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Preface

This manual is the primary users guide for the C-Cube CL550 and
CL560 JPEG Compression Processors. It contains detailed information
about the CL550 and CL560 hardware and also provides general infor-
mation on how to program the parts.

This manual is intended for: Audience

o System designers and managers who are evaluating the CL550
and CL560 for possible use in a system

o Designers and hardware engineers who are designing a system
based on the CL550 and CL560

o Programmers and software engineers who are writing application
programs that interact with the CL550 and CL560

This manual is divided into these chapters: Organization

o Chapter 1, Introduction, presents an introduction to the architec-
ture of the CL550 and CL560
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o Chapter 2, JPEG Overview, provides a brief overview of the JPEG
algorithm used by the compression processors.

o Chapter 3, Signal Descriptions, describes the function of each of
the external signals on the CL550 and CL560.

o Chapters 4 and 5, Host Interface and Video Interface, present
functional descritions for the main interfaces of the CL550 and
CL560.

o Chapter 6, Specifications, includes detailed electrical and me-
chanical specifications.

o Chapter 7, Registers, describes in detail each of the internal regis-
ters of the CL550 and CL560.

o Chapter 8, System Designer’s Guide, provides a general overview
on programming the CL550 and CL560 with initialization proce-
dures and compression/decompression procedure flowcharts.

Conventions Please note the following conventions that are used in this manual:

o Hexadecimal numbers are indicated by the prefix 0x, for example,
O0xFF. Binary numbers are indicated by a subscript, for example,
10,. Otherwise, all numbers used in this guide are decimal num-
bers unless otherwise noted.

Revision History This manual, part # 90-1556-101 Rev A., supersedes the previous revi-

sion by the same name. The major content changes include:
o Chapter 6, Specifications: AC timing parameters are listed for 7
products and speed grades:
o CPGA package (3): CL550-35, CL550-30, CL560-30

o MQUAD package (4): CL550-10, CL550-30, CL560-15,
CL560-30

o Chapter 8, System Designer’s Guide, is new.
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1
Introduction

The C-Cube CL550 and CL560 are high-performance single-chip com-
pression/decompression processors that implement the baseline
CCITT/ISO Joint Photographic Experts Group (JPEG) digital image
compression algorithm. The CL550 and CL560 processors are designed
for applications that require manipulation of high-quality digital pic-
tures and motion sequences.

These parts can encode and decode grayscale and color images at video
rates. The image compression ratio is controlled by the on-chip quanti-
zation tables. Compression ratios from 8:1 to 100:1 are possible de-
pending on the quality, storage and bandwidth requirements of each
application.

The CL550 and CL560 have on-chip video and host bus interfaces. The
video interface supports 8-bit grayscale, RGB, CMYK or 4:4:4:4, and
YUV (4:2:2 and 4:4:4) input and output. The host bus interface provides
a direct interface to the system bus for ease of system integration.
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CL550 Features

CL550 Features &

[m]

11 The CL550 compression/decompression processor features the follow-

Compressed output conforms to the JPEG Baseline Process as de-
fined by ISO IS 10918-1

Real-time compression and decompression of CIF (320 x 240 x 30
fields per second) and 1/2 CCIR 601 video (640 x 240 x 25 or 30
fields per second.

Up to 2 Mbytes/second sustained compressed data rate (CL550-
35)

Highly pipelined DCT/IDCT processor running at up to 35 Mhz
(CL550-35)

Support for 8-bit grayscale, RGB, CMYK or 4:4:4:4, and YUV
color space input and output

User-accessible quantizer and Huffman tables
Frame-by-frame adjustment of compression ratios
High integration

o On-chip DCT/IDCT processor

o On-chip quantizer and Huffman tables

o On-chip video interface

o On-chip 16-bit or 32-bit host bus interface

Standard 144-pin MQUAD and ceramic PGA packages
CMOS technology

The CL560 Compression processor has all of the features of the CL550,

C|.560 with these improvements:

Improvements

1-2 C-Cube Microsystems

O 0o O a

Up to 60 Mbytes/second sustained compression rate
Up to 15 million pixels/second processing rates
Highly pipelined DCT/IDCT processor runs at up to 30 MHz

Real-time compression of CCIR 601 video frames at broadcast-
quality levels

Improved Huffman table architecture allows the same table to be
used for compression and decompression, allowing faster switch-



ing between modes

Single cycle per 32-bit word Huffman CODEC

Synchronous or asynchronous video interface operation
On-chip 128 x 32 compressed data FIFO supports burst access
Improved interrupt structure and DMA support

0o o o o o

Compression rates as high as 50:1 for real-time video applications

Compression rates as low as 1:1 for high-quality printer, copier
and professional video applications

The CL560 pinout is a superset of the CL.550 pinout. Although the func-
tion of two pins has changed, most CL550 users can upgrade to the
CL560 with only minor changes to printed circuit board layouts.

O

These JPEG processors can be used in any of the following applica-
tions:

Multimedia

Video editing

Color publishing and graphics arts

Image-processing, storage and retrieval

Color printers, scanners and copiers

O 0o 0o o o o

High-speed image transmission systems for LANs, modem and
color facsimile

o Digital cameras

The CL550 and the CL560 are the two members in the JPEG compres-
sion/decompression processor family. The CL560 is an enhanced ver-
sion of the CL550.

The CL550 is the first product in the family. It is designed for use in PC
multimedia and still-image based systems where cost is a factor.

The CL560 is a new-generation JPEG processor designed for high-end
still image and real-time video compression and decompression. The
CL560 can compress and decompress full CCIR 601-resolution video
frames in real time, at compression ration as high as 50:1 or as low as

Applications

13
Applications

14
Product Family
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CL550 Functional Description

1:1. The CL560 is ideally suited for used in high-end printing and scan-
ning systems, high-speed digital copiers and printers, and a wide range
of broadcast-quality video editing applications.

This section describes the functional characteristics of each block with-

15 | :
CL550 Functional ™ the C-Cube CL550 processor. Figure 1-1 shows the processor’s major
Description functional blocks. The CL550 is a highly pipelined machines: there are
over 320 processing stages in the data path. Each stage in the JPEG
Baseline Sequential Process is implemented within this pipeline.
JPEG Compression Pipeline >
Zero Zig-zag
Huffman CO- Packer/ Scan Quant- DCT/
—| DEC L FIFO. — ynpacker| Unit izer iDCcT
Host Video
<€ |nterface | | | Interface [P
Huffman a Block
Tables Tables | | Storage [ |
I Utility Bus I A

Figure 1-1 CL550 Block Diagram

During compression operations, uncompressed pixel data is written into
the Video interface. The first operation that the video interface performs
is a raster-to-block conversion of the pixel data. This is necessary be-
cause video generation and display devices normally deal with pixel
data as raster lines, while the JPEG compression algorithm requires that
the pixel data be organized as § x 8 blocks. Logic in the CL550 device
performs that conversion.

The next step is the optional RGB-to-YUYV color space conversion. This
is also done in the video interface. Video generation and display devices
frequently present data to the CL550 as RGB pixels. The CL550 can
also perform the color space conversion. Other functions done by the
Video interface are pixel formatting and window sizing.

1-4  C-Cube Microsystems



CL550 Functional Description

Once the Video interface has formatted the pixel data, it writes the data
into the Block Storage unit. The Block Storage unit stores the 8 x 8
blocks until the JPEG compression pipeline is ready to process them. It
then sequences them into the pipeline one block at a time.

Each component block is then processed by the Discrete Cosine Trans-
form (DCT) unit. The resulting DCT coefficients are quantized by the
quantizer according to user-programmable quantization matrices. The
CL550 allows up to four 64-word quantization matrices to be stored on-
chip, and provides programmable sequence registers to allow the user
to select the appropriate matrix for each component block.

The quantized terms are then serialized by the Zig-zag scan unit and the
AC terms are run-length coded by the Zero Packer/Unpacker unit be-
fore being loaded into the FIFO. The FIFO serves as an intermediate
buffer between the Zero Packer/Unpacker unit and the Huffman Coder/
Decoder (CODEC) unit.

The Huffman CODEC draws the packed symbols from the FIFO, per-
forms Differential Pulse Code Modulation (DPCM) calculations on the
DC terms, and performs Huffman coding of both the DC and the AC
terms. Huffman codes are specified by the user, and stored in on-chip
table RAM that is loaded at initialization.

The Huffman codes are finally sent to the Host interface as JPEG com-
pressed data. The Host interface is designed to operate in cither slave
mode or master mode. In slave mode, the CL550 acts as a peripheral de-
vice to the host processor, using a data request/data available handshake
to control the transfer of data. In master mode, the CL550 works in con-
junction with an external DMA controller chip to allow high-speed
DMA transfers of data. The Host interface is explained in detail in
Chapter 4, Host Interface.

Compression operations follow the opposite procedure. JPEG com-
pressed data is written to the Host interface. The Host interface then
transfers the data to the Huffman CODEC, where it is decoded. The
packed symbols are put back into the FIFO. The Zero Packer/Unpacker
Unit accesses the FIFO symbols, generates the AC values, and passes
them to the Zig-zag Scan unit for reordering into 8 x 8 block format. The
DC terms are treated separately. Dequantization and Inverse DCT
(IDCT) are then performed on the reassembled blocks before they are
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CL560 Functional Description

1.6

CL560 Functional
Description

Host

<€ |nterface

sent to the Block Storage unit. The Video interface optionally performs
YUV-to-RGB color space conversion of the pixel data, realigns the 8 x
8 block data as raster lines, and outputs the lines to the external video
display device.

With this architecture, it is possible to construct very high-performance
compression systems for still-frame applications or motion video. The
CL550 parts can be reinitialized on a frame-by-frame basis, allowing
the programmer to change compression ratios at the end of each frame.
It also allows systems to be designed where the CL550 switches back
and forth between compressing and decompressing frames for half-du-
plex image communication.

This section describes the functional characteristics of each block with-
in the C-Cube CL560 processor. Figure 1-2 shows the processor’s major
functional blocks. The CL560 is a highly pipelined machine with over
320 processing stages in the data path. Each stage in the JPEG Baseline
Sequential Process is implemented within this pipeline. The major dif-
ference between the CL560 architecture and the CL550 architecture is
in the Huffman CODEC. The synchronous CODEC in the CL560 al-
lows data to be encoded or decoded in a single clock cycle, whereas the
asynchronous CODEC in the CL550 takes several clock cycles, thus al-
lowing higher throughput.

l«——  JPEG Compression Pipeline »>

Ping-

CODEC
FIFO

CODEC Ping- packer Unit izer IcT

Pong Z Zia-
Huffman ‘I: Buffer jl,Packirr(/)Un- Isgcg?,g Quant- DCT/

Pong

Buffer . Video
‘ | 1 interface [<&F>

Huffman Q Block
Tables Tables | | storage [

| Utility Bus 1

Figure 1-2 CL560 Block Diagram
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CL560 Functional Description

During compression operations, uncompressed pixel data is written into
the Video interface. The first operation that the Video interface performs
is a raster-to-block conversion of the pixel data. This operation is nec-
essary because video generation and display devices normally deal with
pixel data as raster lines, while the JPEG compression algorithm re-
quires that the pixel data be organized as 8 x 8 blocks. Logic in the
CL560 device performs that conversion.

The next step is the optional RGB-to-YUYV color space conversion, also
performed by the Video interface. Video generation and display devices
frequently present data to the CL560 as RGB pixels. The CL560 also
performs optional color space conversion. Other functions done by the
Video interface are pixel formatting and window sizing.

Once the video interface is through formatting the pixel data, it writes
the data into the Block Storage unit. The Block Storage unit stores the
8 x 8 blocks until the JPEG compression pipeline is ready to process
them. It then sequences them into the pipeline one block at a time.

Each component block is then processed by the Discrete Cosine Trans-
form (DCT) unit. The resulting DCT coefficients are quantized by the
quantizer according to user-programmable quantization matrices. The
CL560 allows up to four 64-word quantization matrices to be stored on-
chip, and provides programmable sequence registers to allow the user
to select the appropriate matrix for each component block. Up until this
point, the CL560 compression process has been identical to the CL550
compression process.

The quantized terms are then serialized by the Zig-zag scan unit and the
AC terms are run-length coded by the Zero Packer/Unpacker unit be-
fore being loaded into the Ping-pong buffer. The Ping-pong buffer is a
pair of synchronous 64-word registers used to smooth the flow of data
to and from the Huffman CODEC.

The Huffman CODEC draws the packed symbols from the Ping-pong
buffer, performs Differential Pulse Code Modulation (DPCM) calcula-
tions on the DC terms, and performs Huffman Coding of both the DC
and the AC terms. Huffman codes are specified by the user, and stored
in on-chip table RAM that is loaded at initialization.

The Huffman codes are then stored in a 128 x 32 CODEC FIFO. The
FIFO acts as a rubber-band buffer between the synchronous JPEG com-
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CL560 Functional Description

pression pipeline and the asynchronous Host Bus interface. The FIFO is
used to filter out fluctuations in the data rate. It allows fast-burst access
to the CL.560 to minimize the time needed to transfer data.

The Host interface is designed to operate in either register access mode
or DMA access mode. In register access mode, the CL560 acts as a pe-
ripheral device to the host processor, using a data request/data available
handshake to control the transfer of data. In DMA access mode, the
CL560 works in conjunction with an external DMA controller chip to
allow high-speed DMA transfers of data. The Host interface is ex-
plained in detail in Chapter 4, Host Interface.

Compression operations follow the opposite procedure. JPEG com-
pressed data is written to the Host interface. The Host interface then
stores the compressed data in the CODEC FIFO until it can be trans-
ferred to the Huffman CODEC for decoding. After decoding, the packed
symbols are stored in the Ping-pong buffer. The Zero Packer/Unpacker
Unit reads the Ping-pong buffer to retrieve the packed symbols, gener-
ates the AC values, and passes them to the Zig-zag Scan unit for reor-
dering into 8 x & block format. The DC terms are treated separately.
Dequantization and Inverse DCT (IDCT) are then performed on the re-
assembled blocks before they are sent to the Block Storage unit. The
Video interface optionally performs YUV -to-RGB color space conver-
sion of the pixel data, realigns the 8 x 8 Block data as raster lines, and
outputs the lines to the external video display device.

With this architecture, it is possible to construct very high-performance
compression systems for both video and still-frame applications. The
CL560 parts can be reinitialized on a frame-by-frame basis, allowing
the programmer to change compression ratios at the end of each frame.
It also allows systems to be designed where the CL560 switches back
and forth between compressing and decompressing frames for half-du-
plex image communication. ' )
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2
JPEG Overview

This chapter presents an overview of the JPEG video compression stan-
dard. The chapter is divided into these sections:

[m]

]

0

]

o a o

2.1, JPEG Background Information
2.2, Operation of the JPEG Algorithm
2.3, Discrete Cosine Transform

2.4, Quantization

2.5, Zero Run-Length Coding

2.6, Entropy Encoding

2.7, Summary of JPEG Baseline
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JPEG Background Information

2.1
JPEG Background
Information

The obvious advantages of digital image compression led to the forma-
tion of an international standards group: the Joint Photographic Experts
Group (JPEG). JPEG is a joint ISO/CCITT technical committee (ISO/
IEC JTC1/SC2/WG10, Photographic Image Coding) whose goal has
been to develop a general-purpose international standard for the com-
pression of continuous-tone (grayscale or true color) digital images.
The overall standard sets requirements and implementation guidelines
for the image coding and decoding processes and for the coded repre-
sentation of the compressed image data.

The standard defined by JPEG has usefulness in a broad range of appli-
cations. Because each application has different compression require-
ments, several processes for compression and decompression are
specified within the JPEG standard. The processes fall into three general
categories: the Baseline Sequential Process, the Extended DCT-Based
Processes, and the Lossless Process. All JPEG coders and decoders
must support the Baseline Sequential Process. All other processes are
optional extensions that can be useful in specific applications. For de-
tailed information on each of the processes, refer to the ISO Committee
Draft document, ISO/IEC CD 10918-1.

The Baseline Sequential Process is based on the Discrete Cosine Trans-
form (DCT) followed by variable-word-length coding (Huffman cod-
ing). This process provides substantial compression (up to 100:1) while
maintaining a high degree of visual fidelity in the reconstructed image.
DCT-based processes, however, are lossy processes. The reconstructed
images are not byte-for-byte equivalent to the source images. Further,
the level of loss in the image varies with the compression ratio. Typical-
ly, the Baseline Sequential Process can compress image data to about 1
bit/pixel or less with very good visual quality in the reconstructed im-
age. For example, a 24-bit RGB color image can be compressed to 1 bit/
pixel (less than 5% of the original size), and the reconstructed image
will be nearly indistinguishable from the original. The C-Cube CL550
is a VLSI implementation of the Baseline Sequential Process.
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The operation of the Baseline JPEG algorithm can be divided into three

basic stages, as shown in Figure 2-1:

Operation of the JPEG Algorithm

dperation of the

1. The removal of the data redundancy by means of the discrete  JPEG Algorithm

cosine transform (DCT).

2. The quantization of the DCT coefficients using weighting func-
tions optimized for the human visual system.

3. The encoding of the data to minimize the entropy of the quan-
tized DCT coefficients. The entropy encoding is done with a
Huffman variable-word-length encoder.

RGB to YUV Forward N .
Translation DCT > Quantization [ Encoding —>
YUV to RGB Reverse - .
Translation DCT <~ De-Quantization < Decoding e

Figure 2-1 Basic Image Compression Scheme for Coder and Decoder

Although color conversion is a part of the redundancy removal process,
it is not part of the JPEG algorithm. It is the goal of JPEG to be inde-
pendent of the color space. JPEG handles colors as separate compo-
nents. Therefore, it can be used to compress data from different color
spaces, such as RGB, YCbCr, and CMYK.

However, the best compression results are achieved if the color compo-
nents are independent (noncorrelated), such as in YCbCr, where most of
the information is concentrated in the luminance and less in the chrom-
inance. RGB color components can be converted via a linear transfor-

mation into YCbCr components, as shown in Table 2-1.
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Discrete Cosine Transform

2.3
Discrete Cosine
Transform

Table 2-1 Converting RGB Components to YChCr Components

Y 0293 0587 0.144 R
Cb |=| -0.169 -0.3316 0.0500 G
Cr 0500 -0.4186 -0.0813 B

Another advantage of using the YCbCr color space comes from reduc-
ing the spatial resolution of the Cb and Cr chrominance components.
Because chrominance does not need to be specified as frequently as lu-
minance, every other Cb element and every other Cr element can be dis-
carded. As a consequence, a data reduction of 3 to 2 is obtained by
transforming RGB into YCbCr 4:2:2. The conversion in color space is
a first step toward compressing the image.

For each separate color component, the image is broken into 8 x 8
blocks that cover the entire image. These blocks form the input to the
DCT.

In the 8 x 8 blocks, typically the pixel values vary slowly. Therefore, the
energy is of low-spatial frequency. A transform that can be used to con-
centrate the energy into a few coefficients is the two-dimensional 8 x 8
DCT. This transform, studied extensively for image compression, is ex-
tremely efficient for highly correlated data. :

Conceptually, a one-dimensional DCT can be thought of as taking the
Fourier Transform and retaining only the real (the cosine) part. The two-
dimensional DCT can be obtained by performing a one-dimensional
DCT on the columns and then a one-dimensional DCT on the rows. The
transformed output from the two-dimensional DCT is ordered such that
the mean value, the DC coefficient, is in the upper left corner of the 8 x
8 coefficient block and the higher frequency coefficients progress by
distance from the DC coefficient. Higher vertical frequencies are repre-

- sented by higher row numbers, and higher horizontal frequencies are

represented by higher column numbers.
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The next step is the quantization of the frequency coefficients. The co-
efficients are quantized to reduce their magnitude and increase the num-
ber of zero-value coefficients. A uniform quantizer was selected for the
JPEG baseline method. The step size is varied according to the coeffi-
cient location and tuned for each color component. This is shown in Fig-
ure 2-2 and Figure 2-3. Figure 2-3 illustrates two functional matrices
that have been optimized for CCIR 601 imagery.

Quantized Qutput

DCT Coefficient

Figure 2-2 Quantizer Stepping (Uniform Quantization)

w

The coding model rearranges the quantized frequency coefficients into
a zigzag pattern, with the lowest frequencies first and the highest fre-
quencies last. The zigzag pattern (shown graphically in Figure 2-4 and
numerically in Table 2-2) is used to increase the run-length of zero co-
efficients found in the block. The assumption is that the lower frequen-
cies tend to have larger coefficients and the higher frequencies are, by
the nature of most pictures, predominantly zero. As illustrated in Figure
2-4, the first coefficient (0,0) is called the DC coefficient and the re-
maining coefficients are AC coefficients. The AC coefficients are tra-
versed by the zigzag pattern from the (0,1) location to the (7,7) location.

Quantization

24
Quantization
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Quantization

8x8 DCT Coefficient Block

Y Component Matrix
16 " 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 58 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
Ch Cr Component Matrix
17 18 24 47 99 99 99 9
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Figure 2-3 Psychovisual Weighting Functions for the Luminance and
Chrominance Components

2-6 C-Cube Microsystems



DC Value

0

7

Zero Run-length Coding

AC Coefficient Start
7

— AC Coefficient End

Figure 2-4

Table 2-2

Zigzag Pattern for Reordering the 8 x 8 DCT Coefficients

Zigzag Sequence of Quantized DCT Coefficients

0 1
2 4
3 8
9 N
10 19
20 22
21 34
35 36

5
7
12
18
23
33
37
48

13
17
24
32
38
47
49

14
16
25
31
39
46
50
57

15
26
30
40
45
51
56
58

27
29
4
44
52
55
59
62

28
42
43
53
54
60
61
63

The DC coefficients of subsequent blocks often vary only slightly.
Therefore, differences between successive DC coefficients are small.
The coding of the DC coefficient exploits this property through Differ-
ential Pulse Code Modulation (DPCM). This technique codes the differ-
ence (Delta) between the quantized DC coefficient of the current block
and the DC coefficient of the previous block. The formula for the encod-
ing of the DC code is:

Delta= DC(0,0), - DC(0,0)_;

The inverse calculation takes place at the decoder.

The quantized AC coefficients usually contain runs of consecutive ze-

ros. Therefore, a coding advantage can be obtained by using a run- 2.5
length technique, where the upper four bits of the code symbol indicate Zero Run-length

Coding
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Entropy Encoding

2.6
Entropy Encoding

2.7
Summary of JPEG
Baseline

the number of consecutive zeros before the next coefficient and the low-
er four bits indicate the number of significant bits in the next coefficient.

Following the code symbol are the significant bits of the coefficient, the
length of which can be determined by the lower four bits of the code.
The inverse run-length coder translates the input coded stream into an
output array of AC coefficients. It takes the current code and appends to
the output array the number of zeros corresponding to the four bits used
for the run-length code. The coefficient placed in the output array has
the number of bits determined by the lower four bits of the run-length
code and a value determined by the number of trailing bits.

The block codes from the DPCM and run-length models can be further
compressed using entropy encoding. For the baseline JPEG method, the
Huffman coder is used to reduce entropy. One reason for using the Huff-
man coder is that it is easy to implement by means of a look-up table in
hardware. To compress data symbols, the Huffman coder creates shorter
codes for frequently occurring symbols and longer codes for occasion-
ally occurring symbols. Many applications may use predefined Huff-
man tables. Therefore, the baseline encoder can operate as a one-pass or
two-pass system. In the one-pass system, predetermined Huffman ta-
bles are used, whereas in the two-pass system, Huffman tables are cre-
ated that are specific to the image to be encoded.

The first step in creating the Huffman codes is to create a table assigning
a frequency count to each symbol. Symbols with a higher probability
are assigned shorter codes than the less frequently occurring symbols.

The baseline system provides efficient lossy image compression. It sup-
ports four color components simultaneously, with a maximum number
of eight input bits for each color pixel component.

The basic data entity is a block of 8 x 8 pixels. However, this block can
represent a large sub-sampled image area (for example, sub-sampled by
decimated chrominance signals). The blocks of the different color com-
ponents are sent interleaved, thereby allowing the decoder to create the
decompressed image and translate back to the original color space on
the fly.
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3
Signal Descriptions

This chapter describes the signals that comprise the external physical
interface to the CL550 and CL560. The information presented for each
signal includes the signal name and mnemonic, type (input, output, or
bidirectional), and description. For information about the functional op-
eration of these parts, see Chapters 4 and 5. For timing information, see
Chapter 6.

This chapter is divided into two sections that correspond to the compo-
nents that interface to the CL550 and CL560:

o 3.1, Host Interface
o 3.2, Video Interface

Figure 3-1 shows a diagram of each of the parts with the various signals
grouped together by function.
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Figure 3-1

3-2 C-Cube Microsystems
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Host Interface

The CL550 external interface differs from the CL560 by only two pins:

Table 3-1 CL550 and CL560 Redefined Signal Pins

CL560 CL550 CPGA MQUAD

Signal Signal Pin # Pin #
TRaT NVMRQ 70 D13
IRQ2 HALF_FULL 135 12

The Host Interface signals divide logically into these functional groups: 31

o Data transfer signals: These signals comprise the address and Host Interface
data bus and various control signals used to complete the data
transfer handshake.

o DMA signals: These signals are used to implement a handshake
during a DMA transfer.

o Interrupt signals: These signals provide interrupt requests to the
host processor.

o Timing, control and status signals: These signals include the
clocks and reset signals.

3.1.1 Data Transfer Signals

HBUS[31:0] Host Bus Bidirectionals
HBUS is the multiplexed host processor data and address bus.
The width of both the address bus and the data bus can be pro-
grammed to be 16-bits or 32-bits wide. The signals HBUS_32
and ID[3:0] determine the widths as shown in Table 3-2.
HBUS_32 and ID[3:0] are discussed later in this section.

Table 3-2 Address and Data Bus Configuration

ID[3:0] HBUS_32 Description
0000 0 16-bit address, 32-bit data
0000 1 16-bit address, 16-bit data
1h-Eh 0 32-bit address, 32-bit data
1h-Eh 1 32-bit address, 16-hit data

1111 {Fh) 0/1 Chip disabled
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Host Interface

HBOUT Host Bus Qutput Output
The Host Bus Output signal controls the direction of the host
bus transfer. The CL550 and CL560 do not have sufficient drive
capability to be connected directly to most computer host bus-
ses. When external drivers are used, HBOUT controls the direc-
tion of these buffers. When this signal is low (0), the transceiver
direction is from the CL550 or CL560 to the host bus (output).
When this signal is high (1), the direction is from the host bus
to the CL550 or CL560 (input).

HBUS 32  Host Bus Width = 32-bits Input

HBUS_372 is a static signal used to configure the width of the
host bus data path during CODEC accesses. When HBUS_32 is
low (0), reads and writes to the CODEC register are 32-bits
wide. When HBUS_3? is high (1), reads and writes to the CO-
DEC register are 16-bits wide. The data path to all on-chip reg-
isters except the CODEC register is always 16-bits wide.

ID[3:0] Address Space ID Signals Inputs

The address space identification signals, ID[3:0], are inputs that
select the address range of the chip. Setting ID[3:0] to Ox1
through OXE selects an address region for the CL550 or CL560.
The ID signals allow the CL550 or CL560 to be placed in one
of fourteen locations in the upper 1/16 of the memory.

3.1.2 DMA Signals

The CL560 is capable of acting as either a bus slave for CODEC trans-
fers, or a bus master when used with an external DMA controller. DMA
transfers are fully discussed in Chapter 4, Host Interface.

3-4 C-Cube Microsystems

DRQ DMA Request Open-Drain OQutput
The DRQ signal is an output that provides chip status for DMA
interface control. The DRQ output is controlled by the Flag
Register bits, and enabled using the DMA mask register de-
scribed in Chapter 7, Registers. The DRQ output is an open-
drain output and should be tied to VCC through a resistor of at
least 625 ohms.

DMA_MSTR DMA Master Input

DMA_MSTR is an input that allows the CL560 to work with a
DMA controller functioning as a bus master for CODEC trans-



fers. It is sampled on the falling edge of HBCLK when the
START signal is active. DMA transfers are fully discussed in
Chapter 4, Host Interface.

Note: The CL550 does not work correctly in the DMA master
mode, and in systems that use the CL550, DMA_MSTR
should always be held HIGH. Refer to Chapter 4, Host Inter-
face for a solution to this problem.

3.1.3 Interrupt Signals

NMRQ Interrupt Request  Open-Drain OQutput

Note: NMRQ is a CL550 signal only. The CL560 uses IRQ1

instead.

Interrupt Request (NMRQ) is an unlatched output signal, syn-
chronous to HBCLK, that provides an indicator of both FIFO
and video field status. It can be programmed to selectively indi-
cate active status flags as specified in the Interrupt Mask Regis-
ter. This signal is an open-drain output and should be tied to
VCC through a resistor of at least 625 Ohms (4.7K Ohms rec-
ommended). On power-up, the CL550 or CL560 should be
hardware reset to prevent the generation of spurious interrupts.

HALF_FULL FIFO HALF_FULL Output

Note: HALF_FULL is a CL550 signal only. The CL 560 uses
IRQ? instead.

The HALF_FULL signal is an output that indicates the status of
the internal FIFO. A value of 1 (HIGH) indicates that the FIFO
contains al least 64 entries out of 128. Transitions of HALF -
FULL are synchronous to PXCLK.

TRQ1 Interrupt Request  Open-Drain Output
IRQ2 Interrupt Request Output

Note: IRQT and IRQ?2 are CL560 signals only. The CL550
uses NMRO and HALF_FULL instead.

IRQT and IRQ2 are general-purpose status outputs from the
CL560. The assertion of these signals is programmable based
on masks contained in the IRQT and IRQ2 mask registers de-
scribed in Chapter 7, Registers. Transitions of IRQ2 are syn-

Host Interface
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Host Interface

chronous to HBCLK. IRQ1 is an open-drain output while IRQ2
has a totem-pole output.

3.1.4 Timing and Control Signals

A host bus transaction consists of two (or more) bus clock cycles. Dur-
ing the first cycle, the Start cycle, the host processor must indicate to the
CL550 or CL560 what kind of transaction will occur (bus slave mode
read, bus master mode write, etc.) by placing specific values on
TM][2:0] and DMA_MSTR. TM[2:0] act as outputs during the last bus
clock cycle of the transaction, called the Acknowledge cycle. The value
output on TM[2:0] indicates either that the transfer completed success-
fully or that an error occurred. In between the start and the acknowledge
cycle, an indeterminate number of wait cycles can occur. Host bus
transactions are fully discussed in Chapter 4, Host Interface.

START Start a Transfer Input

The START input signal begins a data transfer. When asserted
LOW, it indicates that there is a valid address on the host bus
(HBUS[31:0]). START is sampled on the falling edge of HB-
CLK, and should not be asserted for more than one HBCLK pe-
riod. :

T™MO Transfer Mode 0 Bidirectional

In bus slave mode operation, TMO is an output line that transi-
tions to 0 (along with TMT) during the bus transaction acknowl-
edge cycle to indicate that the transaction completed. In CL550
bus master mode only, TMO is an input, sampled during the as-
sertion of TMZ (along with TMT), to determine whether a bus
error has occurred. The value of TMO is ignored during a Start
cycle.

™1 Transfer Mode 1 Bidirectional

The CL550 and CL560 sample the TMT input during the Start
cycle to determine whether the transaction is a read or a write.
Alow value (0) indicates a write cycle, and a high value (1) in-
dicates a read cycle. During a bus slave cycle, TMT returns to 0
during the acknowledge cycle. During a bus master mode Start
cycle, the sense of this signal is inverted so that a low value in-
dicates a write cycle and a high value indicates a read cycle.
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™2 Transfer Mode 2 Bidirectional

TM?Z is the acknowledge signal that is driven active LOW (0)
by the CL550 or CL560 during a bus slave mode acknowledge
cycle. In bus master mode, this signal is driven by an external
source to indicate that the transfer is complete.

TMOUT Transfer Mode Output Output

The TMOUT signal provides transceiver directional control for
the transfer mode control lines TM[2:0]. If this signal is low (0),
the transceiver direction is from CL550 or CL560 out to the host
bus. If the signal is high (1), the transceiver direction is from the
host bus into the CL550 or CL560.

FRMEND Frame End Open-Drain Output

The FRMEND signal is an output that indicates that the end of
an image has been reached. This signal is an open-drain output
and should be tied to VCC through a resistor of at least 625
Ohms (recommended value = 4.7K Ohms). In the CL550, dur-
ing compression, FRMEND goes active when the Huffman
coder has removed the last word from the FIFO. During decom-
pression, FRMEND indicates that the last word has been re-
moved from the Strip buffer RAM. This signal can be disabled
by setting bit 1 of the Configuration register to a zero (See
Chapter 7, Registers). In the CL560 this signal is also controlled
by the Frame End Enable register (See Chapter 7, Registers).
Transitions of FRMEND are synchronous to HBCLK.

HBCLK Host Bus Clock Input

HBCLK is the clock signal used to synchronize host bus data
transfers. The falling edge of HBCLK is used to sample the host
bus data and control signals, while the rising edge of HBCLK is
used to drive the output signals. HBCLK must be the same rate
or slower than PXCLK.

RESET Reset Input

The RESET signal is an input that forces a hardware reset of the
CL550 or CL560. When the RESET signal is asserted LOW,
most of the internal registers are forced to a known state. The
values in the Huffman tables, DCT table, and Quantizer tables
are unaffected. HBCLK and PXCLK must be running during
RESET. The CL550 or CL560 will not acknowledge any access
until the end of the third cycle after RESET has been deasserted.

Host Interface
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TEST Test Input
The TEST signal is an input the forces all CL550 or CL560 out-
puts to a high-impedance state. This feature is provided to sim-
plify board-level diagnostics. TEST should be tied low for
normal operation.

The Video Interface signals divide logically into these functional

Video Interface  5°UP%

o Pixel Bus Data Transfer Signals: These signals comprise the vid-
eo data bus, the Strip Buffer address bus, and the handshake sig-
nals necessary to transfer data.

o Video Synchronization Signals: These are the signals used to con-
trol the horizontal and vertical placement of the video frame.

o Video Clock Signals: These are the timing signals necessary for
the CL550 and CL560 to operate.

3.2.1 Pixel Data, Address and Handshake Signals

3-8 C-Cube Microsystems

PXDAT[23:0]Pixel Data Bus Bidirectionals

PXDAT is a bidirectional 24-bit bus that handles uncompressed
or decompressed pixel data. In the compression mode, uncom-
pressed video data is input on PXDAT([23:0] and compressed
data is output on the host bus. In the decompression mode, com-
pressed data is input on the host bus and decompressed video
data is output on PXDAT([23:0]. PXDAT is also used to transfer
data to and from the strip buffer RAM. In some modes (Gray-
scale, YUV 4:2:2 and CMYK), only 16 of the 24 bits are used.
The unused pins should be tied to ground through 10K-ohm re-
sistors.

PXADR[15:0] Pixel Address Outputs

PXADR is the address bus for the strip buffer RAM. The 16 bits
of address support a strip buffer of up to 64K entries.

PXRE Pixel Read Output

The PXRE output signal is designed to directly control the out-
put enable pin of the strip buffer RAMs. During compression,
PXRE is active only when the CL550 or CL560 is reading pixel
data from the strip buffer RAM. During decompression, PXRE



is active only when pixels are being read from the strip buffer
RAM out to the pixel destination.

PXWE Pixel Write Output
The PXWE output is designed to directly control the write en-
able input to the strip buffer RAMS. During compression,
PXWE is active only during PXIN cycles when pixel data is be-
ing written from the active portion of the video field into the
strip buffer RAM. During decompression, PXWE is active only
when active pixels are being written from the CL550 or CL560
into the strip buffer RAM.

CL550 or CL560 To Host
Processor
PXDAT[23:0] (- * >
Strip Buffer RAM
64K x 32

1 A A
PXADR[15:0]
PXWE
PXRE

Figure 3-2 Strip Buffer RAM Connections
PXIN Pixel Input Control Output

The PXIN signal is used to activate an input buffer on the Pixel
Data bus, PXDAT, during input cycles. It is asserted (LOW)
only when pixel data is being input from the active portion of
the video field into the Strip buffer RAM.

PXOUT Pixel Output Control Output

The PXOUT signal can be used to load the active pixel into a
register as it is read out of the Strip buffer RAM. It is asserted
(LOW) only when pixels from the active region of the field are
being read from the Strip buffer RAM.

Video Interface
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STALL Stall Input

This input signal, when asserted (LOW), will stop all activity on
the Video Interface in its current state. Signals affected by
STALL include PXADR[16:0], PXDAT[23:0], PXRE, PXWE,
PXIN, PXOUT, BLANK, VSYNC and HSYNC. Use of the
STALL signal in discussed completely in Chapter 5, Video In-
terface.

3.2.2 Video Synchronization Signals

3-10 C-Cube Microsystems

HSYNC Horizontal Sync Bidirectional
HSYNC is a bidirectional signal used to indicate the start of a
horizontal line. When the CL560 is programmed for master
mode operation (Configuration register bit 3 = 1), the HSYNC
signal functions as an output and is asserted (LOW) when the
CL560 is about to begin a new line. The duration of the pulse is
programmed using the HSYNC register.

When in slave mode (Configuration register bit 3 = 0), the
HSYNC line functions as an input, and the external pixel inter-
face must assert this signal to begin the next line. The HSYNC
input is negative-edge triggered.

VSYNC Vertical Sync Bidirectional

VSYNC is a bidirectional signal used to indicate the start of a
frame. When the CL560 is programmed for master mode oper-
ation (Configuration register bit 3 = 1), the VSYNC signal func-
tions as an output and is asserted (LOW) when the CL560 is
about to begin a compression or decompression operation. The
duration of the pulse is programmed using the VSYNC register.

When in slave mode (Configuration register bit 3 = 0), the
VSYNC line functions as an input, and the external pixel inter-
face must assert this signal after writing to the HVEnable and
Start registers to begin a compression or decompression opera-
tion. The VSYNC input is negative-edge triggered.

BLANK Blanking Output

This signal is an output that indicates that there are no active
pixels on the Pixel Data bus. BLANK changes state at the same
time as the PXADR bus (at the beginning of the Strip buffer
read cycle, when PXPHASE is HIGH). During compression,
BLANK goes HIGH one PXCLK before the first pixel in a line



Video Interface

is written to the Strip buffer, and goes LOW again after the last
pixel is written. During decompression, BLANK negates simul-
taneously with the first active pixel read, and asserts one PX-
CLK after the last pixel read.

3.2.3 Video Clock Signals

PXCLK Pixel Clock Input

The PXCLK signal is the main clock for the compression pro-
cessor. All circuits except those directly related to the host bus
interface are driven by this clock.

PXPHASE Pixel Phase Input

The value of the PXPHASE input signal indicates whether a
Strip buffer read or write operation is occurring on the pixel bus.
This signal should be one-half the frequency of PXCLK. If PX-
PHASE is high during the rising edge of PXCLK, the cycle is a
Strip buffer write operation.

CLK3 Clock Three Input

The CLK3 input is one-half the frequency of PXPHASE. This
signal is used only in 4:4:4 and 4:4:4:4 modes. In all other cases
it can be tied to ground.

Signal Descriptions  3-11
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4
Host Interface

The Host interface on the CL550 and CL560 is designed to be connect-
ed to a variety of general-purpose microprocessors with a minimum of
external logic. The host processor can directly access any CL550/560
register or memory address by reading or writing specific memory ad-
dresses. The host can also access CL560 data using DMA transfers.
DMA transfers are provided as a fast method of transferring data to and
from the CODEC FIFO. The host bus interface also includes signals for
timing and control, status and interrupt processing.

This chapter is divided into sections which describe how the host inter-
face is used. These sections are:

o 4.1, Register Access Timing
o 4.2, DMA Access Timing
o 4.3, Control Signals

Figure 4-1 shows the host bus pinout diagram of the CL550 and CL560
(CL550 signal names are enclosed in parenthesis). The host interface

4-1



4-2

signals include a 32-bit wide dual purpose data and address bus and the
control signals necessary to perform data transfers and interrupt han-

dling.
Host Computer CL550/560
CODEC
- D[31:0]
Data [31:0]
Address [31:0]| Host Interface
1 P D[15:0]
HBOUT |« HBOUT
HBUS_32 »| HBUS_32
Output Bits [3:0] P [D[3:0]
DMA Logic
Dma Request |« DRO
Dma Master » DMA_MSTR
Timing and Control
Interrupt 1|« TRQT [NMRQ]
Interrupt 2|« IRQ2 [HALF FULL]
Output Bit »{ START
/0 Bits <_>_d<>_'__<._.> ™20l
+ TMOUT
Input Bit | FRMEND
Clock » HBCLK
Reset »|RESET
» TEST

[CL550 Signals] ‘g

Figure 4-1 CL550 and CL560 Host Interface Block Diagram

The CL560 host bus interface differs from the CL550 interface in sev-
eral ways:

o The CL550 signals NMRQ and HALF_FULL were replaced with
the general-purpose interrupts TIRQT and IRQ2 in the CL560. The
function of IRQT and IRQ2 is programmed using the IRQT and

C-Cube Microsystems



Register Access Timing

IRQ2 Interrupt Mask registers (See Chapter 7, Registers).

o The CL550 signals DRQ (data request) and FRMEND (frame end)
operate differently in the CL560, although they retain the same
name. These differences are described in Chapter 3, Signal De-
scription.

o The CL560 samples the input data at a different point than the
CL550. This difference is described in Chapter 6, Specifications.

o The signals TMO, TMT and TM?2 have timing differences between
the CL550 and the CL560. These differences are described in
Chapter 6, Specifications.

o The signals HBOUT and TMOUT have timing differences be-
tween the CL550 and the CL560. These differences are described
in Chapter 6, Specifications.

If you are designing a system that will accept both the CL550 and the
CL560, the only signals that have had their external function redefined
are:

Table 4-1 CL550 and CL560 Redefined Signal Pins

CL560 CL550 CPGA MQUAD

Signal Signal Pin# Pin #
IRQT NVRQ 70 D13
IRQ2 HALF_FULL 135 L2

This section describes the timing for register accesses. It is divided into 4.1

these subsections: Register Access

o 4.1.1, Signal Descriptions Timing
o 4.1.2, Register Access Timing

o 4.1.3, Host Bus Register Access
o 4.1.4, Host Bus Register Write

4.1.1 Signal Descriptions

All CL550/560 family registers and memory are accessed using register
accesses except the CODEC register. The CODEC register can be ac-
cessed using either register accesses (described in this section) or DMA
transfers (see Section 4.2). The following signals are used to access the
CL550/560 part in register access mode:

Host Interface 4-3
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o HBCLK, Host Bus Clock: All host bus accesses are synchro-
nized to the Host Bus Clock. The falling edge of HBCLK is used
to sample the host bus data and control signals, while the rising
edge of HBCLK is used to drive the output signals.

o HBUS[31:0], Host Bus: HBUS[31:0] is a multiplexed data and
address bus. The signal START is used to indicate that an address
is present on the bus. The width of the host bus can be either 16 or
32-bits wide depending on the signals ID[3:0] and HBUS_32.

o START, Transaction Start: The START signal begins a data
transfer. When asserted, it indicates that there is a valid address on
HBUS[31:0]. START is sampled on the falling edge of HBCLK,
and should not be asserted for more than one HBCLK period.

o ID[3:0], Address Space Identification Signals: ID[3:0] are in-
puts that select the address range of the chip. When the part re-
ceives a START signal, it compares the value on ID[3:0] with the
address on HBUS[31:0] bits 27 through 24. If a match occurs, an
internal chip select signal is generated.

31 30 29 28 21 26 25 24 23 22 21 20 19 18 17 16

1 1 1 1 iD3 | D2 | D1 | IDO 1 1 X X 0 0 0 0

15 |4 |3 2][n][w0] 9[8[ 7]6 5| a[3]2]1]o0

On-chip Register Address

Figure 4-2 ID[3:0] Chip Select Address Format

To generate a valid chip select, the contents of HBUS[31:16] should be
as shown in Figure 4-2, where X = Don’t Care. This allows the CL550/
560 part to be placed in any one of fourteen locations in the upper 1/16th
of memory.

Setting ID to 0x0 overrides the decoding of the upper 16-bits of the ad-
dress, putting the CL550/560 part into a 16-bit address mode. Setting ID
to OxF disables the host bus interface.

o HBUS_32, 32-bit Host Bus: HBUS_32 is a static signal used to
configure the host bus data path width during CODEC accesses.
When HBUS_32 is low, the read/write path to the CODEC regis-
ter is 32-bits wide. When HBUS_32 is high, the read/write path to
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the CODEC register is 16-bits wide. The data path to all on-chip
registers and tables except for the CODEC register is always 16-
bits wide. In the 16-bit data mode, HBUS[31:16] remain disabled
(three-stated) at all times and transfers take place over
HBUS[15:0].

HBUS_32 and ID[3:0] combine to control the address and data modes
as shown in Table 4-2.

Table 4-2 Address and Data Bus Configuration

ID[3:0] HBUS_32 Description
0000 0 16-bit address, 32-bit data
0000 1 16-bit address, 16-bit data
0001-1110 0 32-bit address, 32-bit data
0001-1110 1 32-bit address, 16-bit data

T Oor1 Chip Disabled

o TMO, Transfer Mode 0: In register access mode operation, TMO
is an output line that transitions to 0 (along with TMT) during the
bus transaction acknowledge cycle to indicate that the transaction
completed. The value of TMO is ignored during a Start cycle.

o TMI, Transfer Mode 1: The CL550/560 part samples the TMT
input during the Start cycle to determine whether the transaction
is a read or a write. TM1 changes sense between register access
cycles and DMA access cycles. During register access cycles, a
low value (0) on TM1 indicates a write cycle, and a high value (1)
indicates a read cycle. During DMA cycles, a high value (1) on
TM1 indicates a write cycle, and a low value (0) indicates a read
cycle. During a register access cycle, TMT returns to 0 during the
acknowledge cycle.

o TM2Z, Transfer Mode 2: TM? is the acknowledge signal that is
driven active (0) by the CL550/560 family during a register access
acknowledge cycle.

o TMOUT, Transfer Mode Control Lines = Qutputs: The
TMOUT signal provides transceiver directional control for the
transfer mode control lines TM[2:0]. If this signal is low (0), the
transceiver direction is from the CL550/560 part out to the host
bus. If the signal is high (1), the transceiver direction is from the
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host bus into the part.

The tables below show the values of the CL.550/560 control signals dur-
ing each of the three bus access cycles. Table 4-3 and Table 4-4 show
the CL550 control signals, and Table 4-5 through Table 4-8 show the
CL560 control signals. The shaded areas indicate that the signals are
driven as outputs.

Table 4-3 TM Signals During a Host Bus Register Read (CL550 to Host)

Signal Start Cycle Wait State(s) Acknowledge Cycle
DMA_MSTR HIGH HIGH HIGH
T™MO Don't Care
™1 HIGH
™2 HIGH
TMOUT :

Table 4-4 TM Signals During a Host Bus Register Write (Host to CL550)

Signal Start Cycle Wiait State(s) Acknowledge Cycle
DMA_MSTR HIGH HIGH HIGH

T™MO Don't Care
™1 LoW
™2 HIGH
TMOUT

Table 4-5 TM Signals During a Host Bus Register Read (CL560 to Host)

Signal Start Cycle Wait State(s) Acknowledge Cycle
DMA_MSTR HIGH HIGH HIGH
™0 Don't Care Don’t Care
™1 HIGH Don't Care

HIGH

Don't Care

Table 4-6 TM Signals During a Host Bus Register Write (Host to CL560)

Signal Start Cycle Wait State(s) Acknowledge Cycle
DMA_MSTR HIGH HIGH HIGH
TMO Don't Care Don't Care

™1 LOW Don't Care
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Table 4-6 TM Signals During a Host Bus Register Write (Host to CL560)
Signal Start Cycle Wait State(s) Acknowledge Cycle
™2 HIGH‘ Don't Care

Table 4-7 TM Signals During a DMA Read (CL560 to Host)

Signal Start Cycle Wait State(s) Acknowledge Cycle
DMA_MSTR Low HIGH HIGH
TMO Don't Care Don’t Care Don't Care
™1 LOW Don't Care Don't Care
™2 HIGH HIGH Low
TMOUT

Table 4-8 TM Signals During a DMA Write (Host to CL560)

Signal Start Cycle Wait State(s) Acknowledge Cycle
DMA_MSTR _ LOW HIGH HIGH
TMO Don't Care Don't Care Don't Care
™1 HIGH Don't Care Don’t Care
™2 HIGH HIGH Low

TMOUT

o HBOUT, Host Bus = Output: The HBOUT signal is used to con-
trol the direction of the host bus transfer. The CL550/560 does not
have sufficient drive capability to be connected directly to most
computer host buses. When external drivers are used, HBOUT is
used to control the direction of these buffers. When this signal is
low (0), the transceiver direction is from the CL550/560 to the
host bus (output). When this signal is high (1), the direction is
from the host bus to the part (input).

4.1.2 Register Access Timing
A host bus transaction consists of two or more HBCLK clock cycles.
Memory or register accesses (except accesses to the CODEC register)
always take three cycles: start, wait and acknowledge. Accesses to the
CODEC register can take from 2 to n cycles depending on the availabil-
ity of the CODEC register.

Register Access Timing
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The first cycle is called the start cycle, and is initiated by the host pro-
cessor. For all register and table locations (except the CODEC), the start
cycle is followed by exactly one wait state. During an access to the
CL550 CODEC register, the start cycle is followed by several wait
states. The last cycle is called the acknowledge cycle, and is initiated by
the CL550/560 to show that it is through reading or writing data. The
acknowledge cycle is indicated by TM2 being asserted low (0).

A start cycle is initiated by asserting the START input. START is sam-
pled on the falling edge of HBCLK, and should never be asserted for
more than one HBCLK period. It should also never be asserted twice
before an acknowledge cycle occurs. When START is sampled LOW,
the CL550/560 samples HBUS for the register address, TMT to deter-
mine the direction of the transfer, and TM2 which must be HIGH during
the START cycle. If TM2 is low during start, the cycle will be ignored
and no acknowledge will be returned. Typical system designs use a pull-
up resistor on TM2 for this purpose.

The CL560 has a CODEC FIFO, but the CL550 only has a CODEC reg-
ister. However, the timing for accessing either is identical. Where the
following section refers to the CODEC FIFO, substitute CODEC regis-
ter when working with the CL550.

The CL550/560 always inserts at least one wait state between the start
cycle and the acknowledge cycle during register mode accesses. If the
register being addressed is any register other than the CODEC FIFO,
then exactly one wait state is inserted. CODEC register or FIFO access-
es can contain zero or more wait states, depending on the condition of
the CODEC FIFO at the time of the access. If the host performs a reg-
ister read of the CODEC FIFO when the CL560 is in the compression
mode, and there is data available in the FIFO, no wait states will be in-
serted. Otherwise, wait states will be inserted until a data word is avail-
able. If the host performs a register write of the CODEC FIFO when the
560 is in the decompression mode, and there is an empty location avail-
able in the FIFO, no wait states will be inserted. Otherwise, wait states
will be inserted until an empty location becomes available.

Note: Refer to Section 4.2.7, Operational Considerations, for more in-
formation on using the CODEC FIFO and Register.
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In the CL550 only, TM[2:0] are used during the acknowledge cycle to
transmit status information. In register access mode, the CL550 outputs
TM[1:0] = 00 to indicate that the transaction is complete. In DMA
transfer mode, the CL550 reads TM[1:0] looking for error information
coming back from the host bus. If either TMT or TMO = one, the CL550
sets the internal Bus Error Flag. The bus error flag status is determined
as follows:

Table 4-9 CL550 Bus Error Conditions

TMI[1:0] ™2 Operation
00 0 Transaction Complete
l 0 Bus Error
10 0 Bus Error
1 0 Bus Error

4.1.3 Host Bus Register Access

Host bus register access transactions consist of a start cycle and an ac-
knowledge cycle. The host begins a start cycle by driving the address on
HBUS[31:0], driving TMT to indicate whether the cycle is a read or a
write, and asserting START. For the CL550 write cycles only, the bus
master must change HBUS[31:0] to the data to be written before the
HBCLK falling edge following the START cycle. For a CL560 write
cycle, the data must be stable before the HBCLK falling edge in the ac-
knowledge cycle. When the cycle is complete, the CL550/560 family
part drives the TM signals to indicate status.

Figure 4-3 shows a typical register read transaction. The circled num-
bers in the figure refer to the steps below.

1. The host places the address to be read on HBUS.

2. The host indicates that a read operation is to take place by set-
ting TMT = 1. TM2 must also be set high at this time.

3. The host starts the transaction by asserting START.

4.  On the falling edge of HBCLK, the CL550/560 part samples
START, TMT, and TM2. If TMZ is not sampled high at this
time, the part will ignore START and not return an acknowl-
edge.

5. Because the direction of TM[2:0] changes at this point, the
CL550/560 part must assert TMOUT to change the direction of

Register Access Timing

Host Interface 4-9



Register Access Timing

| Start Cycle I Wait State(s) l Acknowledge |
HBCLK .
O ® ® @

) ©
HBUS—(__ WostAddress ) Invald Data\D( CLE50/560 Data )

7

AEOUT \ . /T
START @\ / "

™NE— v ” \ —
@ MO
TMI1:0]—— Host TM[1:0] =1X X \| HostTM[1:0]=00  »——
®
TMOUT \ . /

DMA_MSTR

Figure 4-3 Register Read Transaction

the bus buffers.

6. An indefinite number of wait states can be added between the
Start Cycle and the Acknowledge Cycle.

7.  When the CL550/560 part has the data available, it places it on

HBUS.

8. The CL550/560 part indicates to the host that the data is avail-
able by asserting TM2.

9. The CL550 indicates that no errors occurred by placing 00 on
TM[1:0].

10. The host samples the data on the falling edge of HBCLK.
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4.1.4 Host Bus Register Write
Figure 4-4 shows a typical register write transaction. The circled num-
bers in the figure refer to the steps below.

‘ Start Cycle | Wait State(s) | Acknowledge ‘

HBCLK
® ® 0®, © ®

®
HBUS ——  HostAddress X || CLs50/560 Data -

7/
I

HBOUT
® .
saRT \_ /
O,
T™MZ——-/ vV M —
©
| HostTM[1:0]=00 »——

®
T \ S

)

—

TM[1:0]—_HostTM[1:01=0X X

N
N

DMA_MSTR

Figure 4-4 Register Write Transaction

1.  The host places the address to be written on HBUS.

2. The host indicates that a write operation is to take place by set-
ting TMT = 0. TM2 must also be set HIGH at this time.

3. The host starts the transaction by asserting START.
On the falling edge of HBCLK, the CL550/560 part samples
START, TMT, and TM2. If TM2 is not sampled HIGH at this
time, the part will ignore START and not return an acknowl-
edge.

5. The host places data on HBUS and waits for an acknowledg-
ment from the CL550/560 part.

6. Because the direction of TM[2:0] changes at this point, the
CL550/560 part must assert TMOUT to change the direction of
the bus buffers.

Register Access Timing
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10.

11.

12.

If this is a CL550 write cycle, the data to be written must be sta-
ble before the falling edge of the HBCLK cycle following the
start cycle.

An indefinite number of wait states can be added between the
Start Cycle and the Acknowledge Cycle.

When the CL550/560 part is ready for data, it puts the acknowl-
edge on TM2.

The CL550 puts a result code on TM[1:0]. If no errors occurred,
this result code = 00h.

The CL560 samples the data on the falling edge of HBCLK dur-
ing the acknowledge cycle.

The host must drive data until the end of the acknowledge cycle.

4.2 The CL560 is capable of accepting data in DMA mode in conjunction

DMA Access with an external DMA controller (see Figure 4-5). The CL560 relies on

Timing

the DMA controller to generate the start cycle and provide the address
and R/W signals.

The signals used in DMA mode transfers are identical to those used in
register mode transfers with these additions:

o DRQ, Data Request: The DRQ signal is an output, synchronous

4-12  C-Cube Microsystems

to HBCLK, that provides CODEC status for DMA interface con-
trol. When DRQ is low, the part is ready to send or receive data.

DMA_MSTR, DMA Master: The DMA_MSTR signal is an in-
put that allows the CL560 to work with a DMA controller for CO-
DEC data transfers only. It is sampled on the falling edge of
HBCLK when the START signal is active. When DMA_MSTR is
sampled LOW during START, an internal chip select is generated
to the CL550 CODEC Register or the CL560 CODEC FIFO. At
this point, the address on HB[31:0] becomes a “don’t care”. Dur-
ing this time, the TM[0:2] lines remain as inputs, and it is the re-
sponsibility of the host to drive TM2 LOW to complete the
transaction. For the CL550, the host should also drive TM[1:0]
when it drives TM2 LOW, or the Bus Error flag will be set.

Note: The CL550 has DMA capability built in, but it does not
work correctly during decompression operations, and will



not be fixed (it does work correctly in compression only ap-
plications). Section 4.2.4, Alternative Method of CL550/560
DMA Transfers, shows an alternative method of implement-
ing transfers that allows you to achieve DMA transfer speeds
using conventional memory access techniques. DMA_MSTR
on the CL550 should always be pulled HIGH during decom-

pression.

DMA Controller

DMA Logic JPEG Encoder
> V0. i1
Control ™T
Signals > ™ » TV
> 2_»ITh2
Address
Generator
Dat2 | | HBUS
Y
Address R/W Data
Bus Bus
Memory Array)
Figure 4-5 DMA Mode Operation

The CL560 samples the signal connected to TMT during the start cycle
to determine whether the operation being performed is a read or a write.

If the CL560 senses a write to the memory, it provides the data during
the cycle following the start cycle and holds that data until it receives an

acknowledge (TM2 asserted) from the memory.

DMA Access Timing
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Table 4-10 External Buffers Direction Control

START TMi' DMA_MSTR HBOUT  Buffer Direction Operation
H X X X X No Transaction
L L L L CL560 to Host DMA Read Cycle
L L H H Host to CL560 Normal Write Cycle
L H L H Host to CL560 DMA Write Cycle
L H H L CL560 to Host Normal Read Cycle

1. Note thatthe polarity of TMT changes sense between normal reads and writes, and DMA reads
and writes.

In DMA mode, all bus transfers are to and from the CL560 CODEC
FIFO. The DMA_MSTR signal must be asserted only when the CO-
DEC is prepared to accept or source data. A qualified DMA_MSTR can
be generated by using DRQ from the CL560 to qualify DMA_REQ
from the DMA controller.

4.2.1 CL560 DMA Transfers

The CL560 indicates that the CODEC FIFO has room for data (or data
to be read) by asserting DRQ low. The amount of space (data) that is
available is determined by which flag is set in the DMA Request Inter-
rupt Mask Register (See Chapter 7). The CL560 can transfer as many
words as is necessary to fill or empty the FIFO in a single DMA burst.

"The host indicates that a DMA operation to the CL560 is going to take

place by asserting DMA_MSTR low. The host then initiates the transfer
by asserting TMT LOW for a read (CODEC to Host) or HIGH for a
write (Host to CODEC).

When the CL560 samples DMA_MSTR and START low, it assumes
that the data is being read from or written to the CODEC register, thus
the host processor does not need to supply an address.
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4.2.2 CL560 DMA Write Transaction Timing

Figure 4-6 shows a typical DMA mode write transaction, where the host
processor (DMA controller) is writing data to the CL560 CODEC reg-
ister (Decompression). In this example, the host is going to transfer 64
words of information into the CL560 CODEC. The circled numbers in
the figure refer to the steps below.

Start Cycle | Ack.Cycle | StartCycle ; Ack. Cycle 61 Cycles Start Cycle | Ack. Cycle
f #1 | # ‘ #2 | # | ]

Not Shown #64 #64
HBCLK U
_® ® i
soor 7 . ST i
omA SR — \@
HBUS[31:0]
1D[3:0} on't Care
TMO Don’t Care Don't Care g Don't Care |~
®
™ —/ \— DontCare )—/ —{ Don’t Care s / — DontCare )
_*_.___
® 5
@ £¢
HBOUT
RESET
® | HizZ
DRO ”@ / \ Y \ . /

Figure 4-6 CL560 DMA Write (Decompression - Host Write to CODEC)

1. The CODEC FIFO is not 1/4 full, and the CL560 generates a
DMA request by asserting DRQ LOW.

2. The host processor recognizes the DRQ, and initiates a DMA
write cycle by asserting START LOW.
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10.

11.

12.

13.

14.

15.

The host informs the CL560 that the DMA operation will be a
write by asserting TMT HIGH.

The host starts the DMA operation by asserting START LOW.
Steps 2 through 4 must take place before the falling edge of HB-
CLK.

The CL560 releases DRQ upon recognizing the start cycle.
DRQ may change states unpredictably during the DMA transfer
because the CL560 is removing data from the FIFO at the same
time that the host is filling it. However, DRQ can be ignored un-
til the end of the transfer.

The CL560 drives HBOUT HIGH to change the direction of the
buffers to “write”.

The host (memory) puts the data to be written to the CL560 on
HBUS.

The DMA controller terminates this cycle by asserting TM2
LOW.

The CL560 clocks the data into the CODEC register on the fall-
ing edge of HBCLK.

The data bus and the control lines must be held valid until the
end of the data cycle.

The DMA controller starts the second transfer by asserting
DMA_MSTR LOW (DMA_MSTR can remain LOW through-
out the transfer, if desired).

The 61 intervening cycles are not shown.

The DMA controller starts the last (64th) transfer by asserting
DMA_MSTR LOW.

The DMA controller terminates the transfer by asserting
DMA_MSTR HIGH at the end of the start cycle. The CL560
will automatically complete the current transfer.



4.23 CL560 DMA Read Transaction Timing
Figure 4-7 shows a typical DMA mode read transaction, where the host
processor (DMA controller) is reading data from the CL560 CODEC
register (Compression). In this example, the CL560 is going to transfer
64 words of information. The circled numbers in the figure refer to the
steps below.

HBCLK

START

DMA_MSTR

HBUS[31:0]

ID[3:0

™0

™M1 —

™2 |

T™MOUT
HBOUT
RESET

DRQ

Figure 4-7

DMA Access Timing

StartCycle | Ack.Cycle | StartCycle | Ack. Cycle 61 Cycles Start Cycle | Ack. Cycle
’ #1 l #1 , #2 ‘ #2 Not Shown | #64 ‘ #64
u {{ ‘ ’__
0] )
N |/ o | S
na
¢ >_

Don't Care
Don’t Care Don't Care 45 { Don'tCare }-
® |
——p——
—_ Don't Care >—\___/—/—Don't Care —s \ —_DontCare )-
® 5
@ (44 —
- 1 N
® | Hiz
@ / \ / \ Y /
CL560 DMA Read (Compression - Host Read from CODEC)

1. The CODEC FIFO is 3/4 full, and the CL560 generates a DMA
request by asserting DRQ LOW.

2. The host processor recognizes the DRQ, and initiates a DMA
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read cycle by asserting START LOW.
3. The host informs the CL560 that the DMA operation will be a
read by asserting TMT LOW.
. The host starts the DMA operation by asserting START LOW.
5. Steps 2 through 4 must take place before the falling edge of HB-
CLK.

6. The CL560 releases DRQ upon recognizing the start cycle.
DRQ may change states unpredictably during the DMA transfer
because the CL560 is removing data from the FIFO at the same
time that the host is filling it. However, DRQ can be ignored un-
til the end of the transfer.

7. The CL560 drives HBOUT LOW to change the direction of the
data bus buffers to “read”.

8. The CL560 outputs the requested data on HBUS.
9. The DMA controller terminates this cycle by asserting TM2

LOW.

10. The CL560 will hold the data stable until after the next rising °
edge of HBCLK.

11. The data bus and the control lines must be held valid until the
end of the data cycle.

12. The DMA controller starts the second transfer by asserting
DMA_MSTR LOW (DMA_MSTR can remain LOW through-
out the transfer, if desired).

13. The 61 intervening cycles are not shown.

14. The DMA controller starts the last (64th) transfer by asserting
DMA_MSTR LOW.

15. The DMA controller terminates the transfer by asserting
DMA_MSTR HIGH at the end of the start cycle. The CL560
will automatically complete the current transfer.
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4.2.4 Alternative Method of CL550/560 DMA Transfers

The DMA transfer function on the CL550 does not work correctly dur-
ing decompression, and will not be fixed. This section shows an alter-
native method using burst mode transfers that will allow you to achieve
DMA transfer speeds using conventional memory access techniques.
Burst mode transfers are similar to register accesses, except that HB15
is pulled LOW to indicate that the CODEC register or FIFO is being ac-
cessed. This method can be used with either the CL550 or the CL560.

The CL550 and CL560 allow two-cycle (Start/Ack) accesses to the CO-
DEC register. The host must indicate that a CODEC register access is
about to occur by pulling HB15 LOW during the Start cycle. If the
CL550/560 is in the 32-bit address mode, the host must also supply an
address on HB[31:16] that meets the requirements shown in Figure 4-2.
When these conditions occur, the CL550/560 will allow a no-wait-state
access to the CODEC register.

The CL550/560 part indicates that the CODEC register has room for
data by asserting DRQ low (because the CL550 has a CODEC register
instead of a CODEC FIFO, the assertion of DRQ indicates that only one
DMA transfer cycle can be performed). The host initiates a burst mode
memory transfer by pulling HB15 LOW, providing a valid address
space identification code on HB[31:16], and asserting START LOW.

If the transfer is to be a read (CL550/560 transfer to host), TMT should
be held HIGH during the start cycle, and if the transfer is to be a write
(host data transfer to CL550), then TMT should be held LOW during the
start cycle. DMA_MSTR must always be held HIGH during assertion
of the START signal.

DMA Access Timing
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4.2.5 CL550 Burst-mode Write Transaction Timing

Figure 4-8 shows a typical burst-mode write transaction, where the host
processor (DMA controller) is writing data to the CL550 CODEC reg-
ister. The circled numbers in the figure refer to the steps below.

| Start Cycle \ Ack. Cycle | ‘ Start Cycle lWaitState(s)\ Ack. Cycle I
HBCLK B | —
_1® ©_ _
START [\
@ {¢ {¢
DMA_MSTR
® y
HBUSI3:0] (" Address Y Data | Rdiress Y| |( Dot
ID[3:0]
S A — —-‘) i e
/— 1;
@ 15—
12l p2]
@ 45 4.
HBOUT
4 4
RESET
® @ Hi-Z
DRO N\ J 5\ /‘$)

Figure 4-8 CL550 DMA Write (Decompression - Host Write to CODEC)

1. The CL550 asserts DRQ to notify the host that there is space (1
empty word) in the CODEC register.

2. DMA_MSTR must be held HIGH.

3. The host processor controller drives TMT LOW and TM2
HIGH to indicate that a write operation is going to be per-
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formed.
4. In32-bit address mode, the host processor puts the following on
HBUS[31:0]:
o HBUS[31:16] = as shown in Figure 4-2
o HBUSI15 =0 LOW)
o HBUS[14:0] = Don’t Care
In 16-bit mode, HBUS[31:16] are not used, and are Don’t
Cares.
5. The host processor asserts START to initiate the transfer.

6. Steps 2,34, and 5 above must all occur before the falling edge
of HBCLK.

7. The CL550 releases DRQ upon recognizing the start cycle.

8.  The CL550 drives HBOUT HIGH to change the direction of the
HBUS buffers to “write”.

9.  The host (memory) puts the data to be written to the CL550 on

' HBUS.

10. The CL550 terminates the transfer on the next cycle by assert-
ing TM[1:0] and TM2 LOW. No wait states were inserted.

11. The CL550 clocks the data into the CODEC register on the fall-
ing edge of HBCLK.

12. The data bus and the control lines must be held valid until the
end of the data cycle.

The second cycle shown is identical to the first, except that the host has
inserted an optional wait state at Step 12 by holding TM2 HIGH until
the data is available.
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4.2.6 CL550 Burst-mode Read Transaction Timing

Figure 4-9 shows a typical burst-mode read transaction, where the host
processor (DMA controller) is reading data from the CL550 CODEC
register. The circled numbers in the figure refer to the steps below.

| startCycle | Ack Cycle | | StartCycle | Wait State(s) | Ack. Cycle
HBCLK . B
_1® ® © |, .
START — T\_|
@ 5; {(
DMA_MSTR
® @ ] . .
HBUSI[31:0] ——( Address L Data — Address X ’_g Data T

ID[3:0]

b
€
HBOUT &
RESET
O @ Hi-Z
DRQO | / 17\ Yal

Figure 4-9 CL550 DMA Read (Compression - Host Read from CODEC)

1. The CL550 asserts DRQ to notify the host that there is a word -
in the CODEC register.

2. DMA_MSTR must be held HIGH.

3. The host processor drives TMT HIGH to indicate that a read is
going to be performed.
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9.

10.

11.

In 32-bit address mode, the host processor puts the following on
HBUS[31:0]:

o HBUS[31:16] = as shown in Figure 4-2

o HBUS15 =0 (LOW)

o HBUS[14:0] = Don’t Care
In 16-bit mode, HBUS[31:16] are not used, and are Don’t
Cares.
The host processor asserts START to initiate the transfer.

Steps 2, 3 4, and 5 above must all occur before the falling edge
of HBCLK.

The CL550 releases DRQ upon recognizing the start cycle.

The CL550 drives HBOUT LOW to change the direction of the
HBUS buffers to “read”.

The CL550 puts the data that is being read on HBUS.

The host processor terminates the transfer by asserting TM[1:0]
and TM2 LOW.

The data bus and the control lines must be held valid until the
end of the acknowledge cycle.

The second cycle shown is identical to the first, except that the host has
inserted an optional wait state at Step 11 by holding TM2 HIGH until
the data has been accepted.

427

Operational Considerations

The following operational considerations should be noted when design-
ing host bus interfaces:

O

Wait States: Access to all registers within the CL550/560 (except
the CODEC) takes three HBCLK cycles (one wait state). Accesses
to the CODEC take a minimum of two HBCLK cycles, but the
CL550 (only) can insert wait states of up to 70 pixel clocks in
length under worst case conditions. This delay can be avoided by
polling the Flags register or checking the DRQ signal to determine
the CODEC state prior to accessing the CODEC (see Chapter 7).

Drive Capability: The HBUS and TM signals do not have
enough drive to meet the specifications of most system buses. An
external transceiver must be used to buffer these signals from the

DMA Access Timing
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system bus. The signals HBOUT and TMOUT are provided to
contro] these transceivers.

Compression Mode: The CODEC register is read-only in com-
pression mode. If the host attempts to write this register, the
CL550/560 will not return an acknowledge on TM2 and the
HBUS will remain in a locked state until a hard reset is issued.

Compression Mode: When the CL550 is in the compression
mode, the Huffman coder will not begin to operate until the FIFO
reaches the 1/4 full mark. If the host attempts to read the CODEC
register before this point, the data stream will become corrupt.

Decompression Mode: When in decompression mode, the CO-
DEC register is write-only. If the host attempts to read from this
register, the CL550/560 will not return an acknowledge on TM2
and the HBUS will remain in a locked state until a hard reset is is-
sued. When in the decompression mode, if the FIFO is full and the
host attempts to write data to the CODEC register, the acknowl-
edge on TM2 will be delayed until the FIFO is not full. If the de-
vice is not actively decompressing (START register = 0), the bus
will remain locked, and a reset will be needed. Therefore, the host
should never fill the FIFO past 3/4 full. When, in decompression
mode, the CL550/560 detects a marker code (value OXFFXX) in
the compressed data, the decoder will stop processing and the
“mark” bit in the Fs register will be set. If the host attempts to
write to the CODEC register before writing either a 0 or 1 to the
Decoder Resume register, the CL.550/560 will not return an ac-
knowledge on TM2 and the HBUS will remain in a locked state
until a hard reset is issued. Normally, the only marker codes that
are allowed within the JPEG data scan field are the RST markers
(OXFFDO through OXxFFD7). These markers are automatically de-
tected and stripped off by the CL550/560 with no external inter-
vention required.

Handshake: When performing any access to the CL550/560 host
bus, the TM?2 line must be at logic level one during the assertion
of START. If it is not, the CL550/560 will not recognize the ac-
cess, and no acknowledge will be given on TM2. A pull-up resis-
tor on TM2 could be used for this purpose.

o DMA_MSTR Mode: The DMA_MSTR input on the CL550/560



allows the CL550/560 to behave as a bus master for CODEC ac-
cesses. Once a DMA_MSTR transfer occurs, ACK from the ad-
dressed slave terminates the transfer. However, a subsequent ACK
from a non-CL550/560 access (a “foreign ACK”) will cause the
CODEC to malfunction. The workaround is to prevent foreign
ACKs from reaching the CL550/560 after the DMA_MSTR trans-
fer completes. Once the DMA_MSTR transfer ACK occurs, the
ACK signal to the CL550/560 must be suppressed until one of the
following occurs:

o The next DMA_MSTR transfer occurs (START and
DMA_MSTR)

o A valid CL550/560 access occurs (START and valid CL550/
560 Address)
This workaround is necessary only if other devices besides the CL550/
560 and the CL550/560 DMA slaves can drive ACK.

o FIFO Level Control: In the CL560 only, it is possible to lose data
if you try to either write to the CODEC FIFO when it is full, or
read from the CODEC FIFO when it is empty. It is recommended
that when writing to the FIFO, you set the DRQ trigger point so
that a DRQ is generated when the FIFO is down to 1/4 full, and
then only send enough data to bring it up to the 3/4 full point.
When reading the FIFO, set the DRQ trigger point so that a DRQ
is generated when the FIFO is up to 3/4 full, and then only read
enough data to bring it down to the 1/4 full point. This will prevent
either an overflow or underflow condition.

Timing and control signals are used to control the operation of the
CL550/560, synchronize data transfers and provide information to the
host processor.

431 RESET

The RESET signal is an input that forces a hardware reset of the device.
When the signal is asserted, most of the internal registers are forced to
a known state. However, the values in the Huffman tables, DCT table
and Quantizer tables are unaffected. HBCLK must be running during
RESET. The part will not acknowledge any access until the third HB-
CLK cycle after RESET is deasserted.

Control Signals

43
Control Signals
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43.2 NMRQ
Note: NMRQ is a CL550 signal only. The CL560 uses IRQ1 instead.

Interrupt Request (NMRQ) is an unlatched output signal, synchronous
to HBCLK, that provides an indicator of both FIFO and video field sta-
tus. It can be programmed to selectively indicate active status flags as
specified in the Interrupt Mask Register. This signal is an open drain
output and should be tied to VCC through a resistor of at least 625 ohms.
On power-up, the CL550 or CL560 should be hardware reset to prevent
the generation of spurious interrupts.

433 HALF_FULL
Note: HALF_FULL is a CL550 signal only. The CL560 uses IRQ? in-
stead.

The HALF_FULL signal is an output that indicates the status of the in-
ternal FIFO. A value of 1 indicates that the FIFO contains al least 64 en-
tries out of 128. Transitions of HALF FULL and synchronous to
PXCLK.

4.3.4 TRQT, IRQ2
Note: IRQT and IRQ?2 are CL560 signals only. The CL550 uses NMRQ
and HALF_FULL instead.

TRQT and IRQ2 are general-purpose status outputs of the CL560. The
assertion of these signals is programmable based on masks contained in
the TRQT and IRQ?2 mask registers described in Chapter 7, Registers.
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Video Interface

This chapter describes the Video interface to the CL550 and CL560 (re-
ferred to as CL550/560). The Video interface is used to input uncom-
pressed video data in the compression mode, or to output decompressed
video data in the decompression mode.

This chapter is divided into sections that describe how theVideo inter-
face is used. These sections are:

o 5.1, Overview

o 5.2, Video Interface Logic

o 5.3, Basic System Configurations

o 5.4, Timing Diagrams Compression Mode

o 5.5, Timing Diagrams Decompression Mode
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Overview

5.1

The Video interface is used to input uncompressed video data during the
compression process, and output decompressed video data during the

Overview decompression process. A block diagram of the Video interface is

shown in Figure 5-1.

CL550/560
Video
Interface

PXADRI[15:0]

FXRE Address
Strip Buffer RAM

A4

PXWE »WE Data

PXDATI23:0] | *

Buffer/Latch

Pixels In

PXIN

——

PXout

:

Video
> Interface
Logic

A A
y

Figure 5-1 Video Interface Block Diagram

Pixels Out

>

Buffer/Latch

During compression, the strip buffer RAM is used to store the incoming
pixels until 8 complete lines of video have been received. The CL550/
560 then uses the strip buffer RAM to perform a raster to 8 x 8 block

conversion of the pixel data.

During decompression, the strip buffer RAM is used to store the decom-
pressed 8 x 8 blocks until 8 complete lines of pixel data have been de-
compressed. The CL550/560 then uses the strip buffer RAM to perform
an 8 x 8 block to raster conversion of the pixel data.
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5.1.1

Signal Descriptions

The Video interface consists of the following signals:

a

PXDAT [23:0], Pixel Data Bus: The Pixel data bus is a 24-bit
wide bus that handles uncompressed or decompressed pixel data.
It is also used to transfer data to and from the strip buffer RAM. In
some modes (Grayscale, YUV 4:2:2 and CMYK), only 16 of the
24-bits are used.

PXADR [15:0], Pixel Address Bus: PXADR is the address bus
for the strip buffer RAM. The 16 bits of address support a strip
buffer of up to 65,536 entries.

PXRE, Pixel Read: PXRE is an output signal designed to directly
control the Output Enable (OE) pin of the strip buffer RAMs. Dur-
ing compression, PXRE is active only when the CL550/560 is
reading pixel data from the strip buffer RAM. During decompres-
sion, PXRE is active only when pixels are being read from the
strip buffer RAM out to the pixel destination.

PXWE, Pixel Write: PXWE is an output is designed to directly
control the Write Enable (WE) input of the strip buffer RAMs.
During compression, PXWE is active only during PXIN cycles;
when pixel data is being input from the active portion of the video
field into the strip buffer RAM. During decompression, PXWE is
active only when active pixels are being written from the CL550/
560 into the strip buffer RAM.

PXIN, Pixel Input Control: PXIN is used to activate an input
buffer on the Pixel Data bus, PXDAT, during input cycles. It is ac-
tive only when pixel data is being input from the active portion of
the video field into the strip buffer RAM.

PXOUT, Pixel Output Control: PXOUT is used to load the ac-
tive pixel into a register as it is read out of the strip buffer RAM.
It is active only when pixels from the active region of the field are
being read from the strip buffer RAM.

STALL, Stall: Asserting the STALL input signal stops all activi-
ty on the Video interface. Signals affected by STALL include PX-
DAT[23:0], PXADR[15:0], PXRE, PXWE, PXIN, PXOUT,
BLANK, VSYNC and HSYNC.

Overview
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o HSYNC, Horizontal Synchronization: HSYNC is a bidirection-

al signal used to indicate the start of a horizontal line. This signal
acts as an output in Master mode operation, and as an input in
Slave mode.

VSYNC, Vertical Synchronization: VSYNC is a bidirectional
signal used to indicate the start of a frame. This signal acts as an
output in Master mode operation, and as an input in Slave mode.

BLANK, Blanking: This signal is an output that indicates that
there are no active pixels on the Pixel Data bus.

5.1.2 Video Interface Clocks
The Video interface uses three clocks to synchronize its operation:

5-4 C-Cube Microsystems

o PXCLK, Pixel Clock: PXCLK is the main clock for the compres-

sion processor. All circuits except those directly related to the host
bus interface are driven by this clock. In single-component mode
(Grayscale), this clock is equal to the pixel rate. In 4:2:2 modes,
this clock is twice the actual pixel rate, and in 4:4:4 (YUV and
RGB) and 4:4:4:4 modes (CMYK), this clock is four times the ac-
tual pixel rate (see Table 5-1).

Note: For correct CL550 operation, HBCLK must be the
same rate or slower than PXCLK. The CL560 will work with
HBCLK timing up to 2 times faster than PXCLK.

PXPHASE, Pixel Phase: The value of the PXPHASE input sig-
nal, together with CLK3 in some modes, indicates whether a Strip
buffer read or write operation is occurring on the pixel bus. This
signal should be one-half the frequency of PXCLK. For all modes
except 4:4:4 mode, if PXPHASE is HIGH during the rising edge
of PXCLK, the ensuing cycle will be a strip buffer read operation.
If PXPHASE is LOW during the rising edge of PXCLK, the cycle
is a strip buffer write operation. Timing for 4:4:4 mode is dis-
cussed in the CLK3 section.

CLK3, Clock 3: The CLK3 input is one-half the frequency of PX-
PHASE. This signal is used only in 4:4:4 and 4:4:4:4 modes. In all
other cases it can be tied to ground. In 4:4:4:4 video modes, CLK3
indicates which pair of components from a 4:4:4:4 pixel mode is
on the Pixel Data bus. If CLK3 is HIGH during the rising edge of
PXCILK, it indicates that the first pair of components will be on the



Pixel Data bus. If CLK3 is LOW during the rising edge of PX-
CLK, it indicates that the second pair of components will be on the
Pixel Data bus. In 4:4:4 video modes, a HIGH on CLK3 during the
rising edge of PXCLK indicates that the cycle will be a strip buffer
RAM read cycle, and a LOW indicates that the cycle will be a strip
buffer RAM write cycle.

Note: When the CL550 (only) is used in single-component mode
(Grayscale) or 4:4:4:4 mode, there is a restriction on the skew between
PXCLK and HBCLK when setting the configuration register (see Fig-
ure 5-2). If this restriction is not satisfied, the CL550 may not operate
correctly until a hardware or software reset is issued to the CL550. In
this invalid state, the CL550 is unable to correctly convert raster-for-
matted pixels to and from block-formatted pixels. The designer must
guarantee that the skew between the falling edge of HBCLK and the ris-
ing edge of PXCLK never falls within the failure window. This problem
does not exist in the CL560, and there are no restrictions on CL560
clock skew.

ek [ | L[
2T I B N B LT 1
SRt L ‘

™ Configuration | -

Register Write
Address Data

HBUS[31:0]

Failure Window = T+3ns
Grayscale mode, T=27ns
4:4:4:4 mode, T =19ns

Figure 5-2 CL550 Host Bus Write Timing for the Configuration Register
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Table 5-1 CL550/560 Color Modes and Pixel Data Configurations

Two Pixels per Two PXCLKs Mode PXCLKO PXCLK2 PXCLK4 PXCLKG6

Single Component (Grayscale)

PXDAT[23:16] XX XX Cxx XX
PXDATI[15:8] X170 X37:01  X5[(7:00 X770
PXDAT[7:0] X07:00  X2701  X4[7:00  X6[7:0]

One Pixel per Two PXCLKs Mode =~ PXCLKG PXCLK2 PXCLK4 PXCLK6

YUV 4:2:2
PXDAT[23:16] XX XX XX XX
PXDAT[15:8] Uo[7:0] V0[7:0] U1[7:0] V1(7:0]
PXDAT(7:0] Y0[7:0] Y1{7:0] Y2{7:0] Y3[7:0]
YUV 4:4:4t0 YUV 4:2:2 ~
PXDAT[23:16] Va[7:0] V1[7:0] V2[7:0] V3[7:0]
PXDAT{15:8] Uo[7:0] U1{7:0] U2(7:0] U3[7:0]
PXDAT[7:0] Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0]
RGB 4:4:4 to YUV 4:2:2
PXDAT[23:16] B0[7:0] B1{7:0] B2(7:0] B3[7:0]
PXDAT[15:8] GO[7:0] G1{7:0] G2[7:0] G3[7:0]
PXDAT[7:0] R0[7:0] R1{7:0] R2[7:0] R3(7:0]

One Pixel every Fourth PXCLK Mode PXCLKO0 PXCLK4 PXCLK8 PXCLK 12

(Half Rate Timing)

4:4:4 (YUV Pixel Example}
PXDAT[23:16] VO[7:0] V1[7:0] V2[7:0] V3[7:0]
PXDAT[15:8] uo[7:0] U1[7:0] U2{7:0] U3[7:0]
PXDAT[7:0] YO0[7:0] Y1[7:0] Y2[7:0] Y3{7:0]

4:4:4 (RGB Pixel Example)
PXDAT[23:16] BO[7:0] B1[7:0] B2[7:0] B3[7.0]
PXDAT[15:8] G0[7:0] G1(7:0] G2[7:0] G3[7:0]
PXDAT[7:0] RO[7:0] R1{7:0] R2[7:0] R3[7:0]

One Pixel per Four PXCLKs Mode =~ PXCLKO PXCLK2 PXCLK4 PXCLKG6

4:4:4:4 (CMYK Pixel Example)

PXDAT[23:186) XX XX XX XX
PXDAT[15:8] MO[7:0] Ko[7:0] M1[7:0] K1[7:0]
PXDAT[7:0] Co[7:0] Y0[7:0] C1[7:0] Y1[7:0]
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5.1.3 Master/Slave Mode Operation

The CL550/560 can be programmed to operate in either Master mode,
or Slave mode. In Master mode, the CL550/560 generates HSYNC and
VSYNC, and in Slave mode, the CL550/560 expects the external video
interface logic to generate HSYNC and VSYNC.

Master mode is selected by programming bit 3 of the Configuration reg-
ister to a 1. Slave mode is selected by programming bit 3 of the Config-
uration register to a 0.

5.1.4 STALL Operation
The STALL input, when asserted, signal stops all activity on the Video
interface. Signals affected by STALL include PXDAT[23:0], PXA-

DR[16:0], PXRE, PXWE, PXIN, PXOUT, BLANK, VSYNC and

HSYNC. All internal logic modules in the JPEG processing pipeline be-
tween the FIFO and the Video interface are also stopped in their current
state. No data transfers can take place between the FIFO and the JPEG
pipeline when the device is stalled. In the CL550, the Huffman CODEC
is not affected by the assertion of STALL, so that the host processor can
access the CODEC register. In the CL560, all of the modules are stalled,
including the Huffman CODEC, but the CODEC FIFO is still accessi-
ble when the pipeline is stalled.

STALL is sensed on the rising edge of PXCLK. When STALL is negat-
ed, processing will resume when PXCLK, PXPHASE, and CLK3 have
the same phase relationship as when STALL was asserted. In modes
where CLK3 is not used, processing will resume when PXCLK and PX-
PHASE have the same phase relationship as when STALL was asserted.

The STALL signal should be used in the following cases:

o When the CL550/560 is operating in the compression mode,
STALL is asserted to prevent the FIFO from overflowing. One of
the CL550/560’s status pins, NMRQ, DRQ, HALF_FULL, IRQT
or IRQ2, is used to generate the STALL signal when the FIFO
reaches a certain threshold level, typically 1/2 or 3/4 full. The pix-
el pipeline will then halt, allowing the host to drain the FIFO be-
low the threshold.

o When the CL550/560 is operating in the decompression mode,
STALL is asserted to prevent the FIFO from underflowing. One
of the CL550/560’s status pins, NMRQ, DRQ, HALF_FULL,

Overview
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TRQT or IRQ2, is used to generate the STALL signal when the
FIFO reaches a certain threshold level, typically 1/2 or 1/4 full.
The pixel pipeline will then halt, allowing the host to fill the FIFO
above the threshold.

o During any compression or decompression operation, if the exter-
nal interface is not ready to deliver a pixel to, or receive a pixel
from the CL550/560, the STALL signal should be asserted to hold
off the CL550/560 processor.

Figure 5-3 shows the effect that the STALL signal has on the Video in-
terface control signals when the CL550/560 is stalled during a RGB-to-
YUYV 4:2:2 master-mode compression (Note that CLK3 is not used in
this mode). The numbers in the diagram refer to the steps below.

PXPHASE _] | ’| ‘1

2 T e B | o O

P L] I B e N
0 e @ [® B L Lo
- |

o _|

STATL @l_@_!® ' @J@

PXADR X X X Y

Figure 5-3  STALL Timing, YUV 4:2:2 Compression Example

1. The CL560 requests a pixel for compression by asserting PXIN.
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11.
12.

QOverview

The pixel source places the data on the bus at that time. This
starts a normal (not stalled) pixel write cycle.

The normal write cycle is completed on the next rising edge of
PXCLK.

The CL560 requests another pixel for compression. This starts
a stalled pixel write cycle.

The external video logic generates a STALL signal to halt the
CL550/560. STALL could have been generated either at the re-
quest of the CL550/560 (in response to a Half-full flag), or be-
cause the video interface needed time to prepare the next pixel.
That STALL signal is recognized on the rising edge of PXCLK.
The CL550/560 will leave PXIN, PXOUT, PXRE and PXWE
in their current state until the end of the STALL condition. Note
that PXPHASE is LOW at that time (CLK3 is not used in the
mode used in this example, and therefore is not significant).

The external logic releases the STALL input.

The CL550/560 does not recognize the fact that STALL was re-
leased until the first rising edge of PXCLK when the state of
PXPHASE (and CLK3, if used) is the same as when STALL
was first recognized.

The pixel write cycle is completed on the next rising edge of
PXCLK.

The external video logic can also generate a STALL during a
CL550/560 pixel read (PXRE) cycle. It pulls STALL LOW to
start the cycle.

The CL550/560 recognizes the STALL condition on the next
rising edge of PXCLK. Note that PXPHASE is HIGH at this
point.

The external video logic releases the STALL input.

The CL550/560 does not recognize the fact that STALL was re-
leased until the first rising edge of PXCLK when the state of
PXPHASE (and CLK3, if used) is the same as when STALL
was first recognized. In this case, STALL is released on the next
falling edge of PXCLK when PXPHASE is HIGH after STALL
is released.
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52
Video Interface

RGB-YUYV conversion

Interleaved pixel format conversion

m]

Logic o Blanking and active region control
m]
]

Order conversion between raster and block formats

Each of these functions is described in the sections below.

5.2.1 Pixel Order Conversion

Typical display systems transfer pixel data in raster format (see Figure
5-4), but the JPEG standard requires pixel data to be in 8x8 block order
(see Figure 5-5). The Video interface uses an external SRAM buffer

called the strip buffer, to accomplish this conversion.

The logic in the Video interface performs four major functions:

RasterLine0{0{1{2{3[4(5(6(78¢9(10{11(12{13({14{15{16{17{18{19
RasterLine1{0|1|2|3|4y5({6|7|8]|9(10(11|12|{13|14|15(16]|17]|18(19
RasterLine2}0|1)2|3|4]|5|6[7)8]9([10{11(12{13]14]|15[16|17]18{19
RasterLine3|0|1|2|3|4i5{6(7|8]|9|10{11|12|13|14|15|16{17]18(19
Raster Line410|112|3[4|5|6[7}|8]|9{10{11(12{13|14|15({16|17]18{19
Raster Line5]0 [ 1|23 [4{5(6{7|8]9(10]11(12]13|14|15{16|17]18[19
RasterLine6|0| 123 |4({5|6|7(8|9]10}11{12{13|14|15(16|17[18|19
RasterLine7{0 {1123 (4{5|6{7|8)9([10{11[12{13({14115{16[17/18]19
Figure 5-4 Pixels in Raster Order

Block 0 1 2...
BlockLine0 {0 (12134 |5|6|7|0|1]2]3[4|5(6|7j0[1(2]3
Block Line 1 | 8|9 ({10{11{12{13{14{15| 8 | 9 {10|11{12[13{14|15{ 8 | 9 [10]11
Block Line 2 {16{17(18(19]20121|22(23[16|17(18]19(20|21(22|23(16(17(18{19
Block Line 3 |124|25|26|27(281|29|30{31|24|25|26|27128|29{30|31}24|25|26|27
Block Line 4 }32{33]34)35)36}37|38}39]32/33]34|35/36|37}38}39}32133}34}35
Block Line 5 140(41|42|43(44|45|46|47140|41|42(43{44|45|46|47|40(41|42|43
Block Line 6 [48]49{50}51|52|53}54{55|48|49{50|51{52|53|54]|55}48|49{50|51
Block Line 7 |56|57|58159(60|61|62|63|56|57{58]59|60|61{62|63}56|57 58|59
Figure 5-5 Same Pixels in 8 x 8 Block Order
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Video Interface Logic

The strip buffer should be wide enough to store the data that it is expect-
ed to handle (either 16-bits or 24-bits wide), and deep enough to store
eight complete lines of data at the highest resolution. The equations for
determining the memory size are:

YUV 4:2:2, RGB to 4:2:2, 4:4:4 to 4:2:2 and 4:4:4 Modes

Line Buffer Depth = 8 * (# of Pixels per Line)
Line Buffer Width = (# of Bits / Pixel) / 8 Bytes

Single Component (Grayscale)

Line Buffer Depth =8 * (# of Pixels per Line)
2

Line Buffer Width = 16
4:4:4:4 Mode

Line Buffer Depth = 8 * (# of Pixels per Line) * 2
Line Buffer Width = 16

As an example, a system designed to use YUV 4:4:4 format pixels and
1024 pixel wide lines would require the following amount of RAM:

Line Buffer Depth = 8 * 1024 Pixels per line = 8192
Line Buffer Width = 24 bits per pixel / 8 = 3 Bytes

In this example, the strip buffer would need three 8K x 8 RAMs.

The strip buffer can access RAM arrays up to 64K addresses deep. The
CL550/560 always uses the lowest order address space first.

The strip buffer addressing algorithm is a complex modulo counting
scheme. During the first eight lines of a frame, data is written directly
from the input source to an address in the RAM. During each subse-
quent line, until the end of the frame, the CL550/560 reads the pixel data
from an address in the strip buffer RAM (as part of the raster to block
conversion) and then writes a new pixel of raster data back into the va-
cated address. After the end of the frame, the CL550/560 only performs
reads until the buffer has been purged. Because of this addressing
scheme, the SRAM array never needs to be greater than eight lines
deep.
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5.2.2 Window Management and Control

Several of the status signals on the Video interface are used in window
management and control. These signals are VSYNC, HSYNC and
BLANK.

The VSYNC and HSYNC signals are bidirectional status signals that
are used to indicate the beginning of a frame or field and the beginning
of a new line respectively. They are outputs in the Master mode, and in-
puts in the Slave mode. The BLANK signal is an output that is asserted
when no pixels are being transferred to the external interface.

Window and frame parameters are programmed using a set of control
registers. These registers are listed in Table 5-2, and defined fully in
Chapter 7, Registers. VPeriod and HPeriod are used to specify the di-
mensions of an image frame. HDelay, VDelay, HActive and VActive are
used to specify the size and position of the active image area within the
frame. Figure 5-6 illustrates the function of the video field registers.

Table 5-2 Video Field Control Registers

Register Name Content / Function Units
HPeriod Number of pixels in a line Pixels
VPeriod Number of lines in an image Lines
HDelay Horizontal delay to the first active pixel Pixels
VDelay Vertical delay to the first active line Lines
HActive Active window width Blocks
VActive Active window height Blocks
HSync Horizontal Sync pulse width Pixels
VSync Vertical Sync pulse width Lines

Vertical Line Count Active window vertical line count Lines

5.2.3 Color Conversion

The CL550/560 provides an internal RGB-to-YUV color space conver-
sion and sub-sampling mechanism. Although not a part of the JPEG al-
gorithm (JPEG is independent of color space), this mechanism is
particularly useful in computer video and multimedia applications. For
example, digitized data from a frame grabber or color digitizer is often
presented in the 16-bit YUV 4:2:2 format. This is the format required by
NTSC and PAL monitors. However, typical computer graphics moni-
tors require data to be presented in 24-bit RGB format. The CL550/560
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HPeriod (P)
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{B) = Count in 8x8 Blocks

Figure 5-6 Video Field Descriptions

translates between these two formats by means of a matrix multiplier
and chrominance sub-sampler. This minimizes the need for external col-
or space conversion logic and reduces overall system complexity and
cost.

Conversion between the RGB and YUV color spaces is accomplished
using a matrix-multiply operation. Nine registers are provided in the
CL550/560 processor to program the transform matrix.

As an example, in the RGB to YUV 4:2:2 pixel conversion mode, the
24-bit RGB pixels are read into the Pixel bus. Once inside the CL550/
560, the pixels are transformed into 24-bit YUV 4:4:4 pixels using the
on-chip matrix multiplier. Following this operation, the U and V com-
ponents are sub-sampled to obtain a 4:2:2 ratio between luminance (Y)
and chrominance (U and V). The results of this operation are shown in
Figure 5-7.
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53
Basic System
Configurations

RGB 4:4:4 YUV 4:4:4 YUV 4:2:2
Rl Rz R3 R4 > Y1 Y2 Y3 Y4 > YT Y2 Y3 Y4
Gl G2 G3 G4 > U1 Uz U3 ud > U1 vi U3 V3
Bt Bz B3 B4 > VI V2 V3 V4

RGB to YUV Conversion Operation

Figure 5-7

The CL550/560 is used in several basic system configurations. Video
systems are used to perform real-time compression of video or still
frames, and have the Pixel Data bus connected directly to a pixel buffer.
This application is shown in a block diagram in Figure 5-8, and in great-
er detail in Figure 5-11. Still-frame systems are used to perform back-
ground compression of still frames, and have the Pixel Data bus
connected to the processor Host bus. This application is shown in a
block diagram in Figure 5-9. Multi-media systems perform real-time
compression of video and still frames, but have the Pixel Data bus con-
nected to Video Overlay and Mixer logic to allow the CL550/560 to co-
exist with other video-based products in the computer. This application
is shown in Figure 5-10.

CL560
Host > Processor
Processor .
Pixel Pixel Video
D;;Z Buffer &3 1/0
System «—>
Memory Host
€5 Strip Buffer
AddPixel T
Mass > '532 '
Figure 5-8 Typical Video System Application

In a CL550 video application, a pixel buffer is required, and is usually
either a bidirectional FIFO or a VRAM frame buffer. The CL550 draws
data asynchronously from this buffer at rates up to 15.0 million pixels/
second @ 30 MHz or 17.5 million pixels/second @ 35 MHz. In CL560
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applications, the pixel buffer is optional, and the CL560 draws data syn-
chronously or asynchronously from this buffer at rates up to 16.5 mil-
lion pixels/second. Once drawn from the pixel buffer, the data must be
converted from raster format into the 8x8 block format required by the
JPEG standard. The CL550/560 provides a simple mechanism for per-
forming this conversion using an external 8-line static RAM strip buff-
er. During compression, the CL550/560 stores the incoming data in the
strip buffer in raster format. Once eight complete lines of data have been
stored, the CL550/560 reads the data back out as 8x8 blocks. These
blocks are then compressed to JPEG specifications and sent to the host
system over the Host bus. Addressing for the Strip buffer is designed so
that only eight lines of SRAM storage are requ1red The Strip buffer is
discussed in detail in Section 5.2.1.

The still-frame system configuration uses the CL550/560 processor as a
compression/decompression co-processor in a microprocessor based
system. This configuration is typically used to compress and decom-
press still-frame images in applications such as scanners, printers or
copiers where software-based JPEG performance is too slow to do the
job. An example of this design is shown in Figure 5-9.

CL550/560
Processor
) . Bus
Pixel
Host > DI:ta Buffers  |g——
Processor Bus I and Latches
Host ;
> Strip Buffer
Islystem “—> Bus (Optional)
emory
Pixel T
Address 1
Bus
Mass
o Surage [

Figure 5-9 Typical Still-frame Application

In this configuration, a CL550/560 is used with both its Pixel data bus
and its Host data bus connected to the system data bus. In a typical com-
pression operation, the host writes pixel data to a pixel data latch, where
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it is read by the CL.550/560. The host processor then reads the com-
pressed data from the Host bus interface. Because the CL550/560 host
bus and the pixel bus are connected to the same system bus the CL550/
560 must be put into a stalled state between pixel accesses and during
host accesses.

The strip buffer is optional is this application because the host processor
can perform the pixel reordering in software. This further reduces the
hardware requirements of an already simple design.

Connections in multimedia applications are similar to those in a video
system application, but the CL560 must co-exist with other video pe-
ripherals in the system. In this application, the CL560 is connected to
Video overlay and mixer logic.

Composite NTSC/PAL
Videoln ~™|  Decoder
CL560 +
Host 4—# Processor
Processor Pixel Video

Data Overlay-
System Bus - Mixer
Memory Host
Bus Strip Buffer
Pixel f Frame
<> Address { Buffer

Mass Bus
~__ Storage - Video
Outto
Display
VGA DAC —
< —  Controller

Figure 5-10  Typical Multimedia System Application

The strip buffer is required in this application to ensure that the CL560
can meet the speed requirements of real-time video compression and
decompression system.
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This section describes the timing waveforms seen in a CL550/560 based
system. The example system uses master-mode compression in the
4:4:4-t0-4:2:2 mode. The video parameters are set to the following:

Timing Diagrams Compression Mode

Timing Diagrams
Compression Mode

Table 5-3 Compression Timing Example Register Values
Register Value Comments
HPeriod 56 57 pixels per horizontal line
HSync 9 HSYNC pulse is 10 pixels wide
HDelay 6 B-pixel delay from falling edge of HSYNC to
the first active pixel
HActive 1" 48 pixels per active line
VPeriod 53 53 active lines
VSync 3 VSYNC pulse is 3 lines wide
VDelay 10 10-line delay from the falling edge of VSYNC
to the first active line
VActive 4 32 active lines

Figure 5-11 shows the design of the logic used in this example. Figure
5-12 shows the timing diagram for one complete vertical period, and
Figure 5-13 through Figure 5-16 show details of important events dur-

ing that vertical period.
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Timing Diagrams Compression Mode

Figure 5-12 shows the timing diagram for a typical compression cycle.
The circled numbers in the figure refer to the steps below. The grayed
out areas of the timing diagram indicate times where there are too many
transitions to show in the limited space available.

PXADR

PXDAT

s [LLETTTRRRTTTTTreL
)

R

e ||

BLANK

T

Figure 5-12  Compression Overview

NUUunnmmnnmn

The CL550/560 starts the compression cycle by generating a
pulse on the VSYNC output. This pulse is three lines wide (the
width is determined by the value programmed into the VSync
register).

Ten lines after VSYNC (the value programmed into VDelay),
the CL550/560 starts to input pixel data. It asserts PXIN and
deasserts BLANK to enable the data from the external source
onto the PXDAT bus, and PXADR to select the address in the
Strip buffer where the data will be written.

The CL550/560 asserts PXWE to allow the pixel data to be
written directly into the strip buffer address pointed to by PXA-
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DR. For the first eight lines, the CL550/560 will only write data
into the strip buffer. Expanded timing for the first line is shown
in detail in Figure 5-13.

The CL550/560 changes modes after the first eight lines of vid-
eo have been stored in the strip buffer. The CL550/560 now al-
ternates between reading data from the strip buffer for raster to
block conversion of the first eight lines, and writing data to the
strip buffer for raster to block conversion of the next eight lines.
This process continues until the last visible line of the frame.
Expanded timing for the eight lines is shown in detail in Figure
5-14.

The CL550/560 stops inputting data after 32 lines (the value
programmed into VActive). It stops generating PXWE and
PXIN and asserts BLANK to stop the flow of data from the vid-
eo source onto the PXDAT bus. Note that the PXDAT and PX-
ADR busses and PXRE remain active because the CL550/560
is still performing raster-to-block conversion. Expanded timing
for the last visible line is shown in detail in Figure 5-15.

The CL550/560 has completed the raster-to-block conversion
eight lines after the end of visible video. It stops generating
PXRE signals and releases the PXADR and PXDAT busses.
Timing for the last line with PXRE is shown in Figure 5-16.
The CL550/560 continues generating HSYNC pulses until the
end of the frame. VSYNC begins after the 53rd HSYNC pulse
(The value programmed into HPeriod).



Timing Diagrams Compression Mode

Figure 5-13 shows the beginning of the first active line in the frame.
This diagram is an expansion of the area shown at step 3 of Figure 5-12.
The circled numbers in the figure refer to the steps below:

1. The CL550/560 outputs a HSYNC pulse to begin the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

2. The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
input data. The CL550/560 indicates the start of the active line
by negating BLANK.

3. The CL550/560 writes the first pixel into the strip buffer by en-
abling the data onto the PXDAT bus with the PXIN signal and
asserting PXWE to write the data into the RAM. The address
that the data will be written to is determined by the contents of
the PXADR bus.

4. During the first eight lines, there is no activity on PXRE, and
the PXDAT bus is allowed to float when PXIN is HIGH.

5. HSYNC goes HIGH at the end of the time determined by the
value written into the HSync register.

6. The CL550/560 continues to write pixels into the strip buffer
until the end of the horizontal line (not shown).

Video Interface 5-21



Timing Diagrams Compression Mode

(uoissaidwog) sury aanayisa4  g1-G ambiy

I I A B A O B Y awd
®©

OO0 | Lvaxd

000 } 8000 A £0OO ) 9000 A G000 } 000 A €000 ) 2000 A L0OO 0000 4avXd

S s I s s I s R s U s I s Y s N s I P

5-22 C-Cube Microsystems



Timing Diagrams Compression Mode

Figure 5-14 shows the ninth active line in the frame. At this point, the
CL550/560 starts to alternate between performing a raster-to-block con-
version of the first eight lines and inputting data for the next eight lines.
The strip buffer addressing counter is designed so that the pixel that is
going to be input will occupy the address that was just vacated by the
pixel that was read for the raster-to-block conversion.

This diagram is an expansion of the area shown at step 4 of Figure 5-12.
The circled numbers in the figure refer to the steps below:

1.

The CL550/560 outputs a HSYNC pulse to begin the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
input data. The CL550/560 indicates the start of the active line
by negating BLANK.

The CL550/560 reads the first pixel of the first block from the
strip buffer RAM to start the raster to block conversion of the
first eight lines. The address that the data will be read from is
determined by the contents of the PXADR bus.

The CL550/560 writes the first pixel of the ninth line into the
strip buffer by enabling the data onto the PXDAT bus with the
PXIN signal and asserting PXWE to write the data into the
RAM. The address that the data will be written to is the same
address that was just read.

HSYNC goes HIGH at the end of the time determined by the
value written into the HSync register.

The process of reading an old pixel for the raster to block con-
version, and writing a new pixel into the same location contin-
ues until the end of the horizontal line. In this example, it
continues until 48 pixels have been processed.
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Timing Diagrams Compression Mode

Figure 5-15 shows both the last line with active PXIN and PXWE, and
the beginning of the line following. At this point, the CL550/560 is
through accepting new data, but still needs to perform a raster to block
conversion of the last eight lines.

This diagram is an expansion of the area shown at step 5 of Figure 5-12.
The circled numbers in the diagram refer to the steps below:

1.

The CL550/560 outputs a HSYNC pulse to begin the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
input data. The CL550/560 indicates the start of the active line
by asserting BLANK.

The CL550/560 reads the first pixel of the first block from the
strip buffer RAM to start the raster to block conversion of the
first eight lines. The address that the data will be read from is

determined by the contents of the PXADR bus.

The CL550/560 writes the first pixel of the last visible line into
the strip buffer by enabling the data onto the PXDAT bus with
the PXIN signal and asserting PXWE to write the data into the
RAM. The address that the data will be written to is the same
address that was just read.

HSYNC goes HIGH at the end of the time determined by the
value written into the HSync register. )

The process of reading an old pixel for the raster to block con-
version, and writing a new pixel into the same location contin-
ues until the end on the horizontal line. In this example, it
continues until 48 pixels have been processed.

At the end of the last active line, BLANK goes LOW to indicate
that the CL550/560 will no longer input data.

The raster to block conversion must continue for eight more
lines to allow the last eight lines of the active frame to be com-
pressed. Note at this point that data is being read from the strip
buffer, but no new data is being written.
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Timing Diagrams Compression Mode

Figure 5-16 shows the last line with active PXRE. At the end of this line,
the CL550/560 has completed raster to block conversion of the last
eight lines of the active frame. Beyond this point PXIN, PXRE, and
PXWE remain inactive until the first line of the next vertical frame.

This diagram is an expansion of the area shown at step 6 of Figure 5-12.
The circled numbers in the diagram refer to the steps below:

1.

The CL550/560 outputs a HSYNC pulse to begin the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
input data.

The CL550/560 asserts PXRE to read the first pixel of the last
line from the Strip buffer RAM. This starts the raster-to-block
conversion of the last line. The address that the data will be read
from is determined by the contents of the PXADR bus.

The raster to block conversion process continues until the end
of the horizontal line. At this point PXIN, PXRE, and PXWE go
inactive and will remain that way until the end of the vertical
frame.

After the last pixel is read, compression continues until the
compression pipeline has flushed all of the remaining data to
the FIFO. You should be aware that the possibility of FIFO
overflow exists during this time, even though no video bus sig-
nals are active. The FIFO level can be monitored using NMRQ,
HALF_FULL, IRQT or IRQ2.
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Timing Diagrams Decompression Mode

This section describes the timing waveforms seen in a CL550/560 based
system. The example system uses master-mode decompression in the
4:4:4 10 4:2:2 mode. The video parameters are set to the following:

Table 5-4 Timing Example Video Parameters
Register Value Comments
HPeriod 56 57 pixels per horizontal line
HSync g9 HSYNC pulse is 10 pixels wide
HDelay 6 6-pixel delay from falling edge of HSYNC to
the first active pixel
HActive 11 48 pixels per active line
VPeriod 53 53 active lines
VSync 3 VSYNC pulse is 3 lines wide
VDelay 5 10-line delay from the falling edge of VSYNC
to the first active line
VActive 4 32 active lines

Figure 5-17 shows the timing diagram for one complete vertical period,
and Figure 5-18 through Figure 5-21 show details of important events
during that vertical period.

Figure 5-17 shows the timing cycle for a typical decompression cycle.
The grayed out areas of the timing diagram indicate times where there
are too many transitions to show in the limited space available.

55

Timing Diagrams
Decompression
Mode
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Figure 5-17  Decompression Overview
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The CL550/560 starts the decompression cycle by generating a
pulse on the VSYNC output. This pulse is three lines wide (the
width is determined by the value programmed into the VSync
register).

Some time before the beginning of visible video, the CL550/
560 starts to write decompressed pixels into the strip buffer
RAM. These pixels will be written in block order, and read back
eight lines later in raster order. Expanded timing for this area is
shown in Figure 5-18.

.The CL550/560 changes modes after the first eight lines of vid-

eo have been stored in the Strip buffer. It now removes data
from the strip buffer in raster order and sends it to the video
latch to be output. At the same time, it is writing the next eight
lines of block order pixel data into the strip buffer RAM. This
cycle will continue until eight lines before the end of visible
video. Expanded timing for this area is shown in Figure 5-19.



Timing Diagrams Decompression Mode

4. The CL550/560 stops writing blocks to be converted to raster
format eight lines before the end of visible video. Expanded
timing for this area is shown in Figure 5-20.

5. The CL550/560 stops reading pixels from the strip buffer RAM
at the end of the visible frame. Expanded timing for the last vis-
ible line is shown in Figure 5-21.

6. The CL550/560 continues to generate HSYNC pulses until the
end of the frame. VSYNC begins again after the 53rd HSYNC
pulse (the value programmed into HPeriod) has been generated.

Figure 5-18 shows the signal activity around the first data written to the
strip buffer RAM. This data is the pixel data for the first eight lines of
visible video. It will be written into the strip buffer RAM in block for-
mat, and read back out in raster format.

This diagram is an expansion of the area shown at step 2 of Figure 5-17.
The circled numbers refer in the figure refer to the steps below:

1. The CL550/560 writes the first group of pixels into the strip
buffer RAM. Note that this group of pixels is not bounded by a
HSYNC interval, because decompression from the FIFO starts
on a HSYNC and the data is written to the strip buffer after a
delay of HDelay plus the CL550/560 pipeline latency. On all
subsequent lines, the CL550/560 waits until the start of the hor-
izontal line to process data.

2. The CL550/560 generates a pulse on HSYNC to synchronize
the system.

3.  HSYNC goes high after ten pixel clocks (the value programmed
into the HSync register).

4. The CL550/560 continues writing pixels into the strip buffer
RAM. This process continues until all 48 (HActive) pixels have
been written.
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Timing Diagrams Decompression Mode

Figure 5-19 shows the beginning of the ninth line in the frame (the first
line of active video). At this point, the CL550/560 starts to alternate be-
tween reading the pixel data out of the strip buffer in raster order and
writing new pixel data in block order.

This diagram is an expansion of the area shown at step 3 of Figure 5-17.
The circled numbers in the diagram refer to the steps below:

1. The CL550/560 outputs a HSYNC pulse to start the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

2. The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
output the first pixel. The CL550/560 indicates the start of ac-
tive video by deasserting BLANK.

3. The CL550/560 outputs the first raster format pixel from the
Strip buffer RAM on PXDAT. This pixel was written into the
RAM in block format eight lines earlier. The address that the
data will be read from is determined by the contents of the PX-
ADR bus.

4. The CL550/560 writes a new block format pixel into the Strip

- buffer address just vacated. This block will be converted into
raster format in eight lines.

5. The CL550/560 drives HSYNC HIGH at the end of the time de-
termined by the value written into the HSync register.

6. The CL550/560 continues the process of reading a pixel that has

been converted and sending it out to the display device, and
writing a pixel to be converted back into the same address. This

process continues until the end of the horizontal line. In this ex-

ample, it continues until 48 (determined by HActive) pixels
have been processed.

Video Interface
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Figure 5-20 shows the signal activity around the last line with PXOUT,
PXRE and PXWE active. At this point, the CL550/560 has written the
last eight lines of pixel blocks into the strip buffer, and is starting to out-
put them in raster format.

This diagram is an expansion of the area shown at step 4 of Figure 5-17.
The circled numbers in the diagram refer to the steps below:

1.

The CL550/560 outputs a HSYNC pulse to start the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
output the first pixel. The CL550/560 indicates the start of ac-
tive video by deasserting BLANK.

The CL550/560 outputs the first raster format pixel from the
strip buffer RAM. This pixel was written into the RAM in block
format eight lines earlier. The address that the data will be read
from is determined by the contents of the PXADR bus.

The CL550/560 writes a new block format pixel into the strip
buffer address just vacated. This block will be converted into
raster format in eight lines.

The CL550/560 drives HSYNC HIGH at the end of the time de-
termined by the value written into the HSync register.

The CL550/560 writes the last pixel of the last block to be con-
verted into the strip buffer RAM.

The CL550/560 reads the first pixel of the eighth from the last
line out. At this point, the CL550/560 is reading the pixels from

the strip buffer without a corresponding write, because there are -

no more blocks to be converted.
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Timing Diagrams Decompression Mode

Figure 5-21 shows the signal activity around the last visible line of the
frame. The CL550/560 is reading the last line of the last block at this

point.

1.

The CL550/560 outputs a HSYNC pulse to start the horizontal
line. The width of the HSYNC pulse is determined by the value
programmed into the HSync register (10 pixels in this exam-
ple).

The CL550/560 waits until the delay amount programmed into
the HDelay register (6 pixels in this example) before it starts to
output the first pixel. The CL550/560 indicates the start of ac-
tive video by deasserting BLANK.

The CL550/560 outputs the first pixel of the last line. This pixel
was written into the RAM in block format eight lines earlier.
The address that the data will be read from is determined by the
contents of the PXADR bus.

The CL550/560 drives HSYNC HIGH at the end of the time de-
termined by the value written into the HSync register.

The CL550/560 outputs the last pixel of the last line. At this
time, the CL550/560 is through converting the last eight lines,
and PXOUT and PXRE become inactive.
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6
Specifications

This chapter describes the electrical and mechanical characteristics of
the CL550 and CL560. The chapter is divided into three sections:

o 6.1, Operating Conditions
o 6.2, AC Characteristics
o 6.3, Package Specifications

The AC and DC electrical parameters for the CL560 are based on char-
acterization of initial silicon, but should be considered preliminary. A
complete characterization of the silicon over all process corners had not
been completed by the time that this manual was sent to the printers.
Margins have been added to the parameters wherever possible. The final
values of the electrical parameters are expected to be better than the pre-
liminary values listed in this chapter.



Operating Conditions

This section specifies the electrical characteristics of the CL550 and
CL560. The CL560 numbers are preliminary and subject to change.

Operating
Conditions Table 6-1 Absolute Maximum Ratings
Parameter : Value
Supply Voltage -05t0 6.5V
Input Voltage -1.0to Vpp
Output Voltage -0.5t0Vpp
Storage temperature range -65 °C to 150 °C
Operating temperature range (case) 0°C to 90 °C

Table 6-2 Operating Conditions

Parameters Test Conditions Ct-)mmerclal Unit
Min  Max
VDD  Supply Voltage 475 5.25 v
tcase  Operating Temperature 0 85 °C
Table 6-3 DC Characteristics
. Commercial )
Parameters Test Conditions Min Typ Max Unit
Vi High-level input voltage ' Vpp = MAX 24 13 v
Vy  Low-level input voltage ! Vpp=MIN 13 08 V
Voy High-leve! output voltage  Vpp = MIN, lgy =-8.0 mA 24 43 Vv
Vg, Low-level output voltage  Vpp =MIN, I =12.0 mA 03 05 v
ly  High-level inputcurrent  Vgp=MAX, Viy=Vpp 0.2 10 pA
i Low-level input current  Vpp=MAX, V=0V 10 02 vA
loz Output leakage current  Hi-Z output driven to OV and 2 H0  pA
525V
lppo CL550 Supply Current ~ Vpp = MAX, PXCLK = 0 MHz 260 mA
Vp=00r Vg, C=50pF  Vpo=MAX, PXCLK=10MHz 375  mA
=P 0T M908y - MAX, PXCLK =30 MHz 500 mA
Vpp = MAX, PXCLK = 35 MHz 670  mA
Ippg  CL560 Supply Current Vpp = MAX, PXCLK =0 MHz 300 mA
Viy=0or Voo, G =50pF Vpp=MAX, PXCLK=15MHz 500 mA
=20 N0 B=SERE = MAX, PXCLK = 30 MHz 650  mA
Cn  Input Capacitance ' 10 pF
Cour Output Capacitance ' 12 pF

1. Not 100% tested, guaranteed by design characterization

6-2 C-Cube Microsystems



This section describes the AC timing characteristics of the CL550 and
CL560. The timing characteristics are divided into related groups and
depicted with one or more timing diagrams and a table of the timing val-
ues. The groups are:

o Host Interface Control Signal Timing
o HBCLK and RESET Timing
o DRQ Timing
o NMRQ, IRQT Timing
o HALF_FULL, IRQ2, FRMEND Timing
o Host Interface Memory and Register Timing
o Host Bus Timing, Memory and Register Write
o Host Bus Timing, Memory and Register Read
0 Host Bus Timing, Burst Mode Write
o Host Bus Timing, Burst Mode Read
o Video Interface Timing
o Video Interface Clock Timing
o Video Interface Timing: Compression, Full-Rate Mode
o Video Interface Timing: Decompression, Full-Rate Mode
o Video Interface Timing: Compression, Half-Rate Mode
o Video Interface Timing: Decompression, Half-Rate Mode

AC Characteristics

6.2
AC Characteristics
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AC Characteristics

6.2.1 Host Interface Control Signal Timing

HBCLK I
L T4

I,

Two HBCLK Cycles

Minimum

j\

1 -

Figure 6-1 HBCLK and RESET Timing
Table 6-4 HBCLK and RESET Timing Parameters, CPGA Package
CL550-35 CL550-30 CL560-30
Time Description Min Max | Min Max | Min Max | Units
T1  HBCLK Clock Period 84 100 33 ns
T2 HBCLK Pulse Width HIGH 50 50 15 ns
T3 HBCLK Pulse Width LOW 23 23 15 ns
T4 RESET Setup Period 23 10 10 10 ns
T5  RESET Pulse Width LOW? 170 200 70 ns
Table 6-5 HBCLK and RESET Timing Parameters, MQUAD Package
CL550-10 CL550-30 CL560-15 CL560-30
Time Description Min Max | Min Max | Min Max | Min Max | Units
T1  HBCLK Clock Period 100 100 66 33 ns
T2 HBCLK Pulse Width HIGH 50 50 33 15 ns
T3 HBCLK Pulse Width LOW ' 30(23) 23 23 15 ns
T4  RESET Setup Period 3 15 10 10 10 ns
T5 RESET Pulse Width LOW? 200 200 140 70 ns

1. Characteristics in parenthesis apply to part number CL550-10N. These are required for NuBus

designs.

2. RESET is seen immediately when going low, but is only removed on a positive edge of HBCLK.
3. Two HBCLK cycles are required for internal reset release.
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HBCLK  / \ \
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Figure 6-2 DRQ Timing
Table 6-6 DRQ Timing, CPGA Package
CL550-35 CL550-30 CL560-30

Time Description Min Max | Min Max | Min Max | Units

T6  DRQ Hi-Z to LOW Delay * 18 18 18 | ns

T7  DRUOLOW to Hi-Z Delay? 18 18 18 | ns

78 DRQ Delay Hold Time 2 5 5 5 ns
Table 6-7 DRQ Timing, MQUAD Package

CL550-10 CL550-30 CL560-15 CL560-30

Time Description Min Max | Min Max | Min Max | Min Max | Units

T6  DRQ Hi-Z to LOW Delay ' 25 20 22 20 ns

T7  DRQOLOW to Hi-Z Delay 2 25 20 22 20 ns

78 DR Delay Hold Time 2 3 5 5 5 ns

1. DRQis an open-drain signal.
2. Not 100% tested, guaranteed by design characterization.
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HBCLK J \_‘ ’_J \ 1 \ / \
T9 T10
NMRQ f Hi-Z
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Figure6-3  NMRQ, IRQ1 Timing
Table 6-8 NMRQ, IRQT Timing, CPGA Package
CL550-35 C1550-30 CL560-30
Time Description Min Max | Min Max | Min Max | Units
79  NMRU, IRQT Hi-Z to LOW Delay ' 18 18 18 | ns
T10  NMRQ, IRQT LOW to Hi-Z Delay 3 18 18 18 | ns
T11  NMRQ, TRQT Delay Hold Time 5 5 5 ns
Table 6-9 NMRQ, IRQT Timing, MQUAD Package
CL550-10 CL550-30 CL560-15 CL560-30
Time Description Min Max | Min Max | Min Max | Min Max | Units
T9  NMRQ, IRQT Hi-Z to LOW Delay ' 25 20 2 20 | ns
T10 NMRQ, IRQT LOW to Hi-Z Delay 3 25 20 22 20 | ns
T11  NMRQ, TRQT Delay Hold Time 3 3 3 3 ns

1. NMRQ and TRQT are open-drain signals.
2. NMRQ and TRQT change on the positive edge of HBCLK, and are not related to any specific

transaction phase.

3. Not 100% tested. Guaranteed by design characteristics.
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Figure6-5  CL560 IRQ2, FRMEND Timing
Table 6-10  HALF_FULL, FRMEND Timing, CPGA Package
CL550-35 CL550-30 CL560-30
Time Description Min Max | Min Max | Min Max | Units
T12  FRMEND Hi-Z to LOW Delay ' 23 25 18 | ns
T13  FRMEND LOW to Hi-Z Delay? 23 25 18 | ns
T14 FRMEND Delay Hold Time ? 5 5 5 ns
T15 HALF_FULL / IRQ2 Delay 20 22 18 ns
Table 6-11 HALF_FULL, FRMEND Timing, MQUAD Package
CL550-10 CL550-30 CL560-15 CL560-30
Time Description Min Max | Min Max | Min Max | Min Max | Units
T12  FRMEND Hi-Z to LOW Delay ' 28 25 25 20 | ns
713 FRMEND LOW to Hi-Z Delay 2 28 25 25 20 | ns
T14  FRMEND Delay Hold Time 2 3 5 5 5 ns
T15 HALF_FULL / IRQ2 Delay 25 22 22 20 ns

1. FRMEND is an open-drain signal.
2. Not 100% tested. Guaranteed by design characteristics.

Specifications
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‘ Start Cycle l Wait States l Data Cycle
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Figure 6-6 CL550 Host Interface Timing: Register and Memory Write
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| Start Cycle- | Wait States | Data Cycle |
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Figure 6-7 CL560 Host Interface Timing: Register and Memory Write
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| Start Cycle | Wait States Data Cycle |
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Figure 6-8
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Figure 6-11  CL560 Host Interface Timing: Burst Mode Write
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Table 6-12 Host Interface Timing, CPGA Package
CL550-35 CL550-30 C1560-30
Time Description Min Max | Min Max | Min Max | Units
T16  START Setup Time 8 10 8 ns
T17  START Hold Time 12 15 12 ns
T18 TMZ Start Cycle Setup Time 3 8 10 8 ns
T19  TM2 Start Cycle Hold Time 12 15 12 ns
T20 TMZ Delay Hi-Z to HIGH 18 18 18 ns
T21 TMZ Delay to LOW 18 18 18 ns
T22 TMZ Delay Hold Time * 5 5 5 ns
T23 TMZ Delay to Hi-Z* 18 18 18 ns
T24 DMA_MSTR Setup Time 8 10 8 ns
T25 DMA_MSTR Hold Time 12 15 12 ns
T26  HBUS[31:0] Address Setup Time 8 10 8 ns
T27 HBUS[31:0] Address Hold Time 12 15 12 ns
T28 HBUS[31:0] Data Setup Time 8 10 8 ns
T29 HBUS[31:0] Data Setup Time 12 15 12 ns
T30 1D Setup Time 8 10 8 ns
T31 1D Hold Time 12 15 12 ns
T32 TMO, TMT Start Cycle Setup Time 8 10 8 ns
T33 TMO, TMT Start Cycle Hold Time 12 15 12 ns
T34 TMO, TMT Hi-Z Hold Time * 5 5 5 ns
T35 TMO, TMT Hi-Z to LOW Delay 18 18 18 ns
T36  TMO, TMT Delay Ho!d Time * 5 5 5 ns
T37 TMO, TMT Delay to Hi-Z * 18 18 18 ns
T38 TMOUT Delay to LOW S 22 22 2 ns
T39 TMOUT Delay to HIGH 22 22 22 ns
T40  HBUS[31:0] Hi-Z Hold Time * 2 2 2 ns
T41  HBUS[31:0] Delay Time 22 23 22 ns
T42  HBUS[31:0] Detay to Hi-Z* 22 23 2 ns
T43  HBUS[31:0] Hi-Z Delay Hold Time * 5 5 5 ns
T44 HBOUT Delay to LOW 22 22 22 ns
T45 HBOUT Delay to HIGH & 22 22 2 ns
T46  TMZ Acknowledge Cycle Setup 8 10 8 ns
T47  TMZ Acknowledge Cycle Hold 5 5 5 ns
T48 TMD, TMT Status Cycle Setup Time 8 10 - - ns
T49 TMO, TMT Status Cycle Hold Time 5 15 - - ns

A e

START should remain HIGH until the transaction is complete.

Avalid start cycle implies START LOW, TM2 HIGH, and that the CS fields of HBUS match the ID inputs.
TM2 is sometimes called ACK in design documentation. Reference part number CL550-10x for NuBus specifications.
Not 100% Tested, guaranteed by design.
TMOUT is the direction control for TM2, TM1, and TMO. When HIGH, these pins are expected to be inputs.
HBOUT is the direction control for the Host bus, When HIGH, the direction is from the host to the CL5XX (input).
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AC Characteristics

Table 6-13 Host Interface Timing, MQUAD Package
CL550-10 CL550-30 CL560-15 CL560-30
Time Description Min Max | Min Max | Min Max | Min Max | Units

T16  START Setup Time '2 10 10 10 8 ns
T17  START Hold Time 15 15 15 12 ns
T18  TM2Z Start Cycle Setup Time ? 10 10 10 8 ns
T19  TMZ Start Cycle Hold Time 15 15 15 12 ns
T20 TMZ Delay Hi-Z to HIGH 20 18 20 18 ns
T21  TMZ Delay to LOW 20 18 20 18 ns
T22  TMZ Delay Hold Time 4 4 5 4 5 ns
T23  TMZ Delay to Hi-Z* 20 18 20 18 ns
T24  DMA_MSTR Setup Time 10 10 10 8 ns
T25 DMA_MSTR Hold Time 15 15 15 12 ns
T26  HBUS[31:0] Address Setup Time 10 10 10 8 ns
T27  HBUS[31:0] Address Hold Time 15 15 15 12 ns
T28  HBUS[31:0] Data Setup Time 10 10 10 8 ns
T29  HBUS[31:0] Data Setup Time 15 15 15 12 ns
T30 D Setup Time 10 10 10 8 ns
T31  ID Hold Time 15 15 15 12 ns
T32 TMO, TMT Start Cycle Setup Time 10 10 10 8 ns
T33 TMO, TMT Start Cycle Hold Time 15 15 15 12 ns
T34  TMO, TMT Hi-Z Hoid Time * 5 5 5 5 ns
T35 TMO, TMT Hi-Z to LOW Delay 20 18 20 18 ns
T36  TMO, TMT Delay Hold Time * 5 5 5 5 ns
737  TMD, TMIT Delay to Hi-Z ¢ 20 18 20 18 ns
T38  TMOUT Delay to LOW 26 22 2 20 ns
T39  TMOUT Delay to HIGH 26 22 22 20 ns
T40  HBUSI31:0] Hi-Z Hold Time * 2 2 2 2 ns
T41  HBUS[31:0] Delay Time 26 23 22 20 ns
T42  HBUSI31:0] Delay to Hi-Z* 26 23 22 20 ns
T43  HBUS[31:0] Hi-Z Delay Hold Time ¢ 3 5 3 5 ns
T44  HBOUT Delay to LOW 26 22 22 20 ns
T45  HBOUT Delay to HIGH 26 22 22 20 ns
T46  TMZ Acknowledge Cycle Setup 10 10 10 10 ns
T47  TMZ Acknowledge Cycle Hold 5 5 5 5 ns
T48  TMO, TMT Status Cycle Setup Time 10 10 - - ns
T49  TMD, TMT Status Cycle Hold Time 15 15 - - ns

1. START should remain HIGH until the transaction is complete.

2. Avalid start cycle implies START LOW, TM2 HIGH, and that the CS fields of HBUS match the ID inputs.

3. TM2is sometimes called ACK in design documentation. Reference part number CL550-10x for NuBus specifications.

4. Not 100% Tested, guaranteed by design.

5. TMOUT is the direction control for TM2, TM1, and TMO. When HIGH, these pins are expected to be inputs.

6. HBOUT is the direction control for the Host bus, When HIGH, the direction is from the host to the CL5XX (input).
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6.2.2 Video Interface Signal Timing
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Figure 6-12  Video Interface Clock Timing
Table 6-14 Video Interface Clock Timing, CPGA Package
CL550-35 C1550-30 CL560-30
Time Description Min Max | Min Max | Min Max | Units
T50  PXCLK Pulse Width HIGH 13 15 15 ns
T51  PXCLK Pulse Width LOW 13 15 15 ns
T52  PXCLK Clock Period 29 34 33 ns
T53  PXPHASE Setup Time 16 18 16 ns’
T54  PXPHASE Hold Time 5 5 ns
T55 CLK3 Setup Time 16 18 16 ns
756  CLK3Hold Time 5 5 ns
Table6-15  Video Interface Clock Timing, MQUAD Package
CL550-10 CL550-30 CL560-15 CL560-30
Time Description Min Max { Min Max | Min Max { Min Max | Units
T50 PXCLK Pulse Width HIGH 30 15 15 15 ns
T51  PXCLK Pulse Width LOW ! 30(23) 15 15 15 ns
T52 PXCLK Clock Period 100 34 33 33 ns
T53 PXPHASE Setup Time 20 18 18 16 ns
T54 PXPHASE Hold Time 7 5 5 5 ns
T55 CLK3 Setup Time 20 18 18 16 ns
T56  CLK3 Hold Time 7 5 5 5 ns
1. Characteristics in parenthesis apply to part number CL550-10N, required for NuBus applica-
tions.
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Video Interface Timing: Compression, Full Rate Mode
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Figure 6-14  Video Interface Timing: Decompression, Full Rate Mode
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Figure 6-15  Video Interface Timing: Compression, Half-Rate Mode
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Figure 6-16  Video Interface Timing: Decompression, Half-Rate Mode
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AC Characteristics

Table 6-16  Video Interface Timing Table, CPGA Package
CL550-35 CL550-30 CL560-30
Time Description Min Max | Min Max | Min Max | Units

T57  PXADR [15:0] Hold Delay ' 4 4 4 ns
T58  PXADR [15:0] Delay Time 14 15 14 ns
T53  PXDAT [23:0] Setup Time 23 4 3 ns
T60 PXDAT[23:0] Hold Time 5 4 ns
T61 PXRE Delay to LOW 12 13 12 ns
T62 PXRE Delay to HIGH 12 13 12 ns
763  PXWE, PXRE Overlap ' -3 -3 -3 ns
T64 PXWE Delay to HIGH 12 13 12 ns
T65 PXWE Delay to LOW 12 13 12 ns
T66  PXIN Delay to HIGH 12 13 12 ns
T67 PXIN Delay to LOW 12 13 12 ns
768  PXWE HIGH to Overlap ' 2 2 2 2 2 2 | ns
T69 STALL Setup Time 14 15 14 ns
T70 STALL Hold Time 7 8 7 ns
771 BIANK Delay Hold Time ' 4 4 4 ns
T72  BLANK Delay Time 13 15 13 ns
73 HSYNC. VSYNC Delay Hold Time ' 4 4 4 ns
T74  HSYNC, VSYNC Delay Time 24 26 24 | ns
775 PXIN, PXRE Overlap ' 2 2|2 2| 2 ns
176  PXRE, PXIN Overlap ' 2 2] 2 2 -2 ns
177 PXWE HIGH, PXADR Overlap ' 0 0 0 ns
T78 HSYNC, VSYNC Setup 7 8 7 ns
T79 HSYNC, VSYNC Hold 7 8 7 ns
T80  PXDAT Delay to Hi-Z '# 23 24 23 | ns
T81  PXDAT[23:0] Delay Time 23 24 23 ns
T82  PXDAT, PXRE Overlap ' -3 ns
783  PXRE, PXDAT Overlap ' 3 12 121 3 12| ns
T84  PXOUT to LOW Delay 12 13 12 ns
T85 PXOUT to HIGH Delay 4 12 13 4 15 | ns
T86 PXOUT, PXRE Overlap ' -2 ns
787  PXOUT, PXDAT Overlap ' 3 12 1213 121 ns

1. Not 100% tested, guaranteed by design.

2. PXDAT [23:0] are inputs only during compression.

3. SRAM access time <= Tgy - Tgg - Teg

4. Decompression parameter
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AC Characteristics

Table 6-17 Video Bus Timing Table, MQUAD Package
CL550-10 | CL550-30 | CL560-15 | CL560-30
Time Description Min Max | Min Max | Min Max | Min Max | Units
T57 PXADR[15:0] Hold Delay ' 3 4 4 4 ns
T58  PXADR{[15:0] Delay Time 2 15 18 14 | ns
T59  PXDAT [23:0] Setup Time 23 6 4 5 4 ns
T60  PXDAT[23:0] Hold Time 7 5 6 5 ns
T61 PXRE Delay to LOW 18 13 15 12 ns
T62 PXRE Delay to HIGH 18 13 15 12 | ns
T63  PXWE, PXRE Overlap ' -4 -3 -4 -3 ns
T64 PXWE Delay to HIGH 18 13 15 12 ns
T65 PXWE Delay to LOW 18 13 15 12 ns
T66  PXIN Delay to HIGH 18 13 15 12 | ns
T67 PXIN Delay to LOW 18 13 15 12 | ns
168 PXWE HIGH to Overlap ' 4 4 )2 2 33 2 2 | ns
T69  STALL Setup Time 20 15 18 14 ns
T70  STAIL Hold Time 12 8 10 7 ns
T71  BUANK Delay Hold Time ! 3 4 4 4 ns
T72 BLANK Delay Time 18 15 17 14 ns
173 HSYNC. VSYNC Delay Hold Time ! 3 4 4 4 ns
T74 HSYNC, VSYNC Delay Time 30 26 28 25 | ns
T75 PXIN, PXRE Overlap ' 4 4 2 -3 3 -2 2 | ns
776  PXRE, PXIN Overlap ' 4 4 | 2 3 3 -2 2 | ns
T77 PXWE HIGH, PXADR Overlap ' 0 0 0 0 ns
T78 HSYNC, VSYNC Setup 12 8 10 7 ns
179 HSYNC, VSYNC Hold 12 8 10 7 ns
T80 PXDAT Delay to Hi-Z '# 28 24 26 23 | ns
T81  PXDAT [23:0] Delay Time 28 24 26 23 ns
T82  PXDAT, PXRE Overlap ' -4 ns
183  PXRE, PXDAT Overlap ' 2 1313 12| 2 13]3 12]ns
T84 PXOUT to LOW Delay 18 13 15 12 ns
T85 PXOUT to HIGH Delay 3 18| 4 13| 4 15) 4 121 ns
186  PXOUT, PXRE Overlap ' 4 -3 ns
187  PXOUT, PXDAT Overlap ! 2 13| 3 12 ] 2 13 | 3 12 | ns

1.

Not 100% tested, guaranteed by design.

2. PXDAT [23:0] are inputs only during compression.
3. SRAM access time <= T, - Tgg - Tgg
4. Decompression parameter
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Package Specifications

The CL550 and CL560 are packaged in two packages: 6.3
o 144 Pin Ceramic Pin Grid Array (CPGA) Package
o 144 Pin Metal Quad Flat Pack (MQU