:0] 83[7:0] 

PXDAT[15:8] GO[7:0] G1[7:0] G2[7:0] G3[7:0] 

PXDAT[7:0] RO[7:0] R1[7:0] R2[7:0] R3[7:0] 

One Pixel per Four PXCLKs Mode PXCLKO PXCLK2 PXCLK4 PXCLK6 
4:4:4:4 (CMYK Pixel Example) 

PXDAT[23:16] xx xx xx xx 
PXDAT[15:8] MO[7:0] KO[7:0] M1[7:0] K1[7:0] 

PXDAT[7:0] CO[7:0] YO[7:0] C1[7:0] Y1[7:0] 
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5.1.3 Master/Slave Mode Operation 
The CL550/560 can be programmed to operate in either Master mode, 
or Slave mode. In Master mode, the CL550/560 generates HSYNC and 
VSYNC, and in Slave mode, the CL550/560 expects the external video 
interface logic to generate HSYNC and VSYNC. 

Master mode is selected by programming bit 3 of the Configuration reg­
ister to a 1. Slave mode is selected by programming bit 3 of the Config­
uration register to a O. 

5.1.4 mIT Operation 
The STALL input, when asserted, signal stops all activity on the Video 
interface. Signals affected by STALL include PXDAT[23:0], PXA­
DR[16:0], PXRE, PXWE, PXIN, PXOOT, BLANK, YSYNC and 
HSYNC. All intemallogic modules in the JPEG processing pipeline be­
tween the FIFO and the Video interface are also stopped in their current 
state. No data transfers can take place between the FIFO and the JPEG 
pipeline when the device is stalled. In the CL550, the Huffman CODEC 
is not affected by the assertion of STALL, so that the host processor can 
access the CODEC register. In the CL560, all of the modules are stalled, 
including the Huffman CODEC, but the CODEC FIFO is still accessi­
ble when the pipeline is stalled. 

STALL is sensed on the rising edge of PXCLK. When STALL is negat­
ed, processing will resume when PXCLK, PXPHASE, and CLK3 have 
the same phase relationship as when STALL was asserted. In modes 
where CLK3 is not used, processing will resume when PXCLK and PX­
PHASE have the same phase relationship as when STALL was asserted. 

The STALL signal should be used in the following cases: 

o When the CL550/560 is operating in the compression mode, 
STALL is asserted to prevent the FIFO from overflowing. One of 
the CL550/560's status pins, NMRQ, DRQ, HALF_FULL, IRQT 
or IRQ2, is used to generate the sTALL signal when the FIFO 
reaches a certain threshold level, typically 112 or 3/4 full. The pix­
el pipeline will then halt, allowing the host to drain the FIFO be­
low the threshold. 

o When the CL550/560 is operating in the decompression mode, 
STALL is asserted to prevent the FIFO from underflowing. One 
of the CL550/560's status pins, NMRQ, DRQ, HALF_FULL, 

Overview 
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Overview 

PXCLK 

PXPHASE 

IRQI or IRQ2, is used to generate the StALL signal when the 
FIFO reaches a certain threshold level, typically 112 or 114 full. 
The pixel pipeline will then halt, allowing the host to fill the FIFO 
above the threshold. 

o During any compression or decompression operation, if the exter­
nal interface is not ready to deliver a pixel to, or receive a pixel 
from the CL550/560, the STALL signal should be asserted to hold 
off the CL550/560 processor. 

Figure 5-3 shows the effect that the STALL signal has on the Video in­
terface control signals when the CL550/560 is stalled during a RGB-to­
YUV 4:2:2 master-mode compression (Note that CLK3 is not used in 
this mode). The numbers in the diagram refer to the steps below. 

PXADR ==:JX'_-+----'x'----f-_--f-_-+--_+-': X\_-t--_.,......-~X'--__+---i'-IXl...----;.J>CI 

Figure 5-3 sum: Timing, VUV 4:2:2 Compression Example 

1. The CL560 requests a pixel for compression by asserting PXIN. 
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The pixel source places the data on the bus at that time. This 
starts a normal (not stalled) pixel write cycle. 

2. The normal write cycle is completed on the next rising edge of 
PXCLK. 

3. The CL560 requests another pixel for compression. This starts 
a stalled pixel write cycle. 

4. The external video logic generates a STALL signal to halt the 
CL550/560. STALL could have been generated either at the re­
quest of the CL550/560 (in response to a Half-full flag), or be­
cause the video interface needed time to prepare the next pixel. 

5. That STALL signal is recognized on the rising edge ofPXCLK. 
The CL550/560 will leave PXIN, PXOOT, PXRE and PXWE 
in their current state until the end of the STALL condition. Note 
that PXPHASE is LOW at that time (CLK3 is not used in the 
mode used in this example, and therefore is not significant). 

6. The external logic releases the STALL input. 

7. The CL550/560 does not recognize the fact that STALL was re­
leased until the first rising edge of PXCLK when the state of 
PXPHASE (and CLK3, if used) is the same as when STALL 
was first recognized. 

8. The pixel write cycle is completed on the next rising edge of 
PXCLK. 

9. The external video logic can also generate a STALL during a 
CL550/560 pixel read (PXRE) cycle. It pulls STALL LOW to 
start the cycle. 

10. The CL550/560 recognizes the STALL condition on the next 
rising edge of PXCLK. Note that PXPHASE is HIGH at this 
point. 

11. The external video logic releases the STALL input. 

12. The CL550/560 does not recognize the fact that STALL was re­
leased until the first rising edge of PXCLK when the state of 
PXPHASE (and CLK3, if used) is the same as when STALL 
was first recognized. In this case, STALL is released on the next 
falling edge of PXCLK when PXPHASE is HIGH after STALL 
is released. 

Overview 
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Video Interface Logic 

5.2 
Video Interface 

Logic 

The logic in the Video interface performs four major functions: 

o Order conversion between raster and block formats 

o Blanking and active region control 

o RGB-YUV conversion 

o Interleaved pixel format conversion 

Each of these functions is described in the sections below. 

5.2.1 Pixel Order Conversion 
Typical display systems transfer pixel data in raster format (see Figure 
5-4), but the JPEG standard requires pixel data to be in 8x8 block order 
(see Figure 5-5). The Video interface uses an external SRAM buffer 
called the strip buffer, to accomplish this conversion. 

Raster Line 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Line 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Line 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Line 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Li ne 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Line 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Line 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Raster Line 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 

Figure 5-4 Pixels in Raster Order 

Block 0 1 2,.. 

Block Line 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 ... 

Block Line 1 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 8 9 10 11 ... 

Block Line 2 16 17 18 19 20 21 22 23 16 17 18 19 20 21 22 23 16 17 18 19 ... 

Block Line 3 24 25 26 27 28 29 30 31 24 25 26 27 28 29 30 31 24 25 26 27 ... 

Block Line 4 32 33 34 35 36 37 38 39 32 33 34 35 36 37 38 39 32 33 34 35 ... 

Block Line 5 40 41 42 43 44 45 46 47 40 41 42 43 44 45 46 47 40 41 42 43 ... 

Block Line 6 48 49 50 51 52 53 54 55 48 49 50 51 52 53 54 55 48 49 50 51 ... 

Block Line 7 56 57 58 59 60 61 62 63 56 57 58 59 60 61 62 63 56 57 58 59 ... 

Figure 5-5 Same Pixels in 8 x 8 Block Order 
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The strip buffer should be wide enough to store the data that it is expect­
ed to handle (either 16-bits or 24-bits wide), and deep enough to store 
eight complete lines of data at the highest resolution. The equations for 
determining the memory size are: 

YUV 4:2:2, RGB to 4:2:2, 4:4:4 to 4:2:2 and 4:4:4 Modes 

Line Buffer Depth = 8 * (# of Pixels per Line) 
Line Buffer Width = (# of Bits / Pixel) / 8 Bytes 

Single Component (Grayscale) 

4:4:4:4 Mode 

Line Buffer Depth = 8 * (# of Pixels per Line) 
2 

Line Buffer Width = 16 

Line Buffer Depth = 8 * (# of Pixels per Line) * 2 
Line Buffer Width = 16 

As an example, a system designed to use YUV 4:4:4 format pixels and 
1024 pixel wide lines would require the following amount of RAM: 

Line Buffer Depth = 8 * 1024 Pixels per line = 8192 
Line Buffer Width = 24 bits per pixel / 8 = 3 Bytes 

In this example, the strip buffer would need three 8K x 8 RAMs. 

The strip buffer can access RAM arrays up to 64K addresses deep. The 
CL550/560 always uses the lowest order address space first. 

The strip buffer addressing algorithm is a complex modulo counting 
scheme. During the first eight lines of a frame, data is written directly 
from the input source to an address in the RAM. During each subse­
quent line, until the end of the frame, the CL550/560 reads the pixel data 
from an address in the strip buffer RAM (as part of the raster to block 
conversion) and then writes a new pixel of raster data back into the va­
cated address. After the end of the frame, the CL550/560 only performs 
reads until the buffer has been purged. Because of this addressing 
scheme, the SRAM array never needs to be greater than eight lines 
deep. 

Video Interface Logic 
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5.2.2 Window Management and Control 
Several of the status signals on the Video interface are used in window 
management and control. These signals are VSYNC, HSYNC and 
BLANK. 

The VSYNC and HSYNC signals are bidirectional status signals that 
are used to indicate the beginning of a frame or field and the beginning 
of a new line respectively. They are outputs in the Master mode, and in­
puts in the Slave mode. The BLANK signal is an output that is asserted 
when no pixels are being transferred to the external interface. 

Window and frame parameters are programmed using a set of control 
registers. These registers are listed in Table 5-2, and defined fully in 
Chapter 7, Registers. VPeriod and HPeriod are used to specify the di­
mensions of an image frame. HDelay, VDelay, HActive and VActive are 
used to specify the size and position of the active image area within the 
frame. Figure 5-6 illustrates the function of the video field registers. 

Table 5-2 Video Field Control Registers 

Register Name Content I Function Units 

HPeriod Number of pixels in a line Pixels 

VPeriod Number of lines in an image Lines 

HOelay Horizontal delay to the first active pixel Pixels 

VOelay Vertical delay to the first active line Lines 

HActive Active window width Blocks 

VActive Active window height Blocks 

HSync Horizontal Sync pulse width Pixels 

VSync Vertical Sync pulse width Lines 

Vertical Line Count Active window vertical line count Lines 

5.2.3 Color Conversion 
The CL550/560 provides an internal RGB-to-YUV color space conver­
sion and sub-sampling mechanism. Although not a part of the JPEG al­
gorithm (JPEG is independent of color space), this mechanism is 
particularly useful in computer video and multimedia applications. For 
example, digitized data from -a frame grabber.or color digitizer is often 
presented in the 16-bit YUV 4:2:2 format. This is the format required by 
NTSC and PAL monitors. However, typical computer graphics moni­
tors require data to be presented in 24-bit RGB format. The CL550/560 
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translates between these two formats by means of a matrix multiplier 
and chrominance sub-sampler. This minimizes the need for external col­
or space conversion logic and reduces overall system complexity and 
cost. 

Conversion between the RGB and YUV color spaces is accomplished 
using a matrix-multiply operation. Nine registers are provided in the 
CL550/560 processor to program the transform matrix. 

As an example, in the RGB to YUV 4:2:2 pixel conversion mode, the 
24-bit RGB pixels are read into the Pixel bus. Once inside the CL550/ 
560, the pixels are transformed into 24-bit YUV 4:4:4 pixels using the 
on-chip matrix multiplier. Following this operation, the U and V com­
ponents are sub-sampled to obtain a 4:2:2 ratio between luminance (Y) 
and chrominance (U and V). The results of this operation are shown in 
Figure 5-7. 

Video Interface Logic 
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Basic System Configurations 

5.3 
Basic System 

Configurations 

Host 
Processor 

System 
Memory 

Mass 

~ 

RGB4:4:4 VUV4:4:4 VUV4:2:2 

R1 R2 R3 R4 »> Y1 Y2 Y3 Y4 »> Y1 Y2 Y3 Y4 
G1 G2 G3 G4 »> U1 U2 U3 U4 »> U1 V1 U3 V3 
81 82 83 84 »> V1 V2 V3 V4 

Figure 5-7 RGB to YUV Conversion Operation 

The CL550/560 is used in several basic system configurations. Video 
systems are used to perform real-time compression of video or still 
frames, and have the Pixel Data bus connected directly to a pixel buffer. 
This application is shown in a block diagram in Figure 5-8, and in great­
er detail in Figure 5-11. Still-frame systems are used to perform back­
ground compression of still frames, and have the Pixel Data bus 
connected to the processor Host bus. This application is shown in a 
block diagram in Figure 5-9. Multi-media systems perform real-time 
compression of video and still frames, but have the Pixel Data bus con­
nected to Video Overlay and Mixer logic to allow the CL550/560 to co­
exist with other video-based products in the computer. This application 
is shown in Figure 5-10. 

CL560 
Processor 

Host 
Bus 

Figure 5-8 

Pixel 
Data~--~-""'~ 
Bus 

Pixel 
Address +----.. 

Bus 

Pixel 
Buffer 

Typical Video System Application 

Video 
I/O 

In a CL550 video application, a pixel buffer is required, and is usually 
either a bidirectional FIFO or a VRAM frame buffer. The CL550 draws 
data asynchronously from this buffer at rates up to 15.0 million pixels/ 
second @ 30 MHz or 17.5 million pixels/second @ 35 MHz. In CL560 
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Basic System Configurations 

applications, the pixel buffer is optional, and the CL560 draws data syn­
chronously or asynchronously from this buffer at rates up to 16.5 mil­
lion pixels/second. Once drawn from the pixel buffer, the data must be 
converted from raster format into the 8x8 block format required by the 
JPEG standard. The CL550/560 provides a simple mechanism for per­
forming this conversion using an external8-line static RAM strip buff­
er. During compression, the CL550/560 stores the incoming data in the 
strip buffer in raster format. Once eight complete lines of data have been 
stored, the CL550/560 reads the data back out as 8x8 blocks. These 
blocks are then compressed to JPEG specifications and sent to the host 
system over the Host bus. Addressing for the Strip buffer is designed so 
that only eight lines of SRAM storage are required. The Strip buffer is 
discussed in detail in Section 5.2.1. 

The still-frame system configuration uses the CL550/560 processor as a 
compression/decompression co-processor in a microprocessor based 
system. This configuration is typically used to compress and decom­
press still-frame images in applications such as scanners, printers or 
copiers where software-based JPEG performance is too slow to do the 
job. An example of this design is shown in Figure 5-9. 

Host 
Processor 

System 
Memory 

Mass 

~ 

CL550/560 
Processor 

Host 
Bus 

Pixel 
Data+4---........ - ...... ~ 
Bus 

Pixel 
Address +---... 

Bus 

Figure 5-9 Typical Still-frame Application 

Bus 
Buffers 

and Latches 

In this configuration, a CL550/560 is used with both its Pixel data bus 
and its Host data bus connected to the system data bus. In a typical com­
pression operation, the host writes pixel data to a pixel data latch, where 
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Host 
Processor 

System 
Memory 

Mass 

~ 

it is read by the CL550/560. The host processor then reads the com­
pressed data from the Host bus interface. Because the CL550/560 host 
bus and the pixel bus are connected to the same system bus the CL5501 
560 must be put into a stalled state between pixel accesses and during 
host accesses. 

The strip buffer is optional is this application because the host processor 
can perform the pixel reordering in software. This further reduces the 
hardware requirements of an already simple design. 

Connections in multimedia applications are similar to those in a video 
system application, but the CL560 must co-exist with other video pe­
ripherals in the system. In this application, the CL560 is connected to 
Video overlay and mixer logic. 

Composite 
Video In 

CL560 
Processor 

Host 
Bus 

Pixel 
Data 14---...--....... ~ 
Bus 

Pixel 
Address +-----' 

Bus 

VGA 
Controller 

NTSC/PAL 
Decoder 

Video 
Overlay­
Mixer 

Frame 
Buffer 

Figure 5-10 Typical Multimedia System Application 

Video 
Outto 

Display 

The strip buffer is required in this application to ensure that the CL560 
can meet the speed requirements of real-time video compression and 
decompression system. 
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Timing Diagrams Compression Mode 

This section describes the timing waveforms seen in a CL550/560 based 
system. The example system uses master-mode compression in the 
4:4:4-to-4:2:2 mode. The video parameters are set to the following: 

Table 5-3 Compression TIming Example Register Values 

Register Value Comments 
HPeriod 56 57 pixels per horizontal line 

HSync 9 FfSYf\rC pulse is 10 pixels wide 

HOelay 6 6-pixel delay from falling edge of FfSYl\JC to 
the first active pixel 

HActive 11 48 pixels per active line 

VPeriod 53 53 active lines 

VSync 3 VSYNG pulse is 3 lines wide 

VOelay 10 lO-line delay from the falling edge of VSYNG 
to the first active line 

VActive 4 32 active lines 

Figure 5-11 shows the design of the logic used in this example. Figure 
5-12 shows the timing diagram for one complete vertical period, and 
Figure 5-13 through Figure 5-16 show details of important events dur­
ing that vertical period. 

5.4 
Timing Diagrams 
Compression Mode 
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Figure 5-11 Typical CL560 Synchronous Interface 
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Timing Diagrams Compression Mode 

Figure 5-12 shows the timing diagram for a typical compression cycle. 
The circled numbers in the figure refer to the steps below. The grayed 
out areas of the timing diagram indicate times where there are too many 
transitions to show in the limited space available. 

PXADR 

PXDAT 

PXfN 

PXmJT 

PXRE 

PXWE 

HSYNC 

BlANK 

Figure 5-12 Compression Overview 

1. The CL550/560 starts the compression cycle by generating a 
pulse on the VSYNC output. This pulse is three lines wide (the 
width is determined by the value programmed into the VSync 
register). 

2. Ten lines after VSyNC (the value programmed into VDelay), 
the CL550/560 starts to input pixel data. It asserts PXIN' and 
deasserts BLANK to enable the data from the external source 
onto the PXDAT bus, and PXADR to select the address in the 
Strip buffer where the data will be written. 

3. The CL550/560 asserts PXWE to allow the pixel data to be 
written directly into the strip buffer address pointed to by PXA-

(i) 
-L 
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DR. For the first eight lines, the CL550/560 will only write data 
into the strip buffer. Expanded timing for the first line is shown 
in detail in Figure 5-13. 

4. The CL550/560 changes modes after the first eight lines of vid­
eo have been stored in the strip buffer. The CL550/560 now al­
ternates between reading data from the strip buffer for raster to 
block conversion of the first eight lines, and writing data to the 
strip buffer for raster to block conversion of the next eight lines. 
This process continues until the last visible line of the frame. 
Expanded timing for the eight lines is shown in detail in Figure 
5-14. 

5. The CL550/560 stops inputting data after 32 lines (the value 
programmed into V Active). It stops generating PXWE and 
PXIN and asserts BLANK to stop the flow of data from the vid­
eo source onto the PXDAT bus. Note that the PXDAT and PX­
ADR busses and PXRE remain active because the CL550/560 
is still performing raster-to-block conversion. Expanded timing 
for the last visible line is shown in detail in Figure 5-15. 

6. The CL550/560 has completed the raster-to-block conversion 
eight lines after the end of visible video. It stops generating 
PXRE signals and releases the PXADR and PXDAT busses. 
Timing for the last line with PXRE is shown in Figure 5-16. 

7. The CL550/560 continues generating HSyNC pulses until the 
end of the frame. VSyNC begins after the 53rd HSYNC pulse 
(The value programmed into HPeriod). 



Timing Diagrams Compression Mode 

Figure 5-13 shows the beginning of the first active line in the frame. 
This diagram is an expansion of the area shown at step 3 of Figure 5-12. 
The circled numbers in the figure refer to the steps below: 

1. The CL550/560 outputs a HS YNC pulse to begin the horizontal 
line. The width of the HSYNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
input data. The CL550/560 indicates the start of the active line 
by negating BLANK. 

3. The CL550/560 writes the first pixel into the strip buffer by en­
abling the data onto the PXDAT bus with the PXIN signal and 
asserting PXWE to write the data into the RAM. The address 
that the data will be written to is determined by the contents of 
the PXADR bus. 

4. During the first eight lines, there is no activity on PXRE, and 
the PXDA T bus is allowed to float when PXIN is HIGH. 

5. HSYNC goes HIGH at the end of the time determined by the 
value written into the HSync register. 

6, The CL550/560 continues to write pixels into the strip buffer 
until the end of the horizontal line (not shown). 
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Timing Diagrams Compression Mode 

Figure 5-14 shows the ninth active line in the frame. At this point, the 
CL550/560 starts to alternate between performing a raster-to-block con­
version of the first eight lines and inputting data for the next eight lines. 
The strip buffer addressing counter is designed so that the pixel that is 
going to be input will occupy the address that was just vacated by the 
pixel that was read for the raster-to-block conversion. 

This diagram is an expansion of the area shown at step 4 of Figure 5-12. 
The circled numbers in the figure refer to the steps below: 

1. The CL550/560 outputs a HSYNC pulse to begin the horizontal 
line. The width of the HSYNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
input data. The CL550/560 indicates the start of the active line 
by negating BLANK. 

3. The CL550/560 reads the first pixel of the first block from the 
strip buffer RAM to start the raster to block conversion of the 
first eight lines. The address that the data will be read from is 
determined by the contents of the PXADR bus. 

4. The CL550/560 writes the first pixel of the ninth line into the 
strip buffer by enabling the data onto the PXDAT bus with the 
PXIN signal and asserting pxWB to write the data into the 
RAM. The address that the data will be written to is the same 
address that was just read. 

5. HSYNC goes HIGH at the end of the time determined by the 
value written into the HSync register. 

6. The process of reading an old pixel for the raster to block con­
version, and writing a new pixel into the same location contin­
ues until the end of the horizontal line. In this example, it 
continues until 48 pixels have been processed. 

Video Interface 5-23 



tJ'1 

~ 
("") 

n 
c: 
C'" 
CD 

~ 
(') ..., 
o 
tJ) 

-< 
tJ) 
r-+ 
CD 
3 
tJ) 

PXCLK 

PXPHASE 

CLK3 

PXADR 

PXDAT IIJ . I......-J\wWI......-JIliIWI......-J\iIiIWI......-JIlUWI......-J\wWI......-JUUWL--lWlWL--l\llllWL--lWlWL-

PXlN 

PXOUT 

l'XRE 

~ 
! 

o ~~ ®~-------------------I 

vsmc 

BlANK 0 ]-r--------

Figure 5-14 Beginning of the First Active Line with Active PXRE (Compression) 

--I 
3" 
:5" 
co 
CI 
0;" 
co ..., 
Q) 

3 
en 
("") 
o 
3 

"C ..., 
CD 
en 
en 
0" 
::J 

s: 
o 
0.. 
CD 



Timing Diagrams Compression Mode 

Figure 5-15 shows both the last line with active PXIN and PXWE, and 
the beginning of the line following. At this point, the CL550/560 is 
through accepting new data, but still needs to perform a raster to block 
conversion of the last eight lines. 

This diagram is an expansion of the area shown at step 5 of Figure 5-12. 
The circled numbers in the diagram refer to the steps below: 

1. The CL550/560 outputs a HS YNC pulse to begin the horizontal 
line. The width of the HSYNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
input data. The CL550/560 indicates the start of the active line 
by asserting BLANK. 

3. The CL550/560 reads the first pixel of the first block from the 
strip buffer RAM to start the raster to block conversion of the 
first eight lines. The address that the data will be read from is 
determined by the contents of the PXADR bus. 

4. The CL550/560 writes the first pixel of the last visible line into 
the strip buffer by enabling the data onto the PXDAT bus with 
the PXIN signal and asserting PXWE to write the data into the 
RAM. The address that the data will be written to is the same 
address that was just read. 

5. HSYNC goes HIGH at the end of the time determined by the 
value written into the HSync register. 

6. The process of reading an old pixel for the raster to block con­
version, and writing a new pixel into the same location contin­
ues until the end on the horizontal line. In this example, it 
continues until 48 pixels have been processed. 

7. At the end of the last active line, BLANK goes LOW to indicate 
that the CL550/560 will no longer input data. 

8. The raster to block conversion must continue for eight more 
lines to allow the last eight lines of the active frame to be com­
pressed. Note at this point that data is being read from the strip 
buffer, but no new data is being written. 
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Timing Diagrams Compression Mode 

Figure 5-16 shows the last line with active PXRE. At the end of this line, 
the CL550/560 has completed raster to block conversion of the last 
eight lines of the active frame. Beyond this point PXIN, PXRE, and 
PxWB remain inactive until the first line of the next vertical frame. 

This diagram is an expansion of the area shown at step 6 of Figure 5-12. 
The circled numbers in the diagram refer to the steps below: 

1. The CL550/560 outputs a HSYNC pulse to begin the horizontal 
line. The width of the HS YNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
input data. 

3. The CL550/560 asserts PXRE to read the first pixel of the last 
line from the Strip buffer RAM. This starts the raster-to-block 
conversion of the last line. The address that the data will be read 
from is determined by the contents of the PXADR bus. 

4. The raster to block conversion process continues until the end 
of the horizontal line. At this point PXIN, PXRE, and PXWB go 
inactive and will remain that way until the end of the vertical 
frame. 

5. After the last pixel is read, compression continues until the 
compression pipeline has flushed all of the remaining data to 
the FIFO. You should be aware that the possibility of FIFO 
overflow exists during this time, even though no video bus sig­
nals are active. The FIFO level can be monitored using NMRQ, 
HALF_FULL, IRQT or IRQ2. 
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Timing Diagrams Decompression Mode 

This section describes the timing waveforms seen in a CL550/560 based 
system. The example system uses master-mode decompression in the 
4:4:4 to 4:2:2 mode. The video parameters are set to the following: 

Table 5-4 Timing Example Video Parameters 

Register Value Comments 

HPeriod 56 57 pixels per horizontal line 

HSync 9 HSVf\fC pulse is 10 pixels wide 

HOelay 6 6-pixel delay from falling edge of HSVf\fC to 
the first active pixel 

HActive 11 48 pixels per active line 

VPeriod 53 53 active lines 

VSync 3 \lSYf\JC pulse is 3 lines wide 

VOelay 5 1O-line delay from the falling edge of \lSYf\JC 
to the first active line 

VActive 4 32 active lines 

Figure 5-17 shows the timing diagram for one complete vertical period, 
and Figure 5-18 through Figure 5-21 show details of important events 
during that vertical period. 

Figure 5-17 shows the timing cycle for a typical decompression cycle. 
The grayed out areas of the timing diagram indicate times where there 
are too many transitions to show in the limited space available. 

5.5 
Timing Diagrams 
Decompression 
Mode 
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PXADR 

PXDAT -------

Figure 5-17 Decompression Overview 

5-30 C-Cube Microsystems 

1. The CL550/560 starts the decompression cycle by generating a 
pulse on the VSYNC output. This pulse is three lines wide (the 
width is determined by the value programmed into the VSync 
register). 

2. Some time before the beginning of visible video, the CL5501 
560 starts to write decompressed pixels into the strip buffer 
RAM. These pixels will be written in block order, and read back 
eight lines later in raster order. Expanded timing for this area is 
shown in Figure 5-18. 

3. ~ The CL550/560 changes modes after the first eight lines of vid­
eo have been stored in the Strip buffer. It now removes data 
from the strip buffer in raster order and sends it to the video 
latch to be output. At the same time, it is writing the next eight 
lines of block order pixel data into the strip buffer RAM. This 
cycle will continue until eight lines before the end of visible 
video. Expanded timing for this area is shown in Figure 5-19. 



Timing Diagrams Decompression Mode 

4. The CL550/560 stops writing blocks to be converted to raster 
format eight lines before the end of visible video. Expanded 
timing for this area is shown in Figure 5-20. 

5. The CL550/560 stops reading pixels from the strip buffer RAM 
at the end of the visible frame. Expanded timing for the last vis­
ible line is shown in Figure 5-21. 

6. The CL550/560 continues to generate HSyNC pulses until the 
end of the frame. YSyNC begins again after the 53rd HSYNC 
pulse (the value programmed into HPeriod) has been generated. 

Figure 5-18 shows the signal activity around the first data written to the 
strip buffer RAM. This data is the pixel data for the first eight lines of 
visible video. It will be written into the strip buffer RAM in block for­
mat, and read back out in raster format. 

This diagram is an expansion of the area shown at step 2 of Figure 5-17. 
The circled numbers refer in the figure refer to the steps below: 

1. The CL550/560 writes the first group of pixels into the strip 
buffer RAM. Note that this group of pixels is not bounded by a 
HSyNC interval, because decompression from the FIFO starts 
on a HSyNC and the data is written to the strip buffer after a 
delay of HDelay plus the CL550/560 pipeline latency. On all 
subsequent lines, the CL550/560 waits until the start of the hor­
izontalline to process data. 

2. The CL550/560 generates a pulse on HsyNC to synchronize 
the system. 

3. HS YNC goes high after ten pixel clocks (the value programmed 
into the HSync register). 

4. The CL550/560 continues writing pixels into the strip buffer 
RAM. This process continues until all 48 (HActive) pixels have 
been written. 
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Figure 5-19 shows the beginning of the ninth line in the frame (the first 
line of active video). At this point, the CL550/560 starts to alternate be­
tween reading the pixel data out of the strip buffer in raster order and 
writing new pixel data in block order. 

This diagram is an expansion of the area shown at step 3 of Figure 5-17. 
The circled numbers in the diagram refer to the steps below: 

1. The CL550/560 outputs a HS YNC pulse to start the horizontal 
line. The width of the Hs YNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
output the first pixel. The CL550/560 indicates the start of ac­
tive video by deasserting BLANK. 

3. The CL550/560 outputs the first raster format pixel from the 
Strip buffer RAM on PXDAT. This pixel was written into the 
RAM in block format eight lines earlier. The address that the 
data will be read from is determined by the contents of the PX­
ADR bus. 

4. The CL550/560 writes a new block format pixel into the Strip 
buffer address just vacated. This block will be converted into 
raster format in eight lines. 

5. The CL550/560 drives HSYNC HIGH at the end of the time de­
termined by the value written into the HSync register. 

6. The CL550/560 continues the process of reading a pixel that has 
been converted and sending it out to the display device, and 
writing a pixel to be converted back into the same address. This 
process continues until the end of the horizontal line. In this ex­
ample, it continues until 48 (determined by HActi ve) pixels 
have been processed. 
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Timing Diagrams Decompression Mode 

Figure 5-20 shows the signal activity around the last line with PXOOT, 
PXRE and PXWE active. At this point, the CL550/560 has written the 
last eight lines of pixel blocks into the strip buffer, and is starting to out­
put them in raster format. 

This diagram is an expansion of the area shown at step 4 of Figure 5-17. 
The circled numbers in the diagram refer to the steps below: 

1. The CL550/560 outputs a HSYNC pulse to start the horizontal 
line. The width of the HSYNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
output the first pixel. The CL550/560 indicates the start of ac­
tive video by deasserting BLANK. 

3. The CL550/560 outputs the first raster format pixel from the 
strip buffer RAM. This pixel was written into the RAM in block 
format eight lines earlier. The address that the data will be read 
from is determined by the contents of the PXADR bus. 

4. The CL550/560 writes a new block format pixel into the strip 
buffer address just vacated. This block will be converted into 
raster format in eight lines. 

5. The CL550/560 drives HSYNC HIGH at the end of the time de­
termined by the value written into the HSync register. 

6. The CL550/560 writes the last pixel of the last block to be con­
verted into the strip buffer RAM. 

7. The CL550/560 reads the first pixel of the eighth from the last 
line out. At this point, the CL550/560 is reading the pixels from 
the strip buffer without a corresponding write, because there are 
no more blocks to be converted. 
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Timing Diagrams Decompression Mode 

Figure 5-21 shows the signal activity around the last visible line of the 
frame. The CL550/560 is reading the last line of the last block at this 
point. 

1. The CL550/560 outputs a HSYNC pulse to start the horizontal 
line. The width of the Hs YNC pulse is determined by the value 
programmed into the HSync register (10 pixels in this exam­
ple). 

2. The CL550/560 waits until the delay amount programmed into 
the HDelay register (6 pixels in this example) before it starts to 
output the first pixel. The CL550/560 indicates the start of ac­
tive video by deasserting BLANK. 

3. The CL550/560 outputs the first pixel of the last line. This pixel 
was written into the RAM in block format eight lines earlier. 
The address that the data will be read from is determined by the 
contents of the PXADR bus. 

4. The CL550/560 drives HSYNC HIGH at the end of the time de­
termined by the value written into the HSync register. 

5. The CL550/560 outputs the last pixel of the last line. At thiS 
time, the CL550/560 is through converting the last eight lines, 
and pxOOT and PXRE become inactive. 
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6 
Specifications 

This chapter describes the electrical and mechanical characteristics of 
the CL550 and CL560. The chapter is divided into three sections: 

o 6.1, Operating Conditions 

o 6.2, AC Characteristics 

o 6.3, Package Specifications 

The AC and DC electrical parameters for the CL560 are based on char­
acterization of initial silicon, but should be considered preliminary. A 
complete characterization of the silicon over all process comers had not 
been completed by the time that this manual was sent to the printers. 
Margins have been added to the parameters wherever possible. The final 
values of the electrical parameters are expected to be better than the pre­
liminary values listed in this chapter. 

6-1 



Operating Conditions 

6.1 
Operating 

Conditions 

This section specifies the electrical characteristics of the CL550 and 
CL560. The CL560 numbers are preliminary and subject to change. 

Table 6-1 Absolute Maximum Ratings 

Parameter 
Supply Voltage 
Input Voltage 

Output Voltage 

Storage temperature range 

Operating temperature range (case) 

Table 6-2 Operating Conditions 

Parameters Test Conditions 

VDD Supply Voltage 

teAsE Operating Temperature 

Table 6-3 DC Characteristics 

Parameters 

VIH High-level input voltage i 

VIL Low-level input voltage 1 

VOH High-level output voltage 

VOL Low-level output voltage 

IIH High-level input current 

IlL Low-level input current 

loz Output leakage current 

1000 CL550 Supply Current 

VIN = 0 or Voo, CL=50pF 

1000 CL560 Supply Current 

VIN = 0 or Voo, CL=50pF 

CIN Input Capacitance 1 

COUT Output Capacitance 1 

Test Conditions 

Voo= MAX 
Voo= MIN 
Voo = MIN, IOH = -8.0 mA 

Voo = MIN, IOL = 12.0 mA 

Voo = MAX, VIN = Voo 
Voo = MAX, VIN = 0 V 
Hi-Z output driven to OV and 
5.25 V 

Voo = MAX, PXCLK = 0 MHz 
Voo = MAX, PXCLK = 10 MHz 
V DO = MAX, PXCLK = 30 MHz 
Voo = MAX, PXCLK = 35 MHz 

Voo = MAX, PXCLK = 0 MHz 
V DO = MAX, PXCLK = 15 MHz 
Voo = MAX, PXCLK = 30 MHz 

. 1. Not 100% tested, guaranteed by design characterization 

Value 
-0.5 to 6.5 V 
-1.0 to VDD 

-0.5 to VDD 
-65°C to 150 °C 

DOC to 90°C 

Commercial 
Unit 

Min Max 
4.75 5.25 V 

0 85 °C 

Commercial 
Unit 

Min Typ Max 
2.4 1.3 V 

1.3 0.8 V 

2.4 4.3 V 

0.3 0.5 V 

0.2 10 ~ 
-10 -0.2 ~ 

:±O.2 ±10 ~ 

260 mA 
375 mA 
590 mA 
670 mA 

300 mA 
500 mA 
650 mA 

10 pF 

12 pF 
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This section describes the AC timing characteristics of the CL550 and 
CL560. The timing characteristics are divided into related groups and 
depicted with one or more timing diagrams and a table of the timing val­
ues. The groups are: 

o Host Interface Control Signal Timing 

o HBCLK and RESET Timing 

o DRQTiming 

o NMRQ, IRQT Timing 

o HALF_FULL, IRQ2, FRMEND Timing 

o Host Interface Memory and Register Timing 

o Host Bus Timing, Memory and Register Write 

o Host Bus Timing, Memory and Register Read 

o Host Bus Timing, Burst Mode Write 

o Host Bus Timing, Burst Mode Read 

o Video Interface Timing 

o Video Interface Clock Timing 

o Video Interface Timing: Compression, Full-Rate Mode 

o Video Interface Timing: Decompression, Full-Rate Mode 

o Video Interface Timing: Compression, Half-Rate Mode 

o Video Interface Timing: Decompression, Half-Rate Mode 

AC Characteristics 

6.2 
AC Characteristics 
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AC Characteristics 

Time 
T1 
T2 
T3 
T4 
T5 

Time 
T1 
T2 
T3 
T4 
T5 

6.2.1 Host Interface Control Signal Timing 

HBCLK 

HBCLK and RESET Timing 

Table 6-4 HBCLK and RES£T Timing Parameters, CPGA Package 

CL550-35 CL550-30 CL560-30 
Description Min Max Min Max Min Max Units 

HBCLK Clock Period 84 100 33 ns 
HBCLK Pulse Width HIGH 50 50 15 ns 
HBCLK Pulse Width LOW 1 23 23 15 ns 
RESET Setup Period 2,3 10 10 10 ns 
RESET Pulse Width LOW 2 170 200 70 ns 

Table 6-5 HBCLK and RESET Timing Parameters, MQUAD Package 

CL550-10 CL550-30 CL560-15 CL560-30 
Description Min Max Min Max Min Max Min Max Units 

HBCLK Clock Period 100 100 66 33 ns 
HBCLK Pulse Width HIGH 50 50 33 15 ns 
HBCLK Pulse Width LOW 1 30 (23) 23 23 15 ns 
RESET Setup Period 2,3 15 10 10 10 ns 
RESET Pulse Width LOW 2 200 200 140 70 ns 

1. Characteristics in parenthesis apply to part number CL550-10N. These are required for NuBus 
designs. 
2. RES'ET is seen immediately when going low, but is only removed on a positive edge of HBCLK. 
3. Two HBCLK cycles are required for internal reset release. 
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AC Characteristics 

Figure 6-2 IJRlI Timing 

Table 6-6 DRlI Timing, CPGA Package 

CL550-35 CL550-30 CL560-30 

Time Description Min Max Min Max Min Max Units 
T6 mm: Hi-Z to LOW Delay 1 18 18 18 ns 
T7 mm: LOW to Hi-Z Delay 2 18 18 18 ns 
T8 mm: Delay Hold Time 2 5 5 5 ns 

Table 6-7 mm Timing, MQUAD Package 

CL550-10 CL550-30 CL560-15 CL560-30 
Time Description Min Max Min Max Min Max Min Max Units 

T6 mm: Hi-Z to LOW Delay "I 25 20 22 20 ns 
T7 mm: LOW to Hi-Z Delay 2 25 20 22 20 ns 
T8 mm: Delay Hold Time 2 3 5 5 5 ns 

1. ITRTI is an open-drain signal. 
2. Not 100% tested, guaranteed by design characterization. 
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HBCLK 

NJiiJRIT 
TR1IT -'-'-'--=------

Figure 6-3 NMRll, 1RlIf Timing 

Table 6-8 NMRll, 1RlIf Timing, CPGA Package 

CL550-35 CL550-30 CL560-30 

Time Description Min Max Min Max Min Max Units 

T9 mvmn. TRTIf Hi-Z to LOW Delay l,Z 18 18 18 ns 
T10 mvmn. TRTIf LOW to Hi-Z Delay 3 18 18 18 ns 
T11 mvmn. TRTIf Delay Hold Time 5 5 5 ns 

Table 6-9 NMlm, 1RlIf Timing, MQUAD Package 

CL550-10 CL550-30 CL560-15 CL560-30 

Time Description Min Max Min Max Min Max Min Max Units 

T9 mvmn. TRTIf Hi-Z to LOW Delay l,Z 25 20 22 20 ns 
T10 f\If\iffia. TRTIf LOW to Hi-Z Delay 3 25 20 22 20 ns 
T11 l\I1i.iffiIT. TRTIf Delay Hold Time 3 3 3 3 ns 

1. 1\I1i.ifRTI and TR1IT are open-drain signals. 
2. 1\I1i.ifRTI and TR1IT change on the positive edge of HBCLK, and are not related to any specific 
transaction phase. 
3. Not 100% tested. Guaranteed by design characteristics. 
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Figure 6-5 CL560 IRQ2, fRMEND Timing 

Table 6-10 HALF_FULL, fRMEND Timing, CPGA Package 

CL550-35 

Time Description Min Max 
T12 FRfVf8\ID Hi-Z to LOW Delay 1 23 

T13 FRJ\.i1mIT LOW to Hi-Z Delay 2 23 

T14 FRfVf8\ID Delay Hold Time 2 5 
T15 HALF JULL / IRQ2 Delay 20 

Table 6-11 HALF_FULL, fRMEND Timing, MQUAD Package 

CL550-10 CL550-30 
Time Description Min Max Min Max 
T12 FRfVf8\ID Hi-Z to LOW Delay 1 28 25 

T13 FRfVf8\ID LOW to Hi-Z Delay 2 28 25 

T14 FRJ\.i1mIT Delay Hold Time 2 3 5 

T15 HALF JULL / IRQ2 Delay 25 22 

1. FRMEND is an open-drain signal. 
2. Not 100% tested. Guaranteed by design characteristics. 

AC Characteristics 

CL550-30 CL560-30 

Min Max Min Max Units 
25 18 ns 
25 18 ns 

5 5 ns 
22 18 ns 

CL560-15 CL560-30 
Min Max Min Max Units 

25 20 ns 
25 20 ns 

5 5 ns 
22 20 ns 
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I Start Cycle I Wait States I Data Cycle 

HBCLK~H_-' 
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T32 

H 

IS 

Figure 6-6 CL550 Host Interface Timing: Register and Memory Write 
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I Start Cycle I Wait States I Data Cycle 
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Figure 6-7 CL560 Host Interface Timing: Register and Memory Write 
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I Start Cycle I Wait States Data Cycle 

HBCLK~ 
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10[3:0] 

Figure 6-8 CL550 Host Interface Timing: Register and Memory Read 
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I Start Cycle I Wait States I Data Cycle 
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Figure 6-9 CL560 Host Interface Timing: Register and Memory Read 
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I Start Cycle I Wait States I Data Cycle 
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Figure 6-10 CL560 Host Interface Timing: Burst Mode Read 
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I Start Cycle I Wait States I Data Cycle 
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Figure 6-11 CL560 Host Interface Timing: Burst Mode Write 
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Table 6-12 Host Interface Timing. CPGA Package 

CL550-35 CL550-30 CL560-30 
Time Description Min Max Min Max Min Max Units 
T16 START Setup Time I,L 8 10 8 ns 

T17 START Hold Time 12 15 12 ns 

T18 TI\il2 Start Cycle Setup Time 3 8 10 8 ns 

T19 TI\il2 Start Cycle Hold Time 12 15 12 ns 

T20 TI\il2 Delay Hi-Z to HIGH 18 18 18 ns 

T21 TI\il2 Delay to LOW 18 18 18 ns 

T22 TI\il2 Delay Hold Time 4 5 5 5 ns 

T23 TI\il2 Delay to Hi-Z 4 18 18 18 ns 

T24 DMA_MSTR Setup Time 8 10 8 ns 

T25 DMA_MSTR Hold Time 12 15 12 ns 

T26 HBUS[31 :0] Address Setup Time 8 10 8 ns 

T27 HBUS[31 :0] Address Hold Time 12 15 12 ns 

T28 HBUS[31 :0] Data Setup Time 8 10 8 ns 

T29 HBUS[31 :0] Data Setup Time 12 15 12 ns 

T30 ID Setup Time 8 10 8 ns 

T31 10 Hold Time 12 15 12 ns 

T32 Thm,1liilT Start Cycle Setup Time 8 10 8 ns 

T33 Thm. 1liilT Start Cycle Hold Time 12 15 12 ns 

T34 TIVID.1liilT Hi-Z Hold Time 4 5 5 5 ns 

T35 Thm.1liilT Hi-Z to LOW Delay 18 18 18 ns 

T36 TIVID. 1liilT Delay Hold Time 4 5 5 5 ns 

T37 Thm. 1liilT Delay to Hi-Z 4 18 18 18 ns 

T38 TIVIDUT Delay to LOW 5 22 22 22 ns 

T39 TIVIDUT Delay to HIGH 22 22 22 ns 

T40 HBUS[31 :0] Hi-Z Hold Time 4 2 2 2 ns 

T41 HBUS[31 :0] Delay Time 22 23 22 ns 

T42 HBUS[31 :0] Delay to Hi-Z 4 22 23 22 ns 

T43 HBUS[31 :0] Hi-Z Delay Hold Time 4 5 5 5 ns 

T44 HBDUT Delay to LOW 22 22 22 ns 

T45 HBDUT Delay to HIGH 6 22 22 22 ns 

T46 TI\il2 Acknowledge Cycle Setup 8 10 8 ns 

T47 TI\il2 Acknowledge Cycle Hold 5 5 5 ns 

T48 Thm,1liilT Status Cycle Setup Time 8 10 - - ns 

T49 Thm, TMT Status Cycle Hold Time 5 15 - - ns 

1. START should remain HIGH until the transaction is complete. 
2. A valid start cycle implies START LOW. TM2 HIGH, and that the CS fields of HBUS match the 10 inputs. 
3. TM2 is sometimes called ACK in design documentation. Reference part number CL550-1 Ox for NuBus specifications. 
4. Not 100% Tested, guaranteed by design. 
5. TMOUT is the direction control for TM2, TM1, and TMO. When HIGH. these pins are expected to be inputs. 
6. HBOUT is the direction control for the Host bus, When HIGH, the direction is from the host to the CL5XX (input). 
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AC Characteristics 

Table 6-13 Host Interface Timing. MQUAD Package 

CL550-10 CL550-30 CL560-15 CL560-30 
Time Description Min Max Min Max Min Max Min Max Units 
T16 START Setup Time 1.2 10 10 10 8 ns 

T17 START Hold Time 15 15 15 12 ns 

T18 Thil2 Start Cycle Setup Time 3 10 10 10 8 ns 
T19 Thil2 Start Cycle Hold Time 15 15 15 12 ns 

T20 Thil2 Delay Hi-Z to HIGH 20 18 20 18 ns 

T21 Thil2 Delay to LOW 20 18 20 18 ns 

T22 Thil2 Delay Hold Time 4 4 5 4 5 ns 

T23 Thil2 Delay to Hi-Z 4 20 18 20 18 ns 
T24 DMA_MSTR Setup Time 10 10 10 8 ns 

T25 DMA_MSTR Hold Time 15 15 15 12 ns 

T26 HBUS[31:0] Address Setup Time 10 10 10 8 ns 

T27 HBUS[31 :0] Address Hold Time 15 15 15 12 ns 
T28 HBUS[31:0] Data Setup Time 10 10 10 8 ns 

T29 HBUS[31 :0] Data Setup Time 15 15 15 12 ns 

T30 10 Setup Time 10 10 10 8 ns 

T31 10 Hold Time 15 15 15 12 ns 

T32 mo, Tf\if1 Start Cycle Setup Time 10 10 10 8 ns 

T33 mo, Tf\if1 Start Cycle Hold Time 15 15 15 12 ns 

T34 mo, Tf\if1 Hi-Z Hold Time 4 5 5 5 5 ns 

T35 mo, Tf\if1 Hi-Z to LOW Delay 20 18 20 18 ns 

T36 mo, Tf\if1 Delay Hold Time 4 5 5 5 5 ns 

T37 mo, Tf\if1 Delay to Hi-Z 4 20 18 20 18 ns 
T38 TfiiIDOT Delay to LOW 5 26 22 22 20 ns 

T39 TfiiIDOT Delay to HIGH 26 22 22 20 ns 

T40 HBUS[31 :0] Hi-Z Hold Time 4 2 2 2 2 ns 

T41 HBUS[31 :0] Delay Time 26 23 22 20 ns 

T42 HBUS[31 :0] Delay to Hi-Z 4 26 23 22 20 ns 

T43 HBUS[31 :0] Hi-Z Delay Hold Time 4 3 5 3 5 ns 

T44 FIBUOT Delay to LOW 26 22 22 20 ns 

T45 FIBUOT Delay to HIGH 6 26 22 22 20 ns 

T46 TfVT2' Acknowledge Cycle Setup 10 10 10 10 ns 
T47 TIii12 Acknowledge Cycle Hold 5 5 5 5 ns 

T48 mo, Tf\if1 Status Cycle Setup Time 10 10 - - ns 

T49 Tf\iID, Tf\if1 Status Cycle Hold Time 15 15 - - ns 

1. START should remain HIGH until the transaction is complete. 
2. A valid start cycle implies START LOW, TM2 HIGH, and thatthe CS fields of HBUS match the 10 inputs. 
3. TM2 is sometimes called ACK in design documentation. Reference part number CL550-1 Ox for NuBus specifications. 
4. Not 100% Tested, guaranteed by design. 
5. TMOUT is the direction control for TM2, TM1, and TMO. When HIGH, these pins are expected to be inputs. 
6. HBOUT is the direction control for the Host bus, When HIGH, the direction is from the host to the CL5XX (input). 
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AC Characteristics 

6.2.2 Video Interface Signal Timing 

PXCLK 

PXPHASE 

U1l$t~ ormo l\\S\\\\ nm 
~T55 ~ Ylio 

T54 

CLK3 OOSl T5~ ~ T55 

Figure 6-12 Video Interface Clock Timing 

Table 6-14 Video Interface Clock Timing. CPGA Package 

CL550-35 CL550-30 CL560-30 

Time Description Min Max Min Max Min Max Units 

T50 PXCLK Pulse Width HIGH 13 15 15 ns 

T51 PXCLK Pulse Width LOW 1 13 15 15 ns 

T52 PXCLK Clock Period 29 34 33 ns 

T53 PXPHASE Setup Time 16 18 16 ns 

T54 PXPHASE Hold Time 5 5 5 ns 

T55 CLK3 Setup Time 16 18 16 ns 

T56 CLK3 Hold Time 5 5 5 ns 

Table 6-15 Video Interface Clock Timing. MQUAD Package 

CL550-10 CL550-30 CL560-15 CL560-30 

Time Description Min Max Min Max Min Max Min Max Units 

T50 PXCLK Pulse Width HIGH 30 15 15 15 ns 

T51 PXCLK Pulse Width LOW 1 30(23) 15 15 15 ns 

T52 PXCLK Clock Period 100 34 33 33 ns 

T53 PXPHASE Setup Time 20 18 18 16 ns 

T54 PXPHASE Hold Time 7 5 5 5 ns 

T55 CLK3 Setup Time 20 18 18 16 ns 

T56 CLK3 Hold Time 7 5 5 5 ns 

1. Characteristics in parenthesis apply to part number CL550-10N, required for NuBus applica­
tions. 
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Figure 6-13 Video Interface Timing: Compression. Full Rate Mode 
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I SRAM READ I SRAM WRITE I SRAM READ I SRAM WRITE I 

PXCLK 

PXPHASE~ I ~ I ~ 
CLK311 I II W&\ I 0lLlll 
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Figure 6-14 Video Interface Timing: Decompression, Full Rate Mode 
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Figure 6-15 Video Interface Timing: Compression. Half-Rate Mode 
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SRAM READ SRAMWRITE 
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Figure 6-16 Video Interface Timing: Decompression, Half-Rate Mode 
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AC Characteristics 

Table 6-16 Video Interface Timing Table, CPGA Package 

CL550-35 CL550-30 CL560-30 

Time Description Min Max Min Max Min Max Units 

T57 PXADR [15:0] Hold Delay 1 4 4 4 ns 
T58 PXADR [15:0] Delay Time 14 15 14 ns 
T59 PXDAT [23:0] Setup Time 2,3 3 4 3 ns 
T60 PXDAT[23:0] Hold Time 4 5 4 ns 
T61 PXRE Delay to LOW 12 13 12 ns 
T62 PXRE Delay to HIGH 12 13 12 ns 
T63 PlMlE, PXRE Overlap 1 -3 -3 -3 ns 
T64 PlMlE Delay to HIGH 12 13 12 ns 
T65 PlMlE Delay to LOW 12 13 12 ns 
T66 PXfN Delay to HIGH 12 13 12 ns 
T67 PXfN Delay to LOW 12 13 12 ns 
T68 PlMlE HIGH to Overlap 1 -2 2 -2 2 -2 2 ns 
T69 STAII Setup Time 14 15 14 ns 
TlO STAII Hold Time 7 8 7 ns 
Tl1 BlJiNK Delay Hold Time 1 4 4 4 ns 
Tn BlJiNK Delay Time 13 15 13 ns 
Tl3 RSVf\fC. VSVl\JC Delay Hold Time 1 4 4 4 ns 
Tl4 RSVf\fC, VSVl\JC Delay Time 24 26 24 ns 
Tl5 PXfN, PXRE Overlap 1 -2 2 -2 2 -2 2 ns 
Tl6 PXRE, PXfN Overlap 1 -2 2 -2 2 -2 2 ns 
Tl7 PlMlE HIGH, PXADR Overlap 1 0 0 0 ns 
Tl8 RSVf\fC, VSVl\JC Setup 7 8 7 ns 
Tl9 RSVf\fC, VSVl\JC Hold 7 8 7 ns 
T80 PXDAT Delay to Hi-Z 1,4 23 24 23 ns 
T81 PXDAT [23:0] Delay Time 23 24 23 ns 
T82 PXDAT, PXRE Overlap 1 -3 -3 -3 ns 
T83 PXRE, PXDAT Overlap 1 3 12 3 12 3 12 ns 
T84 PmOT to LOW Delay 12 13 12 ns 
T85 PmOT to HIGH Delay 4 12 4 13 4 15 ns 
T86 PmOT, PXRE Overlap 1 -2 -2 -2 ns 
T87 PmOT, PXDAT Overlap 1 3 12 3 12 3 12 ns 

1. Not 100% tested, guaranteed by design. 
2. PXDAT [23:0] are inputs only during compression. 
3. SRAM access time <= T52 - T58 - T59 
4. Decompression parameter 
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Table 6-17 Video Bus Timing Table, MQUAD Package 

CL550-10 CL550-30 CL560-15 CL560-30 
Time Description Min Max Min Max Min Max Min Max Units 
T57 PXADR [15:0] Hold Delay 1 3 4 4 4 ns 
T58 PXADR [15:0] Delay Time 22 15 18 14 ns 
T59 PXDAT [23:0] Setup Time 2,3 6 4 5 4 ns 
T60 PXDAT[23:0] Hold Time 7 5 6 5 ns 
T61 PXRE Delay to LOW 18 13 15 12 ns 
T62 PXRE Delay to HIGH 18 13 15 12 ns 
T63 PXWE, PXRE Overlap 1 -4 -3 -4 -3 ns 
T64 PXWE Delay to HIGH 18 13 15 12 ns 
T65 PXWE Delay to LOW 18 13 15 12 ns 
T66 PXIl'J Delay to HIGH 18 13 15 12 ns 
T67 PXIl'J Delay to LOW 18 13 15 12 ns 
T68 PXWE HIGH to Overlap 1 -4 4 -2 2 -3 3 -2 2 ns 
T69 STAII Setup Time 20 15 18 14 ns 
TlO STAII Hold Time 12 8 10 7 ns 
Tl1 B[Af\JK Delay Hold Time 1 3 4 4 4 ns 
Tl2 B[Af\JK Delay Time 18 15 17 14 ns 
Tl3 HSYNC. VSYf\JC Delay Hold Time 1 3 4 4 4 ns 
Tl4 HSYNC, VSYf\JC Delay Time 30 26 28 25 ns 
Tl5 PXIl'J, PXRE Overlap 1 -4 4 -2 2 -3 3 -2 2 ns 
Tl6 PXRE, PXfN Overlap 1 -4 4 -2 2 -3 3 -2 2 ns 
T77 PXWE HIGH, PXADR Overlap 1 0 0 0 0 ns 
Tl8 HSYNC, VSYf\JC Setup 12 8 10 7 ns 
Tl9 HSYNC, VSYf\JC Hold 12 8 10 7 ns 
T80 PXDAT Delay to Hi-Z 1,4 28 24 26 23 ns 
T81 PXDAT [23:0] Delay Time 28 24 26 23 ns 
T82 PXDA T. PXRE Overlap 1 -4 -3 -4 -3 ns 
T83 PXRE, PXDAT Overlap 1 2 13 3 12 2 13 3 12 ns 
T84 PXmJT to LOW Delay 18 13 15 12 ns 
T85 PXmJT to HIGH Delay 3 18 4 13 4 15 4 12 ns 
T86 PXmJT, PXRE Overlap 1 -4 -2 -3 -2 ns 
T87 PXmJT, PXDAT Overlap 1 2 13 3 12 2 13 3 12 ns 

1. Not 100% tested, guaranteed by design. 
2. PXDAT [23:0] are inputs only during compression. 
3. SRAM access time <= TS2 - TS8 - TS9 
4. Decompression parameter 
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The CL550 and CL560 are packaged in two packages: 

D 144 Pin Ceramic Pin Grid Array (CPGA) 

D 144 Pin Metal Quad Flat Pack (MQUAD) 

This chapter is divided into three sections, one for each of the three 
package types. Contained in each section is: 

D The package physical dimensions 

D The package pinout diagram 

D Tables of the pin connections for that package sorted by: 

D Pin Number 

D Signal Name 

Package Specifications 

6.3 
Package 
Specifications 
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Package Specifications 

6.3.1 144-Pin Ceramic Pin-Grid Array 

e 
Bottom View Side View Top View 

Dimensions 
Symbol Inches MM 

Al .0100 ±0.10 2.54 ±0.25 
A2 0.180 typo ±0.01 0 4.57 typo ±0.25 

A3 0.050 typo ±0.01 0 1.27 typo ±0.25 

0 1.575 sq. ±0.030 40.0 sq. ±0.80 

El 1.400 typo ±0.014 35.56 typo ±0.36 

E2 0.050 dia. typo 1.27 dia. typo 

E3 0.018 ±0.002 0.46 ±0.05 

d 0.065 dia. typo 1.65 dia. typo 

e 0.100 typo 2.54 typo 

Figure 6-17 CL550 and CL560 CPGA Physical Dimensions 
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Figure 6-18 CL550 and CL560 CPGA Pin Layout (Bottom View) 
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4 10 11 12 13 14 15 

A B PXADR5 PXADR2 PXDAT23 PXDAT21 PXDAT19 PXDATl6 VDD PXDAT14 PXDATll PXDAT9 PXDATI PXDAT4 PXDATI TEST 

B PXADR7 PXADR6 PXADR3 PXADRO PXDAT22 PXDAT20 PXDAT17 PXDAT15 PXDAT13 PXDATlO PXDAT8 PXDAT5 PXDAT2 PXDATO TMOUT 

- -
C PXADR9 PXADR8 VSS PXADR4 PXADRI VSS PXDAT18 VDD PXDAT12 VSS PXDAT6 PXDAT3 VSS RESET TMI 

- --
D PXADR12 PXADRll PXADR10 NMRQ TM2 START 

--- -
PXClK PXOUT PXIN TMO HBClK HBOUT 

- -
PXRE PXWE VDD VDD HBUSO HBUSI 

- -
G VSYNC HSYNC PXPHSE HBUS2 HBUS3 HBUS4 

H VDD PXADR13 VSS Top View vss HBUS5 HBUS6 

PXADR14 PXADR15 ClK3 HBUS9 HBUS8 HBUS7 

- --
K STAll BLANK VDD VDD HBUSll HBUS10 

--
HALF-FULL HBUS14 HBUS13 HBUS12 FRMEND NC l 

M NC NC NC HBUS17 HBUS16 HBUS15 

N NC NC VSS NC NC VSS NC VDD 101 VSS HBUS27 HBUS23 VSS HBUS19 HBUS18 

-- -
P NC NC NC NC NC NC HBUS_32 DRQ 102 HBUS31 HBUS29 HBUS26 HBUS24 HBUS21 HBUS20 

R VSS NC NC NC NC NC DMA_MSTR VDD 103 10[0] HBUS30 HBUS28 HBUS25 HBUS22 VSS 

Figure 6-19 CL550 and CL560 CPGA Pinout Diagram (Top View Through 
Chip) 
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Package Specifications 

Table 6-18 CPGA Pin List Sorted by Pin Number 

Pin Signal Pin Signal Pin Signal Pin Signal 
# Name # Name # Name # Name 

Al VSS C7 PXDAT18 H13 VSS Nl0 VSS 
A2 PXADR5 C8 VDD H14 HBUS5 Nll HBUS27 
A3 PXADR2 C9 PXDAT12 H15 HBUS6 N12 H8US23 
A4 PXDAT23 ClO VSS Jl PXADR14 N13 VSS 
A5 PXDAT21 Cll PXDAT6 J2 PXADR15 N14 H8US19 
A6 PXDAT19 C12 PXDAT3 J3 CLK3 N15 H8US18 
A7 PXDAT16 C13 VSS J13 HBUS9 P1 NC 
A8 VDD C14 RESET J14 HBUS8 P2 NC 
A9 PXDAT14 C15 TIi.iIT J15 HBUS7 P3 NC 

AlO PXDAT11 01 PXADR12 K1 STAlI P4 NC 
A11 PXDAT9 02 PXADR11 K2 BlAf\IR P5 NC 
A12 PXDAT7 03 PXADRlO K3 VDD P6 NC 
A13 PXDAT4 013 f\JfVfRTI K13 VDD P7 HBOS_32 
A14 PXDAT1 014 l1\if2 K14 HBUS11 P8 mm: 
A15 TEST 015 START K15 HBUS10 P9 102 
81 PXADR7 E1 PXCLK L1 FRMEf\JU P10 H8US31 
82 PXADR6 E2 PXUOT L2 HALF_FULL P11 HBUS29 
83 PXADR3 E3 PXff\I L3 NC P12 HBUS26 
84 PXADRO E13 TMO L13 H8US14 P13 HBUS24 
85 PXDAT22 E14 HBCLK L14 HBUS13 P14 HBUS21 
86 PXDAT20 E15 HBmJT L15 HBUS12 P15 H8US20 
87 PXDAT17 F1 PXRE M1 NC R1 VSS 
88 PXDAT15 F2 PXWE M2 NC R2 NC 
89 PXDAT13 F3 VDD M3 NC R3 NC 
810 PXDAT10 F13 VDD M13 H8US17 R4 NC 
811 PXDAT8 F14 HBUSO M14 HBUS16 R5 NC 
B12 PXDAT5 F15 HBUSl M15 HBUS15 R6 NC 
B13 PXDAT2 Gl VSYf\JC N1 NC R7 DMA_MSIR 
B14 PXDATO G2 HSYI'\IC N2 NC R8 VDD 
815 TIVIDUT G3 PXPHASE N3 VSS R9 103 
Cl PXADR9 G13 HBUS2 N4 NC Rl0 100 
C2 PXADR8 G14 HBUS3 N5 NC Rll H8US30 
C3 VSS G15 HBUS4 N6 VSS R12 H8US28 
C4 PXADR4 H1 VDD N7 NC R13 HBUS25 
C5 PXADRl H2 PXADR13 N8 VDD R14 HBUS22 
C6 VSS H3 VSS N9 101 R15 VSS 
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Table 6-19 CPGA Pin List Sorted by Pin Name 

Signal Pin Signal Pin Signal Pin Signal Pin 
Name # Name # Name # Name # 

BlAf\JK K2 HBUS6 H15 PXADR10 03 PXDATl A12 

CLK3 J3 HBUS7 J15 PXADRll 02 PXDAT8 Bll 
DMA_MSTR R7 HBUS8 J14 PXADR12 01 PXDAT9 All 

rnm P8 HBUS9 J13 PXADR13 H2 PXfi\J E3 
FRKilEf\JTI L 1 HBOS_32 P7 PXADR14 Jl PXOOT E2 

HALF-FULL L2 FfSYN"C G2 PXADR15 J2 PXPHASE G3 
HBCLK E14 100 Rl0 PXADR2 A3 PXRE Fl 
mmtJT E15 101 N9 PXADR3 B3 PXWE F2 
HBUSO F14 102 P9 PXADR4 C4 RESTI C14 
HBUSl F15 103 R9 PXADR5 A2 STArr Kl 

HBUS10 K15 NC L3 PXADR6 B2 START 015 
HBUS11 K14 NC Ml PXADR7 Bl TEST A15 
HBUS12 L15 NC M2 PXADR8 C2 TKiID E13 
HBUS13 L14 NC M3 PXADR9 Cl TKiff C15 
HBUS14 L13 NC N1 PXCLK El 11\il2 014 
HBUS15 M15 NC N2 PXDATO B14 llV1TIOT B15 
HBUS16 M14 NC N4 PXDATl A14 VDD AS 
HBUS17 M13 NC N5 PXDAT10 Bl0 VDD C8 
HBUS18 N15 NC N7 PXDATll Al0 VDD F3 
HBUS19 N14 NC Pl PXDAT12 C9 VDD F13 
HBUS2 G13 NC P2 PXDAT13 B9 VDD Hl 

HBUS20 P15 NC P3 PXDAT14 A9 VDD K3 
HBUS21 P14 NC P4 PXDAT15 B8 VDD K13 
HBUS22 R14 NC P5 PXDAT16 A7 VDD N8 
HBUS23 N12 NC P6 PXDAT17 B7 VDD R8 
HBUS24 P13 NC R2 PXDAT18 C7 VSS Al 
HBUS25 R13 NC R3 PXDAT19 A6 VSS C3 
HBUS26 P12 NC R4 PXDAT2 B13 VSS C6 
HBUS27 Nll NC R5 PXDAT20 B6 VSS Cl0 
HBUS2S R12 NC R6 PXDAT21 A5 VSS C13 
HBUS29 Pll PXDAT23 A4 PXDAT22 B5 VSS H3 
HBUS3 G14 PXDAT3 C12 VSS N3 VSS H13 

HBUS30 Rl1 PXDAT4 A13 VSS N6 VSS N13 
HBUS31 Pl0 T\TMFm 013 VSS Nl0 VSS Rl 
HBUS4 G15 PXADRO B4 PXDAT5 B12 VSS R15 
HBUS5 H14 PXADRl C5 PXDAT6 Cll VS'7f\fC Gl 
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6.3.2 144-Pin MQUAD Package 

o 

rl 

0-10o~ __ =4=E4 

E5 
Section A - A 

Symbol 

A 
A1 
o 
E 

E1 
E2 

E3 
E4 
E5 

r1 

Figure 6-20 MQUAD Physical Dimensions 

Inches 

0.130 ±0.012 

0.015 ±0.008 
1.088 ± 0.016 
1.256 ±0.016 

0.012 typo 

0.0256 typo 
0.020 min. 

0.006 typo 
0.031 ±0.008 
0.010 typo R 
0.010 typo R 

Package Specifications 

A 

Dimensions 
MM 

3.30 ±0.30 
0.38 ±0.20 
27.60 ±0.40 
31.90 ±0.40 

0.030 typ 

0.65 typo 
0.50 min. 

0.15 typo 
0.80 ±0.2 
0.25 typo R 
0.25 typo R 
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CL550 MQUAD Pinout Diagram 

Table 6-20 CL550/CL560 MQUAD Pinout Differences 

Pint CL550 Name CL560Name Pint CL550 Name 
2 No Connect VSS 12 No Connect 

4 No Connect VDD 70 fJKi1Ra 
9 No Connect VDD 135 HALFJULL 
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108 PXADRl6j 

107 PXADRl5j 

106 PXADRHj 

105 VSS 

PXADRl3j 

103 PXADRj~j 

to:! PXADRjll 

101 VDD 

100 PXADRjOj 

99 PXDATI~3j 

98 PXDATl2:!J 

97 PXDAT[~11 

96 PXDATj~Oj 

95 VSS 

94 PXDATjl9j 

93 PXDATjl8j 

9~ PXDATl17j 

91 PXDATjl6j 

'Ill PXDATjl5j 

89 PXDATl14j 

88 PXDATl13j 

87 PXDATjl~j 

86 PXDATjllj 

85 PXDATjlOj 

PXDATI9j 

83 VSS 

8~ PXDATl8j 

81 PXDATl7j 

80 PXDATl6j 

79 PXDATl5j 

78 PXDATl4j 

77 PXDATl3j 

76 PXDATI~j 

75 PXDATllj 

PXDATIOj 

73 VDD 

CL560 Name 
VSS 
TRTIT 
TFmL 
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Table 6-21 CL550(CL560) MQUAD Pin List Sorted by Pin Number 

Pin# Signal Name Pin# Signal Name Pin# Signal Name Pin# Signal Name 
1 NC 37 HBUS21 73 VDD 109 PXADR7 

2 NC (VSS) 38 HBUS20 74 PXDATO 110 PXADR8 

3 NC 39 HBUS19 75 PXDAT1 111 VSS 
4 NC (VDD) 40 HBUS18 76 PXDAT2 112 PXADR9 
5 NC 41 HBUS17 77 PXDAT3 113 PXADR10 

6 NC 42 HBUS16 78 PXDAT4 114 PXADRll 

7 NC 43 VSS 79 PXDAT5 115 VDD 

8 NC 44 HBUS15 80 PXDAT6 116 PXADR12 

9 NC (VDD) 45 HBUS14 81 PXDATl 117 PXIN 
10 PXADR5 46 HBUS13 82 PXDAT8 118 PXOlJT 
11 NC 47 HBUS12 83 VSS 119 VSS 
12 NC (VSS) 48 HBUS11 84 PXDAT9 120 PXCLK 

13 NC 49 VDD 85 PXDAT10 121 VDD 
14 NC 50 HBUS10 86 PXDATll 122 PXWE 
15 NC 51 HBUS9 87 PXDAT12 123 PXRE 
16 NC 52 HBUS8 88 PXDAT13 124 PXPHASE 

17 VDD 53 HBUS7 89 PXDAT14 125 HSYf\JC 
18 RBOS_32 54 HBUS6 90 PXDAT15 126 VSYNC 
19 DMA_MSTR 55 HBUS5 91 PXDAT16 127 VDD 

20 rnm: 56 HBUS4 92 PXDAT17 128 PXADR13 

21 VSS 57 HBUS3 93 PXDAT18 129 PXADR14 

22 103 58 HBUS2 94 PXDAT19 130 PXADR15 
23 102 59 VSS 95 VSS 131 CLK3 
24 101 60 HBUSl 96 PXDAT20 132 STArr 
25 100 61 VSS 97 PXDAT21 133 BOOJK 
26 HBUS31 62 HBUSO 98 PXDAT22 134 FRKifEf\JTI 
27 HBUS30 63 HBDUT 99 PXDAT23 135 HALF-FULL (lRQ2) 

28 HBUS29 64 HBCLK 100 PXADRO 136 NC 
29 HBUS28 65 START 101 VDD 137 VSS 

30 HBUS27 66 TM2 102 PXADRl 138 NC 
31 HBUS26 67 TMTI 103 PXADR2 139 VSS 
32 HBUS25 68 l1VIT 104 PXADR3 140 NC 

33 VDD 69 11\iIDOT 105 VSS 141 NC 

34 HBUS24 70 NKifRTImmD 106 PXADR4 142 NC 

35 HBUS23 71 RrnT 107 PXADR5 143 NC 
36 HBUS22 72 TEST 108 PXADR6 144 NC 
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Table 6-22 CL560(CL550) MQUAD Pin List Sorted by Pin Name 

Signal Name Pin# Signal Name Pin# Signal Name Pin# Signal Name Pin# 
BCANR 133 HBUS(6) 54 PXADR(14) 129 PXITOT 118 

CLK3 131 HBUS(7) 53 PXADR(15) 130 PXPHASE 124 
DMA_MSIR 19 HBUS(8) 52 PXADR(2) 103 PXRE 123 

rmn: 20 HBUS(9) 51 PXADR(3) 104 PXWE 122 
FRlVfEf\JIJ 134 H80S_32 18 PXADR(4) 106 RESET 71 

HALF-FULL (lRQ2) 135 HSVJ\IC 125 PXADR(5) 10 STAII 132 
HBCLK 64 10(0) 25 PXADR(6) 108 START 65 
HBUOT 63 10(1) 24 PXADR(7) 109 TEST 72 
HBUS(O) 62 10(2) 23 PXADR(8) 110 TMO 67 
HBUS(l) 60 10(3) 22 PXADR(9) 112 l1VIT 68 

HBUS(10) 50 NC 140 PXCLK 120 l1V1L 66 
HBUS(11) 48 NC 1 PXDAT(O) 74 TIiiIDOT 69 
HBUS(12) 47 NC 3 PXDAT(l) 75 VDD (NC) 4 
HBUS(13) 46 NC 5 PXDAT(10) 85 VDD (NC) 9 
HBUS(14) 45 NC 6 PXDAT(ll) 86 VDD 73 
HBUS(15) 44 NC 7 PXDAT(12) 87 VDD 101 
HBUS(16) 42 NC 8 PXDAT(13) 88 VDD 115 
HBUS(17) 41 NC 10 PXDAT(14) 89 VDD 121 
HBUS(18) 40 NC 11 PXDAT(15) 90 VDD 127 
HBUS(19) 39 NC 13 PXDAT(16) 91 VDD 49 
HBUS(2) 58 NC 14 PXDAT(17) 92 VDD 33 

HBUS(20) 38 NC 15 PXDAT(18) 93 VDD 17 
HBUS(21) 37 NC 16 PXDAT(19) 94 VSS (NC) 2 
HBUS(22) 36 NC 136 PXDAT(2) 76 VSS (NC) 12 
HBUS(23) 35 NC 138 PXDAT(20) 96 VSS 95 
HBUS(24) 34 NC 141 PXDAT(21) 97 VSS 83 
HBUS(25) 32 NC 142 PXDAT(22) 98 VSS 105 
HBUS(26) 31 NC 143 PXDAT(23) 99 VSS 111 
HBUS(27) 30 NC 144 PXDAT(3) 77 VSS 119 
HBUS(28) 29 f\JKifRTI rmrrn 70 PXDAT(4) 78 VSS 59 
HBUS(29) 28 PXADR(O) 100 PXDAT(5) 79 VSS 61 
HBUS(3) 57 PXADR(1) 102 PXDAT(6) 80 VSS 43 
HBUS(30) 27 PXADR(10) 113 PXDAT(7) 81 VSS 137 
HBUS(31) 26 PXADR(11) 114 PXDAT(8) 82 VSS 139 
HBUS(4) 56 PXADR(12) 116 PXDAT(9) 84 VSS 21 
HBUS(5) 55 PXADR(13) 128 PXIN 117 \JSYf\fC 126 
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7 
Registers 

This chapter describes each of the registers used by programmers. You 
should be familiar with the CL550 and CL560's external signals as de­
scribed in Chapter 3. The sections in this chapter are: 

o 7.1, Video Interface Registers 

o 7.2, Compression and Decompression Registers 

This chapter includes detailed register definitions for each programma­
ble register. The following information applies to all registers: 

o Bits marked Res are reserved. Reserved bits should be written as 
zeros. Reading from reserved bits gives undefined data. 

o The CL550 and the CL560 register sets have slight differences. If 
a register exists in one part, and does not exist in the other, then 
the part number is included in bold in the register name. In the reg­
ister definitions that follow, these differences are noted with a 
warning in italics. 

o All register addresses are given in hexadecimal. 
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Table 7-1 CL550 Register and Table Summary 

Register/Table Name Group R/W Addresses Size Page 
CODEC Register FIFO R/W 0000-7FFC 32/16 7-39 

HPeriod Register Video R/W 8000 14 7-7 
HSync Register Video R/W 8004 14 7-8 
HDelay Register Video R/W 8008 14 7-8 

HActive Register Video R/W 800C 12 7-9 

VPeriod Register Video R/W 8010 14 7-9 

VSync Register Video R/W 8014 11 7-8 
VDelay Register Video R/W 8018 14 7-10 

VActive Register Video R/W 801C 11 7-11 

OCT; coefO of multi1 OCT W 8800 16 7-15 

OCT; coef1 of multi1 OCT W 8804 16 7-15 

OCT; coef2 of multi1 OCT W 8808 16 7-15 

OCT; coef3 of multi1 OCT W 880C 16 7-15 

OCT; coefO of multi2 OCT W 8810 16 7-15 

OCT; coef1 of multi2 OCT W 8814 16 7-15 
OCT; coef2 of multi2 OCT W 8818 16 7-15 

OCT; coef3 of multi2 OCT W 881C 16 7-15 

Init Register 5 OCT W 8820 16 7-30 

Init Register 6 OCT W 8824 16 7-15 

Configuration Register Host Bus R/W 9000 9 7-28 

Huffman Table Load Enable Register Host Bus W 9004 7-20 

S-Reset Register Host Bus W 9008 7-29 

Start Register Host Bus R/W 900C 7-29 

HV Enable Host Bus R/W 9010 7-13 
Flags Register Host Bus R/W 9014 16 7-31 

Interrupt Mask Register Host Bus R/W 9018 16 7-33 

DMA Request Interrupt Mask Register Host Bus R/W 901C 16 7-35 

Start of Frame Register Host Bus R/W 9020 7-26 
Version Register Host Bus R 9024 3 7-30 
Init Register 1 Host Bus W 9800 7 7-15 

Init Register 2 Host Bus W 9804 7 7-15 

Huffman Table Sequence Register Huffman Unit W AOOO 10 7-21 

DPCM Register Sequence High Huffman Unit W A004 10 7-19 
DPCM Register Sequence Low Huffman Unit W A008 10 7-19 

Coder Attributes Register Huffman Unit W AOOC 7 7-21 

7-2 C-Cube Microsystems 



Table 7-1 CL550 Register and Table Summary 

Register/Table Name Group R/W Addresses Size Page 
Coding Interval Register H Huffman Unit W A010 8 7-22 

Coding Interval Register L Huffman Unit W A014 8 7-22 

Decoder Table Sequence Length Register Huffman Unit R/W A80C 4 7-21 
Decoder Marker Register Huffman Unit R A810 8 7-26 
Decoder Resume Flag Register Huffman Unit W A814 1 7-26 

Decoder DPCM Reset Register Huffman Unit W A818 7-20 

Decoder Code Order Register Huffman Unit R/W A81C 7-27 
Init Register 3 Huffman Unit W B600 11 7-15 
Quantizer Table (Double-Buffer Mode) Quantizer R/W B800-B9FC 16 
Quantizer Table (Four-Table Mode) Quantizer R/W B800-BBFC 16 
Quantizer AlB Table Select Register Quantizer W BCOO 7-16 

Quantizer Sync Register Quantizer W BEOO 14 7-18 
Quantizer Y IC Table Sequence Register Quantizer W BE08 14 7-17 

Quantizer AlB Table Sequence Register Quantizer W BEOC 10 7-18 

Color Transform Matrix Pipeline W COOO-C020 12 7-13 

Video Latency Register Pipeline R/W C030 14 7-11 
HControl Register Pipeline R/W C034 14 7-12 
VControl Register Pipeline R/W C038 14 7-12 

Vertical Line Count Register Pipeline R C03C 14 7-12 

Init Register 4 Pipeline W CFOO 11 7-15 

Init Register 7 Pipeline W 0400 16 7-15 
Huffman Y-AC Pipeline R/W EOOO-EAFC 9 7-20 
FIFO Memory Pipeline R/W D800-D9FC 13 
Huffman V-DC Pipeline R/W ECOO-EC7C 9 7-20 

Huffman C-AC Pipeline R/W FOOO-FAFC 9 7-20 
Huffman C-DC Pipeline R/W FCOO-FC7C 9 7-20 
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Table 7-2 CL560 Register and Table Summary 

Register/Table Name Group R/W Addresses Size Page 

COOEC FIFO Video R/W 0000-7FFC 32/16 7-39 

HPeriod Register Video R/W 8000 14 7-7 

HSync Register Video R/W 8004 14 7-8 

HOelay Register Video R/W 8008 14 7-8 

HActive Register Video R/W 800C 12 7-9 

VPeriod Register Video R/W 8010 14 7-9 

VSync Register Video R/W 8014 11 7-8 

VOelay Register Video R/W 8018 14 7-10 

VActive Register Video R/W 801C 11 7-11 

OCT; coefO of multi1 OCT W 8800 16 7-15 

OCT; coef1 of multi1 OCT W 8804 16 7-15 

OCT; coef2 of multi1 OCT W 8808 16 7-15 

OCT; coef3 of multi1 OCT W 880C 16 7-15 

OCT; coefO of multi2 OCT W 8810 16 7-15 

OCT; coef1 of multi2 OCT W 8814 16 7-15 

OCT; coef2 of multi2 OCT W 8818 16 7-15 

OCT; coef3 of multi2 OCT W 881C 16 7-15 

Init Register 5 OCT W 8820 16 7-30 

Init Register 6 OCT W 8824 16 7-15 

Configuration Register Host Bus R/W 9000 9 7-28 

Huffman Table Load Enable Register Host Bus W 9004 7-20 

S-Reset Register Host Bus W 9008 7-29 

Start Register Host Bus R/W 900C 7-29 

HV Enable Host Bus R/W 9010 7-13 

Flags Register Host Bus R/W 9014 16 7-31 

IRQ1 Mask Register Host Bus R/W 9018 16 7-33 

OMA Request Interrupt Mask Register Host Bus R/W 901C 16 7-35 

Start of Frame Register Host Bus R/W 9020 1 7-26 

Version Register Host Bus R 9024 3 7-30 

IRQ2 Interrupt Mask Register Host Bus R/W 9028 16 7-37 

FRMENO Enable Register Host Bus R/W 902C 3 7-38 

Init Register 1 Host Bus W 9800 7 7-15 

Init Register 2 Host Bus W 9804 7 7-15 

Huffman Table Sequence Register Huffman Unit W AOOO 10 7-21 

OPCM Register Sequence High Huffman Unit W A004 10 7-19 

OPCM Register Sequence Low Huffman Unit W A008 10 7-19 
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Table 7-2 CL560 Register and Table Summary 

Register/Table Name Group R/W Addresses Size Page 
Coder Attributes Register Huffman Unit W AOOC 7 7-21 
Coding Interval Register H Huffman Unit W A010 8 7-22 
Coding Interval Register L Huffman Unit W A014 8 7-22 
Coder Sync Register Huffman Unit W A020 10 7-22 
Compressed Word Count Register (Highl Huffman Unit R/W A024 16 7-23 
Compressed Word Count Register (Lowl Huffman Unit R/W A028 16 7-23 
Coder Rate Control Active Register Huffman Unit R/W A02C 1 7-24 
Coder Rate Control Enable Register Huffman Unit R/W A030 5 7-24 
Coder Robustness Active Register Huffman Unit R/W A034 1 7-25 

Coder RST Padding Control Register Huffman Unit R/W A038 16 7-25 

Decoder Table Sequence Length Register Huffman Unit R/W A80C 4 7-21 

Decoder Marker Register Huffman Unit R A810 8 7-26 
Decoder DPCM Reset Register Huffman Unit W A818 7-20 
Decoder Code Order Register Huffman Unit R/W A81C 7-27 

Decoder Start Register Huffman Unit W A820 7-27 

Decoder Mismatch Register Huffman Unit R/W A824 7-27 

Decoder Mismatch Error Code Register Huffman Unit R A828 16 7-28 
Init Register 3 Huffman Unit W B600 11 7-15 

Ouantizer Table (Double-Buffer Model Ouantizer R/W B800-B9FC 16 
Ouantizer Table (Four-Table Model Ouantizer R/W B800-BBFC 16 
Ouantizer AlB Table Select Register Ouantizer W BCOO 1. 7-16 
Ouantizer Sync Register Ouantizer W BEOO 14 7-18 

Ouantizer Y/C Table Sequence Register Ouantizer W BE08 14 7-17 

Ouantizer AlB Table Sequence Register Ouantizer W BEOC 10 7-18 

Color Transform Matrix Pipeline W COOO-C020 12 7-13 
Video Latency Register Pipeline R/W C030 14 7-11 

HControl Register Pipeline R/W C034 14 7-12 

VControl Register Pipeline R/W C038 14 7-12 I 

Vertical Line Count Register Pipeline R C03C 14 7-12 

Init Register 4 Pipeline W CFOO 11 7-15 

Init Register 7 Pipeline W 0400 16 7-15 

FIFO Level Register Pipeline R DA04 16 7-40 

Huffman Y-AC Pipeline R/W EOOO-E5F 9 7-20 

Huffman V-DC Pipeline R/W E600-E65C 9 7-20 

Huffman C-AC Pipeline R/W E800-EDFC 9 7-20 

Huffman C-DC Pipeline R/W EEOO-EE5C 9 7-20 

Ping-pong Buffer Pipeline R/W FOOO-F1 FC 13 
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Video Interface Registers 

7.1 
Video Interface 

Registers 

Six registers are used to control the horizontal and vertical synchroniza­
tion pulse widths, frame size and active video period. These values are 
shown graphically in Figure 7-1. 
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(P) = Count in Pixels 

(B) = Count in 8 x 8 Blocks 

Video Field Registers 

Some of the video interface registers have a master/slave arrangement. 
When you write to the register, you load the master, and when you read 
from the register, you read the contents of the slave. Slave registers only 
get updated after VSYNC starts the compression or decompression pro­
cess. The registers that have this property are: 

D HPeriod, VPeriod 

D HSync, VSync 

D HDelay, VDelay 

D HActive, VActive 
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Table 7-3 

HPeriod Register Ox8000 

The HPeriod register serves two different functions depending 
on whether the part is operating in the master mode or the slave 
mode. In master mode, it controls the number of pixels between 
consecutive HSYNC pulses. The value used to set HPeriod var­
ies depending on the video mode selected. The formula used to 
compute this value is shown in Table 7-3. 

HPeriod Register Value Calculation 

Video Mode 
Single Component (Grayscale) 

RGB to YUV 4:2:2 

YUV 4:2:2 

4:4:4 to 4:2:2 

4:4:4 

4:4:4:4 

CMYK 

HPeriod Value1 

(NumPixel /2) - 1 

NumPixel-1 

NumPixel-1 

NumPixel-1 

(2 * NumPixel) - 1 

(2 * NumPixel) - 1 

(2 * NumPixel)-1 

1. NumPixel = The number of pixels between HSVf\IC assertions. 

In slave mode, the value programmed into the HPeriod register 
is the time from the falling edge of a horizontal sync pulse until 
the next HSYNC pulse is recognized. It is used to reject the 
composite component of HSYNC during the vertical blanking 
time (serrated VSYNC). A typical value stored in the HPeriod 
register is 90% of the number of pixels contained in one hori­
zontalline. 

Note: During slave mode operations, if STifIL is asserted 
during an active compression or decompression operation, 
the BSYNc input should be delayed by the same amount of . 
time that STifIL is asserted. This is necessary because 
STifIL stops the internal HPERIOD counter. 

Video Interface Registers 
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15 14 13 12 11 10 
Res 

15 14 13 12 11 10 
Res 

Table 7-4 
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HSync Register Ox8004 

9 8 7 I 6 5 4 3 2 0 
HSync 

The HSync register is only active in the master mode. In master 
mode, it is used to program the width of the HSYNC pulse. 
HSync should be set to the number of pixels contained in one 
horizontal sync pulse, minus one. 

HSync is not used in slave mode, and its value is insignificant. 

HDelay Register Ox8008 

9 8 7 I 6 5 4 3 2 0 
HDelay 

The HDelay register controls the delay from the falling edge of 
HSYNC to the first active pixel. The value programmed into 
HDelay depends on the video mode. The formula used to com­
pute this value is shown in Table 7-4. 

HDelay Register Value Calculation 

Video Mode 
Single Component (Grayscale) 

RGB to YUV 4:2:2 

YUV 4:2:2 

4:4:4 to 4:2:2 

4:4:4 

4:4:4:4 

CMYK 

HDelay Value 1 

1/2 * Pixel Delay 

Pixel Delay 

Pixel Delay 

Pixel Delay 

2 * Pixel Delay 

2 * Pixel Delay 

2 * Pixel Delay 

1. Pixel Delay = The number of pixels from the falling edge of HSYI\I""C"to the first 
active video pixel. 
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Res 

Table 7-5 

15 14 

Res 

HActive Register Ox800C 

13 12 11 10 9 8 7 6 I 5 4 
HActive 

The HActive register controls the size of the active horizontal 
line. The number of pixels on a horizontal line must be a multi­
ple of the minimum block size. In 4:4:4 modes, the minimum 
block width is 8 pixels, while in 4:2:2 modes it is 16 pixels (two 
8 x 8 blocks). The formula used to compute this value is shown 
in Table 7-5. 

HActive Register Value Calculation 

Video Mode 
Single Component (Grayscale) 

RGB to YUV 4:2:2 

YUV 4:2:2 

4:4:4 to 4:2:2 

4:4:4 

4:4:4:4 

CMYK 

HActive Value 1 

NumActiveBlocks - 1 

(2 * NumActiveBlocks)- 1 

(2 * NumActiveBlocks)- 1 

(2 * NumActiveBlocks)- 1 

(4 * NumActiveBlocks)- 1 

(4 * NumActiveBlocks)- 1 

(4 * NumActiveBlocks)- 1 

1. NumActiveBlocks = (Number of active pixels in a horizontallinel / 8 

Note: NumActiveBlocks must be a multiple of 2 for the 4:2:2 
modes. 

VPeriod Register Ox8010 

13 12 11 10 9 8 7 6 5 4 

VPeriod 

VPeriod is used to control the number of lines in a frame in the 
master mode. It should be set to the number of lines between 
two consecutive falling edges of VSYNC. The VPeriod register 
is ignored in slave mode. 

Video Interface Registers 
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3 2 o 
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15 14 13 12 . 11 10 

Res 

15 14 13 12 11 10 

Res 
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VSync Register Ox8014 

9 8 7 6 5 4 3 2 o 
VSync 

VSync is used to control the width of the vertical sync pulse in 
the master mode. It should be set to the vertical sync pulse width 
in lines. The VSync register is ignored in slave mode. 

VDeJay Register Ox8018 

9 8 7 6 5 4 3 2 o 
VOelay 

The VDelay register controls the vertical delay during the com­
pression/decompression process. During compression opera­
tions, the value should be set to: 

VDelay Register Value = Vertical Delay = the number of lines 
(HSYNC pulses) from the falling edge of VSync to the first ac­
tive video line. 

During decompression operations, the value depends on the 
video mode and the horizontal delay period. The minimum val­
ue for VDelay is: 

Minimum VDelay = 9 + trunc(Video Latency+HActive Clocks) 
HPeriod Clocks 

Where: HActive Clocks = 2 * HActive * 8 
and HPeriod Clocks = 2 * HPeriod 

The value that is loaded into the VDelay register is: 

VDelay Register Value = Actual VDelay - Minimum VDelay 

Note: The minimum VDelay is 9 lines. This minimum is be­
cause the strip buffer is filled 8 lines before the start of the active 
region, and there is at least one line of latency internal to the 
part. For horizontal periods less than 200 pixels, internal pipe­
line latencies may be greater than one line, and the minimum 
Vertical Delay must be adjusted upwards. 
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Table 7-6 

VActive Register Ox801C 

13 12 11 10 9 8 7 6 I 5 I 4 
Res VActive 

The VActive register controls the number of active vertical 
lines. It should be set to the vertical block count of the active 
window (one eighth the number of active lines). 

Video Latency Register OxC030 

The video latency register controls internal pipelining timings. 
The value programmed into the video latency register depends 
on the video mode and are shown in Table 7-6. 

Video Latency Register Values 

Video Mode Value 
MONO OOBF 

4:2:2 017F 

1 Table 4:4:4 0181 

2 Table 4:4:4 0181 

3 Table 4:4:4 0181 

4:4:4:4 017F 

RGB to YUV 4:2:2 0185 

4:4:4 to 4:2:2 017F 

Video Interface Registers 
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Vertical Line Count Register OxC03C 

The vertical line count register contains the vertical line count 
of the active window. This register can be read from the host bus 
by external devices. 

HControl Register OxC034 

HControl is a decompression parameter that determines the hor­
izontal position at which the part should stop removing data 
from the internal FIFO for the current frame. If the part is being 
reset between frames, as in most still and many video systems, 
the HControl value should be set to Ox3FFF. During streaming 
operations (frames that are written back-to-back, with no reset 
between frames) the value for Hcontrol must be computed. 
Routines for calculating this value are provided on the CL550/ 
CL560 programming examples diskette. The HControl register 
is ignored in the compression mode. 

VControl Register OxC038 

VControl is a decompression parameter that determines the ver­
tical position at which the part should stop removing data from 
the internal FIFO for the current frame. If the part is being reset 
between frames, as in most still and many video systems, the 
VControl value should be set to Ox3FFF. During streaming op­
erations (frames that are written back-to-back, with no reset be-
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tween frames) the value for V control must be computed. 
Routines for calculating this value are provided on the CL550J 
CL560 programming examples diskette. The VControl register 
is ignored in the compression mode. 

HV Enable Register Ox9010 

13 12 11 10 9 8 7 6 5 4 
Res 

The HV Enable register inhibits updates to the eight video pa­
rameter registers and the Start register during target window re­
sizing. This function prevents partial updates of the video 
parameter registers if a YSYNC pulse occurs during the update. 
There are two sets of video parameter registers; a shadow reg­
ister written from the host bus, and an active register that is used 
for the current frame. The shadow register set can always be up­
dated by the host; however the active register set can only be up­
dated on the falling edge of YS YNC. 

When set to 0, HV enable prevents updates of the active regis­
ters. When set to 1, the registers are updated on the falling edge 
of VSYNC (but only if the Start register is set to 1 as well). 

Notes: 

D HV Enable must be 1 during the falling edge of VSYNC in 
order for the Start register to function, both for starting and 
stopping the compression/decompression process. 

D The horizontal and vertical video registers can be read back 
only after they have been loaded into the active registers. 

Color Transformation Matrix OxCOOO - OxC020 

There are nine 12-bit registers for loading the coefficients of the 
RGB to YUV transformation matrix. The nine register address-

Video Interface Registers 
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Table 7-7 
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es are shown in Table 7-7. 

Mij and Mij' (with i indicating the row number andj the column 
number) are the coefficients of the M and M' matrices for the 
RGB to YUV color space transformations: 

[n= M x[~J and UJ= M' x[~J 
where M and M' are as shown in Table 7-7. 

RGB - YUV Color Transformation Coefficient Addresses 

Address Compression Mode Decompression Mode 
RGBto YUV YUVto RGB 

OxCOOO M11 /Ox01331 M11 ' (Ox04001 

OxCOO4 M12 (Ox02591 M12' (OxOFFEI 

OxCOO8 M13 (OxOO741 M13' (Ox059CI 

OxCOOC M21 (OxOF541 M21 ' (Ox04001 

OxC01O M22 (OxOEADI M22' (OxOEA21 

OxC014 M23 (Ox01 FFI M23' (OxOD231 

OxC018 M31 (Ox01 FFI M31 ' (Ox04001 

OxC01C M32 (OxOE531 M32' (Ox071 Bl 

OxC020 M33 (OxOFAEI M33' (OxOFFO) 

CL550/560 matrix values are computed by multiplying the ac­
tual decimal coefficient by 1024. The result is then rounded up 
to the next integer. For example: 

Y= .299R 
MIl = .299 x 1024 = 30710 or Ox133 

These matrices can be used to implement a user defined color 
space with the following two restraints: 

o The matrices should be approximate inverses of one another 
in order to minimize round-up errors. 

o The forward matrix should produce pixel values in the range 
of [0,255.37] for unsigned values or [-128,127.37] for signed 
values. 

Calculating matrix values is outlined in Chapter 2. 



Table 7-8 

Figure 7-2 

Compression and Decompression 'Registers 

DCTTabies Ox8800 - Ox881C 
The DCT tables consist of eight 16-bit entries. The host bus in­
terface can write directly to each entry. DCT values are used as 
multiplication values for the DCTIIDCT operation during the 
video compression/decompression operation. The values load­
ed into the DCT tables are constant for both compression and 
decompression, and are only loaded once during initialization. 
The values that should be programmed into the registers are 
shown in Table 7-8. 

OCT Table Values 

Address OCT Data Address OCT Data 
Ox8800 Ox5A82 Ox881 0 Ox5A82 
Ox8804 Ox7FFF Ox8814 Ox7FFF 
Ox8808 Ox30FC Ox8818 Ox30FC 
Ox880C Ox7642 Ox881C Ox7642 

Quantizer Tables OxB800 - OxBBFC 
The Quantizer tables consist of two sets of 128 16-bit entries 
that the host bus interface can read or write directly. These val­
ues are used during the compression/decompression process. 
Table entries can be used in double-buffer mode or four-table 
mode as shown in Figures 7-2 and 7-3. When the part operates 
in double-buffer mode, one set of tables can be loaded while the 
other set is active. 

A Tables B Tables 
OxB800 Luminance Luminance OxB800 

(Table 1) (Table 1') 

ChrorTiinance Chrominance 

OxB9FC (Table 2) (Table 2') OxB9FC 

Quantizer Tables Configuration (Double-buffer Mode) 

7.2 
Compression and 
Decompression 
Registers 

Registers 7-15 
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Figure 7-3 
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A Tables B Tables 

OxB800 OxBAOO 
Table 1 Table 3 

Table 2 Table 4 
OxB9FC OxBBFC 

Quantizer Tables Configuration (Four-table Mode) 

The four-table mode is useful for most still-image and video ap­
plications. Two-table (double buffer) mode is used in applica­
tions that need to change the Q-factor every frame. Users should 
use the four-table mode to load the registers and then switch to 
two-table mode to do double-buffering. 

In double-buffering mode, the quantizer table RAM is split into 
two parts. One half of the RAM is used by the host interface 
while the other half is being used by the quantizer unit. 

Note that there is a pipeline register between the quantizer ta­
bles and the host bus. When reading data from the quantizer ta­
bles, two consecutive reads must be performed for the first valid 
data to be presented to the host bus. 

Quantizer AlB Table Select Register OxBCOO 

9 8 7 6 5 4 3 2 o 
Res AlB 

The value in the Quantizer AlB Table Select register selects the 
active quantizer tables. When it is set to I, the A tables are se­
lected and used by the quantizer. Selected tables cannot be load­
ed. When the part is reset, the Quantizer AlB Table Select 
register points to the B tables, allowing the A tables to be load­
ed. This register is only used in the double-buffer mode. 

Once the A tables are loaded, the Quantization AlB Table Select 
register must be set to I to point to the A tables for compression. 
However, the internal switch that controls the selection of the A 
or B tables will not toggle until the occurrence of VSYNC. 
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Therefore, the B tables cannot be loaded until after Start = 1 and 
a VSyNC falling edge. 

This limitation can be overcome when the part is not in active 
operation. Quantizer Sync Register (Address BEOO) bits 8 and 
9 control an internal test sync signal that, when set to 1, and then 
0, will toggle the table select switch in the same fashion as 
VSYNc. An alternative method is to use four-table mode to 
load each of the four tables (OxB800, OxB900, OxBAOO and 
OxBBOO), and then switch to two-table mode. 

Quantizer Y Ie Table Sequence Register OxBE08 

Both the Quantizer Y Ie Table Sequence register and the Quan­
tizer AlB Table Sequence register allow the quantizer to select 
the proper quantization table in the compression and decom­
pression process. The value to be loaded into this register de­
pends on the operating mode (compression/decompression) and 
the data formats being processed. The values for different oper­
ating modes and data formats are shown in Table 7-9. 

Quantizer VIC Table Values 

Mode Compression Decompression 

Value Value 
MONO Ox2000 Ox2000 
4:2:2 Ox2099 Ox2033 
4:4:4 Ox2044 Ox2088 
4:4:4:4 Ox2055 Ox20AA 
RGB to YUV 4:2:2 Ox2099 Ox2033 
4:4:4 to 4:2:2 Ox2099 Ox2033 
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Quantizer AlB Table Sequence Register OxBEOC 

The value in the Quantizer AlB Table Sequence Register deter­
mines which tables (Aor B) are active. This register is used only 
when the part operates in 4:4:4:4 and 4:4:4 mode. Register val­
ues for different operating modes and data formats are provided 
in Table 7-10. 

Quantizer AlB Table Values 

Compression Decompression 

Mode Value Value 

MONO OxOOOO OxOOOO 
4:2:2 OxOOOO OxOOOO 
4:4:4 OxOO88 OxOO11 
4:4:4:4 OxOO99 OxOO33 
RGB to YUV 4:2:2 OxOOOO OxOOOO 
4:4:4 to 4:2:2 OxOOOO OxOOOO 

Quantizer Sync Register OxBEOO 

The Quantizer Sync register supports 4:4:4:4 mode (four-table 
mode) and data synchronization. All bits marked Res should be 
set to 0 during normal operation. The function of the remaining 
bits is: 

oBit 10, Double-Buffer: This bit selects double-buffer mode 
when set to O. When set to 1, this bit selects four-table mode. 

oBits 5:0, Data Sync Field: The data stored in this field de­
pends on the video mode selected. The proper value for this 
field is shown in Table 7-11, Quantizer Sync Register Data 
Sync Field Values. 



Table 7-11 

Table 7-12 

Compression and Decompression Registers 

Quantizer Sync Register Data Sync Field Values 

Compression Decompression 
Mode Value Value 

MONO Ox0406 Ox043E 
4:2:2 Ox0406 Ox043E 
4:4:4 Ox0404 Ox043E 
4:4:4:4 Ox0406 Ox043E 
RGB to YUV 4:2:2 Ox0400 Ox043E 
4:4:4 to 4:2:2 Ox0406 Ox043E 

CoderlDecoder DPCM Reg. Seq. Registers, RH OxA004 

CoderlDecoder DPCM Reg. Seq. Registers, RL OxA008 

The CL550 and CL560 have two registers (RH and RL) to se­
lect the active DPCM registers. There are four DPCM registers 
specified by a two-bit address. The values programmed into 
these registers are shown in Table 7-12. 

DPCM Sequence Register Values 

Mode DPCM_RL DPCM_RH 

MONO OxOOO OxOOO 
4:2:2 Ox044 Ox088 
4:4:4 Ox012 Ox044 
4:4:4:4 OxOAA OxOCC 
RGB to YUV 4:2:2 Ox044 Ox088 
4:4:4 to 4:2:2 Ox044 Ox088 

The values programmed into the RL and RH registers are iden­
tical during either compression or decompression. See Chapter 
8 for details on how to program these registers. 
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Decoder DPCM Reset Register OxA818 

9 8 7 6 5 4 3 2 

Res 

The host processor resets the four DPCM registers by writing to 
bit zero of the Decoder DPCM Reset register. In decompression 
mode, after the decoder has flagged the End of Image (EOI) 
marker code, the host should reset the DPCM registers before 
restarting the decoder. 

Huffman Code Tables OxEOOO - OxFC7C 

The CL550 uses two Huffman table layouts: one for coding and 
another for decoding. The CL560 uses a single Huffman table 
for both coding and decoding. The default Huffman code tables 
for the baseline JPEG algorithm are defined in the JPEG Draft 
Proposal. The tables loaded into the part are generated by pro­
cessing the JPEG code table with the initialization software. 
Unused Huffman table entries must be initialized to zero. See 
Chapter 8 for details on programming this register. 

Huffman Table Load Enable Register Ox9004 

9 8 7 6 5 4 3 2 o 
Res LEn 

The one-bit Huffman Table Load Enable Register must be as­
serted before the Huffman code table can be loaded. In normal 
compression and decompression operations this bit must be 
deasserted. 
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Huffman Table Sequence Register OxAOOO 

The Huffman Table Sequence register specifies the sequence in 
which the Huffman luminance (Y) and Chrominance (C) tables 
are used by the coder/decoder. Register values for the different 
operating modes and formats are shown in Table 7-13. 

Huffman Table Sequence Register Values 

MONO 
4:2:2 

4:4:4 

4:4:4:4 

Mode 

RGB to YUV 4:2:2 

4:4:4 to 4:2:2 

Coder Attributes Register 

Value 

OxOOOO 

OxOOCC 
OxOOOO 
OxOOOO 
OxOOCC 
OxOOCC 

OxAOOC 

. The contents of the Coder Attributes register affect the coder 
function as follows: 

D Bit 6, EOB: When EOB (End of Block) is set to 1, an EOB 
code is inserted at the end of every block. When EOB is set 
to 0, an EOB is inserted only when the last coefficient in a 
block is equal to zero. 

D Bit 5, LSB: When LSB is set to 1, the coder outputs data 
with the least significant bit first. 

D Bit 4, RSTEN: When RSTEN is set to 1, the coder will set 
to 1 the restart marker codes in the compressed data stream 
at the end of each new coding interval. 

D Bits 3-0, MCV Block #: These bits specify the number of 

Registers 7-21 



Compression and Decompression Registers 

Table 7-14 

Res 
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blocks are Minimum Coded Unit (MCU). Suggested values 
for several different modes are listed in Table 7-14. 

MCU Block Number Values 

Mode Value 

MONO Ox01 
422 Ox04 
444 Ox03 
RGB-422 Ox04 
444-422 Ox04 
4444 Ox04 

Coder Coding Interval Registers OxAOIO and OxA014 

RL Coding Interval ' 

These two registers (RH and RL) define the number of MCUs 
per coding interval. The largest number of MCUs supported by 
the CL550 or CL560 is 216_1, in accordance with the JPEG 
standard specifications. Assuming a coding interval of 15 
MCUs, for example, then the value of RH and RL must be set 
to OxOO and OxOF respectively. 

The contents of these registers are used by the coder to deter­
mine where to insert restart (RST) marker codes. 

Note that for the 4:2:2, RGB -> 4:2:2 and 4:4:4 -> 4:2:2 modes, 
one MCU corresponds to a block size of 16 x 8 pixels, and for 
all other modes a MCU corresponds to a block size of 8 x 8 pix­
els. 

Coder Sync Register (CL560) OxA020 • 
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oBit 10: CSB: The Coder Sync Bit is used to select whether 
an EOI (OxFFD9) or an RST (OxFFDO - OxFFD7) is generat­
ed at the end of an image. Setting this bit to 0 causes an EOI 
(OxFFD9) to be generated, and setting this bit to 1 causes an 
RST (OxFFDO - OxFFD7) to be generated. 

oBits 9:0 Coder Sync Register: The Coder Sync register is 
used to synchronize the data stream in the Huffman Coder 
Unit. This register is loaded at initialization with a value spe­
cific to the video mode. The required values are shown in Ta­
ble 7-15. 

Coder Sync Register Initialization Values 

MONO 
4:2:2 
4:4:4 

4:4:4:4 

Mode 

RGB to YUV 4:2:2 

4:4:4 to 4:2:2 

Value 
OxOl00 

Ox01CO 

Ox01C2 

Ox01CO 

Ox01C6 

Ox01CO 

Compressed Word Count Register, High (CL560) OxA024 

Compressed Word Count Register, Low (CL560) OxA028 

At the end of the compression of an image, the combined 32-bit 
value in these registers represents the total number of 32-bit 
words in the compressed frame. The count is updated once each 
frame at the end of compression. This value can be read in re­
sponse to the FRMEND interrupt to determine the size of each 
compressed video frame. Reading either of these registers resets 
the FRMEND interrupt. The host can reset either register to 
zero by writing any data to that register or by resetting the de­
vice. 
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Coder Rate Control Active Register (CL560) OxA02C 

9 8 7 6 5 4 3 2 

Res 

The CL560 sets the Coder Rate Control Active register to 1 if 
the rate control mechanism was activated at any point in the 
compression of a frame. It is cleared to 0 by a host write or by a 
reset. 

Coder Rate Control Enable Register (CL560) OxA030 

This register enables the CL560's internal data rate limiting 
mechanism during compression (not used during decompres­
sion). The rate control mechanism provides a means of recovery 
when the host system cannot keep up with the CL560's output 
data rate during compression operations. Rate control becomes 
active when the FIFO level exceeds the threshold level set in 
this register. When rate control is active, the Huffman coding 
unit automatically drops all remaining AC terms in the current 
block and inserts an end-of-block (EOB) code. It also drops all 
AC terms for all of the blocks in the current frame. This action 
results in significant image artifacts but slows the output date 
rate so that the host may be able to read down the FIFO data be­
fore an overflow occurs. If an overflow occurs, the LATE bit in 
the Flags register is set and the rest of the compressed data is in­
valid. Table 7-16 shows the threshold level settings of the reg­
ister (X = don't care). When the register value is 0, the rate 
control feature is disabled. This register is cleared to 0 at reset. 
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FIFO Threshold Levels 

Bit Bit Bit Bit Bit FIFO 
4 3 2 1 0 Threshold Level 
X X X X 1 1/4 Full 
X X X 0 1/2 Full 

X X 1 0 0 3/4 Full 

X 1 0 0 0 7/8 Full 

0 0 0 0 Full 

Coder Robustness Active Register (CL560) OxA034 

13 12 11 10 9 8 7 6 5 4 

Res 

The Coder Robustness Active Register is set to 1 when AC 
terms are lost when the rate control mechanism is enabled dur­
ing compression. The register is cleared to 0 either by an explic­
it host write or by a device reset. 

Coder RST Padding Control Register (CL560) OxA038 

The Coder RST (Restart) Padding Control register controls the 
word-padding mechanism of the CL560. If this register is set to 
0, the CL560 applies word padding only to the End-Of-Image 
marker (Eo!, OxFFD9). Ifthis register is set to any non-zero val­
ue n, every nth RST marker word is padded. 

3 2 

Registers 7-25 



Compression and Decompression Registers 

15 14 13 12 11 10 

15 14 13 12 11 10 

7-26 C-Cube Microsystems 

Start of Frame Register Ox9020 

9 8 1 6 5 4 3 2 o 
Res SOF 

The Huffman coder is reset by writing either 0 or 1 to bit 0 the 
Start of Frame register. The host can use this register to reset the 
coder when the host starts reading "FFFF ... " data (end of frame) 
out of the coder. This is used in frame buffer applications. 

Decoder Table Sequence Length Register OxA80C 

The contents of the Decoder Table Sequence Length register 
specify the number of significant bits in the Huffman Table Se­
quence register when the part is in the decompression mode. 

Decoder Marker Register OxA810 

This register contains the actual Marker Code generated by the 
decoder. Note: No resync codes or fill bits will be stored in this 
register. 

Decoder Resume Flag (CL550) OxA814 

9 8 1 6 5 4 3 2 1- 0 

Res DRF 
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When the decoder detects a marker code (except the RST mark­
er code), it writes the code into the Decoder Marker register. 
The Mark bit in the Flags register is set and the decoder is 
stopped. By writing either 0 or 1 to the Decoder Resume Flag, 
the host can restart the decoder. 

Decoder Code Order Register OxA81C 

13 12 11 10 9 8 7 6 5 4 
Res 

This register must be set to 1. 

Decoder Start Register (CL560) OxA820 

The CL560 starts decoding when either the FIFO contains at 
least 32 entries or the host processor writes to this register. The 
value written is ignored. For small images whose coded files 
contain less than 32 coded words, the host processor should pre­
fill the FIFO then write to this register. A write to this register 
has no effect after the decoding operation has started. 

Decoding Mismatch Register (CL560) OxA824 

13 12 11 10 9 8 7 6 5 4 

Res 

The CL560 sets this register to 1 when a mismatch occurs dur­
ing Huffman decoding. The host processor must explicitly clear 
this register by writing a O. This register is cleared to 0 at reset. 

3 2 0 
DCa 

3 2 o 
OM 
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Decoding Mismatch Error Code Register (CL560) OxA828 

When a decoding mismatch occurs, the CL560 loads this regis­
ter with the first mismatched 16-bit bitstream. If the decoding 
Mismatch register is set to 0, the contents of this register are not 
meaningful. 

Configuration Register Ox9000 

The values loaded into the Configuration register determine the 
device's operating mode and environment. The function of each 
bit is shown below: 

oBit 9, Zero: This bit must be set to O. 

oBit 8, Dir: This bit defines the direction of the processing 
path. When set to 0, the part is in the compression mode. 
When set to 12, the part is in the decompression mode. 

oBits 7 - 4, Video Mode Select: These four bits are used to 
select the video mode format as shown in Table 7-17. 

Video Mode Select Bits 

Video Mode 

Invalid 

YUV 4:2:2 Mode 

4:4:4 to 4:2:2 Mode 
RGB to YUV 4:2:2 Mode 

4:4:4 Mode 

Invalid 

4:4:4:4 Mode 
Invalid 

Single Component Mode (Grayscale) 

Invalid 

Select Bits 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

1001 -1111 
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D Bit 3, Master Mode: When set to 0, this bit puts the device 
into the slave mode. When set to 1, this bit puts the device 
into the master mode (driving HSYNC and VSYNC). 

D Bit 2, Zero: This bit must be set to 0. 

D Bit 1, End of Frame Enable: When this bit is set to 0, the 
FRMEND output is never asserted. When set to 1, the FR­
MEND output is equal to the logical "nand" of Video Inac­
tive (Vnac) and FIFO-empty (fiOe) bits in the Flags register. 

S-Reset Register Ox9008 

13 12 11 10 9 8 7 6 5 4 

Res 

The S-reset register is used to initiate a soft reset of the part. 
When this bit is set to 1, the part begins a soft-reset sequence, 
which automatically resets the S-Reset register to zero. The soft 
reset sequence produces the same results as a hardware reset. A 
hardware reset always sets this bit to 0. 

Start Register Ox900C 

13 12 11 10 9 8 7 6 5 4 
Res 

The Start register is used to initiate the video compression/de­
compression process. In the slave mode, when set to 1, video 
compression or decompression begins on the next negative 
edge of VSYNC. In the master mode decompression, setting 
this register to 1 causes the start of a frame immediately. When 
returned to 0, the part stops the compression/decompression 
process after completing the frame in process. 

Note: HV Enable must also be set to 1 before the part can be 
started or stopped. 

3 2 

I s-~es I 

3 2 
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Version Register Ox9024 

9 8 7 6 5 4 3 2 o 
Res Version 

The version register contains the version number of the part. 
This is important information to have when calling for technical 
support. Version numbers of the parts at the time this manual 
was printed were: 

Version Number Register Contents 

Part Type 

CL550 

CL560 (Revision ES3) 

Init Registers 

Version 

011 

100 

See Table 

The Initialization registers configure the compression/decom­
pression unit pipeline for each video mode. The values that 
should be loaded are listed in Table 7-19. 

Initialization Registers 

Register Type Address Size' 

Init Register 1 W Ox9800 7 

Init Register 2 W Ox9804 7 

Init Register 3 W OxB600 11 

Init Register 4 W OxCFOO 11 

Init Register 5 W Ox8820 16 

Init Register 6 W Ox8824 16 

Init Register 7 W OxD400 16 

1. Valid bits start at the Least Significant Bit and work up. All bits not listed 
should be set to o. The values listed below take this into account. 

The values that should be programmed into these registers for 
each of the modes are shown in Table 7-20. 
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Table 7-20 Initialization Register Values by Mode 

Mode Mono 4:2:2 4:4:4 4:4:4:4 RGBto 4:4:4 to 
YUV 4:2:2 
4:2:2 

Init Reg 1, Compression Ox02 Ox42 Ox40 Ox42 Ox3C Ox3C 

Init Reg 2, Compression Ox01 Ox01 OxOO Ox01 Ox3D Ox3D 

Init Reg 3, Compression Ox141 Ox081 Ox07F Ox081 Ox07B Ox07B 

Init Reg 4, Compression OxF7 OxF7 OxF5 OxF7 OxF1 OxF1 

Init Reg 5, Compression OxO OxO OxE OxO OxA OxA 

Init Reg 6, Compression OxO OxO OxO OxO OxO OxO 

Init Reg 7, Compression Ox5D Ox1D Ox1B Ox1D Ox17 Ox17 

Init Reg 1, Decompression Ox3E Ox3E Ox3E Ox3E Ox3E Ox3E 

Init Reg 2, Decompression Ox37 Ox37 Ox37 Ox37 Ox37 Ox37 

Init Reg 3, Decompression Ox1FF Ox1FF Ox1FF Ox1FF Ox1FF Ox1FF 

Init Reg 4, Decompression Ox49 Ox49 Ox49 Ox49 Ox49 Ox49 

Init Reg 5, Decompression Ox5 Ox5 Ox5 Ox5 Ox5 Ox5 

Init Reg 6, Decompression OxO OxO OxO OxO OxO OxO 

Init Reg 7, Decompression Ox22 Ox22 Ox22 Ox22 Ox22 Ox22 

Flags Register Ox9014 

The Flags register provides status information. Each flag indi­
cates the correct state of the part except the Late bit, which is 
latched. The function of each bit is defined as follows: 

oBit 15, flOof: When asserted, this bit indicates that the FIFO 
is not full. 

oBit 14, flOoe: When asserted, this bit indicates that the FIFO 
is not empty. 

oBit 13, CodecNB (CL550): When equal to 1, this bit indi­
cates that the CODEC register is not busy. 

Bit 12 is defined as Buser for the CL550, and FRMEND for 
the CL560. Both are explained below. 
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oBit 12, Buser (CL550): When equal to 1, this bit indicates· 
that a bus error has occurred during a CODEC DMA opera­
tion. 

oBit 12, FRMEND (CL560): This bit is the status of the PI<­
MEND external signal. Bit 12 is set to 0 when FRMEND is 
High (Deasserted), and is set to I when FRMEND is low (as­
serted). 

oBit 11, Mark: When equal to 1, this bit indicates that a 
marker code has been detected in the data stream being de­
compressed. 

oBit 10, Vsyn: This field reflects the state ofthe VSYNC pin. 
If it is a 1, the VSYNC pin is a O. 

oBit 9, Vnac: This bit defines the state of the part between the 
internal FIFO and the pixel bus. Similar to vertical blank, it 
is low when the pixel bus is in the vertical active region. It is 
also low when any processing activity is taking place in the 
video pipeline (between the PBI and the FIFO). In compres­
sion, it will go low at the first active line of the pixel bus and 
return high after the last active line, plus the eight line strip 
buffer latency, plus the internal pipeline latency of the part. 
In decompression, it will go low eight lines (plus the internal 
pipeline latency), before the first active line ofthe pixel bus. 
It will return high at the end of the last active line of the pixel 
bus. 

oBit 7, flOe: When equal to 1, this bit indicates that the FIFO 
is empty. 

oBit 6, fllq: When equal to 1, this bit indicates that the FIFO 
is one-quarter full. 

oBit 5, fllh: When equal to 1, this bit indicates that the FIFO 
is one-half full. 

oBit 4, fl3q: When equal to 1, this bit indicates that the FIFO 
is three-quarters full. 

o Bit 3, flnlq: When equal to 1, this bit indicates that the FIFO 
is not one-quarter full. 

oBit 2, flnlh: When equal to 1, this bit indicates that the FIFO 
is not one-half full. 

o Bit 1, fln3q: When equal to 1, this bit indicates that the FIFO 
is not three-quarters full. 

o Bit 0, Late: This bit indicates that the FIFO has overflowed 
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in compression or underflowed in decompression, causing 
the compressed data stream to be corrupted. Once set, the 
Late flag must be cleared by software by writing a 1 followed 
by a 0 into the Late bit. 

NMRQ Interrupt Mask Register (CL550) Ox9018 

The Interrupt Mask register defines the interrupt mask for the 
NMRQ output pin. The condition of the output pin is deter­
mined by the following equation: 

NMRQ = /(lflag[13] • mask[13]) • /(flag[12] • mask[12])· 
((flag [0] • mask [0]) 
+ (flag[1] • mask [1]) 
+ (flag[2] • mask [2]) 
+ (flag[3] • mask [3]) 
+ (flag[4] • mask [4]) 
+ (flag[5] • mask [5]) 
+ (flag[6] • mask [6]) 
+ (flag[7] • mask [7]) 
+ (flag[8] • mask [8]) 
+ (flag[9] • mask [9]) 
+ (flag[10] • mask [10]) 
+ (flag[1l] • mask [11]) 
+ (flag[14] • mask [14]) 
+ (flag[15] • mask [15])) 

To mask (disable) an interrupt, that interrupts mask bit must be 
set to O. If an interrupt occurs and its corresponding interrupt 
mask bit is set to 1, the part asserts the NMRQ bit. Asserting the 
RESET input of the S-Reset Flag register sets all fields in the In­
terrupt Mask register to O. The function of each bit is defined as 
follows: 

oBit 15, tifOnf: This field enables the FIFO Not Full Interrupt. 

oBit 14, tiOne: This field enables the FIFO Not Empty Inter-
rupt. 

oBit 13, CodecNB: This field enables the CODEC Register 
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Not Busy Interrupt. 

oBit 12, Buser: This field enables the Bus Error Interrupt. 

oBit 11, Mark: This field enables the Marker Code Interrupt. 

oBit 10, Vsyn: This field enables the Vertical Sync Interrupt. 

oBit 9, Vnac: In slave mode, this field enables the Vertical In-
active Interrupt. 

oBit 8, fend: In slave mode, this field enables the FRMEND 
Interrupt. 

oBit 7, flOE: This field enables the FIFO Empty Interrupt. 

o Bit 6, fllq: This field enables the FIFO One-quarter Full In­
terrupt. 

oBit 5, fllh: This field enables the FIFO One-half Full Inter­
rupt. 

oBit 4, fl3q: This field enables the FIFO Three-quarters Full 
Interrupt. 

oBit 3, flnlq: This field enables the FIFO Not One-quarter 
Full Interrupt. 

oBit 2, flnlh: This field enables the FIFO Not One-half Full 
Interrupt. 

oBit 1, fln3q: This field enables the FIFO Not Three-quarters 
Full Interrupt. 

oBit 0, Late: This interrupt enables the Data Late Interrupt. 

IRQl Mask Register (CL560) Ox9018 

This register has the same function as the Interrupt Mask Reg­
ister in the CL550, with the exception of Bits 13 and 12, which 
are now reserved and must be set to zero. 



15 14 
fiOnf fiOne 
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DMA Request Interrupt Mask Register Ox901C 

13 12 11 10 9 8 7 6 5 4 
CodecNB Buser Mark Vsyn Vnac fend fiDe fi1q fi1 h fi3q 

(Res) (Res) (Res) 

The DMA Request Interrupt Mask register defines the interrupt 
mask for the DRQ output pin. It can also be used as a general 
purpose interrupt signal. The DMA Request Interrupt Mask reg­
ister is identical to the Interrupt Mask Register. For the CL560, 
the condition of the DRQ pin is determined by the equation: 

DRQ = ((flag [0] • mask [0]) 
+ (flag[1] • mask [1]) 
+ (flag[2] • mask [2]) 
+ (flag[3] • mask [3]) 
+ (flag[4] • mask [4]) 
+ (flag[5] • mask [5]) 
+ (flag[6] • mask [6]) 
+ (flag[7] • mask [7]) 
+ (ftag[8] • mask [8]) 
+ (flag[9] • mask [9]) 
+ (flag[lO] • mask [10]) 
+ (flag[ll]· mask [11]) 
+ (flag[I4] • mask [14]) 
+ (flag[15] • mask [15])) 

For the CL550, the condition of the DRQ pin is determined by 
the equation: 

DRQ = /(/ftag[13] • mask[13]]) • /(flag[12] • mask[I2]) • 
((flag [0] • mask [0]) 
+ (flag[1] • mask [1]) 
+ (flag[2] • mask [2]) 
+ (flag[3] • mask [3]) 
+ (flag[4] • mask [4]) 
+ (flag[5] • mask [5]) 
+ (flag[6] • mask [6]) 
+ (flag[7] • mask [7]) 
+ (flag[8] • mask [8]) 
+ (flag[9] • mask [9]) 
+ (flag[lO] • mask [10]) 
+ (flag[ll] • mask [11]) 
+ (flag[l4] • mask [14]) 
+ (flag[15] • mask [15])) 

3 2 1 0 
fin1q fin1h fin3q Late 
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To mask (disable) an interrupt, that interrupts mask bit must be 
set to O. If an interrupt occurs and its corresponding interrupt 
mask bit is set to 1, the part asserts the Nl\ifRQ bit. Asserting the 
RESET input of the S-Reset Flag register sets all fields in the In­
terrupt Mask register to O. 

The DRQ output pin is always deasserted in the cycle following 
the assertion of the START signal. 

Note: The DRQ signal is suppressed during a CODEC access. 

The function of each bit is defined as follows: 

oBit 15, tifOnf: This field enables the FIFO Not Full Interrupt. 

oBit 14, tiOne: This bit enables the FIFO Not Empty Interrupt. 

Note: Bit 13 in the CL560 DMA Request Interrupt Mask reg­
ister is reserved, and should always be set to O. 

oBit 13, CodecNB: This field enables the CODEC Register 
Not Busy Interrupt. 

Note: Bit 12 in the CL560 DMA Request Interrupt Mask reg­
ister is reserved, and should always be set to O. 

oBit 12, Buser: This field enables the B us Error Interrupt. 

oBit 11, Mark: This field enables the Marker Code Interrupt. 

oBit 10, Vsyn: This field enables the Vertical Sync Interrupt. 

o Bit 9, Vnac: In slave mode, this field enables the Vertical In­
acti ve Interrupt. 

Note: Bit 8 in the CL560 DMA Request Interrupt Mask reg­
ister is reserved, and should always be set to O. 

o Bit 8, fend: In slave mode, this field enables the FRMEND 
Interrupt. 

oBit 7, tiOE: This field enables the FIFO Empty Interrupt. 

oBit 6, tilq: This field enables the FIFO One-quarter Full In­
terrupt. 

oBit 5, tilh: This field enables the FIFO One-half Full Inter­
rupt. 

oBit 4, fi3q: This field enables the FIFO Three-quarters Full 
Interrupt. 

oBit 3, finlq: This field enables the FIFO Not One-quarter 
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Full Interrupt. 

D Bit 2, finlh: This field enables the FIFO Not One-half Full 
Interrupt. 

oBit 1, fin3q: This field enables the FIFO Not Three-quarters 
Full Interrupt. 

D Bit 0, Late: This interrupt enables the Data Late Interrupt. 

IRQ2 Interrupt Mask Register (CL560) Ox9028 

The Interrupt Mask register defines the interrupt mask for the 
IRQ2 output pin. The condition of the output pin is determined 
by the equation: 

IRQ2 = «flag [0] • mask [0]) 
+ (flag[1] • mask [1]) 
+ (fiag[2] • mask [2]) 
+ (flag[3] • mask [3]) 
+ (flag[4] • mask [4]) 
+ (flag[5] • mask [5]) 
+ (flag[6] • mask [6]) 
+ (flag[7] • mask [7]) 
+ (flag[8] • mask [8]) 
+ (flag[9] • mask [9]) 
+ (flag[10] • mask [10]) 
+ (flag[ll] • mask [11]) 
+ (flag[14] • masl< [14]) 
+ (flag[15] • mask [15]) 

To mask (disable) an interrupt, that interrupts mask bit must be 
set to O. If an interrupt occurs and its corresponding interrupt 
mask bit is set to 1, the part asserts the NMRQ bit. Asserting the 
RESET input of the S-Reset Flag register sets all fields in the In­
terrupt Mask register to O. The function of each bit is defined as 
follows: 

oBit 15, fifOnr: This field enables the FIFO Not Full Interrupt. 

oBit 14, fiOne: This field enables the FIFO Not Empty Inter-
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rupt. 

D Bit 13, Res: This bit is reserved and should always be set to 
O. 

D Bit 12, Res: This bit is reserved and should always be set to 
O. 

D Bit 11, Mark: This field enables the Marker Code Interrupt. 

D Bit 10, Vsyn: This field enables the Vertical Sync Interrupt. 

D Bit 9, Vnac: In slave mode, this field enables the Vertical In-
active Interrupt. 

D Bit 8, fend: In slave mode, this field enables the FRMEND 
Interrupt. 

D Bit 7, fiOE: This field enables the FIFO Empty Interrupt. 

D Bit 6, filq: This field enables the FIFO One-quarter Full In­
terrupt. 

D Bit 5, filh: This field enables the FIFO One-half Full Inter­
rupt. 

D Bit 4, fi3q: This field enables the FIFO Three-quarters Full 
Interrupt. 

D Bit 3, finlq: This field enables the FIFO Not One-quarter 
Full Interrupt. 

D Bit 2, finlh: This field enables the FIFO Not One-half Full 
Interrupt. 

D Bit 1, fin3q: This field enables the FIFO Not Three-quarters 
Full Interrupt. 

D Bit 0, Late: This interrupt enables the Data Late Interrupt. 

FRMEND Enable Register (CL560) Ox902C 

D Bit 0, RST@HBI: When this bit is set to 1, the CL560 as­
serts FRMBND when the RST marker passes to the host bus 
interface from the internal FIFO. 

D Bit 1, EOI@Coder: When this bit is set to 1, the CL560 as­
serts FRMBND when the coder generated EOI and passes it 
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into the internal FIFO. 

oBit 2, EOI@HBI: When this bit is set to one, the CL560 as­
serts FRMEND when the EOI passes to the host bus inter­
face from the internal FIFO. 

This register is set to zero at reset. When asserted (Low), the 
FRMEND output register remains asserted until the host pro­
cessor does one of the following: 

o Reads either Compressed Word Count Register 

o Writes zero to the FRMEND Enable register 

o Resets the CL560 

Note: Operation of FRMEND requires that the EOF (End of 
Frame Enable, Bit 1 of the Configuration Register, page 28) bit 
be set to 1. 

CODEC Register (CL550) OxOOOO - Ox7FFC 
The CODEC register is the buffer between the Host Bus Inter­
face and the Huffman coder/decoder. During decompression 
operations, the host writes a sequence of words into CODEC 
register and the Huffman decoder processes each word. Until a 
word is processed, a new word of data cannot be entered into the 
CODEC register. If the host attempts to write a new word into 
this register, the transfer acknowledge is withheld until the pre­
vious word is processed and the transfer can take place. During 
compression operations, the Huffman coder places compressed 
data words into the CODEC register. If the host attempts to read 
a new word from this register before the Huffman decoder com­
pletes a new word, the transfer acknowledge is withheld until 
the transfer can finish. The size of the CODEC register depends 
on the state of the HBUS_32 pin: when HBUS_32 is tied low, 
the CODEC register is 32-bits, and when HBUS_32 is tied high, 
the CODEC register is 16-bits. 

Important: During decompression, there are two restrictions 
placed upon writes to the part. Writes to the registers (other 
than the CODEC register) are prohibited while the CodecNB 
flag is not active ( equal to zero). Writes to the registers ( other 
than the CODEC register) while CodecNB is not active will 
corrupt the previously written CODEC register data. Fur­
thermore, in 16-bit data mode, writes to the CODEC register 

Registers 7-39 



Compression and Decompression Registers 

7-40 C-Cube Microsystems 

must always consist of two consecutive 16-bit transfers. Oth­
er registers may not be written between the two transfers. 
Note that the last word written may need to be padded with 
1 s to fulfill this requirement. This only applies to the CL550. 

CODEC FIFO (CL560) OxOOOO - Ox7FFC 

The CODEC FIFO is a 128 x 32 FIFO used to buffer data be­
tween the Host interface and the Huffman CODEC. 

FIFO Level Register (CL560) OxDA04 

The value in this register is the number of 32-bit words current­
ly in the FIFO. 



8 
System Designer's 

Guide 

This chapter is intended to be used by both hardware and software de­
signers. It includes an overview of general concepts relating to JPEG 
hardware systems, system models for the CL550 and CL560, and pro­
gramming guidelines for both still-image and video system designs.The 
programming guidelines include initialization of the device, operation 
of the device, and Huffman and Quantizer table programming. 

There are two-basic system configurations for CL5xx family devices. In 
the first basic configuration, the CL5xx is used as a simple JPEG co­
processor (Figure 8-1). In this model both the Host data bus and the Pix­
el data bus are connected to the system memory or 110 bus. Pixel data 
and compressed data are both cycled through the CL5xx device using 
the system bus. This type of model is useful in systems that require 
hardware acceleration of JPEG image compression or decompression. 
Either programmed 110 or DMA-assisted transfer techniques can be 
used to move the data into and out of the CL5xx device. In the copro-

8.1 
Typical System 
Configurations 
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cessor configuration the system host only passes data, and is relieved of 
the intensive calculations necessary in the JPEG image compression/de­
compression process. 

Bus Buffers 
and Latches 

Bus Buffers 
and Latches CL550/560 

Processor 

Pixel M 
Data I.--_-....... ~~~-.. 
Bus =-t>C 

14--r-~ Host 
Bus 

System I/O or 
Memory Bus 

Pixel 
Address 1----.. 

Bus 

Figure 8-1 Coprocessor Configuration 

The second basic system configuration is the I/O peripheral configura­
tion (Figure 8-2). This configuration is used in all JPEG video system 
designs as well as a few high-speed still-image devices such as printers, 
scanners and digital copiers. In this model, only the CL5xx's Host data 
bus is connected to the system bus. The Pixel data bus is connected di­
rectly to a video capture device or graphics frame buffer. Uncompressed 
pixel data never crosses the system bus. 

Systems can also be designed that combine both coprocessor and I/O 
peripheral functions by simply akinf the pixel 110 port accessible from 
the system bus in addition to the video data path (Figure 8-3). 
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System I/O or 
Memory Bus 

Typical System Configurations 

CL560 

Processor r Frame 
Pixel ~ Buffer, 
Data 1-4--_--.,. J?L Video I/O, 
Bus ~ -V- etc. 

Host 
Bus 

Pixel 
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Bus 

Figure 8-2 1/0 Peripheral Configuration 
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Figure 8-3 Combined 1/0 Peripheral and Coprocessor Configuration 
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8.2 
JPEG Video 

Concepts 

JPEG video is simply a sequence of JPEG-compressed still-images. 
When these images are compressed or decompressed at video frame 
rates, it becomes JPEG video. 

The CL5xx devices support two distinctly different methods of JPEG 
video data organization. One obvious way to organize JPEG video data 
is in a frame-by-frame structure as shown in Figure 8-4. Each com­
pressed field or frame in this structure exists as an individual data item. 
The frame-by-frame approach is used in both Apple's QuickTime™ sys­
tem software and Micosoft's Video-for-Windows™ system software. 

CL5xx in 
~ Compression ~ 

Mode 

Figure 8-4 JPEG Video Data in Frame-by-Frame Organization 

In the frame-by-frame video model, each image is compressed or de­
compressed in real-time, but the CL5xx device has all of the remaining 
data flushed out and the device is reset at the end of each frame of com­
pression or decompression. The drawback in this approach is that there 
is a small performance penalty in resetting the CL5xx device between 
frames because some of the CL5xx device registers must be re-pro­
grammed following a device reset. Balancing this is the ability to ran­
domly access individual frames for playback in any order desired. It is 
also easier to synchronize audio and video using this structure. 

The frame-by-frame approach lends itself well to operation in half-du­
plex mode. In half-duplex mode, an incoming frame is decompressed, 
the device reset, then an outgoing frame is compressed, and so on. This 
mode is used in real-time video transmission systems such as tele-con­
ferencing systems. 

The CL5xx devices also support the continuous stream method of han­
dling the compressed data. In this model, the CL5xx is not reset be­
tween frames and its processing pipeline is never flushed. The device 
produces a continuous stream of compressed data, with all compressed 
video frames concatenated together into a single large data stream as 
opposed to multiple items (Figure 8-5). 
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CL5xx in 
Compression 

Mode 

Figure 8-5 JPEG Video Data Organized as a Continuous-Stream 

The advantage of this approach is higher system performance because 
little or no software intervention is required between frames. This meth­
od is preferred by designers of high-end video systems, where video 
quality is the primary goal. The disadvantages to this approach are that 
it is more difficult to address random image frames and to maintain au­
dio-video synchronization. 

This section gives a detailed description of the procedures used to com­
press images and video data using the CL550 processor. A general over­
view of CL550 compression operation is presented, followed by a 
discussion of the basic compression system concepts for each of the two 
system configurations (Figure 8-1 and Figure 8-2). For specific details 
on programming the registers or tables in the CL5xx part, refer to Chap­
ter 7 and Sections 8.7 through 8.11 of this chapter. 

8.3.1 Overview 

During the compression of a frame of image data, the CL550 goes 
through three basic processing stages. These basic stages are the same 
whether the system is configured as a still-image coprocessor or as a 
video compression pipeline. They are: 

o SRAMlPipeline Prefill 

o Compression 

o SRAMlPipelinelFIFO Drain 

Each of the three processing stages is performed by logic within the 
Video Bus Interface (see Chapter 5). The paragraphs that follow de­
scribe the basic process of compression of a single frame of video using 
the CL550. 

8.3 
CL550 Compression· 
Operation 
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Following chip initialization and start-up (refer to Section 8.7), the 
CL550 prefills its compression pipeline with data. The CL550 indicates 
the start of a compression cycle by pulling the VSYNC output pin LOW. 
The state ofVSYNC can also be determined by polling the VSYNC flag 
in the Flags register. When the active region of the image is reached, 
The CL550 starts to write the incoming pixel data will into the SRAM 
Strip buffer. Once eight complete lines of pixel data have been accumu­
lated in the SRAM, the CL550 starts to read the first pixels into the com­
pression pipeline. 

The compression pipeline has over 320 processing stages, and it takes 
at least 320 PXCLK cycles for the first data to appear at the FIFO. The 
Huffman coder starts take data from the FIFO when the FIFO level 
reaches 114 full. At that point, the CodecNB flag goes to zero. When Co­
decNB goes back to 1, the first word of compressed data is available in 
the CODEC register. 

As soon as data is available in the FIFO, the process of retrieving com­
pressed data can begin. The host processor can read the compressed data 
using either programmed 110 transfers or DMA transfers. 

The FIFO level must be kept between 114 fun and 3/4 full for proper op­
eration. Although it is easy to keep the FIFO level above 114 full, it is 
impossible to keep the FIFO level below 3/4 full without hardware sup­
port. Often during the compression process, the Huffman coder unit 
cannot draw data from the FIFO faster than the compression pipeline is 
filling the FIFO. At other times, other system peripherals may have con­
trol of the system bus, preventing the host from servicing the CL550. In 
either case, an overrun will result unless the pixel flow is regulated us­
ing the STALL mechanism. The CL550 provides two signals to deter­
mine the level of the FIFO: NMRQ and HALF_FULL. NMRQ is 
programmed using the NMRQ Interrupt Mask register (Chapter 7). The 
HALF_FULL signal is fixed to the half-full status flag from the FIFO. 

Example: If the NMRQ signal is used to generate STALL, then the 
NMRQ Interrupt Mask register should be programmed (at start-up time) 
to interrupt when the FIFO reaches 3/4 full. This way, whenever the 
FIFO level reaches 3/4 full, STALL is asserted, the video bus will halt, 
and the FIFO can be drained without the risk of overrun. 

Once all the pixels have been written into the SRAM (the end of the im-
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age frame), the process of draining the pipeline can take place. During 
this period, the CL550 reads any pixels remaining in the SRAM strip 
buffer (8 lines worth), followed by all of the data remaining in the com­
pression pipeline. When the last word of data has been written to the 
FIFO, the CL550 sets the VNAC flag in the Flags register to 1. The user 
may then drain the FIFO until it is empty. When alII's data appears at 
the CODEC register (OxFFFFFFFF), the compression process is com­
plete. 

A simple flowchart example of a program loop for draining the CL550 
FIFO is shown in Figure 8-6. The CL550/CL560 Program Examples 
Disk also contains a code example in the file 550comp.c. In this exam­
ple, the FIFO level is taken down to 114 full. A check of the CodecNB 
bit prevents long wait states in case the coder is still busy when the CO­
DEC is read. Figure 8-7 shows a flow chart for clearing the CL550 FIFO 
at the end of an image frame. The FIFO should never be cleared until 
VNAC bit in the flags register has been set. 

8.3.2 CL550 Operation as a Still-image Coprocessor 

When the CL550 is used as a still-image coprocessor (Figure 8-1) the 
pixel interface logic must control STALL on a pixel-by-pixel basis. 
Since the CL550's video bus is connected back to the system bus, 
STALL is used to halt the CL550 until the program is ready to provide 
the pixel data. Each time the program writes a pixel, STALL is released 
for exactly one pixel read cycle. In this way, the FIFO level is regulated 
by simply not writing pixel data to the CL550. Once all of the pixels 
have been written, however, NMRQ must be used to prevent overflow, 
because there will be no more activity on the video bus that can be used 
to generate STALL. 

The CL550s FIFO is 128 entries deep, and between the 114 and 3/4 
marks, there are exactly 64 entries. At the maximum rate, the CL550 
will need 64 pixel PXCLK cycles (with no STALL present) to move the 
FIFO pointer from 114 full to 3/4 full. From the video bus point of view 
if the FIFO level is presently at 114 full then up to 64 bytes of pixel data 
can be written without draining the FIFO. The highest level the FIFO 
will reach in this case is 3/4 full. This means that for gray-scale images, 
64 pixels can be written at one time, for YUV 422, RGB-to-YUV 422, 
YUV 444-to-YUV 422 modes up to 32 pixel can be written at one time, 
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No 

Figure 8-6 

Drain FIFO 
Process 

Read the Flags Register 

Return 

Flow Chart for the CL550 FIFO Drain Loop 

and for 444 and 4444 modes 16 pixels at a time can be written. After 
each group of pixels is written the host must drain the FIFO back to 114 
full. This sequence of writing uncompressed pixels to the video bus and 
then reading compressed data from the FIFO continues until all the pix­
els have been written. At that time, the host can completely flush the 
compression pipeline. 
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8.3.3 Operation as a Video Compression Processor 

Figure 8-8 illustrates a typical video compression/decompression sys­
tem using the CL550 processor. During compression the signal of most 
significance to the system designer is the PXIN signal. Each time that 
the CL550 asserts PXr, it expects to see valid pixel data on the PXDAT 
bus. If pixel data is not available, then STALL must be asserted on that 
cycle or the CL550 will latch invalid data into the SRAM. 

The use of STALL is required in CL550 based systems, and has three 
basic uses: 

1. To prevent FIFO overrun. The NMRQ FIFO status signal can be 
programmed to activate when the FIFO reaches 3/4 Full. This 
output can be used to generate the STALL signal, preventing 
FIFO overflow. 

2. To hold the CL550's pixel bus until a pixel becomes available 
on the bus. A slow capture device can generate an external stall 
request to halt the CL550 in the event that no pixels are avail­
able. 

3. To hold off the CL550 between video frames, in order to main­
tain synchronization with the incoming video stream. By com­
paring the states of the CL550's VSYNC output and the 
VSYNC signal provided by the capture device, STALL can be 
regulated on frame-by-frame basis to control frame rate relative 
to the incoming VSYNC. Refer to Chapter 5 for specifics on the 
CL550's video bus operation. 

The signals START, TMT, and TM2 are used to control transfers across 
the host bus. The use of DRQ is optional, but it can be used in conjunc­
tion with HB 15 to control DMA transfers over the host bus (see Chapter 
4 for more information). 

The software driver operation for the video system is somewhat simpler 
than the still-image driver. The software does not need to manage pixel 
transfers. Instead, the driver devotes its attention to handling only com­
pressed data. The CL550's DMA support logic can be used to automate 
the transfer process. 

During frame-by-frame compression operation the CL550 must be 
flushed, reset, initialized, and re-started every frame in the sequence 
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Figure 8-8 Typical CL550 Video Compression System 

(see Section 8.7). These tasks can be performed within an interrupt ser- . 
vice routine (described in the next section). Driver operation is simpler 
during continuous video operation, because the CL550 only needs to be 
drained after the last frame of the sequence. For all other frames, the 
host must simply ensure that the FIFO level is maintained between 1/4 
and 3/4 full. 

During continuous streaming the Coder Coding Interval register can be 
programmed so that a RST code (OxFFDO-OxFFD7) is produced at the 
end of each compressed image. The RST code can then be used as a de­
limiter between the CL550's compressed frames. . 

Example: If the compressed image frame is 320 x 240 pixels and the 
data is YUV422 (alternatively this can be RGB-to-YUV422), then the 
size of the Minimum Coded Unit (MCU) is 16x8 pixels, and there are 
600 MCU's in the image frame. If the Coder Coding Interval is set to 
600, then a RST marker will be inserted at the end of each compressed 
frame. 

Other system-level issues that need to be dealt with are maintaining disk 
throughput and audio/video synchronization. 
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8.3.4 Use of DMA and Interrupts with the CL550 

In a typical video/multimedia hardware system, the system must be de­
signed to manage data flow as efficiently as possible. For an ISA-based 
video compression board, compressed data must first be unloaded from 
the CLSSO device, transferred via the ISA bus to main memory, then 
sent to the disk. Sustained compressed data rates on an ISA-based sys­
tem may go as high as SOO Kbytes/second. This leaves little time for the 
CPU to service the compression hardware and address system software 
needs at the same time. The CLSSO's DRQ output provides a way to use 
hardware to unload the CODEC register, leaving time for the host pro­
cessor to hande other system-level tasks. See Chapter 4 for hardware 
considerations related to using the CLSSO's DRQ signal. 

There are two basic ways in which the CLSSO's DRQ output can be 
used: 

o To transfer compressed data from CLSSO to on-board memory. 
The CPU unloads the on-board memory using a string-move in­
struction (programmed 110). 

o To transfer compressed data from CLSSO directly to main memory 
using the system's DMA resources. 

Programmed 110 (Figure 8-9) provides the fastest possible data transfer 
across the ISA bus. During programmed 110 the compressed video data 
is written to a Compressed Data buffer using local DMA. The host then 
moves the data into system memory using string-move instructions. 
Programmed 110 is more expensive than DMA because (roughly) 10 to 
20 Kbytes of buffering must be provided to allow for the interrupt laten­
cy of the system. 

ISA System Compressed 
~ CL550 ~ Pixel Buffer 

Main Memory Data Buffer 

': t 
... Programmed A .. 

Local DMA 
I/O 

l' .- .. 
-- ISA Bus -

Figure 8-9 Programmed 1/0 System Architecture 
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DMA transfers (Figure 8-10) can be used to move data directly to main 
memory at a much lower cost. The trade-off is a lack of compatibility 
with the full range of IS A-based systems. Some older ISA mother­
boards do not support 16-bit DMA transfers. 8-bit DMA transfers can 
be used, but the maximum sustainable rate for compressed data will be 
less than half of what it would be for ae 16-bit system. 

ISA System CL550 .- Pixel Buffer 
Main Memory 

:: t I 
h 

Direct DMA 

" .. .. 
-- ISA Bus -

Figure 8-10 Direct DMA Architecture 

During compression, the CL550's DRQ output is used as follows: 

1. At start-up, the DRQ Mask register is programmed by setting 
bit 13 (CodecNB) and bit 6 (Filq) HIGH. 

2. The CL550 will assert DRQ when the FIFO fills to 114 full and 
the coder finishes the first code word. The user can avoid using 
wait states by using the CodecNB bit in the mask register, 
Whenever DRQ is asserted, there is a word available in the CO­
DEC register. 

3. DRQ activity continues until the end of the image frame or until 
the last frame of a sequence of frames in the continuous video 
mode. When the compression pipeline is completely emptied 
and the FIFO is flushed down to 114 full, the CL550 stops activ­
ity on DRQ. Note that when this happens, there is still data on­
chip that must be drained. 

4. The host should use a program loop to remove the remaining 
data from the CODEC register (Figure 8-7). Data should be 
read until the word OxFFFFFFFF is encountered. The program 
loop can be entered as part of an end-of-image interrupt service 
routine, as described below. 
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8.3.5 DMA System Programming Example 

In a DMA-driven system interrupts are used to keep track of the frames 
coming in and provide anyhardware service necessary between frames. 
Figure 8-11 shows an example interrupt timing for a 30 field per second 
compression operation. The circled numbers in the diagram refer to the 
steps below the diagram. 

The VSIN input signal is generated by the NTSC/PAL decoder (or the 
device that digitizes the incoming video). FIELD is a toggle used to in­
dicate whether the field is even or odd and is used to qualify the start­
of-frame interrupts on odd fields only. 530VS corresponds to the 
CL550's VSYNC output (it is re-named for clarity). 

IRQ is generated by either the VSIN signal (start-of-frame) or by the 
530VS signal (end-of-frame). Software must monitor the state of the 
two sync signals to determine which interrupt is being given. 

HOLD is an external10gic term used to stall the CL550 until the field is 
available. HOLD is cleared by software in response to the start-of frame 
interrupt. If NMRQ is used to generate STALL, it can be programmed 
to activate on the VSYNC flag. This will stall the CL550 until the 
NMRQ mask is reprogrammed to release it. 

In this example, the CL550 is initialized and started. When 530VS as­
serts, HOLD is generated. This stalls the CL550 until pixels become 
available in the pixel buffer. When the start-of-frame interrupt indicates 
that pixels are available, the interrupt service routine clears HOLD and 
compression of the frame begins. At the end of the frame the 530VS sig­
nal activates again, causing another stall. At this time the interrupt serv­
er can either clear the FIFO and reset the CL550 (frame-by-frame 
operation) or allow it to continue without flushing, while performing 
any other system functions needed at that time (continuous video oper­
ation). 

Interrupts should alternate between start-of-frame and end-of-frame. If 
two start-of-frame interrupts occur back-to-back, frame synchroniza­
tion may be lost. The current compressed frame may have to be discard­
ed in an effort to re-synchronize to the incoming video. Frames can be 
missed for a number of reasons, but it generally occurs because the 
compressed data rate is too high for the host to accept in real time (e.g. 
disk I/O rate, software performance, bus masters taking the bus, etc.). In 
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response to a frame loss, the program might try to increase the quanti­
zation factors to achieve higher compression and a lower compressed 
data rate. 

VSIN ~,----______ ----,n,--______ ----,n,--_____ _ 

FIELD ~ 

CD ® 
IRQ ~ _____________ ~n,--___ ~n~ _____ _ 

HOLD ~,--2 ___________ ---, 

STArr: __ ---' 

® PXTN _______ _ 

Figure 8-11 Interrupt Timing for 30 Frame/Second Compression 

1. VSIN from the Video Interface logic causes the first interrupt. 
This interrupt indicates the start of an odd field. 

2. The interrupt service routine clears the HOLD signal. HOLD is 
activated whenever the CL550 asserts its VSYNC output 
(33UVS). Deactivation of HOLD releases the CL550's ""'ST--A"""""'L-L 
input. If desired, HOLD can also be the NMRQ signal, pro­
grammed to activate on the VSYNC flag. 

3. The CL550 begins compressing data from the pixel buffer. 
33UVS will deassert after its programmed delay. 

4. The CL550 starts activity on PXIN. STALL is asserted as nec­
essary to prevent the FIFO from overflowing. 

5. The CL550 asserts 33UVS after the frame has been captured. 
This is used to generate an end-of-frame or "frame done" inter­
rupt. At this time, the host processor can clear the CL550's 
FIFO and reset the device. 
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8.4 
CL560 Compression 

Operation 

The CL560 compresses images and video in much the same way as the 
CL550. Read section 8.3 before reading this section. In this section, we 
will describe the enhancements and improvements that the CL560 in­
corporates to support more demanding applications. A detailed descrip­
tion of the compression operation is given, followed by system 
descriptions of typical systems that use the CL560 for both still-image 
and video. 

8.4.1 CL560 Enhancements 

The major differences between the CL550 and CL560 are illustrated in 
Figure 8-12. The CL560 is different from the CL550 primarily in the ar­
eas of the Huffman Coder/Decoder Unit and the location of the host 
FIFO with respect to the host bus. From the Zero Packer/Unpacker to 
the Video Bus Interface the CL550 and CL560 are identical. 

The CL560 has sufficient performance to pass CCIR601 video at com­
pression ratios as low as 1: 1 in real time, either synchronously or asyn­
chronously. The new FIFO arrangement makes programming the device 
much simpler, as will be seen. 

128 
-+l ~ Deep Zero 

Zig 
To Host Huffman Zag 

Coder/ FIFO Packer/ Scan 
Decoder Unpacker Unit 

CODEC CL550 Huffman Coder 
Register 

64 
~ Deep -+l 

CODEC Huffman Zero 
Zig 

To Host Zag 
FIFO Coder/ Packer/ Scan 

(128x32) Decoder 13 Unpacker Unit 

CL560 Huffman Coder 

Figure 8-12 CL550 and CL5660 Architecture Differences 

The main enhancement in the CL560 is its single-cyc1e-per-word 
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Huffman CoderlDecoder. The CL560 Huffman Coder generates a 
code in a single PXCLK cycle, where the CL550 takes a number 
of cycles to code each FIFO entry. The compression pipeline op­
erates at the same rate which allows the Ping-Pong Buffer and 
Huffman CoderlDecoder run in lock-step with the video unit. All 
of the CL560's compression elements are locked together as a 
synchronous pipeline, giving it the ability to operate without stall­
ing. This is a fundamental improvement over the CL550, which 
can only operate in an asynchronous mode using STALL. The 
CL560 can be stalled if desired, but a STALL halts the Huffman 
CoderlDecoder in addition to the rest of the pipeline. 

The CL560's improved Huffman coder automatically pads the tail 
of every compressed video frame to a 32-bit boundary as opposed 
to the 8-bit boundary required by JPEG. This allows each com­
pressed video frame to be aligned to a 32-bit boundary, which 
greatly simplifies DMA system operation without violating the 
JPEG standard. 

DMA support in the CL560 has also been significantly improved. 
The CL560 supports a two-clock-per-word transfer mode that is 
capable of passing data to the host at very high data rates (see 
Chapter 4), with 96 or more words per burst. 

Example: Assume that the DRQ pin is programmed to activate at 
the 112 full mark. In response to the active DRQ indicator, 64 
words can be taken from the FIFO in a minimum of 128 HBCLK 
cycles. There is no need to monitor DRQ each time that a word 
transferred as is the case with the CL550. Further, the CL560's 
FIFO can be completely flushed by programming the DRQ output 
to the "not empty" condition, allowing for full hardware control 
of the compressed data flow. 

The function of the FRMEND signal has also been modified 
significantly. In the CL550, FRMEND is typically not used, 
because the FIFO must be empty before it is asserted. In DMA­
driven systems, this will never happen because the FIFO must be 
kept over 114 full. In the CL560, however, the FRMEND signal 
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can be used as an end-of-image interrupt output. The CL560's 
FRMEND output is programmable (See Chapter 7), and can be 
activated at the end of the compression of a frame of data either at 
the instant the Huffman coder places the last word of compressed 
data into the FIFO, or as the last word of the frame is passed out 
of the FIFO onto the host bus. For DMA-assisted systems, the 
CL560 compression operation is as simple as enabling DMA, 
starting the CL560, and getting an interrupt when the operation is 
complete. 

8.4.2 CL560 Operational Differences from the CL550 

The CL560 operates in roughly the same fashion as the CL550. 
Compression takes place in three stages as before: pre-fill, com­
pression, and flush. The significant differences are in the handling 
of the compressed data. These differences are described below. 

During compression in the CL560, when the pipeline begins to 
prefill, the Zero Packer places the first block's worth of coded 
symbols into one of the Ping-Pong buffers. The Ping-Pong buffers 
have the same data format as the CL550's FIFO (128 words by 13 
bits). The CL560 uses two FIFOs instead, arranged as 64 words 
by 13 bits. These buffers swap every 64 clocks. 

The Huffman Coder removes data for coding from the Ping-Pong 
Buffers, decodes it, and places the decoded data into the 128 word 
by 32 bit CODEC FIFO. This new, larger, FIFO stores data after 
it has passed through the Huffman compression stage, making it 
(effectively) five to ten times larger than the CL550's FIFO. 

Another advantage of the CL560's FIFO is that more of it can be 
used. During CL550 compression, the FIFO has to be kept be­
tween 1/4 and 3/4 full, giving 64 words of usable FIFO depth. In 
contrast, during CL560 compression, the FIFO can operate be­
tween 3/4 full and empty. The CL560's FIFO level is determinis­
tic: if the 3/4 full flag is active then exactly 96 words can be read 
without danger of corrupting the data stream. The CL550, on the 
other hand, will drain an unknown number of FIFO entries each 
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time that the CODEC register is read. This require status to be 
checked each CODEC register read. 

Figure 8-13 shows a simple loop for draining the CL560's FIFO. 
In this example, the program tests for the Half-full condition in 
the FIFO. (The threshold level may also be set to 114 or 3/4 if de­
sired.) If the FIFO is not half full, then the FIFO does not require 
service. When the Half-full flag appears up to 64 words can be 
taken at one time. At the end of the image (as indicated by either 
VNAC or FRMEND flags) the FIFO can be cleared by reading the 
FIFO level register and pulling out exactly that number of entries. 

The Compressed Word Count register indicates the exact number 
of 32-bit words that were compressed durig the frame. The Com­
pressed Word Count is valid until the end of the next frame, when 
it is updated with that frame's word count. 

8.4.3 Compressed Data Rate Control Mechanisms 

The CL560 provides a variety of new mechanisms devoted to data rate 
control of the CODEC FIFO. There are three ways that the CL560 im­
plements rate control of the compressed data. 

The first method of rate control uses the STALL input. This method is 
exactly the same as the one used for the CL550. If the FIFO level is 3/4 
full, that condition can be sent out on either the IRQT or IRQ2 signals 
and be used to generate STALL. STALL in tum, halts the compression 
pipeline, preventing in-flow to the FIFO. 

In a system that does not use STALL (such as a system with a synchro­
nous, unbuffered video input) an alternative rate control mechanism is 
provided; the Coder Rate Control Enable register. When the FIFO level 
programmed into the Coder Rate Control Enable register is reached, the 
CL560's Huffman Coder automatically trims off all of the remaining AC 
terms in the image frame. This is highly destructive to the image data, 
but it slows the rate of FIFO input dramatically. By using the Coder Rate 
Control Enable register, a slow host might be able to service the device 
in time to prevent overrun and total corruption of the JPEG stream. 

Bit 0 of the Coder Rate Control Active register will read back as a one 
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Drain FIFO 
Process 

N = FIFO LEvel Register 

Read N Words from the CO­
>-----IIH DEC FIFO 

Read the Compressed Word 
Count 

Figure 8-13 Flow Chart for the CL560 FIFO Drain Loop 

when the rate control mechanism is triggered. A write to this register 
(any data) clears the CRCA flag. Even after rate control is activated, the 
FIFO will still overflow if it is not serviced. This rate control mecha­
nism is intended to be used as a "graceful failure" option for the system 
designer. 

A third area where the CL560 may trim data is in the area of the Ping­
Pong buffers. During a compression operation, the Huffman Coder has 
exactly 64 clock cycles to completely code the data in one of the Ping 
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Pong buffers before they switch over. It is possible that the Huffman 
coder could not code all 64 entries in the 64 clocks allotted. For exam­
ple, in a worst-case scenario, if the Zero Packer produces a block with 
63 significant AC terms, and each of those terms require a 16-bit Huff­
man Code with zero stuffing and RST code added, the CL560's coder 
would not be able to generate all the extra codes in the 64 clocks allot­
ted. In this case the Huffman coder automatically stuffs an EOB code 
into the stream on the 64th clock. Any remaining terms (perhaps the last 
one or two AC terms of a block) in the Ping Pong Buffer will be lost. 
When this happens the CL560 sets bit 0 of the Coder Robustness Active 
register to a one. This tells the programmer that one or more blocks in 
the image frame had AC terms trimmed off to meet the single-cycle-per­
word rate requirement. This condition is not speed-dependent, and may 
occur in still image systems as well as video systems. This case is ex­
tremely rare. When this condition occurs, the image data is being ex­
panded up to 4X instead of being compressed. Needless to say, most 
applications use enough quantization to never see this condition. 

8.4.4 Typical Compression System Using the CL560 

The CL560 is useful in a wide range of high-performance still-image 
and video system designs. Whether the application is for still images or 
video, the basic system model is the same. A high-speed image scanner 
passes pixel data at real-time rates much the same way as a video cap­
ture device passes its data. Figure 8-14 shows a model of a typical 
CL560 compression system. Although it is similar to a CL550-based 
system, the CL560 compression system is faster, more flexible, and eas­
ier to program than a CL550 based system. The CL560 can be complete­
ly controlled in hardware from the start of the compression to the finish. 

In the example shown in Figure 8-14, pixel data to be compressed 
comes from a capture device such as a scanner or a video digitizer. The 
logic on the video bus side can be very minimal. The use of STALL is 
optional, and the only signal of significance to the system designer is the 
PXIN signal. When the CL560 asserts "PXIN, it expects a valid pixel on 
the bus. If a pixel is not available, STALL must be asserted during that 
exact clock cycle or the CL560 will latch invalid data into the SRAM. 

STALL can either be generated by the CL560 or by the video capture 
device. IRQT can be programmed to be asserted at 3/4 full, and the 
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IRQT output can be used to request a stall in order to prevent FIFO over­
run. If there are no pixels available, then STALL can be driven by the 
video capture device to indicate this condition. The logic should be de­
signed so that STALL is driven immediately ifPXIN asserts and a pixel 
is not available. Other signals that are used in the video interface logic 
but not shown here are VSYNC, HSYNC, and BLANK. 

System 

~ CL560 
Bus 

HBUS SRAM 

=e= Strip 
Buffer Pixel 

PXOUT 

START PXDAT 

Host Bus Dfi.i1~J'i}ISTR PXIN 

and TIiiff 
DMA Tf\il2 

Control 
URTI Video 

Logic Bus External 
FRMEND 

Interface STALL Request 
IRQ2 Logic External HBCLK rnm 

VSYNC 
VSVf\JC 

Figure 8-14 Typical CL560-based Compression System 

On the host side, the signals START, DMA_MSTR, TMT, and TNI2 are 
used to control host bus transactions. DRQ is used to indicate FIFO lev­
el and FRMEND is used to indicate the end-of-frame condition. The 
FRMEND signal can also be routed internally to the IRQ2 output. 

In this system, compression would follow the following steps: 
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1. At start-up, the user programs the DMA Request Interrupt Mask 
register to generate a DRQ on anyone of the following flags: 
Not_Empty, 114 Full, 112 Full, or 3/4 Full. CodecNB is not a re­
quirement for FIFO service and the CodecNB bit should never 
be set. 

2. When the FIFO fills to its programmed threshold, then the 
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CL560 will drive DRQ LOW. In response to this indication, the 
host can remove 1,32,64, or 96 words, depending on what the 
threshold is set to. 

3. At the end of.the compression cycle the CL560 flushes the pipe­
line and Huffman coder, and FIFO input stops. If you are using 
burst-DMA, you should set the FRMEND Enable register to 
generate an interrupt on an EOI@Coder condition. When you 
see a FRMEND interrupt, the FIFO Level register will hold the 
exact number of words left in the FIFO that are below the burst 
threshold. Exactly that many words should be read from the 
FIFO to drain it. If you are using single-word transfers (DRQ on 
Not_Empty) you should set FRMEND Enable to either 
EOI@Host Bus or RST@Host Bus. The FRMEND interrupt 
will then occur after the last coded word is unloaded. 

8.4.5 Slave-mode Compression Operation 

The CL560 can run synchronously with input video timing, and can be 
used in a slave-mode configuration to compress video data directly from 
a capture device. In slave mode the VSYNC and HSYNC signals func­
tion as inputs, and are driven by the video capture device. 

The CL550 also has slave-mode capability, but it is typically not useful 
to the system designer because the CL550 operates asynchronously and 
must have STALL activated from time to time. The requirement for 
STALL on the CL550 effectively prevents operation in slave mode, be­
cause the VSYNC and HSYNC signals would have to be delayed by ex­
actly the amount of time that STALL is asserted in order for the system 
to function properly. For the systems designer using the CL550, it is 
simpler to use the master mode. 

Figure 8-14 shows a slave-mode compression system design example 
using the CL560. In this example, the CL560 is synchronized to the tim­
ing of the incoming video. The video capture provides digitized video 
in YUV4:2:2 format and the timing signals PXCLK, YSYNC, and 
HSYNC. PXCLK is divided by two to make PXPHSE. CLK3 is not 
used in YUV 4:2:2 mode and is can be tied low. 
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Figure 8-15 Typical CL560-based Slave-mode Compression System 

The sequence of events for a slave-mode compression cycle are de­
scribed below. The host port operates identically to the previous exam­
ple. Therefore, only the video bus operation is described here. 
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1. The host processor initializes the CLS60 for compression. 

2. The host processor writes a 1 to the HVEnable register, fol­
lowed by a write of 1 to the Start register. 

3. The video capture device asserts VSYNC to indicate the start of 
an incoming field or frame. 

4. The VSYNC input is negative-edge triggered in slave mode. If 
the HVEnable and Start registers have been set to one, compres­
sion begins with the active VSyNC edge. 

5. To stop the compression at the end of the current frame, write a 
zero to the Start register after the active VSyNC edge. In slave 
mode, the Start register is sampled on every VSYNC edge. If 
Start is one, a frame compression starts. If it is zero, the frame 
compression does not start, and the VSYNC input is ignored. 
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6. Once started, the CL560's internal video bus counters begin to 
operate. Each incoming HSYNC pulse triggers the next line. 
The CL560's VDelay register is used to count HSYNC pulses 
until the first active video line is reached. 

7. Once the active line is reached, the value in the HDelay register 
specifies the number of clocks from the active HSYNC edge to 
the first pixel. 

8. At the end of the HDelay interval, the CL560 negates BLANK 
(sets it HIGH). It then asserts PXIN' to read the first incoming 
video pixel. The CL560 assumes that valid pixels will be on the 
bus at that time. It is the responsibility of the system designer to 
set VDelay and HDelay values that correspond to the input sync 
timing. 

In this section, the CL550 decompression process is described in detail. 
As there are many similarities to compression operation, you are en- 8.5 
couraged to read Section 8.3 on CL550 compression before reading this CL550 
section. Decompression 

8.5.1 Overview 

During the decompression of a frame of image data, the CL550 goes 
through three basic operations. These steps are the same as in the com­
pression direction, only in reverse. They are: 

o Pipeline/SRAM pre-fill 

o Active decompression 

o SRAM drain 

The host must prime the CL550's FIFO with data and clear the late flag 
after the CL550's registers and tables have been initialized, and before 
the HVEnable and Start registers are written. The late flag is set when­
ever the direction bit (bit 9 of the Configuration register) is set to de­
compression and the FIFO is empty. Because of this, the late flag will 
come up as soon as the Configuration register is written for decompres­
sion. After the FIFO is primed, it must be cleared by software as part of 
the start-up procedure (See Section 8.7). The FIFO can be primed using 
either DMA or programmed I/O techniques. 

Operation 
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The host processor in DMA-driven system might use the following se­
quence at start-up: 

1. Load the registers for decompression (the Late bit will activate). 

2. Load the tables. 

3. Enable DRQ on "Not 3/4 Full", DMA begins as soon as it is en-
abled. 

4. Wait for the 3/4 Full flag. 

5. Clear the Late bit by writing Oxffff to Flags register. 

6. Set the NMRQ mask to "Not 114 Full" (assuming NMRQ is 
used for STALL). 

7. Write the HVEnable and Start registers. 

In master mode operation, the CL550 will assert its VSYNC output on 
start-up to indicate the start of a decompression cycle. At some point 
prior to the first active line of the video frame (typically 9 lines), the 
CL550's Zero Unpacker Unit will begin to fetch data from the FIFO for 
decompression, and the decompression pipeline will begin to fill with 
data. 

STALL should be used to prevent underflow ss the FIFO level drops. 
STALL must be driven externally, using either the NMRQ or HALF _­
FULL outputs as FIFO status indicators. The advantage in using NMRQ 
is that it is programmable and easy to disable in hardware. The HALF _­
FULL signal requires an external control bit to disable it. 

As the decompression process continues, the host should maintain the 
level of the FIFO at between 114 and 3/4 until all compressed data is 
loaded. This can be done using either programmed 110 or DMA. Figure 
8-16 shows the flow-chart for a simple program loop to load the 
CL550's FIFO with data. The CL550/CL560 Program Examples Disk 
also contains a code example in the file 550dec.c. 

Once all of the compressed data is loaded, you should disable STALL 
by clearing the NMRQ mask. This will allow the FIFO to drain com­
pletely without causing a STALL. 

As the last pixel is removed from the SRAM, the CL560 will activate 
the VNAC flag in the flags register. If the Start register is left at logic 1, 
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then VSYNC will go LOW to begin the next frame. VSYNC can also 
be used as an end-of-frame interrupt. In response to this interrupt, 
frame-by-frame decompression drivers should reset and re-initialize the 
CL550 for the next frame. Continuous video systems should not reset 
the CL550 between frames, and should never allow the FIFO to go to 
empty until the last frame in the sequence. 

No 

Fill FIFO 
Process 

Return 

Figure 8-16 Flow Chart for Filling the CL550 FIFO 
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B.6 
CL560 

Decompression 
Operations 

The CL560 operates almost identically to the CL550 in decompression 
mode. The only significant difference is in how the CODEC FIFO is 
loaded. Read Sections 8.3, 8.4, and 8.5 prior to reading this section. 

The CODEC FIFO in the CL560 provides additional flexibility in two 
ways. First, it allows a pre-determined amount of data to be loaded (in 
the CL550, FIFO status must be checked each time that 32-bits of data 
is written). Second, it allows high-speed, two-clock-per-word loading 
of the FIFO. 

To operate the CL560 in decompression mode, the driver program first 
must load the registers and tables (the Late bit will activate as with the 
CL550). The program can now load the FIFO using either DMA or pro­
gramed I/O. In a DMA-driven design, up to 96 words of data can be 
loaded to prime the FIFO. If programmed 110 is used, then a maximum 
of 128 words can be written. Figure 8-17 shows an example program 
flow for loading the FIFO in 64 word groups. 

The CL560's Huffman decoder will automatically begin pre-fetching 
data from the FIFO as soon as the level reaches the 114 full mark. The 
decoder will place the first block of symbol data into the first of the two 
ping-pong buffers to await start-up. 

The Decoder Start register is used to manually start the decoder if there 
are less than 32 words of data in the compressed image (a thumbnail, for 
example). Writing the Decoder Start register is a standard part of the 
CL560 start-up sequence in order to handle these special cases. 

A decompression driver should follow the following steps to set up the 
CL560 for decompression. 

1. Load the registers and tables (the Late bit activates). 

2. Prime the CODEC FIFO to 3/4 full. The decoder will start au­
tomatically when the CODEC reaches 114 full. 

3. Write OxFFFF to the Flags register, this clears the Late bit. 

4. Write to the Decoder Start register, in case the FIFO level is less 
than 114 full. 

5. Write the IRQl mask to set up STALL (assuming IRQ 1 is used 
for STALL). Note that with the CL560, STALL is not required 
in decompression. If STALL is not used, then it is the responsi-
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bility of the host to prevent FIFO underflow. If the FIFO under­
flows, the Late bit activates. This flag can be routed to IRQ2. 

6. Write HVEnable and Start to begin decompression. 

The CL560 behaves the same as the CL550 from start-up to the end of 
decompression. The end-of-frame condition can be checked using ei­
ther the VNAC flag, or the VSYN flag. 

Fill FIFO 
Process 

No 

Return 

Write the CODEC FIFO 
(Whatever is Left-over) 

Figure 8-17 Program Flow for Filling the CL560 FIFO 
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8.7 
CL5xx Initialization 

Procedures 

This section describes basic procedures for initializing the CL5xx de­
vices for compression or decompression operation. For details on pro­
gramming a specific register, refer to Chapter 7. A source code example 
for initializing the CL5xx registers is given on the CL550/CL560 Pro­
gram Examples Disk. 

8.7.1 Overview 

The initialization process consists of three main parts: 

o Loading the Registers 

o Loading the Tables 

o Going through the Start-up Sequence 

The register values to be loaded depend on the direction (compress or 
decompress), the image dimensions, device type, the JPEG tables spec­
ifications, and the overall system architecture. 

The CL5xx register set is divided into two groups: registers common to 
all CL5xx devices, and device-specific registers. Both groups of regis­
ters are shown on the following pages. 

Common CL5xx Registers 

All of these registers must be loaded prior to device operation. The 
VControl and HControl registers are used during decompression only, 
and need not be loaded for compression. The Color Transform Matrix 
applies only to the RGB-to-YUV 4:2:2 pixel mode, and does not need to 
be loaded for other modes. 

o HPeriod 

o HSync 

o HDelay 

o HActive 

o VPeriod 

o VSync 

o VDelay 

o VActive 

o VideoLatency 
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D VControl 

D HControl 

D Init Registers 1-7 

D DCT Coefficients 

D Huffman Table Sequence 

D DPCM Register Sequence high 

D DPCM Register Sequence low 

D Coding Interval Register high 

D Coding Interval Register low 

D Decoder Table Sequence Length 

D Decoder Code Order 

D Quantizer NB Select 

D Quantizer Sync 

D Quantizer Y IC Sequence 

D Quantizer NB Sequence 

D Color Transform Matrix 

Device-Specific Registers 

(decompression only) 

(decompression only) 

(8 entries total) 

(compression only) 

(compression only) 

(decompression only) 

(decompression only) 

(9 entries total) 

CL5xx Initialization Procedures 

How these registers are programmed depends on whether the device 
type is a CL550 or a CL560. Some of these registers are unique to either 
the CL550 or the CL560, and others differ depending on the device 
type. These registers are listed below 

D Config 

D Coder Attributes 

D Coder Sync 

D Coder RC Enable 

D Coder Padding 

D FRMEND Enable 

D NMRQ Interrupt Mask 

D IRQ1 Interrupt Mask 

D IRQ2 Interrupt Mask 

D DRQMask 

(compression only) 

(CL560 only, compression only) 

(CL560 only, compression only) 

(CL560 only, compression only) 

(CL550 Only) 

(CL560 Only) 

(CL560 Only) 
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8.7.2 Programming the Video Interface Control Registers 

The Video Frame Control registers determine the signal timing of the 
Pixel Bus Interface. These registers include: 

o HPeriod, HSync, HDelay, HActive 

o VPeriod, VSync, VDelay, VActive 

The values for these registers are calculated using the formulas in Chap­
ter 7 and are based on the desired reference frame timing. Each of these 
registers is actually composed of two registers; a holding register and an 
active count register. When the host writes data, it is written to the hold­
ing register, and when the host reads data, it is rerad from the active 
count register. Active count registers are loaded from the holding regis­
ter at each active VSyNC transition. Once the registers have been load­
ed, a device reset will not affect the contents of the holding registers, but 
it will cause the active count registers to read all 1 IS. 

Example: Program the Video Frame Control registers for the frame 
shown in Figure 8-18. In this example, assume a YUV 4:2:2 pixel type 
and MASTER mode for VSYNC and HSYNC. Also assume that the 
VSYNC pulse width is 4 lines, and the HSYNC pulse is 16 pixels. 

In this video reference frame, the time (in pixels) between active 
HSYNC transitions is specified as 704 pixels. The total number of lines 
in the video frame (total number· of HSYNC pulses between active 
VSyNC transitions) is 272. The number of blank video lines from the 
active edge of YSYNC to the first active video line is 16. The number 
of blank pixels from the active edge of HSYNC to the first active pixel 
of a line is 32 pixels. The active video frame width is 640 pixels, and its 
height is 240 lines. 

From these parameters, the HIV control register values are calculated as 
follows (all values are expressed as decimal): 
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HPeriod = 704 -1 = 703 
HSync = 16 - 1 = 15 
HDelay = 32 
HActive = 640/8 = 80 
VPeriod = 272 
VSync = 4 
VDelay (Compression) = 16 
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Frame 

Start ~I'" 704 ·1 
32 

I 
272 240 

1 
Note: All Dimensions are in pixels 

Figure 8-18 Programming Parameters for Video Window Example 

VDelay (Decompression) = 

16 - 9 +CVideo Latency+HActiveClocks) 

HPeriodClocks 

where: 

Video_Latency = 383 (constant for YUV 4:2:2 mode) 

HActiveClocks = 640 * 2 = 1280 
HPeriod Clocks = 704 * 2 = 1408 
= 16 - 9 + (383+ 1280)/1408 

= 16 - 9 + 1 
= 6 (Note that this value cannot be less than zero) 

VActive = 240 /8 = 30 

Other Notes: 

1. In Master mode, the HPeriod value must be greater than or 
equal to the active width plus the HDelay time. In the above ex-
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ample, the minimum HPeriod value would be 640 + 32 = 672 
(actually 671, because we subtract one). 

2. In Master mode, the VPeriod value must be greater than or 
equal to the total active lines plus the vertical delay. In the pre­
vious example, the minimum VPeriod would be 240+ 16 = 256. 

3. The minimum value for VActive is 1. IfVActive is set to 0, the 
device will not start. 

4. (CL550 only) The minimum value for HActive must be such 
that when the image is compressed, the internal FIFO will reach 
the 114 full mark. Otherwise the Huffman Coder will not start, 
and the image cannot be compressed. For example, V Active = 
1 and HActive = 2 is likely not to compress, as there is not 
enough data to fill the FIFO to 114 full. 

8.7.3 HControl. VControl Registers Programming 

The registers HControl and VControl are used only in the decompres­
sion direction, and are typically only used in the continuous-streaming 
method described in Section 8.2. These registers should be loaded to 
Ox3FF during single-image decompression or frame-by-frame video 
operations. 

During continuous-stream decompression the HControl and VControl 
register values must be calculated relative to pixel mode and video win­
dow dimensions. The HControl and VControl registers determine the 
exact point at which the Zero Unpacker Unit stops reading coded entries 
from the FIFO in order to complete the current frame. In a typical de­
compression scenario using the CL550, the Zero Unpacker must stop 
reading code words from the FIFO some time before the last pixel of the 
current frame emerges on the pixel bus. The remainder of the current 
frame data which is still in the pipeline is then allowed to flush through. 
When a pulse on VSYNC starts the next frame, the Zero Unpacker Unit 
resumes reading from the FIFO. 

The values programmed into the HControl and VControl registers must 
be calculated exactly. If the Zero Unpacker Unit does not stop at the cor­
rect time, data from current frame may be left over in the FIFO. In this 
case, the leftover data is decompressed on the next video frame. If the 
Zero Unpacker pulls too "many words from the FIFO, part of the next 
frame's data will flushed out at the end of the current frame and will be 
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lost. In either case, the next image out will be corrupted. The procedures 
for computing these register values are fairly complex, and will not be 
described here. Programmers should refer to the CL550/CL560 Pro­
gram Examples Disk for source code examples. 

8.7.4 OCT Lookup Table 

The DCT Lookup table is an 8-word table of machine constants that is 
used by the DCT processing unit. The same values are loaded for all 
modes of operation. Once loaded, the table will not be affected by reset 
and will remain valid as long as power is applied to the device. See Sec­
tion 7.2 for the actual values. 

8.7.5 Color Conversion Matrix 

The Color Conversion Matrix is only used in the RGB-to-YUV 4:2:2 
mode of operation. The matrix values are programmable so that differ­
ent color spaces can be supported. Note, however, that the color-space 
converter is directly tied to the 4:4:4-to-4:2:2 subsampler. Matrix values 
for RGB-to-YUV 4:2:2 operation are provided in Chapter 7, as well as 
on the CL550/CL560 Program Examples Disk. 

If you need to develop custom matrices the hardware-specific values for 
the matrix are computed using the formula: 

matrix_value * 1024 

rounded up to the next integer. The data is presented as a 12-bit signed 
integer. For example, from Table 2-1, we see that Y = 0.299R. Therefore 
the matrix value would be computed as: 

.299 * 1024 = 306.176 ==> 307 (hex 133). 

8.7.6 Sequence Control Registers 

Sequence Control registers are used to control selection of the Huffman 
and Quantizer tables according to the specified block sequence. For all 
pixel modes except the MONO (Bypass) mode, these registers are load­
ed with the constant values supplied in Chapter 7. This is due to the 
hardwired block sequence ordering produced by the MCU Block Stor­
age Unit. 

The MONO pixel mode bypasses the MCU block store and goes direct­
ly to the DCT input. In this mode, special block sequences can be used 
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in some cases. Refer to Section 8.10 for more information on custom se­
quence programming. 

The Sequence Control registers are: 

o Quantizer Y IC Sequence 

o Quantizer AlB Sequence 

o Huffman Table Sequence 

o DPCM Register Sequence high 

o DPCM Register Sequence low 

o Decoder Table Sequence Length (decompression only) 

8.7.7 Selection of the RST Interval (Compression) 

The Coder Coding Interval registers are only used during compression 
and specify the number of Minimum Coded Units (MCUs) to encode 
before insertion of the next RST marker code. Bit 4 of the Coder At­
tributes register is set to a logic 1 to enable generation of RST marker 
codes. The Coder Coding Interval registers are then loaded with values 
that correspond to the number of MCU's in the restart interval. 

Example: Program the coding interval so that a RST code is generated 
at the end of each 640 x 8 image strip (Figure 8-18). In YUV 4:2:2 mode, 
the number of 8x8 pixel blocks in each MCU is 2 (16 x 8 pixels). There­
fore, the coding interval is 640 I 16 = 40. The Coding interval registers 
are loaded with: 

Coder Coding Interval RH = OxOO 
Coder Coding Interval LH = Ox28 (40 decimal) 

8.7.8 Pipeline Configuration Registers 

The Pipeline Configuration registers are used to configure the various 
computing elements of the CL5xx compression pipeline. These regis­
ters are loaded with constant values that depend on direction and pixel 
type only. They are not programmable in any other manner, and are the 
same for all applications. Initialization constants for each register are 
given in Chapter 7. The Pipeline Configuration Registers include: 

o Init Registers 1-7 

o Video Latency 

o Decoder Code Order (decompression only) 
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8.7.9 Quantizer Tables Loading 

The CL5xx quantization tables are on-chip RAM areas used to store the 
quantization parameters needed by the quantizer unit. The values in 
these tables are machine-specific, and must be converted from the ISO 
JPEG Interchange Format. These machine-specific quantization tables 
must then be downloaded into the appropriate table area in the CL5xx 
device. Procedures for generating CL5xx quantizer tables from the ISO 
JPEG Interchange Format are given in Section 8.9. 

We recommend that you use the four-table mode for all applications. 
The two-table mode is useful only for updating Q tables on a frame-by­
frame basis either for data rate control purposes or for half-duplex op­
eration. The Quantizer Sequence registers determine the actual order of 
selection of the tables, regardless of whether the part is in two-table or 
four-table mode. In some cases, you can use the four-table mode to load 
four tables at once (for instance, 2 compress tables and 2 decompress ta­
bles), then switch into two table mode. 

If you are updating the Q-tables every frame, you should keep in mind 
that after the Quantizer AlB Select register is programmed the tables 
will not actually switch until an active transition on YSYNC occurs. 

8.7.10 Huffman Tables Loading 

Like the Quantizer tables, the CL5xx Huffman tables are also machine 
specific. Before images can be compressed or decompressed using the 
CL5xx devices, the Huffman table information must be converted from 
the JPEG interchange format into the CL5xx machine format. Proce­
dures for generating CL5xx machine-specific Huffman tables are given 
in Section 8.7. 

The Huffman Load Enable register must be set to 1 to load the machine­
specific tables into the CL5xx device. Once the tables are loaded the 
Huffman Load Enable register must be cleared before the compress or 
decompress operation can take place. When a Huffman table has been 
loaded, it will remain valid as long as power is maintained to the device; 
Huffman table contents are unaffected by reset. 

8.7.11 CL5xx Start-up Sequence 

The start-up sequence is a series of register writes used to start a com­
pression or decompression operation. This is done only after all of the 
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registers and tables have been loaded. 

For a compression operation, the start-up sequence is: 

Write NMRQ Mask = FIFO_3Q_Full (used for STALL control) 

Write DRQ Mask = CodecNB • FIFO_IQ_Full 

Write HVEnable = 1 

Write Start = 1 

For a decompression operation, the start-up sequence is: 

Write NMRQ Mask = FIFO_NotlQ_Full (used for STALL control) 

Write DRQ Mask = CodecNB • FIFO_Not3Q_Full 

(at this point, use DMA transfers to pre-fill the FIFO to 3/4 

full or use software to pre-fill the FIFO) 

Write Flags = Oxffff (this clears the LATE flag) 

Write HVEnable= 1 

Write Start = 1 

(only after FIFO has data in it) 

Note: The flag CodecNB in the steps listed above is a CL550 flag only. 
CL560 based systems only need to initialize the level flags. 

8.7.12 Device Reset Considerations 

A reset is performed by either pulling the RESET pin low or by writing 
to the SReset register. Some of the CL5xx's registers are placed into an 
initial state following a reset, and these registers need to be re-pro­
grammed before operation can resume. The registers that are affected 
by reset are listed in Table 8-1. 
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Table 8-1 CL5xx Register Reset Values 

Register Name CL550 CL560 Value after Reset 
Address Address 

HPeriod Ox8000 Ox8000 AII1s 

HSync Ox8004 Ox8004 AII1s 

HDelay Ox8008 Ox8008 All 1s 

HActive Ox800C Ox800C AII1s 

VPeriod Ox8010 Ox8010 AII1s 

VSync Ox8014 Ox8014 AI11s 

VDelay Ox8018 Ox8018 AII1s 

VActive Ox801C Ox801C AII1s 

Video Latency OxC030 OxC030 AII1s 

HControl OxC034 OxC034 AII1s 

VControl OxC038 OxC038 AII1s 

Configuration Ox9000 Ox9000 0 
Huffman Table Load Enable Ox9004 Ox9004 0 

S-Reset Ox9008 Ox9008 0 

Start Ox900C Ox900C 0 

HV Enable Ox9010 Ox9010 0 

Interrupt Mask Ox9018 0 

DMA Request Interrupt Mask Ox901C Ox901C 0 

Start of Frame Ox9020 Ox9020 0 

Decoder Code Order OxA81C OxA81C 0 

Vertical Line Count OxC03C OxC03C 0 

Init Register 4 OxCFOO OxCFOO 0 

FRMEND Enable Ox092C 0 

Compressed Word Count High OxA024 0 

Compressed Word Count Low OxA028 0 
Coder Rate Control Active OxA02C 0 

Coder Rate Control Enable OxA030 0 

Coder Robustness Active OxA034 0 

Decoding Mismatch OxA824 0 

Flags Ox9014 Ox9014 1000 Ox1 0 1000 1110 

Init Register 3 OxB600 OxB600 001 00000000 
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The Video Window Control registers are actually two registers, a write­
register and a read-register, in a master-slave arrangement. The write 
register functions as a master, and holds the programmed count value 
that was loaded by the host. The write-register data is not affected by 
reset. The read register is the active count, and is loaded from the master 
on the active transition of YSYNC. A device reset sets all of the read­
registers to 1 IS, which puts the video interface into an inactive state. Al­
though it appears that the register values have been altered and need to 
be re-programmed, this is really not necessary because the active count 
registers will update themselves from the master count registers when 
the device starts up. 

In many frame-by-frame video applications, a minimized restart proce­
dure can be used. Assuming that no tables need to be updated, only 
those control registers that are affected by reset require programming. 
These registers are listed in Table 8-2. Programmers should keep a copy 
of these register values handy to avoid having to compute them over and 
over again. Once the affected registers have been re-initialized, the 
CL5xx is ready to be started for the next frame, using the procedure de­
scribed in Section 8.7.11. 

Table 8-2 Registers Required for Minimized Restart Procedure 

Register Name Address 

Configuration Ox9000 

IniC3 OxB600 

IniC4 OxCFOO 

Decoder Code Order OxA81C 

Video Latency OxC030 

HControl OxC034 

VControl OxC038 

DMA Request Interrupt Mask Ox901C 

IRQ1/NMRQ Mask Ox9018 

FRMEND Enable (CL560) Ox092C 

8-40 C-Cube Microsystems 



Programming the Huffman Tables 

This section describes the tasks associated with creating JPEG Huffman 
tables. Creating JPEG Huffman tables involves extracting the Huffman 
tables from the ISO JPEG Interchange format and converting those ta­
bles into machine specific formats for the CL550 or CL560 device. 
Source code examples in C for handling Huffman tables and converting 
them into CL550/CL560 machine-specific format are provided with the 
CL550/CL560 Program Examples Disk. 

8.8.1 Extracting Huffman Tables from ISO JPEG Interchange Format 

Before you can decompress images that are stored in the ISO JPEG In­
terchange format, you must extract the compression parameters and ta­
bles from the stream header. Huffman tables are among the information 
that must be extracted. The syntax for specifying Huffman tables is giv­
en in Annex B of the JPEG International Standard specification (ISO/ 
IEC IS 10918-1). 

Huffman tables are specified in terms of a 16-byte list (BITS) giving the 
number of codes for each code length from 1 to 16. This is followed by 
a list of the 8-bit symbol values (VALUES), each of which is assigned 
a Huffman code. Annex C of the ISO JPEG specification describes three 
procedures by which the actual Huffman tables are extracted from the 
BITSNALUES syntax. These three procedures are: 

D Generate_Size_TableO - A procedure to find the sizes of each 
Huffman code. 

D Generate_Code_TableO - A procedure to generate the table of 
Huffman codes based on the size information. 

D Order_Huffman_CodesO - This procedure orders the list of Huff-
man codes according to the VALUES list. 

Flowcharts for these procedures are listed in Annex C of the Internation­
al Standard. The CL550/CL560 Program Examples Disk contains work­
ing C source code implementations of these functions in the file 
makehuff.c. 

8.8.2 CL550 Huffman Table Formats 

Once the JPEG Huffman tables have been extracted from the JPEG file 
or stream header, the tables must be converted into a CL550/CL560 ma­
chine-specific form before they can be stored in the device. This section 
describes the machine-specific format for CL550 Huffman Tables and 

B.B 
Programming the 
Huffman Tables 
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procedures for generating these tables based on any set of JPEG-com­
patible Huffman Code Tables. The CL550 uses different Huffman table 
formats depending on whether the CL550 is compressing or decom­
pressing. 

The CL560 has four Huffman table RAM spaces; two for storing AC ta­
ble data and two for storing DC table data. The Huffman Table RAMs 
are completely static. Once loaded, the contents of the RAMs will re­
main unchanged as long as power is maintained to the device; even after 
the device is reset. 

CL550 Encoder Tables 

The machine-specific table layouts for the CL550 in compression mode 
are shown in Table 8-3. For brevity, only the luminance encoder tables 
are shown. Chrominance tables have exactly the same layout, but start 
at addresses OxFOOO and OxFCOO, respectively. 

Each cell in the Huffman table RAM in Table 8-3 is 18 bits wide. RAM 
cells are accessed from the host bus in two 9-bit halves, with the low­
order nine bits at the lower address (EOOO for example) and the high­
order nine bits at the higher address (E004 for example). In order to ac­
cess the Huffman table RAM, you must program the Huffman Load En­
able register to 1. 

The Code word formats for the RAM cells vary depending on the length 
of the Huffman Code. In a typical application you must derive the Code 
and Length values from the JPEG interchange format. The procedures 
for extracting the Code and Length values from JPEG interchange for­
mat are described in Annex C of the ISO JPEG specification (ISOIIEC 
IS 10918-1). Source code examples are also found in the CL550/CL560 
Program Examples Disk in the file makehuffc. Figure 8-19 shows these 
code word formats for various code lengths. 

The value field of the Huffman Code format in Figure 8-19 is used to 
contain the Huffman code being loaded. The code is bit-reversed from 
the JPEG bit order: the MSB appears at bit zero. 

8-42 C-Cube Microsystems 



Programming the Huffman Tables 

Table 8-3 

V-AC 
OxEOOO 

OxE080 

CL550 Huffman Table Layouts in Compression Mode 

00 08 10 18 20 28 30 38 40 48 50 
EOB 0/1 0/2 0/3 0/4 0/5 0/6 0/7 0/8 0/9 O/A 

00 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/A 

58 

00 
00 

60 
00 
00 

68 
00 
00 

70 
00 
00 

78 
00 

00 
OxE100 00 2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 2/9 2/A 00 00 00 00 00 
OxE180 
OxE200 
OxE280 
OxE300 
OxE380 
OxE400 
OxE480 
OxE500 
OxE580 
OxE600 
OxE680 
OxE700 
OxE780 

00 

00 
00 
00 
00 
00 

3/1 
4/1 
5/1 
6/1 
7/1 
8/1 

00 9/1 
00 A/1 

00 B/1 
00 C/1 
00 0/1 
00 E/1 

ZRL F/1 

3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/A 

4/2 4/3 4/4 4/5 4/6 4/7 4/8 4/9 4/A 

5/2 5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/A 

6/2 6/3 6/4 6/5 6/6 6/7. 6/8 6/9 6/A 

7/2 7/3 7/4 7/5 7/6 7/7 7/8 7/9 7/A 

8/2 8/3 8/4 8/5 8/6 8/7 8/8 8/9 8/A 

M m ~ ~ ~ m ~ m ~ 
A/2 A/3 A/4 A/5 A/6 A/7 A/8 A/9 A/A 

M ~ ~ ~ ~ ~ ~ ~ ~ 

W ~ ~ ~ ~ m ~ ~ ~ 
0/2 0/3 0/4 0/5 0/6 0/7 0/8 0/9 O/A 

~ ~ ~ ~ ~ m ~ ~ ~ 
m ~ ~ ~ ~ m ~ ~ ~ 

OXE780 - OXEAFC: Load with 00. RRRR/SSSS 

V-DC 
OxECOO o 2 3 4 5 6 7 8 9 A 

Category 

00 

00 
00 
00 

00 
00 
00 
00 
00 
00 

00 
00 
00 

00 

00 
00 
00 
00 
00 
00 
00 
00 
00 

00 
00 
00 

00 

00 
00 
00 

00 
00 
00 
00 
00 
00 

00 
00 
00 

00 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

00 
00 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

00 
00 
00 

B 00 00 00 00 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Length = 16 I 1 I 0 I Huffman Code 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Length = 15 I 1 I 1 I 0 I Huffman Code 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Length = 14 I 1 I 1 I 1 I x I Huffman Code 

Length < 14 

Figure 8-19 

17 16 15 14 13 12 11 10 9 8 

I 0 I Length I 
CL550 Huffman Table Formats for Compression 

765 
Huffman Code 

4 3 2 o 
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Example: Program the first YAC table entry from the example Y-AC 
tables listed in Appendix K of the ISO JPEG Specification into the 
CL550's Y -AC Huffman table RAM. 
From the listing in Appendix K, the first value is the EOB code (Run/ 
Size = 0/0). The Huffman code is OxOa and the Code Length is 4. Using 
Table 8-3, we see that the EOB code corresponds to address OxEOOO. 
This is where the code will be loaded. Also, since this code is less than 
14 bits, we will need to specify a length field as shown in Figure 8-19. 

The Huffman Code bits are loaded in reverse bit order, so the code 
"1010" is first bit-reversed to be "0101". Now, all of the bit fields are as­
sembled such that the following binary code word is produced: 

Code Word = 0 0100 0000000000101 

In order to load this value into the CL550, the code word is split into two 
9-bit values, as shown below. 

Code Word (low) = 000000101 

Code Word (high) = 001000000 

CL550 Decoder Tables 

(loaded into address EOOO) 

(loaded into address E004) 

The CL550 Huffman decoder uses a two-bit-per-grab tree-walk archi­
tecture. The decoder operates by grabbing two bits of Huffman code at 
a time, and performing a tree-walk through the on-chip tables to arrive 
at the symbol which is represented by the Huffman code. Up to eight 
grabs are necessary to completely decode the longest Huffman code. 
The longest Huffman code is 16 bits long. 

The format of the CL550 Huffman tables for decompression is shown 
in Figure 8-20. Each 18-bit RAM cell is divided into two 9-bit nodes. 
Each group of four consecutive nodes form a state (two 18-bit cells). 
Each 9-bit node is accessible from the host bus on consecutive address­
es (e.g. OxEOOO, OxE004). The low-order nine bits is at the low address. 
In each node, bit 8 is the "leaf" flag, or "code done" bit. If the "leaf flag 
is zero, then bits 0-7 contain the address of the next state. If the leaf flag 
is set, then bits 0-7 is the actual 8-bit value represented by the code. 
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OxE004 
OxEOOC 
OxE014 
OxE01C 

17 16 

L 

L 
L 
L 

987 

L 

L 
L 
L 

Figure 8-20 CL550 Huffman Table Format for Decompression 

Example: During a decoding operation, the first two bits of Huffman 
code are used as an index to the first group of four nodes, or state, in the 
table space, starting at address zero. Assuming that the code bits taken 
are 'II' then the node at address OxEOOC would be taken. Assume that 
the leaf flag in this case is zero. In that case, bits 0-7 of that node contain 
the offset to the next state to be used with the next two bits of Huffman 
code. This process continues until the leaf flag is found. At that point, 
the 8-bits of symbol data from that node are taken. 

The procedure for generating these tables is complex and will not be de­
scribed here. The CL550/CL560 Program Examples Disk contains C 
source code for generating these tables in the file makehuff.c. 

IMPORTANT NOTE: The CL550's Huffman decoder has a 
logical bug which renders it unable to decode images with 
certain custom Huffman tables. Because of this, the CL550 
is not 100 percent compliant with the ISO IP EG compliance 
specification (ISO/IEC IS 10918-2). This bug only affects us­
ers who are using custom Huffman tables. The Example ta­
bles given in Annex K of the ISO IP EG specification will 
decode with no problems. Further, users of the Microsoft 
IP EG/ A VI format are not affected, as all AVI-compliant vid­
eo streams are required to use the tables given in Annex K. 

Detecting a Bad Huffman Table 

For each two-node pair in the decoding tree, an error will result if the 

o 
QxEOOO 
OxEO08 
OxE010 
OxE018 
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leaf bits of node 1 and node 2 are different but bits 0-7 of each node are 
equal. The procedure for detecting this condition is illustrated in flow­
chart form in Figure 8-21. This procedure can be used by programmers 
to determine if an imported image can be decoded successfully using 
the CL550. If the table is found to be bad, then an alternate decoding 
method must be used. Alternative decoding methods include the CL560 
processor or a software-only decoder. 

If the condition shown in Figure 8-21 results from converting the Huff­
man table into the CL550 machine-specific format, then the table can­
not be used with the CL550. The condition that you are looking for is 
when the "Run / Level" field matches the "Next Address" field of two 
consecutive nodes where the leaf flags are not equal. 

No 

16 987 o 
Next Address Run / Level 
Run / Level Next Address 

Figure 8-21 Detecting a Bad Huffman Table 
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8.8.3 CL560 Huffman Table Format 

This section describes the machine-specific format for CL560 Huffman 
Tables and a procedure for generating these tables based on any set of 
JPEG-compatible Huffman Code Tables. Unlike the CL550, the 
CL560's Huffman Tables are homogeneous in the sense that the same 
machine-specific tables are used for both compression and decompres­
sion (the CL550 requires separate machine-specific tables for compres­
sion and decompression, respectively). The CL550/CL560 Program 
Examples Disk contains an example source code for generating CL560 
machine-specific tables in the file makehuffc. 

The CL560 has four Huffman Table RAM spaces, two for storing AC 
table data and two for storing DC table data. The Huffman Table RAMs 
are completely static. Once loaded, the contents of the RAMs will re­
main unchanged even after device reset, as long as power is maintained 
to the device. 

The layout of the Huffman tables is shown in Figure 8-22. This diagram 
shows the CL560 Huffman table addressing relative to the correspond­
ing Run/Size values in the JPEG Huffman table. 

Each of the RAM cells in Figure 8-22 is 20 bits wide. The 20-bit table 
entry contains two fields, a code field and a code length field, as shown 
in Figure 2. Bits 3-0 are loaded with the number of significant Huffman 
code bits, minus 1. Bits 19-4 contain the actual code value left shifted 
until the most significant code bit is at bit 19. Unused bits are zero-filled. 

In a typical JPEG interchange application you must derive the Code and 
Length values from the JPEG interchange format. Procedures for ex­
tracting the Code and Length values from JPEG interchange format are 
described in Annex C of the ISO JPEG specification (ISOIIEC IS 
10918-1). Source code examples are also found on the CL550/CL560 
Program Examples Disk in the file makehuffc 
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V-AC 
OxEOOO 

OxE080 

OxEl00 

OxE180 

OxE200 

OxE280 

OxE300 

OxE380 

OxE400 

00 08 10 
EOB 11 11 

Oil 1/1 2/1 

0/2 1/2 2/2 
0/3 1/3 2/3 

18 
11 

3/1 

3/2 
3/3 

0/4 
0/5 

0/6 

0/7 

0/8 

1/4 2/4 3/4 

1/5 2/5 3/5 

1/6 2/6 3/6 

1/7 2/7 3/7 

1/8 2/8 3/8 

20 
11 

4/1 

4/2 
4/3 

4/4 

4/5 

4/6 

4/7 
4/8 

28 30 38 40 48 50 58 60 68 70 78 
11 11 11 11 11 11 11 11 11 11 ZRL 

5/1 6/1 7/1 8/1 9/1 All B/l Cll Oil Ell F/l 

5/2 6/2 7/2 8/2 9/2 A/2 B/2 C/2 0/2 E/2 F/2 

5/3 6/3 7/3 8/3 9/3 A/3 B/3 C/3 0/3 E/3 F/3 

~ ~ rn ~ ~ AA ~ ~ M ~ 

~ ~ m ~ ~ M ~ ~ M ~ 
~ ~ m ~ ~ M ~ ~ M ~ 

F/4 

F/5 

F/6 

F/7 

F/8 
5/7 6/7 7/7 8/7 9/7 A/7 B/7 C/7 0/7 E/7 
5/8 6/8 7/8 8/8 9/8 A/8 B/8 C/8 0/8 E/8 

OxE480 0/9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 919 A/9 B/9 C/9 0/9 E/9 F/9 

OxE500 O/A l/A 2/A 3/A 4/A 5/A 6/A 7/A 8/A 9/A AlA B/A CIA O/A E/A F/A 
OxE580 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

RRRR I SSSS 
V-DC 

OxE600 

C-AC 
OxE800 

OxE880 

OxE900 

OxE980 

OxEAOO 

OxEA80 

OxE800 

o 2 3 4 5 6 7 8 9 A 8 11 11 11 11 

Category 

00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 
EOB 11 11 11 

3/1 

3/2 

11 11 11 11 11 11 11 11 11 11 11 ZRL 

Oil 1/1 2/1 4/1 5/1 6/1 7/1 8/1 9/1 All B/l Cll Oil Ell F/l 

0/2 1/2 2/2 4/2 5/2 6/2 7/2 8/2 9/2 A/2 B/2 C/2 0/2 E/2 F/2 

0/3 

0/4 

0/5 

0/6 

1/3 2/3 3/3 4/3 

1/4 2/4 3/4 4/4 

1/5 2/5 3/5 4/5 

1/6 2/6 3/6 4/6 

~ ~ m m m ~ ~ ~ ~ ~ 
~ ~ rn ~ ~ AA ~ ~ M ~ 

~ ~ m ~ ~ M ~ ~ M ~ 
~ ~ m ~ ~ M ~ ~ M ~ 

F/3 

F/4 

F/5 

F/6 

OxE880 0/7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7 A/7 B/7 C/7 0/7 E/7 F/7 

OxECOO 0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 9/8 A/8 8/8 C/8 0/8 E/8 F/8 

OxEC80 0/9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 919 A/9 B/9 C/9 0/9 E/9 F/9 

OxEDOO O/A l/A 2/A 3/A 4/A 5/A 6/A 7/A 8/A 9/A AlA 8/A CIA O/A E/A F/A 
OxED80 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

RRRR I SSSS 
C-DC 

OxEEOO o 2 3 4 5 6 7 8 9 A 8 11 11 11 11 

Category 

Figure 8-22 CL550 Huffman Table Layouts in Compression Mode 
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19 4 3 0 

I Code Bits (MSB Aligned) I Length - 1 I 
Figure 8-23 CL560 Machine-Specific Huffman Table Entry Format 

Each RAM cell is accessible from the CL560 Host Bus in 10-bit halves, 
with the least significant half at the lower address. An example is given 
in Figure 8-24. The CODE bits refer to Figure 8-23 above. Note that in 
order to read or write Huffman table entries, the Huffman Load Enable 
Register must be programmed to 1. 

15 10 9 4 3 0 

OxEOOO I Don't Care I Code Bits [9:4] Length - 1 

15 10 9 4 3 0 

OxE004 I Don't Care I Code Bits [19:10] 

Figure 8-24 Example for Accessing a Table Entry at Address OxEOOO 

Example: Program the first Y-AC table location (Run/Size = % or 
EOB) with the example table value found in Appendix K of the ISO 
JPEG specification. From these tables, the CODE value is OxOOOA, and 
the Code Length value is 4 bits. The 20-bit CL560 machine-specific 
code word is calculated as: 

CL560CodeWord = (( Code« (20-Length» + (Length - 1) 

This results in the hex value OxA0003. This value is then split into two 
halves as follows: 

CL560Code Word_Low = CL560Code Word & Ox03FF 

= Ox0003 (loads into address EOOO) 

CL560CodeWord_High = (CL560CodeWord» 10) & Ox03FF 

= Ox0280 (loads into address E004) 
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B.9 
CL5xx Ouantizer 

Table Programming 

This section discusses generation of the CL5xx Quantizer tables. An 
overview is presented, followed by the detailed procedures for creating 
Quantization tables for use with the CL5xx devices. Loading of the 
CL5xx Quantizer tables is discussed in Section 8.7. Functions for han­
dling Quantizer tables are provided on the CL550/CL560 Program Ex­
amples Disk in the file makeQ.c. 

B.9.1 Overview 

In pure JPEG terms, the actual compression ratio depends on the quan­
tization tables and the Huffman tables, but most of all on the image data 
itself. For a constant set of Huffman and quantization parameters, the 
compression ratio will vary depending on the amount of AC terms that 
are present in the image data. Quantizer tables are used to filter out AC 
terms that are normally unnoticeable to the human eye. A higher rate of 
quantization means that more AC terms are reduced to zero, giving a 
higher compression ratio. The trade-off is that the higher the rate of 
quantization is, the greater the data loss will be. At some point, the video 
quality will degrade to a level that is unacceptable to the user. 

Although the Quantizer tables themselves do not control the exact com­
pression ratio, they are the only real control that the user has over the 
compression ratio in a video compression situation. For simple com­
pression applications, the application uses one set of quantization pa­
rameters for the entire video sequence. For more advanced applications, 
the quantizer tables can be updated on a frame-by-frame basis to more 
tightly regulate the compressed output rate. C-Cube's CL5xx proces­
sors can accept the full range of quantization sets allowed under the ISO 
JPEG Baseline System. They also support switching of quantizer tables 
on a frame-by-frame basis. 

Figure 8-25 illustrates the basic procedures used in creating quantizer 
tables for the CL5xx devices. The first part of the flow relates only to 
creating the Q-tables used during compression. It is used to set up the 
JPEG quantization parameters for a desired compression level based on 
a standard set of weighting functions, or "visibility matrices" and a sca­
lar, or Q Factor. The second part involves taking the actual quantization 
parameters and generating machine-Ioadable forms of the tables for ei­
ther compression or decompression. This procedure must be followed 
for each table that is to be used (up to four per image in the baseline 
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case). 

~ Compression Only Compression and Decompression -.j 

Figure 8-25 Typical Flow for Generating a CL5xx Quantizer Table 

Color images typically use at least two quantization tables. For exam­
ple, a YUV 4:2:2 image uses two tables: one for the luminance compo­
nent, and one for the chrominance components. This means that a total 
of 128 quantization terms need to be updated each time the compression 
ratio is changed. To simplify this process, the concept of the Q Factor is 
introduced. The Q factor is not part of the JPEG standard. Rather, it is a 
simple means of scaling a constant set of values to produce a range of 
compression ratios. By using the Q Factor, the user needs to specify 
only one term, as opposed to 128, in order to change the compression 
ratio. 

Consider the psychovisual weighting functions shown in Figure 2-3. 
These tables (call them "visibility tables") are used to establish the basic 
shape of the filter curve in two dimensions. They are based on a suite of 
video test clips submitted to the JPEG working group and are fairly well 
tuned for video applications. By using these tables as a working base a 
range of compression ratios can be obtained simply by scaling the base 
table by the Q Factor. The output of the scaling process is a table that 
contains actual JPEG quantization parameters that can either be put into 
the ISO stream header or used to perform compression or decompres­
sion. 

8.9.2 Q Table Scaling Function 

The CL550/CL560 Program Examples Disk provides a function called 
Make lPEG_Q_Table(). This function takes as its input a visibility table 
like the component matrix in Figure 2-3 and a Q Factor (an integer be­
tween 1 and 255). Each item in the visibility matrix is multiplied by QI 
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short 

short 

unsigned char 

short i; 

50, limited between 1 and 255, then stored in zig-zag order.as shown in 
Table 2-2. This scaling function is listed in Figure 8-26. 

QFactor, /* scalar */ 

* Input_Visi_Table, /* visibility matrix, non-zig-zag */ 

*JPEG_Q_Table /* output list. zig-zagged */ 

unsigned short temp; 

for( i = 0; i < 64; i++) 

/* read input array in zig-zag order, scaling the results 

and placing them into JPEG_Q_Table */ 

temp = (short) ((Input_Visi_Table[ ZigZag[i] 

* QFactor / 50.0) + 0.5 ); 

if ( temp < 1) 

temp = 1; /* minimum value is 1 */ 

if( temp> 255) 

temp = 255; /* maximum value is 255 */ 

JPEG_Q_Table[i] = (unsigned char) temp; 

Figure 8-26 Quantizer Table Scaling Function 

The output of this function is an integer matrix in ISO JPEG order. This 
table can be attached to the JPEG stream header for export or used to 
create machine-Ioadable tables for the CL5xx device. 
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8.9.3 Generating Machine-Loadable Q Tables for CL5xx Devices 

Once the JPEG quantizer tables have been created or read in from the 
incoming file header, they must be converted for use with the CL5xx de­
vices. The CL5xx Quantizer unit is actually a 16 x 16 multiplier. The 
multiplier unit is shared with the DCT/IDCT unit, which is also a mul­
tiplier. To save silicon, these two multiplies are integrated in a single 
multiplier stage. When generating Q tables for the CL5xx devices, the 
program must also combine factors used in the DCT computation. 

The CL550/CL560 Program Examples disk provides a function called 
MakeCL5xx_Q_TableO. This function accepts an input table in ISO 
JPEG order and produces a machine-Ioadable table as its output. The 
function is direction-sensitive, and the direction is specified in the glo­
bal variable Direction. DCT factors are stored in a standard header file 
called "makeQ.h". There, they are referred to as "K_Factors". Note that 
floating-point math is used in this routine. Some C compilers may vary 
in this area. This function is listed below. Refer to the examples disk for 
header file constants. 
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unsigned char *JPEG_Q_Table, 

unsigned short *CL550_Q_Table 

short i, j; 

short qshift; 

unsigned short Temp; 

unsigned short Unzigged[64]i 

unsigned short Temp_Q_Table[64]i 

/* 1. first, the JPEG_Q_Table is unzigged from its zig-zag order */ 

for ( i = 0 ; i < 64 i i++ 

UnZigged[ ZigZag[i] ] (unsigned short) JPEG_Q_Table[iJ; 

/* 2. From the UnZigged table, generate tables for the CL550 */ 

if( Direction == COMPRESS 

{ 

/* build a compression table */ 

for( i = 0; i < 64 ; i++ 

Temp_Q_Table[i] 

(unsigned short) (CompKFactor[i] / (UnZigged[i] « 1) + .5); 

if Temp_Q_Table[i] > (unsigned short) 32767. 

Temp_Q_Table[i] (unsigned short)32767.0i 

else /* Direction DECOMPRESS, build a decompression table */ 

Figure 8-27 Make CL5xx Quantizer Table Function Listing 
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/* 3. Convert the Temp_Q_Table to CL550 ordering using a corner-to-corner 

transposition */ 

for ( i=O; i<B; i++ ) 

for ( j=O; j<B; j++ 

CL550_Q_Table[i*8+j] 

/*****************************************************************/ 

/* CountBits() -

*/ 

This function returns the number of significant bits for a given input 

value. 

static short CountBits( unsigned short quant ) 

int i; 

unsigned char mask; 

for (i=O, mask=OxBO; i<B; i++,mask»=l) 

if (mask & quant) return(i); 

Figure 8-27 

for( i = 0; i < 64; i++ 

Temp_Q_Table[i] = (unsigned short) (DecompKFactor[i] 

* Unzigged[i] 

* pow( (double) 2, (double)CountBits(UnZigged[i]) ) + .5); 

/* truncate to 13 significant bits */ 

Temp_Q_Table[i] &= Oxfffc; 

qshift = 7 - CountBits( UnZigged[i] ); 

Temp_Q_Table[i] = (qshift«13) + (Temp_Q_Table[i] »2) ; 

/* exponent + mantissa */ 

Make CL5xx Quantizer Table Function Listing 
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8.10 
Custom Block 

Sequencing 

This section describes the CL5xx's component block sequence regis­
ters. These registers control the sequencing of component blocks within 
the various processing stages of the CL550. For certain applications, 
these registers can be programmed to accommodate user-specified 
block sequences. 

8.10.1 Restrictions 

To use the CL5xx devices for custom block sequences, the CL5xx de­
vice must be configured in the MONO, or "Bypass" mode. In this mode 
the PXDAT bus is routed directly to the DCT input. All other modes use 
the MCU Block Store, which generates a pre-defined, hardwired block 
sequence. For these other modes of operation, C-Cube has specified 
standard values for these registers (see Chapter 7), and users should not 
make any changes to them. 

A further restriction in this mode is that the strip buffer addressing 
scheme expects a single-component stream. Multicomponent streams 
having custom sequences should be passed in block format, and the 
SRAM Strip buffer should not be used. 

8.10.2 CL5xx Internal Component Sequencing 

To understand custom sequencing with the CL5xx it is important to first 
understand how the CL5xx formats its data internally and prepares it for 
processing. The first step in this process is the actual data acquisition it­
self. The Video interface accepts pixel data in one of six different for­
mats: Gray-Scale, YUV 4:2:2, YUV 4:4:4 (or RGB4:4:4), 4:4:4:4, RGB­
to-YUV 4:2:2, and YUV 4:4:4-to-YUV 4:2:2. The format required for 
the input pixels is 8x8 block ordering. Block ordering can be performed 
using the strip buffer SRAM which is driven by the CL5xx device 

Before the pixels can be processed using JPEG, the pixel blocks them­
selves must be separated into individual component blocks, each 64 
bytes in size. This function is performed by the CL5xx's MCU Block 
Storage Unit (BS·U). The BSU provides four 64-byte RAM queues to 
separate and sequence the individual component blocks to and from the 
DCTIIDCT unit. Each 64 ticks of the PXCLK, a new component block 
is sequenced into the DCT/IDCT unit for processing. The sequencing 
controls in this unit are hardwired and cannot be altered. The only pixel 
mode that lends itself to custom sequencing is the Gray-Scale mode. In 
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this mode, the BSU is effectively bypassed, allowing direct DCT input. 
Figure 8-28 below describes the internal component sequence orderings 
for each pixel mode. The left-most symbols are first in time order. 

Gray Scale (Bypass) Mode 

PXDO-7 gO g2 g4 g6 .. . 
PXDS-15 glg3g5g7 .. . 

YUV4:2:2 Mode 

PXDO-7 yO y1 y2 y3 ... 
PXDS-15 uO vO ul vl ... 

YUV4:4:4 Mode (RGB4:4:4) 

PXDO-7 yO y1 y2 y3 .. . 
PXDS-15 uO u1 u2 u3 .. . 
PXD16-23 vO v1 v2 v3 .. . 

Block Storage 
Unit 

Block Storage 
Unit 

Block Storage 
Unit 

GO G 1 G2 G3 G4 G5 G6 ... 

YOY1 UOVOY2Y3 U1 V1 ... 

YO UO VO XX Yl Ul Vl XX ... 

Note: XX designates "Don't Care"; This is an Idle Block Cycle. 

4:4:4:4 Mode 

PXDO-7 cO yO cl y1 ... 
PXDS-15 rnO kO rn1 k1... 

RGB-to-YUV4:2:2 Mode 

PXDO-7 
PXDS-15 
PXD16-23 

rO rl r2 r3 ... 
gO gl 92 g3 .. . 
bO b1 b2 b3 .. . 

YUV4:4:4-to-YUV4:2:2 Mode 

PXDO-7 yO y1 y2 y3 .. . 
PXDS-15 uO u 1 u2 u3 .. . 
PXD16-23 vO v1 v2 v3 .. . 

Block Storage 
Unit 

Block Storage 
Unit 

Block Storage 
Unit 

CO MOYO KO Cl Ml Y1 K1 ... 

YOY1 UOVOY2Y3 Ul V1 ... 

YO Yl UO VO Y2 Y3 Ul Vl ... 

Figure 8-28 CL5xx Block Storage Unit Component Sequencing 

8.10.3 CL550 Component Sequence Programming 

Several of the CL550's internal processing units have been made pro­
grammable to accommodate the various block sequences produced by 

Custom Block Sequencing 
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the Block Storage Unit (BSU). Because the BSU outputs a fixed block 
sequence for each pixel mode, a default set of sequence values and table 
structures is recommended for most applications. However, it is possi­
ble to use standard BSU output sequences to mimic a user-specified pix­
el type by altering the sequence programming within the CL550. 

Quantizer Table Sequence Programming 

As blocks are passed out of the DCT unit during compression, they are 
quantized using one of four quantization tables resident in the CL550's 
Q Table RAM. Two registers are used to control the selection of tables 
on a block-by-block basis; the Quantizer Y/C Sequence register and the 
Quantizer AlB Table Sequence register. 

13 10 9 o 
Length Field Sequence Field 

Figure 8-29 Quantizer VIC Sequence Register 

Figure 8-29 shows the Quantizer Y/C Table Sequence register (Address 
OxBE08, 14-bits, write-only). The Length field determines the total 
number of blocks in the sequence, and the value must be between 5 and 
10. The Length field also specifies the number of sequence bits to be 
used for table selection (bit 0 to bit n, where n = length -1). 

The Sequence Field specifies the table selection sequence. Zero selects 
the Y table, and 1 selects the C table. Table sequences are specified from 
low bit to high bit, wrapping around to the low bit when the highest val­
id sequence field bit is reached. During compression operations, the 
starting bit in the sequence depends on pixel mode. During Gray-Scale 
mode, bit 2 is the starting bit. For all other modes, bit 5 is the starting 
bit. For decompression operations, bit 2 is the starting bit for all modes. 

For example, to specify a sequence for YUV 4:2:2 the internal block se­
quence is YYUVYYUv. A sequence length of eight is used, because 
four is too small. The sequence bits that need programming are 0 
through 7. Starting from bit 5, bits are programmed 0, 0, 1, 1,0,0, 1, 1. 
When bit 7 is reached, the sequence loops to bit O. This is illustrated in 
Figure 8-30. During decompression, the same sequence is used, only 
starting at bit 2. Figure 8-31 shows the Quantizer AlB Table Sequence 
Register (Address OxBEOC, 10-bits, write-only). 
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13 12 11 10 9 9 7 6 5 4 3 2 1 0 

0 0 0 X X 
1 ~ 0 0 I 0 0 

I III 
1 .1 

Figure 8-30 Quantizer VIC Sequence Register Example 

9 0 

Figure 8-31 Quantizer AlB Sequence Register 

This register contains the sequence selection order for the AlB table 
banks. A zero bit selects the A table bank, and a one selects the B table 
bank. The method for programming this register is the same as for the 
Quantizer Y IC Sequence Register. In the YUV 4:2:2 example above, 
only two tables are ust;d, and this register is loaded with zero. 

Note: During 4:4:4 mode operations the 'XX' blocks must also be spec­
ified in the Y IC and AlB sequence registers, even though the bit has no 
meaning. This is required as padding in the sequence to keep it synchro­
nizedwith the BSU. 

Huffman Table Sequence Registers 

Huffman table selection must also be programmed for each CL550 
mode using the Huffman Table Sequence register (Address AOOO). This 
register controls the selection of Huffman tables on a block-by-block 
basis. The register is 10-bits wide, and is write-only. Sequences are 
specified starting from bit zero, and move to the higher bits. A zero bit 
selects the Y table set, and a one selects the C table set. The number of 
bits in the sequence is determined by the sequence length that is pro­
grammed into the Decoder Sequence Length register (address A80C). 
For example, for a sequence YYUVYYUV, the Decoder Sequence 
Length register is loaded with 1000, and the Huffman Table Sequence 
Register is loaded with xxll00ll00. The minimum sequence length al­
lowed is 5, therefore a YYUV block order is specified as YYUVYYUV. 

Custom Block Sequencing 
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DPCM Register Sequence Programming 

There are four internal registers that hold the predictor values used 
when computing the DPCM values for DC terms. Each register holds a 
predictor for its particular component, and the sequence for selecting 
these registers must be specified on a block-by-block basis. Two regis­
ters are used to specify the table selection sequence. These are the 
DPCM Register Sequence High (Address A004), and DPCM Register 
Sequence Low (Address A008) registers. These registers are IO-bits 
wide, and are write-only registers. They are used in combination to se­
lect one of four predictor value registers. For example, bit zero from 
each register is used to form a two-bit value that selects one of the four 
predictor value registers. The actual register chosen for a particular 
component is not important, as long it is used for only one component. 
For example, consider the sequence CMYKCMYK. The Decoder Table 
Sequence Length would be loaded with 8, and the DPCM Register Se­
quence registers would be programmed starting from bit zero: 

9 o 
x X o 0 o 0 DPCM Register Sequence High 

X X 1 0 1 0 101 0 DPCM Register Sequence Low 

K Y M C K Y M C 

Figure 8-32 DCPM Register Sequence 

Note: When programming the Huffman Table Sequence and DPCM Se­
quence registers for 4:4:4 modes, the 'XX' value of the BSU sequence 
is not important, and a padding bit is not required. For example, in 
YUV 4:4:4 mode, the Length field of the Quantizer Y /C Sequence Reg­
ister is programmed for 8, and a sequence field of 8 bits is used, using 
two padding bits (YUVXYUVX). However, the Huffman Table Se­
quence register is loaded with 6, and the Huffman table sequence spec­
ified follows the sequence YCCYCC, with no padding bits. This is due 
to the fact that the Huffman Coder/Decoder is separated from the Quan­
tizer by the internal FIFO, and it is not necessary to synchronize to BSU 
timing. 
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pinout, CPGA package, 6-26 
pinout, MQUAD package, 6-30 
quantizer table programming, 8-50 
register reset values, 8-39 
slave-mode compression opera-

tion, 8-23 
startup sequence, 8-37 
typical system configurations, 8-1 
use of DMA and interrupts with, 8-

12 
CL550 and CL560, differences, 4-2 
CL550 and CL560, differences be­

tween, 3-3, 8-16 
CL560 

absolute maximum ratings, 6-2 
AC characteristics, 6-3 
applications, 1-3 
compression concepts, 8-16 
custom block sequencing, 8-56 
data rate, 1-2 
data rate control mechanisms, 8-19 
DC characteristics, 6-2 
decompression concepts, 8-28 
device reset, 8-38 
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DMA transfers, 4-14 
features, 1-2 
filling.the FIFO, 8-29 
functional description, 1-6 
initialization procedures, 8-30 
logic diagram, 3-2 
operating conditions, 6-2 
physical dimensions, CPGA pack­

age, 6-24 
physical dimensions, MQUAD 

package, 6-29 
pinout, CPGA package, 6-26 
pinout, MQUAD package, 6-30 
quantizer table programming, 8-50 
register reset values, 8-39 
slave-mode compression opera-

tion, 8-23 
startup sequence, 8-37 
synchronous interface, 5-18 
typical compression system, 8-21 
typical system configurations, 8-1 
typical video application, 5-14 

CLK3, 3-11, 5-4 
CMYK,I-2 
CODEC FIFO, 7-40 
Codec register, 7-39 
Coder Attributes register, 7-21 
Coder Coding Interval registers, 7-22 
Coder Rate Control Active register, 

7-24 
Coder Rate Control Enable register, 

7-24 
Coder Robustness Active register, 7-

25 
Coder RST Padding Control register, 

7-25 
Coder Sync register, 7-22 
CoderlDecoder DPCM register, 7-19 
color conversion, 5-12 
color conversion matrix, 8-35 
color transformation matrix, 7-13 
Compressed Word Count registers, 7-



23 
compression ratio 

range, 1-1 
compression timing, 5-19 
Configuration register, 7-28 
CPGA package 

physical dimensions, 6-24 
pinout, 6-26 

custom block sequencing, 8-56 

D 
DC characteristics, 6-2 
DCT lookup table, 8-35 
DCT tables, 7-15 
DCT, see discrete cosine transform, 

2-2 
DCTIIDCT processor, 1-2 
Decoder Code Order register, 7-27 
Decoder DPCM Reset register, 7-20 
Decoder Marker register, 7-26 
Decoder Resume register, 7-26 
Decoder Start register, 7-27 
Decoder Table Sequence Length reg­

ister, 7-26 
Decoding Mismatch Error Code reg-

ister, 7-28 
Decoding Mismatch register, 7-27 
decompression timing, 5-29 
device reset, 8-38 
discrete cosine transform, 2-2 

theory, 2-4 
DMA access timing, 4-12 
DMA read timing, 4-17 
DMA Request Interrupt Mask regis-

ter, 7-35 
DMA write timing, 4-15 
DMA_MSTR, 3-4,4-12 
DPCM register sequence program­

ming, 8-60 
DRQ, 3-4,4-12 

AC timing, 6-5 

E 
8-bit grayscale, 1-2 

F 
FIFO Level register, 7-40 
Flags register, 7-31 
FRMEND, 3-7 
FRMEND Enable register, 7-38 

H 
HActive register, 7-9 
HALF_FULL, 4-26 
HALF _FULL, 3-5 
HBCLK, 3-7, 4-4 

AC timing, 6-4 
HBOUT, 3-4, 4-7 
HBUS[31:0],3-3 
HBUS[31 :0],4-4 
HBUS_32, 3-3, 3-4, 4-4 
HControl register, 7-12 
HControl registers, programming, 8-

34 
HDelay register, 7-8 
host bus interface, 1-1 
host interface 

AC timing, CPGA package, 6-14 
AC timing, MQUAD package, 6-

15 
block diagram, 4-2 
burst-mode read, 4-22 
burst-mode write, 4-20 
design considerations, 4-23 
error conditions, 4-9 
functional description, 4-1 
register access timing, 4-3 
register read, 4-9 
register write, 4-11 
signal descriptions, 3-3 

HPeriod register, 7-7 
HSYNC, 3-10, 5-4 
HSync register, 7-8 
Huffman code tables, 7-20 
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Huffman Table Load Enable register, 
7-20 

Huffman table sequence program­
ming, 8-59 

Huffman Table Sequence register, 7-
21 

Huffman tables, 1-2 
detecting bad, 8-45 
programming, 8-41 

HV Enable register, 7-13 

I 
ID[3:0], 3-4, 4-4 
Init registers, 7-30 
initialization procedures, 8-30 
interface, host bus, 1-1 
interface, video, 1-1, 1-4 
IRQI, 3-5, 4-26 
IRQl Mask register, 7-34 
IRQ2,4-26 
IRQ2, 3-5 
IRQ2 Interrupt Mask register, 7-37 

J 
JPEG, 1-1 

algorithm, 2-3 
baseline sequential process, 2-2 
entropy encoding, 2-8 
overview, 2-1 
quantization, 2-5 
zero run-length coding, 2-7 

JPEG video 
continuous stream model, 8-4 
frame-by-frame model, 8-4 

JPEG video concepts, 8-4 

M 
MQUAD package, 1-2 

physical dimensions, 6-29 
pinout, 6-30 
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N 
NMRQ, 3-5, 4-26 
NMRQ Interrupt Mask register, 7-33 

o 
operating conditions, 6-2 

p 

package, MQUAD, 1-2 
package,PGA, 1-2 
PGA package, 1-2 
pixel order conversion, 5-10 
PXADR[15:0], 3-8, 5-3 
PXCLK, 3-11, 5-4 
PXDAT[23:0], 3-8, 5-3 
PXIN, 3-9,5-3 
pxOU'I', 3-9, 5-3 
PXPHASE, 3-11, 5-4 
PXRE, 3-8, 5-3 
PXWE, 3-9, 5-3 

Q 
quantizer, 1-2 
Quantizer AlB Table Select register, 

7-16 
Quantizer.AIB Table Sequence regis-

ter, 7-18 
Quantizer Sync register, 7-18 
quantizer table programming, 8-50 
quantizer table scaling function, 8-51 
quantizer table sequence program-

ming, 8-58 
quantizer tables, 7-15 

generating machine-Ioadable, 8-53 
Quantizer Y IC Table Sequence regis­

ter, 7-17 

R 
register 

CODEC, 7-39 
CODEC FIFO, 7-40 
Coder Attributes, 7-21 



Coder Coding Interval, 7-22 
Coder Rate Control Active, 7-24 
Coder Rate Control Enable, 7-24 
Coder Robustness Active, 7-25 
Coder RST Padding Control 

Acive, 7-25 
Coder Sync, 7-22 
CoderlDecoder DPCM, 7-19 
color transformation matrix, 7-13 
Compressed Word Count, 7-23 
Configuration, 7-28 
DCT tables, 7-15 
Decoder Code Order, 7-27 
Decoder DPCM Reset, 7-20 
Decoder Marker, 7-26 
Decoder Resume, 7-26 
Decoder Start, 7-27 
Decoder Table Sequence Length, 

7-26 
Decoding Mismatch, 7-27 
Decoding Mismatch Error Code, 

7-28 
DMA Request Interrupt Mask, 7-

35 
DPCM, sequence programming, 

8-60 
FIFO Level, 7-40 
Flags, 7-31 
FRMEND Enable, 7-38 
HActive, 7-9 
HControl,7-12 
HControl, programming, 8-34 
HDelay, 7-8 
HPeriod,7-7 
HSync, 7-8 
Huffman code tables, 7-20 
Huffman Table Load Enable, 7-20 
Huffman Table Sequence, 7-21 
HV Enable, 7-13 
Init, 7-30 
IRQl Mask,7-34 
IRQ2 Interrupt Mask, 7-37 

NMRQ Interrupt Mask, 7-33 
Quantizer AlB Table Select, 7-16 
Quantizer AlB Table Sequence, 7-

18 
Quantizer Sync, 7-18 
quantizer tables, 7-15 
Quantizer Y IC Table Sequence, 7-

17 
S-Reset, 7-29 
Start, 7-29 
Start of Frame, 7-26 
VActive, 7-9, 7-11 
VControl,7-12 
VControl, programming, 8-34 
VDelay, 7-10 
Version, 7-30 
Vertical Line Count, 7-12 
Video Latency, 7-11 
VSync, 7-10 

register reset values, 8-39 
registers 

compression and decompression, 
7-15 

pipeline configuration, 8-36 
programming video control, 8-32 
sequence control, 8-35 
video field, 7-6 
video interface, 7-6 

RESET, 3-7,4-25 
AC timing, 6-4 

RGB,I-2 
RST interval, selection, 8-36 

S 
signals, external 

BLANK, 3-10, 5-4 
CLK3, 3-11, 5-4 
DMA_MSTR, 3-4, 4-12 
DRQ, 3-4, 4-12 
FRMEND, 3-7 
HALF_FULL, 4-26 
HALF _F OLL, 3-5 
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HBCLK, 3-7, 4-4 
HBOO'l', 3-4, 4-7 
HBUS[31:0],3-3 
HBOS[31:0],4-4 
HBOS_32, 3-3, 3-4,4-4 
HSYNC, 3-10, 5-4 
ID[3:0], 4-4 
ID[3:0],3-4 
IRQI, 3-5,4-26 
IRQ2,4-26 
IRQ2,3-5 
NNIRQ, 3-5,4-26 
PXADR[15:0], 3-8, 5-3 
PXCLK, 3-11, 5-4 
PXDAT[23:0], 3-8, 5-3 
PXIN, 3-9, 5-3 
PXOOT, 3-9, 5-3 
PXPHASE, 3-11, 5-4 
PXRE, 3-8, 5-3 
PXWE, 3-9, 5-3 
RESET, 3-7, 4-25 
STALL,3-10 
STAIJ::, 5-3, 5-7 
START, 3-6, 4-4 
TEST,3-8 
TIiID, 3-6, 4-5 
TlVIT, 3-6, 4-5 
ThI2, 3-7,4-5 
TMOOT, 3-7,4-5 
YSYNC, 3-10, 5-4 

S-Reset register, 7-29 
STALL,3-10 
STAIJ::, 5-3, 5-7 
START, 3-6, 4-4 
Start of Frame register, 7-26 
Start register, 7-29 
startup sequence, 8-37 
synchronous interface, 5-18 

T 
table 

DCT lookup, 8-35 

Index-6 C-Cube Microsystems 

Huffman, sequence programming, 
8-59 

quantizer, programming, 8-50 
quantizer, scaling function, 8-51 
quantizer, sequence programming, 

8-58 
tables 

DCT,7-15 
Huffman code, 7-20 
Huffman, loading, 8-37 
Huffman, programming, 8-41 
quantizer, 7-15 
quantizer, generating machine­

loadable, 8-53 
quantizer, loading, 8-37 

TEST,3-8 
timing 

DMA access, 4-12 
DMA read, 4-17 
DMA write, 4-15 

TMU, 3-6, 4-5 
TMT, 3-6, 4-5 
TlVI2, 3-7,4-5 
TMOOT, 3-7, 4-5 

V 
VActive register, 7-9, 7-11 
VControl register, 7-12 
VControl registers, programming, 8-

34 
VDelay register, 7-10 
Version register, 7-30 
Vertical Line Count register, 7-12 
video field registers, 7-6 
video interface, 1-1, 1-4 

AC timing, 6-16 
AC timing, CPGA package, 6-21 
AC timing, full-rate compression, 

6-17 
AC timing, full-rate decompres­

sion, 6-18 
AC timing, half-rate compression, 



6-19 
AC timing, half-rate decompres­

sion, 6-20 
AC timing, MQUAD package, 6-

22 
block diagram, 5-2 
color conversion, 5-12 
color modes, 5-6 
compression timing, 5-19 
decompression timing, 5-29 
functional description, 5-1 
modes, 5-7 
pixel order conversion, 5-1 ° 
programming control registers, 8-

32 
registers, 7-6 
signal descriptions, 3-8 
window management, 5-12 

Video Latency register, 7-11 
video resolution 

CClR 601,1-2 
ClF, 1-2 

YSYNC, 3-10, 5-4 
VSync register, 7-10 

y 

YUV, 1-2 
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